Ischemic preconditioning: tolerance to hepatic ischemia-reperfusion injury

A. Serafin¹, L. Fernández-Zabalegui¹, N. Prats², Z. Y. Wu³, J. Roselló-Catafau¹ and C. Peralta¹

¹Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain, ²Veterinary School, Universitat Autònoma de Barcelona, Barcelona, Spain and ³General Surgery Division, Renji Hospital, Shanghai, China

Summary. Hepatic ischemia-reperfusion (I/R) injury still remains an unresolved problem in both liver resectional surgery and liver transplantation and may be responsible for liver failure, lung injury and death. The current review summarizes the findings reported to date on the effectiveness of ischemic preconditioning against liver and lung damage associated with hepatic I/R injury and the underlying protective mechanisms. The effect of ischemic preconditioning on the mechanisms potentially involved in hepatic I/R injury, including alterations in energy metabolism, neutrophil accumulation, microcirculatory disturbances, formation of proinflammatory mediators, such as endothelin and tumor necrosis factor-alpha, and reactive oxygen species generation have been evaluated. In this review, we address the role of preconditioning in the increased vulnerability of fatty livers to hepatic I/R injury. The effectiveness of ischemic preconditioning versus pharmacological strategies that could simulate the benefits of liver preconditioning has been also discussed.

Key words: Ischemia, Reperfusion, Liver, Preconditioning, Steatosis

Hepatic ischemia-reperfusion injury

The ischemia-reperfusion (I/R) injury is an important cause of liver damage occurring during surgical procedures that include hepatic resections and liver transplantation (Clavien et al., 1992; Huguet et al., 1992; Strasberg et al., 1994). An established consequence of hepatic I/R is the induction of important pulmonary pathological alterations, such as the adult respiratory distress syndrome associated with human liver transplantation and multiple organ failure associated with primary graft failure (Matuschak et al., 1987; Colletti et al., 1990a; Clavien et al., 1992). I/R injury is a complex pathophysiology with a number of contributing factors. The ischemic insult associated with the reduction in cellular adenosine triphosphate (ATP) levels and the consequent lactate accumulation can lead to sublethal cell injury (Clavien et al., 1992; Rosser et al., 1995; Kukan and Haddad, 2001), which is aggravated by the formation of reactive oxygen species (ROS) from various intracellular sources, including xanthine/xanthine oxidase (XOD) (Muller et al., 1996; Pesonen et al., 1998; Fan et al., 1999). In addition, formation of proinflammatory mediators, including endothelin (ET) and tumor necrosis factor-alpha (TNF), and the neutrophil accumulation can further enhance the injury (Schmid-Schönbein, 1987; Colletti et al., 1990b; Jaeschke et al., 1990; Goto et al., 1994; Peralta et al., 1996, 2000, 2001a; Sawaya et al., 1999). Microcirculatory alterations lead to underperfused areas in the liver and may cause ischemic injury (Horton and Fairhurst, 1987; Vajdova et al., 2000; Serracino-Inglott et al., 2001). It has been suggested that a potential explanation for the association of liver I/R injury with pulmonary insufficiency involves liver-derived TNF and xanthine/XOD release, following hepatic I/R (Muller et al., 1996; Pesonen et al., 1998; Fan et al., 1999). The mechanisms involved in the pathophysiology of hepatic I/R have been extensively explained in previous reviews (Clavien et al., 1992; Lichtman and Lemasters, 1999; Bilzer and Gerbes, 2000; Lentsch et al., 2000; Serracino-Inglott et al., 2001; Jaeschke, 2003).

Ischemic preconditioning on hepatic I/R injury

Over the recent years, a surgical strategy known as ischemic preconditioning, firstly described in the heart by Murry et al. (1986), has been developed to reduce hepatic I/R injury. Ischemic preconditioning is an endogenous protective mechanism by which short periods of ischemia, separated by short reperusions, confer a state of protection against subsequent sustained
I/R injury. Ischemic preconditioning reduces necrosis and apoptotic cell death and enhances survival in normothermic hepatic ischemia and liver transplantation (Peralta et al., 1997; Yin et al., 1998; Yadav et al., 1999; Ricciardi et al., 2001; Fernandez et al., 2002). The benefits of ischemic preconditioning on lung damage associated with hepatic I/R have also been demonstrated (Peralta et al., 1999b, 2001a, 2002b; Fernandez et al., 2002). The histological findings are shown in Fig. 1. It is important to remark that the protective effects of ischemic preconditioning have recently been evidenced in normothermic conditions associated with human hepatic resections (Clavien et al., 2000).

Mechanisms of ischemic preconditioning

Although there are several hypotheses, the precise protective mechanisms of ischemic preconditioning against hepatic I/R injury remain to be elucidated. The molecular basis for ischemic preconditioning consists of a sequence of events: in response to the triggers of ischemic preconditioning, a signal must be rapidly generated which is then transduced into an intracellular message leading the amplification of the effector mechanism of protection (Cutrin et al., 2002).

Adenosine and nitric oxide

There is evidence indicating that in response to preconditioning, substances released by the liver, including adenosine and nitric oxide (NO) are able to active protective mechanisms in normothermic conditions as well in cold ischemia associated with liver transplantation (Peralta et al., 1998, 1999a; Yin et al. 1998; Howell et al., 2000). In fact, the optimal ischemic time window to induce preconditioning in the liver is

Fig. 1. Histological lesions in liver (A-B) and lung (C-D) after liver transplantation from liver grafts undergoing 8 h of cold ischemia. The histological study of the liver in transplantation show multifocal and extensive areas of coagulative necrosis with neutrophil infiltration and hemorrhage at 24 h of reperfusion (arrow) (A). In contrast, fewer and smaller areas of hepatocyte necrosis are observed when preconditioning was performed (arrow) (B). In the lung, the transplantation group shows margination and adhesion of neutrophils to the endothelium, a diffuse augmentation of the cellularity in the alveolar walls, and a slight thickening of the alveolar walls (C). In contrast, no apparent vascular margination of neutrophils and only a very and non-diffuse thickening of alveolar walls is observed in the preconditioned group (D). H&E, original magnifications, x 214
determined by at least two factors: an adenosine concentration high enough to induce NO generation through the activation of adenosine A2 receptors together with a low xanthine concentration to avoid the deleterious effects of this metabolite (Peralta et al., 1998). NO generation induced by preconditioning is likely to be derived from constitutive NO synthase (NOS). It has been reported that NOS activation following ischemic preconditioning occurs within a few minutes and preconditioning does not promote any difference in the inducible NOS activity after hepatic I/R (Peralta et al., 1996; Rudiger and Clavien, 2000; Koti et al., 2002).

Signalling pathways in ischemic preconditioning

Data reported in cultured hepatocytes points to the activation of adenosine receptors coupled to G proteins as a potential pathway that initiates the preconditioning response (Carini et al., 2001a,b). The receptor-coupled G protein, through different signals induces the activation of protein kinase C (PKC), which in turn affords phosphorylation of effector molecules, including p38 mitogen-activated protein kinase (p38 MAPK) (Fig. 2) (Carini et al., 2001a,b). Other effector molecules, such as ATP-sensitive K+ channel (KATP), 5' nucleotidase and cAMP-protein kinase A activation (PKA), have been reported in the heart (Fig. 2) (Wyatt et al., 1989; Simkhovich et al., 1998; Tong et al., 2000; Ricciardi et al., 2001a). The activation of these intracellular signalling pathways, such as p38 MAPK, not only triggers increased tolerance of the hepatocytes and endothelial cells against ischemic insults but also causes quiescent cells to enter the cell cycle and to initiate a regenerative response (Teoh et al., 2002). Recently, it has been reported that NO can induce preconditioning of hepatocytes by promoting the sequential activation of guanylate cyclase, cyclic GMP-dependent kinase (cGK) and p38 MAPK (Carini et al., 2003). In addition, it has been reported that PKC could induce nuclear factor transcriptions in the heart, including nuclear factor transcription factor B (NF-κB), which govern the expression of protective genes responsible for the protection conferred by preconditioning (Maulik et al., 1998; Li et al., 2000). Several proteins have been proposed as possible effectors, including antioxidant enzymes like Mn-SOD and heat-shock proteins (HSP) (Carroll and Yellon, 1999; Bolli, 2000). Both the PKC and NF-κB activation as well as the increase in HSP expression induced by ischemic preconditioning have been demonstrated in the liver (Kume et al., 1996; Carini et al., 2001a,b; Teoh et al., 2002). In contrast to the heart, the role of PKC in liver preconditioning could be independent of NF-κB (Ricciardi et al., 2002). The possibility that NF-κB could induce HSP expression in liver preconditioning remains to be elucidated. In addition, it has been suggested that liver preconditioning through NF-κB could induce the activation of the transcription factor, signal and activator of transcription 3 (STAT3) (Teoh et al., 2003). The possibility that

![Fig. 2. Diagram showing the signalling pathways in ischemic preconditioning. Please see text.](image-url)
preconditioning could decrease the transcription levels of immediate early genes, including c-fos and c-jun, protecting against hepatic I/R injury has also been suggested (Ishii et al., 2001; Saito et al., 2001).

In addition to the potential signalling pathways that trigger the above-mentioned ischemic preconditioning, the existence of parallel signalling pathways in preconditioning could be considered. In this line, recent works indicate that the preconditioning period may induce ROS burst (Sindram et al., 2002) or low TNF release (Teoh et al., 2003), thus protecting against subsequent hepatic I/R injury. Moreover, the inhibition of NF-κB activation induced by liver preconditioning has been demonstrated (Funaki et al., 2002) (see Fig. 2). The apparent controversial data on the effect of preconditioning on NF-κB activation in liver could be explained by the different in vivo experimental models of hepatic I/R evaluated.

Energy metabolism

Besides producing adenosine, the brief period of preconditioning was able to induce the activation of adenosine monophosphate-activated protein kinase (AMPK) (Peralta et al., 2001b). Once activated, AMPK responds by phosphorylating multiple downstream substrates aimed to conserve the existing ATP levels thus reducing the intermediate glucoytic and lactate accumulation during warm ischemia (Fig. 3). Its beneficial effect on energy metabolism seems to be independent of NO because the inhibition of NO synthesis in preconditioned group or the administration of NO donor before ischemia has no effect on energy metabolism (see Peralta et al., 2001b).

Neutrophil accumulation and microcirculatory alterations

The possibility that ischemic preconditioning could modulate the neutrophil accumulation and the microcirculatory alterations following hepatic I/R has been reported (Howell et al., 2000; Koti et al., 2002; Shinoda et al., 2002; Glanemann et al., 2003). In the field of liver transplantation, preconditioned grafts demonstrated improved hepatic tissue blood flow and decreased hepatic vascular resistance after cold storage (Ricciardi et al., 2000, 2001a,b). Similarly, beneficial effects of preconditioning on microcirculatory alterations following hepatic I/R have been reported in normothermic hepatic ischemia (Iwasaki et al., 2002; Shinoda et al., 2002; Glanemann et al., 2003). It has been suggested that preconditioning may act through the release of NO, which has vasodilator effects, and inhibits the vasoconstrictive effects of both stellate cells and inflammatory mediators such as ET (Peralta et al., 1996, 2000; Koti et al., 2002).

Although there are numerous studies on normothermic hepatic ischemia and liver transplantation which indicate the benefits of preconditioning on

![Diagram](https://example.com/diagram.png)
neutrophil accumulation following hepatic I/R (Howell et al., 2000; Koti et al., 2002; Shinoda et al., 2002; Glanemann et al., 2003), the mechanisms by which preconditioning modulate the hepatic leukocyte/endothelial cell interactions remain to be elucidated. Experimental data in normothermic ischemia showed reduced leucocyte adherence in sinusoids and postsinusoidal venules after the induction of preconditioning (Sawaya et al., 1999; Zapletal et al., 1999; Howell et al., 2000). However, there is some evidence indicating that the expression of adhesion molecules in the liver is not altered after preconditioning (Peralta et al., 2001a; Funaki et al., 2002). It has been suggested that the extensive vascular injury during reperfusion eliminates, in part, the sinusoidal endothelial cell barrier and that the neutrophil has direct access to the hepatocyte (Jaeschke, 2003). Thus, it could be hypothesized that preconditioning reduces neutrophil accumulation by preserving the endothelial cell integrity. Future investigations on the mechanisms by which preconditioning reduces neutrophil accumulation following hepatic I/R may help to design new therapies aimed at reducing reperfusion damage.

Pulmonary damage following hepatic I/R

The findings obtained from previous studies in liver preconditioning indicate that this surgical strategy is able of modulating local and systemic disorders associated with hepatic I/R in normothermic hepatic ischemia and liver transplantation (Peralta et al., 1996, 1999b, 2000, 2001a; Fernandez et al., 2002). In this line, preconditioning by inhibition of ET release after hepatic I/R could 1) attenuate the microvascular disorders and the inflammatory response associated with this process, 2) reduce the increase in hepatic TNF mainly released from Kupffer cells, thus attenuating the liver injury following hepatic I/R, and 3) prevent the systemic release of liver-associated TNF, thus preventing lung P-selectin up-regulation and the subsequent pulmonary damage associated with hepatic I/R (Peralta et al., 1996, 1999b, 2000, 2001a; Koti et al., 2002) (see Fig. 3). The inhibition of ET release by ischemic preconditioning is mediated by NO (Peralta et al., 1996, 1999b, 2000, 2001a, 2002b). Moreover, ischemic preconditioning is able to modulate other mechanisms involved in both local and systemic disorders including the ROS generating system xanthine/XOD (Peralta et al., 2002a; Fernandez et al., 2002). This surgical strategy, by reducing xanthine accumulation and the conversion of XDH to XOD during ischemia, protects the liver and lung damage associated with hepatic I/R. Moreover, it has been reported that preconditioning was able to increase the hepatic tolerance against reperfusion injury by attenuating the ROS production either by preserving the mitochondrial structure (Cutrin et al., 2002) or modulating Kupffer cell activation (Peralta et al., 2000, 2001a; Glanemann et al., 2003). The effect of preconditioning on antioxidant systems has been demonstrated. In this line, this surgical strategy is able to prevent the loss of glutathione content during hepatic ischemia thus decreasing the vulnerability of liver to ROS damage (Peralta et al., 2002a).

Ischemic preconditioning and fatty livers

Despite the significant improvement of outcome during the last decade, the dramatic organ shortage for transplantation forces the consideration of steatotic grafts as another option, although they have a higher vulnerability to I/R injury. The occurrence of postoperative liver failure after hepatic resection in a steatotic liver exposed to normothermic ischemia has been reported (Todo et al., 1989; D’Alessandro et al., 1991; Huguet et al., 1991). In addition, the use of steatotic livers for transplantation is associated with an increased risk for primary nonfunction or dysfunction after surgery (Behrs et al., 1989; Strasberg et al., 1994;
Trevisani et al., 1996). A recent study of normothermic ischemia conditions (Serafin et al., 2002), indicates the effectiveness of ischemic preconditioning against the increased vulnerability of fatty livers to hepatic I/R injury in Zucker rats showing severe macrovesicular and microvesicular fatty infiltration in hepatocytes (between 60% and 70% steatosis) (see Fig. 4). Preconditioning through NO generation was capable of controlling the mechanisms potentially involved in the vulnerability of fatty livers to hepatic I/R, including oxidative stress, neutrophil accumulation, and microcirculatory failure, thus reducing the subsequent hepatic injury (Serafin et al., 2002). The histological findings are shown in Fig. 5.

Ischemic preconditioning and pharmacological strategies

Several studies have compared the effectiveness of ischemic preconditioning versus pharmacological strategies aimed to modulate hepatic I/R injury in normothermic ischemia and liver transplantation (Nolte et al., 1991; Downey et al., 1994; Peralta et al., 1997, 1999a,b, 2001a, 2002b; Yin et al., 1998; Howell et al., 2000; Ito et al., 2000; Kume et al., 2000; Fernandez et al., 2002; Teoh et al., 2003). In this regard, it has been reported that to minimize the liver and lung damage following liver transplantation, the addition of XOD inhibitors to the preservation solutions may be less efficient than strategies including preconditioning, which prevent the formation of xanthine/XOD in liver grafts during cold ischemia (Fernandez et al., 2002). Recent studies in human liver transplantation indicating high activities of human plasma XOD during reperfusion suggest that the use of inhibitors of XOD in preservation solutions may not be sufficient to eliminate ROS generation from XOD (Pesonen et al., 1998). According to our results, the effect of ischemic preconditioning by

Fig. 5. Histological lesions in normal and fatty livers subjected to 60 min of normothermic hepatic ischemia. The histological study in normal livers shows moderate and multifocal areas of coagulative necrosis and neutrophil infiltration at 24 h of reperfusion, randomly distributed through the parenchyma (arrow) (A), whereas severe, extensive, and confluent areas of coagulative necrosis with neutrophil infiltration (arrow) are observed in fatty livers (B). In contrast, when preconditioning is carried out, the extent and number of necrotic areas at 24 h after hepatic reperfusion is markedly reduced in normal and fatty livers with respect to I/R. In the case of normal livers, these areas are mainly of incipient hepatocyte necrosis (arrowhead) (C) whereas in fatty livers patchy areas of incipient hepatocyte necrosis and scattered multifocal areas of coagulative hepatocyte necrosis (arrow) are observed (D). H&E x 107
Liver ischemic preconditioning

Itself, and independently of the preservation solution, was more effective against lung damage (Fernandez et al., 2002). In addition, in normothermic conditions, ischemic preconditioning has been reported to be more effective than antiselectin or anti-TNF therapies in preventing hepatic I/R injury (Peralta et al., 1999b, 2001a, 2002b). The multiple mechanisms of I/R injury suggest the inherent difficulties in the effective prevention of hepatic I/R injury by using pharmacological strategies focused in the inhibition of individual mediators or factors responsible for this pathology. On the other hand, like preconditioning, different pharmacological strategies consisting in the pre-treatment with low doses of TNF, NO donors, adenosine, and the anticancer drug, doxorubicin, could simulate the benefits of preconditioning on hepatic I/R injury (Nolte et al., 1991; Downey et al., 1994; Peralta et al., 1997, 1999a; Yin et al., 1998; Howell et al., 2000; Ito et al., 2000; Kume et al., 2000; Teoh et al., 2003). It should be noted that experience with ischemic preconditioning in humans indicates that this is a simple and powerful protective strategy against hepatic I/R injury in clinical practice (Clavien et al., 2000).

Preconditioning is easy to apply, inexpensive and does not require a drug with potential side effects.

Conclusion

Preconditioning could be a coming approach for preventing reperfusion injury, which appears to increase the resistance of liver cells to I/R events. Preconditioning has the greatest potential to improve the clinical outcome in liver transplantation and liver surgery associated with hepatic resections. It could afford the possibility of improving the initial conditions of the organs available for human liver transplantation, particularly organs considered marginal or suboptimal. Although clear benefits of ischemic preconditioning have been demonstrated in the heart for years, clinical applications have been slow to be manifested (Ricciardi et al., 2001b). Given that the benefits of ischemic preconditioning in hepatic cold preservation as well as in fatty livers subjected to normothermic ischemia have been newly discovered, further research is needed to better characterize the underlying protective mechanisms.

Acknowledgements. We thank the Ministerio de Ciencia y Tecnología (Madrid, Spain) for the Ramón y Cajal Research Contract to C. Peralta. This work was supported by the Agencia Española de Cooperación Internacional through the project 2002CN0012 and the Ministerio de Ciencia y Tecnología (BF-2002-00704 project).

References

Liver ischemic preconditioning

ischemia/reperfusion-injury by preservation of microcirculation and mitochondrial redox-state. J. Hepatol. 38, 59-68.

Liver ischemic preconditioning

defense mechanism against the reactive oxygen species generated after hepatic ischemia reperfusion. Transplantation 73, 1203-1211.

Accepted August 21, 2003