Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.14670/HH-18-143

Título: Bone biology in postnatal Wistar rats following hypoxia-reoxygenation
Fecha de publicación: 2020
Editorial: Universidad de Murcia, Departamento de Biologia Celular e Histiologia
Cita bibliográfica: Histology and Histopathology Vol. 35, nº 1 (2020)
ISSN: 0213-3911
1699-5848
Materias relacionadas: CDU::6 - Ciencias aplicadas::61 - Medicina::616 - Patología. Medicina clínica. Oncología
Palabras clave: Apoptosis
Bone biology
Endoplasmic reticulum stress
Hypoxia
Osteoblast
Resumen: Hypoxia response pathways have a central role in normal and abnormal bone biology but the effect of systemic hypoxia-reoxygenation on bone is not clear. Following hypoxic exposure, aberrant synthesis, folding and trafficking of proteins has been reported to occur, which can result in endoplasmic reticulum (ER) stress and may finally cause cell death. This study aimed to examine the effect of systemic hypoxia-reoxygenation injury on bone biology in postnatal rats. Immunoexpression of HIF-1α and VEGF was upregulated in femurs of newborn Wistar rats in response to systemic hypoxia-reoxygenation. Along with that, increased apoptosis of osteoblast precursors, osteoblasts, osteocytes and endothelial cells was observed in comparison to femurs of control animals by transmission electron microscopy, TUNEL staining and immunoexpression of cleaved caspase-3. The viability of osteoclasts was not affected. After hypoxia- reoxygenation, ER stress was observed in the osteoblasts and osteocytes as indicated by dilatation of the ER and enhanced immunoexpression of the ER stress marker GRP78. Localisation of collagen α1 immunoreaction was widespread in the bone matrix of control femurs but was confined to the osteoblasts and osteocytes in response to hypoxia-reoxygenation. In support of these findings, in vitro work showed reduced viability of osteoblast-like SaOs-2 cells and upregulation of GRP78 protein expression in them by western blotting following exposure to hypoxia. This suggests that systemic hypoxia-reoxygenation may disturb bone biology in postnatal Wistar rats by inducing ER stress and apoptosis in osteoblasts and osteocytes, without affecting the viability of osteoclasts. More in-depth research is needed to confirm causality between ER stress and apoptosis of osteoblasts and osteocytes
Autor/es principal/es: Hameister, Rita
Lohmann, Christoph H.
Dheen, Thameem
Singh, Gurpal
Kaur, Charanjit
URI: http://hdl.handle.net/10201/125028
DOI: https://doi.org/10.14670/HH-18-143
Tipo de documento: info:eu-repo/semantics/article
Número páginas / Extensión: 14
Derechos: info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Aparece en las colecciones:Vol.35, nº1 (2020)

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Hameister-35-111-124-2020.pdf20,21 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons