Person: Collado-González, Mar
Loading...
Name
Collado-González, Mar
publication.page.department
Universidad de Murcia. Departamento de Biología Celular e Histología
- Publications
- item.page.relationships.isSecondaryAuthorOfPublication
- item.page.relationships.isDirectorOfPublication
Search Results
Now showing 1 - 6 of 6
- PublicationOpen AccessComplex polysaccharide-based nanocomposites for 2 oral insulin delivery(MDPI (Basel, Switzerland), 2020-01-15) Collado-González, Mar; Freitas, Alessandra R.; Santos, Ana Claudia; Ferreira, Nuno F.; Ferreri, Maria Cristina; Sequeira, Joana A.D.; Díaz Baños, F. Guillermo; Víllora Cano, Gloria; Veiga, Francisco; Ribeiro, Antonio; Carissimi, Guzmán; Química FísicaPolyelectrolyte nanocomposites rarely reach a stable state and aggregation often occurs. Here, we report the synthesis of nanocomposites for the oral delivery of insulin composed of alginate, dextran sulfate, poly-(ethyleneglycol) 4000, Poloxamer 188®, chitosan, and BSA. Chitosan seems to be essential for the final size of the nanocomposites. When the chitosan concentration used in the synthesis is 10-4 gcm-3, nanocomposites, microcomposites and milimetric composites are obtained. Reducing the chitosan concentration to 10-5 or 10-7 gcm-3 yields nanocomposites of 400-600 nm or 800-900 nm hydrodynamic diameter, respectively, measured by DLS. According to our results, the molecular weight of chitosan has little influence on the size of the composites. The enhanced stability of the newest nanocomposites synthesized was assessed with LUMiSizer®. The rounded shapes of the nanocomposites were confirmed by scanning electron microscopy. Analysis by HPLC revealed that, after loaded with insulin, about 80% of the drug was released from our nanocomposites.
- PublicationOpen AccessAggregation behaviour of gold nanoparticles in presence of chitosan(Springer, 2015-06-13) Fernández Espín, Vanesa ; Pamies, Ramón ; García de la Torre, José; García Montalbán, Mercedes; collado; Collado-González, Mar; Hernández Cifre, José Ginés; Díaz Baños, F. Guillermo; Víllora Cano, Gloria; Ingeniería QuímicaChitosan (CS) is a biocompatible polysaccharide with positive charge that is widely used as a coating agent for negatively charged nanoparticles. However, the types of structures that emerge by combining CS and anoparticles as well as their behaviour are still poorly understood. In this work, we characterize the nanocomposites formed by gold nanoparticles (AuNPs) and CS and study the influence of CS in the expected aggregation process that should experience those nanoparticles under the favourable conditions of low pH and high ionic strength. Thus, at the working CS concentration, we observe the existence of CS structures that quickly trap the AuNPs and avoid the formation of nanoparticle aggregates in environmental conditions that, otherwise, would lead to such an aggregation.
- PublicationOpen AccessChitosan-nanoparticles effects on mucosal immunity: a systematic review(Elsevier, 2022-08-26) Collado-González, Mar; Esteban Abad, María de los Ángeles; Biología Celular e HistologíaNanoparticles-based treatments is of utmost importance for aquaculture. In this scenario, chitosan-based nanoparticles have been proposed due to the properties of chitosan, which include mucoadhesiveness. Nevertheless, pivotal parameters of chitosan, such as degree of acetylation and molecular weight, are commonly underestimated in the available literature despite the influence they seem to have on the properties of chitosan-based nanoparticles. In this systematic review, the immunomodulator capacity of chitosan nanoparticles used as mucosal vaccines on teleost fish has been evaluated paying special attention to the chitosan properties. Four databases were used for literature search, yielding 486 documents, from which 14 meet the inclusion criteria. Only 21% of the available studies reported properly chitosan properties, which should be improved in future works to generate reproducible data as well as valuable information. To the best of our knowledge, this work objectively compares for the first time, by quantifying the mg of chitosan/g of fish applied in each study, the chitosan nanoparticle preparation and doses applied to fish, as well as the effects of the treatments applied on fish immune status.
- PublicationOpen AccessComparison of sulfamethoxazole removal efficiency using polyethersulfone ultrafiltration membrane modified by various methods(MDPI, 2024-12-20) Hidalgo Montesinos, Asunción María; Murcia Almagro, María Dolores; Gómez Gómez, María; Collado-González, Mar; Montiel Morte, María Claudia; Martínez Morga, Marta; Martínez, Marta; Ingeniería Química ; Biología Celular e HistologíaNowadays, there is a growing interest in membrane modification processes to improve their characteristics and the effectiveness of their treatments and reduce the possible fouling. In this sense, in this work, a modification of an ultrafiltration membrane with three different materials has been carried out: reduced graphene oxide (rGO), chitosan and MgCl2. For both the native and the modified membranes, a study has been carried out to remove the emerging contaminant sulfamethoxazole (SMX). SEM and SEM-EDX analyses have been performed to confirm membrane surface modifications. In the characterisation of the membranes, it is noteworthy that the values of the permeability coefficient, Aw, have been lower in the modified membranes, which is unexpected. Regarding the pollutant removal tests, the influence of pressure and initial concentration on permeate flux and rejections has been studied. Native membrane shows the highest permeate flux values. Comparing the modified membranes, the highest rejection values are obtained with the rGO-modified membrane, which can be explained by its greater hydrophilic character. Finally, a fouling study was carried out, verifying that in almost all cases, fouling occurs after the passage of the pollutant due to the blockage of the membrane pores.
- PublicationOpen AccessChitosan as stabilizing agent for negatively charged nanoparticles(Elsevier, 2016-12-24) Collado-González, Mar; García Montalbán, Mercedes; Peña-García, Jorge; Pérez-Sánchez, Horacio; Víllora Cano, Gloria; Díaz Baños, F. Guillermo; Biología Celular e HistologíaChitosan is a biocompatible polysaccharide with positive Z potential which can stabilize negative charged nanoparticles. Silk fibroin nanoparticles and citrate gold nanoparticles, both with negative Z potential, but they form aggregates at physiological ionic strength. In this work, we study the behavior of chitosan in solution when the ionic strength of the medium is increased and how the concentration of chitosan and the proportion of the two components (chitosan and AuNP or SFN) significantly affect the stability and size of the nanocomposites formed. In addition to experimental measurements, molecular modeling were used to gain insight into how chitosan interacts with silk fibroin monomers, and to identify the main energetic interactions involved in the process. The optimum values for obtaining the smallest and most homogeneous stable nanocomposites were obtained and two different ways of organization through which chitosan may exert its stabilizing effect were suggested.
- PublicationOpen AccessCharacterisation of the interaction among oil-in-water nanocapsules and mucin(MDPI, 2020-07-28) Collado-González, Mar; Kaur, Gurmeet; González-Espinosa, Yadira; Brooks, Rebecca; Goycoolea, Francisco M.; Biología Celular e HistologíaMucins are glycoproteins present in all mucosal surfaces and in secretions such as saliva. Mucins are involved in the mucoadhesion of nanodevices carrying bioactive molecules to their target sites in vivo. Oil-in-water nanocapsules (NCs) have been synthesised for carrying N,N0-(di-m-methylphenyl)urea (DMTU), a quorum-sensing inhibitor, to the oral cavity. DMTU-loaded NCs constitute an alternative for the treatment of plaque (bacterial biofilm). In this work, the stability of the NCs after their interaction with mucin is analysed. Mucin type III from Sigma-Aldrich has been used as the mucin model. Mucin and NCs were characterised by the multi-detection symmetrical flow field-flow fractionation technique (AF4). Dynamic light scattering (DLS) and z-potential analyses were carried out to characterise the interaction between mucin and NCs. According to the results, loading DMTU changes the conformation of the NC. It was also found that the synergistic interaction between mucin and NCs was favoured within a specific range of the mucin:NC ratio within the first 24 h. Studies on the release of DMTU in vitro and the microbial activity of such NCs are ongoing in our lab.
Ir a Estadísticas
Sin licencia Creative Commons.



