Neurotrophic keratopathy; its pathophysiology and treatment

Yuka Okada¹, Peter S. Reinach², Ai Kitano¹, Kumi Shirai¹, Winston W.-Y. Kao³ and Shizuya Saika¹

¹Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan, ²School of Optometry, State University of New York, New York, NY, USA and ³Department of Ophthalmology, University of Cincinnati School of Medicine, Cincinnati, OH, USA.

Introduction

Neurotrophic keratopathy is one of the refractory corneal disorders, which was first recognized in 1824 (Magendie, 1824), results from damage to the trigeminal nerve and the consequent loss of corneal sensation. It leads to various types of corneal disorder, including superficial keratopathy, persistent epithelial defects and corneal ulcers (Mishima, 1957; Lim, 1976; Beuerman et al., 1980; Klyce et al., 1985). Corneal nerves are critical to the detection of noxious stimuli at the surface of the cornea and for protection against corneal injury (Acosta et al., 2001; Belmonte et al., 2004). Several reports have shown the biological mechanisms underlying the phenomenon that a loss of corneal sensory innervation leads to a decrease in the vitality, metabolism, and mitosis of epithelial cells, and consequently to epithelial breakdown (Sigelman and Friedenwald, 1954). In the present article, we review the pathobiology and prevention/treatment of neurotrophic corneal diseases.

Anatomy and histology of the cornea

The cornea is not an isolated tissue, forming, together with the sclera, the outer shell of the eyeball (Fig. 1). This tissue lacks the vascular supply and the tear fluid (anteriorly) and aqueous humor (posteriorly) are the main routes of the nutrients and O₂ for the tissue. Although both the cornea and sclera are composed of dense connective tissue, the physiological roles of these two parts of the eye shell differ from each other. The cornea is the transparent “window” of the eye that allows light to penetrate. These functions require the cornea to be transparent and possess a smooth surface (Maurice, 1984; Gipson, 1994; Nishida, 1997).

Histological analysis reveals the layers of the...
corneal tissue: epithelium, Bowman’s membrane, stroma, Descemet’s membrane, and endothelium. The corneal stroma is a layer of avascular thick connective tissue of collagen lamellae. Proteoglycan components occupy the space among the collagen fibers and modulate their diameter that is critical to the corneal transparency. Mesenchymal cells, i.e., keratocytes or corneal fibroblasts, locates among the matrix lamellae. The epithelium serves as an important barrier that protects the integrity of the corneal stroma. The persistence of corneal epithelial defects often results in stromal melting, the infiltration of inflammatory cells, and corneal opacity, leading to vision loss.

The cornea is suffused by the tear film anteriorly and by the aqueous humor posteriorly. This characteristic is important for understanding both the regulatory mechanisms that underlie maintenance of normal corneal integrity and the pathobiology of various corneal diseases. Alterations in the components of tear fluid or the aqueous humor may result in pathological changes in the cornea.

Sensory innervation in the cornea

The sensory innervation of the eye originates at the trigeminal ganglion. Most sensory axons directed to the eye run with the first division of the ganglion, the ophthalmic nerve that enters the superior orbital fissure, branching into nesociliary, frontal, and lacrimal nerves. Trigeminal sensory nerve fibers end the connective tissue, epithelia, and blood vessels of the orbit, uvea, ciliary body, extraocular muscles, choroid, scleral spur, lids, sclera, cornea, and conjunctiva. The cornea is the most sensitive tissue in the body, being 300 to 400 times more sensitive than the skin. It is innervated by dense nerve endings, with numerous nerve fibers forming a network structure at various levels of the tissue (Tervo and Palkama, 1978; Marfurt et al., 1989, 2001; Muller et al., 1996, 1997, 2003) (Fig. 2).

The majority of axons of corneal sensory neurons (about 70%) are polymodal nociceptors. Sensory nerves are mainly detected in the anterior two thirds of the thickness of the stroma. The posterior one third of this layer of the stroma as well as Descemet’s membrane do not contain sensory nerve fibers. They are activated by near-noxious mechanical energy, heat, and chemical irritants, and by a large variety of endogenous chemical mediators released by damaged corneal tissue and resident inflammatory cells, or leakage from limbal vessels (Belmonte and Giraldez, 1981; Belmonte et al., 1991; Gallar et al., 1993). About 15-20% of the peripheral axons innervating the cornea, all thinly myelinated, respond only to mechanical forces in the order of magnitude close to that required to damage corneal epithelial cells.

Another category of corneal nerve fibres, which represents 10-15% of the total population, is the group of cold-sensitive thermal receptors. These are Ad and C fibers, which are transiently silenced on warming (Brock et al., 1998; Tanelian and Beuerman, 1984; Jaffe, 1938; Pannabecker, 1944).

Neurotransmitters, i.e., substance P (SP), calcitonin gene-related peptide (CGRP), and acetylcholine, are secreted by sensory nerve fibers in the corneal stroma, as revealed by employing immunohistochemistry or biochemical techniques (Tervo et al., 1981, 1982; Stone and McGlinn, 1988; Uusitalo et al., 1989; Beckers et al., 1992). In certain epithelial tissues, activation of transient receptor potential (TRP) vanilloid subtype 1 (TRPV1) by noxious stimuli induces pro-inflammatory cytokine release, which helps to mitigate the challenge. While the corneal epithelium elicits such responses to a variety of challenges, it remains unknown whether TRPV1 mediates pro-inflammatory cytokine secretion. TRPV1 has been suggested to be involved in neurogenic inflammation or in the process of certain allergic

Fig. 1. Structure of a human eye. Light reaches the retina through a transparent vitreous gel after refraction by the cornea and lens. The iris modulates the volume of light that comes into the eye. The choroid, which contains abundant blood vessels and melanin cell is located between retina and sclera.

Fig. 2. Trigeminal sensory nerve fibers end in cornea. It is innervated by dense nerve endings, with numerous nerve fibers forming a network structure.
inflammation, and its co-existence in nerves containing SP or CGRP has been confirmed (Murata and Murata, 2006).

Healing process of corneal epithelial wounds

In the clinical setting, various corneal epithelial disorders are encountered, some of them exhibit a delay in the healing process. In the treatment of corneal epithelial disorders, to clarify the cause of delayed epithelial wound healing, the states of both the corneal epithelium and its environment should be accurately evaluated. Diagnosis and treatment markedly differ between whether the corneal epithelial disorder is limited to the corneal epithelium or involves the entire ocular surface including the conjunctival epithelium. Stem cells, the progenitor cells of the corneal epithelium, locate to the limbus which is the border region between cornea and conjunctiva. Therefore, in addition, the degree of stem cell damage in the corneal limbus markedly affects corneal epithelial repair. When the corneal limbus is normal, even in the presence of corneal epithelial defects, no cell proliferation occurs around the defects, cell elongation and migration occur first, and the defect is repaired by a cell layer and subsequently regenerated and repaired by cell proliferation.

Thoft proposed the concept of the “ocular surface” and the XYZ theory for the understanding of corneal epithelial wound healing (Thoft and Friend, 1983). Sun et al. clarified the importance of stem cells in the corneal limbus as a source of corneal epithelial cells (Sun and Green, 1977; Cotsarelis et al., 1989).

When the corneal limbus is normal, and only corneal epithelial defects are present, the wound healing process can be classified into 3 phases: the elongation/migration (first phase), proliferation (second phase), and differentiation (third phase) of epithelial cells.

When corneal epithelial defects develop, adhesion glycoproteins, i.e., fibronectin appears and provide a scaffold for cell migration (Fujikawa et al., 1981; Suda et al., 1981, 1982; Murakami et al., 1992). The remaining epithelial cells are attached to the fibronectin matrix as a temporal basement membrane, and migrate, initiating wound healing as the first step. Once the defect is covered with a layer of epithelial cells, epithelial cells begin to proliferate, increasing the epithelial thickness (the second phase). Then the epithelial cells begin to differentiate, forming a stratified, ordered structure in association with upregulation of molecules related to maturation of stratified epithelium in the third phase, as is observed in the normal corneal epithelium, and wound healing is completed (Tervo et al., 1992; Nishida, 1993; Dua et al., 1994).

Humoral factors involved in wound of corneal epithelium

Blood vessels are absent in cornea, and epithelial cells are in contact with tear fluid containing various physiologically active substances such as growth factors and cytokines, and their function is regulated by humoral factors from the limbal capillary loop and conjunctiva. There are also receptors on corneal epithelial cells for these humoral factors. Such humoral factors interact for both maintenance of the integrity of the normal cornea as well as for the control and regulation of epithelial cell response to wounding.

The factors involved in the control/regulation of epithelial cell migration include humor factors and matrix components; epidermal growth factor (EGF), keratinocyte growth factor (KGF), transforming growth factor (TGFb), interleukin, fibronectin (Nishida et al., 1983, 1984, 1990), and hyaluronic acid (Miyachi et al., 1990; Nishida et al., 1991). EGF is present at an adequate concentration in lacrimal fluid for corneal epithelial cell proliferation, is considered to be supplied by the lacrimal gland (Wilson et al., 1991; Watanabe et al., 1993), and to promote the proliferation of both corneal epithelial and parenchymal cells, i.e., keratocytes. KGF is secreted by corneal parenchymal cells and acts on epithelial cells in a paracrine fashion (Sotozono et al., 1994), promoting corneal epithelial repair (Wilson et al., 1993). HGF as well as KGF is produced by corneal parenchymal cells and acts on epithelial cells, promoting corneal epithelial repair (Wilson et al., 1994). A cytokine/growth factor activates intracellular signaling cascades upon its binding to its cell surface receptor. The ligand/receptor signaling cascades often converge via mitogen-activated kinases (MAPK) that include three subfamilies, i.e., p42/44 ERK (external regulated kinase, MAP kinase), c-Jun N-terminal kinase (JNK), and p38 MAP kinase (Javelaud and Mauviel, 2005). These signaling pathways mediate different biological responses. For example, pP42/44 MAP kinase is involved in cell proliferation regulation whereas JNK and p38 are activated upon cellular stresses and modulate cell survival/cell death or control expression of stress-response genes.

TGFb, one of the most important growth factor involved in connective tissue healing and remodeling, has also a critical role in the epithelial healing. TGFb family members includes three isoforms, i.e., TGFb1 to TGFb3, TGFb activates various signaling cascades which regulate gene expressions in various setting. Such cascades include Smad, MAPK, p38MAPK and JNK. Smad signal is characteristic to TGFb superfamily, while the later three signals can be activated by various growth factor and cytokines. During the healing of corneal epithelial defects, endogenous TGFb activates p38MAPK for cell migration and the suppression of cell proliferation and up-regulates Smad7 for the inhibition of Smad2 and Smad3 signaling, resulting in rapid initial resurfacing of the epithelium (Saika et al., 2004, 2008; Saika, 2004, 2006).

Many interleukins (ILs) are involved in inflammation and immune reactions in the cornea. These interleukins do not directly affect cell proliferation but
regulate growth factor expression and recruit inflammatory cells to local areas. Among them, IL-1, -6, -8 are considered to be involved in corneal wound healing (Nishida et al., 1992; Boisjoly et al., 1993; Cubitt et al., 1993).

Several studies have focused on the role of sensory neuromediators in the corneal epithelium. These studies have shown the depletion of substance P (SP) and acetylcholine (Ach) after sensory nerve injury (Mishima, 1957). SP, a member of the tachykinin family, is an 11- amino-acid peptide. The physiological functions of SP including regulation of miosis and neurogenic inflammation. In addition to functioning as a neurotransmitter (Elsas et al., 1994), SP also acts as a neurotrophic factor. Indeed, SP is present in the nerve fibers of corneal epithelium (Miller et al., 1981; Tervo et al., 1981, 1982; Shimizu, 1982; Stone et al., 1982; Stone and Kuwayama, 1985).

Neuroparalytic keratopathy

Clinical aspects

The cornea is provided with the richest innervation of all body tissues (40 times more than the tooth pulp and 400 times more than skin). Neurotrophic keratitis is a rare degenerative corneal disease caused by an impairment of trigeminal corneal innervation caused by different ocular and systemic diseases, leading to a decrease or absence of corneal sensation. In most cases, the clinical diagnosis of neurotrophic keratitis is easily made on the basis of history, but this condition is one of the most difficult and challenging corneal diseases to manage. The pathology of neurotrophic keratopathy is basically delayed corneal epithelial wound healing.

As examined by using a slit lamp microscopy, Neurotrophic keratopathy is clinically characterized by various corneal epithelial disorders such as conjunctival hyperemia, stippled haze due to corneal edema, bulla formation, and superficial punctate keratopathy (SPK), and epithelial defects are dry and cloudy (Jaffe, 1938; Pannabecker, 1944). Clinical findings are classified by the severity of the damage of the corneal tissue; they include SPK, recurrent corneal erosion, persistent corneal epithelial defects, which are defects in full-thickness corneal defects without re-coverage, or corneal ulcer with parenchymal melting (Paton, 1926; Cavanagh et al., 1979; Cavanagh and Colley, 1989).

The most frequent cause of decreased corneal sensitivity is herpetic keratitis due to herpes simplex or zoster infection (Cavanagh et al., 1976; Wormack and Liesegang, 1983; Liesegang, 1985; Harding et al., 1987; Cobo, 1988; Liesegang, 1988), and a decrease in corneal sensitivity is a major clinical finding for the differential diagnosis. Constantly decreased corneal sensitivity is also observed after corneal transplantation or cataract surgery involving nerve transection (Rao et al., 1985; Jone et al., 1988; Campos et al., 1992; Tugal et al., 1993; Ishikawa et al., 1994), the necrosis of corneal scleral tissue including nerve fibers due to corneal burn or alkali injury, and toxic keratopathy due to the frequent use of topical anesthetics or drugs for glaucoma (Van Buskirk, 1979; Chang et al., 1984; Rosenwasser et al., 1990; Weissman and Asbell, 1990). These are considered disorders at the periphery of the trigeminal nerve. In trigeminal palsy associated with surgery for brain and auditory tumors (Onofrio, 1975; Rose, 1982; Adams and Cullen, 1987; Sterkers et al., 1994) or congenital familial dysautonomia (Goldberg et al., 1968), corneal sensitivity is decreased at the level of the trigeminal nucleus or ganglion. In patients with diabetes mellitus, decreased corneal sensitivity is often observed, suggesting the involvement of sensory nerves in the pathology of diabetic keratopathy (Schwarts, 1974; Schultz et al., 1983; Saini and Khandalavla, 1995). (Table.1)

Clinical staging of neurotrophic keratopathy

As discussed above the neurotrophic ulcer is classified by its degree of the damage in the corneal tissue. Stage 1 is characterized by rose bengal staining of the inferior palpebral conjunctival surface, a decrease in breakup time, and a punctate keratopathy. If these changes become chronic, superficial vascularization, epithelial hyperplasia and irregularity and stromal scarring.

<table>
<thead>
<tr>
<th>Table 1. Causes of reduced corneal sensitivity.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetic diseases</td>
</tr>
<tr>
<td>Corneal distrophies</td>
</tr>
<tr>
<td>Familial corneal hypoesthesia</td>
</tr>
<tr>
<td>Goldenhar-Gorlin syndrome</td>
</tr>
<tr>
<td>Multiple endocrine neoplasia IIb</td>
</tr>
<tr>
<td>Hereditary sensory and autonomic neuropathy types III, IV or V</td>
</tr>
<tr>
<td>Other systemic diseases</td>
</tr>
<tr>
<td>Diabetes</td>
</tr>
<tr>
<td>Leprosy</td>
</tr>
<tr>
<td>Neurosarcoidosis</td>
</tr>
<tr>
<td>Orbital tumours and inflammations</td>
</tr>
<tr>
<td>Brainstem diseases (cerebrovascular disease, multiple sclerosis)</td>
</tr>
<tr>
<td>Fifth nerve palsy due to trigeminal leasions in posterior fossa (aneuysm, acoustic neuroma, meningioma)</td>
</tr>
<tr>
<td>Eye Surgery</td>
</tr>
<tr>
<td>Cataract surgery</td>
</tr>
<tr>
<td>Refractive surgery</td>
</tr>
<tr>
<td>Retinal surgery</td>
</tr>
<tr>
<td>Cycloablation</td>
</tr>
<tr>
<td>Infections</td>
</tr>
<tr>
<td>Viral Infections (herpes simplex and zoster)</td>
</tr>
<tr>
<td>Large bacterial ulcers</td>
</tr>
<tr>
<td>Late Acanthamoeba ulcers</td>
</tr>
<tr>
<td>Drugs</td>
</tr>
<tr>
<td>Topical b-blockers</td>
</tr>
<tr>
<td>Topical non-steroidal anti-inflammatory drugs</td>
</tr>
<tr>
<td>Topical anaesthetics</td>
</tr>
<tr>
<td>Other conditions</td>
</tr>
<tr>
<td>Chemical and thermal burns</td>
</tr>
<tr>
<td>Contact lens wear</td>
</tr>
</tbody>
</table>
Stage 2 is characterized by a present epithelial defect with an oval or circular shape that is often localized in superior half cornea. Usually, around the epithelial defect, there is an area poorly adherent opaque and oedematous epithelium that can spontaneously detach leading to an enlargement of the defect. The edges of the defect become smooth and rolled as the defect ages without appreciable epithelial growth (Cavanagh et al., 1976). Stromal swelling and folds in the Descemet membrane may also be observed with an inflammatory reaction in the anterior chamber and rarely, sterile hypopyon may be observed.

Stage 3 is characterized by stromal involvement with a corneal ulcer that may progress to perforation and/or stromal melting. Secondary infection or topical treatment with corticosteroids increases the risk for perforation.

Pathobiology of neuronal regulation of integrity of corneal epithelium

It is generally accepted that corneal sensory nerves play a key role in maintaining the anatomical integrity and function of the cornea and particularly of the epithelium. On the other hand, it has been shown that impairment of the corneal sensory nerves affects corneal epithelial function and vitality by decreasing the metabolism and mitosis of epithelial cells and increasing the epithelium's permeability (Sigelman and Friedenwald, 1954; Mishima, 1957), leading the development of neurotrophic corneal diseases. The mechanisms of the phenomenon is to be explored, but explanations include that a decrease in cell proliferation due to a decrease in acetylcholine in corneal epithelial cells, thinning of the cell layer, an increase in permeability due to impaired intercellular tight junctions and dilated intercellular spaces, and delayed wound healing due to a decrease in adhesion between corneal epithelial cells, thinning of the cell layer, an increase in permeability due to impaired intercellular tight junctions and dilated intercellular spaces, and delayed wound healing due to a decrease in adhesion between corneal epithelial cells and the basement membrane (Cavanagh and Colley, 1989; Alper, 1976; Beuerman and Schimmelpfenning, 1980; Schimmelpfenning and Beuerman, 1982; Barker et al., 1993; Araki et al., 1994).

A similar background of impaired tissue healing is observed in diabetic foot ulcer. Diabetic patients are consequently more prone to develop foot ulcers, resulting from a multitude of factors, including neuropathy, vascular disease and foot deformities (Jude and Boulton, 1997; Jeffcoate and Harding, 2003). In the skin of diabetic patients, including those having ulcers, and of genetically diabetic mice, diminishing staining was seen for such nerve fibres (Kennedy et al., 1996; Gibran et al., 2002), as well as for neuropeptides, including SP (Levy et al., 1989, 1992).

Treatment of neurotrophic keratopathy

The goals of treatment of neurotrophic keratopathy are to prevent the progression of corneal damage to promote epithelial healing in case that the original damage in the trigeminal nerve or its branches is difficult. The therapy should be prompt and based on the clinical stage of the disease (Lambiase et al., 1999). Although at present, there are no accurate treatment methods for neurotrophic keratopathy, several effective treatments have been reported.

Treatment methods at present

Classical treatment

Stage 1 requires the discontinuation of all topical medications and the evaluation of side effects of systemic therapies such as neuroleptic, antipsychotic and antihistamine drugs. Administration of topical preservative-free artificial tears may help in improving the corneal surface (Bonini et al., 2000). The therapy at this stage aims to improve epithelial quality and transparency and to avoid epithelial breakdown. Some authors have suggested the use of scleral or therapeutic contact lenses, but these lenses may increase the risk for secondary infections and their use may by complicated by development of a sterile hypopyon (Kent et al., 1990; Pfister, 1992).

When an epithelial defect develops (stage 2), the aims of treatment are to avoid the development of corneal ulcer to promote healing of epithelial defect and to prevent the recurrence of the epithelial breakdown. Various approaches are suggested; the goal is to cover the area of epithelial deficit to promote healing. The simplest and most used procedure is a lateral tarsorrhaphy (Alper, 1976). If healing occurs, the tarsorrhaphy opening may be enlarged after a few weeks, but opening the tarsorrhaphy prematurely may result in a recurrence of corneal epithelial breakdown. Alternatively, it is possible to cover the epithelial defect by means of an amniotic membrane transplantation (Lee and Tseng, 1997) or to use a palpebral spring or botulinum A toxin injection of eyelid elevator (Kirnness et al., 1988; McNeill and Oh, 1991). Tropical steroids have been suggested because prostaglandins inhibit the epithelial growth and the use of steroids could reduce the activity of these inflammatory mediators (Canvanagh et al., 1979; Canvanagh and Colley, 1989). However, steroid by inhibiting stromal healing, may increase the risk of corneal stromal melting and perforation, thus their use should be considered with caution. Topical nonsteroid anti-inflammatory drug treatment does not induce improvement of the healing process (Hersh et al., 1990).

When a corneal ulcer develops (stage 3), the therapy is aimed at promoting corneal healing and preventing corneal melting and perforation. In the case of stromal melting, topical collagenase inhibitors B such as N-acetylcysteine, tetracycline or medroxyprogesterone may be administered (Davis and Dohlman, 2001). Alternative treatments include use of a conjunctival flap, tectonic lamellar keratoplasty, use of tissue adhesive (Alper, 1976), and amniotic membrane transplantation (Kirkness et al., 1976).
et al., 1988). Large defects require lamellar or penetrating keratoplasty (Alper, 1976; Gersh et al., 1990). The success rates of these corneal transplants are low because of poor wound healing and the persistent risk for epithelial defects due to corneal hypoesthesia.

SP and insulin-like growth factor (IGF-1) in the treatment of neurotrophic keratopathy

SP has evolved considerably since it was first discovered in 1931. SP, a member of the tachykinin family, is an 11-amino-acid peptide. The physiological functions of SP include regulation of miosis and neurogenic inflammation. SP is, however, easily degraded and inactivated by neuropeptidases, i.e., carboxypeptidases and endopeptidases (Guyon et al., 1979; Matsas et al., 1983, 1984; Lebien and McCormack, 1989). In addition to functioning as a neurotransmitter (Elsas et al., 1994), SP also acts as a neurotrophic factor. SP is present in the nerve fibers of corneal epithelium (Miller et al., 1981; Tervo et al., 1981, 1982; Shimizu, 1982; Stone et al., 1982, 1985).

SP exerts its biological effects through binding to G protein-coupled receptors, among which the neurokin type 1 (NK-1) receptor shows the highest affinity for SP (Regoli et al., 1994).

Human IGF-1 contains 70 amino acids, with a molecular mass of 7649 daltons, and it comprises four domains designated A, B, C and D. It is also known as acomatomin C and possesses insulin-like activity. Although the A and B domains of the three proteins share many structural similarities, the C domains of the IGFs show no homology to the C peptide of proinsulin, which is not retained in mature insulin. In addition, IGFs possess the D domain at their carboxyl terminus, whereas proinsulin has no corresponding sequence.

Nishida et al. observed that the effect of SP on corneal epithelial migration (Nishida et al., 1992; Nakamura et al., 2000). Whereas SP alone had no effect, EGF by itself significantly increased the rate length of epithelial migration. Neither IGF-1, basic fibroblast growth factor (bFGF) nor TGFβ alone affected epithelial migration. However, EGF and IGF-1 each acted synergistically with SP to promote corneal migration. This combined effect of SP and IGF-1 depends on the concentration of each factor (Nishida et al., 1996). The synergistic action of SP with IGF-1 was found to be mediated by the NK-1 receptor, but not by NK-2 or NK-3 (Nakamura et al., 1997). In in vitro, SP, as well as cholecystokinin gene-related peptide (CGRP), and Ach, induces epithelial proliferation (Cavanagh and Colley, 1989; Mikulec and Tanelian et al., 1996; Reid et al., 1993).

Following injury to soft tissue, SP and other neuropeptides are released by cutaneous neurons and modulate the function of immunocompetent and inflammatory cells, as well as epithelial and endothelial cells (Bockers et al., 1989; Hagen et al., 1990; Ziche et al., 1990; Dunnick et al., 1996). The elicitation of SP-mediating mechanisms is crucial to firmly establishing the involvement and interaction of the peripheral nervous system and the immune system in cutaneous repair. SP participates in the complex network of mediators involved in cutaneous inflammation and wound healing (Delgado et al., 2005).

The carboxyl-terminal for amino acids of SP (Phe-Gly-Leu-Met-amide, or FGLM-amide) are sufficient for this effect (Nakamura et al., 1997). The minimum nucleotide sequence of SP required for the synergistic effects of SP and IGF-1 has been identified as FGLM-NH₂ (Yamada et al., 2006).

Vanilloid receptor subtype 1 (VR1) as a capsaicin receptor is a non-selective cation channel with high Ca²⁺ permeability and 6 transmembrane regions that were cloned in 1997, and its activation induces neuronal excitation by depolarization, changing nociceptive stimuli to electrical signals (Fig. 3). VR1 belongs to the transient receptor potential (TRP) family and, therefore, is called transient receptor potential vanilloid subtype 1 (TRPV1). The TRP superfamily is classified into 7 subfamilies: TRPC, TRPV, TRPM, TRPN, TRPP, TRPA, and TRPML (Montell, 2005). TRPV1 is specifically expressed on sensory nerves as well as in corneal epithelium (Murata and Masuko, 2006; Zhang et al., 2007) and plays a central role in nociception activated by multiple nociceptive stimuli such as capsaicin, acid, and heat (>43°C). TRPV1 expression at the gene and protein levels has been evaluated.

The corneal sensory neurons have been well documented that their somata are mainly located in the

![Fig. 3. TRPV1 Activation](image-url)
dorsal part of the ophthalmic region of the ipsilateral trigeminal ganglion (Marfurt and Del Toro, 1987; Takemura et al., 1991). SP and CGRP coexist in single of TG (Lee et al., 1985; Skofitsch and Jacobowitz. 1985; Ma, 2002) and possibly in the corneal fibers (Beckers et al., 1993). TRPV1-containing neurons co-express CGRP in TG (Guo et al., 1999; Ichikawa and Sugimoto, 2001), and capsaicin evokes CGRP release via a vanilloid-receptor-mediated exocytotic mechanism from rat buccal mucosa of trigeminal field of innervation (Flores et al., 2001). Capsaicin has been reported to promote the in vitro repair of corneal epithelial cell defects (Zhang et al., 2007). In addition, our study using TRPV1 knockout mice confirmed a delay in the repair of corneal epithelial defects but infrequent corneal inflammation after alkali injury, corneal opacity, or new blood vessel invasion (Okada et al., unpublished data). We also confirmed the reproducibility of this phenomenon by the administration of an antagonist for TRPV1. The clarification and control of the action mechanism of the TRP channel in the cornea are expected to contribute to the development of a new treatment method for neurotrophic keratopathy. Further study and clinical trial are need to establish this new treatment strategy.

References

Neurotrophic keratopathy
Neurotrophic keratopathy

Mishima S. (1957). The effects of the denervation and the stimulation of

Sun T.T. and Green H. (1977). Cultured epithelial cells of cornea,

Accepted November 20, 2009