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Psoriasis is a skin inflammatory disorders that affects 3 % of the human population. 

Although several therapies based in the neutralization of proinflammatory cytokines have been 

used with relative success, additional treatments are required. Here we report by in silico 

analysis of publicly available gene expression data of psoriasis lesional and non-lesional skin, 

together with the analysis of vitamin B6 metabolites in the sera of psoriasis patients before and 

after PUVA treatment, altered vitamin B6 metabolism at both local and systemic levels. 

Functional studies in the zebrafish embryo/larval model shows that different vitamin B6 

vitamers were able to reduce in a dose-dependent manner skin neutrophil infiltration, oxidative 

stress and NFB activity in three independent skin inflammation models, namely tumor 

necrosis factor α receptor 2 (Tnfr2, also known as Tnfrsf1b), serine peptidase inhibitor, Kunitz 

type 1 a (Spint1a) and Clathrin interactor 1a (Clint1a) deficient animals. Furthermore, glycogen 

phosphorylase L (PYGL) and glucose-6-phosphate 1-dehydrogenase (G6PD), two vitamin B6-

dependent enzymes were revealed as potential targets for the treatment of psoriasis. 

 

Keywords: skin, psoriasis, inflammation, neutrophils, vitamin B6, oxidative stress, NF-B, 

hydrogen peroxide. 
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Immunity 

Immunity is the balance between protection against foreign elements, like 

microorganism, and the tolerance to avert allergy and autoimmune diseases (Waller and 

Sampson, 2018). A variety of molecules, cells and tissues participate in a coordinated response 

conforming the immune system. Depending on the reaction time and specificity of the 

response, immune system can be classified in two main branches, named innate and adaptive 

immunity (Parkin and Cohen, 2001).  

Despite innate and adaptive responses play it role in different moments, there is a 

coordination and a regulation between them (Dempsey et al., 2003). This requires control 

mechanisms to avoid self-immune responses that could develop disorders as lupus, diabetes, 

hypothyroidism, rheumatoid arthritis or psoriasis (Gregersen and Behrens, 2006). 

Innate immune system 

The innate immune system is the fastest response against infectious threats. Physical 

and chemical barriers like the epithelia and its secretions are the first protection layer against 

the environment and possible pathogens (MacPherson and Austyn, 2013). When these barriers 

have been vulnerated, soluble molecules, as complement and different kind of cells, as natural 

killer, mast, dendritic and myeloid cells, namely neutrophils and macrophages, are the main 

players in the innate immune response (Figure 1). 

Figure 1. Main characteristics of innate and adaptive immunity. Adapted from (Abbas et 

al., 2019). 
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Myeloid cells detect, phagocyte and clear the pathogen in the first hours after the first 

contact. They express pattern recognition receptors (PRRs) that can detect pathogen associated 

molecular patterns (PAMPs) and trigger the immune response (McComb et al., 2013). These 

receptors can also detect damage associated patterns (DAMPs) released after tissue disruption 

or by necrotic cells (Venereau et al., 2015). When PAMPs or DAMPs are detected, the release 

of chemokines and cytokines is induced to attract more immune cells (Medzhitov, 2007). 

Furthermore, dendritic cells can present the antigen to adaptive immune cells and lead to the 

activation of the adaptive immunity (Banchereau and Steinman, 1998). 

Adaptive immune system 

The adaptive immune system is specific and develops memory for future encounters 

with the same pathogen. While the innate immune system emerged 700 million years ago, 

adaptive immunity is more complex and appeared 450 million years ago in the first jawed 

vertebrates, fish (Schluter et al., 1999).There are two main classes of adaptive immunity, 

humoral and cell-mediated immunity. Both are carried out by different lymphocytes (Figure 

1).  

Humoral immunity protects from extracellular pathogens and is based on the antibody 

production by B lymphocytes. To recognize these pathogens, they express B cell receptors 

(BCRs) capable to detect components of infectious agents present in the blood or extracellular 

compartments (Abbas et al., 2019). On the other hand, the cell-mediated immunity can protect 

against intracellular pathogens and is based on the T lymphocytes. T cell receptors (TCRs) can 

recognize antigens presented by the major histocompatibility complexes (MHC) from the 

antigen-presenting cells (Neefjes et al., 2011). 

BCR and TCR are created through DNA reorganization generating specificity for every 

possible antigen. After finding the specific antigen the lymphocyte responsible of the receptor 

production proliferate and differentiate to attack the pathogen and rest in lymphoid organs until 

a next exposure to the same antigen. Lymphocytes expressing receptors that recognize self-

body components are eliminated by tolerance mechanisms. However, if these mechanisms fails 

it can drive to develop autoimmune disorders (Gregersen and Behrens, 2006). 
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 Inflammation 

Inflammation is the pathophysiological response of the innate immune system against 

infections or tissue damage, malfunction or stress. Its purpose is to neutralize the agent that is 

producing the damage (Chovatiya and Medzhitov, 2014). This response is developed after the 

activation of PRRs. 

Upon detection of a stimulus, tissue resident macrophages and epithelial cells start the 

inflammatory response. Then, neutrophils and monocytes, which are going to differentiates 

into macrophages, migrate on the way to inflammation site (Schmid-Schonbein, 2006). This 

migration is due to the production of proinflammatory cytokines and chemokines like tumor 

necrosis factor alfa (TNF), interleukins, mainly interleukin-1 beta (IL1B) and interleukin-8 

(CXCL8) by tissue residing phagocytic cells (Silva, 2010). These cytokines and chemokines 

together with other mediators as leukotriene B4 (LTB4) induce vasodilatation, increase the 

blood vessels permeability, causing swelling and the expression of the endothelial adhesion 

molecules and neutrophil recruitment are increased (Figure 2). 

Depending on the duration and the severity of the inflammatory response, it can be 

classified into phases acute or chronic. 

Figure 2. Local changes in the inflammation process. Adapted from (Huether and McCance, 

2017). 
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Acute inflammation 

The local acute inflammation manifestations are swelling, pain, heat (fever) and 

erythema. All of them derived from the vascular changes and the infiltration of immune 

components into the tissues (Huether and McCance, 2017). The main players are neutrophils 

and macrophages. After the successfully elimination of the damage, inflammation should end 

restoring the normal physiological conditions, this is the resolution of the inflammation 

(Kumar, 2018). If there is a progression of the response instead the resolution, it could derive 

to chronic inflammation. 

Chronic inflammation 

Chronic inflammation can arise when the pathogen is difficult to eliminate and persist 

in the time, when exist a hypersensitivity disease as autoimmune or allergic diseases, and when 

there is a long time of exposure to a toxic agent exogenous as silica or endogenous as 

cholesterol and other lipids that could induce atherosclerosis (Kumar, 2018). 

The features like increased vascularity and immune cell accumulation of the acute 

inflammation remains when it becomes chronic. But there is another kind of cells involved, 

lymphocytes. The neutrophils start to degranulate, lymphocytes become activated and 

fibroblast release mediator that induce more infiltration of immune cells, mainly macrophages 

and lymphocytes (Figure 3). 

The rising of the cases of chronic inflammatory diseases like rheumatoid arthritis, 

diabetes and psoriasis have become chronic inflammatory diseases as one of the major causes 

of morbidity and mortality in developed countries. 

Figure 3. Chronic inflammation. Adapted from (Huether and McCance, 2017). 
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Psoriasis 

Autoimmune and autoinflammatory disorders are a newly expanding concept in most 

medical areas, but with substantial relevance in the field of human dermatology (Murthy and 

Leslie, 2016). Among the several non-pathogenic skin disorders reported so far, one of the 

most recurrent is psoriasis. Psoriasis is a chronic, immune-mediated skin-disease with strong 

inflammatory and systemic manifestations, which possess a complex genetic architectural 

background (Greb et al., 2016; Woo et al., 2017).  

Figure 4. Cytokines in psoriasis.  General characteristics of psoriasis in humans. A) The 

abnormal keratinocyte proliferation produces characteristic sterile pustules overlying 

erythematous skin in the extremities of an adult patient. Redness areas denote inflammation 

signs. B) Classical histologic biopsy of lesional pustular psoriasis. The black arrowhead is 

pointing to an intense infiltration of immune cells affecting the different skin layers. (H&E, 

30×). Scale bar 80 μm. C) RNA-seq data fold change showing differential regulation of 

interleukins 1 to 36 in psoriatic lesions compared with healthy skin (Baliwag et al., 2015). 

Clinical manifestations of psoriasis vary and it can be classified in different type: 

psoriasis vulgaris, plaque psoriasis, scalp psoriasis, guttate psoriasis, inverse psoriasis, 

erythrodermic psoriasis, palmoplantar psoriasis, and pustular psoriasis (Lebwohl, 2018; 
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Raposo and Torres, 2016; Renton, 2014; Syed and Khachemoune, 2011). However, despite the 

particular phenotype expressed in each type, the pathophysiology in all psoriasis variants is 

characterized by an abnormal keratinocyte proliferation and strong immune cell infiltration 

among the different layers of the skin causing shared symptoms that include: intense itching, 

burning, and soreness (Ippagunta et al., 2016) (Figure 4A). These symptoms mostly result from 

the recruitment of immune cells to specific skin sections, which together with keratinocytes 

release potent inflammatory mediators, like interleukins (Figure 4B, C).  

All psoriatic phenotypes have been reported worldwide with a global prevalence within 

adult populations, regardless of sex, estimated at 3% of the total world population (Lebwohl, 

2003). However, prevalence estimates are strongly affected by marked variations observed 

among ethnic groups and geographical locations. In fact, reported incidence of psoriasis in 

Taiwan (Chang et al., 2009) and Japan is low (0.30%) (Kubota et al., 2015), moderate in Spain 

(2.31%) (Ferrandiz et al., 2014) or USA (2.50%) (Gelfand et al., 2005), and impressively high 

in Norway (11.43%), indicating that different races had diverse genetic backgrounds that 

profoundly affect the disease output (Danielsen et al., 2013). 

Patients affected with psoriasis suffer not only the externally exposed physical 

condition but, given its systemic characteristic, additional severe pathologies expressed as 

comorbidities use to be present as well (Parisi et al., 2013). Arthritis, autoimmune disease, 

cardiovascular disease, chronic obstructive pulmonary disease, inflammatory bowel disease, 

liver disease, metabolic syndrome, migraine, obesity, sleep apnea, psychiatric illness, sexual 

dysfunction, and addictive behavior have been repeatedly reported to promote a remarkably 

complicated disease loop in psoriatic patients (Capo et al., 2018; Greb et al., 2016; Molina-

Leyva et al., 2018).  Moreover, patients suffering the combination of extreme visually exposed 

psoriatic lesions, linked to a complex comorbidity ultimately can trigger an uncontrolled, 

strong emotional stress burden, that in the worst scenario shall lead to suicidal behaviors (Wu 

et al., 2017; Wu and Armstrong, 2019).  

 Pathogenesis of Psoriasis 

In all vertebrates, the skin consists of two multi-layered regions, the dermis, and the 

epidermis that is in contact with the environmental factors. Keratinocytes form the epidermis 

but are differentially represented and stratified according to the taxonomic level of the host. 

However, despite the species represented, the basic morphology is always present and 

continuously renewing (Chermnykh et al., 2018). Keratinocytes are versatile cells which 
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perform diverse essential mechanical protective functions while providing an immunological 

defense to the host (Johansen, 2017). Thus, understanding the regulation of keratinocyte 

proliferation, their complex functions, and the multiple interactions with immune cells is 

fundamental to get track of the pathogenesis of psoriasis.  

Despite psoriasis disease results from an immune disorder, at the very early stage 

neither innate nor adaptive cells are present in high numbers to produce the cytokines and 

related chemokines required on site to activate an exacerbate immune response. Therefore, it 

has been proposed that environmental factors via innate immune effectors, like the Toll-like 

receptors (TLRs), activate keratinocytes to release potent inflammatory mediators and active 

signaling molecules to recruit further macrophages, neutrophils, and mast cells that will 

amplify the inflammatory network and trigger the disease (Albanesi et al., 2018; Candel et al., 

2014; Schubert and Christophers, 1985). Indeed, psoriasis etiology is based on an increased 

epidermal keratinocyte turnover that produces a focal coalescing raised cutaneous plaque with 

consistent scaling and variable erythema in connection to the presence of excessive infiltrating 

immune cells (Buchau and Gallo, 2007). Using human biopsies and last generation microarray 

technology, recently it has been characterized the keratinocyte-specific transcriptome signature 

of lesional and non-lesional skin in psoriasis patients (Pasquali et al., 2018). Results revealed 

that keratinocyte-specific gene expression in psoriatic disease is mainly enriched for genes 

related to the cell cycle, innate immunity, DNA repair/replication, and keratinocyte 

development and differentiation, unequivocally supporting the notion that keratinocytes are 

significant contributors to molecular changes in psoriasis skin.  

Some causes of increased keratinocytes proliferation and disturbed cell maturation have 

been suggested. Among them, the excessive presence of cAMP, the altered metabolism of 

vitamins and calcium, or modifications in the arachidonic acid downstream signaling (Andres 

et al., 2017; Cubillos and Norgauer, 2016; Kharaeva et al., 2009; Setkowicz et al., 2015). These 

theories may in part explain some of the events occurring in psoriasis pathogenesis. However, 

due to critical overlapping mechanisms and the different immune cellular elements occurring 

in the development of the disease, several aspects could be overlooked, and much more 

research, particularly at the innate level is still missing. 

In contrast, identification of expanded infiltrates of T-cells in psoriatic lesions (Cai et 

al., 2012), composed of polarized T helper (Th) cells populations, particularly Th1 and Th17 

cells, and plenty pro-inflammatory mediators strongly put front the adaptive T-cells as crucial 
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effectors in psoriasis (Greb et al., 2016; Yamaguchi et al., 2018). However, the imbalance 

among Th cells subsets shown by the Th1 and Th17 cell increments, but not the regulatory Th2 

and Treg is a matter of interest which deserves further clarification. Whatever the case, several 

excellent reviews published so far have analyzed in detail the role and particularities of the 

adaptive effectors in psoriasis pathogenesis under several scenarios (Karczewski et al., 2016; 

Krueger and Bowcock, 2005; Singh et al., 2019).  

Nevertheless, despite the notorious advances on the contribution of T-cells in psoriasis, 

up to date the complete set of elements present in the pathogenesis of the disease is still 

unravelling and far of being completely understood. Our attention here faces the primary innate 

leukocytes present in the skin, namely neutrophils. On the sequence of inflammatory events 

triggered at the epidermis, keratinocytes initiate the response, and later myeloid cells, notably 

neutrophils take center stage in the pathogenesis of psoriasis (Ikeda et al., 2013). This 

controversial notion has been extended support by the histologic changes observed in different 

animal models which resemble psoriasis lesions, with a high detection of the archetypal pro-

inflammatory cytokine interleukin-1 (IL1), but with a limited presence of T-cell infiltrates. 

To clarify it, Nakajima et al. (Nakajima et al., 2010), following an elegant approach 

using IL1 receptor antagonist mutant (Il1rn -/-) mice, clearly demonstrate the development of 

cutaneous inflammation without the involvement of T-cell-mediated immunity, confirming 

that T cells are not required for the early pathogenesis of skin diseases. After that, many 

information supporting the role of innate immunity in the developmental pathogenesis of 

psoriasis has emerged (Sweeney et al., 2011).  

The clinical efficacy of compounds blocking TNFA, a critical cytokine that induces cell 

survival, apoptosis, and necrosis and contributes to both physiological and pathological 

process, highly suggests a vital role of the innate immune system in psoriasis (Boehncke and 

Schön, 2015; Zenz et al., 2005). TNFA is considered a key messenger within the network of 

pro- and anti-inflammatory cytokines that have the capacity of triggering even its production, 

as well as that of other essential cytokines in inflammatory diseases (Kim and Moudgil, 2017). 

Consequently, anti-TNFA therapy has become a mainstay treatment for autoimmune diseases 

(Li et al., 2017). Interestingly, despite the significant adaptive differences known between mice 

and human immune system, responses at the innate level are functionally fully comparable. 

Using relevant murine mutant lines to test the role of proinflammatory cytokines in the 
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pathogenesis of skin inflammation, was demonstrated that TNFA, but not IL6 or IL17, is 

crucial in this process (Nakajima et al., 2010). 

Likewise, clinical development of early lesions in psoriasis link to periodic waves of 

autoinflammation, represented by a burst of neutrophils and their associated cytokines related 

to the IL1 family and IL36, that along with TNFA all possess a full capacity of initiating the 

disease (Christophers et al., 2014; Mahil et al., 2017) using knockout individuals with IL1 

receptor like 2 (IL1RL2) mutations validate IL36 as a viable psoriasis target, proposing the 

development of IL36 blockade as a therapeutic strategy. Interestingly, the IL36 dependent 

genes signature profile in keratinocytes was extensive but particularly attractive among them 

is the high production of IL17, IL8, and CXCL1, which are inflammatory elements closely 

related to neutrophils and were all three cytokines over expressed in psoriatic patients. 

Besides, it was confirmed that increased production and activation of IL36 might act 

on neutrophils and further exacerbate neutrophilic inflammation.(Wang et al., 2018a). To 

round the concept, using RNA-seq, the gene expression response of primary epidermal 

keratinocytes to stimulation by IL1B, IL36A, IL36B, and IL36G was evaluated (Swindell et 

al., 2018). Strikingly, applying CRISPR/Cas9 mutagenesis, they demonstrate that shared 

IL1B/IL36 responses depend entirely upon MyD88 adaptor protein. Together, these results 

strongly emphasize the critical role of innate immunity in epidermal keratinocytes and 

neutrophils on triggering an exacerbated inflammatory response in psoriatic patients. 

So far, using murine models and human psoriatic lesional biopsies with elevated levels 

of IL17 and IL22 was demonstrate that anti-IL17 treatment dramatically improves the psoriatic 

skin lesions, regulates IL23 and reduce inflammation by normalizing the levels of IL17 

(Malakouti et al., 2015; Paek et al., 2018). However, the cell types related were not identified. 

To do so, it was. demonstrated that a single dose of the anti-IL17A antibody Secukinumab 

resulted in skin normalization as soon as two weeks after injection, a finding paralleled by the 

disappearance of IL17+ neutrophils population, but not the T-cells (Reich et al., 2015). 

Meanwhile, several different immune cells, out of Th17 have been recognized as IL17 

producers. Whether being still debated, granulocytes like neutrophils and mast cells appear to 

synthesize IL17 actively and release it through the formation of extracellular traps (Brembilla 

et al., 2018). Strikingly, this granulocytes behavior seems to expand well beyond psoriasis, and 

it extends along most inflammatory diseases. As an example, searching after the mechanisms 

underlying asthma it was observed that experimentally exacerbated mice released high amounts 
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of several proinflammatory cytokines (Lunding et al., 2016). Strikingly, this behaviour was 

further associated with increased IL17 and infiltration of variated IL17+ immune cells in 

animals deficient either for IL23A or the transcription factor RORt, suggesting the crucial role 

of neutrophils in the response. However, caution should apply when evaluating the interrelation 

of these cytokines and neutrophils due to several isoforms exist, and further functional analyses 

are warranted. 

By the moment, the most extended treatment applied to psoriasis patients is the 

phototherapy. Mainly based in the ultraviolet A (UVA) radiation combined with oral intake of 

psoralen (PUVA) to sensitize the skin (Zhang and Wu, 2018). This treatment consists in at least 

15 repeated seasons separated by 48 hours to avoid burns in the skin. Also, ultraviolet B (UVB) 

could be used without the intake of psoralen. But they only work temporarily, after some weeks 

the lesions could appear again, so more researches are needed to find new target and treatments. 

Types of models for Psoriasis research 

To understand the mechanisms associated with psoriasis, in vitro, ex-vivo, and in vivo 

preclinical models of the human disease have been described (Bochenska et al., 2017; 

Danilenko, 2008; Hawkes et al., 2018; Wcislo-Dziadecka et al., 2018). Notably, the murine 

models have proven to be extremely valuable in investigating critical molecular mechanisms 

that underlie the complex interplay between epidermal keratinocytes, and the innate and 

adaptive immune system in human psoriasis (Bezdek et al., 2018; Chuang et al., 2018; 

Nakajima and Sano, 2018) 

“In vitro” 

Several studies have evaluated psoriatic keratinocytes to identify intrinsic defects, 

differentiation, proliferation, and gene expression profile in cell culture or transplant systems 

(Dombrowski et al., 2011; Piskin et al., 2006). Keratinocytes used in vitro are from diverse 

origins, from intact or lesional human skin to established cell lines, like the normal human 

epidermal keratinocytes (Buth et al., 2007) and immortalized human keratinocytes line 

(HaCaT) (Borowiec et al., 2013). 

In vitro keratinocyte research has provided valuable information. By themselves, 

however, these studies do not match in vivo psoriatic lesions entirely, and high variability 

among studies is observed turning quite tricky to draw comparisons. So far, several factors 

have been proposed as the source of variation (e.g., culture temperature, serum quality and 
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quantity, calcium content, or lack of cell-cell interactions, and the intraspecies variability in the 

biological response due to cells commonly are isolated from individual members of the 

species). 

Despite clarifying the controversy, recently a transcriptomic study was conducted 

applying RNA-seq technology in a primary confluent keratinocytes monolayer culture grown 

from full-thickness punch biopsies, and the full-thickness skin biopsies itself from psoriasis 

patients, and control subjects (Swindell et al., 2017b). Results are puzzling, due to 

transcriptomic findings from the in vitro study, agreed only partially with results from full-

thickness skin biopsies. These findings suggest that analysis of full-thickness skin biopsies may 

obscure functionally significant expression declines in psoriatic and normal patient 

keratinocytes which can, in contrast, be detected from in vitro analysis of patient-derived cells. 

Outcomes like this highlight the intrinsic constraints of the in vitro keratinocyte models of 

psoriasis produced at least due to the lack of blood and cell-cell interactions in the test system 

and suggest the use of direct physiological relevant models instead. 

“Ex vivo” 

Ex-vivo models are invaluable research tools and have been used to investigate 

psoriasis. In general, ex vivo human or rat skin is excised by abdominal surgery followed by 

removal of the adhering fat and visceral tissues. Eventually, (considered as a source of 

variation) the skin is rinsed thoroughly with NaCl solution before using it in the study of skin 

permeation and deposition. Hydrophobic or formulated compounds delivered by niosomes or 

liposomes containing gels are assayed for percutaneous absorption studies using Franz 

diffusion cells (Abu Hashim et al., 2018).  

Ex vivo skin is particularly suited to address topical treatments of psoriasis or sun 

protection with dedicated biomarkers, such as pyrimidine dimers, p53 activation, caspase 

activation, and sunburn cells, based in histology and immuno-labeling (Agarwal et al., 2001; 

Bochenska et al., 2017). However, the effect of topic treatments assayed for permeation ex vivo 

could be affected by numerous combined reasons like the adsorption and fusion efficiency of 

niosomes, the nanosized particles, penetration rate, the richness of lipid in the environment, 

solubility and stability of compounds, or some other factors. 
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Pre-clinical 

Despite useful, in vitro and ex vivo systems are by far not capable of modelling whole-

body physiology. As such, research into the pathogenesis of psoriasis has been severely 

hampered by the lack of a naturally occurring disorder in laboratory animals that mimic the 

complex phenotype and pathogenesis of the human disease. Throughout time, primates, dogs, 

pigs and several murine models related to the research process of psoriasis have been described 

(Bochenska et al., 2017; Danilenko, 2008; Hawkes et al., 2018; Wcislo-Dziadecka et al., 2018; 

Yang and Wu, 2018). The approach clearly shows the longstanding practice of using animals 

for scientific purposes in biological research and medicine. Nevertheless, now this practice 

turns the issue an ordinary matter of debate by the radical supporters of the 3R’s concept 

(MacArthur Clark, 2018) in our societies (Barre-Sinoussi and Montagutelli, 2015). 

Nowadays, most current in vivo studies are conducted using one of the more than 40 

unique mouse models of psoriasis described so far (Hawkes et al., 2018). However, while many 

mouse models of psoriasis have been proposed, a standardized validation criterion 

encompassing most models is not widely applied. On the aim to do so, Swindell et al. (Swindell 

et al., 2011), performed a whole-genome transcriptional profile study to compare gene 

expression pattern manifested by human psoriatic skin lesions with those that occur in five 

classical psoriasis mouse models displaying phenotypes associated to the TLR-imiquimod, 

transforming growth factor  (TGFB), endothelial tyrosine receptor, amphiregulin or signal 

transducer and activator of transcription 3 (STAT3). 

Results revealed that while cutaneous gene expression profiles associated with each 

mouse phenotype exhibited statistically significant similarity to the expression profile of 

psoriasis in humans, each model displayed unique sets of similarities and differences in 

comparison to human psoriasis. Several many other studies show the double-edged pattern 

associated with mice research as a model of psoriasis. A recent study demonstrates that one of 

the most used mouse models of psoriasis, the TLR- imiquimod does not produce psoriasis only, 

but triggers a core set of pathways active in different skin diseases (Swindell et al., 2017a). 

From these reports, we can conclude that mice are quite useful in the study of psoriasis and 

have been the predominant animal bridge between the bench and the bedside in the past. 

Nevertheless, now is time to look forward and open the door to a new complementary animal 

model of psoriasis, the zebrafish. 
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Nevertheless, this far, not any one of the systems mentioned above are neither 

homologous nor isomorphic and do not entirely phenocopy the human disease, suggesting the 

urgent necessity of searching for alternative relevant matching models. In this regard, a new 

player with particular characteristics has emerged in the last decade to complement the research 

efforts achieved so far in understanding intimate mechanisms of inflammatory skin diseases, 

such as, psoriasis. The zebrafish (Danio rerio) has striking similarities between cells, tissues, 

and physiological functions to those of humans (Galindo-Villegas, 2016). After its complete 

genome assembly, it was recognized that more than 70% of all human genes have at least one 

ortholog in zebrafish (Howe et al., 2013). Thus, by using the latest mutagenesis resources 

diverse human disease models have been generated in this model animal (Santoriello and Zon, 

2012). 

The Zebrafish as a model of skin inflammation 

The use of zebrafish to investigate the genetic causes and molecular mechanisms of 

psoriasis is rapidly gaining popularity. Zebrafish is a small freshwater fish taxonomically 

positioned in the Cyprinid family. Compared to rodent models, zebrafish exhibit much more 

efficient reproduction, rapid external development, and undefeatable optical transparency 

throughout the early larval stages that allows the traceability of different fluorescent molecules 

to evaluate, for example, inflammation status (Figure 5). Besides, zebrafish provides infinite 

possibilities of experimental reproducibility due to a daily high progeny availability 

(Meshalkina et al., 2017). Also, zebrafish enables the characterization of gene function via 

overexpression, transient depletion, or genome editing by applying variated gene editing 

technologies, including the latest CRISPR/Cas-based method (Ablain et al., 2018; Varshney et 

al., 2015). 
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Figure 5. In vivo imaging of inflammation in zebrafish larvae. Skin inflammation can be 

easily monitored at real time in whole zebrafish larvae as activation of Nfkb (using the reporter 

line NFKB:eGFP) and neutrophil infiltration into the skin (using the line lyz:dsRed) (top 

panel). H2O2 release by skin keratinocytes can also be visualized suing the genetic or chemical 

fluorescent probes (low panel). 

Zebrafish are not only embryo/larvae with robust phenotypes or genetically tractability, 

but they also present accessibility optically for intravital real-time in vivo imaging and display 

a fully functional innate immune system where myeloid cells are present as soon as 24 hours 

post fertilization (hpf) mimicking their mammalian counterparts (Gurevich et al., 2018; Henry 

et al., 2013; Torraca and Mostowy, 2018). Besides that, the zebrafish genome is fully 

sequenced, highlighting a remarkable similarity with humans, with at least 71.4% human 

coding genome having a direct ortholog in zebrafish (Howe et al., 2013; Shim et al., 2016). 

The Zebrafish Model Organism Database (ZFIN https://zfin.org) is the central resource 

where genetic, genomic, and phenotypic data on zebrafish research is curated and run (Bradford 

et al., 2017). Similar to human, the zebrafish epidermis is a multi-layered tissue composed by 

keratinocytes, separated from the dermis by a basal membrane. In fish, this structure is much 

simpler than the mammalian one, and in contrast to terrestrial vertebrates, the skin does not 

function to prevent dehydration due to the lack of stratum corneum (Webb et al., 2008). 

However, several physical similarities exist. Among them, at 24 hpf different skin layers 

representing the epidermis and the dermis are separated from the underlying tissue stroma by 

a basal membrane, and at 2 days post fertilization (dpf) the lamina lucida densa can be 

identified (Le Guellec et al., 2004). 

Previous studies have shown the mechanism of H2O2 in acute and chronic inflammation 

in zebrafish. In acute inflammation was proposed that ATP released from damaged cells 

activates P2ry purinergic receptors, which promotes the activation of phospholipase C (Plc), 

the production of inositol-3-phosphate (IP3) and Ca2+ release from the endoplasmic reticulum. 
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Cytosolic Ca2+ activates Duox1, which produces H2O2 that then activates Nfkb, Jnk and Erk, 

promoting the phosphorylation of Jun and Fos and the expression of target pro-inflammatory 

genes, including cxcl8. The mechanism of how these molecules are activated by H2O2 is still 

unknown. Additionally, H2O2 is also able to modulate cxcl8 expression via covalent chromatin 

modifications, such as acetylation of H3K9 and trimethylation of H3K4. Newly synthesized 

Cxcl8 is then secreted to the extracellular matrix, forms a gradient, and together with H2O2 

gradient, induce Cxcr2- and Lyn-mediated neutrophil recruitment (de Oliveira et al., 2014) 

(Figure 6). 

Figure 6. Proposed models showing the role of H2O2 in acute inflammation in zebrafish. 

In chronic inflammation, alterations in skin homeostasis and barrier trigger Duox1-

dependent release of H2O2, which promotes Lyn-mediated neutrophil infiltration and activation 

of Nfkb, which induces the expression of genes encoding pro-inflammatory mediators, 

including Il1b and Ptgs2, and Duox1. Probably, Ca2+ perturbation also activates Duox1 and 

H2O2 then activates Jnk and Erk leading to the production and release of Cxcl8, generating a 

positive feedback inflammatory loop (Candel et al., 2014; de Oliveira et al., 2015) (Figure 7). 
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Figure 7. Proposed models showing the role of H2O2 in chronic inflammation in zebrafish. 

Interestingly, it has been observed in vitro and ex-vivo that alteration of these elements 

forming paracellular barriers for solutes and inflammatory cells, together with 

proinflammatory cytokines are related to the early events in psoriasis (Kirschner et al., 2009). 

These unique features present in the zebrafish model provides a unique platform to further 

understand in vivo their functionality in the psoriatic disease. Last but not least, in zebrafish, 

the lipid-rich cornified layer observed in higher mammals is not present, and epidermis remains 

metabolically active and readily available as a live substrate for experimentation throughout all 

life stages (Glover et al., 2013). Consequently, relevant zebrafish disease models of psoriasis 

have been developed to aid in unravelling the complicated pathogenesis in the human disease 

(Table 1). 
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Name Description Advantage Reference 

Penner/lethal 

giant larvae 2  

 

The lack of pen/lgl2 disrupts the 

basal localization of keratin 

cytoskeletons on fish keratinocytes. 

Target the process of hemidesmosome 

formation, maintenance of cytoskeletal 

elements, and cellular morphology in 

the basal epidermis.  

(Sonawan

e et al., 

2005) 

Hai1a/Spint1a 

 

Keratinocytes acquire a 

mesenchymal-like characteristic, 

lose contact, become mobile and 

highly susceptible to apoptosis. 

Fish embryos exhibit inflammation 

in areas of epidermal 

hyperproliferation. 

Useful to uncover crucial signaling 

players on defects caused by the loss of 

Hai1 and Matriptase 1a. Enable the 

study of chronic inflammation and 

visualization of immune responses with 

high resolution in real-time. 

(Carney et 

al., 2007) 

(Mathias 

et al., 

2007) 

Psoriasis/m14 

 

This fish exhibits widespread over 

proliferation of the epidermis and a 

defect in keratinocyte 

differentiation 

Allow the study of epidermal growth 

regulation and may point further 

insights into skin development in fish. 

(Webb et 

al., 2008) 

Tnfa-Tnfr2 

 

Inhibition of the ligand tnfa and 

related receptor 2 results on 

neutrophil mobilization to the fish 

skin in response to H2O2 derived 

enzyme (DUOX1) released by 

keratinocytes  

A robust platform to study the 

management of inflammatory 

molecular mechanisms resulting from 

oxidative stress.  

(Candel et 

al., 2014) 

Table 1. Synopsis of relevant zebrafish models supporting the comparative study of 

human psoriatic disease. 

Mutant models  

Zebrafish with its extensive toolkit for genome modification and its capacity for 

recapitulating human disease has found a niche among the preclinical models of psoriasis to 

study and validating genetic variants, as well as to identifying previously unrecognized disease-

associated genes. The first zebrafish model generated to study the development of the basal 

epidermis and the associated mechanisms were the mutant penner/ lethal giant larva 2 

(pen/lgl2). The pen/lgl2 zebrafish has a defect which disrupts the basal localization of keratin 

cytoskeletons on epidermal keratinocytes. This effect in humans is mediated by the lgl2 

homolog, the HUGL1 gene, which is a crucial regulator of epidermal polarity, and, in turn, 

keratinocyte proliferation (Zimmermann et al., 2008). 

The mutant pen/lgl2 zebrafish larvae shown overgrowth of epidermal cells leading to 

different morphological shapes and fail to form basal hemidesmosomes, which link the 

epidermis to the underlying basement membrane (Sonawane et al., 2005; Sonawane et al., 

2013). Therefore, while in pen/lgl2-/- skin detaches from the basement membrane, epidermal 

cells hyper-proliferate and migrate ectopically, resulting in a psoriasis-like phenotype. Deletion 
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also removes an essential enhancer for keratinocyte differentiation, and the loss of this 

regulatory element allows for the study of psoriasis association. In connection with the same, 

the pen function is revealed as specifically required for the process of hemidesmosome 

formation. However, suggested caution should be applied with this model due to the disruption 

of lgl2 would lead to epidermal tumor formation.  

Not long after the creation of the pen/lgl2 mutant, two more lines carrying mutations in 

the serine peptidase inhibitor, Kunitz type 1 a (Spint1a), also known as Hai1a, (Figure 8A) and 

clathrin interactor 1a (Clint1a) exhibited epidermal proliferation, and keratinocytes with 

mesenchymal-like characteristic (Carney et al., 2007; Dodd et al., 2009; Mathias et al., 2007). 

In both models, loss of Spint1a produces neutrophil skin infiltration and losing of contact 

among keratinocytes which become mobile and highly susceptible to apoptosis (Figure 8B, B’, 

C, C’). In the spint1a mutant, antagonistic roles between Hai1 and its target matriptase 1a 

(St1a) are produced. The mutation over the spint1a in zebrafish enable the study of chronic 

inflammation and visualization of immune responses with high resolution in real-time. These 

models demonstrate their utility in the identification of functional interactions between the 

keratinocytes and surrounding leukocytes (Figure 8D, D’). At 24 hpf, the spint1a -/- phenotype 

is characterized by an erratic localization of E-cadherin in epidermal cells, the fast expression 

of the damage phenotype, and a keratinocyte hyperproliferation in regions of cell aggregation.  

An additional mutant model in this series is the Psoriasis. This zebrafish mutant model 

was identified resulting from a large-scale ethylmethanesulfonate (EMS) mutagenesis screen 

for genes required for zebrafish embryogenesis (Webb et al., 2008). Mutants of this fish do not 

regulate cell proliferation in the epidermis late in embryogenesis and concomitantly accumulate 

aggregates of epidermal cells in the embryo surface, clearly resembling psoriasis. A loss-of-

function mutation in atp1b1a, encoding the beta subunit of a Na, K-ATPase pump, has been 

responsible for this phenotype (Hatzold et al., 2016). Blockade of the ensuing PI3K-AKT-

mTORC1-NF-κB-MMP9 pathway activation in basal cells, as well as systemic isotonicity, 

prevents keratinocyte hyperproliferation and subsequent malignant transformation.  
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Figure 8. Development of a mutant zebrafish model of psoriasis disease. A) Genomic map 

of hi2217 insertion and the start of the hai1a (spint1a) open reading frame (blue) is indicated 

(ATG); each section equals 500 bp. B, B′) In situ hybridization of zebrafish myeloperoxidase 

(mpo) at 2 dpf, arrows indicate the position of the intermediate cell mass (ICM), the location 

of neutrophil development in zebrafish embryos (Mathias et al., 2007). C, C’) Bright field and 

fluorescence images showing lateral views of (C) wild-type sibling (WT) and (C’) a 

homozygous hi2217 larvae (hai1a -/-) mutant at 3 dpf. Ectopic keratinocyte aggregates are 

pointed by the black arrow in the magnified area. (D, D’) WT siblings or mutant hi2217 were 

crossed with the transgenic zebrafish line Tg(lyz:DsRed2)nz50 to visualize neutrophil (in Red) 

behavior in the resulting larvae at 3 dpf. (D) In WT fish, the white arrow indicates the basal 

state of neutrophils in the caudal hematopoietic tissue (CHT). (D’) While in hi2217 mutants 

the presence of Hai1 affects the matriptase producing an exacerbated behavior of neutrophils 

resulting in high proliferation and massive recruitment in the affected epidermal tissue. White 

dash-dot line act only as a visual guide. 

Tnfr2 morphant model 

A recent study has approached the functionality of Tnfa, its receptors (Tnfr), and 

neutrophils behavior in the skin of zebrafish (Candel et al., 2014). Morpholino technology 

producing a transient gene knock-down cannot be used to study gene function in mice because 

antisense oligonucleotides are rapidly diluted during mouse development (Flynt et al., 2017). 

In a strict sense, morpholino is not a right genetic approach due to the possibility of producing 

unspecific reactions, but they have been used extensively in zebrafish research with a high 

degree of success (Kok et al., 2015). Candel et al. (Candel et al., 2014), following elegant 

approaches, including morpholinos, demonstrate that the knock-down of tnfr1 have little effect 

on the neutrophil trafficking in the developing larvae at 3 dpf, while tnfa and tnfr2 had a strong 
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effect in their mobilization (Figure 9A). Additionally, in this study the use of the transgenic 

zebrafish Tg(mpx:GFP) in which neutrophils express green fluorescence under the promoter 

of myeloperoxidase allow these researchers to determine the particular position of neutrophils. 

Figure 9. Zebrafish allows the detailed in vivo study effect of key molecules and cells 

related to psoriasis. Transgenic zebrafish embryos microinjected with standard control (Std), 

ligand/receptors of tumor necrosis factor (tnfr1, tnfr2, tnfa, or tnfr1+tnfr2) morpholinos (MO) 

were microscopically analyzed in real-time. A) Bright field and green channels, of the 

morphants at 3 dpf showing the differences in the neutrophil’s distribution. B) Fluorescence 

intensity was measured for all the groups in the area indicated (A), the CHT. C) The neutrophil 

mobilization from the CHT in tnfa- and tnfr2-deficient larvae was quantified. D) 

Representative dorsal (xy) and lateral (yz) views of tridimensional reconstructions from 

confocal microscopy images of whole-mount immunohistochemistry of Tg(mpx:GFP) larvae 

stained at 3 dpf with anti-p63 antibodies (basal keratinocyte marker, red) showing the 

neutrophils' distribution in the CHT area of control and tnfr2-deficient larvae (Candel et al., 

2014). Scale bars, 100 µm. ns, not significant. *p≤0.05, **p≤0.01, ***p≤0.001. 

Besides, they supported this result by applying a novel fluorescence quantification 

technique and contrasted by visual inspection (Figure 9B, C). The specificity of the observed 

phenotype for the tnfr2 was confirmed by using a dominant-negative of Tnfr2 lacking the entire 

intracellular signaling domain, which phenocopy the results previously observed. To establish 
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other cell types, intimately related in the response whole mount immunohistochemistry against 

p63 (basal keratinocyte marker) was conducted in morphant fish with neutrophils expressing 

GFP. Results revealed that mobilized neutrophils in tnfr2 deficient larvae were in close contact 

with skin keratinocytes. 

In addition to neutrophils mobilization, tnfr2 or tnfa morphants triggers a steady 

production of master proinflammatory molecules (tnfa, il1b, and ptgs2b) through the Nfkb 

pathway, resembling the phenotype of mutant spint1a and clint1a mutant zebrafish where 

chronic inflammation triggers il1b and neutrophil infiltration. To round their results, they 

sorted neutrophils from Tg(mpx:GFP) and keratinocytes from Tg(-2.9krt18:RFP) embryos 

revealing that both cell types overexpress inflammatory cytokines, reflecting a positive 

feedback loop between both cell types potentiating skin the inflammation. Strikingly, using an 

H2O2-detecting probe, it was observed that Tnfr2-deficient larvae keratinocytes activate dual 

oxidase 1 (DUOX1) (Candel et al., 2014) enzyme creating H2O2 gradients which were sensed 

by neutrophils through the tyrosine kinase Lyn (Yoo et al., 2011). Together, these results give 

strong support to the interplay between neutrophils and TNFA which defines the immune 

pathology in psoriasis. 

The power of the model is solely based on the zebrafish simple skin structure, and the 

high similarity to the human epithelium and the potent immune mediators it produces in 

compromised conditions (Figure 10) On this perspective a myriad of environmental, genetic 

and drug screening tests can be conducted, and aid on enabling rapid discovery of possible 

chemical targets. Finally, in further research applying this model the identification and 

understanding of crucial aspects of epigenetic, post-translational modifications, host-microbe 

interactions, and trained immunity (all possible using zebrafish) could help on bridging the gap 

between genetic and environmental risk factors to understand the psoriasis disease.  
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Figure 10. Inflammation model in zebrafish skin larvae. A) Normal epithelium. Superficial 

and basal keratinocytes are correctly organized forming a uniform layer. B) Swollen 

epithelium. Superficial and basal keratinocytes over-proliferate and lose their organization and 

skin integrity. This behavior induces the production of different types of chemoattractants that 

heavily recruit neutrophils to the skin, resembling the human psoriasis disease. 

Vitamin B6 and inflammation 

Vitamin B6 is a water-soluble vitamin that includes different vitamers like pyridoxine 

(PN), pyridoxamine (PM), pyridoxal (PL) and their phosphorylated forms (Coburn, 1996), 

being pyridoxal 5’-phosphate (PLP) its most active biological form. Humans obtain vitamin 

B6 from dietary and intestinal microbiota due to not be de novo synthesized in humans (Said, 

2015). 

The chemical structure of vitamin B6 vitamers is like pyridine, a benzene ring with a 

nitrogen atom instead one methine group, also has two -OH groups. Depending on the vitamer 

they may have another -OH group (PN), a -NH2 group (PM) or a hydroxymethyl group (PL). 
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In the case of the phosphorylated forms they have a phosphate group instead of a -OH group 

(Figure 11). 

Figure 11. Vitamin B6 structure and metabolism. Atoms are Carbon (grey), Hydrogen 

(white), Nitrogen (blue), Oxygen (red) and Phosphate (orange). 

The interconversion between the different vitamers is mainly occurs in the liver, where 

PN, PM and PL are delivered by circulation. Pyridoxal kinase (PDXK) rephosphorylated them, 

and pyridoxine phosphate oxidase (PNPO) converts pyridoxine 5’-phosphate (PNP) and 

pyridoxamine 5’-phosphate (PMP) to PLP (Albersen et al., 2013; Coburn, 2015). Pyridoxal 

phosphatase (PDXP) is the enzyme in charge of dephosphorylate these forms. The preferred 

degradation route ends in pyridoxic acid (PA), which is the catabolic product from the vitamin 

B6 produced by aldehyde oxidase 1(AOX1) (Garattini et al., 2009; Merrill et al., 1984) (Figure 

11). 
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Due to its characteristic chemical structure, vitamin B6 display different activities by 

itself. In vitro assays have shown that vitamin B6 by is able to diminish reactive oxygen species 

(ROS) and lipid peroxidation, two important oxidative stress markers, caused by H2O2 (Kannan 

and Jain, 2004). Vitamin B6 also acts as chaperone helping in the process of enzyme folding 

(Cellini et al., 2014) and as a metal chelator (Wondrak and Jacobson, 2012). 

Although the incidence of vitamin B6 deficiency is low in developed countries, low 

levels has been associated with a huge variety of diseases, like rheumatoid arthritis (Chiang et 

al., 2005; Roubenoff et al., 1995), inflammatory bowel disease (Selhub et al., 2013), diabetes 

(Friedman et al., 2004), risk of thrombosis (Hron et al., 2007), stroke (Kelly et al., 2003), 

cardiovascular disease (Cheng et al., 2008; Dalery et al., 1995; Verhoef et al., 1996) and 

several types of cancers (Eussen et al., 2010; Johansson et al., 2014; Larsson et al., 2010; Le 

Marchand et al., 2011; Lurie et al., 2012; Wu et al., 2013). 

PLP levels in plasma are usually inversely related to different inflammation markers 

(Abbenhardt et al., 2014; Friso et al., 2001; Morris et al., 2010; Sakakeeny et al., 2012). Plasma 

contains PL, PLP and PA. The ratio in blood levels 
PA

PLP+PL
 is an indicator of vitamin B6 

homeostasis, inflammation and a cancer incident predictor (Zuo et al., 2015). 

PLP acts as a cofactor of more than 100 enzymes (Percudani and Peracchi, 2009). These 

enzymes are involved in a variety of pathways. Most of them are related to amino acid synthesis 

and degradation (Eliot and Kirsch, 2004), but others are involved in one-carbon and lipid 

metabolism, neurotransmitter biosynthesis or gluconeogenesis (Percudani and Peracchi, 2009). 

One of these other pathways is the hydrogen sulfide (H2S) formation. H2S is a gaseous 

messenger which has anti-inflammatory effects when is found at low concentrations, but at 

high concentration it has proinflammatory effects (Whiteman and Winyard, 2011). This 

molecule is involved in angiogenesis and vasodilation among other activities (Liu et al., 2011). 

Two PLP dependent enzymes are responsible of the production of H2S, cystathionine gamma-

lyase (CSE) and cystathionine beta-synthase (CBS). 

Another relevant pathway is the glycogen degradation. In this process two enzymes that 

use PLP as cofactor are involved, glycogen phosphorylase (PYGL) that releases glucose from 

glycogen and glucose-6-phosphate 1-dehydrogenase (G6PD) that produces nicotinamide 

adenine dinucleotide phosphate (NADPH) (Combs, 2008).  
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This work has the following specific objectives: 

1. To determine the expression of gene encoding the key enzymes involved in vitamin 

B6 metabolism and PLP-dependent enzymes in psoriasis lesional skin. 

 

2. To determine vitamin B6 metabolites in the serum of psoriasis patients. 

 

3. To determine the effects of exogenous addition of different vitamin B6 vitamers in 

zebrafish embryo/larval models of psoriasis.  

 

4. To determine the impact of pharmacological or genetic inhibition of the PLP-

dependent enzymes Pygl and G6pd in the Spint1a-deficient zebrafish model of 

psoriasis.  
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MATERIALS AND METHODS
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Ethics statements 

The experiments performed comply with the Guidelines of the European Union Council 

(Directive 2010/63/EU) and the Spanish RD 53/2013. Experiments and procedures were 

performed as approved by the Bioethical Committees of the University of Murcia (approval 

numbers #75/2014, #216/2014 and 395/2017) and Ethical Clinical Research Committee of The 

University Hospital Virgen de la Arrixaca (approval number #8/13). 

Animals 

The lines Tg(lyz:DsRed2) (Hall et al., 2007), spint1ahi2217Tg/hi2217Tg (Mathias et al., 

2007) and Tg(NFKB:eGFP) (Kanther et al., 2011) were previously described. 

spint1ahi2217Tg/hi2217Tg fish were crossed with Tg(NFKB:eGFP) and their offspring were 

incrossed to obtain spint1ahi2217Tg/hi2217Tg;Tg(NFKB:eGFP) fish. spint1ahi2217Tg/hi2217Tg fish were 

crossed with Tg(lyz:DsRed2) and their offspring were incrossed to obtain spint1ahi2217Tg/hi2217Tg; 

Tg(lyz:DsRed2) fish. 

Morpholino and chemical treatments 

The following splice blocking morpholinos (MOs) obtained from Gene Tools were 

used: MO tnfr2 I1/E2: 5'-GGAATCTGTGAACACAAAGGGACAA-3' (2,5 pg/egg) (Candel 

et al., 2014; Espin et al., 2013; Lopez-Munoz et al., 2011); MO clint1a-E1/I1: 5’-

ACATCCAAAATACTCACGCTTTATC-3’ (Dodd et al., 2009); and MO std 5’-

CCTCTTACCTCAGTTACAATTTATA-3’ (used as a control). MOs were resuspended at 0.2 

mM in microinjection buffer (0.05% phenol red and 0,5X Tango buffer) and microinjected in 

the yolk salk of zebrafish one-cell embryos using a using a microinjector (Narishige) (0.5-1 nl 

per embryo).  

Vitamers of vitamin B6 (PN, PL and PLP, all from Sigma-Aldrich) and the selective 

glycogen phosphorylase inhibitor CP-91149 (Santa Cruz Biotechnology) were added to egg 

water in different concentrations together with a fixed amount of DMSO (1%) to facilitate 

embryo absorption. All treatment started 24 hpf, were replaced at 48 hpf and maintained until 

72 hpf.  

H2O2 imaging 

H2O2 imaging using a live cell fluorescein dye was performed as previously described 

(Candel et al., 2014; de Oliveira et al., 2015; de Oliveira et al., 2014). Briefly, 72 hpf larvae 
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were loaded for 60 min with 50 M acetyl-pentafluorobenzene sulphonyl fluorescein (Cayman 

Chemical) in 1% DMSO. Larvae were left to recover in probe solution and imaging was made 

immediately. 

Image acquisition and processing 

At 72 hpf, larvae were anesthetized in buffered 0.16 mg/ml tricaine. Images were 

captured with a MZ16FA stereomicroscope (Leica) equipped with green and red fluorescent 

filters. All images were acquired with the integrated camera on the stereomicroscope, 

DFC350FX, and were used for subsequently counting the number of neutrophils (lyz:DsRed2), 

and examined their distribution. The activation of NF-B was visualized and quantified using 

the line Tg(NFKB:eGFP). Images were processed using the free source software ImageJ 

(http://rsbweb.nih.gov/ij) to obtain the fluorescence intensity of each area of interest. 

Human keratinocyte culture and gene expression analysis 

The human keratinocyte cell line HaCaT (authenticated by Bioidentity S.L. and 

mycoplasma-free according to Hoechst DNA staining assays) was maintained in DMEM, high 

glucose supplemented with 10% fetal bovine serum (FBS), 2 mM glutamin, and 1% penicillin-

streptomycin (Thermo Fisher Scientific). Cells were split before confluence every 72h and 

stimulated with human recombinant 40 ng/ml TNFA and 100 ng/ml IL17A (Peprotech) for 20 

hours and incubated for the last 3 h with 10 μM CP-91149 in the presence of 0.1% DMSO. 

Cell were collected and RNA extracted with TRIzol reagent and purified with RNAquous 

Micro Kit, total RNA purification system (Ambion) and treated with DNase I, amplification 

grade (1 U/µg RNA; Thermo Fisher Scientific). The SuperScript IV RNase H- reverse 

transcriptase (Thermo Fisher Scientific) was the used to synthesize first-strand cDNA with 

oligo(dT)18 primer from 1 µg of total RNA at 50°C for 50 min. Real-time PCR (qPCR) was 

performed with a QuantStudio 5 (Thermo Fisher Scientific) using SYBR Green-Reaction 

mixtures were incubated for 10 min at 95 °C, followed by 40 cycles of 15 s at 95 °C, 1 min at 

60 °C, and finally 15 s at 95 °C, 1 min 60 °C, and 15 s at 95 °C. Gene expression was normalized 

to the -actin (ACTB) content in each sample using the comparative Ct method (2-ΔΔCt) (Pfaffl, 

2001). The primers used are described in Table S2. In all cases, each PCR was performed in 

triplicate samples and repeated at least with two independent experiments.  
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Human microarray dataset analysis 

Data from the microarray datasets GDS4602 were downloaded from the Gene 

Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) website and analyzed in R 

programming language (http://www.r-project.org) using the R environment Rstudio 

(http://www.rstudio.com). Gene expression plots and regression curves for correlation studies 

were obtained using GraphPad Prism 5.03 (GraphPad Software, Inc., La Jolla, CA). 

Determination of vitamin B6 metabolites in human serum 

samples 

Blood samples were collected from control and psoriasis patients pre- and post-PUVA 

treatment. Serum were extracted, filtered with AMICON™ ULTRA 0.5 mL centrifugal filters 

3 KDa cutoff (UFC500396; EMD Millipore) and supplemented with N-Acetyl-Glutamine at 1 

mM as an internal standard. Samples were injected in a HPLC Agilent 1290 Infinity II system 

equipped with hybrid mass spec Agilent Q-TOF 6550 with JetStream electrospray + i-Funnel. 

Metabolites were analyzed in positive and negative polarity with scan fragmentation and the 

metabolites selected were analyzed in a HPLC/MS-MS.  

Human skin immunohistochemistry  

Skin biopsies from healthy donors (n=10) and psoriasis patients (n=15) were fixed in 

4% paraformaldehyde, embedded in Paraplast Plus and sectioned at a thickness of 5 µm. After 

being dewaxed and rehydrated, the sections were incubated in 50 mM glycine-HCl buffer (pH 

3.5) containing 0.01% ethylenediaminetetraacetic acid (EDTA) at 95 ºC for 5 minutes and then 

at room temperature for 20 min to retrieve the antigen. Afterwards, they were immunostained 

with rabbit polyclonal to human PYGL (HPA000692, Sigma-Aldrich) or mouse monoclonal 

to human G6PD (sc-373886, Santa Cruz Biotechnology) antibodies followed by 

ImmunoCruz™ rabbit/mouse ABC Staining Systems (Santa Cruz Biotechnology) following 

the manufacturer’s recommendations. Sections were examined under a Leica microscope 

equipped with a digital camera Leica DFC 280 and the photographs were processed with Leica 

QWin Pro software. 

http://www.ncbi.nlm.nih.gov/geo/
http://www.r-project.org/
http://www.rstudio.com/
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Statistical analysis 

Data were analyzed by one- or two-way analysis of variance (ANOVA) followed by a 

Tukey post-test to determine differences among groups. Contingency graphs were analyzed by 

the Chi-square (and Fisher’s exact) test. *p≤0.05; **p≤0.01; ***p≤0.001, ****p≤0.0001. 
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RESULTS
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 Vitamin B6 metabolism is altered in psoriasis patients 

To determine possible alterations in vitamin B6 metabolism in psoriasis patients, 

publicly available transcriptomic data from psoriasis lesional and non-lesional skin were 

analyzed. It was found that the transcript levels of the genes encoding all the enzymes involved 

in vitamin B6 metabolism were induced in psoriasis lesional skin compared to non-lesional 

skin and skin of healthy individuals, but aldehyde oxidase 1 (AOX1), which encodes an enzyme 

that catabolizes vitamin B6 vitamers to PA, that was reduced (Figure 12). 

Figure 12. Vitamin B6 metabolism is altered in psoriasis. A) Main vitamin B6 metabolic 

pathway and representation of the mRNA levels of the genes encoding the involved enzymes 

in psoriatic lesional skin respect to sin of heathy controls. Green means overexpression and 

orange means underexpression. B) Expression levels of the genes encoding the enzymes 

involved in vitamin B6 metabolism and their correlation with the inflammation marker IL1B. 

The data were obtained from the dataset GDS4602 hosted in GEO database. Each dot 

represents a patient and the mean ± S.E.M. for each group is also shown. *p≤0.05; **p≤0.01; 

***p≤0.001. 

A 

B 
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In addition, a statistically significant positive correlation between PDXK and PNPO 

with the inflammation marker IL1B was observed (Figure 12B), suggesting a high demand of 

PLP in psoriasis lesional skin. 

Figure 13. Vitamin B6 metabolites are altered in the serum of psoriasis patients. Levels 

of main vitamin B6 vitamers and their catabolic products in the serum of 64 samples from 

psoriasis patients before and after PUVA treatment and healthy donors analyzed using HPLC-

MS. All the data obtained were corrected using the levels of an exogenous metabolite, N-acetyl 

glutamine, added before sample processing. Each dot represents a patient and the mean ± 

S.E.M. for each group is also shown. *p≤0.05. 

To increase the knowledge about vitamin B6 metabolism in psoriasis patients, blood 

serum samples from healthy donors and psoriasis patients pre- and post-PUVA treatment were 

collected and the main vitamin B6 metabolites were analyzed. Interestingly, although weak 

alterations of vitamin B6 vitamers were observed in the sera of psoriasis patients before and 

after PUVA treatment, a reduced PA/(PLP+PL) ratio (PAr) was found in psoriasis patients 
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before PUVA treatment that recover to normality after the treatment (Figure 13). Importantly, 

PAr showed a negative correlation with the psoriasis area severity index (PASI) used for the 

classification of the severity and extension of psoriasis patient lesions. 

Vitamin B6 alleviates skin inflammation in zebrafish psoriasis 

models 

Vitamin B6 vitamers effects in Tnfr2-deficient larvae 

To understand the role of vitamin B6 in chronic inflammation, we next tested the effects 

of vitamin B6 vitamers in a zebrafish model of psoriasis based in the transient genetic 

inactivation of the Tnfa/Tnfr2 signaling (Candel et al., 2014). In this model, Duox1-derived 

H2O2 promotes neutrophil infiltration and Nfkb activation, perpetuating an inflammatory loop 

(Candel et al., 2014). In the normal situation, most of the neutrophils remains in the CHT, but 

in Tnfr2-deficient larvae around a 40% are outside that region. We firstly tested several 

concentrations of PN directly added to the zebrafish water from 24 to 72 hpf and found a dose-

dependent reduction of neutrophil skin infiltration in Tnfr2-deficient larvae (Figure 14). 10 µM 

was the dose selected for the following experiments.  

Figure 14. PN reduces in a dose dependent manner skin neutrophil infiltration in Tnfr2-

deficient larvae. Zebrafish one-cell lyz:DsRed embryos were injected with standard control 

(std) or tnfr2 MO. At 24 hpf, larvae were treated by bath immersion with different 

concentrations of PN that was refreshed at 48 hpf. Images were taken at 72 hpf and the 

neutrophil mobilization from the CHT was quantified as the percentage of neutrophils outside 

the CHT in at least 20 larvae per group in 3 different experiments. Each dot represents a larva 

and the mean ± S.E.M. for each group is also shown. ***p≤0.001. 

Next, the effect of different vitamin B6 vitamers were tested. Although PN, PL or PLP 

showed a similar tendency to reduce neutrophil skin infiltration in Tnfr2-deficient larvae, the 

vitamin B6 active form, PLP, was the most potent (Figure 15).  
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Figure 15. Vitamin B6 vitamers reduce skin neutrophil infiltration in Tnfr2 morphant 

larvae. Zebrafish one-cell lyz:DsRed embryos were injected with std or tnfr2 MO. At 24 hpf 

larvae were treated by bath immersion with PN, PL and PLP that were refreshed at 48 hpf. 

Images were taken 72 hpf and the neutrophil mobilization from the CHT was quantified as the 

percentage of neutrophils outside the CHT in at least 20 larvae per group in 3 different 

experiments. Each dot represents a larva and the mean ± S.E.M. for each group is also shown. 

*p≤0.05, ***p≤0.001. 

It has been described the relevance of H2O2 to mobilize neutrophils (Candel et al., 2014; 

de Oliveira et al., 2015; de Oliveira et al., 2014), so we decide to evaluate the effect of different 

vitamin B6 vitamer in H2O2 releasing using a specific probe with GFP fluorescence. PL and 

PLP were able to reduce skin H2O2 levels almost restoring control levels (Figure 16). 

Figure 16. Vitamin B6 vitamers decrease hydrogen peroxide release in Tnfr2-deficient 

larvae. Zebrafish one-cell lyz:DsRed embryos were injected with std or tnfr2 MO. At 24 hpf 

larvae were treated by bath immersion with PN, PL and PLP that were refreshed at 48 hpf. For 

1 hour immediately before taking images at 72 hpf, larvae were incubated in 50 µM of the 

H2O2 probe acetyl-pentafluorobenzene sulphonyl fluorescein solution. GFP fluorescence was 

measured and the mean value of intensity was calculated as indicated in M&M in at least 20 

larvae per group in 3 different experiments. Each dot represents a larva and the mean ± S.E.M. 

for each group is also shown. **p≤0.01, ***p≤0.001. 



61 

Previous studies have shown the critical role of NF-kB in the inflammatory response 

(Candel et al., 2014; de Oliveira et al., 2015; de Oliveira et al., 2014), so we decided to analyze 

it with different vitamers treatments using a zebrafish transgenic line which allow to measure 

the NFkB activation with GFP fluorescence. We found similar results as in the previous 

inflammatory markers, PN and PLP were able to reduce the NF-B activation (Figure 17). 

Figure 17. Vitamin B6 vitamers diminish Nfkb activation in Tnfr2-deficient larvae. 

Zebrafish one-cell NFKB:eGFP embryos were injected with std or tnfr2 MO. At 24 hpf larvae 

were treated by bath immersion with PN, PL and PLP added to the water that were refreshed 

at 48 hpf. Images were taken 72 hpf and GFP fluorescence was measured in top skin and bottom 

skin and the mean value of intensity was calculated as indicated in M&M in at least 20 larvae 

per group in 3 different experiments. Each dot represents a larva and the mean ± S.E.M. for 

each group is also shown. *p≤0.05, ***p≤0.001. 
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PLP effects in Spint1a- and Clint1a-deficient larvae 

In order to confirm the results obtained in Tnfr2-deficient larvae, we decide to check 

the effects of exogenous addition of PLP in Spint1a-deficient larvae, another well-

characterized model of psoriasis which shows keratinocyte hyperproliferation and cell death 

and robust neutrophil infiltration (Mathias et al., 2007). Similar to the previous results, PLP 

was able to reduce neutrophil skin infiltration in Spint1a-deficient larvae (Figure 18). 

Figure 18. PLP reduces skin neutrophil infiltration in Spint1a-deficient larvae. Zebrafish 

Spint1a-deficient embryos with labeled neutrophils (lyz:DsRed) were treated by bath 

immersion at 24 hpf with PLP that was refreshed at 48 hpf. Images were taken 72 hpf and the 

neutrophil mobilization from the CHT was quantified as the percentage of neutrophils outside 

the CHT in at least 20 larvae per group in 3 different experiments. Each dot represents a larva 

and the mean ± S.E.M. for each group is also shown. *p≤0.05, ****p≤0.0001. 

We then analyzed H2O2 release in this model and found overproduction of H2O2 by the 

inflamed skin and, notably, PN, PL and PLP were all able to reduce skin H2O2 (Figure 19).  

Figure 19. Vitamin B6 vitamers diminish hydrogen peroxide release in Spint1a-deficient 

larvae. Zebrafish Spint1a-deficient embryos were treated at 24 hpf by bath immersion with 

PN, PL or PLP that were refreshed at 48 hpf. One hour immediately before taking images at 

72 hps, larvae were incubated with 50 µM of the H2O2 probe acetyl-pentafluorobenzene 

sulphonyl fluorescein solution. GFP fluorescence was measured and the mean value of 

intensity was calculated as indicated in M&M in at least 20 larvae per group in 3 different 

experiments. Each dot represents a larva and the mean ± S.E.M. for each group is also shown. 

*p≤0.05, ****p≤0.0001 according to one-way. 
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In addition, PLP also diminishes skin Nfkb activation, but their levels were still 

remarkable higher than in wild type larvae (Figure 20). 

Figure 20. PLP diminishes Nfkb activation in Spint1a-deficient larvae. Zebrafish Spint1a-

deficient embryos with labeled Nfkb activation (NF-κB:eGFP) were treated by bath immersion 

at 24 hpf with PLP that was refreshed at 48 hpf. Images were taken 72 hpf and GFP 

fluorescence was measured in top and bottom skin and the mean value of intensity was 

calculated as indicated in M&M in at least 20 larvae per group in 3 different experiments. Each 

dot represents a larva and the mean ± S.E.M. for each group is also shown. **p≤0.01, 

****p≤0.001. 

Curiously, we observed that melanocytes infiltrated the inflamed skin of Spint1a-

deficient larvae, as it has been shown during wounding (Levesque et al., 2013), and PLP 

significantly reduced this infiltration (Figure 21). Collectively, all these results show an anti-

inflammatory role for vitamin B6 in two different zebrafish psoriasis models. 

Figure 21. PLP reduces melanocytes infiltration in skin in Spint1a-deficient larvae. 

Zebrafish Spint1a-deficient were treated by bath immersion at 24 hpf with PLP that was 

refreshed at 48 hpf. Images were taken 72 hpf. The melanocytes that migrated to the final part 

of the tail were counted in at least 20 larvae per group in 3 different experiments. Each dot 

represents a larva and the mean ± S.E.M. for each group is also shown. **p≤0.01, ****p≤0.001. 

The effect of PLP was also checked in the Clint1a-deficient model of psoriasis, which 

also shows skin neutrophil infiltration and keratinocyte hyperproliferation (Dodd et al., 2009). 

The results show that PLP was also able to diminish skin Nfkb activation (Figure 22).  
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Figure 22. PLP reduces Nfkb activation in Clint1a-deficient larvae. Zebrafish one-cell 

NFKB:eGFP embryos were injected with std or clint1a MO. At 24 hpf larvae were treated by 

bath immersion with PLP that was refreshed at 48 hpf. Images were taken at 72 hpf and GFP 

fluorescence was measured in top and bottom skin and the mean value of intensity was 

calculated as indicated in M&M in at least 20 larvae per group in 3 different experiments. Each 

dot represents a larva and the mean ± S.E.M. for each group is also shown. *p≤0.05, 

****p≤0.001. 

 

Expression of genes encoding vitamin B6-dependent enzymes are 

dramatically altered in psoriasis patients 

As the previous results point out to the relevance of vitamin B6 in psoriasis, we 

analyzed the expression of the genes encoding PLP-dependent enzymes (Percudani and 

Peracchi, 2009) in publicly available transcriptomic data from lesional and non-lesional skin. 

The results show that about 60% of them presented altered mRNA levels in skin of psoriasis 

patients and, more interestingly, the transcript levels of 21% of them correlated with those of 

IL1B in lesional skin (Figure 23, Table 2, Figure 24). We focused our attention into PYGL and 

G6PD , which encode glycogen phosphorylase L and glucose-6-phosphate 1-dehydrogenase, 

respectively, and are involved in the glycogen catabolism and their mRNA levels were strongly 

induced in the lesional skin of psoriasis patients and correlated with those of IL1B (Figure 

23B).  
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Figure 23. Altered expression of genes encoding PLP-dependent enzymes in psoriasis 

patients. A) Diagram of genes encoding PLP-dependent enzymes showing that among them 

60% have an altered transcript levels in psoriasis patients and 21% correlate with those of the 

inflammation marker IL1B. B) Two examples of PLP-dependent enzymes that show an 

increased expression in psoriasis lesional skin and whose mRNA levels correlate with those of 

IL1B. List of PLP-dependent enzymes was obtained from “http://bioinformatics.unipr.it/cgi-

bin/bioinformatics/B6db/home.pl” and transcriptomic data were obtained from the dataset 

GDS4602 hosted in GEO database. Each dot represents a patient and the mean ± S.E.M. for 

each group is also shown. ****p≤0.0001. 

Name UniProt ID Gene Name 

4-aminobutyrate aminotransferase, mitochondrial P80404  ABAT 

Aspartate aminotransferase Q2TU84  GIG18 

Histidine decarboxylase P19113  HDC 

Kynurenine/alpha-aminoadipate aminotransferase, mitochondrial Q8N5Z0  AADAT 

Proline synthase co-transcribed bacterial homolog protein O94903  PROSC 

Antizyme inhibitor 1 Q96A70  AZIN2 

5-aminolevulinate synthase, nonspecific, mitochondrial P13196  ALAS1 

Alanine aminotransferase 2 Q8TD30  GPT2 

Alpha-aminoadipic semialdehyde dehydrogenase P49419  ALDH7A1 

Aspartate aminotransferase, cytoplasmic P17174  GOT1 

Aspartate aminotransferase, mitochondrial P00505  GOT2 

Glucose-6-phosphate 1-dehydrogenase P11413  G6PD 

Glycogen phosphorylase, liver form P06737  PYGL 

Kynureninase Q16719  KYNU 

O-phosphoseryl-tRNA(Sec) selenium transferase Q9HD40  SEPSECS 

Serine hydroxymethyltransferase Q5BJF5  SHMT2 

Serine palmitoyltransferase 2 O15270  SPTLC2 

Table 2. PLP-dependent enzymes whose genes show altered and correlated transcript 

levels with those of the inflammation marker IL1B in psoriasis patient lesional skin. 

http://bioinformatics.unipr.it/cgi-bin/bioinformatics/B6db/home.pl
http://bioinformatics.unipr.it/cgi-bin/bioinformatics/B6db/home.pl
http://www.hmdb.ca/metabolites/HMDB01545/metabolite_protein_links?c=name&d=down
http://www.hmdb.ca/metabolites/HMDB01545/metabolite_protein_links?c=uniprot_id&d=down
http://www.hmdb.ca/metabolites/HMDB01545/metabolite_protein_links?c=gene_name&d=down
http://www.uniprot.org/uniprot/P80404
http://www.uniprot.org/uniprot/Q2TU84
http://www.uniprot.org/uniprot/P19113
http://www.uniprot.org/uniprot/Q8N5Z0
http://www.uniprot.org/uniprot/O94903
http://www.uniprot.org/uniprot/Q96A70
http://www.uniprot.org/uniprot/P13196
http://www.uniprot.org/uniprot/Q8TD30
http://www.uniprot.org/uniprot/P49419
http://www.uniprot.org/uniprot/P17174
http://www.uniprot.org/uniprot/P00505
http://www.uniprot.org/uniprot/P11413
http://www.uniprot.org/uniprot/P06737
http://www.uniprot.org/uniprot/Q16719
http://www.uniprot.org/uniprot/Q9HD40
http://www.uniprot.org/uniprot/Q5BJF5
http://www.uniprot.org/uniprot/O15270
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Figure 24. Genes encoding PLP-dependent enzymes that have altered transcript levels 

and their correlation with IL1B in psoriasis patient lesional skin. The list of PLP-dependent 

enzymes was obtained from “http://bioinformatics.unipr.it/cgi-

bin/bioinformatics/B6db/home.pl” and transcriptomic data from the dataset GDS4602 hosted 

in GEO database. Each dot represents a patient and the mean ± S.E.M. for each group is also 

shown. *p≤0.05, ***p≤0.001, ****p≤0.0001. 

To confirm the gene expression study, we analyzed PYGL and G6PD by 

immunohistochemistry in skin from healthy donors and psoriasis lesional skin. Controversially, 

PYGL was found to be expressed by keratinocytes of the basal, spinous and granular layers in 

both healthy and lesional skin but at reduced levels in the latter (Figure 25A). As regards G6PD, 

it was found to be expressed in keratinocytes of basal, spinous and granular layers at similar 

levels in both healthy and lesional skin (Figure 25B). 

http://bioinformatics.unipr.it/cgi-bin/bioinformatics/B6db/home.pl
http://bioinformatics.unipr.it/cgi-bin/bioinformatics/B6db/home.pl
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Figure 25. PYGL and G6PD immunohistochemistry in skin from healthy donors and 

psoriasis lesional skin. Representative images of sections from healthy and psoriatic lesional 

skin biopsies that have been immunostained with anti-PYGL (A) or anti-G6PD (B) antibodies 

and then counterstained with hematoxylin. 
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Pharmacological inhibition of PYGL alleviates inflammation in 

Spint1a-deficient zebrafish larvae and human keratinocytes 

The relevance of glucose metabolism in psoriasis have been demonstrated in a mouse 

model deficient in the glucose transporter 1, which show normal skin homeostasis but are 

largely resistant to psoriasis-like disease (Zhang et al., 2018). In addition, early clinical studies 

reported increased glycogen accumulation and glycogen synthase activity in psoriasis lesional 

skin (Harmon and Phizackerley, 1984; Sasai, 1970). We, therefore, analyzed the impact of 

pharmacological inhibition of Pygl with CP-91149 in Spint1a-deficient larvae. Inhibition of 

Pygl resulted in reduced neutrophil skin infiltration (Figure 26). 

 

Figure 26. Pharmacological inhibition of Pygl reduces skin neutrophil infiltration in 

Spint1a-deficient larvae. Zebrafish Spint1a-deficient embryos with labeled neutrophils 

(lyz:DsRed) were treated by bath immersion at 24 hpf with CP-91149 that was refreshed at 48 

hpf. Images were taken 72 hpf and the neutrophil mobilization from the CHT was quantified 

as indicated in M&M section in at least 20 larvae per group in 3 different experiments. Each 

dot represents a larva and the mean ± S.E.M. for each group is also shown. **p≤0.01, 

****p≤0.0001. 
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Moreover, CP91149 was able to slightly diminish skin H2O2 production (Figure 27). 

Figure 27. Pharmacological inhibition of Pygl diminishes skin hydrogen peroxide release 

in Spint1a-deficient larvae. Zebrafish Spint1a-deficient embryos were treated by bath 

immersion at 24 hpf with CP-91149 that was refreshed at 48 hpf. One hour immediately before 

taking images at 72 hps, larvae were incubated with 50 µM of the H2O2 probe acetyl-

pentafluorobenzene sulphonyl fluorescein solution. GFP fluorescence was measured and the 

mean value of intensity was calculated as indicated in M&M in at least 20 larvae per group in 

3 different experiments. Each dot represents a larva and the mean ± S.E.M. for each group is 

also shown. *p≤0.05, ****p≤0.0001. 

We also check the effect of Pygl inhibition in the Nfkb activation, but there were no 

significant differences with untreated Spint1a-deficient larvae (Figure 28). 

Figure 28. Pharmacological inhibition of Pygl fails to inhibit Nfkb activation in Spint1a-

deficient larvae. Zebrafish Spint1a-deficient embryos with labeled Nfkb activation (NF-

κB:eGFP) were treated by bath immersion at 24 hpf with CP-91149 that was refreshed at 48 

hpf. Images were taken 72 hpf and GFP fluorescence was measured in top and bottom skin and 

the mean value of intensity was calculated as indicated in M&M in at least 20 larvae per group 

in 3 different experiments. Each dot represents a larva and the mean ± S.E.M. for each group 

is also shown. ****p≤0.001. 
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As observed with the PLP treatment, Pygl inhibition was also able to reduce the skin 

melanocyte infiltration in the tail (Figure 29). 

Figure 29. Pharmacological inhibition of Pygl reduces the number of melanocytes in the 

tail of Spint1a-deficient larvae. Zebrafish Spint1a-deficient larvae were treated by bath 

immersion at 24 hpf with CP-91149 that was refreshed at 48 hpf. Images were taken 72 hpf 

and the melanocytes that migrated to the final part of the tail were counted in at least 20 larvae 

per group in 3 different experiments. Each dot represents a larva and the mean ± S.E.M. for 

each group is also shown. ****p≤0.001. 

Lastly, we also evaluate keratinocyte hyperplasia present in the tail region, as the 

number of keratinocyte accumulations, and we found that Pygl inhibition was able to reduce 

the number of keratinocyte accumulations (Figure 30). 

 

Figure 30. Pharmacological inhibition of Pygl reduces keratinocyte hyperplasia of 

Spint1a-deficient larvae. Zebrafish Spint1a-deficient were treated by bath immersion at 24 

hpf with CP-91149 that was refreshed at 48 hpf. Images were taken 72 hp and the number 

keratinocyte accumulations in the tail were scored in at least 20 larvae per group in 3 different 

experiments. Each dot represents a larva and the mean ± S.E.M. for each group is also shown. 

****p≤0.001. 
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To check if the PYGL inhibition was able to reduce inflammation in human 

keratinocytes, HaCaT keratinocytes pre-stimulated with recombinant TNFA and IL17A, two 

relevant cytokines driven psoriasis, were used. CP-91149 was able to fully abrogate the 

induction of TNFA and IL1B genes in human pre-stimulated HaCaT cells (Figure 31). 

Collectively, these results show that pharmacological inhibition of PYGL inhibits 

inflammation in zebrafish and human keratinocytes. 

Figure 31. Pharmacological inhibition of PYGL fully abrogates the induction of TNFA 

and IL1B in human HaCaT keratinocytes. A) Scheme showing the stimulation procedure. 

Human HaCaT keratinocytes were stimulated using 100 ng/ml IL17A and 40 ng/ml TNFA for 

20 hours and then 10 M CP-91149 was added for 3 hours before samples collection. B) TNFA 

and IL1B transcript levels were analyzed using RT-qPCR. The PCR was performed in technical 

triplicate and the results are representative of two independent experiments. *p≤0.05, 

***p≤0.001, ****p≤0.0001.  
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Vitamin B6 deficiency has been described to be involved in chronic inflammation, 

being its supplementation able to restore homeostasis (Casciato et al., 1984; Dobbelstein et al., 

1974; Sorice et al., 1980; Talbott et al., 1987). Plasma PLP levels are usually inversely 

associated with different inflammation markers, like C-reactive protein (CRP), among others 

(Friso et al., 2001; Sakakeeny et al., 2012). It has also been reported that acute inflammation 

could cause a rise in vitamin B6 vitamers in the tissues affected and an increased catabolism to 

PA (Ulvik et al., 2012). Psoriasis, like others inflammatory diseases, has different 

comorbidities among witch metabolic syndrome stands out (Boehncke et al., 2011). A study 

focused in metabolic syndrome associated to psoriasis has pointed out to vitamin B6 as a 

protector component (Romani et al., 2013). Collectively, all this information indicates that 

vitamin B6 could be involved in the development different inflammatory diseases including 

psoriasis. However, the mechanisms involved in the effects of vitamin B6 in chronic 

inflammatory disorders in general, and in particular psoriasis, are largely unknown. We 

anticipate that these effects will be very complex, since more than 100 enzymes used PLP as 

cofactor (Percudani and Peracchi, 2009)  

Using transcriptomic data available from previous studies about psoriasis lesional and 

non lesional skin, we have found an impaired expression in all the transcripts encoding the 

enzymes involved in vitamin B6 metabolism in psoriasis lesional skin and some of them 

correlated with inflammation. Moreover, analyzing blood serum levels of the different vitamin 

B6 vitamers and their catabolic product PA, we have demonstrated that psoriasis patients have 

increased mobilization of PL, probably to reach the affected areas, and reduced PLP and 

vitamin B6 catabolism to PA in serum. In addition, we found a negative correlation between 

PAr and PASI, probably reflecting increased plama PL that compensate the slightly reduced 

PLP. These observations are one of the most important findings of this study because it strongly 

suggests the involvement of vitamin B6 in psoriasis and point out to PAr as an additional 

biomarker of disease severity. Similarly, reduced plasma PLP and increased PA levels were 

reported to be associated to oxidative stress and inflammation (Christensen et al., 2012; Paul 

et al., 2013; Sakakeeny et al., 2012; Shen et al., 2010). Intriguingly, although it has been shown 

that AOX1 actively catabolizes vitamin B6 vitamers to PA under oxidative stress because 

AOX1 gene is induced by the master antioxidant response transcription factor NF-E2 related 

factor 2 (NRF2) (Maeda et al., 2012), AOX1 is downregulated in psoriasis lesional skin. Further 

studies are required to ascertain the relevance of this paradoxical observation.  
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To study the possible beneficious effects of vitamin B6 supplementation in psoriasis 

and to reveal the mechanisms involved, different zebrafish psoriasis models were used. Taking 

advantage of the unique characteristics for in vivo imaging of the zebrafish and the availability 

of different preclinical zebrafish models of psoriasis, we found that exogenous addition of 

vitamin B6 alleviates skin oxidative stress and inflammation, reducing the infiltration of 

neutrophils in the skin and NF-B activation, the later playing an important role in the initiation 

of psoriasis (Wang et al., 2018b), as well as melanocyte infiltration of inflamed areas, as it has 

been reported to inflamed wounds (Levesque et al., 2013). Although it is important to highlight 

that these results show the beneficial impact of vitamin B6 supplementation in 3 models of 

psoriasis in which oxidative stress and skin inflammation are triggered by different genetic 

alterations, they do not demonstrate the mechanism involved. However, it is tempting to 

speculate that vitamin B6 might directly inhibit oxidative stress, since H2O2 has been shown to 

initiate and perpetuate an inflammatory loop in Tnfr2-deficient zebrafish larvae (Candel et al., 

2014).  

One of the most important contribution of this study is the alteration of the transcript 

levels of 60% of the genes encoding the around 100 PLP-dependent enzymes in psoriasis 

lesional skin and, more importantly, that the levels of 21% of them show correlation with those 

of the inflammatory marker IL1B. As we have discussed above, the effects of exogenous 

vitamin B6 supplementation must be extremely complex, since it participates in many signaling 

pathways. Our results reveal that some of these pathways could have a huge impact in psoriasis. 

For example, vitamin B6 may regulate the kynurenine pathway, which is the main tryptophan 

catabolic pathway and has immunomodulatory effects (Wang et al., 2015; Yeh and Brown, 

1977). Another interesting pathway is the one involved in hydrogen sulfide (H2S) production, 

which is a gaseous messenger with proinflammatory effects at high concentrations and anti-

inflammatory effects at low concentrations (Bhatia, 2012; Gemici and Wallace, 2015; 

Whiteman and Winyard, 2011). 

We focused our attention into the glycogen degradation pathway, since the genes 

encoding two PLP-dependent enzymes, PYGL and G6PD, show increased transcript levels in 

psoriasis lesional skin and positive correlation with those of IL1B. In addition, early clinical 

studies reported that psoriasis lesional skin accumulated glycogen (Halprin et al., 1973; 

Harmon and Phizackerley, 1984; Sasai, 1970; Stankler and Walker, 1976). However, we did 

not observe increased PYGL and G6PD protein amount in psoriasis lesional skin but rather 

slightly reduced levels of PYGL. Although these results are not completely coherent, it is well-
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known that PYGL enzymatic activity is regulated at post-translational levels through 

phosphorylation. Therefore, we decided to inhibit Pygl and G6pd using genetic and 

pharmacological strategies in the Spint1a-deficient zebrafish psoriasis model and, strikingly, it 

was found that most of the inflammation markers evaluated were alleviated, including 

neutrophil and melanocyte infiltration, and keratinocyte hyperplasia. However, Nfkb levels 

were unaltered at the time analyzed. In addition, pharmacological inhibition of PYGL in human 

keratinocytes pre-stimulated with TNFA and IL17A robustly declines TNFA and IL1B 

transcript levels. Glycogen degradation is one of the most important sources of glucose and the 

deprivation of glucose by genetic and pharmacological inhibition of the glucose transporter 1 

(GLUT1) decreases hyperplasia in mouse model of psoriasis (Zhang et al., 2018). More 

importantly, GLUT1 protein amount in lesional skin positively correlated with disease severity 

in psoriasis patients (Hodeib et al., 2018). Although future experiments are required to 

understand the contribution of PYGL and G6PD in skin inflammation, it is also tempting to 

speculate about an alternative mechanism where glucose-1-phospate released from glycogen 

by the action of PYGL may be used by G6PD to generate NADPH that, in turn, may fuel 

NADPH oxidases, such as DUOX1, to produce H2O2, which mediates the skin inflammatory 

loop in the Tnfr2-deficient zebrafish psoriasis model and is strongly expressed in psoriasis 

patient lesional skin (Candel et al., 2014). Blocking this pathway, we could be affecting both 

reactions, but future experiments are required to discern which one is causing more impact. 

In conclusions, the results from this thesis point out to the relevance of vitamin B6 in 

the development of psoriasis and PAr as an attractive marker for this disease. The zebrafish 

preclinical models used have revealed the anti-inflammatory role of vitamin B6 

supplementation in skin inflammation induced by different genetic alterations and have 

uncovered PYGL and G6PD as novel, putative therapeutic target for psoriasis. Preclinical 

human 3D psoriasis skin models should be the following step to confirm the usefulness vitamin 

B6 supplementation and PYGL and G6PD inhibition for the treatment of this disease.  
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1. The expression of genes encoding the enzymes involved in vitamin B6 metabolism is 

altered in psoriasis lesional skin. 

2. The PAr index negatively correlates with PASI and, therefore, can be used as a prognostic 

marker of disease severity. 

3. The expression of 60% of genes encoding PLP-dependent enzymes are altered in psoriasis 

lesional skin and the expression of 21% of them correlates with inflammation. 

4. The PLP-dependent enzymes PYGL and G6PD show decreased and similar protein levels, 

respectively, in psoriasis lesional skin.  

5. Vitamin B6 vitamers alleviate H2O2 production, Nfkb activation, neutrophil and 

melanocyte skin infiltration, and keratinocyte hyperplasia in three different zebrafish 

preclinical models of psoriasis. 

6. Pharmacological inhibition of the PLP-dependent enzyme PYGL reduces H2O2 production, 

neutrophil and melanocyte skin infiltration, and keratinocyte hyperplasia, but fails to inhibit 

Nfkb activation, in the Spint1a-deficient zebrafish model of psoriasis. In addition, 

pharmacological inhibition of PYGL in human keratinocytes pre-stimulated with TNFA 

and IL17A robustly reduces the induction of IL1B and TNFA. 
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La inmunidad es el balance entre la protección frente a agentes externos y la tolerancia 

para evitar alergias o enfermedades autoinmunitarias (Waller and Sampson, 2018). Diferentes 

moléculas, células y tejidos participan en una respuesta coordinada formando el sistema 

inmunitario. Dependiendo del tiempo de reacción y la especificidad de la respuesta se clasifica 

en dos tipos principales que están coordinadas y reguladas entre sí (Dempsey et al., 2003; 

Parkin and Cohen, 2001). Por un lado, el sistema inmunitario innato es la respuesta más rápida 

frente a infecciones, compuesta principalmente por moléculas solubles y diferentes tipos 

celulares como mastocitos, células asesinas naturales, dendríticas y mieloides, llamadas 

neutrófilos y macrófagos, que detectan señales de daño y liberan quimioquinas o citoquinas 

para atraer más células inmunitarias (Abbas et al., 2019; McComb et al., 2013; Medzhitov, 

2007). Por otro lado, el sistema inmunitario adaptativo es específico y desarrolla memoria para 

futuros encuentros, dividiéndose en respuesta humoral llevada a cabo por linfocitos B que 

reconocen patógenos libres y producen anticuerpos (Abbas et al., 2019), y en respuesta 

mediada por células que está basada en los linfocitos T que reconocen antígenos presentados 

por el complejo mayor de histocompatibilidad (Neefjes et al., 2011). Los linfocitos que 

expresan receptores que reconocen componentes del propio organismo son eliminados, pero 

en ocasiones esto no ocurre y se pueden desarrollar enfermedades autoinmunitarias (Gregersen 

and Behrens, 2006). 

La respuesta del sistema inmunitario a estas señales provoca una respuesta 

fisiopatológica llamada inflamación que tiene el propósito de eliminar el agente que provoca 

el daño (Chovatiya and Medzhitov, 2014). Macrófagos y células epiteliales comienzan la 

respuesta inflamatoria tras la detección de un estímulo, y neutrófilos y monocitos que se 

diferenciarán a macrófagos migran al lugar de inflamación (Schmid-Schonbein, 2006) gracias 

a la producción de citoquinas y quimiocinas inflamatorias como TNFA, IL1B o CXCL8 que 

inducen expresión endotelial de moléculas de adhesión, vasodilatación y permeabilidad de los 

vasos causando hinchazón (Silva, 2010). Si después de la eliminación del daño la inflamación 

restaura las condiciones fisiológicas normales, esa respuesta se denomina inflamación aguda 

(Kumar, 2018). En caso de que esta respuesta se mantenga a largo plazo se denomina 

inflamación crónica y los neutrófilos se desgranulan, los linfocitos se activan y los fibroblastos 

liberan mediadores que inducen más infiltración (Huether and McCance, 2017). El aumento de 

los casos de enfermedades inflamatorias crónicas como la artritis reumatoide, la diabetes o la 

psoriasis han convertido a estas enfermedades en una de las mayores causas de morbilidad y 

mortalidad en los países desarrollados. 
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Entre estas enfermedades destaca la psoriasis que acepta al 3% de la población mundial 

y que tiene una etiología compleja y no totalmente conocida (Lebwohl, 2003). La psoriasis se 

puede manifestar de diferentes formas (Lebwohl, 2018; Raposo and Torres, 2016; Renton, 

2014; Syed and Khachemoune, 2011), pero su fisiopatología está caracterizada por un 

incremento anormal en la proliferación de los queratinocitos causando descamación y eritema 

y una gran infiltración de células inmunitarias en las diferentes capas de la piel causando picor, 

quemazón y dolor (Ippagunta et al., 2016). Se ha propuesto que los queratinocitos son activados 

y liberan mediadores inflamatorios y moléculas señalizadoras, como las interleuquinas IL17 e 

IL23, que reclutan neutrófilos, macrófagos y mastocitos que amplifican la inflamación y 

desencadenan la enfermedad (Albanesi et al., 2018; Candel et al., 2014; Schubert and 

Christophers, 1985). A pesar de que se han desarrollado diferentes tratamientos para la 

psoriasis, como los anticuerpos frente a sus principales interleuquinas (Malakouti et al., 2015; 

Paek et al., 2018; Reich et al., 2015) o  mediante fototerapia (Zhang and Wu, 2018), solo son 

efectivos de manera temporal y ninguno de ellos se ha demostrado eficaz a largo plazo. 

Por esta razón es necesaria la investigación de nuevas dianas terapéuticas y posibles 

tratamientos. Para ello se han utilizado diferentes modelos in vitro, ex vivo e in vivo (Bochenska 

et al., 2017; Danilenko, 2008; Hawkes et al., 2018; Wcislo-Dziadecka et al., 2018). La mayor 

parte de los estudios in vivo en modelos animales se han hecho en alguno de los más de cuarenta 

modelos de psoriasis que se han descrito en ratón (Hawkes et al., 2018), pero no todos ellos 

han sido correctamente validados y algunos manifiestan diferentes enfermedades de la piel 

(Swindell et al., 2017a). En este estudio se han utilizado como modelos cultivos de 

queratinocitos humanos y el pez cebra.  

El pez cebra es un pez de agua dulce de pequeño tamaño, tiene un gran número de 

descendencia cada semana, lo que permite tener mayor número de individuos por experimento 

y aumenta la reproducibilidad (Meshalkina et al., 2017), se desarrolla rápidamente de forma 

externa, pudiendo modificar genéticamente de manera sencilla el embrión desde el estado de 

una sola célula (Ablain et al., 2018), y tras la fertilización y durante las primeras etapas del 

desarrollo sus larvas son transparentes, lo que permite el seguimiento in vivo de diferentes 

moléculas o tipos celulares. El genoma del pez cebra está completamente secuenciado y 

comparte un 71.4% con el genoma humano (Howe et al., 2013; Shim et al., 2016). La estructura 

de la piel es similar a la de humanos (Le Guellec et al., 2004) y estudios previos han mostrado 

que el pez cebra puede ser un buen modelo para estudiar inflamación (de Oliveira et al., 2015; 

de Oliveira et al., 2014) y existen diferentes líneas de pez cebra como modelos de psoriasis 
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(Candel et al., 2014; Carney et al., 2007; Dodd et al., 2009; Mathias et al., 2007; Sonawane et 

al., 2005; Webb et al., 2008; Zimmermann et al., 2008). 

Este trabajo se centra en el estudio del posible papel de la vitamina B6 en el desarrollo 

de la psoriasis. La vitamina B6 es una vitamina soluble que incluye diferentes vitámeros 

(Coburn, 1996), cuya forma más activa es PLP, que los humanos obtienen de la dieta y de la 

microbiota (Said, 2015). Debido a su característica estructura química, la vitamina B6 es capaz 

de disminuir las especies reactivas de oxígeno in vitro (Kannan and Jain, 2004), puede ayudar 

en el plegamiento de determinadas enzimas (Cellini et al., 2014) y es un quelante de metales 

(Wondrak and Jacobson, 2012). Aunque la deficiencia de vitamina B6 no es común en los 

países desarrollados, bajos niveles de esta se asocian con gran variedad de enfermedades 

(Cheng et al., 2008; Chiang et al., 2005; Dalery et al., 1995; Eussen et al., 2010; Friedman et 

al., 2004; Hron et al., 2007; Johansson et al., 2014; Kelly et al., 2003; Larsson et al., 2010; Le 

Marchand et al., 2011; Lurie et al., 2012; Roubenoff et al., 1995; Selhub et al., 2013; Verhoef 

et al., 1996; Wu et al., 2013). 

La deficiencia de vitamina B6 se ha descrito en diferentes estudios como un factor que 

altera la respuesta inmunitaria y su suplementación restaura la condición homeostática 

(Casciato et al., 1984; Dobbelstein et al., 1974; Sorice et al., 1980; Talbott et al., 1987). PLP 

normalmente está inversamente asociado con diferentes marcadores de inflamación, como la 

proteína reactiva C entre otros, en clínica (Friso et al., 2001; Sakakeeny et al., 2012). Se ha 

descrito que la inflamación aguda puede causar un incremento de la vitamina B6 en los tejidos 

afectados y un incremento de su catabolismo para formar PA (Ulvik et al., 2012). La psoriasis, 

como otras enfermedades inflamatorias, tiene diferentes comorbilidades ente las que destaca el 

síndrome metabólico (Boehncke et al., 2011). Un estudio enfocado en el síndrome metabólico 

asociado a psoriasis señala a la vitamina B6 como un componente protector (Romani et al., 

2013). Toda esta información indica que la vitamina B6 podría estar involucrada en el 

desarrollo de diferentes enfermedades inflamatorias incluida la psoriasis. 

Utilizando datos transcriptómicos disponibles de estudios previos sobre psoriasis en 

muestras de piel lesionada y no lesionada, encontramos una expresión alterada en todos los 

transcritos de las enzimas involucradas en el metabolismo de la vitamina B6 en piel de psoriasis 

lesionada y algunos de ellos correlacionaban con un marcador de inflamación. Además, 

analizando los niveles en suero sanguíneo de los diferentes vitámeros de la vitamina B6 y sus 

productos de catabolismo demostramos que los pacientes de psoriasis tienen una movilización 
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de PL mayor, probablemente para llegar al área afectada, mientras que el catabolismo de 

vitamina B6 a PA está reducido en suero de pacientes de psoriasis. Además, el índice PAr, 

PA(PL/PLP), correlaciona con el PASI. Este es uno de los descubrimientos más importantes 

en este estudio porque demuestra que PAr podría ser utilizado clínicamente como medida de 

la severidad de la enfermedad. 

Estos resultados muestran que el metabolismo vitamina B6 está alterado en los 

pacientes de psoriasis tanto sistémica como localmente, señalando a la vitamina B6 como 

marcador de la severidad de la psoriasis y posible tratamiento para la misma. Para discernir el 

posible efecto beneficioso de la vitamina B6 en situación de inflamación, se utilizaron distintos 

modelos de psoriasis generados en pez cebra. Debido a las características especiales para toma 

de imágenes in vivo del pez cebra, utilizando diferentes modelos preclínicos de psoriasis vimos 

que la adición exógena de vitamina B6 mejora el estrés oxidativo y la inflamación, reduciendo 

la infiltración de neutrófilos en la piel que es una de las características de las lesiones de 

psoriasis, disminuyendo los niveles de H2O2 en la piel y la activación de NF-B. Estos 

resultados muestran el impacto beneficioso de la suplementación con vitamina B6 cuando hay 

condiciones de inflamación, pero no demuestra si este efecto se debe a la acción directa la 

vitamina B6 o si alguna de las rutas dependientes de vitamina B6 es la responsable. 

Paradójicamente, en inflamación el catabolismo de la vitamina B6 está normalmente 

incrementado mostrando mayor PAr, pero encontramos que en psoriasis este está disminuido 

en suero, aunque puede ser debido a una compensación por los mayores niveles de PL. 

Normalmente AOX1 degrada vitamina B6 a PA cuando hay estrés oxidativo porque el gen 

AOX1 está regulado por el factor transcripcional NRF2 (Maeda et al., 2012), pero en la piel 

lesionada de psoriasis AOX1 se está expresando por debajo de lo normal. Esta situación puede 

ser clave, mostrando que el efecto de la vitamina B6 en psoriasis es debido a rutas dependientes 

de vitamina B6 en lugar de a sus características físicas o químicas. 

Analizando los niveles transcriptómicos de alrededor de 100 genes que cifran enzimas 

dependientes de PLP en piel de controles sanos y de pacientes de psoriasis lesionada y no 

lesionada, encontramos que el 60% de ellos presentan una expresión alterada en pacientes de 

psoriasis y, aún más relevante, el 21% correlaciona con la expresión de IL1B en la piel 

lesionada de psoriasis. Algunas de estas enzimas están involucradas en rutas que pueden tener 

un gran impacto en el organismo. Por ejemplo, la ruta de la quinurenina que es la principal 

responsable del catabolismo del triptófano y puede tener efectos inmunomoduladores (Wang 
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et al., 2015; Yeh and Brown, 1977). Otra de las rutas es la involucrada en la producción de 

H2S, que es un mediador gaseoso con propiedades proinflamatorias a altas concentraciones y 

efectos antiinflamatorios a bajas concentraciones (Bhatia, 2012; Gemici and Wallace, 2015; 

Wallace and Wang, 2015; Whiteman and Winyard, 2011). 

Pero centramos nuestra atención en la ruta de degradación del glucógeno que tiene dos 

enzimas dependientes de PLP, PYGL y G6PD, que tienen aumentados sus niveles de transcritos 

en la piel lesionada de psoriasis y correlacionan con la expresión de IL1B. Estudios clínicos 

previos han descrito que las lesiones de psoriasis acumulan glucógeno (Halprin et al., 1973; 

Harmon and Phizackerley, 1984; Sasai, 1970; Stankler and Walker, 1976), por lo que esta ruta 

podría estar relacionada con el desarrollo de la enfermedad. Cuando se analizaron las muestras 

de piel se encontraron niveles reducidos de proteína PYGL en pacientes de psoriasis y similares 

niveles de G6PD. Estos resultados no son completamente coherentes con los anteriores, pero 

podrían estar mostrando una expresión alterada de alguno de los componentes de la ruta. 

Además, la actividad enzimática de PYGL se regula mediante fosforilación. Para clarificar si 

esta ruta puede estar implicada en el proceso de inflamación, decidimos bloquear PYGL con 

un inhibidor específico en un modelo de psoriasis en pez cebra y encontramos que la mayoría 

de los marcadores de inflamación evaluados mejoraban cuando se aplicaba el inhibidor de 

PYGL. Se obtuvieron resultados similares cuando se inhibió PYGL en cultivos celulares de 

queratinocitos humanos. 

La degradación del glucógeno es una de las fuentes más importantes de glucosa y la 

privación de esta puede llevar a la disminución de la proliferación de los queratinocitos. Pero 

además esta ruta termina con la acción de G6PD liberando NADPH, que es uno de los sustratos 

necesarios para las NADPH oxidasas, como DUOX1, para producir H2O2. Bloqueando esta 

ruta, podríamos estar afectando a ambas reacciones. Para discernir cuál de ellas tiene un mayor 

impacto hace falta realizar más experimentos. 

Los resultados de esta tesis señalan a la vitamina B6 como un factor importante en el 

desarrollo de psoriasis en humanos. Confirmando el papel antiinflamatorio de la vitamina B6 

en diferentes modelos de psoriasis y mostrando que la vitamina B6 podría ser considerada 

como un tratamiento clínico frente a enfermedades inflamatorias de la piel como, por ejemplo, 

la psoriasis. Además, el PAr podría ser utilizado como un marcador de la gravedad de la 

psoriasis. 
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