Publication:
Application of YOLOv8 and a model based on vision transformers and UNet for LVNC diagnosis: advantages and limitations

dc.contributor.authorDe Haro, Salvador
dc.contributor.authorGonzález Férez, Pilar
dc.contributor.authorGarcía, José M.
dc.contributor.authorBernabé García, Gregorio
dc.contributor.departmentIngeniería y Tecnología de Computadoreses
dc.date.accessioned2025-05-14T08:59:54Z
dc.date.available2025-05-14T08:59:54Z
dc.date.issued2025-04-25
dc.description© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG.
dc.description.abstractHypertrabeculation or left ventricular non-compaction (LVNC) is a cardiac condition that has recently been recognized. While several methods exist for accurately measuring the trabeculae in the ventricle, there is still no consensus within the medical community regarding the optimal approach. In previous work, we introduced DL-LVTQ, a tool based on a UNet convolutional neural network designed to quantify the trabeculae in the left ventricle. In this paper, we present an expanded dataset that includes new patients affected by a cardiomyopathy known as Titin, necessitating the retraining of the models involved in our study on this updated dataset to accurately infer future patients with this condition. We also introduce ViTUNet, a hybrid architecture that aims to merge the benefits of UNet and Vision Transformers for precise segmentation of the left ventricle. Furthermore, we train a YOLOv8 model to detect the left ventricle and integrate it with the hybrid model to focus segmentation on a region of interest around the ventricle. Regarding the precision quality achieved by ViTUNet using YOLOv8, results are quite similar to those obtained by the DL-LVTQ tool, suggesting that the dataset is a limiting factor in our improvement. To substantiate this, we conduct a detailed analysis of the MRI slices in the current dataset. By identifying and removing problematic slices, results significantly improve. The introduction of a YOLOv8 model alongside a deep learning model presents a promising approach.
dc.embargo.termsSi
dc.formatapplication/pdfes
dc.format.extent11es
dc.identifier.doihttps://doi.org/10.1007/978-3-031-87873-2_14
dc.identifier.eissnPrint: 978-3-031-87872-5
dc.identifier.eissnElectronic: 978-3-031-87873-2
dc.identifier.urihttp://hdl.handle.net/10201/154560
dc.languageenges
dc.publisherSpringer
dc.relationThis work has been partially funded by Grant TED2021-129221B-I00 funded by MCIN/AEI/10.13039/501100011033 and by the “European Union NextGenerationEU/PRTR”.es
dc.relation.ispartofPractical Applications of Computational Biology and Bioinformatics, 18th International Conference (PACBB 2024), p.p. 132–142es
dc.relation.publisherversionhttps://link.springer.com/chapter/10.1007/978-3-031-87873-2_14
dc.rightsinfo:eu-repo/semantics/embargoedAccesses
dc.subjectLeft ventricular non-compaction diagnosis
dc.subjectUNet
dc.subjectVision
dc.subjectTransformers
dc.subjectYOLOv8
dc.subjectMRI Image segmentation
dc.subjectData analysis
dc.titleApplication of YOLOv8 and a model based on vision transformers and UNet for LVNC diagnosis: advantages and limitationses
dc.typeinfo:eu-repo/semantics/articlees
dspace.entity.typePublicationes
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
pcabb24-cardiologia-yolo.pdf
Size:
1.82 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.26 KB
Format:
Item-specific license agreed upon to submission
Description: