Invited Review

Catenins and their associated proteins in colorectal cancer

E.L. Tucker and M. Pignatelli
Department of Pathology and Microbiology, University of Bristol,
School of Medical Sciences, University Walk, Bristol, United Kingdom

Summary. Colorectal cancer is the second most common cause of cancer mortality in the western world. Colorectal cancer has been well studied, and the genetic steps involved in the adenoma to carcinoma sequence have been well elucidated. The first genetic alteration, found in 85% of adenomas, are mutations in the adenomatous polyposis coli (APC) gene. However, the consequences of this and the exact function of APC in the colon is not fully understood. It has been suggested that APC could function through its regulation of β-catenin, an ubiquitous cytoskeletal protein with multiple binding specificities resulting in diverse functions including cell growth, adhesion, and migration. Any change in these associations may play a role in colorectal cancer development and progression.

Key words: Cadherins, APC, EGFR, Cell adhesion, Cell signalling

Catenins – An introduction

The catenins are a family of cytoplasmic proteins that are involved in a number of cellular processes namely adhesion and signal transduction. This multi-gene family comprises of α- (102Kd), β- (92Kd), γ- (Plakoglobin) (83Kd) catenin, and p120(CAS), and are found on chromosomes 5q, 3p and 17q respectively, the chromosomal location of p120 is currently unknown (Peifer et al., 1992; Liu et al., 1997; Reviewed by Smith and Pignatelli, 1997). The catenins have three structurally distinct regions; an amino- and carboxyl-terminal domain, and a hydrophobic region comprising of arm repeats, each consisting of 42 amino acids. The number of these arm repeats vary between the catenins, β- and γ-catenin having 13 arm repeats, whereas p120 has 11 (Reynolds et al., 1994; Ruiz et al., 1996; Troyanovsky et al., 1996; Reviewed by Ilyas and Thomlinson, 1997). β-catenin has been shown to be homologous to the armadillo protein found in Drosophila, suggesting that the catenins have been evolutionarily conserved (Reviewed by Ilyas and Thomlinson, 1997). Of the catenins, y-catenin and β-catenin share the greatest homology, with the y-catenin arm repeat region sharing 85% homology with B-catenin (Troyanovsky et al., 1996).

The catenins are found to associate with a large number of proteins (Fig. 1) namely APC, Cadherins in adhesive junctions, Epidermal growth factor receptor (EGFR), C-erb2, Tyrosine Kinases (v-src) and Phosphatases (Vandate, PTP 1B and PTPα), vinculin, α-actinin, fascin, paxillin, axin, ezrin, GSK-3β and the transcription factors TCF (T cell Factor) and LEF (Leukocyte enhancing factor) (Brady-Kalnoy et al., 1995; Reviewed by Jawhari et al., 1997a; Reviewed by Nakamura, 1997; Reviewed by Yamada and Geiger, 1997; Balsamo et al., 1998; Hiscox et al., 1998; Reviewed by Polakis, 1998).

β-catenin is the most widely studied of the catenins and has been shown to have diverse binding specificities (Fig. 1A) and as a consequence functionality, with it being involved in cell adhesion (Via binding to members of the Cadherin family) (Peifer et al., 1992; Nagafuchi et al., 1994; Reviewed by Jawhari et al., 1997a; Lewis et al., 1997), cell signalling (via the wingless-Wnt pathway (Fig. 1B) and receptor and non-receptor tyrosine kinases (Fig. 1C) (Reviewed by Ilyas and Thomlinson, 1997; Reviewed by Nusse et al., 1997; Muller et al., 1998) and cell motility (B-catenin complexed with APC has been found associated with the microtubule system (Barth et al., 1997a,b). Many of the activities of B-catenin are regulated through the control of these functional complexes (Shibamoto et al., 1995; Reviewed by Ilyas and Thomlinson, 1997).

γ-catenin, like B-catenin has also been shown to associate with APC, E-Cadherin and TCF, via its ARM repeat region (Troyanovsky et al., 1996) and is phosphorylated by both receptor tyrosine kinases and non-receptor tyrosine kinases (Ruiz et al., 1996), but unlike B-catenin, γ-catenin is also found associated with the desmosomal proteins desmoglein and desmocollin.
Catenins and associated proteins in colorectal cancer

Fig. 1A. E-Cadherin forms calcium dependent homotypic interactions with adjacent cells. The cytoplasmic domain of E-Cadherin forms a complex with either β-catenin/α-catenin or γ-catenin/α-catenin, with α-catenin linking it to the actin cytoskeleton by binding to either α-actinin, vinculin or fascin (represented as vinculin in this diagram). (A) This shows the Wnt-1 pathway which leads to the inhibition of GSK-3β. GSK-3β is involved in phosphorylating the catenins which targets them for degradation. Loss of this activity leads to stabilisation and accumulation of the catenins in the cytoplasm. (C) An increase in cytoplasmic catenins results in the binding of β- or γ-catenin with the transcription factors TCF/LEF-1 (in the case of colon), which leads to translocation into the nucleus. (D) In the nucleus this transcription factor complex binds to the DNA resulting in gene expression, one such target is the c-Myc gene. (E) (F) When the catenins are phosphorylated, they undergo ubiquitin dependent proteosomal degradation. Catenins can be phosphorylated by a number of different cellular complexes including c-Src and EGFR. B. Shows the Wnt/Wg signalling pathway (A) Wnt binds to its receptor frizzled which in turn activates Dishevelled (dsh); (B) Activated dsh in turn inhibits GSK-3β thus preventing β- or γ-catenin degradation; (C) This results in an increase in cytoplasmic catenins, which can then bind to the transcription factors TCF/LEF, enter the nucleus and bind to the DNA; (D) This results in enhanced or altered gene expression, the exact target genes have not been well elucidated, but recently it has been shown that c-Myc is one. C. Shows the role of phosphorylation within the cell: (A) APC-Catenin-GSK-3β-Axin are all thought to form a complex resulting in the phosphorylation and subsequent degradation of catenins; (B) v-Src has been shown to phosphorylate β- and α-catenin; (C) TFF3 (Trefoil Factor 3) has been shown to phosphorylate β-catenin and the EGFR; (D) EGFR appears to phosphorylate both β- and γ-catenin, and to interact with β-catenin; (E) HGF-SF has been shown to phosphorylate p120, β-catenin and γ-catenin; (F) Represents the functional disassembly of the E-Cadherin adhesive unit due to phosphorylation of the catenins. b: Beta Catenin; γ: Gamma Catenin; v: Vinculin; α: Alpha Catenin.
Catenins and associated proteins in colorectal cancer

(Ruiz et al., 1996; Troyanovsky et al., 1996).

\(\alpha \)-catenin has also been shown to bind directly to a number of proteins, including \(\gamma \)-catenin and \(\delta \)-catenin, vinculin, \(\alpha \)-actin and \(\nu \)-src. It has also been shown to bind indirectly to E-cadherin via \(\gamma \)-catenin and \(\beta \)-catenin, having an essential role in adhesion (Oyama et al., 1994; Reviewed by Barth et al., 1997b; Reviewed by Hirohashi, 1998). Sequence analysis of cloned \(\alpha \)-catenin has revealed two isoforms of the protein, \(\alpha \)-E which is found in epithelial tissue and \(\alpha \)-N which is found in neuronal tissues (Hirano et al., 1992; Hoschuetzky et al., 1994).

p120 (Cas, cadherin-associated src substrate) was originally identified as one of several substrates of the tyrosine kinase pp60src (Reynolds et al., 1994; Liu et al., 1997). Subsequently it was shown to associate with \(\beta \)-catenin and E-Cadherin (Liu et al., 1997). Unlike \(\beta \) and \(\gamma \)-catenins, p120 has been shown to have at least 4 different isoforms, which appear to be expressed differentially in a variety of cell types (Reynolds et al., 1994).

Catenins in cell adhesion

Cell adhesion to neighboring cells (via cadherin-catenin) and the extracellular matrix (via Integrins) plays an important role in cell motility, growth, differentiation and survival (Watabe et al., 1994; Reviewed by Ben Zeey and Geiger, 1998; Reviewed by Efstathiou and Pignatelli, 1998). Perturbation of any of these interactions results in changes in intercellular adhesion and cell transformation (Vilizzi et al., 1997; Guilford et al., 1998).

The cadherins are a family of transmembrane glycoproteins that mediate calcium dependent adhesion and share common amino acid sequences. They have been divided up into more than 10 subclasses dependent on their tissue distribution, including E-(Epithelial), N-(Neural) and P-cadherin (Gagliardi et al., 1995; Shibazaki et al., 1996; Reviewed by Smith and Pignatelli, 1997). A novel member of the family, Fat, found in Drosophila suggests that cadherins have been evolutionarily conserved (Mahoney et al., 1991).

The E-Cadherin gene (CDH 1), found on chromosome 16q22.1, was first isolated by Berx et al., (1995), and was found to span 100Kb consisting of 16 exons (Berx et al., 1995). E-Cadherin (also known as uvomorulin, L-Cam, Arc 1 and cell-CAM 120/80 (Gagliardi et al., 1995) is found at adherens junctions forming homophilic interactions between cells in epithelial tissues (Gagliardi et al., 1995; Shibazaki et al., 1996; Reviewed by Smith and Pignatelli, 1997). It is linked to the actin cytoskeleton via its interactions with the cytoplasmic proteins the catenins (\(\alpha \), \(\beta \), \(\gamma \)-catenins, p120), \(\alpha \)-actinin and vinculin (Barth et al., 1997a; Hulsken et al., 1994). Changes in the expression levels of catenins and catenins have been shown to affect cell-cell adhesion (Reviewed by Adams and Nelson, 1998), thus suggesting that catenins mediate E-cadherin adhesive functions (Reviewed by Smith and Pignatelli, 1997).

\(\beta \)-catenin has been shown to mediate epithelial cell adhesion by binding to the cytoplasmic domain of E-Cadherin, and then linking E-Cadherin to the actin cytoskeleton by binding to \(\alpha \)-catenin via its amino terminal, or by associating directly with the actin cytoskeleton (Reviewed by Smith and Pignatelli, 1997; Reviewed by Polakis, 1998). This E-cadherin/\(\beta \)-catenin complex has been shown to also interact with the \(\alpha \)-2-integrin, a collagen receptor, an interaction influenced by stimulation with TGF-\(\alpha \) (Transforming growth factor alpha) and hSP (Human spasmytic polypeptide), which alters cell migration and cell matrix adhesion (Jawhari et al., 1997a,b; Reviewed by Pignatelli, 1998). \(\beta \)-catenin is also found in association with APC, where APC together with GSK-3\(\beta \) is thought to regulate \(\beta \)-catenin by controlling its free cytoplasmic levels (Reviewed by Gordon, 1998; Reviewed by Polakis, 1998). E-Cadherin is never found in association with these APC/\(\beta \)-catenin complexes and it has been shown that APC and E-Cadherin both compete for the binding to \(\beta \)-catenin in transient expression assays (Hulsken et al., 1994; Reviewed by Barth et al., 1997b).

\(\gamma \)-catenin has also been shown to bind to E-cadherin at adherens junctions in epithelial cells (Knudsen and Wheelock, 1992; Troyanovsky et al., 1996; Reviewed by Barth et al., 1997b), with evidence pointing to \(\beta \)-catenin and \(\gamma \)-catenin forming mutually exclusive complexes (Nagafuchi et al., 1994; Reviewed by Barth et al., 1997b). The domains of \(\gamma \)-catenin and \(\beta \)-catenin which associate with cadherins and \(\alpha \)-catenin have been mapped. It was found that while the central arm repeats of catenins interact with cadherins, the amino terminal domain, as well as the first arm repeat bind to \(\alpha \)-catenin (Ruiz et al., 1996). Unlike \(\beta \)-catenin, \(\gamma \)-catenin is also found associated with desmosomal cadherins, mainly desmoglein (Dsg) and desmocollin (Dsc) (Troyanovsky et al., 1995; Reviewed by Barth et al., 1997b). In desmosomes, plakoglobin has been shown to specifically interact with Dsg and Dsc, but no association with \(\alpha \)-catenin or p120(Cas) in these complexes have been observed (Troyanovsky et al., 1996). Ruiz et al. (1996) generated a null mutation of the plakoglobin gene in mice to help elucidate the role of plakoglobin in development and consequently cell adhesion. They found that homozygous null mice died between days 12-16 of embryogenesis due to defects in heart function. These defects revealed loss of desmosomal formation, with increased adherens junction formation, thus suggesting that plakoglobin is an essential component of myocardial desmosomes, playing a crucial role in the sorting of desmosomal and adherens junction components, and as a consequence tissue architecture of the heart (Ruiz et al., 1996; Reviewed by Barth et al., 1997b; Lewis et al., 1997). Recent observations of Troyanovsky et al. (1996) suggest that it is the arm repeat region of plakoglobin that mediates these functions. The Arm repeat region was shown to
Catenins and associated proteins in colorectal cancer

comprise of two functionally distinct regions, with the first 5 arm repeats involved in specific binding of E-cadherin and desmoglein, with the remaining 9 arm repeats being involved in targeting plakoglobin/cadherin complexes to junctional structures (Troyanovsky et al., 1996).

α-catenin, an actin bundling protein in vitro, has been shown to be involved in adhesion by linking cadherin to the actin cytoskeleton (Reviewed by Adams and Nelson, 1998; Weiss et al., 1998). Biochemical evidence suggests that α-catenin does not directly associate with cadherins but binds to the cytoplasmic domain of cadherins via β-catenin or γ-catenin, mediating the connection between the cadherin-catenin complex with the actin cytoskeleton (Hoschuetzky et al., 1994; Oyama et al., 1994; Reviewed by EFstathiou and Fagnanelli, 1998; Reviewed by Hirohashi, 1998). Simcha et al. (1998) showed that α-catenin, along with cadherins, were able to sequester β-catenin in the cytoplasm, thus inhibiting its transcriptional activity. Amino acid sequencing revealed that α-catenin is homologous to vinculin, a protein found localised at adherens junctions and focal contacts where it functions as a cytoplasmic anchorage for receptors of extracellular matrix proteins (Nagaiuchi et al., 1994; Reviewed by Shiozaki et al., 1996; Weiss et al., 1998). Adams and Nelson (1998) have thus suggested that vinculin may bind to the Cadherin/β-catenin or Cadherin/γ-catenin complex, thereby compensating for the lack of α-catenin. Furthermore α-catenin has been shown, in association with vinculin, to play a role in the assembly of apical junctional complex in epithelia (Watabe-Uchida et al., 1998).

p120, like β- and γ-catenin, has also been shown to bind directly to E-Cadherin, and is found associated with both the E-Cadherin/β-catenin and the E-Cadherin/γ-Catenin complexes (Reynolds et al., 1994; Jou et al., 1995; Shibamoto et al., 1995; Troyanovsky et al., 1996; Reviewed by Barth et al., 1997b). But unlike β- and γ-catenin p120 does not bind α-catenin (Jou et al., 1995). The binding site of p120 on E-Cadherin, although in close proximity, is distinct from that of its structural homologues β- and γ-catenin (Valizadeh et al., 1997), although other groups have suggested otherwise (Reynolds et al., 1994; Shibamoto et al., 1995). The exact role of p120 cadherin in cell to cell adhesion remains a matter of debate (Reviewed by Adams and Nelson, 1998). Skouby et al. (1996) results suggest that p120 cadherin plays a role in regulating E-Cadherin. Cadherin-p120 complexes may be formed initially to increase the rates of homotypic recognition and binding between cadherin molecules on two adjacent cells (Reviewed by Adams and Nelson, 1998). Subsequently α-catenin, β-catenin and the actin cytoskeleton may associate with and stabilize the cadherin-p120 cluster and, thereby, strengthen the cell-cell adhesion. This interpretation of their results would explain why cells that overexpress cadherin, which have an intact β-catenin binding region, but lacks the p120 binding region, adhere very slowly (Reviewed by Adams and Nelson, 1998). Alternatively as p120 is a major src substrate and is phosphorylated in response to ligand stimulation of receptor tyrosine kinases (Reynolds et al., 1994; Liu et al., 1997; Valizadeh et al., 1997), it may act to mediate the regulation of cadherin adhesion by these signalling pathways (Hoschuetzky et al., 1994; Reynolds et al., 1994; Reviewed by Barth et al., 1997b).

A number of other proteins have been shown to be associated with the E-Cadherin/catenin complex (Liu et al., 1997). Non-receptor and receptor tyrosine kinases, including EGFR, and receptor tyrosine phosphatase, PTPα and PTP 1B, alter the phosphorylation status of components in the cadherin-catenin complex (Hoschuetzky et al., 1994; Brady-Kalnay et al., 1995; Liu et al., 1997; Balsamo et al., 1998; Soler et al., 1998). The phosphorylation of tyrosine residues in the β-catenin protein was observed in mammalian fibroblasts transduced with v-src, where src was shown to accumulate at adherens junctions and increase tyrosine phosphorylation levels (Tsukita et al., 1991). Each of the different kinases/phosphatases have different specificity for cadherin/catenin complex components (Fig. 1C). For example TFF3 (Trofile factor 3) has been shown to cause rapid and specific tyrosine phosphorylation of β-catenin and epidermal growth factor receptor, but not E-Cadherin or α-catenin (Liu et al., 1997; EFstathiou et al., 1998). Hepatocyte growth factor/scatter factor (HGF/SF) has been shown to induce the phosphorylation of p120, β- and γ-catenin (Shibamoto et al., 1995). Hoschuetzky et al. (1994) clearly demonstrated that EGF results in the tyrosine phosphorylation of β- and γ-catenin, whereas with v-src the primary targets are α-, β- catenin and p120(Cas) (Hoschuetzky et al., 1994; Liu et al., 1997; Valizadeh et al., 1997). Hoschuetzky et al. (1994) also demonstrated that this is also cell type specific. The precise biological consequence of this tyrosine phosphorylation of catenins is currently unknown. It has been suggested that it inactivates cadherin-mediated adhesion, this is supported by the fact that phosphorylated β-catenin is exclusively found in detergent soluble fractions, suggesting that tyrosine phosphorylation induces disassembly of the cadherin-catenin complex from the actin filament network, although other explanations are possible (Hoschuetzky et al., 1994; Reviewed by Barth et al., 1997b; Liu et al., 1997). This loss of catenin-mediated adhesion, through tyrosine phosphorylation, resulting in destabilisation of the adherens junctions, was shown to induce cell dispersion/migration (Liu et al., 1997).

Catenins in cell signalling

Studies in Drosophila have revealed the role of the armadillo protein in the wingless-wnt pathway that mediates cell fate determination (Reviewed by Barth et al., 1997b). As β-catenin is highly homologous to the armadillo protein it was proposed that β-catenin would also play a part in the vertebrate wingless-wnt pathway (Reviewed by Ilyas and Thomlinson, 1997; Reviewed by
Catenins and associated proteins in colorectal cancer

Nusse et al., 1997), which subsequently revealed the importance of β-catenin in embryogenesis (Reviewed by Barth et al., 1997b).

Catenins have already been shown to be involved in the tyrosine kinases and phosphatase signalling pathways that regulate cell adhesion (Barth et al., 1997a), with evidence pointing to cellular adhesion itself mediating signalling pathways (Benzéve, 1997). β-catenin was also found to be a major player in the Wnt/wingless signalling pathway. Hinck et al. (1994a,b) showed that Wnt-1 expression resulted in the accumulation of β-catenin and γ-catenin into the cytoplasm, coupled with an increase in cellular adhesion due to the increased stability between the cadherins and catenins (Bradley et al., 1993; Hinck et al., 1994a). An increase in the stability between APC and the catenins has also been observed (Papkoff et al., 1996). The Wnt-1 pathway has been fairly well elucidated and is shown in Fig. 1B, with Cook et al. (1996) using 16T1/2 fibroblasts showing that Wnt acted through the Wingless signalling pathway to inhibit GSK-3. Fig. 1B shows that Wnt-1 binds to its receptor frizzled which in turn activates the vertebrate homologue of dishevelled. Dishevelled is a GSK-3a subunit that negatively regulates β-catenin, when β-catenin levels increase to excess. In Xenopus and Drosophila GSK-3 is downregulated by β-catenin and γ-catenin, through phosphorylation (Rubinfeld et al., 1996; Reviewed by Jankowski et al., 1997; Morin et al., 1997a). Subsequent studies revealed the involvement of GSK-3 in the phosphorylation of both APC (increasing APCs affinity for γ-catenin) and β-catenin (on the N-terminal region) resulting in the increased degradation of β-catenin (Rubinfeld et al., 1996; Reviewed by Moon and Miller, 1997) via the ubiquitin dependent proteosomal pathway (Aberle et al., 1997; Müller et al., 1998). GSK-3 and APC may also regulate β-catenin independently of each other (Reviewed by Moon and Miller, 1997; Sakanaka et al., 1998), or work in a complex which also consists of the Axin (Conductin) molecule (Reviewed by Gordon, 1998; Ikeda et al., 1998). Axin was shown to bind both β-catenin and GSK-3 in colorectal cancer cells that contained mutant APC blocking β-catenin transcription (Sakanaka et al., 1998). Thus inhibition of GSK-3 results in increased stability of β-catenin. This increase in cytoplasmic β-catenin leads to translocation of β-catenin into the nucleus where it associates with the transcription factors LEF and TCF (Behrens et al., 1996; Reviewed by Barth et al., 1997b; Reviewed by Jankowski et al., 1997; Korinek et al., 1997; Morin et al., 1997a; Reviewed by Nusse. 1997; Müller et al., 1998). There is some discrepancy over whether β-catenin enters the nucleus of its own accord (but it is a large molecule with no signal peptide), or more likely whether it associates with Lef or Tcf in the cytoplasm and these molecules carry β-catenin into the nucleus (Behrens et al., 1996).

LEF and TCF are members of the high mobility group sex determining (sry) family of transcription factors, that induce bndes in the DNA helix on binding. These transcription factors, LEF and TCF, by themselves are poor promoters of transcription. However when β-catenin is complexed with these transcription factors the DNA strand produced by these transcription factors (Behrens et al., 1996) is altered, which is thought to enhance and alter gene transcription (Reviewed by Moon and Miller, 1997; Reviewed by Nusse et al., 1997). The target genes of these transcription factors have long been sought, but are thought to be involved in inhibiting apoptosis or promoting cellular proliferation. Recently, He et al. (1998) have shown that one of the target genes of Tcf-4 is c-myc, which is a well known oncogene over expressed in colon cancer. γ-catenin has also been shown to enter the nucleus and interact with these transcription factors, thus suggesting some functional homology between the two proteins, β-catenin and γ-catenin. Simcha et al. (1998) have recently shown that γ-catenin and β-catenin differ in their nuclear translocation and their association with the transcription factor Lef-1. They found that Lef-1 dependent transcription is preferentially driven by β-catenin, with β-catenin binding to Lef-1 in association with vinculin. The β-catenin-Lef complex has also been shown to bind to the 5′ end of E-cadherin gene (Ben-Ze’ve, 1997). Whether tyrosine phosphorylation of β-catenin is involved in the wingless-Wnt signalling pathway has not been clarified (Reviewed by Nakamura, 1997).

Catenins in cancer

Colorectal cancer is the second most common cause of cancer death, causing 17000 deaths in England and Wales alone each year (Dept. of Health, 1998). The development of colorectal cancer has been well studied, and the genetic steps involved in the adenoma to carcinoma sequence have been well elucidated (Fearon and Vogelstein, 1990; White, 1998). The first genetic alteration in the multistep process, in inherited and sporadic tumours, is the loss of APC (Wasan et al., 1998) with 80-85% of adenomas carrying an APC mutation (Reviewed by Nakamura, 1997). The APC gene is located on chromosome 5q21-22 and codes for a 310 Kd protein (Mulkens et al., 1998). APC has been described as a ‘gatekeeper’ gene in that it directly regulates the growth of tumours by inhibiting growth and/or promoting death (Reviewed by Kinzler and Vogelstein, 1996; Reviewed by Barth et al., 1997b; Reviewed by Morin et al., 1997b; Reviewed by Kinzler and Vogelstein, 1998; Mulkens et al., 1998). APC is a cytoplasmic protein with multiple functional domains (Reviewed by Moon and Miller, 1997). Both γ-catenin and β-catenin have been found to directly associate with APC (Rubinfeld et al., 1993; Su et al., 1993; Reviewed Jawhari et al., 1997a), whereas α-catenin indirectly associates with APC via β-catenin (Su et al., 1993). APC is thought to function by controlling the cytoplasmic levels of β-catenin, with it having two β-catenin binding
sites, and in association with GSK-3β and axin, results in β-catenin degradation (Reviewed by Moon and Miller, 1997; Reviewed by Ben Ze-év and Geiger, 1998; Reviewed by Gordon, 1998; Reviewed by Ikeda et al., 1998).

Familial Adenomatous Polyposis (FAP) is an inherited autosomal dominant disease, resulting in the inheritance of a mutant APC gene leading to the early onset of colorectal cancer. FAP has provided a useful model for studying CRC and is characterised by the development of thousands of adenomatous polyps at a young age (Reviewed by Kinzler and Vogelstein, 1996). Stabilisation and accumulation of cytoplasmic β-catenin, which result from mutations in either the APC or β-catenin genes are causatively associated with colon carcinogenesis (Takahashi et al., 1998; Rubinfeld et al., 1996). APC mutations usually involve at least one of the β-catenin binding sites, thus resulting in increased stability of the β-catenin protein (Reviewed by Moon and Miller, 1997). This is shown in cells expressing mutant APC, as they possess an abnormally large pool of monomeric β-catenin (Reviewed by Moon and Miller, 1997). Using immunohistochemical techniques, Hao et al. (1997) showed that in normal tissue β-catenin was found associated with the cell membranes, but in the adenoma and carcinoma tissues there was reduced β-catenin membranous staining which was accompanied with an increase in cytoplasmic and nuclear staining (Hao et al., 1997; Sheng et al., 1998; Takahashi et al., 1998), this was also found to correlate with the progression from adenomas to carcinomas (Takayama et al., 1996; Hao et al., 1997). However, where there are no APC mutations observed, there are a number of other possible candidates which could be involved in colorectal carcinogenesis, namely the catenins.

Takahashi et al. (1998) showed that in AMO (azoxymethane) treated rats there was an increase in both cytoplasmic and nuclear β-catenin. Further analysis of β-catenin revealed that in this model a mutation in the GSK-3β consense motif for β-catenin resulted in its increased stability. There are a number of other possible mutation sites in E-catenin, it has been shown that in epithelial cells β-catenin may undergo tyrosine phosphorylation due to a mutation in the coding sequences of the serine residues (Reviewed by Jankowski et al., 1997). Amino terminal deletion in β-catenin also results in the stabilisation of the protein along with hyperphosphorylation of APC (Munemitsu et al., 1996). Alterations in cell signalling, as in inappropriate Wnt-1 signalling, can also result in increased free cytoplasmic β-catenin (Hinck et al., 1994). As mentioned previously an increase of free β-catenin results in increased and inappropriate transcription of hLEF-1 and hTCF-4 (Reviewed by Moon and Miller, 1997), which has recently been shown by He et al. (1998), to result in c-Myc expression, thus leading to a possible understanding of why c-Myc is overexpressed in colorectal tumours. Tcf-4 has also recently been shown to maintain the crypt stem cells of the small intestine, suggesting that when ACF or β-catenin are mutated in human epithelial cells, these cells may retain stem cell characteristics thus resulting in malignant transformation (Korinek et al., 1998). γ-catenin has also been shown to associate with APC, Tcf and Lef and also to enter the nucleus, suggesting there may be further functional homology. Mutations in APC and β-catenin are thought not to be the only reasons for loss of the regulation of β-catenin levels. Recent data have also revealed a number of other complexes involved in β-catenin degradation, namely Axin which is thought to form a complex with APC and GSK-3β leading to phosphorylation and subsequent β-catenin degradation (Reviewed by Gordon, 1998; Ikeda et al., 1998), thus potentially mutations in Axin could also play a role in the fundamental disruption of this multiprotein complex (Reviewed by Gordon, 1998; Reviewed by Pennisi, 1998). Mutations in GSK-3β could also be a significant factor, suggested by the fact that mutations in the GSK-3β consensus sequence of β-catenin has been shown to result in its increased stability and increased activity (Reviewed by Moon and Miller, 1997; Takahashi et al., 1998). A further possible candidate is the ubiquitin dependent proteosomal degradation (Aberle et al., 1997), any abnormality in the proteins involved in this pathway could also have a significant effect on β-catenin degradation, and function.

As early as 1989, Behrens et al. suggested that the loss of adhesive function of uvomorulin (E-Cadherin) was a critical step in the promotion of the malignant phenotype of epithelial cells. This is coupled with the emerging concept that this loss of adhesion leads to an increase in genomic instability, thus increasing the risk of further mutations (Tisty, 1998). E-Cadherin is essential for the formation and maintenance of epithelia, and any perturbation of the adhesive complex, i.e. any mutation in any of the components results in a disruption in E-Cadherin function leading to increased invasiveness and decreased differentiation (Reviewed by Barth et al., 1997a,b; Reviewed by Xankowski et al., 1997; Guilford et al., 1998). Loss of E-Cadherin mediated adhesion appears to be a fundamental aspect of the neoplastic process (Jawhari et al., 1997). Mutations in E-cadherin itself, β-catenin, α-catenin and γ-catenin have all been shown to result in the perturbation of cellular adhesion (Gagliardi et al., 1995). In vitro non invasive, differentiated cell lines tend to express E-cadherin, whereas the invasive, undifferentiated cell lines had reduced E-cadherin expression, suggesting that E-cadherin is an invasion suppressor molecule (Frixen et al., 1991). Gagliardi et al. (1995) used immunohistochemical techniques to evaluate the expression of E-cadherin in normal and cancersous tissues. They found that in normal colorectal epithelial cells there was typical membranous staining at the adherens junctions. But in the adenoma and carcinoma tissues there were changes in the immuno-reactivity and cellular localisation, and these changes correlated with tumour size, tumor type, growth patterns and degree of dysplasia (Dorudi et al.,
Table 1. Examples of genetic and epigenetic changes in catenin-associated proteins in colorectal cancer.

<table>
<thead>
<tr>
<th>MOLECULE</th>
<th>MUTATION TYPE</th>
<th>MUTATION</th>
<th>CODON</th>
<th>PHENOTYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>APC</td>
<td>Deletion</td>
<td>AA</td>
<td>MCR 1310</td>
<td>Truncated protein, Moderate dysplasia, Tubular adenoma (Mulkens et al., 1998)</td>
</tr>
<tr>
<td>APC</td>
<td>Missense</td>
<td>AAA>TAA</td>
<td>MCR 1370</td>
<td>Truncated protein, Moderate dysplasia, Tubular adenoma (Mulkens et al., 1998)</td>
</tr>
<tr>
<td>APC</td>
<td>Insertion</td>
<td>A</td>
<td>MCR 1384</td>
<td>Truncated protein, Moderate dysplasia, Tubulovillous adenoma (Mulkens et al., 1998)</td>
</tr>
<tr>
<td>APC</td>
<td>Deletion</td>
<td>G</td>
<td>1399</td>
<td>Found in 2/84 ACF (Otori et al., 1998)</td>
</tr>
<tr>
<td>APC</td>
<td>Missense</td>
<td>Gln→Stop</td>
<td>1338</td>
<td>Most common mutation found resulting in a truncated protein (Smith and Pignatelli, 1997)</td>
</tr>
<tr>
<td>APC</td>
<td>Deletion</td>
<td>5bp</td>
<td>1309</td>
<td>Germline mutation found (Müller et al., 1998)</td>
</tr>
<tr>
<td>β-catenin</td>
<td>G:C to A:T</td>
<td>GGA→GAA</td>
<td>234-760</td>
<td>Found in GSK-3β consensus motif (Takahashi et al., 1998)</td>
</tr>
<tr>
<td>β-catenin</td>
<td>Deletion</td>
<td></td>
<td>1309</td>
<td>Stabilization of β-catenin protein, found in 7/222 patients with CRC (Iwao et al., 1998)</td>
</tr>
<tr>
<td>β-catenin</td>
<td>Deletion</td>
<td>3bp</td>
<td>codon 45</td>
<td>Stabilised protein, found in the RER+ cell line HCT116 (Ilyas et al., 1997; Müller et al., 1998)</td>
</tr>
<tr>
<td>β-catenin</td>
<td>Missense</td>
<td></td>
<td></td>
<td>Stabilised protein, found in RER+ cell line SW48 (Ilyas et al., 1997; Müller et al., 1998)</td>
</tr>
<tr>
<td>E-cadherin</td>
<td>Point Mutation or Intestinal deletion</td>
<td>Promoter region</td>
<td>Intron 1?</td>
<td>Loss of phosphorylation sites (Polakis, 1998)</td>
</tr>
<tr>
<td>E-cadherin</td>
<td>Methylation</td>
<td></td>
<td></td>
<td>Only been found in breast and gynaecological cancers (Yoshiura et al., 1995)</td>
</tr>
<tr>
<td>E-cadherin</td>
<td>Phosphorylation</td>
<td></td>
<td></td>
<td>Post translational modification, resulting in non-functional E-cadherin (Jawahari et al., 1997a,b)</td>
</tr>
<tr>
<td>E-cadherin</td>
<td>Missense</td>
<td>G→T</td>
<td>Exon 7</td>
<td>Found as a germline mutation in gastric carcinomas (Guilford et al., 1998)</td>
</tr>
<tr>
<td>Catenins β and γ</td>
<td>Tyrosine Phosphorylation</td>
<td></td>
<td></td>
<td>Reduced cellular adhesion, resulting in increased invasion, with decreased differentiation.</td>
</tr>
</tbody>
</table>

MCR: Mutational Cluster Region; ACF: Aberrant Crypt Foci; RER+: Replication Error Positive.

1993; Gagliardi et al., 1995). It has been suggested that loss of E-cadherin mediated cell-cell adhesion could allow cells to escape normal growth control signals resulting in cellular proliferation. Alternatively Guilford suggests that the cytoplasmic domain of E-cadherin may modulate the Wnt signalling pathway by inhibiting the availability of free β-catenin, similarly to APC (Guilford et al., 1998).

It has also been shown that there is an increase in the activation of several receptor tyrosine kinases, i.e. EGFR and c-MET in cancer cells, resulting in tyrosine phosphorylation of the catenin molecules, thus disrupting cellular adhesion (Behrens et al., 1993; Reviewed by Jankowski et al., 1997). The activation of the tyrosine kinase Src has also been shown to be an early event in colorectal cancer, resulting in enhanced anchorage independence, although this is thought not to be cadherin mediated (Pories et al., 1998). Other mechanisms of E-Cadherin inactivation have also been described by Yoshiura et al. (1995) who showed that methylation on CpG islands near the promoter region also inactivated E-Cadherin at least in ovarian, breast and prostate carcinomas.

Shiozaki et al. (1994) looked at whether the possible down regulation of α-catenin expression played a role in tumour invasion and metastasis through E-Cadherin dysfunction. They found that normal epithelium expressed α-catenin strongly, without exception. However, α-catenin was reduced or absent in a number of primary tumours of the esophagus, stomach and colon, thus suggesting that E-Cadherin mediated adhesion may be abrogated by downregulation of α-catenin (Shiozaki et al., 1994). Skoudy et al. (1996) also reported altered α-catenin expression in colorectal cancer.

Skoudy et al. (1996) demonstrated that in the normal colon, p120-catenin was present in the crypt and surface epithelium, the cells showed reactivity in both the membrane and cytosol, with Valizadeh et al. (1997) showing that the staining intensity was greatest in the proliferating crypt cells. Reduced expression of p120 was observed in 20% of adenomatous polyps, with loss of membranous p120 expression correlating with reduced E-Cadherin expression. Decreased expression of p120 was also found to correlate with the larger size tumour (Skoudy et al., 1996). These findings are difficult to explain as the physiological role of p120 is unknown, but Skoudy et al. (1996) results suggest that changes in p120 catenin levels are a common event in colorectal tumours, and suggest that
the distribution of this protein and E-cadherin is coordinately regulated.

Conclusion

The catenins have been shown to associate with a large number of different proteins which direct their function within the cell. Any perturbation in these associations could potentially lead to cancer development. The importance of catenins in cellular function has been shown to be at the level of cell growth, adhesion and signalling, with APC playing a fundamental role in regulating catenin levels. Changes in cellular expression of the catenins, largely a reduction in membranous staining associated with increased cytoplasmic and nuclear staining, suggests that they play a fundamental role in cancer development. The abrogation of catenin function has been shown to be through a number of genetic and epigenetic factors, with changes also occurring in the catenin associated proteins. For example it is well established that most mutations involving APC result in a truncated protein which can no longer degrade β-catenin, thus resulting in increased cytoplasmic β-catenin which is free to bind the transcription factors altering gene expression. Table 1 gives examples of those mutations and epigenetic factors that contribute to the development of colorectal cancer. This table shows that the characterisation of mutations (outside of APC) are not well defined and are relatively rare. These factors all suggest that loss of catenin function either directly or indirectly can result in cancer development. Thus it will be interesting to elucidate the exact role of catenins and associated proteins in cancer, especially whether an excess of β-catenin protein in association with Tcf may result in the regulation not only of c-Myc, but of other oncogenes overexpressed in colorectal cancer.

References

Hao X., Tomlinson I., Ilyas M., Palazzo J.P. and Talbot I.C. (1997). Reciprocity between membranous and nuclear expression of β-
Catenins and associated proteins in colorectal cancer

catenin in colorectal tumours. Virchows Arch. 431, 167-172.
He T-C., Sparks A.B., Rago C., Hermeking H., Zawel L., da Costa L.T.,
adhesion in mammalian cells by stabilizing -catenin binding to the
Hirano S., Kimoto N., Shimoyama Y., Hirohashi S. and Takeichi M.
(1992). Identification of a neural -catenin as a key regulator of
 cadherin function and multicellular organization. Cell 70, 293-301.
adhesion and motility and associates with intercellular junctional proteins
in cancer cells. BACR Conference proceedings.
interaction of the cadherin-catenin complex with epidermal
Hulsken J., Birchmeier W. and Behrens J. (1994). E-Cadherin and APC
 compete for the interaction with -catenin and the cytoskeleton. J.
 Cell Biol. 127, 2061-2069.
Iked a S., Kishida S., Yamamoto H., Murai H., Koyama S. and Kikuchi A.
(1998). Axin, a negative regulator of the Wnt signalling pathway,
forms a complex with GSK-3 and -catenin and promotes GSK-3-dependent
phosphorylation of -catenin. EMBO J. 17, 1371-1384.
Ilyas M. and Tomlinson I.P.M. (1997). The interactions of APC,
 E-cadherin and -catenin in tumour development and progression.
 J. Pathol. 182, 128-137.
Ilyas M., Tomlinson I.P.M., Rowan A., Pignatelli M. and Bodmer W.F.
 (1997). -catenin mutations in cell lines established from human
Iwao K., Nakamori S., Kameyama M., Inaka S., Kinosita M., Fukui T.,
 -catenin gene by interstitial deletion involving exon 3 in primary
 colorectal carcinomas without adenomatous polyposis coli
 mutations. Cancer Res. 58, 11021-11026.
Jankowski J.A., Bruton R., Shepherd N., Scott D. and Sanders A.
 (1997). Cadiherin and catenin biology represents a global
Pathol. 50, 299-290.
E-Cadherin-catenin complex in the maintenance of intestinal
epithelial homeostasis: more than intercellular glue? Gut 41, 581-
584.
evidence of cross talk between the E-cadherin-catenin complex and
 -integrin: an interaction influenced by transforming growth factor-
 and the trefoil peptide hSIP. Gut 41, A27.
Genetic and biochemical dissection of protein linkages in the
 cadherin-catenin complex. Proc. Natl. Acad. Sci. USA 92, 5067-
5071.
 colorectal cancer. Cell 87, 159-170.
Science 280, 1036-1037.
Knudsen K. and Wheelock M.J. (1992). Plakoglobin, or a 83-kD
 homologue distinct from -Catennin, interacts with -catenin and N-
Korinrin V., Barker N., Morin P.J., van Wichen R., de Weger R., Kinzler
activation by a -catenin-Tcf complex in APC /- colon carcinoma.
Science 275, 1784-1787.
Korinrin V., Barker N., Moerer P., van Donselaar E., Huls G., Peters P.J.
Lewis J.E., Wahl III J.K., Sass K.M., Jensen P.J., Johnson K.R. and
Wheelock M.J. (1997). Cross talk between adherens junctions and
Liu D., El-Hariri I., Karagiannakis A.J., Wilding J., Chinery R., Kmiet W.,
of -catenin and epidermal growth factor receptor by intestinal trefoil
factor. Lab. Invest. 77, 557-563.
Mahoney P.A., Weber U., Onorechuk P., Biessmann H., Bryant P.J.,
and Goodman C.S. (1991). The fat tumour suppressor gene in
drosophila encodes a novel member of the cadherin gene
in development and cancer. Trends Genet. 13, 256-258.
Morin P.J., Sparks A.B., Korinrin V., Barker N., Clevers H., Vogelstein B.
colon cancer by mutations in -catenin or APC. Science 275, 1787-
1790.
Morin P.J., Sparks A.B., Korinrin V., Barker N., Clevers H., Vogelstein B.
and Kinzler K.W. (1997b). The G-takekeeper has many keys:
dissecting the function of the APC gene. Gastroenterology 113,
2009-2012.
mutations in human colorectal adenomas: analysis of the mutation
cluster region with temperature gradient gel electrophoresis and
cincopathologicael features. J. Pathol. 185, 380-385.
 -catenin mutation in a sporadic colorectal tumour of the RER
phenotype and absence of -catenin germline mutations in FAP
an amino-terminal sequence stabilizes -catenin in vivo and
promotes hyperphosphorylation of the adenomatous polyposis coli
Nagafuchi A., Ishihara S. and Tsukita S. (1994). The roles of catenins in
the Cadherin-mediated cell adhesion: functional analysis of E-
500.
Otori K., Konishi M., Sugiyama K., Hasebe T., Shimoda T., Kikuchi-
Yanoshita R., Mukai K., Fukushima S., Miyaki M. and Esumi H.
(1998). Infrave somatic mutation of the adenomatous polyposis
coli gene in aberrant crypt foci of human colom tumor. Cancer 83,
996-990.
Oyama T., Kanai Y., Ochiai A., Akimomo S., Oda T., Yangahikara K.,
Nagafuchi A., Tsukita S., Shibamoto S., Ito F., Takeichi M., Matsuda
H. and Hiroashi S. (1994). A truncated -catenin disrupts the
interaction between E-cadherin and -catenin: A cause of loss of
intercellular A adhesiveness in human cancer cell lines. Cancer Res.
54, 6282-6287.
Catenins and associated proteins in colorectal cancer

Accepted July 16, 1999