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ResumenResumen

Relacionando el volumen, vol(·) (es decir, la medida de Lebesgue), y la suma de Minkowski (o
suma vectorial) + de conjuntos compactos, nos encontramos con la famosa desigualdad de Brunn-
Minkowski. Ésta puede enunciarse diciendo que si K, L ⊂ Rn son compactos y no vaćıos, entonces

vol(K + L)1/n ≥ vol(K)1/n + vol(L)1/n, (∗)

dándose la igualdad, cuando vol(K)vol(L) > 0, si, y sólo si, K y L son conjuntos convexos com-
pactos homotéticos. Existen diversas versiones geométricas equivalentes de este resultado, siendo
especialmente interesante la llamada forma de Blaschke de la desigualdad de Brunn-Minkowski: si
K, L ⊂ Rn son conjuntos convexos y compactos, y BK , BL son las bolas (cerradas y centradas en
el origen) tales que vol(BK) = vol(K) y vol(BL) = vol(L), entonces

vol(K + L) ≥ vol(BK + BL). (†)

La desigualdad de Brunn-Minkowski es uno de los resultados más potentes en Geometŕıa Convexa
y más allá, y tiene extensiones en otros campos. El equivalente anaĺıtico para funciones de (∗) nos
lleva de forma natural a la llamada desigualdad de Borell-Brascamp-Lieb: dado p ≥ −1/n, p 6= 0,
si f, g, h : Rn −→ R≥0 son funciones medibles no-negativas (con integrales no nulas), tales que
h(x + y) ≥

(
f(x)p + g(y)p

)1/p para cualesquiera x, y ∈ Rn con f(x)g(y) > 0, entonces

∫
Rn

h(x) dx ≥
[(∫

Rn

f(x) dx

)q

+
(∫

Rn

g(x) dx

)q]1/q

, (‡)

donde q = p/(np + 1); aqúı, y en lo que sigue, los casos p = ±∞ deben entenderse como los casos
ĺımite usuales.

Hoy en d́ıa existe un creciente interés por obtener equivalentes discretos de desigualdades geomé-
tricas clásicas, es decir, versiones discretas en las cuales los conjuntos compactos y el volumen se
reemplazan por conjuntos finitos de puntos y por el cardinal, respectivamente. Desde luego, la
desigualdad de Brunn-Minkowski es uno de los primeros resultados a considerar en el contexto
discreto.

Es muy sencillo comprobar que no existe una desigualdad de Brunn-Minkowski para el cardinal
en su forma clásica (∗). También merece la pena observar que no es fácil obtener dicha desigualdad
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a partir de la desigualdad de Brunn-Minkowski, como apuntaron Gardner y Gronchi en [8, páginas
3996-3997]. Por lo tanto, una versión discreta de (∗) debeŕıa, o bien tener una estructura diferente,
o bien involucrar modificaciones de los conjuntos. En la primera ĺınea de trabajo, Gardner y
Gronchi [8] obtuvieron un análogo discreto de la forma de Blaschke (†) de la desigualdad de Brunn-
Minkowski: demostraron que si A,B son subconjuntos finitos del ret́ıculo entero Zn, con dim B = n,
entonces

|A + B| ≥
∣∣DB

|A| + DB
|B|
∣∣. (§)

Aqúı DB
|A| es un B-segmento inicial: grosso modo, como una intersección de un śımplice con Zn.

Esta tesis doctoral está dedicada a determinar nuevas versiones discretas de las desigualdades
de Brunn-Minkowski y de Borell-Brascamp-Lieb, manteniendo la estructura de las correspondien-
tes desigualdades clásicas, y por tanto, modificando uno de los conjuntos involucrados. También
probaremos que estas nuevas desigualdades implican las (pertinentes) versiones clásicas.

El trabajo comienza con una primera sección en la que establecemos la notación e introducimos
los conceptos y resultados que serán necesarios más adelante. También recordamos varias desigual-
dades para sumas que jugarán un papel relevante en las demostraciones de nuestros resultados.
A continuación presentamos la desigualdad de Brunn-Minkowski en el contexto clásico (continuo),
a saber, (∗), junto con varias versiones (equivalentes) de la misma. Nos trasladamos entonces al
marco discreto: recopilamos algunas desigualdades relevantes que, aun cambiando la estructura de
la desigualdad de Brunn-Minkowski, pueden verse como versiones discretas de la misma. Hacemos
especial énfasis en la desigualdad de Gardner y Gronchi (§), y concluimos el caṕıtulo proporcio-
nando un nuevo método para calcular, algoŕıtmicamente, la cota que aparece en el resultado de
Gardner y Gronchi.

El segundo caṕıtulo está dedicado al estudio de nuevas desigualdades discretas de tipo Brunn-
Minkowski en las que se preserva la estructura del resultado clásico, teniéndose, por tanto, que
modificar alguno de los conjuntos involucrados. Con este fin introducimos dos construcciones dife-
rentes: a partir de un conjunto finito A ⊂ Zn podemos, o bien añadir puntos (Ā), o eliminar puntos
(r(A)) de un modo preciso. Esto nos va a permitir obtener dos versiones discretas (equivalentes)
de la desigualdad clásica de Brunn-Minkowski:

Teorema A. Sean A,B ⊂ Zn finitos, A,B 6= ∅. Entonces∣∣Ā + B
∣∣1/n ≥ |A|1/n + |B|1/n

y
|A + B|1/n ≥

∣∣r(A)
∣∣1/n + |B|1/n.

Ambas desigualdades son óptimas.

A continuación demostramos que a partir de estas versiones equivalentes se puede obtener la
desigualdad de Brunn-Minkowski clásica. Concluimos el caṕıtulo probando que el número de puntos
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adicionales en Ā no puede ser demasiado grande, dependiendo sólo de (la estructura de) A y de
la dimensión. De forma más precisa, proporcionamos cotas superiores e inferiores tanto para la
razón

∣∣Ā∣∣/|A| como para la diferencia
∣∣Ā∣∣−|A|. Resultados similares se obtendrán para la segunda

construcción r(A).

En el último caṕıtulo investigamos versiones discretas de la desigualdad de Borell-Brascamp-
Lieb (‡). Comenzamos el caṕıtulo con una primera sección dedicada a recordar esta importante
desigualdad, tanto en términos de la p-suma (véase (‡)) como de su versión para p-medias. Seguida-
mente, y con el fin de obtener tales desigualdades de Borell-Brascamp-Lieb discretas, generalizamos
una de las construcciones previamente mencionadas: eliminando puntos de nuestro conjunto finito
inicial A ⊂ Zn, A 6= ∅, definimos un nuevo conjunto reducido rf (A) conforme a una función peso
particular f : Zn −→ R≥0. Utilizando esta transformación demostramos el resultado principal de
la sección:

Teorema B. Sean A,B ⊂ Zn conjuntos finitos no vaćıos. Sea −1/n ≤ p ≤ ∞, p 6= 0, y sean
f, g, h : Rn −→ R≥0 funciones no-negativas tales que

h(x + y) ≥
(
f(x)p + g(y)p

)1/p

para cualesquiera x ∈ A, y ∈ B con f(x)g(y) > 0. Entonces

∑
z∈A+B

h(z) ≥

 ∑
x∈rf (A)

f(x)

q

+

∑
y∈B

g(y)

q1/q

,

donde q = p/(np+1) (siempre y cuando las sumas del lado derecho de la desigualdad no sean cero).

También probamos que la desigualdad clásica de Borell-Brascamp-Lieb (‡) puede deducirse a
partir de la versión discreta (Teorema B) bajo la hipótesis débil (pero necesaria) de que las funciones
f, g sean integrables Riemann.

En la última sección consideramos otra importante medida discreta asociada a un conjunto
K ⊂ Rn y al ret́ıculo entero, el llamado enumerador de puntos del ret́ıculo Gn(K) = |K ∩ Zn|, y
trabajamos con combinaciones convexas de conjuntos, (1−λ)K +λL, λ ∈ (0, 1), en lugar de con la
suma K + L. La pregunta natural que se plantea es si se puede conseguir una desigualdad de tipo
Brunn-Minkowski para Gn(K). De nuevo, no va a ser posible obtener dicha desigualdad en su forma
clásica (∗), y por tanto hay que intentar determinar el mejor conjunto M , con (1−λ)K +λL ⊂M ,
para el cual se verifique que

Gn

(
M)1/n ≥ (1− λ)Gn(K)1/n + λGn(L)1/n

para todo λ ∈ (0, 1). A este respecto demostramos el siguiente resultado:
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Teorema C. Sean K, L ⊂ Rn conjuntos acotados no vaćıos tales que Gn(K)Gn(L) > 0, y sea
λ ∈ (0, 1). Entonces

Gn

(
(1− λ)K + λL + (−1, 1)n

)1/n ≥ (1− λ)Gn(K)1/n + λGn(L)1/n.

La desigualdad es óptima.

Este teorema se obtendrá como consecuencia de un resultado funcional (más general), el cual
puede verse como otra versión discreta de la desigualdad de Borell-Brascamp-Lieb, ahora para p-
medias; y de nuevo, esta versión discreta implicará la desigualdad clásica de Borell-Brascamp-Lieb
para p-medias bajo hipótesis concretas sobre las funciones involucradas.

Los resultados originales que se recogen en esta tesis doctoral pueden encontrarse en las refe-
rencias [12, 13, 14, 15].
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Relating the volume, vol(·) (i.e., the Lebesgue measure), with the Minkowski (vectorial) addition
+ of compact sets, one is led to the famous Brunn-Minkowski inequality. One form of it states that
if K, L ⊂ Rn are compact and non-empty, then

vol(K + L)1/n ≥ vol(K)1/n + vol(L)1/n, (¶)

with equality, when vol(K)vol(L) > 0, if and only if K and L are homothetic compact convex
sets. There are several equivalent geometric versions of this result, and specially interesting is
the so-called Blaschke form of the Brunn-Minkowski inequality: if K, L ⊂ Rn are compact convex
sets, and BK , BL are the (closed) balls (centered at the origin) such that vol(BK) = vol(K) and
vol(BL) = vol(L), then

vol(K + L) ≥ vol(BK + BL). (‖)

The Brunn-Minkowski inequality is one of the most powerful results in Convex Geometry and be-
yond, and with various extensions to other fields. Regarding an analytical counterpart for functions
of (¶), one is naturally led to the so-called Borell-Brascamp-Lieb inequality : for p ≥ −1/n, p 6= 0,
if f, g, h : Rn −→ R≥0 are non-negative measurable functions (with non-zero integrals), such that
h(x + y) ≥

(
f(x)p + g(y)p

)1/p for all x, y ∈ Rn such that f(x)g(y) > 0, then∫
Rn

h(x) dx ≥
[(∫

Rn

f(x) dx

)q

+
(∫

Rn

g(x) dx

)q]1/q

, (∗∗)

where q = p/(np + 1); here, and in the following, the cases p = ±∞ have to be understood as the
natural limit cases.

There is nowadays a growing interest in getting discrete counterparts of classical geometric
inequalities, i.e., discrete analogs in which compact sets and volume are replaced by finite sets of
points and cardinality, respectively. Of course, the Brunn-Minkowski inequality is one of the first
results to be considered in this discrete setting.

It can be easily seen that one cannot expect to obtain a Brunn-Minkowski inequality for the
cardinality in the classical form (¶). It is also worth remarking that getting such an inequality
from the classical Brunn-Minkowski inequality is not an easy task, as pointed out by Gardner and
Gronchi in [8, pages 3996-3997]. Therefore, a discrete version of (¶) should either have a different
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structure or involve modifications of the sets. In the first line, Gardner and Gronchi [8] obtained
a discrete analog of the Blaschke form (‖) of the Brunn-Minkowski inequality: they proved that if
A,B are finite subsets of the integer lattice Zn, with dimension dim B = n, then

|A + B| ≥
∣∣DB

|A| + DB
|B|
∣∣. (††)

Here DB
|A| is a B-initial segment: roughly speaking, like an intersection of a simplex with Zn.

This dissertation is devoted to provide new discrete Brunn-Minkowski and Borell-Brascamp-
Lieb type inequalities, preserving the structure of their classical form, and so, modifying one of the
sets involved. We also prove that these new inequalities imply the (corresponding) classical ones.

The work starts with an introductory first section where we establish the notation and introduce
the concepts and results that will be needed later on. We also recall some inequalities involving sums
that will play a relevant role in the proofs of our results. Next, we present the Brunn-Minkowski
inequality in the classical (continuous) setting, namely, (¶), together with several (equivalent)
versions of it. Then, we move to the discrete setting: we collect some relevant inequalities that,
even changing the structure of the Brunn-Minkowski inequality, can be seen as discrete versions of
it. We make special emphasis on the inequality of Gardner and Gronchi (††), and we end the chapter
providing with a new method for algorithmically computing the bound in the Gardner&Gronchi
result.

The second chapter is devoted to study new discrete Brunn-Minkowski type inequalities pre-
serving the structure of the classical result, but so involving some modifications on one of the sets.
To this aim, we introduce two different constructions: starting from a finite set A ⊂ Zn, we can
either adding points (Ā), or removing points (r(A)) in a precise way. This will allow us to get two
(equivalent) discrete versions of the classical Brunn-Minkowski inequality:

Theorem A. Let A,B ⊂ Zn be finite, A,B 6= ∅. Then∣∣Ā + B
∣∣1/n ≥ |A|1/n + |B|1/n

and
|A + B|1/n ≥

∣∣r(A)
∣∣1/n + |B|1/n.

Both inequalities are sharp.

Next, we prove that these equivalent versions can be used to infer the Brunn-Minkowski in-
equality in its classical form. We conclude the chapter by showing that the number of additional
points in Ā cannot be too large, and depends only on (the structure of) A and on the dimension.
More precisely, we provide upper and lower bounds for both the ratio

∣∣Ā∣∣/|A| and the difference∣∣Ā∣∣− |A|. Similar results will be obtained for the second construction r(A).

In the last chapter, we investigate discrete versions of the Borell-Brascamp-Lieb inequality
(∗∗). We start the chapter with a first section devoted to recalling this important inequality, both
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in terms of the p-sum (cf. (∗∗)) and its version for p-means. Next, in order to get such a discrete
Borell-Brascamp-Lieb inequality, we generalize one of the constructions previously mentioned: by
removing points from our original finite set A ⊂ Zn, A 6= ∅, we define a new reduced set rf (A)
according to a particular weight function f : Zn −→ R≥0. Using this transformation we prove our
main result in this section:

Theorem B. Let A,B ⊂ Zn be non-empty finite sets. Let −1/n ≤ p ≤ ∞, p 6= 0, and let
f, g, h : Rn −→ R≥0 be non-negative functions such that

h(x + y) ≥
(
f(x)p + g(y)p

)1/p

for all x ∈ A, y ∈ B with f(x)g(y) > 0. Then

∑
z∈A+B

h(z) ≥

 ∑
x∈rf (A)

f(x)

q

+

∑
y∈B

g(y)

q1/q

,

with q = p/(np + 1) (provided that both sums in the right-hand side are non-zero).

We also show that the classical Borell-Brascamp-Lieb inequality (∗∗) can be obtained from the
discrete version (Theorem B) under the mild (but necessary) assumption that the functions f, g

are Riemann integrable.

In the last section we consider another important discrete measure associated both to a set
K ⊂ Rn and to the integer lattice, the so-called lattice point enumerator Gn(K) = |K ∩ Zn|,
and we deal with convex combinations of sets, (1 − λ)K + λL, λ ∈ (0, 1), instead of K + L. The
natural question arises whether one can get a Brunn-Minkowski type inequality for the lattice point
enumerator. Again it will be not possible to obtain such an inequality in the classical form (¶),
and so, we look for the best set M , with (1− λ)K + λL ⊂M , satisfying

Gn

(
M)1/n ≥ (1− λ)Gn(K)1/n + λGn(L)1/n

for all λ ∈ (0, 1). In this regard we prove the following result:

Theorem C. Let K, L ⊂ Rn be non-empty bounded sets such that Gn(K)Gn(L) > 0, and let
λ ∈ (0, 1). Then

Gn

(
(1− λ)K + λL + (−1, 1)n

)1/n ≥ (1− λ)Gn(K)1/n + λGn(L)1/n.

The inequality is sharp.

This theorem will be obtained as a consequence of a functional (and more general) result,
which can be seen as another discrete version of the Borell-Brascamp-Lieb inequality, but now for
p-means; and again, this discrete version will imply the classical Borell-Brascamp-Lieb inequality
for p-means under particular assumptions on the functions involved.

The original results which are contained in this dissertation can be found in the papers [12, 13,
14, 15].
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Chapter 1

On the discrete Brunn-Minkowski
inequality of Gardner and Gronchi

On the discrete Brunn-Minkowski
inequality of Gardner and Gronchi

The Brunn-Minkowski inequality is one of the most powerful results in Convex Geometry, and
has unexpected applications in many other fields. Roughly speaking, it states that the n-th root
of the volume is a concave function. Nowadays there is an increasing interest for getting discrete
analogs of classical results (in continuous settings), being an important example of this a beautiful
discrete version of the Brunn-Minkowski inequality due to Gardner and Gronchi.

In this first chapter we will give a brief overview of both, the classical Brunn-Minkowski in-
equality, and the Gardner&Gronchi result, having as a final aim to provide with a new method for
algorithmically computing the bounds appearing in the Gardner&Gronchi inequality. We will start
the chapter with a first section containing the notation, definitions and basic results that will be
needed throughout the rest of the dissertation.

The original work that we collect here can be found in [13].

1.1 Notation, definitions and basic results

As usual, we write Rn to represent the n-dimensional Euclidean space, and we denote by ei the
i-th canonical unit vector. For x, y ∈ Rn, [x, y] will represent the closed segment with endpoints x

and y, namely,

[x, y] =
{
(1− λ)x + λy : 0 ≤ λ ≤ 1

}
,
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and analogously, we set
(x, y) =

{
(1− λ)x + λy : 0 < λ < 1

}
for the open segment with endpoints x, y.

We write πi1,...,ik , 1 ≤ i1, . . . , ik ≤ n, to denote the orthogonal projection onto the k-dimensional
coordinate plane Rei1 + · · · + Reik . For the sake of brevity we just write Hi to represent the i-th
coordinate hyperplane, namely, Hi = Re1+· · ·+Rei−1+Rei+1+· · ·+Ren, and π(i) = π1,...,i−1,i+1,...,n

for the corresponding orthogonal projection onto Hi.

Given a subset M ⊂ Rn, we denote by dim M , int M and cl M the dimension of M (i.e., the
dimension of the smallest affine subspace of Rn containing M), the interior of M and its closure,
respectively. Moreover, we will use χM to represent the characteristic function of M , i.e.,

χM (x) =

{
1 if x ∈M,

0 otherwise.

For x ∈ Rn, d(x,M) will stand for the Euclidean distance between x ∈ Rn and M . Furthermore,
if dim M = k, k ∈ {1, . . . , n}, and it is contained in some affine subspace that we identify with Rk

then, for each z ∈ Rr, r ∈ {1, . . . , k − 1}, we will write M(z) to denote the section of M at z (in
the corresponding subspace) orthogonal to the coordinate plane Rek−r+1 + · · ·+ Rek, this is,

M(z) =
{
x ∈ Rk−r : (x, z) ∈M

}
. (1.1)

Finally, as usual in the literature, by btc we will denote the floor function of a real number t ∈ R,
i.e., the greatest integer less than or equal to t; similarly, dte will represent the ceiling function of t,
namely, the smallest integer greater than or equal to t. In addition, we will write R≥0 (respectively,
Q≥0) to denote the set of non-negative real (respectively, rational) numbers.

Next we state several definitions and inequalities which are well known and can be found in any
book on Convexity; among many others we refer to [10, 26] as source books.

The Brunn-Minkowski inequality arises from combining two key notions for (compact) sets:
volume and Minkowski addition. We recall briefly their definitions.

Definition 1.1. Let M ⊂ Rn be a compact set. The volume of M , denoted as vol(M), is the
(n-dimensional) Lebesgue measure of M .

When integrating, as usual, dx will stand for dvol(x).

Definition 1.2. Let A,B ⊂ Rn. The Minkowski (vectorial) addition of A and B is defined as

A + B = {a + b : a ∈ A, b ∈ B}

(see Figure 1.1).



1.1 Notation, definitions and basic results 3

Figure 1.1: Two examples of Minkowski addition.

Moreover, for λ ∈ R we write λA = {λ a : a ∈ A} and, we will shorten by x + A := {x}+ A.

Definition 1.3. A (non-empty) set K ⊂ Rn is said to be convex if, given two points x, y ∈ K, the
line segment [x, y] is contained in K, i.e., if any convex combination (1−λ)x+λy ∈ K, 0 ≤ λ ≤ 1.

For an arbitrary M ⊂ Rn, the convex hull of M , denoted by conv M , is the smallest convex set
containing M .

Next we move to the discrete setting. The discrete counterpart of the volume for finite sets is
the cardinality, which will be denoted by |A| for a finite subset A ⊂ Rn.

As usual in the literature we represent by Zn the (n-dimensional) integer lattice, i.e., the lattice
of all points with integer coordinates in Rn, and we write

Zn
≥0 :=

{
x = (x1, . . . , xn) ∈ Zn : xi ≥ 0, i = 1, . . . , n

}
.

In general, a (geometric) lattice Λ in Rn is the family of all integer linear combinations of n linearly
independent vectors {v1, . . . , vn} ⊂ Rn, which is called a basis of Λ.

Another important discrete measure associated both to a set M ⊂ Rn and to the integer lattice
is the so-called lattice point enumerator, namely,

Gn(M) = |M ∩ Zn|

(it may be also defined with respect to an arbitrary lattice).

Special sets that will appear throughout this dissertation are the lattice sets: a finite set A ⊂ Zn

is a (convex) lattice set if A = (conv A) ∩ Zn. In particular, we will denote by Cn
r , for r ∈ N, the

lattice cube
Cn

r = r[0, 1]n ∩ Zn,

with r + 1 integer points in its edges.
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1.1.1 Some inequalities involving sums

We conclude this first introductory section by recalling some important inequalities for sums
that will play a relevant role in the proofs of our results. We start by stating the well-known
arithmetic-geometric mean inequality (see e.g. [10, Corollary 1.2]):

Theorem 1.1.1 (The arithmetic-geometric mean inequality). Let a1, . . . , an ≥ 0 and let
α1, . . . , αn ≥ 0 be such that

∑n
i=1 αi = 1. Then

n∏
i=1

aαi
i ≤

n∑
i=1

α1ai.

The classical and the reverse Hölder inequalities (see [5, Theorem 1 in p. 178]) will be also
needed later.

Theorem 1.1.2 (Hölder’s inequality). Let a1, . . . , an, b1, . . . , bn ≥ 0 and let 1 ≤ p ≤ ∞. Then

n∑
i=1

aibi ≤

(
n∑

i=1

ap
i

)1/p( n∑
i=1

bq
i

)1/q

,

where 1 ≤ q ≤ ∞ is such that 1/p + 1/q = 1.

In fact, from the above result the so-called reverse Hölder inequality can be deduced:

Corollary 1.1.1 (Reverse Hölder’s inequality). Let a1, . . . , an, b1, . . . , bn ≥ 0 and let 0 < p ≤ 1.
Then

n∑
i=1

aibi ≥

(
n∑

i=1

ap
i

)1/p( n∑
i=1

bq
i

)1/q

,

where −∞ ≤ q < 0 is such that 1/p + 1/q = 1.

In the above results, for p = ±∞ we set(
n∑

i=1

ap
i

)1/p

=

{
max{ai : i = 1, . . . , n} if p =∞,

min{ai : i = 1, . . . , n} if p = −∞.

1.2 The Brunn-Minkowski inequality. First discrete versions

Relating the notions of volume and Minkowski addition (of compact sets), one is led to the
famous Brunn-Minkowski inequality.

Theorem 1.2.1. Let K, L ⊂ Rn be compact sets. Then

vol(K + L)1/n ≥ vol(K)1/n + vol(L)1/n, (1.2)

with equality if vol(K)vol(L) > 0 if and only if K and L are homothetic compact convex sets.
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The Brunn-Minkowski inequality is one of the most powerful results in Convex Geometry and
beyond: for instance, its equivalent analytic version (the Prékopa-Leindler inequality, see e.g.
[10, Theorem 8.14]) and the fact that the convexity/compactness assumption can be weakened
to Lebesgue measurability (see [17]), have allowed it to move to much wider fields. It implies
very important inequalities such as the isoperimetric and the Urysohn inequalities (see e.g. [26,
page 382]), and it has been the starting point for new developments like the Lp-Brunn-Minkowski
theory (see e.g. [18, 19]), or a reverse Brunn-Minkowski inequality (see e.g. [21]), among many oth-
ers. It would not be possible to collect here all references regarding versions, applications and/or
generalizations of the Brunn-Minkowski inequality. For extensive and beautiful surveys on them
we refer to [1, 7].

There are several equivalent geometric versions of the Brunn-Minkowski inequality. Among
others, we find:

vol
(
(1− λ)K + λL

)1/n ≥ (1− λ)vol(K)1/n + λvol(L)1/n (additive form),

vol
(
(1− λ)K + λL

)
≥ vol(K)1−λvol(L)λ (multiplicative form),

vol
(
(1− λ)K + λL

)
≥ min

{
vol(K), vol(L)

}
(minimal form),

(1.3)

for 0 < λ < 1. Specially interesting for what follows is the equivalent version called the Blaschke
form of the Brunn-Minkowski inequality, which reads as follows (see e.g. [7]):

Theorem 1.2.2 (Blaschke form of the Brunn-Minkowski inequality). Let K, L ⊂ Rn be
compact convex sets. If BK , BL are the (closed) balls (centered at the origin) with vol(BK) = vol(K)
and vol(BL) = vol(L), then

vol(K + L) ≥ vol(BK + BL). (1.4)

Next we move to the discrete setting, i.e., we consider finite sets of integer points which are not
necessarily full-dimensional unless indicated otherwise. At this point we would like to observe that,
in order to bound the cardinality of a sum A + B of finite sets (not necessarily of integer points),
throughout this chapter, we can work without loss of generality with subsets A,B of Zn, due to
the following lemma which was proved in [8, Corollary 3.3]:

Lemma 1.2.1. Let A,B ⊂ Rn be finite sets. Then there exist A′, B′ ⊂ Zn satisfying

i) |A′| = |A|, |B′| = |B| and |A′ + B′| = |A + B|, and

ii) dim A′ = dim A and dim(A′ + B′) = dim(A + B).

It can be easily seen that one cannot expect to obtain a Brunn-Minkowski inequality for the
cardinality in the classical form. Indeed, simply taking A = {0} to be the origin and any finite set
B ⊂ Zn, then

|A + B|1/n = |B|1/n < 1 + |B|1/n = |A|1/n + |B|1/n.
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Another easy example is obtained by considering two lattice cubes Cn
r1

and Cn
r2

: indeed, since
Cn

r1
+ Cn

r2
= Cn

r1+r2
, then∣∣Cn

r1
+ Cn

r2

∣∣1/n =
∣∣Cn

r1+r2

∣∣1/n = r1 + r2 + 1 < r1 + r2 + 2 =
∣∣Cn

r1

∣∣1/n +
∣∣Cn

r2

∣∣1/n
.

Therefore, a discrete Brunn-Minkowski type inequality should either have a different structure or
involve modifications of the sets. A first example is the following simple but relevant inequality
(see e.g. [27, Chapter 2]) which, in particular, provides us with a 1-dimensional discrete Brunn-
Minkowski inequality.

Lemma 1.2.2. Let A,B ⊂ Zn be finite sets. Then

|A + B| ≥ |A|+ |B| − 1. (1.5)

Indeed, since the cardinality is translation invariant, we can place the maximum point of A and
the minimum point of B in the lexicographical order at the origin of coordinates (see Figure 1.2).
Then A + B ⊃ A ∪B, and hence

|A + B| ≥ |A ∪B| = |A|+ |B| − 1.

Figure 1.2: Translating two sets to place the maximum/minimum at the origin.

In [24], Ruzsa improved the above result as follows:

Proposition 1.2.1. Let A,B ⊂ Zn be finite sets with |B| ≤ |A| and dim(A + B) = n. Then

|A + B| ≥ |A|+
|B|−1∑
i=1

min
{
n, |A| − i

}
(1.6)

and

|A + B| ≥ |A|+ n|B| − n(n + 1)
2

. (1.7)
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In fact, one can obtain (1.7) from (1.6) after a simple computation. He also proved that, under
the above assumptions, (1.6) is tight and there is no improvement of (1.7) which is linear in |A|,
i.e., no inequality of the form

|A + B| ≥ c|A|+ f1

(
|B|
)

+ f2(n)

may hold with c > 1.

1.3 The discrete version of Gardner and Gronchi

In [8], Gardner and Gronchi obtained a beautiful and powerful discrete Brunn-Minkowski in-
equality: they proved a discrete analog of its Blaschke form (Theorem 1.2.2). To state this result
we need several previous definitions.

Definition 1.4. Let B ⊂ Zn be finite with |B| ≥ n + 1. The B-weight function wB : Zn −→ R is
defined as

wB(x) =
x1

|B| − n
+

n∑
i=2

xi.

This function allows us to define a special order in Zn
≥0 depending on |B| (see Figure 1.3):

Definition 1.5. Let B ⊂ Zn be finite with |B| ≥ n + 1. Given x, y ∈ Zn
≥0, x 6= y, we say that

x <B y if

• wB(x) < wB(y) or

• wB(x) = wB(y) and there exists j ∈ {1, . . . , n} such that xj > yj and xi = yi for all i < j.

Figure 1.3: The B-order in Z2
≥0 for |B| = 6.
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We note that the minimum of Zn
≥0 in any B-order is always the origin. Moreover, one can check

that the first |B| points in Zn
≥0 for any B-order are

0 <B e1 <B 2e1 <B 3e1 · · · <B (|B| − n)e1 <B e2 <B e3 <B · · · <B en. (1.8)

We are now ready to introduce the key sets in the inequality of Gardner and Gronchi: the
B-initial segments. They will be the analog to the balls in (1.4).

Definition 1.6. Let B ⊂ Zn be finite with |B| ≥ n+1. For m ∈ N, we define the B-initial segment
(of order m), denoted by DB

m, as the set of the first m points of Zn
≥0 in the B-order.

Figure 1.4: B-initial segments for the B-order in Figure 1.3 for |A| = 7 (left) and |A| = 15 (right).

We notice that all definitions above depend only on the cardinality of B, and not on B itself.
Another important observation is that initial segments behave well with the Minkowski addition:
Gardner and Gronchi proved that if F = DB

m is the m-initial segment in the B-order, then F +DB
|B|

is also an initial segment in the same B-order (see [8, Lemma 5.12]).

Now we can finally state the announced discrete Brunn-Minkowski type inequality of Gardner
and Gronchi.

Theorem 1.3.1 (Gardner&Gronchi’s inequality). Let A,B ⊂Zn be finite sets with dim B = n.
Then

|A + B| ≥
∣∣DB

|A| + DB
|B|
∣∣. (1.9)

As consequences of (1.9) they get two additional discrete Brunn-Minkowski type inequalities:

|A + B|1/n ≥ |A|1/n +
1

(n!)1/n

(
|B| − n

)1/n (1.10)

and, if |B| ≤ |A|, then

|A + B| ≥ |A|+ (n− 1)|B|+
(
|A| − n

)(n−1)/n(|B| − n
)1/n − n(n− 1)

2
.

These inequalities improve previous results obtained by Ruzsa in [24, 25].
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1.4 Computing the cardinality
∣∣DB
|A| + DB

|B|
∣∣

In this section we collect the new results we have obtained regarding the computation of the
bound

∣∣DB
|A| + DB

|B|
∣∣. They can be found in [13].

If we want to estimate the cardinality of the Minkowski addition of two finite sets A,B ⊂ Zn

from below, one might have the impression that inequality (1.9) cannot help us, because we are
replacing the problem of estimating |A + B| by the one of computing the cardinality of another
Minkowski addition, namely,

∣∣DB
|A| + DB

|B|
∣∣.

However, DB
|A| and DB

|B| are very special sets: they are B-initial segments, and therefore, their
sum DB

|A|+DB
|B| is also a B-initial segment. So, in order to know its cardinality, it is enough to find

the point p ∈ DB
|A| + DB

|B| of maximum position in the B-order, because

x ∈ DB
|A| + DB

|B| if and only if x <B p or x = p;

or equivalently, |DB
|A| + DB

|B|| is the position of the “last” point p ∈ DB
|A| + DB

|B| in the B-order.

We also note that p = a + b ∈ DB
|A| + DB

|B| is the maximum position point in the B-order if
and only if a ∈ DB

|A| and b ∈ DB
|B| are the maximum position points (in the B-order) of A and B,

respectively. Indeed, this is an immediate consequence of the fact that

p + x <B q + x if p <B q,

which is derived from the linearity of the B-weight function wB together with the relations

pj + xj > qj + xj and pi + xi = qi + xi

for all i < j, provided that pj > qj and pi = qi for all i < j.

Moreover, we already know that the maximum position point in DB
|B| is always en (cf. (1.8)).

Thus, the problem of computing the cardinality |DB
|A|+DB

|B|| is reduced to have a method which
allows us to know the position in the B-order of any point of Zn

≥0, and viceversa. Once we have
such a method, we may compute |DB

|A| + DB
|B|| as follows:

Algorithm 1: Obtaining the bound in (1.9)

Step 1 Find the point a ∈ Zn
≥0 with position |A| in the B-order.

Step 2 Compute the position s in the B-order of p = a + en.
Step 3 Then |A + B| ≥ s.

Example 1.1. In the example of Figure 1.3, if |A| = 54 then a = (6, 3), and so p = a+e2 = (6, 4).
Therefore,

|A + B| ≥
∣∣DB

|A| + DB
|B|
∣∣ = 77.
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If we want to know the position of a point in a certain B-order, we just need to “B-order” the
points of Zn

≥0, taking also into account that the B-order depends only on the cardinality of B but
not on its structure.

To this aim, we will directly code the points in Zn
≥0 according to the precise definition of the

B-order. Following this idea we propose Algorithm 2 as an efficient (computationally speaking)
way to compute the next point (in the B-order) to a given one in Zn

≥0.

Algorithm 2: Finding the next point to a given one (in the B-order)

Step 1 Find i such that
(
(xi >= 1 if i > 1) or (xi >= |B| − n if i = 1)

)
and xj = 0 for all

i < j < n.
Step 2 We deduce the next point depending on i:

case There is no i satisfying the conditions of Step 1 do
Since x = (m, 0 . . . , 0, k) with m < |B| − n, then the next point is
y = (m + k ∗ (|B| − n) + 1, 0 . . . , 0, 0)

case i = 1 satisfies the conditions of Step 1 do
Since x = (m, 0, 0 . . . , 0, k) with m ≥ |B| − n, then the next point is
y = (m− (|B| − n), k + 1, 0, . . . , 0, 0)

case i > 1 satisfies the conditions of Step 1 do
Since x = (. . . , m, 0, 0, . . . , 0, k), then the next point is y = (. . . , m− 1, k + 1, 0, . . . , 0, 0)

So, together with the ideas of Algorithm 1, we propose the next algorithm as a way to compute
the bound in (1.9).

Algorithm 3: Obtaining the bound in (1.9)

Step 1 Starting from the origin, apply Algorithm 2, |A| − 1 times, to get the point a ∈ Zn
≥0

with position |A| in the B-order.
Step 2 Storage t: the amount of times we have to apply Algorithm 2 until we find p = a + en.
Step 3 Then |A + B| ≥ |A|+ t.

We conclude this section by pointing out another way (computationally speaking) of counting
the points of Zn

≥0 in increasing B-order. This will further allow us to directly know the precise
position of a given point (with no need of counting from the origin till the given point).

We start noting that one can group the points of Zn
≥0 according to their B-weight. Following

this idea we may use the sets Pm, also a key point in the proof of Gardner and Gronchi, which are
defined as

Pm =
{

x ∈ Zn
≥0 : wB(x) =

m

|B| − n

}
, m ∈ N ∪ {0}.

Since the B-order organizes the points according to their B-weight, if we know the cardinality of
each set Pm, m ∈ N ∪ {0}, then, for any s ∈ N ∪ {0}, we will also know the B-weight of the point
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x ∈ Zn
≥0 occupying the s-th position; in fact,

x ∈ Pm if and only if
m−1∑
i=0

|Pi| < s ≤
m∑

i=0

|Pi|. (1.11)

In this regard, we prove the following result.

Proposition 1.4.1 ([13]). Let m ∈ N ∪ {0} and let B ⊂ Zn
≥0 be finite. Then

|Pm| =

 n +
⌊

m
|B|−n

⌋
− 1⌊

m
|B|−n

⌋
 . (1.12)

Proof. First we show that if m is such that

r :=
m

|B| − n
∈ N ∪ {0},

then (1.12) holds. We observe that, for any x ∈ Pm,

x1

|B| − n
= r −

n∑
i=2

xi ∈ N ∪ {0},

and hence we may consider the function cm : Pm −→ {0, 1}n+r−1 given by

cm(x) =

(
0,

(
x1

|B|−n

)
. . . , 0, 1, 0, (x2). . . , 0, 1, . . . , 1, 0, (xn). . . , 0

)
.

We note that cm is a bijective mapping between Pm and the subset of all (n + r − 1)-tuples in
{0, 1}n+r−1 with r entries equal zero, and therefore |Pm| =

(
n+r−1

r

)
.

To conclude the proof it is enough to show that if m is such that m/
(
|B| − n

)
∈ N ∪ {0} then

Pm+k = Pm + ke1 for all 0 < k < |B| − n, which clearly implies that |Pm+k| = |Pm|. To this end,
if y ∈ Pm+k then

wB(y) =
y1

|B| − n
+

n∑
i=2

yi =
m + k

|B| − n
,

and so
y1 − k

|B| − n
∈ Z.

Moreover, since 0 < k < |B| − n and

0 ≤ y1

|B| − n
=

y1 − k

|B| − n
+

k

|B| − n
,

we infer that y1 − k ≥ 0 and thus

y′ = y − ke1 = (y1 − k, y2, . . . , yn) ∈ Zn
≥0.

Now, since wB(y′) = m/
(
|B| − n

)
, we have that y′ ∈ Pm and thus Pm+k − ke1 ⊂ Pm, i.e.,

Pm+k ⊂ Pm + ke1. The opposite inclusion is trivial.
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Assuming, without loss of generality, that m/
(
|B|−n

)
∈ N∪{0} (for which we have the relation

Pm+k = Pm + ke1 for all 0 < k < |B| − n), we note that the “coding function” cm appearing in the
proof can be also used to B-order the points within each Pm. Indeed, given x, y ∈ Pm, then x <B y

if and only if cm(x) < cm(y) in the lexicographical order. Moreover, since the points in Pm+1

are “B-greater” than those of Pm, and since we know the value of |Pm| (see Proposition 1.4.1),
the function cm allows us to determine, as a consequence, the position of any point of Zn

≥0 in the
B-order.

Furthermore, we can exploit these techniques to obtain the next point (in the B-order) to a
given one in Zn

≥0. Roughly speaking, we should compute the weight function of the point, check its
image under the corresponding “coding function” cm, obtain the next point in cm(Pm) with respect
to the lexicographical order and get the inverse image of the latter under cm (we notice that if the
corresponding image under cm is the maximum of cm(Pm), we must give the first point of Pm+1,
which is (m + 1)e1).



1.4 Computing the cardinality
∣∣DB

|A| + DB
|B|
∣∣ 13

1.4.1 Appendix: the algorithms

Algorithm: Code of Algorithm 2

Input: the dimension n; the cardinality of B cardB; the coordinates of an integer point
with non-negative entries x1, . . . , xn

Output: the coordinates of the next point y1, . . . , yn

Step 1 Find i such that
(
(xi >= 1 if i > 1) or (xi >= cardB − n if i = 1)

)
and xj = 0 for all

i < j < n.
i← 0 /* To consider the case in which such an i does not exist */

yn ← xn /* Along this process we will set yi = xi */

for j = n− 1 to 2 do
yj ← xj

if xj >= 1 and i = 0 then
i← j

/* For i = 1 we need to check that x1 >= |B| − n */

y1 ← x1

if x1 >= cardB − n and i = 0 then
i← 1

Step 2 We deduce the next point depending on i

case i = 0 do
/* Then x = (m, 0 . . . , 0, k) with m < |B| − n and so y = (m + k ∗ (|B| − n) + 1, 0 . . . , 0, 0) */

y1 ← x1 + xn ∗ (cardB − n) + 1
yn ← 0

case i >= 1 do
/* If i = 1 then x = (m, 0, . . . , 0, k) with m >= cardB − n and so

y = (m − (cardB − n), k + 1, . . . , 0) else x = (. . . , m, 0, 0, . . . , 0, k) and thus

y = (. . . , m − 1, k + 1, 0, . . . , 0, 0) */

if i = 1 then
y1 ← x1 − (cardB − n)

else
yi ← xi − 1

yi+1 ← xn + 1
if i + 1 < n then

yn ← 0

return The coordinates y1, . . . , yn of the next point to x in the B-order.
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Algorithm: Code of Algorithm 3

Input: the dimension n; the cardinality of A cardA, the cardinality of B cardB

Output: the bound in (1.9)

Step 1 Starting from the origin, apply Algorithm 2 cardA− 1 times to know the point
a ∈ Zn

≥0 with position cardA in the B-order.
x← (0, . . . , 0)
for i = 1 to cardA− 1 do

x← Algorithm 2 (n, cardB, x)

Step 2 Storage t: the amount of times we have to apply Algorithm 2 until we find p = a + en.
p← x + en

t← 0
while x 6= p do

x← Algorithm 2 (n, cardB, x)
t← t + 1

Step 3 return cardA + t



Chapter 2

New discrete versions of the
Brunn-Minkowski inequality

New discrete versions of the
Brunn-Minkowski inequality

As mentioned in Section 1.2, in many cases the classical Brunn-Minkowski inequality for the
cardinality is not satisfied. Also lattice cubes or elongated simplices do not verify it. There are,
however, special sets or families of sets for which the inequality keeps its usual form. Next we show
some examples.

Example 2.1. Let A =
{
(x, y) ∈ Z2 : x, y 6= 0, |x|+ 2|y| ≤ 7

}
and B = C2

1 ⊂ Z2. Then we have

|A + B|1/2 =
√

72 > 8 =
√

36 +
√

4 = |A|1/2 + |B|1/2.

Figure 2.1: The discrete sets A (left) and A + B (right).

Example 2.2. For finite A,B ⊂ Zn, the relation |A + B| ≤ |A| |B| trivially holds (see e.g. [27,
Chapter 2]), and it is easy to check that equality holds if and only if any point of A + B has a
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unique expression as a sum of a point of A and a point of B. Under this assumption, i.e., if
|A + B| = |A| |B|, and furthermore, if |A|, |B| ≥ 2n (they are large enough), then A,B satisfy a
classical Brunn-Minkowski type inequality:

|A + B|1/n = |A|1/n|B|1/n ≥ max
{

2|A|1/n, 2|B|1/n
}
≥ |A|1/n + |B|1/n.

We are interested in obtaining new Brunn-Minkowski type inequalities for the cardinality valid
for all (finite and non-empty) sets. This will be the main aim of this chapter. The original work
that we collect here can be found in [12].

2.1 Different ways to transform a discrete set

As we saw in Sections 1.2 and 1.3, in order to obtain a discrete Brunn-Minkowski type inequality,
one option is to change the structure of the inequality. An alternative way to get a classical Brunn-
Minkowski type inequality will be to modify one of the sets involved in the problem, either by
adding or removing some points. Then the question arises as to how many points one should
add/remove to ensure the reliability of the inequality.

2.1.1 Transforming one set by adding extra points

In order to guess how many points one should add, we consider two lattice cubes Cn
r1

and Cn
r2

:
since Cn

r1
+ Cn

r2
= Cn

r1+r2
, then∣∣Cn

r1
+ Cn

r2

∣∣1/n = r1 + r2 + 1 < r1 + r2 + 2 =
∣∣Cn

r1

∣∣1/n +
∣∣Cn

r2

∣∣1/n
.

So, in order to reverse the above inequality we must add to Cn
r1

, say, a suitable amount of points,
such that the new set C̄n

r1
satisfies ∣∣C̄n

r1
+ Cn

r2

∣∣1/n ≥ r1 + r2 + 2. (2.1)

We do it by means of a recursive procedure, as follows. Let Λ ⊂ Zk (finite), k ∈ {1, . . . , n}, and let
m0 ∈ πk(Λ) ⊂ Z be such that ∣∣Λ(m0)

∣∣ = max
m

∣∣Λ(m)
∣∣ (2.2)

(cf. (1.1)). Certainly the integer m0 providing the maximum section is not necessarily unique.
In that case, one can choose arbitrarily any possibility. In order to establish a criterion for the
construction we set

m0 = max
{

m′ ∈ πk(Λ) :
∣∣Λ(m′)

∣∣ = max
m

∣∣Λ(m)
∣∣} .

Finally, we define the function σk : {Λ ⊂ Zk : Λ finite} −→ {Λ ⊂ Zk : Λ finite} given by

σk(Λ) =

 Λ ∪ {max Λ + 1} if k = 1,

Λ ∪
(
Λ(m0)×

{
max{πk(Λ)}+ 1

})
if k > 1;
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i.e., σk acts on Λ by just adding a copy of the maximum section Λ(m0) to the set in the position
max{πk(Λ)}+1. As before this choice is irrelevant, and the maximum section Λ(m0) can be placed
at any m 6∈ πk(Λ).

We are now ready to recursively define Ā for a finite set A ⊂ Zn. In a first step, we construct
a new set A+

1 by means of its sections: A+
1 = σn(A) (see Figure 2.2).

Figure 2.2: A discrete set A (left) and the set A+
1 (right).

In the second one we take (see Figure 2.3)

A+
2 =

⋃
m∈πn(A+

1 )

(
σn−1

(
A+

1 (m)
)
× {m}

)
.

In the k-th step, k ≥ 2, we have

A+
k =

⋃
m∈πn−k+2,...,n(A+

k−1)

(
σn−k+1

(
A+

k−1(m)
)
× {m}

)
.

Then we define Ā = A+
n .

Figure 2.3: The sets A+
2 (left) and Ā = A+

3 (right) for the discrete set A in Figure 2.3.

In the case of a lattice cube we have C̄n
r1

= Cn
r1+1. Therefore C̄n

r1
+ Cn

r2
= Cn

r1+r2+1, and thus
(2.1) holds with equality.
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We note the recursive nature of the construction of Ā, in which the action of adding the
maximum section to the given set is repeatedly used onto every successive section of the original
set A. Therefore, the following two properties are evident: for all k = 1, . . . , n,

i) πn−k+1

(
Ā
)

= πn−k+1(A+
k ) and

ii) Ā(m) = A+
k (m), m ∈ Zk.

(2.3)

In Section 2.4 we will show that the number of additional points in |A| is somehow controlled.
Moreover, upper and lower bounds for the ratio

∣∣Ā∣∣/|A| and the difference
∣∣Ā∣∣−|A| can be provided.

In the first case only the dimension will play a role, whereas for the difference it will depend on the
structure and the cardinality of A.

Remark 2.1. The set Ā can be different (both its structure and cardinality) when either the role
of the coordinate axes is interchanged in its construction, or if we use a different criterion for the
choice of m0, or even if we add as a “doubled” maximum section an arbitrary point set with the
same cardinality. In any case, the number of additional points is controlled (see Proposition 2.4.3).
Moreover, as we will see, the above choices for the construction of Ā will be not relevant for the
proofs of the results.

2.1.2 Transforming one set by removing points

Similarly, instead of adding points to the original (finite) set A ⊂ Zn, A 6= ∅, we may reduce it
to define a new set r(A) in such a way that

r
(
Ā
)

= A. (2.4)

To this aim, we define the function

%k : {Λ ⊂ Zk : Λ finite} −→ {Λ ⊂ Zk : Λ finite}

given by

%k(Λ) =

 Λ \ {m0} if k = 1,

Λ \
(
Λ(m0)×

{
m0

})
if k > 1;

(2.5)

i.e., %k acts on Λ just removing the maximum section Λ(m0) from the set. To complete the picture
we set %k(∅) = ∅. In this way, %k is the left inverse function of σk.

Now, for 1 ≤ k < n, we write

A−
k =

⋃
m∈πk+1,...,n(A−

k−1)

(
%k

(
A−

k−1(m)
)
× {m}

)
,

with A−
0 = A (see Figure 2.4). Then we define

r(A) = %n

(
A−

n−1

)
.
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Figure 2.4: Transforming a discrete set A (left) into r(A) (right).

Remark 2.2. We note on the one hand that, from the definition of r(A), (2.4) holds because
%k

(
σk(Λ)

)
= Λ for all k = 1, . . . , n. On the other hand, since there are different ways to construct

r(A), (cf. Remark 2.1), it is possible to add every successive maximum section in such a way that

r(A) ⊂ A. (2.6)

Remark 2.3. We observe that r(A) might be the empty set. Actually, r(A) 6= ∅ necessarily implies
that both |A| ≥ 2n and

∣∣πi(A)
∣∣ ≥ 2 for all 1 ≤ i ≤ n. Indeed, A−

n−1 must contain at least two points
to assure that r(A) 6= ∅; this yields that at least four points belong to A−

n−2 and, recursively, that
|A| ≥ 2n. In the same way, if

∣∣πi(A)
∣∣ ≤ 1 for some 1 ≤ i ≤ n, then we would have that A−

i is
empty and thus r(A) = ∅.

Now we are in a position to establish and prove the main results of this chapter.

2.2 New discrete Brunn-Minkowski type inequalities

Using the constructions provided in Section 2.1, we state the following theorems.

Theorem 2.2.1 ([12]). Let A,B ⊂ Zn be finite, A,B 6= ∅. Then∣∣Ā + B
∣∣1/n ≥ |A|1/n + |B|1/n. (2.7)

Equality holds when A and B are lattice cubes.

As we mentioned in Remark 2.1, the set Ā can be constructed in different ways. Thus, in order
to bound from above |A|1/n + |B|1/n in Theorem 2.2.1, one can choose in the definition of Ā the
options (for m0 and the axis order) making

∣∣Ā + B
∣∣ minimum, which surely will depend on the

original sets A and B.

Regarding the second construction, the corresponding discrete Brunn-Minkowski inequality
reads as follows:
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Theorem 2.2.2 ([12]). Let A,B ⊂ Zn be finite, A,B 6= ∅. Then

|A + B|1/n ≥
∣∣r(A)

∣∣1/n + |B|1/n. (2.8)

Equality holds when A and B are lattice cubes.

In fact we will prove that the discrete inequalities (2.7) and (2.8) are equivalent (see Proposi-
tion 2.2.1).

Before getting fully into the proofs of our theorems, we will make a few previous considerations
and remarks.

2.2.1 On the different Brunn-Minkowski type inequalities

Before starting the proofs of our main theorems, we observe that inequalities (2.7) and (1.9) (or
even (1.10)) are not comparable. For instance, if A = B = {0, e1, e2}, then DB

|A| = A and DB
|B| = B,

and obviously equality holds in (1.9), but we have a strict inequality in (2.7). Therefore (1.9)
provides a stronger bound than (2.7). However, if A = B = C2

2 then A + B = C2
4 and, moreover,

DB
|A| = DB

|B| is the lattice simplex conv{0, 7e1, e2} ∩ Z2 (see Figure 2.5). Hence

|A + B| = 25 >
∣∣∣DB

|A| + DB
|B|

∣∣∣ = 24,

whereas we have equality in (2.7). In this case, the bound provided by (2.7) is stronger than (1.9)
(or (1.10)).

Figure 2.5: DB
|A| for A = B = C2

2 (left) and DB
|A| + DB

|B| (right).

On the other hand, in [20], Matolcsi and Ruzsa consider the sum set

A + kB := A + B + (k). . . + B,

k ∈ N, and provide a lower bound for its cardinality when dim B = n and A ⊂ conv B:

|A + kB| ≥
(
|A| − kn

k + 1

)(
n + k

k

)
.

In [3], Böröczky, Santos and Serra characterize the sets A and B for which equality holds. As a
direct consequence of Theorem 2.2.2 another bound for the cardinality |A + kB| can be obtained,
without additional conditions on the sets A and B:
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Corollary 2.2.1 ([12]). Let A,B ⊂ Zn be finite, A,B 6= ∅. Then

|A + kB|1/n ≥ |A|1/n + k
∣∣r(B)

∣∣1/n
.

Equality holds when A and B are lattice cubes.

It can also be easily seen, by just considering the corresponding extremal sets, that the bound of
Matolcsi and Ruzsa in [20] for |A+kB| and the one provided by Corollary 2.2.1 are not comparable.

In order to conclude this subsection, we would like to do a final remark. We note that although
the cardinality of Ā is obviously enlarged, in many cases the difference between

∣∣Ā + B
∣∣ and |A+B|

may be not too big; indeed one can have
∣∣Ā + B

∣∣ = |A+B|. An illustration of this is Example 2.1,
which can be generalized to the following families of sets:

Example 2.3. A compact set K ⊂ Rn is called unconditional if, for any (x1, . . . , xn) ∈ K, then
(ε1x1, . . . , εnxn) ∈ K for all εi ∈ [−1, 1], i = 1, . . . , n. We consider the following sets. Given an
unconditional compact set K ⊂ Rn, let

A =

(
K \

n⋃
i=1

Hi

)
∩ Zn.

Furthermore, let B ⊂ Zn (finite) satisfy the following condition: if (x1, . . . , xn) ∈ B, there exist
εi ∈ {−1, 1}, i = 1, . . . , n, such that (x1, . . . , xi−1, xi + εi, xi+1, . . . , xn) ∈ B for all i = 1, . . . , n (see
Figure 2.6).

Figure 2.6: An example of a set A (left) and B (right) in the above constructions.

As mentioned in Remark 2.1, there are different ways of constructing Ā, and in the case of
A = (K \

⋃n
i=1 Hi)∩Zn, we place the successive maximum sections on the coordinates hyperplanes.

In this way we even have
Ā + B = A + B.

Indeed, given x = (x1, . . . , xn) ∈ Ā \ A and b = (b1, . . . , bn) ∈ B let I ⊂ {1, . . . , n} be such that
xi = 0 if i ∈ I and xi 6= 0 otherwise. On one hand, there exist εi ∈ {−1, 0, 1}, i = 1, . . . , n, such
that (b1 + ε1, . . . , bn + εn) ∈ B, and with εi = 0 if and only if i /∈ I. On the other hand, denoting by
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ε = (ε1, . . . , εn), we have x−ε ∈ A because K is unconditional. Then x+b = (x−ε)+(b+ε) ∈ A+B,
which shows that Ā + B ⊂ A + B. The reverse inclusion is obvious.

Therefore, although we are adding points in the construction of Ā, the cardinality of Ā+B does
not increase (with respect to that of A + B). Hence, Theorem 2.2.1 yields

|A + B|1/n ≥ |A|1/n + |B|1/n.

We also note that for the constructed set A, the above inequality does not hold for arbitrary B (for
instance, it is enough to consider B = {0}).

2.2.2 The proofs of the main theorems

Before the proof of Theorem 2.2.1 we have to state two auxiliary results. The first one may be
regarded as a discrete counterpart of the layer cake formula.

Lemma 2.2.1 ([12]). Let Ω ⊂ Z be finite and let f : Ω −→ Z≥0. Then

∑
m∈Ω

f(m) =
maxΩ f∑

t=1

∣∣∣{m ∈ Ω : f(m) ≥ t
}∣∣∣.

Proof. Let N = maxm∈Ω f(m), and we consider variables xi, i = 1, . . . , N . Then we have the
relation ∑

m∈Ω

(
x1 + x2 + · · ·+ xf(m)

)
=

N∑
t=1

xt

∣∣∣{m ∈ Ω : f(m) ≥ t
}∣∣∣,

because the variable xt appears in the left-hand side expression if and only if f(m) ≥ t. Then,
setting x1 = · · · = xN = 1, we get the result.

Lemma 2.2.2 ([12]). Let Ω ⊂ Z be finite and let f : Ω −→ Z≥0. Then, for any r, N ∈ N, we have

r
N∑

t=1

∣∣∣{m ∈ Ω : f(m) ≥ t
}∣∣∣ = ∑

t= 1
rN

, 2
rN

,...,1

∣∣∣∣{m ∈ Ω :
f(m)

N
≥ t

}∣∣∣∣ .
Proof. First we rewrite∑

t= 1
rN

, 2
rN

,...,1

∣∣∣∣{m ∈ Ω :
f(m)

N
≥ t

}∣∣∣∣ = ∑
t= 1

rN
,..., 1

N

∣∣∣∣{m ∈ Ω :
f(m)

N
≥ t

}∣∣∣∣
+

∑
t= r+1

rN
,..., 2

N

∣∣∣∣{m ∈ Ω :
f(m)

N
≥ t

}∣∣∣∣
+ · · ·+

∑
t=

(N−1)r+1
rN

,...,1

∣∣∣∣{m ∈ Ω :
f(m)

N
≥ t

}∣∣∣∣ .
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We note that, for each of the above sums, i.e., for all i = 0, . . . , N − 1,∑
t= ir+1

rN
,..., i+1

N

∣∣∣∣{m ∈ Ω :
f(m)

N
≥ t

}∣∣∣∣ = ∑
t= ir+1

r
,...,i+1

∣∣∣{m ∈ Ω : f(m) ≥ t
}∣∣∣

=
∑

t=i+ 1
r
,...,i+1

∣∣∣{m ∈ Ω : f(m) ≥ i + 1
}∣∣∣

= r
∣∣∣{m ∈ Ω : f(m) ≥ i + 1

}∣∣∣,
and thus we can conclude that

∑
t= 1

rN
, 2
rN

,...,1

∣∣∣∣{m ∈ Ω :
f(m)

N
≥ t

}∣∣∣∣ = r
N−1∑
i=0

∣∣∣{m ∈ Ω : f(m) ≥ i + 1
}∣∣∣.

This proves the result.

Now we are in a position to prove our first discrete version of the Brunn-Minkowski inequality.

Proof of Theorem 2.2.1. We will show (2.7) by (finite) induction on the dimension n. The case
n = 1 is a direct consequence of (1.5):∣∣Ā + B

∣∣ ≥ ∣∣Ā∣∣+ |B| − 1 = |A|+ |B|.

So, we will suppose that the inequality is true for n− 1. We first observe that for all m1,m2 ∈ Z,
it is clear that (

Ā + B
)
(m1 + m2) ⊃ Ā(m1) + B(m2).

Then, taking m1 ∈ πn

(
Ā
)

= πn(A+
1 ) (cf. (2.3) i)) and m2 ∈ πn(B), and applying induction

hypothesis (i.e., (2.7) in Zn−1), we get (see also (2.3) ii))∣∣∣(Ā + B
)
(m1 + m2)

∣∣∣ ≥ ∣∣Ā(m1) + B(m2)
∣∣ = ∣∣∣A+

1 (m1) + B(m2)
∣∣∣

≥
(∣∣A+

1 (m1)
∣∣1/(n−1) +

∣∣B(m2)
∣∣1/(n−1)

)n−1
.

(2.9)

For the sake of brevity we denote by

cA = max
m∈Z

∣∣A(m)
∣∣ > 0, cB = max

m∈Z

∣∣B(m)
∣∣ > 0,

and let

c =
(
c
1/(n−1)
A + c

1/(n−1)
B

)n−1
and θ =

c
1/(n−1)
B

c
1/(n−1)
A + c

1/(n−1)
B

∈ (0, 1).

We observe that also cA = maxm∈Z
∣∣A+

1 (m)
∣∣. Furthermore, let

p, q ∈ N satisfy
p

q
≤ c. (2.10)
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Finally, for M = A,A+
1 , B or Ā + B, we denote by fM : Z −→ Q≥0 the functions given by

fA(m) =

∣∣A(m)
∣∣

cA
, f

A+
1

(m) =

∣∣A+
1 (m)

∣∣
cA

, fB (m) =

∣∣B(m)
∣∣

cB
, and

f
Ā+B

(m) =
q

p

∣∣∣(Ā + B
)
(m)

∣∣∣.
Using (2.9) we get∣∣∣(Ā + B

)
(m1 + m2)

∣∣∣ ≥ (∣∣A+
1 (m1)

∣∣1/(n−1) +
∣∣B(m2)

∣∣1/(n−1)
)n−1

= c

(
c
1/(n−1)
A

c1/(n−1)
f

A+
1

(m1)1/(n−1) +
c
1/(n−1)
B

c1/(n−1)
fB (m2)1/(n−1)

)n−1

= c

(
(1− θ)f

A+
1

(m1)1/(n−1) + θfB (m2)1/(n−1)

)n−1

≥ c min
{

f
A+

1

(m1), fB (m2)
}
≥ p

q
min

{
f

A+
1

(m1), fB (m2)
}

.

Thus, we have obtained the functional inequality

f
Ā+B

(m1 + m2) ≥ min
{

f
A+

1

(m1), fB (m2)
}

. (2.11)

Now we observe, on one hand, that the super-level sets{
m ∈ Z : fA(m) ≥ t

}
,
{

m ∈ Z : f
A+

1

(m) ≥ t
}

,
{
m ∈ Z : fB (m) ≥ t

}
are non-empty for all t ∈ [0, 1] and, moreover, the definition of A+

1 yields∣∣∣∣{m ∈ Z : f
A+

1

(m) ≥ t
}∣∣∣∣ = ∣∣∣{m ∈ Z : fA(m) ≥ t

}∣∣∣+ 1.

On the other hand, (2.11) implies that{
m ∈ Z : f

Ā+B
(m) ≥ t

}
⊃
{

m ∈ Z : f
A+

1

(m) ≥ t
}

+
{
m ∈ Z : fB (m) ≥ t

}
,

and then, using (1.5) for n = 1 and the above identity, we get∣∣∣{m ∈ Z : f
Ā+B

(m) ≥ t
}∣∣∣ ≥ ∣∣∣∣{m ∈ Z : f

A+
1

(m) ≥ t
}∣∣∣∣+ ∣∣∣{m ∈ Z : fB (m) ≥ t

}∣∣∣− 1

=
∣∣∣{m ∈ Z : fA(m) ≥ t

}∣∣∣+ ∣∣∣{m ∈ Z : fB (m) ≥ t
}∣∣∣. (2.12)

We also observe that the cardinality of
∣∣Ā + B

∣∣ can be expressed as∣∣Ā + B
∣∣ = ∑

m∈Z

∣∣∣(Ā + B
)
(m)

∣∣∣ = ∑
m∈Z

p

q
f

Ā+B
(m),

where we write the sum over Z for the sake of brevity. Analogously,

|A| =
∑
m∈Z

cAfA(m) and |B| =
∑
m∈Z

cBfB (m).



2.2 New discrete Brunn-Minkowski type inequalities 25

Lemma 2.2.1 applied to the (integer) function f(m) = p f
Ā+B

(m) leads to

∣∣Ā + B
∣∣ = 1

q

∑
m∈Z

p f
Ā+B

(m) =
1
q

p maxZ f
Ā+B∑

t=1

∣∣∣{m ∈ Z : p f
Ā+B

(m) ≥ t
}∣∣∣,

and since maxm∈Z f
Ā+B

(m) ≥ 1 by (2.11), we get

∣∣Ā + B
∣∣ ≥ 1

q

p∑
t=1

∣∣∣{m ∈ Z : p f
Ā+B

(m) ≥ t
}∣∣∣.

Let c′ = p cAcB. Applying Lemma 2.2.2 to the above sum for N = p and r = cAcB, and then using
(2.12), we obtain∣∣Ā + B

∣∣ ≥ 1
q

1
cAcB

∑
t= 1

c′ ,
2
c′ ,...,1

∣∣∣{m ∈ Z : f
Ā+B

(m) ≥ t
}∣∣∣

≥ 1
q

1
cAcB

∑
t= 1

c′ ,...,1

[∣∣∣{m ∈ Z : fA(m) ≥ t
}∣∣∣+ ∣∣∣{m ∈ Z : fB (m) ≥ t

}∣∣∣]. (2.13)

Now, Lemma 2.2.2 for N = cA, r = p cB and Lemma 2.2.1 yield∑
t= 1

c′ ,...,1

∣∣∣{m ∈ Z : fA(m) ≥ t
}∣∣∣ = p cB

cA∑
t=1

∣∣∣{m ∈ Z : cAfA(m) ≥ t
}∣∣∣

= p cB

∑
m∈Z

cAfA(m) = p cB|A|,
(2.14)

and analogously (now N = cB and r = p cA in Lemma 2.2.2),∑
t= 1

c′ ,...,1

∣∣∣{m ∈ Z : fB (m) ≥ t
}∣∣∣ = p cA|B|. (2.15)

Then, (2.13), (2.14) and (2.15) together, give∣∣Ā + B
∣∣ ≥ 1

q

1
cAcB

(
p cB|A|+ p cA|B|

)
=

p

q

(
|A|
cA

+
|B|
cB

)
. (2.16)

Since (2.16) holds for any rational number p/q ≤ c (cf. (2.10)), by a limit procedure we also get
inequality (2.16) for the real positive number c. And then, applying the (reverse) Hölder inequality
(Corollary 1.1.1) with parameters 1/n and −1/(n− 1), we conclude that∣∣Ā + B

∣∣ ≥ c

(
|A|
cA

+
|B|
cB

)
≥
(
|A|1/n + |B|1/n

)n
.

Finally we prove that the inequality is sharp. Indeed, let A,B be the lattice cubes A = Cn
m1

and B = Cn
m2

. Then Ā = Cn
m1+1, and hence Ā + B = Cn

m1+m2+1. Therefore,∣∣Ā + B
∣∣1/n = m1 + m2 + 2 = |A|1/n + |B|1/n.
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Remark 2.4. We observe that our approach involves not only finite sets of Zn, but can be extended
to general (finite) sets of Rn by suitably defining Ā. Therefore, Theorem 2.2.1 can be stated for
any pair of finite (non-empty) sets of Rn.

The following corollary is a direct consequence of Theorem 2.2.1.

Corollary 2.2.2 ([12]). Let A,B be finite subsets of Zn, A,B 6= ∅. Then

|A + B| ≥
(
|A|1/n + |B|1/n

)n
−
∣∣∣(Ā + B

)
\ (A + B)

∣∣∣.
We conclude this section by proving the second version of our discrete Brunn-Minkowski in-

equality.

Proof of Theorem 2.2.2. If r(A) = ∅ then the inequality |A + B|1/n ≥ |B|1/n trivially holds. So we
assume that r(A) 6= ∅. In this case, Theorem 2.2.1 applied to the sets r(A) and B, together with
(2.6) yields

|A + B|1/n ≥
∣∣r(A) + B

∣∣1/n ≥
∣∣r(A)

∣∣1/n + |B|1/n.

The equality case is a consequence of the equality case in Theorem 2.2.1.

Moreover, it is easy to see that (2.7) and (2.8) are indeed equivalent:

Proposition 2.2.1 ([12]). Let A,B ⊂ Zn be finite, A,B 6= ∅. Then (2.7) and (2.8) are equivalent.

Proof. In the proof of Theorem 2.2.2 we have already proved that (2.7) implies (2.8). In order to
prove the converse we just have to note that the operator r(·) has been defined in such a way that
r
(
Ā
)

= A for any A 6= ∅ (cf. (2.4)). Therefore, applying (2.8) to Ā and B we get∣∣Ā + B
∣∣1/n ≥

∣∣r(Ā)∣∣1/n + |B|1/n = |A|1/n + |B|1/n.

2.3 From the discrete version to the continuous one

We note that it is not possible to directly obtain any of the above discrete Brunn-Minkowski
inequalities from the classical one (1.2) by using the method of replacing the points by suitable
compact sets. As pointed out by Gardner and Gronchi in [8, pages 3996–3997],

“it is worth remarking that the obvious idea of replacing the points in the two finite sets
by small congruent balls and applying the classical Brunn-Minkowski inequality to the
resulting compact sets is doomed to failure. The fact that the sum of two congruent balls
is a ball of twice the radius introduces an extra factor of 1/2 that renders the resulting
bound weaker than even the trivial bound (11) below”.

We clarify that (11) in [8] coincides with (1.5) of the present dissertation.
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This section is devoted to showing that, however, the classical Brunn-Minkowski inequality for
compact sets (1.2) can be obtained as a consequence of Theorem 2.2.2.

For each k ∈ N, we consider the family of all (closed) cubes of edge-length 2−k, with vertices
in the lattice 2−kZn. This family tessellates the whole space, i.e., covers Rn and its elements have
disjoint interiors.

Definition 2.1. Let K ⊂ Rn. The k-discretization of K, k ∈ N, is defined as

Kk =
{

x ∈ 2−kZn :
(
x +

[
0, 2−k

]n) ∩K 6= ∅
}

.
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Figure 2.7: Examples of a k-discretization of an ellipse for k = 0, 1, 2.

Standard arguments allow to show the following lemma, which will be a key point in order to
get the main result of this section. We include its proof here for completeness.

Lemma 2.3.1 ([12]). Let K ⊂ Rn be a non-empty compact set. Then

vol(K) = lim
k→∞

|Kk|
2kn

.

Proof. Given a compact set K ⊂ Rn, a standard straightforward computation shows that

K =
∞⋂

k=1

(
Kk +

[
0, 2−k

]n)
. (2.17)

Indeed, let x ∈ ∩∞k=1

(
Kk + [0, 2−k]n

)
. Then, x ∈

(
Kk + [0, 2−k]n

)
for all k ∈ N and thus, since

the diameter of each cube of Kk + [0, 2−k]n (namely, the largest distance between any two points
therein) equals 2−k√n, we have that d(x,K) ≤ 2−k√n for all k ∈ N. This implies that d(x,K) = 0
and then x ∈ K (since K is closed). The reverse inclusion is trivial.

On the other hand, the fact that
(
Kk + [0, 2−k]n

)
k∈N is a decreasing sequence satisfying that

vol
(
K1 + [0, 2−1]n

)
<∞ yields (see e.g. [6, Proposition 1.2.5 (b)])

vol

( ∞⋂
k=1

(
Kk +

[
0, 2−k

]n)) = lim
k→∞

vol
(
Kk +

[
0, 2−k

]n)
,
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and therefore

vol(K) = vol

( ∞⋂
k=1

(
Kk +

[
0, 2−k

]n)) = lim
k→∞

vol
(
Kk +

[
0, 2−k

]n) = lim
k→∞

|Kk|
2kn

.

Theorem 2.3.1 ([12]). The discrete Brunn-Minkowski inequality (2.8) implies the classical Brunn-
Minkowski inequality (1.2).

Proof. For each k ∈ N, let Kk, Lk be the k-discretizations of K, L, respectively. Since K and L are
compact, both Kk, Lk are finite sets, and we can use (2.8) to deduce that, for any k ∈ N, we have

|Kk + Lk|1/n ≥
∣∣r(Kk)

∣∣1/n + |Lk|1/n.

Therefore

lim
k→∞

(
|Kk + Lk|

2kn

)1/n

≥ lim
k→∞

(∣∣r(Kk)
∣∣

2kn

)1/n

+ lim
k→∞

(
|Lk|
2kn

)1/n

. (2.18)

Now, for k ∈ N, we define the set

Fk =
(
Kk +

[
0, 2−k

]n)+
(
Lk +

[
0, 2−k

]n)
.

It is clear that F1 ⊃ F2 ⊃ . . . and, moreover,

K + L =
∞⋂

k=1

Fk.

Hence

vol(K + L) = vol

( ∞⋂
k=1

Fk

)
= lim

k→∞
vol(Fk)

(see e.g. [6, Proposition 1.2.5 (b)]) and then, from

Fk = Kk + Lk +
[
0, 2−k+1

]n ⊃ Kk + Lk +
[
0, 2−k

]n
we obtain

vol(K + L)1/n = lim
k→∞

vol(Fk)1/n ≥ lim
k→∞

(
|Kk + Lk|

2kn

)1/n

.

Now, using (2.18) and Lemma 2.3.1 we immediately get

vol(K + L)1/n ≥ lim
k→∞

(∣∣r(Kk)
∣∣

2kn

)1/n

+ lim
k→∞

(∣∣Lk

∣∣
2kn

)1/n

= lim
k→∞

(∣∣r(Kk)
∣∣

2kn

)1/n

+ vol(L)1/n.

Thus, in order to finish the proof, it suffices to show that

lim
k→∞

∣∣r(Kk)
∣∣

2kn
= vol(K). (2.19)
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For the sake of brevity we denote by Kk,i = (Kk)−i−1 \ (Kk)−i , i = 1, . . . , n, i.e., the set of all points
removed from Kk in the i-th step of the construction of r(Kk). Then it is clear that

vol
(
Kk,i +

[
0, 2−k

]n) = vol
(
π(i)(Kk,i) +

[
0, 2−k

]n)
and hence

|Kk,i|
2kn

= vol
(
Kk,i +

[
0, 2−k

]n) = vol
(
π(i)(Kk,i) +

[
0, 2−k

]n)
≤ vol

(
π(i)(Kk) +

[
0, 2−k

]n) =

∣∣π(i)(Kk)
∣∣

2kn
.

Moreover,
(
π(i)(K)

)
k

= π(i)(Kk), and then Lemma 2.3.1 yields

0 = vol
(
π(i)(K)

)
= lim

k→∞

∣∣∣(π(i)(K)
)
k

∣∣∣
2kn

= lim
k→∞

∣∣π(i)(Kk)
∣∣

2kn
≥ lim

k→∞

|Kk,i|
2kn

,

which implies that

lim
k→∞

|Kk,i|
2kn

= 0.

With Lemma 2.3.1 again, this shows that

lim
k→∞

∣∣r(Kk)
∣∣

2kn
= lim

k→∞

|Kk| −
∣∣Kk \ r(Kk)

∣∣
2kn

= lim
k→∞

|Kk| −
∑n

i=1 |Kk,i|
2kn

= lim
k→∞

|Kk|
2kn
−

n∑
i=1

lim
k→∞

|Kk,i|
2kn

= vol(K).

This proves (2.19) and concludes the proof.

2.4 Bounding the cardinality of the sets Ā and r(A)

Let A ⊂ Zn be finite and non-empty. In this section we will show that the number of additional
points in Ā cannot be too large, and depends only on (the structure of) A and on the dimension.
More precisely, we will provide upper and lower bounds for the ratio

∣∣Ā∣∣/|A| and the difference∣∣Ā∣∣ − |A|. Similarly, we will give bounds for both |r(A)|/|A| and |A| − |r(A)|. We start with the
first case, where only the dimension plays a role.

Proposition 2.4.1 ([12]). Let n ≥ 1 and let A ⊂ Zn be finite and non-empty. Then

1 <
|Ā|
|A|
≤ 2n. (2.20)

Both inequalities are sharp.



30 New discrete versions of the Brunn-Minkowski inequality

Proof. First we prove the upper bound. It is clear that |A+
1 | ≤ 2|A|, and equality holds if and

only if
∣∣πn(A)

∣∣ = 1. Moreover, |A+
i+1| ≤ 2|A+

i | for all i = 1, . . . , n − 1, with equality if and only if∣∣πn−i(A+
i (m))

∣∣ = 1 for every m ∈ πn−i+1,...,n(A+
i ). Then we get

∣∣Ā∣∣/|A| ≤ 2n, and equality holds
if and only if A is a singleton.

Finally we observe that the ratio
∣∣Ā∣∣/|A| > 1 trivially, and that it may be arbitrarily small, as

it is shown by considering A = Cn
r , r ∈ N. In this case,∣∣Ā∣∣
|A|

=
|Cn

r+1|
|Cr|

=
(

1 +
1

r + 1

)n

,

which tends to 1 when r →∞. This shows that the lower bound in (2.20) is tight.

Next we deal with the second case, that of getting bounds for
∣∣Ā∣∣− |A|, which will also depend

on the structure and the cardinality of the original set A. We are going to present two different
upper bounds for the difference |Ā| − |A| because, depending on the distribution of the points
of A, each one can be sharper than the other. Roughly speaking, if A is somehow “close” to a
lattice orthogonal box, then Proposition 2.4.3 will give a more precise bound for

∣∣Ā∣∣− |A|; on the
contrary, if the points of A lie in different hyperplanes orthogonal to the coordinate axis, then
Proposition 2.4.5 will provide a better approximation. Nevertheless, a suitable “mixture” of both
results will lead to a third sharper upper bound (see Theorem 2.4.1).

We start noticing that if we intend to control the number of points that we add to A, first we
must determine how many new points we have in the first step A+

1 . Clearly,

∣∣πi(A+
1 )
∣∣ = { ∣∣πi(A)

∣∣ for i = 1, . . . , n− 1,∣∣πn(A)
∣∣+ 1 for i = n.

(2.21)

Proposition 2.4.2 ([12]). Let n ≥ 2 and let A ⊂ Zn be finite and non-empty. Then

|A+
1 | − |A| ≤

n−1∏
i=1

∣∣πi(A)
∣∣. (2.22)

Proof. Since A ⊂ A+
1 , then |A+

1 | − |A| = |A
+
1 \ A| = maxm∈Z

∣∣A(m)
∣∣. So, it suffices to prove that

for all m ∈ Z, ∣∣A(m)
∣∣ ≤ n−1∏

i=1

∣∣πi(A)
∣∣, (2.23)

which follows from the (discrete) Loomis-Whitney inequality: it can be seen by replacing each point
in A(m) by a small cube with edges parallel to the coordinate lines Rei, i = 1, . . . , n, that

∣∣A(m)
∣∣ ≤ n−1∏

i=1

∣∣∣πi

(
A(m)

)∣∣∣
(see e.g. [9, Section 5] and the references within). This shows (2.23).
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In order to establish the first announced upper bound for the cardinality of Ā, we also need
the following general identity for natural numbers. For the sake of brevity we set the meaningless
products to be 1. We use this convention here and throughout the rest of the dissertation.

Lemma 2.4.1 ([12]). Let a1, . . . , an ∈ N. Then
n∑

k=1

(
n−k∏
i=1

ai

n∏
i=n−k+2

(ai + 1)

)
=

n∏
i=1

(ai + 1)−
n∏

i=1

ai.

Proof. A recursive procedure shows that
n∏

i=1

ai +
n∑

k=1

(
n−k∏
i=1

ai

n∏
i=n−k+2

(ai + 1)

)
=

n∏
i=1

ai +
n−1∏
i=1

ai +
n∑

k=2

(
n−k∏
i=1

ai

n∏
i=n−k+2

(ai + 1)

)

=
n−1∏
i=1

ai(an + 1) +
n−2∏
i=1

ai(an + 1) +
n∑

k=3

(
n−k∏
i=1

ai

n∏
i=n−k+2

(ai + 1)

)

=
n−2∏
i=1

ai

n∏
i=n−1

(ai + 1) +
n∑

k=3

(
n−k∏
i=1

ai

n∏
i=n−k+2

(ai + 1)

)
= · · · =

n∏
i=1

(ai + 1).

We are now ready to provide the first upper bound, as well as a lower bound, for the difference∣∣Ā∣∣− |A|.
Proposition 2.4.3 ([12]). Let n ≥ 1 and let A ⊂ Zn be finite and non-empty. Then

2n − 1 ≤
∣∣Ā∣∣− |A| ≤ n∏

i=1

(∣∣πi(A)
∣∣+ 1

)
−

n∏
i=1

∣∣πi(A)
∣∣. (2.24)

Both inequalities are sharp.

Proof. For the lower bound, since A is non-empty, we clearly have |A+
i | − |A

+
i−1| ≥ 2i−1 for all

i = 1, . . . , n, and so
∣∣Ā∣∣− |A| ≥ 2n − 1. Equality holds if and only if A is singleton.

For the upper bound, if n = 1 then
∣∣Ā∣∣ = |A|+1, and (2.24) trivially holds. Therefore we assume

that n ≥ 2. We observe that, in order to construct Ā, we first add the new points corresponding
to A+

1 , then the new points of σn−1

(
A+

1 (m)
)

for each m ∈ πn(A+
1 ), and so on. Therefore:

1st step. By (2.22) we add, at most,
∏n−1

i=1

∣∣πi(A)
∣∣ points.

2nd step. Using again (2.22) in the corresponding section, we can assure that we add∣∣πn(A+
1 )
∣∣ = ∣∣πn(A)

∣∣+ 1 times (cf. (2.21)), at most,
∏n−2

i=1

∣∣πi(A)
∣∣ points.

k-th step. In short, for k = 1, . . . , n we are adding, at most,

n−k∏
i=1

∣∣πi(A)
∣∣ n∏

i=n−k+2

(∣∣πi(A)
∣∣+ 1

)
(2.25)

new points.
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Altogether, and using Lemma 2.4.1, we conclude that

∣∣Ā∣∣− |A| ≤ n∑
k=1

(
n−k∏
i=1

∣∣πi(A)
∣∣ n∏

i=n−k+2

(∣∣πi(A)
∣∣+ 1

))
=

n∏
i=1

(∣∣πi(A)
∣∣+ 1

)
−

n∏
i=1

∣∣πi(A)
∣∣.

In order to show that the upper bound in (2.24) may be attained it is enough to consider a
lattice orthogonal box A (see Figure 2.8).

Figure 2.8: The upper bound in (2.24) is sharp: a lattice box A (left), A+
1 (middle) and Ā (right).

Similar inequalities to those collected in Propositions 2.4.1 and 2.4.3 for the set Ā can be derived
for r(A). This is the content of the following result.

Proposition 2.4.4. Let n ≥ 1 and let A ⊂ Zn be finite with r(A) 6= ∅. Then

0 <
|r(A)|
|A|

< 1 (2.26)

and

2n − 1 ≤ |A| − |r(A)| ≤
n∏

i=1

∣∣πi(A)
∣∣− n∏

i=1

(∣∣πi(A)
∣∣− 1

)
. (2.27)

All the inequalities are sharp.

Before showing the result, we would like to point out that, in principle, one cannot directly
derive (2.27) from (2.24). Indeed, for an arbitrary set A ⊂ Zn there does not exist in general a set
B ⊂ Zn such that B̄ = A (we recall that r

(
Ā
)

= A but, in general, r(A) does not coincide with A).
Moreover, even if there exists such a set B for a given one A, from (2.24) we would have

|A| −
∣∣r(A)

∣∣ = ∣∣B̄∣∣− |B| ≤ n∏
i=1

(∣∣πi(B)
∣∣+ 1

)
−

n∏
i=1

∣∣πi(B)
∣∣;

but the right-hand side of the above inequality does not yield in general the upper bound in (2.27)
because

∣∣πi(A)
∣∣ = ∣∣πi(B̄)

∣∣ may be greater than
∣∣πi(B)

∣∣+ 1 for 1 ≤ i ≤ n− 1.

We also note that, in the above statement, the assumption r(A) 6= ∅ is necessary for the lower
bound in (2.27), and also allows us to write a strict inequality in the left-hand side of (2.26).



2.4 Bounding the cardinality of the sets Ā and r(A) 33

Proof of Proposition 2.4.4. Both bounds in (2.26) are trivial. In order to show that the lower bound
is tight, we consider A = {0} ∪ Cn

r \ Cn
r−1, r ∈ N. In this case, r(A) = {0} and thus

|r(A)|
|A|

=
1

(r + 1)n − rn + 1
,

which tends to 0 when r →∞. For the upper bound we take A = Cn
r , r ∈ N, and then

|r(A)|
|A|

=
|Cn

r−1|
|Cn

r |
=
(

r

r + 1

)n

,

which goes to 1 when r →∞.

Next, to show the lower bound in (2.27), we notice that A−
n−1 must contain at least two points

to assure that r(A) 6= ∅. Then, we are removing at least one point in the n-th step (of the recursive
construction of r(A)), which yields that at least four points belong to A−

n−2, and hence we cut down
at least two points in the (n−1)-th step. Recursively, we get that at least 2n−k points are erased in
the k-th step and thus we remove at least

∑n
k=1 2n−k = 2n− 1 points from A to get r(A). Equality

is attained only if r(A) is a singleton (and |A| = 2n), which holds, for instance, if A = Cn
1 .

Finally, we prove the upper bound in (2.27). We observe that, for 1 ≤ k ≤ n− 1,

∣∣πk+1,...,n(A−
k−1)

∣∣ ≤ n∏
i=k+1

∣∣πi(A)
∣∣

(cf. (2.23)), which can be seen by applying the (discrete) Loomis-Whitney inequality. Therefore:

1st step. We remove 1 point for each m ∈ π2,...,n(A), i.e., at most
∏n

i=2

∣∣πi(A)
∣∣ points.

2nd step. We remove at most
∣∣π1(A−

1 )
∣∣ ≤ ∣∣π1(A)

∣∣ − 1 points for each m ∈ π3,...,n(A−
1 ), i.e.,

at most
(∣∣π1(A)

∣∣− 1
)∏n

i=3

∣∣πi(A)
∣∣ points.

k-th step. In short, for k = 1, . . . , n we are removing, at most,

k−1∏
i=1

(∣∣πi(A)
∣∣− 1

) n∏
i=k+1

∣∣πi(A)
∣∣

points.

Altogether, and using Lemma 2.4.1, we conclude that

|A| −
∣∣r(A)

∣∣ ≤ n∑
k=1

(
k−1∏
i=1

(∣∣πi(A)
∣∣− 1

) n∏
i=k+1

∣∣πi(A)
∣∣) =

n∏
i=1

∣∣πi(A)
∣∣− n∏

i=1

(∣∣πi(A)
∣∣− 1

)
.

In order to show that the upper bound in (2.27) may be attained it is enough to consider a lattice
orthogonal box A.
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We conclude this section by showing other possible upper bounds for the difference
∣∣Ā∣∣ − |A|.

To this aim, first we prove the following result.

Proposition 2.4.5. Let n ≥ 1 and let A ⊂ Zn be finite and non-empty. Then

∣∣Ā∣∣− |A| ≤ n∑
i=1

2n−i

|A| − ∣∣πn−i+1(A)
∣∣+ n∏

j=n−i+2

∣∣πj(A)
∣∣ . (2.28)

The inequality is sharp.

Proof. If n = 1 then
∣∣Ā∣∣ = |A| + 1, and since |A| =

∣∣π1(A)
∣∣, (2.28) trivially holds. Therefore, we

assume that n ≥ 2.

First we observe that |A+
1 \A| = maxm∈πn(A)

∣∣A(m)
∣∣, and clearly,

max
m∈πn(A)

∣∣A(m)
∣∣ ≤ |A| − ∣∣πn(A)

∣∣+ 1.

Hence, in the first step we have, at most,

z1(A) := |A| −
∣∣πn(A)

∣∣+ 1

new points. For the successive steps we will use the same kind of argument.

Thus, in the second step, we are adding
∣∣σn−1

(
A+

1 (m)
)
\ A+

1 (m)
∣∣ new points for each integer

m ∈ πn(A+
1 ) = πn(A)∪

{
max πn(A)+1

}
, i.e., “in each section orthogonal to Ren”. So we distinguish

two cases.

On one hand, if m ∈ πn(A) then A+
1 (m) = A(m), and we bound the above cardinality by using

the previous technique to obtain∣∣∣σn−1

(
A(m)

)
\A(m)

∣∣∣ = max
s∈πn−1(A(m))

∣∣A(m)(s)
∣∣ ≤ ∣∣A(m)

∣∣− ∣∣∣πn−1

(
A(m)

)∣∣∣+ 1. (2.29)

Then, since
πn−1(A) =

⋃
m∈πn(A)

πn−1

(
A(m)

)
,

we have ∑
m∈πn(A)

∣∣∣σn−1

(
A(m)

)
\A(m)

∣∣∣ ≤ ∑
m∈πn(A)

(∣∣A(m)
∣∣− ∣∣πn−1

(
A(m)

)∣∣+ 1
)

≤ |A| −
∣∣πn−1(A)

∣∣+ ∣∣πn(A)
∣∣ =: z′2(A).

On the other hand, if m = maxπn(A) + 1 then A+
1 (m) is the set of points added in the first step,

and so ∣∣∣σn−1

(
A+

1 (m)
)
\A+

1 (m)
∣∣∣ ≤ z1(A).

Altogether, the total number of points added in the second step can be bounded by

z2(A) := z1(A) + z′2(A).
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Using this argument recursively we observe that in the k-th step we are adding “(n−k)-dimensional
sections”, some of them deriving from the original set A, and some other arising from previously
added sections (of higher dimensions). As before, we bound them separately:

(i) In the first case, the cardinality of each new section can be bounded as (cf. (2.29))

max
s∈πn−k+1(A(m1)...(mk−1))

∣∣A(m1) . . . (mk−1)(s)
∣∣

≤
∣∣A(m1) . . . (mk−1)

∣∣− ∣∣∣πn−k+1

(
A(m1) . . . (mk−1)

)∣∣∣+ 1,

where m1 ∈ πn(A), m2 ∈ πn−1

(
A(m1)

)
and so on, till

mk−1 ∈ πn−k+2

(
A(m1) . . . (mk−2)

)
.

Thus, summing over these sets (we just write the index in each summand for the sake of
brevity) we get the following upper bound for the number of new points arising from A:∑

m1

∑
m2

· · ·
∑

mk−1

max
s∈πn−k+1(A(m1)...(mk−1))

∣∣A(m1) . . . (mk−1)(s)
∣∣

≤ |A| −
∣∣πn−k+1(A)

∣∣+ n∏
j=n−k+2

∣∣πj(A)
∣∣ =: z′k(A).

(ii) In the second case, we just may take, as an upper bound,

k−1∑
j=1

zj(A).

To sum up, (i) and (ii) together give, for the k-th step, k = 1, . . . , n, a total of at most

zk(A) := z′k(A) +
k−1∑
j=1

zj(A) (2.30)

new points. Therefore we can conclude that∣∣Ā∣∣ ≤ |A|+ n∑
k=1

zk(A).

Finally, from (2.30), we observe that

n∑
k=1

zk(A) =
n∑

k=1

(
z′k(A) +

k−1∑
i=1

zi(A)

)
=

n∑
k=1

(
z′k(A) +

k−1∑
i=1

2k−1−iz′i(A)

)
=

n∑
i=1

2n−iz′i(A)

=
n∑

i=1

2n−i

|A| − ∣∣πn−i+1(A)
∣∣+ n∏

j=n−i+2

∣∣πj(A)
∣∣.

This finishes the proof of (2.28). In order to show that the bound in (2.28) may be attained, we
can consider a lattice segment (see Figure 2.9).
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Figure 2.9: Equality holds in (2.28): a lattice segment A (left), A+
1 (middle) and Ā (right).

As we mentioned before, the upper bounds in (2.24) and (2.28) are not comparable, in the
sense that depending on the structure of the set A, each of them can be sharper than the other.
For instance, we already know that the lattice box in Figure 2.8 gives equality in (2.24), namely,∣∣Ā∣∣ − |A| = 8, whereas the bound obtained using (2.28) is 31. On the other hand, for the lattice
segment in Figure 2.9 the inequality (2.28) holds with equality,

∣∣Ā∣∣ − |A| = 5; however, if we
compute in this case the bound given in (2.24) we get 7.

Although computing (2.24) or (2.28) is not in general an easy task, a better upper bound for∣∣Ā∣∣ − |A| is obtained using, for each step in the construction of Ā, the minimum of the previous
two bounds.

Theorem 2.4.1. Let A ⊂ Zn, n ≥ 1, be finite and non-empty, and let

z̄i(A) = min


n−i∏
j=1

∣∣πj(A)
∣∣ n∏

j=n−i+2

(∣∣πj(A)
∣∣+ 1

)
, |A| −

∣∣πn−i+1(A)
∣∣+ n∏

j=n−i+2

∣∣πj(A)
∣∣+ i−1∑

j=1

z̄j(A)


for i = 1, . . . , n. Then ∣∣Ā∣∣− |A| ≤ n∑

i=1

z̄i(A). (2.31)

Proof. The case n = 1 again reduces to
∣∣Ā∣∣ = |A| + 1. For n ≥ 2 the proof is a consequence of

(2.25) and (2.30): in the construction of Ā, in the k-th step we have two different bounds for the
number of new points, namely, (2.25) and (2.30), and hence we can refine both just by taking the
minimum between them; but even more, (2.30) can be improved by considering

|A| −
∣∣πn−k+1(A)

∣∣+ n∏
j=n−k+2

∣∣πj(A)
∣∣+ k−1∑

j=1

z̄j(A).

This proves the result.

The following table shows the number of points which are added in each step in the construction
of Ā, for A =

{
e1, 2 e1, 3 e1, e2, 2 e2

}
(see Figure 2.10), as well as the bounds provided by (2.24),
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(2.28) and (2.31). In this example equality holds in (2.31), whereas we have strict inequalities in
(2.24) and (2.28).

Step Added points Bounds in (2.24) Bounds in (2.28) Bounds in (2.31)

1 3 4 3 3
2 4 4 7 4

Total 12 13 15 12

Figure 2.10: Comparing the bounds in (2.24), (2.28) and (2.31).



38 New discrete versions of the Brunn-Minkowski inequality



Chapter 3

Discrete Borell-Brascamp-Lieb type
inequalities

Discrete Borell-Brascamp-Lieb type
inequalities

Regarding an analytical counterpart for functions of the Brunn-Minkowski inequality, one is
naturally led to the so-called Borell-Brascamp-Lieb inequality, originally proved in [2] and [4]. This
inequality can be seen, not only as an analytical extension of the Brunn-Minkowski inequality, but
also as a way to obtain different Brunn-Minkowski type inequalities depending on a parameter p.
This powerful result will be the starting point in this chapter, being our main aim to present new
discrete Borell-Brascamp-Lieb type inequalities.

The original work that we collect here can be found in [14, 15].

3.1 The classical Borell-Brascamp-Lieb inequality

In order to introduce the Borell-Brascamp-Lieb inequality, we first recall the definition of p-
sum of two non-negative numbers, where p 6= 0 is a parameter varying in R ∪ {±∞} (for a general
reference for p-sums of non-negative numbers, we refer the reader to the classic text of Hardy,
Littlewood, and Pólya [11] and to the handbook [5]).

Definition 3.1. Let a, b ≥ 0 and let p ∈ R∪{±∞}, p 6= 0. The p-sum Sp (a, b) of a, b is defined as

Sp (a, b) =


(ap + bp)1/p if p 6= ±∞,

max{a, b} if p =∞,

min{a, b} if p = −∞,

for ab > 0, and Sp (a, b) = 0 when ab = 0 for all p ∈ R ∪ {±∞}, p 6= 0.
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Note that Sp (a, b) = 0, if ab = 0, is redundant for all p < 0, however it is relevant for p > 0. The
reason to modify in this way the definition of p-sum given in [11] is due to the classical statement of
the Borell-Brascamp-Lieb inequality, which is collected below. In fact, without such a modification,
the thesis of the latter result would not have mathematical interest.

Similarly we can define the p-mean of two non-negative numbers, which will be also needed it
in following sections.

Definition 3.2. Let a, b ≥ 0, λ ∈ [0, 1] and p ∈ R∪{±∞}. We define the p-meanMλ
p (a, b) of a, b

with respect to λ as

Mλ
p (a, b) =



(
(1− λ)ap + λbp

)1/p
, if p 6= 0,±∞,

a1−λbλ if p = 0,

max{a, b} if p =∞,

min{a, b} if p = −∞,

for ab > 0, with Mλ
p (a, b) = 0 when ab = 0 and p ∈ R ∪ {±∞}.

The following theorem (see also [7] for a detailed presentation), as previously stated, can be
regarded as the functional counterpart of the Brunn-Minkowski inequality. In fact, a straightforward
proof of (1.2) can be obtained by applying (3.1) to the characteristic functions f = χK , g = χL

and h = χK+L of compact sets K, L of positive measure, with p =∞.

Theorem 3.1.1 (The Borell-Brascamp-Lieb inequality (p-sums version)). Let p ≥ −1/n,
p 6= 0, and let f, g, h : Rn −→ R≥0 be non-negative measurable functions such that

h(x + y) ≥ Sp

(
f(x), g(y)

)
for all x, y ∈ Rn. Then ∫

Rn

h(x) dx ≥ S p
np+1

(∫
Rn

f(x) dx,

∫
Rn

g(x) dx

)
. (3.1)

The Borell-Brascamp-Lieb inequality has an equivalent version in terms of the p-means:

Theorem 3.1.2 (The Borell-Brascamp-Lieb inequality (p-means version)). Let p ≥ −1/n

and λ ∈ [0, 1], and let f, g, h : Rn −→ R≥0 be non-negative measurable functions such that

h
(
(1− λ)x + λy

)
≥Mλ

p

(
f(x), g(y)

)
for all x, y ∈ Rn. Then ∫

Rn

h(x) dx ≥Mλ
p

np+1

(∫
Rn

f(x) dx,

∫
Rn

g(x) dx

)
. (3.2)
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Using the p-means version of the Borell-Brascamp-Lieb inequality applied to the characteristic
functions f = χK , g = χL and h = χ

(1−λ)K+λL
of compact sets K, L of positive measure, the most

general Brunn-Minkowski inequality

vol
(
(1− λ)K + λL) ≥

(
(1− λ)vol(K)q + λvol(L)q

)1/q

can be obtained for q = p/(np + 1) ≤ 1/n. In the particular cases p =∞, p = 0 and p = −1/n we
obtain the additive form, multiplicative form and minimal form of the Brunn-Minkowski inequality,
respectively, that we gathered in (1.3).

The main aim of this chapter will be to present new discrete versions of (3.1) and (3.2). We
note however that, since it is not possible to get a Brunn-Minkowski inequality in its classical form
for the cardinality (see the example in page 5), one cannot expect to obtain a discrete analogue
of the Borell-Brascamp-Lieb inequality just by replacing integrals by sums. Therefore, discrete
counterparts for the Borell-Brascamp-Lieb inequality should again have a different structure or
involve modifications of the sets.

Moreover, in contrast to the continuous setting, where one may directly obtain (3.2) from (3.1)
(and viceversa) because of the homogeneity of the volume, one cannot expect to derive in a similar
way a discrete version of (3.2) from that of (3.1). The issue relies on the lack of homogeneity of
our ways of measuring in the discrete setting: the cardinality and the lattice point enumerator.

3.2 A first discrete Borell-Brascamp-Lieb type inequality

Our first approach in order to get a discrete Borell-Brascamp-Lieb type inequality will be to
discretize Theorem 3.1.1 in the spirit of Theorem 2.2.2. To this end, we generalize one of the
constructions shown in Section 2.1: by removing points from our original finite set A ⊂ Zn, A 6= ∅,
we define a new reduced set rf (A) according to a particular function f .

Now, if Λ ⊂ Zk is finite, k ∈ {1, . . . , n}, and f : Λ −→ R≥0 is a non-negative function (which
will be often referred to as a weight function), let m0 = m0(Λ, f) ∈ πk(Λ) be such that∑

x∈A(m0)

f(x, m0) = max
m

∑
x∈Λ(m)

f(x,m)

(cf. (2.2)). Certainly, the integer m0 providing the “maximum section” with respect to the weight
function f does not necessarily have to be unique. In that case, we define

m0 = max

m′ ∈ πk(Λ) :
∑

x∈Λ(m′)

f(x,m′) = max
m

∑
x∈Λ(m)

f(x,m)

 . (3.3)

Then, the function %k defined in (2.5) acts on Λ by removing the “maximum section” Λ(m0), but
now with respect to the weight function f , from the set. Then, for our set A ⊂ Zn, we define

rf (A) = %n

(
A−

n−1

)
.
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In other words, rf (A) is given by

rf (A) =
⋃

m∈πn(A)\{m0(A−
n−1,f)}

(
rf

(
A(m)

)
× {m}

)
. (3.4)

We observe that the reduced set r(A) constructed in Section 2.1 is just rϕ(A) when ϕ : Zn −→ R≥0

is the constant weight function given by ϕ(x) = 1 for all x ∈ Zn.

Using this construction we can state our main result in this section:

Theorem 3.2.1 ([14]). Let A,B ⊂ Zn be non-empty finite sets. Let −1/n ≤ p ≤ ∞, p 6= 0, and
let f, g, h : Rn −→ R≥0 be non-negative functions such that

h(x + y) ≥ Sp

(
f(x), g(y)

)
for all x ∈ A, y ∈ B. Then

∑
z∈A+B

h(z) ≥ S p
np+1

 ∑
x∈rf (A)

f(x),
∑
y∈B

g(y)

 . (3.5)

As in the continuous setting, inequality (3.5) can be seen as a functional extension of the discrete
Brunn-Minkowski inequality (2.8), just by considering the characteristic functions f = χA , g = χB

and h = χA+B , and taking p = ∞. We also note that, as in the case of Theorem 2.2.2, the above
result holds for finite subsets A,B ⊂ Rn, via a suitable construction of the set rf (A). We state and
prove Theorem 3.2.1 in the case of Zn for the sake of simplicity.

Before starting with the proof of Theorem 3.2.1, we observe that as a straightforward conse-
quence of it we get the following Brunn-Minkowski type inequality for discrete measures associated
to p-additive functions, in the spirit of (2.8). Indeed, it is enough to apply Theorem 3.2.1 to the
functions f = χAφ, g = χBφ and h = χA+Bφ.

Corollary 3.2.1 ([14]). Let −1/n ≤ p ≤ ∞, p 6= 0, and let φ : Zn −→ R≥0 be a non-negative
function such that

φ(x + y) ≥ Sp

(
φ(x), φ(y)

)
for any x, y ∈ Zn. Let µ be the discrete measure on Zn with mass function φ, i.e., such that

µ(M) =
∑
x∈M

φ(x)

for any finite set M ⊂ Zn, and let A,B ⊂ Zn be finite. Then

µ(A + B) ≥ S p
np+1

(
µ
(
rφ(A)

)
, µ(B)

)
.
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3.2.1 The proof of the discrete Borell-Brascamp-Lieb inequality

Before the proof of Theorem 3.2.1 we need to state some auxiliary results. The following lemma
can be regarded as a discrete analog of the well-known Cavalieri Principle.

Lemma 3.2.1 ([14]). Let Ω ⊂ Zn be finite, let f : Ω −→ R≥0 and set f(Ω) ⊂ {k0, k1, . . . , kr}
where 0 = k0 < k1 < · · · < kr. Then

∑
x∈Ω

f(x) =
r∑

i=1

(ki − ki−1)
∣∣∣{x ∈ Ω : f(x) ≥ ki

}∣∣∣ = ∫ ∞

0

∣∣∣{x ∈ Ω : f(x) ≥ t
}∣∣∣ dt.

Proof. The second equality is immediate and, hence, we will show the first one. To this aim, let
x ∈ Ω and consider ks = f(x) for some s ∈ {1, . . . , r} (we may assume, without loss of generality,
that f(x) > 0). Then, with

δi(x) =

{
1 if f(x) ≥ ki,

0 otherwise,

we have

f(x) =
s∑

i=1

(ki − ki−1) =
r∑

i=1

(ki − ki−1)δi(x),

and thus we can conclude that∑
x∈Ω

f(x) =
∑
x∈Ω

r∑
i=1

(ki − ki−1)δi(x) =
r∑

i=1

(ki − ki−1)
∑
x∈Ω

δi(x)

=
r∑

i=1

(ki − ki−1)
∣∣∣{x ∈ Ω : f(x) ≥ ki

}∣∣∣.
Remark 3.1. We note that, under the conditions of the above result, on one hand we may ensure
that for any k′ ∈ (ki−1, ki), since k′ /∈ f(Ω),

(ki −ki−1)
∣∣∣{x ∈ Ω :f(x) ≥ ki

}∣∣∣ = (ki − k′)
∣∣∣{x ∈ Ω :f(x) ≥ ki

}∣∣∣+ (k′−ki−1)
∣∣∣{x ∈ Ω :f(x) ≥ k′

}∣∣∣.
On the other hand, for every k′ > km = maxx∈Ω f(x) we clearly have

∣∣∣{x ∈ Ω : f(x) ≥ k′
}∣∣∣ = 0.

Therefore, the set {k0, k1, . . . , kr} is not relevant.

The following result essentially yields the case n = 1 of Theorem 3.2.1 and will be used to derive
(3.5). Note, however, that it holds not only for 1-dimensional sets but also for n-dimensional sets,
in contrast to the case n = 1 of the classical Borell-Brascamp-Lieb inequality.

Lemma 3.2.2 ([14]). Let Ω1,Ω2 ⊂ Zn be two finite sets. Let −1 ≤ p ≤ ∞, p 6= 0, and let
f, g, h : Rn −→ R≥0 be non-negative functions such that

h(x + y) ≥ Sp

(
f(x), g(y)

)
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for all x ∈ Ω1, y ∈ Ω2. Then

∑
z∈Ω1+Ω2

h(z) ≥ S p
p+1

 ∑
x∈Ω1\{x0}

f(x),
∑
y∈Ω2

g(y)

 ,

where x0 ∈ Ω1 is such that f(x0) = maxx∈Ω1 f(x).

Proof. Clearly, we may assume that both
∑

x∈Ω1\{x0} f(x),
∑

y∈Ω2
g(y) > 0. We consider the non-

negative functions F,G,H : Rn −→ R≥0 given by

F (x) =
f(x)

a
, G(y) =

g(y)
b

, H(z) =
h(z)
cp

,

where
a = max

x∈Ω1

f(x) > 0, b = max
y∈Ω2

g(y) > 0 and cp = Sp (a, b) > 0.

Then
max
x∈Ω1

F (x) = max
y∈Ω2

G(y) = 1.

First, we show that, for any x ∈ Ω1, y ∈ Ω2, we have

H(x + y) ≥ min
{
F (x), G(y)

}
. (3.6)

To this aim, it is enough to consider x ∈ Ω1 and y ∈ Ω2 with f(x)g(y) > 0. For p 6=∞, and writing
θ = bp/cp

p ∈ (0, 1), we get

h(x + y) ≥
(
f(x)p + g(y)p

)1/p = cp

(
F (x)pap + G(y)pbp

cp
p

)1/p

= cp

(
(1− θ)F (x)p + θG(y)p

)1/p ≥ cp min{F (x), G(y)}.

For p = ∞, h(x + y) ≥ max
{
f(x), g(y)

}
≥ c∞ min

{
F (x), G(y)

}
clearly holds. Therefore, we have

shown (3.6).

The definition of F and G now implies that the level sets{
x ∈ Ω1 : F (x) ≥ t

}
,

{
y ∈ Ω2 : G(y) ≥ t

}
are non-empty for any t ∈ [0, 1]. Moreover, from (3.6) we deduce that{

z ∈ Ω1 + Ω2 : H(z) ≥ t
}
⊃
{
x ∈ Ω1 : F (x) ≥ t

}
+
{
y ∈ Ω2 : G(y) ≥ t

}
and thus, by (1.5) together with the fact that f(x0) = maxx∈Ω1 f(x), we have∣∣∣{z ∈ Ω1 + Ω2 : H(z) ≥ t

}∣∣∣ ≥ ∣∣∣{x ∈ Ω1 : F (x) ≥ t
}∣∣∣+ ∣∣∣{y ∈ Ω2 : G(y) ≥ t

}∣∣∣− 1

=
∣∣∣{x ∈ Ω1 \ {x0} : F (x) ≥ t

}∣∣∣+ ∣∣∣{y ∈ Ω2 : G(y) ≥ t
}∣∣∣

for all t ∈ [0, 1].
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Finally, set
{k0, k1, . . . , kr} ⊃ F

(
Ω1

)
∪G

(
Ω2

)
∪H

(
Ω1 + Ω2

)
,

with 0 = k0 < k1 < · · · < kr where, for some s ∈ {1, . . . , r},

ks = max
y∈Ω2

G(y) = 1 ≥ max
x∈Ω1\{x0}

F (x).

Then, by the above inequality, and using Lemma 3.2.1, we get∑
z∈Ω1+Ω2

h(z) =
∑

z∈Ω1+Ω2

cp H(z) = cp

r∑
i=1

(ki − ki−1)
∣∣∣{z ∈ Ω1 + Ω2 : H(z) ≥ ki

}∣∣∣
≥ cp

s∑
i=1

(ki − ki−1)
∣∣∣{z ∈ Ω1 + Ω2 : H(z) ≥ ki

}∣∣∣
≥ cp

s∑
i=1

(ki − ki−1)
(∣∣∣{x ∈ Ω1 \ {x0} : F (x) ≥ ki

}∣∣∣+ ∣∣∣{y ∈ Ω2 : G(y) ≥ ki

}∣∣∣)

= cp

 ∑
x∈Ω1\{x0}

F (x) +
∑
y∈Ω2

G(y)

 = cp

1
a

∑
x∈Ω1\{x0}

f(x) +
1
b

∑
y∈Ω2

g(y)


≥ S p

p+1

 ∑
x∈Ω1\{x0}

f(x),
∑
y∈Ω2

g(y)

 .

The last inequality follows from the reverse Hölder inequality (see Corollary 1.1.1) with parameter
p/(p + 1) ≤ 1, just by taking a1 =

∑
x∈Ω1\{x0} f(x), a2 =

∑
y∈Ω2

g(y), b1 = 1/a and b2 = 1/b.

Now we are in a position to prove Theorem 3.2.1. The main idea of the proof we present here is
exploiting the above result (for n = 1) via an inductive procedure, and it goes back to the classical
proof of the Borell-Brascamp-Lieb inequality (see e.g. [2, 4, 16, 22]). We develop it here in detail
for the sake of completeness.

Proof of Theorem 3.2.1. We may assume, without loss of generality, that both
∑

x∈rf (A) f(x) > 0
and

∑
y∈B g(y) > 0.

If n = 1, the result follows immediately from Lemma 3.2.2 with Ω1 = A, Ω2 = B and noticing
that rf (A) = A \ {m0}; recall that f(m0) = maxm∈A f(m), cf. (3.3).

Now we suppose that n > 1 and that the theorem holds for dimension n− 1. Let mA ∈ πn(A)
and mB ∈ πn(B). Let Ω1 = A(mA) ⊂ Zn−1 and Ω2 = B(mB) ⊂ Zn−1, and consider the functions
f1, g1, h1 : Rn−1 −→ R≥0 given by

f1(x) = f(x,mA), g1(x) = g(x, mB), h1(x) = h(x,mA + mB),

for any x ∈ Rn−1. Since for all x ∈ Ω1, y ∈ Ω2 we have

h1(x + y) = h(x + y, mA + mB) ≥ Sp

(
f(x,mA), g(y, mB)

)
= Sp

(
f1(x), g1(y)

)
,
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we may assert that

∑
z∈A(mA)+B(mB)

h1(z) ≥ S p
(n−1)p+1

 ∑
x∈rf (A(mA))

f1(x),
∑

y∈B(mB)

g1(y)

 .

This, together with the fact that

(A + B)(mA + mB) ⊃ A(mA) + B(mB),

yields, in terms of f , g and h,

∑
z∈(A+B)(mA+mB)

h(z, mA + mB) ≥ S p
(n−1)p+1

 ∑
x∈rf (A(mA))

f(x,mA),
∑

y∈B(mB)

g(y, mB)

 . (3.7)

Now, let f2, g2, h2 : Z −→ R≥0 be the functions defined by

f2(m) =
∑

x∈rf (A(m))

f(x,m), g2(m) =
∑

y∈B(m)

g(y, m) and

h2(m) =
∑

z∈(A+B)(m)

h(z,m).

Let m0 = m0(A−
n−1, f) ∈ πn(A) be the value for which

rf (A) =
⋃

m∈πn(A)\{m0}

(
rf

(
A(m)

)
× {m}

)
holds (see (3.4)). Then we clearly have f2(m0) = maxm∈πn(A) f2(m). Hence, (3.7) yields, in terms
of f2, g2 and h2,

h2(mA + mB) ≥ S p
(n−1)p+1

(
f2(mA), g2(mB)

)
for any mA ∈ πn(A), mB ∈ πn(B), and thus we may use Lemma 3.2.2 with Ω1 = πn(A), Ω2 = πn(B)
and the functions f2, g2 and h2 to obtain

∑
m∈πn(A)+πn(B)

h2(m) ≥ S p
np+1

 ∑
mA∈πn(A)\{m0}

f2(mA),
∑

mB∈πn(B)

g2(mB)

 .

This, together with the relations∑
m∈πn(A)+πn(B)

h2(m) =
∑

z∈A+B

h(z),
∑

mA∈πn(A)\{m0}

f2(mA) =
∑

x∈rf (A)

f(x),

∑
mB∈πn(B)

g2(mB) =
∑
y∈B

g(y),

finishes the proof.
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3.2.2 From the discrete version to the continuous one

In order to conclude this section, we also show that the classical Borell-Brascamp-Lieb inequality
(3.1) can be obtained from the discrete version (3.5) under the mild (but necessary) assumption
that the functions f, g are Riemann integrable.

Theorem 3.2.2 ([14]). The discrete Borell-Brascamp-Lieb inequality (3.5) implies the classical
Borell-Brascamp-Lieb inequality (3.1), provided that the functions f, g are Riemann integrable.

Proof. We assume that f, g, h : Rn −→ R≥0 are non-negative measurable functions, with f, g

Riemann integrable, such that

h(x + y) ≥ Sp

(
f(x), g(y)

)
for all x, y ∈ Rn. Let m ∈ N and let K = (−m,m)n. For each k ∈ N, let Kk be the k-discretization
of K (see Definition 2.1). Since K is bounded, we know that Kk is a finite set.

We define the functions fk, gk : Kk −→ R≥0 given by

fk(x) = inf
z∈x+[0,2−k]n

f(z), gk(x) = inf
z∈x+[0,2−k]n

g(z),

and let hk : Kk + Kk −→ R≥0 be the function defined by

hk(x) = inf
z∈x+[0,2−k]n

h(z).

We note that, for any x, y ∈ Kk, we have

hk(x + y) = inf
z∈x+y+[0,2−k]n

h(z) ≥ inf
z∈x+[0,2−k]n+y+[0,2−k]n

h(z) = inf
z1∈x+[0,2−k]n

z2∈y+[0,2−k]n

h(z1 + z2)

≥ inf
z1∈x+[0,2−k]n

z2∈y+[0,2−k]n

Sp

(
f(z1), g(z2)

)
≥ Sp

(
inf

z1∈x+[0,2−k]n
f(z1), inf

z2∈y+[0,2−k]n
g(z2)

)

= Sp

(
fk(x), gk(y)

)
,

and thus, since Kk is a finite set, we can use Theorem 3.2.1 to deduce that, for any k ∈ N, we have

2−kn
∑

z∈Kk+Kk

hk(z) ≥ S p
np+1

2−kn
∑

x∈rf (Kk)

fk(x), 2−kn
∑

y∈Kk

gk(y)

 . (3.8)

First, we clearly have ∫
Rn

h(x) dx ≥
∑

z∈Kk+Kk

2−knhk(z). (3.9)
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Now, using (3.9), (3.8) and taking into account that g is a Riemann integrable function, we imme-
diately get ∫

Rn

h(x) dx ≥ lim
k→∞

S p
np+1

2−kn
∑

x∈rf (Kk)

fk(x), 2−kn
∑

y∈Kk

gk(y)


≥ S p

np+1

 lim
k→∞

2−kn
∑

x∈rf (Kk)

fk(x), lim
k→∞

2−kn
∑

y∈Kk

gk(y)


= S p

np+1

 lim
k→∞

2−kn
∑

x∈rf (Kk)

fk(x),
∫

K
g(x) dx

 ,

(3.10)

because 2−kn
∑

y∈Kk
gk(y) is a lower sum of g for the partition

{
x +

[
0, 2−k

]n : x ∈ Kk

}
of cl K.

In the following, we show that

lim
k→∞

2−kn
∑

x∈rf (Kk)

fk(x) =
∫

K
f(x) dx. (3.11)

Since the function f is Riemann integrable and non-negative, it is bounded, and then there exists
a constant c ∈ R≥0 such that f(x) ≤ c for all x ∈ K, which implies that fk(x) ≤ c for any x ∈ Kk.
For the sake of brevity let Kk,i = (Kk)−i−1 \ (Kk)−i , i = 1, . . . , n, i.e., the set of all points removed
from Kk in the i-th step of the construction of rf (Kk). Then it is clear that∣∣Kk,i

∣∣ = ∣∣π(i)(Kk,i)
∣∣ ≤ ∣∣π(i)(Kk)

∣∣,
and moreover,

(
π(i)(K)

)
k

= π(i)(Kk). So we have

0 =
∫

π(i)(K)
cdx = lim

k→∞
2−kn

∑
x∈
(
π(i)(K)

)
k

c ≥ lim
k→∞

2−kn
∑

x∈Kk,i

c,

which implies that
lim

k→∞
2−kn

∑
x∈Kk,i

fk(x) = 0.

This shows that

lim
k→∞

2−kn
∑

x∈rf (Kk)

fk(x) = lim
k→∞

2−kn
∑

x∈Kk

fk(x)− 2−kn
∑

x∈Kk\rf (Kk)

fk(x)


= lim

k→∞

2−kn
∑

x∈Kk

fk(x)− 2−kn
n∑

i=1

∑
x∈Kk,i

fk(x)


= lim

k→∞
2−kn

∑
x∈Kk

fk(x)−
n∑

i=1

lim
k→∞

2−kn
∑

x∈Kk,i

fk(x)

=
∫

K
f(x) dx.
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This proves (3.11) and then, by (3.10),∫
Rn

h(x) dx ≥ S p
np+1

(∫
K

f(x) dx,

∫
K

g(x) dx

)
.

Since this is true for K = (−m,m)n, for every m ∈ N, the proof is now concluded because

lim
m→∞

∫
(−m,m)n

φ(x) dx =
∫

Rn

φ(x) dx

for every non-negative measurable function φ : Rn −→ R≥0.

Remark 3.2. Note that the assumption that the functions f and g are Riemann integrable in
Theorem 3.2.2 seems to be necessary. Indeed, in order to derive the classical Borell-Brascamp-Lieb
inequality (3.1) from the discrete version (3.5), one needs to consider some functions to which one
may apply (3.5), and then the corresponding finite sums should approximate in some sense the
integrals of f and g. The point is that, whereas these sums may be seen as Riemann sums over
uniform partitions, there seems to be no natural way to involve integrals of arbitrary (measurable)
simple functions.

3.3 A different approach to a discrete Borell-Brascamp-Lieb type in-

equality

In this section we deal with convex combinations of two sets, (1−λ)K + λL, λ ∈ (0, 1), instead
of just the addition K + L. In this regard, we already know that the classical Brunn-Minkowski
inequality (1.2) has an equivalent version in this form, namely,

vol
(
(1− λ)K + λL

)1/n ≥ (1− λ)vol(K)1/n + λvol(L)1/n, λ ∈ (0, 1), (3.12)

for K, L ⊂ Rn compact sets (see (1.3)).

Aiming to get a discrete version of (3.12) it is worth noting that, in contrast to (1.2), this
equivalent version (3.12) admits a straightforward discrete counterpart, which is due, in a sense, to
the lack of homogeneity of the cardinality function: indeed, for any pair of non-empty finite sets
A,B ⊂ Rn, using (1.5) (and since |A|, |B| ≥ 1), we get∣∣(1− λ)A + λB

∣∣ ≥ ∣∣(1− λ)A
∣∣+ |λB| − 1 = |A|+ |B| − 1

= (1− λ)|A|+ λ|B|+ λ|A|+ (1− λ)|B| − 1

≥ (1− λ)|A|+ λ|B| ≥
(
(1− λ)|A|1/n + λ|B|1/n

)n
,

where the last inequality follows from the convexity of the function t 7→ tn for t ≥ 0. Nevertheless
this inequality is meaningless from a geometric point of view: the point is that while the quantities
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|A|, |B| on the right-hand side are reduced by the factors (1− λ) and λ, the sets (1− λ)A and λB

on the left-hand side have the same cardinality as A and B, respectively.

A possible solution would be to involve a more natural way to “count points” according to
dilatations, namely, using the lattice point enumerator Gn (for compact subsets of Rn) instead of
the cardinality | · | (for finite subsets of Rn).

Again, one cannot expect to obtain a Brunn-Minkowski inequality for Gn in the classical form
(3.12) (which, as we have mentioned before, would be a similar situation to what happens for | · |
regarding a discrete version of (1.2)). Indeed, even for n = 1, just by taking λ = 1/2, K = [0,m−ε]
and L = [0,m + ε/2], with m ∈ N and 0 < ε < 1, one gets

G1

(
K + L

2

)
= G1

([
0,m− ε

4

])
= m < m +

1
2

=
G1(K) + G1(L)

2
. (3.13)

Thus, as in (2.7), an alternative to get such an inequality for the lattice point enumerator would
be to consider a certain extension of (1− λ)K + λL. So, we pose the following question:

Question 3.3.1. Given compact sets K, L ⊂ Rn containing some integer point, which is the best
set M with (1− λ)K + λL ⊂M for which

Gn

(
M)1/n ≥ (1− λ)Gn(K)1/n + λGn(L)1/n

holds for all λ ∈ (0, 1)?

Here we give a positive answer to Question 3.3.1, providing a discrete counterpart to (3.12):

Theorem 3.3.1 ([15]). Let K, L ⊂ Rn be non-empty bounded sets such that Gn(K)Gn(L) > 0,
and let λ ∈ (0, 1). Then

Gn

(
(1− λ)K + λL + (−1, 1)n

)1/n ≥ (1− λ)Gn(K)1/n + λGn(L)1/n. (3.14)

The inequality is sharp.

Theorem 3.3.1 will be obtained as a consequence of a functional (and more general) result,
which can be seen as a discrete version of the Borell-Brascamp-Lieb inequality for p-means (The-
orem 3.1.2). To state this main result and henceforth, we will need the following notation: for a
non-negative function φ : Rn −→ R≥0, we denote by φ∗ : Rn −→ R≥0 the function given by

φ∗(z) = sup
u∈(−1,1)n

φ(z + u) for all z ∈ Rn.

Theorem 3.3.2 ([15]). Let λ ∈ (0, 1) and let −1/n ≤ p ≤ ∞. Let K, L ⊂ Rn be non-empty
bounded sets, and let f, g, h : Rn −→ R≥0 be non-negative functions such that

h
(
(1− λ)x + λy

)
≥Mλ

p

(
f(x), g(y)

)
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for all x ∈ K and y ∈ L. Then

∑
z∈M∩Zn

h∗(z) ≥Mλ
p

np+1

 ∑
x∈K∩Zn

f(x),
∑

y∈L∩Zn

g(y)

 , (3.15)

where M = (1− λ)K + λL + (−1, 1)n.

Given a basis B = {v1 . . . , vn} of an n-dimensional lattice Λ ⊂ Rn we will write, for short,

DB =
n∑

i=1

(−vi, vi).

We note that DC = (−1, 1)n for the canonical basis C = {e1 . . . , en}. Let ϕ : Rn −→ Rn be the
linear (bijective) map given by ϕ(x) =

∑n
i=1 xivi for all x = (x1, . . . , xn) ∈ Rn.

Under the same assumptions (and notation) of the above result, we may consider the auxiliary
functions f̄ , ḡ, h̄ : Rn −→ R≥0 defined by

f̄(x) = f
(
ϕ(x)

)
, ḡ(x) = g

(
ϕ(x)

)
and h̄(x) = h

(
ϕ(x)

)
for all x ∈ Rn. Then, as an immediate consequence of Theorem 3.3.2 (applied to the functions f̄ , ḡ

and h̄), we get that

∑
z∈M∩Λ

h∗B (z) ≥Mλ
p

np+1

 ∑
x∈K∩Λ

f(x),
∑

y∈L∩Λ

g(y)

 ,

where M = (1− λ)K + λL + DB and h∗B (z) = supu∈DB h(z + u) for all z ∈ Rn. So, Theorem 3.3.2
holds also in the setting of a general n-dimensional lattice Λ.

3.3.1 Some auxiliary results

We start with a lemma that will allow us to get the one-dimensional version of the above-
mentioned Brunn-Minkowski inequality for the lattice point enumerator (cf. Question 3.3.1 and
Theorem 3.3.1).

Lemma 3.3.1 ([15]). For λ ∈ (0, 1), let K, L, M ⊂ R be non-empty sets with (1−λ)K +λL ⊂M .
If M =

⋃r
i=1[ai, bi] is a finite union of (pairwise disjoint) compact intervals then

G1(M) + ∆(M) ≥ (1− λ)G1(K) + λG1(L), (3.16)

where ∆(M) denotes the number of non-integer extreme points of M , namely

∆(M) =
∣∣{ai /∈ Z : 1 ≤ i ≤ r}

∣∣+ ∣∣{bi /∈ Z : 1 ≤ i ≤ r}
∣∣.
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Proof. We show the result by induction on the number r of intervals of M . For the case r = 1, i.e.,
when M = [a1, b1] is a (non-empty) compact interval, we have on the one hand that

G1(M) = bb1c − da1e+ 1.

Moreover, denoting by iK = inf K, sK = supK, iL = inf L and sL = supL, we clearly get

G1(K) ≤ G1

(
[iK , sK ]

)
= bsKc − diKe+ 1 and

G1(L) ≤ G1

(
[iL , sL ]

)
= bsLc − diLe+ 1.

On the other hand, the inclusion (1− λ)K + λL ⊂M implies that

bb1c ≥ b1 − χR\Z(b1) ≥ (1− λ)bsKc+ λbsLc − χR\Z(b1)

and

−da1e ≥ −a1 − χR\Z(a1) ≥ −(1− λ)diKe − λdiLe − χR\Z(a1),

and thus

bb1c − da1e+ 1 ≥ (1− λ)
(
bsKc − diKe+ 1

)
+ λ
(
bsLc − diLe+ 1)−∆(M).

This, together with the above upper bounds for the lattice point enumerator G1 of K and L, yields
G1(M) ≥ (1− λ)G1(K) + λG1(L)−∆(M), which shows the case r = 1.

So, we suppose that the inequality is true for r and assume that M =
⋃r+1

i=1 [ai, bi], where
bi < ai+1 for all 1 ≤ i ≤ r.

Denoting by M1 = [a1, b1] and M2 =
⋃r+1

i=2 [ai, bi], we may assume, without loss of generality,
that M1 ∩

(
(1− λ)K + λL

)
6= ∅; otherwise, the result follows directly from applying the induction

hypothesis to the sets K, L and M2. Hence, we may define m = sup
(
M1 ∩

(
(1− λ)K + λL

))
and

then, since K and L are bounded (because (1− λ)K + λL ⊂M), there exist k ∈ cl K and l ∈ cl L
such that (1− λ)k + λl = m. Thus, considering the sets

K1 = {x ∈ K : x ≤ k}, K2 = K \K1, L1 = {x ∈ L : x ≤ l} and L2 = L \ L1,

we clearly have that (1 − λ)K1 + λL1 ⊂ M1 and (1− λ)K2 + λL2 ⊂ M2. Therefore, applying the
induction hypothesis, and taking into account that M1 are M2 are disjoint, we get

G1(M) + ∆(M) = G1(M1) + G1(M2) + ∆(M1) + ∆(M2)

≥ (1− λ)
(
G1(K1) + G1(K2)

)
+ λ
(
G1(L1) + G1(L2)

)
= (1− λ)G1(K) + λG1(L),

as desired.
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Remark 3.3. One might think that if (1 − λ)K + λL is as a finite union of (pairwise disjoint)
compact intervals, the set M = (1− λ)K + λL would yield a tighter inequality in (3.16). However,
this is not true in general: if we consider K = [−2m,−1] ∪ [1, 2m] with m ∈ N, L = {0} and
λ = 1/2, then for M = (1− λ)K + λL = [−m,−1/2] ∪ [1/2,m] we get G1(M) + ∆(M) = 2m + 2,
whereas for M ′ = [−m,m] we have G1(M ′) + ∆(M ′) = 2m + 1.

We notice that, as shown in (3.13), the quantity ∆(M) cannot be (in general) omitted. However,
we can rewrite (3.16) to provide an answer to Question 3.3.1 for n = 1 (also in the case in which
G1(K)G1(L) = 0):

Lemma 3.3.2 ([15]). Let λ ∈ (0, 1) and let K, L ⊂ R be non-empty bounded sets. Then

G1

(
(1− λ)K + λL + (−1, 1)

)
≥ (1− λ)G1(K) + λG1(L). (3.17)

The inequality is sharp.

Proof. Let M =
⋃

x∈(1−λ)K+λL

[
bxc, dxe

]
. Clearly, since K and L are bounded, M is a finite union

of compact intervals containing (1− λ)K + λL. From Lemma 3.3.1 we then obtain

G1(M) + ∆(M) ≥ (1− λ)G1(K) + λG1(L)

which, together with the facts that ∆(M) = 0 and M ∩ Z =
(
(1− λ)K + λL + (−1, 1)

)
∩ Z, yields

the desired inequality (3.17).

Finally, in order to show that the equality may be attained, we consider K = L = [0,m] with
m ∈ N, for which

G1

(
(1− λ)K + λL + (−1, 1)

)
= m + 1 = (1− λ)G1(K) + λG1(L)

for all λ ∈ (0, 1).

Remark 3.4. Since both sides on (3.17) remain invariant under translations by integers of the
sets K and L, we may replace (−1, 1) (in (3.17)) by any other interval (m,m + 2), with m ∈ Z.

We note however that the solution to Question 3.3.1 provided by Lemma 3.3.2 for n = 1, via
M = (1−λ)K +λL+(−1, 1), cannot be in general improved by means of any other interval strictly
contained in (−1, 1). Indeed, by considering (−1, a], for 0 < a < 1, and taking K = [0, 1], L = [0, 2]
and λ ∈ (0, 1) such that λ + a < 1, we get that

G1

(
(1− λ)K + λL + (−1, a]

)
= G1

(
(−1, 1 + λ + a]

)
= 2 < 2 + λ = (1− λ)G1(K) + λG1(L).

The case [a, 1), with −1 < a < 0, is completely analogous and thus, no interval smaller than
(−1, 1) (with respect to set inclusion) can be taken into account. Furthermore, since the approach
we will carry out throughout this section relies on induction on the dimension n, the solution (to
Question 3.3.1) given by the sum of the set (−1, 1), for n = 1, will turn into adding (−1, 1)n, for
arbitrary n (see Theorem 3.3.1).
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The following corollary follows directly from Lemma 3.2.1.

Corollary 3.3.1 ([15]). Let Ω ⊂ Rn be a bounded set, let f : Rn −→ R≥0 be a non-negative
function and set f(Ω ∩ Zn) ⊂ {k0, k1, . . . , kr} with 0 = k0 < k1 < · · · < kr. Then

∑
x∈Ω∩Zn

f(x) =
r∑

i=1

(ki − ki−1)Gn

(
{x ∈ Ω : f(x) ≥ ki}

)
.

Next result yields the case n = 1 of Theorem 3.3.2 and will be used to derive it.

Lemma 3.3.3 ([15]). Let λ ∈ (0, 1) and let −1 ≤ p ≤ ∞. Let Ω1,Ω2 ⊂ R be non-empty bounded
sets and let f, g, h : R −→ R≥0 be non-negative functions such that

h
(
(1− λ)x + λy

)
≥Mλ

p

(
f(x), g(y)

)
for all x ∈ Ω1, y ∈ Ω2. Then

∑
z∈Ω∩Z

h∗(z) ≥Mλ
p

p+1

 ∑
x∈Ω1∩Z

f(x),
∑

y∈Ω2∩Z
g(y)

 ,

where Ω = (1− λ)Ω1 + λΩ2 + (−1, 1).

Proof. Clearly, we may assume that
∑

x∈Ω1∩Z f(x),
∑

y∈Ω2∩Z g(y) > 0. We consider the non-
negative functions F,G,H,H∗ : R −→ R≥0 given by

F (x) =
f(x)

a
, G(y) =

g(y)
b

, H(z) =
h(z)
cp

, H∗(z) =
h∗(z)

cp
,

where
a = max

x∈Ω1∩Z
f(x) > 0, b = max

y∈Ω2∩Z
g(y) > 0 and cp =Mλ

p (a, b) > 0.

Then
max

x∈Ω1∩Z
F (x) = max

y∈Ω2∩Z
G(y) = 1.

First, we show that, for any x ∈ Ω1, y ∈ Ω2, we have that

H
(
(1− λ)x + λy

)
≥ min

{
F (x), G(y)

}
. (3.18)

To this aim, it is enough to consider x ∈ Ω1, y ∈ Ω2 with f(x)g(y) > 0. If p 6= 0 and p 6= ∞,
writing θ = λbp/cp

p ∈ (0, 1), we get

h
(
(1− λ)x + λy

)
≥
(
(1− λ)f(x)p + λg(y)p

)1/p = cp

(
(1− λ)apF (x)p + λbpG(y)p

cp
p

)1/p

= cp

(
(1− θ)F (x)p + θG(y)p

)1/p ≥ cp min
{
F (x), G(y)

}
.
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For p = 0 we have

h
(
(1− λ)x + λy

)
≥ f(x)1−λg(y)λ = a1−λbλF (x)1−λG(y)λ ≥ c0 min

{
F (x), G(y)

}
,

whereas for p =∞,

h
(
(1− λ)x + λy

)
≥ max

{
f(x), g(y)

}
≥ c∞ min

{
F (x), G(y)

}
clearly holds. Therefore, we have shown (3.18).

The definition of F and G now implies that, for any t ∈ [0, 1], the level sets{
x ∈ Ω1 : F (x) ≥ t

}
,

{
y ∈ Ω2 : G(y) ≥ t

}
are non-empty. Moreover, writing Ωλ = (1− λ)Ω1 + λΩ2, from (3.18) we deduce that{

z ∈ Ωλ : H(z) ≥ t
}
⊃ (1− λ)

{
x ∈ Ω1 : F (x) ≥ t

}
+ λ
{
y ∈ Ω2 : G(y) ≥ t

}
and thus, by Lemma 3.3.2, we have

G1

({
z∈ Ωλ :H(z) ≥ t

}
+(−1, 1)

)
≥ (1−λ)G1

({
x∈ Ω1 :F (x) ≥ t

})
+λG1

({
y∈ Ω2 :G(y) ≥ t

})
(3.19)

for all t ∈ [0, 1].

We note that, since H∗(z + u) ≥ H
(
(z + u)− u

)
= H(z) for all u ∈ (−1, 1), we also have{

z ∈ Ω : H∗(z) ≥ t
}
⊃
{
z ∈ Ωλ : H(z) ≥ t

}
+ (−1, 1). (3.20)

Finally, set {k0, k1, . . . , kr} ⊃ F
(
Ω1 ∩Z

)
∪G

(
Ω2 ∩Z

)
∪H∗(Ω∩Z

)
, with 0 = k0 < k1 < · · · < kr

where, for some s ∈ {1, . . . , r},

ks = max
x∈Ω1∩Z

F (x) = max
y∈Ω2∩Z

G(y) = 1.

Then, by (3.19), (3.20) and using Corollary 3.3.1, we get∑
z∈Ω∩Z

h∗(z) =
∑

z∈Ω∩Z
cpH

∗(z) = cp

r∑
i=1

(ki − ki−1)G1

({
z ∈ Ω : H∗(z) ≥ ki

})
≥ cp

s∑
i=1

(ki − ki−1)G1

({
z ∈ Ω : H∗(z) ≥ ki

})
≥ cp

s∑
i=1

(ki − ki−1)
[
(1− λ)G1

({
x ∈ Ω1 : F (x) ≥ ki

})
+ λG1

({
y ∈ Ω2 : G(y) ≥ ki

})]

= cp

(1− λ)
∑

x∈Ω1∩Z
F (x) + λ

∑
y∈Ω2∩Z

G(y)

 = cp

1− λ

a

∑
x∈Ω1∩Z

f(x) +
λ

b

∑
y∈Ω2∩Z

g(y)


≥Mλ

p
p+1

 ∑
x∈Ω1∩Z

f(x),
∑

y∈Ω2∩Z
g(y)

 .
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If p 6= 0, the last inequality follows from the reverse Hölder inequality (Corollary 1.1.1) with
parameter p/(p + 1) ≤ 1, just by taking

a1 = (1− λ)(p+1)/p
∑

x∈Ω1∩Z
f(x), a2 = λ(p+1)/p

∑
y∈Ω2∩Z

g(y),

b1 =
(
(1− λ)1/pa

)−1 and b2 = (λ1/pb)−1.

The case p = 0 follows from the arithmetic-geometric mean inequality (Theorem 1.1.1).

3.3.2 The proofs of Theorems 3.3.1 and 3.3.2

We start with the proof of the more general Theorem 3.3.2.

Proof of Theorem 3.3.2. We do it by induction on the dimension. If n = 1, the result follows
immediately from Lemma 3.3.3. Now we suppose that n > 1 and we assume that the theorem
holds for dimension n − 1. Let tK ∈ πn(K), tL ∈ πn(L) and we set, for the sake of brevity,
tλ = (1− λ)tK + λtL. Moreover, we denote by

Mλ = (1− λ)K + λL and Mn−1 = (1− λ)K(tK) + λL(tL) + (−1, 1)n−1.

We consider the non-negative functions f1, g1, h1 : Rn−1 −→ R≥0 given by

f1(x) = f(x, tK), g1(x) = g(x, tL) and h1(x) = h(x, tλ)

for all x ∈ Rn−1. Since

h1

(
(1− λ)x + λy

)
= h

(
(1− λ)x + λy, (1− λ)tK + λtL

)
≥Mλ

p

(
f(x, tK), g(y, tL)

)
=Mλ

p

(
f1(x), g1(y)

)
for any x ∈ K(tK) and y ∈ L(tL), we may assert that

∑
z∈Mn−1∩Zn−1

h∗1(z) ≥Mλ
p

(n−1)p+1

 ∑
x∈K(tK)∩Zn−1

f1(x),
∑

y∈L(tL)∩Zn−1

g1(y)

 .

Now, since

Mλ(tλ) =
(
(1− λ)K + λL

)(
(1− λ)tK + λtL

)
⊃ (1− λ)K(tK) + λL(tL),

we have that (
Mλ +

(
(−1, 1)n−1 × {0}

))
(tλ) ⊃Mn−1,

and hence, the above inequality yields, in terms of f , g and h,

∑
z∈
[
Mλ+(−1,1)n−1×{0}

]
∩Zn−1

h∗∗(z, tλ) ≥Mλ
p

(n−1)p+1

 ∑
x∈K(tK)∩Zn−1

f(x, tK),
∑

y∈L(tL)∩Zn−1

g(y, tL)

, (3.21)
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where h∗∗ : Rn −→ R≥0 is the function given by

h∗∗(z) = sup
v∈Mλ+

(
(−1,1)n−1×{0}

)h(z + v),

for which we have h∗∗(x, tλ) = h∗1(x) for all x ∈ Rn−1.

Now, let f2, g2, h2 : R −→ R≥0 be the functions defined by

f2(t) =
∑

x∈K(t)∩Zn−1

f(x, t), g2(t) =
∑

y∈L(t)∩Zn−1

g(y, t) and

h2(t) =
∑

z∈
(
Mλ+(−1,1)n−1×{0}

)
(t)∩Zn−1

h∗∗(z, t).

Then, (3.21) yields, in terms of f2, g2 and h2,

h2

(
(1− λ)tK + λtL

)
≥Mλ

p
(n−1)p+1

(
f2(tK), g2(tL)

)
for any tK ∈ πn(K) and tL ∈ πn(L), and thus we may use Lemma 3.3.3 with the sets πn(K) and
πn(L) and the functions f2, g2 and h2 to obtain

∑
t∈Ω∩Z

h∗2(t) ≥Mλ
p

np+1

 ∑
tK∈πn(K)∩Z

f2(tK),
∑

tL∈πn(L)∩Z

g(tL)

 ,

where Ω = (1− λ)πn(K) + λπn(L) + (−1, 1).

In the following we prove that
∑

t∈Ω∩Z h∗2(t) =
∑

z∈M∩Zn h∗(z), and hence the above inequality,
together with the relations∑

tK∈πn(K)∩Z

f2(tK) =
∑

x∈K∩Zn

f(x) and
∑

tL∈πn(L)∩Z

g2(tL) =
∑

y∈L∩Zn

g(y),

shows the result.

Indeed, from the fact that (u,−w) ∈ (−1, 1)n for any (u, 0) ∈ (−1, 1)n−1×{0} and w ∈ (−1, 1),
we have that

(
Mλ +

(
(−1, 1)n−1 × {0}

))
(t + w) ⊂M(t) for all w ∈ (−1, 1) and t ∈ R: indeed, if t

is so that t + w ∈ πn(Mλ), then the inclusion holds; otherwise it is trivial. Thus, we get∑
t∈Ω∩Z

h∗2(t) =
∑

t∈Ω∩Z
sup

w∈(−1,1)
h2(t + w)

=
∑

t∈Ω∩Z
sup

w∈(−1,1)

∑
x∈
(
Mλ+(−1,1)n−1×{0}

)
(t+w)∩Zn−1

h∗∗(x, t + w)

≤
∑

t∈Ω∩Z

∑
x∈M(t)∩Zn−1

sup
w∈(−1,1)

h∗∗(x, t + w)

=
∑

t∈Ω∩Z

∑
x∈M(t)∩Zn−1

sup
w∈(−1,1)

sup
v∈(−1,1)n−1

h(x + v, t + w)

=
∑

z∈M∩Zn

sup
u∈(−1,1)n

h(z + u) =
∑

z∈M∩Zn

h∗(z),

as claimed. This finishes the proof.
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We conclude this section by proving Theorem 3.3.1, which answers Question 3.3.1.

Proof. The inequality is an immediate consequence of Theorem 3.3.2, just by taking p =∞, f = χK ,
g = χL and h = χ

(1−λ)K+λL
, for which we clearly have that h∗ = χ

(1−λ)K+λL+(−1,1)n
.

Now, in order to show that the equality may be attained, we consider K = L = [0,m]n with
m ∈ N. Then

Gn

(
(1− λ)K + λL + (−1, 1)n

)1/n = m + 1 = (1− λ)Gn(K)1/n + λGn(L)1/n

for all λ ∈ (0, 1).

3.3.3 From the discrete version to the continuous one

Again, in order to conclude the section, we show that the classical (p-means version of the)
Borell-Brascamp-Lieb inequality (3.2) can be obtained from the discrete version (3.15) under some
mild assumptions for the functions there involved.

Theorem 3.3.3 ([15]). The discrete Borell-Brascamp-Lieb inequality (3.15) implies the classical
Borell-Brascamp-Lieb inequality (3.2), provided that the functions f, g are Riemann integrable and
h is upper semicontinuous.

In the following, for a function φ : Rn −→ R≥0, we write φ∗k : Rn −→ R≥0 to denote the
function given by φ∗k(z) = supu∈(−2−k,2−k)n φ(z + u) for all z ∈ Rn.

Proof. We assume that f, g, h : Rn −→ R≥0 are non-negative measurable functions, with f, g

Riemann integrable and h upper semicontinuous, such that

h
(
(1− λ)x + λy

)
≥Mλ

p

(
f(x), g(y)

)
for all x, y ∈ Rn. Let m ∈ N and let K = [−m,m]n. We will first show that∫

K
h(x)dx ≥Mλ

p
np+1

(∫
K

f(x)dx,

∫
K

g(x)dx

)
, (3.22)

for which we may assume (multiplying by χK if necessary) that f , g and h vanish outside K.

For each k ∈ N, we define the functions fk, gk, hk : Rn −→ R≥0 given by

fk(x) = inf
z∈x+[0,2−k]n

f(z), gk(x) = inf
z∈x+[0,2−k]n

g(z) and hk(x) = inf
z∈x+[0,2−k]n

h(z).

We note that for any x, y ∈ intK we have

hk

(
(1− λ)x + λy

)
= inf

z∈(1−λ)x+λy+[0,2−k]n
h(z) = inf

z∈(1−λ)
(
x+[0,2−k]n

)
+λ
(
y+[0,2−k]n

)h(z)

= inf
z1∈x+[0,2−k]n

z2∈y+[0,2−k]n

h
(
(1− λ)z1 + λz2

)
≥ inf

z1∈x+[0,2−k]n

z2∈y+[0,2−k]n

Mλ
p

(
f(z1), g(z2)

)
≥Mλ

p

(
inf

z1∈x+[0,2−k]n
f(z1), inf

z2∈y+[0,2−k]n
g(z2)

)
=Mλ

p

(
fk(x), gk(y)

)
,
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and thus, we can use Theorem 3.3.2 for 2−kZn to deduce that, for any k ∈ N, we have

2−kn
∑

z∈K∩2−kZn

(hk)∗k(z) ≥Mλ
p

np+1

2−kn
∑

x∈(int K)∩2−kZn

fk(x), 2−kn
∑

y∈(int K)∩2−kZn

gk(y)

 , (3.23)

where, on the left-hand side, we have used that(
intK +

(
−2−k, 2−k

)n) ∩ 2−kZn = K ∩ 2−kZn

because K = [−m,m]n.

The level sets
{
x ∈ K : h(x) ≥ t

}
are closed, because h is upper semicontinuous and K is closed

(see [23, Theorem 1.6]), and then a standard straightforward computation shows that

{
x ∈ K : h(x) ≥ t

}
=

∞⋂
k=1

({
x ∈ K : h(x) ≥ t

}
+
(
−2−k, 2−k

)n)
.

Moreover, since h vanishes outside K, we have{
x ∈ K : h(x) > t

}
+
(
−2−k, 2−k

)n ⊃ {x ∈ K +
[
0, 2−k

]n : h∗k(x) > t
}

for all t > 0. Thus, by using Fubini’s theorem and the monotone convergence theorem, we get∫
K

h(x)dx =
∫ ∞

0
vol
({

x ∈ K : h(x) ≥ t
})

dt

=
∫ ∞

0
vol

( ∞⋂
k=1

({
x ∈ K : h(x) ≥ t

}
+
(
−2−k, 2−k

)n))dt

=
∫ ∞

0
lim

k→∞
vol
({

x ∈ K : h(x) ≥ t
}

+
(
−2−k, 2−k

)n) dt

= lim
k→∞

∫ ∞

0
vol
({

x ∈ K : h(x) ≥ t
}

+
(
−2−k, 2−k

)n) dt

≥ lim
k→∞

∫ ∞

0
vol
({

x ∈ K + [0, 2−k]n : h∗k(x) > t
})

dt

= lim
k→∞

∫
K+[0,2−k]n

h∗k(x) dx.

(3.24)

Now we show that, given z ∈ Rn, h∗k(x) ≥ (hk)∗k(z) for all x ∈ z + [0, 2−k]n. Indeed, we have

h∗k(x) = sup
u∈(−2−k,2−k)n

h(x + u) ≥ sup
u∈(−2−k,2−k)n

inf
v∈[0,2−k]n

h(z + v + u)

≥ sup
u∈(−2−k,2−k)n

hk(z + u) = (hk)∗k(z).

This, together with (3.24) and the fact that K +
[
0, 2−k

]n = K ∩ 2−kZn +
[
0, 2−k

]n, implies that∫
K

h(x) dx ≥ lim
k→∞

∫
K+[0,2−k]n

h∗k(x) dx ≥ lim
k→∞

2−kn
∑

z∈K∩2−kZn

(hk)∗k(z).
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Furthermore, since f is Riemann integrable and 2−nk
∑

x∈(int K)∩2−kZn fk(x) is a lower sum of
f · χ

(−m,m]n
for the partition

{
x + [0, 2−k]n ⊂ K : x ∈ 2−kZn

}
of K, it is clear that

lim
k→∞

2−kn
∑

x∈(int K)∩2−kZn

fk(x) =
∫

K
f(x) dx.

Here we observe that it was crucial to work with int K in order to get a lower sum of f · χ
(−m,m]n

for the above partition. We also point out the necessity of considering the characteristic function
χ

(−m,m]n
instead of χ

[−m,m]n
, which has no influence when computing the above integral: in this

way, the function f · χ
(−m,m]n

vanishes on the points of the corresponding facets of the cube.

The same holds for the function g and then, taking limits in both sides of (3.23), we get (3.22).
Since (3.22) is true for K = [−m,m]n and every m ∈ N, the proof is now concluded because∫

Rn

φ(x) dx = lim
m→∞

∫
[−m,m]n

φ(x) dx

for every non-negative measurable function φ : Rn → R≥0.

It is well-known that a function is Riemann integrable if and only if it is continuous almost
everywhere. Since the boundary of a convex set has null measure (and from the characterization of
the upper semicontinuity in terms of the level sets) we get the following result, as a straightforward
consequence of the previous one.

Corollary 3.3.2. The discrete Brunn-Minkowski inequality (3.14) implies the classical Brunn-
Minkowski inequality (3.12) for compact convex sets K and L with non-empty interior.
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