
Summary. Nonsteroidal anti-inflammatory drugs
(NSAIDs) are widely used for the purpose of anti-
inflammation, antipyretic, and analgesia. For this aim,
they are used for the alleviation of pain, fever, and
inflammation associated with rheumatoid arthritis, sports
injuries, and temporary pain. However, treatment with
NSAIDs may be accompanied by adverse effects such as
gastrointestinal damage and platelet dysfunction. As
with the other NSAIDs, diclofenac sodium (sodium-(o-
((2,6-dichlorophenyl)-amino)-phenyl)-acetate) (DS), an
NSAID, has potent anti-inflammatory, analgesic, and
antipyretic effects. However, treatment with DS may
cause some adverse cerebral and cerebellar effects such
as convulsions, disorientation, hallucination, and loss of
consciousness. Melatonin (MLT) is a free-radical
scavenger and possesses antioxidant properties. It has
been reported to easily cross the blood-brain barrier, and
is found in high concentrations in the brain after
exogenous administration. It is also a neuroprotector in a
wide range of conditions affecting the central nervous
system CNS due to its free-radical scavenging activities
and lipophilic-hydrophilic properties. Neuroprotective
actions of MLT have been discovered in both in vitro
and in vivo, and are a powerful scavenger of oxygen and
nitrogen free radicals. Thus, MLT can protect the cell
membrane, organelles, and core against free-radical
damage. Therefore, it has been postulated that
exogenous MLT acts as a neuroprotector contrary to DS
neurotoxicity. In this review, we aimed to discuss the
possible neuroprotective effects of MLT on DS toxicity.
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Introduction

Recently it has been shown that some of the
nonsteroidal anti-inflammatory drugs (NSAIDs), i.e.
sulindac, sulindac sulfide, sulindac sulfone,
indomethacin, acemetacin, tolmetin, etodolac, ketorolac,
and oxaprozin, exhibit scavenging activity for H2O2(Costa et al., 2005). The pyrazole derivatives dipyrone
and aminopyrine are well known potent scavengers of
singlet oxygen (Costa et al., 2008). Fernandes et al.
(2004) has demonstrated that indomethacin, acemetacin,
tolmetin, and etodolac exhibit effective scavenging
activity against ROS and RNS. Studies have also
reported that some NSAIDs are able to afford
neuroprotection by means of several mechanisms in
addition to the prostaglandin-dependent pathway
(Sairam et al., 2003), while other NSAIDs (the
nonselective COX inhibitor diclofenac and the selective
COX-2 inhibitor celecoxib) are not able to afford
neuroprotection (Sairam et al., 2003; Ragbetli et al.,
2007). Therefore, like some other NSAIDs, diclofenac
sodium (DS) not only has neuroprotective but also
neurotoxic effects on the central nervous system (CNS)
(Ragbetli et al., 2007). It has been suggested that
melatonin (MLT) acts as a neuroprotector contrary to DS
neurotoxicity since MLT is a free-radical scavenger and
possesses antioxidant properties (Reiter et al., 1997;
Odaci and Kaplan, 2009). For these reasons, in this
review, we aimed to discuss the possible neuroprotective
effects of MLT on DS toxicity.
Oxidative stress (OS) and reactive oxygen species
(ROS)

Oxidative stress (OS) is an imbalance between
reactive oxygen species (ROS) production and
antioxidant defenses in the body (Akbulut et al., 1999;
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Finkel and Holbrook, 2000; Bokov et al., 2004). The
degree of oxidative stress is determined by this balance,
and if that balance is deteriorated in favor of ROS, OS
will appear. When the OS is severe, survival is
dependent on the adaptation or resistance ability of the
cell to OS and the repair-replace capacity of the cell for
the damaged molecules (Finkel and Holbrook, 2000). In
this respect, OS can potentially modify all organs,
tissues, cells, and proteins. Moreover, certain tissues and
specific protein targets may be especially sensitive
(Finkel and Holbrook, 2000; Stadtman and Levine,
2003). Therefore, it has been suggested that OS may
participate in the pathogenesis of many human diseases
(Makker and Agarwal, 2009). These diseases include
mainly atherosclerosis, cancer, diabetes, liver damage,
rheumatoid arthritis, cataracts, AIDS, inflammatory
bowel disease, CNS disorders, Parkinson’s disease (PD),
motor neuron disease, and conditions associated with
premature birth (Agarwal and Prabakaran, 2005; Makker
et al., 2009). OS also affects most of the vital organs
during aging and lifespan (Akbulut et al., 1999; Finkel
and Holbrook, 2000; Bokov et al., 2004). 

Since the loss of balance between oxidants and
antioxidants caused by the oxidants leads to oxidative
stress (Sies, 1997), the antioxidative defense system is
required to perform detection and detoxification of ROS
(Finkel and Holbrook, 2000). This system is composed
of several enzymes and small-molecular-weight
molecules with antioxidant capabilities (Gitto et al.,
2009). Therefore, physiological homeostasis is
maintained by means of an improved enzymatic and
non-enzymatic antioxidant defense system including
glutathione (GSH), catalase (CAT), superoxide
dismutase (SOD), and glutathione peroxidase (GPx).
They counteract and regulate overall ROS levels (Finkel
and Holbrook, 2000). The effect mechanism of reactive
oxygen species is schematized in Figure 1. 
Oxidative damage in different regions of the central
nervous system

It has been reported that variable metabolic rates
lead to the region-specific accumulation of oxidative
damage in different regions of the CNS, causing specific
regions of the brain to become more vulnerable to
senescence related disorders (Bokov et al., 2004). As
part of the metabolic process in the brain, a significant
amount of free radicals is also produced (Halliwell,
1992); additionally, some regions of the brain, such as
the cortex, striatum, and hippocampus, are highly
productive of free oxygen radicals (Hill and Switzer,
1984). Free radicals and their metabolites, containing
oxygen or nitrogen atoms, are commonly referred to as
ROS and RNS, respectively (Siu et al., 2006). The best
known radicals generated from O2 include the
superoxide anion radical, the hydroxyl radical, and nitric
oxide (NO) (Reiter et al., 1997). Therefore, free-radical
inducing oxidative stress has been found as central to the
mechanisms leading to neurodegenerative disorders in

elderly people (Butterfield et al., 1997). 
Free radicals are molecules or portions thereof

which possess one or more unpaired electrons in their
outer orbital, a state which greatly increases their
reactivity (Reiter et al., 1997). Cellular generation of
reactive oxygen species and the antioxidant defense
system is summarized in Figure 2. 

In the process of adenosine triphosphate (ATP)
production and oxidative phosphorylation in the
mitochondria, oxygen is reduced to water; during the
transfer of electrons through the respiratory complexes
of the electron transport chain, some electrons escape to
form O2, H2O2, and hydroxyl radical (Nohl et al., 2005).Uncontrolled generation of radicals and related reactants
can cause oxidation of molecules in the cell membrane,
decrease lipid fluidity, reduce transmembrane potential,
augment calcium ion permeability, and increase peroxide
end-products in the cells. Thus, radicals can cause
cellular dysfunction and sometimes cell death (Reiter et
al., 1997). It has been reported that radicals function
mainly as a neuronal messenger molecule under normal
and pathological conditions. For example, NO may act
as both a neuroprotective and a neurodestructive agent
when produced in excess in hypoxic and ischemic
injuries (Kiliç et al., 2000; Muramatsu et al., 2000). 

NO, ROS, and RNS induce mitochondrial damage,
which further suppresses ATP production (Siu et al.,
2006). This condition results in the mitochondrial
permeability transition opening, which allows
cytochrome c to be released (Siu et al., 2006). A released
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Fig. 1. In cells, imbalance between the production of antioxidants and
rooxidants may cause increased production of free radicals (activated
oxygen and reactive oxygen species). These free radicals may lead to
damage of DNA and cellular proteins (Redrawn from Wakamatsu et al.,
2008).



cytochrome c causes apoptosis with the activation of
caspases (Brown, 1999; Acuña-Castroviejo et al., 2001;
Fosslien, 2001; Toninello et al., 2004). Finally,
mitochondrial damage by free radicals leads to neuronal
damage if it occurs in neuronal tissue (Reiter et al.,
2001a; Siu et al., 2006). Thus, oxidative stress causes
cell membrane and synaptic disorganization as well as
neural cell signaling dysfunction by damaging lipids,
proteins, nucleic acids, and mitochondria, followed by
apoptosis and/or necrotic events (Cui et al., 2004). It also
leads to the dysfunction of many metabolic cell
pathways (Fig. 3). 
Nonsteroidal anti-inflammatory drugs

Nonsteroidal anti-inflammatory drugs are commonly
used for anti-inflammation, antipyretic, and analgesia
(Siu et al., 2000; Kudo et al., 2003; Chang et al., 2005a).
They are widely used for the alleviation of pain, fever,
and inflammation associated with rheumatic-
degenerative joint diseases, sports injuries, and
temporary pain (Siu et al., 2000; Ericson and Källén,
2001).

Treatment with NSAIDs may be accompanied by
adverse effects such as gastrointestinal damage, platelet
dysfunction, and convulsions when co-administered with
quinolone-derivative antibacterial drugs (Davey, 1988;
Segev et al., 1988; Yakushiji et al., 1992). Their
therapeutic and adverse effects result mostly from the
inhibition of COX, which produces prostaglandins (PGs)
from arachidonic acid. However, other mechanisms,
secondary to PG synthesis inhibition, have been
proposed as being involved in the antinociceptive
activity of NSAIDs (Lee et al., 2003). Many traumatic
agents cause cell damage by activating the arachidonic
acid cascade. In such situations, NSAID intake can
stimulate the prostaglandin pathway and lead to damage

of the endothelium and CNS (Fig. 4).
Neurotoxicity of nonsteroidal anti-inflammatory
drugs

Prostaglandins are involved in both the normal and
abnormal function of every organ and system in the
human body (Siu et al., 2000). PGs in turn have been
shown to stimulate astrocytic glutamate release into the
synaptic cleft (Bezzi et al., 1998; Sanzgiri et al., 1999).
These characteristics of PGs suggest that they have both
useful and damaging actions. 

Cyclooxygenase is an enzyme that catalyzes the
rate-limiting step in the formation of PGs from
arachidonic acid (Siu et al., 2000). Although isoform
COX-1 is constitutively expressed in many cell types,
COX-2 is selectively expressed in neurons of the
cerebral cortex, hippocampus, and amygdala and only
occasionally in reactive glial cells in the brain (Siu et al.,
2000; Andreasson et al., 2001) and results in a dual
inhibitory effect on both the cyclooxygenase and
lipoxygenase pathways (Scholer et al., 1986; Hirst et al.,
1999; Hoozemans et al., 2001).

On the other hand, COX-2 can be expressed in other
CNS cell types such as endothelial. COX-2 upregulation
in response to lipopolysaccharide mediates fever
induction and contributes to changes in the blood-brain
barrier (Cao et al., 1997; Chan et al., 1997; Li et al.,
1999), and is believed to contribute to CNS
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Fig. 2. Cellular generation of reactive oxygen species (Redrawn from
Rahman et al., 2006).

Fig. 3. Oxidative stress causes disorganization and dysfunction of
metabolic pathways of cells (Redrawn from Kulkarni and Naidu, 2003).



inflammatory processes (Hirst et al., 1999; Yermakova et
al., 2001). Yermakova et al. (2001) has shown that COX-
1 expression in CA3 hippocampal neurons does not
change in Alzheimer’s disease (AD); however, more
microglial cells expressed COX-1 in AD than in control
tissue. It has been reported that increased neuronal
COX-2 expression may be detrimental to neurons by
means of increasing oxidative stress (Yermakova and
O’Banion, 2001). It has also been reported that COX-2
was up-regulated in the midbrain of experimental
Parkinsonian models and in patients with PD (Teismann
et al., 2003; de Meira Santos Lima et al., 2006). In one
study, it was suggested that selective COX-2 inhibition
prevented microglial activation and cell loss of
dopaminergic neurons in the substantia nigra in an
experimental Parkinsonism by dopaminergic neurotoxin
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
or 6-hydroxydopamine (6-OHDA) (Esposito et al.,
2007). Therefore, it has been suggested that some COX-
2 inhibitors have therapeutic efficacy against
neurodegeneration related to inflammatory reaction.
COX inhibitors such as resveratrol utilize calcium-
activated potassium channels and voltage-gated
potassium channels for the antinociceptive mechanism
(Subbaramaiah et al., 1998; Granados-Soto et al., 2002).
In Figure 5, the COX action mechanism is summarized.

Moreover, NSAIDs have heterogeneous
pharmacological properties based not only on their
COX-inhibitory action but also on other properties,
including their inhibitory effects on the synthesis of NO
radical and some effects on inflammation-related
transcription factors and inflammatory cytokine
associated changes (Asanuma and Miyasaki, 2007).
Many NSAIDs modulate activities of various ion
channels by COX inhibition (Shaw et al., 1995; Kirkup

et al., 1996; Lee and Wang, 1999; Voilley et al., 2001).
NSAIDs generally inhibit COX activity and therefore
may prevent neuroinflammation, and some NSAIDs
have recently been shown to target γ-secretase, an
enzyme required for the generation of Aß peptides, and
then decrease the production of Aß42, which is more
toxic and fibrillogenic. Several COX-2-specific NSAIDs
can increase Aß42 production by inhibiting γ-secretase
activity. Aside from these effects, neuroinflammation
and disease progression may also be affected by
NSAIDs acting on peripheral cells or immune cells;
thus, alteration occurs in the production of growth
factors and cytokines, which can pass easily from the
blood-brain barrier (BBB) (Fig. 6). 

In some cases, the pharmacological effects of
NSAIDs are independent of the inhibition of COX
activity. Sairam et al. (2003) have suggested that the
neuroprotective ability of sodium salicylate (SA) is
independent of PG mediation. It deactivates the hydroxyl
radical and thus protects dopamine (DA) depletion in the
striatum caused by 1-methyl-4-phenylpyridinium
(MPP+) (Sairam et al., 2003). Ton et al. (2006) have
shown that there is no significant association between
the use of nonaspirin NSAIDs and incidence of PD
(2006). It is reported that aspirin and salicylate inhibit
nuclear factor-B (Kopp and Ghosh, 1994) and the
activity of inhibitory B kinase (Yin et al., 1998). 

It has been shown that NSAIDs can enhance the heat
shock response as a reaction to hyperthermia and other
toxic conditions by the induction of heat shock proteins
(Hsps) (Batulan et al., 2005). The heat shock cognate
proteins and Hsps proteins (e.g. Hsp70, the major
inducible member of the Hsp family) function as
chaperones during protein synthesis, intracellular
transport, and degradation of abnormally folded proteins
(Morimoto, 1998; Jolly and Morimoto, 2000) and inhibit
apoptosis (Ravagnan et al., 2001; Mosser and Morimoto,
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Fig. 4. Trauma triggers the arachidonic acid cascade. By the action of
cyclooxygenase, various tissue specific prostaglandins (PG) are made
(Redrawn from Naesh, 2006).

Fig. 5. Scheme of COX action mechanism (Redrawn from Naesh,
2006).



2004). It has been suggested that Hsp70 protects against
hyperthermia, oxidative stress, glutamate excitotoxicity,
and ischemia in the nervous system (Kelly et al., 2001;
Lee et al., 2001; Yenari, 2002). 

On the other hand, NSAIDs can enhance the cellular
heat shock response by inducing Hsp70. In one study,
sodium salicylate and niflumic acid were tested in the
spinal motor neurons of dissociated spinal cord cultures
subjected to hyperthermia and to the subsequent stresses
associated with amyotrophic lateral sclerosis; both
NSAIDs lowered the temperature threshold for Hsp70
expression in glia but not in motor neurons (Batulan et
al., 2005). That study has demonstrated that treatment
with these two NSAIDs failed to overcome the high
threshold for the activation of heat shock response in
motor neurons (Batulan et al., 2005). Therefore, it may
be said that the COX-inhibitory actions of all nonaspirin
NSAIDs do not have the same neuroprotective effects.
This shows that the protective effects of each NSAID
should be evaluated individually. The relation between
stress and NSAIDs is illustrated in Figure 7. 

Several studies have reported the inconsistent effects
of NSAIDs on the neurotoxicity of MPTP or MPP+ in
vivo (Teismann and Ferger, 2001; Esposito et al., 2007).
It has been demonstrated that while some NSAIDs such
as aspirin provide neuroprotection from MPTP at the
striatal and nigral levels (Teismann and Ferger, 2001),
other NSAIDs, including diclofenac sodium, have no
protective effect on MPTP toxicity. Even celecoxib,
which is a specific COX-2 inhibitor, aggravated MPP+-
induced striatal DA depletion in rats (Sairam et al.,
2003). Moreover, ibuprofen inhibits microglial
proliferation by cell cycle arrest (Elsisi et al., 2005). It is
well known that NSAIDs that significantly arrest the cell
cycle at the G0/G1 phase induce cytotoxicity and cell

death (Chang et al., 2005b). 
It has also been observed that diclofenac sodium was

ineffective in the Parkinsonian model induced by other
neurotoxins MPP+ or 6-OHDA (Sairam et al., 2003;
Asanuma and Miyasaki, 2007). One study has found that
indomethacin, ibuprofen, ketoprofen, and diclofenac
significantly potentiate MPP+-induced cell death in
PC12 cells (Morioka et al., 2004). Furthermore, it has
been reported that NSAIDs induce apoptosis in a variety
of cells (Lu et al., 1995; Han et al., 2001; Yamazaki et
al., 2002). Additionally, Dairam et al. (2006) have
suggested that the non-steroidal anti-inflammatory
agents tolmetin and sulindac inhibit liver tryptophan 2,3-
dioxygenase activity and alter brain neurotransmitter
levels (Dairam et al., 2006). 

Therefore, it may be said that NSAIDs may cause
cell death by mechanisms other than COX inhibition.
The mechanisms of some NSAID-induced cell death are
not clear; however, these mechanisms may be
multifactorial, including diminishing the effects of
antioxidants such as MLT, apoptosis, ROS, activity of
the caspase-dependent cascade, activation of the
peroxisome proliferator-activated receptor (PPAR),
arrested cell cycle, and increasing the intracellular
accumulation of toxic agents by inhibiting the activities
of multidrug resistance proteins (MRPs) (Kusuhara et
al., 1998; Klampfer et al., 1999; Pique et al., 2000).
Kusuhara et al. (1999) have demonstrated that ROS
contributes to apoptotic cell death induced by NSAIDs
in cultured gastric cells. It has been demonstrated that
several NSAIDs cause apoptosis through caspase-
dependent cascade (Kusuhara et al., 1998; Klampfer et
al., 1999; Pique et al., 2000). 

It has been reported in the literature that the direct
activation of PPAR by some NSAIDs results in
apoptosis in several types of cells (Kusunoki et al., 2002;
Yamazaki et al., 2002). Morioka et al. (2004) have
demonstrated the possibility that, in experimental PD
induced by the neurotoxin MPP+, the regulation of the
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Fig. 6. NSAID activity in the inhibition of cyclooxygenase (COX) and its
effect on peripheral cells or immune cells (Redrawn from Sahagan et al.,
2005).

Fig. 7. Relation between stress and NSAIDs (Redrawn from
Brzozowski, 2003).



effects (Scholer et al., 1986; Siu et al., 2000; Kudo et al.,
2003; Chang et al., 2005a). It inhibits COX, decreases
release of arachidonic acid, and increases uptake of
arachidonic acid (Cardinali et al., 1982). In clinical
practice, DS is widely used for the alleviation of pain,
fever, and inflammation associated with arthritis,
rheumatoid arthritis, osteoarthritis, acute gout,
dysmenorrhoea, and is sometimes used postoperatively
(Siu et al., 2000; Beck et al., 2003; Savaser et al., 2005).
It is known that DS essentially acts by inhibiting the
enzyme COX, reducing the arachidonic acid release, and
enhancing its uptake (Siu et al., 2000). On the other
hand, the antinociceptive effect of diclofenac may result
from the activation of some potassium channels (Ortiz et
al., 2002). Diclofenac opens ATP-sensitive potassium
channels, and these results in the activation of the nitric
oxide-cyclic GMP pathway (Lee et al., 2003).

It has been found that treatment with DS may be
accompanied by adverse effects such as serious upper
gastrointestinal bleeding, platelet dysfunction, and
cardiovascular hazard (Russell, 2001; Liu et al., 2005;
Andersohn et al., 2006; Capone et al., 2007; Ragbetli et
al., 2007). Treatment with DS may cause some adverse
cerebral (i.e. convulsions) and cerebellar effects (Bright
and McNulty, 1991; Klc et al., 2004; Liu et al., 2005;
Capone et al., 2007). Bright and McNulty (1991) have
reported a case in which a subject became disoriented,
hallucinated, lost consciousness, and suffered respiratory
arrest after ingesting five diclofenac tablets (375 mg
total), two ibuprofen tablets (400 mg total), and one
indomethacin capsule (75 mg).

The effects of NSAIDs on the gastrointestinal
system are illustrated in Figure 9. However, the side
effects of DS on the human CNS are unclear (Kudo et
al., 2003). For this reason, experimental studies have
been conducted to assess DS toxicity on CNS in both the
prenatal and postnatal period. For example, DS-induced
teratogenicities have been reported during organogenesis
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Fig. 8. Model for the pro-apoptotic effects of NSAIDs and the regulation
of NF-kappaB (Redrawn from Stark and Dunlop, 2005).

Fig. 9. Effect mechanism of NSAIDs on gastrointestinal system
(Redrawn from Wallace, 2007).

membrane-transport systems of MPP+ might be
associated with the potentiating actions of NSAIDs. This
study has demonstrated that incubation of PC12 cells
with some NSAIDs significantly increases the
intracellular accumulation of [3H]MPP+, and several
NSAIDs potentiate MPP+-induced cell death through a
blockade of MRPs belonging to a superfamily of ATP-
binding cassette transporters rather than the inhibition of
COXs activities in PC12 cells (Morioka et al., 2004). It
has also been suggested that some NSAIDs, including
diclofenac, inhibit the activities of MRPs, including
MRP4 in PC12 cells, leading to an increase in the
intracellular concentration of MPP+ and aggravation of
cell toxicity (Morioka et al., 2004). 

As a result, pro-apoptotic proteins such as NF-kB
are released by these two different pathways (Figure 8).
In addition to all the undesirable effects of NSAIDs on
nervous the system mentioned above; some researchers
have suggested that NSAIDs have a positive effect on
neuroprotection. These studies have suggested that some
other mechanisms may also be involved at the
neurotransmitter level (Mohanakumar et al., 2000;
Acuña-Castroviejo et al., 2001; Sairam et al., 2003). For
example, both tolmetin and sulindac reduce DA levels in
the striatum, suggesting that these NSAIDs may have the
potential to exacerbate or induce DA-deficient
neurological disorders (Dairam et al., 2006). 
Diclofenac sodium

Diclofenac sodium (sodium-(o-((2,6-dichloro-
phenyl)-amino)-phenyl)-acetate), an NSAID, is
characterized by a relatively low molecular weight and
has potent anti-inflammatory, analgesic, and antipyretic



(Chan et al., 2001; Kudo et al., 2003; Siu and Lee, 2004;
Ragbetli et al., 2007). It has recently been asserted that if
an embryo is exposed to DS during the critical period of
development (i.e. between E11 and E15), the generation,
proliferation, and migration of Purkinje cells may be
affected; therefore, DS may cause abnormal
development of the cerebellum (Kudo et al., 2003).
Ragbetli et al. (2007) have reported that the Purkinje
cells of a developing cerebellum may be affected by
administration of DS during the prenatal period. They
reported that significant cell loss occurred in the total
number of Purkinje cells in 4W-old and 20W-old DS-
treated groups in comparison to their controls (Fig. 10).

Studies have also reported that quantitative changes
in the hippocampal region after exposure to DS may
occur (Klc et al., 2004). They have shown a significant
increase of glial cell reaction after repeated epidural DS
injection. Regarding this subject, Gokcimen et al. (2007)
found a significant decrease of the granule cell number
in a 4W-old DS-treated group in comparison to their
control group (Fig. 11). 

In another study, it was demonstrated that DS leads
to an increase in the intracellular concentration of MPP+
by inhibiting the activities of MRPs in PC12 cells and

that DS therefore causes aggravation of cell toxicity
(Morioka et al., 2004). Thus, like some other NSAIDs,
DS has not only neuroprotective effects but also
neurotoxicity resulting from active metabolites of the
drug, oxidative stress, and apoptosis (Hickey et al.,
2001; Inoue et al., 2004). DS may also affect peripheral
nerve morphology (Kusuhara et al., 1998). Canan et al.
(2008) have researched the effects of DS on the
development of sciatic nerve fiber in rats. According to
the results of this study, axons were degenerated and the
axon number was significantly decreased in groups that
received diclofenac sodium (Fig. 12).

Surprisingly, another study found that diclofenac
sodium did not cause a significant decrease in axon
number in the rat median nerve. In addition, the study
found that degenerated axons were very common in the
diclofenac sodium treated group in comparison to the
control group (Fig. 13) (Ayranci et al., 2010).
Melatonin

Melatonin is an important signal molecule that is
widely distributed in nature. It is found in vertebrate
animals and humans, but is also a component of
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Fig. 10. Light microscopical
sections of cerebellar cortex of
control (A) and diclofenac
treated rats (B). Arrows and
asterisks indicate Purkinje
cells and granular cell layer,
respectively.

Fig. 11. Light microscopical
sections of denate gyrus of
control (A) and diclofenac
treated rats (B). Arrows
indicate granular neurons in
both groups.



unicellular organisms, plants, and fungi (Reiter et al.,
2007a; Bob and Fedor-Freybergh, 2008; Odaci and
Kaplan, 2009). It is produced mainly by the pineal gland,
which is the major site of its synthesis in vertebrates. Its
name is based on its effect on lightening the melanin
pigmentation in frog skin (Touitou, 2001; Odaci and
Kaplan, 2009). It is also produced in small amounts in
extra-pineal sites the retina, gastrointestinal system,
Harderian gland, ovary, skin, immune system, and some
cerebral structures, and also by leukocytes (Itoh et al.,
1997; Djeridane et al., 1998; Slominski et al., 2002;
Carrillo-Vico et al., 2004; Siu et al., 2006; Jimenez-Jorge
et al., 2007; Reiter et al., 2007a,b).

Chemically, melatonin is an indolamine, a
tryptophan derivative (N-acetyl-5-methoxytryptamine),
and is synthesized from serotonin in a two-step
biochemical sequence via N-acetylation reactions
catalyzed by arylalkylamine N-acetyltransferase and via
O-methylation catalyzed by hydroxyindole-O-
methyltransferase (Reiter et al., 2007a,b; Odaci and
Kaplan, 2009) .

The most potent environmental factor regulating the
metabolism of the mammalian pineal gland is the light-
dark cycle. The endogenous levels of serum and
cerebrospinal fluid of MLT show dramatic diurnal

variability (Pääkkönen et al., 2006). MLT is secreted
primarily at night, when it reaches levels 10 times higher
than those present in the daytime (Touitou, 2001). Its
secretion begins in the evening and lasts until morning.
While darkness promotes MLT secretion, light exposure
inhibits it. The retinal ganglion cells stimulated by light
send information to the suprachiasmatic nuclei of the
hypothalamus and through the sympathetic pathway to
the pineal gland. Furthermore, the retina and the
suprachiasmatic nuclei also receive numerous inputs
from other brain areas. Thus, blood MLT exhibits a
circadian rhythm and influences the sleep-wake cycle
(Touitou, 2001; Cardinali et al., 2006). The synthesis
mechanism of MLT is summarized in Figure 14. 

It has been reported that MLT is a neuroprotector
(Reiter et al., 1995; Reiter, 2003; Leon et al., 2005). Its
neuroprotective actions have been discovered both in
vitro (Giusti et al., 1995) and in vivo (Uz et al., 1996).
The actions of MLT are essentially associated with the
fact that both itself and its metabolites are powerful
scavengers of oxygen and nitrogen free radicals (Leon et
al., 2005; Hardeland et al., 2007; Manda et al., 2007; Tan
et al., 2007). Moreover, it has been reported that MLT
has an antioxidant activity and maintains a toxicity-free
tissue environment (Maldonado et al., 2007). MLT
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Fig. 12. Light microscopical
sections of sciatic nerve of
control (A) and diclofenac
treated rats (B). Arrows and
arrow heads indicate healthy
and degenerated axons,
respectively.

Fig. 13. Light microscopical
sections of median nerve of
control (A) and diclofenac
treated rats (B). Arrows and
arrow heads indicate healthy
and degenerated axons,
respectively (Ayranci et al.,
2010).



protects cells from the damaging effects of a variety of
oxidants, including hydroxyl radicals, which initiate
lipid peroxidation (Leon et al., 2005), peroxyl radicals,
which are lipid peroxidation products and propagate
lipid peroxidation (Pieri et al., 1994), and the
peroxynitrite anion (Tan et al., 1993, 2007; Catalá,
2007). MLT also scavenges the peroxynitrite anion,
which is a reaction product of superoxide and nitric
oxide and may induce mitochondrial oxidative damage
(Cuzzocrea et al., 1997; Gilad et al., 1997). In addition,
MLT inhibits the nitric oxide synthase (Pozo et al., 1997)
and scavenges nitric oxide directly (Mahal et al., 1999;
Noda et al., 1999). MLT has also reduced electron
leakage at the mitochondrial level, avoiding radical
generation (Leon et al., 2004). This antioxidant function
of MLT has been shown in whole brain tissue extracts
(Reiter, 1998; Lin and Ho, 2000). Additionally, MLT has
embargoed the expression of the apoptotic mediator
tumor necrosis factor alpha (Mazzon et al., 2006). The
effect mechanism of melatonin is shown in Figure 15.

In addition, it has been suggested that exogenous
MLT plays a role in inhibiting acute inflammatory
reactions by modulating inflammatory cytokines
(Rodriguez et al., 2007). Thus, MLT directly detoxifies
by scavenging reactive species such as hydroxyl
radicals, hydrogen peroxide, singlet oxygen, nitric oxide,
peroxynitrite anion, and peroxynitrous acid, or indirectly
by inducing a number of antioxidative enzymes, e.g.
superoxide dismutase, GPx, GR, and CAT, in addition to
inhibiting a proxidative enzyme, 5- and 12-lipo-
oxygenases, and nitric oxide synthase (Lin and Ho,
2000; Reiter et al., 2002; Pandi-Perumal et al., 2006; Siu
et al., 2006). Finally, due to its free-radical scavenging

activities and both lipophilic and hydrophilic properties,
MLT has been reported as a potential neuroprotective
agent (Reiter et al., 1997; Reiter, 1998). The effects of
melatonin on inflammatory cells and cytokines are
shown in Figure 16. 
Melatonin as an antioxidant

MLT is known as an endogenous antioxidant.
Endogenous antioxidants are the first line of defense and
act by scavenging potentially damaging free-radical
moieties (Sies, 1997; Finkel and Holbrook, 2000; Reiter
et al., 2000; El-Sokkary et al., 2003; Rodriguez et al.,
2004). In addition to the antioxidant defense system
within the organism, several exogenous antioxidants
such as vitamins, drugs, and food have also been
reported (Ames et al., 1993). For example, nonsteroidal
anti-inflammatory drugs (NSAIDs) are used for the
treatment of inflammatory processes. Their inhibitory
activity against cycloxygenase (COX) enzymes catalyses
the formation of prostaglandin (PG) precursors from
arachidonic acid (Fernandes et al., 2004). In addition to
their anti-inflammatory effect, NSAIDs have a putative
scavenging activity. 

Melatonin and its metabolites are isolated firstly
from bovine pineal glands (Reiter and Maestroni, 1999).
It has been reported that melatonin is a potent free-
radical scavenger (Tan et al., 1993; Catalá, 2007) and a
wide antioxidant (Tan et al., 1993; Jimenez-Jorge et al.,
2007). Melatonin has an immunomodulatory and
antioxidant effect in the organism (Reiter et al., 2001b),
and has been reported as having antioxidant activity in
whole brain tissue extracts (Reiter, 1998; Lin and Ho,
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Fig. 14. Synthesizing and releasing mechanism of melatonin (Redrawn from Konturek et al., 2007).



2000). It is well known that MLT and its metabolites are
significant scavengers of free radicals and peroxynitrite
(Hardeland and Pandi-Perumal, 2005). In addition to the
protective effects of enzymatic antioxidant defenses,
MLT has been reported to be a free-radical scavenger
and to possess antioxidant properties (Reiter et al., 1997;
Odaci and Kaplan, 2009). Therefore, it is known as an
endogenous antioxidant, which neutralizes free radicals,
ROS, and reactive nitrogen species (RNS) (Reiter et al.,
1997; Odaci and Kaplan, 2009). It also stimulates
several antioxidative enzymes, which increase its
efficiency as an antioxidant.

In terms of direct free-radical scavenging, MLT
interacts with the highly toxic hydroxyl radical with a
constant rate equivalent to that of other highly efficient
hydroxyl radical scavengers and also neutralizes
hydrogen peroxide (H2O2), singlet oxygen, peroxynitriteanion, nitric oxide, and hypochlorous acid. It is reported
that MLT’s effects are mediated through increased GSH
levels, and SOD, GPx, and glutathione reductase (GR)
are also stimulated by MLT (Reiter et al., 2000;
Cuzzocrea and Reiter, 2001). Therefore, it protects cells,
tissues, and organs against oxidative damage induced by
a variety of free-radical generating agents and processes
(Reiter et al., 1997; Odaci and Kaplan, 2009). 

MLT indirectly scavenges by stimulating a number
of antioxidative enzymes including c-glutamylcysteine
synthase, glucose 6-phosphate dehydrogenase
(Hardeland, 2005; Eskiocak et al., 2007), SOD, GPx,
GR, and hemoperoxidase ⁄ CAT in addition to inhibiting
a proxidative enzyme, 5- and 12-lipo-oxygenases, and
nitric oxide synthase (Reiter et al., 2002; Pandi-Perumal
et al., 2006). Thus, as a result of stimulation of these
enzymes, MLT indirectly scavenges a variety of reactive
species including the hydroxyl radical, hydrogen
peroxide, singlet oxygen, nitric oxide, peroxynitrite
anion, and peroxynitrous acid. MLT also inhibits the
peroxidative enzyme iNOS (Reiter et al., 2001b;

Hardeland and Pandi-Perumal, 2005). 
It has been indicated that MLT could prevent

advanced oxidative protein products (Dubocovich et al.,
2003). Furthermore, it has been reported that MLT
reduces electron leakage from the mitochondrial electron
transport chain, thereby limiting free-radical damage and
reducing oxidative stress (Leon et al., 2005). MLT acts
on the G protein-coupled MLT receptors MT1 and MT2(formerly known as MLT 1a and MLT 1b), which are
typically linked to the inhibition of cAMP mediated
signaling (Dubocovich, 1988; Witt-Enderby et al.,
2006). These receptors are expressed in various types of
mammalian neurons, including in the human brain
(Savaskan et al., 2002; Thomas et al., 2002; Uz et al.,
2005; Brunner et al., 2006; Jimenez-Jorge et al., 2007;
Wu et al., 2007). 

It has been suggested that MLT reduces NO
production via inhibiting NOS activity (Pozo et al.,
1997; Hardeland and Pandi-Perumal, 2005). Moreover,
MLT stimulates the activity of endogenous antioxidant
enzymes, including GPx and GR (Reiter et al., 2000;
Cuzzocrea and Reiter, 2001). MLT also restores the
cytochrome oxidase activity in the hypoxic nodose
ganglion, improves mitochondrial ATP production,
reduces electron leakage from respiratory complexes,
and scavenges radicals that are generated at the
mitochondrial level (Acuña-Castroviejo et al., 2003;
Chang et al., 2005b; Leon et al., 2005). The effects of
MLT on mitochondria, which are the main source of free
radicals related to electron transfer to molecular oxygen
at the matrix site, are a result of increases in
mitochondrial respiration and ATP synthesis in
conjunction with the rise in complex I and IV activities
(Martin et al., 2000, 2002; Acuña-Castroviejo et al.,
2003; Leon et al., 2005). The effects on the respiratory
chain may represent new opportunities for the
prevention of radical formation, in addition to
eliminating radicals already formed. Thus, MLT directly
scavenges a variety of free radicals and reactive species
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Fig. 15. Mechanism of melatonin on different pathways (Redrawn from
Hardeland and Pandi-Perumal, 2005).

Fig. 16. Effect of melatonin on inflammatory cells and cytokines
(Redrawn from Szczepanik, 2007).



including the hydroxyl radical, hydrogen peroxide,
singlet oxygen, nitric oxide, peroxynitrite anion, and
peroxynitrous acid (Hardeland and Pandi-Perumal,
2005). The effects of melatonin on the respiratory chain
of mitochondria are shown in Fig. 17. 
The neuroprotective effects of melatonin

MLT readily crosses BBD and is found in high
concentrations in the brain after exogenous
administration (Dubocovich et al., 2003). It is a potential
neuroprotective agent in a wide range of conditions
affecting the CNS (Antolin et al., 2002; Baydas et al.,
2005a,b; Srinivasan et al., 2006) owing to its free-radical
scavenging activities and lipophilic-hydrophilic
properties (Reiter et al., 1997; Reiter, 1998). Thus, MLT
is able to protect the cell membrane, organelles, and core
against free-radical damage (Turgut et al., 2007). For
example, it can protect against injury through its radical-
scavenging action (Tan et al., 1993; Reiter et al., 2000).
MLT also has a strong antiapoptotic signaling function
(Pandi-Perumal et al., 2006). 

One widely accepted hypothesis for explaining the
pathogenesis of senescence-related disorders is oxidative
stress (Kokoszka et al., 2001). Feng et al. (2006) have
reported that MLT administration decreased the amount
of thiobarbituric acid-reactive substances, increased
glutathione levels and superoxide dismutase activity, and
counteracted the up-regulation of Bax, caspase-3, and
prostate apoptosis response-4 expression, thereby
significantly reducing oxidative stress and neuronal
apoptosis. It has been reported that MLT significantly
attenuated mitochondrial DNA damage in the substantia
nigra induced due to MPTP and its active metabolite
MPP+ by reducing the free-radical generation and
collapse of the mitochondrial membrane potential
(Pandi-Perumal et al., 2006). 

The protective effects of melatonin on protein against
oxidative damage

Modifications of protein due to free radicals may
result in changes in protein function, chemical
fragmentation, or increased susceptibility to proteolytic
attack (Droge, 2002). The oxidative damage to proteins
is reflected by a decrease in the levels of protein thiols,
as a result of oxidation of protein thiol groups by free
radicals and an increase in levels of advanced oxidation
protein products, which are terminal products of protein
exposure to free radicals (Cakatay et al., 2003).
Oxidation of proteins can also lead to the cleavage of the
polypeptide chain and to the formation of cross-linked
protein aggregates (Stadtman and Levine, 2003; Davies,
2005; Eskiocak et al., 2007).

It has been reported that MLT can protect against
protein degradation caused by free radicals. Abe et al.
(1994) have suggested that GSH-depleted newborn rats
treated with MLT did not develop cataracts. In this case,
MLT’s protective effect may be related to its
antioxidative potential. In another study, MLT treatment
partly prevented the increases in protein oxidation after
hypoxia in the brain tissue (Eskiocak et al., 2007). It
concluded that exogenous MLT could be beneficial in
the treatment of newborn rats with hypoxia, and
suggested the useful effect of MLT on protein oxidation
and nitric oxide during hypoxia (Eskiocak et al., 2007). 
The protective effects of melatonin on DNA against
oxidative damage

Oxidation of molecules in the nucleus leads to DNA
fragmentation and mRNA mutagenic changes (Siu et al.,
2006). In the oxygen free radical-induced damage to
DNA, free radicals have been shown to cause strand
breakage, formation of DNA-protein crosslinks, and
alteration of the purine and pyrimidine bases (Nagai et
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Fig. 17. Effects of melatonin on the respiratory chain of mitochondria
(Redrawn from Hardeland and Perumal, 2005).

Fig. 18. Mechanism of melatonin (MT) on pathological conditions
(Redrawn from Konturek et al., 2007).



al., 2008). One of the main DNA modifications produced
by oxygen free radicals is generation of 8-OHdG, which
is one of the most sensitive biomarkers for oxidative
stress (Doetsch and Cunningham, 1990). It has been
reported that Ref-1 (also known as HAP1, Ape1, and
APEX1), which are class II hydrolytic
apurinic/apyrimidinic DNA repair endonucleases
(Demple et al., 1991; Robson and Hickson, 1991;
Robson et al., 1991), function in base excision repair of
basic DNA lesions generated by spontaneous hydrolysis
or by exposure to reactive oxygen radicals (Doetsch and
Cunningham, 1990). Furthermore, it has been suggested
that MLT stimulates a number of antioxidative enzymes
(Eskiocak et al., 2007). It has been reported that MLT
can run through membranes and barriers and accumulate
in cell nuclei because of its high lipophilicity, and
protects DNA against oxidative stress (el-Aziz et al.,
2005; Hussein et al., 2005). 
The protective effects of melatonin on lipids against
oxidative damage

Free radicals may cause their own destruction as a
result of generation of lipid peroxidation reacting with
the PUFA in the membranes (Reiter et al., 1997). Leaden
and Catalá (2005) have reported that MLT has a
protective effect on ascorbate-Fe2+ lipid peroxidation of
PUFA in rat brain microsomes. It has been shown that
MLT prevents lipid peroxidation during hypoxia-
ischemia (Cuzzocrea et al., 2000a,b; Tütüncüler et al.,
2005). Akbulut et al. (2008) have demonstrated that the
levels of GSH, which is the most important endogenous
antioxidant in the brain tissue, were lower in the cerebral
cortex and the cerebellum of aged rats when compared
to younger controls. 
The protective effects of melatonin on tissue against
oxidative damage

It has been found that MLT protects tissues against
free radical-induced oxidant damage (Sener et al., 2006).
In many studies, it has been shown that MLT is a free-

radical scavenger and has antioxidant effects (Cuzzocrea
et al., 2000a,b; Cabeza et al., 2001; Pei et al., 2002).
MLT therefore protects DNA, lipids, and proteins
against oxidative damage (Tan et al., 1993; Reiter,
2000). It also has a high lipophilic ability to cross all
biological membranes, and this feature aids its protective
effects against oxidative stress (Sener et al., 2006).
Jimenez-Jorge et al. (2007) have shown that, when the
pineal gland is not yet producing MLT, it is synthesized
by the brain and could be used for protection of the brain
from free-radical damage (Jimenez-Jorge et al., 2007). 

Brain tissue is highly sensitive to free-radical
damage because of its high utilization of oxygen; for this
reason, brain MLT production is very important in the
fetal stages of development (Halliwell and Gutteridge,
1985). Antioxidative protection by MLT occurs as a
result of its effect on both receptor mechanisms and gene
expression, which do not require receptors, such as
direct scavenging of free radicals and electron exchange
reactions with the mitochondrial respiratory chain.
Cellular mechanisms of MLT involved in
neuroprotection continue to be explored. Studies have
shown that MLT is a direct radical scavenger and an
indirect antioxidant (Reiter, 1998; Tan et al., 1998;
Baydas et al., 2001). Melatonin reduces lipid
peroxidation and scavenges the hydroxyl radical, which
initiates lipid peroxidation, and the peroxyl radical,
which propagates the process of lipid peroxidation (Pieri
et al., 1994; Poeggeler et al., 1994). Moreover, it has
been demonstrated that hypochlorous acid, hydrogen
peroxide, singlet oxygen, and peroxynitrite anion are
scavenged directly by MLT (Gilad et al., 1997; Allegra
et al., 2003). 

In addition, MLT stimulates mRNA levels and the
activities of endogenous antioxidant enzymes, including
SOD, GPx, and GR (Reiter et al., 2000; El-Sokkary et
al., 2003; Rodriguez et al., 2004). Baydas et al. (2003)
and Osuna et al. (2002) have shown that MLT protects
neural tissues against neurotoxicity due to
homocysteine-induced lipid peroxidation. It has been
suggested that MLT directly blocks steps in the apoptotic
pathway due to the absence of release of cytochrome c,
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Fig. 19. Light microscopical
sections of hippocampal
pyramidal cells of control (A)
and DS-treated rats (B).
Arrows indicate pyramidal
neurons in both groups, and
the asterisk indicates a
necrotic cell in the DS group.



down-regulation of the pro-apoptotic protein Bax, up-
regulation of the anti-apoptotic protein Bcl-2, and
reduced DNA fragmentation in MLT-treated
hyperhomocysteinemic rats (Baydas et al., 2005a,b).
Letechipía-Vallejo et al. (2007), in an experimental
study, have shown the neuroprotective effect of MLT
against the pathophysiological mechanisms of brain
damage occurring early after ischemia and reperfusion
(Letechipía-Vallejo et al., 2007). They have
demonstrated that treatment by MLT of global cerebral
ischemia results in a significant long-term preservation
of the neuronal population in the Ammon’s horn
(Letechipía-Vallejo et al., 2007). Turgut et al. (2007)
have shown the neuroprotective effects of MLT on
hydrocephalus-induced choroid plexus changes in
infantile rats. Guven et al. (2007) have suggested that
MLT partially protects against epirubicin-induced
cardiotoxicity. Suresh et al. (2006) have demonstrated
the neuroprotective effect of MLT during Pb-induced
neuronal apoptosis (Suresh et al., 2006). The authors
have suggested that this neuroprotection is associated
with the possible metal-chelating effect of MLT reducing
the cell damage and increasing the production of
intracellular GSH levels. 

Some experimental studies have also documented a
bone-protecting action of MLT which operates by
decreasing bone resorption in ovariectomized rats
provided with estradiol (Ladizesky et al., 2003) and
methylprednisolone (Ladizesky et al., 2006). Mogulkoc
et al. (2006) have shown that hyperthyroidism increased
oxidative damage in cerebral, hepatic, and cardiac
tissues of rats and that MLT supplementation suppressed
oxidative damage. Sharma et al. (2006) have shown a
physiological neuroprotection action of MLT against
Parkinsonian neurodegeneration in the nigrostriatal
system in a 6-hydroxydopamine model of Parkinson's
disease. Studies have reported a marked increase in
mRNA and protein expression in rat C6 glioma cells
after treatment with MLT (Armstrong and Niles, 2002;
Sharma et al., 2006) The glial-cell-line-derived
neurotrophic factor, which is a potent survival factor for
dopaminergic neurons in the CNS (Kirik et al., 2004;
Smith et al., 2005), may be involved in some of the
neuroprotective effects of MLT (Sharma et al., 2006). 

It has been noted that MLT receptors are present in
regions of the human brain such as the hippocampus
(Savaskan et al., 2001, 2005). MLT’s antioxidative and
neuroprotective properties demonstrated in the
hippocampus include synaptic plasticity in pyramidal
neurons (El-Sherif et al., 2003), regulation of the
expression of cell adhesion molecules (Baydas et al.,
2002), and serotonin release (Monnet, 2002). The MT1,MT2, and MT3 membrane receptors of MLT are
responsible for effects such as the circadian rhythm and
protection against oxidative stress (Dubocovich and
Markowska, 2005; Pandi-Perumal et al., 2006). The
antioxidant effect of the MT3 receptor, characterized as
the enzyme quinone reductase 2, occurs by its
prevention of electron transfer reactions of quinines
(Foster et al., 2000). Other antioxidant effects of MLT

occur by its direct inhibition of the mitochondrial
permeability transition pore (Andrabi et al., 2004). MLT
also scavenges some organic radicals such as
protoporphyrinyl cation radicals, 2,2’-azino-bis (3-
ethylbenzthiazoline-6-sulfonic acid) cation radicals,
substituted anthranylyl radicals, and peroxyl radicals
(Hardeland and Pandi-Perumal, 2005; Hardeland, 2005;
Pandi-Perumal et al., 2006). 
The neuroprotective effects of melatonin against
neurotoxicity of diclofenac sodium

NSAIDs may change neurotransmitter levels
(Mohanakumar et al., 2000; Sairam et al., 2003). Dairam
et al. (2006) have shown that tolmetin and sulindac
inhibit tryptophan 2,3-dioxygenase with a concomitant
increase in 5-HT levels in the hippocampus and reduced
DA levels in the striatum (Dairam et al., 2006). Sharma
et al. (2006) have demonstrated a physiological
neuroprotection action of MLT against Parkinsonian
neurodegeneration in the nigrostriatal system in a 6-
hydroxydopamine model of Parkinson disease (Sharma
et al., 2006). It has been reported that MLT affects
serotonin release (Monnet, 2002). Although the effects
of DS on neurotransmitters in the CNS are not yet
known, it has been suggested that NSAIDS may change
neurotransmitter levels. Therefore, it may be said that
MLT protects against the abnormal effects of NSAIDs,
and probably of DS, on neurotransmitters. In addition, it
is known that PGs markedly enhance MLT synthesis at
night (Cardinali et al., 1982; Voisin et al., 1993).
Nevertheless, NSAIDs that inhibit PG synthesis (Vane,
1971) have the ability to reduce MLT synthesis. For
example, it has been shown that some NSAIDs such as
aspirin and ibuprofen (Murphy et al., 1986; Surrall et al.,
1987) reduce MLT synthesis in humans. However, in
one study, it has been reported that tolmetin, not
sulindac, increases the amount of MLT produced by the
rat pineal gland, possibly by the effect of this drug on the
MLT synthesis pathway in the pineal gland (Dairam et
al., 2006). Thus, NSAIDs, including DS, may cause
neurotoxicity by decreasing the synthesis of MLT.
Several studies have suggested that active metabolites of
DS cause drug toxicity by oxidative stress and apoptosis
(Hickey et al., 2001; Inoue et al., 2004). Furthermore, it
is well known that MLT and its metabolites are potent
free-radical scavengers and antioxidants, which protect
cells from damage induced by a variety of oxidants (Tan
et al., 1993, 2007; Catalá, 2007). MLT also has a strong
antiapoptotic signaling function (Pandi-Perumal et al.,
2006). The mechanism of melatonin on pathological
conditions is shown in Figure 18. 

It has also been suggested that DS suppresses the
differentiation of neuronal stem cells into neurons and
inhibits their proliferation via the induction of apoptosis,
in contrast to other NSAIDs (Andreasson et al., 2001;
Kudo et al., 2003). Kudo et al. (2003) have shown that
DS inhibits the differentiation of neural stem cells into
neurons. Chang et al. (2005a) have suggested that
NSAIDs cause cell cycle arrest and apoptosis of
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osteoblasts. Some studies have reported that antioxidant
components such as vitamin E and superoxide dismutase
decreased the oxidative toxicity of DS (Cantoni et al.,
2003; Gomez-Lechon et al., 2003; Inoue et al., 2004).
Gokcimen et al. (2007) have shown a significant cell
loss in the pyramidal cell layer of the cornu ammonis of
20W-old DS-treated rats in comparison to their controls,
but no significant difference between 4W-old groups was
found (Fig. 19) (Gokcimen et al., 2007). COX inhibition
of some NSAIDs also modulates activities of various ion
channels (Shaw et al., 1995; Asomoza-Espinosa et al.,
2001; Voilley et al., 2001). It has been reported that DS
activates the nitric oxide-cyclic GMP pathway and
subsequently opens the ATP-sensitive potassium
channels (Asomoza-Espinosa et al., 2001).

MLT can have relevant downstream effects on Ca2+-
activated K+ channels (Dubocovich and Markowska,
2005; Pandi-Perumal et al., 2006). Both DS and MLT
may be competing for potassium or other ion channels.
Additionally, therefore, MLT may protect against the
neurotoxicity of DS by modulating the ion channels.
Morioka et al. (2004) have demonstrated that some
NSAIDs, including DS, lead to an increase in the
intracellular concentration of MPP+ and aggravation of
cell toxicity in PC12 cells (Morioka et al., 2004).
Another study has suggested that MLT significantly
attenuates mitochondrial DNA damage in the substantia
nigra induced by MPTP and its active metabolite MPP+:
free-radical generation was reduced, and the collapse of
the mitochondrial membrane potential and cell death
were antagonized (Chen et al., 2005). In summary, MLT,
as a powerful antioxidant, can protect against DS
induced oxidative stress.
Conclusion 

Melatonin has a wide antioxidant action, which can
protect lipids and proteins, as well as both nuclear and
mitochondrial DNA, by means of its ubiquitous actions
as a direct free-radical scavenger and an indirect
antioxidant. The neurotoxic mechanisms of DS are not
clear. However, like some other NSAIDs, it may cause
apoptosis through a caspase-dependent cascade,
diminishing the effects of antioxidants such as MLT,
ROS, the activation of PPAR, cell cycle arrest, and an
increase in the intracellular accumulation of toxic agents
by inhibiting the activities of MRPs. To our knowledge,
no study has focused on the neuroprotective effects of
MLT against the neurotoxicity of DS. Therefore, we
reviewed the literature on the antioxidant and
antiapoptotic actions of MLT and the neurotoxic actions
of DS, and discussed the probable neuroprotective
effects of MLT against the neurotoxicity of DS. Finally,
we concluded that exogenous MLT may protect against
some neurotoxic actions of DS.
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