Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.14670/HH-18-266

Título: MicroRNA-204-5p mediates sevoflurane-induced cytotoxicity in HT22 cells by targeting brain-derived neurotrophic factor
Fecha de publicación: 2020
Editorial: Universidad de Murcia, Departamento de Biologia Celular e Histiologia
Cita bibliográfica: Histology and Histopathology Vol. 35, nº11 (2020)
ISSN: 0213-3911
1699-5848
Materias relacionadas: CDU::6 - Ciencias aplicadas::61 - Medicina::616 - Patología. Medicina clínica. Oncología
Palabras clave: MicroRNA-204-5p
Sevoflurane
HT22 cells
Brain-derived neurotrophic factor
Resumen: Background. Sevoflurane is widely used as an inhalational anesthetic in clinical practice. However, sevoflurane can cause cytotoxicity and induce learning capacity decline in patients. A previous publication indicated that miR-204-5p might have a close relationship with sevoflurane-induced neurotoxicity. When exposed to sevoflurane, the expression of miR- 204-5p in neonatal hippocampus of rats was significantly increased. Hence, we aimed to investigate the role of miR-204-5p in sevoflurane-induced neurotoxicity using a mouse hippocampal neuronal cell line (HT22). Methods. The levels of miR-204-5p in HT22 cells were detected by RT-qPCR. In addition, the effects of miR-204-5p on cell viability, apoptosis and proliferation were evaluated by CCK-8, flow cytometric, and immunofluorescence assay, respectively. Western blotting was used to detect expressions of Bax, Bcl-2, active caspase 3, BDNF, TrkB, p-TrkB, Akt and p-Akt in HT22 cells. ELISA assay was used to examine the levels of total superoxide dismutase (SOD), reduced glutathione (GSH), malondialdehyde (MDA) and reactive oxygen species (ROS) in cells. Meanwhile, the dual luciferase reporter system assay was employed to explore the interaction of miR-204-5p and BDNF in cells. Results. The level of miR-204-5p was increased in sevoflurane-treated HT22 cells. Moreover, downregulation of miR-204-5p inhibited sevoflurane- induced apoptosis and promoted cell proliferation by upregulating the proteins of Bcl-2 and downregulating the expressions of Bax and active caspase-3 in HT22 cells. In addition, inhibition of miR-204-5p alleviated sevoflurane-induced oxidative injuries in HT22 cells via decline of ROS and MDA and upregulation of SOD and GSH. Furthermore, bioinformatics and dual luciferase assay demonstrated that miR-204-5p can inhibit the TrkB/Akt pathway by targeting BDNF. Conclusion. Our findings indicated that downregulation of miR-204-5p can decrease oxidative status in HT22 cells and alleviate sevoflurane-induced cytotoxicity through stimulating the BDNF/TrkB/Akt pathway. Therefore, miR-204-5p might be a potential biomarker and therapeutic target for the treatment of sevoflurane-induced neurotoxicity
Autor/es principal/es: Wang, Jun
Wang, Jun
Yan, Rongrong
Jin, Shuangfen
Wan, Zhenzhen
Cheng, Jing
Li, Na
Chen, Lin
Le, Chengjin
URI: http://hdl.handle.net/10201/126484
DOI: https://doi.org/10.14670/HH-18-266
Tipo de documento: info:eu-repo/semantics/article
Número páginas / Extensión: 9
Derechos: info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Aparece en las colecciones:Vol.35,nº11 (2020)

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Liu-35-1353-1361-2020.pdf5,31 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons