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Summary. Controlled degradation of extracellular
matrix (ECM) is essential in many physiological
situations including developmental tissue remodeling,
angiogenesis, tissue repair, and normal turnover of
ECM. In addition, degradation of matrix components is
an important feature of tumor growth, invasion,
metastasis, and tumor-induced angiogenesis. Matrix
metallo-proteinases (MMPs) are a family of zinc-
dependent neutral endopeptidases, which are collectively
capable of degrading essentially all ECM components.
MM Ps apparently play an important role in al the above
mentioned aspects of tumor development. In addition,
there is recent evidence that MMP activity is required
for tumor cell survival. At present, several MMP
inhibitors are in clinical trials of malignant tumors of
different histogenetic origin. In this review we discuss
the current view on the role of MMPs and their
inhibitors in development and invasion of squamous cell
carcinomas, as a basis for prognostication and
therapeutic intervention in these tumors.
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Proteolytic remodeling of extracellular matrix

Degradation of components of extracellular matrix
(ECM) is important in many physiological as well as
pathological conditions. Interstitial connective tissue and
basement membrane can be degraded by four classes of
proteolytic enzymes: cystein proteinases, aspartic
proteinases, serine proteinases, and metalloproteinases
(see Birkedal-Hansen et al., 1993). There is considerable
evidence that matrix metalloproteinases (MMPs) play an
important role in remodeling of the ECM in
physiological situations mentioned above, and that
excessive breakdown of ECM by MMPs occurs in many
pathological conditions including periodontitis,
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autoimmune blistering disorders of skin, dermal
photoageing, rheumatoid arthritis, osteoarthritis, and
chronic ulcerations. In addition, controlled degradation
of ECM by MMPsis thought to play an important role in
tumor invasion and metastasis (for reviews see Kahari
and Saarialho-Kere, 1997, 1999; Johnsen et a., 1998;
Shapiro, 1998).

Matrix rnetalloproteinases (MMPSs)

To date, 18 mammalian MMPs have been identified
and characterized by ¢cDNA cloning. According to
structure and substrate specificity MMPs can be divided
into subgroups of collagenases, stromelysins,
gelatinases, membrane-type MMPs (MT-MMPs) and
other MMPs (Table 1). MMPs have a characteristic
multi-domain structure (Fig. 1) consisting of 1) signal
peptide that directs secretion of the proenzyme, 2)
propeptide, which contains a conserved amino acid
sequence (PRCGxPD), which participates in formation
of the cystein switch, and which is essential for
maintaining the proMMP in latent form, 3) catalytic
domain containing the highly conserved Zn4* binding
site (HExGHxxGxxHS/T), 4) proline-rich hinge region
that links the catalytic domain to 5) hemopexin-like
domain, which determines the substrate specificity of
MMP. In addition, the catalytic domain of the two
gelatinases contains three repeats of the fibronectin type
I domain, which allow these enzymes to bind gelatin.
MT-MMPs contain a transmembrane domain of 20
hydrophobic amino acids in the C-terminal end of
hemopexin domain followed by a 24 amino acid
intracellular domain (Sato et a., 1994; Cao et al., 1995).

Collagenases

The human collagenase subfamily consists of three
members, collagenase-I (MMP-1), collagenase-2
(MMP-8), and collagenase-3 (MMP-13). These are the
principal secreted neutral proteinases capable of
degrading native fibrillar collagens of types I, II, III, V,
and X1 in the extracellular space. All collagenases cleave
fibrillar collagens at a specific site between Gly--5 and
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Table 1. Human matrix metalloproteinase family, substrates, exogenous activators and activating capacity

Enzyme Structure Substrates Activated by Activator of

Collagenases

Collagenase-1 (MMP-1) FIB COL 1, I, IIL(I>>D)VIT, VIIL, X MMP-3, -10, plasmin MMP-2
AGR, serpins, a.2M kallikrein, chymase

Collagenase-2 (MMP-8) FIB COL I, 11, 111, (I>>I1I), AGR MMP-3, -10, plasmin ND
serpins, a2M

Collagenase-3 (MMP-13) FIB COL J, I, I, (I>>T) IV, IX, X, XTIV MMP-2, -3, -10, -14, -15 MMP-2, -9
GEL, FN, LN, TN, AGR, serpins plasmin

Stromelysins

Stromelysin-1 (MMP-3) Type IV COL, FN, AGR, nidogen plasmin, kallikrein, chymase MMP-1, -7, -8, -9, -13

Stromelysin-2 (MMP-10) as MMP-3 tryptase, clastase, cathepsin G~ MMP-1, -8, -13

Stromelysin-3 (MMP-11) al-proteinase inhibitor furin ND

Metalloelastase (MMP-12) COL 1V, GEL, FN, LN, VN, ND ND
al-antitrypsin, EL

Matrilysin (MMP-7) as MMP-3, EL, entactin, TN MMP-3, plasmin MMP-2

Gelatinases

Gelatinase-A, 72 kDa (MMP-2) GEL, COL L IV,V, VI[, X, FN, TN, c2M  MMP-1,-7,-13,-14,-15,-16 =~ MMP-9, -13

Gelatinase-B, 92 kDa (MMP-9) GEL, COL L IV,V,\VI[, XIXIV,EL, 02M  MMP-2, -3, -13, plasmin ND

Membrane-type MMPs

MT1-MMP (MMP-14) COL [, I, If, GEL, FN, LN, VN, AGR Plasmin, furin MMP-2, -13
TN, nidogen, perlecan

MT2-MMP (MMP-15) FN, LN, AGR, TN, nidogen, perlecan ND MMP-2, -13

MT3-MMP (MMP-16) COL ITL, FN, GEL, casein ND MMP-2

MT4-MMP (MMP-17) ND ND ND

Other MMPs )

MMP-19 ND trypsin ND

Enamelysin (MMP-20) amelogenin ND ND

Modified from Murphy and Knéduper 1997 ; Kahari and Saarialho-Kere, 1997. FIB, fibrillar, COL, collagen; AGR, aggregan; GEL, gelatin;
FN, fibronectin, LN, laminin; TN, tenascin; a.2M, a2-macroglobulin; EL, elastin; ND, not determined. See Fig 1. for details of structure.

Leu/lley7¢ of the a-chains, resulting in generation of N-
terminal 3/4 and C-terminal 1/4 fragments, which
rapidly denature to gelatin in body temperature and are
further degraded by other MMPs, e.g. gelatinases.
MMP-1 preferentially degrades type III collagen and
MMP-8 prefers type I collagen. MMP-13 cleaves type 11
collagen 6-fold more effectively than type I and III
collagens and displays 40-fold stronger gelatinolytic
activity than MMP-1 and MMP-8 (Kniuper et al.,
1996a; Mitchell et al., 1996). In addition to the classical
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Fig. 1. Prototype of MMPs (modified from Birkedal-Hansen et al., 1993).

cleavage site, both human and mouse MMP-13 cleave
type I collagen in N-terminal non-helical telopeptide
(Liu et al., 1995; Krane et al., 1996). N-telopeptidase
activity appears to be sufficient for resorption of type I
collagen during fetal development and early postnatal
life of mice, whereas triple helicase activity is necessary
during intense tissue resorption, e.g. involution of
postpartum uterus and also in normal turnover of
collagen in murine skin (Liu et al., 1995).

Human MMP-1 was the first MMP, the primary
structure of which was determined by cDNA cloning
(Goldberg et al., 1986). Latent MMP-1 is secreted as a
major 52 kDa or a minor glycosylated 57 kDa form,
which are proteolytically activated by propeptide
cleavage to 42 and 47 kDa forms, respectively (see
Nagase, 1997). MMP-1 is secreted by various types of
cells including fibroblasts, keratinocytes, endothelial
cells, macrophages, hepatocytes, chondrocytes, osteo-
blasts, and tumor cells (Birkedal-Hansen et al., 1993).

MMP-8 is synthesized by polymorphonuclear
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leucocytes during their maturation in bone marrow,
stored in their intracellular granules, and released in
response to external stimuli as 55 kDa and glycosylated
75 kDa forms (Hasty et al., 1986, 1990). In addition,
MMP-8 is expressed by chondrocytes, rheumatoid
synovial fibroblasts, endothelial cells, in osteoarthritic
cartilage, and melanoma cells (Cole et al., 1996;
Hanemaaijer et al., 1997; Shlopov et al., 1997;
Giambernardi et al., 1998). The substrate specificity of
MMP-8 is similar to that of MMP-1 (Hasty et al., 1987,
Table 1). Recently, the cDNA of mouse MMP-8 was
cloned and was shown to be expressed in postpartum
uterus (Balbin et al., 1998).

Human MMP-13, originally cloned from breast
carcinoma tissue shows high homology (86% at amino
acid level) to rat and mouse interstitial collagenases and
only 50% homology to human MMP-1 indicating that
these rodent collagenases are counterparts for human
MMP-13 instead of MMP-1 (Freije et al., 1994).
Furthermore, no rat or murine homologue for human
MMP-1 has been found. The exceptionally wide
substrate specificity and limited expression distinguishes
MMP-13 from other MMPs. In addition to fibrillar
collagens and gelatin, MMP-13 degrades type 1V, IX, X,
and XIV collagens, large tenascin C isoform, fibro-
nectin, laminin, aggrecan core protein and serine
proteinase inhibitors (Fosang et al., 1996; Kn#uper et al.,
1996a, 1997a; Mitchell et al., 1996). Latent MMP-13 is
activated in vitro by organomercurials (e.g. APMA),
trypsin, plasmin, stromelysin-1 (MMP-3), stromelysin-2
(MMP-10), 72-kDa gelatinase (MMP-2), MT1-MMP
(MMP-14), and MT2-MMP (MMP-15) (Knéuper et al.,
1996a,b; Murphy and Knauper, 1997; d"Ortho et al.,
1997) and its activity is inhibited by tissue inhibitor of
metalloproteinase-1 (TIMP-1) and TIMP-3 and less
potently by TIMP-2 (Knauper et al., 1996a, 1997a).
MMP-13 also activates latent MMP-2 and 92-kDa
gelatinase (MMP-9) (Knéduper et al., 1997b; Murphy and
Knduper, 1997).

Apparently due to its wide substrate specificity, the
physiological expression of human MMP-13 is restricted
to developing fetal bone, in which it is expressed by
hypertrophic chondrocytes, periosteal cells, and
osteoblasts, but not by osteoclasts (Johansson et al.,
1997a; Stdhle-Biackdahl et al., 1997). In contrast,
expression of human MMP-13 has been observed in
several pathological conditions characterized by
excessive degradation of collagenous ECM, i.e.
osteoarthritis and rheumatoid arthritis (Mitchell et al.,
1996; Reboul et al., 1996, Lindy et al., 1997; Moldovan
et al., 1997, Shlopov et al., 1997; Stihle-Béackdahl et al.,
1997; Tetlow and Woolley et al., 1998), chronic
cutaneous ulcers (Vaalamo et al., 1997), intestinal
ulcerations (Vaalamo et al., 1998), and chronic
periodontal inflammation (Uitto et al., 1998). In
addition, MMP-13 expression has been detected in
invasive malignant tumors, i.e. breast carcinomas (Freije
et al., 1994; Heppner et al., 1996; Uria et al., 1997),
squamous cell carcinomas (SCCs) of the head and neck

(Johansson et al., 1997¢; Airola et al., 1997, Cazorla et
al., 1998) and the vulva (Johansson et al., 1999), and
chondrosarcomas (Uria et al., 1998).

Stromelysins

Stromelysin-1 (MMP-3) and stromelysin-2 (MMP-
10) are closely related with respect to structure and
substrate specificity. MMP-3 and MMP-10 are expressed
by fibroblastic cells, and their expression has also been
observed in normal and transformed epithelial cells in
vitro and in vivo (Windsor et al., 1993; Saarialho-Kere,
1998). MMP-3 and MMP-10 degrade a wide range of
ECM proteins including fibronectin, type IV, V, IX, and
X collagens, proteoglycans, gelatin, fibronectin, and
laminin (Birkedal-Hansen et al., 1993; Chandler et al.,
1997). In addition, MMP-3 cleaves al-proteinase
inhibitor, TNF-a precursor, and myelin basic protein
(Chandler et al., 1997) and degrades and inactivates IL-
18 (Ito et al., 1996).

Stromelysin-3 (MMP-11), matrilysin (MMP-7), and
metalloelastase (MMP-12) are often included in the
stromelysin subgroup, although they are structurally less
closely related to MMP-3 and MMP-10 (Birkedal-
Hansen et al., 1993). MMP-11 was cloned from human
breast cancer cDNA library and it is also expressed in
uterus, placenta, and involuting mammary gland (Basset
et al., 1990). To date, human MMP-11 has not been
shown to degrade any ECM component, but instead it
degrades serine proteinase inhibitors, al-proteinase
inhibitor and a1-anti-trypsin (Pei et al., 1994).

Matrilysin (MMP-7) is the smallest MMP due to
absence of the hemopexin domain. MMP-7 is expressed
by normal glandular epithelial cells, e.g. of the cycling
human endometrium, small intestinal crypts, skin, and
airways (Saarialho-Kere et al., 1995; Dunsmore et al.,
1998). MMP-7 is also expressed by malignant epithelial
cells in tumors of the gastrointestinal tract, prostate, and
breast (Karelina et al., 1994; Wilson and Matrisian,
1996). In addition to a wide range of ECM components
(fibronectin, laminin, nidogen, type IV collagen, and
proteoglycans), MMP-7 cleaves B4 integrin {(von
Bredow et al., 1997).

Macrophage metalloelastase (MMP-12) is expressed
in placenta, by alveolar macrophages in pulmonary
emphysema and by fibroblasts in granulomatous
diseases of the intestine and skin (Shapiro et al., 1993;
Belaaouaj et al., 1995; Vaalamo et al., 1998, 1999).
MMP-12 degrades elastin, type IV collagen, type I
gelatin, fibronectin, laminin, vitronectin, proteoglycans,
myelin basic protein, and o.1-antitrypsin {(Chandler et al.,
1996).

Gelatinases

The gelatinase subgroup of MMPs consists of 72-
kDa gelatinase (gelatinase-A, MMP-2) and 92-kDa
gelatinase (gelatinase-B, MMP-9). MMP-2 is expressed
by various cell types, including fibroblasts, keratino-
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cytes, endothelial cells, chondrocytes, osteoblasts,
monocytes and by different types of transformed cells
(see Birkedal-Hansen et al., 1993). MMP-9 is produced
by normal alveolar macrophages, polymorphonuclear
leukocytes, osteoclasts, keratinocytes, invading tropho-
blasts, and by several types of transformed cells (see
Birkedal-Hansen et al., 1993). Gelatinases degrade type
IV, V, VII, X, XI, and XIV collagens, gelatin, elastin,
proteoglycan core proteins, myelin basic protein,
fibronectin, and precursors of TNF-a and IL-18
(Birkedal-Hansen et al., 1993; Ito et al., 1996; Chandler
et al., 1997). MMP-2 also degrades native type |
collagen and activates latent MMP-9 and MMP-13
(Aimes and Quigley, 1995; Fridman et al., 1995;
Kniuper et al., 1996b). MMP-9 also cleaves N-terminal
telopeptide of type I collagen in acidic environment
(Okada et al., 1995a). Thus, it is possible that MMP-2
and MMP-9 also play a role in the remodeling of
collagenous ECM under certain conditions. Activation
of MMP-2 by MT1-MMP occurs at the cell membrane
by a mechanism involving interaction of the C-terminus
of proMMP-2 with MT1-MMP/TIMP-2 complex (Sato
et al., 1996a; Butler et al., 1998; Zucker et al., 1998).

Membrane-type MMPs

The MT-MMP subgroup contains four members:
MT1-MMP (MMP-14), MT2-MMP (MMP-15), MT3-
MMP (MMP-16), and MT4-MMP (MMP-17) (Table 1).
MT-MMPs contain a furin cleavage site between
propeptide and the catalytic domain providing basis for
furin-dependent activation of latent MT-MMPs prior to
secretion. MT1-MMP activates latent MMP-2 and
degrades type I, I, and III collagen, gelatin, fibronectin,
laminin-1, vitronectin and cartilage proteoglycans
(Ohuchi et al., 1997). MT1-MMP is expressed by dermal
fibroblasts, malignant epithelial cells, and osteoclasts
(Sato et al., 1994, 1997; Okada et al., 1995b). MT2-
MMP is expressed in human placenta, brain, and heart.
MT2-MMP also activates proMMP-2 and proMMP-13
and degrades laminin, fibronectin, and tenascin (Takino
et al., 1995; d"Ortho et al., 1997). MT3-MMP expression
has been detected in lung, placenta, kidney, ovary,
intestine, prostate, spleen, heart, and skeletal muscle
(Will and Hinzmann, 1995). MT3-MMP hydrolyzes
gelatin, casein, type III collagen and fibronectin and it
also activates proMMP-2 (Matsumoto et al., 1997;
Shofuda et al., 1997). MT4-MMP is expressed in the
brain, leukocytes, colon, ovary, testis, breast carcinomas,
and breast cancer cell lines (Puente et al., 1996). The
substrate specificity of MT4-MMP is not known.

Other MMPs

Two recently cloned human MMPs do not fit well
into any subgroup mentioned above, based on structure
and substrate specificity. MMP-19, initially named
MMP-18 was cloned from human mammary gland and
liver cDNA and it is expressed in a wide variety of

human tissues (Cossins et al., 1996; Pendas et al.,
1997b). The ability of MMP-19 to degrade native ECM
components is not known. Enamelysin (MMP-20) was
cloned from odontoblasts, has a restricted expression in
dental tissues and degrades amelogenin (Llano et al.,
1997).

Regulation of MMP activity

In general, MMPs are not constitutively expressed
by cells in vivo, but their expression is induced in
response to exogenous signals, e.g. cytokines or growth
factors, and altered cell-matrix and cell-cell interactions
(see Birkedal-Hansen et al., 1993; Kihiri and Saarialho-
Kere, 1997). As exceptions to this rule, collagenase-2
(MMP-8) and 92-kDa gelatinase (MMP-9) are stored in
secretory granules of neutrophils and eosinophils
(Stdhle-Biackdahl and Parks, 1993) and matrilysin
(MMP-7) in secretory epithelial cells in exocrine glands
of e.g. skin, gastrointestinal tract, and airways
(Saarialho-Kere et al., 1995; Dunsmore et al., 1998).
Expression of MMPs is primarily regulated at the level
of transcription, although modulation of MMP mRNA
half-life by growth factors and cytokines has also been
observed. The proteolytic activity of MMPs is regulated
by zymogen activation and inhibition of proteolytic
activity by specific inhibitors, i.e. TIMPs and by non-
specific proteinase inhibitors, e.g. al-proteinase
inhibitor and a2-macroglobulin.

Transcriptional regulation

Expression of several MMPs (MMP-1, MMP-3,
MMP-7, MMP-9, MMP-10, MMP-12, and MMP-13) in
unstimulated cells in culture is low, but it is induced at
transcriptional level e.g. by growth factors and cyto-
kines, oncogenes, hormones, and contact to ECM (for
review, see Birkedal-Hansen et al., 1993). The promoters
of these inducible MMPs contain a conserved AP-1
binding site between -65 and -79 with respect to
transcription start site (see Benbow and Brinckerhoff,
1997; Westermarck and Kahiri, 1999). The extracellular
stimuli result in activation of the nuclear AP-1
transcription factor complexes (dimers composed of
members of Fos and Jun families) (Karin et al., 1997),
which bind to the AP-1 cis-element in the promoter and
stimulate transcription of the MMP genes. The
expression of the components of the classical AP-1
dimer, c-Jun and c-Fos is induced as a result of
activation of three distinct classes of mitogen-activated
protein kinases (MAPKS), i.e. extracellular signal-
regulated kinase (ERK), stress-activated protein
kinase/Jun N-terminal kinases (SAPK/JNKs), and p38.
In general, ERK1,2 cascade is activated by mitogenic
signals, resulting in phosphorylation of various
substrates, including Elk-1, and in subsequent activation
of c-fos transcription. SAPK/INKSs and p38 are activated
by cytokines (TNF, IL-1) and cellular stress, such as UV
light, resulting in phosphorylation of c-Jun and ATF-2
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by JNKs, and ATF-2 by p38, which then induce c-jun
transcription (sce Karin et al., 1997).

The promoter regions of the AP-1 responsive MMPs
also contain one or multiple PEA3 (polyomavirus
enhancer A-binding protein-3) elements, which serve as
binding sites for transcription factors of ETS family and
cooperate with AP-1 element for maximal activation of
MMP-1, MMP-3, and MMP-9 promoter (Wasylyk et al.,
1991; Westermarck et al., 1997). However, the PEA3
site in the human MMP-13 promoter may not have a
significant role in the transcriptional regulation of
human MMP-13 gene (Pendas et al., 1997b; Tardif et al.,
1997). Expression of ETS-1 has been demonstrated in
stromal fibroblasts adjacent to invading tumor cells and
in endothelial cells during tumor vascularization
(Wernert et al., 1992, 1994; Bolon et al., 1995).

MMP-2 promoter is relatively unresponsive to
stimulation in cultured cells and it lacks not only the
adjacent AP-1 and PEA3 elements, but also the classical
TATA box, although it has been suggested that a
sequence at -26 bp drives basal activity (Templeton and
Stetler-Stevenson, 1991). MT1-MMP is also
constitutively expressed by different types of cells in
culture (Lohi et al., 1996). However, in vulvar SCC cells
expression of MT1-MMP is susceptible to enhancement
by growth factors (Johansson et al., 1999).

Zymogen activation

Most MMPs are secreted as latent precursors or
zymogens, which are proteolytically activated in
extracellular space (for review, see Nagase, 1997). The
latency of MMPs is dependent on "cystein switch"
formed by covalent interaction of the conserved cystein
in the propeptide with the catalytic zinc (van Wart and
Birkedal-Hansen, 1990). Various compounds, e.g.
organomercurials (APMA) can react with cystein,
converting it to nonbinding form. Alternatively, chao-
tropic agents (e.g. KI, NaSCN) can cause the propeptide
to fold back, disrupting the cystein-zinc bond. In either
case, the catalytic site is exposed and the enzyme then
cleaves the propeptide autolytically. The propeptide of
most MMPs can be cleaved by a number of other
extracellular proteinases, e.g. plasmin and other MMPs
(Table 1). For example, MMP-1 is activated by plasmin,
trypsin and neutrophil elastase and superactivation of
MMP-1 is achieved by further cleavage of propeptide by
MMP-3 or MMP-10 (He et al., 1989). All four MT-
MMPs and MMP-11 contain a potential cleavage site for
the prohormone convertases (e.g. furin) which occur in
the Golgi complex and periceliular space (Murphy and
Knéuper, 1997), suggesting that they are processed by
these proteinases (Pei and Weiss, 1995; Sato et al,,
1996b). Activation of latent MMP-2 and MMP-13 at cell
membrane by MT1-MMP provides a potent way of
directing their activity to pericellular environment.

Inhibition of MMP activity

The proteolytic activity of MMPs is strictly

controlled in the pericellular space by non-specific
inhibitors, e.g. a2-macroglobulin and by specific
inhibitors, TIMPs. a2-macroglobulin inactivates
susceptible proteinases by entrapment following
cleavage of the bait region and it is a 150-fold better
substrate for MMP-1 than triple helical type I collagen
(see Birkedal-Hansen et al., 1993).

TIMPs

At present, four members of the TIMP gene family
are known: TIMP-1, -2, -3, and -4. All four TIMPs share
structural features, especially 12 conserved cystein
residues, which form six disulfide bonds (for review see
Douglas et al., 1997; Gomez et al., 1997). TIMPs bind to
the zinc-binding catalytic site of the MMPs with 1:1
molar ratio. In addition, TIMP-2 and TIMP-1 can bind to
the hemopexin domain of latent MMP-2 and MMP-9,
respectively. TIMP-1 potently inhibits the activity of
most MMPs, with the exception of MT1-MMP and
MMP-2. TIMP-2 also inhibits activity of most MMPs,
except MMP-9. TIMP-3 has been shown to inhibit the
activity of MMP-1, -2, -3, -9, and -13 (Apte et al., 1995;
Kniduper et al., 1996a). Human TIMP-4 effectively
inhibits activity of MMP-2, -9, and -7 (Greene et al.,
1996; Douglas et al., 1997).

TIMPs are expressed by a variety of cell types and
they apparently play an important role e.g. in tissue
development, angiogenesis, cancer cell invasion and
metastasis by regulating MMP activity and stimulating
cell growth (Douglas et al., 1997; Gomez et al., 1997).
TIMP-1, TIMP-2, and TIMP-4 are secreted in soluble
form, whereas TIMP-3 is associated with the ECM
(Leco et al., 1994; Kishnani et al., 1995). Expression of
TIMP-1 in cultured cells is up-regulated e.g. by growth
factors, cytokines, and phorbol ester, whereas the
expression of TIMP-2 is mainly constitutive (Gomez et
al., 1997). Expression of TIMP-3 is induced in response
to mitogenic stimulation and during normal cell cycle
progression (see Gomez et al., 1997) and it is inhibited
by TNF-a in fibroblasts (Mattila et al., 1998).
Expression of TIMP-4 is mainly restricted to the human
heart (Greene et al., 1996).

Proteolysis of ECM during tumor invasion

[nteraction of tumor cells with stromal ECM
components and cells is important for the growth and
invasion of a malignant tumor. Tumor growth involves
alterations in the stromal ECM (lozzo, 1995) and
malignant tumors often induce a fibroproliferative
response in the adjacent stroma, characterized by
increased expression of type I and Il procollagens
(Kauppila et al., 1996). The formation of tumor stroma is
often viewed as a non-specific host response in an
attempt to wall off the tumor, and it is thought to have a
negative influence on tumor progression. In this context
it is interesting that MMP-3, MMP-7, MMP-9, and
MMP-12 have recently been shown to generate
angiostatin from plasminogen, indicating that their
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expression in peritumoral area may in fact serve to limit
tumor-induced angiogenesis (Dong et al., 1997;
Patterson and Sang, 1997; Lijnen et al., 1998).

Migration and invasion of malignant cells through
ECM involves their attachment to matrix components
via integrin receptors (Heino, 1996). During the multi-
step process of metastasis formation, cancer cells detach
from the primary tumor, invade the stromal tissue, enter
the circulation, arrest at the periferal vascular bed,
extravasate, invade the target organ interstitium and
parenchyma, and proliferate as a secondary colony
(Stetler-Stevenson et al., 1993; Johnsen et al., 1998)
(Fig. 2). At any stage, tumor cells must overcome the
host immune response and therefore only a fraction of
circulating tumor cells successfully initiate metastatic
colonies (Liotta et al., 1991). Tumor induced
angiogenesis is essential for expansion of the primary
tumor and metastases, and new blood vessels penetrating
the tumor are frequent sites for tumor cell entry into the
circulation (Liotta et al., 1991). It is conceivable that
proteolytic degradation of ECM plays a crucial role in
all the above mentioned aspects of tumor development.

MMPs in tumor invasion

A considerable body of evidence has accumulated
implicating MMPs in cancer spread. In fact, several
MMPs have been first purified and cloned from tumor
cell lines or tumor tissues. However, all MMPs known
so far are also expressed by non-malignant cells
suggesting that there are no cancer specific MMPs. A
number of studies have demonstrated a positive
correlation between MMP expression, and invasive and
metastatic potential of malignant tumors including,

Metastasis
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Fig. 2. Spread of malignant tumor. a. Primary tumor invades and
spreads into adjacent normal tissue, usually coming in contact with
blood vessels. b, ¢. Tumor cells penetrate the biood vessels and enter
the circulation. d. Individual tumor cells are able to pass troughout the
body with the help of junctions between lymphatics and blood vessels,
At this step only few cells survive. e. Tumor cells that survive arrest in
distant organs, extravasate, and invade the surrounding normal tissues.
f. Extravasating tumor cells give rise to secondary tumors (in this
example to the liver) and the process might be repeated again.
(Modified from Franks and Teich, 1997).

colon, lung, head and neck, basal cell, breast, thyroid,
prostate, ovarian, and gastric carcinomas (see Johnsen et
al., 1998; Kihiri and Saarialho-Kere, 1999). In addition,
studies with MMP inhibitors support the role of MMPs
in tumor progression and metastasis (see Brown, 1998;
Kihiri and Saarialho-Kere, 1999). Direct evidence for
the role of distinct MMPs in tumor growth and invasion
has recently been provided by mice with targeted
disruption of a specific MMP gene. Interestingly, none
of the MMP knock-outs reported have been embryonic
lethal (Shapiro, 1998). Mice lacking MMP-7 show
decreased intestinal tumorigenesis (Wilson et al., 1997),
and MMP-11 deficient mice show impaired tumor
formation in response to chemical mutagenesis (Masson
et al., 1998). MMP-2 knock-out mice show reduced
tumor growth and formation of metastases by Lewis
lung carcinomas and B16-BL6 melanoma cells (Itoh et
al., 1998).

In malignant tumors many MMPs are not produced
by neoplastic cells, but by non-malignant stromal cells
(Basset et al., 1997). For example, in SCCs invading
tumor cells and stromal cells express distinct MMPs,
which may complement each other's substrate specificity
and form networks of crosstalking MMP cascades, in
which a single MMP cleaves a particular native or
partially degraded ECM component and activates other
latent MMPs (Fig. 3). Tumor cells also secrete factors,
such as extracellular MMP inducer (EMMPRIN), which
enhances the expression of MMP-1, MMP-2, and MMP-
3 by fibroblasts (Guo et al., 1997). In addition, many
growth factors and cytokines secreted by tumor
infiltrating inflammatory cells as well as by tumor or
stromal cells are capable of modulating MMP
expression.

Squamous cell carcinoma

Squamous cell carcinoma (SCC) can develop in
squamous epithelia of many organs including the skin,
oral cavity, larynx, pharynx, airways, oesophagus,
uterine cervix, and vulva. SCC is the most frequent
malignant tumor in the oral and maxillofacial region,
and its metastatic and invasive ability results in poor

Tumor cells

Inflammatory

Pibroblasts embedded in cells
fibriljar coliagens

Fig. 3. Expression of MMPs by tumor cells, stromal fibroblasts, and
inflammatory cells in SCC.
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prognosis. Cutaneous SCCs that arise secondary to
inflammatory and ulcerative processes have a much
higher rate of metastasis than those developed in sun-
damaged skin. SCCs of vulva also have a high invasion
and metastasis capacity (Krag, 1991).

SCC of the skin clinically presents as a shallow
ulceration surrounded by an elevated, indurated border.
The tumor consists of irregular masses of epidermal cells
that invade the dermis, composed of normal and atypical
squamous cells characterized by variations in the cell
size and shape, hyperplasia and hyperchromasia of
the nuclei, absence of intracellular bridges, and
keratinization of individual cells. SCC cells show a
reduction in the number of desmosomes at the cell
surface, as compared to normal epidermal squamous
cells and microvilli extending into widened intercellular
spaces. The more malignant the tumor, the greater is the
number of atypical squamous cells (Lever and
Schaumburg-Lever, 1990; Krag, 1991). Keratinization of
well-differentiated SCCs leads to formation of horn
pearls composed of concentric layers of squamous cells,
the center of the horn pearl usually showing incomplete
keratinization.

MMPs in squamous cell carcinomas of the head and
neck

SCCs of skin and oral cavity are characterized by
high ability to invade. Accordingly, increased collageno-
lytic activity has been detected in explants derived from
the head and neck SCCs (Burman and Carter, 1985).
MMP-1 expression is low in normal, hyperplastic and
dysplastic oral mucosa, whereas abundant levels of
MMP-1 mRNA have been detected both in tumor cells
and stromal fibroblasts of invasive SCCs of the head and
neck region (Polette et al., 1991; Gray et al., 1992;
Johansson et al., 1997c; Airola et al., 1997;
Sawatsubashi et al., 1998; Sutinen et al., 1998). A recent
study has shown that expression of MMP-1 is associated
with poor prognosis in oesophageal cancer (Murray et
al., 1998).

Immunoreactivity for MMP-3 has been detected in
small cancer cell nests in the invasive front of SCCs of
the oral cavity and skin, but not in normal oral
epithelium (Kusukawa et al., 1995; Airola et al., 1997).
MMP-3 expression correlates with tumor size, depth of
tumor invasion, diffuse invasive mode, and high
incidence of lymph node metastasis (Kusukawa et al.,
1995). Abundant expression of MMP-10 has also been
detected in tumors showing high local invasion (Muller
et al., 1991; Polette et al., 1991).

The levels of active MMP-2 in tumor cell nests of
metastatic SCCs are significantly higher than in non-
metastatic cancer suggesting that active MMP-2 could
serve as a predictive marker of metastasis in oral SCCs
(Kawamata et al., 1998). Interestingly, MMP-2 and
MTI1-MMP exhibit similar expression patterns in SCCs
of the head and neck, consistent with the role of MT1-
MMP in proMMP-2 activation (Okada et al., 1995a;

Yoshizaki et al., 1997). Expression of MT1-MMP in
SCCs appears to be associated with high a degree of
differentiation (Yoshizaki et al., 1997). In SCCs of the
skin and oral cavity, interactions between malignant
keratinocytes and adjacent stromal fibroblasts are critical
in directing expression of MMP-9 to the tumor-stroma
interface (Lengyel et al., 1995; Borchers et al., 1997). In
addition, MMP-9 is actively expressed by eosinophils
and stored by neutrophils in cutaneous SCCs (Stéhle-
Béckdahl and Parks, 1993). MMP-11 transcripts have
been observed in stromal fibroblasts surrounding tumor
cell islands of invasive head and neck SCCs, and the
level of MMP-11 expression correlates with increased
local invasion in these tumors (Muller et al., 1993).

Our recent observations show that in SCCs of the
skin, oral cavity, pharynx, and larynx MMP-13 is
primarily expressed by tumor cells at the invading front
of the tumor, but in some cases also by stromal
fibroblasts (Airola et al., 1997; Johansson et al., 1997c).
Interestingly, no expression of MMP-13 has been
detected in premalignant tumors of skin, in intact or re-
epithelializing epidermis, healthy oral mucosa, or in
normal keratinocytes in culture (Airola et al., 1997;
Johansson et al., 1997b,c; Vaalamo et al., 1997; Uitto et
al., 1998). Therefore, expression of MMP-13 appears to
serve as a marker for squamous epithelial cell
transformation. In SCCs of the head and neck abundant
expression of MMP-13 correlates with the invasion and
metastasis capacity of the tumor, indicating that MMP-
13 expression is also an indicator for invasive capacity
of SCCs (Johansson et al., 1997c).

The expression of TIMPs in SCCs in vivo has been
less extensively studied than that of MMPs. In cutaneous
and oral SCCs expression of TIMP-1, TIMP-2, and
TIMP-3 is detected in stromal cells adjacent to the tumor
(Wagner et al., 1996; Airola et al., 1998, Sawatsubashi et
al., 1998; Sutinen et al., 1998), suggesting that their
expression represents a host attempt to limit tumor
invasion and tumor-induced angiogenesis. This notion is
supported by observations of Polette et al. (1991)
indicating that the presence of TIMP-1 and TIMP-2 in
SCCs correlates with less aggressive growth.

MMPs in SCCs of the female genital tract

SCC of the vulva accounts for 3% of all genital
cancers in women and is the most common primary
malignant tumor of the vulva. It usually occurs in elderly
women, and may show extensive local invasion and
metastases in inguinal lymph nodes. Well-differentiated
SCCs of the vulva usually have a good prognosis if they
are confined to vulva and inguinal nodes, but invasion to
other pelvic organs, metastasis to iliac lymph nodes, or
evidence of blood-borne metastasis results in less
favorable prognosis (Krag, 1991). In younger women
vulvar SCC is associated with human papillomavirus
(HPV) infection, whereas vulvar carcinoma in older
women is seldom associated with HPV infection, but
involves mutation of p53 tumor suppressor gene
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(Hording et al., 1994; Kagie et al., 1997). We have
shown that MMP-13 is specifically expressed by tumor
cells in invasive vulvar SCCs. MMP-13 expression is
especially abundant in vulvar carcinomas showing
metastasis to lymph nodes and is associated with
expression of MT1-MMP by tumor cells and MMP-2 by
stromal cells (Johansson et al., 1999). In our material of
vulvar SCC cell lines, the presence of mutated p53 did
not correlate with MMP-13 expression, indicating that
p53 inactivation alone does not render squamous
epithelial cells capable of expressing MMP-13
(Johansson et al., 1999). Nevertheless, expression of
MMP-13, MT1-MMP, and MMP-7 by vulvar SCC cells
in vivo, but not by normal vulvar epithelial cells provides
evidence that the expression of these MMPs can be used
as an indicator for malignant transformation of
keratinocytes (Johansson et al., 1999).

The expression of MT1-MMP and MMP-2, two
known activators of MMP-13, co-localized with the
expression of MMP-13 in vulvar SCCs creating an
optimal environment for pericellular activation of tumor
cell-derived proMMP-13 (Johansson et al., 1999).
Furthermore, in analogy with cutaneous SCCs (Pyke et
al., 1992; Stahle-Bickdahl and Parks, 1993) expression
of MMP-9 by invading tumor cells and tumor infiltrating
inflammatory cells (Johansson et al., 1999) adds a
further link to this MMP cascade, as MMP-9 can also
activate proMMP-13. Since the substrate specificity of
the above mentioned MMPs present in the peritumoral
environment of SCCs is different, it can be proposed that
each of these MMPs plays a distinct role in SCC
invasion. It is therefore possible that specifically
inhibiting the expression or activity of one MMP could
disturb the balance in this complex network of proteases
and inhibit invasion of SCC tumor cells (Fig. 3)

Cervical carcinoma is thought to arise in pre-existing
arcas of intraepithelial neoplasia (dysplasia) over a
period of 10 to 20 years. A subset of mucosal HPVs,
including HPV16, 18, 31, and 33, are frequently
associated with various grades of squamous intra-
epithelial neoplasia (Aho et al., 1991; Storey et al.,
1998). SCC is the most common carcinoma of the cervix
accounting for 80% of cervical malignancies, whereas
adenocarcinomas are less common (5 to 20%) (Krag,
1991). High levels of MMP-2, MMP-9 and MT1-MMP
have been observed in cervical carcinoma cell lines
(Tamakoshi et al., 1995; Gilles et al., 1996; Nuovo,
1997). In vivo studies have demonstrated high
expression of MT1-MMP in both tumor and stromal
cells of invasive cervical carcinomas and lymph node
metastases (Gilles et al., 1996). We have also detected
expression of MMP-13 in cell lines derived from
cervical SCCs, although no expression of MMP-13 was
detected in cervical SCCs in vivo in our material
(Johansson et al., 1999). Interestingly, expression of
MMP-13 in cervical SCC cell lines appeared to correlate
with the presence of oncogenic HPV, suggesting that
HPV plays a role in induction of MMP-13 expression
(Johansson et al., 1999). No expression of MMP-13 was

detected in adenocarcinomas of uterus and ovary,
indicating that MMP-13 expression is specific for
transformed squamous epithelial cells (Johansson et al.,
1999).

Conclusion

A number of studies have provided evidence for the
role of MMPs in tumor cell invasion and metastasis (for
reviews, see Stetler-Stevenson et al., 1993; Basset et al.,
1997; Johnsen et al., 1998; Kihidri and Saarialho-Kere,
1999). 1t is evident, that invasion of SCC cells in vivo
involves interplay between tumor cells, stromal cells and
inflammatory cells, all of which are capable of
expressing distinct pattern of MMPs and thereby
contributing to degradation of stromal ECM components
(Fig. 3). These observations show that instead of
determining the expression of a single MMP it may be
more informative to compare the invasion capacity of
malignant tumors with the expression of several MMPs
and their activators. Furthermore, the expression of
MMP-13, MT1-MMP, and MMP-7 can be used as
indicator for transformation of keratinocytes, as these
MMPs are not expressed by normal keratinocytes
(Johansson et al., 1997b, 1999).

At present, several synthetic MMP inhibitors are in
clinical trials to inhibit growth and invasion of malignant
tumors in vivo (see Brown, 1998; Kihiri and Saarialho-
Kere, 1999). Gene delivery of TIMP-1, -2, and -3 into
malignant cells may also be a potent way of inhibiting
tumor invasion and survival (Ahonen et al., 1998).
Furthermore, an effective way of inhibiting the
expression of MMPs may be blocking signaling
pathways mediating activation of MMP transcription.
Our recent findings together with observations by others
indicate that inhibition of the activity of distinct
mitogen-activated protein kinases (MAPKSs) may serve
as a potent way of inhibiting MMP expression (Gum et
al., 1997; Reunanen et al., 1998; Simon et al., 1998;
Westermarck et al., 1998; Ravanti et al., 1999). The on-
going and future clinical trials are expected to show
whether the concept of MMP inhibition has a place in
the therapeutic arsenal aimed at inhibiting growth,
invasion, and metastasis of malignant tumors, including
SCCs.
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