Recursos forestales en un medio semiárido. Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

MARÍA SOLEDAD GARCÍA MARTÍNEZ

TESIS DOCTORAL

2009
SUMARIO

Resumé... 1

Presentación y agradecimientos... 7

Capítulo I. El entorno de los yacimientos... 15

I.1. El entorno de Punta de los Gavilanes... 18
I.2. El entorno del Teatro Romano de Cartagena... 31
I.3. El entorno de Barranco de la Viuda... 35
I.4. El entorno del Balneario Romano de Archena... 42
I.5. El entorno de Jumilla Santa María nº 19.. 47

Capítulo II. La Antracología: Origen, desarrollo y fundamentos teórico-metodológicos... 59

II.1. Origen y desarrollo histórico de la Antracología.. 61
 II.1.1. Primeros pasos y consolidación de la disciplina.................................. 61
 II.1.2. Desarrollo de la Antracología en España... 64
 II.1.3. Nuevas tendencias y aplicaciones de la Antracología.......................... 66
II.2. Fundamentos metodológicos y teóricos de la Antracología.......................... 70
 II.2.1. El trabajo de campo.. 70
 II.2.1.1. Estudio de la vegetación del entorno del yacimiento..................... 70
 II.2.1.2. La presencia de carbón en contextos arqueológicos.................. 75
 II.2.1.2.1. Formación del registro antracológico................................ 75
 II.2.1.2.2. Sistemas de muestreo.. 80
 II.2.1.2.3. Tratamiento de las muestras... 84
 II.2.2. El trabajo en el Laboratorio.. 87
 II.2.2.1. La identificación taxonómica del carbón....................................... 87
 II.2.2.2. La cuantificación de los datos.. 96
 II.2.2.3. La interpretación de los resultados.. 102
 II.2.2.3.1. Significación paleoambiental de los datos antracológicos.... 102
 II.2.2.3.2. Significación paleoeconómica de los datos antracológicos... 105
 - Aprovisionamiento de combustible y deforestación............... 106
 - Selección del combustible: propiedades de la madera y funcionalidad de las estructuras de combustión.............................. 109

Capítulo III. Paleoflora identificada.. 119

III.1. Condiciones en el proceso de identificación taxonómica.............................. 122
 III.1.1. Alteraciones anatómicas en el registro antracológico......................... 123
Sumario

<table>
<thead>
<tr>
<th>Sección</th>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>III.1.1.1</td>
<td>Modificaciones sufridas antes de la carbonización</td>
<td>124</td>
</tr>
<tr>
<td>III.1.1.2</td>
<td>Modificaciones sufridas durante el proceso de carbonización</td>
<td>134</td>
</tr>
<tr>
<td>III.1.1.3</td>
<td>Modificaciones posteriores a la carbonización</td>
<td>135</td>
</tr>
<tr>
<td>III.2</td>
<td>Descripción de los taxones identificados: rasgos anatómicos, ecología, propiedades y aprovechamiento</td>
<td>136</td>
</tr>
</tbody>
</table>

III.2.1 Las Gimnospermas

- Familia Cupressaceae
 - *Juniperus* sp. | 139 |
 - *cf. Tetraclinis articulata* | 141 |
- Familia Pinaceae
 - *Abies alba* | 143 |
 - *Pinus halepensis* | 145 |
 - *Pinus pinea/pinaster* | 147 |
 - *Pinus nigra/sylvestris* | 149 |
 - Las brácteas de piña | 151 |
- Familia Ephedraceae
 - *Ephedra* sp. | 152 |

III.2.2 Las angiospermas monocotiledóneas

- Clase Monocotyledoneae
 - Monocotyledoneae | 154 |
- Familia Gramineae
 - *cf. Phragmites australis* | 156 |
- Familia Arecaceae
 - *Chamaerops humilis* | 157 |

III.2.3 Las angiospermas dicotiledóneas

- Familia Anacardiaceae
 - *Pistacia lentiscus* | 159 |
 - *Pistacia cf. terebinthus* | 161 |
- Familia Apocynaceae
 - *cf. Nerium oleander* | 162 |
- Familia Asclepiadaceae
 - *Periploca angustifolia* | 163 |
- Familia Buxaceae
 - *Buxus* sp. | 165 |
- Familia Celastraceae
 - *Maytenus senegalensis* | 168 |
- Familia Chenopodiaceae
 - Chenopodiaceae | 169 |
Recursos forestales en un medio semiárido.
Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

- *Atriplex halimus*..171
 - Familia Cistaceae..173
 - Cistaceae..173
 - *Cistus* sp..174
 - cf. *Fumana* sp..176
- Familia Compositae..178
 - Compositae...178
 - *Artemisia* sp..179
- Familia Cruciferae..181
 - cf. Cruciferae...181
- Familia Ericaceae...182
 - *Arbutus unedo*...182
 - *Erica* sp..184
- Familia Fagaceae..187
 - *Fagus sylvatica*..187
 - *Quercus ilex/coccifera*..189
- Familia Labiatae...191
 - Labiatae...191
 - *Rosmarinus officinalis*..193
- Familia Leguminosae...195
 - Leguminosae...195
- Familia Moraceae...198
 - *Ficus carica*...198
- Familia Oleaceae..199
 - *Fraxinus* sp...199
 - *Olea europaea*..201
- Familia Plantaginaceae..203
 - cf. *Plantago* sp..203
- Familia Punicaceae...205
 - *Punica granatum*...205
- Familia Ranunculaceae...206
 - *Clematis* sp..206
- Familia Rhamnaceae/Oleaceae...208
 - *Rhamnus/Phillyrea* sp...208
- Familia Rosaceae tipo Maloideae..210
 - Rosaceae tipo Maloideae...210
- Familia Rosaceae tipo Prunoideae..212
 - *Prunus* sp..212
 - *Prunus* cf. *amygdalus*..214
- Familia Salicaceae..216
- *Populus/Salix* sp...216
Familia Solanaceae... 218
 - cf. Withania frutescens.. 218
 - Lycium intricatum... 220
• Familia Tamaricaceae... 221
 - Tamarix sp.. 221
• Familia Thymelaeaceae... 222
 - Daphne gnidium/Thymelaea hirsuta... 222
• Familia Ulmaceae... 224
 - Ulmus sp.. 224
• Familia Vitaceae... 227
 - Vitis vinifera.. 227

III.3. Distribución de los taxones identificados en el cuadrante sureste peninsular... 229

Capítulo IV. Resultados antracológicos.. 241

IV.1. Resultados antracológicos de la Punta de los Gavilanes.......... 243
IV.1.1. Presentación del yacimiento... 243
 IV.1.1.1. Cambios paisajísticos en el entorno de la Punta de los Gavilanes... 243
 IV.1.1.2. Otros yacimientos en el entorno de Mazarrón...................... 247
 IV.1.1.3. Secuencia deposicional de la Punta de los Gavilanes.......... 248
 - Gavilanes IV: Asentamiento del Bronce Argárico orientado a la explotación de recursos marinos............................ 249
 - Gavilanes III: Ocupación Protohistórica (fines del s. VIII-VI a.C.), de función comercial y metalúrgica................................. 252
 - Gavilanes II: Factoría metalúrgica destinada a la obtención de plata (ss. IV-III a.C.).. 253
 - Gavilanes I: Etapa de decadencia y abandono (s. I a.C.).............. 257
IV.1.2. El estudio antracológico de La Punta de los Gavilanes........ 258
IV.1.2.1. Las muestras antracológicas... 258
IV.1.2.2. Resultados antracológicos... 268
 IV.1.2.2.1. Resultados antracológicos de la fase Gavilanes IV (GV-IV). ... 269
 - Carbón disperso... 269
 - Carbón concentrado... 277
 - Material estructural.. 285
 IV.1.2.2.2. Resultados antracológicos de la fase Gavilanes III (GV-III).... 292
 - Carbón disperso... 292
 - Carbón concentrado... 293
 IV.1.2.2.3. Resultados antracológicos de la fase Gavilanes II (GV-II). 298
Recursos forestales en un medio semiárido.
Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

IV.1.2.4. Resultados antracológicos de la fase Gavilanes I (GV-I).
- Carbón disperso ... 305
- Carbón concentrado .. 305

IV.1.2.3. Dispersión taxonómica de los restos 308

IV.1.2.4. Interpretación de los resultados 312
IV.1.2.4.1. La vegetación del entorno de la Punta de los Gavilanes a partir de los resultados antracológicos 312
IV.1.2.4.2. La gestión del combustible leñoso en la Punta de los Gavilanes .. 322
- La utilización del combustible leñoso en las actividades domésticas .. 323
- La utilización del combustible leñoso en el tratamiento especializado de alimentos ... 325
- La utilización del combustible leñoso en la metalurgia 328
IV.1.2.4.2.1. Apreciaciones generales con respecto a la gestión del combustible en Gavilanes .. 332
IV.1.2.4.3. Patrones de uso de la madera con fines constructivos en la Punta de los Gavilanes durante la Edad del Bronce: El Edificio 1TSM ... 334

IV.2. Resultados antracológicos de Barranco de la Viuda 340
IV.2.1. Presentación del yacimiento .. 340
IV.2.1.1. Situación y antecedentes ... 340
IV.2.1.2. Registro arqueológico .. 341
- Departamento 1 ... 341
- Departamento 2 ... 343
- Departamento 3 ... 347
- Departamento 4 ... 349
- Departamento 5 ... 350
IV.2.2. El estudio antracológico del Barranco de la Viuda 350
IV.2.2.1. Las muestras antracológicas .. 350
IV.2.2.2. Resultados antracológicos ... 359
IV.2.2.2.1. Departamento 1 ... 359
IV.2.2.2.2. Departamento 2 ... 360
- El carbón disperso .. 360
- Los contextos productivos .. 364
 * El contexto asociado al horno con cubierta móvil 364
 * El horno de torrefacción, nivel de uso, “leñera o carbonera” y carboneras asociadas .. 365
- Acumulaciones carbonosas .. 368
- Madera estructural .. 369
IV.2.2.2.3. Departamento 3 ... 370
- Carbón disperso ... 370
<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Páginas</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV.2.2.2.4. Departamento 4</td>
<td>373</td>
</tr>
<tr>
<td>IV.2.2.3. Dispersión taxonómica</td>
<td>375</td>
</tr>
<tr>
<td>IV.2.2.4. Alteraciones del registro</td>
<td>378</td>
</tr>
<tr>
<td>IV.2.2.5. Interpretación de los resultados</td>
<td>379</td>
</tr>
<tr>
<td>IV.2.2.5.1. El entorno vegetal del Barranco de la Viuda</td>
<td>379</td>
</tr>
<tr>
<td>- Los datos previos. El estudio paleocarpológico de Barranco de la Viuda</td>
<td>379</td>
</tr>
<tr>
<td>- El entorno vegetal a partir de los datos antracológicos</td>
<td>381</td>
</tr>
<tr>
<td>IV.2.2.5.2. La gestión del combustible leñoso en el Barranco de la Viuda</td>
<td>389</td>
</tr>
<tr>
<td>- Los datos previos. El estudio de los insectos asociados a la leñera de Barranco de la Viuda</td>
<td>389</td>
</tr>
<tr>
<td>- Los datos obtenidos a partir del estudio antracológico</td>
<td>391</td>
</tr>
<tr>
<td>- Las estructuras o áreas de combustión</td>
<td>391</td>
</tr>
<tr>
<td>- Las acumulaciones carbonosas</td>
<td>391</td>
</tr>
<tr>
<td>- Las estructuras de combustión con usos especializados</td>
<td>393</td>
</tr>
<tr>
<td>- El contexto de enterramiento</td>
<td>398</td>
</tr>
<tr>
<td>- La utilización de la madera como elemento constructivo</td>
<td>400</td>
</tr>
<tr>
<td>IV. 3. Resultados antracológicos del Balneario Romano de Archena</td>
<td>405</td>
</tr>
<tr>
<td>IV.3.1. Presentación del yacimiento</td>
<td>405</td>
</tr>
<tr>
<td>- La primera etapa constructiva de la zona de servicios</td>
<td>406</td>
</tr>
<tr>
<td>- La etapa de reconstrucción</td>
<td>408</td>
</tr>
<tr>
<td>- Reforma interior tras la inundación</td>
<td>409</td>
</tr>
<tr>
<td>IV.3.2. El estudio antracológico del Balneario Romano de Archena</td>
<td>411</td>
</tr>
<tr>
<td>IV.3.2.1. Las muestras antracológicas</td>
<td>411</td>
</tr>
<tr>
<td>IV.3.2.2. Resultados antracológicos</td>
<td>415</td>
</tr>
<tr>
<td>IV.3.3. Interpretación de los resultados</td>
<td>422</td>
</tr>
<tr>
<td>IV.3.3.1. El entorno vegetal del Balneario Romano de Archena</td>
<td>422</td>
</tr>
<tr>
<td>- Madera de haya (Fagus sylvatica L.) en el Balneario Romano de Archena</td>
<td>431</td>
</tr>
<tr>
<td>IV.3.3.2. Uso del combustible</td>
<td>435</td>
</tr>
<tr>
<td>IV.4. Resultados antracológicos del Teatro Romano de Cartagena</td>
<td>441</td>
</tr>
<tr>
<td>IV.4.1. Presentación del yacimiento</td>
<td>441</td>
</tr>
<tr>
<td>IV.4.2. El estudio antracológico de los materiales constructivos del Teatro Romano de Cartagena</td>
<td>444</td>
</tr>
<tr>
<td>IV.4.2.1. Las muestras antracológicas</td>
<td>444</td>
</tr>
<tr>
<td>IV.4.2.2. Resultados antracológicos</td>
<td>447</td>
</tr>
</tbody>
</table>
IV.4.3. Interpretación de los resultados.. 449

IV.5. Resultados antracológicos del yacimiento medieval hallado en la Calle Santa María, nº 19 de Jumilla... 453
IV.5.1. Presentación del yacimiento... 453
IV.5.2. El estudio antracológico de Jumilla Santa María 19........................... 458
IV.5.2.1. Las muestras antracológicas.. 458
IV.5.2.2. Resultados antracológicos... 464
IV.5.2.3. Interpretación de los resultados.. 473
IV.5.2.3.1. La vegetación en el entorno del yacimiento........................ 473
IV.5.2.3.2. La gestión del combustible leñoso. Procesos de selección e imagen paleoecológica del registro.. 477
- Procesos de selección.. 477
- Imagen paleoecológica del contenido de las estructuras de combustión.. 487

Capítulo V. Síntesis general: Secuencia de la vegetación y usos de los recursos leñosos en el sureste de la Península Ibérica desde la Edad del Bronce hasta época medieval. Inserción de los resultados en su contexto regional... 491
V.1. Secuencia de la vegetación en el Sureste de la Península Ibérica desde la Edad del Bronce hasta época medieval... 493
V.1.1. Síntesis de los resultados antracológicos... 493
V.1.2. La vegetación del cuadrante sureste peninsular a partir de otras secuencias paleobotánicas... 497
V.1.2.1. La Fase Atlántica (c. 7500-4500 BP) en el Sureste peninsular..... 499
V.1.2.2. La Fase Subboreal (c. 4500-2800 BP) en el Sureste peninsular.... 515
V.1.2.3. Fase Subatlántica (desde c. 2800 BP) en el Sureste peninsular..... 534
V.2. El uso de la madera en el Sureste peninsular desde las sociedades de la Edad del Bronce hasta época medieval... 550
V.2.1. La madera como combustible.. 550
- Aprovisionamiento de combustible e impacto medioambiental.......... 551
- La selección del combustible: funcionalidad de las estructuras y propiedades combustibles de los taxones.. 562
V.2.2. La madera como material de construcción.. 572

Capítulo VI. Conclusiones/Conclusions.. 581
VI.1. Conclusiones.. 583
VI.2. Conclusions... 593

Bibliografía... 603
Sumario

Índice de Figuras ... 647

Índice de Tablas .. 663
RÉSUMÉ

Dans cette Thèse de Doctorat on présente l’étude des charbons de bois associés aux niveaux d’habitat, aux structures de combustion et aussi aux matériaux de construction de cinq gisements archéologiques situés dans la Région de Murcie, un des territoires les plus arides de la Péninsule Ibérique. Le cadre chronologique de ces études est compris entre l’Âge du Bronze et l’époque médiévale.

Nous avons proposé ce travail par l’insuffisante connaissance qu’on a encore au sujet de l’évolution paléoenvironnementale au sud-est semi-aride de la Péninsule Ibérique. Ce manque, conditionne notre précision sur les modèles de changement végétal dans cette zone à l’échelle locale et régionale, et aussi sur l’incidence des activités humaines dans le développement de ce processus. Cette problématique est encore plus marquée dans le cas de la Préhistoire Récen et des époques historiques, pour lesquelles le numéro d’études se réduit par rapport aux chronologies plus anciennes. De plus, l’interprétation dans ce cas est progressivement plus complexe parce qu’on doit considérer d’un côté la grande fragilité environnemental de cette zone, et d’un autre côté la pression anthropogénique à cause d’une plus grande exploitation des ressources forestières disponibles.

À partir de ces prémisses, une série d’objectives fondamentales pour cette recherche a été établie. Premièrement, l’application des fondements méthodologiques de l’identification botanique du bois à l’étude des charbons archéologiques associés aux gisements de la Région de Murcie depuis l’Âge du Bronze jusqu’à l’époque médiévale. D’autre part, la définition des systèmes forestiers aux alentours des sites étudiés pour évaluer des possibles mécanismes écologiques et anthropiques de control sur les changements dans la structure de la végétation. En troisième lieu, d’une perspective paléoéconomique, la réalisation d’une analyse sur les modèles de gestion des ressources ligneuses destinées à l’approvisionnement des processus productifs développés dans le site. Finalement, la discussion de nos données dans la séquence régionale de la végétation au quadrant sud-est péninsulaire dans l’Holocène Récen a été réalisée.

Les gisements étudiés sont cinq : La Punta de los Gavilanes, qui est un promontoire rocheux, situé dans la ligne de rivage de Mazarrón, et qui présente une occupation depuis l’Âge du Bronze jusqu’au milieu de I siècle av. J. C. ; Barranco de la Viuda, situé à la ville de Lorca, proche à la vallée de la rivière Guadalentin, qui a révélé une unique phase d’occupation associée au Bronze Argarique. Le Balneario Romano de Archena, à côté du fleuve Segura, dont sa chronologie est fixé vers le I siècle av. J. C. ; les matériaux constructifs carbonisés du Teatro Romano de Cartagena et finalement, le complexe artisanal et domestique d’époque médiévale (XIIème - XIIIème siècles) découvert au 19, rue Santa Maria à Jumilla.
Le cadre géographique d'étude est le sud-est de la Péninsule Ibérique, dans l'actuelle Région de Murcie. Il s'agit d'un territoire marqué par une très forte sécheresse, qui présente, cependant, une hétérogénéité climatique et géomorphologique qui entraîne une grande diversité d'écosystèmes. Dans cette thèse doctorale on a pris en considération les aspects qui peuvent avoir une incidence dans une meilleure interprétation paleoécologique de cette zone. On a décrit les reliefs plus importants, les unités hydrologiques, la géologie, la composition des sols, les températures moyennes, le régime de pluies et la végétation actuelle. Concrètement, nous avons décrit les alentours de chaque site : les zones côtières de Mazarrón (Punta de los Gavilanes) et Cartagena (Teatro Romano de Cartagena), les Vallées de la rivière Guadalentín (Barranco de la Viuda) et du fleuve Segura (Balneario Romano de Archen) et la « Comarca del Altiplano » (Jumilla, 19, rue Santa María).

En ce qui concerne les paramètres méthodologiques appliqués aux gisements étudiés, on a établi une stratégie d'échantillonnage systématique des sédiments, en prenant en considération les différents moments de combustion des bois. En général, dans le cas des niveaux d'habitat on a récupéré entre vingt et cinquante litres de sédiment par unité stratigraphique échantillonnée, en accroissant l’effort sur les échantillons avec une plus grande quantité de matière organique. L'échantillonnage des charbons de bois contenus dans les structures de combustion a été réalisé par l’individualisation et la récupération de la totalité des sédiments contenus dans chacun pour un traitement postérieur.

Les échantillons étudiés dans cette thèse de doctorat ont été traités par machine de flottation et par flottation manuelle dans les cas exceptionnels de limitations logistiques. On considère que cette méthode est la plus efficiente pour récupérer efficacement les restes carpologiques et anthracologiques contenus dans le sédiment.

C'est au laboratoire que l'identification taxonomique des fragments a été réalisée, à partir de l’observation au microscope optique à réflexion (Leica DM 2500 M) des trois plans anatomiques diagnostiques : plan transversal, plan longitudinal tangentiel, plan longitudinal radial et la comparaison avec la collection de référence de bois actuels carbonisés des Universités de Valencia et de Murcia et l’aide de différents atlas d’anatomie du bois. Les photographies des charbons de bois exposées dans ce travail ont été réalisées grâce à l’équipe de microscopie à balayage Hitachi S-4100 de l’Université de Valencia et JEOL JSM-6100 du Service de Microscopie de l’Université de Murcia.

Nous avons ensuite utilisé le fragment de charbon de bois comme unité de mesure pour la quantification en valeurs absolues et relatives afin de construire une série d'histogrammes et diagrammes interprétatifs. Ils permettent d’individualiser les
diferentes aspectos paléoenvironmentaux et paléoéconomiques induits par l’utilisation du combustible en contextes archéologiques.

La richesse taxonomique obtenue a été très élevée (48 taxons) à cause de l’usage diversifié des ressources qui a été réalisé dans les sites étudiés. Étant donné la diversité d’exigences écologiques des taxons, cette richesse a permis délimiter clairement les plusieurs écosystèmes existants dans les zones d’approvisionnement des groupes humains qui ont habité les sites. Plusieurs taxons, propres de la forêt méditerranéenne, endémismes ibero-africains exclusifs des zones semi-arides, essences halophiles associées aux contextes halo-nitrifiés, végétation riveraine et possibles cultures, ont été identifiés. Exceptionnellement, les gisements romains ont permis agréger au groupe taxonomique trois éléments allochtones : d’un côté Fagus sylvatica, dans une fosse associée au Balneario Romano de Archena, que nous avons interprété comme un possible meuble carbonisé et d’un autre côté, Abies alba et Pinus nigra/sylvestris, utilisés comme matériaux constructifs au Teatro Romano de Cartagena.

Les résultats obtenus concernent à la séquence végétale de la dernière partie de l’Holocène Récent, depuis c. 3800 BP. Il s’agit d’une dynamique durement influencée par les activités humaines comme condition essentiel dans la configuration du paysage local et régional.

Les résultats anthracologiques de la Punta de los Gavilanes signalent que la végétation caractéristique de la zone côte de Mazarrón a été similaire pendant toute la séquence d’occupation. La formation principale serait un fourré méditerranéen sclérophylle, composé par Pistacia lentiscus et Olea europaea var. sylvestris, en coexistence avec des éléments arbustifs nord-africains et avec xérophytes indicateurs de conditions d’aridité environnementale. Les arbres seraient presque inexistants, en apparaissant sporadiquement quelques pins (Pinus halepensis ou Pinus pinea/pinaster). Quelques chênes verts ont pu se développer dans les zones les plus protégées. La végétation des zones salines et des torrents été marquée par le développement de communautés formées par une grande quantité d’essences de la famille Chenopodiaceae et quelques petits arbres du genre Tamarix.

Le diagramme anthracologique établi pour ce gisement montre, cependant, certains changements dans la structure de la végétation. Deux phases anthracologiques ont été établies : la Phase Anthracologique I, qui comprend les deux premières étapes d’occupation du gisement, depuis le III millénaire av. J. C.; et la Phase Anthracologique II, qui recouvre les deux dernières phases archéologiques jusqu’à l’abandon du site vers le I siècle av. J. C. L’image donnée par le diagramme montre un processus de dégradation écologique croissante au littoral de Mazarrón, qui s’exprime par une forte réduction de la richesse végétal méditerranéenne, qu’on observe surtout dans la Phase Anthracologique II. Pendant les premières étapes d’occupation du gisement (Phase
Anthracologique I) la pression exercée sur les ressources ligneuses par les groupes qui ont habité le site, a été modérée. Les activités économiques développées pendant l’Âge du Bronze ont été à caractère domestique, liées à la pêche et au traitement des poissons. Pendant l’occupation phénicienne le groupe a développé des activités commerciales et métallurgiques. L’approvisionnement de combustible pour ces activités, avec la dégradation des sols à cause de l’agriculture et le pâturage, ont pu générer un certain déboisement local dans cet écosystème sensible et sans capacité de auto régénération. Cependant, bien qu’on observe un état de croissance naturel des xérophytes dans tout le sud-est péninsulaire depuis cette étape, le grand impact causé par la pression anthropique sur la végétation n’est pas encore visible dans le diagramme de La Punta de los Gavilanes. Ce brusque changement est perceptible, selon le signal offerte par l’anthracologie, depuis le IVème et IIIème siècles av. J. C. (Phase Anthracologique II), étant donné la freinte des ressources par suite de l’épuisement de la forêt à cause de la forte requête de combustible pour le développement des activités métallurgiques à caractère intensif.

Les résultats obtenus à Barranco de la Viuda montrent la existence pendant l’Âge du Bronze (c. 3500-3400 BP) d’une couverture arborescente dominée totalement par Pinus halepensis, avec des autres éléments du matorral méditerranéen sclérophyllle, comme Olea europaea var. sylvestris et Pistacia lentiscus, xérophytes comme Ephedra et Chenopodiaceae, et essences de type nord-africain comme Periploca angustifolia et cf. Tetraclinis articulata. Il s’agirait, par conséquent, d’une composition végétative très similaire à la registrée dans la Phase Gavilanes IV, mais avec un plus grand développement des arbres (Pinus halepensis). De plus, dans le cas de Barranco de la Viuda est notable la faible exploitation des éléments riverains à cause possiblement de la détérioration du bassin de Guadalentín et de ses torrents tributaires ou de la désélection de ce type d’essences. Grâce à l’étude de plusieurs structures de combustion à caractère domestique et spécialisé on a vérifié la grande prédilection par l’usage du pin d’Alep comme combustible avec du lentisque et du romarin. Les éléments constructifs carbonisés ont été faits en utilisant toujours Pinus halepensis.

Les résultats qu’on présente dans cette recherche en ce qui concerne le Balneario Romano de Archena, montrent que pendant le I siècle av. J. C. le paysage été dominé par une pineraie de Pinus halepensis, avec une grande quantité d’éléments arbustifs thermophiles comme Pistacia lentiscus ou Olea europaea var. sylvestris. La présence de Quercus à feuillage persistante serait minoritaire sur les ubacs des montagnes plus élevées, avec quelques exemplaires isolés de Buxus, Arbutus unedo et Pistacia terebinthus. De plus, on distingue une certaine organisation du territoire en fonction du développement de cultures comme Ficus carica, Prunus, Punica granatum, et surtout Olea europaea, qui a pu être profité de l’élaboration de l’huile dans la huilerie découverte au gisement. Finalement, les résultats révèlent une très bonne conservation de la forêt galerie, conformée principalement par Populus, Tamarix, Nerium oleander et
Phragmites australis avec des autres éléments plus rares, comme Fraxinus ou Ulmus, qui ont disparu actuellement aux alentours du site.

Dans ce travail on a étudié l’état de la végétation des alentours de Jumilla pendant les XIIème et XIIIème siècles. L’image donnée par l’étude des charbons de bois du gisement situé à 19 rue Santa Maria montre que la végétation des environs du site était déjà assez dégradée, la formation principal était une pineraie de pin d’Alep, ouverte, avec un sous bois d’espèces sclérophyllles composé principalement du lentisque accompagné d’olivier, de genévriers, de cistes, de légumineuses ou encore de l’arbousier et de sorbier ou églantier. Les zones les plus dégradées étaient recouvertes, comme de nos jours, d’alfa, aussi associé à la pineraie. L’étude montre aussi l’importance de la végétation halophile dans les sols salins; la présence minoritaire des éléments de forêt-galerie (Fraxinus, Tamarix et Monocotyledoneae), et la présence d’espèces cultivées (Ficus carica, Punica granatum, Vitis vinifera, Prunus sp. et Olea europaea) qui indiquent une organisation du territoire constitué par cultures, dans les zones les plus proches au site, et le développement de la végétation forestière dans les zones les plus élevées ou éloignées du site.

Cette étude présente aussi les résultats anthracologiques de huit structures de combustion à caractère artisanal et domestique découvertes dans le gisement. Nous discutons de la possible sélection des combustibles selon différentes variables, comme la fonction des structures ou les propriétés des plantes. La question de la représentativité du spectre obtenu pour la reconstitution du paléoenvironnement est aussi discutée. Les conclusions montrent qu’il n’y a pas de critères de sélection clairement appliqués pour les activités développées sur le site, mais que les combustibles étaient récoltés en fonction de leur disponibilité et de leur abondance aux alentours. Par conséquent, les résultats peuvent être interprétés de manière cohérente pour le paléoenvironnement tant d’un point de vue qualitatif que quantitatif.

Finalement, les conclusions que nous avons obtenu au moyen de la discussion général de tous les donnés sont exposées en français dans le Chapitre 6.
PRESENTACIÓN Y AGRADECIMIENTOS
Esta Tesis Doctoral supone la culminación de algo más de cuatro años de trabajo dedicados a la formación y profundización en el campo de la arqueobotánica en el ámbito del Mediterráneo a partir del estudio de restos de madera carbonizada asociada a contextos arqueológicos. Su realización ha sido posible gracias a la financiación de una beca predoctoral de Formación de Profesorado Universitario (FPU) del Ministerio de Ciencia e Innovación del Gobierno español, supervisada por el Dr. José Sebastián Carrión García, Catedrático de Evolución Vegetal de la Universidad de Murcia.

La dirección de la misma ha corrido a cargo de la Dra. Elena Grau Almero, Profesora Titular de la Universitat de València, que ha supervisado el trabajo relacionado directamente con el estudio e interpretación de carbones asociados a contextos arqueológicos; de la Dra. María Milagrosa Ros Sala, Profesora Titular de la Universidad de Murcia, que ha revisado los aspectos concernientes a la caracterización arqueológica de la región estudiada; y finalmente del Dr. José Sebastián Carrión García, dado su gran conocimiento y experiencia en el estudio de la dinámica de la vegetación en el Sureste Ibérico semiárido.

El punto de partida para plantear esta Tesis surgió a partir de la necesidad de cubrir un evidente hueco de la investigación antracológica en el ámbito de la Región de Murcia. Mientras que en los departamentos de Prehistoria de Universidades como la de Valencia o Granada se está trabajando en el campo de la Antracología desde finales de los años ochenta, en la Región de Murcia se contaba hasta el momento únicamente con las contribuciones inéditas de la Dra. Elena Grau sobre yacimientos de la Edad del Bronce como el Rincón de Almendricos o el Cerro de las Viñas de Coy, la necrópolis ibérica de Coimbra de Barranco Ancho o el yacimiento del Bronce Final y de la Edad del Hierro de El Castellar de Librilla. Por ello, tras obtener la beca predoctoral citada, nos pusimos en contacto con la Dra. Elena Grau para emprender nuestra formación teórico-metodológica, y el objetivo de ampliar el número de registros antracológicos para la zona para proceder, finalmente, a la caracterización de la paleovegetación del área acotada así como a la definición de su gestión por parte de las comunidades con ella relacionadas.

Partiendo de estas premisas, nos marcamos una serie de objetivos que consideramos fundamentales para esta investigación:

1. Aplicación de sistemas de muestreo sistemático para la recuperación de macrorrestos vegetales en yacimientos arqueológicos desde la Edad del Bronce hasta época Medieval, en el ámbito semiárido de la Región de Murcia.
2. Estudio antracológico de los carbones recuperados en estos yacimientos, tanto en los niveles de hábitat como en las diferentes estructuras de combustión, domésticas o especializadas, documentadas en los mismos.

3. Análisis de las características de la vegetación del entorno de los yacimientos a escala local durante el período de ocupación de los mismos. Valoración de los mecanismos de control sobre los cambios en la composición vegetal del entorno.

4. Análisis de los patrones de gestión de los recursos leñosos del entorno para el abastecimiento de combustible de las estructuras de combustión estudiadas. Estudio de posibles pautas selectivas.

5. Discusión de los resultados obtenidos en el contexto del cuadrante sureste de la Península Ibérica. Inserción de los resultados en la secuencia regional de la vegetación en el Sureste peninsular desde la Edad del Bronce hasta época medieval.

6. Síntesis de los datos paleoetnobotánicos obtenidos, junto con los conocidos de otros yacimientos del mismo ámbito regional, para dilucidar los modos de aprovechamiento de recursos forestales en condiciones ambientales secas o semiáridas.

Los yacimientos estudiados han sido cinco: La Punta de los Gavilanes, situado en la línea de costa de Puerto de Mazarrón, que presenta una ocupación desde la Edad del Bronce hasta mediados del siglo I a.C.; además, se ha acometido el análisis del Barranco de la Viuda, situado en la pedanía lorquina de El Hinojar, muy cercano al curso del río Guadalentín, que presenta un único momento de ocupación asociado al Bronce Argárico; de igual forma se ha procedido con el Balneario Romano de Archena, junto al río Segura, cuya cronología se sitúa en torno al siglo I d.C.; también hemos abordado el estudio de los materiales constructivos carbonizados del Teatro Romano de Cartagena y, finalmente, los del yacimiento medieval de los siglos XII y XIII localizado en la Calle Santa María 19 de la localidad de Jumilla.

El trabajo se estructura en 6 capítulos, según las siguientes consideraciones:

En el Capítulo 1 se realiza una caracterización del entorno actual de cada uno de los yacimientos estudiados. Todos ellos se encuentran en el Sureste semiárido de la Península Ibérica, un territorio que presenta una gran heterogeneidad, climática y geomorfológica generadora de gran diversidad de ecosistemas que condicionan el desarrollo de la vegetación. Hemos tomado en consideración aquellos aspectos que pueden incidir en una mejor interpretación paleoecológica, como el desarrollo de sus relieves y unidades hidrológicas, las características geológicas y la composición de los suelos, los rasgos climáticos de temperatura y precipitaciones y, finalmente, los elementos más característicos de su vegetación. Concretamente se han descrito la zona
costera de Mazarrón y Cartagena, el Valle del Guadalentín, la Vega del Segura y la Comarca del Altiplano.

En el Capítulo 2 se plantea en primer lugar un recorrido historiográfico por la evolución de la disciplina antracológica aplicada a la arqueología, teniendo en cuenta sus orígenes, desarrollo y consolidación y haciendo una mención específica de las nuevas tendencias y aplicaciones que han sido claves en el progreso y enriquecimiento de la misma. En segundo lugar se toman en consideración los fundamentos metodológicos y teóricos de la disciplina, abordando los aspectos relacionados con el trabajo de campo, el trabajo de laboratorio y las diferentes perspectivas interpretativas que se aplicarán a la interpretación de los resultados obtenidos en la tesis.

El Capítulo 3 está dedicado a la descripción de los taxones identificados en los diferentes yacimientos estudiados. Primeramente se tienen en cuenta una serie de condicionantes que han tenido importancia en el rango de determinación taxonómica de los carbones; se hace especial hincapié en la problemática de la indeterminación de algunos de ellos en relación con los procesos tafonómicos sufridos antes, durante o después del proceso de combustión. Posteriormente se aborda la descripción de los taxones, teniendo en cuenta, en primer lugar, los principales rasgos anatómicos de cada taxón y en segundo el nicho ecológico donde se crían y desarrollan las especies, géneros o familias identificados; en tercer término se atiende a sus propiedades y aprovechamientos más comunes y, finalmente, a su presencia en registros antracológicos de yacimientos arqueológicos del Sureste peninsular.

El Capítulo 4 recoge el estudio antracológico de los yacimientos abordados en esta Tesis. Cada unos de ellos se introduce mediante una presentación de la secuencia arqueológica del yacimiento, describiendo las principales unidades sedimentarias y estructurales documentadas durante la excavación. En segundo término se describe brevemente la metodología de muestreo y tratamiento de las muestras analizadas. Posteriormente se exponen los resultados obtenidos desde una perspectiva cuantitativa y cualitativa. Finalmente se interpretan los resultados de cada yacimiento desde dos perspectivas distintas; por un lado, desde una vertiente paleoambiental, se plantea una lectura de la señal antracológica para inferir la paleovegetación en el entorno del yacimiento durante su etapa de ocupación; por otro lado, se realizan una serie de inferencias paleoeconómicas sobre los recursos leñosos utilizados como combustible en las estructuras de combustión analizadas, o como material de construcción en los casos en los que han aparecido este tipo de restos.

El Capítulo 5 es una síntesis general de los resultados obtenidos dividida en dos epígrafes diferentes. Un primer apartado se fundamenta en la discusión de los resultados obtenidos en el contexto del cuadrante sureste de la Península Ibérica, estableciendo una secuencia de la vegetación de la zona a escala regional desde la Edad del Bronce hasta
época medieval. El segundo apartado se basa en la elaboración de una síntesis de los datos paleoetnobotánicos obtenidos, para dilucidar los modos de aprovechamiento de recursos forestales en condiciones ambientales xéricas que han podido inferirse a partir del estudio antracológico de los yacimientos analizados.

El Capítulo 6 recoge las conclusiones fundamentales obtenidas a partir de esta Tesis Doctoral, tanto en castellano como en francés.

Este trabajo no hubiera sido posible sin el apoyo de todos aquellos que han estado a mi lado durante todos estos años.

En primer lugar, debo dar las gracias a los tres directores de esta tesis, la Dra. Elena Grau Almero, la Dra. Mª Milagrosa Ros Sala, y el Dr. José Sebastián Carrión García. A Elena Grau le debo toda mi gratitud por haber asumido desde el principio mi formación en la Antracología, por acogerme incondicionalmente en la Universitat de València, en la que me he sentido como en casa, por su trato siempre amable, humano y comprensivo y por todo su esfuerzo en la supervisión de esta tesis doctoral. A Mila Ros tengo que agradecerle la confianza que siempre ha tenido en mí, incluso en los peores momentos, su esfuerzo para conseguir los medios técnicos que me permitieran realizar mi trabajo en el Laboratorio de Arqueología de la Universidad de Murcia, su constante preocupación por mi bienestar, en lo científico y en lo personal y la supervisión que ha realizado de los aspectos arqueológicos contenidos en esta tesis doctoral. Gracias también a Pepe Carrión por haber asumido durante estos cuatro años la tutoría de la beca predoctoral que me ha permitido realizar este trabajo, por su buena disposición y apoyo en todas las propuestas que se le han planteado y por sus consejos y correcciones sobre la forma y el contenido esta tesis.

Agradezco también a los miembros del tribunal haber aceptado leer y valorar este trabajo.

Quisiera dar las gracias a los directores de los yacimientos estudiados en este trabajo. A la Dra. Mila Ros Sala, directora del Proyecto de intervención arqueológica en La Punta de los Gavilanes, a D. Javier Medina Ruiz, director de los trabajos de excavación en el Barranco de la Viuda, al Dr. Gonzalo Matilla Séiquer, director de las excavaciones del Balneario Romano de Archena, al Dr. Sebastián Ramallo Asensio, director del los trabajos de excavación y recuperación del Teatro Romano de Cartagena y a D. Juan Antonio Ramírez Águila, director de la intervención de urgencia realizada en la Calle Santa María 19 de Jumilla. A todos ellos quiero agradecerles que hayan confiado en mí para el estudio de los carbones arqueológicos de los yacimientos que ellos han dirigido, y que me hayan facilitado de buen grado toda la información necesaria para la correcta contextualización de los mismos.
También quiero agradecer a la Dra. Francisca Navarro Hervás, Profesora Titular del Área de Geografía Física de la Universidad de Murcia, la revisión que llevó a cabo sobre el Capítulo I de la Tesis.

Gran parte de este trabajo ha sido realizado en el Laboratori de Prehistòria i Arqueologia de la Universitat de València, donde fui muy bien acogida. En primer lugar, me gustaría expresar mi gratitud hacia la Dra. Yolanda Carrió, que se ha mostrado siempre dispuesta a ayudarme, y que muy generosamente ha aclarado todas las dudas que le he planteado. Quiero hacer mención al resto de las antracólogas que trabajan en esta Universidad: Tina Badal, María Ntinou y Magdalena Moskal, con las que he compartido impresiones siempre productivas. Mi estancia en este laboratorio fue mucho más agradable gracias a compañeros como Guillem, Juanvi, Rosa, Andrea, Esther, Didac, Inés, David y Alicia, con los que he compartido buenos ratos de café que me han ayudado a desconectar un poco.

Quisiera agradecer también a la Dra. Stéphanie Thiébault que aceptara tutelar mi estancia en la Maison de l’Archéologie et de l’Ethnologie de la Université de Paris X (Nanterre). Durante mi estancia allí me sentí siempre bien acogida por su parte, me facilitó el uso de todos los medios técnicos y bibliográficos del centro, y me prestó su asesoramiento científico siempre que me fue necesario. Mi estancia en París no hubiera sido lo mismo sin contar con la amistad de Pilar, Lisandre, Marta y Aurélie.

Por otro lado, y entrando ya en un terreno más personal, quiero dar las gracias a mis amigas de toda la vida, Juani, Narci y Lidia por su apoyo y comprensión incondicional, en los buenos y malos momentos. Gracias a ellas he podido desconectar del estrés del trabajo y de la arqueología, que a ratos viene bien. En este apartado quiero hacer mención a mis amigos de Valencia: Susana, Carles, Amparo y Miralles, que fueron un gran apoyo durante mi estancia allí, y siguen siéndolo ahora con algunos kilómetros de distancia.

Finalmente, los más importantes, mi familia. Mis padres y mi hermana son el pilar fundamental de mi vida, y a quienes debo mi mayor amor, respeto y admiración. Por ello tengo que agradecerles que siempre hayan comprendido todo lo que he hecho y que me hayan apoyado sin condiciones en todas las decisiones que he tenido que tomar. Gracias a Xavi por haberme ayudado a mantener la calma durante todo este tiempo de trabajo, por haberme dado muy buenos consejos, que siempre me han sido útiles y por pensar en todo momento en mi felicidad.
CAPÍTULO I:
EL ENTORNO DE LOS YACIMIENTOS
El medio físico debió jugar un importante papel en la localización, poblamiento, modo de vida y actividades económicas llevadas a cabo por los habitantes de los enclaves estudiados en esta tesis doctoral, ya que aspectos como la disponibilidad, abundancia y calidad de los recursos naturales existentes en un entorno son determinantes y han de ser valorados siempre como moduladores en el desarrollo de la actividades poblacionales.

Teniendo en cuenta lo anterior, se ha optado por exponer los rasgos naturales más relevantes del entorno inmediato de cada yacimiento. En lo que concierne al paisaje, el relieve es el componente estructural más importante, no sólo por la visibilidad de las formas y permanencia en el tiempo, sino por haber condicionado la ubicación de asentamientos humanos, las zonas de paso o tránsito, el tipo de suelos, en incluso los límites territoriales. En otro orden, la variedad y especial distribución de estructuras y litofacies ha propiciado la materia prima para la fabricación de útiles. Los rasgos climáticos se ven en parte afectados por el grado de compartimentación del relieve que introduce matizaciones por altitud, orientación y exposición y por la interacción entre relieve y clima. Finalmente, los afloramientos puntuales de agua limitarían también los asentamientos humanos.

Esta perspectiva resulta más coherente teniendo en consideración que los resultados antracológicos se refieren a una escala espacial relacionada con el área de captación potencial de recursos por parte de los grupos que habitaron cada asentamiento. El estudio de la madera que fue utilizada como combustible y recuperada en el sedimento arqueológico aporta una valiosa información acerca de las características de la vegetación y su contexto geoecológico.

Los yacimientos estudiados se ubican en el Sureste de la Península Ibérica (fig 1.1), caracterizado por ser una de las zonas más áridas de todo el continente europeo. No obstante, el criterio de aridez no es más que una simplificación en la caracterización de un territorio que presenta una gran heterogeneidad climática y geomorfológica, que hace de su delimitación una cuestión extremadamente compleja. Desde una perspectiva geográfica se ha considerado como Sureste la zona comprendida entre el sector oriental de la Cordillera Bética, el Suroccidental de la Meseta y la zona comprendida entre los ríos Turia y Júcar. Desde un punto de vista administrativo abarcaría la zona ocupada por las actuales provincias de Murcia, Almería, y una pequeña parte de las de Granada, Jaén, Albacete y Alicante. Sin embargo, estas divisiones obvian la gran diversidad de ecosistemas que están contenidos entre estos límites y las importantes variaciones que existen dentro de cada zona en particular durante el período de ocupación de cada uno de los yacimientos.
I.1. El entorno de Punta de los Gavilanes

El yacimiento de Punta de Los Gavilanes se localiza al sur del término municipal de Mazarrón, sobre un promontorio rocoso situado en la actual línea de costa (fig. 1.2).

El área de captación de la Punta de los Gavilanes formaría parte de un conjunto más amplio representado por la Sierra prelitoral de Almenara, las sierras litorales del Algarrobo-Lo Alto y Las Moreras, la depresión de Mazarrón, que incluye a la llanura de inundación del Puerto de Mazarrón y una franja litoral donde alternan acantilados medios, calas, playas, islas, e islotes, recientemente tombolizados.
La depresión de Mazarrón es una cuenca intramontañosa (262 km²) rellena de materiales neógenos y cuaternarios, compartimentada por los cerros volcánicos de San Cristóbal y Santa Catalina cuya riqueza minera y antigua explotación han dejado una impronta en el paisaje. Sus vertidos contribuyeron a la colmatación parcial de un almarjal salino, explotado hasta la década de los años 60, y hoy en buena parte urbanizado (Navarro Hervás y Granel Pérez 2007).

Rodeando al conjunto, las sierras presentan un desnivel bastante acusado por su proximidad al Mediterráneo. Las mayores elevaciones se localizan al Noroeste, en la Sierra de la Almenara (882 m), de cuyas laderas septentrionales parten algunos cursos fluviales que vierten sus aguas al Río Guadalentín. El sector central está representado por la Sierra de las Moreras, con orientación Este-Oeste, cuyos vértices alcanzan los 545 m y 431 m en Los Cucos y Morrón Blanco respectivamente. En el área suroccidental, Lomo de Bas es una alineación montañosa de dirección Este-Oeste que alcanza los 651 m de altura en el pico de Yegua Blanca. En el sector oriental destacan la Sierra del Algarrobo (713 m) y la Sierra de Lo Alto (540 m) junto a otras elevaciones de menor envergadura como el Alto de las Hermanillas (268 m), el Cabezo de los Rincones (288 m), el Lomanchón (472 m) y el Cabezo de los Molares (204 m). Finalmente, la costa forma un gran golfo desde Calnegre hasta la Azohía, inflexionado en dos óvalos, a partir del saliente del Cerro de Los aviones, en el Puerto de Mazarrón (fig. 1.3).
Figura 1.3. Mapa geográfico de la costa de Mazarrón.
Por su localización dentro de La Cordillera Bética, desde un punto de vista geológico pertenece al Bético s.str. y más concretamente al Complejo Nevado-Filábride, cuyos materiales comprenden unidades constituidas por rocas metamórficas que afloran en el núcleo de los antiformes de las Sierras de Almenara, Lomo de Bas, Mazarrón y alineación litoral de Cartagena (Vera 2004). Estas estructuras están intensamente falladas y a modo de *horsts* complejos se intercalan entre las principales fosas tectónicas, litorales y prelitorales. Este Complejo está constituido primeramente por materiales de edad paleozoica como micaesquistos, cuarcitas, gneises y micacitas negras muy grafitosas con lentejones de cuarzo, después por otro tramo carbonatado de mármoles del Trias (Rodríguez Estrella 2006). La serie Filábride se superpone por contacto mecánico a la anterior y presenta dos series claramente diferenciadas: una inferior, de edad pre-pérmica, en la que predominan los esquistos grafitosos oscuros, con intercalaciones de cuarcitas, meta-areniscas y gneises; y otra superior, Permo-triásica, constituida por esquistos albíticos de colores claros con intercalaciones de cuarcitas, niveles de gneises y mármoles, metabasitas, serpentinitas, anfibolitas y micasquistos anfibólicos (Arana Castillo *et al.* 1999).

El entorno de Mazarrón forma parte de la Región Volcánica del SE o Región Volcánica Almería-Murcia, que se extiende desde Cabo de Gata hasta el Mar Menor. Se trata de la región más heterogénea en cuanto a su composición, ya que en ella aparecen asociadas rocas calco-alcalinas, calco-alcalinas potásicas, shoshoníticas, ultrapotásicas y basaltos alcalinos. El vulcanismo de Mazarrón es de carácter calcoalcalino potásico y shoshonítico, que se caracteriza por la intrusión de domos y diques, siendo las emisiones lávicas y los depósitos piroclásticos menos frecuentes (Vera 2004).

Mazarrón posee algunos lugares de gran interés geológico, como El Saladillo, la rambla del Reventón o los “tormos” de Bolnuevo. De especial interés para este trabajo es el distrito minero de Mazarrón, que comprende tres sectores (fig. 1.4): el primero en las proximidades de Mazarrón en los cabezos de San Cristóbal y Los Perules; el segundo, las Pedreras Viejas, a 3 Km de Mazarrón; y finalmente, el Coto Fortuna, situado unos 7 Km. al Oeste de Mazarrón (Arana Castillo *et al.* 1999).

En este territorio existen numerosas ramblas que avenan las laderas de los principales relieves. En el sentido de la agujas del reloj destacan: la Rambla de Valdelentisco, que es la más oriental y limita con el término municipal de Cartagena. En ella desembocan otras más pequeñas, como las del Emparrillar y la de Los Morares. Hacia el Oeste se encuentra la de los Lorentes, algo más pequeña, que recoge las escorrentías de la Sierra de Lo Alto. A continuación la rambla de las Moreras, muy próxima a la Punta de los Gavilanes, es el elemento torrential más importante ya que recoge aguas de las sierras de Las Moreras, Almenara, Algarrobo-Lo Alto, a través de sus afluentes: Atalaya, Cañete, Majada, Morote, Reventón, Salada, etc, por lo que ha provocado repetidas inundaciones antes de desembocar en el mar. Finalmente, entre el Lomo de Bas y la
Sierra de las Moreras transcurren importantes ramblas de cauces anchos y poco encajados como las de Villalba, Pinilla, Pastrana y Ramonete. Estos cursos que reciben periódicamente aguas de afluentes más septentrionales, desaguan directamente en el mar y contribuyen con sus aportes a la regularización del litoral.

Figura 1.4. Situación de los yacimientos minerales del coto de Mazarrón (elaboración propia a partir de Arana Castillo et al. 1999).

Los suelos con menor aprovechamiento y capacidad agrológica son los litosoles, poco desarrollados y escasamente profundos que aparecen en la mayoría de las sierras que bordean la cuenca de Mazarrón. Xerosoles cálcicos o petrocálcicos, con capacidad variable de uso, se localizan sobre todo en los piedemonte serranos, sobre niveles de glacis y conos aluviales, encostrados o no. Sobre formaciones de margas o yesos, en cotas más bajas de la depresión de Mazarrón, aparecen los xerosoles margálicos o gípsicos y, sobre las terrazas aluviales de las principales ramblas (Moreras), los fluvisoles calcáricos, muy productivos con riego.
Recursos forestales en un medio semiárido.

Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

Figura 1.5. Mapa de suelos de Mazarrón (Ministerio de Agricultura, Pesca y Alimentación 1989).
Capítulo I. El entorno de los yacimientos

Las temperaturas medias anuales en la zona costera de Mazarrón son bastante altas, entre los 16º C y los 19º C. Estos valores bajan un poco en el cordón montañoso litoral, al aumentar la altitud, disminuyendo así la influencia atemperante del mar. Las máximas se registran en verano, y pueden superar fácilmente los 40º C, excepto en la línea de costa, donde se anotan entre 36º y 37º C. La temperaturas mínimas, rara vez descienden de los 0º C, salvo en casos en los que la llegada de aire polar o ártico se deja sentir en estas latitudes, algo muy inusual (Montaner 1991, Sánchez Gómez y Guerra Montes 2003).
El ombrótipo en el que se sitúa Mazarrón es el Semiárido, extendido por todo el sur de la Región de Murcia (fig. 1.7). Las precipitaciones medias anuales se sitúan entre los 200 y 350 mm. (300 mm. en el observatorio de Totana y Cartagena; 130 mm. en Cabo Tiñoso), produciéndose principalmente en los meses de otoño y primavera, con gran escasez en verano e invierno. En conjunto, las precipitaciones suelen tener un componente de Levante. El régimen de precipitaciones presenta una fuerte irregularidad interanual, que provoca periodos de sequía prolongados. Las lluvias suelen ser escasas y están ligadas a chubascos de fuerte intensidad horaria, aportando a las escorrentías un alto poder erosivo.

![Figura 1.7. Ombrótipos de la Región de Murcia (Sánchez Gómez et al. 1998).](image)

Desde un punto de vista biogeográfico la Punta de los Gavilanes se incluye en la Provincia Murciano-Almeriense (fig. 1.8), Sector Almeriense, Subsector Almeriense Oriental (Sánchez Gómez y Guerra Montes 2003). La Provincia Murciano Almeriense incluye los territorios más áridos del Sureste peninsular, con gran influencia florística norteafricana, y géneros tan particulares como *Periploca, Maytenus, Calicotome, Tetraclinis, Osyris, Caralluma, Enneapogon*, etc. Son muy frecuentes los elementos exclusivos, así como una vegetación muy particular a nivel de matorrales, sobre todo en suelos calcáreos, afloramientos de metales pesados (selenitosos) y terrenos yesíferos y salinos. Muchas de las especies presentan en estos territorios las únicas poblaciones europeas (Sánchez Gómez y Guerra Montes 2003).
El Sector Almeriense se corresponde con los territorios occidentales de esta Provincia, y llega a través de las sierras litorales y sublitorales (Águilas, Lorca, Sur de Sierra Espuña, Sierras de Cartagena) hasta el sector meridional del Mar Menor. Dentro del mismo, el Subsector Almeriense-Oriental se desarrolla en los territorios más orientales, donde se sitúa Mazarrón.

La vegetación potencial estaría constituida por formaciones arbustivas de palmitos (*Chamaerops humilis*), lentiscos (*Pistacia lentiscus*), acebuches (*Olea europaea var. sylvestris*), *Clematis cirrhosa* e incluso la sabina de Cartagena (*Tetraclinis articulata*), en la parte más oriental del subsector. No obstante, debido a su degradación, actualmente son frecuentes los matorrales, albañales y espartizales que presentan numerosos endemismos e iberoafricanismos exclusivos. En depresiones y llanuras, donde las precipitaciones son escasas, es frecuente la presencia del azufaifo (*Ziziphus lotus*). Proliferan también los retamares de pequeño porte dominados por *Genista jimenezii* que, en la zona más oriental, presentan *Calicotome intermedia*. En zonas resguardadas de las sierras de Almenara y Enmedio se instalan retazos del carrascal bético silícola. En cabo Cope, Las Moreras y algunos enclaves de Cartagena quedan restos de una vegetación edafoxerófila dominada por *Juniperus phoenicea* (*Chamaeropo-Juniperetum phoeniceae*) (Sánchez Gómez y Guerra Montes 2003).

Entre los endemismos con óptimo en este territorio destacan: *Anthemis chrysantha* subsp. *jimenezii*, *Astragalus nitidiflorus*, *Centaurea jimenezii*, *Chaenorrhinum*
grandiflorum subsp. carthaginense, Cheirolophus mansanetianus, Cistus heterophyllus subsp. carthaginensis, Herniaria fontanesii subsp. almeriana, Limonium insigne, Limonium album, Limonium x coiny, Limonium carthaginense, Salsola papillosa, Sideritis ibanyezi, Sideritis pusilla subsp. carthaginensis, Teucrium freynii, Teucrium carthaginense, Teucrium lanigerum, Teucrium x eoulaidii, Teucrium x guemesii, Teucrium x portusmagnii (Sánchez Gómez y Guerra Montes 2003).

La serie de vegetación característica termomediterránea murciano-almeriense litoral semiárida del cornical (Periploca angustifolia): Gymnosporio europaeae Periplocetoangustifoliae sigmetum (Alcaraz Ariza y Peinado Lorca 1987), que se extiende por las zonas litorales comprendidas entre San Pedro del Pinatar (Murcia) y el Cabo de Gata (Almería). Por tanto aparece en los sectores Murciano y Almeriense, pero no en el Alicantino. Aparece en lugares con bajas precipitaciones (170-320 mm), si bien es indudable que las criptoprecipitaciones deben alcanzar valores importantes. Las temperaturas son elevadas (piso termomediterráneo) y las heladas inexistentes.

Según los modelos fitosociológicos, la vegetación madura estaría constituida por un matorral claro, a veces disperso, de cornical (Periploca angustifolia), bayón, lentisco y acebuches. En la sierra de Cartagena entran en la comunidad especies tan particulares como Calicotome infesta subsp. intermedia y Tetraclinis articulata, mientras que en zonas bajas y próximas al mar, afectadas por la maresía, es posible reconocer una subasociación débilmente halófila (lycietosum intricati).

Las etapas de degradación presentan ciertas preferencias por suelos esqueléticos, aunque en ocasiones es posible observar espartales (Lapiédro martinezii-Stipetum tenacissimae) y, si la salinidad es más elevada, albardinales (Dactylo hispanicae-Lygeetum sparti). Por ello, lo más general es observar cerrillos (Aristido coerulescentis-Hyparrhenietum pubescens) y matorrales diversos, según el distrito en que la serie se presente, con especies como Thymus hyemalis, Limonium insigne, Teucrium polium subsp. aguilasense, Teucrium carolipau, Teucrium lanigerum, Caralluma europaea, etc. Las zonas ocupadas por la serie, inapropiadas para el cultivo, como ya se ha señalado, se ven sometidas a pastoreo y son objeto de urbanización, dada su situación predominantemente litoral (Alcaraz Ariza y Peinado Lorca 1987).

Se trataría de la vegetación que crece en las áreas salinas. Entre ellas, las más afectadas por inundación están dominadas por Sarcocornia fruticosa o Salicornia emerici en el período verano-otoño. En segunda línea de inundación aparecerían Arthrocnemum
Capítulo I. El entorno de los yacimientos

Macrostachyum, sustituida por *Halocnemon strobilaceum* en las partes arenosas. Por otro lado, en los sectores no sometidos a inundaciones temporales dominan las especies del género *Limonium*. Es común la aparición en este contexto de tarays como *Tamarix canariensis* y *Tamarix boveana* conformando la asociación *Lycio intricati-Tamaricetum canariensis*.

La vegetación que encontramos en la actualidad en la zona de Mazarrón está fuertemente degradada, principalmente por la acción antropogénica. De hecho el que no se produzcan heladas a lo largo de todo el año ha favorecido la explotación agrícola, con el cultivo de frutales principalmente. La ganadería, y sobre todo el pastoreo han incidido también en este proceso de degradación. Además, la actividad minera en el coto de Mazarrón se remonta, para el caso de Punta de Gavilanes, a cronologías prerromanas, un dilatado uso que, sobre todo en el último siglo, ha tenido repercusiones negativas en el medio ambiente. Por último, la explotación turística de la costa y la consecuente especulación urbanística, favorecen la proliferación de comunidades vegetales nitrófilas propias de ambientes fuertemente antropizados.

En general, Mazarrón se encuentra en una zona ecológicamente singular que comprende desde el Cabo de Gata hasta Cartagena, y que cuenta con una gran variedad de endemismos de tipo iberoafricano, como *Tetraclinis articulata*, *Maytenus senegalensis*, etc, de los que hemos documentado en el área cercana a la Sierra de las Moreras los endemismos *Periploca angustifolia* y *Withania frutescens* (fig. 1.9).

![Figura 1.9. *Periploca angustifolia* y *Withania frutescens* en la Sierra de las Moreras (Mazarrón) (Fotos: M. S. García).](image)

En las zonas más cercanas a Punta de Los Gavilanes se ha encontrado una vegetación dominada por plantas adaptadas a suelos de tipo salino, yesoso, y también ambientes muy nitrófilos y ruderales. Destacan por su abundancia las quenopodiáceas, como *Anabasis hispanica*, *Arthrocnemum macrostachyum*, *Sarcocornia fruticosa*, *Suaeda vera*, *Atriplex halimus*, *A. prostrata*, *A. glauca*, etc. El único elemento arbóreo existente sobre estos suelos tan salinos es el género *Tamarix*. Las antiguas salinas, junto con las playas de La Pava y de La Bahía, han sido ocupadas por residencias de verano, y,
aunque conserva vegetación natural, formada principalmente por quenopodiáceas y otras asociadas a cursos de agua como *Phragmites australis*, presenta naturalizaciones propias de márgenes de caminos como *Asphodelus fistulosus* o especies del género *Teucrium*, abundantes en zonas secas de pastizal.

Figura 1.10. *Suaeda vera* y *Anabasis hispanica* en las inmediaciones de Punta de Los Gavilanes (Fotos: M.S. García).

Figura 1.11. Vegetación actual del entorno de Punta de los Gavilanes.
Capítulo I. El entorno de los yacimientos

Un poco más lejos de la costa, en el entorno de la Sierra de las Moreras, muy cercana al yacimiento, encontramos elementos de matorral de la Provincia Murciano-almeriense, con especies tan típicas como Thymus hyemalis o Rosmarinus officinalis. Abundan las gramíneas xerófiticas como Stipa tenacissima o Lygeum spartum y, también, las leguminosas, entre las que destacan Anthyllis cytisoides, Coronilla juncea, Genista umbellata o Spartium junceum. En suelos más someros se han identificado algunas especies de labiadas (Lavandula dentata, Lavandula multifida, Thymus hyemalis, Rosmarinus officinalis, etc), cistáceas (Helianthemum almeriense y Fumana ericoides).
Recursos forestales en un medio semiárido.
Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

o compuestas (*Launaea arborescens o Helichrysum stoechas*). En este ambiente se han hallado ampliamente representadas otras especies como *Thymelaea hirsuta, Globularia alypum, Rhamnus lycioides* o *Sedum sediforme*, junto a algunas especies del género *Artemisia* y plantas que se presentan en zonas interiores aunque afectadas por la salinidad como *Lycium intricatum*. En toda la Sierra de las Moreras aparecen manchas de *Juniperus phoenicea*.

I.2. El entorno del Teatro Romano de Cartagena

El Teatro Romano de Cartagena se encuentra en pleno casco urbano de la ciudad, a pocos metros en línea recta de la zona del puerto. En origen el núcleo urbano se asentaba en una península unida al continente por un istmo de aproximadamente 700 m. En su interior cinco colinas, el actual Molinete, Montesacro, al Norte; Concepción al Sur; San José y Despeñaperros al Este y, en el exterior, el actual Castillo de los Moros, constituían modestos relieves y el área de captación de barrancos que vertían sus aguas hacia una laguna existente al Norte. En el centro quedaba una depresión que se extendía por el Oeste hasta la desembocadura de la Rambla de Benipila. De esta forma la ciudad limitaba al Norte con lo que hoy es el Almarjal, al Sur con el Puerto, al Este con el istmo y al Oeste por una lengua de tierra sobre la que se construyó un puente en el canal de acceso a la laguna, a través del cual se aseguraba el abastecimiento urbano.

![Figura 1.13. Comarca del Campo de Cartagena (Fuente del mapa: www.atlasdemurcia.com, modificado).](image-url)
Desde la Sierra de La Muela (545 m) hasta Cabo de Palos, el puerto de Cartagena se encuentra flanqueado al Oeste por el cabezo de Galeras y al Este por el de San Julián (293 m), que forma parte de la Sierra Gorda (331 m). Ésta pertenece a la alineación litoral de Cartagena-La Unión, que se extiende a lo largo de 23 km. Dentro de ella y hacia el Sureste destacan la Sierra de la Fausilla (368 m), la Peña del Águila (392 m), el Monte de las Cenizas (303 m) y el Cabezo de la Fuente (338 m). La alineación termina en el Cerro del Santo Espíritu, sensiblemente rebajado, desde los 431 m originales, por las excavaciones mineras desarrolladas siglos atrás (Robles Arenas 2007), descendiendo finalmente hacia el mar en Cabo de Palos. La costa es muy recortada y abrupta por la cercanía de los relieves béticos al mar, alternando acantilados medios con pequeñas calas y playas.

Dentro de La Cordillera Bética, el territorio de Cartagena pertenece al Bético s.str. y concretamente al complejo Alpujárride, formado por un tramo inferior de micaesquistos negros, cuarcitas, metaconglomerados, areniscas, diabasas y yesos del Pérmico y encima por calizas, dolomías y calcoesquistos del Triásico. Aparece ampliamente representado en las Sierras de Cartagena (Rodríguez Estrella 2006). Son estructuras complejas intensamente fracturadas y desniveladas, y precisamente los compartimentos internos constituyen verdaderos ecotopos para la vegetación y fauna.

En el área de captación no existe ningún curso de agua permanente, por lo que las principales redes de drenaje, en torno al núcleo urbano de Cartagena, son cursos de cauces secos la mayor parte del año, que parten de las elevaciones circundantes, entre las que destacan de Oeste a Este, las ramblas de Benipila, Los Dolores, El Hondón y Santa Lucía. Algo más alejadas, en la Sierra de la Unión aparecen la de Escombreras, Gorguel, Portmán, Miedo, Matildes, Beal, Ponce y La Carrasquilla, que vierten directamente al mar.

Los suelos de las sierras litorales de Cartagena-La Unión se pueden considerar poco evolucionados, destacando por su extensión los litosoles, que aparecen en zonas más altas con predominio de la erosión y presencia de roca madre en superficie. En las principales llanuras sedimentarias aparecen suelos algo más desarrollados, sometidos a cultivo desde antiguo y a menudo con un horizonte denominado petrocalcíco, o costra caliza, corresponden al tipo de los xerosoles, formados bajo un régimen de precipitación árido. Aunque desprovistos de materia orgánica por efecto de la roturación antigua de su vegetación original, muestran buena aptitud para la agricultura, y de hecho albergan los principales cultivos de regadío de las depresiones litorales de Cartagena. En las llanuras de inundación se localizan de forma muy restringida los fluvisoles cálcicos, de alto rendimiento agrícola.
Cartagena presenta características térmicas y pluviométricas muy semejantes a las de Mazarrón. En esta zona el riesgo de heladas es mínimo, y las temperaturas nunca suelen ser inferiores a 3º C. Los intervalos de temperaturas mínimas suelen estar entre 3º y 7º C, en las mínimas ocasiones en las que se producen heladas es por invasión de Aire Ártico-Marítimo. Por otro lado, las temperaturas superiores a 12º C las registran hasta 334 días anuales en la parte meridional del Campo de Cartagena y de ellos, casi 214 días superan los 15º C de temperatura media. La amplitud térmica media anual se sitúa en 14,3º C en la estación meteorológica Cartagena Puerto (Conesa García 1990).

El régimen de precipitaciones se caracteriza por su variabilidad interanual y por una gran escasez. En la estación meteorológica de Cartagena “Puerto”, las medias alcanzan 350,5 mm anuales, aunque en la de Cartagena “Castillo de Galeras” no superan los 265,4 mm, la más baja de todo el Campo de Cartagena (Conesa García 1990).

La división biogeográfica a la que pertenece Cartagena es idéntica a la de Mazarrón, por lo que no se hará hincapié en este aspecto. Lo mismo ocurre con la vegetación potencial y con las serie de vegetación predominante, Serie termomediterránea murciano-almeriense litoral semiárida del cornical (Periploca angustifolia): Gymnosporio europaeae-Periploceto angustifoliae sigmetum, que ha sido explicada en el apartado anterior.

Figura 1.14. Palmitos (Chamaerops humilis) junto a la bahía de Portmán (Foto: M.S. García).
La vegetación actual está muy degradada debido a las actividades mineras e industriales predominantes hasta el momento. La mayor parte del territorio está ocupado por pequeñas formaciones de pino carrasco (*Pinus halepensis*) y, sobre todo, por comunidades arbustivas y de matorral en las que predominan especies como el palmito (*Chamaerops humilis*), esparto (*Stipa tenacísima*), espino negro (*Rhamnus lycioides*) y plantas aromáticas como tomillos y romeros.

A pesar de estas alteraciones, y al igual que en Mazarrón, las sierras litorales de Cartagena presentan una vegetación muy particular dominada por el cornical (*Periploca angustifolia*) y el palmito (*Chamaerops humilis*), y en zonas más localizadas por otras especies como el arto (*Maytenus senegalensis*), el oroval (*Withania frutescens*), el cambrón (*Lycium intricatum*), el bayón (*Osyris lanceolata*), la aliaga (*Calicotome intermedia*) y, como uno de sus elementos más singulares, el araar o sabina de Cartagena (*Tetraclinis articulata*), cuyas únicas poblaciones en la Europa continental se encuentran en la actualidad ocupando unas 200 hectáreas en la Sierra de la Unión (fig. 1.15). De manera excepcional aparecen algunos endemismos de desarrollo exclusivo en esta sierra como la jara de Cartagena (*Cistus heterophyllus* subsp. *carthaginensis*) o el chumberillo moro (*Caralluma europaea*).
En algunas zonas umbrosas de la Sierra de Cartagena y la Unión es posible encontrar, de manera excepcional, algunos ejemplares de madroño (*Arbutus unedo*), labiérnagos (*Phillyrea angustifolia* e incluso *Phillyrea media*), ruscos (*Ruscus aculeatus*) o cornicabras (*Pistacia terebinthus*) (fig. 1.16) y en el paraje de El Cañar, sobre sustratos metamórficos, crecen algunos pies de encina, posiblemente centenarios, dado el gran perímetro de su tronco.

En los matorrales menos influídos por la maresía aparecen el espino negro y el palmito fundamentalmente, junto con algunos lentiscos (*Pistacia lentiscus*) y en ocasiones coscojas (*Quercus coccifera*).

Las zonas más secas y deprimidas están ocupadas por el azufaifo (*Ziziphus lotus*), y entre los endemismos propios de estos ambientes destacan *Thymus hyemalis*, *Sideritis marminorensis*, *Helianthemum almeriense*, *Salsola papillosa*, *Anabasis hispanica*, etc. Además, en los suelos contaminados, por la gran acumulación de metales pesados, suelen aparecen otros endemismos como *Limonium carthaginense* (fig. 1.16).

![Figura 1.16. cf. Limonium carthaginense y Pistacia terebinthus en la zona minera de Portmán (Foto: M.S. García).](image)

I.3. El entorno de Barranco de la Viuda

El Barranco de la Viuda se localiza en el término municipal de Lorca, en las estribaciones septentrionales de la Sierra de la Almenara (882 m) y el yacimiento en la ladera norte hacia el Valle del Guadalentín (fig. 1.17).

Entre esta sierra y la de la Torrecilla se abre la depresión del Guadalentín o prelitoral murciana, que se corresponde con una fosa tectónica subsidente de edad plicuaternaria, rellena de hasta 1000m de margas del Mioceno y de más de 300m de materiales detríticos plicuaternarios. En este tramo la fosa está compartimentada por la Sierra de Enmedio.
Capítulo I. El entorno de los yacimientos

En las sierras que bordean al Valle, aparecen materiales correspondientes a tres grandes dominios, dentro del Bético en s.str. En Almenara, el Complejo Nevado-Filáfride está formado por potentes series de micaesquistos grafitosos en la base (Paleozoico) y sobre ellos mármoles y cuarcitas triásicas. En la Sierra de Enmedio, dentro de las Unidades Intermedias pueden identificarse dos conjuntos litológicos, uno inferior, de filitas arenosas, con areniscas y cuarcitas atribuibles al Permo-Triás y otro superior de calizas recristalizadas con diabasas y yesos atribuibles al Triás. En las sierras de Las Estancias y Tercia, el Complejo Alpujárride está representado por filitas, micaesquistos negros grafitosos y niveles de mármoles atribuibles al Paleozoico y rocas carbonatadas del Triásico. Sobre el sustrato bético de la depresión del Guadalentín suele estar depositado el Mioceno superior representado por margas, yesos y conglomerados. El Plio-Cuaternario ocupa la parte superior del Valle a base de conglomerados, gravas, arenas y limos.

Al ser una fosa compleja, bajo estos sedimentos, existen estructuras en bloques entre los que destacan, el horst central de la Estación de Puerto-Lumbreras, con subfosas rehundidas como la del Esparragal, al Norte y de la Escucha, al Sur.

La red hidrográfica está configurada por numerosos barrancos y ramblas: Nogalte, Béjar, Alta, Torrecilla (margen izquierda) y Purias, Garganta, Mesillo y Peladilla (margen derecha), que confluyendo progresivamente dirigen sus aguas hacia el
criptohumedral de Altobordo, donde se inicia la Rambla Viznaga, afluente a su vez del Río Guadalentín. (Navarro Hervás 1991). Son segmentos cortos que confluyen rápidamente, responsables de la torrencialidad de sus tramos medios y de la amplitud que adquieren sus tramos finales modelados por conos aluviales. Estas formas han obturado en parte el drenaje y favorecido el endorreísmo local, de manera que, en la actualidad, el encharcamiento sólo se produce en épocas de máxima pluviosidad y permanece durante algunos días para dar paso a eflorescencias salinas de algunos milímetros de espesor (Merlos Martínez et al. 1995).

El Saladar de Altobordo es un criptohumeral asociado a la llanura de inundación del Guadalentín, ocupa el fondo de la depresión entre Puerto Lumbreras y Lorca, y en su formación han intervenido factores tectónicos y litológicos. Los tectónicos a través de ciertas fallas que ocasionaron el hundimiento del sector, al menos desde principios del Pleistoceno, y subsidente en la actualidad; el litológico justifica el carácter y tipo de material que es suministrado desde las áreas fuente por los conos aluviales, que actúan como filtro de agua y sedimentos (Merlos Martínez et al. 1996).

Los principales suelos del entorno son los Fluvisoles calcáricos en fase salina, formados a partir de sedimentos aluviales recientes y con un predominio de rocas.
Capítulo I. El entorno de los yacimientos

carbonatadas, afectados por sales solubles en gran parte de la depresión del Guadalentín (Alías Pérez et al. 1986). También los Regosoles calcáricos, formados a partir de materiales no consolidados, pero de aporte no reciente, y Regosoles litosólicos, situados sobre materiales no margosos como filitas, pizarras o esquistos, que suelen ser calizos o en ocasiones sobre rocas volcánicas (fig. 1.19). Finalmente los Xerosoles cálcicos, con un régimen de humedad de gran aridez, aunque muy apropiados para el cultivo, y Xerosoles petrocálcicos, cuando presentan un horizonte cálcico fuertemente cementados, formando una costra caliza sobre niveles de conos aluviales (Martínez Sánchez et al. 2006).

Figura 1.19. Afloramiento volcánico en las proximidades del Barranco de la Viuda (Foto: M. S. García).

El entorno del Barranco de la Viuda se puede incluir en el Piso Termomediterráneo Superior, caracterizado por una temperatura media anual entre 17º y 19º C. Durante el invierno, entre los meses de diciembre y febrero, sobre todo, pueden producirse heladas débiles que de modo excepcional pueden llegar hasta los -6º C. Sin embargo, por lo general las temperaturas mínimas en estos meses más fríos no suelen bajar de los 6º C, mientras que las máximas de invierno se sitúan entre los 14º y los 18º C. Las temperaturas en verano pueden alcanzar fácilmente los 35º C, llegando a veces hasta los 40º C (Sánchez Gómez et al. 1998).

En cuanto al régimen de precipitaciones, el ombroclima de esta zona es de carácter semiárido tal y como sucede en la mayoría del territorio de la Región de Murcia. Registra precipitaciones que no superan en ningún caso los 400mm anuales, estando la media entre los 250 y los 350mm (Sánchez Gómez et al. 1998).
Desde un punto de vista biogeográfico el yacimiento se encuentra en la misma división que los dos anteriores, formando parte de la Provincia Murciano-Almeriense, concretamente en el Sector Almeriense y el Subsector Almeriense Oriental (Sánchez Gómez y Guerra Montes 2003).

La serie de vegetación predominante en esta zona es la termomediterránea murciano-almeriense semiárida del lentisco (*Pistacia lentiscus*): *Chamaeropo humilis-Rhamneto lycioïdis sigmetum* (Alcaraz Ariza y Peinado Lorca 1987) por lo que en su estado maduro estaría conformada por matorrales esclerófilos como lentiscos (*Pistacia lentiscus*), palmitos (*Chamaerops humilis*), acebuches (*Olea europaea var. sylvestris*), espinos (*Rhamnus lycioides*, *Rhamnus oleoides subsp. angustifolia*), Ephedra fragilis, algarrobo (*Ceratonia siliqua*) o esparagueras (*Asparagus albus*). Sus fases de degradación están constituidas por manchas de palmito y espino negro (*Rhamnus lycioides*), que en un grado mayor de deterioro dan lugar a espartales o albardinales en zonas margosas o salinas, y en zonas erosionadas se presentan formaciones de pastizal (*Ruto angustifoliae-Brachypodietum ramosi*) o tomillares.

La vegetación que actualmente se desarrolla en la zona ha sufrido modificaciones con respecto a la vegetación potencial ya que el territorio está fuertemente antropogenizado. Por lo general, las zonas montañosas se encuentran muy alteradas por actividades mineras, mientras que las llanuras presentan distintos tipos de explotaciones agrícolas, urbanizaciones y otros usos. Esta degradación hace que la vegetación predominante en
la actualidad junto al yacimiento esté representada por gramíneas xerófiticas como espartales (fig. 1.20) o albaidales. Además, hasta el ámbito prelitoral llegan algunas especies iberoafricanas como *Periploca angustifolia* o el arto (*Ziziphus lotus*) en zonas depresivas o llanas con una gran escasez de precipitaciones. Sin embargo, en zonas algo más resguardadas de sustrato silíceo pueden aparecer ejemplares de carrasca (*Quercus rotundifolia*).

Figura 1.20. Formaciones degradadas en el lugar donde se encuentra el Barranco de la Viuda (Foto: M. S. García).

El Río Guadalentín, muy próximo al yacimiento (fig. 1.21), presenta un cauce amplio y seco casi permanentemente por lo que adquiere el carácter de rambla. En él no se desarrollan actualmente comunidades de bosque galería aunque parece ser que sí existieron en el pasado (Fuentes *et al.* 2005), por el contrario la fuerte degradación y salinidad hacen que crezcan principalmente tarayes (*Tamarix* sp.), conservándose el tarayal más extenso de la Región.

En algunos tramos aparecen criptohumedales sobre los que surgen formaciones predominantes típicas, constituidas principalmente por especies de la familia de las quenopodiáceas perennes arbusivas (fig. 1.22), como *Sarcocornia fruticosa, Arthrocnumum macrostachyum* y *Halocnemum strobilaceum*, además de algunas formaciones dominadas por especies del género *Limonium* (Caballero *et al.* 2002, Pardo *et al.* 2003, 2005). En la actualidad la pérdida generalizada de especies se debe
fundamentalmente a procesos de extinción elevados, frente a reducidas tasas de colonización, como consecuencia de un progresivo proceso de fragmentación que puede ser explicado por la intensa explotación humana del entorno. Además, se han producido cambios en la composición vegetal de los saladares al descender el nivel freático por sobreexplotación de los acuíferos existentes en los niveles aluviales, con lo que géneros puramente halófilos como Sarcocornia, Arthrocnemum o Halocnemum están siendo sustituidos por especies propias de estepas salinas como Frankenia corymbosa o Limonium caesium (Pardo et al. 2005).

Figura 1.21. Visión del valle del Guadalentín desde el Barranco de la Viuda (Foto: M. S. García).

Figura 1.22. Saladar en el término municipal de Lorca (Foto: M. S. García).
I.4. El entorno del Balneario Romano de Archena

El Balneario Romano de Archena se ubica en el mismo lugar que el actual, dentro de la denominada Vega Alta del Río Segura, a pocos kilómetros de la capital murciana. El yacimiento se localiza concretamente en las inmediaciones del río, en una estrecha franja de 400m de longitud y 60m de ancho que se forma entre el piedemonte margoso del Cabezo del Ciervo y los márgenes arenosos del cauce del Río Segura.

El entorno inmediato carece de grandes elevaciones, sólo al norte, resaltan los cerros del Ciervo, Tío Pío, del Ope (276 m) y la Serreta (240 m), formados de muro a techo por margas y calizas bioclásticas del Tortoniense inferior. El resto presenta un morfografía muy suave.

Las verdaderas alineaciones montañosas que rodean al conjunto se encuentran a varios kilómetros de Archena. Se trata en primer lugar de la Sierra del Cajal y estribaciones de la Muela, Sierra de Ricote (1124 m en el pico de Almeces), y la Sierra de la Pila (1264 m). La Sierra de Ricote pertenece al dominio Subbético interno formado por dolomías y calizas del Lías inferior-medio con margas rojas del Cretácico y rocas volcánicas interestratificadas. La Sierra de la Pila se incluye en el dominio del Subbético Medio, donde predominan afloramientos dolomíticos-calizos del Lías inferior y calizas con silex del Lías superior, rocas volcánicas en el Dogger y calizas del Malm (Rodríguez Estrella 2006).

Archena se localiza dentro de la depresión Mula-Fortuna, caracterizada por un potente relleno de margas con intercalaciones de conglomerados, areniscas y calizas del Mioceno y depósitos cuaternarios.
El río Segura recorre el sector central de la Vega Alta cortando transversalmente las estructuras subbéticas al superponerse al sistema de fallas pliocuaternarias que condicionan esta fosa tectónica longitudinal. En el tramo de Archena al coincidir con una depresión longitudinal de dirección bética, se ensancha y forma una de sus denominadas vegas.

El Segura penetra en el municipio por el NW y cambia de dirección a la altura de la confluencia con la rambla del Tinajón-Carrizalejo hacia el Sur, no sin antes describir un acusado meandro que bordea la pedanía de La Algaida. Las formas de relieve más representativas son los meandros, las terrazas aluviales y los relieves en cuesta.

Uno de los rasgos geológicos más característicos de Archena es la presencia de aguas termales, que se constituyen como uno de los elementos más singulares de este entorno, y el centro de la actividad económica actual. Su origen se debe a la circulación subterránea de aguas meteóricas interrumpida por la barrera impermeable que supone el trazado de la falla “Fortuna-Mula” que permite su afloramiento. El manantial termal de
Capítulo I. El entorno de los yacimientos

Archena, junto al Río Segura, presenta un caudal de 35 litros por segundo, con temperaturas que oscilan entre los 51º C y 55º C. Son aguas ricas en cloruros, sulfatos, bicarbonatos, sodio y calcio, y presentan también algunos gases disueltos como ácido sulfhidrico o dióxido de carbono (Arana Castillo et al. 1999).

Los suelos más representativos son: sobre las terrazas aluviales, los Fluvisoles calcáricos, formados a partir de sedimentos aluviales recientes y con un predominio de rocas carbonatadas, que tienen un gran interés para la agricultura. En los piedemontes y niveles de glacis aparecen Regosoles calcáricos, formados a partir de materiales no consolidados, pero de aporte no reciente y, sobre niveles margosos, Xerosoles cálcicos, con un régimen de humedad de gran aridez, aunque en general son muy apropiados para el cultivo, pudiendo presentar una gran pedregosidad como consecuencia de las actividades de arado del terreno (Martínez Sánchez et al. 2006).

El interior de la Región de Murcia, ocupado por las cuencas de Mula y Abanilla-Fortuna, tiene una termometría media elevada, con valores de entre 18º C y 19º C. El ombrotipo en esta zona es de carácter semiárido, con un volumen de precipitaciones muy bajo, que apenas supera los 300mm anuales. Además, se caracteriza también por presentar un índice de evapotranspiración anual muy elevado, en torno a los 1400-1800mm anuales que, unido a las pocas precipitaciones, tiene como resultado un déficit hídrico acusado (Conesa García y Alonso Sarria 2006).

La serie del olmo, Aro italicici-Ulmeto minoris S., se encuentra en las áreas más alejadas del cauce, y está circundada por zarzales espinosos (Rubo ulmifolii-Coriaretum myrtifoliae, Rubo ulmifolii-Lonicaretum biflorae) o por juncales churreros (Cirsio monspessulani-Holoschoenetum), fenales (Elymo hispido-Brachypodietum
phoenicoidis) o gramales (Trifolio fragiferi-Cynodontetum dactylonis) en las zonas más degradadas.

La serie del álamo, *Rubio tinctori- Populeto albae S.*, estaría en zonas más próximas al cauce con el nivel freático próximo a la superficie. El álamo suele ir acompañado de chopos como *Populus nigra* o *Populus deltoides* o sauces como *Salix fragilis* o *Salix atrocinerea*.

La serie *Saponario officinalidis-Saliceto purpureae S.* aparece en el interior del río, donde no crecen especies arbóreas, pero sí sauces arbustivos como *Salix purpurea* subsp. *lambertiana* o *Salix eleagnos* subsp. *angustifolia*. También pueden crecer cañaverales y espadañares o herbazales jugosos.

El tapiz vegetal actual es bastante reducido y está fuertemente degradado por efecto de las actividades urbanizadoras. Además, la explotación agrícola del valle fluvial está dominada por un cultivo tradicional de regadío, huerta, frutales y principalmente agrios, que actualmente ocupan casi la totalidad del municipio de Archena, extendiéndose más allá de la vega del río.

La vegetación, presenta grandes contrastes entre la fuerte degradación los cerros próximos al yacimiento, y la exhuberancia del bosquete galería que se desarrolla al borde del Río Segura.

En las lomas margo-areniscosas cercanas al yacimiento, como Cerro del Ope o la Sierra de la Serreta, la vegetación está constituida casi exclusivamente por formaciones de matorral, con especies arbustivas esclerófilas como *Rhamnus lycioides* o *Pistacia lenticus*, dominando las extensiones de esparto (*Stipa tenacissima*), además de labiadas como los tomillos (*Thymus* sp.) y romeros (*Rosmarinus officinalis*) y, también, diferentes especies de leguminosas, compuestas y cistáceas. Los elementos arbóreos aparecen aislados, como es el caso de algunos individuos de pino carrasco (*Pinus halepensis*) y olivo (*Olea europaea*), aunque mayoritariamente se trata de ejemplares jóvenes replantados como resultado de la reforestación gestionada por el actual Balneario de Archena.

Es necesario ir hasta la Sierra de Ricote para observar, junto con las formaciones dominantes de *Pinus halepensis*, alguna mancha aislada de carrascal (*Quercus rotundifolia*) y sabinares en sus cumbres rocosas (*Juniperus phoenicea*). En la Sierra de la Pila la formación dominante es también la de pino carrasco, y el carrascal suele estar en pequeñas manchas umbrosas y en las principales cumbres. Sin embargo, en este entorno el pinar se acompaña en muchas ocasiones de especies menos comunes como el madroño (*Arbutus unedo*), el durillo (*Viburnum tinus*) y la cornicabra (*Pistacia terebinthus*) en las zonas umbrosas altas. Las formaciones de matorral en esta sierra se
componen de esparto y retama fundamentalmente en la solana, y de coscoja, enebros, espinos negros y lentiscos en las zonas de umbría. En los suelos más degradados aparecen también romeros, tomillos y coronillas.

Figura 1.25. Contraste entre la vegetación de ribera y la degradación de los cerros contiguos (Foto: M.S. García).

Frente a esto, el tramo del río que bordea los Baños de Archena está jalonado por comunidades hidrófilas, en peligro de desaparición como en gran parte de la vega del Segura. Desde un punto de vista florístico Ríos Ruiz y Alcaraz Ariza (1996) establecieron una zonación para el total de la Cuenca del Segura dividida en tres tramos: el Tramo 1 estaría situado entre la cabecera del río y los 1000 m de altitud, con un predominio de formaciones de saucedas-fresneda, el Tramo 2 comprendería las altitudes entre los 1000 y 300 m, en donde existiría un dominio de las choperas, y finalmente un tercer tramo, situado entre estos 300 m de altitud y la desembocadura del río, en donde la alameda-tarayal sería la formación dominante. En este último tramo, caracterizado por un régimen de precipitaciones semiárido, se situaría el Balneario de Archena. Su característica principal es la imposibilidad, debido a la aridez, del desarrollo de taxones como Salix sp., Rosa sp., Populus nigra, Clematis vitalba o Crataegus sp., cuyo nicho sería sustituido por otras especies que sí son capaces de sobrevivir en este lugar como Lonicera biflora, Tamarix sp., Nerium oleander, Phoenix dactilifera, Saccharum ravennae, etc.
Así, en la zona del río que bordea al balneario crecen cañaverales (*Arundo donax*) y carrizos (*Phragmites australis*) en la zona más próxima al cauce, pero sobre todo destacan las formaciones de álamos blancos (*Populus alba*), autóctonos en este paraje de los Baños (Ríos Ruiz y Alcaraz Ariza 1996), y tarayes (*Tamarix* sp.), acompañados de algún chopo aislado (*Populus nigra*), zarzas (*Rubus ulmifolius*), rosas silvestres (*Rosa* sp.) y madreselvas (*Lonicera* sp.). Elementos como el fresno (*Fraxinus angustifolia*) están ausentes, ya que en la Región de Murcia actualmente suelen aparecer más asociados a fondos de valles y barrancos húmedos que a bosquetes galería (Ballester Sabater 2003b, Ríos Ruiz y Alcaraz Ariza 1996, Sánchez Gómez *et al.* 1998). Gran parte de la vegetación que encontramos hoy junto al río fue también replantada, por lo que aparecen elementos alóctonos como el eucalipto.

![Figura 1.26. Aspecto del Río Segura a su paso por los Baños de Archenia (Foto: M.S. García).](image)

I.5. El entorno de Jumilla Santa María nº 19

El yacimiento ubicado en la calle Santa María nº 19 de Jumilla, se ubica en el piedemonte del cerro del castillo (fig. 1.27), situado en extremo occidental del casco antiguo de la localidad, a una cota de 485 m.
Jumilla, junto con Yecla, constituye la comarca denominada del altiplano murciano, cuya altitud media es de unos 600 m, sin embargo el relieve está configurado por tres alineaciones serranas entre las que se disponen depresiones alargadas en dirección típicamente Bética (NE-SW). Esta disposición explica el gran contraste existente entre solanas y umbrias, condicionando en gran medida el desarrollo de la vegetación.

En la alineación septentrional destacan las sierras de Las Cabras (953 m), Cingla (1079 m), Gavilanes (995 m) y de la Magdalena. De la alineación central las elevaciones de Picarcho (595 m), Molar (941 m) y Buey (1087 m). Por último la meridional está representada por Sierra Larga (885 m), Sopalmo (933 m) y El Carche, que con 1372 m de altura en su cumbre es la máxima elevación del territorio.

Desde un punto de vista geológico el yacimiento se ubica en las zonas externas de La Cordillera Bética, concretamente pertenece a la Zona Prebética, correspondiente a la parte más cercana al margen continental meridional ibérico, cuyos afloramientos de
Recursos forestales en un medio semiárido.
Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

cobertera comprenden terrenos mesozoicos y terciarios hasta el Mioceno inferior. La Zona Prebética, a su vez, puede dividirse en tres dominios: Prebético Externo, Interno y Meridional. El dominio Prebético Externo compuesto fundamentalmente de dolomías, materiales detríticos (arenas, areniscas, calcarenitas y conglomerados) y anhidritas (yeso y sal), aparece representado en la Sierra del Puerto, a pocos kilómetros de Jumilla. El Prebético Interno está formado principalmente por calizas y dolomías, y en menor medida margas y margocalizas. Este dominio es el dominante en el Altiplano de Jumilla-Yecla, donde se encuentra el yacimiento. Finalmente, el Prebético Meridional aparece representado en las sierras Larga y del Carche. Se caracteriza por poseer facies neríticas someras y pelágicas muy profundas con fauna de Ammonites y Globigerínidos (Rodríguez Estrella 2006).

A falta de ríos, la red hidrográfica está formada por ramblizos y ramblas, cursos de cauces amplios y poco profundos de caudales esporádicos como las del Judío y la Raja, que drenan hacia el Río Segura. Otras menores como las del Moro, Albatana y la de las Salinas completan el sistema hidrográfico, terminando la mayor parte de ellos en una serie de cubetas endorreicas, entre las que destacan las Hoyas del Carche, el Moñigal, el Ardal y el Hondo del Pozo.

El territorio cuenta con salinas interiores, cuyo origen se atribuye a los afloramientos diapíricos triásicos del Keuper en el entrecruzamiento de fallas de carácter regional.
(Navarro Hervás y Rodríguez Estrella 1985). Destacan las de la Rosa, que se encuentran integradas en el Parque Regional de la Sierra del Carche, y que fueron explotadas desde época romana como principal surtidor de salmuera; las del Principal, a escasa distancia de la localidad de Jumilla y por último las salinas del Águila, que tienen todavía uso en la actualidad.

Los Suelos de Jumilla mejor representados son los siguientes (Fao-Unesco 1974) (Alias Pérez et al. 1986):

Las Sierras del Picacho, Molar, Cerro del Castillo, Buey, Santa Ana, Larga y Carche las constituyen Litosoles sobre calizas o dolomías. En el caso del Cabezo de La Rosa y Alto del Morrón estos Litosoles descansan sobre Yesos y, al oeste de La Celia lo hacen sobre roca volcánica (jumillitas). En las umbrias de las sierras anteriores y en las de Sopalmo y Rocas Hermanas, cuando tienen materia orgánica, se generan Rendsinas.

En las laderas de algunas sierras calizas se desarrollan Cambisoles cálcicos que, en zonas topográficas más bajas presentan características fluvénticas (Cañada del Judío y al norte del caserio El Carche). En estos suelos se cultivan diversos árboles frutales, manzanos, perales, albaricoqueros, etc., cuando se dispone de agua de riego, y cereales en secano.

Figura 1.29. Situación del yacimiento junto a las principales unidades hidrológicas y de relieve de su entorno. (Fuente del mapa: www.atlasdemurcia.com, modificado).
En zonas bajas, depresiones, pequeñas cuencas interiores, ramblas y barrancos, los fenómenos de arrastre recientes originan una sucesión de lechos de granulometría variada de naturaleza caliza que, en algunos casos, suelen contener algo de yeso y sales solubles. Los suelos formados son Fluvisoles (Ramblas de La Raja y Las Carihuelas, Barranco Los Álamos, etc.).

Los Regosoles margálicos se forman a partir de margas de distinta edad y composición, aparecen en la Sierra Solana de Ruices. Sobre litología caliza y arenosa los Regosoles son calcáricos y se localizan en las inmediaciones de la Rambla de La Raja, entre las sierras del Carche y Solana de Los Ruices, y en La Celia, aquí formados sobre rocas volcánicas.

Por último los suelos más representados son los Xerosoles y constituyen la base de la economía agrícola del territorio, pues la mayor parte del viñedo, así como de los cereales, olivos y almendros se cultivan sobre ellos. Ocupan las superficies de glaciols y laderas de pendiente suave (inmediaciones de Jumilla, Hoya de La Muela, El Hornillo, Casa del Ángel, sur de Sierra Larga, Sierrecica de En medio, etc.). Cuando el material litológico contiene abundante yeso son Xerosoles gípsicos y se presentan muy vinculados a los afloramientos del Keuper (Cabezo de la Rosa, Alto del Morrón, inmediaciones de La Celia).

La mayor parte del territorio de Jumilla se incluye en el piso Mesomediterráneo Inferior Semiárido (fig. 1.30). Las condiciones climáticas se caracterizan por ser una mezcla entre un índice pluviométrico propio de ambientes mediterráneos, con una marcada aridez estival, y unas temperaturas que sin embargo están fuertemente afectadas por la continentalidad.

Las temperaturas medias anuales oscilan entre los 13º C y 17º C, aunque para el caso particular de Jumilla la media se sitúa concretamente en 15,8º C, valores relativamente bajos que se explican por la disposición del relieve y altitud media. La amplitud térmica es muy elevada, de hasta unos 18º C entre la media del mes de julio (25º C) y la del mes de enero (6º C). Además, durante el invierno se producen heladas, normalmente entre unos 20 y 30 días al año.

Las precipitaciones oscilan entre 270mm anuales que registran algunas hoyas rodeadas de montañas, hasta unos 450-500mm que se alcanzan en la umbría del Carche. Se trata de precipitaciones acuosas, ya que la nieve sólo hace acto de presencia puntualmente en los meses más fríos y en zonas muy restringidas (Sierra del Carche). Se concentran sobre todo en otoño, siendo octubre el mes más húmedo; en invierno descienden para aumentar de nuevo en primavera, y finalmente las mínimas se registran durante el estío. El carácter torrencial, y la irregularidad interanual son las características más representativas.
El entorno del yacimiento corresponde a la Provincia Mediterránea-Ibérica-Central, Subprovincia Castellana, Sector Manchego, Subsector Manchego-Murciano, Superdistrito Jumilla-Hellín, aunque se encuentra prácticamente en el límite con la Provincia Murciano-Almeriense (fig. 1.31). En la Región de Murcia esta provincia está representada por su sector meridional (Sector Manchego), que alcanza la comarca de Jumilla-Yecla y otras zonas. Dentro de este sector se encuentra el Subsector Manchego-Murciano, que comprende la parte suororiental de la provincia de Albacete y algunas zonas del norte de la Región de Murcia.

El yacimiento se incluye concretamente en el Superdistrito Jumilla-Hellín, que abarca sectores de clima menos continental que las anteriores, lo que se pone de manifiesto por la presencia de muchas plantas y comunidades vegetales termófilas incapaces de soportar heladas severas; entre ellas destaca la gran extensión de los espartales y la presencia en el matorral de *Anthyllis lagascana*, *Anthyllis onobrychioides*, *Sideritis leucantha* subsp. *bourgaeana* y *Thymus funkii* (Alcaraz Ariza y Rivera Núñez 2006).
El yacimiento también limita con el Sector Murciano-Alicantino, que se desarrolla en la zona oriental de la Provincia Murciano-Almeriense. Dentro de él, el Subsector Murciano-Septentrional incluye el territorio de transición entre lo alicantino-murciano y las zonas manchego-murcianas, con un predominio del piso Mesomediterráneo inferior Semiarido y una presencia aún notable de plantas murciano-almerienses como *Anthyllis terniflora*, *Artemisia lucetina*, *Avenula murcica*, *Helichrysum decumbens*, *Salsola genistoides*, *Sideritis leucantha* subsp. *bourgeana*, *Teucrium carolipaui* subsp. *carolipaui*, *Teucrium murcicum*, *Thymus antoninae* y *Thymus moroderi*. Dentro de la comarca Jumilla-Yecla este subsector presenta un área occidental (superdistrito Camarillas-Las Minas), que se prolonga por la depresión margosa de Venta del Olivo a Calasparra y zonas próximas al Cenajo, y otra oriental (superdistrito Cuenca de La Raja), que discurre por las depresiones situadas entre las sierras de El Carche, La Pila y Sopalmo (Alcaraz Ariza y Rivera Núñez 2006).
La vegetación potencial se corresponde con una formación de meseta cálida con coscojas y lentiscos, que estaría representada por la Serie de vegetación mesomediterránea murciano-aragonesa semiárida de la coscoja (*Quercus coccifera*): *Rhamno lycioidis-Querceto cocciferae sigmetum* (Alcaraz Ariza y Peinado Lorca 1987). Se trata de una serie que aparece en gran parte de las zonas mesomediterráneas cálidas y semiáridas del Sector Murciano, en la totalidad del Sector Alicantino y en la Sierra de la Almenara y Enmedio del Sector Almeriense. Se presenta también en la zona meridional del Sector Manchego. La vegetación madura se constituye por un coscojar denso y elevado con *Asparagus horridus*, *Rhamnus lycioides*, enebros (*Juniperus* sp.), *Pistacia lentiscus*, *Rubia peregrina* subsp. *longifolia*, *Clematis flammula* y *Pinus halepensis*. Las etapas de degradación están constituidas también por espartales (*Helictotrichio filifolii-Stipetum tenacissimae*), albardinales (*Dactylo hispanicae-Lygeetum sparti*), lastonares (*Ruto angustifoliae-Brachypodietum ramosi*) y tomillares (*Stipo-Sideritetum leucanthae* en el sector Alicantino y en las áreas orientales del Sector Murciano, *Siderito bourgaeanae-Thymetum membranacei* en el resto del sector Murciano).

La vegetación actual se encuentra muy degradada debido sobre todo a las extensas zonas de cultivo que para el término municipal de Jumilla representan aproximadamente un 64% del total superficial (fig. 1.32), orientado fundamentalmente hacia la vid y los cereales, aunque también se cultivan frutales como el albaricoquero, melocotonero o ciruelo.

Figura 1.32. Mapa de vegetación actual en el entorno de Jumilla Santa María nº 19.
El paraje del yacimiento carece de aportes hídricos, lo cual impide que se desarrolle un bosque esclerófilo mediterráneo de encinas. El paisaje más habitual en solanas y llanuras es de formaciones de espartales, en ocasiones densos, salpicados por *Pinus halepensis* (pino carrasco) (fig. 1.33) e individuos aislados de coscoja (*Quercus coccifera*) y espinos negros (*Rhamnus lycioides*). En las umbrías el pinar se presenta con más densidad y se le asocia un matorral esclerófilo que frecuentemente cuenta con la presencia de la gramínea *Helictotrichon filifolium*. En las cumbres rocosas de algunas montañas se desarrolla vegetación rupícola con ejemplares aislados de *Juniperus phoenicea* subsp. *phoenicea* (sabina) (Alcaraz Ariza y Rivera Núñez 2006).

En las zonas con mejores condiciones de precipitación, puede llegar a desarrollarse un bosque de tipo mediterráneo, representado por un encinar o carrascal (bosque de *Quercus ilex* subsp. *ballota*), que no obstante se presenta en la zona con carácter residual.

![Figura 1.33. Aspecto de la vegetación en la Sierra de Santa Ana de Jumilla (Foto: M. S. García).](image)

En las umbrías de la sierra del Carche llega a estar representada una vegetación algo más variada propia del Piso Mesomediterráneo Subhúmedo. En este caso el encinar puede verse enriquecido por otros árboles (*Quercus faginea*, *Sorbus aria*) y sobre todo por diversos arbustos altos, como madroños (*Arbutus unedo*), durillos (*Viburnum tinus*) o *Bupleurum fruticosum*, lianas (*Lonicera implexa, Rubia peregrina, Smilax aspera*) y puntualmente, rosas (*Rosa blanda*); además los pastizales perennes en las partes más húmedas están dominados por *Helictotrichon filifolium* y/o *Festuca capillifolia* (Alcaraz Ariza y Rivera Núñez 2006).
En las umbrias cimbreñas de esta misma sierra, la carrasca suele ir acompañada por el pino blanco (*Pinus nigra* subsp. *mauritanica*), además de ciertas plantas que no aparecen en zonas más bajas como *Arenaria grandiflora*, *Asplenium ruta-muraria*, *Campanula hispanica*, *Erinacea anthyllis*, *Fritillaria hispanica*, *Helianthemum croceum* subsp. *stoechadifolium*, *Jurinea humilis*, *Potentilla caulescens*, *Seseli montanum* subsp. *granatense*, *Sideritis incana*, etc (Alcaraz Ariza y Rivera Núñez 2006).

En cuanto a la vegetación de los cauces margosos de las principales ramblas, (Judío y La Raja), dominan especies como *Phragmites australis*, *Tamarix canariensis*, *Juncus maritimus*, y *Scirpus holoschoenus* y en ocasiones también aparecen adelfas (*Nerium oleander*) aunque dada la gran salinidad de sus aguas y del sustrato, presentan también comunidades halófilas permanentes con numerosas especies de la familia Chenopodiaceae. Se trata de ambientes muy degradados debido a la explotación de los acuíferos, y a la reconducción de sus aguas para usos agrícolas (Ballester Sabater 2003a).
CAPITULO II:
LA ANTRACOLOGÍA: ORIGEN, DESARROLLO Y FUNDAMENTOS TEÓRICO-METODOLÓGICOS
La Antracología es la ciencia que estudia el carbón vegetal procedente tanto de contextos arqueológicos como de incendios naturales (Pedoantracología). En el primero de los casos estos carbones provienen fundamentalmente de combustiones voluntarias por parte de un determinado grupo humano o de la destrucción por incendio de las estructuras de hábitat. La Pedoantracología, por su parte, tiene como objeto el estudio de carbones cuyo origen se sitúa en procesos de combustión de carácter no antrópico.

La evolución de esta ciencia es todavía muy corta, ya que sus orígenes se remontan a mediados del siglo XIX, aunque su aplicación normalizada no se produjo hasta la década de los años 70 del siglo XX y su consolidación hacia la década de los 90. Todavía hoy su implantación en España es insuficiente y heterogénea dependiendo de los diferentes territorios. En particular, el estado actual de las investigaciones y los datos antracológicos que conocemos para la Región de Murcia son todavía incipientes.

En este segundo capítulo realizaremos un breve recorrido histórico sobre los orígenes, desarrollo y consolidación de la Antracología como ciencia, con mención específica a las últimas tendencias y aplicaciones que han sido claves en el progreso y enriquecimiento de esta disciplina. En un segundo apartado centraremos nuestra atención en las bases metodológicas en las que se fundamenta la Antracología actual, a partir de las cuales se han realizado los diferentes estudios objeto de esta Tesis.

II.1. Origen y desarrollo histórico de la Antracología

II.1.1. Primeros pasos y consolidación de la disciplina

La base de estudio de la Antracología es el conocimiento de los rasgos anatómicos de la madera carbonizada, que no difieren en gran medida de los de la madera fresca, y la caracterización de las diferentes plantas leñosas para su discriminación taxonómica.

En este sentido, los orígenes del conocimiento sobre anatomía microscópica de la madera habrían que situarlos hacia finales del siglo XVI e inicios del XVII, con la aparición de los primeros microscopios. Estudiosos de la época como Marcelo Malpighi, Antoni van Leewenhoek, Nehemiah Grew, o ya en el siglo XIX Johan Jacob Bernardi, Ludolph Christian Trevianus o Joaquín María de Castellarnau, entre otros muchos, contribuyeron con sus observaciones, dibujos y con las primeras microfotografías, a la profundización descriptiva de los diferentes elementos vasculares del tejido leñoso.
Capítulo II. La Antracología: origen, desarrollo y fundamentos teórico-metodológicos

Los primeros estudios sobre madera carbonizada, sin embargo, hay que buscarlos en el siglo XIX y principios del XX, destacando los de Kunth en Egipto en 1826 (Pearsall 1989), Heer en Suiza (1866), Prejawa en Alemania (1896), Breuil y Fliche en Francia (Breuil 1903, Fliche 1907), Hollendonner en Hungría (1926), Saint-Laurent en Argelia (Pallary 1934) y Góngora y los hermanos Siret en España (Góngora 1868, Siret y Siret 1890). Estos trabajos utilizaban la identificación taxonómica del carbón para elaborar catálogos florísticos con vocación descriptiva, que no tenían en ningún caso una finalidad interpretativa orientada a la dinámica de la vegetación del entorno inmediato del yacimiento ni tampoco hacia interpretaciones de corte etnoarqueológico.

Además, las limitaciones técnicas acompañaron a la Antracología hasta mediados del siglo XX, pues el estudio de las muestras exigía de un tratamiento químico previo y de la elaboración de láminas delgadas para la observación mediante microscopio óptico de luz transmitida (Pallary 1934, Le Dû y Saccardy 1948). La dificultad y lentitud en este complejo proceso impedían la observación de un número de fragmentos suficiente para obtener conclusiones interpretativas y aquéllos que podían ser estudiados lo eran sólo en uno de sus planos anatómicos, con lo que los caracteres observados no eran normalmente suficientes para permitir una adscripción taxonómica de grado específico.

Posteriormente se produce un cambio de tendencia en la investigación que se manifiesta a través de un interés creciente por el papel que la Antracología podía jugar en la interpretación del medio ambiente y del uso que del mismo hacían las comunidades del pasado, trascendiendo la mera descripción florística de las especies identificadas. Trabajos como los de Le Dû y Saccarcy (1948), Balout (1952), Momot (1955), Santa (1961), Santa y Vernet (1968), Follieri (1969, 1974) o Couvert (1969a, 1969b, 1976), se constituirían como los principales exponentes de esta nueva corriente.

Uno de los incentivos más importantes que llevaron a la Antracología a un mayor perfeccionamiento técnico fue la gran importancia que adquirió el carbón como material arqueológico para obtener dataciones radiocarbónicas C14, para las cuales era imprescindible que el carbón no hubiera sido sometido a ningún tratamiento químico previo. Con esta motivación añadida se produce quizá la máxima revolución de la disciplina, la utilización del microscopio óptico de reflexión (Stieber 1967, Vernet 1973) que, de una parte, permitía la observación directa del carbón sin ninguna preparación química, y de otra, con el análisis de los tres planos anatómicos de la madera mediante la fractura manual, equilibraba la balanza entre el esfuerzo invertido y el rendimiento obtenido. De esta manera el número de carbones analizado se multiplicaba al tiempo que los resultados adquirían mayor coherencia a la hora de ser interpretados desde diferentes puntos de vista.

Hacia finales de la década de los 80 e inicios de los 90 el laboratorio Paléoenvironnements, Anthracologie et Action de l’Homme de la Université des Sciences et Thecniques de Montpellier (Francia), dirigido por Jean-Louis Vernet, será el principal foco generador de secuencias antracológicas, con importantes avances que quedaron plasmados en tesis doctorales referidas a Francia (Heinz 1990, Chabal 1991, Durand 1991) Portugal (Figueiral 1990), a Chile y Argentina (Solari 1993) y también a España (Badal 1990, Grau 1990a, Rodríguez-Ariza 1992a, Uzquiano 1992a, Machado Yanes 1994). Esta escuela consigue, de este modo, ampliar los límites espaciales y temporales del conocimiento que se había alcanzado hasta ese momento con los primeros estudios sistemáticos de la Antracología moderna.
II.1.2. Desarrollo de la Antracología en España

La introducción de la Antracología en España se produce a partir de mediados de los años 80 del siglo XX. Desde entonces y hasta la actualidad los estudios se han extendido a gran parte del territorio peninsular gracias a la formación de especialistas que han centrado su atención investigadora en la elaboración de secuencias regionales de los diferentes ámbitos de la Península. En este epígrafe recogemos, de manera general, cuáles han sido las líneas de investigación fundamentales de estos investigadores.

investigaciones hacia el estudio de las actividades de carboneo y otro tipo de estructuras altimontanas (Palet et al. 2006, Euba Rementeria 2008).

Aparte de las aportaciones puntuales anteriormente aludidas, los estudios andaluces han estado liderados por Mª O. Rodríguez-Arizá (1992a). Esta autora se ha dedicado fundamentalmente al estudio de yacimientos prehistóricos desde el Neolítico (Rodríguez-Arizá 1996a), aunque ha centrado más su atención en el Calcolítico y Edad del Bronce de la Depresión de Guadix-Baza (Rodríguez-Arizá et al. 1996, Rodríguez-Arizá 1996b), el Valle del Andarax (Rodríguez-Arizá y Vernet 1991) y la Depresión de Vera (Rodríguez-Arizá 1999, 2000a). Puntualmente ha realizado estudios sobre yacimientos medievales como el Castillejo de Gádor, en Almería (Rodríguez-Arizá 2001). En sus trabajos también ha incluido la aplicación de métodos estadísticos de análisis multivariante (PCA, DCA, cluster, etc) (Rodríguez-Arizá y Esquivel 1990, 2007).

Siguiendo este repaso peninsular, Extremadura está representada por los trabajos que D. Duque Espino ha venido realizando recientemente, centrados sobre todo en la Cuenca Media del Guadiana (Duque 2004a, 2004b), aunque con una expansión hasta el ámbito portugués (Duque 2005a, 2005b). Sus estudios son continuación de los ya citados trabajos de E. Grau en esta región y además recogen una nueva perspectiva en la
cuantificación taxonómica, teniendo en cuenta en sus agrupaciones aspectos como la edafología que condicionan la interpretación posterior del registro.

Finalmente, habría que destacar las secuencias analizadas para las Islas Canarias por Carmen Machado Yanes (1994) con atención tanto a la arqueobotánica como a la paleoetnobotánica y al tratamiento estadístico de los datos. Esta autora ha realizado algunos estudios puntuales en el Sureste de la Península, como el llevado a cabo sobre el yacimiento de la Edad del Bronce de Terlinques, en Villena (Machado Yanes et al. 2004), o la Cova de Sant Martí en Agost (Machado Yanes 2004), ambos en Alicante.

Para el ámbito geográfico que nos atañe en este trabajo, la Región de Murcia, los estudios antracológicos han sido hasta el momento bastante escasos. Elena Grau realizó en su tesis doctoral estudios referidos a los yacimientos argáricos lorquinos de El Rincón de Almendricos y El Cerro de las Viñas de Coy (Grau 1990a). La propia Dra. Grau ha realizado los análisis antracológicos inéditos del Castellar de Librilla (Grau, inédito, b), Coimbra del Barranco Ancho (Grau, inédito, a) o el Teatro Romano de Cartagena (Grau, inédito, c). Nuestra contribución al estudio de la Región de Murcia se ha plasmado hasta el momento en el trabajo de licenciatura que recogía el análisis antracológico de la fase II de Punta de los Gavilanes, en Mazarrón (García Martínez 2006), y en diversas publicaciones sobre metodología (García Martínez y Grau 2005, García Martínez et al. 2007, 2008, García Martínez y Matilla Séiquer 2008, Ros Sala et al. 2008, García Martínez y Ramírez Águila, en prensa).

II.1.3. Nuevas tendencias y aplicaciones de la Antracología

El camino que ha seguido la Antracología desde mediados de los años 90 hasta la actualidad ha continuado ofreciendo nuevas secuencias regionales y, junto con ellas, se han desarrollado una serie de tendencias novedosas que han puesto en valor las diferentes posibilidades con las que cuenta la disciplina.

Entre estas nuevas orientaciones en la investigación habría que resaltar, en primer término, la relevancia adquirida en los últimos años por la Antracología experimental, que cuenta con estudios referidos a diferentes aspectos relacionados con el fuego arqueológico, como la recolecta de la leña, el proceso de combustión, el residuo carbonoso derivado del mismo y las posibles alteraciones del registro antracológico. Allué et al. (2007) llevaron a cabo en el Parque Faunístico de Lacuniacha (Huesca) una experimentación que abarca todas estas etapas. Por un lado, realizaron una recogida de leña en una zona que no tiene ningún tipo de cuidados, con lo que la madera muerta recolectada se correspondía con la pérdida natural de ramas de las diferentes especies representadas en el entorno. Posteriormente llevaron a cabo combustiones
experimentales al aire libre, con un control sobre la temperatura alcanzada (600 ºC) y también en condiciones de laboratorio mediante la utilización de una mufla que permitió realizar carbonizaciones controladas a 300 ºC y 700 ºC. Finalmente, en este estudio se valora la representatividad ecológica del residuo obtenido, llegando a la conclusión de que la mayoría de especies aparecen representadas en el estudio antracológico, además, se recogen otros resultados como la reducción de masa y las alteraciones en el carbón, derivadas de la combustión.

Algunos estudios experimentales, sin embargo, se centran en la discusión de uno de estos aspectos en particular. En este sentido destaca, por ejemplo, el estudio de Bazile-Robert (1982) sobre fragmentación del registro antracológico en el que la autora realiza una experimentación con tres taxones: *Quercus ilex*, *Buxus sempervirens* y *Quercus pubescens*. Sus conclusiones apuntan a que la distorsión cuantitativa del registro es mayor cuando se cuantifica en términos de masa que cuando esta cuantificación se realiza a través del número de fragmentos. Aún así, Bazile-Robert detecta una fracturación diferencial entre los diferentes taxones, y en particular una baja fragmentación de *Quercus pubescens* frente a una sobrerrepresentación de *Buxus sempervirens*.

Rossen y Olson (1985), por su parte, centran su atención, tras una serie de combustiones controladas, en la observación de las diferencias de preservación potencial de algunas especies norteamericanas, atendiendo fundamentalmente a la pérdida porcentual de volumen y masa de las diferentes especies, y a las modificaciones estructurales de la madera tras la carbonización en cuanto a su porosidad, la morfología de las células parenquimáticas y los radios y la aparición de tílides, por ejemplo.

Otro punto de vista que ha sido tratado desde la experimentación es el relativo a las alteraciones de la madera antes, durante y después de su carbonización. El completo estudio llevado a cabo por Isabelle Théry-Parisot (2001) recoge una serie de experimentaciones dirigidas a dar explicación a aspectos tales como los ataques fúngicos de la madera antes de la carbonización, las fisuras, el colapso celular o la vitrificación que son detectados como consecuencia de la carbonización o aspectos postdepositacionales de carácter mecánico como la sobrefragmentación del registro en contextos de hielo-deshielo del sedimento.

Esta perspectiva tafonómica no sólo ha sido tratada de forma experimental, sino también directamente sobre carbones arqueológicos. Algunos de los trabajos más destacados en este sentido se concentran en el estudio de la degradación de la madera arqueológica como consecuencia del ataque de hongos y distintos microorganismos e insectos xilófagos que son causa de estas alteraciones (Blanchette 2003, Carrión Marco y Badal 2004).
Contamos también con trabajos que se han orientado hacia la resolución de problemas derivados de las limitaciones que plantea la identificación taxonómica. En este sentido, la propuesta de Piqué y Piqué (1992) buscaba la agilización del proceso de determinación antracológica a través de la creación de una base de datos de imágenes digitalizadas de carbones procedentes de una colección de referencia. El objetivo primordial era conseguir la automatización de este trabajo a través de la codificación de ciertos criterios anatómicos discriminatorios.

Otra de las limitaciones impuestas por la Antracología es la imposibilidad de distinguir, en ocasiones, entre las diferentes especies o variedades dentro de un mismo género o familia. A este respecto destacan las investigaciones llevadas a cabo por J. F. Terral sobre la discriminación entre las variedades silvestre o cultivada de vid (Terral 2002) y sobre todo sobre el olivo silvestre y su variedad cultivada, teniendo en cuenta diferentes variables, entre las que destacan las divergencias en la composición química entre ambas variedades (Terral 1996, 1997) y los criterios morfométricos que las diferencian (Arnold-Simard 1993, Terral y Arnold-Simard 1996). Las mediciones sobre numerosos fragmentos sometidos a diferentes estudios estadísticos han permitido conocer aspectos sobre la planta de origen, como el grado de maduración de la misma antes de su tala (Terral 2000). Además, las respuestas fisiológicas del olivo ante sus condiciones de vida pueden modificar anatómicamente la madera, por lo que es posible también obtener conclusiones acerca de las condiciones de precipitación y temperatura del lugar donde creció la planta (Terral y Mengüal 1999) o si ésta fue sometida o no a procesos de irrigación para mejorar su productividad (Terral y Durand 2006). Este tipo de estudios han permitido, por ejemplo, situar las poblaciones de acebuche durante el Tardiglacial en zonas de microclima húmedo como los ambientes riparios mediterráneos (Terral et al. 2004).

Los estudios biométricos se están aplicando recientemente a otros campos como el análisis del grosor de la madera utilizada como combustible. Esta discusión se inserta fundamentalmente en el estudio de yacimientos paleolíticos donde uno de los aspectos que determinan el grado de estacionalidad y de desarrollo tecnológico de un grupo es precisamente el tipo de recolección de madera que éste realiza. El modelo recientemente elaborado por Dufraisse (2006) parte de la imposibilidad de conocer el grosor de un tronco midiendo únicamente los escasos anillos de crecimiento que quedan por lo general en los carbones arqueológicos. Por ello propone la aplicación de una serie fórmulas a través de las cuales es posible aproximar las proporciones de los troncos estudiados. La aplicación de estos cálculos a yacimientos neolíticos de la región francesa de Jura (Dufraisse 2005, 2008) y al yacimiento paleolítico de la Grotte de Fumane, en la zona prealpina italiana (Chrzavzéz 2006) detectan una mayor utilización de troncos de mediano y pequeño calibre que no estaría en relación con restricciones del propio bosque, sino más bien con una elección de este tipo de plantas en equilibrio con los sistemas técnicos y económicos del grupo.
Las aplicaciones estadísticas han sido de gran utilidad en la interpretación ecológica de algunos estudios antracológicos (Rodríguez-Ariza y Esquivel 1990, Machado Yanes 1994, Piquè y Barceló 2002). Estos tests se han planteado en ocasiones con el objetivo de responder a cuestiones como la distribución homogénea o no de los taxones entre las cuadrículas o la diversidad florística diferencial entre los distintos niveles arqueológicos, para los que son de gran utilidad el test de heterogeneidad o χ^2, el análisis de varianza y el test de Tukey o de comparación de medianas, los índices de diversidad y equitabilidad y el análisis factorial de correspondencias (Machado Yanes 1994). En referencia al Sureste ibérico, en un reciente estudio publicado por Rodríguez-Ariza y Esquivel (2007) se aplican análisis de correspondencias y de cluster a los datos antracológicos de diferentes yacimientos calcolíticos y de la Edad del Bronce. Los resultados muestran una serie de agrupaciones taxonómicas que se corresponden con las condiciones bioclimáticas de cada yacimiento. Sus conclusiones muestran que los yacimientos más antiguos están dominados por una vegetación de encinar más o menos abierto, con taxones mesófilos, mientras que los de la Edad del Bronce presentan una degradación mucho mayor dando paso a un matorral heliófilo dominado por *Pinus halepensis*.

Algunas de las últimas aplicaciones que se han propuesto en Antracología se alejan del estudio arqueológico clásico, y suponen la aplicación de la técnica de identificación taxonómica en casos de documentación histórica de árboles monumentales, restauración de monumentos o como prueba pericial en la resolución de litigios civiles o científicos (Badal 2007).

Finalmente habría que destacar los importantes avances que se están llevando a cabo en el campo de la paleoetnografía, con estudios sobre poblaciones cazadoras-recolectoras actuales cuya única fuente de combustible es la madera. Las líneas principales de investigación en este campo son los métodos de recolecta de leña, el conocimiento sobre las propiedades de la madera recogida y la selección o no de combustible para determinadas tareas domésticas. Estudios etnoarqueológicos como los llevados a cabo sobre el poblado de Sarakini, en la región de Tracia, en Grecia (Ntinou *et al.* 1999, Ntinou 2002), o el de Jbala, situado en el Rif Occidental, en Marruecos (Peña-Chocarro *et al.* 2000, Zapata *et al.* 2003), o sobre la comunidad “Yámana” en la isla grande de Tierra del Fuego (Piquè 1999a) y en comunidades indígenas de la zona costera central de Perú (Moutarde 2006) están dando validez, y en ocasiones refutando, muchas de las hipótesis que se han ido plantear desde la Antracología con respecto a los usos y modos de explotación del combustible.
II.2. Fundamentos metodológicos y teóricos de la Antracología

En el ámbito de la Antracología los aspectos metodológicos son fundamentales para alcanzar conclusiones válidas en la interpretación de la dinámica de la vegetación del entorno de un yacimiento concreto, así como de las pautas de utilización del medio que se ejercían desde el mismo.

El proceso metodológico de la disciplina antracológica, entendido en su sentido más amplio, comprende dos etapas de trabajo diferenciadas. Una primera fase se desarrolla en el campo, y supone, primeramente, el estudio de la vegetación actual que se desarrolla en el entorno del yacimiento estudiado y, en segundo lugar, el planteamiento y ejecución del muestreo y tratamiento de las muestras. La segunda etapa se efectúa en el laboratorio, mediante la identificación botánica de los carbones obtenidos y su posterior cuantificación e interpretación definitiva.

En este apartado nos centraremos en las pautas teórico-prácticas que de manera general deben ser el punto de partida de cualquier estudio antracológico, y en base a las cuales hemos realizado el análisis de los yacimientos estudiados en esta tesis doctoral. Sin embargo, la gran heterogeneidad cronológica, metodológica e incluso logística que ha existido entre ellos ha supuesto que la metodología haya debido de ser adaptada a todos estos condicionantes en cada uno de los casos. Teniendo en cuenta esto, hemos optado por explicitar las posibles adaptaciones o puntualizaciones en la aplicación de la metodología en el epígrafe referido a los resultados de cada uno de los yacimientos en particular.

II.2.1. El trabajo de campo

II.2.1.1. Estudio de la vegetación del entorno del yacimiento

El primer paso a tener en consideración a la hora de afrontar el estudio antracológico de cualquier yacimiento es plantear una prospección botánica del entorno del mismo con el objeto de conocer las formaciones vegetales que se dan actualmente en la zona. En este trabajo de identificación botánica in situ son muy útiles algunas guías de vegetación de la Península Ibérica (Galán et al. 1998, López González 2001) y, en nuestro caso, sobre todo las referidas a los árboles y arbustos que se desarrollan en la Región de Murcia (Sánchez Gómez et al. 1996, 1998, Alcaraz Ariza et al. 1997, Sánchez Gómez y Guerra Montes 2003, Alcaraz Ariza y Rivera Núñez 2006). Así, una vez detectadas las características, posibilidades y limitaciones del área prospectada en cuanto al desarrollo de su vegetación, podrán plantearse a través de los resultados antracoanalíticos discusiones tales como los posibles cambios en la cubierta vegetal y los principales
agentes modificadores del entorno, como el clima o la incidencia antrópica sobre el medio.

Además, desde la Biogeografía, que estudia la distribución de los seres vivos sobre la Tierra, la Bioclimatología, que se preocupa de la relación entre los seres vivos y el clima y, en cierta medida, también gracias al estudio de las asociaciones vegetales, a cargo de la Fitosociología, es posible completar teóricamente los datos que se han obtenido sobre el terreno.

Desde un punto de vista biogeográfico, la Península Ibérica está dividida en dos grandes regiones: la eurosiberiana (norte de Portugal, gran parte de Galicia, Asturias, Cantabria, País Vasco, noroeste de Navarra y Pirineos occidentales), cuya vegetación natural es de bosques caducifolios, y la región mediterránea, en donde se encuadra la mayor parte de la Península Ibérica, y sobre la que centraremos nuestra atención. Cada una de estas regiones está relacionada con un “elemento florístico” que le es propio y que puede definirse como la agrupación de conjuntos de plantas relativamente afines según su origen, sus exigencias ecológicas o sus áreas de distribución (Costa et al. 2001) (fig. 2.2).

![Figura 2.2. Principales elementos florísticos de la Península Ibérica (Costa et al. 2001).](image)

En cuanto a la región mediterránea, su principal característica es la existencia de un periodo de 2 a 4 meses de sequía estival, que es independiente del índice pluviométrico anual de cada uno de sus territorios, el cual puede ser muy variable (López González
Las estrategias adaptativas de la vegetación en esta región se han orientado a la supervivencia en un medio con gran insolación y precipitaciones escasas e irregulares, por lo que el bosque está dominado por especies perennifolias xerófilas, de hoja esclerófila y preferentemente acicular. Se presentan básicamente encinares, alcornocales, acebuchares, enebrales, pinares, etc. cuya degradación puede ser más o menos pronunciada. Dentro de la región mediterránea se ha llegado a proponer la diferenciación del Sureste peninsular con respecto al resto (Walter y Beckle 1983-1986, citado en Costa et al. 2001), dado que sus extraordinarias condiciones de aridez dificultan el desarrollo del bosque, y la vegetación está dominada por espinares de diversa índole, coscojares, lentiscares, matorrales degradados, etc.

Figura 2.3. Mapas de precipitación y temperatura medias anuales en la Península Ibérica (Ninyerola et al. 2005).
La variable termoplumviométrica (temperatura y precipitación) (fig. 2.3) es una condicionante esencial en el desarrollo de la vegetación, aunque, como veremos posteriormente, existen procesos de inercia en la sucesión vegetal que modulan la importancia de este factor (Carrión y Van Geel 1999). Los estudios realizados desde el punto de vista de la Bioclimatología por Rivas-Martínez (1987) establecieron desde esta perspectiva una división de la Península Ibérica, en una serie de pisos bioclimáticos (fig. 2.4), que se definen por diferentes parámetros de temperatura y precipitación. En concreto, la región mediterránea está subdividida en cinco pisos que serían, de mayor a menor termicidad (tabla 2.1), el Termomediterráneo, Mesomediterráneo, Supramediterráneo, Oromediterráneo y Crioromediterráneo. Por otro lado, los ombrótipos que definen la precipitaciones medias anuales de la región mediterránea pueden ser, según su índice pluviométrico, Árido, Semiárido, Seco, Subhúmedo, Húmedo e Hiperhúmedo (tabla 2.2).

![Figura 2.4. Pisos termoclimáticos de la Península Ibérica, según Rivas-Martínez (1987).](image)

<table>
<thead>
<tr>
<th>Pisos bioclimáticos</th>
<th>T</th>
<th>m</th>
<th>M</th>
<th>tm</th>
<th>It</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crioromediterráneo</td>
<td>< 4º</td>
<td>< -7º</td>
<td>< 0º</td>
<td>< -3º</td>
<td>< -30</td>
<td>I-XII</td>
</tr>
<tr>
<td>Oromediterráneo</td>
<td>4 a 8º</td>
<td>-7 a -4º</td>
<td>0 a 2º</td>
<td>< 0º</td>
<td>- 30 a 60</td>
<td>I-XII</td>
</tr>
<tr>
<td>Supramediterráneo</td>
<td>8 a 13º</td>
<td>-4 a -1º</td>
<td>2 a 9º</td>
<td>< 4º</td>
<td>60 a 210</td>
<td>IX-VI</td>
</tr>
<tr>
<td>Mesomediterráneo</td>
<td>13 a 17º</td>
<td>-1 a 4º</td>
<td>9 a 14º</td>
<td>< 9º</td>
<td>210 a 350</td>
<td>X-IV</td>
</tr>
<tr>
<td>Termomediterráneo</td>
<td>17 a 19º</td>
<td>4 a 10º</td>
<td>14 a 18º</td>
<td>> 9º</td>
<td>350 a 470</td>
<td>XII-II</td>
</tr>
</tbody>
</table>

Tabla 2.1. Parámetros bioclimáticos de los pisos de vegetación mediterráneo, según Rivas-Martínez (1987). T= temperatura media anual, m= media de las mínimas del mes más frío, M= media de las máimas del mes más frío, tm= temperatura media del mes más frío, It= índice de termicidad \[10(T+m+M)\], H= meses afectados por las heladas (siendo I enero, II febrero… XII diciembre).
Capítulo II. La Antracología: origen, desarrollo y fundamentos teórico-metodológicos

<table>
<thead>
<tr>
<th>Ombrótipo</th>
<th>Precipitaciones anuales (en mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Árido</td>
<td>< 200</td>
</tr>
<tr>
<td>Semiárido</td>
<td>200 a 350</td>
</tr>
<tr>
<td>Seco</td>
<td>350 a 600</td>
</tr>
<tr>
<td>Subhúmedo</td>
<td>600 a 1000</td>
</tr>
<tr>
<td>Húmedo</td>
<td>1000 a 1600</td>
</tr>
<tr>
<td>Hiperhúmedo</td>
<td>> 1600</td>
</tr>
</tbody>
</table>

Tabla 2.2. Parámetros ombroclimáticos de la Región Mediterránea, según Rivas Martínez (1987).

Finalmente, la Fitosociología sigmatista ha supuesto tradicionalmente una herramienta utilizada como punto de apoyo para la comprensión de la dinámica de la vegetación de un determinado territorio. Esta disciplina se fundamenta en la existencia de la denominada “vegetación potencial”, que se define como la comunidad vegetal estable que existiría en un área dada como consecuencia de la sucesión geobotánica progresiva si el hombre dejase de influir y alterar los ecosistemas vegetales (Rivas-Martínez 1987). El concepto de “vegetación potencial” se plantea en estrecha relación con la definición clementsiana de “climax” (Clements 1936), que supone un estado ideal de la vegetación cuyo cambio se ha de entender siempre como un proceso de degradación. Desde la perspectiva fitosociológica, por tanto, existirían una serie de comunidades “climácicas”, sujetas a procesos de degradación, frente a otras “permanentes” cuyo comportamiento ecológico estaría limitado por las particularidades del sustrato (Costa et al. 2001).

En lo que concierne a la dinámica de sucesión vegetal, el planteamiento fitosociológico sigmatista sostiene que existe en este proceso un “modelo de equilibrio” según el cual el sistema de sucesión vegetal posee una dirección organizada y determinista hacia un estado ideal de equilibrio, que se correspondería con el “clímax”. Este modelo, sin embargo, ha sido criticado duramente desde ciertos posicionamientos que entienden la sucesión como un proceso histórico de gran complejidad en el que juegan un papel determinante los mecanismos de facilitación, inhibición, tolerancia, y sobre todo el propio azar (Terradas 2001) que, no obstante, podría ejercer como una manifestación externa del fenómeno del caos como modulador esencial de los cambios en la vegetación (Carrión 2003).

Desde este punto de vista, la sucesión estaría regida por las perturbaciones, las relaciones internas de competencia (Carrión et al. 2000, Carrión 2003), las especies disponibles, las características del ciclo de vida y el grado de exposición a diversas condiciones de estrés (Terradas 2001). Se plantea, pues, un individualismo en la dinámica de sucesión ecológica, que estaría en gran medida dirigido por la propia inercia del sistema, capaz de crear una cierta resistencia ante las modificaciones

Teniendo en cuenta estos aspectos, en este trabajo hemos expuesto cuáles son las principales asociaciones fitosociológicas que se dan en la región estudiada, pero éstas no constituirán la base fundamental de la discusión de los datos ecológicos obtenidos.

II.2.1.2. La presencia de carbón en contextos arqueológicos

II.2.1.2.1. Formación del registro antracológico

Es habitual, en la mayoría de contextos arqueológicos, documentar restos botánicos de diversa índole, entre los cuales una importante proporción tiene su origen en un aporte voluntario, aunque también pueden encontrarse en el sedimento tras una deposición natural, como ocurre mayoritariamente con algunos microrreos como el polen, las esporas o los fitólitos. En el caso de estos últimos, sustancias como la esporopollenina que recubre el grano de polen, o la propia composición silícea de los fitólitos, permiten su conservación en el sedimento arqueológico sin que se haya producido ningún tipo de reacción química previa. Sin embargo, para que esta preservación se produzca en el caso de los macrorreos vegetales deben darse condiciones más o menos excepcionales, o bien, como sucede mayoritariamente, que el resto haya sufrido un proceso previo de carbonización.

En el caso particular de la madera existen algunos contextos que pueden ser favorables para que su conservación en estado natural se produzca. Entre ellos son destacables los que están relacionados con ambientes de humedad constante, como turberas o zonas próximas a niveles freácticos de ríos, lagos y litorales marinos, donde se produce un gran descenso de la actividad bacteriana que descompone estos restos (Piqué 2006). En este sentido habría que subrayar la madera no carbonizada que se ha podido documentar en el poblado lacustre neolítico de la Draga (Banyoles, Girona), donde ha sido posible el estudio de los materiales de construcción y de los instrumentos realizados en madera (Bosch et al. 2000). En el sentido opuesto, los ambientes en los que existe una gran sequedad que se mantiene de manera constante, como los desérticos o algunas cuevas en ambientes áridos, favorecen también que pueda producirse esta conservación. A este respecto, resultan excepcionales los restos vegetales conservados en la sepulcral Cueva Sagrada de Lorca (Rivera Núñez y Obón 1987a, Eiroa García 2005).

La documentación de restos vegetales no carbonizados se ha constatado también en contextos sedimentarios específicos como las cuevas-redil, cuya estratigrafía se caracteriza por la superposición de capas negruzcas, grisáceas, o blanquecinas que son consecuencia de las sucesivas quemas de excremento de los animales estabulados en
ellas (Badal 1999). En este tipo de contextos se ha planteado la hipótesis de que la plasticidad del sedimento favorezca cierto grado de impermeabilización del suelo, preservando así a los restos vegetales de la acción microbiana. Ésta podría ser la razón que explicara la excelente conservación de restos de hojas de *Buxus sempervirens* y de madera de *Pinus nigra/sylvestris* aparecidos en los niveles neolíticos de estabulación de la Cova Colomera, en el Prepirineo de Lleida (Oms *et al.* 2008).

Parece probable, por otra parte, que la conservación de ciertos restos orgánicos como la madera pueda estar favorecida por el contacto directo con determinados compuestos químicos como los metales (Piqué 2006), y de hecho, algunos estudios específicos analizan residuos vegetales asociados a punzones y puñales metálicos del Calcolítico y la Edad del Bronce (Badal *et al.* 2007).

Finalmente, en los niveles de travertinos la madera y los restos vegetales desaparecen dejando como testigo de su presencia una huella en negativo que puede también proporcionar una interesante información. Este fenómeno aparece bien documentado en el yacimiento del Paleolítico Medio de Abric Romaní (Capellades, Barcelona), donde los restos de negativos de madera se corresponden mayoritariamente con troncos que sirvieron como combustible, aunque la morfología de algunos de ellos sugiere que pudieron ser algún tipo de objeto configurado (Allué 2002).

No obstante y en la mayoría de los casos, la presencia de restos de madera en contextos arqueológicos suele estar sujeta a la condición previa de que ésta haya sufrido un proceso de carbonización que permite su conservación en prácticamente cualquier tipo de contexto sedimentario.

La carbonización de la madera es un proceso químico que se produce como resultado de la aplicación de calor sobre la misma, creando modificaciones en su volumen y peso, así como en el grosor de las paredes celulares, de hasta 1/5 de su tamaño original (Chabal *et al.* 1999). Sin embargo, la carbonización no supone una pérdida de la estructura anatómica original del leño, que mantiene unas características prácticamente idénticas, permitiendo así su identificación botánica.

El proceso completo de combustión se desarrolla en cuatro fases diferenciadas: la deshidratación, la torrefacción, la pirólisis o carbonización y la comburación (fig. 2.5). La deshidratación se produce hasta los 170 ºC de temperatura aproximadamente, y en la horquilla desde estos 170 ºC hasta los 270 ºC aparece la torrefacción, que permite la conservación de la mayoría de las semillas que encontramos en contextos arqueológicos y en el caso de las ramas, el mantenimiento de su estructura morfológica inicial (Badal 2006). Durante estos primeros procesos se pierde hasta el 35% de la masa total debido a la eliminación de vapor de agua, gas carbónico y otros compuestos químicos (Chabal *et al.* 1999).
A partir de 270 ºC se da el fenómeno de pirólisis o carbonización, que supone la degradación de la celulosa y la lignina de la madera. Es en este punto cuando se produce la ignición, por la cual el carbón puede seguir elevando su temperatura sin intervención de ninguna fuente energética externa. Sólo si el aporte de oxígeno no es suficientemente elevado se produce la conservación del carbón. Según Piqué (1999a) entre las múltiples variables de las que depende que esta parada se produzca destacarían la concentración de elementos no inflamables en el área de combustión, un grosor elevado del tronco o ciertas pautas de comportamiento doméstico del grupo como arrojar restos no combustibles o líquidos no inflamables sobre las brasas. Si, por el contrario, el aporte de oxígeno es elevado, y no se produce esta parada en el estado de carbonización, una vez superados los 500 ºC, comienza la fase de comburación que conduce a la formación de cenizas residuales.

Figura 2.5. Proceso de combustión, según Chabal et al. (1999).
En definitiva, el estado de carbonización permite a la madera conservarse en la mayoría de yacimientos arqueológicos. Una vez esto ha sucedido, las diferentes actividades y momentos en los que la madera fue quemada, condicionan su distribución en el sedimento arqueológico. Salvo los casos excepcionales en los que se ha producido una destrucción del hábitat como consecuencia de un incendio, el carbón puede distribuirse en el yacimiento de manera dispersa o en concentraciones carbonosas de diversa entidad formando parte de estructuras. De este doble criterio va a depender la estrategia de muestreo a llevar a cabo y la interpretación posterior.

El carbón disperso es aquel que aparece diseminado por toda el área de ocupación, en cada uno de los estratos del yacimiento. En este caso los carbones son producto de diferentes momentos de combustión que debido a procesos de limpieza y remoción de los hogares domésticos, o a agentes naturales como la lluvia y el viento, se han ido esparciendo formando parte de un proceso deposicional de larga duración (Badal et al. 2003). Esta diacronía temporal y una baja selección de las especies dada la procedencia doméstica del carbón, sumadas a la realización de un muestreo amplio y correcto, serían, según la mayoría de los autores, las premisas básicas para que el registro pueda ser interpretado desde un punto de vista paleoambiental, al obtenerse en él gran cantidad de taxones (Chabal 1992).

Se considera como carbón concentrado a aquél que aparece en estructuras de combustión (Chabal 1982), como hogares u hornos, o bien en acumulaciones que pueden responder a otras circunstancias como ocurre, por ejemplo, en el caso de los agujeros de poste, estructuras de tipo funerario (*ustrinum*, urnas) (Grau 1990a, 1992 y 1995), o silos. Al contrario de lo que ocurre en el caso del carbón esparcido, el carbón concentrado contenido en una estructura de combustión es el producto de las últimas quemas que se realizaron en dicha estructura (Chabal 1988a, 1992), pues los restos del combustible anterior, no eliminados mediante su limpieza, suelen haberse transformado en ceniza por las sucesivas igniciones. La problemática interpretativa en el caso de las acumulaciones intencionales surge precisamente por la poca riqueza específica que la mayoría de ellas suelen presentar, ya que es muy común que aparezca sobrerepresentado algún taxón. Estas premisas hacen que las consideraciones que podemos obtener de este tipo de estructuras, dado que su contenido es difícilmente reflejo de la realidad ecológica del entorno, sean mayoritariamente de tipo paleoetnológico, relativas a los usos y costumbres económicos de un determinado grupo, y a la captación de los recursos bióticos que ejerció sobre su entorno.

Sin embargo, estas observaciones sobre el carbón concentrado admiten numerosos matices, teniendo en cuenta precisiones como el tipo de vegetación que se desarrollara en el entorno, la tipología estructural concreta y el tiempo de utilización de la misma (Badal 1992).
Una mayor riqueza vegetal en las cercanías del yacimiento durante el período en que éste fue ocupado puede favorecer la aparición de más taxones en las estructuras de combustión. Sin embargo, esta condición también puede ser el origen del efecto contrario, si debido a una amplia disponibilidad de recursos en el entorno se dan en el hábitat patrones de selección del combustible (Shackleton y Prins 1992) en relación con la funcionalidad de la estructura o con las propiedades de la leña.

En lo que concierne a la tipología estructural, las condiciones que amplían la variabilidad taxonómica del registro antracológico pueden ser varias. Por un lado, por ejemplo, las estructuras de combustión en fosa presentan más dificultades para su limpieza y suelen contener más especies que las que están situadas en una superficie plana (Badal 1992, March 1992, Ntinou et al. 1999). Por otro lado, la funcionalidad de la estructura puede determinar también este criterio, de modo que se ha considerado que existirían estructuras “no restrictivas”, como los hogares domésticos, y otras “restrictivas”, en las que se produciría una fuerte selección del combustible dependiendo de la actividad artesanal para la que estuvieran concebidas (Pernaud 1992). Sobre estos argumentos cabe la excepción de los silos reutilizados como vertedero, o de otro tipo de estructuras como las inhumaciones, en cuyo caso la combustión no se ha producido directamente en el interior de las mismas sino que habrían sido rellenadas con sedimento que contiene carbones dispersos. Por ello, la información obtenida en este tipo de estructuras es generalmente asimilable a la procedente del carbón disperso (Bernabéu y Badal 1990, Figueiral 1992, Grau 1995, Badal et al. 2003, García Martínez y Grau 2005, Oms et al., en prensa).

Finalmente, el criterio de duración de la actividad de la estructura resulta fundamental para comprender el grado de variabilidad taxonómica que concurre en ella. Así, parece demostrado que la escasez taxonómica en una determinada estructura puede estar más relacionada con un uso poco prolongado de la misma que con ciertos procesos de selección del combustible (Pernaud 1992, Hasler et al. 2003, García Martínez y Ramírez Águila, en prensa).

En los casos expuestos hasta el momento, el material antracológico es resultado de combustiones voluntarias por parte de un determinado grupo humano. Sin embargo, hay que tener en cuenta que una de las causas por las cuales puede aparecer gran cantidad de carbones en un yacimiento es que en él se haya producido una destrucción por incendio. En este caso no sólo encontramos la madera usada como combustible, sino también aquélla que servía como material de construcción (Grau 1990a, 1995) o para la elaboración de determinados objetos.

Sabemos que en estos casos existe un fuerte componente selectivo que suele estar sujeto a variables como las necesidades técnicas de la construcción concreta, las propiedades mecánicas de las diferentes especies leñosas, aspectos culturales o creencias.
tradicionales con respecto a las especies (Peña-Chocarro et al. 2000) y, salvo excepciones como la utilización de elementos alóctonos en cronologías recientes (De Haro Pozo 2002a, García Martínez y Matilla Séiquer 2008), también a la disponibilidad de especies en el entorno de la ocupación.

En determinados casos ha sido posible la individualización de los troncos utilizados en contextos habitacionales (Duque 2004a, Carrión Marco 2007), aunque en la mayoría de las ocasiones las limitaciones de la disciplina impiden discernir este uso, por lo que las interpretaciones en niveles de destrucción por incendio deben ser planteadas con cierta cautela, orientadas fundamentalmente hacia una perspectiva etnológica y consensuadas con la interpretación arqueológica de los contextos en los que aparece el carbón (Chabal et al. 1999).

II.2.1.2.2. Sistemas de muestreo

Tomando como punto de partida estos condicionantes sobre la repartición del carbón en el terreno, la problemática se plantea a la hora de establecer cómo afrontar el muestreo de cada tipo de contexto, de manera que éste sea representativo para llegar a conclusiones válidas en el posterior análisis de los resultados.

Las numerosas propuestas publicadas hasta el momento presentan gran cantidad de criterios en común, aunque con matizaciones que dependen de aspectos tales como la cronología (Badal 1988, 1992, Badal y Heinz 1991, Grau 1992, Chabal et al. 1999) o las características del yacimiento desde una perspectiva tipológica (Buxó y Piqué 2003). El punto de partida de todas estas tendencias es coincidente, no obstante, en la idoneidad de recuperar la totalidad del sedimento para la posterior obtención de la muestra. Sin embargo, dado que en ocasiones la recuperación de tal cantidad de sedimento es inviable por razones logísticas, también existe coincidencia entre los investigadores en que es necesario establecer un método de muestreo que se realice sistemáticamente en toda la extensión excavada y en cada nivel o unidad estratigráfica establecidos, eliminando criterios de selección por parte del arqueólogo que condicionarían a posteriori la validez interpretativa de las muestras.

Desde el punto de vista cronológico, las propuestas se han centrado en la diferenciación existente entre yacimientos prehistóricos y protohistóricos o más recientes.

En el caso de los yacimientos prehistóricos es habitual que las posibilidades en cuanto a infraestructura y metodología de excavación permitan el procesado del 100% del sedimento excavado, eliminando por tanto la necesidad de plantear un muestreo. En estos casos, Allué (2002) propone la combinación de una recogida manual de los fragmentos mayores de 4 mm y de aquellos de menor tamaño que se vean durante la
excavación, con el tamizado del resto del sedimento. De esta forma se obtiene, por un lado, la coordinación tridimensional del carbón, que proporciona información adicional sobre áreas de dispersión del mismo, al tiempo que en el caso de los fragmentos más frágiles, se evita la rotura excesiva que pueden traer consigo métodos más agresivos como el tamizado con agua o la flotación (Dennell 1972, Allué 2002).

En lo que concierne al carbón disperso, Badal (1992) advierte del sesgo florístico y porcentual que puede derivarse de un muestreo insuficiente, por lo que propone que la recogida en yacimientos prehistóricos sea de, al menos, 4 m³ si se cuenta con un número suficiente de carbones en la muestra. Además, Badal et al. (2003) desaconsejan combinar este sistema con una recogida manual que crearía una selección artificial de aquello que el arqueólogo ve, desechando el resto.

Buxó (1990, 1997) propuso otro sistema de muestreo que se basa en la realización de un test previo que supone la recogida inicial de 20 litros de sedimento por estrato para evaluar la riqueza del mismo. Si el test es negativo o nulo la muestra no se ha de ampliar, mientras que si es positivo (relación esfuerzo-rendimiento positiva) se ampliará progresivamente hasta que la relación esfuerzo-rendimiento sea negativa (Alonso et al. 2003).

Los yacimientos protohistóricos o de cronologías posteriores presentan características distintas a los prehistóricos, teniendo en cuenta fundamentalmente que su complejidad estructural suele ser mucho mayor, y que los sistemas de excavación pueden ser también distintos. Por ello, las estrategias de muestreo de macrorrestos vegetales en estos casos son casi obligadas, y sensiblemente distintas al caso anterior debido a que es muy dificultosa la recuperación del total del sedimento extraído.

Grau (1992) propone, para yacimientos excavados con el método Harris, la recogida de unos 5 litros de sedimento por Unidad Estratigráfica, siempre y cuando la cantidad de carbón sea considerable, aunque apuesta por incrementar el esfuerzo de muestreo en casos de escasez de material. Los mismos criterios son seguidos por Figueiral (1992) y Duque (2004a), aunque este último plantea una combinación de la recogida de estos 5 litros – en este caso por m² y no por UE- con un muestreo manual de todos los carbones visibles durante el proceso de excavación. P. Uzquiano se inclina también para yacimientos de la Edad del Hierro en la zona del Valle del Duero por la combinación entre la recuperación manual de los fragmentos de carbón superiores a 2 cm, más la criba (en seco o con agua) y flotación del resto del sedimento, aunque sin especificar ninguna cantidad en concreto (Uzquiano 1995b).

En yacimientos de época medieval, aunque su estudio desde una perspectiva antracológica es mucho más reciente, se están realizando cada vez más esfuerzos por aplicar una metodología de muestreo del sedimento. De Haro Pozo (1998) plantea para
estos casos que aunque se tamice en seco una parte importante del sedimento durante la excavación, al menos sean recogidos 5 litros por UE destinados a su flotación en el laboratorio, sobre todo en el caso de las estructuras de combustión (García Martínez y Ramírez Águila, en prensa).

Todos estos autores coinciden en que para afrontar el muestreo de las estructuras (carbón concentrado) sí que es necesario individualizar la muestra y recoger la totalidad de su relleno, aunque si el volumen es muy elevado, existe la posibilidad de realizar, como en el caso del esparcido, un test previo (Alonso et al. 2003).

Existen también algunas propuestas que se centran en el muestreo de determinadas tipologías de yacimiento. Estas perspectivas coinciden mayoritariamente en las líneas que se han planteado anteriormente. Desde este punto de vista, la publicación La recogida de muestras en arqueobotánica: objetivos y propuestas metodológicas (Buxó y Piqué 2003) derivada del encuentro del “Grupo de Trabajo de Arqueobotánica de la Península Ibérica” celebrado en Barcelona en el año 2000, recoge numerosas propuestas a tener en cuenta dependiendo de las múltiples variables que presenta cada yacimiento.

Cabe destacar, en primer término la especificidad que plantean algunos casos como los yacimientos dolménicos, para los que Zapata y Figueiral (2003) inciden en la necesidad de recuperar la totalidad del sedimento, aunque individualizando claramente no sólo los hogares, sino también los carbones asociados a huesos humanos, como por ejemplo en el caso del dolmen de Collado del Mallo (López de Calle et al. 2001).

También destaca el caso de los yacimientos en cueva, que siguen en líneas generales lo planteado para los sitios prehistóricos, aunque, por ejemplo, Carrión Marco (2005a) considera oportuno recoger de 10 a 12 litros por talla artificial en el caso de que sea necesario excavar mediante este sistema.

En lo que se refiere a intervenciones realizadas en contextos urbanos actuales, cuya metodología tradicionalmente no ha tenido en cuenta la recuperación de macrorrestos vegetales, Pérez Jordá et al. (2003) estiman la necesidad de realizar un test previo de unos 20 litros de sedimento por cada UE excavada, que puede ampliarse hasta 300 en el caso de que los restos sean muy abundantes. Aún así, consideran que una propuesta realista debe plantear la recuperación de un mínimo de 40 litros por UE en el caso de los niveles de hábitat, mientras que cuando se trata de estructuras es necesaria la recogida de la totalidad del relleno.

Finalmente es reseñable el caso muy particular de los yacimientos en medio húmedo, que, como se ha comentado con anterioridad, permiten la conservación del material orgánico no carbonizado. En este caso los objetivos, sin dejar de lado la interpretación medioambiental, se centran fundamentalmente en el estudio de los artefactos de madera,
por lo que es recomendable la recogida y separación de cada resto, en combinación con la flotación que permitirá documentar fragmentos más pequeños, astillas, etc. (Buxó et al. 2003).

Esta gran variedad de propuestas metodológicas, salvando los matices, coinciden sin embargo en los aspectos fundamentales que se han de tomar en consideración a la hora de abordar la recuperación de macrorrestos vegetales. En primer lugar, hay que tener en cuenta que la opción más plausible, si no es posible la recogida de la totalidad del sedimento, es la realización de un muestreo; en segundo término, dicho muestreo se ha de plantear de manera que cubra totalmente el yacimiento, tanto en extensión como desde una perspectiva estratigráfica; en tercer lugar, es necesario evitar que el muestreo sea selectivo (“lo que se ve”), realizándolo indistintamente sobre toda la extensión, evitando de esta forma crear un sesgo interpretativo; finalmente, en el caso del muestreo de acumulaciones carbonosas o de estructuras concretas la estrategia de recogida ha de plantearse de manera individualizada recuperando la totalidad del sedimento que contienen.

En el caso de los yacimientos estudiados en esta tesis doctoral cuyo muestreo ha sido coordinado por nosotros hemos planteado la recuperación en el caso de los niveles de hábitat (carbón disperso) de una cantidad oscilante entre 20 y 50 litros de sedimento por UE, teniendo en cuenta la riqueza orgánica del mismo (a mayor riqueza, mayor cantidad) y por otra parte la recogida, cuando se ha tratado de acumulaciones carbonosas o de estructuras (carbón concentrado), especialmente de combustión, de la totalidad del sedimento contenido en las mismas.

Para que esta información pueda ser documentada de manera ágil durante el proceso de excavación, hemos realizado una propuesta (García Martínez y Grau 2008) que plantea la inclusión dentro de la propia ficha de Unidad Estratigráfica de un cuadro que contendría los datos referidos al trabajo de campo: el tipo de UE o de estructura, el muestreo y el procesado de la muestra (fig. 2.6). Este cuadro permitiría al arqueólogo un control completo de todas las facetas desarrolladas en el trabajo de campo, y facilitaría la labor de interpretación del especialista que tendría acceso de manera simultánea tanto a los datos del muestro arqueobotánico propiamente dicho como a todo lo relacionado con el contexto arqueológico del cual ha sido obtenida la muestra.

En cuanto al tipo de UE o de estructura, se plantea la conveniencia de especificar las características morfológicas de la misma mediante una foto o croquis, en el que se indique, *grosso modo*, la forma de la estructura, la situación tridimensional en la que se encuentra con respecto a la extensión del yacimiento y la disposición de los carbones si esto fuera posible.
En el apartado relativo al muestreo habría que indicar si éste se ha llevado a cabo de manera sistemática en todo el yacimiento, o si por el contrario se ha tratado de una recogida de sedimento puntual. Junto a estas dos opciones, es necesario distinguir si la recogida proviene del nivel de hábitat (carbón disperso) o de alguna estructura en concreto (carbón concentrado), indicando en ambos casos la cantidad de sedimento recogida, medida en litros.

Finalmente, en lo que concierne al procesado de la muestra, se habría de indicar el método empleado para la obtención de la misma: criba en seco, criba con agua o flotación. En el siguiente subapartado resumimos estos tres métodos, con sus ventajas e inconvenientes e indicando en qué casos es aconsejable el empleo de cada uno de ellos.

II.2.1.2.3. Tratamiento de las muestras

Una vez recogido el sedimento, son varias las técnicas a través de las que se puede llevar a cabo el tratamiento de las muestras antracológicas para la obtención definitiva del carbón a estudiar: el tamizado en seco, el tamizado con agua, la flotación manual simple y la flotación con máquina.

El tamizado en seco es un método que se suele aplicar en la mayoría de yacimientos arqueológicos, y está indicado sobre todo en aquellos en los que las limitaciones de infraestructura impiden la utilización de agua en el mismo. Las mallas que se suelen utilizar para la posterior selección de los restos son de tamaño decreciente, desde los 5 mm, siguiendo con una de 2 mm y finalmente otra de 0,5 mm (Buxó 1990), aunque para extraer directamente los carbones susceptibles de ser estudiados la luz de malla más recomendable es la de 2 mm (Allué 2002). Las ventajas de este sistema residen sobre
todo en que se evita la sobrefragmentación del carbón que suelen producir los métodos de cribado con agua, pero, sin embargo, no es aconsejable en casos con abundante cantidad de sedimento, dado que el proceso de separación posterior del carbón es muy laborioso, y la suciedad que se mantiene en el material impide una buena observación de todos los fragmentos. Además, tampoco es recomendable la elección de este sistema de tratamiento cuando los sedimentos son muy arcillosos o compactos, debido a que éstos suelen ocultar el carbón en su interior y el cribado sin agua es insuficiente para su separación definitiva.

El tamizado con agua (fig. 2.7) se realiza también con una columna de tamices de malla decreciente de 5 mm, 2 mm, 1 mm y 0,5 mm sobre la que se aplica agua con cierta presión hasta que el sedimento está completamente limpio. Entre las ventajas de este sistema se encuentra la posibilidad de recuperar todos los restos contenidos en el sedimento: carbones, semillas, microfauna, pequeñas lascas de sílex, etc. y la gran limpieza de todos ellos que facilita su posterior selección. Sin embargo, también existen una serie de inconvenientes o limitaciones asociados a esta técnica de tamizado. Por un lado, para que la ejecución de este procedimiento sea correcta se ha de aplicar el agua con cierta prudencia, evitando el contacto brusco con los restos vegetales, con lo que se consigue que no se produzca una sobrefragmentación del carbón y que las semillas exploten al penetrar el agua en su estructura celular (Buxó 1990). Por otro lado, esta técnica tiene una de sus principales limitaciones en el caso de los sedimentos arcillosos, que deben ser disueltos con anterioridad, utilizando si fuese necesario ciertos componentes químicos como el trisodio fosfato o algunos compuestos del cloro (Buxó 1990). Finalmente, uno de los inconvenientes que encontramos también en este tipo de tamizado es que, como ocurría con el tratamiento en seco, supone un trabajo muy laborioso la separación manual de los carbones con respecto al resto de materiales que quedan en los cedazos.

Finalmente el sistema de flotación, tanto realizado de forma manual como con máquina (fig. 2.7), es en general el más recomendado de todos los métodos que permiten la recuperación del registro antracológico y carpológico de un yacimiento (Gailland et al. 1985, Buxó 1988, 1990, 1997), y el que hemos empleado en la recuperación de los carbones estudiados en este trabajo. Esta técnica se fundamenta en el hecho de que los macrorrestos vegetales carbonizados poseen una densidad inferior a la del agua y, como consecuencia de ello, al sumergir el sedimento arqueológico, este tipo de restos flota, quedando abajo los elementos más pesados. A través de la flotación es posible por lo tanto recuperar un elevado porcentaje de los macrorrestos vegetales contenidos en el sedimento, aunque no suele ser efectivo con la totalidad de los mismos, ya que es muy común, sobre todo en sustratos con cierta humedad, que algunos restos pesen más, o bien que hayan absorbido, debido a procesos postdeposicionales, sustancias que elevan su densidad. También se ha observado que ciertas leguminosas por norma general no suelen flotar en el agua (Pérez Jordá, com. pers.).
La flotación manual simple se realiza vertiendo el sedimento en un recipiente con agua y removiendo de forma intermitente dejando pequeños espacios de tiempo entre cada remoción para que los elementos más pesados puedan flotar. Posteriormente se ha de recuperar la fracción ligera, bien mediante la utilización de un colador, o bien vertiendo el agua al exterior del recipiente donde se debe haber colocado un cedazo para recoger los restos que flotan.

![Diagrama de flotación manual simple y con máquina](image)

Figura 2.7. Sistemas de tratamiento de muestras con agua, según Buxó y Piqué (2003), modificado.

La máquina de flotación, por su parte, consiste en una cuba en la que se introduce un tamiz o una columna de tamices que impedirán la pérdida del sedimento no flotante, que es removido con agua y aire para separar la tierra de los restos que flotan, que a su vez caerán a una columna de tamices colocada en el exterior de la cuba. Los restos recuperados en cada tamiz dependerán del tamaño de la malla utilizada. En el tamiz de 5 mm encontraremos restos de tamaño considerable, como carbones, frutos o huesos de frutales; la malla de 2 ó 1 mm permite la recuperación de cereales, leguminosas y huesos pequeños; si también hemos utilizado el tamiz de 0,5 mm podremos obtener restos de plantas adventicias y ruderales; finalmente, en algunos casos puede utilizarse una malla de 0,25 mm para los restos más pequeños, como algunas semillas de plantas.
Recursos forestales en un medio semiárido.

Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

... silvestres (Alonso et al. 2003). Una de las grandes ventajas de la utilización de la máquina de flotación es la capacidad de procesar grandes cantidades de sedimento en un tiempo relativamente corto y la recuperación y lavado también de la fracción no flotante que queda en el interior de la cuba.

Si se han utilizado sistemas con agua es importante que el secado posterior se realice de forma natural y, si es posible, sin la incidencia directa del sol, de manera que no se produzca una pérdida brusca de humedad que tenga como consecuencia la alteración de la estructura anatómica del carbón (Badal 1988b, Buxó 1990) o una rotura excesiva.

Como vemos, el tipo de yacimiento condiciona de manera definitiva el trabajo de recuperación de restos que se ha de realizar sobre él. Esto no es óbice, sin embargo, para la realización de un muestreo bien gestionado que permita que el siguiente paso, el trabajo de laboratorio, proporcione datos fiables y válidos en cuanto a las interpretaciones paleoambiental y paleoecológica de los resultados.

II.2.2. El trabajo en el Laboratorio

II.2.2.1. La identificación taxonómica del carbón

El fundamento primordial del que parte la identificación botánica de un fragmento de carbón es la capacidad de reconocer los caracteres anatómicos de la madera y de diferenciar los rasgos diagnósticos que permiten encuadrar dicho fragmento dentro de una familia, género y/o especie determinados. Gracias al gran avance que supuso la utilización del microscopio óptico de reflexión (Vernet 1973), este proceso no implica ningún método químico sobre la muestra antracológica, con lo cual el carbón puede ser utilizado posteriormente para otros fines como la datación mediante 14C (Vernet et al. 1979).

Los carbones estudiados en esta tesis doctoral han sido identificados gracias a la utilización de los medios técnicos proporcionados por el Laboratorio de Arqueología de la Universidad de Murcia (LABAUMU) y por el Departament de Prehistòria i Arqueologia de la Universitat de València, que cuentan con sendos microscopios metalógicos con óptica de campo claro/campo oscuro, de 100 a 500 aumentos, modelo Leica DM 2500 M en el caso de la Universidad de Murcia (fig. 2.8), y Nikon Optiphot-100 en la Universitat de València.

Este proceso cuenta con una serie de apoyos metodológicos gracias a los cuales es posible alcanzar una mayor precisión y seguridad en las identificaciones. Primeramente, las características anatómicas de las diferentes especies pueden ser consultadas en diversos atlas de anatomía de la madera, que, siguiendo una serie de criterios
Capítulo II. La Antracología: origen, desarrollo y fundamentos teórico-metodológicos

diagnósticos, ayudan a discernir el taxón del carbón estudiado (Metcalfe y Chalk 1950, Greguss 1955, 1959, Jacquiot 1955a, 1955b, Jacquiot et al. 1973a, 1973b, Schweingruber 1978, 1990, Vernet et al. 2001, García Esteban et al. 2003). Además, es fundamental la comparación de los carbones arqueológicos con una colección de referencia de madera actual carbonizada, que generalmente suele sacar de dudas en la identificación definitiva del carbón. En nuestro caso hemos apoyado nuestras identificaciones en la comparación con la colección de referencia de madera actual carbonizada de la Universitat de València, que cuenta con más de 300 especies leñosas recogidas en diversos espacios ecológicos, con la de la Université Paris X (Nanterre), rica en especies europeas y americanas y con la colección que hemos iniciado en la Universidad de Murcia (fig. 2.9), que posee hasta el momento unas 62 especies, algunas de las cuales de desarrollo exclusivo en el Sureste semiárido de la Península Ibérica.

La utilización del Microscopio Electrónico de Barrido (S.E.M.) ayuda en algunas ocasiones a la definitiva identificación del carbón ya que, al contar con más aumentos, posibilita una mejor visión de los caracteres anatómicos. Sin embargo, su uso está normalmente dirigido a la realización de fotografías ilustrativas de las especies identificadas, ya que no acusa los problemas de visualización derivados de las diferencias de relieve en el corte, con lo que alcanza mucha mayor calidad de imagen (fig. 2.10). Las fotografías de carbones que se exponen en esta tesis han sido realizadas mediante el equipo de Microscopia Electrónica de Barrido Hitachi S-4100 de la Universitat de València, y del modelo JEOL JSM-6100 del Servicio de Microscopía de la Universidad de Murcia. En este último caso se nos ha planteado la problemática de que las fotografías poseen una escala apreciable únicamente en su tamaño original, pero no visible en las dimensiones en que éstas son expuestas en este trabajo. Ante esta disyuntiva, y con el objetivo de no manipular la imagen original para no generar imprecisiones en la escala hemos optado por indicar en el caso de las fotografías
realizadas con el modelo JEOL JSM-6100 la magnificación a la que fueron realizadas, que se expresarán con una “x” más el valor del aumento (p. e. x 100).

Figura 2.9. Fases del proceso de creación de la antracoteca del Laboratorio de Arqueología de la Universidad de Murcia.
Capítulo II. La Antracología: origen, desarrollo y fundamentos teórico-metodológicos

Figura 2.10. Visualización de un fragmento de *Fagus sylvatica* mediante S.E.M. (x 75) y mediante microscopio óptico metalográfico (x 100).

En la práctica, la identificación de cada fragmento de carbón se lleva a cabo mediante la observación de los tres planos anatómicos del tronco (fig. 2.11), que pueden ser estudiados realizando fracturas manuales sobre cada fragmento de carbón. Estos tres planos son el transversal, perpendicular al eje del tronco, donde son observables los anillos de crecimiento y los leños temprano y tardío de la planta; el plano longitudinal radial, que pasa por el eje y un radio del tronco y el plano longitudinal tangencial, paralelo a un plano tangente del tronco, o al anillo de crecimiento. En cada uno de ellos se encuentran una serie de rasgos anatómicos que varían dependiendo de si se trata de una gimnosperma, angiosperma dicotiledónea o angiosperma monocotiledónea.

Figura 2.11. Planos anatómicos en *Buxus* sp. (x 65).
La estructura anatómica de las Gimnospermas es más simple que la de las frondosas, puesto que las coníferas no poseen ni tráqueas ni parénquima axial, con lo que están constituidas fundamentalmente por traqueidas, parénquima y radios medulares. En el proceso de observación microscópica de los carbones de gimnosperma los rasgos fundamentales a tener en cuenta son las traqueidas, los radios, las punteaduras de los campos de cruce y la existencia o no de canales resiníferos (fig. 2.13).

Las traqueidas se encuentran en el xilema de todas las plantas, pero forman el único elemento del tejido xilemático en aquéllas que carecen de tráqueas como las criptógamas vasculares, las gimnospermas y la Orden Ranales (Paniagua et al. 1997). Morfológicamente se disponen en forma de prisma alargado, unidas longitudinalmente formando alineaciones paralelas al eje de la planta (García Esteban et al. 2003). Están compuestas por un tejido fibroso lignificado que ejerce como conductor de líquidos, y también como sostén para la planta. Estas traqueidas son muy características en las coníferas ya que poseen una serie de punteaduras grandes y areoladas que se disponen generalmente de forma uniseriada y que permiten su intercomunicación.

Los radios son láminas cuyo espesor suele estar reducido a una sola célula de parénquima, exceptuando los casos en los que existen canales resiníferos, cuando suelen presentar dos células de grosor. Estos radios son de poca altura en la mayoría de las especies, y se comunican con las traqueidas, situadas en perpendicular, a través de pequeñas punteaduras (Fischesser 2000). Cuando el radio está formado exclusivamente por parénquima se llama radio homogéneo, si está constituido por traqueidas y parénquima se trata de un radio heterogéneo y si además tiene canales resiníferos se denomina “radio fusiforme” (García Esteban et al. 2003).

Las punteaduras de los campos de cruce son el sistema de paso entre las células del parénquima radial y las traqueidas verticales. El campo de cruce se define como la superficie de contacto limitada, en las secciones radiales, por las dos paredes de las traqueidas verticales y las dos paredes horizontales de las células del parénquima (García Esteban et al. 2003). La forma, tamaño y disposición de las punteaduras de estos campos son rasgos fundamentales en la distinción entre las diferentes especies de gimnospermas. Existen cinco tipos de punteaduras de los campos de cruce (fig. 2.12): las de tipo Pinoide I o Fenestroide se caracterizan por ocupar casi totalmente el área del campo de cruce, por lo que suelen presentarse una por cada campo, y excepcionalmente dos, de morfología rectangular y sin rebordes marcados. Las de tipo Pinoide II son de menor tamaño, de forma redondeada y sin reborde, pudiendo presentarse hasta cinco por campo de cruce. El tipo Piceoide sí tiene rebordes marcados y se caracteriza por poseer aberturas alargadas, estrechas y atravesadas de forma ovalada, sobresaliendo sus extremos. Las punteaduras de tipo Cuprosoides tienen también reborde y aberturas ovaladas, pero éstas no sobresalen como en el caso anterior, sino que están contenidas totalmente en el reborde de la punteadura. Por último, el tipo Taxodioides es de
tendencia circular a elíptica, con rebordes y llegando a los bordes de la punteadura (Schweingruber 1990, García Esteban et al. 2003).

Finalmente, los canales resiníferos son cavidades tubulares rodeadas por células que segregan resina como elemento de protección de la planta (Fischesser 2000). Se sitúan principalmente en el leño final o de transición, aunque en especies como *Pinus halepensis* es común que se presenten también en la madera de primavera. Su existencia o no, así como su disposición en el leño puede ayudar a la identificación del género y especie de una gimnosperma, aunque parece demostrado que en ocasiones este criterio se modifica según las condiciones específicas del lugar de procedencia de la muestra, con lo que habitualmente no es un criterio definitivo.

Las angiospermas presentan una estructura celular más compleja que las gimnospermas, y distinta en el caso de las dicotiledóneas (dos cotiledones en el embrión) y las monocotiledóneas (un solo cotiledón en el embrión).

Los principales rasgos anatómicos diagnósticos en el caso de las Angiospermas dicotiledóneas, se sitúan en las tráqueas (vasos), el parénquima y los radios.

Las tráqueas son vasos de conducción y de sostén de la planta que se comunican entre sí a través de punteaduras intervasculares que pueden ser simples o vestidas. Estos vasos pueden presentar engrosamientos helicoidales en la zona interna de la pared secundaria (fig. 2.14) y suelen poseer perforaciones al menos en los dos tabiques distales del vaso. La morfología de estas perforaciones, simple, escalariforme o foraminada (fig. 2.14), es uno de los rasgos distintivos más importantes entre las diferentes especies y responde al grado de evolución de la planta, de modo que las más evolucionadas poseerían perforaciones simples y las menos evolucionadas escalariformes o foraminadas.

Figura 2.14. Engrosamientos helicoidales (1) y tipos de perforación de los vasos: simple (A), escalariforme (B) y foraminada (C), según García Esteban *et al.* (2003), modificado.
Los vasos, que pueden presentarse de forma aislada, en agrupaciones, o como vasos múltiples radiales (García Esteban et al. 2003), pueden distribuirse en el leño de diferentes maneras: en anillo poroso, cuando el diámetro de los vasos de primavera marcadamente mayor que los de la madera de verano, en anillo semiporoso, cuando esta diferenciación se produce de manera más progresiva y la diferencia de tamaño es menos, y finalmente de forma difusa, cuando existe un relativo equilibrio en el tamaño de los vasos del leño temprano y tardío (Schweingruber 1990).

En el proceso de duraminización de algunas maderas los vasos pueden presentar una obstrucción del lumen del elemento vascular como consecuencia de la penetración de las células que los rodean a través de las punteaduras. Es lo que conocemos como títides o thyllos (fig. 2.15) (García Esteban et al. 2003).

En cuanto al parénquima, se trata de un tejido muy poco diferenciado que puede considerarse como precursor de los demás tejidos de las cormófitas (Paniagua et al. 1997). Es, en realidad, un tejido de relleno que ocupa los espacios entre otros tejidos más diferenciados. Sus principales funciones son la fotosíntesis, elaboración y almacenamiento de sustancias (sobre todo almidón), secreción, excreción, etc. Su distribución en el leño puede ser apotraqueal, cuando no se encuentra asociado ni a vasos ni a traqueidas vasculares, paratraqueal, cuando esta asociación sí que existe, y metatraqueal, cuando el parénquima forma agrupaciones en bandas que pueden o no estar asociadas a los vasos (García Esteban et al. 2003).

Figura 2.15. *Pistacia lentiscus* de la Punta de los Gavilanes con presencia de títides en sus vasos.
Finalmente, en el caso de las angiospermas dicotiledóneas, los radios son uno de sus rasgos diagnósticos más importantes. Estas células se distribuyen de forma transversal al eje del árbol y se encargan de funciones de almacenamiento y transporte. En ciertas especies como las del género *Pistacia* pueden presentar canales intercelulares de secreción de látex cuyo origen es el mismo que los resiníferos de las coníferas. La morfología de los radios es muy variable en cuanto a anchura (series), según la cual pueden ser uniseriados, biseriados, triseriados o multiseriados y en cuanto a su altura, que puede ser muy variable, desde una hasta decenas de células. Además, según su morfología los radios pueden ser homogéneos cuando están formados únicamente por células procumbentes en una o varias alineaciones según la anchura de los mismos y heterogéneos cuando están formados por células procumbentes y erectas marginales (Schweingruber 1978, 1990, García Esteban et al. 2003).

Las Angiospermas monocotiledóneas tienen una estructura mucho más simple que las dicotiledóneas, ya que carecen de crecimiento secundario. Está formada por una serie de haces libero-leñosos o cribovasculares (fig. 2.17) que están compuestos por células de floema y de xilema, y se encargan de la conducción de sustancias. Juegan un papel importante en la identificación de las monocotiledóneas, teniendo en cuenta su disposición: radial, concéntrica, colateral, etc. Además, poseen una serie de fibras que forman vainas alrededor de los haces cribovasculares.

Figura 2.17. Detalle de un haz cribo-vascular de Monocotyledoneae (x 3300) del Balneario Romano de Archena.

II.2.2.2. La cuantificación de los datos

El sistema utilizado para la cuantificación de los datos ha generado controversias metodológicas acerca de cuál es la unidad de medida que refleja mejor la relación proporcional entre el carbón arqueológico y la madera de origen, y, en el caso particular de los fragmentos, cuántos han de ser analizados para validar la muestra desde un punto de vista interpretativo.

En lo que concierne a la unidad de medida, la dialéctica se ha planteado entre los autores que se inclinan por el fragmento de carbón como unidad básica de medición del espectro antracológico y aquéllos que han puesto el acento en la problemática derivada de cuantificar los fragmentos, que entienden que un mejor sistema para llevar a cabo esta labor podría ser la medición de la masa media de cada taxón identificado.

Los investigadores contrarios al fragmento como unidad básica de medición antracológica han centrado su posicionamiento en la posibilidad de que la interpretación
posterior del diagrama sea poco veraz si existe algún tipo de selección dependiente del tamaño de los fragmentos, que priorice los de gran talla sobre los pequeños, o viceversa (Willcox 1974, Thinon 1980, Krauss-Marguet 1981, Smart y Hoffman 1988, Thompson 1994). Sus argumentaciones se fundamentan en el presupuesto de que puede existir una fragmentación diferencial de la madera, relacionada con el taxón propiamente dicho (Willcox 1974, Smart y Hoffman 1988), o con otros aspectos como la densidad, la estructura o la composición química, que pudieran alterar tanto la pérdida de masa y volumen (Rossen y Olson 1985), como el índice de fragmentación. Estos estudios tienen en cuenta, además, que la fragmentación del carbón arqueológico puede estar en relación directa con ciertos aspectos postdeposicionales que la produzcan, lo cual ha condicionado que algunos autores hayan prescindido puntualmente de la cuantificación para realizar interpretaciones basadas únicamente en el aspecto cualitativo del registro (Willcox 1974, 1992a, Kreuz 1992, Zapata 1997, Piqué 1998). En este sentido Piqué (1999a, 1999c) realiza un análisis estadístico en el cual correlaciona las variables de peso y fragmentación, analizando los desequilibrios entre ellas en función de condicionantes deposicionales o postdeposicionales. La autora llega a la conclusión, en este caso, de que la relación entre el peso y el número de los fragmentos es positiva, por lo que la incidencia de los aspectos postdeposicionales en las variaciones del registro se reduce a casos aislados.

Los defensores del fragmento como unidad básica de medida (Chabal 1982, 1992, 1997) parten de las grandes imprecisiones que supone la medición de la masa de cada taxón, dada la imposibilidad de evaluar cuál ha sido realmente la pérdida de peso con respecto al tronco original (Chabal et al. 1999). Esta perspectiva asume los principios de la “ley estadística de fragmentación” (Chabal 1992, 1997), que entiende que la fragmentación del carbón es independiente del taxón al que pertenece el mismo, con lo que todos han de tratarse estadísticamente con la misma consideración. Según estas reflexiones, no obstante, el estado de fragmentación de una especie está en relación estadística con su frecuencia relativa en la muestra, de manera que los fragmentos más pequeños de la muestra suelen corresponderse con las especies menos abundantes (Chabal et al. 1999). Los estudios experimentales llevados a cabo sobre esta cuestión, además, han concluido que los resultados son más fiables si se utiliza el fragmento que si se toma la masa como unidad de medida básica (Chabal, 1988b, 1992). En este sentido destacan las aportaciones de Bazile-Robert (1982), que, pese a que observa una fragmentación diferencial entre diferentes especies, concluye que los diferentes diagramas de fragmentación hacen aparecer una mayor distorsión entre los porcentajes en masa que entre los porcentajes en número, con lo que la expresión cuantitativa clásica, en número de carbones, parece traducir mejor la realidad en cuanto a la vegetación, que la representación en términos de masa.

Teniendo en cuenta esto, y dada la mayor dificultad que entraña el estudio del carbón por su peso, la mayoría de los trabajos actuales se realizan considerando cada fragmento
como unidad básica de cuantificación, opción por la que hemos optado también en esta tesis doctoral.

Si finalmente es el fragmento de carbón la unidad elegida como punto de partida para realizar el estudio antracológico, la problemática se centrará en el número de carbones que es necesario analizar para obtener una cuantificación que permita valorar la relevancia interpretativa de los datos. Normalmente este criterio está en estrecha relación con la riqueza taxonómica de la muestra, condicionada por factores que pasan por la complejidad de las asociaciones vegetales, los patrones de explotación del combustible, el tipo de ocupación, la procedencia de los carbones, el área muestreada o el azar (Allué 2002). No obstante, la riqueza específica de una determinada muestra no responde, en ocasiones, a los presupuestos establecidos sobre este criterio en contextos de hábitat o en estructuras de combustión, por lo que la cuantificación ha de ser adaptada a cada yacimiento particular (Figueiral 2007).

El intento de establecer el número mínimo de carbones a estudiar se ha concretado en la aplicación del principio fitosociológico de las “curvas de área-especie”, a través del cual se busca el área mínima de muestreo fitosociológico en la cual esté representada el mayor número de especies de una determinada asociación vegetal. Este principio establece que se produce un rápido aumento del número de especies identificadas a medida que se amplía la superficie inventariada. El límite quedaría en el punto en el que, aumentándose el área prospectada, el número de especies identificadas no es mayor (Braun-Blanquet 1979). En los estudios antracológicos se aplica el mismo principio representado gráficamente mediante las “curvas de esfuerzo-rendimiento” (fig. 2.18). En estos diagramas se tienen en cuenta, sobre muestras de carbón disperso, el número y el orden en que aparecen los diferentes taxones en un estudio antracológico, en relación con el número total de fragmentos de carbón estudiados. El objetivo es fundamentalmente establecer el momento en que el estudio de más carbones no va a suponer una mayor riqueza taxonómica de la muestra más allá de alguna rareza aislada que en ningún caso modificaría la interpretación del estudio. Otro objetivo es la validación de la muestra de carbón disperso para su interpretación paleoecológica, dependiendo de la coherencia o no de la curva establecida, ya que en ocasiones la poca variabilidad deja entrever una fuerte selección que invalida la muestra a nivel interpretativo.

El número de fragmentos necesario para que la curva esfuerzo-rendimiento se estabilice puede ser observado a través de las curvas de porcentaje (fig. 2.19) y varía dependiendo del yacimiento y de los diferentes contextos documentados en el mismo. Según Allué (2002) en la mayoría de yacimientos paleolíticos el estudio de unos 100 carbones por muestra sería suficiente, ya que la menor complejidad que por lo general se evidencia en las asociaciones vegetales de estas cronologías condicionaría una menor variabilidad taxonómica del registro. Sin embargo, la mayor complejidad vegetal en el Holoceno y
una superior incidencia antrópica sobre el medio suelen aportar a los recuentos de yacimientos de cronologías más recientes una riqueza taxonómica más amplia que tiene como consecuencia una estabilización de la curva menos temprana.

Figura 2.18. Ejemplo de diagrama en el que se establece la relación entre el número de taxones y número de fragmentos en el contexto de vertedero asociado al Balneario Romano de Archena.

Figura 2.19. Ejemplo de curva de porcentajes, referida a la UE 7J70 de Barranco de la Viuda.
Las diferentes propuestas en cuanto al número mínimo de fragmentos que ha de ser analizado en cualquier estudio antracológico han planteado un amplio espectro de sugerencias que, no obstante, reconocen que el número de fragmentos a estudiar puede ser muy variable dependiendo del yacimiento, e incluso entre los diferentes niveles de una misma ocupación (Heinz 1990). Algunas propuestas han oscilado entre los 200 y 300 fragmentos (Chabal 1988a, Figueiral y Mosbrugger 2000), aunque el abanico puede ser mucho más amplio, entre los 200 y 800 fragmentos (Badal y Heinz 1991) o incluso desde 200 a más de 2000 (Heinz 1990). En el caso de yacimientos protohistóricos, según Figueiral (1992) la estabilización se produciría en torno a los 500 fragmentos de carbón, y excepcionalmente a los 250 fragmentos. En algunas ocasiones, incluso, es necesario hacer un gran esfuerzo, y aun estudiando en torno a 2000 fragmentos no es posible saber si la curva está totalmente estabilizada (Figueiral 1992).

Este tipo de sistemas ha sido también validado en nichos ecológicos con una dinámica vegetal muy distinta a la europea como los ambientes tropicales brasileños (Scheel-Ybert 2002), donde se ha apuntado la necesidad de estudiar un total de 200 a 300 fragmentos por muestra para estabilizar las curvas área-especie y la curva de “Gini-Lorenz”, basada en criterios parecidos.

Las críticas hacia la aplicación de la curva de esfuerzo-rendimiento en la disciplina antracológica se centran en el hecho de que no se ha tomado suficientemente en consideración que estas representaciones responden a la diversidad de los taxones recuperados en el terreno, y no necesariamente a la variedad florística del entorno de la ocupación (Piqué 1999a). También se ha tenido en cuenta el hecho de que la distribución de los taxones en el terreno no es homogénea, con lo que el resultado de este sistema puede ser desigual porcentualmente dependiendo del orden de estudio de las muestras, aunque la presencia y ausencia de especies no varíe (Piqué 1999a). Por otro lado, se ha puesto de relieve la necesidad de flexibilizar la rigidez impuesta por este método, ya que, desde una cierta “ingenuidad”, obvia que las propias condiciones del terreno, la cronología, y la actividad antrópica desarrollada en un determinado asentamiento pueden variar la riqueza específica, de modo que se presenten gran cantidad de taxones en pocos fragmentos, o una gran escasez de especies aun cuando se ha realizado un gran esfuerzo de análisis, con lo que en ocasiones estudiar un número de fragmentos mayor no mejora taxonómicamente los resultados (Uzquiano 1995b, 1997).

Gráficamente, los datos numéricos obtenidos del recuento de los fragmentos de carbón estudiados se expresan mediante tablas de valores absolutos y relativos e histogramas o diagramas antracológicos, que reflejan la presencia porcentual de los taxones en el estudio.

Las tablas de valores absolutos y relativos muestran, para un determinado contexto, los taxones identificados, el número de fragmentos correspondientes a cada uno de ellos, y
el valor porcentual de su presencia en la totalidad de la muestra estudiada. Normalmente, una misma tabla de valores porcentuales contendrá los resultados de diferentes unidades estratigráficas, que, siempre y cuando se correspondan con un mismo nivel y se trate de carbón disperso, podrán sumarse para la obtención de los valores absolutos y relativos totales a partir de los cuales se podrán elaborar histogramas o diagramas antracológicos.

![Figura 2.20. Lectura diacrónica y sincrónica de un diagrama antracológico.](image)

Los histogramas antracológicos se elaboran a partir de los datos porcentuales de los diferentes *taxa* identificados para un mismo nivel crono-estratigráfico. Los diagramas antracológicos, por su parte, plantean la posibilidad de una doble lectura del registro: una sincrónica, que muestra las características vegetales en una misma cronología, con las frecuencias de todos los taxones aparecidos en ese momento concreto, susceptibles de ser comparadas entre sí. Y, de otro lado, una lectura diacrónica que nos permite fijarnos en la evolución de cada taxón a lo largo de toda la cronología planteada en el diagrama, comparando esta evolución con la de otros taxones y la interrelación que tiene en realidad su evolución diferencial (fig. 2.20).
II.2.2.3. La interpretación de los resultados

La interpretación de los resultados antracológicos se realiza fundamentalmente en función de dos vertientes claramente delimitadas. Se trata de llegar, por un lado, a inferencias de carácter paleoambiental a través sobre todo de los carbones considerados como dispersos y, por otro, a conclusiones de carácter paleoeconómico a partir de aquellas acumulaciones carbonosas que respondan a estructuras de combustión o a posibles estructuras constructivas quemadas in situ.

En el caso de este trabajo, las particulares características de cada yacimiento estudiado, tanto desde el punto de vista de su singularidad arqueológica, como por supuesto teniendo en cuenta el registro antracológico obtenido, han aportado elementos diversos a la discusión en ambos sentidos, paleoecológico y paleoeconómico. No obstante, en cada uno de ellos se ha hecho hincapié en aquellos aspectos interpretativos más acordes con el tipo de registro antracológico obtenido. Por ello, en los yacimientos con un predominio de carbones concentrados, como Jumilla Santa María 19, el esfuerzo interpretativo más importante se ha centrado en la significación del combustible asociado a las actividades artesanales y domésticas del grupo. Los yacimientos con un amplio contenido antracológico asociado a los niveles de hábitat, como Punta de los Gavilanes, Barranco de la Viuda y el Balneario Romano de Archen, han permitido, sin embargo, la realización de una interpretación centrada en la descripción del entorno forestal de los mismos, sin dejar de lado el estudio de los patrones de uso del combustible y de los materiales de construcción cuando el registro así lo ha permitido. Finalmente, en el Teatro Romano de Cartagena los carbones estudiados se corresponden únicamente con materiales constructivos quemados a partir de su destrucción por incendio, por lo que se ha evitado realizar inferencias paleoambientales en este caso particular.

II.2.2.3.1. Significación paleoambiental de los datos antracológicos

Entre los principales valores atribuidos a la Antracología se encuentra su capacidad para interpretar las condiciones de la vegetación del pasado a través de sus resultados. La principal argumentación para dar validez a esta afirmación gira en torno a la presunción de que, si bien es obvio que la madera utilizada como combustible fue aportada voluntariamente al yacimiento, este aporte se produjo carente de procesos de selección específica, con lo cual el registro antracológico se convierte en un reflejo de la vegetación que existió en el pasado (Vernet 1973, 1997).

Esta tendencia interpretativa, denominada Arqueobotánica, entiende que los procesos de recolección de madera para combustible estarían sujetos a la “ley del mínimo esfuerzo” (Shackleton y Prins 1992), según la cual no obedecerían a condicionantes selectivos,
sino a la presencia de vegetación en el entorno inmediato, por lo que las especies recogidas estarían representadas en el combustible en proporción directa a su abundancia en la naturaleza. Así, los taxones identificados en un estudio antracológico responderían a aquellos existentes en un ambiente determinado. La validez del principio estaría condicionada por ciertos márgenes de error como la posible conservación diferencial de unas especies con respecto a otras, los problemas derivados del propio proceso de excavación o laboratorio, la deposición desigual del carbón durante el periodo en consideración o la posibilidad de que exista una producción diferencial de carbón entre unas especies y otras. Además, esta ley quedaría totalmente anulada cuando la cantidad de combustible por habitante es abundante, con lo que la selección del mismo es el comportamiento dominante (“criterio de disponibilidad y abundancia”).

Partiendo de estas premisas, Chabal (1988b, 1992) estableció una serie de condicionantes para que la interpretación de los datos antracológicos pudiera realizarse desde un punto de vista paleoambiental. En primer lugar, considera fundamental que el carbón proceda de combustiones de tipo doméstico, dado que los usos especializados del mismo suelen estar sujetos a selección de las especies. En segundo término, plantea la necesidad de que los carbones sean el producto de una actividad de larga duración temporal, ya que cuando el carbón es resultado de actividades puntuales también la recolección puede haber sido oportunista, sin que se haya producido la recolecta sobre un amplio espacio territorial. En tercer lugar, es importante que la muestra proceda de carbón disperso y que el muestreo sobre el mismo haya sido correcto. Finalmente, una vez realizado el estudio antracológico y el recuento de los carbones, la distribución de los taxones en el diagrama debe ser regular, sin que existan grandes desniveles porcentuales entre ellos, lo cual proporciona una fiabilidad estadística en el proceso posterior de interpretación.

Los posicionamientos de la Paleoetnobotánica, que se ha desarrollado sobre todo en norteamérica y en los países anglosajones, hacen hincapié, sin embargo, en el hecho de que el carbón que encontramos en un yacimiento es un aporte antrópico, y, como tal, su elección ha estado condicionada por una serie de aspectos culturales inherentes al grupo. Se cuestiona que exista una recolección de las especies proporcional a su abundancia en el entorno y también que las fluctuaciones observadas en los diagramas antracológicos respondan a cambios en la cubierta vegetal y no a modificaciones en el comportamiento social y en las preferencias del grupo (Piqué 1999a).

El planteamiento paleoetnobotánico es bien resumido por Smart y Hoffman (1988), que afirman que la recogida de madera en un asentamiento está determinada por las actividades llevadas a cabo en el mismo, por las características físicas de la madera disponible y finalmente por factores socio-culturales específicos de cada grupo. Además, estas autoras inciden en que debido a los procesos de transporte, carbonización, preservación en el sedimento e identificación taxonómica a los que están
sometidos estos materiales, sería difícil establecer una relación entre los resultados de una muestra antracológica y la vegetación local desarrollada en el pasado.

En cualquier caso, aunque existe, como vemos, una divergencia en los posicionamientos teóricos, también es cierto que todas estas tendencias coinciden en dotar de valor paleoambiental a los datos antracológicos, modulado, eso sí, por una mayor o menor incidencia de las pautas sociales en la elección de las especies disponibles en el entorno.

Dicho esto, es importante no obviar que las interpretaciones paleoambientales proporcionadas por la Antracología están limitadas, además de por la selección humana, por una serie de condicionantes a tener en cuenta.

En primer lugar, la Antracología, como el resto de disciplinas paleoecológicas, ha asumido tradicionalmente un “principio de actualismo” que se fundamenta en el presupuesto de que la dinámica de la vegetación no ha sufrido variaciones a lo largo de todo el Cuaternario. A este respecto, son cada vez más las voces críticas que reprochan que se tomen como válidos los presupuestos actualistas. Según Carrión et al. (2000) estas asunciones serían: que comprendemos los factores que gobiernan las distribuciones actuales, que las afinidades ecológicas no han variado con el tiempo, que las distribuciones estuvieron y están en equilibrio, que hay análogos modernos para las tanatocenosis, que se puede establecer la tafonomía u origen de una comunidad fósil, que ésta no está sesgada por contaminación o preservación diferencial y que los fósiles pueden ser identificados hasta un cierto nivel de resolución taxonómica (Carrión et al. 2000, p. 134). En este sentido, cada vez con mayor claridad, y atendiendo al “principio de no equilibrio” de las sucesiones vegetales que hemos explicado anteriormente, parece evidente que no existe una dinámica vegetal predeterminada ante unas condiciones climáticas concretas, sino que la respuesta de la vegetación a las perturbaciones se da de manera independiente, siguiendo su propia dinámica interna y sin respuestas mecánicas (Terradas 2001). Consecuentemente, se ha planteado la necesidad de potenciar la capacidad interpretativa de las disciplinas paleobotánicas frente a los antiguos intentos de predicción de los mecanismos ecológicos (Carrión 2003).

Otra de las principales limitaciones interpretativas de la Antracología se basa en el hecho de que sólo aquellas especies que tienen una parte leñosas son capaces de transformarse en carbón. La Antracología sólo puede documentar los estratos arbustivo y arbóreo de la vegetación, dejando al margen las plantas herbáceas que se desintegran con la combustión. Estas carencias pueden en cierta manera ser suplidas con los datos aportados por la Palinología, que, si bien cuenta con otro tipo de limitaciones como la inseguridad del radio de procedencia de los aportes de polen (Carrión et al. 2000, López Sáez et al. 2003), o la esterilidad polínica por diversos motivos (Carrión et al. 2009b) si que es capaz de registrar la importancia ambiental de las plantas no leñosas.
Mediante un estudio antracológico podemos conocer, por tanto, determinadas especies que conformaron la cubierta vegetal de un territorio concreto, y, con cierta cautela, las proporciones de su representación relativa en el entorno. Sin embargo, la limitación en este sentido radica en que difícilmente podemos aproximarnos en términos absolutos a la presencia total de los taxones identificados sobre el terreno, así como a la distribución de éstos en el espacio, salvo en casos de marcada edafofilia. Además, las ausencias resultan también un limitante destacado, en tanto que ausencia en el registro antracológico no tiene por qué suponer ausencia en el entorno inmediato del yacimiento, sino que puede ser producto de procesos tafonómicos, del sistema de muestreo empleado, o bien de una deselección de especies, por ejemplo, en el caso de plantas de aprovechamiento alimenticio (Badal 1990), o como consecuencia de patrones o tabúes culturales que han sido demostrados en algunos estudios etnológicos (Peña-Chocarro et al. 2000, Tabuti et al. 2003).

Aun teniendo en cuenta todos estos factores limitantes, no cabe duda de que la interpretación de los datos antracológicos permite obtener un conocimiento de la vegetación existente en las zonas cercanas al yacimiento, condicionada, eso sí, por los usos que sus habitantes daban a esta vegetación. Además, no podemos pasar por alto que las especies encontradas en el antracoanálisis son, salvo excepciones, integrantes de formaciones vegetales presentes en la zona, podamos o no encontrar todos los elementos vegetales desarrollados en ella.

II.2.2.3.2. Significación paleoeconómica de los datos antracológicos

Los carbones, en tanto que residuos de estas combustiones, pueden ser reflejo de ciertas pautas de comportamiento socio-económico, que son analizadas a partir de los resultados arqueobotánicos y con el soporte de los avances de la etnología, los estudios sobre maderas, etc. Estas pautas se refieren a los sistemas de aprovisionamiento de
combustible y sus consecuencias ambientales y, de otro lado, a la posible selección de la leña en relación con sus características intrínsecas, o bien con la funcionalidad de las diferentes estructuras de combustión.

- Aprovisionamiento de combustible y deforestación

La gestión del aprovisionamiento de combustible por parte de un determinado grupo dependería, en primer lugar, de la disponibilidad y abundancia de plantas leñosas en el entorno. Parece claro que por norma general la demanda y las preferencias en cuanto a combustible están condicionadas por la oferta del mismo, y en muy raras ocasiones se produce un transporte de madera desde zonas lejanas para alimentar el fuego. Se ha documentado incluso desde una perspectiva etnológica un cambio en las preferencias de combustible en función de las modificaciones en la disponibilidad de leña en el ambiente (Madubansi y Shackleton 2007). Pese a esto, en asentamientos con muy escasavegetación y con una amplia producción artesanal se ha planteado la posibilidad de un abastecimiento de madera auxiliado por otros núcleos ocupacionales más importantes (García Martínez 2006).

En el proceso de recolección de la madera el consumo energético producido ejerce una gran influencia como factor modulador o incluso disuasorio. En este sentido, los recolectores tienen en cuenta la distancia existente entre el punto de partida y la fuente de combustible, y, por supuesto, las características del relieve local. Por lo general, será preferible andar una mayor distancia que tener que superar grandes desniveles para la obtención del combustible, ya que, aunque se tratara de un recorrido menor, supondría la inversión de más energía y tiempo. Sin embargo, si la degradación en las zonas llanas es mayor que en las elevadas es posible que exista una preferencia por superar una elevación para obtener después un mayor rendimiento en menos espacio de terreno.

De forma general, resulta complejo establecer a partir de los datos antracológicos cuál ha sido el punto exacto de recolecta de la leña, por lo que estos aspectos se estudian preferentemente desde ciertos modelos teóricos (Chomitz y Griffiths 2001, Allué y García Antón 2006), mediante la utilización de Sistemas de Información Geográfica (GIS) (Top et al. 2004a, Masera et al. 2006, Ghilardi et al. 2007), a través de planteamientos experimentales (Allué et al. 2007), y sobre todo, teniendo en cuenta los valiosos aportes de la etnografía. Desde esta perspectiva, el estudio de Biran et al. (2004) compara las diferentes pautas de recolección entre dos comunidades rurales de Malawi y Tanzania. Estos autores observan que el acceso al combustible de la comunidad de Malawi es mucho más dificultoso tanto en desnivel, como en la distancia que las mujeres han de caminar para la recolecta (2,1 Km), con respecto a la comunidad de Tanzania (1,1 Km). El tiempo medio diario invertido es también proporcional, de modo que las mujeres de Malawi invertirían unos 63 minutos, frente a sólo 10 de las
tanzanas. Además, en este trabajo también se analiza el rol de la mujer y la ayuda de las hijas en la realización de esta labor. Finalmente se comprueba en este caso que el consumo energético medio por individuo es menor cuanto mayor es el tamaño de la familia, una relación que sin embargo se ha comprobado inversa en grupos de zonas geográficas distintas, donde el consumo es directamente proporcional al tamaño de la familia (Miah et al. 2008).

La inversión de esfuerzo puede estar también en relación con la degradación de la biomasa existente, como comprueban Miah et al. (2003) en comunidades rurales de Bangladesh, donde la distancia recorrida ha variado desde 2-3 Km hace 10 años, 4-5 Km hace 5 años, y 7-8 km en las condiciones actuales de deforestación. En algunas poblaciones de Camboya se ha observado que el 35% del combustible se recolecta en distancias entre 3 y 5 Km, un 30% más allá de los 5 Km, y un 22% entre 1 y 3 Km con respecto al punto de origen (Top et al. 2004b). Otras observaciones realizadas en el Valle de Mantaro, en Perú, indican que las mujeres invierten de 1 a 3 horas de esfuerzo en la recolecta de combustible (Johannesen y Hastorf 1990). En condiciones extremas de aridez, sin embargo, este tiempo puede prolongarse hasta una jornada completa de trabajo para obtener un cargamento de madera de cierta calidad (Auclair y Sghaier Zaafouri 1996).

El gasto de energía en las labores de recolección de leña depende además del tipo de trabajo realizado para su obtención. La mayoría de estudios coinciden en que uno de los principales criterios seguidos en este proceso es la recogida preferencial de madera muerta, cuya recuperación exige mucho menos trabajo que la tala de árboles (Willcox 1992b, Benjaminsen 1997, Asouti 2003, Tabuti et al. 2003, Bacaër et al. 2005, Moutarde 2006). Desde un punto de vista antracológico, la detección de esta preferencia se ha focalizado en dos aspectos fundamentales: el estado de degradación del carbón (Théry-Parisot 2001) y el calibre de las ramas utilizadas (Chrzavzez 2006, Dufraisse 2008). Este último aspecto está también relacionado con el gasto energético en tanto en cuanto existen hipótesis que plantean que en las primeras recolectas se obtendrían maderas de pequeño diámetro, mientras que posteriormente se ampliaría el diámetro de los troncos debido a la gestión de bosque de más edad, y sobre todo a la ampliación del radio de recogida de la leña (Nelle 2002, Dufraisse 2008), lo cual implicaría un gasto energético mayor. Desde una perspectiva etnográfica se ha documentado en algunas comunidades sudafricanas la preferencia por los troncos de diámetro mediano (5-14 cm), debido a que los muy grandes exigen de mayor esfuerzo para su recolección y han de ser fragmentados para su uso doméstico, y a que los que son muy pequeños requieren una mayor dedicación al mantenimiento del fuego (Pote et al. 2006).
Recursos forestales en un medio semiárido.
Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

109

poblados prehistóricos para generar una gran deforestación de su entorno en base a sus actividades domésticas.

No podemos perder de vista, no obstante, que la composición actual de los bosques está también condicionada por los numerosos incendios que han sufrido desde hace miles de años. Las incidencias de fuegos naturales pudieron estar regidas por ciertas fluctuaciones climáticas (Daniau et al. 2007), frente a los fuegos antrópicos, generados voluntariamente con diversas finalidades agroganaderas. Los fuegos periódicos pudieron actuar sobre la estructura del bosque mediterráneo con un enriquecimiento del mismo, pero sin embargo, una alta frecuencia de incendios pudo tener consecuencias contrarias, con una simplificación hacia la dominancia de arbustos bajos y herbáceas (Le Houérou 1980). Algunos estudios ponen de relieve esta incidencia del fuego en las características forestales, reconociéndolo como el condicionante primordial en las fluctuaciones observables en la composición o reducción del bosque a escala regional (Carrión y Van Geel 1999, Carrión et al. 2003, 2007, Kaal et al. 2008), si bien también se ha puesto en cuestión el verdadero valor de la presencia de microcarbones en secuencias polínicas en tanto que dependiendo de su tamaño el aporte puede ser muy lejano (Butler 2008).

Finalmente, en los estudios paleoambientales se plasma cómo las actividades humanas han favorecido el desarrollo de ciertas especies en detrimento de otras, sobre todo debido al aprovechamiento de territorios no forestados para la agricultura, a la deforestación de espacios boscosos para implantar ciertos cultivos (García Antón et al. 2002), o a la tala selectiva de algunas especies, como demuestran algunos estudios sobre comunidades actuales (Pote et al. 2006).

- Selección del combustible: propiedades de la madera y funcionalidad de las estructuras de combustión

Es posible suponer que los grupos humanos del pasado conocían las propiedades de la madera que utilizaban como combustible, y que ejercían sobre ella una cierta selección en función de sus características, y la funcionalidad para la que estuviera dirigida. Así se demuestra, de hecho, en algunos estudios etnológicos relativos a las preferencias de ciertas comunidades de acuerdo con estos dos criterios (Abbot y Lowore 1999, Padilla et al. 2000, Peña-Chocarro et al. 2000, Pote et al. 2006). Se ha detectado incluso que en algunas regiones existe una categorización social del combustible, según la cual las familias más ricas consumirían el mejor combustible disponible, en detrimento de las más pobres (Orliac y Orliac 1982, Miah et al. 2003).

Un reciente trabajo de Alves Ramos et al. (2008) se cuestiona si las preferencias de consumo de combustible en ciertos grupos rurales de una zona seca al norte de Brasil
están o no en concordancia real con las propiedades de estas maderas como combustible. Para ello los autores plantean una doble vertiente de estudio: por un lado realizan una serie de entrevistas a través de las cuales establecen una jerarquización de las preferencias del grupo, y posteriormente analizan las propiedades de densidad, humedad y Fuel Value Index en cada una de estas especies. Sus conclusiones confirman que existe una relación directa entre las plantas con mejores propiedades combustibles y las preferencias manifestadas por los habitantes de la zona.

Sabemos con certeza, no obstante, que las propiedades específicas de la madera inciden en el proceso combustión (Yang et al. 2005), según su estructura, humedad, composición química y poder calorífico, y por otro lado según las características derivadas que definen su comportamiento durante este proceso: el grado de inflamabilidad y de combustibilidad.

En lo que concierne a la estructura, en primer lugar destaca la relación superficie-volumen (grosor), cuya influencia se centra en los intercambios de energía y de materia con la fase gaseosa durante la combustión, con lo cual interfiere finalmente en el grado de inflamabilidad de la madera. Así, cuanto mayor es esta relación, menor es el tiempo necesario para que se produzca la inflamación del combustible. En segundo lugar la densidad aparente, que relaciona la masa con el volumen de la rama, influye también en el comportamiento de la madera ante el fuego, ya que una densidad elevada disminuye la inflamabilidad, pero aumenta la duración de las llamas (Théry-Parisot 2001). Finalmente, el coeficiente de compactación correlaciona el volumen real del combustible con el volumen aparente, ya que éste último es siempre mayor teniendo en cuenta los espacios vacíos (porosidad) que posibilitan la circulación de aire, y que, en consecuencia, elevan la inflamabilidad de la madera (Guijarro Guzmán 2003).

También la humedad contenida en la planta juega un papel fundamental en la combustión (tabla. 2.3), ya que el proceso previo de deshidratación tardará más a mayor contenido en agua del combustible, con lo que la inflamación será más tardía (Shen et al. 2007). El agua contenida puede ser de constitución, que forma parte de la propia composición química de la planta; agua libre, que rellena los poros y conductos; o agua higroscópica, absorbida por la planta (Ruiz González 2004). La cantidad de esta agua (entre el 0% y el 300%) depende de factores intrínsecos como el tipo de combustible (madera viva, madera muerta), la parte vegetativa, o el estado vegetativo, y de factores extrínsecos como las condiciones climatológicas. Además, existe un grado de humedad, llamado “humedad de extinción” a partir del cual no puede existir una combustión con llama. Ésta se sitúa entre el 25% y 40% para la madera muerta, y entre el 120% y 160% para la viva (Guijarro Guzmán 2003).
Humedad de la madera (%)
Temperatura de combustión (°C)
Consumo relativo (%)
Poder calorífico (Kcal/Kg)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1200</td>
<td>0,77</td>
<td>4200</td>
</tr>
<tr>
<td>10</td>
<td>1150</td>
<td>0,87</td>
<td>3800</td>
</tr>
<tr>
<td>20</td>
<td>1100</td>
<td>1,00</td>
<td>3400</td>
</tr>
<tr>
<td>30</td>
<td>1040</td>
<td>1,32</td>
<td>3100</td>
</tr>
<tr>
<td>40</td>
<td>960</td>
<td>1,67</td>
<td>2800</td>
</tr>
<tr>
<td>50</td>
<td>870</td>
<td>2,20</td>
<td>2600</td>
</tr>
</tbody>
</table>

Tabla 2.3. Influencia de la humedad sobre la combustión, según Reina Hernández (2001).

Por otro lado, la composición química de la madera es también un factor a tener en consideración, ya que no sólo influye en la combustión, sino también en otras características de los combustibles como la humedad, el poder calorífico o la inflamabilidad. La madera está formada fundamentalmente por celulosa (40-60%), lignina (21-30%), agua (Reina Hernández 2001), y, en menor proporción, por una serie de compuestos que pueden incidir en el proceso de combustión. En primer lugar, los compuestos orgánicos como las resinas, esencias, aceites o ceras, adelantan el punto de inflamabilidad de la planta en los momentos del año en que son segregados, tal y como demuestran algunas pruebas experimentales (Dimitrakopoulos 2001). Por otro lado, los compuestos minerales suelen retardar el desprendimiento de gases inflamables y favorecer la acumulación de humedad en la planta, por lo que se retarda el comienzo de la inflamación (Guijarro Guzmán 2003, Lin et al. 2008). En este sentido, son destacables las plantas con contenido en cenizas libres de sílice (Saharjo y Watanabe 1999, Dimitrakopoulos 2001, Bhatt y Tomar 2002, Bhatt et al. 2004), con altas concentraciones de sodio o potasio, o con presencia de compuestos amónicos (Grexa y Lübke 2001), por ser muy poco inflamables.

En cuanto al poder calorífico, se define como la cantidad total de calor desprendido en la combustión completa, que es variable dependiendo de la constitución elemental de las distintas especies, y dentro de una misma especie, según la parte de la planta, o del individuo concreto de que se trate. El poder calorífico viene determinado fundamentalmente por el grado de humedad y por la composición química de las plantas, por lo que, por ejemplo, dentro de una misma especie, el poder calorífico crece en las partes lignificadas (menos húmedas) y en el caso de aquéllas que contienen resinas, terpenos o aceites esenciales, cuando la concentración de éstos es mayor (Elvira y Hernando 1989). El “Poder Calorífico Superior” se obtiene cuando el agua contenida en el combustible y la resultante de la combustión se condensan. Sin embargo, en condiciones de fuego al aire libre el agua se evapora, por lo que la cantidad de calor liberada es menor (“Poder Calorífico Inferior”) (Guijarro Guzmán 2003). El poder calorífico, sin embargo, no es uno de los principales criterios a tener en cuenta en el
proceso de combustión de las diferentes especies, ya que no existen grandes variaciones en términos absolutos entre unas y otras (Bhatt et al. 2004).

<table>
<thead>
<tr>
<th>CLASIFICACIÓN DE ESPECIES SEGÚN SU PODER CALORÍFICO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALTO</td>
</tr>
<tr>
<td>Arbutus unedo</td>
</tr>
<tr>
<td>Buxus sempervirens</td>
</tr>
<tr>
<td>Calluna vulgaris</td>
</tr>
<tr>
<td>Cistus ladanifer</td>
</tr>
<tr>
<td>Cytisus multiflorus</td>
</tr>
<tr>
<td>Erica arborea</td>
</tr>
<tr>
<td>Erica australis</td>
</tr>
<tr>
<td>Erica scoparia</td>
</tr>
<tr>
<td>Genista falcata</td>
</tr>
<tr>
<td>Genistella tridentata</td>
</tr>
<tr>
<td>Juniperus oxycedrus</td>
</tr>
<tr>
<td>Phillyrea angustifolia</td>
</tr>
<tr>
<td>Pinus radiata</td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
</tr>
<tr>
<td>Stauracanthus boivinii</td>
</tr>
<tr>
<td>Tabla 2.4. Poder calorífico de especies mediterráneas, según Elvira y Hernando (1989).</td>
</tr>
</tbody>
</table>

Cuando hablamos de inflamabilidad nos estamos refiriendo a la facilidad que tiene un vegetal para inflamarse al ser expuesto a una radiación calorífica constante (Delabraze y Valette 1974, citado en Guijarro Guzmán 2003), es decir, los segundos que tarda desde su exposición a dicha fuente de calor, hasta la aparición de las primeras llamas (Théry-Parisot 2001). Esta reacción depende de factores como la humedad, de modo que una madera seca necesita alcanzar unos 250 ºC para inflamarse, frente a los 350-550 ºC que exige una madera verde. También depende de la densidad, ya que las maderas poco densas se inflaman con mucha más facilidad y rapidez que las muy densas. Por otro lado, como hemos comentado con anterioridad, las plantas que contienen aceites esenciales o resinas son más inflamables que las que no los poseen (Théry-Parisot 2001).

Finalmente, la combustibilidad se ha definido como la mayor o menor facilidad con la cual un vegetal arde, desprendiendo energía suficiente para consumirse y provocar la inflamación de la vegetación vecina (Delabraze y Valette 1974, citado en Guijarro Guzmán 2003).
<table>
<thead>
<tr>
<th>TAXÓN</th>
<th>PCS (Kcal/Kg)</th>
<th>PCI (Kcal/Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abies alba</td>
<td>4589</td>
<td>4373</td>
</tr>
<tr>
<td>Anthyllis cytisoides</td>
<td>4477</td>
<td></td>
</tr>
<tr>
<td>Arbutus unedo</td>
<td>5113</td>
<td></td>
</tr>
<tr>
<td>Buxus sempervirens</td>
<td>5123</td>
<td></td>
</tr>
<tr>
<td>Cistus albidus</td>
<td>4662</td>
<td></td>
</tr>
<tr>
<td>Cistus ladanifer</td>
<td>5072</td>
<td></td>
</tr>
<tr>
<td>Cistus laurifolius</td>
<td>5253</td>
<td></td>
</tr>
<tr>
<td>Cistus salvifolius</td>
<td>4587</td>
<td></td>
</tr>
<tr>
<td>Cytisus scoparius</td>
<td>5042</td>
<td></td>
</tr>
<tr>
<td>Cytisus multiflorus</td>
<td>5599</td>
<td></td>
</tr>
<tr>
<td>Erica arborea</td>
<td>5702</td>
<td></td>
</tr>
<tr>
<td>Erica multiflora</td>
<td>5762</td>
<td></td>
</tr>
<tr>
<td>Fagus sylvatica</td>
<td>4579</td>
<td>4322</td>
</tr>
<tr>
<td>Fraxinus sp.</td>
<td>4662</td>
<td>4335</td>
</tr>
<tr>
<td>Genista falcata</td>
<td>5120</td>
<td></td>
</tr>
<tr>
<td>Juniperus oxycedrus</td>
<td>5392</td>
<td></td>
</tr>
<tr>
<td>Lavandula stoechas</td>
<td>4954</td>
<td></td>
</tr>
<tr>
<td>Lonicera implexa</td>
<td>4515</td>
<td>4218</td>
</tr>
<tr>
<td>Olea europaea</td>
<td>4956</td>
<td></td>
</tr>
<tr>
<td>Phillyrea angustifolia</td>
<td>5459</td>
<td></td>
</tr>
<tr>
<td>Pinus halepensis</td>
<td>5136</td>
<td>4839</td>
</tr>
<tr>
<td>Pinus pinaster</td>
<td>4849</td>
<td>4525</td>
</tr>
<tr>
<td>Pinus pinea</td>
<td>4878</td>
<td></td>
</tr>
<tr>
<td>Pinus nigra</td>
<td>4920</td>
<td>3265</td>
</tr>
<tr>
<td>Pinus sylvestris</td>
<td>4556</td>
<td>4182</td>
</tr>
<tr>
<td>Populus sp.</td>
<td>4378</td>
<td>4054</td>
</tr>
<tr>
<td>Prunus avium</td>
<td>4584</td>
<td></td>
</tr>
<tr>
<td>Quercus coccifera</td>
<td>4846</td>
<td>4170</td>
</tr>
<tr>
<td>Quercus ilex</td>
<td>4817</td>
<td>4146</td>
</tr>
<tr>
<td>Rhamnus lycioides</td>
<td>4809</td>
<td></td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
<td>5546</td>
<td></td>
</tr>
<tr>
<td>Rubia peregrina</td>
<td>4093</td>
<td></td>
</tr>
<tr>
<td>Salix alba</td>
<td>4584</td>
<td></td>
</tr>
<tr>
<td>Stipa tenacissima</td>
<td>4767</td>
<td></td>
</tr>
<tr>
<td>Thymus vulgaris</td>
<td>4987</td>
<td></td>
</tr>
<tr>
<td>Ulmus sp.</td>
<td>4739</td>
<td></td>
</tr>
</tbody>
</table>

CLASIFICACIÓN DE ESPECIES SEGÚN SU INFLAMABILIDAD

<table>
<thead>
<tr>
<th>Muy inflamables casi todo el año</th>
<th>Muy inflamables durante el verano</th>
<th>Medianamente inflamables</th>
<th>Poco inflamables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calluna vulgaris</td>
<td>Anthyllis cytisoides</td>
<td>Arbutus unedo</td>
<td>Buxus sempervirens</td>
</tr>
<tr>
<td>Cupressus sempervirens</td>
<td>Brachypodium ramosum</td>
<td>Ceratonia siliqua</td>
<td>Calicotome villosa</td>
</tr>
<tr>
<td>Erica arborea</td>
<td>Cistus ladanifer</td>
<td>Cistus abildus</td>
<td>Castanea sativa</td>
</tr>
<tr>
<td>Erica australis</td>
<td>Lavandula latifolia</td>
<td>Cistus creticus</td>
<td>Cytisus multiflorus</td>
</tr>
<tr>
<td>Erica scoparia</td>
<td>Lavandula stoechas</td>
<td>Cistus crispus</td>
<td>Daphne gnidium</td>
</tr>
<tr>
<td>Eucalyptus sp.</td>
<td>Pinus pinaster</td>
<td>Cistus laurifolius</td>
<td>Halimium commutatum</td>
</tr>
<tr>
<td>Genista falcata</td>
<td>Pinus pinea</td>
<td>Cistus salvifolius</td>
<td>Nerium oleander</td>
</tr>
<tr>
<td>Genista hirsuta</td>
<td>Pinus radiata</td>
<td>Cytisus scoparius</td>
<td>Olea europaea</td>
</tr>
<tr>
<td>Laurus nobilis</td>
<td>Quercus sabir</td>
<td>Cytisus striatus</td>
<td>Pistacia lentiscus</td>
</tr>
<tr>
<td>Phillyrea angustifolia</td>
<td>Stipa tenacissima</td>
<td>Genistella tridentata</td>
<td>Platanus orientalis</td>
</tr>
<tr>
<td>Pinus brutia</td>
<td>Thymus zygis</td>
<td>Juniperus oxycedrus</td>
<td>Rhamnus alaternus</td>
</tr>
<tr>
<td>Pinus halepensis</td>
<td>Ulex parvifolius</td>
<td>Ononis tridentata</td>
<td>Rubia peregrina</td>
</tr>
<tr>
<td>Pistacia terebinthhus</td>
<td></td>
<td>Osyris alba</td>
<td>Tamarix smyrnensis</td>
</tr>
<tr>
<td>Quercus ilex</td>
<td></td>
<td>Phlomis fruticosa</td>
<td></td>
</tr>
<tr>
<td>Quercus pubescens</td>
<td></td>
<td>Pinus pinaster</td>
<td></td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
<td></td>
<td>Pistacia lentiscus</td>
<td></td>
</tr>
<tr>
<td>Thymus granatensis</td>
<td></td>
<td>Quercus coccifera</td>
<td></td>
</tr>
<tr>
<td>Thymus vulgaris</td>
<td></td>
<td>Quercus faginea</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Retama sphaerocarpa</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rhamnus lycoides</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rubus ulmifolius</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stauracanthus</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bovinii</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Teile linifolia</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 2.6. Clasificación de especies mediterráneas según su inflamabilidad, a partir de Elvira y Hernando (1989), y Dimitrakopoulos y Papaioannou (2001) –especies en color morado–.
<table>
<thead>
<tr>
<th>Propiedades de la madera</th>
<th>Factores incidentes de la relación</th>
<th>Términos de la incidencia</th>
<th>Naturaleza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflamabilidad</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morfología</td>
<td>Espesor</td>
<td>A menor espesor, mayor inflamabilidad</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Superficie/volumen</td>
<td>A mayor relación superficie/volumen, mayor inflamabilidad</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Superficie de contacto con las llamas</td>
<td>A mayor superficie expuesta al calor, mayor inflamabilidad</td>
<td></td>
</tr>
<tr>
<td>Tasa de humedad</td>
<td>Verde, semi-seco, seco, alterado</td>
<td>A mayor humedad, menor inflamabilidad</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Densidad</td>
<td>A menor densidad, mayor inflamabilidad</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Composición (cantidad de cenizas)</td>
<td>A menor posesión de cenizas, mayor inflamabilidad</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Constitución (posesión de celulosa, extractos, etc)</td>
<td>A mayor contenido en fósforo y sílice, menor inflamabilidad A mayor cantidad de ligninas y extractos, mayor inflamabilidad Un fuerte contenido en cera ralentiza la inflamabilidad</td>
<td></td>
</tr>
<tr>
<td>Especie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poder calorífico</td>
<td>Tasa de humedad</td>
<td>Verde, semi-seco, seco, alterado</td>
<td>A mayor tasa de humedad, el poder calorífico es más débil</td>
</tr>
<tr>
<td></td>
<td>Especie</td>
<td>Constitución (posesión de celulosa, ligninas, Extractos, etc)</td>
<td>A mayor posesión de ligninas y extractos, mayor poder calorífico</td>
</tr>
<tr>
<td>Temperatura de las llamas</td>
<td>Tasa de humedad</td>
<td>Verde, semi-seco, seco, alterado</td>
<td>A mayor tasa de humedad, menor temperatura de las llamas</td>
</tr>
<tr>
<td>Temperatura interna de la madera</td>
<td>Condiciones atmosféricas</td>
<td>Velocidad del viento, temperatura, humedad del aire</td>
<td>A mayor sequedad y calor ambiental, mayor es la temperatura de las llamas y de la madera</td>
</tr>
<tr>
<td></td>
<td>Morfología del hogar</td>
<td>Plano, en cuveta, al aire...</td>
<td>Si el hogar recibe demasiado aire, o éste es nulo, las temperaturas de las llamas y de la madera bajan</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persistencia de las llamas</td>
<td>Tasa de humedad</td>
<td>Verde, semi-seco, seco, alterado</td>
<td>A menor tasa de humedad, mayor persistencia de las llamas</td>
</tr>
<tr>
<td></td>
<td>Especie</td>
<td>Densidad</td>
<td>A mayor densidad de la madera, mayor duración de las llamas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contenido en ceniza</td>
<td>A mayor contenido en ceniza, menor duración de las llamas</td>
</tr>
<tr>
<td>Altura de las llamas</td>
<td>Tasa de humedad</td>
<td>Verde, semi-seco, seco, alterado</td>
<td>A mayor tasa de humedad, menor altura de las llamas</td>
</tr>
<tr>
<td></td>
<td>Especie</td>
<td>Constitución (posesión de celulosa,ligninas, extractos, etc)</td>
<td>A mayor contenido en terpenos, mayor altura de las llamas</td>
</tr>
<tr>
<td>Duración de la calcinación</td>
<td>Tasa de humedad</td>
<td>Verde, semi-seco, seco, alterado</td>
<td>A menor tasa de humedad, mayor duración de la calcinación</td>
</tr>
<tr>
<td></td>
<td>Especie</td>
<td>Densidad</td>
<td>A mayor densidad de la madera, más lentamente se consume</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Posición de cenizas y constitución</td>
<td>A mayor contenido de cenizas, más breve es la calcinación</td>
</tr>
</tbody>
</table>

Tabla 2.7. Factores que rigen las propiedades combustibles de la madera, según Théry-Parisot (2001), traducido y modificado.
La funcionalidad de las estructuras de combustión para la que están destinados los combustibles es también un factor de posible elección de unos u otros, pero, ¿qué entendemos como “estructura de combustión”? Las primeras definiciones de este término hacen referencia no sólo al lugar donde se ha producido la combustión, sino a todos los materiales que hayan sido afectados por el calor (Leroi-Gourham 1973). Estas aportaciones recogen también los primeros ensayos de síntesis sobre los principales elementos que compondrían la denominada “área de combustión” (fig. 2.22). Por otra parte, se comienza a tener en cuenta la existencia de “concentraciones carbonosas” fuera del área de combustión, entendidas como acumulaciones de elementos termoalterados en combinación con otros no afectados por la acción del fuego (Julien 1973, citado en Soler 2003).

Una de las propuestas más completas y acertadas respecto a este tema es la elaborada recientemente por Soler (2003), que entiende como “Área de combustión” el espacio físico donde se produce la acción del calor además de toda la zona donde es posible encontrar restos de la actividad de combustión. Dentro de esta área de combustión la autora delimita, a su vez, la “Estructura de Combustión” como el lugar concreto que ha sido modificado por la acción del fuego y los “Restos de Combustión No Estructurados” que supondrían los restos residuales asociados a la estructura de combustión (fig. 2.23).
Desde un punto de vista funcional, las estructuras de combustión que aparecen en los yacimientos pueden ser de origen doméstico, o bien de carácter especializado, como los hornos culinarios, de cerámica, metalúrgicos, etc. Desde esta perspectiva morfo-funcional Gascó (2003) ha establecido 25 categorías de estructuras de combustión, que vale la pena citar aquí, si bien no serán descritas dado que la morfología de las mismas no es objeto de este trabajo:

1. Aire de feu(x)
2. Aire de calcination
3. Aire de crémation
4. Feu de meule ou de fumier
5. Aire de grillage
6. Feu agricole (essartage, écobuage), incendie
7. Foyer à plat simple
8. Foyer à plat sur platerforme
9. Foyer à empierrément, gris
10. Foyer à sole bâtie
11. Foyer à plat sur fondation
12. Foyer à plat limité
13. Foyer en creux, foyer en fosse, foyer en cuvette
14. Brasero
15. Cendrier
16. Vase-fourneau
17. Foyer (en creux) à pierres chauffées
18. Fosses à bouillir (Fullacht Fiadh) ou bassin de sauna
19. Fosse métallurgique
20. Bassin de lavage
21. Four simple
22. Four bâti à salle de chauffe unique
23. Four métallurgique en caisson
24. Four à deux chambres
25. Four (Bloc-usine) complexe métallurgique
Podríamos plantearnos, teniendo en cuenta la particularidad de cada estructura, si es posible deducir su funcionalidad a partir del combustible que fue utilizado en la misma, aunque en este caso la respuesta sería negativa. La gestión de los recursos leñosos para alimentar las estructuras de combustión varía dependiendo de la disponibilidad de leña y de las preferencias y patrones de recolecta de cada grupo, por lo que no es posible a través de la presencia de un determinado combustible determinar cuál ha sido esta función (Chabal et al. 1999). El cuestionamiento correcto sería entonces si es posible, conociendo arqueológicamente la funcionalidad de la estructura, y estudiando su contenido en combustible, plantear hipótesis sobre la existencia o no de procesos de selección.

Según los datos etnográficos obtenidos en comunidades de Jbala (Marruecos) estudiadas por Peña-Chocarro et al. (2000) sus habitantes no realizan una selección específica de leña para el funcionamiento de los hogares domésticos, pero, sin embargo, muestran una clara preferencia por determinadas especies para el funcionamiento de los hornos del poblado. Así, manifiestan un especial aprecio, en general, por Pistacia lentiscus, Erica o Quercus, y consideran que Juniperus oxycedrus o Vitis vinifera serán buenos combustibles para el funcionamiento del horno de pan, y se decantan por la higuera (Ficus carica) como base de los hornos cerámicos del poblado.

El resultado de algunos estudios antracológicos, aunque todavía de forma minoritaria, parece apuntar hacia la misma dirección. Por ejemplo, Marguerie documenta una cierta predilección por la utilización de Quercus caducifolio en algunos hogares domésticos de la Edad del Hierro (Marguerie 2003) y en hornos de diversas funcionalidades desde esta cronología hasta época medieval (Marguerie 2002) de la Bretaña francesa, que atribuye al buen rendimiento calorífico de este taxón. La preferencia de especies del género Quercus se ha documentado en hogares (Von Burg y Pillonel 2003), tumbas de incineración (Chabal 1995) y actividades de forja (Maufras y Fabre 1998) de yacimientos europeos de muy diversas cronologías. En la Península Ibérica se detecta también esta preferencia por el roble en las actividades de tostación de la ferrería medieval de Oiola IV, en Vizcaya (Zapata 1997).

En definitiva, la existencia de ciertos patrones de selección del combustible leñoso es una hipótesis que no puede descartarse a priori de los resultados antracológicos derivados del estudio de las estructuras de combustión, aunque lo cierto es que son excepcionales aquéllas cuyo contenido combustible es monoespecífico (Marguerie 2002).
CAPÍTULO III:
PALEOFLORA IDENTIFICADA
En este capítulo se detallan desde distintas perspectivas los principales caracteres de los taxones identificados en el estudio antracológico.

En primer lugar se tienen en cuenta una serie de condicionantes que han tenido importancia en el rango de identificación taxonómica de los carbones, haciendo especial hincapié en la problemática de la indeterminación de algunos de ellos. En este sentido, se ha dedicado un apartado a la descripción de las alteraciones que puede sufrir el registro antracológico antes, durante y después del proceso de combustión, teniendo en cuenta su incidencia en el carbón estudiado en esta tesis doctoral.

En tercer término se hace un breve resumen de las propiedades y aprovechamientos más comunes de las diferentes partes vegetativas de la planta así como de la madera, en lo que concierne a la calidad de la misma y a su utilización en diversos trabajos o como combustible.

Tras estas descripciones se ha planteado una tabla general de distribución de los taxones en los yacimientos estudiados en esta tesis doctoral, y dos más que recogen la aparición de los mismos taxones en otros registros antracológicos desde la Edad del Bronce hasta época medieval estudiados hasta el momento en el cuadrante sureste de la Península Ibérica.
III.1. Condicionantes en el proceso de identificación taxonómica

El proceso de identificación taxonómica de los yacimientos estudiados ha sido dispar, debido fundamentalmente a las condiciones de preservación del carbón en el sedimento. Las particularidades arqueológicas, ecológicas o edafológicas de los yacimientos y su entorno y, en particular, los distintos contextos documentados en cada uno de ellos, tienen una incidencia directa en la calidad de la conservación de la estructura anatómica del material antracológico y, como no, en la cantidad de fragmentos que potencialmente contienen.

Como consecuencia de esto y de las limitaciones que impone la propia disciplina antracológica, el grado de identificación al que se ha podido llegar no ha sido siempre el mismo.

Se han identificado a nivel específico aquellos fragmentos cuyos caracteres diagnósticos no ofrecen dudas y distinguen claramente a una especie del resto de las de su género y familia. Sin embargo, en ocasiones esta distinción ha sido imposible por diversos motivos, lo cual ha hecho que el rango de identificación sea menor.

A veces varias especies de un mismo género ofrecen caracteres anatómicos muy similares que impiden una distinción clara entre ellas, en cuyo caso el grado de identificación debe ser genérico. Esto sucede por ejemplo en el caso del género *Tamarix*, que engloba una gran cantidad de especies todas ellas con rasgos anatómicos similares y muchas con un hábitat también parecido, con lo que no podemos realizar una discriminación por razones estrictamente anatómicas ni tampoco ecológicas. Un caso particular en la identificación genérica lo integran los géneros *Rhamnus* y *Phillyrea*, que, si bien pertenecen a familias completamente distintas (Rhamnaceae y Oleaceae respectivamente), poseen una apariencia anatómica prácticamente idéntica.

En otras ocasiones los distintos géneros y especies de una misma familia son raramente diferenciables atendiendo a criterios puramente anatómicos, por lo que el rango taxonómico al que se llega es de familia. Algunos casos típicos que comportan esta dificultad los encontramos en familias como Leguminosae, Chenopodiaceae, Labiatae o Cistaceae, por ejemplo, en que la mayoría de los géneros y especies integrados en las mismas presentan rasgos muy similares, con la salvedad de algunos taxa más característicos como *Ceratonia siliqua*, *Rosmarinus officinalis*, *Cistus* o *Atriplex halimus* respectivamente.

Algunas especies tienden a presentar importantes variaciones intraespecíficas que hacen que dentro de una misma especie puedan existir individuos de muy diversas características. Esta problemática se acentúa considerablemente en las coníferas, sobre todo en el caso de las cupresáceas, ante la gran similitud de los géneros *Juniperus* y
Tetraclinis, y también de los pinos de ámbito mediterráneo, es decir, aquellos que poseen punteaduras pinoides de tipo II (no fenestriformes), donde las dificultades son también notables.

Una mayor precisión en el grado de identificación, a escala específica o genérica, facilita la interpretación de un taxón concreto en el ámbito local o regional en el que aparece. La identificación de la familia o subfamilia, sin embargo, amplía el abanico de posibilidades interpretativas pero permite mucha menor definición en la inserción ecológica o etnológica del taxón de que se trata.

En algunos casos las dificultades en el proceso de identificación no se han planteado por la gran similitud entre distintas especies o géneros de una misma familia, sino como consecuencia de las particularidades de los fragmentos de carbón estudiados.

A este respecto, en ocasiones, bien por la mala conservación del fragmento, o bien por el pequeño tamaño del mismo, no es posible la observación de todos sus elementos anatómicos, sin embargo, aún con esta problemática, podemos aproximarnos con una alta fiabilidad al taxón de que se trata. En estos casos se ha utilizado la expresión “cf.” (confer, confirmar), al principio de la denominación taxonómica cuando la duda se plantea sobre todo el taxón, como por ejemplo cf. *Tetraclinis articulata*, y en medio de esta denominación cuando las dificultades se concentran en la definición específica de un determinado género que sí ha sido identificado con toda certeza, por ejemplo *Pistacia* cf. *terebinthus* o *Prunus* cf. *amygdalus*.

Hemos considerado como “Indeterminados” algunos fragmentos cuyos caracteres anatómicos, pese a ser observables con claridad, no se corresponden de manera definitoria con los que existen en los atlas anatómicos citados ni con los que se recogen en las colecciones de referencia de madera actual carbonizada que hemos podido consultar.

Finalmente, se han considerado como “Indeterminables” aquellos fragmentos cuyos caracteres no son visibles, se presentan fuertemente alterados o pertenecen a partes del tronco indiferenciables como la corteza o la médula, lo cual impide adscribir el fragmento a un taxón concreto. Las principales causas que alteran la estructura de la madera o del carbón y que nos han llevado en casos extremos a esta indeterminación aparecen definidas a continuación.

III.1.1. Alteraciones anatómicas en el registro antracológico

En el transcurso de la identificación del material antracológico pueden surgir ciertas dificultades, derivadas del estado de conservación de la madera, que inciden de forma directa en la mayor o menor precisión en la identificación de un fragmento concreto,
Capítulo III. Paleoflora identificada

llegando al extremo de considerar al mismo como “Indeterminable”. Esta dificultad o imposibilidad surge como consecuencia de una serie de modificaciones o alteraciones que la madera fresca o carbonizada puede sufrir en diferentes momentos como el crecimiento de la planta, la muerte biológica de la misma, el proceso de combustión, la fosildiagénesis y el proceso de recuperación y tratamiento del registro (Allué 2002, Allué et al. 2007).

Por tanto, podríamos dividir la incidencia de estas alteraciones en tres etapas distintas que acaecen durante todo este período. Las modificaciones sufridas antes de la carbonización, las que se producen durante la carbonización y aquellas que tienen su origen en procesos posteriores a la carbonización (Théry-Parisot 1998, 2001).

III.1.1.1. Modificaciones sufridas antes de la carbonización

Estas alteraciones se producen durante la etapa de crecimiento de la planta o en el período de tiempo en que la madera ya está muerta, bien por causas naturales o como consecuencia de la tala, almacenamiento o uso de la misma durante un determinado espacio temporal hasta que finalmente se produce la carbonización.

Algunas de estas modificaciones se derivan de las condiciones climáticas locales en donde crece la planta. Éstas pueden generar ciertas variaciones en el tamaño de los vasos del leño de primavera, que llegan a presentar mayor tamaño en ambientes húmedos o bien una reducción considerable de los mismos ante una exposición continuada a condiciones de estrés hídrico.

Agentes meteorológicos como la nieve o el viento generan también deformaciones en la morfología macroscópica y microscópica del tronco, aunque en este caso no son causa de indeterminación del carbón, ya que las principales incidencias suelen ser, por ejemplo, la excentricidad del tronco, la creación de fisuras y, en el caso particular del viento, un crecimiento anormal de la planta en el sentido del mismo (fig. 3.1). Este tipo de tensiones mecánicas sobre el crecimiento del árbol produce lo que se denomina “madera de tracción” en las frondosas y “madera de compresión” en las coníferas, que se observa microscópicamente a través de caracteres modificados como un engrosamiento de las paredes y la aparición de una serie de fendas inclinadas que tienen la apariencia de engrosamientos helicoidales (García Esteban et al. 2003) y que se han observado con mucha frecuencia en las coníferas analizadas en los diferentes yacimientos estudiados.

Otro condicionante climático que puede incidir en la morfología de la madera es la exposición de la planta durante su crecimiento a temperaturas extremas. El exceso de calor puede producir una progresiva desecación del tronco pudiendo conducir a la necrosis total o generando heridas que a su vez derivan en una propensión al ataque de
organismos xilófagos. Las bajas temperaturas inciden principalmente en el bajo nivel de crecimiento del individuo (García Esteban et al. 2003).

Figura 3.1. *Pistacia lentiscus* con alteraciones producidas por la dirección del viento (Foto: M.S. García).

En medios húmedos o encharcados la madera permanentemente sumergida puede sufrir modificaciones estructurales como consecuencia de la saturación de agua en sus tejidos (Théry-Parisot 1998, 2001). Se trata de una deformación causada fundamentalmente por ataques de microorganismos y que avanza de forma centrípeta, empezando por los bordes del tronco y aumentando hacia el centro del mismo en proporción a su tiempo de inmersión. Sin embargo, estas alteraciones, que serían observables en las dimensiones del grosor de las paredes celulares, son sólo apreciables tras largos períodos de inmersión.

Otro tipo de modificaciones son las derivadas de la acción antrópica sobre la planta, que se produce dado el interés económico de los árboles susceptibles de ser cultivados. Esta domesticación puede generar ciertas transformaciones anatómicas, tal y como se ha comprobado en el caso del olivo (Terral 1996, 1997, Terral y Arnold Simard 1996). Actividades como el desmoche, la resinación o el descorche generan también numerosas alteraciones en la estructura del tronco. Otras como las podas pueden tener como consecuencia un desarrollo irregular de los anillos de crecimiento, e incluso la formación excesiva de nudos, cuya función botánica es la inserción de la hoja con la yema lateral que da lugar a nuevas ramas, pero que dificultan considerablemente la identificación del fragmento dada la pérdida de orientación de los planos anatómicos.

Finalmente, antes de la carbonización pueden darse una serie de modificaciones producidas por agentes externos que causan una degradación en la madera a la que colonizan o atacan. Estos agentes son principalmente de dos tipos, hongos e insectos
xilófagos, aunque también es posible la observación en fragmentos de carbón arqueológico o de coprolitos de otro tipo de microorganismos como los encadenamientos de células procariotas (fig. 3.3) o diferentes tipos de cristales (fig. 3.2) (Badal y Atienza 2007), que en el caso de este trabajo han sido documentados en algunos fragmentos relacionados con el Balneario Romano de Archena.

Figura 3.2. Inclusión de cristales en un fragmento de *Tamarix* sp. del Balneario Romano de Archena (x 950).

Figura 3.3. Encadenamientos de células procariotas sobre fragmentos de carbón del Balneario Romano de Archena: a) *Olea europaea* (x 2700); b) *Quercus ilex/coccifera* (x 2200); c) *Rhamnus/Phillyrea* sp. (x 6500); d) *Rhamnus/Phillyrea* sp. (x 3700).
Los hongos a menudo tienen una estructura micelial compuesta de hifas (fig. 3.4) (Carrión Marco y Badal 2004). Pueden estar asociados simbióticamente o parasitariamente a determinadas especies de espermatófitos, o bien ser versátiles. A su vez, algunas especies son más resistentes a los ataques fúngicos que otras, como sucede por ejemplo con *Pinus sylvestris*, que resiste peor estos ataques que *Fagus sylvatica* (Théry-Parisot 2001).

Figura 3.4. Micelios de hongo sobre fragmentos de carbón del Balneario Romano de Archena: a) *Buxus* sp. (x 1700); b) *Buxus* sp. (x 2500); c) *Olea europaea* (x 2500); d) *Quercus ilex/coccifera* (x1000); e) *Pistacia lentiscus* (x 1400); f) *Tamarix* sp. (x 2300).
El ciclo vital de los hongos puede desarrollarse durante el período de vida de la planta de forma parásita o en ocasiones simbiótica, aunque también existen numerosos hongos saprófagos, que se alimentan de la madera una vez muerta. Los micelios van colonizando progresivamente las paredes celulares a través de las punteaduras intervasculares, alimentándose bien de sustancias que se hallan en estas paredes, o bien de los nutrientes que ellas mismas aportan (Blanchette 2000, 2003). Esta actividad genera en la madera un adelgazamiento de las paredes y la pérdida de consistencia de la madera, lo cual por otro lado hace que gane en inflamabilidad y combustibilidad. Para su observación, dado el pequeño tamaño de estos organismos y de otros como las bacterias o los minerales (Badal 2007, Badal y Atienza 2007) es conveniente la utilización de microscopía electrónica de barrido.

Figura 3.5. Microorganismos colonizando fragmentos de carbón del Balneario Romano de Archena: a) cf. *Phragmites australis* (x150); b) *Populus/ Salix* sp. (x 400); c) *Prunus* sp. (x 3700); d) *Rhamnus/Phillyrea* sp. (x 700); e) *Quercus ilex/coecifera* (x 2500); f) *Quercus ilex/coecifera* (x 3500).
Figura 3.6. Diferentes microorganismos colonizando un mismo fragmento de Tamarix sp. del Balneario Romano de Archena: a) x 4300; b) x 2700; c) x 4300; d) x 4300; e) x 2700; f) x 3300.

Los insectos xilófagos y/o barrenadores (figs. 3.7 y 3.8) viven en los troncos durante todo su ciclo vital pudiendo atacar tanto a organismos vivos como a madera muerta, y a especies indistintas, o bien presentar especializaciones en alguna en concreto (Lachat et al. 2006). Las larvas van alimentándose de madera propiamente dicha generando una serie de galerías que son de un tamaño considerable. El insecto va comiendo de la pared celular y depositando sus excrementos, por lo que en la observación de una galería de madera carbonizada ésta se encuentra llena de materia celular de la madera completamente desordenada (Carrión Marco y Badal 2004).
Capítulo III. Paleoflora identificada

Figura 3.7. Galería de insecto barrenador sobre un fragmento de Chenopodiaceae de Punta de los Gavilanes (x 150), y posible exubia del insecto (x 3700).

Figura 3.8. Galería de insecto barrenador sobre un fragmento de *Pinus halepensis* de Barranco de la Viuda.

La discusión acerca de si los ataques de este tipo de organismos están relacionados con determinadas condiciones ambientales o bien con prácticas humanas concretas es todavía muy incipiente. A este respecto, algunos estudios proponen que los hongos se expanden con más facilidad en condiciones de humedad, aunque lo cierto es que pueden sobrevivir en gran cantidad de nichos ecológicos. Carrión Marco y Badal (2004), tras la observación de una madera asociada a una estructura hidráulica constatan, no obstante, una alta incidencia de contaminación por hongos e insectos xilófagos de la madera, que estaría muy posiblemente relacionada con esta humedad. En nuestro caso, la importante presencia de hongos en los carbones documentados en las proximidades del cauce del
rio Segura podría también tener su origen en la facilidad de crecimiento de este tipo de microorganismos en ambientes húmedos.

En lo que concierne a las posibles causas etnológicas de su aparición, Théry-Parisot (1998, 2001) realizó un estudio experimental con la intención de comprobar si la incidencia de hongos e insectos xilófagos en las maderas del yacimiento de La Combette tenían relación con un determinado patrón de recolección de madera muerta. Sus conclusiones sin embargo apuntan a que esta presencia no tiene por qué estar relacionada con la recogida de esta madera, sino que la colonización puede desarrollarse durante el período de almacenamiento de madera previamente sana (durante unos 10 años), durante el período de vida del árbol, antes de su tala, o bien puede haberse producido por una recolecta de madera muerta afectada ya por organismos saprófagos.

Desde este punto de vista la contaminación de la madera puede producirse en cualquier estadio del crecimiento y muerte de la misma antes de su carbonización. No obstante, algunos estudios sobre maderas constructivas parecen apuntar hacia una cierta tendencia de estas agresiones en maderas que permanecen juntas almacenadas para su posterior uso, o bien formando parte de estructuras constructivas. Carrión Marco (2003, 2005a, 2007) estudia las maderas constructivas de los yacimientos de O Castelo, Cabezo de la Cruz, Segeda y Tres Montes. En este último constata que las vigas elaboradas de Juniperus sp. que muestran según el estudio dendrológico una proveniencia distinta, sufren sin embargo un mismo tipo de colonización por parte de organismos xilófagos, lo cual lleva a la autora a la conclusión de que la contaminación se produjo en particular durante el período en que estas maderas formaban juntas una misma unidad estructural (Carrión Marco 2007).

III.1.1.2. Modificaciones sufridas durante el proceso de carbonización

Las numerosas reacciones químicas que se producen durante el proceso de combustión (Chabal et al. 1999), descrito detalladamente en el Capítulo II, son la principal causa de algunas modificaciones y alteraciones que sufre la estructura macroscópica y celular de la madera, observadas luego en los carbones arqueológicos a través de su estudio microscópico.

Según el estudio publicado por Braadbaart y Poole (2008) estos cambios, de índole morfológica, física y química, aparecen asociados a una variable externa relacionada con la temperatura del fuego, el tiempo de exposición y el ritmo calorífico (°C/min), y una variable interna, en relación con el taxón, la talla, la conductividad del calor y la porosidad, aspectos que se modifican a partir de la carbonización.
La combustión de madera provoca en este material una gran fragmentación cuya relevancia interpretativa en los análisis antracológicos se ha discutido en el capítulo dedicado a la metodología.

Además, la carbonización tiene como consecuencia una importante reducción de masa y volumen en el tronco original (tabla 3.1). Baileys y Blankenhorn (1982) realizan una experimentación sobre cuatro especies distintas a través de la cual concluyen que la pérdida de masa media entre ellas es de un 70% a partir de los 550 ºC, con variaciones dependiendo de la especie, y que la mayor parte de esta masa, un 50%, se pierde en el rango comprendido entre los 200 y 400ºC. Rossen y Olson (1985) relacionan la pérdida de peso de entre un 56 y un 80% con la disminución de volumen del tronco, que oscilaría entre un 23 y un 60% aproximadamente, aunque existirían salvedades en que la disminución de tamaño es elevada, aunque no la pérdida de masa. Allué et al. (2007), por su parte, realizan en un reciente trabajo experimental en el parque faunístico de Lacuniacha (Huesca) un análisis en el cual se carbonizan en condiciones de laboratorio varias especies durante un tiempo medio de 12 minutos a 300ºC y a 700ºC. Sus conclusiones muestran una reducción del peso medio de 6,6 gramos hasta aproximadamente unos 4 gramos en el caso de la combustión a 300 ºC y a 1,5 gramos en el caso de la combustión a 700 ºC. Finalmente, Braadbaart y Poole (2008) en sus experimentaciones sobre Pinus sylvestris y Quercus robur concluyen que la mayor pérdida de masa se produce entre los 220 ºC y 310 ºC, cuando la madera se reduce un 60%, mientras que entre 310 ºC y 400 ºC y entre 400 ºC y 1200 ºC esta pérdida continúa pero a menor velocidad. A 1200 ºC el total de pérdida de masa se situaría en torno al 75-85% con respecto al peso original. También apuntan a que existe una diferencia entre la conífera (Pinus sylvestris), que sufre una mayor pérdida de masa que la frondosa (Quercus robur).

<table>
<thead>
<tr>
<th>Temperatura (ºC)</th>
<th>Carbono (%)</th>
<th>Hidrógeno (%)</th>
<th>Oxígeno (%)</th>
<th>Carbón (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>52,3</td>
<td>6,3</td>
<td>41,4</td>
<td>91,8</td>
</tr>
<tr>
<td>300</td>
<td>73,2</td>
<td>4,9</td>
<td>21,9</td>
<td>51,4</td>
</tr>
<tr>
<td>400</td>
<td>82,7</td>
<td>3,8</td>
<td>13,5</td>
<td>37,8</td>
</tr>
<tr>
<td>500</td>
<td>89,6</td>
<td>3,1</td>
<td>6,7</td>
<td>33</td>
</tr>
<tr>
<td>600</td>
<td>92,6</td>
<td>2,6</td>
<td>5,2</td>
<td>31</td>
</tr>
<tr>
<td>800</td>
<td>95,8</td>
<td>1</td>
<td>3,3</td>
<td>26,7</td>
</tr>
<tr>
<td>1000</td>
<td>96,6</td>
<td>0,5</td>
<td>2,9</td>
<td>26,5</td>
</tr>
</tbody>
</table>

Otros estudios se centran en observar los cambios que se producen en la porosidad total de la madera quemada y en el tamaño concreto de los poros tras un proceso de carbonización. En este sentido, recientes investigaciones sobre alteraciones en la madera de olivo durante el proceso de carbonización concluyen que la porosidad total de la madera de esta especie se incrementa de manera progresiva con el calor, sin modificar, no obstante, la morfología de la misma más allá de cambios en el espesor, fisuras en las paredes celulares, y una considerable reducción de masa de hasta el 70% (Klose y Schinkel 2002, Grioui et al. 2006, 2007). Baileys y Blankenhorn (1982) llegaron a conclusiones parecidas que mostraban un incremento de la porosidad a partir de los 500 °C y un tamaño de los poros que se elevaba progresivamente desde los 100 a los 400 °C.

Una de las alteraciones más comunes que se producen durante la carbonización son las fisuras (fig. 3.9), que consisten en la rotura en orientación radial de la estructura de la madera. Esta modificación se observa sobre todo en los planos transversal y longitudinal tangencial, aunque tiene una mayor incidencia en el primero, a través de los radios y de otras partes frágiles o previamente debilitadas por alguna alteración (Allué 2002). Las fisuras en la estructura celular de la madera sólo pueden llevar a la indeterminación del fragmento de carbón en su grado más extremo.

En lo que concierne a las causas de esta alteración, las hipótesis que se habían planteado tradicionalmente se orientaban a pensar que una rápida pérdida de agua en el caso de madera verde, con gran contenido hídrico, podría causar este tipo de alteraciones, con lo que un determinado patrón de gestión de los recursos forestales estaba en el origen de estas roturas en el tejido celular. Los estudios experimentales llevados a cabo, no obstante, concluyen que pueden producirse fisuras tanto en la madera verde como en la seca, y que las causas tienen relación con numerosas variables como la especie, el individuo, la parte concreta de la planta, su estado anterior a la combustión, y finalmente las condiciones en las que se ha producido la misma (Théry-Parisot 1998, 2001).
En los carbones arqueológicos se pueden observar otras transformaciones relacionadas con la carbonización como el colapso celular (fig. 3.10), que se expresa en una deformación de las células del plano transversal, producida por la evacuación de agua de la planta. Esta alteración, según Théry-Parisot (2001) se produce cuando existe una tasa de humedad superior al 60%, cuando se produce una fuerte elevación de la temperatura, cuando las punteaduras de los vasos son pequeñas, lo cual causa que la madera sea poco permeable y finalmente debido también a una baja densidad del leño, que tiene como consecuencia una débil resistencia a la compresión. Allué (2002) anota que esta alteración no sólo puede relacionarse con la combustión, sino que el desarrollo de la planta en ambientes de gran sequía puede conducir también a estas variaciones anatómicas.

Figura 3.10. cf. *Tetraclinis articulata* de La Punta de los Gavilanes, con células colapsadas.

El redondeamiento es otra alteración documentada por Allué (2002) en el yacimiento de Abric Romani. Se trata de una alteración macroscópica que puede estar producida como consecuencia de la combustión, aunque esta apariencia puede deberse a que el fragmento formara parte de un instrumento pulimentado, algo que por otra parte resulta indiferenciable en fragmentos de pequeño tamaño.

Finalmente, una de las alteraciones que más interés han despertado, posiblemente por las dificultades en la comprensión de su origen, es la llamada “vitrificación” (fig. 3.11). Se trata de una reacción que implica la homogeneización y fusión de todas las células, igualándolas e impidiendo la identificación del fragmento cuando afecta a la totalidad del tejido celular. Esta alteración suele aparecer de manera aislada en determinados fragmentos, con la salvedad de depósitos relacionados con incendios naturales o con
actividades de carboneo en las que es mucho más frecuente. En cualquier caso no se conocen con exactitud los criterios por los que este fenómeno se produce.

Los estudios que se han llevado a cabo sobre vitrificación de la madera parecen incidir sobre todo en que la combustión a altas temperaturas o la utilización de una madera verde serían los factores fundamentales que producirían esta alteración en el combustible (Thinon 1992, Scheel-Ybert 1998). Otras tendencias interpretativas, como se acaba de comentar, relacionan la vitrificación con condiciones específicas en la combustión como los incendios naturales (Tardy 1998) o actividades concretas realizadas en ambientes reductores como las carboneras (Fabre et al. 1992).

Figura 3.11. Fragmento de *Tamarix* sp. del Balneario Romano de Archena con vitrificación (izquierda) (x 85) y detalle del tejido vitrificado (derecha) (x 350).

Los análisis experimentales, no obstante, no han conseguido alcanzar conclusiones definitivas con respecto a este proceso. En este sentido, Théry-Parisot (1998, 2001) intenta reproducir este fenómeno mediante ensayos tanto en condiciones de aire libre como de laboratorio, generando combustiones de hasta 750 ºC. La imposibilidad de reproducirlo lleva a la autora a concluir que estas alteraciones se producen probablemente a una temperatura superior a estos 750 ºC, por lo que tendrían relación con condiciones muy específicas de carácter reductor.

III.1.1.3. Modificaciones posteriores a la carbonización

Una vez finalizada la combustión, los carbones pueden sufrir una serie de alteraciones como consecuencia de las condiciones específicas del sedimento. La composición físico-química del suelo o una exposición a procesos de carbonatación afectan al estado de conservación de los carbones.
Sin embargo, el principal problema del carbón es la fragmentación o sobrefragmentación que puede experimentar debido a determinados procesos de carácter mecánico, condicionando cualitativa y cuantitativamente el registro estudiado en el posterior análisis antracológico (Allué et al. 2007). En este sentido destaca el pisoteo que normalmente sufre el registro tras la formación del depósito, el grado de elasticidad del mismo (Allué 2002) o la incidencia de la humedad sobre el suelo en el que éste se encuentra.

Una de las variables estudiadas en yacimientos paleolíticos en relación con la fragmentación de los carbones es el efecto que la presión del suelo causada por el hielo y deshielo del mismo puede producir sobre ellos. Este fenómeno generaría una gran presión en la estructura interna de los carbones al penetrar en ellos gran cantidad de agua, generando un mayor grado de destrucción en aquellos carbones procedentes de madera previamente alterada que en los que pertenecen a troncos sanos (Théry-Parisot 2001).

Finalmente hay que apuntar que un exceso de fragmentación en los carbones puede estar producido por el sistema de excavación, de recuperación de los mismos en el campo, y por el tratamiento de la muestra, ya que parece demostrado que las técnicas basadas en la utilización de agua como la flotación pueden provocar una excesiva fragmentación del registro antracológico.

III.2. Descripción de los taxones identificados: rasgos anatómicos, ecología, propiedades y aprovechamiento

En total han sido estudiados 15462 fragmentos de carbón, identificando hasta 48 taxones distintos.

La descripción de los mismos se ha ordenado teniendo en cuenta las grandes diferencias en la estructura del leño que presentan Gimnospermas, Angiospermas Monocotiledóneas y Angiospermas Dicotiledóneas, detalladas en el Capítulo II. Dentro de cada grupo los géneros y especies identificados se ordenan siguiendo el criterio alfabético de la familia a la que pertenecen. Se incluyen también fotos ilustrativas tanto de la anatomía del carbón como de la planta en entornos ecológicos actuales.

Sintéticamente, los taxones se han descrito siguiendo la siguiente el siguiente orden:
Recursos forestales en un medio semiárido.
Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

- **Gimnospermas**
 - Familia Cupressaceae
 - *Juniperus* sp.
 - *cf. Terecanis articulata*
 - Familia Pinaceae
 - *Abies alba*
 - *Pinus halepensis*
 - Familia Ephedraceae (Orden Gnetales)
 - *Ephedra* sp.

- **Angiospermas Monocotiledóneas**
 - Clase Monocotyledoneae
 - *Monocotyledoneae*
 - Familia Gramineae (Poaceae)
 - *cf. Phragmites australis*
 - Familia Arecales
 - *Chamaerops humilis*

- **Angiospermas Dicotiledóneas**
 - Familia Anacardiaceae
 - *Pistacia lentiscus*
 - *Pistacia cf. terebinthus*
 - Familia Apocynaceae
 - *cf. Nerium oleander*
 - Familia Asclepiadaceae
 - *Periploca angustifolia*
 - Familia Buxaceae
 - *Buxus* sp.
 - Familia Celastraceae
 - *Maytenus senegalensis*
 - Familia Chenopodiaceae
 - *Chenopodiaceae*
 - Familia Compositae
 - *Atriplex halimus*
 - Familia Cistaceae
 - *Cistus* sp.
 - *cf. Fumana* sp.
 - Familia Compositae
 - *Compositae*
 - *Artemisia* sp.
 - Familia Cruciferae
 - *cf. Cruciferae*
 - Familia Ericaceae
 - *Arbutus unedo*
 - *Erica* sp.
Capítulo III. Paleoflora identificada

- Familia Fagaceae
- *Fagus sylvatica*
- *Quercus ilex/coccifera*

- Familia Labiatae (Lamiaceae)
- *Labiatae*
- *Rosmarinus officinalis*

- Familia Leguminosae (Fabaceae s.l.)
- *Leguminosae*

- Familia Moraceae
- *Ficus carica*

- Familia Oleaceae
- *Fraxinus sp.*
- *Olea europaea*

- Familia Plantaginaceae
- *cf. Plantago sp.*

- Familia Punicaceae
- *Punica granatum*

- Familia Ranunculaceae
- *Clematis sp.*

- Familia Rhamnaceae/Oleaceae
- *Rhamnus/Phillyrea sp.*

- Familia Rosaceae, subfamilia Maloideae
- *Rosaceae tipo Maloideae*

- Familia Rosaceae, subfamilia Prunoideae
- *Prunus sp.*
- *Prunus cf. amygdalus*

- Familia Salicaceae
- *Populus/Salix sp.*

- Familia Solanaceae
- *cf. Withania frutescens*
- *Lycium intricatum*

- Familia Tamaricaceae
- *Tamarix sp.*

- Familia Thymelaeaceae
- *Daphne gnidium/Thymelaea hirsuta*

- Familia Ulmaceae
- *Ulmus sp.*

- Familia Vitaceae
- *Vitis vinifera*
III.2.1. Las Gimnospermas

FAMILIA CUPRESSACEAE

Nombre común: Enebro, sabina.

Descripción anatómica:

Plano Transversal: Madera homóxila carente de canales resiníferos, y con una transición gradual entre los leños temprano y tardío. Los límites de los anillos de crecimiento pueden presentarse de manera poco marcada, y aparecen en ocasiones falsos anillos. El parénquima es difuso.

Plano Longitudinal Tangencial: Los radios son principalmente uniseriados, aunque puede aparecer alguno biseriado. Se trata de radios homogéneos cuya altura, dependiendo de las especies, puede oscilar de 1 a 6 células en unos casos a alturas superiores a las 10 células en otros (Greguss 1955). En este trabajo se ha optado por la identificación genérica *Juniperus* sp. ya que la mayoría de los fragmentos presentaban un tamaño demasiado pequeño para contar con un número de radios significativo que nos permitiera discriminar claramente este criterio.

Plano Longitudinal Radial: Las traqueidas verticales presentan punteaduras areoladas uniseriadas, no tiene traqueidas horizontales. Las punteaduras de los campos de cruce se presentan de 2 a 4, con morfología cupresoide.

Figura 3.12. *Juniperus* sp. de La Punta de los Gavilanes. A la izquierda, plano longitudinal tangencial (x 200), a la derecha, plano longitudinal radial (x100).
Ecología:
El género *Juniperus* comprende una gran cantidad de especies leñosas y principalmente arbustivas, que presentan una distribución muy amplia en toda la Península Ibérica desde el nivel del mar hasta los 2000 m de altitud.

En la zona que actualmente comprende la Región de Murcia se desarrollan las especies *Juniperus oxycedrus* L. (Enebro), *J. phoenicea* L. (Sabina, Sabina negral), *J. turbinata* Guss (Sabina), *J. communis* subsp. *hemisphaerica* (K. Presl) Nyman (Enebro rastrero) y *J. thurifera* L. (Sabina albar). Estas dos últimas especies son propias de zonas con cierta altura, frías y con un régimen de precipitaciones de seco a subhúmedo. Por ello puede suponerse que la mayoría de los fragmentos de carbón analizados se corresponderían con las otras tres especies, más abundantes en el ámbito semiárido: *Juniperus oxycedrus* aparece en litosuelos, y formando parte de sotobosques y matorrales desde el nivel del mar hasta los 1.600 m; *Juniperus phoenicea*, por su parte, crece también en litosuelos y crestones venteados de formaciones de pícar, carrascales y acompañando a la sabina albar en montañas que no superen los 1500 m; y *Juniperus turbinata*, sin embargo, es propia de zonas dunares costeras como San Pedro del Pinatar (Sánchez Gómez *et al.* 1998).

![Figura 3.13. *Juniperus oxycedrus* en Sierra Espuña (izquierda) y *Juniperus phoenicea* en la Sierra de las Moreras (derecha) (Fotos: M. S. García).](image)

Propiedades y aprovechamiento:
La madera de estas especies es compacta, de grano fino, resistente a la putrefacción y muy apta para trabajos de ebanistería y para la elaboración de vigas y pilares, aunque el escaso crecimiento que presentan suele limitar su uso como material de construcción. *Juniperus phoenicea* es un excelente combustible y ha sido muy empleado en la elaboración de carbón, generando una importante deforestación de la especie (López González 2001).
Son numerosos los usos medicinales de casi todas las partes de la planta, y también es muy conocido que a partir de las arcéstidas de *Juniperus communis* se elabora la ginebra (Galán *et al.* 1998).

Especie: cf. *Tetraclinis articulata* (Vahl) Masters.
Nombre común: Araar, Sabina de Cartagena, Sabina mora, Ciprés de Cartagena.

Descripción anatómica:

Plano Transversal: Madera homóxila carente de canales resiníferos. Los anillos de crecimiento no son visibles en muchas ocasiones, y en otras se presentan de manera discontínua.

Plano Longitudinal Tangencial: Los radios son homogéneos y uniseriados, en ocasiones parcialmente biseriados, de 1 a 6 células de altura de manera general, aunque puede presentar hasta un total de 17 (García Esteban *et al.* 2003). Presenta paredes gruesas en la madera final.

Plano Longitudinal Radial: Las punteaduras areoladas de las paredes radiales de las traqueídias longitudinales son redondeadas con abertura ocluida y se presentan en disposición uniseriada aunque en ocasiones biseriada (García Esteban *et al.* 2003). Posee de 1 a 4 punteaduras cupresoides y piceoides en los campos de cruce, normalmente 1 o 2 muy juntas (Greguss 1955, Jacquot 1955a, Schweingruber 1978, 1990).

Ecología:
Tetraclinis articulata es una especie que en la actualidad se desarrolla en el norte de África en zonas como Marruecos, Argelia y Túnez, donde puede vivir en elevaciones de hasta 1800 m; también crece en la isla de Malta y en la Península Ibérica donde aparece de manera relict en formaciones boscosas abiertas de la Sierra de Cartagena (Cuesta de San Juan, Pico del Águila, Barranco de la Luisa, etc) (Alcaraz Ariza *et al.* 1997, López González 2001, Sánchez Gómez y Guerra Montes 2003).

Se trata de una especie que tolera bien la aridez, no resistente a las heladas. Se desarrolla principalmente en terrenos calizos poco profundos y pedregosos, aunque no soporta bien la salinidad, los yesos o los terrenos encharcados.

Propiedades y aprovechamiento:
La madera pardo-rojiza de la sabina de Cartagena es de muy buena calidad, de grano fino, muy dura y resistente a la putrefacción. Se regenera muy fácilmente tras un incendio, y los ejemplares procedentes de reiteradas quemas generan gran cantidad de vetas (lupia) muy apreciadas estéticamente en ebanistería y marquetería de lujo (López González 2001).

Su resina, llamada sandáraca era conocida desde la antigüedad y utilizada como cola natural y para la obtención de barnices.

Aunque ha sido documentada en varios yacimientos del Sureste peninsular, no resulta un combustible excesivamente bueno.
FAMILIA PINACEAE

Especie: *Abies alba* Miller.
Nombre común: Abeto.

Descripción anatómica:

Plano Transversal: Madera homóxila, carente de canales resiníferos. Transición rápida entre el leño inicial y final (Schweingruber 1990). Parénquima ausente o escaso, en distribución dispersa (García Esteban *et al.* 2003).

Plano Longitudinal Tangencial: Los radios son homogéneos y uniseriados, con una altura que oscila habitualmente entre las 15 y 25 células, aunque puede llegar a presentar hasta 40 células. A este respecto, se ha descartado la posibilidad de que pudiera tratarse de la especie *Abies pinsapo* Boiss. dado que la altura de sus radios no supera nunca las 10 células (García Esteban *et al.* 2003).

Plano Longitudinal Radial: Radios leñosos sin traqueidas transversales. Las traqueidas verticales presentan punteaduras areoladas uniseriadas. Las punteaduras de los campos de cruce son de tipo taxodioide y piceoide, distribuidas entre 1 o 2 por campo, en ocasiones 3, con un diámetro medio de entre 6 y 8 µm.

![Imagen de Abies alba del Teatro Romano de Cartagena. A la izquierda, plano transversal (x 60), a la derecha, plano longitudinal tangencial (x 140).](image)

Ecología:
El abeto es un árbol que en la actualidad habita en el centro y sur de Europa, en cordilleras como los Pirineos, Alpes, Jura, Cárpatos, Selva Negra, Apeninos, Macedonia y Córcega (Costa *et al.* 2001). En la Península Ibérica aparece casi exclusivamente en...
los Pirineos, aunque tiene su límite meridional en las formaciones que se pueden encontrar en Irati (Navarra) y en el Montseny (Barcelona) (fig. 3.17).

Se trata de una especie que habita en laderas y umbriás de montaña desde los 700 hasta 2000 m de altura. Puede vivir en cualquier tipo de sustrato siempre y cuando sean suelos frescos y de gran humedad. Suele aparecer asociado a formaciones de haya, pino albar o pino negro (Galán et al. 1998).

Las condiciones ecológicas en que se desarrolla esta especie descartan por completo que pudiera presentarse en la zona estudiada en esta tesis doctoral, sin embargo, el contexto en que este taxón ha sido identificado, claramente como un material constructivo del Teatro Romano de Cartagena, hace pensar en el transporte de materias primas desde puntos muy alejados.

Propiedades y aprovechamiento:

El abeto posee una madera blanquecina, ligera, poco resinosa y fácil de trabajar, aunque de no muy buena calidad. Presenta una resistencia menor que el pino pero sin embargo, el gran tamaño que pueden alcanzar sus individuos hace que los tablones que se obtienen hayan sido muy utilizados en construcción, ebanistería, elaboración de mástiles de barco o de instrumentos musicales (Galán et al. 1998, López González 2001).

La madera de abeto fue utilizada desde la antigüedad, en Grecia principalmente para la construcción de navíos de guerra, aunque no para barcos de mercancías debido a su poca resistencia. En la Antigua Roma, Vitrubio señala en su obra “De Architectura” que el abeto posee una rigidez natural que lo hace resistente al peso, aunque distingue entre los abetos criados en los Apeninos en la parte de la umbria, de los que valora que la gran humedad que reciben durante su crecimiento los hace poco resistentes a la
putrefacción, mientras que los que se crían en las solanas serían mucho más firmes, sólidos y de una gran duración.

Especie: *Pinus halepensis* Mill.
Nombre común: Pino carrasco, Carrasqueño.

Descripción anatómica:
Plano Transversal: Leño homóxilo con clara diferenciación de los anillos de crecimiento y del leño temprano y leño tardío. Presenta canales resiníferos dispersos de manera indiferente por todo el leño y éstos suelen ser más pequeños que en otras especies, entre 100 y 200 µm (Jaquiot 1955a).

Plano Longitudinal Tangencial: Radios uniseriados y heterogéneos, de 1 a 12 células de altura. Presenta canales resiníferos horizontales con células epiteliales de paredes gruesas.

Plano Longitudinal Radial: Las traqueidas verticales presentan punteaduras areoladas grandes en disposición uniseriada, las horizontales suelen ser numerosas y no presentan estructura dentada. Los campos de cruce tienen de 1 a 4 punteaduras pinoides, aunque generalmente 1 o 2 de pequeñas dimensiones.

![Figura 3.18. *Pinus halepensis* de Barranco de la Viuda. A la izquierda, plano transversal, a la derecha, plano longitudinal radial.](image)

Ecología:
Se trata de una especie circunmediterránea muy frecuente en toda la Península Ibérica. Tiene amplia tolerancia ecológica, con una gran resistencia a la sequía, y poca a las heladas. Es indiferente al sustrato edáfico aunque se desarrolla mejor en suelos básicos.

Se da en bosques de zonas secas, roquedos y matorrales abiertos, desde el nivel del mar hasta los 1.500 m en solanas (Sánchez Gómez *et al.* 1996). Es muy apto como...
competidor frente a otras especies arbóreas. Su principal limitante es el frío (Galán et al. 1998). En la zona mediterránea está considerado como bosque secundario sustitutivo de encinares y carrascales. Se encuentra repartido por todo el territorio de la Región murciana, la mayoría como producto de repoblaciones contemporáneas.

![Figura 3.19. Pinus halepensis en la Sierra de Santa Ana de Jumilla (Foto: M. S. García).](image)

Propiedades y aprovechamiento:
La madera de pino carrasco es de calidad media, dura y de grano fino. Su utilización como madera de construcción es muy limitada debido a que el crecimiento de esta especie es muy tortuoso y no suele superar los 20 m de altura. Se ha utilizado, no obstante, para la realización de traviesas de ferrocarril y pequeños instrumentos de carpintería y construcción.

Se trata además de un buen combustible cuyo uso se ha documentado en la Península Ibérica desde la Prehistoria.

La utilización de su resina se documenta en la Región de Murcia en el caso de las Murtas (Moratalla, Murcia) (Sánchez Gómez et al. 1996).

El pino carrasco se ha utilizado tradicionalmente en medicina popular y también ha sido muy utilizado en repoblaciones de zonas áridas (Alcaraz Ariza et al. 1997).
Especie: *Pinus pinea/pinaster*
Nombre común: Pino piñonero/rodeno.

Descripción anatómica:
Plano Transversal: Leño homóxilo, con canales resiníferos que aparecen dispersos principalmente en la madera de transición, y que oscilan entre los 100 y los 300 µm.

![Figura 3.20. *Pinus pinea/pinaster* de La Punta de los Gavilanes. A la izquierda, plano transversal (x 75), a la derecha, plano longitudinal radial.](image)

Plano Longitudinal Tangencial: Sus radios son heterogéneos, uniseriados, con una altura que oscila entre 1 y 15 células (*Pinus pinaster* entre 6 y 8 células), y que en ocasiones presentan canales resiníferos transversales.

Plano Longitudinal Radial: *Pinus pinaster* presenta de 1 a 4 punteaduras pinoides por campo de cruce, con paredes gruesas y onduladas, mientras que *Pinus pinea* suele tener de 2 a 4 punteaduras de pinoides a piceoides, con paredes delgadas y sin ondulaciones. Las punteaduras areoladas suelen ser piceoides en el leño final.

Ecología:
Pinus pinea L. es un árbol propio del ámbito mediterráneo, que aparece principalmente en la mitad sur de la Península Ibérica, desde el nivel del mar hasta los 1000 m de altitud. Prefiere los suelos silíceos aunque también puede aparecer en zonas algo calizas, e incluso en arenasles marítimos y dunas fijas (López González 2001). Resiste bien la sequía estival, pero también es tolerante con los fríos en zonas con un nivel de precipitación no muy elevado (Galán et al. 1998). En la Región de Murcia aparece en la actualidad en suelos arenosos interiores, sobre todo en las sierras silíceas de Lorca y Puerto Lumbreras (Sánchez Gómez et al. 1998).

Pinus pinaster Ait. se desarrolla de forma natural por casi toda la Península Ibérica, aunque es abundante sobre todo en el extremo noroccidental, en los sistemas Central e Ibérico, en las sierras béticas y en las sierras costeras de la vertiente mediterránea. Se
trata de una especie algo calcífera y muy frugal que puede vivir desde el nivel del mar hasta aproximadamente unos 2000 m de altitud, y que se encuentra normalmente en suelos silíceos, pobres y secos o sobre dolomías y suelos calizos muy lavados, en zonas con una amplia época de sequía estival (Galán et al. 1998). En la Región de Murcia lo encontramos en la actualidad formando parte de formaciones boscosas y litosuelos sobre todo en la comarca del Noroeste, sierra Espuña y Cambrón, aunque también ha sido utilizada esta especie para repoblar sierras del interior y Carrascoy (Sánchez Gómez et al. 1998).

Figura 3.21. *Pinus pinea* en la localidad gerundense de Blanes (izquierda) y *Pinus pinaster* en los rodenos de Albarracín, Teruel (derecha) (Fotos: M. S. García).

Propiedades y aprovechamiento:

Uno de los principales aprovechamientos de *Pinus pinaster* ha sido la obtención de su resina, para la realización de productos como la pintura, barnices, papel, cosméticos…etc., también, antiguamente para la elaboración de un alquitrán capaz de impermeabilizar la madera, y en la actualidad para la producción de madera, la repoblación y la producción de setas como el niscale o robellón (Galán et al. 1998). Su madera es de grano grueso, ligera y resinosa, aunque es menos apreciada que la de otros pinos, por lo que se reserva para la elaboración de tablones, traviesas de ferrocarril, cajas, etc. Las piñas del pino resinero se conocen como “piñas de encender”, porque arden muy fácilmente, sin apagarse hasta que se consumen. La corteza se ha usado...
como astringente y para curtir pieles, y sus brotes como alimento para el ganado (López González 2001).

Especie: *Pinus nigra/sylvestris*

Nombre común: Pino salgareño, blanco (en la Región de Murcia)/ Pino albar.

Descripción anatómica:

Plano Transversal: Leño homóxilo, con canales resiníferos que aparecen dispersos en la madera final y que oscilan entre 70 y 130 µm. La transición entre el leño temprano y el tardío es abrupta.

Plano Longitudinal Tangencial: Los radios son heterogéneos y unicelulares, aunque aquéllos en los que existen canales resiníferos transversales son biseriados. La altura de los mismos oscila entre 1 y 12 células, aunque pueden presentar hasta un máximo de 20 células de altura, siendo lo más habitual de 6 a 10 células.

Plano Longitudinal Radial: Presenta 1 o 2 punteaduras fenestriformes por campo de cruce, normalmente de tendencia ovalada las de *Pinus nigra* y algo más rectangulares en el caso de *Pinus sylvestris*. Las traqueidas horizontales poseen paredes dentadas.

![Imagen de *Pinus nigra/sylvestris* del Teatro Romano de Cartagena. A la izquierda, plano transversal (x 50), a la derecha, plano longitudinal radial (x 550).](image)

Ecología:

Pinus nigra Arn. es una especie que puede encontrarse en todo el ámbito del Mediterráneo, y que en la Península Ibérica se desarrolla principalmente en las montañas de la zona central y oriental. Se trata de un árbol que soporta tanto condiciones de aridez como los intensos fríos invernales, y que prefiere los suelos calizos, aunque también es capaz de crecer en los silíceos. Aparece desde los 800 hasta los 1500 m de altitud aproximadamente, en contacto con quejigares, encinares,
robledales de *Quercus pubescens*, sabinares de sabina albar (*Juniperus thurifera*) y en su límite superior con *Pinus sylvestris* (López González 2001).

Pinus sylvestris L. se extiende por el centro y noreste de la Península Ibérica, ya que soporta bien las condiciones de frío, heladas y nevadas, pero no el calor excesivo. Las escasas formaciones que encontramos en el sur se encuentran en zonas como la Sierra de Baza o Sierra Nevada. Se desarrolla en sustratos principalmente síliceos entre los 1000 y 2000 m de altitud, en zonas con altos índices de precipitación (Galán *et al.* 1998, López González 2001).

![Figura 3.23. *Pinus sylvestris* en la Sierra de Béjar, Ávila (Foto: M. S. García).](image)

Propiedades y aprovechamiento:
El principal recurso aprovechable de *Pinus nigra* es su madera, que se caracteriza por poseer una gran dureza, resistencia a la putrefacción, y ser fácil de trabajar. Se ha utilizado principalmente para la construcción, como elemento estructural, y también en la fabricación de barcos (López González 2001).
En cuanto a *Pinus sylvestris*, su madera, de color blanquecino-amarillento en la albura y de duramen pardo-rojizo es compacta, resistente, poco resinosa y, en general, de muy buena calidad. Dadas estas condiciones y el gran tamaño que pueden alcanzar los individuos de esta especie este recurso se ha utilizado para todo tipo de elementos de construcción, para la elaboración de puertas, ventanas, postes, muebles. Se trata también de un excelente combustible (Galán et al. 1998, López González 2001).

- **Las Brácteas de piña**

Además de la madera, en los yacimientos estudiados se han hallado otras partes vegetativas de los pinos. Se trata de algunos fragmentos de bráctea de piña, que también han podido ser utilizadas como combustible principalmente para encender el fuego, ya que poseen una alta inflamabilidad. Por esta razón se trata de un resto que muy habitualmente ha sido documentado en yacimientos arqueológicos como combustible (Grau 1990a, Carrión Marco 2003).
Capítulo III. Paleoflora identificada

ORDEN GNETALES

FAMILIA EPHEDRACEAE

La familia Ephedraceae la componen de 35 a 50 especies únicamente del género *Ephedra*, uno de los más antiguos y aislados que componen las plantas con semillas, ya que no se les conoce ningún pariente en la actualidad (López González 2001).

Género: Ephedra sp. (p. ej. *Ephedra fragilis* Desf., *E. distachya* L., *E. nebrodensis* Tineo ex Guss)

Nombre común: Belcho, Hierba de las coyunturas.

Descripción anatómica:

Plano Transversal: Madera de semiporosa a porosidad difusa. Vasos aislados con morfología poligonal. Parénquima apotraqueal difuso. Límite de los anillos, que frecuentemente son discontinuos, bien visible.

Plano Longitudinal Tangencial: Los radios suelen presentar de 2 a 9 series, heterogéneos de células muy irregulares.

Plano Longitudinal Radial: El rasgo más destacado en este plano son sus perforaciones de los vasos, de forma foraminada o efedroide.

A la izquierda, plano transversal, a la derecha, plano longitudinal radial.

Ecología:

Las diferentes especies de *Ephedra* son anatómicamente indiferenciables. En la Península Ibérica habitan tres especies de este género: *Ephedra fragilis*, *E. distachya* y *E. nebrodensis*, las tres se presentan actualmente en el territorio de la Región de Murcia.
E. fragilis aparece en zonas de matorral, formando parte de bosques esclerófilos aclarados de zonas áridas. Suele vivir en contextos de suelos calizos, aunque también soporta los siliceos, y es capaz de crecer incluso en zonas arenosas costeras y terrenos salinos o yesosos, desde el nivel del mar hasta unos 1100 m de altitud. Suele acompañar a Pistacia lentiscus, Rhamnus lycioides, Quercus coccifera, Juniperus phoenicea…etc. (López González 2001). En la Región de Murcia, donde está muy extendida, aparece en taludes y espolones a veces nitrificados en ambientes cálidos (Sánchez Gómez et al. 1998, Sánchez Gómez y Guerra Montes 2003).

Ephedra distachya es una especie extendida en la mitad Este peninsular y en las zonas margosas del valle del Duero. Aparece en contextos ecológicos similares a los de la especie anterior, principalmente en arenales marítimos, cerros yesosos o margosos y roquedos calizos, desde el nivel del mar hasta unos 1200 m de altitud (Galán et al. 1998, López González 2001). En la Región de Murcia encontramos esta especie en matorrales nitrificados y montañas próximas al mar (Sánchez Gómez et al. 1998).

Ephedra nebrodensis tiene su nicho ecológico en laderas de montaña de suelo principalmente calizo, nitrificado, margoso o yesoso, llegando a presentarse hasta los 1700 m de altitud, dada su resistencia a las heladas (López González 2001). En la Región de Murcia aparece asociada a sotobosques, espolones rocosos venteados, sobre
todo en sierras como Sierra Espuña, el Gigante o el Carche (Sánchez Gómez y Guerra Montes 2003).

Propiedades y aprovechamiento:
En cuanto a su aprovechamiento, la sustancia química que todas las efedras contienen, llamada efedrina, un estimulante del sistema nervioso simpático que actúa principalmente sobre los centros nerviosos respiratorios, constituye el componente esencial de medicamentos antiasmáticos, antitusígenos y para elevar la tensión sanguínea. Las plantas de este género también se han utilizado en medicina popular (Alcaraz Ariza et al. 1997), principalmente como antiasmático, antirreumático, sudorífico, estimulante, o para tratar gastritis, resfriados y trastornos circulatorios. Con estas plantas se pueden formar setos y abrigos en regiones cálidas y próximas al litoral (López González 2001).

III.2.2. Las angiospermas monocotiledóneas.

MONOCOTYLEDONEAE

Nombre común: Monocotiledónea (p. ej. esparto, barrón, albardín…etc).

Descripción anatómica:
Plano Transversal: Su estructura está formada por una serie de haces cribo-vasculares compuestos de vasos del metaxilema, rodeados por otros del metafloema.

![Figura 3.28. Monocotyledoneae de La Punta de los Gavilanes, plano transversal (izquierda) y detalle de los haces cribo-vasculares (derecha).](image)
Ecología:
Las monocotiledóneas engloban a varias familias y numerosas especies que pueden desarrollarse en nichos ecológicos muy diversos. Las Arecáceas o Palmáceas, como *Chamaerops humilis* se crían en formaciones arbustivas o roquedos de zonas próximas a la costa; las Juncáceas, sin embargo, ocupan suelos hidromorfos; las Liliáceas poseen gran cantidad de géneros, entre los cuales destaca *Ruscus*, que prefiere para desarrollarse los roquedos sombríos o *Asparagus*, que se presenta principalmente en matorrales alterados o en zonas de cultivo abandonadas. Las Esmiláceas, con *Smilax aspera*, crecen sin embargo en orlas de ambientes riparios. La familia más extensa, las Gramíneas, presenta actualmente en la Región de Murcia hasta setenta y ocho géneros, y cientos de especies que se desarrollan fundamentalmente en terrenos secos sobre suelos pobres, principalmente básicos o también yesíferos. De entre ellas destacan por su abundancia el esparto (*Stipa tenacissima*), que crece en suelos poco profundos en laderas soleadas, formando en ocasiones espartales; el albardín (*Lygeum spartum*) que puede crecer en suelos margosos y salinos o el barrón (*Ammophila arenaria*), que aparece en dunas costeras de arenas sueltas (Galán *et al.* 1998).

Propiedades y aprovechamiento:
Las monocotiledóneas que tradicionalmente han tenido un mayor aprovechamiento han sido sin duda las gramíneas como el esparto. Algunos de los usos más destacados de esta especie han sido como material textil, también para la fabricación de papel, y con algunos usos en medicina y veterinaria tradicional. Pero quizá su uso más extendido se ha fundamentado en la elaboración de cesterías y trenzados para cuerdas en el mundo rural tradicional. Por su parte, el albardín ha servido para sustituir al esparto en la...
realización de cesterías (Alcaraz Ariza et al. 1997). Otras gramineas como el barrón han contribuido principalmente a la fijación de dunas costeras.

Figura 3.30. *Stipa tenacissima* en el Cabo de Gata, Almería (izquierda) y *Ammophila arenaria* en las dunas del Delta del Ebro (derecha) (Fotos: M. S. García).

FAMILIA GRAMINEAE

Especie: cf. *Phragmites australis* (Cav.) Steudel.

Nombre común: Carrizo.

Descripción anatómica:

Plano Transversal: Su estructura está formada por una serie de haces cribo-vasculares. Esta especie en concreto se caracteriza por poseer dos grandes vasos por cada haz libero-leñoso (Vernet et al. 2001).

Figura 3.31. cf. *Phragmites australis* del Balneario Romano de Archena, plano transversal (x 85) (izquierda) y ejemplar de carrizo en la costa de Mazarrón (derecha) (Foto: M. S. García).
Ecología:
El carrizo es una planta de gran extensión mundial, que se desarrolla en toda la Península Ibérica e Islas Baleares. En la Región de Murcia presenta una gran extensión como colonizador en los márgenes de ríos, arroyos, balsas y ramblas, y es capaz de vivir en zonas húmedas con gran salinidad.

Propiedades y aprovechamiento:
Los tallos de carrizo se utilizan para la fabricación de esteras, cercados, y para techar chozas o cobertizos. Sus brotes tiernos se han utilizado como forraje, y también se han elaborado harinas a partir de su rizoma. Se ha usado también para elaborar escobas y como planta tintórea de tonos verde-amarillentos (López González 2001).

FAMILIA ARECACEAE

Especie: Chamaerops humilis L.
Nombre común: Palmito.

Descripción anatómica:
Plano Transversal: Su estructura está formada por una serie de haces cribo-vasculares. Presenta de dos a cuatro vasos rodeados por parénquima.

Figura 3.32. Chamaerops humilis de Barranco de la Viuda, plano transversal.

Ecología:
El palmito es una especie arbustiva que se desarrolla en todo el litoral mediterráneo occidental, aunque en el caso de la Península Ibérica puede penetrar algo hacia el interior. Esta especie crece sobre cualquier tipo de terreno (pedregoso, margoso,
arenoso) desde el nivel del mar hasta los 1000 m de altitud, aunque prefiere sobre todo las zonas costeras, protegidas de heladas, a las que es muy sensible. Suele formar parte de formaciones termófilas de lentisco, coscoja, olivilla, espino negro, esparraguera, etc. (Galán et al. 1998, López González 2001)

En la Región de Murcia aparece como parte de formaciones arbustivas y roquedos. Se da principalmente en las zonas costeras, aunque es capaz de penetrar algunos kilómetros hacia el interior (Sánchez Gómez et al. 1998, Sánchez Gómez y Guerra Montes 2003).

Figura 3.33. *Chamaerops humilis* en el Cabo de Gata, Almería (Foto: M. S. García).

Propiedades y aprovechamiento:
El cogollo tierno de palmito es muy apreciado en cocina para la elaboración de ensaladas. Además, sus hojas se han utilizado en la fabricación de esteras, escobas, cuerdas, relleno de tapicerías, cestos, etc. Ha sido utilizado en medicina popular como astringente por la gran cantidad de taninos que tienen sus dátils (Alcaraz Ariza et al. 1997, López González 2001).
III.2.3. Las angiospermas dicotiledóneas.

FAMILIA ANACARDIACEAE

Especie: *Pistacia lentiscus* L.
Nombre común: Lentisco.

Descripción Anatómica:

Plano Transversal: Madera semiporosa con vasos de mayor tamaño (hasta 70 µm) en el leño temprano, de los que salen otros más pequeños (aproximadamente 15 µm) en disposición radial (flama). El parénquima es paratraqueal. Los anillos de crecimiento se aprecian ligeramente. Es frecuente en esta especie la aparición de tílides.

Plano Longitudinal Tangencial: Los vasos presentan engrosaduras helicoidales muy abundantes, además de numerosas punteaduras pequeñas, en filas paralelas y alternantes. Los radios son heterogéneos, uni- o biseriados, aunque en alguna ocasión presentan 3 series, de hasta 30 células de altura con canales secretores de resina en muchas ocasiones.

Plano Longitudinal Radial: Perforaciones simples en los vasos. Las puntuaciones radio-vaso son grandes y ensanchadas.

Figura 3.34. *Pistacia lentiscus* de La Punta de los Gavilanes. A la izquierda, plano transversal, a la derecha, plano longitudinal tangencial.

Ecología:

Se trata de un arbusto que puede llegar a tener porte arbóreo, de gran extensión en la Península Ibérica, que se desarrolla sobre todo en el ámbito mediterráneo, y deja de aparecer sin embargo en el cuadrante noroccidental ya que no soporta bien las heladas.
El lentisco es un arbusto indiferente edáfico que crece en lugares de clima seco y cálido desde el nivel del mar hasta los 1000 m de altitud. Suele darse en zonas bajas o medias formando parte de matorrales mixtos de tipo mediterráneo (Galán et al. 1998).

En la actualidad, en la Región de Murcia aparece formando parte del sotobosque de pinos o quercínneas, desde el nivel del mar hasta los 800 m de altitud (1200 m en solanas), siendo relativamente frecuente en diversos puntos de las montañas medias de Moratalla, Sierra de la Pila, Sierra Espuña, Sierra de Salinas, etc. (Sánchez Gómez y Guerra Montes 2003).

Propiedades y aprovechamiento:
La madera blanquecina del lentisco es de una gran calidad dada su gran dureza, por lo que ha sido utilizada en trabajos de ebanistería y tornería. Además es un excelente combustible y proporciona un buen carbón, lo cual ha generado una gran explotación de su madera que puede haber condicionado el porte mediano de la mayor parte de sus ejemplares (Galán et al. 1998, López González 2001). Según Pío Font i Quer (1962) su uso como combustible era muy común, dadas las propiedades físico-químicas de su madera, concretamente afirma que *ocupa el primer lugar entre los combustibles, da un fuego vivo, que dura largamente, y copioso carbón, capaz de mantenerse encendido hasta agotarse por completo.*

![Figura 3.35. Pistacia lentiscus en Sierra Espuña](Foto: M. S. García).

Ha sido utilizada con usos medicinales de forma tradicional, además de como alimento para el ganado (Alcaraz Ariza et al. 1997). La resina que produce ha tenido también usos varios a lo largo de la historia (Galán et al. 1998).
Especie: *Pistacia cf. terebinthus* L.
Nombre común: Terebinto, Cornicabra.

Descripción Anatómica:

Plano Transversal: Madera de semiporosa a porosa, con vasos de mayor tamaño que *Pistacia lentiscus* (hasta 120-150 µm) en el leño temprano, de los que salen otros más pequeños (de 15 a 30 µm) en disposición radial (flama). El parénquima es paratraqueal.

Plano Longitudinal Tangencial: Los vasos presentan engrosaduras helicoidales muy abundantes, además de numerosas punteaduras pequeñas, en filas paralelas y alternantes. Los radios son heterogéneos, de 1 a 5 series de anchura, aunque lo más habitual es que presenten de 2 a 4 series, con una altura de hasta 35 células. Presentan también canales secretores de resina en algunos radios.

Plano Longitudinal Radial: Perforaciones simples en los vasos. Las puntuaciones radio-vaso son grandes y ensanchadas.

![Figura 3.36. *Pistacia cf. terebinthus* de Barranco de la Viuda. A la izquierda, plano transversal, a la derecha, plano longitudinal tangencial.](image)

Ecología:

Pistacia terebinthus habita en el entorno del Mediterráneo, en ecosistemas similares a *Pistacia lentiscus*, aunque es más tolerante al frío y necesita para su desarrollo condiciones con algo más de humedad. Forma normalmente parte de encinares aclarados o de matorrales en zonas pedregosas desde el nivel del mar hasta los 1500 m de altitud (Galán *et al.* 1998, López González 2001).

En la Región de Murcia se encuentra en ambientes de bosque, sobre todo en zonas de roquedos y vaguadas. Es una especie que suele presentarse con relativa frecuencia en las sierras del interior regional, y mucho más puntualmente en ambientes prelitorales como la Sierra de Cartagena (Sánchez Gómez *et al.* 1998).
Capítulo III. Paleoflora identificada

Figura 3.37. *Pistacia terebinthus* en el Calar de la Santa, Moratalla (Foto: M. S. García).

Propiedades y aprovechamiento:
La madera de la cornicabra es de buena calidad, dura y compacta, por lo cual ha sido utilizada tradicionalmente en trabajos de ebanistería, tornería o marquetería. También la de sus gruesas raíces ha sido aprovechada para la elaboración de pequeños objetos debido a la decoración que presenta. Su resina fue utilizada para la fabricación de barnices (López González 2001).

FAMILIA APOCYNACEAE

Especie: cf. *Nerium oleander* L.
Nombre común: Adelfa, Baladre.

Descripción Anatómica:
Plano Transversal: Madera con vasos en distribución difusa, que se presentan aislados o bien formando alineaciones de 4 o más vasos en formación radial u oblicua. El parénquima es generalmente longitudinal apotraqueal difuso, aunque puede ser ocasionalmente paratraqueal.

Plano Longitudinal Tangencial: Presenta radios heterogéneos, de 1 a 2 células de anchura, con una altura que puede llegar hasta las 10-15 células. Las punteaduras intervasculares son simples, alternas y vestidas.

Plano Longitudinal Radial: Vasos con perforaciones simples. Las punteaduras vaso-radio son grandes y alargadas.
Recursos forestales en un medio semiárido.
Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

Ecología:
La adelfa se desarrolla en todo el ámbito del mediterráneo desde el nivel del mar hasta los 600 m de altitud. En la Península Ibérica lo hace principalmente en la zona suroeste hasta el valle del Guadiana, y sobre todo en el sur y este hasta Tarragona. Se encuentra en ríos, barrancos, arroyos de zonas cálidas y sobre todo en las ramblas, donde el nivel freático no es muy superficial. Suele aparecer asociado a los tarayes y a otras especies propias del mismo ecosistema como *Arundo donax*, *Punica granatum*, *Osyris alba*, *Rubus ulmifolius*, *Clematis flammula*, *Dittrichia viscosa*, *Retama sphaerocarpa*, *Brachypodium phoenicoides*, *Piptatherum miliaceum* y *Vitex agnus-castus* (Costa et al. 2001)

En la Región de Murcia la adelfa aparece en la mayoría de lechos de ramblas, arroyos y ríos desde el nivel del mar hasta los 800 m (Sánchez Gómez et al. 1998).

Propiedades y aprovechamiento:
Los usos de esta planta son muy limitados debido a la toxicidad de todas sus partes que puede incluso causar la muerte con su ingestión. No obstante, algunos de sus principios activos se han utilizado en medicina tradicional como diuréticos, para fortalecer el corazón o para aliviar enfermedades cutáneas, aunque sus principales usos han sido como raticida o antiparásitos.

FAMILIA ASCLEPIADACEAE

Especie: *Periploca angustifolia* Labill.
Nombre común: Cornical.
Descripción Anatómica:

Plano Transversal: Madera de porosidad difusa con poros agrupados en grupos irregulares en disposición de diagonal a radial. Los anillos de crecimiento no son perceptibles. El parénquima es paratraqueal.

Plano Longitudinal Tangencial: Los radios son homogéneos generalmente, uni- o biseriados, de células pequeñas y redondeadas en número no superior a 15 de altura.

Plano Longitudinal Radial: Presenta punteaduras vestidas y perforaciones de los vasos simples.

![Figura 3.39. Periploca angustifolia de La Punta de los Gavilanes. A la izquierda, plano transversal, a la derecha, plano longitudinal tangencial.](image)

Ecología:

Se trata de una especie cuyas poblaciones podemos encontrar en Siria, Creta, el norte de África, y en la Península Ibérica de manera exclusiva en el Sureste semiárido, en el territorio costero de las provincias de Murcia, Almería y Alicante. Se desarrolla en condiciones de gran aridez, sobre laderas pedregosas orientadas al mar de hasta 300 m de altitud (Galán et al. 1998).

Concretamente en la Región de Murcia la encontramos en matorrales cerca del mar y en roquedos algo más interiores, siempre con total ausencia de heladas. Ocupa toda la franja costera y algunas solanas sublitorales como Santomera o la falda sur de Sierra Espuña, aunque incluso se han llegado a documentar algunos ejemplares en la Sierra de Ascoy, en Cieza (Alcaraz Ariza et al. 1997, Sánchez Gómez et al. 1998).
Propiedades y aprovechamiento:
En cuanto a su aprovechamiento, se han utilizado sus tallos y hojas cocidas en medicina popular en veterinaria para lavar las heridas. Sirve también como combustible y, a pesar de su toxicidad, como forraje para las cabras. En algunas localidades almerienses los niños comen sus flores, aunque parece que éstas pueden ser también tóxicas. Se han utilizado en el Norte de África sus semillas como analgésico y antirreumático (López González 2001).

FAMILIA BUXACEAE

Género: Buxus sp. (p. ej. Buxus sempervirens L., Buxus balearica Lam.).
Nombre común: Boj.

Descripción Anatómica:
Plano Transversal: Madera de porosidad difusa y con vasos de pequeño tamaño que se presentan de manera aislada, distribuidos regularmente por todo el leño. Parénquima apotraqueal difuso, muy abundante. Los límites de los anillos son a menudo poco perceptibles.

Plano Longitudinal Tangencial: Los radios son heterogéneos, normalmente biseriados aunque pueden presentar de 1 a 3 células de anchura, con una altura que puede oscilar...
entre 6 y 15 células. Las punteaduras intervasculares son muy numerosas, pequeñas, redondas y opuestas.

Plano Longitudinal Radial: Las perforaciones de los vasos son escalariformes, pudiendo presentar de 5 a 10 barras. Las puntuaciones radio-vaso son muy pequeñas.

Ecología:
En la Península Ibérica se desarrollan dos especies de este género: *Buxus sempervirens* y *B. balearica*.

Figura 3.41. *Buxus* sp. del Balneario Romano de Archena, plano transversal (x 75).

Figura 3.42. *Buxus* sp. del Balneario Romano de Archena.
A la izquierda, plano longitudinal radial (x 600), a la derecha, plano longitudinal tangencial (x 270).
Buxus sempervirens se extiende preferentemente por el cuadrante nororiental de la Península, ya que habita sobre todo espacios sombríos de montañas calcáreas en zonas de clima frío, desde los 400 hasta los 1700 m. Se asocia a formaciones de hayedos, pinares de *Pinus nigra*, robledales de *Quercus pubescens* o quejigares.

Por su parte, **Buxus balearica** se extiende principalmente por el sur peninsular desde los 50 hasta los 1200 m de altitud, ya que no tolera bien los fríos y sí la aridez propia de estas zonas. Se asocia a formaciones de *Pinus halepensis*.

En la Región de Murcia se presentan, aunque de manera muy residual, ambas especies. Podemos encontrar algunos ejemplares de *Buxus sempervirens* en roquedos y pedregales sombríos de las comarcas del Noroeste (Sierras de Caravaca, Moratalla) y del Altiplano (La Magdalena, Salinas y Santa Ana) (Alcaraz Ariza y Rivera Núñez 2006). *Buxus balearica* aparece también en lugares sombríos de zonas interiores, aunque existe un pliego de esta especie procedente de la Sierra de Cartagena de hace más de 50 años (Sánchez Gómez et al. 1998, Sánchez Gómez y Guerra Montes 2003).
Propiedades y aprovechamiento:
El boj no es un buen combustible, pero sin embargo su madera es de gran dureza, muy pesada y de textura fina, lo cual ha condicionado que haya sido utilizada preferentemente en trabajos de talla, torneo, ebanistería y grabado, debido a que es posible alcanzar altos niveles de precisión en este tipo de labores (Johnson 1978). Se ha utilizado para la elaboración de pequeñas piezas como peines, cucharas, cajas, husos o piezas de ajedrez (López González 2001).

Aunque se trata de una planta de gran toxicidad, ha sido utilizada en medicina tradicional por sus propiedades purgantes, laxantes o para tratar enfermedades biliares y reumatismos (López González 2001).

FAMILIA CELASTRACEAE

Especie: *Maytenus senegalensis* (Lam.) Exell.
Nombre común: Arto, Espino cambrón.

Descripción Anatómica:
Plano Transversal: Madera de porosidad difusa. Los poros son de pequeño tamaño y se presentan bien de forma solitaria o en agrupaciones radiales de dos a 6 poros. El parénquima es apotraqueal difuso. Los anillos de crecimiento son difícilmente perceptibles, salvo por la diferencia de densidad en los poros.

Plano Longitudinal Tangencial: Los radios son heterogéneos, generalmente uniseriados y raramente biseriados con una altura de 10 a 20 células, de morfología oval.

Plano Longitudinal Radial: Las perforaciones de los vasos son simples.

![Figura 3.44. *Maytenus senegalensis* de La Punta de los Gavilanes. A la izquierda, plano transversal, a la derecha, plano longitudinal tangencial.](image_url)
Ecología:

Maytenus senegalensis subsp. *europaeus* es un arbusto espinoso que crece principalmente en el norte de África. En la Península Ibérica se extiende desde el Cabo de la Nao (Alicante) hasta Málaga, en territorios desde el nivel del mar hasta los 350 m, preferiblemente piedemontes, roquedos litorales sometidos a la maresía o espolones interiores (Díez-Garretas et al. 2005). Es indiferente edáfica, y puede aparecer acompañando a *Pinus halepensis*, *Ceratonia siliqua*, *Chamaerops humilis*, *Rhamnus lycioides*, etc. (Galán et al. 1998).

En la Región de Murcia esta especie aparece en formaciones arbustivas costeras o próximas a la costa, principalmente en la Sierra de Cartagena (Sánchez Gómez et al. 1998).

Propiedades y aprovechamiento:

No tiene usos conocidos más allá de algunas propiedades estimulantes en sus hojas que se consumen en África pero no en España.

Figur 3.45. *Maytenus senegalensis* en el Cabo de Gata, Almería (Foto: M. S. García).

FAMILIA CHENOPODIACEAE

Nombre común: Quenopodiácea (*p. ej. Almajo, sapina, sosa alacranera, almajo dulce).*
Descripción anatómica:

Plano Transversal: Madera semiporosa, con poros de mayor tamaño que dan cobertura a grupos de vasos más pequeños dispuestos perpendicularmente a los anteriores. Anillos de crecimiento no perceptibles. Radios no observables en este plano.

Plano Longitudinal Tangencial: Radios muy heterogéneos, con células de morfología muy variable, de 1 a 5 de anchura, aunque en ocasiones puede presentar más.

Plano Longitudinal Radial: Perforaciones de los vasos simples, en ocasiones con engrosamientos helicoidales.

Figura 3.46. Chenopodiaceae de La Punta de los Gavilanes. A la izquierda, plano transversal, a la derecha, plano longitudinal tangencial.

Ecología:

Puesto que soportan muy bien las altas temperaturas y la escasez de agua, estas plantas suelen aparecer en medios semiáridos con suelos salinos, yesosos, margas, y ambientes fuertemente nitrificados. A menudo, forman el cortejo principal del género *Tamarix*. Algunos casos como *Arthrocnemum macrostachyum* aparece además asociado a espacios que permanecen inundados temporalmente, como lagunas y marismas (Galán et al. 1998).

Esta familia impone una gran diversidad genérica en la Región de Murcia. Cabe destacar las especies de *Salicornia, Hammada, Anabasis, Halocnemum, Arthrocnemum, Sarcocornia, Salsola, Halogeton, Bassia, Comphorosma, Atriplex, Spinacia, Halimione, Chenopodium, Beta y Patellifolia* (Sánchez Gómez et al. 1998). Algunas especies como *Hammada tamariscifolia* o *Salsola genistoides* son sempervirentes. Se presentan en todos los ambientes de la Región aunque con mayor abundancia en la franja costera, y
menos frecuentemente en las comarcas más interiores y al norte, donde se asocian a suelos margosos y con un alto grado de nitrificación, siempre en sustratos con cierta salinidad (comarca del Noroeste y zona de Jumilla-Yecla) (Alcaraz Ariza et al. 1997, Alcaraz Ariza y Rivera Núñez 2006).

Propiedades y aprovechamiento:

Algunas especies de esta familia se han utilizado con fines medicinales, en infusión, para calmar los dolores de estómago.

Las ramas de *Salsola genistoides* se han usado como escoba rústica, utilizada principalmente para la limpieza de hornos y corrales.

Su composición química, con ácidos grasos, nitratos, triterpenos y saponinas ha hecho que en el pasado se utilizara para la elaboración de algunos tipos de vidrios.

Sin embargo, uno de los usos más conocidos de estas plantas, conocidas como “barrilleras” ha sido, hasta no hace mucho, la elaboración artesanal de sosa o potasa, y de jabones caseros a partir de las cenizas que producen, ricas en sales de sodio y potasio (López González 2001).

Figura 3.47. Anabasis hispanica en la base de La Punta de los Gavilanes (Foto: M. S. García).

Especie: *Atriplex halimus* L.

Nombre común: Salao, Salao blanco.
Descripción anatómica:

Plano Transversal: Madera semiporosa con vasos grandes (de 100 a 150 µm) con forma curvada que presentan debajo una serie de vasos más pequeños, en grupos de 5 a 7.

Plano Longitudinal Tangencial: Vasos sin engrosamientos helicoidales y con punteaduras intervasculares grandes. Radios heterogéneos y uniseriados, de alturas muy variables.

Plano Longitudinal Radial: Vasos con perforación simple.

Ecología:
Se encuentra fundamentalmente en la mitad meridional y oriental de la Península Ibérica, desde el nivel del mar hasta los 550 m de altitud. Se cría en zonas áridas, conformando matorrales en zonas costeras o marismas. Puede crecer en todo tipo de sustratos, pero es propio fundamentalmente de suelos salinos, margosos, yesosos y nitrificados como consecuencia de las actividades antrópicas (Galán et al. 1998, López González 2001).

En la Región de Murcia se desarrolla en los pisos Termo- y Mesomediterráneo en ambientes nitrificados y con cierta salinidad (Sánchez Gómez y Guerra Montes 2003).

Propiedades y aprovechamiento:
Se trata, como otras muchas quenopodiáceas, de una planta “barrillera”, cuyas cenizas se han utilizado tradicionalmente para la elaboración de sosa y de jabones caseros. No obstante, también tiene valores culinarios, puesto que sus brotes se consumen como
verdura en el norte de África y para la elaboración de ensaladas en el norte de Europa. En medicina tradicional la cocción de sus ramas y frutos se ha utilizado para lavar y ayudar a la cicatrización de heridas (López González 2001). Finalmente, se ha usado como alimento para el ganado y como ornamental para la configuración de setos en zonas áridas y próximas al mar (Alcaraz Ariza et al. 1997).

Figura 3.49. Atriplex halimus en las antiguas salinas de Mazarrón (Foto: M. S. García).

FAMILIA CISTACEAE

Familia: Cistaceae (p. ej. Cistus, Halimium, Helianthemum, Fumana).

Nombre Común: Cistácea (p. ej. Jara, estopa, té moro, etc).

Descripción anatómica:

Plano Transversal: Madera de porosidad dispersa, con poros aislados, aunque más abundantes y de mayor tamaño (20 – 50 µm) en el leño inicial que en el tardío (5 – 30 µm). El parénquima es apotraqueal difuso. Anillos de crecimiento poco visibles.

Plano Longitudinal Tangencial: Radios heterogéneos, uni- o biseriados, con una altura de hasta 25 células. Las punteaduras intervasculares son pequeñas y dispuestas de forma alterna. Engrosamientos helicoidales muy finos.

Plano Longitudinal Radial: Perforaciones de los vasos simples. En este plano se observa mejor la heterogeneidad de los radios. Las punteaduras de los campos de cruce vaso-radio son ligeramente vestidas.
Figura 3.50. Cistaceae de La Punta de los Gavilanes, plano transversal (izquierda) y ejemplar de *Helianthemum almeriense* en la Sierra de la Unión (derecha) (Foto: M. S. García).

Ecología:
La familia de las cistáceas engloba una gran cantidad de géneros y especies de distribución circummediterránea, asociadas a matorrales o constituyendo formaciones propias como en el caso de los jarales (formaciones del género *Cistus*). Pueden aparecer en todo tipo de suelos dependiendo del género y de la especie a la que pertenezcan, aunque son mayoritarias aquéllas que crecen mejor en sustratos silíceos o descarbonatados.

En el contexto del Sureste peninsular se desarrollan numerosas especies de los géneros *Cistus*, *Halimium*, *Helianthemum* y *Fumana*, que se extienden por todo el territorio de la Región de Murcia, aunque las especies de ambientes más cálidos, como *Helianthemum almeriense*, no suelen darse en las comarcas interiores y del Noroeste.

Propiedades y aprovechamiento:
Su madera se ha utilizado sobre todo para alimentar hornos de pan y repostería. Algunas especies como *Cistus* y *Halimium* se utilizan en jardinería como ornamentales (Galán et al. 1998).

Género: *Cistus* sp. (p. ej. *Cistus albidus* L., *Cistus clusii* Dunal, *Cistus laurifolius* L., etc)
Nombre común: Jara.
Descripción anatómica:

Plano Transversal: Madera de porosidad difusa, con poros muy pequeños, aislados y más frecuentes en el leño inicial. Los límites de los anillos de crecimiento son poco perceptibles. Parénquima apotraqueal difuso.

Plano Longitudinal Tangencial: Los radios son heterogéneos, generalmente uni- o biseriados con alturas muy variables que pueden ir desde 1 a 20-25 células según las especies. Pueden presentar engrosamientos helicoidales finos que por lo general son dificilmente observables.

Plano Longitudinal Radial: Las perforaciones de los vasos son simples, y las puntuaciones radio-vaso son grandes y vestidas.

Figura 3.51. Cistus sp. de Barranco de la Viuda.
A la izquierda, plano transversal, a la derecha, plano longitudinal tangencial.

Ecología:
El género *Cistus* suele aparecer sobre todo en suelos silíceos de matorrales y claros de bosques. También se desarrolla en suelos pedregosos y degradados, asociados a alcornocales, encinares y pinares.

En el territorio de la Región de Murcia crecen numerosas especies de este género, destacando *Cistus albidus*, abundante en jarales y matorrales sobre todo tipo de sustratos; *Cistus clusii*, que aparece asociada a matorrales y romerales en terrenos calcáreos, margosos o yesosos; *Cistus laurifolius* en matorrales y pinares en suelos descalcificados o silíceos principalmente en la Sierra de Carrascoy, Espuña y Cambrón y sobre todo en elevaciones de Moratalla; *Cistus ladanifer*, en jarales sobre suelos silíceos como la Sierra de Carrascoy o de la Almenara, o el cabezo de la Jara; *Cistus heterophyllus*, en clara recesión debido a las actividades mineras, aunque aún es posible observar algunos ejemplares en el Llano del Beal (Cartagena); *Cistus monspeliensis*, en matorrales y jarales termófilos sobre suelos descarbonatados o silíceos principalmente de sierras litorales y sublitorales y más rara hacia el interior; *Cistus salviifolius*, en
matorrales o jarales sobre suelos descarbonatados o silíceos; y *Cistus populifolius*, en jarales de suelos silíceos como la Sierra de Carrascoy o de Espuña (Sánchez Gómez y Guerra Montes 2003).

![Figura 3.52. *Cistus albidus* (izquierda) y *Cistus salviifolius* (derecha) en Sierra Espuña (Fotos: M. S. García).](image)

Propiedades y aprovechamiento:
La madera de las jaras en general es muy dura y buena para ser pulimentada, aunque el pequeño tamaño de estas plantas hace que sus usos sean muy limitados a objetos también pequeños. Sin embargo se trata de un buen combustible ya que arde muy rápidamente, por lo que se ha utilizado fundamentalmente en el funcionamiento de hornos de pan domésticos (López González 2001).

Las propiedades de las diferentes especies de jara son múltiples. *Cistus ladanifer*, por ejemplo, posee una resina llamada ládano que se ha utilizado en medicina tradicional como sedante, y en medicina actual como antiespasmódico para tratar afecciones estomacales. Su principal uso se da en perfumería; *Cistus albidus*, por su parte, tiene propiedades astringentes.

Género: cf. *Fumana* sp. (p. ej. *Fumana ericoides* (Cav.) Gand., *Fumana laevipes* (L.) Spach, etc).

Nombre común: Té moro, Tomillo morisco, Hierba de la sangre.

Descripción anatómica:
Plano Transversal: Madera de porosidad difusa a semiporosa, poros extremadamente pequeños y solitarios. Parénquima apotraqueal difuso.
Recursos forestales en un medio semiárido. Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

Figura 3.53. cf. Fumana sp. de La Punta de los Gavilanes. A la izquierda, plano transversal, a la derecha, plano longitudinal radial.

Plano Longitudinal Tangencial: Radios heterogéneos uniseriados de 2 a 12 células de altura, de morfología alargada y fusiforme. Vasos y fibro-traqueidas con engrosamientos en espiral finos.

Plano Longitudinal Radial: Perforaciones simples.

Ecología:
Las fumanas son pequeños arbustos muy extendidos en toda la región de estudio. En la actualidad encontramos una gran cantidad de especies de este género. Algunas, de carácter termófilo, están asociadas a los pisos termo- y mesomediterráneos, como Fumana hispidula, asociada a matorrales sobre suelos descarnados, arenas y sobre todo yesos; Fumana thymifolia, a matorrales nitrificados; Fumana juniperina, que aparece en matorrales sobre suelos silíceos de la zona costera; Fumana laevipes, asociada a litosuelos de zonas muy cálidas y Fumana ericoides crece sobre litosuelos desde el nivel del mar hasta los 700 m.

Otras especies están más asociadas a los pisos meso- y supramediterráneo, como Fumana scoparia, que se cría en matorrales sobre suelos calizos y yesíferos de la zona del Noroeste y Mula; Fumana paradoxa, que aparece asociada a matorrales sobre arenas dolomíticas de las sierras de Moratalla y Caravaca; Fumana baetica, sobre arenas dolomíticas en las sierras de Moratalla; Fumana procumbens, que crece en matorrales sobre litosuelos de áreas elevadas en el piso supra y oromediterráneo; Fumana laevis, en matorrales de suelos margosos y calizos, principalmente en Sierra Espuña, Bullas, Cehegín; Fumana ericifolia, que puede encontrarse en matorrales en litosuelos de montañas del interior y Fumana fontanesii, que se cría exclusivamente en matorrales de las proximidades del Río Espuña, y forma, junto con otro núcleo
recientemente documentado en Córdoba, las únicas áreas de distribución peninsular, por lo que se ha catalogado dentro de la flora amenazada de la Península Ibérica (Bañares et al. 2004).

Figura 3.54. *Fumana ericoides* en la Sierra de las Moreras, Mazarrón (Foto: M. S. García).

Propiedades y aprovechamiento:
La infusión de *Fumana ericoides* se ha usado en medicina popular (Alcaraz Ariza et al. 1997), además, la gran cantidad de polen que produce hace que los lugares cercanos sean propicios para la formación de colmenas.

FAMILIA COMPOSITAE

Familia: Compositae (*p. ej. Helichrysum stoechas* (L.) DC.; *Launaea arborescens* (Batt.) Murb.).

Nombre Común: Compuestas. (*p. ej. Siempreviva, manzanilla, perpetua silvestre, aulaga, cerraja pinchosa, rascavieja, etc*).

Descripción Anatómica:

Plano Transversal: Madera de porosidad dispersa o semiporosa, con vasos dispuestos normalmente en grupos radiales y a veces tangenciales. Los radios observables desde este plano son muy característicos por su morfología de tendencia cuadrada. Los anillos de crecimiento presentan ondulaciones en muchas ocasiones.

Plano Longitudinal Tangencial: Radios heterogéneos de 3 a 5 células de anchura y no más de 1 milímetro de altura. Se caracterizan sobre todo por su morfología, que suele ser variada, con formas ovaladas y poligonales.
Plano Longitudinal Radial: Perforaciones de los vasos simples. Punteaduras intervasculares alargadas y oblicuas que pueden llegar a asemejarse a engrosamientos en espiral.

Figura 3.55. Compositae de La Punta de los Gavilanes, plano transversal (izquierda) y Helichrysum stoechas en la Sierra de las Moreras, Mazarrón (derecha) (Foto: M. S. García).

Ecología:
Es una familia ampliamente extendida por todo el mundo, y la más numerosa en géneros (1.100) y especies (hasta 20.000), que suelen ser hierbas anuales o perennes y arbustos principalmente, ya que de forma arbórea sólo se dan en zonas tropicales.

En la Región de Murcia se desarrollan actualmente un centenar de géneros pertenecientes a esta familia, con numerosísimas especies que se crían en los más diversos ambientes. Algunas especies de compuestas se comportan también como malas hierbas en cultivos, actuando como invasoras al dispersarse sus semillas junto a las de las especies que se cultivan (Galán et al. 1998).

Propiedades y aprovechamiento:
Esta familia tiene especies de gran interés económico, tanto culinario (lechuga, endivia, achicoria, alcachofa, girasol, etc.), como ornamental (Dahlia, Aster, Calendula, Gaillardia, Bidens, Gazania, Echinops) y también medicinal (López González 2001).

Nombre común: Artemisia, Boja, Ajenjo.
Descripción Anatómica:

Plano Transversal: Madera de porosidad dispersa con parénquima paratraqueal en bandas tangenciales. Los radios son perfectamente visibles en este plano. Los anillos de crecimiento son prácticamente imperceptibles.

![Figura 3.56. Artemisia sp. de La Punta de los Gavilanes. A la izquierda, plano transversal, a la derecha, plano longitudinal tangencial.](image)

Plano Longitudinal Tangencial: Radios muy heterogéneos de 3 a 5 células de ancho y hasta 35 de altura. Las células marginales son de mayor tamaño, estrechas y alargadas.

Plano Longitudinal Radial: Perforaciones de los vasos simples, radios heterogéneos con células marginales verticales de forma rectangular. Engrosamientos helicoidales poco frecuentes.

Ecología:

Es un género de amplia distribución en todo el Mediterráneo, Europa oriental y Asia Menor. Sus territorios de expansión más significativos son las estepas rusas y asiáticas. (Galán *et al.* 1998).

En general, suele darse en campos de cultivo abandonados y matorrales de zonas alteradas (Alcaraz Ariza *et al.* 1997).

Para ambientes cálidos y salinos en la Región de Murcia encontramos *Artemisia gallica*, en zonas como Los Urrutías (Cartagena), Playa de la Hita (San Javier), y algunos suelos salinos del interior. También, en el piso termomediterráneo de la Región encontramos *Artemisia barrelieri, Artemisia herba-alba, Artemisia lucentina, Artemisia arborescens* o *Artemisia campestris*, todas ellas desarrolladas en suelos nitrificados (Sánchez Gómez y Guerra Montes 2003).
Propiedades y aprovechamiento:
Son muy conocidas algunas de sus especies para la producción de tisanas o aromas. Algunas como *Artemisia absinthium* (absenta) se emplean para aromatizar licores de alta graduación (Galán et al. 1998).

La artemisia era también en época romana la planta que representaba a la diosa protectora de los partos: Artemis o Diana (López González 2001).

FAMILIA CRUCIFERAE

Familia: cf. Cruciferae (p. ej. *Lobularia maritima* (L.) Desv., *Eruca vesicaria* L., etc.).

Nombre común: Crucíferas (p. ej. Oruga, zurrón de pastor, etc.).

Descripción Anatómica:

Plano Transversal: Madera de porosidad difusa, con poros generalmente solitarios. El parénquima es marginal y puede ser tanto apotraqueal como paratraqueal, los anillos de crecimiento son perceptibles a través de las bandas de parénquima.

Plano Longitudinal Tangencial: Radios ausentes, el parénquima presenta células fusiformes.
Plano Longitudinal Radial: Las perforaciones de los vasos son simples, presenta punteaduras vestidas.

Figura 3.58. cf. Cruciferae de Barranco de la Viuda, plano transversal (izquierda) y *Eruca vesucaria* en la costa de Mazarrón (derecha) (Foto: M. S. García).

Ecología:
Son plantas que se caracterizan por sus flores formadas por cuatro pétalos en forma de cruz. Tienen una distribución mundial, aunque principalmente en el hemisferio norte y en lugares de clima templado, con un gran desarrollo en las regiones de ámbito mediterráneo. En la Región de Murcia se desarrollan hasta 53 géneros de esta familia.

Propiedades y aprovechamiento:
Las principales aplicaciones de estas plantas son en el ámbito culinario. Destacan, por ejemplo, algunas especies comestibles como el rábano (*Raphanus sativus*) o las del género *Brassica* como *Brassica oleracea* (col, repollo, col de Bruselas, coliflor) o *Brassica napus* (nabo, grelo).

También se utilizan como condimento como en el caso de la mostaza (*Sinapis alba* y *Brassica nigra*) o como plantas productoras de semillas oleaginosas como la colza (*Brassica napus* raza oleifera). Algunas de estas plantas han tenido usos medicinales, como la mostaza negra, con propiedades revulsivas gracias al glucósido sulfurado que contienen sus semillas y que se emplea para cataplasmas y sinapismos. Finalmente se trata también de plantas ornamentales como por ejemplo *Erysimum cheiri*, el alhelí amarillo (López González 2001).

FAMILIA ERICACEAE

Especie: *Arbutus unedo* L.
Nombre común: Madroño.
Descripción anatómica:

Plano Transversal: Madera de porosidad difusa a semiporosa con poros aislados de 20 a 50 µm en el leño inicial, y más pequeños en el final (10-20 µm). Se presentan generalmente en agrupaciones de 2 a 6 poros dispuestos radial o oblicuamente. Los anillos de crecimiento son muy visibles. El parénquima puede ser indistintamente apotraqueal o paratraqueal difuso.

Plano Longitudinal Tangencial: Los radios, heterogéneos, tienen una anchura que oscila entre 1-5 células, aunque son más comunes los triseriados. La altura de los mismos es también variable desde las 5 células de los radios uniseriados hasta las 20-30 células que pueden llegar a presentar los multiseriados. Presenta engrosamientos en espiral gruesos, muy marcados y numerosos. Las punteaduras intervaseulares son de mediano tamaño, numerosas, de morfología redondeada y opuestas.

Plano Longitudinal Radial: Las perforaciones de los vasos son normalmente simples, aunque pueden presentarse también escaleariformes de 1 a 5 barras. Estas perforaciones en las ericáceas se caracterizan por ser de menor tamaño que el diámetro del vaso. Las punteaduras de los campos de cruce radio-vaso son redondas y de gran tamaño.

A la izquierda, plano transversal (x 70), a la derecha, plano longitudinal tangencial (x 250).

Ecología:

El madroño es un arbusto o arbótillo perennifolio que se distribuye muy ampliamente por toda la Península Ibérica. Suele desarrollarse en suelos tanto calcáreos como silíceos, profundos y frescos, aunque puede hacerlo también en pedregales y roques. Se asocia a formaciones de encinar, alcornocal, quejigo, y también en pinares, brezales o jarales, siempre en ambientes no muy fríos o secos (Galán et al. 1998, López González 2001).

En la Región de Murcia el madroño se cría en formaciones boscosas y roques de ambiente resguardado (Sánchez Gómez y Guerra Montes 2003).
Propiedades y aprovechamiento:
La madera de madroño es de muy buena calidad para tornear, aunque su principal uso ha sido como combustible, por ello se ha utilizado para actividades de carboneo, y era muy apreciada antiguamente en las casas y hornos.

Sus usos medicinales son múltiples, sobre todo como astringente y para el curtido de pieles debido a los taninos que contiene su corteza. Además, sus frutos, que son comestibles, han servido también para la elaboración de bebidas alcohólicas.

Nombre común: Brezos.

Descripción anatómica:
Plano Transversal: Madera de porosidad difusa, aunque en ocasiones semiporosa en el inicio de los anillos de crecimiento. Sus vasos son pequeños y aislados y se disponen en sentido radial. Suelen tener de 20 a 60 µm en el leño temprano, y menores en el leño tardío, de 10 a 40 µm. Parénquima apotraqueal difuso.

Plano Longitudinal Tangencial: Los radios son heterogéneos y pueden ser uniseriados de 1 a 8 células de altura, y multiseriados con anchuras comprendidas entre las 3 y 5 células (aunque en ocasiones pueden ser más), y de 15 a 30 de altura. Las punteaduras de los vasos son pequeñas y numerosas.
Plano Longitudinal Radial: Las perforaciones son simples y de un tamaño menor al del vaso (por lo que no puede tratarse de especies como *E. cinerea* y *E. tetralix*, cuyas perforaciones son escalariformes). Los campos de cruce son heterogéneos y formados por células cuadradas en las que aparecen pequeñas punteaduras de comunicación entre los radios y los vasos.

A pesar de las discriminaciones específicas que Queiroz y van der Burgh (1989) realizaron de las diferentes especies de *Erica* atendiendo a la anchura de sus radios, en los fragmentos estudiados en este trabajo se ha mantenido la denominación genérica de *Erica* sp., dada la gran similitud entre todas ellas.

Ecología:
Los brezos son arbustos que presentan una distribución fundamentalmente mediterránea. En el territorio estudiado podrían haberse desarrollado dos especies de este género: *Erica arborea* y *Erica multiflora*.

Erica arborea, el brezo blanco, se extiende en la actualidad por toda la Península Ibérica, aunque es más predominante en la mitad norte y occidental, donde se cría desde el nivel del mar hasta los 2000 m de altitud. Crece en ambientes aclarados y de matorral, sobre suelos silíceos, frescos y húmedos (Galán *et al.* 1998). En el territorio de la Región de Murcia *Erica arborea* aparece en este tipo de ambientes de matorral sobre terrenos silíceos, quedando algunos ejemplares relictos en las sierras orientales de Cartagena y Sierra Espuña, donde en la actualidad se localiza también otra especie de brezo, *Erica erigena*, que crece en matorrales sobre argilitas (Sánchez Gómez *et al.* 1998).
Erica multiflora, sin embargo, tiene su distribución más importante en la fachada oriental de la Península Ibérica, desde el nivel del mar hasta unos 1200 m de altitud. Al contrario que el brezo blanco, Erica multiflora prefiere terrenos calizos, en ambientes como collados y laderas secas, constituyendo parte de formaciones de matorral, pinares o encinares degradados, o incluso asociada a espartales (López González 2001). En la Región de Murcia tienen su principal distribución en matorrales de diversos puntos orientales de la Comarca del Altiplano (Sánchez Gómez et al. 1998).

Propiedades y aprovechamiento:
La madera de los brezos, de tonalidades rojizas, se caracteriza por ser muy dura y pesada, por lo que ha sido muy apreciada para la elaboración de tallas de pequeño tamaño, al igual que sus cepas, que tras un proceso de desecación tienden a torcerse y son muy apreciadas para trabajos de ebanistería y torneo como la fabricación de pipas para fumar. La madera del género Erica es, además, un excelente combustible que ha sido utilizado también para la obtención de carbón sobre todo para el funcionamiento de las fraguas (López González 2001).

Algunas otras aplicaciones son las medicinales, con propiedades diuréticas, o, por ejemplo, en el caso de Erica scoparia, la elaboración de escobas.
FAMILIA FAGACEAE

Especie: Fagus sylvatica L.
Nombre común: Haya.

Descripción anatómica:
Plano Transversal: Madera de porosidad difusa a semiporosa con vasos aislados o unidos en grupos de 2 a 6. Los tamaños de los mismos oscilan de 30-60 µm en el leño inicial a 10-45 µm en el final. Los límites de los anillos de crecimiento son perfectamente visibles. Parénquima apotraqueal difuso dispuesto longitudinalmente en bandas uniseriadas.

Figura 3.63. Fagus sylvatica del Balneario Romano de Archena. A la izquierda, plano transversal (x 70), a la derecha, plano longitudinal tangencial (x 170).

Figura 3.64. Fagus sylvatica del Balneario Romano de Archena. A la izquierda, plano longitudinal radial (x 850), a la derecha, mismo plano (x 2700).

Plano Longitudinal Tangencial: Los radios son heterogéneos, de 1 a 30 células de anchura. Las alturas de los mismos van desde las 2 a 20 células en los radios uniseriados, a 30-80 células que pueden llegar a presentar los radios multiseriados. Las punteaduras intervasculares son simples y alternas, de diámetro tangencial medio superior a 5 µm.
Plano Longitudinal Radial: Las perforaciones pueden ser tanto simples como escalariformes de hasta 20 barras. Las punteaduras de los campos de cruce radio-vaso son pequeñas o medianas, de morfología elíptica.

Ecología:
El haya es una especie que habita en la zona centro y oeste de Europa, teniendo como límite meridional el norte de la Península Ibérica donde se sitúa en ambientes de montaña, compensando con una elevada altitud el descenso acusado de latitud que supone la localización peninsular, donde no suele presentarse en cotas inferiores a los 300 m (Costa et al. 2001). Los principales hayedos se desarrollan en los Pirineos navarro y catalán, en las montañas vascas, Picos de Europa y Sistema Ibérico norte, donde se asocia frecuentemente al abeto (Galán et al. 1998).

Para su desarrollo esta especie se sitúa en laderas umbrosas de montañas de cualquier tipo de sustrato, prefiriendo sobre todo los calizos. Exige también suelos frescos y húmedos, aunque no soporta bien el encharcamiento de los mismos, por lo que no se asocia a cursos de agua. El haya se distribuye en áreas de clima suave y húmedo, sin sequía estival, aunque evita los fondos de valle ya que tampoco resiste las heladas en estaciones tardías.

Propiedades y aprovechamiento:
La madera de haya es de color blanquecino o marrón pálido, pudiendo presentar tonalidades rosadas. Su grano es recto, de textura fina y uniforme, y de peso muy variable. A pesar de ser bastante fuerte, es muy fácil de trabajar y proporciona buenos acabados. Se ha utilizado principalmente en tornería y también curvada al vapor para la elaboración de muebles y sobre todo elementos torneados y curvados de sillas y sillones. También se utiliza para hacer utensilios domésticos, enseres de cocina, juguetes o entarimados domésticos (Johnson 1978). Es, además, un excelente combustible, de combustión muy lenta, lo cual produce un buen carbón que ha sido utilizado incluso con fines medicinales como absorbente de fermentaciones intestinales, disentería flatulenta, etc (López González 2001).

Esta madera fue muy utilizada desde la antigüedad, en Grecia y sobre todo en Italia, para la elaboración de muebles. Teofrasto destacaba su gran robustez y buen grano, lo cual la hace fácil de trabajar, mientras Marcial la consideraba como “la mesa pobre” (vg. Marcial II, 43, 9-10 Tu Libycos Indis suspendis dentibus orbis: fulcitur testa fagina mensa mihi). Por su parte, Plinio y Columela la recomendaban para la elaboración de cajas y arcas (López González 2001).
Otras aplicaciones del haya han consistido en la utilización del aceite de hayuco para la iluminación de candiles o la de la corteza para combatir enfermedades respiratorias, el exceso de colesterol y la fiebre (López González 2001).

Especie: *Quercus ilex* *(rotundifolia)/coccifera*

Nombre común: Encina (carrasca)/Coscoja.

Quercus ilex y Quercus coccifera son prácticamente indiferenciables desde un punto de vista anatómico, aunque sí tienen grandes variaciones con las especies de *Quercus* tipo caducifolio, sobre todo en la aparición en este último de una zona porosa de la que carece el tipo perennifolio.

Descripción anatómica:

Plano Transversal: Madera de porosidad difusa, con poros aislados algo mayores en la madera inicial (de 80 a 250 µm según las especies) que en la final (de 20 a 50 µm según las especies) y dispuestos en agrupaciones de flamas muy alargadas (Vernet *et al.* 2001). Presenta parénquima apotraqueal dispuesto en bandas tangenciales, uniseriadas y abundantes. Los anillos de crecimiento son poco perceptibles.

Plano Longitudinal Tangencial: Radios homogéneos, uniseriados de hasta 10 células de altura combinados con otros multiseriados que pueden llegar a 25-30 células de anchura. Punteaduras intervasculares de pequeñas a medianas dependiendo de la especie, y de morfología elíptica, dispuestas de forma opuesta o alterna. Según Saint-
Laurent (1926) en *Quercus coccifera* la anchura de los radios no sobrepasa las 300 µm y se encuentran bastante separados entre sí (1500-2350 µm).

Plano Longitudinal Radial: Perforaciones de los vasos simples. Punteaduras en los campos de cruce vaso-radio pequeñas, redondeadas con tendencia elíptica y en ocasiones prácticamente fenestriiformes.

![Figura 3.66. Quercus ilex/coccifera de La Punta de los Gavilanes. A la izquierda, plano transversal, a la derecha, plano longitudinal tangencial.](image)

Ecología:

Quercus coccifera es una especie circunmediterránea que se da en prácticamente toda la Península Ibérica, desde el nivel del mar hasta los 1000-1200 m de altitud, exceptuando algunas zonas continentales. Puede crecer en cualquier tipo de sustrato, aunque se presenta fundamentalmente en suelos calizos, secos y cálidos. Aguanta muy bien las altas temperaturas, no tanto las bajas, ante las que suele ser reemplazado por *Quercus ilex*, al que sin embargo sustituye en condiciones de degradación o quema. Las formaciones de esta especie en combinación con otras como brezos o lentiscos se denominan garriga o maquis (Galán *et al.* 1998).

La coscoja es una especie muy extendida por todo el territorio de la Región de Murcia desde el nivel del mar hasta los 1300 m de altitud formando parte de sotobosques de encinas y pinares (Sánchez Gómez *et al.* 1998).

Quercus ilex se desarrolla también en bosques esclerófilos de la totalidad de la Península Ibérica, asociada a todo tipo de suelos si no es desplazado por otras especies, aunque es capaz de crecer a mayores altitudes que la coscoja, normalmente hasta unos 1500 m y aisladamente hasta los 2000.
En la Región de Murcia *Quercus ilex* está siendo desplazada ecológica y genéticamente por *Quercus rotundifolia* (Sánchez Gómez y Guerra Montes 2003), que era anteriormente considerada como una subespecie de *Quercus ilex* pero que en la actualidad está definida como especie.

Propiedades y aprovechamiento:

La madera de ambas especies es de características similares, aunque sus utilidades han sido diversas como consecuencia del tamaño diferencial de ambas.

Se trata de una madera de color beige a marrón claro, dura, compacta, pesada y de textura fina y uniforme. Su tendencia a resquebrajarse, su gran peso y el grano irregular que presenta hacen, sin embargo, que no posea condiciones óptimas para ser trabajada, dado que los acabados no son de buena calidad. En el caso de la encina ha sido utilizada para la realización de herramental y para trabajos estructurales domésticos como postes o cercados (Johnson 1978). Además, su resistencia a la putrefacción ha condicionado el uso de esta madera en estructuras hidráulicas y para la realización de piezas de barcos (López González 2001). La coscoja, sin embargo, dado su pequeño tamaño ha sido empleada sobre todo como combustible. Ambas especies se usan en algunos países como madera para fuego ya que producen un excelente carbón.

La corteza de estas especies es rica en taninos, por lo que se utilizó para el curtido de las pieles. Además, las bellotas son muy consumidas por el ganado, sobre todo las de la encina, ya que las de la coscoja son más amargas.

FAMILIA LABIATAE

Nombre común: Labiada. (p. ej. Cantueso, espliego alhucemilla, tomillo, etc.).

Descripción Anatómica:
Plano Transversal: Madera de porosidad difusa a semiporosa con poros dispuestos bien de manera solitaria o en forma de flamas. Los vasos de la madera inicial son más abundantes y de mayor tamaño (30 a 40 µm) que los del leño tardío (10 µm). Parénquima apotraqueal dispuesto en bandas tangenciales, en ocasiones puede presentarse paratraqueal. Anillos de crecimiento perceptibles, a veces con ondulaciones.

Figura 3.68. Labiatae de La Punta de los Gavilanes.
A la izquierda, plano transversal, a la derecha, plano longitudinal tangencial.

Plano Longitudinal Tangencial: Radios heterogéneos de células muy irregulares, con una anchura de 1 a 4 series y una altura de hasta 15-20 células. En ocasiones aparecen engrosamientos helicoidales muy finos en los vasos, aunque es habitual que no se presenten. Numerosas punteaduras intervasculares, pequeñas, dispuestas en bandas verticales paralelas.

Plano Longitudinal Radial: Perforaciones de los vasos simples. Punteaduras en los campos de cruce entre radios y vasos pequeñas, abundantes y alargadas.

Ecología:
La familia de las labiadas está constituida por más de 200 géneros y unas 7000 especies que se extienden por todo el mundo, especialmente en lugares de climas templados y secos como el ámbito del Mediterráneo.

La mayoría de sus especies son de porte herbáceo, llegando algunas de ellas a constituir pequeños arbustos. Se desarrollan principalmente en matorrales de ambientes secos, y también en contextos de encinar, alcornocal o en quejigales. Algunas especies son
indiferentes edáficas, aunque las hay también con preferencias edáficas como por ejemplo el género *Lavandula* que prefiere los suelos silíceos.

En la Región de Murcia están ampliamente extendidas y encontramos más de un centenar de especies entre los géneros *Lycopus, Salvia, Ziziphora, Rosmarinus, Mentha, Ajuga, Teucrium, Phlomis, Acinos, Calamintha, Lamium, Stachys, Satureja, Moluccella, Ballota, Prunella, Lavandula, Thymus, Marrubium, Sideritis, Origanum, Tymbra, Hyssopus, Melissa, Nepeta y Micromeria* (Sánchez Gómez y Guerra Montes 2003).

![Figura 3.69. *Lavandula dentata* (izquierda) y *Thymus hyemalis* (derecha) en la Sierra de las Moreras, Mazarrón (Fotos: M. S. García).](image)

Propiedades y aprovechamiento:
El colorido y aroma de muchas de sus especies hace que sean algunas de las preferidas para su cultivo como ornamentales en jardines de zonas secas.

Se trata de plantas en su mayoría aromáticas, por lo que sus aceites esenciales han sido muy utilizados en la industria perfumera.

Su uso en cocina es también muy habitual, sobre todo en especies muy aromáticas como el tomillo, el romero, la salvia o la albahaca, bien como condimento, o bien en forma de infusión como el poleo menta, por ejemplo (Galán *et al.* 1998).

En medicina tradicional se han utilizado algunas especies por sus propiedades tónicas, estimulantes, estomacales, antisépticas y analgésicas.

Especie: *Rosmarinus officinalis* L.
Nombre común: Romero.
Descripción anatómica:

Plano Transversal: Madera de porosidad dispersa, en ocasiones con zona semiporosa. Vasos dispuestos en grupos irregulares y flammas diagonales. Parénquima paratraqueal, circunvascular y terminal (Vernet et al. 2001). Anillos de crecimiento visibles con ondulaciones habitualmente.

![Figura 3.70. Rosmarinus officinalis de Barranco de la Viuda. A la izquierda, plano transversal, a la derecha, plano longitudinal tangencial.](image)

Plano Longitudinal Tangencial: Radios heterogéneos, de una a tres series de anchura y hasta 30 células de altura. Engrosamientos helicoidales numerosos en los vasos. Las punteaduras intervasculares son pequeñas, numerosas y de morfología redondeada a elíptica.

Plano Longitudinal Radial: Vasos con perforación simple. Radios en disposición cuadrangular vertical. Las punteaduras de los campos de cruce radio-vaso son pequeñas y numerosas.

Ecología:
Esta especie está ampliamente distribuida por todo el Mediterráneo occidental, y en la Península Ibérica sobre todo en la mitad sur, aunque puede aparecer también en zonas de la Meseta Norte y el Valle del Ebro. Se trata de un arbusto indiferente edáfico, que no obstante se desarrolla mejor en suelos calcáreos desde el nivel del mar hasta los 1500 m de altitud. Aparece en matorrales secos, espartizales con alto grado de insolación (Alcaraz Ariza et al. 1997), en bosques esclerófilos aclarados, encinares degradados, roquedos costeros e incluso en dunas fijadas (Galán et al. 1998). Está muy extendida en la totalidad del territorio de la Región de Murcia.

Propiedades y aprovechamiento:
El romero ha tenido múltiples aplicaciones en medicina popular, sobre todo como diurético, antiespasmódico, estimulante y para combatir dolores y fatiga. De sus hojas
se extraen aceites usados en baños para mejorar la circulación de la sangre y el reumatismo. Las esencias de romero tienen también propiedades fungicidas y bactericidas (Galán et al. 1998).

Figura 3.71. *Rosmarinus officinalis* en la Sierra de Santa Ana de Jumilla (Foto: M. S. García).

Esta planta puede utilizarse con fines ornamentales, como seto en lugares de clima cálido, ya que admite muy bien las talas y sobre todo es muy apreciado como condimento culinario, dadas sus propiedades aromatizantes.

Su madera es de muy buena calidad como combustible, y se ha utilizado tradicionalmente para calentar hornos y casas (López González 2001).

FAMILIA LEGUMINOSAE

Nombre común: Leguminosa (*p. ej. Albaida, boja blanca, bolina, coronilla, floreta, etc.*).

Descripción Anatómica:

Plano Transversal: Madera de porosidad difusa a semiporosa, con poros agrupados en flammas oblicuas y tangenciales. El parénquima es paratraqueal en bandas y apotraqueal hacia el límite de los anillos. Los anillos de crecimiento son visibles.
Figura 3.72. Leguminosae de La Punta de los Gavilanes. A la izquierda, plano transversal (x 95), a la derecha, plano longitudinal tangencial (x 550).

Plano Longitudinal Tangencial: Radios heterogéneos desde uniseriados hasta numerosas series, con una altura también variable dependiendo de la especie. Los vasos poseen punteaduras vestidas y engrosamientos helicoidales.

Plano Longitudinal Radial: Vasos con perforaciones simples.

Figura 3.73. Leguminosae de La Punta de los Gavilanes, plano longitudinal radial (x 2700).

Ecología:
Se trata de una familia muy extendida por todo el mundo, sobre todo en las regiones templadas, tropicales y subtropicales, y menos frecuentemente en las zonas frías. Son plantas que en general se desarrollan en zonas de matorrales de montes deforestados, vaguadas, laderas secas y soleadas, con preferencia por los suelos calizos o siliceos dependiendo de la especie.

A esta familia pertenecen a su vez tres subfamilias: las Mimosáceas, con el género *Acacia* como principal exponente, las Cesalpiniáceas, entre las que destaca el algarrobo,
Ceratonia siliqua y las Papilionáceas, que son las más numerosas, y que en la Región de Murcia llegan a presentar un total de 33 géneros que se desarrollan por todo su ámbito, en los más variados contextos ecológicos. De entre ellos destacan por su extensión y presencia las especies de géneros como *Ulex, Genista, Coronilla, Retama, Cytisus, Anthyllis* y *Medicago*.

![Figura 3.74. *Anthyllis cytisoides* (izquierda) y *Coronilla juncea* (derecha) en la Sierra de las Moreras, Mazarrón (Fotos: M. S. García).](image)

Propiedades y aprovechamiento:
El principal aprovechamiento de las leguminosas se da en alimentación humana, ya que el garbanzo (*Cicer arietinum*), el guisante (*Pisum sativum*), las judías (*Phaseolus vulgaris*), las habas (*Vicia faba*), o las lentejas (*Lens culinaris*), por ejemplo, pertenecen a la esta familia. Algunas de sus especies, como la soja (*Glycine max*) y el cacahuete (*Arachis hypogaea*) son plantas productoras de aceites (Galán et al. 1998).

Por sus aplicaciones medicinales destacan especies como el sen (*Cassia italica*), con propiedades purgantes; la retama negra (*Cytisus scoparius*), como tónico cardíaco; el regaliz (*Glycyrrhiza glabra*) con propiedades antiespasmódicas y antiinflamatorias y el bálsamo de Tolú (*Myroxylon balsamum*) con aplicaciones antisépticas (López González 2001).

Otros usos conocidos en estas especies han sido, por ejemplo, el de colorante en el caso del índigo (*Indigofera tinctoria*), como plantas forrajeras, destacando la alfalfa (*Medicago sativa*), algunas especies también se han utilizado para hacer escobas u otro tipo de fibras, y finalmente son muy conocidos los valores ornamentales de las acacias o del árbol del amor (*Cercis siliquastrum*) (López González 2001).

En el caso de *Ceratonia siliqua*, sus frutos, las algarrobas, se utilizan como alimento para el ganado e incluso humano. Se hace harina de algarrobas y de ellas se puede hacer...
espesantes. Sus semillas son los quilates empleados antiguamente para pesar joyas y medicamentos, de las cuales suelen entrar cinco en un gramo (Font Quer 1962).

FAMILIA MORACEAE

Especie: *Ficus carica* L.
Nombre común: Higuera.

Descripción anatómica:

Plano Transversal: Su madera es de porosidad dispersa, con poros distribuidos radialmente en grupos de dos a tres. Los vasos del leño inicial tienen un tamaño de 50 a 150 µm, y los del leño final de 20 a 50 µm. El parénquima es abundante, circunvascular y paratraqueal en bandas tangenciales. Los anillos de crecimiento son visibles gracias a la distribución de las líneas de parénquima.

Plano Longitudinal Tangencial: Los radios son heterogéneos, de 1 a 4 células de anchura y hasta 20 de altura. Las punteaduras intervasculares son pequeñas, de morfología redondeada a elíptica y en disposición opuesta.

Plano Longitudinal Radial: Tiene perforaciones de los vasos simples. Las punteaduras de los campos de cruce radio-vaso son grandes y de formas circulares u ovaladas.

![Figura 3.75. *Ficus carica* de La Punta de los Gavilanes. A la izquierda, plano transversal (x 43), a la derecha, plano longitudinal tangencial (x 140).](image)

Ecología:

Se considera una especie cultivada, aunque sus orígenes no son claros, y lo cierto es que se tienen noticias de su presencia en la Península Ibérica desde la Prehistoria (Rivera Núñez y Obón 1987a, Soler *et al.* 1990, Badal y Carrión Marco 2001), sobre todo a partir de la Edad del Bronce (Gale 1999, Stika 2000, Duque 2004a). En la actualidad se encuentra en casi toda la península, principalmente en zonas de climas cálidos y en suelos de cualquier tipo de sustrato pero preferiblemente bien regados. Aparece también
Recursos forestales en un medio semiárido.

Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

en grietas de roquedos, torrenteras e incluso en muros de factura humana (Galán et al. 1998). Su cultivo está muy extendido en todo el territorio murciano, donde aparece también naturalizada o subespontánea con mucha facilidad.

Figura 3.76. Ficus carica en el Estrecho del Río Quípar, Caravaca (Foto: M. S. García).

Propiedades y aprovechamiento:
Se ha utilizado principalmente como alimento, ya que sus infrutescencias, los higos, pueden consumirse tanto frescos como secos, son muy energéticos y ricos en azúcares y vitaminas. De estos frutos sale látex que se ha usado para eliminar las verrugas, aunque también puede producir irritaciones y dermatitis.

La madera de higuera, de color amarillento y con abundante médula, es de pésima calidad como combustible, ya que se pudre con gran facilidad, produce mucho humo y su combustión es muy rápida.

FAMILIA OLEACEAE

Género: Fraxinus sp. (p. ej. Fraxinus angustifolia Vahl.).
Nombre común: Fresnos.
Capítulo III. Paleoflora identificada

Descripción anatómica:

Plano Transversal: Presenta zonas porosas, con los poros del leño temprano (100-120 µm) dispuestos normalmente en dos filas, mientras que los del leño tardío (25 µm) suelen presentarse formando grupos de 1 a 4, con orientación radial. El parénquima es paratraqueal, vasicéntrico o también formando bandas tangenciales.

Plano Longitudinal Tangencial: Los radios son homogéneos, con una anchura entre 1 a 4 células, y una altura oscilando entre las 10 a 20 células. Las punteaduras intervasculares son numerosas, pequeñas y alternas.

Plano Longitudinal Radial: Las punteaduras de los campos de cruce radio-vaso son pequeñas y numerosas. Presenta perforaciones simples.

Figura 3.77. Fraxinus sp. del Balneario Romano de Archena. A la izquierda, plano transversal (x 70), a la derecha, plano longitudinal tangencial (x 120).

Ecología:

Se trata de un género con especies muy exigentes en agua, que suelen vivir desde el nivel del mar hasta 1000 m de altitud, en contextos ecológicos de nivel freático elevado como márgenes de ríos y arroyos, pies de ladera y fondos de valles frescos. La mayoría de las especies peninsulares, como *Fraxinus angustifolia*, *F. excelsior* o *F. ornus* son indiferentes edáficas, por lo que pueden desarrollarse tanto en suelos silíceos como calcáreos. El margen de temperaturas que soportan, sin embargo, difiere entre las distintas especies. Así, *Fraxinus excelsior* es sensible a los climas calurosos, *Fraxinus ornus* lo es a los climas fríos, y *Fraxinus angustifolia* sin embargo tolera un amplio espectro de temperaturas, desde los fríos invernales, hasta condiciones de calor (Galán *et al*. 1998, López González 2001).

En la actualidad, en la Región de Murcia se desarrolla solamente la especie *Fraxinus angustifolia*, en bosques riparios y barrancos húmedos. Puntualmente también se puede encontrar en algunos puntos de la cuenca del río Segura y sus afluentes. Es frecuente en
el tramo alto del río Benamor, Carrascalejo, Benizar, Caravaca, etc (Sánchez Gómez et al. 1998). Esta especie suele aparecer junto a otras como *Populus alba*, *Alnus glutinosa*, *Flueggea tinctoria*, *Salix alba*, *Salix salviifolia*, *Salix atrocinerea*, etc.

Figura 3.78. Fresno en la Laguna Grande de Baeza, Jaén (Foto: M. S. García).

Propiedades y aprovechamiento:
La madera de fresno es un excelente combustible. Se caracteriza por ser muy densa y dura, pero se trabaja muy bien con la aplicación de vapor (Johnson 1978), por lo cual ha sido utilizada tradicionalmente para la fabricación de bastones y garrotas por parte de los pastores (Galán et al. 1998). Esta capacidad para curvarse al vapor ha condicionado que sea muy utilizada para la elaboración elementos curvados de muebles, embarcaciones o carretas. Los principales usos que tiene en la actualidad se orientan hacia la fabricación de bates de cricket, palos de hockey, tacos de billar, aparatos de gimnasia, trineos y remos (López González 2001).

Su uso desde la Prehistoria está documentado en la fabricación de arcos, armas y herramientas, dada la flexibilidad de sus ramas (Carrión Marco 2005a).

Especie: *Olea europaea* L.
Nombre común: Olivo, Acebuche.

Descripción anatómica:
Plano Transversal: Madera de porosidad difusa, con poros dispuestos en agrupaciones radiales de 2 a 5, y que muy raramente se presentan aislados. Parénquima muy
abundante, paratraqueal vasicéntrico, dispuesto en filas tangenciales. Los anillos de crecimiento poco marcados y de recorrido curvado.

Figura 3.79. *Olea europaea* del Balneario Romano de Archena (izquierda), plano transversal (x 100). *Olea europaea* de La Punta de los Gavilanes (derecha), plano longitudinal tangencial.

Plano Longitudinal Tangencial: Radios heterogéneos, uni-, bi- o triseriados con una altura de hasta 20 células. Punteaduras intervazculares muy pequeñas, numerosas y de formas redondas con tendencia elíptica.

Plano Longitudinal Radial: Perforaciones simples de los vasos. Punteaduras en los campos de cruce radio-vaso muy pequeñas y redondeadas.

Ecología:
El olivo es una especie xerófila extendida por todo el contorno del Mediterráneo y muy cultivada en el caso de la mitad sur de la Península Ibérica. La especie se asocia a los pisos termo- y mesomediterráneo, en suelos silíceos, calizos e incluso yesíferos desde el nivel del mar hasta los 1500 m de altitud, ya que aunque soporta muy bien la sequía estival, no resiste los fríos invernales (Galán *et al.* 1998). La variedad silvestre (*Olea europaea* var. *sylvestris*) aparece formando parte del sotobosque de quercínneas y coníferas, a menudo acompañando a formaciones esclerófilas dominadas por el lentisco (*Pistacia lentiscus*), el mirto (*Myrtus communis*), el palmito (*Chamaerops humilis*) y el espino negro (*Rhamnus lycioides*) (López González 2001).
Se encuentra disperso por zonas cálidas y su cultivo es uno de los más practicados en toda la Región de Murcia.

![Olivo cultivado en el campo de Lorca (izquierda) y acebuchec en el Cabo de Gata, Almería (derecha)](Fotos: M. S. García).

Propiedades y aprovechamiento:
La madera de olivo es de gran belleza, de color beige o marrón con una serie de vetas de tonalidades grisáceas a negras. Se caracteriza por su dureza, peso y robustez. Es compacta, de textura fina y gran densidad, aunque su grano es a menudo muy irregular. Debido a su resistencia a la abrasión se trabaja muy bien y puede ser teñida o pulida, proporcionando acabados muy lisos, aunque tiene cierta tendencia a resquebrajarse (Johnson 1978). Se utiliza principalmente en ebanistería para la elaboración de pequeños objetos torneados o tallados como enmangues de herramental agrícola, o también platos, fuentes artesanales y cubiertos de madera (López González 2001). Es además un excelente combustible, adecuado para la fabricación de carbón.
La madera de olivo ha sido muy apreciada desde la antigüedad, sobre todo para la elaboración de estatuas como lo documentan fuentes como Teofrasto, Herodoto u Homero (López González 2001).

El olivo ha tenido también aplicaciones en medicina popular, sobre todo para disminuir la tensión sanguínea, sin embargo, el principal aprovechamiento de esta planta es el consumo alimenticio de sus frutos, las aceitunas, bien como encurtidos o bien como aceite elaborado a partir del prensado de los mismos, actividad que se documenta en la Península Ibérica desde el siglo III a.C. con las primeras estructuras de almazara halladas en el Castellet de Bernabé y La Seña (Pérez Jordá et al. 1999), y que tiene su máxima expansión en época romana.

FAMILIA PLANTAGINACEAE

Nombre común: Oreja de liebre, Velosilla.
Descripción anatómica:

Plano Transversal: El xilema presenta porosidad difusa, con poros de muy pequeño tamaño que aparecen generalmente en agrupaciones radiales cortas. El parénquima no es observable, y los anillos de crecimiento son difícilmente perceptibles, sólo a través de bandas poco lignificadas (Schweingruber 1978).

![Figura 3.81. cf. Plantago sp. de La Punta de los Gavilanes, plano transversal.](image)

Plano Longitudinal Tangencial: Radios generalmente ausentes.

Plano Longitudinal Radial: Las perforaciones de los vasos son simples. Las fibras presentan punteaduras de pequeño tamaño.

Ecología:

Se trata de plantas herbáceas que suelen estar asociadas a ambientes nitrificados o ruderales, y que de hecho son consideradas como un indicador polínico del desarrollo de actividades agrícolas.

En la Región de Murcia aparecen varias especies de este género, en su mayoría asociadas a herbazales o pastizales nitrificados y pastoreados, bien de secano, como *Plantago sempervirens*, *P. albicans*, *P. africana* y *P. lagopus* o bien con cierta humedad, como *Plantago lanceolata* o *P. major*. Algunas especies son propias de ambientes costeros, asociados a suelos nitrificados arenosos, salinos o subsalinos, como *Plantago coronopus*, *P. crassifolia*, *P. ovata*, *P. amplexicaulis* y *P. notata*. Por el contrario, otras especies como *Plantago sempervirens*, *P. loeflingii* o *P. media* crecen en los pisos meso- y supramediterráneo, y aparecen principalmente en el interior y en la Comarca del Noroeste (Sánchez Gómez y Guerra Montes 2003).
Propiedades y aprovechamiento:
Las plantas de este género han sido utilizadas sobre todo en medicina popular con propiedades laxantes y antiinflamatorias. Las semillas de *Plantago afr a*, en particular, se han utilizado como fijador para el pelo (Alcaraz Ariza *et al*. 1997).

FAMILIA PUNICACEAE

Especie: *Punica granatum* L.
Nombre común: Granado.

Descripción anatómica:
Plano Transversal: Madera de porosidad difusa con vasos que generalmente se presentan aislados o en alineación múltiple de 4 o más vasos. El parénquima longitudinal es raro, aunque si existe puede ser tanto apotraqueal como paratraqueal.

Plano Longitudinal Tangencial: Los radios son heterogéneos, uniseriados y de hasta 15 células de altura. Las puntaduras intervasculares son simples, alternas y vestidas.

Plano Longitudinal Radial: Vasos con perforaciones simples.

![Figura 3.82. *Punica granatum* del Balneario Romano de Archena. A la izquierda, plano transversal (x 55), a la derecha, plano longitudinal tangencial (x 250).](image)

Ecología:
Se trata de un arbusto cuyo origen parece estar entre el extremo oriental del Mediterráneo y el Himalaya, aunque su cultivo en la Península Ibérica es muy remoto, quedando demostrado por los restos que aparecen en la zona extremeña desde cronología romana republicana en La Magacela (Duque 2004a) y en particular en la zona de estudio gracias a pinturas como las del yacimiento romano de La Quintilla, en el municipio de Lorca (García Sandoval y Plaza Santiago 2003, Plaza Santiago *et al*. 2005, Ramallo Asensio *et al*. 2005). También existen algunas representaciones
iconográficas anteriores sobre cerámicas de época ibérica (García Cano y Page del Pozo 2005), aunque se ha cuestionado si se trata en realidad de granadas o de cápsulas de adormidera, cuya morfología es muy parecida (Izquierdo 1997, Mata Parreño et al. 2007).

Actualmente esta especie se desarrolla sobre todo en el Este y Sur peninsular, cultivada en huertos o también en linderos de caminos. Es una especie que se asilvestra fácilmente. En la Región de Murcia esta planta está muy extendida, tanto cultivado en huertas, como naturalizada o plantada como ornamental (Sánchez Gómez et al. 1998).

Propiedades y aprovechamiento:
El principal aprovechamiento del granado es el consumo de sus frutos, las granadas, que pueden consumirse simplemente como postre o también como granadina, una bebida refrescante obtenida cuando se exprimen sus semillas.

La gran cantidad de taninos de su corteza, flores y frutos hacen que se trate de un buen astringente y que se haya utilizado también para curtir pieles e incluso como sustancia tintórea. Por otra parte, su raíz posee propiedades vermífugas, por lo que esta parte vegetativa se ha utilizado con fines medicinales para expulsar tenias o gusanos intestinales (Galán et al. 1998, López González 2001).

![Figura 3.83. Punica granatum en el borde de un embalse (Foto: M. S. García).](image)

FAMILIA RANUNCULACEAE

Género: Clematis sp. (p. ej. Clematis vitalba L., Clematis cirrhosa L., Clematis flammula L.).
Nombre común: Clemátide, Hierba muermora, Cola de ardilla.

Descripción anatómica:

Plano Transversal: Madera con zona porosa. Vasos del leño inicial solitarios y de gran tamaño (hasta unos 300 µm) mientras que los de la madera final suelen ser pequeños (15-40 µm) y en grupos tangenciales. El parénquima es paratraqueal vasicéntrico y los anillos de crecimiento no son perceptibles normalmente.

![Figura 3.84. Clematis sp. de La Punta de los Gavilanes, plano transversal.](image)

Plano Longitudinal Tangencial: Los radios son heterogéneos y formados por células de morfología cuadrada. Suelen tener desde 5 a 15 células de ancho, muy irregulares, y una altura que suele superar el milímetro. Las punteaduras intervasculares son numerosas, de tamaño mediano y con forma elíptica.

Plano Longitudinal Radial: Las perforaciones de los vasos son simples. Las punteaduras de los campos de cruce radio-vaso son pequeñas y elipsoidales.

Ecología:
Las especies del género *Clematis* son por lo general arbustos sarmentosos, trepadores, que tienen una gran extensión en todas las zonas templadas de la Tierra.

En la Región de Murcia se desarrollan tres especies de *Clematis*: *Clematis vitalba*, *Clematis cirrhosa* y *Clematis flammula*. Ecológicamente *Clematis vitalba* suele aparecer en zonas arbustivas y arbóreas riparias y en setos de huertas de la zona noroeste, aunque es una especie mucho más extendida en la mitad septentrional de la Península Ibérica. *Clematis flammula* y *Clematis cirrhosa* son, sin embargo, marcadamente mediterráneas. La primera crece en lugares soleados desde el nivel del mar hasta los 1300 m de altitud, y suele aparecer asociada a matorrales, setos,
pedregales, bosques aclarados y lindes de cultivos. *Clematis cirrhosa*, por su parte, es propia de bosques más o menos aclarados y de palmitares, lenticicares y roquedos también desde el nivel del mar hasta unos 1400 m de altitud, extendiéndose principalmente por la Sierra de Cartagena (López González 2001, Sánchez Gómez y Guerra Montes 2003).

Propiedades y aprovechamiento:

Aunque se trata de una familia de plantas tóxicas, el género *Clematis* se ha utilizado en medicina con múltiples aplicaciones. Las hojas secas se utilizaban antiguamente para curar el muermo de caballos y asnos. Los tallos y hojas frescas tienen propiedades vesicantes y en la actualidad se utilizan en medicina para tratar neuralgias y dolores reumáticos (López González 2001).

FAMILIA RHAMNACEAE/OLEACEAE

Género: Rhamnus/Phillyrea sp. (p. ej. Rhamnus lycioides L., Rhamnus alternus L., Phillyrea angustifolia L., etc).

Nombre común: Espino negro, Aladierno/ Labiérnago.

Descripción anatómica:

Plano Transversal: Madera de porosidad dispersa con poros agrupados en forma de flamás radiales u oblícuas. El parénquima es paratraqueal vasicéntrico o apotraqueal difuso. Los anillos de crecimiento son perceptibles.

Figura 3.85. *Rhamnus/Phillyrea* sp. de La Punta de los Gavilanes. A la izquierda, plano transversal, a la derecha, plano longitudinal tangencial.
Plano Longitudinal Tangencial: Radios uni- o biseriados, heterogéneos, con una altura que no sobrepasa las 15 células. Engrosamientos en espiral finos y abundantes en los vasos y gran cantidad de punteaduras intervasculares pequeñas y redondeadas.

Plano Longitudinal Radial: Vasos con perforaciones simples. En los campos de cruce entre radios y vasos tiene numerosas pequeñas punteaduras.

Ecología:
En los pisos termo- y mesomediterráneo de la Región de Murcia se desarrollan principalmente tres especies del género *Rhamnus*:

Rhamnus alaternus suele aparecer en formaciones boscosas y arbustivas, sobre cualquier tipo de sustrato, incluso en terrenos pedregosos o entre las grietas de las rocas.

Por su parte, *Rhamnus oleoides* es un arbusto que aparece también en matorrales de lentisco, acebuche, mirto o palmito, desarrollándose en lugares secos y soleados. Aguantan bien los terrenos pedregosos y rocosos pero ha de vivir en lugares exentos de heladas.

En las zonas altas de montaña de la Región de Murcia aparecen dos especies más: *Rhamnus pumilis*, asociada a litosuelos de la comarca del Noroeste y la Sierra del Gigante y *Rhamnus saxatilis*, formando parte de matorrales de las sierras del Noroeste, Sierra Espuña, Cambrón y Sierra del Gigante (Sánchez Gómez et al. 1998).

El género *Phillyrea* aparece representado en la Región de Murcia principalmente por *Phillyrea angustifolia*, que suele aparecer en formaciones arbustivas y bosques, aunque más raramente también en matorrales abiertos, sobre todo en suelos lavados o silíceos. Aparece en la actualidad en las sierras más lluviosas de la costa y del interior de Murcia, sin sobrepasar normalmente los 1200 m de altitud (Sánchez Gómez et al. 1998).

Propiedades y aprovechamiento:
Las ramas de *Rhamnus lycioides* han sido utilizadas para cubrir las tapias de los corrales (Alcaraz Ariza et al. 1997), y las de *Rhamnus alaternus*, debido a su gran dureza y a su
bello pulimento, se han utilizado para la elaboración de peines que se han hecho pasar por madera de boj. La madera de *Rhamnus oleoides* sirve principalmente como combustible y para la elaboración de carbón (López González 2001).

![Figura 3.86. Rhamnus lycioides en la Sierra de las Moreras, Mazarrón (izquierda) y Rhamnus alaternus en Calafell, Tarragona (derecha) (Fotos: M. S. García).](image)

Según Font i Quer (1962) algunas especies del género *Rhamnus* se caracterizan por contener materias tintóreas y tánicas, así como glucósidos que se descomponen con facilidad.

Las propiedades de *Phillyrea* están generalmente relacionadas con los taninos que contiene, útiles para el curtido de pieles. Su madera es un combustible bastante bueno.

FAMILIA ROSACEAE TIPO MALOIDEAE

Familia: Rosaceae tipo Maloideae (p. ej. *Sorbus aria* (L.) Crantz, *Crataegus monogyna* Jacq.).

Nombre común: Serbales, Majuelos.

Descripción anatómica:

Plano Transversal: Madera de porosidad dispersa a semiporosa, con poros solitarios y de pequeño tamaño que se disponen regularmente por todo el leño, aunque con algo más de densidad en la madera temprana. El parénquima es apotraqueal difuso. Los anillos de crecimiento son claramente visibles.

Plano Longitudinal Tangencial: Los radios son de uniseriados a triseriados, generalmente muy homogéneos, aunque pueden darse también los heterogéneos. Las punteaduras de los vasos son pequeñas y no muy numerosas. Éstos presentan engrosamientos en espiral muy finos, aunque existen especies que no los poseen.
Plano Longitudinal Radial: Perforaciones de los vasos simples. Las punteaduras de los campos de cruce son pequeñas y muy redondeadas.

![Figura 3.87. Rosaceae tipo Maloideae del Balneario Romano de Archena. A la izquierda, plano transversal (x 80), a la derecha, plano longitudinal tangencial (x 230).](image)

Ecología:
El género *Crataegus* se extiende prácticamente por todo el territorio peninsular, desde el nivel del mar hasta unos 1800 m de altitud formando parte de orlas espinosas, setos y ribazos (López González 2001). Actualmente en la Región de Murcia se crían dos especies de este género: *Crataegus monogyna*, que se da en ambientes frescos, barrancos y bosques galería, extendiéndose sobre todo por la Comarca del Noroeste y *Crataegus laciniata*, que se puede encontrar en la base de la Sierra del Gigante (Sánchez Gómez et al. 1998).

Por su parte, el género *Sorbus* (serbal), como *Sorbus domestica* o *Sorbus aria* suelen también surgir en ambientes rocosos, sombríos, barrancos, taludes, bosquetes riparios, como Sierra Espuña, Cambrón, las sierras del Noroeste, sierra Salinas (Yecla) (Sánchez Gómez y Guerra Montes 2003).

Propiedades y aprovechamiento:
La madera del serbal, de color blanco o pardo-rosado, es de textura fina, y se caracteriza también por su gran peso y dureza, que hace que sea de mala calidad para ser trabajada. Por ello sólo se utiliza en la elaboración de objetos de pequeño tamaño que vayan a recibir un gran desgaste como rodillos de ejes para carros, mangos de herramientas, cierres de cercados, etc. Se trata, por otro lado, de un excelente combustible que genera un carbón de buena calidad (López González 2001). El fruto de *Sorbus domestica* es de una gran aspereza, y para ser consumido ha de reblanquecerse previamente mediante diferentes técnicas como el reposo en paja. Los frutos de *Sorbus aria* han sido utilizados para la elaboración de vinagres (López González 2001).
La madera del majuelo es de semejantes características a la del serbal, también blanquecina y de una dureza extrema que la hace susceptible de ser empleada en la elaboración de objetos sometidos a grandes rozamientos. Es también un excelente combustible que produce al igual que Sorbus un buen carbón (López González 2001). Los frutos de Crataegus monogyna han sido utilizados mezclados con los de agracejos o groselleros para la elaboración de jarabes. Sus hojas y flores tradicionalmente han sido utilizadas en medicina popular para aliviar problemas circulatorios. Su madera es de buena calidad como combustible, produciendo un buen carbón vegetal (Galán et al. 1998).

FAMILIA ROSACEAE TIPO PRUNOIDEAE

Descripción Anatómica:
Plano Transversal: Madera semiporosa o de poros difusos dependiendo de la especie. Los vasos del leño temprano (de 20 a 130 µm) suelen estar aislados, y los del leño tardío (15-20 µm) se distribuyen en grupos de 2 a 6 en orientación radial u oblicua. El parénquima es apotraqueal difuso. Los anillos de crecimiento son perceptibles.
Recursos forestales en un medio semiárido.

Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

Figura 3.89. *Prunus* sp. del Balneario Romano de Archena.
A la izquierda, plano transversal (x 75), a la derecha, plano longitudinal tangencial (x 140).

Plano Longitudinal Tangencial: Los radios son de homogéneos a heterogéneos. Pueden presentarse desde uniseriados hasta multiseriados (de 3 a 5 células de grosor), con una altura muy variable dependiendo de la especie. Es característico del género que los radios tengan células marginales verticales en todo su contorno externo. Los vasos presentan engrosamientos helicoidales finos y densos, con punteaduras intervasculares pequeñas o medianas, numerosas y de forma redondeada.

Plano Longitudinal Radial: Perforación de los vasos simple. Las punteaduras de los campos de cruce radio-vaso son pequeñas o medianas dependiendo de la especie.

Figura 3.90. *Prunus* sp. de La Punta de los Gavilanes.
A la izquierda, plano transversal (x 85), a la derecha, plano longitudinal tangencial (x 250).

Ecología:
El género *Prunus* engloba a una gran cantidad de especies, la mayoría de las cuales han sido cultivadas desde antiguo, como el ciruelo (*Prunus domestica*), el albaricoquero (*Prunus armeniaca*), el almendro (*Prunus dulcis*) o el melocotonero (*Prunus persica*).
En la Región de Murcia se encuentran diversas especies, entre las que destacan *Prunus prostrata*, que aparece en contextos de matorral y bosques abiertos de montaña, en suelos frescos de sierras como la de Espuña, el Gigante o la comarca del Noroeste, donde crecen también *Prunus spinosa* y *P. mahaleb*. Por su parte, las especies cultivadas pueden aparecer también naturalizadas. Es el caso de *Prunus dulcis* en taludes o ribazos, *Prunus avium* en algunos márgenes de cursos de agua, barrancos y taludes del Noroeste de la Región, *Prunus domestica* en setos y lugares húmedos o *Prunus armeniaca* que en ocasiones puede aparecer también de forma subespontánea (Sánchez Gómez y Guerra Montes 2003).

Propiedades y aprovechamiento:
En la actualidad, son numerosas las especies que se cultivan de este género, con fines alimenticios u ornamentales. Algunas de ellas como el endrino (*Prunus spinosa*) han sido utilizadas para macerar y aromatizar licores como el pacharán o el marrasquino, y también tienen numerosos usos medicinales (López González 2001).

Sin embargo, su madera, que suele ser de grano fino y recto (Johnson 1978) no es de mucha calidad fundamentalmente por su poca elasticidad que hace que se resquebraje fácilmente, aunque sí ha sido utilizada para la realización de mangos de herramientas, dada su gran dureza.

![Image](https://via.placeholder.com/150)

Figura 3.91. *Prunus spinosa* en el Calar de la Santa, Moratalla (Foto: M. S. García).

Especie: *Prunus cf. amygdalus* (Mill.) D.A. Webb.
Nombre común: Almendro.
Descripción Anatómica:

Plano Transversal: Madera semiporosa y ocasionalmente de porosidad difusa. Los poros del leño inicial (50-120 µm) se disponen aislados o formando grupos de 2 a 4; los del leño final (20-40 µm) forman grupos de 3 a 6 poros que se disponen de forma radial u oblicua. El parénquima es apotraqueal difuso. El límite de los anillos de crecimiento es claramente perceptible.

Plano Longitudinal Tangencial: Radios heterogéneos, bien uni- o biseriados, o bien multisériados con anchuras que van desde las 4 a las 8 células de grosor. La altura puede ir desde las 15 células hasta un máximo de 55 células en el caso de los radios multisériados. Los vasos presentan engrosamientos helicoidales finos y muy numerosos. Las punteaduras intervasculares son medianas o pequeñas, numerosas y de morfología redondeada.

Plano Longitudinal Radial: Perforaciones de los vasos simples. Las punteaduras de los campos de cruce vaso-radio son de pequeño tamaño.

![Figura 3.92. Prunus cf. amygdalus del Balneario Romano de Archena.](image)

A la izquierda, plano transversal (x 90), a la derecha, plano longitudinal tangencial (x 150).

Ecología:

El almendro es un árbol que se considera originario del centro y suroeste de Asia y del norte de África, aunque ha sido cultivado en la Península desde tiempos muy antiguos, y de hecho aparece ya documentado en cronologías protohistóricas de yacimientos de la cuenca del Guadiana desde el siglo V a.C., como La Mata o el yacimiento romano republicano de La Magacela entre otros (Grau et al. 1998, 2004a, Duque 2004a, Pérez Jordá 2004, Juan Tresserras y Matamala 2004).

Es un cultivo característico de zonas de clima cálido y seco, aunque también soporta los fríos. Prefiere los sustratos calizos y crece bien en terrenos pedregosos. En la Región de Murcia aparece cultivada y naturalizada en la totalidad de su territorio.
Propiedades y aprovechamiento:
El principal uso que tiene el almendro es el consumo alimenticio de su fruto, la almendra, como fruto seco, o en repostería sobre todo, aunque su variedad amarga es, sin embargo, bastante tóxica. El aceite y la leche de este fruto son ampliamente utilizados con valores medicinales y cosméticos.

Su madera, de tonos rojizos, es dura y resistente, y ha sido utilizada sobre todo en la elaboración de chapas. Se trata también, junto con las cáscaras leñosas de las almendras, de un buen combustible.

FAMILIA SALICACEAE

Nombre común: Álamos, Chopos/Sauces.

Descripción Anatómica:
Plano Transversal: Madera de porosidad dispersa con vasos aislados que se disponen de forma radial en agrupaciones de 2 a 4. Los anillos de crecimiento son fácilmente visibles. El parénquima es apotraqueal difuso y poco abundante.

![Figura 3.93. Populus/Salix sp. del Balneario Romano de Archena. A la izquierda, plano transversal (x 95), a la derecha, plano longitudinal tangencial (x 250).](image)

Plano Longitudinal Tangencial: La diferenciación principal entre ambos géneros se basa en la homogeneidad o no de los radios, en ambos casos uniseriados y con una altura de 5 a 30 células. Los radios de *Populus* son homogéneos mientras que el género *Salix* suele identificarse a partir de la heterogeneidad de los mismos, sin embargo en la mayoría de ocasiones ha sido imposible comprobar si se trataba de radios heterogéneos, por lo que hemos optado, dada la gran similitud ecológica de ambos géneros, por unirlos en un único taxón. Punteaduras intervasculares grandes y alternas, que suelen disponerse en filas.
Plano Longitudinal Radial: Perforaciones de los vasos simples. Punteaduras de los campos de cruce radio-vaso de gran tamaño.

Ecología:
Los chopos, los álamos y los sauces son especies exigentes en agua que se desarrollan en sotos y bosques de ribera con el nivel freático elevado y altos índices de evapotranspiración, desde el nivel del mar hasta unos 1500 m de altitud. Se asocian con otros elementos propios del ecosistema ribereño como los fresnos, olmos, y no suelen soportar bien, salvo especies como *Populus alba*, los climas cálidos.

En la Región de Murcia se desarrollan *Populus nigra* y *Populus alba*, ambos formando parte de bosquetes galería, aunque *Populus nigra* se encuentra más en el curso alto del río Segura, mientras que *P. alba* puede crecer también en cursos irregulares como las ramblas, e incluso en zonas afectadas por cierta salinidad (Sánchez Gómez y Guerra Montes 2003).

En cuanto al género *Salix*, son múltiples las especies que aparecen actualmente en el territorio regional, la mayoría de ellas asociadas a los tramos altos de la cuenca del Río Segura y la comarca del Noroeste en general (*Salix purpurea, S. triandra, S. fragilis, S. eleagnos, S. alba, S. atrocinerea*), u otros ríos como el Espuña (*Salix pedicellata*) (Sánchez Gómez y Guerra Montes 2003).

![Figura 3.94. Alameda de *Populus alba* en la Laguna Grande de Baeza, Jaén (Foto: M. S. García).](image-url)
Propiedades y aprovechamiento:
La familia de las salicáceas posee una madera de muy baja calidad como combustible, ya que es muy blanda, ligera y de textura fina y uniforme, lo que hace que arda muy rápidamente y que genere un carbón muy ligero y absorvente. Estas características son la causa de que sus usos hayan estado limitados a la elaboración de elementos de construcción que no soporten grandes cargas, y principalmente a la fabricación de objetos domésticos como cajas, tablones, conglomerados, palillos, pasta de papel, cerillas...etc. Las ramas de *Salix fragilis* (mimbrera) son las más apreciadas como mimbre.

Aparte de esto, son múltiples los usos medicinales de todas sus partes vegetativas, principalmente como diurético, antiséptico, astringente, etc.

FAMILIA SOLANACEAE

Especie: cf. *Withania frutescens* (L.) Pauquy.
Nombre común: Oroval.

Descripción Anatómica:
Plano Transversal: Madera de porosidad difusa, poros en pequeños grupos, ampliamente espaciados. Los anillos de crecimiento aparecen marcados por estrechas bandas de parénquima tangencial, suelen ser ondulados. Parénquima paratraqueal y apotraqueal en el inicio de la madera inicial.

![Figura 3.95. cf. Withania frutescens de La Punta de los Gavilanes. A la izquierda, plano transversal, a la derecha, plano longitudinal tangencial.](image-url)
Plano Longitudinal Tangencial: Los radios son heterogéneos y generalmente uni- o biseriados, aunque raramente pueden ser también triseriados. Aparecen células marginales ocasionalmente muy alargadas.

Plano Longitudinal Radial: Punteaduras de los campos de cruce ligeramente alargadas. Perforaciones de los vasos simples (Schweingruber 1990).

Ecología:

En la Región de Murcia aparece concretamente en matorrales con cierta nitrificación. Está extendida por toda la franja litoral y sublitoral, aunque raramente penetra hacia el interior cuando se trata de ambientes muy térmicos (Sánchez Gómez et al. 1998). Aparece también la especie Withania somnifera, que sin embargo se presenta cultivada o naturalizada.

Propiedades y aprovechamiento:
Los usos de esta planta han sido muy limitados dado que se trata de una planta tóxica que contiene gran cantidad de alcaloides (Alcaraz Ariza et al. 1997).

Figura 3.96. Withania frutescens en el Cabo de Gata, Almería (Foto: M. S. García).
Especie: *Lycium intricatum* Boiss.
Nombre común: Cambrón, Espino.

Descripción anatómica:
Plano Transversal: Madera de porosidad difusa, con poros de tamaño variable dependiendo de la zona del anillo donde se sitúen, que suelen distribuirse en forma de flama. En el caso del leño temprano es posible que los poros estén ausentes, en cuyo caso sólo es visible el parénquima inicial. El parénquima es apotraqueal difuso. Los anillos de crecimiento son perceptibles, en ocasiones con crecimiento discontinuo.

Plano Longitudinal Tangencial: Los radios son heterogéneos, uniseriados o en ocasiones biseriados, con de 1 a 25 células de altura, y una media de 10 células. Las células suelen ser redondeadas con tendencia cuadrada.

Plano Longitudinal Radial: Vasos con perforaciones simples, puede presentar ocasionalmente engrosaduras en espiral muy finas en los vasos. En ocasiones presenta fibras libriformes. Las punteaduras suelen ser de gran tamaño y morfología circular.

Figura 3.97. *Lycium intricatum* de La Punta de los Gavilanes (izquierda) y ejemplar en el Cabo Cope, Águilas (derecha) (Foto: M. S. García).

Ecología:
Esta especie es un arbusto que crece en la actualidad en la zona costera desde Málaga hasta la zona de Murcia. Puede desarrollarse en climas de gran aridez, y en todo tipo de suelos, incluyendo los salinos y yesosos (Galán *et al.* 1998).

Propiedades y aprovechamiento:
Son conocidas sus aplicaciones medicinales en tratamientos antiespasmódicos, y también como diurético e hipotensor (López González 2001).
FAMILIA TAMARICACEAE

Género: Tamarix sp. (p. ej. Tamarix boveana Bunge, Tamarix dalmatica Baum, Tamarix canariensis Willd.).
Nombre común: Taray, taraje.

Descripción Anatómica:
Plano Transversal: Madera de semiporosa a porosa, con poros aislados o de dos en dos en disposición radial. Anillos de crecimiento netamente diferenciados. Parénquima muy abundante, paratraqueal vasicéntrico, y en ocasiones apotraqueal, difuso o en bandas tangenciales.

Plano Longitudinal Tangencial: Radios heterogéneos, multiseriados (de 3 a 20 células de anchura), de hasta 20 células de altura. Punteaduras intervasculares pequeñas, simples y alternas, de morfología redondeada a elíptica.

Plano Longitudinal Radial: Vasos con perforaciones simples. Punteaduras de los campos de cruce radio-vaso muy pequeñas, dispuestas en bandas oblicuas.

Ecología:
En general, el género Tamarix lo integran una serie de especies que crecen en zonas de clima seco y caluroso, asociadas a suelos salinos húmedos como las arenas y lagunas costeras y a márgenes de ríos y sobre todo de ramblas en la región semiárida peninsular. Estas plantas crecen acompañadas en numerosas ocasiones de quenopodiáceas, que constituyen su principal cortejo florístico en contextos de suelos salinos. De entre las
especies arbóreas que se desarrollan en la Península Ibérica, Tamarix es la única capaz de soportar la salinidad del suelo (Galán et al. 1998), aunque algunas como Tamarix boveana o Tamarix canariensis lo son mucho más que Tamarix africana o Tamarix gallica, por ejemplo, que son propias de contextos ribereños de aguas dulces.

Los tarayes están muy extendidos en todo el territorio murciano, con la excepción de las zonas más occidentales de la comarca del Noroeste (Alcaraz Ariza et al. 1997). Destacan sobre todo Tamarix boveana y Tamarix canariensis que aparecen en depresiones, ramblas salobres y márgenes de pantanos de óptimo murciano-almeriense; y por otro lado Tamarix africana y Tamarix gallica que se asocian a márgenes de ríos con baja salinidad, principalmente el cauce medio y alto del río Segura y Tamarix africana en concreto también en los cauces pizarrosos de la zona alta de Lorca (Sánchez Gómez y Guerra Montes 2003).

Propiedades y aprovechamiento:

Su madera se caracteriza por poseer una gran flexibilidad, por lo cual sus varas han sido utilizadas en labores agrícolas, como ornamentales en la reforestación de taludes y medianas de las carreteras (Sánchez Gómez et al. 1996, Galán et al. 1998) y también para hacer maromas para las norias y como ataderos (López González 2001). Su corteza ha sido utilizada en medicina popular con propiedades depurativas y astringentes dada la gran cantidad de taninos que contiene (Alcaraz Ariza et al. 1997). Se trata también de un buen combustible.

FAMILIA THYMELAEACEAE

Especie: Daphne gnidium/Thymelaea hirsuta
Nombre común: Torvisco, Matapollo/Bufalaga, Boja marina.
Descripción Anatómica:

Plano Transversal: Madera de porosidad difusa, con poros dispuestos en forma de flamas y bandas oblicuas. Los anillos de crecimiento no son perceptibles apenas. El parénquima es apotraqueal difuso y paratraqueal en bandas terminales.

Plano Longitudinal Tangencial: Los radios son heterogéneos y uniseriados normalmente, aunque pueden presentar hasta dos o tres células de anchura. La altura de los radios puede ser de hasta 15 células, de morfología redondeada. Tiene frecuentes células fusiformes. Las punteaduras intervasculares son de tamaño medio, numerosas y de morfología elíptica-redondeada.

Plano Longitudinal Radial: Perforaciones de los vasos simples. Punteaduras de los campos de cruce radio-vaso poligonales.

Ecología:

Daphne gnidium L. es un arbusto originario del Mediterráneo occidental que está fuertemente expandido por toda la Península Ibérica excepto en algunas zonas del tercio norte, apareciendo también en el archipiélago canario e Islas Baleares, con excepción de Cabrera. El torvisco habita en ambientes de bosque esclerófilo como encinares, pinares y matorrales de tipo mediterráneo desde el nivel del mar hasta los 1300-1400 m. Es indiferente edáfico, por lo que puede asociarse a cualquier tipo de sustrato (Galán et al. 1998, López González 2001). Esta especie aparece en comunidades arbustivas y matorrales de todo el territorio de la Región de Murcia.

Thymelaea hirsuta (L.) Endl. se desarrolla en el ámbito mediterráneo y de algunas zonas atlánticas como la costa de Cádiz. Crece principalmente en lugares secos y pedregosos, costeros o subcosteros, en sustratos incluso salinos o en las propias arenas marinas, desde el nivel del mar hasta unos 1100 m de altitud en las zonas más cálidas (Galán et
Capítulo III. Paleoflora identificada

al. 1998, López González 2001). En la Región de Murcia concretamente se asocia a matorrales de suelos alterados y nitrificados de cotas bajas, aunque puede penetrar hacia el interior llegando hasta Ciehegin y Jumilla (Sánchez Gómez et al. 1998).

Propiedades y aprovechamiento:
En lo que se refiere a sus aprovechamientos, Daphne gnidium es una planta tóxica, aunque sus frutos y corteza han sido utilizados en medicina y veterinaria popular, sobre todo como purgante. En la Región de Murcia está documentada la utilización de sus ramas y frutos en la caza de perdices (Alcaraz Ariza et al. 1997, López González 2001).

Thymelaea hirsuta se ha utilizado tradicionalmente en Murcia y Almería para la elaboración de escobas utilizadas para barrer las eras y los hornos, pues su madera arde con bastante dificultad. También tiene propiedades purgantes (López González 2001).

FAMILIA ULMACEAE

Nombre común: Olmos.

Descripción Anatómica:
Plano Transversal: Madera con anillo poroso. En la madera inicial los vasos (100-220 µm) se disponen tangencialmente en 2 o 3 filas. En el leño final los vasos (15-45 µm) se
disponen en bandas de 2 a 4 series tangenciales u oblicuas. Los anillos de crecimiento son bien visibles. El parénquima es longitudinal paratraqueal o apotraqueal en bandas.

Plano Longitudinal Tangencial: Los radios son generalmente homogéneos aunque también pueden presentarse heterogéneos. La anchura de los mismos puede estar comprendida entre 1 y 6 células, y la altura de 15 a 30 células. Las puntuaciones intervasculares son grandes y numerosas. Presenta engrosamientos en espiral muy marcados y numerosos.

Plano Longitudinal Radial: Las perforaciones de los vasos son simples. Las punteaduras de los campos de cruce radio-vaso son grandes y elípticas.

Ecología:
El género *Ulmus* forma parte de comunidades de ribera, y acompaña frecuentemente a fresnos, chopos, álamos o sauces, aunque su exigencia en humedad es mucho menor, lo cual hace que su posición catenal en esta estructura riparia sea la más alejada al cauce del río, junto a la vegetación climatófila del entorno (Costa *et al.* 2001).

En el ámbito mediterráneo la especie más frecuente es *Ulmus minor*, mientras que *Ulmus glabra* se relaciona con la zona septentrional de la península. *Ulmus minor* puede crecer en suelos ácidos o básicos, aunque prefiere estos últimos, y pese a que se desarrolla mejor en ambientes templados, también es resistente a temperaturas cálidas, llegando aparecer hasta 1650 m. de altitud (López González 2001).

Ambas especies se encuentran actualmente en la Región de Murcia. *Ulmus minor* aparece formando parte de bosquetes galería y *Ulmus glabra* posiblemente se trata de una especie introducida que se encuentra en algunos barrancos húmedos de Sierra Espuña. Las condiciones de habitabilidad de esta última especie nos conducen a pensar que en el caso del único fragmento que hemos podido identificar, en el contexto del
Capítulo III. Paleoflora identificada

Balneario Romano de Archena, pudiera tratarse de la especie más asociada a ambientes mediterráneos, *Ulmus minor*.

Propiedades y aprovechamiento:
La madera de olmo, de color pardo-rojizo y textura algo gruesa, es elástica, fácil de pulir y muy resistente a los golpes y a la putrefacción. Estas características han hecho que se utilice frecuentemente en carpintería, ebanistería, elaboración de utensilios de cocina o construcción naval. Su gran resistencia a la putrefacción en condiciones de humedad condicionó que antiguamente fuera la preferida para la fabricación de conducciones de agua. También es muy resistente a los golpes, por lo que se ha utilizado en la elaboración de muebles, entarimados, o piezas de maquinaria (Galán et al. 1998, López González 2001).

![Figura 3.103. *Ulmus minor* junto al Río Darro, Granada (Foto: M. S. García).](image)

Las hojas de esta planta han sido muy utilizadas como forraje del rebaño en épocas de escasez de pasto, y el resto de sus partes, como la corteza, han sido utilizadas en medicina tradicional con propiedades de astringente, antidiarreico y antiinflamatorio (López González 2001).

La enfermedad de la grafiosis, a la que los olmos son muy susceptibles, ha mermado mucho las comunidades de esta especie y ha generado la introducción de especies más resistentes a este problema como *Ulmus pumila* (López González 2001).
FAMILIA VITACEAE

Especie: *Vitis vinifera* L.
Nombre común: Vid, Parra.

Descripción Anatómica:

Plano Transversal: Presenta leño con zona porosa, con vasos de gran tamaño en la madera inicial (de 70 a 200 µm), que en el caso de la madera final se distribuyen en grupos de orientación radial. El límite entre anillos es en muchas ocasiones ondulado, y aparecen tílides muy habitualmente. El parénquima es paratraqueal.

![Figura 3.104. Vitis vinifera de Jumilla Sta. María 19. A la izquierda, plano transversal, a la derecha, plano longitudinal radial.](image1)

Plano Longitudinal Tangencial: Los radios heterogéneos, con una anchura de entre 5 a 20 células y llegando a tener de 2 a 5 mm. de altura. Posee engrosamientos helicoidales en los vasos del leño final. Las punteaduras intervasculares son grandes, numerosas y de tendencia elíptica y escalariforme.

![Figura 3.105. Vitis vinifera de Jumilla Sta. María 19. A la izquierda, plano transversal, a la derecha, detalle del mismo plano con cuerpo fructífero de hongo.](image2)
Plano Longitudinal Radial: Las perforaciones de los vasos son simples en el caso de los vasos grandes de la madera inicial y escalariformes en los pequeños de la madera final. Las punteaduras de los campos de cruce radio-vaso son pequeñas y redondeadas.

Anatómicamente nos ha sido imposible distinguir entre la variedad silvestre (*Vitis vinifera* subsp. *sylvestris*) y la cultivada (*Vitis vinifera* subsp. *vinifera*), aunque ya existen ciertos ensayos biométricos que se han centrado precisamente en la distinción de las diferentes variedades (Terral 2002).

Ecología:
Se cree que la procedencia de la subespecie domesticada pudo llegar a la Península desde el SO de Asia hacia la Primera Edad del Hierro (Buxó 1997), aunque lo cierto es que esta especie se ha identificado en los registros paleoecológicos peninsulares desde cronologías pleistocenas (Allué 2002) y durante todo el Holoceno tanto en la cornisa Mediterránea (Carrión Marco 2003, 2005a) como en zonas interiores como Extremadura (Duque 2004a), indicando al menos la existencia de la variedad silvestre que incluso pudo ser utilizada como cultivo por parte de estas comunidades.

Figura 3.106. *Vitis vinifera* en la Sierra del Montsec, Lleida (Foto: M. S. García).

Se trata de una especie indiferente edáfica, que se cultiva con más facilidad en ambientes cálidos y secos y en suelos pedregosos, acompañando en muchas ocasiones a los olivos (López González 2001). Puede aparecer naturalizada en bordes de bosques, sotos o riberas, asociada en muchas ocasiones a antiguos cultivos de esta especie (Galán et al. 1998).

En la Región de Murcia la vid es uno de los cultivos más importantes, sobre todo en las comarcas del interior como la del Altiplano, aunque la variedad silvestre también aparece en zonas de vaguada o barrancos húmedos (Sánchez Gómez et al. 1998).
Propiedades y aprovechamiento:
El principal aprovechamiento de la vid es, por supuesto, su cultivo para la obtención de la uva, y la fermentación de la misma en la elaboración de vino, en una práctica que se extiende en la actualidad por todo el ámbito del Mediterráneo.

Los primeros testimonios del procesado de la uva para la elaboración de vino en la Península Ibérica se han documentado en la Primera Edad del Hierro en el Alt de Benimaquia (Denia, Alicante), con estructuras de lagar formadas por una superficie de pisado, otra de prensado del hollejo y una cubeta adosada para la recogida del mosto (Gómez Bellard et al. 1993, Gómez Bellard y Guérin 1995, Mata Parreño et al. 1997, Pérez Jordá et al. 1999).

Además de lo apreciado de sus frutos, también se ha utilizado el agua procedente de la cepa con fines diuréticos, los pámpanos y los brotes tiernos como astringente y para evitar hemorragias, las hojas con fines vasoprotectores, astringentes y diuréticos, y el aceite de sus semillas en tratamientos de dietética (López González 2001).

III.3. Distribución de los taxones identificados en el cuadrante sureste peninsular.

En este apartado se expone la distribución de los diferentes taxones identificados en los yacimientos estudiados en este trabajo, así como su distribución en otros análisis antracológicos desde la Edad del Bronce hasta época medieval, referentes al cuadrante sureste peninsular (fig. 3.107).

En la tabla 3.2 se recogen todos los taxones identificados y la distribución de los mismos en los yacimientos estudiados. En general, todos ellos se corresponden con la vegetación leñosa que se desarrollaría en su entorno próximo, a excepción del caso del Teatro Romano de Cartagena, en donde los materiales de construcción estudiados obedecen a procesos de transporte desde zonas lejanas dadas las connotaciones de prestigio del edificio. Por ello no será tomado en consideración en las comparaciones taxonómicas entre yacimientos que se plantean a continuación.

En el grupo de las Gimnospermas los elementos más comunes son los enebros y sabinas (Juniperus sp.) y el pino carrasco (Pinus halepensis), que aparecen en todos los yacimientos. Ephedra sp., por su parte, está presente en los yacimientos situados en puntos más cálidos o degradados, como La Punta de los Gavilanes, Barranco de la Viuda o el Balneario Romano de Archena, pero no ha aparecido en zonas más interiores y elevadas como Jumilla. La presencia de cf. Tetroclinis articulata se ha constatado constringida geográficamente al litoral y prelitoral, por lo que sólo se ha identificado en Punta de los Gavilanes y Barranco de la Viuda. Finalmente, algunas coníferas se
asocian exclusivamente a un yacimiento, como *Abies alba* y *Pinus nigra/sylvestris* al Teatro Romano de Cartagena. Su uso obedeció en primer lugar a la importancia del edificio en el contexto socio-político romano y, seguramente, a las necesidades constructivas del propio teatro, que exigiría la utilización de grandes vigas para su construcción, ausentes en los elementos arbóreos autóctonos. Por otro lado, *Pinus pinea/pinaster* aparece únicamente en La Punta de los Gavilanes debido posiblemente a la influencia costera y a la presencia de suelos arenosos y sueltos.

![Figura 3.107. Situación de las secuencias antracológicas nombradas en este epígrafe.](image)

En lo que concierne a las angiospermas monocotiledóneas (Monocotyledoneae), su presencia es destacada en todos los yacimientos estudiados, si bien la especie cf. *Phragmites australis* aparece exclusivamente en el Balneario Romano de Archena, asociada con seguridad al curso del Río Segura, mientras que *Chamaerops humilis* se ha presentado únicamente en Barranco de la Viuda, lo que parece indicar que durante la Edad del Bronce esta zona también obedecía a los parámetros bioclimáticos termomediterráneos de carácter prelitoral.
Finalmente, en el grupo de las angiospermas dicotiledóneas aparecen familias, géneros y especies asociados a una gran cantidad de biotopos distintos. La mayoría de ellas formarían parte de matorrales o bosques de carácter mediterráneo esclerófilo. De entre ellas son menos abundantes los taxones menos resistentes a la xericidad, como *Pistacia terebinthus*, que aparece en Barranco de la Viuda y el Balneario Romano de Archena, o *Buxus* sp. presente exclusivamente en este último, o *Arbutus unedo* que está ausente de La Punta de los Gavilanes o *Quercus ilex/coccifera*, *Erica* sp. y Rosaceae tipo Maloideae que, si bien aparecen en todos los yacimientos, cuantitativamente se presentan de manera muy escasa. Por el contrario, los taxones más tolerantes al estrés hídrico y la insolación y temperatura elevadas se presentan de manera más generalizada en los yacimientos. En este grupo *Pistacia lentiscus*, Cistaceae, *Cistus* sp., Labiatae, *Rosmarinus officinalis*, Leguminosae, *Olea europaea y Prunus* sp. están presentes en todos los yacimientos, mientras que *Rhamnus/Phillyrea* sp. sólo está ausente en el Barranco de la Viuda. Otros elementos como *Daphne gnidium/Thymelaea hirsuta*, cf. *Fumana*, Compositae, *Artemisia* sp., cf. Cruciferae, cf. *Plantago o Clematis* sp. serían abundantes en el entorno, aunque aparecen de manera mucho más excepcional, debido a la rareza de su preservación como consecuencia de su tamaño, o bien a la dificultad de su discriminación anatómica.

Los iberoafricanismos están acotados geográficamente a las zonas del litoral, por lo que sólo aparecen en La Punta de los Gavilanes, como *Maytenus senegalensis*, *Lycium intricatum* y cf. *Withania frutescens*. Otros como *Periploca angustifolia* son capaces de penetrar hacia el interior, y se encuentran en el registro estudiado tanto en Punta de los Gavilanes como en el prelitoral, en Barranco de la Viuda.

Los elementos de componente halófilo, como las quenopodiáceas (Chenopodiaceae y *Atriplex halimus*) están ausentes del Balneario Romano de Archena, debido a la escasez de suelos salinos en el entorno. Por otro lado, *Tamarix* sp. aparece representado en todos los yacimientos estudiados, si bien es posible que en Archena no se asociara a suelos salinos, sino que apareciera como conformador del bosque galería que bordeaba el Segura.

En lo que concierne a los taxones que posiblemente se presentaran cultivados en el entorno de los yacimientos, *Olea europaea* es el más abundante, ya que aparece en todos los yacimientos, aunque no sería cultivado todavía en los de cronología prehistórica (Barranco de la Viuda y Gavilanes IV). Por su parte, *Ficus carica* sólo está ausente en Barranco de la Viuda. Otros taxones pudieron ser introducidos posteriormente, por lo que están ausentes de los yacimientos de cronología más temprana. En este sentido, *Punica granatum* se asocia a los dos yacimientos de cronología histórica (Balneario Romano de Archena y Jumilla Santa María 19), *Prunus cf. amygdalus*, aparece únicamente en el caso del Balneario Romano de Archena y *Vitis vinifera* se da con exclusividad en Jumilla Santa María 19.
Coníferas
Juniperus sp.
cf. Tetraclinis articulata
Abies alba
Pinus halepensis
Pinus nigra/sylvestris
Pinus pinea/pinaster
Pinus sp.
Bráctea de piña
Ephedra sp.
Monocotyledoneae
cf. Phragmites australis
Chamaerops humilis
Pistacia lentiscus
cf. Pistacia terebinthus
cf. Nerium oleander
Periploca angustifolia
Buxus sp.
Maytenus senegalensis
Chenopodiaceae
Atriplex halimus
Cistaceae
Cistus sp.
cf. Fumana sp.
Compositae
Artemisia sp.
cf. Cruciferae
Arbutus unedo
Erica sp.
Fagus sylvatica
Quercus ilex/coccifera
Labiatae
Rosmarinus officinalis
Leguminosae
Ficus carica
Fraxinus sp.
Olea europaea
cf. Plantago sp.
Punica granatum
Clematis sp.
Rhamnus/Phillyrea sp.
Rosaceae tipo Maloideae
Prunus sp.
Prunus cf. amygdalus
Populus/Salix sp.
Lycium intricatum
cf. Withania frutescens
Tamarix sp.
Daphne gnidium/
Thymelaea hirsuta
cf. Ulmus sp.
Vitis vinifera

Tabla 3.2. Distribución de los taxones identificados en los yacimientos estudiados en esta Tesis.
Algunos taxones de ribera como cf. *Nerium oleander*, *Populus/Salix* sp. o cf. *Ulmus* sp. aparecieron exclusivamente en el Balneario Romano de Archena, dada su proximidad al río, si bien *Fraxinus* sp. se presenta también, aunque de forma más excepcional, en Jumilla Santa María 19 y como un aporte lejano en La Punta de los Gavilanes.

Finalmente, la presencia en el registro antracológico de *Fagus sylvatica* en el Balneario Romano de Archena obedece con toda seguridad a la combustión puntual de algún objeto desechado que había sido previamente traído desde zonas muy lejanas al sitio.

En las tablas siguientes se ha tenido en consideración la aparición o no de los mismos taxones identificados en este trabajo en otros yacimientos del cuadrante sureste peninsular. Se recogen en total 34 yacimientos, 16 de ellos de la Edad del Bronce (tabla 3.3), y 18 de cronologías posteriores, protohistóricos, ibéricos, de época romana o medievales (tabla 3.4).

El taxón más repetido en estos yacimientos es *Quercus ilex/coccifera* (o *Quercus* perennifolio, según las publicaciones), que aparece en 29 de los 34 yacimientos. Sólo está ausente de Gatas entre los yacimientos de la Edad del Bronce, en La Fonteta entre los yacimientos protohistóricos, en Cabezo Lucero y Coimbra del Barranco Ancho entre los ibéricos, y finalmente en el yacimiento medieval de la Rápita de Guardamar.

El segundo taxón más presente es *Pinus halepensis*, que se da en 28 yacimientos. No aparece en el caso de los yacimientos de la Edad del Bronce de Muntanya Assolada, la Mola d’Agres, Peñalosa y Castillejo de Gádor y en los yacimientos ibéricos de Coimbra del Barranco Ancho y los niveles ibéricos de los Baños de la Malahá, aunque sí se presenta en los niveles romanos de este mismo yacimiento.

Le sigue en presencia relativa el taxón Leguminosae, que aparece en 26 de los 34 yacimientos de referencia. En este caso, las leguminosas no están representadas en yacimientos de la Edad del Bronce como Muntanya Assolada, Fuente Amarga, Terlinques o El Rincón de Almendricos. Tampoco se da en el Cerro del Villar, Cabezo Lucero y Corral de Xaus o en el yacimiento medieval de Castillo del Río.

En 22 yacimientos se presentan dos taxones: *Pistacia lentiscus* y *Fraxinus* sp. El lentisco no aparece representado en yacimientos de la Edad del Bronce situados en zonas interiores, como el Abric de la Falguera, la Mola d’Agres, Fuente Amarga, Loma de la Balunca y Terrera del Reloj, aunque tampoco se constata su presencia en algunos ambientes más térmicos como el Rincón de Almendricos o Gatas. En yacimientos de cronologías más recientes, *Pistacia lentiscus* está ausente de los yacimientos ibéricos de Los Villares, Cabezo Lucero, Corral de Xaus y los niveles ibéricos de Fuente Amarga y por otro lado del yacimiento medieval de Castillo del Río. En lo que concierne a *Fraxinus* sp., no aparece en la Motilla de Azuer, Fuente Amarga, Rincón de
Capítulo III. Paleoflora identificada

Almendricos, Cerro de las Viñas, Fuente Álamo y Gatas entre los yacimientos de la Edad del Bronce, y tampoco se constata su presencia en otros enclaves de cronologías posteriores como el Cerro del Villar, el Cerro de la Era, Cabezo Lucero, Fuente Amarga o la Rápita de Guardamar.

Olea europaea y *Populus/Salix* sp. se encuentran también entre los taxones más presentes en el Sureste, ya que se dan en 20 de los 34 yacimientos con estudio de sus restos carbonizados. El olivo suele estar ausente de manera natural en el piso mesomediterráneo, por lo que no se constata su presencia en yacimientos de la Edad del Bronce situados en este piso como Muntanya Assolada, la Mola d´Agres, Cerro de la Virgen, Fuente Amarga, Loma de la Balunca, Terrera del Reloj, Castellón Alto o el Cerro de la Viñas. Tampoco se ha detectado su presencia en los yacimientos ibéricos de Los Villares, Corral de Xaus, Baños de la Malahá y Fuente Amarga ni en los medievales de la Rápita de Guardamar y el Castillo del Río. En cuanto a *Populus/Salix* sp. es, junto con *Fraxinus*, el elemento de ribera más representado en el combustible estudiado en el Sureste. Aparece en menor medida en los yacimientos de la Edad del Bronce, en donde está ausente de la mitad de ellos (Muntanya Assolada, Abric de la Falguera, Mola d´Agres, Motilla de Azuer, Peñalosa, Terlinques, Rincón de Almendricos y Cerro de las Viñas). Tampoco se ha detectado su presencia en el Cerro de la Era, Corral de Xaus, Coimbra de Barranco Ancho, Baños de la Malahá y Castell d´Ambra.

Dos taxones se presentan en la mitad de los yacimientos con estudio antracológico, *Juniperus* sp. y *Tamarix* sp., ambos con 17 apariciones en los registros antracológicos del Sureste. Los enebros y sabinas se constatan en ocho yacimientos de la Edad del Bronce (Abric de la Falguera, Mola d´Agres, Motilla de Azuer, Terrera del Reloj, Castellón Alto, Terlinques, Cerro de las Viñas y Castillejo de Gádor) y en 9 yacimientos de cronología posterior (Cerro del Villar, Cerro de la Era, Alt de Benimaquia, Los Villares, Cabezo Lucero, Corral de Xaus, Baños de la Malahá, Castillo del Río y Ciudad de Granada). Por otro lado, los tarayes aparecieron asociados a Cerro de la Virgen, Loma de la Balunca, Terrera del Reloj Castellón Alto, Terlinques, Fuente Álamo, Gatas y el Castillejo de Gádor en lo que se refiere a yacimientos de la Edad del Bronce, apareciendo también en los yacimientos protohistóricos de la Fonteta y Cerro del Villar, en los niveles ibéricos de los Baños de la Malahá y Fuente Amarga, en la *Valentia* romana y en los niveles romanos de los Baños de la Malahá y por último en los yacimientos medievales de la Rápita de Guardamar, Castillo del Río y Castillejo de Gádor.
Recursos forestales en un medio semiárido.

Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

YACIMIENTOS DE LA EDAD DEL BRONCE

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Coniferae</td>
<td>Muntanya Assolada (Grau 2000a)</td>
<td>●</td>
<td></td>
</tr>
</tbody>
</table>
| Juniperus sp. | | ●●●

Tabla 3.3. Aparición de los taxones identificados en este trabajo en otros análisis antracológicos de yacimientos de la Edad del Bronce del cuadrante sureste peninsular
YACIMIENTOS DE LA EDAD DEL BRONCE (Continuación)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prunus sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Prunus cf. amygdalus</td>
<td></td>
</tr>
<tr>
<td>Populus/Salix sp. (y/o)</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Lycium intricatum</td>
<td></td>
</tr>
<tr>
<td>Tamarix sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Daphne gnidium/</td>
<td></td>
</tr>
<tr>
<td>Thymelaea hissuta (y/o)</td>
<td></td>
</tr>
<tr>
<td>cf. Withania frutescens</td>
<td></td>
</tr>
<tr>
<td>Vitis vinifera</td>
<td>●</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 3.3. Continuación.

YACIMIENTOS PROTOHISTÓRICOS Y DE ÉPOCA HISTÓRICA

<table>
<thead>
<tr>
<th>TAXA</th>
<th>PROTOHISTORIA</th>
<th>ÉPOCA IBÉRICA</th>
<th>E. ROMANA</th>
<th>ÉPOCA MEDIEVAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerro del Villar (Roja /Torralba 1999)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Cerro de la Era (Iborra et al. 2003)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Alt de Benimaquia (Grau y Duque 2007)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Castellar de Librilla (Grau y Duque 2007)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Los Vilches (Grau et al. 2001)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Cabeza Eucero (Grau 1995)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Cerro de los Taxienes (Grau 2000b)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Cerro de la Era (Iborra et al. 2003)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Los Villares (Grau et al. 2001)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Cabezo Lucero (Grau 1993)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Corral de Xaus (Grau 2000b)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Coimbra de Barranco Ancho (Grau inédito, b)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Baños de la Malahá (Ruiz y Rodríguez-Ariza 2002)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Baños de la Malahá (Ruiz y Rodríguez-Ariza 2002)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Valencia (Altermann) (Grau 1998a, 1998b)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Castell de Aubea (De Haro Pozo 2002a)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>La Rápita de Guardamar (Grau y De Haro Pozo 2004)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Castillo del Río (Grau y Simeón 1994)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Castell d’Ambra (De Haro Pozo 2002a)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>La Fonteta (Grau 2007)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Cerro del Villar (Roja /Torralba 1999)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Cerro de la Era (Iborra et al. 2003)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Alt de Benimaquia (Grau y Duque 2007)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Castellar de Librilla (Grau y Duque 2007)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Los Vilches (Grau et al. 2001)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Cabeza Eucero (Grau 1995)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Cerro de los Taxienes (Grau 2000b)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Cerro de la Era (Iborra et al. 2003)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Los Villares (Grau et al. 2001)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Cabezo Lucero (Grau 1993)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Corral de Xaus (Grau 2000b)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Coimbra de Barranco Ancho (Grau inédito, b)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Baños de la Malahá (Ruiz y Rodríguez-Ariza 2002)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Baños de la Malahá (Ruiz y Rodríguez-Ariza 2002)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Valencia (Altermann) (Grau 1998a, 1998b)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Castell de Aubea (De Haro Pozo 2002a)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>La Rápita de Guardamar (Grau y De Haro Pozo 2004)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Castillo del Río (Grau y Simeón 1994)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Castell d’Ambra (De Haro Pozo 2002a)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

Tabla 3.4. Aparición de los taxones identificados en este trabajo en otros análisis antracológicos de yacimientos desde la Protohistoria hasta época medieval en el cuadrante sureste peninsular.
<table>
<thead>
<tr>
<th>TAXA</th>
<th>PROTÓHISTORIA</th>
<th>ÉPOCA IBÉRICA</th>
<th>E. ROMANA</th>
<th>ÉPOCA MEDIEVAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pistacia lentiscus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf. Pistacia terebinthus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf. Nerium oleander</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Periplaca angustifolia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buxus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maytenus senegalensis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chenopodiaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cistaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf. Fumana sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artemisia sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf. Cruciferae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthusus unedo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erica sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Erica multiflora, E. arborea)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fagus sylvatica</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quercus ilex/cocifera</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Q. perenifolium)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labiatae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leguminosae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ficus carica</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraxinus sp. (F. oxyphylla...)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olea europaea</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf. Plantago sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Punica granatum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clematis sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rumex/Rhynchos sp. (y/o)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosaceae tipo Maloideae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Sorbus, Crataegus, etc)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prunus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prunus cf. amygdalus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Populus/Salix sp. (y/o)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lycium intricatum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf. Withania frutescens</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamarix sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daphne gnidium/Thymelaea hirsuta (y/o)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf. Ulmus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitis vinifera</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 3.4. Continuación.
Capítulo III. Paleoflora identificada

Rosmarinus officinalis y Rhamnus/Phillyrea sp. han sido identificados en 16 yacimientos del Sureste peninsular. El romero se presenta en nueve yacimientos de la Edad del Bronce: Abric de la Falguera, Cerro de la Virgen, Fuente Amarga, Terrera del Reloj, Castellón Alto, Terlinques, Fuente Álamo, Gatas y Castillejo de Gádor. Este taxón también aparece en el yacimiento protohistórico de l’Alt de Benimaquia, en los niveles ibéricos de Baños de la Malahá y Fuente Amarga, en Valentia y en los yacimientos medievales de Castillo del Río, Castillejo de Gádor y en yacimientos de la Ciudad de Granada. En lo que concierne a Rhamnus/Phillyrea sp., aparece mayoritariamente en yacimientos de la Edad del Bronce como Abric de la Falguera, Mola d’Agres, Motilla de Azuer, Peñalosa, Cerro de la Virgen, Castellón Alto, Terlinques, Cerro de las Viñas, Fuente Álamo y Gatas. También se ha documentado en los yacimientos protohistóricos del Cerro del Villar y Alt de Benimaquia, en Valentia y en los yacimientos medievales del Castell d’Ambra, Castillo del Río y Ciudad de Granada.

En 14 yacimientos han sido detectados dos taxones: Pinus nigra/sylvestris y Cistus sp. El primero de ellos ha aparecido en la Mola d’Agres, Fuente Amarga (en sus dos fases), Loma de la Balunca, Terrera del Reloj, Castellón Alto, el Castillejo de Gádor (en sus dos fases), Castellar de Librilla, Los Villares, Baños de la Malahá (en sus dos fases), Castell d’Ambra y Ciudad de Granada. Por otro lado, Cistus sp. ha aparecido en yacimientos de la Edad del Bronce como la Mola d’Agres, Motilla de Azuer, Peñalosa, Cerro de la Virgen, Terrera del Reloj, Castellón Alto y Fuente Álamo. Las jaras han sido documentadas como combustible también en los yacimientos protohistóricos de Cerro del Villar y Castellar de Librilla, en los yacimientos ibéricos de Los Villares, Baños de la Malahá y Fuente Amarga, y finalmente en los yacimientos medievales de Castillejo de Gádor y la Ciudad de Granada.

Arbutus unedo, Erica sp. y Rosaceae tipo Maloideae han sido identificados hasta en 13 ocasiones en yacimientos del cuadrante sureste peninsular. El madroño ha sido identificado en yacimientos de la Edad del Bronce como Muntanya Assolada, Abric de la Falguera, Mola d’Agres, Motilla de Azuer, Peñalosa, Terlinques y Fuente Álamo. También han aparecido restos de este taxón en Los Villares, Baños de la Malahá, Castell d’Ambra, la Rápita de Guardamar, Castillejo de Gádor y en los yacimientos medievales de la Ciudad de Granada. Por otro lado, los brezos han aparecido también como combustible en siete yacimientos de la Edad del Bronce, en concreto en Muntanya Assolada, Mola d’Agres, Terlinques, Rincón de Almendricos, Cerro de las Viñas, Fuente Álamo y Gatas. Por otro lado, Erica sp. ha sido documentado en el caso de La Fonteta y l’Alt de Benimaquia para etapas protohistóricas, en el yacimiento ibérico de los Villares, en Valentia, y finalmente en los yacimientos medievales de Castell d’Ambra y la Rápita de Guardamar. Finalmente, en lo que concierne a Rosaceae tipo Maloideae, ha podido ser documentado en cinco ocasiones en yacimientos de la Edad del Bronce (Muntanya Assolada, Abric de la Falguera, Mola d’Agres, Gatas y Castillejo de Gádor) y en ocho yacimientos de etapas posteriores (Cerro de la Era, Alt de
Benimaquia, Cabezo Lucero, Coimbra del Barranco Ancho, Valentia, Castell d’Ambra, Castillejo de Gádor y Ciudad de Granada).

Las monocotiledóneas han sido muy identificadas en el Sureste, muchas veces asociadas a un elevado estado de degradación y apertura del paisaje. El taxón Monocotyledoneae ha sido definido hasta en 12 ocasiones en yacimientos de la Edad del Bronce como la Motilla de Azuer, Castellón Alto, Terlinques, Fuente Álamo y Castillejo de Gádor, en yacimientos protohistóricos como l’Alt de Benimaquia y El Castellar de Librilla, en los niveles ibéricos de Fuente Amarga, en la Valentia romana y en época medieval en el Castell d’Ambra, la Rápita de Guardamar y el Castillejo de Gádor.

En un total de nueve yacimientos se ha producido la identificación genérica de Pinus sp. Se trata de Abric de la Falguera, Fuente Amarga, Terrera del Reloj, Loma de la Balunca, Castellón Alto y Gatas en el caso de los yacimientos de la Edad del Bronce, y de los Baños de la Malahá y Fuente Amarga en cronologías ibérica y romana.

La vid (Vitis vinifera) aparece fundamentalmente en yacimientos protohistóricos y de cronologías históricas como el Cerro de la Era, los niveles ibéricos de Fuente Amarga y los Baños de la Malahá, los niveles romanos de este último y de Valentia, y finalmente los yacimientos medievales situados en la Ciudad de Granada, junto con los niveles medievales del Castillejo de Gádor. No obstante, este taxón ha sido también detectado en la Edad del Bronce en el caso de Gatas.

Pinus pinea/pinaster ha sido detectado en siete estudios antracológicos del Sureste. Se trata de Terlinques y Fuente Álamo para la Edad del Bronce y La Fonteta, Alt de Benimaquia, Castellar de Librilla, Coimbra del Barranco Ancho y Castillo del Río para etapas posteriores.

El taxón Ephedra sp. se presenta en el Sureste en seis ocasiones. Aparece en el Cerro de la Virgen, Terrera del Reloj, Castellón Alto, Cerro de las Viñas y Fuente Álamo en la Edad del Bronce, y únicamente en los Baños de la Malahá en época romana.

Los taxones que se han presentado en cinco ocasiones son Ficus carica y Prunus sp. La higuera se detecta en el Sureste desde la Edad del Bronce, en Gatas, aunque aparece más profusamente a partir de cronologías posteriores en los niveles ibéricos de Fuente Amarga, Valentia, Castell d’Ambra y Ciudad de Granada. Prunus sp., por su parte, ha sido identificado como combustible en los yacimientos de la Edad del Bronce del Abric de la Falguera y Gatas, y posteriormente en l’Alt de Benimaquia, Los Villares y Corral de Xaus.
Capítulo III. Paleoflora identificada

En tres ocasiones aparece Chenopodiaceae, que se da en Fuente Álamo, La Fonteta y el Castillo de Gádor; y Labiatae, cuya presencia se ha detectado en Castellón Alto, Fuente Álamo y los niveles ibéricos de los Baños de la Malahá.

Los taxones que aparecen en dos ocasiones son cf. Nerium oleander, en Terrera del Reloj y los niveles medievales del Castillo de Gádor; Buxus sp., en Cabezo Lucero y el Castell d’Ambra; Atriplex halimus, en Castellón Alto y los niveles romanos de los Baños de la Malahá; y Cistaceae en los yacimientos de la Edad del Bronce de Abric de la Falguera y Fuente Álamo.

Algunos taxones sólo aparecen repetidos en una ocasión en otros estudios antracológicos del Sureste. Se trata de Chamaerops humilis, Fagus sylvatica y Punica granatum, que aparecen en el yacimiento medieval del Castell d’Ambra, y de Daphne gnidium/Thymelaea hirsuta, que apareció en Fuente Álamo.

CAPÍTULO IV: RESULTADOS ANTRACOLÓGICOS
IV.1. Resultados antracológicos de la Punta de los Gavilanes

IV.1.1. Presentación del yacimiento

IV.1.1.1. Cambios paisajísticos en el entorno de la Punta de los Gavilanes

La Punta de Los Gavilanes forma parte en la actualidad de la línea de costa del municipio de Mazarrón, localizándose más concretamente en su ensenada central, jalonada hoy día por diversos espolones rocosos, como el cabezo de los Aviones o del Faro y las puntas de La Cebada, Nares, El Castellar y la propia Punta de Los Gavilanes. No obstante, estudios preliminares realizados en la década de los 80 (Dabrio y Polo 1981) y, sobre todo, los últimos llevados a cabo en torno a la conformación de la paleocosta de esta ensenada, en el contexto del Proyecto de Investigación “Estudio integral del yacimiento de La Punta de Los Gavilanes del Puerto de Mazarrón (Murcia) y su entorno inmediato” (Ros Sala 2005a, 2005b, Ros Sala et al. 2008), ponen de manifiesto que la morfología inicial de la misma fue bien distinta y cambiante a lo largo del Holoceno. Estos últimos estudios referidos han tenido un carácter multidisciplinar, con una importante aportación de análisis geotectónicos, geomorfológicos e hidrológicos realizados sobre la antigua área lagunar, mediante la práctica de toda una serie de sondeos y su interpretación a la luz de una profunda revisión de la geomorfología afecta a los entornos continentales, acompañada de un novedoso estudio geológico y de la complementariedad del efecto de la dinámica litoral en la zona. A la par, el estudio polínico sobre el ámbito lagunar y los datos paleoecológicos realizados sobre materiales bióticos procedentes de la excavación del yacimiento de Punta de Los Gavilanes están permitiendo recrear el paleopaisaje natural holocénico inicial de este entorno y seguir su proceso de antropización dentro de un paisaje social sucesivamente diferenciado (Ros Sala et al. 2008).

Según dichos estudios, hacia el 6200 BP, con el máximo transgresivo flandriense, la línea de costa se encontraría más al interior, bordeando las estribaciones de la Loma de Sánchez y del Cabezo Blanco (Ros Sala 2005a, 2005b), de modo que los espolones rocosos hoy ligados a la línea de costa, entre ellos La Punta de Los Gavilanes, estarían constituidos como islotes aislados frente a esa playa interior holocénica (fig. 4.1).

A partir de dicho máximo se produce una continua progradación de la costa que, unida a determinados efectos eustáticos derivados de la formación de diferentes fallas inversas y de desgarre de orientación E-O y N-S en la zona y el aluvionamiento progresivo de la paleodesembocadura de la Rambla de Las Moreras, dio lugar a la configuración de una restinga, inicialmente no continua, que propició la formación de una zona lagunar diversificada y cambiante en el tiempo. Esta zona lagunar presentaba dos lagunas principales, una mayor en la zona oriental, abierta durante mas tiempo al dominio
marino, al menos por una gola mayor en el extremo más oriental de la línea de restinga, y otra menor, en la parte más occidental e interior, de sedimentación inicialmente marina a la que los aportes aluviales episódicos de la Rambla de Los Lorentes que desagua en ella, fueron colmatándola y conformándola en el tiempo como un marjal cerrado al aporte marino (Ros Sala et al. 2008).

Sobre la peculiar configuración de la restinga en la que se localiza el promontorio costero de La Punta de Los Gavilanes, con la formación de pequeñas ensenadas de playa y áreas dunares puntuales, influirán tres factores: los aportes sedimentarios de la Rambla de Las Moreras, la acción del oleaje sobre dichos aportes y, finalmente, la influencia de los vientos dominantes sobre esta última (Dabrio y Polo 1981). Hacia el máximo regresivo postflandriense (3500 – 3000 BP), parece que la barra litoral ya estaba unida en sus distintos tramos aunque no se puede considerar estable y, sobre todo, totalmente cerrada hasta época muy reciente con la explotación del área lagunar interior como salinas.

El uso de este lagoon interior se documenta a lo largo del II milenio a.C. pero sobre todo en el I milenio a.C., cuando la comunidad que en este momento ocupa la Loma de Sánchez y/o el grupo metalúrgico asentado en Punta de Los Gavilanes pudo utilizar el canal o gola de la laguna más oriental como medio de comunicación más directa entre
Recursos forestales en un medio semiárido.
Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

los asentamientos del área norte de la zona lagunar y las puntas ya plenamente consolidadas de la línea de costa que cerraba ésta. Dentro de este paisaje y según la información disponible desde el estudio de los restos bióticos del asentamiento, las zonas lagunares se utilizarían como reservorios de pesca, avifauna y de aprovechamiento ganadero, en cualquiera de los casos en un ámbito subsistencial, mientras que las menos inundadas se utilizarían siempre para cultivo, sobre todo en el caso del piedemonte de la Sierra de las Moreras cuya edáfica la señala como lugar más propicio para ello. Lógicamente, el aprovechamiento del dominio marino de costa – marisqueo y pesca- y abierto –pesca- fue el recurso en explotación dominante para los grupos que ocuparon el promontorio durante toda la Edad del Bronce, situación que se reprodujo también en el I milenio a.C., aunque ya dentro de una gestión productiva del medio más diversificada en el que las actividades comerciales y, sobre todo, la explotación extractiva y transformativa de los minerales argentíferos del inmediato polígono minero de Mazarrón se convirtieron en objetivos prioritarios de unos grupos política y socialmente más complejos y, sobre todo, interactuantes ya no como comunidad individual sino como grupo territorialmente diferenciado según se desprende de la diferente vertebración del territorio productivo y político que se detecta en este I milenio a.C. (Ros Sala 2005a).

Figura 4.2. Zona de saladar en el antiguo lagoon interior (Foto: M. S. García).

Posteriormente, convertida ya la zona en sector inundable, su uso como salinas se desarrolla desde el siglo XV hasta mediados del siglo XX, momento en que se inicia el proceso de urbanización no totalmente completado en la actualidad por lo que, todavía en el sector más occidental, permanece una zona de saladar (fig. 4.2) que durante otoño
e invierno se sigue inundando temporalmente (Ros Sala 1993, 2005a, Lillo Carpio 1987).

IV.1.1.2. Otros yacimientos en el entorno de Mazarrón

Punta de Gavilanes no se desarrolla en el ámbito costero de Mazarrón de una forma aislada o excepcional, sino que toda la zona ha sido objeto de gran interés dadas las sucesivas ocupaciones documentadas desde el Paleolítico.

El primer asentamiento destacable se produce durante el Paleolítico Superior en la Cueva del Algarrobo (Martínez Andreu 1989, 2003). En esta cueva se han llevado a cabo análisis polínicos en los que la dominancia de *Asteroideae, Chenopodiaceae* y *Artemisia* arrojan conclusiones que apuntan a una vegetación Tardiglaciar muy semejante a la actual (Munuera y Carrión 1991, Carrión et al. 1995).

Ya a fines del IV o inicios del III milenio a.C., en el cercano promontorio del Cabezo del Plomo, se ubicó un asentamiento fortificado de carácter estable, aunque al parecer de corta duración, con una necrópolis asociada en su ladera sur (Muñoz Amilibia y Martínez Sánchez 2004). El patrón económico de esta comunidad debió de ser agroganadero, con dedicación al pastoreo de ovicápridos, de una parte, y a la agricultura cerealística de otra, con la explotación añadida de una costa entonces mas próxima (Ros Sala 2005a). Posteriormente, a fines del III milenio a.C. se inicia la ocupación del promontorio de La Punta de Los Gavilanes dentro de un contexto temporal y normativo argárico, que continuará habitado durante buena parte del II milenio a.C. y, posteriormente, desde el s. VII a.C. hasta el s. I a.C., inserto en la dinámica de la colonización y comercio de fenicios y púnicos en esta zona de la Península Ibérica.

Muy cerca de La Punta de Los Gavilanes, en la playa de La Isla, se localiza el pecio fenicio Mazarrón-1 y -2, datado a finales del siglo VII o inicios del VI a.C. (Barba Frutos et al. 1999), cuyos restos materiales permiten hablar para toda esta zona de una actividad económica protohistórica que parece tener relación con la metalúrgica y comercial llevada a cabo en Gavilanes a lo largo del I milenio a.C (Ros Sala 2005a, Negueruela et al. 2000).

Por otra parte, en la cercana Loma de Sánchez y el paraje asociado de Susaña se desarrolló en los siglos V y IV a.C. una actividad metalúrgica (Correa Cifuentes 2004) en cuyo proceso productivo Punta de Gavilanes pudo estar implicada directamente. La presencia de restos metalúrgicos en la citada Loma y el hecho de que se conozca a esta área como “Los Ceniceros”, debido a la gran cantidad de escorias metalúrgicas que han aparecido, revela la importancia de esta actividad económica en la zona ya en cronologías prerromanas (Ros Sala 2005a).

Ya avanzado el siglo II a.C. la relevancia de los restos metalúrgicos en las Lomas de Las Herrerías y en el contiguo paraje de Susaña indican que esta actividad debió de
incrementarse, relacionándose con otros centros mineros del Sureste como *Carthago Nova* o la sierra almeriense de Herrerías, donde han aparecido estructuras de carácter industrial asociadas a esta actividad y *villae* destinadas a la transformación de galena. Esta relación se ha documentado por la aparición en el paraje de Susaña de plomos monetiformes emitidos por la ceca de Gador (García Bellido 2001, en Ros Sala 2005b) que parecen hablar de una relación económica entre ambos lugares que pudo estar basada en la fundición de mineral de Herrerías en Mazarrón, debido probablemente al mayor contenido en plomo del mineral primario en este último lugar que generaba mejores resultados en la extracción de la plata por copelación.

Finalmente, es reseñable el núcleo poblacional de carácter portuario que desde el siglo I al V d.C. se enclava en el piedemonte del Cabezo del Faro, dedicándose a las pesquerías y la industria de salazón (Ramallo Asensio 1981).

IV.1.1.3. Secuencia deposicional de La Punta de los Gavilanes

Los datos hasta ahora expuestos permiten ver el interés que, desde el punto de vista de la investigación de los procesos asociados a la configuración de las comunidades del Bronce y del Hierro en el Sureste, concitaba el estudio de este yacimiento sobre el promontorio de La Punta de Los Gavilanes que ya había sido objeto de una intervención arqueológica de urgencia en 1986 por parte de M.M. Ros Sala como Directora en aquellos años de las Excavaciones de Urgencia de la Región de Murcia bajo la tutela del Ministerio de Cultura.

Unos años después de la intervención de urgencia, el equipo que había llevado a cabo la misma planteó y planificó llevar a cabo la intervención sistemática del yacimiento ya integrada dentro de un proyecto de investigación interdisciplinar que tenía como objetivo global el estudio del promontorio, entonces sólo preliminarmente conocido, a la par que una actuación multidisciplinar sobre el paleopaisaje que marcó el/los entornos del asentamiento a lo largo de las diferentes ocupaciones en el tiempo sólo detectadas en el estudio asociado a la intervención de urgencia de 1986 (Ros Sala y López Precioso 1989, Ros Sala 1993). Ya dentro de dicho proyecto se llevó a cabo la prospección de la zona de la desembocadura de la Rambla de Las Moreras y del tramo de costa entre el Cabezo del Faro y Puntas de Calnegre (Correa Cifuentes 2004), lo que permitió confirmar los datos conocidos para el entorno cercano a La Punta de los Gavilanes, y ampliar la naturaleza de las ocupaciones de determinados enclaves costeros del sector meridional de la Bahía de Mazarrón en clara conexión cronológica y cultural con la ocupación de Los Gavilanes en el I milenio a.C.

En el marco de dicho proyecto se han llevado a cabo intervenciones ordinarias en Punta de Los Gavilanes desde 1998 hasta 2004 y en 2007, y sus resultados han permitido
establecer una seriación en el yacimiento que revela cuatro fases claramente diferenciadas cuyas características se sintetizan a continuación.

- Gavilanes IV: Asentamiento del Bronce Argárico orientado a la explotación de recursos marinos

La primera ocupación de la Punta de los Gavilanes atiende a la denominación estratigráfico-cronológica de Gavilanes-IV (Fase GV-IV), asociándose cronológica y culturalmente al denominado genéricamente como Bronce Argárico del Sureste, con las siguientes dataciones radiocarbónicas de referencia para sus momentos iniciales: 3730±30 BP (KIA-32355), 3660±30 BP (KIA-336021), 3645±35 BP (KIA-37601), todas ellas sobre muestras de vida larga, y 3625±35 BP (KIA-37593) sobre muestra de vida corta.

Esta primera ocupación se desarrolla a lo largo de cuatro Horizontes de uso conservados (IVa, IVb, IVc y IVd) asociados a dos Horizontes constructivos (IVa-c y IVd) cuyos intervalos cronológicos vienen marcados por las siguientes dataciones 14C calibradas: 3730±30 BP (KIA-32355)- 3380±25 BP (KIA-32365) para el Horizonte constructivo IV a-c, y 3380±25 BP (KIA-32365)- 3300±35 BP (KIA-37604) para el Horizonte constructivo IVd.

En cuanto al origen de su población y en función de los datos actuales caben dos posibilidades; de una parte, una ocupación aleatoria y, quizás, temporal sobre una línea de costa virgen recién emergida que quedaría explica por los datos de la inicial ocupación previa a su urbanización ya estable; de otra, un asentamiento relativa y/o estacionalmente estable dirigido desde un núcleo poblacional central y mayor situado en la zona más interior de la Rambla de las Moreras, que en este caso debió ser el Cerro de La Pariera-Cuesta de la Dura con el objetivo de un más efectivo aprovechamiento de los recursos marinos de la zona, léase pesquerías y marisqueo, alentados en su permanencia por el amplio abanico de recursos naturales que ofrecía el entorno lagunar del promontorio (Ros Sala 2005a, 2005b, Ros Sala et al. 2008).

Las actividades pesqueras, de hecho, son las mejor documentadas en el yacimiento en este periodo, ya que se han hallado restos que indican que en este punto se desarrollaron actividades de toda la cadena productiva. Por un lado, se ha documentado la presencia de redes de pesca, elaboradas en esparto y con ictiofauna asociada. Por otro lado, han aparecido algunas estructuras que se interpretan como relacionadas con el procesado del pescado para su consumo y conservación, bien mediante un sistema de secado, o bien por ahumado, o probablemente ambos a la vez. No obstante, también existen indicios en el yacimiento de la práctica de otras actividades subsistenciales como la ganadería (cabras, ovejas, suidos y bóvidos) y sus derivados (queserías, curtidos, textiles, abonos, etc), y el cultivo de cereales, cuyas limitaciones debieron ser grandes en este último caso, atendiendo a las características edáficas de la zona, mientras que para el
Capítulo IV. Resultados antracológicos

mantenimiento ganadero el marco era más propicio. De la laguna interior y del agua marina pudieron obtener sal (Ros Sala 2005a) y también hicieron uso de los recursos vegetales del entorno para completar su alimentación, como combustible y para la construcción de los espacios documentados en el promontorio (Ros Sala 2005a, 2005b, Ros Sala et al. 2008).

El grupo que ocupó Punta de Los Gavilanes en esta primera fase fue relativamente pequeño aunque probablemente con vocación de permanencia en el enclave, hecho que se refleja en una concepción urbanística bien estructurada, utilizando la totalidad del espacio disponible, y en un patrón constructivo concebido para resistir en el tiempo, con amplias y normativas superficies domésticas insertas en la esfera arquitectónica argárica, y espacios productivos significativos dentro del medio ocupado que indican un ya importante determinismo económico del asentamiento durante este período del Bronce (Ros Sala 2005b, Ros Sala et al. 2008).

Al menos a partir de su pronta urbanización, las casas son de planta rectangular adaptada al perfil de las cuarcitas de base, con el extremo menor oriental de forma absidal, distribuyéndose en terrazas inicialmente adaptadas a la conformación basal del sustrato geológico del promontorio y, posteriormente, ampliadas de forma artificial en una compleja secuencia de reocupaciones de estructuras originales y de reacondicionamientos, en su caso, de estructuras previas a las que, en parte, se asocian destrucciones de estructuras previas. Los alzados están realizados con zócalos de piedra mediana/grande y paredes de tapial y/o adobe, revocados con un enlucido amarillento obtenido de la trituración de las cuarcitas de base del promontorio, con la que también se realizaron los pavimentos interiores. Las techumbres, sostenidas por postes de madera, eran a doble vertiente, y acabadas con ramaje emplastado con barro y parcialmente cubierto con lajas de esquisto como posible contrapeso y, quizás, impermeabilizante de la vivienda. La concreta ubicación de los postes de sustentación de las cuatro edificaciones excavadas han permitido la modulación de viviendas y edificaciones productivas (Ros Sala, en prensa). Grandes hogares, y otros elementos muebles como alacenas, estructuras de almacenamiento configuran el mobiliario interior de estas viviendas. El registro material asociado está compuesto fundamentalmente por un ajuar doméstico argárico de cocina y de mesa, que refuerza el carácter residencial/doméstico que tuvo en este momento Punta de Los Gavilanes, y que contrasta con la actividad específicamente industrial que en él se ejerció en las fases subsiguientes. No obstante, el determinismo productivo que implican hallazgos como el amplio “hogar-ahumadero” de la vivienda prehistórica 1TS o la edificación 2TSM parecen indicar que la ocupación del Bronce tuvo en determinados horizontes cronológicos, y muy específicamente durante el desarrollo del Horizonte de uso IVc, un claro determinismo sobre la explotación del medio marino con objetivos más amplios que la simple subsistencia del grupo ocupante.
Recursos forestales en un medio semiárido.
Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

Figura 4.4. Planimetría de la Fase IV con superposición estructural de la instalación metalúrgica Gavilanes II.
- Gavilanes III: Ocupación Protohistórica (fines del s. VIII-VI a.C.), de función comercial y metalúrgica

De esta fase se han conservado apenas algunos restos estructurales, debido a que la construcción de la factoría metalúrgica que ocupó todo el promontorio en la etapa siguiente (siglos IV-III a.C. Gavilanes -II) los arrasó casi en su totalidad.

No obstante, sabemos que se trató de una ocupación de carácter estable desarrollada al menos durante los siglos VII y VI a.C., y probablemente antes, de raíz fenicia occidental y orientada principalmente a actividades comerciales y, por primera vez, a la explotación de los recursos argentíferos del inmediato polígono minero de Mazarrón (Ros Sala 2005b).

El carácter fenicio de esta ocupación queda también evidenciado en el patrón constructivo del asentamiento, que presenta una sustitución de la piedra dominante en la época anterior por adobes rojizos, dentro de la norma de otros asentamientos fenicios occidentales (Ros Sala 2005a). Dentro de dicho patrón se han detectado restos de tres horizontes constructivos, IIIa, IIIb y IIIc, relativamente bien secuenciados, pero en los que la parcialidad de los espacios conservados ha inducido a sus excavadores la correspondiente identificación como Ambientes constructivos al desconocerse en determinados casos su pertenencia a espacios residenciales o industriales.

El primero de los Horizontes constructivos viene definido por el Ambiente 1686/1702, localizado en el sector más oriental del yacimiento, y su inicio estratigráfico viene definido por una interfaz de arrasamiento sobre todos los niveles de la Fase IV hasta el nivel geológico e incluso sobre los restos del Bronce Tardío y Final. Este último periodo es, precisamente y hasta el momento, el peor documentado en el yacimiento al ser una de las fases sobre la que las intrusiones de las ocupaciones del I milenio actuaron de forma más intensa, hasta el punto que las dataciones 14C calibradas sobre muestras de carbón y semillas del depósito residual de este período, bajo el nivel inicial de la Fase III, se mueven entre 3155±25 BP (KIA-32364) -propia de un Bronce Tardío y ubicada sobre el geológico y, sin solución de continuidad, bajo el nivel de uso del Ambiente 1686/1702 y 2380±85 BP (KIA-32359) para el final del Horizonte constructivo IIIc y, por ende, de la Fase Gavilanes-III; en este caso la datación se asocia a semillas del interior de la estructura de combustión de función metalúrgica 11TS ubicada dentro del Departamento industrial 7TS (Ros Sala, en prensa).

El subsecuente Horizonte constructivo IIIb, de cronología centrada en el s. VII a.C. viene definido por el Ambiente 1584/1618, el Ambiente de reutilización 1639/1588 y el Ambiente 1700/1697 junto con el nivel de estructuras negativas que, a modo de fosas-vertedero, se introducen en la deposición sedimentaria residual de la fase
prehistórica previa de Gavilanes IV y se asocian estratigráficamente a los Ambientes indicados.

Finalmente, el Horizonte constructivo IIIc, tal y como hemos adelantado anteriormente viene configurado por los restos muy parciales del Departamento 7TS que alojaba la estructura metalúrgica 11TS cuyo funcionamiento cesa c. 575 cal BC según el valor central del intervalo 800BC (90,7%)-350 BC a 2σ (95,4% de probabilidad) de la muestra de vida corta KIA-32359 obtenida sobre los restos del horno metalúrgico 11TS (Ros Sala, en prensa).

- Gavilanes II: Factoría metalúrgica destinada a la obtención de plata (ss. IV-III a.C.)

En la primera mitad del siglo IV a.C. se produce una nueva ocupación de la Punta de Los Gavilanes cuya construcción supone el arrasamiento de gran parte de las estructuras de las etapas anteriores, fundamentalmente aquellas que, en buena medida, estarían entonces visibles de la Fase Gavilanes III. En efecto, la envergadura y probablemente la estrategia y voluntad de permanencia de los constructores de la nueva edificación, implicó el arrasamiento de la práctica totalidad de la terraza media del promontorio hasta conservarse sólo los Horizontes mas iniciales de la Fase prehistórica Gavilanes IV en este sector, así como la deposición estratigráfica del nivel de Bronce Tardío y la mayor parte de la subsecuente Fase III que, como se acaba de indicar, configura la ocupación protohistórica del lugar. De igual forma, se procedió con las estructuras hasta entonces conservadas sobre la terraza superior.

Durante esta fase el promontorio estuvo dedicado a la actividad metalúrgica con el objetivo de beneficiar plata desde el óxido de plomo metálico obtenido, a su vez, en otro lugar del entorno próximo; esta labor se llevó a cabo en una nueva y amplia edificación cuyo desarrollo en el tiempo –ss. IV-III a.C.- se hace a lo largo de tres horizontes constructivos diferentes. Un primer horizonte identificado como Gavilanes IIa, con un entramado constructivo conservado de orientación este-oeste, presenta una estructuración alargada, con una estancia estrecha y alargada, a la que se adosa otra por su flanco norte en donde se ubicó, parece, la hasta ahora estructura metalúrgica más antigua de la factoría, el horno 4TM, al que, por el momento y en tanto no finalicen los análisis a los que todo el material metárgico muestreado están siendo sometidos por parte del equipo de S. Rovira, no se puede adscribir una función netamente clara dentro del proceso metalúrgico efectuado en el promontorio. No obstante, la propuesta de los excavadores, atendiendo al papel que asumió el posterior horno 5TS que lo sustituye ahora ya en la terraza superior, es que esta estructura de combustión estuviera destinada a la fusión del litargirio o de las copelas residuales de los otros hornos para su ulterior uso en nuevas operaciones metalúrgicas de refino de la plata.
El segundo horizonte, Gavilanes IIb, supone el probable desmantelamiento de gran parte de las estructuras de la fase anterior, excepto la 4TM, y el levantamiento de tres nuevas unidades constructivas que presentan el ordenamiento conservado hasta el momento de su excavación, con una orientación sur-norte, tal y como se describe más adelante. Durante esta etapa, de las dependencias metalúrgicas anteriores parece, pues, que sólo se conservó la habitación destinada a albergar la estructura de fusión 4TM que debió de seguir siendo utilizada para la función a la que estaría destinada.

Durante el tercer horizonte identificado como Gavilanes IIc y desarrollado desde mediados del siglo III a.C. hasta el final de dicha centuria cuando la factoría es abandonada coincidiendo con la toma de Kart-Hadast por los romanos, se produce la amortización de la dependencia que albergaba el horno 4TM y la construcción sobre ella de una nueva dependencia cuyo nivel de arrasamiento impide conocer su función precisa en el nuevo momento constructivo. Coincidiendo con esta remodelación, y probablemente en sustitución del horno 4TM, se pone en funcionamiento el horno 5TS dentro de los muros de una ampliación de la factoría sobre la terraza superior del promontorio, orientada al sur y adosada probablemente al edificio originario que alberga los hornos 1TM a 4TM (Ros Sala 2005b).

Esta fase, junto con la IV del Bronce Argárico, son las que mayor incidencia y más larga presencia tuvieron entre las ocupaciones del promontorio costero de la Punta de Los Gavilanes. En el caso concreto de la fase Gavilanes II el valor de su estrategia económica pudo tener que ver con el contexto internacional del momento, marcado por una retracción de las relaciones comerciales que hasta ese momento se estaban llevando a cabo entre Atenas y el suroeste de la Península Ibérica, centralizadas en la minería extractiva y transformativa onubense, sobre la base del metal argentífero y los salazones. Este cambio en las relaciones económicas parece que benefició claramente al Sureste peninsular y que Punta de los Gavilanes fue uno de los centros implicados en esta nueva mayor actividad de la Iberia mediterránea en sus relaciones con las sociedades coetáneas del Mediterráneo Occidental.

Finalmente, como acabamos de indicar, el abandono definitivo de la factoría se produce hacia el último cuarto del siglo III a.C., precipitado probablemente por los acontecimientos derivados de la toma de Kart-Hadast (Ros Sala 2005b). El contexto material asociado a este proceso es semejante al de la destrucción de algunos puntos urbanos de *Carthago Nova* en momentos anteriores a su toma por Scipión, con cerámicas que permiten datarlo en el último cuarto del siglo III a.C., como ánforas del tipo Mañá-Pascual A4 evolucionadas y Campanienses A de la segunda mitad del siglo III a.C. (Ros Sala 2005a).

La importancia que tuvo la metalurgia en la Fase II de Punta de Gavilanes queda reflejada en el gran complejo constructivo asociado a la misma, cuya funcionalidad fue
la copelación de plomo metálico para la obtención de plata, formando parte de un proceso productivo más amplio que no se desarrolló íntegramente en el promontorio, sino también en núcleos interiores de la sierra minera de Mazarrón (Ros Sala et al. 2003).

El edificio de la fundición parte de un muro común situado al sur, en la línea de ruptura entre las terrazas superior y media, y se estructura en cuatro/tres –según el Horizonte constructivo del que hablemos- unidades productivas, formadas cada una de ellas por dos ambientes de funcionalidad diferente dentro de la unidad constructiva global de la factoría. El patrón constructivo se repite así en cada unidad con la siguiente distribución-función: al sur y siempre con mayor tamaño la/s estancia/s de carácter residencial, y en el flanco septentrional una dependencia más pequeña y abierta a un espacio común corrido y exterior que ponía en comunicación estas tres/cuatro dependencias pequeñas septentrionales en las que se alojaban los restos de sendas estructuras metalúrgicas. Junto a estas tres unidades constructivas, también tuvo uso una estancia inicialmente más antigua, situada en el extremo occidental, en la que se ha documentado el horno 4TM, y otra muy reducida que se encuentra en el lado oriental como un anexo de la Unidad I (Ros Sala 2005b).

El acceso al interior de las dependencias que acogían los hornos consistían en un escalón de piedra careada y puerta a doble vátive; interiormente los espacios estaban bien comunicados mediante puertas de madera de un solo batiente situadas entre las dependencias residenciales meridionales y las industriales septentrionales.

Desde el punto de vista constructivo, la factoría se realiza con muros de piedra mediana trabados con barro. Las dependencias meridionales conservan los alzados de adobe, que, junto con postes de madera que han dejado sus improntas en el pavimento, sujetaron la techumbre del edificio, a una sola vertiente y compuesta por troncos y ramaje emplastado afianzado por placas de esquisto para su impermeabilización. Como acabamos de indicar, las estancias septentrionales estuvieron destinadas a la actividad metalúrgica propiamente dicha, por lo que su estructura varía ligeramente de la descrita para las meridionales. En este caso, las paredes laterales son más bajas para propiciar la aireación necesaria para un buen funcionamiento de los hornos y una práctica menos tóxica de la actividad, mientras que el muro septentrional de cierre presentaba un importante rebaje que permitía no solo la aireación directa de los hornos que se hallaban en el interior de las dependencias instalados contra dichos muros, sino también la extracción del litargirio sobrante en el proceso de “desplatación” del óxido de plomo metálico introducido al inicio del proceso. La techumbre de esta dependencia, por su parte, era parecida a la anterior, aunque exenta para permitir la total ventilación del espacio (Ros Sala 2005a, 2005b). Se trata, pues, de un total de 4 hornos que repartían su funcionalidad entre la copelación propiamente dicha y la fusión de litargirio excedente.
Capítulo IV. Resultados antracológicos

Los hornos 1TM y 3TM (fig. 4.5) aparecen adosados a los muros norte y este de sus respectivas dependencias (el Departamento 4TM y el Departamento 6TM), mientras, el horno 2TM no sigue este mismo esquema hallándose adosado al muro septentrional del Departamento 1TM, dentro de la Unidad productiva 2, y no en una de sus esquinas, sino en la parte central, inmediato a la puerta de acceso.

En cualquier caso y como acabamos de indicar, todos ellos están en contacto directo con el muro septentrional rebajado que permitía la aireación de las habitaciones y que, al tiempo, contenía un rebanco exterior con una doble funcionalidad: por un lado recogía en una serie de recipientes el litargirio flotante resultado del proceso de copelación, y por otro servía para la alimentación de las copelas con óxido de plomo metálico y carbón vegetal.

La funcionalidad de estos tres hornos sería la copelación propiamente dicha, por la cual, tal y como se documenta en las minas atenienses de los siglos IV y III a.C. de Laurion y Thoricos (Conophagos 1980, 1989), se buscaba la obtención de la plata mediante el enriquecimiento del plomo metálico a través del aporte continuo de esta misma aleación desarrollado en fases progresivas. Los estudios llevados a cabo han mostrado sólo trazas de plata en las copelas, con lo cual, parece que a pesar de que la producción no fue de gran envergadura espacial, sí debió de tener una rentabilidad suficiente para su explotación y comercialización (Ros Sala et al. 2003).

Para los hornos restantes, el 4TM y 5TM se ha propuesto, como hemos adelantado, una función distinta, la concentración y fusión de las placas de litargirio flotante resultante de los otros hornos tras el proceso de copelación, dado que este residuo de la copelación es prácticamente plomo, casi al 99%, por lo que su obtención lo trasformaba en un metal rentable comercialmente ya entonces aunque de valor menor que la plata (Ros Sala et al. 2003).
El horno 4TM es de planta cuadrangular, con una gran laja de piedra rodeada de cuatro muros de piedra formando su solero; en el momento de su excavación conservaba la última carga de combustible usada, compuesta por troncos mezclados con haces de esparto y cestería. Se recuperaron también restos estructurales como las paredes del horno, que aparecieron caídas encima de la carga de combustible, y los restos de un canal destinado a la aireación o a la salida del metal fundido (Ros Sala 2005a).

El horno 5TS, por su parte, debió de sustituir en la fase Gavilanes IIc al horno 4TM, amortizado por la construcción de la Unidad 8TM. Se trata de un horno de cuba excavado hasta la roca de base, en donde estaba ubicado su solero inicial, arrasando así los niveles deposicionales previos de las fases Gavilanes-IV y Gavilanes-III. Este cuenco o solero tenía forma oval y desde él se fue recreciendo periódicamente las paredes de la cuba a lo largo de su actividad. El horno posee en su parte baja y en la pared occidental dos aperturas destinadas probablemente a su aireación mediante fuelles externos. Un tercer orificio de mayores dimensiones y ubicado a nivel de la solera ejerció la probable función de tobera de sangrado de la escoria residual (Ros Sala et al. 2003).

A tenor de todos los datos indicados, parece que se puede hablar para Punta de Los Gavilanes de una actividad productiva metalúrgica asociada al proceso de obtención de plata, cuya primera fase se realizaría en otro lugar, tal y como demuestran las analíticas sobre restos de copelas, que muestran ausencia de minerales primarios así como de restos de la fase metálica de oxidación del plomo, la primera en el proceso antes de la copelación propiamente dicha (Ros Sala et al. 2003).

El proceso propuesto, por tanto, comenzaría con la extracción del mineral en el coto minero de Mazarrón, para pasar luego al paraje ya descrito de “Los Ceniceros” (Loma de Sánchez-Susaña) en donde se llevarían a cabo las labores de tostación y fusión. La conexión entre esta zona y Punta de Los Gavilanes se haría mediante barcazas de poco calado, transportando el mineral, ya fundido y trasformado en óxido de plomo metálico, a través del lagoon interior navegable. Gavilanes se situaría, por tanto, en el final de la cadena operativa, efectuando la copelación y fusión del plomo argentífero para la obtención de plata (Ros Sala 2005b, Ros Sala et al. 2003).

- **Gavilanes I: Etapa de decadencia y abandono (s. I a.C.)**

Tras una fase de expolio de restos metálicos anteriores, y de la utilización del promontorio como lugar de entierro ocasional, hacia la segunda mitad del siglo II a.C. se vuelve a ocupar durante apenas un siglo y en él se desarrollan actividades variadas. En un principio estas actividades fueron tanto metalúrgicas -aunque con mucha menos profusión que siglos atrás- como comerciales, aprovechando la situación privilegiada del espolón. A este período identificado estratigráficamente como Gavilanes Ia obedece
la actividad de las estructuras metalúrgicas 7TS y 8TS, cuyos restos se alojaban en Dpt.4TS, y la estructura 6TS cuyos restos se identificaron en el Dpt. 1TS. Finalmente se abandonó la producción metalúrgica y Punta de Los Gavilanes estuvo plenamente dedicada al intercambio comercial marítimo hasta su abandono definitivo a finales del siglo I a.C.

IV.1.2. El estudio antracológico de La Punta de los Gavilanes

IV.1.2.1. Las muestras antracológicas

Las muestras antracológicas estudiadas en el caso de la Punta de los Gavilanes fueron recuperadas desde la campaña de excavaciones de 1998 hasta la de 2007. El planteamiento metodológico de recuperación del carbón no fue sistemático durante los primeros años de excavación, ya que se basó en la recuperación manual de aquellos fragmentos de gran tamaño, o bien de las acumulaciones carbonosas que se detectaron durante el proceso de excavación. Posteriormente, en las campañas de 2003 y 2004 se flotó parcialmente el sedimento recuperado. Sin embargo, tras nuestra incorporación al proyecto de investigación en 2005, establecimos un muestreo sistemático basado en la recuperación de entre veinte y cincuenta litros de sedimento de las diferentes unidades muestreadas, incrementando esta cantidad en el caso de las unidades estratigráficas con mayor contenido en materia orgánica y de las estructuras de combustión.

En esta última etapa el tratamiento del sedimento recuperado se realizó siempre mediante flotación con máquina, gracias a una instalación realizada junto al propio yacimiento, en la que pudimos procesar las muestras al tiempo que iban siendo recuperadas.

Resultaría demasiado prolijo y nada útil realizar en este punto una descripción de las unidades estratigráficas analizadas, debido a que hemos estudiado el contenido carbonoso de entorno a 200 unidades estratigráficas diferenciadas, con lo que resulta más funcional la progresiva descripción de las mismas al tiempo que se exponen los resultados antracológicos de la fase ocupacional a la que están adscritas.

En lo que concierne al número de fragmentos analizados por cada muestra antracológica, se tuvo en cuenta la mayor o menor riqueza taxonómica que presentaron durante su análisis. Por tanto, el contenido de las muestras con una gran escasez de carbones fue estudiado en su práctica totalidad, mientras que las que presentaban una gran abundancia fueron estudiadas parcialmente teniendo en cuenta la progresiva disminución de nuevos taxones. A continuación se exponen las curvas taxonómicas y de porcentajes de algunas de las unidades estratigráficas con mayor presencia antracológica.
La UE 1303 (GV-IV a/b TM) presentó una gran variabilidad taxonómica, por lo que fueron estudiados gran cantidad de carbones, hasta 289 fragmentos. Entre ellos se identificaron un total de 20 taxones distintos, incluyendo los fragmentos indeterminados e indeterminables. Todos estos taxones aparecieron escalonadamente hasta el final del estudio de la unidad. La curva taxonómica (fig. 4.6) muestra un rápido crecimiento del número de taxones identificados hasta el fragmento número 70, que permitió la identificación de 12 taxones distintos. Fue necesario, sin embargo, incrementar el número de fragmentos analizados en 229 fragmentos más para identificar los 8 taxones restantes. Los elementos más ampliamente representados, *Pistacia lentiscus* y *Olea europaea* aparecieron entre los primeros fragmentos estudiados, mientras que por el contrario, los porcentajes de los últimos fragmentos analizados son prácticamente irrelevantes en el total del cortejo antracológico, y no introducen importantes variaciones en la interpretación paleoecológica de la muestra.

![Gráfico 4.6. Relación entre el número de taxones y número de fragmentos de la UE 1303 (GV-IV).](image)

La curva de porcentajes en el caso de esta unidad estratigráfica (fig. 4.7) ha sido elaborada a partir de los dos taxones más representados, *Pistacia lentiscus* (39,45%) y *Olea europaea* (19,38%). Ambas curvas presentan una fuerte inestabilidad inicial, describiendo una tendencia inversa hasta que se produce su estabilización. *Olea europaea* experimenta un fuerte descenso porcentual a partir de los primeros 25 fragmentos estudiados, que no se frena hasta el estudio de 150 fragmentos, a partir de los cuales su curva se estabiliza en el entorno del 20% del total, que conservará hasta el
final del estudio. Al contrario, *Pistacia lentiscus* describe un crecimiento porcentual constante, que comienza a adquirir cierta estabilidad a partir del estudio de 125 fragmentos, situándose en el entorno del 40% con el análisis de 200 fragmentos, y manteniéndose constante hasta el final del estudio.

Para la UE 1724 (GV-IVc TS) fueron estudiados un total de 200 fragmentos de carbón, que ofrecieron un listado taxonómico compuesto por 18 elementos. En esta ocasión la curva taxonómica (fig. 4.8) se muestra mucho más escalonada que en el caso anterior, de manera que se produce un gran salto desde la identificación de Indeterminable en el fragmento 26 hasta la aparición de *Periploca angustifolia* tras el estudio de 72 fragmentos. Sin embargo, a partir de este último taxón empiezan a aparecer de nuevo una gran cantidad de elementos de manera continuada, y sin grandes distancias entre sí. El 80% del cortejo taxonómico fue obtenido a partir del estudio de 113 fragmentos, mientras que los 87 restantes ofrecieron únicamente 4 elementos nuevos, un 20% del total. En este caso el orden de aparición de los tres primeros taxones identificados, *Pistacia lentiscus*, Labiatae y *Olea europaea*, se corresponde con la importancia presencial de los mismos en el total del contenido de la unidad.

La curva de porcentajes de los dos principales taxones de esta unidad estratigráfica, *Pistacia lentiscus* y Labiatae (fig. 4.9), muestra un trazado semejante en ambos casos, que no llega en ningún momento a presentar una estabilización. Los dos taxones presentan un ascenso porcentual durante los primeros 75 fragmentos estudiados, a partir de los cuales comienzan a descender progresivamente, sin que en ningún momento se produzca ya un ascenso hasta el final del estudio de la unidad. No obstante, el descenso más moderado se registra en ambos casos en los últimos 50 fragmentos.
Otra de las unidades estratigráficas pertenecientes a la fase Gavilanes IV con más presencia de carbón fue la UE 2005 (Fase IVa/b TM). En este caso fueron estudiados 240 fragmentos de carbón, que proporcionaron un cortejo compuesto por 22 elementos diferenciados. La curva taxonómica (fig. 4.10) muestra en primer lugar que durante todo
el proceso de estudio no dejaron de aparecer nuevos taxones, si bien cada vez con menor frecuencia. Para obtener el 80% del cortejo (17 taxones) fue necesario estudiar 144 fragmentos.

![Figura 4.10. Relación entre el número de taxones y número de fragmentos de la UE 2005 (GV-IV).](image)

La curva de porcentajes de los dos taxones más importantes, *Pistacia lentiscus* y *Olea europaea* presenta una estabilización muy temprana, que se produce desde los primeros 25 fragmentos estudiados (fig. 4.11). *Pistacia lentiscus* se mantiene durante todo el estudio en una horquilla situada entre el 40-45% de presencia relativa, que sólo...
desciende levemente al final del análisis de la unidad. Por otro lado, Olea europaea se mantiene entre el 10-15% durante todo el proceso de análisis.

En lo que concierne a la fase Gavilanes III, hemos elaborado las curvas taxonómicas y de porcentajes de las unidades con mayor cantidad de carbones, la UE 1253 y la UE 1709 (Fase IIIa TS).

![Figura 4.12. Relación entre el número de taxones y número de fragmentos de la UE 1253 (GV-III).](image)

Procedentes de la UE 1253 fueron estudiados un total de 212 fragmentos de carbón, que proporcionaron un listado taxonómico compuesto por 19 elementos. La aparición de los taxones en la curva taxonómica (fig. 4.12) se presenta constante durante todo el estudio hasta el fragmento 142, el último taxón, sin embargo fue hallado tras el análisis de 199 fragmentos. En este caso el 80% del total identificado (15 taxones) fue obtenido a partir del estudio de 118 fragmentos. Casi una centena más de fragmentos sólo proporcionó 4 taxones más al conjunto identificado. En este caso resulta llamativo que Pinus halepensis, el taxón más identificado, no apareció por primera vez hasta el fragmento número 42, debido fundamentalmente a la sobrerepresentación de Rosmarinus officinalis en la primera parte del estudio.

El diagrama de porcentajes (fig. 4.13) ha sido elaborado a partir de los dos taxones más ampliamente representados, Pinus halepensis y Pistacia lentiscus. Ninguno de los dos consigue estabilizarse definitivamente a lo largo de todo el estudio.
En lo que concierne a la UE 1709 fueron estudiados 100 fragmentos, que presentaron una variabilidad taxonómica muy importante, con 17 taxones diferenciados. Los primeros 10 fragmentos supusieron ya la identificación de más de la mitad de los taxones, con 9 taxones distintos. Para identificar el 80% del total, sin embargo, fue necesario el estudio de 69 fragmentos. La curva taxonómica (fig. 4.14), por lo tanto, presenta un rápido crecimiento al principio, y pasa a ser más escalonada a partir del décimo taxón, Erica sp.

Desde una perspectiva cuantitativa, el diagrama de porcentajes referido a Pistacia lentiscus y Olea europaea en esta unidad estratigráfica (fig. 4.15) muestra un desarrollo porcentual paralelo de ambos taxones a partir del fragmento 30, que se rompe bruscamente tras el análisis de 80 carbones, cuando se produce un fuerte incremento porcentual de Pistacia lentiscus, al tiempo que Olea desciende también considerablemente. Los últimos 10 fragmentos presentan indicios de una mayor estabilización de las frecuencias relativas de ambos elementos.

Finalmente se presentan las curvas taxonómicas y de porcentajes relativas a las dos unidades estratigráficas con mayor contenido carbonoso de la fase Gavilanes II. Se trata de las UUEE 1676 y 3019, con 100 carbones analizados en cada una de ellas.
Figura 4.14. Relación entre el número de taxones y número de fragmentos de la UE 1709 (GV-III).

El listado taxonómico de la UE 1676 (Fase II TS) está compuesto por 11 elementos diferenciados que aparecieron de manera escalonada a lo largo de todo el estudio (fig. 4.16). Los taxones más abundantes, *Olea europaea* y *Pistacia lentiscus* fueron los únicos representados hasta el fragmento 20, en que apareció el tercer taxón. Posteriormente, Chenopodiaceae, Indeterminable y *Tamarix* sp. aparecen muy próximos entre sí, pero después de este fragmento (26) no se vuelve a hallar otro taxón hasta el fragmento 48. Labiatae, *Pinus halepensis* y Cistaceae aparecen de nuevo muy próximos entre sí, produciéndose nuevamente un hiato taxonómico desde el fragmento 51 hasta el...
Capítulo IV. Resultados antracológicos

73, a partir del cual aparecieron tres nuevos taxones, hasta el fragmento número 82 en que se identifica el último elemento de la muestra.

Figura 4.16. Relación entre el número de taxones y número de fragmentos de la UE 1676 (GV-II).

Figura 4.17. Curva taxonómica de la UE 1676 (GV-II).

Las curvas de porcentajes de los dos taxones más representados, *Pistacia lentiscus* y *Olea europaea* presentan trazados totalmente inversos (fig. 4.17), que no llegan a estabilizarse a lo largo de todo el estudio. Mientras que *Olea europaea* experimenta un fuerte descenso hasta aproximadamente el fragmento número 50, *Pistacia lentiscus*...
asciende bruscamente hasta este mismo punto. A partir del fragmento 50 ambas curvas continúan la misma tendencia, aunque menos marcada, llegando a cruzarse en el fragmento 70. Finalmente, *Pistacia lentiscus* acaba superando porcentualmente a *Olea europaea*.

Por último, la UE 3019 (Fase IIc TSM) permitió la identificación de 13 taxones. La curva taxonómica (fig. 4.18) presenta un rápido crecimiento hasta el octavo taxón, *Maytenus senegalensis* en el fragmento número 25, ya que hasta el 42 no vuelve a aparecer otro elemento, *Ephedra* sp. El 80% del total del cortejo florístico fue hallado en el fragmento 48, por tanto con menos de la mitad de los fragmentos analizados.

La curva de porcentajes (fig. 4.19) en este caso ha sido elaborada a partir del único taxón con porcentajes elevados de la muestra, Chenopodiaceae. Éste muestra un trazado ascendente hasta el estudio de los 40 primeros fragmentos, a partir de los cuales tiende a estabilizarse, de manera que oscila en torno al 50% de presencia relativa durante todo el estudio antracológico de esta unidad.
IV.1.2.2. Resultados antracológicos

A continuación se presentan los resultados numéricos asociados a cada una de las fases de ocupación del yacimiento. Para cada una de ellas se exponen en primer lugar los carbones asociados a niveles de ocupación y seguidamente los carbones concentrados en estructuras de combustión u otras acumulaciones como fosas-vertedero, inhumaciones, etc. Finalmente se exponen los resultados de aquellos carbones que pudieron ser materiales constructivos utilizados en los diferentes espacios habitacionales documentados en el yacimiento.
IV.1.2.2.1. Resultados antracológicos de la fase Gavilanes IV (GV-IV)

- Carbón disperso

Los resultados antracológicos referidos a los niveles de ocupación de la Fase IV de Punta de los Gavilanes han sido obtenidos a partir del estudio de 47 unidades estratigráficas asociadas a los diferentes horizontes de ocupación de la Edad del Bronce a la que cultural y cronológicamente se asocia dicha Fase en las tres terrazas/sectores definidos en el yacimiento. Debido a esta abundancia de contextos, la exposición de los datos aparece dividida en dos tablas (tablas 4.1 y 4.2) cuyos resultados globales se exponen en la tabla 4.3. Hemos excluido en este caso todas las unidades asociadas a los edificios 1TSM y 2TSM, ya que las particulares características de su destrucción por incendio generan importantes distorsiones porcentuales en los valores generales obtenidos para este período de ocupación.

En total han sido analizados para estos contextos un total de 2620 fragmentos de carbón (tabla 4.3), que han ofrecido un listado taxonómico muy amplio, en el que sólo faltan seis taxones del total de los identificados en el yacimiento: cf. Artemisia sp., cf. Clematis sp., Compositae, Ficus carica, Fraxinus sp. y cf. Plantago sp. Los taxones mejor representados en esta fase son, en primer lugar Pistacia lentiscus, con casi un 38% del total del cortejo identificado, seguido de Olea europaea, que presenta un porcentaje del 15,5%. Sin embargo, el principal elemento de porte arbóreo representado, Pinus halepensis, apenas supone un 8% del total de los carbones estudiados para esta fase.
Tabla 4.1. Resultados antracológicos de la fase Gavilanes IV (1ª parte)

| TAXA | UUEE | 1263 | 1303 | 1304 | 1305 | 1306 | 1313 | 1315 | 1542 | 1629 | 1632 | 1633 | 1636 | 1641 | 1647 | 1705 | 1711 | 1716 | 1721 | 1724 | 1730 | 1734 | 1735 | 1743 | 1750 | TOTAL |
|-----------------------|-------|--------|
| Coniferae | | |
| Pinus halepensis | 6 | 6 | | 211 |
| Pinus pinea/pinaster | 2 | | 2 |
| Pinus sp. | | 1 | | | | 2 | | | | | | | | | | | | | | | | | | 13 |
| Juniperus sp. | | 2 |
| Coniferae | | 1 | | 9 |
| Ephedra sp. | 5 | | 1 | | 14 |
| Coniferae | | | 4 | | 20 |
| Chenopodiaceae | 4 | 13 | 3 | 29 | | | | | | | | | | | | | | | | | | | | 71 |
| Cistaceae | 3 | | 31 |
| Daphne gnidium | | 41 |
| Erica sp. | 2 | | 4 | | 24 |
| Leguminosae | 2 | 1 | | 7 |
| Olea europaea | | 56 | 3 | 2 | | | | | | | | | | | | | | | | | | | | 25 |
| Periplaca angustifolia| | 18 |
| Fraxinus | | 17 |
| Quercus ilex/coccifera| | 13 |
| Prunus sp. | 3 | | 13 |
| Pistacia | | 13 |
| Quercus ilex/coccifera| | 13 |
| Rhamnus/Phillyrea sp. | | 1 | | 7 |
| Rosmarinus officinalis| | 7 | | 11 |
| Tamarix sp. | 17 | 4 | | 29 |
| cf. Withania frutescens| | 16 |
| Indeterminado | | 21 | 4 | 5 | 7 | 1 | | | | | | | | | | | | | | | | | | 106 |
| TOTAL | 15 | 289 | 25 | 50 | 25 | 60 | 15 | 15 | 30 | 1 | 22 | 35 | 20 | 154 | 40 | 40 | 150 | 140 | 200 | 25 | 22 | 100 | 60 | 80 | 1368 | 100 |
Tabla 4.2. Resultados antracológicos de la fase Gavilanes IV (continuación).

<table>
<thead>
<tr>
<th>TAXA</th>
<th>UUEE</th>
<th>1769</th>
<th>1772</th>
<th>1783</th>
<th>1795</th>
<th>1807</th>
<th>1808</th>
<th>1811</th>
<th>1813</th>
<th>1816</th>
<th>1817</th>
<th>1819</th>
<th>1820</th>
<th>2005</th>
<th>2006</th>
<th>2013</th>
<th>2016</th>
<th>2019</th>
<th>2027</th>
<th>2028</th>
<th>2029</th>
<th>2033</th>
<th>1528</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus halepensis</td>
<td>N° Nº Nº</td>
<td>6 9 4 4 3 14 3 13 69</td>
<td></td>
<td>125</td>
</tr>
<tr>
<td>Pinus pinea/pinaster</td>
<td>2 2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Juniperus sp.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>cf. Tetraclinis articulata</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Coniferæ</td>
<td>4 2 3</td>
<td>1 1</td>
<td></td>
</tr>
<tr>
<td>Ephedra sp.</td>
<td>1 5 7 2 1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Monocotyledoneæ</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Atriplex halimus</td>
<td>4 5 3 1 1</td>
<td>3 7 1</td>
<td>10 3 7</td>
<td>1 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cistaceæ</td>
<td>2 4 3 1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Cistus sp.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Daphne gnidiæ/Thymelæa hisæta</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Erica sp.</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>cf. Fumana sp.</td>
<td></td>
</tr>
<tr>
<td>Labiataæ</td>
<td>1 9 14 1 8 7 1 1 18</td>
<td>7 3</td>
<td>4 1</td>
<td>75</td>
<td>5,99</td>
<td></td>
</tr>
<tr>
<td>Leguminosæ</td>
<td>1 5 3 1 1 2</td>
<td>1 1</td>
<td>3</td>
<td>7</td>
<td>2 27</td>
<td>2,16</td>
<td></td>
</tr>
<tr>
<td>Lycium intricatæ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Maytenus senegalænsis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Olea europææ</td>
<td>16 9 14 17 2 10 2 12 2 3 6 25 24 1</td>
<td>4 1 3</td>
<td>151</td>
<td>12,06</td>
<td></td>
</tr>
<tr>
<td>Períplæca europææ</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Pistacia lentiscæ</td>
<td>1 24 3 36 40 12 3 3 45 23 26 7 2 96</td>
<td>82 46 19 16 14 12 7 3</td>
<td>520</td>
<td>41,53</td>
<td></td>
</tr>
<tr>
<td>Prunææ sp.</td>
<td>4</td>
<td>1 1 1</td>
<td></td>
</tr>
<tr>
<td>Quercus ilex/cocæfæra</td>
<td></td>
</tr>
<tr>
<td>Rhumæus/Phillyrea sp.</td>
<td>4 2</td>
<td>3 3</td>
<td>10</td>
<td>7 3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Rosaceæae tipo Maloideæ</td>
<td>5 1</td>
<td></td>
</tr>
<tr>
<td>Rosmarinæ officinalis</td>
<td>8 8</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Tamarix sp.</td>
<td>4</td>
<td>2 1</td>
<td></td>
</tr>
<tr>
<td>cf. Withania frutescæns</td>
<td></td>
</tr>
<tr>
<td>Indeterminændæ</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Indeterminable</td>
<td>1 4 1 5 9 1 1 4 7 6 4 3 21 3 9 1 4 1 3</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>30 70 5 100 120 30 23 15 100 60 40 18 5 240 11 150 50 100 20 15 30 10 10</td>
<td>1252</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Recursos forestales en un medio semiárido. Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval.
Como se ha comentado con anterioridad, las circunstancias particulares por las que se produjo la destrucción del edificio 1TSM (fig. 4.20), debido a un incendio, han sido tenidas en cuenta para aislar sus resultados del resto de los obtenidos en los niveles de ocupación de la fase Gavilanes IV. El motivo fundamental es que se ha hallado en este contexto una fuerte sobrerepresentación del taxón *Pinus pinea/pinaster*, que debió ser el principal elemento constructivo del edificio, y que, como consecuencia, aparece sobredimensionado en nuestro registro antracológico.

En este caso han sido estudiadas un total de 29 unidades estratigráficas asociadas directamente con el nivel de derrumbe del edificio, cuya exposición se ha dividido
Recursos forestales en un medio semiárido.
Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

también en tres tablas diferentes. En las tablas 4.4 y 4.5 se presentan los resultados parciales de cada unidad estratigráfica, mientras que en la tabla 4.6 se exponen los resultados globales asociados al derrumbe de este edificio.

EDIFICIO 1TSM-DERRUMBE (1ª parte)

| UUUE | 3077 | 3081 | 3097 | 3105 | 3111 | 3112 | 3116 | 3119 | 3122 | 3123 | 3125 | 3126 | 3127 | 3128 | 3129 | TOTAL |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------|
| TAXA | Nº |
| Pinus halepensis | 33 | 10 | 1 | 20 | 42 | 37 | 13 | 2 | 33 | 72 | 33 | 29 | 410 |
| Pinus pinea/pinaster | 9 | 95 | 3 | 88 | 88 | 45 | 53 | 29 | 410 |
| Pinus sp. | 2 | 1 | 2 | 3 | 8 | 3 | 1 | 1 | 8 | 2 | 3 | 1 | 8 | 2 | 3 |
| cf. Tetraclinis articulata | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Coniferae | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Monocotyledoneae | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| cf. Artemisia sp. | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Chenopodiaceae | 10 | 2 | 4 | 22 | 4 | 5 | 6 | 7 | 6 | 8 | 1 | 2 | 77 | 1 | 1 | 1 |
| Compositae | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Erica sp. | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Lycium intricatum | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Olea europaea | 27 | 1 | 3 | 8 | 5 | 2 | 1 | 2 | 49 |
| Periploca angustifolia | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Pistacia lentiscus | 5 | 16 | 1 | 2 | 1 | 2 | 3 | 1 | 3 |
| Rosmarinus officinalis | 5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 6 |
| Tamarix sp. | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 |
| Indeterminado | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Indeterminable | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| TOTAL | 80 | 50 | 100 | 50 | 100 | 50 | 50 | 15 | 100 |

Tabla 4.4. Resultados antracológicos asociados al derrumbe del Edificio 1TSM (1ª parte).

EDIFICIO 1TSM-DERRUMBE (2ª parte)

<table>
<thead>
<tr>
<th>UUUE</th>
<th>3132</th>
<th>3133</th>
<th>3139</th>
<th>3142</th>
<th>3162</th>
<th>3176</th>
<th>3177</th>
<th>3178</th>
<th>3188</th>
<th>3205</th>
<th>3208</th>
<th>3227</th>
<th>3235</th>
<th>3104</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAXA</td>
<td>Nº</td>
</tr>
<tr>
<td>Pinus halepensis</td>
<td>14</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Pinus pinea/pinaster</td>
<td>2</td>
<td>30</td>
<td>38</td>
<td>16</td>
<td>38</td>
<td>20</td>
<td>18</td>
<td>82</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinus sp.</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Juniperus sp.</td>
<td>1</td>
</tr>
<tr>
<td>cf. Tetraclinis articulata</td>
<td>1</td>
</tr>
<tr>
<td>Coniferae</td>
<td>5</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Ephedra sp.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monocotyledoneae</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf. Artemisia sp.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chenopodiaceae</td>
<td>17</td>
<td>14</td>
<td>2</td>
<td>10</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compositae</td>
<td>5</td>
<td>4</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 4.5. Resultados antracológicos asociados al derrumbe del Edificio 1TSM (2ª parte).
Capítulo IV. Resultados antracológicos

<table>
<thead>
<tr>
<th>TAXA</th>
<th>Nº</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus halepensis</td>
<td>343</td>
<td>21,9</td>
</tr>
<tr>
<td>Pinus pinea/pinaster</td>
<td>791</td>
<td>50,52</td>
</tr>
<tr>
<td>Pinus sp.</td>
<td>11</td>
<td>0,7</td>
</tr>
<tr>
<td>Juniperus sp.</td>
<td>9</td>
<td>0,57</td>
</tr>
<tr>
<td>cf. Tetraclinis articulata</td>
<td>1</td>
<td>0.06</td>
</tr>
<tr>
<td>Coniferae</td>
<td>10</td>
<td>0,65</td>
</tr>
<tr>
<td>Ephedra sp.</td>
<td>1</td>
<td>0,06</td>
</tr>
<tr>
<td>Monocotyledoneae</td>
<td>4</td>
<td>0,25</td>
</tr>
<tr>
<td>cf. Artemisia sp.</td>
<td>1</td>
<td>0,06</td>
</tr>
<tr>
<td>Chenopodiaceae</td>
<td>130</td>
<td>8,31</td>
</tr>
<tr>
<td>Compositae</td>
<td>1</td>
<td>0,06</td>
</tr>
<tr>
<td>Daphne gnidium/Thymelaea hirsuta</td>
<td>9</td>
<td>0,57</td>
</tr>
<tr>
<td>Erica sp.</td>
<td>7</td>
<td>0,45</td>
</tr>
<tr>
<td>Labiatae</td>
<td>4</td>
<td>0,25</td>
</tr>
<tr>
<td>Leguminosae</td>
<td>1</td>
<td>0,06</td>
</tr>
<tr>
<td>Lycium intricatum</td>
<td>1</td>
<td>0,06</td>
</tr>
<tr>
<td>Olea europaea</td>
<td>127</td>
<td>8,12</td>
</tr>
<tr>
<td>Periploca angustifolia</td>
<td>3</td>
<td>0,19</td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
<td>79</td>
<td>5,05</td>
</tr>
<tr>
<td>Rhamnus/Phillyrea sp.</td>
<td>3</td>
<td>0,19</td>
</tr>
<tr>
<td>Rosaceae t. Maloideae</td>
<td>1</td>
<td>0,06</td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
<td>12</td>
<td>0,78</td>
</tr>
<tr>
<td>Tamarix sp.</td>
<td>5</td>
<td>0,32</td>
</tr>
<tr>
<td>Indeterminado</td>
<td>3</td>
<td>0,19</td>
</tr>
<tr>
<td>Indeterminable</td>
<td>9</td>
<td>0,57</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1566</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabla 4.6. Resultados antracológicos asociados al derrumbe del Edificio 1TSM (resultados globales).
Efectivamente, de los 1566 fragmentos analizados en asociación con el derrumbe de la estructura asociada a labores de pesquería (tabla 4.6), se comprueba que más del 50% del total se trata de fragmentos de *Pinus pinea/pinaster*, seguido de *Pinus halepensis* (21,9%) y de otros taxones que pudieron ejercer también labores de sustentación secundarias como *Olea europaea* (8,12%) o *Pistacia lentiscus* (5,05%). Es significativa la elevada concentración de la familia Chenopodiaceae (8,31%) que ha sido documentada en este contexto, que puede estar asociada con un uso específico de especies de esta familia en las zonas de cubrición de la techumbre del edificio, dada la abundancia que debió existir de este tipo de vegetación en el entorno. En general, la elevada variabilidad taxonómica observada se debe a esta mezcla entre carbones de diversa procedencia, que pueden ser atribuidos fundamentalmente a la estructura del edificio.

![Figura 4.20. Edificio 1TSM (Foto: M. M. Ros Sala).](image)

Las 12 unidades estratigráficas asociadas al nivel de abandono del edificio 1TSM han permitido el estudio de 680 fragmentos de carbón, y la identificación de 18 taxones distintos (tabla 4.7). Los resultados antracológicos en este caso se ven afectados también por una cierta sobredimensión de *Pinus pinea/pinaster* en relación con el proceso de destrucción del edificio. No obstante, en este caso *Pinus halepensis* con casi un 50% del total es el taxón más ampliamente representado, y aparecen valores relativamente elevados de otros taxones como *Olea europaea*, Chenopodiaceae o *Juniperus* sp.
Capítulo IV. Resultados antracológicos

EDIFICIO 1TSM - NIVEL DE ABANDONO

<table>
<thead>
<tr>
<th>TAXA</th>
<th>3140</th>
<th>3144</th>
<th>3148</th>
<th>3149</th>
<th>3151</th>
<th>3152</th>
<th>3156</th>
<th>3158</th>
<th>3201</th>
<th>3209</th>
<th>3232</th>
<th>3250</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus halepensis</td>
<td>26</td>
<td>15</td>
<td>6</td>
<td>4</td>
<td>43</td>
<td>51</td>
<td>16</td>
<td>131</td>
<td>45</td>
<td>337</td>
<td>49,56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinus pinea/pinaster</td>
<td>31</td>
<td>14</td>
<td>13</td>
<td>40</td>
<td>29</td>
<td>127</td>
<td>18,68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinus sp.</td>
<td>4</td>
<td></td>
<td>0,59</td>
</tr>
<tr>
<td>Juniperus sp.</td>
<td>3</td>
<td>22</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,12</td>
</tr>
<tr>
<td>Coniferae</td>
<td>5</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,03</td>
</tr>
<tr>
<td>Monocotyledoneae</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>13</td>
<td>1,91</td>
</tr>
<tr>
<td>Chenopodiaceae</td>
<td>7</td>
<td>24</td>
<td>4</td>
<td>16</td>
<td>9</td>
<td>1</td>
<td>66</td>
<td>9</td>
<td>7</td>
<td>30</td>
<td>40</td>
<td>150</td>
<td>680</td>
</tr>
<tr>
<td>Clematis sp.</td>
<td>1</td>
<td></td>
<td>1</td>
<td>0,15</td>
</tr>
<tr>
<td>Daphne gnidium/Thymelaea hirsuta</td>
<td>1</td>
<td></td>
<td>1,05</td>
</tr>
<tr>
<td>Erica sp.</td>
<td>8</td>
<td></td>
<td>8,17</td>
</tr>
<tr>
<td>Labiatae</td>
<td>6</td>
<td></td>
<td>6,88</td>
</tr>
<tr>
<td>Leguminosae</td>
<td>6</td>
<td></td>
<td>6,88</td>
</tr>
<tr>
<td>Olea europaea</td>
<td>7</td>
<td>23</td>
<td>14</td>
<td>1</td>
<td>3</td>
<td>49</td>
<td>7,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
<td>6</td>
<td>9</td>
<td></td>
<td>1</td>
<td>1</td>
<td>17</td>
<td>2,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhamnus/Phillyrea sp.</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamarix sp.</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indeterminable</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>50</td>
<td>130</td>
<td>55</td>
<td>5</td>
<td>20</td>
<td>50</td>
<td>70</td>
<td>30</td>
<td>40</td>
<td>150</td>
<td>50</td>
<td>30</td>
<td>680</td>
</tr>
</tbody>
</table>

Tabla 4.7. Resultados antracológicos asociados al nivel de abandono del Edificio 1TSM.

EDIFICIO 2TSM

<table>
<thead>
<tr>
<th>TAXA</th>
<th>3074</th>
<th>3075</th>
<th>3076</th>
<th>3113</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus halepensis</td>
<td>17</td>
<td>28</td>
<td>3</td>
<td>46</td>
<td>37,7</td>
</tr>
<tr>
<td>Pinus pinea/pinaster</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>9</td>
<td>7,38</td>
</tr>
<tr>
<td>Pinus sp.</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>7,38</td>
</tr>
<tr>
<td>Chenopodiaceae</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>9,02</td>
</tr>
<tr>
<td>Ficus carica</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>0,82</td>
</tr>
<tr>
<td>Labiatae</td>
<td>12</td>
<td></td>
<td></td>
<td>12</td>
<td>9,84</td>
</tr>
<tr>
<td>Olea europaea</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>14</td>
<td>11,47</td>
</tr>
<tr>
<td>Periploca angustifolia</td>
<td>6</td>
<td></td>
<td>7</td>
<td>5,74</td>
<td></td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>7,38</td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td>1,64</td>
</tr>
<tr>
<td>Tamarix sp.</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>0,82</td>
</tr>
<tr>
<td>Indeterminable</td>
<td>4</td>
<td></td>
<td>4</td>
<td></td>
<td>3,27</td>
</tr>
<tr>
<td>TOTAL</td>
<td>27</td>
<td>70</td>
<td>15</td>
<td>122</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabla 4.8. Resultados antracológicos asociados al Edificio 2TSM.

La edificación 2TSM supone la reutilización ya en el posterior horizonte GV-Ivd, del espacio que ocupara el edificio 1TSM en su horizonte de uso originario GV-IVc (Ros Sala et al. 2008). Por ello, y ante la posibilidad de que aparecieran también problemas
porcentuales derivados del contacto sedimentario con el nivel de derrumbe del edificio 1TSM se ha optado por la individualización de sus resultados. En este caso han sido estudiados un total de 122 fragmentos de carbón, asociados a cuatro unidades estratigráficas distintas. El taxón mayoritario, con mucha diferencia sobre el resto fue *Pinus halepensis* (37,7% del total), mientras que sólo *Olea europaea* supera el 10% del total analizado. Son destacables también los valores ofrecidos por Chenopodiaceae y Labiatae, que superan el 9%, de *Pistacia lentiscus*, que se sitúa por encima del 7%, y la aparición de 7 fragmentos de *Periploca angustifolia*, repartidos en dos unidades estratigráficas distintas (tabla 4.8).

Carbón concentrado

Asociadas a la fase Gavilanes IV han podido ser estudiadas una gran cantidad de estructuras, bien de combustión, o bien acumulaciones carbonosas cuyo origen obedece a otras circunstancias (fosas, inhumaciones...etc). Éstas ofrecen una valiosa información referida a la utilización del combustible vegetal de manera particular para las diferentes actividades productivas o domésticas desarrolladas en el promontorio durante la Edad del Bronce Argárico. En primer lugar se hará referencia a las estructuras de combustión de carácter especializado, como el horno de torrefactado 3TSM, el hogar-ahumadero localizado en la vivienda 1TS, o la posible estructura de cocina 1723; en segundo término serán descritos los resultados asociados a los hogares de tipo doméstico y finalmente se tomarán en consideración las acumulaciones recuperadas en dos fosas de distinta índole.

En primer lugar, el horno 3TSM (fig. 4.21) se documentó asociado al edificio funcional 2TSM, y su funcionalidad estuvo relacionada con la torrefacción de cereal, con una gran densidad de semillas en su interior (Ros Sala, en prensa). En este horno fueron definidos dos niveles de uso, uno inicial y el subsecuente, algo más tardío, que, sin embargo, no presentan diferencias cronológicas remarcables, en función de las dataciones de 14C disponibles para los niveles asociados a esta estructura, por lo que se han unificado sus resultados antracológicos.

En total han sido analizadas tres unidades estratigráficas que han permitido el estudio de 140 fragmentos de carbón y la diferenciación de 17 taxones (tabla 4.9). Las coníferas son mayoritarias ya que el taxón más representado es *Pinus pinea/pinaster*, con más de un 20% del total, seguido de *Pinus halepensis*, con un 15%. También son destacables los valores de Chenopodiaceae, *Lycium intricatum* y *Olea europaea*, que llegan al 10%, y *Pistacia lentiscus*, que supera el 9%.
Tabla 4.9. Resultados antracológicos asociados al Horno 3TSM.

Figura 4.21. Horno de torrefacción 3TSM (Foto: M. M. Ros Sala).
Asociado a la vivienda prehistórica 1TS fue documentada una estructura que apareció conformada por dos cubetas delimitadas por sendos anillos perimetrales que presentan a su vez diferentes y sucesivas refacciones de su estructura; esta presenta tres momentos de utilización asociados a los horizontes IVa, IVb y IVc TS (fig. 4.22). Ha sido interpretada como un hogar con posible función añadida de ahumadero (hogar-ahumadero) destinado a procesar el pescado para su consumo (Ros Sala, en prensa).

Figura 4.22. Hogar-Ahumadero asociado a la vivienda prehistórica 1TS (Fotos: M. M. Ros Sala).

En este caso se han estudiado cuatro unidades estratigráficas asociadas al horizonte de uso IVa TS, que han permitido el estudio de 71 fragmentos de carbón y la identificación de 14 taxones. Por otro lado, el horizonte IVb TS es el que menos muestras antracológicas presenta, con dos unidades estratigráficas estudiadas, que se caracterizan además por una gran escasez en el número de carbones (15 fragmentos) y de taxones identificados (5 taxones). Finalmente, hemos estudiado 5 muestras asociadas al horizonte de uso IVc TS que han permitido el estudio de 293 fragmentos, y la identificación de un amplio cortejo florístico compuesto por 19 elementos. Entre estas unidades cabe destacar la superficie de combustión 1725, que ha aportado el registro antracológico más amplio (tabla 4.10).
En general, sin embargo, destaca siempre la predominancia de dos taxones por encima de los demás *Olea europaea* y *Pistacia lentiscus*. La UE 1725 presenta un registro algo distinto, dominado por el romero y las labiadas, con una importante presencia también del acebuche y el lentisco, y con una utilización destacable de quenopodiáceas (tabla 4.10).

<table>
<thead>
<tr>
<th>TAXA</th>
<th>HORIZONTE</th>
<th>HORIZONTE IVa TS</th>
<th>HORIZONTE IVb TS</th>
<th>HORIZONTE IVc TS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus halepensis</td>
<td>N° 1</td>
<td>N° 4</td>
<td>N° 6</td>
<td>N° 1</td>
</tr>
<tr>
<td>Pinus pinea/pinaster</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinus sp.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Juniperus sp.</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Ephedra sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chenopodiaceae</td>
<td>2</td>
<td>12</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Cistaceae</td>
<td>1</td>
<td>12</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>cf. Clematis sp.</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Daphne gnidioides/Thymelaea hirsuta</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erica sp.</td>
<td></td>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Labiatae</td>
<td>1</td>
<td>3</td>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>Leguminosae</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Olea europaea</td>
<td>5</td>
<td>18</td>
<td>6</td>
<td>19</td>
</tr>
<tr>
<td>Periploca angustifolia</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
<td>3</td>
<td>20</td>
<td>1</td>
<td>32</td>
</tr>
<tr>
<td>cf. Plantago sp.</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Prunus sp.</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Rhamnus/Phillyrea sp.</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Rosaceae t. Maloideae</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
<td></td>
<td></td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>Tamarix sp.</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Indeterminado</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indeterminable</td>
<td></td>
<td></td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>10</td>
<td>4</td>
<td>52</td>
<td>5</td>
</tr>
</tbody>
</table>

Tabla 4.10. Resultados antracológicos de la estructura ahumadero asociada a la vivienda 1TS.

También asociada a la vivienda prehistórica 1TS la UE 1723 (fig. 4.23) apareció definida como una estructura de cocina compuesta por un solero rectangular de adobe amarillento y sobre ella una acumulación de cenizas de planta circular configurada por tres piedras hincadas verticalmente y las fosas-improntas de los palos de un tresbede fijado en el nivel de uso 1724 sobre el suelo de ocupación 1735 y junto a la estructura de hogar-ahumadero 1722 en su última refacción. La mancha cenicienta tiene un diámetro de 44 cm y el espesor de las cenizas es de hasta 5 cm. La acumulación se
dispone en una pequeña concavidad hacia el interior, y una también pequeña solera de adobe amarillento al exterior (Ros Sala, en prensa).

Figura 4.23. Posible cocina 1723 (Foto: M. M. Ros Sala).

<table>
<thead>
<tr>
<th>TAXA</th>
<th>Nº</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ephedra sp.</td>
<td>2</td>
<td>1,54</td>
</tr>
<tr>
<td>Atriplex halimus</td>
<td>1</td>
<td>0,77</td>
</tr>
<tr>
<td>Cistaceae</td>
<td>8</td>
<td>6,15</td>
</tr>
<tr>
<td>Compositae</td>
<td>1</td>
<td>0,77</td>
</tr>
<tr>
<td>Chenopodiaceae</td>
<td>4</td>
<td>3,08</td>
</tr>
<tr>
<td>Daphne gnidium/Thymelaea hirsuta</td>
<td>2</td>
<td>1,54</td>
</tr>
<tr>
<td>Erica sp.</td>
<td>10</td>
<td>7,69</td>
</tr>
<tr>
<td>Labiatae</td>
<td>8</td>
<td>6,15</td>
</tr>
<tr>
<td>Leguminosae</td>
<td>1</td>
<td>0,77</td>
</tr>
<tr>
<td>Olea europaea</td>
<td>36</td>
<td>27,69</td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
<td>19</td>
<td>14,61</td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
<td>2</td>
<td>1,54</td>
</tr>
<tr>
<td>Tamarix sp.</td>
<td>8</td>
<td>6,15</td>
</tr>
<tr>
<td>Indeterminado</td>
<td>19</td>
<td>14,61</td>
</tr>
<tr>
<td>Indeterminable</td>
<td>9</td>
<td>6,92</td>
</tr>
<tr>
<td>TOTAL</td>
<td>130</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabla 4.11. Resultados antracológicos asociados a la estructura de combustión 1723.
De esta estructura se han analizado todos los carbones recuperados, un total de 130, identificándose 15 taxones distintos, incluyendo indeterminados e indeterminables. Por orden de frecuencia, son los que siguen: *Olea europaea* (27,69%), *Pistacia lentiscus* (14,61%), *Erica* sp. (7,69%), Labiatae (6,15%), *Tamarix* sp. (6,15%), *Cistaceae* (6,15%), Chenopodiaceae (3,08%), *Ephedra* sp. (1,54%), *Daphne gnidium/Thymelaea hirsuta* (1,54%), *Rosmarinus officinalis* (1,54%), *Atriplex halimus* (0,77%), *Compositae* (0,77%) y *Leguminosae* (0,77%) (tabla 4.11).

A continuación se exponen los resultados antracológicos obtenidos asociados a los diferentes hogares domésticos documentados en la Fase IV (tabla 4.12).

La UE 1744 es una pequeña zona de combustión localizada sobre el nivel de uso 1743 del suelo 1750 de la vivienda prehistórica 1TS en la Terraza Superior. En ella apareció una acumulación de ceniza de color negruzco dispuesta en planta ovalada (25x10 cm. el eje mayor, con orientación N-S) (Ros Sala, en prensa). De esta estructura han podido ser analizados solamente 15 fragmentos de carbón, apareciendo 4 taxones distintos: *Pistacia lentiscus* (80%), *Cistaceae* (6,67%), Labiatae (6,67%) y *Olea europaea* (6,67%) (tabla 4.12).

<table>
<thead>
<tr>
<th>HOGARES DOMÉSTICOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>UUEE</td>
</tr>
<tr>
<td>TAXA</td>
</tr>
<tr>
<td>Monocotyledoneae</td>
</tr>
<tr>
<td>Cistaceae</td>
</tr>
<tr>
<td>Labiatae</td>
</tr>
<tr>
<td>Olea europaea</td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
</tr>
<tr>
<td>Quercus ilex/coccifera</td>
</tr>
<tr>
<td>Rhamnus/Phillyrea sp.</td>
</tr>
<tr>
<td>Indeterminable</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
</tbody>
</table>

Tabla 4.12. Resultados antracológicos de las EE.CC. domésticas asociadas a GV-IV.

Por otro lado, el hogar 1307 (fig. 4.24) apareció asociado a la vivienda prehistórica 1TM (Ros Sala, en prensa). En este caso solamente se han podido recuperar un total de 10 fragmentos de carbón, debido principalmente a que la técnica de recuperación de los mismos fue manual. De entre ellos hemos podido identificar cuatro taxones: *Pistacia lentiscus* (70%), *Olea europaea* (10%), *Quercus ilex/coccifera* (10%) y *Rhamnus/Phillyrea sp.* (10%) (tabla 4.12).
El hogar 1645 (fig. 4.25), definido como área de combustión asociada a la vivienda prehistórica 2TS, (Ros Sala, en prensa) sólo ha ofrecido cinco fragmentos de carbón, y todos ellos correspondientes a un mismo taxón, *Pistacia lentiscus* (tabla 4.12).

La UE 1759 se interpreta como una pequeña zona de combustión sin elementos estructurales asociados en el nivel de uso de la vivienda prehistórica 1TS en su horizonte de uso IVb. Se definió como una pequeña acumulación de ceniza de 20 cm de diámetro con una coloración versicolor de negruzca a blanquecina (Ros Sala, en prensa). De este hogar se han recuperado y estudiado un total de 15 fragmentos, identificándose 2 taxones diferentes: *Pistacia lentiscus* (80%) y Monocotyledoneae (13,33%) (tabla 4.12).
Todos los hogares y áreas de combustión de carácter doméstico analizados presentan dos pautas comunes que podrían señalar hacia un cierto patrón homogéneo en la gestión del combustible. Por un lado en todos los hogares *Pistacia lentiscus* es el principal combustible utilizado con mucha diferencia sobre el resto. Por otro lado, no se presentan taxones que serían muy abundantes en el entorno, como los elementos halófilos (*Chenopodiaceae, Atriplex halimus* o *Tamarix* sp.), ni tampoco iberoafricanismos, posiblemente por una presencia menor en los alrededores del promontorio.

El siguiente contexto que se ha individualizado en la fase de Gavilanes IV es el contenido antracológico de la posible fosa de inhumación 1547 (fig. 4.26), asociada a la vivienda prehistórica 1TS en su horizonte de uso último (Ros Sala, en prensa). Esta fosa presenta dos expolios, por lo que sus resultados antracológicos carecen de relevancia interpretativa. No obstante, han podido ser estudiados un total de 10 fragmentos de carbón de los cuales 7 serían de *Pinus halepensis*, mientras que 3 de ellos pertenecerían a la especie *Pistacia lentiscus* (tabla 4.13).

| RELLENO FOSA DE INHUMACIÓN 1547 |
|---|---|---|
| TAXA | Nº | % |
| *Pinus halepensis* | 7 | 70 |
| *Pistacia lentiscus* | 3 | 30 |
| TOTAL | 10 | 100 |

Tabla 4.13. Resultados antracológicos asociados a la fosa de inhumación 1547.
Del relleno de la fosa 1736 (fig. 4.27), que se presentó como intrusiva en el hogar 1722, en el contexto más tardío de la vivienda prehistórica 1TS (Ros Sala, en prensa), se pudieron estudiar también 10 fragmentos de carbón. La mayoría de ellos eran de *Pinus halepensis* (6), mientras que aparecieron también dos fragmentos de Labiatae, 1 fragmento de lentisco y 1 indeterminado (tabla 4.14).

<table>
<thead>
<tr>
<th>TAXA</th>
<th>Nº</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus halepensis</td>
<td>6</td>
<td>60</td>
</tr>
<tr>
<td>Labiatae</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Indeterminado</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>10</td>
<td>100</td>
</tr>
</tbody>
</table>

- **Material estructural**

A continuación se hace referencia a los materiales leñosos cuya interpretación permite consignarlos dentro del ámbito de la actividad constructiva de esta ocupación del Bronce Argárico del promontorio (tablas 4.15 y 4.16).
Las UUEE 2020, 2022 y 2025 son los rellenos sedimentarios de tres fosas de poste asociadas a la vivienda prehistórica 1TS (Ros Sala, en prensa). Podría entenderse, por tanto, que el contenido antracológico de las mismas se corresponde con los restos carbonizados de los postes ubicados en las fosas. Sin embargo, en ninguno de los tres casos pudo realizarse una individualización del posible poste durante el proceso de excavación, lo cual puede ser indicativo, a priori, bien de que no hubo combustión de estas estructuras asociadas a la vivienda prehistórica 1TM o bien de que la combustión del mismo no se produjo in situ, por lo que no podemos afirmar que los fragmentos de carbón contenidos en el interior de las fosas se correspondieran con estos elementos. A esto se suma la variabilidad taxonómica localizada en las UUEE 2022 y 2025 (fig. 4.28), que presentan 5 taxones diferenciados en cada caso. Sólo la UE 2020 está constituida por un único taxón, Pistacia lentiscus, por lo que la posibilidad de que se trate del elemento sustentante original es mayor que en los otros dos casos (tabla 4.15).

La UE 1597 (fig. 4.29) presenta, sin embargo, variaciones con respecto a los anteriores. Esta unidad aparece definida como un poste de sustentación carbonizado, asociado a un Ambiente Constructivo anexo a la vivienda prehistórica 2TS en su flanco occidental. Por tanto, durante el proceso de excavación pudo producirse la recuperación selectiva manual del poste. En este caso el elevado número de fragmentos identificados como Pinus halepensis (119 carbones) evidencia que el poste sustentante estaba elaborado en madera de esta especie (tabla 4.15), y que la aparición en la muestra de tres fragmentos de Cistaceae y 8 fragmentos de Erica sp. se debió a las remodelaciones posteriores que sufre este ambiente en la posterior Fase III en la que parece que el poste y sus
Recursos forestales en un medio semiárido.
Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

estructuras asociadas fue reutilizado ahora asociado a un suelo y contexto material diferenciales.

Figura 4.29. UE 1597 (Foto: M. M. Ros Sala).

<table>
<thead>
<tr>
<th>RELLENOS DE AGUJEROS DE POSTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTEXTO</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>UUEE</td>
</tr>
<tr>
<td>TAXA</td>
</tr>
<tr>
<td>Pinus halepensis</td>
</tr>
<tr>
<td>Pinus sp.</td>
</tr>
<tr>
<td>Atriplex halimus</td>
</tr>
<tr>
<td>Cistaceae</td>
</tr>
<tr>
<td>Erica sp.</td>
</tr>
<tr>
<td>Labiatae</td>
</tr>
<tr>
<td>Olea europaea</td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
</tr>
<tr>
<td>Prunus sp.</td>
</tr>
<tr>
<td>Rhamnus/Phillyrea sp.</td>
</tr>
<tr>
<td>Indeterminable</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
</tbody>
</table>

Tabla 4.15. Resultados antracológicos de los rellenos de fosas-poste asociados a las viviendas prehistóricas 1TS y 2TS.

Finalmente, se expone a continuación el extenso listado compuesto por 140 fragmentos de troncos asociados a la destrucción por incendio del Edificio 1TSM (tabla 4.16). Éstos
Capítulo IV. Resultados antracológicos

pudieron ser individualizados, registrados planimétricamente y recuperados in situ durante el proceso de excavación, con la finalidad fundamental de poder situar cada uno de ellos en el espacio interior acotado del edificio, y el objetivo de intentar adscribir sus funcionalidades más concretas en la reconstrucción de su singular y excepcional estructura.

La inmensa mayoría de estos elementos constructivos fueron elaborados a partir de *Pinus pinea/pinaster*, aunque también aparecen otros taxones cuya funcionalidad pudo estar también relacionada con este fin. Aparecen también *Pinus halepensis*, *Pinus* sp., Coniferae, *Olea europaea*, *Tamarix* sp., Chenopodiaceae, y un fragmento de Monocotyledoneae que se corresponde en realidad con la red de esparto localizada en el suelo de este espacio productivo (tabla 4.16).

| TRONCOS ASOCIADOS A LA DESTRUCCIÓN DEL EDIFICIO 1TSM |
|----------------|----------------|------------------|------------------|
| UE | N° | TAXÓN | ZONA |
| 3077 | *Pinus pinea/pinaster* | Destrucción y amortización del 1TSM | Occidental |
| 3081 | *Pinus* sp. | Destrucción y amortización del 1TSM | |
| 3082 | Coniferae | Destrucción y amortización del 1TSM | |
| 3097 | 3097-B *Pinus pinea/pinaster* | nivel de incendio y posterior derrumbe del edificio | Oriental |
| 3097 | 3097-5 *Pinus pinea/pinaster* | nivel de incendio y posterior derrumbe del edificio | Oriental |
| 3097 | *Pinus pinea/pinaster* | nivel de incendio y posterior derrumbe del edificio | Oriental |
| 3097 | 3097-2A *Pinus pinea/pinaster* | nivel de incendio y posterior derrumbe del edificio | Oriental |
| 3097 | 3097-2B *Pinus pinea/pinaster* | nivel de incendio y posterior derrumbe del edificio | Oriental |
| 3097 | 3097-3 *Pinus pinea/pinaster* | nivel de incendio y posterior derrumbe del edificio | Oriental |
| 3097 | 3097-4 *Pinus pinea/pinaster* | nivel de incendio y posterior derrumbe del edificio | Oriental |
| 3097 | 3097-8 *Pinus pinea/pinaster* | nivel de incendio y posterior derrumbe del edificio | Oriental |
| 3097 | *Pinus pinea/pinaster* | nivel de incendio y posterior derrumbe del edificio | Oriental |
| 3103 | 3103-2 *Pinus pinea/pinaster* | fosa-poste y zapata pétreas asociada a muro 1453 | Occidental |
| 3103 | 3103-A *Pinus pinea/pinaster* | fosa-poste y zapata pétreas asociada a muro 1453 | Occidental |
| 3103 | 3103-4 *Pinus pinea/pinaster* | fosa-poste y zapata pétreas asociada a muro 1453 | Occidental |
| 3103 | 3103-3 *Pinus pinea/pinaster* | fosa-poste y zapata pétreas asociada a muro 1453 | Occidental |
| 3103 | 3103-8 *Pinus pinea/pinaster* | fosa-poste y zapata pétreas asociada a muro 1453 | Occidental |
| 3103 | *Pinus pinea/pinaster* | fosa-poste y zapata pétreas asociada a muro 1453 | Occidental |
| 3103 | 3103-9 *Tamarix* sp. | fosa-poste y zapata pétreas asociada a muro 1453 | Occidental |
| 3104 | 3104-5 *Pinus pinea/pinaster* | primera fase de edificación de la pesquería | Occidental |
| 3104 | *Pinus* sp. | primera fase de edificación de la pesquería | Occidental |
| 3104 | *Pinus pinea/pinaster* | primera fase de edificación de la pesquería | Occidental |
| 3104 | *Olea europaea* | primera fase de edificación de la pesquería | Occidental |
| 3104 | *Pinus pinea/pinaster* | primera fase de edificación de la pesquería | Occidental |
| 3104 | 3104-2 *Pinus pinea/pinaster* | primera fase de edificación de la pesquería | Occidental |
| 3104 | 3104-3 *Pinus pinea/pinaster* | primera fase de edificación de la pesquería | Occidental |
| 3104 | 3104-4 *Pinus pinea/pinaster* | primera fase de edificación de la pesquería | Occidental |

Tabla 4.16. Restos de elementos constructivos asociados al Edificio 1TSM.
<table>
<thead>
<tr>
<th>Código</th>
<th>Código-2</th>
<th>Código-3</th>
<th>Código-4</th>
<th>Código-5</th>
<th>Código-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>3104</td>
<td>3104-1</td>
<td>Pinus pinea/pinaster</td>
<td>primera fase de edificación de la pesquería</td>
<td>Occidental</td>
<td></td>
</tr>
<tr>
<td>3104</td>
<td>3104-2</td>
<td>Pinus pinea/pinaster</td>
<td>primera fase de edificación de la pesquería</td>
<td>Occidental</td>
<td></td>
</tr>
<tr>
<td>3105</td>
<td>3105-2</td>
<td>Pinus sp.</td>
<td>nivel de incendio y posterior derrumbe</td>
<td>Occidental</td>
<td></td>
</tr>
<tr>
<td>3105</td>
<td>3105-7</td>
<td>Pinus pinea/pinaster</td>
<td>nivel de incendio y posterior derrumbe</td>
<td>Occidental</td>
<td></td>
</tr>
<tr>
<td>3105</td>
<td>3105-8</td>
<td>Pinus pinea/pinaster</td>
<td>nivel de incendio y posterior derrumbe</td>
<td>Occidental</td>
<td></td>
</tr>
<tr>
<td>3105</td>
<td>3105-6</td>
<td>Pinus pinea/pinaster</td>
<td>nivel de incendio y posterior derrumbe</td>
<td>Occidental</td>
<td></td>
</tr>
<tr>
<td>3105</td>
<td>3105-3</td>
<td>Pinus pinea/pinaster</td>
<td>nivel de incendio y posterior derrumbe</td>
<td>Occidental</td>
<td></td>
</tr>
<tr>
<td>3105</td>
<td>3105-4</td>
<td>Pinus pinea/pinaster</td>
<td>nivel de incendio y posterior derrumbe</td>
<td>Occidental</td>
<td></td>
</tr>
<tr>
<td>3105</td>
<td>3105-5</td>
<td>Pinus pinea/pinaster</td>
<td>nivel de incendio y posterior derrumbe</td>
<td>Occidental</td>
<td></td>
</tr>
<tr>
<td>3105</td>
<td>3105-1</td>
<td>Pinus pinea/pinaster</td>
<td>nivel de incendio y posterior derrumbe</td>
<td>Occidental</td>
<td></td>
</tr>
<tr>
<td>3111</td>
<td>3111-2</td>
<td>Olea europaea</td>
<td>nivel de incendio y posterior derrumbe</td>
<td>Occidental</td>
<td></td>
</tr>
<tr>
<td>3123</td>
<td>3123-1</td>
<td>Pinus pinea/pinaster</td>
<td>niveles de amortización, relleno y regularización de los niveles de destrucción sobre el sector oriental</td>
<td>Oriental</td>
<td></td>
</tr>
<tr>
<td>3125</td>
<td>3125-1</td>
<td>Pinus pinea/pinaster</td>
<td>nivel de relleno limoso asociado a a destrucción y amortización</td>
<td>Occidental</td>
<td></td>
</tr>
<tr>
<td>3126</td>
<td>3126-1</td>
<td>Chenopodiaceae</td>
<td>nivel de incendio y posterior derrumbe</td>
<td>Occidental</td>
<td></td>
</tr>
<tr>
<td>3126</td>
<td>3126-2</td>
<td>Pinus pinea/pinaster</td>
<td>nivel de incendio y posterior derrumbe</td>
<td>Occidental</td>
<td></td>
</tr>
<tr>
<td>3126</td>
<td>3126-4</td>
<td>Pinus pinea/pinaster</td>
<td>nivel de incendio y posterior derrumbe</td>
<td>Occidental</td>
<td></td>
</tr>
<tr>
<td>3126</td>
<td>3126-3</td>
<td>Pinus pinea/pinaster</td>
<td>nivel de incendio y posterior derrumbe</td>
<td>Occidental</td>
<td></td>
</tr>
<tr>
<td>3126</td>
<td>3126-2</td>
<td>Pinus pinea/pinaster</td>
<td>nivel de incendio y posterior derrumbe</td>
<td>Occidental</td>
<td></td>
</tr>
<tr>
<td>3126</td>
<td>3126-5</td>
<td>Pinus pinea/pinaster</td>
<td>nivel de incendio y posterior derrumbe</td>
<td>Occidental</td>
<td></td>
</tr>
<tr>
<td>3126</td>
<td>3126-6</td>
<td>Pinus pinea/pinaster</td>
<td>nivel de incendio y posterior derrumbe</td>
<td>Occidental</td>
<td></td>
</tr>
<tr>
<td>3126</td>
<td>3126-7</td>
<td>Pinus pinea/pinaster</td>
<td>nivel de incendio y posterior derrumbe</td>
<td>Occidental</td>
<td></td>
</tr>
<tr>
<td>3126</td>
<td>3126-1</td>
<td>Pinus pinea/pinaster</td>
<td>nivel de incendio y posterior derrumbe</td>
<td>Occidental</td>
<td></td>
</tr>
<tr>
<td>3126</td>
<td>3126-2</td>
<td>Pinus pinea/pinaster</td>
<td>nivel de incendio y posterior derrumbe</td>
<td>Occidental</td>
<td></td>
</tr>
<tr>
<td>3127</td>
<td>3127-1</td>
<td>Chenopodiaceae</td>
<td>nivel de incendio y posterior derrumbe</td>
<td>Occidental</td>
<td></td>
</tr>
<tr>
<td>3127</td>
<td>3127-2</td>
<td>Pinus halepensis</td>
<td>nivel de incendio y posterior derrumbe</td>
<td>Occidental</td>
<td></td>
</tr>
<tr>
<td>3128</td>
<td>3128-1</td>
<td>Pinus pinea/pinaster</td>
<td>elementos leñosos caídos en destrucción del edificio</td>
<td>Media</td>
<td></td>
</tr>
<tr>
<td>3128</td>
<td>3128-5</td>
<td>Pinus pinea/pinaster</td>
<td>elementos leñosos caídos en destrucción del edificio</td>
<td>Media</td>
<td></td>
</tr>
<tr>
<td>3128</td>
<td>3128-2</td>
<td>Pinus pinea/pinaster</td>
<td>elementos leñosos caídos en destrucción del edificio</td>
<td>Media</td>
<td></td>
</tr>
<tr>
<td>3142</td>
<td>3142-1</td>
<td>Pinus pinea/pinaster</td>
<td>elementos leñosos caídos en destrucción del edificio</td>
<td>Media</td>
<td></td>
</tr>
<tr>
<td>3142</td>
<td>3142-2</td>
<td>Pinus pinea/pinaster</td>
<td>elementos leñosos caídos en destrucción del edificio</td>
<td>Media</td>
<td></td>
</tr>
<tr>
<td>3142</td>
<td>3142-3</td>
<td>Pinus pinea/pinaster</td>
<td>elementos leñosos caídos en destrucción del edificio</td>
<td>Media</td>
<td></td>
</tr>
<tr>
<td>3142</td>
<td>3142-7</td>
<td>Pinus pinea/pinaster</td>
<td>elementos leñosos caídos en destrucción del edificio</td>
<td>Media</td>
<td></td>
</tr>
<tr>
<td>3142</td>
<td>3142-5</td>
<td>Pinus pinea/pinaster</td>
<td>elementos leñosos caídos en destrucción del edificio</td>
<td>Media</td>
<td></td>
</tr>
<tr>
<td>3151</td>
<td>3151-1</td>
<td>Pinus sp.</td>
<td>nivel de incendio y posterior derrumbe</td>
<td>Occidental</td>
<td></td>
</tr>
<tr>
<td>3151</td>
<td>3151-2</td>
<td>Pinus halepensis</td>
<td>nivel de incendio y posterior derrumbe</td>
<td>Occidental</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 4.16. Continuación.
TRONCOS ASOCIADOS A LA DESTRUCCIÓN DEL EDIFICIO ITSM (Continuación)

<table>
<thead>
<tr>
<th>Código</th>
<th>Especie</th>
<th>Descripción</th>
<th>Ubicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>3152</td>
<td>Pinus pinea/pinaster</td>
<td>nivel de incendio y posterior derrumbe</td>
<td></td>
</tr>
<tr>
<td>3156</td>
<td>Pinus pinea/pinaster</td>
<td>primera fase de edificación de la pesquería</td>
<td>Occidental</td>
</tr>
<tr>
<td>3161</td>
<td>Pinus halepensis</td>
<td>primera fase de edificación de la pesquería</td>
<td>Oriental</td>
</tr>
<tr>
<td>3161-1</td>
<td>Pinus pinea/pinaster</td>
<td>primera fase de edificación de la pesquería</td>
<td>Oriental</td>
</tr>
<tr>
<td>3161</td>
<td>Pinus pinea/pinaster</td>
<td>primera fase de edificación de la pesquería</td>
<td>Oriental</td>
</tr>
<tr>
<td>3161-2</td>
<td>Pinus pinea/pinaster</td>
<td>primera fase de edificación de la pesquería</td>
<td>Oriental</td>
</tr>
<tr>
<td>3161-3</td>
<td>Pinus pinea/pinaster</td>
<td>primera fase de edificación de la pesquería</td>
<td>Oriental</td>
</tr>
<tr>
<td>3162</td>
<td>Pinus halepensis</td>
<td>primera fase de edificación de la pesquería</td>
<td>Oriental</td>
</tr>
<tr>
<td>3163</td>
<td>Pinus pinea/pinaster</td>
<td>elementos leñosos caídos en destrucción del edificio</td>
<td>Media</td>
</tr>
<tr>
<td>3163-1</td>
<td>Pinus pinea/pinaster</td>
<td>elementos leñosos caídos en destrucción del edificio</td>
<td>Media</td>
</tr>
<tr>
<td>3163-2</td>
<td>Pinus pinea/pinaster</td>
<td>elementos leñosos caídos en destrucción del edificio</td>
<td>Media</td>
</tr>
<tr>
<td>3163-3</td>
<td>Pinus pinea/pinaster</td>
<td>elementos leñosos caídos en destrucción del edificio</td>
<td>Media</td>
</tr>
<tr>
<td>3175</td>
<td>Pinus pinea/pinaster</td>
<td>primera fase de edificación de la pesquería</td>
<td>Occidental</td>
</tr>
<tr>
<td>3177</td>
<td>Pinus pinea/pinaster</td>
<td>disoluciones arcillosas constructivas en nivel de incendio y destrucción del edificio</td>
<td>Occidental</td>
</tr>
<tr>
<td>3178</td>
<td>Pinus pinea/pinaster</td>
<td>disoluciones arcillosas constructivas en nivel de incendio y destrucción del edificio</td>
<td>Occidental</td>
</tr>
<tr>
<td>3178-5</td>
<td>Pinus pinea/pinaster</td>
<td>disoluciones arcillosas constructivas en nivel de incendio y destrucción del edificio</td>
<td>Occidental</td>
</tr>
<tr>
<td>3178</td>
<td>Pinus pinea/pinaster</td>
<td>disoluciones arcillosas constructivas en nivel de incendio y destrucción del edificio</td>
<td>Occidental</td>
</tr>
<tr>
<td>3180</td>
<td>Pinus pinea/pinaster</td>
<td>primera fase de edificación de la pesquería</td>
<td>Oriental</td>
</tr>
<tr>
<td>3184</td>
<td>Olea europaea</td>
<td>primera fase de edificación de la pesquería</td>
<td>Oriental</td>
</tr>
<tr>
<td>3185</td>
<td>Pinus pinea/pinaster</td>
<td>primera fase de edificación de la pesquería</td>
<td>Occidental</td>
</tr>
<tr>
<td>3192</td>
<td>Pinus pinea/pinaster</td>
<td>primera fase de edificación de la pesquería</td>
<td>Occidental</td>
</tr>
<tr>
<td>3192-2</td>
<td>Pinus pinea/pinaster</td>
<td>primera fase de edificación de la pesquería</td>
<td>Occidental</td>
</tr>
<tr>
<td>3193</td>
<td>Pinus pinea/pinaster</td>
<td>primera fase de edificación de la pesquería</td>
<td>Oriental</td>
</tr>
<tr>
<td>3195</td>
<td>Pinus halepensis</td>
<td>Seguramente no empalizada</td>
<td>Media</td>
</tr>
<tr>
<td>3196</td>
<td>Pinus pinea/pinaster</td>
<td>sustentante</td>
<td>Media</td>
</tr>
<tr>
<td>3197</td>
<td>Pinus pinea/pinaster</td>
<td>sustentante</td>
<td>Media</td>
</tr>
<tr>
<td>3197</td>
<td>Pinus pinea/pinaster</td>
<td>sustentante</td>
<td>Media</td>
</tr>
<tr>
<td>3198</td>
<td>Pinus pinea/pinaster</td>
<td>sustentante</td>
<td>Occidental</td>
</tr>
<tr>
<td>3199</td>
<td>Pinus pinea/pinaster</td>
<td>postes sustentantes de posible empalizada entre departamentos oriental y occidental del edificio</td>
<td>Media</td>
</tr>
<tr>
<td>3200</td>
<td>Pinus pinea/pinaster</td>
<td>postes sustentantes de posible empalizada entre departamentos oriental y occidental del edificio</td>
<td>Media</td>
</tr>
<tr>
<td>3204</td>
<td>Olea europaea</td>
<td>techumbre</td>
<td>Occidental</td>
</tr>
<tr>
<td>3205</td>
<td>Olea europaea</td>
<td>techumbre</td>
<td>Occidental</td>
</tr>
<tr>
<td>3206</td>
<td>Pinus pinea/pinaster</td>
<td>techumbre</td>
<td>Occidental</td>
</tr>
</tbody>
</table>

Tabla 4.16. Continuación.
<table>
<thead>
<tr>
<th>Número</th>
<th>Árbol</th>
<th>Localización</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>3207</td>
<td>Olea europaea</td>
<td>techumbre</td>
<td>Occidental</td>
</tr>
<tr>
<td>3208</td>
<td>Pinus halepensis</td>
<td>techumbre</td>
<td>Occidental</td>
</tr>
<tr>
<td>3209</td>
<td>Pinus halepensis</td>
<td>Nivel de abandono</td>
<td>Oriental</td>
</tr>
<tr>
<td>3210</td>
<td>Monocotyledoneae</td>
<td>Nivel de suelo sobre el que se apoya la estera</td>
<td>Oriental</td>
</tr>
<tr>
<td>3211</td>
<td>Pinus pinea/pinaster</td>
<td>posible viga techumbre</td>
<td>Occidental</td>
</tr>
<tr>
<td>3213</td>
<td>Pinus pinea/pinaster</td>
<td>posible viga techumbre</td>
<td>Occidental</td>
</tr>
<tr>
<td>3217</td>
<td>Pinus pinea/pinaster</td>
<td>posible viga techumbre</td>
<td>Oriental</td>
</tr>
<tr>
<td>3218</td>
<td>Pinus pinea/pinaster</td>
<td>posible viga techumbre</td>
<td>Oriental</td>
</tr>
<tr>
<td>3219</td>
<td>Pinus pinea/pinaster</td>
<td>posible viga techumbre</td>
<td>Oriental</td>
</tr>
<tr>
<td>3222</td>
<td>Pinus pinea/pinaster</td>
<td>Fase IV primera fase de edificación de la pesquería</td>
<td>Media</td>
</tr>
<tr>
<td>3223</td>
<td>Olea europaea</td>
<td>postes sustentantes de posible empalizada entre departamentos oriental y occidental del edificio</td>
<td>Media</td>
</tr>
<tr>
<td>3225</td>
<td>Pinus halepensis</td>
<td>Fase IV primera fase de edificación de la pesquería</td>
<td>Media</td>
</tr>
<tr>
<td>3226</td>
<td>Pinus halepensis</td>
<td>Fase IV primera fase de edificación de la pesquería</td>
<td>Media</td>
</tr>
<tr>
<td>3226-2</td>
<td>Pinus halepensis</td>
<td>Fase IV primera fase de edificación de la pesquería</td>
<td>Media</td>
</tr>
<tr>
<td>3229</td>
<td>Pinus pinea/pinaster</td>
<td>postes sustentantes de posible empalizada entre departamentos oriental y occidental del edificio</td>
<td>Media</td>
</tr>
<tr>
<td>3230</td>
<td>Pinus pinea/pinaster</td>
<td>postes sustentantes de posible empalizada entre departamentos oriental y occidental del edificio</td>
<td>Media</td>
</tr>
<tr>
<td>3231</td>
<td>Pinus sp.</td>
<td>postes sustentantes de posible empalizada entre departamentos oriental y occidental del edificio</td>
<td>Media</td>
</tr>
<tr>
<td>3232</td>
<td></td>
<td>nivel de abandono</td>
<td></td>
</tr>
<tr>
<td>3234</td>
<td>Pinus sp.</td>
<td>elementos leñosos caídos en destrucción del edificio</td>
<td>Oriental</td>
</tr>
<tr>
<td>3236</td>
<td>Olea europaea</td>
<td>viga</td>
<td>Oriental</td>
</tr>
<tr>
<td>3237</td>
<td>Olea europaea</td>
<td>viga</td>
<td>Oriental</td>
</tr>
<tr>
<td>3246</td>
<td>Pinus pinea/pinaster</td>
<td>disoluciones arcillosas constructivas en nivel de incendio y destrucción de edificio ITSM</td>
<td>Occidental</td>
</tr>
<tr>
<td>3246</td>
<td>Pinus pinea/pinaster</td>
<td>disoluciones arcillosas constructivas en nivel de incendio y destrucción de edificio ITSM</td>
<td>Occidental</td>
</tr>
<tr>
<td>3247</td>
<td>Pinus halepensis</td>
<td>techumbre</td>
<td>Oriental</td>
</tr>
<tr>
<td>3248</td>
<td>Pinus pinea/pinaster</td>
<td>techumbre</td>
<td>Oriental</td>
</tr>
<tr>
<td>3251</td>
<td>Pinus pinea/pinaster</td>
<td>Rama carbonizada</td>
<td>Media</td>
</tr>
<tr>
<td>3252</td>
<td>Pinus pinea/pinaster</td>
<td>Rama carbonizada</td>
<td>Media</td>
</tr>
<tr>
<td>3253</td>
<td>Pinus pinea/pinaster</td>
<td>Rama carbonizada</td>
<td>Media</td>
</tr>
<tr>
<td>3254</td>
<td>Pinus pinea/pinaster</td>
<td>Rama carbonizada</td>
<td>Media</td>
</tr>
<tr>
<td>3255</td>
<td>Olea europaea</td>
<td>Rama carbonizada</td>
<td>Media</td>
</tr>
<tr>
<td>3257</td>
<td>Pinus pinea/pinaster</td>
<td>Rama carbonizada, bajo conjunto de tablas.</td>
<td>Media</td>
</tr>
<tr>
<td>3209/3239</td>
<td>Pinus pinea/pinaster</td>
<td>nivel de abandono</td>
<td>Oriental</td>
</tr>
</tbody>
</table>

Tabla 4.16. Continuación.
IV.1.2.2.2. Resultados antracológicos de la fase Gavilanes III (GV-III)

- Carbón disperso

Los niveles de ocupación protohistórica, identificados en la seriación estratigráfica y cronocultural del yacimiento como Fase de Gavilanes III, aparecieron muy deteriorados debido a la acción intrusiva de las remodelaciones que se asocian a la posterior Fase de Gavilanes II cuyas construcciones arrasan en buena medida los distintos horizontes constructivos de esta fase previa. No obstante, hemos podido analizar un total de 10 unidades estratigráficas, que han permitido el estudio de 443 fragmentos de carbón. La riqueza antracológica de las diferentes muestras ha sido, sin embargo, muy dispar, destacando sobre todo la UE 1253 (fig. 4.30), de la que han podido ser estudiados 212 fragmentos de carbón. Esta unidad aparece definida como un alzado de adobe anaranjado caído, por lo que resulta llamativo que contenga una cantidad de carbones tan elevada. En lo que concierne a la variabilidad taxonómica obtenida, ha sido posible la diferenciación de 24 taxones, incluyendo indeterminados e indeterminables, pero sin tener en cuenta el fragmento de bráctea de piña, que puede ser considerado como perteneciente al taxón *Pinus* sp. (tabla 4.17).

Los dos taxones más ampliamente representados son *Pinus halepensis*, con más de un 21% del total y *Pistacia lentiscus*, que se acerca al 20%. De los taxones restantes sólo *Olea europaea* supera el 10% del total analizado, mientras que el resto no llega en ningún caso a esta frecuencia de aparición. Son destacables, no obstante, los valores del conjunto de las quenopodiáceas (*Chenopodiaceae + Atriplex halimus*), que sumadas suponen más de un 6% del total, de *Tamarix* sp., con casi un 5%, y de la suma de las labiadas (*Labiatae + Rosmarinus officinalis*), que llega casi al 7% del total del registro antracológico obtenido (tabla 4.17).
GAVILANES III

<table>
<thead>
<tr>
<th>TAXA</th>
<th>Nº</th>
<th>Nº</th>
<th>Nº</th>
<th>Nº</th>
<th>Nº</th>
<th>Nº</th>
<th>Nº</th>
<th>Nº</th>
<th>Nº %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus halepensis</td>
<td>71</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>7</td>
<td>97</td>
<td>21,9</td>
<td></td>
</tr>
<tr>
<td>Pinus pinea/pinaster</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>1,81</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinus sp.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>8</td>
<td>1,81</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bráctea de piña</td>
<td>1</td>
<td>1</td>
<td>0,22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coniferae</td>
<td>9</td>
<td>2,03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephedra sp.</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>0,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monocotyledonae</td>
<td>4</td>
<td>4</td>
<td>0,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atriplex halimus</td>
<td>1</td>
<td>1</td>
<td>0,45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chenopodiaceae</td>
<td>8</td>
<td>14</td>
<td>5,87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cistaceae</td>
<td>2</td>
<td>3</td>
<td>0,68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compositae</td>
<td>1</td>
<td>1</td>
<td>0,22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daphne gnidium/</td>
<td>1</td>
<td>1</td>
<td>0,45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thymelaeae hirsuta</td>
<td>1</td>
<td>1</td>
<td>0,45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erica sp.</td>
<td>1</td>
<td>9</td>
<td>10</td>
<td>2,26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labiatae</td>
<td>4</td>
<td>6</td>
<td>11</td>
<td>2,48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leguminosae</td>
<td>8</td>
<td>8</td>
<td>1,81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olea europaea</td>
<td>17</td>
<td>2</td>
<td>17</td>
<td>12,19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
<td>27</td>
<td>4</td>
<td>21</td>
<td>19,64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prunus sp.</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>0,68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quercus ilex/coccifera</td>
<td>17</td>
<td>2</td>
<td>19</td>
<td>4,29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhhamnus/Phillyrea sp.</td>
<td>1</td>
<td>1</td>
<td>0,22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
<td>22</td>
<td>1</td>
<td>23</td>
<td>5,19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamarix sp.</td>
<td>12</td>
<td>6</td>
<td>22</td>
<td>4,97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf. Withania frutescens</td>
<td>2</td>
<td>2</td>
<td>0,45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indeterminado</td>
<td>1</td>
<td>1</td>
<td>0,45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indeterminable</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>7,23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>212</td>
<td>82</td>
<td>34</td>
<td>35</td>
<td>60</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 4.17. Resultados antracológicos de la fase Gavilanes III.

- **Carbón concentrado**

El carbón concentrado en la fase Gavilanes III aparece representado por los restos de una estructura de carácter metalúrgico (11TS), por un hogar doméstico, y por el relleno de tres fosas vertedero, cuyos resultados se presentan a continuación.

En lo que concierne a los restos de la estructura metalúrgica 11TS (Fase IIIc TS), se han podido estudiar un total de 50 fragmentos de carbón, de entre los cuales han sido identificados hasta 11 taxones diferentes. Las quenopodiáceas (*Chenopodiaceae + Atriplex halimus*) suponen conjuntamente más de un 34% del total analizado, por lo que con mucha diferencia son el elemento más identificado. Le siguen en cuanto a presencia relativa *Pistacia lentiscus*, con un 20% del total, *Tamarix* sp. con un 14% y *Pinus halepensis* con un 12%. El resto de los elementos no alcanzan en ningún caso el 10% del total analizado (tabla 4.18).
Capítulo IV. Resultados antracológicos

<table>
<thead>
<tr>
<th>TAXA</th>
<th>Nº</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus halepensis</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Coniferae</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Ephedra sp.</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Atriplex halimus</td>
<td>13</td>
<td>26</td>
</tr>
<tr>
<td>Chenopodiaceae</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Cistaceae</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Daphne gnidium/Thymelaea hirsuta</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Olea europaea</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Tamarix sp.</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>Indeterminable</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabla 4.18. Resultados antracológicos asociados a la estructura metalúrgica 11TS.

La UE 1698 (fig. 4.31) apareció definida como un hogar desarrollado en la terraza superior (sector oriental), asociado al nivel de uso/pavimento 1697 del Ambiente 1700/1697 (GV-IIIb TS). Se trató de una acumulación de ceniza, de forma circular en planta, de unos 50 cm de diámetro y emplazada en la esquina de los muros 1700 y 1699 sobre los que apoyaba. Presentó un ligero buzamiento hacia el sur ya que se disponía sobre el sedimento/adobe 1662, con una clara inclinación en dicha orientación (Ros Sala, en prensa).

De este hogar se han estudiado 100 fragmentos de carbón, identificándose cinco taxones: *Pistacia lentiscus* (93%), *Rosmarinus officinalis* (3%), *Erica* sp. (1%) y Labiatae (1%). Aparecieron también dos fragmentos indeterminables (tabla 4.19).
Este hogar presenta una continuidad en el patrón taxonómico con los analizados para la fase Gavilanes IV. Así, *Pistacia lentiscus*, con un 93% del total, se convierte en la leña más utilizada para alimentar esta estructura, con mucha distancia porcentual sobre el resto de los elementos identificados. Por otro lado, el cortejo que acompaña al lentisco en este caso coincide con la tendencia apuntada para la Fase IV, en tanto en cuanto sólo aparecen representados cuatro taxones, y todos ellos de carácter mediterráneo (*Erica* sp., Labiatae y *Rosmarinus officinalis*), sin que entre ellos hayamos podido documentar la presencia de las plantas que se desarrollarían en las proximidades de la línea de costa, como las quenopodiáceas.

En lo que concierne a las fosas documentadas en esta fase, la UE 1498 se corresponde con el segundo relleno de la fosa-vertedero 1497, hallado en la Terraza Superior, y asociado al Ambiente constructivo 1584/1618 (Ros Sala, en prensa). De un total de 70 fragmentos de carbón analizados, se han podido identificar 10 taxones diferenciados, incluyendo los fragmentos indeterminables. Se trata de *Pistacia lentiscus* (67,14%), Chenopodiaceae (5,71%), *Olea europaea* (5,71%), *Rosmarinus officinalis* (5,71%), *Pinus halepensis* (4,28%), Labiatae (4,28%), *Tamarix* sp. (2,86%), *Fraxinus* sp. (1,43%) y *Periploca angustifolia* (1,43%) (tabla 4.20).

La interpretación del único fragmento de *Fraxinus* sp. documentado hasta el momento en Punta de los Gavilanes ha de realizarse desde una perspectiva etnológica, ya que se trata con toda seguridad de un aporte lejano, cuya procedencia pudo ser un ecosistema ripario o bien alguna zona umbrosa como un fondo de barranco de alguna elevación pronunciada. Posiblemente se trató en realidad del desecho de alguna herramienta o objeto elaborado con esta madera, ya que la flexibilidad de la misma ha hecho que sea utilizada para la realización de diversas herramientas y armas desde la Prehistoria, y en la actualidad para la fabricación de bastones y garrotas (Galán et al. 1998).

Los dos rellenos restantes, 1688 y 1691, sin embargo, fueron fosas-vertedero intrusivas sobre la caída del muro 1253.
La fosa 1688 (fig. 4.32) apareció configurada como un sedimento bastante plástico, de color gris verdoso y una tonalidad oscura que parecía indicar el contenido de un alto porcentaje de materia orgánica (Ros Sala, en prensa). En este caso han podido estudiarse un total de 73 fragmentos, con una variabilidad taxonómica muy amplia, con 16 taxa diferenciados: *Olea europaea* (28,76%), *Pistacia lentiscus* (21,92%), *Pinus halepensis* (13,33%), *Pinus* sp. (4,11%), Monocotyledoneae (4,11%), Chenopodiaceae (4,11%), *Daphne gnidium/Thymelaea hirsuta* (4,11%), *Tamarix* sp. (4,11%), *Pinus pinea/pinaster* (2,74%), Cistaceae (1,37%), Compositae (1,37%), Labiatae (1,37%), *Prunus* sp. (1,37%) y *Withania frutescens* (1,37%). Finalmente, aparecieron dos fragmentos considerados como Indeterminado, y un carbón Indeterminable (tabla 4.20).

Por último, la UE 1691 (fig. 4.32) presentaba unas dimensiones de 56 x 36 cm de diámetro, y una profundidad de apenas 5 cm (Ros Sala, en prensa). Sólo ha ofrecido un fragmento de carbón de quenopodiácea (tabla 4.20).

En el caso de estas tres fosas, el carbón recuperado, mezclado con el sedimento, presenta unos resultados semejantes y equiparables a los obtenidos en los niveles de hábitat. Por ello, se podría haber considerado en este estudio las citadas unidades estratigráficas dentro del grupo del carbón disperso. No obstante, se ha optado en este caso por su individualización, con el fin de poder contrastar estas consideraciones metodológicas con las que previamente se han realizado en otros estudios antracológicos en los que se había llegado a la conclusión de que este tipo de estructuras no presentan novedades taxonómicas significativas con respecto al carbón diseminado en los niveles de hábitat (Bernabéu y Badal 1990). En el caso presentado, de hecho, en el interior de las estructuras sólo aparecen dos taxones que no se registran en los niveles dispersos *Fraxinus* sp. y *Periploca angustifolia*, ya que el resto aparecen todos en la fase III, en proporciones similares a las que ofrecen las fosas-vertedero, salvo la sobre representación de *Pistacia lentiscus* en la 1498 (fig. 4.33).
Recursos forestales en un medio semiárido.
Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

<table>
<thead>
<tr>
<th>TAXA</th>
<th>1498</th>
<th>1688</th>
<th>1691</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus halepensis</td>
<td>3</td>
<td>4,28</td>
<td>9</td>
</tr>
<tr>
<td>Pinus pinea/pinaster</td>
<td>2</td>
<td>2,74</td>
<td></td>
</tr>
<tr>
<td>Pinus sp.</td>
<td>3</td>
<td>4,11</td>
<td></td>
</tr>
<tr>
<td>Monocotyledoneae</td>
<td>3</td>
<td>4,11</td>
<td></td>
</tr>
<tr>
<td>Chenopodiaceae</td>
<td>4</td>
<td>5,71</td>
<td>3</td>
</tr>
<tr>
<td>Cistaceae</td>
<td>1</td>
<td>1,37</td>
<td></td>
</tr>
<tr>
<td>Compositae</td>
<td>1</td>
<td>1,37</td>
<td></td>
</tr>
<tr>
<td>Daphne gnidium/Thymelaea hirsuta</td>
<td>3</td>
<td>4,11</td>
<td></td>
</tr>
<tr>
<td>Fraxinus sp.</td>
<td>1</td>
<td>1,43</td>
<td></td>
</tr>
<tr>
<td>Labiatae</td>
<td>3</td>
<td>4,29</td>
<td>1</td>
</tr>
<tr>
<td>Olea europaea</td>
<td>4</td>
<td>5,71</td>
<td>21</td>
</tr>
<tr>
<td>Periploca angustifolia</td>
<td>1</td>
<td>1,43</td>
<td></td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
<td>47</td>
<td>67,14</td>
<td>16</td>
</tr>
<tr>
<td>Prunus sp.</td>
<td>1</td>
<td>1,37</td>
<td></td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
<td>4</td>
<td>5,72</td>
<td></td>
</tr>
<tr>
<td>Tamarix sp.</td>
<td>2</td>
<td>2,86</td>
<td>3</td>
</tr>
<tr>
<td>cf. Withania frutescens</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Indeterminado</td>
<td>2</td>
<td>2,74</td>
<td></td>
</tr>
<tr>
<td>Indeterminable</td>
<td>1</td>
<td>1,43</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL</td>
<td>70</td>
<td>100</td>
<td>73</td>
</tr>
</tbody>
</table>

Tabla 4.20. Resultados antracológicos de las fosas asociadas a la fase Gavilanes III.

Figura 4.33. Histograma de porcentajes que muestra la comparativa taxonómica entre las fosas 1498 y 1688 y el carbón disperso de la fase Gavilanes III.

IV.1.2.2.3. Resultados antracológicos de la fase Gavilanes II (GV-II)

- Carbón disperso

De la fase Gavilanes II han podido ser estudiadas un total de 11 muestras, que han ofrecido 449 fragmentos de carbón, y un total de 20 taxones, incluyendo indeterminados e indeterminables. En esta fase se produce un cambio significativo, ya que el taxón mayoritario asociado a los niveles habitacionales es Chenopodiaceae, con un 34,08% del total del carbón analizado. El segundo taxón más representado es Pistacia lentiscus, con menos del 25% de presencia relativa, seguido de Pinus halepensis (14,7%) y de Olea europaea (10,46%). El resto de los taxones identificados no llegan en ningún caso al 5% del total analizado, y la mayoría, de hecho, oscilan entre 0 y 2% de presencia relativa en el registro (tabla 4.21).

<table>
<thead>
<tr>
<th>TAXA</th>
<th>Nº</th>
<th>Nº</th>
<th>Nº</th>
<th>Nº</th>
<th>Nº</th>
<th>Nº</th>
<th>Nº</th>
<th>Nº</th>
<th>Nº</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus halepensis</td>
<td>9</td>
<td>53</td>
<td>3</td>
<td>1</td>
<td>66</td>
<td>14,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinus pinea/pinaster</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>4</td>
<td>0,89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephedra sp.</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>0,45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf. Artemisia sp.</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0,67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chenopodiaceae</td>
<td>85</td>
<td>3</td>
<td>1</td>
<td>8</td>
<td>51</td>
<td>153</td>
<td>34,08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cistaceae</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td>2</td>
<td>0,45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daphne gnidium/Thymelae hirsuta</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td>5</td>
<td>1,11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labiatae</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td></td>
<td>9</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leguminosae</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0,45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maytenus senegalensis</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0,22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olea europaea</td>
<td>35</td>
<td>6</td>
<td>6</td>
<td></td>
<td>47</td>
<td>10,46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Periploca angustifolia</td>
<td>1</td>
<td>14</td>
<td>3</td>
<td>18</td>
<td>401</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
<td>41</td>
<td>45</td>
<td>5</td>
<td>10</td>
<td>101</td>
<td>24,72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prunus sp.</td>
<td></td>
<td>1</td>
<td>10</td>
<td>11</td>
<td>2,22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td>2</td>
<td>0,45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamarix sp.</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1,11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Withania frutescens</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>0,22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indeterminado</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>1,11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indeterminable</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td>6</td>
<td>1,34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>2</td>
<td>92</td>
<td>50</td>
<td>53</td>
<td>2</td>
<td>4</td>
<td>100</td>
<td>16</td>
<td>10</td>
</tr>
</tbody>
</table>

Tabla 4.21. Resultados antracológicos asociados a la fase Gavilanes II.

- Carbón concentrado

Para la fase Gavilanes II se han estudiado cuatro estructuras de combustión de carácter especializado cuya funcionalidad estuvo en conexión con la actividad metalúrgica desarrollada en el promontorio durante este período. Se trata de los hornos 2TM, 4TM, 5TS y 9TS. Además, se ha estudiado el hogar de carácter doméstico 1166.
En lo que concierne al Horno metalúrgico 2TM (fig. 4.34) han sido estudiados un total de 80 fragmentos de carbón, de entre los cuales se han diferenciado únicamente 7 taxones distintos (tabla 4.22). La carga fundamental de este horno estuvo compuesta por lentisco, que supone casi un 44% del total analizado, seguido por *Pinus halepensis*, con un 27%. Las quenopodiáceas son el tercer elemento destacable, con un 12,5% del total analizado.

![Horno 2TM](image)

Figura 4.34. Horno 2TM (Foto: M. M. Ros Sala).

<table>
<thead>
<tr>
<th>TAXA</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus halepensis</td>
<td>22</td>
<td>27,5</td>
</tr>
<tr>
<td>Juniperus sp.</td>
<td>1</td>
<td>1,25</td>
</tr>
<tr>
<td>Chenopodiaceae</td>
<td>10</td>
<td>12,5</td>
</tr>
<tr>
<td>Cistaceae</td>
<td>1</td>
<td>1,25</td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
<td>35</td>
<td>43,75</td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
<td>5</td>
<td>6,25</td>
</tr>
<tr>
<td>Tamarix sp.</td>
<td>6</td>
<td>7,5</td>
</tr>
<tr>
<td>TOTAL</td>
<td>80</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabla 4.22. Resultados antracológicos asociados al Horno 2TM.

El contenido fundamental de la Estructura/horno 4TM (fig. 4.35) estaba conformado por un elemento de cestería elaborado en esparto (UE 1451) (fig. 4.36), del cual observamos 11 fragmentos (tabla 4.23). Que se hayan conservado implica una parada brusca de la combustión dentro del horno poco después de haber comenzado la ignición, ya que en el caso contrario se habría producido la total calcinación de estos restos de escaso grosor.
Capítulo IV. Resultados antropológicos

Figura 4.35. Horno 4TM (Foto: M. M. Ros Sala).

Figura 4.36. Parte de la cestería documentada en el interior del Horno 4TM (Foto: M. M. Ros Sala).
El horno 5TS (fig. 4.37) se trata de una estructura de fundición excavada en el propio terreno hasta la roca de base, en donde estaba ubicado su solero inicial. Este cuenco o solero tenía una forma oval que fue recreciendo sus paredes como consecuencia de la acumulación de sus propios desechos. El horno posee en su parte baja y en la pared occidental dos aberturas destinadas posiblemente a la inducción de aire desde fuelles o a su aireación. Un tercer orificio de mayores dimensiones y ubicado en la zona colindante a la solera debió ser utilizado como sangrador de la escoria producida en dicha solera (Ros Sala et al. 2003).

<table>
<thead>
<tr>
<th>TAXA</th>
<th>Nº</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monocotyledoneae</td>
<td>11</td>
</tr>
</tbody>
</table>

Tabla 4.23. Resultados antracológicos asociados al Horno 4TM.

<table>
<thead>
<tr>
<th>TAXA</th>
<th>Nº</th>
<th>Nº</th>
<th>Nº</th>
<th>Nº</th>
<th>Nº</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus halepensis</td>
<td>1</td>
<td>1</td>
<td>1,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf. Artemisia sp.</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atriplex halimus</td>
<td>12</td>
<td>1</td>
<td>8</td>
<td>19</td>
<td>42</td>
<td>82</td>
</tr>
<tr>
<td>Chenopodiaceae</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>1,1</td>
</tr>
<tr>
<td>Cistacea</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>0,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compositae</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>Daphne gnidium/Thymelaea hirsuta</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>1,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labiatae</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>0,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leguminosae</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olea europaea</td>
<td>14</td>
<td>1</td>
<td>15</td>
<td>15</td>
<td>1,8</td>
<td></td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
<td>346</td>
<td>76</td>
<td>2</td>
<td>151</td>
<td>575</td>
<td>69,6</td>
</tr>
<tr>
<td>Prunus sp.</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>12</td>
<td>1,45</td>
<td></td>
</tr>
<tr>
<td>Indeterminado</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>2</td>
<td>13</td>
<td>1,6</td>
</tr>
<tr>
<td>Indeterminable</td>
<td>10</td>
<td>8</td>
<td>68</td>
<td>3</td>
<td>89</td>
<td>10,8</td>
</tr>
<tr>
<td>TOTAL</td>
<td>375</td>
<td>89</td>
<td>17</td>
<td>295</td>
<td>50</td>
<td>826</td>
</tr>
</tbody>
</table>

Tabla 4.24. Resultados antracológicos asociados al horno 5TS.
En este horno se han estudiado un total de 826 fragmentos de carbón procedentes de 5 unidades estratigráficas asociadas directamente al funcionamiento de la estructura. En total se han identificado 14 taxonómica, incluyendo los fragmentos indeterminados e indeterminables. La mayoría de las muestras presentan una relativa pobreza taxonómica, con excepción de la UE 1505, que contenía todos los elementos identificados excepto cf. *Artemisia* sp. En orden decreciente los taxones identificados son los siguientes: *Pistacia lentiscus* (69,6%), *Atriplex halimus* (10%), *Olea europaea* (1,8%), *Daphne gnidium/Thymelaea hirsuta* (1,1%), *Chenopodiaceae* (1,1%), *Pinus halepensis* (1,1%), *Prunus* sp. (1,45%), *Compositae* (0,8%), *Cistaceae* (0,6%), *Labiatae* (0,6%), cf. *Artemisia* sp. (0,2%) y *Leguminosae* (0,2%) (tabla 4.24).

Finalmente, el horno 9TS (fig. 4.38), de carácter metalúrgico, apareció asociado al departamento industrial 5TS (1659/1676). Fue documentada una concentración de ceniza de color blanquecino, de forma oval, (30x18 cm.) delimitada al Este por un anillo de adobe de color rojo, más degradado en su lado Este, sentido hacia el que tiene cierto buzamiento, y de unos 50 cm de diámetro.
De este horno se han analizado 100 fragmentos de carbón, obteniendo una lista florística compuesta por 10 taxones. *Pistacia lentiscus*, con un 59% del total, es el taxón más representado, seguido muy de lejos por Chenopodiaceae 20%. El resto no supera en ningún caso el 10% de presencia relativa: *Pinus halepensis* (6%), *Olea europaea* (4%), Labiatae (3%), Leguminosae (2%), Monocotyledoneae (1%), *Rhamnus/Phillyrea* sp. (1%) y *Rosmarinus officinalis* (1%) (tabla 4.25).

<table>
<thead>
<tr>
<th>TAXA</th>
<th>Nº</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus halepensis</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Monocotyledoneae</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Chenopodiaceae</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Labiatae</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Leguminosae</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Olea europaea</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
<td>59</td>
<td>59</td>
</tr>
<tr>
<td>Rhamnus/Phillyrea sp.</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Indeterminable</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabla 4.25. Resultados antracológicos asociados al horno 9TS.
En lo que se refiere a la UE 1166 se trata de un hogar circular, de 0,62 m. de diámetro, que apareció encajado en un grueso pavimento que cubría todo el departamento 2TM de la unidad productiva 2TM definida en la factoría de fundición de plata de Gavilanes II. Esta estructura se ubicaba en el centro de la dependencia (fig. 4.39). La funcionalidad de este hogar estaría precisamente relacionada con la de la estancia, que parece que combinó las actividades puramente domésticas o residenciales, con una labor auxiliar de las estancias que se encontraban situadas al norte (Ros Sala, en prensa).

![Figura 4.39. Situación del hogar 1166 en el plano de la factoría Gavilanes II, y foto del hogar (foto: M. M. Ros Sala).](image)

Procedentes de este hogar se han analizado únicamente 20 fragmentos de carbón (tabla 4.26). El hecho de que se haya recuperado tan poca cantidad obedece, además de a un fuerte arrasamiento producto de un largo periodo de abandono, también al método de recogida manual por el que sólo los fragmentos de mayor tamaño fueron tomados en consideración. Se han identificado en total 8 taxones, entre los que destaca *Atriplex halimus*, que presenta un 35% del total analizado, seguido de *Pistacia lentiscus*, con un 25%. En menor cantidad han aparecido fragmentos de *Pinus* sp. (10%), *Chenopodiaceae* (5%), *Daphne gnidium/Thymelaela hirsuta* (5%) y *Olea europaea* (5%). Finalmente, dos fragmentos resultaron indeterminados, y uno indeterminable.
Recursos forestales en un medio semiárido.
Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

IV.1.2.2.4. Resultados antracológicos de la fase Gavilanes I (GV-I)

- Carbón disperso

La fase arqueológica Gavilanes I es la que menos cantidad de carbones ha ofrecido, ya que se han podido estudiar un total de 173 fragmentos, asociados a 7 unidades estratigráficas distintas. También se trata del período de ocupación que ha ofrecido una variabilidad taxonómica menos amplia, en consonancia con los pocos carbones recuperados y analizados. Solamente han sido identificados 15 elementos diferenciados, incluyendo los fragmentos considerados como indeterminados o indeterminables (tabla 4.27). *Olea europaea* y *Pinus halepensis*, ambos con más de un 23% del total del registro fueron los combustibles más utilizados en esta fase ocupacional. Destacan también los valores ofrecidos por las quenopodiáceas, que en su conjunto (*Chenopodiaceae* + *Atriplex halimus*) suponen en torno a un 21% del total analizado. *Pistacia lentiscus* (10,98%) presenta valores muy bajos en relación con el resto de las fases de ocupación del promontorio. El resto de taxones se encuentran por debajo del 5%, sólo *Juniperus* sp. se acerca a este valor.

<table>
<thead>
<tr>
<th>TAXA</th>
<th>Nº</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus sp.</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Atriplex halimus</td>
<td>7</td>
<td>35</td>
</tr>
<tr>
<td>Chenopodiaceae</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Lycium intricatum</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Olea europaea</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>Indeterminado</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Indeterminable</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>TOTAL</td>
<td>20</td>
<td>100</td>
</tr>
</tbody>
</table>

Capítulo IV. Resultados antracológicos

<table>
<thead>
<tr>
<th>TAXA</th>
<th>1468</th>
<th>1569</th>
<th>1582</th>
<th>1583</th>
<th>1612</th>
<th>1651</th>
<th>1658</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus halepensis</td>
<td>28</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>Juniperus sp.</td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>cf. Tetraclinis articulata</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Monocotyledoneae</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>cf. Artemisia sp.</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Atriplex halimus</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Chenopodiaceae</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Labiatae</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Olea europaea</td>
<td>4</td>
<td>36</td>
<td></td>
<td>1</td>
<td></td>
<td>41</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
<td>11</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td></td>
<td>19</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Quercus ilex/coccifera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>0,58</td>
</tr>
<tr>
<td>Rhamnus/Phillyrea sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>0,58</td>
</tr>
<tr>
<td>Indeterminado</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>0,58</td>
</tr>
<tr>
<td>TOTAL</td>
<td>40</td>
<td>50</td>
<td>20</td>
<td>12</td>
<td>40</td>
<td>1</td>
<td></td>
<td>173</td>
</tr>
</tbody>
</table>

Tabla 4.27. Resultados antracológicos asociados a la fase Gavilanes I.

- Carbón concentrado

Asociadas a la fase Gavilanes I han sido estudiadas tres estructuras de combustión de carácter metalúrgico. Se trata de las estructuras metalúrgicas 6TS, alojada en el departamento 1TS, y las 7TS y 8TS, que aparecieron ubicadas en el interior del departamento 4TS (Ros Sala, en prensa).

Procedentes de la estructura de combustión 6TS se han estudiado 100 fragmentos de carbón, obteniendo 6 taxones: *Pistacia lentiscus* (54%), *Olea europaea* (33%), *Erica* sp. (2%), Coniferae (1%), Leguminosae (1%). Finalmente, aparecieron hasta 9 fragmentos indeterminables (tabla 4.28).

<table>
<thead>
<tr>
<th>TAXA</th>
<th>Nº</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coniferae</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Erica sp.</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Leguminosae</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Olea europaea</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>Indeterminable</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabla 4.28. Resultados antracológicos asociados a la estructura metalúrgica 6TS.
Asociados a la estructura metalúrgica 7TS (fig. 4.40) han sido analizados un total de 150 carbones, y se ha obtenido una lista florística de 5 taxones. *Pistacia lentiscus* (47,33%) y *Olea europaea* (45,33%) son los más representados, mientras que los valores de *Ephedra* sp. (2%) y de Chenopodiaceae (0,67%) son muy bajos (tabla 4.29).

<table>
<thead>
<tr>
<th>TAXA</th>
<th>Nº</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ephedra sp.</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Chenopodiaceae</td>
<td>1</td>
<td>0,67</td>
</tr>
<tr>
<td>Olea europaea</td>
<td>68</td>
<td>45,33</td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
<td>71</td>
<td>47,33</td>
</tr>
<tr>
<td>Indeterminable</td>
<td>7</td>
<td>4,67</td>
</tr>
<tr>
<td>TOTAL</td>
<td>150</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabla 4.29. Resultados antracológicos asociados a la estructura metalúrgica 7TS.

La estructura metalúrgica 8TS se trata de un horno metalúrgico ubicado en la Terraza Superior, que presentaba una acumulación de cenizas que en planta adoptaban una forma oval (39x24 cm.). En él se encontraron restos de copela y carbón (Ros Sala, en prensa). La UE 1608 es el solero del horno, que apareció definido como una placa de barro compactado con superposición de microcapas, coloración propia de haber estado sometido a altas temperaturas de manera reiterada, o en contacto con el fuego, que...
adopta en superficie una forma cóncava en cuyo centro se sitúa el horno 1609 (Ros Sala, en prensa).

<table>
<thead>
<tr>
<th>TAXA</th>
<th>UE 1609</th>
<th>UE 1608</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chenopodiaceae</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>cf. Clematis sp.</td>
<td></td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>Olea europaea</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>cf. Periploca angustifolia</td>
<td>7</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
<td>9</td>
<td>45</td>
<td>4</td>
</tr>
<tr>
<td>Quercus ilex/coccifera</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>cf. Withania frutescens</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>20</td>
<td>100</td>
<td>5</td>
</tr>
</tbody>
</table>

Tabla 4.30. Resultados antracológicos asociados a la estructura metalúrgica 8TS.

Procedentes de este horno se han analizado 25 fragmentos de carbón, que han supuesto un listado taxonómico de 7 taxones distintos. Siguiendo la tónica marcada por la mayoría de hornos metalúrgicos de esta fase y de la anterior, *Pistacia lentiscus* es el taxón mayoritario, con un 52% del combustible analizado. Es llamativa también la elevada presencia de *Periploca angustifolia* (28%), que se convierte en el segundo taxón más representado. Del resto de taxones sólo pudo identificarse un fragmento en cada caso: Chenopodiaceae, cf. *Clematis* sp., *Olea europaea*, *Quercus ilex/coccifera* y cf. *Withania frutescens* (tabla 4.30).

IV.1.2.3. Dispersión taxonómica de los restos

Desde un punto de vista cualitativo, los diferentes taxones identificados aparecen repartidos de manera desigual en los diferentes contextos estudiados para la Punta de los Gavilanes. En este sentido, se ha realizado una división a grandes rasgos, teniendo en cuenta las diferentes fases ocupacionales de la Punta de los Gavilanes, y por otro lado la diferenciación básica establecida entre los carbones asociados a los niveles de hábitat, y los que aparecen directamente formando parte de acumulaciones carbonosas de distinta índole (tabla 4.31).
Tabla 4.31. Dispersión taxonómica de los restos entre las diferentes fases de la Punta de los Gavilanes

<table>
<thead>
<tr>
<th>TAXA</th>
<th>FASE IV</th>
<th>FASE III</th>
<th>FASE II</th>
<th>FASE I</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DISPERSO</td>
<td>CONCENTRADO</td>
<td>DISPERSO</td>
<td>CONCENTRADO</td>
<td>DISPERSO</td>
</tr>
<tr>
<td>Pinus halepensis</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinus pinea/pinaster</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinus sp.</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juniperus sp.</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf. Tetraclinis articulata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coniferae</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephedra sp.</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monocotyledoneae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf. Artemisia sp.</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atriplex halimus</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chenopodiaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cistaceae</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cistus sp.</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf. Clematis sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compositae</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daphne gnidium/Thymelae hirsuta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erica sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ficus carica</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraxinus sp.</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf. Fumana sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labiatae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leguminosae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lycium intricatum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maytenus senegalensis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olea europaea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Periploca angustifolia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf. Plantago sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DISPERSIÓN TAXONÓMICA (Continuación)

<table>
<thead>
<tr>
<th>TAXA</th>
<th>FASE IV</th>
<th>FASE III</th>
<th>FASE II</th>
<th>FASE I</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DISPERSO</td>
<td>CONCENTRADO</td>
<td>1TSM 2TSM</td>
<td>DISPERSO</td>
<td>CONCENTRADO</td>
</tr>
<tr>
<td>Prunus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quercus ilex/coccifera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhamnus/Phillyrea sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosaceae tipo Maloideae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamarix sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf. Withania frutescens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indeterminado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indeterminable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL TAXONES</td>
<td>31</td>
<td>29</td>
<td>28</td>
<td>23</td>
<td>20</td>
</tr>
<tr>
<td>TOTAL FRAGMENTOS</td>
<td>2620</td>
<td>929</td>
<td>2508</td>
<td>443</td>
<td>294</td>
</tr>
</tbody>
</table>

Tabla 4.31. Continuación.
En primer lugar es posible apreciar de manera general la diferente riqueza taxonómica que presenta cada fase de ocupación, que pudo estar en relación con una mayor o menor presencia de taxones leñosos en el entorno, aunque hay que tener en cuenta que el número de fragmentos estudiados influye también en este aspecto. Desde esta perspectiva, es posible observar una progresiva reducción en la variabilidad taxonómica de cada una de las fases estudiadas.

En la fase Gavilanes IV aparecen todos los taxones estudiados, a excepción de uno, _Fraxinus_ sp., que fue hallado únicamente en una fosa-vertedero de la Fase III, seguramente como un aporte de origen lejano. Por otro lado, cinco taxones han sido identificados exclusivamente en muestras asociadas a esta fase: _Cistus_ sp., _Ficus carica_, _cf. Fumana_ sp., _cf. Plantago_ sp. y Rosaceae tipo Maloideae. En el caso de las cuatro primeras su ausencia del resto de las fases ocupacionales del yacimiento no significa que no estuvieran presentes en el entorno del mismo en las fases sucesivas, sino que debe interpretarse como consecuencia de su no utilización como combustible, de la no conservación de sus restos por motivos postdepositacionales, o de sesgos derivados de la recuperación y estudio de las muestras antracológicas. En el caso de las maloideas, sin embargo, es posible plantearse una desaparición posterior asociada a la progresiva degradación ecológica que se observa en la secuencia paleoambiental del yacimiento.

En la fase Gavilanes III el registro experimenta una fuerte reducción taxonómica, de hasta 10 elementos. En total en esta fase han sido identificados 26 taxones, estando ausentes 11 del total del cortejo florístico de Gavilanes. La mayoría de los taxones ausentes se caracterizan por apetencias ecológicas xerofíticas, mientras que sí están representados los taxones más propiamente mediterráneos.

En el caso de Gavilanes II aparecen 25 taxones, por lo que están ausentes un total de 12. A pesar de la semejanza cuantitativa con la etapa anterior, existen ciertas diferencias taxonómicas notables, como la no aparición de _Quercus ilex/coccifera_ o de _Erica_ sp., si bien parece claro que permanecen de manera residual en el ambiente dado que sí han podido ser documentadas en la fase ocupacional subsiguiente.

Finalmente, Gavilanes I sólo ha ofrecido 22 taxones diferentes, por lo que están ausentes 15 elementos del total del grupo taxonómico documentado. Teniendo en cuenta estas ausencias, esta fase pudo ser testigo de una reducción de elementos como _Pinus pinea/pinaster_ o _Prunus_ sp. en los ecosistemas próximos al enclave, aunque la ausencia de la mayoría de taxones no presentes en las muestras asociadas a esta fase se debe más bien al reducido registro antracológico que ha podido ser estudiado, con menos de 500 carbones.

Por otro lado, es posible valorar la mayor o menor rareza de los taxones en el ambiente, dependiendo de la frecuencia con la que aparecen en el registro. Tomando como base...
este criterio se ha elaborado la siguiente pirámide taxonómica (fig. 4.41), con la que se plasma gráficamente, en orden decreciente, la mayor o menor presencia cualitativa de los diferentes taxones en los niveles ocupacionales de la Punta de los Gavilanes.

Figura 4.41. Pirámide taxonómica de Punta de los Gavilanes.

IV.1.2.4. Interpretación de los resultados

IV.1.2.4.1. La vegetación del entorno de la Punta de los Gavilanes a partir de los resultados antracológicos

El registro antracológico de la Punta de los Gavilanes presenta en general una elevada variabilidad taxonómica integrada por familias, géneros y especies, tanto de porte arbóreo como arbustivo. De la lista florística representada se deduce que las comunidades vegetales que crecieron en las inmediaciones de la Punta de los Gavilanes desde los inicios de la habitación del promontorio se distribuyeron de acuerdo con las limitaciones impuestas por las condiciones litológicas del entorno. Debido a esta diversidad de requerimientos ecológicos, su desarrollo debió de verse favorecido o limitado por los diversos ecosistemas próximos, y determinado en particular por la mayor o menor salinidad de los suelos, como factor delimitador del paisaje. En este
sentido, se han agrupado los taxones identificados en tres componentes fundamentales asociados a diferentes ecosistemas del entorno: mediterráneo, iberoafricano, y halófilo o salino.

El desarrollo de las comunidades arbustivas mediterráneas en esta zona se produciría en convivencia con ciertos elementos de óptimo norteafricano, entre los que hemos podido identificar la presencia de cf. *Tetraclinis articulata, Lycium intricatum, Maytenus senegalensis, Periploca angustifolia* y cf. *Withania frutescens* (“componente iberoafricano”).

Las áreas de captación de recursos leñosos más próximas al promontorio estarían localizadas en la propia línea de costa y en sus aledaños, donde existiría una gran disponibilidad de ciertos taxones marcadamente halófilos (“componente halófilo”). Se trataría de un género arbóreo, *Tamarix* sp. y de especies arbustivas y herbáceas de la familia Chenopodiaceae, de entre las cuales se ha podido individualizar únicamente la especie *Atriplex halimus*. La vegetación de las zonas de rambla presentaría, dado su alto índice de salinidad, una estructura semejante a la zona de línea de costa. Estaría compuesta fundamentalmente por especies del género *Tamarix*, que aparecerían tanto en los márgenes del cauce como en su interior, y que vendrían acompañados por una gran variedad de quenopodiáceas, y posiblemente también de ciertas gramineas halorresistentes. Sin embargo, la aparición de un fragmento de *Fraxinus* sp. no parece estar relacionada con el entorno próximo del yacimiento, sino que se trataría de un aporte lejano.

Todas las fases ocupacionales documentadas en la Punta de los Gavilanes presentan elementos de estos tres componentes vegetativos fundamentales. Sin embargo, la relevancia porcentual de cada uno de ellos es distinta dependiendo de la cronología estudiada (fig. 4.42).
El componente mediterráneo es el mayoritario en todas las fases del yacimiento, de acuerdo con el gran número de taxones que lo componen. Éste destaca sobre todo en Gavilanes IV, donde supera el 90% del total analizado y en Gavilanes III, donde se aproxima a este valor. Sin embargo, en Gavilanes II los taxones de carácter mediterráneo aparecen mucho menos representados, superando apenas el 60% del total del registro antracológico, mientras que en Gavilanes I este valor se eleva hasta el 76%, si bien no alcanza en ningún caso los porcentajes mostrados en las dos primeras fases de ocupación del promontorio.

Los taxones que constituyen lo que ha sido denominado “componente halófilo”, Chenopodiaceae, *Atriplex halimus* y *Tamarix* sp., suman sus principales valores en el caso de la fase Gavilanes II, cuando se había producido un descenso significativo de la presencia de taxones mediterráneos en el registro. También habría que resaltar que en el caso de Gavilanes I este componente supera el 20% del total de su contenido antracológico. En conjunto, estos valores suponen un contrapunto a los que el combustible de estas plantas presentan en las primeras fases de ocupación del enclave. En la fase Gavilanes III los taxones halófilos son sólo el 11% del total de los carbones analizados, mientras que en la fase IV este descenso se hace aún más patente, ya que el componente halófilo significa únicamente un 7% del total de los carbones analizados.
Finalmente, en lo que concierne a los taxones de componente iberoafricano, se trata en general de los elementos menos representados en toda la secuencia, pero sin embargo, a menor escala, siguen la tendencia marcada por el componente halófilo. En este sentido, las fases Gavilanes II y Gavilanes I suponen un ligero aumento de su presencia porcentual en los niveles de habitación del yacimiento, mientras que su utilización como combustible en las primeras etapas ocupacionales es menor, en función de los elevados valores del componente mediterráneo.

Por tanto, en términos generales se observa un cambio notable entre las características de la vegetación observadas en las fase Gavilanes IV y Gavilanes III con respecto a las fases subsiguientes, Gavilanes II y Gavilanes I.

Por otro lado, el diagrama antracológico de la Punta de los Gavilanes (fig. 4.43) expresa los resultados obtenidos atendiendo a las diferentes etapas de ocupación en el mismo, teniendo en cuenta únicamente el contenido antracológico asociado a los niveles de hábitat, y excluyendo las estructuras de combustión u otras acumulaciones carbonosas, con el objetivo de impedir distorsiones significativas en los porcentajes obtenidos por cada taxón en cada fase del yacimiento. Sobre este diagrama se ha establecido una división en dos fases antracológicas distintas: la Fase Antracológica I, que comprendería las dos primeras etapas de ocupación del yacimiento desde finales del III milenio a.C., y la Fase Antracológica II, que se correspondería con las dos últimas etapas arqueológicas, desde el siglo IV a.C. hasta el abandono del sitio hacia finales del siglo I a.C.

Los criterios fundamentales tenidos en cuenta para establecer esta división básica se han fundamentado en dos aspectos. Por un lado, se ha tomado en consideración el criterio de riqueza taxonómica de las distintas etapas analizadas, de manera que en la Fase Antracológica I se observa en general una variabilidad importante, mientras que en la Fase Antracológica II ésta se reduce notablemente sobre todo en las especies de sotobosque. En segundo término se ha tenido en cuenta la importancia desigual de los tres componentes analizados con anterioridad (fig. 4.42), que marcaban ya una clara diferenciación entre las fases arqueológicas Gavilanes IV y III, con respecto a Gavilanes II y I.
Capítulo IV. Resultados antroclógicos

Figura 4.43. Diagrama antroclógico de la Punta de los Gavilanes.

<table>
<thead>
<tr>
<th>SECUENCIA CULTURAL</th>
<th>Edad del Bronce</th>
<th>Protohistórica</th>
<th>Prebárbara</th>
<th>Tardorrep.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FASES ARQUEOLÓGICAS</td>
<td>IV</td>
<td>III</td>
<td>=</td>
<td>–</td>
</tr>
<tr>
<td>DATACIONES C14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nº DE FRAGS. ANALIZADOS</td>
<td>2620</td>
<td>443</td>
<td>449</td>
<td>173</td>
</tr>
</tbody>
</table>

Pistacia lentiscus

Olea europaea

Pinus halepensis

Pinus pinea/pinaster

Juniperus sp.

Quercus ilex/coccifera

Rhamnus/Phillyrea sp.

Erica sp.

Labiatae

Rosmarinus officinalis

Leguminosae

Cistaceae (+ Cistus sp.)

Tamarix sp.

Chenopodiaceae (+ Atriplex haminus)

cf. Tetrailinis articulata

cf. Withania frutescens

Periploca angustifolia

Coniferae

Pinus sp.

Ephedra sp.

Monocotyledoneae

Artemisia sp.

Compositae

Daphne gnidiis/Thymelaeahninita

cf. Fumana sp.

Prunus sp.

Rosaceae t. Maloideae

Lycium intricatum

Myrtus senegalensis

Fase Antracológica I

Fase Antracológica II
En términos generales, desde el punto de vista ecológico, la peculiaridad de Punta de Los Gavilanes es que se encuentra en un ambiente costero que presenta, junto a la vegetación típicamente mediterránea propia de sus condiciones climáticas, una serie de formaciones de carácter edáfico, asociadas a los suelos con un elevado grado de salinidad. Este doble valor aparece en la señal antracológica de todas las fases habitacionales de Punta de Los Gavilanes. De esta manera, parece claro que durante todo el periodo en que Gavilanes fue ocupado, en las áreas adyacentes al sitio encontraremos formaciones edafófilas semejantes a las actuales, representadas por taxa halófilos como Chenopodiaceae, Atriplex halimus y Tamarix sp., adaptados al elevado grado de salinidad del entorno de las lagunas salobres y marjales que constituyeron el paisaje más inmediato al asentamiento y de la propia línea de costa. Mientras, el resto de los taxones identificados crecerían en zonas algo más alejadas de este ámbito, conformando matorrales de carácter mediterráneo muy abiertos en los que existiría un predominio de los elementos arbustivos, como los lentiscos o los acebuches, con escasa presencia de especies arbóreas, entre las cuales destacaría el pino carrasco. Sin embargo, las distintas proporciones que estos elementos muestran diacrónicamente en el diagrama antracológico sugieren en efecto una evolución desigual de los mismos a lo largo de toda la secuencia.

En primer lugar nos referiremos a la evolución que muestra el diagrama antracológico en lo que concierne a la vegetación característica de los cordones litorales y de la laguna salada aneja a la Punta de los Gavilanes. En general, esta evolución estuvo marcada fundamentalmente por la mayor o menor extensión de los terrenos salinos o nitrificados, o bien por una selección diferencial de estas plantas como combustible. Sin embargo, su presencia ha sido constante en la zona con independencia de las condiciones climáticas imperantes, dado que su crecimiento está sujeto a la salinidad edáfica.

En lo que respecta a las quenopodiáceas, existe una fuerte diferenciación entre los porcentajes observados en la Fase Antracológica I, con respecto al fuerte crecimiento que experimentan en la Fase Antracológica II. El tránsito hacia esta fase, por tanto, supone un importante ascenso en la representación de la familia de las quenopodiáceas, que pasa de valores inferiores al 10% en la fase anterior, a superar holgadamente el 30% en la etapa Gavilanes II. Este incremento estaría posiblemente en conexión directa con la mayor utilización como combustible de este tipo de plantas que se ha documentado en algunos hornos metalúrgicos de la factoría Gavilanes II (García Martínez 2006), un momento cuya actividad productiva fue muy intensa en el promontorio, y que exigió de importantes cantidades de combustible para abastecer al gran número de estructuras de combustión, tanto domésticas como especializadas, que han sido documentadas en el yacimiento. El aumento en la utilización estuvo ligado a este incremento de la presión productiva, que trajo consigo una disminución de los criterios selectivos, en favor de una cada vez mayor recogida oportunista de la leña. Es posible, sin embargo, que la disponibilidad de estas especies, cuya presencia natural en el ambiente fue sin duda muy
elevada, fuera incluso mayor en etapas de escasez de precipitaciones que probablemente provocarían una cierta desecación de los márgenes de la zona lagunar que se encontraba a pocos metros del promontorio, y que pudieron ser colonizados por diversas especies de esta familia. Este aumento natural de las quenopodiáceas pudo estar relacionado también con una mayor extensión de zonas nitrificadas o ruderales, que favorecen el desarrollo de ciertas quenopodiáceas halonitrófilas.

Por lo que concierne a Tamarix sp., las especies de este género son las únicas de porte arbóreo que pueden sobrevivir en ambientes costeros o salinos en general. De la salinidad del terreno va a depender la especie de Tamarix que se desarrolle; en el caso de la costa mazarronera posiblemente se trataría de los más halófilos: Tamarix canariensis o Tamarix boveana. Este género se encuentra perfectamente adaptado al estrés hídrico propio del sureste peninsular, pudiendo penetrar sus raíces decenas de metros en busca de agua. Tamarix es capaz incluso de soportar pequeñas temporadas de inundación, aunque si se alargan tiende a desaparecer a favor de las plantas que generalmente forman su cortejo, las quenopodiáceas (Costa et al. 2001). No obstante, hay que tener en cuenta que estos arbóleos son también los integrantes fundamentales de los paisajes ribereños asociados a los cursos de agua no permanentes propios de las zonas de clima cálido.

En el diagrama antracológico Tamarix experimenta una progresiva reducción de sus valores en la Fase Antracológica II, si bien las razones de este descenso hasta desaparecer en la etapa de ocupación Gavilanes I habría que buscarlas más en la poca cantidad de carbón recuperado para este momento o en una no selección de esta planta en favor de otras especies, que en una reducción de su presencia en el ambiente que con toda seguridad no se produjo. Su principal desarrollo se daría en las zonas de arenas costeras, pero también conformando tarayales junto al cauce de las ramblas que desembocan en las proximidades de Punta de los Gavilanes. En el cercano río Guadalentín, por ejemplo, los tarayales comienzan a ganar importancia tras la retracción del bosque ripario que se constata contemporáneo a la degradación de su cuenca en las etapas finales del Calcolítico (Camel-Avila 2000, Fuentes et al. 2005).

El abanico de recursos leñosos de los que pudieron disponer los habitantes de Punta de los Gavilanes en un radio cercano fue, sin embargo, mucho más amplio, como denota la
gran cantidad de especies mediterráneas que acompañan a las recién mencionadas, y que serían recolectadas en sierras próximas y en zonas llanas de salinidad reducida. Los contrastes en la composición de estas formaciones que reflejan las dos fases antracológicas establecidas son muy acusados a lo largo de toda la secuencia.

En primer término destaca la escasez de la representación del componente arbóreo en este ambiente ya desde la primera ocupación del promontorio en la Edad del Bronce. Es reseñable en este sentido la importancia del pino carrasco, cuyo crecimiento en la zona ha sido siempre limitado debido a las condiciones del sustrato. A tenor de las grandes proporciones que presentan los elementos arbustivos, parece que el ambiente predominante en el entorno sería el de una vegetación compuesta por un matorral mediterráneo esclerófilo, constituido por especies de gran resistencia al estrés hídrico, mientras que la presencia de árboles sería más bien secundaria. Las proporciones de *Pinus halepensis*, de hecho se mantienen oscilantes durante todo el diagrama antracológico, entre el 10% y el 20% de presencia relativa en el registro. El pino carrasco se acompañaría, posiblemente, de algunos ejemplares dispersos de pino piñonero, que se desarrollarían fundamentalmente en zonas de arenal, como sucede en la actualidad en el área levantina y de Mallorca, si bien también pudieron intercalarse algunos ejemplares con los propios pinos carrascos (Costa *et al.* 2001). La evolución de este taxón en la secuencia de Gavilanes está marcada por una mayor presencia en la Fase Antracológica I, que se reduce a inicios de la Fase Antracológica II, tendiendo a su desaparición del entorno hacia el siglo I a.C. Por otro lado, su utilización fue muy importante como material de construcción de los edificios relacionados con las actividades de pesquería durante la Edad del Bronce, cuando su presencia en el ambiente sería, según los resultados obtenidos, algo mayor.

Aunque en proporciones muy bajas que denotarían su escasa importancia, los datos obtenidos confirman que entre las especies arbóreas del entorno también se desarrolló el iberoafricanismo *Tetraclinis articulata*, que creció en este punto del litoral de Mazarrón al menos hasta finales del siglo I a.C. A éstos se suman los ya conocidos de distribución de esta especie en el ámbito del sureste ibérico semiárido en sitios arqueológicos como el yacimiento calcolítico de Millares (Rodríguez-Ariza 1992a), yacimientos de la Edad del Bronce como el Cerro de las Viñas en Coy, Lorca (Grau 1990a), y Fuente Álamo en Almería (Schoch y Schweingrüber 1982, Carrión Marco 2004), los enclaves fenicios de Cerro del Villar (Ros Mora y Burjachs 1999) y Morro de Mezquitilla (Schoch 1983) y la necrópolis ibérica de Coimbra del Barranco Ancho en Jumilla (Grau, inédito, a). Estos datos ampliarían considerablemente el área de distribución de esta especie, que actualmente se encuentra constringida a unas 200 hectáreas localizadas en la Sierra de Cartagena - La Unión. En este lugar *Tetraclinis articulata* presenta una relación de competencia con *Pinus halepensis*, que influye considerablemente en la distribución del ciprés de Cartagena, ya que algunos estudios han podido observar que cuando la cobertura de *Pinus halepensis* aumenta, disminuye tanto el número de pies de
Tetraclínis articulata, como su cobertura. Así, cuando Pinus halepensis está ausente, Tetraclínis articulata presenta sus mayores densidades en la solana, aunque su más amplia cobertura en las zonas de umbría (Nicolás et al. 2004).

El mayor protagonismo en la secuencia lo tienen, sin embargo, los elementos arbustivos termófilos, entre los que destacan sobre todo Pistacia lentiscus y Olea europaea, que presentan una evolución inversa en la secuencia, seguramente como consecuencia de motivos distintos. Estas especies acompañan comúnmente a los pinares de pino carrasco en zonas basales semiáridas, junto con otros elementos como Chamaerops humilis, Thymelaea hirsuta, Lavandula multifida, Anthyllis cytisoides, Cneorum tricoccon, Maytenus senegalensis o Quercus coccifera.

Por un lado, Pistacia lentiscus fue el combustible más ampliamente utilizado en la Edad del Bronce, con un 40% de representación total, aunque sufre una fuerte reducción que se acusa sobre todo al final de la Fase Antracológica II, cuando no supera el 15% de valor relativo en el diagrama. Esta evolución concuerda con las restricciones que sufren casi todos los elementos de sotobosque, como las jaras, romeros o brezos. La gran explotación de esta planta como combustible, ya que posee una madera de excelente calidad, las condiciones de aridez del entorno que constatan los resultados y las dificultades de regeneración de la cubierta vegetal derivadas de esta gran sensibilidad ambiental, condicionaron su progresiva reducción hasta la actual situación, en que la presencia de lentiscos en la zona es prácticamente nula.

Por el contrario, Olea europaea presenta una trayectoria inversa a la del lentisco, ya que contempla sus máximos niveles al final de la Fase Antracológica II, concretamente en la fase arqueológica Gavilanes I, en torno a los siglos II-I a.C. Es plausible, por tanto, que este aumento tuviera su origen en el inicio del cultivo del olivo en los alrededores del asentamiento, y en el uso de la madera derivada de sus podas como combustible en las diferentes estructuras de combustión asociadas a esta fase.

Finalmente habría que destacar que la mayoría de los elementos de sotobosque de tipo mediterráneo experimentan una notable reducción en la Fase Antracológica II. Ésta pudo estar relacionada con un proceso de deforestación del entorno como consecuencia del impacto generado por las actividades antrópicas, tras un dilatado período de ocupación y aprovechamiento de sus recursos. No obstante, hay que reseñar que algunos estudios han situado esta variable en una posición secundaria, de baja intensidad, frente a una tendencia climática global hacia la aridificación que sería el factor determinante en la composición final del tapiz vegetal (Pantaleón-Cano et al. 2003). En cualquier caso, en el entorno de Punta de los Gavilanes se constata la desaparición o reducción, además del lentisco, de algunas labiadas, leguminosas, cistáceas, así como de elementos mucho más vulnerables a la xericidad ambiental, como los brezos, que no se documentan en la Fase Antracológica II, o las encinas/coscojas. En este último caso, a
pesar de la instalación de condiciones áridas en el entorno de la Punta de los Gavilanes a partir de la Edad del Bronce, algunos puntos no muy alejados, sobre todo de gran elevación, o de umbria, podrían presentar ejemplares aislados de *Quercus* perennifolios, que en la actualidad están completamente extintos en la zona. Sólo se conservan de manera relictual algunos pies de encina en la Sierra de Cartagena, como límite de aridez en la Península Ibérica (Costa *et al.* 2001). Durante toda la secuencia de Gavilanes la presencia de esta especie sería anecdótica, y se presentaría en etapas regresivas en las cuales la incidencia antrópica mediante la tala o la quema continuada de determinados espacios pudo ser un factor crucial en su proceso de extinción.

Al tiempo que esta reducción de la masa vegetal se consolida, en el diagrama antracológico es posible observar un aumento de los valores de *Juniperus* sp., que pudo presentarse, como actualmente ocurre con la especie *Juniperus phoenicea*, en zonas escarpadas, venteadas y rocosas, o bien, como sucede con algunos enebros, pudo ocupar espacios en los cuales se había producido una degradación o eliminación del bosque esclerófilo mediterráneo como consecuencia de actividades antrópicas como la tala, el pastoreo o incluso el abandono de terrenos previamente cultivados. Este proceso incluiría el aumento de las formaciones de gramíneas xerófiticas, y de la expansión de otros elementos xerófilos característicos de formaciones estepicas como *Ephedra* sp. y *Artemisia* sp.

En resumen, el diagrama antracológico obtenido para Punta de los Gavilanes describe un proceso de creciente degradación ecológica en el entorno litoral de Mazarrón, que se define por la fuerte reducción de la riqueza vegetal mediterránea, observable sobre todo a partir de la Fase Antracológica II. Durante las primeras etapas de ocupación del yacimiento (Fase Antracológica I) la presión sobre los recursos leñosos ejercida por los grupos que lo habitaron fue moderadamente intensa. Las actividades económicas desarrolladas fueron de índole fundamentalmente doméstica, y estuvieron relacionadas con la captura y tratamiento del pescado durante la Edad del Bronce, y con el comercio y la metalurgia durante la ocupación protohistórica. Además, el ambiente hostil para la agricultura generaría importantes limitaciones para el establecimiento de un sistema productivo a gran escala. El abastecimiento de combustible para estas actividades, pudo generar una cierta deforestación en su ámbito local, agravada por tratarse de un ecosistema de gran sensibilidad y con muy pocas capacidades de auto regeneración. Sin embargo, si bien se observa un estado de progresiva xerofitización de la vegetación propio de la dinámica natural observada en todo el ámbito del Sureste peninsular, el gran impacto causado por la presión antropogénica sobre la estructura de la vegetación todavía no se detecta en Punta de los Gavilanes. Este cambio brusco es perceptible, según la señal antracológica, a partir de los siglo IV-III a.C. (Fase Antracológica II), en relación con una mermar en los recursos como consecuencia del agotamiento del sistema ante la fuerte demanda de combustible para el desarrollo de actividades metalúrgicas de carácter intensivo (García Martínez *et al.* 2007).
IV.1.2.4.2. La gestión del combustible leñoso en la Punta de los Gavilanes

Durante todas las etapas de ocupación de la Punta de los Gavilanes el fuego se constituyó como una herramienta indispensable en el desarrollo de las diversas actividades llevadas a cabo por los grupos que habitaron el promontorio. Sin embargo, la gestión de los recursos forestales disponibles en el entorno inmediato del enclave debió de adecuarse a las necesidades diferenciales de estos grupos, dependiendo del tipo de actividades domésticas, artesanales o productivas a las que estuvieran dedicados.

La diferente tipología de los procesos productivos documentados es el condicionante fundamental del que depende el tipo, y sobre todo la cantidad de combustible necesario para el funcionamiento de las estructuras de combustión asociadas a estas actividades. Parece claro, a priori, que los trabajos de tipo especializado, artesanal o industrial generarían unas necesidades de combustible mucho mayores que los de un grupo orientado hacia actividades de tipo doméstico o subsistencial. En este sentido podrían haberse producido variaciones en los patrones de captación de estos recursos, apreciables en el registro antracológico asociado a los contextos productivos desarrollados en el yacimiento. Este planteamiento teórico parte de la premisa de que una necesidad acuciante de grandes cantidades de combustible pudo generar pautas de recolecta basadas en el oportunismo, y en la búsqueda constante de una relación positiva entre el esfuerzo invertido y el rendimiento obtenido. Sin embargo, ante necesidades menores de leña la gestión de los recursos pudo haberse establecido dentro de ciertos patrones selectivos o de preferencia de determinadas maderas sobre otras.

En este proceso existe siempre una relación de dependencia con los recursos vegetales disponibles en las proximidades del sitio, en tanto en cuanto los trabajos de recogida de leña no se extenderían nunca más allá de unos pocos kilómetros. La progresiva degradación ecológica a que esta zona ha estado sometida de manera natural durante todo el período de ocupación de la Punta de los Gavilanes aparece expresada en una creciente reducción de la variedad de recursos disponibles. Estas carencias se vieron posiblemente acentuadas en las etapas de fuertes necesidades de combustible, como la fase Gavilanes II.

Teniendo en cuenta estas premisas, a continuación se realiza un análisis de los combustibles asociados a estructuras de combustión de toda la secuencia ocupacional de Gavilanes, con el objetivo de valorar en qué medida se cumplen estos planteamientos teóricos a través de la señal ofrecida por el combustible leñoso.
- La utilización del combustible leñoso en las actividades domésticas

Las actividades productivas predominantes en la Punta de los Gavilanes durante la Edad del Bronce fueron fundamentalmente de carácter doméstico, orientadas hacia el autoabastecimiento del grupo. El grado de presión sobre el biotopo circundante fue, por lo tanto, de una intensidad media si tenemos en cuenta que no existen indicios de otro tipo de producción a gran escala que pudiera haber requerido grandes cantidades de combustible, y un abastecimiento constante del mismo. No obstante, las actividades subsistenciales de ahumado de pescado y de torrefacción del cereal, a las que se hace referencia en el apartado siguiente, debieron de exigir la planificación de labores periódicas de recolecta de madera y de generar un consumo diario de las reservas de combustible del promontorio.

En lo que concierne a las acumulaciones carbonosas de carácter doméstico asociadas a esta fase (GV-IV) (fig. 4.44), se observa en general una gran escasez de la diversidad taxonómica representada, con un máximo de cuatro taxones en los casos de los hogares 1744 y 1307. Ésta puede ser interpretada en relación con una mala conservación del registro arqueológico y antracológico en todos los casos, y por otro lado con un uso más o menos esporádico que se deriva de su condición de estructuras de combustión no especializadas en ninguna actividad productiva en particular.

Figura 4.44. Histograma de porcentajes de los hogares domésticos de la fase Gavilanes IV.
Por otro lado, en lo que respecta al cortejo florístico identificado, llama la atención una clara predominancia de la utilización como combustible de *Pistacia lentiscus*, con valores entre el 70% y el 100%. Además, se constata una deselección en este caso de lo que hemos considerado más arriba como “componente halófilo o salino”, al no utilizarse en ninguno de ellos las quenopodiáceas ni *Tamarix* sp. Por el contrario, toda la leña que se utilizó en estas estructuras provenía de especies de componente mediterráneo. Los hogares domésticos no suelen ser indicadores de pautas selectivas de gestión del combustible, por lo que esta preferencia denota más bien una cómoda disponibilidad de los elementos del matorral mediterráneo en las áreas cercanas al promontorio, probablemente debido a que estas formaciones se encontraban todavía durante la Edad del Bronce en un estado de conservación aceptable.

Durante la ocupación protohistórica del yacimiento los procesos desarrollados en el enclave dejaron de ser exclusivamente de tipo doméstico y subsistencial, para dar comienzo a una primera etapa de actividades comerciales y de producción metalúrgica. No obstante, el hogar de carácter doméstico estudiado en asociación con esta fase muestra las mismas pautas apuntadas en los hogares de la Edad del Bronce. En el histograma de valores relativos (fig. 4.45) se observa con claridad en primer lugar la gran escasez taxonómica documentada, en segundo término la total dominancia de *Pistacia lentiscus* en el contenido de la estructura, y finalmente la ausencia de taxones halófilos como las quenopodiáceas o los tarays.

![Figura 4.45. Histograma de porcentajes del hogar 1698.](image-url)
Según las conclusiones obtenidas sobre la degradación paisajística del entorno de Gavilanes, es a partir del siglo IV a.C. cuando empieza a apreciarse un agotamiento del sistema como consecuencia de las grandes necesidades de combustible para el mantenimiento de los procesos productivos relacionados con la producción de plata. Este agotamiento se traduce en una disminución de la variedad de recursos leñosos, y en el establecimiento de dinámicas más oportunistas en la captación de los mismos.

![Figura 4.46. Histograma de porcentajes del hogar 1166.](image)

En el hogar doméstico estudiado para la fase Gavilanes II se deja ver la importancia que adquieren en esta Fase los combustibles recolectados en suelos salinos, ya que las quenopodiáceas suponen un 40% del total del contenido de la estructura, si bien *Pistacia lentiscus* sigue presentando valores muy elevados (fig. 4.46).

- La utilización del combustible leñoso en el tratamiento especializado de alimentos

Dentro de las actividades cotidianas desarrolladas en Gavilanes durante la Edad del Bronce se han atestiguado tres estructuras de combustión relacionadas con labores como la cocina (estructura 1723), la torrefacción de cereal (horno de torrefacción 3TSM) y el tratamiento de pescado para su consumo y conservación mediante técnicas de ahumado (ahumadero asociado a la vivienda prehistórica 1TS).
Todas ellas presentan una gran variabilidad taxonómica, incluyendo en todos los casos elementos de componente salino que no estaban presentes en los hogares domésticos.

Figura 4.47. Histograma de porcentajes de la estructura de cocina 1723 de la fase Gavilanes IV.

Figura 4.48. Histograma de porcentajes del horno de torrefacción 3TSM.
En la estructura de cocina 1723 *Olea europaea* y *Pistacia lentiscus* son los dos elementos más representados, aunque destacan también los valores que presentan *Erica* sp., las labiadas, las cistáceas, las quenopodiáceas y *Tamarix* sp. (fig. 4.47). En esta estructura se da una total ausencia de coníferas que, sin embargo, son mayoritarias en el horno de torrefacción 3TSM, donde los pinos y las quenopodiáceas aparecen como mayoritarios, mientras que el acebuche y el lentisco presentan valores mucho más discretos (fig. 4.48). En ambos casos la variabilidad taxonómica y las diferencias en el tipo de combustible pondrían de relieve el oportunismo que dominó las labores de recogida de leña, y que no se tuvieron en cuenta aspectos como la calidad de las especies como combustible, o la funcionalidad de las estructuras de combustión en donde se utilizaban.

![Figura 4.49. Histograma de porcentajes del ahumadero asociado a la vivienda prehistórica 1TS.](image)

En lo que concierne al hogar-ahumadero, en primer lugar llama la atención la gran cantidad de taxones empleados, producto de la larga utilización que se demuestra en los diferentes niveles de uso documentados en el mismo. En su contenido combustible existen diferencias taxonómicas entre el horizonte de uso IVa con respecto a los horizontes IVb y IVc. En el primero de ellos *Olea europaea* y *Pistacia lentiscus* presentan valores mayoritarios, mientras que el resto de taxones apenas están representados. Sin embargo, en el horizonte IVb el acebuche sigue siendo mayoritario, pero *Pistacia lentiscus* se ve superado por la suma de las labiadas. Esta tendencia se
capítulo IV. Resultados antracológicos

Consolida en el horizonte IVc, cuando Rosmarinus officinalis es el combustible más ampliamente representado, en detrimento del lentisco y el acebuche, cuya presencia sigue siendo en cualquier caso muy importante (fig. 4.49).

Resulta llamativo que una estructura orientada hacia una finalidad tan clara como la producción de humo para el tratamiento de alimentos no generara comportamientos de uso casi exclusivo de determinadas especies vegetales que favorecieran este objetivo, ya que en este trabajo se produce un contacto directo entre el humo y el alimento. A priori podría plantearse que en una estructura de este tipo se quemaran fundamentalmente maderas que produjeran un humo agradable, y sin resinas u otras sustancias que pudieran generar sabores u olores desagradables en el alimento. Sin embargo, esto no es así en el caso del ahumadero estudiado en Gavilanes, en donde aparecen una gran cantidad de especies, y maderas resinosas como la de lentisco que no serían muy recomendables para este uso, si bien otras aromáticas como el romero sí producirían un humo más agradable para los alimentos. Por lo tanto, en el funcionamiento de esta estructura existiría probablemente un control de la cantidad de combustible utilizada, y sobre todo del tiempo de exposición del pescado al humo, pero no del tipo de humo producido. Posiblemente tampoco existiría un control de la temperatura alcanzada durante este proceso, si bien hoy es conocido que realizar un proceso de ahumado por encima de los 400 ºC genera hidrocarburos aromáticos policíclicos potencialmente cancerígenos como el benzopireno.

- La utilización del combustible leñoso en la metalurgia

Las actividades metalúrgicas aparecen documentadas en la Punta de los Gavilanes desde aproximadamente el siglo VII a.C., durante la ocupación fenicia del promontorio. Sin embargo, fue durante la fase Gavilanes II cuando todas las estructuras documentadas en el yacimiento indican que éste estuvo dedicado en exclusiva a este tipo de actividades, centradas concretamente en el tratamiento del plomo metálico argentífero para la obtención de plata. Durante la fase Gavilanes I también se llevaron a cabo labores de carácter metalúrgico que se fueron debilitando en consonancia con el proceso de decadencia que llevaría al abandono definitivo del sitio.

Desde una perspectiva taxonómica se plantean ciertas diferencias entre el contenido combustible de los hornos de las diferentes fases estudiadas. En el caso de la Estructura Metalúrgica 11TS, asociada a Gavilanes III, no se poseen elementos de comparación ya que se trata del único horno metalúrgico documentado para esta fase. Su carga de combustible estuvo conformada fundamentalmente por quenopodiáceas, aunque el lentisco fue el segundo elemento más utilizado, con un 20% del total de su combustible (fig. 4.50).
Recursos forestales en un medio semiárido.

Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

Figura 4.50. Histograma de porcentajes de la Estructura Metalúrgica 11TS.

Figura 4.51. Histograma de porcentajes de los hornos metalúrgicos de la fase GV-II (sin incluir el horno 4TM).
En lo que concierne a los hornos de la Fase II, en el histograma de porcentajes relativos (fig. 4.51) se ha excluido el horno 4TM, ya que un 100% del contenido estudiado se componía de haces de monocotiledónea (seguramente de esparto). El resto de los hornos asociados a esta etapa presentan una fuerte predilección por la utilización del lentisco como combustible, y los tres muestran un porcentaje elevado de Chenopodiaceae (+ Atriplex halimus), superior al 10%, sólo superado por Pinus halepensis en el caso de la estructura 2TM.

En tercer lugar, las estructuras metalúrgicas asociadas a Gavilanes I son las que muestran una menor dependencia de la utilización de quenopodiáceas para su funcionamiento. Las tres denotan una gran preferencia por la utilización de Pistacia lentiscus como elemento fundamental de su carga combustible, seguido por Olea europaea, que es el segundo elemento más representado en las estructuras 6TS y 7TS, mientras que en la 8TS este taxón es minoritario, mientras que destaca Periploca angustifolia (fig. 4.52).

En general, la gran variedad de taxones que aparecen representados en los hornos metalúrgicos de Gavilanes, y la dominancia de elementos abundantes en el entorno como el lentisco, el acebuche o las quenopodiáceas ponen de relieve la ausencia de criterios selectivos en los procesos de recolecta y utilización de la madera en las
actividades metalúrgicas, con independencia de aspectos como el tipo de estructura o la cronología de utilización. Esto contradice la idea prefijada de que la especialización de las estructuras de combustión estaría en relación directa con la utilización restringida de ciertos taxones, en detrimento de otros (Pernaud 1992). Estas pautas fueron observadas por Marguerie (2002) en un estudio referido a catorce hornos de diferente funcionalidad excavados en yacimientos desde la Edad del Hierro hasta época medieval en la Bretaña francesa. En él se concluye que la riqueza taxonómica de los hornos especializados suele ser mucho menor que los dedicados a actividades domésticas, en tanto en cuanto la funcionalidad de los primeros exigiría también de una cuidadosa selección del combustible. Dentro de las diferentes especializaciones artesanales que estudia, como la producción de cerámica o de metal, los hornos metalúrgicos son los que presentan una selección más estricta del combustible, que suele ser mono específico con una total predominancia de Quercus. Sin embargo, los resultados obtenidos para la Punta de los Gavilanes denotan un aprovechamiento totalmente oportunista de los recursos leñosos disponibles determinado probablemente por la escasez general de especies leñosas en el entorno inmediato del promontorio. Ni siquiera es posible plantear a partir del cortejo florístico identificado que existiera una selección específica determinada por las propiedades intrínsecas a los taxones. Si bien el lentisco o el acebuche pueden ser considerados combustibles de buena calidad, también se utilizan profusamente las quenopodiáceas, cuyas propiedades combustibles, y sobre todo inflamables son bastante malas debido a la gran cantidad de minerales y de sales que contienen en su estructura, que producen un retardo de la inflamación (Guijarro Guzmán 2003). Las motivaciones de su uso habría que buscarlas fundamentalmente en su gran abundancia en los alrededores de Gavilanes, sin descartar que existieran ciertas creencias sociales que favorecieran su uso.

Otro de los aspectos que resulta difícil valorar a partir de la señal antracológica es en qué medida las actividades metalúrgicas desarrolladas en la Punta de los Gavilanes pudieron ser decisivas en la aceleración del proceso de deforestación y degradación del entorno. En este sentido se conocen algunos ejemplos como los estudios polínico y antracológico realizados en el yacimiento arqueológico de Cabezo Juré (Huelva) (Nocete et al. 2005) y el análisis palinológico del vecino yacimiento de La Junta (Huelva) (Fuentes et al. 2006), que ponen de manifiesto que las actividades metalúrgicas a gran escala desarrolladas en esta zona durante la primera mitad del III milenio ANE pudieron generar ya en esta cronología temprana un proceso de deforestación marcado por una drástica reducción de taxones arbóreos que se atribuye a la tala masiva de árboles para la alimentación de los hornos metalúrgicos (Nocete 2004, Nocete et al. 2005, Fuentes et al. 2006). En el País Vasco francés, el estudio de ciertos depósitos turbosos en una zona cuya actividad metalúrgica se remonta al Bronce Medio ha permitido detectar también la deforestación del entorno generada por las necesidades de abastecimiento de combustible, y en concreto la drástica disminución de Fagus y Quercus debido a las preferencias por la utilización de ambos elementos en los procesos...
productivos (Jouffroy-Bapicot et al. 2007). Otra fuente de estudio del impacto medioambiental provocado por las actividades metalúrgicas en la actualidad y durante el Holoceno es el estudio de las trazas de metales pesados que permanecen en las conchas de los moluscos expuestos a esta contaminación (Nocete et al. 2005, Ruiz et al. 2004, 2005, Usero et al. 2005).

Por lo que respecta a la Punta de los Gavilanes los datos antracológicos no ofrecen conclusiones claras al respecto. La dedicación intensiva a la metalurgia que se constata en el promontorio durante los siglos IV-III a.C. generó sin duda un incremento exponencial de las necesidades diarias de leña. Sin embargo, a través del combustible recuperado no es posible saber en qué términos se concretaría esta subida de la demanda. Tampoco podemos conocer si existió una organización en la gestión de los recursos que permitiera cierta regeneración de los mismos. No obstante, el diagrama antracológico muestra un fuerte incremento en la presencia de combustible de Chenopodiaceae durante las fases II y I que pudo estar en consonancia con cierto agotamiento de los recursos en el entorno.

La verdadera relevancia del impacto generado por las actividades de metalurgia en este ámbito costero no debe valorarse únicamente desde el punto de vista de la Punta de los Gavilanes, donde el reducido espacio en el que se desarrolló esta actividad metalúrgica limitaría, a priori, la capacidad de absorción de los recursos disponibles en su entorno. Hay que tener en consideración, sin embargo, el desarrollo contemporáneo de otros núcleos poblacionales, como la Loma de Sánchez, que formarían parte de un modelo de vertebración del territorio organizado en función del desarrollo de toda la cadena productiva de la metalurgia de la plata (Ros Sala 2005b).

IV.1.2.4.2.1. Apreciaciones generales con respecto a la gestión del combustible en Gavilanes

A partir de los resultados obtenidos para las diferentes estructuras de combustión estudiadas, es posible deducir una serie de apreciaciones generales, válidas para todas las fases de ocupación del yacimiento y para la mayoría de estructuras de combustión estudiadas.

- En primer lugar, el combustible leñoso fue el único recurso energético empleado durante todas las fases de ocupación de la Punta de los Gavilanes para el desarrollo de las diferentes actividades desarrolladas en el mismo. Éstas fueron de diversa índole, según las estructuras de combustión estudiadas. Durante la fase prehistórica el combustible leñoso fue empleado fundamentalmente en actividades domésticas y subsistenciales como el procesado de alimentos para su conservación. Sin embargo, a partir de la fase protohistórica y sobre todo durante las fases Gavilanes II y Gavilanes I
las necesidades de combustible se incrementan para mantener un proceso productivo relacionado con la metalurgia.

- Por otro lado, según el cortejo florístico identificado, la captación de recursos leñosos se produjo en ecosistemas diversificados. En un radio de un kilómetro con respecto al espolón se encontrarían, tal y como sucede en la actualidad, amplias formaciones de saladar que constituyeron una fuente permanente de acopio de combustible por parte del grupo, aunque más recurrente a partir del siglo IV a.C. En un radio de 3 Km., y hasta los 5 Km. con respecto a Punta de Los Gavilanes, las posibilidades de obtención de madera se diversifican bastante, pues en las estribaciones de algunas elevaciones como la Sierra de las Moreras pudieron obtenerse los recursos de componente mediterráneo, junto con ciertos iberoafricanismos exclusivos de esta zona (fig. 4.53). Finalmente algunas especies arbóreas como *Quercus ilex/coccifera*, o incluso algunos arbustos como *Erica sp.*, pudieron encontrarse relativamente alejados de la costa, o bien en la franja altitudinal superior.

![Figura 4.53. Mapa de vegetación actual del entorno de Mazarrón y radios de distancia con respecto a la Punta de los Gavilanes.](image)

- El grado de presión sobre los recursos naturales del medio fue distinto durante las diferentes fases ocupacionales. Esta presión iría aumentando al tiempo que se iba produciendo una especialización de las actividades productivas desarrolladas en el enclave, de manera que alcanzaría su punto álgido durante el funcionamiento de la factoría metalúrgica de la fase Gavilanes II, cuando es más posible que se produjera una
fuerte degradación del sistema como consecuencia de la gran demanda de combustible y de la escasa capacidad de regeneración del entorno.

- El contenido combustible de todas las estructuras de combustión estudiadas deja en evidencia que no existieron pautas claras de selección de las especies, ni en función de la propia calidad de las mismas como combustible, ni dependiendo de la funcionalidad de la estructura de combustión alimentada. Las pautas dominantes, en consecuencia, estuvieron dominadas por el oportunismo, teniendo en cuenta como criterio básico la facilidad de captación de las maderas según su proximidad o la inversión de trabajo necesaria para su obtención (preferencia por las maderas muertas).

- La diversidad y la mezcla de combustibles utilizada en cada estructura pudo estar en relación también con los sistemas de acumulación de leña en el promontorio. En este sentido, es posible que existiera una cierta organización de las labores de recogida de leña, de manera que éstas se realizarían de manera periódica, acumulándose en determinados puntos del yacimiento, para más tarde ser utilizada. Así, en la mayoría de ocasiones no se conocería la especie que se estaba utilizando como combustible en cada ocasión.

IV.1.2.4.3. Patrones de uso de la madera con fines constructivos en la Punta de los Gavilanes durante la Edad del Bronce: El Edificio 1TSM

Si bien en la Punta de los Gavilanes no aparecen reflejados patrones de selección claros sobre las especies utilizadas como combustible en las actividades desarrolladas con fuego, la construcción de viviendas y espacios de carácter especializado sí debió de exigir una cuidadosa selección de los materiales utilizados, dependiendo del carácter de la edificación. Esto sería así a pesar de la escasa disponibilidad de especies arbóreas en el entorno que se ha podido constatar en las áreas de captación de la Punta de los Gavilanes desde sus primeros momentos de ocupación en torno al 4000 BP.

Esta selección no obedecería a una relación directa entre una especie concreta para cada uso particular, sino que más bien se produciría en base a ciertos criterios en relación con las propiedades mecánicas de las especies. En cualquier caso, el abanico de recursos que pudo ser escogido se reduciría sólo a algunos elementos del entorno.

Por lo que concierne a los elementos sustentantes de los espacios habitacionales, serían fundamentales aspectos como la longitud del tronco, en relación con la altura proyectada para el hábitat; el grosor del mismo, dependiendo del peso o el tamaño de la techumbre y del total de la edificación y la densidad de la madera, que está en relación directa con su resistencia.
En cuanto a la elaboración de las techumbres, estos criterios sufrirían ciertas modificaciones. Para la elección de las vigas se tendrían en consideración también aspectos como la longitud de los troncos, dependiendo del tamaño, pero en lo que concierne al grosor se buscarían elementos menos gruesos, y más flexibles y resistentes. Por otro lado, la elaboración del resto de la cobertura incluiría a una gran cantidad de especies arbustivas y herbáceas que proporcionaran, junto con el barro, un entramado resistente e impermeable.

Para ilustrar hacia qué especies pudieron estar orientados estos criterios selectivos en el caso de la Fase del Bronce Argárico de Punta de los Gavilanes se ha como referencia el Edificio funcional 1TSM, en el que se llevaron a cabo labores relacionadas con las actividades pesqueras del grupo. La destrucción de este edificio se produjo debido a un incendio, por lo que durante su excavación aparecieron una gran cantidad de fragmentos de troncos carbonizados, que se corresponderían mayoritariamente con la estructura lignea del propio edificio y con las estructuras aéreas que la edificación contenía, en ambos casos quemadas.

El hallazgo de la edificación y sus estructuras interiores se produjo durante la última campaña de excavaciones en 2007, y dada la gran dificultad que entrañó el proceso de excavación, éste no pudo culminarse, de manera que aún permanece en el yacimiento, sin exhumar, parte de la edificación y sobre todo de las estructuras que alojaba, concretamente la estructura aérea del departamento occidental cuya exhumación solo está iniciada. Por ello, los resultados que presentamos aquí son todavía preliminares y no recogen la totalidad de los elementos constructivos del edificio y su ajuar mueble. Tan sólo los correspondientes a la parte del edificio propiamente dicho excavada y a la estructura más oriental de las que parece que contuvo dicha edificación. No obstante, hemos considerado que son suficientemente representativos de los patrones de uso de la madera con fines constructivos, ya que contamos con la mayor parte de los troncos carbonizados asociados al derrumbe de la estructura y con una gran cantidad de muestras de sedimento obtenidas de este contexto.

En la dispersión espacial de los troncos estudiados asociados al derrumbe por incendio de la estructura se observa una notable mayoría de fragmentos pertenecientes al taxón *Pinus pinea/pinaster*, que indica que se ejerció una fuerte selección sobre este elemento por encima de otros más presentes en el entorno. También aparecen algunos troncos de *Pinus halepensis* y de *Pinus* sp. Aparte de las coníferas, fueron utilizados como elementos constructivos el acebuche y los tarayes (fig. 4.54).

Debido al estado de dispersión y destrucción en que fueron documentados los restos de maderas carbonizadas asociados al espacio 1TSM, resulta complejo atribuir una función concreta a cada uno de estos troncos. No obstante, la posición de algunos de los
elementos definidos durante el proceso de excavación permitió atribuirles una posible funcionalidad dentro de la estructura del edificio.

Figura 4.54. Dispersión de los restos en el Edificio 1TSM.
Entre los dos departamentos que conforman el edificio, oriental y occidental, apareció una zona intermedia en donde la sedimentación edáfica y la propia densidad de restos de madera carbonizada indican la existencia de una separación física entre ambos departamentos y sus correspondientes estructuras aéreas, con una hilada de troncos de calibre menor que cabría interpretar bien como el flanco mas occidental de la estructura aérea oriental o bien como una posible separación entre ambas estructuras a modo de empalizada. Los elementos sustentantes de esta estructura oriental estuvieron elaborados fundamentalmente en *Pinus pinea/pinaster* (3199, 3200, 3229, 3230), *Pinus* sp. (3231) y *Olea europaea* (3223).

Por otro lado, la funcionalidad de otros pudo estar relacionada con la conformación de las vigas de la techumbre. Entre ellas aparecen *Pinus pinea/pinaster* (3206, 3248, 3211, 3217-3219), que sigue siendo mayoritario, aunque no único, ya que aparecen también troncos de *Olea europaea* (3204, 3205, 3207, 3236, 3237) y *Pinus halepensis* (3208, 3247).

Entre los dos departamentos que conforman el edificio, oriental y occidental, apareció una zona intermedia en donde la densidad de restos de madera carbonizada hace pensar en la existencia de una separación física entre ambos, a modo de posible empalizada. Los elementos sustentantes de esta estructura estuvieron elaborados fundamentalmente en *Pinus pinea/pinaster* (3199, 3200, 3229, 3230), *Pinus* sp. (3231) y *Olea europaea* (3223).

Otros elementos destacables fueron una serie de tablas halladas sobre la citada separación entre departamentos y sobre la sedimentación resultante de la destrucción del edificio tras su incendio sobre el sector occidental, todavía en fase de excavación. Éstas aparecen perfectamente trabajadas para obtener una forma aplanada y uniforme, aunque de momento no se conoce su funcionalidad exacta. Se trata de las uuee 3178-3, 3172-2 y 3178-5, todas ellas elaboradas a partir de madera de *Pinus pinea/pinaster*. También apareció en la zona central otra tabla (3226), en esta ocasión elaborada a partir de un tronco o rama de *Pinus halepensis*. El trabajo de la madera en el mundo argárico está documentado a partir de los hallazgos de elementos constructivos estudiados en yacimientos como Castellón Alto (Rodríguez-Ariza 2008).

Como se ha comentado con anterioridad, los criterios principales seguidos en la preferencia o no por las maderas usadas fueron de carácter físico-mecánico. En este sentido, el pino piñonero se trata de una especie cuyo tronco puede llegar a medir entre 20 y 30 metros de altura (Costa *et al.* 2001), y es de un gran grosor y rectitud. Además, se trata de una madera con una gran resistencia a la humedad por lo que se conoce su uso tradicional en la elaboración de vigas constructivas o incluso de barcos de pequeño tamaño (López González 2001). Estas características pudieron ser fundamentales en la preferencia de esta especie por encima del pino carrasco, cuyo porte suele ser más...
pequeño y el recorrido de su tronco y sus ramas tortuoso, poco recto, y con abundantes nudos. Además, presenta muy poca flexibilidad, elasticidad y resistencia, que lo convierten en una especie mucho menos recomendable que el pino piñonero, o incluso que el acebuche, cuyas mayores limitaciones residen en su tamaño. La madera del olivo es en general más dura que la de pino carrasco, y presenta mejores condiciones de resistencia, flexibilidad y elasticidad (Rival 1991, citado en Piqué y Noguera 2003). Es posible que por ello, y porque suele tener un diámetro menor que el pino fuese utilizado fundamentalmente como vigas en la techumbre del edificio 1TSM. Algo semejante ocurre en el caso de los tarayes, cuya principal limitación es también el tamaño que suelen presentar sus ejemplares. Sin embargo, su madera se caracteriza por una gran flexibilidad que ha hecho que sea utilizada de manera tradicional para la elaboración de varas utilizadas en agricultura.

A partir del estudio de los carbones dispersos en el sedimento asociado al derrumbe de la estructura se aprecia con claridad la fuerte selección ejercida sobre los pinos, pero sobre todo sobre Pinus pinea/pinaster como elemento constructivo fundamental en el Edificio Funcional 1TSM. El histograma comparativo elaborado a partir de los datos del derrumbe del edificio 1TSM en comparación con los resultados generales obtenidos a partir del carbón disperso de Gavilanes IV demuestra claramente esta tendencia (fig. 4.55). Mientras que en Gavilanes IV los pinos suponen menos de un 10% del total del registro estudiado, Pinus pinea/pinaster y Pinus halepensis representan en su conjunto más del 70% del total, y en particular el primero supera el 50% del carbón asociado a este ámbito productivo. Por el contrario, en los niveles de ocupación el combustible mayoritario es Pistacia lentiscus y Olea europaea, que aparecen con mucha más escasez en el caso del edificio 1TSM, ya que hemos podido observar que entre los materiales individualizados no hemos encontrado ningún fragmento de Pistacia lentiscus, y Olea europaea es minoritario, junto con Tamarix sp.

La gran variabilidad taxonómica documentada en el sedimento asociado al derrumbe del edificio 1TSM obedece a la mezcla de materiales carbonizados, y a la posibilidad de que una gran cantidad de especies poco seleccionadas y de carácter arbustivo o herbáceo sirvieran para conformar el entramado de la cobertura de este edificio.

Los paralelismos que conocemos para la Edad del Bronce en el Sureste de la Península Ibérica, como el yacimiento de Terlinques en Villena (Machado Yanes et al. 2004), la Terrera del Reloj en Granada (Rodríguez-Ariza 1992a), el Castellón Alto, también en Granada (Rodríguez Ariza y Ruiz Sánchez 1995) o el Barranco de la Viuda de Lorca (este trabajo) muestran una clara predilección por el uso de Pinus halepensis como elemento constructivo fundamental en la sustentación de los espacios habitacionales y mayoritario en las vigas y largueros de la techumbre, que estarían unidos mediante esparto, como se produce también en Punta de los Gavilanes. No obstante, la selección de los materiales de construcción conduce también a una búsqueda de recursos en radios
lejanos al yacimiento, como demuestra la aparición de *Pinus nigra/sylvestris* en el caso de Castellón Alto y del Castillejo de Gádor, donde también aparecerían vigas elaboradas fundamentalmente con aliso (*Alnus* sp.), álamo (*Populus* sp.), taray (*Tamarix* sp.) y *Pinus nigra-sylvestris* (Rodríguez-Ariza 2001).

![Figura 4.55. Histograma de porcentajes comparativo entre el derrumbe del Edificio 1TSM y los valores generales de la fase Gavilanes IV.](image)

Por lo que concierne a los elementos que conformarían el entramado de las techumbres, aparecen una gran cantidad de especies, como ocurre en la Punta de los Gavilanes. En el caso de Terlinques se usa fundamentalmente *Tamarix* sp., *Rosmarinus officinalis*, *Olea europaea* var. *sylvestris*, *Juniperus* sp., *Pistacia lentiscus* y *Arbutus unedo* (Machado Yanes et al. 2004). En la Terrera del Reloj se documenta una mezcla de leguminosas con elementos ribereños como *Populus* sp., *Salix* sp. o *Tamarix* sp. (Rodríguez-Ariza 1992a). En Castellón Alto, el entramado de ramas del techo estuvo realizado principalmente de *Tamarix* sp. en las fases I y III y de *Retama* sp. en la fase II (Rodríguez Ariza y Ruiz Sánchez 1995). En el Castillejo de Gádor el ramaje de la techumbre estaría compuesto por romero, retama, acebuche, encina y sauce (Rodríguez-Ariza 2001).
IV.2. Resultados antracológicos de Barranco de la Viuda

IV.2.1. Presentación del yacimiento

Los datos arqueológicos que se exponen a continuación han sido extraídos de la memoria inédita de la excavación depositada en el Servicio de Patrimonio Histórico de la Consejería de Cultura de la Comunidad Autónoma de la Región de Murcia en el año 1999 (Medina Ruiz y Sánchez González 1999).

IV.2.1.1. Situación y antecedentes

El Barranco de la Viuda es un poblado de la Edad del Bronce, perteneciente a la Cultura Argárica, que se emplaza en la vertiente septentrional de la Sierra de la Almenara, concretamente en la diputación de El Hinojar (Lorca). El yacimiento se asienta en un cerro ubicado en el tramo más angosto de la Depresión Prelitoral, formando parte de un conjunto de relieves que actúan como interfluvios de una serie de ramblas tributarias del Guadalentín, en cuya margen derecha se sitúa a más de 100 m de altura sobre el nivel del río. Este último aspecto confiere al lugar un gran valor geoestratégico, tanto por la protección que supone la accidentada topografía, como por el amplio control visual al presentar un ángulo de visibilidad, con orientación SO a NE, de más de 200º sobre el valle.

Topográficamente el yacimiento se dispone sobre la cima amesetada del cerro entre los 373 y 387 m.s.n.m., presentando laderas de fuerte pendiente con desniveles superiores al 40%, salvo en la fachada Noreste que se prolonga por la divisoria de aguas decreciendo suavemente hacia el valle.

Los restos arqueológicos se dispersan a lo largo de la cima y tramo superior de laderas, abarcando una superficie próxima a los 800 m². En la superficie del ámbito arqueológico apareció un gran número de restos materiales argáricos, fundamentalmente fragmentos cerámicos pertenecientes a grandes contenedores y molinos, junto a una abundante pedregosidad procedente del derrumbe de estructuras murarias, alguna de las cuales todavía es identificable. Puntualmente en el área nororiental se registraron restos cerámicos islámicos a nivel superficial sin contextos arqueológicos identificados en el subsuelo.

La intervención arqueológica objeto de estudio se realizó entre los años 1998 y 1999, enmarcándose dentro de una serie de actuaciones de recuperación y documentación del yacimiento, tras las remociones de terreno e instalación de un apoyo de línea eléctrica en el sector oriental del área arqueológica. Estas labores arqueológicas, dirigidas por Mª. Jesús Sánchez González y Antonio Javier Medina Ruiz, se fundamentaron en una excavación en extensión de 380 m², practicada dentro del área afectada por las remociones de terreno.
IV.2.1.2. Registro arqueológico

La excavación arqueológica del Barranco de la Viuda se desarrolló concretamente en el límite oriental del Sector Sur del yacimiento, por lo que las estructuras halladas se corresponderían con el área perimetral del asentamiento. Las remociones del terreno previas a la construcción de la torre eléctrica condicionaron la intervención arqueológica a tres sectores sin correlación estratigráfica (Norte, Sureste, Suroeste), pero cuya visión global ha permitido una interesante lectura del urbanismo del poblado, así como de la articulación de diferentes departamentos con elementos de carácter defensivo, como la muralla que cerraba el poblado por este lado, que fue cortada en dos por la apertura de la pista para la instalación eléctrica.

La totalidad de las muestras antracológicas reseñadas en este estudio proceden de contextos estratigráficos del interior de estos departamentos. Concretamente, del Departamento 1, que se localiza en el sector suroccidental del yacimiento, del Departamento 2, localizado en el sector Sureste y de los Departamentos 3 y 4, que se emplazan en el sector norte, a excepción de una parte del Departamento 3 que se sitúa en el sector Sureste, adosada al Departamento 2.

A continuación se describen, a grandes rasgos, los cuatro Departamentos estudiados:

- Departamento 1

Se trata de una vivienda que presenta gruesos muros perimetrales construidos por una doble alineación de piedras careadas hacia los paramentos, con los intersticios rellenos con barro y piedras pequeñas. Presenta planta trapezoidal, respondiendo posiblemente a un modelo de casa característico del poblado, no forzado por condicionantes topográficos, o de tipo urbanístico, como ocurre con los que se adosan a la muralla.

En el contexto arqueológico del sector destaca un escaso potencial estratigráfico, aspecto que significó que los niveles de ocupación fueran casi aflorantes, favoreciendo en gran medida la actividad de expoliadores, en contra de lo observado en los departamentos situados junto a la muralla que estaban protegidos por un potente nivel de derrumbe.

Dentro de los contextos habitacionales interiores se registraron dos niveles de uso, superpuestos, elaborados a partir de sedimentos tipo filitas traídos desde áreas próximas al poblado. Ambos se interpretan como niveles de circulación donde aparecen escasos restos materiales, en su mayoría minúsculos fragmentos cerámicos muy rodados, y gran escasez de restos bióticos.
Figura 4.56. Planta general del Barranco de la Viuda.
- Departamento 2

Este departamento ha ofrecido una gran cantidad de restos de carbón, asociados a diversas actividades de carácter doméstico desarrolladas en su interior (fig. 4.57). Externamente, aparece definido al E por la muralla del poblado, al S y al N por dos muros cortos adosados a la muralla, y al O por otro muro con dirección paralela a la muralla, donde se localiza el zócalo de entrada al departamento. La habitación presenta una planta irregular de forma trapezoidal, casi rectangular, próxima a 20 m².

El espacio interior conforma una única habitación, sin subdivisiones internas, si bien durante el primer momento de ocupación el hábitat se articulaba en distintos niveles de cota, planos rehundidos o sobrelevados, siguiendo en gran medida la superficie de roca desbastada.

En el Departamento 2 se constata una secuencia de 5 niveles, 4 de ellos de ocupación con una amplitud cronológica próxima a 100 años, según la secuencia de dataciones de C¹⁴: KIA-35570: 3465 ± 35 BP (1920-1680 cal BC ²σ) y KIA-35569: 3400 ± 35 BP (1840-1640 cal BC ²σ).

La secuencia ocupacional del departamento presenta una primera fase de ocupación fundacional probablemente coetánea al levantamiento del tramo de muralla. Aunque la superficie de uso se presentaba de forma fragmentaria debido a las modificaciones y reformas emprendidas en ocupaciones posteriores, la documentación de toda una serie de elementos, como los recortes en la roca de base, ha permitido reconstruir la articulación primigenia de este departamento.

Asociados a este primer nivel se encuentran un conjunto de elementos estructurales como son el zócalo de acceso al departamento (8J73), una cazoleta labrada por piqueteado en la roca de base, un posible basar esquinado (8J42) y un encachado (8J41) dispuesto al pie del paramento de muralla. En esta misma línea, pero asociado al último momento del nivel aparece el resto carbonizado de un posible recipiente o elemento de madera (7J49), junto a una copa fragmentada.

El segundo nivel de ocupación se identifica por abundantes restos de producción y manufactura de materias primas, así como elementos arquitectónicos y domésticos que permiten un acercamiento al modelo económico, tecnológico y distribución espacial de esta unidad de habitación del poblado argárico. Se constata una preparación del nivel de ocupación orientada a acondicionar la superficie a una nueva articulación habitacional y uso del departamento, tendente a la regularización del nivel de uso.
Figura 4.57. Planimetria del Departamento 2 con sus principales estructuras asociadas.
Dentro del ambiente aparece un conjunto de elementos estructurales entre los que destaca un encachado (8J59) con banco de molienda (8J40) sobre el que se dispone un molino de uso (8J36) (fig. 4.58), y un segundo molino apoyado en éste, así como una vasija de almacenamiento esquinada (7J61), posiblemente utilizada en su fase final como cenicero. Todo ello junto a otros elementos de carácter macroestructural como un segundo zócalo de acceso y bases de poste de sustentación.

De especial interés es la aparición de un horno (7J34) con una bandeja piedra de planta oval adosada (7J32) (fig. 4.59). Con los datos disponibles se interpreta que el horno constaría de una pequeña cámara de combustión, sobreelevada del suelo unos 20 cm, cuya cubierta apoyaría perimetralmente sobre una columna central de barro, rematada por un molino amortizado con función de parrilla. La cámara presentaría dos aberturas en su base, una hacia la estructura de 7J32, y una segunda orientada al N, ambas con funciones de alimentación de combustible y de tobera. El uso del horno pudo ser variado, si bien el hallazgo de una densidad alta de granos de cebada -7J87- ubicado entre el horno y la bandeja 7J32 parece indicar que, entre otros destinos, la estructura se dedicó a la torrefacción de cereal. Una muestra de ramita procedente de la cámara de combustión y correspondiente al final del uso del horno arrojó la siguiente datación C¹⁴: KIA-35571: 3425 ± 35 BP (1780-1620 cal BC 2 σ).
Próximo al citado horno, y adosado al paramento de muralla, se encontró una estructura de barro (7J36) que albergaba un conjunto apilado de ramas carbonizadas de *Pinus halepensis*, cuya aparente intencionalidad pudo ser la de una acumulación de leña que iba a ser utilizada a corto plazo como combustible en el horno, o bien una acumulación de carbones que pudieron haber servido también como combustible (fig. 4.60).
El siguiente nivel de ocupación del departamento 2 también supone un significativo cambio en la organización de la superficie, que se presenta más diáfana tras nivelar en un solo plano el piso de circulación y ubicar perimetralmente los elementos auxiliares.

Destaca una superficie de uso con una densidad significativa de materiales -cerámicas rodadas, industria lítica en sílex y restos de carbones-, al que se asocian una vasija de almacenamiento de gran volumen (8J23) que apoya sobre un encachado/rebanco (8J24).

Del mismo modo se documenta la estructura de combustión 7J17, adosada a la muralla (fig. 4.61). Se trata de un posible horno con cubierta móvil que se compone de un barro rojizo de textura gruesa delimitado con pequeñas piedras de forma aplanada hincadas pero inclinadas hacia el exterior, adoptando en planta una forma semicircular y disponiéndose a nivel de suelo. En el interior de la estructura se aprecia un recubrimiento de fragmentos cerámicos -7J18-, posible base refractaria sobre la que se depositarían los tizones. Su funcionalidad estuvo probablemente relacionada con la elaboración de pan, no encontrándose cubrición alguna, si bien para su empleo se pudo utilizar una vasija boca abajo que haría las veces de cámara de combustión.

El siguiente nivel es ya el de abandono y amortización de la estructura, tras lo cual se produce el definitivo derrumbe de los muros perimetrales.

- Departamento 3

Esta unidad habitacional se dispone adosada a la muralla, justo en la zona de curvatura generada por la divisoría de aguas, que condicionó también la planta del departamento.
mediante la angulación de los muros largos. Justo en este punto el departamento fue destruido antes de su excavación para la realización del camino de entrada para los trabajos de la línea eléctrica. Por ello fueron excavadas dos áreas no conectadas, una meridional y otra septentrional.

En el área meridional se distingue un primer nivel de uso, en el que destaca la presencia de una estructura, a modo de rebanco, adosada a la base de la muralla. La aparición de una subestructura de adobe (6J32) que contenía una acumulación de cereal (6J18/6J25) sobre este rebanco hace pensar en su posible uso como silo. Una muestra de cereal de este contexto, correspondiente al último momento de uso de la estructura aportó la siguiente datación C14: KIA-35559: 3465 ± 35 BP (1920-1680 cal BC 2\sigma). Paralelamente fue hallada una base de poste compuesta por piedras hincadas trabadas con barro (6J37) también prósima a la muralla.

El fin de este primer nivel se produce tras un episodio de destrucción con probable origen en un incendio, a juzgar por una capa de adobe y barro quemado -6J15-, junto a restos descolocados de carbones, probablemente procedentes de la caída de elementos estructurales de madera.

Tras el colapso del primer nivel de ocupación se documenta un relleno mediante el aporte de sedimento y bloques de tamaño medio, tendentes a la regularización del terreno y al acomodo de una superficie de uso o circulación bien definida. Asociado a este contexto habitacional se constata un poste de sustentación carbonizado (6J16) con base de piedras trabadas con barro (6J21), situado en la esquina de la muralla con el muro 7J13.

El último nivel detectado en esta zona meridional es ya el derrumbe de las estructuras murarias, la muralla y el muro 7J13, compuesto por una densa acumulación de bloques.

En cuanto al área septentrional, un primer momento aparecería coronado por un nivel de incendio (fig. 4.62) con características similares a las descritas en el sector meridional. En el mismo contexto se sitúan algunos troncos quemados desplazados (6H35/6H26), todo ello entregado a un antiguo nivel de uso, donde se encuentran los restos de un objeto de esparto en crudo, tipo espuerta (6H47). En la esquina formada entre el contrafuerte de muralla (6H04) y el muro de cierre con el Departamento 4 (6H06), apareció una acumulación de carbones interpretada como un hogar.

Posteriormente se documentó un segundo nivel de uso (6H11), definido por un sedimento de textura fina que aportó escasos materiales cerámicos rodados junto a muestras de carbón vegetal. Finalmente, se documenta una acumulación de piedras correspondiente al derrumbe de estructuras murarias.
- Departamento 4

Esta unidad departamental se adosa a la muralla, entre los departamentos 3 y 5. Aunque no se ha documentado toda la extensión del departamento, éste debió tener una planta de tendencia rectangular con una superficie próxima a 47,5 m², 5 x 9,5 m.

Su secuencia estratigráfica está marcada por un primer nivel de hábitat fundacional articulado al interior en dos habitaciones separadas, donde se documenta un conjunto de elementos estructurales. De esta forma, en el ambiente meridional se hallaron los bancos 5G14 y 5G26, las estructuras escalonadas 5G37 y 5G18 que regularizaban la superficie y la base de poste junto al paramento de muralla 5H28. En la habitación septentrional, de menores dimensiones, se registró una segunda base de poste (5G44) también adosada a la muralla, y un encachado en la base del muro de cierre NO (5F20).

A este primer nivel se asocia un posible enterramiento en urna (5F35) localizado en la habitación NO, único sector donde el relleno de nivelación permitía la excavación de fosas.

El segundo nivel de habitación guarda la misma organización interna que la ocupación fundacional del departamento. En él se define la fase de ocupación más reciente del departamento, previo al abandono y amortización del mismo. Se caracteriza por una amplia superficie, casi diáfragma, con una acusada pendiente próxima al metro de altura de desnivel entre los sectores NO y SE. La única articulación del espacio interior corresponde al banco/encachado 5G14, elemento adosado a la muralla que, como se ha comprobado, pervive del nivel más antiguo.
En este nivel también aparece un enterramiento, localizado en las esquina noroccidental del departamento, conformada entre la muralla y el muro 5F20, donde el paquete sedimentario tiene un mayor espesor, y cuya fosa (5G48) se rellena con una densa acumulación de piedras. Se trata de una inhumación infantil en una urna con tapadera cerámica (5G47).

Finalmente se produce el derrumbe de las estructuras murarias perimetrales de cierre del departamento. Se produce en varios episodios, desconociéndose si fueron consecutivos o hubo intervalo temporal entre ellos.

- Departamento 5

Aparece en el límite noroeste de área de intervención arqueológica. Los trabajos arqueológicos desarrollados en este departamento tan solo ha documentado parte del derrumbe murario que fosiliza los contextos habitacionales. No hay muestras antracológicas procedentes este departamento.

IV.2.2. El estudio antracológico del Barranco de la Viuda

IV.2.2.1. Las muestras antracológicas

El material antracológico estudiado para el Barranco de la Viuda fue recuperado durante la campaña de excavaciones de 1998-99, en la que no participamos personalmente.

El muestreo llevado a cabo en aquel momento se basó, por un lado, en la recogida de muestras de sedimento de distinto volumen durante el proceso de excavación, y por otro lado, en la recuperación manual in situ de aquellos troncos, ramas o acumulaciones carbonosas cuya conservación o trascendencia interpretativa aconsejaban su coordinación tridimensional de manera individualizada. Estas últimas muestras son de dos tipos: muestras de un único fragmento de carbón, generalmente de gran tamaño, que suele conservar la totalidad o gran parte de su diámetro, o bien muestras consistentes en una acumulación de ramas y ramitas a las cuales se les dio un único número de muestra e inventario.

En el caso de las muestras de sedimento, se ha optado por su tratamiento mediante flotación con máquina. Las muestras recuperadas de manera manual, sin embargo, no han necesitado ningún tipo de tratamiento para poder ser estudiadas.

En la tabla siguiente (tabla 4.32) se recogen las UUEE de las cuales existen muestras antracológicas, la zona del yacimiento o departamento en el que fueron recuperadas, el volumen de litros que se ha tratado mediante flotación en el caso de las muestras de
sedimento, el número de carbones estudiados en cada una de ellas y el número de muestra en el caso de aquéllas que fueron recuperadas de manera individual en el yacimiento. En este último caso, entre paréntesis se refleja el número de carbones estudiado por muestra, que, como se ha comentado anteriormente, puede estar constituido por un único tronco o por varios fragmentos distintos.

<table>
<thead>
<tr>
<th>DEPARTAMENTO</th>
<th>UE</th>
<th>DESCRIPCIÓN</th>
<th>FLOTACIÓN</th>
<th>Nº DE CARBONES ESTUDIADOS (Flotación)</th>
<th>Nº DE MUESTRA RECUPERADA IN SITU (Nº de carbones por muestra)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9119</td>
<td>Superficie de circulación</td>
<td>4 litros</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9120</td>
<td>Superficie de circulación</td>
<td>7 litros</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9125</td>
<td>Superficie de circulación</td>
<td>4 litros</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10147</td>
<td>Superficie de circulación</td>
<td>4 litros</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10149</td>
<td>Superficie de circulación</td>
<td>3 litros</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7J10</td>
<td>Sedimento</td>
<td>0,5 litros</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7J14</td>
<td>Nivel de circulación</td>
<td>11 litros</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7J19</td>
<td>Acumulación carbones, carbonera o leñera</td>
<td>0,5 litros</td>
<td>50</td>
<td>94 (1), 95 (1), 103 (10), 107 (1), 111 (1), 112 (1), 113 (1)</td>
</tr>
<tr>
<td></td>
<td>7J20</td>
<td>Derrumbe</td>
<td></td>
<td></td>
<td>78 (1)</td>
</tr>
<tr>
<td></td>
<td>7J23</td>
<td>Estructura derruida</td>
<td>1,3 litros</td>
<td>0</td>
<td>90 (1), 91 (30), 92 (1), 93 (1), 7J23/5 (1)</td>
</tr>
<tr>
<td></td>
<td>7J24</td>
<td>Carbones sobre horno 7J34</td>
<td></td>
<td></td>
<td>96 (5), 7J24/2 (1), 7J24/3 (1), 7J24/4 (1)</td>
</tr>
<tr>
<td></td>
<td>7J31</td>
<td>Carbones, Estructura derruida, posible elemento de combustión</td>
<td></td>
<td></td>
<td>123 (15), 175 (2), 182 (3), 114 (1), 116 (1), 181 (1)</td>
</tr>
<tr>
<td></td>
<td>7J34</td>
<td>Horno torrefactado cereal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7J35</td>
<td>Acumulación de carbones y ceniza, cenicero horno 7J34</td>
<td>0,5 litros</td>
<td>40</td>
<td>122 (1), 149 (1)</td>
</tr>
<tr>
<td></td>
<td>7J41</td>
<td>Sedimento mismo contexto 7J31 7J23 y 7J31</td>
<td>3 litros</td>
<td>0</td>
<td>168 (1), 169 (1), 170 (1), 173 (1), 124 (1)</td>
</tr>
<tr>
<td></td>
<td>7J43</td>
<td>Igual 7J41</td>
<td>0,3 litros</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7J46</td>
<td>Carbón en horno 7J34</td>
<td></td>
<td>131 (7), 176 (2), 183 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7J48</td>
<td>Sedimento entre leñera/carbonera</td>
<td>6 litros</td>
<td>110</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 4.32. Muestras antracológicas estudiadas.
<table>
<thead>
<tr>
<th>DEPARTAMENTO</th>
<th>UE</th>
<th>DESCRIPCIÓN</th>
<th>FLOTACIÓN</th>
<th>Nº DE CARBONES ESTUDIADOS (Flotación)</th>
<th>Nº DE MUESTRA RECUPERADA IN SITU (Nº de carbones por muestra)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7J49</td>
<td>5 ramas carbonizadas paralelas</td>
<td>135 (1), 136 (1), 137 (1), 138 (1), 141 (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7J51</td>
<td>Superficie de circulación</td>
<td>179 (1), 180 (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7J53</td>
<td>Carbón, junto a leñera/carbonera</td>
<td>155 (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7J55</td>
<td>Superficie de circulación</td>
<td>4 litros 70 152 (2), 153 (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7J58</td>
<td>Sedimento</td>
<td>3 litros 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7J59</td>
<td>Superficie de circulación</td>
<td>0,3 litros 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7J60</td>
<td>Igual 7J59</td>
<td>151 (12)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7J62</td>
<td>Relleno interior vasija 7J61</td>
<td>4 litros 250 156 (20)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7J63</td>
<td>Relleno interior vasija 7J61</td>
<td>2 litros 120 157 (50), 158 (20)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7J67</td>
<td>Superficie de circulación</td>
<td>186 (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7J70</td>
<td>Relleno interior vasija 7J61</td>
<td>7 litros 150 161 (30)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7J75</td>
<td>Superficie de circulación</td>
<td>216 (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7J76</td>
<td>Igual 7J51</td>
<td>184 (50)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7J80</td>
<td>Superficie de circulación</td>
<td>185 (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7J348</td>
<td>Interior horno 7J34</td>
<td>0,5 litros 10 196 (5), 203 (30), 195 (1), 189 (1), 202 (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7K07</td>
<td>Exterior muralla</td>
<td>3 litros 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8561</td>
<td>Derrumbe murario</td>
<td>1 litro 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8J08</td>
<td>Superficie de circulación</td>
<td>1 litro 0 8 (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8J11</td>
<td>Sedimento, relleno</td>
<td>2 litros 4 13 (1), 15 (1), 16 (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8J14</td>
<td>Sedimento, relleno</td>
<td>77 (1), 73 (1), 74 (1), 75 (1), 76 (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8J20</td>
<td>Sedimento exterior departamento</td>
<td>17 (1), 34 (1), 18 (1), 32 (1), 33 (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8J22</td>
<td>Vaso de almacenamiento</td>
<td>2 litros 10 20 (1), 21 (50)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8J23</td>
<td>Superficie de circulación</td>
<td>1 litro 5 35 (1), 36 (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8J25</td>
<td>Superficie de circulación</td>
<td>6 litros 0 80 (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8J26</td>
<td>Sedimento interior vasija 8J23</td>
<td>3 litros 12 84 (1), 85 (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8J28</td>
<td>Tronco carbonizado, posible poste</td>
<td>16 litros 100 82 (1), 86 (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8J33</td>
<td>Sedimento interior basar 8J42</td>
<td>1 litro 0 97 (1), 8J33/2 (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 4.32. Continuación.
<table>
<thead>
<tr>
<th>DEPARTAMENTO</th>
<th>UE</th>
<th>DESCRIPCIÓN</th>
<th>FLOTACIÓN</th>
<th>Nº DE CARBONES ESTUDIADOS (Flotación)</th>
<th>Nº DE MUESTRA RECUPERADA IN SITU (Nº de carbones por muestra)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8J35</td>
<td>Superficie de circulación junto molino 8J36</td>
<td></td>
<td></td>
<td>150 (1)</td>
</tr>
<tr>
<td></td>
<td>8J37</td>
<td>Igual 8J35</td>
<td>4 litros</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>8J39</td>
<td>Igual 8J37</td>
<td>3 litros</td>
<td></td>
<td>119 (1), 128 (1), 130 (1)</td>
</tr>
<tr>
<td></td>
<td>8J43</td>
<td>Sedimento</td>
<td>3 litros</td>
<td></td>
<td>120 (1), 121 (1)</td>
</tr>
<tr>
<td></td>
<td>8J44</td>
<td>Superficie de circulación</td>
<td>4 litros</td>
<td></td>
<td>127 (1)</td>
</tr>
<tr>
<td></td>
<td>8J52</td>
<td>Igual 8J52</td>
<td>0,5 litros</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>8J53</td>
<td>Superficie de circulación</td>
<td>0,2 litros</td>
<td></td>
<td>129 (1)</td>
</tr>
<tr>
<td></td>
<td>8J57</td>
<td>Acumulación de carbones</td>
<td>3 litros</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>8J60</td>
<td>Adobe, posible relleno</td>
<td>0,5 litros</td>
<td></td>
<td>147 (5), 132 (10), 142 (1), 145 (1), 146 (1), 148 (1), 144 (1), 143 (1)</td>
</tr>
<tr>
<td></td>
<td>8J70</td>
<td>Superficie circulación</td>
<td>0,5 litros</td>
<td></td>
<td>171 (2), 164 (8), 174 (4), 172 (1)</td>
</tr>
<tr>
<td></td>
<td>8J72</td>
<td>Igual 8J73</td>
<td>0,5 litros</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>8J79</td>
<td>Superficie circulación en el zócalo acceso</td>
<td></td>
<td></td>
<td>178 (40)</td>
</tr>
<tr>
<td></td>
<td>8J85</td>
<td>Relleno</td>
<td></td>
<td></td>
<td>165 (1)</td>
</tr>
<tr>
<td></td>
<td>8J88</td>
<td>Sedimento, posible superficie circulación</td>
<td>2 litros</td>
<td></td>
<td>167 (1)</td>
</tr>
<tr>
<td></td>
<td>8K04</td>
<td>Exterior muralla</td>
<td>3 litros</td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEPARTAMENTO 3</th>
<th>UE</th>
<th>DESCRIPCIÓN</th>
<th>FLOTACIÓN</th>
<th>Nº DE CARBONES ESTUDIADOS (Flotación)</th>
<th>Nº DE MUESTRA RECUPERADA IN SITU (Nº de carbones por muestra)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6H11</td>
<td>Superficie circulación</td>
<td></td>
<td></td>
<td>46 (20), 44 (1), 47 (1), 54 (1), 45 (1), 43 (1), 47 (1), 42 (1), 49 (1), 51 (1), 37 (1), 48 (1), 50 (1), 52 (1)</td>
</tr>
<tr>
<td></td>
<td>6H13</td>
<td>Incendio</td>
<td></td>
<td></td>
<td>55 (1), 56 (1)</td>
</tr>
<tr>
<td></td>
<td>6H14</td>
<td>Incendio</td>
<td>10 litros</td>
<td></td>
<td>88 (10), 62 (1), 71 (1), 72 (1), 65 (1), 61 (1), 69 (1), 68 (1), 70 (1), 67 (1)</td>
</tr>
<tr>
<td></td>
<td>6H15</td>
<td>Densa acumulación carbones, posible hogar</td>
<td>10 litros</td>
<td></td>
<td>89 (50), 210 (40), 217 (40)</td>
</tr>
<tr>
<td></td>
<td>6H26</td>
<td>Carbones, posibles restos incendio</td>
<td></td>
<td></td>
<td>211 (1)</td>
</tr>
<tr>
<td></td>
<td>6J12</td>
<td>Acumulación de carbones</td>
<td></td>
<td></td>
<td>126 (2)</td>
</tr>
<tr>
<td></td>
<td>6J16</td>
<td>Poste, Nivel II</td>
<td></td>
<td></td>
<td>125 (20), 207 (1)</td>
</tr>
<tr>
<td></td>
<td>6J26</td>
<td>Superficie de incendio</td>
<td></td>
<td></td>
<td>197 (1)</td>
</tr>
<tr>
<td></td>
<td>6J30</td>
<td>Rama carbonizada, incendio</td>
<td></td>
<td></td>
<td>205 (1)</td>
</tr>
<tr>
<td></td>
<td>6i10</td>
<td></td>
<td>3 litros</td>
<td></td>
<td>57 (1), 58 (1), 59 (1), 60 (1), 64 (1)</td>
</tr>
</tbody>
</table>

Tabla 4.32. Continuación.
<table>
<thead>
<tr>
<th>DEPARTAMENTO</th>
<th>UE</th>
<th>DESCRIPCIÓN</th>
<th>FLOTACIÓN</th>
<th>Nº DE CARBONES ESTUDIADOS (Flotación)</th>
<th>Nº DE MUESTRA RECUPERADA IN SITU (º de carbones por muestra)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEPARTAMENTO 4</td>
<td>5F39</td>
<td>Relleno urna de enterramiento 5F35</td>
<td>5 litros</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5G28</td>
<td>Superficie de circulación</td>
<td>1 litro</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5G36</td>
<td>Superficie de circulación</td>
<td>5 litros</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5G37</td>
<td>Encachado</td>
<td></td>
<td>79 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5G43</td>
<td>Superficie circulación</td>
<td></td>
<td>105 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5G49</td>
<td>Relleno fosas (5G48) enterramiento (urna 5G47)</td>
<td>4 litros</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5G51</td>
<td>Superficie de circulación</td>
<td>4 litros</td>
<td>6</td>
<td>98 (1), 99 (1)</td>
</tr>
<tr>
<td></td>
<td>5G53</td>
<td>Relleno urna enterramiento 5G47</td>
<td>15,5 litros</td>
<td>145</td>
<td>219 (15)</td>
</tr>
<tr>
<td></td>
<td>5G57</td>
<td>Sedimento bajo encachado</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5G58</td>
<td>Superficie de circulación, habitación N</td>
<td>1 litro</td>
<td>3</td>
<td>106 (1)</td>
</tr>
<tr>
<td></td>
<td>5H22</td>
<td>Superficie de circulación</td>
<td></td>
<td>1 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5H23</td>
<td>Igual 5H22</td>
<td></td>
<td>7 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5H24</td>
<td>Superficie circulación</td>
<td></td>
<td>5 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5H27</td>
<td>Superficie circulación</td>
<td>1 litro</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PERFIL W</td>
<td>Perfil W</td>
<td></td>
<td></td>
<td>3 (1)</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 4.32. Continuación.

En general el número de carbones recuperado en cada una de las muestras no ha sido muy elevado, por lo que sistemáticamente se ha estudiado la práctica totalidad de los fragmentos de la muestra. En las muestras con abundancia de carbones hemos estudiado un número mínimo en relación con la riqueza taxonómica de la muestra, para lo que ha sido de gran ayuda la elaboración de curvas de esfuerzo-rendimiento y de porcentajes de los taxones más representados en cada conjunto. Se han tomado como referencia las unidades estratigráficas procesadas mediante flotación con un mayor contenido en carbones: la 7J62, 7J70 y 8J60.

Procedentes de la flotación de la UE 7J62 fueron estudiados un total de 250 fragmentos de carbón, que presentaron una gran pobreza taxonómica, con sólo 6 taxones identificados. La curva taxonómica de esta muestra (fig. 4.63) describe un rápido crecimiento hasta la identificación del último de los taxones, *Juniperus* sp., en el fragmento número 36, a partir del cual no aparece ningún otro taxón. El taxón más representado, *Olea europaea*, apareció una vez estudiados 7 fragmentos, y el siguiente en representación, *Pistacia lentiscus*, lo hizo en el fragmento número 12. El primer fragmento identificado se corresponde con el taxón *Pinus halepensis*, el tercero porcentualmente más representado.
La curva de porcentajes (fig. 4.64) ha sido elaborada con los tres taxones más representados, *Olea europaea*, *Pistacia lentiscus* y *Pinus halepensis*. En ella se observa un proceso de estabilización de las curvas de los taxones, aunque no todos ellos alcanzan esta estabilidad en el mismo punto del desarrollo del análisis. *Olea europaea* presenta un crecimiento porcentual hasta aproximadamente el estudio de los primeros 100 fragmentos de carbón, a partir de los cuales tiende a estabilizarse con valores oscilantes entre el 35 y 40% del total. Por su parte, la estabilización porcentual de los dos taxones restantes se produce mucho antes, pues se observa como a partir de los 50 fragmentos de carbón presentan ya porcentajes en el entorno del 25% que ambos mantendrán hasta el final del análisis.
En cuanto a la UE 7J70, han sido analizados un total de 150 fragmentos de carbón, con la identificación de 10 elementos distintos. En este caso la curva taxonómica (fig. 4.65) se presenta inicialmente con un crecimiento rápido, identificando 6 taxones en sólo 18 fragmentos. Este crecimiento se vuelve más escalonado a partir del sexto taxón, Labiatae, de manera que no se produce ninguna nueva identificación entre el fragmento 18 y el 80, a partir del cual aparecen 4 nuevos taxones: Ephedra sp., Periploca angustifolia, Coniferae y cf. Plantago sp. Fue necesario el estudio de 88 fragmentos de carbón para identificar el 80% del total del listado taxonómico, mientras que el resto sólo ofreció dos taxones más. *Olea europaea* vuelve a ser el taxón más identificado, seguido de *Pinus halepensis* y *Pistacia lentiscus*, además, los tres son los primeros en aparecer, en orden de mayor a menor presencia en el registro. Por el contrario, como suele ser habitual, los últimos taxones identificados son muy escasos en el registro. En este caso la presencia de los 4 últimos taxones es porcentualmente irrelevante, ya que *Ephedra* sp. y *Periploca angustifolia* presentan únicamente 2 fragmentos, y Coniferae y cf. *Plantago* sp. sólo están representados por un único fragmento cada uno de ellos.

![Diagrama de taxones de la UE 7J70](image)

Figura 4.65. Relación entre el número de fragmentos y número de taxones de la UE 7J70.

La curva de porcentajes en el caso de la UE 7J70 (fig. 4.66) presenta grandes similitudes con la obtenida para la unidad anterior. Ha sido elaborada con los taxones más representativos, que vuelven a ser *Olea europaea, Pinus halepensis* y *Pistacia lentiscus*. *Olea europaea*, es también en esta ocasión el taxón más representado, con valores semejantes a la UE 7J62, en torno al 40%. Su estabilización se produce también aproximadamente tras el estudio de unos 100 fragmentos de carbón. Los dos taxones restantes, *Pinus halepensis* y *Pistacia lentiscus*, ofrecen, como en la UE 7J62, una estabilización más temprana, en torno a los 60 fragmentos estudiados. En este caso los
valores porcentuales discurren, como en la UE 7J62, muy próximos entre ambos taxones, si bien éstos son algo inferiores al caso anterior, ya que rondan el 20%, con una ligera tendencia ascendente en ambos casos.

Figura 4.66. Curva de porcentajes UE 7J70.

Finalmente, de la muestra antracológica obtenida para la UE 8J60 han podido ser analizados hasta 100 fragmentos de carbón, obteniendo un listado taxonómico bastante pobre, compuesto únicamente por 7 taxones. El trazado de la curva taxonómica (fig. 4.67) es completamente escalonado, sufriendo una cierta parada tras la identificación del cuarto taxón, en el fragmento 22, ya que hasta el fragmento 59 no vuelve a identificarse un nuevo elemento, que supone el 80% del total del listado taxonómico. Los dos primeros taxones en ser identificados Pinus halepensis y Rosmarinus officinalis, son también los más representativos en el conjunto de la muestra antracológica. Los tres taxones identificados tras el fragmento 22, sin embargo, apenas tienen representación en el registro, entre ellos Pistacia lentiscus y Olea europaea, que son los más destacados en el cuadrante 7J, mientras que aquí sólo presentan 5 y 1 fragmento respectivamente.

Los taxones más representados en el caso de 8J60 son Rosmarinus officinalis, seguido de Pinus halepensis. El diagrama de porcentajes de ambos taxones (fig. 4.68) no llega a estabilizarse por completo a lo largo de todo el estudio. Rosmarinus officinalis presenta una cierta estabilización entre el fragmento 30 y el 70, aunque luego comienza una tendencia descendente bastante brusca, pasando de casi un 55% a un 50% con el estudio de 80 fragmentos y en torno a un 46% en el fragmento 90, volviéndose a acercar al 50%
al final de análisis. Por otro lado, *Pinus halepensis* muestra una tendencia descendente continua entre el fragmento 50 y el 100, descendiendo su porcentaje desde un 40% hasta prácticamente un 30%.

![Figura 4.67. Relación entre el número de fragmentos y número de taxones de la UE 8J60.](image)

![Figura 4.68. Curva de porcentajes 8J60.](image)
IV.2.2.2. Resultados antracológicos

El hecho de que durante el proceso de muestreo se recuperaran tanto muestras de sedimento como carbones recogidos a mano, bien individualizados o bien unificando varios fragmentos en una misma muestra, es un factor a tener en cuenta en la cuantificación de los resultados obtenidos. En algunos casos, como las muestras recuperadas manualmente con gran cantidad de fragmentos ha sido posible asimilar los resultados con los obtenidos mediante flotación sin que se produzcan distorsiones estadísticas en la visión paleovegetal y paleoeconómica obtenida de los mismos. En otros casos, como los troncos de carácter estructural (postes), no hemos realizado esta unificación, dados los matices interpretativos que tienen este tipo de materiales.

Los resultados se presentan a continuación según los distintos departamentos habitacionales documentados, con el objetivo de encuadrar los mismos en el contexto de las diversas actividades que aparecen documentadas en Barranco de la Viuda y de poder identificar a través del combustible analizado posibles diferencias funcionales entre las mismas, si las hubiere.

IV.2.2.2.1. Departamento 1

Asociados al Departamento 1 solamente han podido ser estudiados 18 fragmentos de carbón recuperados mediante la flotación de las UUEE 9I19 y 9I20 (tabla 4.33). El único taxón identificado en ambos casos es *Pinus halepensis*, que, como se verá más adelante, es la especie predominante en casi todos los contextos documentados en Barranco de la Viuda.
Capítulo IV. Resultados antracológicos

Tabla 4.33. Resultados antracológicos del Departamento 1.

<table>
<thead>
<tr>
<th>TAXA</th>
<th>9I19 Nº</th>
<th>9I20 Nº</th>
<th>TOTAL Nº</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus halepensis</td>
<td>12 100</td>
<td>6 100</td>
<td>18 100</td>
</tr>
</tbody>
</table>

IV.2.2.2.2. Departamento 2

- El carbón disperso

El Departamento 2 es el mejor estudiado del yacimiento, ya que de él se recuperaron numerosas muestras de sedimento tanto de la cuadrícula 7J, como de la 8J.

Los resultados que se presentan en las tablas 4.34 y 4.35 se corresponden con el carbón analizado de este departamento dividido por cuadrículas (7J y 8J). De este recuento han sido excluidas las estructuras de combustión o las acumulaciones carbonosas y la madera estructural (postes). Por el contrario, se han tenido en cuenta las muestras de carbones recuperadas *in situ* asociadas a los niveles de hábitat, tanto en el caso de aquellas que contenían una gran cantidad de fragmentos de carbón como las muestras representadas únicamente por un fragmento. Se ha optado por esta representación ya que el motivo de su individualización sobre el terreno obedeció únicamente a su mayor tamaño con respecto a las muestras antracológicas obtenidas mediante flotación, y porque muestran una representación cualitativa y cuantitativamente semejante a éstas.
DEPARTAMENTO 2 - CUADRÍCULA 7J

<table>
<thead>
<tr>
<th>TAXA</th>
<th>N°</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus halepensis</td>
<td>32</td>
<td></td>
<td>56</td>
<td>34</td>
<td>1</td>
<td>7</td>
<td></td>
<td></td>
<td>46</td>
<td>3</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td>214</td>
</tr>
<tr>
<td>Pinus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Juniperus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Coniferae</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Monocotyledoneae</td>
<td>27</td>
<td>2</td>
<td>1</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Chenopodiaceae</td>
<td></td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>cf. Cruciferae</td>
<td></td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Labiatae</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Leguminosae</td>
<td>2</td>
<td></td>
<td>6</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Olea europaea</td>
<td>11</td>
<td>2</td>
<td>2</td>
<td>25</td>
<td>1</td>
<td>59</td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>103</td>
</tr>
<tr>
<td>Periploca angustifolia</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Pistacia cf. terebinthus</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Quercus ilex/coccifera</td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
<td>2</td>
<td>7</td>
<td></td>
<td>6</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>Tamarix sp.</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Indeterminable</td>
<td>1</td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>50</td>
<td>8</td>
<td>110</td>
<td>70</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>142</td>
<td>2</td>
<td>50</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabla 4.34. Resultados antracológicos del Departamento 2. Cuadrícula 7J.
DEPARTAMENTO 2 - CUADRÍCULA 8J

<table>
<thead>
<tr>
<th>TAXA</th>
<th>N°</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus halepensis</td>
<td>7</td>
<td>3</td>
<td>22</td>
<td>32</td>
<td>41</td>
<td>50</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>36</td>
<td>8</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>232</td>
<td></td>
</tr>
<tr>
<td>Juniperus sp.</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Coniferae</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monocotyledoneae</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td></td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cistus sp.</td>
<td>3</td>
<td>1</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cistaceae</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labiatae</td>
<td>6</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olea europaea</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pistacia lentiscus*</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>10</td>
<td></td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quercus ilex/coccifera</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
<td>20</td>
<td>49</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td></td>
<td>1</td>
<td>1</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indeterminable</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>4</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>50</td>
<td>50</td>
<td>15</td>
<td>50</td>
<td>8</td>
<td>2</td>
<td>4</td>
<td>40</td>
<td>5</td>
<td>10</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabla 4.35. Resultados antracológicos del Departamento 2. Cuadrícula 8J.
La tabla 4.36 recoge los resultados globales de los dos cuadros anteriores. En total fueron estudiados para los niveles habitacionales de este departamento 868 fragmentos de carbón, concentrados fundamentalmente en la cuadrícula 7J, de donde han podido estudiarse 478 fragmentos. La cuadrícula 8J, por su parte, ha aportado menos fragmentos al estudio, un total de 390.

En este departamento aparecen representados 19 de los 28 taxones que han sido identificados en el Barranco de la Viuda, faltando cf. Tetraclinis articulata, Ephedra sp., Chamaerops humilis, Arbutus unedo, Erica sp., cf. Plantago sp., Prunus sp., Rosaceae t. Maloideae e Indeterminado. Entre ellos destaca Pinus halepensis, que supera el 50% del total, seguido de Rosmarinus officinalis, con un 15%, Olea europaea, con un 12%, Pistacia lentiscus, que supera ligeramente el 6% del total del registro antracológico obtenido en este departamento. El resto de los taxones se encuentran por debajo del 5% del total, excepto Monocotyledoneae que lo supera ligeramente.

BARRANCO DE LA VIUDA - DEPARTAMENTO 2

<table>
<thead>
<tr>
<th>TAXA</th>
<th>CUADRÍCULA 7J</th>
<th></th>
<th>CUADRÍCULA 8J</th>
<th></th>
<th>TOTAL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nº</td>
<td>%</td>
<td>Nº</td>
<td>%</td>
<td>Nº</td>
<td>%</td>
</tr>
<tr>
<td>Pinus halepensis</td>
<td>214</td>
<td>44,77</td>
<td>232</td>
<td>59,49</td>
<td>446</td>
<td>51,38</td>
</tr>
<tr>
<td>Pinus sp.</td>
<td>1</td>
<td>0,21</td>
<td></td>
<td>1</td>
<td>0,11</td>
<td></td>
</tr>
<tr>
<td>Juniperus sp.</td>
<td>7</td>
<td>1,46</td>
<td>1</td>
<td>0,26</td>
<td>8</td>
<td>0,92</td>
</tr>
<tr>
<td>Coniferae</td>
<td>10</td>
<td>2,09</td>
<td>7</td>
<td>1,79</td>
<td>17</td>
<td>1,97</td>
</tr>
<tr>
<td>Monocotyledoneae</td>
<td>30</td>
<td>6,28</td>
<td>17</td>
<td>4,36</td>
<td>47</td>
<td>5,41</td>
</tr>
<tr>
<td>Chenopodiaceae</td>
<td>4</td>
<td>0,84</td>
<td></td>
<td>4</td>
<td>0,46</td>
<td></td>
</tr>
<tr>
<td>Cistaceae</td>
<td></td>
<td></td>
<td>1</td>
<td>0,26</td>
<td>1</td>
<td>0,11</td>
</tr>
<tr>
<td>Cistus sp.</td>
<td></td>
<td></td>
<td>4</td>
<td>1,02</td>
<td>4</td>
<td>0,46</td>
</tr>
<tr>
<td>cf. Cruciferae</td>
<td>2</td>
<td>0,42</td>
<td></td>
<td>2</td>
<td>0,23</td>
<td></td>
</tr>
<tr>
<td>Labiatae</td>
<td>12</td>
<td>2,51</td>
<td>6</td>
<td>1,54</td>
<td>18</td>
<td>2,07</td>
</tr>
<tr>
<td>Leguminosae</td>
<td>8</td>
<td>1,67</td>
<td></td>
<td>8</td>
<td>0,92</td>
<td></td>
</tr>
<tr>
<td>Olea europaea</td>
<td>103</td>
<td>21,55</td>
<td>4</td>
<td>1,02</td>
<td>107</td>
<td>12,33</td>
</tr>
<tr>
<td>Periploca angustifolia</td>
<td>2</td>
<td>0,42</td>
<td></td>
<td>2</td>
<td>0,23</td>
<td></td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
<td>28</td>
<td>5,86</td>
<td>25</td>
<td>6,41</td>
<td>53</td>
<td>6,12</td>
</tr>
<tr>
<td>Pistacia cf. terebinthus</td>
<td>2</td>
<td>0,42</td>
<td></td>
<td>2</td>
<td>0,23</td>
<td></td>
</tr>
<tr>
<td>Quercus ilex/coccifera</td>
<td>4</td>
<td>0,84</td>
<td>1</td>
<td>0,26</td>
<td>5</td>
<td>0,58</td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
<td>41</td>
<td>8,58</td>
<td>90</td>
<td>23,08</td>
<td>131</td>
<td>15,09</td>
</tr>
<tr>
<td>Tamarix sp.</td>
<td>6</td>
<td>1,25</td>
<td></td>
<td>6</td>
<td>0,69</td>
<td></td>
</tr>
<tr>
<td>Indeterminable</td>
<td>4</td>
<td>0,84</td>
<td>2</td>
<td>0,51</td>
<td>6</td>
<td>0,69</td>
</tr>
<tr>
<td>TOTAL</td>
<td>478</td>
<td>100</td>
<td>390</td>
<td>100</td>
<td>868</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabla 4.36. Resultados antracológicos del Departamento 2. Cuadrículas 7J y 8J.

En la tabla 4.37 se presentan los resultados antracológicos de las UEE 8K04 y 7K07, ubicadas en la zona exterior del Departamento 2, asociadas a la muralla que rodea todo
el recinto, que fueron procesadas mediante flotación. En este contexto apenas aparecieron carbones, por lo que resultará imposible realizar una interpretación ecológica o funcional de los mismos. En total sólo pudieron ser analizados 30 fragmentos, que ofrecieron un listado taxonómico de 8 elementos. Entre ellos destaca el hecho de que el taxón mayoritario no sea Pinus halepensis, como ocurre en el interior del departamento, ya que éste sólo supone cerca de un 17% del total (5 fragmentos), sino que lo es Monocotyledoneae, con un 27% del registro analizado para este contexto. Pistacia lentiscus presenta también bastante abundancia, con casi un 17% del carbón analizado.

<table>
<thead>
<tr>
<th>TAXA</th>
<th>8K04</th>
<th>7K07</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus halepensis</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Pinus sp.</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Coniferae</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Monocotyledoneae</td>
<td>8</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Chenopodiaceae</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Olea europaea</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Periploca angustifolia</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>10</td>
<td>20</td>
<td>30</td>
</tr>
</tbody>
</table>

Tabla 4.37. Resultados antracológicos de la zona exterior del Departamento 2.

- Los contextos productivos

- El contexto asociado al horno con cubierta móvil

En el caso de este horno no se han podido recuperar restos de combustible en el interior de la cámara de combustión, donde ha aparecido una superficie refractaria. Sin embargo, el nivel de uso pudo ser delimitado durante el proceso de excavación, por lo que los carbones que exponemos a continuación (tabla 4.38) podrían corresponderse en cierta medida con los taxones más utilizados en el proceso de cocción llevado a cabo en la estructura. Estos carbones serían el producto de las sucesivas limpiezas del horno tras cada utilización.

En total han podido ser analizados 120 fragmentos de carbón, procedentes de la flotación de las UUEE 8J26 y 8J28 y de las muestras recuperadas in situ de estas mismas UUEE y de la UE 8J20, perteneciente también a este contexto, todas ellas
representadas por un único fragmento de carbón. El listado taxonómico obtenido se compone de 7 elementos, entre los que *Rosmarinus officinalis* es el más representado, con un 45% del total (55 fragmentos), seguido de *Pinus halepensis*, con un 35% (43 fragmentos) y de *Pistacia lentiscus*, con un 7,5%, si bien esto sólo supone únicamente un total de 9 fragmentos. Es también destacable el valor de *Prunus* sp., del que han aparecido 8 fragmentos, que representan casi un 7% del registro.

<table>
<thead>
<tr>
<th>TAXA</th>
<th>N° FLOTACIÓN</th>
<th>MUESTRAS IN SITU (1 FRAG.)</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8J26</td>
<td>8J28 (18, 32, 33, 34)</td>
<td>8J28</td>
</tr>
<tr>
<td>Pinus halepensis</td>
<td>3</td>
<td>32</td>
<td>4</td>
</tr>
<tr>
<td>Coníferae</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Monocotiledoneae</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Chamaerops humilis</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
<td>9</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Prunus sp.</td>
<td>8</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
<td>55</td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>TOTAL</td>
<td>12</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

Tabla 4.38. Resultados antracológicos del nivel de uso del Horno de cubierta móvil.

- **El horno de torrefacción, nivel de uso, “leñera o carbonera” y carboneras asociadas**

Las muestras recuperadas en este horno, tanto en el caso de la flotación como en el de las recuperadas de forma manual en el yacimiento, han ofrecido únicamente cuatro taxones diferenciados. *Pinus halepensis* vuelve a ser el más representado, con casi el 50% del total de la muestra antracológica. En segundo lugar se encuentra *Rosmarinus officinalis*, con un 36,5%. Monocotiledoneae presenta también un valor destacado, con el 12,7% del total. El taxón menos representado es *Olea europaea*, del que ha aparecido un único fragmento (tabla 4.39).

Por otro lado, en el nivel de uso asociado al funcionamiento de esta estructura de combustión (tabla 4.40) la variabilidad taxonómica aumenta considerablemente, debido fundamentalmente a que las muestras de sedimento recuperadas contienen carbones de varios momentos de combustión del horno, y a su vez de posibles limpiezas o dispersiones de carbón procedente de otras combustiones producidas en el mismo área.
Para este contexto han podido ser estudiados un total de 103 fragmentos de carbón, incluyendo los obtenidos mediante flotación (100) y las muestras individualizadas en el proceso de excavación (3). *Pinus halepensis* (61,16%) y *Rosmarinus officinalis* (16,5%) son, en consonancia con el contenido de la estructura, los más representados. El resto de taxones aparecieron de manera mucho más esporádica, y sin superar nunca los 10 fragmentos. Se trata, de mayor a menor presencia relativa, de *Juniperus sp.* (6,8%), Coniferæ (2,91%), *Cistus* sp. (2,91%), Labiatae (2,91%), *Pistacia lentiscus* (2,91%), Monocotyledoneae (1,95%) y *Tamarix* sp. (1,95%).

<table>
<thead>
<tr>
<th>HORNO DE TORREFACCIÓN</th>
<th>FLOTACIÓN</th>
<th>MUESTRAS IN SITU (VARIOS FRAGMENTOS)</th>
<th>MUESTRAS IN SITU (1 FRAGMENTO)</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7J348</td>
<td>7J34 (110) 7J348 (196) 7J348 (203) 7J24 (96)</td>
<td>7J24/2 7J24/3 7J24/4 7J24 (107, 109, 166, 188)</td>
<td>7J348 (189, 195, 202)</td>
</tr>
<tr>
<td>TAXA</td>
<td>N°</td>
<td>N°</td>
<td>N°</td>
<td>N°</td>
</tr>
<tr>
<td>Pinus halepensis</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>Monocotyledoneae</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olea europaea</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
<td>1</td>
<td>1</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>10</td>
<td>3</td>
<td>5</td>
<td>30</td>
</tr>
</tbody>
</table>

Tabla 4.39. Resultados antracológicos del interior del horno de torrefacción.

<table>
<thead>
<tr>
<th>NIVEL DE USO ASOCIADO AL "HORNO DE TORREFACCIÓN"</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLOTACIÓN</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>8J39</td>
</tr>
<tr>
<td>TAXA</td>
</tr>
<tr>
<td>Pinus halepensis</td>
</tr>
<tr>
<td>Juniperus sp.</td>
</tr>
<tr>
<td>Coniferæ</td>
</tr>
<tr>
<td>Monocotyledoneae</td>
</tr>
<tr>
<td>Cistus sp.</td>
</tr>
<tr>
<td>Labiatae</td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
</tr>
<tr>
<td>Tamarix sp.</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
</tbody>
</table>

Tabla 4.40. Resultados antracológicos del nivel de uso asociado al horno de torrefacción.
Asociada al contexto del horno de torrefacción apareció una acumulación de grandes troncos carbonizados, que parece estar en conexión directa con la funcionalidad del horno. En este caso, a parte de la recuperación in situ de cada uno de los troncos, fue recuperado el sedimento asociado. Las muestras individualizadas demuestran que todos los troncos contenidos en la leñera o carbonera eran de pino carrasco. La flotación de la UE 7J19, sin embargo, amplía el listado taxonómico, lo cual puede estar relacionado con otros troncos cuya conservación fue peor, o bien fragmentos asociados a otras actividades de combustión. Los taxones que aparecen además de *Pinus halepensis* son *Juniperus* sp., *Coniferae*, *Olea europaea* y *Pistacia lentiscus*. Entre ellos, destaca por su abundancia el acebuche, del que fueron estudiados 18 fragmentos (tabla 4.41).

<table>
<thead>
<tr>
<th>LEÑERA O CARBONERA</th>
<th>FLOTACIÓN</th>
<th>MUESTRA IN SITU (VARIOS FRAGS.)</th>
<th>MUESTRAS IN SITU (1 FRAG.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7J19</td>
<td>7J19 (103)</td>
<td>7J19 (94)</td>
</tr>
<tr>
<td>TAXA</td>
<td>Nº</td>
<td>Nº</td>
<td>Nº</td>
</tr>
<tr>
<td>Pinus halepensis</td>
<td>20</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Juniperus sp.</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coniferae</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olea europaea</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>50</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabla 4.41. Resultados antracológicos de la leñera o carbonera asociada al horno de torrefacción.

<table>
<thead>
<tr>
<th>ACUMULACIÓN CARBONOSA 7J35</th>
<th>FLOTACIÓN</th>
<th>MUESTRAS IN SITU (1 FRAGMENTO)</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7J35</td>
<td>7J35 (122)</td>
<td>7J35 (149)</td>
</tr>
<tr>
<td>TAXA</td>
<td>Nº</td>
<td>Nº</td>
<td>Nº</td>
</tr>
<tr>
<td>Pinus halepensis</td>
<td>5</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Juniperus sp.</td>
<td>2</td>
<td>2</td>
<td>4,77</td>
</tr>
<tr>
<td>Coniferae</td>
<td>1</td>
<td>1</td>
<td>2,38</td>
</tr>
<tr>
<td>Olea europaea</td>
<td></td>
<td>1</td>
<td>2,38</td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
<td>32</td>
<td>32</td>
<td>76,19</td>
</tr>
<tr>
<td>TOTAL</td>
<td>40</td>
<td>1</td>
<td>42</td>
</tr>
</tbody>
</table>

Tabla 4.42. Resultados antracológicos de la acumulación carbonosa 7J35.
En cuanto a la UE 7J35, que pudo tener una función de cenicero asociado al horno 7J34, el combustible estudiado, cuyos resultados se presentan en la tabla 4.42, estuvo compuesto mayoritariamente *Pistacia lentiscus* (76%), junto con 6 fragmentos de *Pinus halepensis* (14,28%), 2 de *Juniperus* sp. (4,77%) y 1 único fragmento de Coniferae (2,38%). Finalmente, uno de los fragmentos recuperados durante el proceso de excavación (muestra 149) aumentó el listado taxonómico, ya que se trata de *Olea europaea*.

Finalmente, los rellenos de la vasija 7J61 pudieron ser continuación del cenicero 7J35, estando asociados por tanto a la funcionalidad del horno de torrefacción. En este caso han sido estudiados 640 fragmentos de carbón, entre los cuales destacan fundamentalmente los valores de *Olea europaea*, con más de un 36% del total, seguido de *Pistacia lentiscus*, con un 25% y *Pinus halepensis* con más de un 22%. También es destacable que *Rosmarinus officinalis* supera el 6% y *Juniperus* sp. el 5% mientras que el resto de taxones no llegan ni al 1% (tabla 4.43).

Tabla 4.43. Resultados antracológicos de la vasija 7J61.

<table>
<thead>
<tr>
<th>TAXA</th>
<th>FLOTACIÓN</th>
<th>MUESTRAS IN SITU (1 FRAGMENTO)</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7J62</td>
<td>7J63</td>
<td>7J70 (161)</td>
</tr>
<tr>
<td>Pinus halepensis</td>
<td>62</td>
<td>15</td>
<td>32</td>
</tr>
<tr>
<td>Juniperus sp.</td>
<td>1</td>
<td>19</td>
<td>13</td>
</tr>
<tr>
<td>Coniferae</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ephedra sp.</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Monocotyledoneae</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Cistaceae</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Labiatae</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Olea europaea</td>
<td>100</td>
<td>49</td>
<td>60</td>
</tr>
<tr>
<td>Periploca angustifolia</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
<td>66</td>
<td>31</td>
<td>30</td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
<td>19</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>cf. Plantago sp.</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Indeterminable</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>250</td>
<td>120</td>
<td>150</td>
</tr>
</tbody>
</table>

Acumulaciones carbonosas

Aparte de las estructuras de combustión de tipo artesanal que se documentan en el Departamento 2, en este mismo contexto habitacional existen una serie de
acumulaciones de carbón y cenizas que podrían corresponderse con estructuras de combustión de carácter doméstico.

En el caso de la estructura de combustión 7J31 no se produjo una recogida de sedimento, lo cual ha restringido posiblemente la variabilidad taxonómica de los resultados. En cualquier caso, fueron recuperadas una serie de muestras in situ tanto formadas por acumulaciones de varios fragmentos, como completamente individuales. Los resultados antracológicos de las mismas ofrecen un listado taxonómico compuesto por dos especies (tabla 4.44): Pinus halepensis y Pistacia lentiscus. Dentro de esta estructura, la UE 7J46 se definió como un tronco que formaba parte de la misma, que, según nuestro análisis, se trató también de Pinus halepensis.

<table>
<thead>
<tr>
<th>ESTRUCTURA DE COMBUSTIÓN 7J31</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUESTRAS IN SITU (VARIOS FRAGMENTOS)</td>
</tr>
<tr>
<td>7J31 (123)</td>
</tr>
<tr>
<td>Pinus halepensis</td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
</tbody>
</table>

Tabla 4.44. Resultados antracológicos de la estructura de combustión 7J31.

Finalmente, habría que destacar la UE 7J49, que se corresponde con 5 troncos perfectamente alineados (muestras 135, 136, 137, 138, 141), todos ellos de Pinus halepensis, que pudieron corresponderse con algún tipo de objeto, ya que entre ellos aparecieron algunas fibras vegetales que indicarían que los cinco troncos estuvieron originalmente unidos.

- **Madera estructural**

En cuanto a la madera que pudo servir como sustentación del departamento 2 (tabla 4.45), la mayoría de los postes que han podido ser documentados estuvieron elaborados en pino carrasco. Cabe la excepción de la UE 7J41, que se define como un elemento estructural no identificado, en un estado de gran degradación, y en el que han podido identificarse tres taxones: Pinus halepensis (muestras 124, 168 y 170), Pistacia lentiscus (muestra 169) y Rosmarinus officinalis (muestra 173).
DEPARTAMENTO 2 - MADERA ESTRUCTURAL

<table>
<thead>
<tr>
<th>Nº de inventario</th>
<th>Nº de muestra</th>
<th>UE</th>
<th>IDENTIFICACIÓN</th>
<th>TIPO</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV/7J23/2</td>
<td>91</td>
<td>7J23</td>
<td>Pinus halepensis (20 frags.)</td>
<td>Poste</td>
</tr>
<tr>
<td>BV/7J23/4</td>
<td>93</td>
<td>7J23</td>
<td>Pinus halepensis</td>
<td>Poste</td>
</tr>
<tr>
<td>BV/7J41/3</td>
<td>169</td>
<td>7J41</td>
<td>Pistacia lentiscus</td>
<td>Elemento estructural degradado</td>
</tr>
<tr>
<td>BV/7J41/4</td>
<td>170</td>
<td>7J41</td>
<td>Pinus halepensis</td>
<td>Elemento estructural degradado</td>
</tr>
<tr>
<td>BV/7J41/2</td>
<td>168</td>
<td>7J41</td>
<td>Pinus halepensis</td>
<td>Elemento estructural degradado</td>
</tr>
<tr>
<td>BV/7J41/5</td>
<td>173</td>
<td>7J41</td>
<td>Rosmarinus officinalis</td>
<td>Elemento estructural degradado</td>
</tr>
<tr>
<td>BV/7J41/1</td>
<td>124</td>
<td>7J41</td>
<td>Pinus halepensis</td>
<td>Elemento estructural degradado</td>
</tr>
<tr>
<td>BV/8J33/1</td>
<td>97</td>
<td>8J33</td>
<td>Pinus halepensis</td>
<td>Poste</td>
</tr>
<tr>
<td>BV/7J23/5</td>
<td>??</td>
<td>7J23</td>
<td>Pinus halepensis</td>
<td>Tronco muy fragmentado en agujero de poste</td>
</tr>
<tr>
<td>BV/7J23/1</td>
<td>90</td>
<td>7J23</td>
<td>Pinus halepensis</td>
<td>Fragmento de tronco principal</td>
</tr>
<tr>
<td>BV/7J23/3</td>
<td>92</td>
<td>7J23</td>
<td>Pinus halepensis</td>
<td></td>
</tr>
<tr>
<td>BV/8J33/2</td>
<td>??</td>
<td>8J33</td>
<td>Pinus halepensis</td>
<td>Tronco en agujero de poste</td>
</tr>
<tr>
<td>BV/7J80/1</td>
<td>185</td>
<td>7J80</td>
<td>Pinus halepensis</td>
<td>Poste</td>
</tr>
</tbody>
</table>

Tabla 4.45. Resultados antracológicos de la madera estructural documentada en el Departamento 2.

IV.2.2.2.3. Departamento 3

- **Carbón disperso**

En relación con el Departamento 3 las únicas muestras recuperadas en los niveles de uso fueron recogidas a *in situ* en la UE 6H11, que sólo ha ofrecido dos taxones: *Pinus halepensis* y *Rosmarinus officinalis* (tabla 4.46)

DEPARTAMENTO 3-CARBÓN DISPERSO

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>6H11 (46)</th>
<th>6H11 (37, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 54)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAXA</td>
<td>Nº</td>
<td>Nº</td>
</tr>
<tr>
<td>Pinus halepensis</td>
<td>18</td>
<td>8</td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>20</td>
<td>12</td>
</tr>
</tbody>
</table>

Tabla 4.46. Resultados antracológicos de la UE 6H11.

- **Contexto de incendio**

La mayoría de las muestras de este departamento fueron tomadas en un gran contexto de incendio documentado en este espacio y sus unidades asociadas.
En este contexto fueron estudiados hasta 299 fragmentos de carbón, procedentes tanto de muestras procesadas mediante flotación, como de aquellos fragmentos recuperados in situ en el yacimiento, bien como acumulaciones de ramas y ramitas, o bien como fragmentos aislados en el caso de aquellos de mayor tamaño (tabla 4.47).

Fueron identificados 10 taxones, de entre los cuales existe una amplia mayoría de Pinus halepensis (62,88%), seguido de Olea europaea (18,06%) y Rosmarinus officinalis (12,04%). El resto de los taxones presentan valores poco relevantes.

<table>
<thead>
<tr>
<th>TAXA</th>
<th>FLOTACIÓN</th>
<th>MUESTRAS IN SITU</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MUESTRA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6H14</td>
<td>6l10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6H14 (88)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6H13 (55, 56)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6H14 (61, 62, 65, 67, 68, 69, 70, 71, 72)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6Y10 (57, 58, 59, 60, 64, 87)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6H26 (211)</td>
<td>6J26 (197)</td>
<td></td>
</tr>
<tr>
<td>Pinus halepensis</td>
<td>128</td>
<td>36</td>
<td>188</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Juniperus sp.</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Coniferae</td>
<td>2</td>
<td>2</td>
<td>0,67</td>
</tr>
<tr>
<td>Monocotyledoneae</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Cistus sp.</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Labiatae</td>
<td>2</td>
<td>2</td>
<td>0,67</td>
</tr>
<tr>
<td>Olea europaea</td>
<td>54</td>
<td>54</td>
<td>18,06</td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
<td>2</td>
<td>2</td>
<td>0,67</td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
<td>14</td>
<td>17</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>12,04</td>
</tr>
<tr>
<td>Tamarix sp.</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>200</td>
<td>70</td>
<td>299</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 4.47. Resultados antracológicos del contexto de incendio 6H, 6l, 6J.

- **Estructura de combustión**

En este mismo departamento, 6H15 se distinguió del resto de unidades como una estructura de combustión diferenciada, cuya funcionalidad, sin embargo, no conocemos. Esta estructura ofreció una gran cantidad de carbones, hasta 380 fragmentos, de entre los cuales, sin embargo, sólo fueron identificados tres taxones. Pinus halepensis es el mayoritario, con más de un 75% del total, seguido de Olea europaea, con un 19% y de Rosmarinus officinalis con el 5% (tabla 4.48).
Capítulo IV. Resultados antracológicos

E.C. 6H15

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>FLOTACIÓN</th>
<th>MUESTRAS IN SITU (1 FRAG.)</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6H15</td>
<td>6H15 (89)</td>
<td>6H15 (210)</td>
</tr>
<tr>
<td>TAXA</td>
<td>Nº</td>
<td>Nº</td>
<td>Nº</td>
</tr>
<tr>
<td>Pinus halepensis</td>
<td>168</td>
<td>44</td>
<td>40</td>
</tr>
<tr>
<td>Olea europaea</td>
<td>67</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
<td>15</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>250</td>
<td>50</td>
<td>40</td>
</tr>
</tbody>
</table>

- **Madera estructural**

En el Departamento 3 se recuperaron también algunas ramas y troncos de carácter muy posiblemente estructural (tabla 4.49).

La muestra obtenida para 6J12 (126) indica que el poste con el que se corresponde estuvo realizado con *Pinus halepensis*, ya que los dos fragmentos estudiados son de este mismo taxón. Lo mismo ocurre en el caso de 6J30, con un solo fragmento estudiado, también de pino carrasco. La UE 6J16 ofrece, sin embargo, datos contradictorios. Esta unidad se definió durante el proceso de excavación como un posible poste del departamento 3 pero, sin embargo, la muestra en la que se obtuvieron varios fragmentos del “poste” ofrece dos taxones diferentes: 7 fragmentos de *Pinus halepensis* y 13 fragmentos de *Pistacia lentiscus*. Por otro lado, la muestra compuesta por un único fragmento (207) se ha identificado como *Pinus halepensis*. Podríamos pensar, bien que el fragmento de mayor tamaño (muestra 207) es en concreto el poste identificado en la excavación, o bien, por el contrario, que la agregación carbonosa hallada obedezca a otro elemento estructural o de combustión, pero no a un único poste.

<table>
<thead>
<tr>
<th>DEPARTAMENTO 3. MADERA ESTRUCTURAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUESTRAS IN SITU (VARIOS FRAGS.)</td>
</tr>
<tr>
<td>6J12 (126)</td>
</tr>
<tr>
<td>TAXA</td>
</tr>
<tr>
<td>Pinus halepensis</td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
</tbody>
</table>

Tabla 4.49. Resultados antracológicos de la madera estructural documentada en el Departamento 3.
IV.2.2.2.4. Departamento 4

En el Departamento 4 hemos obtenido resultados relativos a los niveles de habitación del mismo, así como a un contexto de enterramiento documentado en su interior.

- Carbón disperso

En el primero de los casos (tabla 4.50) hemos podido estudiar únicamente 25 fragmentos de carbón, debido a la gran escasez de los resultados de la flotación de tres unidades estratigráficas (5G36, 5G51 y 5G58), que sólo aportaron 16 fragmentos. El resto de carbones se obtuvieron mediante recuperación manual de fragmentos individualizados, de entre los cuales 3 no pudieron ser identificados taxonómicamente debido a su gran fragilidad y a la vitrificación de gran parte de sus células.

El listado taxonómico obtenido se compone en este caso de 7 elementos. El taxón más repetido fue *Pinus halepensis*, con 10 fragmentos (40%), seguido de *Pistacia lentiscus*, con 8 carbones (32%) y de los tres fragmentos indeterminables. El resto de taxones, Coniferae, *Olea europaea*, *Quercus ilex/coccifera* y *Rosmarinus officinalis* estuvieron representados únicamente por un carbón cada uno de ellos.

<table>
<thead>
<tr>
<th>TAXA</th>
<th>5G36</th>
<th>5G51</th>
<th>5G58</th>
<th>5G37 (79)</th>
<th>5G43 (105)</th>
<th>5G51 (98)</th>
<th>5G51 (104)</th>
<th>5G58 (106)</th>
<th>5H22 (1)</th>
<th>5H23 (7)</th>
<th>5H24 (5)</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus halepensis</td>
<td>5</td>
<td>3</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coniferae</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olea europaea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>8</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quercus ilex/coccifera</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indeterminable</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>7</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>25</td>
</tr>
</tbody>
</table>

Tabla 4.50. Resultados antracológicos asociados al Departamento 4.

- Enterramiento

Asociados al contexto del enterramiento (tabla 4.51) han podido ser estudiados 180 fragmentos de carbón, procedentes de dos unidades estratigráficas, la UE 5G49, que se
corresponde con la fosa de enterramiento, y la UE 5G53, que se trata del sedimento contenido en el interior de la urna de enterramiento, y que es la que ha ofrecido un mayor número de carbones, y un listado taxonómico más numeroso.

<table>
<thead>
<tr>
<th>TAXA</th>
<th>FLOTACIÓN</th>
<th>MUESTRA IN SITU (VARIOS FRAGS.)</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5G49 (FOSA)</td>
<td>5G53 BV/5G53/2 (219) (INTERIOR URNA)</td>
<td></td>
</tr>
<tr>
<td>Pinus halepensis</td>
<td>8 6</td>
<td>14 7,77</td>
<td></td>
</tr>
<tr>
<td>cf. Tetraclinis articulata</td>
<td>1 1</td>
<td>0,56</td>
<td></td>
</tr>
<tr>
<td>Coniferae</td>
<td>1 1</td>
<td>1 0,56</td>
<td></td>
</tr>
<tr>
<td>Ephedra sp.</td>
<td>3 3</td>
<td>3 1,67</td>
<td></td>
</tr>
<tr>
<td>Monocotyledoneae</td>
<td>1 23</td>
<td>24 13,32</td>
<td></td>
</tr>
<tr>
<td>Arbutus unedo</td>
<td>4 4</td>
<td>4 2,22</td>
<td></td>
</tr>
<tr>
<td>Chenopodiaceae</td>
<td>1 1</td>
<td>2 1,11</td>
<td></td>
</tr>
<tr>
<td>Cistaceae</td>
<td>1 1</td>
<td>1 0,56</td>
<td></td>
</tr>
<tr>
<td>Cistus sp.</td>
<td>3 3</td>
<td>3 1,67</td>
<td></td>
</tr>
<tr>
<td>Erica sp.</td>
<td>2 2</td>
<td>2 1,11</td>
<td></td>
</tr>
<tr>
<td>Labiatae</td>
<td>4 10</td>
<td>5 2,78</td>
<td></td>
</tr>
<tr>
<td>Leguminosae</td>
<td>3 4</td>
<td>5 6,67</td>
<td></td>
</tr>
<tr>
<td>Olea europaea</td>
<td>4 4</td>
<td>4 2,22</td>
<td></td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
<td>4 31</td>
<td>35 19,44</td>
<td></td>
</tr>
<tr>
<td>Pistacia cf. terebinthus</td>
<td>1 1</td>
<td>0,56</td>
<td></td>
</tr>
<tr>
<td>Quercus ilex/coccifera</td>
<td>27 27</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Rosaceae t. Maloideae</td>
<td>5 5</td>
<td>2,78</td>
<td></td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
<td>11 3</td>
<td>14 7,77</td>
<td></td>
</tr>
<tr>
<td>Tamarix sp.</td>
<td>1 1</td>
<td>1 0,56</td>
<td></td>
</tr>
<tr>
<td>Indeterminado</td>
<td>2 2</td>
<td>2 1,11</td>
<td></td>
</tr>
<tr>
<td>Indeterminable</td>
<td>4 1</td>
<td>5 2,78</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>20 145</td>
<td>15 100</td>
<td></td>
</tr>
</tbody>
</table>

El taxón más representado es Pistacia lentiscus, con valores cercanos al 20% del total, seguido por Quercus ilex/coccifera, que presenta en este caso valores extraordinariamente elevados en comparación con el resto de los departamentos y contextos documentados, llegando al 15% del total. En tercer lugar se sitúa
Monocotyledoneae, que presenta un porcentaje del 13,32% y por encima del 10% también se ubica Labiatae, con un 10,56%. El resto de taxones se presentan con una presencia relativa inferior al 10%. Entre ellos destacan Pinus halepensis y Rosmarinus officinalis, ambos con 14 fragmentos identificados (7,77%), seguidos de cerca, con 12 fragmentos, de Leguminosae (6,67%). De mayor a menor valor porcentual el resto de los taxones que aparecen representados en este contexto son Rosaceae t. Maloideae (2,78%), Arbutus unedo (2,22%), Olea europaea (2,22%), Ephedra sp. (1,67%), Cistus sp. (1,67%), Chenopodiaceae (1,11%), Erica sp. (1,11%), cf. Tetroclinis articulata (0,56%), Coniferae (0,56%), Cistaceae (0,56%), Pistacia cf. terebinthus (0,56%) y Tamarix sp. (0,56%). Finalmente, dos fragmentos fueron indeterminados (1,11%), y 5 resultaron indeterminables (2,78%).

IV.2.2.3. Dispersión taxonómica

Tras la descripción cuantitativa de los resultados a continuación se analizan desde una perspectiva cualitativa, basada en la dispersión irregular de los diferentes taxones en los contextos muestreados en el Barranco de la Viuda.

Para ello hemos elaborado una tabla de dispersión taxonómica (tabla 4.52) en la cual se han diferenciado hasta 16 contextos, divididos entre los 4 departamentos habitacionales documentados. En el caso del Departamento 1 se ha diferenciado un único contexto asociado a los niveles de habitación de los cuales fueron recuperadas muestras de sedimento. El Departamento 2 es el que presenta una mayor complejidad funcional, por lo que ha sido dividido en 9 contextos diferenciados: (1) el carbón disperso procedente de los niveles de hábitat, (2) la zona exterior del departamento (muralla), los dos hornos, (3) el de cubierta móvil y (4) el de torrefacción y sus contextos asociados, (5) la leñera o carbonera asociada al horno de torrefacción, las estructura de combustión (6) E.C. 7J31 y los ceniceros (7) 7J35, (8) Vasija-cenicero 7J61 y finalmente (9) la madera estructural. Por su parte, en el Departamento 3 hemos diferenciado por una parte el contexto de incendio asociado a las cuadrículas 6H, 6J y 6I, el nivel de hábitat 6H11, la E.C. 6H15 y la madera que ha podido ser interpretada como estructural. Finalmente, en el caso del Departamento 4 hemos dividido los contextos documentados en niveles de habitación y contexto de enterramiento.

El taxón cuantitativamente más representado, Pinus halepensis, lo es también desde una perspectiva cualitativa, ya que aparece en todos los contextos individualizados en el yacimiento (16), siendo el único elemento identificado en el caso del Departamento 1.
Tabla 4.52. Dispersión taxonómica en los diferentes departamentos y contextos documentados en Barranco de la Viuda.
En segundo lugar se sitúa la especie *Pistacia lentiscus*, que también posee, como el pino, una importante presencia porcentual en el registro de Barranco de la Viuda. El lentisco aparece en todos los departamentos, a excepción del nº 1, y en todos los contextos asociados, a excepción del nivel de hábitat 6H11 y la E.C. 6H15 del Departamento 3.

En tercer término, Coniferae aparece representado en 10 ocasiones, aunque sus porcentajes no son muy significativos. Esto es debido fundamentalmente a que las coníferas presentan grandes problemas de diferenciación interespecífica, lo cual genera que muy a menudo algún fragmento no pueda ser adscrito a un género o especie en concreto, por lo que su determinación final es de familia.

Olea europaea, por su parte, presenta valores más importantes que el anterior en el conjunto del registro antracológico de Barranco de la Viuda, pero se presenta en las mismas ocasiones, 10 de los 16 contextos diferenciados. El acebuche no aparece en el Departamento 1, ni tampoco formó parte, según nuestros resultados, de la estructura sustentante de los diferentes espacios exhumados. Este taxón está también ausente en el contexto asociado al horno de cubierta móvil, y tampoco fue combustible de la E.C. 7J31.

Otro de los elementos principales del registro de Barranco de la Viuda es el romero (*Rosmarinus officinalis*), que desde una perspectiva cualitativa aparece representado también en 10 ocasiones. Aparte del Departamento 1, está ausente también de la zona exterior del departamento 2, de la leñera y de la estructura del Departamento 3. En cuanto a las estructuras de combustión, llama la atención la diferenciación de su presencia en las mismas, ya que aparece muy bien representado como uno de los elementos principales en los dos hornos, pero sin embargo está ausente en el caso de 7J31 y 7J35, si bien es uno de los principales elementos de la vasija-cenicero 7J61.

El siguiente elemento mejor representado cualitativamente en Barranco de la Viuda es Monocotyledoneae, que aparece bien disperso en todo el yacimiento, en un total de 7 contextos, y sólo está ausente en el Departamento 1. Lógicamente, este taxón no pudo formar parte de la madera estructural (postes) ni de la leñera, y tampoco ha podido identificarse en los niveles de habitación del Departamento 4, si bien sí formó parte del contexto de enterramiento en esta zona del yacimiento. Además, como en el caso de *Rosmarinus officinalis*, las monocotiledóneas fueron utilizadas para alimentar las estructuras de combustión especializadas, pero sin embargo están ausentes en el caso de las acumulaciones carbonosas 7J31 y 7J35, aunque sí se presenta en la vasija-cenicero 7J61.

El resto de los taxones aparecen en menos de la mitad de los contextos diferenciados. *Juniperus* sp. se identifica en 6 ocasiones, aunque solamente en los Departamentos 2 y
3. Es llamativa la uniformidad con que se distribuyen *Cistus* sp., *Tamarix* sp y Labiatae. Los dos primeros aparecen el mismo número de veces, un total de 4, mientras que Labiatae se presenta en 5 ocasiones. Además, los dos primeros aparecen exactamente en los mismos contextos: en el carbón disperso y en el horno de torrefacción asociados al Departamento 2, en el contexto de incendio del Departamento 3 y finalmente en el enterramiento del Departamento 4. Labiatae sólo aparece en un contexto más, el interior de la vasija 7J61. En tres ocasiones aparecen Chenopodiaceae y *Quercus ilex/coccifera*, repartidos entre los Departamentos 2 y 4, y ambos ausentes en el Departamento 3. Finalmente, algunos taxones aparecen en dos ocasiones repartidas entre estos dos espacios. Sería el caso de *Ephedra* sp., Cistaceae, Leguminosae y *Pistacia* cf. *terebinthus*, todos ellos documentados tanto en el Departamento 2 como en el contexto de enterramiento del Departamento 4.

Algunos taxones aparecen en exclusiva en algún departamento o contexto determinado. Se ha detectado este fenómeno en el Departamento 2, en diferentes contextos asociados, y por otro lado en el contexto funerario hallado en el Departamento 4.

En primer lugar, algunos aparecen únicamente documentados en los niveles del Departamento 2, lo cual puede deberse a la amplitud del muestreo en esta estancia y también a la diversidad de las actividades desarrolladas en ella. *Pinus* sp. y *Periploca angustifolia* se detectan ambos únicamente en este departamento en los niveles habitacionales, en la zona exterior del departamento, y *Periploca angustifolia* también en el interior de la vasija 7J61. Por su parte, cf. Cruciferae aparece únicamente formando parte del carbón disperso de este departamento y cf. *Plantago* sp. exclusivamente en el interior de la vasija 7J61. En tercer lugar, *Chamaerops humilis* y *Prunus* sp. son elementos exclusivos del contexto habitacional asociado al horno con cubierta móvil en el interior de este departamento.

En segundo lugar, otros taxones aparecen únicamente situados en el contexto del enterramiento documentado en el Departamento 4, pero en esta ocasión las razones pueden estar relacionadas, además de con la abundancia relativa del registro, también con la especificidad del depósito dentro de la dimensión ritual del mismo. Los taxones exclusivos de este contexto fueron cf. *Tetraclinis articulata*, Rosaceae t. Maloideae, y los dos taxones pertenecientes a la familia Ericaceae que han aparecido en todo el yacimiento: *Erica* sp. y *Arbutus unedo*.

IV.2.2.4. Alteraciones del registro

En general el registro obtenido en el Barranco de la Viuda presenta una buena conservación, por lo que sólo se han presentado un total de 16 fragmentos indeterminables, un 0,5% del total de los carbones analizados. Las causas de esta
indeterminación han sido 3: por una lado el motivo más registrado ha sido la vitrificación de las células de los planos transversal y longitudinal tangencial, que en sus casos más extremos ha impedido la observación de las células, concretamente en 11 casos; en segundo lugar se registraron 3 fragmentos cuyo tamaño impedía la observación de los rasgos anatómicos diagnósticos de los diferentes planos; finalmente, aparecieron 2 fragmentos cuya fragilidad impidió la observación de su anatomía (tabla 4.53).

CAUSAS DE INDETERMINACIÓN-BARRANCO DE LA VIUDA

<table>
<thead>
<tr>
<th>Alteración</th>
<th>Carbón disperso (Flotación)</th>
<th>Carbón concentrado (Flotación)</th>
<th>Muestras recuperadas in situ</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitrificación</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Tamaño insuficiente</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Fragilidad</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>16</td>
</tr>
</tbody>
</table>

Tabla 4.53. Causas de indeterminación de los fragmentos.

IV.2.2.5. Interpretación de los resultados

Los resultados obtenidos del estudio antracológico de Barranco de la Viuda nos permiten interpretar y extraer conclusiones referidas a la utilización de los recursos vegetales del entorno como combustible, a la vegetación existente en esta zona del Valle del Guadalentín durante el período de ocupación del yacimiento y a las posibles diferencias que se han podido producir en la cubierta vegetal con respecto a la actualidad. En este apartado en primer lugar se interpretan los resultados antracológicos desde una perspectiva paleoecológica, en segundo término se abordan los datos concernientes a la gestión del combustible leñoso disponible en el entorno, y finalmente se tratan los aspectos relacionados con la utilización de la madera como elemento constructivo a partir de los elementos que pudieron ser identificados con esta funcionalidad.

IV.2.2.5.1. El entorno vegetal del Barranco de la Viuda

- **Los datos previos. El estudio paleocarpológico de Barranco de la Viuda**

Antes de exponer las interpretaciones acerca de la paleovegetación del entorno del Barranco de la Viuda a partir de los datos antracológicos, dejaremos constancia de las
Capítulo IV. Resultados antracológicos

principales conclusiones del estudio paleocarrológico llevado a cabo por M.L. Precioso Arévalo, R. Llorach Asunción y D. Rivera Núñez. Este estudio supone, en primer lugar, un punto de partida y acercamiento a ciertos aspectos de la vegetación y actividades agrícolas en esta zona durante el periodo de ocupación del yacimiento, y, al mismo tiempo, ejercen como elemento complementario, de discusión y comparación con los que serán expuestos a continuación.

El estudio carpológico del Barranco de la Viuda (Precioso Arévalo et al. 1999) reveló la presencia en el entorno del yacimiento de cultivos, identificando en concreto 6024 semillas de *Hordeum vulgare* L. (cebada vestida), posiblemente como producto de un solo tipo de cultivo dominado por esta especie, ya que es el único cereal identificado en el yacimiento. Según los autores, este cereal debió de sembrarse en otoño para poder ser explotado en invierno, cuando las condiciones térmicas de la zona eran más propicias para su cultivo, evitando el déficit hídrico estival. Apuntan también que como consecuencia de la existencia de fuentes, o bien por el aprovechamiento de los suelos freáticos de alguna zona lagunar, parece que este cereal se cultivó en buenas condiciones de disponibilidad de agua, incluso en regadío, más o menos intencionado y organizado (Precioso Arévalo et al. 1999). Tras su recogida, los restos indican que la cebada sufrió un proceso de trillado, pero no de cribado, con el objetivo de deshacer las espigas y espiguillas, aventadas para separar las glumas y las aristas. Posteriormente las semillas debieron de sufrir un proceso de torrefacción que facilitaría la separación de los granos vestidos de sus envolturas (Precioso Arévalo et al. 1999).

Entre las plantas silvestres este mismo estudio documentó la presencia de semillas o frutos de malas hierbas propias de zonas secas como *Amaranthus* L. Bleos (2 semillas), o *Buglossoides arvensis* (1 semilla) (Precioso Arévalo et al. 1999).

Además, fueron documentados 35 restos de resina de *Pistacia lentiscus*, cuya presencia en el entorno, según los autores pudo indicar la presencia de bosquetes y matorrales densos (maquias, carrasras, espinas…) perennifolios-esclerófilos e indiferentes edáficos. Estos representarían la etapa madura de series de vegetación climatófilas mediterráneas en territorios de ombroclima semiárido de los pisos termo- y mesomediterráneo (Precioso Arévalo et al. 1999).

Finalmente, el estudio paleocarrológico permitió la identificación de 1 fruto y varios fragmentos de esparto (*Stipa tenacissima*) que indicarían la presencia de espacios abiertos en la vegetación, explicados, según los autores del estudio, como resultado de deforestaciones intensas asociadas al desarrollo de la agricultura, si bien es descartable un cultivo extensivo del esparto para el aprovechamiento de sus hojas y fibras (Precioso Arévalo et al. 1999).
Recursos forestales en un medio semiárido.
Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

- El entorno vegetal a partir de los datos antracológicos

En las inmediaciones del Barranco de la Viuda se desarrollan varios ecosistemas, como consecuencia de su cercanía al curso del Río Guadalentín, su llano de inundación, y el sistema montañoso constituido por la Sierra de la Almenara, que alcanza en su vértice más de 880 m de altitud.

Para poder obtener inferencias al respecto de la importancia de estos taxones en el entorno, se ha optado por tomar en consideración los resultados obtenidos en los niveles habitacionales asociados al Departamento 2, debido a que han podido recuperarse una gran cantidad de carbones, procedentes de un gran número de unidades estratigráficas, de diversa índole. A partir de estos datos se ha elaborado un histograma de valores relativos (fig. 4.69), que aunque no contiene todos los taxones que han podido documentarse en el yacimiento, sí que se refleja con claridad la tendencia porcentual de los elementos más representados, que muy posiblemente conformarían las principales formaciones vegetales del entorno más cercano a este enclave.

A primera vista podemos ser capaces de distinguir, gracias a la lectura del histograma, las cuatro especies leñosas predominantes en las cercanías del asentamiento que fueron mayoritariamente seleccionadas como combustible: *Pinus halepensis*, *Olea europaea*, *Pistacia lentiscus* y *Rosmarinus officinalis*.

La especie arbórea predominante en las proximidades del Barranco de la Viuda debió de ser el pino carrasco, si tenemos en cuenta su elevada presencia en las actividades productivas desarrolladas en el Departamento 2, donde supone más de un 50% del total.
analizado, y que es el elemento mayoritario en casi todos los contextos estudiados para el yacimiento, sin estar ausente en ninguno de ellos. Esta especie fue, además, el componente fundamental de la sustentación de las habitaciones, tal y como demuestran los fragmentos de poste analizados, en los que nos centraremos más adelante. El pino carrasco es capaz de adaptarse a condiciones de gran aridez, y de situarse en laderas con un elevado grado de insolación, como las que circundan el yacimiento. Por otro lado, la composición calcárea de los suelos de la Sierra de la Almenara, muy erosionados, debió de favorecer también el crecimiento de individuos más o menos aislados de esta especie, que ganarían en la competencia con otras especies menos resistentes a este tipo de condiciones. En la actualidad el entorno más cercano al yacimiento se encuentra prácticamente desprovisto de vegetación, salvo los espartales que se desarrollan con profusión, si bien es cierto que prácticamente el único elemento arbóreo que podemos encontrar es precisamente *Pinus halepensis*.

Las extensiones ocupadas por *Pinus halepensis* serían mayores en el caso de las zonas de umbría, mientras que seguramente en las solanas existiría un predominio de la vegetación de matorral y herbácea en donde los pinos crecerían de manera más aislada.
En este sentido, los elementos arbustivos termófilos que debieron desarrollarse con mayor frecuencia en conjunción con el pino carrasco fueron, según nuestros resultados, el acebuche (*Olea europaea var. sylvestris*), el lentisco (*Pistacia lentiscus*) y el romero (*Rosmarinus officinalis*).

En lo que concierne a la presencia de la especie *Olea europaea* en este yacimiento, el análisis anatómico de los fragmentos de carbón no ha permitido establecer si se trata de ejemplares completamente silvestres, o bien si esta abundancia obedece a algún tipo de proceso de domesticación por parte de los habitantes del enclave. Los restos carbonizados de esta especie en el sur de la Península Ibérica desde el Paleolítico Superior (*Aura Tortosa et al.* 2002) nos permiten afirmar que el acebuche es una especie autóctona en esta región peninsular. Su presencia parece acrecentarse especialmente a partir del Neolítico, según algunos autores, indicando la existencia de un vegetación climáctica dominada por esta especie en el piso termomediterráneo de la Península Ibérica (*Rodríguez-Ariza y Montes Moya* 2005, *Carrión Marco et al.* 2008). Sin embargo, el momento en el que se producen los primeros indicios de cultivo del olivo ha generado mayores controversias. Algunas aportaciones recientes señalan el Neolítico Final y los inicios del Calcolítico como el punto de partida de las actividades de domesticación del olivo en el sureste de la Península Ibérica, aunque probablemente no para el consumo de aceitunas (*Rovira* 2007). Otros hallazgos paleobotánicos, como los realizados en el Castillo de Doña Blanca en Cádiz (*Chamorro 1994*), el Cerro del Villar en Málaga (*Buxó 1997*), l’Alt de Benimaquia en Denia, Alicante (*Gómez Bellard et al.* 1993), o en la colonia fenicia de Baria en Almería (*López Castro 2003*), situarían este proceso de manera más tardía, hacia el siglo VII a.C. Finalmente, algunos autores retrasan este momento de aparición de cultivo del olivo hasta época romana, cuando los macrorrestos vegetales empiezan a generalizarse en yacimientos del piso mesomediterráneo (*Rodríguez-Ariza y Montes Moya* 2005). En el caso de Barranco de la Viuda, a pesar de la gran presencia de *Olea europaea*, nos inclinamos a pensar que no se produjo un cultivo de la especie con el objetivo del consumo de sus frutos ni de cualquier otra parte vegetativa, sino que debió de crecer de una manera completamente natural en esta zona. Además, el estudio paleocarpológico, al que se ha hecho referencia con anterioridad (*Precioso Arévalo et al.* 1999) no ha atestigado la presencia de huesos de oliva en el yacimiento, con lo que podríamos pensar que no se dio un consumo de sus frutos en Barranco de la Viuda.

Casi un 15% del combustible identificado en el Departamento 2 se corresponde con la especie *Pistacia lentiscus*. Se trata de un elemento típico de las formaciones de garriga mediterránea, y colonizaria, generando densas extensiones de matorral esclerófilo, los grandes espacios abiertos que son propios de las formaciones de pino carrasco. Sin embargo, también suele aparecer en ambientes de encinar o acompañando a coscojares (*Costa et al.* 2001), aunque estos elementos no son lo suficientemente abundantes en el registro antracológico obtenido como para asegurar su presencia no aislada en el
entorno. El lentisco sería en realidad otro indicador de la termicidad que debió registrar el Valle del Guadalentín durante la Edad del Bronce, dado que no soporta bien las heladas. La serie fitosociológica predominante actualmente en esta zona está dominada por *Pistacia lentiscus* (Serie termomediterránea murciano-almeriense semiárida del lentisco), acompañado por especies como el palmito (*Chamaerops humilis*), el acebuche (*Olea europaea var. sylvestris*), espinos del género Rhamnus, Ephedra fragilis, el algarrobo (*Ceratonia siliqua*) o espartagras. Sin embargo, cerca del yacimiento la degradación actual ha provocado que se registren sobre todo sus fases de degradación, formadas por espartales o albardinales en los suelos margosos, y tomillares en los más erosionados (Alcaraz Ariza y Peinado Lorca 1987).

Las formaciones de matorral estarían constituidas también por otros arbustos típicamente mediterráneos, entre los que destaca por su utilización como combustible la gran presencia de *Rosmarinus officinalis* que pudo obedecer, además de a su fuerte desarrollo en el entorno, a su selección como combustible dadas sus óptimas propiedades, o por motivos funcionales relacionados con las estructuras de combustión, que serán tratados más adelante. No obstante, debió de ser una especie muy común en las laderas soleadas circundantes, y también constituye un indicador de etapas de degradación de formaciones de encinar por tala o quema.

En este entorno crecieron también arbustos o arbolillos como enebros o sabinas (*Juniperus* sp.), brezos (*Erica* sp.) y gran cantidad de especies de la familia de las leguminosas, labiadas o cistáceas. Por otra parte, algunos xerófitos como *Ephedra* sp. crecerían en terrenos yesosos o de margas, abundantes en la zona, o también bajo condiciones de cierta nitrificación derivada de la actividad antrópica sobre el suelo.

El paisaje, no obstante, presentaría áreas fuertemente degradadas, con importantes espacios abiertos ocupados por formaciones de esparto. En este estudio se ha podido identificar únicamente la familia Monocotyledoneae, aunque existe una fuerte probabilidad de que dentro de estas monocotiledóneas, gramíneas como el esparto constituyeran el mayor porcentaje del combustible utilizado, si bien no se puede descartar la utilización como combustible de otras gramíneas o de monocotiledóneas asociadas al curso del río Guadalentín, como *Phragmites australis*. El trabajo del esparto no ha podido ser evidenciado en Barranco de la Viuda, pero sí en otros yacimientos argáricos del entorno próximo, como el Rincón de Almendricos de Lorca (Ayala Juan 1989) o Punta de los Gavilanes (García Martínez *et al.* 2008a).

La situación del Barranco de la Viuda en un ambiente de sierra litoral, es uno de los condicionantes fundamentales para la adaptación de especies de óptimo norteafricano como el cornical (*Periploca angustifolia*), que puede penetrar hacia zonas más interiores de gran termicidad, y cuya presencia en la Edad del Bronce en la zona hemos podido atestiguar en el yacimiento litoral de Punta de los Gavilanes (García Martínez *et al.*
Recursos forestales en un medio semiárido.
Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

2008a). Esta proximidad a la costa pudo determinar la presencia del palmito (Chamaerops humilis), la única especie de la familia Palmae que se considera autóctona en la Península Ibérica. Esta especie se describe en cortejos florísticos de diversas formaciones, como en los pinares de pino carrasco en zonas semiáridas o secas, también acompañando a encinares térmico meridionales o termomediterráneos, o incluso, en casos más excepcionales, a formaciones mixtas caducifolias de los pisos mesomediterráneo y termomediterráneo (Costa et al. 2001).

El cornical y el palmito, no obstante, son dos de las principales especies del cortejo florístico que del araar o sabina de Cartagena (Tetraclinis articulata) que, según nuestros resultados, pudo presentarse de manera residual en este punto del Sureste peninsular. Otros elementos típicos de su cortejo documentados en el yacimiento son la coscoja, el lentisco, el romero, el pino carrasco, o incluso el madroño en el norte de África. La reducida distribución ibérica del araar en la actualidad parece apuntar a que esta especie admitiría amplitudes ecológicas muy restringidas. Sin embargo, existen varios factores que contradicen esta afirmación: de un lado, la abundancia con la que es capaz de desarrollarse en el norte de África en altitudes de más de 1500 m. y con precipitaciones de hasta 700 mm anuales; en segundo término, el hecho de que los ejemplares plantados en zonas interiores de la Península Ibérica han permitido comprobar que soporta temperaturas de hasta -10ºC (Costa et al. 2001); y en tercer lugar, los testimonios paleovegetales que tenemos para zonas interiores de la actual Región de Murcia con parámetros bioclimáticos más rigurosos, como el yacimiento argárico del Cerro de las Viñas en Coy (Grau 1990a), situado en las tierras altas de Lorca y la necrópolis ibérica de Coimbra del Barranco Ancho (Grau, inédito, a), en la actual Comarca del Altiplano, aunque en momentos tan recientes no es descartable que se tratara de un aporte lejano. Posiblemente, esta dificultad de colonización de espacios en el Sureste peninsular haya que atribuirla a problemas en su regeneración como consecuencia de factores edáficos que no se registran en zonas más húmedas del norte de África (Costa et al. 2001). Tampoco hay que descartar que estas dificultades hayan tenido en su origen las relaciones de competencia con especies como el pino carrasco. A este respecto algunos estudios realizados sobre poblaciones actuales de Tetraclinis articulata en la Sierra de la Unión (Nicolás et al. 2004) en sus relaciones de competencia con Pinus halepensis concluyen que la presencia de esta última especie influye considerablemente en la distribución de Tetraclinis articulata. Mediante la realización de modelos bivariantes se observa que cuando la cobertura de Pinus halepensis aumenta, disminuye tanto el número de pies de Tetraclinis articulata, como su cobertura. Así, cuando Pinus halepensis está ausente Tetraclinis articulata presenta sus mayores densidades en la solana, aunque su mayor cobertura en las zonas de umbría.

La identificación de Tetraclinis articulata en este punto geográfico se suma a los pocos datos que ya teníamos para otros yacimientos desde el Calcolítico. El araar ha sido
identificado como combustible en el yacimiento calcolítico de Millares (Rodríguez-Arizá 1992a, 1992b), y en yacimientos de la Edad del Bronce como el ya nombrado Cerro de las Viñas en Coy, Lorca (Grau 1990a), la Punta de los Gavilanes en el Puerto de Mazarrón (García Martínez y Grau 2005, García Martínez et al. 2008a) y Fuente Álamo en Almería (Schoch y Schweingrüber 1982, Carrión Marco 2004 y 2005) (fig. 4.70), además de en los yacimientos fenicios de Cerro del Villar (Ros Mora y Burjas 1999) y Morro de Mezquital (Schoch 1983) y finalmente en el yacimiento ibérico ya aludido de Coimbra del Barranco Ancho en Jumilla (Grau, inédito, a). Todo ello parece corroborar las hipótesis que apuntan al desarrollo de esta especie hacia el período Subatlántico en un área que ocuparía las zonas ocupadas actualmente por especies como *Periploca angustifolia*, *Maytenus senegalensis* o *Salsola webbi*, lo cual equivaldría a gran parte del territorio murciano hasta las estribaciones orientales de la sierra de Callosa, hasta la provincia de Almería, el sur de la provincia de Granada y algunas zonas de Málaga (Costa et al. 2001).

![Mapa de distribución de Tetraclinis articulata](image)

Figura 4.70. Yacimientos prehistóricos con presencia de *Tetraclinis articulata* en el Sureste peninsular.

Las áreas menos degradadas de la Sierra de la Almenara, no obstante, pudieron registrar también la presencia de algunas encinas, aunque la identificación antracológica no permite la diferenciación entre la encina y la coscoja. La encina o la carrasca en el entorno del poblado sería prácticamente anecdótica según nuestros resultados ya que, a pesar de que se trata de un excelente combustible, sólo hemos registrado 33 fragmentos divididos en dos departamentos distintos (2 y 4), con sus mayores concentraciones en el contexto funerario del Departamento 4. Posiblemente se trató de una especie orófila,
reducida a las mayores altitudes de la Sierra de la Almenara o a los fondos resguardados de los barrancos. En la Región de Murcia, el estudio de Chaparro Fuster (1996) sobre la potencialidad de diversas especies forestales en el territorio regional hace hincapié en la doble tolerancia fisiológica de la carrasca, de manera que sería capaz de desarrollarse en lugares con grandes fríos invernales, al tiempo que puede encontrarse también en zonas semiáridas con un marcado estrés hídrico. Según este autor, el límite inferior de precipitación se situaría en unos 350 mm anuales, en el cual los únicos suelos que suelen acoger esta especie son de composición silícea. En el momento estudiado, el encinar pudo presentarse ya en etapas regresivas en las cuales la incidencia antrópica mediante la tala o la quema continuada de determinados espacios pudo ser un factor crucial. A este respecto, la presencia de elementos pirófilos como *Quercus coccifera*, los brezos o los madroños, que suelen acompañar a formaciones de quercíneas, denotarían este estado regresivo del carrascal, inducido probablemente por las diversas actividades humanas en el entorno, entre otros factores.

El cortejo florístico documentado en el Barranco de la Viuda se completa con los taxones *Tamarix* sp. y Chenopodiaceae. Resulta llamativa la casi nula explotación que hemos podido documentar de las especies de ribera, y de los espacios de saladar que existirían en el cercano Valle del Guadalentín. Un desarrollo suficiente de las formaciones de matorral y una relativa abundancia de pinos en el entorno más inmediato al yacimiento, así como ciertos procesos de selección orientados hacia el pino carrasco pueden estar en el origen de esta escasez. También llama la atención la no aparición en nuestro registro de otras especies típicas de los bosques galería como los álamos, sauces o fresnos, por ejemplo, cuya presencia en el Guadalentín se constata al menos hasta el Calcolítico (Fuentes *et al.* 2005). Tampoco se han registrado otras que sin duda debieron crecer abundantemente junto a los tarayes, como la adelfa (*Nerium oleander*) especie fundamental en los cursos de agua permanentes o semipermanentes del sureste peninsular, especialmente en zonas pedregosas. Por lo tanto, el registro antracológico del Barranco de la Viuda sólo muestra un ambiente ribereño compuesto por tarayes y, como se ha comentado con anterioridad, algunas especies de Monocotyledoneae. Entre ellas pudo encontrarse el carrizo (*Phragmites australis*), que es un elemento autóctono de la Península Ibérica. Sin embargo, es más dudosa la presencia de la caña (*Arundo donax*), ya que parece admitirse que se trata de una planta introducida recientemente, e invasora de los ecosistemas riparios de gran parte de la fachada mediterránea peninsular. Contradiendo esta afirmación, en el yacimiento argárico del Rincón de Almendricos de Lorca fueron halladas improntas de esta especie sobre algunos elementos constructivos del poblado (Ayala Juan 1989), que, según la autora, no pudieron pertenecer a carrizos dado el diámetro que presentaban.

En lo que concierne a las áreas adyacentes al Guadalentín, en la actualidad, además de numerosos cultivos, aparecen tierras bastante pobres que presentan un fuerte grado de salinidad, por lo que suelen aparecer formaciones propias de saladar, constituidas por
quenopodiáceas como Sarcocornia fruticosa, Arthrocnemum macrostachyum y Halocnemum strobilaceum. Ante la gran escasez de carbones de esta familia que han podido ser identificadas en Barranco de la Viuda, es posible cuestionarse, en primer lugar, si durante la Edad del Bronce el entorno hoy ocupado por estos saladares no presentaba una salinidad tan intensa, por lo que estas comunidades estarían fuertemente reducidas. Actualmente, la progresiva reducción de estas especies en el entorno se achaca al descenso del nivel freático como consecuencia de la sobreexplotación de los acuíferos (Caballero et al. 2002, Pardo et al. 2003, 2005). Por otro lado, es posible plantear que los habitantes del poblado llevaran a cabo una exclusión de este tipo de plantas en sus actividades productivas debido a que no fueran apreciadas como combustible. En este sentido, habría que recordar que en la Fase IV de Punta de los Gavilanes, de cronología similar a Barranco de la Viuda, no sólo se da una explotación de este taxón, sino que incluso existen indicios de selección orientada hacia las diferentes especies de quenopodiáceas del entorno, que se incrementa en las fases más recientes. En Barranco de la Viuda este taxón no ha podido ser asociado de manera directa al combustible de las diferentes estructuras de combustión estudiadas, si bien existe la certeza, gracias a los restos hallados en el Departamento 2 y en el enterramiento del departamento 4, de que sí existieron en el entorno cercano, y fueron utilizadas como combustible al menos de forma esporádica. En cualquier caso, no todas las especies de quenopodiáceas son puramente halófilas, sino que algunas de las más leñosas como Atriplex halimus, también son halonitrófilas, por lo que se asocian a actividades antrópicas y a suelos de una gran degradación. Puede, por tanto, que la captación de especies de esta familia se ubicara más en los bordes de los cultivos que con toda seguridad existieron (Precioso Arévalo et al. 1999) que en las zonas de crecimiento exclusivo del saladar.

En definitiva, los resultados antracológicos del Barranco de la Viuda ofrecen una visión de la vegetación del entorno del yacimiento según la cual existiría una cobertura vegetal algo más desarrollada que la actual, aunque las condiciones ambientales debieron de ser también rigurosas dado que todos los elementos que componen el cortejo vegetal identificado son de carácter heliófilo, termófilo, xerófilo en algunos casos y mayoritariamente esclerófilo. La escasez de elementos de ribera, y la carencia de una gran cantidad de especies de ripisilva que pudieron crecer en los márgenes del río Guadalentín no podemos interpretarla como una ausencia de este tipo de vegetación, sino más bien como una no utilización por parte de los habitantes del enclave, debido posiblemente a que sus áreas de captación se encontraban en un radio aún más próximo.

Los parámetros ambientales que se deducen a partir de los resultados de Barranco de la Viuda denotan una importante termicidad ya durante la Edad del Bronce, con una instalación de la vegetación xerófita cuya degradación ha sido, en términos generales, progresiva hasta la actualidad. Esto se inserta bien dentro de una dinámica regional
amplia que ha podido ser dilucidada a través de numerosas secuencias del sureste de la Península Ibérica que serán discutidas en el Capítulo V.

IV.2.2.5.2. La gestión del combustible leñoso en el Barranco de la Viuda

- **Los datos previos. El estudio de los insectos asociados a la leñera de Barranco de la Viuda**

Con anterioridad a la realización del estudio de la leña asociada a las estructuras de combustión en el Barranco de la Viuda, conocíamos el trabajo inédito realizado por el Dr. Diego Gallego Cambronero acerca de los insectos cuyas galerías eran observables macroscópicamente en el caso de los troncos acumulados en la “leñera” (71J19). Estos datos, expuestos a continuación, sirven como punto de partida y como elemento de discusión en las conclusiones que serán planteadas seguidamente.

El estudio de Gallego Cambronero (1999) reveló la existencia de actividad de insectos xilófagos en varios carbones. Su análisis se realizó sobre tres fragmentos de carbón, uno más largo (150 mm x 37 mm de diámetro), un segundo mucho menor (16 mm de largo y 26,5 mm de diámetro), y finalmente un tercer fragmento algo más grueso que los anteriores (27,25 mm de largo x 45 mm de diámetro).

En el primero de ellos el autor identificó la presencia una galería producida por una larva de coleóptero del tipo funcional barrenador de floema o barrenador de floema y madera. Esta larva pudo pertenecer a la familia Cerambycidae o Buprestidae, y se encontraría en un momento de desarrollo de medio o final, por lo que tendría un tamaño estimado de unos 3 cm. Para esta identificación se basó en la observación de la galería creada por el insecto, plana, posiblemente subcortical, no introducida en la albura, de 7,5 mm de ancho, que ocupaba la mayor parte de la longitud del tronco, describiendo un trazado sinuoso (Gallego Cambronero 1999).

El segundo fragmento de tronco presentaba una galería de trazado más corto, aplanado, de 8 mm de anchura, que se introducía ligeramente en la albura. Por la morfología de la galería, de sección ovalada, el investigador concluyó que el insecto pudo tratarse de un barrenador de madera o barrenador de floema y madera como Buprestidae. Esta larva pudo medir unos 3,5 ó 4 cm. (Gallego Cambronero 1999).

Finalmente, en el tercer fragmento el autor observa un orificio de sección ovalada, de 5 mm de eje mayor y 2,75 mm en el menor, en el sentido de las fibras de la madera, con una profundidad máxima de 15 mm. Atribuye esta galería también a Buprestidae (Gallego Cambronero 1999).
Ambas familias de insectos (*Cerambycidae* y *Buprestidae*), según Gallego Cambronero, producen sus infestaciones tanto en raíces, como fustes y ramas, sobre ejemplares debilitados, moribundos, derribados o talados. Se trataría de especies barrenadoras de la madera y floema, que se caracterizan por pasar parte de su ciclo larvario en el floema, pero que migran a la madera en los últimos estados larvarios, siendo aquí donde realizaría la pupación. Este proceso tiene una duración de uno a dos años (Gallego Cambronero 1999).

Teniendo en cuenta que estos insectos aparecieron en *Pinus halepensis*, y en función de la biología y distribución de las especies encontradas en las masas forestales murcianas, es muy posible que las larvas pudieran pertenecer a una o varias de las siguientes especies (Gallego Cambronero com. pers.): *Buprestis (Buprestis) haemorrhoidalis* (Herbst, 1780); *Buprestis (Buprestis) novemmaculata* Linnaeus, 1767; *Buprestis (Buprestis) octoguttata* Linnaeus, 1758; *Chrysobothris solieri* Laporte & Gory, 1836; *Phaenops cyaneus* (Fabricius, 1775).

La puesta de estos insectos debió realizarse en una o varias ramas verdes, pero debilitadas o deterioradas. Antes de ser quemadas, estas ramas debieron de permanecer sin quemar al menos 1 ó 2 años, el tiempo suficiente para que las larvas alcanzaran unos 3-4 cm. La permanencia sin quemar pudo producirse tanto en el campo, si fueron recogidas secas, como almacenadas en una leñera, si la recolección se produjo estando verde la rama (Gallego Cambronero 1999).

El fragmento más grueso parecía presentar cámara de pupación, de lo cual el autor dedujo que el tronco debió de ser mucho mayor durante los dos años que dura el
Recursos forestales en un medio semiárido. Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

El rasgo fundamental que define el contenido antracológico, es el hecho de que presentan una gran pobreza taxonómica, ya que la E.C. 7J31 está compuesta únicamente por dos taxones, mientras que la E.C. 6H15 presenta 3 taxones. La interpretación de este
hecho, que suele ser propio de las estructuras de combustión, se fundamenta en dos causas principales. Por un lado, es posible que el registro antracológico obtenido se corresponda fundamentalmente con el contenido combustible de la última o últimas igniciones producidas en estas estructuras. En segundo lugar, es muy probable que ambas fuesen utilizadas de manera más bien esporádica y ocasional, y no de forma continuada, lo cual incide en dos aspectos: en primer lugar, los aportes de combustible al hogar serían reducidos tanto en cantidad como en número de taxones utilizados, y en segundo lugar, los agentes postdeposicionales actúan de manera mucho más intensa sobre este tipo de hogares no estructurados, situados en plano y no en cubeta, presentando una estratigrafía poco potente, por lo que suelen aparecer mucho más lavados durante la excavación.

Figura 4.73. Histograma de porcentajes de la E.C. 7J31.

Un aspecto a tener en cuenta, en cuanto a la gestión del combustible disponible en el entorno, es el esfuerzo desarrollado para la obtención del mismo. En este sentido, observamos que los taxones representados, *Pinus halepensis*, *Pistacia lentiscus*, *Olea europaea* y *Rosmarinus officinalis* se encontrarían en el entorno más inmediato del yacimiento, por lo que su recogida para el abastecimiento de estas estructuras domésticas no debió de suponer importantes inversiones de energía ni en distancia, ni posiblemente la superación de grandes desniveles. Esto es lógico en el caso de una funcionalidad relacionada con la cocción de alimentos, para la cual no suelen darse procesos selectivos claramente definidos, más propios de estructuras de combustión de carácter especializado.

Además, desde una perspectiva cuantitativa, observamos que existe una equivalencia porcentual con los resultados obtenidos para los niveles de ocupación del yacimiento, en tanto en cuanto las especies más utilizadas en ambas estructuras, se corresponderían, según nuestros resultados, con las más abundantes en el ambiente. Esto redundaría en la evidencia de que se trata de una gestión oportunista de su medio ambiente, no produciéndose ningún tipo utilización selectiva del combustible, ya que no aparece ninguna especie rara, o cuyas características combustibles pudieran inducirnos a pensar en una búsqueda orientada según este criterio.

- Las estructuras de combustión con usos especializados.

En el Barranco de la Viuda pudieron documentarse dos estructuras de combustión de carácter especializado, cuya actividad productiva no fue simultánea. En un primer momento de ocupación apareció un horno dedicado a la torrefacción de cereal. Junto a éste fue hallada una acumulación de troncos, que se interpreta como una leñera/carbonera destinada al abastecimiento de combustible para el funcionamiento del horno de torrefacción. Posteriormente, este departamento acogió otro horno, con una capa refractaria en base cerámica que se complementaría con una cubierta móvil tipo vasiña, no conservada. Dentro de sus posibles usos podría estar la elaboración de pan.

En general, las estructuras de combustión de carácter especializado, suelen tener una vocación de utilización más dilatada en el tiempo que los hogares domésticos, lo cual condiciona en gran medida la calidad del registro antracológico que puede obtenerse de su interior. En primer lugar, la cantidad de carbones conservados suele ser mucho mayor, dado que las continuas utilizaciones del mismo generan finalmente un mayor volumen de residuo. En segundo lugar, el listado taxonómico que proporcionan suele ser más elevado, debido fundamentalmente a este uso dilatado, y a los diferentes recursos leñosos utilizados a lo largo de los numerosos usos. Finalmente, si este listado taxonómico no es muy amplio, o algún combustible presenta proporciones muy
discordantes con su representación en los niveles de hábitat, es posible plantear hipótesis sobre la existencia de procesos de utilización selectiva del combustible.

En Barranco de la Viuda no sólo fueron individualizadas estas estructuras, sino que pudo también delimitarse con claridad el nivel de uso correspondiente a cada una de ellas, cuyos resultados pueden aportar una información taxonómica más amplia que el simple contenido de las mismas. Es posible plantear que la mayor parte de los carbones contenidos en el sedimento directamente asociado al uso de la estructura de combustión puedan pertenecer a residuos de su limpieza o la dispersión accidental de los mismos. Sin embargo, esta certeza nunca puede ser absoluta, ya que otras actividades de combustión pudieron haber aportado restos a este nivel de uso. En este sentido, se ha optado por realizar una comparación entre el contenido del horno de torrefacción y su nivel de uso (fig. 4.75), comprobando que el nivel de uso presenta una variabilidad taxonómica mayor, como consecuencia de que su contenido antracológico obedece a numerosas deposiciones de restos de carbón. Sin embargo, existe una coincidencia en la representación de los taxones más abundantes, *Pinus halepensis* y *Rosmarinus officinalis* y únicamente un taxón documentado en el interior de la cámara de combustión no aparece en su nivel de uso asociado, *Olea europaea*. En el caso del horno de cubierta móvil sólo contamos con el carbón asociado al nivel de uso, ya que no apareció combustible en su interior, que era una superficie refractaria (fig. 4.76).

Figura 4.75. Comparación taxonómica en porcentajes del horno de torrefacción con su nivel de uso asociado.
Es destacable el paralelismo taxonómico que se observa en cuanto a la utilización de la vegetación en los dos hornos documentados. Se da una clara orientación hacia tres taxones fundamentalmente. *Pinus halepensis* es el combustible principal en el horno de torrefacción, y el segundo taxón más abundante en el nivel de uso del horno de cubierta móvil. Esto resulta lógico conociendo que se trataría del taxón arbóreo más representado en el entorno. Por otro lado, *Rosmarinus officinalis* aparece como taxón más abundante en el contexto del horno de cubierta móvil, mientras que es el segundo en representación en el caso del horno de torrefacción y de su nivel de uso asociado. El romero se trató posiblemente de un combustible apreciado en el inicio de la utilización de estos hornos, debido a que se trata de una especie de gran inflamabilidad ya que su composición química, con esencias y resinas hacen que se inicie fácilmente la combustión a temperaturas relativamente bajas si las comparamos con otras especies sin esta composición (Guijarro Guzmán 2003). Además, sus propiedades aromáticas la convierten en una especie muy apta para las labores culinarias. En tercer lugar, parece que existió una cierta predilección por algunas monocotiledóneas, entre las que pensamos que el esparto debió de tener un gran protagonismo, por la proximidad a la que debieron encontrarse sus poblaciones, y por sus buenas propiedades combustibles, tanto en inflamabilidad como en poder calorífico (Elvira y Hernando 1989). Resulta llamativa la baja representación de *Pistacia lentiscus* como combustible, ya que posee excelentes propiedades, y un fuego muy duradero, habiéndose documentado su preferencia en hornos de pan de grupos actuales del norte de África (Peña-Chocarro et al. 2000, Zapata et al. 2003).
En cualquier caso, los tres taxones más utilizados como combustibles se presentarían con una gran abundancia en el entorno, por lo que pese a que dentro de la disponibilidad existente pudieron ejercer cierta selección, el condicionante fundamental terminó siendo la facilidad de recolección de esta leña, al encontrarse en el ambiente más próximo, y la abundancia con la que se presentaría, que eliminó criterios de no selección por motivos de aprecio social.

Junto al horno de torrefacción apareció una acumulación de troncos carbonizados de *Pinus halepensis* que ha sido interpretada desde una perspectiva arqueológica bien como una carbonera que ejerciera como fuente de combustible para esta estructura de combustión, o bien como una leñera con una función similar. En el primero de los casos, la madera habría sufrido un proceso de carbonización antes de su utilización, mientras que si se trataba de una leñera se utilizaría directamente la madera cortada. Dada la escasa entidad de la acumulación, se trataría de una acumulación periódica previa a su uso más o menos inmediato como combustible y no de un almacenamiento a largo plazo del combustible. Se trataría, en realidad, de un método de acumulación de combustible, para el cual, no obstante, tuvieron que existir ciertos sistemas de prevención en las estrategias de abastecimiento, que se explican teniendo en cuenta el conocimiento que existiría de las necesidades aproximadas de combustible de esta estructura para completar cada uso. Esto supondría el desarrollo de actividades de recolección más o menos programadas y establecidas con cierta periodicidad, para evitar tener que realizar esfuerzos diarios en esta actividad. Se conoce, no obstante, que en comunidades con carencias de combustible, ciertas actividades especializadas como la alimentación de hornos de cerámica pueden generar hasta tres salidas a recolectar madera por cada hornada productiva (Peña-Chocarro *et al.* 2000). En cambio, las actividades domésticas pueden ser abastecidas en algunos casos con unas cinco recolectas mensuales (Auclair y Sghaier Zaafouri 1996). En el caso del Barranco de la Viuda, los datos antracológicos no nos permiten establecer cuál sería la periodicidad de la recolecta, ni cuánta cantidad de combustible era consumida por este tipo de actividades, sin embargo, sí se evidencia una cierta programación del trabajo del grupo en este sentido.

Estos procesos de recolección pudieron estar regidos según diferentes criterios. En primer lugar, es posible que existiera una fuerte preferencia por la madera muerta, que generaría una relación positiva entre el esfuerzo invertido y el rendimiento obtenido. Además, se ha comprobado en ciertas comunidades actuales que las actividades de tala son evitadas, existiendo una preferencia por la madera ya caída (Moutarde 2006, Benjaminsen 1996, Peyre de Fabrègues 1990, Auclair y Sghaier Zaafouri 1996). En este sentido, los insectos xilófagos que aparecen en los troncos de la leña arrojan algo de luz, pero no una conclusión definitiva, ya que la infección pudo producirse bien durante la vida de la planta, aunque en una situación de gran debilidad de la misma, o bien, más probablemente, cuando ésta ya se encontraba muerta, aunque sin que pudiera pasar mucho tiempo desde su muerte, ya que la madera muy seca no es apetecible para este
tipo de organismos (Gallego Cambronero, com. pers.). Lo que no es posible es que se produjera un traspaso del ataque de un tronco a otro, ya que estas larvas no pueden cambiar de hospedador durante su proceso de desarrollo (Gallego Cambronero 1999). La discusión acerca de si los ataques de este tipo de organismos están relacionados con determinadas prácticas humanas es todavía muy incipiente. No obstante, algunos estudios sobre maderas constructivas parecen apuntar hacia una cierta tendencia de estas agresiones en maderas que permanecen juntas almacenadas para su posterior uso, o bien formando parte de estructuras constructivas (Carrión Marco 2005, 2007), tal y como sucede en Barranco de la Viuda. Sin embargo habría que tener en cuenta también que todos los troncos analizados de manera individual son de Pinus halepensis, un indicio de que sus criterios selectivos estuvieron orientados bien al tamaño de este tipo de ramas, o bien hacia esta especie en concreto.

Por otro lado, en el contexto del horno de torrefacción se definieron una serie de unidades cuya funcionalidad pudo ser la de acumulación de cenizas y carbones tras la combustión producida en el interior de la estructura. Se trata, por un lado, de la UE 7J35, y por otro, del relleno de la vasija 7J61, que se encontraba justo debajo de la unidad anterior.

![Figura 4.77. Histograma comparativo de porcentajes de los ceniceros 7J35 y 7J61.](image)

Sin embargo, las analogías taxonómicas de ambas unidades con el horno de torrefacción y con el suelo asociado son en general pocas, ya que mientras en estos últimos destaca sobre todo Pinus halepensis, Rosmarinus officinalis y Monocotyledoneae, en los...
ceniceros aparecen más representados taxones como *Pistacia lentiscus, Olea europaea*, y en tercer lugar *Pinus halepensis* (fig. 4.77). Esto plantea dudas sobre si se trata de contenedores directos de los residuos del horno, o si la acumulación cenicienta puede responder a otras circunstancias.

- **El contexto de enterramiento**

Normalmente, los carbones hallados en el relleno de estructuras negativas no de combustión como las fosas, o como el enterramiento documentado en el Departamento 4 de Barranco de la Viuda, no suelen ser considerados como “carbón concentrado”, ya que su espectro antracológico puede ser asimilado, por normal general, con el obtenido para los niveles de carbón disperso del resto del yacimiento (Bernabéu y Badal 1990, Pernaud 1992, García Martínez y Grau 2005). Sin embargo, en este caso en particular llaman la atención varios aspectos que han hecho que la interpretación de este contexto deba ser considerada de manera individualizada.

En primer lugar, se ha tenido en cuenta la gran diversidad taxonómica que se ha documentado en el sedimento recuperado del interior de la urna de enterramiento. Ésta presenta hasta 21 taxones distintos, de entre los cuales cuatro aparecen con exclusividad en este contexto: cf. *Tetraclinis articulata*, Rosaceae tipo Maloideae, y los dos taxones pertenecientes a la familia Ericaceae: *Erica* sp. y *Arbutus unedo*. Sin embargo, existe un fuerte contraste entre el contenido de la urna propiamente dicha, frente al de la fosa de enterramiento que sólo presenta cinco taxones, y ninguno de ellos exclusivo en el registro antracológico del yacimiento. Bien es verdad, no obstante, que esto puede tener una relación directa con el volumen de la muestra, ya que del primer contexto fueron recuperados más de 15 litros de sedimento, mientras que de la fosa apenas fueron tratados mediante flotación unos 4 litros.

Por otro lado, los valores que presentan los diferentes taxones hallados en el interior de la urna no coinciden con los obtenidos para la mayoría de los contextos analizados del yacimiento (fig. 4.78), por lo que una asimilación al conjunto hubiera generado ciertas desviaciones estadísticas. En este sentido, *Pinus halepensis* presenta una clara infravaloración con respecto al resto de los elementos del registro, mientras que es el taxón con diferencia más representado en el yacimiento (Bernabéu y Badal 1990, Pernaud 1992, García Martínez y Grau 2005). Sin embargo, *Olea europaea* presenta un fuerte contraste con respecto al resto de contextos estudiados, en los que suele alcanzar una mayor relevancia cuantitativa. Por el contrario, es llamativo el protagonismo de las monocotiledóneas, que son el tercer taxón más representado en el interior de la urna con
más del 20% del total, y las labiadas (Labiatae + *Rosmarinus officinalis*), que en conjunto suman un valor semejante.

![Diagrama de histograma]

Figura 4.78. Histograma en valores absolutos del carbón asociado a la fosa y a la urna de enterramiento del Departamento 4.

La interpretación de este fenómeno resulta compleja sin conocer con detalle los procesos deposicionales de colmatación sedimentaria tanto de la urna, que presentaba un cuenco como tapadera, como de la fosa de enterramiento. Por un lado, es posible que no se produjera ningún proceso de combustión en el interior de la urna, ya que éste no se encontraba termoalterado. Pero por otro lado, sin embargo, resulta evidente que los aportes de la urna tuvieron un origen distinto que los de la fosa. En este sentido, antes se ha hecho ya mención a la especificidad del depósito dentro de la dimensión ritual del mismo. Los cuatro taxones que se presentan de manera exclusiva en este contexto (madroño, arar, brezo y Rosaceae t. Maloideae), junto con otros representados con abundancia como *Quercus* perennifolio, sin duda alguna tuvieron una presencia esporádica en el entorno, y su captación pudo estar condicionada por una inversión de esfuerzo considerable. Por ello es posible plantear que existieran en relación a los mismos ciertas connotaciones de aprecio cultural por parte de los habitantes del enclave.
Además, los planteamientos arqueológicos acerca del contenido de la urna apuntan incluso a que ciertos fragmentos de madera quemada formaran parte de los elementos introducidos de manera intencional junto con el difunto y el resto del ajuar artefactual. De esta manera, la interpretación más plausible en torno a esta gran diferenciación cualitativa y cuantitativa del espectro antracológico con respecto al resto de los contextos de Barranco de la Viuda debe orientarse hacia esta perspectiva socio-cultural.

- **La utilización de la madera como elemento constructivo**

La buena conservación de algunos contextos en Barranco de la Viuda permitió la identificación y aislamiento de grandes fragmentos de ramas durante el proceso de excavación. Algunas de ellas formaban parte de diferentes estructuras de combustión o de acumulaciones intencionales de combustible, como se ha podido observar en el apartado anterior. Otras, sin embargo, aparecen claramente asociadas a funciones de sustentación de la estructura de los departamentos (tabla 4.54).

<table>
<thead>
<tr>
<th>ELEMENTOS ESTRUCTURALES</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEPARTAMENTO</td>
</tr>
<tr>
<td>UE</td>
</tr>
<tr>
<td>7J23</td>
</tr>
<tr>
<td>8J33</td>
</tr>
<tr>
<td>7J41</td>
</tr>
<tr>
<td>7J80</td>
</tr>
<tr>
<td>DEPARTAMENTO 2</td>
</tr>
<tr>
<td>6J12</td>
</tr>
<tr>
<td>6J16</td>
</tr>
<tr>
<td>6J30</td>
</tr>
</tbody>
</table>

Tabla 4.54. Identificación taxonómica de los elementos estructurales de Barranco de la Viuda.

En el Departamento 2, la UE 7J23 se define como un poste en la zona de uso del horno de torrefacción y su leñera asociada; en segundo lugar, 7J80 pudo tratarse también de un poste cuya combustión se produjo *in situ*, ya que apareció en el interior de una cazoleta excavada en la roca cuya función pudo ser la de agujero de poste (7J79), un aspecto que no se puede confirmar totalmente ya que este tipo de elementos se utilizan también como elemento de trabajo; en tercer lugar, 8J33 se trata también de un poste. Los tres fueron realizados en madera de *Pinus halepensis*. La definición de la funcionalidad de la UE 7J41 es, sin embargo, menos clara, dado que se trató de un elemento estructural con
un elevado estado de degradación. En su elaboración intervinieron al menos tres especies: *Pistacia lentiscus* y *Pinus halepensis*, como elementos de mayor tamaño, y *Rosmarinus officinalis*, cuyo porte herbáceo sólo puede estar en relación con una función de entramado, posiblemente entre otros muchos elementos que no se han conservado.

En el Departamento 3 fueron identificados tres grandes troncos cuya función también parecía ser sustentante, 6J12, 6J30 y 6J16. Los dos primeros fueron elaborados mediante pino carrasco, sin embargo, el tercero, de gran tamaño, se trató de un lentisco (fig. 4.79) cuyo porte debió de ser sin duda alguna arbóreo, dado el grosor que presentaba en el momento de su excavación.

El análisis antracológico informa de tres aspectos en cuanto al patrón de gestión de la madera del entorno. En primer lugar, que se hizo un uso exclusivo de materia prima local, que pudo recolectarse a pocos kilómetros o incluso metros del propio poblado, ya que tanto *Pinus halepensis*, como *Pistacia lentiscus* o *Rosmarinus officinalis* tienen una gran importancia como combustible en todas las actividades atestiguadas en el enclave. En segundo lugar, parece que existió un patrón selectivo orientado hacia una especie fundamentalmente, el pino carrasco, que, por otro lado, sería de los pocos taxones arbóreos del espacio circundante, y, según nuestros resultados, el más abundante, por lo que se trataría de un modelo constructivo bastante lógico. En tercer lugar se vuelve a constatar en el caso de los materiales constructivos el escaso uso que se hizo de los recursos asociados al bosque de ribera que bordearía el río Guadalentín, como los tarayes, cuyo uso como material de construcción sí se dio en la Edad del Bronce en la Punta de los Gavilanes (García Martínez *et al.* 2008a).

Capítulo IV. Resultados antracológicos

El origen de este proceso selectivo no habría que buscarlo en las cualidades físico-mecánicas de la madera de *Pinus halepensis*, que son de una calidad relativa. Por un lado, se trata de una especie cuyo tronco no suele ser demasiado grande, y su trazado en ocasiones es bastante tortuoso, poco recto. Además, suele tener una gran cantidad de nudos, por lo que su trabajo resulta bastante dificultoso. La altura media a la que suele llegar un ejemplar adulto es de unos 15 a 22 m y el diámetro medio de su tronco alcanza unos 60 cm. Se trata de una madera dura o semidura y bastante pesada tanto en verde como en seco. Su grado de flexibilidad y elasticidad es de mediano a débil y también se caracteriza por tener muy poca resistencia, si bien suele ser duradera y presenta una gran tolerancia a la humedad (Rival 1991 citado en Piqué y Noguera 2003). Dicho esto, posiblemente el factor determinante para la selección del pino con respecto a otras especies del entorno fue la altura que éste puede llegar a alcanzar. En este sentido, resultaría más excepcional, dada la deforestación a la que estaría sometida el paisaje, encontrar lentiscos arbóreos, aunque éstos pueden llegar a presentarse de hasta 6-7 m. de altura. Algo semejante pudo ocurrir en el caso de *Olea europaea*, cuya madera, sin embargo, posee propiedades físicas, mecánicas y tecnológicas superiores a las de *Pinus halepensis*. El olivo resulta una madera de mayor dureza, con mayor resistencia, flexibilidad y elasticidad que el pino carrasco, si bien además de su menor porte, también suele tener un diámetro medio inferior (Rival 1991, citado en Piqué y Noguera 2003). En el yacimiento pretilayótico de Son Ferragut, en Mallorca, demostrándose la existencia en el ambiente de ambas especies – *Pinus halepensis* y *Olea europaea* – se dio, sin embargo, una selección orientada hacia *Olea*, debido posiblemente a estas mejores características técnicas (Piqué y Noguera 2003). El acebuche aparece también documentado como material constructivo sustentante en la Punta de los Gavilanes (García Martínez et al. 2008a).

Los troncos utilizados como material de construcción en Barranco de la Viuda no presentan ningún método concreto de trabajo de la madera, ni tampoco quedó en evidencia durante el proceso de excavación. Es posible que se utilizara todo el cilindro del tronco, sin ningún tipo de trabajo previo, como sí se ha documentado en otros yacimientos de la Edad del Bronce. En la Punta de los Gavilanes aparecieron una serie de tablas, claramente escuadradas, en el contexto de un edificio dedicado al procesado de pescado (Ros Sala et al. 2008). En Castellón Alto (Galera, Granada), las técnicas de carpintería utilizadas para la construcción de las viviendas han podido ser minuciosamente descritas (Rodríguez-Ariza 2008).

La utilización de pino carrasco como elemento constructivo en el Sureste de la Península Ibérica fue en términos generales común en la Edad del Bronce, dado que fue uno de los recursos más extendidos a escala regional. De otro lado, resultan excepcionales los yacimientos de esta cronología en los que se hayan podido atestiguar procesos de transporte a larga distancia en función de criterios selectivos sobre los materiales de construcción.
El estudio pormenorizado de la Unidad Habitacional nº 1 del yacimiento de Terlinques (Villena, Alicante), ha proporcionado evidencias de una utilización preferencial *Pinus halepensis* tanto para la elaboración de los postes, como para el entramado de vigas y largueros, que estarían unidos a los primeros mediante esparto. Además, parece que esta madera fue utilizada también para la elaboración de lejas en el interior de la estancia. El estudio antracológico ha podido discernir que otras especies del entorno inmediato, como *Tamarix* sp., *Rosmarinus officinalis*, *Olea europaea var. sylvestris*, *Juniperus* sp., *Pistacia lentiscus* y *Arbutus unedo* pudieron formar parte del entramado de cobertura del techo (Machado Yanes *et al.* 2004).

En el caso de la Terrera del Reloj, en Granada, también se ha planteado que tanto los postes como las vigas del techo estarían hechas con pino carrasco, unido mediante esparto, con una cubierta vegetal en la cual aparecerían leguminosas y elementos ribereños como *Populus* sp., *Salix* sp. o *Tamarix* sp. (Rodríguez-Ariza 1992a).

Tanto en Castellón Alto, como en el Castillejo de Gádor se han atestiguado procesos de transporte de material constructivo desde zonas relativamente lejanas. En el primer yacimiento los postes y las vigas suelen realizarse de pino carrasco enlazado mediante esparto, pero, sin embargo, la interpretación de la presencia de *Pinus nigra* de manera puntual en una de las fases analizadas es interpretada como un transporte de esta especie desde zonas más elevadas con alguna finalidad constructiva. En este poblado el entramado de ramas del techo estuvo realizado principalmente de *Tamarix* sp. en las fases I y III (3370 ± 100 BP) mientras que se utilizó fundamentalmente *Retama* sp. en la fase II (Rodríguez-Ariza y Ruiz Sánchez 1995). En el Castillejo de Gádor, *Pinus nigra-sylvestris* y *Quercus faginea* serían elementos claramente transportados desde puntos alejados para ser utilizados como materiales de construcción. En este enclave, en el que existe una gran explotación de las especies de la ribera del Andarax, las techumbres y vigas serían elaboradas fundamentalmente con aliso (*Alnus* sp.), álamo (*Populus* sp.), taray (*Tamarix* sp.) y *Pinus nigra-sylvestris*, mientras que el ramaje de la techumbre estaría compuesto por romero, retama, acebuche, encina y sauce (Rodríguez-Ariza 2001).

Los datos disponibles sobre el patrón constructivo en el Barranco de la Viuda se completan a través de las maderas carbonizadas recuperadas en el área de incendio definida en el Departamento 3 (fig. 4.80). Ésta supone una mezcla entre materiales de construcción carbonizados, con restos de posibles estructuras de combustión, o carbón disperso en los niveles arqueológicos. No obstante, el pino carrasco sigue erigiéndose según los resultados de este contexto como el elemento constructivo fundamental en el yacimiento, y que el resto de taxones pudieron también formar parte de la estructura del departamento, ya que han sido documentados como elementos de ramaje de techumbres.
en otros yacimientos de la Edad del Bronce como Terlinques o el Castillejo de Gádor (Machado Yanes et al. 2004, Rodríguez-Ariza 2008).

Figura 4.80. Histograma en valores porcentuales del contexto de incendio del Departamento 3.
IV. 3. Resultados antracológicos del Balneario Romano de Archena

IV.3.1. Presentación del yacimiento

La zona estudiada forma parte del complejo del Balneario Romano de Archena, cuyos trabajos de excavación comenzaron en el año 2005, como consecuencia de las obras de un aparcamiento subterráneo que iba a construirse junto a las instalaciones del actual centro termal. La superficie inicial planeada se amplió hasta los 3000 m² dados los importantes hallazgos arqueológicos que comenzaron a producirse, con lo que los trabajos de excavación también se ampliaron hasta su culminación en 2008.

El desarrollo de las diferentes fases ocupacionales asociadas al Balneario Romano de Archena estuvo condicionado por su posición geográfica, ya que las unidades estructurales que conformaron el complejo se encontraron constreñidas por el cauce del Río Segura y el Cabezo del Cervo. Se trata de una estrecha franja que, además, tenía importantes riesgos relacionados con las crecidas del Río Segura, lo cual suponía un importante condicionante para realizar un establecimiento permanente. Sin embargo, esto no fue óbice para la instalación en este sitio de estructuras de gran riqueza con un carácter permanente (Matilla Séiquer 2007).

Este posicionamiento geográfico fue también el principal condicionante de la distribución de las distintas zonas funcionales documentadas, que se construyeron tomando como referencia el nacimiento de las aguas mineromedicinales (Matilla Séiquer y Adrados Bustos 2008). Así, los restos arqueológicos situados aguas abajo de la surgencia estarían directamente relacionados con las infraestructuras hidráulicas de carácter medicinal y lúdico. Aguas arriba del manantial, pero muy próximas al mismo, se situaron las zonas nobles y el área político-administrativa. En esta misma dirección, pero más alejadas de la surgencia, se situaron la zona de servicios y los establecimientos hosteleros de menor categoría que son objeto del estudio antracológico que presentamos.

La denominada “zona de servicios” (fig. 4.81) se sitúa en la zona más occidental de todas las instalaciones que conformaron el Balneario romano, separado del resto mediante una vaguada que actualmente está rellena. Aunque esta zona tiene sus orígenes hacia el siglo I a.C., el grueso de las instalaciones no se establece hasta finales del siglo I a.C., en un momento mal definido cronológicamente entre César y Augusto (Matilla Séiquer 2007).

Existen evidencias de que los romanos, tras la conquista de Hispania y el establecimiento de la capital en Carthago Nova conocieron y frecuentaron el lugar, sobre todo si tenemos en cuenta su ubicación junto a la principal vía que lleva al interior
y el importante poblamiento ibérico del entorno. Los datos arqueológicos, no obstante, indican que las inversiones en el balneario no se produjeron hasta 200 años después de su llegada a la Península. Esa inversión coincide con el auge económico de Cartagena y tiene como objetivo monumentalizar el entorno del manantial (Matilla Séiquer 2007).

![Figura 4.81. Plano del Balneario de Archena en sus diferentes fases de ocupación y planimetría de la zona de servicios excavada.](image)

- **La primera etapa constructiva de la zona de servicios**

Según una inscripción aparecida en el siglo XVIII que hoy se encuentra perdida: *Lucio Turcilio Rufo, hijo de Publio hizo las termas*. Parece que este personaje costeó o dirigió los primeros trabajos de construcción del balneario. Años más tarde, otra inscripción del mismo lugar informaría de una reparación llevada a cabo en el balneario por los duoviros de acuerdo con un decreto de los decuriones, lo cual evidencia el paso del balneario de un *privatus* a un municipio (Matilla Séiquer 2007).
Entre los restos de la época de Turcilio Rufo se encuentra un horno ovalado, semiexcavado en las margas que rodean al sitio y de grandes dimensiones (2,80 m. por 3,10 m.; longitud de boca: 2 m.; anchura de la boca: 0,70 m.), que fue utilizado para la cocción de teja y ladrillo (fig. 4.82). Presenta tres fases de utilización. Una primera fase, de época cesariana-augustea, es la de construcción del propio horno, constituido mediante una cámara inferior, sustentada con pilares de adobe que a su vez formaban pasillos de aireación y una cámara superior donde se colocaban los materiales a cocer. La segunda etapa puede situarse en el momento de reconstrucción del balneario, cuando se elimina la cámara superior y se usa con funciones de calera. Finalmente, la tercera fase es la de abandono como horno y su utilización como vertedero en época Julio-Claudia-Flavia (Matilla Séiquer 2007).

Figura 4.82. Horno de teja y ladrillo (Foto: G. Matilla Séiquer).

Las instalaciones destinadas directamente a los servicios de mantenimiento del balneario, como la producción de alimentos, el almacenaje o las dependencias de los servidores, se construyen tras el proceso de monumentalización del mismo. Éstas se ubican en una zona muy expuesta frente a posibles crecidas del río, justo después del meandro que describe para rodear el monte, por lo que una posible riada atacaría las estructuras por la zona occidental y septentrional. Por este motivo se construye un muro perimetral que sirvió para contener las aguas, del que se ha conservado gran parte de su estructura. Dentro del mismo se ubicaron algunas dependencias construidas con bloques de travertino poco desbastados y con muros de opus incertum. Destaca sobre todo una
Capítulo IV. Resultados antracológicos

- La etapa de reconstrucción

En un momento que podría datarse entre los emperadores Claudio y Nerón se produjo una gran riada que destruyó el balneario romano, y muy especialmente el área de servicios, debido a la mayor vulnerabilidad de su ubicación. Este acontecimiento dio lugar a los consecuentes trabajos de reconstrucción y planificación de nuevas edificaciones, que se llevaron a cabo gracias a fondos públicos, lo que evidencia que Archena sería ya en este momento un municipio (Matilla Séiquer 2007).

En primer lugar se lleva a cabo una compartimentación del terreno en dos niveles, que presentan una diferencia de cota de hasta dos metros, para lo cual se trasladan las arenas de la riada de la zona occidental a la mitad oriental con el objetivo de elevarla y evitar futuras destrucciones por inundación de esta zona (Matilla Séiquer 2007).

Para proteger ambas estancias, sobre el muro perimetral previo se construyó otro de mayor resistencia (fig. 4.84), de 2,5 m de altura, 0,5 m de cimientos más 1 m del muro...
anterior, que debió tener unos 80 m de longitud, de los que se han conservado 70. Para darle más solidez el muro se adapta a los dos niveles establecidos, de manera que en el primer tramo, donde sus paredes están exentas, el refuerzo es muy grueso, llegando a tener 1,5 m de grosor en total. Progresivamente el malecón de refuerzo va disminuyendo debido a que aumenta la parte construida contra la tierra hasta llegar a una escalera de piedra, de 1,30 m de anchura, que se introduce en la parte más elevada del recinto, donde el malecón es sustituido por contrafuertes interiores que permiten la sujeción del muro. Tras la escalera el muro está completamente construido contra tierra, por lo que se eliminan todo tipo de refuerzos (Matilla Séiquer 2007).

Figura 4.84. Muro perimetral con malecón de refuerzo (Foto: G. Matilla Séiquer).

- Reforma interior tras la inundación

Tras el abandono del lugar en la segunda mitad del siglo I d.C. tuvo lugar una riada de proporciones no repetidas en el río Segura entre los siglos II y IV d.C. De la reforma posterior a este momento se han conservado dos estancias de carácter público, situadas en la zona más alta del yacimiento, una junto a otra, que presentaban un gran deterioro al haber sido arrasadas por estructuras medievales. Debido a esto, las interpretaciones sobre su funcionalidad son varias: por un lado podría haberse tratado de un templo relacionado con cultos indígenas, dado el componente ibérico de los materiales encontrados. Una segunda hipótesis, sin embargo, apunta a que pudo tratarse de la curia (Matilla Séiquer 2007).
Relacionadas con el edificio público aparecieron una serie de dependencias distribuidas en torno a un vestíbulo longitudinal que parecen corresponderse con un edificio de carácter doméstico, muy modesto, con habitaciones destinadas a la cocina o el almacén. Su principal interés se debe a que servía como elemento de conexión entre el edificio público y las instalaciones termales.

Tras la inundación, la zona de servicios también sufrió modificaciones, reduciéndose considerablemente su tamaño al tercio más occidental de su espacio original, y amortizándose estancias anteriores como la almazara. El espacio se articuló organizado en varias estancias distribuidas en torno a un patio de 13 m de lado, rodeado por tres de sus lados por un peristilo de columnas de madera apoyadas en basas de piedra, al que se accedía desde el exterior. En cuanto a su funcionalidad, la gran cantidad de fragmentos de ánfora y dolia sugieren que uno de sus usos más importantes sería el de almacenaje (Matilla Séiquer 2007).

<table>
<thead>
<tr>
<th>Fases</th>
<th>Cronología</th>
<th>Usos</th>
<th>Restos</th>
<th>Historia</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>2ª mitad del siglo I a. C.</td>
<td>Área de Fabricación y acopio de materiales de construcción</td>
<td>Cantería, Hornos de teja</td>
<td>Se construye el balneario por un privatus</td>
</tr>
<tr>
<td>II</td>
<td>Augusto-Calígula</td>
<td>Zona de servicios invisibles</td>
<td>Almazara, Talleres</td>
<td>Primer uso del balneario</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Una riada destruye casi por completo el balneario</td>
</tr>
<tr>
<td>III, 1</td>
<td>Claudio-Nerón</td>
<td>Zona de servicios invisibles + Zona administrativa</td>
<td>Edificio público + Talleres</td>
<td>Reconstrucción del balneario por los duoviros. Aumento del volumen de negocio</td>
</tr>
<tr>
<td>III, 2</td>
<td>Nerón-¿Domiciano?</td>
<td>Zona de servicios visibles</td>
<td>Mansio</td>
<td>Se multiplica el volumen de negocio</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Abandono de las instalaciones a causa de la escasez de visitantes</td>
</tr>
<tr>
<td>IV</td>
<td>Domiciano</td>
<td>Ocupación residual</td>
<td>hogares</td>
<td>El balneario sigue siendo una referencia pero su uso es ocasional. Las infraestructuras han desaparecido.</td>
</tr>
</tbody>
</table>

Tabla 4.55. Esquema sintético de los momentos de ocupación del Balneario Romano de Archena, según García Martínez y Matilla Séiquer (2008), modificado.
A mediados del siglo I d.C. se produce una reforma del espacio destinado a servicios para su transformación en *mansio*, debido posiblemente a un gran incremento de usuarios del balneario. Dado lo constreñido del espacio, sobre el peristilo del patio se construye una segunda planta con capacidad para tres o cuatro habitaciones que fueron decoradas con cierto lujo, como atestiguan las pinturas parietales documentadas. Entre ellas destacan figuraciones de unos 0,80 m de altura, en la que se representan la figura humana, un gallo, parte de un buey y un barco de vela mercante. Además, la reorganización de todo este espacio permitió el acceso directo desde esta zona a la escalera, y desde allí a las instalaciones termales sin necesidad de salir al exterior del complejo (Matilla Séiquer 2007).

En el exterior del recinto se han hallado también dos lápidas funerarias que pertenecerían a dos libertos procedentes de las ciudades romanas de *Consabura* (Consuegra) y *Valentia* que aparecieron desplazadas del resto de la necrópolis, no hallada hasta el momento, como consecuencia de la riada (González Fernández *et al.*, en prensa).

Destacan también los vertederos documentados entre las margas y la arena de la playa fluvial, donde han aparecido gran cantidad de materiales asociados esta última fase de ocupación, durante el funcionamiento de la *mansio* y que han constituido el principal aporte de material antracológico estudiado en este yacimiento (Matilla Séiquer 2007).

El abandono definitivo de estas instalaciones se data a finales del siglo I d.C., aunque no existen indicios que indiquen que se produjera de una manera brusca, sino más bien progresiva. Así parecen corroborarlo las pinturas de la *mansio*, que no se terminaron en su totalidad, ya que algunas de ellas sólo presentan el enmarque mientras que el panel aparece completamente en blanco con el esbozo del dibujo que se pensaba realizar. En este momento se produce una ocupación marginal en la que se hace un uso de las instalaciones como refugio doméstico por parte de una o varias familias sin recursos, hasta que entrado ya el siglo II d.C., se produce el abandono definitivo (Matilla Séiquer 2007).

IV.3.2. El estudio antracológico del Balneario Romano de Archena

IV.3.2.1. Las muestras antracológicas

Para poder llevar a cabo el estudio antracológico, durante el proceso de excavación de la zona de servicios asociada al Balneario Romano de Archena, se efectuó un muestreo del sedimento de algunas de las unidades estratigráficas definidas. En el caso de los niveles de habitación fue recuperada una cantidad que osciló entre los 10 y 30 litros de sedimento por UE, mientras que procedente de las estructuras de combustión se recogió
Capítulo IV. Resultados antracológicos

la práctica totalidad del sedimento contenido en las mismas, que no obstante no fue mucho ya que se encontraban muy deterioradas.

Un caso excepcional en cuanto a su muestreo fue el gran vertedero documentado en la zona norte del yacimiento (UE 306), del cual fueron recuperados y procesados un total de 1000 litros de sedimento. Esta estrategia se planteó debido a varios factores: en primer lugar, el gran tamaño que presentaba la estructura, situada extramuros de la zona de servicios; en segundo término, el hecho de que se trataba de un vertedero con una utilización claramente prolongada en el tiempo, de al menos varias décadas, por lo que se presentaba como un buen depósito en el que se registrarían diversos momentos de utilización del combustible, en muy diferentes situaciones durante el periodo de ocupación romana; en tercer lugar, se tuvo en cuenta su gran riqueza en cuanto a su contenido en carbones; y finalmente, que los medios técnicos permitían recuperar y procesar esta elevada cantidad de sedimento.

<table>
<thead>
<tr>
<th>UUEE</th>
<th>LITROS DE SEDIMENTO PROCESADOS</th>
<th>Nº DE FRAGMENTOS ANALIZADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boca horno</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Vertedero</td>
<td>1000</td>
<td>900</td>
</tr>
<tr>
<td>43</td>
<td>25</td>
<td>70</td>
</tr>
<tr>
<td>67</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>69</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>70</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>72</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>75</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>76</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>90</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>97</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>134</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>148</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>E.C. 178</td>
<td>16</td>
<td>50</td>
</tr>
<tr>
<td>266</td>
<td>24</td>
<td>50</td>
</tr>
<tr>
<td>267</td>
<td>26</td>
<td>-</td>
</tr>
<tr>
<td>269</td>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td>270</td>
<td>24</td>
<td>21</td>
</tr>
<tr>
<td>E.C. 271</td>
<td>24</td>
<td>250</td>
</tr>
<tr>
<td>272</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>273</td>
<td>24</td>
<td>90</td>
</tr>
<tr>
<td>280</td>
<td>20</td>
<td>29</td>
</tr>
<tr>
<td>E.C. 314</td>
<td>20</td>
<td>250</td>
</tr>
<tr>
<td>E.C. 499</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabla 4.56. Unidades estratigráficas estudiadas.
El tratamiento de las muestras se realizó en este caso mediante el sistema de flotación manual simple en todos los casos, con la excepción de los 1000 litros recuperados para el vertedero, que fueron procesados con máquina de flotación en una zona aneja a las instalaciones del balneario habilitada para esta labor. Las unidades estratigráficas muestreadas, la cantidad de sedimento recuperado y el número de carbones estudiado en cada una de ellas se detallan en la tabla 4.56. De entre las unidades estratigráficas estudiadas, tres resultaron estériles en macrorrevestos vegetales, se trata de las UUEE 67, 148 y 266.

En cuanto al número mínimo de fragmentos que fue necesario estudiar en relación con el número de taxones identificados, la mayoría de las unidades estratigráficas presentaron un contenido bastante pobre, por lo que se estudiaron todos los carbones de las mismas. Sólo fue necesario establecer un muestreo en el caso de la unidad de vertedero.

Procedentes de este contexto fueron estudiados un total de 900 fragmentos de carbón de entre los cuales pudieron ser identificados 33 taxones. La curva taxonómica (fig. 4.85) presenta en primer lugar un rápido crecimiento por el cual se identifican hasta 24 elementos tras el estudio de 143 fragmentos. Posteriormente ésta se vuelve más escalonada y no deja de presentar nuevos taxones, ya que el último de ellos, Ephedra sp., fue identificado tras el análisis de 897 fragmentos. Fue necesario estudiar 337
fragments para identificar 27 taxones, el 81% del total, mientras que el estudio de 563 fragmentos más proporcionó menos del 20% del listado taxonómico, un total de 6 elementos: *Rhamnus/Phillyrea* sp., *cf. Ulmus* sp., *Cistus* sp., *Prunus* cf. *amygdalus*, indeterminado y *Ephedra* sp. Estos últimos tuvieron una presencia escasa en el registro, de sólo un fragmento en todos los casos, excepto dos fragmentos indeterminados. Por el contrario, los taxones cuantitativamente mejor representados, *Pinus halepensis, Juniperus* sp. y *Fraxinus* sp. aparecieron rápidamente, entre los primeros cuatro fragmentos estudiados, pero, sin embargo, llama la atención que dos de los taxones más ampliamente representados, *Pistacia lentiscus* y *Olea europaea* no aparecieran hasta el fragmento número 29 y 45 respectivamente, cuando ya se llevaban identificados 9 y 13 taxones.

La curva de porcentajes elaborada a partir de los valores relativos de *Pinus halepensis, Fraxinus* sp. y *Pistacia lentiscus* asociados a este contexto del vertedero (fig. 4.86) muestra, sin embargo, que a pesar del esfuerzo en el número de fragmentos analizados no se produce una total estabilización de los valores de estos taxones a lo largo de todo el estudio. Hasta el análisis del fragmento número 400 los tres taxones permanecían más o menos estabilizados, pero, sin embargo, en este punto *Pinus halepensis* comienza a describir un trazado descendente ya que pasa de valores cercanos al 30% en los 300 primeros fragmentos, hasta el 19% aproximadamente que alcanza al final del estudio. Por el contrario, *Fraxinus* sp. y *Pistacia lentiscus* se presentan estabilizados hasta aproximadamente el estudio de 600 fragmentos, a partir de los cuales ambos trazan una curva ligeramente ascendente, aunque más moderada que en el caso de *Pinus halepensis*.

![Figura 4.86. Curva de porcentajes del contexto del vertedero.](image-url)
IV.3.2.2. Resultados antracológicos

Se han analizado un total de 2014 fragmentos de carbón, de los cuales 1356 han sido considerados como carbón disperso ya que se hallaron en diferentes unidades estratigráficas asociadas a niveles de hábitat y al vertedero (UE 306), que no hemos tratado como una unidad estructural ya que en este tipo de casos, tanto el proceso de formación del depósito como los resultados antracológicos son más asimilables al carbón disperso que al concentrado en estructuras de combustión (Bernabéu y Badal 1990, Pernaud 1992, García Martínez y Grau Almero 2005). Los 658 fragmentos restantes, se han cuantificado individualizadamente, ya que formaban parte del relleno de cuatro estructuras de combustión, por lo que su interpretación admite matizaciones distintas.

El estudio ha ofrecido una amplia variabilidad taxonómica, con un total de 34 taxones identificados, incluyendo indeterminados e indeterminables. Dentro del grupo de las gimnospermas han sido identificados *Pinus halepensis*, *Pinus* sp., *Juniperus* sp., Coniferae y *Ephedra* sp. Por lo que respecta a las angiospermas monocotiledóneas, hemos individualizado dos taxones: Monocotyledoneae y cf. *Phragmites australis*. Finalmente, el grupo mayoritario es el de las angiospermas dicotiledóneas, entre las que se encontrarían, por orden alfabético, los siguientes taxones: *Arbutus unedo*, *Buxus* sp., Cistaceae, *Cistus* sp., *Daphne gnidium*, *Erica* sp., *Fagus sylvatica*, *Ficus carica*, *Fraxinus* sp., Labiatae, Leguminosae, cf. *Nerium oleander*, *Olea europaea*, *Pistacia lentiscus*, cf. *Pistacia terebinthus*, *Populus/Salix* sp., *Prunus* sp., *Prunus* cf. *amygdalus*, *Punica granatum*, *Quercus ilex/coccifera*, *Rhamnus/Phillyrea* sp., Rosaceae t. Maloideae, *Rosmarinus officinalis*, *Tamarix* sp., cf. *Ulmus* sp. En esta enumeración hemos excluido un fragmento de bráctea de piña que, si bien ha sido sumado independientemente, se correspondería con el taxón *Pinus* sp.

Por lo que concierne al carbón disperso, destaca su elevada variabilidad taxonómica, que recoge el total de los taxones identificados en el estudio antracológico. Los resultados numéricos de cada una de las unidades estudiadas, así como la suma de todas ellas aparecen expresados en la tabla 4.57.

Existe una gran disparidad porcentual entre los diferentes taxones identificados. Sólo 4 elementos superan el 10% del total analizado: *Pistacia lentiscus* con un 16,67% es el taxón más representado, seguido muy de cerca de *Pinus halepensis*, con un 15,93% y con algo más de distancia por *Olea europaea* (12,61%) y *Fraxinus* sp. (11,36%). Por su parte, *Juniperus* sp. representa prácticamente el 10% del total del registro (9,95%). El resto de los taxones no sólo no superan el 10%, sino que tampoco llegan en ningún caso al 5%, aunque Monocotyledoneae y *Populus/Salix* sp. se aproximan a este valor, con algo más del 4% en cada caso. En el extremo opuesto, taxones como *Ephedra* sp.,
Daphne gnidium, cf. Pistacia terebinthus, cf. Nerium oleander, Prunus cf. amygdalus o cf. Ulmus sp. aparecen representados únicamente por un fragmento, por lo que algunos de ellos fueron determinados con cierta reserva ("cf."), ya que se trató, en la mayoría de los casos, de fragmentos de pequeño tamaño y gran fragilidad. También fue hallado un único fragmento de bráctea de piña.

<table>
<thead>
<tr>
<th>TAXA</th>
<th>N°</th>
<th>TOTAL</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus halepensis</td>
<td>16</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>18</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>170</td>
<td>216</td>
<td>15,93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinus sp.</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>18</td>
<td>23</td>
<td>1,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bráctea de piña</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Juniperus sp.</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td>1</td>
<td>130</td>
<td>135</td>
<td>9,95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cométerae</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>26</td>
<td>45</td>
<td>3,32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephedra sp.</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monocotyledoneae</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>35</td>
<td>57</td>
<td>4,2</td>
</tr>
<tr>
<td>cf. Phragmites australis</td>
<td></td>
<td>6</td>
<td>7</td>
<td>0,52</td>
</tr>
<tr>
<td>Arbutus unedo</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>21</td>
<td>1,55</td>
</tr>
<tr>
<td>Buxus sp.</td>
<td>1</td>
<td></td>
<td>7</td>
<td>8</td>
<td>0,59</td>
</tr>
<tr>
<td>Cistaceae</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>5</td>
<td>0,37</td>
</tr>
<tr>
<td>Cistus sp.</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daphne gnidium</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0,07</td>
</tr>
<tr>
<td>Erica sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>10</td>
<td>13</td>
<td>0,96</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fagus sylvatica</td>
<td></td>
<td>23</td>
<td>23</td>
<td>1,7</td>
</tr>
<tr>
<td>Ficus carica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraxinus sp.</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>144</td>
<td>154</td>
<td>11,36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labiatae</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>7</td>
<td>16</td>
<td>1,18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leguminosae</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>7</td>
<td>0,52</td>
</tr>
<tr>
<td>Nerium oleander</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0,07</td>
</tr>
<tr>
<td>Olea europaea</td>
<td>15</td>
<td>2</td>
<td>3</td>
<td>19</td>
<td>7</td>
<td>7</td>
<td>21</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>18</td>
<td>66</td>
<td>171</td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
<td>13</td>
<td>6</td>
<td>6</td>
<td>25</td>
<td>27</td>
<td>3</td>
<td>11</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>cf. Pistacia terebinthus</td>
<td></td>
</tr>
<tr>
<td>Populus/Salix sp.</td>
<td></td>
<td>49</td>
<td>55</td>
<td>4,06</td>
</tr>
<tr>
<td>Prunus sp.</td>
<td></td>
<td>3</td>
<td>3</td>
<td>0,22</td>
</tr>
<tr>
<td>Prunus cf. amygdalus</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0,07</td>
</tr>
<tr>
<td>Punica granatum</td>
<td></td>
<td>14</td>
<td>22</td>
<td>1,62</td>
</tr>
<tr>
<td>Quercus ilex/coccifera</td>
<td>1</td>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>19</td>
<td>1,4</td>
</tr>
<tr>
<td>Rhamnus/Phillyrea sp.</td>
<td></td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>7</td>
<td>0,52</td>
</tr>
<tr>
<td>Rosaceae t. maloidea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>13</td>
<td>0,96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>Tamarix sp.</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>12</td>
<td>24</td>
<td>1,77</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf. Ulmus sp.</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0,07</td>
</tr>
<tr>
<td>Indeterminado</td>
<td></td>
</tr>
<tr>
<td>Indeterminable</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>25</td>
<td>54</td>
<td>3,98</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>60</td>
<td>29</td>
<td>20</td>
<td>70</td>
<td>50</td>
<td>21</td>
<td>90</td>
<td>20</td>
<td>6</td>
<td>14</td>
<td>9</td>
<td>5</td>
<td>20</td>
<td>2</td>
</tr>
</tbody>
</table>

Tabla 4.57. Resultados antracológicos del carbón disperso del Balneario Romano de Archena.
Los taxones aparecen desigualmente repartidos entre las diferentes unidades estratigráficas estudiadas (tabla 4.58). Aquellas muestras que fueron más abundantes en carbón, presentan, por lo general, también una elevada variabilidad taxonómica, y viceversa. De esta manera, la UE 306, de la que fueron estudiados 900 fragmentos, presentó también el mayor número de taxones, un total de 32. Sin embargo, esto depende en última instancia de la particularidad de la muestra, pues observamos que unidades con una gran escasez en cuanto al número de fragmentos que pudieron ser analizados, sí que poseen, sin embargo, una cantidad de taxones proporcionalmente elevada en relación con este número de fragmentos. Por ejemplo de la UE 272 pudieron

<table>
<thead>
<tr>
<th>TAXA</th>
<th>269</th>
<th>280</th>
<th>72</th>
<th>43</th>
<th>266</th>
<th>270</th>
<th>273</th>
<th>272</th>
<th>97</th>
<th>76</th>
<th>90</th>
<th>75</th>
<th>70</th>
<th>134</th>
<th>306</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus halepensis</td>
<td></td>
</tr>
<tr>
<td>Pinus sp.</td>
<td></td>
</tr>
<tr>
<td>Bráctea de piña</td>
<td></td>
</tr>
<tr>
<td>Juniperus sp.</td>
<td></td>
</tr>
<tr>
<td>Coníferae</td>
<td></td>
</tr>
<tr>
<td>Ephedra sp.</td>
<td></td>
</tr>
<tr>
<td>Monocotyledoneae</td>
<td></td>
</tr>
<tr>
<td>cf. Phragmites australis</td>
<td></td>
</tr>
<tr>
<td>Arbutus unedo</td>
<td></td>
</tr>
<tr>
<td>Buxus sp.</td>
<td></td>
</tr>
<tr>
<td>Cistaceae</td>
<td></td>
</tr>
<tr>
<td>Cistus sp.</td>
<td></td>
</tr>
<tr>
<td>Daphne gnidium</td>
<td></td>
</tr>
<tr>
<td>Erica sp.</td>
<td></td>
</tr>
<tr>
<td>Fagus sylvatica</td>
<td></td>
</tr>
<tr>
<td>Ficus carica</td>
<td></td>
</tr>
<tr>
<td>Fraxinus sp.</td>
<td></td>
</tr>
<tr>
<td>Labiatae</td>
<td></td>
</tr>
<tr>
<td>Leguminosae</td>
<td></td>
</tr>
<tr>
<td>Nerium oleander</td>
<td></td>
</tr>
<tr>
<td>Olea europaea</td>
<td></td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
<td></td>
</tr>
<tr>
<td>cf. Pistacia terebinthus</td>
<td></td>
</tr>
<tr>
<td>Populus/Salix sp.</td>
<td></td>
</tr>
<tr>
<td>Prunus sp.</td>
<td></td>
</tr>
<tr>
<td>Prunus cf. amygdalus</td>
<td></td>
</tr>
<tr>
<td>Punica granatum</td>
<td></td>
</tr>
<tr>
<td>Quercus ilex/coccifera</td>
<td></td>
</tr>
<tr>
<td>Rhamnus/Phillyrea sp.</td>
<td></td>
</tr>
<tr>
<td>Rosaceae t. maloidea</td>
<td></td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
<td></td>
</tr>
<tr>
<td>Tamarix sp.</td>
<td></td>
</tr>
<tr>
<td>cf. Ulmus sp.</td>
<td></td>
</tr>
<tr>
<td>Indeterminado</td>
<td></td>
</tr>
<tr>
<td>Indeterminable</td>
<td></td>
</tr>
<tr>
<td>TOTAL CARBONES</td>
<td>60</td>
<td>29</td>
<td>20</td>
<td>70</td>
<td>50</td>
<td>21</td>
<td>90</td>
<td>20</td>
<td>14</td>
<td>9</td>
<td>5</td>
<td>20</td>
<td>2</td>
<td>40</td>
<td>900</td>
</tr>
<tr>
<td>TOTAL TAXONES</td>
<td>14</td>
<td>12</td>
<td>9</td>
<td>13</td>
<td>11</td>
<td>7</td>
<td>13</td>
<td>10</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

Tabla 4.58. Presencia-ausencia de los diferentes taxones en el carbón disperso.
ser estudiados sólo 20 fragmentos, obteniendo un listado taxonómico de 10 elementos, y en el caso de la UE 280, entre 29 fragmentos analizados aparecieron hasta 12 taxones distintos.

El taxón más representado porcentualmente, *Pistacia lentiscus*, lo fue también desde el punto de vista cualitativo, ya que apareció en 15 unidades estratigráficas y estuvo ausente únicamente en una de ellas. Al lencisco le sigue *Olea europaea*, que aparece en 13 unidades estratigráficas. El tercer taxón cualitativamente más representado es *Monocotyledoneae*, que pese a que no tiene un elevado porcentaje de representación (4,2%), fue identificado en 12 de las 16 unidades estratigráficas analizadas. Lo contrario sucede con *Pinus halepensis* y *Juniperus sp.*. *Pinus halepensis* presenta valores de representación muy altos pero sin embargo sólo fue identificado en 9 muestras de las 16 estudiadas y, por su parte, *Juniperus sp.*, que también apareció porcentualmente bien representado, sólo fue identificado en 4 unidades estratigráficas. Del resto de taxones sólo *Fraxinus sp.*, *Rosmarinus officinalis*, Labiatae y *Tamarix sp.* aparecen en cinco o más unidades estratigráficas (tabla 4.58).

En lo que concierne al carbón concentrado, han sido estudiadas 5 estructuras de combustión asociadas a los niveles romanos. Cuatro de ellas, las EECC 314, 271, 178 y 499 fueron hogares de tipo doméstico. Por el contrario, la quinta estructura estudiada se trata de la boca del horno de elaboración de ladrillo y otros materiales constructivos que se utilizó posiblemente para elaborar los materiales con que se construyó el complejo de servicios del balneario. Los valores numéricos, tanto absolutos como porcentuales relativos a cada una de estas estructuras se detallan en la tabla 4.59. En general, como suele suceder en estos casos, la variabilidad taxonómica no es muy amplia en cada una de las estructuras, y tampoco se da ningún taxón que no haya sido previamente identificado en el carbón disperso.

Del contenido de la E.C 314 han sido analizados un total de 250 fragmentos de carbón, que han proporcionado un listado taxonómico compuesto por 10 elementos. El taxón mayoritario ha sido *Olea europaea*, con un 56% del total, seguido de *Pistacia lentiscus*, con un 30%. Sólo *Tamarix sp.*, que con 15 fragmentos supone un 6% del total, supera el 5% del total del registro, el resto no han llegado en ningún caso a este valor. 4 fragmentos fueron identificados como *Juniperus sp.* (1,6%) mientras que del resto de los taxones ha sido identificado un único fragmento por taxón, suponiendo cada uno de ellos el 0,4% del registro: se trata de *Pinus sp.*, *Ephedra sp.*, *Populus/Salix sp.* y *Quercus ilex/coccifera*. Finalmente, 1 fragmento resultó ser indeterminado, y 8 de ellos fueron indeterminables (tabla 4.59).

Procedentes de la E.C 271 han sido estudiados también 250 fragmentos, de entre los cuales han podido ser identificados 13 taxones. De ellos 201 son *Pistacia lentiscus*, lo cual supone más del 80% del total identificado. Le sigue muy de lejos *Olea europaea,*
que ha aportado 13 fragmentos, un 5% del total. El resto de taxones no superan en ningún caso este 5%, se trata, de mayor a menor presencia relativa, de Labiatae (2,4%), *Pinus halepensis* (2%), *Arbutus unedo* (1,6%), Monocotyledoneae (1,2%), *Cistus* sp. (1,2%), *Quercus ilex/coccifera* (1,2%), *Tamarix* sp. (1,2%), Coniferae (0,8%), *Rhamnus/Phillyrea* sp. (0,8%) y *Rosmarinus officinalis* (0,4%). Finalmente, 4 fragmentos fueron indeterminables (tabla 4.59).

En cuanto a la E.C. 178, el 100% de los fragmentos, un total de 50, pertenecen al mismo taxón, *Tamarix* sp. (tabla 4.59).

<table>
<thead>
<tr>
<th>BALNEARIO ROMANO DE ARCHENA: ESTRUCTURAS DE COMBUSTIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAXA</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Nº</td>
</tr>
<tr>
<td>Pinus halepensis</td>
</tr>
<tr>
<td>Pinus sp.</td>
</tr>
<tr>
<td>Juniperus sp.</td>
</tr>
<tr>
<td>Coniferae</td>
</tr>
<tr>
<td>Ephedra sp.</td>
</tr>
<tr>
<td>Monocotyledoneae</td>
</tr>
<tr>
<td>Arbutus unedo</td>
</tr>
<tr>
<td>Cistaceae</td>
</tr>
<tr>
<td>Cistus sp.</td>
</tr>
<tr>
<td>Erica sp.</td>
</tr>
<tr>
<td>Fraxinus sp.</td>
</tr>
<tr>
<td>Labiatae</td>
</tr>
<tr>
<td>Olea europaea</td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
</tr>
<tr>
<td>Populus/Salix sp.</td>
</tr>
<tr>
<td>Prunus sp.</td>
</tr>
<tr>
<td>Quercus ilex/coccifera</td>
</tr>
<tr>
<td>Rhamnus/Phillyrea sp.</td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
</tr>
<tr>
<td>Tamarix sp.</td>
</tr>
<tr>
<td>Indeterminado</td>
</tr>
<tr>
<td>Indeterminable</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
</tbody>
</table>

Tabla 4.59. Resultados antracológicos de las estructuras de combustión.

Lo mismo ha ocurrido con la boca del horno de cerámica, cuyo sedimento era muy ceniciento, pero apenas contenía fragmentos de carbón. Únicamente pudieron estudiarse 8 fragmentos, y todos ellos pertenecen al mismo taxón, *Erica* sp. (tabla 4.59).
Finalmente, de la E.C. 499 han sido estudiados 100 fragmentos de carbón, de entre los cuales 89 fueron *Pistacia lentiscus*, la mayoría de ellos con una elevada vitrificación. Aparecieron también 3 fragmentos de *Juniperus* sp. y la misma cantidad de *Fraxinus* sp. El resto de taxones, Cistaceae, *Populus/Salix* sp. y *Prunus* sp. están representados únicamente por 1 fragmento cada uno de ellos. Dos de los fragmentos presentaban el plano transversal completamente vitificado, por lo que fueron finalmente indeterminables (tabla 4.59).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus halepensis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juniperus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coniferae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephedra sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monocotyledoneae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arbutus unedo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cistaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cistus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erica sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraxinus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labiatae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olea europaea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Populus/Salix sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prunus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quercus ilex/coccifera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhamnus/Phillyrea sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamarix sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indeterminado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indeterminable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL DE TAXONES</td>
<td>10</td>
<td>13</td>
<td>1</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL DE CARBONES</td>
<td>250</td>
<td>250</td>
<td>50</td>
<td>100</td>
<td>8</td>
</tr>
</tbody>
</table>

Tabla 4.60. Presencia-ausencia de los diferentes taxones en el carbón concentrado.

En conjunto, las estructuras de combustión presentaron un listado taxonómico de 22 elementos, que, sin embargo, aparecen repartidos de manera muy poco uniforme entre las diferentes estructuras (tabla 4.60). Llama la atención que sólo 7 taxones presenten cierta recurrencia representativa, aunque ninguno aparece en todas las estructuras de combustión. *Pistacia lentiscus*, *Tamarix* sp. e Indeterminable son los taxones cualitativamente mejor representados, ya que aparecen en dos de las cinco unidades estudiadas. Por su parte, *Juniperus* sp., *Quercus ilex/coccifera*, *Populus/Salix* sp. y *Olea europaea* le siguen en recurrencia, siendo identificados en dos estructuras de combustión cada uno de ellos. Los 15 taxones restantes fueron hallados únicamente en
una E.C. Esta irregularidad resulta común en el caso de las estructuras de combustión, y denota cierta aleatoriedad en la utilización del combustible, que comentaremos en el epígrafe dedicado a la interpretación de este aspecto.

En lo que concierne a la indeterminación del carbón, un total de 66 fragmentos resultaron indeterminables en este estudio, 29 asociados al carbón disperso, 25 al vertedero, 8 a la E.C. 314, 4 a la E.C. 271 y 2 a la E.C. 499 (tabla 4.61).

<table>
<thead>
<tr>
<th>CAUSAS DE INDETERMINACIÓN – BALNEARIO ROMANO DE ARCHENA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALTERACIONES</td>
</tr>
<tr>
<td>CARBÓN DISPERSO</td>
</tr>
<tr>
<td>ESTRUCTURAS DE COMBUSTIÓN</td>
</tr>
<tr>
<td>---------------------------------</td>
</tr>
<tr>
<td>Vitrificación</td>
</tr>
<tr>
<td>Fragilidad</td>
</tr>
<tr>
<td>Nudo</td>
</tr>
<tr>
<td>Fisuras</td>
</tr>
<tr>
<td>Tamaño insuficiente</td>
</tr>
<tr>
<td>Parte vegetativa no determinable</td>
</tr>
<tr>
<td>TOTAL FRAG. INDETERMINABLES</td>
</tr>
</tbody>
</table>

Tabla 4.61. Causas de indeterminación de los fragmentos.

Figura 4.87. Comparativa entre las diferentes causas de indeterminación del carbón.
En términos globales, la principal causa de indeterminación, tanto en el carbón disperso como en el concentrado, fue la excesiva vitrificación de las células del plano transversal, que se dio en 44 fragmentos, un 64% del total de indeterminables. En segundo lugar, aparecieron 9 fragmentos indeterminables al tratarse de nudos que impedían una óptima observación de los tres planos anatómicos del leño. Esta alteración se presentó fundamentalmente en el caso del vertedero, donde 6 fragmentos fueron indeterminables por esta causa. La siguiente alteración más importante numéricamente fue la excesiva fragilidad del carbón, que afectó a 6 fragmentos. Algunos carbones, un total de 5, todos ellos localizados en el carbón disperso, no presentaban un tamaño suficiente que permitiera la observación de sus caracteres anatómicos diagnósticos. Durante el análisis, un total de 3 fragmentos no pertenecían a una parte vegetativa identificable, y tampoco eran brácteas de piña, sino que se trataba o bien de corteza o bien de la zona medular de la rama, con lo que fue imposible su determinación. Finalmente, un fragmento localizado en las muestras de carbón disperso presentaba una gran cantidad de fisuras, que, en combinación con la vitrificación parcial de sus células, impidieron también su determinación taxonómica (fig. 4.87).

IV.3.3. Interpretación de los resultados

IV.3.3.1. El entorno vegetal del Balneario Romano de Archena

Tomando como referencia los resultados obtenidos a partir del carbón disperso podemos realizar algunas inferencias de tipo paleoambiental, referidas a la vegetación que crecería en esta zona de la Vega del Segura durante el siglo I d.C. Para ello, hemos elaborado un histograma expresado en valores relativos (fig. 4.88) en el que se tratan cualitativa y cuantitativamente estos datos.

Desde un punto de vista cuantitativo, hemos optado por tratar los valores obtenidos para el carbón disperso individualizando y aislando el contenido antracológico del vertedero ya que se trata de un depósito del que se ha podido estudiar un número de carbones (900) en evidente desproporción con el resto de unidades estratigráficas (456 fragmentos en total). Este desequilibrio podría generar ciertas distorsiones estadísticas que dibujaran una imagen sobre o infra dimensionada de algunos taxones, un aspecto que de esta manera puede también ser prevenido y discutido.
Figura 4.88. Histograma de porcentajes del carbón disperso.
Desde una perspectiva cualitativa, se ha realizado una división de los taxones en tres grupos diferenciados. Un primer grupo, recuadrado en color verde, estaría compuesto por las especies propias de ambientes mediterráneos, que poblarían las zonas llanas y las elevaciones que rodeaban a las instalaciones del Balneario Romano. En segundo lugar, en el interior del cuadro anaranjado, se han incluido aquellos taxones que, formando también parte del componente mediterráneo, pudieron ser cultivados en el entorno de este lugar. Finalmente, el tercer grupo, en color azul, haría referencia a las especies que suelen constituir bosques galería, que en este caso jalonarían al curso del río Segura (fig. 4.88). En esta división hemos excluido a la especie *Fagus sylvatica*, ya que su presencia en el Balneario obedece a factores distintos, que serán analizados más adelante.

En el caso de la vegetación mediterránea, la mayoría de los taxones identificados se corresponden con familias, géneros o especies de porte arbustivo, aunque también aparecen algunos elementos arbóreos. Entre estos últimos *Pinus halepensis* es el que adquiere una mayor importancia en el registro, ya que supone un 10% en el caso del carbón disperso, sólo superado por *Pistacia lentiscus* y *Olea europaea*, y casi un 19% en el contenido del vertedero, en donde es el mejor representado. Esta especie tendría su principal desarrollo en las colinas de composición caliza y en los suelos margosos que predominan en el entorno del yacimiento, ocupando preferentemente los puntos con mayor escasez de nutrientes, que serían mayoritarios en la franja alejada de los aportes hídricos del río Segura, en donde ganarían la competencia a otras especies más exigentes como las encinas. Actualmente el pino carrasco es también el elemento arbóreo dominante en elevaciones próximas como la Sierra de Ricote o la de la Pila, aunque, sin embargo, en el entorno más inmediato del Balneario la degradación es tal que las formaciones existentes son fundamentalmente arbustivas o de espartal, de modo que la mayoría de los ejemplares de pino carrasco que pueden encontrarse son producto de trabajos de repoblación de la zona (fig. 4.89).

Por tanto, la lectura del histograma sugiere que en el siglo I d.C. este entorno, a excepción de los márgenes del río, estaría poblado fundamentalmente por un pinar de pino carrasco, cuya formación suele presentarse muy aclarada y acompañarse de un sotobosque muy desarrollado ya que, al tratarse de un árbol de porte bastante raquítico y de ramas abiertas, el sol penetra abundantemente, facilitando el crecimiento de otras especies.

Entre estos elementos arbustivos existentes en las proximidades del Balneario Romano de Archena destacarían por su abundancia los lentiscos y acebuches (*Olea europaea* var. *sylvestris*). Los valores de *Pistacia lentiscus* llegan prácticamente al 30% en el carbón disperso, mientras que el olivo (o acebuche) se acerca al 25% del total, siendo los dos taxones mejor representados porcentualmente. En este sentido, el contenido antracológico del vertedero sitúa a ambos taxones como el 4º y 5º elementos mejor representados, pero sin embargo, proporcionalmente aparece cierta distorsión de manera...
que *Pistacia lentiscus* superaría escasamente el 10% mientras que *Olea europaea* no llegaría ni siquiera a este valor. Se trata de dos especies que denotan una gran termicidad en este ambiente durante el siglo I d.C., ya que ninguna es capaz de resistir en zonas donde se producen continuas heladas durante el invierno. Ambas, además, aparecen en la actualidad recurrentemente como elementos principales del cortejo del pino carrasco en zonas secas y semiáridas, generando densas extensiones de matorral.

![Figura 4.89. Varios ejemplares de *Pinus halepensis* junto al Balneario de Archena (Foto: M.S. García).](image)

Junto al lentisco y el acebuche aparecerían otros arbustos típicamente mediterráneos que tienen una presencia minoritaria en nuestro registro antracológico, y que se desarrollan también en la actualidad en las proximidades del yacimiento. Dentro del grupo de las coníferas destacan los enebros y sabinas (*Juniperus* sp.), cuya presencia aparece en este caso claramente sobre representada en el caso del depósito del vertedero (casi un 15%), mientras que presenta unos valores muy reducidos en el resto del carbón disperso. En convivencia con el pino carrasco pudieron desarrollarse las especies más termófilas, heliófilas y resistentes a la aridez como *Juniperus oxycedrus* o *J. phoenicea*, ambas propias de bosques esclerófilos y de ambientes degradados en los que existe ya un alto grado de deforestación. En este ambiente crecerían también algunas especies de los géneros *Rhamnus* y *Phillyrea*, además de brezos, torviscos y gran cantidad de especies de la familia de las leguminosas, cistáceas o labiadas como *Rosmarinus officinalis*. Entre los taxones más xerófilos, fue utilizado como combustible *Ephedra* sp., que sólo aparece representado por un fragmento de carbón, con lo que podría deducirse que su presencia no sería predominante en el entorno. No obstante, las especies de este género
crecerían en las formaciones de matorral, junto con lentiscos, espinos negros, coscojas, sabinas, etc, fundamentalmente en terrenos calizos, yesosos o de margas, abundantes en la zona, o también bajo condiciones de cierta nitrificación derivada de actividades agroganaderas.

Es habitual que las formaciones de *Pinus halepensis* aparezcan en zonas en donde el encinar está considerado como formación potencial, ocupando los puntos más desnutridos, soleados y con condiciones en general más rigurosas. En el entorno del Balneario Romano de Archena la presencia de la encina/coscoja (*Quercus ilex/coccifera*), según los resultados antracológicos obtenidos, sería bastante baja, pues este taxón supone sólo un 2,85% en el carbón disperso, y menos del 1% en el caso del vertedero, 19 fragmentos únicamente en el total de las muestras analizadas. Es probable que los ejemplares más disponibles y abundantes en el entorno inmediato del balneario fuesen coscojas que crecieran asociadas a las formaciones de pinar de pino carrasco dominantes en la zona, como sucede actualmente en bosques de zonas secas y semiáridas, aunque también es probable que se tratara de encinas o carrascas localizadas en zonas algo más umbrosas, como ocurre actualmente en los escasos reductos que se encuentran en las Sierras de Ricote y la Pila, en donde existe un predominio del pinar de pino carrasco, y sólo en zonas de menor rigor hídrico y climático aparecen manchas de carrascal.

No obstante, se ha podido registrar la existencia todavía de elementos hoy muy raros en este entorno, como el boj (*Buxus* sp.), el madroño (*Arbutus unedo*) o la cornicabra (*Pistacia terebinthus*), que pudieron acompañar a formaciones de *Quercus* perennifolios, y que podrían haberse mantenido tras la degradación del encinar o carrascal, favorecidas probablemente por cierta bonanza en las tasas de humedad debido al microclima ribereño. En lo que concierne a *Buxus* sp., parece probable dado el resto del cortejo florístico identificado, que se trataría de la especie más termófila del género, *Buxus balearica*, aunque no es descartable que pudieran haberse recolectado ejemplares de *Buxus sempervirens* en zonas de gran umbria de sierras elevadas, si bien es cierto que esta especie suele asociarse más a formaciones de pinos de alta montaña o de roble, elementos que no se encontraron, según nuestros resultados, en el entorno inmediato del Balneario Romano de Archena, y no tanto de pinos mediterráneos o encinas. Por su parte, tanto *Pistacia terebinthus* como *Arbutus unedo* pueden encontrarse en la actualidad muy restringidos en las cumbres de la Sierra de la Pila en puntos de las sierras cercanas con menos exigencias térmicas y de xericidad, acompañando a *Pinus halepensis*.

Las condiciones climáticas, edáficas y de humedad favorecieron muy probablemente el desarrollo de ciertos cultivos en las zonas adyacentes al río. Gracias a las primeras observaciones sobre los restos carpológicos obtenidos en la flotación tenemos constancia de que cultivos como los cereales o la vid estuvieron presentes en este lugar.
en el siglo I d.C. Por otro lado, los datos antracológicos revelan la presencia como combustible de algunos taxones que, como se ha apuntado anteriormente, pudieron crecer de forma natural en el entorno del balneario, o bien ser cultivados. Esta diferencia, sin embargo, es un extremo que la antracología no nos permite confirmar, dado que existe una gran similitud anatómica entre la madera de las variedades silvestres y domesticadas en la mayoría de las especies. En el Balneario romano de Archena han sido identificados, concretamente, los siguientes taxones: *Ficus carica* (higuera), *Prunus* sp. (pruno), *Prunus cf. amygdalus* (almendro), *Punica granatum* (granado) y *Olea europaea* (olivo).

Entre todos estos taxones, parece que el cultivo más importante que se desarrolló en el entorno del Balneario Romano fue el del olivo, dado que presenta valores muy elevados en el conjunto del carbón disperso. Algunos autores apuntan a que la domesticación del olivo en el sur de la Península Ibérica se produce precisamente a partir de época romana, ya que anteriormente la aparición de macrorrestos vegetales está constreñida al piso termomediterráneo, de donde esta especie es propia, y sólo a partir de esta cronología el olivo empieza a documentarse de forma masiva en yacimientos localizados en el piso mesomediterráneo (Rodríguez-Ariza y Montes Moya 2005). Algunas aportaciones recientes, sin embargo, cuestionan que este cultivo se inicié en momentos tan tardíos, y apuntan a la posibilidad de que la domesticación de esta especie en las zonas litorales del sureste peninsular pudiera haberse producido desde las últimas etapas del Neolítico e inicios del Calcolítico, aunque posiblemente no centrada en la explotación directa de sus frutos (Rovira 2007). El objetivo de esta domesticación en el caso del Balneario Romano de Archena pudo ser el procesado de las aceitunas para la elaboración de derivados como el aceite, como probaría la aparición en el área de servicios de una base de prensado cuya funcionalidad parece que pudo ser la de almazara. Las primeras estructuras de almazara se atestiguan en la Península Ibérica hacia el siglo III a.C. en los yacimientos valencianos del Castellet de Bernabé y La Seña (Pérez Jordá et al. 1999). En época romana, sin embargo este tipo de estructuras son ya abundantes en el ámbito peninsular (González Blanco 1993) y en otros puntos del área del Mediterráneo (Leveau et al. 1991).

El resto de los taxones tienen una representación muy débil en el total del registro antracológico. *Punica granatum* es la especie más representada después del olivo, aunque no llega en ningún caso al 2% del total. Esta especie no es autóctona en la Península Ibérica, pero se tienen testimonios de su presencia desde época ibérica gracias a numerosas decoraciones sobre cerámicas, como las halladas en Coimbra del Barranco Ancho (García Cano y Page del Pozo 2005). Se ha planteado, no obstante, la posibilidad de que algunas de estas representaciones no se tratara en realidad de granadas sino de cápsulas de adormidera, cuya morfología es semejante (Izquierdo 1997, Mata Parreño et al. 2007). En época romana contamos con la presencia de pinturas como las de la Quintilla en Lorca, en cuyas paredes fue representado este fruto (fig. 4.90) (García...
En cuanto a la higuera (*Ficus carica*), pudo presentarse de manera natural en zonas algo húmedas cercanas al curso del río Segura, aunque se trata de una especie largamente cultivada en el Sureste de la Península Ibérica. Los últimos estudios arqueobotánicos (Rovira 2007) defienden que esta domesticación pudo originarse en el Calcolítico en esta zona, según los datos carpológicos de yacimientos como Cueva Sagrada (Rivera Núñez y Obón 1987a), Las Pilas/Huerta Seca (Rovira 2007) o el Cabezo del Plomo (Precioso Arévalo 2004), aunque los restos documentados comienzan a ser más abundantes sobre todo a partir de la Edad del Bronce, en yacimientos como Fuente Álamo (Stika 2000) o la Punta de los Gavilanes (este trabajo).

Finalmente, algunas especies de *Prunus*, como *Prunus* cf. *amygdalus* pudieron cultivarse también en este entorno. Esta especie aparece ya documentada en iconografía ibérica en El Cigarralejo de Mula, y han sido halladas semillas en yacimientos como el propio Cigarralejo, El Castellet de Bernabé (Llíria), la Bastida de les Alcusses (Moixent), El Amarejo (Bonete), El Cabezo de Alcalá (Azaila) (www.uv.es/floraiberica). También ha sido documentado como combustible desde la Prehistoria en el yacimiento Neolítico de la Cova Ampla (Badal 1990) y más tardíamente en yacimientos protohistóricos de la cuenca del Guadiana desde el siglo V.
Recursos forestales en un medio semiárido.
Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

a.C., como La Mata o el yacimiento romano republicano de La Magacela (Grau et al. 1998, 2004a, Duque 2004a).

Por otra parte, los elementos de ripisilva, Monocotyledoneae (monocotiledónea), cf. Phragmites australis (carrizo), Fraxinus sp. (fresno), Nerium oleander (adelfa), Populus/Salix sp. (álamo, chopo/sauce), Tamarix sp. (taray) y cf. Ulmus sp. (olmo), estarían ligados al cauce del río Segura, conformando un bosque galería bien estructurado, cuya densidad aseguraría a esta zona un elevado grado de humedad ambiental (evapotranspiración). Entre ellos podría hacerse una doble diferenciación. En primer lugar es posible agrupar a aquellas especies con ciertas adaptaciones xeromórficas que viven más habitualmente en cauces de régimen irregular (ramblas) o en ríos con cierta salinidad de zonas secas o semiáridas, como Tamarix sp. y Nerium oleander, que suelen acompañarse de monocotiledóneas como los carrizos. Por otro lado, se han identificado otros taxones no esclerófilos, planocadufolios que son más propios de bosques de ribera bien desarrollados en cursos de agua permanente: Fraxinus sp., Populus/Salix sp. y cf. Ulmus sp.

Los elementos predominantes en el carbón disperso son Monocotyledoneae (+ cf. Phragmites australis) y Tamarix sp., que, sin embargo, poseen valores poco elevados en el vertedero, en cuyo registro se observa una sobre representación de Fraxinus sp. y Populus/Salix sp.

Las formaciones de taray son en la actualidad las principales conformadoras de las galerías termomediterráneas, ocupando hasta 1469 hectáreas en la Región de Murcia (Ballester Sabater 2003b). Parece que en el siglo I d.C. los ejemplares de este género no fueron tan predominantes, al compartir protagonismo con otras especies hoy casi inexistentes en la zona, como los fresnos, que denotarían una xericidad algo menor que la actual en este punto del cauce del Segura. Junto con Tamarix sp. debieron crecer otras especies como la adelfa, que además de ser un elemento fundamental en la conformación de las ramblas del Sureste peninsular, puede crecer también asociada a cursos de agua permanentes, siempre y cuando el clima sea lo suficientemente cálido (Costa et al. 2001).

Sin embargo, los datos que hemos obtenido nos permiten afirmar que en el río Segura, a su paso por el Balneario Romano de Archena, pudo existir todavía en el siglo I d.C. un bosque galería semejante al que podemos encontrar actualmente en puntos del recorrido del cauce como Cañaverosa, Almadenes o Calasparra. Se trataría de un bosque galería con una zonación o catena claramente delimitada (fig. 4.91).

En la franja más próxima al cauce aparecerían sobre todo monocotiledóneas como los carrizos, ya que este punto tan próximo al caudal no es favorable para la instalación de árboles de gran tamaño. Por ello también pudieron desarrollarse en esta primera franja
ciertas especies arbustivas de sauce (*Salix* sp.), que suelen presentarse en relación con el género *Populus* fundamentalmente cuando los cauces no se encuentran totalmente estabilizados (Costa et al. 2001).

Figura 4.91. Hipótesis de catena de zonación transversal de las especies de bosque galería en el Balneario Romano de Archena durante el siglo I d.C. (FA: *Fraxinus* sp.; MM: Matorral mediterráneo; NO: *Nerium oleander*; P: *Populus* sp.; PH: *Pinus halepensis*; Ph: *Phragmites australis*; S: *Salix* sp.; T: *Tamarix* sp.; UM: *Ulmus* sp.).

Un poco más alejado, aunque también formando parte del bosque galería con un nivel freático elevado, y siendo objeto de numerosos episodios de inundación, se encontrarían otros taxones identificados, como *Populus* o *Fraxinus*. Ambos, como se ha comentado con anterioridad, aparecen sobre representados en el vertedero, mientras que sus valores son muy pobres en el carbón disperso. En la Vega Media del Segura la alameda (*Populus alba*) está considerada como el bosque de ribera autóctono en la zona (Ríos Ruiz y Alcaraz Ariza 1996), aunque lo cierto es que presenta en la actualidad un elevado grado de destrucción, sobreviviendo en este entorno de los Baños de Archena, junto con otros parajes cercanos como El Menjú, Azud de Ojós, La Algaida-Los Torraos, Llano de Molina y El Malecón (Ballester Sabater 2003b). Es más probable que la especie predominante en época romana fuese también *Populus alba*, ya que es una especie termófila, que soporta mucho mejor que el chopo (*Populus nigra*) las altas temperaturas y los suelos arcillosos (Costa et al. 2001). No obstante, es probable que ambas especies coexistieran en este mismo ámbito, aunque con una predominancia del álamo frente al chopo, que seguramente estaría representado por ejemplares aislados. La constatación de la presencia de *Fraxinus* sp. en este punto del cauce del río Segura supone una gran diferencia con respecto a la actualidad, ya que las especies de este género no se presentan ya en este entorno. Posiblemente se trataría en este caso de *Fraxinus angustifolia*, la especie más termófila y abundante en el Este y Sur de la
Península Ibérica, aunque no es descartable que aparecieran individuos de *Fraxinus ornus*, aunque la probabilidad es menor ya que no soporta bien la excesiva sequedad estival.

Finalmente, el único fragmento hallado de *Ulmus* sp. indicaría que en las zonas más alejadas del río se desarrollarían todavía algunos ejemplares de este género, ya que las especies de *Ulmus* son menos exigentes en humedad freática que los álamos, por lo que suelen ocupar las zonas más alejadas de la zonación riparia, donde raramente llega a inundarse. En esta franja se cría junto con zarzas (*Rubus* sp.), rosales silvestres (*Rosa canina*) o juncos (*Juncus* sp.), llegando también a acompañarse de elementos climatófilos del entorno, como el pino carrasco o la coscoja.

- **Madera de haya (*Fagus sylvatica* L.) en el Balneario Romano de Archena**

Además de los taxones analizados en el apartado anterior, el análisis antracológico del Balneario Romano de Archena ha permitido la identificación en las instalaciones excavadas de varios fragmentos de haya (*Fagus sylvatica*). Esta especie se cría en general en ambientes suaves, ya que no soporta bien las heladas ni las etapas de sequía. También prefiere climas húmedos, con un volumen de precipitaciones que para el caso de la Península Ibérica se sitúa en unos 900-1000 mm. anuales. Se trata de una especie capaz de crecer en todo tipo de sustratos, aunque prefiere los calizos, pero, sin embargo, no soporta bien que éstos estén demasiado húmedos, ni periodos de encharcamiento, así como la excesiva sequedad de los mismos (López González 2001). La sensibilidad de esta especie al clima es muy elevada, de manera que incluso ciertas estimaciones acerca de la distribución holocena de los hayedos parten de la hipótesis de un equilibrio de la especie con el clima, por lo que basan sus conclusiones en las características climáticas estimadas para un determinado momento (fig. 4.92) (Giesecke et al. 2007, Leroy y Arpe 2007). En la Península Ibérica, este equilibrio se mantiene en la actualidad hasta los hayedos de Ayllón, en la zona de Madrid y de los Puertos de Becoito, entre Castellón y Tarragona (fig. 4.92) como límite meridional de la especie (Costa et al. 2001). En el caso que nos ocupa, los elementos del cortejo vegetal identificado que acompañan a *Fagus sylvatica* son principalmente taxones termófilos y xerófilos, por lo que de ellos se deducen unas condiciones climáticas en clara discordancia con el posible desarrollo natural de esta especie en la zona. Además, algunos estudios paleoambientales referidos a cronologías contemporáneas en el Sureste peninsular (Pantaleón-Cano et al. 2003, Grau 1990a, Fuentes et al. 2005) confirman también que no existió esta posibilidad. Por estos motivos ambientales, la presencia de *Fagus sylvatica* en el ecosistema que rodeaba al Balneario Romano de Archena en el siglo I d.C. es descartable con toda certeza.
Figura 4.92. Distribución actual de *Fagus sylvatica* en Europa y la Península Ibérica. Abajo, simulación de su distribución hace 6000 años basada en el modelo de parámetros climáticos GEN2 AGCM, según Giesecke et al. (2007), modificado.

Para interpretar la presencia de haya en este contexto hay que tener en cuenta un aspecto fundamental: el hecho de que todos los fragmentos aparecieron asociados al gran vertedero documentado en la zona norte del yacimiento, junto a multitud de clavos y fragmentos de herrajes. Además, es conocido que esta madera fue muy utilizada desde la antigüedad, sobre todo en la Península Itálica, para la elaboración de muebles. Teofrasto (*Hist. Plant*. III, X, 1) afirma que “la que crecía en la montaña también es blanca y se empleará en muchos menesteres: para fabricar carros, camas, sillas, mesas y barcos”. El poeta Marcial (II, 43, 9-10) considera al haya como una madera pobre (“Tu Libycos Indis suspendis dentibus orbis: fulcitur testa fagina mensa mihi”) y Plinio y Columela afirman que es buena para hacer cajas y barcas (López González 2001). Sin embargo, su uso no era recomendable como material de construcción, ya que Vitrubio (*De Architectura*, II, IX, 43) afirma que “El mesto, el alcornoque y la haya, que tienen corta porción de agua, fuego y tierra, pero excesivo ayre, recibiendo toda humedad en sus abiertos poros, se pudren brevemente”. Además de las fuentes, son conocidas
algunas evidencias arqueológicas que dan cuenta de este uso, como en Pompeya, en la Casa de Fabro, donde se halló la pata de un *lectus* de *Fagus* que se ha interpretado como madera local (Mols 1999). Por su parte, Gale y Cutler (2000) realizan una compilación de objetos arqueológicos de *Fagus sylvatica*, de diferentes cronologías, en toda Europa. Existen, según estos autores, evidencias del uso del haya en época romana como material de construcción, en figuras de culto, imágenes y esculturas, y por último, como parte del mobiliario doméstico, sobre todo en la elaboración de camas, mesas y sillas (Aldred 1957, Meiggs 1982, citados en Gale y Cutler 2000). Todos estos datos sugieren que es muy probable que los fragmentos analizados se correspondieran con algún objeto o mueble traído de alguna zona lejana, utilizado en el propio balneario, y finalmente quemado y desechado en este vertedero.

¿Cuál sería la procedencia de este objeto? Este es un aspecto que no podemos concretar a través del material carbonizado, aunque si conocemos, según los datos arqueológicos, la vitalidad del balneario como centro receptor de gentes de lugares como *Carthago Nova*, *Consabura* (*Consuegra*), *Valentia* (González Fernández *et al.*, en prensa) y posiblemente *Olissipo* (*Lisboa*), *Nemausus* (*Nimes*) y Roma (González Fernández y Matilla Séiquer 2003). Las probabilidades, por tanto, son varias, e incluyen en el momento estudiado casi cualquier zona de Europa. Sin embargo, teniendo en cuenta aspectos como la proximidad o las relaciones socio-culturales, podríamos considerar como prioritarias dos posibilidades: la procedencia de alguna zona peninsular situada más al norte, o bien un transporte marítimo o terrestre desde algún punto del mediterráneo, como el sur de la Galia, la Península Itálica o Sicilia.

El debate sobre la distribución europea y peninsular de esta especie a lo largo de todo el Holoceno se basa en dos teorías contrapuestas:

En primer lugar, existe un modelo clásico migratorio (Huntley y Birks 1983) que sostiene que tras una extinción pre-holocena de la especie, se produce una recolonización desde Europa oriental al resto del continente. Este proceso no tendría lugar en la Península Ibérica hasta momentos bastante tardíos del Holoceno (c. 3000 BP), después de zonas como la mayor parte de Italia o el sur de Francia (fig. 4.93).

A este respecto, el reciente estudio de López Merino et al. (2008) basado en datos palinológicos de la zona noroeste de la Península Ibérica, y en particular de las sierras de Neila, Urbión, Cebollera y La Demanda registra bien cuál pudo ser esta evolución de las poblaciones de haya en el norte peninsular. Los autores detectan la primera aparición de *Fagus* en esta zona hacia el 20.526-20.000 cal. BP (finales del Würm) en el registro de Laguna Grande, en la Sierra de Neila (Ruiz Zapata et al. 2002, citado en López Merino et al. 2008). A inicios del Holoceno (c. 9000-7700 cal. BP) la presencia es todavía muy dispersa, comenzando a aparecer con abundancia en torno al 8000-5600
Recursos forestales en un medio semiárido.
Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

...cal. BP en la Sierra de la Cebollera, y sobre todo a partir de 4500 cal. BP en la mayoría de secuencias, teniendo su máxima representación hacia 3000-2000 cal. BP. La progresiva reducción del haya se observa hacia 1400-1250 cal. BP producida, según los autores, como consecuencia de una intensa acción antrópica que pudo impedir el desarrollo de los bosques, como parece que sucedió también en otras zonas de Europa (Van der Knaap et al. 2005). No obstante, proponen que ciertas actividades humanas más moderadas como el pastoreo en algunas regiones pudieron favorecer, con la apertura del bosque, la instalación y mayor desarrollo de los hayedos. Este factor se ha constatado también en el centro de Europa a inicios del Holoceno, cuando la actividad antrópica no era lo suficientemente intensa como para impedir el crecimiento de los hayedos, aunque se trató de un elemento menor frente a la influencia de los cambios climáticos (Tinner y Lotter 2006).

En cualquier caso, en la cronología que nos ocupa en este estudio (c. 2000 BP) existe un consenso generalizado en que se da la máxima expansión de esta especie en zonas de potencial procedencia del haya identificada en el Balneario de Archena. Las poblaciones de esta especie sobrepasaron la línea marcada por los Pirineos para llegar con abundancia hasta el área de Girona (Burjachs 1991) y hacia el norte hasta muchos puntos cercanos a la costa del sur de Francia (Magri et al. 2006). En esta cronología, además la Península Itálica presenta formaciones de haya desde el norte hasta el Sur, e incluso se han registrado en zonas de Mallorca (Alcúdia) y Sicilia (Pergusa) (Pérez-Obiol y Sadori 2007).

Pese a todo ello, no conocemos en el Sureste de la Península Ibérica ningún otro objeto elaborado con Fagus sylvatica quemado en época romana. Sólo existe el caso similar, aunque mucho más tardío, del yacimiento medieval del Castell d’Ambra (Alicante), en donde se apunta también la presencia de algún objeto quemado, elaborado en haya (De Haro Pozo 2002a).

IV.3.3.2. Uso del combustible

El estudio individualizado del contenido carbonoso de las estructuras de combustión ofrece, en el caso de la zona de servicios del Balneario Romano de Archena, ciertos datos relativos al empleo de los recursos leñosos disponibles por parte de sus habitantes. El contenido de cada una de ellas aparece expresado en valores relativos en la figura 4.94.
Figura 4.94. Histograma en valores relativos de las estructuras de combustión.
Precisamente en este ámbito del balneario de Archena, dada la gran actividad que registró en época romana, debió de utilizarse constantemente el fuego para la elaboración de comida o como fuente de calefacción. Sin embargo, la gran exposición a las crecidas del río Segura, y las continuas remodelaciones estructurales del complejo han hecho que los datos que nos han llegado sobre su contenido combustible sean bastante pobres, ya que la mayoría de los hogares se encontraron muy arrasados.

A través de estos resultados habría que analizar cuáles pudieron ser los criterios fundamentales tenidos en cuenta para la recolección de madera para las diferentes estructuras de combustión. En primer lugar, si existe una relación proporcional entre el combustible hallado y la disponibilidad de su leña en el entorno; por otra parte, si puede constatarse alguna pauta de selección de acuerdo con la funcionalidad de cada hogar y, en tercer lugar, si los factores determinantes estuvieron en última instancia relacionados con características combustibles de la madera.

En cuanto al primero de los aspectos, relacionado con la disponibilidad de las diferentes especies en el entorno inmediato a las instalaciones, habría que tener en cuenta que existieron dos ecosistemas diferenciados dentro del área de captación del balneario. Por un lado, como se ha comentado en el epígrafe anterior, a escasos metros del enclave, en los cerros cercanos, se desarrollarían formaciones de matorral mediterráneo, acompañando al pino carrasco como principal elemento arbóreo. En sentido opuesto, pero aproximadamente a la misma distancia, se encontraría el curso del río, jalón por espesas formaciones de bosque de ribera. Por tanto, se trataría de dos ecosistemas para la explotación en los cuales la inversión de tiempo y esfuerzo debió de ser similar (sin tener en cuenta otros aspectos relacionados como la producción de madera muerta de cada especie, que desconocemos). Sin embargo, tanto en el carbón disperso recuperado, como en el caso de las estructuras de combustión, existe un fuerte desequilibrio en cuanto a la preferencia de estos dos ecosistemas, ya que la mayoría del combustible identificado se corresponde con familias, géneros o especies de tipo mediterráneo, y en mucha menor medida con las integrantes del bosque galería (fig. 4.95). La vegetación climatófila estaría representada por hasta 16 taxones, de entre los cuales los más utilizados como combustible fueron *Pistacia lentiscus*, *Olea europaea* y *Erica* sp. En este sentido, es llamativo el papel tan pobre jugado por el pino en estas estructuras de combustión, que no se corresponde con su importancia en el combustible hallado de manera dispersa. Por su parte, los taxones hidrófilos, Monocotyledoneae, *Fraxinus* sp., *Populus/Salix* sp. y *Tamarix* sp. tienen una representación bastante pobre, destacando únicamente el taray como combustible exclusivo en una de las estructuras.

En definitiva, los factores de disponibilidad y abundancia fueron, en el caso de las actividades domésticas desarrolladas en el Balneario Romano de Archena, elementos condicionantes en la recolección de leña, aunque posiblemente no decisivos, ya que no parece existir una relación proporcional entre la hipotética abundancia en el ambiente y
el uso de ambos tipos de madera. Es probable que los criterios de selección del combustible no estuvieran condicionados por este aspecto, sino posiblemente por la preferencia o no entre las diferentes especies, algo que puede explicarse en condiciones de una amplia oferta de madera.

En segundo lugar, acerca de si los factores determinantes en la elección del combustible fueron las características funcionales de las estructuras de combustión, se trata de una cuestión sobre la cual es difícil sacar conclusiones debido a que el horno no ha aportado datos suficientes para establecer una comparación con las estructuras de combustión de tipo doméstico, ni tenemos referencias de este aspecto en otros hornos similares. No obstante, el hecho de que el taxón mayoritario sea distinto en casi todas las estructuras, a excepción de *Pistacia lentiscus* que es el más utilizado en dos de los fuegos domésticos, parece descartar que la funcionalidad de las mismas condicionara la selección de una madera específica, aunque es cierto que el contenido del horno marca una diferencia taxonómica con respecto al resto en tanto en cuanto el brezo (*Erica* sp.) se utiliza únicamente en esta estructura, y no en las de carácter doméstico, un hecho que tampoco es posible discutir dada la falta de elementos de comparación con respecto al papel del brezo en la actividad productiva realizada por este tipo de hornos.

Finalmente, en lo que se refiere a una posible selección de acuerdo con las características combustibles de la madera, sabemos que no existió un proceso de
selección dirigido hacia una especie en concreto, dada la gran variabilidad taxonómica documentada. En cualquier caso, es posible valorar la calidad de estos taxones como combustible y si las especies más representadas poseen mejores cualidades que el resto del cortejo identificado.

Los hogares documentados en el yacimiento fueron alimentados sobre todo de *Pistacia lentiscus*, *Olea europaea*, *Erica* sp. y *Tamarix* sp., todos ellos abundantes en el ambiente. El lentisco y el olivo se caracterizan fundamentalmente por tener un poder calorífico muy elevado, aunque su grado de inflamabilidad es medio. El fuego producido por *Pistacia lentiscus*, debido a su gran dureza, suele ser de larga duración, una de las características más apreciadas en el caso de los fuegos domésticos. En cuanto al brezo, también posee un poder calorífico muy elevado y una gran inflamabilidad (Elvira y Hernando 1989). Finalmente, los tarajes están también considerados como buenos combustibles (López González 2001).

Entre los taxones menos utilizados, sin embargo, hay combustibles de buena y de mala calidad. Entre los primeros algunos podrían considerarse como excelentes combustibles, como por ejemplo las especies del género *Quercus*, que debido a su gran densidad proporcionan fuegos muy duraderos, o las labiadas como *Rosmarinus officinalis*, que gracias a sus aceites esenciales son capaces de inflamarse con mucha facilidad (Guijarro Guzmán 2003). *Pinus halepensis*, *Juniperus* sp., *Ephedra* sp., Monocotyledoneae, *Arbutus unedo*, Cistaceae, o *Rhamnus/Phillyrea* sp. pueden ser considerados también como buenos combustibles. Sin embargo *Fraxinus* sp. y *Prunus* sp. tienen un poder calorífico bastante bajo, y la madera de *Populus/Salix* sp. es también de mala calidad como combustible, debido a que es muy blanda, ligera y de textura fina y uniforme, por lo que se inflama con mucha facilidad, pero mantiene las llamas durante muy poco tiempo. Por lo tanto, tampoco existe una relación directa entre la teórica calidad de la madera de cada taxón y su mayor o menor uso como combustible en las estructuras de combustión estudiadas.

El comportamiento combustible de la madera utilizada en Archena se vio alterado por un factor recurrente que hemos podido documentar en gran cantidad de fragmentos: los ataques fúngicos que han sido hallados tras la observación de varios carbones mediante Microscopio Electrónico de Barrido (fig. 3.4). La presencia de estos hongos tuvo que producirse anteriormente a su combustión bien durante la vida del árbol, o tras su muerte (Blanchette 2000, 2003). Su expansión masiva en los árboles de este lugar pudo estar favorecida por la humedad ambiental generada por la presencia del Río Segura, un factor cuya importancia en la presencia de hongos ha podido ser comprobado en algunos estudios antracológicos (Carrión Marco y Badal 2004). También pudo producirse una invasión de hongos por contagio de unos a otros en el caso de acumulaciones de troncos infectados y sanos en un mismo lugar. La madera alterada por hongos modifica su combustibilidad en tanto en cuanto el ataque fúngico produce un
adelgazamiento de las paredes y la pérdida de consistencia, por lo que gana en inflamabilidad, reduciendo, no obstante, otras condiciones del fuego como su duración, al consumirse con mucha mayor rapidez.

En definitiva, según nuestros datos, no podemos concluir que exista un patrón de gestión de los recursos leñosos focalizado en ninguna especie, ni en la funcionalidad de las estructuras. La obtención de recursos debió de ser completamente aleatoria dentro de los recursos disponibles más abundantes en el entorno.
IV.4. Resultados antracológicos del Teatro Romano de Cartagena

IV.4.1. Presentación del yacimiento

El hallazgo de los primeros elementos arquitectónicos pertenecientes al Teatro de *Carthago Nova* (fig. 4.96) no se produjo hasta el 6 de febrero de 1990, a partir de las intervenciones que se estaban llevando a cabo en la Plaza de la Condesa de Peralta con el objetivo de estudiar el urbanismo de esta parte de la ciudad romana, en donde se esperaba la existencia de una gran concentración de estructuras. En este solar los restos se encontraban ocultos entre construcciones de cronología tardorromana y medieval (Ramallo Asensio 2007).

![Imagen del Teatro Romano de Cartagena antes de su restauración](image)

Figura 4.96. Imagen del Teatro Romano de Cartagena antes de su restauración (Ramallo Asensio 2007).

El proyecto de investigación pasó entonces a ser dirigido por el Área de Arqueología de la Universidad de Murcia, a cargo del Dr. Sebastián Ramallo Asensio. En este marco, los primeros objetivos planteados estuvieron orientados a delimitar el área total ocupada por el monumento, para lo cual se estableció una estrategia de muestreo mediante la realización de once sondeos mecánicos repartidos por todo el solar (fig. 4.97). Gracias a estos sondeos fue posible conocer en primer lugar las dimensiones aproximadas del graderío, su perfil y sistema constructivo; en segundo lugar se delimitó también la longitud de la plataforma de la escena, y el gran desnivel existente entre ésta y las gradas; en tercer término se confirmó la presencia de una *porticus post scaenam* en la
zona trasera de la escena, desechando la idea de que los restos podrían corresponderse con la muralla bizantina; finalmente se definió una primera sección de la cavea gracias a la cual fue posible observar con claridad que ésta se encontraba en su mayor parte apoyada sobre la roca base (Ramallo Asensio 2007).

![Figura 4.97. Sondeos realizados en 1990 en relación con la planta del teatro](modificado de Ramallo Asensio 2007).

El edificio formó parte del programa monumental desarrollado en la ciudad a partir de la obtención del estatuto colonial hacia mediados del siglo I a.C. Para su construcción
fue necesaria la eliminación de las estructuras republicanas previas, cuyos restos se han conservado en las zonas periféricas del teatro, como los alrededores de la cavea y bajo los muros del porticus post scaenam (Ramallo Asensio 2007).

La articulación del graderío (cavea) estuvo determinada por la ubicación elevada del edificio, de manera que su parte central se encontraba excavada en la roca base, mientras que las zonas laterales aparecerían apoyadas en galerías abovedadas elaboradas en mampostería. En sentido vertical la grada estaría dividida en ima, media y summa cavea. Los accesos a las mismas se realizarían mediante los pasillos laterales (aditus) en el caso de la grada inferior, mediante dos vomitoria que desembocaban en el espacio comprendido entre la media y la summa cavea, y finalmente es posible que existieran también dos vanos superiores que permitieran el acceso a las gradas más elevadas (Ramallo Asensio 2007).

En la zona inferior se desarrollaba la orchestra, de forma semicircular, a la que también se accedía a través de los pasillos laterales o aditus. Esta zona estaría bordeada por tres gradas (proedria) decoradas con placas de mármol de Luni y separadas del resto del graderio. Mediante dos escaleras era posible acceder al pulpium o proscaenium, que presentaba una longitud de 43,60 m y estaba realizada mediante madera de Pinus halepensis (Grau, inédito, c). En los flancos del escenario se desarrollaban las estancias dedicadas al servicio, que a su vez comunicaban con el graderio, sirviendo como cierre del edificio. Se trata, por un lado, de los parascaenia, que comunicaban con el escenario a través de dos puertas principales flanqueadas por otras de menor tamaño y por otro de las basilicae, espacios rectangulares que cerraban el edificio por la zona lateral (Ramallo Asensio 2007).

La fachada escénica o scaenae frons se levantaba tras el proscaenium con un alzado de 14,60 m y estaba constituida por tres exedras de tendencia semicircular, de las cuales la central era la de mayor tamaño. Tras el escenario se desarrollaba una de las partes más características de este teatro, el porticus post scaenam, una zona ajardinada recomendada por Vitrubio cuya funcionalidad era la de resguardar al público en casos de lluvia. El porticus post scaenam del Teatro de Carthago Nova estaba conformado en como una doble nave que circundaba el jardín por tres de sus lados, mientras que el lado situado junto al escenario estaba ocupado por una cripta a la cual no tenía acceso el público (Ramallo Asensio 2007).

En términos globales la excavación sistemática del Teatro ha permitido la identificación de diecinueve fases que se corresponden a su vez con la evolución histórica de la ciudad:

1. **Prebárquida**: Aparecieron algunos materiales de los siglos IV y III a.C. en la zona perimetral de la Porticus post scaenam.
2. **Bárquida**: En esta misma zona se hallaron restos constructivos de esta cronología.
3. **Republicana**: Los restos correspondientes a esta fase son fundamentalmente pavimentos de *opus signinum* decorados con teselas blancas que formarían parte de residencias de carácter privado de finales del siglo II a.C. e inicios del siglo I a.C.
4. **Protoaugustea**: En estos momentos el área donde se encontraría posteriormente el teatro estaría ocupada por viviendas de cierto lujo.
5. **Augustea**: Hacia finales del siglo I a.C. comienza la construcción del edificio.
6. **Altoimperial**: Fases de uso y amortización parcial como edificio teatral en el siglo II d.C.
7. **Bajoimperial**: Correspondiente a esta fase se ha documentado un pavimento de argamasa blanco sobre la *orchestra*.
8. **Tardorromana**: El teatro se transforma radicalmente en un edificio de carácter comercial a través de quince compartimentos situados sobre el *proscaenium*.
9. **Tardoantigua (siglo VI)**: Una vez abandonado el edificio comercial, se superponen varias habitaciones de carácter modesto.
10. **Época Bizantina**: A mediados del siglo VI se construye un barrio urbano, de vocación claramente comercial.
11. **Altomedieval (ss. VIII-IX)**: Posible período de abandono.
12. **Islámica (ss. X-XI)**: Se construyen viviendas de carácter doméstico.
13. **Islámica (ss. XII-XIII)**: Este espacio formaría parte del barrio que ejercería las labores de puerto de la ciudad de Murcia, además de acoger parte de un cementerio islámico.
14. **Bajomedieval**: Se han documentado construcciones de época medieval cristiana.
15. **Época Moderna (s. XVI)**
16. **Época Moderna (s. XVII)**
17. **Época Moderna (s. XVIII)**
18. **Época Contemporánea (s. XIX)**
19. **Época Contemporánea (s. XX)**

IV.4.2. El estudio antracológico de los materiales constructivos del Teatro Romano de Cartagena

IV.4.2.1. Las muestras antracológicas

Las muestras estudiadas en este trabajo proceden de los niveles de incendio y destrucción del Teatro, localizados y excavados en el *parascaenium* occidental del mismo y en la zona de la cripta, situada tras el escenario. Además, contamos con los análisis inéditos realizados por la Dra. Elena Grau sobre maderas carbonizadas localizadas en el *proscaenium* del edificio (fig. 4.98). La cronología de todos los materiales, por lo tanto está relacionada con la construcción del edificio en los últimos
años del siglo I a.C. a pesar de haber sido hallados en asociación con las fases de destrucción por incendio acaecidas en torno al siglo II d.C.

Figura 4.98. Localización de las muestras estudiadas sobre la restitución hipotética de la planta del Teatro Romano de Cartagena (modificado de Ramallo Asensio y Ruiz Valderas 2006).
Las unidades estratigráficas estudiadas fueron las siguientes:

UE 5686 (Fase 6-7): Nivel de ocupación del teatro en el *parascaenium* occidental. Aparecieron tres concentraciones de carbones que parecen corresponder a fragmentos de vigas quemadas. El mejor conservado es el identificado con el nº1, que sin embargo no pudo ser consolidado ya que se encontraba muy alterado al estar cortado por una atarjea de época contemporánea.
- Teatro Romano-5686-1: Fragmento de viga, muy mal conservada.
- Teatro Romano-5686-2: Concentración de carbones.
- Teatro Romano-5686-1/2: Concentración de carbones en las proximidades de los identificados con los números 1 y 2.
- Teatro Romano-5686-3: Concentración de carbones.

UE 5688 (Fase 6-7): Estrato relacionado con un derrumbe de adobes sobre el suelo del *parascaenium* Occidental, asociado también al proceso de derrumbe del Teatro.
- Teatro Romano-5688: Tres astillas de madera quemada (fig. 4.99).

![Figura 4.99. Astillas carbonizadas de la UE 5688 (Foto: M. S. García).](image)

UE 5692 (Fase 6-7): Estrato relacionado con el proceso de incendio del *parascaenium* occidental. Cubre al suelo de la misma.
- Teatro Romano-5692: Fragmentos de carbón.
UE 5706 (Fase 6-7): Nivel de incendio del teatro, localizado en la zona del vano meridional que permite la comunicación entre el Pulpitum y el Parascaenium occidental.
- Teatro Romano-5706: Fragmentos de carbón.
- Teatro Romano- 5706-2: Fragmentos de carbón y fragmentos de una viga de madera quemada, consolidada y extraída por el equipo de restauración del Teatro.
- Teatro Romano-5706-3: Fragmentos de carbón.

UE 5696 (Fase 9-10): Estrato relacionado con el proceso de colmatación del vano meridional de acceso al parascaenium occidental, tras el incendio de la misma.
- Teatro Romano-5696: Fragmentos de carbón.

UE 5701 (Fase 7-8): Probable nivel de uso en el vano de acceso al parascaenium occidental, tras el incendio del edificio.
- Teatro Romano-5701: Fragmentos de carbón.

UE 5705 (Fase 7): Estrato relacionado con el expolio del teatro, tras el incendio del mismo. Se localiza en el vano meridional de acceso al parascaenium occidental.
- Teatro Romano-5705: Fragmentos de carbón.

UE 6536 (Fase 6): Sedimento rojo y amarillento compacto con restos de cal, cenizas, y abundantes maderas carbonizadas y manchas de carbones. Se interpreta como un contexto de destrucción situado en el nivel de uso situado sobre el pavimento de la cripta.

IV.4.2.2. Resultados antracológicos

De las muestras recuperadas manualmente en el Teatro Romano de Cartagena han sido estudiados un total de 488 fragmentos de carbón (tabla 4.62). Al tratarse de elementos constructivos el número de taxones identificados ha sido muy escaso, con únicamente cuatro elementos diferenciados: Juniperus sp., Abies alba, Pinus halepensis y Pinus nigra/sylvestris.

Procedentes de la UE 5706 se han analizado un total de 250 fragmentos de carbón que se corresponderían fundamentalmente de restos de las vigas asociadas al Parascaenium occidental, si bien fueron hallados en el vano de comunicación entre éste y el Pulpitum, por lo que no puede descartarse que su posición original se encontrara en este punto del edificio. La viga 5706-2 fue realizada en madera de abeto (Abies alba), y los restos de carbón de la muestra 5706-3 son también de esta especie. En el caso de la muestra 5706, que tenía una gran cantidad de carbones, aparecen los cuatro taxones identificados en el
yacimiento, si bien Abies alba y Pinus nigra/sylvestris son mayoritarios, frente a la escasez de Juniperus sp. y Pinus halepensis.

<table>
<thead>
<tr>
<th>TAXA</th>
<th>5706</th>
<th>5706 (2)</th>
<th>5706 (3)</th>
<th>5686 (1)</th>
<th>5686 (2)</th>
<th>5686 (1-2)</th>
<th>5686 (3)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5692</th>
<th>5696</th>
<th>5701</th>
<th>5705</th>
<th>6536</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juniperus sp.</td>
<td>17</td>
<td>N°</td>
</tr>
<tr>
<td>Abies alba</td>
<td>102</td>
<td>50</td>
<td>18</td>
<td>15</td>
<td>13</td>
<td>32</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinus halepensis</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Pinus nigra/sylvestris</td>
<td>59</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>40</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>180</td>
<td>50</td>
<td>20</td>
<td>15</td>
<td>30</td>
<td>40</td>
<td>40</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Tabla 4.62. Resultados antracológicos del Teatro Romano de Cartagena.

La viga 5686-1 también estuvo elaborada en madera de abeto. Sin embargo, en las concentraciones carbonosas 5686-2 y 5686-1/2 se mezclan Juniperus sp. y Abies alba. Finalmente, la muestra 5686-3 resultó ser monoespecífica, con 40 fragmentos de Pinus nigra/sylvestris.

Las tres astillas de madera halladas en el suelo del Parascaenium occidental (UE 5688) presentaban un grado de carbonización bajo, por lo que resultó bastante dificultoso realizar buenas fracturas para la observación de sus planos anatómicos. No obstante, fue posible identificarlas finalmente como Juniperus sp., lo cual hace pensar que no se trataba de elementos estructurales de sustentación, sino que pudieron tener una funcionalidad constructiva de segunda orden.

La UE 5692 también está asociada al proceso de incendio de las estructuras del Parascaenium, por lo que resulta lógico que los dos taxones representados, Abies alba y Pinus nigra/sylvestris pudieran tratarse de fragmentos de las vigas que lo conformaban. Las tres unidades restantes, 5696, 5701 y 5705 se relacionan con fases posteriores a la destrucción por incendio que acontece entre las fases 6 y 7. Todas ellas presentan únicamente un taxón, Juniperus sp. en el caso de 5696, Pinus nigra/sylvestris en 5701 y Pinus halepensis en 5705.

Finalmente, han sido estudiados diez fragmentos correspondientes probablemente a un mismo tronco de la UE 6536, situada en la zona de la cripta del teatro. Se trataría de un elemento constructivo elaborado en Pinus halepensis que se habría derrumbado en la fase de destrucción del teatro acaecida en el siglo II d.C. (Fase 6).
Estos datos se completarían con los obtenidos por Elena Grau para las unidades estratigráficas 1610 y 5651, correspondientes también al nivel de incendio del Teatro, pero localizadas, como se ha dicho anteriormente, en la zona de la escena. En este caso fue identificada únicamente una especie como material de construcción: *Pinus halepensis*. Su uso se relacionaría, según la autora, con criterios funcionales como la rectitud, la alzada, el diámetro o la ligereza, y con otros de carácter económico, relacionados fundamentalmente con su abundancia en el entorno (Grau, inédito, c).

IV.4.3. Interpretación de los resultados

En un edificio con vocación de perdurar durante siglos como el Teatro de *Carthago Nova* la elección de los materiales constructivos, tanto en lo que concierne a los elementos pétreos como a las partes construidas con madera, debió de ser extremadamente cuidadosa. Para conseguir la imagen de prestigio pretendida no se escatimaría en medios técnicos y humanos, de manera que la inversión de esfuerzo se centraría en aspectos como el transporte de los materiales, la manufactura de los mismos y su inclusión en el proyecto arquitectónico programado.

Los materiales constructivos leñosos estudiados por la Dra. E. Grau en el *pulpitum/proscaenium* del Teatro y los analizados en este trabajo para la zona de la cripta muestran una utilización exclusiva de *Pinus halepensis* en ambos puntos del edificio. Su uso como madera de construcción presentaría ciertas limitaciones en un edificio de carácter monumental, debido al escaso crecimiento en altura de la especie, y sobre todo al trazado de su tronco, que es a menudo poco recto. Sin embargo, la disponibilidad del pino carrasco en la zona sería muy amplia en época romana (Grau 1990a, García Martínez y Matilla Séiquer 2008), cuando la degradación paisajística en todo el Sureste peninsular se encontraría ya muy avanzada. La cubierta vegetal en estos momentos sería fundamentalmente de carácter arbustivo y herbáceo, de manera que *Pinus halepensis* se convertiría en uno de los pocos elementos arbóreos del entorno más cercano a *Carthago Nova*, en donde crecerían de manera dispersa. Por tanto, la elección de esta madera estaría destinada a determinados usos en los que no existieran grandes exigencias en cuanto a la longitud, grosor o resistencia, evitando probablemente su utilización como elemento arquitectónico de primer orden. Debido a la facilidad de obtención de este pino en los alrededores es muy posible que fuese utilizado en la mayoría de edificaciones no monumentales de *Carthago Nova*, como se ha documentado por ejemplo en una gran cantidad de vigas analizadas para la ciudad de *Valentia* (Grau 1990a).

Otro de los elementos destacado como material constructivo en gran parte de los contextos estudiados para el Teatro Romano de Cartagena fue *Juniperus* sp., que ha aparecido asociado al *parascaenium* occidental, y con el cual fueron realizadas las tres astillas conservadas en un estado de semi-carbonización de la UE 5688 (fig. 4.99). La
Capítulo IV. Resultados antracológicos

madera de los enebros y sabinas es de muy buena calidad dado que es muy compacta, de grano fino y resistente a la putrefacción, por lo que se trata de un material apto para la construcción, que sin embargo se encuentra limitado por el escaso tamaño que alcanzan sus ejemplares. Las razones que impulsarían a su uso en el Teatro de Carthago Nova estarían, como en el caso del pino carrasco, relacionadas con la facilidad de su captación en las cercanías de la ciudad. El uso concreto que tendría Juniperus sp. resulta difícil de plantear, ya que tampoco contamos con paralelismos asociados a yacimientos de época romana que atestigüen cuáles pudieron ser estos usos. No obstante, el hallazgo de las tres astillas que conservan parte de su forma original parece indicar que la madera de enebros y sabinas pudo ser utilizada en labores constructivas complementarias, probablemente de pequeño tamaño, sin descartar que pudiera tratarse de fragmentos asociados a algún tipo de mobiliario quemado.

La utilización como material constructivo de Abies alba, obedece, sin embargo, a una estrategia de abastecimiento de materiales completamente distinta a las dos anteriores. Esta especie se desarrolla en la actualidad entre los 700 y 2000 m de altitud, ocupando zonas de ladera y umbrias de montaña en cualquier tipo de sustrato siempre y cuando sean suelos frescos y de gran humedad. Suele aparecer asociado a formaciones de haya, pino albar o pino negro (Galán et al. 1998). Actualmente se desarrolla en cordilleras europeas de gran elevación como los Alpes, Jura, Cárcilos, la Selva Negra, los Apeninos, Macedonia o Córdoba, y en el caso de la Península Ibérica en los Pirineos (Costa et al. 2001). La posición geográfica de Cartagena, la xericidad constatada en el Sureste peninsular desde la crisis de aridez del 5000 BP y la escasa elevación de las montañas cercanas hacen implausible la presencia de este elemento de manera natural en las proximidades de Carthago Nova en el siglo I a.C. En esta cronología, sin embargo, Abies alba estaría muy presente en la cordillera pirenaica (Euba Rementería 2008), donde alcanzaría su máxima expansión en torno al 2200-2000 cal. BP (Péachs et al. en prensa). En el sur de los Alpes franceses, sin embargo, se ha documentado la desaparición de Abies alba precisamente en época romana, en torno al 2000 BP (Muller et al. 2007). No obstante, según nuestro planteamiento, la hipótesis más plausible es que se produjera un transporte por barco desde la propia Roma, junto con los materiales marmóreos de Carrara, situada en la estribación norte de los Apeninos. A pesar de ciertos modelos climáticos que plantean la ausencia de Abies en los Apeninos durante todo el Holoceno reciente (Huntley y Prentice 1993) (fig. 4.100), algunos estudios polinicos han constatado en el norte de esta cordillera una dominancia de un bosque de hayas y abetos entre c. 5200 BP y 2900 BP, si bien la presencia de Abies se habría reducido en función del aumento de Fagus en los últimos 2900 años (Watson 1996). El uso del abeto se haría siguiendo las recomendaciones del propio Vitruvio que en “De Architectura” afirma que el abeto posee una rigidez natural que lo hace resistente al peso, aunque distingue entre los abetos criados en los Apeninos en la parte de la umbria, de los que valora que la gran humedad que reciben durante su crecimiento los hace poco resistentes a la putrefacción, mientras que los que se crían en las solanas serían mucho
más firmes, sólidos y de una gran duración. El aspecto más valorado en la elección de este material sería posiblemente la gran longitud que pueden alcanzar los troncos de este árbol, que alcanza con facilidad los 30 m de altura, y puede llegar hasta los 50 m (López González 2001), por lo que podría ser utilizado como viga en zonas de gran tamaño. Los grandes esfuerzos en el transporte de troncos de esta especie, ya fuese desde los Pirineos, los Alpes o los Apeninos denota el prestigio del edificio en el contexto de la Roma imperial.

Finalmente, entre los materiales constructivos del Teatro ha sido documentado un taxón cuya procedencia tampoco fue de carácter local: *Pinus nigra/sylvestris*. Ambas especies (*Pinus nigra* y *Pinus sylvestris*) se desarrollan en ecosistemas de alta montaña, entre los 800 y 1500 m de altitud en el caso de *Pinus nigra* y entre 1000 y 2000 m de altura en el caso de *Pinus sylvestris*. Las posibilidades en cuanto al lugar de su procedencia vuelven a ser varias. Por un lado, en el marco regional del Sureste de la Península Ibérica este taxón aparece documentado durante toda la secuencia holocena en las zonas de alta montaña como la Sierra de Segura (Carrión et al. 2001b, 2004, Carrión 2002) y es posible también que apareciera en elevaciones algo más cercanas a Cartagena como Sierra Espuña, donde todavía hoy crece el pino blanco (*Pinus nigra*). De otra parte, también es plausible plantear la hipótesis de que *Pinus nigra* o *Pinus sylvestris* pudieran ser transportados junto con *Abies alba*, dado que se trata de especies que pueden aparecer asociadas en los mismos ecosistemas, por lo que no es descartable que estos grandes troncos fuesen traídos junto con los abetos desde Italia, o incluso desde los Pirineos. En contra de este planteamiento se encuentra el argumento de que no sería necesario invertir tanto esfuerzo en realizar un transporte marítimo cuando es posible que estas especies crecieran a media distancia con respecto a *Carthago Nova*. El uso de ambas especies estaría relacionado con su gran tamaño y su excelente calidad como material de construcción, ya que se trata de maderas compactas, de gran dureza y muy resistentes a la putrefacción que podrían ejercer las principales funciones de sustentación en el programa edilicio del Teatro.

En resumen, las maderas constructivas estudiadas en este trabajo ponen de relieve que la selección de vigas y otros elementos leñosos en el Teatro de *Carthago Nova* estuvo organizada según un triple criterio. En primer lugar se basaría en la utilización de troncos procedentes de la tala de árboles autóctonos para aquellas zonas con menores exigencias arquitectónicas. En segundo término se usarían otros elementos que posiblemente procederían del ámbito regional, cuyo transporte supondría recorrer medias distancias con respecto a la ciudad. Finalmente otros materiales serían transportados con toda seguridad desde puntos muy alejados al teatro. Las motivaciones de esta selección estarían relacionadas con las propiedades físico-mecánicas de las diferentes especies, pero sobre todo con la particularidad del uso para el que estuvieran destinadas. Desgraciadamente no conocemos otros casos en los que se hayan estudiado los materiales constructivos leñosos de otros teatros romanos, por lo que los elementos para la discusión en este sentido son por ahora inexistentes.
IV.5. Resultados antracológicos del yacimiento medieval hallado en la Calle Santa María, nº 19 de Jumilla

IV.5.1. Presentación del yacimiento

El yacimiento se encuentra ubicado en el extremo occidental de la localidad de Jumilla, concretamente en el número 19 de la Calle Santa María (fig. 4.101). Se trata de un solar de planta aproximadamente triangular de unos 1246 m², segregados de una parcela anterior de 1417 m². Sobre ella se llevó a cabo una actuación arqueológica de urgencia entre enero y julio de 2006 como consecuencia del proyecto de construcción de una zona ajardinada y de recreo asociada a una residencia contigua (González Guerao y Ramírez Águila, inédito, González Guerao y Ramírez Águila 2007).

El proceso de excavación permitió definir dos sectores claramente diferenciados en el yacimiento. El primero estaba ocupado por un cementerio islámico, mientras que el sector número 2 lo conformaban una gran casa y una instalación de tipo industrial a la que aparecieron asociadas una gran cantidad de estructuras de combustión.

Hasta el momento de la salida masiva de los mudéjares del Reino de Murcia hacia mediados del siglo XIII, la mayor parte del solar estuvo ocupada por un cementerio islámico o maqbara (fig. 4.102) perteneciente, según los restos cerámicos asociados, al menos a tres generaciones de individuos desde época almorávide hasta la primera mitad
del siglo XIII, últimos años de presencia del Islam en estas tierras del Sureste peninsular. En esta zona, sobre un nivel de gravas con contenido revuelto de materiales que iban desde el Hierro Antiguo hasta época altoimperial romana, fueron documentados hasta un total de 166 enterramientos distribuidos arbitrariamente sobre el terreno, aunque con cierta tendencia a la formación de filas en sentido transversal a las mismas y organizados en dos niveles diferentes, con diversos grados de conservación (González Guerao y Ramírez Águila, inédito, González Guerao y Ramírez Águila 2007).

Este cementerio presentaba una gran austeridad, con la totalidad de las fosas simples, excavadas directamente en la tierra, y sin ningún tipo de acondicionamiento. Las cubiertas de las mismas pudieron estar realizadas mediante adobes de color anaranjado que al hundirse y disolverse aparecieron envolviendo los cuerpos. Sin embargo, otros materiales habituales en este tipo de cubiertas, como las lajas de piedra o los ladrillos, no fueron documentados en ninguna de estas tumbas. Tampoco existían evidencias de túmulos o de posibles indicadores de la presencia de tumbas que solían colocarse tanto en la cabeza como a los pies de las fosas (González Guerao y Ramírez Águila, inédito, González Guerao y Ramírez Águila 2007).

Los cuerpos aparecieron en decúbito lateral derecho, como dicta la norma *maliki*, con los pies orientados hacia el NNE, con ligeras variaciones en alguna de ellas. Aunque la mayoría de estos enterramientos se presentaron como individuales, existen algunas excepciones en los que varios individuos compartían una misma fosa. Ha podido
documentarse también una tendencia a inhumar algunos cuerpos sobre enterramientos preexistentes, causando la remoción del sujeto anterior, lo cual podría interpretarse en relación con la existencia de lazos familiares entre ambos individuos (González Guerao y Ramírez Águila, inédito, González Guerao y Ramírez Águila 2007).

Junto a esta necrópolis, en la zona periférica, fue encontrada parte de una casa islámica de cierta entidad cuya conservación era muy deficiente (fig. 4.103). Los materiales cerámicos asociados sitúan su uso en un corto período de tiempo en torno a los primeros 50 años del siglo XIII, contemporánea con el cementerio. Se trata en total de un tercio de la planta original de la vivienda, de la cual solamente se conservan parte de sus cimientos, construidos mediante mampostería trabada con barro y seguramente trazados de zanja (González Guerao y Ramírez Águila, inédito, González Guerao y Ramírez Águila 2007).

Los espacios identificados a partir de la estructura del andén correspondían al salón principal, el patio de paseadores y al arriate central, una crujía oriental que se prolongaría más allá de la medianería actual, y casi con toda seguridad otra crujía occidental, de la que no se habría conservado nada, pero cuya presencia podría venir marcada por la existencia del fondo de una tinaja empotrada en el terreno hacia esta parte, cerca de los enterramientos, que pudo ubicarse en las zonas de cocina o en los zaguanes (González Guerao y Ramírez Águila, inédito, González Guerao y Ramírez Águila 2007).

Figura 4.103. Casa islámica (Foto: J. A. Ramírez).

Debido a las grandes dimensiones que se intuyen en su construcción, así como a su situación, la interpretación que se da a esta construcción es de posible almunia ubicada
en las afueras de la población islámica de Jumilla, y perteneciente probablemente a algún rico terrateniente del lugar (González Guerao y Ramírez Águila, inédito, González Guerao y Ramírez Águila 2007).

Al norte de la casa, contigua también al cementerio, se descubrió la existencia de unas instalaciones industriales (fig. 4.104), de difícil identificación, debido sobre todo al mal estado de conservación de los restos y a la propia naturaleza de los mismos. Aunque su funcionalidad no es clara, parece que se puede descartar que se trate de hornos de pan, de cerámica, vidrio o metal, dada la total ausencia de materiales de desecho de tales producciones y la falta de similitud tipológica con los hornos destinados a alguna de estas actividades, como el vidrio. No obstante, parece clara la adscripción cronológica entre los siglos XII y XIII (González Guerao y Ramírez Águila, inédito, González Guerao y Ramírez Águila 2007).

En el centro de este sector fue documentada una estancia de pobre construcción, de la que se conservaba poco más que sus cimientos de piedra trabada en seco. Sus muros debieron de estar construidos mediante tapiales de tierra, cuyo desmoronamiento había cubierto por completo las estructuras inferiores, y contó con una cubierta de tejas que aún eran muy abundantes en los estratos de abandono del lugar. El suelo interior de esta estancia se hallaba a una cota claramente inferior a la del suelo exterior (a un codo), diferencia que se explica porque dicha estancia estaba destinada a albergar en su interior un horno de pequeñas dimensiones, apenas 1,30 m de diámetro (Horno 1), frente al cual apareció una acumulación cenicienta (“Acumulación de desecho 2074” -AD 2074-) que pudo contener el resultado de su limpieza (González Guerao y Ramírez Águila, inédito, González Guerao y Ramírez Águila 2007).

Parece que este horno (1) debía poseer una doble cámara interior, aunque de hecho sólo se había conservado la cámara de combustión, aún colmatada de cenizas y carbones desde su último uso. Sus paredes consistían en una sólida costra de barro cocido que había sido aplicado con las manos sobre el terreno en el que se hallaba excavado, debiendo contar con una cubierta en forma de cúpula del mismo material, algunos de cuyos fragmentos fueron hallados espardidos a su alrededor y en el interior del horno (González Guerao y Ramírez Águila, inédito, González Guerao y Ramírez Águila 2007).

Frente a este horno, pero fuera de la estancia que lo albergaba, fue documentado un horno de menores dimensiones que ha sido denominado “Horno 2”. A su alrededor no se encontraron evidencias que indicaran que estuvo dentro de ningún recinto cubierto. Tipológicamente se presentaba muy diferente al anterior, ya que la cámara de combustión parecía en realidad una prolongación de su propia boca de alimentación, con un diámetro interior de 1,05 m. Sus paredes no tenían apenas consistencia, pues su construcción se realizó excavando una oquedad cóncava en el terreno, que se había
Recursos forestales en un medio semiárido. Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval.

...endurecido por la acción directa del propio fuego encendido en su interior. Por tanto, no parece que se tratara de un horno de doble cámara con parrilla intermedia, sino que la cocción para la que hubiese sido concebido se realizaría en la misma cámara de fuego. Su cámara y la boca de alimentación aparecieron separados por un tabique de piedras que debía de retirarse tras su uso, pero parece que quedó olvidado in situ tras su última utilización (González Guerao y Ramírez Águila, inédito, González Guerao y Ramírez Águila 2007).

Alrededor de estos dos hornos se distinguían sobre el suelo natural unas estructuras de planta circular con restos de rubefacción en su borde. En su fondo solían aparecer algunas cenizas y carboncillos, pero en una cantidad muy inferior a la encontrada dentro de los hornos, por lo que no parece que tuviesen la misma función, aunque pudieron depender de alguna manera de los mismos, por lo que fueron denominados como “braseros” (Gascó 2003). Se identificaron hasta un total de siete de esos braseros, cuyo diámetro variaba desde los 40 cm del más pequeño, hasta 1,68 m del mayor, aunque predominaban los de diámetro ligeramente inferior a 1 m. Su profundidad tampoco superaba los 50 cm, y no parece que hubieran contado con ningún tipo de cubierta, pues no se hallaron evidencias de ello. La rubefacción era mucho más apreciable en los de menor tamaño, mientras en los dos mayores era casi imperceptible (González Guerao y Ramírez Águila, inédito, González Guerao y Ramírez Águila 2007).
Las evidencias de altas temperaturas permitieron diferenciar los brasereros de los silos subterráneos que también existían en este sector, y que, si bien presentaban una abertura similar a la de los brasereros, tenían una mayor profundidad (hasta 2 m.), y su contenido, sin apenas carbones, aparecía colmatado de forma progresiva con detritus domésticos estratificados, entre los que llamaba la atención la abundancia de caracoles (González Guerao y Ramírez Águila, inédito, González Guerao y Ramírez Águila 2007).

Por último se detectó la presencia de una estructura de escasa entidad, formada por una acumulación de piedrecillas, aunque bien alineadas, que pudo ser la base de una empalizada fabricada con un tapial de tierra y escaso porte, cuya función parece haber sido la de separar dos ámbitos de trabajo diferentes (González Guerao y Ramírez Águila, inédito, González Guerao y Ramírez Águila 2007).

En lo que respecta al período cronológico en que estuvieron en producción estas instalaciones, los materiales cerámicos asociados a las mismas (ajuar de tipo doméstico), permiten ubicarlo perfectamente entre la segunda mitad del siglo XII y la primera del XIII, siendo más preciso el momento de abandono de las mismas por los hallazgos producidos en el interior del Horno 1 y de su estancia, tales como un fragmento de candil de cazoleta abierta con acabado vidriado que conduce hasta mediados del siglo XIII, es decir, al momento de la conquista definitiva del emirato de Murcia por las tropas castellanas en 1266 (González Guerao y Ramírez Águila, inédito, González Guerao y Ramírez Águila 2007).

IV.5.2. El estudio antracológico de Jumilla Santa María 19

El estudio antracológico en Jumilla Santa María 19 se nos planteó habiendo ya comenzado el proceso de excavación, ante la aparición del conjunto estructural relacionado con actividades artesanales que se empezó a documentar en el sector oriental del solar. Los carbones recuperados, por lo tanto, se refieren fundamentalmente a esta zona y especialmente a las estructuras de combustión excavadas. No obstante, el planteamiento metodológico de recuperación de muestras incluyó también las unidades estratigráficas relacionadas con los niveles de habitación islámicos y cristianos hallados en el yacimiento.

IV.5.2.1. Las muestras antracológicas

El sistema de muestreo aplicado se basó en la recuperación de una media de entre 10 y 20 litros de sedimento por unidad estratigráfica excavada, que fueron procesados posteriormente mediante flotación manual simple. Por diversas razones logísticas, derivadas de la condición de intervención de urgencia y de la imposibilidad de procesar
el sedimento en el lugar de la excavación, al tratarse de un centro urbano, no fue posible ampliar esta cantidad media de sedimento. En cualquier caso, la riqueza antracológica tanto cuantitativa como cualitativa ha sido en general muy amplia.

<table>
<thead>
<tr>
<th>UNIDAD ESTRATIGRÁFICA</th>
<th>CONTEXTUALIZACIÓN ARQUEOLÓGICA</th>
<th>Nº DE CARBONES ESTUDIADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1028</td>
<td>Relleno diverso de la fosa 1027. Cronología: moderna</td>
<td>15</td>
</tr>
<tr>
<td>2002</td>
<td>Arcilla marrón anaranjada que rellena el interior del Silo 1. Cronología: islámico, siglos XI-XII.</td>
<td>20</td>
</tr>
<tr>
<td>2014</td>
<td>Mancha de cenizas junto a 2015, como restos de un posible hogar. Brasero islámico.</td>
<td>100</td>
</tr>
<tr>
<td>2026</td>
<td>Relleno del arriate. Cronología: primera mitad del siglo XIII</td>
<td>25</td>
</tr>
<tr>
<td>2031</td>
<td>Mancha de terreno con cenizas y carboncillos en el extremo E del Espacio 4. Abundancia cerámica islámica (s. XII).</td>
<td>100</td>
</tr>
<tr>
<td>2032</td>
<td>Mancha de terreno con carboncillos y piedras revueltas en el ángulo NE del patio (Espacio 2) que parece destruir las estructuras de la casa. Cronología: cristiana, segunda mitad del siglo XIII.</td>
<td>150</td>
</tr>
<tr>
<td>2035</td>
<td>Nivel gris bajo el relleno del arriate 2026, cortando a 3017 y 3011, hacia el cual se filtra. Material ibérico.</td>
<td>15</td>
</tr>
<tr>
<td>2046</td>
<td>Terreno pedregoso donde se halló una redoma casi completa pegada y una moneda islámica legible. Cronología: en uso durante el siglo XII y primera mitad del siglo XIII. Abandono a mediados del XIII</td>
<td>17</td>
</tr>
<tr>
<td>2049</td>
<td>Relleno de piedras y tierra con cerámica islámica del siglo XIII que cubre el interior del horno 2048.</td>
<td>30</td>
</tr>
<tr>
<td>2052</td>
<td>Primer nivel de relleno del Silo 4. Cronología: siglo XVI</td>
<td>40</td>
</tr>
<tr>
<td>2054</td>
<td>Nivel de cenizas y carbones en el interior del Horno 1. Cronología: islámico, mediados del siglo XIII.</td>
<td>50</td>
</tr>
<tr>
<td>2056</td>
<td>Relleno de cenizas y carbones de la fosa 2055. Cronología: restos de una olla valenciana del siglo XII-XIII.</td>
<td>40</td>
</tr>
<tr>
<td>2065</td>
<td>Nivel de cenizas en el fondo de un posible brasero islámico.</td>
<td>120</td>
</tr>
<tr>
<td>2067</td>
<td>Relleno con arcilla anaranjada y pedregoso del Silo 5. Cronología: material islámico, siglos XII-XIII</td>
<td>2</td>
</tr>
</tbody>
</table>

Tabla 4.63. Unidades estratigráficas estudiadas.
<table>
<thead>
<tr>
<th>UNIDAD ESTRATIGRÁFICA</th>
<th>CONTEXTUALIZACIÓN ARQUEOLÓGICA</th>
<th>Nº DE CARBONES ESTUDIADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2068</td>
<td>Nivel de tierra con gran cantidad de caracoles. Cronología: material exclusivamente islámico del siglo XII y grandes fragmentos de una tinaja.</td>
<td>40</td>
</tr>
<tr>
<td>2070</td>
<td>Nivel de arcilla anaranjada con piedras y algunos carbones que se encuentra sobre el suelo de cenizas de laboreo relacionado con la cámara de combustión del horno 1.</td>
<td>10</td>
</tr>
<tr>
<td>2073</td>
<td>Relleno de cenizas y carbones de la tobera del horno 1.</td>
<td>120</td>
</tr>
<tr>
<td>2074</td>
<td>Depósito de cenizas en el extremo opuesto del espacio 14, frente a la boca de la cámara de combustión del horno 1. Cronología: islámico, primera mitad del siglo XIII.</td>
<td>100</td>
</tr>
<tr>
<td>2076</td>
<td>Relleno de cenizas y carbones vegetales de la pequeña fosa 2075. Cronología: siglo XIII.</td>
<td>50</td>
</tr>
<tr>
<td>2078</td>
<td>Relleno de la fosa 2078 bajo el muro norte de la casa (UE 2010). Cronología: siglo XII.</td>
<td>5</td>
</tr>
<tr>
<td>2080</td>
<td>Relleno de tierra anaranjada y algunos carboncillos de la fosa o braserillo 2037. Cronología: islámico</td>
<td>6</td>
</tr>
<tr>
<td>2082</td>
<td>Relleno de tierra grisácea con manchas anaranjadas de adobe o tapial donde abundaba la ceniza y sobre todos los carboncillos</td>
<td>13</td>
</tr>
<tr>
<td>2083</td>
<td>Cenizas con carboncillos que aparecen bajo 2046. Arqueológicamente parece estéril.</td>
<td>8</td>
</tr>
<tr>
<td>2085</td>
<td>Cenizas y carbones que cubren la cámara de combustión del horno 2.</td>
<td>100</td>
</tr>
<tr>
<td>2086</td>
<td>Cenizas que cubren el fondo de boca de alimentación del horno 2.</td>
<td>100</td>
</tr>
<tr>
<td>2092</td>
<td>Relleno del silo 5, donde aparecieron una cáscara de huevo de gallina, cerámica islámica y algunos objetos de hierro y escoria de fundición. Cronología: siglos XII-XIII</td>
<td>1</td>
</tr>
<tr>
<td>2094</td>
<td>Tierra arcillosa marrón anaranjada que rellena el silo 6. Cronología: siglos XII-XIII.</td>
<td>50</td>
</tr>
<tr>
<td>2095</td>
<td>Terreno anaranjado a marrón bajo 2026. Cronología: siglo XIII.</td>
<td>20</td>
</tr>
<tr>
<td>2096</td>
<td>Terreno de gris a marrón oscuro, con carboncillos y cerámica escasa pero exclusivamente ibérica.</td>
<td>30</td>
</tr>
<tr>
<td>2100</td>
<td>Tierra arcillosa de color granate. Cronología: anterior a los niveles islámicos</td>
<td>30</td>
</tr>
<tr>
<td>2510</td>
<td>Restos de un posible hogar.</td>
<td>120</td>
</tr>
<tr>
<td>2512</td>
<td>Relleno de tierra anaranjada arcillosa con algunos carbones del interior del silo 8.</td>
<td>50</td>
</tr>
<tr>
<td>3017</td>
<td>Nivel de piedemonte del castillo de Jumilla que rodó por la ladera, con alto contenido en piedras, gravas y algunos cantos, con relativa abundancia de cerámica ibérica rodada (poco rodada), que cubre el paleosuelo existente sobre 3011.</td>
<td>3</td>
</tr>
</tbody>
</table>

Tabla 4.63. Continuación.
Las unidades estratigráficas muestreadas, así como su contextualización arqueológica y su riqueza en carbón aparecen detallados en la tabla 4.63. Todas las muestras recogidas presentaron contenido antracológico, aunque muy desigual. Algunas de las unidades estudiadas, sin embargo, fueron reinterpretadas posteriormente como niveles de revuelto, o presentan una adscripción cronológica dudosa, por lo que finalmente no hemos tenido en consideración sus resultados antracológicos. Se trata de las unidades 1028, 2035, 2052, 2083, 2096, 2100 y 3017.

En lo que concierne al número de fragmentos estudiado por cada muestra antracológica en relación con su riqueza taxonómica, hemos considerado únicamente los carbones dispersos obtenidos de los niveles islámicos por un lado y de los cristianos por otro, excluyendo las estructuras de combustión.

En el primero de los casos (fig. 4.105) se estudiaron un total de 353 fragmentos de carbón, que proporcionaron un listado taxonómico compuesto por 21 elementos. Fue necesario el estudio de 173 fragmentos para obtener el 95% del cortejo florístico documentado, un total de 20 taxones. A partir de este momento se produce un proceso de estabilización de la curva taxonómica, de manera que hasta el análisis del fragmento número 280, no se produjo la identificación del último de estos taxones, Coniferae. Por lo tanto, se puede afirmar que hasta el análisis del fragmento número 173 la relación entre el esfuerzo invertido y el rendimiento obtenido fue positiva, mientras que a partir de este momento esta relación pasó a ser negativa, pues el estudio de 180 fragmentos de carbón más sólo proporcionó un nuevo taxón al listado.

![Figura 4.105. Relación entre el número de taxones y el número de fragmentos en el carbón disperso de Jumilla Santa María 19. (Niveles islámicos).](image-url)
Por otro lado, habría que destacar que el estudio de únicamente 10 fragmentos mostraba ya los cuatro taxones que serían posteriormente los mejor representados porcientoalmente: *Pinus halepensis*, Monocotyledoneae, *Arbutus unedo* y *Quercus ilex/coccifera*, y el primer elemento que apareció, *Pinus halepensis*, fue también el más representado en el total del registro, con mucha diferencia con respecto al resto. Durante todo el proceso de identificación *Pinus halepensis* nunca bajó del 50% de presencia relativa, presentando su pico más alto cuando tan sólo se habían estudiado 25 fragmentos de carbón, en donde este taxón suponía el 72% del total identificado, posteriormente sus valores se estabilizaron entre el 50% y el 60% (fig. 4.106).

![Figura 4.106. Curva de porcentajes de *Pinus halepensis* en los niveles islámicos de Jumilla Santa María 19.](image)

En el caso de los niveles cristianos (fig. 4.107), que se corresponden con la UE 2032, la estabilización de la curva se produjo de forma muy temprana. Fueron estudiados en este caso un total de 150 fragmentos de carbón, con una lista taxonómica conformada por 9 elementos. Los primeros 13 fragmentos de carbón supusieron ya la representación del 77% del cortejo identificado, un total de 7 taxones. A partir de este fragmento número 13 se produjo una estabilización de la curva, de modo que el estudio de 137 fragmentos más sólo proporcionó dos taxones al registro: Compositae, en el fragmento número 93 y *Erica* sp. cuando se habían analizado ya 105 fragmentos de carbón.
Además, entre los 5 primeros fragmentos de carbón, 4 resultaron corresponderse con los taxones mejor representados de la secuencia: las labiadas (Labiatae + *Rosmarinus officinalis*) mantuvieron valores entre el 45% y el 60% de presencia relativa durante todo el estudio, aunque con una tendencia descendente; Leguminosae mostró cierta estabilidad en torno al 20% durante todo el proceso de estudio; y Monocotyledoneae, a pesar de presentar valores generalmente menores, presentó una tendencia ascendente desde un 9% a un 19% en los últimos 25 fragmentos de carbón estudiados (fig. 4.108).
IV.5.2.2. Resultados antracológicos

En total han sido estudiados 1289 fragmentos de carbón, correspondientes por un lado a los niveles de ocupación tanto islámicos como cristianos documentados en el yacimiento (carbón disperso), y por otro, sobre todo, a las diferentes estructuras de combustión asociadas a la zona de producción artesanal (carbón concentrado) del siglo XII y primera mitad del XIII.

JUMILLA SANTA MARÍA 19 CARBÓN DISPERSO

<table>
<thead>
<tr>
<th>TAXA</th>
<th>UE 2026</th>
<th>UE 2095</th>
<th>UE 2002</th>
<th>UE 2068</th>
<th>UE 2092</th>
<th>UE 2067</th>
<th>UE 2094</th>
<th>UE 2078</th>
<th>UE 2512</th>
<th>UE 2046</th>
<th>UE 2031</th>
<th>UE 2070</th>
<th>UE 2082</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus halepensis</td>
<td>18</td>
<td>72</td>
<td>9</td>
<td>45</td>
<td>25</td>
<td>62,5</td>
<td>1</td>
<td>100</td>
<td>24</td>
<td>48</td>
<td>48</td>
<td>96</td>
<td>3</td>
<td>17,65</td>
</tr>
<tr>
<td>Pinus sp.</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>2,5</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>8</td>
<td>47,05</td>
<td>15</td>
<td>4,25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juniperus sp.</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>2,5</td>
<td>2</td>
<td>100</td>
<td>1</td>
<td>100</td>
<td>4</td>
<td>1,13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coniferæ</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Monocotyledoneae</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>10</td>
<td>6</td>
<td>12</td>
<td>3</td>
<td>17,65</td>
<td>1</td>
<td>7,69</td>
<td>19</td>
<td>5,38</td>
</tr>
<tr>
<td>Arbutus unedo</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>25</td>
<td>1</td>
<td>2,5</td>
<td>11</td>
<td>11</td>
<td>18</td>
<td>5,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cistaceae</td>
<td></td>
<td>7,69</td>
<td>1</td>
</tr>
<tr>
<td>Cistus sp.</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Ficus carica</td>
<td></td>
</tr>
<tr>
<td>Labiatae</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>5,88</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Leguminosae</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>20</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>20</td>
<td>1</td>
<td>7,69</td>
</tr>
<tr>
<td>Olea europaea</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>2,5</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
<td></td>
</tr>
<tr>
<td>Prunus sp.</td>
<td>1</td>
<td>2</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Punica granatum</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Quercus ilex/coccifera</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>2,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>Rosaceae t. Maloideae</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
<td>3</td>
<td>6</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Vitis vinifera</td>
<td>1</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Indeterminado</td>
<td>3</td>
<td>15</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>7,5</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Indeterminable</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 4.64. Valores absolutos y relativos del carbón disperso de Jumilla Santa María 19.
En lo que se refiere al carbón disperso, se han analizado 353 fragmentos de carbón asociados a los niveles medievales islámicos, excluyendo las estructuras de combustión. Los valores absolutos y porcentuales correspondientes a cada taxón en las diferentes unidades estratigráficas estudiadas aparecen expresados en la tabla 4.64.

El registro antracológico obtenido se caracteriza fundamentalmente porque presenta una importante riqueza taxonómica, aunque el escaso número de fragmentos que se han podido estudiar ha condicionado que aparezca una menor variabilidad que en el caso de las estructuras de combustión. En el carbón disperso están ausentes concretamente 7 taxones del total de cortejo identificado: *Artemisia* sp., *Atriplex halimus*, *Chenopodiaceae*, *Erica* sp., *Fraxinus* sp., *Rhamnus/Phillyrea* sp. y *Tamarix* sp.

La representación porcentual de cada uno de estos taxones es muy desigual. La madera más utilizada como combustible fue, con mucha diferencia con respecto al resto, la de *Pinus halepensis*, que representa más del 57% del total del carbón analizado. El resto de los taxones, sin embargo, no alcanzan en ningún caso el 10% de presencia relativa en el histograma. Entre ellos destacan las monocotiledóneas, el madroño y la encina/coscoja (*Quercus ilex/coccifera*), que superan levemente el 5% del total del registro cada uno de ellos. Otros elementos más termófilos, como *Pistacia lentiscus* (3,68%) u *Olea europaea* (2,27%), no presentan, sin embargo, una gran predominancia en la secuencia.

Los fragmentos indeterminables, un total de 13, lo han sido fundamentalmente como consecuencia de la vitrificación de sus células en el plano transversal, alteración que se ha producido en un total de 7 fragmentos. El resto de fragmentos indeterminables lo han sido bien por tratarse de un nudo, por fisuras en la totalidad del plano transversal, por su fragilidad, o finalmente, como consecuencia de un tamaño insuficiente para la observación de sus rasgos anatómicos diagnósticos (tabla 4.65).

<table>
<thead>
<tr>
<th>CAUSAS DE INDETERMINACIÓN. CARBÓN DISPERSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitrificación</td>
</tr>
<tr>
<td>7</td>
</tr>
</tbody>
</table>

Tabla 4.65. Causas de indeterminación del carbón disperso de Jumilla Santa María 19.

El taxón más representado numéricamente, *Pinus halepensis*, lo es también desde el punto de vista de su presencia o no en las diferentes unidades estratigráficas analizadas, ya que sólo está ausente en dos de ellas. Le siguen Moncotyledoneae y Leguminosae, que aparecen en 7 unidades estratigráficas. En el extremo opuesto, otros elementos que poseen poca representación porcentual aparecen además muy esporádicamente distribuidos entre las diferentes unidades estratigráficas. Por ejemplo Coniferae,
Cistaceae, *Cistus* sp., *Punica granatum* o Rosaceae t. Maloideae sólo aparecen en una unidad estratigráfica cada uno de ellos (tabla 4.66).

<table>
<thead>
<tr>
<th>JUMILLA SANTA MARÍA 19 CARBÓN DISPERSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus halepensis</td>
</tr>
<tr>
<td>Pinus sp.</td>
</tr>
<tr>
<td>Juniperus sp.</td>
</tr>
<tr>
<td>Coniferæ</td>
</tr>
<tr>
<td>Monocotyledoneae</td>
</tr>
<tr>
<td>Arbutus unedo</td>
</tr>
<tr>
<td>Cistaceae</td>
</tr>
<tr>
<td>Cistus sp.</td>
</tr>
<tr>
<td>Ficus carica</td>
</tr>
<tr>
<td>Labiatae</td>
</tr>
<tr>
<td>Leguminosae</td>
</tr>
<tr>
<td>Olea europaea</td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
</tr>
<tr>
<td>Prunus sp.</td>
</tr>
<tr>
<td>Punica granatum</td>
</tr>
<tr>
<td>Quercus ilex/coccifera</td>
</tr>
<tr>
<td>Rosaceae t. Maloideae</td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
</tr>
<tr>
<td>Vitis vinifera</td>
</tr>
<tr>
<td>Indeterminado</td>
</tr>
<tr>
<td>Indeterminable</td>
</tr>
<tr>
<td>Nº DE TAXONES</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UE 2026</th>
<th>UE 2095</th>
<th>UE 2002</th>
<th>UE 2068</th>
<th>UE 2092</th>
<th>UE 2067</th>
<th>UE 2094</th>
<th>UE 2078</th>
<th>UE 2512</th>
<th>UE 2046</th>
<th>UE 2031</th>
<th>UE 2070</th>
<th>UE 2082</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>5</td>
<td>8</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>12</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

Tabla 4.66. Presencia-ausencia taxonómica en las diferentes unidades analizadas.

Hemos estudiado también el carbón disperso referido a la UE 2032, que rompe la estructura del patio de la casa islámica y parece definirse dentro del contexto cronológico de la segunda mitad del siglo XIII, en donde aparecen ya materiales cristianos. De esta unidad han sido analizados un total de 150 fragmentos, que presentan una variabilidad taxonómica mucho menor. Hemos identificado 9 taxones: *Pinus halepensis*, Monocotyledoneae, *Artemisia* sp., Compositae, *Erica* sp., Labiatae, Leguminosae, *Rosmarinus officinalis* e Indeterminable (tabla 4.67).

Entre ellos no se registra el gran predominio del pino carrasco que aparecía en los niveles islámicos, y sin embargo existe una gran preponderancia de los taxones arbustivos integrantes del sotobosque mediterráneo. Entre todos los elementos, las labiadas (Labiatae + *Rosmarinus officinalis*) suponen casi el 50% del total, las leguminosas un 20% y Monocotyledoneae está representado por un 16% del total. Sin embargo, *Pinus halepensis* sólo representa un 6,67% del registro. Se detectaron también
Capítulo IV. Resultados antracológicos

un total de 7 fragmentos indeterminables, cuya causa fue en todos ellos un alto grado de vitrificación de las células del plano transversal, en combinación con una elevada fisuración del mismo.

<table>
<thead>
<tr>
<th>TAXA</th>
<th>Nº</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus halepensis</td>
<td>10</td>
<td>6,67</td>
</tr>
<tr>
<td>Monocotyledoneae</td>
<td>24</td>
<td>16</td>
</tr>
<tr>
<td>Artemisia sp.</td>
<td>1</td>
<td>0,67</td>
</tr>
<tr>
<td>Compositae</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Erica sp.</td>
<td>2</td>
<td>1,33</td>
</tr>
<tr>
<td>Labiatae</td>
<td>39</td>
<td>26</td>
</tr>
<tr>
<td>Leguminosae</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
<td>34</td>
<td>22,67</td>
</tr>
<tr>
<td>Indeterminable</td>
<td>7</td>
<td>4,66</td>
</tr>
</tbody>
</table>

TOTAL 150 100

Tabla 4.67. Valores absolutos y relativos del carbón disperso asociado a niveles cristianos.

Dado el escaso número de fragmentos que han podido ser analizados, y sobre todo el hecho de que sólo contemos con una unidad estratigráfica asociada al período de ocupación cristiana, los datos obtenidos no son susceptibles de ser interpretados desde una perspectiva paleoecológica, ni son comparativamente relevantes en relación a los resultados obtenidos para los niveles islámicos.

En lo que concierne a las estructuras de combustión de carácter industrial y doméstico identificadas en este yacimiento, han sido objeto de este estudio en primer lugar los Hornos 1 y 2, cuyas características morfológicas han sido explicadas anteriormente. Además, se han estudiado también los Braseros 2, 6 y 8 y la “Acumulación de Desecho” (Leroi-Gourham 1973, Piquè 1999a, Soler 2003) en posición secundaria AD 2074, hallada dentro de la habitación principal, frente al horno 1, ya que parece estar asociada a las labores de mantenimiento y limpieza del mismo. Finalmente, se ha estudiado también el contenido carbonoso de dos estructuras de combustión domésticas (Hogar asociado a la casa 1, y Hogar 2510), cuyos resultados podrán compararse en general con los obtenidos en el complejo industrial.

En total, se han podido estudiar 936 fragmentos de carbón: 500 corresponden a los hornos 1 y 2, 166 estarían asociados al conjunto de los tres braseros analizados, 170 fragmentos pertenecientes a los hogares domésticos, y 100 asociados a la AD 2074. A
continuación se desglosan los datos numéricos obtenidos para cada una de estas estructuras.

El Horno 1 presenta la variabilidad más elevada de todas las estructuras. En este caso han sido estudiados un total de 200 fragmentos de carbón, que han ofrecido una lista taxonómica de 19 elementos (tabla 4.68), que presentan como taxón mayoritario Monocotyledoneae, con un 33,5% del total, seguido de *Pinus halepensis* (30%), *Pistacia lentiscus* (5,5%), Leguminosae (5%), *Vitis vinifera* (4%), *Pinus* sp. (3%), *Quercus ilex/coccifera* (2%), *Juniperus* sp. (1,5%), Rosaceae t. Maloideae (1,5%), Coniferae (0,5%), Chenopodiaceae (0,5%), *Erica* sp. (0,5%), Labiatae (0,5%), *Olea europaea* (0,5%), *Prunus* sp. (0,5%), *Punica granatum* (0,5%) y *Tamarix* sp. (0,5%). Aparecieron también 3 fragmentos indeterminados y 17 indeterminables.

Del Horno 2 han sido estudiados 300 fragmentos de carbón que, sin embargo, han proporcionado un listado taxonómico mucho menor, de tan solo 12 elementos (tabla 4.68). El taxón más representado vuelve a ser, como en el Horno 1, Monocotyledoneae, con un 39% de frecuencia relativa. Sin embargo, en esta ocasión las quenopodiáceas se constituyen como el segundo combustible más importante en el contenido del horno, ya que la especie *Atriplex halimus* y la familia Chenopodiaceae suman un 26,33% del total analizado (*Atriplex halimus*, 10,33%; Chenopodiaceae, 16%). Le siguen *Pinus halepensis* (14,67%), *Punica granatum* (14%), *Tamarix* sp. (1%), Leguminosae (0,67%), *Quercus ilex/coccifera* (0,67%), *Rhamnus/Phillyrea* sp. (0,67%), *Pistacia lentiscus* (0,33%) y *Vitis vinifera* (0,33%). Finalmente, 7 fragmentos fueron indeterminables.

En cuanto al primer brasero estudiado, el Brasero 2, han sido analizados un total de 40 fragmentos de carbón, y se han identificado 7 taxones (tabla 4.68), entre los que domina claramente *Pinus halepensis* (80%), mientras que el resto de los elementos están por debajo del 5%, se trata de Leguminosae (5%), *Pistacia lentiscus* (2,5%), *Prunus* sp. (2,5%), *Quercus ilex/coccifera* (2,5%) y *Rosmarinus officinalis* (2,5%). Dos fragmentos fueron indeterminables.

El Brasero 6 ofreció 5 taxones a partir del estudio de 120 fragmentos de carbón (tabla 4.68). Su contenido está dominado en un 90% por las quenopodiáceas, ya que *Atriplex halimus* presenta un 82,5% y Chenopodiaceae un 7,5%. El resto de elementos, Monocotyledoneae (3,33%) y *Pinus* sp. (0,83%) apenas tienen representación. Finalmente, 7 fragmentos resultaron ser indeterminables.
Tabla 4.68. Valores absolutos y porcentuales del carbón estudiado en las estructuras de combustión.

<table>
<thead>
<tr>
<th>TAXA</th>
<th>HORNO 1</th>
<th>HORNO 2</th>
<th>BRASERO 2</th>
<th>BRASERO 6</th>
<th>BRASERO 8</th>
<th>CASA 1</th>
<th>2510</th>
<th>AD 2074</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus halepensis</td>
<td>60</td>
<td>30</td>
<td>44</td>
<td>14,67</td>
<td>32</td>
<td>80</td>
<td>1</td>
<td>16,67</td>
</tr>
<tr>
<td>Pinus sp.</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>0,83</td>
<td>1</td>
<td>16,67</td>
<td>41</td>
<td>82</td>
</tr>
<tr>
<td>Juniperus sp.</td>
<td>3</td>
<td>1,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coniferae</td>
<td>1</td>
<td>0,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monocotyledoneae</td>
<td>67</td>
<td>33,5</td>
<td>117</td>
<td>39</td>
<td>4</td>
<td>3,33</td>
<td>1</td>
<td>16,67</td>
</tr>
<tr>
<td>Arbutus unedo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Atriplex halimus</td>
<td>31</td>
<td>10,33</td>
<td>99</td>
<td>82,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chenopodiaceae</td>
<td>1</td>
<td>0,5</td>
<td>48</td>
<td>16</td>
<td>9</td>
<td>7,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cistaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Cistus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Erica sp.</td>
<td>1</td>
<td>0,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ficus carica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>16,67</td>
</tr>
<tr>
<td>Fraxinus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Labiatae</td>
<td>1</td>
<td>0,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Leguminosae</td>
<td>10</td>
<td>5</td>
<td>2</td>
<td>0,67</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>3,33</td>
</tr>
<tr>
<td>Olea europaea</td>
<td>1</td>
<td>0,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
<td>11</td>
<td>5,5</td>
<td>1</td>
<td>0,33</td>
<td>1</td>
<td>2,5</td>
<td>90</td>
<td>75</td>
</tr>
<tr>
<td>Prunus sp.</td>
<td>1</td>
<td>0,5</td>
<td>1</td>
<td>2,5</td>
<td>1</td>
<td>16,67</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Punica granatum</td>
<td>1</td>
<td>0,5</td>
<td>42</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quercus ilex/coccifera</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>0,67</td>
<td>1</td>
<td>2,5</td>
<td>8</td>
<td>6,67</td>
</tr>
<tr>
<td>Rhamnus/Phillyrea sp.</td>
<td>2</td>
<td>0,67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Rosaceae t. Maloideae</td>
<td>3</td>
<td>1,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamarix sp.</td>
<td>1</td>
<td>0,5</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitis vinifera</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>0,33</td>
<td>1</td>
<td>16,67</td>
<td>4</td>
<td>3,33</td>
</tr>
<tr>
<td>Indeterminado</td>
<td>3</td>
<td>1,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indeterminable</td>
<td>17</td>
<td>8,5</td>
<td>7</td>
<td>2,33</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>5,83</td>
</tr>
<tr>
<td>TOTAL</td>
<td>200</td>
<td>100</td>
<td>300</td>
<td>100</td>
<td>40</td>
<td>100</td>
<td>120</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabla 4.68. Valores absolutos y porcentuales del carbón estudiado en las estructuras de combustión.
El Brasero 8, por su parte, apenas tenía contenido antracológico, por lo que sólo hemos podido analizar 6 fragmentos, cada uno de ellos de un taxón distinto: Pinus halepensis, Pinus sp., Monocotyledoneae, Ficus carica, Prunus sp., Vitis vinifera (tabla 4.68).

El Hogar asociado a la casa islámica ha ofrecido un total de 50 fragmentos de carbón (tabla 4.68). La lista taxonómica ha sido muy reducida, ya que 41 fragmentos, el 82% del total corresponde a Pinus halepensis, mientras que el resto de los elementos apenas tienen representación, como los tres fragmentos de Labiatae (6%), dos de Ficus carica (4%), y un único fragmento de Arbutus unedo (2%) y Olea europaea (2%). Un total de 2 fragmentos fueron indeterminables.

El Hogar 2510 presenta 7 taxones a partir del estudio de 120 carbones (tabla 4.68). En esta ocasión el taxón dominante es Pistacia lentiscus (75%), seguido a mucha distancia del resto de los taxones: Pinus sp. (1,67%), Leguminosae (3,33%), Quercus ilex/coccifera (6,67%), Rhamnus/Phillyrea sp. (5%), Vitis vinifera (3,33%). Finalmente, 6 fragmentos fueron indeterminables.

Por último, la AD 2074 presenta una variabilidad taxonómica bastante elevada. Hemos estudiado 100 fragmentos cuyo registro aparece totalmente dominado por las labiadas, ya que Rosmarinus officinalis presenta un 33% del total del registro antracológico y la familia Labiatae un 29%, con lo que ambas suman un 62% del total. Sólo Monocotyledoneae (13%) supera el 10% del total analizado, seguido de otros taxones con menos representación como Pinus halepensis (6%), Cistaceae (5%), Ficus carica (3%), Fraxinus sp. (3%), Leguminosae (3%), Quercus ilex/coccifera (2%), Cistus sp. (1%) y Prunus sp. (1%) (tabla 4.68). Solamente uno de los fragmentos analizados presentaba un mal estado de conservación por lo que finalmente fue indeterminable.

A pesar de este tratamiento individualizado de los resultados cuantitativos de cada estructura, si realizamos una lectura general de los mismos observamos que Monocotyledoneae, con 202 fragmentos en el total de todas las estructuras estudiadas es el taxón más representado, seguido de las quenopodiáceas (Chenopodiaceae y Atriplex halimus), que suman 188 fragmentos. Pinus halepensis supone 184 fragmentos, y Pistacia lentiscus 103. Punica granatum, las labiadas (Labiatae y Rosmarinus officinalis), Leguminosae e incluso Vitis vinifera superan los 10 fragmentos identificados. El resto de taxa no llega en ningún caso a esta cantidad.

En el caso de las estructuras de combustión, sin embargo, es fundamental considerar con cierta cautela el valor porcentual de estos resultados, teniendo en cuenta en todo momento la naturaleza de cada estructura y los posibles criterios selectivos del combustible, que serán discutidos más adelante. En consecuencia, se ha considerado preferente el criterio de presencia-ausencia de cada taxón en las diferentes estructuras.
En este sentido, en el conjunto de las estructuras han podido ser identificados el total de los taxones definidos para Jumilla Santa María 19, a excepción de *Artemisia* sp. Éstos aparecen repartidos de manera dispares en cada una de ellas (tabla 4.69). Así, si atendemos al criterio cualitativo de presencia-ausencia de taxones, observamos que *Pinus* (*Pinus halepensis* + *Pinus* sp.) es el elemento más destacado, con presencia en todas las estructuras estudiadas, mientras que Monocotyledoneae está ausente de los hogares domésticos y de uno de los braseros, aunque es el taxón más representado en el caso de los dos hornos.

<table>
<thead>
<tr>
<th>TAXA</th>
<th>HORNO 1</th>
<th>HORNO 2</th>
<th>BRASERO 2</th>
<th>BRASERO 6</th>
<th>BRASERO 8</th>
<th>HOGAR CASA 1</th>
<th>HOGAR 2510</th>
<th>AD 2074</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus halepensis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juniperus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coniferae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monocotyledoneae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arbutus unedo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atriplex halimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chenopodiaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cistaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cistus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erica sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ficus carica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraxinus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labiatae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leguminosae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olea europaea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prunus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Punica granatum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quercus ilex/coccifera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhamnus/Phillyrea sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosaceae t. Maloideae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamarix sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitis vinifera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indeterminado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indeterminable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nº DE TAXONES</td>
<td>19</td>
<td>12</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>12</td>
</tr>
</tbody>
</table>

Tabla 4.69. Presencia-ausencia de taxones en las diferentes estructuras estudiadas.

En cuanto a la indeterminación de algunos fragmentos, las principales causas han sido la vitrificación, el elevado grado de fragilidad, los nudos, el tamaño insuficiente del
fragmento o finalmente, en el caso de uno de los carbones estudiados en el Horno 2 se trataba de una parte vegetativa indeterminable, en concreto la parte medular de una rama (tabla 4.70).

<table>
<thead>
<tr>
<th>CAUSAS DE INDETERMINACIÓN</th>
<th>ESTRUCTURAS DE COMBUSTIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitrificación</td>
<td>Fragilidad</td>
</tr>
<tr>
<td>Horno 1</td>
<td>5</td>
</tr>
<tr>
<td>Horno 2</td>
<td>2</td>
</tr>
<tr>
<td>Brasero 2</td>
<td>-</td>
</tr>
<tr>
<td>Brasero 6</td>
<td>3</td>
</tr>
<tr>
<td>Brasero 8</td>
<td>-</td>
</tr>
<tr>
<td>Hogar Casa 1</td>
<td>-</td>
</tr>
<tr>
<td>Hogar 2510</td>
<td>5</td>
</tr>
<tr>
<td>AD 2074</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabla 4.70. Causas de indeterminación en las estructuras de combustión.

IV.5.2.3. Interpretación de los resultados

Los resultados antracológicos que se acaban de describir serán interpretados desde una doble perspectiva. En primer lugar teniendo en cuenta las conclusiones que es posible obtener con respecto a la vegetación del entorno del yacimiento en el momento de ocupación del mismo. En segundo lugar, como punto más importante, se discute cuáles pudieron ser los criterios determinantes en la gestión del combustible leñoso, si existieron o no patrones selectivos en la recolección del combustible utilizado en las estructuras de combustión, y finalmente, si la imagen paleoecológica de este combustible concuerda con el resto de datos obtenidos, o si, por el contrario, la tónica general del registro es la sobre o infra representación de los taxones identificados.

IV.5.2.3.1. La vegetación en el entorno del yacimiento

Las evidencias arqueológicas halladas en la Calle Santa María 19 de Jumilla apuntan a que durante el siglo XII y la primera mitad del siglo XIII existió en este punto una actividad productiva de carácter artesanal-industrial cuya producción, sin embargo, no ha podido ser determinada hasta el momento. En cualquier caso, el funcionamiento periódico de las estructuras de combustión asociadas a este espacio productivo debió de exigir, sin duda, una intensa explotación del combustible leñoso de su entorno para poder ser alimentadas. El resultado de la dispersión de sus residuos en un espacio prolongado de tiempo puede aportar una imagen de los elementos fundamentales que
componían su cubierta vegetal. Como se ha comentado anteriormente, más adelante podremos valorar también cómo se inserta el contenido carbonoso de las estructuras de combustión en esta visión paleoecológica.

En términos globales, una primera diferenciación entre los diferentes elementos del grupo taxonómico identificado se sitúa en los distintos nichos ecológicos, todos ellos en las proximidades del asentamiento, en los cuales pudieron ser obtenidos los combustibles utilizados.

En primer lugar, el grupo mayoritario está constituido por los taxones propios de los pisos termo y mesomediterráneo, que tendrían su desarrollo en las zonas llanas y también en las elevaciones próximas al yacimiento. Se trataría de Pinus halepensis, Juniperus sp., Monocotyledoneae (en el caso de tratarse de gramíneas, por ejemplo), Arbutus unedo, Cistaceae, Cistus sp., Erica sp., Labiatae, Leguminosae, Pistacia lentiscus, Quercus ilex/coccifera, Rhamnus/Phillyrea sp., Rosaceae t. Maloideae y Rosmarinus officinalis.

El segundo grupo sería el de los taxones que, si bien pudieron pertenecer al grupo anterior en el caso de crecer espontáneamente en estas áreas, no es descartable que se tratara de variedades cultivadas o de alguna manera potenciadas para el consumo de sus frutos, un extremo que sin embargo la identificación antracológica no nos permite en última instancia definir. Se trata de Ficus carica, Punica granatum, Vitis vinifera, Prunus sp. y Olea europaea. La presencia de estos cultivos en las proximidades, sin embargo, es muy difícilmente valorable en términos cuantitativos, en tanto en cuanto la producción de alimentos es un aspecto condicionante en la no explotación de la leña de estas plantas de manera general, aunque sí sería utilizado como combustible el producto de las talas periódicas.

El tercer grupo estaría compuesto por especies asociadas a suelos de tipo salino como Atriplex halimus, Chenopodiaceae o Tamarix sp. Este tipo de suelos se presentan en la actualidad en zonas muy próximas al yacimiento, con una extensión bastante amplia. La composición vegetativa en estas circunstancias está limitada por las condiciones edáficas, por lo que es factible que las extensiones actualmente ocupadas por este tipo de vegetación, lo estuvieran también en el momento estudiado. No obstante, algunas especies de la familia Chenopodiaceae pudieron crecer también como ruderales asociadas a actividades antrópicas o suelos nitrificados.

Finalmente, el cuarto grupo estaría constituido por especies ribereñas que sugieren la existencia de cursos de agua permanentes o semipermanentes cercanos al yacimiento. En concreto, Fraxinus sp., aparecería principalmente como integrante de bosquetes galería, mientras que Monocotyledoneae (en el caso de tratarse de especies como Phragmites australis), y Tamarix sp. pudieron estar asociados a cursos de agua.

474
semipermanente como las ramblas con elevado grado de salinidad propias de estas zonas cálidas.

En el histograma de valores relativos elaborado a partir de los datos obtenidos del carbón disperso (fig. 4.109) es posible observar, en primer lugar, un fuerte desequilibrio porcentual que separa a *Pinus halepensis*, con un 57% del total del registro estudiado, del resto de los taxones representados, cuya presencia relativa no llega en ninguno de los casos al 10%. El uso masivo de esta especie como combustible sugiere que durante el siglo XII y la primera mitad del siglo XIII en el entorno del enclave existiría una vegetación dominada por pinares de pino carrasco que se presentarían muy aclarados, con una gran importancia de los elementos de un sotobosque marcadamente termófilo. El acceso a la madera sería considerablemente sencillo ya que este tipo de formación pudo desarrollarse en la zona llana donde se encuentra el yacimiento, así como en la cercana ladera sur del monte del castillo, a sólo 300 m del sitio, que en la actualidad se encuentra prácticamente desprovista de vegetación.

![Figura 4.109. Histograma antracológico de valores relativos del carbón disperso de Jumilla Santa María 19.](image)

La mayor parte de los elementos que conforman el cortejo florístico identificado son familias, géneros y especies comunes del sotobosque del pino carrasco en zonas mediterráneas de secas a semiáridas. Entre todas ellas destacan el lentisco y el
acebuche, que soportan bien condiciones de gran aridez. Además, las coscojas, los enebros y sabinas, algunas espinosas como espinos negros o aladiernos, y una gran cantidad de especies de la familia de las labiadas (entre las que destacarían los romeros), las cistáceas y las leguminosas serían muy comunes y abundantes en las proximidades del sitio.

Por otro lado, las monocotiledóneas fueron un recurso muy utilizado como combustible, de lo cual puede deducirse una fuerte presencia en el entorno natural. Sin embargo, no ha sido posible la diferenciación anatómica entre las diferentes especies que pudieron estar presentes en este lugar. Por una parte, en las zonas más degradadas, el bosque de *Pinus halepensis* estaría acompañado de espartales, como ocurre en la actualidad (fig. 4.110), (Alcaraz Ariza y Rivera Núñez 2006). Sin embargo, la gran proximidad del actual curso de la Rambla del Judío con respecto al yacimiento, a apenas 30 m de distancia, hace pensar también en la posibilidad de una explotación de monocotiledóneas asociadas a este curso de agua, como los carrizos.

![Figura 4.110. Imagen del pinar de pino carrasco acompañado de esparto en la sierra de Santa Ana, a unos 5 km del yacimiento (Foto: M. S. García).](image)

Aunque los rasgos anatómicos de su madera tampoco permiten la distinción entre las diferentes especies de quercíneas perennifolias, en esta zona debieron crecer también algunas encinas (*Quercus ilex*), aunque su presencia pudo ser muy escasa ya en estos momentos a tenor de los resultados en los que únicamente está representado por un 5,38% del total del registro. Esta especie se desarrolla en la actualidad a varios kilómetros del yacimiento, en algunos puntos de la Sierra del Carche, y en el norte de la
comarca del Altiplano, en las sierras de la zona de Yecla. Algunos elementos como el madroño, algunas rosáceas maloideas o los brezos pudieron acompañar a las manchas de encinar, y permanecer en las etapas de sustitución del mismo.

IV.5.2.3.2. La gestión del combustible leñoso. Procesos de selección e imagen paleoecológica del registro

Los datos obtenidos a partir del estudio antracológico de las estructuras de combustión permiten conocer ciertos aspectos sobre las pautas de comportamiento de los habitantes del asentamiento en cuanto al uso del combustible. Este estudio, sin embargo, ha estado siempre ligado a dos problemáticas fundamentales, y dependientes la una de la otra: de un lado, si existe una selección del combustible en función de diferentes criterios, y de otro, la representatividad o no de este tipo de registros en lo que atañe a la reconstrucción paleoambiental del entorno del yacimiento.

Ambos factores parecen ser, según la historiografía tradicional, irreconciliables: si se da una selección en la recogida del combustible, la interpretación paleoambiental no será válida, y sí, por el contrario, el registro es susceptible de ser interpretado desde un punto de vista ecológico, entonces, parece no tener cabida la consideración de un patrón selectivo del combustible.

Sin embargo, en realidad, ambos extremos han dependido habitualmente más de la tendencia interpretativa de la escuela que ha estudiado los datos, que de las propias características de los mismos. Aún más, si se asume que en muchas ocasiones los resultados pueden depender de numerosas variables, parece lógico admitir matizaciones en los dos sentidos, teniendo en cuenta cada caso particular. En esta ambivalencia se han interpretado los resultados obtenidos en las estructuras de combustión de Jumilla Santa María 19.

- Procesos de selección

Habitualmente se considera que la selección sobre los recursos leñosos en las estructuras de combustión aparece expresada antracológicamente en una gran pobreza taxonómica, como consecuencia de que su contenido obedece a las últimas quemas producidas en las mismas (Vernet 1973). Sin embargo, esta norma no se cumple siempre, de modo que en algunos estudios las estructuras de combustión presentan una diversidad taxonómica aceptable (Chabal 1991, De Haro Pozo 2000, Hasler *et al.* 2003).

En el caso de Santa María 19, los braseros y los hogares domésticos cumplirían el paradigma de la escasez (entre 5 y 7 taxones), mientras que, tanto los dos hornos, como
la AD 2074 presentan una relativa abundancia específica (12 taxones la AD 2074 y el Horno 2, y 19 taxones el Horno 1). Parece, además, que esta variabilidad no está en relación directa con el número de carbones estudiados, puesto que, por ejemplo, en el horno 1 se han analizado 100 fragmentos menos que en el 2, y sin embargo supera en 6 taxones a este último. Por otro lado, el brasero 6 y el hogar 2510 presentan también mucha menor variabilidad que la AD 2074, a pesar de que se han estudiado más fragmentos en ambas estructuras.

Por lo tanto, el criterio de la pobreza taxonómica como indicador de selección de combustible sería aplicable solamente a algunas estructuras, y no indica, necesariamente, procesos de selección como tales, sino, tal vez, usos poco prolongados de las estructuras (Pernaud 1992, Hasler et al. 2003). Por ello conviene tener en cuenta otras variables para valorar esta posible selección.

Otro argumento habitualmente utilizado para dilucidar si existen procesos de selección, es la comprobación de que dos o más estructuras de un mismo tipo, presentan una utilización de las especies cualitativa y cuantitativamente semejante. En este sentido, si comparamos entre sí cada una de las categorías representadas (hogares, braseros, hornos…) podemos hacer las siguientes observaciones:

![Figura 4.111. Comparación taxonómica entre los hogares domésticos.](image_url)
En el caso de los hogares domésticos (fig. 4.111), llama la atención el hecho de que no existe ningún tipo de coincidencia entre los taxones representados, de modo que en el hogar asociado a la casa 1 el combustible principal fue el pino carrasco, mientras que en el hogar del hogar 2510, fue el lentisco. En ambos casos los taxones principales se presentan con una gran diferencia sobre el resto de los elementos, que no superan en ningún caso el 10%. Esto sugiere, desde luego, una recolección oportunistica de la leña utilizada, además de, muy posiblemente, un uso de ambas estructuras de corta duración que no ha permitido la acumulación de una mayor cantidad de especies a través de los sucesivos usos.

Los braseros, por su parte, presentan un caso parecido, ya que apenas muestran similitudes taxonómicas (fig. 4.112). Los braseros 2 y 6, en los que se ha analizado un número significativo de carbones de carbones, no presentan ninguna coincidencia entre los elementos identificados, de manera que mientras que en el primero el combustible principal fue Pinus halepensis, con un 80% del total, en el brasero 6 lo fue Atriplex halimus, con un porcentaje similar. Sin embargo, en este caso estamos hablando de estructuras que pudieron ser en algún término secundarias, dependientes de los hornos excavados. No parece descabellado pensar que esto es verdaderamente así, en tanto en cuanto las especies representadas en los braseros, se corresponden todas ellas con las utilizadas en los hornos, con la salvedad de dos: Ficus carica y Rosmarinus officinalis (tabla 4.71).
Finalmente, de la comparación entre el Horno 1 y el Horno 2 (fig. 4.113) se desprenden conclusiones sensiblemente distintas, limitadas, eso sí, por el desconocimiento que se tiene sobre cuál sería su funcionalidad. Es evidente, dado el gran número de taxa identificados, que no existe un patrón selectivo determinista hacia una especie en concreto; también que el aprovisionamiento de material leñoso debió de regirse por criterios bastante aleatorios; y finalmente, que posiblemente su funcionamiento fue prolongado y no esporádico como en el caso de los hogares de tipo doméstico.

No obstante, se detecta una cierta predilección por Monocotyledoneae y Pinus halepensis, que, sin embargo, son también los taxones más representados en el carbón disperso, y que pudieron ser muy abundantes en el entorno, por lo que tampoco es posible pensar abiertamente en una selección relacionada directamente con la funcionalidad de los hornos. También es llamativo el uso de las quenopodiáceas, que se dan únicamente en las estructuras de tipo industrial (hornos y braseros) y no en las domésticas, ni tampoco han aparecido en el carbón disperso. Este uso pudo deberse a una gran abundancia de las mismas en el entorno, aunque no es descartable la

<table>
<thead>
<tr>
<th>TAXA</th>
<th>HORNOS</th>
<th>BRASEROS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus halepensis</td>
<td>■</td>
<td>■</td>
</tr>
<tr>
<td>Pinus sp.</td>
<td>■</td>
<td>■</td>
</tr>
<tr>
<td>Juniperus sp.</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td>Coniferae</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td>Monocotyledoneae</td>
<td>■</td>
<td>■</td>
</tr>
<tr>
<td>Atriplex halimus</td>
<td>■</td>
<td>■</td>
</tr>
<tr>
<td>Chenopodiaceae</td>
<td>■</td>
<td>■</td>
</tr>
<tr>
<td>Erica sp.</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td>Ficus carica</td>
<td></td>
<td>■</td>
</tr>
<tr>
<td>Labiatae</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td>Leguminosae</td>
<td>■</td>
<td>■</td>
</tr>
<tr>
<td>Olea europaea</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
<td>■</td>
<td>■</td>
</tr>
<tr>
<td>Prunus sp.</td>
<td>■</td>
<td>■</td>
</tr>
<tr>
<td>Punica granatum</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td>Quercus ilex/coccifera</td>
<td>■</td>
<td>■</td>
</tr>
<tr>
<td>Rhamnus/Phillyrea sp.</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td>Rosaceae t. Maloideae</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
<td></td>
<td>■</td>
</tr>
<tr>
<td>Tamarix sp.</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td>Vitis vinifera</td>
<td>■</td>
<td>■</td>
</tr>
</tbody>
</table>

Tabla 4.71. Comparación de los taxones representados en los hornos y los braseros.
posibilidad de que sus propias características como combustible, a las que nos referiremos más adelante, o las del proceso productivo para el que fueron utilizadas, determinaran su uso preferencial sobre otras plantas disponibles en el entorno.

La variabilidad que ofrecen los hornos no estaría en concordancia con el modelo interpretativo establecido por J.M. Pernaud (1992), que consideraba como “restrictivas” las estructuras relacionadas con actividades especializadas artesanales, dado que pueden mostrar una selección específica relacionada con la función de las mismas, frente a las “no restrictivas”, como es el caso de los silos o fosas, que han demostrado en algunos estudios presentar resultados coherentes con el carbón disperso (Pernaud 1992, Bernabeu y Badal 1990, García Martínez y Grau 2005). En la ferrería medieval de Oiola IV, L. Zapata (1997) comprueba esta “restricción” en el caso de los hornos de tostación y los de forja, en los que parece existir una predilección por la utilización del roble y algo semejante se da en el caso de los hornos especializados estudiados por Marguerie (2002) para la Bretaña francesa. En el caso de Jumilla las estructuras de combustión industriales no muestran claramente este tipo de práctica, e incluso, si se considera que la AD 2074 pudo tratarse de un vaciado puntual del horno 1, la lista taxonómica
aumentaría, ya que la AD 2074 presenta 5 taxones que no aparecen en el horno 1: Cistaceae, *Cistus* sp., *Ficus carica*, *Fraxinus* sp. y *Tamarix* sp, incidiendo aún más en la no selección de los componentes.

Por tanto, tampoco la comparación taxonómica entre cada una de las categorías muestra la existencia clara de un patrón selectivo entre las especies del entorno. Entonces, según los datos obtenidos, ¿existió algún tipo de criterio en la elección del combustible?

La base en la que se fundamentan las consideraciones acerca de la recolección selectiva de madera, es la suposición de que los grupos humanos, desde la Prehistoria, tenían un conocimiento de las propiedades de la vegetación, y, por ello, realizaban una selección de la misma en función del tipo de necesidad y de las propias características físico-químicas de la especie (Théry-Parisot y Meignen 2000, Théry-Parisot 2001), con cierta modulación por parte de factores socio-culturales (Smart y Hoffman 1988, Piqué 1999a). No obstante, algunos estudios sobre recolección de madera en comunidades indígenas actuales apuntan a que, a pesar de que el conocimiento de las propiedades de la madera existe en el grupo, esto no es óbice para que el criterio determinante en la recolección sea la preferencia por la madera muerta, o la que con más abundancia y proximidad se presenta en el entorno (Peyre De Fabrèges 1990, Auclair y Sghaier Zaaouri 1996, Benjaminsen 1996, Moutarde 2006), aunque en ocasiones con salvedades producto de la significación o creencias sociales sobre las especies (Peña-Chocarro *et al.* 2000, Zapata *et al.* 2003).

Sin embargo, el comportamiento de cada madera como combustible no depende únicamente de las características que le son propias a cada especie, sino que existen una gran cantidad de propiedades que dependen del estado puntual de cada individuo, algo difícilmente controlable a partir de los restos antracológicos.

Las muestras antracológicas no permiten saber, en primer lugar, cuál era el estado de humedad de la planta en el momento de su combustión, aspecto que incide directamente en comportamientos como la inflamabilidad, el poder calorífico, la temperatura y duración de las llamas y la duración del período de calcinación (Théry-Parisot 2001). Así, por ejemplo, la madera verde presenta un grado de humedad demasiado alto que disminuye considerablemente el grado de inflamabilidad de la especie con respecto al estado seco, mientras la madera alterada por insectos xilófagos, por el contrario, aumenta la inflamabilidad de la madera con respecto a maderas secas y sanas.

Por otro lado, también es difícil valorar la temperatura que pudo alcanzar el fuego producido por cada especie ya que aunque conocemos aspectos como el tipo de estructura en el que se produjo la combustión, no conocemos las condiciones meteorológicas puntuales en las que se desarrolló el proceso, ya que la temperatura y la humedad del ambiente son también factores decisivos en este sentido.
Conocemos, no obstante, algunas características que le son propias a cada especie en particular, partiendo de la premisa de un estado seco y no alterado:

Entre los combustibles más utilizados (más de un 10%) en las estructuras de combustión estudiadas se encuentran *Pinus halepensis*, Monocotyledoneae, *Pistacia lentiscus* y el grupo de las quenopodiáceas (Chenopodiaceae + *Atriplex halimus*).

Pinus halepensis es un buen combustible, ya que tiene un poder calorífico muy alto, en torno a los 4839 Kcal/Kg el inferior, y a 5138 Kcal/Kg el superior (fig. 4.114) (Théry-Parisot 2001, Domínguez Bravo et al. 2003), su grado de inflamabilidad es también muy alto durante casi todo el año (Elvira y Hernando 1989) y algunos estudios experimentales demuestran que el fuego que produce puede alcanzar hasta 800 °C (Soler 2003).

En lo que concierne a las monocotiledóneas, conocemos datos referidos al esparto (*Stipa tenacissima*), que apuntan a que se trata de una especie con una inflamabilidad muy elevada, sobre todo durante el verano, aunque su poder calorífico superior es de grado medio, de unas 4767 Kcal/Kg (Elvira y Hernando 1989), un valor no demasiado elevado si se compara con algunos de los taxones documentados en las estructuras de combustión (fig. 4.114), que superan holgadamente las 5000 Kcal/Kg.

Por su parte, *Pistacia lentiscus* puede ser considerado también como un buen combustible, aunque su madera no tiene un alto grado de inflamabilidad, sino que está considerada como medianamente inflamable (Elvira y Hernando 1989, Dimitrakopoulos y Papaioannou 2001). El poder calorífico superior se sitúa en torno a las 5000 Kcal/Kg, por lo que puede considerarse bastante elevado.

Finalmente, en lo que respecta a las quenopodiáceas, aunque no se han realizado estudios experimentales sobre las mismas, sí que habría que decir que han sido documentadas como combustible en algunos estudios antracológicos del sureste ibérico semiárido, donde crecen abundantemente, desde el Calcolítico (Rodríguez-Ariz 1992a, 1999, 2001, Carrión Marco 2004, 2005a, Grau 2007), si bien es cierto que sólo se conoce su asociación a estructuras de combustión de tipo especializado en el caso de Punta de los Gavilanes (García Martínez 2006). Una posible hipótesis sobre la utilización de estas plantas podría apuntar a que su composición química, con un alto contenido en sal, pudiera de alguna manera favorecer el proceso productivo desarrollado en los hornos. Sin embargo, desde un punto de vista teórico, al menos en lo que concierne a su inflamabilidad, es sabido que ciertos compuestos minerales, como el sodio y el potasio, favorecen la acumulación de humedad en el interior de la planta y como consecuencia de esto se produce un retraso del desprendimiento de gases inflamables y en consecuencia de la inflamabilidad de la planta (Guijarro Guzmán 2003,
Lin et al. 2008). Es posible, por tanto, que si se produjo una utilización preferencial e intencionada de estas plantas fuese más bien por la creencia de que se trataba de un buen combustible que por el hecho de que verdaderamente lo fuera. Aunque muy posiblemente su uso obedeció más a una gran presencia en el ambiente, que a una posible selección de estas especies como combustible.

El resto de los taxones, Juniperus sp., Arbutus unedo, Cistaceae (Cistus sp.), Erica sp., Labiatae (Rosmarinus officinalis), Leguminosae, Quercus ilex/coceifera, Rhamnus/Phillyrea sp., Rosaceae t. Maloideae, Tamarix sp., Fraxinus sp., Ficus carica, Olea europaea, Prunus sp., Punica granatum, y Vitis vinifera, fueron poco utilizados como combustible en estas estructuras de combustión (menos del 10%). Los datos que conocemos sobre la calidad como combustible de algunos de estos taxones minoritarios son los siguientes:

En lo que concierne al género Juniperus, especies como Juniperus oxycedrus o Juniperus phoenicea presentan un poder calorífico superior muy elevado (5392 Kcal/Kg y 5370 Kcal/Kg respectivamente) (fig. 4.114), aunque, sin embargo, su grado de inflamabilidad es de mediano a bajo (Elvira y Hernando 1989, Dimitrakopoulos y Papaioannou 2001).

Entre la familia Ericaceae se han hallado dos taxones: Arbutus unedo y Erica sp. Arbutus unedo es una especie medianamente inflamable, que tiene un poder calorífico superior muy elevado, 5113 Kcal/Kg, por lo que puede considerarse como un buen combustible. Por otro lado, las especies del género Erica como Erica arborea o Erica multiflora poseen el poder calorífico superior más elevado de cuantos taxones han sido identificados en las estructuras de combustión de este yacimiento, con valores superiores a las 5700 Kcal/Kg (fig. 4.114). En cuanto a su inflamabilidad potencial, Erica arborea es muy inflamable durante todo el año, mientras que Erica multiflora presenta un grado de inflamabilidad menor (Elvira y Hernando 1989).

En cuanto a la familia de las cistáceas, nos detendremos en el género que ha podido ser diferenciado: Cistus sp. que, sin embargo, muestra diferencias entre sus diferentes especies de manera que, por ejemplo, Cistus ladanifer presenta un grado de inflamabilidad muy elevado sobre todo en el período estival, frente a otras especies como Cistus laurifolius o Cistus albidus que son menos inflamables (Elvira y Hernando 1989).

Por otro lado, en lo que concierne a las labiadas, y en particular a la especie que ha sido identificada, Rosmarinus officinalis, se trata de una planta que posee una gran cantidad de aceites esenciales y otros compuestos orgánicos que adelantan su punto de inflamabilidad en los momentos del año en que son segregados. El romero es, en este sentido, un excelente combustible, ya que posee una inflamabilidad muy elevada.
durante todo el año y un poder calorífico superior muy elevado, de 5546 Kcal/Kg (fig. 4.114).

Es difícil definir la calidad de la familia de las leguminosas como combustible pues presenta una gran cantidad de géneros y especies, de características combustibles muy diversas, así, mientras el género Cytisus tiene un poder calorífico elevado (5599 Kcal/Kg la especie Cytisus multiflorus, por ejemplo) pero un grado de inflamabilidad de mediano a bajo, el género Anthyllis tiene un poder calorífico bajo, pero una inflamabilidad muy elevada sobre todo en el verano (Elvira y Hernando 1989).

Por su parte, Quercus ilex y Quercus coccifera son especies bastante inflamables (Elvira y Hernando 1989), aunque no tienen un poder calorífico muy elevado, ya que el superior se sitúa en 4817 Kcal/Kg en el caso de Quercus ilex y en 4846 Kcal/Kg en el caso de Quercus coccifera (fig. 4.114), mientras que en condiciones al aire libre su rendimiento se encuentra entre 4146 Kcal/Kg (Quercus ilex) y 4170 Kcal/Kg (Quercus coccifera) (Théry-Parisot, 2001). Algunas pruebas experimentales han comprobado que la temperatura alcanzada en un hogar alimentado con esta especie no supera normalmente los 450 ºC (Soler 2003), aunque por lo general, la densidad de la madera de Quercus, sobre todo de las especies caducifolias, proporciona un fuego duradero que ha hecho que sea seleccionado preferentemente como combustible en yacimientos de diversa índole y cronología (Chabal 1995, Zapata 1997, Marguerie 2002, 2003, Von Burg y Pillonel 2003).

En lo que concierne al taxón Rhamnus/Phillyrea sp., las especies del género Phillyrea son, en general, mejores combustibles que las del género Rhamnus (fig. 4.114), ya que, por ejemplo, Phillyrea angustifolia tiene un poder calorífico elevado, (5459 Kcal/Kg el superior) y una inflamabilidad muy alta, mientras que, de otro lado, la especie Rhamnus lycioide s tiene un menor poder calorífico (4809 Kcal/Kg) y su inflamabilidad es de grado medio (Elvira y Hernando 1989).

Del taxón Fraxinus sp. sabemos que tiene un poder calorífico bajo, que se sitúa en 4662 Kcal/Kg en su rango superior (fig. 4.114), mientras que el inferior, esto es, en condiciones al aire libre, alcanza los 4335 Kcal/Kg (Théry-Parisot 2001).

En cuanto a los taxones que pudieron ser cultivados en los alrededores del yacimiento, es bien conocido que Ficus carica no es un buen combustible ya que su madera es de muy mala calidad, y produce gran cantidad de humo durante su combustión (López González 2001). Tampoco Olea europaea puede ser considerado como un combustible excelente ya que su poder calorífico no es muy elevado (el superior es de 4956 Kcal/Kg) y tampoco es muy inflamable. Finalmente, en cuanto al género Prunus, sabemos que Prunus avium tiene un poder calorífico más bajo de todos los taxones representados en la fig. 4.114.
Figura 4.114. Poder Calorífico Superior de algunas especies que pudieron encontrarse en el entorno del yacimiento (según los valores aportados por Elvira y Hernando 1989 y Théry-Parisot 2001).

En definitiva, los datos obtenidos para las estructuras de combustión de Jumilla Santa María 19 no permiten demostrar que las características intrínsecas de las plantas definieran de manera determinante su uso como combustible en el complejo industrial-artesanal definido. No existe, según estos resultados, una relación directa entre “mejor combustible-mayor utilización”, en el caso de Santa María 19, ya que, algunas especies muy poco utilizadas, como los brezos, son excelentes combustibles, tanto por su poder calorífico como por su inflamabilidad, y su aprecio se ha comprobado en ocasiones desde una perspectiva etnológica (Peña-Chocarro et al. 2000, Zapata et al. 2003).

Por tanto, todos los datos del registro obtenido nos conducen a concluir que no se dan procesos selectivos en la recogida de leña para la alimentación de las estructuras industriales de Santa María 19. El criterio primordial de preferencia sería entonces el de la disponibilidad y abundancia de determinadas especies en el ambiente, de manera que serían más recolectadas aquellas especies que con más frecuencia se encontraran en el entorno de este lugar. Este criterio vendría condicionado por la relación esfuerzo-rendimiento en la recogida de las mismas, ya que existiría una preferencia por las ramas
muertes caídas en el suelo frente al esfuerzo que supone la tala de las mismas, y también por la madera para la obtención de la cual fuera necesario un menor esfuerzo en el desplazamiento, menor distancia y menor desnivel con respecto al punto de partida de los recolectores de leña.

En este sentido, parece que los resultados de Jumilla Santa María 19 estarían en consonancia con la propuesta clásica de Shackleton y Prins (1992) sobre la “ley del mínimo esfuerzo”, que apunta a que este principio está activo en condiciones de escasez de disponibilidad de recursos leñosos, anulándose cuando existe una gran abundancia de los mismos, situación en que la recolección pasa a depender de criterios selectivos. Serían, pues, los condicionantes de tipo ambiental como la escasez de masa boscosa, los que en última instancia definieran los patrones de obtención de recursos leñosos por parte del grupo que habitaba este enclave.

- Imagen paleoecológica del contenido de las estructuras de combustión

Según lo que se acaba de exponer, por tanto, la conclusión en cuanto a la selección de combustible es que ésta no se ve reflejada en el contenido antracológico de las estructuras de combustión estudiadas. Entonces, de acuerdo con el punto de partida teórico en el que nos basamos, los resultados obtenidos deberían ser coherentes, al menos cualitativamente, desde un punto de vista paleoambiental.

En este sentido, el elevado número de fragmentos que han podido estudiarse asociados a las estructuras de combustión y la riqueza taxonómica obtenida, en comparación con la escasez del carbón disperso, hacen que cualitativamente la imagen de la vegetación que proporcionan las estructuras en su conjunto sea aún más rica que la obtenida a través de la lectura del carbón disperso, ya que aparecen representados un mayor número de taxones. El carbón disperso no es capaz de reflejar, en este caso, la relevancia que ciertos taxones debieron tener en el entorno ya que no recoge ningún taxón que represente a la vegetación halófila, como sí sucede en el carbón concentrado, en donde tienen una gran representación las quenopodiáceas (Chenopodiaceae + Atriplex halimus) y en menor porcentaje también aparece Tamarix sp. En segundo lugar, en el carbón disperso no están representados los taxones que pudieron formar parte del bosque-galería, como Fraxinus sp. y el ya referido Tamarix sp.

Por otro lado, en lo que respecta a la valoración cuantitativa del registro, el estudio que Pernaud (1992) llevó a cabo sobre el yacimiento de Carrousel (París), concluyó, tras la identificación de 25 taxones, que el análisis antracológico de sucesivas estructuras “no restrictivas”, en combinación con otros datos como los estadísticos o los aportados por la palinología, pueden permitir validar no sólo cualitativamente, sino también
porcentualmente, los resultados expresados en su registro, sin la necesidad de contar con datos procedentes de los niveles de hábitat (carbón disperso).

En el caso de Jumilla, para valorar en qué medida los datos del carbón concentrado son cuantitativamente coherentes con los obtenidos del carbón disperso se han reunido todos los resultados, y elaborado un histograma conjunto (fig. 4.115) en el que se comparan los valores porcentuales de cada taxón. La intención es evaluar si las conclusiones que se desprenden de la lectura cuantitativa de los datos arrojados por el conjunto de las estructuras de combustión están en concordancia o por el contrario diferien de la idea que sobre la composición de la vegetación sugerían los resultados del carbón disperso.

![Figura 4.115. Comparación taxonómica (en porcentajes) entre el carbón disperso y concentrado.](image)

El principal elemento arbóreo que destaca porcentualmente en el carbón concentrado es, como en el disperso, *Pinus halepensis*, aunque, sin embargo, no es el taxón más representado, sino que Monocotyledoneae aparece claramente sobrerrepresentado en comparación con los valores que arrojaba el carbón disperso, debido a su gran presencia...
Recursos forestales en un medio semiárido.

Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

en los hornos 1 y 2. Esta sobrerepresentación podría dar una idea que difiere de la imagen obtenida a través del carbón disperso, ya que sugeriría una mayor degradación del entorno, con la presencia de grandes extensiones de gramíneas salpicadas con algunos ejemplares de pino carrasco. Esta gran abundancia de monocotiledóneas puede también hablar de una intensa explotación de la vegetación de los márgenes de ramblas o ríos, si consideramos la posibilidad de que se trate de este grupo de monocotiledóneas.

Los valores porcentuales del carbón concentrado apuntan también a que existiría en el entorno una fuerte presencia de quenopodiáceas, el tercer elemento más representado porcentualmente, que, sin embargo, no recoge el carbón disperso, en donde no hemos hallado ni un solo fragmento correspondiente a esta familia. A través del carbón concentrado, pues, se podría entender que en las proximidades de este sitio existirían extensiones considerables de suelos salinos y yesosos o bien de ambientes nitrificados en donde pudieran crecer algunas de las especies de esta familia como ruderales.

Con la excepción de estos dos casos de sobrerepresentación, sin embargo, la imagen global que ofrece el combustible de las estructuras de combustión se corresponde, en general, con los resultados propuestos a través del estudio del carbón disperso, en tanto en cuanto la formación fundamental seguiría siendo un pinar de pino carrasco, con un importante sustrato arbustivo de carácter termófilo.

Todo ello conduciría a la conclusión de que el análisis de un elevado número de estructuras, en las cuales no existen procesos de selección bien atestiguados, puede reflejar cierta coherencia, no sólo cualitativa, sino también cuantitativa sobre las formaciones vegetales predominantes en el entorno del yacimiento estudiado.
CAPÍTULO V:
SÍNTESIS GENERAL: SECUENCIA DE LA VEGETACIÓN
Y USOS DE LOS RECURSOS LEÑOSOS
EN EL SURESTE DE LA PENÍNSULA IBÉRICA
DESED LA EDAD DEL BRONCE HASTA ÉPOCA MEDIEVAL.
INSERCIÓN DE LOS RESULTADOS EN SU CONTEXTO REGIONAL
V.1. Secuencia de la vegetación en el Sureste de la Península Ibérica desde la Edad del Bronce hasta época medieval

El Holoceno, que convencionalmente se inicia en torno al 10000 BP, supuso la instalación en todo el ámbito mediterráneo de un clima benigno y estable, tras la última pulsación fría tardiglaciar registrada en el Dryas Reciente (c. 11000-10500 BP), que había generado la expansión de formaciones esteparias en toda la cuenca. Este nuevo periodo viene marcado por la instalación progresiva del clima mediterráneo en un gradiente latitudinal de Sur a Norte (Jalut et al. 1997), que tiene una respuesta también latitudinal en la vegetación peninsular (Parra Vergara 1993), y por un aumento de las precipitaciones y de las temperaturas, que alcanzan su máximo en torno al 8500-7500 BP (García Antón et al. 2002). Durante las diferentes etapas climáticas del Holoceno se habrían producido cambios en la composición de los bosques mediterráneos. En dominio continental europeo, esta evolución se ha descrito comenzando con el dominio de una vegetación preforestal (Preboreal: 10000-8900 BP), seguido de una etapa de máxima extensión forestal (Boreal: 8900-7500 BP y Atlántico: 7500-4500 BP), hasta la expansión y dominio de formaciones de matorral (finales del Atlántico, Subboreal: 4500-2800 BP y Subatlántico: desde 2800 BP hasta la actualidad) (Badal y Roiron 1995).

En términos globales, durante todo el Holoceno la vegetación de la fachada mediterránea peninsular registra una dialéctica frondosa-conífera, marcada por numerosas etapas de transición. Grosso modo, habría existido un dominio de formaciones de Quercus durante las etapas de mayor humedad y bonanza térmica, mientras que las fases más xéricas y de mayor rigor climático estuvieron caracterizadas por el desarrollo mayoritario de formaciones de coníferas, especialmente de Pinus, que durante las etapas húmedas estaban constreñidas a las grandes alturas. En el Sureste peninsular, donde se detecta un componente xerófita durante todo el Cuaternario (Carrión et al. 2009a), los bosques esclerófilos con presencia mayoritaria de Olea europaea var. sylvestris y Pistacia lentiscus presentan un dominio entre el 8000-4000 BP. Este límite supone el comienzo en el Sureste de un proceso de aridificación ambiental y estepización del paisaje, agravado sobre todo a partir del 3000 BP por la influencia antrópica sobre el medio (García Antón et al. 2002).

V.1.1. Síntesis de los resultados antracológicos

La secuencia de la vegetación establecida a partir de los estudios presentados en esta tesis doctoral se centra en esta última etapa del Holoceno, comenzando en torno al 3800 BP. Se encuadra, por tanto, dentro de una dinámica fuertemente influenciada por la
actividad humana como condicionante fundamental en la configuración paisajística local y regional, caracterizada por la preponderancia de formaciones vegetales secundarias. La secuencia cronocultural de los registros antracológicos estudiados presenta una amplitud comprendida entre la Edad del Bronce y la época medieval (fig. 5.1). La Edad del Bronce es estudiada a partir de los resultados antracológicos de la Fase Gavilanes IV (KIA-32355(2033-25-1): 3730 ± 30 BP; KIA-32366(1743-23-1): 3385 ± 35 BP y KIA-32357(1597-25-1): 3370 ± 40 BP) y del Barranco de la Viuda, cuya ocupación tuvo una duración aproximada de 100 años según las dataciones radiocarbónicas disponibles (KIA-35570: 3465 ± 35 BP (1920-1680 cal BC 2σ) y KIA-35569: 3400 ± 35 BP (1840-1640 cal BC 2σ). También se han obtenido datos desde el siglo VII a.C. hasta el siglo I a.C. a partir de las fases subsiguientes de la Punta de los Gavilanes: Gavilanes III (ss. VII-VI a.C.), Gavilanes II (ss. IV-III a.C.) y Gavilanes I (ss. II-I a.C.). Los aspectos paleoambientales del mundo romano en torno al siglo I d.C. son estudiados a partir del análisis del combustible asociado al Balneario Romano de Archena. Sin embargo, en esta referencia a la secuencia de la vegetación no se han incluido los materiales de construcción del Teatro Romano de Cartagena, que no ofrecen información en este sentido. Finalmente, los resultados presentan un hiato entre la época romana y medieval, que es estudiada a partir del combustible asociado al complejo doméstico y artesanal de la calle Santa María 19 de Jumilla (ss. XII-XIII).

Figura 5.1. Cronología de los yacimientos estudiados.

Las consideraciones acerca de los rasgos paleoambientales en cada uno de los yacimientos no sólo obedecen a esta diacronía cronológica, sino también a la amplitud de su dispersión espacial en el contexto del Sureste de la Península Ibérica. En este
sentido, uno de los condicionantes fundamentales en el desarrollo de la vegetación de esta zona es el estrés hídrico al que ésta se ve sometida en función de las variaciones en el índice de humedad ambiental, según el régimen de precipitaciones anuales y la evapotranspiración. Por otro lado, aspectos como la altitud o la composición de los suelos serían también primordiales en la caracterización paleoecológica del entorno de los yacimientos.

En el caso de la Punta de los Gavilanes estos condicionantes serían su proximidad al mar y su nula altitud (6,5 m.s.n.m.) como factores de atemperamiento del clima, y la existencia de suelos salinos como limitadores del tipo de vegetación. Por lo que concierne al Barranco de la Viuda, su vegetación estaría condicionada por una mayor lejanía de la costa, ya que se ubica en una sierra prelitoral, y por una altitud más elevada (casi 400 m.s.n.m.). En cuanto al Balneario Romano de Archena, el factor fundamental en la configuración del paisaje sería la presencia a pocos metros del cauce del Río Segura, que produciría un aumento de la humedad ambiental característico del microclima ribereño. Por lo que concierne al yacimiento situado en la Calle Santa María 19 de Jumilla, su altitud y la continentalidad de su clima serían los aspectos más remarcables como determinantes de la configuración de su tapiz vegetal.

Para la Edad del Bronce la Fase IV de Punta de los Gavilanes (Fase Antracológica I) apunta a que la vegetación característica de la zona costera de Mazarrón estuvo dominada ya desde estos momentos por un matorral mediterráneo esclerófilo, compuesto fundamentalmente por *Pistacia lentiscus* y *Olea europaea* var. *sylvestris*, en convivencia con elementos arbóreo-arbustivos de óptimo norteafricano, y con xerófitos indicadores de condiciones de aridez ambiental. En este contexto, el estrato arbóreo fue prácticamente inexistente, apareciendo de manera esporádica algunos ejemplares de *Pinus halepensis* y *Pinus pinea/pinaster*, si bien en las zonas resguardadas todavía pudo permanecer algún ejemplar aislado de *Quercus* perennifolio. La vegetación de las zonas salinas y de las ramblas estuvo marcada por el desarrollo masivo de comunidades formadas por numerosas especies de la familia Chenopodiaceae y algunos arbolillos del género *Tamarix*. Sin embargo, no se ejerció una fuerte selección sobre estos elementos halófilos para el desarrollo de las actividades domésticas y subsistenciales, posiblemente debido a la presencia suficiente de especies de matorral mediterráneo.

En el Barranco de la Viuda, sin embargo, los resultados antracológicos obtenidos para la Edad del Bronce muestran una menor restricción de la cobertura arbórea, que estaría dominada completamente por *Pinus halepensis*, junto con otros elementos del bosque mediterráneo esclerófilo, como *Olea europaea* var. *sylvestris* y *Pistacia lentiscus*, además de algunos xerófitos como *Ephedra* y Chenopodiaceae, y especies de óptimo norteafricano como *Periploca angustifolia* y cf. *Tetraclinis articulata*. Se trataría, por tanto, de una composición forestal muy similar a la registrada en la Fase IV de Punta de los Gavilanes, aunque con un mayor desarrollo del componente arbóreo con respecto a
este yacimiento y con respecto también al que existe actualmente en la zona. Además, en Barranco de la Viuda destaca la escasez de explotación de elementos de ribera, que denota posiblemente un deterioro de la cuenca del Guadalentín y de sus ramblas tributarias ya en este momento, al tiempo que una no preferencia por parte de los habitantes del enclave.

Durante la etapa de ocupación protohistórica de la Punta de los Gavilanes (ss. VII-VI a.C.), que forma parte de la Fase Antracológica I, no se aprecian grandes cambios en la composición de la vegetación expresada a través del combustible leñoso. No obstante, se constata una mayor recurrencia a las especies halófilas del entorno para el desarrollo de las actividades productivas relacionadas con la metalurgia que comienzan a constatarse en el enclave.

Por lo que respecta a la vegetación en esta zona entre los siglos IV-III a.C. (Gavilanes II) y II-I a.C. (Gavilanes I), la Fase Antracológica II establecida en el diagrama antracológico detecta una modificación entre la importancia de los componentes florísticos, de manera que esta fase supone un fuerte crecimiento de la presencia de vegetación halófila como combustible. Esto es debido a la gran actividad productiva de carácter metalúrgico que se desarrolla en la factoría Gavilanes II que incrementaría el oportunismo y rebajaría los procesos selectivos en la recogida de leña. Además, en la Fase Antracológica II se detecta una progresiva disminución de los elementos de sotobosque de carácter mediterráneo, y particularmente de aquéllos menos resistentes a la xericidad en función de un aumento de taxones de sustitución como Juniperus.

El final de la secuencia de la Punta de los Gavilanes viene seguido por los resultados antracológicos obtenidos para el Balneario Romano de Archena hacia el siglo I d.C. La degradación que se constata en los últimos momentos de ocupación de la Punta de los Gavilanes sería algo menor en la Vega Media del Río Segura, donde los resultados del Balneario Romano de Archena presentan para esta zona en el siglo I d.C. un paisaje dominado por un pinar de pino carrasco, muy aclarado, en el que tendrían gran protagonismo una gran cantidad de elementos arbustivos termófilos, como el lentisco o el acebuche. La presencia de carrascas o coscojas en el entorno, sería menos rara que en la zona costera, pero también minoritaria, y reducida a zonas resguardadas de ciertas elevaciones, junto con otros elementos como Buxus, Arbutus unedo o Pistacia terebinthus. Además, a partir de estas cronologías se percibe ya una cierta organización del territorio en función del desarrollo de cultivos. En el caso de Archena éstos serían entre otros la higuera, Prunus, Punica granatum, y sobre todo el olivo, que pudo ser aprovechado para la elaboración de aceite en la almazara identificada en el yacimiento. Finalmente, destaca el hecho de que exista una buena conservación del bosque de ribera, que estaría formado sobre todo por elementos como álamos, tarayes, adelfas y carrizos, aunque crecerían todavía en los márgenes del río Segura otros árboles como fresnos u olmos. Esta buena conservación contrasta con las evidencias de degradación...
de la cuenca subsidiaria del Guadalentín que se pone de manifiesto en el estudio del Barranco de la Viuda desde la Edad del Bronce. Las causas pudieron deberse al mantenimiento de un cauce permanente en el primero de los casos, frente a una progresiva desecación y salinización del curso del Guadalentín, que posiblemente disminuyera su caudal y tendiera a la semipermanencia. De manera excepcional es reseñable que en el Balneario Romano de Archena hayan aparecido fragmentos carbonizados de haya (*Fagus sylvatica*), que se han interpretado como un objeto traído de fuera y posteriormente quemado, posiblemente un mueble.

A partir de este trabajo, se ha podido dilucidar el estado de la vegetación en el entorno de Jumilla durante los siglos XII y XIII. El estudio antracológico del yacimiento excavado en la Calle Santa María, 19, sugiere que existiría una vegetación ya bastante degradada, que presenta la misma tendencia observada para todas las secuencias estudiadas en el Sureste durante el periodo Subatlántico. La formación principal sería la de un pinar de pino carrasco, abierto, con un sotobosque esclerófilo compuesto principalmente por especies como el lentisco, y otras como los acebuches, enebros o sabinas, cistáceas, leguminosas, o también madroños y serbales o majuelos. Las zonas más degradadas estarían cubiertas, como ocurre en la actualidad, por espartales, asociados también al pinar. Se observa, además, la importancia de la vegetación halófila y halonitrófila del entorno, que crecería en suelos salinos y algunas especies claramente asociadas a los bordes de caminos y cultivos. Por otro lado, la escasa presencia de elementos de bosque-galería (*Fraxinus*, *Tamarix* y Monocotyledoneae) indicaría el poco desarrollo de los cursos de agua próximos. Finalmente la presencia de cultivos (*Ficus carica*, *Punica granatum*, *Vitis vinifera*, *Prunus* sp. y *Olea europaea*) denota la importancia productiva del terreno, y una organización del territorio que estaría constituida por campos de cultivo en las zonas llanas más próximas al enclave, y el desarrollo de la vegetación forestal en zonas elevadas o más alejadas del núcleo de población.

V.1.2. La vegetación del cuadrante Sureste peninsular a partir de otras secuencias paleobotánicas

En este apartado se realiza un recorrido por los procesos acontecidos en la vegetación del cuadrante sureste peninsular desde los comienzos de esta influencia transformadora del medio, a partir de la instalación de las sociedades productoras del Neolítico. Así, esta síntesis se centrará en el análisis de las principales secuencias antracológicas y polínicas contextualizadas en los períodos climáticos Atlántico, Subboreal y Subatlántico, desde aproximadamente el 7500-7000 BP, insertando los datos obtenidos en este trabajo en la dinámica descrita para todo el ámbito regional. Las secuencias nombradas en el texto aparecen reflejadas en la figura 5.2.
Capítulo V. Síntesis general. Secuencia de la vegetación y usos de los recursos leñosos en el Sureste de la Península Ibérica desde la Edad del Bronce hasta época medieval. Inserción de los resultados en su contexto regional

Figura 5.2. Situación de las secuencias citadas en el texto.
En su desarrollo se han utilizado las dataciones de referencia ofrecidas por las publicaciones referentes a cada secuencia. Éstas pueden aparecer en su expresión convencional (BP), calibradas en fechas calendáricas (cal BC) o en fechación convencional calibrada (cal. BP). Siempre y cuando la información se facilitara en la publicación, ha sido incluida también la referencia de laboratorio correspondiente a cada fecha de referencia.

V.1.2.1. La Fase Atlántica (c. 7500-4500 BP) en el Sureste peninsular

La fase climática atlántica acontece en el Península Ibérica con algo de anterioridad al cambio radical en la gestión del medio ambiente que supuso el inicio del Neolítico. Esta gestión estuvo basada en el desarrollo de actividades agro-ganaderas, combinadas con otras como la caza, recolección o pesca, que comenzaron a generar importantes modificaciones estructurales en el paisaje, al tratarse a partir de ahora de un entorno productivo. Estas modificaciones pudieron estar relacionadas con cambios como el aumento demográfico, ciertas mejoras en la tecnología empleada por los grupos humanos, los nuevos modos de ocupación de los espacios habitables o también factores medioambientales relacionados con la fragilidad del equilibrio ecológico mediterráneo (Badal 2002).

Dos de las secuencias más destacadas para este período, que reflejan bien la evolución paisajística generada por esta instalación de las sociedades neolíticas, son las establecidas para la Cova de les Cendres en Teulada-Moraira, Alicante (Beta-75220: 6730 ± 80 BP, 5650-5570 cal. BC 2 σ) y para la Cova de l’Or, situada en Beniarrés, Alicante (GANOP-C13: 6720 ± 380 BP, 4770 cal. BC; GANOP-C11: 5980 ± 260 BP, 4030 cal. BC). En la secuencia neolítica de la Cova de les Cendres (fig. 5.4) han podido identificarse tres fases antracológicas. En la fase antracológica CC2 (Neolítico IA) se detecta la etapa final del óptimo de vegetación, que se manifiesta en el desarrollo de una vegetación de encinar termomediterráneo, con algunos elementos meso- y supramediterráneos y una importante vegetación de ribera. Entre los taxones identificados destaca todavía la presencia débil de *Quercus faginea* o *Pinus nigra* en este ambiente costero, lo cual se interpreta como una permanencia de condiciones climáticas sub-húmedas con temperaturas más frías que en la actualidad. La siguiente fase antracológica, CC3, se corresponde con el Neolítico IB. En ella se constata un cambio en la vegetación explotada por las comunidades neolíticas, que se manifiesta en una reducción de los porcentajes de *Quercus* y la desaparición de *Pinus nigra*. Al tiempo, se produce un incremento de *Olea europaea, Pistacia lentiscus, Erica multiflora* y *Arbutus unedo*, este último como consecuencia de la progresiva reducción de la encina. Finalmente, la fase antracológica CC4 comprende el Neolítico IC, IIA y IIB. En ella *Pinus halepensis* y *Olea europaea* son los principales combustibles utilizados, mientras que los elementos húmedos o de ribera tienden a reducir
fuertemente su presencia o a desaparecer. La instalación de un bosque secundario de *Pinus halepensis* es interpretada dentro de un contexto de cambios debidos a actividades antrópicas como la agricultura y el arado de las tierras (Badal et al. 1994, Badal 1988a, 1988b, 1989). El espectro polínico de la Cova de les Cendres recoge también este progresivo aumento de *Pinus*, en detrimento de *Quercus* perennifolia a lo largo del Neolítico y la presencia de *Quercus faginea* en momentos tempranos de la secuencia, con tendencia a la desaparición (Carrión et al. 1999). En lo que concierne a la secuencia de la Cova de l’Or (fig. 5.3) se establecieron también tres fases antracológicas que reflejan un proceso semejante. En la fase Or-1 (Neolítico IA 1) existe una dominancia en el espectro de elementos como *Quercus ilex*, *Quercus ilex-coccifera*, *Quercus faginea*, *Fraxinus* sp., *Fraxinus ornus*, *F. oxyphilla* y *Olea europaea*, con un buen desarrollo de los taxones de ribera (*Salix, Populus nigra* y *Fraxinus*) y una gran escasez de coníferas (*Pinus halepensis*, *Juniperus* sp. y *Pinus pinea*). La imagen ofrecida en este primer período sería la de un encinar que pudo crecer en condiciones bastante continentales, con un ombroclima subhúmedo. En las zonas de umbría crecerían *Quercus faginea*, *Fraxinus*, *Acer* o *Prunus spinosa*, mientras que la solana estaría ocupada por *Olea, Erica, Cistus* o *Rosmarinus*. En la fase Or-2 (Neolítico IA 2) se observa, sin embargo, una reducción de *Quercus ilex-coccifera* en función del incremento de *Pinus halepensis*, además de un aumento en los porcentajes de *Arbutus unedo*, que se interpretan, como en Cendres, como un signo de decadencia del encinar. Finalmente, la fase Or-3 (Neolítico II), a pesar de los pocos fragmentos que fue posible analizar, refleja un aumento de *Olea, Erica* y *Arbutus* (Badal et al. 1994, Vernet et al. 1987). La imagen ofrecida por el análisis polínico apuntaba a la existencia de un paisaje con una gran escasez de cobertura arbórea, y con un estrato arbustivo y herbáceo mucho más desarrollado. No obstante, dada la discordancia con otros elementos del registro arqueológico se planteó la acción de posibles agentes distorsionadores de la imagen polínica, como el viento o la posición de la cueva (Dupré 1988). En ambos yacimientos parece detectarse que el Neolítico Antiguo no supuso una degradación ambiental importante, hasta al menos los primeros 500-1000 años de ocupación continuada de los enclaves, cuando la antracología es capaz de detectar los primeros signos de deforestación (Badal 2002).

En este mismo ámbito regional, otras secuencias neolíticas como las de Cova Ampla, Cova de la Recambra o Cova del Llop (Vernet et al. 1987, Badal 1990) en una cronología situada aproximadamente entre el 6500-5500 BP, muestran una evolución semejante a las anteriormente analizadas. La Cova Ampla presenta una gran abundancia de *Quercus faginea*, que denotaría la permanencia de formaciones caducifólias en el litoral, favorecidas por un clima más húmedo que el actual. Por su parte, las cuevas de la Recambra y Llop, apuntan a un progresivo descenso de *Quercus* perennifolios en función de una gran aumento de *Pinus halepensis*, y algo más tardíamente, de la apertura del paisaje con un dominio de *Olea* y otros elementos arbustivos.
Figura 5.3. Diagrama antracológico de la Cova de l’Or (redibujado de Badal et al. 1994).
Figura 5.4. Diagrama antracológico de la Cova de les Cendres (redibujado de Badal et al. 1994).
Los niveles de redil de algunas cuevas neolíticas muestran también un predominio de taxones propios de ambientes mediterráneos y de formaciones esclerófilas. Es el caso de los niveles del Neolítico IIA de Santa Maira (Beta-75224: 5640 ± 60 BP) (Badal 1999), o los del Neolítico IIB de la Cova Bolumini, que han contribuido al enriquecimiento de esta visión de la vegetación asociada a las primeras etapas de economías pecuarias. En Santa Maira se aprecia una gran abundancia de *Pinus halepensis* en su entorno inmediato. Sin embargo, el taxón que destaca en ambos enclaves, sobre todo en Bolumini, es el acebuche, que se atribuye en este caso a posibles criterios selectivos o a una ocupación esporádica de la cueva (Badal 1999), aunque el desarrollo de una garriga termomediterránea da cuenta de la termicidad del ambiente (Badal 1995). En este sentido, el análisis polínico de Bolumini (Sanchis 1994) muestra para el Cardial y el Neolítico IIB un paisaje de pradera xerófila en el que se dan elementos que denotan la presencia de un bosque mediterráneo degradado de *Quercus rotundifolia* en ocasiones asociado a *Quercus faginea*, y con un sotobosque en el que ya aparece *Olea* junto con otros elementos como *Phillyrea* o *Erica*.

El reciente estudio antracológico del Abric de la Falguera (Alcoi, Alicante), ofrece datos desde los inicios de las actividades agrícolas en su entorno (Beta-142289: 6510 ± 80 BP, 5619-5318 BC cal 2 σ) a través de sus fases antracológicas 3, 2 y 1 (fig. 5.5) (Carrión Marco et al. 2006). La fase antracológica 3 presenta un dominio de formaciones arbóreas, en donde se da una equiparación de *Quercus* caducifolio y perennifolio, con lo que se trataría de un bosque mixto de caducifolios donde también adquiere importancia *Fraxinus*, mientras que las coníferas se reducen. La fase antracológica 2 registra un aumento de *Quercus* perennifolio, en detrimento de las especies de hoja caduca. Finalmente, en la fase antracológica 1 se constata el definitivo ascenso de *Quercus* perennifolio y el retroceso aún mayor de *Quercus* caducifolio y *Fraxinus*, mientras que se registra un progresivo aumento de taxones como Cistaceae, *Rosmarinus officinalis*, Leguminosae y *Pinus halepensis*. No obstante, la presencia de taxones esclerófilos en estas etapas avanzadas del Neolítico es mucho menor que la que aparece en enclaves menos interiores como Cendres o Cova de l’Or, lo cual sugeriría una instalación más tardía de condiciones de marcada termicidad ambiental (Carrión Marco 1999, 2002, 2003, 2005a).

Otros yacimientos como el Mas d’Is, cuya cronología más antigua se sitúa a inicios de las actividades productoras neolíticas (Beta-166727: 6600 ± 50 BP, 5630-5480 BC cal. 2 σ) han ofrecido sin embargo resultados limitados debido a la escasez y naturaleza del material antracológico, marcado por una explotación intensiva de *Quercus* perennifolios. No obstante, en el Neolítico I vuelve a detectarse un momento de establecimiento de una vegetación más húmeda, compuesta por *Quercus* perennifolio y caducifolio, con una desaparición o registro puntual de este último en las siguientes fases de la secuencia (Carrión Marco 2005a).
Capítulo V. Síntesis general. Secuencia de la vegetación y uso de los recursos leñosos en el Sureste de la Península Ibérica desde la Edad del Bronce hasta época medieval. Inserción de los resultados en su contexto regional.

Figura 5.5. Diagrama antroclógico del Abric de la Falguera (Carrión Marco et al., 2006).

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Neolítico Antiguo</td>
<td>Neolítico</td>
<td>Bronce</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VII</th>
<th>VI</th>
<th>V</th>
<th>IV</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 **</td>
<td>3 **</td>
<td>4 **</td>
<td>5 **</td>
<td>6 **</td>
</tr>
<tr>
<td>7 **</td>
<td>8 **</td>
<td>9 **</td>
<td>10 **</td>
<td>11 **</td>
</tr>
</tbody>
</table>

Otros estudios del ámbito oriental de la Península, como los poblados de Les Jovades, Niuet (4600 ± 80 BP) y Arenal de la Costa, sin embargo, ofrecen resultados que indican un estado de degradación inferior en etapas avanzadas del Neolítico. Este aspecto de la vegetación podría estar relacionado con etapas iniciales de la ocupación agrícola de su entorno, ya que parece comprobarse que los inicios de la ocupación agrícola en cualquier yacimiento, independientemente del momento en que se produzca, ofrecen una imagen bien conservada del bosque original, que no ofrece señales antracológicas de degradación hasta pasados unos 500 años de ocupación ininterrumpida (Badal 2002). Los tres poblados se insertan dentro del Neolítico IIB. Su estudio antracológico ha revelado un importante dominio de las formaciones de carrascal bien desarrollado, sin la existencia todavía de índices claros de antropización del entorno. En sus secuencias, por tanto, destaca la presencia de Quercus ilex/coccifera, aunque en Niuet también aparece Quercus faginea. Frente a esto, los bajos índices de taxones arbustivos, y la débil presencia de Olea o Pistacia lentiscus contrastan con los ofrecidos por Cendres o Cova de l’Or, lo cual podría indicar ciertas condiciones de continentalidad que dificultarían el desarrollo natural de ambos taxones. No obstante, las fases más avanzadas de Niuet constatan un progresivo aumento de Pinus halepensis, un descenso de las especies de ribera, y la desaparición de mesófitos como Acer o Quercus faginea (Bernabéu y Badal 1990, 1992, Badal 1994, Badal et al. 1994).

Los niveles holocenos de la secuencia polínica del Túnel dels Sumidors (Vallada, Valencia), datados en 5300 BP, muestran una cobertura arbórea compuesta fundamentalmente por Quercus tipo ilex, que tendría en este momento sus mayores porcentajes, ante la disminución de Pinus, más abundante a finales del Tardiglacial (Dupré 1988).

Por su parte, la secuencia holocena de la Ereta del Pedregal (Navarrés, Valencia), fue objeto de un primer estudio por parte de Menéndez Amor y Florschütz (1961), que abordaron el período comprendido entre 6130 ± 300 BP y 3930 ± 250 BP y otro posterior realizado por Dupré (1988). A través del primer estudio pudo observarse una alternancia constante entre valores de Pinus y Quercus, con una presencia muy débil de taxones como Salix, Alnus, Betula y Corylus, que fueron interpretados como posibles aportes lejanos (Menéndez Amor y Florschütz 1961). Para el Neolítico Final la secuencia de Dupré (1988) apunta hacia una disminución de las gramíneas junto con un fuerte aumento de taxones higrófilos y un ascenso de las formaciones herbáceas, preludio de la degradación antropogénica detectada en la fase eneolítica de la secuencia. Esta misma tendencia a la disminución del polen arbóreo influenciado por la apertura antrópica de espacios se detecta también en el yacimiento próximo de la Cova de la Sarsa (López y Molero 1984).
Los datos polínicos ofrecidos por la laguna costera de Pego (Alicante) son escasos, si bien el testigo P7 a partir de su unidad 2 (UBAR 44: 7790 ± 110 BP), y sobre todo en la unidad 1 muestra el predominio de taxones característicos de clima templado y algo más húmedo que el actual, que tiende hacia una reducción de la cobertura arbórea (7%) como consecuencia posiblemente de la acción antrópica en la unidad 0 (Dupré et al. 1988).

En la próxima Bahía de Xàbia el estudio polínico muestra en su base (9010 ± 160 BP) una escasez de pinos, frente a una buena representación de robles y grandes extensiones de herbáceas. En torno al 6000 BP el carrascal parece alcanzar su mayor grado de desarrollo, adquiriendo posteriormente rasgos de mayor aridez con un aumento del lentisco, así como una continua presencia de taxones característicos de la vegetación termófila mediterránea como Olea, Phillyrea, Juniperus, Vitis, Ligustrum, cistaceas y ericáceas. Esto parece indicar que en la costa se desarrollaría una maquia con coscoja y lentisco, mientras que la carrasca y los pinos quedarían más al interior. Hacia los 3000 años se detecta una aridez aún mayor, y una actividad antrópica esporádica (Viñals et al. 1993).

En la Cova d’En Pardo (Planes, Alicante), el estudio polínico de la fase atlántica (Beta 89286: 6140 ± 140 BP) (Soler et al. 1999) muestra un cierto equilibrio entre Pinus y Quercus, lo cual hablaría de una mayor presencia de la carraca. Además en la secuencia son observables ciertos cambios paisajísticos relacionados con la antropización del medio (González Sampériz 1998). El análisis antracológico del Nivel III, que sería algo más tardío (c. III milenio a.C.) seguiría mostrando una presencia predominante de Quercus ilex/coccifera en el entorno (Soler et al. 1999).
El estudio polínico de la Canal de Navarrés presenta una secuencia holocena ininterrumpida hasta aproximadamente el 3000 BP (fig. 5.6), con ciertas modificaciones con respecto a lo observado hasta ahora en la fase atlántica de esta zona peninsular. La fase polínica N3PC (Beta-1052021: 6360 ± 50 BP; Pta-7204: 6820 ± 45 BP y Pta-7438: 6310 ± 70 BP) muestra la permanencia de bosques de Pinus sin indicadores claros de la instalación de un paisaje mediterráneo. Es en la fase N3PD (Beta-102171: 5930 ± 80 BP; Beta-105203: 6290 ± 90 BP y Beta-102170: 3160 ± 100 BP) cuando se observa un cambio abrupto de la vegetación, que pasa a estar dominada por formaciones de Quercus, al tiempo que aumentan los taxones caducifolios (Alnus, Betula, Corylus, Ulmus, Acer, Salix, Fraxinus y Juglans) y ciertos elementos de matorral mediterráneo (Erica, Arbutus, Olea) (Carrión y Van Geel 1999). En Navarrés, por tanto, la predominancia de Quercus se produce de manera tardía (c. 5000 BP) (Carrión y Dupré 1996) en comparación con otras aportaciones regionales como la secuencia de Padul, que habían situado este proceso en torno al 8000 BP después de una colonización temprana que se remonta a 14000 BP aproximadamente (Pons y Reille 1988). Además, esta sustitución en el caso de Navarrés no aparece directamente relacionada con las mejorías climáticas del Tardiglaciar ni con el máximo pluviométrico Holoceno. Su principal relevancia, por tanto, es que ha permitido comprobar que no siempre los procesos de sustitución de Pinus por Quercus están condicionados exclusivamente por cambios abruptos en las condiciones climáticas, sino que existen procesos de inercia cuya respuesta se produce sólo si se traspasan los umbrales de vulnerabilidad del sistema (Carrión 2003).

En zonas interiores las secuencias polínicas holocenas más completas son las de la Laguna de Ojos de Villaverde (Carrión et al. 2001a) y en la Sierra de Segura, las de Siles (Carrión 2002), Cañada de la Cruz (Carrión et al. 2001b) y El Sabinar (Carrión et al. 2004). El estudio de Villaverde proporciona una secuencia para el sur-centro de la Península Ibérica desde 9730 cal. BP (Beta-125960: 8720 ± 80 BP) hasta 1160 cal. BP (Pta-7964: 1230 ± 35 BP) (Carrión et al. 2001a). Interesan en este punto especialmente sus zonas polínicas VP2 (c. 7530-5940 cal. BP) y VP3 (c. 5940-5290 cal. BP). En la primera de ellas sigue existiendo una dominancia de formaciones de Pinus desde la etapa anterior, pero se da un reemplazo parcial de éstos por Quercus perennifolios y en menor medida por Quercus caducifolios, Fraxinus y Betula. La fase VP3 supone la definitiva expansión de formaciones de Quercus caducifolios y de una gran cantidad de mesófitos, en detrimento de Pinus (Carrión et al. 2001a). Para la Sierra de Segura, el estudio de la laguna de Siles proporcionó una secuencia holocena desde 10100 cal. BP (Beta-155405: 9120 ± 80 BP) hasta 505 cal. BP (Pta-8152: 430 ± 90 BP) (Carrión 2002). En las fases Preboreal y Boreal (zona polínica SP3: c. 10100-7400 cal. BP) se registra un dominio todavía de Pinus nigra, con un reemplazo parcial en este caso por Pinus pinaster que pudo estar estimulado por factores como la incidencia de fuegos naturales en la zona. La zona SP4 (c. 7400-5300 cal. BP) constata, sin embargo, una definitiva sustitución de las coníferas por formaciones de Quercus caducifolios y
Recursos forestales en un medio semiárido.
Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

mesófitos que pudieron ser consecuencia de una mayor disponibilidad hídrica en el ambiente (Carrión 2002). El estudio polínico de Cañada de la Cruz presenta una secuencia holocena para los últimos 8000 años (Beta-13532: 8320 ± 50 BP), llegando hasta cronologías contemporáneas (Pta-8009: 1955/1956 AD). Se caracteriza fundamentalmente por la alternancia brusca y episódica entre pinares de Pinus nigra y formaciones herbáceo-arbustivas de gramíneas, enebros rastreros, bojas (artemisia), quenopodiáceas y otros heliófitos. La etapa atlántica se situaría en su fase polínica C2 (Beta-141047: 7770 ± 40 BP; Pta-8339: 3370 ± 20 BP) (Carrión et al. 2001b), cuando se produce un cambio con respecto a las condiciones frías y áridas registradas en la etapa anterior. En este momento se constata la instalación de condiciones climáticas más favorables dados los incrementos de Quercus faginea y otros caducífolos como Fraxinus, Acer, Alnus, Betula, Corylus, Ulmus, junto con elementos termófilos como Quercus ilex-coccifera, Pistacia, Cistus, Phillyrea, Ephedra fragilis, Olea y angiospermas colonizadoras de los márgenes lagunares y micrófitos como Zygnemataceae (Carrión 2001). Sin embargo, los indicios de antropización del paisaje no se dan en esta zona hasta hace unos 790 años (Pta-7883: 790 ± 70 BP) (Carrión et al. 2001b). La secuencia de El Sabinar proporciona datos de la paleovegetación del entorno de la Sierra de Segura desde 6640 cal. BP (Pta-8478: 5860 ± 80 BP) hasta 1240 cal. BP (Pta-8642: 1350 ± 110 BP) (Carrión et al. 2004). El comienzo de la secuencia registra una predominancia de bosques de Pinus, si bien se da también la máxima abundancia y variedad de taxones mesófilos como Quercus caducifolia, Corylus, Betula, Fraxinus, Acer, Ulmus, Salix, Taxus, y algunos elementos mediterráneos como Arbutus, Pinus pinaster, Olea, Phillyrea y Pistacia. Sin embargo, Quercus perennifolios, Juniperus y algunos elementos xerófilos presentan sus valores más bajos. El análisis polínico de la Cueva del Nacimiento (Pontones, Jaén) ofrece resultados relativos el período Atlántico en la zona (Asquerino y López 1981). En él se observan fluctuaciones entre etapas más secas y frías, marcadas por el predominio de Pinus, y fases más húmedas y templadas dominadas por Quercus y mesófitos como Corylus o Betula.

Una de las secuencias más completas con las que se cuenta para la zona sur peninsular es la de Padul (Granada), cuyos primeros estudios adolecían de una cronología poco precisa (Menéndez Amor y Florschütz 1962, Florschütz et al. 1971). Sin embargo, el análisis de Pons y Reille (1988) solvató esta deficiencia (fig. 5.7). Uno de los aspectos más destacados en la evolución que ofrece Padul se centra en la expansión del polen de Quercus ilex ya desde momentos en torno a 13000 BP, señal que se interpreta como la existencia de refugios de vegetación templada en esta zona. Los niveles holocenos de la secuencia (Gif-6212: 10000 ± 110 BP) se prolongan hasta aproximadamente el 4450 BP (Gif-6209: 4450 ± 60 BP), y registran un predominio de formaciones de Quercus, especialmente de Quercus suber a partir del 8200 BP, como indicador de una mejoría climática (Pons y Reille 1988). Los resultados de Padul son en gran medida comparables con los obtenidos para los niveles más recientes de la Cueva de la Carihuela (Piñar, Granada), situada a 1020 m.s.n.m., donde también ha podido
registrarse una colonización temprana de *Quercus* caducifolios y perennifolios que podría estar indicando la proximidad de refugios glaciares para estas especies junto con otros árboles y arbustos de carácter mediterráneo (Fernández *et al.* 2007). La Cueva de la Carihuela ha proporcionado una amplia información referida al Neolítico en su zona polínica 21 (Pta-9163: 6260 ± 20 BP; Pta-9162: 5690 ± 30 BP; Beta-141049: 5470 ± 90 BP). En ella se constata un dominio de *Quercus* caducifolios, junto con *Quercus* perennifolios y simultáneamente un aumento de Poaceae. La imagen que ofrece el diagrama (fig. 5.8), por tanto, se correspondería con un predominio de bosques de encinas y robles, con abundancia de planifolios y arbustos mediterráneos, entre los cuales destacan algunos de componente termófilo, como *Olea*, *Pistacia*, *Cistus*, *Viburnum* o *Myrtus* (Fernández 2005, Fernández *et al.* 2007).

Figura 5.7. Diagrama polínico sintético de Padul (redibujado a partir de Pons y Reille 1988).
En la Sierra de Baza y en la de Gádor, sin embargo, la expansión de *Quercus* es más tardía que en Padul o Carihuela. En la Sierra de Baza este proceso se registra en su fase polínica B2, que se sitúa aproximadamente entre 6320 cal BP (Pta-9139: 5530 ± 30 BP) y 3800 cal. BP (Pta-9154: 3520 ± 50 BP) (Carrión et al. 2007). En esta etapa los bosques de *Pinus* (tipo *nigra-sylvestris*) se presentan todavía como predominantes, debido fundamentalmente a la altitud de la zona estudiada. Sin embargo, *Quercus caducifolio* comienza en esta fase a aumentar sus porcentajes junto con otros elementos como *Corylus, Betula, Salix, Acer, Alnus, Lonicera* o *Buxus*, lo cual podría ser un indicador del desarrollo de bosques dominados por *Quercus* en zonas de altitud inferior a unos 1700 m.s.n.m. (Carrión et al. 2007). En esta secuencia existen ciertos indicadores, no definitivos, sobre algunas actividades agrícolas y sobre todo ganaderas. No obstante, se trató probablemente de un proceso complejo en el que pudieron interactuar numerosos aspectos con la propia dinámica climática (Carrión et al. 2007).
Por otra parte, en la Sierra de Gádor, *Pinus* domina el espectro polínico durante la primera etapa registrada (c. 6850-6060 cal. BP), pero se produce un cambio brusco hacia una predominancia de *Quercus* junto con otros mesófitos entre el 6060 cal. BP (Beta-155407: 5290 ± 70 BP) y 3940 cal. BP (GrA-17557: 3645 ± 45 BP). No obstante, la documentación de ciertos picos de prevalencia de *Quercus* en la etapa anterior sugiere que se dieron ya circunstancias propicias para las relaciones de competencia entre ambos elementos en torno al 6800 cal. BP (Carrión et al. 2003).

En la zona sur peninsular son conocidas también algunas secuencias antracológicas referidas a cronologías neolíticas, como los niveles más recientes de la Cueva de Nerja (Málaga), la Cueva del Toro (Antequera, Málaga), la Cueva de los Murciélagos (Zuheros, Córdoba), la Cueva de los Mármoles (Córdoba) y el Polideportivo de Martos (Jaén). La fase antracológica 5 de la Cueva de Nerja se corresponde con el nivel Nerja 9, y posee la siguiente datación radiocarbónica: Ly-5218: 6420 ± 60 BP (Aura Tortosa et al. 2002). En ella se observa un gran descenso de los valores de *Olea europaea var. sylvestris*, que habían tenido su máxima expansión en los momentos iniciales de la secuencia holocena (fase antracológica 4) y un incremento de taxones de matorral como *Rosmarinus* sp., *Cistus* sp., *Pistacia lentiscus* o *Rhamnus* sp. Sin embargo, no se detecta la sustitución típica en la mayoría de secuencias mediterráneas de bosques de *Quercus* hacia formaciones con dominancia de *Pinus halepensis* (Aura Tortosa et al. 2002). Por otro lado, la Cueva del Toro y la de los Murciélagos proporcionan datos referidos al Neolítico Medio, con cronologías de 6340 ± 70 BP y 6030 ± 70 BP para la primera, y una horquilla entre 6430 ± 130 BP y 5570 ± 110 BP para la segunda. Por su parte, el Neolítico Final estaría representado también por estas dos cuevas (5380 ± 45 BP y 5200 ± 60 BP para la Cueva del Toro y 5380 ± 110 BP y 5080 ± 120 BP para la de los Murciélagos) y por la secuencia completa del Polideportivo de Martos, cuyo nivel de base se sitúa en 5080 ± 140 BP (Rodríguez-Ariza 1996a). La secuencia muestra para el Neolítico Medio formaciones de quercíneas en el caso de la Cueva del Toro, lo cual podría interpretarse como un primer momento de ocupación productiva del entorno, y por otro lado, formaciones de madroñal en el caso de la Cueva de los Murciélagos que pudieron tener cierta relación con la acción humana sobre el paisaje. No obstante, estas secuencias muestran claramente un impacto antrópico sobre la vegetación a partir del Neolítico Final, cuando se observa una fuerte disminución de los taxones arbóreos en la Cueva del Toro, un descenso del madroñal en la Cueva de los Murciélagos, y una fuerte presencia de especies de sotobosque heliófilas en el Polideportivo Martos (Rodríguez-Ariza 1996a). En el caso de la Cueva de los Mármoles, que no cuenta con cronologías absolutas, se observa un predominio del encinar en el entorno, sin que se aprecien fuertes incidencias antrópicas en el paisaje (Asquerino 2008).

En el ámbito murciano, el estudio polínico de los niveles neolíticos de la Cueva del Calor (Cehégin) (López 1988) se caracteriza por un porcentaje de taxones arbóreos inferior al 50% con la presencia importante de *Quercus ilex/coccifera*, y en menor
medida *Pinus halepensis*, *Ulmus*, *Populus* y *Juglans*. En este momento también se registran freáfitos como Ciperáceas, Juncáceas o Ninfeáceas. Sin embargo, la evolución calcolítica y de la Edad del Bronce se caracterizan en esta cueva por un aumento del polen de pino en detrimento de la encina, reduciéndose los porcentajes de cereales y plantas húmedas (López 1988).

En una zona de más aridez como el sur del País Valenciano, el análisis antracológico de la Cova de Sant Martí (Agost, Alicante), ha proporcionado datos para la fase inicial del Neolítico, concretamente para el Neolítico IC, según los materiales cerámicos. La datación radiocarbónica realizada sobre un húmero humano proporcionó una fecha de 5740 ± 40 BP (4700-4480 cal BC) (Torregrosa Giménez y López Seguí 2004). A través del estudio antracológico se constata un dominio en el ambiente de *Juniperus* y *Pinus halepensis*, cuya representación, no obstante, pudo verse incrementada por ciertos condicionantes culturales como el uso de los mismos como antorcha o su utilización en contextos funerarios. En menor medida se da la presencia de *Olea europaea* ssp. *sylvestris*, Oleaceae y *Arbutus unedo*, mientras que los porcentajes de *Quercus ilex/coccifera* son muy bajos. La autora apunta a un contexto de mejoría climática, con un paisaje abierto y algo degradado, de gariga o maquia. Sin embargo plantea que en Agost el proceso de sustitución de *Pinus* por *Quercus* todavía no se habría producido, por lo que fue más tardío que en el caso de la mayoría de secuencias contemporáneas, que registran esta señal en torno al 8000 BP (Machado Yanes 2004). En este sentido, los datos proporcionados por la Cova de Sant Martí serían equiparables con la dinámica observada en la secuencia de Navarrés, en donde los pinares presentan una permanencia hasta aproximadamente el 6000-5500 BP (Carrión y Dupré 1996, Carrión y Van Geel 1999).

En este mismo ámbito regional se cuenta con las secuencias polínicas de Salines y el Fondó d’Elx. En Salines (fig. 5.9) se documenta un aumento de mesófitos desde los primeros momentos del Holoceno (Beta-70899 CAMS-11924: 10120 ± 60 BP) (Giralt et al. 1999), si bien desde finales del Mesolítico (c. 7500 BP) y hasta la Edad del Hierro (c. 3000 BP) se produce una etapa de aridez que afectó a la estructura de la vegetación más que la propia acción antrópica (Burjachs et al. 1997). No obstante, la secuencia de Salines presenta una escasa resolución a partir de este período, por lo que la obtenida para el Fondó d’Elx (fig. 5.10) puede ser más interesante en este sentido. En este depósito se observa a inicios del Neolítico un cambio en la estructura de la vegetación debido al cual se produce una reducción del estrato arbóreo, excepto de las coníferas como *Juniperus* y *Pinus*, relacionado fundamentalmente con un aumento de la aridez ambiental, ya que no se detectan indicadores polínicos de antropización claramente marcados (Burjachs et al. 1997).
La zona semiárida almeriense cuenta con las secuencias holocenas de San Rafael, Antas y Roquetas de Mar, que cubren para esta zona la totalidad del Holoceno. San Rafael ha proporcionado la fecha más antigua para este período: Beta-95127/AMS (LLNL): 9980 ± 60 BP y Roquetas la más reciente: Beta-80378/CAMS-19068: 1330 ± 60 BP (Pantaleón-Cano et al. 2003). Estas secuencias muestran para el Sureste peninsular una sucesión y alternancia de fases estepicas con fases de mayor desarrollo de la vegetación mediterránea. El óptimo holoceno se registra aproximadamente entre 7000-4500 BP, cuando el componente estepico previo retrocede fuertemente, en relación con un fuerte incremento del polen arbóreo junto con algunos taxones arbustivos. Quercus, Olea y Pistacia presentan ahora su mayor cobertura (Pantaleón-Cano et al. 1999, 2003). Otras aportaciones para esta zona como el testigo 11P del Mar de Alborán apuntan hacia una reducción de la masa forestal en el Sureste peninsular apreciable desde c. 8000 BP y ciertos signos de deforestación antrópica desde c. 6500-5500 BP. En este caso, la mejoría climática y de humedad se detecta en una fase anterior, situada entre 12500-8000 BP, cuando se reduce el porcentaje de polen estepico, aumentando los valores de Pistacia y de algunos taxones higrófilos (Targarona et al. 1996). Por otro lado, la
Recursos forestales en un medio semiárido.
Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

La fase climática Subboreal se corresponde con la configuración en el Sureste peninsular de sociedades productoras plenamente desarrolladas, que generaron una fuerte presión sobre su entorno inmediato para la realización de actividades relacionadas con la metalurgia, además de un mantenimiento y aumento de las actividades agro-ganaderas. Los estudios antracológicos y polínicos que se conocen para el Calcolítico y
la Edad del Bronce atestiguan fuertes cambios paisajísticos producidos por estas actividades, en consonancia con una tendencia climática global hacia la aridificación.

En el Calcolítico se detecta ya una primera fase de este cambio, y supone para las zonas más áridas del Sureste el último momento de desarrollo de formaciones forestales bien estructuradas (Fuentes et al. 2005). Estas primeras modificaciones pudieron estar relacionadas también con una degradación climática que se registra a escala global entre el 6000-5000 cal. BP, que tiene su expresión en el mediterráneo en una pérdida de masa forestal, especialmente de mesófitos.

La Edad del Bronce acoge en gran parte de esta zona la definitiva instalación de las condiciones de semiaridez que se desarrollan actualmente. En este sentido, existen planteamientos que interpretan este proceso de deforestación no sólo como la consecuencia de la aridificación global a la que se acaba de hacer referencia, sino también como un proceso antropogénicamente acelerado por la fuerte actividad económica que caracterizó al sistema productivo del Bronce del Sureste (Cultura del Argar). Según algunos autores, este sistema fue básicamente depredador de los recursos naturales existentes, mediante una ocupación más intensa de terrenos, tanto para el cultivo de cereales, como para otras actividades económicas (Castro et al. 1999). Esto pudo producir un colapso ecológico (Lull 1983) dada la insuficiencia del medio para satisfacer esta gran demanda. De hecho, se ha planteado incluso la existencia de sistemas de regadío a gran escala, cuya construcción y control estarían en el origen de una fuerte jerarquización social (Chapman 1991, Gilman y Thornes 1985). Sin embargo, algunos estudios basados en la discriminación isotópica del carbono sobre semillas de varios yacimientos argáricos no sustentan, salvo la excepción de *Vicia faba*, la posibilidad de que se produjesen prácticas de irrigación en los mismos (Araus et al. 1997). Por otro lado, los estudios paleocarpoógicos sobre la zona, apuntan a un aprovechamiento de los márgenes de los ríos, de sus eventuales crecidas o de fuentes de agua superficiales o subterráneas, siendo sólo probable que se construyeran sencillas estructuras de irrigación, que no han perdurado (Buxó 1997, Rovira 2007).

En el Este peninsular, se aprecia una diferencia entre la evolución de los yacimientos del piso termomediterráneo en comparación con los que se encuentran en el mesomediterráneo.

En el caso de la Cova de les Cendres, situada en el termomediterráneo, la fase antracológica CC5 recoge los niveles del Campaniforme (4280 ± 160 BP, 4210 ± 120 BP) y de la Edad del Bronce, que ofrecen una imagen para el Subboreal marcada por una expansión del matorral, asociada en gran medida a las actividades agrícolas. En este momento *Olea europaea* se reduce, junto con *Pinus halepensis*, aunque éste sigue dominando la secuencia. Por el contrario, se produce una definitiva retracción de *Quercus ilex/coccifera*, y la casi desaparición de *Quercus faginea* y de la vegetación de...
Recursos forestales en un medio semiárido.

Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

ribera (Badal et al. 1994). En este mismo ámbito regional, el estudio antracológico de los niveles calcolíticos de Cova Bernarda, Cova de la Recambría y del Camp de Sant Antoni (Badal y Grau 1984), situados en la comarca de la Safor, ofrecen para esta zona una imagen climática cálida y seca, con importantes semejanzas con la actualidad. La vegetación estaría formada por elementos termófilos de la asociación Querco-lentiscetum, aunque también por algunos del Rosmarino-Ericion como consecuencia de la degradación antrópica del entorno, que se había empezado a observar desde el Neolítico. No obstante, se registran todavía algunos elementos como Quercus faginea que se encontrarían en zonas de mayor retención hídrica. Por otro lado, los datos polinicos de la Ereta del Pedregal para el Eneolítico registran una gran reducción en la variabilidad taxonómica que se relaciona con una importante degradación ambiental producto de la acción antrópica sobre la zona (Dupré 1988). En el piso termomediterráneo se encuentra también el yacimiento de la Edad del Bronce de Muntanya Assolada (Grau 2000a), que muestra un cortejo florístico propio de formaciones de Quercetalia ilicis, que sin embargo se presentaría ya fuertemente degradado principalmente por la acción antrópica, como evidencia la abundante presencia de lentiscos y brezos (Grau 2000a).

Este estado de degradación, sin embargo, no se observa tan claramente en otros yacimientos del piso mesomediterráneo como el Abric de la Falguera (Carrión Marco et al. 2006) o la Mola d´Agres (Agres, Alicante), en donde el proceso de degradación durante la Edad del Bronce no se encuentra muy avanzado. En esta zona el paisaje estaría compuesto por carrascales continentales acompañados por arbustos como enebros o sabinas y otros elementos caducifolios como quejigos o fresnos en zonas más húmedas. Esto aparece documentado por la gran cantidad de carrascas que aparecen frente a la escasez de los elementos de sustitución como los madroños, jaras o enebros (Grau 2000a, Grau et al. 2004b).

Mucho más hacia el interior, ya en la zona de Albacete, los datos polinicos del Acequión (Mariscal 1993b, López Bermúdez y Mariscal 1996) detectan para los inicios del Subboreal una vegetación compuesta por un encinar y un bosque de coníferas, que posteriormente se ven afectados por un aumento de la sequedad ambiental, con lo que se produce un incremento de pinos, gramíneas y quenopodiáceas. Hacia el final de la secuencia se observa ya una gran deforestación, de manera que el bosque es sustituido por gramíneas y leguminosas. Esta retracción del bosque podría ser interpretada como consecuencia del asentamiento de grupos humanos en la zona que llevaron a cabo talas o quemas de las zonas boscosas circundantes (López Bermúdez y Mariscal 1996).

En la zona de las Tablas de Daimiel, en Ciudad Real, el estudio polínico del testigo CC-17 de La Mancha Plain (Dorado Valiño et al. 2002) (fig. 5.11) detecta una importante reducción de la masa arbórea coincidiendo con el episodio de aridez del 5000 BP. Posteriormente se produciría una cierta recuperación, seguida de una definitiva etapa de
aridez en torno al 2500 BP (Dorado Valiño et al. 2002). En esta misma zona la vegetación registrada para el Edad del Bronce (1800-1300 a.C.) a partir del antracoanálisis de la Motilla del Azuer (Daimiel, Ciudad Real) (Rodríguez-Ariza et al. 1999b) revela que la vegetación estaría dominada por diferentes especies de quercíneas, como encinas, quejigos y robles que se situarían en los terrenos básicos, mientras que otras como el alcornoque o el melojo lo harían en sustratos silíceos. El carrascal sería la formación dominante, acompañado por elementos como enebros, madroños, leguminosas arbustivas o lentiscos.

Para esta zona interior destacan por su elevada resolución los datos aportados por las secuencias de Villaverde, y las de la Sierra de Segura (Siles, Cañada de la Cruz y El Sabinar), en las que se observa el impacto del importante cambio climático que acontece en torno al 5200 cal. BP, marcado por la retracción del bosque subhúmedo que había tenido en la etapa anterior su máxima expansión (c. 7500 – 5200 cal. BP) y un incremento de la aridez que se evidencia en la sustitución de éste por bosques de encinas, y el progresivo aumento de taxones mediterráneos y algunos xerófitos. La secuencia de los Ojos de Villaverde (Carrión et al. 2001a) registra en su zona polínica VP4 (c. 5290-4120 cal. BP) un reemplazo de *Quercus* caducifolio por *Quercus* perennifolio, un aumento del componente mediterráneo y un descenso de las especies mesófilas asociadas a los robles. La zona VP5 (c. 4120-3630 cal. BP) marca el punto de máxima expansión de *Quercus* perennifolio, junto con la desaparición definitiva de los mesófitos, a pesar de que aumentan los valores de *Quercus* caducifolio. Finalmente, la zona polínica VP6 (3630-2740 cal. BP) no supone grandes cambios estructurales en el bosque, pero sí un rol más importante de *Pinus* en la dinámica de la vegetación, algunos picos de *Juniperus, Artemisia*, Chenopodiaceae y *Ephedra*, y la presencia de elementos mediterráneos como *Pistacia, Phillyrea* y *Erica arborea* (Carrión et al. 2001a). En el caso de la Laguna de Siles, la zona polínica SP5 (c. 5300-3500 cal. BP) (Carrión 2002) se caracteriza por una alternancia entre *Pinus nigra* y *Pinus pinaster*, cuyos picos comienzan a darse en torno a 5200 cal. BP. Al mismo tiempo se produce un declive de los valores de *Quercus* caducifolio y de los taxones mesófilos, mientras que *Juniperus* y xerófitos como *Artemisia*, Chenopodiaceae y *Ephedra nebrodensis* aumentan (Carrión 2002). En Cañada de la Cruz este cambio brusco desde formaciones de *Quercus faginea* y elementos mesófilos hacia formaciones herbáceo-arbustivas dominadas por Poaceae se produce en torno a 3370 BP (Pta-8339: 3370 ± 20 BP) y perdura hasta 2630 BP (Beta-141044: 2630 ± 140 BP), cuando se registra una nueva pulsación húmeda en la vegetación (Carrión et al. 2001b). Finalmente, en el caso de El Sabinar, hacia 4790 cal. BP (GrA-20795: 4250 ± 50 BP) se produce un fuerte aumento de *Quercus* perennifolio junto con *Juniperus, Artemisia*, Chenopodiaceae, *Ephedra*, Lamiaceae y Cistaceae, reduciéndose considerablemente los valores de los elementos caducifolios, *Pistacia, Olea* y *Phillyrea* (Carrión et al. 2004).
Recursos forestales en un medio semiárido.
Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

Figura 5.11. Diagrama polínico del testigo CC-17 de La Mancha Plain (redibujado de Dorado Valiño et al. 2002).
En el caso de la Sierra de Baza (fig. 5.12), la vegetación no muestra importantes cambios durante el período Calcolítico (c. 5000-4200 cal. BP), ya que el bosque dominante sigue estando conformado por pinos y *Quercus* caducífolios, junto con mesófitos como *Corylus* (Carrión *et al.* 2007). No obstante, sí se observa un aumento de la vegetación xerófila en torno al 5400 cal. BP, que se constata también en la Sierra de Gádor en torno al 5500 cal. BP (fig. 5.13) (Carrión *et al.* 2003), y que pudo estar relacionado con una apertura del paisaje como consecuencia del cambio climático a escala global que se ha comentado anteriormente. Para el período argárico (c. 4400-3500 cal. BP) la secuencia de Baza pone de manifiesto que en esta región se produce un importante cambio medioambiental, que se manifiesta en una fuerte reducción de la cobertura arbórea, en la que desaparecen mesófitos como *Pinus* o *Quercus* caducífolios, en función de una mayor expansión de *Quercus* perennífolio, con especies de matorral esclerófilo. Este cambio se produce en conjunción con un gran aumento de microcarbones en la secuencia, que indicarían la presencia de fuegos, bien antrópicos, bien naturales, o bien producidos por una combinación de ambos factores. Según los autores, fue posible que actividades como la minería o el pastoreo generaran sucesivas quemadas sobre la vegetación, produciendo una progresiva disminución del bosque, y acelerando el crecimiento de matorral esclerófilo formado por especies pirófilas e invasivas como *Quercus ilex/coccifera, Erica, Pistacia lentiscus, Phillyrea angustifolia* y especialmente especies del género *Cistus* (Carrión *et al.* 2007).

La secuencia holocena de la Cueva de la Carihuela refleja también un proceso de matorralización con una fuerte reducción de la cobertura arbórea en su zona polínica 22 (Beta-141049: 5470 ± 90 BP; Beta-141048: 1250 ± 60 BP) (Fernández *et al.* 2007), que, si bien presenta ciertas dificultades en la interpretación de sus materiales arqueológicos, muestra con claridad el efecto de la incidencia antrópica por agricultura y pastoreo a través de un progresivo aumento de géneros como *Pinus* y *Juniperus*, en conjunción con una disminución de mesófitos como *Quercus* caducífolios, una menor representación de *Quercus* perennífolios, y el aumento de taxones xerófilos (Fernández 2005).
Figura 5.12. Diagrama sintético de la Sierra de Baza (Carrión et al. 2007).
Hacia el interior de Andalucía, en los pisos Mesomediterráneo y Supremediterráneo, se conocen los datos antracológicos asociados a los niveles calcolíticos de Marroquíes Bajos, El Malagón, y Cerro de la Virgen. El análisis antracológico de la Parcela C de Marroquíes Bajos (Jaén), ha ofrecido datos para el Calcolítico en esta zona (Beta-190622: 4130 ± 40 BP – 2850, 2820, 2670 cal. BC-; Beta-190623: 4110 ± 40 BP – 2630 cal. BC -) (Rodríguez-Ariza 2007). La vegetación en este momento aparecería dominada por la encina, mientras que Quercus faginea estaría muy poco representada, y las formaciones secundarias de Pinus halepensis serían solamente incipientes. El estrato arbustivo estaría constituido fundamentalmente por acebuches y lentiscos, junto con algunos madroños. Por tanto, la visión general de la vegetación indica que se trataría de un encinar termófilo ligeramente degradado dada la presencia de madroños, lo cual podría indicar que se trataría de uno de los primeros momentos de ocupación de este territorio, ya que se conserva bien el bosque de encinas (Rodríguez-Ariza 2007). Por otro lado, en la depresión Guadix-Baza, los niveles del Cobre Pleno y Reciente de El Malagón (2070 ± 70 BC) y el Cerro de la Virgen (1970 ± 70 BC) (Rodríguez-Ariza y Esquivel 2007) presentan una imagen semejante, ya que se asocian a la presencia mayoritaria de Quercus ilex/coccifera que pondrían de relieve la importancia de los encinares en esta zona, indicadores de condiciones más húmedas que las actuales (Rodríguez-Ariza 1991, Rodríguez-Ariza 1992b), en donde la presencia de Pinus halepensis quedaría reducida a zonas marginales (Rodríguez-Ariza y Esquivel 1996). No obstante, existen ciertas evidencias de inicios de la actividad antrópica, aunque la degradación del bosque primitivo no es todavía patente (Rodríguez-Ariza 1992b).

En esta misma zona (depresión Guadix-Baza) ha podido ser estudiada la Edad del Bronce a partir del análisis de diversos yacimientos, como los niveles del Bronce Antiguo del Cerro de la Virgen (Orce) (1785 ± 55 BC), los del Bronce Pleno de Fuente Amarga (Galera) (1630 ± 100 BC), Loma de la Balunca (Castilléjar) y la Terrera del Reloj (Dehesas de Guadix) (1540 ± 50 BC), y los niveles del Bronce Pleno-Tardío de Castellón Alto (Galera) (1420 ± 100 BC) (Rodríguez-Ariza 1992b, Rodriguez-Ariza y Esquivel 2007). A partir de los mismos se ha podido demostrar que en esta zona se produce una transformación paisajística bastante marcada durante la Edad del Bronce. Así, mientras que durante el Calcolítico existiría en el entorno una dominancia de especies mesófilas encabezadas por Quercus perennifolios, en el Bronce Antiguo se observa la primera retracción de Quercus ilex/coccifera y el progresivo aumento de Pinus halepensis. Los yacimientos argáricos muestran sin embargo un paisaje bastante pobre, formado principalmente por un matorral poco denso, heliófilo, en el que el estrato arbóreo estaría representado por Pinus halepensis y en menor medida Quercus perennifolio, lo cual pondría de relieve un progresivo endurecimiento de las condiciones climáticas regionales (Rodriguez-Ariza 1992a, 1992b, Rodriguez-Ariza y Esquivel 2007), con indicadores de antropización claros en el registro polínico (Rodríguez-Ariza y Ruiz Sánchez 1995, Rodriguez-Ariza et al. 1996).
En la zona de Jaén se encuentra el yacimiento de la Edad del Bronce de Peñalosa (Baños de la Encina), cuyo estudio antracológico (Rodríguez-Ariza 2000b) revela que para este momento las formaciones principales del entorno inmediato estaban constituidas por encinares y alcornocales. Los primeros se desarrollarían en las zonas más pedregosas y áridas, mientras que los alcornocales habría que situarlos en suelos frescos y profundos, por lo que permitirían deducir un grado mayor de humedad que en la actualidad en la zona.

En lo que concierne a las zonas semiáridas del cuadrante sureste peninsular, el territorio semiárido alicantino registraría etapas de degradación muy avanzadas. La secuencia polínica del Fondó d’Elx sigue experimentando a partir de la Edad del Bronce un crecimiento de los indicios de aridez ambiental, con picos elevados de árboles xerófilos (Burjachs et al. 1997). En esta misma zona, concretamente en Villena, el estudio antracológico de la Habitación 1 del yacimiento de la Edad del Bronce de Terlinques (c. 2100 cal. BC - 1830 cal. BC) (Machado Yanes et al. 2004) ofrece una imagen semejante a Elx. La especie más documentada en este caso es *Pinus halepensis*, seguida de otros taxones como *Tamarix* sp., *Rosmarinus officinalis*, *Olea europaea* var. *sylvestris*, *Juniperus* sp., *Pistacia lentiscus*, *Arbutus unedo*, *Fraxinus* sp., monocotiledóneas, *Viburnum* sp. y *Quercus ilex coccifera*. Los autores concluyen que se daría ya una gran importancia de matorrales como pinos, romeros y *Viburnum*, sugiriendo una degradación de la garriga o maquia, por lo que se obtuvieron recursos de zonas muy diversificadas.

Para la Región de Murcia los datos con los que se cuenta son bastante escasos. En la zona interior, el análisis polínico de la Cueva del Calor (Cehegín), como hemos adelantado más arriba, muestra una evolución calcolítica y durante la Edad del Bronce caracterizada por un aumento del polen de pino en detrimento de la encina, y por una reducción significativa de los porcentajes de polen de cereal y de plantas relacionadas con zonas húmedas (López 1988). En el caso de El Milano (Mula), el Calcolítico ofrece la imagen de un paisaje bastante deforestado, con una fuerte reducción de los taxones arbóreos, que estarían dominados por *Pinus halepensis*. En el entorno de este yacimiento parece que no se produjeron actividades agrícolas significativas que pudieran causar esta deforestación, dada la ausencia de polen de cereal (López 1988).

Para la zona del Valle del Guadalentín, la secuencia más completa hasta el momento la ha ofrecido el estudio polínico del Carril de Caldereros, en Lorca (fig. 5.14). Los niveles calcolíticos (KIA-20890: 4455 ± 43 BP, 4959-5149 cal. BP 2σ; KIA-20887: 4200 ± 30 BP, 4640-4762 cal. BP 2σ; KIA-20889: 4105 ± 40 BP, 4518-4729 cal. BP 2σ) (Fuentes et al. 2005) presentan formaciones abiertas de *Pinus* acompañados de caducifolios,
Recursos forestales en un medio semiárido.

Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

principalmente robles, y de un bosque de ribera bien estructurado (Fuentes et al. 2005). El Calcolítico, por tanto, marcaría la última época forestal de este entorno del Sureste semiárido, comenzando después un declive como consecuencia de una progresiva xerofitización climática, de los intensos procesos erosivos que se registran en la cuenca del Guadalentín a partir de estos momentos (Camel-Avila 2002), y de una acción antrópica más intensa. A partir de esta cronología, hasta c. 3000 BP, acontece una progresiva reducción o desaparición de los mesófitos y de algunos elementos de ribera como Betula, Alnus o Fraxinus, al tiempo que aumentan progresivamente los xerófitos, produciéndose una reducción de la cubierta arbórea, compuesta fundamentalmente por Pinus y en menor medida Quercus perennifolios (Fuentes et al. 2005). Este mismo proceso ha sido documentado en la zona de Jaén a partir de los estudios polínicos de los yacimientos de Cerro del Alcázar de Baeza (fig. 5.15), cuya secuencia se sitúa entre 3760 BP (4115 cal. BP) y 3350 BP (3837 cal. BP), y Eras del Alcázar de Úbeda, con una cronología comprendida entre 4210 BP (4690 cal. BP) y 3504 BP (3777 cal. BP) (Fuentes et al. 2007). En ambas secuencias, como en Caldereros, aparece reflejado un proceso de degradación ambiental que se iniciaría en torno al Tercer Milenio a.n.e. y que tendría como consecuencia fundamental una progresiva disminución de recursos arbóreos en el entorno (Fuentes et al. 2007).

La presencia de elementos caducifolios en la zona del valle del Guadalentín a escala local durante el Calcolítico parece confirmarse a partir de los hallazgos de instrumentos de madera de Cueva Sagrada (Lorca) (3870 ± 100 BP) (Eiroa García 2005), uno de los cuales era un plato elaborado en Quercus caducifolio, mientras que otro elemento estuvo realizado en madera de angiosperma indeterminada, aunque con presencia de perforaciones escalariformes (Vernet 1987) que mayoritariamente se presentan en taxones caducifolios. En la zona de Totana, el yacimiento calcolítico del Abrigo de los Carboneros, sin embargo, no muestra la existencia de caducifolios en el entorno, sino que presenta un espectro polínico dominado por Pinus halepensis, y acompañado por Quercus ilex/coccifera, Pistacia, Olea europaea, Ephedra y Vitis, junto con indicios de cultivo de cereales (López 1988). Los resultados ofrecidos en esta tesis para el Barranco de la Viuda están en consonancia con Carril de Caldereros, en tanto en cuanto la formación dominante a escala local estaría compuesta fundamentalmente por un bosque abierto de Pinus halepensis, y se habría producido ya una intensa degradación del bosque galería, de manera que el estudio antracológico de este yacimiento argárico únicamente detecta la presencia escasa de taxones que indicarían una mayor salinización y estacionalidad de la cuenca, como Tamarix.
Figura 5.15. Diagrama polínico del Cerro del Alcázar de Baeza (redibujado de Fuentes et al. 2007).
Para la Edad del Bronce en la zona de Lorca se cuenta también con los análisis antracológicos realizados para los yacimientos argáricos del Rincón de Almendricos y el Cerro de las Viñas. En el Rincón de Almendricos la formación principal del entorno en este momento sería un carrascal degradado representado mayoritariamente a través de carbón de *Quercus ilex/coccifera*, seguido de *Pinus halepensis*, *Olea europaea* y *Erica multiflora* (Grau 1990a). En el yacimiento argárico del Cerro de las Viñas, se documenta, sin embargo, un dominio de *Pinus halepensis* en el entorno, en el que aparecen también una gran cantidad de leguminosas, y en menor medida las encinas (Grau 1990a).

En el semiárido almeriense la secuencia de referencia en este período es la establecida para San Rafael (fig. 5.16), Antas (fig. 5.17) y Roquetas de Mar (fig. 5.18). Su zona polínica F, que comienza en torno al 4500 BP (Beta-77646: 4430 ± 100 BP para San Rafael y Beta-80379/CAMS-19069: 3890 ± 60 BP para Roquetas de Mar), supone la definitiva instalación de las condiciones semiáridas y esteparias en el Sureste peninsular, como parte de una progresiva aridificación ambiental que generaría modificaciones del balance hidrológico y de una mayor estacionalidad que se registra en la Península Ibérica, Norte de África y otros puntos del Mediterráneo a partir de este momento (Pantaleón-Cano *et al.* 2003). En el diagrama polínico esta etapa se caracteriza por un fuerte cambio en todos los elementos del espectro, expresado en una reducción del componente arbóreo, desapareciendo totalmente *Quercus* caducifolio y decreciendo los niveles de *Quercus* perennifolio y *Olea*. Al mismo tiempo se produce un fuerte incremento de *Artemisia*, junto con *Ephedra*, *Plantago* y *Asteraceae* (Pantaleón-Cano *et al.* 2003). En estas modificaciones paisajísticas no se concede mucha importancia al papel ejercido por las actividades humanas, ya que no se observan cambios significativos en el comportamiento de los palinomorfos asociados directamente a este tipo de actividades (Pantaleón-Cano *et al.* 1999, 2003). Los resultados antracológicos obtenidos para la Edad del Bronce en la Punta de los Gavilanes muestran algunos paralelismos con estas secuencias. Por un lado, se registra ya esta instalación de las condiciones de semiaridez en la costa sureste peninsular, la escasez de elementos arbóreos en el entorno, en el que apenas se desarrollarían algunos pinos, frente a la casi desaparición de las quercíneas y la expansión generalizada de formaciones esteparias. Por otro lado, según estos datos el entorno de Punta de los Gavilanes tampoco sería objeto de un fuerte impacto antrópico sobre la vegetación en este momento, una inflexión que no obstante sí se produce en las etapas protohistóricas según la señal ofrecida por el combustible leñoso.
Recursos forestales en un medio semiárido.

Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

Figura 5.16. Diagrama polínico sintético de San Rafael (redibujado de Pantaleón-Cano et al. 2003).

Figura 5.17. Diagrama polínico sintético de Antas (redibujado de Pantaleón-Cano et al. 2003).
Capítulo V. Síntesis general. Secuencia de la vegetación y usos de los recursos leñosos en el Sureste de la Península Ibérica desde la Edad del Bronce hasta época medieval. Inserción de los resultados en su contexto regional.

Figura 5.18. Diagrama polínico sintético de Roquetas de Mar (redibujado de Pantaleón-Cano et al. 2003).

En el ámbito almeriense también destacan para el Calcolítico los estudios antracológicos realizados sobre los Millares (fig. 5.19), con niveles adscritos al Cobre Antiguo (2345 a.C.), Cobre Pleno (2200 a.C. – 1930 a.C.) y Cobre Reciente, y los niveles del Cobre Pleno de Zájara, Campos (2130 a.C.) y Santa Bárbara (fig. 5.20) (Rodríguez-Ariza y Esquivel 2007). En el caso de los Millares la secuencia aparece dominada por el acebuche, junto con otros elementos como el lentisco que serían buenos indicadores de condiciones termomediterráneas en la cuenca del Andarax ya en el Calcolítico. Otros elementos, como Ephedra y Lycium intricatum serían incluso indicadores de ciertos parámetros semiáridos en el entorno. Sin embargo, la abundancia de especies de ripisilva que se registra constata la presencia de cursos fluviales permanentes durante todo el año (Rodríguez-Ariza 1997). Algunos taxones como el pino salgareño, Quercus ilex/coccifera, Pistacia terebinthus o Tamarix sp. se mantienen constantes durante toda la secuencia, sin embargo, el paso del Cobre Pleno al Reciente constata un fuerte cambio en la vegetación asociado posiblemente a una circulación hídrica más esporádica que anteriormente, por lo que se da un aumento del acebuche, de Pinus halepensis y de Salix sp., disminuyendo las leguminosas arbustivas y Populus sp. y desapareciendo otros taxones como jaras, brezos, romeros, alisos y fresnos (Rodríguez-Ariza 1997). Además los análisis estadísticos de correspondencias pusieron en evidencia la existencia de una selección humana de especies atendiendo al uso al que estaban destinadas (Rodríguez-Ariza y Esquivel 1990). Los resultados ofrecidos por los yacimientos de la zona del Bajo Almanzora (Zájara, Campos y Santa Bárbara) presentan también una mayoría de acebuches, seguidos del lentisco, que indicarían que la formación madura en la zona estaría constituida por una asociación de matorral esclerófilo dominada por ambos elementos, junto con otros como el palmito (Chamaerops humilis), el bayón (Osyris quadripartita), belchos (Ephedra fragilis) o algarrobos (Ceratonia siliqua). Este ambiente se caracterizaría por un grado de humedad algo superior al actual, en el que se detectan ya ciertas actividades agrícolas, ya que aparecen muy pocos elementos de ripisilva, a pesar de la proximidad de cursos de agua, lo cual podría estar indicando la presencia ya de ciertos campos de cultivo en su lugar (Rodríguez-Ariza 1999). Para otros yacimientos próximos como Terrera Ventura, sin embargo, los análisis se realizaron sólo sobre los fragmentos de carbón que iban a ser posteriormente datados, a través de los cuales se detectó la presencia en la zona de Pinus cf. pinaster, Olea cf. europaea y Fraxinus sp. (Gusi y Olaria 1991).
Capítulo V. Síntesis general. Secuencia de la vegetación y usos de los recursos leñosos en el Sureste de la Península Ibérica desde la Edad del Bronce hasta época medieval. Inserción de los resultados en su contexto regional

Figura 5.20. Diagrama antracológico de los yacimientos calcolíticos del Bajo Almanzora (redibujado de Rodríguez-Ariza 2000a).
Recursos forestales en un medio semiárido.
Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

Para la Edad del Bronce, a partir de los datos ofrecidos por el estudio antracológico del yacimiento de Fuente Álamo, en Almería (Carrión Marco 2004, 2005a) se ha propuesto para esta zona la existencia de un ambiente de gran aridez e incluso salinidad, con un matorral abierto con especies termófilas y xerófilas que estarían acompañadas de un elemento arbóreo bastante escaso, aunque mayor que el actual. Según la autora, la aparición de especies de ripisilva, que en la actualidad se dan en zonas más alejadas, hablaría de una mayor actividad de los barrancos asociados al río Almanzora, pero en general los taxa identificados no le permiten hablar de un ambiente más húmedo, aunque sí algo menos deforestado que en la actualidad. En el caso del yacimiento de Gatas, también en Almería, Gale (1999) documenta una inmensa mayoría de taxones termófilos, con un amplio dominio de *Olea europaea* en su registro. Algo más al interior de Almería, en la cuenca del río Andarax (piso termomediterráneo), se encuentra el Castillejo de Gádor, en donde ha podido documentarse una primera fase de ocupación argárica, y otra de época medieval. El estudio antracológico de los niveles argáricos (Rodríguez-Ariza 2001) ha revelado una intensa explotación de especies ribereñas como el aliso, fresno, álamo, sauce o taray, destacando la presencia sobre todo de aliso (*Alnus* sp.) y de álamo (*Populus* sp.), mientras que el taray (*Tamarix* sp.) apenas crecería en el entorno. En cuanto a las especies mediterráneas, destaca la escasa presencia que tienen los lentiscos o los acebuches, no apareciendo en el registro *Pinus halepensis*. Sin embargo, existen indicios del desarrollo de poblaciones termomesomediterráneas en donde predominarían especies como las encinas/coscojas y romeros, algo que la autora interpreta como un posicionamiento del piso mesomediterráneo en una cota inferior a la actual. Finalmente, se interpreta la presencia de *Pinus nigra-sylvestris* y de *Quercus faginea* como un aporte lejano orientado a un uso constructivo.

Para este ámbito, los aportes de B. Mariscal a través del estudio polínico de los yacimientos calcolíticos de las Pilas de Mojácar (Mariscal 1991c) y Almizaraque (Mariscal 1991b, 1993a) y para los niveles de la Edad del Bronce del Cerro de las Cuartillas, en Mojácar (Mariscal 1991a) y del Cabezo de las Brujas, en Almizaraque (Mariscal 1992) presentan cierta imprecisión cronológica y terminológica y por otra parte la procedencia de las muestras no aparece suficientemente aclarada en el texto. No obstante, para las Pilas de Mojácar habría que destacar el importante desarrollo de bosques de coníferas, junto con una vegetación de ribera bien estructurada, en relación con la proximidad del río Aguas y la ausencia de indicadores polínicos de cultivo (Mariscal 1991c). En cuanto a Almizaraque, la autora parte de muestras tomadas en los márgenes del río Almanzora, que proporcionan una imagen de la vegetación constituida por formaciones boscosas típicas de lo que denomina la “serie termomediterránea cálida”, junto con especies halófilas y xerófilas y elementos propios del bosque de ribera o de aguas estancadas (Mariscal 1991b). Las muestras tomadas en los cortes del yacimiento muestran para el Calcolítico indicios de vegetación asociada a zonas acuáticas y otras a cierta proximidad al mar, observándose al final de la secuencia una
fluctuación climática asociada a una fuerte actividad antrópica expresado en un gran aumento de las gramíneas y la reducción del polen arbóreo (Mariscal 1993a). Los primeros estudios sobre Almizaraque, realizados por López (1988) presentaban una imagen de la vegetación indicativa de una gran xericidad, con un dominio de Pinus halepensis y ciertos indicadores de cultivos durante la ocupación del yacimiento. Ya para la Edad del Bronce, los datos ofrecidos por el estudio polínico del Cerro de las Cuartillas hablarían de una vegetación compuesta fundamentalmente por matorrales y arbustos como los enebros o sabinas rastreros, y plantas propias de terrenos no cultivados, malas hierbas y especies parásitas (Mariscal 1991a). Finalmente, el Cabezo de Brujas registraría unas condiciones pluviométricas superiores a las actuales para el período Subboreal (Mariscal 1992).

V.1.2.3. Fase Subatlántica (desde c. 2800 BP) en el Sureste peninsular

Los últimos 3000 años han registrado una sucesión de períodos fríos y cálidos que han derivado en las condiciones climáticas actuales. Aproximadamente desde hace unos 2800 años comienza a producirse una elevación de las temperaturas que culmina en época romana, durante la cual se registra un episodio cálido que se manifiesta en un aumento térmico y de las precipitaciones entre aproximadamente el siglo I a.C. y el siglo V d.C. Esta tendencia cambia en época altomedieval, entre los siglos V y X, cuando se registra un episodio frío que supuso una expansión de los glaciares en gran parte de Europa. La siguiente etapa cálida se registra en época bajomedieval, aproximadamente entre los siglos XI y XIII, precediendo a la conocida “Pequeña Edad del Hielo”, entre los siglos XV y XIX. Finalmente, durante el siglo XIX se produce en la Península Ibérica un fuerte aumento de temperaturas y una mayor xericidad que hacia finales de siglo registra finalmente la recuperación térmica actual (Terradas 2001). Sin embargo, durante estos tres milenios la dinámica de la vegetación del cuadrante sureste peninsular no ha venido determinada como factor fundamental por estos períodos climáticos, sino por una nueva organización antrópica del territorio en función de actividades productivas que supusieron en general la potenciación de ciertos elementos arbóreos sobre otros en el ambiente, y la deforestación mediante tala y/o quema de espacios forestados naturales. Son numerosos los indicadores polínicos y antracológicos de antropización que se observan en la mayoría de secuencias estudiadas para este periodo.

Los últimos 3000 años aparecen en la secuencia de Villaverde en sus zonas polínicas VP7 (c. 2740-1920 cal. BP) y VP8 (c. 1920-1160 cal. BP) (Pta-7958: 2650 ± 45 BP y Pta-7964: 1230 ± 35 BP) (Carrión et al. 2001a). En la primera de ellas se produce una caída de los valores de Quercus caducifolio, mientras que Quercus perennifolio muestra su mayor crecimiento. Se producen también picos de Pinus, sobre todo en torno a 2240 cal BP, seguido de un fuerte aumento de Quercus perennifolio en torno a 2000 cal BP.
El final de la secuencia (VP8) supone una fuerte expansión de elementos herbáceos y un aumento general de taxones termófilos y xerófilos. Además, se produce un cambio en la estructura del bosque hacia un definitivo dominio de *Pinus* en torno a 1600 cal. BP, que venía presentando picos elevados desde c. 3500 cal. BP, posiblemente como consecuencia de ciertas perturbaciones ambientales relacionadas con un incremento de la frecuencia de los fuegos en la zona, dado el aumento de los microcarbones en la secuencia. En Villaverde (fig. 5.21), los indicadores polínicos de agricultura y pastoreo se detectan a partir de 1600 cal. BP (Carrión et al. 2001a).

En la secuencia de la Laguna de Siles (fig. 5.22) este período aparece representado en la zona polínica SP6 (c. 3500-2000 cal. BP) que presenta una dominancia de *Pinus nigra*, y en torno a 3000 cal. BP, la desaparición de *Ephedra nebrodensis* y la mayor presencia de *Cistus* y *Pistacia*. Finalmente, desde c. 2000 cal. BP hasta c. 500 cal. BP (Pta-8152: 430 ± 90 BP) (Carrión 2002) se producen varios episodios con tendencia a la reducción del bosque. En la zona polínica SP7 (c. 2000-1550 cal. BP) se produce un cambio brusco, con el descenso de *Pinus nigra*, y la dominancia de Poaceae. La zona polínica SP8 (c. 1550-500 cal. BP) registra una alternancia entre formaciones de *Pinus nigra* acompañadas de mesófitos como *Quercus* caducifolios o *Corylus*, y de Poaceae junto con taxones como *Pinus pinaster*, *Quercus perennifolio*, *Fraxinus*, *Ericaceae*, *Juniperus*, *Phillyrea*, *Artemisia* y Chenopodiaceae. La zona polínica SP9 (desde 500 cal. BP) supone el establecimiento definitivo de la vegetación que actualmente caracteriza la zona, con *Pinus nigra*, *Pinus pinaster*, *Quercus rotundifolia*, y zonas abiertas con gramíneas, *Juniperus* y espinos. En Siles las evidencias de pastoreo se detectan a partir de hace unos 2500 años, gracias a ciertos indicadores como el aumento de *Riccia*, Sordariaceae, *Thecaphora*, *Trichuris* y *P. aviculare* (Carrión 2001). Los indicadores del desarrollo de agricultura (Cerealia, *Plantago*, *Vitis...*) se evidencian desde 1400 cal. BP. Además, este último período aparece relacionado también con una mayor presencia de fuegos en el ambiente y una mayor sensibilidad ecológica que, combinadas, generan una apertura de las formaciones boscosas (Carrión 2002).

En el caso de Cañada de la Cruz (fig. 5.24) (Carrión et al. 2001b) en torno a 2630 BP (Beta-141044: 2630 ± 140 BP) se produce una alternancia desde un dominio anterior de Poaceae a *Pinus nigra*, que se invierte de nuevo en torno a 1525 BP (Gra-14159: 1550 ± 40 BP) y finalmente hacia el 790 BP (Pta-7883: 790 ± 70 BP) aparecen los primeros índices polínicos en relación con la agricultura y el pastoreo (Carrión et al. 2001b).

En El Sabinar (fig. 5.23) (Carrión et al. 2004) la subzona S2d (c. 2660-2420 cal. BP) (Pta-8673: 2620 ± 100 BP; Pta-8471: 2550 ± 100 BP) presenta un incremento de *Pinus pinaster*, *Quercus* caducifolio, *Corylus*, *Fraxinus*, *Acer*, *Taxus*. La subzona S3 (c. 1350-1240 cal. BP) (Pta-8477: 1460 ± 60 BP; Pta-8642: 1350 ± 110 BP) supone el definitivo declive del bosque, mientras que se produce un fuerte aumento de *Juniperus*, *Artemisia*, Chenopodiaceae, Lamiaceae y Cistaceae, de taxones arbustivos, plantas nitrófilas e
indicadores de fuego. Los indicadores polínicos de pastoreo se dan en torno al 1400 cal. BP, y el aumento de *Plantago* y otros taxones relacionados con la agricultura en c. 1350 cal. BP (Carrión *et al.* 2004).

Finalmente, en la Sierra de Gádor (Carrión *et al.* 2003), a partir de c. 3000 cal. BP se observa un fuerte incremento de *Plantago*, seguido de un último pico máximo de *Pinus* (c. 1700 cal. BP) que se ve reducido en torno a 1600 cal. BP al tiempo que se da un fuerte aumento de Poaceae (Carrión 2001).

En lo que concierne a la Sierra de Baza (Carrión *et al.* 2007) el período ibérico (c. 3200-2200 cal. BP) supone un establecimiento permanente del matorral mediterráneo, al tiempo que las formaciones boscosas se retraen y se reducen o desaparecen algunos mesófitos como *Corylus*. Por otro lado, se detectan ciertos indicadores polínicos relacionados con el desarrollo de la agricultura y el pastoreo en el entorno. Este cambio vendría precedido también de un aumento de la concentración de microcarbones en la sencuencia entre 2620-2590 cal. BP. Finalmente, los último 2200 años de la secuencia, en relación con el período romano e histórico en la zona, suponen un fuerte descenso de las formaciones de *Pinus*, y un dominio de Poaceae que presenta su pico más alto en torno a 1500 cal. BP. Mientras *Quercus* caducifolio presenta un gran descenso, *Quercus* perennifolio sigue manteniendo niveles altos. Además, en torno a 2000 cal. BP la concentración de microcarbones es la más alta de la secuencia (Carrión *et al.* 2007). El estudio previo realizado en la Sierra de Baza sobre la turbera de la Cañada Larga del Cerro del Sotillo (Riera Mora *et al.* 1995) ofrece datos desde los últimos 3000 años en la zona. Esta secuencia comienza en un momento anterior al 2640 BP (Gd-6594: 2640 ± 120 BP) y finaliza en un momento posterior a 2310 BP (Gd-6595: 2310 ± 120 BP) (Riera Mora *et al.* 1995). Sólo en la primera fase de la secuencia es destacable la presencia de *Quercus* y de otros elementos caducifólios como *Alnus* o *Corylus*, que indicarían un cierto desarrollo del quejigal en relación con una mayor disponibilidad hídrica, pero que tienden a reducirse o desaparecer posteriormente. A partir de 2640 BP se produce un primer episodio de aumento de concentración de microcarbones, junto con un fuerte incremento de *Quercus ilex/coccifera* y *Cistus*, un aumento de herbáceas y algunos taxones antropógenos relacionados sobre todo con la ganadería. Posteriormente *Cistus* se presenta como dominante en la secuencia, *Olea* aumenta sus porcentajes, comienzan a aparecer otros termófitos como *Pistacia* y se produce un aumento de los indicadores antrópicos. Al mismo tiempo, descienden los taxones arbóreos como *Quercus* y *Pinus*. En la siguiente etapa, en torno a 2310 BP, se da otro pico elevado de cenizas, y un nuevo cambio en la composición florística principal, dominada ahora por *Quercus* tipo *ilex*. Finalmente, el final de la secuencia está dominado por *Pinus* y *Olea*, junto con un fuerte desarrollo de especies de pastizal (Riera Mora *et al.* 1995).
Recursos forestales en un medio semiárido.

Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

Figura 5.21. Diagrama polínico de Villaverde (Carrión et al. 2001a).
Figura 5.22. Diagrama polínico de la Laguna de Siles (redibujado de Carrión 2002).
Figura 5.24. Diagrama polínico de Cañada de la Cruz (redibujado de Carrión et al. 2001b).
Pasando ya a la zona semiárida almeriense, la secuencias de Antas, Roquetas de Mar y San Rafael (Pantaleón-Cano et al. 2003) en sus zonas polínicas G y H (aproximadamente los últimos 2000 años) detectan un incremento de la concentración polínica que podría estar relacionado con una reducción de la dinámica torrencial como consecuencia del impacto humano sobre la hidrología, y del aumento de la xericidad ambiental. En este caso, este ligero aumento de la concentración polínica no estaría en consonancia con un alto grado de recubrimiento vegetal (Pantaleón-Cano et al. 1996), ya que se produce un incremento de Artemisia y Chenopodiaceae, como producto de la creación de zonas fuertemente halófilas en los cordones litorales, y también aumentan los valores de Olea como indicador de los recientes cultivos de la especie que sólo se evidencia según la señal polínica a partir de época medieval (Yll Aguirre et al. 1996). En el caso del registro de Cabo de Gata, los últimos 3000 años (3540 ± 40 BP) se caracterizan por un definitivo incremento de la aridez, un descenso de los taxones mesófilos y arbustivos y una fuerte extensión de los halófitos como Chenopodiaceae como consecuencia de la salinización de las marismas (Burjachs et al. 1996). Un proceso semejante se observa en el diagrama polínico de El Cautivo (Tabernas, Almería), en donde la presencia del taxón Secale indica que los últimos 50 cm comenzarían en c. 2700 BP. Esta última etapa registraria primero un ligero aumento del polen arbóreo (Pinus, Olea), con un descenso brusco en los últimos 15 cm de la secuencia, en función de un gran incremento de Chenopodiaceae y Poaceae fundamentalmente (Nogueras et al. 2000). Los últimos 3000 años en el testigo 11-P del Mar de Alborán hasta la zona superior de la secuencia (1509 ± 36 BP) (Targarona et al. 1996), se caracterizan por una reducción de la concentración polínica que indicaría una menor cobertura arbórea, y la presencia de olivo cultivado. Además, a partir de 2000 BP aproximadamente se detecta un fuerte incremento de las temperaturas y de la aridez ambiental (Targarona et al. 1996).

En la secuencia polínica de Carril de Caldereros (Fuentes et al. 2005) los niveles ibéricos (c. 375-350 a. C.) y romanos (primera mitad del siglo I d.C.) presentan un fuerte retroceso de los porcentajes de Pinus, que deciden hasta menos del 5%, y de Quercus tanto perennifolio como caducifolio, mientras que desaparecen definitivamente la mayoría de mesófitos de la secuencia. Al mismo tiempo Poaceae alcanza su pico máximo, junto con una gran cantidad de elementos xerófilos, y la aparición de signos de agricultura como Vitis (Fuentes et al. 2005).

Además de estas secuencias polínicas de largo recorrido cronológico y elevada resolución, otros estudios paleobotánicos, sobre todo antracológicos, han contribuido a perfilar la caracterización del paisaje del entorno de los yacimientos, si bien suelen referirse a un espacio temporal menor, al estar asociados directamente a la ocupación de los mismos. En líneas generales los resultados obtenidos se insertan en las pautas marcadas por las secuencias polínicas, si bien la escasez de estudios antracológicos en
etapas recientes supone una limitación en la resolución de cuestiones paleoecológicas más allá del ámbito local.

Entre los establecimientos protohistóricos peninsulares son destacables, en primer término, los datos antracológicos de La Fonteta, en Guardamar de Segura (Grau 2007), cuya ocupación se desarrolló entre finales del siglo VIII a.C. y finales del siglo VI a.C. El paisaje que rodeaba el hábitat de La Fonteta en el momento de la colonización fenicia estaba formado por pinos carrascos y marítimos, con un sotobosque de lentiscos y leguminosas. Se trató de una vegetación propia de ecosistemas dunares fijos, en la que existían evidentes signos de antropización del entorno, como el cultivo de *Olea europaea*, y el aclaramiento de los sistemas forestales. El bosque de ribera asociado al Río Segura en este momento estaba conformado fundamentalmente por fresnos y chupos o sauces, junto con una importante presencia de *Tamarix*, como indicador de la importancia de las zonas lacustres litorales. Se trataría de un ambiente muy semejante al que se desarrollaría en la fase protohistórica de la Punta de los Gavilanes (GV-III), si bien en las proximidades de este yacimiento no es posible afirmar que se produjera un cultivo del olivo en esta cronología temprana, ni aparecería un bosque galería bien configurado, al no discurrir cursos de agua permanentes en su entorno.

En el caso del yacimiento fenicio del Cerro del Villar (Málaga) los análisis antracológicos (Ros Mora y Burjachs 1999) apuntan para el siglo VII a.C. a un paisaje muy abierto, dominado por especies de maquia litoral (lentisco, acebuche, aladierno...) y matorral termófilo, con un estrato arbóreo reducido en el que permanecerían reductos de carrascales o alcornocales, con una escasa presencia también de *Pinus halepensis*. Además, también aparece muy desarrollada una vegetación compuesta por especies propias de ambientes riparios, lagunares y de marisma. En el entorno se detecta una deforestación como consecuencia fundamentalmente del uso de madera para las actividades productivas del asentamiento, sobre todo en hornos y herrerías, y también como material de construcción. Sin embargo, los datos polímicos apuntan a que las actividades relacionadas con la agricultura no se produjeron en el asentamiento, sino que sus habitantes eran fundamentalmente consumidores, y no productores de este tipo de alimentos (Ros Mora y Burjachs 1999, en Aubet y Delgado 2003). Los datos antracológicos del yacimiento indígena próximo del Cerro de la Era (Iborra et al. 2003) presentan una vegetación muy similar a la del Cerro del Villar, aunque en este caso sí se detectan taxones como *Olea, Vitis*, o algunas rosáceas, que podrían ser indicadoras de cultivos en la zona, si bien pudieron también formar parte de la vegetación natural del entorno. En la colonia fenicia de Baria (López Castro 2003) también aparecen desde el periodo colonial (700-500 a.C.) algunos taxones como *Ficus carica, Olea europaea* o *Prunus* sp. que podrían ser cultivados. Entre el 500-200 a.C. destaca el fuerte incremento de la representación de combustible de olivo, en relación con un aumento del cultivo de esta especie en el entorno del enclave (López Castro 2003).
En cuanto a la Edad del Hierro, el yacimiento de l’Alt de Benimaquia (Denia, Alicante), presenta en el siglo VII a.C. formaciones vegetales dominadas por Quercus perennifolios, acompañados de matorral mediterráneo y de algunos pinos carrascos y piñoneros. Es posible también que se desarrollara un cultivo del olivo en la zona (Iborra et al. 2003).

En el área interior de Valencia, el yacimiento de los Villares (Caudete de las Fuentes), presenta una secuencia antracológica desde el Hierro Antiguo hasta Ibérico Pleno (ss. VII-II a.C.). Durante la primera etapa de ocupación (ss. VII-VI a.C.), en las cercanías del poblado se desarrollaba un encinar, mientras que en las zonas altas aparecería un bosque de coníferas de pino negral-albar, y en los puntos más húmedos crecerían algunos ejemplares de quejigo. A partir del Ibérico Antiguo el encinar empieza a disminuir, al tiempo que aumentarían las formaciones secundarias de Pinus halepensis. Este proceso se consolida en el Ibérico Pleno, cuando el pino carrasco presenta sus mayores frecuencias, y comienzan los primeros signos de antropización del territorio (Grau et al. 2001).

Más al sur, el yacimiento del Hierro Antiguo del Castellar de Librilla (Murcia), situado en el ámbito del Guadalentín, muestra una importante presencia de vegetación termomediterránea en la que predominaría Pinus halepensis y Pistacia lentiscus junto con especies propias de formaciones de matorral como las leguminosas y las jaras. En cuanto a freatófitos, destacaría la aparición de monocotiledóneas y la identificación de Fraxinus sp. en el registro. Finalmente, pudieron ser cultivadas en el entorno especies como el algarrobo o el olivo (Grau, inédito, b).

En cuanto a época ibérica, destaca en primer lugar el análisis antracológico de la necrópolis de Cabezo Lucero (ss. V-IV a.C.) (Grau 1990a, 1993), en Guardamar de Segura, donde se detecta que la recogida de leña se produjo tanto en los pinares de pino carrasco, acompañados de enebros y acebuches, que serían el resultado de una avanzada degradación del carrascal originario en la zona, como de especies que fueron obtenidas en la ribera del río Segura, como los chopos o álamos (Populus sp.). Aparecen, además, géneros como Buxus, que se interpretan como objetos quemados traídos de zonas más lejanas, si bien es verdad que el análisis del Balneario Romano de Archena ha permitido observar que este elemento crecía en las proximidades del Río Segura en época romana. En la zona costera murciana, sin embargo, los datos obtenidos en la Punta de los Gavilanes apuntan hacia una degradación paisajística mucho mayor en estas cronologías, que se ve aumentada a partir del siglo IV a.C. hasta su abandono en el siglo I a.C. debido a las connotaciones productivas del sitio.

Por otro lado, hacia el interior, el análisis antracológico de la necrópolis ibérica de Corral de Xaus (Moixent, Valencia) (Grau 2000b), ofrece una imagen semejante de la vegetación, que se encontraría también en una etapa avanzada de sustitución del
carrascal, con un predominio de *Pinus halepensis*, junto con especies de matorral como enebros o coscojas, y la captación también de elementos de ripisilva, dada la aparición de *Fraxinus* sp. (Grau 2000b).

En el interior de la Región de Murcia, el estudio paleoambiental del interior de dos nichos de la necrópolis ibérica de Coimbra del Barranco Ancho (Jumilla), situado en la Sierra de Santa Ana, muestra la utilización como combustible de especies como *Tetraclinis articulata*, *Fraxinus* sp., *Pinus pinea*, *Pistacia lentiscus*, Leguminosae, *Olea europaea* y Rosaceae (Grau, inédito, a), además de la relativa importancia del esparto ya en esos momentos en la zona, que sugieren los trabajos de trenzado documentados en este mismo yacimiento (Rivera Núñez y Obón 1987b). Por otro lado, el análisis polínico del yacimiento ibérico de Los Molinicos, en la comarca del Noroeste, ofreció una imagen del entorno dominada por una vegetación mediterránea, con abundancia de taxones de ripisilva relacionados con cursos de agua permanentes, y con una fuerte influencia de las actividades antrópicas, marcada por la gran presencia de taxones de tipo ruderal (López *et al.* 1991).

El yacimiento de los Baños de la Malahá (Granada), presenta una secuencia desde el Bronce Final hasta época romana (Ruiz y Rodríguez-Ariza 2002). En el Bronce Final se desarrolló en esta zona un encinar, acompañado por *Pistacia lentiscus* y una gran cantidad de matorrales como leguminosas, jaras, romeros y retamas. La etapa posterior (protoibérica), sin embargo, registra un fuerte aumento de las retamas, en detrimento de *Pistacia lentiscus*, al tiempo que comienzan a aparecer algunos árboles cultivados como el almendro o la vid, y ciertos taxones ruderales como *Atriplex halimus*. El período ibérico pleno supone un aumento de *Quercus ilex/coccifera*, y la aparición de taxones como *Pinus nigra/sylvestris*, que inducirían a pensar en un gran desarrollo de la arboricultura en el entorno del yacimiento, que provocara un cambio de estrategia en la recogida de leña, hacia zonas alejadas y de mayor altitud. Finalmente, en época romana se detecta un cambio en las especies cultivadas, pasando a dominar la secuencia *Olea europaea*, en conjunción con taxones que indicarían una fuerte antropización del terreno como *Ephedra* (Ruiz y Rodríguez-Ariza 2002). En el caso de Fuente Amarga (Rodríguez-Ariza *et al.* 1999a, Ruiz y Rodríguez-Ariza 2002), el período ibérico supone una degradación del matorral de coscojas y pino carrasco, al tiempo que aumentan considerablemente familias como las leguminosas. Además, en este momento se produce también un aumento de especies cultivadas como la vid o la higuera, que junto con el cultivo de cereales rodearían el enclave, desplazando a la vegetación forestal a zonas más lejanas (Rodríguez-Ariza *et al.* 1999a).
Figura 5.25. Diagrama antracológico de *Valentia* (Grau 1990b).
En el interior de Andalucía, los resultados polínicos del yacimiento ibérico de Castellones de Ceal (Jaén) y del yacimiento de Ategua (Córdoba), con niveles hasta época romana (López 1986), hablarían de espacios abiertos debido a la deforestación, y otros dedicados a las actividades agrícolas, y también una degradación intensa de los suelos. El estrato arbóreo estaría dominado fundamentalmente por Pinus.

Los principales datos que se tienen hasta el momento para época romana son los estudios antracológicos llevados a cabo por E. Grau (1990a) para Valentia, sobre varios yacimientos de la ciudad, abarcando el periodo romano republicano, el altoimperial y el Bajo Imperio y época visigoda (Grau 2003). El intento de realizar un estudio polínico para esta época, sin embargo, no resultó fructífero debido al mal estado de los palinomorfos, que supusieron un sesgo interpretativo importante (Carmona et al. 1990).

Los resultados antracológicos (fig. 5.25) apuntan a que durante el periodo republicano todavía existiría en el entorno de Valentia un cierto dominio del encinar, que comienza una progresiva reducción a partir de este momento, acentuándose aún más hacia el siglo I d.C., cuando los porcentajes de Pinus halepensis comienzan a elevarse en detrimento de los de Quercus ilex/coccifera. El siglo I d.C. supone, pues, el momento de inflexión hacia una progresiva disminución del bosque, en función de un aumento de la garriga, con especies como el olivo, el pino carrasco o el lentisco, en progresivo ascenso hasta su total predominancia en el Bajo Imperio. En consonancia con la reducción del encinar, el aumento de la garriga y el incremento de la presión antrópica, se registra una elevación de los porcentajes de las especies cultivadas como el olivo, la vid o la higuera durante el Alto Imperio. Por otro lado, la vegetación de ribera no experimenta apenas cambios a lo largo de toda la secuencia, debido a la proximidad del río Turia. El bosque galería estaría compuesto, de forma parecida al Balneario Romano de Archena, por especies de los géneros Fraxinus, Populus y Tamarix fundamentalmente, acompañadas de monocotiledóneas como los carrizos, aunque en el caso de Valentia los porcentajes del fresno y el álamo son superiores a los del taray (Grau 1990b), registrando una menor aridez que en el río Segura, donde los valores de Tamarix son más importantes.

El estudio de diversos yacimiento ibéricos (Cerro de las Balsas), romanos (Camping Lucentum) y tardorromanos (Necrópolis del Palacio Llorca) en el término municipal de Alicante (Martín Cantarino y Rosser Limiñana 1993) pone de manifiesto que el paisaje en esta zona desde época ibérica fue eminentemente agrícola, aunque con un mantenimiento del carrascal en zonas umbrosas, y de un bosque galería bien estructurado, y compuesto por elementos como Ulmus, Salix, Alnus, etc. En época romana estos ecosistemas riparios se ven fuertemente degradados, aunque no se producen grandes cambios en la estructura de la vegetación. Sin embargo, los datos ofrecidos por los niveles islámicos del Solar del Sotanillo y el de la Lonja para esta misma zona (Martín Cantarino y Rosser Limiñana 1993) parecen demostrar que es en este momento cuando se produce una degradación profunda de la vegetación, con una
casi total desaparición del polen arbóreo, a excepción de Pinus, y la aparición mayoritaria de taxones cultivados.

Los trabajos paleoecológicos referidos a época medieval en el Sureste Ibérico son muy escasos, aunque remiten siempre a un paisaje fuertemente antropizado, en el que el espacio dedicado a los cultivos sería considerable, y en el que, por otro lado, el estado de los bosques se encontraría fuertemente degradado. Ambos aspectos han sido detectados en el estudio llevado a cabo en este trabajo sobre el yacimiento de los siglos XII y XIII hallado en la Calle Santa María 19 de Jumilla, en cuyo entorno existiría un predominancia del pino carrasco, posiblemente en zonas elevadas, mientras que los terrenos anejos al asentamiento estarían probablemente dedicados a diferentes cultivos, generando espacios nitrificados a su alrededor.

En el Este peninsular una de las principales aportaciones para época medieval lo constituye el estudio antracológico del Castell d’Ambra (De Haro Pozo 1998, 2002a) que proporciona información sobre esta zona para los siglos XII y XIII, con niveles tanto islámicos como cristianos. Ambas etapas, sin embargo, no muestran cambios significativos entre sí. En las cercanías del Castell d’Ambra se instalaba una vegetación degradada que conformaría un ecosistema tipo garriga. Las causas de esta degradación habría que buscarlas sobre todo en el desarrollo de cultivos entre los que destacaría fundamentalmente el olivo y al algarrobo. Las zonas boscosas estarían dominadas por Quercus ilex/coccifera y Arbutus unedo. Los pinos aparecen en general muy poco representados, ya que Pinus halepensis se encontraría en montañas más meridionales y secas, mientras que Pinus nigra/sylvestris procedería de sierras más altas. Los ambientes riparios estarían conformados sobre todo por Ulmus, y en menor medida por monocotiledóneas y fresnos. En este yacimiento fueron hallados también algunos fragmentos carbonizados de Fagus sylvatica que se atribuyen a la quema de algún mueble traído de fuera (De Haro Pozo 1998, 2002a).

En la zona semiárida alicantina destacan los análisis antracológicos de la Rápita de Guardamar (Grau y De Haro Pozo 2004) y del Castillo del Río (Grau y Simeón 1994). En el siglo X el entorno de la Rápita estaría compuesto por una vegetación de tipo forestal o preforestal propia de ecosistemas dunares, con un estrato arbóreo dominado por Pinus halepensis, mientras que el arbustivo estaría conformado fundamentalmente por Pistacia lentiscus. Sin embargo, las áreas de captación serían bastante amplias ya que se documentan especies como el madroño o algunas leguminosas que procederían de formaciones de carrascal en regresión, situadas a cierta distancia con respecto al cerco dunar. La vegetación asociada a la ribera del Río Segura se mantendría todavía bien desarrollada, destacando la presencia de Ulmus, Salix y Tamarix (Grau y De Haro Pozo 2004). El estudio de varias estructuras de combustión y acumulaciones cenicientas del Castillo del Río (ss. XII-XIII), sugiere que existirían en los alrededores del mismo un paisaje bastante degradado en el que Pinus halepensis tenía un fuerte desarrollo
como parte de un proceso de sustitución del carrascal, del que todavía quedarían bosquetes en zonas de refugio algo más alejadas del castillo. Las comunidades riparias estarían compuestas en este caso por *Tamarix*, *Salix* y *Fraxinus* (Grau y Simeón 1994).

Los niveles medievales islámicos del Castillejo de Gádor (Almería) (Rodríguez-Ariza 2001), constatan la importancia de los cultivos (*Juglans regia*, *Olea europaea*, *Prunus amygdalus*, *Vitis*) en el entorno periurbano del yacimiento, mientras que la vegetación natural se desarrollaría en zonas más alejadas, no cultivables. Los principales recursos leñosos explotados provenían del bosque de ribera, que se presentaría bien desarrollado en estos momentos. Destaca también una importante representación de formaciones termo-mesomediterráneas de pino, lentisco y acebuche, e incluso la presencia de *Pinus nigra/sylvestris*, cuya recogida se produciría en zonas elevadas de la Sierra de Gádor (Rodríguez-Ariza 2001).

En la Ciudad de Granada, a partir del análisis antracológico de la Necrópolis de Sahl Ben Malic, el Mercado de San Agustín y los Hornos de la Casa de los Tiros (Rodríguez-Ariza 1993) se ha determinado que entre los siglos XI y XIV la vegetación del entorno estaba compuesta fundamentalmente de un encinar de *Quercus rotundifolia*, salpicado con algunos ejemplares de *Quercus faginea* en las zonas umbrosas, con un sotobosque muy poblado de arbustos y lianas. Sin embargo, en la Vega de Granada esta vegetación se encontraría muy desplazada, en función del desarrollo de amplios campos de cultivo en el entorno de las ciudades (Rodríguez-Ariza 1993).
En el área cordobesa, los análisis polínicos de Madinat al-Zahra (Martín-Consuegra et al. 1996) y de la Laguna de Zóñar (Valero-Garcés et al. 2006), ofrecen una secuencia desde etapas medievales hasta la actualidad. El entorno de Madinat al-Zahra presenta signos de actividad antrópica relacionada con la agricultura, con grandes concentraciones de Cerealia, antes de la construcción de la ciudad en el siglo X. Posteriormente, el establecimiento de los jardines hace que la señal polínica detecte algunos taxones aromáticos o decorativos que pudieron formar parte de los mismos (Ocimum, Celtis, Lavandula, Myrtus, Nerium, Smyrnium). Finalmente, el último momento de la secuencia, ya en el siglo XX, registra elevadas concentraciones de polen relacionado con actividades antrópicas. En cuanto a la Laguna de Zóñar (fig. 5.26), la zona polínica III (AA60921: 1771 ± 38 BP –c. 300 AD-, hasta c. 1250 AD) registra una formación esclerófila mediterránea, dominada por Quercus perennifolio, junto con otras especies como Olea europaea var. sylvestris, Ceratonia siliqua, Pinus y Juniperus, además de algunos mesófitos que se desarrollarían en zonas húmedas. La zona polínica II, que comprende desde los siglos XIII hasta aproximadamente el siglo XIX presentaría una vegetación semejante a la anterior, aunque con un incremento de Olea que pudo ser resultado del cultivo de esta especie en la zona. Además, en esta zona se produce un aumento de higrófitos. En las dos zonas descritas aparecen gran cantidad de indicadores polínicos de antropización (Plantago, Cerealia, Vitis, Rumex...etc). Finalmente, la zona polínica I, que recogería el registro polínico de los siglos XIX y XX muestra un dominio de Olea en la secuencia, una buena conservación de las especies mediterráneas, y la aparición de taxones como Tamarix que indicarían un aumento del nivel de la laguna en las últimas décadas.

V.2. El uso de la madera en el Sureste peninsular desde las sociedades de la Edad del Bronce hasta época medieval

En este epígrafe se pretende plantear una lectura paleoeconómica que sintetice los resultados obtenidos a partir de los antracoanálisis abordados en este trabajo, en combinación con otros estudios en el cuadrante sureste de la Península Ibérica. Se plantearán dos perspectivas diferenciadas: por un lado la utilización de los recursos leñosos como combustible en los procesos domésticos y productivos desarrollados por grupos desde la Edad del Bronce hasta época medieval y en segundo lugar, el uso de la madera como material de construcción que se ha documentado en contextos de destrucción por incendio en diferentes yacimientos del ámbito geográfico y cronológico estudiado.

V.2.1. La madera como combustible

Como se ha comentado en diversas ocasiones, la mayor parte de los restos de madera carbonizada que permanecen en el registro arqueológico de un yacimiento se
corresponde con residuos de leña cuya única finalidad fue la de servir como combustible en las estructuras de combustión localizadas en el mismo. Los aportes de esta leña al yacimiento fueron, por lo tanto, voluntarios, por lo que pueden constituirse como un buen indicador de pautas socio-económicas de comportamiento en este sentido o, por contra, del determinismo ambiental como factor primordial en este tipo de actividades.

- **Aprovisionamiento de combustible e impacto medioambiental**

Los sistemas de aprovisionamiento periódico de leña a los poblados estarían organizados en función de dos aspectos fundamentales. De una parte, se tendría en cuenta la disponibilidad de vegetación leñosa en las áreas próximas, y de otra, se organizaría atendiendo a la inversión de energía necesaria para llevar a cabo este trabajo.

En lo que concierne al primer aspecto, la lectura paleoambiental de las secuencias polinicas y antracológicas con las que contamos para el cuadrante sureste de la Península Ibérica, detalladas en el epígrafe anterior, apunta a que durante la Edad del Bronce se está produciendo ya en esta zona una progresiva instalación de las condiciones de semiaridez que reinan actualmente en gran parte de las áreas estudiadas (Pantaleón-Cano et al. 2003). Este cambio de las condiciones climáticas y el incremento de la presión antrópica trajeron consigo un aumento de la degradación de los sistemas forestales, que sufrirían una merma considerable.

Desde una perspectiva paleoeconómica las repercusiones de este proceso de apertura del paisaje supondrían una reducción de los recursos leñosos disponibles, que se ve reflejada en las pautas de gestión de los mismos. Por ello, si se analizan las proporciones de combustibles aparecidas en los diferentes estudios antracológicos regionales desde la Edad del Bronce hasta época medieval, es posible observar que existe una concordancia clara entre las pautas de comportamiento y las formaciones vegetales mejor desarrolladas en el entorno, dependiendo del estado de apertura y degradación del paisaje.

En las tablas siguientes (tablas 5.1, 5.2 y 5.3) se percibe con claridad este fenómeno. Para realizarlas se ha seguido la metodología planteada por Duque (2004a) en la que es posible reflejar la presencia o no de los diferentes taxones en cada yacimiento, al tiempo que se establece una gradación cromática de tonos cálidos (fig. 5.27) que representa la importancia porcentual de los mismos como combustible. El orden de los taxones se ha establecido en función de los biotopos en donde suelen aparecer, individualizando el bosque o matorral mediterráneo, donde los taxones se ordenan de menor a mayor termicidad, la vegetación asociada a zonas salinas, ruderales o a ramblas con un elevado grado de salinidad, el bosque de ribera, los posibles cultivos y los taxones alóctonos.

551
Figura 5.27. Leyenda de porcentajes aplicable a las tablas 5.1, 5.2 y 5.3.

En los yacimientos de la Edad del Bronce (tabla 5.1) se observa una diferencia en los taxones más utilizados como combustible en relación fundamentalmente con la posición geográfica de los mismos, que evidencia el desigual estado de degradación a escala latitudinal. En los yacimientos de la zona interior valenciana y castellano-manchega, como Muntanya Assolada, el Abric de la Falguera, la Mola d’Agres o la Motilla de Azuer existe una orientación fuertemente marcada hacia las formaciones de encinar, de manera que los _Quercus_ perennifolios presentan los máximos porcentajes, apareciendo también en menor proporción _Quercus_ de hoja caduca y algunos mesófitos. En los yacimientos del interior de Andalucía, excepto en Peñalosa, se detecta que las formaciones de encinar se encuentran algo más degradadas, de manera que los combustibles más utilizados pasan a ser los pinos carrascos, si bien se mantienen porcentajes medios de _Quercus_ perennifolio y se detecta la presencia dentro de sus áreas de captación de zonas de alta montaña, dada la aparición de _Pinus_ tipo _nigra-sylvestris_.

En el área murciano-almeriense, a excepción de El Castillejo de Gádor donde se da un especial explotación de los recursos ribereños y la recolecta de madera en zonas elevadas, los resultados ponen de relieve que las condiciones de apertura del paisaje son mucho mayores. Por ello, los combustibles más utilizados siguen siendo _Pinus halepensis_, y también comienzan a aparecer porcentajes mayores de elementos arbustivos como _Pistacia lentiscus_ y _Olea europaea_ var. _sylvestris_. Sin embargo, desaparecen por completo los robles y los mesófitos, mientras ciertos xerófitos como _Ephedra_ o Chenopodiaceae aparecen de manera más constante.

En los yacimientos protohistóricos, ibéricos y romanos (tabla 5.2), cuando este proceso de degradación se encuentra ya mucho más consolidado, la captación de recursos se orienta fundamentalmente hacia los elementos propios de un matorral mediterráneo de carácter termófilo, como _Pistacia lentiscus_ y _Olea europaea_, en combinación con _Pinus halepensis_ que se convierte en el elemento arbóreo fundamental en el radio de acción de los asentamientos. Sin embargo, sólo enclaves interiores como la zona granadina donde se ubican Los Baños de Malahá presentan un estado de conservación óptimo del encinar, de manera que la recolecta de recursos se orienta hacia las especies que lo conforman. A través del resto de los yacimientos, no obstante, observamos que el mayor porcentaje de los combustibles analizados se concentran en la parte inferior de la tabla, donde se encuentran representados los elementos más termófilos y xerófilos. En
cronologías romanas, como Valentia, el Balneario de Archena o los Baños de la Malahá se detecta ya la importancia del cultivo del olivo en su entorno, ya que se incrementan sus porcentajes de aparición como combustible.

Finalmente, en el caso de los yacimientos medievales (tabla 5.3) los biotopos de captación preferencial siguen siendo los matorrales de carácter mediterráneo, sobre todo en el caso de los enclaves situados en zonas más áridas como el Castillo del Río, la Rápita de Guardamar o Jumilla Santa María 19, si bien siguen permaneciendo algunos taxones mesófilos en el resto de los yacimientos, dada su posición geográfica. Otro aspecto interesante en lo que concierne al combustible utilizado en los yacimientos medievales es la percepción en el registro de los cambios en la organización del territorio, de manera que aparecen muchos más taxones cultivados, que tendrían gran importancia en las inmediaciones de las zonas “urbanas”. También aparecen elementos introducidos desde lugares lejanos al yacimiento, como el caso de Fagus en el Castell d’Ambra o de Cupressus sempervirens en el caso de la Ciudad de Granada.
<table>
<thead>
<tr>
<th>BIOTOPOS</th>
<th>TAXA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muntanya Assolada</td>
<td>Pinus nigra/sylvestris</td>
</tr>
<tr>
<td>Abric de la Falguera</td>
<td>Pinus nigra</td>
</tr>
<tr>
<td>Mola d’Agres</td>
<td>Pinus sylvestris</td>
</tr>
<tr>
<td>Motilla de Azuer</td>
<td>Acer sp.</td>
</tr>
<tr>
<td>Peñalosa</td>
<td>Hedera helix</td>
</tr>
<tr>
<td>Mola de Azuer</td>
<td>Quercus sp.</td>
</tr>
<tr>
<td>Canyelles de la Virgin</td>
<td>Quercus caducifolio</td>
</tr>
<tr>
<td>Rambla de Baiana</td>
<td>Quercus suber</td>
</tr>
<tr>
<td>Lorica de la Baluna</td>
<td>Quercus faginea</td>
</tr>
<tr>
<td>Loma de la Baluna</td>
<td>Quercus ilex</td>
</tr>
<tr>
<td>Castellón Alto</td>
<td>Quercus perennifolio</td>
</tr>
<tr>
<td>Loma de la Balunca</td>
<td>Ficus sp.</td>
</tr>
<tr>
<td>Castellón Alto</td>
<td>Arbutus unedo</td>
</tr>
<tr>
<td>La Canada</td>
<td>Erica sp.</td>
</tr>
<tr>
<td>La Canada</td>
<td>Erica multiflora</td>
</tr>
<tr>
<td>Cerro de las Viñas</td>
<td>Pinus halepensis</td>
</tr>
<tr>
<td>Terrera del Reloj</td>
<td>Pinus halepensis</td>
</tr>
<tr>
<td>Loma de la Baluna</td>
<td>Pinus halepensis</td>
</tr>
<tr>
<td>Loma de la Baluna</td>
<td>Pinus pinea/pinaster</td>
</tr>
<tr>
<td>Loma de la Baluna</td>
<td>Pinus halepensis</td>
</tr>
<tr>
<td>Loma de la Baluna</td>
<td>Pinus halepensis</td>
</tr>
<tr>
<td>Loma de la Baluna</td>
<td>Pinus halepensis</td>
</tr>
<tr>
<td>Loma de la Baluna</td>
<td>Retama sp.</td>
</tr>
<tr>
<td>Loma de la Baluna</td>
<td>Daphne gnidium/Thymelaea hirsuta</td>
</tr>
<tr>
<td>Loma de la Baluna</td>
<td>Pinus pinea/pinaster</td>
</tr>
<tr>
<td>Loma de la Baluna</td>
<td>Pinus halepensis</td>
</tr>
<tr>
<td>Loma de la Baluna</td>
<td>Pinus halepensis</td>
</tr>
<tr>
<td>Loma de la Baluna</td>
<td>Pinus halepensis</td>
</tr>
<tr>
<td>Loma de la Baluna</td>
<td>Juniperus sp.</td>
</tr>
<tr>
<td>Monocotyledoneae</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Stipa tenacissima</td>
<td></td>
</tr>
<tr>
<td>Pistacia sp.</td>
<td></td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
<td></td>
</tr>
<tr>
<td>Olea europaea var. sylvestris</td>
<td></td>
</tr>
<tr>
<td>Rhamnus/Phillyrea sp.</td>
<td></td>
</tr>
<tr>
<td>Phillyrea sp.</td>
<td></td>
</tr>
<tr>
<td>Rhamnus lycioides</td>
<td></td>
</tr>
<tr>
<td>Rhamnus sp.</td>
<td></td>
</tr>
<tr>
<td>Prunus sp.</td>
<td></td>
</tr>
<tr>
<td>Ficus carica</td>
<td></td>
</tr>
<tr>
<td>Cistaceae</td>
<td></td>
</tr>
<tr>
<td>Cistus sp.</td>
<td></td>
</tr>
<tr>
<td>cf. Fumana sp.</td>
<td></td>
</tr>
<tr>
<td>Chamaerops humilis</td>
<td></td>
</tr>
<tr>
<td>cf. Cruciferae</td>
<td></td>
</tr>
<tr>
<td>Ephedra sp.</td>
<td></td>
</tr>
<tr>
<td>Tetraclinis articulata</td>
<td></td>
</tr>
<tr>
<td>Lycium intricatum</td>
<td></td>
</tr>
<tr>
<td>Maytenus senegalensis</td>
<td></td>
</tr>
<tr>
<td>Periploca angustifolia</td>
<td></td>
</tr>
<tr>
<td>cf. Withania frutescens</td>
<td></td>
</tr>
</tbody>
</table>

| ZONAS SALINAS, RUDERALES, RAMBLAS SALADAS | | | | | |
|-------------------------------|------------------|
| Chenopodiaceae | | | | | |
| Atriplex halimus | | | | | |
| Tamarix sp. | | | | | |
| Alnus glutinosa | | | | | |
| Fraxinus sp. | | | | | |
| Fraxinus oxycarpa | | | | | |
| cf. Nerium oleander | | | | | |
| Populus/Salix sp. | | | | | |
| Populus sp. | | | | | |
| Salix sp. | | | | | |
| Spartium junceum | | | | | |
| Vitis vinifera | | | | | |

Tabla 5.1. Recursos leñosos documentados en yacimientos de la Edad del Bronce.
<table>
<thead>
<tr>
<th>BIOTOPES</th>
<th>TAXA</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOSQUE MATORRAL MEDITERRÁNEO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pinus nigra/sylvestris</td>
</tr>
<tr>
<td></td>
<td>Pinus nigra</td>
</tr>
<tr>
<td></td>
<td>Pinus sylvestris</td>
</tr>
<tr>
<td></td>
<td>Acer sp.</td>
</tr>
<tr>
<td></td>
<td>Hedera helix</td>
</tr>
<tr>
<td></td>
<td>Buxus sp.</td>
</tr>
<tr>
<td></td>
<td>Juglans regia</td>
</tr>
<tr>
<td></td>
<td>Quercus sp.</td>
</tr>
<tr>
<td></td>
<td>Quercus caducifolio</td>
</tr>
<tr>
<td></td>
<td>Quercus suber</td>
</tr>
<tr>
<td></td>
<td>Quercus faginea</td>
</tr>
<tr>
<td></td>
<td>Quercus perennifolio</td>
</tr>
<tr>
<td></td>
<td>Viburnum tinus</td>
</tr>
<tr>
<td></td>
<td>Arbutus unedo</td>
</tr>
<tr>
<td></td>
<td>Erica sp.</td>
</tr>
<tr>
<td></td>
<td>Erica multiflora</td>
</tr>
<tr>
<td></td>
<td>cf. Pistacia terebinthus</td>
</tr>
<tr>
<td></td>
<td>Rosaceae</td>
</tr>
<tr>
<td></td>
<td>Rosaceae tipo Maloideae</td>
</tr>
<tr>
<td></td>
<td>Pyrus communis</td>
</tr>
<tr>
<td></td>
<td>Laurus nobilis</td>
</tr>
<tr>
<td></td>
<td>Viscum sp.</td>
</tr>
<tr>
<td></td>
<td>Rosmarinus officinalis</td>
</tr>
<tr>
<td></td>
<td>Labiatae</td>
</tr>
<tr>
<td></td>
<td>Leguminosae</td>
</tr>
<tr>
<td></td>
<td>Retama sp.</td>
</tr>
<tr>
<td></td>
<td>Daphne gnidium/Thymelaea hirsuta</td>
</tr>
<tr>
<td></td>
<td>Pinus pinea/pinaster</td>
</tr>
<tr>
<td></td>
<td>Pinus pinea</td>
</tr>
<tr>
<td>YACIMIENTOS PROTOHISTÓRICOS-IBÉRICOS-ROMANOS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>La Fonteta (Grau 2007)</td>
</tr>
<tr>
<td></td>
<td>P. de los Gavilanes (III) (este trabajo)</td>
</tr>
<tr>
<td></td>
<td>Cerro del Villar (Boema et al. 2005)</td>
</tr>
<tr>
<td></td>
<td>Cerro de la Hera (Boema 2003)</td>
</tr>
<tr>
<td></td>
<td>Alt de Bentanquera (Grau y Duque 2007)</td>
</tr>
<tr>
<td></td>
<td>Caserio de Librilla (Grau y Duque 2001)</td>
</tr>
<tr>
<td></td>
<td>Los Villares (Ibérico Pleno) (Grau et al. 2001)</td>
</tr>
<tr>
<td></td>
<td>Cabrero (Grau 1993)</td>
</tr>
<tr>
<td></td>
<td>Corral de Xanx (Grau 2000b)</td>
</tr>
<tr>
<td></td>
<td>Cubierta de Barchico Ancho (Grau, inédito, a)</td>
</tr>
<tr>
<td></td>
<td>P. de los Gavilanes (Ibérico Pleno) (este trabajo)</td>
</tr>
<tr>
<td></td>
<td>Reques de la Mula (Ibérico) (Ruiz y Rodríguez-Ariza 2002)</td>
</tr>
<tr>
<td></td>
<td>Fuentem Amarga (Ruiz y Rodríguez-Ariza 2002)</td>
</tr>
<tr>
<td></td>
<td>Pita de los Gavilanes (Ibérico) (este trabajo)</td>
</tr>
<tr>
<td></td>
<td>Reques de la Mula (romano) (Ruiz y Rodríguez-Ariza 2000)</td>
</tr>
<tr>
<td></td>
<td>Valentia (Altoimperial) (Grau 1990a, 1990b)</td>
</tr>
<tr>
<td></td>
<td>Balneario de Archena (Este trabajo)</td>
</tr>
<tr>
<td></td>
<td>Tabern de Carcaveta (Grau inédito, c y este trabajo)</td>
</tr>
</tbody>
</table>

Y. PROTOHISTÓRICOS

ÉPOCA IBÉRICA

E. ROMANA
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BOSQUE DE RIBERA</td>
<td>Fraxinus sp.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cf. Nerium oleander</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cf. Phragmites australis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Populus/Salix sp.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Populus sp.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Salix sp.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ulmus sp.</td>
<td></td>
</tr>
<tr>
<td>POSIBLES CULTIVOS</td>
<td>Ficus carica</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prunus amygdalus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Punica granatum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vitis sp.</td>
<td></td>
</tr>
<tr>
<td>ESPECIES ALOCTONAS</td>
<td>Abies alba</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fagus sylvatica</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 5.2. Recursos leñosos documentados en yacimientos protohistóricos, ibéricos y romanos.
<table>
<thead>
<tr>
<th>BIOTOPOS</th>
<th>TAXA</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOSQUE MATORRAL-MEDITERRÁNEO</td>
<td></td>
</tr>
<tr>
<td>Pinus nigra/sylvestris</td>
<td></td>
</tr>
<tr>
<td>Pinus nigra</td>
<td></td>
</tr>
<tr>
<td>Pinus sylvestris</td>
<td></td>
</tr>
<tr>
<td>Hedera helix</td>
<td></td>
</tr>
<tr>
<td>Buxus sp.</td>
<td></td>
</tr>
<tr>
<td>Juglans regia</td>
<td></td>
</tr>
<tr>
<td>Quercus caducifolio</td>
<td></td>
</tr>
<tr>
<td>Quercus suber</td>
<td></td>
</tr>
<tr>
<td>Quercus faginea</td>
<td></td>
</tr>
<tr>
<td>Quercus peremifolio</td>
<td></td>
</tr>
<tr>
<td>Arbutus unedo</td>
<td></td>
</tr>
<tr>
<td>Erica multiflora</td>
<td></td>
</tr>
<tr>
<td>Pistacia terebinthus</td>
<td></td>
</tr>
<tr>
<td>Rosaceae tipa Maloideae</td>
<td></td>
</tr>
<tr>
<td>Sorbus sp.</td>
<td></td>
</tr>
<tr>
<td>Crataegus sp.</td>
<td></td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
<td></td>
</tr>
<tr>
<td>Labiatae</td>
<td></td>
</tr>
<tr>
<td>Leguminosae</td>
<td></td>
</tr>
<tr>
<td>Retama sp.</td>
<td></td>
</tr>
<tr>
<td>Genista cf. scorpius</td>
<td></td>
</tr>
<tr>
<td>Pinus pinaster</td>
<td></td>
</tr>
<tr>
<td>Pinus halepensis</td>
<td></td>
</tr>
<tr>
<td>Pinus sp.</td>
<td></td>
</tr>
<tr>
<td>Juniperus sp.</td>
<td></td>
</tr>
<tr>
<td>Monocotyledoneae</td>
<td></td>
</tr>
<tr>
<td>Pistacia sp.</td>
<td></td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
<td></td>
</tr>
<tr>
<td>Rhamnus/Phillyrea sp.</td>
<td></td>
</tr>
<tr>
<td>Rhamnus cf. alaternus</td>
<td></td>
</tr>
<tr>
<td>Rhamnus sp.</td>
<td></td>
</tr>
<tr>
<td>Prunus sp.</td>
<td></td>
</tr>
<tr>
<td>Cistaceae</td>
<td></td>
</tr>
<tr>
<td>Cistus sp.</td>
<td></td>
</tr>
<tr>
<td>Cistus albidus</td>
<td></td>
</tr>
<tr>
<td>Chamaecyparis humilis</td>
<td></td>
</tr>
<tr>
<td>ZONAS SALINAS, RUDERALES, RAMBLAS SALADAS</td>
<td></td>
</tr>
<tr>
<td>Chenopodiaceae</td>
<td></td>
</tr>
<tr>
<td>Tamarix sp.</td>
<td></td>
</tr>
<tr>
<td>Tamarix gallica</td>
<td></td>
</tr>
<tr>
<td>BOSQUE DE RIBERA</td>
<td></td>
</tr>
<tr>
<td>Alnus glutinosa</td>
<td></td>
</tr>
<tr>
<td>Fraxinus sp.</td>
<td></td>
</tr>
<tr>
<td>Nerium oleander</td>
<td></td>
</tr>
<tr>
<td>Populus/Salicis sp.</td>
<td></td>
</tr>
<tr>
<td>Populus sp.</td>
<td></td>
</tr>
<tr>
<td>Salix sp.</td>
<td></td>
</tr>
<tr>
<td>Ulmus sp.</td>
<td></td>
</tr>
<tr>
<td>POSIBLES CULTIVOS</td>
<td></td>
</tr>
<tr>
<td>Ceratonia siliqua</td>
<td></td>
</tr>
<tr>
<td>Ficus carica</td>
<td></td>
</tr>
<tr>
<td>Olea europaea</td>
<td></td>
</tr>
<tr>
<td>Prunus amygdalus</td>
<td></td>
</tr>
<tr>
<td>Prunus avium</td>
<td></td>
</tr>
<tr>
<td>Punica granatum</td>
<td></td>
</tr>
<tr>
<td>Vitis sp.</td>
<td></td>
</tr>
<tr>
<td>ESPECIES ALÓCTONAS</td>
<td></td>
</tr>
<tr>
<td>Cupressus sempervirens</td>
<td></td>
</tr>
<tr>
<td>Fagus sp.</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 5.3. Recursos leñosos documentados en yacimientos medievales.
En lo que concierne a la inversión de esfuerzo en relación con la colecta de leña, a partir de los datos antracológicos no es posible conocer cuál era exactamente este desgaste energético, ya que resulta imposible saber con exactitud la localización exacta de los taxones identificados y la densidad de su presencia. No obstante parece, según los resultados obtenidos en la gran mayoría de trabajos sobre combustible arqueológico, que los cortejos florísticos identificados se corresponden con la vegetación propia de zonas cercanas, que no excederían por lo general una distancia de unos 10 Km (Willcox 1992b). Incluso la mayoría de estudios etnológicos relativos a este tema sitúan las distancias máximas recorridas en situación de elevada deforestación en unos 8 Km de recorrido (Miah et al. 2003), si bien en condiciones de máxima aridez la actividad puede prolongarse hasta una jornada completa (Auclair y Sghaier Zaafouri 1996).

Como se ha comentado ya en este trabajo, esta inversión de energía estaría planificada en función de la cantidad de combustible necesario, de la distancia con respecto al punto de origen, de los desniveles del entorno cercano y del tiempo invertido en superarlos. Es posible que fuera preferible recorrer un mayor radio de distancia, a superar grandes elevaciones que se encontraran a una distancia menor, ya que la inversión energética y de tiempo sería mucho mayor. Sin embargo, si el grado de deforestación de las zonas llanas era manifiestamente inferior, posiblemente la inversión energética de subir una determinada elevación compensara el esfuerzo al poder recoger mucha más cantidad de madera en espacios más reducidos de terreno.

Los yacimientos estudiados en este trabajo presentan una relación clara entre los biotopos más próximos y el porcentaje de captación de leña procedente de los mismos, por lo que no es posible hablar en ninguno de los casos de un trabajo programado en zonas lejanas con el objetivo de obtener algún combustible apreciado por el grupo.

En el caso de la Punta de los Gavilanes los ecosistemas de recolección se organizan claramente entre las inmediaciones de la línea de costa y las elevaciones más próximas, si bien es posible que la aparición de taxones como Quercus perennifolio pudiera obedecer a la colaboración con grupos situados más al interior, y la aparición de un fragmento de Fraxinus en la fase Gavilanes III a alguna relación de intercambio con núcleos alejados que sería factible dada la orientación comercial de las actividades del enclave en este momento. En la Fase Antracológica II, y sobre todo durante el funcionamiento de la factoría metalúrgica (GV-II) se observa cómo las acuciantes necesidades de combustible del grupo no se resuelven con un incremento del esfuerzo en la distancia y elevación de las áreas de recolecta de madera, sino más bien con un aumento de la captación indiscriminada de recursos en las zonas salinas más próximas al promontorio, donde la relación de esfuerzo y rendimiento sería positiva, aunque no se tratase de los combustibles más apreciados por el grupo.
Por lo que concierne al Barranco de la Viuda, los resultados antracológicos indican que el esfuerzo invertido en la recogida de leña sería mínimo, posiblemente sin exceder un kilómetro a la redonda, ya que se encuentra orientado exclusivamente a las formaciones de pinar de pino carrasco que rodearían el enclave. La posición elevada del poblado hace comprensible que apenas aparezcan en el registro antracológico elementos asociados a la ribera del Guadalentín, ya que el esfuerzo invertido en la bajada y subida del combustible sería superior al rendimiento energético obtenido por la leña recogida. Posiblemente los aportes de este tipo de vegetación al yacimiento se producirían esporádicamente aprovechando desplazamientos con otra finalidad.

En el Balneario Romano de Archena los recursos más disponibles serían precisamente los asociados al curso del Río Segura, por lo que los porcentajes de vegetación de ribera en el estudio antracológico son notables. Aún así, siguen siendo superiores los carbones de taxones asociados al matorral de carácter mediterráneo que se encontrarían también muy próximos al Balneario y que supondrían un recorrido similar. La presencia en este yacimiento de algún objeto carbonizado de *Fagus sylvatica*, que pudo tratarse de algún mueble roto, pone de relieve el aprovechamiento oportunistas del combustible, incluso cuando pudiera proceder de un elemento valorado por tratarse del producto de un intercambio desde zonas muy alejadas.

Finalmente, en el caso de Jumilla Santa María 19 las necesidades periódicas de combustible serían también muy elevadas para el mantenimiento del complejo artesanal documentado en una zona del yacimiento. Por ello se intentaría minimizar la inversión de esfuerzo invertido en la recogida de combustible, que se corresponde con el matorral mediterráneo de las elevaciones próximas y con las formaciones halonitrófilas que se detectan asociadas a los suelos salinos y en el entorno de los cultivos que se desarrollarían muy cercanos al yacimiento.

La economización del esfuerzo no sólo estaría enfocada a la superación de la menor distancia y desnivel posibles, sino sobre todo al tipo de explotación del bosque efectuado por el grupo. Diversos estudios arqueológicos y etnológicos en los que hemos detenido con anterioridad (Capítulo II) apuntan a que el criterio primordial de recogida de la leña sería la obtención madera muerta del suelo (Benjaminsen 1997, Asouti 2003, Tabuti *et al.* 2003, Bacaër *et al.* 2005, Moutarde 2006). Los motivos que justificarían esta preferencia serían fundamentalmente dos: en primer lugar porque se evitaría invertir tiempo y esfuerzo en la tala de madera verde y en segundo lugar porque se trata de madera ya seca, que no necesita de un proceso de secado que según algunos estudios puede llegar hasta un año duración (Willcox 1992b). Sin embargo, aunque podemos suponer que este criterio fue seguido por la mayoría de los grupos del pasado, las evidencias antracológicas no nos permiten en ningún caso asegurar que este patrón fue seguido, salvo por ciertos indicios no definitivos relacionados con el estado de
deterioro de la leña (Théry-Parisot 2001) o por el calibre de los troncos utilizados (Nelle 2002, Dufraisse 2008).

En este trabajo, las evidencias de recogida de madera debilitada o muerta se han detectado a partir de algunas maderas asociadas al Barranco de la Viuda cuyo estado de degradación por el ataque de insectos barrenadores (Gallego Cambronero 1999) indicaría que se encontraban ya caídas, o bien en un estado de debilidad que facilitaría considerablemente su corte. Los carbones asociados al Balneario Romano de Archena presentan también un elevado grado de deterioro, sobre todo por ataques fúngicos que, sin embargo, podrían estar más asociados a las condiciones de humedad en las que se produjo su desarrollo, según apuntan algunos estudios especializados en esta temática (Blanchette 2000, 2003).

Finalmente, en lo que concierne a los procesos de deforestación y degradación ecológica relacionados con la colecta de madera como combustible, algunos estudios han apuntado que esta incidencia se hace patente en la señal antracológica cuando la zona permanece ocupada y explotada para labores agro-ganaderas durante unos 400-500 años de manera ininterrumpida (Badal 2002). Según esta perspectiva las primeras ocupaciones agrarias de una zona determinada siempre ofrecen una imagen de la vegetación original de la zona, independientemente de si se trata de cronologías sincrónicas o no (Badal 2002). Este fenómeno ha sido detectado, por ejemplo, en el caso de los yacimientos de Les Jovades y Niuet, que presentan una imagen de la vegetación similar a Cova de l’Or y Cova de les Cendres, aunque en una cronología neolítica posterior (Bernabéu y Badal 1990). Algo semejante se constata en la zona de Jaén, donde se ha interpretado que la composición del bosque ofrecida por la Parcela C del yacimiento calcolítico de Marroquíes Bajos (Rodríguez-Ariza 2007) ofrecería importantes semejanzas con respecto a los resultados obtenidos para el Neolítico a partir del estudio del Polideportivo Martos (Rodríguez-Ariza 1996a). Estas semejanzas son también explicadas en el contexto de un primer momento de ocupación productiva de este entorno, que mantendría las condiciones originales de desarrollo del bosque de encinas (Rodríguez-Ariza 2007).

Por otro lado, Willcox (1992b) ha apuntado que las evidencias de un proceso de deforestación a partir del estudio antracológico son observables en yacimientos del Próximo y Medio Oriente a partir del uso de materiales alternativos como combustible (como el estiércol), pero sobre todo cuando se produce un reemplazo en las preferencias de la madera recolectada para este fin. En su caso, documenta un descenso de la utilización de taxones como *Quercus* o *Pistacia*, en función de una mayor utilización de elementos de porte menor como *Paliurus, Ziziphys, Lycium, Crataegus* y Chenopodiaceae.
También se han detectado otros procesos que no consisten en la elección de peores combustibles en situaciones de degradación, sino del aumento del radio de recolecta, desde puntos mesomediterráneos a zonas de alta montaña, como sucede en los niveles ibéricos de los Baños de la Malahá o Fuente Amarga, por ejemplo (Ruiz y Rodríguez-Ariza 2002).

Otro indicador de antropización del paisaje a través del registro antracológico se ha detectado en la cuenca del bajo Almanzora, en donde a pesar de la proximidad al río, la colecta de recursos leñosos por parte de los grupos calcolíticos de Zájara, Campos y Santa Bárbara no hacen uso de los elementos de ripisilva. La interpretación de esta ausencia se centra en la posibilidad de que los márgenes del río se encontraran ya ocupadas por terrenos del cultivo (Rodríguez-Ariza 1999).

Entre los estudios incluidos en este trabajo La Punta de los Gavilanes posee una secuencia lo suficientemente extensa como para abordar este tipo de planteamientos. En este caso, la desembocadura de la Rambla de las Moreras presenta ocupaciones previas y contemporáneas a la instalación en Punta de los Gavilanes que habrían incidido considerablemente en la estructura de la vegetación del entorno. No obstante, en Punta de los Gavilanes sí es posible detectar procesos de sustitución en las preferencias de combustible tras una larga ocupación del promontorio, y como consecuencia de una menor disponibilidad de leña en el entorno. Esta sustitución no se produce a través de la captación de recursos en radios mayores, sino mediante la sustitución de elementos como Pinus o Pistacia por otros de carácter halófilo cuyas propiedades combustibles serían probablemente menos apreciadas, pero que se encontraban disponibles en las áreas de captación.

- La selección del combustible: funcionalidad de las estructuras y propiedades combustibles de los taxones

Según los planteamientos teóricos de partida de la disciplina antracológica, el combustible contenido en una estructura de combustión no es capaz de indicar cuál pudo ser la funcionalidad de dicha estructura. Sin embargo, el examen de los carbones recuperados del interior de las estructuras de combustión cuya funcionalidad es conocida podría aportar datos sobre la utilización, selectiva o no, del mismo.

La mayoría de los estudios antracológicos en la fachada mediterránea se refieren a cronologías comprendidas entre el Tardiglacial y las primeras etapas del Holoceno, donde los contextos arqueológicos no suelen ofrecer estructuras de combustión de carácter complejo o especializado. Tampoco son abundantes los estudios antracológicos en el ámbito sureste peninsular en los que se haya hecho un especial hincapié en el estudio del contenido de las estructuras de combustión, por lo que se reduce...
considerablemente el espectro comparativo para la elaboración de una discusión al respecto. Esta poca atención se ha debido fundamentalmente a que, si bien las estructuras de combustión en esta zona geográfica suelen presentar un listado taxonómico inferior al carbón disperso, también es cierto que no suelen mostrarse pautas selectivas monoespecíficas que permitan hablar con claridad de una gestión de los recursos de estas características. También hay que anotar, por otro lado, que en muchas ocasiones la escasez taxonómica del contenido de determinadas estructuras no tiene su origen en estos patrones selectivos, sino fundamentalmente en el sistema de recuperación manual de los fragmentos de mayor tamaño, que erróneamente se ha practicado en la mayoría de yacimientos.

Un primer ejemplo en donde se ha tratado el contenido combustible de una estructura de combustión es la Motilla de Azuer (Rodríguez-Ariza et al. 1999b), en donde entre los diferentes contextos estudiados aparece un horno cuya funcionalidad no se especifica. A excepción de un fragmento de alcornoque, el resto del contenido de este horno estuvo compuesto por 261 fragmentos de Quercus ilex/coccifera y 2 fragmentos de Quercus perennifolia. Este uso masivo de quercíneas estaría en consonancia con la presencia mayoritaria de este taxón en todo el estudio y podría interpretarse también, según la autora, como una utilización preferencial de Quercus en este caso dado su alto poder calorífico (Rodríguez-Ariza et al. 1999b). Sin embargo, no se hace referencia a que exista ninguna relación entre el uso de este género y la funcionalidad concreta de la estructura.

En el yacimiento de Fuente Álamo el estudio de cuatro “lugares de combustión” (Carrión Marco 2005a) ha permitido observar que todas las estructuras no cumplen con las premisas de escasez taxonómica que se les supone a priori. Dos de ellas presentaban un cortejo relativamente escaso, con un máximo de seis taxones, excluyendo los fragmentos indeterminables. En estos dos casos la autora plantea que el uso mayoritario de elementos arbóreos pudo obedecer a una cierta selección de los troncos de mayor calibre del entorno como medida de ahorro de esfuerzo en las labores de recogida de leña. Sin embargo, las otras dos estructuras ofrecieron un listado taxonómico mucho más amplio, con una dominancia de dos taxones distintos en cada una de ellas: Pistacia lentiscus (53%) y Rosmarinus officinalis (26%). En este caso, el contenido se interpreta como el producto de un uso más prolongado en el tiempo de las estructuras, que por lo tanto contendrían sucesivos aportes de combustible y, por otro lado, a la recogida de la leña en una zona de matorral, en donde existiría una gran variedad de especies (Carrión Marco 2005a).

En el yacimiento de la Edad del Hierro de El Castellar de Librilla (Grau, inédito, b) fueron estudiados tres hogares y una estructura metalúrgica asociados al Hierro Antiguo I y un hogar, una estructura metalúrgica y un horno cerámico correspondientes al Hierro Antiguo II. En general todos ellos se caracterizan porque presentan un listado
Capítulo V. Síntesis general. Secuencia de la vegetación y usos de los recursos leñosos en el Sureste de la Península Ibérica desde la Edad del Bronce hasta época medieval. Inserción de los resultados en su contexto regional

 taxonómico muy reducido que, excluyendo los indeterminados e indeterminables no superan nunca tres taxones diferenciados. En el horno correspondiente al Hierro Antiguo I todos los fragmentos, excepto un indeterminable, se corresponden con el taxón *Pistacia lentiscus* (61 fragmentos). En cada uno de los tres hogares asociados a esta fase aparece un taxón predominante, en el Hogar 1 *Pistacia lentiscus* (95%), en el Hogar 2 *Olea europaea* (69%) y en el Hogar 3 Leguminosae (50%). En lo que concierne al Hierro Antiguo II, es destacable que todos los fragmentos analizados se corresponden con diferentes especies del género *Pinus*. *Pinus halepensis* es el único taxón del hogar. En el caso de la estructura metalúrgica y el horno de cerámicas se observa una pauta similar: *Pinus halepensis* es también dominante en todos ellos, aunque aparecen también minoritariamente *Pinus pinea* y *Pinus nigra*. Tampoco en este yacimiento se plantea una posible relación entre la variedad taxonómica utilizada como combustible y las necesidades productivas del grupo.

En las necrópolis ibéricas de Cabezo Lucero (Grau 1993) y de Corral de Xaus (Grau 2000b) sí se ha planteado una relación entre la dispersión taxonómica de los restos y la especificidad del tipo de estructura funeraria de que se trata en ambos yacimientos. En el caso particular de Cabezo Lucero se plantea la posibilidad de que los diferentes rituales de incineración se realizaran también con distintos taxones. En el Corral de Xaus aparecen dos tipos de incineraciones, aquéllas cuyo contenido es monoespecífico, aunque con diferentes taxones (*Quercus ilex/coccifera* y *Pinus halepensis*) o las que por el contrario presentan una variabilidad taxonómica algo mayor (hasta tres taxones). En este caso se ha planteado también la idoneidad de *Quercus* para la consecución de un proceso de cremación lenta de los cuerpos acorde con este tipo de ritual.

En el caso de la *Valentia* romana fueron estudiados tres hogares domésticos, dos de época republicana, y uno bajoimperial, y también un horno de vidrio enmarcado cronológicamente entre los siglos III y IV d.C. En los hogares se identificaron taxones como *Quercus* perennifolio, *Pinus halepensis*, *Olea europaea*, *Pistacia lentiscus*, *Vitis vinifera*, *Populus* sp., *Fraxinus* sp. y monocotiledóneas, cuya presencia en los mismos no obedecía a ningún criterio selectivo de acuerdo con la funcionalidad de las estructuras, si bien el uso de monocotiledóneas del tipo *Arundo donax* o *Phragmites* sp. es interpretado por la autora en función del deseo de obtener una llama viva pero poco duradera. Por otro lado, en el horno aparece una menor variabilidad taxonómica, compuesta por *Fraxinus* sp., *Olea europaea*, *Pistacia lentiscus* y *Pinus halepensis* cuyo calibre era de pequeño tamaño, cuestión que si se interpreta en relación a la especificidad productiva de la estructura, ya que se plantea la hipótesis de que este tipo de ramas fueran utilizadas con el objetivo de producir una llama viva e intensa en poco tiempo (Grau 1990a).

En época medieval islámica han sido estudiados en la zona urbana de Granada dos hornos alfareros pertenecientes a la Casa de los Tiros (Rodríguez-Ariza 1993), que
evidencian la utilización de elementos de matorral como jaras, romeros, retamas y leguminosas arbustivas con el objetivo de subir rápidamente la temperatura en el interior de la estructura, y producir un fuego vivo, junto con taxones de mayor porte y de madera dura como la encina, el quejigo, el roble o el alcornoque, dado que el género *Quercus* es muy propicio para mantener durante un largo tiempo temperaturas estables en el proceso productivo.

En el caso del Castillo del Río fueron estudiadas diferentes estructuras, tanto de carácter doméstico como hornillos. Los principales combustibles utilizados fueron *Pinus halepensis*, *Tamarix sp.*, *Rosmarinus officinalis* y *Rhamnus/Phillyrea* sp. Entre todos ellos la autora remarca la buena calidad de los pinos y los tarays como combustibles, aunque no aparecen relacionados con la especificidad de cada estructura de combustión (Grau y Simeón 1994).

En los dos hogares asociados al nivel de ocupación cristiana del Castell d’Ambra no se hace referencia a que exista ningún proceso de selección del combustible en función del uso de los mismos, ni tampoco a la particularidad de ningún taxón en cuanto a su calidad como combustible (De Haro Pozo 1998).

En lo que concierne a los estudios presentados en este trabajo, han sido analizadas una gran cantidad de estructuras de combustión de distinta índole y funcionalidad en las que la tendencia observada de manera general no relaciona de manera definitoria la funcionalidad de las mismas con un tipo de combustible en concreto.

En este sentido, para La Punta de los Gavilanes han sido estudiadas un total de 17 estructuras de combustión asociadas a sus cuatro grandes fases de ocupación. Una primera tipología en cuanto a la funcionalidad de estas estructuras engloba a los seis hogares domésticos estudiados, cuatro de Gavilanes IV, uno de Gavilanes III y otro de Gavilanes II. En todos ellos ha aparecido una gran abundancia de *Pistacia lentiscus*, aunque también aparecen otros taxones, entre los que destacaría *Atriplex halimus*, que supera al lentisco en el hogar de la Fase II. No obstante, no se trataría de actividades de carácter especializado por lo que esta presencia mayoritaria no sería susceptible de asociarse a ninguna necesidad específica relacionada con el funcionamiento de los hogares. Un segundo grupo estaría formado por las tres estructuras de combustión cuya funcionalidad estuvo orientada al tratamiento de alimentos en la Edad del Bronce (GV-IV), en las cuales tampoco ha podido constatarse ningún patrón de selección del combustible que pueda asociarse a la funcionalidad específica de las estructuras. Este aspecto es explicable sobre todo en los casos de la Estructura de Cocina 1723 y del Horno de Torrefacción 3TSM, en relación posiblemente con un uso muy prolongado de las mismas. Sin embargo, esta variabilidad es más llamativa en el caso específico de la estructura identificada como ahumadero de pescado, en la que podría suponerse una mayor selección de los taxones en función de la cantidad y calidad de su producción de
humo que sin embargo no se produce, con hasta 21 elementos diferenciados en sus distintas fases de utilización. Por otro lado han sido tomadas en consideración las ocho estructuras metalúrgicas que han aparecido en el yacimiento en la fase Gavilanes III, con una única estructura detectada y estudiada, en la factoría metalúrgica Gavilanes II, para la que se ha analizado el contenido de cuatro hornos metalúrgicos y en Gavilanes I, asociadas a la que han podido ser estudiadas un total de 3 estructuras metalúrgicas. En general, en estas actividades primó, según los resultados obtenidos, la necesidad de importantes cantidades de combustible por encima de la calidad de los mismos, por lo que la funcionalidad quedó relegada a un segundo plano, y no existen conexiones visibles entre ambas variables.

En lo que concierne a Barranco de la Viuda fueron estudiados por un lado dos hogares de carácter doméstico y por otros dos hornos de funcionalidad especializada en labores culinarias. En ninguna de estas estructuras puede afirmarse que la leña utilizada como combustible tuviera una relación, directa o no, con la funcionalidad de las mismas. En el caso de los dos hogares estudiados (7J31 y 6H15) se da una gran pobreza taxonómica, ya que de su contenido sólo han podido ser identificados dos y tres taxones respectivamente. El elemento de referencia en ambos casos es la predominancia de Pinus halepensis en el registro, que, por otro lado, es el elemento más común en todos los contextos del yacimiento. Los dos hornos, uno de torrefactado de cereal y el otro con una funcionalidad también culinaria aunque más imprecisa y con cubierta móvil, presentan una riqueza taxonómica mayor, aunque también un uso preferencial en ambos casos de Pinus halepensis, en relación con la gran abundancia de este elemento leñoso en el entorno y Rosmarinus officinalis, cuyo uso pudo estar relacionado con una intención productiva relacionada con la producción de fuego con gran celeridad sobre todo al principio del proceso, dada su gran inflamabilidad.

Las estructuras estudiadas en Archena han sido pocas, solamente cuatro hogares de carácter doméstico y la boca de un horno que fue utilizado para la fabricación de elementos de construcción como ladrillos. En general aparece representada una gran variabilidad taxonómica en el caso de los hogares domésticos que descartaría cualquier tipo de selección del combustible en función del uso específico de cada una de ellas. Por otro lado, desafortunadamente el horno sólo ha ofrecido ocho fragmentos de carbón, todos ellos de un mismo taxón, Erica sp. Dada la escasez de la muestra resulta imposible plantear ninguna hipótesis sobre la selección de este género para este horno en particular, o bien como consecuencia de las propiedades intrínsecas de su madera como combustible.

Finalmente, en Jumilla Santa María 19 existen mayores elementos de comparación ya que en un mismo yacimiento aparecieron estructuras usadas de manera contemporánea con una misma funcionalidad. En este sentido, se ha planteado en el capítulo correspondiente una minuciosa comparación taxonómica entre todas las tipologías que
no ha ofrecido resultados que hablen de una direccionalidad clara en la utilización del combustible en relación con el tipo de estructura en la que fue utilizado. En primer lugar, los dos hogares domésticos analizados (Hogar asociado a la Casa 1 y Hogar 2510) no muestran ninguna similitud taxonómica, lo cual descartaría un planteamiento selectivo de ningún tipo. En segundo término fueron estudiados tres “braseros” (Braser 2, Braser 6 y Braser 8), en los que se da el mismo fenómeno que anteriormente, de manera que prácticamente no existen coincidencias taxonómicas notables, y el taxón mayoritario es distinto en cada uno de ellos. Finalmente, en los dos hornos hallados en el yacimiento (Horno 1 y Horno 2) la variabilidad taxonómica es tan elevada que no deja en evidencia las posibles necesidades productivas de los mismos, si bien es cierto que no es descartable que la utilización mayoritaria de monocotiledóneas y Pinus halepensis pudiera obedecer a un uso de las primeras para avivar la llama en los momentos iniciales del proceso, y del segundo para el mantenimiento del fuego posterior, al tratarse de troncos de mayor tamaño.

Por tanto, en general, en casi ningún caso del Sureste de la Península Ibérica, incluyendo los contenidos en este trabajo podría afirmarse con claridad que exista una relación directa entre la funcionalidad de las estructuras de combustión y el combustible utilizado en las mismas, si bien es cierto que en algunos casos se han planteado ciertas hipótesis en este sentido. Esto es así a pesar de que ciertos estudios etnográficos han comprobado que en algunas comunidades sí que existen estos criterios en el caso de determinados hornos (Peña-Chocarro et al. 2000), y de que algunos estudios antracológicos europeos o del norte peninsular han conseguido dejar en evidencia este tipo de pautas de comportamiento dirigidas a la selección monoespecífica en el caso de las estructuras metalúrgicas, por ejemplo (Zapata 1997, Marguerie 2002). La razón de que el fenómeno de la monoespecificidad sea menos común en zonas como el Sureste peninsular puede residir, como se ha planteado ya en este trabajo, en la escasez de recursos leñosos, que trae como consecuencia la anulación de cualquier tipo de pauta de selección, en función de la obtención de una cantidad suficiente de combustible para la subsistencia. Existirían, sin duda, combustibles más aptos que otros en relación con el tipo de estructura de combustión de que se tratase, y estos combustibles serían también conocidos por los habitantes de los sitios estudiados. La baja disponibilidad de recursos sería, por tanto, la causa fundamental del oportunismo como criterio director de los patrones de gestión del combustible.

El segundo aspecto a considerar en lo que concierne a la existencia o no de comportamientos selectivos en la utilización de leña no se relaciona con la función para la que está destinada, sino con sus propias características como combustible. El conocimiento de las distintas propiedades de las plantas, como sus valores alimenticios, curativos y también combustibles no ofrece dudas, y se corrobora en la mayoría de estudios etnológicos que inciden en esta materia (Abbot y Lowore 1999, Padilla et al. 2000, Peña-Chocarro et al. 2000, Pote et al. 2006, Alves Ramos et al. 2008). No
obstante, siempre existe la posibilidad de que ciertas creencias culturales no estuvieran en consonancia con las verdaderas propiedades de algunas especies. En este sentido, algunos estudios etnológicos descartan esta posibilidad al concluir que existe una buena concordancia entre los mejores combustibles desde un punto de vista objetivo y aquéllos más valorados desde una perspectiva socio-cultural (Alves Ramos et al. 2008).

Entre las variables que rigen el comportamiento de un determinado taxón como combustible se encuentran principalmente su estructura (grosor y densidad aparente), el grado de humedad en el momento de la combustión, su composición química, el poder calorífico, y el grado de inflamabilidad y combustibilidad que es capaz de desarrollar, cuyos condicionantes ya han sido descritos en el capítulo II. Gran parte de estas variables, sin embargo, no pueden ser controladas a partir de su estudio anatómico, si bien es cierto que desde la experimentación arqueológica, o desde otras disciplinas como la química pueden abrirse nuevos campos de estudio sobre este tipo de materiales. Entre los aspectos que sí pueden ser inferidos a través del análisis antracológico se encontrarían fundamentalmente aquéllas de carácter físico-mecánico y químico inherentes al propio taxón, así como otros aspectos que condicionan el proceso de combustión y que son susceptibles de ser medidos, como el calibre original del tronco, que en ocasiones puede ser extrapolado a partir de determinados fragmentos (Dufraisse 2006).

En los yacimientos tratados con anterioridad en este mismo epígrafe se plantea que pudo existir en algunas estructuras de combustión una cierta preferencia por algunos combustibles sobre otros en función de sus mejores características físico-químicas. Se ha comentado, por ejemplo, que en la Motilla del Azuer o en la Casa de los Tiros de Granada el uso masivo de Quercus en los hornos estudiados pudo obedecer a su alto poder calorífico y al mantenimiento de temperaturas estables durante un largo tiempo (Rodríguez-Ariza 1993, Rodríguez-Ariza et al. 1999b); en el caso de Fuente Álamo (Carrión Marco 2005a) o Valentia (Grau 1990a) el criterio primordial pudo ser el mayor o menor calibre de las ramas y troncos, un criterio también primordial en los hornos alfareros de la Casa de los Tiros (Rodríguez-Ariza 1993). Finalmente, en las necrópolis ibéricas de Cabezo Lucero y Corral de Xaus se plantea también que el uso de Quercus en los procesos de cremación pudo obedecer a que esta especie mantiene el fuego durante mucho tiempo (Grau 1993, 2000b).

En todos los yacimientos estudiados en este trabajo existe una enorme variabilidad taxonómica que, de antemano, impide hablar de una selección de combustibles en función de las propiedades de las plantas. Es posible plantear, sin embargo, si fueron más utilizadas aquellas especies con mejores propiedades combustibles en detrimento de las maderas de mala calidad. En el histograma siguiente (fig. 5.28) se realiza una comparación en términos porcentuales entre todos los combustibles identificados en cada uno de los yacimientos estudiados. Se han incluido todos los carbones estudiados,
exceptuando los materiales constructivos, cuya combustión se produjo de manera no voluntaria.

A pesar de las grandes diferencias cronológicas existentes entre los diversos registros, existe una cierta coincidencia en los combustibles más utilizados. Entre estos taxones destacan tres por encima de los demás, *Pinus halepensis*, *Pistacia lentiscus* y *Olea europaea*, todos ellos buenos combustibles. *Pinus halepensis* supera el 10% del carbón de todos los yacimientos, aunque su mayor representación la tiene en el caso de Barranco de la Viuda en donde supone casi un 45% del carbón analizado y Jumilla Santa María 19, con cerca del 30% del total, mientras que apenas supera el 10% en el Balneario Romano de Archena y el 15% en la Punta de los Gavilanes. Esta especie es en general un buen combustible si tenemos en cuenta por un lado que posee un alto poder calorífico (4839 Kcal/Kg el inferior, y 5138 Kcal/Kg el superior) (Théry-Parisot 2001, Domínguez Bravo et al. 2003), y que se inflama con gran facilidad durante casi todo el año (Elvira y Hernando 1989). Además, es capaz de alcanzar temperaturas en torno a los 800 ºC en condiciones de combustión al aire libre (Soler 2003). En segundo lugar, *Pistacia lentiscus*, que presenta valores muy similares, algo superiores al 30% en la Punta de los Gavilanes y el Balneario Romano de Archena, sin llegar al 15% en el resto de los yacimientos estudiados. Se trata de una especie muy apreciada como combustible, ya que presenta un poder calorífico muy elevado, superior a los 5000 Kcal/Kg, si bien es verdad que su inflamabilidad es de grado medio (Elvira y Hernando 1989, Dimitrakopoulos y Papaioannou 2001). Finalmente, *Olea europaea* está muy bien representado en todos los yacimientos, excepto en Jumilla Santa María 19 en donde no llega ni al 5% del total del combustible. En este caso, el olivo presenta un poder calorífico de grado medio (4956 Kcal/Kg), y tampoco es muy inflamable, por lo que es un buen combustible, pero no podría considerarse de excelente calidad.

Teniendo en cuenta la secuencia de la vegetación conocida para el Sureste de la Península Ibérica durante los períodos estudiados estos tres taxones más representados en los yacimientos analizados se corresponderían con las especies leñosas principales de las formaciones dominantes en el ambiente. Por ello, aunque los grupos humanos conocieran las propiedades de las plantas, no existiría una subordinación del uso de las distintas especies a las preferencias sobre las mismas dependiendo de sus propiedades. Sólo en ciertas ocasiones específicas se ha planteado esta posibilidad en cada uno de los yacimientos.
Figura 5.28. Histograma de porcentajes globales de los yacimientos estudiados.
En el caso de Punta de los Gavilanes se ha planteado, por ejemplo, que el progresivo aumento de la utilización de *Rosmarinus officinalis* en el caso de la estructura de ahumadero pudo estar relacionado con las propiedades aromáticas del mismo en su aplicación a los alimentos, si bien es cierto que la gran cantidad de taxones que ha ofrecido esta estructura no permite considerar que existiera un uso controlado de las especies en la misma. Por otro lado, en los hornos de carácter metalúrgico se utiliza una gran cantidad de taxones como combustible, entre los que destacan *Pistacia lentiscus*, *Olea europaea* y Chenopodiaceae. Sobre la utilización masiva de este último taxón se ha planteado que existiesen ciertas creencias de que se trataba de un buen combustible, si bien su composición química, con una gran cantidad de minerales y sales produciría un retardo en la inflamación que lo convierten en un mal combustible. No obstante, la hipótesis más plausible en este caso se plantea en torno a la gran abundancia de esta vegetación en el entorno inmediato al yacimiento.

En el Barranco de la Viuda, como en Gavilanes, el uso del romero fue también muy importante en los dos hornos de carácter culinario documentados, hecho que es posible asociar, como se ha comentado anteriormente, con un deseo de provocar una rápida inflamación en los primeros momentos de uso, pero también con sus propiedades aromáticas. En estos hornos se ha detectado también una gran preferencia por el uso de monocotiledóneas como el esparto, aprovechando sus buenas condiciones de inflamabilidad, sobre todo durante el verano y de poder calorífico superior (4767 Kcal/Kg). Sin embargo, en estas estructuras resulta llamativa la baja presencia de *Pistacia lentiscus*, dadas sus excelentes propiedades y el fuego duradero que consigue en procesos culinarios como la coción de pan (Peña-Chocarro *et al.* 2000). Finalmente, se ha planteado también que la aparición de ciertos taxones de forma exclusiva en el contexto de enterramiento (*Erica* sp., *Arbutus unedo*, cf. *Tetraclinis articulata* y Rosaceae tipo Maloideae), junto con una mayor escasez de estos elementos en el entorno, pudo relacionarse con un aprecio del grupo hacia estos elementos, con una connotación social.

En lo que concierne al Balneario Romano de Archena no se ha hallado ningún tipo de relación entre las necesidades específicas de las distintas estructuras de combustión y las propiedades de los combustibles utilizados que, por otro lado, han presentado una gran variabilidad.

En el caso de Jumilla Santa María 19 el uso de quenopodiáceas aparece constatado únicamente en el caso de las estructuras de carácter productivo, estando ausente de las de carácter doméstico. Esto podría tener una relación con la preferencia de las especies de esta familia en relación con este proceso, aunque parece más probable que su uso responda fundamentalmente a la proliferación de comunidades halófilas en los suelos salinos próximos, y en los bordes de los cultivos que serían abundantes en época medieval.
V.2.2. La madera como material de construcción

Como se ha comentado con anterioridad, los restos de elementos constructivos carbonizados que pueden hallarse en contextos arqueológicos están relacionados con procesos de destrucción del hábitat por incendio (Buxó y Piqué 2008), por lo que se trataría de casos excepcionales en los que la madera carbonizada no ha servido como combustible de manera voluntaria, como sí sucede con el resto de carbones de cualquier registro arqueológico.

La obtención de recursos como material de construcción, por lo tanto, presenta connotaciones muy distintas a las que rigen la captación de leña para alimentar las estructuras de combustión. En este caso los criterios de uso de la madera están condicionados por una fuerte selección en función de necesidades concretas, valorando fundamentalmente que las condiciones físicas y mecánicas sean óptimas para cubrir estas necesidades, por lo que el espectro de especies del entorno susceptibles de ser utilizadas se reduce considerablemente. En este sentido, para las labores de sustentación de las estructuras se buscarían troncos de árboles que alcanzaran una altura y rectitud considerables, pero al mismo tiempo que tuvieran un grosor que permitiera soportar el peso de la estructura y una densidad también elevada que garantizara su resistencia a este peso. La construcción de las techumbres, sin embargo, estaría compuesta por un lado de vigas y travesaños, para las que se seleccionarían maderas de gran longitud aunque menos gruesas y más flexibles y resistentes. Finalmente, para completar la construcción de la cobertura se utilizarían especies de carácter arbustivo y herbáceo entramadas con barro, con el objetivo de crear una cubierta resistente e impermeable.

Por otro lado, la gran destrucción que suelen generar los episodios violentos de incendio impide en la mayoría de ocasiones distinguir entre todo el amasijo de maderas cuál pudo ser su funcionalidad dentro de la estructura del edificio al que pertenecían. No obstante, el orden de la deposición de los restos puede permitir una primera diferenciación entre aquéllas maderas que conformarían las techumbres de una determinada construcción, frente a los elementos sustentantes, que deben aparecer estratigráficamente por debajo de la techumbre, y que en algunas ocasiones permanecen hincados en su posición original.

Debido a la particularidad del origen de este tipo de restos, para cuya conservación debe mediar un proceso de destrucción por incendio, no en todos los yacimientos arqueológicos es posible hallar materiales constructivos carbonizados. No obstante, en el cuadrante sureste peninsular existen algunos casos que aparecen recogidos en la tabla 5.4.
<table>
<thead>
<tr>
<th>CRONOLOGÍA</th>
<th>YACIMIENTO</th>
<th>FUNCIONALIDAD (* Posible)</th>
<th>Nº DE RESTOS</th>
<th>TAXÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDAD DEL BRONCE</td>
<td>Punta de los Gavilanes (GV-IV) (Este trabajo)</td>
<td>Postes</td>
<td>7</td>
<td>Pinus pinea/pinaster</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Poste</td>
<td>1</td>
<td>Olea europaea</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vigas</td>
<td>6</td>
<td>Pinus pinea/pinaster</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vigas</td>
<td>5</td>
<td>Olea europaea</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vigas</td>
<td>2</td>
<td>Pinus halepensis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Empalizada</td>
<td>4</td>
<td>Pinus pinea/pinaster</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Empalizada</td>
<td>1</td>
<td>Pinus sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Empalizada</td>
<td>1</td>
<td>Olea europaea</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tablas</td>
<td>3</td>
<td>Pinus pinea/pinaster</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tablas</td>
<td>1</td>
<td>Pinus halepensis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indeterminado</td>
<td>Indeterminado</td>
<td>Pinus halepensis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indeterminado</td>
<td>Indeterminado</td>
<td>Pinus pinea/pinaster</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indeterminado</td>
<td>Indeterminado</td>
<td>Pinus sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indeterminado</td>
<td>Indeterminado</td>
<td>Juniperus sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indeterminado</td>
<td>Indeterminado</td>
<td>cf. Tetraclinis articulata</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indeterminado</td>
<td>Indeterminado</td>
<td>Coniferae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indeterminado</td>
<td>Indeterminado</td>
<td>Ephedra sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indeterminado</td>
<td>Indeterminado</td>
<td>Monocotyledoneae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indeterminado</td>
<td>Indeterminado</td>
<td>cf. Artemisia sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indeterminado</td>
<td>Indeterminado</td>
<td>Chenopodiaceae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indeterminado</td>
<td>Indeterminado</td>
<td>Compositae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indeterminado</td>
<td>Indeterminado</td>
<td>Daphne gnidium/Thymelaeaceae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indeterminado</td>
<td>Indeterminado</td>
<td>Erica sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indeterminado</td>
<td>Indeterminado</td>
<td>Labiatae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indeterminado</td>
<td>Indeterminado</td>
<td>Leguminosae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indeterminado</td>
<td>Indeterminado</td>
<td>Lycium intricatum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indeterminado</td>
<td>Indeterminado</td>
<td>Olea europaea</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indeterminado</td>
<td>Indeterminado</td>
<td>Periploca angustifolia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indeterminado</td>
<td>Indeterminado</td>
<td>Pistacia lentiscus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indeterminado</td>
<td>Indeterminado</td>
<td>Rhamnus/Phillyrea sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indeterminado</td>
<td>Indeterminado</td>
<td>Rosaceae t. Maloideae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indeterminado</td>
<td>Indeterminado</td>
<td>Rosmarinus officinalis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indeterminado</td>
<td>Indeterminado</td>
<td>Tamarix sp.</td>
</tr>
<tr>
<td>Barranco de la Viuda (Este trabajo)</td>
<td>Postes</td>
<td>5</td>
<td>Pinus halepensis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Poste</td>
<td>1</td>
<td>Pistacia lentiscus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indeterminado (Techumbre*)</td>
<td>Indeterminado</td>
<td>Pinus halepensis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indeterminado (Techumbre*)</td>
<td>Indeterminado</td>
<td>Juniperus sp.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indeterminado (Techumbre*)</td>
<td>Indeterminado</td>
<td>Coniferae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indeterminado (Techumbre*)</td>
<td>Indeterminado</td>
<td>Monocotyledoneae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indeterminado (Techumbre*)</td>
<td>Indeterminado</td>
<td>Cistus sp.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indeterminado (Techumbre*)</td>
<td>Indeterminado</td>
<td>Labiatae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indeterminado (Techumbre*)</td>
<td>Indeterminado</td>
<td>Olea europaea</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indeterminado (Techumbre*)</td>
<td>Indeterminado</td>
<td>Pistacia lentiscus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indeterminado (Techumbre*)</td>
<td>Indeterminado</td>
<td>Rosmarinus officinalis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indeterminado (Techumbre*)</td>
<td>Indeterminado</td>
<td>Tamarix sp.</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 5.4. Materiales de construcción en el Sureste de la Península Ibérica.
<table>
<thead>
<tr>
<th>CRONOLÓGIA</th>
<th>YACIMIENTO</th>
<th>FUNCIONALIDAD (* Posible)</th>
<th>NÚMERO DE RESTOS</th>
<th>TAXÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDAD DEL BRONCE</td>
<td>Cerro de las Viñas (Grau 1990a, en Buxó y Piqué 2008)</td>
<td>Vigas y postes</td>
<td>Indeterminado</td>
<td>Pinus halepensis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Techumbre</td>
<td>Indeterminado</td>
<td>Juniperus sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Techumbre</td>
<td>Indeterminado</td>
<td>Leguminosae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Techumbre</td>
<td>Indeterminado</td>
<td>Quercus ilex/coccifera</td>
</tr>
<tr>
<td></td>
<td>Terlinques (Machado Yanes et al. 2004)</td>
<td>Vigas y largueros</td>
<td>Indeterminado</td>
<td>Pinus halepensis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Postes*</td>
<td>Indeterminado</td>
<td>Pinus halepensis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unión de vigas con postes</td>
<td>Indeterminado</td>
<td>Stipa tenacissima</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Postes del tabique interno</td>
<td>Indeterminado</td>
<td>Pinus halepensis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ramaje de la techumbre</td>
<td>Indeterminado</td>
<td>Tamarix sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ramaje de la techumbre</td>
<td>Indeterminado</td>
<td>Rosmarinus officinalis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ramaje de la techumbre</td>
<td>Indeterminado</td>
<td>Olea europaea var. sylvestris</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ramaje de la techumbre</td>
<td>Indeterminado</td>
<td>Juniperus sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ramaje de la techumbre</td>
<td>Indeterminado</td>
<td>Pistacia lentiscus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Poste*</td>
<td>Indeterminado</td>
<td>Arbutus unedo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Quercus ilex/coccifera</td>
</tr>
<tr>
<td></td>
<td>Terrera del Reloj (Rodríguez-Ariza 1992a)</td>
<td>Postes y vigas</td>
<td>Indeterminado</td>
<td>Pinus halepensis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unión de vigas con postes</td>
<td>Indeterminado</td>
<td>Stipa tenacissima</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Techumbre</td>
<td>Indeterminado</td>
<td>Leguminosae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Techumbre</td>
<td>Indeterminado</td>
<td>Populus sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Techumbre</td>
<td>Indeterminado</td>
<td>Salix sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Techumbre</td>
<td>Indeterminado</td>
<td>Nerium oleander</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Techumbre</td>
<td>Indeterminado</td>
<td>Tamarix sp.</td>
</tr>
<tr>
<td></td>
<td>Loma de la Balunca (Rodríguez-Ariza 1992a)</td>
<td>Poste</td>
<td>Indeterminado</td>
<td>Quercus faginea</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Postes y vigas</td>
<td>Indeterminado</td>
<td>Pinus halepensis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Postes</td>
<td>Indeterminado</td>
<td>Pinus halepensis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Techumbre</td>
<td>Indeterminado</td>
<td>Salix sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Techumbre</td>
<td>Indeterminado</td>
<td>Leguminosae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Techumbre</td>
<td>Indeterminado</td>
<td>Quercus ilex/coccifera</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unión de vigas con postes</td>
<td>Indeterminado</td>
<td>Stipa tenacissima</td>
</tr>
<tr>
<td></td>
<td>Castellón Alto (Rodríguez-Ariza y Ruiz Sánchez 1992)</td>
<td>Postes o vigas</td>
<td>Indeterminado</td>
<td>Pinus nigra</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Techumbre</td>
<td>Indeterminado</td>
<td>Pinus halepensis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Techumbre</td>
<td>Indeterminado</td>
<td>Pinus halepensis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Techumbre</td>
<td>Indeterminado</td>
<td>Stipa tenacissima</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Techumbre</td>
<td>Indeterminado</td>
<td>Tamarix sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Techumbre</td>
<td>Indeterminado</td>
<td>Retama sp.</td>
</tr>
<tr>
<td></td>
<td>Castillejo de Gádor (niveles argáricos) (Rodríguez-Ariza 2001)</td>
<td>Techumbre</td>
<td>Indeterminado</td>
<td>Pinus nigra/sylvestris</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Techumbre</td>
<td>Indeterminado</td>
<td>Alnus glutinosa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Techumbre</td>
<td>Indeterminado</td>
<td>Rosmarinus officinalis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Techumbre</td>
<td>Indeterminado</td>
<td>Olea europaea var. sylvestris</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Techumbre</td>
<td>Indeterminado</td>
<td>Retama sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Techumbre</td>
<td>Indeterminado</td>
<td>Populus sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Techumbre</td>
<td>Indeterminado</td>
<td>Tamarix sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Techumbre</td>
<td>Indeterminado</td>
<td>Quercus ilex/coccifera</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Techumbre</td>
<td>Indeterminado</td>
<td>Salix sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vigas</td>
<td>Indeterminado</td>
<td>Alnus glutinosa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vigas</td>
<td>Indeterminado</td>
<td>Populus sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vigas</td>
<td>Indeterminado</td>
<td>Tamarix sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vigas</td>
<td>Indeterminado</td>
<td>Pinus nigra/sylvestris</td>
</tr>
</tbody>
</table>

Tabla 5.4. Continuación.
<table>
<thead>
<tr>
<th>CRONOLOGÍA</th>
<th>YACIMIENTO</th>
<th>FUNCIONALIDAD (* Posible)</th>
<th>N° DE RESTOS</th>
<th>TAXÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDAD DEL BRONCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peñalosa</td>
<td>Poste o viga travesera</td>
<td>1</td>
<td>Quercus ilex/coccifera</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Techumbre</td>
<td>Indeterminado</td>
<td>Quercus sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Techumbre</td>
<td>Indeterminado</td>
<td>Quercus suber</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ramaje de la techumbre</td>
<td>Indeterminado</td>
<td>Cistus sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ramaje de la techumbre</td>
<td>Indeterminado</td>
<td>Pistacia lentiscus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ramaje de la techumbre</td>
<td>Indeterminado</td>
<td>Olea europaea var. sylvestris</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Impermeabilización techumbre</td>
<td>Indeterminado</td>
<td>Quercus suber (corcho)</td>
</tr>
<tr>
<td></td>
<td>Motilla de Azuer</td>
<td>Poste</td>
<td>1</td>
<td>Quercus suber</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Postes</td>
<td>10</td>
<td>Quercus ilex/coccifera</td>
</tr>
<tr>
<td></td>
<td>Fuente Amarga</td>
<td>Postes o vigas</td>
<td>4</td>
<td>Pinus halepensis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Postes o vigas</td>
<td>4</td>
<td>Pinus nigra</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Postes o vigas</td>
<td>1</td>
<td>Pinus nigra/sylvestris</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Techumbre</td>
<td>Indeterminado</td>
<td>Quercus ilex/coccifera</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ramaje de la techumbre</td>
<td>Indeterminado</td>
<td>Leguminosae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Techumbre</td>
<td>Indeterminado</td>
<td>Pinus halepensis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Techumbre</td>
<td>Indeterminado</td>
<td>Salix sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Techumbre</td>
<td>Indeterminado</td>
<td>Quercus ilex/coccifera</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Techumbre</td>
<td>Indeterminado</td>
<td>Quercus caducifolio</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Techumbre</td>
<td>1</td>
<td>Vitis sp.</td>
</tr>
<tr>
<td></td>
<td>Los Villares</td>
<td>Postes</td>
<td>3</td>
<td>Pinus halepensis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vigas o viguetas de la techumbre*</td>
<td>Indeterminado</td>
<td>Fraxinus sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vigas o viguetas de la techumbre*</td>
<td>Indeterminado</td>
<td>Juglans sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vigas o viguetas de la techumbre*</td>
<td>Indeterminado</td>
<td>Juniperus sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vigas o viguetas de la techumbre*</td>
<td>Indeterminado</td>
<td>Leguminosae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vigas o viguetas de la techumbre*</td>
<td>Indeterminado</td>
<td>Pinus nigra/sylvestris</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vigas o viguetas de la techumbre*</td>
<td>Indeterminado</td>
<td>Prunus sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vigas o viguetas de la techumbre*</td>
<td>Indeterminado</td>
<td>Quercus caducifolio</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vigas o viguetas de la techumbre*</td>
<td>Indeterminado</td>
<td>Populus/Salix sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Postes</td>
<td>2</td>
<td>Pinus sylvestris</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Postes</td>
<td>2</td>
<td>Pinus nigra</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Poste</td>
<td>1</td>
<td>Pinus halepensis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Postes</td>
<td>2</td>
<td>Pinus nigra/sylvestris</td>
</tr>
<tr>
<td></td>
<td>Los Baños de la Malahá</td>
<td>Indeterminado</td>
<td>Indeterminado</td>
<td>Pinus halepensis</td>
</tr>
<tr>
<td>ÉPOCA IBÉRICA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fuente Amarga</td>
<td>Postes</td>
<td>2</td>
<td>Pinus sylvestris</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Postes</td>
<td>2</td>
<td>Pinus nigra</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Poste</td>
<td>1</td>
<td>Pinus halepensis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Postes</td>
<td>2</td>
<td>Pinus nigra/sylvestris</td>
</tr>
<tr>
<td></td>
<td>Los Baños de la Malahá</td>
<td>Indeterminado</td>
<td>Indeterminado</td>
<td>Pinus halepensis</td>
</tr>
<tr>
<td>ÉPOCA ROMANA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valentia</td>
<td>Vigas</td>
<td>13</td>
<td>Pinus halepensis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vigas</td>
<td>4</td>
<td>Quercus ilex</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vigas</td>
<td>2</td>
<td>Leguminosae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indeterminado</td>
<td>Indeterminado</td>
<td>Fraxinus oxycarpa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indeterminado</td>
<td>Indeterminado</td>
<td>Populus alba</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indeterminado</td>
<td>Indeterminado</td>
<td>Populus sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indeterminado</td>
<td>Indeterminado</td>
<td>Rosaceae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indeterminado</td>
<td>Indeterminado</td>
<td>Pinus halepensis</td>
</tr>
</tbody>
</table>

Tabla 5.4. Continuación.
En la Motilla del Azuer los elementos constructivos fundamentales fueron sobre todo las encinas y el alcornoque, ya que aparecieron 10 postes identificados como *Quercus ilex/coccifera*, y 1 como *Quercus suber* (Rodríguez-Ariza et al. 1999b). El caso del yacimiento de la Edad del Bronce de Peñalosa, en Jaén es semejante, ya que apareció un gran tronco de *Quercus ilex/coccifera* que pudo servir bien como poste o bien como viga travesera. Este mismo taxón, junto con el alcornoque (*Quercus suber*) pudieron conformar los ramajes del techo, cuya impermeabilización debió realizarse mediante la utilización también de corcho, obtenido de la misma especie. El ramaje del techo pudo estar conformado por diversas ramitas de lentisco, jaras y acebuches (Rodríguez-Ariza 2000b). En ambos yacimientos se interpreta la utilización mayoritaria de *Quercus* en función de la ausencia en el paisaje de otros elementos con mejores cualidades para la construcción como los álamos o los pinos.

En Fuente Amarga, Granada, la mayor parte de los restos antracológicos de los niveles argáricos estaban afectados por una destrucción por incendio, por lo que muchos fueron considerados de carácter constructivo (Fresneda Padilla et al. 1999). Los principales postes y vigas estarían elaborados mediante pinos, concretamente *Pinus halepensis*, *Pinus nigra* y *Pinus nigra/sylvestris*. Las techumbres, sin embargo, fueron realizadas gracias a una mayor variedad de taxones como *Quercus ilex/coccifera*, Leguminosae, *Vitis* sp., *Pinus halepensis*, *Salix* sp. y *Quercus caducifolia*.

En el caso de Castellón Alto (Galera, Granada) los postes y las vigas fueron elaborados también mediante madera de pino de dos especies principales *Pinus nigra*, cuya presencia se produjo gracias al transporte de esta especie desde zonas más elevadas y *Pinus halepensis*, que sería común en el entorno próximo del yacimiento. El pino carrasco fue utilizado también para construir las vigas principales del techo, unidas a los postes sustentantes mediante esparto (fig. 5.29). El entramado de ramas de la techumbre estuvo realizado principalmente de *Tamarix* sp. en las fases I y III (3370 ± 100 BP).
mientras que se utilizó fundamentalmente *Retama* sp. en la fase II (Rodríguez-Ariza y Ruiz Sánchez 1992). Estos mismos patrones constructivos se dan en general en otros yacimientos argáricos de la zona, como la Terrera del Reloj o Loma de la Balunca, donde excepcionalmente aparece un poste de *Quercus faginea* (Rodríguez-Ariza 1992b).

En el Castillejo de Gádor, en Almería las techumbres fueron hechas utilizando madera de *Pinus nigra/sylvestris, Alnus glutinosa, Rosmarinus officinalis, Olea europaea var. sylvestris, Retama sp., Populus sp., Tamarix sp., Quercus ilex/coccifera y Salix sp.*. En concreto fueron halladas varias vigas de aliso, álamo, taray y pino salgareño/silvestre pertenecientes a la techumbre que presentaban indicios de haber sido trabajadas mediante técnicas de carpintería para cuadrarlas. En este yacimiento se ha planteado el transporte de *Pinus nigra/sylvestris* desde zonas muy alejadas del enclave (Rodríguez-Ariza 2001).

![Figura 5.29. Recreación del alzado de una cabaña de Castellón Alto (Galera, Granada), con postes y vigas de *Pinus halepensis* (Rodríguez-Ariza y Guillén Ruiz 2007).](image)

El estudio de los niveles de destrucción por incendio de la Unidad Habitacional n° 1 de Terlinques (Villena, Alicante), ha proporcionado importantes evidencias en relación con los materiales constructivos utilizados en la construcción de la misma (Machado Yanes et al. 2004). Se detecta la utilización preferencial *Pinus halepensis* tanto para la elaboración de los postes, como para el entramado de vigas y largueros, que estarían unidos a los primeros mediante esparto, como se ha observado ya en algunos yacimientos de Andalucía. Además, parece que esta madera fue utilizada también para la elaboración de lejas en el interior de la estancia. La presencia de un gran fragmento
de Quercus ilex/coccifera junto a un agujero de poste relacionaría también a este taxón con las labores de sustentación de la estructura. El estudio antracológico ha permitido plantear la posibilidad de que el entramado de la techumbre fuese realizado a partir de madera de otras especies del entorno inmediato como Tamarix sp., Rosmarinus officinalis, Olea europaea var. sylvestris, Juniperus sp., Pistacia lentiscus y Arbutus unedo.

Siguiendo esta misma tendencia, en el yacimiento argárico del Cerro de las Viñas de Coy (Lorca) se plantea la utilización de Pinus halepensis como elemento constructivo fundamental en la elaboración de postes y vigas, mientras que las techumbres estarían conformadas por taxones de menor porte como Juniperus sp., Leguminosae o Quercus ilex/coccifera (Grau 1990a, en Buxó y Piqué 2008).

También se conocen datos referidos a cronologías más recientes. Sería el caso, en primer lugar, de los niveles del Ibérico Pleno II de los Villares (Caudete de las Fuentes) con varios contextos de incendio que permitieron conocer el tipo de utilización preferencial de la madera como construcción (De Haro Pozo 2002b). Aparecieron tres postes claramente diferenciados, todos ellos elaborados con Pinus halepensis, mientras que el resto de los materiales aparecían distribuidos en el contexto de incendio, de manera que no pudo atribuirseles una funcionalidad clara. No obstante, la autora plantea la posibilidad de que taxones como Fraxinus sp., Juglans sp., Juniperus sp., Leguminosae, Pinus nigra/sylvestris, Prunus sp., Quercus caducifolio o Populus/Salix sp. pudieran corresponderse con las vigas maestras y las viguetas que constituirían la techumbre de las distintas habitaciones documentadas.

En el caso de los niveles de época ibérica de Fuente Amarga (Rodríguez-Ariza et al. 1999a) aparecieron un total de siete postes, uno de Pinus halepensis, dos de Pinus sylvestris, dos de Pinus nigra y dos de Pinus nigra/sylvestris. Exceptuando el pino carrasco, en este caso se plantea la posibilidad de que la recogida de los troncos de carácter constructivo se produjera en zonas alejadas entre 40 y 50 Km con respecto al punto donde se encuentra el yacimiento. En el yacimiento próximo de Los Baños de la Malahá (Ruiz y Rodríguez-Ariza 2002) se detectó la presencia de materiales de construcción de funcionalidad no determinada elaborados en Pinus halepensis, información que recogen Buxó y Piqué (2008).

En época romana los materiales constructivos hallados en Valentia estuvieron realizados en numerosos taxones, como Pinus halepensis, Quercus ilex/coccifera, Pistacia lentiscus, Fraxinus sp, Populus sp. y Olea europaea (Grau 1990a).

Ya en el siglo XVI, en una fosa excavada en el Hospital Real de Granada fue hallado un gran fragmento de Pinus nigra/sylvestris que la autora interpreta como una posible viga.
perteneciente a la techumbre del Hospital, ya que existen fuentes que atribuyen su origen a la zona norte de la actual provincia de Granada (Rodríguez-Ariza 1993).

Por lo que respecta a los datos aportados por el presente trabajo al conocimiento de los modelos de construcción del Sureste peninsular, éstos se refieren fundamentalmente a la Edad del Bronce, y más concretamente al Bronce Argárico, y también a la época romana gracias a los elementos constructivos carbonizados que han sido estudiados en el Teatro Romano de Cartagena.

El Barranco de la Viuda sigue el patrón predominante en la mayoría de yacimientos argáricos, ya que aparece como elemento constructivo dominante Pinus halepensis, con el cual fueron realizados tres postes asociados al Departamento 2 y dos asociados al Departamento 3. Además, en este último espacio habitacional apareció otro gran poste elaborado en Pistacia lentiscus, que no encuentra paralelos en otros yacimientos del Sureste. El patrón marcado por los yacimientos de la zona de Baza, como Castellón Alto, Fuente Amarga, Terrera del Reloj o Loma de la Balunca, y también de otros almerienses como el Castillejo de Gádor, en los cuales aparece una utilización preferencial de los elementos de ribera en la conformación de las techumbres no se cumple en el Barranco de la Viuda, en el que sólo aparecen algunos fragmentos de Tamarix sp. asociados al nivel de destrucción por incendio detectado en el Departamento 3. Este nivel de incendio presenta otros taxones que pudieron conformar también las vigas y el entramado de la techumbre, como Pinus halepensis, Juniperus sp., Coniferae, Monocotyledoneae, Cistus sp., Labiatae, Olea europaea, Pistacia lentiscus y Rosmarinus officinalis. La aparición de Monocotyledoneae en este nivel podría estar relacionada, según el modelo planteado por Rodríguez-Ariza (2008) con la unión de los postes con las vigas de la techumbre.

En la Punta de los Gavilanes los materiales constructivos asociados al edificio 1TSM de la Edad del Bronce, dedicado probablemente al secado de pescado (Ros Sala et al. 2008) fue construido fundamentalmente mediante la utilización de Pinus pinea/pinaster, que es el elemento mayoritario tanto en las maderas individualizadas como en los fragmentos de carbón asociados al derrumbe por incendio del edificio. Hasta el momento hemos podido concluir que fueron hechos con este taxón unos siete postes de sustentación de la estructura, seis vigas de la techumbre, cuatro troncos que compondrían la empalizada de separación central del edificio y tres tablas cuya funcionalidad, sin embargo, no ha podido ser delimitada con claridad (tabla 5.4). Fueron utilizados también otros elementos como Tamarix sp. en las labores de sustentación, Olea europaea y Pinus halepensis como vigas en la techumbre, Pinus sp. y Olea europaea en la empalizada central, además de otra tabla elaborada en Pinus halepensis. Por otro lado, el nivel de derrumbe del edificio ha ofrecido un amplio listado taxonómico que pudo estar relacionado con la construcción del edificio y la cubierta de la techumbre.
En los niveles de destrucción por incendio del Teatro Romano de Cartagena fueron hallados varios fragmentos de *Pinus halepensis* que se interpretan como posibles elementos constructivos (Grau, inédito, c). A partir del estudio presentado en este trabajo se ha completado este análisis de materiales de construcción, llegando a la conclusión de que gran parte de los materiales leñosos como las posibles vigas del edificio fueron traídos de fuera, ya que se trata de taxones como *Abies alba* o *Pinus nigra/sylvestris*, que no estarian presentes en el entorno. No obstante, algunas astillas que presentan una carbonización parcial estuvieron elaboradas en *Juniperus* sp. En toda la Península Ibérica no se ha documentado ningún proceso de las mismas características.
CAPÍTULO VI:
CONCLUSIONES/CONCLUSIONS
VI.1. Conclusiones

En esta tesis doctoral se ha llevado a cabo el estudio antracológico de cinco yacimientos arqueológicos, desde una triple premisa. En primer lugar, se ha partido del supuesto de que los carbones hallados en contextos arqueológicos constituyen un registro válido de expresión de la vegetación leñosa desarrollada en el entorno inmediato de un yacimiento durante la ocupación del mismo. El segundo punto de partida reside en la idea de que, salvo excepciones, los carbones arqueológicos se asocian con actividades de combustión voluntarias de origen antrópico, por lo que son una fuente de información acerca de los patrones de gestión de los recursos leñosos como combustible. En tercer lugar, se asume la capacidad del estudio de carbones arqueológicos para dilucidar determinadas pautas de uso de la madera como material de construcción en el caso particular de los contextos de destrucción del hábitat por incendio.

Dichas premisas se abordan desde la atención primordial a los marcos biogeográfico y cronológico del área de estudio.

En este sentido, todos los yacimientos analizados, Punta de los Gavilanes, Barranco de la Viuda, Balneario Romano de Archena, Teatro Romano de Cartagena y Jumilla Santa María nº 19, se enmarcan geográficamente en el Sureste de la Península Ibérica y concretamente en la Región de Murcia, donde hasta el momento había una gran escasez de estudios antracológicos (Grau, inédito, a, b, c). Existía, por tanto, una imperiosa necesidad de completar mediante el aporte de nuevas secuencias el conocimiento que desde finales de los años ochenta habían generado los numerosos estudios publicados en las regiones vecinas del cuadrante sureste peninsular.

En cuanto al marco cronológico abordado, la secuencia que cubren estos yacimientos se sitúa aproximadamente en los últimos 3800 años, desde el Bronce Argárico hasta la época medieval, un tramo cronológico que presenta también grandes carencias en casi toda la Península Ibérica ya que el interés investigador ha estado mayoritariamente centrado en los grandes cambios en la estructura de la vegetación producidos en los inicios del Holoceno, y en particular también en el nuevo modelo de gestión del medio ambiente desarrollado a partir de la instalación de las primeras sociedades productoras del Neolítico. Resultaba prioritario, por tanto, abordar cronologías más recientes en donde los controles de cambio de la vegetación no residieran únicamente en las variaciones de carácter climático, sino en las modificaciones generadas por la presión sobre el medio de sociedades productoras cada vez más complejas.

La particularidad de ambos marcos de estudio tiene su origen en la fuerte escasez de recursos forestales disponibles en el Sureste durante el período cronológico estudiado,
Capítulo VI. Conclusiones/Conclusions

especialmente tras la crisis de aridez registrada en torno al 5000 BP (Pantaleón-Cano et al. 2003, Carrión et al. 2003, 2007) que supondría en el Sureste un incremento de la sequía estival, de la estacionalidad interanual y la instalación de las condiciones de aridez actuales. En este sentido, y a nuestro juicio, la contribución de este trabajo tiene su interés en el estudio de las estrategias de gestión de los recursos leñosos por parte de estas sociedades que, por un lado, evolucionaban hacia modelos de producción más complejos, pero por otro, eran testigos e inductores de una progresiva merma de los recursos leñosos de los que dependía en gran medida esta evolución.

En función de los objetivos planteados en la presentación de esta Tesis, exponemos a continuación una serie de valoraciones finales que atañen a todos los aspectos desarrollados en esta investigación, desde aquellos de carácter metodológico, pasando por el proceso de obtención de resultados, hasta llegar a las conclusiones propiamente dichas. Estas valoraciones son las siguientes:

1. El primer objetivo planteado ha sido de carácter metodológico: la aplicación de sistemas de muestreo sistemático para la recuperación de macrorrestos vegetales en yacimientos arqueológicos desde la Edad del Bronce hasta época medieval, en el ámbito semiárido de la Región de Murcia.

Hasta el momento eran escasos los yacimientos de la Región que incluían un protocolo de muestreo organizado por toda el área de excavación, teniendo en cuenta cada nivel de ocupación. Eran mayoritarias, sin embargo, las excavaciones en las que se aplicaba una recogida manual de las concentraciones carbonosas, en detrimento de los carbones dispersos en los suelos de ocupación u otros contextos.

A partir de este trabajo se ha podido desarrollar una recogida sistemática en los tres yacimientos cuyo muestreo ha sido coordinado por nosotros: la Punta de los Gavilanes, el Balneario Romano de Archen y Jumilla Santa María nº 19. En todos ellos la recuperación de sedimento se ha desarrollado en toda la extensión del yacimiento, recogiendo un volumen de sedimento que ha oscilado entre los 20 y los 50 litros por unidad estratigráfica muestreada (García Martínez y Grau 2008), siendo mayor en los casos de gran cantidad de materia orgánica, y menor sólo en algunos casos excepcionales afectados por limitaciones logísticas. Se ha efectuado la recuperación del total del sedimento asociado a las estructuras de combustión y la recogida manual in situ de los troncos carbonizados procedentes de niveles de destrucción por incendio, cuya función pudo ser de carácter constructivo.

El tratamiento del sedimento se ha realizado siempre mediante el método de flotación (Buxó 1990), que consideramos el más efectivo en el proceso de recuperación de macrorrestos vegetales. En todos los casos se ha llevado a cabo este proceso con ayuda
de una máquina de flotación, a excepción del yacimiento medieval de Jumilla Santa María nº 19, en donde se optó por la flotación manual.

2. El segundo objetivo planteado ha sido la realización del estudio antracológico de los carbones recuperados en estos yacimientos, tanto en los niveles de hábitat como en las diferentes estructuras de combustión, domésticas o especializadas, documentadas en los mismos.

Esta tesis se ha realizado en base al estudio de un total de 15462 fragmentos de carbón: 8728 asociados a la Punta de los Gavilanes, 2943 a Barranco de la Viuda, 2014 al Balneario Romano de Archena, 488 procedentes de los materiales constructivos carbonizados del Teatro Romano de Cartagena, y 1289 de la instalación artesanal hallada en la Calle Santa María nº 19 de Jumilla. Cada uno de ellos ha sido identificado taxonómicamente mediante la fragmentación manual y observación al microscopio óptico metalográfico de sus rasgos diagnóstico localizados en tres planos anatómicos: transversal, longitudinal tangencial y longitudinal radial. En total han sido identificados 48 taxones (familia, género o especie) asociados a muy diversos ecosistemas, que han permitido una interpretación paleoecológica y paleoeconómica de los resultados de cada yacimiento.

3. El tercer objetivo marcado ha sido la realización de un análisis de las características de la vegetación del entorno de los yacimientos a escala local durante los períodos de ocupación de los mismos, valorando los mecanismos de control sobre los cambios en la composición florística del entorno.

Nuestro posicionamiento teórico a este respecto ha partido de las premisas establecidas por Chabal (1988b, 1992) que conceden validez paleoecológica a los carbones arqueológicos cuando el registro procede de carbón de carácter doméstico disperso en el sedimento durante un espacio temporal amplio y ha sido correctamente muestreado. Desde una perspectiva interpretativa también hemos partido de posiciones contrarias al actualismo (Terradas 2001, Carrión 2003), que plantean que las sucesiones vegetales son en realidad respuestas a las perturbaciones externas siguiendo la propia dinámica interna de cada formación. Las conclusiones de índole paleoecológica se han basado, por tanto, en los carbones asociados a los niveles de habitación de los yacimientos sin tener en consideración los concentrados en estructuras de combustión.

Según estos resultados hemos podido concluir que la vegetación que se desarrollaba en el entorno de la Punta de los Gavilanes desde la Edad del Bronce y hasta el siglo VI a.C. estuvo dominada por formaciones de leñosas esclerófilas de carácter mediterráneo, salpicadas por pinos dispersos, junto con elementos arbóreo-arbustivos de óptimo norteafricano y xerófitos indicadores de aridez ambiental. A partir del siglo IV a.C., sin embargo, el control antrópico sobre la vegetación fue mayor, en consonancia con el
incremento de las actividades productivas de carácter metalúrgico desarrolladas en el yacimiento. Esta incidencia antropogénica se detecta fundamentalmente a partir de la disminución de la variedad de elementos de sotobosque mediterráneo en la secuencia, y de una cada vez mayor recurrencia a la vegetación halófila del cordón litoral.

Por otro lado, hemos concluido que la vegetación existente en las estribaciones de la Sierra de la Almenara durante el Bronce Argárico, según el antracoanálisis de Barranco de la Viuda, presentaría un desarrollo del estrato arbóreo mayor que el de la Punta de los Gavilanes, compuesto fundamentalmente por pinos carrascos, junto a los que crecerían gran cantidad de especies de matorral mediterráneo, y también iberoafricanismos y xerófitos como en la zona del litoral. También se ha constatado el deterioro del bosque galería en la cuenca del Guadalentín ya en este momento.

En cuanto a la vegetación que crecería en las proximidades del Balneario Romano de Archena en torno al siglo I d.C. nuestras conclusiones señalan un buen desarrollo del bosque galería en este punto del recorrido del Río Segura, mientras que en las elevaciones próximas aparecerían formaciones de pinar de pino carrasco acompañadas por un sotobosque poblado. En las umbrías aparecerían elementos como las carrascas y/o coscojas, el boj o el terebinto.

En época medieval los resultados ofrecidos por la instalación artesanal excavada en la calle Santa María nº 19 de Jumilla muestran para esta zona una vegetación ya muy degradada en torno a los siglos XII y XIII. El principal elemento arbóreo sería el pino carrasco, con un sotobosque desarrollado y el crecimiento de espartales en las zonas más degradadas. También aparece reflejada una nueva organización del territorio en función del desarrollo de determinados cultivos en el área periurbana, junto a los cuales se extenderían formaciones halonitrófilas como consecuencia de la progresiva nitrificación del sustrato.

4. El cuarto objetivo planteado estuvo centrado en el análisis de los patrones de gestión de los recursos leñosos del entorno de cada yacimiento para el abastecimiento de combustible de las estructuras de combustión o como material constructivo.

En cuanto a la madera utilizada como combustible, desde una perspectiva teórica hemos estructurado su estudio de acuerdo con la organización de los sistemas de aprovisionamiento de combustible y el impacto de la deforestación sobre el medio, y por otro lado tomando en consideración la existencia o no de procesos selectivos en la recogida de leña, dependiendo de factores como las propiedades de las plantas o la funcionalidad de las estructuras de combustión.

Por otro lado, en lo que concierne a los materiales constructivos, hemos partido de la premisa de que se trata fundamentalmente de materiales utilizados en función de ciertas
propiedades físico-mecánicas que hacen más apta la utilización de unas especies sobre otras, por lo que se encuentran siempre sometidos a una intensa selección.

Las conclusiones obtenidas al respecto en el caso de la Punta de los Gavilanes apuntan a que la madera utilizada como combustible fue empleada tanto en estructuras de combustión de carácter doméstico (hogares), como en otras destinadas al procesado de alimentos y también en los hornos destinados a actividades productivas de carácter metalúrgico. La gran cantidad de taxones utilizados en estas estructuras indican que fueron obtenidos en ecosistemas diversificados, principalmente en las zonas más próximas al promontorio, aunque también excepcionalmente en otros puntos alejados de la costa. También hemos llegado a la conclusión de que la satisfacción de las actividades económicas cada vez más intensivas desarrolladas en el yacimiento exigiría un incremento en el abastecimiento de combustible que alcanzaría su mayor cota en torno a los siglos IV-III a.C. con el funcionamiento de la factoría metalúrgica Gavilanes II, cuando se detectan además los mayores indicadores antracológicos de deforestación del entorno. En la Punta de los Gavilanes no se observan pautas de selección de las especies, ni en función de la calidad de las mismas ni dependiendo de la funcionalidad de las estructuras de combustión a las que aparecen asociadas. Los criterios fundamentales de selección fueron la proximidad y la abundancia de los recursos. Finalmente, dada esta nula selección, nuestras conclusiones en cuanto al combustible utilizado en la Punta de los Gavilanes apuntan a la posibilidad de que existieran sistemas de almacenamiento y secado de la leña que impidieran conocer la especie utilizada tras un largo tiempo de acumulación. Por otro lado, los patrones constructivos estudiados en la Punta de los Gavilanes para la Edad del Bronce desarrollarían una fuerte selección de los pinos del entorno como material sustentante fundamental de las edificaciones. Se utilizarían también otras especies como el olivo y el taray asociadas a las vigas que conformarían las techumbres. En los contextos de destrucción por incendio aparecen una gran cantidad de especies de matorral que pudieron formar parte del entramado de la techumbre.

Los taxones utilizados como combustible en las estructuras de combustión de Barranco de la Viuda procedieron todos ellos de las cercanías del yacimiento, por lo que se ha podido concluir que el abastecimiento de las mismas no supondría una gran inversión de energía ni en distancia ni en desniveles superados para su obtención. Además, la existencia de diferentes daños en las maderas indica probablemente una preferencia por las maderas muertas o muy deterioradas, reduciendo así aún más el esfuerzo invertido. Las pautas de organización en este sentido estarían regidas por el oportunismo, sin que se hayan podido constatar patrones de selección claros sobre la madera usada como combustible. Sólo en el contexto de enterramiento estudiado en uno de los departamentos del yacimiento ha sido posible la identificación de una serie de taxones que serían menos abundantes en el entorno, cuyo uso obedeció probablemente a la selección de los mismos en función de las creencias culturales del grupo. En cuanto a la
Capítulo VI. Conclusiones/Conclusions

utilización de la madera con fines constructivos, en el Barranco de la Viuda se da una clara orientación hacia el pino carrasco como elemento de sustentación, aunque ocasionalmente se utilizaron otras especies como los lentiscos que alcanzaran el porte suficiente.

Los resultados obtenidos a partir del combustible asociado a estructuras de combustión en el Balneario Romano de Archena nos han permitido observar que pudo existir un cierto desequilibrio entre la disponibilidad y abundancia de la masa forestal, y su uso como combustible. Hemos llegado a esta conclusión tras la observación en los distintos hogares estudiados de que la vegetación de carácter mediterráneo era mucho más utilizada como combustible que la procedente del bosque de ribera, aun sabiendo que el esfuerzo necesario para su obtención era similar en ambos casos y, por los resultados del carbón disperso, que el bosque galería del Río Segura se encontraría densamente poblado en el siglo I d.C. Sin embargo, los datos no permiten afirmar que las preferencias en el uso del combustible estuvieran relacionadas con las condiciones intrínsecas de las especies o con la función para la que estuvieran destinadas. En este yacimiento un hecho destacable que habla de las posibles relaciones del Balneario con puntos muy alejados de la geografía ibérica es el hallazgo de algún objeto elaborado en madera de haya y desechado y quemado en el gran vertedero documentado en la zona de servicios.

Los materiales constructivos estudiados en el caso del Teatro Romano de Cartagena denotan la importancia y el prestigio del edificio en el momento de su construcción, en los últimos años del siglo I a.C. Las maderas analizadas procedentes del contexto de destrucción del pulpitum/proscaenium fueron identificadas por Grau (inédito, c) como Pinus halepensis, coincide con el material aparecido en la cripta del porticus post scaenam (este trabajo). Sin embargo, en la zona del parascaenium occidental ha aparecido una mezcla de cuatro taxones: Pinus halepensis, Juniperus, Abies alba y Pinus nigra/sylvestris. Nuestras conclusiones apuntan a que la selección y el abastecimiento de materiales leñosos al Teatro estuvieron sujetos a un triple criterio. Por un lado se utilizarían especies autóctonas como el pino carrasco o los enebros/sabinas ocupando labores constructivas de segundo orden. En segundo término el abastecimiento de troncos de Pinus nigra/sylvestris, que sería uno de los materiales más apreciados por su tamaño y resistencia, pudo provenir de zonas de alta montaña situadas a media distancia. Finalmente, siguiendo las recomendaciones de Vitrubio, fueron utilizadas en la construcción del teatro maderas de abeto procedentes de puntos muy alejados a Cartagho Nova como los Apeninos italianos, no descartando otras cordilleras como los Pirineos o los Alpes.

Finalmente, en Jumilla Santa María 19 hemos realizado un estudio pormenorizado de los combustibles asociados a diferentes estructuras de combustión, sin que hayan podido constatarse procesos de selección de la madera. Hemos llegado a esta conclusión
debido en primer lugar a la gran riqueza taxonómica asociada a las estructuras, en segundo lugar a que la comparación de las estructuras de similar funcionalidad no ha ofrecido paralelismos en cuanto al uso del combustible, en tercer término como consecuencia de que son utilizados como combustibles todo tipo de plantas, independientemente de si su comportamiento en la producción de fuego es bueno o no y finalmente porque la suma de los carbones asociados a todas estas estructuras muestra una imagen de la vegetación que manifiesta cierta coherencia en su comparación con los carbones dispersos analizados.

5. Otro de los objetivos fundamentales planteados a priori en este trabajo fue la discusión de los resultados obtenidos en el contexto del cuadrante sureste de la Península Ibérica en cuanto a su inserción en la secuencia regional desde la Edad del Bronce hasta época medieval. Esta discusión ha sido elaborada a partir de los procesos de cambio de la vegetación que acontecen en el Sureste peninsular desde comienzos de la influencia transformadora del medio que supone el desarrollo de las primeras sociedades productoras hasta la época medieval.

Durante la Fase Atlántica o mesocrática (c. 7500-4500 BP) la vegetación en el Sureste presenta su máxima cobertura arbórea durante el Holoceno, ya que con el óptimo climático se produce en términos generales una progresiva sustitución de las formaciones de coníferas por otras dominadas por quercíneas y mesófitos asociados a la benignidad climática y al aumento de la humedad ambiental. No obstante, avanzado el Neolítico comienzan a detectarse en determinadas secuencias los primeros indicios de deforestación asociados a la ocupación continuada de las mismas durante periodos de tiempo de varios cientos de años.

En la Fase Subboreal (c. 4500-2800 BP) se documentan en el Sureste grandes cambios en el paisaje como consecuencia de la instalación de sociedades complejas que generaron una fuerte presión sobre su entorno con actividades agroganaderas intensivas y debido al fuerte desarrollo de la metalurgia. Este cambio se corresponde también con la crisis de aridez que se detecta en la mayoría de secuencias en torno al 5000 BP, y con una tendencia climática generalizada a la aridificación a partir de ese momento. El Calcolítico, según la mayoría de los datos vendría a convertirse en la última etapa plenamente forestal en las zonas más áridas del Sureste en relación con estos cambios climáticos. Los procesos de degradación de la vegetación acaecidos durante la Edad del Bronce, sin embargo, pudieron también verse antropogénicamente acelerados por el desarrollo de patrones económicos basados en la depredación de los recursos naturales, de por sí escasos, disponibles en el entorno. Las conclusiones obtenidas a partir de los datos de la Fase IV de Punta de los Gavilanes y de Barranco de la Viuda se integran en la dinámica descrita por la mayoría de las secuencias de este periodo. La vegetación en estos momentos se encontraría ya en un estado de degradación, en el que apenas quedarían indicios de las formaciones forestales bien estructuradas, dominando los
Capítulo VI. Conclusiones/Conclusions

pinares frente a la aparición poco importante de los elementos que habían marcado el óptimo de la vegetación en esta zona, como el género *Quercus*.

Finalmente, durante la Fase Subatlántica (desde *c.* 2800 BP) se ha registrado una sucesión de periodos fríos y cálidos que han derivado en las condiciones climáticas actuales. Sin embargo, durante estos tres milenios la dinámica de la vegetación del cuadrante sureste peninsular no ha venido determinada primordialmente por estas oscilaciones climáticas, sino por una nueva concepción del territorio organizado en función del desarrollo de determinadas actividades productivas a gran escala. Así se demuestra en la mayoría de secuencias polínicas y antracológicas de este ámbito regional, en las que los indicadores de antropización se manifiestan de manera generalizada. En esta misma línea se sitúan los datos aportados a partir del análisis antracológico de las Fases III, II y I de Punta de los Gavilanes, del Balneario Romano de Archen y de Jumilla Santa María 19. En la Punta de los Gavilanes el incremento de la deforestación ambiental se manifiesta en la reducción de los taxones documentados y en las nuevas estrategias de gestión del combustible detectadas a partir de la factoría metalúrgica para la obtención de plata Gavilanes II. En el Balneario Romano de Archen aparecen ya varios taxones cuyo cultivo fue probable en la ribera del Segura, y en especial del olivo en relación con la elaboración de aceite que se realizó en el mismo yacimiento. En Jumilla Santa María 19, además de una degradación ambiental de los espacios naturales que se hace evidente en la abundancia de taxones como el pino carrasco o el esparto, también aparecen taxones cultivados que ocuparían gran parte de los terrenos del entorno urbano de la ciudad.

6. Finalmente, el sexto objetivo planteado estaba centrado en la realización de una síntesis de los datos paleoetnobotánicos obtenidos, junto con los conocidos de otros yacimientos del mismo ámbito regional. El objetivo era llegar a conclusiones relativas a los modos de aprovechamiento de los recursos forestales en las condiciones de sequedad o semiaridez que caracterizan el clima de gran parte del cuadrante sureste peninsular.

En lo que respecta al uso de la madera como combustible observado en las secuencias del Sureste, las proporciones de carbones documentadas en diferentes yacimientos desde la Edad del Bronce hasta época medieval muestran una concordancia clara entre las pautas de comportamiento y las formaciones vegetales mejor desarrolladas en el entorno, dependiendo del estado de apertura y degradación del paisaje. Por lo tanto, existiría una economización del esfuerzo invertido en la obtención de leña para las actividades domésticas, que generaría una deforestación en el entorno inmediato a los yacimientos, produciendo como consecuencia cambios en las estrategias de abastecimiento orientadas cada vez más hacia comportamientos oportunistas en detrimento de la selección de la leña. Por otro lado, el contenido de las diferentes estructuras de combustión presentadas en este trabajo, junto con las conocidas para el
Sureste, descarta la existencia como norma general de pautas selectivas de uso del combustible en función de la funcionalidad de las estructuras o de las propiedades de las diferentes especies. El fenómeno monoespecífico constatado en estructuras de combustión especializadas en zonas boscosas europeas no es posible en el caso del Sureste, en donde la escasez de recursos anularía la posibilidad de comportamientos en este sentido, si bien tenemos la certeza de que conocerían las propiedades de las plantas, y de que en ocasiones priorizarían el uso de unas sobre otras.

Los datos que se tienen en cuanto a los patrones constructivos en el cuadrante sureste de la Península Ibérica son bastante escasos, ya que su obtención está supeditada a que acontezca un proceso de destrucción por incendio que no siempre se documenta en los yacimientos arqueológicos.

En general la selección de materiales constructivos se documenta en todos los yacimientos, si bien se presenta siempre sujeta a la escasez de especies de porte arbóreo que existiría en el Sureste durante la época estudiada. Las demandas estaban orientadas fundamentalmente hacia troncos de cierta altura, rectitud, grosor y densidad en el caso de los elementos sustentantes; ramas algo menos gruesas, pero largas, flexibles y resistentes para ejercer como vigas sustentantes de la techumbre y elementos de carácter arbustivo de menor tamaño para la elaboración del entramado de la techumbre.

Para la Edad del Bronce el modelo más repetido en el Sureste se basa en la utilización de *Pinus halepensis* para la elaboración de postes y vigas, que estarían unidos mediante sogas de esparto, junto con elementos flexibles como la vegetación de ribera o las retamas en la conformación de la techumbre, y de otro tipo de ramas variadas y cañas para completar el entramado de la cubierta (Rodríguez-Ariza 1992a, 2008, Rodríguez-Ariza y Guillén Ruiz 2007).

Para etapas posteriores no se poseen datos suficientes que permitan establecer un modelo semejante. No obstante, la escasez de recursos disponibles en el Sureste peninsular limitaría considerablemente las posibilidades de cambio con respecto a la tendencia descrita en la Edad del Bronce. Casos como el del Teatro Romano de Cartagena en donde el planteamiento arquitectónico exige el uso de elementos procedentes de zonas extremadamente lejanas estarían reservados a edificios excepcionales, de los que todavía no contamos con paralelismos.

Finalmente, como conclusión final y a pesar de la entidad de los resultados alcanzados, creemos que esta tesis doctoral no es más que un punto de partida en la antracología de la Región de Murcia. En este ámbito se abren nuevas perspectivas de futuro que pasan por añadir a lo aquí expuesto una mayor cantidad de secuencias que ayuden a completar y ampliar el recorrido cronológico tratado, y también el marco geográfico, abarcando el carácter diverso de la geografía de nuestra región. Estas perspectivas pasan también por
la diversificación en los métodos de estudio de los carbones arqueológicos, ya que otras técnicas plantean posibilidades en aspectos fundamentales para el Sureste como, por ejemplo, la incidencia sobre la vegetación de las condiciones de estrés hídrico a las que ha estado sometida durante milenios.

Poco a poco se está poniendo de relieve la importancia del estudio de los restos vegetales en la interpretación de numerosos aspectos de la vida de las sociedades del pasado. Esto conlleva que en el futuro deberá darse la aplicación generalizada de sistemas de muestreo sistemático sobre los yacimientos arqueológicos, cada vez con una mayor amplitud geográfica y cronológica. En esto hay todavía un largo camino por recorrer que puede reportar interesantes perspectivas en la investigación arqueológica de la Región de Murcia.
VI.2. Conclusions

Dans cette Thèse de Doctorat, on a présenté l'étude anthracologique de cinq gisements archéologiques, selon trois prémisses. D'abord, on est parti de l'hypothèse que les charbons de bois trouvés dans des contextes archéologiques constituent un registre valable d'expression de la végétation forestière développée dans l'environnement proche d'un gisement pendant son occupation. Le deuxième point de départ a résidé dans l'idée que les charbons de bois archéologiques, sauf exceptions, sont associés à des activités de combustion volontaires d'origine anthropique, c'est pour cela qu’ils sont une source d'information en ce qui concerne les règles de gestion des ressources ligneuses comme combustible. En troisième lieu, on a présupposé la capacité de l'étude des charbons de bois à éclaircir certains modèles d'utilisation du bois comme matériau de construction dans le cas particuliers des contextes de destruction de l'habitat par incendie.

Le principal point d'intérêt de ce travail réside dans les cadres géographique et chronologique étudiés.

Tous les gisements analysés, Punta de los Gavilanes, Barranco de la Viuda, Balneario Romano de Archena, Teatro Romano de Cartagena et Jumilla Santa María 19, se trouvent géographiquement encadrés dans le Sud-est de la Péninsule Ibérique et concrètement dans la Région de Murcia, où il y avait un grand manque d'études anthracologiques (Grau, inédito, a, b, c). Il existait, par conséquent, un réel besoin de compléter, par l'apport de nouvelles séquences, les nombreuses études publiées dans régions voisines du quadrant sud-est péninsulaire depuis la fin des années quatre-vingts.

En ce qui concerne le cadre chronologique traité, ces gisements couvrent la séquence des dernières 3800 années, depuis le Bronze Argarique jusqu'à l'époque médiévale. Cette période présente aussi de grandes lacunes dans toute la Péninsule Ibérique puisque l'intérêt de la recherche a été majoritairement centré dans les changements de la végétation produits au début du Holocène, et aussi dans le nouveau modèle de gestion de l'environnement développé à partir de l'installation des premières sociétés productives du Néolithique. Il était prioritaire, par conséquent, d'aborder des chronologies plus récentes, quand les contrôles de changement de la végétation résideaient sur les modifications produites par la pression sur l’environnement des sociétés productives chaque fois plus complexes.

La particularité des deux cadres d'étude est l’important manque de ressources forestières disponibles dans le Sud-est péninsulaire pendant la période chronologique étudiée, spécialement après la crise d'aridité enregistrée autour du 5000 BP (Pantaleón-Cano et al. 2003, Carrión et al. 2003, 2007) qui supposerait une croissance de la saisonnalité et l'installation des conditions semi-arides actuelles. En ce sens, la contribution de ce
travail repose sur l'étude des stratégies de gestion des ressources ligneuses par ces sociétés complexes, qui d'une part évoluaient vers des modèles de production plus développés, et d'autre part étaient les témoins et les inducteurs d'une diminution progressive des ressources ligneuses nécessaires à cette évolution.

Selon les objectifs proposés dans la présentation de cette thèse, les principales conclusions obtenues sont les suivantes :

1. Le premier objectif marqué pour cette thèse a été à caractère méthodologique: l'application de systèmes d'échantillonnage systématique pour la récupération de macro restes végétaux aux gisements archéologiques depuis l'Âge du Bronze jusqu'à l’époque médiévale, dans la partie semi-aride de la Región de Murcia.

Jusqu'à présent il y avait peu de gisements de la Région qui appliquaient un protocole d'échantillonnage organisé par tous les secteurs, en tenant compte de chaque niveau d'occupation. La plus grande partie des sites, toutefois, pratiquaient une récolte manuelle des concentrations de charbons de bois, au détriment des charbons de bois dispersés dans les sols d'occupation et autres contextes.

En ce sens, à partir de ce travail nous avons pu développer un échantillonnage systématique dans les trois gisements dont nous avons contrôlé l'échantillonnage ; Punta de los Gavilanes, Balneario Romano de Archena et Jumilla Santa María 19. Dans tous ces gisements, la récupération de sédiments a été développée dans toute l'extension du gisement, en collectant un volume qui a oscillé entre - 20 et 50 litres par unité stratigraphique échantillonnée (García Martínez y Grau 2008). Ce volume a été supérieur dans les cas où la quantité de matière organique était importante, et inférieur seulement dans quelques cas exceptionnels connaissant des limitations logistiques. On a effectué la récupération de l’ensemble du sédiment associé aux structures de combustion et la récolte manuelle in situ des troncs carbonisés des niveaux de destruction par incendie.

Le traitement des échantillons a été toujours effectué par la méthode de flottation (Buxó 1990), que nous considérons la plus efficace dans le processus de récupération de macro restes végétaux. Dans tous les cas, nous avons mené ce processus à bien avec l’aide d'une machine de flottation, à l'exception du gisement médiéval de Jumilla Santa María 19, où nous avons opté par la flottation manuelle.

2. Le deuxième objectif fixé consistait en la réalisation de l'étude anthracologique des charbons de bois récupérés aux gisements, dans les niveaux d'habitat ainsi que dans les différentes structures de combustion, domestiques ou spécialisées, documentées pendant la fouille.
Cette recherche a été effectuée sur la base de l'étude d'un total de 15462 fragments de charbon de bois: 8728 associés à Punta de los Gavilanes, 2943 à Barranco de la Viuda, 2014 à Balneario Romano de Archen, 488 des matériaux constructifs carbonisés du Teatro Romano de Cartagena, et 1289 de l'installation artisanale trouvée à Jumilla Santa María 19. Chaque fragment a été taxonomiquement identifié grâce à la fragmentation manuelle et l'observation au microscope métallographique de ses caractéristiques diagnostiques situées sur trois plans anatomiques: transversal, longitudinal tangentiel et longitudinal radial. Au total, nous avons identifiés 48 taxons (famille, genre ou espèce), associés à des écosystèmes très divers, et qui ont permis une interprétation paléo écologique et paléo économique des résultats de chaque gisement.

3. Le troisième objectif marqué a été la réalisation d'une analyse de la végétation des alentours des gisements à l'échelle locale pendant ses périodes d'occupation, en évaluant les mécanismes de contrôle sur les changements dans sa composition.

Notre positionnement théorique à ce sujet est parti des prémisses établies par Chabal (1988b, 1992) qui accordent la validité paléo écologique des charbons de bois quand les échantillons viennent des activités à caractère domestique et se dispersent dans le sédiment pendant longtemps. En plus, les charbons de bois doivent être correctement échantillonnés. Dans une perspective interprétative nous sommes aussi partis de positions contraires à l'actualisme (Terradas 2001, Carrión 2003), qui proposent que les successions végétales seraient en réalité des réponses aux perturbations externes selon la dynamique de chaque formation. Les conclusions paléo écologiques sont fondamentalement basées sur les charbons de bois associés aux niveaux d’habitat des gisements, sans tenir compte des concentrations charbonneuses dans les structures de combustion.

Selon ces résultats nous avons pu conclure que la végétation qui était développée dans l'environnement de La Punta de los Gavilanes depuis l’Âge du Bronze jusqu'au IVème siècle av. J.C., a été dominée par des formations de fourré sclérophylle à caractère méditerranéen, parsemé de pins dispersés, avec des éléments arbustifs d’optimum Nord-Africain et des xérophytes indicateurs d'une certaine aridité environnementale. À partir du IVème siècle av. J.C., le contrôle anthropique sur la végétation a été, par contre, plus grand, en rapport avec l'accroissement des activités productives à caractère métallurgique développées dans le gisement. Cette incidence anthropogénique est fondamentalement détectée à partir de la diminution de la variété d'éléments de sous bois méditerranéen dans la séquence, et d'une récurrence chaque fois plus grande à la végétation halophile du cordon littoral.

D'autre part, nous avons conclu que la végétation existante aux alentours de la Sierra de la Almenara pendant le Bronze Argarique, selon l’étude anthracologique de Barranco de la Viuda, présenterait un développement des éléments arborescents plus grand que
Capítulo VI. Conclusiones/Conclusions

celui de Punta de los Gavilanes. Cette végétation serait composée fondamentalement de *Pinus halepensis*, avec lesquels une grande quantité d'espèces du fourré méditerranéen, et aussi des Ibéro-africanismes et des xérophytes se développeraient. On a aussi constaté la détérioration de la forêt galerie dans le bassin du Guadalentín déjà à l’Âge du Bronze.

En ce qui concerne la végétation qui se développerait près de Balneario Romano de Archena autour du 1er siècle, nos conclusions indiquent un bon développement de la forêt galerie à ce point du parcours du Río Segura, tandis que dans les élévations proches apparaîtraient des formations de pineraie de pin d’Alep accompagnées d’un sous bois dense. Dans les ombres apparaîtraient des éléments comme *Quercus ilex* et/ou *Quercus coccifera*, *Buxus* ou *Pistacia terebinthus*.

En époque médiévale, les résultats offerts par l'installation artisanale trouvée au 19 rue Santa María, à Jumilla, montrent, pour cette zone, une végétation déjà très dégradée autour des XIIème et XIIIème siècles. Le principal élément arborescent serait le pin d’Alep, accompagné d’un sous bois développé et d’une grande extension de formations d’alfa dans les zones les plus dégradées. Est aussi reflétée une nouvelle organisation du territoire en fonction du développement de certaines cultures dans le secteur périurbain, avec des formations halo nitrophiles à cause de la nitrification progressive du substrat.

4. Le quatrième objectif fixé a été l'analyse des modèles de gestion des ressources ligneuses aux alentours de chaque site pour l'approvisionnement en combustible des structures de combustion ou comme matériel constructif.

En ce qui concerne les bois utilisés comme combustible, théoriquement nous avons structuré leur étude en accord avec l'organisation des systèmes d'approvisionnement en combustible et l'impact du déboisement sur l’environnement. D’autre part nous a pris en considération l'existence ou non de processus sélectifs dans la récolte de bois, selon des facteurs comme les propriétés des plantes ou la fonction des structures de combustion.

En deuxième lieu, en ce qui concerne les matériaux constructifs, nous sommes partis de la prémisse selon laquelle il s'agit fondamentalement de matériaux utilisés en fonction de certaines propriétés physiques et mécaniques. C’est pour cela que les bois constructifs sont toujours soumis à une sélection intense.

Finalement, les conclusions obtenues à ce sujet dans le cas de Punta de los Gavilanes indiquent que le bois utilisé comme combustible a été employé dans des structures de combustion à caractère domestique (foyers), ainsi que dans d'autres, destinées au traitement d'aliments mais aussi dans les fours destinés à des activités productives à caractère métallurgique. La grande quantité de taxons utilisés dans ces structures montre qu'ils ont été obtenus dans des écosystèmes diversifiés, principalement dans les zones les plus proches du promontoire; mais aussi, exceptionnellement, dans d'autres points
éloignés de la côte. Nous sommes aussi arrivés à la conclusion que la satisfaction des activités économiques, chaque fois plus intensives, développées dans le site exigerait un accroissement de l’approvisionnement de combustible à partir de la phase Gavilanes II, quand on détecte beaucoup plus d’indicateurs anthracologiques de déforestation de l'environnement. Dans Punta de los Gavilanes, on n'observe pas de règles de sélection des espèces, ni en fonction de sa qualité, ni en rapport avec la fonctionnalité des structures de combustion dans lesquelles les charbons de bois ont été trouvés. Les critères fondamentaux de sélection ont été la proximité et l'abondance des ressources. Finalement, nous avons proposé l’existence de systèmes de stockage et séchage du bois qui empêcheraient de connaître l'espèce utilisée après un long temps d'accumulation. D'autre part, les modèles constructifs étudiés dans la Punta de los Gavilanes à partir des charbons de bois de l’Âge du Bronze montrent une forte sélection des pins comme matériel soutenant des constructions. D’autres taxons comme *Olea europaea var. sylvestris* ou *Tamarix* seraient associés à la soutenance des toitures. Dans les contextes de destruction par incendie apparaissent une grande quantité d'espèces arbustives qui ont pu faire partie de la toiture.

Les taxons utilisés comme combustible dans les structures de combustion de Barranco de la Viuda proviennent tous des alentours du gisement. Par conséquent, nous avons conclu que les activités d’approvisionnement de bois ne supposeraient pas un grand investissement d'énergie, ni du fait de la distance ni des dénivellations du terrain. En outre, l'existence de différents dommages dans les bois indique probablement une préférence par les bois morts ou très détériorés, en réduisant ainsi encore plus l'effort investi. Les règles d'organisation en ce sens seraient surtout opportunistes, ce qui fait que nous n’avons pas constaté des indicateurs de sélection clairs sur le bois utilisé comme combustible. Nous avons identifié seulement quelques taxons qui seraient moins abondants dans l'environnement dans le cas du contexte d'enterrement étudié dans un des départements du gisement. Son utilisation est probablement causée par la sélection des bois en fonction de la dimension culturelle de ce contexte. En ce qui concerne l'utilisation du bois à des fins constructifs, dans le Barranco de la Viuda, on observe une orientation claire vers le pin d’Alep comme élément de soutenance, bien que les habitants du site aient utilisé occasionnellement d'autres espèces comme *Pistacia lenticus*.

Les résultats obtenus à partir du combustible associé à des structures de combustion au Balneario Romano de Archena, ont permis d'observer un certain déséquilibre entre la disponibilité et l'abondance de la masse forestière, et son utilisation comme combustible. Nous sommes arrivés à cette conclusion après l'observation dans les différents foyers étudiés, dont la végétation à caractère méditerranéen était beaucoup plus utilisée que les éléments de la forêt galerie. Cependant, dans les deux cas, l'effort nécessaire pour son obtention était semblable et, selon les résultats du charbon de bois dispersé, la forêt galerie du Río Segura serait densément couverte dans le Ier siècle.
Cependant, les données ne permettent pas d'affirmer que les préférences dans l'utilisation du combustible soient en concordance avec les conditions intrinsèques des espèces ou avec l'utilisation à laquelle ces essences seraient destinées. Dans ce gisement, un fait remarquable qui parle des possibles relations du Balneario Romano de Archena avec des points très éloignés de la géographie péninsulaire est la découverte d'un objet élaboré avec *Fagus sylvatica*.

Les matériaux constructifs étudiés dans le cas du Teatro Romano de Cartagena dénotent l'importance et le prestige du bâtiment au moment de sa construction, pendant les dernières années du Ier siècle av. J. C. Les bois associés au contexte de destruction du *pulpitum/proscaenium* ont été identifiés par Grau (inédito, c) comme *Pinus halepensis*, le même matériel apparu dans la crypta du *porticus post scaenam*, étudié dans cette thèse. Toutefois, dans la zone du *parascaenium* occidental est apparu un mélange de quatre taxons: *Pinus halepensis*, *Juniperus* sp., *Abies alba* et *Pinus nigra/sylvestris*. Nos conclusions indiquent que la sélection et l'approvisionnement de matériaux ligneux au Teatro Romano de Cartagena ont été soumis à trois critères. D'une part, on utiliserait des espèces autochtones comme le pin d’Alep ou les genévriers/sabines en occupant des tâches constructives de second ordre. En deuxième terme, l'approvisionnement de troncs de *Pinus nigra/sylvestris*, qui serait un des matériaux les plus appréciés par sa taille et sa résistance, a pu provenir de zones de haute montagne situées à quelques kilomètres de Cartagena. Finalement, en suivant les recommandations de Vitruvio, elles ont été utilisés dans la construction du théâtre des bois de sapin provenant de points très éloignés à *Carthago Nova* comme les Apennins italiens ou d'autres cordillères comme les Pyrénées ou les Alpes.

Finalement, à Jumilla Santa María 19, nous avons effectué une étude détaillée des combustibles associés à différentes structures de combustion, sans pouvoir constater des processus de sélection du bois. Nous sommes arrivés à cette conclusion du fait : premièrement, de la grande richesse taxonomique associée aux structures ; deuxièmement, grâce à la comparaison des structures de fonctionnalité similaire, qui n'a pas offert de parallélismes quant à l'utilisation du combustible ; et troisièmement, à cause de l’utilisation comme combustible de tout type de plantes, indépendamment du fait que son comportement dans la production de feu soit bon ou pas ; finalement, parce que la somme des charbons de bois associés à toutes ces structures montre une image de la végétation qui manifeste une certaine cohérence dans sa comparaison avec les charbons de bois dispersés analysés.

5. Un autre objectif fondamental proposé *a priori* dans ce travail a été la discussion des résultats obtenus dans le contexte du quadrant Sud-est de la Péninsule Ibérique et son insertion dans la séquence régionale depuis l’Âge du Bronze jusqu'à l’époque médiévale.
Cette discussion a été élaborée à partir des processus de changement de la végétation qui arrivent dans le Sud-est péninsulaire depuis les débuts de l'influence transformatrice de l’environnement, qui commence avec le développement des premières sociétés néolithiques jusqu'à l'époque médiévale.

Pendant la Phase Atlantique (c. 7500-4500 BP) la végétation dans le Sud-est présente sa couverture arborescente maximale, à cause de la bénignité climatique et à l'augmentation de l'humidité environnementale. Avec ce optimum climatique, se produit une substitution progressive des formations de conifères par d'autres dominées tels que *Quercus* et mésophytes favorisés par ces conditions. Cependant, à la fin du Néolithique les premiers indices de déforestation associés à l'occupation continue des sites pendant des périodes de plusieurs centaines d'années, commencent à être détectés dans certaines séquences.

Dans la Phase Subboreal (c. 4500-2800 BP), on documente, dans le Sud-est, de grands changements dans le paysage suite à l'installation de sociétés complexes qui ont produit une forte pression sur leur environnement avec des activités agraires intensives et du fait du fort développement de la métallurgie. Ce changement coïncide aussi avec la crise d'aridité qui est détectée dans la majorité de séquences autour du 5000 BP, et avec une tendance climatique généralisée à l'aridification à partir de ce moment. Le Chalcolithique, selon la majorité des données, serait la dernière étape pleinement forestière dans les zones les plus arides du Sud-est, par rapport aux changements climatiques. Les processus de dégradation de la végétation ayant eu lieu pendant l'Âge du Bronze ont cependant aussi pu être accélérés par l’action anthropique, du fait du développement de modèles économiques basés sur la déprédation des ressources naturelles, déjà faibles, disponibles dans l'environnement. Les conclusions obtenues à partir des données de la phase IV de Punta de los Gavilanes et de Barranco de la Viuda sont intégrées dans la dynamique décrite par la majorité des séquences de cette période. La végétation, en ce moment, se trouverait déjà dans un état de dégradation, dans lequel les indices des formations forestières bien structurées seraient très faibles.

Finalement, pendant la Phase Subatlantique (depuis c. 2800 BP) on a enregistré une succession de périodes froides et chaudes qui ont abouti aux conditions climatiques actuelles. Toutefois, pendant ces trois millénaires, la dynamique de la végétation du quadrant sud-est péninsulaire n'a pas été déterminée primordialement par ces oscillations climatiques, mais par une nouvelle conception du territoire organisé en fonction du développement de certaines activités productives à une grande échelle. Ceci est démontré dans la majorité des séquences polliniques et anthracologiques régionales, où les indicateurs d'anthropisation se manifestent de manière généralisée. Les données apportées à partir de l'analyse anthracologique des phases III, II et I de Punta de los Gavilanes, de Balneario Romano de Archena et de Jumilla Santa María 19 montrent
cette même tendance. Dans la Punta de los Gavilanes l'accroissement du déboisement environnemental se manifeste par la réduction des taxons documentés et par les nouvelles stratégies de gestion du combustible détectées à partir de l'installation métallurgique d'argent Gavilanes II. Dans le cas du Balneario Romano de Archena apparaissent déjà plusieurs taxons probablement cultivés à côté du Río Segura, comme l'olivier, pour l'élaboration d'huile qui a été effectuée dans le même gisement. À Jumilla Santa María 19, en plus d'une dégradation environnementale des espaces naturels, qui est évident par rapport l'abondance de taxons comme le pin d'Alep ou l'alfa, il y avait aussi des taxons cultivés qui occuperaient une grande partie des terrains près de l'environnement urbain de la ville.

6. Finalement, le sixième objectif proposé était basé sur la réalisation d'une synthèse des données paléo ethnobotaniques obtenues, avec les données d'autres gisements du même cadre régional. L'objectif était d'arriver à des conclusions relatives aux systèmes d'utilisation des ressources forestières dans les conditions de sécheresse ou semi aridité qui caractérisent le climat d'une grande partie du quadrant sud-est péninsulaire.

En ce qui concerne l'utilisation du bois comme combustible observé dans les séquences du Sud-est, les proportions de charbons de bois documentées dans différents gisements depuis l'Âge du Bronze jusqu'à l'époque médiévale montrent une concordance entre les règles de comportement et les formations végétales mieux développées dans l'environnement, selon l'état d'ouverture et dégradation du paysage. Par conséquent, il existerait une économie de l'effort investi dans l'obtention de bois pour les activités domestiques, qui produirait une déforestation dans l'environnement immédiat aux sites, en produisant des changements dans les stratégies d'approvisionnement, orientées chaque fois plus vers des comportements opportunistes au détriment de la sélection du combustible. D'autre part, le contenu des différentes structures de combustion présentées dans ce travail, avec les données pour le Sud-est, écarte l'existence comme norme générale de règles sélectives d'utilisation du combustible en fonction de la fonctionnalité des structures ou des propriétés des différentes espèces. Le phénomène mono spécifique constaté dans des structures de combustion spécialisées dans des zones boisées européennes n'est pas possible dans le cas du Sud-est, où la pénurie de ressources annulerait la possibilité de comportements en ce sens. Cependant, nous possédions la certitude qu'ils connaîtraient les propriétés des plantes, et qu’ils donneraient parfois la priorité à l'utilisation de quelques unes sur d'autres.

Les données qu'on a en ce qui concerne les systèmes constructifs dans le quadrant sud-est de la Péninsule Ibérique sont assez faibles, puisque son obtention est soumise à l'existence d’un processus de destruction par incendie qui n'est pas toujours documenté dans les gisements archéologiques.
En general, la seleccion de materiales constructivos est documentada en todos los yacimientos, bien que la presente tuviera sobre el manque d'espèces arborescentes que existierais en el Sud-est pendant l'époque etudiée. Les demandes étaient orientées fondamentalement vers des troncs d'une certaine hauteur, une rectitude, une grosseur et une densité dans le cas des éléments soutenants; branches moins grosses, mais longues, flexibles et résistantes pour exercer comme poutres soutenants de la toiture et des éléments à caractère arbustif de petite taille pour l'élaboration de la lierne de la toiture.

Pour l'Âge du Bronze, le modèle le plus répété dans le Sud-est se base sur l'utilisation de *Pinus halepensis* pour l'élaboration des poteaux et poutres, qui sont unies au moyen de cordes d’alfa, avec éléments flexibles comme la végétation de la forêt galerie dans le renforcement de la toiture, et d'un autre type de branches variées et de tiges pour compléter la lierne de la couverture (Rodriguez-Ariza 1992a, 2008, Rodriguez-Ariza y Guillén Ruiz 2007).

Pour des étapes postérieures, on ne possède pas de données suffisantes qui permettent d'établir un modèle semblable. Cependant, la pénurie de ressources disponibles dans le Sud-est péninsulaire limiterait considérablement les possibilités de changement en ce qui concerne la tendance décrite dans l'Âge du Bronze. Des cas comme celui du Teatro Romano de Cartagena, où l'approche architectonique exigea l'utilisation d'éléments de zones extrêmement éloignées sont réservés à des bâtiments exceptionnels, dont nous ne disposons pas encore des parallélismes.

Cette thèse doctorale n'est pas plus qu'un point de départ dans l'anthracologie de la Région de Murcia. Dans ce cadre, on ouvre de nouvelles perspectives de futur qui impliquent d’ajouter à ce qui est ici exposé une plus grande quantité d'études qui permettent de compléter et étendre la séquence chronologique traitée, et aussi le cadre géographique, en comprenant le caractère divers de la géographie de notre région. Ces perspectives passent aussi par la diversification des méthodes d'étude des charbons de bois archéologiques, puisque d'autres techniques ouvrent des possibilités dans des aspects fondamentaux pour le Sud-est, comme l'incidence sur la végétation des conditions de stress hydrique auxquelles elle a été soumise pendant des millénaires.

Peu à peu, on souligne l'importance de l'étude des restes végétaux dans l'interprétation de nombreux aspects de la vie des sociétés du passé. Ceci entraîne que, dans le futur, on devra effectuer l'application généralisée de systèmes d'échantillonnage systématique sur les gisements archéologiques, chaque fois avec une plus grande ampleur géographique et chronologique. A ce propos, il y a encore un long chemin à parcourir qui peut apporter des perspectives intéressantes dans la recherche archéologique de la Región de Murcia.
Recursos forestales en un medio semiárido.

Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

BIBLIOGRAFÍA

A

Recursos forestales en un medio semiárido.

Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

Dorado Valiño, M., Valdeolmillos Rodríguez, A., Ruiz Zapata, B., Gil García, M. J. y De Bustamante Gutiérrez, I. 2002. Climatic changes since the Late-glacial/Holocene transition in La Mancha Plain (South-central Iberian Peninsula, Spain) and their incidence on Las Tablas de Daimiel marshlands. *Quaternary International* 93-93: 73-84.

E

F

García Martínez, M. S. 2006. *Antracoanálisis de la Fase II de Punta de los Gavilanes (Puerto de Mazarrón, Murcia).* Tesis de Licenciatura. Universidad de Murcia.

García Martínez, M. S., Grau, E. y Ros Sala, M. M. 2008b. Paisaje y gestión de los recursos vegetales en la costa de Mazarrón (Murcia), según el antracoanálisis de Punta de los Gavilanes. *Cuaternario y Geomorfología* 23 (3-4): 107-120.

Góngora, M. 1868. *Antigüedades prehistóricas de Andalucía, monumentos, inscripciones, armas, utensilios y otros importantes objetos pertenecientes a los tiempos más remotos de su población*, Imprenta de Cargo de C. Moro, Madrid.

Grau, E. (inédito, b). Informe antracológico sobre el Castellar de Librilla (Murcia).

J

K

Recursos forestales en un medio semiárido. Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

Ministerio de Agricultura, Pesca y Alimentación 1989. *Proyecto LUCDEME. Mapa de Suelos, Escala 1:100.000, Hoja de Mazarrón (976).* Universidad de Murcia, Murcia.

Bibliografía

Palet, J. M., Ejarque, A., Miras, Y., Rieira, S., Euba, I., Orengo, H. 2006. Formes d’ocupació d’alta muntanya a la vall de la Vansa (Serra del Cadi-alt Urgell) i a la vall del Madriu-Perafita-

Bibliografía

Rodríguez-Ariza, M. O. 1992a. Las relaciones hombre-vegetación en el Sureste de la Península Ibérica durante las Edades del Cobre y Bronce a partir del análisis antracológico de siete yacimientos arqueológicos. Tesis doctoral. Universidad de Granada.

Rodríguez-Ariza, M. O. 1996b. Los procesos de formación y transformación del registro arqueológico en los estudios antracológicos. Arqueología Espacial 16-17: 371-390.

Rodríguez-Ariza, M. O. y Esquivel, J. A. 1996. The vegetation from the Guadix-Baza (Granada, Spain) during the Copper and Bronze Ages based on anthracology. *Archeologia e Calcolatori* VII: 537-560.

Ruiz, A., y Rodríguez-Arizá, M. O. 2002. Paisaje y asentamiento entre los iberos de la cuenca del río Guadalquivir (s. VI al III a.n.e.)”. *Ambiente e paessagio nella Magna Grecia*, Instituto per la Storia e l’Archeologia della Magna Grecia, Taranto: 261-278.

Tardy, C. 1998. *Recherches sur les paléofeuex en forêt tropicale humide, implications climatiques et des établissements paléoindiens, le cas de la Guayane (sites des Nourages)*. Thése de Doctorat. Université de Montpellier II.

U

Recursos forestales en un medio semiárido.
Nuevos datos antroclógicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

Y

Z

ÍNDICE DE FIGURAS

CAPÍTULO I

Figura 1.1. Situación de los yacimientos estudiados en relación con las principales unidades de relieve de su entorno (Fuente del mapa: www.atlasdemurcia.com, modificado)... 18

Figura 1.2. Situación del yacimiento de la Punta de Gavilanes en la zona costera de Mazarrón... 19

Figura 1.3. Mapa geográfico de la costa de Mazarrón.. 20

Figura 1.4. Situación de los yacimientos minerales del coto de Mazarrón (elaboración propia a partir de Arana et al. 1999)... 22

Figura 1.5. Mapa de suelos de Mazarrón (Ministerio de Agricultura, Pesca y Alimentación 1989)... 23

Figura 1.6. Leyenda correspondiente al mapa de suelos de Mazarrón (Ministerio de Agricultura, Pesca y Alimentación 1989)... 24

Figura 1.7. Ombrótipos de la Región de Murcia (Sánchez Gómez et al. 1998).................. 25

Figura 1.8. Limites de la Provincia Murciano-Almeriense según Alcaraz et al. (1988), modificado... 26

Figura 1.9. Periploca angustifolia y Withania frutescens en la Sierra de las Moreras (Mazarrón) (Fotos: M. S. García)... 28

Figura 1.10. Suaeda vera y Anabasis hispanica en las inmediaciones de Punta de Los Gavilanes (Fotos: M.S. García)... 29

Figura 1.11. Vegetación actual del entorno de Punta de los Gavilanes......................... 29

Figura 1.13. Comarca del Campo de Cartagena (Fuente del mapa: www.atlasdemurcia.com, modificado).. 31

Figura 1.14. Palmitos (Chamaerops humilis) junto a la bahía de Portmán (Foto: M.S. García)... 33

Figura 1.15. Distribución actual de Tetraclinis articulata en la Sierra de la Unión, según Costa et al. (2001). Abajo, ejemplar de la especie (Foto: M.S. García)...................... 34

Figura 1.16. cf. Limonium carthaginense y Pistacia terebinthus en la zona minera de Portmán (Foto: M.S. García)... 35
Índice de figuras

Figura 1.17. Situación del Barranco de la Viuda... 36

Figura 1.18. Visión de las estribaciones de la Sierra de la Almenara desde el Barranco de la Viuda (Foto: M. S. García).. 37

Figura 1.19. Afloramiento volcánico en las proximidades del Barranco de la Viuda (Foto: M. S. García)... 38

Figura 1.20. Formaciones degradadas en el lugar donde se encuentra el Barranco de la Viuda (Foto: M. S. García)... 40

Figura 1.21. Visión del valle del Guadalentín desde el Barranco de la Viuda (Foto: M. S. García)... 41

Figura 1.22. Saladar en el término municipal de Lorca (Foto: M. S. García)........................ 41

Figura 1.23. Situación del Balneario de Archena.. 42

Figura 1.24. Cuenca del Río Segura, según Ríos Ruiz y Alcaraz Ariza (1996), modificado, y situación en ella de los yacimientos estudiados en esta tesis.. 43

Figura 1.25. Contraste entre la vegetación de ribera y la degradación de los cerros contiguos (Foto: M.S. García).. 46

Figura 1.26. Aspecto del Río Segura a su paso por los Baños de Archena (Foto: M.S. García)... 47

Figura 1.27. Situación de Jumilla Santa María nº 19... 48

Figura 1.28. Ubicación del solar en el piedemonte del Castillo de Jumilla (Foto: J.A. Ramirez)... 49

Figura 1.29. Situación del yacimiento junto a las principales unidades hidrológicas y de relieve de su entorno. (Fuente del mapa: www.atlasdemurcia.com, modificado).................... 50

Figura 1.32. Mapa de vegetación actual en el entorno de Jumilla Santa María nº 19........... 54

Figura 1.33. Aspecto de la vegetación en la Sierra de Santa Ana de Jumilla (Foto: M. S. García)... 55

CAPÍTULO II

Figura 2.1. Tabla bioestratigráfica elaborada a partir de distintos estudios antracológicos del noroeste de Europa (Vernet y Thiébault 1987).. 63

Figura 2.2. Principales elementos florísticos de la Península Ibérica (Costa et al. 2001).. 71

Figura 2.3. Mapas de precipitación y temperatura medias anuales en la Península Ibérica (Ninyerola et al. 2005).. 72

Figura 2.4. Pisos termoclimáticos de la Península Ibérica, según Rivas-Martínez (1987).. 73

Figura 2.5. Proceso de combustión, según Chabal et al. (1999).. 77

Figura 2.6. Propuesta de ficha de muestreo de macrorrestos vegetales.. 84

Figura 2.7. Sistemas de tratamiento de muestras con agua según Buxó y Piqué (2003), modificado... 86

Figura 2.8. Microscopio metalográfico Leica DM 2500 M del Laboratorio de Arqueología de la Universidad de Murcia (Fotos: M. S. García)... 88

Figura 2.9. Fases del proceso de creación de la antracoteca del Laboratorio de Arqueología de la Universidad de Murcia.. 89

Figura 2.10. Visualización de un fragmento de Fagus sylvatica mediante S.E.M. (x 75) y mediante microscopio óptico metalográfico (x 100).. 90

Figura 2.11. Planos anatómicos en Buxus sp. (x 65).. 90

Figura 2.12. Tipos de punteaduras de los campos de cruce, según García Esteban et al. (2003), modificado. 1: Fenestroide, 2: Pinoide, 3: Cupresoide, 4: Piceoide, 5: Taxodioide... 92

Figura 2.14. Engrosamientos helicoidales (1) y tipos de perforación de los vasos: simple (A), escalariforme (B) y foraminada (C), según García Esteban et al. (2003), modificado.. 93

Figura 2.15. Pistacia lentiscus de la Punta de los Gavilanes con presencia de tílides en sus vasos.. 94

Figura 2.17. Detalle de un haz cribo-vascular de Monocotyledoneae (x 3300) del Balneario Romano de Archena... 96

Figura 2.18. Ejemplo de diagrama en el que se establece la relación entre el número de taxones y número de fragmentos en el contexto de vertedero asociado al Balneario Romano de Archena... 99

Figura 2.19. Ejemplo de curva de porcentajes, referida a la UE 7J70 de Barranco de la Viuda... 99

Figura 2.20. Lectura diacrónica y sincrónica de un diagrama antracológico................................. 101

Figura 2.21. Proceso de recolección de combustible en el Paleolítico, según Théry-Parisot (2001)... 108

Figura 2.22. Área de combustión, según Brézillon (1973), modificado................................. 116

Figura 2.23. Área de combustión arqueológica, según Soler (2003), modificado..................... 117

CAPÍTULO III

Figura 3.1. *Pistacia lentiscus* con alteraciones producidas por la dirección del viento (Foto: M.S. García)... 125

Figura 3.2. Inclusión de cristales en un fragmento de *Tamarix* sp. del Balneario Romano de Archena (x 950)... 126

Figura 3.3. Encadenamientos de células procariotas sobre fragmentos de carbón del Balneario Romano de Archena: a) *Olea europaea* (x 2700); b) *Quercus ilex/coccifera* (x 2200); c) *Rhamnus/Phillyrea* sp. (x 6500); d) *Rhamnus/Phillyrea* sp. (x 3700).. 126

Figura 3.4. Micelios de hongo sobre fragmentos de carbón del Balneario Romano de Archena: a) *Buxus* sp. (x 1700); b) *Buxus* sp. (x 2500); c) *Olea europaea* (x 2500); d) *Quercus ilex/coccifera* (x1000); e) *Pistacia lentiscus* (x 1400); f) *Tamarix* sp. (x 2300)........ 127

Figura 3.5. Microorganismos colonizando fragmentos de carbón del Balneario Romano de Archena: a) cf. *Phragmites australis* (x150); b) *Populus/Salix* sp. (x 400); c) *Prunus* sp. (x 3700); d) *Rhamnus/Phillyrea* sp. (x 700); e) *Quercus ilex/coccifera* (x 2500); f) *Quercus ilex/coccifera* (x 3500).. 128

Figura 3.6. Diferentes microorganismos colonizando un mismo fragmento de *Tamarix* sp. del Balneario Romano de Archena: a) x 4300; b) x 2700; c) x 4300; d) x 4300; e) x 2700; f) x 3300.. 129

Figura 3.7. Galería de insecto barrenador sobre un fragmento de Chenopodiaceae de Punta de los Gavilanes (x 150), y posible exubia del insecto (x 3700)................................. 130
Recursos forestales en un medio semiárido. Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval.

Figura 3.8. Galería de insecto barrenador sobre un fragmento de Pinus halepensis de Barranco de la Viuda. 130

Figura 3.9. Fisuras sobre el plano transversal de un fragmento de Punica granatum (izquierda) (x 140) y Pistacia lentiscus (derecha) (x 65), ambos del Balneario Romano de Archena. 133

Figura 3.10. cf. Tetraclinis articulata de la Punta de los Gavilanes, con células colapsadas. 134

Figura 3.11. Fragmento de Tamarix sp. del Balneario Romano de Archena con vitrificación (izquierda) (x 85) y detalle del tejido vitrificado (derecha) (x 350). 135

Figura 3.12. Juniperus sp. de la Punta de los Gavilanes. A la izquierda, plano longitudinal tangencial (x 200), a la derecha, plano longitudinal radial (x100). 139

Figura 3.13. Juniperus oxycedrus en Sierra Espuña (izquierda) y Juniperus phoenicea en la Sierra de las Moreras (derecha) (Fotos: M. S. García). 140

Figura 3.14. Tetraclinis articulata de a la Punta de los Gavilanes. A la izquierda, plano transversal, a la derecha plano longitudinal radial. 141

Figura 3.15. Tetraclinis articulata en la Sierra de la Unión (izquierda) y detalle de las infrutescencias (derecha) (Fotos: M. S. García). 142

Figura 3.16. Abies alba del Teatro Romano de Cartagena. A la izquierda, plano transversal (x 60), a la derecha, plano longitudinal tangencial (x 140). 143

Figura 3.17. Abies alba fotografiado en la Vall de Boi (izquierda) (Foto: F. X. Oms) y distribución actual en Europa (derecha), según Costa et al. (2001). 144

Figura 3.18. Pinus halepensis de Barranco de la Viuda. A la izquierda, plano transversal, a la derecha, plano longitudinal radial. 145

Figura 3.19. Pinus halepensis en la Sierra de Santa Ana de Jumilla (Foto: M. S. García). 146

Figura 3.20. Pinus pinea/pinaster de la Punta de los Gavilanes. A la izquierda, plano transversal (x 75), a la derecha, plano longitudinal radial. 147

Figura 3.21. Pinus pinea en la localidad gerundense de Blanes (izquierda) y Pinus pinaster en los rodenos de Albarracín, Teruel (derecha) (Fotos: M. S. García). 148

Figura 3.22. Pinus nigra/sylvestris del Teatro Romano de Cartagena. A la izquierda, plano transversal (x 50), a la derecha, plano longitudinal radial (x 550). 149

Figura 3.23. Pinus sylvestris en la Sierra de Béjar, Ávila (Foto: M. S. García). 150

Figura 3.24. Brácteas de piña de la Punta de los Gavilanes (x 120 y x 130 respectivamente). 151

Figura 3.25. Morfología de las piñas de diferentes especies de Pinus según Costa et al. (2001), modificado. 151

Figura 3.26. Ephedra sp. de la Punta de los Gavilanes. A la izquierda, plano transversal, a la derecha, plano longitudinal radial. 152
Figura 3.27. *Ephedra cf. fragilis* en el Estrecho del Río Quípar, Caravaca (Foto: M. S. García).. 153

Figura 3.28. Monocotyledoneae de la Punta de los Gavilanes, plano transversal (izquierda) y detalle de los haces cribo-vasculares (derecha).. 154

Figura 3.29. Monocotyledoneae del Balneario Romano de Archena, plano transversal (x 120).. 155

Figura 3.30. *Stipa tenacissima* en el Cabo de Gata, Almería (izquierda) y *Ammophila arenaria* en las dunas del Delta del Ebro (derecha) (Fotos: M. S. García).. 156

Figura 3.31. *cf. Phragmites australis* del Balneario Romano de Archena, plano transversal (x 85) (izquierda) y ejemplar de carrizo en la costa de Mazarrón (derecha) (Foto: M. S. García).. 156

Figura 3.32. *Chamaerops humilis* de Barranco de la Viuda, plano transversal.................. 157

Figura 3.33. *Chamaerops humilis* en el Cabo de Gata, Almería (Foto: M. S. García)........ 158

Figura 3.34. *Pistacia lentiscus* de la Punta de los Gavilanes. A la izquierda, plano transversal, a la derecha, plano longitudinal tangencial.. 159

Figura 3.35. *Pistacia lentiscus* en Sierra Espuña (Foto: M. S. García)............................... 160

Figura 3.36. *Pistacia cf. terebinthus* de Barranco de la Viuda. A la izquierda, plano transversal, a la derecha, plano longitudinal tangencial.. 161

Figura 3.37. *Pistacia terebinthus* en el Calar de la Santa, Moratalla (Foto: M. S. García).... 162

Figura 3.38. *cf. Nerium oleander* del Balneario Romano de Archena (x 85) (izquierda) y ejemplar en Sierra Espuña (derecha) (Foto: M. S. García).. 163

Figura 3.39. *Periploca angustifolia* de la Punta de los Gavilanes. A la izquierda, plano transversal, a la derecha, plano longitudinal tangencial.. 164

Figura 3.40. *Periploca angustifolia* en el Cabo de Gata, Almería (Foto: M. S. García)..... 165

Figura 3.41. *Buxus* sp. del Balneario Romano de Archena, plano transversal (x 75).......... 166

Figura 3.42. *Buxus* sp. del Balneario Romano de Archena. A la izquierda, plano longitudinal radial (x 600), a la derecha, plano longitudinal tangencial (x 270)......................... 166

Figura 3.43. *Buxus sempervirens* en la Sierra del Montsec, Lleida (Foto: M. S. García).... 167

Figura 3.44. *Maytenus senegalensis* de la Punta de los Gavilanes. A la izquierda, plano transversal, a la derecha, plano longitudinal tangencial.. 168

Figura 3.45. *Maytenus senegalensis* en el Cabo de Gata, Almería (Foto: M. S. García).... 169

Figura 3.46. Chenopodiaceae de la Punta de los Gavilanes. A la izquierda, plano transversal, a la derecha, plano longitudinal tangencial.. 170
Figura 3.47. *Anabasis hispanica* en la base de la Punta de los Gavilanes (Foto: M. S. García).. 171

Figura 3.48. *Atriplex halimus* de la Punta de los Gavilanes. A la izquierda, plano transversal, a la derecha, plano longitudinal tangencial... 172

Figura 3.49. *Atriplex halimus* en las antiguas salinas de Mazarrón (Foto: M. S. García)... 173

Figura 3.50. Cistaceae de la Punta de los Gavilanes, plano transversal (izquierda) y ejemplar de *Helianthemum almeriense* en la Sierra de la Unión (derecha) (Foto: M. S. García)... 174

Figura 3.51. *Cistus* sp. de Barranco de la Viuda. A la izquierda, plano transversal, a la derecha, plano longitudinal tangencial.. 175

Figura 3.52. *Cistus albidus* (izquierda) y *Cistus salviifolius* (derecha) en Sierra Espuña (Fotos: M. S. García).. 176

Figura 3.53. cf. *Fumana* sp. de la Punta de los Gavilanes. A la izquierda, plano transversal, a la derecha, plano longitudinal radial... 177

Figura 3.54. *Fumana ericoides* en la Sierra de las Moreras, Mazarrón (Foto: M. S. García).. 178

Figura 3.55. Compositae de la Punta de los Gavilanes, plano transversal (izquierda) y *Helichrysum stoechas* en la Sierra de las Moreras, Mazarrón (derecha) (Foto: M. S. García).. 179

Figura 3.56. *Artemisia* sp. de la Punta de los Gavilanes. A la izquierda, plano transversal, a la derecha, plano longitudinal tangencial.. 180

Figura 3.57. cf. *Artemisia barrelieri* en la Sierra de las Moreras, Mazarrón (Foto: M. S. García).. 181

Figura 3.58. cf. Cruciferae de Barranco de la Viuda, plano transversal (izquierda) y *Eruca vesucaria* en la costa de Mazarrón (derecha) (Fotos: M. S. García)... 182

Figura 3.59. *Arbutus unedo* del Balneario Romano de Archena. A la izquierda, plano transversal (x 70), a la derecha, plano longitudinal tangencial (x 250)............................... 183

Figura 3.60. Rama de *Arbutus unedo* en el Jardí Botànic de Blanes, Girona (Foto: M. S. García).. 184

Figura 3.61. *Erica* sp. de la Punta de los Gavilanes. A la izquierda, plano transversal, a la derecha, plano longitudinal tangencial.. 185

Figura 3.62. *Erica* sp. en Sierra Espuña (izquierda) y detalle de la flor (derecha) (Fotos: M. S. García).. 186

Figura 3.63. *Fagus sylvatica* del Balneario Romano de Archena. A la izquierda, plano transversal (x 70), a la derecha, plano longitudinal tangencial (x 170)............................... 187

Figura 3.64. *Fagus sylvatica* del Balneario Romano de Archena. A la izquierda, plano longitudinal radial (x 850), a la derecha, mismo plano (x 2700)... 187
Índice de figuras

Figura 3.65. Distribución actual del género *Fagus* en Europa, según Costa *et al.* (2001).......................... 189

Figura 3.66. *Quercus ilex/coccifera* de la Punta de los Gavilanes. A la izquierda, plano transversal, a la derecha, plano longitudinal tangencial... 190

Figura 3.67. *Quercus ilex* en Zúheros, Córdoba (izquierda) y *Quercus coccifera* en Sierra Espuña (derecha) (Fotos: M. S. García).. 191

Figura 3.68. Labiatae de la Punta de los Gavilanes. A la izquierda, plano transversal, a la derecha, plano longitudinal tangencial.. 192

Figura 3.69. *Lavandula dentata* (izquierda) y *Thymus hyemalis* (derecha) en la Sierra de las Moreras, Mazarrón (Fotos: M. S. García)... 193

Figura 3.70. *Rosmarinus officinalis* de Barranco de la Viuda. A la izquierda, plano transversal, a la derecha, plano longitudinal tangencial.. 194

Figura 3.71. *Rosmarinus officinalis* en la Sierra de Santa Ana de Jumilla (Foto: M. S. García).. 195

Figura 3.72. Leguminosae de la Punta de los Gavilanes. A la izquierda, plano transversal (x 95), a la derecha, plano longitudinal tangencial (x 550)... 196

Figura 3.73. Leguminosae de la Punta de los Gavilanes, plano longitudinal radial (x 2700)... 196

Figura 3.74. *Anthyllis cytisoides* (izquierda) y *Coronilla juncea* (derecha) en la Sierra de las Moreras, Mazarrón (Fotos: M. S. García).. 197

Figura 3.75. *Ficus carica* de la Punta de los Gavilanes. A la izquierda, plano transversal (x 43), a la derecha, plano longitudinal tangencial (x 140)... 198

Figura 3.76. *Ficus carica* en el Estrecho del Río Quípar, Caravaca (Foto: M. S. García)... 199

Figura 3.77. *Fraxinus* sp. del Balneario Romano de Archena. A la izquierda, plano transversal (x 70), a la derecha, plano longitudinal tangencial (x 120).. 200

Figura 3.78. Fresno en la Laguna Grande de Baeza, Jaén (Foto: M. S. García).............................. 201

Figura 3.79. *Olea europaea* del Balneario Romano de Archena (izquierda), plano transversal (x 100). *Olea europaea* de la Punta de los Gavilanes (derecha), plano longitudinal tangencial.. 202

Figura 3.80. Olivo cultivado en el campo de Lorca (izquierda) y acebuche en el Cabo de Gata, Almería (derecha) (Foto: M. S. García).. 203

Figura 3.81. *cf. Plantago* sp. de la Punta de los Gavilanes, plano transversal............................ 204

Figura 3.82. *Punica granatum* del Balneario Romano de Archena. A la izquierda, plano transversal (x 55), a la derecha, plano longitudinal tangencial (x 250).. 205

Figura 3.83. *Punica granatum* en el borde de un embalse (Foto: M. S. García).................... 206

Figura 3.84. *Clematis* sp. de la Punta de los Gavilanes, plano transversal.............................. 207
Recursos forestales en un medio semiárido.
Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

Figura 3.85. *Rhamnus/Phillyrea* sp. de la Punta de los Gavilanes. A la izquierda, plano transversal, a la derecha, plano longitudinal tangencial... 208

Figura 3.86. *Rhamnus lycioides* en la Sierra de las Moreras, Mazarrón (izquierda) y *Rhamnus alaternus* en Calafell, Tarragona (derecha) (Fotos: M. S. García)... 210

Figura 3.87. Rosaceae tipo Maloideae del Balneario Romano de Archena. A la izquierda, plano transversal (x 80), a la derecha, plano longitudinal tangencial (x 230)............................... 211

Figura 3.88. *Crataegus monogyna* en la Sierra del Montsec, Lleida (Foto: M. S. García). 212

Figura 3.89. *Prunus* sp. del Balneario Romano de Archena. A la izquierda, plano transversal (x 75), a la derecha, plano longitudinal tangencial (x 140).. 213

Figura 3.90. *Prunus* sp. de la Punta de los Gavilanes. A la izquierda, plano transversal (x 85), a la derecha, plano longitudinal tangencial (x 250)... 213

Figura 3.91. *Prunus spinosa* en el Calar de la Santa, Moratalla (Foto: M. S. García)........... 214

Figura 3.92. *Prunus* cf. *amygdalus* del Balneario Romano de Archena. A la izquierda, plano transversal (x 90), a la derecha, plano longitudinal tangencial (x 150)..................... 215

Figura 3.93. *Populus/Salix* sp. del Balneario Romano de Archena. A la izquierda, plano transversal (x 95), a la derecha, plano longitudinal tangencial (x 250)... 216

Figura 3.94. Alameda de *Populus alba* en la Laguna Grande de Baeza, Jaén (Foto: M. S. García)... 217

Figura 3.95. cf. *Withania frutescens* de la Punta de los Gavilanes. A la izquierda, plano transversal, a la derecha, plano longitudinal tangencial... 218

Figura 3.96. *Withania frutescens* en el Cabo de Gata, Almería (Foto: M. S. García)........ 219

Figura 3.97. *Lycium intricatum* de la Punta de los Gavilanes (izquierda) y ejemplar en el Cabo Cope, Águilas (derecha) (Foto: M. S. García).. 220

Figura 3.98. *Tamarix* sp. de la Punta de los Gavilanes. A la izquierda, plano transversal, a la derecha, plano longitudinal tangencial.. 221

Figura 3.99. *Tamarix* en la playa de Calnegre, Lorca (izquierda) y en el curso del Río Vélez a su paso por la Parroquia, Lorca (derecha) (Fotos: M. S. García).. 222

Figura 3.100. *Daphne gnidium/Thymelaea hirsuta* de la Punta de los Gavilanes. A la izquierda, plano transversal, a la derecha, plano longitudinal tangencial... 223

Figura 3.101. *Daphne gnidium* en Sierra Espuña (izquierda) y *Thymelaea hirsuta* en la Sierra de las Moreras, Mazarrón (derecha) (Fotos: M. S. García)... 224

Figura 3.102. cf. *Ulmus* sp. del Balneario Romano de Archena. A la izquierda, plano transversal (x 140), a la derecha, plano longitudinal radial (x 1000)... 225

Figura 3.103. *Ulmus minor* junto al Río Darro, Granada (Foto: M. S. García).................. 226

Figura 3.104. *Vitis vinifera* de Jumilla Sta. María 19. A la izquierda, plano transversal, a la derecha, plano longitudinal radial... 227
CAPÍTULO IV

Figura 4.1. Aproximación a la dinámica evolutiva holocena de la costa y de la Rambla de las Moreras (Ros Sala 2005b. Modificado de Dabrio y Polo 1981).. 244

Figura 4.2. Zona de saladar en el antiguo lagoon interior (Foto: M. S. García).................. 245

Figura 4.3. Proceso de urbanización de la costa: Arriba, vuelo americano de 1956. Abajo, foto aérea actual.. 246

Figura 4.4. Planimetría de la Fase IV con superposición estructural de la instalación metalúrgica Gavilanes II.. 251

Figura 4.5. Horno 1TM (izquierda) y Horno 3TM (derecha) (Fotos: M. M. Ros Sala)..... 256

Figura 4.6. Relación entre el número de taxones y número de fragmentos de la UE 1303 (GV-IV).. 259

Figura 4.7. Curva de porcentajes de la UE 1303 (GV-IV)... 260

Figura 4.8. Relación entre el número de taxones y número de fragmentos de la UE 1724 (GV-IV).. 261

Figura 4.9. Curva de porcentajes de la UE 1724 (GV-IV)... 261

Figura 4.10. Relación entre el número de taxones y número de fragmentos de la UE 2005 (GV-IV).. 262

Figura 4.11. Curva de porcentajes de la UE 2005 (GV-IV)... 262

Figura 4.12. Relación entre el número de taxones y número de fragmentos de la UE 1253 (GV-III).. 263

Figura 4.13. Curva taxonómica de la UE 1253 (GV-III)... 264

Figura 4.14. Relación entre el número de taxones y número de fragmentos de la UE 1709 (GV-III).. 265

Figura 4.15. Curva taxonómica de la UE 1709 (GV-III)... 265

Figura 4.16. Relación entre el número de taxones y número de fragmentos de la UE 1676 (GV-II).. 266

Figura 4.17. Curva taxonómica de la UE 1676 (GV-II)... 266
Figura 4.18. Relación entre el número de taxones y número de fragmentos de la UE 3019 (GV-II).. 267

Figura 4.19. Curva taxonómica de la UE 3019 (GV-II)... 268

Figura 4.20. Edificio 1TSM (Foto: M. M. Ros Sala)... 275

Figura 4.21. Horno de torrefacción 3TSM (Foto: M. M. Ros Sala).. 278

Figura 4.22. Hogar-Ahumadero asociado a la vivienda prehistórica 1TS (Fotos: M. M. Ros Sala).. 279

Figura 4.23. Posible cocina 1723 (Foto: M. M. Ros Sala).. 281

Figura 4.24. Hogar 1307 (Fotos: M. M. Ros Sala).. 283

Figura 4.25. Hogar 1645 (Foto: M. M. Ros Sala)... 283

Figura 4.26. Fosa de inhumación 1547 (Foto: M. M. Ros Sala).. 284

Figura 4.27. Fosa 1736 (Foto: M. M. Ros Sala)... 285

Figura 4.28. Fosa de poste 2024, su relleno es 2025 (Foto: M. M. Ros Sala)......................... 286

Figura 4.29. UE 1597 (Foto: M. M. Ros Sala)... 287

Figura 4.30. UE 1253 (Foto: M. M. Ros Sala)... 292

Figura 4.31. Hogar 1698 (Foto: M. M. Ros Sala)... 294

Figura 4.32. Fosa 1688 (izquierda) y fosa 1691 (derecha) (Fotos: M. M. Ros Sala)................. 296

Figura 4.33. Histograma de porcentajes que muestra la comparativa taxonómica entre las fosas 1498 y 1688 y el carbón disperso de la fase Gavilanes III.. 297

Figura 4.34. Horno 2TM (Foto: M. M. Ros Sala)... 299

Figura 4.35. Horno 4TM (Foto: M. M. Ros Sala)... 300

Figura 4.36. Parte de la cestería documentada en el interior del Horno 4TM (Foto: M. M. Ros Sala).. 300

Figura 4.37. Hogar 5TS (Foto: M. M. Ros Sala).. 302

Figura 4.38. Hogar 9TS (Foto: M. M. Ros Sala).. 303

Figura 4.39. Situación del hogar 1166 en el plano de la factoría Gavilanes II y foto del hogar (foto: M. M. Ros Sala)... 304

Figura 4.40. Estructura metalúrgica 7TS (Foto: M. M. Ros Sala)... 307

Figura 4.41. Pirámide taxonómica de Punta de los Gavilanes... 312

Figura 4.42. Porcentajes de los distintos componentes ecológicos en las diferentes fases de Punta de los Gavilanes.. 314
Índice de figuras

Figura 4.43. Diagrama antracológico de la Punta de los Gavilanes.. 316
Figura 4.44. Histograma de porcentajes de los hogares domésticos de la fase Gavilanes IV... 323
Figura 4.45. Histograma de porcentajes del hogar 1698... 324
Figura 4.46. Histograma de porcentajes del hogar 1166... 325
Figura 4.47. Histograma de porcentajes de la estructura de cocina 1723 de la fase Gavilanes IV.. 326
Figura 4.48. Histograma de porcentajes del horno de torrefacción 3TSM................................. 326
Figura 4.49. Histograma de porcentajes del ahumadero asociado a la vivienda prehistórica 1TS... 327
Figura 4.50. Histograma de porcentajes de la Estructura Metalúrgica 11TS............................... 329
Figura 4.51. Histograma de porcentajes de los hornos metalúrgicos de la fase GV-II (sin incluir el horno 4TM).. 329
Figura 4.52. Histograma de porcentajes de las estructuras metalúrgicas de la fase Gavilanes I... 330
Figura 4.53. Mapa de vegetación actual del entorno de Mazarrón y radios de distancia con respecto a la Punta de los Gavilanes.. 333
Figura 4.54. Dispersión de los restos en el Edificio 1TSM... 336
Figura 4.55. Histograma de porcentajes comparativo entre el derrumbe del Edificio 1TSM y los valores generales de la fase Gavilanes IV.. 339
Figura 4.56. Planta general del Barranco de la Viuda... 342
Figura 4.57. Planimetría del Departamento 2 con sus principales estructuras asociadas.................. 344
Figura 4.58. Molino 8J36 (Foto: A. J. Medina Ruiz).. 345
Figura 4.59. Horno 7J34 y bandeja 7J32 (Foto: A. J. Medina Ruiz)... 346
Figura 4.60. Leñera o carbonera 7J19 (Foto: A. J. Medina Ruiz).. 346
Figura 4.61. Horno con cubierta móvil (Foto: A. J. Medina Ruiz)... 347
Figura 4.62. Nivel de incendio asociado al Departamento 3 (Foto: A. J. Medina Ruiz)... 349
Figura 4.63. Relación entre el número de fragmentos y número de taxones de la UE 7J62... 355
Figura 4.64. Curva de porcentajes UE 7J62... 355
Figura 4.65. Relación entre el número de fragmentos y número de taxones de la UE 7J70... 356
Recursos forestales en un medio semiárido.
Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

Figura 4.66. Curva de porcentajes UE 7J70... 357
Figura 4.67. Relación entre el número de fragmentos y número de taxones de la UE 8J60... 358
Figura 4.68. Curva de porcentajes 8J60.. 358
Figura 4.69. Histograma de valores relativos del carbón disperso asociado al Departamento 2... 382
Figura 4.70. Yacimientos prehistóricos con presencia de Tetraclinis articulata en el Sureste peninsular.. 386
Figura 4.71. *Buprestis novemmaculata* sobre *Pinus halepensis* (Fuente: www.romascuola.net) y Pupa de insecto de la familia Cerambycidae, en *Pinus nigra* (Fuente: www.forestryimages.org)... 390
Figura 4.72. Galerías producidas por larvas de insectos de la familia Cerambycidae, sobre *Pinus sylvestris* (Fuente: www.invasive.org), y galería en un carbón de Barranco de la Viuda... 391
Figura 4.73. Histograma de porcentajes de la E.C. 7J31... 392
Figura 4.74. Histograma de porcentajes de la E.C. 6H15... 392
Figura 4.75. Comparación taxonómica en porcentajes del horno de torrefacción con su nivel de uso asociado... 394
Figura 4.76. Representación porcentual de los taxones aparecidos en el nivel de uso del horno con cubierta móvil.. 395
Figura 4.77. Histograma comparativo de porcentajes de los ceniceros 7J35 y 7J61............ 397
Figura 4.78. Histograma en valores absolutos del carbón asociado a la fosa y a la urna de enterramiento del Departamento 4... 399
Figura 4.79. Poste 6J16 de *Pistacia lentiscus* (Foto: A. J. Medina Ruiz)....................... 401
Figura 4.80. Histograma en valores porcentuales del contexto de incendio del Departamento 3... 404
Figura 4.81. Plano del Balneario de Archena en sus diferentes fases de ocupación y planimetría de la zona de servicios excavada... 406
Figura 4.82. Horno de teja y ladrillo (Foto: G. Matilla Séiquer)... 407
Figura 4.83. Prensa de la almazara. (Fotos: G. Matilla Séiquer, modificadas)............... 408
Figura 4.84. Muro perimetral con malecón de refuerzo (Foto: G. Matilla Séiquer)........... 409
Figura 4.85. Relación entre el número de taxones y número de fragmentos en el contexto de vertedero.. 413
Figura 4.86. Curva de porcentajes del contexto del vertedero.. 414
Figura 4.87. Comparativa entre las diferentes causas de indeterminación del carbón....... 421

Figura 4.88. Histograma de porcentajes del carbón disperso.. 423

Figura 4.89. Varios ejemplares de *Pinus halepensis* junto al Balneario de Archena (Foto: M.S. García)... 425

Figura 4.90. Representación de granadas en el yacimiento romano de La Quintilla, según García Sandoval y Plaza Santiago (2003), modificado.. 428

Figura 4.91. Hipótesis de catena de zonación transversal de las especies de bosque galería en el Balneario Romano de Archena durante el siglo I d.C. (FA: *Fraxinus* sp.; MM: Matorral mediterráneo; NO: *Nerium oleander*; P: *Populus* sp.; PH: *Pinus halepensis*; Ph: *Phragmites australis*; S: *Salix* sp.; T: *Tamarix* sp.; UM: *Ulmus* sp.)........ 430

Figura 4.92. Distribución actual de *Fagus sylvatica* en Europa y la Península Ibérica. Abajo, simulación de su distribución hace 6000 años basada en el modelo de parámetros climáticos GEN2 AGCM, según Giesecke *et al.* (2007), modificado................................. 432

Figura 4.94. Histograma en valores relativos de las estructuras de combustión.................. 436

Figura 4.95. Comparación, en valores absolutos, entre la vegetación mediterránea y de ribera en las diferentes estructuras de combustión analizadas... 438

Figura 4.96. Imagen del Teatro Romano de Cartagena antes de su restauración (Ramallo Asensio 2007).. 441

Figura 4.97. Sondeos realizados en 1990 en relación con la planta del teatro (modificado de Ramallo Asensio 2007)... 442

Figura 4.98. Localización de las muestras estudiadas sobre la restitución hipotética de la planta del Teatro Romano de Cartagena (modificado de Ramallo Asensio y Ruiz Valderrama 2006).. 445

Figura 4.99. Astillas carbonizadas de la UE 5688 (Foto: M. S. García).............................. 446

Figura 4.100. Distribución europea del género *Abies* desde hace 6000 años, según Huntley y Prentice (1993)... 451

Figura 4.101. Situación del yacimiento en el plano de Jumilla.. 453

Figura 4.102. Cementerio islámico o *Maqbara* (Foto: J. A. Ramírez).................................. 454

Figura 4.103. Casa islámica (Foto: J. A. Ramírez).. 455

Figura 4.104. Instalación industrial y estructuras de combustión estudiadas (Foto J.A. Ramírez, modificada)... 457
Recursos forestales en un medio semiárido.

Nuevos datos antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medieval

Figura 4.105. Relación entre el número de taxones y el número de fragmentos en el carbón disperso de Jumilla Santa María 19. (Niveles islámicos).. 461

Figura 4.106. Curva de porcentajes de *Pinus halepensis* en los niveles islámicos de Jumilla Santa María 19.. 462

Figura 4.107. Relación entre el número de taxones y el número de fragmentos en el carbón disperso de Jumilla Santa María 19. (Niveles cristianos –UE 2032-).. 463

Figura 4.108. Curva de porcentajes de *Labiatae + Rosmarinus officinalis*, Leguminosae y Monocotyledoneae de los niveles cristianos de Jumilla Santa María 19... 463

Figura 4.109. Histograma antracológico de valores relativos del carbón disperso de Jumilla Santa María 19.. 475

Figura 4.110. Imagen del pinar de pino carrasco acompañado de esparto en la sierra de Santa Ana, a unos 5 km del yacimiento (FOTO: M. S. García)... 476

Figura 4.111. Comparación taxonómica entre los hogares domésticos.. 478

Figura 4.112. Comparación taxonómica entre los braseros... 479

Figura 4.113. Comparación taxonómica entre los dos hornos... 481

Figura 4.114. Poder Calorífico Superior de algunas especies que pudieron encontrarse en el entorno del yacimiento (según los valores aportados por Elvira y Hernando 1989 y Théry-Parisot 2001).. 486

Figura 4.115. Comparación taxonómica (en porcentajes) entre el carbón disperso y concentrado... 488

CAPÍTULO V

Figura 5.1. Cronología de los yacimientos estudiados... 494

Figura 5.2. Situación de las secuencias citadas en el texto... 498

Figura 5.3. Diagrama antracológico de la Cova de l’Or (redibujado de Badal et al. 1994)... 501

Figura 5.4. Diagrama antracológico de la Cova de les Cendres (redibujado de Badal et al. 1994)... 502

Figura 5.5. Diagrama antracológico del Abric de la Falguera (Carrión Marco et al. 2006)... 504

Figura 5.6. Diagrama polínico sintético de Navarrés (redibujado de Carrión y Van Geel 1999)... 507

Figura 5.7. Diagrama polínico sintético de Padul (redibujado a partir de Pons y Reille 1988)... 510

Figura 5.8. Diagrama polínico sintético de la Cueva de la Carihuela (redibujado de Fernández et al. 2007)... 511
Índice de figuras

Figura 5.9. Diagrama polínico de Salines (redibujado de Giralt et al. 1999)............................ 514
Figura 5.10. Diagrama polínico de Fondó d’Elx (redibujado de Burjachs et al. 1997)............. 515
Figura 5.11. Diagrama polínico del testigo CC-17 de La Mancha Plain (redibujado de Dorado Valiño et al. 2002)... 519
Figura 5.12. Diagrama sintético de la Sierra de Baza (Carrión et al. 2007)............................. 521
Figura 5.13. Diagrama polínico de la Sierra de Gádor (redibujado de Carrión et al. 2003).. 522
Figura 5.14. Diagrama polínico de Carril de Caldereros (Fuentes et al. 2005).................... 526
Figura 5.15. Diagrama polínico del Cerro del Alcázar de Baeza (redibujado de Fuentes et al. 2007).. 527
Figura 5.16. Diagrama polínico sintético de San Rafael (redibujado de Pantaleón-Cano et al. 2003)... 529
Figura 5.17. Diagrama polínico sintético de Antas (redibujado de Pantaleón-Cano et al. 2003).. 529
Figura 5.18. Diagrama polínico sintético de Roquetas de Mar (redibujado de Pantaleón-Cano et al. 2003).. 530
Figura 5.19. Diagrama antracológico de Los Millares (Rodríguez-Ariza 1992a).................... 530
Figura 5.20. Diagrama antracológico de los yacimientos calcolíticos del Bajo Almanzora (redibujado de Rodríguez Ariza 2000a)... 532
Figura 5.21. Diagrama polínico de Villaverde (Carrión et al. 2001a)...................................... 537
Figura 5.22. Diagrama polínico de la Laguna de Siles (redibujado de Carrión 2002)......... 538
Figura 5.23. Diagrama polínico de El Sabinar (redibujado de Carrión et al. 2004)............... 539
Figura 5.24. Diagrama polínico de Cañada de la Cruz (redibujado de Carrión et al. 2001b)... 540
Figura 5.25. Diagrama antracológico de Valentia (Grau 1990b)... 545
Figura 5.26. Diagrama polínico de la Laguna de Zóñar (Valero Garcés et al. 2006)........... 549
Figura 5.27. Leyenda de porcentajes aplicable a las tablas 5.1, 5.2 y 5.3............................... 552
Figura 5.28. Histograma de porcentajes globales de los yacimientos estudiados............... 570
Figura 5.29. Recreación del alzado de una cabaña de Castellón Alto (Galera, Granada), con postes y vigas de Pinus halepensis (Rodríguez Ariza y Guillén Ruiz 2007, p. 57)..... 577
ÍNDICE DE TABLAS

CAPÍTULO II

Tabla 2.1. Parámetros bioclimáticos de los pisos de vegetación mediterráneas, según Rivas-Martínez (1987). T= temperatura media anual, m= media de las mínimas del mes más frío, M= media de las máximas del mes más frío, tm= temperatura media del mes más frío, It= índice de termicidad [10(T+m+M)], H= meses afectados por las heladas (siendo I enero, II febrero…XII diciembre).. 73

Tabla 2.2. Parámetros ombroclimáticos de la Región Mediterránea, según Rivas Martínez (1987).. 74

Tabla 2.3. Influencia de la humedad sobre la combustión, según Reina Hernández (2001).. 111

Tabla 2.4. Poder calorífico de especies mediterráneas, según Elvira y Hernando (1989).. 112

Tabla 2.6. Clasificación de especies mediterráneas según su inflamabilidad, a partir de Elvira y Hernando (1989), y Dimitrakopoulos y Papaioannou (2001) –especies en color morado–... 114

Tabla 2.7. Factores que rigen las propiedades combustibles de la madera, según Théry-Parisot (2001), traducido y modificado... 115

CAPÍTULO III

Tabla 3.1. Composición elemental y producción de carbón de madera en función de la temperatura de carbonización, según Reina Hernández (2001).............................. 132

Tabla 3.2. Distribución de los taxones identificados en los yacimientos estudiados en esta tesis.. 232

Tabla 3.3. Aparición de los taxones identificados en este trabajo en otros análisis antracológicos de yacimientos de la Edad del Bronce del cuadrante sureste peninsular. 235

Tabla 3.4. Aparición de los taxones identificados en este trabajo en otros análisis antracológicos de yacimientos desde la Protohistoria hasta época medieval en el cuadrante sureste peninsular... 236

CAPÍTULO IV

Tabla 4.1. Resultados antracológicos de la fase Gavilanes IV (1ª parte)......................... 270

Tabla 4.2. Resultados antracológicos de la fase Gavilanes IV (continuación)............... 271
Índice de tablas

Tabla 4.3. Resultados antracológicos de la fase Gavilanes IV (resultados globales).............. 272
Tabla 4.4. Resultados antracológicos asociados al derrumbe del Edificio 1TSM (1ª parte)... 273
Tabla 4.5. Resultados antracológicos asociados al derrumbe del Edificio 1TSM (2ª parte).. 273
Tabla 4.6. Resultados antracológicos asociados al derrumbe del Edificio 1TSM (resultados globales).. 274
Tabla 4.7. Resultados antracológicos asociados al nivel de abandono del Edificio 1TSM.. 276
Tabla 4.8. Resultados antracológicos asociados al Edificio 2TSM.. 276
Tabla 4.9. Resultados antracológicos asociados al Horno 3TSM.. 278
Tabla 4.10. Resultados antracológicos de la estructura ahumadero asociada a la vivienda 1TS.. 280
Tabla 4.11. Resultados antracológicos asociados a la estructura de combustión 1723........ 281
Tabla 4.12. Resultados antracológicos de las EE.CC. domésticas asociadas a GV-IV........... 282
Tabla 4.13. Resultados antracológicos asociados a la fosa de inhumación 1547.................... 284
Tabla 4.14. Resultados antracológicos del relleno de fosa 1736... 285
Tabla 4.15. Resultados antracológicos de los rellenos de fosas-poste asociados a las viviendas prehistóricas 1TS y 2TS.. 287
Tabla 4.16. Restos de elementos constructivos asociados al Edificio 1TSM......................... 288
Tabla 4.17. Resultados antracológicos de la fase Gavilanes III... 293
Tabla 4.18. Resultados antracológicos asociados a la estructura metalúrgica 11TS............ 294
Tabla 4.19. Resultados antracológicos asociados al hogar 1698.. 295
Tabla 4.20. Resultados antracológicos de las fosas asociadas a la fase Gavilanes III............ 297
Tabla 4.21. Resultados antracológicos asociados a la fase Gavilanes II................................ 298
Tabla 4.22. Resultados antracológicos asociados al Horno 2TM.. 299
Tabla 4.23. Resultados antracológicos asociados al Horno 4TM.. 301
Tabla 4.24. Resultados antracológicos asociados al horno 5TS... 301
Tabla 4.25. Resultados antracológicos asociados al horno 9TS... 303
Tabla 4.26. Resultados antracológicos asociados al hogar 1166... 305
Tabla 4.27. Resultados antracológicos asociados a la fase Gavilanes I.. 306
Tabla 4.28. Resultados antracológicos asociados a la estructura metalúrgica 6TS.............. 306
Tabla 4.29. Resultados antracológicos asociados a la estructura metalúrgica 7TS............ 307
Tabla 4.30. Resultados antracológicos asociados a la estructura metalúrgica 8TS............ 308
Tabla 4.31. Dispersión taxonómica de los restos entre las diferentes fases de la Punta de los Gavilanes.. 309
Tabla 4.32. Muestras antracológicas estudiadas.. 351
Tabla 4.33. Resultados antracológicos del Departamento 1.. 360
Tabla 4.34. Resultados antracológicos del Departamento 2. Cuadrícula 7J......................... 361
Tabla 4.35. Resultados antracológicos del Departamento 2. Cuadrícula 8J......................... 362
Tabla 4.36. Resultados antracológicos del Departamento 2. Cuadrículas 7J y 8J............. 363
Tabla 4.37. Resultados antracológicos de la zona exterior del Departamento 2.................. 364
Tabla 4.38. Resultados antracológicos del nivel de uso del Horno de cubierta móvil.... 365
Tabla 4.39. Resultados antracológicos del interior del horno de torrefacción...................... 366
Tabla 4.40. Resultados antracológicos del nivel de uso asociado al horno de torrefacción... 366
Tabla 4.41. Resultados antracológicos de la leñera o carbonera asociada al horno de torrefacción... 367
Tabla 4.42. Resultados antracológicos de la acumulación carbonosa 7J35......................... 367
Tabla 4.43. Resultados antracológicos de la vasija 7J61.. 368
Tabla 4.44. Resultados antracológicos de la estructura de combustión 7J31..................... 369
Tabla 4.45. Resultados antracológicos de la madera estructural documentada en el Departamento 2.. 370
Tabla 4.46. Resultados antracológicos de la UE 6H11.. 370
Tabla 4.47. Resultados antracológicos del contexto de incendio 6H, 6I, 6J....................... 371
Tabla 4.48. Resultados antracológicos de la E.C. 6H15.. 372
Tabla 4.49. Resultados antracológicos de la madera estructural documentada en el Departamento 3... 372
Tabla 4.50. Resultados antracológicos asociados al Departamento 4................................. 373
Tabla 4.51. Resultados antracológicos asociados al enterramiento del Departamento 4. 374
Índice de tablas

Tabla 4.52. Dispersión taxonómica en los diferentes departamentos y contextos documentados en Barranco de la Viuda... 376
Tabla 4.53. Causas de indeterminación de los fragmentos.. 379
Tabla 4.54. Identificación taxonómica de los elementos estructurales de Barranco de la Viuda.. 400
Tabla 4.55. Esquema sintético de los momentos de ocupación del Balneario Romano de Archena, según García Martínez y Matilla Séiquer (2008), modificado............ 410
Tabla 4.56. Unidades estratigráficas estudiadas.. 412
Tabla 4.57. Resultados antracológicos del carbón disperso del Balneario Romano de Archena... 416
Tabla 4.58. Presencia-ausencia de los diferentes taxones en el carbón disperso......... 417
Tabla 4.59. Resultados antracológicos de las estructuras de combustión....................... 419
Tabla 4.60. Presencia-ausencia de los diferentes taxones en el carbón concentrado..... 420
Tabla 4.61. Causas de indeterminación de los fragmentos... 421
Tabla 4.62. Resultados antracológicos del Teatro Romano de Cartagena....................... 448
Tabla 4.63. Unidades estratigráficas estudiadas... 459
Tabla 4.64. Valores absolutos y relativos del carbón disperso de Jumilla Santa María 19... 465
Tabla 4.65. Causas de indeterminación del carbón disperso de Jumilla Santa María 19. 466
Tabla 4.66. Presencia-ausencia taxonómica en las diferentes unidades analizadas....... 467
Tabla 4.67. Valores absolutos y relativos del carbón disperso asociado a niveles cristianos... 468
Tabla 4.68. Valores absolutos y porcentuales del carbón estudiado en las estructuras de combustión.. 470
Tabla 4.69. Presencia-ausencia de taxones en las diferentes estructuras estudiadas....... 472
Tabla 4.70. Causas de indeterminación en las estructuras de combustión....................... 473
Tabla 4.71. Comparación de los taxones representados en los hornos y los braseros.... 480

CAPÍTULO V

Tabla 5.1. Recursos leñosos documentados en yacimientos de la Edad del Bronce....... 554
Tabla 5.2. Recursos leñosos documentados en yacimientos protohistóricos, ibéricos y romanos... 556
Tabla 5.3. Recursos leñosos documentados en yacimientos medievales......................... 558

Tabla 5.4. Materiales de construcción en el Sureste de la Península Ibérica.................... 573