Ecuaciones en Diferencias Racionales

D. Antonio Cascales Vicente
2011
D. Francisco Balibrea Gallego, Catedrático de Universidad del Área de Análisis Matemático en el Departamento de Matemáticas, AUTORIZA:

La presentación de la Tesis Doctoral titulada “Ecuaciones en Diferencias Racionales”, realizada por D. Antonio Cascales Vicente, bajo mi inmediata dirección y supervisión, y que presenta para la obtención del grado de Doctor por la Universidad de Murcia.

En Murcia, 15 de enero de 2014
Índice general

1. Notas históricas e introducción 1
 1.1. Preliminares .. 3
 1.1.1. Ecuaciones en diferencias 3
 1.1.2. Periodicidad ... 7
 1.1.3. Ecuaciones en diferencias como sistemas dinámicos . 10
 1.1.4. Estabilidad y convergencia 12
 1.1.5. Ejemplos .. 16
 1.1.6. Otros temas de interés 23
 1.2. Resumen de los capítulos 24

2. Conjetura 5.21.1 de Camouzis y Ladas 35
 2.1. Introducción .. 36
 2.2. Soluciones de puntos límite 38
 2.3. Prueba de la conjetura .. 40
 2.4. Generalizaciones del Problema de Condiciones Iniciales .. 49
 2.5. Propiedad de permanencia 54

3. Ecuaciones en Diferencias Racionales finalmente positivas 65
 3.1. Soluciones finalmente positivas 66
 3.2. Forma irreducible de una Ecuación en Diferencias Racional . 68
 3.3. Cálculo de los grados ... 74
 3.4. Existencia de términos negativos 76
 3.5. Ejemplos .. 79

4. Repulsores de Retorno Finito 83
 4.1. Introducción .. 84
 4.2. Caos Marotto .. 90
 4.2.1. Existencia de periodos 91
ÍNDICE GENERAL

4.2.2. Itinerarios .. 93
4.2.3. Pares de Li-Yorke ... 93
4.3. Ejemplos numéricos ... 98

5. Perturbaciones en Ecuaciones en Diferencias Racionales 109
 5.1. Introducción .. 110
 5.2. Órbitas Transversales Homoclínicas y Repulsores de Retorno Finito .. 111
 5.3. Ejemplos numéricos ... 117

6. Conjuntos prohibidos 127
 6.1. Introducción .. 128
 6.2. El conjunto prohibido de la ecuación de Riccati 131
 6.2.1. La ecuación de Riccati de orden uno 133
 6.2.2. La ecuación de Riccati de orden dos 139
 6.3. Uso de invariantes .. 140
 6.3.1. La ecuación de Lyness 140
 6.3.2. Reducción de orden 144
 6.4. Descripción del conjunto prohibido mediante recursión funcional151
 6.5. El conjunto prohibido de $x_{k+1} = \frac{1}{x_k + x_{k-2}}$ 154
 6.6. Conjuntos prohibidos y Repulsores de Retorno Finito 157

7. Líneas de investigación futuras 167
 7.1. Propuestas del capítulo 2 168
 7.2. Propuestas del capítulo 3 168
 7.3. Propuestas del capítulo 4 169
 7.4. Propuestas del capítulo 5 170
 7.5. Propuestas del capítulo 6 171

A. Algoritmos 175
 A.1. Introducción .. 176
 A.2. Herramientas utilizadas 176
 A.3. Cadenas monótonas ... 177
 A.4. Cálculo de periodos .. 180
 A.5. Diagrama de tela de araña 181
 A.6. Fractales de órbita inversa 182
 A.7. Iteradas de una Ecuación en Diferencias 185
 A.8. Representación gráfica de periodos 186
 A.9. Estimación de Repulsores de Retorno Finito 188
 A.10. Acotación de dos iteradas inversas 190
 A.11. Órbita de sistema unidimensional perturbado 191
ÍNDICE GENERAL

A.12. Órbitas en Hassell y Comins simplificado 193
A.13. Diagrama de bifurcación .. 195
A.14. Órbitas inversas multivaluadas 196
A.15. Conjunto prohibido de la ecuación de Riccati de orden 1 198
A.16. Conjunto prohibido de la ecuación de Riccati de orden 1; caso complejo .. 200
A.17. Conjunto prohibido de la ecuación de Riccati de orden 2 201
A.18. Conjunto prohibido de $z_{k+1} = \frac{z_k}{1+Bz_{k-1}-Bz_k}$ 204
A.19. Cuencas de atracción de $x_{k+1} = \frac{x_{k-1}}{1+x_k}$ 207
A.20. Conjunto prohibido de $x_{k+1} = p + \frac{x_{k-1}}{x_k}$ 209
A.21. Conjunto prohibido de $x_{k+1} = \frac{1}{x_k+x_{k-2}}$ 210
A.22. Conjuntos prohibidos de Ecuaciones en Diferencias Racionales cuadráticas ... 212

B. Glosario de traducciones .. 215
C. La resultante .. 217
Índice terminológico ... 221
Lista de figuras .. 227
Bibliografía .. 231
Capítulo 1

Notas históricas e introducción
El empleo de recurrencias para resolver problemas matemáticos se remonta a la Babilonia del 2000 a.e.c. en el contexto de la resolución aproximada de ecuaciones algebraicas y del cálculo aproximado de raíces cuadradas. En la época griega, los pitagóricos (siglo V a.e.c.) utilizaron implícitamente ecuaciones en diferencias no autónomas para estudiar los números asociados a figuras o números figurados. Por ejemplo, usando la nomenclatura actual, los números triangulares son soluciones de la ecuación \(t_{k+1} = t_k + k + 1 \), los números cuadrados de \(c_{k+1} = c_k + 2k + 1 \), etc (ver figura 1.1).

Otro ejemplo de la misma escuela consiste en el uso del sistema de ecuaciones en diferencias

\[
\begin{align*}
x_{k+1} &= x_k + 2y_k \\
y_{k+1} &= x_k + y_k
\end{align*}
\]

para generar soluciones de la ecuación diofántica de Pell

\[x^2 - 2y^2 = 1 \]

A lo largo de la historia podemos encontrar multitud de ejemplos como estos. La sucesión de Fibonacci, las fracciones continuas, los coeficientes binomiales, el cálculo de diferencias finitas, el método de Newton-Raphson y los métodos numéricos para aproximar las soluciones de una ecuación diferencial son solo algunos de ellos (ver [Kel03] y [BP99] para más detalles).

En la primera mitad del siglo XX se despertó un gran interés por el desarrollo de métodos numéricos, que se vio enormemente potenciado por la aparición posterior de las potentes herramientas de cálculo informático. Hacia los años 50 del siglo pasado, además, las ecuaciones en diferencias no lineales empiezan a utilizarse como modelos aplicados, especialmente en ecología.

Más tarde, el descubrimiento de que incluso los modelos más sencillos exhiben una enorme complejidad dio lugar a la introducción del caos matemático y renovó el interés por la teoría de ecuaciones en diferencias.

Es en este contexto en el que se sitúa el trabajo que presentamos. Los modelos
no lineales son aun un campo lleno de problemas abiertos y de enorme interés por sus aplicaciones en la ciencia. Los primeros modelos no lineales (polinómicos) son de una complejidad aún no bien entendida. Recientemente se han propuesto otros planteamientos no lineales interesantes por sus aplicaciones prácticas y porque podrían servir de puente entre la teoría bien conocida (lineal) y las ecuaciones en diferencias polinómicas. Nos estamos refiriendo a las ecuaciones en diferencias racionales (EDR) de cuyo estudio se ocupa la Memoria.

A continuación vamos a establecer las definiciones y nomenclaturas que serán empleadas a lo largo de todo el texto. Esto nos permitirá explicar de forma resumida el contenido de cada capítulo y las motivaciones y aportaciones de nuestro trabajo.

1.1. Preliminares

1.1.1. Ecuaciones en diferencias

A lo largo de la Memoria vamos a trabajar principalmente en el cuerpo de los números reales. Por este motivo las definiciones siguientes se refieren a funciones y valores en \mathbb{R}. Algunas de ellas se generalizarán cuando sea necesario a números complejos u otros espacios métricos.

Sea $n \geq 1$ un número natural. Dada $f : \mathbb{R}^n \to \mathbb{R}$ a la que llamaremos función de iteración, una ecuación en diferencias (ED) de orden n en forma explícita es cualquier expresión como la siguiente

$$x_{k+1} = f(x_{k-n+1}, \ldots, x_k)$$ \hspace{1cm} (1.3)

La fórmula anterior permite construir una familia de sucesiones llamada conjunto de soluciones de la ED, cuya definición es la siguiente: fijado un vector $X = (x_{-n+1}, \ldots, x_0) \in \mathbb{R}^n$ la solución de (1.3) de condiciones iniciales X o generada por las condiciones iniciales X es la sucesión $(x_k)_{k=-n+1}^{+\infty}$ cuyos n primeros términos son las componentes de X y los restantes se obtienen inductivamente mediante la fórmula (1.3).

Cuando para cierto $N \geq 0$, el vector (x_{N-n+1}, \ldots, x_N) no pertenece al dominio de definición de f, la construcción de $(x_k)_{k=-n+1}^{+\infty}$ no puede realizarse. En tal caso decimos que X es un elemento del conjunto prohibido de (1.3), denotándolo mediante \mathcal{P}.

La expresión solución de la ecuación en diferencias se reserva para las sucesiones generadas a partir de los elementos de $\mathcal{B} = \mathbb{R}^n \setminus \mathcal{P}$, denominado el
CAPÍTULO 1. NOTAS HISTÓRICAS E INTRODUCCIÓN

buen conjunto de la ED. Ocasionalmente se emplea el término solución finita cuando \(X \in \mathcal{P} \) y \(N \) es el mayor entero tal que \(x_N \) está bien definido, para referirnos a \((x_k)_{k=-n+1}^N\). Pero, salvo indicación contraria, la palabra solución queda asociada a sucesiones de infinitos términos. Para remarcar esta diferencia a veces diremos que tales soluciones están bien definidas.

Las soluciones de una ED también se llaman trayectorias u órbitas. Tales denominaciones están inspiradas en la terminología de los sistemas dinámicos.

A veces es interesante referirnos a una sola de las soluciones de la ED, especificando tanto la función de iteración \(f : \mathbb{R}^n \to \mathbb{R} \) como las condiciones iniciales \(X = (x_{-n+1}, \ldots, x_0) \). Dados \(n \) números reales \(a_{-n+1}, \ldots, a_0 \), escribimos

\[
\begin{align*}
 x_{k+1} &= f(x_{k-n+1}, \ldots, x_k) \\
 x_{-n+1} &= a_{-n+1} \\
 \vdots &= \vdots \\
 x_0 &= a_0
\end{align*}
\]

y decimos entonces que (1.4) es un problema de condiciones iniciales (PCI).

La fórmula (1.3) puede verse como una ecuación en las incógnitas \(x_{k-n+1}, \ldots, x_{k+1} \). Si es posible despejar la incógnita \(x_{k-n+1} \) escribiendo una expresión como

\[
x_{k-n+1} = g(x_{k-n+2}, \ldots, x_{k+1})
\]

donde \(g : \mathbb{R}^n \to \mathbb{R} \) sea una función real, entonces pueden calcularse las soluciones inversas de la ED (1.3). Es decir, dadas las condiciones iniciales \(X = (x_{-n+1}, \ldots, x_0) \in \mathbb{R}^n \) se define \((x_k)_{k=-\infty}^0\) como aquella sucesión cuyos \(n \) últimos elementos son las componentes del vector \(X \) y los restantes se definen inductivamente mediante la fórmula (1.5). Estas soluciones también reciben el nombre de trayectorias u órbitas inversas. Inspirados en la nomenclatura anglosajona, a veces llamamos a \((x_k)_{k=-n+1}^{+\infty}\) trayectoria progresiva o hacia delante (*forward orbit*), y a \((x_k)_{k=-\infty}^{0}\) trayectoria regresiva o hacia atrás (*backward orbit*).

Evidentemente surgen aquí también los problemas derivados de la imposibilidad, en algunos casos, de aplicar la función \(g \) debido a que cierta \(n \)-upla \(X \) haya escapado del dominio de definición de esta función. Entonces hablamos del conjunto prohibido inverso, de condiciones iniciales cuyas trayectorias regresivas están o no bien definidas, etc.

Un problema adicional en este caso es que el proceso en el que despejamos en (1.3) la variable \(x_{k-n+1} \) pueda dar lugar a varias funciones \(g \). Por ejemplo, si \(n = 1 \) y \(f \) es una función no inyectiva, su inversa será una función multivaluada. Entonces los conceptos anteriores se pueden generalizar a los
de solución multivaluada, órbita inversa multivaluada, etc.

La clase funcional a la que pertenezca $f : \mathbb{R}^n \to \mathbb{R}$ determina las características de la ED (1.3). De hecho las ED suelen adjetivarse con dicho nombre u otro relacionado. Por ejemplo, si f es una función afín, (1.3) se llama ecuación en diferencias lineal y toma la forma

$$x_{k+1} = a_{-n+1}x_{k-n+1} + \ldots + a_0x_k + a_1$$ \hspace{1cm} (1.6)

donde $a_i \in \mathbb{R}$, $i = -n + 1, \ldots, 1$.

Cuando f es un polinomio en n indeterminadas, (1.3) se llama ecuación en diferencias polinómica, o bien, especificando el grado, cuadrática, cúbica, etc. Por ejemplo una ecuación cuadrática será de la forma:

$$x_{k+1} = a_1 + \sum_{i \in A} a_ix_{k+i} + \sum_{i,j \in A} b_{ij}x_{k+i}x_{k+j}$$ \hspace{1cm} (1.7)

donde $A = \{-n+1, \ldots, 0\} \subset \mathbb{Z}$ y $a_i, b_{ij} \in \mathbb{R}$.

Dado $r \geq 0$, si f es de clase C^r, hablamos de ecuaciones en diferencias continuas ($r = 0$) o diferenciables de orden r.

Este trabajo estudia diversas ED cuya función de iteración es racional, es decir, es un cociente de polinomios distintos de cero. Nos referiremos a ellas como ecuaciones en diferencias racionales (EDR)

$$x_{k+1} = \frac{P(x_{k-n+1},\ldots,x_k)}{Q(x_{k-n+1},\ldots,x_k)}$$ \hspace{1cm} (1.8)

siendo P y Q polinomios no idénticamente nulos.

Una generalización importante de estas ideas, no tratada sin embargo en nuestro trabajo, se da cuando la función de iteración varía en cada etapa de la recurrencia. Una ecuación en diferencias no autónoma de orden n es

$$x_{k+1} = f_k(x_{k-n+1},\ldots,x_k)$$ \hspace{1cm} (1.9)

donde $(f_k)_{k=0}^{+\infty}$ es una sucesión de funciones reales de la forma $f_k : \mathbb{R}^n \to \mathbb{R}$. Obsérvese que si dicha sucesión es constante, las ecuaciones (1.9) y (1.3) coinciden. En tal caso decimos que (1.3) es una ecuación en diferencias autónoma, para remarcar la no variación de la función de iteración

La segunda generalización relevante, con la que finalizaremos este apartado, es la definición de sistema de ecuaciones en diferencias (SED). Dadas
dos funciones $f,g : \mathbb{R}^{2n} \to \mathbb{R}$ llamamos sistema de ecuaciones en diferencias de orden n y dos incógnitas a

$$
\begin{align*}
x_{k+1} &= f(x_{k-n+1}, \ldots, x_k, y_{k-n+1}, \ldots, y_k) \\
y_{k+1} &= g(x_{k-n+1}, \ldots, x_k, y_{k-n+1}, \ldots, y_k)
\end{align*}
$$

(1.10)

En este caso la solución de (1.10) generada por las condiciones iniciales (X,Y) tales que $X = (x_{-n+1}, \ldots, x_0)$, e $Y = (y_{-n+1}, \ldots, y_0)$ es la sucesión $((x_k, y_k))_{k=-n+1}^{+\infty}$ cuyos n primeros términos se construyen a partir de X e Y y el resto se definen inductivamente con la fórmula (1.10).

De forma similar para cada entero $r \geq 2$ hablamos de sistemas de ecuaciones en diferencias de orden n y r incógnitas.

Un caso particularmente importante de SED se da cuando partimos de una función vectorial $F : \mathbb{R}^n \to \mathbb{R}^n$ escribiendo la recurrencia como

$$
X_{k+1} = F(X_k)
$$

(1.11)

o, de forma equivalente, como

$$
\begin{align*}
x_{k+1}^1 &= F_1(x_k^1, \ldots, x_k^r) \\
\vdots &= \vdots \\
x_{k+1}^r &= F_r(x_k^1, \ldots, x_k^r)
\end{align*}
$$

(1.12)

esto es, cuando el orden de la ecuación es uno y se toman r incógnitas. Los sistemas (1.11) o (1.12) se denominan ecuaciones en diferencias vectoriales de orden 1. Para distinguirla de éstas, la ED (1.3) se llama también ecuación en diferencias escalar.

Observación: En (1.12) los superíndices de x_k^i no indican la potencia i-ésima, sino la incógnita i-ésima de la ecuación.

La importancia del sistema (1.11) radica en que cualquier ecuación en diferencias de orden n (fórmula (1.3)) puede ser transformada en un sistema de este tipo. En efecto, si introducimos las variables

$$
\begin{align*}
x_k^1 &= x_{k-n+1} \\
\vdots &= \vdots \\
x_k^n &= x_k
\end{align*}
$$

(1.13)
la ecuación (1.3) es equivalente al sistema
\[
\begin{align*}
 x_{k+1}^1 &= x_k^2 \\
 x_{k+1}^2 &= x_k^3 \\
 &
 \vdots \quad \vdots \\
 x_{k+1}^{n-1} &= x_k^n \\
 x_{k+1}^n &= f(x_k^1, x_k^2, \ldots, x_k^n)
\end{align*}
\]
(1.14)

Obsérvese que entonces una solución de (1.3), pongamos \((x_k)_{k=-n+1}^\infty\), queda asociada a una sucesión de vectores \((X_k)_{k=-n+1}^\infty\) tal que \(X_k = (x_{k-n+1}, \ldots, x_k)\). Es decir, podemos ir agrupando \(n\) elementos consecutivos de \((x_k)_{k=-n+1}^\infty\) para formar vectores de \(\mathbb{R}^n\).

Este procedimiento es extraordinariamente útil para visualizar la dinámica de las soluciones de una ED. Tal técnica es un tipo de desdoblamiento (en terminología anglosajona *unfolding*) de la ED.

1.1.2. Periodicidad

Comenzamos ahora el estudio de las soluciones de una ED. Las más importantes son las soluciones periódicas, aquellas formadas por una cantidad finita de términos que se repite indefinidamente. Su relevancia radica en que en muchas ocasiones la ecuación puede ser descrita cualitativamente identificando sus periodos y el comportamiento del resto de soluciones con respecto a aquéllos. Por ejemplo, una situación común es que algunos periodos se comportan como atractores del resto de soluciones, lo que implica que el modelo asociado a la ED consistirá, a largo plazo, en un cierto ciclo.

Cuando la dinámica de la ED no es tan clara, aun así la determinación de las soluciones periódicas sigue siendo una información relevante para hacernos una idea de lo que ocurre.

Decimos que un elemento del buen conjunto de (1.3), \(X = (x_{-n+1}, \ldots, x_0)\) es un punto fijo, equilibrium o punto de equilibrio si la solución generada por él es constante. Tales puntos son las soluciones de la ecuación, de incógnita \(\bar{x}\), siguiente
\[
\bar{x} = f(\bar{x}, \ldots, \bar{x})
\]
(1.15)

Para referirnos a la colección de todos los puntos fijos emplearemos en ocasiones los términos equilibria o puntos de equilibrio.

Sea \(p \geq 1\) un número entero. Un punto periódico de periodo \(p\) de (1.3) será aquel elemento de su buen conjunto tal que la solución generada por él
CAPÍTULO 1. NOTAS HISTÓRICAS E INTRODUCCIÓN

\[(x_k)_{k=-n+1}^{+\infty} \text{ cumpla que } x_{k+p} = x_k \text{ para todo } k \geq -n + 1.\]

En este caso decimos que \[(x_k)_{k=-n+1}^{+\infty}\] es una solución periódica de periodo \(p\) o un \(p\)-periodo. Es habitual exigir que \(p\) sea mínimo, esto es, que no exista \(1 \leq q < p\) tal que \(x_{k+q} = x_k \ \forall k \geq -n + 1\). Cuando se quiere remarcar esta hipótesis se dice que el periodo es primo o hablamos de una solución periódica prima. En la literatura el término periodo se emplea en ocasiones sin exigir la primalidad.

Una alternativa para introducir el concepto de \(p\)-periodo consiste en considerar la ED vectorial (1.11) asociada a la ED (1.3). Entonces decimos que \(X = (x_{-n+1}, \ldots, x_0) \in \mathbb{R}^n\) es un \(p\)-periodo si \(X\) pertenece al buen conjunto y verifica la relación

\[X = F^p(X)\]

(1.16)

donde \(F^0\) denota a la función identidad e inductivamente \(F^k = F \circ F^{k-1}\) \(\forall k \geq 1\).

Las fórmulas (1.15) y (1.16) son las ecuaciones con las que comienza la búsqueda de periodos de una ED dada. Es notable el hecho de que este cálculo, incluso para valores pequeños de \(p\), es extraordinariamente complicado, incluso cuando el orden de la ED es uno y la función de iteración es sencilla (un polinomio, una función racional,...). Este es uno de los argumentos que sugiere la enorme complejidad que poseen las ED.

En ocasiones una solución se comporta periódicamente tras cierto número de términos con valores arbitrarios. Decimos que \[(x_k)_{k=-n+1}^{+\infty}\] es una solución finalmente constante si existe un \(N > -n + 1\) mínimo tal que \(x_{k+1} = x_k\) \(\forall k \geq N\). La solución será finalmente periódica de periodo \(p\) si, con la notación precedente, ocurre que \(x_{k+p} = x_k\) \(\forall k \geq N\).

Ciertas ED tienen la propiedad de que todas sus soluciones bien definidas son periódicas. Reciben el nombre de ED globalmente periódicas.

Por ejemplo la ED

\[x_{k+1} = \frac{1}{x_k}\]

(1.17)

consta de dos órbitas constantes (las generadas por las condiciones iniciales \(x_0 = \pm 1\), una finita (la que parte del elemento de su conjunto prohibido \(x_0 = 0\)) y el resto son soluciones dos-periódicas de la forma \((a, \frac{1}{a}, a, \frac{1}{a}, \ldots)\). Existe un gran interés en localizar este tipo de ecuaciones. Véanse [BL05], [BL06], [RMM07], [BL07b], [BL07a], [BBLS07], [RM08], [RM09].

El siguiente ejemplo muestra que una ED globalmente periódica puede tener periodos de todos los órdenes, es decir, los tamaños de sus periodos
primos son todos los números naturales.

Para cada número natural n, sea $I_n = (n, n + 1) \subset \mathbb{R}^+$. Sea $A = \mathbb{R}^+ \setminus \mathbb{N}$, y definamos $f : A \rightarrow A$ como la función lineal a trozos y creciente sobre cada intervalo I_n tal que

\[
\begin{align*}
 f(I_0) &= I_0 \\
 f(I_1) &= I_2, f(I_2) = I_1 \\
 f(I_3) &= I_4, f(I_4) = I_5, f(I_5) = I_3 \\
 f(I_6) &= I_7, f(I_7) = I_8, f(I_8) = I_9, f(I_9) = I_6 \\
 &\vdots
\end{align*}
\]

(1.18)

Entonces todos los puntos de I_0 son fijos, todos los de $I_1 \cup I_2$ tienen periodo dos, todos los de $I_3 \cup I_4 \cup I_5$ tienen periodo tres, etc (ver figura 1.2).

Figura 1.2: Función globalmente periódica con infinitos periodos.

Es evidente que tal función no es continua con una cantidad numerable de discontinuidades. La pregunta que se plantea es la de si es posible encontrar un ejemplo de ED continua globalmente periódica que posea esta propiedad o al menos que tenga una cantidad infinita de puntos periódicos con periodos distintos. En [BL05] se propone la búsqueda de este tipo de ED.
1.1.3. Ecuaciones en diferencias como sistemas dinámicos

Intuitivamente un sistema dinámico es una idealización del cambio que sufre cierto modelo físico en el transcurso del tiempo. Existen definiciones muy generales de este concepto ([Mei07]), pero para los propósitos de este trabajo nos centraremos en las dos nociones clásicas de sistema dinámico siguiendo a [Wig03].

La fórmula

\[\dot{x} = f(x, t; \mu) \]

(1.19)

donde \(f : \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^p \rightarrow \mathbb{R}^n \) se llama ecuación diferencial ordinaria o campo vectorial.

El dominio de definición de \(f \) suele estar formado por un producto de abiertos de \(\mathbb{R}^n, \mathbb{R} \) y \(\mathbb{R}^p \) respectivamente. La variable \(t \) se denomina variable independiente o tiempo, mientras que \(\mu \) denota a un parámetro.

Se llama solución de la ecuación diferencial (1.19) a cada función

\[x : I \subset \mathbb{R} \rightarrow \mathbb{R}^n \]

(1.20)

\[t \mapsto x(t) \]

(\(I \) es un intervalo) tal que

\[\dot{x}(t) = f(x(t), t; \mu) \]

(1.21)

donde \(\dot{x}(t) \) representa la diferenciación de \(x(t) \) con respecto a \(t \).

Cuando la función \(f \) depende explícitamente de la variable \(t \) se dice que la ecuación (1.19) es no autónoma o dependiente del tiempo. En cambio cuando ésta se escribe como

\[\dot{x} = f(x; \mu) \]

(1.22)

entonces decimos que es autónoma o independiente del tiempo.

La ecuación (1.19) puede ser interpretada de la siguiente forma: conocida la variación con respecto al tiempo (\(\dot{x} \)) de una cierta magnitud física (\(x \)), hallar dicha magnitud. Por ejemplo, en la situación común en la que fuerza y aceleración tienen una relación lineal, conocida aquélla se quiere determinar la velocidad o la posición de cierto móvil.

La variación de un sistema físico puede ocurrir a intervalos de tiempo fijos. Esta es una hipótesis normal en ecología, donde la población de cierta especie sufre cambios significativos por lo general de año en año. Entonces
el sistema (1.19) no es adecuado para modelar tales comportamientos y se utiliza en cambio la fórmula

\[x \mapsto g(x; \mu) \]

(1.23)

llamada ecuación en diferencias o simplemente aplicación. Aquí \(g \) denota a una función vectorial \(g : \mathbb{R}^n \times \mathbb{R}^p \rightarrow \mathbb{R}^n \) siendo \(\mu \) un parámetro. Obsérvese que (1.23) no es más que otra forma de referirnos a la ecuación en diferencias vectorial (1.11) remarcando la presencia de parámetros.

En general se denomina sistema dinámico continuo a cualquier modelo asociado a (1.19) y sistema dinámico discreto al relacionado con (1.23) o (1.11).

Como vimos en el apartado 1.1.1, cualquier ED de orden \(n \), fórmula (1.3), puede ser escrita en la forma (1.11) y por lo tanto puede ser vista como un sistema dinámico discreto. El paso de una notación a otra se efectúa mediante la agrupación de \(n \) términos consecutivos de una solución cualquiera de (1.3). Dicha agrupación se llama desdoblamiento de la ED

\[(x_k)_{k=-n+1}^{+\infty} \mapsto (X_k)_{k=-n+1}^{+\infty} \]

(1.24)

donde \(X_k = (x_{k-n+1}, \ldots, x_k) \ \forall k \geq -n + 1 \).

La expresión (1.24) es el desdoblamiento estándar debido a que las funciones asociadas a este cambio de variable son en general las más sencillas que pueden tomarse.

Es importante remarcar que la dinámica de una ED en ocasiones queda mejor descrita con otro tipo de agrupamientos. Por ejemplo en el caso de una ED de segundo orden, puede también definirse el cambio como

\[
\begin{align*}
X_{-1} &= (x_{-1}, x_0) \\
X_0 &= (x_1, x_2) \\
& \vdots \\
X_k &= (x_{2k+1}, x_{2k+2}) \\
& \vdots
\end{align*}
\]

(1.25)

La cuestión acerca de qué tipo de desdoblamiento debe usarse en cada caso no es evidente y sugiere que las ED de un orden dado pueden clasificarse geométricamente de acuerdo con el desdoblamiento que mejor las describa.

Veamos ahora cómo construir un puente entre los sistemas dinámicos continuos y discretos (ver [Wei13a]). Consideremos de nuevo la ED vectorial
(1.11), reescribiéndola de la siguiente forma
\[X_{k+1} = F(X_k) \]
\[X_{k+1} - X_k = F(X_k) - X_k \]
\[X_{k+1} - X_k = G(X_k) * 1 \] (1.26)
siendo \(G(X) = F(X) - X \). Entonces la fórmula (1.26) puede leerse así: \textit{cuando la variación de} \(k \) \textit{es uno, la de la magnitud} \(X \) \textit{viene dada por} \(G \).

Decimos en este caso que (1.26) es la versión discreta o discretización de la ecuación diferencial siguiente
\[\dot{X} = G(X) \] (1.27)
siendo ahora \(k \) la variable independiente de (1.27).

El empleo del término \textit{ecuación en diferencias} queda más claro a la vista de la fórmula (1.26). Dicha fórmula nos indica además que la importancia de las ED también reside en que proporcionan una herramienta discreta para el estudio de los sistemas dinámicos continuos.

1.1.4. Estabilidad y convergencia

Regresando ahora a la ED (1.3) analizaremos qué ocurre en las proximidades de una solución periódica.

Fijemos una norma cualquiera de \(\mathbb{R}^n \), \(|| \cdot || \). Sea \(X = (x_{-n+1}, \ldots, x_0) \) una condición inicial arbitraria. Nos referiremos a la distancia entre \(\bar{x} \) y una solución periódica usando la cantidad \(||X - \bar{X}|| \) donde \(\bar{X} \) es la \(n \)-upla de componentes iguales a \(\bar{x} \).

Por ejemplo, en la norma \(l_1 \) esto equivale a tomar la cantidad
\[|x_{-n+1} - \bar{x}| + \ldots + |x_0 - \bar{x}| \]

\textbf{Definición 1.1.1} ([Ela05]). \textit{Sea} \(\bar{x} \) \textit{un punto fijo de la ED (1.3).}

a) \(\bar{x} \) es localmente estable (LE) si para cada \(\varepsilon > 0 \), existe un \(\delta > 0 \) tal que cuando la distancia entre \(\bar{x} \) y \((x_{-n+1}, \ldots, x_0) \) sea menor que \(\delta \), entonces \(|x_k - \bar{x}| < \varepsilon \forall k \geq -n + 1 \). Si \(\bar{x} \) no verifica esta propiedad se dice que es inestable.

b) \(\bar{x} \) es un atractor (A) si existe un \(\mu > 0 \) tal que cuando la distancia entre \(\bar{x} \) y \((x_{-n+1}, \ldots, x_0) \) sea menor que \(\mu \), entonces \(\lim_{k \to +\infty} x_k = \bar{x} \). Cuando \((x_{-n+1}, \ldots, x_0) \) se puede elegir arbitrariamente, \(\bar{x} \) es un atractor global.
1.1. PRELIMINARES

c) \(\bar{x} \) es localmente asintóticamente estable (LAE) si es LE y A.
d) \(\bar{x} \) es globalmente asintóticamente estable (GAE) si es LAE y atractor global.

Observación 1: En general se supone que las condiciones iniciales de la definición anterior se eligen siempre en el buen conjunto de la ED.

Observación 2: La definición 1.1.1 se puede extender a sistemas de ecuaciones en diferencias y a puntos periódicos de periodo \(p > 1 \). Para ello es útil el paso a la forma vectorial de la ecuación, (1.11). Por ejemplo, un punto \(p \)-periódico \(X \) será LE si \(X \), como punto fijo de la ecuación

\[X_{k+1} = F^p(X_k) \]

es LE, etc.

Es obvio que los conceptos anteriores verifican la siguiente cadena lógica

\[
GAE \Rightarrow LAE \Rightarrow LE \\
\Rightarrow A
\]

(1.28)

No es posible añadir más implicaciones a la expresión (1.28). Por ejemplo ([Ela05]) dado \(\mu > 0 \), considereamos la función real

\[
G_\mu(x) = \begin{cases}
-2x & \text{si } x < \mu \\
0 & \text{si } x \geq \mu
\end{cases}
\]

Entonces en la ED \(x_{k+1} = G_\mu(x_k) \), \(\bar{x} = 0 \) es un atractor global pero la ecuación no es estable en dicho punto (ver figura 1.3).

Cuando un equilibrium responde a alguna de las definiciones de 1.1.1 entonces somos capaces de describir la dinámica de las soluciones en un entorno del mismo o incluso globalmente. Para determinar cuándo se da tal situación se emplea la técnica de linearizar la ED en torno a un punto. Sea \(\bar{x} \) un equilibrium de (1.3). Sean \(p_i = \frac{\partial F}{\partial x_i}(\bar{x}, \ldots, \bar{x}) \), \(i = -n + 1, \ldots, 0 \). Se llama ecuación linearizada de (1.3) en el punto \(x \) a la siguiente ED lineal

\[
x_{k+1} = p_{-n+1}x_{k-n+1} + \ldots + p_0x_0
\]

(1.29)

El comportamiento de las ED lineales es bien conocido puesto que es posible dar un término general para sus soluciones. Éste depende de las raíces de la siguiente ecuación polinómica de incógnita \(\lambda \)

\[
\lambda^{n+1} - p_0\lambda^n - p_1\lambda^{n-1} - \ldots - p_{n-1}\lambda - p_0 = 0
\]

(1.30)
Figura 1.3: Ejemplo de atractor global no estable.

(1.30) recibe el nombre de ecuación característica de (1.29). Sus soluciones se denominan valores propios de (1.29), y son por lo general números complejos. El siguiente resultado identifica qué tipo de equilibrio posee una ED según los valores propios de la ecuación linearizada.

Teorema 1 ([Ela05] - Estabilidad usando linearización). Sea \(f : G \subset \mathbb{R}^n \rightarrow \mathbb{R} \) una función de clase \(C^1 \) definida sobre un entorno abierto \(G \) del punto \(\bar{X} = (\bar{x}, \ldots, \bar{x}) \in G \) tal que \(f(\bar{X}) = \bar{x} \) (\(\bar{x} \) es un equilibrio de la ED (1.3)). Sean \(\nu_1, \ldots, \nu_{n+1} \in \mathbb{C} \) los valores propios de la ecuación (1.29) correspondiente a la linearización de (1.3) en el punto \(\bar{x} \). Entonces

a) Si \(|\nu_i| < 1 \forall i \in \{1, \ldots, n+1\} \), \(\bar{x} \) es LAE.

b) Si \(\exists i_0 \in \{1, \ldots, n+1\} \) tal que \(|\nu_{i_0}| > 1 \), \(\bar{x} \) es inestable.

c) Si \(|\nu_i| \leq 1 \forall i \in \{1, \ldots, n+1\} \) y existe \(i_0 \in \{1, \ldots, n+1\} \) tal que \(|\nu_{i_0}| = 1 \), entonces \(\bar{x} \) puede ser estable, inestable o asintóticamente estable.

Hasta aquí hemos estudiado aquellas soluciones que están localizadas en las proximidades de un cierto punto de equilibrio o punto periódico (estabilidad) o que coinciden con ellos a largo plazo (convergencia). Sin embargo el comportamiento de una solución arbitraria puede ser mucho más exótico. Recordemos que si \(A \subset \mathbb{R} \), \(x \) es un punto límite o punto de acumulación de \(A \) cuando \(\forall \varepsilon > 0 \ ((x-\varepsilon, x+\varepsilon) \setminus \{x\}) \cap A \neq \emptyset \). Si \(A \) es una sucesión, entonces
la definición anterior equivale a decir que existe una subsucesión de A no finalmente constante cuyo límite es x.

En el contexto de los sistemas dinámicos discretos, el conjunto de puntos límite de una solución de cierta ED se denomina conjunto omega-límite. Éste puede ser muy complejo. Por ejemplo, puede tener estructura fractal, ser denso, tener medida de Lebesgue positiva, etc.

Así, el sistema

$$
\begin{aligned}
x_{k+1} &= x_kx_{k-1} - y_ky_{k-1} \\
y_{k+1} &= x_ky_{k-1} - x_{k-1}y_k
\end{aligned}
$$

da órbitas densas cuando las condiciones iniciales se eligen tales que $(x_1, y_1) = (1, 0), x_0^2 + y_0^2 = 1$ y $\theta = \arctan \frac{x_0}{y_0} \notin \pi \mathbb{Z}$, es decir, cuando (1.31) se corresponde con una rotación irracional.

Algo parecido ocurre con la ED

$$
x_{k+1} = 2x_k \text{ mód 1}
$$

(1.32)

donde $x \text{ mód 1}$ significa la parte decimal de x (ver [CFR05]).

En el caso de la ecuación logística

$$
x_{k+1} = rx_k(1 - x_k)
$$

(1.33)

donde r es un parámetro real positivo, existe un conjunto no numerable de condiciones iniciales generadoras de órbitas densas (ver [May76], [Ela07]).

En ocasiones se plantea el siguiente problema recíproco de la convergencia: determinar todas las condiciones iniciales cuyas soluciones convergen a un punto periódico prefijado. Dado \bar{x} equilíbrio de (1.3) se llama cuenca de atracción de \bar{x} al conjunto

$$
\mathcal{CA}(\bar{x}) = \left\{ (x_{-n+1}, \ldots, x_0) \in B / \lim_{k \to +\infty} x_k = \bar{x} \right\}
$$

(1.34)

Sea $(\bar{x}_k)_{k=-n+1}^{+\infty}$ un dos periodo de (1.3), esto es, $\bar{x}_{-n+1} = \phi, \bar{x}_{-n+2} = \psi, \bar{x}_{-n+3} = \phi, \bar{x}_{-n+4} = \psi, \ldots$ para ciertos $\phi, \psi \in \mathbb{R}$. Su cuenca de atracción será el subconjunto de B formado por aquellas condiciones iniciales tales que la solución que generan cumple que

$$
\lim_{k \to +\infty} x_{2k-n+1} = \phi
$$

$$
\lim_{k \to +\infty} x_{2k-n+2} = \psi
$$
Análogamente se define la cuenca de atracción de un \(p \)-periodo.

La cuestión de la determinación de las cuencas de atracción de los periodos de una ED es difícil y tiene interés. Tal cuestión se plantea en varios problemas abiertos numerados en [CL07] como 5.21.1, 5.21.3, 5.29.1, etc.

En ocasiones ocurre que una ED posee un comportamiento ordenado (todas las soluciones son convergentes) sin que sea trivial la determinación de sus cuencas de atracción. Además éstas pueden teselar completamente el conjunto de condiciones iniciales. En tal caso hablamos de una foliación o exfoliamiento de dicho conjunto.

1.1.5. Ejemplos

Veamos a continuación algunos ejemplos de modelos aplicados que utilizan ED. Los primeros se sitúan en el estudio de la dinámica de poblaciones. Cuando la cantidad de individuos de una población es proporcional a la cantidad de individuos de una generación anterior tenemos el modelo de crecimiento exponencial o geométrico

\[
x_{k+1} = \mu x_k
\]

Este modelo es poco realista a largo plazo porque no tiene en cuenta las limitaciones de recursos ni los fallecimientos de individuos. Una alternativa simple consiste en considerar que las interacciones entre elementos poblacionales afectan negativamente con una tasa \(b \)

\[
x_{k+1} = \mu x_k - bx_k^2
\]

El cambio de variable \(y_k = \frac{1}{\mu} x_k \) transforma (1.36) en la ecuación logística (1.33). Es notable que este modelo exhibe, a pesar de su simplicidad formal, una dinámica sofisticada (ver [Ela05]).

Si se tiene en cuenta la influencia de más generaciones anteriores se crean modelos con ED de orden mayor que uno. Un ejemplo clásico es la sucesión de Fibonacci (1202, \textit{Liber abaci}) que corresponde con el PCI

\[
\begin{aligned}
x_{k+1} &= x_k + x_{k-1} \\
x_{-1} &= x_0 = 1
\end{aligned}
\]

La sucesión aparece en \textit{Liber abaci} en la resolución de un problema de reproducción de conejos, aunque existen antecedentes muy antiguos (India 200
a.e.c). Kepler descubrió que la razón de términos consecutivos de (1.37) converge al recíproco de la razón áurea. La ED de Fibonacci, nombrada así por el Édouard Lucas en el siglo XIX, es

$$x_{k+1} = x_k + x_{k-1}$$

(1.38)
cuyo término general es

$$x_k = a_1\phi^k + a_2(-\phi)^{-k}$$

(1.39)
donde a_1 y a_2 dependen de las condiciones iniciales y $\phi = \frac{1+\sqrt{5}}{2}$ es la razón áurea (ver [Ela05], [CFR05]). En el caso de la solución (1.37), las constantes a_1 y a_2 valen respectivamente $\frac{1}{\sqrt{5}}$ y $\frac{-1}{\sqrt{5}}$. Para estos valores la expresión (1.39) se conoce como fórmula de Binet, aunque se sabe que también fue descubierta por Euler, Daniel Bernoulli y De Moivre.

El efecto de las generaciones anteriores también se tiene en cuenta en la ecuación logística bidimensional o ecuación logística con retraso propuesta por J. Maynard Smith en [Smi68]

$$x_{k+1} = rx_k(1 - x_{k-1})$$

(1.40)
La idea es que en ciertas poblaciones de herbívoros la densidad poblacional x_{k+1} depende positivamente de la densidad poblacional de la generación anterior x_k y negativamente de la hierba consumida por generaciones anteriores a ésta (en un primer modelo simplificado, se considera la inmediatamente anterior x_{k-1}).

También existen modelos de dinámica de poblaciones que utilizan EDR. Véanse, por ejemplo, las referencias [CL07], [Pie69], [Pie74], [DLS98], [CGKL03] o [CFR05]. Los siguientes modelos están sacados de la última de ellas.

$$x_{k+1} = x_k \left(\frac{1}{b + cx_k} - d \right)$$

(1.41)
$$x_{k+1} = \frac{(1 + a)^k x_k}{(1 + a x_k)^b} \quad a, b > 0$$

(1.42)
$$x_{k+1} = \frac{r x_k}{1 + (r - 1) x_k^c}$$

(1.43)

El sistema de ecuaciones diferenciales ordinarias conocido como las ecuaciones de Lotka-Volterra

$$\begin{cases}
\dot{x} &= x(\alpha - \beta y) \\
\dot{y} &= -y(\gamma - \delta x)
\end{cases}$$

(1.44)
fue originalmente propuesto en el primer cuarto del siglo XX como modelo continuo de dinámica de poblaciones donde dos especies, un depredador y una presa, interactúan. Estas ecuaciones se han utilizado posteriormente en contextos diversos como el económico y se han propuesto numerosas modificaciones de ellas.

Aquí nos interesan las modificaciones que corresponden a modelos discretos. Recientemente, por ejemplo, se ha estudiado el sistema de EDR \cite{Din13}

\[
\begin{align*}
 x_{k+1} &= \frac{\alpha x_k - \beta x_k y_k}{1 + \gamma x_k} \\
 y_{k+1} &= \frac{\delta y_k + \varepsilon x_k y_k}{1 + \eta y_k}
\end{align*}
\]

(1.45)

Un modelo polinómico de las ecuaciones de Lotka-Volterra es el asociado a la función \(F : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) dada por

\[F(x, y) = (x(4 - x - y), xy) \]

El conjunto \(\Delta = \{(x, y) \in \mathbb{R}^2 : 0 \leq x, 0 \leq y, x + y \leq 4\} \) es invariante por la función \(F \). Además \(F \) sobre el lado inferior de este triángulo \(\Delta \) equivale a la ecuación logística unidimensional

\[x_{k+1} = x_k(4 - x_k) \]

El estudio de los puntos periódicos del sistema

\[
\begin{align*}
 x_{k+1} &= x_k(4 - x_k - y_k) \\
 y_{k+1} &= x_k y_k
\end{align*}
\]

(1.46)

ha sido objeto de investigaciones recientes, \cite{BGLL06} y \cite{Mal12}. En este último trabajo se ha obtenido el notable resultado de que existe una correspondencia entre ciertos puntos periódicos del lado inferior de \(\Delta \) y puntos periódicos del interior del triángulo, demostrándose así la existencia de una cantidad infinita de ellos. Además se aplica esta propiedad a un problema de teoría de números.

Pasemos ahora a la economía. El siguiente modelo fue propuesto en 1939 y modificado en 1950 por Paul Samuelson y John Hicks respectivamente. En el modelo de Samuelson-Hicks (\cite{Sam10}) consideramos las inversiones en periodo \(k \)-ésimo \(I_k \), los ingresos totales \(Y_k \) y el consumo \(C_k \) en dicho periodo. Se supone que las inversiones son proporcionales a la variación de ingresos

\[I_k = \nu(Y_{k-1} - Y_{k-2}) \]

(1.47)
y que el consumo depende de los ingresos en el periodo previo

\[C_k = (1 - s)Y_{k-1} \]

(1.48)

con \(0 \leq s \leq 1 \).

Basándonos en la identidad económica

\[Y_k = C_k + I_k \]

(1.49)

deducimos la ED lineal que da nombre al modelo

\[Y_{k+1} = (1 - \nu - s)Y_k - \nu Y_{k-1} \]

(1.50)

Ver [Ela05] para más detalles.

Se han propuesto modificaciones no lineales del modelo de Samuelson-Hicks que incluyen comportamiento caótico ([Puu91], [PP11]).

Las ED también se aplican en teoría de números. En particular, la conjetura de Collatz parte de la siguiente ED sobre los números enteros

\[x_{k+1} = \begin{cases} \frac{3x_k + 1}{2} & \text{si } x_k \text{ es impar} \\ \frac{x_k}{2} & \text{si } x_k \text{ es par} \end{cases} \]

(1.51)
Dicha conjetura afirma que cualquier solución de condiciones iniciales en \mathbb{N} es finalmente periódica e igual al ciclo $(1, 2, 1, 2, \ldots)$.
Esta ecuación se puede estudiar para valores enteros, es decir, $x_0 \in \mathbb{Z}$. Si $x_0 \leq 0$ se ha conjeturado que la solución es finalmente periódica e igual a una de las siguientes
- la solución constante nula
- la solución constante -1
- el tres ciclo $(-5, -7, -10)$
- el 11 ciclo $(-17, -25, -37, -55, -82, -41, -61, -91, -136, -68, -34)$
Ambos problemas están aun hoy sin resolver. Su dificultad parece estar relacionada con la complicada distribución de los números primos en \mathbb{Z}. Ver [GL05] y [Lag85].

Otro ejemplo clásico en el ámbito de la teoría de números es la definición de la sucesión de Thue-Morse ([Mor21]). Ésta se introduce como la sucesión numérica que se obtiene al concatenar indefinidamente una colección de unos y ceros con su negación booleana, empezando por el dígito cero:

\begin{align*}
T_0 &= 0 \\
T_1 &= 01 \\
T_2 &= 0110 \\
T_3 &= 01101001 \\
T_4 &= 0110100110010110 \\
& \quad \vdots
\end{align*}

Alternativamente, (1.52) es la solución del siguiente PCI

\begin{equation}
t_{k+1} = \begin{cases}
1 - t_k & \text{si } k \text{ es par} \\
t_{k+1} & \text{si } k \text{ es impar}
\end{cases} \quad (1.53)
\end{equation}

La importancia de la sucesión de Thue-Morse se debe a que aparece en contextos dispares, algunos de ellos de aplicación práctica. Por ejemplo, la sucesión fue introducida por Prouhet en un problema de particiones enteras, estudiada por Thue en combinatoria de palabras, y por Morse en geometría diferencial. Posteriormente fue redescubierta por el campeón del mundo Euwe en relación con un problema ajedrecístico.
Más recientemente esta sucesión se ha estudiado en mecánica cuántica en
relación con el transporte de cargas en sistemas aperiódicos y el diseño de materiales ([dBdSN95]).

Existen numerosos modelos no lineales relacionados con la física. Veamos algunos ejemplos, paradigmáticos en el desarrollo de la teoría del caos y de sistemas dinámicos.

La ecuación de Hénon ([Hén76]) es

\[x_{k+1} = bx_k - 1 + ax_k^2 \] (1.54)

(1.54) se obtiene al simplificar la sección de Poincaré del modelo meteorológico continuo de Lorenz ([Lor63])

\[
\begin{cases}
\dot{x} = \sigma(y-x) \\
\dot{y} = x(\rho - z) - y \\
\dot{z} = xy - \beta z
\end{cases}
\] (1.55)

Para los valores \(a = 1, 4, \quad b = 0, 3 \) la ecuación (1.54) es caótica. Además, el desdoblamiento

\[
\begin{cases}
x_{k+1} = y_k + 1 - ax_k^2 \\
y_{k+1} = by_k
\end{cases}
\] (1.56)

posee un atractor (ver figura 1.5).

Otra ecuación caótica es el modelo de Lozi ([Loz78])

\[x_{k+1} = 1 - a|x_k| + bx_{k-1} \] (1.57)

siendo \(a > 0 \) y \(0 < b < 1 \). La ecuación de Lozi es un modelo lineal a trozos inspirado en la ecuación de Hénon. De hecho ésta también posee un atractor de tipo fractal (figura 1.5).

En cuanto a la ecuación de Tél ([Tél83])

\[x_{k+1} = ax_k - sgn(x_k) + bx_{k-1} \] (1.58)

en la que \(a \) y \(b \) son parámetros positivos y \(sgn(x) \) denota a la función signo \((sgn(x) = 1 \text{ si } x > 0 \) y \(sgn(x) = -1 \text{ si } x < 0) \), fue introducida en 1983 en un problema de cálculo de la dimensión fractal de un atractor.

Para más detalles sobre las ecuaciones (1.54), (1.57) y (1.58) véase [HZ98].
Por último veamos un ejemplo clásico de EDR en el contexto del cálculo numérico. El método de Newton-Raphson para aproximar las raíces de una ecuación consiste en elegir una estimación arbitraria y a partir de ella ir tomando los cortes de la recta tangente con el eje de abscisas como aproximaciones sucesivas. Si la ecuación tiene la forma \(f(x) = 0 \) donde \(f : \mathbb{R} \rightarrow \mathbb{R} \), entonces el método se resume en considerar la función

\[
F(x) = x - \frac{f(x)}{f'(x)}
\]

y la ED asociada a ella, \(x_{k+1} = F(x_k) \) (véase, por ejemplo, [Hol96]). Si \(f(x) = x^3 + ax^2 + bx + c \) es una cúbica, la ED es

\[
x_{k+1} = \frac{2x_k^3 + ax_k^2 - c}{3x_k^2 + 2ax_k + b}
\]

El método sin embargo no da resultados satisfactorios globalmente. Un problema aquí es la determinación de las cuencas de atracción de las raíces de \(f(x) \). Como muestra la figura 1.6 dichas cuencas, en \(\mathbb{C} \), poseen una estructura fractal. En la imagen de la izquierda vemos cómo todo el plano queda dividido en tres regiones correspondientes a las cuencas de atracción de los tres ceros del polinomio \(z^3 - 1 \). En la imagen de la derecha además de las cuencas de los ceros de \(z^3 - 2z + 2 \) existe una cuarta cuenca (en rojo) correspondiente al 2-período \((0, 1, 0, 1, \ldots) \).
1.1. PRELIMINARES

1.1.6. Otros temas de interés

Existen por supuesto otras ramas de la teoría de ED que no abordaremos en este trabajo. Comentemos brevemente algunas de ellas.

La teoría de ED y sistemas lineales está muy desarrollada y es fuente de numerosos modelos aplicados (ver por ejemplo [Ela05] y [LT02]).

La transformada z es el análogo en ecuaciones en diferencias a la transformada de Laplace para ecuaciones diferenciales. Si $(x_k)_{k=0}^{+\infty}$ es una sucesión, su transformada z es la serie de potencias

$$
\tilde{x}(z) = \sum_{k=0}^{+\infty} x_k z^{-k}
$$

siendo $z \in \mathbb{C}$.

La transformada posibilita convertir ED en funciones complejas cuyo análisis permite en ocasiones dar una forma explícita de las soluciones (ver [Ela05]).

La teoría de la oscilación trata de averiguar el comportamiento de las soluciones de una ED respecto a cierto punto de equilibrio sin atender al carácter asintótico. Por ejemplo decimos que una solución de (1.3) oscila alrededor de $\tilde{x} = 0$ si $\forall k \geq -n + 1 \exists N \geq k$ tal que $x_N x_{N+1} \leq 0$. En otro caso se dice que $(x_k)_{k=-n+1}^{+\infty}$ es no oscilante.

El problema por tanto es determinar qué soluciones son oscilantes (ver [Ela05], [EZ89], [GL91]).
La teoría del control es de gran importancia en ingeniería. El control discreto (de sistemas dinámicos discretos) no solo es relevante por sí mismo sino que además es el que se suele aplicar en la práctica para controlar modelos continuos (control continuo).

Suponemos que un cierto modelo físico responde a una ED vectorial lineal de la forma

\[X_{k+1} = AX_k \]

siendo \(X_k \in \mathbb{R}^n \) y \(A \) una matriz cuadrada de \(n \) dimensiones. En la terminología de este campo (1.62) se llama sistema descontrolado.

Se quiere modificar el comportamiento de (1.62) introduciendo una acción externa al sistema. Para ello se considera la ED

\[X_{k+1} = AX_k + U_k \]

en la que \(U_k \in \mathbb{R}^n \) se denomina forzamiento o control. Entonces la ecuación (1.63) se llama sistema controlado asociado a (1.62).

El problema general consiste en describir cuándo es posible dar una sucesión \((U_k)_{k=-\infty}^{n+1} \) con la cual el sistema se comporte de forma determinada y especificar ésta (ver [Ela05]).

1.2. Resumen de los capítulos

El trabajo que presentamos en esta Memoria se basa en el desarrollado previamente en [BC12a], [BC12b], [BCara], [BCarb], [BC13a] y [BC13b].

El nexo común de estas referencias es el estudio de diversos aspectos de algunas EDR: el carácter asintótico o finalmente positivo de las soluciones, la existencia de dinámicas caóticas, las perturbaciones multidimensionales de ED y la caracterización de los conjuntos prohibitivos. Esta diversidad de temas ha ido surgiendo de forma natural al profundizar en el estudio de las citadas ecuaciones, como facetas distintas de una misma problemática.

En el capítulo 2 partimos de la siguiente conjetura de [CL07]

El PCI

\[
\begin{cases}
 x_{k+1} = \frac{1}{x_k + x_{k-2}} \\
 x_{-2} = x_{-1} = x_0 = 1
\end{cases}
\]

es asintóticamente dos periódico primo.

La prueba de esta conjetura se puede realizar como corolario de un resultado más general incluido en [CL07]. Tal resultado es técnicamente complicado. De modo que en la conjetura se sugiere buscar un método más sencillo
y directo de demostrar la convergencia.

En primer lugar repasamos cómo demostrar la conjetura con las herramientas de [CL07]. Para ello introducimos el concepto de solución de puntos límite y un lema del mismo nombre que da condiciones suficientes para poder construir una de estas soluciones en una ED.

A continuación, usando una inducción sencilla, vemos el carácter primo del dos periodo límite. Nuestra prueba directa se basa entonces en considerar el cambio de variable

$$ z_k = x_k x_{k-1} - \frac{1}{2} \quad (1.65) $$

demostrando que al aplicarlo a (1.64) se genera una sucesión $ (z_k)_{k=-1}^{+\infty} $ tal que

$$ \sum_{k=-1}^{+\infty} |z_k| < +\infty. $$

Como las diferencias de términos de la sucesión (1.64) pueden acotarse usando sumas parciales de esta serie, es sencillo concluir que $ (x_{2k})_{k=-1}^{+\infty} $ y $ (x_{2k+1})_{k=-1}^{+\infty} $ son sucesiones de Cauchy.

Una vez resuelta al conjetura pasamos a generalizar su validez desde varios puntos de vista. Primero demostramos que cualesquiera condiciones iniciales positivas generan soluciones de la ED

$$ x_{k+1} = \frac{1}{x_k + x_{k-2}} \quad (1.66) $$

cuyos términos, tras ciertos valores iniciales arbitrarios, están convenientemente acotados y por lo tanto puede justificarse su convergencia a un dos periodo de la misma forma que en el caso del PCI (1.64).

Otras generalizaciones, utilizando como herramienta cierta propiedad de permanencia, son la determinación de la cuenca de atracción del equilibrio en (1.66) (o equivalentemente, la caracterización de la primalidad) y el estudio del problema

$$ \begin{cases} x_{k+1} = \frac{1}{x_k + x_{k-2}} \\ x_{-2} = x_{-1} = x_0 = a \end{cases} \quad (1.67) $$

para $ a \in \mathbb{R} \setminus \{0\} $.

De manera natural surge entonces el interés por generalizar también al caso de condiciones iniciales cualesquiera. Aparece por tanto el problema del conjunto prohibido, que abordaremos más adelante, y la cuestión de si será posible acotar las soluciones de condiciones iniciales con signos arbitrarios de forma que tras un número finito de iteraciones hayamos caído de nuevo en
el octante positivo. De ser así podríamos dar un resultado de convergencia global hacia el conjunto de los dos periodos usando la técnica descrita antes. Sin embargo esta cuesión es respondida negativamente en el capítulo 3. Para ello introducimos primero el concepto de solución finalmente positiva de una ED arbitaria. Después pasamos a estudiar el problema de la irreducibilidad de una EDR. Si
\[x_{k+1} = \frac{P(x_{k-1}, x_k)}{Q(x_{k-1}, x_k)} \] (1.68)
es una EDR de orden dos siendo \(P \) y \(Q \) polinomios en dos indeterminadas, podemos ver esta recurrencia algebraicamente considerando como condiciones iniciales \(x_{-1} = x, \ x_0 = y \). Entonces \(x_k = \frac{P_k(x, y)}{Q_k(x, y)} \) para ciertas sucesiones de polinomios \((P_k)_{k=1}^{+\infty}\) y \((Q_k)_{k=-1}^{+\infty}\). Decimos que (1.68) es una EDR irreducible si todas las fracciones algebraicas así construidas lo son.

Tras ver algunos ejemplos de EDR irreducibles o de las cuales se puede dar una versión irreducible, pasamos al cálculo de la paridad de los grados de los polinomios \(P_k \) y \(Q_k \) en ciertos casos. Este cálculo se puede realizar considerando un sistema de ED sobre \(\mathbb{Z} \).

El resultado principal del capítulo establece que cuando hay irreducibilidad y los grados no son finalmente pares entonces las soluciones de una EDR no son uniformemente finalmente positivas.

Este es el caso de la EDR (1.66) del capítulo 2.

Este resultado indica que la dinámica de (1.66) es más compleja de lo que parecía inicialmente. Además en las simulaciones numéricas que incluyen la consideración del conjunto prohibido observamos que en las cercanías de éste es difícil describir el comportamiento de las órbitas.

Todo ello nos lleva a considerar la introducción de otras herramientas que ayuden a mejorar la descripción cualitativa de EDR. En el capítulo 4 hacemos una modificación del trabajo clásico de Marotto [Mar78], en el que se introduce una condición suficiente que, en casos multidimensionales y con condiciones de derivabilidad, produce el caos Li-Yorke.

Se dice que una ED vectorial
\[X_{k+1} = F(X_k) \]
con \(F : \mathbb{R}^n \to \mathbb{R}^n \) es caótica en el sentido de Marotto si posee periodos de todos los órdenes a partir de uno dado y si existe un subconjunto no numerable \(S_0 \) de \(\mathbb{R}^n \) invariante respecto a \(F \) tal que
\[
\limsup_{k \to +\infty} ||F^k(X) - F^k(Y)|| > 0 \\
\liminf_{k \to +\infty} ||F^k(X) - F^k(Y)|| = 0
\] (1.69)
∀X, Y ∈ S₀, X ≠ Y. Es decir, las órbitas en este conjunto se aproximan en ciertos momentos de la iteración y se alejan en otros. Este S₀ se denomina conjunto revuelto (scrambled set).

Lo interesante de [Mar78] es que se da una condición suficiente fácilmente verificable para que exista caos Marotto. Para ello basta con encontrar un tipo especial de punto fijo llamado repulsor de retorno finito (RRF). Z ∈ ℝⁿ es un RRF si F(Z) = Z, Z es repulsor local (es decir, en sus proximidades las trayectorias tienden a alejarse del punto de equilibrio) y existe X₀ ∈ ℝⁿ en el entorno repulsor tal que X₀ ≠ Z y F^M(X₀) = Z para cierto número natural M.

El criterio de Marotto ha sido aplicado a numerosos modelos para justificar rigurosamente la existencia de caos. Incluso en el contexto de las EDR se ha hecho así ([MS12]). Pero el criterio original se refiere a ED de clase C¹, lo que no es el caso de las EDR, donde hay discontinuidades y aparece la problemática del conjunto prohibido.

El trabajo que realizamos en el capítulo 4 es el de completar lo anterior dando una versión del teorema de Marotto aplicada a las EDR. Tras las definiciones e introducción pertinentes demostramos el teorema dividiendo la prueba en la de la existencia de infinitos periodos, por un lado, y en la de la búsqueda del conjunto revuelto por otro. Después ilustramos el resultado estudiando su aplicación a dos familias de EDR cuadráticas, la de las parábolas inversas

\[x_{k+1} = \frac{1}{x_k^2 - r}, \quad r \in \mathbb{R} \]

y la de las logísticas inversas

\[x_{k+1} = \frac{1}{r x_k (1 - x_k)}, \quad r \in \mathbb{R} \setminus \{0\} \]

Existe un problema en la formulación original del teorema de Marotto. La exigencia de que Z debe ser un repulsor local debe sustituirse por la de que un entorno de Z sea expansivo, es decir, tal que la distancia entre las imágenes de dos puntos del entorno aumente con respecto a la distancia original entre ellos.

Este cambio complica en la práctica la búsqueda de RRF en dimensiones mayores que uno. Por ello se necesitan métodos alternativos de localización de sistemas caóticos multidimensionales.

En el capítulo 5, siguiendo de nuevo a Marotto ([Mar79]), estudiamos la relación entre el sistema dinámico unidimensional

\[x_{k+1} = f(x_k) \]
El primer tipo es la ED vectorial
\[X_{k+1} = F(f(x_k), x_k) \] (1.73)
con \(X_{k+1} = (x_{k+1}, y_{k+1}) \) y \(F(x, y) = (f(x), x) \).

El segundo tipo es la perturbación bidimensional de (1.72) siguiente
\[x_{k+1} = G(x_k, bx_{k-1}) \] (1.74)
en la que \(b \) es un parámetro real y \(G \) es una función diferenciable, \(G : \mathbb{R}^2 \to \mathbb{R} \), tal que \(G(x, 0) = f(x) \) \(\forall x \in \mathbb{R} \). Cuando \(b = 0 \) (1.74) coincide con el sistema (1.72). Si \(b \neq 0 \) decimos que hemos perturbado (1.72).

El tercer tipo parte de un sistema de ED independientes o desacopladas
\[
\begin{cases}
 x_{k+1} = f_1(x_k) \\
 y_{k+1} = f_2(y_k)
\end{cases}
\] (1.75)
que puede verse como la ED vectorial
\[X_{k+1} = F(X_k) \] (1.76)
definiendo \(F : \mathbb{R}^2 \to \mathbb{R}^2 \) como \(F(x, y) = (f_1(x), f_2(y)) \).
Dadas dos funciones diferenciables \(G_1, G_2 : \mathbb{R}^2 \to \mathbb{R} \) tales que \(G_1(x, 0) = f_1(x) \) y \(G_2(0, y) = f_2(y) \) \(\forall x, y \in \mathbb{R} \), decimos que el sistema
\[
\begin{cases}
 x_{k+1} = G_1(x_k, by_k) \\
 y_{k+1} = G_2(cx_k, y_k)
\end{cases}
\] (1.77)
es una perturbación de (1.75). Obviamente (1.77) y (1.75) coinciden cuando los parámetros \(b \) y \(c \) son nulos.

La relación entre los sistemas de partida y sus perturbaciones correspondientes está establecida en una serie de teoremas de [Mar79].

En el contexto de nuestro trabajo nos interesa resaltar la dependencia entre ambos sistemas cuando se produce algún tipo de comportamiento caótico.
Por ejemplo una de estas dependencias afirma que si en (1.75) una de las ED
1.2. RESUMEN DE LOS CAPÍTULOS

posee un RRF y la otra un punto fijo inestable, entonces (1.76) tiene también un RRF (y por tanto caos en el sentido de Marotto).

En el caso en que (1.75) consta de una ED con RRF y otra con un punto fijo estable entonces (1.76) tiene una órbita transversal homoclínica (OTH) lo cual implica la presencia de un tipo diferente de caos.

El concepto de OTH es anterior históricamente al de RRF y se sitúa originalmente en el contexto de las ED vectoriales cuya función de iteración \(F : \mathbb{R}^n \rightarrow \mathbb{R}^n \) es un difeomorfismo.

La idea es que dado \(Z \) un punto fijo hiperbólico de \(F \) (es decir, tal que ninguno de los valores propios de su diferencial tenga módulo uno) otro punto \(X_0 \in \mathbb{R}^n \) se dice que es un punto homoclínico con respecto a \(Z \) si, dicho de forma aproximada, las órbitas progresiva y regresiva construidas a partir de \(X_0 \) convergen hacia \(Z \). En ese caso la órbita se denomina OTH. Obsérvese que hay una cierta analogía entre esta definición y la de RRF.

La importancia de este concepto reside en el teorema clásico de Smale-Birkhoff ([Sma65]) el cual afirma que la presencia de una órbita homoclínica implica que la ED contiene un tipo especial de caos, el asociado a la función desplazamiento sobre un conjunto de Cantor.

A lo largo del capítulo 5 hacemos un repaso de estos conceptos y planteamos la siguiente pregunta: ¿son válidos los teoremas sobre sistemas perturbados en el contexto de las EDR?

Nuestra opinión, basada en pruebas numéricas, es que la pregunta se responde afirmativamente.

En la parte final del capítulo incluimos algunos de esos cálculos y la conjetura de que el modelo bidimensional de EDR de Hassell y Comins ([HC76]) es caótico para cierto rango de sus parámetros.

Esta conjetura se apoya en la de la validez para EDR de los resultados de perturbaciones y en el análisis de la ED unidimensional

\[
x_{k+1} = \frac{\lambda x_k}{(1 + x_k)^2}
\]

para la cual encontramos un RRF si \(\lambda \in (0, 1) \).

En los capítulos 2, 3, 4 y 5 han ido surgiendo una serie de problemas relacionados con la consideración de condiciones iniciales arbitrarias en EDR. Dichos problemas se pueden resumir en el siguiente enunciado

\[\text{Dada una EDR describir su conjunto prohibido } \mathcal{P} \text{ y la dinámica de la ecuación sobre su buen conjunto } \mathcal{B}. \]
El término describir se refiere a dar, si es posible, una expresión explícita de \mathcal{P} y a enumerar sus propiedades topológicas, métricas, dinámicas, etc. La consideración de este problema es bastante reciente en la literatura. Ello es debido a que en los modelos aplicados que usan ED suele haber una restricción natural de los parámetros y las condiciones iniciales que evita la aparición del conjunto prohibido. Por ejemplo en los modelos de ecología que provienen de dinámica de poblaciones no tiene sentido físico considerar un número o porcentaje negativo de elementos poblacionales. Sin embargo a medida que en las dos últimas décadas se ha empezado a hacer un estudio sistemático de ciertos tipos de ED no lineales ([GL05], [KL02], [CL07]) se ha ido constatando que la descripción de \mathcal{P} y sus propiedades tiene que ser abordada para completar correctamente dicha clasificación.

En el capítulo 6 hacemos una recopilación de varios artículos sobre conjuntos prohibidos, centrándonos sobre todo en las técnicas para la descripción explícita o cualitativa de \mathcal{P}. Hemos tratado de ilustrar dichas técnicas añadiendo estimaciones gráficas de \mathcal{P} (escasas en las referencias existentes). Sin ser una recopilación exhaustiva pensamos que el resultado da una imagen del estado actual de esta rama de la teoría y de los problemas abiertos de la misma.

En la última parte del capítulo expondremos nuestro trabajo sobre los conjuntos prohibidos de algunas de las ED estudiadas a lo largo del resto del trabajo.

Comenzamos con la definición de \mathcal{P} y la primera descripción general de este conjunto en EDR. Un importante corolario es que en EDR \mathcal{P} es un conjunto pequeño tanto topológica (interior vacío) como métricamente (medida nula).

A continuación, siguiendo a [KL02], [Azi12], [Azi13a], [Azi13b] vemos cómo es posible dar una descripción explícita del conjunto prohibido de la ecuación de Riccati

$$x_{k+1} = a_0 + \frac{a_1}{x_k} + \frac{a_2}{x_k x_{k-1}} + \ldots + \frac{a_n}{x_k x_{k-1} \ldots x_{k-n+1}}$$

(1.79)

definida a partir de parámetros reales a_0, \ldots, a_n con $a_n \neq 0$. Tal descripción es posible gracias a que el cambio de variable $x_k = \frac{y_k}{y_{k-1}}$ permite establecer una correspondencia biyectiva entre las soluciones de una ED lineal y las soluciones de (1.79) en sentido amplio (esto es, incluyendo las...
soluciones finitas asociadas a \mathcal{P}).

En la siguiente sección retomamos el trabajo de Palladino ([Pal12]) en el que se describe explícitamente el conjunto prohibido de seis EDR utilizando el hecho de que esas ecuaciones poseen invariantes algebraicos.

Para ello hacemos un repaso del concepto ilustrándolo con lo que ocurre en el caso de las ecuaciones de Lyness, Todd y Lyness de orden n

\begin{align}
x_{k+1} &= \frac{\alpha + x_k}{x_{k-1}} \\
x_{k+1} &= \frac{\alpha + x_k + x_{k-1}}{x_{k-2}} \\
x_{k+1} &= \frac{\alpha + \sum_{i=0}^{n-1} x_{k-i}}{x_{k-n}}
\end{align}

(1.80) y (1.81) son obviamente casos particulares de (1.82), la cual posee el siguiente invariante

\begin{equation}
\left(\alpha + \sum_{i=0}^{n} x_{k-i}\right) \prod_{i=0}^{n} \left(1 + \frac{1}{x_{k-i}}\right)
\end{equation}

(1.83)

es decir, fijada una solución de (1.82) el valor de la expresión (1.83) no varía cuando se toman $n + 1$ elementos consecutivos de ella.

El invariante algebraico (1.83) permite describir total o parcialmente los conjuntos prohibidos de (1.80), (1.81) y (1.82).

Otra forma de ver esta característica de las ED que poseen invariante es que en tales casos se efectúa una reducción de orden en la ecuación lo cual simplifica su estudio.

Así en el artículo no publicado de Zeeman ([Zee96]) se utiliza el invariante de la ecuación de Lyness (1.83) para demostrar que hay un exfoliamiento del cuadrante positivo en curvas concéntricas alrededor de un punto fijo (figura 1.7). Dicho de otra forma, el sistema dinámico bidimensional (1.80) se descompone en sistemas unidimensionales correspondientes a cada una de las curvas concéntricas citadas.

Para ilustrar la técnica seguida en el trabajo de Palladino ([Pal12]) vemos cómo en el caso de la EDR

\begin{equation}
z_{k+1} = \frac{z_k}{1 + Bz_{k-1} - Bz_k}
\end{equation}

(1.84)
la existencia del invariante

\[
\left(\frac{1}{z_k} + B \right) (1 + Bz_{k-1})
\]

permite reducir la ecuación a la familia de problemas unidimensionales

\[
z_{k+1} = \frac{1 + Bz_k}{C - B - B^2 z_k}
\]

a los cuales se les pueden aplicar los resultados del conjunto prohibido de la ED de Riccati para describir \mathcal{P}.

Otro ejemplo distinto de metodología para el estudio de los conjuntos prohibidos es el artículo de Camouzis y DeVault [CD03] sobre la descripción de \mathcal{P} cuando la ED es

\[
x_{k+1} = p + \frac{x_{k-1}}{x_k}
\]

con $p \leq -1$.

Los autores demuestran que \mathcal{P} puede escribirse parcialmente como la colección de grafos de cierta sucesión funcional definida recursivamente.

Por último, nuestras aportaciones al estudio de \mathcal{P} en el caso de la EDR protagonistas de los capítulos anteriores son las siguientes.
1.2. RESUMEN DE LOS CAPÍTULOS

- Realizamos estimaciones gráficas de secciones planas de \mathcal{P} y \mathcal{B} en el caso de la EDR (1.66), usándolas para proponer conjeturas sobre la estructura de \mathcal{P} y de las cuencas de atracción de la ecuación.

- Representamos gráficamente, sobre \mathbb{C}, los conjuntos prohibidos de las familias de parábolas inversas (1.70) y de ecuaciones logísticas inversas (1.71). Dichas representaciones dan pistas sobre la estructura del conjunto prohibido en \mathbb{R}.

La técnica seguida para los cálculos numéricos en estos casos consiste en considerar la iteración retrógrada multivaluada aplicándola a los polos de la función de iteración.

Por ejemplo, en el caso de la EDR

$$x_{k+1} = \frac{1}{x_k^2 - 1}$$

(1.88)

aplicamos la fórmula

$$x_k = \pm \sqrt{\frac{1}{x_{k+1}} + 1}$$

(1.89)

a los polos $x_0 = \pm 1$ obteniendo la figura 1.8.

Es notable el hecho de que la iteración inversa (1.89) parece poseer un atractor global, ya que la figura 1.8 es casi idéntica a la que utilizaremos en el capítulo 4 para la búsqueda del RRF de la ecuación.

Esta propiedad atractor parecen tenerla todos los elementos de las familias (1.70) y (1.71).

- Demostramos que el conjunto prohibido de la ecuación (1.88) no es cerrado, y que de hecho el RRF es un punto de acumulación de \mathcal{P} en este caso.

- Vemos cómo representar simbólicamente los conjuntos prohibidos sobre \mathbb{R} y \mathbb{C} de la EDR (1.88) y usamos dicha representación para describir \mathcal{P}_k.

Terminado el cuerpo principal del trabajo, hemos añadido en el capítulo 7 algunos de los problemas abiertos y conjeturas que han ido surgiendo a lo largo del texto.

En el apéndice A hemos incluido los algoritmos con los que se han realizado las estimaciones numéricas y gráficas, y en el apéndice B hemos hecho algunas aclaraciones sobre la traducción al castellano de ciertos términos comunes de la literatura en este campo. Por último, en el apéndice C hay unos
CAPÍTULO 1. NOTAS HISTÓRICAS E INTRODUCCIÓN

Figura 1.8: Conjunto prohibido, en \(\mathbb{C} \), de la EDR (1.88).

breves apuntes sobre la resultante de dos polinomios y su aplicación a la resolución de sistemas de ecuaciones algebraicas.
Capítulo 2

Conjetura 5.21.1 de Camouzis y Ladas
2.1. Introducción

En este capítulo estudiamos la ecuación en diferencias

\[x_{k+1} = \frac{1}{x_k + x_{k-2}}, \quad x_0, x_{-1}, x_{-2} > 0 \]

(2.1)

Concretamente estudiamos su acotación, convergencia y el carácter primo de algunas de sus soluciones dos periódicas. A continuación ampliaremos el estudio a condiciones iniciales más generales y a ecuaciones de la forma

\[x_{k+1} = \frac{\alpha}{Bx_k + Dx_{k-2}} \]

(2.2)

con parámetros \(\alpha, B \) y \(D \) positivos.

Nuestro trabajo comienza con la consideración de [CL07] donde se estudian de forma exhaustiva los 255 casos de ecuaciones racionales de (hasta) tercer orden donde numerador y denominador son funciones lineales de \(x_k, x_{k-1} \) y \(x_{k-2} \). Allí se proponen numerosas conjeturas y problemas abiertos, la mayor parte de los cuales están referidos a ecuaciones en diferencias de tercer orden, dada la mayor complejidad de éstas y los avances de la teoría de ecuaciones de orden dos, previamente tratados en [KL02].

Hemos considerado en primer lugar la ecuación en diferencias de tercer orden

\[x_{k+1} = \frac{1}{Bx_k + x_{k-2}} \]

(2.3)

siendo \(B > 0 \) y donde tomamos como condiciones iniciales números reales positivos \(x_{-2}, x_{-1} \) y \(x_0 \). Esta ecuación es equivalente a (2.2) en el sentido de que una división y un cambio de variable de la forma \(v_k = \sqrt{C'}x_k \) la transforman en (2.3). Además, la ecuación es un caso particular de la siguiente

\[x_{k+1} = \frac{1}{\sum_{i=1}^{r} B_i x_{k-l_i+1}} \quad l_i \in \{1, 2, \ldots \} \]

(2.4)

con parámetros no negativos y condiciones iniciales positivas para tener siempre, al aplicar la recurrencia, valores positivos. Sean \(d_1 \) y \(d_2 \) los máximos comunes divisores de, respectivamente, los conjuntos \(\{l_1, l_2, \ldots, l_r\} \) y \(\{l_i + l_j : i, j \in \{1, 2, \ldots, r\}\} \). Entonces si \(d_1 \neq d_2 \) cada solución de (2.4) converge a una solución 2\(d_1 \)-periódica no necesariamente prima (ver [GL05], [EMGL00] o [EmGLV01]).

El interés en la ecuación (2.3) parte de una conjetura propuesta en [Lad96] y resuelta en [DLS98]. Dicha conjetura ataña a la ecuación siguiente

\[x_{k+1} = \frac{B}{x_k} + \frac{1}{x_{k-2}} \]

(2.5)
2.1. INTRODUCCIÓN

donde B es un parámetro positivo. La ecuación (2.5) se tranforma en (2.3) mediante el cambio de variable $y_k = \frac{1}{x_k}$.

Cuando $B = 1$, se ha conjeturado en [CL07] que la solución del problema de condiciones iniciales (PCI)

\[x_{k+1} = \frac{1}{x_k + x_{k-2}} \quad x_{-2} = x_{-1} = x_0 = 1 \]

(2.6)

converge a una solución dos periódica prima. El objetivo de este capítulo es responder afirmativamente a la conjetura utilizando métodos elementales. Debemos remarcar que en el texto donde se propone este problema aparece una respuesta al mismo, enmarcada en el estudio del carácter asintótico de ecuaciones como la (2.3). Dicha respuesta utiliza el concepto de solución de puntos límite que es considerablemente complicado. El objeto de la conjetura es la búsqueda de un método alternativo (más sencillo) de análisis de la dinámica de (2.6) que sobre todo sea directo.

El desarrollo del capítulo es el siguiente. Comenzamos recordando cómo la conjetura puede resolverse mediante técnicas más avanzadas. Así, el teorema 2 es la adaptación a (2.1) de un resultado más general de [CL07] en el que la idea básica es el uso del lema de las soluciones de puntos límite. Éste afirma que, en una ED continua, cuando una solución está convenientemente acotada, es posible construir otra solución formada por puntos límite de la primera. Además dichos puntos límite se pueden obtener, a partir de un índice prefijado, como límites de una subsucesión de la solución de partida y de sus desplazamientos sucesivos.

A continuación demostramos la conjetura mediante métodos directos. Para ello consideraremos los cambios de variable $y_k = x_kx_{k-1}$ y $z_k = y_k - \frac{1}{2}$ probando que $\lim_{k \to +\infty} y_k = \frac{1}{2}$ y $\lim_{k \to +\infty} z_k = 0$. La clave de la prueba directa es ver que la sucesión $(z_k)_{k=0}^{+\infty}$ está mayorada por una progresión geométrica de razón menor que la unidad.

Consideraremos también algunas generalizaciones de estas ideas. En primer lugar un argumento geométrico permite extender el resultado a condiciones iniciales cualesquiera no negativas. En segundo lugar algunas condiciones iniciales no positivas con parámetros más generales pueden ser estudiadas de la misma forma. Y en tercer lugar obtendremos un principio de permanencia con el que caracterizar el conjunto de condiciones iniciales cuya solución es asintóticamente dos periódica prima para el caso de parámetros positivos y condiciones iniciales positivas. De esta forma la propiedad de permanencia más el teorema 2 permitirán extender el enunciado y la prueba de la conje-
CAPÍTULO 2. CONJETURA 5.21.1 DE CAMOUZIS Y LADAS

tura a un conjunto más amplio de condiciones iniciales.

2.2. Soluciones de puntos límite

El siguiente resultado técnico puede consultarse en [GL05]. Reproducimos aquí su demostración por la completitud del discurso y para remarcar que en ella se utiliza el lema de Zorn.

Recordemos que si J es un intervalo de la recta real, J^k denota el producto cartesiano de k copias del mismo. Decimos que L es un punto límite o punto de acumulación de una sucesión de números reales $(x_k)_{k=-r}^{+\infty}$ cuando existe una subsucesión (x_{k_i}), de manera que $\lim_{i \to +\infty} x_{k_i} = L$. El conjunto de puntos de acumulación de una sucesión puede ser muy complejo (no numerable, denso, con dimensión fraccionaria, etc). El lema que mostramos a continuación habla sobre ciertos subconjuntos numerables del conjunto de los puntos de acumulación de una solución de ED.

Lema 2.2.1. Sean r un entero positivo, J un intervalo de números reales, y $F \in C(J^{r+1},J)$ una función continua. Queda así definida la ecuación en diferencias

$$x_{k+1} = F(x_{k-r}, x_{k-r+1}, \ldots, x_k)$$

Sea $(x_k)_{k=-r}^{+\infty}$ una de sus soluciones. Supongamos que los límites

$$I = \liminf_{k \to +\infty} x_k \quad S = \limsup_{k \to +\infty} x_k$$

son números reales contenidos en el intervalo J. Sea L_0 un punto límite cualquiera de $(x_k)_{k=-r}^{+\infty}$. Entonces

1. Existe una solución $(L_k)_{k=-\infty}^{+\infty}$ de la ecuación en diferencias tal que $L_0 = L_0$ y L_k es un punto límite de $(x_k)_{k=-r}^{+\infty}$, para todo $k \in \mathbb{Z}$. Además $I \leq L_k \leq S \forall k \in \mathbb{Z}$.

2. Fijado un $i_0 \in \mathbb{Z}$ arbitrario, existe una subsucesión $(x_{k_i})_{i=0}^{+\infty}$ de la solución $(x_k)_{k=-r}^{+\infty}$ tal que para cada $N \geq i_0$,

$$L_N = \lim_{i \to +\infty} x_{k_i+N}$$
2.2. SOLUCIONES DE PUNTOS LÍMITE

Observación: Al referirnos a \((L_k)_{k=-\infty}^{+\infty}\) como solución de la ecuación en diferencias lo hacemos en el sentido general siguiente: para todo número entero \(m\) se cumple que

\[L_{k+m+1} = F(L_{k+m-r}, L_{k+m-r+1}, \ldots, L_{k+m}) \]

Definición 2.2.2. Sea \(m\) un número entero ó +\(\infty\). Una sucesión \((L_k)_{k=-m}^{+\infty}\) se denomina solución de puntos límite de \((x_k)_{k=-r}^{+\infty}\) si verifica las tesis del lema 2.2.1.

Es inmediato que pueden existir diversas sucesiones de este tipo para una misma solución de la ED.

Demostración: Como \(I, S \in J\), la solución \((x_k)_{k=-2}^{+\infty}\) tiene todos sus puntos límite dentro de \(J\), puesto que es posible encontrar cotas \(A, B \in J\) tales que \(A \leq x_k \leq B\) \(\forall k \geq -2\).

Elijamos una subsucesión \((x_{k_i})_{i=0}^{+\infty}\) de la solución \((x_k)_{k=-2}^{+\infty}\) de manera que \(k_0 \geq r - 1\) y

\[\lim_{i \to +\infty} x_{k_i} = L_0 \]

Hagamos ahora un desplazamiento inverso en los subíndices de \((x_{k_i})_{i=0}^{+\infty}\), es decir, consideremos la sucesión \((x_{k_i})_{i=0}^{+\infty}\) de la solución \((x_k)_{k=-2}^{+\infty}\) de manera que \(k_0 \geq r - 1\) y

\[\lim_{j \to +\infty} x_{k_i} = L_0 \]

\[\lim_{j \to +\infty} x_{k_i-1} = L_{-1} \]

Para simplificar la exposición, renombramos las sucesiones de manera que lo anterior sea satisfecho por \((x_{k_i})_{i=0}^{+\infty}\).

Repitiendo el argumento que consiste en desplazar los índices y renombrar, podemos construir una subsucesión de la solución original, cuyos elementos se escriben como \(x_{k_i}\), y puntos límite \(L_0, L_{-1}, \ldots, L_{-r-1}\) de manera que

\[\lim_{i \to +\infty} x_{k_i} = L_0 \]

\[\lim_{i \to +\infty} x_{k_i-1} = L_{-1} \]

\[\ldots \]

\[\lim_{i \to +\infty} x_{k_i-r-1} = L_{-r-1} \]

Sea \((l_k)_{k=-r+1}^{+\infty}\) la solución de la ecuación en diferencias definida a partir de las condiciones iniciales siguientes:

\[l_{-1} = L_{-1}, l_{-2} = L_{-2}, \ldots, l_{-r-1} = L_{-r-1} \]
Gracias a la continuidad de la función F, y utilizando con la sucesión $(x_k)_{i=0}^{+\infty}$ el paso al límite, vemos que $l_0 = L_0$. Asimismo, todos los elementos de $(l_k)_{k=-(r+1)}^{+\infty}$ serán puntos límite de la solución de partida.

Hasta aquí hemos construido una solución de puntos límite verificando la tesis del lema excepto en lo que se refiere a sus subíndices. Para lograr esto último, empleamos el lema de Zorn. Sea A el conjunto de todas las soluciones $(L'_k)_{k=-m}^{+\infty}$ de la ecuación en diferencias tales que:

a) $-\infty \leq m \leq -r - 1$

b) $L'_k = l_k$, $\forall k \geq -r - 1$

c) Para cada $j_{0} \geq -m$, existe una subsucesión $(x_{ki})_{i=0}^{+\infty}$ de $(x_k)_{k=-(r+1)}^{+\infty}$ tal que

$$L'_{N} = \lim_{i \to +\infty} x_{ki+N}$$

La construcción que hemos hecho de $(l_k)_{k=-(r+1)}^{+\infty}$ garantiza que el conjunto A es no vacío. En dicho conjunto se puede definir un orden parcial comparando sucesiones mediante la relación de inclusión. Fácilmente se comprueba que cada cadena en A está acotada superiormente. El elemento maximal dado por el lema de Zorn es la sucesión que hace cierta la tesis del lema. □

2.3. Prueba de la conjetura

Comenzamos esta sección estudiando el carácter acotado de las soluciones positivas de (2.3).

Lema 2.3.1. Sea $B > 0$. Una solución de (2.3) de condiciones iniciales positivas está acotada superior e inferiormente por números reales positivos.

Demostración: Sea $(x_k)_{k=-(r+1)}^{+\infty}$ una solución de (2.3) y sean x_{-2}, x_{-1}, x_{0} sus condiciones iniciales.

Elijamos M, m números reales positivos tales que $M \cdot m = \frac{1}{B+1}$ y $x_{-2}, x_{-1}, x_{0} \in [m, M]$. Tal elección es posible puesto que el intervalo $[\frac{x_{0}}{x(B+1)}] \subset (0, +\infty)$ es arbitrariamente grande cuando x tiende a cero (esto es, sus extremos convergen respectivamente a 0 y a $+\infty$ cuando x se hace pequeño).

En tal caso, tenemos

$$x_1 = \frac{1}{Bx_0 + x_{-2}} \geq \frac{1}{BM + M} = m$$
2.3. PRUEBA DE LA CONJETURA

\[x_1 = \frac{1}{Bx_0 + x_{-2}} \leq \frac{1}{Bm + m} = M \]
y por inducción \(x_k \in [m, M] \) para cada \(k \geq 0 \). □

Observación: La acotación no es uniforme con relación a los valores iniciales.

El carácter asintótico de las soluciones de (2.3) (y en particular también de las de (2.1)) se puede deducir como corolario de [CL07, Theorem 1.6.9]. A continuación vamos a reproducir dicha demostración.

Una solución dos periódica prima de (2.3) es de la forma \((\phi, \psi, \phi, \psi, \ldots) \) donde \(\phi \neq \psi \) y las condiciones iniciales son \(x_{-2} = \phi, x_{-1} = \psi = 1/(B + 1) \).

Todas las soluciones de (2.3) converge a una solución dos periódica (no necesariamente prima).

Demostración: Dividimos la prueba en cuatro etapas.

i) Sea \((x_k)_{k=-2}^{+\infty} \) una solución de (2.3). El lema 2.3.1 asegura que existen los números reales positivos siguientes

\[I = \liminf_{k \to +\infty} x_k \quad S = \limsup_{k \to +\infty} x_k \]

Si \(S = I \), \((x_k)_{k=-2}^{+\infty} \) converge y la prueba finaliza, ya que convergería a un número fijo y sería asintóticamente dos periódica, en este caso no prima. Supongamos por tanto que \(S > I \).

A continuación construimos una sucesión de puntos límite \((L_k)_{k=-\infty}^{+\infty} \) en la que \(L_1 = S \) (lema 2.2.1). Entonces existirán una subsucesión \((x_{k_i})_{i=-\infty}^{+\infty} \) de \((x_k)_{k=-2}^{+\infty} \) y constantes reales \(L_{-3}, L_{-2}, L_{-1}, L_0 > 0 \) tales que

\[S = \lim_{i \to +\infty} x_{k_i+1}, \quad L_0 = \lim_{i \to +\infty} x_{k_i}, \quad L_{-1} = \lim_{i \to +\infty} x_{k_i-1}, \]
\[L_{-2} = \lim_{i \to +\infty} x_{k_i-2}, \quad L_{-3} = \lim_{i \to +\infty} x_{k_i-3} \quad (2.7) \]

Asimismo es posible construir otra sucesión de puntos límite partiendo de \(L_{-1}' = I \); definimos así la subsucesión \((x_{k_j})_j \) y las constantes reales \(L'_0, L'_{-1} \).
CAPÍTULO 2. CONJETURA 5.21.1 DE CAMOUZIS Y LADAS

L'_{-2} y L'_{-3} tales que

\[
I = \lim_{j \to +\infty} x_{k_j+1} \\
L' = \lim_{j \to +\infty} x_{k_j} \\
L'_{-1} = \lim_{j \to +\infty} x_{k_j-1} \\
L'_{-2} = \lim_{j \to +\infty} x_{k_j-2} \\
L'_{-3} = \lim_{j \to +\infty} x_{k_j-3}
\]

(2.8)

ii) Afirmamos que

\[
SI = \frac{1}{B+1}, \quad L_0 = L_{-2} = I, \quad L_{-1} = L_{-3} = S
\]

En efecto, como I y S son el mínimo y el máximo de los puntos límite de $(x_k)_{k=-2}^{+\infty}$, es inmediato que

\[
S = \frac{1}{BL_0 + L_{-2}} \leq \frac{1}{(B+1)I}
\]

(2.9)

de donde, $SI \leq 1/(B+1)$.

Aplicando el mismo argumento a la subsucesión $(x_{k_j})_j$ se obtiene

\[
I = \frac{1}{BL_0' + L_{-2}'} \geq \frac{1}{(B+1)S}
\]

(2.10)

Las relaciones (2.9) y (2.10) dan $IS = \frac{1}{B+1}$.

Por otro lado, si uno de los números L_0 o L_{-2} fuera estrictamente mayor que I tendríamos

\[
S = \frac{1}{BL_0 + L_{-2}} < \frac{1}{(B+1)I} = S
\]

llegando a una contradicción.

Análogamente, si uno de los números L_{-1} o L_{-3} fuera estrictamente menor que S ocurriría que

\[
I = \lim_{i \to +\infty} x_{k_i} = \frac{1}{BL_{-1} + L_{-3}} > \frac{1}{(B+1)S} = I
\]

Por lo tanto $L_{-1} = L_{-3} = S$.

iii) Afirmamos que dado $\varepsilon > 0$, existen $0 < \varepsilon_1, \varepsilon_2 < \varepsilon$ tales que

\[
S - \varepsilon_1 = \frac{1}{(B+1)(I + \varepsilon_2)}
\]

(2.11)
2.3. PRUEBA DE LA CONJETURA

Para demostrarlo, supóngase que existe un $\varepsilon > 0$ de forma que para cada $\varepsilon_1, \varepsilon_2 \in (0, \varepsilon)$ se cumple una de las siguientes desigualdades

$$S - \varepsilon_1 > \frac{1}{(B + 1)(I + \varepsilon_2)} \quad (a)$$

$$S - \varepsilon_1 < \frac{1}{(B + 1)(I + \varepsilon_2)} \quad (b)$$

Si dado $\varepsilon_1 \in (0, \varepsilon)$ existen $\varepsilon_2, \varepsilon'_2 \in (0, \varepsilon)$ tales que $\{\varepsilon_1, \varepsilon_2\}$ cumplen (a) y $\{\varepsilon_1, \varepsilon'_2\}$ cumplen (b), entonces, por la propiedad de los valores intermedios, existirá un $\varepsilon'_2 < \varepsilon$ para el cual se verificará la igualdad.

Esto significa que solo una de las opciones (a) o (b) se cumple siempre.

Si (a) es cierto, cuando $\varepsilon_2 \to 0$ tendrremos

$$S - \varepsilon_1 \geq \frac{1}{(B + 1)I} = S$$

y por lo tanto $-\varepsilon_1 > 0$.

Si (b) es cierto, haciendo $\varepsilon_1 \to 0$ vemos que

$$S \leq \frac{1}{(B + 1)(I + \varepsilon_2)} = SI$$

y entonces $1 < \frac{I}{I + \varepsilon_2}$.

Ambos casos llevan una contradicción, por lo que la tesis inicial es cierta.

iv) Por último probemos el carácter asintótico de $(x_k)_{k=-1}^{+\infty}$.

Dado $\varepsilon > 0$ arbitrariamente pequeño elegimos $\varepsilon_1, \varepsilon_2$ tales que ocurra (2.11).

Como las sucesiones $(x_{k+r})_i$, donde $r \in \{-2, -1, 0\}$ son convergentes, es posible elegir un entero positivo $N > 0$ tal que

$$x_{k_N}, x_{k_N-2} < I + \varepsilon_2$$

$$x_{k_N-1} > S - \varepsilon_1$$

Usando (2.1) y (2.11) podemos probar que todos los términos de $(x_k)_{k=-1}^{+\infty}$ a partir x_{k_N} verifican las mismas desigualdades.

De hecho

$$x_{k_N+1} = \frac{1}{Bx_{k_N} + x_{k_N-2}} > \frac{1}{(B + 1)(I + \varepsilon_2)} = S - \varepsilon_1$$

$$x_{k_N+2} = \frac{1}{Bx_{k_N+1} + x_{k_N-1}} < \frac{1}{(B + 1)(S - \varepsilon_1)} = I + \varepsilon_2$$

...
Concluimos que las subsucesiones de índices alternos tienen sus términos arbitrariamente próximos a I y S respectivamente.

A continuación consideramos el problema de condiciones iniciales (2.6). Respondemos al problema propuesto en [CL07, Conjecture 5.21.1] el cual establece que tal sucesión es asintóticamente dos periódica de periodo primo. Comenzamos demostrando que la sucesión

$$x_{k+1} = \frac{1}{x_k + x_{k-2}}$$
$$x_2 = x_1 = x_0 = 1$$

está acotada y que si hay convergencia a una solución dos periódica, entonces este periodo es primo. A continuación introducimos las sucesiones auxiliares $y_k = x_k x_{k-1} + x_k - 2$ y $z_k = y_k - 1/2$. El conjunto de soluciones dos periódicas de (2.1), es decir, aquellas tales que

$$\begin{cases}
 x_{k+1} = \frac{1}{x_k + x_{k-2}} \\
 x_{-2} = \alpha, \ x_{-1} = \frac{1}{2\alpha}, \ x_0 = \alpha
\end{cases} \quad \alpha > 0$$

está sobre la hipérbola $x_{-2} x_{-1} = x_{-1} x_0 = \frac{1}{2}$. Debido a esto

$$\lim_{k \to +\infty} y_k = \frac{1}{2}, \quad \lim_{k \to +\infty} z_k = 0$$

Probaremos que $(z_k)_{k=-1}^{+\infty}$ puede ser acotada por una progresión geométrica de razón menor que uno. Este hecho es la clave para demostrar la conjetura. El siguiente resultado se prueba fácilmente por inducción.

Proposición 2.3.2. Sea $(x_k)_{k=-2}^{+\infty}$ la solución definida mediante (2.6). Entonces

a) $\frac{1}{2} \leq x_k \leq 1$ si $k \geq -2$

b) $x_{2k} > \frac{3}{4}$ y $x_{2k+1} < \frac{2}{3}$ si $k \geq 2$

c) $x_{2k} - x_{2k+1} > \frac{1}{12}$ si $k \geq 2$. En particular $(x_k)_{k=-2}^{+\infty}$ no es convergente. Adicionalmente, si $\lim_{k \to +\infty} x_{2k} = U$ y $\lim_{k \to +\infty} x_{2k+1} = L$, entonces $U \neq L$. Por lo tanto el dos periodo sería primo.

Una técnica usada frecuentemente en ecuaciones en diferencias, es la de reducir una ecuación de un cierto orden en un sistema de varias ecuaciones de orden inferior, pero cuyo comportamiento sea más simple y conocido.
2.3. PRUEBA DE LA CONJETURA

También se utilizan los cambios de variable que simplifican el orden de la ecuación (sin generar necesariamente un sistema). En este caso la pérdida de información se ve compensada con la simplificación del problema que paradójicamente puede entonces servir para analizar la ecuación en diferencias de partida. Ese es el camino que seguimos a continuación.

Para \(k \geq 1 \), definamos
\[
\begin{align*}
y_k &= x_k x_{k-1} \\
z_k &= y_k - \frac{1}{2}
\end{align*}
\] \hspace{1cm} (2.14)

tomando
\[
\begin{align*}
y_{-1} &= y_0 = 1 \\
z_{-1} &= z_0 = \frac{1}{2}
\end{align*}
\] \hspace{1cm} (2.15)

Veremos que la convergencia de las subsucesiones de \((x_k)_{k=2}^{+\infty}\) de términos con índices de igual paridad se puede caracterizar en términos de la convergencia de \(Y = (y_k)_{k=-1}^{+\infty}\) y \(Z = (z_k)_{k=-1}^{+\infty}\).

Para empezar \(Y \) y \(Z\) son soluciones de dos nuevas EDR.

Lema 2.3.3. \(Y \) y \(Z\) son soluciones, respectivamente, de las siguientes ecuaciones:

\[
y_{k+1} = \frac{y_k}{y_{k-1} + y_k} \hspace{1cm} \forall k \geq 0
\] \hspace{1cm} (2.16)

\[
z_{k+1} = \frac{z_k - z_{k-1}}{2(z_k + z_{k-1} + 1)} \hspace{1cm} \forall k \geq 0
\] \hspace{1cm} (2.17)

Demostración: Obviamente \(y_k > 0\) si \(k \geq -1\) y usando (2.12):

\[
y_{k+1} = x_{k+1} x_k = \frac{x_k}{x_{k-2} + x_k} = \frac{\frac{x_k}{x_{k-2}}}{1 + \frac{x_k}{x_{k-2}}}
\] \hspace{1cm} (2.18)

Como \(\frac{y_k}{y_{k-1}} = \frac{x_k}{x_{k-2}}\), sustituyendo en (2.18) obtenemos la primera ecuación. Introduciendo en (2.16), \(y_k = z_k + \frac{1}{2}\), obtenemos (2.17). \(\square\)

Observación: Hemos demostrado algo más que la tesis del lema: toda solución de (2.1) en la que ningún elemento sea nulo, genera, mediante el cambio de variable \(y_k = x_k x_{k-1}\) una solución de (2.16), y mediante \(z_k = x_k x_{k-1} - \frac{1}{2}\), una solución de (2.17).

Como consecuencia del carácter acotado de \((x_k)_{k=2}^{+\infty}\) y de la definición de \((y_k)_{k=-1}^{+\infty}\), se tiene que:
Corolario 2.3.4. Para \(k \geq 1, \frac{1}{4} \leq y_k \leq 1 \)

La idea para usar \((y_k)_{k=1}^{+\infty}\) consiste en obtener una sucesión convergente hacia \(UL\) (donde \(U\) y \(L\) son los límites superior e inferior de \((x_k)_{k=-2}^{+\infty}\)). Más aún, probaremos que \((y_k)_{k=1}^{+\infty}\) converge rápidamente, en el sentido de que la serie telescópica de las diferencias de términos positivos es absolutamente convergente. Este hecho nos ayudará en la prueba de que \((x_{2k})_{k=-1}^{+\infty}\) y \((x_{2k+1})_{k=-1}^{+\infty}\) son sucesiones de Cauchy.

Lema 2.3.5. Si \(k \geq 0, \) entonces \(|z_{3k-1}|, |z_{3k}|, |z_{3k+1}| \in [0, \left(\frac{2}{3}\right)^{k}]\).

Demostración: Usando (2.16), es fácil obtener que

\[y_{k+2} = \frac{1}{y_k + y_{k-1} + 1} \]

de donde tenemos

\[z_{k+2} = \frac{z_k + z_{k-1}}{2(z_k + z_{k-1} + 2)} \quad (2.19) \]

Empleamos inducción para probar el resultado. La propiedad es cierta cuando \(k \in \{0, 1, 2, 3, 4\} \) (tabla 2.1). Supongamos que el resultado es cierto para cada \(r \leq k \). La hipótesis de inducción dice que \(|z_{3k-1}|, |z_{3k}|, |z_{3k+1}| \in [0, \left(\frac{2}{3}\right)^{k}]\).

Demostremos que \(|z_{3k+2}| \in [0, \left(\frac{2}{3}\right)^{k+1}]\). Para ello, escribimos

\[|z_{3k+2}| = \left| \frac{z_{3k} + z_{3k-1}}{2(z_{3k} + z_{3k-1} + 2)} \right| \leq \frac{|z_{3k}| + |z_{3k-1}|}{2|z_{3k} + z_{3k-1} + 2|} \]

y usando ahora la hipótesis de inducción,

\[|z_{3k+2}| \leq \frac{|z_{3k}| + |z_{3k-1}|}{2(z_{3k} + z_{3k-1} + 2)} \leq \frac{(2/3)^k + (2/3)^k}{2(2 - (2/3)^k - (2/3)^k)} = \frac{(2/3)^k}{2(1 - (2/3)^k)} \]

Afirmamos que la fracción anterior es menor que \((\frac{2}{3})^{k+1} \). De hecho, la desigualdad

\[\frac{(2/3)^k}{2(1 - (2/3)^k)} \leq \left(\frac{2}{3}\right)^{k+1} \]

tiene como solución \(k \geq \frac{\log \frac{1}{\frac{2}{3}}}{\log \frac{2}{3}} \approx 3.42 \). A la vista de la tabla (2.1) podemos suponer que \(k \geq 4 \). Por último, aplicando el cálculo anterior a \(z_{3k}, z_{3k+1} \) y \(z_{3k+2} \), primero, y a \(z_{3k+1}, z_{3k+2}, z_{3k+3} \), después, probamos que \(|z_{3k+2}|, |z_{3k+3}| \) y \(|z_{3k+4}| \) son menores que \((\frac{2}{3})^{k+1} \), lo que completa la inducción. □

Usando el lema 2.3.5 y la identidad \(y_k = z_k + \frac{1}{2} \) es sencillo concluir el siguiente resultado.
2.3. PRUEBA DE LA CONJETURA

Cuadro 2.1: Valores exactos y aproximados de \((z_k)_k\) y \((2/3)_k^k\).

<table>
<thead>
<tr>
<th>(k)</th>
<th>(z_{3k-1}, z_{3k}, z_{3k+1})</th>
<th>(2/3)(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(z_{-1})</td>
<td>(1/2 = 0.5)</td>
</tr>
<tr>
<td>0</td>
<td>(z_0)</td>
<td>(1/2 = 0.5)</td>
</tr>
<tr>
<td>0</td>
<td>(z_1)</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>(z_2)</td>
<td>(-1/6 \approx -0.17)</td>
</tr>
<tr>
<td>1</td>
<td>(z_3)</td>
<td>(-1/10 = -0.1)</td>
</tr>
<tr>
<td>1</td>
<td>(z_4)</td>
<td>(1/22 \approx 0.046)</td>
</tr>
<tr>
<td>2</td>
<td>(z_5)</td>
<td>(1/13 \approx 0.077)</td>
</tr>
<tr>
<td>2</td>
<td>(z_6)</td>
<td>(3/214 \approx 0.014)</td>
</tr>
<tr>
<td>2</td>
<td>(z_7)</td>
<td>(-35/1214 \approx -0.029)</td>
</tr>
<tr>
<td>3</td>
<td>(z_8)</td>
<td>(-253/11631 \approx -0.022)</td>
</tr>
<tr>
<td>3</td>
<td>(z_9)</td>
<td>(481/128936 \approx 0.0037)</td>
</tr>
<tr>
<td>3</td>
<td>(z_{10})</td>
<td>(178583/13766510 \approx 0.013)</td>
</tr>
<tr>
<td>4</td>
<td>(z_{11})</td>
<td>(13512427/20174057994 \approx 0.0046)</td>
</tr>
<tr>
<td>4</td>
<td>(z_{12})</td>
<td>(-14823734499/3579649357118 \approx -0.0041)</td>
</tr>
<tr>
<td>4</td>
<td>(z_{13})</td>
<td>(-44809786972642/10321777725890519 \approx -0.0043)</td>
</tr>
</tbody>
</table>

Corolario 2.3.6.

a) Las sucesiones \(Y\) y \(Z\) convergen a \(1/2\) y 0 respectivamente.

b) Las series \(\sum_{k=-1}^{+\infty} |z_k|\) y \(\sum_{k=0}^{+\infty} |y_k - y_{k-1}|\) son convergentes.
Observación: La convergencia de Y y Z se obtiene también como corolario del Teorema 5.26.1 de [CL07]. Más aun, si $B > 0$ cualquier solución de condiciones iniciales positivas en

$$x_{k+1} = \frac{x_k}{B x_k + x_{k-1}} \quad k \geq 0$$

es convergente.

El siguiente resultado es la demostración, por métodos elementales, de que la conjetura de Camouzis-Ladas establecida en [CL07, Conjecture 5.21.1] es cierta.

Teorema 3. La solución $(x_k)_{k=-2}^{\infty}$ de la ecuación en diferencias (2.1)

$$x_{k+1} = \frac{1}{x_{k-2} + x_k}$$

cuyos valores iniciales son $x_{-2} = x_{-1} = x_0 = 1$ converge a una solución dos periódica prima, esto es, las subsucesiones $(x_{2k})_k$ y $(x_{2k+1})_k$ convergen y lo hacen a límites distintos.

Demostración:
Hemos visto en la proposición 2.3.2 que los límites, caso de existir difieren. Como $y_k = x_k x_{k-1}$, ambas son sucesiones de términos estrictamente positivos y por lo tanto tiene sentido escribir $\frac{x_{k+2}}{x_k} = \frac{y_{k+2}}{y_k+1}$ para todo $k \geq -2$. Además sabemos que $x_k \in [\frac{1}{2}, 1]$, $y_k \in [\frac{1}{4}, 1]$. Con estos ingredientes y el corolario 2.3.6 vamos a ver que $(x_{2k})_{k=-1}^{\infty}$ es una sucesión de Cauchy. Prueba análoga podrá hacerse para la subsucesión de los términos de índice impar.

Dado $\varepsilon > 0$, sea $N_\varepsilon \in \mathbb{N}$ tal que si $k \geq N_\varepsilon$ entonces

$$\sum_{r=2k+2}^{+\infty} |y_r - y_{r-1}| < \frac{\varepsilon}{4}$$

En tal caso cuando $k, l \geq N_\varepsilon$ ocurre que $|x_{2k} - x_{2l}| \leq \varepsilon$. En efecto, dado
2.4. Generalizaciones del Problema de Condiciones Iniciales

La técnica empleada para la resolución del problema anterior puede aplicarse a condiciones iniciales positivas cualesquiera, es decir, sirve para determinar el carácter asintótico de (2.1). El hecho esencial es que los términos de la solución \((z_k)_{k=-1}^{+\infty}\) pueden ser acotados como en la tabla 2.1.

Como \(x_{-2}, x_{-1}, x_0 \in (0, +\infty)\) entonces \((z_k)_{k=-1}^{+\infty}\) está bien definida y además \(z_k \in M = (-1/2, +\infty)\) \(\forall k \geq -1\).

Ahora consideremos la función \(F : \mathbb{R}^2 \to \mathbb{R}^2\) definida por

\[
F(x, y) = (f(x, y), g(x, y)) = \left(\frac{y - x}{2(x + y + 1)}, -\frac{y + x}{2(x + y + 2)}\right)
\]

\(F\) es un desdoblamiento de la ecuación (2.1) ya que a la vista de (2.17) y (2.19), se cumple

\[
F(z_{k-1}, z_k) = (z_{k+1}, z_{k+2})
\]

Observación: El uso de desdoblamientos para estudiar ecuaciones en diferencias es bastante común. En general estos transforman un problema de números reales en un sistema dinámico vectorial de tantas dimensiones como...
orden tenga la ecuación de partida. Entonces las consideraciones geométricas multidimensionales ayudan a visualizar y analizar lo que está ocurriendo en el problema inicial.

El desdoblamiento más común, por ejemplo en el caso de las ecuaciones de orden dos, es el dado por una función \(G : \mathbb{R}^2 \to \mathbb{R}^2 \) tal que

\[
G(x_{k-1}, x_k) = (x_k, x_{k+1})
\]

Nótese que este no es el caso de (2.21).

Para estudiar el comportamiento de \(f \) y \(g \), usaremos los conjuntos

\[
M = (-\frac{1}{2}, +\infty) \quad N = (-\frac{1}{2}, \frac{1}{2})
\]

\[
T = (-\frac{1}{6}, \frac{1}{2}) \quad L = (-\frac{1}{6}, \frac{1}{10})
\]

\[
O = (-\frac{1}{4}, \frac{1}{4})
\]

Las componentes \(f \) y \(g \) verifican

Lema 2.4.1.

\[
f(M^2) \subset \left(-\frac{1}{2}, \frac{1}{2}\right) = N \quad g(N^2) \subset \left(-\frac{1}{6}, \frac{1}{2}\right) = T
\]

Demostración: Consideremos el sistema de inecuaciones

\[
-\frac{1}{2} < \frac{y-x}{2(x+y+1)} < \frac{1}{2}
\]

La segunda

\[
\frac{y-x}{2(x+y+1)} < \frac{1}{2}
\]

es equivalente a

\[
\frac{2x+1}{x+y+1} > 0
\]

Lo que conduce a dos opciones

\[
\begin{cases}
2x+1 > 0 \\
x+y+1 > 0
\end{cases} \quad \text{o bien} \quad \begin{cases}
2x+1 < 0 \\
x+y+1 < 0
\end{cases}
\]

En cuanto a la primera inecuación

\[
-\frac{1}{2} < \frac{y-x}{2(x+y+1)}
\]
consideraciones análogas la reducen a
\[
\frac{2y + 1}{x + y + 1} > 0
\]
Resolviendo los sistemas precedentes vemos que \(f(M^2) \subset \left(-\frac{1}{2}, \frac{1}{2} \right) = N \) (ver figura 2.1 y definición (2.22)).
La segunda parte del enunciado se prueba de la misma forma (figura 2.2 y definición (2.22)). □

![Figura 2.1: Sistema \(|f(x, y)| < 1/2\).](image)

Usando los siguientes valores de la aplicación \(F \)
\[
\begin{align*}
F(-\frac{1}{6}, -\frac{1}{6}) &= \left(0, \frac{1}{10}\right) \\
F(\frac{1}{2}, \frac{1}{2}) &= \left(0, -\frac{1}{6}\right) \\
F(-\frac{1}{6}, \frac{2}{3}) &= \left(\frac{1}{3}, -\frac{1}{12}\right) \\
F(\frac{1}{2}, -\frac{1}{6}) &= \left(-\frac{1}{4}, -\frac{3}{14}\right)
\end{align*}
\]
y los resultados anteriores es sencillo demostrar que
\[
f(T^2) \subset \left(-\frac{1}{4}, \frac{1}{4} \right) = O \quad g(T^2) \subset \left(-\frac{1}{6}, \frac{1}{10} \right) = L
\]
(gráficamente queda ilustrado en las figuras 2.3 y 2.4)
Figura 2.2: Sistema $-1/6 < g(x, y) < 1/2$.

Figura 2.3: Sistema $|f(x, y)| < \frac{1}{4}$.
2.4. GENERALIZACIONES DEL PCI

Figura 2.4: Sistema $-\frac{1}{6} < g(x,y) < \frac{1}{10}$.

Proposición 2.4.2. Sean $z_{-1}, z_0 \in M$ y sea $(z_k)_{k=-1}^{+\infty}$ la solución de (2.17) asociada a tales condiciones iniciales. Entonces existe un $N_0 \in \mathbb{N}$ tal que $|z_k| < \frac{1}{6} \forall k \geq N_0$.

Demostración: Usando las observaciones anteriores tenemos que

- $|z_k| < \frac{1}{2} \forall k \geq 1$ ya que $f(M^2) \subset T$
- $-\frac{1}{6} < z_k < \frac{1}{2} \forall k \geq 4$ ya que $g(T^2) \subset L$
- $-\frac{1}{6} < z_k < \frac{1}{10} < \frac{1}{6} \forall k \geq 7$ ya que $g(T^2) \subset L$

Basta elegir $N_0 = 7$ para realizar la tesis propuesta. \hfill \Box

Corolario 2.4.3. Cualquier solución de (2.1) es asintóticamente dos periódica no necesariamente prima.

Observación: En general no podemos garantizar la primalidad del período.

Demostración: Como $|z_k| < \frac{1}{6} < \left(\frac{2}{3}\right)^4$ si $k \geq 7$, podemos usar los mismos argumentos que los de la prueba del lema 2.3.5. Por tanto, $|z_{3r}|, |z_{3r+1}|, |z_{3r+2}| \leq \left(\frac{2}{3}\right)^k$ y $z_k \to 0$.
A partir de aquí es posible reproducir la demostración del teorema 3 excepto en lo que concierne a la primalidad de la órbita dos periódica límite. □

La segunda generalización que estudiamos es relativa a otro tipo de condiciones iniciales. En el caso de $x_{-2}, x_{-1}, x_0 < 0$, el cambio de variable $u_k = -x_k \forall k \geq -2$, muestra que cualquier solución estrictamente positiva de (2.1) está asociada a una solución estrictamente negativa (y viceversa). Por tanto se puede dar un resultado análogo al corolario 2.4.3 para este tipo de soluciones.

Como tercera generalización sean ahora α, B y D números reales positivos. La ecuación
\[
x_{k+1} = \frac{\alpha}{Bx_k + Dx_{k-2}}, \quad k \geq 0
\] (2.23)
aparece en [CL07] numerada como #21. Se sabe que cualquier solución positiva de (2.23) es asintóticamente dos periódica. Esta ecuación puede transformarse con un cambio de variable adecuado en la ecuación (2.3). Para verlo, comenzamos dividiendo por α, obteniendo
\[
x_{k+1} = \frac{1}{B'x_k + C'x_{k-2}}
\]
A través del cambio de variable $v_k = \sqrt{C'}x_k$, queda
\[
v_{k+1} = \frac{1}{B'v_k + v_{k-2}}
\]
Renombrando B como $B = \frac{B'}{C'}$ y cambiando v_k por x_k la ecuación anterior es precisamente (2.3). En el capítulo nos hemos centrado en el caso $B = 1$ de la ecuación (2.3). En [GL05] se establece el carácter asintótico de (2.3) cuando $B > 0$ para condiciones iniciales positivas. Pensamos que nuestro esquema de cambio de variable y de acotación por series geométricas debe dar una prueba alternativa también en este caso.

Observación: Si $B < 0$, el estudio de (2.3) está subordinado a la consideración de su conjunto prohibido.

2.5. Propiedad de permanencia

A la vista de los resultados de la sección anterior, está claro que todas las soluciones dos periódicas de la ecuación (2.1) tienen sus condiciones iniciales
2.5. **PROPIEDAD DE PERMANENCIA**

en los puntos de la curva

\[
C = \left\{ \left(t, \frac{1}{2t}, t \right) : t \in \mathbb{R} \setminus \{0\} \right\} \subset \mathbb{R}^3
\]

Ahora proponemos el problema de la determinación de las condiciones iniciales \(x_{-2}, x_{-1}, x_0 \in \mathbb{R}^+\) generadoras de soluciones no convergentes y siendo asintóticamente dos periódicas. Esto equivale al problema de determinar la cuenca de atracción del equilibrio \(\bar{x} = \sqrt{2}/2\).

Sea \((x_k)_{k=-2}^{+\infty}\) una solución de (2.1). Consideremos los términos con índices pares e impares

\[
\begin{cases}
 p_k = x_{2k} \\
 i_k = x_{2k+1}
\end{cases}
\]

\(k \geq -1\) \hspace{1cm} (2.25)

Se comprueba inmediatamente que las sucesiones \((p_k)_{k=-2}^{+\infty}\) e \((i_k)_{k=-2}^{+\infty}\) se pueden obtener como soluciones de la siguiente ecuación en diferencias

\[
w_{k+1} = \frac{1}{w_k + w_{k-1}} + \frac{1}{w_{k-1} + w_k}
\]

Este hecho permite demostrar el siguiente resultado

Lema 2.5.1.

1) Todas las soluciones de (2.26) cuyas condiciones iniciales \((w_{-2}, w_{-1}, w_0)\) verifican \(w_{-2}, w_{-1} \in (0, +\infty)\) y \(w_0 \in (0, w_{-2} + w_{-1})\) son convergentes.

2) Una solución de (2.1) converge a una solución dos periódica prima si, y solo si, la solución de (2.26) de condiciones iniciales \(w_{-2} = x_{-2}\), \(w_{-1} = x_0\) y \(w_0 = \frac{1}{x_{-2} + x_{-1}}\) no converge a \(\bar{x} = \sqrt{2}/2\).

Demostración:

1) Una solución \((w_k)_{k=-2}^{+\infty}\) de (2.26) es una subsucesión de índices pares de una solución \((x_k)_{k=-2}^{+\infty}\) de (2.1) si

\[
w_{-2} = x_{-2}, \quad w_{-1} = x_0, \quad w_0 = x_2
\]

Pero \(w_0 = x_2 = \frac{1}{x_{-1} + x_1} = \frac{1}{x_{-1} + \frac{1}{x_{-2} + x_0}}\) y recordando que \(x_{-1} \in (0, +\infty)\), resulta que \(w_0 \in (0, w_{-2} + w_{-1})\).

Recíprocamente, si elegimos \((w_{-2}, w_{-1}, w_0)\) verificando las relaciones anteriores, será posible encontrar \((x_{-2}, x_{-1}, x_0)\), terna de números positivos, tales que la solución de (2.1) construida a partir de ellos tenga a \((w_k)_{k=-2}^{+\infty}\) como subsucesión.

Como \((x_k)_{k=-2}^{+\infty}\) tiene dos subsucesiones con índices pares e impares convergentes, esto implica la convergencia de \((w_k)_{k=-2}^{+\infty}\).
2) Basta observar que las soluciones dos periódicas de (2.1)

\[U, L, U, L, U, \ldots \]

verifican \(UL = \frac{1}{2}\). Por tanto una solución será asintóticamente igual al equilibrium si sus subsucesiones de índices de igual paridad se aproximan a \(U = L = \frac{\sqrt{2}}{2}\). □

Definición 2.5.2. Diremos que una solución de cualquier ecuación en diferencias es permanente de orden tres si siempre que tres términos de índices consecutivos pertenezcan a un intervalo entonces todos los términos siguientes también pertenecen a ese mismo intervalo.

Lema 2.5.3. Las sucesiones \((p_k)_{k=1}^{\infty}, (i_k)_{k=1}^{\infty}\) definidas en (2.25) son permanentes de orden tres.

Demostración: Sea \(I = (m, M)\) un subintervalo de la recta real con \(0 < m < M < +\infty\) y sea \((w_k)_{k=-2}^{\infty}\) una solución positiva de (2.26) tal que \(w_{-2}, w_{-1}, w_0 \in (m, M)\). Entonces:

\[w_1 = \frac{1}{\frac{1}{w_{-2} + w_{-1}} + \frac{1}{w_{-1} + w_0}} < \frac{1}{\frac{1}{2M} + \frac{1}{2M}} = M \]

Asimismo \(w_1 > m\). Por tanto \(w_{-1}, w_0, w_1 \in (m, M)\) lo que implica por el mismo argumento que \(w_2 \in (m, M)\) y procediendo inductivamente lo mismo ocurrirá con todos los \(w_k, k \in \mathbb{N}\). Si \(I\) es semiabierto o tiene algún extremo nulo o infinito razonamos de la misma forma. □

Observación: Un corolario de este lema es que las sucesiones \((x_{2k})_{k=-1}^{\infty}\) y \((x_{2k+1})_{k=-1}^{\infty}\) construidas a partir de (2.12) no son finalmente monótonas, es decir, no existe un índice a partir del cual todos los elementos vayan creciendo (o todos decreciendo). Este es uno de los detalles que complica la demostración del teorema 3. En las figuras 2.5 y 2.6 se observa numéricamente tal fenómeno: tras evaluar los mil primeros términos de la solución, se han tomado las subsucesiones de impares y pares y en ellas se han contado cuántos términos consecutivos van creciendo, decreciendo o siendo constantes. Si hubiera monotonía, la gráfica resultante debería terminar con un valor alto. Vemos, en cambio, que hay periodicidad en el comportamiento monótono.
2.5. PROPIEDAD DE PERMANENCIA

Figura 2.5: Longitudes de las cadenas crecientes, decrecientes o constante de la subsucesión $\left(x_{2k+1}\right)_{k=-1}^{+\infty}$.

Figura 2.6: Longitudes de las cadenas crecientes, decrecientes o constante de la subsucesión $(x_{2k})_{k=-1}^{+\infty}$.

La propiedad de permanencia nos va a permitir establecer condiciones suficientes sobre los valores iniciales de una solución de manera que se garantice el carácter dos periódico primo.

Proposición 2.5.4. Sea $(x_k)_{k=-2}^{+\infty}$ una solución de (2.1). Sean $x = x_{-2}$,
y = x_{-1}, z = x_0 sus primeros términos. Supongamos que se cumple alguna de las siguientes condiciones:

a) \(x, z \in (0, \sqrt{2} \over 2) \), \(y > 0 \), \(y > \sqrt{2} - \frac{1}{x+z} \)

b) \(x, z \in (\sqrt{2} \over 2, +\infty) \), \(0 < y < \sqrt{2} - \frac{1}{x+z} \)

Entonces \((x_k)_{k=-2}^{+\infty} \) es asintóticamente dos periódica prima.

Demostración: Sea \((p_k)_{k=-1}^{+\infty} \) la subsucesión de los términos de índice par de \((x_k)_{k=-2}^{+\infty} \). Como \((p_k)_{k=-1}^{+\infty} \) es permanente de orden tres, si sus tres primeros términos son estrictamente más pequeños (respectivamente más grandes) que \(\sqrt{2}/2 \), entonces todos los términos de \((p_k)_{k=-1}^{+\infty} \) pertenecen a un intervalo de la forma \([m, M] \subset (0, \sqrt{2} \over 2) \) (respectivamente, \([m, M] \subset (\sqrt{2} \over 2, +\infty) \)).

En cualquier caso, \(\lim_{k \to +\infty} p_k \neq \sqrt{2} \over 2 \) lo que significa que \((x_k)_{k=-2}^{+\infty} \) tiende a un límite dos periódico primo.

Usamos esta idea para analizar los tres primeros términos de \((p_k)_{k=-1}^{+\infty} \). Introducimos la siguiente nomenclatura

\[
p_{-2} = x_{-2} = x \quad p_{-1} = x_0 = z \quad p_0 = x_2 = x \quad p_2 = \frac{x+z}{1+y(x+z)} = \frac{u}{1+yu}
\]

donde en la última igualdad hemos escrito \(u = x + z \).

Supongamos que \(x, y, z \) cumplen las hipótesis de (a). Entonces \(p_{-2}, p_{-1} \in (0, \sqrt{2} \over 2) \) y \(p_0 < \sqrt{2} \over 2 \). La última desigualdad se comprueba escribiéndola como \(\frac{u}{1+yu} < \sqrt{2} \over 2 \). Al ser \((1 + yu)\) y \(u\) números positivos podemos despejar \(y\)

\[
u < \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}yu
\]

\[
u - \frac{\sqrt{2}}{2} < \frac{\sqrt{2}}{2}yu
\]

\[
\sqrt{2} - \frac{1}{u} < y
\]

Deducimos que los tres primeros términos de \((p_k)_{k=-1}^{+\infty} \) son estrictamente menores que \(\sqrt{2} \over 2 \) lo que termina la prueba en este caso.

Con las hipótesis (b) procedemos análogamente. \(\Box\)

La idea anterior puede ser generalizada. Para ello introducimos las familias de funciones

\[P_r : \mathbb{R}^3_+ \to \mathbb{R}^3_+\]
2.5. PROPIEDAD DE PERMANENCIA

$I_r : \mathbb{R}_+^3 \rightarrow \mathbb{R}_+^3$

como aquellas que verifican

\[
\begin{align*}
P_r(x_{-2}, x_{-1}, x_0) &= (x_{2r}, x_{2r+2}, x_{2r+4}) \\
I_r(x_{-2}, x_{-1}, x_0) &= (x_{2r+1}, x_{2r+3}, x_{2r+5})
\end{align*}
\]

\[r \geq -1 \quad (2.27) \]

Estas funciones están bien definidas para argumentos positivos, siendo fracciones racionales en tres indeterminadas.

Por último sean los conjuntos

\[
Q_1 = \{(x, y, z) \in \mathbb{R}_+^3 : \max\{x, y, z\} < \frac{\sqrt{2}}{r}\}
\]

\[
Q_2 = \{(x, y, z) \in \mathbb{R}_+^3 : \min\{x, y, z\} > \frac{\sqrt{2}}{r}\}
\]

(2.28)

Observación: En los siguientes teoremas nos referimos a la cuenca de atracción del equilibrium considerando solo la parte positiva de ella.

Teorema 4. Para cada entero \(r \geq -1 \) todos los elementos del conjunto \(P_{-1}^{-r}(Q_1) \cup P_{-1}^{-r}(Q_2) \cup I_{-1}^{-1}(Q_1) \cup I_{-1}^{-1}(Q_2) \) corresponden a condiciones iniciales de (2.1) que producen soluciones asintóticamente dos periódicas primas. La cuenca de atracción del equilibrium de (2.1) es

\[
\mathcal{C}A \left(\frac{\sqrt{2}}{2} \right) = \mathbb{R}_+^3 \setminus \bigcup_{r=-1}^{+\infty} \left[P_{-1}^{-1}(Q_1) \cup P_{-1}^{-1}(Q_2) \cup I_{-1}^{-1}(Q_1) \cup I_{-1}^{-1}(Q_2) \right] \quad (2.29)
\]

Demostración: Demostraremos la igualdad

\[
\mathbb{R}_+^3 \setminus \mathcal{C}A \left(\frac{\sqrt{2}}{2} \right) = \bigcup_{r=-1}^{+\infty} \left[P_{-1}^{-1}(Q_1) \cup P_{-1}^{-1}(Q_2) \cup I_{-1}^{-1}(Q_1) \cup I_{-1}^{-1}(Q_2) \right]
\]

que es obviamente equivalente a (2.29).

\[\square \] Fijado \(r \geq -1 \), el hecho de que \((x, y, z) \in P_{-1}^{-1}(Q_1)\) significa que la solución \((x_k)_{k=-2}^{+\infty}\) de condiciones iniciales \(x_{-2} = x, x_{-1} = y, x_0 = z\), tiene tres términos consecutivos de índice par menores que el equilibrium \(\bar{x} = \frac{\sqrt{2}}{2}\).

Además estos términos son menores que \(\frac{\sqrt{2}}{2} - c\) para cierto \(c > 0\). Por la propiedad de permanencia de orden tres, lo mismo ocurre con todos los restantes términos de índice par, luego no es posible la convergencia de \((x_k)_{k=-2}^{+\infty}\) hacia el equilibrium.

Análogo argumento funciona para los conjuntos \(P_{-1}^{-1}(Q_2), I_{-1}^{-1}(Q_1)\) e \(I_{-1}^{-1}(Q_2)\).

\[\square \] Si \((x, y, z) \notin \mathcal{C}A \left(\frac{\sqrt{2}}{2} \right)\), el carácter positivo de las condiciones iniciales implica convergencia hacia una órbita dos periódica prima. Los límites superior
e inferior no pueden ser iguales a $\sqrt{\frac{2}{2}}$, y por tanto será posible encontrar un $r \geq -1$ tal que $(x, y, z) \in P_{r}^{-1}(Q_1) \cup P_{r}^{-1}(Q_2) \cup I_{r}^{-1}(Q_1) \cup I_{r}^{-1}(Q_2)$. □

La clave del teorema anterior es la propiedad de permanencia. Las mismas ideas son válidas en un contexto más general del cual omitimos la prueba.

Teorema 5. Sea $B > 0$. Tomando condiciones iniciales positivas, la ecuación

$$x_{k+1} = \frac{1}{Bx_k + x_{k-2}}$$

(2.30)

verifica las siguientes propiedades:

a) Existe un único equilibrium positivo, $\bar{x} = \frac{1}{\sqrt{B + 1}}$

b) Las subsucesiones definidas por

$$p_k = x_{2k} \quad i_k = x_{2k+1} \quad k \geq -1$$

son soluciones de la ecuación en diferencias

$$w_{k+1} = \frac{1}{\frac{B}{Bw_k + w_{k-1}} + \frac{1}{Bw_{k-1} + w_{k-2}}}$$

(2.31)

c) Las soluciones de (2.31) son permanentes de orden tres.

d) Sea R el subconjunto de \mathbb{R}^3_+ cuyos elementos tienen todas sus componentes estrictamente menores o todas estrictamente mayores que $\bar{x} = \frac{1}{\sqrt{B + 1}}$. Sean $(P_r)_r$ e $(I_r)_r$ las familias de funciones de \mathbb{R}^3_+ a \mathbb{R}^3_+ definidas por

$$\begin{cases}
P_r(x_{-2}, x_{-1}, x_0) = (x_{2r-2}, x_{2r}, x_{2r+2}) \\
I_r(x_{-2}, x_{-1}, x_0) = (x_{2r-1}, x_{2r+1}, x_{2r+3})
\end{cases}$$

\forall r \geq 0

Entonces la cuenca de atracción del equilibrium \bar{x} es

$$\mathcal{A} \left(\frac{1}{\sqrt{B + 1}} \right) = \mathbb{R}^3_+ \setminus \bigcup_{r=0}^{+\infty} \left[P_r^{-1}(R) \cup I_r^{-1}(R) \right]$$

La propiedad de permanencia es un caso particular del lema 1.2 de [GL05]. Podemos sacarle aún más provecho analizando con ella el carácter estable de las ecuaciones (2.3) y (2.26).
2.5. PROPIEDAD DE PERMANENCIA

Recordemos ahora, para facilitar la lectura, algunas de las definiciones del capítulo 1 (subsección 1.1.4). Dada una ecuación en diferencias cualquiera, un equilibrium \(\bar{x} \) es localmente estable (LE), si fijado \(\varepsilon > 0 \) existe un \(\delta > 0 \) tal que cuando \(x_{-r}, x_{-r+1}, \ldots, x_0 \in (\bar{x} - \delta, \bar{x} + \delta) \) entonces \(x_k \in (\bar{x} - \varepsilon, \bar{x} + \varepsilon) \) \(\forall k \geq -r \). Nótese que esta definición es equivalente a la de la citada sección aunque allí empleamos la norma \(l_1 \) y aquí usamos la norma del supremo

\[
|| (x_r, x_{-r+1}, \ldots, x_0) ||_\infty = \max \{ |x_r|, |x_{-r+1}|, \ldots, |x_0| \} \tag{2.32}
\]

Asimismo, \(\bar{x} \) es localmente asintóticamente estable (LAE) si es LE y además podemos fijar un entorno de \(\bar{x} \) en el cual la convergencia está garantizada. Las definiciones LE y LAE se refieren a puntos fijos de una ecuación en diferencias, pero pueden ser generalizadas también al caso de soluciones periódicas. Una solución \(p \) periódica o periódica de periodo \(p \) es aquella en la que \(x_{k+p} = x_k \) para todo entero \(k \) en el dominio de definición de la solución. Así, por ejemplo, diremos que para una ED de orden dos una solución dos periódica \(\psi, \phi, \psi, \phi, \ldots \) es LE si fijado \(\varepsilon > 0 \) existe un \(\delta > 0 \) tal que si \(x_{-1}, x_1 \in (\psi - \delta, \psi + \delta) \) y \(x_{-2}, x_0 \in (\phi - \delta, \phi + \delta) \), entonces \(x_{2r+1} \in (\psi - \varepsilon, \psi + \varepsilon) \) y \(x_{2r} \in (\phi - \varepsilon, \phi + \varepsilon) \). De forma análoga se define LAE en este caso y se amplían los conceptos a periodos mayores que dos y órdenes cualesquiera.

Corolario 2.5.5. a) Los equilibria de (2.26) son LE pero no LAE.

b) El equilibrium \(\frac{1}{\sqrt{B+1}} \) de (2.3) es LE pero no LAE.

Demostración: Usando una vez más la propiedad de permanencia, es suficiente con elegir \(\delta = \varepsilon \) en la definición de LE. Así se prueba el carácter LE de la ecuación (2.26). Además dado un equilibrium \(\bar{w} \) podemos tomar \(w_{-2} = w_{-1} = w_0 \) arbitrariamente próximos a \(\bar{w} \) de forma que la solución constante \((w_k)_{k=-2}^{\infty} \) no converja a \(\bar{w} \). Este es el contraejemplo que niega LAE para la primera ecuación en diferencias.

En cuanto a b) se obtiene como corolario inmediato del argumento anterior y de las definiciones generalizadas de LE y LAS. \(\square \)

Finalizamos el estudio de la primalidad de las soluciones con la siguiente generalización de la Conjetura 5.21.1 de [CL07].

Corolario 2.5.6. Sea a un número real no nulo. Supongamos que \(|a| \neq \frac{\sqrt{2}}{2} \), y consideremos la solución \((x_k)_{k=-2}^{+\infty} \) del PCI siguiente

\[
x_{k+1} = \frac{1}{x_{k-2} + x_k}, \quad x_{-2} = x_{-1} = x_0 = a
\]

Entonces \((x_k)_{k=-2}^{+\infty} \) es asintóticamente dos periódica prima.
Observación: Obviamente si |a| = $\sqrt{2}/2$, $(x_k)_{k=-2}^{\infty}$ es constante.

Demostración: Basta con aplicar el lema 2.5.3 a las subsucesiones de índices alternos. Comenzamos escribiendo los primeros elementos de la solución $(x_k)_{k=-2}^{\infty}$

\[x_{-2} = a \quad x_1 = \frac{1}{2a} \quad x_4 = \frac{2a(3+2a^2)}{5+6a^2} \]

\[x_{-1} = a \quad x_2 = \frac{2a}{1+2a^2} \quad x_5 = \frac{(1+2a^2)(5+6a^2)}{4a(4+7a^2+2a^4)} \]

\[x_0 = a \quad x_3 = \frac{1+2a^2}{a(3+2a^2)} \]

Supongamos que $a > 0$.

Caso I: $0 < a < \frac{\sqrt{2}}{2}$

Veamos que x_{-2}, x_0 y x_2 son menores que $\frac{\sqrt{2}}{2}$. Esto es obvio para los dos primeros términos. En cuanto al tercero basta con reescribir la desigualdad $x_2 < \frac{\sqrt{2}}{2}$ de la siguiente forma

\[\frac{2a}{1+2a^2} < \frac{\sqrt{2}}{2} \iff \sqrt{2}(\sqrt{2}a - 1)^2 > 0 \]

Caso II: $a > \frac{\sqrt{2}}{2}$

Ahora ocurre que x_1, x_3 y x_5 son menores que $\frac{\sqrt{7}}{2}$. En efecto, las funciones reales

\[\frac{d}{da} x_1(a) = \frac{-1}{2a^3} \]

\[\frac{d}{da} x_3(a) = \frac{-3-4a^4}{a^2(3+2a^2)^2} \]

\[\frac{d}{da} x_5(a) = \frac{-20-41a^2-18a^4-12a^6-24a^8}{4a^2(4+7a^2+2a^4)^2} \]

son estrictamente negativas, luego $x_1(a)$, $x_3(a)$ y $x_5(a)$ son estrictamente decrecientes. Cuando $a = \frac{\sqrt{7}}{2}$ tenemos un punto fijo y de ahí las desigualdades requeridas.

Por el lema 2.5.3, $(x_k)_{k=-2}^{\infty}$ es asintóticamente dos periódica prima.

Si $a < 0$, entonces $x_k < 0 \forall k \geq -2$. Sea $u_k = -x_k$. $(u_k)_{k=-2}^{\infty}$ es una solución positiva y por la primera parte de la prueba es asintóticamente dos periódica excepto en el caso de que $a = -\frac{\sqrt{2}}{2}$. Por lo tanto $(x_k)_{k=-2}^{\infty}$ tiene también esta característica.

\[\square \]

Observación: Es evidente que este resultado nos proporciona, cuando $a = 1$, una prueba de la conjetura inicial propuesta en [CL07, Conjecture 5.21.1].
2.5. PROPIEDAD DE PERMANENCIA

Pensamos que la idea de permanencia para EDR se puede extender a órdenes mayores que tres y obtener resultados semejantes de estabilidad.
Capítulo 3

Ecuaciones en Diferencias Racionales finalmente positivas
3.1. Soluciones finalmente positivas

Sea \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) una función continua. Recordemos que una ecuación en diferencias de orden \(n \) es una recurrencia definida mediante

\[
x_{k+1} = f(x_{k-n+1}, \ldots, x_k)
\]

Cada vector \(P = (x_{-n+1}, \ldots, x_0) \in \mathbb{R}^n \) genera una sucesión \((x_k)_{k=-n+1}^{+\infty} \) llamada solución asociada a \(P \). En algunos casos esta solución consta solo de un número finito de términos debido a que en algún paso de la iteración cierto \(x_{k+1} \) no puede ser calculado. Por ejemplo esto ocurre con las ecuaciones en diferencias racionales

\[
x_{k+1} = \frac{F(x_{k-n+1}, \ldots, x_k)}{G(x_{k-n+1}, \ldots, x_k)}
\]

cuando \(G(x_{k-n+1}, \ldots, x_k) = 0 \). Se motiva así la definición del buen conjunto de la ecuación en diferencias, denotado \(B \subseteq \mathbb{R}^n \), formado por los puntos para los cuales \((x_k)_{k=-n+1}^{+\infty} \) puede ser construida, y del conjunto prohibido, \(P \subseteq \mathbb{R}^n \), a cuyos elementos la recurrencia solo es aplicable un número finito de veces. Diremos que una solución está bien definida cuando sus condiciones iniciales pertenecen al buen conjunto.

Una situación habitual en el estudio de las EDR es la exigencia de coeficientes y condiciones iniciales positivas. En tal caso se evita la aparición del conjunto prohibido; dicho de otra forma, se garantiza la buena definición de todas las soluciones. Además, en los problemas aplicados esta es una situación muy común. Tal es la metodología seguida por ejemplo en [CL07].

Por otro lado, un punto de vista matemáticamente más general debe abordar situaciones en las que alguno de los coeficientes sea negativo o en las que cualquier vector de \(\mathbb{R}^n \) pueda ser elegido como condición inicial. Así se propone en [BC12a], [BC12b] y en numerosos problemas abiertos de [CL07] (open problems 5.20.3, 5.21.3, 5.21.4, 5.22.3, etc).

En lo que sigue supondremos en primer lugar que las ecuaciones son racionales con coeficientes positivos y condiciones iniciales cualesquiera.

Definición 3.1.1. Una sucesión \((x_k)_{k=-n+1}^{+\infty} \) es finalmente positiva (FP) si existe un entero \(N \) tal que \(x_k > 0 \) para todo \(k \geq N \).

Una ecuación en diferencias de orden \(r \) es finalmente positiva en el conjunto \(C \subseteq \mathbb{R}^n \) si todas sus soluciones cuyas condiciones iniciales pertenecen a \(C \cap B \) son finalmente positivas.
3.1. SOLUCIONES FINALMENTE POSITIVAS

Una ecuación en diferencias es uniformemente finalmente positiva (UFP) en $C \subset \mathbb{R}^n$ si existe $N \in \mathbb{N}$ tal que cada solución $(x_k)_{k=-n+1}^{+\infty}$ originada en $C \cap B$ cumple que $x_k > 0$ para todo $k \geq N$.

Sea $f : \mathbb{R}^2 \to \mathbb{R}$ una función racional de la forma $f(x,y) = \frac{P}{Q}$ siendo P y Q polinomios de indeterminadas x y y. Tomando los símbolos x y y como condiciones iniciales en la recurrencia (3.1), obtenemos una sucesión de expresiones racionales

$$x_k = \frac{P_k}{Q_k} \quad \forall k \geq -1$$

siendo P_k y Q_k polinomios en dos indeterminadas.

El siguiente hecho será usado más adelante:

Lema 3.1.2. El conjunto prohibido $P \subset \mathbb{R}^2$ de una EDR de orden dos tiene interior vacío.

Demostración: P es la colección numerable de curvas algebraicas $\{(x,y) \in \mathbb{R}^2 : Q_k(x,y) = 0\}$, $k \geq -1$. Como cada una de ellas tiene interior vacío, el teorema de la categoría de Baire termina la prueba.

Existen soluciones que no son finalmente positivas. Por ejemplo, considérese una EDR de orden dos poseyendo un equilibrium negativo $\bar{x} < 0$. En tal caso es claro que

$$\frac{P_k(\bar{x},\bar{x})}{Q_k(\bar{x},\bar{x})} = \bar{x} < 0 \quad \forall k \geq -1$$

Por tanto tenemos una solución constante que no es FP. Además la continuidad de $\frac{P_k}{Q_k}$ en (\bar{x},\bar{x}) y el lema 3.1.2 garantizan que ningún entorno reducido de (\bar{x},\bar{x}) sea UFP. La misma idea es válida en EDR con soluciones periódicas en las que al menos uno de los elementos del periodo sea negativo.

El resultado principal de este capítulo establece la existencia de conjuntos, no necesariamente en el entorno de soluciones periódicas, que no son UFP. Para la demostración usaremos dos herramientas: la versión irreducible de una EDR y el cómputo, usando un sistema de ecuaciones en diferencias enteras, de los grados de los polinomios P_k y Q_k.

3.2. Forma irreducible de una Ecuación en Diferencias Racional

Definición 3.2.1. Una expresión racional \(\frac{P(x,y)}{Q(x,y)} \), donde \(P \) y \(Q \) son polinomios, es irreducible si ningún polinomio de grado mayor que cero divide simultáneamente a \(P \) y \(Q \).

Definición 3.2.2. Una EDR es irreducible si todas las expresiones racionales en (3.2) son irreducibles.

Sean \(f, \varphi, \psi : \mathbb{R}^2 \to \mathbb{R} \) fracciones algebraicas en dos indeterminadas. Consideremos la EDR \(x_{k+1} = f(x_{k-1}, x_k) \). Si escribimos \(x_{-1} = \varphi(x, y) \), \(x_0 = \psi(x, y) \), entonces aplicando la recurrencia se obtiene una familia de cocientes polinómicos denotados de la siguiente forma

\[
 x_{-1} = \varphi(x, y) \quad x_0 = \psi(x, y) \quad x_k = \frac{P_k(x, y)}{Q_k(x, y)} \quad \forall k \geq 1 \quad (3.3)
\]

Podemos pues generalizar la noción de irreducibilidad sobre \(\mathbb{R}^2 \) de la siguiente manera

Definición 3.2.3. Una EDR de orden dos es irreducible respecto a las condiciones iniciales \(x_{-1} = \varphi(x, y) \) y \(x_0 = \psi(x, y) \) si todas las expresiones racionales de (3.3) lo son.

Observación: Las definiciones y notaciones anteriores se amplían fácilmente a órdenes superiores. Por ejemplo, una EDR de orden 3 será irreducible si todas las fracciones

\[
 x_{-2} = x \quad x_{-1} = y \quad x_0 = z \quad x_k = \frac{P_k(x, y, z)}{Q_k(x, y, z)} \quad \forall k \geq 1
\]

lo son.

El próximo lema es un hecho bien conocido en álgebra (ver, por ejemplo, [Kun05, theorem 1.4]).

Lema 3.2.4. Sean \(P \) y \(Q \) polinomios en dos indeterminadas de coeficientes reales. Si \(P \) y \(Q \) son coprimos entonces el conjunto de raíces comunes a ambos es finito.

Un corolario inmediato es que si un cociente de polinomios \(\frac{P(x,y)}{Q(x,y)} \) es irreducible, el cardinal del conjunto de raíces comunes a denominador y denominador es finito. Por lo tanto en una EDR irreducible todos los cocientes (3.2) poseen esta propiedad.
3.2. FORMA IRREDUCIBLE DE UNA EDR

Observación: El hecho anterior es cierto en dos dimensiones (dos indeterminadas), pero no en tres. Por tanto habrá que proceder con cautela si se estudia la ampliación de los resultados de este capítulo a las tres dimensiones.

Para ilustrar las nociones anteriores, describimos a continuación algunos ejemplos de EDR irreducibles.

En lo que sigue, el máximo común divisor de dos polinomios A y B lo escribiremos como (A, B), y la relación $A | B$ significará que A divide a B.

Proposición 3.2.5. Las siguientes EDR son irreducibles:

\[x_{k+1} = \frac{1}{1 + x_k + x_{k-1}} \]
\[x_{k+1} = \frac{x_{k-1}^2}{1 + x_{k-1}} \]

(3.4) \hspace{1cm} (3.5)

Demostración: Probaremos la irreducibilidad de (3.4). La demostración para (3.5) es similar.

Escribamos una solución $(x_k)_{k=−1}^{+∞}$ de (3.4), tal que $x_{−1} = x$, $x_0 = y$, en la forma $(\frac{P_k}{Q_k})_{k=−1}^{+∞}$. Para cada $k ≥ −1$, P_k y Q_k son polinomios en dos indeterminadas. Usando la fórmula (3.4) vemos que

\[\frac{P_{k+1}}{Q_{k+1}} = \frac{1}{1 + \frac{P_k}{Q_k} + \frac{P_{k-1}}{Q_{k-1}}} \]

\[= \frac{Q_k Q_{k-1}}{Q_k Q_{k-1} + P_k Q_{k-1} + Q_k P_{k-1}} \]

y así podemos plantear el siguiente sistema

\[P_{k+1} = Q_k Q_{k-1} \]
\[Q_{k+1} = Q_k Q_{k-1} + P_k Q_{k-1} + Q_k P_{k-1} \]

(3.6)

siendo las condiciones iniciales

\[P_{−1} = x \hspace{1cm} P_0 = y \hspace{1cm} Q_{−1} = Q_0 = 1 \]

Para probar la tesis del enunciado demostraremos por inducción la siguiente: para cada $k ≥ 0$, la fracción $\frac{P_k}{Q_k}$ es irreducible y los polinomios Q_k y $Q_{k−1}$ son coprimos.

El caso $k = 0$ es trivial. Supongamos cierto el caso k-ésimo y pasemos a estudiar la veracidad del caso $(k + 1)$-ésimo en dos etapas:
La EDR

\[x_{k+1} = \frac{x_k}{x_k + x_{k-1}} \] (3.7)

no es irreducible. La siguiente EDR es irreducible respecto a las condiciones iniciales \(x_{-2} = x, \ x_{-1} = y, \ x_0 = \frac{y}{x+y} \):

\[x_{k+1} = \frac{1}{1 + x_{k-1} + x_{k-2}} \] (3.8)

Además cada solución bien definida de (3.7) es una solución bien definida de (3.8).
3.2. FORMA IRREDUCIBLE DE UNA EDR

Observación: Hemos elegido las condiciones iniciales \(x_{-2} = x, \ x_{-1} = y, \ x_0 = \frac{y}{x+y} \) de forma que se garantice que cualquier solución de (3.8) generada por ellas sea también una solución de (3.7).
La irreducibilidad de (3.8) se considera en el sentido de las definiciones 3.2.2 y 3.2.3.

Demostración: Eligiendo para (3.7) a \(x_{-1} = x, \ x_0 = y \) como condiciones iniciales, entonces

\[
\frac{P_2(x, y)}{Q_2(x, y)} = \frac{y}{y+x} + y
\]

obteniendo así una fracción reducible.

Para la segunda parte del enunciado, se ve de forma sencilla que una solución de (3.7) generada a partir de \((x, y)\) es también una solución de (3.8).
Por último, estudiemos el carácter irreducible de (3.8). Sea \((x_k)_{k=-\infty}^{+\infty}\) una solución de (3.8) en las hipótesis del enunciado. Escribamos \(x_k = \frac{P_k}{Q_k}\). De la definición de \(\frac{P_k(x,y)}{Q_k(x,y)}\) concluimos que

\[
\frac{P_{k+1}(x, y)}{Q_{k+1}(x, y)} = \frac{1}{1 + \frac{P_{k-2}(x,y)}{Q_{k-2}(x,y)} + \frac{P_{k-1}(x,y)}{Q_{k-1}(x,y)}},
\]

de donde se obtiene el siguiente sistema de ED

\[
\begin{align*}
P_{k+1} &= Q_{k-2}Q_{k-1} \\
Q_{k+1} &= Q_{k-2}Q_{k-1} + P_{k-2}Q_{k-1} + Q_{k-2}P_{k-1}
\end{align*}
\]

(3.9)

Además sabemos que

\[
\begin{align*}
P_{-2} &= x, & P_{-1} &= y, & P_0 &= \frac{y}{y+x} \\
Q_{-2} &= 1, & Q_{-1} &= 1, & Q_0 &= x + y
\end{align*}
\]

(3.10)

luego las condiciones iniciales en (3.9) serán

\[
\left\{ \begin{array}{ccc}
P_{-2} &= x & P_{-1} &= y & P_0 &= y \\
Q_{-2} &= 1 & Q_{-1} &= 1 & Q_0 &= x + y
\end{array} \right. \quad (3.11)
\]

Ahora aplicamos inducción, probando que para cada \(k \geq -2\), la fracción \(\frac{P_k}{Q_k}\) es irreducible y que dados tres términos consecutivos de la sucesión \(\left(\frac{P_k}{Q_k}\right)_k\) con índices \(r \leq k\), sus denominadores son dos a dos coprimos. Tal afirmación implica la tesis del enunciado.
Observando las condiciones iniciales, la afirmación anterior es obvia cuando
\(k = -2, -1, 0. \) Suponiendo que sea cierta para \(-2, -1, 0, \ldots, k-1, k\), pasamos a probar el caso \((k + 1)\)-ésimo. La hipótesis de inducción es

\[
\frac{P_{k-2}}{Q_{k-2}}, \frac{P_{k-1}}{Q_{k-1}}, \frac{P_k}{Q_k} \text{ son fracciones irreducibles}
\]

\[(Q_{k-2}, Q_{k-1}) = 1, (Q_{k-2}, Q_k) = 1, (Q_{k-1}, Q_k) = 1 \quad (3.12)\]

Para probar la irreducibilidad de \(\frac{P_{k+1}}{Q_{k+1}}\) supongamos que \(D\) es un divisor primo común de \(P_{k+1}\) y \(Q_{k+1}\). En tal caso

\[
D | Q_{k-2}Q_{k-1}
\]

Usando la primera relación y el carácter primo de \(D\), temporarily divide a \(Q_{k-2}\) o \(Q_{k-1}\). En el primer caso, la segunda relación de divisibilidad implica \(D | P_{k-2}Q_{k-1}\). Pero si \(D | P_{k-2}\), entonces \(D = 1\), ya que \((Q_{k-2}, P_{k-2}) = 1\), y si \(D | Q_{k-1}\), también \(D = 1\) como consecuencia de que \((Q_{k-1}, Q_{k-2}) = 1\). Llegamos así a una contradicción con la suposición de que \(D\) es primo. Ánalo razonamiento sirve cuando \(D | Q_{k-1}\). Concluimos así que la fracción es irreducible.

Ahora veamos que \(Q_{k-1}, Q_k\) y \(Q_{k+1}\) son coprimos dos a dos.

- \((Q_{k-1}, Q_k) = 1.\)
 - Es cierto por (3.12).

- \((Q_{k-1}, Q_{k+1}) = 1.\)
 - Si \(D\) fuera un divisor de ambos polinomios, usando la segunda relación de (3.9), deducimos que \(D | Q_{k-2}P_{k-1}\). De ahí o bien \(D | Q_{k-2}\) o bien \(D | P_{k-1}\), pero en ambos casos se comprueba que \(D = 1\), una contradicción con la primalidad.

- \((Q_k, Q_{k+1}) = 1.\)
 - La elección hecha de condiciones iniciales en (3.11) implica que la iteración \(x_{k+1} = \frac{x_k}{x_k + x_{k-1}}\) es un paso intermedio de \(x_{k+1} = \frac{1}{1 + x_{k-1} + x_{k-2}}\). Por tanto, la determinación de \(P_k\) y \(Q_k\) puede hacerse también usando la primera recurrencia y una simplificación. Dados \(\frac{P_{k-2}}{Q_{k-2}}\) y \(\frac{P_{k-1}}{Q_{k-1}}\), podemos escribir

\[
\frac{P_{k-1}}{Q_{k-1}} + \frac{P_{k-2}}{Q_{k-2}} = \frac{P_k \cdot R}{Q_k \cdot R}
\]

donde \(R\) es el máximo común divisor de numerador y denominador. Por tanto tenemos,

\[
R \cdot P_k = Q_{k-2}P_{k-1}
\]

\[
R \cdot Q_k = Q_{k-2}P_{k-1} + P_{k-2}Q_{k-1}
\]
Ahora conectamos esta relación con la segunda expresión en (3.9), y obtenemos

\[Q_{k+1} = Q_{k-2}Q_{k-1} + RQ_k \]

Por último se termina de forma semejante a los casos anteriores: si \(D \) es un divisor primo común de \(Q_k \) y \(Q_{k+1} \), entonces \(D|Q_{k-2}Q_{k-1} \). Entonces o bien \(D|Q_{k-2} \) o bien \(D|Q_{k-1} \). Usando \((Q_{k-2},Q_k) = 1 \) y \((Q_{k-1},Q_k) = 1 \) respectivamente, llegamos una vez más a la contradicción \(D = 1 \).

\[\square \]

Observación: En [CL07] se demuestra que la ecuación (3.7) es globalmente asintóticamente estable cuando las condiciones iniciales \(x_{-1}, x_0 \) son estrictamente positivas. Esta ecuación es justamente la (2.16) del capítulo anterior. Recordemos que allí se introdujo como una herramienta para el estudio del problema (2.1)

\[x_{k+1} = \frac{1}{x_k + x_{k-2}} \tag{3.13} \]

donde si \((x_k)_{k=-2}^{+\infty} \) es una solución de (3.13), entonces \((y_k)_{k=-1}^{+\infty} \) definida mediante \(y_k = x_kx_{k-1} \) lo es de (3.7). En la extensión de la conjenutra 5.21.1 de [CL07] a condiciones iniciales cualesquiera es relevante saber cuándo una solución de (3.7) es finalmente positiva, ya que en tal caso el corolario 2.4.3 garantizará la convergencia a una solución dos periódica. Este problema es el que nos ha motivado para el estudio de la irreducibilidad y del carácter finalmente positivo de las EDR (ver [BC12b]).

La idea de usar una EDR irreducible para estudiar una reducible motiva la siguiente definición.

Definición 3.2.7. Sean \(m \leq n \) números naturales. Sean \(f : \mathbb{R}^m \to \mathbb{R} \) y \(g : \mathbb{R}^n \to \mathbb{R} \) funciones reales definiendo dos ED de órdenes \(m \) y \(n \) respectivamente. Decimos que la primera ED está contenida en la segunda ED si, excepto tal vez en un conjunto de condiciones iniciales de \(\mathbb{R}^m \) de interior vacío, toda solución bien definida de la primera ecuación es una solución bien definida de la segunda.

Si \(f \) y \(g \) son racionales, decimos que \((x_k)_{k=-m+1}^{+\infty} \) es una solución genérica de \(f \) si los \(m \) primeros términos de la sucesión son variables distintas. Obviamente el resto de términos serán fracciones algebraicas en \(m \) variables. Si, además, construimos una solución de \(g \) cuyas condiciones iniciales son los \(n \) primeros términos de una solución genérica de \(f \) y las expresiones resultantes son irreducibles, entonces decimos que \(g \) es una versión irreducible de la EDR asociada a \(f \).
Considerando todo lo anterior, conjeturamos que toda EDR posee una versión irreducible. Esto es obviamente cierto en el caso globalmente periódico. Por ejemplo, dada $x_{k+1} = f(x_{k-1}, x_k)$ de periodo p, basta tomar $g(x_{-p+1}, \ldots, x_0) = x_{-p+1}$.

3.3. Cálculo de los grados

En esta sección desarrollamos un método con el que determinar los grados de los polinomios P_k y Q_k asociados a las ecuaciones (3.4), (3.5) y (3.8).

Usaremos ∂P para indicar el grado del polinomio P.

Las sucesiones $(\partial P_k)_k$ y $(\partial Q_k)_k$ son soluciones de un sistema de EDR con condiciones iniciales y valores en \mathbb{Z} (al que llamamos sistema de ecuaciones en diferencias enteras). Este hecho es la clave del cómputo, que desarrollamos en el siguiente lema.

Definición 3.3.1. Una sucesión de números enteros $(a_k)_k$ es finalmente par (respectivamente, finalmente impar) si posee un número finito o nulo de elementos impares (respectivamente, pares).

Lema 3.3.2. Sea $(x_k)_{k=-2}^{\infty}$ una solución de (3.8) generada a partir de $x_{-2} = x$, $x_{-1} = y$, $x_0 = \frac{y}{x+y}$. Si $k \geq -2$, denotamos cada elemento de la sucesión como $x_k = \frac{p_k}{q_k}$, siendo $(P_k)_{k=-2}^{\infty}$ y $(Q_k)_{k=-2}^{\infty}$ sucesiones de polinomios con dos indeterminadas.

Si $p_k = \partial P_k$ y $q_k = \partial Q_k$ para cada $k \geq -2$, entonces $(p_k)_{k=-2}^{\infty}$ y $(q_k)_{k=-2}^{\infty}$ no son finalmente pares.

Demostración: Los coeficientes de la EDR (3.8) son positivos. Esto permite establecer el siguiente sistema de ecuaciones en diferencias en \mathbb{Z}

$$
\begin{align*}
p_{k+1} &= q_{k-2} + q_{k-1} \\
q_{k+1} &= \max(q_{k-2} + q_{k-1}, p_{k-2} + q_{k-1}, q_{k-2} + p_{k-1})
\end{align*}
$$ (3.14)

A la vista de que $x_{-2} = x$, $x_{-1} = y$, $x_0 = \frac{y}{x+y}$, deducimos que las condiciones iniciales para (3.14) son: $p_{-2} = p_{-1} = p_0 = q_0 = 1$, $q_{-2} = q_{-1} = 0$. Se genera así una solución de (3.14) cuyos primeros términos aparecen en la tabla 3.1. Vemos que para $k = 3, 4, 5$, $p_k = q_k$. Por inducción se demuestra que $p_k = q_k$ si $k \geq 3$. Entonces el sistema (3.14) se puede reducir al siguiente

$$
\begin{align*}
p_{k+1} &= p_{k-2} + p_{k-1} \\
q_{k+1} &= p_{k+1}
\end{align*}
$$ (3.15)

Obviamente, $(p_k)_{k=6}^{\infty}$ y $(q_k)_{k=6}^{\infty}$ son soluciones de (3.15) con $p_6 = q_6 = 5$ y $p_7 = q_7 = 7$.

CAPÍTULO 3. EDR FINALMENTE POSITIVAS

74
3.3. CÁLCULO DE LOS GRADOS

Sean $\tilde{p}_k = p_k$ (mód 2) y $\tilde{q}_k = q_k$ (mód 2). Es fácil ver que $(\tilde{p}_k)_{k=6}^{+\infty}$ y $(\tilde{q}_k)_{k=6}^{+\infty}$ son sucesiones de números enteros del sistema (3.15). Ambas son iguales al siete ciclo $1 \rightarrow 1 \rightarrow 1 \rightarrow 0 \rightarrow 0 \rightarrow 1 \rightarrow 0$. Esto implica algo más fuerte que la tesis del lema: $(p_k)_{k=-2}^{+\infty}$ y $(q_k)_{k=-2}^{+\infty}$ no son ni finalmente pares ni finalmente impares.

□

Observación 1: Una característica análoga a la descrita en el lema 3.3.2 la también poseen los polinomios P_k y Q_k asociados a las EDR (3.4) y (3.5) y a las condiciones iniciales $x_{-1} = x$, $x_0 = y$. La prueba es análoga a la precedente.

Observación 2: El carácter cíclico de \tilde{p}_k y \tilde{q}_k lo poseen también los siguientes polinomios en una indeterminada:

$$P_k(x,0), \; P_k(0,y), \; Q_k(x,0), \; Q_k(0,y)$$

Esto se debe a que tales polinomios satisfacen el sistema (3.9). Además, escribiendo

$$\tilde{p}_k = \partial P_k(x,0), \; \hat{p}_k = \partial P_k(0,y), \; \tilde{q}_k = \partial Q_k(x,0), \; \hat{q}_k = \partial Q_k(0,y)$$

y calculando sus primeros valores (tabla 3.1), podemos seguir el mismo razonamiento que en la demostración anterior.
3.4. Existencia de términos negativos

Sea
\[x_{k+1} = f(x_{k-1}, x_k) \] (3.16)
una EDR irreducible con coeficientes positivos. Una vez más, escribimos \(x_k = \frac{P_k}{Q_k} \), siendo \(P_k \) y \(Q_k \) polinomios en dos indeterminadas. Supongamos que al menos una de las sucesiones \((P_k)_k\) y \((Q_k)_k\) no tiene grados finalmente pares. Para proseguir nuestra argumentación necesitamos una versión bidimensional del teorema de Bolzano.

Lema 3.4.1. Sea \(F : \mathbb{R}^2 \to \mathbb{R} \) una función continua. Si existen dos puntos \(A_0, A_1 \in \mathbb{R}^2 \) tales que \(F(A_0) \cdot F(A_1) < 0 \), entonces el conjunto \(\Gamma = \{ (x, y) \in \mathbb{R}^2 : F(x, y) = 0 \} \) es infinito.

![Figura 3.1: Ilustración del lema 3.4.1.](image)

Demostración: Sea \(A_t \) un punto de la mediatriz del segmento \(\overline{A_0A_1} \). Sea \(\phi_t : [0, 1] \to \mathbb{R}^2 \) una parametrización continua de la poligonal \(\overline{A_0A_tA_1} \), tal que \(\phi_t(0) = A_0, \phi_t(1) = A_1 \).

La función \(F \circ \phi_t \) es continua, y \(F \circ \phi_t(0) \cdot F \circ \phi_t(1) < 0 \). Por el teorema de Bolzano, existe un \(\xi_t \in (0, 1) \) de manera que \(F \circ \phi_t(\xi_t) = 0 \). Hemos encontrado así un punto \(B_t = \phi_t(\xi_t) \) en el interior de la poligonal tal que \(F(B_t) = 0 \).
Ahora bien, las poligonales $A_0A_tA_1$ son dos a dos disjuntas (excepto en los extremos), luego el conjunto $\{B_t : t \in \mathbb{R}\} \subseteq \Gamma$ es infinito.

\[\square\]

Lema 3.4.2. Dado $k \in \mathbb{N}$, existen $N \geq k$ y (x_0, y_0) en el buen conjunto de (3.16) tales que $Q_N(x_0, y_0) < 0$.

Demostración: Supongamos, sin pérdida de generalidad, que los grados de la sucesión $(Q_k)_k$ no son finalmente pares. En tal caso afirmamos que para cada $k \in \mathbb{N}$, existen $N \geq k$ y $A_0, A_1 \in \mathbb{R}^2$ tales que $Q_N(A_0) < 0$ y $Q_N(A_1) > 0$. En efecto, es posible elegir Q_N de grado impar con $N \geq k$. A_1 puede ser cualquier punto del cuadrante positivo (debido a que los coeficientes de la EDR son positivos) y A_0 un punto de alguno de los demás cuadrantes de módulo adecuado.

Consideremos de nuevo la familia de poligonales construida en la demostración del lema 3.4.1. Se cumple que, excepto para un número finito de poligonales, Q_N se anula solo un número finito de veces sobre cada poligonal.

Para probar la última afirmación supongamos que A_0A_t fuera un segmento en el que Q_N se anulara infinidad de veces. Un tal segmento se puede describir implícitamente con una ecuación de la forma $ax + by + c = 0$. Pero en ese caso los polinomios $ax + by + c$ y Q_N tendrían una infinitud de raíces comunes. Por el lema 3.2.4, esto implica que en tal caso ambos polinomios tienen un divisor común no constante, y como $ax + by + c$ es irreducible, entonces $(ax + by + c)|Q_N$. Como Q_N solo puede tener un número finito de este tipo de divisores, sobre el resto de segmentos se anulará a lo más en un número finito de puntos.

A continuación fijemos una de las poligonales, denotada como $A_0A_tA_1$, en las que no hay una infinidad de ceros, y sea $\phi_t : [0, 1] \to \mathbb{R}$ una parametrización continua tal que $\phi_t(0) = A_0$, $\phi_t(1) = A_1$. Por último, sean $t_1 < t_2 < \ldots < t_r$ los elementos del intervalo $(0, 1)$ donde $Q_N \circ \phi_t$ se anula. Sabemos que existe un número finito y positivo de tales elementos, los cuales pueden tomarse como una partición de $[0, 1]$ en $r + 1$ subintervals. Obviamente en cada uno de ellos $Q_N \circ \phi_t$ tiene signo constante. En el primer subintervalo, $(0, t_1)$, $Q_N \circ \phi_t$ es negativa, y en el último, $(t_r, 1)$, $Q_N \circ \phi_t$ es positiva.

Así existirá un t_m de forma que (t_{m-1}, t_m) sea de signo negativo y (t_m, t_{m+1}) de signo positivo. Este t_m es precisamente el cero que estamos buscando. Sea
$B_t = \phi_t(t_m)$ el punto de la poligonal asociado a él.

Si tomamos todas las poligonales donde Q_N tiene un número finito de ceros y repetimos en cada una la construcción, sucederá que los ceros B_t solo pueden ser un número finito de veces ceros de P_N (en caso contrario, aplicando el lema 3.2.4, contradiríamos la coprimalidad de P_N y Q_N).

Entonces podemos elegir una poligonal concreta y un punto B_t de ella tales que $Q_N(B_t) = 0$ y $P_N(B_t) \neq 0$. Supongamos que $P_N(B_t) > 0$, siendo el caso $P_N(B_t) < 0$ análogo. Por continuidad $P_N \circ \phi(s) > 0$ en un entorno E de t_m. En particular $\frac{P_N}{Q_N}$ es negativa en el conjunto $\phi((t_{m-1}, t_m) \cap E)$. Sea X un punto en este conjunto.

Hemos localizado un punto donde el cociente $\frac{P_N}{Q_N}$ es negativo. Usando la continuidad existirá un disco abierto de centro X donde $\frac{P_N}{Q_N}$ será negativa. En el disco pueden elegirse puntos del buen conjunto gracias al lema 3.1.2. Estos puntos verifican la tesis propuesta.

Observación: El punto (x_0, y_0) puede elegirse en el exterior de cualquier subconjunto acotado de \mathbb{R}^2. En efecto, dado $A \subset \mathbb{R}^2$, sean A_0 y A_1 puntos de módulo suficientemente grande tales que $Q_N(A_0) \cdot Q_N(A_1) < 0$ y tales que la familia de poligonales que construimos en el lema 3.4.1 tenga una cantidad infinita de elementos en el exterior de A. Entonces sobre casi todas estas poligonales la construcción anterior puede repetirse.

El siguiente resultado dice que la EDR (3.16) posee soluciones con un número arbitrariamente grande de elementos negativos comenzando en el exterior de cualquier conjunto acotado prefijado.

Teorema 6. Sean $k_0 \in \mathbb{N}$ y A un subconjunto acotado de \mathbb{R}^2. Sea B el buen conjunto de la EDR (3.16). Entonces existen $N \geq k_0$ y $(x_{-1}, x_0) \in (\mathbb{R}^2 \setminus A) \cap B$ tales que la solución de (3.16) generada por las condiciones iniciales x_{-1}, x_0, no tiene dos términos consecutivos positivos de índices menores que N.

Demostración: Por el lema 3.4.2 y la observación que le sigue, existirán $N \geq k_0$ y $(x_{-1}, x_0) \in (\mathbb{R}^2 \setminus A) \cap B$ tales que $\frac{P_N(x_{-1}, x_0)}{Q_N(x_{-1}, x_0)} < 0$. $(x_k)_{k=-1}^{+\infty}$ estará bien definida y si dos elementos consecutivos de ella, x_r y x_{r+1}, fueran positivos para un cierto $r < k_0$, entonces $x_k \geq 0 \forall k \geq r$, y por tanto $x_N \geq 0$, contradiciendo la elección de N. \qed
Observación: Pueden darse contrajemplos sencillos mostrando la relevancia de las hipótesis del teorema 6. Si en la definición de cierta EDR los polinomios numerador y denominador contienen únicamente potencias pares de x e y entonces la ecuación será UFP. Un problema abierto es determinar EDR irreducibles con su numerador y denominador no consistiendo únicamente en potencias pares de las variables, tales que sean además UFP. De especial interés sería la resolución de dicho problema para el tipo de ecuaciones que se estudian en [CL07], esto es, aquellas con numerador y denominador lineales.

Corolario 3.4.3. Las EDR (3.4), (3.5), (3.7) y (3.8) no son UFP.

3.5. Ejemplos

Las ecuaciones (3.4) y (3.5) cumplen las hipótesis del teorema 6. Pero hay otra forma de demostrar la existencia de soluciones en (3.4) con al menos una cantidad prefijada de términos no positivos. Esto se deduce como corolario de la biyectividad del desdoblamiento asociado a la ecuación. En efecto, cada solución $(x_k)_{k=-1}^{\infty}$ de (3.4) se puede transformar en un órbita del sistema dinámico en \mathbb{R}^2 generado por la función

$$F(x, y) = \left(y, \frac{1}{1 + x + y}\right)$$

Para ello basta con agrupar de dos en dos los elementos de la sucesión $(x_k)_{k=-1}^{\infty}$. Ahora bien, la función F posee una inversa, dada por

$$G(x, y) = \left(-1 - x + \frac{1}{y}, x\right)$$

Como los conjuntos prohibidos de ambos sistemas dinámicos tienen interior vacío (lema 3.1.2), es posible elegir puntos en los cuadrantes no positivos de \mathbb{R}^2 para los cuales la órbita generada mediante la iteración de G esté bien definida. Tales órbitas pueden ser vistas como soluciones inversas de la ecuación (3.4), y tendrán la propiedad de no caer en el cuadrante positivo, ya que en tal caso (por la positividad de los coeficientes) las iteradas anteriores también deberían estar allí.

Tal argumento, sin embargo, no funciona con la ecuación (3.5), ya que el desdoblamiento

$$F(x, y) = \left(y, \frac{x^2}{1 + x}\right)$$
CAPÍTULO 3. EDR FINALMENTE POSITIVAS

no es sobreyectivo.

Otro ejemplo viene dado por la EDR (3.7). En este caso no se cumplen las hipótesis del teorema principal, pero, como hemos visto, tales hipótesis sí se verifican para (3.8) eligiendo adecuadamente las condiciones iniciales. Vemos pues cómo la técnica puede ser aplicada a EDR más generales (y no únicamente en el caso irreducible).

Un corolario del teorema 6 aplicado a la EDR (3.7), es que existen soluciones de (3.13) con al menos un número prefijado de elementos positivos y negativos (comenzando además fuera de cualquier conjunto acotado elegido previamente). Este fenómeno complementa lo dicho en el capítulo anterior en el siguiente sentido.

En el corolario 2.4.3 establecimos el carácter asintótico de las soluciones positivas de la ecuación (3.13). Es normal preguntarse a continuación qué ocurrirá con las soluciones de condiciones iniciales no positivas. Después del corolario 3.4.3 no hay esperanza de conseguir que las soluciones bien definidas pertenezcan todas ellas al cuadrante positivo tras un número finito de iteraciones, ni siquiera exigiendo además que su distancia al origen esté acotada por un número arbitrariamente grande. Aunque tal comportamiento lo poseen los 3-periodos (como se muestra en la tabla 3.2), podría ocurrir que todos los períodos de la ecuación estén uniformemente acotados, de ahí la importancia de que las condiciones iniciales puedan tomarse tan grandes como se desee.

Queda pendiente la cuestión de si las soluciones no periódicas son o no en general finalmente positivas.
Cuadro 3.2: Tres-periodos de la ecuación \(x_{k+1} = \frac{1}{x_{k-2} + x_k} \). Los primeros corresponden a los puntos fijos, y los restantes a dos puntos tres periódicos, que dan lugar a seis puntos al desplazar sucesivamente sus coordenadas.
Capítulo 4

Repulsores de Retorno Finito
4.1. Introducción

En este capítulo abordamos el estudio del caos en sentido de Li-Yorke o simplemente caos en EDR. Nuestra motivación parte de un análisis cuidadoso de las ED construidas a partir de un cociente de funciones afines en las variables x_k, x_{k-1},\ldots. Tales ecuaciones, referidas en lo sucesivo como EDR lineales, parecen tener un comportamiento relativamente ordenado cuando los parámetros y las condiciones iniciales se eligen positivos, evitando así el problema de la aparición de los conjuntos prohibidos. Así, en los capítulos anteriores hemos visto que la dinámica de algunas de estas ecuaciones era globalmente convergente hacia un punto fijo o hacia una órbita dos periódica.

Sin embargo cuando se eliminan las restricciones citadas sobre parámetros y condiciones iniciales, parecen producirse fenómenos más complejos. Los análisis numéricos apuntan a la existencia de multitud de órbitas periódicas, de trayectorias densas y de elementos del conjunto prohibido intercalándose entre ellas.

 Esto plantea la búsqueda de herramientas matemáticas que describan adecuadamente tales fenómenos. Nos parece indicada pues la introducción del concepto de caos para tratar de resolver esta cuestión. El caos matemático se origina en la segunda mitad del siglo pasado en la serie de artículos clásicos [Lor63], [Sma65], [Sma67], [LY75] y otros. Desde entonces se ha generado una enorme cantidad de material alrededor de estas ideas.

En lo que respecta a las ecuaciones en diferencias, debido a las aplicaciones, los estudios existentes se sitúan en el contexto de funciones diferenciables o al menos continuas, excluyendo por tanto a las EDR.

Por este motivo, comenzamos con una revisión de las herramientas y definiciones del caso continuo analizando si tienen o no validez en el contexto discontinuo.

Uno de los criterios prácticos más importantes para la detección de caos en ED es el teorema de Marotto, [Mar78], el cual establece que cuando es posible localizar una solución generada a partir de un tipo especial de punto fijo, entonces la dinámica en torno a él responde a las definiciones usuales de caos.

El objetivo de este capítulo será adaptar y extender el teorema de Marotto a EDR. De esta forma conseguiremos también ampliar nuestro estudio a las EDR no lineales, las cuales, igual que en el caso continuo, parecen ser las que presentan con mayor frecuencia las propiedades caóticas.
4.1. INTRODUCCIÓN

En cuanto a las EDR lineales que originan la propuesta anterior debemos observar que su carácter biyectivo impide la aplicación sobre ellas del teorema de Marotto, quedando pendiente la búsqueda de otra herramienta con la que clarificar si lo observado en las regiones de condiciones iniciales no positivas obedece a una dinámica caótica o de otro tipo.

Vamos a retomar las definiciones de ecuación en diferencias y otras derivadas de ella en un contexto más general. Sea \((X, d)\) un espacio métrico y sea \(f : X \to X\) una aplicación continua de \(X\) en \(X\). El sistema dinámico discreto \((X, f)\) definido mediante la recurrencia

\[x_{k+1} = f(x_k) \]

(4.1)

donde \(k = 0, 1, 2, \ldots\) es una ecuación en diferencias (ED). Una solución de (4.1) comenzando en \(x_0 \in X\) o en la que \(x_0\) sea su punto inicial, es la sucesión \((x_k)_{k=0}^{+\infty} = (f^k(x_0))_{k=0}^{+\infty}\) obtenida usando la fórmula anterior, donde \(f^k = f^{k-1} \circ f\) si \(k > 0\) y \(f^0(x) = x\) para todo \(x \in X\). En ocasiones esta sucesión se denomina trayectoria del punto \(x_0\) u órbita progresiva de \(x_0\). Se dice que una solución de (4.1) es periódica de periodo primo \(p\), que \(x_0\) es un \(p\)-periodo o que \(x_0\) es un punto periódico si \(p\) es el mínimo entero positivo para el cual se cumple la relación \(x_{k+p} = x_k\) para todo \(k \geq 0\). Si \(p = 1\) decimos que la solución es constante o que \(x_0\) es un punto fijo de \(f\), esto es \(f(x_0) = x_0\). Si \(f^m(x_0)\) es periódico para cierto \(m > 1\) entonces \(x_0\) se denomina punto finalmente periódico, y también se dice que su solución asociada lo es. Una solución finalmente periódica en la que el periodo es 1 se dice finalmente constante.

Para \(X = A\), siendo \(A = \mathbb{R}\) o un subintervalo de \(\mathbb{R}\), en [LY75] se introdujo por primera vez en la literatura matemática la noción de caos para ecuaciones en diferencias escalares del tipo (4.1).

Definición 4.1.1. Se dice que (4.1) es caótica en el sentido de Li-Yorke o Li-Yorke caótica si son satisfechas las siguientes condiciones

LY1 Existe un \(N \in \mathbb{N}\) tal que \(\forall p \geq N\) hay un punto \(p\)-periódico.

LY2 Existe un subconjunto \(S \subset A\) no numerable, invariante \((f(S) \subset S)\), que no contiene puntos periódicos y tal que dado un par \(x \neq y \in S\) entonces,

\[(a) \quad \limsup_{k \to +\infty} |f^k(x) - f^k(y)| > 0\]

\[(b) \quad \limsup_{k \to +\infty} |f^k(x) - f^k(y_p)| > 0,\] para cada punto periódico \(y_p\).
LY3 Existe un subconjunto no numerable $S_0 \subset S$ de forma que dado cualquier par $x_0 \neq y_0 \in S_0$ se cumple que

$$\liminf_{k \to +\infty} |f^k(x_0) - f^k(y_0)| = 0$$

S_0 se denomina conjunto revuelto de la ED y cada par de puntos distintos de S_0 un par de Li-Yorke.

Observación: En la literatura el conjunto revuelto se denomina comúnmente scrambled set.

En [LY75] se demuestra que cuando la ED tiene un 3-periodo entonces la definición anterior se verifica tomando además en LY1 $N = 1$. Se sabe además que la condición LY2(b) es redundante (ver por ejemplo [AK01]). Algun tiempo después, en [KS89] se demostró que basta con verificar la existencia de un solo par de Li-Yorke para asegurar que hay una cantidad no numerable de tales pares. Por este motivo una definición más moderna cuando $X = A$ consiste en decir que una ED es caótica en el sentido de Li-Yorke si existe al menos un par de Li-Yorke.

Cuando X es un espacio métrico cualquiera, la última afirmación no es cierta y tiene entonces sentido la siguiente definición de caos en el sentido de Li-Yorke. La ecuación en diferencias (4.1) es caótica si existe un conjunto no numerable $S \subseteq X$ de pares Li-Yorke de forma que cualquiera pareja de puntos distintos $x, y \in S$ cumpla las siguientes condiciones

$$\text{ly1 } \limsup_{k \to +\infty} d(f^k(x), f^k(y)) > 0$$

$$\text{ly2 } \liminf_{k \to +\infty} d(f^k(x), f^k(y)) = 0$$

Esta definición es válida en particular si $X = \mathbb{R}^n$ cuando $n > 1$.

En [Mar78], para el caso $f \in C^1(\mathbb{R}^n)$ y sugerido por pruebas numéricas se estableció una condición suficiente que permite obtener las propiedades LY1, LY2 y LY3 (reemplazando el valor absoluto por una norma cualquiera de \mathbb{R}^n). En esta situación multidimensional, decimos que hay caos en el sentido de Marrotto o caos Marotto para una ecuación en diferencias siendo la dimensión $n > 1$.

El caos Marotto también se ha estudiado en [KL06] sobre ED tales que $n > 1$ y $f \in C(\mathbb{R}^n)$, esto es, en el contexto de funciones continuas verificando las tres propiedades de la definición 4.1.1.
4.1. INTRODUCCIÓN

La condición suficiente propuesta por Marotto consiste en la existencia de un tipo especial trayectoria que recuerda al concepto de solución homoclínica (véase [Blo78] y el capítulo 5 para una definición general). Concretamente es la presencia de un punto fijo especial que llamaremos repulsor de retorno finito. En tal caso el resultado central de [Mar78] asegura que si una ED posee un repulsor de retorno finito entonces hay caos Marotto.

Desde la publicación del trabajo anterior ha habido una controversia en la literatura acerca de la definición de repulsor de retorno finito (ver [LC03], [Mar05], [LRZ02], [ZXY09]). Veamos a continuación en qué consiste y cómo evitarla adoptando una definición un poco más restrictiva que la original de Marotto. Comenzamos recordando la noción de entorno expansivo.

En lo que sigue, dada una norma en \(\mathbb{R}^n \) denotada mediante \(\| \cdot \| \), \(B_r(a) \) será la bola cerrada de centro \(a \) y radio \(r \), es decir

\[
B_r(a) = \{ x \in \mathbb{R}^n : \| x - a \| \leq r \}
\]

Definición 4.1.2. Sea \(f : \mathbb{R}^n \to \mathbb{R}^n \) una función. Sea \(A \) un subconjunto de su dominio. Se dice que \(A \) es expansivo con respecto a una norma \(\| \cdot \| \), o que \(f \) es expansiva en \(A \) con respecto a ella, si existe un número real \(s > 1 \) tal que

\[
\| f(x) - f(y) \| > s \| x - y \| \quad \forall x, y \in A, x \neq y
\] (4.2)

Si \(A \) es un conjunto abierto, se dice que \(f \) es localmente expansiva en \(A \) cuando para cada \(x \in A \) existe un \(r > 0 \) tal que \(f \) sea expansiva en \(B_r(x) \subset A \).

Definición 4.1.3. Sea \(f \in C^1(\mathbb{R}^n) \). Un punto fijo \(z \) de \(f \) es un repulsor de retorno finito (RRF) si

- **RRF1** Existen una norma \(\| \cdot \| \) y un número real \(r > 0 \) tales que \(B_r(z) \) sea expansiva.

- **RRF2** Existe una sucesión finita de puntos \(x_0, x_1, \ldots, x_M \) tales que
 - \(x_0 \in B_r(z) \setminus \{ z \} \)
 - \(x_M = z \)
 - \(x_k = f^k(x_0) \) si \(1 \leq k \leq M \)
 - \(|Df(x_k)| \neq 0 \) si \(1 \leq k \leq M \)
Ilustramos esta definición en la figura 4.1. La trayectoria que comienza en x_0 alcanza tras un número finito de iteraciones al punto fijo z. Además x_0 pertenece a un entorno expansivo, y por lo tanto su trayectoria regresiva (es decir, su trayectoria hacia atrás utilizando la función de iteración inversa) convergerá hacia el equilibrio z. Se observa pues una que se trata de solución homoclínica especial.

![Figura 4.1: Ejemplo de RRF.](image)

En la definición original de Marotto de RRF encontramos, en lugar de la condición RRF1, la siguiente

RRF1a Existe un entorno A de z tal que si $x \in A$, entonces todos los valores propios de $Df(x)$ tienen módulo mayor que la unidad.

La relación entre las hipótesis RRF1 y RRF1a se ha estudiado, en el caso general, en [ZXY09]. Básicamente ocurre que si RRF1a es cierta, entonces es posible encontrar una norma y un entorno local donde RRF1 también lo sea. Además para un operador lineal la condición expansiva implica que todos los valores propios deben estar en el exterior del disco de centro cero y radio uno.

Sin embargo el problema acerca del criterio original de Marotto para detectar comportamiento caótico no está aún del todo clarificado. En la citada controversia se ha hecho énfasis en un error en la demostración del resultado principal de [Mar78], pero por lo que sabemos no hay ningún ejemplo de ED no caótica que posea un RRF (en el sentido de la definición de Marotto). Además hay que remarcar que la popularidad de dicho criterio se debe a que provee una técnica estándar para buscar este tipo de repulsores. Consiste en localizar un punto fijo repulsor del cual se computan elementos de su trayectoria regresiva. Si alguno de ellos pertenece a un entorno crítico entonces el RRF, y por lo tanto el carácter caótico, son hallados. Ahora bien, la palabra crítico significa, inicialmente, RRF1a, una condición fácilmente verificable en los ejemplos numéricos. En el estado actual del problema, el nuevo significado se vincula a la propiedad expansiva, algo que conlleva un cálculo bastante engorroso y en ocasiones nada claro.
4.1. INTRODUCCIÓN

En el caso unidimensional ($n = 1$) una aplicación sencilla del teorema de Rolle muestra que RRF1a implica RRF1, lo que resuelve la problemática expuesta. Para dimensiones superiores la cuestión acerca de la condición de los valores propios es aún un problema pendiente en la teoría de ED caóticas.

En este capítulo vamos a trabajar en el contexto de $X = \mathbb{R}^n$, $n \geq 1$ y f una función racional, es decir, en el contexto de las EDR. Como ya hemos mencionado en el capítulo 1 (subsección 1.1.5), numerosos modelos de la dinámica de poblaciones obedecen a tales ecuaciones. En particular, un caso notable es el dado por el sistema

$$\begin{align*}
x_{k+1} &= \frac{P_1(x_k, y_k)}{Q_1(x_k, y_k)} \\
y_{k+1} &= \frac{P_2(x_k, y_k)}{Q_2(x_k, y_k)}
\end{align*}$$

(4.3)

donde P_1, Q_1, P_2, Q_2 son polinomios cuadráticos en las indeterminadas x_k, y_k con coeficientes reales. En simulaciones numéricas (ver [MS12] y [KL06]) se han observado algunos subconjuntos del espacio de fase con estructura compleja. Se motiva por tanto la búsqueda de condiciones iniciales y parámetros para los que sea posible demostrar analíticamente la existencia de caos. En esta línea, las familias de ecuaciones en diferencias estudiadas en [Mar78], [Mar79], [Mar05] y [MS12] poseen RRF en ciertos casos (algo generalmente no trivial). El resultado clásico de Marotto implica pues comportamiento caótico en dichas ecuaciones, salvo en el caso racional. Este es el hueco que pretendemos cubrir con el trabajo que desarrollamos a continuación.

Señalamos que el problema racional no puede reducirse al continuo aislando aquellas regiones donde aparece el conjunto prohibido ya que es posible encontrar ejemplos en los que puntos prohibidos están arbitrariamente cerca de los RRF y por lo tanto cerca de la región en la que la dinámica se complica (ver proposición 6.6.1 del capítulo 6).

En las siguientes secciones demostraremos la existencia de caos Marotto para EDR. La prueba está inspirada en la propuesta por Marotto en [Mar78], aunque tendremos que solventar los problemas derivados de la presencia del conjunto prohibido y de la no continuidad de la función de iteración. Hemos dividido la prueba en varias etapas. En primer lugar justificaremos la existencia de una cantidad infinita de puntos periódicos (de periodos distintos). Después introduciremos la noción de itinerario de conjuntos compactos y el lema de los itinerarios, una herramienta que va a permitir la construcción de
soluciones especiales de la EDR. A continuación finalizaremos la demostración del teorema.

Por último terminaremos el capítulo aplicando las ideas anteriores a las familias de EDR \(x_{k+1} = \frac{1}{x_k^2-r} \) y \(x_{k+1} = \frac{1}{rx_k(1-x_k)} \), dando condiciones suficientes, en función del parámetro \(r \), para detectar la presencia de caos y realizando algunas estimaciones numérico-gráficas. Estos cálculos serán usados más adelante para la estimación de los conjuntos prohibidos de los elementos de la familia (sección 6.6 del capítulo 6).

4.2. Caos Marotto

La siguiente definición adapta la de RRF al contexto de las EDR.

Definición 4.2.1. Sea \(f : \mathbb{R}^n \rightarrow \mathbb{R}^n \) una función racional. Decimos que \(z \in \mathbb{R}^n \) es un repulsor de retorno finito de \(f \) (RRF) si existe una sucesión finita de puntos \(x_0, x_1, \ldots, x_M \) pertenecientes al dominio de \(f \) verificando las condiciones RRF1 y RRF2 de la definición 4.1.3. Nótese que ninguno de tales puntos puede ser un polo de \(f \).

Observación: Una EDR lineal no puede tener un RRF. Esto es debido a la invertibilidad de la ecuación, que imposibilita la existencia de al menos dos preimágenes de un punto fijo (necesaria para que se cumpla la definición de RRF). Por ejemplo, consideremos la EDR lineal de orden dos genérica

\[
\begin{align*}
x_{k+1} &= \alpha + \beta x_k + \gamma x_{k-1} \\
A x_{k+1} &= B x_k + C x_{k-1}
\end{align*}
\]

(4.4)

donde \(\alpha, \beta, \gamma, A, B, C \) son números reales y \(|\gamma| + |C| > 0\). Entonces es posible construir la ecuación en diferencias inversa de (4.4) despejando simplemente la variable \(x_{k-1} \)

\[
x_{k-1} = \frac{\alpha + \beta x_k - A x_{k+1} - B x_{k+1} x_k}{C x_{k+1} - \gamma}
\]

(4.5)

Un problema abierto es determinar si este tipo de ecuaciones no solo carecen de RRF sino también de caos Marotto.

El resultado principal del capítulo es el siguiente

Teorema 7. Si una EDR posee un RRF entonces es caótica en el sentido de Marotto.

La prueba se descompone en varias etapas que desarrollamos a continuación.
4.2.1. Existencia de periodos

Proposición 4.2.2. Sea $f : \mathbb{R}^n \rightarrow \mathbb{R}^n$ una función racional. Sea $z \in \mathbb{R}^n$ un RRF de f. Supongamos que la colección de puntos $x_0, x_1, \ldots, x_M = z$ verifica la definición 4.2.1. Entonces la EDR (4.1) cumple la condición LY1, esto es, existe un número natural N tal que para todo $p \geq N$ hay al menos un punto p-periódico.

Demostración: Reproducimos, con los cambios adecuados, la prueba dada en [Mar78] y [Mar05] cuando $f \in C^1(\mathbb{R}^n)$. Recordemos que $B_r(x) \subset \mathbb{R}^n$ denota a la bola compacta centrada en $x \in \mathbb{R}^n$ de radio $r > 0$, siendo $B_0^r(x)$ la bola abierta, respecto de una cierta norma $||\cdot||$ de \mathbb{R}^n.

Por RRF1, es posible encontrar una norma $||\cdot||$ y números reales $r > 0$ y $s > 1$ tales que

$$||f(x) - f(y)|| > s||x - y|| \quad \forall x, y \in B_r(z) \quad (4.6)$$

Una consecuencia de la propiedad (4.6) es que cualquier trayectoria regresiva de x_0 está bien definida (ya que cada uno de sus elementos sigue perteneciendo a la bola $B_r(z)$) y converge hacia z. Por lo tanto, renumerando los subíndices si fuera necesario, se puede asumir sin pérdida de generalidad que $x_0 \in B_0^r(z)$ y $f^k(x_0) \notin B_r(z)$ para todo $1 \leq k < M$.

La racionalidad de f y el hecho de que ninguno de los puntos x_0, \ldots, x_M sea un polo implican que f es de clase C^∞ en un entorno de cada uno de ellos. Además de la definición 4.2.1 tenemos que $|Df^M(x_0)| \neq 0$. Aplicando el teorema de la función inversa existirán un número real ε, $0 < \varepsilon < r$, y una función continua y biyectiva g definida en $B_\varepsilon(z)$ tales que:

$$\begin{align*}
g^{-1}(x) &= f^M(x) \quad \forall x \in g(B_\varepsilon(z)) \\
g(z) &= x_0
\end{align*}$$

Sea $Q = g(B_\varepsilon(z))$. Q es un entorno compacto de x_0. Reduciendo, si fuera necesario, el tamaño de ε podemos suponer que

$$f^k(Q) \subset \mathbb{R}^n \setminus B_r(z) \quad 1 \leq k < M \quad (4.7)$$

Denotemos por f^{-1} a la inversa local de f en un entorno de z. f^{-1} existe gracias a que $|Df(z)| \neq 0$. Además, la propiedad (4.6) implica que f^{-1} está bien definida en $B_\varepsilon(z)$, y $f^{-1}(B_\varepsilon(z)) \subset B_r(z)$. Por lo tanto, para cada $x \in B_r(z)$ la k-ésima iterada de f^{-1}, $f^{-k}(x)$, está bien definida para todo
CAPÍTULO 4. REPULSORES DE RETORNO FINITO

Entero positivo \(k \). Este argumento permite eludir el problema del conjunto prohibido inverso. Además, \(f^{-k}(B_r(z)) \subset B_r(z) \) y como consecuencia

\[
f^{-k}(Q) \subset B_r(z) \quad \forall k \geq 0 \tag{4.8}
\]

Otro corolario de la expansividad (4.6) es que \(f^{-k}(x) \to z \) si \(k \to \infty \) para todo \(x \in Q \). Sea \(J(x) \) un entero positivo tal que \(f^{-J(x)}(x) \in B_r(z) \). Por continuidad de \(f^{-J(x)} \) en \(x \), existe un \(\delta(x) > 0 \) de forma que \(f^{-J(x)}(B_{\delta(x)}(x)) \subset B_r(z) \).

Como \(Q \) es compacto, su recubrimiento abierto \(\{ B_{\delta(x)}(x) : x \in Q \} \) posee un subrecubrimiento finito \(\{ B_{\delta(y_1)}(y_1), \ldots, B_{\delta(y_L)}(y_L) \} \). Consideremos el entero positivo \(T \) dado por

\[
T = \max\{ J(y_i) : i = 1, \ldots, L \}
\]

Como \(f^{-T}(Q) \subset B_r(z) \), por la propiedad expansiva obtenemos

\[
f^{-k}(Q) \subset B_r(z) \quad \forall k \geq T \tag{4.9}
\]

Fijado \(k \geq T \), la función \(f^{-k} \circ g \) tiene las siguientes propiedades

- \(f^{-k} \circ g \) es continua y biyectiva
- \(f^{-k} \circ g(B_r(z)) \subset B_r(z) \)

Para cada \(k \) el teorema del punto fijo de Brouwer permite obtener un \(y_k \in B_r(z) \) tal que \(f^{-k} \circ g(y_k) = y_k \). Pues bien, este \(y_k \) es un punto periódico de la función \(f \) de periodo \(M + k \). Vamos a demostrarlo en dos pasos

- \(f^{M+k}(y_k) = y_k \)

 Usando que

 \[
f^k(y_k) = f^k(f^{-k} \circ g(y_k)) = g(y_k)
 \]

 y recordando que \(f^M = g^{-1} \), se tiene

 \[
f^{M+k}(y_k) = f^M \circ f^k(y_k) = f^M \circ g(y_k) = g^{-1} \circ g(y_k) = y_k
 \]

- El periodo de \(y_k \) es \(M + k \)

 Por definición, \(y_k \in B_r(z) \). Hemos visto que \(f^k(y_k) = g(y_k) \), luego \(f^k(y_k) \in Q \) y \(y_k \in f^{-k}(Q) \). Usando de nuevo la propiedad (4.6), tenemos que \(f'(y_k) \in f^{i-k}(Q) \subset B_r(z) \) para \(0 \leq i \leq k \).

 Además, usando (4.7) vemos que \(f'(y_k) \notin B_r(z) \) si \(k < i < M + k \). Por lo tanto \(y_k \) no puede tener un periodo menor que \(M + k \) ya que en caso contrario habría una periodicidad inferior a la real en la aparición de los conjuntos disjuntos \(B_r(z) \) y \(\mathbb{R}^n \setminus B_r(z) \) a los cuales las iteradas de \(y_k \) (mediante \(f \)) pertenecen.

Por tanto la propiedad LY1 se cumplirá cuando elijamos \(N = M + T \). \[\square\]
Observación: El teorema del punto fijo puede aplicarse en este contexto de funciones racionales gracias a que \(f^{-k} \) está bien definida en \(B_r(z) \) para cada entero positivo \(k \). Este hecho es una consecuencia de la propiedad de expansividad (4.6), la cual garantiza que ninguno de los puntos de la bola está contenido en el conjunto prohibido inverso de \(f \).

Sin embargo al estudiar en EDR las restantes características del caos Li-Yorke, LY2 y LY3, debemos ser muy cuidadosos con el conjunto prohibido directo de \(f \), es decir, con el hecho de que para ciertos \(x \in \mathbb{R}^n \) las iteradas \(f^k(x) \) pueden construirse solo un número finito de veces.

4.2.2. Itinerarios

Definición 4.2.3. Una sucesión \(\{I_k\}_{k=0}^{\infty} \) de conjuntos compactos de \(\mathbb{R}^n \) es un itinerario de la función \(f : \mathbb{R}^n \to \mathbb{R}^n \) si para cada entero positivo \(k \), \(I_k \subset \text{Dom} f \) y \(f(I_k) \supset I_{k+1} \).

El concepto de itinerario permite construir soluciones de una ED dada que se comportan de forma conveniente. La idea es que dado un itinerario \(\{I_k\}_{k=0}^{\infty} \) de una función \(f \), entonces es posible encontrar al menos un punto \(x_0 \) cuya trayectoria va pasando por cada uno de los conjuntos \(I_k \). Esta propiedad está demostrada en el caso continuo en, por ejemplo, [Dia76]. Las mismas ideas funcionan también en el caso racional, como veremos a continuación.

Sea \(\Omega \) el dominio de una función racional \(f \). \(\Omega \) es abierto, ya que su complemento \(\mathbb{R}^n \setminus \Omega \) formado por los polos de \(f \) es una unión finita de hypersuperficies. Por tanto dado un itinerario de \(f \), \(\{I_k\}_{k=0}^{\infty} \), cada \(f|_{I_k} \) será una función continua. Por inducción, puede construirse una sucesión de conjuntos compactos \(\{J_k\}_{k=0}^{\infty} \) tal que \(J_0 = I_0 \), \(J_k \supset J_{k+1} \) y \(f^k(J_k) \subset I_k \). Tomando \(J = \bigcap_{k=0}^{\infty} J_k \neq \emptyset \), cada punto \(x_0 \in J \) verificará \(f^k(x_0) \in I_k \) para todo \(k \geq 0 \). Llegamos así al siguiente resultado

Lema 4.2.4 (Propiedad de los itinerarios - caso racional). Sea \(f : \mathbb{R}^n \to \mathbb{R}^n \) una función racional. Sea \(\{I_k\}_{k=0}^{\infty} \) un itinerario de \(f \). Entonces existe un \(x_0 \in \mathbb{R}^n \) tal que \(f^k(x_0) \in I_k \), \(\forall k \geq 0 \).

Ahora tenemos todas las herramientas necesarias para completar la demostración del criterio de Marotto en EDR.

4.2.3. Pares de Li-Yorke

Proposición 4.2.5. Sea \(f : \mathbb{R}^n \to \mathbb{R}^n \) una función racional. Supongamos que \(f \) posee un repulsor de retorno finito. Entonces la EDR (4.1) verifica las
CAPÍTULO 4. REPULSORES DE RETORNO FINITO

propiedades $LY2$ y $LY3$, siendo por tanto caótica en el sentido de Marotto.

Demostración: Vamos a adaptar la prueba original de Marotto al contexto de las EDR.

Recapitulamos la notación empleada en la prueba de la proposición 4.2.2

- $x_0, x_1, \ldots, x_M = z$ son los puntos de la definición de RRF.
- Los enteros positivos M, T y N se construyen como en la prueba citada.
- La función g y el entorno compacto de $x_0, Q = g(B_{e}(z))$ se definen del mismo modo.

Ahora consideramos los siguientes conjuntos compactos

$$U = f^{M-1}(Q) \quad V = B_{e}(z)$$

Separamos la demostración en dos partes.

Prueba de $LY2$

El conjunto S de la definición 4.1.1 se construye mediante itinerarios sobre los conjuntos U y V. Veamos antes algunas propiedades de tales conjuntos compactos.

- $U \cap V = \emptyset$
 Recordemos que $V \subset B_{r}(z)$ y $U \subset \mathbb{R}^n \setminus B_{r}(z)$.

- $V \subset f^N(U)$
 Obsérvese que

 $$f(U) = f(f^{M-1}(Q)) = f^{M}(Q) = f^{M} \circ g(B_{e}(z)) = B_{e}(z)$$

 Por tanto

 $$f^{N}(U) = f^{N-1}(f(U)) = f^{N-1}(B_{e}(z))$$

 Como además $B_{e}(z)$ fue elegida de forma que f es expansiva sobre ella, entonces $f^{N-1}(B_{e}(z)) \supset B_{e}(z)$. En particular, $f^{N}(U) \supset B_{e}(z) = V$.

- $U, V \subset f^{N}(V)$
 El contenido $V \subset f^{N}(V)$ es consecuencia de la expansividad. Además la definición de T implica $f^{-k}(Q) \subset B_{e}(z)$, $\forall k \geq T$. Eligiendo $k = T + 1$, se tendrá lo siguiente

 $$f^{-T-1}(Q) \subset B_{e}(z)$$

 y aplicando N veces la función f en ambos lados de la relación anterior, obtenemos $U = f^{M-1}(Q) = f^{N-T-1}(Q) \subset f^{N}(B_{e}(z)) = f^{N}(V)$.
4.2. CAOS MAROTTO

La función \(h = f^N \) es racional. Usando las propiedades de \(U \) y \(V \), vemos que cada sucesión \(\{E_k\}_{k=0}^{+\infty} \) definida de manera que para cada \(k \geq 0 \)

- \(E_k = U \) o \(E_k = V \)
- si \(E_k = U \), entonces \(E_{k+1} = V \)

es un itinerario de la función \(h \). En el resto de la prueba refinaremos este tipo de itinerarios para construir conjuntos verificando las propiedades LY2 y LY3.

Sea \(E = \{E_k\}_{k=0}^{+\infty} \) un itinerario tal que \(E_k = U, V \) y si \(E_k = U \) entonces \(E_{k+1} = V \). Sea \(R(E, k) \) el número de elementos del conjunto \(\{E_1, E_2, \ldots, E_k\} \) iguales a \(U \). Afirmamos que dado un número real \(w \in (0, 1) \), existe una sucesión \(E^w = \{E_k^w\}_{k=0}^{+\infty} \) del tipo anterior tal que:

\[
\lim_{k \to +\infty} \frac{R(E^w, k^2)}{k} = w
\]

Por el axioma de elección, es posible obtener una familia no numerable de tales itinerarios \(B = \{E^w : w \in (0, 1)\} \). Usando el lema 4.2.4, para cada \(E^w \in B \) existirá un \(x_w \in U \cup V \) tal que \(h^k(x_w) \in E^w_k, \forall k \geq 1 \). Como \(U \cap V = \emptyset \), bastará con que dos itinerarios \(E^w \) y \(E^{w'} \) difieran en un solo elemento para poder asegurar que los puntos asociados a ellos \(x_w \) y \(x_{w'} \) son distintos. Por lo tanto hemos construido el siguiente conjunto no numerable

\[
S_0 = \{x_w : w \in (0, 1), E^w \in B\} \tag{4.10}
\]

Obsérvese que el lema 4.2.4 también implica que \(h^k(x_w) \) está bien definida para todo \(k \geq 0 \). Esto es, \(x_w \) no pertenece al conjunto prohibido de \(h \).

Sea \(S_h = \{h^k(x_w) : k \geq 0, x_w \in S_0\} \). \(S_h \) verifica lo siguiente

- \(S_h \) es invariante: \(h(S_h) \subset S_h \).
 - Por definición \(S_h \) contiene a todas las iteradas por \(h \) de cualquiera de sus puntos.

- \(S_h \) no contiene puntos periódicos.
 - El conjunto \(S_0 \) no puede tener periodos. Si suponemos lo contrario, que un cierto \(x_w \in S_0 \) es un p-periodo, entonces \(E^w \) es un itinerario p-periódico (con periodo no necesariamente primo). Además la cantidad \(l \) de elementos \(U \) en \(\{E_1, E_2, \ldots, E_p\} \) debe ser positiva, puesto que \(w > 0 \).
 - La cantidad de elementos \(U \) en \(\{E_1, E_2, \ldots, E_{p^i}\} \) será igual a \(l \cdot i \), y en \(\{E_1, E_2, \ldots, E_{(p^i)^2}\} \), igual a \(l \cdot p \cdot i^2 \). Por lo tanto

\[
w = \lim_{pi \to +\infty} \frac{R(E^{(p \cdot i)^2}, (p \cdot i)^2)}{p \cdot i} = \lim_{pi \to +\infty} \frac{lp^i}{pi} = +\infty
\]
lo que constituye una contradicción con el hecho de que \(w \in (0, 1) \).
Si \(S_0 \) no tiene periodos, \(S_h \) no los puede tener tampoco.

- Si \(x, y \in S_h \) son distintos, existe una cantidad infinita de enteros positivos \(k \) tal que \(h^k(x) \in U \) y \(h^k(y) \in V \). Como la distancia entre los conjuntos \(U \) y \(V \) es positiva, este hecho implica que

\[
\lim_{k \to +\infty} |h^k(x) - h^k(y)| > 0
\]

Por último, sea \(S = \{ f^k(x) : k \geq 0, x \in S_h \} \). Este nuevo conjunto hereda las características de \(S_h \) y realiza la definición de LY2 para la función \(f \).

Prueba de LY3
Como \(f \) es expansiva en \(B_\varepsilon(z) \), \(h \) también lo será en ese conjunto. Dado \(k \geq 0 \) denotemos por \(D_k \) al conjunto \(h^{-k}(B_\varepsilon(z)) \). Remarcamos que el carácter racional de \(f \) no impide la buena definición de las iteradas inversas \(h^{-k} \) gracias a la expansividad. Como \(h^{-1} \) es contractiva, dado \(\delta > 0 \) existirá un entero \(J = J(\delta) \) de manera que si \(k \geq J \) entonces \(D_k \subset B_\delta(z) \).
Ahora construiremos el segundo refinamiento de los itinerarios. Sea \(E^w = \{ E^w_k \}_{k=0}^{+\infty} \) una sucesión como las definidas en el apartado anterior verificando además lo siguiente

- Si \(E^w_k = U \), entonces \(k \) es un cuadrado, \(k = m^2 \).
- Si \(E^w_{m^2} = U \) y \(E^w_{(m+1)^2} = U \), entonces \(E^w_{m^2+i} = D_{2m-1} \) para cada \(i = 1, 2, \ldots, 2m \).
- En otro caso, \(E^w_k = V \)

Es sencillo verificar que un tal \(E^w \) es un itinerario de \(h \). Aplicando de nuevo el lema 4.2.4 se obtienen puntos \(x_w \in U \cup V \) tales que \(h^k(x_w) \in E^w_k \forall k \geq 0 \). Sea \(S_1 = \{ x_w : w \in (\frac{4}{5}, 1) \} \). Entonces

- \(S_1 \) es no numerable
- \(S_1 \subset S_h \subset S \), ya que \(D_k \subset V \forall k \geq 0 \).
- Dados números reales distintos \(s, t \in (\frac{4}{5}, 1) \), existe una cantidad infinita de enteros positivos \(m \) tales que \(h^k(x_s) \in E^t_k = D_{2m-1} \) y \(h^k(x_t) \in E^t_k = D_{2m-1} \)

Esta última propiedad se demuestra en el lema 4.2.6 e implica lo siguiente

\[
\lim_{k \to +\infty} \inf |h^k(x_s) - h^k(x_t)| = 0
\]
lo que demuestra también que el límite inferior de las iteradas de f de los puntos x_s y x_t es cero. Queda así probada la propiedad LY3.

\[\]

Lema 4.2.6. Si $s, t \in (4/5, 1)$, entonces los itinerarios E^s y E^t de x_s y x_t respectivamente coinciden una infinidad de veces en conjuntos de la forma $D_{2m-1} = E^{s}_{m^2+1} = E^{t}_{m^2+1}$.

Demonstración: Sea $\#X$ el cardinal de un conjunto arbitrario X. Como $s, t \in (4/5, 1)$, existirá un $K \in \mathbb{N}$ tal que si $k \geq K$ entonces
\[
\begin{align*}
R(E^s, k^2) &\geq \frac{39}{50}k \\
R(E^t, k^2) &\geq \frac{39}{50}k
\end{align*}
\]

Esto implica que, al menos en proporción $\frac{28}{50}$, $E^s_i = E^t_i = U$, siendo i un cuadrado perfecto en $\{1, 2, \ldots, k^2\}$.

Afirmamos tal cosa puesto que si consideramos las colecciones
\[
\begin{align*}
A_s &= \{ i : i \text{ es un cuadrado perfecto en } \{1, 2, \ldots, k^2\}, E^s_i = U \} \\
B_s &= \{ i : i \text{ es un cuadrado perfecto en } \{1, 2, \ldots, k^2\}, E^s_i = V \} \\
A_t &= \{ i : i \text{ es un cuadrado perfecto en } \{1, 2, \ldots, k^2\}, E^t_i = U \} \\
B_t &= \{ i : i \text{ es un cuadrado perfecto en } \{1, 2, \ldots, k^2\}, E^t_i = V \}
\end{align*}
\]

entonces $\#A_s \geq \frac{39}{50}k$ implica que $\#B_s \leq \frac{11}{50}k$ y otro tanto ocurre con $\#A_t$ y $\#B_t$. Por lo tanto
\[
\#(A_s \setminus B_t) \geq \frac{39}{50}k - \frac{11}{50}k = \frac{28}{50}k
\]
y este último conjunto está formado precisamente por los índices en los que se dan las coincidencias $E^s_i = E^t_i = U$.

Sean
\[
\begin{align*}
C &= \{ i : i \text{ es un cuadrado perfecto en } \{1, 2, \ldots, k^2\}, E^s_i = E^t_i = U \} \\
D &= \{ i : i \text{ es un cuadrado perfecto en } \{1, 2, \ldots, k^2\}, i \notin C \}
\end{align*}
\]

Acabamos de ver que $\#C \geq \frac{28}{50}k$. Por tanto $\#D \leq \frac{22}{50}k$. Quitemos a C un elemento si su consecutivo no está en C. Al hacer esto estamos considerando un elemento (el consecutivo) de D. Así que todas estas quitas son, a lo más, iguales al cardinal de D. Esto quiere decir que el cardinal de los pares de cuadrados consecutivos iguales a U es, como poco, $\#(C \setminus D) = \frac{28}{50}k - \frac{22}{50}k = \frac{6}{50}k$. Tal proporción indica que en E^s y E^t hay una infinidad de pares de cuadrados consecutivos iguales a U en las dos sucesiones a la vez, y por la definición que se ha hecho de tales sucesiones, habrá también una infinidad de coincidencias en los términos intermedios entre esos cuadrados consecutivos, los conjuntos D_{2m-1} del enunciado.
CAPÍTULO 4. REPULSORES DE RETORNO FINITO

4.3. Ejemplos numéricos

En esta sección vamos a justificar numéricamente e ilustrar los resultados anteriores con dos ejemplos. Remarcamos que trabajaremos en el contexto de las funciones discontinuas, lo que no es muy habitual en la literatura. Comenzamos estudiando la siguiente EDR

\[x_{k+1} = \frac{1}{x_k^2 - 1} \quad k \geq 0 \quad x_0 \in \mathbb{R} \quad (4.11) \]

Al aplicar la definición 4.2.1 y el teorema 7 cuando \(n = 1 \) es útil el hecho de que aquellos intervalos donde el módulo de la derivada es mayor que la unidad son expansivos. Se simplifica entonces la búsqueda de los RRF, como veremos en la demostración del siguiente lema. Llamaremos intervalo o entorno repulsor o crítico al entorno del equilibrium que posea la propiedad expansiva.

Lema 4.3.1. La EDR (4.11) tiene un RRF.

Demostración: La función \(f(x) = \frac{1}{x^2 - 1} \) tiene como único equilibrium la raíz real del polinomio \(x^3 - x - 1 \), esto es

\[z = \frac{\sqrt[3]{9} - \sqrt[3]{69} + \sqrt[3]{9 + \sqrt{69}}}{\sqrt[3]{18}} \approx 1,32472 \quad (4.12) \]

Sea \(g(x) = f'(x) = \frac{-2x}{(x^2 - 1)^2} \). El equilibrium es un repulsor, ya que \(|g(z)| \approx 4,64944 > 1 \).
El mayor intervalo repulsor está contenido entre la asíntota vertical \(x = 1 \) de la función \(f \) y el punto \(a \approx 1,68377 \) en el que \(g(x) \) tiene módulo igual a uno. \(a \) se estima calculando numéricamente las raíces del polinomio \(x^4 - 2x^2 - 2x - 1 \).

Para demostrar que \(z \) es un RRF necesitamos un punto del intervalo \((1, a)\) tal que \(z \) pertenezca a la solución de (4.11) generada por dicho punto. Para localizarlo usamos la iteración inversa de (4.11) siguiente

\[
x_{k+1} = \pm \sqrt{1 + \frac{1}{x_k}}
\]

(4.13)

Esta es una iteración multivaluada. Si consideramos las funciones \(h_+(x) = \sqrt{1 + \frac{1}{x}} \) y \(h_-(x) = -\sqrt{1 + \frac{1}{x}} \), entonces vemos que

\[
x_0 = h_+ \circ h_+ \circ h_+ \circ h_-(z) \approx 1,25571 \in (1, a)
\]

Por tanto la sucesión \(x_0, f(x_0), f^2(x_0), f^3(x_0), f^4(x_0) = z \) realiza la definición de RRF. Ver figura 4.3.

\[\square\]

\[\text{Figura 4.3: Diagrama de tela de araña ilustrando el RRF de (4.11).}\]

Como consecuencia, obtenemos

Corolario 4.3.2. La EDR (4.11) es caótica en el sentido de Marotto.
Observación: Otra forma de hallar el punto x_0 consiste en representar todas las iteradas inversas del equilibrium z. El inconveniente de trabajar con radicandos negativos en (4.13) se solventa mediante el uso de números complejos. Esta técnica se ilustra en la figura 4.4. En ella hemos representado también el eje real, el RRF y un intervalo crítico, esto es, un entorno de z donde la derivada de f es mayor que uno en módulo. En la ampliación mostrada en la figura 4.5 vemos claramente cómo la trayectoria interseca al intervalo crítico en varios puntos.

Figura 4.4: Iteradas inversas, en \mathbb{C}, del equilibrium de la EDR (4.11).

Observación: Si calculamos numéricamente las soluciones de la ecuación (4.11) obtenemos convergencia de todas ellas hacia el $tres ciclo \infty \rightarrow 0 \rightarrow -1 \rightarrow \infty \ldots$, contradiciendo el resultado anterior. Esto se observa, por ejemplo, en la figura 4.6.

Por otro lado, la determinación aproximada de los periodos (esto es, el cálculo mediante métodos numéricos de las raíces de $f^k(x) = x$ para cada k) corrobora el corolario 4.3.2, ya que el número de periodos crece rápidamente conforme se toman valores de k cada vez más altos. Así queda ilustrado en la figura 4.7 en la que, para cada valor de k hemos dibujado verticalmente las soluciones de $f^k(x) = x$. Entre estas soluciones hay algunos elementos del conjunto prohibido, pero en cualquier caso se observa el crecimiento citado.
4.3. EJEMPLOS NUMÉRICOS

Figura 4.5: Detalle del intervalo crítico correspondiente a la EDR (4.11).

Tales estimaciones plantean la siguiente cuestión: ¿estos comportamientos se explican simplemente por la falta de precisión de los métodos numéricos o en cambio revelan que el conjunto revuelto es despreciable en la práctica (por ejemplo, que dicho conjunto tiene medida nula)?

A continuación vamos a extender lo dicho a la siguiente familia de EDR

\[x_{k+1} = \frac{1}{x_k^2 - r} \quad r \in \mathbb{R} \]

Si \(r < 0 \), la función de iteración es continua y por tanto estamos en el contexto del teorema de Marotto original. Si \(r \geq 0 \), gracias al teorema 7 habrá comportamiento caótico cuando pueda localizarse un RRF.

Comenzamos con el caso \(r = 0 \). La ecuación en diferencias

\[x_{k+1} = \frac{1}{x_k^2} \]

tiene entonces como término general a \(x_k = x_0^{(-1)^k} \). Por tanto hay dos situaciones desde el punto de vista dinámico: o bien la solución oscila entre 0 e \(\infty \), o bien la solución es finalmente constante (esto es, constante a partir de cierto subíndice). Esto implica que no hay caos Marotto cuando \(r = 0 \).

Obsérvese además que el equilibrio \(\bar{x} = 1 \) es un repulsor, pero no un RRF. En cambio, esta misma ecuación mirada en el dominio \(\mathbb{C} \) es caótica en el conjunto \(S^1 = \{ z \in \mathbb{C} : |z| = 1 \} \) y en dicho dominio \(\bar{x} \) puede contemplarse...
como un tipo de RRF.

Vamos a exponer cómo están distribuidos los puntos fijos de la ecuación (4.14), de manera que facilitemos el estudio numérico de estas ecuaciones. La función de iteración
\[f_r(x) = \frac{1}{x^2 - r} \]
se muestra en la figura 4.8. Obviamente solo en el tercer caso puede tener la función más de un punto fijo. Esto ocurre cuando
\[f_r(x) = x \text{ (condición de equilibrium)} \] y
\[f'_r(x) = 1 \text{ (condición de tangencia con la bisectriz)} \], lo que lleva al sistema

\[
\begin{align*}
 x &= \frac{1}{x^2 - r} \\
 (x^2 - r)^2 + 2x &= 0
\end{align*}
\]

(4.16)

Aplicando la resultante al sistema (4.16), hallamos el valor (ver apéndice C para detalles sobre el método de cálculo)

\[r = \frac{3}{\sqrt{4}} \approx 1,88988 \]

Por otra parte la iteración inversa del candidato a RRF debe caer en el campo real. Considerando la iteración inversa compuesta por las funciones

\[
\begin{align*}
 h_+(x) &= \sqrt{\frac{1}{x} + r} \\
 h_-(x) &= -h_+(x)
\end{align*}
\]

(4.17)
4.3. EJEMPLOS NUMÉRICOS

Figura 4.7: Primeros periodos de la EDR (4.11).

y puesto que \(h_+(\bar{x}) = \bar{x} \) para cualquier equilibrium \(\bar{x} \) positivo, entonces el radicando de \(h_+ \circ h_-(x) = \sqrt{\frac{1}{\frac{1}{2}+r+r}} \) debe ser también positivo. Pero si \(\bar{x} \) es un punto fijo, entonces

\[
h_+ \circ h_-(\bar{x}) = \sqrt{2r - \bar{x}^2}
\]

Aplicando la resultante al sistema formado por la condición de punto fijo y de radicando nulo siguiente

\[
\begin{align*}
 x &= \frac{1}{x^2+r} \\
 2r - x^2 &= 0
\end{align*}
\]

(4.18)

hallamos que \(r = \frac{1}{\sqrt{2}} \approx 0.707107 \).

En cuanto al caso en el que el parámetro sea negativo, el método de la resultante aplicado a la condición de punto fijo y a la de derivada igual a
Figura 4.8: Funciones $f_r(x) = \frac{1}{x^2-r}$.

menos uno:

$$\begin{align*}
 x &= \frac{1}{x^2-r} \\
 -\frac{2x}{(x^2-r)^2} &= -1
\end{align*}$$

nos devuelve $r = \frac{-1}{\sqrt{4}} \approx -0.62996$.

Los tres cálculos precedentes nos llevan al siguiente lema cuya demostración es mecánica.

Lema 4.3.3 (Equilibria). La EDR $x_{k+1} = \frac{1}{x_k^2-r}$ tiene:

1. Un único punto fijo no repulsor si $r \leq -\frac{1}{\sqrt{4}}$

2. Un único punto fijo repulsor si $-\frac{1}{\sqrt{4}} < r < \frac{1}{\sqrt{2}}$. Además, en este caso las iteradas inversas del punto fijo son triviales o están incluidas en el dominio complejo. Por tanto dicho punto no es un RRF.

3. Un único punto fijo repulsor si $\frac{1}{\sqrt{2}} \leq r < \frac{3}{\sqrt{4}}$

4. Dos o tres puntos fijos si $r \geq \frac{3}{\sqrt{4}}$, siendo el mayor de ellos siempre un repulsor.
4.3. EJEMPLOS NUMÉRICOS

Pruebas numéricas muestran que en los dos últimos casos del lema 4.3.3 existe un RRF para cada valor de r. Dicha situación queda ilustrada en el gráfico 4.9 donde se muestra el número de elementos pertenecientes al entorno repulsor del equilibrio después de cinco interaciones inversas de éste. El zoom corrobora que el punto $\frac{1}{\sqrt{2}} \approx 0,79370$ marca la frontera a partir de la cual existe un RRF para cada r.

Estas simulaciones indican además que solo son necesarias cuatro iteraciones inversas para demostrar numéricamente la presencia de RRF. Basándonos en ellas, proponemos la siguiente conjetura: la ecuación en diferencias (4.14) es caótica en el sentido de Marotto cuando $r \geq \frac{1}{\sqrt{2}}$.

En la figura 4.10 se han dibujado las trayectorias inversas en \mathbb{C} del equilibrio para diversos valores del parámetro. Cuando intersecan, en más de un punto, al intervalo crítico (representado con trazo grueso) se constata empíricamente la presencia de RRF y por tanto de caos. Además estos gráficos constituyen estimaciones numéricas de los conjuntos prohibidos en la familia (4.14), como veremos en el capítulo 6.

Consideremos a continuación la familia de EDR

$$x_{k+1} = \frac{1}{rx_k(1-x_k)} \quad r \in \mathbb{R} \setminus \{0\} \quad (4.20)$$

donde r es un número real no nulo. Llamamos a estas EDR ecuaciones logísticas inversas dependientes del parámetro r. Según los valores del parámetro, los puntos fijos son (ver figura 4.11).

- Un único punto fijo negativo si $r < \frac{27}{4}$
- Dos puntos fijos si $r = \frac{27}{4}$
Figura 4.10: Órbita inversa del mayor punto fijo real para diversos valores del parámetro r.

- Tres puntos fijos si $r > \frac{27}{4}$

La diferencia con el modelo (4.14) es que aquí no parece haber RRF. En las pruebas numéricas las iteraciones inversas de los repulsores llevan, tras un número finito de pasos, al campo complejo sin pasar por el entorno crítico (figura 4.12). Sin embargo los gráficos de dichas iteradas sugieren una dinámica caótica. La cuestión pendiente es saber si dicho caos se circunscribe a los números complejos o si también toca a la parte real de la ecuación en diferencias.
Figura 4.11: Funciones \(f_r(x) = \frac{1}{rx_k(1-x_k)} \).

Figura 4.12: Iteradas inversas del equilibrio negativo de \(f_r(x) = \frac{1}{rx_k(1-x_k)} \) para los valores \(r = 2, 5, 4 \) y \(r = 7 \).
Capítulo 5

Perturbaciones en Ecuaciones en Diferencias Racionales
5.1. Introducción

Tras ver en el capítulo anterior cómo se adaptan a las EDR las definiciones de caos y RRF y la validez del teorema principal de Marotto en [Mar78], ahora vamos a profundizar en el estudio de las EDR caóticas cuando la dimensión n es mayor que uno. Aunque el teorema 7 se enuncia para cualquier $n \geq 1$, la búsqueda de RRF si $n \geq 2$ no es sencilla ni siquiera numéricamente. Esto motiva un acercamiento distinto al problema, consistente en ver qué ocurre con sistemas unidimensionales cuando son usados para construir modelos en dimensiones superiores y cuando, adicionalmente, son perturbados al introducir en ellos parámetros.

De hecho, parte del interés en demostrar la existencia de RRF en sistemas unidimensionales de la forma $x_{k+1} = f(x_k)$ reside en que en muchos casos estos pueden verse como modelos bidimensionales escribiéndolos como $F(x_k, x_{k+1}) = (f(x_k), x_k)$. En [Mar79] se prueba que si la ecuación en diferencias generada por f tiene un RRF, entonces el sistema dinámico asociado a la función $F(x, y) = (f(x), x)$ posee una órbita transversal homoclínica y por lo tanto se puede aplicar el teorema principal de [Sma67], obteniendo la existencia de caos (en un sentido aun más fuerte que el de Marotto) sobre un conjunto de Cantor. A partir de aquí los sistemas bidimensionales pueden ser perturbados, lo que permite el estudio de modelos más complejos. El comportamiento de tales sistemas perturbados lo estudia también Marotto en [Mar79] en el caso diferenciable. Esencialmente su resultado afirma que, cuando la perturbación es suficientemente pequeña, el nuevo sistema hereda las características del original (en particular la cualidad caótica si la tenía). Es razonable, por tanto, tratar de extender tales ideas al caso racional.

En el capítulo expondremos con detalle los distintos teoremas referidos al caso continuo, proponiendo, sin demostración, su validez para las EDR. Esto nos obligará, en la segunda sección, a un repaso del concepto de órbita homoclínica y de su relación con los RRF y el caos. Después realizaremos un estudio numérico de dos problemas. Primero, el de las perturbaciones caóticas de la familia (del capítulo 4) $x_{k+1} = \frac{1}{x_k^2 - r}$ del tipo

$$x_{k+1} = \frac{1 + b \cdot g(x_{k-1})}{x_k^2 - r} \tag{5.1}$$

donde b es un parámetro real y g una función diferenciable. En el capítulo 4 (ver también [BCara]) conjecturamos que el sistema $x_{k+1} = \frac{1}{x_k^2 - r}$ es caótico si
5.2. ÓRBITAS TRANSVERSALES HOMOCLÍNICAS Y RRF

$r > \frac{1}{\sqrt{2}}$. De ahí que la ecuación (5.1) probablemente lo será para este rango de valores de r siempre que b sea suficientemente pequeño y g sea una función de clase adecuada.

El segundo problema consistirá en perturbar la familia $x_{k+1} = \frac{\lambda x_k}{(1+x_k)^2}$, lo que permitirá establecer una estimación de algunos parámetros del modelo de Hassell y Comins (ver [HC76]) para los cuales hay caos.

5.2. Órbitas transversales homoclínicas y Repulsores de Retorno Finito

Vamos a introducir ahora las definiciones necesarias para enunciar el teorema de Smale-Birkhoff ([Sma65]). En él se afirma que la sola presencia de un tipo especial de trayectoria llamada órbita transversal homoclínica implica que una ED tiene una clase de comportamiento caótico más fuerte que el caos Li-Yorke o Marotto estudiados en el capítulo 4. Después veremos algunos de los resultados de [Mar79] que justificarán la introducción de este resultado.

Definición 5.2.1 ([Wig03]). Sea $F \in C^1(\mathbb{R}^n)$ un difeomorfismo. Un punto fijo $x_0 \in \mathbb{R}^n$ de F es hiperbólico si ninguno de los valores propios de $DF(x_0)$ tiene módulo igual a la unidad.

Definición 5.2.2 ([Wig03]). Sea $F \in C^1(\mathbb{R}^n)$ un difeomorfismo y sea x_0 un punto fijo de F. Se llama subespacio estable de x_0 al subespacio vectorial generado por vectores propios de $DF(x_0)$ tales que sus valores propios asociados tengan módulo menor que la unidad. Se llama variedad estable de x_0, denotada $W^s(x_0)$, a una variedad invariante tangente al subespacio estable, de la misma dimensión que aquel y conteniendo al punto x_0. Si a los valores propios escogidos se les exige tener módulo mayor que la unidad, se obtienen las definiciones de subespacio inestable de x_0 y de variedad inestable de x_0, esta última tangente al subespacio inestable y denotada como $W^u(x_0)$.

La propiedad fundamental de $W^s(x_0)$ y $W^u(x_0)$ es que si una condición inicial pertenece a la variedad estable, entonces la órbita progresiva (forward orbit) generada a partir de ella converge hacia el punto fijo, mientras que en el caso de la variedad inestable es la órbita regresiva (backward orbit) la que tiene esta propiedad. Así se define escuetamente, por ejemplo, en [Mro85].

Observación: Debemos remarcar que estas definiciones son válidas en el contexto de difeomorfismos, que es el adecuado para describir el teorema
de Smale-Birkhoff. En las EDR obviamente la función de iteración no es en
general biyectiva. Entonces es más adecuada la propuesta de [BC92] para
funciones sobre el intervalo (fácilmente adaptable a funciones vectoriales):

Definición 5.2.3. Sea $f : I \to I$ una aplicación continua definida de un
intervalo $I \subset \mathbb{R}$ en sí mismo, y sea x_0 un punto fijo de f. La variedad
inestable de f en x_0 es

$$W^u(x_0) = \bigcap_{\varepsilon > 0} \bigcup_{k \geq 0} f^k(x_0 - \varepsilon, x_0 + \varepsilon) \quad (5.2)$$

La variedad estable de f en x_0 es

$$W^s(x_0) = \{ x \in I : \lim_{k \to +\infty} f^k(x) = x_0 \} \quad (5.3)$$

Existen definiciones análogas para el caso de órbitas periódicas.

Definición 5.2.4 ([Wig03]). Sea $x_0 \in \mathbb{R}^n$. Sean M y N dos variedades
diferenciables de \mathbb{R}^n. Se dice que M y N son transversales con respecto a x_0 si
o bien $x_0 \notin M \cap N$, o bien x_0 pertenece a la intersección de ambas variedades y
además $T_{x_0}M + T_{x_0}N = \mathbb{R}^n$, donde $T_{x_0}M$ y $T_{x_0}N$ son los respectivos espacios
tangentes de M y N en x_0.

Un ejemplo de variedades no transversales es el formado por la gráfica de
la función $f(x) = x^3$ y el eje x en el punto $x_0 = 0$. En cambio, la gráfica de
cualquier función lineal de pendiente no nula y la gráfica de la función cúbica
se cortan transversalmente.

Definición 5.2.5 ([Wig03]). Sea $F \in C^1(\mathbb{R}^n)$ un difeomorfismo. Sea x_0
un punto fijo hiperbólico de F. Un punto homoclínico con respecto a x_0 es cual-
quier elemento de la intersección de las variedades estable e inestable de x_0. Si
además dichas variedades intersecan en tal punto transversalmente, el punto
se denomina punto transversal homoclínico. La trayectoria generada por él
es una trayectoria transversal homoclínica u órbita transversal homoclínica.

Observación: Otra noción de homoclinicidad, en este caso para aplicacio-
nes continuas (no necesariamente diferenciables) en el intervalo, es la siguien-
te

Definición 5.2.6 ([BC92]). Sea I un intervalo de la recta real. Sea $f : I \to I$
una función continua. Un punto $y \in I$ es homoclínico si existe un punto fijo
$z \neq y$ tal que $f^k(y) = z$ para cierto $k \geq 1$ perteneciendo además y a la
variedad inestable de f en z según la definición 5.2.3.
Veamos ahora el importante concepto de conjugación topológica.

Definición 5.2.7 ([BC92]). Sean \(f : X \to X \) y \(g : Y \to Y \) dos aplicaciones continuas definidas sobre sendos espacios métricos \(X \) e \(Y \). Se dice que \(f \) y \(g \) son topológicamente conjugadas si existe un homeomorfismo \(h : X \to Y \) tal que \(h \circ f(x) = g \circ h(x) \) \(\forall x \in X \). En tal caso \(h \) se denomina una conjugación topológica.

Si \(h \) es una aplicación continua sobreyectiva, entonces se dice que \(h \) es una semiconjugación topológica y que \(g \) es un factor de \(f \).

La idea es que cuando dos sistemas son topológicamente conjugados entonces sus propiedades dinámicas y topológicas se conservan a través de la aplicación \(h \).

El ejemplo más básico de sistema dinámico caótico es el siguiente. Sea \(\Sigma \) el conjunto de las sucesiones de la forma \(\alpha = (a_1, a_2, \ldots) \) donde \(a_k = 0, 1 \) para todo \(k \in \mathbb{N} \). Dados dos elementos de \(\Sigma \), \(\alpha = (a_1, a_2, \ldots) \) y \(\beta = (b_1, b_2, \ldots) \) definimos

\[
d(\alpha, \beta) = \begin{cases}
0 & \text{si } \alpha = \beta \\
\frac{1}{2^m} & \text{si } m \text{ es el menor entero positivo tal que } a_m \neq b_m
\end{cases}
\]

entonces \((\Sigma, d) \) es un espacio métrico con las siguientes propiedades

1. Es compacto.
2. No posee puntos aislados.
3. Es totalmente desconectado, es decir, dados dos puntos distintos de \(\Sigma \) existen dos conjuntos cerrados y abiertos de intersección vacía contenido a cada uno de ellos (o, equivalentemente, si las únicas componentes conexas son los subconjuntos unipuntuales).

En general un espacio métrico con las propiedades 1,2 y 3 se dice que es un conjunto de Cantor.
La función desplazamiento, o en terminología inglesa *shift*, es \(\sigma : \Sigma \to \Sigma \) tal que \(\sigma(a_1, a_2, \ldots) = (a_2, a_3, \ldots) \). Se trata de una función continua cuyo sistema dinámico asociado \((\Sigma, \sigma)\) tiene entre otras las siguientes peculiaridades:

- Existen periodos de todos los órdenes.
- Tiene un conjunto denso de órbitas periódicas.
- Posee una órbita densa.
- Hay sensibilidad respecto de las condiciones iniciales (es decir, existe una cota \(\varepsilon \) tal que para todo \(\alpha \in \Sigma \) en cualquier entorno \(U \) de \(\alpha \) es posible encontrar otro elemento \(\beta \) y un entero positivo \(N \) de forma que \(d(\sigma^N(\alpha), \sigma^N(\beta)) > \varepsilon \)).
- Hay transitividad topológica (esto es, dados dos abiertos \(U \) y \(V \) cualesquiera de \(\Sigma \), existe un entero positivo \(N \) tal que \(\sigma^N(U) \cap V \neq \emptyset \)).

El sistema dinámico \((\Sigma, \sigma)\) puede ampliarse considerando las sucesiones biinfinitas de la forma \(\alpha = (\ldots, a_{-1}, a_0, a_1, \ldots) \), obteniendo propiedades análogas a las mencionadas. Con este nuevo sistema tenemos todos los elementos para enunciar el teorema de Smale-Birkhoff, el cual afirma básicamente que la existencia de una trayectoria transversal homoclínica implica que la función desplazamiento iterada un número finito de veces es un factor del sistema dinámico de partida. Esta es la noción básica de modelo caótico según la propuesta de \([BC92]\).

Teorema 8 (Smale-Birkhoff). *Sea \(F \) un difeomorfismo de clase \(C^1(\mathbb{R}^n) \). Si \(F \) posee una órbita transversal homoclínica, entonces existen un conjunto de Cantor en \(\mathbb{R}^n \) y un entero positivo \(N \) tales que \(F^N \) es, sobre dicho conjunto, topológicamente conjugada al automorfismo desplazamiento.*

La demostración, definiciones y otros detalles pueden consultarse por ejemplo en \([Mro85]\), \([Sma65]\) y \([Wig03]\). Aquí es importante remarcar que en el conjunto de Cantor, \(F \) tiene un conjunto denso de órbitas periódicas y una órbita densa. Vemos pues una cierta analogía entre la existencia de órbitas transversales homoclínicas y la de repulsores de retorno finito. De hecho un RRF puede verse como un caso particular de punto fijo con órbita transversal homoclínica si extendemos la noción de homoclínica a aplicaciones no necesariamente bijecccivas. Para verlo, consideremos la variedad inestable en \(\mathbb{R}^n \) intersecando transversalmente a la variedad estable (cero-dimensional) compuesta únicamente por el punto fijo \(z \), lo que da lugar a la
órbita \((x_k)_{k=-\infty}^{+\infty}\) donde \(x_M = z\) y \(x_k \to z\) si \(k \to -\infty\).

Aunque ambos tipos de comportamiento homoclínico dan lugar a caos, hay diferencias prácticas entre ellos, especialmente en lo que se refiere a la computación. En general los RRF son más fáciles de localizar numéricamente que las órbitas homoclínicas.

Las consideraciones realizadas hasta aquí pretenden poner de manifiesto la complejidad dinámica que se da cuando es posible localizar una trayectoria homoclínica. Ahora vamos a regresar al contexto de las ED, poniendo de relieve la relación entre homoclinicidad y repulsores de retorno finito.

Para ello consideremos a continuación un problema bidimensional de la forma

\[
F(x, y) = (f(x), x)
\]

siendo \(f : \mathbb{R} \to \mathbb{R}\) una función diferenciable. Marotto demuestra la siguiente relación entre dicho problema y el unidimensional

\[
x_{k+1} = f(x_k)
\]

Teorema 9 ([Mar79]). Si el problema unidimensional (5.5) tiene un RRF, entonces el bidimensional (5.4) posee una órbita transversal homoclínica.

El siguiente paso consiste en relacionar ecuaciones bidimensionales con unidimensionales introduciendo la noción de perturbación. Por ejemplo, la familia de ecuaciones en diferencias

\[
x_{k+1} = f(x_k, bx_{k-1})
\]

donde \(f : \mathbb{R}^2 \to \mathbb{R}\) es diferenciable y \(b\) es un parámetro real, se estudia como asociada al sistema

\[
\begin{align*}
 x_{k+1} &= f(x_k, by_k) \\
 y_{k+1} &= x_k
\end{align*}
\]

en el cual, para \(b = 0\), aparece el problema unidimensional siguiente

\[
x_{k+1} = f(x_k, 0)
\]

Entonces se llega a

Teorema 10 ([Mar79]). Si (5.8) posee un RRF, entonces existe un \(\varepsilon > 0\) tal que (5.6) tiene una órbita transversal homoclínica para todo \(|b| < \varepsilon\).
Siguiendo la misma línea, si \(f, g : \mathbb{R} \rightarrow \mathbb{R} \) son funciones reales diferenciables y \(G(x, y) = (f(x), g(y)) \). Tenemos

Teorema 11 ([Mar79]).

1. Si una de las funciones \(f \) o \(g \) tiene un \(\text{RRF} \) y la otra un punto fijo inestable, entonces \(G(x, y) \) tiene un \(\text{RRF} \).

2. Si una de las funciones \(f \) o \(g \) tiene un \(\text{RRF} \) y la otra un punto fijo estable, entonces \(G(x, y) \) tiene una órbita transversal homoclínica.

Ahora perturbamos la ecuación generada por \(G(x, y) \). Sea el sistema

\[
\begin{align*}
x_{k+1} &= f(x_k, by_k) \\
y_{k+1} &= g(cx_k, y_k)
\end{align*}
\tag{5.9}
\]

donde \(f, g : \mathbb{R}^2 \rightarrow \mathbb{R} \) son diferenciables y \(b \) y \(c \) son parámetros reales. Si \(b = c = 0 \), (5.9) se reduce a la pareja de ecuaciones desacopladas

\[
\begin{align*}
x_{k+1} &= f(x_k, 0) \\
y_{k+1} &= g(0, y_k)
\end{align*}
\tag{5.10}
\tag{5.11}
\]

Por tanto decimos que la aplicación \(G(x, y, b, c) = (f(x, by), g(cx, y)) \) es una perturbación de \(G(x, y, 0, 0) \).

Se demuestra lo siguiente

Teorema 12 ([Mar79]).

1. Si uno de los problemas (5.10) o (5.11) tiene un \(\text{RRF} \) y el otro un punto fijo inestable, entonces existe un \(\epsilon > 0 \) tal que (5.9) posee un \(\text{RRF} \) para el rango de parámetros \(|b|, |c| < \epsilon \).

2. Si uno de los problemas (5.10) o (5.11) tiene un \(\text{RRF} \) y el otro un punto fijo estable, entonces existe un \(\epsilon > 0 \) tal que (5.9) posee un \(\text{órbita transversal homoclínica} \) en el rango de parámetros \(|b|, |c| < \epsilon \).

La serie de artículos de Zgliczynski y Misiurewicz-Zgliczynski (ver [Zgl99a], [Zgl99b], [Zgl99c] y [MZ01]) está relacionada con esto. En los tres primeros se demuestra que si una ecuación unidimensional tiene un punto de periodo \(N \), entonces perturbaciones multidimensionales suficientemente próximas al problema original poseen todos los periodos posibles mayores o iguales que
5.3. EJEMPLOS NUMÉRICOS

N en el orden del teorema de Sharkovskii. Este hecho se utiliza para demostrar que el siguiente sistema de ecuaciones diferenciales ordinarias, conocido como ecuaciones de Rössler ([Rös76]),

\[
\begin{align*}
 \dot{x} &= -y - z \\
 \dot{y} &= x + ay \\
 \dot{z} &= b + z(x - c)
\end{align*}
\]

(5.12)

tiene un número infinito de puntos periódicos cuando $a = b = 0,2$ y $c = 5,7$. Para ello se emplea la aplicación de Poincaré generada por el sistema (5.12) sobre la sección

\[
\Theta = \{(x, y, z) : x = 0, y < 0, \dot{x} > 0\}
\]

(5.13)

En [MZ01] se demuestra además que si una aplicación sobre el intervalo tiene entropía positiva y se perturba a una aplicación multidimensional compacta, entonces la entropía topológica del modelo perturbado no puede distar mucho de la anterior si la perturbación es suficientemente pequeña.

Afirmando que resultados similares son ciertos también en el contexto de las EDR. Tal afirmación se sustenta en pruebas numéricas que se introducen a continuación, quedando como problema abierto la prueba rigurosa de los mismos. Concretamente proponemos la búsqueda de una demostración para las versiones en EDR de los teoremas 8, 9, 10, 11 y 12.

5.3. Ejemplos numéricos

Consideremos la siguiente familia de ecuaciones en diferencias racionales unidimensionales

\[
x_{k+1} = \frac{1}{x_k^2 - r}
\]

(5.14)

donde el parámetro r es un número real. En el capítulo 4 demostramos que la ecuación (5.14) es caótica en el sentido Marotto si $r = 1$ y conjeturamos que al menos para $r \geq \frac{1}{\sqrt{2}}$ la ecuación posee siempre un RRF y por tanto es caótica en el sentido de Marotto (ver también [BCara]). Por ejemplo, en la figura 5.2 observamos la órbita inversa del equilibrio de la ecuación (5.14) cuando $r = 0,765$. Ésta corta al intervalo crítico y por tanto dicho equilibrio es un RRF. La figura sirve también como estimación del conjunto prohibido ya que es muy similar a la obtenida al tomar la órbita inversa de los polos de la función de iteración.
Proponemos una perturbación genérica de la ecuación (5.14). Sean \(g \) una función diferenciable y \(b \) un número real. La ecuación en diferencias

\[
x_{k+1} = 1 + b \cdot g(x_{k-1}) / x_k^2 - r
\]

cumple las hipótesis del teorema 10, excepto en el hecho de que la función de iteración (no perturbada) es racional. Si nuestra propuesta de validez del teorema también en este contexto es acertada, entonces (5.15) poseerá una órbita homoclínica cuando \(r \geq \frac{1}{\sqrt{2}} \) y \(b \) sea suficientemente pequeño.

En la figura 5.3 mostramos 5000 elementos de una solución de (5.15) comenzando cerca del punto fijo cuando \(g(x) = x \). Los colores indican la posición de cada punto en la solución elegida. Aparentemente ésta es densa en una curva plana.

En el caso de \(g(x) = \ln |x| \), el comportamiento similar de una solución cercana al equilibrio sugiere que el teorema 10 pueda ampliarse a algunas funciones de perturbación trascendentes (ver figura 5.4).
Figura 5.3: Solución de (5.15) cuando \(g(x) = x \) para las condiciones iniciales \(x_{-1} = 1,3, \ x_0 = 1,3 \) cuando \(b = 0,1 \) y \(r = 0,9 \).

Consideremos ahora el siguiente sistema racional bidimensional

\[
\begin{align*}
 x_{k+1} &= \frac{\lambda x_k}{\left(1 + a(x_k + \alpha y_k)\right)^b} \\
 y_{k+1} &= \frac{\mu y_k}{\left(1 + c(\beta x_k + y_k)\right)^b}
\end{align*}
\] \hspace{1cm} (5.16)

Este es un modelo de competición de especies debido a Hassell y Comins ([HC76]). Los parámetros y condiciones iniciales propuestos por los autores son no negativos. Si \(b = 2 \) y \(\alpha = \beta = 0 \) el sistema se reduce a

\[
\begin{align*}
 x_{k+1} &= \frac{\lambda x_k}{(1 + ax_k)^2} \\
 y_{k+1} &= \frac{\mu y_k}{(1 + cy_k)^2}
\end{align*}
\] \hspace{1cm} (5.17)

Mediante el cambio de variables \(u_k = ax_k, \ v_k = cy_k \) podemos eliminar los
Figura 5.4: Solución de (5.15) cuando $g(x) = \ln|x|$ para las condiciones iniciales $x_{-1} = 1,3$, $x_0 = 1,3$ cuando $b = 0,1$ y $r = 0,9$.

parámetros a y c. Finalmente el sistema queda reducido a la ecuación uniparamétrica

$$x_{k+1} = \frac{\lambda x_k}{(1 + x_k)^2}$$

(5.18)

Vamos a localizar los RRF en (5.18) para un cierto rango de valores de λ. Haremos esto considerando parámetros y condiciones iniciales cualesquiera (no necesariamente no negativas). A continuación, inspirados en la teoría de la perturbación y en los resultados expuestos antes, conjeturaremos que el sistema (5.16) se comporta caóticamente para valores suficientemente pequeños de α y β y elecciones convenientes de λ y μ.

Remarcamos que, obviamente, los valores negativos de las variables x_k e y_k no tienen una representación real en el modelo biológico original, pero de esta forma abordamos el sistema de EDR (5.16) de forma más general matemáticamente.
Sea \(f : \mathbb{R} \to \mathbb{R} \) una función real. Recordemos que una condición suficiente para que un punto de fijo \(\bar{x} \) de la ecuación en diferencias \(x_{k+1} = f(x_k) \) sea un repulsor es que \(|f'(\bar{x})| > 1 \). En tal caso, además, \(\bar{x} \) es un equilibrium inestable. Si \(|f'(\bar{x})| < 1 \), en cambio, el equilibrium posee estabilidad. Usando estas ideas un cálculo sencillo produce el siguiente lema.

Lema 5.3.1. Si \(\lambda > 0 \), la ecuación (5.18) tiene tres puntos fijos:

1. \(\bar{x} = 0 \), un repulsor cuando \(\lambda > 1 \)
2. \(\bar{x} = \sqrt{\lambda} - 1 \), un repulsor si \(\lambda \in (0, 1) \)
3. \(\bar{x} = -\sqrt{\lambda} - 1 \), un repulsor si \(\lambda > 0 \)

Observación: El equilibrium \(\bar{x} = \sqrt{\lambda} - 1 \) es estable si \(\lambda > 1 \) e inestable si \(\lambda \in (0, 1) \).

La función de iteración asociada a la ecuación en diferencias (5.18) es \(f(x) = \lambda x (1 + x)^{-2} \). La iteración inversa es por tanto una función multivaluada que se descompone en dos ramas

\[
\begin{align*}
 g_+(x) &= \frac{\lambda}{2x} - 1 + \frac{\sqrt{\lambda^2 - 4\lambda x}}{2x} \\
 g_-(x) &= \frac{\lambda}{2x} - 1 - \frac{\sqrt{\lambda^2 - 4\lambda x}}{2x}
\end{align*}
\] (5.19)

Para localizar un RRF en la ecuación (5.18) nos fijamos en el punto \(\bar{x} = \sqrt{\lambda} - 1 \) con \(\lambda \in (0, 1) \). En tal caso el intervalo crítico es \((-1, \rho)\) siendo \(\rho = \rho(\lambda) \) la raíz real de \(-x^3 - 3x^2 - (3 + \lambda)x - 1 + \lambda \). Recordemos que un intervalo crítico es un entorno del punto fijo en el cual la condición de repulsión \(|f'(\bar{x})| > 1 \) se verifica. La presencia de una preimagen no trivial de \(\bar{x} \) en \((-1, \rho)\) significará que \(\bar{x} \) es un RRF. Esto es precisamente lo que ocurre para cada \(\lambda \in (0, 1) \) tal como muestra la figura 5.5. La función \(g_+ \circ g_-(\bar{x}(\lambda)) \) está acotada por \(-1\) y por \(\rho(\lambda) \).

Gracias a este cálculo, obtenemos

Proposición 5.3.2. Si \(\lambda \in (0, 1) \), la ecuación en diferencias (5.18) tiene un RRF y por tanto es caótica en el sentido Marotto.

Sean \(F : \mathbb{R}^2 \to \mathbb{R} \) y \(G : \mathbb{R}^2 \to \mathbb{R} \) funciones racionales. Sean \(\alpha, \beta \in \mathbb{R} \). Consideremos el sistema de EDR

\[
\begin{align*}
 x_{k+1} &= F(x_k, \alpha y_k) \\
 y_{k+1} &= G(\beta x_k, y_k)
\end{align*}
\] (5.20)
CAPÍTULO 5. PERTURBACIONES EN EDR

Figura 5.5: Prueba numérica de la acotación de la función $g_+ \circ g_-(\bar{x}(\lambda))$.

Cuando $\alpha = \beta = 0$ el sistema se reduce a un sistema de ecuaciones en diferencias unidimensionales desacopladas

\[
\begin{align*}
 x_{k+1} &= F(x_k, 0) \\
 y_{k+1} &= G(0, y_k)
\end{align*}
\]

(5.21)

Conjeturamos que el teorema 12 se verifica también en este contexto. En tal caso el modelo de Hassell y Comins propuesto en [HC76] es caótico en el sentido de Marotto cuando $\lambda, \mu \in (0, 1)$ y α y β son suficientemente pequeños.

A continuación vamos a tratar de visualizar nuestra conjetura con algunos experimentos numéricos. En la figura 5.6 vemos cómo la dinámica cambia en la región cercana al equilibrio. Para construir esta gráfica hemos tenido que obviar el problema del conjunto prohibido utilizando una función truncada que aproxima a la función de iteración $f(x) = \frac{\lambda x}{(1+x)^2}$. La gráfica se ha construido representando verticalmente las órbitas para cada condición inicial x_0 tomada en el eje real. Hemos dibujado 40 iteraciones, desechando las veinte primeras. La línea vertical indica la posición del equilibrio.

Como segunda evidencia numérica tenemos el diagrama de bifurcación de la figura 5.7. Se ha construido usando de nuevo una función truncada como aproximación de la auténtica función de iteración. Para cada valor de λ (representado en el eje real) se han dibujado verticalmente los elementos de una solución de la ecuación $x_{k+1} = \frac{\lambda x_k}{(1+x_k)^2}$ en la que la condición inicial es una perturbación aleatoria del equilibrio $\bar{x} = \sqrt{\lambda} - 1$. Observamos que
el comportamiento dinámico interesante se sitúa en la región $\lambda \in (0,1)$. El gráfico 5.8 es similar al anterior. En él se ha eliminado la perturbación aleatoria y se han modificado los parámetros de la función meseta y del número de iteraciones.

Por último, en la figura 5.9 encontramos la órbita multivaluada inversa del conjunto de puntos fijos del sistema (5.16) en donde hemos escogido $\lambda = \mu = 0.5$ y $\alpha = \beta = 0.1$. El caso en el que $\lambda = \mu = 0.9$ y $\alpha = \beta = 0.1$ queda representado en la imagen 5.10.

Estas evidencias numéricas deben considerarse con precaución, ya que no implican necesariamente una dinámica caótica. La escala resultante en la figura 5.6 podría interpretarse como convergencia global hacia cero, y la bifurcación del diagrama 5.7 no se observa en realidad cuando se toma un número de iteraciones mayor (desechando las primeras). Nuestra opinión es que tales comportamientos son debidos bien al uso de la función truncada que aproxima a la auténtica función de iteración o bien a un fenómeno más sutil: la posibilidad de que el conjunto revuelto en el cual la dinámica se comporta caóticamente tenga medida de Lebesgue cero. En este último caso las figuras anteriores serían indicios estadísticos de la conjetura teórica.
Figura 5.7: Diagrama de bifurcación de $x_{k+1} = \frac{\lambda x_k}{(1+x_k)^2}$.

Figura 5.8: Diagrama de bifurcación de $x_{k+1} = \frac{\lambda x_k}{(1+x_k)^2}$ sin perturbación aleatoria.
Figura 5.9: Seis iteraciones inversas multivaluadas de los equilibria del modelo de Hassell y Comins para \(\lambda = \mu = 0,5, \alpha = \beta = 0,1 \).
Figura 5.10: Seis iteraciones inversas multivaleadas de los equilibria del modelo de Hassell y Comins para $\lambda = \mu = 0,9$, $\alpha = \beta = 0,1$.
Capítulo 6

Conjuntos prohibidos
6.1. Introducción

En los capítulos precedentes hemos ido posponiendo el problema de la buena definición de las soluciones de una EDR, tarea que abordamos aquí. La mayor parte de la literatura asume que la función de iteración de una ED está definida de tal forma que todas sus soluciones constan de infinitos términos. Por ejemplo, si I es un intervalo de la recta real, denotando I^n el producto cartesiano de n copias de I, y $f : I^n \to I$ es una función cualquiera, entonces la ED de orden n

$$x_{k+1} = f(x_{k-n+1}, x_{k-n+2}, \ldots, x_k)$$

se sitúa en el contexto descrito: dada cualquier n-upla de elementos de I, su imagen por f estará siempre bien definida.

En el caso de las EDR la función de iteración presenta el problema de los polos. Una hipótesis habitual para evitarlo consiste en elegir condiciones iniciales y parámetros positivos, logrando de esta manera una situación como la recién descrita.

Esa es la forma de proceder, por ejemplo, en [CL07], [GL05], [Ela05] y [CFR05]. Además existe un argumento práctico que justifica este tipo de hipótesis. El carácter positivo de condiciones iniciales y parámetros viene dado por el significado real de los mismos. Así ocurre, por ejemplo, en los modelos de dinámica de poblaciones, de transmisión de información o de economía (ver [Ela05] y las referencias contenidas en él).

Sin embargo recientemente se ha empezado a prestar más atención al problema de caracterizar qué condiciones iniciales generan soluciones finitas (es decir, formadas por un número finito de iteraciones). Entendemos que ese interés se justifica en tres ideas. Por un lado el problema es interesante matemáticamente. Además sirve para extender el estudio de ED a aquellas en las que alguno de los parámetros no sea positivo. Y por último, como suele suceder en otras ramas de la matemática, entender mejor el problema global (sin restricciones sobre condiciones iniciales y parámetros) aumenta la comprensión del caso particular (positivo).

En lo que sigue nos situamos en el contexto de las EDR.

Definición 6.1.1. Sean P y Q polinomios no nulos en n indeterminadas con coeficientes reales. Sea la EDR de orden n

$$x_{k+1} = \frac{P(x_{k-n+1}, x_{k-n+2}, \ldots, x_k)}{Q(x_{k-n+1}, x_{k-n+2}, \ldots, x_k)}$$ (6.1)
6.1. INTRODUCCIÓN

Se llama conjunto prohibido de (6.1) a
\[P = \{ (x_{-n+1}, x_{-n+2}, \ldots, x_0) \in \mathbb{R}^n / \exists N \geq 0, \]
\[x_k \text{ está bien definido si } k \leq N \]
y además \[Q(x_{k-n+1}, x_{k-n+2}, \ldots, x_k) = 0 \}
(6.2)

Se llama buen conjunto de (6.1) a
\[B = \mathbb{R}^n \setminus P. \]

Sea \(r \geq 0 \) un número entero. En ocasiones son útiles los siguientes subconjuntos de \(P \), llamados conjuntos prohibidos de \(r \) iteradas
\[P_r = \{ (x_{-n+1}, x_{-n+2}, \ldots, x_0) \in \mathbb{R}^n / \exists N, 0 \leq N \leq r, \]
\[x_k \text{ está bien definido si } k \leq N \]
y además \(Q(x_{k-n+1}, x_{k-n+2}, \ldots, x_k) = 0 \}
(6.3)

Obviamente
\[P = \bigcup_{r=0}^{+\infty} P_r \]

Los conjuntos \(P_r \) se utilizan en muchas estimaciones numéricas para aproxi-
mar al conjunto \(P \).

Observación: Las definiciones (6.2) y (6.3) se pueden extender al caso
complejo. Entonces \(P, B, P_r \subseteq \mathbb{C} \) y tanto los coeficientes de los polinomios \(P \)

y \(Q \) como las condiciones iniciales pueden ser números complejos.

Cuando queramos remarcar en qué cuerpo estamos trabajando, escribiremos
\(P_{\mathbb{R}}, P_{\mathbb{C}} \) para referirnos respectivamente al conjunto prohibido sobre los nú-

meros reales o complejos, etc.

En este capítulo trabajaremos en el contexto de los números reales, salvo

en algunas estimaciones gráficas. El problema más general de estudio de los

conjuntos prohibidos en \(\mathbb{C} \) está propuesto, por ejemplo, en [CL07, Open pro-

blem 5.42.1].

Una primera e importante característica de \(P \) es

Lema 6.1.2. \(P \subseteq \mathbb{R}^n \) tiene interior vacío y medida de Lebesgue nula.

Demostración: \(P_r \) consta de una colección finita de hipersuperficies de \(\mathbb{R}^n \):

las que resultan de igualar a cero los denominadores de las expresiones al-

gebraicas (dependientes de las variables \(x_{-n+1}, \ldots, x_0 \)) siguientes una vez

simplificadas éstas

\[
\begin{align*}
x_1(x_{-n+1}, \ldots, x_0) &= \frac{P(x_{-n+1}, \ldots, x_0)}{Q(x_{-n+1}, \ldots, x_0)} \\
x_2(x_{-n+1}, \ldots, x_0) &= \frac{P(x_{-n+2}, \ldots, x_1)}{Q(x_{-n+2}, \ldots, x_1)} \\
&\vdots \\
x_r(x_{-n+1}, \ldots, x_0) &= \frac{P(x_{-n+r}, \ldots, x_r)}{Q(x_{-n+r}, \ldots, x_r)}
\end{align*}
\]
Por lo tanto, es un conjunto de interior vacío en \mathbb{R}^n. Y así, \mathcal{P} es unión numerable de conjuntos de interior vacío, heredando tal característica por el teorema de la categoría de Baire. Lo mismo ocurre con su medida de Lebesgue, dado que la de cada hipersuperficie es cero.

El problema central que nos planteamos en las ED en las que no hay restricciones de condiciones iniciales y parámetros es el de describir adecuadamente el conjunto \mathcal{P} y determinar cualitativamente la dinámica sobre el conjunto \mathcal{B} (es decir, estudiar el carácter asintótico, los puntos periódicos, la estabilidad de las soluciones y la presencia o no de algún tipo de caos).

Este problema está planteado, en el caso de las EDR lineales de hasta orden tres, en una colección de problemas abiertos de [CL07]. Por ejemplo, en el problema 5.55.1 de dicho texto se pide determinar el buen conjunto de la ecuación

$$x_{k+1} = \gamma + \frac{x_k}{x_{k-1}}$$

y determinar el carácter de aquellas soluciones empezando en el buen conjunto.

En [CL07] se proponen 22 problemas como el anterior, cuya numeración es la siguiente: 5.20.3, 5.21.4, 5.22.3, 5.24.2, 5.25.3, 5.26.3, 5.31.1, 5.32.3, 5.34.3, 5.38.1, 5.42.1, 5.46.4, 5.48.1, 5.52.1, 5.55.1, 5.56.1, 5.59.1, 5.60.1, 5.64.1, 5.65.1, 5.84.3 y 5.86.1.

En este capítulo veremos tres ejemplos de la literatura mostrando técnicas distintas para abordar el problema propuesto. En primer lugar, en aquellas ecuaciones en las que es posible describir explícitamente todas las soluciones asimismo se puede dar una expresión analítica del conjunto prohibido. Tal situación se da en las EDR lineales, donde \mathcal{P} es trivial, y en otras derivadas de ellas o reducibles a ellas, como la ecuación de Riccati.

En segundo lugar, existen otras EDR, incluso no lineales, para las cuales el uso de invariantes algebraicos permite determinar directamente su conjunto prohibido o reducirlas a una de Riccati. Un caso notable es el de las ecuaciones globalmente periódicas como la ED de Lyness o la ED de Todd.

Y en tercer lugar en [CD03] se muestra otra manera para describir \mathcal{P} realizando una recurrencia funcional.

Los ejemplos anteriores no constituyen una lista exhaustiva de todo el trabajo realizado sobre conjuntos prohibidos. Técnicas adicionales que implican el uso de semiconjunciones topológicas pueden encontrarse en los trabajos de H. Sedaghat [Sed08a] y [Sed09b].
6.2. EL CONJUNTO PROHIBIDO DE LA ECUACIÓN DE RICCATI

Una vez vistos estos ejemplos representativos, pasaremos a estudiar los conjuntos prohibidos de algunas de las EDR objeto de los capítulos anteriores de este trabajo. Veremos, utilizando una sección bidimensional, una representación del conjunto prohibido de

\[x_{k+1} = \frac{1}{Bx_k + x_{k-2}} \]

y una estimación del carácter asintótico de las soluciones en \(B \).

Después estudiaremos una descripción numérico-gráfica de los conjuntos prohibidos de las familias de EDR \(x_{k+1} = \frac{1}{x_k^2 - r} \) y \(x_{k+1} = \frac{1}{x_k (1-x_k)} \) en la que es esencial la ampliación del problema a los números complejos.

Probaremos dos hechos notables; la existencia de una sucesión de elementos de \(\mathcal{P} \) en \(x_{k+1} = \frac{1}{x_k^2 - 1} \) convergente al RRF y que es posible describir \(\mathcal{P} \) en este caso con un tipo de dinámica simbólica.

6.2. El conjunto prohibido de la ecuación de Riccati

Una ED lineal homogénea de orden \(n + 1 \) es

\[x_{k+1} = a_0 x_k + a_1 x_{k-1} + \ldots + a_n x_{k-n} \quad (6.4) \]

donde los parámetros \(a_i \), \(i = 0, \ldots, n \) y las condiciones iniciales \(x_0, \ldots, x_{-n} \) pueden elegirse en \(\mathbb{R} \) o \(\mathbb{C} \).

De la teoría elemental de ED se sabe que el término general de (6.4) es combinación lineal de las condiciones iniciales.

En efecto, si introducimos las matrices

\[
X_k = \begin{pmatrix}
 x_k \\
 x_{k-1} \\
 \vdots \\
 x_{k-n}
\end{pmatrix}
\]

\[
A = \begin{pmatrix}
 a_0 & a_1 & \ldots & a_n \\
 1 & 0 & \ldots & 0 \\
 0 & 1 & \ldots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \ldots & 1
\end{pmatrix}
\]
entonces la ED (6.4) se expresa en forma vectorial como

\[X_{k+1} = AX_k \]

de donde

\[X_{k+1} = A^{k+1}X_0 \quad \forall k \geq 0 \]
y por tanto

\[x_{k+1} = \sum_{i=0}^{n} \alpha_{i,k+1} x_i \] \hspace{1cm} (6.5)

siendo \(\alpha_{i,k+1} \) los elementos de la primera fila de \(A^{k+1} \).

Algo similar ocurre con las ED lineales no homogéneas, aquellas en las que añadimos un parámetro \(b \in \mathbb{C} \setminus \{0\} \) (véase, por ejemplo, [Ela05] o [CFR05])

\[x_{k+1} = a_0 x_k + a_1 x_{k-1} + \ldots + a_n x_{k-n} + b \] \hspace{1cm} (6.6)

El conjunto prohibido de (6.4) o (6.6) es vacío, pero al existir ecuaciones racionales que pueden ser transformadas en lineales mediante un cambio de variable, entonces el término general (6.5) permite describir el conjunto prohibido.

Ilustremos tal afirmación estudiando un tipo de EDR que ha sido objeto de análisis reciente en [Azi13b], [Azi12], [Azi13a] y [DMSS11]

\[x_{k+1} = a_0 + \frac{a_1}{x_k} + \frac{a_2}{x_k x_{k-1}} + \ldots + \frac{a_n}{x_k x_{k-1} \ldots x_{k-n+1}} \] \hspace{1cm} (6.7)

donde \(a_0, \ldots, a_n \in \mathbb{R}, x_0, \ldots, x_n \in \mathbb{R}, n \in \mathbb{N} \setminus \{0\} \) y \(a_n \neq 0 \). (6.7) se denomina ED de Riccati de orden \(n \).

La característica más notable de esta ecuación es que gracias al cambio de variable \(x_k = \frac{y_k}{y_{k-1}} \), existe una correspondencia biyectiva entre las soluciones de (6.7) y aquellas soluciones de la ecuación lineal siguiente en las que ninguno de sus elementos sea nulo

\[y_{k+1} = a_0 y_k + a_1 y_{k-1} + \ldots + a_n y_{k-n} \] \hspace{1cm} (6.8)

Expliquemos con más detalle esta afirmación. Si \((y_k)_{k=-n}^{+\infty} \) es una solución de (6.8) en la que ninguno de sus términos es cero, entonces la expresión \(x_k = \frac{y_k}{y_{k-1}} \) es válida para todo \(k \geq -n + 1 \) y \((x_k)_{k=-n+1}^{+\infty} \) es una solución de (6.7). Recíprocamente, si partimos de \((x_k)_{k=-n+1}^{+\infty} \) solución de (6.7) y definimos \((y_k)_{k=-n}^{+\infty} \) con la fórmula

\[y_k = x_k x_{k-1} \ldots x_{-n+1} \]
entonces obtenemos una solución de (6.8) sin términos nulos, ya que la buena definición de \((x_k)_{k=-n+1}^{+\infty}\) implica que para cualquier \(k\), \(x_k \neq 0\) y por tanto \(y_k \neq 0\).

Más aún, la correspondencia biyectiva se extiende entre las soluciones con términos nulos de (6.8) y los elementos del conjunto prohibido de (6.7). En efecto, si \((y_k)_{k=-n}^{+\infty}\) es tal que \(y_N = 0\) e \(y_k \neq 0\) \(\forall k \leq N\), entonces el cambio de variable construye una solución finita de (6.7) en la que \(x_N = 0\) y \(x_{N+1}\) ya no está definida. Recíprocamente, dada una solución finita de (6.7) existirá un \(N\) tal que \(x_N = 0\) y \(x_k \neq 0\) \(\forall k < N\). De nuevo el cambio de variable genera una solución de (6.8) en la que \(y_N = 0\).

Como consecuencia de esta biyección tenemos una forma de describir el conjunto prohibido de la ecuación general de Riccati. Basta con desarrollar la fórmula (6.5) asociada a la ecuación (6.8) respecto de las condiciones iniciales

\[
\begin{align*}
y_0 &= x_0x_1 \ldots x_{-n} \\
y_{-1} &= x_{-1}x_{-2} \ldots x_{-n} \\
&\quad \vdots \\
y_{-n} &= x_{-n} \\
y_{-n+1} &= 1
\end{align*}
\]

entonces

\[
\begin{align*}
\mathcal{P}_{-n} &= \{(x_{-n+1}, \ldots, x_0) \in \mathbb{R}^n / y_{-n}(x_{-n}, \ldots, x_0) = 0\} \\
\mathcal{P}_k &= \mathcal{P}_{k-1} \cup \{(x_{-n+1}, \ldots, x_0) \in \mathbb{R}^n / y_{k}(x_{-n}, \ldots, x_0) = 0\} \\
\mathcal{P} &= \bigcup_{k=-n}^{+\infty} \mathcal{P}_k
\end{align*}
\]

A continuación vamos a describir algunos casos particulares, siguiendo a [Azi12], [Azi13a], [Azi13b] y [KL02].

6.2.1. La ecuación de Riccati de orden uno

Definición 6.2.1. Sean \(\alpha, \beta, A\) y \(B\) números reales tales que \(\alpha B - \beta A \neq 0\) y \(B \neq 0\). Se llama ecuación en diferencias de Riccati de orden uno a

\[
x_{k+1} = \frac{\alpha + \beta x_k}{A + Bx_k}
\]

(6.11)

Observación: La función de iteración asociada a (6.11) es \(f(x) = \frac{\alpha + \beta x}{A + Bx}\). Este tipo de aplicaciones se denominan transformaciones de Möbius.

(6.11) es la forma general de la EDR lineal de primer orden, salvo en los casos \(B = 0\) y \(\alpha B - \beta A = 0\).
Si \(B = 0 \), la ecuación es lineal. Si \(B \neq 0 \) y \(\alpha B - \beta A = 0 \),

\[
x_{k+1} = \frac{\alpha + \beta x_k}{A + Bx_k} = \frac{\beta A + \beta x_k}{A + Bx_k} = \frac{\beta}{B} \frac{A + x_k}{B} = \frac{\beta}{B}
\]
es decir, la ecuación es constante salvo en el conjunto de condiciones iniciales \(\mathcal{P} = \{-\frac{A}{B}\} \).

El motivo de llamar a (6.11) ecuación de Riccati es que fuera de tres casos degenerados, un cambio de variable la transforma en una ecuación del tipo (6.7). Los dos primeros casos triviales los acabamos de tratar. El tercero ocurre cuando \(B \neq 0 \), \(\alpha B - \beta A \neq 0 \) y \(\beta + A = 0 \). Entonces \(\mathcal{P} = \{-\frac{A}{B}\} \) y toda solución de (6.11) es dos periódica.

En efecto

\[
x_{k+1} = \frac{\alpha + \beta x_k}{A + Bx_k} = \frac{\alpha - Ax_k}{A + Bx_k} = \frac{\alpha - \alpha x_k}{A + Bx_k} = \frac{\alpha A + \alpha Bx_k - \beta A - \beta Bx_k}{A^2 - ABx_k + \alpha B - ABx_k} = \frac{\alpha B + A^2}{\alpha B + A^2} x_k = x_k
\]

Supongamos a partir de ahora que \(B \neq 0 \), \(\alpha B - \beta A \neq 0 \) y \(\beta + A \neq 0 \). Sea el cambio de variable

\[
x_k = \frac{\beta + A}{B} y_k - \frac{A}{B}
\]

La ecuación (6.11) se transforma en

\[
x_{k+1} = \frac{\alpha + \beta x_k}{A + Bx_k} = \frac{\beta A + \beta x_k}{A + Bx_k} = \frac{\beta}{B} \frac{A + x_k}{B} = \frac{\beta}{B}
\]

\[
\frac{\beta + A}{B} y_{k+1} - \frac{A}{B} = \frac{\alpha + \beta \left(\frac{\beta + A}{B} y_k - \frac{A}{B} \right)}{A + B \left(\frac{\beta + A}{B} y_k - \frac{A}{B} \right)} = \frac{\alpha B - \beta A}{B + (\beta + A) y_k} = \frac{\alpha B - \beta A}{B(\beta + A) y_k} + \frac{\beta}{B}
\]

\[
\frac{\beta + A}{B} y_{k+1} = \frac{\beta + A}{B} + \frac{\alpha B - \beta A}{B(\beta + A) y_k} = \frac{\alpha B - \beta A}{B(\beta + A) y_k} + \frac{\beta}{B}
\]

\[
y_{k+1} = 1 + \frac{\alpha B - \beta A}{(\beta + A) y_k}
\]

La cantidad \(R = \frac{\beta A - \alpha B}{(\beta + A)^2} \) se llama número de Riccati de la EDR (6.11). Con ella se escribe, en virtud del desarrollo anterior, la forma reducida de la ecuación de Riccati

\[
y_{k+1} = 1 - \frac{R}{y_k}
\]
6.2. EL CONJUNTO PROHIBIDO DE LA ECUACIÓN DE RICCATI

El cambio de variable estándar y \(k = z_k - 1 \) transforma la ecuación (6.13) en la siguiente ED lineal homogénea de orden dos

\[
z_{k+1} = z_k - Rz_{k-1}
\]

(6.14)

cuya ecuación característica es \(x^2 - x + R = 0 \).

Los puntos fijos de la ecuación son

\[
\rho_- = \frac{1-\sqrt{1-4R}}{2} \quad \text{y} \quad \rho_+ = \frac{1+\sqrt{1-4R}}{2} \quad \text{si} \quad R < \frac{1}{4}
\]

\[
\frac{1}{2} \quad \text{si} \quad R = \frac{1}{4}
\]

\[
\sqrt{R}e^{\pm i\theta} \quad \text{si} \quad R > \frac{1}{4}
\]

siendo \(\theta \in \left(0, \frac{\pi}{2}\right) \) tal que \(\sin \theta = \frac{\sqrt{4R-1}}{2\sqrt{R}} \) y \(\cos \theta = \frac{1}{2\sqrt{R}} \).

Con ayuda de estos puntos de equilibrio se describe el término general de (6.14)

Proposición 6.2.2 ([Azi13b]). Sea \(y_0 \in \mathbb{R} \). Sea \((z_k)_{k=-1}^{+\infty} \) la solución de (6.14) cuyas condiciones iniciales son \(z_{-1} = 1 \) y \(z_0 = y_0 \). Entonces

a) Si \(R < \frac{1}{4} \),

\[
z_k = C_1 \rho_+^{k+1} + C_2 \rho_-^{k+1} \quad \forall k \geq -1
\]

(6.15)

\[
\text{donde} \quad C_1(y_0) = \frac{y_0 - \rho_+}{\rho_+ - \rho_-}, \quad C_2(y_0) = \frac{y_0 - \rho_-}{\rho_+ - \rho_-}
\]

b) Si \(R = \frac{1}{4} \),

\[
z_k = \frac{C_1(k+1) + C_2}{2^{k+1}} \quad \forall k \geq -1
\]

(6.16)

\[
\text{donde} \quad C_1(y_0) = 2y_0 - 1, \quad C_2(y_0) = 1
\]

c) Si \(R > \frac{1}{4} \),

\[
z_k = R^{k+1} \left(C_1 \cos((k+1)\theta) + C_2 \sin((k+1)\theta) \right) \quad \forall k \geq -1
\]

(6.17)

\[
\text{donde} \quad C_1(y_0) = 1, \quad C_2(y_0) = \frac{2y_0-1}{\sqrt{4R-1}}
\]

Ahora, recordando que el conjunto prohibido está formado por los \(y_0 \in \mathbb{R} \) tales que \(z_k(y_0) = 0 \) para algún \(k \geq -1 \), se obtiene como corolario de la proposición anterior la siguiente descripción de \(\mathcal{P} \)

Corolario 6.2.3 ([Azi13b]). El conjunto prohibido \(\mathcal{P} \) de la ecuación (6.13) es
a) Si $R < \frac{1}{4}$,
\[
P = \left\{ \frac{\rho_+ \rho_- (\rho_+^{k-1} - \rho_-^{k-1})}{\rho_+^k - \rho_-^k} : k = 1, 2, \ldots \right\}
\]

b) Si $R = \frac{1}{4}$,
\[
P = \left\{ \frac{k - 1}{2k} : k = 1, 2, \ldots \right\}
\]

c) Si $R > \frac{1}{4}$,
\[
P = \left\{ \frac{1}{2} - \frac{\sqrt{4R - 1}}{2} \cotg(k\theta) : k \theta \notin \pi\mathbb{Z}, k = 1, 2, \ldots \right\}
\]

Demostración: Basta con igualar a cero las expresiones (6.15), (6.16) y (6.17), despejando y_0 de cada ecuación resultante. Por ejemplo, cuando $R < \frac{1}{4}$

\[
y_0 - \frac{\rho_-}{\rho_+ - \rho_-} \rho_+^k + \frac{-y_0 + \rho_+}{\rho_+ - \rho_-} \rho_-^k = 0
\]

\[
y_0 (\rho_+^k - \rho_-^k) - \rho_- \rho_+^k + \rho_+ \rho_-^k = 0
\]

\[
y_0 = \frac{\rho_- \rho_+^k - \rho_+ \rho_-^k}{\rho_+^k - \rho_-^k} = \frac{\rho_+ \rho_- (\rho_+^{k-1} - \rho_-^{k-1})}{\rho_+^k - \rho_-^k}
\]

Así se procede también en los casos $R = \frac{1}{4}$ y $R > \frac{1}{4}$, aunque en este último es necesaria una aclaración. La ecuación

\[
R^2 \left(\cos(k\theta) + \frac{2y_0 - 1}{\sqrt{4R - 1}} \sin(k\theta) \right) = 0
\]

no tiene solución cuando $\sin(k\theta) = 0$ y $|\cos(k\theta)| = 1$, lo que ocurre si $k\theta \in \pi\mathbb{Z}$.

En la figura 6.1 hemos representado cuatro conjuntos prohibidos de la ED de Riccati de orden uno. Usamos líneas verticales para visualizar mejor estos subconjuntos de \mathbb{R}. Cuando $R < \frac{1}{4}$ y $R = \frac{1}{4}$ estos consisten en sucesiones convergentes. Para $R = 1,1$, los 1000 primeros términos se muestran en la figura. Un número mayor de términos rellena completamente un intervalo, indicando que el conjunto prohibido es denso en él. Finalmente si $R = \frac{1}{3}$ el conjunto prohibido es finito debido a que $k\theta \in \pi\mathbb{Z}$.
6.2. EL CONJUNTO PROHIBIDO DE LA ECUACIÓN DE RICCATI

Figura 6.1: Conjuntos prohibidos de la ecuación de Riccati de orden 1.

Observación 1: Los casos a) y b) del corolario 6.2.3 muestran conjuntos prohibidos acotados, mientras que en la situación c) puede no haber acotación.

Es interesante remarcar que cuando \(R < \frac{1}{4} \), el equilibrio \(\rho_- \) es punto de acumulación de \(\mathcal{P} \). Cuando \(R = \frac{1}{4} \), la clausura de \(\mathcal{P} \) es \(\overline{\mathcal{P}} = \left\{ \frac{k-1}{2k} : k = 1, 2, \ldots \right\} \cup \left\{ \frac{1}{2} \right\} \), siendo \(y_0 = \frac{1}{2} \) el punto fijo de la ecuación de Riccati en este caso.

Observación 2: El análisis anterior es susceptible de generalización al caso de coeficientes y condiciones iniciales complejas. En [CL07, Open problem 5.42.1] se plantea esto como problema abierto:

Sea \(\beta \in \mathbb{C} \). *Determinar el buen conjunto* \(\mathcal{B} \) *de la ecuación*

\[
x_{k+1} = \beta + \frac{1}{x_k}
\]

(6.18)

Determinar el carácter de las soluciones de (6.18) *cuyas condiciones inicial-
En la figura 6.2 mostramos el conjunto prohibido de (6.18) cuando \(\beta \in \{\frac{\sqrt{2}}{2}(1 + i), 1.1i, -2 - 2i, 2 - 2i\} \). En todos los casos éste parece constar de los términos de una sucesión convergente.

Es notable el caso en que \(\beta = i \), ya que entonces el conjunto prohibido consta exactamente de los puntos 0 e i, debido a que dichos puntos son también elementos del conjunto prohibido de la iteración inversa

\[
x_k = \frac{1}{x_{k+1} - \beta}
\]

Un problema interesante es determinar todos los valores de \(\beta \) tales que el conjunto prohibido sea finito.

Figura 6.2: Conjuntos prohibidos de la ecuación de Riccati de orden 1. Caso complejo

Observación 3: La proposición 6.2.2 permite también determinar el carácter de las soluciones de (6.13) cuando \(y_0 \in B \). Véase [Azi12].
6.2. EL CONJUNTO PROHIBIDO DE LA ECUACIÓN DE RICCATI

6.2.2. La ecuación de Riccati de orden dos

Sean $a, b, c \in \mathbb{R}$. Si $c \neq 0$, la ecuación

$$x_{k+1} = a + \frac{b}{x_k} + \frac{c}{x_k x_{k-1}} \quad (6.19)$$

se denomina ecuación en diferencias de Riccati de orden dos. La ecuación lineal asociada es

$$y_{k+1} = ay_k + by_{k-1} + cy_{k-2}$$
donde $P(x) = x^3 - ax^2 - bx - c$ es su polinomio característico. El tipo y la multiplicidad de las raíces de $P(x)$ dependen del signo del discriminante siguiente

$$\Delta = -a^2b^2 - 4b^3 + 4a^3c + 27c^2 + 18abc$$

Si $\Delta < 0$, hay tres raíces reales distintas, ρ_1, ρ_2, ρ_3.
Si $\Delta = 0$ y $\left| b + \frac{a^2}{3} \right| + \left| c - \frac{a^3}{27} \right| = 0$, hay una raíz real ρ de multiplicidad 3.
Si $\Delta = 0$ y $\left| b + \frac{a^2}{3} \right| + \left| c - \frac{a^3}{27} \right| \neq 0$, hay una raíz real simple ρ y otra raíz doble ρ.
Si $\Delta > 0$ existen una raíz real ρ y dos complejas conjugadas $re^{\pm i\theta}, \theta \in (0, \pi)$.

Ya tenemos todos los elementos para la descripción del conjunto prohibido. Éste va a consistir en una unión numerable de hipérbolas.

Proposición 6.2.4 ([Aziz13b]). El conjunto prohibido \mathcal{P} de la EDR (6.19) es

$$\mathcal{P} = \bigcup_{k=-1}^{+\infty} \{(u,v) \in \mathbb{R}^2/\beta_{1k}uv + \beta_{2k}u + \beta_{3k} = 0\} \quad (6.20)$$
donde los coeficientes $\{\beta_{1k}, \beta_{2k}, \beta_{3k}\}_{k=-1}^{+\infty}$ vienen expresados a continuación

a) Si $\Delta < 0$

$$\begin{align*}
\beta_{1k} &= \rho_1^{k+2}(\rho_2 - \rho_3) + \rho_2^{k+2}(\rho_3 - \rho_1) + \rho_3^{k+2}(\rho_1 - \rho_2) \\
\beta_{2k} &= \rho_1^{k+2}(\rho_2^2 - \rho_3^2) + \rho_2^{k+2}(\rho_1^2 - \rho_3^2) + \rho_3^{k+2}(\rho_2^2 - \rho_1^2) \\
\beta_{3k} &= \rho_1^{k+2}\rho_2\rho_3(\rho_3 - \rho_2) + \rho_2^{k+2}\rho_1\rho_3(\rho_3 - \rho_1) + \rho_3^{k+2}\rho_1\rho_2(\rho_2 - \rho_1)
\end{align*}$$

b) Si $\Delta = 0$ y $\left| b + \frac{a^2}{3} \right| + \left| c - \frac{a^3}{27} \right| = 0$

$$\begin{align*}
\beta_{1k} &= (k + 1)(k + 2) \\
\beta_{2k} &= -2ak(k + 2) \\
\beta_{3k} &= \frac{3}{9}a^2k(k + 1)
\end{align*}$$
c) Si $\Delta = 0$ y $\left| b + \frac{a^2}{3} \right| + \left| c - \frac{a^2}{27} \right| \neq 0$

$$
\begin{align*}
\beta_{1k} &= \rho^{k+2} + r^{k+1}((k + 1)r - (k + 2)\rho) \\
\beta_{2k} &= -2r\rho^{k+2} + r^{k+1}(-kr^2 + (k + 2)\rho^2) \\
\beta_{3k} &= r^2\rho^{k+2} + r^{k+2}(\rho(r - \rho) - \rho^2)
\end{align*}
$$

d) Si $\Delta > 0$

$$
\begin{align*}
\beta_{1k} &= \rho^{k+2} \sin \theta + r^{k+1}(r \sin((k + 1)\theta) - \rho \sin((k + 2)\theta)) \\
\beta_{2k} &= -r\rho^{k+2} \sin 2\theta + r^{k+1}(\rho^2 \sin((k + 2)\theta) - r^2 \sin k\theta) \\
\beta_{3k} &= r^2\rho^{k+2} \sin \theta - \rho r^{k+2}(\rho \sin((k + 1)\theta) - r \sin k\theta)
\end{align*}
$$

En la figura 6.3 mostramos \mathcal{P} cuando

1) $a = -2$, $b = c = 1$, caso (a) de la proposición

2) $a = 1$, $b = -\frac{1}{3}$, $c = \frac{1}{27}$, caso (b) de la proposición

3) $a = -1$, $b = c = 1$, caso (c) de la proposición

4) a, b y c tales que $\rho = 1$, $r = 1$ y $\theta = \frac{1}{7}$, caso (d) de la proposición

6.3. Uso de invariantes

6.3.1. La ecuación de Lyness

La siguiente ecuación es un caso particular de la EDR de Lyness (ver [GL05], [KL93], [Lyn42] y para el caso no autónomo [CGM13])

$$
x_{k+1} = \frac{1 + x_k}{x_{k-1}}
$$

(6.21)

Tiene la propiedad de ser, sobre \mathcal{B}, globalmente periódica de periodo 5. Es decir, $x_{k+5} = x_k$, $\forall k \geq -1$ si $(x_{-1}, x_0) \in \mathcal{B}$.

Si expresamos x_1, \ldots, x_5 en términos de condiciones iniciales genéricas $x_{-1} = x$, $x_0 = y$, las expresiones racionales resultantes permiten calcular \mathcal{P}: basta con examinar sus denominadores

$$
\mathcal{P} = \{(x, y) \in \mathbb{R}^2/ \text{se satisface alguna de las ecuaciones}\n\begin{align*}
x &= 0, y = 0, x + 1 = 0, y + 1 = 0, x + y + 1 = 0
\end{align*}
$$

(6.22)

El conjunto prohibido consta pues de cinco rectas (ver figura 6.4).
6.3. USO DE INVARIANTES

Considere un caso particular de la ecuación de Todd (ver [CGM07], [GL05], [KL93], [Lyn45] para más detalles)

\[
x_{k+1} = 1 + x_{k-1} + x_k
\]

en la que se tiene periodicidad global de periodo 8. Un razonamiento análogo muestra que

\[\mathcal{P} = \{(x, y, z) \in \mathbb{R}^3 / \text{se satisface alguna de las ecuaciones}
\]

\[
x = 0, y = 0, z = 0,
\]

\[
x + y + 1 = 0, y + z + 1 = 0,
\]

\[
(x + 1)(z + 1) + y = 0,
\]

\[
(x + y + 1)z + y^2 + (x + 2)y + x + 1 = 0
\]

por lo que el conjunto prohibido está formado por siete superficies (figura 6.5).
CAPÍTULO 6. CONJUNTOS PROHIBIDOS

Figura 6.4: Conjunto prohibido de la ecuación de Lyness.

Estas ecuaciones tienen la propiedad de poseer invariantes algebraicos. Concretamente, una solución cualquiera \((x_k)^{+\infty}_{k=-1}\) de (6.21) cumple que la cantidad

\[
(1 + x_{k-1} + x_k) \left(1 + \frac{1}{x_{k-1}} \right) \left(1 + \frac{1}{x_k} \right)
\]

es constante para todo \(k \geq 0\).

En cuanto a (6.23) lo mismo ocurre para cada solución \((x_k)^{+\infty}_{k=-2}\) con la expresión

\[
(1 + x_{k-2} + x_{k-1} + x_k) \left(1 + \frac{1}{x_{k-2}} \right) \left(1 + \frac{1}{x_{k-1}} \right) \left(1 + \frac{1}{x_k} \right)
\]

Ambos invariantes están relacionados con el conjunto prohibido de sus respectivas ecuaciones. En el caso de (6.21), \(P\) consta exactamente de los ceros y polos de (6.25). Esto no pasa con el segundo invariante, ya que, por ejemplo, los puntos del plano \(\{(x, y, z) \in \mathbb{R}^3 : y + 1 = 0\}\) son ceros del (6.26) y pertenecen al buen conjunto de (6.23). Sin embargo los polos de (6.26) están
6.3. USO DE INVARIANTES

Figura 6.5: Vistas superior e inferior del conjunto prohibido de la ecuación de Todd.

todos en \mathcal{P}.

Sea $\alpha \in \mathbb{R}$. La generalización de (6.21)

$$x_{k+1} = \frac{\alpha + x_k}{x_{k-1}}$$

se denomina ecuación de Lyness o ecuación de Lyness generalizada. Posee el invariante

$$
(\alpha + x_{k-1} + x_k) \left(1 + \frac{1}{x_{k-1}}\right) \left(1 + \frac{1}{x_k}\right)
$$

La generalización de (6.23)

$$x_{k+1} = \frac{\alpha + x_{k-1} + x_k}{x_{k-2}}$$

se llama ecuación de Todd, ecuación de Todd generalizada o ecuación de Lyness de orden tres. También posee un invariante algebraico

$$
(\alpha + x_{k-2} + x_{k-1} + x_k) \left(1 + \frac{1}{x_{k-2}}\right) \left(1 + \frac{1}{x_{k-1}}\right) \left(1 + \frac{1}{x_k}\right)
$$

Por último, definimos la ecuación de Lyness de orden n como

$$x_{k+1} = \frac{\alpha + \sum_{i=0}^{n-1} x_{k-i}}{x_{k-n}}$$

cuyo invariante es

$$
\left(\alpha + \sum_{i=0}^{n} x_{k-i}\right) \prod_{i=0}^{n} \left(1 + \frac{1}{x_{k-i}}\right)
$$
Todas las ecuaciones anteriores verifican que los polos de sus invariantes son elementos de sus conjuntos prohibidos.

Las ecuaciones (6.27), (6.29) y (6.31) han sido ampliamente estudiadas en la literatura. Véanse, por ejemplo, [CGM07], [KLR93] y [Zee96]. Lo que nos interesa aquí es, por un lado, remarcar que cuando hay periodicidad global es sencillo describir explícitamente \mathcal{P}, y, por otro, destacar el concepto de invariante algebraico.

6.3.2. Reducción de orden

Cuando una ecuación en diferencias posee un invariante algebraico es posible analizarla reduciendo su orden. Así, la ecuación de Lyness (6.27) tiene una foliación en curvas invariantes que permite analizar el problema bidimensional como una familia de sistemas dinámicos unidimensionales (ver [Zee96]).

Dicha idea se utiliza en [Pal12], para describir los conjuntos prohibidos y el carácter de las soluciones de las siguientes EDR:

\[
\begin{align*}
 z_{k+1} &= \frac{z_k}{1 + Bz_{k-1} - Bz_k} \\
 z_{k+1} &= \frac{z_{k-1}}{1 - Bz_{k-1} + Bz_k} \\
 z_{k+1} &= \frac{-Bz_{k-1} + Bz_k + z^2_k}{z_{k-1}} \\
 z_{k+1} &= \frac{Bz_k + z^2_k}{B + z_{k-1}} \\
 z_{k+1} &= \frac{Bz_k + z_{k-1}z_k}{B + z_k} \\
 z_{k+1} &= \frac{Bz_{k-1} - Bz_k + z_{k-1}z_k}{z_k}
\end{align*}
\]

donde B, z_{-1} y z_0 son números complejos arbitrarios.

Palladino da, para cada una de las ecuaciones anteriores un invariante algebraico que las reduce al caso lineal, donde, como hemos visto, es posible dar una descripción explícita de las soluciones.

Vamos a reproducir la determinación de \mathcal{P} para la EDR (6.33) que se encuentra en [Pal12, Theorem 2]. En el resto de casos se utiliza una técnica similar.
Teorema 13. Sea $B \in \mathbb{C} \setminus \{0\}$. El conjunto prohibido de la EDR (6.33) es

$$\mathcal{P} = \mathcal{A}_1 \cup \mathcal{A}_2 \cup \mathcal{A}_3 \cup \mathcal{A}_4$$ \hspace{1cm} (6.39)

donde $\{\mathcal{A}_i\}_{i=1}^4$ son los siguientes subconjuntos de \mathbb{C}^2

$$\mathcal{A}_1 = \left\{ \left(0, \frac{-1}{B} \right) \right\}$$ \hspace{1cm} (6.40)

$$\mathcal{A}_2 = \left\{ \left(\frac{-k - 1}{Bk}, \frac{-1}{B} \right) : k \in \mathbb{N} \right\}$$ \hspace{1cm} (6.41)

$$\mathcal{A}_3 = \left\{ \left(\frac{-1}{B}, \frac{-k - 1}{Bk} \right) : k \in \mathbb{N} \right\}$$ \hspace{1cm} (6.42)

$$\mathcal{A}_4 = \bigcup_{D \in \mathbb{C} \setminus (0,4)} \left\{ \left(\frac{DB\alpha - Ba - 1}{B^2\alpha + B} \right) : a \in E_1 \setminus \{0, -1/B\} \right\} \cup \bigcup_{D \in (0,4)} \left\{ \left(\frac{DB\alpha - Ba - 1}{B^2\alpha + B} \right) : a \in E_2 \setminus \{0, -1/B\} \right\} \cup \left\{ \left(\frac{3Ba - 1}{B^2\alpha + B} \right) : a \in E_3 \setminus \{0, -1/B\} \right\}$$ \hspace{1cm} (6.43)

siendo

$$E_1 = \left\{ \frac{-2}{B} \cdot \frac{(1 + \sqrt{1 - 4/D})^{k-1} - (1 - \sqrt{1 - 4/D})^{k-1}}{(1 + \sqrt{1 - 4/D})^k - (1 - \sqrt{1 - 4/D})^k} + \frac{D - 1}{B} : k \in \mathbb{N} \right\}$$

$$E_2 = \left\{ \frac{-D}{B} \left(1 - \sqrt{4/D} \right) \right\}$$

$$E_3 = \left\{ \frac{-2}{B} \cdot \frac{k - 1}{k} + \frac{3}{B} : k \in \mathbb{N} \right\}$$

Observación: Si el parámetro B y las condiciones iniciales se eligen reales, las expresiones (6.40), (6.41), (6.42) y (6.43) son válidas como subconjuntos de \mathbb{R}^2.

Demostración: Sean

$$\mathcal{A}_1 = \mathcal{P} \cap \{(z_0, z_{-1}) \in \mathbb{C} : z_0 = 0\}$$

$$\mathcal{A}_2 = \mathcal{P} \cap \{(z_0, z_{-1}) \in \mathbb{C} : z_0 \neq 0, z_{-1} = -1/B\}$$

$$\mathcal{A}_3 = \mathcal{P} \cap \{(z_0, z_{-1}) \in \mathbb{C} : z_0 = -1/B\}$$

$$\mathcal{A}_4 = \mathcal{P} \cap \{(z_0, z_{-1}) \in \mathbb{C} : z_0 \neq 0, z_0 \neq -1/B, z_{-1} \neq -1/B\}$$

Por lo tanto $\mathcal{P} = \bigcup_{i=1}^4 \mathcal{A}_i$. Vamos a dividir la prueba en varias partes correspondientes al cálculos de cada uno de estos cuatro conjuntos.
Cálculo de A_1

Sea $z_0 = 0$ y supongamos que $z_{-1} \neq \frac{-1}{B}$. Entonces $z_1 = 0$ y, por lo tanto, $z_k = 0 \ \forall k \geq 0$. Esto significa que $(0, z_{-1}) \in B$.

Si $z_0 = 0$ y $z_{-1} = \frac{-1}{B}$, z_1 ya no está definido, luego

$A_1 = \{(0, -1/B)\}$

Cálculo de A_2

Supongamos que $z_0 \neq 0$ y que $z_{-1} = \frac{-1}{B}$. Entonces

$z_1 = \frac{z_0}{1 + Bz_0 - Bz_0} = \frac{-1}{B}$

$z_2 = \frac{z_1}{1 + Bz_0 - Bz_1} = \frac{-1/B}{1 + Bz_0 - B \frac{-1}{B}} = \frac{-1}{2Bz_0}$

Obsérvese que si z_2 está bien definido, $z_2 \neq 0$ y además

$z_3 = \frac{z_2}{1 + Bz_2 - Bz_2} = \frac{-1}{2Bz_0} \times \frac{-1}{1 + B \frac{-1}{B} - B \frac{-1}{2Bz_0}} = \frac{-1}{B}$

Por inducción se demuestra que si $(z_k)_{k=1}^{+\infty}$ está bien definida entonces para todo $m \geq -1$, $z_{2m+1} = \frac{-1}{B}$, y para todo $m \geq 0$, $z_{2m+2} = \frac{-1}{2B + Bz_2z_0}$.

Sea \hat{A} el conjunto prohibido de la siguiente ecuación de Riccati de orden uno (con coeficientes y condiciones iniciales en \mathbb{C})

$x_{k+1} = \frac{-1}{2B + B^2x_k}$ (6.44)

Obsérvese que cuando $x_0 = 0$, $x_1 = \frac{-1}{2B}$, $x_2 = \frac{-2}{3B}$, $x_k = \frac{-k}{(k+1)B} \ \forall k \geq 0$. Luego $0 \notin \hat{A}$.

Es sencillo comprobar que

$A_2 = \hat{A} \times \left\{ \frac{-1}{B} \right\}$

Cálculo de A_3

Supongamos ahora que $z_0 = \frac{-1}{B}$. Igual que antes se demuestra por inducción que si $(z_k)_{k=1}^{+\infty}$ está bien definida entonces $(z_{2m})_{m=0}^{+\infty}$ es constantemente igual a $\frac{-1}{B}$ y $(z_{2m+1})_{m=-1}^{+\infty}$ es solución de (6.44).

Se demuestra asimismo que

$A_3 = \left\{ \frac{-1}{B} \right\} \times \hat{A}$

Cálculo de A_4

Sean $z_0, z_{-1} \in \mathbb{C}$ tales que $z_0 \neq 0, \frac{-1}{B}$ y $z_{-1} \neq \frac{-1}{B}$. Es en esta situación
donde utilizamos el siguiente invariante algebraico: si \((z_k)_{k=-1}^{+\infty}\) es una solución bien definida de (6.33) a partir de las condiciones iniciales \(z_0, z_{-1}\) anteriores, entonces \(z_k \neq 0 \quad \forall k \geq 0\) y además

\[
\left(\frac{1}{z_k} + B \right) (1 + B z_{k-1}) = C \quad \forall k \geq -1 \tag{6.45}
\]

La constante \(C = C(z_0, z_{-1})\) depende de las condiciones iniciales, pero es fija para todos los elementos de una solución.

Para demostrar que (6.45) solo depende de \(z_0\) y \(z_{-1}\) sustituimos en el primer factor usando la fórmula (6.33). Entonces

\[
\left(\frac{1}{z_k} + B \right) (1 + B z_{k-1}) = \left(\frac{1+Bz_{k-2}-Bz_{k-1}}{z_{k-1}} + B \right) (1 + z_{k-1}) = \left(\frac{1+Bz_{k-2}}{z_{k-1}} \right) (1 + B z_{k-1}) = \left(1 + B z_{k-2} \right) \left(\frac{1+Bz_{k-1}}{z_{k-1}} \right) = \left(\frac{1}{z_{k-1}+B} \right) (1 + B z_{k-2})
\]

Inductivamente \(\left(\frac{1}{z_k} + B \right) (1 + B z_{k-1}) = C\) para todo \(k \geq 0\). Por lo tanto

\[
1 + B z_{k-1} = \frac{C}{\frac{1}{z_k} + B} = \frac{C z_k}{1 + B z_k}
\]

y sustituyendo en (6.33), llegamos a la siguiente ecuación de Riccati de orden uno

\[
z_{k+1} = \frac{1 + B z_k}{C - B - B^2 z_k} \tag{6.46}
\]

donde \(C = \left(\frac{1}{z_0} + B \right) (1 + B z_{-1})\) depende de las condiciones iniciales \(z_0\) y \(z_{-1}\).

Sea \(\mathcal{A}_C\) el conjunto prohibido de (6.46). De nuevo se prueba que \(\mathcal{A}_4\) queda determinado por el conjunto prohibido de una ecuación de orden uno. Concretamente, se demuestra que

\[
\mathcal{A}_4 = \bigcup_{b \neq \frac{-1}{B}} \bigcup_{C \neq 0} \left(\left(\mathcal{A}_C \setminus \left\{ 0, \frac{-1}{B} \right\} \right) \times \{b\} \right) \cap \left(\left\{(a,b) : C = \left(\frac{1}{a} + B \right) (1 + B b) \right\} \right)
\]

Despejando \(b\) de la igualdad \(C = \left(\frac{1}{a} + B \right) (1 + B b)\), \(\mathcal{A}_4\) se simplifica a

\[
\mathcal{A}_4 = \bigcup_{C \neq 0} \left\{ \left(a, \frac{Ca - Ba - 1}{B^2 a + B} \right) : a \in \mathcal{A}_C \setminus \{0, -1/B\} \right\}
\]
Esto termina el cálculo del conjunto prohibido. Las expresiones (6.41), (6.42) y (6.43) se obtienen incluyendo en las fórmulas anteriores las determinaciones de los conjuntos prohibidos de las ecuaciones de Riccati (6.44) y (6.46).

En la figura 6.6 hemos representado el conjunto prohibido de (6.33) para diversos valores del parámetro B. Los cuatro colores se corresponden con los conjuntos A_i, siendo el verde el asignado a A_4. Hemos aumentado sensiblemente el tamaño de los puntos de A_1, A_2 y A_3 para facilitar su visualización.

Figura 6.6: Conjuntos prohibidos en la ecuación $z_{k+1} = \frac{z_k}{1+Bz_{k-1}-Bz_k}$

Observación 1: Remarcamos que lo importante aquí ha sido la reducción de orden gracias a la existencia de invariantes algebraicos. Esto plantea varias líneas de trabajo interesantes

1) Investigar qué EDR poseen tales invariantes. Por ejemplo, determinar qué EDR lineales de orden dos, tres, etc, los poseen.
2) Investigar la existencia de invariantes no racionales. Por ejemplo, la ecuación

\[x_{k+1} = \frac{x_{k-1}}{1 + x_k} \] \hspace{1cm} (6.47)

es asintóticamente dos periódica cuando \(x_{-1}, x_0 \in [0, +\infty) \) (véase [CL07, Equation #29]).

Simulaciones numéricas muestran una foliación de (6.47) en el cuadrante positivo, que recreamos en la figura 6.7.

Cada fibra de la foliación corresponde a la cuenca de atracción de un dos período.

Figura 6.7: Cuenas de atracción de la EDR \(x_{k+1} = \frac{x_{k-1}}{1 + x_k} \) (cuadrante positivo).

Está pendiente la prueba analítica de este hecho y la determinación de
los invariantes (probablemente no racionales). Estos se corresponden con las soluciones de la ecuación funcional:

\[
\varphi_{\alpha} \left(\frac{x}{1 + \varphi_{\alpha}(x)} \right) = \frac{\varphi_{\alpha}(x)(\varphi_{\alpha}(x) + 1)}{1 + x + \varphi_{\alpha}(x)} \tag{6.48}
\]

Expliquemos brevemente el significado de (6.48). Las estimaciones numéricas nos hacen pensar que, al menos en el cuadrante positivo, existe una familia de funciones reales \((\varphi_{\alpha})_{\alpha}\) tales que si las condiciones iniciales \((x_{-1}, x_0)\) pertenecen al grafo de un elemento de la familia, entonces \((x_{2k-1}, x_{2k})\) también pertenece a dicho grafo para todo \(k \geq 0\). Dicho de otra forma, si \(x_0 = \varphi_{\alpha}(x_{-1})\), entonces \(x_{2k} = \varphi_{\alpha}(x_{2k-1}) \forall k \geq 0\). Utilizando el hecho de que \(x_1 y x_2\) pueden expresarse en términos de \(x_{-1}\) y \(x_0\) y escribiendo \(x_{-1}\) simplemente como \(x\), se deduce fácilmente la relación (6.48).

La determinación del invariante podría ayudar a describir el conjunto prohibido de (6.47). En la figura 6.8 mostramos las cuencas de atracción más allá del cuadrante positivo pintando de gris los elementos de \(P\).

![Figura 6.8: Conjunto prohibido de \(x_{k+1} = \frac{x_{k-1}}{1+x_k}\) y detalle.](image)

Observación 2: Para el estudio de técnicas alternativas de reducción de orden en ecuaciones en diferencias véanse [Sed08b] y [Sed09a]. Aunque ambos trabajos versan sobre ecuaciones en diferencias no autónomas, las ideas allí expuestas se pueden aplicar también al caso de las EDR (autónomas).
6.4. Descripción del conjunto prohibido mediante recursión funcional

Sean \(P \) y \(Q \) polinomios no nulos en dos indeterminadas con coeficientes reales o complejos. Consideremos la EDR

\[
x_{k+1} = \frac{P(x_{k-1}, x_k)}{Q(x_{k-1}, x_k)}
\]

Supongamos que \(x_1 = x, \ x_0 = y \). Entonces para cada \(k \geq 1 \)

\[
x_k = \frac{P_k(x, y)}{Q_k(x, y)}
\]

siendo \(P_k \) y \(Q_k \) los polinomios que resultan de iterar y simplificar.

En esta situación el conjunto prohibido se describe como una colección de ecuaciones implícitas

\[
P = \{(x, y) \in \mathbb{R}^2 : \exists k \geq 1, Q_k(x, y) = 0 \}
\] (6.49)

Una variante de este planteamiento consiste en encontrar una familia de funciones \(R_k : \mathbb{R} \to \mathbb{R} \) de manera que en (6.49) la relación entre las variables sea explícita, quedando

\[
P = \{(x, y) \in \mathbb{R}^2 : \exists k \geq 1, y = R_k(x) \}
\] (6.50)

Este es el camino seguido en \([CD03]\) para representar una parte del conjunto prohibido de la EDR

\[
x_{k+1} = p + \frac{x_{k-1}}{x_k}
\] (6.51)

donde \(p \leq -1 \). En el texto citado los autores responden parcialmente a un problema propuesto en \([CDL01]\). A continuación vamos a resumir la técnica introducida en tal referencia.

Obsérvese que la representación (6.50) puede verse como una reducción de orden, ya que pasamos del problema del cálculo y trazado de funciones bidimensionales \(Q_k : \mathbb{R}^2 \to \mathbb{R} \) al de una familia de funciones unidimensionales \(R_k : \mathbb{R} \to \mathbb{R} \).

Consideremos el desdoblamiento estándar de la ecuación (6.51)

\[
F(x, y) = \left(y, p + \frac{x}{y} \right)
\]
La función F verifica que
\[F(x_{k-1}, x_k) = (x_k, x_{k+1}) \quad \forall k \geq 0 \]

F posee la siguiente función inversa
\[G(x, y) = (x(y - p), x) \]

Como los polos de (6.51) son los puntos del conjunto $A = \{(x, 0) : x \in \mathbb{R}\}$, el conjunto prohibido se describe en términos de G de la siguiente manera
\[P = \bigcup_{k=0}^{+\infty} G^k(A) \quad (6.52) \]

donde G^0 es la función identidad sobre \mathbb{R}^2 y cuando $k \geq 1$ G^k es la iterada k-ésima de G.

Ahora veremos esquemáticamente cómo determinar
\[P^+ = \bigcup_{k=0}^{+\infty} G^k(A^+) \]

siendo $A^+ = \{(x, 0) : x \geq 0\}$. El cálculo de $P = P^+ \cup P^-$ (donde $A^- = A \setminus A^+$ y $P^- = \bigcup_{k=0}^{+\infty} G^k(A^-)$) sigue siendo un problema abierto.

Sea $g : [0, +\infty) \to \mathbb{R}$ una función diferenciable tal que

1) $g(0) = 0$
2) $g'(x) > 0 \forall x \in [0, +\infty)$
3) $\lim_{x \to +\infty} g(x) = +\infty$

Entonces g es invertible, su rango es $[0, +\infty)$ y la función inversa g^{-1} cumple I), II) y III).

Esto también le sucede a la función
\[h_g(x) = x \cdot (-p + g^{-1}(x)) \]

construida a partir de cierta elección de g. Obsérvese que la forma de h_g está inspirada en la primera componente de $G(x, y)$.

Definamos
\[g_1(x) = -px \]
6.4. **DESCRIPCIÓN DE \mathcal{P} MEDIANTE RECURSIÓN FUNCIONAL**

La sucesión funcional $\{g_k\}_{k=1}^{\infty}$ es tal que cada uno de sus elementos cumple las propiedades I), II) y III), y además para todo $k \geq 1$ y todo $x > 0$ ([CD03, Theorem 1])

$$g_{2k}(x) > g_{2k+2}(x) > g_{2k+1}(x) > g_{2k-1}(x) \geq x \geq g_{2k-1}(x) > g_{2k+1}(x) > g_{2k+2}(x) > g_{2k}^{-1}(x) > 0$$

y también tal que

$$g_{2k}(0) = g_{2k-1}(0) = g_{2k}^{-1}(0) = g_{2k-1}^{-1}(0) = 0$$

La sucesión $\{g_k\}_{k=1}^{\infty}$ describe a \mathcal{P}^+. Recordemos que $A^+ = \{(x, 0) : x \geq 0\} \subset \mathbb{R}^2$.

Teorema 14.

$$\mathcal{P}^+ = A^+ \cup \{(x, y) \in [0, +\infty) \times \mathbb{R} : \exists k \geq 1, y = g_k^{-1}(x)\} \quad (6.53)$$

Demostración: La expresión (6.53) se puede escribir con el formato de la igualdad (6.52) de la siguiente manera

$$\mathcal{P}^+ = A^+ \cup \left(\bigcup_{k=1}^{+\infty} \{(x, y) : y = g_k^{-1}(x), x \geq 0\} \right) \quad (6.54)$$

La igualdad (6.54) se deduce del hecho de que

$$G^k(A^+) = \{(x, y) : y = g_k^{-1}(x), x \geq 0\} \quad \forall k \geq 1 \quad (6.55)$$

Este último se demuestra inductivamente.

Si $k = 1$

$$G^1(A^+) = \{(x(-p + 0), x) : x \geq 0\}$$

$$= \{(x, y) : y = \frac{-1}{p} x = g_1^{-1}(x), x \geq 0\}$$

Supongamos que (6.55) es cierto para un $k \geq 1$ y veamos que también lo es para $k + 1$. Por la hipótesis de inducción y la definición de g_{k+1} se tiene que

$$G^{k+1}(A^+) = \{(x(-p + g_k^{-1}(x)), x) : x \geq 0\}$$

$$= \{(x, y) : x = y(-p + g_k^{-1}(y)), y \geq 0\}$$

$$= \{(x, y) : x = g_{k+1}(y), y \geq 0\}$$
CAPÍTULO 6. CONJUNTOS PROHIBIDOS

Como g_{k+1} es una biyección creciente de $[0, +\infty)$ en $[0, +\infty)$ tal que $g_{k+1}(0) = 0$, la última expresión es igual a

$$\{(x, y) : y = g_{k+1}^{-1}(x), x \geq 0\}$$

\[\square\]

En la figura 6.9 aparecen las diez primeras iteraciones del conjunto A^+ utilizando la función $G(x, y) = (x(y - p), x)$.

Figura 6.9: Conjuntos prohibidos en la ecuación $x_{k+1} = p + \frac{x_{k-1}}{x_k}$

Observación: Es posible demostrar que la ecuación (6.51) posee, cuando $p \leq -1$ soluciones bien definidas que convergen al polo $x = 0$. Es decir, el conjunto prohibido contiene puntos de acumulación del buen conjunto (ver [CD03]).

6.5. **El conjunto prohibido de** $x_{k+1} = \frac{1}{x_k + x_{k-2}}$

Un método habitual para estimar los conjuntos prohibidos consiste en calcular los N primeros elementos de las soluciones generadas a partir de un conjunto A de condiciones iniciales, donde A suele ser un producto de intervalos. Los elementos de A se marcan como pertenecientes al conjunto prohibido si no ha sido posible realizar con ellos N iteraciones, o se marcan como elementos de B en otro caso. Coloreando, además, de acuerdo con el valor de la última iterada, podemos hacernos una idea del comportamiento dinámico sobre el buen conjunto.
6.5. **EL CONJUNTO PROHIBIDO DE** $X_{K+1} = \frac{1}{X_{K}+X_{K-2}}$

El método expuesto es especialmente útil cuando $A \subset \mathbb{R}$ ó $A \subset \mathbb{R}^2$. En el caso $A \subset \mathbb{R}^3$ el resultado tridimensional no se visualiza fácilmente. Una alternativa consiste en realizar representaciones de los cortes de A con una familia de planos. Tal idea la aplicamos al estudio del conjunto prohibido de la ecuación (2.2) cuando $B = 1$ a la que dedicamos el capítulo 2

$$x_{k+1} = \frac{1}{x_k + x_{k-2}} \quad (6.56)$$

Sean $A = [-3,3] \times [-3,3] \times [-3,3]$ y $N = 10$. En la figura 6.10 se muestra la sección de A con el plano $\{x = z\}$. La elección del plano de corte no es casual, ya que en él están contenidos todos los dos periodos de la ecuación

Figura 6.10: Sección de \mathcal{P} y \mathcal{B} correspondiente a $[-3,3]^3 \cap \{x = z\}$.
(ver del capítulo 2 el cálculo de (2.24)).
En el gráfico hemos marcado la posición de los dos periodos (hipérbola de trazo grueso) y del equilibrium (círculo pequeño).
En la figura 6.11 hemos hecho lo mismo con el conjunto de condiciones iniciales $A = [0,1,1] \times [-5,5] \times [0,1,1]$ para el número de iteraciones $N = 10$
Para el coloreado de los puntos en las figuras 6.10 y 6.11 hemos marcado de gris aquellos puntos donde para cierto $k \leq N$ ocurre que $|x_{k-2} + x_k| < \varepsilon$, siendo $(-\varepsilon, \varepsilon)$ el intervalo en el cual la máquina interpreta que un valor numérico es cero (en nuestros cálculos elegimos $\varepsilon = 0,05$).
Los puntos grises dan, por lo tanto, la estimación de \mathcal{P}_N. Los demás puntos
se han coloreado de manera que corresponden al mismo color aquellas condiciones iniciales cuyas soluciones convergen al mismo dos periodo.

A la vista de estos gráficos, proponemos las siguientes observaciones.

- El conjunto prohibido sobre el plano \(\{ x = z \} \) parece disponerse en capas con una cierta simetría respecto a la hipérbola de los dos periodos, y en una franja alrededor del eje de ordenadas (probablemente debida a la elección del entorno \((-\varepsilon, \varepsilon)\) como valor nulo en la máquina).

- La cuenca de atracción de cada dos periodo sobre el plano \(\{ x = z \} \) es una curva no acotada. La familia de tales curvas es una foliación de algunas partes del buen conjunto (al menos de las que corresponden a los cuadrantes positivos).

- Dichas cuencas de atracción se extienden de forma natural más allá del cuadrante donde las condiciones iniciales son positivas. Este hecho motiva el planteamiento seguido en la Memoria de considerar condiciones iniciales cualesquiera.

- En \(\mathbb{R}^3 \) las cuencas de atracción de cada dos periodo probablemente son superficies que exfolian el espacio. En las figuras 6.12 y 6.13 vemos los cortes de \(B \) y \(P \) con los planos \(\{ x = z + \delta \} \) y \(\{ x = z - \delta \} \) donde \(\delta = 2 \).

- ¿Es cierto que la cuenca de atracción de cada dos periodo es (en un entorno del mismo) una superficie o existen en cambio periodos donde dicho conjunto es de otro tipo? Sería interesante responder a esta cuestión para el equilibrium positivo.

6.6. Conjuntos prohibidos y Repulsores de Retorno Finito

En esta sección vamos a determinar gráficamente conjuntos prohibidos de EDR en las que hay comportamiento caótico.

La detección del caos que realizamos en los capítulos 4 y 5 se basa en localizar una solución finalmente constante cuya órbita inversa contiene como punto de acumulación a su límite en más infinito. Tales puntos son los RRF que introducimos en el capítulo 4.

De la propia definición de RRF se deduce que para su búsqueda hemos de determinar las iteradas inversas de los equilibria del sistema y que la EDR debe tener necesariamente una función de iteración inversa multivaluada. Por eso desechamos en este contexto las EDR lineales (dado su carácter biyectivo)
y comenzamos nuestro estudio con ecuaciones de orden uno construidas a partir de un cociente de polinomios de segundo grado. Concretamente, en capítulos anteriores buscamos RRF en las familias de EDR \((4.14)\) y \((4.20)\) que recordamos a continuación:

\[
x_{k+1} = \frac{1}{x_k^2 - r} \quad r \in \mathbb{R}
\]

\((6.57)\)

\[
x_{k+1} = \frac{1}{rx_k(1 - x_k)} \quad r \in \mathbb{R} \setminus \{0\}
\]

\((6.58)\)
6.6. CONJUNTOS PROHIBIDOS Y RRF

Figura 6.13: Sección de \(P \) y \(B \) correspondiente a \([-3, 3]^3 \cap \{x = z - 2\}\).

Las funciones de iteración inversa de estas ecuaciones son, respectivamente

\[
x_{k+1} = \pm \sqrt{\frac{1}{x_k} + r} \tag{6.59}
\]

\[
x_{k+1} = \frac{1}{2} \pm \frac{1}{2} \sqrt{1 - \frac{4}{rx_k}} \tag{6.60}
\]

A la vista de (6.59) y (6.60) parece razonable que el cálculo de las órbitas inversas se realice en el campo complejo. De esta forma se solventa el problema de los radicandos negativos. El conjunto prohibido que tratamos de representar será la restricción al eje real del calculado mediante este procedimiento.
El conjunto prohibido de las EDR de la familia (6.57) se dibuja iterando cada uno de los dos polos de la ecuación, \(x = \pm \sqrt{r} \). El resultado se muestra en la figura 6.14. De izquierda a derecha y de arriba a abajo los gráficos corresponden respectivamente a los valores \(r = 0,45 \), \(r = 0,65 \), \(r = 0,85 \) y \(r = 1 \). Hemos marcado de color la posición de los polos.

Figura 6.14: Conjuntos prohibidos en \(x_{k+1} = \frac{1}{x_k^2 - r} \).

Para el dibujo de los gráficos citados se ha usado una técnica estándar de representación de conjuntos de Julia, consistente en elegir aleatoriamente en cada paso de la iteración una de las dos ramas de la función. El resultado apenas difiere, gráficamente, del cálculo en el que se recorren exhaustivamente todas las ramas hasta una profundidad dada, y tiene la ventaja de ahorrar mucho tiempo de cómputo.
6.6. CONJUNTOS PROHIBIDOS Y RRF

En la figura 6.15 mostramos mediante líneas verticales la restricción del conjunto prohibido al eje real. Los gráficos se han construido calculando en primer lugar varias iteraciones del polo positivo utilizando la rama positiva de la iteración inversa, y a continuación tomando los opuestos de tales puntos. Hemos omitido los elementos de \(P \) correspondientes al polo negativo y sus iteraciones, aunque en el caso \(r = 1 \) esto implica solo omitir el punto \(x = 0 \). Esta manera de proceder se hace de acuerdo con el corolario 6.6.4, donde se justifica su validez en el caso citado. Estamos pendiente el análisis de si esto sucede también cuando \(r \neq 1 \), por lo que algunos de los gráficos de la figura 6.15 podrían estar mostrando solo una parte del conjunto prohibido. En cualquier caso, al comparar las figuras 6.14 y 6.15 observamos que la primera de ellas indicaría una estructura de \(P \) sobre el eje real tipo Cantor, mientras que en la segunda vemos claramente que \(P \) consiste solo en una sucesión convergente. Esto no implica necesariamente una contradicción, ya que debemos recordar que el conjunto prohibido es numerable y lo que está sucediendo es simplemente que \(P \) corta al eje real en menos puntos de los que se pueden apreciar en la figura 6.14.

Es notable el hecho de que los conjuntos de la figura 6.14 son casi idénticos a los correspondientes a las órbitas inversas del RRF (ver gráficos 4.4 y 4.10 del capítulo 4). Probablemente esto es debido a que el sistema (6.59) posee un atractor cuya gráfica es precisamente la coincidente en ambos problemas. Queda pendiente la demostración rigurosa de este hecho, junto con otras conjeturas:

- El sistema (6.59) posee un atractor \(A \).
- La órbita inversa del RRF de la EDR (6.57) cuando \(r = 1 \) es densa en \(A \).
- El conjunto prohibido de (6.57) cuando \(r = 1 \) es denso en \(A \).

Sean

\[
\begin{align*}
 h_+(x) &= \sqrt{\frac{1}{x} + 1} \\
 h_-(x) &= -\sqrt{\frac{1}{x} + 1}
\end{align*}
\]

(6.61)

las ramas de la iteración inversa.

A continuación vamos a demostrar un indicio de la validez de la conjetura anterior.
Proposición 6.6.1. La ecuación en diferencias

\[x_{k+1} = \frac{1}{x_k^2 - 1} \]

posee una sucesión de puntos de su conjunto prohibido convergente a su RRF.

Demostración: Recordemos que el RRF es la raíz real del polinomio \(x^3 - x - 1 \), esto es

\[z = \frac{3\sqrt{9 - \sqrt{69}} + \frac{2\sqrt{69} + \sqrt{9 + \sqrt{69}}}{3}}{\sqrt{18}} \approx 1,32472 \]

Vamos a probar que la sucesión de elementos del conjunto prohibido definida recurrentemente como \(y_0 = 1, y_{k+1} = h_+(y_k) \) converge a \(z \).

En primer lugar obsérvese que \(y_k > 0 \) para todo \(k \geq 0 \), lo que asegura la buena definición de esta sucesión. Además \(h'_+(x) < 0 \) cuando \(x \in (0, +\infty) \), luego \(h_+ \) es decreciente en este intervalo.
Como z es un punto fijo, del carácter decreciente de h_+ deducimos que si $y_k \in (0, z)$ entonces $y_{k+1} \in (z, +\infty)$ y recíprocamente. Esto quiere decir que la sucesión $(y_k)_{k=0}^{+\infty}$ oscila alrededor del equilibrio.

Ahora consideremos la función $\Delta^2(x) = h_+(h_+(x)) - x$ y analicemos sus signos en el semijuego real positivo. La ecuación $\Delta^2(x) = 0$ se puede transformar elevando al cuadrado en la siguiente

$$x^5 + x^4 - 2x^3 - 2x^2 + 1 = 0$$

equivalente a

$$(x^3 - x - 1)(x^2 + x - 1) = 0$$
cuyas únicas raíces reales positivas son z y el recíproco de la razón áurea, $\frac{1}{\phi}$. Pero $\Delta^2(\frac{1}{\phi}) \neq 0$ ya que se trata de una solución introducida al elevar al cuadrado.

Como además $\Delta^2(1) > 0$, $\Delta^2(2) < 0$ y $\Delta^2(z) = 0$, deducimos que $\Delta^2(x)$ es una cantidad positiva en el intervalo $(0, z)$ y negativa en el $(z, +\infty)$.

Por otra parte, $\Delta^2(y_k) = y_{k+2} - y_k$. Como $y_0 < z$, de lo anterior tenemos que $y_2 - y_0 > 0$ y como sabemos de antes que en este caso $y_2 < z$, deducimos inductivamente que $(y_{2k})_{k=0}^{+\infty}$ es una sucesión creciente no finalmente constante. De forma análoga se determina el decrecimiento de $(y_{2k+1})_{k=0}^{+\infty}$.

Por último sea $L = \lim_{k \to +\infty} y_{2k}$. Claramente $L \leq z$. Si $L < z$ entonces $L < h_+^2(L) < z$. Pero en tal caso, usando la continuidad de h_+^2, sería posible encontrar un $y_k < L$ suficientemente próximo al límite de manera que $y_{k+2} = h_+^2(y_k)$ estuviera suficientemente cercano a $h_+^2(L)$, con lo que se llegaría a la contradicción de que $y_{k+2} > L$.

De esta manera probamos que la sucesión de los términos de índice par converge al RRF. El caso de los términos impares se demuestra de manera similar.

\[\square\]

Observación: Una consecuencia de la proposición 6.6.1 es que \mathcal{P} no es cerrado, y por lo tanto \mathcal{B} no es un conjunto abierto. El problema de la determinación del carácter abierto del buen conjunto de una ecuación en diferencias es importante cuando se quiere averiguar si ciertas ED son o no globalmente periódicas. Dicho problema se aborda en [RM09].

Ahora vamos a ver una descripción de \mathcal{P} utilizando un alfabeto. El conjunto prohibido de

$$x_{k+1} = \frac{1}{x_k^2 - 1} \quad (6.62)$$
consta de todas las iteraciones de los polos \(x = -1 \) y \(x = 1 \) utilizando las ramas (6.61). Las iteradas correspondientes al polo \(x = -1 \) solo generan el elemento \(0 \in \mathcal{P} \), ya que \(h_+(0) \) y \(h_-(0) \) no están definidas. Por ello nos centramos en el cálculo de las iteraciones sobre el otro polo. Las letras de nuestro alfabeto serán \(h_+ \) y \(h_- \), denotadas genéricamente como \(a_i, i \in \mathbb{N} \). Así el significado de una palabra \(a_1 a_2 \ldots a_k \) corresponde al número complejo \(a_1 \circ a_2 \circ \ldots \circ a_k(1) \). Tales palabras están siempre bien definidas debido a que nunca toman el valor nulo. En efecto, decir que \(a_i(x) = 0 \) implica que \(f(0) = x \), donde \(f \) es la función de iteración de la ecuación en diferencias. De ahí se deduce que \(x \) debe ser igual a \(-1\). Se ve fácilmente que la relación \(a_i(x) = -1 \) no se verifica para ningún valor real o complejo de \(x \). Con un argumento inductivo se constata que las expresiones \(a_1 a_2 \ldots a_k \) nunca valen cero. Además hay unicidad en la representación usando palabras, esto es, si dos palabras \(a_1 a_2 \ldots a_k \) y \(b_1 b_2 \ldots b_l \) dan lugar al mismo número complejo es porque \(k = l \) y \(a_i = b_i \forall i = 1, \ldots, k \). Para demostrarlo, consideremos el primer subíndice \(i_0 \) tal que \(a_{i_0} \neq b_{i_0} \). Si este \(i_0 \) no existe es porque las palabras coinciden. En otro caso, sin pérdida de generalidad, se puede suponer que \(i_0 = 1 \), debido a que si no bastaría con aplicar \(i_0 - 1 \) veces la función \(f \) a ambas palabras para situarnos en esa hipótesis. Supongamos por ejemplo que \(a_1 = h_+ \) y que \(b_1 = h_- \). Entonces \(h_+(x) = h_-(y) \) donde \(x = a_2 \ldots a_k e y = b_2 \ldots b_l \). Ahora bien, como los conjuntos imagen de \(h_+ \) y \(h_- \) son tales que \(\text{Im}(h_+) \cap \text{Im}(h_-) = \{0\} \) deducimos que \(h_+(x) = h_-(y) = 0 \), condición que acabamos de ver que no puede darse.

Hemos demostrado la siguiente proposición. \(\mathcal{P}_C \) denota al conjunto prohibido cuando la ecuación se extiende a los números complejos.

Proposición 6.6.2. El conjunto prohibido, sobre los números complejos, de la ecuación es (6.62) es

\[
\mathcal{P}_C = \{-1, 0, 1\} \cup \{a_1 a_2 \ldots a_k : k \in \mathbb{N}\} \subset \mathbb{C} \tag{6.63}
\]

Además la representación anterior es única en el sentido de que cada elección de letras \(a_1 a_2 a_k \) se corresponde con un único elemento del conjunto prohibido y recíprocamente exceptuando \(-1, 0, 1\).

Ahora nos interesa describir el subconjunto de \(\mathcal{P}_C \) cuyos elementos están en \(\mathbb{R} \), es decir, el conjunto prohibido sobre los números reales. Para ello basta con observar que dos iteraciones consecutivas de \(h_- \) sobre un término positivo dan lugar a un número complejo con parte imaginaria no nula, y que una sola iteración de \(h_- \) sobre un término positivo es un número real negativo. La demostración de ambas afirmaciones es rutinaria, y da lugar al siguiente resultado.
Proposición 6.6.3. El conjunto prohibido de la ecuación (6.62) es

\[\mathcal{P} = \{-1, 0, 1\} \cup \{a_1 a_2 \ldots a_k : k \in \mathbb{N}, a_i = h_+ \text{ si } i < k, a_k = h_\pm\} \subset \mathbb{R} \] (6.64)

Otra forma de ver este conjunto consiste en observar que \(h_- = -h_+ \) y por lo tanto

\[\mathcal{P} = \{-1, 0, 1\} \cup \{a_1 a_2 \ldots a_k : k \in \mathbb{N}, a_i = h_+ \text{ si } i < k, a_k = h_\pm\} = \{-1, 0, 1\} \cup \{\pm (h_+)^k(1), k \geq 1\} \]

Como además en la proposición 6.6.1 demostramos que precisamente las iteradas de la rama positiva sobre el punto \(x_0 = 1 \) generan una sucesión convergente al RRF, llegamos al siguiente corolario.

Corolario 6.6.4. El conjunto prohibido de la ecuación (6.62) consta exactamente de los puntos \(\{-1, 0, 1\} \) y de todas las iteradas de \(x = 1 \) mediante la función \(h_+(x) = \sqrt{\frac{1}{x} + 1} \). Es un conjunto discreto, numerable y no cerrado, ya que no incluye al límite de la sucesión anterior.

Un problema pendiente es ver si es posible generalizar la descripción vía alfabeto a todos los elementos de la familia (6.57).

A la familia de EDR (6.58) se le puede aplicar la técnica de representación del conjunto prohibido anterior, si bien en este caso no habíamos localizado RRF sobre ella. Los conjuntos prohibidos, sobre \(\mathbb{C} \), de varios miembros de la familia se muestran en la figura 6.16. De izquierda a derecha y de arriba a abajo, los valores de \(r \) utilizados han sido respectivamente \(r = 1, r = 3, r = 6 \) y \(r = 12 \).

De nuevo se plantea la cuestión de si es posible describir mediante alfabeto los conjuntos prohibidos de (6.58).
Figura 6.16: Conjuntos prohibidos en $x_{k+1} = \frac{1}{rx_k(1-x_k)}$.

CAPÍTULO 6. CONJUNTOS PROHIBIDOS
Líneas de investigación futuras
En el desarrollo de los capítulos anteriores han ido surgiendo numerosas propuestas de trabajo y conjeturas que recopilamos a continuación.

7.1. Propuestas del capítulo 2

Problema 1. Adapta la demostración del carácter asintótico de la EDR

\[x_{k+1} = \frac{1}{x_k + x_{k-2}} \] \hspace{1cm} (7.1)

al caso

\[x_{k+1} = \frac{1}{Bx_k + x_{k-2}} \] \hspace{1cm} (7.2)

siendo \(B > 0 \). Es decir, ver que para cualquier valor positivo de \(B \) también es posible justificar el carácter asintótico de las soluciones mediante la acotación conveniente de los primeros términos de cualquier solución y la acotación de \(z_k = x_kx_{k-1} - \frac{1}{2} \) por una serie geométrica. Ver secciones 2.3 y 2.4.

Problema 2. Estudiar la dinámica de la EDR (7.2) cuando \(B < 0 \), determinando su conjunto prohibido y viendo si las soluciones generadas en el buen conjunto poseen carácter asintótico o de otro tipo.

La siguiente propuesta pretende generalizar los teoremas 4 y 5, en los que se describe la cuenca de atracción del punto de equilibrio cuando las condiciones iniciales son positivas.

Problema 3. Determinar la cuenca de atracción del equilibrio de la ecuación (7.1). Generalizar al caso de la ecuación (7.2).

Problema 4. Determinar analítica o numéricamente los \(p \) periodos de la EDR (7.1) cuando \(p = 4, 5, 6, \ldots \)

Observación: Los casos \(p = 1 \) y \(p = 2 \) se resolvieron en el capítulo 2, mientras que en el capítulo 3 está expuesta la tabla numérica de los 3 periodos.

7.2. Propuestas del capítulo 3

Problema 5. Extender y generalizar el teorema 6 a EDR de órdenes mayores que dos. Es decir, dilucidar si una EDR de orden \(n \) irreducible con coeficientes positivos es o no uniformemente finalmente positiva (UFP).

Conjetura 1. Toda EDR posee una versión irreducible en el sentido de la definición 3.2.7.
La conjetura anterior es obviamente cierta en el caso globalmente periódico. Por ejemplo, dada \(x_{k+1} = f(x_{k-1}, x_k) \) de periodo \(p \), basta considerar la ED asociada a la función de iteración \(g(x_{p+1}, \ldots, x_0) = x_{-p+1} \). Queda pendiente el estudio del caso general.

Problema 6. Determinar si el conjunto de periodos no positivos de la ecuación (7.1) está o no acotado.

Una respuesta negativa al problema 6 proporcionaría otra forma de demostrar el carácter no UFP de dicha ecuación (tal como se recoge en el corolario 3.4.3). Una afirmativa reforzaría la relevancia de aquel resultado.

Problema 7. Encontrar EDR irreducibles con su numerador y denominador no consistiendo únicamente en potencias pares de las variables, tales que sean además UFP.

De especial interés sería la resolución del problema 7 para el tipo de ecuaciones que se estudian en [CL07], esto es, aquellas con numerador y denominador lineales.

7.3. Propuestas del capítulo 4

Problema 8. Determinar si el conjunto revuelto de la EDR

\[
x_{k+1} = \frac{1}{x_k^2 - 1}
\]

tiene o no medida de Lebesgue nula.

Generalizar a la familia

\[
x_{k+1} = \frac{1}{x_k^2 - r}, \quad r \in \mathbb{R}
\]

Esta cuestión es importante puesto que si el conjunto revuelto tiene medida nula puede considerarse como despreciable a efectos prácticos, es decir, el carácter caótico de la ecuación se restringiría a un conjunto demasiado pequeño para ser tenido en cuenta en las aplicaciones.

Problema 9. Extender y generalizar las definiciones de caos en el sentido de Marotto y de RRF a ecuaciones en diferencias en variable compleja. Estudiar entonces si es posible generalizar el teorema de Marotto en este nuevo contexto y aplicarlo en el estudio de la familia de EDR

\[
x_{k+1} = \frac{1}{x_k^2 - r}, \quad r \in \mathbb{C}
\]
CAPÍTULO 7. LÍNEAS DE INVESTIGACIÓN FUTURAS

Conjetura 2. La ecuación en diferencias (7.4) es caótica en el sentido de Marotto cuando \(r \geq \frac{1}{\sqrt{2}} \).

Problema 10. Resolver el problema acerca de la controversia del enunciado original del teorema de Marotto. Esto es, bien encontrar una ED no caótica en el sentido Marotto que posea un RRF según la definición inicial de este autor (ver definición 4.1.3 y los comentarios que le siguen), o bien corregir y completar la demostración original de dicho teorema.

El siguiente problema está relacionado con la propuesta anterior.

Problema 11. Una EDR lineal, es decir, una EDR cuyo numerador y denominador sean funciones afines de las variables, no puede ser caótica en el sentido Marotto.

Obsérvese que las EDR lineales no poseen RRF debido a la invertibilidad de la iteración pero no está claro si pueden tener o no una cantidad infinita de periodos y un conjunto revuelto.

Conjetura 3. La familia de EDR logísticas inversas

\[
 x_{k+1} = \frac{1}{rx_k(1-x_k)} \tag{7.6}
\]

no posee RRF para ningún valor del parámetro \(r \in \mathbb{R} \setminus \{0\} \).

Problema 12. Fijado \(r \in \mathbb{R} \setminus \{0\} \), estudiar la dinámica de la EDR (7.6) determinando si cumple alguna o todas las características de la definición de caos Marotto.

En caso de encontrar un elemento de esta familia que sea caótico en el sentido Marotto y si la conjetura 3 es cierta, entonces se resolvería el siguiente problema sobre el recíproco del teorema de Marotto (teorema 7).

Problema 13. Determinar si la existencia de RRF es una condición no solo suficiente sino también necesaria para que exista caos en el sentido Marotto.

7.4. Propuestas del capítulo 5

Los teoremas que exponemos en el capítulo 5 sobre el caos producido por la existencia de una órbita homoclínica (Smale - Birkhoff) y sobre la relación entre la dinámica de ED y sus ampliaciones y perturbaciones multidimensionales (Marotto) están enunciados para funciones diferenciables. Pensamos que estos resultados son esencialmente válidos en el contexto de las EDR.
Problema 14. Extender y generalizar los teoremas 8, 9, 10, 11 y 12 a EDR.

En la misma línea de la propuesta anterior, planteamos la adaptación a EDR de los resultados de Misiurewicz-Zgliczynski relativos a la permanencia del orden de Sharkovskii y de la entropía topológica en ED construidas mediante una perturbación suficientemente pequeña de cierta ED.

Problema 15. Extender y generalizar los teoremas de Misiurewicz-Zgliczynski sobre el orden de Sharkovskii y la entropía topológica de perturbaciones de ciertas ED al contexto de las EDR. (Véanse [Zgl99a], [Zgl99b], [Zgl99c] y [MZ01]).

La siguiente conjetura atañe al modelo racional de competición de especies planteados por Hassell y Comins en [HC76]. En el caso de que el problema 14 se responda de tal forma que los teoremas de perturbación de ED sean también válidos para EDR, entonces la validez de la conjetura está garantizada.

Conjetura 4. Sean a, b, c, λ, μ números reales tales que $ac \neq 0$, $b = 2$ y $\lambda, \mu \in (0, 1)$. Existe un $\varepsilon \in (0, +\infty)$ tal que para todo $\alpha, \beta \in (-\varepsilon, \varepsilon)$ el sistema de EDR

$$
\begin{align*}
 x_{k+1} &= \frac{\lambda x_k}{[1 + a(x_k + \alpha y_k)]^b} \\
 y_{k+1} &= \frac{\mu y_k}{[1 + c(\beta x_k + y_k)]^b}
\end{align*}
$$

(7.7)

es caótico en el sentido Marotto.

7.5. Propuestas del capítulo 6

El problema central que nos planteamos en las ED en las que no hay restricciones de condiciones iniciales y parámetros es el de describir adecuadamente el conjunto prohibido P y determinar cualitativamente la dinámica sobre el buen conjunto B (es decir, estudiar el carácter asintótico, los puntos fijos y periodos, la estabilidad de las soluciones, la presencia o no de algún tipo de caos, etc).

Esta cuestión está planteada, en el caso de las EDR lineales de hasta orden tres, en una colección de problemas abiertos de [CL07]. Por ejemplo, el problema 5.55.1 de dicho texto pide determinar el buen conjunto de la ecuación

$$
x_{k+1} = \gamma + \frac{x_k}{x_{k-1}}
$$

(7.8)

y describir la dinámica de la ecuación sobre su buen conjunto. En [CL07] se proponen 22 problemas como el anterior que recopilamos aquí.
Problema 16. Describir el buen conjunto, el conjunto prohibido y la dinámica de las soluciones que comienzan en el buen conjunto para la colección de problemas de [CL07] siguiente: 5.20.3, 5.21.4, 5.22.3, 5.24.2, 5.25.3, 5.26.3, 5.31.1, 5.32.3, 5.34.3, 5.38.1, 5.42.1, 5.46.4, 5.52.1, 5.55.1, 5.56.1, 5.59.1, 5.60.1, 5.64.1, 5.65.1, 5.84.3 y 5.86.1.

Como complemento al estudio que hacemos de la ecuación de Riccati de orden uno, se plantea la siguiente generalización: estudiar la ecuación de Riccati de orden uno cuando sus condiciones iniciales y coeficientes son números complejos arbitrarios.

Problema 17 (Open problem 5.42.1 de [CL07]). Sea \(\beta \in \mathbb{C} \). Determinar el buen conjunto \(\mathcal{B} \) de la ecuación

\[
x_{k+1} = \beta + \frac{1}{x_k}
\]

(7.9)

Determinar el carácter de las soluciones de (7.9) cuyas condiciones iniciales están en \(\mathcal{B} \). Extender y generalizar.

Conjetura 5. Demostrar que el conjunto prohibido de la EDR (7.9) consta o bien de un número finito de términos o bien consiste en una sucesión convergente. (Ver figura 6.2).

Sabemos que cuando \(\beta = i \) el conjunto prohibido de (7.9) consta de solo dos elementos. Motivados por este hecho, planteamos la siguiente cuestión.

Problema 18. Determinar todos los valores de \(\beta \in \mathbb{C} \) tales que el conjunto prohibido de la EDR (7.9) sea finito.

Problema 19. Sean \(a, b \in \mathbb{R} \) y \(c \neq 0 \). Determinar los puntos de acumulación del conjunto prohibido de la ecuación de Riccati de orden dos:

\[
x_{k+1} = a + \frac{b}{x_k} + \frac{c}{x_kx_{k-1}}
\]

(7.10)

Determinar si tales puntos pertenecen a \(\mathcal{P} \) o a \(\mathcal{B} \), y en este último caso describir su comportamiento dinámico.

Problema 20. Describir el conjunto prohibido de la ecuación de Lyness

\[
x_{k+1} = \frac{\alpha + x_k}{x_{k-1}}
\]

(7.11)

Estudiar la relación existente entre \(\mathcal{P} \) y el invariante algebraico

\[
(\alpha + x_{k-1} + x_k) \left(1 + \frac{1}{x_{k-1}}\right) \left(1 + \frac{1}{x_k}\right)
\]

(7.12)
Extender y generalizar a la ecuación de Todd

\[x_{k+1} = \frac{\alpha + x_{k-1} + x_k}{x_{k-2}} \] \hspace{2cm} (7.13)

y a la ecuación de Lyness de orden \(n \)

\[x_{k+1} = \frac{\alpha + \sum_{i=0}^{n-1} x_{k-i}}{x_{k-n}} \] \hspace{2cm} (7.14)

Problema 21. Determinar qué EDR lineales de orden dos, tres, etc, poseen invariantes algebraicos, y describir éstos.

La siguiente conjetura está relacionada con la técnica de uso de invariantes para reducir el orden de una ED y con un problema sobre cuencas de atracción planteado en [CL07, Open Problem 5.29.1].

Conjetura 6. Demostrar que la EDR

\[x_{k+1} = \frac{x_{k-1}}{1 + x_k} \] \hspace{2cm} (7.15)

depende de exfoliaamiento en el cuadrante positivo de condiciones iniciales. Es decir, demostrar que existe una familia de curvas disjuntas cuyas gráficas llenan completamente el cuadrante \([0, +\infty) \times [0, +\infty)\) y tales que cuando el desdoblamiento de una solución de (7.15) tiene uno de sus puntos sobre el grafo de una de estas curvas, entonces todos los demás elementos de dicho desdoblamiento siguen estando en el grafo. Además cada fibra del exfoliaamiento es la cuenca de atracción de un dos periodo. (Ver figura 6.7 y el final de la sección 6.3.2).

El siguiente problema está relacionado con la conjetura 6.

Problema 22. Determinar si la EDR (7.15) posee un invariante (probablemente no algebraico). En caso afirmativo, utilizarlo para describir el conjunto prohibido.

Estudiar la dinámica de la ecuación sobre su buen conjunto.

En la sección 6.4 calculamos una parte del conjunto prohibido de la EDR

\[x_{k+1} = p + \frac{x_{k-1}}{x_k} \] \hspace{2cm} (7.16)

donde \(p \) un número real menor o igual que \(-1\). Está pendiente la determinación de todo el conjunto.
Problema 23 ([CD03]). *Describir el conjunto prohibido de la EDR (7.16).*

Del análisis numérico que realizamos en la sección 6.5 sobre la EDR (7.1) surgieron varias hipótesis y cuestiones pendientes que se resumen en el siguiente problema y la conjetura que le sucede.

Problema 24. *Determinar las cuencas de atracción de los dos periodos de la EDR (7.1).*

Conjetura 7. *Demostrar que las cuencas de atracción de los dos periodos positivos de la EDR (7.1) exfolian el espacio en un entorno de cada uno de ellos.*

Ahora veamos algunas cuestiones relativas a los conjuntos prohibidos de EDR de grado dos.

Conjetura 8. La iteración inversa de la EDR (7.3) posee un atractor \mathcal{A}. El conjunto prohibido de (7.3) es denso en \mathcal{A}. La órbita inversa del RRF de (7.3) es densa en \mathcal{A}.

Problema 25. *Resolver la conjetura 8 y estudiar su generalización a los elementos de la familia (7.4).*

Problema 26. *Generalizar las proposiciones 6.6.2 y 6.6.3 a todos los elementos de la familia (7.4), esto es, describir utilizando un alfabeto, los conjuntos prohibidos de tales ecuaciones sobre \mathbb{C} y sobre \mathbb{R}.*

Problema 27. *Describir mediante un alfabeto los conjuntos prohibidos en \mathbb{C} y en \mathbb{R} de las EDR (7.6).*

Por último queremos poner de manifiesto el interés de la búsqueda de modelos derivados de las ciencias aplicadas. Este problema multidisciplinar es complejo pero pensamos que tiene un gran futuro. Como ejemplo, propone mos la lectura de [SWC+08] en el que encontramos un ejemplo reciente de aplicación de las ecuaciones en diferencias a la cardiología.
Apéndice A

Algoritmos
A.1. Introducción

A lo largo de la Memoria hemos empleado herramientas informáticas para la realización de cálculos y gráficos que sirvan de apoyo, ilustren o sugieran los resultados y conjeturas propuestos. Sin embargo debemos advertir que estos cálculos deben ser considerados como una fuente de ideas pero no como argumentos demostrativos serios, y que pueden, en algún caso, facilitar información errónea.

En [GL05] encontramos un ejemplo que nos avisa de la precaución con la que debemos tomar los resultados numéricos. La siguiente ecuación lineal a trozos

\[x_{k+1} = |x_k| - x_{k-1} + 1 \] (A.1)

se conoce como la ecuación en diferencias del hombre de jengibre (gingerbreadman) debido a la forma del atractor asociado a algunas de sus órbitas. Fue investigada por Devaney en [Dev84].

La solución de (A.1) generada a partir de las condiciones iniciales

\[x_{-1} = -\frac{1}{10}, \quad x_0 = 0 \]

es aparentemente no periódica cuando se computan sus valores numéricamente (ver [PSB88]). Sin embargo el cambio de variable \(y_k = 10x_k \) transforma la ecuación en la siguiente

\[y_{k+1} = |y_k| - y_{k-1} + 10 \] (A.2)

Entonces el cálculo numérico se vuelve exacto, al manejar únicamente números enteros, y se comprueba que (A.2) y las condiciones iniciales \(y_{-1} = -1, \ y_0 = 0 \) generan la siguiente sucesión de periodo 126.

\[-1, 0, 11, 21, 20, 9, -1, 2, 13, 21, 18, 7, -1, 4, 15, 21, 16, 5, -1, 6, 17, 21, 14, 3, -1, 8, 19, 21, 12, 1, -1, 10, 21, 21, 10, -1, 1, 12, 21, 19, 8, -1, 3, 14, 21, 17, 6, -1, 5, 16, 21, 15, 4, -1, 7, 18, 21, 13, 2, -1, 9, 20, 21, 11, 0, -1, 11, 22, 21, 9, -2, 3, 15, 22, 17, 5, -2, 7, 19, 22, 13, 1, -2, 11, 23, 22, 9, -3, 4, 17, 23, 16, 3, -3, 10, 23, 23, 10, -3, 3, 16, 23, 17, 4, -3, 9, 22, 23, 11, -2, 1, 13, 22, 19, 7, -2, 5, 17, 22, 15, 3, -2, 9, 21, 22, 11, -1, 0\]

A.2. Herramientas utilizadas

Para la realización de cálculos avanzados y la creación de gráficos hemos empleado los siguientes programas y lenguajes.

- Sistemas algebraicos computacionales: \textit{wxMaxima 11.08.0} y \textit{Mathematica 5.0}
A.3. CADENAS MONÓTONAS

- Gráficos: Gnuplot 4.6, Pinta 1.1, GIMP 2.6.12 y Geogebra 4.0.19.0
- Generación de video: MEncoder

A.3. Cadenas monótonas

Algoritmo en *wxMaxima* para determinar cómo crecen, decrecen o son constantes los términos de una sucesión dada. Lo aplicamos a la creación de las figuras 2.5 y 2.6 del capítulo 2.

```maxima
/* Título: Cadenas Monótonas */
/* Descripción: Genera un número dado de términos de una sucesión recurrente. Después construye una sucesión que indica la longitud de cada cadena creciente, decreciente o constante dentro de la sucesión. Esto se consigue en dos etapas: calculando primero las diferencias consecutivas de términos y contando a continuación los positivos, negativos o nulos en ellas. */

/* Sucesión recurrente, definición */
suc[1]:1$
suc[2]:1$
suc[3]:1$
suc[k]:=1/(suc[k-1]+suc[k-3])$

/* Procedimiento que cuenta los positivos, negativos o nulos en una sucesión */
contarPositivosNegativosCero[sucesion]:=(
    resultado:[],
    aux:1,
    for k:2 thru length(sucesion)-1 do(
        if (sucesion[k]=0 and sucesion[k-1]=0) then aux:aux+1,
        if (sucesion[k]=0 and sucesion[k-1]>0) then (
            resultado:append(resultado,[aux]),
            aux:1
        ),
        if (sucesion[k]=0 and sucesion[k-1]<0) then (
            resultado:append(resultado,[aux]),
            aux:1
        ),
        if (sucesion[k]>0 and sucesion[k-1]=0) then (
APÉNDICE A. ALGORITMOS

```plaintext
resultado: append(resultado, [aux]),
aux: 1
if (sucesion[k] > 0 and sucesion[k-1] > 0) then aux: aux + 1,
if (sucesion[k] > 0 and sucesion[k-1] < 0) then
 resultado: append(resultado, [aux]),
aux: 1
if (sucesion[k] < 0 and sucesion[k-1] = 0) then
 resultado: append(resultado, [aux]),
aux: 1
if (sucesion[k] < 0 and sucesion[k-1] > 0) then
 resultado: append(resultado, [aux]),
aux: 1
if (sucesion[k] < 0 and sucesion[k-1] < 0) then aux: aux + 1
/* Último término */

k: length(sucesion),
if (sucesion[k] = 0 and sucesion[k-1] = 0) then resultado: append(resultado, [aux+1]),
if (sucesion[k] = 0 and sucesion[k-1] > 0) then resultado: append(resultado, [aux, 1]),
if (sucesion[k] = 0 and sucesion[k-1] < 0) then resultado: append(resultado, [aux, 1]),
if (sucesion[k] > 0 and sucesion[k-1] = 0) then resultado: append(resultado, [aux, 1]),
if (sucesion[k] > 0 and sucesion[k-1] > 0) then resultado: append(resultado, [aux+1]),
if (sucesion[k] > 0 and sucesion[k-1] < 0) then resultado: append(resultado, [aux, 1]),
/* Salida de resultados */

resultado
```

$
/* Diferencias */
diferenciasSucesivas[sucesion] := (  
cadena: [],  
for k: 2 thru length(sucesion) do  
    cadena: append(cadena, [sucesion[k] - sucesion[k-1]]),  
    cadena) $

/* Procedimiento principal */
cadenasMonotonas[sucesion] := (  
    resultado: contarPositivosNegativosCero[  
        diferenciasSucesivas[sucesion]  
    ],  
    resultado)

/* Aplicación a la ecuación en diferencias */
sucesion: makelist(suc[k], k, 1, 1000), numer$  
cadenasMonotonas[sucesion];

/* Subsucesión de términos de índice impar */
impares[sucesion] := (  
    cadena: [],  
    for k: 1 thru floor(length(sucesion)/2) do  
        cadena: append(cadena, [sucesion[2*k-1]]),  
        cadena)

/* Aplicación del método a la subsucesión de impares */
sucesion: makelist(suc[k], k, 1, 1000), numer$  
monotoniaImpar: cadenasMonotonas[impares[sucesion]];  

/* Aplicación del método a la subsucesión de pares */
sucesion: makelist(suc[k], k, 2, 1001), numer$  
monotoniaPar: cadenasMonotonas[impares[sucesion]];  

/* Parte gráfica: representación de las listas anteriores */
xvalsI: makelist(k, k, 1, length(monotoniaImpar))$
plot2d(  
    [discrete, xvalsI, monotoniaImpar],
180

APÉNDICE A. ALGORITMOS

[color,blue,green],
[legend,"Impares"],
xlabel,"Subíndice de la cadena monótona"],
ylabel,"Longitud de la cadena"
);

/* Parte gráfica: representación de las listas anteriores */
xvalsP: makelist(k,k,1,length(monotoniaPar))$
plot2d(
[discrete,xvalsP,monotoniaPar],
color,green],
[legend,"Pares"],
xlabel,"Subíndice de la cadena monótona"],
ylabel,"Longitud de la cadena"
);

A.4. Cálculo de periodos

Con el siguiente algoritmo de \textit{wxMaxima} pretendemos estimar numéricamente los periodos de la EDR

\[
x_{k+1} = \frac{1}{x_{k-2} + x_k}
\]

Para ello utilizamos el procedimiento de resolución de sistemas \textit{algsys}. Lo hemos empleado para generar la tabla 3.2. El algoritmo computa los equilibria, describe paramétricamente los dos periodos y predice correctamente que no hay cuatro periodos (primos). Sin embargo no se muestra efectivo con el cálculo de periodos mayores o iguales que cinco.

/* Título: Cálculo de periodos de la EDR
   \( x_{k+1} = 1/(x_{k-2}+x_k) \) */
/* Descripción: uso de algsys para determinar los periodos de una EDR de orden tres */
/* Caso p=3 */
/* Función de iteración */
f(x,y,z):=1/(x+z)$
/* Desdoblamiento */
desF(a):=[a[2],a[3],f(a[1],a[2],a[3])]}$
A.5. Diagrama de tela de araña

Utilizamos el paquete dynamics de wxMaxima para generar el diagrama de tela de araña 4.3, el cual ilustra el repulsor de retorno finito de la ecuación (4.11). La dificultad práctica de este procedimiento es que se debe manejar una precisión suficiente para que la trayectoria no se dispare a infinito, ya que arbitrariamente cerca del punto fijo hay condiciones iniciales que presentan tal característica.

La expresión exacta de $x_0$ es:

$$
x_0 = \frac{\sqrt{23}}{2 \cdot 3^{3/2}} + \frac{1}{2} + \frac{1}{3 \cdot \left( \frac{\sqrt{23}}{2 \cdot 3^{3/2}} + \frac{1}{2} \right)^{1/3}} + \frac{1}{\left( \frac{\sqrt{23}}{2 \cdot 3^{3/2}} + \frac{1}{2} \right)^{1/3}}
$$
/* Condición inicial que verifica la definición de RRF */
inicial:h(h(h(-h(equilibrium))));

/* Carga del paquete "dynamics" */
load("dynamics")$

/* Diagrama de tela de araña */
staircase(f(x),inicial,5,[xlabel,"x(k)"],[ylabel,"x(k+1)"]);

A.6. Fractales de órbita inversa

Algoritmo en Mathematica para calcular órbitas multivaluadas y representarlas gráficamente en $\mathbb{C}$. El programa determina, a partir de una cierta condición inicial $x_0$, una de las soluciones de la ecuación $f(x) = x_0$, siendo $f$ la función de iteración de la ED. En cada etapa se selecciona aleatoriamente la rama de la función inversa.

Trabajamos en el campo complejo por dos motivos. En primer lugar, así se evitan los problemas derivados de la aparición de radicandos negativos. Además la imagen en $\mathbb{C}$ de la órbita inversa es más sugerente y su restricción a $\mathbb{R}$ más clara que si el dibujo se hiciera únicamente en la recta real.

La técnica se emplea en varias situaciones

- En la búsqueda de RRF de la familia (4.14) (figuras 4.4, 4.5 y 4.10 del capítulo 4 y 5.2 del capítulo 5). Aquí el punto inicial será el equilibrium candidato a repulsor de retorno finito. Habremos hallado uno cuando el atractor resultante intersequ (sobre el eje real) a un cierto entorno crítico, representado mediante un trazo más grueso.

- En la búsqueda de RRF de la familia (4.20) (figura 4.12). En este caso el algoritmo es similar al presentado aquí. El cambio principal es el uso del equilibrium negativo para el inicio de la iteración.

- En la creación de animaciones dependientes de un parámetro. Para cada valor de $r$ en la familia (4.14)

$$x_{k+1} = \frac{1}{x_k^2 - r}$$

calculamos el equilibrium candidato a RRF y su órbita inversa. A continuación usando el software mencoder pegamos todas las imágenes
generadas en una película. Obtenemos así un vídeo que muestra la evolución de los atractores y de la presencia de RRF según los valores del parámetro \( r \).

Un ejemplo disponible en la web es \( http://youtu.be/bigcVJYdGbU \).

- En la estimación numérica de los conjuntos prohibidos.
  Aquí se toma como \( x_0 \) alguno de los polos de la EDR. El resultado se muestra en las figuras 6.14 y 6.16. Ver sección A.22.

(* Título: Fractales de órbita inversa *)
(* Descripción: Cálculo y representación gráfica de las órbitas inversas multivaluadas en una EDR. Cuando el punto de partida es un cierto equilibrium, esta representación sirve para detectar numéricamente repulsores de retorno finito (RRF) y por tanto caos. Cuando se parte de un polo de la función de iteración obtenemos una estimación del conjunto prohibido. *)

En el algoritmo sacamos la información hacia un archivo para además, usando el programa "mencoder", generar animaciones dependientes del parámetro de la familia. *)

(* Procedimiento para exportar a un archivo *)
AtractorInversoFichero[r_, xRango_, yRango_, NIter_] := Block[{},
  Clear[f, SBR, supEntornoRep];
  (* La función de iteración inversa es multivaluada, pero en cada paso seleccionamos aleatoriamente una de sus dos ramas. Esto acelera notablemente la ejecución del algoritmo sin variar significativamente el resultado final. *)
  f[x_] :=
    If[Random[] < 0.5, Sqrt[1/x + r], -Sqrt[1/x + r]] ;;
  ToR2[a_] := {Re[a], Im[a]};
  (* Cálculo del candidato a RRF -SBR en inglés- *)
  SBR = First[
    Select[x /. NSolve[1/(x^2 - r) == x, x], (Head[#] == Real) &]];
  (* Cálculo del intervalo crítico *)
  supEntornoRep = x /. First[NSolve[2 x/(x^2 - r)^2 == 1, x]];
  (* Creación del gráfico. Cambiando "Return" por "Show"
  saca la imagen por pantalla *)
Return[Graphics[
  {GrayLevel[0.2], Point /@ ToR2 /@ NestList[f, SBR, NIter],
   GrayLevel[0.7], Line[{{-5, 0}, {5, 0}}],
   Thickness[0.01], Line[{{1, 0}, {supEntornoRep, 0}}],
   RGBColor[0, 0, 1], Point[{SBR, 0}],
   Text["r=" <> ToString[N[r, 5]], {1, -1},
     Background -> Hue[0.2]],
   Frame -> True, PlotRange -> {xRango, yRango}]
];

(* Exportación de la imagen a un archivo tipo "JPEG". 
En este ejemplo se calculan 10000 iteradas inversas en la 
ecuación x_{k+1}=1/(x_k^2-1) *)
Export[
  "fichero1.jpg",
  AtractorInversoFichero[1, {-2, 2}, {-1.5, 1.5}, 10000],
  "JPEG",
  ImageSize -> 640
]

(* Para la generación de un número grande de archivos 
gráficos (para crear con ellos una animación), es necesario 
gestionar el nombre que se le pone a cada uno de ellos. 
Este es el propósito de la siguiente rutina *)
CadenaFija[numero_] := Which[
  Length[IntegerDigits[numero]] == 1,
  cadena = "000" <> ToString[numero],
  Length[IntegerDigits[numero]] == 2,
  cadena = "00" <> ToString[numero],
  Length[IntegerDigits[numero]] == 3,
  cadena = "0" <> ToString[numero],
  Length[IntegerDigits[numero]] == 4,
  cadena = ToString[numero]
];

(* Generación de un número dado de archivos entre dos 
valores del parámetro *)
GeneraArchivos[NumArchivos_, minR_, maxR_] := Block[{},
  Table[
    Export[
      "ficheroVideo_" <> CadenaFija[r] <> ".jpg",
      AtractorInversoFichero[1, {minR, maxR}, {-1.5, 1.5}, 10000],
      "JPEG",
      ImageSize -> 640
    ],
    {r, minR, maxR, (maxR - minR)/NumArchivos}
  ]
]
A.7. **ITERADAS DE UNA ED**

Algoritmo en *wxMaxima* que representa las soluciones de una ecuación dada generadas por múltiples condiciones iniciales. Lo utilizamos para generar el gráfico 4.6. Éste advierte de la necesidad de tomar con mucha reserva los resultados numéricos a la hora de analizar los posibles comportamientos dinámicos.

```waxmath
/* Título: Iteraciones múltiples de una ED */
/* Descripción: calculamos los primeros términos de las
soluciones de una ecuación en diferencias generadas a partir
de 100 condiciones iniciales distintas.
Representamos gráficamente los resultados para estimar el
comportamiento de la ED. */

/* Función de iteración */
f(x):=1/(x^2-1)

/* Procedimiento para iterar */
iteraciones(inicial,nIter):=(
aux:inicial,
for i:1 thru nIter do
 aux:f(aux),
aux)

/* Funciones iteradas */
a(x):=iteraciones(x,1)
b(x):=iteraciones(x,5)
```

A.7. **Iteradas de una Ecuación en Diferencias**

El algoritmo de *wxMaxima* que representa las soluciones de una ecuación dada generadas por múltiples condiciones iniciales. Lo utilizamos para generar el gráfico 4.6. Éste advierte de la necesidad de tomar con mucha reserva los resultados numéricos a la hora de analizar los posibles comportamientos dinámicos.

```waxmath
/* Título: Iteraciones múltiples de una ED */
/* Descripción: calculamos los primeros términos de las
soluciones de una ecuación en diferencias generadas a partir
de 100 condiciones iniciales distintas.
Representamos gráficamente los resultados para estimar el
comportamiento de la ED. */

/* Función de iteración */
f(x):=1/(x^2-1)

/* Procedimiento para iterar */
iteraciones(inicial,nIter):=(
aux:inicial,
for i:1 thru nIter do
 aux:f(aux),
aux)

/* Funciones iteradas */
a(x):=iteraciones(x,1)
b(x):=iteraciones(x,5)
```
A.8. Representación gráfica de periodos

Dibujamos, para valores de $k$ pequeños, las soluciones de la ecuación $f^k(x) = x$, es decir, los periodos de una EDR. Lo hemos aplicado a la ecuación (4.11), generando la figura 4.6. Damos así un indicio numérico de comportamiento caótico.

El algoritmo no desecha aquellas soluciones pertenecientes al conjunto prohibido (y por lo tanto no válidas como periodos), por lo que puede mejorarse en este aspecto. Sin embargo, aparentemente dichas soluciones son escasas.

Un problema de cómputo más serio es que el tiempo de cálculo crece geométricamente con respecto a la longitud del periodo. Cuando $k \geq 9$ la ejecución del algoritmo se vuelve demasiado exigente en tiempo y recursos.

El programa utiliza el paquete draw y el procedimiento algsys de wxMaxima.

/* Título: representación gráfica de periodos */
/* Descripción: para cada p, se determinan las soluciones reales de la ecuación $f^p(x) = x$ y se dibujan éstas en la vertical de la longitud del periodo */
/* Parámetro para que el procedimiento "algsys" solo calcule raíces reales */
realonly:true$

/* Carga del paquete gráfico "draw" */
load("draw")$

/* Función de iteración */
f(x):=1/(x^2-1)$

/* Función iterada */
iteraF(x,nIter):=(
  aux:x,
  for i:1 thru nIter do aux:f(aux),
  aux)$

/* Cálculo de periodos */
periodos(p):=algsys([iteraF(x,p)=x],[x])$

/* Dibujo de periodos */
dibujaPeriodos(p):=(
  lista_aux:[],
  lista_puntos:[],
  lista_periodos:[],
  for i:1 thru p do (
    lista_periodos:periodos(i),
    lista_aux:[],
    for j:1 thru length(lista_periodos) do
      lista_aux:append(lista_aux,
                       [[i,subst(lista_periodos[j],x)]],
      lista_puntos:append(lista_puntos,lista_periodos)
    ),
    draw2d(
      point_size=1.5,color=magenta,point_type=circle,
      xrange=[0,p+1],yrange=[-3,3],
      xlabel="Longitud del periodo",
      ylabel="Posición de los periodos",
      points(lista_puntos)
    )
  )$
A.9. Estimación de Repulsores de Retorno Finito

En la familia de EDR (4.14)

\[ x_{k+1} = \frac{1}{x_k^2 - r} \]

queremos estimar para qué valores del parámetro \( r \) existe un RRF. Para ello computamos cinco iteraciones inversas (multivaluadas) del mayor punto fijo de \( f(x) = \frac{1}{x^2 - r} \), y verificamos cuántas pertenecen a un intervalo crítico. El resultado es la figura 4.9. Ésta apoya la conjetura de que la EDR (4.14) es caótica en el sentido de Marotto cuando \( r \geq \frac{1}{\sqrt{2}} \). Los cálculos los realizamos con un notebook de Mathematica. Nótese que en el código se marcan cuatro iteraciones inversas en la llamada al procedimiento principal, pero en el interior éste se realiza implícitamente otra iteración más ya que iniciamos con el equilibrium cambiado de signo.

(* Título: Estimación de RRF para \( x_{k+1} = 1/(x_k^2 - r) \) *)
(* Descripción: Calculamos iteraciones inversas multivaluadas de una EDR, comprobando cuántas de ellas pertenecen a un cierto intervalo crítico. Después representamos gráficamente la función del número de puntos hallados frente al valor del parámetro \( r \). Una ampliación del punto en el que se abandona el valor nulo sirve para la propuesta de una conjetura.*)

(* Función que cuenta el número de RRF *)
SBRTest[r_, NIter_] := Block[{},
  Clear[f, SBR, supEntornoRep, infEntornoRep, lista];
  (* Rama positiva de la función de iteración inversa *)
  f[x_] := Sqrt[1/x + r];
  SBR = Max[
    Select[x /. NSolve[1/(x^2 - r) == x, x],
      (Head[#] == Real) &]];
**A.9. ESTIMACIÓN DE RRF**

```plaintext
supEntornoRep = Max[Select[
x /. NSolve[2 x/(x^2 - r)^2 == 1, x],
(Head[#] == Real) &]];
infEntornoRep =
If[r > 0, Sqrt[r],
Min[Select[
x /. NSolve[2 x/(x^2 - r)^2 == 1, x],
(Head[#] == Real) &]]];
(* Comenzamos la iteración con el equilibrium cambiado de signo *)
lista = {-SBR};
For[i = 1, i <= NIter, i++,
lista = Union[lista, f[lista], -f[lista]];]
(* Filtramos los reales *)
lista = Select[lista, (Head[#] == Real) &];
(* Filtramos los que están en el entorno repulsor, exceptuando el equilibrium *)
lista = Select[
lista, ((# > infEntornoRep) && (# < supEntornoRep)) && (#
lista = Select[
lista, ((# > infEntornoRep) && (# < supEntornoRep)) && (#
Return[Length[lista]];
]

(* Función que cuenta cinco iteraciones inversas; véase el comentario del inicio de la sección *)
h[x_] := SBRTest[x, 4];

(* Construcción de los gráficos *)
g1 = Plot[h[x], {x, -1, 2},
PlotStyle -> {GrayLevel[0.5], Thickness[0.01]}];
g2 = Plot[h[x], {x, 0.79, 0.8},
PlotStyle -> {GrayLevel[0.5], Thickness[0.01]}];
grafico = GraphicsArray[g1, g2];

(* Salida a un archivo JPEG *)
Export[
"rVersusNRRF.jpg",
grafico,
"JPEG",
ImageResolution -> 600,
ImageSize -> 640
]```
A.10. Acotación de dos iteradas inversas

Para la búsqueda de RRF en la ecuación (5.18)

\[x_{k+1} = \frac{\lambda x_k}{(1 + x_k)^2} \]

procedemos numéricamente calculando dos iteradas inversas de uno de sus equilibria. A continuación vemos si el resultado pertenece o no al intervalo crítico (cuyos extremos se determinan numéricamente).

El siguiente algoritmo de Mathematica realiza los pasos descritos, creando la figura 5.5.

(* Título: Acotación de dos iteradas inversas de equilibrio *)

(* Descripción: Probamos gráficamente que dos iteradas inversas del equilibrio de la ecuación \(x_{k+1} = \frac{\lambda x_k}{(1 + x_k)^2} \) llevan a éste al interior del intervalo crítico. Se demuestra así que tal punto fijo es un repulsor de retorno finito. El algoritmo consiste en el dibujo mediante el procedimiento "Plot" de funciones cuya expresión analítica es difícil de manejar, y en la salida a un fichero. *)

(* Funciones de iteración inversa: ramas positiva y negativa *)

fMas[x_, r_] := r/(2*x) - 1 + Sqrt[(r/(2*x))^2 - r/x];
fMenos[x_, r_] := r/(2*x) - 1 - Sqrt[(r/(2*x))^2 - r/x];

(* Extremo superior del intervalo crítico según el parámetro r *)

Rho[r_] := First[
 Select[x /. NSolve[-x^3 - 3x^2 - (3 + r)x - 1 + r == 0, x],
 (Head[#] == Real) &]];

(* Función que da el equilibrio según el parámetro r *)
Equilibrium[r_] := Sqrt[r] - 1;

(* Dos iteradas inversas *)
A.11. ÓRBITA DE SISTEMA UNIDIMENSIONAL PERTURBADO

IteradaInv[r_] := fMas[fMenos[Equilibrium[r], r], r];

(* Generación del gráfico *)
grafico = Plot[{-1, IteradaInv[r], Rho[r]}, {r, 0, 1},
 PlotStyle -> {
 Thickness[0.005],
 Thickness[0.015],
 Thickness[0.005]
 },
 Frame -> True,
 PlotRange -> {{-0.01, 1.01}, {-1.1, 0.01}}];

(* Salida a fichero *)
Export[
 "acotacionIterdasInversas.jpg",
 grafico,
 "JPEG",
 ImageResolution -> 600,
 ImageSize -> 320,
 ConversionOptions -> {"Quality" -> 100}
];

A.11. Órbita de sistema unidimensional perturbado

Tratamos de verificar numéricamente la complejidad de las ED del tipo

\[x_{k+1} = \frac{1 + b \cdot g(x_{k-1})}{x_k^2 - r} \] (A.3)

donde \(g \) es una función continua y \(b \) y \(r \) son parámetros reales.

En el siguiente algoritmo de Mathematica se representan soluciones particulares para ciertos valores de los parámetros, dibujando éstas como puntos en el plano mediante el uso de un desdoblamiento estándar. Se utiliza una gama de colores para mostrar la evolución de la órbita.

Es resultado se muestra en las figuras 5.3 y 5.4.

(* Título: Órbita de sistema unidimensional perturbado *)
(* Descripción: tratamos de ver numéricamente la complejidad de una ED cuadrática inversa unidimensional*)
cualquier sistema cuando es perturbada añadiéndole un orden extra.
Para ello calculamos primero los puntos fijos y después dibujamos una solución tomando condiciones iniciales próximas a uno de ellos *)

(* Función que introduce la perturbación *)
g[x_] := x;

(* Valor del parámetro perturbado *)
b = 0.1;

(* Valor del parámetro del sistema original *)
r = 0.9;

(* Función para calcular los equilibria *)
F[x_] := (1 + b*g[x])/(x^2 - r);
Solve[x == F[x], x]

(* Función de iteración bidimensional *)
G[a_] := {a[[2]], (1 + b*g[a[[1]]])/(a[[2]]^2 - r)};

dibujaOrbita[inicial_, NIter_] := Block[{},
 (* El coloreado se hace de acuerdo al número de iteraciones *)
 listaColores = Table[Hue[n/NIter], {n, NIter + 1}];
 (* Cálculo de la órbita *)
 listaPuntos = Point /@ NestList[G, inicial, NIter];
 graficoOrbita = Graphics[
 Inner[List, listaColores, listaPuntos, List],
 Frame -> True
];
 (* Dibujo de un rectángulo que muestre a qué iteración corresponde cada color *)
 barraIteraciones = Graphics[
 {({Hue[#1], Rectangle[
 {#1, 0}, {#1 + 1/NIter, 0.1}]}) &
 /@ Range[1/NIter, 1, 1/NIter],
 Text["0", {1/NIter - 0.001, 0.05}, {1, 0}],
 Text[NIter, {1.1, 0.05}, {1, 0}]},
 AspectRatio -> Automatic}];
A.12. ÓRBITAS EN HASSELL Y COMINS SIMPLIFICADO

Hemos estudiado el modelo de Hassell y Comins (ecuación (5.16)) reduciéndolo previamente a un problema unidimensional de la forma

\[x_{k+1} = \frac{\lambda x_k}{(1 + x_k)^2} \]

En el siguiente notebook de Mathematica representamos verticalmente las soluciones del problema cuando se toma como condición inicial cada uno de los puntos del eje real. Para solventar el inconveniente de trabajar con funciones racionales, que producen en la práctica divisiones entre cero, hemos sustituido la función de iteración por una función meseta similar a ella. Esto queda reflejado en el parámetro meseta. La variable paso indica con cuánta finezas se seleccionan los elementos del eje real y la variable primeraIteracion ordena cuántas iteraciones iniciales son desechadas antes de empezar a dibujar cada órbita.

Así se ha generado la figura 5.6.

(* Título: Dibujo de órbitas en el modelo de Hassell y Comins simplificado *)

(* Descripción: el modelo de Hassell y Comins simplificado es una EDR unidimensional. En el algoritmo dibujamos verticalmente las soluciones correspondientes a tomar como punto de partida cada uno de los elementos del eje de abscisas. Mediante una línea vertical trazamos la posición del equilibrium *)
Apéndice A. Algoritmos

orbitas[r_, meseta_, paso_, xMin_, xMax_, numIter_, primeraIteracion_] :=
Block[{},
(* Función de iteración original *)
auxF[x_] := r*x/(x + 1)^2;
(* Función meseta que sustituye a la anterior para evitar divisiones entre cero *)
f[x_] := If[Abs[x + 1] > meseta, auxF[x], auxF[-meseta - 1]];

(* Cálculo de la órbita *)
lista = {};
For[x = xMin, x \leq xMax, x = x + paso,
 aux = x;
 listaAux = {};
 For[i = 0, i \leq numIter, i++,
 aux = f[aux];
 listaAux = Append[listaAux,
 {Hue[0.5 + i/100], Point[{x, aux}]})];
];
(* Eliminación de primeros elementos *)
listaAux = Drop[listaAux, primeraIteracion];
lista = Join[lista, listaAux];
];
(* Dibujo de órbita y línea vertical *)
lista = Prepend[{{Hue[0.1], Line[{{Sqrt[r] - 1, -0.001}, {Sqrt[r] - 1, 0.001}}]}, lista];
Return[Graphics[lista, Frame -> True]]
]
(* Salida a archivo gráfico *)
Export[
 "orbits.jpg",
 orbitas[0.5, 0.001, 0.001, -1.5, 0.5, 40, 20],
 "JPEG",
 ImageResolution -> 600,
 ImageSize -> 320,
 ConversionOptions -> {"Quality" -> 100}]
]
A.13. Diagrama de bifurcación

Volviendo al modelo de Hassell y Comins simplificado

\[x_{k+1} = \frac{\lambda x_k}{(1 + x_k)^2} \]

dibujamos ahora una sola solución para cada valor del parámetro \(\lambda \) elegido. De esta manera generamos un gráfico paramétrico que muestra, en teoría, qué rangos de \(\lambda \) tienen un comportamiento dinámico más complejo. Como condición inicial de cada órbita se genera una perturbación aleatoria del equilibrium. El programa se ha desarrollado en el entorno Mathematica y el resultado se muestra en los gráficos 5.7 y 5.8.

(* Título: Dibujo de órbitas en el modelo de Hassell y Comins simplificado en función del parámetro de la ED. *)

(* Descripción: abordamos el problema de Hassell y Comins simplificado dibujando, para cada valor del parámetro una sola órbita. Ésta se inicia en una perturbación aleatoria del equilibrium, y se dibuja verticalmente. Usamos una función meseta en lugar de la función de iteración racional para evitar el problema de las divisiones entre cero. *)

bifurcacion[perturbacion_, meseta_, paso_, rMin_, rMax_, numIter_, primeraIteracion_] :=
 Block[{},
 lista = {};
 For[r = rMin, r \leq rMax, r = r + paso,
 (* Función de iteración *)
 auxF[x_] := r*x/(x + 1)^2;
 (* Función meseta *)
 f[x_] := If[Abs[x + 1] > meseta, auxF[x], auxF[-meseta - 1]];
 (* Condición inicial: perturbación aleatoria del punto fijo *)
 aux = Sqrt[r] - 1 + (-1)^(Ceiling[100*Random[]]) * perturbacion * Random[];
 (* Cálculo de la solución *)
 listaAux = {};
 For[i = 0, i \leq numIter, i++,
 aux = f[aux];
 listaAux = Append[listaAux, aux];
]
]
El algoritmo de la sección A.6 determinaba la órbita inversa del equilibrio en el caso de un problema bidimensional. Allí se trabajaba en el plano complejo para solventar el problema de los radicandos negativos. Además se elegía de forma aleatoria una de las dos ramas de la función en cada paso de la iteración inversa.

Aquí pretendemos hacer algo similar con un problema bidimensional, el modelo de Hassell y Comins. Hemos optado por calcular todos los equilibrios del SED y representar todas sus iteradas inversas multivaluadas. El siguiente código se ha elaborado con un notebook de Mathematica, dando lugar a las figuras 5.9 y 5.10.

A.14. Órbitas inversas multivaluadas

El algoritmo de la sección A.6 determinaba la órbita inversa del equilibrio en el caso de un problema bidimensional. Allí se trabajaba en el plano complejo para solventar el problema de los radicandos negativos. Además se elegía de forma aleatoria una de las dos ramas de la función en cada paso de la iteración inversa.

Aquí pretendemos hacer algo similar con un problema bidimensional, el modelo de Hassell y Comins. Hemos optado por calcular todos los equilibrios del SED y representar todas sus iteradas inversas multivaluadas. El siguiente código se ha elaborado con un notebook de Mathematica, dando lugar a las figuras 5.9 y 5.10.
(* Título: Órbitas inversas multivaluadas *)
(* Descripción: En el modelo de Hassell y Comins bidimensional
determinamos los puntos fijos y a continuación calculamos el
conjunto de iteradas inversas de los mismos, representando
éstas gráficamente *)

OrbitaInversa[lambda_, mu_, alpha_, beta_,
xRango_, yRango_, NIter_] :=
Block[{},
Clear[equilibrium, lista];

(* Función de iteración directa*)
F[a_] :=
{lambda*a[[1]]/(1+a[[1]]+alpha*a[[2]])^2,
 mu*a[[2]]/(1+beta*a[[1]] + a[[2]])^2};

(* Función de iteración inversa: se resuelve numéricamente un
sistema, filtrando las soluciones reales.*)
InvF[a_] :=
Select[{x, y} /.
NSolve[F[{x, y}] ==
 a, {x, y}],
 ((Head[#[[1]]] == Real) &&
(Head[#[[2]]] == Real)) &];

(* Puntos fijos *)
equilibrium = InvF[{x, y}];
(* Cálculo de las iteradas *)
lista = equilibrium;
For[i = 1, i <= NIter, i++,
 lista = Union[lista,
 Flatten[InvF /@ lista, 1]];
];

(* Salida gráfica: los puntos fijos
se muestran en un color diferente *)
Return[Graphics[

GrayLevel[0.7],
Line[{{-5, 0}, {5, 0}}],
GrayLevel[0.2],
Point /@ lista,
Hue[0.8], Thickness[0.03],
Point /@ equilibrium
],

]
Frame -> True,
PlotRange -> {xRango, yRango},
AspectRatio -> 1];
]

(* Salida a fichero *)
Export[
"orbitaInversa.jpg",
OrbitaInversa[0.5, 0.5, 0.1, 0.1, 1, {-6, 0.25}, {-6, 0.25}, 6],
"JPEG",
ImageResolution -> 600,
ImageSize -> 320,
ConversionOptions -> {"Quality" -> 100}
]

A.15. Conjunto prohibido de la ecuación de Riccati de orden 1

Para obtener una representación intuitiva del conjunto prohibido de la ecuación (6.13) hemos dibujado líneas verticales sobre cada uno de los puntos de \(\mathcal{P} \). El cálculo se divide en cuatro partes correspondientes a las respectivas versiones que posee el conjunto prohibido (véase corolario 6.2.3). En el caso en que las raíces de la ecuación característica son complejas, hemos incluido dos gráficos, uno en el que el argumento es un múltiplo entero de \(\pi \) y otro en el que no lo es.

El algoritmo se ha creado para el entorno \(wxMaxima \) y con él generamos la figura 6.1.

/* Título: Conjunto prohibido de la ecuación de Riccati de orden uno */
/* Descripción: Generamos cuatro gráficos con barras verticales para ilustrar distintos conjuntos prohibidos de la ecuación de Riccati de orden uno */

/* Primer conjunto */
load(draw)$
R:3/16$
a:(1-sqrt(1-4*R))/2$
b:(1+sqrt(1-4*R))/2$
/* Descripción explícita del conjunto prohibido */
p(n):=(a*b*(b^(n-1)-a^(n-1)))/(b^(n)-a^(n))$

/* Ancho de las barras */
ancho:0.0005$

/* Número de elementos del conjunto prohibido */
nPasos:10$

lista:makelist(p(n),n,1,nPasos)$
barras:create_list([i,j,k],i,lista,j,[1],k,[ancho])$
draw2d(
 title="R=3/16",
 fill_color=blue,
 xrange=[-0.1,0.5],
 yrange=[0,1.25],
 fill_density=0.6,
 maplist(bars,barras)
);

/* Segundo conjunto */
R:1/4$
p(n):=(n-1)/(2*n)$
ancho:0.0005$
nPasos:100$
lista:makelist(p(n),n,1,nPasos)$
barras:create_list([i,j,k],i,lista,j,[1],k,[ancho])$
draw2d(
 title="R=1/4",
 fill_color=blue,
 xrange=[-0.1,0.6],
 yrange=[0,1.25],
 fill_density=0.6,
 maplist(bars,barras)
);

/* Tercer conjunto */
R:1.1$
angulo:acos(1/(2*sqrt(R)));$
p(n):=1/2-1/2*sqrt(4*R-1)/tan(n*angulo)$
ancho:0.0005$
nPasos:2500$
lista:makelist(p(n),n,1,nPasos)$
barras:create_list([i,j,k],i,lista,j,[1],k,[ancho])$
draw2d(
 title="R=1.1",
 fill_color=blue,
 xrange=[-0.1,0.5],
 yrange=[0,1.25],
 fill_density=0.6,
 maplist(bars,barras)
)$

/* Cuarto conjunto */
R:1/3$
angulo:acos(1/(2*sqrt(R)));
/* Modificación de la descripción explícita del conjunto prohibido en la que se incluye la posible división entre cero */
p(n):=if cos(n*angulo)*sin(n*angulo)=0 then 0 else 1/2-1/2*sqrt(4*R-1)/tan(n*angulo)$
ancho:0.0005$
nPasos:1000$
lista:makelist(p(n),n,1,nPasos)$
barras:create_list([i,j,k],i,lista,j,[1],k,[ancho])$
draw2d(
 title="R=1/3",
 fill_color=blue,
 xrange=[-1,2],
 yrange=[0,1.25],
 fill_density=0.6,
 maplist(bars,barras)
)$

/* Comando para salida a fichero */
draw_file(terminal=jpg);

A.16. Conjunto prohibido de la ecuación de Riccati de orden 1; caso complejo

Para generar el conjunto prohibido de la ecuación (6.18) hemos utilizado el algoritmo evolution2d del paquete dynamics de wxMaxima. Éste genera la solución de una ED bidimensional cuando se le suministra la condición inicial
y las dos componentes f y g de la iteración. En nuestro caso, la inversa de la iteración compleja

$$x_{k+1} = \beta + \frac{1}{x_k}$$

puede reescribirse como el sistema de ecuaciones en diferencias

$$\begin{cases}
u_{k+1} &= \frac{u_k - a}{(u_k - a)^2 + (v_k - b)^2} \\
v_{k+1} &= \frac{b - v_k}{(u_k - a)^2 + (v_k - b)^2}
\end{cases}$$

donde $x_k = u_k + iv_k$ y $\beta = a + bi$.

El resultado se muestra en el gráfico 6.2.

A.17. Conjunto prohibido de la ecuación de Riccati de orden 2

El conjunto prohibido de la ecuación (6.19) queda descrito en la proposición 6.2.4 como una colección de hipérbolas cuyos coeficientes se definen de distinta forma según el tipo y la multiplicidad de los valores propios. En el siguiente algoritmo en \textit{wxMaxima} hemos implementado el cálculo de los coeficientes y generado la figura (6.3).
/* Título: Conjuntos prohibidos de la ecuación de Riccati de orden 2 */
/* Descripción: dibujamos cuatro familias de hipérbolas correspondientes a los conjunto prohibidos de la EDR de Riccati de segundo orden */

/* Caso discri<0 */
/* Coeficientes de la ecuación */
a:-2$
b:1$
c:1$
/* Cálculo de las tres raíces reales */
raices:algsys([x^3-a*x^2-b*x-c=0],[x])$
r:subst(raices[1],x)$
s:subst(raices[2],x)$
t:subst(raices[3],x)$
/* Coeficientes de las hipérbolas */
coef_uno(k):=r^(k+2)*(s-t)+s^(k+2)*(t-r)+t^(k+2)*(r-s)$
coef_dos(k):=r^(k+2)*(t^2-s^2)+s^(k+2)*(r^2-t^2)+$
 t^(k+2)*(s^2-r^2)$
coef_tres(k):=r^(k+2)*s*t*(s-t)+s^(k+2)*r*t*(t-r)+$
 t^(k+2)*r*s*(r-s)$
/* Dibujo de hipérbolas */
funcionImplicita(expresion):=implicit(expresion,x, -xRango,xRango,y,-yRango,yRango)$
load(draw)$
xRango:5$
yRango:5$
nCurvas:10$
listaHiperbolas:makelist(coef_uno(k)*x*y+coef_dos(k)*x+
 coef_tres(k)=0,k,1,nCurvas)$
draw2d(
 title="i",
 maplist(funcionImplicita,listaHiperbolas)
)

/* Caso discri=0 y criterio_bis=0*/
/* Coeficientes de la ecuación */
a:1$
b:-1/3$
c:1/27$
/* En este caso los coeficientes solo dependen de "a" */
coef_uno(k):=(k+1)*(k+2)$
coef_dos(k):=(-2*a*k*(k+2))/3$
coef_tres(k):=(a^2*k*(k+1))/9$
/* Dibujo de las hipérbolas */
funcionImplicita(expresion):=implicit(expresion,x,
 -xRango,xRango,y,-yRango,yRango)$
load(draw)$
xRango:2$
yRango:2$
nCurvas:50$
listaHiperbolas:makelist(coef_uno(k)*x*y+coef_dos(k)*x+
 coef_tres(k)=0,k,1,nCurvas)$
draw2d(
 title="ii",
 maplist(funcionImplicita,listaHiperbolas)
)$

/* Caso discri=0 y criterio_bis no nulo */
/* Coeficientes de la ecuación */
a:-1$
b:1$
c:1$
/* Raíz simple */
s:1$
/* Raíz doble */
r:-1$
/* Coeficientes de las hipérbolas */
coef_uno(k):=s^(k+2)+r^(k+1)*((k+1)*r-(k+2)*s)$
coef_dos(k):=-2*r*s^(k+2)+r^(k+1)*(-k*r^2+(k+2)*s^2)$
coef_tres(k):=r^2*s^(k+2)+r^(k+2)*(k*s*(r-s)-s^2)$
/* Dibujo de las hipérbolas */
funcionImplicita(expresion):=implicit(expresion,x,
 -xRango,xRango,y,-yRango,yRango)$
load(draw)$
xRango:5$
yRango:5$
nCurvas:100$
listaHiperbolas:makelist(coef_uno(k)*x*y+coef_dos(k)*x+
 coef_tres(k)=0,k,1,nCurvas)$
A.18. Conjunto prohibido de

\[z_{k+1} = \frac{z_k}{1 + B z_{k-1} - B z_k} \]

La ecuación (6.33) posee un invariante algebraico que permite dar una expresión explícita de su conjunto prohibido (ver teorema 13). Con ella podemos representar de forma exacta elementos de \(\mathcal{P} \). El resultado se muestra...
en la figura 6.6.

/* Título: Conjunto prohibido de una EDR de orden 2 con invariante */
/* Descripción: cálculo numérico y gráfico de la expresión explícita de un conjunto prohibido determinado mediante el uso de un invariante algebraico */
/* Carga del paquete "draw" */
load("draw")$
/* Parámetro B */
B:2$
/* Número de elementos en el segundo y tercer conjuntos */
nElem:100$
/* Número de elementos "D" */
nElemD:100$
/* Primer conjunto */
conjUno:[0,-1/B]$
/* Segundo conjunto */
conjDos:makelist([-1/(k+1)/(B*k),-1/B],k,1,nElem)$
/* Tercer conjunto */
conjTres:makelist([-1/B,-1/(k+1)/(B*k)],k,1,nElem)$
/* Cuarto conjunto; para su construcción necesitamos tres funciones auxiliares que a su vez dependen de un parámetro "D" */
conjAuxUno(D,k):=-2/B*
 ((1+sqrt(1-4/D))^(k-1)-(1-sqrt(1-4/D))^(k-1))/
 ((1+sqrt(1-4/D))^(k)-(1-sqrt(1-4/D))^(k))
 +(D-1)/B$
conjAuxDos(D,k):=-D/B*
 1-sqrt(4/D-1)/tan(k*acos(sqrt(D)/2))
 +(D-1)/B$
conjAuxTres(k):=-2/B*(k-1)/k+3/B$
conjCuatro:[[]$
/* Valores de D en (-infty,4) */
for k:1 thru nElem do
 for j:0 thru nElemD do (
 D:-0.1-j,
 a:conjAuxUno(D,k),
 conjCuatro:append([[a,(D*B*a-B*a-1)/(B^2*a+B)],[a,(D*B*a-B*a-1)/(B^2*a+B)]], conjCuatro)
)
APÉNDICE A. ALGORITMOS

/* Valores de D en (4,\infty) */
for k:1 thru nElem do (for j:0 thru nElemD do (D:4.1+j,a:conjAuxUno(D,k),conjCuatro:append([[a,(D*B*a-B*a-1)/(B^2*a+B)]],conjCuatro)));

/* Valores de D en (0,4) */
for k:1 thru nElem do (for j:0 thru nElemD-1 do (D:0.1+j*3.9/nElemD,a:conjAuxDos(D,k),conjCuatro:append([[a,(D*B*a-B*a-1)/(B^2*a+B)]],conjCuatro)));

/* Caso D=0,4 */
for k:1 thru nElem do (a:conjAuxTres(k),conjCuatro:append([[a,(3*B*a-1)/(B^2*a+B)]],conjCuatro));

/* Área de dibujo */
xRango:5$yRango:5$
/* Representación gráfica */
draw2d(
title="B=2",
xrange=[-xRango,xRango],
yrange=[-yRango,yRango],
point_type=0, /* bullet=7, dot=0 */
color=green,
points(conjCuatro),
color=red,
point_size=1,
point_type=7,
points(conjUno),
color=blue,
A.19. **Cuencas de atracción de** \(x_{k+1} = \frac{x_{k-1}}{1+x_k} \)

La EDR \(x_{k+1} = \frac{x_{k-1}}{1+x_k} \) tiene un comportamiento bien definido cuando sus condiciones iniciales son positivas. En tal caso los periodos de la ecuación son el origen de coordenadas (punto fijo) y los puntos de los semiejes positivos (dos periodos). El resto de las condiciones iniciales positivas generan soluciones convergentes a uno de dichos puntos periódicos.

En [CL07] se propone la determinación de las cuencas de atracción de los periodos, y en especial la determinación del conjunto de condiciones iniciales positivas generando soluciones convergentes al equilibrio. La simulación numérica que presentamos a continuación, hecha en *Mathematica*, sugiere que las cuencas son grafos de funciones reales que exfolian el cuadrante positivo. Dichas fibras pueden verse como invariantes (probablemente no algebraicos) de la ecuación en diferencias. Su determinación analítica podría servir, en la línea de lo hecho en el apartado 6.3.2, para calcular el conjunto prohibido de la ecuación. Este conjunto se estima también en el algoritmo siguiente colorando los puntos de \(P \) de gris, y el resto de acuerdo a su carácter asintótico.

El resultado se muestra en las figuras 6.7 y 6.8.

(* Título: Foliaciones de la EDR \(x_{k+1}=x_{k-1}/(1+x_k) \) *)

(* Descripción: La EDR \(x_{k+1}=x_{k-1}/(1+x_k) \) es asintóticamente dos periódica cuando las condiciones iniciales son positivas. Los periodos son los puntos de los semiejes positivos, y sus cuencas de atracción son curvas que exfolian el cuadrante positivo.

En este algoritmo constatamos numéricamente tales conjeturas, añadiendo además la visualización de los elementos del conjunto prohibido, que son marcados en gris. *)

(* Desdoblamiento de la EDR *)

vecF[a_] := {a[[2]], a[[1]]/(1 + a[[2]])};

(* Procedimiento de cálculo del color; marcamos en gama de colores cada elemento del buen conjunto, según el valor de su
enésima iterada; marcamos de gris los elementos del conjunto prohibido *)

\[
\text{colorDelPunto}[\text{punto}_0, \text{nIter}_0, \text{error}_0] := \text{Block}[\{\}, \n\quad \text{aux} = \text{N}[\text{punto}_0]; \n\quad \text{prohibido} = \text{False}; \n\quad \text{For}\[k = 0, (k = \text{nIter}) \&\& (\text{prohibido} == \text{False}), k++, \n\quad\quad \text{If}[\text{Abs}[1 + \text{aux}[[2]]] < \text{error}, \text{prohibido} = \text{True}, \n\quad\quad\quad \text{aux} = \text{vecF}[\text{aux}]\]; \n\quad \text{If}[\text{prohibido} == \text{True}, \n\quad\quad \text{Return}[\text{GrayLevel}[0.25]], \n\quad\quad \text{Return}[\text{Hue}[3*\text{Max}[\text{aux}]]]\};
\]

(* Gráfico de curvas exfoliadas. Se elige una región del plano y se colorean sus puntos de acuerdo con el procedimiento anterior *)

\[
\text{mallaColoreadaAmpliada}[\text{minimo}_0, \text{maximo}_0, \text{precision}_0, \n\quad \text{nIter}_0, \text{error}_0] := \text{Flatten}[\text{Table}[[\text{colorDelPunto}[\{i, j\}, \text{nIter}_0, \text{error}_0], \n\quad\quad \text{Point}[\{i, j\}], \n\quad\quad \{i, \text{minimo}_0, \text{maximo}_0, \text{precision}_0\}, \n\quad\quad \{j, \text{minimo}_0, \text{maximo}_0, \text{precision}_0\}\], 1]
\]

(* Salida a fichero *)

\text{grafico} = \text{Graphics}[\n\quad \text{mallaColoreadaAmpliada}[0, 4, 0.01, 5, 0.05], \n\quad \text{Frame} -> \text{True}, \n\quad \text{AspectRatio} -> 1];

\text{Export}[\n\quad "\text{foliacion1.jpg}"], \n\quad \text{grafico}, \n\quad "\text{JPEG}"], \n\quad \text{ImageResolution} -> 300, \n\quad \text{ImageSize} -> 320, \n\quad \text{ConversionOptions} -> \{"Quality" -> 100\} \]
A.20. CONJUNTO PROHIBIDO DE \(X_{k+1} = P + \frac{x_{k-1}}{x_k} \)

El conjunto prohibido de la ecuación \(x_{k+1} = P + \frac{x_{k-1}}{x_k} \) se puede describir utilizando una familia de funciones reales definidas recursivamente (ver teorema 14). Sin embargo esta descripción no es útil para realizar estimaciones gráficas de \(\mathcal{P} \), debido a que la recursión utiliza funciones inversas que obligan a resolver en cada paso ecuaciones irracionales cada vez más complicadas. Como alternativa hemos dibujado con el siguiente algoritmo de \textit{wxMaxima} las diez primeras curvas que se obtienen al iterar el desdoblamiento inverso \(G(x) = (x(y - p), x) \) y sustituir a continuación la variable \(y \) por cero. Así se ha generado la figura 6.9.

```plaintext
/* Título: Conjunto prohibido analizado mediante recursión funcional.*/
/* Descripción: Representación de las primeras curvas algebraicas que constituyen el conjunto prohibido de una EDR. Debido a la complejidad creciente de las iteraciones optamos por dibajar solo los diez primeros elementos paramétricamente. */

/* Valor del parámetro */
p: -2$
/* Rango de valores en la representación paramétrica */
xMin: 0$
xMax: 5$
/* Número de curvas */
nFunc: 10$
/* Desdoblamiento inverso */
G(a):=[a[1]*(a[2]-p),a[1]]$
/* Construcción de las iteradas y sustitución de la variable "y" por cero */
aux: [x,y]$
funciones:[]$
for i:1 thru nFunc do(
aux:G(aux),
yIgualCero:subst(0,y,aux),
funciones:append([yIgualCero],funciones)
)$
/* Función auxiliar para el dibujo paramétrico */
funcionParametrica(expresion):=parametric(expresion[1], expresion[2],x,xMin,xMax)$
```
A.21. Conjunto prohibido de $x_{k+1} = \frac{1}{x_k + x_{k-2}}$

Para el estudio del problema (2.1) y para la estimación del conjunto prohibido de la ecuación asociada a dicho problema planteamos el siguiente algoritmo que computa los N primeros términos de una solución cuando las condiciones iniciales se toman en un rectángulo del plano $\{x = z\}$. Según el resultado obtenido, el programa decide si el punto pertenece al conjunto prohibido o bien lo colorea de acuerdo con el valor de la última iteración. Aplicando además la transformación geométrica $i(x) = x + \frac{1}{2x}$ se consigue que puntos convergentes a un mismo dos periodo sean coloreados de la misma forma.

Con este algoritmo se han generado los gráficos 6.10 y 6.11. Una pequeña modificación de la rutina en la que computan los elementos de la solución, ha generado los gráficos 6.12 y 6.13, en los que no aparecen los periodos de longitud 1 y 2.

*/ Carga del paquete gráfico "draw" */
load("draw")$

/* Dibujo */
draw2d(
 title="p=-2",
 xrange=[0,5],
 yrange=[0,3],
 /* Es importante un valor alto de nticks */
 nticks=500,
 maplistfuncionParametrica,funciones)
)

/* Salida a fichero */
draw_file(terminal=jpg)$

/* Título: Determinación del conjunto prohibido y carácter dinámico de una EDR */
/* Descripción: se elige una malla de puntos rectangular y se colorea cada uno de ellos según el valor de su iterada enésima */

/* Función auxiliar para determinar el valor de la última iteración */
calculaLimite[CI1_,CI2_,NIter_,cero_]:= Block[
A.21. **CONJUNTO PROHIBIDO DE** \(X_{K+1} = \frac{1}{X_K+X_{K-2}}\)

\[
\{X_1, X_2, X_3, X_4, \text{aux}\},
\]

\(X_1 = \text{N}[\text{CI}_1]; X_2 = \text{N}[\text{CI}_2]; X_3 = \text{CI}_1; \text{aux} = X_1 + X_3;\)

(* Empleamos la funcion "N" para acelerar el algoritmo. Las pruebas gráficas muestran que no varía sustancialmente el resultado *)

(* Caso de división entre cero; elemento del conjunto prohibido *)

\[\text{If}[\text{Abs}[\text{aux}] < \text{cero, Return}^{\text{"DIV0"}}, X_4 = 1/\text{aux}];\]

\[\text{For}[\text{contador} = 1, \text{contador} < \text{NIter,}
\quad \text{contador}++,
\quad X_1 = X_2; X_2 = X_3; X_3 = X_4; \text{aux} = X_1 + X_3;
\quad \text{If}[\text{Abs}[\text{aux}] < \text{cero}, \text{Return}^{\text{"DIV0"}}, X_4 = 1/\text{aux}];\]

\[\text{Return}[X_4];\]

(* Asignación del color *)

(* Para que se pinten igual aquellos puntos que convergen a un número \(x\) o a su complementario en el 2-período, \(1/(2x)\), usamos la función \(i(x) = x + 1/(2x)\) *)

\[\text{colorDelPunto}[\text{punto}_-, \text{NIter}_-, \text{cero}_-, \text{franjas}_-] = \text{Block}[\{\text{aux}\},
\quad \text{aux} = \text{calculaLimite}[\text{punto}[1], \text{punto}[2], \text{NIter}, \text{cero};
\quad \text{If}[\text{aux} \text{\[Equal\]} \"DIV0\",
\quad \quad \text{Return}^{\text{GrayLevel}[0.5]},
\quad \quad \text{Return}^{\text{Hue}[\text{Floor}[
\quad \quad \quad \text{franjas} \ast (2\ast\text{aux}^2+1)/
\quad \quad \quad (2\ast\text{aux})]/\text{franjas}]}
\quad \quad]]
\]

(* Algoritmo principal *)

\[\text{ExportaCuenca}[\text{coordX}_-, \text{coordY}_-, \text{finezaMalla}_-, \text{cero}_-, \text{NIter}_-, \text{franjas}_-] = \text{Return}^{\text{Graphics}[}
\quad \{(* \text{Cuencas de atracción} *)
\quad \quad \text{PointSize}[0.01],
\quad \quad \text{Table}[\{\text{colorDelPunto}[[\text{N}[a], \text{N}[b]], \text{NIter}, \text{cero},
\quad \quad \text{franjas]}, \text{Point}[[\{a, b\}]],
\quad \quad \{a, \text{coordX}[[1]], \text{coordX}[[2]], \text{finezaMalla}a},
\quad \quad \{b, \text{coordY}[[1]], \text{coordY}[[2]], \text{finezaMalla}\}]\]
\]
A.22. Conjuntos prohibidos de Ecuaciones en Diferencias Racionales cuadráticas

Consideremos las familias de EDR

\[
x_{k+1} = \frac{1}{x_k^2 - r} \quad r \in \mathbb{R} \quad (A.4)
\]

\[
x_{k+1} = \frac{1}{rx_k(1 - x_k)} \quad r \in \mathbb{R} \setminus \{0\} \quad (A.5)
\]
En la sección A.6 hemos estudiado cómo estimar la presencia de RRF en ellas mediante el cálculo de la órbita inversa de los puntos fijos. El algoritmo allí presentado sirve también para el cálculo del conjunto prohibido. Basta con iniciar la iteración en los polos de (A.4) o (A.5) en lugar de en alguno de los equilibria. Con esta técnica se han generado los gráficos 6.14 y 6.16.

Para dibujar la parte de \mathcal{P} correspondiente al eje real, hemos utilizado el siguiente algoritmo de wxMaxima que pinta líneas verticales sobre cada elemento para facilitar su visualización. El algoritmo se basa en el corolario 6.6.4 cuya validez alcanza, por lo que sabemos hasta ahora, al valor del parámetro $r = 1$. En el resto de casos lo generado forma parte del conjunto prohibido pero no está claro si \mathcal{P} consta solo de tales puntos. Los resultados se muestra en la figura 6.15.

```plaintext
/* Título: Conjunto prohibido de $x_{k+1}=1/(x_k^2-r)$ */
/* Descripción: Dibujo del conjunto prohibido sobre los números reales utilizando barras verticales */

/* Valor del parámetro */

r:1$
/* Rama positiva */

iteracionInversa(x):=sqrt(1/x+r)$
/* Función de iteración */

nestList(inicial,nIter):=(
    aux:inicial,
    listaAux:[aux],
    for i:1 thru nIter do(
        aux:iteracionInversa(aux),
        listaAux:append(listaAux,[aux])
    ),
    listaAux
)$
/* Carga del paquete gráfico */

load(draw)$
/* Número de elementos */
nIter:20$
/* Ancho de las barras */

ancho:0.0005$
/* Generación de los elementos de $\mathcal{P}$ */

lista:nestList(sqrt(r),nIter)$
/* Ahora añadimos la rama negativa, que solo puede
aplicarse una vez sin salirnos al campo complejo */
signoMenos(x):=-x$
lista:append(lista,maplist(signoMenos,lista))$
barras:create_list([i,j,k],i,lista,j,[1],k,[ancho])$
/* Dibujo */
draw2d(
    title="r=1",
    fill_color=blue,
    xrange=[-2,2],
    yrange=[0,1.25],
    fill_density=0.6,
    maplist(bars,barras)
)$
/* Salida a fichero */
draw_file(terminal=jpg)$
Apéndice B

Glosario de traducciones
En nuestro trabajo hemos optado por traducir todos los términos y expre-
siones anglosajonas, aun cuando sabemos que muchas de ellas forman parte
del vocabulario científico utilizado en castellano.

Esta tarea resulta muchas veces subjetiva, debido a que en ocasiones
hemos de añadir al uso del diccionario la interpretación del concepto mate-
mático que hay detrás.

Por este motivo enumeramos a continuación los términos cuyo equivalente
en castellano puede prestarse a confusión o no ser el estándar utilizado en la
literatura.

basin of attraction  cuenca de atracción

cobweb diagram / staircase diagram  diagrama de tela de araña

eigenvalue  valor propio

eigenvector  vector propio

eventually even / odd / periodic / positive  finalmente par / impar /
períodica / positiva

foliation  foliación o exfoliamiento

full limiting sequence  solución de puntos límite

initial value problem (IVP)  problema de condiciones iniciales (PCI)

linearized stability result  (teorema de) estabilidad usando linearización

scrambled set  conjunto revuelto

shift function  función desplazamiento

snap back repeller (SBR)  repulsor de retorno finito (RRF)

uncontrolled system  sistema descontrolado

unfolding  desdoblamiento
La resultante
Consideremos el polinomio $p$ de grado $n$ siguiente

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \quad (C.1)$$

con coeficientes reales o complejos $a_0, \ldots, a_n$ y raíces $\alpha_i, i = 1, \ldots, n$, y otro polinomio $q$ de grado $m$ con coeficientes reales o complejos $b_0, \ldots, b_m$ y raíces $\beta_j, j = 1, \ldots, m$ escrito como

$$q(x) = b_m x^m + b_{m-1} x^{m-1} + \ldots + b_1 x + b_0 \quad (C.2)$$

Se llama resultante o eliminante de los polinomios $p$ y $q$, denotada $\rho(p, q)$, al siguiente número real o complejo

$$\rho(p, q) = a_n^m b_m^n \prod_{i=1}^{n} \prod_{j=1}^{m} (\alpha_i - \beta_j) \quad (C.3)$$

La resultante tiene la propiedad, obvia a partir de la definición anterior, de que su valor es nulo si, y sólo si, los polinomios $p$ y $q$ poseen al menos una raíz común.

La resultante de dos polinomios puede calcularse sin determinar sus raíces, debido a que su valor coincide con el determinante de la matriz de Sylvester.

Dados $p$ y $q$ como antes, la matriz de Sylvester de $p$ y $q$, $S(p, q)$, es la matriz cuadrada de orden $(m+n) \times (m+n)$ construida de la siguiente forma

- Los primeros $n$ elementos de la primera fila de $S(p, q)$ son los coeficientes de $p$, en el orden $a_n, a_{n-1}$, etc. Los restantes elementos de la fila son cero.

- La segunda fila de $S(p, q)$ comienza con un cero tras el cual se vuelven a escribir los coeficientes de $p$ seguidos de ceros.

- Las siguientes filas se construyen de análoga forma hasta que $a_0$ pasa a ocupar la última columna de la matriz.

- A partir de aquí se vuelve a repetir la construcción anterior utilizando los coeficientes $b_n, \ldots, b_0$ de $q$.

Por ejemplo, si $p(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$ y $q(x) = b_2 x^2 + b_1 x + b_0$, entonces

$$S(p, q) = \begin{pmatrix}
  a_3 & a_2 & a_1 & a_0 & 0 \\
  0 & a_3 & a_2 & a_1 & a_0 \\
  b_2 & b_1 & b_0 & 0 & 0 \\
  0 & b_2 & b_1 & b_0 & 0 \\
  0 & 0 & b_2 & b_1 & b_0
\end{pmatrix} \quad (C.4)$$
Una aplicación típica de la resultante es la eliminación de una incógnita en un sistema de dos ecuaciones polinómicas con dos incógnitas. Se denomina a este algoritmo método de la resultante. Hemos aplicado tal proceso en nuestros cálculos del capítulo 4 (sección 4.3).

El método consiste en que dado el sistema de ecuaciones

\[
\begin{cases}
P(x, y) = 0 \\
Q(x, y) = 0
\end{cases}
\]

construido a partir de dos polinomios en dos indeterminadas \( P \) y \( Q \), elegimos una de las incógnitas (por ejemplo \( y \)) y volvemos a mirar el sistema (C.5) como formado por dos ecuaciones con una sola incógnita, \( x \), y coeficientes dependientes de un parámetro, \( y \).

Entonces las soluciones de (C.5) serán las raíces comunes a \( P \) y \( Q \), por lo que la resultante de ambos polinomios (de incógnita \( x \)) será igual a cero si el sistema tiene solución.

Ahora bien, dicha resultante se calcula a partir de los coeficientes, dependientes del parámetro \( y \), de ambos polinomios. Al igualar la resultante a cero lo que obtenemos es una ecuación polinómica con una sola incógnita (la \( y \)).

Vamos a ilustrar el método con un ejemplo. Sea el sistema

\[
\begin{cases}
x^2 y + y^2 x = 0 \\
x^2 + y^2 = 1
\end{cases}
\]

Si lo reescribimos ordenándolo según las potencias de la incógnita \( x \), obtenemos

\[
\begin{cases}
y x^2 + y^2 x + 0 = 0 \\
1 x^2 + 0 x + y^2 - 1 = 0
\end{cases}
\]

Los miembros izquierdos de (C.7) son dos polinomios en la indeterminada \( x \) con coeficientes dependientes del parámetro \( y \). Su resultante será

\[
\rho(p, q) = |S(p, q)| = \begin{vmatrix}
y & y^2 & 0 & 0 \\
0 & y & y^2 & 0 \\
1 & 0 & y^2 - 1 & 0 \\
0 & 1 & 0 & y^2 - 1
\end{vmatrix}
\]

Igualando la resultante a cero, obtenemos la ecuación polinómica

\[
(y^2 - 1) y^2 (2y^2 - 1) = 0
\]

a partir de la cual obtenemos las siguientes soluciones del sistema (C.6):

\((1, 0), (-1, 0), (0, 1), (0, -1), (a, -a), (-a, a)\)
donde \( a = \frac{1}{\sqrt{2}} \) (ver figura C.1).

Figura C.1: Curvas \( x^2 y + y^2 x = 0 \) y \( x^2 + y^2 = 1 \).

Para más información, véanse [GKZ08], [Wei13b], [Wei13c].
Índice alfabético

alfabeto, 163, 174
aplicación, 11
aplicación de Poincaré, 117
atractor, 21, 161
atractor global, 12
backward orbit, 4
buen conjunto, 4, 29, 66, 129
campo vectorial, 10
caos, 84, 85
 Li-Yorke, 26, 85, 86
 Marotto, 26, 86, 169, 170
cardiología, 174
ciclo, 75
condiciones iniciales, 3
conjetura de Collatz, 19
conjugación topológica, 113
conjunto
de Cantor, 29, 113
de Julia, 160
de soluciones, 3
denso de órbitas periódicas, 114
expansivo, 87
invariante, 85
omega-límite, 15
prohibido, 3, 29, 66
prohibido de r iteradas, 129
prohibido de una EDR, 129
prohibido denso, 161
prohibido directo, 93
prohibido finito, 138, 172
prohibido inverso, 4, 92, 93
revuelto, 27, 86, 169, 216
control, 24
continuo, 24
discreto, 24
coprimos, 68

cuenca
de atracción, 15, 55, 59, 149, 157,
168, 173, 207, 216
de atracción de un p-periodo, 16
desdoblamiento, 7, 11, 49, 79, 216
desdoblamiento estándar, 11, 50
diagrama
de bifurcación, 122, 195
de tela de araña, 99, 181, 216
difeomorfismo, 29
discretización de una ecuación diferencial, 12
ecuación
en diferenciasracional irreducible
respecto a condiciones iniciales, 68
característica, 14
cuadrática inversa, 101, 117, 212
cuadrática inversa perturbada, 118
de Hénon, 21
de Lozi, 21
de Lyness, 31, 140, 143, 172

221
de Lyness de orden \( n \), 31, 143, 173
de Lyness de orden 3, 143
de Lyness generalizada, 143
de Pell, 2
de Riccati, 30
de Riccati de orden \( n \), 132
de Riccati de orden 1, 133, 172, 198, 200
de Riccati de orden 2, 139, 201
de Tél, 21
de Todd, 31, 141, 143, 173
de Todd generalizada, 143
del hombre de jengibre, 176
diferencial autónoma, 10
diferencial no autónoma, 10
diferencial ordinaria, 10
en diferencias, 11, 85
en diferencias autónoma, 5
en diferencias cúbica, 5
en diferencias contenida en otra, 73
en diferencias continua, 5
en diferencias cuadrática, 5
en diferencias de clase \( C^r \), 5
en diferencias de orden \( n \), 3
en diferencias de orden \( n \), 66
en diferencias escalar, 6
en diferencias globalmente periódica, 8
en diferencias lineal, 5
en diferencias lineal homogénea, 131
en diferencias lineal no homogénea, 132
en diferencias no autónoma, 5
en diferencias polinómica, 5
en diferencias racional, 5
en diferencias racional irreducible, 68
en diferencias vectorial, 6
finalmente positiva, 66

funcional, 150
Li-Yorke caótica, 85
linearizada, 13
logística, 15, 16, 18
logística bidimensional, 17
logística con retraso, 17
logística inversa, 105, 170, 212
uniformemente finalmente positiva, 67
ecuaciones
de Lorenz, 21
de Lotka-Volterra, 17
de Rössler, 117
desacopladas, 116
ED, 3, 85
EDR, 5
EDR irreducible, 26
EDR lineal, 84, 170
eliminante, 218
entorno
crítico, 88, 98
expansivo, 27, 87
repulsor, 98
entropía topológica, 117, 171
equilibria, 7
equilibrium, 7
espacio de fase, 89
exfoliamento, 16, 173, 207, 216
fórmula de Binet, 17
factor, 113
finalmente
impar, 216
par, 216
periódica, 216
positiva, 216
foliación, 16, 144, 149, 157, 216
forward orbit, 4
forzamiento, 24
FP, 66
fracción algebraica irreducible, 68
ÍNDICE ALFABÉTICO

función
de iteración, 3
desplazamiento, 29, 114, 216
expansiva, 87
localmente expansiva, 87
meseta, 193
multivaluada, 4
shift, 114
signo, 21
funciones topológicamente conjugadas, 113
GAE, 13
globalmente asintóticamente estable, 13
grado, 74
herramienta informática, 176
inestable, 12
intervalo
crítico, 98, 121
repulsor, 98
invariante algebraico, 31, 142, 172
invariante no algebraico, 207
irreducibilidad, 26
itinerario, 93
LAE, 13, 61
LE, 12, 61
lema
de Zorn, 38
solución de puntos límite, 38
soluciones de puntos límite, 37
letras, 164
linearización, 13
localmente asintóticamente estable, 13, 61
localmente estable, 12, 61
logísticas inversas, 27
máximo común divisor, 69
método
de la resultante, 103, 219
de Newton-Raphson, 22
Mathematica, 176
matriz de Sylvester, 218
modelo
cáotico, 114
de competición de especies, 119
de crecimiento exponencial, 16
de Hassell y Comins, 29, 119, 171, 193, 196
de Hassell y Comins simplificado, 195
de Samuelson-Hicks, 18
números
cuadrados, 2
figurados, 2
triangulares, 2
norma
del supremo, 61
órbita, 4
órbita densa, 114, 161
órbita inversa, 4
órbita inversa multivaluada, 5
órbita progresiva, 85
órbita transversal homoclínica, 29, 111
órbita transversal homoclínica de un
difeomorfismo, 112
p-periodo, 8, 85, 168
\( \mathcal{P}_c \), 129
\( \mathcal{P}_g \), 129
palabra, 164
par de Li-Yorke, 86
parábolas inversas, 27
parámetro, 10
PCI, 4, 216
periodo primo, 8
perturbación, 28, 115, 116, 191
perturbación bidimensional, 28
ÍNDICE ALFABÉTICO

principio
de permanencia, 37, 56

problema
de condiciones iniciales, 4, 216

propiedad
de los itinerarios, 93
de permanencia, 25, 37, 56

punto
de acumulación, 14
de equilibrio, 7
fijo, 7, 85
fijo atractor, 12
fijo hiperbólico, 29
finalmente periódico, 85
hiperbólico, 111
homoclínico, 29
homoclínico de un difeomorfismo, 112
homoclínico de una función continua, 112
límite, 14
periódico, 7, 85
transversal homoclínico de un difeomorfismo, 112
puntos de equilibrio, 7

razón áurea, 17
reducción de orden, 31, 144
relación de divisibilidad, 69
repulsor, 27
repulsor de retorno finito, 27, 87, 90, 216
resultante, 102, 218
rotación irracional, 15
RRF, 27, 87, 90, 169, 216
scrambled set, 27, 86
SED, 5
Sedaghat, 130
semiconjugación topológica, 113, 130
sensibilidad respecto de condiciones iniciales, 114

sistema
algebraico computacional, 176
controlado, 24
de ecuaciones en diferencias, 5
de ecuaciones en diferencias con $r$ incógnitas, 6
de ecuaciones en diferencias entera, 67, 74
desacoplado, 28, 122
descontrolado, 24, 216
dinámico, 10
dinámico caótico, 113
dinámico continuo, 11
dinámico discreto, 11, 79, 85

solución
bien definida, 4, 66
constante, 85
de puntos límite, 25, 37, 39, 216
de un SED, 6
de una ecuación diferencial, 10
de una ecuación en diferencias, 66, 85
de una ED, 3
dos periódica prima, 41
finalmente constante, 8, 85
finalmente periódica, 8, 85
finalmente positiva, 26
finita, 4, 128
genérica de una EDR, 73
homoclínica, 87
inversa, 4
multivaluada, 5
no oscilante, 23
oscilante, 23
p-periódica, 61
periódica, 7, 8, 85
periódica prima, 8
permanentemente orden tres, 56

subespacio
estable de un difeomorfismo en un punto fijo, 111
<table>
<thead>
<tr>
<th>Concept</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>inestable de un difeomorfismo en un punto fijo</td>
<td>111</td>
</tr>
<tr>
<td>sucesión</td>
<td></td>
</tr>
<tr>
<td>biinfinita</td>
<td>114</td>
</tr>
<tr>
<td>de Fibonacci</td>
<td>16</td>
</tr>
<tr>
<td>de Thue Morse</td>
<td>20</td>
</tr>
<tr>
<td>finalmente impar</td>
<td>74</td>
</tr>
<tr>
<td>finalmente monótona</td>
<td>56</td>
</tr>
<tr>
<td>finalmente par</td>
<td>74</td>
</tr>
<tr>
<td>finalmente positiva</td>
<td>66</td>
</tr>
<tr>
<td>teoría</td>
<td></td>
</tr>
<tr>
<td>de la oscilación</td>
<td>23</td>
</tr>
<tr>
<td>del control</td>
<td>24</td>
</tr>
<tr>
<td>teorema</td>
<td></td>
</tr>
<tr>
<td>de Bolzano</td>
<td>76</td>
</tr>
<tr>
<td>de la categoría de Baire</td>
<td>67, 130</td>
</tr>
<tr>
<td>de la función inversa</td>
<td>91</td>
</tr>
<tr>
<td>de Marotto</td>
<td>85, 90, 169</td>
</tr>
<tr>
<td>de Rolle</td>
<td>89</td>
</tr>
<tr>
<td>de Sharkovskii</td>
<td>117, 171</td>
</tr>
<tr>
<td>de Smale-Birkhoff</td>
<td>111, 114, 170</td>
</tr>
<tr>
<td>del punto fijo de Brouwer</td>
<td>92</td>
</tr>
<tr>
<td>tiempo</td>
<td>10</td>
</tr>
<tr>
<td>totalmente desconectado</td>
<td>113</td>
</tr>
<tr>
<td>transformación de Möbius</td>
<td>133</td>
</tr>
<tr>
<td>transformada z</td>
<td>23</td>
</tr>
<tr>
<td>transitividad topológica</td>
<td>114</td>
</tr>
<tr>
<td>trayectoria</td>
<td>4, 85</td>
</tr>
<tr>
<td>hacia atrás</td>
<td>4</td>
</tr>
<tr>
<td>hacia delante</td>
<td>4</td>
</tr>
<tr>
<td>inversa</td>
<td>4</td>
</tr>
<tr>
<td>progresiva</td>
<td>4</td>
</tr>
<tr>
<td>regresiva</td>
<td>4, 88</td>
</tr>
<tr>
<td>regresiva bien definida</td>
<td>4</td>
</tr>
<tr>
<td>transversal homoclínica de un difeomorfismo</td>
<td>112</td>
</tr>
<tr>
<td>UFP</td>
<td>67, 168</td>
</tr>
<tr>
<td>unfolding</td>
<td>7</td>
</tr>
<tr>
<td>valor propio</td>
<td>14, 216</td>
</tr>
</tbody>
</table>
Índice de figuras

<table>
<thead>
<tr>
<th>Número</th>
<th>Figura</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>Función globalmente periódica con infinitos periodos.</td>
<td>9</td>
</tr>
<tr>
<td>1.3</td>
<td>Ejemplo de atractor global no estable.</td>
<td>14</td>
</tr>
<tr>
<td>1.4</td>
<td>Puntos periódicos de un modelo polinómico de Lotka-Volterra cuando ( p \leq 25 ). Fuente: [Mal11].</td>
<td>19</td>
</tr>
<tr>
<td>1.5</td>
<td>Atractor de Hénon cuando ( a = 1,4 ) y ( b = 0,3 ) (izquierda) y atractor de Lozi cuando ( a = 1,7 ) y ( b = 0,5 ) (derecha). Fuentes: Wikipedia inglesa (<em>Hénon map</em>) y [PJS92].</td>
<td>22</td>
</tr>
<tr>
<td>1.6</td>
<td>Cuencas de atracción en el Método de Newton-Raphson. Fuente: Wikipedia alemana,* Newton Fraktal*.</td>
<td>23</td>
</tr>
<tr>
<td>1.7</td>
<td>Curvas invariantes en la ecuación de Lyness.</td>
<td>32</td>
</tr>
<tr>
<td>1.8</td>
<td>Conjunto prohibido, en ( \mathbb{C} ), de la EDR (1.88).</td>
<td>34</td>
</tr>
<tr>
<td>2.1</td>
<td>Sistema (</td>
<td>f(x, y)</td>
</tr>
<tr>
<td>2.2</td>
<td>Sistema (-1/6 &lt; g(x, y) &lt; 1/2 ).</td>
<td>52</td>
</tr>
<tr>
<td>2.3</td>
<td>Sistema (</td>
<td>f(x, y)</td>
</tr>
<tr>
<td>2.4</td>
<td>Sistema (-1/6 &lt; g(x, y) &lt; 1/10 ).</td>
<td>53</td>
</tr>
<tr>
<td>2.5</td>
<td>Longitudes de las cadenas crecientes, decrecientes o constante de la subsucesión ((x_{2k+1})_{k=-1}^{+\infty}).</td>
<td>57</td>
</tr>
<tr>
<td>2.6</td>
<td>Longitudes de las cadenas crecientes, decrecientes o constante de la subsucesión ((x_{2k})_{k=-1}^{+\infty}).</td>
<td>57</td>
</tr>
<tr>
<td>3.1</td>
<td>Ilustración del lema 3.4.1.</td>
<td>76</td>
</tr>
<tr>
<td>4.1</td>
<td>Ejemplo de RRF.</td>
<td>88</td>
</tr>
<tr>
<td>4.2</td>
<td>Función ( f(x) = \frac{1}{x^2-1} ), asociada a la EDR (4.11).</td>
<td>98</td>
</tr>
<tr>
<td>4.3</td>
<td>Diagrama de tela de araña ilustrando el RRF de (4.11).</td>
<td>99</td>
</tr>
<tr>
<td>4.4</td>
<td>Iteradas inversas, en ( \mathbb{C} ), del equilibrio de la EDR (4.11).</td>
<td>100</td>
</tr>
<tr>
<td>4.5</td>
<td>Detalle del intervalo crítico correspondiente a la EDR (4.11).</td>
<td>101</td>
</tr>
</tbody>
</table>
ÍNDICE DE FIGURAS

<table>
<thead>
<tr>
<th>Número</th>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6</td>
<td>Iteraciones de 100 condiciones iniciales de la EDR (4.11)</td>
<td>102</td>
</tr>
<tr>
<td>4.7</td>
<td>Primeros periodos de la EDR (4.11)</td>
<td>103</td>
</tr>
<tr>
<td>4.8</td>
<td>Funciones $f_r(x) = \frac{1}{x^2-r}$</td>
<td>104</td>
</tr>
<tr>
<td>4.9</td>
<td>Número de elementos en el entorno repulsor del equilibrium después de cinco iteraciones inversas.</td>
<td>105</td>
</tr>
<tr>
<td>4.10</td>
<td>Órbita inversa del mayor punto fijo real para diversos valores del parámetro $r$.</td>
<td>106</td>
</tr>
<tr>
<td>4.11</td>
<td>Funciones $f_r(x) = \frac{1}{rx_k(1-x_k)}$</td>
<td>107</td>
</tr>
<tr>
<td>4.12</td>
<td>Iteradas inversas del equilibrio negativo de $f_r(x) = \frac{1}{rx_k(1-x_k)}$ para los valores $r = 2, 5, r = 4$ y $r = 7$.</td>
<td>107</td>
</tr>
<tr>
<td>5.1</td>
<td>Conjugación topológica.</td>
<td>113</td>
</tr>
<tr>
<td>5.2</td>
<td>Órbita inversa del equilibrio en $x_{k+1} = 1/(x_k^2 - 0.765)$.</td>
<td>118</td>
</tr>
<tr>
<td>5.3</td>
<td>Solución de (5.15) cuando $g(x) = x$ para las condiciones iniciales $x_{-1} = 1.3$, $x_0 = 1.3$ cuando $b = 0.1$ y $r = 0.9$.</td>
<td>119</td>
</tr>
<tr>
<td>5.4</td>
<td>Solución de (5.15) cuando $g(x) = \ln</td>
<td>x</td>
</tr>
<tr>
<td>5.5</td>
<td>Prueba numérica de la acotación de la función $g_+ \circ g_- (\bar{x}(\lambda))$.</td>
<td>122</td>
</tr>
<tr>
<td>5.6</td>
<td>Órbitas en (5.18) cuando $\lambda = 0.5$.</td>
<td>123</td>
</tr>
<tr>
<td>5.7</td>
<td>Diagrama de bifurcación de $x_{k+1} = \frac{\lambda x_k}{(1+x_k)^2}$.</td>
<td>124</td>
</tr>
<tr>
<td>5.8</td>
<td>Diagrama de bifurcación de $x_{k+1} = \frac{\lambda x_k}{(1+x_k)^2}$ sin perturbación aleatoria.</td>
<td>124</td>
</tr>
<tr>
<td>5.9</td>
<td>Seis iteraciones inversas multivaluadas de los equilibria del modelo de Hassell y Comins para $\lambda = \mu = 0.5$, $\alpha = \beta = 0.1$.</td>
<td>125</td>
</tr>
<tr>
<td>5.10</td>
<td>Seis iteraciones inversas multivaluadas de los equilibria del modelo de Hassell y Comins para $\lambda = \mu = 0.9$, $\alpha = \beta = 0.1$.</td>
<td>126</td>
</tr>
<tr>
<td>6.1</td>
<td>Conjuntos prohibidos de la ecuación de Riccati de orden 1.</td>
<td>137</td>
</tr>
<tr>
<td>6.2</td>
<td>Conjuntos prohibidos de la ecuación de Riccati de orden 1. Caso complejo</td>
<td>138</td>
</tr>
<tr>
<td>6.3</td>
<td>Conjuntos prohibidos de la ecuación de Riccati de orden 2.</td>
<td>141</td>
</tr>
<tr>
<td>6.4</td>
<td>Conjunto prohibido de la ecuación de Lyness.</td>
<td>142</td>
</tr>
<tr>
<td>6.5</td>
<td>Vistas superior e inferior del conjunto prohibido de la ecuación de Todd</td>
<td>143</td>
</tr>
<tr>
<td>6.6</td>
<td>Conjuntos prohibidos en la ecuación $z_{k+1} = \frac{z_k}{1+Bz_{k-1}-Bz_k}$.</td>
<td>148</td>
</tr>
<tr>
<td>6.7</td>
<td>Cuencas de atracción de la EDR $x_{k+1} = \frac{x_{k-1}}{1+x_k}$ (cuadrante positivo).</td>
<td>149</td>
</tr>
<tr>
<td>6.8</td>
<td>Conjunto prohibido de $x_{k+1} = \frac{x_{k-1}}{1+x_k}$ y detalle.</td>
<td>150</td>
</tr>
<tr>
<td>6.9</td>
<td>Conjuntos prohibidos en la ecuación $x_{k+1} = p + \frac{x_{k-1}}{x_k}$.</td>
<td>154</td>
</tr>
<tr>
<td>6.10</td>
<td>Sección de $\mathcal{P}$ y $\mathcal{B}$ correspondiente a $[-3, 3]^3 \cap {x = z}$.</td>
<td>155</td>
</tr>
</tbody>
</table>
6.11. Sección de \( \mathcal{P} \) y \( \mathcal{B} \) correspondiente a \([0,1,1] \times [-5,5] \times [0,1,1] \cap \{x = z\}\) .......................................................... 156

6.12. Sección de \( \mathcal{P} \) y \( \mathcal{B} \) correspondiente a \([-3,3] \times \{x = z + 2\}\) ... 158

6.13. Sección de \( \mathcal{P} \) y \( \mathcal{B} \) correspondiente a \([-3,3] \times \{x = z - 2\}\) ... 159

6.14. Conjuntos prohibidos en \( x_{k+1} = \frac{1}{x_k-\tau} \) ........................................ 160

6.15. Conjuntos prohibidos (sobre \( \mathbb{R} \)) en \( x_{k+1} = \frac{1}{x_k-\tau} \) ............... 162

6.16. Conjuntos prohibidos en \( x_{k+1} = \frac{1}{rx_k(1-x_k)} \) ...................................... 166

C.1. Curvas \( x^2y + y^2x = 0 \) y \( x^2 + y^2 = 1 \) ........................................... 220
Bibliografía


[BBLS07] F. Balibrea, A. Linero Bas, G. Soler López, y S. Stević. Global Periodicity Of $x_{n+k+1} = f_k(x_{n+k}) \cdots f_2(x_{n+2})f_1(x_{n+1})$. *Journal of Difference Equations and Applications*, 13(10):901–910, 2007.


BIBLIOGRAFÍA


BIBLIOGRAFÍA


