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Abstract 

A transformation of the Welch statistic to compare means is proposed to correct skewness 

and kurtosis of parent populations. The results show that this transformation seems to 

improve the performance of the test in heavy-tailed distributions more than other 

transformations focused only on skewness. The proposed test outperforms the Welch test 

in asymmetric heavy-tailed distributions with high heteroscedasticity and it behaves 

better than the Johnson’s transformation trimmed mean Welch test in normal, near-

normal and light-tailed distributions. It may also be a better option when some of the 

distributions are heavy-tailed and some light-tailed. 

 

 

KEYWORDS: Kurtosis, Skewness, Welch test, Johnson’s transformation, Hall’s 

transformation 

 

1. Introduction 

The ANOVA F test compares means of several groups under the classical assumptions 

of normality, homoscedasticity and independence. However, it is not robust when the 

assumptions are violated (Parra-Frutos 2014 and the references therein). To handle 

unequal variances, an approximate test can be used. The Welch test (Welch 1951) is one 

of the most valid tests under various conditions of heterogeneity investigated (see Dijkstra 

and Werter 1981; Wilcox 1989). Unfortunately, this and other heteroscedastic tests do 

not always control the Type I error rate when distributions are asymmetric heavy-tailed, 

that is, they cannot handle the problem of non-normality at the same time (Lix, Keselman, 

and Keselman 1996). The shape of the parent populations may have serious consequences 

for the performance of a test of equality of means, especially when there is 
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heteroscedasticity (Wilcox 1990, Algina et al. 1994, Cribbie et al. 2007, Cribbie et al. 

2012, and Wilcox 2017). We propose a test that can perform well in that situation, that is, 

in asymmetric heavy-tailed distributions with high heteroscedasticity. 

To remove the effect of population skewness on the distribution of a one-sample t 

statistic, some transformations have been proposed, e.g., Johnson's (1978) and Hall's 

(1992). Both use properties of the data to address a modification of the statistic that is less 

biased and corrects skewness, leading to a more robust procedure for hypothesis testing. 

The difference between them is an additional term in Hall`s transformation that makes it 

monotone and invertible, and therefore suitable for determining confidence intervals 

(Johnson 1978, Hall 1992).  

To remove as well the effect of heavy tails, these transformations have been applied 

in conjunction with trimmed means in the Behrens-Fisher problem (Luh and Guo 1999, 

Guo and Luh 2000, and Keselman et al. 2002). The Welch test with trimmed means and 

Winsorized variances has been shown to provide excellent Type I error control and power 

even under extreme violations of the normality and variance equality assumptions 

(Cribbie et al. 2012). This test is outperformed by the Johnson’s transformation trimmed 

mean Welch test (Luh and Guo 1999). However, when using trimmed means the null 

hypothesis changes to the equality of population trimmed means. Considering the usual 

mean supposes that the researcher prefers to give equal weight to all the observations. 

However, if the researcher is interested in giving zero weight to the most extreme values, 

that is, comparing values that represent the bulk of the data, the trimmed mean must be 

used. This may be the case of extremely asymmetric heavy-tailed distributions, where the 

mean loses representativeness in favor of the trimmed mean for applied researchers. 

In this paper a new transformation is proposed that not only reduces the effect of 

skewness but also the effect of kurtosis. Thus, it can be considered the counterpart of the 
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Johnson’s transformation trimmed Welch test when the usual means are compared. As in 

Johnson (1978), the new procedure is based on the Cornish-Fisher expansion (Cornish 

and Fisher 1938), but it includes an additional term that addresses the kurtosis. We focus 

on the problem of testing equality of the usual means, so the performance of the proposed 

test is mainly compared to the Welch test, with or without transformations, although the 

Johnson’s transformation Welch test with robust estimators (i.e. trimmed means and 

Winsorized variances) is also simulated. 

The behavior of the tests is studied for a variety of distributions. The scenario of 

asymmetric and heavy-tailed distributions has attracted much attention in applied 

research, and simulation studies have revealed that traditional tests can present serious 

problems of Type I error control. However, little attention has been paid to light-tailed 

distributions. 

Blanca et al. (2013) show that only 5.5% of the samples of real data from several 

psychological variables exhibit measures of skewness and kurtosis close to normal 

distributions. They also find that 65.9% have a skewness measure incompatible with 

normal distributions. As for the kurtosis, this incompatibility happens in 80.8% of the 

samples, with 45.7% having negative kurtosis and 35.1% positive. Thus, negative kurtosis 

seems to be relevant in real data, so simulation studies should include this kind of 

distribution (Blanca et al. 2013). On the other hand, negative kurtosis is not necessarily 

accompanied by asymmetry. In this sense, Micceri (1989) found that almost all 

distributions having low (negative) kurtosis were, at most, moderately asymmetric and, 

according to Blanca et al. (2013), the figure may be around 95.2%. Indeed, 71.8% of 

samples with a skewness measure near the normal showed a negative kurtosis measure. 

Therefore, in addition to heavy-tailed distributions, this simulation study includes light-

tailed distributions. Normal and near-normal distributions are also considered. 
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The simulation results show that the proposed transformation of the Welch statistic 

corrects problems of non-normality of populations better than other transformations 

focused only on skewness when there are heavy-tailed distributions. With symmetric 

heavy-tailed distributions, the new test has a higher Type I error rate than the Welch test 

but it seems to control. For asymmetric heavy-tailed distributions, the new test 

outperforms the Welch test if heteroscedasticity is high, with an empirical significance 

level near to the nominal for large enough samples. However, the Johnson’s 

transformation Welch test with trimmed means provides smaller errors. If distributions 

are normal, near-normal and light-tailed the performance of the new test is superior to the 

Johnson’s transformation Welch test with robust estimators. When both light-tailed and 

heavy-tailed distributions are involved, the new test may still be a better procedure.  

 

2. The new transformation of a t statistic 

Let ( )t N x sµ= − ,  the usual statistic to make inferences about the mean µ   of 

a population X with finite variance 2 ,σ  where x   and 2s  are the mean and variance of a 

sample of N independent, identically distributed observations taken from X. Johnson 

(1978) proposes a modification of this t statistic that reduces the effect of the skewness 

in non-normal populations. The modified t variable is based on the Cornish-Fisher 

expansion and is obtained by replacing x µ−  in the numerator by 

( ) ( )2
1JohnsonT x xµ λ γ µ= − + + −  

with 

3
2 ,

6
=

N
µλ
σ

 

3
1 4 ,

3
=

µγ
σ
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where 3µ  is the third central moment of X, [( ( )) ]r
r E X E Xµ = − .  

This modified variable has an approximate Student’s t distribution because the 

adjustment corrects bias and skewness effects on the t variable, due to the asymmetry of 

the population. Thus, the modification results in a more robust procedure.  

Hall (1992) adds a new term in Johnson’s transformation to obtain a monotone and 

invertible transformation, 

( ) ( ) ( )
2

2 33
1 8 .

27
= − + + − + −HallT x x xµµ λ γ µ µ

σ
 

We propose an extended version of Johnson’s transformation which not only 

reduces the effect of the population skewness, but also that of the kurtosis. 

The general form of the Cornish-Fisher expansion for a variable X is  

( ) ( )2 33
2( ) 1 3 ...

6 24
= + + − + − +

KCF X Z Z Z Zµ σµ σ
σ

 

where Z is a standard normal random variable and K is the excess of kurtosis of X given 

by 4
4 3K µ σ= − . Assuming that all moments of the population exist, the representation 

of x  by a Cornish-Fisher expansion to three terms is 

( ) ( )2 33
2 3 2( ) 1 3 ...

6 24
= + + − + − +

KCF x Z Z Z Z
N NN
µσ σµ
σ

 

Following the procedure in Johnson (1978), the proposed new modified t variable 

is given by 

( ) ( )32
1 1 2( ) . = − + + − + − 

Nt x x x
s

µ λ γ µ γ µ  

For the derivation of λ , 1γ  and 2γ , the Cornish-Fisher expansion of 1t , 1( )CF t , is 

calculated ignoring the terms of order ( )1O N −  except for 3Z , when ( )3 2O N −  is used. As 

in Johnson (1978), the constant λ  is selected so that the constant terms in 1( )CF t  sum to 
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zero, thereby removing the high-order bias, and 1γ  is chosen so that the coefficient of the 

2Z  term in 1( )CF t  is zero, hence eliminating the high-order effects of skewness. Similarly, 

2γ  is selected so that the coefficient of the 3Z term in 1( )CF t  is zero in order to remove 

high-order effects of kurtosis. The solutions obtained are 

23 3
1 2 12 4 2, , .

6 3 24
= = = − −

K
N
µ µλ γ γ γ
σ σ σ

 

Note that λ  and 1γ  are the same as in Johnson (1978) and Hall (1992). 

 

3. Description of tests 

According to Luh and Guo (1999), Guo and Luh (2000) and Keselman et al. (2002), 

the transformations for a Studentized statistic are adapted to test the equality of means. In 

particular, they are used to transform the Welch statistic.  

Let ijy , 1,...,i k=  and 1,..., ij n= , denote the j-th observation from the i-th group, 

where in , iy  and 2
is  are the sample size, mean and variance of the i-th group, respectively, 

and k is the number of groups or treatments. 

The Welch (1951) test (W test). The test statistic is given by 

( ) ( ) ( )

2

1
2

2
1

,
2 2 1

1 1
1 1

=

=

=
 − −

− +  − − 

∑

∑

k

i i
i

W
k

i

i i

wT
T

k w W
k

k n

 

where 

ˆ= −i iT y y , 

2= i
i

i

nw
s

, 
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( )2

12 ,
1

=

−
=

−

∑
in

ij i
j

i
i

y y
s

n
 

1=
=∑

k

i
i

W w , 

1ˆ .==
∑

k

i i
i

w y
y

W
 

The Welch statistic distributes approximately like F with 1k −  and v degrees of 

freedom, where 

( )

2

2

1

1
1

3
1

k
i

i i

kv
w W
n=

−
=

−
−∑

. 

The null hypothesis – population means are equal – is rejected if the computed WT  

statistic is greater than 1, ; ,k vF α−  the ( )1 α−  percentile of the F distribution with 1k −  and 

v  degrees of freedom. 

The Welch test with Johnson’s transformation (W.John test). The variable iT  in WT  

statistic would be 

( ) ( )2
, 1

ˆ ˆˆ ˆλ γ= − + + −i Johnson i i i iT y y y y , 

where
 

3
2

ˆˆ
6

= i
i

i in s
µλ , 

3
1 4

ˆˆ
3
µγ = i

i
is

, 

( )3

3
1

1ˆ
in

i ij i
ji

y y
n

µ
=

= −∑ . 
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The Welch test with Hall’s transformation (W.Hall test). The variable iT  would be 

( ) ( ) ( )
2

2 33
, 1 8

ˆˆ ˆˆ ˆ ˆ
27
µλ γ= − + + − + −i

i Hall i i i i i
i

T y y y y y y
s

. 

The Welch test with the new transformation (W.new test). The new transformation 

would lead to 

( ) ( ) ( )2 3
, 1 2

ˆ ˆ ˆˆ ˆ ˆλ γ γ= − + + − + −i new i i i i i iT y y y y y y , 

2
2 1 2

ˆ
ˆ ˆ

24
γ γ= − − i

i i
i

K
s

, 

4
2
2

ˆˆ 3
ˆ

= −i
i

i

K µ
µ

, 

( )
1

1ˆ , 2, 4
=

= − =∑
in r

ri ij i
ji

y y r
n

µ . 

R code for the W.new test is provided in the Appendix. 

Johnson’s transformation Welch test with trimmed means and Winsorized 

variances (Wt.John test). 

The null hypothesis in this test is equal population trimmed means, 

1 2t t tkµ µ µ= = = , where the amount of trimming is given by β and usually set to 20%.  

Let ( ) ( ) ( )1 2 ii i i ny y y≤ ≤ ≤  represent the ordered observations associated with the i-th 

group. Let [ ]i ig nβ=  the number of observations to be trimmed in each tail of the 

distribution, where [ ]x  is the greatest integer equal to or lower than x. Thus, 2i i ih n g= −  

is the effective sample size after trimming. The trimmed sample mean of i-th group, tiy , 

and 2
wis   given by 
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( )
1 ,

−

= +=
∑
i i

i

n g

i j
j g

ti
i

y
y

h
                          2 21

1
i

wi wi
i

ns s
h
−

=
−

 , 

replace the sample mean and the variance, where 2
wis  is the Winsorized variance  

( )2

12 ,
1

=

−
=

−

∑
in

ij wi
j

wi
i

x y
s

n
            1 ,==

∑
in

ij
j

wi
i

x
y

n
             

( 1) ( 1)

( 1) ( )

( ) ( )

i i

i i i

i i i i

i g ij i g

ij ij i g ij i n g

i n g ij i n g

y if y y

x y if y y y

y if y y

+ +

+ −

− −

 ≤
= < <
 ≥

 

and wiy  is the Winsorized mean. 

  The variable iT  in WT  statistic would be  

( ) ( )2
, 1

ˆ ˆˆ ˆti Johnson ti t ti ti ti tT y y y yλ γ= − + + −  

with 

1ˆ ==
∑

k

ti ti
i

t
t

w y
y

W
,            2=



i
ti

wi

hw
s

,              
1

k

t ti
i

W w
=

=∑ , 

3
2

ˆ
6

i
ti

wi is h
µλ =




, 

3
1 4

ˆ
3

i
ti

wis
µγ =




, 

3 3ˆ=

i
i w i

i

n
h

µ µ , 

( )3

1
3ˆ =

−
=
∑

in

ij wi
j

w i
i

x y

n
µ . 

4. Design of the simulation 

The Type I error rate of the tests with three and six groups is investigated in a 

simulation study for different situations: symmetric and asymmetric distributions; light- 
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and heavy-tailed distributions; homoscedasticity and heteroscedasticity; negative and 

positive pairing of sample sizes and variances; and small, large, equal and unequal sample 

sizes. The nominal 5 percent significance level is used throughout. The simulation results 

shown in the figures are based on 10,000 Monte Carlo replications and those in the tables 

on 100,000. R software is used. 

The samples are taken originally from the distributions given in Table 1. 

Afterwards, appropriate linear transformations are carried out to generate data sets from 

the populations with the desired means and variances. When working with trimmed 

means these transformations imply subtracting the population trimmed mean instead of 

the population mean. 

Equal population means are used to estimate the Type I error rate, and the values 0, 

0.5 and 1 in the case of estimating power (they provide a power of 0.654 for the ANOVA 

F test in normal distributions with unit variance and sample sizes of 15). For Johnson’s 

transformation trimmed Welch test all these values correspond to population trimmed 

means. 

The data transformations used do not change skewness and kurtosis of original 

distributions. Table 1 informs of the skewness 3/2
1 3 2( )α µ µ=  and excess of kurtosis (K) 

of each distribution along with the notation of each one. To generate data from the g-and-

h distribution, we use Cribbie et al. (2012) and Hoaglin (1985). All distributions 

considered are continuous, symmetric or positively skewed, and bell-shaped (except 

Beta(1/2,1/2), which is U-shaped, and the uniform distribution). 
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Table 1 Distributions used in the simulation study. 

 N(0,1) 4t  
g=0 
h= 

0.0516 

g=0.2 
h=0 

g=0.81 
h=0 

g=1 
h=0 

Beta 
(1/2,1/2) 

Uniform Beta(2,2) Beta(2,5) 

notation n t gh005 gh020 gh0810 gh10 b0505 u b22 b25 

1α  0 0 0 0.61 3.8 6.2 0 0 0 0.60 
K 0 ∞ 0.86 0.7 33.3 111 −1.5 −1.2 −0.86 −0.12 

 

In the case of three groups, 17 combinations of distributions are considered in the 

simulation study. For example, if a combination includes three populations with the same 

skewness and kurtosis as the Beta(2,2) distribution, it is denoted by b22_b22_b22 (see 

Table 1). These seventeen combinations cover a wide range of situations: normal 

distributions (n_n_n); symmetric and near-normal kurtosis distributions (b22_b22_b22 

and gh005_gh005_gh005); heavy-tailed distributions (t_t_t, gh020_gh0810_gh0810, 

gh020_gh0810_gh10 and gh10_ gh0810_gh020); non U-shaped light-tailed distributions 

(u_u_u, b25_b25_b25 and u_b22_b25); bell- and U-shaped light-tailed distributions 

(b0505_b0505_b0505, b25_b22_b0505 and b22_b22_b0505); and heavy- and light-

tailed distributions (u_gh020_gh0810, b22_gh020_gh10, b22_b25_gh0810 and 

u_gh0810_gh10).  

For each of these combinations, 22 settings are described, corresponding to 

different samples sizes and variances. Each setting is identified by a number (see Table 

2) which is used in the figures below. Specifically, four configurations of sample sizes 

are studied, from small to large, and from equal to unequal: (15,15,15), (15,20,25), 

(60,60,60) and (50,60,70). Each of these configurations are considered under 

homoscedasticity and heteroscedasticity. The following combinations of standard 

deviations 1 2 3( , , )σ σ σ , from mild to extreme heteroscedasticity, are applied: (1, 1.1, 1.2),
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(1, 1.5, 1.75)  and (1, 5, 8).  The reverse of the above has also been included, so positive and 

negative pairing between variances and sample sizes are considered.  

 

Table 2 Description of the settings used in the simulation study. 

Setting n1 n2 n3 σ1 σ2 σ3  Setting n1 n2 n3 σ1 σ2 σ3 
 Homoscedasticity   Mild heteroscedasticity 

1 15 15 15 1 1 1   and negative pairing 
2 15 20 25 1 1 1  17 15 20 25 1.2 1.1 1 
3 60 60 60 1 1 1  18 50 60 70 1.2 1.1 1 
4 50 60 70 1 1 1   Moderate heteroscedasticity 
 Mild heteroscedasticity    and negative pairing 

5 15 15 15 1 1.1 1.2  19 15 20 25 1.75 1.5 1 
6 15 20 25 1 1.1 1.2  20 50 60 70 1.75 1.5 1 
7 60 60 60 1 1.1 1.2   Extreme heteroscedasticity 
8 50 60 70 1 1.1 1.2   and negative pairing 

 Moderate heteroscedasticity  21 15 20 25 8 5 1 
9 15 15 15 1 1.5 1.75  22 50 60 70 8 5 1 

10 15 20 25 1 1.5 1.75         
11 60 60 60 1 1.5 1.75    
12 50 60 70 1 1.5 1.75    

 Extreme heteroscedasticity         
13 15 15 15 1 5 8         
14 15 20 25 1 5 8         
15 60 60 60 1 5 8         
16 50 60 70 1 5 8         

 

Some other triples of variances and distributions are also considered to refine the 

conclusions (Tables 3 and 4). In addition, a similar simulation design is used in the case 

of 6 groups to study how the number of groups affects the performance of the tests (Tables 

5 and 6). 

The robustness of a procedure, with respect to the Type I error control, is 

determined using Bradley's (1978) liberal criterion. Hence, a procedure is deemed robust 

with respect to the Type I error if the empirical Type I error rate falls within the range 
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2.±α α  For 0.05=α , the interval is given by [0.025, 0.075], so an empirical rate over 

0.075 would indicate a liberal test and one below 0.025 a conservative test.  

 

5. Simulation results  

A summary of the simulation results is presented in Figures 1-11 to highlight the 

differences in the control of the Type I error rate and estimated power of the W.new test 

in relation to the W, W.John and Wt.John tests. As the the W.Hall behaves similarly to 

the W.John tests (Type I error rate across the different combinations of distributions is 

less than 0.0073 and the mean of all differences is about 0.0009, with comparable 

estimated power), only the W.John test is illustrated. Occasionally, the ANOVA F test is 

also included and its sensitivity to departures from homoscedasticity is shown. 

The simulation study reveals that if distributions are normal or symmetric with 

kurtosis near normal (near-normal distributions), the W.new and W.John tests control the 

Type I error rate (see Figure 1) and have an estimated power like that of the Welch test 

(see Figure 2). These three tests improve the ANOVA F test in relation to the control of 

the Type I error rate, with a similar power, when heteroscedasticity is moderate or 

extreme, especially with negative pairing. Moreover, they behave similarly to the 

ANOVA F test when standard assumptions are satisfied. It is also shown that, even 

though these tests based on transformations are robust in the near normal distributions, 

they tend to have an estimated significance level below 0.05 if distributions have negative 

excess kurtosis, and over 0.05 if positive. On the other hand, while testing equal trimmed 

means with the Wt.John test leads to control of the Type I error rate, its power is lower in 

some situations, even though the population trimmed mean and the usual mean are equal 

in symmetric distributions. Note that the cases of very low power correspond to the 
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settings of extreme heteroscedasticity, where the samples sizes are too small relative to 

the variances. 

 
Figure 1 Type I error rate of tests for each of the 22 settings with normal or near-normal distributions. 

 
 

 
Figure 2 Estimated power of tests for each of the 22 settings with normal or near-normal distributions. 

 

According to the Figure 3 and Figure 4, when distributions are all light-tailed the 

Type I error rate of the W.John and W.new tests is under 0.05 and falls as the negative 

excess kurtosis diminishes. All tests control the Type I error rate, but the W.John and 
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W.new tests seems to behave better than the Wt.John test, with smaller Type I error rates 

and higher power. Thus, when testing trimmed means the probabilities of errors are higher 

than when testing the usual means if parent populations are light-tailed. If at least one of 

the light-tailed distributions is U-shaped, these results are more marked (see Figure 5 and 

Figure 6).  

 
Figure 3 Type I error rate of tests for each of the 22 settings with light-tailed distributions. 

 
 

 
Figure 4 Estimated power of tests for each of the 22 settings with light-tailed distributions. 
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Figure 5 Type I error rate of tests for each of the 22 with bell- and U-shaped light-tailed distributions. 

 
 

 

 

Figure 6 Estimated power of tests for each of the 22 settings with bell- and U-shaped light-tailed 

distributions. 
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test, and especially that of the Wt.John test, and the smaller those of the other two tests. 

The similar behavior of the W.John and W.new tests in this case suggests that the 

estimation of the skewness leads to a low probability of rejecting the null hypothesis in 

light-tailed distributions, especially with small sample sizes. 

In the case of heavy-tailed distributions (see Figure 7), all the tests studied appear 

to be robust if distributions are symmetric. Of the tests for comparing means, the Welch 

test has the lowest Type I error rate, followed by the W.new test and then by the W.John 

test. If distributions are asymmetric heavy-tailed, the W.John test shows a liberal behavior 

in many settings. However, the W.new test seems to control the Type I error rate in many 

more situations and it improves the Welch test in the case of extreme heteroscedasticity. 

Here, the W.new test exhibits the smallest Type I error rate of the Welch-based tests for 

comparing means. Additionally, as large samples reduce the estimated significance level, 

this may result in the W.new and W.John tests controlling the Type I error rate. In 

particular, for three gh10 distributions with extreme heteroscedasticity, the rate of the 

W.new test is about 0.075 for sample sizes (25,30,35) and (30,30,30) and about 0.06 for 

larger samples like (55,60,65) and (60,60,60) (see Table 3 and  Table 4). But if samples 

sizes are small, it is the negative pairing between variances and skewness that would 

considerably reduce the estimated significance level of the W, W.John and W.new tests. 

This could lead the W.new test to control the Type I error rate (see Figure 7).  
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Figure 7 Type I error rate of tests for each of the 22 settings with heavy-tailed distributions. 

 
 
The power of the transformation-based Welch tests for comparing means is similar 

in most cases (see Figure 8), although the Type I error rate of the W.new test is always 

lower. When testing trimmed means, the Wt.John test is a very good option, since it seems 

to control the Type I error rate quite well and has somewhat more power. In conclusion, 

with heavy-tailed distributions, the errors when testing equal trimmed means have less 

probability of happening than when testing equal means. 
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Figure 8 Estimated power of tests for each of the 22 settings with heavy-tailed distributions. 
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effect of the level of skewness on the Type I error rate (see Figure 9). The Welch test 
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However, a general rise in the Type I error rate of the transformation-based Welch tests 

for comparing means is observed as skewness increases, resulting in an increasing loss of 

control of Type I error rate even in the situations of homoscedasticity or mild 

heteroscedasticity. Anyway, it is worth noting that, in the adverse situation of asymmetric 
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Figure 9 Type I error rate of tests for each of the 22 settings for distributions from low to high skewness. 

Note. gh050 refers to g=0.5 and h=0 and gh103 to g=1 and h=0.3. 
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In larger samples (about 60), a general diminution of the Type I error rate of the 

W.new test is observed (see Table 4), giving rise to its being controlled in distributions 

with higher skewness. However, the higher the skewness, the higher the 

heteroscedasticity that it is necessary to control. For example, when sample sizes are 

(50,60,70) and (60,60,60), a variance ratio higher than 1:9 is needed in the case of 

skewness equal to 6.2 and excess kurtosis to 111, and higher than 1:25 in the case of 8 

and 257, respectively. On the other hand, the W.new test performs well if there is extreme 

heteroscedasticity (variance ratio 1:64) up to a skewness coefficient of 13 and excess 

kurtosis of about 1200. For lower variance ratios, the skewness and excess kurtosis has 

to be lower to control the Type I error rate. 
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Table 3 Type I error rate of the W.new test for three groups (with the same population skewness and 
excess kurtosis) for various levels of heteroscedasticity and skewness, and sample sizes of about 30. 

g 0.5 0.81 1 1 1 1 1 1.21 1 1.3 1.4 1.5 
h 0 0 0 0.03 0.04 0.05 0.06 0 0.07 0 0 0 

Skewness 1.8 3.8 6.2 8.2 9.1 10.1 11.47 11.53 13.1 15.6 22.5 33.5 
Exc. kurt. 5.9 33.3 111 257 360 524 795 561 1270 1263 3401 10075 

 (n1,n2,n3) = (25,30,35) 
(σ1,σ2,σ3) W.new test 

(1,1,1) .0614* .0741* .0829* .0853* .0852* .0852* .0861* .0923* .0860* .0929* .0981* .0991* 
(1,1.21,1.41) .0610* .0724* .0802* .0815* .0834* .0842* .0853* .0889* .0845* .0921* .0944* .0987* 
(1,1.37,1.73) .0598* .0735* .0830* .0822* .0848* .0853* .0866* .0945* .0873* .0980* .1027* .1114* 

(1,1.5,2) .0601* .0738* .0836* .0860* .0895* .0895* .0887* .0967* .0906* .1012* .1112 .1187 
(1,2,3) .0599* .0746* .0889 .0941 .0957 .0983 .0986 .1079 .1004 .1175 .1314 .1455 
(1,3,4) .0567* .0742 .0925 .0974 .1008 .1019 .1060 .1153 .1067 .1276 .1445 .1611 
(1,3,5) .0567* .0713 .0873 .0972 .0990 .0999 .1010 .1096 .1063 .1244 .1381 .1546 
(1,4,6) .0566* .0690 .0847 .0903 .0947 .0977 .1022 .1065 .1034 .1186 .1363 .1539 
(1,4,7) .0563* .0682 .0812 .0902 .0914 .0954 .0985 .1048 .1019 .1176 .1302 .1485 
(1,5,8) .0543* .0654 .0786 .0854 .0871 .0902 .0934 .0969 .0958 .1080 .1238 .1423 

             
(1.41,1.21,1) .0624* .0774* .0869* .0903* .0920* .0935* .0939* .1007* .0945* .1064* .1153* .1199 
(1.73,1.37,1) .0608* .0786* .0916* .0956 .0960 .0990 .0992 .1083 .1036 .1166 .1256 .1363 

(2,1.5,1) .0613* .0784* .0930 .0967 .1008 .1039 .1040 .1121 .1036 .1232 .1351 .1476 
(3,2,1) .0617* .0798 .0964 .1030 .1067 .1085 .1107 .1222 .1133 .1365 .1500 .1686 
(4,3,1) .0583* .0756 .0939 .1037 .1056 .1085 .1118 .1241 .1154 .1386 .1588 .1778 
(5,3,1) .0551* .0735 .0905 .0982 .1025 .1062 .1101 .1171 .1111 .1327 .1516 .1713 
(6,4,1) .0553* .0690 .0851 .0946 .0951 .1003 .1034 .1126 .1073 .1244 .1440 .1634 
(7,4,1) .0552* .0683 .0827 .0915 .0960 .0987 .1018 .1062 .1035 .1221 .1394 .1597 
(8,5,1) .0551 .0643 .0774 .0872 .0884 .0918 .0944 .1019 .0977 .1125 .1308 .1500 

 Welch test 
Max. .0759 .1196 .1582 .1725 .1774 .1813 .1865 .2141 .1886 .2365 .2674 .2988 

 (n1,n2,n3) = (30,30,30) 
 W.new test 

(1,1,1) .0613* .0737* .0814* .0843* .0837* .0853* .0851* .0881* .0859* .0934* .0961* .0974* 
(1,1.21,1.41) .0612* .0747* .0833* .0866* .0869* .0881* .0881* .0942* .0903* .0992* .1029* .1097* 
(1,1.37,1.73) .0603* .0751* .0855* .0894* .0901* .0928* .0924* .1011* .0933* .1054* .1125 .1216 

(1,1.5,2) .0596* .0759* .0870* .0924* .0929* .0948 .0970 .1052 .0988 .1109 .1224 .1333 
(1,2,3) .0598* .0777 .0911 .0980 .1010 .1043 .1064 .1143 .1071 .1277 .1412 .1563 
(1,3,4) .0574* .0746 .0926 .1011 .1042 .1057 .1087 .1195 .1113 .1325 .1486 .1682 
(1,3,5) .0575* .0730 .0891 .0965 .0996 .1021 .1075 .1158 .1089 .1277 .1462 .1631 
(1,4,6) .0549* .0696 .0848 .0937 .0960 .0974 .1011 .1096 .1030 .1220 .1379 .1575 
(1,4,7) .0553* .0677 .0823 .0900 .0913 .0948 .0981 .1050 .1038 .1175 .1343 .1530 
(1,5,8) .0542* .0645 .0763 .0841 .0882 .0892 .0935 .0975 .0964 .1111 .1268 .1462 

 Welch test 
Max. .0732 .1154 .1510 .1622 .1689 .1702 .1777 .2002 .1810 .2256 .2557 .2872 

*The Welch test controls the Type I error rate in this setting. 
Note. Type I error rate larger than .075 is in bold and larger than .08 it is shaded. 
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Table 4 Type I error rate of the W.new test for three groups (with the same population skewness and 
excess kurtosis) for various levels of heteroscedasticity and skewness, and sample sizes of about 60. 

g 0.5 0.81 1 1 1 1 1 1.21 1 1.3 1.4 1.5 
h 0 0 0 0.03 0.04 0.05 0.06 0 0.07 0 0 0 

Skewness 1.8 3.8 6.2 8.2 9.1 10.1 11.47 11.53 13.1 15.6 22.5 33.5 
Exc. kurt. 5.9 33.3 111 257 360 524 795 561 1270 1263 3401 10075 

(n1,n2,n3) = (50,60,70) 
(σ1,σ2,σ3) W.new test 

(1,1,1) .0582* .0721* .0792* .0818* .0814* .0831* .0845* .0884* .0854* .0914* .0962* .1007* 
(1,1.21,1.41) .0579* .0701* .0769* .0797* .0803* .0825* .0830* .0871* .0825* .0917* .0957* .0982* 
(1,1.37,1.73) .0565* .0707* .0782* .0812* .0796* .0818* .0830* .0880* .0833* .0920* .0968* .1026* 

(1,1.5,2) .0581* .0684* .0782* .0804* .0802* .0810* .0842* .0885* .0853* .0929* .1005* .1061* 
(1,2,3) .0553* .0671* .0783 .0823 .0827 .0855 .0855 .0931 .0867 .1002 .1113 .1214 
(1,3,4) .0551* .0640 .0729 .0803 .0817 .0837 .0851 .0925 .0890 .1002 .1126 .1273 
(1,3,5) .0533* .0613 .0727 .0766 .0772 .0815 .0833 .0883 .0854 .0970 .1067 .1219 
(1,4,6) .0515* .0578 .0650 .0732 .0745 .0752 .0793 .0815 .0815 .0888 .1007 .1142 
(1,4,7) .0515* .0570 .0656 .0703 .0732 .0752 .0776 .0775 .0793 .0887 .0988 .1076 
(1,5,8) .0509* .0557 .0600 .0657 .0703 .0702 .0710 .0736 .0762 .0794 .0890 .1014 

             

(1.41,1.21,1) .0566* .0707* .0797* .0836* .0847* .0846* .0856* .0933* .0883* .0978* .1047* .1111* 
(1.73,1.37,1) .0573* .0692* .0798* .0841* .0857* .0864* .0878* .0946 .0902* .1030 .1105 .1194 

(2,1.5,1) .0557* .0685* .0797* .0840 .0870 .0880 .0902 .0969 .0925 .1052 .1134 .1247 
(3,2,1) .0553* .0654 .0779 .0841 .0855 .0877 .0921 .0997 .0930 .1071 .1188 .1349 
(4,3,1) .0521* .0614 .0729 .0796 .0825 .0819 .0874 .0916 .0910 .1028 .1155 .1332 
(5,3,1) .0530* .0587 .0697 .0761 .0778 .0787 .0826 .0873 .0860 .0973 .1116 .1253 
(6,4,1) .0519* .0565 .0628 .0709 .0739 .0748 .0759 .0789 .0793 .0878 .0999 .1148 
(7,4,1) .0519* .0549 .0617 .0679 .0702 .0727 .0750 .0746 .0766 .0826 .0946 .1096 
(8,5,1) .0502* .0529 .0583 .0637 .0660 .0670 .0700 .0686 .0711 .0741 .0848 .0986 

 Welch test 
Max. .0654 .0958 .1262 .1370 .1414 .1431 .1489 .1664 .1540 .1874 .2142 .2412 

 (n1,n2,n3) = (60,60,60) 
 W.new test 

(1,1,1) .0577* .0706* .0766* .0806* .0808* .0807* .0816* .0868* .0826* .0911* .0959* .0984* 
(1,1.21,1.41) .0577* .0693* .0791* .0793* .0826* .0839* .0840* .0908* .0855* .0935* .0982* .1038* 
(1,1.37,1.73) .0579* .0698* .0776* .0827* .0828* .0841* .0859* .0918* .0860* .0957* .1025* .1088 

(1,1.5,2) .0570* .0678* .0799* .0826* .0824* .0846* .0856* .0933 .0894* .0997 .1083 .1155 
(1,2,3) .0549* .0666* .0773 .0835 .0850 .0868 .0883 .0941 .0897 .1030 .1139 .1272 
(1,3,4) .0521* .0632 .0728 .0792 .0835 .0840 .0876 .0921 .0891 .1029 .1142 .1288 
(1,3,5) .0536* .0616 .0718 .0758 .0785 .0817 .0852 .0868 .0840 .0947 .1096 .1235 
(1,4,6) .0508* .0565 .0664 .0697 .0727 .0739 .0785 .0790 .0813 .0880 .1006 .1140 
(1,4,7) .0516* .0563 .0632 .0683 .0711 .0727 .0750 .0775 .0776 .0865 .0964 .1094 
(1,5,8) .0506* .0528 .0588 .0648 .0668 .0683 .0705 .0699 .0710 .0773 .0878 .1004 

 Welch test 
Max. .0642 .0916 .1185 .1297 .1346 .1353 .1414 .1587 .1452 .1771 .2020 .2297 

*The Welch test controls the Type I error rate in this setting. 
Note. Type I error rate larger than .075 is in bold and larger than .08 it is shaded. 
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If both heavy-tailed and light-tailed distributions are considered, a combination of 

two effects on the Type I error rate take place. As observed earlier, it looks as if negative 

excess kurtosis pulls the Type I error rate down and brings closer together the behaviors 

of the transformation-based Welch tests for comparing means, whereas positive excess 

kurtosis pulls the Type I error rate up and separates both tests, with the effects being 

higher as the absolute excess kurtosis increases. In relation to power, light-tailed 

distributions seem to pull it down for the Wt.John test. So, when both light- and heavy-

tailed distributions are present, the resulting Type I error rate and power is a combination 

of effects and depends on the level of skewness and excess kurtosis of the populations. 

The general conclusion observed in Figure 10 and Figure 11 seems to be that the W.new 

test has a smaller Type I error rate than the W.John test, with similar estimated power. 

The Wt.John test appears to have less power than the W.John and W.new tests in many 

settings, and no lower Type I error rate appears to be associated in some of those cases. 

In summary, the superiority of the Wt.John test found when most distributions are heavy-

tailed is not clear when these are combined with light-tailed.  

 
Figure 10 The Type I error rate of tests for each of the 22 settings with heavy- and light-tailed 

distributions. 
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Figure 11 Estimated power of tests for each of the 22 settings with heavy- and light-tailed distributions. 
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distributions and six groups it is observed that the W.new test appears to control the Type 

I error rate in settings where the Welch test does not control it, with the presence of 

heteroscedasticity, but it needs higher heteroscedasticity as the skewness increases. For 

sample sizes of about 60 (see Table 6) the W.new test seems to control the Type I error 

rate for skewness of 3.8 (and excess kurtosis of 33) and variance ratio higher than 1:9. 

For skewness of 6.2 (and excess kurtosis of 111) the variance ratio for which it controls 

is somewhat greater than 1:64. 

Table 5 Type I error rate of the W.new test for six groups (with the same population skewness 
and excess kurtosis) for various levels of heteroscedasticity and skewness, and sample sizes of 

about 30. 
g  0.5 0.81  0.5 0.81 
h  0 0  0 0 

Skewness  1.8 3.8  1.8 3.8 
Excess kurtosis  5.9 33.3  5.9 33.3 

(n1,n2,n3,n4,n5,n6)  (25,27,29,31,33,35)  (30,30,30,30,30,30) 
(σ1,σ2,σ3,σ4,σ5,σ6)  W.new test 

(1, 1, 1, 1, 1, 1)  .0657* .0923*  .0678* .0924* 
(1, 1.08, 1.17, 1.25, 1.33, 1.41)  .0667* .0919*  .0674* .0918* 
(1, 1.15, 1.29, 1.44, 1.59, 1.73)  .0658* .0909*  .0655* .0918 

(1, 1.2, 1.4, 1.6, 1.8, 2)  .0661* .0909*  .0665* .0904 
(1, 1.4, 1.8, 2.2, 2.6, 3)  .0640* .0898  .0665* .0917 
(1, 1.6, 2.2, 2.8, 3.4, 4)  .0656* .0896  .0632* .0898 
(1, 1.8, 2.6, 3.4, 4.2, 5)  .0646* .0896  .0659 .0887 

(1, 2, 3, 4, 5, 6)  .0628* .0879  .0635 .0892 
(1, 2.2, 3.4, 4.6, 5.8, 7)  .0631 .0857  .0630 .0859 
(1, 2.4, 3.8, 5.2, 6.6, 8)  .0619 .0866  .0640 .0852 

       
(1.41, 1.33, 1.25, 1.17, 1.08, 1)  .0660* .0929    
(1.73, 1.59, 1.44, 1.29, 1.15, 1)  .0681* .0923    

(2, 1.8, 1.6, 1.4, 1.2, 1)  .0675* .0929    
(3, 2.6, 2.2, 1.8, 1.4, 1)  .0661* .0924    

(4, 3.4, 2.8, 2.2, 1.6, 1)  .0649* .0906    

(5, 4.2, 3.4, 2.6, 1.8, 1)  .0657 .0916    

(6, 5, 4, 3, 2, 1)  .0659 .0896    

(7, 5.8, 4.6, 3.4, 2.2, 1)  .0636 .0877    

(8, 6.6, 5.2, 3.8, 2.4, 1)  .0632 .0869    

  Welch test 
Max.  .0865 .1494  .0849 .1396 

*The Welch test controls the Type I error rate in this setting. 
Note. Type I error rate larger than .075 is in bold and larger than .08 it is shaded. 
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Table 6 Type I error rate of the W.new test for six groups (with the same population skewness 

and excess kurtosis) for various levels of heteroscedasticity and skewness, and sample sizes of 

about 60. 

g  0.5 0.81 1 1  0.5 0.81 1 
h  0 0 0 0.03  0 0 0 

Skewness  1.8 3.8 6.2 8.2  1.8 3.8 6.2 
Excess kurtosis  5.9 33.3 111 257  5.9 33.3 111 

(n1,n2,n3,n4,n5,n6)  (55,57,59,61,63,65)  (60,60,60,60,60,60) 
(σ1,σ2,σ3,σ4,σ5,σ6)  W.new test 

(1, 1, 1, 1, 1, 1)  .0605* .0801* .0965* .1039*  .0613* .0780* .0966* 
(1, 1.08, 1.17, 1.25, 1.33, 1.41)  .0610* .0802* .0963* .1038*  .0614* .0781* .0960* 
(1, 1.15, 1.29, 1.44, 1.59, 1.73)  .0603* .0789* .0957 .1028  .0594* .0789* .0949 

(1, 1.2, 1.4, 1.6, 1.8, 2)  .0604* .0795* .0941 .1011  .0603* .0778* .0944 
(1, 1.4, 1.8, 2.2, 2.6, 3)  .0606* .0750 .0932 .1014  .0592* .0763 .0916 
(1, 1.6, 2.2, 2.8, 3.4, 4)  .0592* .0738 .0896 .0992  .0576* .0740 .0904 
(1, 1.8, 2.6, 3.4, 4.2, 5)  .0569* .0716 .0869 .0961  .0568* .0708 .0865 

(1, 2, 3, 4, 5, 6)  .0559* .0703 .0848 .0934  .0569* .0696 .0842 
(1, 2.2, 3.4, 4.6, 5.8, 7)  .0555* .0669 .0822 .0933  .0551* .0685 .0824 
(1, 2.4, 3.8, 5.2, 6.6, 8)  .0563* .0660 .0806 .0901  .0548* .0652 .0803 

          
(1.41, 1.33, 1.25, 1.17, 1.08, 1)  .0608* .0812* .0967 .1050     
(1.73, 1.59, 1.44, 1.29, 1.15, 1)  .0595* .0797* .0964 .1031     

(2, 1.8, 1.6, 1.4, 1.2, 1)  .0603* .0803* .0946 .1026     
(3, 2.6, 2.2, 1.8, 1.4, 1)  .0582* .0757 .0934 .1004     

(4, 3.4, 2.8, 2.2, 1.6, 1)  .0559* .0721 .0898 .0974     

(5, 4.2, 3.4, 2.6, 1.8, 1)  .0561* .0717 .0872 .0977     

(6, 5, 4, 3, 2, 1)  .0551* .0702 .0849 .0949     

(7, 5.8, 4.6, 3.4, 2.2, 1)  .0535* .0666 .0828 .0910     

(8, 6.6, 5.2, 3.8, 2.4, 1)  .0535* .0654 .0800 .0885     

 Welch test 
Max.  .0707 .1127 .1532 .1673  .0712 .1088 .1480 

*The Welch test controls the Type I error rate in this setting. 
Note. Type I error rate larger than .075 is in bold and larger than .08 it is shaded. 

 

6. Concluding remarks 

A new transformation of the Welch statistic is proposed to correct the effects of 

skewness and kurtosis of the parent populations on the Type I error rate. It can be 

considered as an extension of Johnson’s transformation. This paper focuses primarily on 

the comparison of the W.new test with the W.John, W.Hall and Welch tests, since they 
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all have the same null hypothesis of equal means, and also with the Wt.John test, which 

tests the equality of a more robust central tendency measure (the trimmed mean) and has 

been shown to perform well in heavy-tailed distributions.  

According to the simulation results, the W.new test competes very well with 

conventional procedures when standard assumptions are met. If distributions are heavy-

tailed, it has a lower Type I error rate than the W.John and the W.Hall tests, with no loss 

of power. On the other hand, the W.new test performs better than the Wt.John test when 

distributions are normal, near-normal or light-tailed, since it has a similar or lower Type 

I error rate with higher power.  

Although in symmetric distributions the population trimmed mean matches the 

usual mean, testing equal trimmed means leads to a lower power, except when 

populations are heavy-tailed. Using trimmed means in symmetric populations seems to 

cause a higher power loss when the kurtosis is lower. So, trimming means is not 

recommendable in symmetric distributions, unless populations are heavy-tailed. 

In the case of asymmetric distributions, the behavior of the W.new test depends on 

the level of the skewness and heteroscedasticity. The Welch test controls the Type I error 

rate except for asymmetric heavy-tailed distributions with extreme heteroscedasticity, in 

which case the W.new test performs better, and even controls in certain scenarios.  

The Wnew.test shows a special ability to control the Type I error rate if there is 

high skewness accompanied by high heteroscedasticity in large enough samples. The 

Type I error rate of the W.new test diminishes as sample sizes increase, but, given a 

skewness level, the test requires smaller samples to control in higher heteroscedasticity 

scenarios. On the other hand, given the samples sizes, it needs higher heteroscedasticity 

the higher the skewness. Furthermore, a negative pairing between variances and skewness 

may reduce the estimated significance level, especially in small samples. 
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The Type I error rate of the W.new test seems to rise with the number of groups so 

that, even for moderate skewness and kurtosis, a larger variance ratio for the same sample 

sizes is required to control the Type I error rate. Otherwise, the samples sizes needed to 

control the Type I error rate are getting larger. 

For asymmetric heavy-tailed populations, the Wt.John test has an estimated 

significance level lower than the W.new test and nearer to the nominal level. However, it 

seems to be inflated if heteroscedasticity is extreme. In general, it also has slightly better 

power than the W.new test. This superiority of the Wt.John test can be lost if some 

distributions have negative excess kurtosis. 

In summary, the Welch test based on the new transformation might be an alternative 

to take into consideration when testing for mean equality, because it performs well in a 

wide range of settings. Of note is its remarkable ability to control the Type I error rate in 

the adverse situation of extreme heteroscedasticity with asymmetric heavy-tailed 

distributions, given an appropriate sample size. Only when the skewness and kurtosis are 

very high does the W.new test provide Type I error rates quite far from the nominal level 

for extreme heteroscedasticity and with reasonable sample sizes. Nevertheless, in this 

case, applied researchers can consider comparing trimmed means more appropriate when 

the bulk of the distributions is studied.  
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APPENDIX 

Wnew.test <- function (formula, data, alpha = .05) { 

  dp = as.character(formula) 

  y = data[, dp[[2L]]] 

  group = data[, dp[[3L]]] 

  x.levels <- levels(factor(group)) 

  y.n <- y.means <- y.vars <- m3 <- m4 <- w <- NULL 

  for (i in x.levels) { 

    samplei <- y[group == i] 

    y.n[i] <- length(samplei) 

    y.vars[i] <- var(samplei) 

    w[i] <- y.n[i]/y.vars[i] 

    y.means[i] <- mean(samplei) 

    m3[i] <- sum((samplei - y.means[i])^3)/y.n[i] 

    m4[i] <- sum((samplei - y.means[i])^4)/y.n[i] 

  }   

  U = sum(w) 

  w_y = sum(w * y.means)/U 

  J = length(x.levels) 

  kurt <- m4/((y.n-1)*y.vars/y.n)^2 - 3       

  # Transformation 

  lambda <- m3/(6 * y.n * y.vars) 

  gamma1 <- m3/(3 * y.vars^2) 

  gamma2 <- -gamma1^2 - kurt/(24 * y.vars) 

  T <- (y.means - w_y) + lambda + gamma1 * (y.means - w_y)^2 + gamma2 * (y.means - 

w_y)^3 

   

  # Statistic 

  A <- sum(w * T^2)/(J - 1) 

  B <- 2 * (J - 2)/(J^2 - 1) * sum((1 - w/U)^2/(y.n - 1)) 

  Ftest <- A/(B + 1) 

  df1 <- J - 1 

  df2 <- (J^2 - 1) / (3* sum((1 - w/U)^2/(y.n - 1))) 

  p.value <- pf(Ftest, df1, df2, lower.tail = FALSE)   

   

  result <- list() 

  result$alpha <- alpha 

  result$statistic <- Ftest 

  result$df <- c(df1, df2) 

  result$criticalvalue <- qf(alpha, df1, df2, lower.tail = FALSE) 

  result$p.value <- p.value 

  result 

} 


