
Summary. Detailed comparative analysis of at first sight
not related process cascades is a means toward this aim:
to trace common effector mechanisms and hereby
eventually inspire innovative routes for therapeutic
management. Following this concept, promotion of
tumor progression by stroma, especially cancer-
associated fibroblasts and smooth muscle actin-positive
myofibroblasts, and beneficial activity of respective cells
in wound healing have helped to delineate the
involvement of endogenous lectins of the family of
galectins. In addition to initiating conversion of
fibroblasts to myofibroblasts, galectin-1 instructs the
cells to produce a structurally complex extracellular
matrix. This bioscaffold is useful for keratinocyte
culture, also apparently operative in ameliorating wound
healing. These functional aspects encourage to study in
detail how lectin-(glycan) counterreceptor display is
orchestrated. Such insights are assumed to have potential
to contribute to rationally manipulate stem/precursor
cells as resource in regenerative medicine.
Key words: Chemokine, Fibroblast, Glycosylation,
Lectin, Myofibroblast, Stem cell

Introduction

Operating in different physiological contexts, a
bioeffector can underlie diverse outcomes. The detection
of this versatility is the starting point for research work
with therapeutical perspective. To draw analogies
between separate bioprocesses and to trace recurring
molecular themes within them are prerequisites to
identify routes for application. In this sense, Harold
Dvorak’s article “Tumors: wounds that do not heal”
published nearly 30 years ago was instructive to turn
attention to remarkable similarities between the
connective tissue reaction in wounds and in cancer.
Ensuing work comparing regeneration/wound healing
with aspects of malignancy revealed that these two
process cascades have even more in common (Smetana
et al., 2013a; Rybinski et al., 2014). Owing to the
emerging physiological significance of the
microenvironment, our review focuses on cells and
mediators from this region. They can program cell fate
and thus become of interest for controlled manipulations
with therapeutic intentions.
Stem cells under physiological conditions and in
cancer

A central role in growth/regeneration is played by
stem cells. They were first described in the process of
hematopoiesis (Loutit, 1968). The following broad-scale
research, which even led to founding journals
exclusively devoted to this topic, has described their

Review

Emerging role of tissue lectins as 
microenvironmental effectors in tumors and wounds
Karel Smetana Jr1, Pavol Szabo1, Peter Gál1,2,3, Sabine André4, 
Hans-Joachim Gabius4, Ondřej Kodet1,5 and Barbora Dvořánková1
1Charles University, 1st Faculty of Medicine, Institute of Anatomy, Prague, Czech Republic, 2East-Slovak Institute of Cardiovascular
Diseases, Department for Biomedical Research, Košice, Slovak Republic, 3Pavol Jozef Šafárik University, Faculty of Medicine,
Department of Pharmacology, Košice, Slovak Republic, 4Ludwig-Maximilians-University Munich, Faculty of Veterinary Medicine,
Institute of Physiological Chemistry, Munich, Germany and 5Charles University, 1st Faculty of Medicine, Department of
Dermatovenerology, Prague, Czech Republic

Histol Histopathol (2015) 30: 293-309
DOI: 10.14670/HH-30.293

http://www.hh.um.es

Histology and
Histopathology

Cellular and Molecular Biology

Offprint requests to: Barbora Dvořánková, Charles University, 1st

Faculty of Medicine, Institute of Anatomy, U Nemocnice 3, 128 00
Prague 2, Czech Republic. e-mail: bdvorankova@seznam.cz



occurrence, route of differentiation and potential for
applications. As to totipotent stem cells, they can be
prepared from the early embryo at the stage of several
blastomers. Each cell has, as the term ‘totipotency’
implies, unrestricted capacity to form cell lineages.
Pluripotent (embryonic) stem cells are isolated from the
embryoblast of a blastocyst, and their daughter cells can
practically be differentiated into most types of cells. In
contrast to stem cells of prenatal origin, both multipotent
stem and progenitor cells are present in the body
throughout all periods of life of an organism, and almost
all types of tissues harbor their own stem cell pool
(Hansis, 2006; Mimeault and Batra, 2006; Yamanaka et
al., 2008). 

These tissue/adult stem cells are usually located in
distinct regions. For example, epidermal and neural
crest-originated stem cells reside in the bulge region of
the outer root sheath of hair follicles (Sieber-Blum et al.,
2004; Blanpain and Fuchs, 2006). They have a very slow
rate of proliferation. As a consequence, when labeled by
a pulse of radioactive nucleotides, the stem cell pool
maintains positivity for a very long period of time (label-
retaining cells). When proliferating, their division is
asymmetric; this means that the first daughter cell keeps
its stem cell properties. In contrast, the second one, the
so-called transit-amplifying cell, is the source feeding
the differentiation cascade. The transit-amplifying cell
rapidly goes through the cell cycle stages to mitosis. The
overall number of possible mitotic rounds yet is
restricted. Characteristically, these adult tissue stem cells
are equipped with protein pumps in their membrane.
They efficiently export toxic agents such as xenobiotics
from the cytoplasm (Challen and Little, 2006; Mimeaut
and Batra, 2006; Inaba and Yamashita, 2012). Hereby,
stem cells minimize the risk of damage to their genome.
While work with stem cells in vitro has been
accomplished, it is being noticed that adult tissue stem
cells in vivo thrive in a special microenvironment. This
is called the niche (Watt and Hogan, 2000; Das and
Zouani, 2014). A current challenge to further
applicability of stem cells is to define the niche’s
properties in detail.

Malignancies of blood cells are assumed to arise due
to aberrations from the regular course of differentiation
of bone marrow stem cells. These molecular deviations
and their consequences then account for the production
of abnormal cells, which are released into circulation. In
view of the success rate to graft solid tumor cells to a
genetically non-identical donor of the same species, the
existence of cells with properties of stem cells had also
been proposed for solid tumors (Glinsky et al., 2008;
Sell, 2010). Work on teratoma cells supported the
concept for tumor stem cells. In fact, when introduced
into the cavity of a blastocyst, such cells even took part
in forming the embryo and adult animals, with
phenotypic properties dependent on the teratoma cell
donor (Mintz and Illmensee, 1975; Solter, 2006). These
data harmonize well with observations on the fate of
embryonic stem cells, which are the source of a

teratoma/teratocarcinoma when grafted to the adult host.
These findings point to two important conclusions: i)
stem cells have potential to become malignant, and ii)
the microenvironment has a respective bearing on these
rather undifferentiated but genetically normal cells.
Further work on different tumor types showed that
cancer stem cells can play salient roles in the majority of
the tested carcinomas, such as those developing in breast
(Owens and Naylor, 2013), prostate (Chen et al., 2013),
colon/rectum (Fanali et al., 2014), lung (Singh and
Chellapan, 2014), skin (Shakhova, 2014), in the head
and neck region (squamous cell carcinomas) (Chovanec
et al., 2005; Zhang et al., 2012) and/or in brain (Pointer
et al., 2014). It is quite likely that cancer stem cells
underlie complications in cancer therapy, especially with
respect to minimal residual disease. Here, the cells,
which survive tumor therapy, are at the heart of initiating
tumor relapse. As a down-side for the success of
chemotherapy, these cells can remove cytostatic drugs
from their cytoplasm by the efficient transport
mechanism mentioned above (Motlík et al., 2007).
Having herewith emphasized the relevance of stem cells
for onset and propagation of malignancy, it is instructive
to next deal with the potential of host factors to affect
disease progression.

In this context, the paradigm in tumor biology has
shifted from rather exclusively focusing on tumor cells
to the microenvironment, with its immune and stromal
cells as well as mediator proteins produced by these cell
types (de Visser et al., 2006; Le Bitoux and
Stamenkovic, 2008; Mbeunkui and Johann, 2009;
Grivennikov et al., 2010; Galdiero et al., 2013;
McAllister and Weinberg, 2014; Marcucci et al., 2014).
In addition to cancer-associated fibroblasts (CAFs),
which are frequently positive for α-smooth muscle actin
(SMA), and infiltrating leukocytes such as cancer-
associated macrophages (CAMs), several biochemical
components of the extracellular matrix (ECM) play a
role to endow the microenvironment with pro-tumoral
properties (Fig. 1) (Plzák et al., 2010; Gatazzo et al.,
2014). 
Cancer-associated fibroblasts

The origin of CAFs is not yet fully clear. Its ancestry
is traced to different sources, one of them epithelial-
mesenchymal transition (Petersen et al., 2003; De Wever
et al., 2008; Haviv et al., 2009). Another route to CAFs
can start from bone marrow-derived mesenchymal stem
cells (Mishra et al., 2008; Nishimura et al., 2012).
Acting on malignant cells, such stromal cells can
significantly stimulate both tumor growth and metastatic
behavior (Karnoub et al., 2007) as well as suppress
immune recognition of cancer cells (Ling et al., 2014).
They are thus considered as “culprits in tumor growth,
immunosuppression and invasion” (Stromnes et al.,
2014).

Bone and/or cartilaginous metaplasia are also
present in malignant tumors such as squamous cell
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(Katase et al., 2008) and breast carcinomas (Downs-
Kelly et al., 2009). Occurrence of bone or cartilage in
tumor stroma is an indicator for the presence of
mesenchymal stem cells at this site and reflects their
inherent plasticity for differentiation. Interestingly, CAFs
isolated from basal cell carcinoma induced expression of
transcription factors Oct-4 and Nanog, markers of
embryonic stem cells, in co-cultured mouse 3T3
fibroblasts. Moreover, the capacity for differentiation of
these 3T3 cells exposed to CAFs then comes close to the
plasticity of mesenchymal stem cells (Szabo et al.,
2011). These data add support to the growing notion that
the stromal part is an active player for tumor biology. Of
note, recent work on autochthonous mouse models of
pancreatic cancer presenting intraepithelial neoplasia,
acinar-to-ductal metaplasia and progression to ductal
adenocarcinoma highlighted the possibility for a
favorable aspect, i. e. host protection by precluding to let
more aggressive tumor cells arise (Oezdemir et al., 2014;
Rhim et al., 2014). This evident ambivalence justifies
respective research efforts. In their vicinity, CAFs are
apparently capable to reprogram cells to let them gain a
stem cell-like character. As the test case of pancreatic
cancer exemplifies, tumor cells may alternatively
acquire a moderate or advanced status of differentiation
(Gore and Korc, 2014). 

In addition to the noted sources, CAFs can develop
from fibroblasts of the local mesenchyme (Mueller et al.,
2007), in situ harboring SMA (Cirri and Chiarugi, 2011).
Bioactive fibroblasts, having properties similar to CAFs
but without SMA, can also be generated under in vitro
conditions by co-culture either with carcinoma cells or
with normal keratinocytes (Kolář et al., 2012). As will
further be discussed below, the pattern of expression of
mediator proteins by fibroblasts is drastically altered, in
turn changing the micro-environment (Fig. 2). By
comparing the activity levels of normal fibroblasts and
CAFs isolated from squamous cell carcinoma, one
crucial difference was observed: whereas the activation
of normal fibroblasts was time restricted, that of CAFs
was prolonged to more than four weeks in culture
(Szabo et al., 2013). 

A key effector for the conversion of local fibroblasts
to CAFs is the transforming growth factor-β1 (TGF-β1)
(Casey et al., 2008; Brenmoehl et al., 2009). To pinpoint
any effect of cancer cells on normal fibroblasts in vitro,
both cell types were co-cultured. Although cancer cells
alone were not able to induce production of SMA in
normal dermal fibroblasts, proteomic analysis
demonstrated a marked impact of the co-cultured
epithelial cells on presence of proteins operative in the
cytoskeleton, especially in actin functionality, such as
caldesmon-1, cofilin and calponin-2 (Jarkovská et al.,
2014). In addition, significant changes in serum levels of
mRNA coding for apoptosis/growth-regulatory proteins
of the p53 pathway such as p53 itself, p21, cyclin D,
MDM2, CASP3, and MAX as well as Bcl-2 family
proteins (Bcl-2, Bcl-XL, Bcl2L1, Mcl1, and BclAF1)
were observed in patients with head and neck squamous
cell cancer (Čapková et al., 2014). Evidently,
intercellular communication in this system markedly
influenced gene expression poised to reprogram motility
and cell growth properties. 

Turning back to TGF-β1 and its ability to alter
cellular aspects within the microenvironment, a pertinent
question was whether other proteins have similar
capability. We have recently identified a new class of
endognous factors for CAF generation, i. e.
adhesion/growth-regulatory lectins of the galectin family
(for review, please see Cooper, 2002; Gabius et al., 2011;
Kaltner and Gabius, 2012; Smetana et al., 2013b).
Galectins share the β-sandwich fold and a sequence
signature with a central Trp residue in the contact site for
sugars, preferentially β-galactosides as reflected in the
name (Barondes, 1997; Gabius, 1997; Kasai, 1997;
Ahmad et al., 2002; Hirabayashi et al., 2002). Like other
classes of lectins active extracellularly in cell adhesion
and ordered cell migration (Gabius et al., 1985a; Gready
and Zelensky, 2009; Schwartz-Albiez, 2009), galectins
can serve as bridge between cells or cells and the ECM
(Brewer, 1997). Equally important, bi- and oligovalency
of galectins is instrumental for cargo selection and
transport as well as cluster formation on membranes. For
example, N-glycans with N-acetyllactosamine termini
guide galectin-4-dependent apical or axonal glycoprotein
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Fig. 1. Cancer-associated fibroblasts (CAFs) and distinct types of
leukocytes such as cancer-associated macrophages (CAMs) contribute
to establish a micromilieu that supports tumor cell growth and
spreading.



routing and status of microdomain integrity is a switch
for galectin affinity (Stechly et al., 2009; Kopitz et al.,
2010; Velasco et al., 2013), The capacity to read distinct
glycan signatures on cellular structures (in terms of
structure and topology of presentation) is readily
revealed by applying human galectins as tool in cyto-
and histochemistry (Gabius et al., 1991; Holíková et al.,
2002; Habermann et al., 2011; Kopitz et al., 2013). The
target-specific binding, e.g. to glycans of integrins, will
induce outside-in signaling. Hereby, galectins elicit
diverse cellular responses when binding cell surface
glycans, for example mediator release or cell cycle arrest
and anoikis/apoptosis (Villalobo et al., 2006; André et
al., 2007; Wang et al., 2009). Following their secretion
from a cell via a non-classical pathway, they thus
become intimately involved in intercellular cross-talk, as
the case study on communication between activated
regulatory/effector T cells exemplifies with clinical
relevance (Wang et al., 2009; Wu et al., 2011a).

Building on its capacity to direct human dermal
fibroblasts to the myogenic lineage (Goldring et al.,
2002) and also giving heed to its role in tumor
promotion by mesenchymal stromal cells (Szebeni et al.,
2012), we tested galectin-1. It is a homodimeric protein
with contact sites for glycans at opposing sides ideal for
cross-linking (López-Lucendo et al., 2004). These assays
revealed activity (Dvořánková et al., 2011). It was
additive to and independent from that of TGF-β1 (Fig.
3). Thus, this human lectin is a potent elicitor of CAF
generation. Because tumors can express a network of
galectins, as demonstrated exemplarily for brain, breast,
colon, salivary gland, skin and testicular tumors (Gabius
et al., 1986; Camby et al., 2001; Kayser et al., 2003;
Čada et al., 2009; Saussez et al., 2010; Remmelink et al.,

2011; Dawson et al., 2013; for a recent review, please
see Gabius and Kayser, 2014), we proceeded to test three
further members of this family. Activity was revealed
also for galectins-3 (the full-length protein but not its
proteolytically truncated form), -4, and 7 (Dvořánková et
al., 2011). These proteins belong to the three different
subgroups of the galectin family, the non-covalently
associated homodimers (galectins-1 and -7), the tandem-
repeat-type proteins with two different lectin domains
connected by a linker peptide (galectin-4) and the
chimera-type galectin-3 with its tail of collagen-like
repeats and an N-terminal peptide attached to the lectin
domain (Kasai and Hirabayashi, 1996). Together with
galectin-1, they often are present in tumors and their
stroma, thus likely operative accordingly in situ. As
consequence, endogenous lectins secreted from tumor
cells or produced by stromal cells obviously deserve the
same attention as put on growth factors. 

Besides the effect on fibroblasts, galectin-1 also
stimulates the production of a network of ECM fibers.
This is rich in fibronectin, tenascin and galectin-1 itself
(Dvořánková et al., 2011; Mifková et al., 2014). For
endothelial (HUVEC) cells, the matrix is suited to
stimulate proliferation (Perželová et al., 2014). To
address the issue on validity of extrapolation from in
vitro to in vivo squamous cell carcinomas of the head
and neck were analyzed. This work led to a significant
correlation between presence of galectin-1 in tumor
stroma and presence of SMA-positive CAFs. Further
examining gene expression profiles by microarrays,
cancer cells isolated from tumors rich in stromal CAFs
and galectin-1 had higher signal intensities for genes
implicated in cancer progression such as MAP3K2,
TRIM23, PTPLAD1, FUSIP1, SLC25A40 and SPIN1
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Fig. 2. Markedly elevated expression of genes
for chemo- and cytokines as well as growth
factors in normal human fibroblasts (HF; set to
1) by co-culture with cells of a squamous cell
carcinoma (FaDu) or keratinocytes (K). The
same procedure with non-tumorigenic
immortalized cells (HaCaT) tr iggered
comparatively minor effects; (kindly provided by
Dr. Michal Kolář and Dr. Hynek Strnad from the
Institute of Molecular Genetics of the Academy
of Sciences of the Czech Republic v.v.i. in
Prague).



than preparations from cells isolated from tumors with
low levels of the lectin and SMA positivity (Valach et
al., 2012). That stromal presence of galectins can be
associated with an unfavorable prognosis, as indicated
for breast cancer and galectins-1 and -3, respectively
(Jung et al., 2007; Moisa et al., 2007), fits into this
concept. A rather general role of galectin-1 is indicated
when further noting its respective activity in other types
of carcinoma, e. g. oral squamous cell carcinoma with
impact on SMA positivity, fibronectin/collagen I
production and CCL2 presence (Wu et al., 2011b) or
pancreatic ductal adenocarcinoma with enhanced
Hedgehog pathway signaling in desmoplasia associated
to tumor progression (Martínez-Bosch et al., 2014).
Concerning the aspect of the age of normal fibroblasts, it
is noteworthy that adult cells were found to produce
more galectin-1 than foetal fibroblasts (Ho et al., 2014).
Will CAFs affect cell types other than malignant cells?
CAFs are also able to even influence normal
keratinocytes to acquire a poorly differentiated (tumor-
like) phenotype, as we observed in basal/squamous cell
carcinomas (Lacina et al., 2007a, b) and in benign
tumors, here dermatofibroma (Kideryová et al., 2009).

Of note, this phenotype is rather similar to that of
epidermal stem or prenatal cells. An effect of stromal
fibroblasts had also been noticed in other types of
tumors such as malignancies of breast (Casey et al.,
2009), pancreas (Hwang et al., 2008) and prostate
(Hayward et al., 2001). On the cellular level, marked
effects of CAFs on proliferation, epithelial-mesenchymal
transition and migration had been reported (Orimo et al.,
2005; Fujita et al., 2009; Martin et al., 2010). To
contribute to resolve the arising issue on the relationship
between the response and the origin of CAFs a
comparative analysis was performed in homo- and
heterologous systems. Fibroblasts isolated from
basal/squamous cell carcinoma and melanoma affected
breast cancer cells in a manner similar to that observed
by co-culture with fibroblasts isolated from a skin
metastasis of breast cancer (Dvořánková et al., 2012).
These results indicated that the activity of CAFs will not
be strictly tumor-type specific. 

In culture and in situ, CAFs can act via contacts and
also via the production of cytokines/growth factors,
proteolytic enzymes and ECM. As noted above, effectors
such as lectins are known to act directly on cells or to act
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Fig. 3. Extent of occurrence of smooth muscle actin-positive myofibroblasts in control culture of normal human fibroblasts is very low (A-D). Exposure
of cells to galectin-1 (C), TGF-β1 (C, E) and TGF-β3 (F) stimulates generation of these myofibroblasts from normal dermal fibroblasts. Galectin-1 exerts
an additive effect to TGF-β1 (G1, G2). Blocking of galectin-1 binding expectably reduces extent of myofibroblast generation. Figure is adopted from
Dvořánková et al. (2011), with kind permission of S. Karger AG, Basel.
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Fig. 4. Galectin-1 stimulates conversion of fibroblasts to smooth muscle actin-positive myofibroblasts (A1, A2). These cells produce a complex network
of fibers in the extracellular matrix rich in fibronectin and galectin-1, as demonstrated by the measurement of fluorescence profiles of these two
components (A1, A2, B). Production of collagen types 1 and 3 was negligible after the treatment (C, D). Besides galectin-1, the proto-type galectin-7
also turns fibroblasts into myofibroblasts (E). Extracellular matrix produced by these cells contained galectin-1 (E) but not galectin-7 (F). When this
network of extracellular matrix was colonized by human keratinocytes in vitro, they actively resorbed this network (G). Of note, these keratinocytes were
very small and expressed a marker for low-degree of differentiation status, i. e. keratin 19 (H). Such rather small keratinocytes including keratin 19
positive cells were not observed in classical culture on plastic (I). Figure is adopted from Dvořánková et al. (2011), with kind permission of S. Karger
AG, Basel.



as elicitors by induction of cytokines/growth factors
(Gabius, 2001; Timoshenko et al., 2010; Ledeen et al.,
2012). For example, galectin-3 augments transcription of
genes for the chemokines CCL2, 5, 8 and 20 as well as
CXCL8 in the range of 3.4-27fold in macrophages
(Papaspyridonos et al., 2008) and stimulates production
of CCL2, 3 and 5 in synovial fibroblasts suited to recruit
mononuclear cells (Filer et al., 2009). These mediators
will be discussed further below. That this lectin is a
mitogen for fibroblasts and an inducer of collagen I gave
reason to link its early on-set expression to failure of
hypertrophied hearts (Sharma et al., 2004), broadening
clinical correlation.

At this stage, it is also informative to more closely
define differences between fibroblast preparations.
When comparing gene expression profiles of normal
fibroblasts and CAFs isolated from head and neck
squamous cell carcinoma by microarrays, differences in
nearly 600 genes were observed, among them IGF2 and
BMP4 appearing as most noteworthy (Strnad et al.,
2010). Important growth factors/cytokines produced by
CAFs and acting on cancer cells are compiled in Table 1.
These factors promote cancer cell proliferation and
migration as well as the epithelial-mesenchymal
transition, all relevant for progression and spreading of
tumor cells from the primary site. To the same outcome,
proteolytic enzymes produced by CAFs can likewise be
important for epithelial-mesenchymal transitions and
tumor progression with spread to distant organs
(Stuelten et al., 2005; Orlichenko and Radisky, 2008;
Saussez et al., 2009; Taddei et al., 2013). That matrix
metalloproteinases (MMPs) -2 and -9 (together with
increased filopodia occurrence) in oral squamous cell
carcinoma cells and MMP-9 in murine lymphoma and
HeLa cells are targets for upregulation by galectins-1
and -7 (Demers et al., 2005; Park et al., 2009; Wu et al.,
2009) adds further evidence to the concept of galectin
relevance for different effector routes. Matrix
degradation by ADAM-15, in contrast, is negatively
regulated with galectin-1 presence (Camby et al., 2005).

Turning to the ECM, it represents more than just an
inert protection/stabilization scaffold for cells. It is
organized either into a complex meshwork of connective
tissue or it forms the basement membrane. The structure
of the ECM and its composition dynamically reflect
functional requirements of tissues, with an intricate
balance between matrix production and breakdown by
lytic enzymes. Because components of the ECM have

been referred to as “Janus-faced” (Tímár et al., 2002),
the actual context is a salient factor to foresee functional
implications. As proof-of-principle representatives of the
ECM in tumors, tenascins-C and W, modular proteins
equipped to engage in multiple contacts, were proven to
play a major role in the course of tumor growth (Brellier
and Chiquet-Ehrismann, 2012), frequently in concert
with laminins (Franz et al., 2006). Other ECM
constituents that participate in tumor formation are
periostin (Tilman et al., 2007) and heparan sulfate
proteoglycans (Gomes et al., 2013). The
glycosaminoglycan chains of the proteoglycans can
serve as a storage place for chemo- and cytokines and
growth factors (Buddecke, 2009). Fibronectin in the
ECM of malignant tissue, a counterreceptor for galectins
via its glycans (André et al., 1999), is able to influence
vascularization of tumor stroma (van Obberghen-
Schilling et al., 2011). As with the glycans, the three-
dimensional architecture of the ECM will likely be
pivotal, besides the composition. This topological aspect
also works in the interplay of lectins an ECM. Because a
commercial matrix (Matrigel) loaded with galectin-1
was highly efficient to present the lectin for inducing
apoptosis of activated T cells (He and Baum, 2004),
matrix properties can definitely modulate a lectin’s in
situ activity status. Moving from this (glycobiological)
secreted effector to cells, the inflammatory cells
infiltrating the tumor also deserve proper emphasis.
Inflammatory cells: a double-edged sword

Stimulation of the immune defence, with local
infiltration by inflammatory cells, had been faithfully
interpreted as favorable indicator, of benefit for patients.
By uncovering unsuspected mechanisms, this view has
been subject to a paradigmatic change. From the side of
the stem cells, their own immunomodulatory properties
minimize the risk of their recognition and destruction by
defence mechanisms (Maccalli et al., 2014). In addition
to such attenuation regulatory T cells, myeloid-derived
suppressor cell and CAMs are able to downregulate
cancer surveillance and increase the tolerance of the
immune system to cancer cells. Toward the same
outcome, cells such as CAMs have a strong tumor-
supporting effect by locally enhancing the availability of
pro-inflammatory (and tumor-stimulatory) cytokines
such as interleukin-6, teaming up with CAFs (please see
Fig. 2). Of note, TGF-β1, a member of the cytokine
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Table 1. Examples of growth factors/cytokines/chemokines produced by CAFs in different types of cancer.

Type of cancer Growth factor/cytokine/chemokine Reference

Basal cell cancer IGF-2, FGF-7, Lep, TGF-β3, GREMLIN Sneddon et al., 2006; Szabo et al., 2011
Breast CCL-5, IL-6, IL-8, CXCL-7, CXCL-12, SDF-1 Orimo et al., 2005; Karnoub et al., 2007; Korkaya et al., 2011
Pancreas TGF-β1−3, BMP-4, FG2-1, FGF-2, FGF-7, FGF-10, HGF, CXCL-12, IL-6, LIF, NGF Hua et al., 2006; Mahadevan and von Hoff, 2007
Prostate FGF-2, TNF-α Kaminski et al., 2006
Squamous cell cancer IGF-2, BMP-4, IL-6, IL-8, CXCL-1 Strnad et al., 2010; Kolář et al., 2012



family, exerts anti-immune activities (Jackaman and
Nelson, 2014; Sideras et al., 2014). Galectin-1 in the
tumor stroma, as noted above, may augment
immunosuppression by eliciting apoptosis in activated T
cells (Pace and Baum, 1997; Smetana et al., 2013b).
However, it should be added that suited glycan display
can also make tumor cells susceptible to galectin-1-
dependent anoikis/apoptosis induction, rendering the
activity profile of this multifunctional lectin dependent
on the context (Sanchez-Ruderisch et al., 2011; Smetana
et al., 2013b). In conclusion, presence of inflammatory
cells (and their secreted proteins) has inherent
ambivalence precluding immediate and reliable
predictions, a challenge for future research. The required
monitoring will extend the data basis for allowing to
draw analogies to other process cascades.
Wound/tissue healing

As previously highlighted in the seminal paper by
Dvorak (1986), numerous cellular events appear to be
shared by tumors and wounds, with a successful
outcome in wound healing. Looking more closely at skin
wound healing, the entire process can be divided into
three phases. They cannot strictly be separated from
each other (Barbul and Regan, 1993; Reinke and Sorg,
2012): i) inflammatory phase, ii) proliferation phase and
iii) maturation/remodeling phase. Broadening its
implications, it is justified to apply these three categories
to other repair processes, too, for example in striated
muscle (Bentzinger et al., 2013). Starting wound
healing, clotting of blood and migration of inflammatory
cells to the injury site occur. In the acute phase,
polymorphonuclear leukocytes (PMNL) establish the
demarcation line. It delimits necrotic/damaged tissue
from vital parts. PMNL are replaced by tissue
macrophages during the chronic phase of inflammation.
Approximately two days following the injury, fibroblasts
begin to populate the wound, proliferate and produce
constituents of the ECM. They also contribute to the
microenvironment in terms of its profile of chemo- and
cytokines and growth factors (Table 2). Immune cells,
predominantly micro- and macrophages, are responsible
for removal of tissue debris, and they also protect the
wound against infections, mainly by bacteria and fungi.
In this defense line, lectins such as galectin-3 (MAC-2
antigen) or the tandem-repeat-type mannose receptor are
engaged (Gabius, 2006; Quattroni et al., 2012).
Obviously, the term “double-edged sword” fits well to
describe the spectrum from beneficial to harmful
activities of the local effector panel (Behm et al., 2012).
In wound healing, lack of injury-site infiltration by
inflammatory cells markedly retards the process (Grim
et al., 1988). Fittingly, a poor inflammatory response
resulting in a low level of scar formation is observed in
neonates and newborns (Bermudez et al., 2011; Borský
et al., 2012).

Having described the relevance of SMA-positive
CAFs and aspects of galectin functionality, the question

arises as to whether equivalent cells and any galectin are
an active players of wound healing. Indeed, cellular
accumulation in granulation tissue takes place, and
galectin-1 reactivity, a prerequisite for activity, has been
detected using the human lectin as histochemical tool
(Klíma et al., 2009; Gál et al., 2011; Grendel et al.,
2012). Using re-epithelialization of rat cornea as model,
galectin-3 (and galectin-7 but not galectin-1) was active
(Cao et al., 2002; Yabuta et al., 2014). Interestingly,
galectin-7 is also implicated in repair following
menstruation. Wound cell layers exposed to the lectin (at
2.5 µg/ml) showed transcriptional upregulation of ECM
constituents including fibronectin and TGF-β1 (Evans et
al., 2014). As then expectable, myofibroblasts positive
for SMA are common in skin-wound granulation tissue,
TGF-β also belonging to the local inductors secreted
from fibroblasts as described for cancer. Due to these
cells’ contractility they are responsible for wound
contraction that effectively reduces the area necessary
for re-epithelialization (Werner et al., 2007; Kapoor et
al., 2008). An insufficient level of presence of
myofibroblasts and/or prolonged inflammation at the
wound site can account for extensive scar formation,
prompting to consider treatment of wounds with focus
on proper functions of fibroblast/myofibroblasts as an
attempt to minimize its extent in patients (van Beurden
et al., 2005). Interestingly, when compared to skin
healing, scarification is significantly reduced in adult
oral mucosa, owing to similarities in the healing process
seen in neonates (Mak et al., 2009). Combination of all
factors mentioned above influences the rate of re-
epithelialization in the case of skin wound repair, as it
does for proliferation and ensuing differentiation of
satellite cells to myoblasts and fusion to muscle fiber in
striated muscle repair (Reinke and Sorg, 2012;
Bentzinger et al., 2013). Stem or precursor cells, which
receive signals for their proper functions from
inflammatory cells and fibroblasts, serve as pool and
source for the cell material in repair. 

Mutatis mutandis, cell generation proceeds similarly
in tumors, but terminal differentiation and “wound
closure” are not attained (Smetana et al., 2013a). The
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Table 2. Examples of main growth factors/cytokines/chemokines
involved in wound healing.

Mediator Producer Target cell Reference

VEGF K, F, MF, E E, MF Behm et al., 2012
IGF-2 M, Ch, O M, Ch, O Koh et al., 2011
FGF-2 F K Peplow and Chatterjee, 2013
TGF-β1−3 K, F, MF, platelets F, K, MF, E Behm et al., 2012
IL-1 MF, K, F E, MF, K, F Behm et al., 2012
IL-6 F, E, MF, K E, MF, K Behm et al., 2012
IL-8 F, K K, F, E Gillitzer and Goebeler, 2001
CXCL-1 F, K K Gillitzer and Goebeler, 2001

K: keratinocytes, F: fibroblasts, E: endothelial cells, MF: macrophages,
M: mesenchymal cells, Ch: chondrocytes, O: osteoblasts



last step of wound healing is represented by the
remodeling of connective tissue, the basis of any scar
formation. Due to the implications on elasticity its
occurrence is physiologically undesirable. Proteolytic
degradation and ECM remodeling underlie the
reconstitution of the normal status. Again, such
processes re-appear in cancer, with different
consequences (Behm et al., 2012). If the inflicted
damage by wounding is too serious, fibrosis can result.
Here, functional cells are replaced by scar-like
connective tissue. Fibrosis usually represents the final
stage of organ damage with none or only very limited
therapeutic perspectives for reversal, myofibroblasts a
prominent cell type on the route to its establishment,
evocative of their role in cancer (Lopéz-Novoa and
Nieta, 2009; LeBleu et al., 2013). With respect to
effectors, a galectin (i. e. galectin-3), again, has been
delineated to be critically involved in fibrosis, as
observed in model studies especially using knock-out
mice and looking at heart, kidney, lung and pancreas
(Wang et al., 2000; Henderson et al., 2006, 2008; Nishi
et al., 2007; Liu et al., 2009; Cullinane et al., 2014).
Potentially counterbalancing this profibrotic activity,
galectin-9 (at 1-3 µg/ml) significantly increased the
percentage of annexin V-positive activated human
fibroblasts and was less expressed in patients with
idiopathic pulmonary fibrosis (Matsumoto et al., 2013).
These observations are indicative for a protective role.
From delineating analogies to envisioning
perspectives

The aim of regenerative medicine is to rationally
take advantage of the potential of stem cells in
therapeutic protocols (Mironov et al., 2004). For
example, mesenchymal stem cells can be a resource for
correcting defects of the locomotory system (Kuhn and
Tuan, 2010). Gaining detailed insights into the way
growth factors help to shape a microenvironment suited
for stem cell propagation can establish protocols for
successful in vitro manipulation (Das and Zouani, 2014).
Toward this end, ECM properties also come into play, e.
g. by favoring growth of human umbilical vein
endothelial cells (Perželová et al., 2014) or human
keratinocytes. These cells acquired a low level of
differentiation as reflected by positivity for keratin 19
(Fig. 4). In this respect, our work on galectins adds
protein-carbohydrate recognition to the modes of
molecular interactions, whose manipulation can have a
therapeutic perspective.

Having been initially detected in malignant cells by
haemagglutination in extracts of murine N-18
neuroblastoma cells (Teichberg et al., 1975), then
purified by affinity chromatography from murine and
human tumors (Gabius et al., 1984, 1985b) and localized
in human (breast) tumors immuno-histochemically
(Gabius et al., 1986), galectin-1 has become a role model
for functional analysis in cancer biology and wound
healing. Its presence directs production of a bioactive

ECM and myofibroblast generation (Dvořánková et al.,
2011), thus inspiring to target this process in tumors by
unspecific means (Mifková et al., 2014) or by inhibitors
blocking its binding to glycans (Murphy et al., 2013).
Synthetic tailoring of the sugar headgroup and of the
scaffold for topologically optimal modes of glycocluster
preparation up to presentation on glycodendrimersomes
are being merged to explore possibilities for selective
galectin blocking at high inhibitory potency (André et
al., 2003, 2010, 2011, 2012; Percec et al., 2013; Zhang et
al., 2014). The controlled (beneficial) activity in wound
healing, on the other hand, gives direction to consider
protein engineering. Respective ideas for design can
either be derived from the study of natural single
nucleotide polymorphisms (Ruiz et al., 2014) or from
performing systematic mutational re-designing of the
lectin site or other regions (Imamura et al., 2011; Kopitz
et al., 2014). 

Alternatively, learning from physiological regulation
of lectin presence, e. g. by metabolites such as butyrate
(Katzenmaier et al., 2014), makes molecular switches
available. Taking one step further, orchestration of
expression of lectins, with intra-network coordination
not only seen in tumor but also diseases such as
osteoarthritis (Toegel et al., 2014), and of glycans acting
as counterreceptors in growth control, e. g. on pancreatic
carcinoma cells (Capan-1) in vitro by the tumor
suppressor p16INK4a which downregulates α2,6-
sialylation of the fibronectin receptor to make these cells
susceptible to anoikis induction (Sanchez-Ruderisch et
al., 2010; Amano et al., 2012), can inspire an innovative
approach to make headway with tailoring stem cells to
become tools for regenerative medicine (Mironov et al.,
2004). Interestingly, the healing process in corneal
wounds has a bearing on expression of
glycosyltransferases implicated in the synthesis of
galectin ligands. Remarkably, enzymes for T antigen
synthesis, a ligand for galectin-3 (Krzeminski et al.,
2011), are upregulated, that for α2,6-sialylation
downregulated (Saravanan et al., 2010). Explicitly, the
reprogramming of cell surface glycosylation by altering
distinct expression properties of cell surface
determinants such as a TGF-β1 receptor (Patsos et al.,
2009), and of intracellular proteins such as the Rho
GTPase Rac1 also involved in wound healing (André et
al., 2014) or by changing a microenvironmental factor of
inflammation (NO) (van de Wouwer et al., 2011) can be
viewed as means toward regulating susceptibility to
tissue lectins. Moreover, at the same time, manipulations
of glycosylation can modulate availability of growth
factor receptors. Such changes make their presence felt
already at the folding stage and/or impair protein
stability (Patsos and Corfield, 2009; Zuber and Roth,
2009). In fact, glycosylation then has a bearing on the
extent of cell surface presence of glycoproteins, as
recently observed for the epidermal growth factor
receptor expressed in cell lines deficient in distinct
aspects of galactosylation (Gabius et al., 2012). 

By letting deciphering the cross-talk between tissue
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lectins and their counterreceptors in tumor
biology/would healing become a topic of research
activity, using techniques from biophysical chemistry to
cell biology for analysis (Solís et al., 2014),
contributions to advance applicability of the potential of
stem/precursor cells can be expected. Also considering
tissue lectins as elicitors, e. g. by affecting production
and secretion of chemo- and cytokines and growth
factors and generating a particular composition of the
ECM, shaping of microenvironmental properties can be
envisioned. In this sense, monitoring glycan and lectin
presence in situ has merits beyond a mere status
description (Danguy et al., 1994). In view of the
unsurpassed capacity of glycans for storing biological
information and their emerging significance as versatile
signals for diverse bioprocesses (Gabius et al., 2011),
exploring this new ground can most likely be very
fruitful.
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