Por favor, use este identificador para citar o enlazar este ítem: 10.1145/3466752.3480086

Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorFeliú, Josué-
dc.contributor.authorRos, Alberto-
dc.contributor.authorAcacio Sánchez, Manuel Eugenio-
dc.contributor.authorKaxiras, Stefanos-
dc.contributor.otherFacultades, Departamentos, Servicios y Escuelas::Departamentos de la UMU::Ingeniería y Tecnología de Computadoreses
dc.date.accessioned2021-12-02T20:11:24Z-
dc.date.available2021-12-02T20:11:24Z-
dc.date.issued2021-10-
dc.identifier.isbn978-1-4503-8557-2-
dc.identifier.urihttp://hdl.handle.net/10201/114645-
dc.description.abstractIn this paper, we argue that, for a class of fine-grain, synchronization-intensive, parallel workloads, it is advantageous to consolidate synchronization and communication as much as possible among the threads of simultaneous multithreading (SMT) cores. While, today, the shared L1 is the closest coherent level where synchronization and communication between SMT threads can take place, we observe that there is an even closer shared level, entirely inside a single core. This level comprises the load queues (LQ) and store queues (SQ) / store buffers (SB) of the SMT threads and to the best of our knowledge it has never been used as such. The reason is that if we allow communication of different SMT threads via their LQs and SQs/SBs, i.e., inter-thread store-to-load forwarding (ITSLF), we violate write atomicity with respect to the outside world, beyond the acceptable model of read-own-write-early multiple-copy atomicity (rMCA). The key insight of our work is that we can accelerate synchronization and communication among SMT threads with inter-thread store-to-load forwarding, without affecting the memory model—in particular without violating rMCA. We demonstrate how we can achieve this entirely through speculative interactions between LQs and SQs/SBs of different threads, while ensuring deadlock-free execution. Without changing the architectural model, the ISA, or the software, and without adding extra hardware in the form of a specialized accelerator, our insight enables a new design point for a standard architecture. We demonstrate that with ITSLF, workloads scale better on a single 8-way SMT core (with the resources of a single-threaded core) than on a baseline SMT (with or without optimizations), or on 8 single-threaded cores.es
dc.formatapplication/pdfes
dc.format.extent13es
dc.languageenges
dc.relationEuropean Research Council (ERC) under the European Union s Horizon 2020 research and innovation programme (ECHO: Extending Coherence for Hardware-Driven Optimizations in Multicore Architectures, grant agreement No 819134, Consolidator Grant, 2018).es
dc.relation.ispartof54th International Symposium on Microarchitecture (MICRO)es
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectSimultaneous Multithreadinges
dc.subjectStore-to-Load Forwardinges
dc.subjectMultiple-Copy Atomicityes
dc.titleITSLF: Inter-Thread Store-to-Load Forwarding in Simultaneous Multithreadinges
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1145/3466752.3480086-
Aparece en las colecciones:Artículos: Ingeniería y Tecnología de Computadores

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
jfeliu-micro21.pdf1,31 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons