Decreased density of β₁-adrenergic receptors in preneoplastic and neoplastic liver lesions of F344 rats

R. Cardani and T. Zavanella
Department of Biology, Faculty of Science, University of Milan, Milan, Italy

Summary. There is some evidence that rodent hepatocarcinogenesis is accompanied by changes in the adrenergic responsiveness of liver cells to catecholamines. In this study, immunohistochemical expression of β₁-adrenergic receptors (β₁-ARs) has been examined in spontaneous and chemically induced preneoplastic and neoplastic liver lesions of female and male Fischer 344 rats. An antibody specific for β₁-AR subtype was used. The study was carried out on archival formalin-fixed and paraffin-embedded livers from rats used in a previous study of hepatocarcinogenesis. One control group given distilled water by gavage, and two experimental groups, one initiated with a single dose of diethylnitrosamine (DEN) and one initiated with DEN and continuously treated with phenobarbital (PB) were examined. Rats were sacrificed after 2, 4, 8 and 21 months of experimentation. All types of liver putative preneoplastic lesions examined (basophilic, glycogen-retaining, or mixed cell foci) show a lower density of β₁-ARs than the surrounding normal liver parenchyma, either in control and in DEN-treated or DEN+PB-treated rats. No immunostaining is detectable in several altered cell foci. Hepatocellular adenomas and hepatocellular carcinomas also show a very low density of β₁-ARs, extensive areas completely devoid of β₁-ARs being mingled with areas showing a weak immunostaining.

Key words: β₁-adrenoreceptor, Immunohistochemistry, Rat liver, Preneoplastic lesion, Neoplastic lesion

Introduction

A large body of evidence indicates that catecholamines are involved in the control of liver growth. Their effects are mediated by α- and β-adrenergic receptors (α- and β-ARs), whose expression and responsiveness undergo changes in various physiological and pathological states (Lefkowitz et al., 1984; Michalopoulos, 1990; Refsnes et al., 1992; Kajiyama and Ui, 1998).

Rodent hepatocarcinogenesis has been shown to be accompanied by either quantitative or qualitative changes in the α- and β-AR subtype populations. Treatment of rats with certain chemical carcinogens has been reported to be associated with a transient marked increase in adrenergic responsiveness of the liver cell adenylate cyclase (Christoffersen et al., 1972; Christoffersen and Berg, 1975; Boyd and Martin, 1976; Refsnes et al., 1986). This increased adrenergic responsiveness, that has been attributed to an increase in the density of β-ARs on the hepatocyte membrane (Refsnes et al., 1986), is no longer demonstrable after the appearance of the liver preneoplastic or neoplastic lesions both in rats given 2-acetylaminofluorene (2-AAF) (Christoffersen et al., 1972) and in rats given 3'-methyl-4-dimethylaminoazobenzene (Boyd and Martin, 1976), despite continuous administration of the carcinogen. Hepatocellular carcinomas from rats given 2-AAF (Christoffersen et al., 1972) and rat transplanted hepatoma cells show either a comparable or a lower responsiveness to epinephrine or to the β-adrenergic agonist, isoproterenol, than normal liver cells (Emmelot and Bos, 1971; Lacombe et al., 1976; Okamura and Terayama, 1976; Matsunaga et al., 1984; Miyamoto et al., 1985, 1989; Garcia-Sainz et al., 1989; Sanae et al., 1989).

Recently, we have examined the distribution of β₁-adrenergic receptors in the rodent liver by an immunohistochemical method, using an antibody specific for the β₁-AR subtype (Cardani and Zavanella, 2001). In this study, which was carried out on archival livers from untreated Fischer 344 rats used as controls in a previous study of hepatocarcinogenesis (Zavanella et al., 1994), a clear positive reaction was found in the hepatocytes of both female and male rats from different age groups. Since spontaneous putative preneoplastic lesions, represented by basophilic foci or glycogen-retaining foci, are common in the livers of senescent F344 rats (Eustis et al., 1990), we had the chance to observe that the density of β₁-ARs is much lower in the preneoplastic lesions than in the surrounding normal
The distribution of β_1-ARs in the livers of control rats from group D1, given distilled water by gavage, was similar to that previously observed in the livers of untreated rats (Cardani and Zavanella, 2001). In the normal liver parenchyma there were no appreciable differences in β_1-AR distribution between the livers of control rats and the livers of DEN or DEN+PB treated rats. Within the liver lobule a clear zonation is observed, with the β_1-AR positivity most evident in pericentral zone hepatocytes and a gradual fading of the immunostaining from pericentral to periportal zone hepatocytes (Fig. 1A,B). No positive reaction is found in sections incubated without primary antibody, 2, with rabbit normal serum and 3, with primary antibody preadsorbed with β_1-AR blocking peptide (Santa Cruz Biotechnology). Primary antibodies were also preincubated with β_2- and β_3-AR peptides used to obtain antibodies specific for the C-terminus of β_2- or β_3-ARs (Santa Cruz Biotechnology). Rat placenta was used as positive tissue control. Further details are given in Cardani and Zavanella (2001).

Altered cell foci and neoplastic lesions were examined in β_1-AR, hematoxylin-eosin and hematoxylin-periodic acid-Schiff-stained adjacent sections. The nomenclature used for liver lesions is based on the classification reported by Eustis et al. (1990).

Putative preneoplastic lesions induced by DEN are represented by glycogen-retaining, basophilic and several types of enzyme-altered foci, whose potential to attain the malignant state is generally enhanced by PB (Scherer and Emmelot, 1975; Pitot et al., 1978; Schulte-Hermann et al., 1981; Pereira, 1982; Goldsworthy et al., 1984; Estadella et al., 1984; Barbason et al., 1985; Sato et al., 1984). The frequency and the time of onset of preneoplastic and neoplastic lesions depend on experimental conditions. F344 rats initiated with a single i.p. injection of 200 mg/kg of DEN and subjected to partial hepatectomy develop putative liver preneoplastic lesions after 4 weeks (Solt et al., 1977; Tatematsu et al., 1979; Ogawa et al., 1980), neoplastic nodules after 35 weeks, and hepatocellular carcinomas after 50 weeks (Tatematsu et al., 1988). In DEN-initiated and PB-promoted rats (PB 0.05% in the basal diet) neoplastic nodules are demonstrable after 20 weeks and the incidence of hepatocellular carcinomas is higher than in rats given DEN alone after a time interval of 50 weeks (Tatematsu et al., 1988).

Results

The distribution of β_1-ARs in the livers of control rats from group D1, given distilled water by gavage, was similar to that previously observed in the livers of untreated rats (Cardani and Zavanella, 2001). In the normal liver parenchyma there were no appreciable differences in β_1-AR distribution between the livers of control rats and the livers of DEN or DEN+PB treated rats. Within the liver lobule a clear zonation is observed, with the β_1-AR positivity most evident in pericentral zone hepatocytes and a gradual fading of the immunostaining from pericentral to periportal zone hepatocytes (Fig. 1A,B). No positive reaction is found in liver sections incubated without primary antibody, or with rabbit non-immune serum, or with anti-β_1-AR preadsorbed with β_1-AR blocking peptide. β_1-AR immunoreactivity is still present in sections incubated with anti-β_1-AR preadsorbed with β_2- or β_3-AR blocking peptide.

In non-initiated rats (group D1) small basophilic or
Fig. 1. Distribution of β₁-adrenoreceptors (β₁-ARs) in the normal liver parenchyma and in preneoplastic or neoplastic liver lesions of female F344 rats.

A. Zonation of β₁-AR immunoreactivity in the normal parenchyma of the left liver lobe of a DEN+PB-treated rat (D4) killed after 4 months of experimentation (original magnification x 25).

B. β₁-AR immunoreactivity in the normal parenchyma of the left liver lobe of a DEN-treated rat (D2) killed after 4 months of experimentation (original magnification x 400).

C. Basophilic focus of the right liver lobe of a control rat (D1) killed after 21 months of experimentation: focal cells appear to be devoid of β₁-ARs (original magnification x 400).

D. Basophilic focus of the right liver lobe from a D2 rat killed after 2 months of experimentation: note the lower density of β₁-ARs in focal cells than in the surrounding liver parenchyma (original magnification x 160).

E. Glycogen-retaining focus of the right liver lobe from a D4 rat killed after 2 months of experimentation: focal cells appear to be devoid of β₁-ARs (original magnification x 400).

F. Glycogen-retaining hepatocellular adenoma of the right liver lobe from a D2 rat killed after 21 months of experimentation: β₁-AR expression is lower in the focal lesion than in the surrounding normal liver parenchyma on the left side of the photomicrograph (original magnification x 400).

G. Hepatocellular carcinoma of the median liver lobe from a D2 rat killed after 21 months of experimentation: note lower density of β₁-ARs in neoplastic cells as compared to normal liver parenchyma on the left side of the photomicrograph (original magnification x 25).

H. Hepatocellular carcinoma of the right liver lobe from a D4 rat killed after 21 months of experimentation: no β₁-AR immunoreactivity is appreciable in neoplastic cells (original magnification x 400).
β_1-adrenoreceptors in hepatocarcinogenesis
mixed cell foci, were occasionally observed at the time points of 4 or 8 months of promotion. At 21 months, all the animals had basophilic foci sometimes with a nodular appearance and larger than a liver lobe. At this time point, glycogen-retaining foci were also present in all male rats and in a few female rats. Hepatocellular adenomas were occasionally observed. In all DEN-initiated rats (group D2) and DEN+PB-treated rats (group D4) various types of altered cell foci with variable degrees of cellular atypia were present at all the time points considered. In DEN+PB-treated rats the majority of preneoplastic lesions were represented by glycogen-retaining foci and there were extensive areas of swelling and vacuolation of hepatocytes. Hepatocellular adenomas, showing variable degrees of cellular atypia, were present in a few rats sacrificed at the time point of 8 months and in all the rats from groups D2 or D4 sacrificed at 21 months. At 21 months, hepatocellular carcinomas were also present in rats of both sexes (Zavanella et al., 1994).

The number and types of spontaneous and chemically-induced liver lesions examined for β_1-AR expression, as assessed by the immunohistochemical staining, are reported in Tables 1 and 2. β_1-AR density was arbitrarily quantified on the basis of both the frequency of preneoplastic or neoplastic cells showing a positive immunostaining and the intensity of immunoreaction in the positive cells.

From our immunohistochemical study it appears that all types of preneoplastic lesions show a low density of β_1-ARs in the normal liver parenchyma and in preneoplastic and neoplastic liver lesions of male F344 rats (Fig. 2).

Table 1. β_1-adrenoreceptors (β_1-ARs) density in preneoplastic and neoplastic liver lesions of female F344 rats sacrificed after 2, 4, 8 or 21 months of experimentation.

<table>
<thead>
<tr>
<th>MONTHS</th>
<th>TYPES OF LESIONS</th>
<th>D1, DISTILLED WATER</th>
<th>D2, DEN</th>
<th>D4, DEN + PB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. RATS</td>
<td>No. OF LESIONS EXAMINED</td>
<td>β_1-AR</td>
<td>No. RATS</td>
</tr>
<tr>
<td>2 months</td>
<td>4b</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>GRC foci</td>
<td>0d</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MC foci</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4 months</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BC foci</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>GRC foci</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MC foci</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>8 months</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>BC foci</td>
<td>6</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>GRC foci</td>
<td>0</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>MC foci</td>
<td>0</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>21 months</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>BC foci</td>
<td>43</td>
<td>29</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>GRC foci</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MC foci</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>HA</td>
<td>0</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>HC</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

a: β_1-AR immunoreactivity: -, absent or nearly absent; ±, weak; +, moderate. β_1-AR immunoreactivity was considered nearly absent when a minimal fraction of altered cells showed a positive reaction or when a diffuse but hardly detectable immunostaining was present. β_1-AR immunoreactivity was considered weak or moderate on the basis of both the frequency of β_1-AR positive cells and the intensity of immunostaining. b: Number of rats examined at each time interval. c: Glycogen-retaining cell foci. d: Number of liver lesions examined. e: Mixed cell foci. f: Basophilic cell foci. g: Hepatocellular adenomas. h: Hepatocellular carcinomas.
the β_1-ARs both in control rats (D1), and in DEN-treated (D2) or DEN+PB treated rats (D4) (Figs. IC-E, 2B-E). The majority of the focal lesions show a reduction in the intensity of immunostaining as compared to the adjacent normal liver parenchyma and no immunostaining is detectable in several altered cell foci. The density of β_1-ARs is generally higher in the peripherally rather than in the centrally located focal cells (Fig. 1D) and appears to be somehow related to that of the surrounding normal parenchyma. However, focal lesions completely devoid of β_1-ARs could be observed even in β_1-AR rich areas of liver parenchyma (Fig. 1E). Hepatocellular adenomas and hepatocellular carcinomas also appear to be characterized by a very low density of β_1-ARs (Figs. 1F-H, 2F-I). A variability in the β_1-AR expression was often observed within the same neoplastic lesion, extensive areas completely devoid of β_1-ARs being mingled with areas showing a barely detectable or a weak immunostaining.

No differences in liver lesion β_1-AR immunoreactivity between female and male rats could be observed. In Figure 3, the findings from female and male rats are illustrated by pooling the data pertaining to all the preneoplastic lesions as well as all the neoplastic lesions.

Discussion

In our immunohistochemical study, the density of β_1-ARs in the preneoplastic or neoplastic lesions could be directly compared with that of adjacent and distant normal liver parenchyma. Our findings suggest that preneoplastic and neoplastic transformation is accompanied by a decrease in β_1-AR expression. The reduction in β_1-AR expression is most evident in hepatocellular adenomas and carcinomas, which often appear to be completely or almost completely devoid of β_1-ARs.

Table 2. β_1-adrenoreceptors (β_1-ARs) density in preneoplastic and neoplastic liver lesions of male F344 rats sacrificed after 2, 4, 8 or 21 months of experimentation.

<table>
<thead>
<tr>
<th>MONTHS</th>
<th>TYPES OF LESIONS</th>
<th>D1, DISTILLED WATER</th>
<th>D2, DEN</th>
<th>D4, DEN + PB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. OF RATS</td>
<td>No. OF β_1-AR</td>
<td>No. OF RATS</td>
<td>No. OF β_1-AR</td>
</tr>
<tr>
<td>2 months</td>
<td>4b</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4 months</td>
<td>3</td>
<td>0d</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8 months</td>
<td>4</td>
<td>1 0 0</td>
<td>2</td>
<td>1 0 1</td>
</tr>
<tr>
<td>21 months</td>
<td>6</td>
<td>36 25 9 2</td>
<td>10 7 2 1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>BC foci</td>
<td>Glycogen-retaining cell foci</td>
<td>Basophilic cell foci</td>
<td>Mixed cell foci</td>
</tr>
</tbody>
</table>
| a: β_1-AR immunoreactivity - - - weak; ±, moderate. See note Table 1. b: Number of rats examined at each time interval. c: Glycogen-retaining cell foci. d: Number of liver lesions examined.
These observations might be in line with those of Emmelot and Bos (1971) on transplanted anaplastic rat hepatoma, originally induced by 4-dimethylaminoazobenzene administrations, and those of Christoffersen et al. (1972) on 2-AAF induced hepatocarcinomas. According to these Authors, the stimulatory effect of adrenalin on adenylate cyclase is lower in tumor cells than in normal liver cells from untreated rats (Emmelot and Bos, 1971) or from carcinogen-treated rats in which tumors had not yet developed (Christoffersen et al., 1972).

However, in these early studies there is no mention of the types of adrenergic receptors involved in adenylate cyclase stimulation. At present, the only literature data our morphological findings can be compared with are the pharmacological data on the density of binding sites for β-AR ligands in normal and tumor liver cells. Unfortunately, there is currently no information on the density of β-adrenergic binding sites in focal cells isolated from any type of preneoplastic liver lesion.

A dramatic difference in the number of β-adrenergic receptors between Reuber H35 hepatoma cell and normal BRL-1 liver cell lines has been observed (Leichtling et al., 1978). While normal hepatocytes possess 2000-5000 β-ARs per cell, each H35 cell possesses fewer than 10 β-ARs, as assessed by binding with the β-antagonist [125I]-iodohydroxybenzylpindolol. Cortinovis et al. (1985) also reported that no binding sites for a β-adrenergic antagonist (CGP-12177) are demonstrable on Morris hepatoma MH3924 cells. Thus, these tumor cell lines appear to be lacking in either β1 or β2 adrenoreceptors. Opposite results have been obtained in studies on several serially transplanted ascites hepatomas originally induced by treatment with dimethylaminoazobenzene (Zajdela hepatoma, AH 130, AH 13, AH44, AH66, AH109A, AH7974). In these studies, receptor binding assays were carried out on plasma membrane preparations of ascites tumor cells from tumor-bearing rats and of normal liver cells from untreated rats, a heterogeneous distribution pattern has been found for the expression of β1-ARs, whose density is higher in the pericentral (zone 3) than in the periportal (zone 1) hepatocytes (Cardani and Zavanella, 2001). A gradual fading of β1-AR immunoreactivity from zone 3 to zone 1 has been found also in the normal liver acinus of DEN-initiated or DEN+PB-treated rats (present study). In the liver of control rats, a lobular zonation for cell turnover has also been demonstrated, cell proliferation rate being higher in the periportal and intermediate zones than in the pericentral zone (Zajicek et al., 1985; Geisler et al., 1994; Bralet et al., 1994). Thus, it is tempting to speculate that liver cell proliferation is inversely related to β1-AR expression. Further work is currently underway to test this hypothetical relationship in normal liver parenchyma and in spontaneous or chemically induced preneoplastic and neoplastic liver lesions.

Acknowledgements. This work was supported in part by FIRST and in part by Lega Italiana per la Lotta contro i Tumori.

References

Emmelot P. and Bos C.J. (1971). Studies on plasma membranes XIV. Adenyl cyclase in plasma membranes isolated from rat and mouse

Accepted March 30, 2005