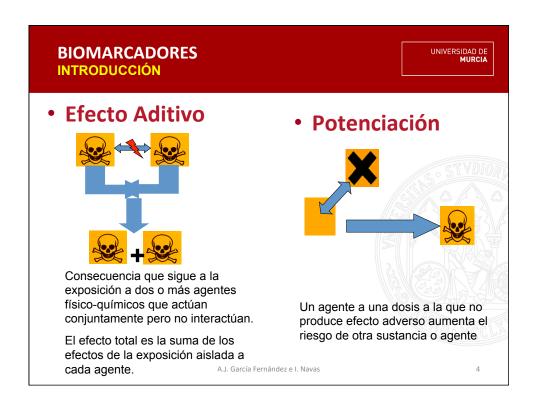

BIOMARCADORES INTRODUCCIÓN


UNIVERSIDAD DE MURCIA

Importancia del estudio del mecanismo de acción

- 1. Proponer un tratamiento adecuado en casos de intoxicación.
- 2. Estudiar el desarrollo y uso de un antídoto.
- 3. Aplicar pruebas diagnósticas.
- 4. Comprender las alteraciones producidas a nivel bioquímico.

 A.J. García Fernández e I. Navas

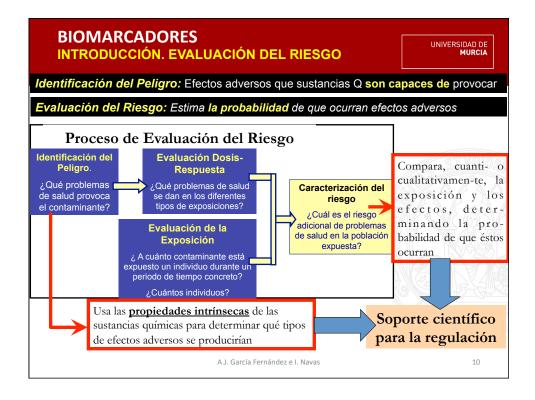
BIOMARCADORES INTRODUCCIÓN. ECOTOXICOLOGÍA

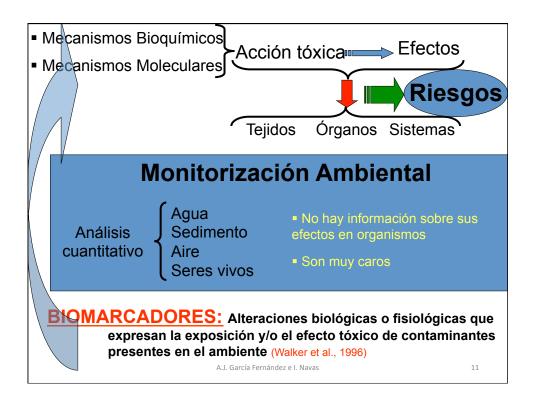
UNIVERSIDAD DE MURCIA

- La base para determinar los efectos de contaminantes en el ecosistema está en el nivel de organismo
- En nivel de organismo, las respuestas pueden ser:
 - Toxicidad Aguda **■** mortalidad
 - Daño acumulativo crónico 📂 muerte
 - Daños subletales fisiológicos y morfológicos
 - Efectos subletales en comportamiento
 - Cambios bioquímicos medibles

A I García Fernández e I Nava

7


BIOMARCADORES INTRODUCCIÓN. ECOTOXICOLOGÍA

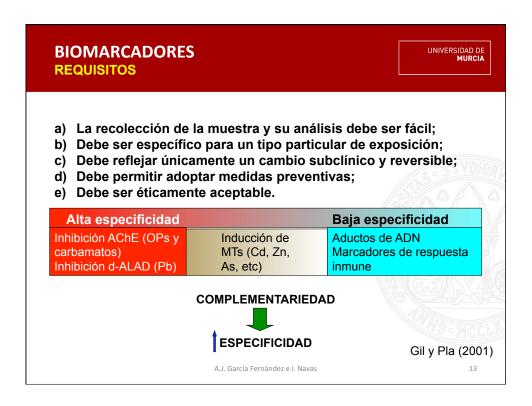

UNIVERSIDAD DE MURCIA

- En el nivel de población, las respuestas pueden ser:
 - Tamaño y dinámica poblacional (tasa de nacimiento, tasa de mortalidad, patrones migratorios, etc)
 - Reducciones o incrementos en los flujos naturales de biomasa, ratio de sexos, etc.
- En el nivel de comunidad, las respuestas pueden ser:
 - Diversidad de especies
 - Relaciones predador-presa, etc

A.J. García Fernández e I. Navas

BIOMARCADORES DEFINICIONES

UNIVERSIDAD DE MURCIA


La presencia de un xenobiótico en un fluido biológico y/o las alteraciones inducidas por el mismo sobre los componentes celulares o bioquímicos o sobre procesos, estructuras o funciones en un organismo vivo, que son cuantificables en un sistema biológico o muestra (ENTOX/TIWET, 1996)

Señales fisiológicas inducidas por un xenobiótico que reflejan una exposición, una respuesta celular precoz, o una susceptibilidad inherente o adquirida, proporcionando una estrategia para la resolución de estos problemas (Silbergeld y Davis, 1994)

Alteraciones biológicas o fisiológicas que expresan la exposición y/o el efecto tóxico de contaminantes presentes en el ambiente

(Walker et al., 1996)

A.J. García Fernández e I. Navas

BIOMARCADORES TIPOS

UNIVERSIDAD DE MURCIA

BIOMARCADORES DE EXPOSICIÓN

Permite medir la dosis interna mediante análisis químico de la sustancia tóxica o su/s metabolito/s en fluidos corporales o excretas, tales como la sangre, la orina o el aire exhalado. En los últimos años han tomado relevancia otras muestras de obtención no cruenta como las plumas, pelos, etc.

BIOMARCADORES DE EFECTO (RESPUESTA)

Es indicativo de cambios bioquímicos en un organismo como resultado de la exposición a xenobióticos.

BIOMARCADORES DE SUSCEPTIBILIDAD

Indicadores de sensibilidad de los individuos al efecto de un xenobiótico o grupo de compuestos tóxicos. Suelen resultar en cambios bioquímicos que se relacionan directamente con el grado de exposición a un xenobiótico.

A.J. García Fernández e I. Navas

15

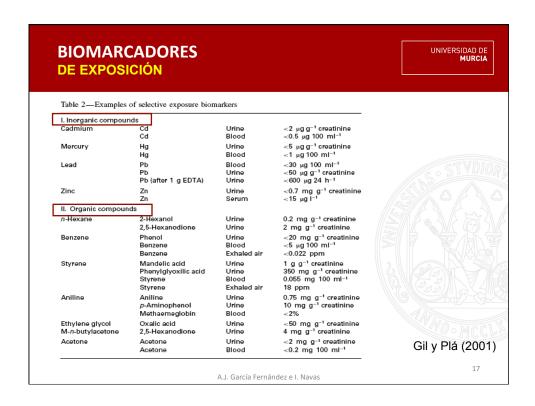
BIOMARCADORES

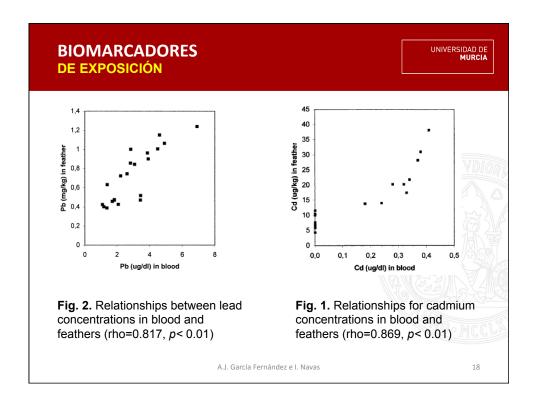
DE EXPOSICIÓN

UNIVERSIDAD DE MURCIA

BIOMARCADORES DE EXPOSICIÓN

SELECTIVOS: Medida directa del tóxico/metabolitos en fluidos (Ej. Plomo en sangre)


NO SELECTIVOS: Indicadores inespecíficos (Ej. tioéteres en orina indican exposición a sustancias electrófilas)


ASPECTOS RELEVANTES A CONSIDERAR:

- EL ANÁLISIS DEL TÓXICO Y SUS METABOLITOS
- LA TOXICOCINÉTICA DEL COMPUESTO Y SUS METABOLITOS

Gil y Plá (2001)

A.J. García Fernández e I. Navas

BIOMARCADORES DE SUSCEPTIBILIDAD

UNIVERSIDAD DE MURCIA

BIOMARCADORES DE SUSCEPTIBILIDAD

DE POLIMORFISMOS DE SISTEMAS ACTIVADORES

Medida de actividad de los enzimas del citocromo P-450

DE POLIMORFISMOS DE SISTEMAS DETOXIFICADORES

Medida de actividad de enzimas

- Glutatión-S-transferasa
- Acetiltransferasa
- Sulfotransferasa
- Glucuroniltransferasa
- Paraoxonasa

Gil y Plá (2001)

19

BIOMARCADORES

DE EFECTO O DE RESPUESTA

JNIVERSIDAD DE MURCIA

BIOMARCADORES DE EFECTO (RESPUESTA)

- Modificaciones en la composición celular sanguínea
- Alteraciones en actividades enzimáticas
- Aparición de aductos del ADN
- Incrementos localizados de ARN-m
- Aumento de determinadas proteínas
- Aparición de anticuerpos específicos (autoanticuerpos) contra un xenobiótico o frente a fracciones celulares (núcleo, membranas, etc.)

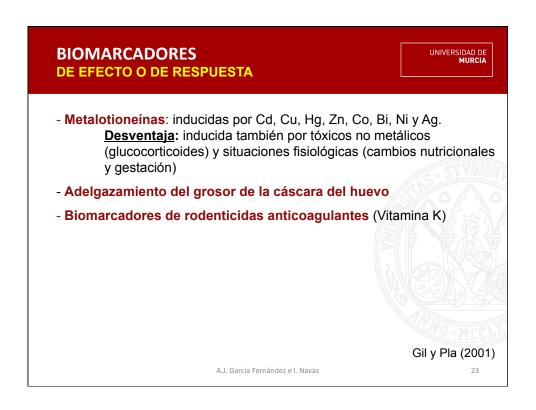
EL BIOMARCADOR DE EFECTO IDEAL:

- Fácil de detectar
- Capaz de mostrar efectos adversos antes de que sean irreversibles.

A.J. García Fernández e I. Navas

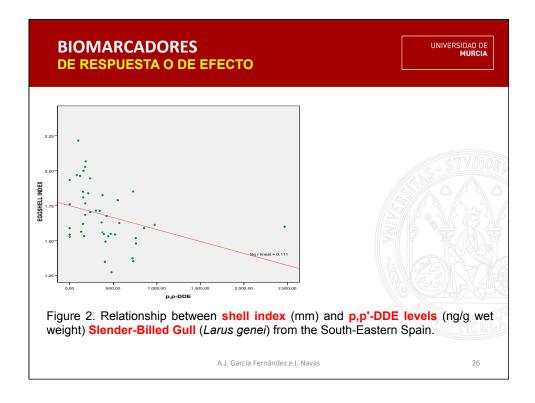
Gil y Pla (2001)

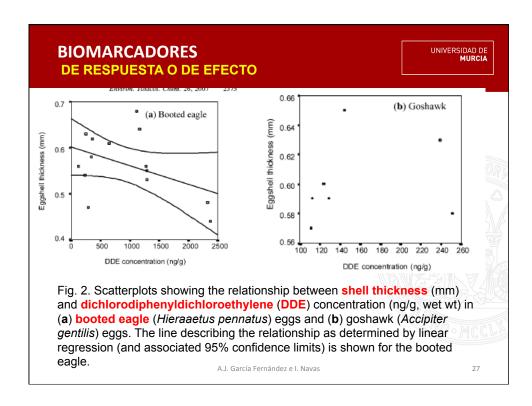
BIOMARCADORES DE EFECTO O DE RESPUESTA - Sistema respiratorio - Sistema sanguíneo (δ-ALAD Pb) - Sistema nervioso (AChE -> OPs y carbamatos) - Biomarcadores urinarios: HMWP*-albúmina y LMWP*-retinol unida → daño renal NAG (N-acetil-D-glucosminidasa) (enz. lisosómica -> nefrotoxicidad) - Sistema inmune (dioxinas, PCBs, imnunoterápicos,) - Biomarcadores del daño al DNA (mutagénesis, formación de aductos, rotura del DNA, aumento de la tasa de reparación del DNA, aberraciones cromosómicas, intercambio de cromátidas hermanas, etc). - CONTINUARÁ...... Gil y Pla (2001) *High/Low molecular weight microtubule-associated proteins A.J. García Fernández e I. Navas

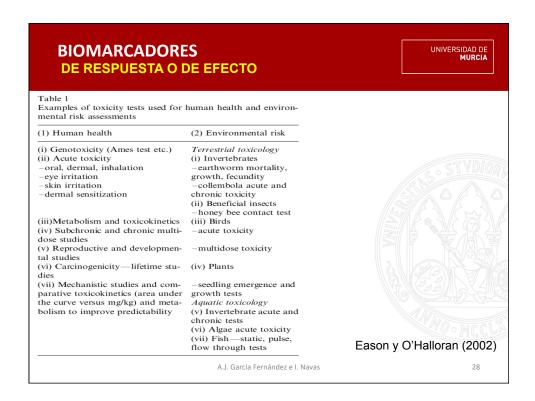

DE EFECTO O DE RESPUESTA - Biomarcadores de expresión génica - Sobreexpresión de proteínas (DIF. CUANTITATIVA)

BIOMARCADORES


- - Expresión de una forma mutante de la proteína (DIF. CUALITATIVA)
- Biomarcadores de daño oxidativo: Generación de radicales libres
 - PAHs, pesticidas OCs, metales pesados (Cd, Pb, Hg), oligoelementos (Se), solventes industriales, etc.
 - Respuestas adaptativas o mecanismos compensadores del sistema antioxidante celular, modificación de macromoléculas y daño tisular.
 - Glutatión oxidado/reducido, enzimas del ciclo del GSH, SOD, catalasa ascorbato y alfa-tocoferol.
- CONTINUA


Gil y Pla (2001)


A.J. García Fernández e I. Navas



BIOMARCA DE RESPUES	DORES TA O DE EFECTO		UNIVERSIDAD DE MURCIA
Table 3 Biomarkers of environmental i	mpacts		
Contaminant type	Mechanism of toxicity	Examples of adverse ecological consequences	Biomarkers
Organochlorine pesticide DDT Organotin compounds TBT Persistent organic pollutants e.g. PCB Organophosphate pesticides, e.g. monocrotophos Anticoagulant rodenticide	Ca ⁺⁺ transport interference Endocrine disruption in female gastropods 'imposex' Suppression of immune system Inhibition of cholinesterase leads to a disruption of nervous system function Inhibition of vitamin K epoxide reductase	Eggshell thinning and breaking decline in raptor populations Sterility and reproductive failure decline in gastropod populations Increased morbidity and mortality in seals due to viral infections Asphyxiation and death in non-target avian populations Haemorrhage and death of protected indigenous non-target species	Eggshell thickness ^a Incidence of imposex in gastropods ^b Functional immune assays ^c Cholinesterase enzyme activity ^d Increased clotting time and haemorrhage ^e
a Peakall (1993). b Gibbs and Bryan (1986). c de Swart et al. (1994). d Scollon et al. (2000). Eason and Murphy (2001)	A.J. García Fernánde	•	'Halloran (2002)