
UNIVERSIDAD DE MURCIA

2019

ESCUELA INTERNACIONAL DE DOCTORADO

Set Packing, Location and Related Problems

Empaquetamiento de Conjuntos, Localización
y Problemas Relacionados

Dña. María de las Mercedes Pelegrín García

A Blas

Resumen

Uno de los pasatiempos más divertidos de la infancia es hacer puzles. De pequeña, soĺıa disfrutar
intentando completar las imágenes de mis dibujos favoritos, para después enmarcarlos como
prueba del reto completado. El juego era como sigue. Teńıas un conjunto de piezas de forma
irregular que representaban fragmentos de una imagen más grande, y el objetivo consist́ıa en
encajarlos unos con otros con el fin de recuperar la imagen original. Soĺıamos resolverlo en
grupos, cada uno se centraba en una parte de la imagen y después juntábamos los fragmentos
reconstruidos. Lo que ninguno sab́ıamos es que estábamos intentando resolver uno de los
problemas de optimización combinatoria conocidos como “duros”. Y aún menos pod́ıamos
imaginar que nuestra estrategia de resolución era una heuŕıstica para el problema del bin
packing, el cual consiste en juntar el mayor número de piezas candidatas posibles dentro de un
contenedor dado, el rectángulo de la imagen en nuestro querido juego.

No fue hasta mi época como estudiante de Matemáticas en la universidad cuando me di
cuenta de la ubicuidad de los problemas de optimización combinatoria en el d́ıa a d́ıa. Uno
de mis profesores, Alfredo Maŕın, contribuyó a ello en gran medida. “Piensa en el ascensor
de la facultad; para funcionar, ha de resolver problemas combinatorios cada d́ıa”— soĺıa decir.
Entonces, ¿cómo es posible que los niños den con maneras de resolver uno de estos proble-
mas duros que el profesor Maŕın encontraba tan fundamentales? Ciertamente, los puzles son
instancias sencillas del bin packing, pues uno sabe de antemano que todas las piezas encajarán
hasta formar el rectángulo de la imagen. Sin embargo, no cabe duda de que los fragmentos de
la imagen representados en cada pieza del puzle son de vital importancia para poder comple-
tarlo. De hecho, resultan decisivos cuando el tamaño del puzle aumenta y con él el número de
piezas y formas de ensamblarlas. En general, los problemas combinatorios se caracterizan por
su crecimiento exponencial en complejidad con el aumento de su tamaño. Esto significa que,
aunque encontrar una solución para una instancia pequeña pueda resultar fácil (inclusive una
que sea óptima), resolver el problema a partir de cierto tamaño puede llevar tiempo ilimitado,
incluso usando un ordenador potente.

Existen gran variedad de técnicas para abordar la resolución de problemas de optimización
combinatoria, que pueden ser clasificadas grosso modo en dos categoŕıas: los métodos exactos
y los no exactos, que incluyen los algoritmos de aproximación y los heuŕısticos. Los métodos
exactos buscan obtener la mejor solución posible, mientras que el resto simplemente buscan
“buenas” soluciones. Aunque heuŕısticas es el término más utilizado, podemos distinguir entre
los métodos no exactos que proporcionan una estimación de la diferencia entre el valor en-
contrado y el óptimo, llamados algoritmos de aproximación, y aquellos sin garant́ıa sobre la
precisión alcanzada, conocidos como heuŕısticos. Los métodos exactos están ligados a una disci-
plina de la Matemática Aplicada, que se conoce como Programación Matemática. Esta estudia
los llamados programas matemáticos o formulaciones matemáticas, los cuales son simplemente
un tipo de modelo matemático para problemas de optimización.

Esta tesis es sobre métodos exactos para problemas de optimización combinatoria, consti-

iii

iv Resumen

tuyendo la Programación Matemática el marco de trabajo común de los diferentes caṕıtulos.
Un programa matemático consiste en una función objetivo y una región factible, normalmente
contenida en Rn, donde se busca el máximo o mı́nimo de la función objetivo. Este escenario da
cabida al desarrollo de investigación tanto en la matemática pura como en la aplicada. Los pro-
gramas matemáticos se relacionan de manera directa con el Análisis y la Geometŕıa; el estudio
de programas cuya región factible es discreta interactúa con el Álgebra. El aspecto aplicado de
la Programación Matemática es probablemente el más evidente, y hace de esta disciplina un
área prometedora también para los ingenieros. Los problemas de optimización combinatoria se
modelizan con formulaciones llamadas enteras y sus regiones factibles son discretas. En el caso
de Rn, la región factible de un problema combinatorio consiste en puntos cuyas coordenadas
son números enteros. El estudio teórico de una formulación entera tiene que ver con su poli-
topo entero, es decir, la envolvente convexa de sus puntos factibles. La mayoŕıa de caṕıtulos
contenidos en esta tesis se centran en el estudio de hiperplanos para describir politopos en-
teros, aśı como de herramientas computacionales que permitan incorporarlos a los algoritmos
de optimización existentes.

Este trabajo surge del estudio de distintos problemas de optimización combinatoria, que
están relacionados de una forma u otra. Se encuentra dividido en dos partes, precedidas por
un caṕıtulo que introduce los conceptos fundamentales que se usarán a lo largo de la tesis. La
primera parte se centra en el estudio de formulaciones de empaquetamiento de conjuntos, las
cuales son de vital importancia en la Programación Entera. El empaquetamiento de conjuntos
está estrechamente ligado al problema de particionamiento de conjuntos, uno de los ejemplos
paradigmáticos en optimización combinatoria. El problema de particionamiento de conjuntos
consiste en encontrar una partición de mı́nimo coste de un conjunto de objetos y de hecho es
equivalente al problema de empaquetamiento de conjuntos (ver Balas & Padberg, 1976). Estos
sirven de marco común para problemas de optimización como planificación de máquinas (ver
Sousa & Wolsey, 1992), subastas combinatorias (ver Escudero et al., 2009) y gestión del tráfico
en redes (ver Rossi & Smriglio, 2001). Otros problemas combinatorios relacionados y bien
conocidos son el empaquetamiento de nodos, coloreado de grafos y clique máximo. La segunda
parte de la tesis se sitúa algo más lejos de la programación entera pura, pero sigue estando
relacionada con el empaquetamiento de conjuntos. En ella se estudian distintos problemas
de optimización que surgen en una amplia variedad de disciplinas: estimación de poblaciones
en Genética, etiquetado de mapas en Cartograf́ıa e identificación de grupos de influencia en
Análisis de Redes.

La primera parte de esta tesis está compuesta de tres caṕıtulos. El primero se centra
en aspectos generales del empaquetamiento de conjuntos, mientras que los otros dos estu-
dian instancias particulares de este problema que surgen en el contexto de la Teoŕıa de la
Localización.

En el primer caṕıtulo, se introduce un nuevo procedimiento para obtener facetas del poli-
topo de empaquetamiento de conjuntos. Como resultado adicional, se presentan dos nuevas
familias de grafos definidores de facetas. El citado procedimiento pertenece a la clase de los
llamados levantamientos de desigualdades. Se trata de una generalización de un teorema de
levantamiento que se introdujo en los 80s. Este teorema fue encontrado al revisar las técnicas
de levantamiento existentes para el problema de localización de plantas sin capacidades, el cual
se queŕıa generalizar. Nos dimos cuenta de que el teorema de levantamiento anterior pod́ıa ser
extendido para cubrir la nueva variante del problema. El teorema resultante se puede aplicar en
general a cualquier empaquetamiento de conjuntos que satisfaga ciertas condiciones necesarias,
las cuales son respetadas en particular por nuestro problema de localización. También permite
obtener nuevas estructuras dentro del llamado grafo conflicto que pasan a formar parte de la

v

lista de grafos definidores de facetas del empaquetamiento de conjuntos, la cual incluye los
conocidos cliques y los agujeros impares.

El siguiente caṕıtulo está dedicado a la propuesta y estudio de una nueva generalización
del problema de localización sin capacidades. Este es un problema conocido de localización
que consiste en decidir sobre el número de servicios a instalar y sobre los usuarios asignados
a cada uno de estos servicios. En nuestra propuesta, introducimos una componente adicional
en el modelo, concretamente incompatibilidades entre algunos pares de usuarios que impiden
que se asignen al mismo servicio. Modelizar la nueva variante del problema desemboca en una
formulación de empaquetamiento de conjuntos. Nos centramos en el estudio de las caras del
politopo de empaquetamiento resultante, derivando varias familias de facetas. El teorema de
levantamiento del caṕıtulo anterior resulta de ayuda para obtener algunas de ellas. Asimismo,
se desarrollan estrategias para manejar las facetas encontradas en un esquema de ramificación
y cortes y se comprueba su rendimiento mediante un estudio computacional.

El último caṕıtulo dentro de la primera parte de la tesis estudia una segunda variante del
problema de localización de plantas sin capacidades. En este caso, consideramos que cada
usuario se asigna a dos servicios distintos y que algunos pares de usuarios deben compartir
al menos uno de ellos. Se proponen dos formulaciones, basadas en el modelado estándar de
problemas de doble asignación. Después de compararlas desde el punto de vista teórico, una
de ellas, la cual es de empaquetamiento de conjuntos, se estudia más en profundidad. Por
un lado, se examinan las facetas de clique de esta formulación y por otro se demuestra la
complejidad computacional teórica de incorporarlas al algoritmo de resolución. Finalmente, se
propone una heuŕıstica para abordar este último problema. El caṕıtulo se cierra con un estudio
computacional que corrobora la comparación teórica de las formulaciones y prueba la utilidad
de la heuŕıstica para manejar las facetas de clique.

La segunda parte de la tesis reúne tres problemas que vienen de dominios aparentemente
muy distintos, pero que en realidad guardan relación con el empaquetamiento de conjuntos, la
localización o ambos. Se trata del haplotipaje de organismos diploides, el etiquetado óptimo
de mapas y la detección de grupos de nodos relevantes en redes sociales. En todos los casos,
se proponen formulaciones matemáticas para abordar el problema, se estudian posibles formas
de reforzar las formulaciones y se lleva a cabo la implementación y prueba de los modelos.

En el primer caṕıtulo de la segunda parte, se estudia un problema de optimización com-
binatoria en un grafo, para el que se conocen aplicaciones en el contexto del haplotipaje de
organismos diploides. El haplotipaje está relacionado con la estimación de poblaciones: dada
la información genética de un conjunto de individuos, se ha de estimar el conjunto mı́nimo
de ancestros que explican la población actual. La reconstrucción del grafo ráız a partir del
grafo que codifica las relaciones de consistencia entre individuos resulta crucial para abordar
el problema. Sin embargo, dicha reconstrucción a veces requiere pasar por alto algunas de las
relaciones de consistencia, es decir, eliminar algunas de las aristas del citado grafo. Entonces
surge un problema de optimización combinatoria que consiste en decidir qué aristas han de
ser eliminadas con el fin de permitir la reconstrucción del grafo ráız al mismo tiempo que se
preserva la estructura del grafo original en la mayor medida posible. En este caṕıtulo, se mues-
tra la conexión que presenta este problema con las dos variantes del problema de localización
de plantas presentadas en la primera parte de la tesis. Concretamente, cuando se combinan
ambas variantes, el modelo obtenido tiene solución factible si y sólo si es posible reconstruir
cierto grafo ráız. El problema estudiado en este caṕıtulo no es nuevo y ha sido previamente
modelizado mediante una formulación matemática. Nuestra contribución en este caso consiste
en proponer varias formulaciones alternativas y diferentes familias de desigualdades válidas.
Exploramos la relación entre las distintas formulaciones y las comparamos desde el punto de

vi Resumen

vista teórico y computacional.
El siguiente caṕıtulo aborda el etiquetado óptimo de mapas, que consiste en asignar etique-

tas a un conjunto de puntos o áreas distinguidos en un mapa. La función objetivo vaŕıa entre
las distintas aplicaciones, pero está relacionada frecuentemente con el número de solapamien-
tos entre etiquetas, la ambigüedad del etiquetado y la distribución equilibrada o jerárquica de
las etiquetas. Aunque las heuŕısticas para el etiquetado de mapas son abundantes, la Progra-
mación Matemática también ha contribuido a abordar este problema. Sin embargo, los modelos
exactos existentes no tratan de forma efectiva el problema de la ambigüedad. En este caṕıtulo,
proponemos varias formulaciones para reducir la ambigüedad en los etiquetados de mapas, al-
gunas de ellas inspiradas en los modelos ordenados concebidos originalmente para problemas de
localización. El parecido entre el etiquetado de mapas y los problemas de localización motivó
el uso de la misma idea que en los modelos de mediana ordenada. La decisión a efectuar en
el etiquetado, dónde localizar una serie de elementos en un espacio plano, es la configuración
t́ıpica de un problema de localización. De hecho a cada zona del mapa se le asigna una etiqueta
de la misma forma que a cada usuario se le asigna un servicio en los problemas de localización.
Los modelos ordenados propuestos proporcionan una alternativa flexible para el etiquetado de
mapas, que permite que el decisor determine la penalización relativa de la primera, la segunda...
etiqueta más ambigua en la solución.

En el último caṕıtulo, se estudia cómo identificar a los miembros más influyentes dentro
de una red. Estos se entienden como aquellos nodos que juegan un papel distinguido teniendo
además áreas de influencia distintas. Las medidas de centralidad clásicas como degree, closeness,
betweenness o eigenvector no sirven a la hora de determinar la relevancia conjunta de un grupo
de nodos. Mientras que algunas de estas medidas se han adaptado para abordar el problema
de la relevancia grupal, eigenvector ha permanecido sin ser extendida al nuevo problema.
En el modelo propuesto, se adapta eigenvector para identificar el grupo de mayor influencia,
combinándolo con un particionamiento o clustering de la red. Esto permite controlar las
áreas de influencia de los individuos identificados como relevantes, las cuales coinciden con
los grupos o clústeres y se reinterpretan como comunidades. Los miembros del grupo óptimo
son aquellos nodos de mayor componente eigenvector dentro de su clúster. Modelizar esta
idea a través de una formulación matemática conlleva el manejo de ecuaciones no lineales, las
cuales se linearizarán para conseguir una formulación más manejable para el problema. El
modelo propuesto finalmente revela el grupo de mayor influencia en la red, formado por los
centroides de cada clúster, junto con sus comunidades, que coinciden con los clústeres. Los
experimentos realizados con redes reales de tamaño pequeño producen interesantes resultados
que revelan nodos previamente desapercibidos como miembros del grupo de influencia. Además,
los clústeres identificados concuerdan con el conocimiento existente sobre la estructura de
comunidad de las redes de prueba. El estudio realizado con redes sintéticas de mayor tamaño
demuestra una escalabilidad adecuada, siendo el modelo capaz de obtener soluciones óptimas
para redes con cientos de nodos y miles de aristas.

Preface

One of the amusing pastimes of childhood is solving jigsaw puzzles. When I was a child, I used
to have fun trying to complete the images of my favourite cartoons. The game was as follows.
You were given a set of pieces with irregular shapes and different fragments of a bigger image
printed on them. The goal was to find the pieces that fit together to eventually recover the
bigger image. We used to solve it in groups: each focused on one side of the image, and then
we merged the resulting compositions. What none of us knew— and most people are not aware
of— is that we were trying to solve a hard combinatorial optimization problem. And little idea
did we have of the fact that we were implementing a heuristic for the bin packing problem,
which consists of cramming as many candidate elements as possible into a given container, the
rectangle of the image in our cherished game.

It was not until I studied Mathematics that I became aware of the ubiquity of combinatorial
optimization in our daily lives. One of my professors, Alfredo Maŕın, largely contributed to
this. “Think about the faculty’s elevator; it has to solve combinatorial problems to work
everyday”— he used to say. Then, how can children come up with working strategies for
one of these hard problems that Prof. Maŕın found so crucial? Certainly, jigsaw puzzles are
easy instances of bin packing in a sense, since one knows beforehand that all the pieces will
eventually fit in the rectangle of the image. However, the fragments printed on the pieces are
the real reason for children’s success. They become decisive as the size of the puzzle increases
and with it the number of pieces and possible matches. In general, combinatorial problems
are characterized by an exponential growth in complexity with the increase of their size. This
means that finding a solution of an small instance can be easy—including an optimal one—
but solving the problem in general can take unlimited time, even with a computer.

There are wide ranging strategies to approach combinatorial optimization problems, which
can be roughly classified into two categories: exact procedures and non-exact ones, which
includes approximation and heuristic algorithms. The former define methods to obtain best
possible solution(s), while the latter just seek for good ones. Even if heuristic is the most
widespread term, we can distinguish between non-exact approaches that provide an estimation
on the difference between the returned value and the optimum— approximation algorithms—
and those with no guarantee on accuracy— simply called heuristics. Exact approaches are tied
to a discipline within Applied Mathematics, called Mathematical Programming. This discipline
studies mathematical programs, which are mathematical models for optimization problems.

This thesis is on exact approaches for combinatorial problems, being Mathematical Pro-
gramming the common working framework throughout the different chapters. The main com-
ponents of a mathematical program are an objective function and a feasible region, usually
contained in Rn, where the maximum or minimum of the objective function is to be found.
This setup opens a world of research possibilities for mathematicians from pure to applied
interests. Mathematical programs readily concern Analysis and Geometry; the study of pro-
grams with discrete feasible region interacts with Algebra. The applied side of Mathematical

vii

viii Preface

Programming is probably the most evident— it was conceived to solve practical problems—
and makes this discipline a very promising domain for engineers as well. Combinatorial op-
timization problems are modeled with integer programs, whose feasible regions are made of
integer points. Theoretical study of an integer program concerns its integer polytope, that is,
the convex hull of its feasible solutions. Hyperplanes to describe integer polytopes and compu-
tational tools to incorporate them to optimization algorithms will be the focus of most of the
chapters contained herein.

This work emerges from the study of several combinatorial optimization problems, which
are related in one way or another. It is divided into two parts, which are preceded by a chapter
that introduces the basic concepts that will be used throughout the dissertation. The first part
of the thesis is devoted to the study of set packing programs, which are of crucial relevance in
Integer Programming. Set packing is a close relative of set partitioning, one of the paradigmatic
examples within combinatorial problems. Set partitioning consists of making a minimum cost
partition of a set of objects and is in fact equivalent to set packing (see Balas & Padberg,
1976). They serve as common framework for optimization problems such as scheduling (see
Sousa & Wolsey, 1992), combinatorial auctions (see Escudero et al., 2009) and traffic network
congestion (see Rossi & Smriglio, 2001). Other related well-known combinatorial problems
include node packing, graph coloring and maximum clique. The second part of the thesis is
a bit further from pure integer programming, but still close to set packing. We will study
different combinatorial problems arising in a wide range of disciplines. These problems are
population estimation in Genetics, map labeling in Cartography and key nodes identification
in Network Analysis.

The first part of the thesis is made of three chapters. The first of them concerns general
aspects of set packing, while the other two study particular instances of this problem arising
in the context of Locational Analysis.

In Chapter 1, we introduce a new procedure to obtain facets of the set packing polytope,
and present two new families of facet defining graphs as a byproduct. This procedure belongs
to the class of so-called inequality liftings. It is a generalization of a previous lifting theorem
that was introduced in the 80s. The latter was found when reviewing lifting theorems for
the uncapacitated plant facility location problem, which we wanted to generalize. We realized
that the old lifting theorem could be extended to cover our problem variant. The resulting
theorem is applicable in general to any set packing that satisfies some necessary conditions,
which are met in particular by our location problem. It also allows to obtain new structures
within the conflict graph that are incorporated to the list of known facet defining subgraphs,
which includes well-known cliques and odd holes.

Chapter 2 is devoted to a generalization of the uncapacitated plant facility location problem.
This is a well-known problem in locational analysis that consists of deciding on a number of
services to be installed and on clients allocation to the facilities. We propose to introduce an
additional component in the model, namely incompatibilities between clients that forbid some
pairs to be allocated to the same facility. Modeling the new variant of the problem results
into a set packing formulation. We focus on the study of the facial structure of the resulting
packing polytope, deriving various families of facets. The lifting theorem of previous chapter
is used to obtain some of them. Strategies to manage the devised facets within a branch and
cut scheme are given and their performance is tested in a computational study.

Chapter 3 is the last in the first part of the dissertation. It presents a second variant of the
uncapacitated plant facility location problem. Here, double assignment is consider and some
pairs of clients have to share at least one of their two facilities. Two formulations, based on
standard modeling of double assignment, are proposed. They are theoretically compared and

ix

one of them, which is a set packing, is further studied. All the clique facets of the formulation
are uncovered. The computational complexity of managing them within the solving scheme is
proved to be NP-hard and a heuristic algorithm is then proposed. The chapter is closed with
computational experience that supports the theoretical comparison between formulations and
proves the utility of the clique facets heuristic.

The second part of the thesis gathers three problems from domains that are apparently very
different but in fact related to set packing, facility location or both. These include haplotyping
of diploid organisms, optimal map design and identification of key members in social networks.
In all the cases, mathematical programming formulations of the problems are proposed, possible
enhancement are studied and computational tests are conducted.

In Chapter 4, we study a combinatorial optimization problem on a graph that is known to
have applications in haplotype phasing of diploid organisms. Haplotype phasing concerns pop-
ulation estimation: given some genetic information of a set of individuals, one has to estimate
the minimum set of ancestors that explains the current population. Root graph reconstruc-
tion from the graph that encodes individuals consistency relations is crucial to approach the
problem. However, this reconstruction sometimes requires to overlook some of the consistency
relations, that is, deleting some edges of the mentioned graph. The combinatorial problem is
then to decide which edges to delete so that the root graph reconstruction is allowed while
the graph encoding consistency relations is altered as little as possible. We show interesting
connections between this problem and the facility location problems of chapters 2 and 3. When
both variants of the uncapacitated plant location problem are put together, the resulting model
has a feasible solution if and only if it allows some root graph reconstruction. The problem
studied in this chapter is not new and was previously formulated with a mathematical program.
Our main contribution here consists of several alternative formulations and different families of
valid inequalities. We explore the relation between formulations and provide both theoretical
and computational comparative analysis.

Chapter 5 addresses optimal map labeling, which consists of optimally attaching a label to
every distinguished point or area on a map. Objective functions vary between applications, but
often take into account the number of overlaps between labels, the ambiguity of the labeling,
balanced distribution or hierarchical representation. Even though heuristics for map labeling
abound, some authors have also contributed with mathematical programming models for the
problem. However, existing exact approaches do not effectively address ambiguity reduction.
In this chapter, we propose several integer programs for unambiguous map labeling. Some
of them are inspired in ordering models that were conceived for facility location. This was
motivated by the observation that map labeling can be viewed as a location problem. The
decision to make in map labeling, where to locate a set of elements on a planar space, is the
typical setup of facility location. Also, each region of the map is given one label, while each
client is allocated to certain facility. Ordering models provide a flexible alternative, in which
decision maker is allowed to decide on the relative importance of the first, the second... most
ambiguous label in the solution.

In Chapter 6, we study the problem of identifying a group of key nodes in a network. These
are understood as members that play a distinguished role within the network and have disjoint
areas of influence. Measures of individuals relevance such as degree, closeness, betweenness or
eigenvector centrality fail to discern directly the relevance of a group of nodes. While some of
these measures have been adapted to address group relevance, eigenvector centrality remains
unexplored. We adapt eigenvector centrality to identify the group of most relevant nodes in
a network. In our approach, eigenvector computation is embedded in a clustering procedure.
This allows to control the spheres of influence of the key members, which are identified with the

x Preface

clusters and reinterpreted as network communities. Key members are nodes with maximum
eigenvector centrality within their clusters. Modeling this idea with mathematical optimization
variables involves highly non-linear equations, which are linearized to produce a mixed-integer
linear programming formulation for the problem. Our model uncovers the group of most
relevant nodes in the network, the clusters centroids, and their communities, identified with
the clusters. Experiments on real-life networks of small size show interesting results that
reveal previously unnoticed key members. Additionally, clusters are consistent with previous
knowledge on the community structure of the networks. Our computational experience on
larger synthetic networks demonstrates an adequate scalability of the method, which is able to
find optimal solutions for networks of hundreds of nodes and thousands of links.

Publications and collaborations Some of the original content of this thesis has been
submitted to international journals for publication. Such works have been written as a result
of collaborations with recognized researchers in the field other than Prof. Maŕın. The following
lines are to answer the Four Ws—who, what, when, where—of the different topics covered in
this thesis— the reader should have found an answer for the why above.

1. The study of optimal map labelings, addressed in Chapter 5, started with my Master’s
thesis under Prof. Maŕın and culminated within the first years of doctoral studies. In
2018, “Towards unambiguous map labeling: An integer programming approach” was
published in Expert Systems with Applications, Maŕın & Pelegŕın (2018b).

2. As a PhD student in its early stage, research focused on set packing and its applications
to facility location. Jointly with my PhD supervisor Prof. Maŕın, two works emerged
from this phase. First, “A new lifting theorem for vertex packing” was published in
Optimization Letters, Maŕın & Pelegŕın (2018a). Second, “ Adding incompatibilities to
the simple plant location problem: Formulation, facets and computational experience”
was published in Computers and Operations Research, Maŕın & Pelegŕın (2019). Part of
the content of these publications is reproduced in Chapter 1 and Chapter 2, respectively.

3. In a next stage, collaborations with Prof. Labbé started. This includes a research visit to
the Université Libre the Bruxelles on September 2017 that lasted for three months. Re-
sults of the collaboration are collected in Chapter 4. A manuscript was also prepared and
submitted to the European Journal of Operational Research, which has already received
positive reviews.

4. During the last phase of my doctoral studies, a second visit was scheduled, this time to
the Instituto de Matemáticas de la Universidad de Sevilla. Last three months of 2018,
I worked in collaboration with Prof. Carrizosa. The topic was key nodes identification
in social networks, which is addressed in Chapter 6. As an outcome of this phase, a
manuscript was submitted to IEEE Systems Journal, which has been advised publication
subject to changes.

Acknowledgments

This doctoral thesis has been developed thanks to one of the scholarships that the Ministerio de
Educación, Cultura y Deporte (Spanish Ministry of Education) awards every year with its call
Becas de Formación del Profesorado Universitario. I do want to acknowledge the Ministerio
de Educación, Cultura y Deporte for awarding this project one of the scholarships in 2015,
ref. number FPU15/05883. I would also like to thank the researchers that supported my
application, Alfredo Maŕın, Emilio Carrizosa and Mercedes Landete.

In addition, this work has been indirectly funded by the Ministerio de Economı́a y Compet-
itividad, project MTM2015-65915-R and the Fundación Séneca de la Consejeŕıa de Educación
de la Comunidad Autónoma de la Región de Murcia, project 19320/PI/14, which provided
support to participate in scientific conferences, meetings and courses, being this essential for
the dissemination of the results.

I owe my greatest gratitude to my supervisor, Alfredo Maŕın. He integrated me as part of his
team at the Universidad de Murcia and introduced me into the world of research. With his trust
from the outset I grew both professionally and personally. His technical wisdom and guidance
have been crucial to complete this journey; at the same time, his familiarity and sincerity made
me feel welcomed all the way through. It has been a privilege learning from him. Another
person that supported me from the very beginning is Emilio Carrizosa, who became one of
the key members in my way. I am indebted to Emilio for his generosity and for expanding my
horizons, advising and encouraging me at different steps in my career. Later on, I was fortunate
to meet Martine Labbé, who hosted me in the Graphs and Mathematical Optimization research
group at the Université Libre the Bruxelles. There, not only I collaborated with Martine
but also enjoyed the nice atmosphere of the group and participated from the activities they
organised. I sincerely thank her for the great opportunity.

As an undergraduate, some of my lecturers have helped as a guidance and source of inspira-
tion. I am deeply grateful to José Manuel Garćıa for the motivating talks and good advise. Also
to Guido Sciavicco, for revealing me the beauty of the Theory of Computation and believing
in my aptitudes.

One of the best things of research is the opportunity of meeting and keeping in contact with
wonderful people. During these years, I have had the pleasure of being part of the warm and
cheerful IMUS family, enjoying escape rooms and hiking with my colleagues at Lázaro Cánovas
and sharing jokes and coffees with the ULB lunch group. From conferences and courses, I also
take with me good friends. I thank all of them for making these years one of the most enjoyable.

This thesis would have never been possible without the love and encouragement of my
family, Maŕıa Dolores, Blas and Juan Diego. Maŕıa Dolores is the one that celebrates my
achievements as her own and my unconditional support in the toughest moments. Blas was
the first who transferred me the taste for mathematics and taught me the value of effort. Juan
Diego with his good judgement is my greatest inspiration.

Mercedes Pelegŕın Garćıa, Murcia 2019

Contents

Concepts 1

0.1 Integer Programming . 1

0.1.1 Polyhedral Theory . 2

0.1.2 Set packing problems . 4

0.2 Location Science . 8

I Set packing and facility location 13

1 A new lifting theorem for set packing 15

1.1 The theorem . 16

1.2 New facet-defining graphs . 21

1.2.1 Hyperwheels . 21

1.2.2 Hyperwebs . 23

2 The Simple Plant Location Poblem with incompatibilities 27

2.1 Introducing incompatibilities . 28

2.1.1 Related problems . 28

2.2 The SPLPI polytope . 31

2.3 Facets and separation . 32

2.3.1 Clique facets . 33

2.3.2 Separation of clique facets . 34

2.3.3 Hole inequalities . 37

2.3.4 Lifting of odd holes . 40

2.3.5 Separation of hole inequalities . 53

2.4 Computational study . 55

2.4.1 The initial setup . 55

2.4.2 Results and analysis . 56

2.4.3 A few more tests . 59

3 The double-assignment plant location problem with twinning 63

3.1 Double assignment with twinning . 64

3.2 Comparing the formulations . 65

3.3 Clique facets . 68

3.4 Clique separation . 73

3.5 Computational study . 77

3.5.1 Experimental setup . 77

3.5.2 Comparative analysis . 78

xiii

xiv Preface

II Related problems 83

4 The edge deletion problem for the property of being line-invertible 85
4.1 Preliminaries . 86
4.2 State of the art . 89
4.3 A new model . 91
4.4 Valid inequalities . 94
4.5 An alternative approach . 96

4.5.1 Linking constraints . 97
4.5.2 A family of hybrid formulations . 99

4.6 Computational experiments . 102
4.6.1 Preliminary study . 102
4.6.2 Main computational study . 103

5 Optimal unambiguous map labeling 109
5.1 Label placement . 110
5.2 Problem setup . 111
5.3 Previous formulations . 113

5.3.1 First models . 113
5.3.2 Related models . 115

5.4 A new approach . 116
5.4.1 Building ambiguity classes . 117
5.4.2 An ordered model . 119
5.4.3 Some practical observations . 125

5.5 Heuristic method . 127
5.6 Computational study . 129

5.6.1 Test design and output format . 129
5.6.2 Overall results . 132
5.6.3 Results as a function of instance size . 135
5.6.4 Results as a function of model parameters 137
5.6.5 Average running times . 139

6 Spotting key members in networks 143
6.1 Introduction . 144
6.2 Modeling node relevance . 148
6.3 Mathematical programming formulation . 149
6.4 Formulation improvements . 152
6.5 Computational study . 154

6.5.1 Real-life networks . 157
6.5.2 Synthetic networks . 157

Concepts

Operations Research is a discipline devoted to improve decision making. One of its branches,
Mathematical Programming or Mathematical Optimization, is the common framework to ad-
dress the full range of problems studied in this thesis. In this preliminary chapter, we describe
essential notions inside the field, aiming at providing non-expert audience with a comprehen-
sive conceptual review and introducing the reader to the topics, terminology and mathematical
notation in the thesis.

0.1 Integer Programming

A mathematical programming model consists of a finite set of decision variables bounded by a
finite set of inequalities called constraints and an objective function of the decision variables to
minimize or maximize. Such model is usually called program or formulation. Linear Program-
ming studies those mathematical programs with linear constraints and objective function. A
generic linear program (LP) reads

min{f(t) : At ≤ b, t ∈ Rn},
where n is the number of decision variables, t ∈ Rn is the vector of such variables, f : Rn → R
is linear, and At ≤ b is a system of linear inequalities. The set

{t ∈ Rn : At ≤ b}
is called the feasible region of the LP, which is a polyhedron in general or a polytope when
bounded. An LP where some decision variables only take integer values,

min{f(t1, t2) : At1 +Bt2 ≤ b, t1 ∈ Rn1 , t2 ∈ Zn2},
where the number of variables is n = n1 + n2, is called mixed-integer. When n1 = 0, we speak
of an integer linear program (ILP) or simply an integer program (IP).

When all decision variables are integer, the feasible region becomes a discrete set of points
in Rn. This fact may suggest that integer programs are a simple subject, but they can turn
certifiably hard. Just think of vertex coloring, maximum clique, Hamiltonian circuit, vertex
covering or partitioning, all of them members of the IP family and NP-complete problems (see
Garey & Johnson, 1979). Not by accident, Integer Programming is frequently identified with
Combinatorial Optimization, which concerns the study of optimization problems of combina-
torial nature. This reveals the very nature of integer programs, whose feasible regions, even
if finite, usually feature combinatorial explosions. Optimizing over integer variables needs for
strategies and methods according to the complexity of these problems.

Here, we outline most basic mathematical properties of integer programs and some solving
techniques. We extend our review to a particular family of integer programs, namely set
packing. More extensive introductions to these topics can be consulted in Balas & Padberg
(1976); Wolsey (1998); Conforti et al. (2014).

1

2 Concepts

2

0.511.522.5

1

2

3

x

y

z

Figure 1: A linear relaxation polytope and a cutting plane

0.1.1 Polyhedral Theory

Most solving strategies for IPs work with the linear relaxation of the problem, which results
after removing integrity conditions on the variables. These approaches substantiate on the
general conception that solving an LP is a simple task (however, it is still an open question
whether there is a polynomial time algorithm to solve linear programs; see Schrijver, 1998).

While the same IP can be described by different systems of inequalities, the feasible regions
of the linear relaxations of such systems differ. Moreover, it is usually the case that the optimal
objective value, which is a bound on the IP optimal value, is also different for the relaxations.
This, of course, has an impact on the solving strategy, which strongly depends on the bounds
obtained from the problem relaxation. The tighter the polyhedron of the relaxation is, the
better the bounds on the IP objective that are obtained. A common practice to have tighter
polyhedra is to add valid inequalities to the IP formulation that remove fractional solutions.

Definition 0.1 (Valid inequality). An inequality πt ≤ π0 is valid for an IP min{f(t) : At ≤
b, t ∈ Zn} if it is satisfied by every point of the feasible region. We will say that the inequality
is proper when there exists t̄ ∈ Rn such that At̄ ≤ b and πt̄ > π0. �

Proper valid inequalities are violated by at least one solution of the linear relaxation but do
not alter the feasible region of the IP. These inequalities are usually called cuts, because they
cut the polyhedron of the linear relaxation without changing the IP. Figure 1 shows a cutting
plane (in brown) of a linear relaxation polytope (in blue). The feasible solutions correspond to
the integer points inside the blue region.

Since proper valid inequalities are actually the interesting ones, they are frequently called
just valid. Especial cases are those that cannot be improved, i.e., they are not dominated by
other valid inequalities.

Definition 0.2 (Dominated inequality). Suppose that πt ≤ π0 and ρt ≤ ρ0 are two valid
inequalities for the same IP, min{f(t) : At ≤ b, t ∈ Zn}. We will say that πt ≤ π0 is dominated
by ρt ≤ ρ0 if every feasible solution of the linear relaxation, t̄ ∈ Rn such that ρt̄ ≤ ρ0 also
satisfies πt̄ ≤ π0. �

When one inequality dominates another it is commonly said to be stronger or tighter. The
strongest possible valid inequalities are called facets. Given an IP with system of constraints

Integer Programming 3

2

0.511.522.5

1

2

3

x

y

z

Figure 2: Convex hull of the feasible points in Figure 1 and a valid inequality

defining a bounded polyhedron, we can consider the polytope of the convex hull of all its
(integer) feasible points,

B := conv{t ∈ Zn : At ≤ b}.
The faces of B of maximal dimension are called facets, and can be formally defined as follows.

Definition 0.3 (Facet). An inequality πt ≤ π0 is a facet of a polytope B of dimension n if:

1. every t ∈ B satisfies πt ≤ π0 (validity); and

2. there exist n affinely independent points ti ∈ B satisfying πti = π0, i = 1, . . . , n (maxi-
mality).

�

For the sake of completeness, the following two definitions describe the mathematical no-
tions used in the definition of facet.

Definition 0.4 (Polytope dimension). The dimension of B is n, dim(B) = n, if the maximum
number of affinely independent points in B is n+ 1. �

Definition 0.5 (Affine/linear independence). Points t1, . . . , tm, ti ∈ Rn ∀i = 1, . . . ,m are said
to be

1. linearly independent, if the unique solution to
�m

i=1 λit
i = 0 is λi = 0 ∀i = 1, . . . ,m;

2. affinely independent, if the unique solution to
�m

i=1 λit
i = 0,

�m
i=1 λi = 0 is λi = 0 ∀i =

1, . . . ,m.

�

Observe that linear independence implies the affine one. The reverse is not true, but the
following lemma gives a useful characterization.

Lemma 0.1. Let t1, . . . , tm be a set of points with ti ∈ Rn ∀i = 1, . . . ,m. The following
statements are equivalent

4 Concepts

(i) t1, . . . , tm are affinely independent.

(ii) t2 − t1, . . . , tm − t1 are linearly independent.

Facets are then the best valid inequalities that one can add to a formulation. In an ideal
situation, all the constraints in the formulation would be facets. Then, the polytope of the linear
relaxation would coincide with the convex hull of all the integer feasible points. Consequently,
all its extreme points would have integer components, and the polytope is then said to be
integer. When this happens, an optimal solution to the linear relaxation, which coincides with
one of these extreme points, would be integer and then optimal for the IP. Figure 2 illustrates
such ideal situation, where the feasible points are the same as in Figure 1. The facets of the
convex hull of these points are shown in different colors. Observe that the brown plane in the
figure does not cut the polytope in this case.

But this scenario is ideal just theoretically. Including all the facets of a polytope into its
IP can result completely impractical, since there can be exponentially many— and computa-
tional resources are limited. Moving polyhedral theory from principle into practice needs for
additional specific strategies and methods. Some of them are branch and bound, cutting planes,
relaxations and decomposition techniques.

In a branch and bound scheme, subproblems are derived from the original IP by fixing
variables to their integer values. These subproblems are hierarchically displayed on a tree,
being the original IP at the root. Optimal values of the linear relaxations at the nodes are used
as bounds to prune the tree, until a solution is reached. To improve these bounds, it is standard
to add valid inequalities at the nodes, originating a branch and cut framework. Adding new
inequalities within a branch and bound is not trivial, though. In practice, each new inequality
is introduced into a pool of constraints, which has to be managed by the solver. The number
of inequalities to add can be exponentially many and not carefully designed cutting schemes
can easily get out of hand. The whole cutting process— when to cut, how to find the cuts,
how many cuts to add, etc.— should follow a set of strategies, which are known as separation
algorithms (see e.g. Wolsey, 1998; Jünger et al., 2010, for further details).

Valid inequalities can be of general purpose or problem specific. Throughout this thesis,
we will speak of valid inequalities meaning constraints tailored to the problem at hand. Con-
versely, general purpose cutting planes are based on some common mathematical property
of the formulations. Some examples are Gomory (see Gomory, 1960), disjunctive (see Balas,
1979), mixed integer rounding (see Nemhauser & Wolsey, 1990) and lift-and-project cuts (see
Balas et al., 1993), which are frequently implemented by mathematical programming solvers.

Other general purpose strategies applicable to integer programs include different types of
relaxations, such as Lagrangian (Geoffrion, 1974) or others based on reformulation in higher
dimensional spaces, e.g. Lovász–Schrijver matrix cone (see Lovász & Schrijver, 1991) and
reformulation–linearization techniques (see Sherali & Adams, 1990). Specially popular for
mixed-integer programs are decomposition techniques, such as Benders (see Benders, 1962)
and cross decomposition (see van Roy, 1986).

0.1.2 Set packing problems

Among all specific configurations in pure Integer Programming, set partitioning probably
presents the most widespread applications, see Balas & Padberg (1976). Set partitioning can
be stated as: “given a set of objects S = {1, . . . ,m} and some subsets of S, T1, . . . , Tn, with
associated costs cj , j = 1, . . . , n, select a family of subsets in {Tj}nj=1 with minimum cost that
yields a partition of S”. If A is an m× n matrix of zeros and ones such that aij = 1 iff i ∈ Tj ,

Integer Programming 5

i = 1, . . . ,m, j = 1, . . . , n, the set partitioning problem is

(SP=) min{ct : At = e, t ∈ {0, 1}n},

where e := (1, . . . , 1) is an m-vector and tj = 1 if and only if Tj is selected.
A close relative of set partitioning is set packing, which is formulated as

(SP≤) max{c�t : At ≤ e, t ∈ {0, 1}n}.

The interpretation slightly changes to: “given a set of objects S = {1, . . . ,m} and some subsets
of S, T1, . . . , Tn, with associated profits c�j , j = 1, . . . , n, select a family of disjoint subsets Tj

with maximum profit”. (SP≤) is an especial case of (SP=) with slack variables and costs
cj = −c�j ∀j = 1, . . . , n. Conversely, (SP=) can be restated (when feasible) as

max{(MeA− c)t : At ≤ e, t ∈ {0, 1}n},

where M > 0 is a large enough constant. To arrive at the new statement one just need to
observe that Me(At− e) = 0 can be added to the packing problem objective and that At ≤ e
will always attain equality for an optimal solution. The equivalence of (SP=) and (SP≤) has
been crucial in the literature to gain insight about partitioning problems, see Balas & Padberg
(1976).

Another reason for studying set packing is that it serves as common framework for many
optimization problems, such as those of finding the maximum clique, Bomze et al. (1999),
the maximum edge matching, Balas & Padberg (1976), or some colouring on a graph, Cornaz
& Jost (2008); the winner determination problem, Escudero et al. (2009), or facility location
problems, Cho et al. (1983b); Cánovas et al. (2002b), among others. Moreover, set packing is
strongly related to some especial structures on a graph, called node packings, to the point of
allowing a characterization through them. This equivalence offers the opportunity of studying
(SP≤) from a different domain.

Node packing

Consider a loopless undirected graph G = (V,E) with no multiple edges. A node packing
(stable set, independent set) is a subset of nodes S ⊆ V such that every pair u, v ∈ S satisfies
(u, v) /∈ E. Suppose that AG is the incidence matrix of G, i.e., AG = (aij) is an m×n matrix—
n := |V | and m := |E|— such that aij = 1 iff node j is one of the ends of edge i. The problem
of finding a node packing of maximum cardinality is

(NP) max{et : AGt ≤ e, t ∈ {0, 1}n},

which is a particular case of (SP≤). The set of all node packings of a graph G is usually denoted
by PG. A feasible solution to (NP) is the incidence vector of a node packing in G and vice
versa, that is, PG and the feasible region of (NP) can be identified as follows,

PG = {t ∈ {0, 1}n : {v ∈ V : tv = 1} is a node packing in G}.

An important observation is that (NP) admits more than one reformulation. Indeed, tu+tv ≤ 1
for (u, v) ∈ E can be substituted by stronger tu + tv + tw ≤ 1 when (u,w) ∈ E and (v, w) ∈ E,
without altering the set of feasible solutions. This fact is the key to reinterpret (SP≤) with
matrix A = (aij) as a node packing. Just by considering

VA :={1, . . . , n}, and

EA :={(j, �) : j, � = 1, . . . , n, j �= �, aij = ai� = 1 for some i = 1, . . . ,m},

6 Concepts

it immediately follows that (SP≤) is a reformulation of the maximum node packing problem
on graph GA := (VA, EA). Consequently, every set packing formulation can be univocally
identified with a graph, called the conflict graph or intersection graph, which has one node
per variable and edges between nodes with corresponding variables appearing in the same
constraint.

The packing polytope or stable set polytope is the convex hull of all the feasible points of
(NP) for a given graph G,

BG = conv{t ∈ {0, 1}n : t ∈ PG}.

Note that the definition of the packing polytope does not depend on the matrix that define
the system of constraints of (NP). Due to its central role in Integer Programming, the study
of the facets of BG has received significant attention over the years. Polytope BG has two
special characteristics. The first one is that 0 ∈ BG. A second observation is that BG has
complete dimension, i.e., dim(BG) = n. This is a well-known fact, since {ti}ni=1 given by tii = 1,
tij = 0 ∀j �= i and point 0 are n+ 1 affinely independent points in BG. The next lemma states
a characterization of the facets of the set packing polytope with non-zero right-hand side that
will be useful in following chapters.

Lemma 0.2. An inequality πt ≤ π0 with π0 �= 0 is a facet of BG if and only if

1. (validity) every t ∈ BG satisfies πt ≤ π0 and

2. (maximality) there exist n linearly independent points ti ∈ BG satisfying πti = π0, i =
1, . . . , n.

Remarkable effort was devoted to identify especial configurations of G that yield facets of
the packing polytope, BG. The two we describe next, cliques and holes, are most certainly
the seminal ones. Other kinds of structures that produce facets includes webs, Trotter (1975);
wheels, Cheng & Cunningham (1997) and hanks, fans, grilles and ranges, Landete (2001).

In the following, we define cliques and holes as subgraphs of the graph G. Given a subset of
nodes, S ⊆ V , G[S] denotes the subgraph induced by S, G[S] := (S,ES) with ES := {(u, v) ∈
E : u, v ∈ S}.
Definition 0.6 (Clique). Given a graph G = (V,E) and a subset of nodes S ⊆ V , G[S] is
a clique if it is a maximal complete subgraph, i.e., if (u, v) ∈ ES ∀u, v ∈ S, u �= v (G[S] is
complete) and G[S ∪ {w}] is not complete for any w ∈ V \ S. In this case, S is said to induce
a clique in G. �
Definition 0.7 (Hole). Given a graph G = (V,E) and a subset of nodes S ⊆ V , G[S] is a
hole if it is a cycle with no chords, i.e., S admits an ordering, S = {u1, . . . , u|S|}, such that
ES = {(ui, ui+1) : i = 1, . . . , |S| − 1} ∪ {(u|S|, u1)}. In this case, S is said to induce a hole in
G. �

Padberg (1973) was the first to notice that cliques and holes define facets. He proved that

�

v∈K
tv ≤ 1

is a facet of BG if and only if G[K] is a clique, whereas

�

v∈H
tv ≤

� |H|
2

�

Integer Programming 7

1
2

3

45
6

7

Figure 3: Graph of Example 0.1

is a facet of BG[H] whenever G[H] is a hole and |H| is odd.
In contrast to cliques, holes only produce facets of the set packing polytope on an induced

subgraph of G. In general, if S ⊆ V , knowledge of facets of BG[S] is useful to devise facets of BG.
With this idea, the so-called lifting theorems emerged. This name comes from the geometric
interpretation of these methods, which consisted of raising up a hyperplane living in Rk to
another hyperplane in a higher dimensional space Rn, n > k. The new variables involved are
called lifting variables and their coefficients in the new hyperplane lifting coefficients. The first
lifting technique that appeared in the literature is known as usual lifting and was simultaneously
obtained by several authors, Nemhauser & Trotter (1974); Padberg (1975). It covers the
simplest case in which the dimension of the space is augmented by one unit.

Proposition 0.1 (Usual lifting, Nemhauser & Trotter (1974); Padberg (1975)). Let G = (V,E)
be a graph and S ⊆ V of cardinality |V |− 1 with

�

v∈S
πvtv ≤ π0

a facet of BG[S]. Then, �

v∈V
πvtv ≤ π0

is a facet of BG, where the lifting coefficient of w ∈ V \ S is

πw := π0 −max
��

v∈S
πvtv : t ∈ PG, tw = 1

�
.

The coefficient of the new variable is obtained by calculating a node packing in G that
maximizes

�
v∈S πvtv and contains the corresponding new node. Obviously, when |S| < |V |−1

one can always apply Proposition 0.1 several times until obtaining a facet of BG. The process in
which new variables are considered in successive steps and the facet to lift is properly updated
every time Proposition 0.1 is applied is usually referred-to as sequential lifting. The resulting
facet will naturally depend on the order in which the variables are taken, as shown in Example
0.1.

Example 0.1. Consider G = (V,E) the graph depicted in Figure 3 and take S = {1, 2, 3, 4, 5}.
The induced graph G[S] is an odd hole and inequality

�

v∈S
πvtv ≤

� |S|
2

�
= 2

8 Concepts

is a facet of BG[S]. Proposition 0.1 applied to node 6 yields lifting coefficient 2, since 6 is adjacent
to all the nodes of S. If we apply usual lifting to node 7 afterwards, its lifting coefficient is 0,
since 7 is not adjacent to 6. In summary,

�

v∈S
πvtv + 2t6 ≤ 2

is a facet of BG. However, if node 7 is lifted in first place, it gets lifting coefficient 1. After
that, usual lifting of node 6 will have coefficient 1 as result. Hence, inequality

�

v∈S
πvtv + t6 + t7 ≤ 2

is also a facet of BG. �
Several lifting techniques appeared soon after usual lifting, see for instance Cho et al.

(1983b); Padberg (1977); Wolsey (1976); Barahona & Mahjoub (1994). We still find new ones
in more recent literature, e.g. Landete (2001); Galluccio et al. (2008); Xavier & Campêlo
(2011) or Chapter 1 of this thesis. However, usual lifting is still the most widespread strategy.
Its absolute advantage relies on its practical use; despite most lifting techniques, it does not
depend on any especial configuration of the subgraph at hand.

0.2 Location Science

Location Science, also known as Locational Analysis, is a branch of Operations Research con-
cerned with the study of optimal locations for a set of facilities or services in order to satisfy the
demand of a set of clients. The field, which comprises a large variety of problems, also interacts
with a range of disciplines, such as Economics, Computational Geometry, Geography or Logis-
tics. As a subfield of Location Science, Discrete Location gathers those location problems that
can be modeled with integer variables. In this section we briefly introduce those aspects and
formulations that will be relevant for the development of this thesis. More thorough reviews
on most relevant problems in Location Science can be found in Drezner & Hamacher (2002);
ReVelle & Eiselt (2005); ReVelle et al. (2008); Laporte et al. (2015).

There are two decisions involved in almost every discrete location problem. One of them
is to select that locations where a service will be installed. The second decision consists of
designating the facility that will give service to each client. The set of candidate locations is
usually denoted by J and the set of clients by I. Two groups of binary variables are commonly
used to model these decisions, namely

y�j = 1 iff some service is installed at candidate location j, j ∈ J and
xij = 1 iff client i is served by facility at j , i ∈ I, j ∈ J .

Although standard notation for variables y�j is yj , here we save yj for complementary variables,

yj = 1 iff no service is installed at candidate location j, j ∈ J ,

which satisfy yj = 1 − y�j . Variables y�j and also their complementary yj are usually called
location variables, while xij are usually referred-to as allocation variables. These variables and
notation will be used for discrete location models of Part I of this thesis. Complementary vari-
ables will allow a reformulation of the problem into a set packing in many cases. The common
methodology in Part I will be to exploit our knowledge of set packing to improve formulations.
Hence, using complementary variables is much more convenient for our exposition, even if not
most usual in related literature.

Location Science 9

One fundamental problem in Discrete Location that will be studied in this thesis is the
Simple Plant Location Problem (SPLP), or Uncapacitated Facility Location Problem. For its
statement, opening cost fj ≥ 0 of installing a service at j are considered for every candidate
location j ∈ J . Once facilities are installed, clients are assigned to those at minimum relative
cost — facilities capacities are unlimited for this simplest version. The assignment cost of client
i and facility j is denoted by cij ≥ 0. The first example of the SPLP appeared in the earlies
60s, Stollsteimer (1963), and it has attracted the attention of many researchers ever since. The
problem consists of making the two previously stated decisions while incurring minimum total
cost (opening plus assignment), which formulates as

(SPLP) min
�

j∈J
fjy

�
j +

�

i∈I

�

j∈J
cijxij

s.t.
�

j∈J
xij = 1 ∀i ∈ I (1)

xij ≤ y�j ∀i ∈ I, ∀j ∈ J (2)

xij , y
�
j ∈ {0, 1} ∀i ∈ I, ∀j ∈ J.

Despite its interpretation, observe that formulation (SPLP) could correspond to a particular
combinatorial problem in which some columns from a matrix (cij) and some of their entries are
to be chosen in such a way that there is precisely one entry from each row. Selecting column j
or entry (i, j) has a cost fj and cij , respectively, and the total cost of the decision made has to
be minimized. Applications of the SPLP other than facility location include telecommunication
networks design, Gourdin et al. (2002), distributed systems design, Klose & Drexl (2005), and
robotics Karch et al. (2002), just to mention some of them.

Many works consider an alternative formulation of the SPLP, which replaces location vari-
ables y�j by their complementary binary variables yj . This simple idea allows to rewrite (SPLP)
into a set packing. On the one hand, the change makes (2) become xij + yj ≤ 1 ∀i ∈ I, ∀j ∈ J .
On the other hand, constraints (1) ensure that the product of

�n
i=1(1−

�m
j=1 xij) by an arbi-

trarily big M is zero. Thus, adding M
�n

i=1(1−
�m

j=1 xij) to the objective in (SPLP) results
in the same optimization problem. Grouping terms, the ensuing objective after applying these
two transformations would be

min

m�

j=1

fj(1− yj) +

n�

i=1

m�

j=1

(cij −M)xij +Mn.

With this last objective, (1) can be relaxed to less-than-or-equal-to constraints when M is large
enough. Thus, formulation (SPLP) is equivalent to the following set packing formulation, a
fact that was previously observed by Cho et al. (1983a),

(SPLP≤)max
m�

j=1

fjyj +
n�

i=1

m�

j=1

(M − cij)xij −Mn−
m�

j=1

fj

s.t.

m�

j=1

xij ≤ 1 ∀i ∈ I (3)

xij + yj ≤ 1 ∀i ∈ I, ∀j ∈ J

xij , yj ∈ {0, 1} ∀i ∈ I, ∀j ∈ J.

Constraints (3) state that each client must be assigned to one plant at most. However, due to
the new objective function, an optimal solution will attain (3) as equalities for M sufficiently

10 Concepts

large. Since constraints coefficients in (SPLP≤) are 0/1 and right hand sides are “≤ 1”, the
formulation is a particular case of (SP≤).

The packing polytope of formulation (SPLP≤) has been extensively studied in the literature.
Present knowledge about it includes different families of valid inequalities and facets, including
those described in Cho et al. (1983a); Aardal (1998); Cornuéjols et al. (1977); Cornuéjols &
Thizy (1982) and Guignard (1980). Some other works also introduced several lifting theorems,
such as Cho et al. (1983b). More recently, Landete (2001) studied different graphs that define
facets of the set packing polytope in her PhD thesis, and applied them to (SPLP≤) (see also
(Cánovas et al., 2000, 2002a,b)). These days, this line is still source of exciting research, see
for instance Galli et al. (2015) and Maŕın & Pelegŕın (2015).

Other fundamental models that will be relevant in this thesis are discrete ordered formu-
lations. The idea, which was first proposed in Nickel (2001) and further developed by Nickel
& Puerto (2005); Maŕın et al. (2009, 2010), is to assign specific weights to the first, the sec-
ond... closest allocations client-facility in the solution. This kind of models provided a more
flexible alternative than previous ones, which were typically based on minimizing the greatest
allocation cost (centers problems) or the sum of the allocation costs (medians problems).

Discrete ordered formulations incorporate a vector c≤ of ordered costs. This vector contains
not repeating assignment costs in (cij)i∈I,j∈J ranked in increasing ordered, i.e.

c≤ := (c(1), . . . , c(K)); c(1) < c(2) < . . . < c(K),

where K is the number of different values in (cij)i∈I,j∈J . New auxiliary variables are considered,
namely

sik = 1 iff the i-th smallest allocation cost in the solution is at least c(k),

for all i ∈ {1, . . . , n}, k ∈ {1, . . . ,K}. Note that i in this case refers to a position in the ranking
of assignment costs once the facilities have been installed, which naturally ranges from 1 to n,
the number of clients. The new variables have to satisfy

si,k+1 ≤ si,k ∀i = 1, . . . , n, ∀k = 1, . . . ,K − 1,

sik ≤ si+1,k ∀i = 1, . . . , n− 1, ∀k = 1, . . . ,K.

In effect, if the i-th smallest allocation cost is at least c(k+1), it is also greater than previous
cost in the ranking, c(k). On the other hand, if the i-th smallest allocation cost is at least c(k),
so is the i + 1-th smallest one. Auxiliary s-variables are linked to allocation variables by the
following constraints

�

i∈I

�

j∈J:
cij≥c(k)

xij =

n�

i=1

sik ∀k = 1, . . . ,K. (4)

For every k = 1, . . . ,K, the left hand side of (4) is equal to the number of clients in the solution
whose assignment cost is greater than or equal to c(k). These constraints enforce this same
number of clients when ranked by costs. The discrete ordered objective function can be written
as follows,

min

n�

i=1

λi

�K−1�

k=1

c(k)(sik − si,k+1) + c(K)siK

�
, (5)

where λ = (λ1, . . . ,λn) is a vector of positive weights. Note that, if the i-th smallest allocation
cost in the solution is c(k�), then

sik = 1 ∀k ≤ k� and sik = 0 ∀k > k�.

Location Science 11

In this case,
�K−1

k=1 c(k)(sik − si,k+1) = c(k�) if k
� < K, and is zero otherwise. The i-th smallest

allocation cost in the solution coincides then with
�K−1

k=1 c(k)(sik − si,k+1) + c(K)siK and λi

should be interpreted as the relative weight given to that cost.
Objective (5) generalizes most popular facility location criteria. For instance, with λ =

(0, . . . , 0, 1), (5) emulates minimizing the greatest allocation cost; and, when λ = (1, . . . , 1), (5)
represents the sum of all allocation costs. Other choices of λ produce multiple models shaped
at decision maker’s convenience (see Nickel & Puerto, 2005). Particular cases, such as lambda
containing many zero entries and with negative values were studied in Maŕın et al. (2010).

In Chapter 5, we will use the same idea to develop a flexible model for map labeling. The
elements to order will be the ambiguity values of the labels, allowing a flexible penalization of
ambiguous labels.

Part I

Set packing and facility location

Chapter 1

A new lifting theorem for set
packing

This first chapter concerns polyhedral theory in Integer Programming. It presents a new lifting
theorem that has application in the family of set packing problems. Its relevance resides in
automatic extraction of facets of the set packing polytope. For instance, the new lifting theorem
can be applied to obtain new facet defining subgraphs. Identifying one of these subgraphs in
the conflict graph of a formulation means finding facets of its polytope. Then, the largest the
list of known facet defining subgraphs, the better our chances of uncovering facets of a set
packing formulation in the future. Alternatively, the lifting theorem can be directly applied to
the conflict graph of some specific formulation, in order to obtain some facets of its polytope.
In particular, the theorem will be key for next chapter, where it will be used to obtain facets
for a set packing facility location model.

Transforming a facet of some polytope to a facet of another one of higher dimension is
a relevant practice in set packing known as lifting. In this chapter, we present a new lifting
theorem for the packing polytope, namely

BG := conv{t ∈ {0, 1}n : t ∈ PG},

where PG is the set of all incidence vectors of node packings in G (see Concepts). The theorem
can be applied when G has certain structure and we will show that it generalizes an existing
lifting result that was introduced by Cho et al., (Cho et al., 1983b, Theorem 2.4). In their
paper, these authors give a procedure to transform a facet of BG into a facet of BG∗ , where G
is a subgraph of G∗. The result relies on the following construction. A graph G = (V,E) is
given with node set V = {1, . . . , n} having q disjoint subsets C1, . . . , Cq, |Ci| ≥ 2, which induce
complete subgraphs in G. Then, a graph G∗ = (V ∗, E∗) is constructed with

V ∗ =V ∪ {n+ 1, n+ 2, . . . , n+ q, n+ q + 1}
E∗ =E ∪ {(n+ i, j) : j ∈ Ci, i = 1, . . . , q} ∪ {(n+ q + 1, n+ i) : i = 1, . . . , q}.

Figure 1.1 shows the construction of the theorem in Cho et al. (1983b). Here, we will follow a
similar but more general scheme. First, the configuration we consider allows additional edges
between the new nodes {n+1, . . . , n+ q} and secondly, Ci are not required to be disjoint. We
will demonstrate the applicability of the new result, which served to identify two new families
of facet defining graphs for the packing polytope.

15

16 A new lifting theorem

n+q+1 G∗

n+1 n+2 ... n+q

C1 C2 ... Cq Other nodes

G

Figure 1.1: Construction of Theorem 2.4 in Cho et al. (1983b)

1.1 The theorem

In addition to basic knowledge about set packing (see Concepts), the following proposition will
be useful to prove our lifting theorem.

Proposition 1.1. Let A be a non-singular matrix of size r × r and matrices Br×s, Cs×r and
Ds×s. Then,

det

�
A B

C D

�
= |A| · |− CA−1B +D|.

Proof. The well-known fact that

det

�
A 0
C D

�
= |A| · |D| and det

�
A B

0 D

�
= |A| · |D|

(see e.g. Silvester, 2000) together with the product decomposition

�
A B

C D

��
I −A−1B

0 I

�
=

�
A 0
C −CA−1B +D

�

do the job.

Let G = (V,E) be a graph with V = {1, . . . , n} and n ≥ 2. Suppose that C1, . . . , Cq

are non-empty subsets of V that induce q ≥ 2 distinct complete subgraphs of G (Ci are not
necessarily maximal nor disjoint). Denote by G∗ = (V ∗, E∗) the graph obtained from G by the
construction depicted in Figure 1.2, i.e.,

V ∗ =V ∪ {n+ 1, n+ 2, . . . , n+ q, n+ q + 1}
E∗ =E ∪ {(n+ i, j) : j ∈ Ci, i = 1, . . . , q} ∪ {(n+ q + 1, n+ i) : i = 1, . . . , q} ∪ Ê,

where Ê is the set of edges of an arbitrary graph with node set {n + 1, . . . , n + q}, Ĝ :=
({n+ 1, . . . , n+ q}, Ê). The following example illustrates this construction.

Example 1.1. Figure 1.3 shows a graph that fits in the configuration depicted in Figure 1.2.
Graph G is in this case an anti-web of 7 nodes and step 3, usually denoted by W (n = 7, k = 3).
Graph Ĝ is a hole of 7 nodes and complete subgraphs C1, . . . , C7 are triangles in G. More
precisely, the following elements can be identified in the graph depicted on Figure 1.3:

The theorem 17

n+q+1 G∗

n+1 n+2 ... n+q
Ĝ

C1 C2 ... Cq Other nodes
G

Figure 1.2: Construction of Theorem 1.1

1 2
3

5
46

7
101112

13
14

15
8 9

Figure 1.3: Construction of Theorem 1.1 applied to an anti-web

• n = 7, G = ({1, . . . , 7}, E), E = {(i, (i+ 1 + j) mod 7) : i = 1, . . . , 7, j = 0, 1},

• q = 7, Ci = {i, i+ 1, i+ 2} for all i = 1, . . . , 5, C6 = {6, 7, 1}, C7 = {7, 1, 2},

• Ê = {(7 + i, 8 + i), i = 1, . . . , 6} ∪ {(8, 14)}.

This example is a particular case of the construction depicted in Figure 1.2 with not disjoint
complete subgraphs Ci. �

Theorem 1.1. Suppose that πt ≤ 1 is a facet of BG that is not
�

j∈Ci
tj ≤ 1 for any i =

1, . . . , q. Let α̂0 be the maximum cardinality of a vertex packing in Ĝ and define the following
constants:

βK =max{πt : t ∈ PG, tj = 0 ∀j ∈ ∪i∈KCi} ∀K ⊆ {1, . . . , q},
βk =max{βK : K ⊆ {1, . . . , q}, |K| = k and {tn+i : i ∈ K} ∈ PĜ} ∀k = 1, . . . , α̂0.

18 A new lifting theorem

The following inequality:

(α̂0 − 1)πt+ (1− βα̂0)

q+1�

i=1

tn+i ≤ α̂0 − βα̂0 (1.1)

is a facet of BG∗ if and only if α̂0 �= βα̂0 and

βk ≤ 1− (k − 1)(1− βα̂0)

α̂0 − 1
∀k = 2, . . . , α̂0 − 1. (1.2)

Proof. To begin with, note that α̂0 = βα̂0 iff both are equal to one, since α̂0 ≥ 1 and βα̂0 ≤ 1
by definition. If this is the case, all the coefficients of the left-hand side of (1.1) and also its
right-hand side are zero. Then, it is clear that α̂0 �= βα̂0 is necessary if (1.1) is a facet.

In order to prove that (1.1) is a facet, we need to prove that it is a valid inequality and
that the points satisfying the equality are a face of BG∗ of maximal dimension. We first
explore the conditions needed so that (1.1) is valid. We consider t ∈ {0, 1}n, t̂ ∈ {0, 1}q and
t∗ = (t, t̂, t∗n+q+1) the incidence vector of any node packing in G∗. If t∗n+q+1 = 1 then t̂i = 0 for
all i = 1, . . . , q and (1.1) becomes:

(α̂0 − 1)πt+ 1− βα̂0 ≤ α̂0 − βα̂0 ,

which is valid because, since πt ≤ 1, (α̂0 − 1)πt + 1 − βα̂0 ≤ α̂0 − 1 + 1 − βα̂0 = α̂0 − βα̂0 .
Otherwise suppose that t∗n+q+1 = 0 and t̂i = 1 for i ∈ K, for a non-empty subset of indices
K ⊆ {1, . . . , q} such that {n + i : i ∈ K} ∈ PĜ. In this case, (1.1) is valid if and only if the
maximum value attained at its left-hand side is not greater than its right hand side, i.e., if and
only if

(α̂0 − 1)βk + (1− βα̂0)k ≤ α̂0 − βα̂0

for all k = 1, . . . , α̂0. Grouping terms in this inequality we get the equivalent expression

βk ≤ α̂0 − βα̂0 − k(1− βα̂0)

α̂0 − 1
,

whose right hand side is simplified to

α̂0 − 1 + 1− βα̂0 − k(1− βα̂0)

α̂0 − 1
= 1− (k − 1)(1− βα̂0)

α̂0 − 1
.

That is to say, (1.1) is valid if and only if (1.2) holds. Note that condition (1.2) for k = 1
becomes β1 ≤ 1, which always holds since πt ≤ 1, and becomes trivial for k = α̂0.

For the second part of the proof, using Lemma 0.2, we need to find n + q + 1 linearly
independent feasible points that satisfy (1.1) as equality. We consider the following matrix,
whose rows are incidence vectors of vertex packings in G∗

A∗ =




0 . . . 0 1

A
.. .

...
0 . . . 0 1

0

F I
...
0

t t̂1 . . . t̂q 0




.

The theorem 19

Here A is an n × n matrix, |A| �= 0, whose rows are n affinely independent incidence vectors
of vertex packings in G satisfying πt = 1. F stands for a q × n matrix where each row i is an
incidence vector of a vertex packing in G with

�
j∈Ci

tj = 0 and πt = 1. We can assure that
such vectors exist due to the following reasoning. Suppose that, for some i ∈ {1, . . . , q}, every
vertex packing satisfying πx = 1 necessarily satisfies

�
j∈Ci

tj = 1. This would mean that there

are t1, . . . , tn affinely independent incidence vectors of vertex packings such that πtk = 1 and�
j∈Ci

tkj = 1, k = 1, . . . , n. Then both πt = 1 and
�

j∈Ci
tj = 1 would be facets in G and they

would have to coincide, a possibility that was discarded from our hypothesis. On the other
hand, I is the identity matrix of size q × q. Finally, (t, t̂1, . . . , t̂q) is the optimal solution of the
optimization problem that defines βα̂0 . It is easy to check that the rows of A∗ are incidence
vectors of vertex packings in G∗ and satisfy (1.1) as equality. Moreover, applying Proposition
1.1 twice,

|A∗| = |A| ·

�������

�
I 0

t̂1 . . . t̂q 0

�
−

�
F
t

�
·A−1 ·




0 0 1
. . .

...
0 0 1




n×(q+1)

�������

= |A| ·

�������

�
I 0

t̂1 . . . t̂q 0

�
−

�
F
t

�
·




0 0 π1
. . .

...
0 0 πn




n×(q+1)

�������

= |A| ·
����

I −1
t̂1 . . . t̂q −βα̂0

���� = |A| ·
�
|I| ·

q�

i=1

(−t̂i)(−1)− βα̂0

�
= |A| · (α̂0 − βα̂0).

This shows that the rows in A∗ are linearly independent iff α̂0 �= βα̂0 . In conclusion, α̂0 �= βα̂0

and (1.2) are necessary but also sufficient to prove that (1.1) is a facet of BG∗ .

The interpretation of coefficients βk is: “among all the packings t̂ of cardinality k in Ĝ and
all the possible ways of extending them to a packing in G∗ with incidence vector (t, t̂, 0), find
the maximum πt”. Observe that, if α̂0 = 1 and βα̂0 �= 1 then (1.2) holds and (1.1) is the facet
defined by a complete subgraph induced by {n+ 1, . . . , n+ q, n+ q + 1}. On the other hand,
if α̂0 �= 1 and βα̂0 = 1 then (1.2) also holds and (1.1) is the initial facet πt ≤ 1 of BG, which is
in this case also a facet of BG∗ .

The following example illustrates the application of Theorem 1.1 to the construction of
Example 1.1 and Figure 1.3.

Example 1.2. It is well-known that, when n and k are coprime, W (n, k) defines the facet�n
j=1 tj ≤ �n/k� (see Trotter, 1975). Graph G = W (7, 3) of Example 1.1 defines then the

facet 1
2

�7
j=1 tj ≤ 1. Nodes {8, . . . , 14} induce a hole of length seven, Ĝ = (8, . . . , 14), where a

maximum node packing has cardinality α̂0 = 3. Since any packing of three nodes in Ĝ includes
all the nodes of G in its neighborhood, it follows that βα̂0 = β3 = 0. Then, we only have to
check that (1.2) holds for k = 2. The symmetry of G∗ helps to calculate β2 = 1/2. Indeed,
any packing of cardinality two in Ĝ only leaves two nodes of G outside its neighborhood. Such
nodes are always adjacent, so the maximum value that 1

2

�7
j=1 tj can attain is 1

2 . Moreover,
condition (1.2) is satisfied:

β2 ≤ 1− (2− 1)(1− βα̂0)

α̂0 − 1
= 1− 1

3− 1
=

1

2
.

20 A new lifting theorem

1 2 3 4 5 6

9 10 11 12

13

7 8

Figure 1.4: A a graph with not disjoint nor maximal complete subgraphs Ci’s

We obtain the following facet of BG∗ :

(3− 1)
1

2

7�

j=1

tj + (1− 0)

15�

j=8

tj ≤ 3− 0 ⇒
7�

j=1

tj +

15�

j=8

tj ≤ 3.

�
In a second illustrative example, we show the application of the theorem when Ci’s are not

maximal nor disjoint.

Example 1.3. Consider the graph shown in Figure 1.4. Dashed-dot lines indicate which edges
belong to subgraph G. Hole (1, 2, 3, 4, 5) induces a valid inequality, which, after the lifting of
t6, t7 and t8 with coefficients 0, turns into the following facet of BG:

1

2

5�

j=1

tj ≤ 1.

Nodes 9, 10, 11 and 12 correspond to n+1, . . . , n+q in Theorem 1.1 (here n = 8 and q = 4), and
induce a hole, Ĝ = (9, 10, 11, 12). Since Ĝ has length four, α̂0 = 2. Finally, one can identify
q = 4 complete subgraphs in G, C1 = {2, 3}, C2 = {3, 4}, C3 = {1, 2} and C4 = {4, 5, 6}.
When checking the conditions of the theorem, we first observe that α̂0 = 2 and βα̂0 ≤ 1 ensure
that α̂0 �= βα̂0 . Secondly, due to α̂0 = 2, conditions (1.2) become empty. Consequently, there
is a facet for the configuration at hand, whose formula (1.1) involves coefficient βα̂0 = β2. This
coefficient is

β2 = max {max{1
2

�5
j=1 tj : tj ∈ PG, tj = 0 ∀j ∈ Ci, i ∈ K}

: K ⊆ {1, 2, 3, 4}, |K| = 2 and {tn+i = 1}i∈K ∈ PĜ}
= max {max{1

2

�5
j=1 tj : tj ∈ PG, tj = 0 ∀j ∈ C1 ∪ C3},

max{1
2

�5
j=1 tj : tj ∈ PG, tj = 0 ∀j ∈ C2 ∪ C4}} =

1

2
.

According to Theorem 1.1 the following is a facet of the packing polytope for graph depicted
on Figure 1.4:

1

2

5�

j=1

tj +
�
1− 1

2

� 13�

j=9

tj ≤
�
2− 1

2

�
⇒

5�

j=1

tj +
13�

j=9

tj ≤ 3.

�

New facet-defining graphs 21

It is easy to observe that the facets obtained in examples 1.2 and 1.3 are different from
those that one would get by applying sequential lifting. In effect, the right-hand side of the
resulting facets is different than that of the original one, something that does not occur in usual
lifting.

Remark 1.1. A sufficient condition for the validity of (1.1), which is less restrictive than (1.2),
is

γk ≤ 1− (k − 1)(1− γα̂0)

α̂0 − 1
∀k = 1, . . . , α̂0, (1.3)

where we take

γk = max{βK : |K| = k}, k = 1, . . . , α̂0,

i.e., we do not require {n+ i : i ∈ K} to be a packing in Ĝ. The proof is exactly the same as in
Theorem 1.1, but this time γk is a bound on πt that is not tight and thus the condition might
not be necessary. Nevertheless, (1.3) can be useful in some cases, since it avoids calculating all
possible vertex packings in Ĝ. �

Remark 1.2. In Theorem 2.4, Cho et al. (1983b), Ê = ∅ and

c := max{πt : {j : tj = 1} ∈ PG, tj = 0 ∀j ∈ ∪q
i=1Ci}.

They claimed that if c < 1 and γk ≤ 1− (k−1)(1−c)
q−1 for all k = 1, . . . , q, then

(q − 1)πt+ (1− c)

q+1�

i=1

tn+i ≤ q − c (1.4)

is a facet of BG∗ . On the other hand, when Ê = ∅ we have α̂0 = q and therefore γk = βk for
all k and c = βα̂0 . This shows that (1.1) and (1.4) coincide in this particular case. Regarding

the hypothesis of (Cho et al., 1983b, Theorem 2.4), c < 1 implies α̂0 �= βα̂0 ; γk ≤ 1− (k−1)(1−c)
q−1

coincides with (1.2); and πj > 0 ∀j implies πt ≤ 1 is not
�

j∈Ci
tj ≤ 1 for any i = 1, . . . , q. This

shows that Theorem 1.1 generalizes Theorem 2.4 in Cho et al. (1983b). Moreover, in that work
subsets Ci are required to be disjoint and with cardinality at least 2, conditions that vanish in
our theorem. �

1.2 New facet-defining graphs

A graph G = (V,E) defines the facet πt ≤ π0 if πt ≤ π0 is a facet of BG and πj > 0 ∀j ∈ V . We
say then that G is facet-defining. In this section we present two new families of facet-defining
graphs that are obtained by applying our lifting theorem to odd holes and anti-holes. We name
these new families hyperwheels and hyperwebs, respectively.

1.2.1 Hyperwheels

Let G = (1, 2, . . . , n) be an odd hole of length n ≥ 7. Consider the following elements in the
construction of Theorem 1.1:

• q = n+1
2 , Ci = {2i− 1, 2i} for all i = 1, . . . , q − 1, Cq = {n},

• Ê = {(n+ i, n+ i+ 1), i = 1, . . . , q − 1} ∪ {(n+ 1, n+ q)}.

22 A new lifting theorem

1 2
3

5
4

6
7

8
9 10

11
12

13
14

15

Figure 1.5: Hyperwheel with n = 9

The resulting graph from our construction, G∗, consists of a hole of length n and a wheel of
n+1
2 +1 nodes, linked by certain edges. We call this G∗ hyperwheel. An hyperwheel with n = 9

is shown in Figure 1.5.
The facet that we are going to lift by using Theorem 1.1 is in this case the facet associated

to the odd hole G, 2
n−1(t1+· · ·+tn) ≤ 1. To begin with, we check the conditions of the theorem.

The maximum cardinality of a vertex packing in Ĝ, which is an odd hole, is α̂0 =
� q
2

�
=

�
n+1
4

�
.

Observing that a maximum vertex packing in G∗ with α̂0 nodes of Ĝ has q−α̂0 =
n+1
2 −

�
n+1
4

�
=�

n+1
4

�
nodes of G, we get βα̂0 = 2

n−1

�
n+1
4

�
. Since n ≥ 7, α̂0 �= βα̂0 . Now observe that, since

Ci are disjoint parts of hole (1, . . . , n), any packing in G∗ with k ≥ 2 nodes of Ĝ can satisfy�
j∈Ci

tj = 1 for all i = 1, ..., q such that node n+ i is not in the packing. Then coefficients

βk = 2
n−1(q− k) = 2

n−1(
n+1
2 − k) = n+1−2k

n−1 are obtained without difficulty. It remains to check

condition (1.2). For that purpose we first observe that βα̂0 = 2
n−1(

n+1
2 −

�
n+1
4

�
) because of the

general identity a =
�
a
2

�
+

�
a
2

�
for a ∈ Z. For each k = 2, . . . , α̂0 − 1, the right-hand side of

(1.2) is then:

1− (k − 1)(1− βα̂0)

α̂0 − 1
= 1−

(k − 1)(1− 2
n−1(

n+1
2 −

�
n+1
4

�
))�

n+1
4

�
− 1

= 1−
2

n−1(k − 1)(
�
n+1
4

�
− 1)�

n+1
4

�
− 1

= 1− 2k − 2

n− 1
=

n+ 1− 2k

n− 1
,

which turns to be equal to βk. Now we can apply Theorem 1.1 to obtain the facet of BG∗ :

��
n+ 1

4

�
− 1

�
2

n− 1

n�

j=1

tj +

�
1− 2

n− 1

�
n+ 1

4

�� q+1�

i=1

tn+i

≤
�
n+ 1

4

�
− 2

n− 1

�
n+ 1

4

�
,

which simplifies to
n+q+1�

j=1

tj ≤
n+ 1

2

since n is odd.

New facet-defining graphs 23

k k+1
k+2

k+3

k-1
k-2

k-3

... N(k)
k+4

k+5
k-4

k-5

Figure 1.6: Complete subgraph containing a node k of an anti-hole

1.2.2 Hyperwebs

Let G = ({1, . . . , n}, E) be an odd anti-hole of n ≥ 5 nodes that are numbered according to
its formal definition, i.e., G is the complementary graph of the graph induced by the cycle
(1, 2, . . . , n). Before specifying the elements q, Ci, i = 1, . . . , q and Ĝ that define this family of
graphs, we analyze the structure of G.

First of all, we need to identify q different complete subgraphs in G. Let k ∈ {1, . . . , n} be
a node of G and denote with N(k) the subset of nodes that are adjacent to k. Suppose that
k belongs to a subset of nodes C ⊆ N(k) ∪ {k} that induces a complete subgraph. It is clear
that the nodes of C were not consecutive in the cycle (1, 2, . . . , n). Figure 1.6, where nodes
are numbered module n, illustrates this fact. We consider now that the cardinality of C is
maximum, i.e., the maximum number of non-consecutive nodes among N(k), n−3

2 , plus node
k. We are interested in calculating how many complete subgraphs of cardinality n−3

2 +1 contain
node k, because they will be our subgraphs C1, . . . , Cq. For that aim, consider a sequence

1, 2, 3, . . . p,

where p is even (this sequence would be the neighbours of k in our case, i.e., p = n− 3). How
many different ways of taking p/2 non-consecutive elements of the sequence are there? This is
a small combinatorial problem whose answer is p

2 + 1. This is easy to see if we start from the
sequence of odd numbers 1, 3, 5, . . . , p− 1 and we generate p sequences more by changing each
time one of the elements of the initial sequence and its successors, i.e.:

1, 3, 5, . . . , p− 7, p− 5, p− 3, p,

1, 3, 5, . . . , p− 7, p− 5, p− 2, p,

1, 3, 5, . . . , p− 7, p− 4, p− 2, p,

. . .

1, 3, 6, . . . , p− 6, p− 4, p− 2, p,

1, 4, 6, . . . , p− 6, p− 4, p− 2, p,

24 A new lifting theorem

2, 4, 6, . . . , p− 6, p− 4, p− 2, p.

In our case, k belongs to exactly n−3
2 + 1 = n−1

2 complete subgraphs of size n−1
2 . Given the

symmetry of graph G, this argument is valid independently of the node k taken. We get that,
in total, there are n different complete subgraphs of size n−1

2 in G and that every node of G
belongs exactly to n−1

2 of these subgraphs.
We can identify now the elements in the construction of Theorem 1.1 for our particular

graph. We will define m = n−1
2 and will use a matrix Cn×m = (cij) to arrange the n different

complete subgraphs of size n−1
2 . Each row ci· will represent the subset of nodes Ci, i =

1, . . . , q(= n). This matrix is defined following the same idea of the previous paragraph:

• For i = 1, 2, 3:

ci1 = i and cij = ci,j−1 + 2 ∀j = 2, . . . ,m.

• The following rows 4, 5, 6, . . . , n− 1, n are defined in pairs (2r, 2r + 1) for r = 2, . . . ,m:

c2r,1 = 1,

c2r,j = c2r,j−1 + 2 ∀j = 2, . . . ,m− r + 1,m− r + 3, . . . ,m,

c2r,m−r+2 = n− 2r + 3 and

c2r+1,j = c2r,j + 1 ∀j = 1, . . . ,m.

As indicated in the construction of Theorem 1.1, to extend G to a bigger graph G∗, we add
q(= n) nodes to G and consider the following edges between them: Ê = {(n+ i, n+ i+1), i =
1, . . . , q − 1} ∪ {(n + 1, n + q)}. As a result, Ĝ is an odd hole of q nodes. After adding node
n+ q+1 and edges between it and nodes n+1, . . . , n+ q, we obtain a graph G∗, which we call
hyperweb. Hyperwebs with n = 5 and 7, with corresponding matrices

C5×2 =




1 3
2 4
3 5
1 4
2 5




and C7×3 =




1 3 5
2 4 6
3 5 7
1 3 6
2 4 7
1 4 6
2 5 7




,

are shown in Figure 1.7, where Ê is depicted with dash-dot lines.
In the following we check that the presented scenario is under the assumptions of Theorem

1.1. It is well-known that G defines the facet 1
2

�n
j=1 tj ≤ 1. Since Ĝ is an odd hole, α̂0 = m.

To calculate βk, k = 2, . . . , α̂0, we will need the following lemma.

Lemma 1.1. For every pair of nodes k, (k+ 1) mod n of G (where we identify 0 with n) that
were consecutive in the cycle (1, 2, . . . , n) and for every two complete subgraphs Cr, Cs, we have
that k ∈ Cr ∪ Cs or ((k + 1) mod n) ∈ Cr ∪ Cs.

Proof. Suppose that neither k nor (k+1) mod n belong to Cr∪Cs. If we consider the sequence

1, 2, 3, . . . , p− 1, p,

where now p is odd (these would be the n−2 remaining nodes), there is only one way of taking
p+1
2 non-consecutive elements from it (a complete subgraph of n−1

2 nodes in our case), which
is a contradiction.

New facet-defining graphs 25

1
2

3
5

4

6

78

9

11
10

(a) Hyperweb with n = 5

1
2

3
5 4

6
7

8

9

1011

12

13
14
15

(b) Hyperweb with n = 7

Figure 1.7: Constructions for hyperwebs

26 A new lifting theorem

Lemma 1.1 shows that every packing of k ≥ 2 nodes of Ĝ can be completed with at most
one node from G, yielding βk ≤ 1

2 for all k = 2, . . . , α̂0. When k = α̂0, it is easy to see that
C4, C6, . . . , Cn−1, C1 do not contain node 2 and as a consequence βα̂0 = 1

2 . Since βk ≥ βk+1 in
general, βk = 1

2 for all k = 2, . . . , α̂0 − 1. We conclude that for all k = 2, . . . , α̂0 − 1, βk = 1
2

verifies condition (1.2). Theorem 1.1 assures then that

(m− 1)
1

2

n�

j=1

tj +

�
1− 1

2

� q+1�

i=1

tn+i ≤ m− 1

2

is a facet of BG∗ , i.e.,

(m− 1)
n�

j=1

tj +

q+1�

i=1

tn+i ≤ 2m− 1

is a facet of the packing polytope for a hyperweb of 2n+ 1 nodes.

Chapter 2

The Simple Plant Location Poblem
with incompatibilities

The Simple Plant Location Problem (SPLP) is one of the seminal problems in Discrete Lo-
cation that can be formulated as a set packing. In this chapter, we study a modification of
the SPLP that has not been considered in previous literature. The novel aspect consists of
taking into account constraints due to incompatibilities between users or clients. Users incom-
patibilities may well be due to technical requirements or competing interests and prevent some
pairs of clients from being served by the same facility. The corresponding new mathematical
programming constraints are set packing ones. The proposed model for the resulting variant
of the SPLP will then be a set packing.

We find some examples of allocating conflicts between users outside the field of location
analysis in communication networks. Service management of mobile networks includes channel
assignment as a fundamental task. A channel allocation strategy defines the assignment of
available channels to calls originated in cells. Due to cochannel interference, the same channel
cannot be assigned to certain pairs of cells simultaneously, see Stojmenović (2002). If channels
are identified with facilities and cells with clients, the SPLP with incompatibilities simulates
these cochannel constraints. Other communication networks consist of a set of terminals (users)
and concentrators (switches or multiplexers). A primary problem in its design is to decide how
many concentrators are needed and how the terminals should be assigned to the concentrators.
The relation of this problem with facility location was observed by Gourdin et al. (2002), who
proposed to use the SPLP formulation in one of the phases of an iterative network design
process. Considering incompatibilities between the users can be useful to represent competing
interests within users in this context.

We explore the implications of adding incompatibility constraints to the set packing formu-
lation of the SPLP. Interestingly, this modification generalizes fault-tolerant location problems
and is a close relative of multiproduct facility location. We study the polytope of the new
problem, and present different families of facets for the new model. These are based on cliques
and odd holes of the corresponding conflict graph. In order to obtain clique facets, we will just
need to identify clique subgraphs of the conflict graph, while hole facets demand a little bit
more work. Each family of facets is accompanied by a separation algorithm. Our computa-
tional experience supports the utility of the devised structures. Experiments on the separation
algorithms are reported, together with a comparative analysis with respect to standard clique
cuts incorporated by a commercial solver.

27

28 The SPLP with incompatibilities

2.1 Introducing incompatibilities

The Simple Plant Location Problem with incompatibilities (SPLPI) is a generalization of the
SPLP that takes into consideration possible incompatibilities between pairs of clients. Two
clients are said to be incompatible if they can not be served by the same facility. Let I be
the set of clients and J denotes the set of candidate facilities. To model incompatibility, we
define a graph GI = (I, EI) that has one node per client and edges e = (i, k) ∈ EI if clients i
and k are incompatible. The mathematical programming formulation of the SPLPI below uses
standard allocation variables xij and complementary location variables yj . The latter allow a
set packing formulation of the SPLP, as shown in Concepts. Standard notation fj and cij is
used respectively for opening and assignment costs.

(SPLPI) max
m�

j=1

fjyj +
n�

i=1

m�

j=1

(M − cij)xij −Mn−
m�

j=1

fj

s.t.
m�

j=1

xij ≤ 1 ∀i ∈ I (2.1)

xij + yj ≤ 1 ∀i ∈ I, ∀j ∈ J (2.2)

xij + xkj ≤ 1 ∀(i, k) ∈ EI , ∀j ∈ J (2.3)

xij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J

yj ∈ {0, 1} ∀j ∈ J.

Formulation (SPLPI) is the set packing formulation (SPLP≤) stated in Concepts plus in-
compatibility constraints (2.3). This is also a set packing problem, which is closely related to
two well-known variants of the SPLP, as shown in next section.

2.1.1 Related problems

The interest of most classical models in Discrete Location (p-median, p-center, covering, hub,
among others) has frequently promoted the emergence of a huge range of different variants (see
ReVelle & Eiselt, 2005). The SPLP is not an exception. As many problems in location, the
SPLP has its capacitated version, which arises when capacities of the facilities are limited and
clients demands are quantified. The demand of each client has to be satisfied while capacities
are not exceeded, see for instance Revelle & Laporte (1996). A different variant, the Fault-
Tolerant Facility Location problem (FTFL), arises when each client has to be assigned to several
facilities (see e.g. Swamy & Shmoys, 2008). Its name comes from the interpretation of the
multiple facilities as backups. In other cases, modifications concern the objective function. For
instance, some authors consider a maximum return-on-investment objective (see Brimberg &
ReVelle, 2000), which is more frequent in industrial decision making processes. Other variants
include multi-objective (see Current et al., 1990) or multi-product models (see Warszawski,
1973). Interested readers are invited to consult Revelle & Laporte (1996); Drezner & Hamacher
(2002); Laporte et al. (2015) for a more extensive review.

This section illustrates the relation between (SPLPI) and some of the variants of the SPLP
previously studied in the literature. Concretely, (SPLPI) leaves the FTFL as particular case,
and partially describes the feasible region of the multiproduct SPLP.

Introducing incompatibilities 29

Figure 2.1: Illustration of formulations (FTFL) and (FTFLI)

The Fault-Tolerant Facility Location problem

The FTFL is identical to the SPLP except for the fact that each client i ∈ I must be allocated
to ri ≥ 1 facilities. A mathematical programming formulation of the problem is (see Swamy &
Shmoys, 2008)

(FTFL) min

m�

j=1

fjy
�
j +

n�

i=1

m�

j=1

cijxij

s.t.
�m

j=1 xij ≥ ri ∀i ∈ I

xij ≤ y�j ∀i ∈ I, ∀j ∈ J

xij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J

y�j ∈ {0, 1} ∀j ∈ J.

Alternatively to (FTFL), the new condition can be stated by replicating client i ri − 1 times,
obtaining ri distinct clients with simple assignment requirements. With this transformation,
the allocations in each group of ri clients must be to ri different facilities. But this is to say
that the ri copies of client i have to be served by different facilities, i.e., they are pairwise
incompatible. With this idea and the following new x-variables

xkij = 1 iff copy k of client i is served by facility at j , i ∈ I, j ∈ J , k = 1, . . . , ri,

an alternative formulation of the FTFL is

(FTFLI)min

m�

j=1

fjy
�
j +

n�

i=1

m�

j=1

cij
� ri�

k=1

xkij
�

s.t.
m�

j=1

xkij = 1 ∀i ∈ I, ∀k = 1, . . . , ri

ri�

k=1

xkij ≤ 1 ∀i ∈ I, ∀j ∈ J (2.4)

xkij ≤ y�j ∀i ∈ I, ∀j ∈ J, ∀k = 1, . . . , ri

xkij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J, ∀k = 1, . . . , ri

y�j ∈ {0, 1} ∀j ∈ J.

Constraints (2.4) ensure that copies of one client are not assigned to the same facility. The
rest are typical SPLP constraints. Note that (FTFLI) could become a set packing formulation

30 The SPLP with incompatibilities

by using the complementary variables yj = 1 − y�j . The resulting formulation will clearly
correspond to a particular case of (SPLPI), where constraints (2.4) account for an improved
version of (2.3). In this particular case, incompatibility constraints are not added by pairs of
nodes but by subgroups of ri incompatible clients, which form a clique in GI , i = 1, . . . , n.

Figure 2.1 gives a graphical illustration of the differences between formulations (FTFL) and
(FTFLI) on its left and right hand sides, respectively. The figure depicts three facilities, eight
clients and links representing client-facility allocations. On the left, multiple links to the same
client are drawn while, on the right, links are simple and clients are replicated zero, one or two
times.

The multiproduct Simple Plant Location Problem

In the multiproduct extension of the SPLP, which we will call MPLP, a firm elaborates different
types of products from a set S = {1, . . . , w}, which are distributed among its clients. Each
client i demands a product type si ∈ S and each facility will be specialized in the production of
only one product type. The firm has to decide where to install the facilities and which product
type they will produce. Installing the machinery to produce product s at any facility has cost
gs, for each s ∈ S. Depending on the type of product they demand, clients will be assigned to
facilities. Using standard allocation variables and the following location variables

y�js = 1 if facility j is opened and makes products of type s, j ∈ J , s ∈ S,

a formulation of the multiproduct extension is

(MPLP) min
m�

j=1

w�

s=1

(fj + gs)y
�
js +

n�

i=1

m�

j=1

cijxij

s.t.
m�

j=1

xij = 1 ∀i ∈ I

xij ≤ y�jsi ∀i ∈ I, ∀j ∈ J (2.5)

xij ≤ 1− y�js ∀i ∈ I, ∀j ∈ J, ∀s ∈ S, s �= si (2.6)
w�

s=1

yjs ≤ 1 ∀j ∈ J (2.7)

xij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J

y�js ∈ {0, 1} ∀i ∈ I, ∀s ∈ S.

Constraints (2.5) ensure that a client can be served by a facility only if the latter is opened and
makes the product that the client demands. On the other hand, constraints (2.6) guarantee
that facilities only serve clients that demand the type of product they produce. Finally, (2.7)
state that each facility is specialized in one product at most.

Since clients that demand different types of product cannot be served by the same facility,
an alternative approach to the problem is to consider them as incompatible clients. If so,
the second subscript of variables y can be removed, and standard location variables can be
considered. Finally, introducing a new variable to keep track of specializing costs,

vj =cost of specializing facility j if j is open and 0 otherwise,

The SPLPI polytope 31

the following is a valid formulation of the MPLP:

(MPLPI)min
m�

j=1

(fjy
�
j + vj) +

n�

i=1

m�

j=1

cijxij

s.t.
m�

j=1

xij = 1 ∀i ∈ I

xij ≤ y�j ∀i ∈ I, ∀j ∈ J

xij + xkj ≤ 1 ∀i, k ∈ I, ∀j ∈ J, si �= sk (2.8)

gsixij ≤ vj ∀i ∈ I, ∀j ∈ J (2.9)

xij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J

y�j ∈ {0, 1} ∀j ∈ J.

Incompatibilities between clients are represented by set packing constraints (2.8), while (2.9)
ensure that variables v take the desired values. Considering complementary variables yj = 1−y�j
allows to transform (MPLPI) into a formulation close to set packing. Note that, except for
variables v and associated constraints (2.9), (MPLPI) after the transformation would be a par-
ticular case of (SPLPI). The graph of clients incompatibilities would depend on the intersection
of the different sets of products they demand.

Some authors consider a different version of the MPLP, in which each client can demand
products of more than one type, while every open facility still produces products of only one
type, see Warszawski (1973). Consequently, clients can be served by more than one facility
here. An approach that uses clients incompatibilities can be used to model the problem, in a
very similar way as described for the simpler version of the MPLP.

2.2 The SPLPI polytope

The SPLPI polytope is the convex hull of all the feasible solutions of formulation (SPLPI),
that is

Bsplpi := conv{(x, y) ∈ {0, 1}n×m × {0, 1}m : (2.1)− (2.3)}.

It is clear that Bsplpi is included in the polytope of the set packing formulation of the SPLP,
(SPLP≤). Nevertheless, being (SPLPI) a set packing, Bsplpi is still of complete dimension.

To study the facial arrangement of Bsplpi, we will exploit the set packing structure of the
problem constraints. Such feature allows identification between (SPLPI) and its conflict graph,
which we will call Gsplpi. As described in Concepts for general set packings, a feasible solution
of (SPLPI) corresponds with a node packing of Gsplpi. In fact, according to Concepts, BGsplpi

would be the notation for the packing polytope of (SPLPI), but here we have simplified it to
Bsplpi.

Before investigating the facial structure of Bsplpi, we need to understand conflict graph
Gsplpi. This graph inherits some characteristic layout from formulation (SPLP≤). Because of
constraints (2.1), x-nodes are grouped in n groups of m nodes, each group inducing a complete
subgraph. On the other hand, due to constraints (2.2), every y-node is adjacent to only one
node of every group. Constraints (2.3) of (SPLPI) disrupt this balanced structure in a way
that directly depends on the incompatibility graph GI . The following example illustrates the
relation between GI and Gsplpi.

32 The SPLP with incompatibilities

1 2

3 4
1 2 3 4 511 21

31 41
1 2

3 4
5

Figure 2.2: Example of graph G of incompatibilities and conflict graph Gsplpi when n = 5 and
m = 4

Example 2.1. Figure 2.2 shows GI and Gsplpi when m = 4 and n = 5. On the left-hand
side, GI depicts incompatibilities between clients 1 and 3, 3 and 4 and 4 and 5. On the
right, square nodes represent variables y and are numbered from 1 to 4, while circular nodes
stand for variables x, and are arranged by clients in 5 groups. Nodes of the first group are
tagged with their subscripts in (SPLPI). It can be noticed that nodes of a group correspond
with x-variables with same index i and different indices j from 1 to m. Continuous edges in
Gsplpi correspond with constraints of the original SPLP, while dashed edges correspond with
incompatibility constraints (2.3). It can be easily observed that each edge (i, k) in GI originates
an edge between nodes (xij , xkj) for each j ∈ J . �

2.3 Facets and separation

In this section, we investigate the facial structure of Bsplpi, identifying inequalities that were also
facets of (SPLP≤) but focusing on those that are facets only of the restricted polytope Bsplpi.
This section also presents separation algorithms to manage the discovered facets inside a branch
and cut procedure. Non-expert readers are invited to revisit Concepts for an introduction to
Polyhedral Theory, Integer Programming and solving techniques.

Since nodes of x-variables in Gsplpi can always be grouped in n complete subgraphs, we
will name those subgraphs X1, . . . , Xn. Note that each of them gives the information about a
client, therefore it will be natural to identify each client i with Xi throughout the section. We
will also call x-nodes and y-nodes those corresponding with variables xij and yj , respectively.
As it commonly occurs for set packing problems, facets of Bsplpi will be identified by means of
certain subgraphs of Gsplpi. Then we will just speak of a facet of a subgraph to refer to a facet
of the associated packing polytope.

The core of this section describes the analysis made to obtain facets from two types of
subgraphs in Gsplpi, namely cliques and odd holes. These subgraphs emerge in Gsplpi as a
consequence of similar structures defined by the incompatibilities between clients. As illustrated
by Figure 2.2, our conflict graph consists of a fixed layout given by (2.1) and (2.2) plus a set
of some additional edges due to (2.3). These edges are incident to nodes of different groups
Xi and same subscript j, but we do not know a priori which are those groups. This fact will
give rise to natural difficulties when exploring the layout of Gsplpi for a general graph GI of
clients incompatibilities. Nevertheless, some interesting research can certainly be done without
imposing additional conditions to GI . Indeed, we will enumerate all the clique facets of Bsplpi

in the most general case. In the case of hole inequalities, the theoretical development starts

Facets and separation 33

1 2 3 4

1 2

3 4

1
2

3
4

Figure 2.3: Three incompatible clients in GI and corresponding cliques in Gsplpi

from a general GI and will arrive at further conclusions when some particular properties are
assumed.

2.3.1 Clique facets

Maximal complete subgraphs induce facets of the conflict graph that are called clique facets.
It is known that

�m
j=1 xij ≤ 1 for all i ∈ I and xij + yj ≤ 1 for all i ∈ I and j ∈ J are the

only clique facets of the SPLP packing polytope (see Cornuéjols & Thizy, 1982). Starting from
this result, we explore whether these inequalities remain facets of (SPLPI) and whether the
additional constraints (2.3) introduce new clique facets. Unless stated otherwise, by clique we
will refer to a maximal complete subgraph or to the set of nodes which it consists of.

It is easy to observe that a clique in GI produces m cliques in Gsplpi. For each plant j and
clique C ⊆ I in GI , the set of nodes corresponding with yj and xij , i ∈ C, is a clique. The
following example illustrates this connection.

Example 2.2. Figure 2.3 depicts an instance of the SPLPI with three pairwise incompatible
clients and four plants. Incompatibility graph GI and conflict graph Gsplpi are shown on the
left and right hand sides of the figure, respectively. Continuous edges in GI highlight a clique
formed by clients 1, 2 and 3. It induces four cliques in Gsplpi, each one consisting of nodes yj ,
x1j , x2j and x3j , for j = 1, . . . , 4. On the right hand side of the figure, one of these cliques,
which corresponds with j = 1, is emphasized in continuous trace. �

The following proposition shows that these are the only new cliques that appear in Gsplpi

as a consequence of the inclusion of the incompatibility constraints (2.3).

Proposition 2.1. The only clique facets in SPLPI are:

(i)

m�

j=1

xij ≤ 1 for all i ∈ I.

(ii) yj +
�

i∈C
xij ≤ 1 for all j ∈ J and for all clique C ⊆ I in GI .

Proof. Let
�m

j=1 πjyj +
�m

j=1

�n
i=1 sijxij ≤ 1 be a clique facet of Bsplpi, where π = (πj) and

S = (sij) are both binary. It is clear that either π = 0 or πj = 1 for only one index j, since
for every subset of plants J � ⊆ J there is always a feasible solution with yj = 1 for all j ∈ J �.
In the latter case, sih = 0 for all h �= j and for all i due to the problem formulation. Then, let

34 The SPLP with incompatibilities

C ⊆ I be a subset such that sij = 1 iff i ∈ C. Since the initial facet is a clique facet, C induces
a clique in GI and we have an inequality of type (ii). Now, it is also clear from the maximality
that if π = 0, the initial facet is of type (i).

To complete the proof, it would remain to see that (i) and (ii) always define facets. On the
one hand, variables in (i) induce the complete subgraph Xi, which is also maximal. On the
other hand, variables in (ii) induce a clique in Gsplpi since C is a clique in GI and node yj is
adjacent to all nodes {xij : i ∈ C} due to (2.2). Thus, both (i) and (ii) are clique facets.

Note that, when |C| = 1, (ii) turns into (2.2), i.e., the SPLP clique constraint xij + yj ≤ 1,
where C = {i}. Our interest is then on facets of type (ii) when |C| > 1, since they are not
explicitly stated in the formulation of the problem. The number of these facets depends on the
number of cliques in GI , which can be large.

2.3.2 Separation of clique facets

Separating clique facets in set packing formulations substantiates on clique identification in the
conflict graph, Gsplpi in our case. Indeed, given a fractional solution, searching for the most
violated clique facet is equivalent to identifying the maximum weight clique in a weighted graph.
Consequently, clique separation, like most versions of the clique problem, is computationally
hard, see Karp (1972). It is worth mentioning, though, that there are some kind of graphs
that admit an efficient implementation of the maximum clique search. For instance, Grötschel
et al. (1984) showed that, when a graph is perfect, the weighted clique problem is solvable in
polynomial time. Perfect graphs are those for which its clique and coloring numbers coincide.
That is, the number of nodes of the maximum clique coincides with the minimum number of
colors needed to color the nodes in such a way that adjacent nodes have different colors.

Clique inequalities appear in a huge variety of combinatorial optimization problems, such
as multi-index assignment (Balas & Saltzman, 1989; Magos & Mourtos, 2009), winner deter-
mination (Escudero et al., 2008) or vehicle routing (Spoorendonk, 2008). In most of the cases,
there are too many of these inequalities to be treated all at once, and they need to be separated.
Although considerable effort has been invested in developing separation procedures for clique
inequalities (see e.g. Escudero et al., 2008; Magos & Mourtos, 2009), most of these attempts are
particularized to the specific model in study. On the one hand, this kind of approach allows to
exploit particular structures of each concrete formulation; on the other hand the possibilities of
taking advantage of previous contributions when facing the same problem in a different model
are scarce.

Here, we also present an ad-hoc separation strategy. Given that maximum clique is a
well studied problem, a natural strategy to approach separation is to make use of the existing
knowledge about clique searching in undirected graphs. The hardness of the problem, together
with quadratic size of Gsplpi in m and n, can be discouraging. Of course, expecting an excellent
performance in all cases would be unrealistic, but separation can be advantageous as long as it
is carefully implemented. In our case, we have considered an efficient algorithm to find all the
cliques of a graph and shaped it at our convenience to exploit our problem characteristics. In
the following subsections, we introduce the original algorithm first and explain how to adapt
it to find violated clique facets in SPLPI afterwards.

Finding all cliques of a graph

The problem of finding all cliques of an undirected graph was effectively tackled and solved in
Bron & Kerbosch (1973). They proposed a backtracking algorithm with the advantage that it

Facets and separation 35

does not report duplicated cliques, nor subgraphs of cliques.

The algorithm consists in a main recursive procedure which maintains three subsets of
nodes: compsub, candidates and not. The first set, compsub, keeps the nodes of the clique in
construction; candidates is the set of nodes that could potentially extend the current clique
(every node in candidates is adjacent to every node in compsub); finally, not contains nodes
that, in a previous step of the recursion, served as an extension of the current clique in con-
struction, compsub. To obtain all the cliques of the graph, this main procedure is called in first
place with arguments candidates = V , compsub = ∅ and not = ∅. When this first call returns,
all cliques of the graph have been enumerated. One recursive call ends when candidates = ∅
or when the search is pruned. If candidates = ∅ and not is non-empty, compsub is part of
an already generated clique, and it is discarded. Otherwise, if both candidates and not are
empty sets, compsub is a new clique. On the other hand if, at some stage of the algorithm, set
not contains a point adjacent to all points of candidates, it can be predicted that no further
extensions of compsub will lead to a new clique. If such situation is detected, the recursive call
returns (prune).

Algorithm 2.1 shows a scheme of this recursive procedure, together with the auxiliary
function that checks if a branch of the clique search has to be pruned. The selection of a
candidate in line 8 can be done by following different criteria. Bron & Kerbosch (1973) followed
an early pruning strategy, which we have also used in our implementation.

Our clique separation algorithm

The main ingredients in our separation algorithm are the conflict graph Gsplpi and a fractional
solution of (SPLPI) that corresponds to the linear relaxation of the current node of the
branch and bound tree. We will identify such solution with weights of the corresponding
nodes in Gsplpi. Then, we will look for cliques in Gsplpi with total weight greater than one
or, equivalently, violated clique facets. We recall that the only clique facets of Bsplpi that are
not in the formulation, which are the ones to separate, are facets (ii) of Proposition 2.1 with
|C| > 1.

We incorporated the algorithm proposed by Bron and Kerbosch in the separation process,
and we applied it to Gsplpi. We modified this algorithm considering the following observations.
First, due to Proposition 2.1, a violated clique will always include only one y-node. This fact
yields immediately from Proposition 2.1. Second, any node with weight equal to 1 will never be
in a violated clique. Finally, if the total weight of compsub and candidates is less than or equal
to 1, the corresponding branch can be pruned. Our separation algorithm basically consists in
calling the procedure of Bron and Kerbosch with compsub = {yj}, candidates = N(yj) \ {xij :
w(xij) = 1} for all plants j such that w(yj) �= 1 and not = ∅ (we denote with w(·) the
weight function on graph Gsplpi, which coincides with the solution of the current relaxation).
Our implementation of the algorithm includes a slight modification in the pruning criterion
(to discard few weighted cliques) and only reports violated cliques. To lighten Gsplpi, edges
between yj and xij are not considered if client i has no incompatibilities or that assignment
is not allowed (cost cij is infinite). Despite the modifications included, our implementation is
exhaustive: it finds all violated cliques in Gsplpi.

In Section 2.3.1 we have shown that one clique C ⊆ I in GI produces m cliques in Gsplpi

as “copies” of C for the different plants. Conversely, the described separation systematically
looks for cliques in Gsplpi, without leveraging its relation with GI . The reason for this is that
working directly on Gsplpi allows to use information about the solution of the relaxation as
node weights and consequently exploits it to prune the search. Such strategy turned out to be

36 The SPLP with incompatibilities

Algorithm 2.1 Finding all cliques of an undirected graph, Bron & Kerbosch (1973)

0: global variables

1: G = (V,E), global var

2: compsub = ∅, global var
3: end global variables

4: procedure Extend(candidates, not)

5: new candidates, local var

6: new not, local var

7: while ¬ TestPrune(candidates, not) do

8: v=SelectNode(candidates)

9: Add v to compsub

10: Copy candidates in new candidates

11: Copy not in new not

12: for all u ∈ new candidates do

13: if (u, v) /∈ E then Remove u from new candidates

14: end if

15: end for

16: for all u ∈ new not do

17: if (u, v) /∈ E then

18: remove u from new not

19: end if

20: end for

21: if new not = ∅ and new candidates = ∅ then

22: store compsub as new clique

23: else if new candidates <> ∅ then

24: Extend(new candidates, new not)

25: end if

26: Remove v from compsub

27: Add v to not.

28: end while

29: end procedure

30: function TestPrune(candidates, not)

31: prune=false, local var

32: allAdj, local var

33: for all u ∈ not do

34: allAdj=true

35: for all v ∈ candidates do

36: if (u, v) /∈ E then

37: allAdj=false

38: stop loop

39: end if

40: end for

41: prune = allAdj

42: if prune then

43: stop loop

44: end if

45: end for

46: return prune

47: end function

Facets and separation 37

more advantageous than a systematic search for cliques on GI plus violation check out of the
copies in Gsplpi. The performance of our clique separation strategy is extensively analyzed in
upcoming Section 2.4, were computational tests on a set of benchmarks are reported.

2.3.3 Hole inequalities

An odd hole (1, . . . , r) defines the facet
�r

v=1 tv ≤ � r2� . In a similar way as it happened
to cliques, holes of Gsplpi can be obtained from certain structures in GI . Concretely, in this
section we will address three different types of holes in Gsplpi, which are obtained from holes
and paths of GI . The following example shows these three cases when the length of the hole
or path in GI is as short as possible.

Example 2.3. Figure 2.4 is composed by three subfigures, which depict three pairs of different
structures in GI coupled with their corresponding odd holes in Gsplpi. The left-hand sides of
the three subfigures refer to the same incompatibility graph, but different holes and a path are
emphasized in continuous trace in each case. Next to them, odd holes in the corresponding
conflict graph of (SPLPI) are shown in each of the three cases. In these examples, we take
m = 4 and for the sake of clarity we omit y-nodes when they are not relevant. Figure 2.4a
shows how an odd hole in GI produces an odd hole in Gsplpi. On the left hand side of this
subfigure we see an odd hole induced by clients 1, . . . , 5, while on its right hand side the same
hole is reproduced by taking the first node from each client group X1, . . . , X5. Similarly, we
can find holes of the same type but choosing the second, the third. . . node in each group.
Figure 2.4b illustrates how we can obtain an odd hole in Gsplpi from a hole of arbitrary length
in GI . The left hand side of this subfigure shows a hole of length four in GI , composed by
nodes of clients 4, . . . , 7. On the right hand side, the incompatibility edges corresponding with
the previous hole allow the formation of a hole of length seven in Gsplpi. This hole is made of
two nodes of each subgraph X4, X6 and X7 and one node of X5. Finally, Figure 2.4c relates
non-closed paths of any length in GI with odd holes in Gsplpi. Path �3, 4, 7� in GI produces an
odd hole in Gsplpi made of two nodes of each X3, X4, X7 plus one y-node. �

In the following, we generalize Example 2.3 and present three families of odd-hole in-
equalities of Gsplpi for arbitrary large holes in Gsplpi. In our analysis, we will use either
H = (i1, i2, . . . , i�) to denote a hole in GI of length � or P = �i1, i2, . . . , i�� to denote a path
without chords in GI of length �− 1, ir ∈ I, r = 1, . . . , � . Linked to H or P , we will take an
odd hole in Gsplpi, which we will name Hsplpi. We denote by ΠHsplpi

the odd-hole inequality

produced by Hsplpi, x(Hsplpi) + y(Hsplpi) ≤
� |Hsplpi|

2

�
, where x(Hsplpi) (resp. y(Hsplpi)) repre-

sents the sum of x-variables (resp. y-variables) corresponding with the nodes of Hsplpi. These
variables will be indexed by the clients in H or P , depending on the case (note that nodes in H
are also indices of I, and the same happens for P). Without loss of generality, we will assume
from now on that ir = r, r = 1, . . . , �, i.e., we consider either a hole H = (1, . . . , �) or a path
without chords P = �1, . . . , �� in GI . To refer to these nodes as clients indices, we will use the
notation IH = {1, . . . , �} in the case of H and IP = {1, . . . , �} in the case of P . For the sake of
consistency, we will denote the plant indices taking part in ΠHsplpi

as JH or JP , depending on
the case.

We will study three types of holes in Gsplpi and their corresponding inequalities. For the
sake of simplicity in the exposition, we will use xij and yj also to denote the nodes of Gsplpi

that correspond with these variables. We will also use Hsplpi indistinctly to refer to the nodes
of the hole or to the hole itself.

38 The SPLP with incompatibilities

1

2

3
4

5 6

74
5 6

7
3

2
1

11 12
13 14

4

(a) From odd hole of GI

1

2

3
4

5 6

74
5 6

7
3

2
1

4

(b) From hole of GI

1

2

3
4

5 6

74
5 6

7
3

2
1

4

1
(c) From path of GI

Figure 2.4: Three ways of extracting holes of Gsplpi

Facets and separation 39

(a) When H = (1, . . . , �) and � is odd, once an index j is fixed, we take

Hsplpi = (x1j , . . . , x�j),

the hole composed of nodes (i.e. variables) xij , i ∈ IH (i.e. one node of Xi, i ∈ IH). In
this case JH = {j}. The corresponding valid inequality for the set packing formulation is

�

i∈IH
xij ≤

�− 1

2
. (2.10)

Figure 2.4a shows a hole of this type when � = 5, which would produce inequality
x11 + x21 + x31 + x41 + x51 ≤ 2.

(b) When H = (1, . . . , �) (� odd or even), we take

Hsplpi = (x1j1 , x2j1 , x2j2 , x3j2 , x3j3 , . . . , x�−1,j�−1
, x�j�−1

, x�j1),

jr ∈ J , jr �= jr−1 for all r = 2, . . . , �− 1 (i.e. one node of X1 and two nodes of every Xi,
i ∈ IH \ {1}), which gives rise to the valid inequality

�−1�

i=1

(xiji + xi+1,ji) + x�j1 ≤ �− 1. (2.11)

We will refer the set of different plant indices in {j1, j2, . . . , j�−1} as JH . It is important
to notice that these indices must be chosen so that Hsplpi does not contain chords (i.e.,
j1 �= j3, j2 �= j4, j3 �= j5 . . .). Figure 2.4b depicts this type of hole when � = 4, producing
inequality x51 + x61 + x62 + x72 + x73 + x43 + x41 ≤ 3 in this case.

(c) When P = �1, . . . , �� (� odd or even), we consider

Hsplpi = (yj1 , x1j1 , x1j2 , x2j2 , x2j3 , . . . , x�j� , x�j1),

jr ∈ J , jr �= jr−1 for all r = 2, . . . , � (i.e. two nodes of Xi, i ∈ IP , plus one y-node),
which gives rise to the valid inequality

yj1 +
�−1�

i=1

(xiji + xiji+1) + x�j� + x�j1 ≤ �. (2.12)

We will refer the set of different plant indices in {jr : r = 1, . . . , �} as JP . Again, there
are some requirements on these indices to avoid chords in the produced hole. Concretely,
jr �= jr+2 ∀r = 2, . . . , � − 2 avoids chords between nodes of consecutive subgraphs Xi,
i ∈ IP , and jr �= j1 ∀r = 2, . . . , � forbids chords between yj1 and x-nodes of Hsplpi.
Figure 2.4c depicts this type of hole when � = 3, which has the associated inequality
y1 + x31 + x32 + x42 + x43 + x73 + x71 ≤ 3.

Expressions (2.10), (2.11) and (2.12) are facets of the set packing restricted to the corre-
sponding Hsplpi and valid inequalities for (SPLPI). In the following, we show how to lift these
three families of inequalities so that they become facets of (SPLPI), i.e., facets of the set packing
problem over the whole graph Gsplpi. The next subsection describes specific lifting procedures
for the three cases and concludes with a separation algorithm to manage the resulting three
types of facets together.

40 The SPLP with incompatibilities

1

2

3

4

5

74
6
732

1 5 66

7

8

9

10

11

C
C

C
C
C1

2

3
4

5
Ĝ

Figure 2.5: Application of Theorem 1.1 to hole of type (a) on Figure 2.4a

2.3.4 Lifting of odd holes

This subsection is devoted to the lifting of (2.10), (2.11) and (2.12). There are some results
that will help in the lifting, namely Theorem 1.1 stated and proved in Chapter 1 and sequential
lifting. For sequential lifting, we recall that variables are added one by one to the left hand
side of the inequality at hand, with some coefficient that needs to be calculated. The right
hand side and non-zero-coefficients of the original inequality remain unmodified. We invite the
reader to revisit Concepts for an illustrative example of sequential lifting.

The remaining of the subsection is divided in three parts, one devoted to the lifting of each
hole inequality (2.10)-(2.12). For the three cases, lifting coefficients will depend to some extent
on incompatibilities between clients. In a first part, designated to holes of type (a), (2.10)
is transformed into a facet of Bsplpi by using just sequential lifting. In this first case, we will
show that application of Theorem 1.1 (when appropriate) would have produced the same lifting
coefficients. Afterwards, we will pay attention to holes of type (b), which present additional
interest. First, these holes are odd by definition, despite the length of the corresponding H in
GI , i.e., despite the fact that H might be even. To our knowledge, there is no precedence of
even holes as relevant objects in set packing. Secondly, the lifting of (2.11) we present is far
from being a routine task; we will need Theorem 1.1 in addition to sequential lifting. Analysis
of holes of type (c) concludes the section with the lifting of (2.12). The proof sketch will be
very similar to that of (2.11), based on Theorem 1.1 first and completed with sequential lifting
afterwards.

a. Lifting of hole inequality (2.10)

We open this first subdivision with an illustrative example of the application of Theorem 1.1
to a hole of type (a). The conflict graph we use was previously introduced by Example 2.3 and
corresponding Figure 2.4a.

Example 2.4. Figure 2.5 illustrates identification of elements of Theorem 1.1 on the hole
of Figure 2.4a. This hole of length � = 5, Hsplpi = (x11, x21, x31, x41, x51), is the graph G
in Theorem 1.1 for which a facet is known, 1

2(x11 + x21 + x31 + x41 + x51) ≤ 1 in this case.
Complete subgraphs Cr are given by nodes of Hsplpi belonging to the same Xi, i.e., Ci = {xi1}
for i = 1, . . . , 5. For any plant j /∈ JH = {1}, nodes xij with i ∈ IH = {1, . . . , 5} and node
yj will play the role of n + 1, . . . , n + q and n + q + 1 of the theorem, respectively. In the
example, n = 5, q is equal to � = 5 and j = 4. The subgraph Ĝ of the theorem is then hole

Facets and separation 41

Ĝ = (x14, x24, x34, x44, x54), whose edges are depicted with dashed black lines on Figure 2.5.
Once identified the layout described by the theorem, we have that the value of α̂0 is

α̂0 = max{|S| : S is a vertex packing in Ĝ} = 2.

Since βα̂0 ≤ 1 by definition, condition α̂0 �= βα̂0 of Theorem 1.1 holds and family of conditions
(1.2) becomes empty. As a consequence, one can derive a facet of the graph induced by
{xi1}5i=1 ∪ {xi4}5i=1 ∪ {y4} (G∗ in the theorem). To write such facet, according to the theorem
statement, we need to calculate βα̂0 , that is

βα̂0 = β2 = max {max{1
2

�5
i=1 xi1 : {xi1 : xi1 = 1} ∈ PHsplpi

, xi1 = 0 ∀i ∈ K}
: K ⊆ {1, . . . , 5}, |K| = 2 and {xi4 = 1}i∈K ∈ PĜ}.

Consider then a packing of cardinality 2 in Ĝ. A maximum vertex packing in G∗ that completes
the previous packing has 2 nodes of Hsplpi. Then, β2 = 1 and the theorem proves that 1

2(x11 +
x21 + x31 + x41 + x51) ≤ 1 is still a facet of the augmented graph G∗. �

Given a hole Hsplpi = (x1j , . . . , x�j) with � ≥ 5 and odd, Theorem 1.1 can be applied as
illustrated by Example 2.4 to lift the group of variables {x1h, . . . , x�h}∪{yh} for h �= j. Indeed,
Ĝ = (x1h, . . . , x�h) would be a hole of length �, which implies α̂0 =

�
�
2

�
. Since Ĝ and Hsplpi

are in general two odd holes linked by � edges displayed on a “wheel” layout, a maximum
packing in Ĝ of

�
�
2

�
can be completed with

�
�
2

�
“complementary nodes” of Hsplpi. This fact

implies that βα̂0 = 1, which ensures that the theorem conditions stand. Theorem 1.1 then
gives that the original hole inequality x1j + . . .+ x�j ≤

�
�
2

�
is a facet of the graph induced by

{xij}�i=1 ∪ {xih}�i=1 ∪ {yh}. Moreover, a similar argument proves that successive applications
of Theorem 1.1 yield the same facet for {xij}�i=1 ∪ (∪h�=j({xih}�i=1 ∪ {yh})).

The following proposition describes a set of variables that have zero coefficients in sequential
lifting, including xih and yh for any h �= j. In other words, sequential lifting produces the same
facet as Theorem 1.1 when applied to hole inequalities of type (a). Starting from (2.10), the
proof of the proposition presents a sequential lifting of variables by different groups, getting
an inequality of higher dimension in each step. We will denote the neighborhood of a client i
in GI as NGI

(i) = {k ∈ I : (i, k) ∈ EI}.

Proposition 2.2. Every sequential lifting of (2.10) produces coefficients 0 for the following
variables (recall that JH = {j}):

(i) yg with g �= j,

(ii) xig with i /∈ IH and g �= j,

(iii) xig with i ∈ IH and g �= j and

(iv) xij with i /∈ IH and NGI
(i) ∩ IH ≤ 2.

Moreover, yj has coefficient �−1
2 .

Proof.

(i) Despite the order in which we include variables during the lifting process, coefficients
of yg-variables are 0 if g �= j, since yg has no neighbors in Hsplpi.

(ii) For the same reason, xig has coefficient 0 if i /∈ IH and g �= j, in spite of the lifting
order.

42 The SPLP with incompatibilities

(iii) Observe now that every xig with i ∈ IH and g �= j has only one neighbor with its
coefficient in the lifted inequality different to 0, which is xij . This fact is due to (i) and
(ii) and thus it is independent of the lifting order. But it results then that coefficients
of the mentioned x-variables are also 0.

(iv) Consider the set of variables xij with i /∈ IH and NGI
(i) ∩ H ≤ 2. Pick one variable

of the set, xij . Despite the state of the lifting process, we can find a set packing of
�− 1 nodes in Hsplpi that does not include any neighbor of xij . This ensures that the
coefficient of xij in the lifted inequality is 0, despite the lifting order.

It remains to prove the last assertion of the proposition. To this end, observe that every
variable different to yj and its neighbors, which are xij for all i ∈ I, has lifting coefficient 0.
Therefore, every sequential lifting produces coefficient �−1

2 for yj .

Then, the resulting inequality after applying sequential lifting in arbitrary order would be

�− 1

2
yj +

�

i∈IH
xij +

�

i/∈IH :

NGI
(i)∩H>2

γixij ≤
�− 1

2
. (2.13)

Inequality (2.13) is the general form of the facet of Gsplpi obtained after applying sequential
lifting to (2.10). We have omitted in the formula those variables that have lifting coefficient 0 by
Proposition 2.2 and included yj with its lifting coefficient, also given in this result. Coefficients
γi will depend on the structure of the incompatibilities given by graph GI . Working out one
of these coefficients could be done by sequential lifting, but it will get increasingly harder for
the following nodes, since each coefficient depends on all the previous.

We have devised a procedure to calculate coefficients γi in (2.13) when � = 5. To present
it, we can assume that j = 1 in (2.13) without loss of generality. Consider then L a list that
contains all the nodes to be lifted. Initially, L := {xi1 : i /∈ IH , |NGI

(i) ∩ H| > 2}. We
will remove nodes from L as soon as we calculate its lifting coefficients, in the following order.
First, we will consider those nodes with |NGI

(i) ∩ H| = 5, then those with |NGI
(i) ∩ H| = 4

and nodes of clients with three neighbors in H will be taken in the last place. We will start
from the facet 2y1 +

�
i∈IH xi1 ≤ 2 of the subgraph induced by those nodes that are not in L.

(i) Nodes xi1 ∈ L, |NGI
(i)∩H| = 5. The first node we take in these conditions has coefficient

2. Moreover, we know that every node xt1 ∈ L that is not adjacent to xi1 has coefficient 0.
Therefore we can update the list of nodes to be lifted: L = L\({xt1 : (i, t) /∈ EI}∪{xi1}).
The next node we take from L fitting in this group will have again coefficient 2, since it
will be a neighbor of xi1. Updating L in the same manner and repeating the process as
many times as needed, we complete the lifting of this group of nodes.

(ii) Nodes xi1 ∈ L, |NGI
(i) ∩H| = 4. Nodes previously added to the initial facet will not be

relevant to calculate γi, since xi1 is adjacent to all of them.
Suppose that xi11 is the first node of this group that we are going to lift. We have γi1 = 1.
Let xk11 be the only node in Hsplpi such that (i1, k1) /∈ EI . Observe that nodes xt1 such
that client t is not adjacent to i1 nor k1 lift with coefficient 0. Remove those nodes from
L and take the next node xi21 in L such that |NGI

(i2) ∩H| = 4. Such a node will have
lifting coefficient 1. Let xk21 be the only node in Hsplpi such that (i2, k2) /∈ EI . Observe
that nodes xt1 such that client t is not adjacent to i2 nor k2 lift with coefficient 0, and
the same happens if t is not adjacent to i1 nor i2 and (i1, i2) /∈ E. At step r, let xkr1 be
the only node in Hsplpi such that (ir, kr) /∈ EI . Suppose that, in every step r, nodes xt1

Facets and separation 43

such that client t is not adjacent to ir nor kr are removed from L.
Statement: Given that xi11, . . . , xir−11 have been lifted with coefficient 1, consider, among
them, the subset of nodes that are not adjacent to xir1. If the subgraph induced by such
subset is a complete subgraph, then γir = 1.
Proof: A packing with xir1 = 1 contains one node from xi11, . . . , xir−11 at most, say xis1.
Such packing could include, at the most, the companion node xkr1. But, if (is, kr) /∈ E,
xis1 would have been deleted from L in a previous step. Then, exactly one of xis1 and
xkr1 are in any packing that contains xir1, which yields γir = 1.
Suppose that the subset of nodes among xi11, . . . , xir−11 that are not adjacent to xir1
induce a complete subgraph. To maintain this property in the upcoming steps, we must
remove some nodes from L. Concretely, those xt1 that are not adjacent to the new pairs
of non-adjacent nodes that arise from the inclusion of xir1 in the sequence of lifted nodes,
i.e., xt1 not adjacent to pairs xir1 and xis1, s = 1, . . . , r − 1, (is, ir /∈ E). Finally, in step
r we do γir = 1 and successively update:

L = L \ {xt1 : (ir, t) /∈ EI and (kr, t) /∈ EI},
L = L \ {xt1 : (ir, t) /∈ EI and (is, t) /∈ EI},

for all s = 1, . . . , r − 1 such that xis1 is not adjacent to xir1.

(iii) Nodes xi1 ∈ L, |NGI
(i) ∩ H| = 3. We will only consider nodes with three consecutive

neighbors in H (otherwise γi = 0). Given xir1 a node in this group, let xkr,1 and xhr,1

be such that (ir, kr) /∈ EI and (ir, hr) /∈ EI . Consider the first node to be lifted, xi11.
In a packing with xi11 = 1, at most one from xk1,1 and xh1,1 can be included. Due to
the strategy we are following, no other node with non-zero coefficient can be included
in the packing. Then, γi1 = 1. Next, we update L, removing those nodes that we
can assure that have zero coefficient, i.e., L = L \

�
{xt1 : (i1, t) /∈ EI and (k1, t) /∈

EI}
�{xt1 : (i1, t) /∈ EI and (h1, t) /∈ EI}

�
. The general case is analogous to that of the

previous group of nodes. By induction, assume that xi11, . . . , xir−11 have been lifted with
coefficient 1 and that the set of non-adjacent nodes to xir1 among that sequence induce
a complete subgraph. Then, γir = 1. Moreover, after the following modifications

L = L \ {xt1 : (ir, t) /∈ EI and (kr, t) /∈ EI},
L = L \ {xt1 : (ir, t) /∈ EI and (hr, t) /∈ EI},
L = L \ {xt1 : (ir, t) /∈ EI and (is, t) /∈ EI},

for all s = 1, . . . , r− 1 such that xis1 is not adjacent to xir1, the next node taken from L
will have lifting coefficient 1.

b. Lifting of hole inequality (2.11)

Here, we lift hole inequalities of type (b) by using Theorem 1.1 several times and sequential
lifting afterwards. The following example illustrates the application of Theorem 1.1 to the most
basic hole described by Example 2.3 and corresponding Figure 2.4b.

Example 2.5. Figure 2.6 shows a hole of length seven on its right hand side, Hsplpi =
(x51, x61, x62, x72, x73, x43, x41), produced by the hole of length � = 4 depicted on the left.
In order to lift the corresponding inequality, x51 + x61 + x62 + x72 + x73 + x43 + x41 ≤ 3,
with Theorem 1.1, the following elements are identified. First, C1 = {x51}, C2 = {x61, x62},
C3 = {x72, x73}, C4 = {x43, x41} induce complete subgraphs. Then, x5h, x6h, x7h and x4h with

44 The SPLP with incompatibilities

1

2

3

4

5

74
6
732

1 5 68 9

1011

C
CC

C1 2

34
Ĝ

12
Figure 2.6: Application of Theorem 1.1 to hole of type (b) on Figure 2.4b

h = 4 /∈ JH = {1, 2, 3} will play the role of n + 1, . . . , n + q of the theorem (note that n = 7
and q would be equal to � = 4 in this case). Node yh is identified with node n + q + 1 of the
theorem. Observe that then Ĝ would be a hole of length four, Ĝ = (x44, x54, x64, x74), depicted
with dashed black lines on Figure 2.6. Consequently,

α̂0 = max{|S| : S is a vertex packing in Ĝ} = 2,

condition α̂0 �= βα̂0 of Theorem 1.1 holds (since βα̂0 ≤ 1 by definition) and family of conditions
(1.2) becomes empty. To obtain the facet given by the theorem, βα̂0 = β2 has to be computed
as

β2 = max {max{1
3(x51 + x61 + x62 + x72 + x73 + x43 + x41) :

{xij ∈ Hsplpi : xij = 1} ∈ PHsplpi
, xij = 0 ∀i ∈ K,xij ∈ Hsplpi}

: K ⊆ {4, 5, 6, 7}, |K| = 2 and {xi4 = 1}i∈K ∈ PĜ}.
Consider a packing of cardinality 2 in the cycle (x44, x54, x64, x74). To extend this packing, we
build a vertex packing with no nodes of two of the complete subgraphs Cr’s, say Cr1 and Cr2 .
We can always include in the packing one node of each Ci at most, i �= r1, r2, which yields
β2 = 2/3. The theorem states that

2− 1

3
(x51 + x61 + x62 + x72 + x73 + x43 + x41) +

�
1− 2

3

��
y4 +

7�

i=4

xi4

�
≤ 2− 2

3
,

which simplifies to

x51 + x61 + x62 + x72 + x73 + x43 + x41 + y4 +
7�

i=4

xi4 ≤ 4,

is a facet of the graph induced by x51, x61, x62, x72, x73, x43, x41, y4, x44, x54, x64, x74. �
Let us consider now a general hole of type (b) in the conflict graph, Hsplpi = (x1j1 , x2j1 ,

x2j2 , x3j2 , x3j3 , . . . , x�−1,j�−1
, x�j�−1

, x�j1), and recall that IH and JH are the different clients
and plants indices in Hsplpi. Consider the associated hole inequality in the form of πt ≤ 1 in
the theorem, i.e., with a 1 in its right-hand side:

1

�− 1

� �−1�

i=1

(xiji + xi+1,ji) + x�j1

�
≤ 1. (2.14)

Facets and separation 45

Inequality (2.14) defines a facet of the graph induced by Hsplpi, Gsplpi[Hsplpi], Padberg (1973).

To apply Theorem 1.1, we can identify the elements that appear in it in the following
way: q = �, C1 = {x1j1}, Ci = {xi,ji−1 , xiji}, i = 2, . . . , � − 1, C� = {x�,j�−1

, x�j1} and
G = Gsplpi[Hsplpi]. Observe now that, when a plant J1 /∈ JH is fixed, variables yJ1 and xiJ1
for all i = 1, . . . , � can be identified with xn+q+1 and xn+i of Theorem 1.1, i = 1, . . . , q (see
again Figure 2.6 to illustrate case � = 4). Before applying Theorem 1.1, we have to check that
the required conditions are met in this scenario. Since xiJ1 with i = 1, . . . , � induce a hole, a
maximum packing of these nodes has cardinality ��/2�. On the other hand, since Ci are disjoint
parts of the hole Hsplpi, any packing in G∗ can satisfy

�
j∈Ci

xj = 1 for every i = 2, . . . , q such
that node n+ i is not in the packing. Coefficients α̂0 and βk, k = 2, . . . , α̂0, are then:

α̂0 =

�
�

2

�
, βk =

�− k

�− 1
.

The condition of the theorem, α̂0 �= βα̂0(=
�−��/2�
�−1) is true when � > 3. Conditions (1.2) are in

this case:

�− k

�− 1
≤ 1−

(k − 1)(1− �−��/2�
�−1)

�
�
2

�
− 1

∀k = 2, . . . ,

�
�

2

�
− 1,

which, after simplifications, turn to stand as equalities. Therefore, assuming that � ≥ 4, we
can apply Theorem 1.1 to lift (2.14) and get the inequality

α̂0 − 1

�− 1

� �−1�

i=1

(xiji + xi+1,ji) + x�j1

�
+ (1− βα̂0)

�
yJ1 +

��

i=1

xiJ1

�
≤ α̂0 − βα̂0 .

To simplify this last inequality, note that

1− βα̂0 = 1−
�
�
2

�

�− 1
=

�− 1−
�
�
2

�

�− 1
=

�
�
2

�
− 1

�− 1
, and

α̂0 − βα̂0 =

�
�

2

�
−

�
�
2

�

�− 1
=

� ·
�
�
2

�
−

�
�
2

�
−

�
�
2

�

�− 1
=

� ·
�
�
2

�
− �

�− 1
= � ·

�
�
2

�
− 1

�− 1
.

Then, the lifted inequality of the theorem is

1

�

� �−1�

i=1

(xiji + xi+1,ji) + x�j1 + yJ1 +
��

i=1

xiJ1

�
≤ 1. (2.15)

Conflict graph Gsplpi has a reiterative structure that allows to apply Theorem 1.1 succes-
sively. Take now G = Gsplpi[Hsplpi ∪ {yJ1} ∪ {x1J1 , . . . , x�J1}] with C1 = {x1j1 , x1J1}, Ci =
{xi,ji−1 , xiji , xiJ1}, i = 2, . . . , � − 1, and C� = {x�,j�−1

, x�j1 , x�J1}. Inequality (2.15) defines a
facet of such subgraph. Picking J2 /∈ JH ∪ {J1} and nodes yJ2 and xiJ2 for all i = 1, . . . , �, we
can repeat the previous steps to get a facet of the induced subgraph Gsplpi[Hsplpi ∪ {yJ1 , yJ2}∪
{x1J1 , . . . , x�J1}∪ {x1J2 , . . . , x�J2}]. The following result states that this process can be applied
as many times as elements are in J \ JH .

Proposition 2.3. Suppose that

Hsplpi = (x1j1 , x2j1 , x2j2 , x3j2 , x3j3 , . . . , x�−1,j�−1
, x�j�−1

, x�j1)

46 The SPLP with incompatibilities

is a hole in Gsplpi produced by a hole (1, . . . , �) in the incompatibility graph GI with � ≥ 4. Call
IH and JH the sets of different clients and plants indices in Hsplpi. Then

�−1�

i=1

(xiji + xi+1,ji) + x�j1 +
�

j∈J\JH

�
yj +

��

i=1

xij

�
≤ �+m− |JH |− 1 (2.16)

is a facet of Gsplpi

�
Hsplpi ∪

��
j∈J\JH{yj , x1j , . . . , x�j}

��
.

Proof. To verify this assertion, we proceed by induction. Suppose that J1, . . . , Jr /∈ JH are r
different plant indices. We want to prove that the following inequality is a facet of Gsplpi[Hsplpi∪
{yJ1 , . . . , yJr} ∪ {x1J1 , . . . , x�J1} ∪ · · · ∪ {x1Jr , . . . , x�Jr}]:

1

�+ r − 1

�
�−1�

i=1

(xiji + xi+1,ji) + x�j1 +

r�

t=1

�
yJt +

��

i=1

xiJt

��
≤ 1. (2.17)

Case r = 1 has been already proved and gives facet (2.15). Suppose then that (2.17) holds,
and take a new plant index Jr+1 /∈ JH ∪ {J1, . . . , Jr}. Since xiJr+1 with i = 1, . . . , � induce a
hole, α̂0 = ��/2�. To calculate βα̂0 , we follow a similar reasoning as before, taking into account
that yJ1 , . . . , yJr can also be included in packings. We have

α̂0 =

�
�

2

�
and βk =

�− k + r

�+ r − 1
.

Clearly, α̂0 �= βα̂0(=
�−��/2�+r
�+r−1). Conditions (1.2) are, for all k = 2, . . . ,

�
�
2

�
− 1,

�− k + r

�+ r − 1
≤ 1−

(k − 1)(1− �−��/2�+r
�+r−1)

��/2� − 1
,

which, after simplifications, turn to stand as equalities. Applying Theorem 1.1 we obtain

α̂0 − 1

�+ r − 1

�
�−1�

i=1

(xiji + xi+1,ji) + x�j1 +
r�

t=1

�
yJt +

��

i=1

xiJt

��

+(1− βα̂0)
�
yJr+1 +

��

i=1

xiJr+1

�
≤ α̂0 − βα̂0 .

Working out the values of the following coefficients

1− βα̂0 =
�+ r − 1−

�
�
2

�
− r

�+ r − 1
=

�
�
2

�
− 1

�+ r − 1

α̂0 − βα̂0 =
� ·

�
�
2

�
+ r ·

�
�
2

�
−

�
�
2

�
−

�
�
2

�
− r

�+ r − 1
=

(�+ r) ·
�
�
2

�
− (�+ r)

�+ r − 1

=
(�+ r) · (

�
�
2

�
− 1)

�+ r − 1
,

the previous inequality simplifies to:

1

�+ r

�
�−1�

i=1

(xiji + xi+1,ji) + x�j1 +
r+1�

t=1

�
yJt +

��

i=1

xiJt

��
≤ 1.

Facets and separation 47

As we have seen, Theorem 1.1 allows to lift a considerable number of variables in Gsplpi,
but we need to consider every variable in order to have a facet of Gsplpi instead of a subgraph
of it. To complete the lifting of inequality (2.11), we will proceed by case analysis and will
distinguish three groups of variables. For the sake of clarity, we will perform the analysis taking
� = 4 but the resulting facet can be also obtained for the general case by a similar reasoning.
On the other hand, note that the larger is an odd hole, the less likely is that it can be violated
and with � = 4 we already have a hole of length 7 in Gsplpi.

Assume that Hsplpi = (x11, x21, x22, x32, x33, x43, x41), where we have taken without loss
of generality the hole H = (1, 2, 3, 4) in the incompatibility graph GI , IH = {1, 2, 3, 4} and
JH = {1, 2, 3}. By Theorem 2.3, we have that

x11 + x21 + x22 + x32 + x33 + x43 + x41 +

m�

j=4

�
yj +

4�

i=1

xij

�
≤ m (2.18)

is a facet of Gsplpi

�
Hsplpi

���m
j=4{yj , x1j , . . . , x4j}

��
. In the following, we calculate the co-

efficients of variables in the facet of Gsplpi that is obtained from (2.18) by sequential lifting.
The reader can take holes H and Hsplpi depicted by Figure 2.4b as reference to illustrate the
analysis (if so, they should rename nodes of hole (5, 6, 7, 4) by (1, 2, 3, 4)).

(i) We start with variables xij , i ∈ IH and j ∈ JH , that have not been considered yet: x12,
x13, x23, x31 and x42. Variables x12 and x13 have two neighbors in Hsplpi each, so a
packing that includes x12 or x13 also admits 3 nodes of Hsplpi. On the other hand, x23,
x31 and x42 have three neighbors in Hsplpi each, but it is easy to check that we can also
get a packing of 3 nodes of Hsplpi in this case. We show this for x23 (the analysis for
x31 and x42 is analogous). Two of the three neighbors of x23 in Hsplpi, x21 and x22, are
consecutive. The third one, x33, has a neighbor in common with x22 in Hsplpi, x32. Then,
{x23, x32, x43, x11} is a packing with 3 nodes of Hsplpi other than x23. In conclusion, for
every xij with i ∈ IH and j ∈ JH , we can construct a packing consisting of xij and 3
nodes of Hsplpi. This packing can be extended by adding nodes of variables y4, . . . , ym,
which have coefficient 1 in (2.18), getting a packing of m nodes other than xij . Since all
coefficients in the left hand side of (2.18) are 1, the existence of a packing with m nodes
among the nodes in (2.18) which are not neighbors of a given variable implies lifting it
with coefficient 0. Then, variables in this first group are all lifted with 0.

(ii) Variables y1, y2 and y3 lift also with coefficient 0. Nodes corresponding with y2 and y3
have two neighbors in Hsplpi and then the reasoning of the previous point can be applied
to them. However, the case of y1 is different since its corresponding node has three
neighbors in Hsplpi. Include for instance x22 and x43 in a node packing that initially
contains only node y1. Then, we can also add x14 and x34. These two nodes are not
adjacent since clients 1 and 3 are not incompatible and are not adjacent to the nodes
that were already in the packing since we have taken a different plant index. Finally, we
can include y-nodes for the remaining plants that have not been used yet, i.e., y5, . . . , ym.
We have completed a packing of m nodes, proving that the lifting coefficient of y1 is zero.
Note that we are implicitly assuming that m > 3 = |JH |.

(iii) It remains to consider x-variables corresponding with clients that do not belong to the
hole, i.e., xij such that i /∈ IH j ∈ J . If j = 1, 2 or 3, xij has at most the same neighbors
as yj in Hsplpi (2 or 3) and we can proceed like in the lifting of yj to conclude that xij
has coefficient 0. Suppose then that j ≥ 4. In this case, xij has no neighbors in Hsplpi,

48 The SPLP with incompatibilities

jy ijx

...

... ...

jx1 jx2 jx3 jx4
2111 22 32 33 4341

Figure 2.7: Lifting of (2.18), case (iii), xij with i /∈ IH and j ≥ 4

so 3 nodes from Hsplpi can be easily added to the packing. Nodes yh with h ≥ 4 but yj
can also be included, getting a packing of m − 1 nodes (note that m > 3 = |JH | is also
assumed in this case).

This implies that all these variables lift with coefficient 0 or 1. If some node xrj , r ∈
{1, 2, 3, 4}, is not adjacent to xij , it can be added to the packing and the lifting coefficient
of xij is 0. From now on we will only consider those variables that can potentially have
coefficient 1, i.e., those xij with i /∈ IH such that (i, r) ∈ E ∀r ∈ {1, 2, 3, 4}. Again, we
call this subset L. The first variable in L that we lift will have coefficient 1. Figure 2.7
shows this situation, where it can be noticed that xij plays exactly the same role as yj .
Note that the argument is independent of the plant index. Then, together with the first
lifted variable, say xrj , we can also lift with coefficient 1 all the remaining variables in
L that belong to the same subgraph Xr. After that, we can remove from L those xij
such that (i, r) /∈ E, since they would lift with coefficient 0, for all j ≥ 4. To complete
the lifting, we will continue taking nodes from L that will have lifting coefficient 1 and
updating L by removing those that will have coefficient 0, until L becomes empty.

To conclude, after the analysis we can affirm that

x11 + x21 + x22 + x32 + x33 + x43 + x41 +
m�

j=4

�
yj +

4�

i=1

xij

�
(2.19)

+
�

i/∈IH :

IH⊆NGI
(i)

γi

m�

j=4

xij ≤ m,

where γi ∈ {0, 1} are calculated as above, is a facet of the conflict graph of SPLPI, Gsplpi, when
H = (1, 2, 3, 4) is a hole in GI and m > 3.

c. Lifting of hole inequality (2.12)

Due to the similarity of (2.12) with inequality (2.11), this section is organized as the previous
one. The following example illustrates application of Theorem 1.1 to an small example and is
followed by description of the lifting in the general case by using this theorem and sequential
lifting.

Facets and separation 49

1

2

3

4

5

74
6
732

1 5 6

8

9 10
11

C C
C1

2 3
Ĝ

Figure 2.8: Application of Theorem 1.1 to hole of type (c) on Figure 2.4c

Example 2.6. Figure 2.8 shows the same example as Figure 2.4c. The figure depicts a hole
in Gsplpi on its right hand side, Hsplpi = (y1, x31, x32, x42, x43, x73, x71), which is produced by
the path in GI shown on the left. Nodes of Hsplpi belonging to same group Xi are identified
with complete subgraphs Cr of Theorem 1.1, namely C1 = {x31, x32}, C2 = {x42, x43} and
C3 = {x73, x71}. On the other hand, n + 1, . . . , n + q and n + q + 1 in the theorem are
x34, x44, x74 and y4, respectively (q coincides with � = 3 and n = 7). Subgraph Ĝ is depicted
with dashed black lines and is a path of length three. A packing in Ĝ is then made of α̂0 = 2
nodes at most. Since βα̂0 ≤ 1 by definition, condition α̂0 �= βα̂0 of Theorem 1.1 stands and
family of conditions (1.2) becomes empty. The theorem gives the following formula for a facet
of the graph induced by nodes 1, . . . , n+ q, n+ q + 1:

(α̂0 − 1)πt+ (1− βα̂0)

q+1�

i=1

tn+i ≤ α̂0 − βα̂0 ,

where πt ≤ 1 is the hole inequality 1
3(y1 + x31 + x32 + x42 + x43 + x73 + x71) ≤ 1 and

βα̂0 = β2 = max {max{1
3(y1 + x31 + x32 + x42 + x43 + x73 + x71) :

{xij ∈ Hsplpi : xij = 1} ∈ PHsplpi
, xij = 0 ∀i ∈ K,xij ∈ Hsplpi}

: K ⊆ {3, 4, 7}, |K| = 2 and {xi4 = 1}i∈K ∈ PĜ}.

To compute, β2, one observes that the only maximum vertex packing in Ĝ is given by x34 and
x74. An extended maximum vertex packing containing x34 and x74 has two more nodes, for
instance x42 and y1. We conclude that β2 = 2/3 and, applying Theorem 1.1, we obtain the
facet

2− 1

3
(y1 + x31 + x32 + x42 + x43 + x73 + x71)+

�
1− 2

3

��
y4 +

�

i∈{3,4,7}
xi4

�
≤ 2− 2

3
,

which simplifies to

y1 + x31 + x32 + x42 + x43 + x73 + x71 + y4 +
�

i∈{3,4,7}
xi4 ≤ 4.

�

50 The SPLP with incompatibilities

As we did in Section 2.3.4, we start the lifting of inequalities of general form (2.12) by
applying Theorem 1.1 |J \ JP | times. The following proposition states the facet obtained after
the first application of Theorem 1.1 to (2.12).

Proposition 2.4. Let {yj1 , x�j1 , x�j�} ∪ {xiji , xiji+1}�−1
i=1 induce an odd hole in Gsplpi, JP =

{ji}�i=1. For any plant J ∈ J \ JP inequality

yj1 +

�−1�

i=1

(xiji + xiji+1) + x�j� + x�j1 + yJ +

��

i=1

xiJ ≤ �+ 1 (2.20)

is a facet of the subgraph induced by {yj1 , x�j1 , x�j�} ∪ {xiji , xiji+1}�−1
i=1 ∪ {xiJ}�i=1.

Proof. First of all, we have to identify graph G, facet πt ≤ 1, cliques C1, . . . , Cq and new nodes
xn+1, . . . , xn+q+1 of Theorem 1.1 in conflict graph Gsplpi. We take as G the subgraph induced
by {yj1 , x�j1 , x�j�} ∪ {xiji , xiji+1}�−1

i=1 and inequality (2.12), which is a facet of this subgraph.
Let q = �, Ci = {xiji , xiji+1}, i = 1, . . . , � − 1 and C� = {x�j� , x�j1}, xn+i = xiJ, i = 1, . . . , �
and xn+�+1 = yJ. Figure 2.8 illustrates this correspondence between Gsplpi and Theorem 1.1
when � = 3. Now we calculate the coefficients of the theorem, α̂0 and βα̂0 , and check that the
required conditions are met:

– Since {xiJ}�i=1 induce a chordless path, the maximum cardinality of a set packing in the
subgraph induced by {xiJ}�i=1 is α̂0 =

�
�
2

�
.

– Suppose a set packing that includes
�
�
2

�
nodes among {xiJ}�i=1, which are alternately

chosen from the path �x1J, . . . , x�J�, starting from x1J. For each i = 1, . . . , �, if xiJ is not
in the packing then xiji can be included. Finally, yj1 can also be in the packing, yielding

the coefficient βα̂0 = �−��/2�+1
� . Condition α̂0 �= βα̂0 holds since � ≥ 3. Similarly, for

k = 2, . . . ,
�
�
2

�
− 1, βk = �−k+1

� and condition (1.2) is:

�− k + 1

�
≤ 1−

(k − 1)
�
1− �−� �

2�+1

�

�

�
�
2

�
− 1

,

which is verified as equality.

Inequality (2.20) yields from Theorem 1.1, after simplifying coefficients.

In a similar way as we showed in Section 2.3.4, it can be proved that

yj1 +
�−1�

i=1

(xiji + xiji+1) + x�j� + x�j1 +
�

J/∈JP
(yJ +

��

i=1

xiJ)

≤ �+m− |JP | (2.21)

is a facet of the induced subgraph Gsplpi

�
Hsplpi ∪

��
j∈J\JP {yj , x1j , . . . , x�j}

��
. To complete

the lifting of the initial inequality (2.12), we will distinguish three groups of variables as we did
in Section 2.3.4. In this case, we will perform the analysis taking � = 3, even though a similar
examination could be also done for the general case.

Assume that Hsplpi = (y1, x11, x12, x22, x23, x33, x31) where we have taken without loss of
generality P = �1, 2, 3� the path in GI , IP = {1, 2, 3} and JP = {1, 2, 3}. By successive
applications of Theorem 1.1, we have that

y1 + x11 + x12 + x22 + x23 + x33 + x31 +
m�

j=4

�
yj +

3�

i=1

xij

�
≤ m (2.22)

Facets and separation 51

is a facet of Gsplpi

�
Hsplpi

���m
j=4{yj , x1j , . . . , x�j}

��
. In the following, we calculate the coeffi-

cients of variables in the facet of Gsplpi that is obtained from (2.22) by sequential lifting. Figure
2.4c can guide the reader through the analysis (nodes of the path �3, 4, 7� should be renamed
with �1, 2, 3�).

(i) We start with variables xij with i ∈ IP and j ∈ JP that have not been considered yet:
x13, x21 and x32. Sets {x13, x22, x33, y1} and {x32, x23, x12, y1} are packings that can be
completed with y4, . . . , ym and then x13 and x32 have lifting coefficient 0. On the other
hand, a packing with x21 only admits two nodes of Hsplpi, x12 and x33. To complete the
packing we can choose for each j = 4, . . . ,m between including x2j or yj , so we can not
get a packing of more than m− 1 nodes. Then, x21 has lifting coefficient 1.

(ii) Variables y2 and y3 lift with coefficient 0, since they only have two neighbors in Hsplpi

each.

(iii) It remains to consider x-variables corresponding with clients that do not belong to the
path, i.e. xij such that i /∈ IP j ∈ J . If j = 2 or 3, xij has at most two neighbors in Hsplpi

and has coefficient 0. If j = 1 and there is a client r ∈ {1, 2, 3} such that (i, r) /∈ EI ,
xi1 has lifting coefficient 0. For example, if r = 2 then {xi1, x12, x21, x33, y4, . . . , ym} is a
packing containing xi1 plus m other nodes. The same is true when j ≥ 4. Therefore, let
us consider only those xij such that j = 1 or j ≥ 4 and (i, r) ∈ EI for all r ∈ IP . We
first lift those nodes of the group with j = 1. The first one, say xi1, will have coefficient
1. Consider now a second node of this group, xr1, such that (i, r) /∈ E. If we consider
nodes with coefficient 1 that are not neighbors of xr1, we can construct a packing of two
nodes from Hsplpi, xi1 and y4, . . . , ym (see Figure 2.9a). Note that this is not true for xrj
such that (i, r) /∈ E and j ≥ 4. Figure 2.9b illustrates this fact. In conclusion, we will
remove from the group xi1 (lifted with coefficient 1) and xr1 for all r such that (i, r) /∈ E
(lifted with coefficient 0). We repeat the process until there are no more nodes in the
group with j = 1. Consider now nodes of the group with j ≥ 4. The procedure to lift
these nodes is the same as in the analogous case of Section 2.3.4. Take a first client i such
that (i, r) ∈ E for all r ∈ IP . All the variables xij of the group will lift with coefficient
1, for all j ≥ 4. Again, if we consider xrj in the group such that (i, r) /∈ E, we can
form a packing of m nodes that includes xij (see Figure 2.9c). Therefore, xrj have lifting
coefficient 0, for all j ≥ 4. We repeat the process until we lift all the nodes of Gsplpi. If
we consider the same order of clients indices when we lift x-nodes with j = 1 as for the
case j ≥ 4, we can use a lifting coefficient γi that only depends on the client.

To conclude, after the analysis we can affirm that

y1 + x11 + x12 + x22 + x23 + x33 + x31 +

m�

j=4

�
yj +

4�

i=1

xij

�
+ (2.23)

x21 +
�

i/∈IP :

IP⊆NGI
(i)

γi

�
xi1 +

m�

j=4

xij

�
≤ m,

where γi ∈ {0, 1} are obtained as explained above, is a facet of the conflict graph of SPLPI,
Gsplpi, when P = �1, 2, 3� is a non-closed path in GI .

52 The SPLP with incompatibilities

i1x
...

3111 2221 33

1y
12 23

r1x
4y ... my

(a) Lifting of xr1 when xi1 has coefficient 1

i1x
...

3111 2221 33

1y
12 23

rx
jy

1j 2j 3j

4y ... my...

j
(b) Lifting of xrj when xi1 has coefficient 1

ijx
...

3111 22 33

1y
12 23

rjx
jy

1j 2j 3j

4y ... my...

(c) Lifting of xrj when xij has coefficient 1

Figure 2.9: Lifting of (2.22), case (iii), xij , (i, s) ∈ E ∀s ∈ IP and j �= 2, 3

Facets and separation 53

2.3.5 Separation of hole inequalities

To close the study of hole inequalities, we present a separation algorithm that treats the three
types of holes explored. Our hole separation algorithm only considers the three holes of Gsplpi

described in Figure 2.4, which have lengths 5, 7 and 7 respectively. This algorithm uses a
modification of a procedure that enumerates all chordless cycles of a graph, proposed in Dias
et al. (2013). The key of this procedure is that it finds each chordless cycle only once.

Efficient enumeration of holes

Dias et al. (2013) proposed a labeling of the nodes of a graph that allows to define any cycle in
a unique way. Namely, if (v1, v2, . . . , vk) is a cycle in G = (V,E), a labeling b : V → {1, . . . , n}
with the following properties identifies it uniquely:

(i) b(v2) = min{b(vi) : i = 1, . . . , k},

(ii) b(v1) < b(v3).

The fact that cycles are uniquely defined permits exclusion of duplicated holes. The authors
then defined a triplet �x, u, y� as a sequence of nodes that can develop into a potential chordless
cycle of length greater than three. They denoted by T (G) the set of all triplets in G,

T (G) := {�x, u, y� : x, u, y ∈ V, x, y ∈ N(u), b(u) < b(x) < b(y) and (x, y) /∈ E}.

They used what they called degree labeling, which is defined as follows. A sequence of the
nodes of the graph {u1, . . . , un} is constructed and the labeling is b(ui) = i, for all i = 1, . . . , n.
Node ui is a node of minimum degree in the induced subgraph Gi := G[{ui, . . . , un}].

Their algorithm consists in taking the triplets in T (G) and expanding them until a chordless
cycle is completed or a chord in the current path is found. With the steps of the algorithm,
triplets develop into chordless paths. Triplets expansion is implemented using a breadth-first
search strategy. This means that all the neighbors of a node candidate for expansion are
recursively checked before the next candidate is explored. Those neighbors that could form a
chord with some node of the chordless path in construction are discarded during the search or
blocked. To do so, an auxiliary vector counts the number of times that a node is found as a
neighbor of some other in the chordless path in construction. If this counter is greater than
one, the node is not considered for further inspection. The counter is incremented before each
recursive call of the breadth-first search and decremented when the call returns. A pseudocode
of the procedure of Dias et al. (2013) is given in Algorithm 2.2.

Our hole separation algorithm

Let us focus now on our version of the algorithm of Dias et al. applied to Gsplpi. As we
did in clique separation, we identify the solution of the current relaxation with weights of
nodes of Gsplpi, which we will denote by w(·). The objective is then to find an odd hole
with total weight greater than the truncated half of its length. Our algorithm works with a
subgraph of the weighted version of Gsplpi. This subgraph is obtained after the elimination of
those edges corresponding with constraints of the original SPLP and only preserves those of
incompatibilities between clients. The nodes of the so-obtained input graph having non-zero
degree are labeled using degree labeling.

The separation starts by finding all triplets of the input graph. Triplets �x, u, y� with total
weight w(x) + w(u) + w(y) ≤ 1 are discarded, since they will not lead to violated holes of

54 The SPLP with incompatibilities

Algorithm 2.2 Efficient enumeration of chordless cycles, Dias et al. (2013)

0: global variables

1: G = (V,E), whose nodes are labeled with degree labeling

2: T (G), set of triplets of G

3: end global variables

4: procedure ChordlessCycles

5: global variables

6: T , set of expandable chordless paths

7: C, set of chordless cycles of G

8: blocked(i), number of times i is found as a neighbor of some other in a chordless path

9: end global variables

10: T = T (G)

11: C = {�x, u, y� : x, u, y ∈ V, x, y ∈ N(u), b(u) < b(x) < b(y) and (x, y) ∈ E}
12: for all i = 1, . . . , n do

13: blocked(i) = 0

14: end for

15: while T �= ∅ do

16: p = �x, u, y� ∈ T

17: T = T \ {p}
18: BlockNeighbors(u)

19: C=CC Visit(p, C, b(u), blocked)

20: UnblockNeighbors(u)

21: end while

return C

22: end procedure

23: function CC Visit(p = �u1, u2, . . . , ut�, C, key, blocked)

24: BlockNeighbors(ut)

25: for all v ∈ N(ut) do

26: if b(v) > key and blocked(v) = 1 then

27: p� = �p, v�
28: if (v, u1) ∈ E then

29: C = C ∪ {p�}
30: else

31: C =CC Visit(p�, C, key, blocked)

32: end if

33: end if

34: end for

35: UnblockNeighbors(ut) return C

36: end function

37: function BlockNeighbors(i, blocked)

38: for all v ∈ N(i) do

39: blocked(i) = blocked(i) + 1

40: end for

41: end function

42: function UnblockNeighbors(i, blocked)

43: for all v ∈ N(i) do

44: if blocked(i) > 0 then

45: blocked(i) = blocked(i)− 1

46: end if

47: end for

48: end function

Computational study 55

length 5 or 7, which are the only cases that we want to address. The remaining triplets are
extended to build paths of up to 5 nodes. To extend a triplet or one of these paths in general,
we consider the neighbors of its last node that do not form a chord. This extension stops if
some of the following situations occur:

(i) A candidate to be included in a triplet �x, u, y� closes a chordless cycle of length 4. Note
that this is equivalent to finding a hole of length 4 in GI and that we are therefore in
a situation like the one shown in Figure 2.4b. We perform the transformation that is
shown in the same figure to obtain a hole of length 7 in Gsplpi. There are several ways
of doing such transformation and nodes will be chosen heuristically with the aim of total
weight maximization. Then, the inequality associated with the resulting hole is lifted to
a facet of form (2.20), which will be stored in case of violation.

(ii) A candidate to be included in a path �x, u, y, v4� closes a chordless cycle of length 5. In
this case, we have a hole of length 5 like illustrated by Figure 2.4a. We check the violation
of the corresponding facet, which is obtained using the lifting of hole inequalities of length
5 described in 2.3.4.

(iii) A candidate to be included in a path �x, u, y, v4� does not close a chordless cycle of length
5. In this case we just stop the extension without performing additional actions.

After exploring all the possible extensions of a triplet, we check whether its associated hole of
length 7 (see Figure 2.4c) produces a violated facet (after the lifting procedure described in
Section 2.3.4). Note that condition w(x) + w(u) + w(y) > 1 is necessary so that a found hole,
�x, u, y, v1, v2� or �x, u, y, v1, v2, v3, v4�, is violated, but not sufficient. Then, the algorithm can
report violated facets coming from the lifting of non-violated hole inequalities.

2.4 Computational study

For validation of the different inequalities presented, we have carried out a computational study.
This consists in testing a cut-and-branch procedure that incorporates the separation algorithms
described in previous section. We use input data of different sizes and incompatibility graphs
of different densities, in order to get representative results. In an initial configuration, the
proposed separations called only at the root are tested against clique cuts of a commercial
solver. Further experiments were conducted in a second phase, where separation was applied
also during the branching and default cuts of the solver were not disabled.

2.4.1 The initial setup

The processor used in the study was an Intel core i7-6700k CPU at 4.0 GHz × 8 with 16
GB of RAM memory. The solver was Cplex v12.6.3 64-bit under operating system Linux
Ubuntu 16.04. In our study, we handled 200 files from eleven different data sets, each of
them containing from 10 to 30 testing files. These data files are instances of the SPLP taken
from the repositories of the Max Planck Institute für Informatik and the Sobolev Institute of
Mathematics. For each instance we have considered the same three incompatibility graphs that
were randomly generated with densities 2%, 5% and 10%, yielding 600 instances of the SPLPI.

The general scheme of the cut-and-branch procedure that Cplex implements is as follows.
At the beginning of the procedure, the linear relaxation of the problem is solved at the root
node. The solver allows the user to specify algorithms to be used as callbacks. In our case,

56 The SPLP with incompatibilities

implementations of clique and hole separations procedures described in previous sections are
provided as argument for these callbacks. Callbacks are applied after solving the linear relax-
ation. If violated inequalities are incorporated to the problem as a result, the linear relaxation
is solved again. After that, callbacks are invoke afresh in case there are more inequalities vi-
olated by the new solution. These steps are repeated until no violated inequalities are found.
At this point, the branching starts. The user selects whether separation algorithms should be
called also during the branching. Note that, even though callbacks are not invoke anymore, the
relaxations solved in the branches are tighter due to the inequalities added at the root node.

Each instance in the testbed is solved under three different configurations:

(i) Cplex cut-and-branch with clique cuts that Cplex has implemented by default (associ-
ated results reported as cplexcli in tables).

(ii) Cplex branch-and-bound with calls at the root node to the separation procedure for
cliques presented in Section 2.3.2 (reported as cli in tables).

(iii) Cplex branch-and-bound with calls at the root node to procedures for clique and hole
separation, described in sections 2.3.2 and 2.3.5, respectively (reported as c+h in tables).

In all the experiments, the presolver and all cuts (except for clique cuts for case (i)) that Cplex
has incorporated are turned off. Cuts are added with option purge, i.e., any cut added will be
purged later if considered ineffective. We set a time limit of 30 minutes to solve each instance.

Table 2.1 shows some relevant information of each data set. On the first two columns we
see the name of the data sets and the number of instances of the SPLPI in each of them,
respectively. Then, the number of instances that were solved to optimality within 30 minutes
are depicted on a multicolumn. There are four columns in total, one for each configuration
tested and column “all” . The latter represents the number of instances that were solved by the
three procedures. Finally, the last column of Table 2.1 shows the number of plants and clients
(that coincides) in each case. The last row of the table, which indicates the total number of
instances that were solved, shows that the second configuration, cli, is the one that solves more
instances to optimality. In total, 600(instances) × 3(procedures) = 1800 experiments were
conducted.

2.4.2 Results and analysis

For a proper analysis, instances are classified into those that were solved by the three con-
figurations tested and those that at least one configuration failed to solve within 30 minutes.
Results are displayed in tables that, given the size of the testbed, necessarily display averages
within the different data sets.

Table 2.2 shows a summary of the results obtained for those instances that were solved to
optimality by the three procedures, i.e., they refer to those instances collected in the fourth
column “# Solved” in Table 2.1. Rows in the table, i.e. data sets, are displayed in increasing
order in terms of the LP gap. The first three columns of the table report the LP gap in
percentage units, the optimal value of the integer program and the optimal value of its linear
relaxation. Then, we show in a multicolumn the lower bound (i.e. the objective value of the
last relaxation solved) just before the branching, i.e., after the inclusion of the cuts. Each of
the three columns in “LB at the root” is dedicated to one of the procedures. The comparison of
each one with column “LPOpt” gives an idea of the impact produced by the addition of the cuts
in each case. Nevertheless, as already remarked, cuts have also an impact in the improvement
of bounds of the rest of the nodes of the B&B tree that is not reported. The next two

Computational study 57

Name # # Solved n = m

cplexcli cli c+ h all

pcodes 90 58 58 56 55 128
unif 90 90 90 90 90 100
D1 30 30 30 30 30 30
B 30 30 30 30 30 50
E1 30 30 30 30 30 50
C 30 30 30 30 30 50
D2 30 30 30 30 30 30
FPP 45 31 30 30 30 133
chess 90 83 90 90 83 144
gapB 45 26 30 29 25 100
gapA 45 29 32 32 27 100
gapC 45 0 0 0 0 100

Total 600 467 480 477 460

Table 2.1: Information of each data set

multicolumns show the number of nodes that has the B&B tree and the time elapsed when the
optimal solution is found. Note that the best result obtained over the three procedures in terms
of bounds, nodes and time is emphasized in bold. After this sequence of three multicolumns,
we find a fourth, which acts as summary of the previous ones. This multicolumn shows in
which relative percentage the best procedure (cli or c + h) is better than the worse (cplexcli)
in terms of bounds, nodes of the B&B tree and running time. Finally, Cuts final indicates the
number of cuts that are active when the optimal solution is found for each procedure.

Results summarized in Table 2.3 correspond with those instances that were not solved to
optimality by some of the procedures after 30 minutes (Cplex termination status 11). Column
shows the total number of these instances for each data set. Next multicolumn indicates
the concrete number of instances that were not solved by each of the three procedures. Then,
we found the average relative gap after 30 minutes of execution in each case. Finally, the
last multicolumn shows the number of times that the solution after 30 minutes is in fact the
optimum even though the algorithm did not report it yet. For example, procedure cplexcli did
not solve to optimality 32 instances of the data set pcodes. The average relative gap over those
instances was 10.7% but 2 of the 32 solutions after the 30 minutes were in fact optimal (we
know it by comparing with procedure cli, which solved those 2 instances). Procedures cli and
c+h solved all instances in chess, so the corresponding slots in the last two multicolumns are
empty.

We can state that the clique cuts that we have identified and implemented (cli) lead to
improvement compared with those ones that are implemented by default in Cplex (cplexcli).
On the other hand, incorporating hole cuts to the solving procedure with our clique cuts (c+h),
improves the simpler version cli sometimes, especially when the LP gap is large. In most cases
the additional effort is not worth in terms of time, and c+h is slower than cli. When it comes
to the number of nodes of the B&B tree, these two algorithms draw and regarding the lower
bound c+h (certainly) gets the best one. In any case, the improvement obtained with respect
to cplexcli is noticeable. For instance, for data set FPP our algorithms reduce the running time
and the number of nodes in more than a half. The lower bound also improves dramatically,
closing the gap with IPOpt by a third. Similarly, a strong performance is reported for data set

58 The SPLP with incompatibilities

F
il
e

L
P
G
ap

IP
O
p
t

L
P
O
p
t

L
B

at
th
e
ro
ot

(r
L
B
)

n
o
d
es
B
B

(n
B
B
)

T
im

e
%

Im
p
ro
ve
m
en
t

C
u
ts

fi
n
al

cp
le
x
cl
i

cl
i

c
+

h
cp
le
x
cl
i

cl
i

c
+

h
cp
le
x
cl
i

cl
i

c
+

h
rL

B
n
B
B

ti
m
e

cp
le
x
cl
i

cl
i

c
+

h

p
co
d
es

9.
1

53
69

2
48

2
24

51
13

4
5
1
1
3
5

5
1
1
3
5

12
39

4
11

42
2

1
1
2
6
3

54
4.
0

5
1
1
.8

52
4.
0

0.
00

3
9.
1

5.
9

84
85

85
u
n
if

10
.1

78
17

2
70

2
05

75
20

6
75

22
4

7
5
2
2
4

42
20

34
90

3
3
9
0

14
7.
1

1
2
1
.1

12
2.
9

0.
02

4
19

.7
17

.7
11

2
15

6
16

5
D
1

13
.2

15
09

5
13

0
71

14
51

3
14

51
8

1
4
5
1
9

82
8

6
0
7

76
7

9.
5

7
.8

9.
0

0.
04

5
26

.6
18

.3
13

4
17

4
18

1
B

14
.7

26
17

6
22

1
68

26
04

8
26

06
5

2
6
1
1
9

21
09

14
09

7
1
8

76
.3

57
.9

3
6
.2

0.
27

0
65

.9
52

.5
26

0
43

5
46

8
E
1

16
.0

16
14

7
13

5
21

15
30

7
15

31
5

1
5
3
1
9

91
64

6
5
2
7

70
71

26
2.
4

1
8
5
.9

20
5.
7

0.
07

7
28

.8
29

.2
25

2
35

6
37

8
C

16
.1

19
44

0
16

2
52

18
54

8
18

56
4

1
8
5
7
2

72
82

4
2
8
8

43
27

20
9.
9

1
4
0
.7

15
6.
8

0.
12

8
41

.1
33

.0
33

0
48

8
50

9
D
2

18
.4

21
67

2
17

6
01

20
52

1
20

53
9

2
0
5
4
3

56
13

42
86

3
8
3
4

69
.3

5
7
.6

58
.4

0.
11

0
31

.7
16

.9
26

5
35

3
36

8
F
P
P

20
.6

42
22

7
33

5
15

33
56

5
3
6
5
6
0

3
6
5
6
0

41
65

0
1
1
1
0
6

1
1
1
0
6

14
40

.8
55

6.
3

5
5
5
.9

8.
19

1
73

.3
61

.4
1

16
4

16
4

ch
es
s

21
.8

62
12

2
48

2
50

59
35

7
5
9
3
5
8

5
9
3
5
8

17
88

1
5
9
9

16
73

17
4.
2

1
5
7
.4

17
6.
0

0.
00

1
10

.6
9.
7

25
1

25
2

38
1

ga
p
B

23
.5

45
75

6
34

9
76

37
98

3
3
8
0
1
8

3
8
0
1
8

66
34

3
54

08
2

5
2
9
9
8

84
2.
3

65
6.
7

6
2
2
.5

0.
09

0
20

.1
26

.1
11

0
13

0
13

1
ga

p
A

30
.6

38
72

5
26

8
37

30
76

8
3
0
8
0
0

3
0
8
0
0

69
88

5
60

32
6

5
9
8
3
6

92
5.
9

76
5.
5

7
5
8
.0

0.
10

5
14

.4
18

.1
14

6
16

2
16

2

T
ab

le
2
.2
:
S
u
m
m
ar
y
of

so
lv
ed

in
st
an

ce
s
(t
im

e
li
m
it

of
30

m
in
)*

F
il
e

#
#

S
ta
tu
s=

11
G
ap

af
te
r
30

m
in

(%
)

#
O
p
t
fo
u
n
d

cp
le
x
cl
i

cl
i

c
+

h
cp
le
x
cl
i

cl
i

c
+

h
cp
le
x
cl
i

cl
i

c
+

h

p
co
d
es

35
32

32
34

10
.7

10
.9

10
.7

2
2

4
F
P
P

31
31

30
30

22
.1

21
.6

21
.5

0
0

0
ch
es
s

7
7

0
0

26
.9

-c
-c

1
-

-
ga

p
B

20
19

15
16

17
.6

17
.7

17
.0

3
1

1
ga

p
A

18
16

13
13

19
.4

19
.2

19
.0

3
1

1
g
ap

C
45

45
45

45
22

.1
22

.9
22

.7
0

0
0

T
a
b
le

2
.3
:
S
u
m
m
ar
y
of

u
n
so
lv
ed

in
st
an

ce
s
(t
im

e
li
m
it

of
30

m
in
)*

*
R
es
u
lt
s
ob

ta
in
ed

w
it
h
C
p
l
e
x
cu
ts

an
d
p
re
so
lv
er

d
is
ab

le
d
,
on

ly
cp
le
x
cl
i
al
lo
w
s
C
p
l
e
x
cl
iq
u
e
cu
ts

Computational study 59

B. The success of algorithms cli and c+h does not depend on the relative gap of the instances
and satisfactory results are obtained also for data sets with largest gaps.

2.4.3 A few more tests

In this second part, we test our separation algorithms under two additional settings, namely
when Cplex cuts are activated and, on the other hand, within a branch and cut scheme. In
this section we use 8 instances from each data set of Table 2.1, except for “FPP” and “gapC”.
We leave them out of the study because the previous computational experience shows little
success when solving them — 14 out of 45 were solved in the case of “FPP”, most of them
for incompatibility density 2%, and none in the case of “gapC”. Since this is a reduced study,
we have collected in the testbed those instances that were likely to be solved, based on the
previous experiments. As before, we use the same incompatibility graphs that were randomly
generated with densities 2%, 5% and 10%. Therefore, we will solve 24 instances in total of each
data set, which makes a testbed of 240 instances. We set a time limit of 30 minutes to solve
each instance. The details of each of the two different settings tested are explained next.

In the first case, the aim is to demonstrate that our cuts are stronger than those identified
by Cplex. Therefore, we run a configuration, cplexdef , in which we do not disable the cuts that
Cplex uses by default. When we run our separation algorithms, we have to decide whether
to let Cplex add its own clique cuts during the branching or not. Turning Cplex clique
cuts off would make sense to avoid duplicated work. However, if we are to check that our
clique cuts represent an improvement when they are used on top of those of Cplex, we should
turn them on. We decided to explore both alternatives. Table 2.4 shows averaged results.
Each instance is solved under five configurations in total, which gives five columns for each
of the following features: LB at the root, nodesBB and Time. As before, we write in bold
those entries of the table corresponding with the best results among the five configurations.
We have included a last column, %Imp., representing the relative reduction in time of the
fastest configuration with respect to cplexdef . We observe that the largest reductions occur
when clique cuts are disabled, and are generally due to cli. The table shows improvement
with respect to Cplex default settings for all the data sets. Therefore we can say that our
inequalities are effective even when other cuts are present, and thus they add value to the
default solving procedure. Table 2.5 shows information about those instances that were not
solved by some of the configurations in this first experiment, being c+h without Cplex clique
cuts the one that solves more instances. The gap after 30 minutes of execution is similar among
the different configurations. Also, none of them obtains better gaps for all the data sets.

Lastly, we present some results about the performance of our inequalities within a branch
and cut scheme. Instead of only adding the inequalities at the root, we add them at every node
of the B&B tree until a depth limit, which we fix to 3. Regarding Cplex cuts, we will activate
all them (also clique cuts). We slightly modify our separation algorithm. Previously, if there
were no violated inequalities found, the separation algorithm was not invoked anymore. Now,
we do not keep track of whether the last search of violated inequalities has been successful,
since it might have happened in a different branch of the B&B tree. Table 2.6 shows some
results. Here, the lower bound is reported after processing the last node at depth 3, i.e., after
all the cuts have been added in the case of the separation algorithms cli and c+h. Comparing
these bounds with those of Table 2.4, we can see that the deeper we go into the B&B tree, the
more significant is the improvement we get with respect to cplexdef . Naturally, adding the cuts
has a cost in time, which is not always compensated by the improvement of the bound. This is
the case of data sets “pcodes” and “chess”. On the other hand, we also obtain an improvement

60 The SPLP with incompatibilities

F
il
e

L
P
G
ap

IP
O
p
t

L
P
O
p
t

L
B

at
th
e
ro
ot

n
o
d
es
B
B

T
im

e
%

Im
p
.

al
l
C
p
l
e
x
cu
ts

o
n

al
l
b
u
t
cl
iq
u
es

al
l
C
p
l
e
x
cu
ts

on
al
l
b
u
t
cl
iq
u
es

al
l
C
p
l
e
x
cu
ts

on
al
l
b
u
t
cl
iq
u
es

cp
le
x
d
ef

cl
i

c
+
h

cl
i

c
+
h

cp
le
x
d
ef

cl
i

c
+
h

cl
i

c
+
h

cp
le
x
d
ef

cl
i

c
+
h

cl
i

c
+
h

u
n
if

10
.0

77
62
1

69
87
2

74
93
5

7
4
9
7
0

74
96
0

7
4
9
7
0

74
96
0

23
97

18
34

18
41

1
8
2
0

18
73

90
.2

6
6
.6

74
.7

71
.4

73
.0

26
.2

D
1

13
.4

15
02
2

13
01
0

14
54
1

1
45
53

1
4
5
5
5

14
55
4

1
4
5
5
5

78
8

6
0
7

69
1

62
9

72
9

10
.0

8
.3

9.
2

8.
6

9.
4

16
.9

p
co
d
es

14
.2

56
22
8

48
22
7

52
47
5

5
2
4
7
6

5
2
4
7
6

5
2
4
7
6

5
2
4
7
6

12
53
4

11
55
5

1
1
3
6
2

1
21
52

11
77
2

56
7.
5

55
7.
9

5
5
2
.2

55
6.
0

57
1.
7

2.
7

B
14
.6

25
79
1

22
03
8

25
69
8

2
56
96

2
5
7
2
2

25
69
6

2
5
7
2
2

24
5

13
6

1
2
2

13
6

13
2

14
.9

1
2
.1

13
.0

12
.3

13
.5

18
.9

E
1

16
.5

16
17
7

13
51
0

15
34
0

1
53
48

1
5
3
4
9

15
34
8

1
5
3
4
9

92
01

76
10

68
84

75
02

6
5
5
8

24
4.
8

22
4.
7

19
2.
5

22
1.
5

1
7
5
.9

28
.1

C
16
.6

19
33
8

16
12
7

18
45
8

1
84
89

1
8
4
9
1

18
48
9

1
8
4
9
1

51
27

38
11

41
39

3
5
3
5

38
41

15
4.
4

12
1.
3

13
6.
0

1
1
3
.7

13
1.
5

26
.3

D
2

18
.6

21
79
3

17
73
0

20
66
5

2
06
88

2
0
6
8
9

20
68
8

2
0
6
8
9

49
99

35
11

37
80

3
4
6
6

37
39

71
.4

50
.1

53
.5

5
0
.0

56
.2

30
.0

ch
es
s

22
.5

62
24
3

48
24
7

59
48
9

5
94
91

5
9
4
9
3

5
9
4
9
3

59
49
1

18
10

15
99

16
87

15
44

1
5
1
8

17
7.
0

17
1.
9

19
3.
5

1
6
6
.2

17
9.
1

6.
1

ga
p
B

23
.6

45
86
3

35
05
6

38
20
8

3
8
2
8
4

3
8
2
8
4

3
8
2
8
4

3
8
2
8
4

59
59
5

61
13
7

5
7
1
8
2

6
04
04

61
62
1

75
7.
9

71
6.
6

6
4
4
.5

68
6.
2

70
2.
6

15
.0

ga
p
A

31
.0

38
60
8

26
62
3

3
0
6
7
2

3
0
7
6
2

3
0
7
6
2

30
76
1

30
76
1

61
70
3

47
98
6

47
89
9

4
3
7
8
8

44
69
1

84
9.
6

62
2.
3

63
4.
0

5
7
7
.4

59
0.
9

32
.0

T
ab

le
2
.4
:
S
u
m
m
a
ry

of
so
lv
ed

in
st
an

ce
s
(t
im

e
li
m
it

of
30

m
in
)
w
h
en

C
p
l
e
x
cu
ts

ar
e
ac
ti
va
te
d
*

F
il
e

#
#

S
ta
tu
s=

1
1

G
ap

af
te
r
30

m
in

(%
)

#
O
p
t
fo
u
n
d

al
l
C
p
l
e
x
cu
ts

o
n

a
ll
b
u
t
cl
iq
u
es

al
l
C
p
l
e
x
cu
ts

on
al
l
b
u
t
cl
iq
u
es

al
l
C
p
l
e
x
cu
ts

on
al
l
b
u
t
cl
iq
u
es

cp
le
x
d
ef

cl
i

c
+

h
cl
i

c
+

h
cp
le
x
d
ef

cl
i

c
+

h
cl
i

c
+

h
cp
le
x
d
ef

cl
i

c
+

h
cl
i

c
+

h

p
co
d
es

8
8

8
8

8
8

10
.3

10
.8

9.
8

10
.3

10
.8

0
0

0
0

0
ga

p
A

13
11

8
7

6
6

20
.4

19
.5

19
.6

18
.7

19
.3

6
2

1
1

0
ga

p
B

7
7

6
6

5
4

15
.6

17
.5

15
.8

16
.4

16
.9

2
0

2
1

0

T
a
b
le

2.
5:

S
u
m
m
ar
y
o
f
u
n
so
lv
ed

in
st
an

ce
s
(t
im

e
li
m
it

of
30

m
in
)
w
h
en

C
p
l
e
x
cu
ts

ar
e
ac
ti
va
te
d
*

*R
es
u
lt
s
ob

ta
in
ed

w
it
h
C
p
l
e
x
p
re
so
lv
er

off
.
C
u
ts

ar
e
en
ab

le
d
(e
x
ce
p
t
cl
iq
u
e
cu
ts

fo
r
co
lu
m
n
s
“a

ll
b
u
t
cl
iq
u
es
”)

cp
le
x
d
ef

st
an

d
s
fo
r
C
p
l
e
x
d
ef
a
u
lt

co
n
fi
gu

ra
ti
on

an
d
cl
i
an

d
c
+

h
fo
r
C
p
l
e
x
w
it
h
ou

r
se
p
ar
at
io
n
al
go

ri
th
m
s

Computational study 61

F
il
e

L
P
G
ap

IP
O
p
t

L
P
O
p
t

L
B

at
d
ep
th

3
n
o
d
es
B
B

T
im

e
%
Im

p
.

cp
le
x
d
ef

cl
i

c
+

h
cp
le
x
d
ef

cl
i

c
+

h
cp
le
x
d
ef

cl
i

c
+

h

u
n
if

10
.0

77
62

1
6
9
87

2
75

9
84

7
6
1
1
7

76
09

3
23

97
1
4
7
6

15
55

90
.7

7
7
.0

10
3.
6

15
.1

p
co
d
es

13
.0

55
43

1
4
8
22

6
52

9
26

53
01

3
5
3
1
0
9

11
52

9
1
0
7
3
5

10
85

0
5
2
5
.8

60
9.
0

55
6.
3

-
D
1

13
.4

15
02

2
1
3
01

0
14

7
64

14
77

4
1
4
7
9
0

78
8

58
0

5
4
3

10
.0

9
.4

10
.8

6.
6

B
15

.4
26

02
0

2
2
02

1
25

8
07

25
85

2
2
5
8
8
3

26
8

10
1

7
1

17
.0

1
5
.1

20
.4

11
.1

E
1

16
.5

16
17

7
1
3
51

0
15

6
42

15
69

4
1
5
6
9
7

92
01

53
51

5
2
1
4

24
4.
7

1
6
8
.9

17
6.
6

31
.0

C
16

.6
19

33
8

1
6
12

7
18

8
14

18
90

5
1
8
9
1
6

51
27

27
43

2
5
9
6

15
3.
9

1
0
0
.3

11
0.
7

34
.8

D
2

18
.6

21
79

3
1
7
73

0
21

1
81

2
1
3
0
6

21
29

0
49

99
25

86
2
2
5
2

71
.6

43
.5

4
1
.6

41
.9

ch
es
s

22
.5

62
24

3
4
8
24

7
60

7
03

60
80

4
6
0
8
6
6

18
10

1
7
0
0

17
54

1
7
8
.0

21
9.
8

30
4.
8

-
ga

p
B

23
.3

45
71

9
3
5
05

5
39

9
99

4
0
0
2
2

39
98

1
60

43
8

5
0
8
5
5

51
38

3
73

5.
9

5
7
8
.0

59
9.
0

21
.5

ga
p
A

31
.0

38
55

7
2
6
61

9
33

1
06

33
21

7
3
3
2
4
5

49
49

9
40

01
9

3
9
1
3
5

76
2.
4

6
0
8
.5

61
3.
4

20
.2

T
ab

le
2.
6:

S
u
m
m
a
ry

of
so
lv
ed

in
st
an

ce
s
(t
im

e
li
m
it

of
30

m
in
)
w
h
en

al
l
C
p
l
e
x
cu
ts

ar
e
ac
ti
va
te
d
an

d
cu
tt
in
g
d
ep
th

li
m
it

is
3*

F
il
e

#
#

S
ta
tu
s=

11
G
ap

af
te
r
30

m
in

(%
)

#
O
p
t
fo
u
n
d

cp
le
x
d
ef

cl
i

c
+

h
cp
le
x
d
ef

cl
i

c
+

h
cp
le
x
d
ef

cl
i

c
+

h

p
co
d
es

1
0

8
9

10
7.
8

6.
9

7.
8

0
1

2
ga

p
A

1
4

12
4

6
15

.9
12

.8
15

.5
7

1
2

ga
p
B

8
7

5
4

11
.5

12
.5

11
.7

2
2

1

T
a
b
le

2
.7
:
S
u
m
m
ar
y
of

u
n
so
lv
ed

in
st
an

ce
s
(t
im

e
li
m
it

of
30

m
in
)
w
h
en

al
l
C
p
l
e
x
cu
ts

ar
e
ac
ti
va
te
d
an

d
cu
tt
in
g
d
ep
th

li
m
it

is
3*

*R
es
u
lt
s
ob

ta
in
ed

w
it
h

C
p
l
e
x

p
re
so
lv
er

off
,
cp
le
x
d
ef

st
an

d
s
fo
r
C
p
l
e
x

d
ef
au

lt
co
n
fi
gu

ra
ti
on

an
d
cl
i
an

d
c
+

h
fo
r
C
p
l
e
x

w
it
h
ou

r
se
p
ar
a
ti
o
n
al
go

ri
th
m
s
a
p
p
li
ed

u
n
ti
l
d
ep
th

3
of

th
e
B
&
B

tr
ee

62 The SPLP with incompatibilities

of the running time for sets such as “E1”, ’C’ and “D2”, being this improvement even larger
than when we only run the separation at the root (see Table 2.4). Finally, Table 2.7 gathers
information about those instances that were not solved by some of the three configurations
tested.

Chapter 3

The double-assignment plant
location problem with twinning

In this chapter, a new variant of the Simple Plant Location Problem is proposed. We consider
additional conditions in the classic location-allocation problem for clients and facilities. These
new requirements are complementary to those proposed in the previous chapter in a sense.
While certain pairs of clients could not be allocated to the same plant there, now some pairs
have to be served by a common plant, that is, they have to be “twinned”. The resulting
problem can be addressed with existing models for the case of single assignment. However, the
proposed setting when each client must be assigned to a couple of facilities is still unexplored.

The double-assignment plant location problem with twinning is interesting within the fun-
damentals of locational analysis and emerged as a natural sequel of Chapter 2. Also, we
will see that this problem fits as a particular case of more general scenarios that were pre-
viously studied in locational analysis. Other than its interest within the framework of this
thesis, double-assignment plant location with twinned clients finds interesting applications in
telecommunication networks design. As already described, a generic telecommunication net-
work consists of a set of terminals (users), connected to concentrators (switches or multiplexers)
and a backbone network which interconnects the concentrators. A primary problem in net-
work design is to decide how many concentrators are needed and how the terminals should
be assigned to the concentrators. Gourdin et al. (2002) observed the relation of this problem
with the SPLP, identifying those two decisions with that of facility location and allocation.
The modification we propose here corresponds to a configuration in which some users must
share a concentrator. This is a realistic assumption, since there could be users with special
communication restrictions that want to have a dedicated path to avoid the backbone network.

We examine the implications of adding such “twinning” constraints to standard formula-
tions of the SPLP with double assignment. We compare the resulting formulations from a
theoretical point of view. After that, we focus on the study of one of the models, which turned
out to be a set packing problem. All the clique facets are identified and a separation algorithm
is devised. Although the separation problem is proved to be NP-hard, our computational expe-
rience shows that the separation algorithm is effective and efficient, reducing the computational
times and the LP bounds for all the instances tested. Our experiments reflect the utility of
clique inequalities and support the theoretical comparison of the formulations considered.

63

64 The DPLP with twinning

3.1 Double assignment with twinning

Consider a simple plant location scenario in which I and J are the sets of clients and candidate
facilities. Suppose that some pairs of clients wish to be allocated to the same facility. We
will call such pairs twinned clients. This could be easily addressed with formulations (SPLP)
or (SPLPL≤) described in Concepts just by “merging” variables and costs of each twinned
pair. However, sometimes clients must be assigned to a couple of facilities, for instance when a
backup service is needed. In such a case, plant location can be modeled as a particular case of
the Fault-Tolerant Facility Location problem (see Swamy & Shmoys, 2008), and of the Simple
Plant and Warehouse Location problem (see Kaufman et al., 1977). A closely related topic is
also hub location, where origin and destination pairs have to be connected by using a couple of
hubs (see for instance Campbell et al., 2002). When double assignment is considered, satisfying
those pairs of clients that want to be served by at least one common facility becomes a new
combinatorial problem that is a variant of the classic SPLP.

The double-assignment plant location problem with twinning, DPLPT, consists of allocating
each client to two facilities in such a way that twinned clients share at least one. To model
twinning relationships, we consider a graph GT = (I, ET) that has one node per client and
an edge e = (i, i�) ∈ ET for every pair (i, i�) of twinned clients. Note that one client can be
twinned more than once and that twinning is not transitive but reciprocal.

Double assignment can be typically modeled with two alternative approaches. One consists
of using standard allocation and location variables and changing the one on the right-hand side
of

�
j∈J xij = 1 by a two. The second is to consider new allocation three-indexed variables to

represent the pair of facilities that serve each client. The following subsections present both
alternative strategies when applied to the DPLPT.

Two-indexed formulation

Consider standard allocation variables and costs, xij and cij , together with complementary
location variables yj and opening costs fj . The formulation of the problem is then

(DPLPT) min
�

j∈J
fj(1− yj) +

�

i∈I

�

j∈J
cijxij

s.t.
�

j∈J
xij = 2 ∀i ∈ I (3.1)

xij + yj ≤ 1 ∀i ∈ I, ∀j ∈ J (3.2)

xi�j + xi�j� ≥ xij + xij� − 1 ∀(i, i�) ∈ ET , ∀j, j� ∈ J : j < j� (3.3)

xij , yj ∈ {0, 1} ∀i ∈ I, ∀j ∈ J.

Constraints (3.1) stand for double assignment, while (3.2) guarantee that clients are only
allocated to open facilities. Constraints (3.3) are the twinning constraints. They are only
active when their right hand sides equal one, that is, when a client i is allocated to facilities j
and j� (xij = xij� = 1). In this case, the constraints ensure that i� is allocated to one of these
two facilities, j or j�, for every twinned client, (i, i�) ∈ ET .

Three-indexed formulation

Alternatively to standard allocation variables, we can use the following ones

zijk = 1 iff client i is served by facilities j and k, for all i ∈ I, j, k ∈ J such that j < k.

Comparing the formulations 65

With these variables and location y-variables, the problem can be formulated as a set packing
in the following way

(DPLPT3) min
�

j∈J
fj(1− yj) +

�

i∈I

�

j∈J

�

k∈J:
k>j

(cij + cik −M)zijk +Mn

s.t.
�

j

�

k>j

zijk ≤ 1 ∀i ∈ I (3.4)

�

k>j

zijk +
�

k<j

zikj + yj ≤ 1 ∀i ∈ I, ∀j ∈ J (3.5)

zijk +
�

�

�

t>�:
{j,k}∩{�,t}=∅

zi��t ≤ 1 ∀(i, i�) ∈ ET , j < k (3.6)

zijk, yj ∈ {0, 1} ∀i ∈ I, ∀j, k ∈ J,

where M is a large enough constant. Constraints (3.4) and (3.5) are typical assignment con-
straints in facility location. Twinning constraints (3.6) ensure that twinned clients (i, i�) ∈ ET

are not allocated to non-overlapping pairs of facilities. Instead of (3.6), simply imposing
zijk + zi��t for all (i, i�) ∈ ET and different facility indices j, k, �, t with j < k and � < t
would have been sufficient. Inequalities (3.6) are just one way of reinforce that simplest trans-
lation of twinning requirements into packing constraints. Finally, note that

�
j

�
k>j zijk = 1

for an optimal solution, because otherwise M � 0 is added to the objective value.

In the following section, we explore the relation between the family of x-variables and
z-variables. Using that relation, we compare the constraints of formulations (DPLPT) and
(DPLPT3) and the optimal solutions of their linear relaxations, ultimately concluding which
formulation gives better bounds.

3.2 Comparing the formulations

Variables x and z are clearly related to each other. Given a client i, zijk will be one if and only
if xij and xik are. This is mathematically written as follows

zijk =xijxik ∀i ∈ I, j, k ∈ J, j < k

xij =
�

k>j

zijk +
�

k<j

zikj ∀i ∈ I, j ∈ J.

We use the second formula, which is linear, to replace x in (DPLPT) by the corresponding
z-variables. The resulting formulation, which we name (DPLPT’3), will be written in terms
of decision variables y and z. We will use (DPLPT’3) to compare the objective values of the
linear relaxations of (DPLPT) and (DPLPT3).

Starting with (3.1), we get

�

j∈J
xij =

�

j∈J

��

k>j

zijk +
�

k<j

zikj

�
=

�

j∈J

�

k>j

zijk +
�

j∈J

�

k<j

zikj .

Constraints (3.1) can be written then as
�

j∈J
�

k>j zijk +
�

j∈J
�

k<j zikj = 2, for all i ∈ I.
Second, observe that (3.2) is (3.5) by substitution of xij as a function of z. We last substitute

66 The DPLP with twinning

in (3.3),

xi�j + xi�j� ≥ xij + xij� − 1 ≡
�

k>j

zi�jk +
�

k<j

zi�kj +
�

k>j�
zi�j�k +

�

k<j�
zi�kj� ≥

�

k>j

zijk +
�

k<j

zikj +
�

k>j�
zij�k +

�

k<j�
zikj� − 1 ≡

�

k>j

zijk +
�

k<j

zikj +
�

k>j�
zij�k +

�

k<j�
zikj� −

�

k>j

zi�jk −
�

k<j

zi�kj −
�

k>j�
zi�j�k −

�

k<j�
zi�kj� ≤ 1.(3.7)

In order to compare (3.7) with (3.6), we unfold the summation in the latter. For every (i, i�) ∈
ET and j, k ∈ J such that j < k,

�

�

�

t>�:
{j,k}∩{�,t}=∅

zi��t = 1−
��

j�>j

zi�jj� +
�

j�<j

zi�j�j +
�

j�>k

zi�kj� +
�

j�<k:
j� �=j

zi�j�k

�
. (3.8)

Let

Zi�jk :=
�

j�>j

zi�jj� +
�

j�<j

zi�j�j +
�

j�>k

zi�kj� +
�

j�<k:
j� �=j

zi�j�k,

which will be one if i� is allocated to j, k or both and zero otherwise. Constraints (3.7) are
then,

Zijk + zijk − Zi�jk − zi�jk ≤ 1

while (3.6) can be rewritten as

zijk + 1− Zi�jk ≤ 1. (3.9)

We eventually obtain the following constraints and objective value for (DPLPT’3):

(DPLPT’3) min
�

j∈J
fj(1− yj) +

�

i∈I

�

j∈J
cij

��

k>j

zijk +
�

k<j

zikj

�

s.t.
�

j∈J

�

k>j

zijk +
�

j∈J

�

k<j

zikj = 2 ∀i ∈ I (3.10)

�

k>j

zijk +
�

k<j

zikj + yj ≤ 1 ∀i ∈ I, ∀j ∈ J

Zijk + zijk − Zi�jk − zi�jk ≤ 1 ∀(i, i�) ∈ ET , j < k (3.11)

zijk, yj ∈ {0, 1} ∀i ∈ I, ∀j, k ∈ J,

The following proposition shows that the LP bound obtained with (DPLPT3) is at least as
good as that of (DPLPT). As we already now, having tight bounds is critical for a branch and
cut solving approach.

Proposition 3.1. The optimal value of the linear relaxation of (DPLPT) is smaller than or
equal to that of (DPLPT3).

Comparing the formulations 67

Proof. Suppose that (z̄, ȳ) is an optimal solution of the linear relaxation of (DPLPT3) and let
f̄3 be its objective value,

f̄3 :=
�

j∈J
fj(1− ȳj) +

�

i∈I

�

j∈J

�

k∈J:
k>j

(cij + cik −M)z̄ijk +Mn.

We define

x̄ij =
�

k>j

z̄ijk +
�

k<j

z̄ikj ∀i ∈ I, j ∈ J.

We will show that (x̄, ȳ) is a feasible fractional solution of (DPLPT) with objective value f̄3.
Since (DPLPT) is a minimization problem, this will prove the proposition.

Given that (z̄, ȳ) is optimal, we know that
�

j

�
k>j z̄ijk = 1 for all i. Then, (z̄, ȳ) satisfies

(3.10). Moreover, since (3.9) is stronger than (3.11), (z̄, ȳ) is a feasible solution of the linear
relaxation of (DPLPT’3). Since (DPLPT’3) is formulation (DPLPT) when xij =

�
k>j zijk +�

k<j zikj , we conclude that (x̄, ȳ) is a feasible solution of the linear relaxation of (DPLPT).

The objective value of (x̄, ȳ) is

f̄ :=
�

j∈J
fj(1− ȳj) +

�

i∈I

�

j∈J
cij x̄ij =

�

j∈J
fj(1− ȳj) +

�

i∈I

�

j∈J
cij

��

k>j

z̄ijk +
�

k<j

z̄ikj

�

=
�

j∈J
fj(1− ȳj) +

�

i∈I

�

j∈J

�

k>j

cij z̄ijk +
�

i∈I

�

j∈J

�

k<j

cij z̄ikj .

On the other hand, the fact that
�

j

�
k>j z̄ijk = 1 for all i ∈ I implies

f̄3 =
�

j∈J
fj(1− ȳj) +

�

i∈I

�

j∈J

�

k∈J:
k>j

(cij + cik)z̄ijk.

After rearranging the summations, we get f̄ = f̄3.

Proposition 3.1 does not ensure that the LP bounds of (DPLPT) and (DPLPT3) do not
always coincide. The following example illustrates that the LP bound of (DPLPT3) can be
strictly greater than that of (DPLPT).

Example 3.1. Consider an instance with I = J = {1, . . . , 6}, opening costs fj = 20 for all
j ∈ J and allocation costs given by the following matrix

c =




0 30 76 25 18 48
30 0 45 50 14 38
76 45 0 37 28 53
25 50 37 0 60 15
18 14 28 60 0 27
48 38 53 15 27 0




.

Figure 3.1 shows GT for this example. The optimal solution of this instance is 272, with three
facilities opened.

68 The DPLP with twinning

3
4

1 2
6

5
Figure 3.1: Graph GT of Example 3.1

The optimal solution of the linear relaxation of (DPLPT) is

x11 = 0.5 x14 = 1 x15 = 0.5
x21 = 0.5 x22 = 0.5 x25 = 0.5 x26 = 0.5
x33 = 1 x34 = 1
x44 = 1 x46 = 1
x52 = 0.5 x55 = 0.5 x56 = 1
x64 = 1 x66 = 1
y1 = 0.5 y2 = 0.5 y3 = 1 y4 = 1 y5 = 0.5 y6 = 1,

with optimal value 266.
The linear relaxation (DPLPT3) has optimal solution

z115 = 0.6 z145 = 0.4
z215 = 0.6 z225 = 0.4
z334 = 0.4 z335 = 0.6
z414 = 0.2 z436 = 0.2 z445 = 0.4 z446 = 0.2
z515 = 0.4 z525 = 0.4 z556 = 0.2
z645 = 0.4 z646 = 0.4 z656 = 0.2
y1 = 0.6 y2 = 0.4 y3 = 1 y4 = 0.8 y5 = 1 y6 = 0.6,

with optimal value 268.4.
�

3.3 Clique facets

In this section, we identify some facets of the integer polytope of (DPLPT3),

Bdplpt := conv{(z, y) ∈ {0, 1}n·
m(m−1)

2 × {0, 1}m : (3.4)− (3.6)}.

Like every set packing formulation, (DPLPT3) has an associated conflict graph, which we
name Gdplpt. As already mentioned in previous chapters, it is standard to identify facets of
a set packing with some structures in its conflict graph. In this section, we will identify the
cliques of Gdplpt.

The following example illustrates the structure of Gdplpt for a small instance of the problem.
Given the density of the conflict graph, each family of constraints in (DPLPT3), namely (3.4),
(3.5) and (3.6), is illustrated separately for a restricted number of nodes.

Example 3.2. We consider an instance with five clients and four facilities. The graph de-
scribing the twinned pairs, GT , is shown on Figure 3.2. Figures 3.3-3.5 illustrate constraints of
(DPLPT3) on Gdplpt. Circular nodes correspond with z-variables, and are tagged with proper

Clique facets 69

34
1

5
2

Figure 3.2: A graph GT of five twinned clients, Example 3.2

subscripts ijk. Square nodes stand for y-variables. For a clear illustration, only a sample of
the edges are shown. Circular nodes are arranged in groups forming a matrix, each group
corresponding to a pair of facilities j, k with j < k and having five nodes, one for each of the
five clients.

Figure 3.3 depicts how edges link nodes that refer to the same client and corresponds to
constraints (3.4) of (DPLPT3). Note that they define cliques. In fact, Figure 3.3 shows a clique
of six nodes associated to client 2.

Figure 3.4 illustrates that nodes corresponding with the same client and facility are adjacent
to the node of that facility. Such subsets of nodes also define cliques in Gdplpt. The edges shown
in this figure are due to constraints (3.5) in the model.

Finally, Figure 3.5 shows that the groups of nodes displayed in each entry (j, k) are also
interconnected by means of the twinning constraints (3.6).

�

A first observation is that (3.6) can be generalized. Take the example depicted in Figure
3.5 and clients i = 3 and i� = 5, (i, i�) ∈ ET . If we add two new plants with indices 5 and 6,
we will have twinning constraints

z312 + z534 + z535 + z536 + z545 + z546 + z556 ≤ 1,

z313 + z524 + z525 + z526 + z545 + z546 + z556 ≤ 1

for (j, k) = (1, 2) and (j, k) = (1, 3), respectively. However,

z312 + z313 + z323 + z545 + z546 + z556 ≤ 1,

which is illustrated by Figure 3.6, is also valid and not written in the formulation. This
corresponds to forbidding the pairs of facilities that serve twinned clients 3 and 5 to be in two
non-overlapping subsets of plants J1, J2 ⊆ J , J1 ∩ J2 = ∅. In the example above, J1 = {1, 2, 3}
and J2 = {4, 5, 6}, while (3.6) stand for the particular case of J1 = {j, �} and J2 = J \ {j, �}.

Proposition 3.2. Let (i1, i2) ∈ ET and J1, J2 ⊂ J both containing at least two different
facilities and such that J1 ∩ J2 = ∅. The following inequalities are valid for (DPLPT3)

�

j1∈J1

�

k1∈J1:
k1>j1

zi1j1k1 +
�

j2∈J2

�

k2∈J2:
k2>j2

zi2j2k2 ≤ 1. (3.12)

Moreover, (3.12) define facets of Bdplpt if and only if J1∪J2 = J . In particular, (3.6) are facets.

70 The DPLP with twinning

j=1

j=2

j=3

k=2 k=3
y

312

k=4

412
112

512

1 y2 y3 y4

212
313413

113
513

213
314414

114
514

214

323423
123

523
223

324424
124

524
224

334434
134

534
234

Figure 3.3: Edges in Gdplpt corresponding with (3.4) and i = 2

j=1

j=2

j=3

k=2 k=3
y

312

k=4
412
112

512

1 y2 y3 y4

212
313413

113
513

213
314414

114
514

214

323423
123

523
223

324424
124

524
224

334434
134

534
234

Figure 3.4: Edges in Gdplpt corresponding with (3.5) when i = 1 and j = 3

Clique facets 71

j=1

j=2

j=3

k=2 k=3
y

312

k=4
412
112

512

1 y2 y3 y4

212
313413

113
513

213
314414

114
514

214

323423
123

523
223

324424
124

524
224

334434
134

534
234

Figure 3.5: Edges in Gdplpt corresponding with (3.6), graph in Figure 3.2 and i = 3, i� = 1, 2, 5,
j = 1, k = 2, 3, 4

j=1

j=2

j=3

k=2 k=3
y

k=41 y2 y3 y4

312 313

323

545
j=4

k=5
y5

546

k=6
y6

556j=5
Figure 3.6: Clique in Gdplpt (3.12) with (3, 5) ∈ ET , J1 = {1, 2, 3}, J2 = {4, 5, 6}

72 The DPLP with twinning

Proof. The fact that (3.12) are valid is clear from the problem definition. For the second
statement, we will proof that

C :=
� �

j1∈J1

�

k1∈J1:
j1>k1

{zi1j1k1}
��� �

j2∈J2

�

k2∈J2:
j2>k2

{zi2j2k2}
�

define a clique in Gdplpt if and only if J1 ∪ J2 = J .
Suppose first that Gdplpt[C] is a clique and there is j� ∈ J \ {J1 ∪ J2}. In this case

�

k1∈J1:

j�>k1

zi1j�k1 +
�

k1∈J1:

j�<k1

zi1k1j� +
�

j1∈J1

�

k1∈J1:
j1>k1

zi1j1k1 +
�

j2∈J2

�

k2∈J2:
j2>k2

zi2j2k2 ≤ 1 (3.13)

would be valid and stronger than (3.12), which is a contradiction.
Conversely, suppose that J1∪J2 = J . From the problem definition, we know that Gdplpt[C]

is a complete subgraph. Then, we have to prove that Gdplpt[C] is a maximal complete subgraph.
If there is v /∈ C such that Gdplpt[C ∪ {v}] is complete, then v does not correspond with a y-
variable. This is clear, since a node yj is adjacent only to zijk and zikj for all i and k. Since
J1 ∩ J2 = ∅, there cannot be a y-node adjacent to every node in C. Suppose then that v is
a z-node, i.e., Gdplpt[C ∪ {zi�j�k�}] is a complete subgraph, for some i�, j�, k�. We distinguish
between two different cases.

1. If i� = i1 (resp. i� = i2), one of the facilities j� or k� is not in J1 (resp. J2), otherwise
the node was already in C. Without loss of generality, let j� be that facility. Since
J1 ∪ J2 = J , j� ∈ J2 (resp. J1). But this is a contradiction because zi1j�k� and zi2j�k2 ∈ C
are not adjacent (resp. zi2j�k� and zi1j�k1 ∈ C), for any k2 ∈ J2, k2 > j� (resp. k1 ∈ J1,
k1 > j�).

2. If i� �= i1 and i� �= i2, edges between zi�j�k� and nodes in C will all correspond with
twinning constraints. In particular, {i�, i1, i2} define a complete subgraph in GT . Again,
due to the fact that J1∪J2 = J , there cannot be such twinning constraints between zi�j�k�

and zi1j1k1 if j� or k� are in J1, or between zi�j�k� and zi2j2k2 if j� or k� are in J2.

Following a similar idea, more valid inequalities can be derived for every triangle {i, i�, i��} ⊆
I in GT and partition {J1, J2, J3} of J with Ji consisting of at least two facilities each. In
general, this can be done for every subset of pairwise twinned clients and every partition
having the same size. The following proposition states that all the clique facets of Bdplpt can
be obtained in this way or are of the form (3.4) or (3.5).

Theorem 3.1. The only clique facets of Bdplpt are (3.4), (3.5) and

�

i∈CT

�

j∈Ji

�

k∈Ji:
k>j

zijk ≤ 1, (3.14)

for all CT ⊆ I such that GT [CT] is a complete subgraph, and for all Ji ⊆ J , i ∈ CT , such that
|Ji| ≥ 2, ∪i∈CT

Ji = J and Ji ∩ Ji� = ∅ for every pair i �=� i.

Proof. Suppose that πz + ρy ≤ 1 is a clique facet of Bdplpt. We will show that it has to be one
of the inequalities of the statement.

Clique separation 73

We analyze first the case in which ρj� = 1 for some j� ∈ J , which readily implies ρj = 0 for
all j �= j�. Variables with positive π-coefficients have to be in the neighborhood of yj� in Gdplpt,
N(yj�). But N(yj�) = {zij�k : i ∈ I, k > j�}∪{zikj� : i ∈ I, k < j�}. In particular, z-variables in
N(yj�) all have one of its plant indices equal to j�. As a consequence, these variables are never
adjacent due to a twinning constraint. Due to the problem constraints, they will be adjacent
if and only if they have the same client index. In other words, there is a clique containing yj�

for each i ∈ I, namely Cij = {yj�} ∪ {zij�k}j�<k ∪ {zikj�}k<j� , which corresponds to (3.5).

Suppose now that ρj = 0 for all j ∈ J . Let

C := {zijk : πijk = 1, i ∈ I, j, k ∈ J, j < k}

be the nodes of Gdplpt corresponding with the clique facet πz ≤ 1. Let

CT := {i ∈ I : zijk ∈ C for some j, k}

be the subset of clients that appear in the indices of the variables of C. We analyze two cases.

1. CT = {i�}. In this case, C ⊆ {zi�jk : j, k ∈ J, j < k}. Due to constraints (3.4), it has
to be C = {zi�jk : j, k ∈ J, j < k}. In fact, clique facet πz ≤ 1 corresponds precisely to
(3.4).

2. |CT | > 1. In this case, edges of Gdplpt[C] between nodes associated to different clients
have to be due to (3.6), which are defined for every (i, i�) ∈ ET . As a consequence, GT [CT]
is also a complete subgraph. For every i ∈ CT , let J

1
i := {j ∈ J : zijk ∈ C for some k}

and J2
i := {k ∈ J : zijk ∈ C for some j}. We also define Ji := J1

i ∪ J2
i , the set of

facilities indices that appear with client i in the variables of C. First, Ji ∩ Ji� = ∅ for all
i, i� ∈ CT since πz ≤ 1 will not be valid otherwise. On the other hand, for all i ∈ CT ,
{(j, k) ∈ J × J : zijk ∈ C} ⊆ {(j, k) ∈ Ji × Ji : j < k}. If, for some i� ∈ CT , there was
(j�, k�) contained in the second subset but not in the first, πz ≤ 1 could be improved by
adding zi�j�k� to its left-hand side, which contradicts the fact that it is a facet. Hence,
{(j, k) ∈ J × J : zijk ∈ C} = {(j, k) ∈ Ji × Ji : j < k}. It follows that πz ≤ 1 has
the form of (3.14). It remains to prove that ∪i∈CT

Ji = J . But now it is easy to see that
πz ≤ 1 could be improved if there was j� ∈ J \

�
∪i∈CT

Ji
�
, just by adding j� to one of

the subsets Ji.

Corollary 3.1. All the constraints of (DPLPT3) are facets.

Remark 3.1. In Theorem 3.1, CT is not necessarily a clique. Indeed, (3.12) are a particular
case of (3.14) when CT = {i1, i2} for (i1, i2) ∈ ET , which is not necessarily a maximal complete
subgraph. This is interesting because, to the best of our knowledge, there is no precedence in
set packing of a clique facet ultimately induced by a not maximal complete subgraph. �

3.4 Clique separation

The only clique facets of Bdplpt that are not included in (DPLPT3) are that of family (3.14)
with |CT | > 2 or |CT | = 2 and |Ji| ≥ 2, i ∈ CT . This section focuses on the latter, which
belong to family (3.12). Given a twinned pair (i1, i2) ∈ ET , (3.12) define exponentially many
inequalities, even when J1 ∪ J2 = J . A separation algorithm is then needed to manage these

74 The DPLP with twinning

inequalities within a branch and cut scheme. We will first prove the theoretical computational
complexity of this problem and then provide a heuristic algorithm to approach it. These
results can be extended to separation of the more general family (3.14). On the one hand,
the theoretical complexity does not improve when the size of the partition (which coincides
with |CT |) increases. On the other hand, we will see that the proposed heuristic can be easily
adapted. However, exhaustive separation of (3.14) is not expected to be rewarding. We will
prefer to address the case |CT | = 2 when moving separation from theory to practice (see the
computational study of next section).

Given a fractional optimal solution z̄, and given an edge (i1, i2) ∈ ET , the problem of
separation of (3.12) is to find the partition of J in J1 and J2 that maximizes

�

j1∈J1

�

k1∈J1:
j1>k1

z̄i1j1k1 +
�

j2∈J2

�

k2∈J2:
j2>k2

z̄i2j2k2 . (3.15)

This problem can be identified with a max-cut problem in a graph. Given a graph G = (V,E)
with weights on its edges, the max-cut is to determine a subset U ⊆ V such that the sum of
the weights in the cut— the set of edges with one endnode in U and the other in V \ U— is
maximal. We identify the separation with the following especial case of max-cut, which we
name double-cut.

Definition 3.1 (DOUBLE-CUT). Let G = (V,E) be a graph and let W 1 and W 2 be two
matrices of weights for its edges, W 1 = (w1

jk)i,k∈V , W
2 = (w2

jk)i,k∈V , w
1
jk, w

2
jk ∈ R. Given W ∈

R, DOUBLE-CUT is to decide whether there is V1 ⊆ V such that
�

j∈V1

�

k∈V1:
k>j

w1
jk+

�

j /∈V1

�

k/∈V1:
k>j

w2
jk ≥

W . �

We will show that the following problem can be reduced to the decision problem of Definition
3.1 in polynomial time.

Definition 3.2 (PARTITION). Let c1, . . . , cn be integer, ci ∈ Z. PARTITION is to decide
whether there is S ⊆ {1, . . . , n} such that

�
i∈S ci =

�
i/∈S ci. �

The partition problem is one of the six basic NP-complete problems in Garey & Johnson
(1979). Then, giving a polynomial time reduction of PARTITION to DOUBLE-CUT implies
that the latter is also NP-complete. The following proposition states and proves such a result.

Proposition 3.3. DOUBLE-CUT is NP-complete.

Proof. Suppose that c1, . . . , cn ∈ Z is an instance of PARTITION. We will build an instance
of DOUBLE-CUT that has positive answer if an only if there is S ⊆ {1, . . . , n} such that�

i∈S ci =
�

i/∈S ci.

Consider an instance of DOUBLE-CUT with G = Kn the complete graph of n nodes and
the following weights

w1
jk = w2

jk = −cj · ck ∀j, k ∈ V,

W =
1

2

�

j∈V
c2j −

1

4

��

j∈V
cj

�2
.

Clique separation 75

DOUBLE-CUT has a positive answer if and only if there is V1 ⊆ V such that

�

j∈V1

�

k∈V1:
k>j

−cj · ck +
�

j /∈V1

�

k/∈V1:
k>j

−cj · ck ≥ 1

2

�

j∈V
c2j −

1

4

��

j∈V
cj

�2
. (3.16)

We know that �

j∈V1

�

k∈V1:
k>j

−cj · ck = −1

2

�� �

j∈V1

cj
�
·
� �

k∈V1

ck
�
−

�

j∈V1

c2j

�
.

The left-hand side of (3.16) is then

−1

2

�� �

j∈V1

cj
�
·
� �

k∈V1

ck
�
+

� �

j /∈V1

cj
�
·
� �

k/∈V1

ck
�
−

�

j∈V
c2j

�

=
1

2

��

j∈V
c2j −

� �

j∈V1

cj

�2
−

� �

j /∈V1

cj

�2�
.

In general, function X2 + Y 2 when X + Y is constant attains its minimum at X = Y . If we
call

X =
�

j∈V1

cj and

Y =
�

j /∈V1

cj ,

the left-hand side of (3.16) attains its maximum when X2+Y 2 attains its minimum, i.e., when�
j∈V1

cj =
�

j /∈V1
cj =

��
j∈V cj

�
/2. In such a case, the left-hand side of (3.16) would be

1

2

��

j∈V
c2j − 2 ·

��
j∈V cj

2

�2�
=

1

2

�

j∈V
c2j −

1

4

��

j∈V
cj

�2
= W.

Then, DOUBLE-CUT can only have positive answer when (3.16) is satisfied as an equality,
which happens if and only if there is V1 ⊆ V such that

�
j∈V1

cj =
�

j /∈V1
cj .

Corollary 3.2. The separation of (3.12) when J1 ∪ J2 = J is NP-hard.

Given the computational complexity of separation, we propose an algorithm that, given
an optimal fractional solution z̄ and a pair of twinned clients (i1, i2) ∈ ET , tries to maximize
(3.15) heuristically. An initial partition J1, J2 ⊆ J is considered at first. Facilities are moved
from J1 to J2 and viceversa whenever this produces an increment of (3.15) and the number
of elements is not below three for any of the subsets. If (3.15) is eventually greater than one,
the corresponding inequality is added as a cut. Algorithm 3.1 describes the pseudo code of the
separation heuristic, which is applied for every pair in ET in each callback. Note that the idea
of the algorithm can be also applied to i1, i2, i3 pairwise adjacent, i.e., inducing a triangle in
GT . Partition will be then made of three subsets, J1, J2, J3 ⊆ J , and a larger combinatorial
number of possible movements among their components have to be checked.

76 The DPLP with twinning

Algorithm 3.1 Separation heuristic

Input z̄: fractional solution of (DPLPT3).
(i1, i2) ∈ ET : pair of twinned clients.
�: tolerance for cut violation.

Variables J1: first subset of facility indices.
J2: second subset of facility indices.
Zi1j(J1): the contribution of j to the left-hand side of the cut when j ∈ J1.
Zi2j(J2): the contribution of j to the left-hand side of the cut when j ∈ J2.

Output cut: a cut in the family (3.12) violated by z̄, if exists.

Step 1 J1 = {1, . . . , �(m+ 1)/2�}, J2 = {�(m+ 1)/2�+ 1, . . . ,m}.
Step 2 If |J1| ≥ 3, for all j ∈ J1 do:

2.1 Zi1j(J1) =
�

k1∈J1:
k1<j

z̄i1k1j +
�

k1∈J1:
k1>j

z̄i1jk1 .

2.2 Zi2j(J2) =
�

k2∈J2:
k2<j

z̄i2k2j +
�

k2∈J2:
k2>j

z̄i2jk2 .

2.3 If Zi1j(J1) < Zi2j(J2) then J1 = J1 \ {j}; J2 = J2 ∪ {j}; go to Step 2.

Step 3 If |J2| ≥ 3, for all j ∈ J2 do:

3.1 Zi1j(J1) =
�

k1∈J1:
k1<j

z̄i1k1j +
�

k1∈J1:
k1>j

z̄i1jk1 .

3.2 Zi2j(J2) =
�

k2∈J2:
k2<j

z̄i2k2j +
�

k2∈J2:
k2>j

z̄i2jk2 .

3.3 If Zi1j(J1) > Zi2j(J2) then J1 = J1 ∪ {j}; J2 = J2 \ {j}; go to Step 2.

Step 4 If
�

j1∈J1
�

k1∈J1:
j1>k1

z̄i1j1k1 +
�

j2∈J2
�

k2∈J2:
j2>k2

z̄i2j2k2 > 1 + � then

cut =
�

j1∈J1
�

k1∈J1:
j1>k1

zi1j1k1 +
�

j2∈J2
�

k2∈J2:
j2>k2

zi2j2k2 ≤ 1

else cut = ∅
Step 5 Return cut.

Computational study 77

3.5 Computational study

The aim of our computational study is twofold. First, we are interested in providing an em-
pirical comparison between the LP bounds of (DPLPT) and (DPLPT3). Second, we intend to
validate the separation heuristic applied on (DPLPT3) and test its relative performance with
respect to bare formulations (DPLPT) and (DPLPT3).

3.5.1 Experimental setup

The machine used was an Intel Xeon CPU at 3Ghz×8, with 16GB of RAM. Our testbed was
based on four instances of the OR-Library, namely pmed1, pmed2, pmed3 and pmed4, see
Beasley (1990).

As already mentioned in previous section, the heuristic described on Algorithm 3.1, which
address the case |CT | = 2, can be adapted to separate other inequalities of the family (3.14).
A preliminary computational study was conducted to check the performance of the heuristic
when adapted to |CT | ∈ {2, 3}. Graph GT was generated having many triangles, so that
structures |CT | = 3 were found. For every i ∈ {1, . . . , �n/2�}, ET had edges (i, n − i + 1),
(i, 2i), (2i, n− i+1), (n− i, n− i+1) and (i, n− i). The results are shown on Table 3.2. Dual
bounds are the same in almost all the cases, except for those depicted in bold. Running times
are not always smaller for one of the alternatives. However, we observe that the improvement
of the adapted heuristic is not significant in comparison to those cases when it represents the
worst alternative. For instance, when n = 3 in file pmed3, the adapted heuristic spends more
than 100 seconds more than Algorithm 3.1. Conversely, the adapted heuristic saves no more
than 30 seconds with respect to Algorithm 3.1 in the best cases. In view of these results, we
decided to conduct experiments only with the heuristic of Algorithm 3.1.

For our computational study, we have taken n = m = 10, 15, 20, 25, 30, 35, 40. Since
Beasley’s instances have 100 clients, we have to trim Beasley’s matrices (cij) to obtain the
desired size. A range of constant vectors are considered for the opening costs, for all j ∈ J , fj =
50, 75, 100, 125, 150, 175, 200. These costs will imply opening from 12.5% to 68% of candidate
facilities in the optimal solution. The testbed is then made of 4(Beasley’s)×7(size)×7(opening
costs)=196 instances in total. Graph GT is generated depending on the size of the instance,
i.e., on n. For every i ∈ {1, . . . , �n/2�} edges (i, n − i + 1) and (i, 2i) are added to ET , which
gives medium density graphs.

Each instance of the testbed is solved under four different configurations in Fico Xpress
Mosel 64-bit v4.8.4. Default cutting planes, heuristics and presolving strategies are disabled
for all the experiments. The configurations are

- C1: formulation (DPLPT),

- C2: formulation (DPLPT3),

- C3: formulation (DPLPT3) and callbacks to Algorithm 3.1 at the root node of the branch-
ing tree,

- C4: formulation (DPLPT3) and callbacks to Algorithm 3.1 throughout the branching
tree.

Time limit is set to half an hour for all the experiments. The two last configurations solved
all the instances within the time limit. Formulations (DPLPT) and (DPLPT3) solved 122 and
110 instances, respectively.

78 The DPLP with twinning

File n fj OPT LP Time NodesBB

|CT | = 2 |CT | ∈ {2, 3} |CT | = 2 |CT | ∈ {2, 3} |CT | = 2 |CT | ∈ {2, 3}
pmed1 10 50 921 921.0 921.0 0.1 0.3 1 1
pmed1 10 100 1161 1161.0 1161.0 0.1 0.1 1 1
pmed1 20 50 2272 2272.0 2272.0 6.3 5.4 1 1
pmed1 20 100 2688 2688.0 2688.0 5.7 4.7 1 1
pmed1 30 50 3410 3410.0 3410.0 139.9 122.0 1 1
pmed1 30 100 3943 3943.0 3943.0 183.7 149.2 1 1
pmed2 10 50 1340 1340.0 1340.0 0.2 0.1 1 1
pmed2 10 100 1590 1590.0 1590.0 0.2 0.1 1 1
pmed2 20 50 2717 2717.0 2717.0 6.3 4.5 1 1
pmed2 20 100 3175 3175.0 3175.0 7.6 5.1 1 1
pmed2 30 50 3969 3969.0 3969.0 110.6 125.1 1 1
pmed2 30 100 4499 4499.0 4499.0 131.4 126.1 1 1
pmed3 10 50 976 976.0 976.0 0.1 0.2 1 2
pmed3 10 100 1209 1209.0 1209.0 0.1 0.1 1 1
pmed3 20 50 2595 2588.0 2588.0 16.5 20.8 5 21
pmed3 20 100 2983 2975.2 2979.3 15.4 14.4 13 3
pmed3 30 50 4108 4108.0 4108.0 295.3 379.8 1 1
pmed3 30 100 4687 4672.4 4673.0 332.4 483.4 21 11
pmed4 10 50 1442 1442.0 1442.0 0.1 0.1 1 1
pmed4 10 100 1701 1701.0 1701.0 0.1 0.1 1 1
pmed4 20 50 3165 3163.0 3165.0 11.3 11.2 1 1
pmed4 20 100 3627 3627.0 3627.0 10.9 11.7 1 1
pmed4 30 50 4491 4491.0 4491.0 183.5 168.4 1 1
pmed4 30 100 5019 5019.0 5019.0 140.4 154.8 1 1

Table 3.2: Preliminary test to check the performance when adapting the heuristic

Tables 3.3 and 3.4 show the computational results. The LP gap, running time and the
number of nodes explored during the branching are displayed in different columns for the
different configurations. The LP gap is relative to the optimal value, and is calculated as a
percentage. When Algorithm 3.1 is used, the LP gap is calculated using the LP bound after
adding the cuts at the root node. Due to the large number of instances, we have to display
average results. Table 3.3 shows results on average throughout different costs fj considered,
for every Beasley’s file and size. On the other hand, computational results are averaged by
input size n on Table 3.4, where a row is displayed for every Beasley’s file and opening cost
constant vector. The following section discusses the results.

3.5.2 Comparative analysis

From Table 3.3, we can see that (DPLPT) and (DPLPT3) fail to solve the bigger instances,
namely those with n = 35, 40. Moreover, (DPLPT3) still has difficulties to cope when n = 30.
Using the separation heuristic with (DPLPT3) can dramatically improve the running time to
the point of solving all the instances within 538 seconds. Such an improvement with respect to
(DPLPT) and (DPLPT3) begins to appear with n = 20. Columns concerning the nodes of the
branch and bound tree also reflect a better performance when the separation is incorporated
to the solving procedure. Nevertheless, as opposed to running times, (DPLPT3) explores
less nodes than (DPLPT) to obtain the optimal solution. This makes very much sense since
(DPLPT3) LP bounds are better. The number of variables to manage is probably one of the
factors that influence higher running times of (DPLPT3). The fact that many of the instances
are solved at the root when cuts are added is consistent with the extremely tight LP gaps that
we get in those cases. On the other hand, as expected from the theoretical findings, the LP

Computational study 79

File n LP GAP Time NodesBB

C1 C2 C3 C1 C2 C3 C4 C1 C2 C3 C4

pmed1 10 4.3 2.2 0.1 0.0 0.3 0.2 0.0 29 19 1 1
15 14.5 8.8 0.0 0.4 3.5 1.0 0.4 3664 572 1 1
20 13.5 9.0 0.1 21.3 41.6 4.0 2.4 83068 5408 1 1
25 12.8 8.5 0.0 267.2 456.9 15.2 9.4 459087 22114 1 1
30 15.7 9.8 0.1 722.5 1050.3 105.5 50.7 528145 11028 20 7
35 18.4 11.5 0.0 1088.2 1210.7 293.5 149.6 385108 4265 1 1
40 21.2 14.0 0.1 1200.2 1213.3 885.1 488.4 303871 1877 4 4

pmed2 10 13.0 6.8 0.0 0.1 0.5 0.1 0.1 218 115 1 1
15 14.2 8.8 0.0 0.3 3.7 0.5 0.5 1566 955 1 1
20 16.0 8.7 0.0 3.5 35.9 2.5 2.5 15747 5916 3 2
25 17.6 8.1 0.0 37.3 165.0 9.2 9.3 61588 5258 2 1
30 19.9 11.9 0.2 879.9 1203.5 47.4 48.7 600064 14171 18 9
35 21.0 12.7 0.1 1200.2 1209.4 113.2 130.2 365431 5046 5 4
40 22.2 13.6 0.1 1200.1 1214.8 483.3 509.7 209979 1660 12 6

pmed3 10 6.4 2.0 0.0 0.0 0.3 0.0 0.1 18 16 1 1
15 11.5 5.8 0.1 0.3 4.3 0.4 0.4 820 598 1 1
20 22.2 14.6 0.0 250.1 357.3 3.0 2.9 747206 67113 1 1
25 20.2 15.0 0.0 514.6 649.6 11.0 11.0 942326 26338 2 1
30 21.0 14.6 0.0 916.3 1204.2 48.9 48.0 814889 13579 2 1
35 25.4 17.1 0.2 1200.2 1209.7 216.8 219.7 472411 4249 26 1
40 24.0 15.7 0.0 1200.3 1214.3 534.6 538.4 238041 1494 2 2

pmed4 10 14.6 6.5 0.0 0.3 0.7 0.1 0.1 180 253 1 1
15 11.7 6.4 0.0 1.0 3.5 0.4 0.4 1300 560 1 1
20 13.1 7.0 0.0 8.0 26.3 2.4 2.4 16690 2244 2 1
25 18.5 10.6 0.2 469.7 675.4 11.6 11.3 713877 29653 8 4
30 18.8 9.8 0.0 621.9 1116.3 39.2 40.6 514557 7849 2 1
35 20.8 12.6 0.0 1200.2 1210.1 133.3 138.5 380402 4950 2 2
40 22.2 14.3 0.1 1200.4 1210.0 460.5 466.6 229642 3005 17 3

Table 3.3: Average computational results as a function of source file and n

80 The DPLP with twinning

File fj LP GAP Time NodesBB

C1 C2 C3 C1 C2 C3 C4 C1 C2 C3 C4

pmed1 50 25.8 16.6 0.0 703.7 667.7 164.0 90.3 750966 15994 2 2
75 20.0 12.6 0.0 594.9 702.2 182.0 98.4 366724 12417 1 1
100 15.8 10.1 0.1 525.9 616.7 199.7 104.8 217873 6765 12 5
125 12.6 8.1 0.0 517.8 551.5 197.9 105.7 214929 3921 9 3
150 10.1 6.4 0.0 368.9 534.1 186.3 102.2 80211 2830 1 1
175 8.6 5.3 0.0 351.8 478.7 187.2 102.9 103523 2052 2 3
200 7.5 4.6 0.1 236.9 425.6 187.4 96.6 28744 1304 3 2

pmed2 50 28.7 16.9 0.1 527.4 554.7 79.0 86.5 377056 8417 4 2
75 23.7 13.7 0.0 530.3 578.9 85.9 94.1 285738 8135 4 3
100 19.6 11.3 0.0 521.0 553.1 107.4 112.4 191922 4750 16 4
125 16.3 9.1 0.0 516.0 542.7 91.6 100.7 165141 3559 1 1
150 13.9 7.6 0.0 422.5 536.5 92.0 100.9 96590 3260 2 2
175 11.8 6.5 0.1 412.3 535.3 97.8 105.9 74852 2485 5 4
200 9.9 5.5 0.1 391.7 531.5 102.6 100.6 63294 2513 12 8

pmed3 50 29.9 19.2 0.1 834.4 825.1 101.7 103.7 1161895 46920 2 2
75 24.7 15.8 0.0 753.3 816.7 125.6 128.2 794468 33435 9 3
100 20.4 13.1 0.0 681.9 731.8 124.2 118.7 560321 13682 3 1
125 17.1 11.1 0.0 540.4 603.0 129.7 124.8 297781 7011 1 1
150 14.8 9.7 0.0 521.7 560.8 123.1 123.0 216003 4973 3 2
175 12.8 8.5 0.1 387.8 551.6 117.0 120.3 111752 4010 14 11
200 11.1 7.5 0.0 362.3 550.6 93.4 101.8 73489 3356 3 2

pmed4 50 28.7 16.9 0.0 690.6 670.9 79.7 82.8 642622 16419 2 2
75 23.3 13.2 0.0 687.4 686.7 85.1 88.5 548154 12506 2 2
100 19.1 10.6 0.1 593.0 694.4 91.4 98.4 343380 8601 1 1
125 15.6 8.5 0.0 432.8 586.2 88.4 92.6 116445 3913 1 1
150 13.0 7.0 0.1 379.9 593.2 92.9 92.1 72110 3416 5 2
175 10.8 5.8 0.0 363.3 514.9 114.9 106.7 87922 2167 16 2
200 9.1 5.0 0.1 354.6 496.2 95.0 98.7 46012 1492 5 4

Table 3.4: Average computational results as a function of source file and costs fj

gap is always smaller for (DPLPT3), being the difference with (DPLPT) more noticeable with
the increase of the problem size.

Table 3.4 allows to compare the formulations when opening costs change. We observe that
the instances with tightest gaps are those with highest opening costs, for which fewer facilities
are open in an optimal solution. Conversely, running times do not seem to directly depend on
fj in overall terms, nor does the number of nodes explored in the branching.

We further provide several charts that better illustrates the comparison of the four con-
figurations. These depict, for every configuration, an step function to represent the number
of instances solved in total after some time or some nodes of the branching tree. LP gaps
throughout the testbed are also represented with step functions.

To begin with, a comparison of the LP gaps is given in Figure 3.7. The figure shows relative
gaps within the optimum— which is known for all the instances— and the linear relaxations of
(DPLPT) and (DPLPT3) when no cut is added and after adding the cuts to the root. On the
one hand, experiments support Proposition 3.1, i.e., the LP gap is always tighter for (DPLPT3).
On the other hand, applying the separation heuristic at the root surprisingly closes the gap in
almost all the cases. This suggests that clique facets (3.12) are very close to cover the side of
the polyhedron Bdplpt that faces towards the direction of optimization.

Figure 3.8 gives a comparison of the running times of the four configurations tested. The
abscissa axis shows the time in seconds. The ordinate axis shows the percentage of instances
that are solved before each time tick mark. According to our experiments, (DPLPT) clearly

Computational study 81

LP Gap (%)

In
st

an
ce

s
(%

)

0.5 1 5 10 15 20 25 30 35 40 45 50

5
20

30
40

50
60

70
80

90
10

0

C1
C2
C3

Figure 3.7: Percentage of instances within different LP gaps

Time (s)

So
lve

d
in

st
an

ce
s

(%
)

5 10 25 50 75 100 150 200 300 500 750 1000 1200

10
20

30
40

50
60

70
80

90
10

0

C1
C2
C3
C4

Figure 3.8: Percentage of solved instances as a function of time

82 The DPLP with twinning

Nodes in the branching tree

So
lve

d
in

st
an

ce
s

(%
)

1 10 25 50 100 250 500 750 1000 10k 50k 100k 500k 1M

10
20

30
40

50
60

70
80

90
10

0

C1
C2
C3
C4

Figure 3.9: Percentage of solved instances as a function of the nodes of the branching tree

outperforms (DPLPT3). However, when the separation heuristic is incorporated to (DPLPT3),
things turn out differently. The resulting configurations solve about 70% of the instances in 75
seconds, while (DPLPT) can only solve 62% of the instances within the time limit.

Finally, Figure 3.9 compares the four configurations in terms of the nodes of the branching
tree. The abscissa axis shows the number of nodes in the tree, and the ordinate axis depicts
the percentage of instances solved up to those number of nodes. Formulations (DPLPT) and
(DPLPT3) present a very similar performance in overall terms. The use of the separation
heuristic sharply reduces the size of the tree, which consists of only one node for more than
70% of the instances and no more than 50 nodes throughout the testbed.

Part II

Related problems

Chapter 4

The edge deletion problem for the
property of being line-invertible

Haplotype phasing, which consists of estimating the haplotypes that produced a current pop-
ulation of genotypes, is a primary problem in the analysis of genetic data. In this context,
consistency relations between genotypes that could have been originated from a common an-
cestor are codified by a graph. Root graph reconstruction results useful here to estimate the
original population size, that is, the number of generating haplotypes. However, if all the con-
sistency relations are considered, sometimes reconstruction from the graph is not possible. In
these cases, one needs to disregard some of these relations, or, in other words, delete some of
the edges of the consistency graph. A combinatorial problem then arises, namely which edges
to remove so that we retain as much information as possible.

We approach population size estimation when some edges are to be removed from the graph.
We propose an integer program to decide which edges to delete. The formulation is compared
to that introduced by Halldórsson et al. (2013), which is to our knowledge the only existing
integer program for the problem. They interpreted the problem as a graph coloring and so
do we. However, our model has a reduced number of variables, which represent color sharing
among nodes without explicitly stating which are the colors shared. We devise several families
of valid inequalities for our model, including set packing constraints. Symmetry breaking,
which is a recurrent problem in Integer Programming that occurs also in graph coloring, is
also addressed. Preliminary computational tests showed that dual bounds of our enhanced
formulation and that of Halldórsson et al. (2013) were not comparable. In view of these
results, we introduce a third approach that combines the previous two formulations and some
linking inequalities. We further explore towards removal of some of the constraints of the
resulting formulation that do not affect model validity. Our computational experiments allow
empirical comparison between the different models and ultimately demonstrate the utility of
the proposed alternatives.

Interestingly, the problem studied in this chapter is connected to the variants of the Simple
Plant Location Problem of chapters 2 and 3. We will see how it can be interpreted as a facility
location problem where incompatibility requirements of Chapter 2 and twinning constraints of
Chapter 3 are put together. Clients would correspond to genotypes, while facilities would stand
for the generating haplotypes. On the one hand, pairs of incompatible clients will be inter-
preted as inconsistent genotypes. On the other hand, twinned clients will stand for genotypes
generated by the same haplotype.

85

86 Edge deletion and line graphs

1 2

3 4

5
6

(a) G

(3,4) (4,5)
(2,3)

(1,2)
(2,5)

(4,6)

(5,6)

(b) L(G)

Figure 4.1: A graph and its line graph

4.1 Preliminaries

Line graphs

Given a graph G = (V,E), its line graph, L(G) = (E,F), has one node corresponding to each
edge e ∈ E and one edge f = (e1, e2) ∈ F for all e1, e2 ∈ E, e1 �= e2, that share a node, that is,
e1 = (u, v) and e2 = (v, w) for some u, v, w ∈ V . Although line graph is the most common term
for L(G), it has received many names in the literature, such as interchange graph, van Rooij
& Wilf (1965), derived graph, Beineke (1970) and dual graph, Whitney (1992) (note, however,
that the dual of L(G) is not G). Conversely, a graph H is line-invertible if there exists G such
that H = L(G). G is then known as the root graph of H. When we speak about the root of a
graph H, it is usually assumed that H is connected, since the problem is separable otherwise.
As an illustrative example, Figure 4.1 shows a graph and its line graph, whose nodes are labeled
with the corresponding edges in the root.

Krausz (1943) proved that a graph H is line-invertible if and only if there is a partition
of its edges that induces complete subgraphs such that no node belongs to more than two of
the subgraphs. Each of these complete subgraphs corresponds with a node in the root graph,
and a node e = (u, v) ∈ H can belong at most to those of u and v. But not every node in the
root has an associated complete subgraph in H. The following example illustrates Krausz’s
characterization.

Example 4.1. Consider graphs G and L(G) depicted on Figure 4.1. Edges that incide in
the same node of G produce complete subgraphs in L(G), like the triangle in Figure 4.1b
induced by (2, 5), (4, 5) and (5, 6), which share node 5 in G. Furthermore, we can identify a
triangle in L(G) for every node of G with degree 3, i.e., nodes 2, 4 and 5. The partition by
Krausz would be F2 = {((1, 2), (2, 3)), ((2, 3), (2, 5)), ((1, 2), (2, 5))}, F3 = {((2, 3), (3, 4))}, F4 =
{((4, 5), (4, 6)), ((3, 4), (4, 6)), ((3, 4), (4, 5))}, F5 = {((2, 5), (5, 6)), ((2, 5), (4, 5)), ((4, 5), (5, 6))}
and F6 = {((4, 6), (5, 6))}. These correspond to nodes 2, 3, 4, 5 and 6 of G, respectively. Node
1 is not associated to any of the complete subgraphs because it has degree 1 in G. �

The characterization given by Krausz comes in a natural way from the definition of a line
graph, but there are more. Another characterization, given by van Rooij & Wilf (1965), uses
the concept of odd triangles. Recall that triangles are complete subgraphs of three nodes. A
triangle in a graph is even if every node of the graph is adjacent to either 0 or 2 nodes of the
triangle, and it is odd otherwise. The characterization described by van Rooij and Wilf states

Preliminaries 87

(a) K1,3 (b) K3

Figure 4.2: The only two connected graphs having the same line graph, K3

that a graph is line-invertible if and only if it does not contain K1,3 as subgraph and, if {a, b, c}
and {a, b, d} are odd triangles, then either c = d or c and d are adjacent. Figure 4.2a illustrates
K1,3, which is clearly not a line graph by the characterization of Krausz. Beineke (1970) found
a new characterization through nine forbidden subgraphs. Besides these theoretical results,
there exist algorithms to find the root graph in linear time, Lehot (1974); Roussopoulos (1973).
The root graph, if exists, is unique except for K3, which has K1,3 and also K3 itself as roots
(see Figure 4.2), Whitney (1992).

Line graphs are relevant in many domains other than Graph Theory, such as percolation
theory (see Wierman et al., 2007) or community detection (see Ahn et al., 2010; Evans &
Lambiotte, 2009; Manka-Krason et al., 2010). The following section explains connections to
computational biology and motivates the study of the problem that gives name to this chapter.
Links to location models of previous chapters are also described.

Relation with plant location

In previous chapters, we have studied two variants of the Simple Plant Location Problem, which
arose when different requirements concerning clients allocation to facilities were considered.
Here we show that combining both variants results in a model whose feasible solution can be
identified with that of line graph reconstruction.

We consider then a plant location scenario in which each client must be allocated to two
different facilities. In addition, suppose that GI,T is a graph having one node per client and
edges standing for the following requirements:

1. Two adjacent clients must be allocated to only one facility in common (twinning),

2. Two non-adjacent clients cannot be assign to the same facility (incompatibility).

If location and allocation costs are null, finding a feasible solution to the plant location problem
under the above requirements is equivalent to deciding if GI,T is line invertible. Indeed, the
nodes of the root can be identified with the facilities needed to serve the clients. According
to Krausz’s characterization, each of the nodes has an associated complete subgraph in GI,T ,
which will be the clients allocated to the facility in question. Each client in GI,T belong to
two of these complete subgraphs, as it is allocated to two facilities. Finally, every twinned pair
is allocated to a common facility and incompatible ones do not share any facility. Observe
that the number of nodes of the root is a lower bound for the number of open facilities in a
feasible solution. Moreover, if GI,T is not line invertible, the location problem above presented
is not feasible. We can consider then the option of not satisfying some of the clients allocation
requirements so that there exists a feasible solution, that is, deleting some of the edges of GI,T

so that it is line invertible, which is the problem addressed in this chapter.

88 Edge deletion and line graphs

Haplotype phasing

In Genetics, haplotypes codify certain regions of the genome that show a statistically significant
variability within a population. It has been observed that such variability plays an important
role in human variation and genetic diseases (see Hoehe et al., 2000; Terwilliger & Weiss, 1998).
A haplotype of a certain individual is represented by a binary string, 1 codifies the least frequent
allele within the population and 0 the most frequent one. The entries of this binary string are
usually called sites. Two haplotypes (ancestors) generate a genotype (descendant), codified as
a {0, 1, 2} string, 0 and 1 encoding homozygous sites and 2 representing heterozygous sites.
That is h1 ⊕ h2 = g where h1, h2 ∈ {0, 1}n, g ∈ {0, 1, 2}n and 1 ⊕ 1 = 1, 0 ⊕ 0 = 0, 1 ⊕ 0 = 2
and 0 ⊕ 1 = 2. Haplotype phasing consists of estimating the haplotypes that resolve a set of
genotypes, i.e. a set of ancestors that could produce a current population of genotypes. Two
genotypes may have a common ancestor if their {0, 1, 2} strings are consistent, i.e., given a site,
either some of the strings has code 2 or both strings have the same code (0 or 1).

Consistency relations between genotypes can be represented by a graph called the Clark
consistency (CC) graph (see Clark, 1990). Each genotype is represented by a node and adjacent
nodes identify consistent genotypes. Figure 4.3a shows the CC graph for a set of five genotypes.
Genotypes 210 and 021 are not adjacent in this graph because of their third sites— the former
has a 0 and the latter has a 1, so they cannot have a common ancestor. If the CC graph is line-
invertible, finding its root gives an estimation on the number of haplotypes needed to explain
the genotypes. Indeed, when one checks for line-invertibility, a complete subgraph corresponds
to a common node in the root, while here it is potentially interpreted as a common ancestor for
the corresponding individuals. When the CC graph is line-invertible it is said to be allelable.
Further details about equivalence between line-invertible graphs and allelable graphs can be
found in Halldórsson et al. (2013). The following example illustrates the relation between the
two concepts.

Example 4.2. Consider Figure 4.3b, which depicts the same CC graph as Figure 4.3a. The
different line traces give a partition of the edges of the graph in three groups satisfying Krausz’s
characterization of line graphs, which yields a root graph with three nodes. Nodes within each
group are all compatible with each other, and the nodes of the root are identified with their
potential ancestors. For the set of genotypes in the example, we found three potential ancestors.
The number of nodes of the root graph gives in general a lower bound on the cardinality of
the generating population of haplotypes. Figure 4.3b depicts the codes for the haplotypes that
would correspond with the three ancestors. An ancestor that generates 202 and 021 must have
code 001 and, similarly, 110 is the ancestor of 122 and 210. When it comes to the triangle
induced by 102, 122 and 202, it is clear that their ancestor begins with 10. To determine its
last site, we need to look at the other just-discovered haplotypes, 001 and 110. The following
equations are to be verified:

10x⊕ 001 = 202,

10x⊕ 110 = 122.

The former gives x = 0 and the latter x = 1. This is simply because we need more haplotypes
to generate the current genotypes. For instance, 100, 101, 001 and 110 is a feasible set of
ancestors. The minimum number of haplotypes needed to resolve the population is in fact 4.
The reason why we get the lower bound 3 is that, when obtaining the root, we assume that
every pair of genotypes that are neighbors share an ancestor, while edges in the CC graph only
represent that the nodes can potentially, but not necessarily, be twinned. �

State of the art 89

102 122

202
210

021

(a) CC graph Gcc

102 122

202
210

021

10x 110
001

(b) Krausz partition for Gcc

Figure 4.3: A Clark consistency graph and its Krausz partition

And, what if the CC graph is not allelable? Take the example of K1,3 depicted on Figure
4.2a, which we know that is not allelable. The edges here mean that the central node may
have an ancestor in common with each of the other three nodes of the graph, which at the
same time are incompatible with each other. Since a node only have two ancestors, the central
node will share an ancestor with at most two of its three neighbors, i.e., one of the edges is not
“used”. In general, when the CC graph is not allelable we have edges that do not represent true
sharings, i.e., the corresponding genotypes do not have an ancestor in common. One solution
to be able to estimate the haplotypes in these cases is to eliminate these false relations within
nodes while trying to have the least impact on the graph topology. A combinatorial problem
then arises, which is to find the minimum number of edges that we have to delete so that we
obtain an allelable graph.

4.2 State of the art

In general, when P is a property of a graph, we can define the corresponding edge deletion
problem as follows: “find the minimum number of edges whose deletion produce a graph
satisfying P”. This terminology gives name to the chapter and problem at hand, the edge-
deletion problem for the property of being line-invertible, EDPL from now on. For several
common properties, including that of being line-invertible, Yannakakis (1978) proved that
edge deletion problems are NP-complete. In fact, the EDPL can be seen as a variant of graph
coloring, which is known to be NP-hard (see Garey & Johnson, 1979). In general, a coloring
of the nodes or edges of a graph G = (V,E) is a mapping ϕ : V → C or ϕ : E → C that
assigns a color from the set C to every node or edge in G. Coloring problems can be extended
to assigning several colors, arising the so-called k-fold coloring or multi-coloring problems (see
for instance Campêlo et al. (2013)).

The following two definitions serve to establish the relation between line-invertible graphs
and graph coloring of edges and nodes, which will be ultimately useful to state the EDPL in
Lemma 4.1.

Definition 4.1 (Line-graph edge coloring). Let G = (V,E) be an undirected graph. We will
say that ϕ : E → C is an edge coloring of a line-graph if the two following conditions are met:

(E1) Each subset of edges having the same color c ∈ C, Ec := {e ∈ E : ϕ(e) = c}, induces a
complete subgraph. That is, Gc[Ec] := (Vc, Ec), with Vc = {v ∈ V : ∃e ∈ Ec s.t. v ∈ e}
is complete.

(E2) For all v ∈ V there exist at most two colors, c1 and c2, such that v ∈ Vc1 ∩ Vc2 . �
If there exists an edge coloring for G that satisfies (E1) and (E2) then G is line-invertible.

In effect, it is straightforward to see that these conditions produce an edge partition as that

90 Edge deletion and line graphs

proposed by Krausz (1943) to characterize line-invertible graphs. Conversely, if G is line-
invertible, one can obtain an edge coloring satisfying (E1) and (E2) just by assigning different
colors to the groups of edges in Krausz’s partition.

A line-graph edge coloring is equivalent to a vertex coloring as follows.

Definition 4.2 (Line-graph node coloring). Let G = (V,E) be an undirected graph. We will
say that a coloring of the nodes of G with two colors, ϕ : V → C × C, is a node coloring of a
line graph if the following conditions are met:

(N1) ϕ = (ϕ1,ϕ2) and ϕ1(v) �= ϕ2(v) ∀v ∈ V .

(N2) For all (u, v) ∈ E, |{ϕ1(u),ϕ2(u)} ∩ {ϕ1(v),ϕ2(v)}| = 1.

(N3) For all (u, v) /∈ E, |{ϕ1(u),ϕ2(u)} ∩ {ϕ1(v),ϕ2(v)}| = 0. �

It is easy to check that this node coloring is equivalent to the desired edge coloring. Indeed,
(N1) states that the colors given to a node are different; (N2) would allow and edge coloring
by assigning to every edge (u, v) the color that u and v have in common; finally, (N3) ensures
that such edge coloring induces the complete subgraphs of (E1). Conversely, if an edge coloring
satisfies (E1) and (E2), a line-graph node coloring is easily derived by assigning each node the
colors of the two complete subgraphs to which it belongs.

As a consequence, Definition 4.2 gives also a characterization of line graphs. This charac-
terization was previously stated in Lemma 2.1 of Halldórsson et al. (2013), by using a different
argument. We next formally state the EDPL in terms of the coloring characterization given
by definitions 4.1 and 4.2.

Lemma 4.1. Let G = (V,E) be an undirected graph. The EDPL is equivalent to finding
E� ⊆ E such that the induced graph G[E \E�] admits a line-graph node/edge coloring and |E�|
is minimized.

Halldórsson et al. (2013) presented an ILP formulation to solve the EDPL. The formulation
consists of finding a node coloring that satisfies (N1), (N2) and (N3), minimizing the number
of pairs of nodes u and v, (u, v) ∈ E, that do not verify (N2), i.e., the deleted edges.

The authors took inspiration from Campêlo et al. (2007) representative formulation for the
classic vertex coloring problem in order to eliminate equivalent (symmetric) solutions. In the
classic vertex coloring, each node receives one color. The idea of the representative formulation
is to identify colors with nodes so that if node i is colored with i it is said to be a representative.
An ordering of the nodes is consider so that every node receives the color of one of its preceding
representatives or it is a representative itself. Halldórsson et al. (2013) explained their idea for
symmetry breaking as follows. Each node i “owns” two colors, 2i− 1 and 2i. Every node i can
be assigned either some color(s) owned by some neighbor(s) k such that k < i, and/or some
of its own colors, 2i− 1 and 2i. A node will be assigned a color owned by one of its neighbors
if and only if this neighbor is using the color in question. This means that k is always the
smallest node among those colored with 2k − 1 or 2k. On the other hand, if one has to draw
on colors 2i and 2i − 1 to color node i, 2i − 1 will be the first one to be taken and 2i will be
used only if 2i− 1 has already been assigned to i.

Before presenting the formulation of Halldórsson et al. (2013), we define the left-neighborhoods
of a node i as N−(i) = {k ∈ V : k < i, (i, k) ∈ E} and N−[i] = N−(i)∪ {i}, for all i ∈ V . The
precedence relation between nodes could be any order within V , but the reader can assume

A new model 91

that V = {1, . . . , n} and < is common numerical order. For convenience in the exposition we
will use the following notation:

C(i) = {2k − 1, 2k : k ∈ N−[i]}, C(i, j) = C(i) ∩ C(j),

which identify the colors that can be assigned to node i and those that can be shared by i and
j, respectively. We will also denote with ϕ : V → C × C a coloring function, ϕ = (ϕ1,ϕ2).

Halldórsson et al. (2013) used three families of variables: y to gather the information about
the two colors given to each node; variables s to identify when the two end-nodes of an edge
have the same color (they are products of y variables); and variables d that account for the
number of edges deleted. These binary variables are formally defined as follows

yir = 1 iff r ∈ {ϕ1(i),ϕ2(i)}, i ∈ V , r ∈ C(i),
sijr = 1 iff r ∈ {ϕ1(i),ϕ2(i)} ∩ {ϕ1(j),ϕ2(j)}, (i, j) ∈ E, r ∈ C(i, j), and
dij = 1 iff edge (i, j) is deleted, (i, j) ∈ E.

The formulation of Halldórsson et al. (2013) reads:

(H) min
�

(i,j)∈E,i<j

dij

s.t.
�

r∈C(i)
yir = 2 ∀i ∈ V (4.1)

yir + yjr ≤ 1 ∀(i, j) /∈ E, ∀r ∈ C(i, j) (4.2)�

r∈C(i,j)
sijr = 1− dij ∀(i, j) ∈ E (4.3)

yir + yjr − 1 ≤ sijr ∀(i, j) ∈ E, ∀r ∈ C(i, j) (4.4)

sijr ≤ yir ∀(i, j) ∈ E, ∀r ∈ C(i, j) (4.5)

sijr ≤ yjr ∀(i, j) ∈ E, ∀r ∈ C(i, j) (4.6)

yi,2i ≤ yi,2i−1 ∀i ∈ V (4.7)

yi,2k−1 ≤ yk,2k−1 ∀i ∈ V, ∀k ∈ N−(i) (4.8)

yi,2k ≤ yk,2k ∀i ∈ V, ∀k ∈ N−(i) (4.9)

yir, sijr� , dij ∈ {0, 1} ∀i ∈ V, ∀r ∈ C(i), ∀(i, j) ∈ E, ∀r� ∈ C(i, j).

Constraints (4.1) impose that each node is assigned two colors, and (4.2) guarantee that non-
adjacent nodes are given distinct colors. Constraints (4.3) say that if two adjacent nodes are
assigned different colors the edge must be deleted and, at the same time, guarantee that two
adjacent nodes share one color at most. Families (4.4)-(4.6) are standard “product constraints”
that guarantee that sijr = yiryjr for every integer solution. Finally, constraints (4.7)-(4.9) are
the symmetry breaking constraints inspired by Campêlo et al. (2007).

4.3 A new model

As opposed to the model of Halldórsson et al. (2013), the formulation we propose is not based
on a direct translation of definitions 4.1 or 4.2. However, as we will show later, a line-graph
node/edge coloring can be obtained as a byproduct of our solution. We propose to use only
two families of variables: x, with four indices, and d, which are identical to that of (H).
With variables x, we will represent those pairs of adjacent nodes that share the same color,

92 Edge deletion and line graphs

distinguishing which function, either ϕ1 or ϕ2, gives the color to each node. More precisely,
our variables are defined as follows:

xijab = 1 iff ϕa(i) = ϕb(j), (i, j) ∈ E, a, b ∈ {1, 2}, and
dij = 1 iff (i, j) ∈ E is deleted.

With these variables, colors are not explicitly stated. If for instance xij21 = 1 we know that
i and j share a color, which corresponds to ϕ2(i) and ϕ1(j), but we do not know if such color
is blue. Nonetheless, these variables are enough to formulate the problem. Call Γ the set of
all the triangles in G, Γ = {{i, j, k} ⊆ V : i < j < k ; (i, j), (i, k), (j, k) ∈ E}. The following
mathematical program gives a formulation for the EDPL,

(M’) min
�

(i,j)∈E
dij

s.t. xija1 + xija2 + xika1 + xika2 ≤ 1 ∀(i, j), (i, k) ∈ E, (4.10)

j �= k, (j, k) /∈ E, a ∈ {1, 2}
xijba ≥ xjkac + xikbc − 1 ∀{i, j, k} ∈ Γ, a, b, c ∈ {1, 2} (4.11)

xikbc ≥ xjkac + xijba − 1 ∀{i, j, k} ∈ Γ, a, b, c ∈ {1, 2} (4.12)

xjkac ≥ xikbc + xijba − 1 ∀{i, j, k} ∈ Γ, a, b, c ∈ {1, 2} (4.13)

2�

a=1

2�

b=1

xijab = 1− dij ∀(i, j) ∈ E (4.14)

xijab, dij ∈ {0, 1} ∀(i, j) ∈ E, a, b ∈ {1, 2}.

Constraints (4.10) guarantee that two non-adjacent nodes do not share a color. In effect,
these constraints read: if i has two non-adjacent neighbors j and k, it may share a color with one
of them, but not the same one with the two. Constraints (4.11)-(4.13) impose the transitivity of
color sharing and are defined for every subset of nodes inducing a triangle. Take, for instance,
(4.11). These constraints are active when the r.h.s. is 1, that is, when xjkac = xikbc = 1. If
this is the case, then (4.11) forces that xijba = 1. Note that xjkac = 1 means ϕa(j) = ϕc(k)
and xikbc = 1 means ϕb(i) = ϕc(k), while xijba = 1 just impose what follows by transitivity,
ϕb(i) = ϕa(j). Constraints (4.12) and (4.13) are analogous. Finally, (4.14) ensure that (i, j) is
removed if i and j do not share color and that they can share one color at most.

The following example illustrates the formulation.

Example 4.3. Consider the graph depicted in Figure 4.4a. Every edge (i, j) is labeled with
the indices a, b of the corresponding xijab-variable that takes value 1 in a feasible solution of
(M’). For instance, according to the figure, x1211 = 1 and x1321 = 1. This means that colors
ϕ1(1) and ϕ1(2), given to nodes 1 and 2 respectively, coincide and so do ϕ2(1) and ϕ1(3), which
were given to nodes 1 and 3. Constraints (4.10) when i = 1 and j = 6 forbid node 1 to share
color ϕ1(1) with 6 when k = 2, since (2, 6) /∈ E. Similarly, when k = 3, constraints (4.10)
avoid that ϕ2(1) coincides with some of the colors given to node 6. As a result, d16 = 1 in the
depicted solution. Moreover, in this example, 1 is the optimum of the problem. This is, indeed,
due to fact that 1 has three neighbors that induce an independent set in the graph (i.e., none
of them are adjacent to each other). On the other hand, color sharing between nodes 3, 4 and
5 is consistent thanks to constraints (4.11)-(4.13). Note that, even if not explicitly stated, this
feasible solution yields a line-graph node coloring. To obtain this coloring, we start from one

A new model 93

1 2

2
2

11
2

1

1

11

2

2

23 4
56

(a) Solution to (M’)

red
blue green1

2
3 4

56 purple

(b) A line-graph edge coloring for the EDPL

Figure 4.4: A graph and optimal solution with optimal value equal to 1

node, say 1, and suppose that ϕ1(1) =blue and ϕ2(1) =red. Then, since x1211 = 1, node 2 has
color blue, ϕ1(2) =blue, and another color, say green, ϕ2(2) =green. On the other hand, since
x1321 = 1, ϕ1(3) =red, and we can assume ϕ2(3) =purple. Now, x2421 = 1 and x3422 = 1 force
ϕ1(4) =green and ϕ2(4) =purple. Finally, x4521 = 1 and x3521 = 1 imply that ϕ1(5) =purple.
Note that ϕ2(5) is not imposed by any of the neighbors of node 5 and then we can assign any
new color to it, for instance, white (in fact this color is not needed if we think about edge
coloring). Figure 4.4b illustrates the resulting coloring and edge deletion. �

In general, an algorithm to derive a line-graph node coloring from a solution of (M’) will
be as follows. For every edge (i, j) such that dij = 0 and for a, b such that xijab = 1: if ϕa(i)
and ϕb(j) are not defined yet then let both be equal to a new color. If ϕa(i) is already defined
let ϕb(j) = ϕa(i) and vice versa.

Observe that variables dij can be eliminated from (M’). In effect, using constraints (4.14),
dij can be removed from the objective, which will be equivalent to maximizing the sum�2

a=1

�2
b=1 xijab. After that, replacing (4.14) with

�2
a=1

�2
b=1 xijab ≤ 1 will complete the

transformation, obtaining the following equivalent formulation without variables dij ,

(M) max
�

(i,j)∈E

2�

a=1

2�

b=1

xijab

s.t. (4.10)− (4.13)

2�

a=1

2�

b=1

xijab ≤ 1 ∀(i, j) ∈ E (4.15)

xijab ∈ {0, 1} ∀(i, j) ∈ E, a, b ∈ {1, 2}.

The formulation can still be improved, for instance, by adding symmetry breaking constraints.
But before analyzing this and other enhancements in the next section, we shall compare the
size of (H) and (M).

Solutions to (H) provide a line-graph node coloring for the EDPL, while variables of (M)
only account for the way colors are shared in such a coloring. Because of this fact, (M) has less
variables than (H). If one denotes by t the number of triangles in G, t = |Γ|, variables in each
formulation can be easily compared, as follows. Since color candidates for one node are its two
colors and the two colors of its neighbors, (H) has 2n + 2|E| y-variables. A similar reasoning
serves to count the members of the family of s-variables, which are 2|E|+ 2t in total. On the

94 Edge deletion and line graphs

one hand, note that for each edge (i, j) with i < j there exist sij,2i−1 and sij,2i, which accounts
for 2|E| variables of the family. Other than 2i− 1 and 2i, nodes i and j could share one of the
two colors of a common neighbour, say node k, with k < i. That is, sij,2k−1 and sij,2k exist for
each {k, i, j} ∈ Γ, which accounts for the rest of the variables in the family, 2t in total. Finally,
we avoid counting d-variables in (H) since they can be eliminated by using a similar argument
than that used for (M’). In summary, (H) has 2n + 4|E| + 2t variables, while (M) only uses
4|E| variables.

As for the number of constraints, let t� be the number of triplets {i, j, k} such that (i, j), (i, k) ∈
E and (j, k) /∈ E. Regarding (H), it is straightforward that there are n constraints in (4.1).
The second family, (4.2), is defined in terms of triplets {k, i, j} such that (k, i), (k, j) ∈ E and
(i, j) /∈ E. In effect, 2k − 1 and 2k stand for possible values of r in (4.2) whenever k < i and
k < j. Using this observation, one can check that there are at most 2t� constraints in (4.2).
Family (4.3) has |E| members; (4.4)- (4.6) are defined for each valid subscript ijr of variables
s, so they account for 6|E|+ 6t constraints; finally, (4.7), (4.8) and (4.9) gather n, |E| and |E|
constraints respectively. Consequently, formulation (H) has n+2t�+ |E|+6|E|+6t+n+2|E| =
2n+2t�+6t+9|E| constraints at most (or n+2t�+6t+7|E| if symmetry breaking constraints
are excluded). On the other hand, formulation (M) has 2t� constraints of type (4.10). Con-
straints in (4.11) account for 23 (the different combinations of a, b and c) times t, and the same
happens for (4.12) and (4.13). Finally, (4.15) is composed by |E| constraints. In sum, (M)
has 2t� + 24t+ |E| constraints in total. It is not straightforward to analyze which formulation,
(M) or (H), has less constraints. Since they are dependent on the structure of the graph G in
question, both situations can occur. Consider for instance a star, that is, a graph consisting
of n + 1 nodes, one of them adjacent to the rest, which makes |E| = n. In this case t = 0
and t� =

�|E|
2

�
. This implies that (M) has 2t� + 24t + |E| = n2 constraints, while (H) has

n + 2t� + 6t + 7|E| = n2 + 7n if the center of the star corresponds to node 1. Conversely, if
one takes the wheel with n+ 1 nodes, which is made of a cycle of n nodes plus a central node
adjacent to the rest, things change. In this case, |E| = 2n and t = n. Formulation (M) has
then 2t� + 24t + |E| = 2t� + 26n constraints, while (H) has n + 2t� + 6t + 7|E| = 2t� + 21n at
most.

4.4 Valid inequalities

After studying the structure of (M), we have derived several valid inequalities that we present
here in different groups. Even if colors do not appear explicitly in our formulation, (M) has
symmetric solutions, since color positions of a node are interchangeable. The first family of
inequalities tries to avoid these symmetric solutions. The second one represents the fact that
nodes of independent sets can not have the same color. Another family of inequalities considers
the case in which a deletion of an edge produces an independent set of 3 nodes. Finally, the
last one is related to the transitivity of color sharing.

We will denote N(i) the neighborhood of node i, N(i) = {j ∈ V : (i, j) ∈ E}, and N [i] its
closed neighborhood, N [i] = N(i) ∪ {i}.

Symmetry breaking inequalities

Variables xijab produce symmetric solutions by their very nature. Indeed, we can always swap
colors positions of a node and update the variables to be consistent with the change without
altering the objective value. One way of forbidding such a change is to enforce the position of
the colors for some nodes. More specifically, given a node i, we pay attention to its neighbor

Valid inequalities 95

with smallest index, ji1. Since i has two colors to share with its neighbors, we can assume
without loss of generality that ji1 is not the one sharing ϕ2(i). That is, the following variables
can be set to zero:

xiji121
= xiji122

= 0 ∀i, ji1 := min{j : j ∈ N(i)}. (4.16)

Nevertheless, if (i, ji1) is deleted, xiji1ab
= 0 ∀a, b ∈ {1, 2} and the previous equalities are unnec-

essary. We can consider now the second neighbor of i with smallest index, say ji2. Similarly as
before, we can assume that ji2 does not share ϕ2(i) if (i, j

i
1) is deleted:

xiji221
+ xiji222

≤ xiji111
+ xiji112

∀i, ji2 := min{j : ji2 �= ji1, (i, j) ∈ E}. (4.17)

If xiji111
= 1 or xiji112

= 1 (4.17) trivially stands. Otherwise, xiji111
+ xiji112

= 0, which together

with (4.16) implies that i and ji1 do not share any color. Since i and ji1 are adjacent, this
means that the edge will be deleted. Then we can assume that i does not share ϕ2(i) with ji2,
i.e., xiji221

+ xiji222
= 0 and hence (4.17) is valid. We can continue the process with the third,

fourth... neighbor of i with smallest index. The following set of inequalities gathers all the
cases in a compact way:

xij21 + xij22 ≤
�

k<j:(i,k)∈E
(xik11 + xik12) ∀(i, j) ∈ E. (4.18)

These inequalities read: “if i does not share color ϕ1(i) with any neighbor k < j then it does
not share ϕ2(i) with j either”. Inequalities (4.16) and (4.17) are (4.18) with j = ji1 and ji2
respectively. Note that in the former case the summation on the right-hand side of (4.18)
becomes empty and the inequality then reads xiji121

+ xiji122
≤ 0.

Set packing inequalities

Because of the definition of the problem, two non-adjacent nodes do not share a color. This
means that, given a color and two non-adjacent nodes, one of them at most is given the color.
More generally, given a color and an independent set of nodes, one of them at most will have
the color.

Since variables of (M) are only defined for adjacent nodes, if two non-adjacent nodes were
to share a color, this would happen through transitivity. That is, if (j, k) /∈ E and i sharing its
color in position a with both j and k existed, then j and k would have the same color. This is
precisely what (4.10) forbid. To generalize (4.10), we need to look at node packings inside the
neighborhood of i, N(i):

�

j∈S
(xija1 + xija2) ≤ 1 ∀i, ∀S ⊆ N(i), S ∈ PG, ∀a ∈ {1, 2}. (4.19)

These are set packing constraints —left hand side is a linear combination of the x-variables
with coefficients 0 or 1 and the coefficient on the right hand side is 1— that will be stronger
with the size of S. Node i and nodes in S induce a star, in which i is the internal node. When
|S| = 3 we will refer to this induced subgraph (which is in fact K1,3) as fork.

Quasi-fork inequalities

Edge deletions can yield substructures that were not originally in graph G, like new independent
sets. If this occurred, inequalities (4.19) would be valid for the nodes in question. In this section
we adapt valid inequalities (4.19) to cover such cases.

96 Edge deletion and line graphs

Figure 4.5: Subgraph of inequalities (4.22)

For all {i, j, k} ∈ Γ and � ∈ N(i), � /∈ N [j] and � /∈ N [k], the following inequalities hold:

2�

a=1

2�

b=1

(xijab + xikab + xi�ab − xjkab) ≤ 2, (4.20)

xija1 + xija2 + xika1 + xika2 + xi�a1 + xi�a2 −
2�

b=1

2�

c=1

xjkbc ≤ 1, ∀a ∈ {1, 2}. (4.21)

Nodes 1, 3, 4 and 5 of the graph on Figure 4.4a illustrate the situation that we are con-
sidering. Note that, if (4, 5) is deleted, these nodes induce a fork. In general, we will call the
subgraph induced by the triangle {i, j, k} and � quasi-fork. Inequalities (4.20) and (4.21) are
active when

�2
a=1

�2
b=1 xjkab = 0, that is, when (j, k) is removed. If this were the case, taking

S = {j, k, �}, we have that (4.21) would be (4.19), and (4.20) would be the sum over a of (4.19).

Adjacent triangles inequalities

These inequalities are inspired by transitivity inequalities (4.11)-(4.13) of (M), but here we
consider two triangles instead of just one. Suppose that {i, j, k} and {i, �, k} are two elements
in Γ such that (j, �) /∈ E. We say that they are adjacent triangles because they share edge
(i, k) (see Figure 4.5). The following inequalities are valid for (M):

xijba + xi�bd ≥ xikbc + xjkac + xk�cd − 1, ∀a, b, c, d ∈ {1, 2}, (4.22)

xjkab + xk�bd ≥ xikcb + xijca + xi�cd − 1, ∀a, b, c, d ∈ {1, 2}. (4.23)

Inequalities (4.22) are illustrated in Figure 4.5. Since (j, �) /∈ E, each instance of (4.22) has
right-hand side at most 1. This bound is attained either when xikbc + xjkac = 2 or when
xikbc + xk�cd = 2. Due to transitivity, this would imply either that xijba = 1 in the first case or
xi�bd = 1 in the second. Then, if the right-hand side of (4.22) is 1 it has to be xijba + xi�bd ≥ 1
and thus the inequality is valid. Inequalities (4.23) are analogous with the difference that i and
k are turned around.

4.5 An alternative approach

After doing some computational experiments, we realized that none of the linear relaxations of
(M) and (H) is stronger than the other, even after including inequalities of Section 4.4 in (M)
or/and inequalities (4.19) with |S| = 3. That is, if v(HLP) and v(MLP) are respectively the
optimal values of the corresponding formulations after relaxing the integrality of the variables,
we have v(HLP)< v(MLP) for some instances and v(HLP)> v(MLP) for some others. In
view of this, we propose a family of formulations, (HM), which combines variables y and s
of (H) with variables x of (M). Our intention is to produce formulations with stronger linear

An alternative approach 97

relaxations and, with this, being able to reduce the computational times. Actually, we propose
three different versions, (HMa), (HMb) and (HMc), the last two being the result of removing
some constraints from (HMa).

Before presenting the family (HM), we introduce some constraints that establish links be-
tween the variables from (H) and (M). The aim of these linking constraints is to enhance the
family (HM).

4.5.1 Linking constraints

Variables x distinguish between the two colors given to a node, i.e., between the components
ϕ1 and ϕ2 of ϕ = (ϕ1,ϕ2). Hence, to be able to state the links between x-variables in (M) and
y-variables in (H), we need to establish which color is given by the first and second component
of ϕ. We will assume that if a node i is given colors r1 and r2 with r1 < r2 then ϕ1(i) = r1 and
ϕ2(i) = r2. In terms of x variables, if (i, j) ∈ E, yi,r1 = yi,r2 = 1 and yj,r1 = yj,r3 = 1, r2 �= r3,
(i and j share color r1) this means that:

(i) xij11 = 1 iff r1 < r2 and r1 < r3,

(ii) xij22 = 1 iff r1 > r2 and r1 > r3,

(iii) xij12 = 1 iff r1 < r2 and r1 > r3,

(iv) xij21 = 1 iff r1 > r2 and r1 < r3.

Based on this assumption, we develop a set of linking constraints between the variables of
(H) and (M). Namely, we devise four families of linking constraints that ensure that the four
statements above are satisfied.

To begin with, the following constraints correspond to (i) and (ii)

sijr −
�

r�∈C(i)
r�<r

yir� −
�

r�∈C(j)
r�<r

yjr� ≤ xij11 ∀(i, j) ∈ E, ∀r ∈ C(i, j), (4.24)

sijr −
�

r�∈C(i)
r�>r

yir� −
�

r�∈C(j)
r�>r

yjr� ≤ xij22 ∀(i, j) ∈ E, ∀r ∈ C(i, j). (4.25)

A constraint in (4.24) or (4.25) is active when its left-hand side is 1. In the case of (4.24), this
occurs when nodes i and j share color r (sijr = 1) and not i nor j are assigned a color smaller
than r (

�
r�∈C(i),r�<r yir� = 0 and

�
r�∈C(j),r�<r yjr� = 0). This would mean that i and j are

sharing a color, ϕ1(i) = ϕ1(j), that is, we are in case (i). If this happens, (4.24) force xij11 = 1.
A similar argument proves that constraints (4.25) stand for case (ii).

A slightly different argument serves to model (iii) and (iv) with the following mathematical
constraints,

�

u∈C(i,j)
siju −

�

r�∈C(i)
r�<r

yir� −
�

r�∈C(j)
r�>r

yjr� ≤ xij12 ∀(i, j) ∈ E, ∀r ∈ C(i, j), (4.26)

�

u∈C(i,j)
siju −

�

r�∈C(i)
r�>r

yir� −
�

r�∈C(j)
r�<r

yjr� ≤ xij21 ∀(i, j) ∈ E, ∀r ∈ C(i, j). (4.27)

Again, these constraints are active when their left-hand sides are 1. Take for instance (4.26).
If i and j share a color, then one of the terms of the first sum on the left-hand side will be one.

98 Edge deletion and line graphs

If, for some color r, the colors given to i are greater than or equal to r (
�

r�∈C(i),r�<r yir� = 0)
and those given to j are smaller than or equal to r (

�
r�∈C(j),r�>r yjr� = 0), then i and j share

color r. When this happens, r coincides with ϕ1(i) and ϕ2(j), that is, we are in case (iii). In
this case, (4.26) force xij12 = 1. A similar reasoning proves that (4.27) serve to model case
(iv).

There are other constraints that can be include to model relations coming from the semantic
meaning of the decision variables. These relations can be explicitly written in the mathematical
model, with the aim of ultimately producing a stronger polyhedron.

For instance, if i and j do not share a color, that is,
�2

a=1

�2
b=1 xijab = 0, then node j

can not receive any of the colors of i, 2i − 1 or 2i. This can be expressed with the following
constraints:

yj,2i−1 + yj,2i ≤
2�

a=1

2�

b=1

xijab ∀j > i : (i, j) ∈ E. (4.28)

On the other hand, if yi,2i = 0 then color 2i− 1 is the greatest color that can be assigned to i.
Thus, if xij21 = xij22 = 0 as well, node j cannot be colored with 2i− 1 nor with 2i:

yj,2i−1 + yj,2i ≤ xij21 + xij22 + yi,2i ∀j > i : (i, j) ∈ E. (4.29)

Following a similar idea and taking into account that 2i is the greatest color that can be
assigned to i, we can devise the following constraints,

yj,2i ≤ xij21 + xij22 ∀j > i : (i, j) ∈ E. (4.30)

Recalling that symmetry breaking constraints in (H) impose that yi,2i−1 = 1 if yi,2i = 1, we
observe that if i and j share a color and i receives color 2i then j receives 2i− 1 or 2i:

yi,2i +
2�

a=1

2�

b=1

xijab ≤ 1 + yj,2i−1 + yj,2i ∀j > i : (i, j) ∈ E. (4.31)

Finally, the following equation gathers “incompatible” variables in set packing constraints,

yj,2i + yj,2j + xij11 + xij12 ≤ 1 ∀j > i : (i, j) ∈ E. (4.32)

An alternative approach 99

4.5.2 A family of hybrid formulations

The first formulation in family (HM), named (HMa), consists of some constraints from (H) and
(M) plus the linking constraints above described. The formulation is

(HMa) max
�

(i,j)∈E

2�

a=1

2�

b=1

xijab

s.t. (4.1), (4.2), (4.4)− (4.9),

(4.18), (4.24)− (4.32)

�

r∈C(i,j)
sijr =

2�

a=1

2�

b=1

xijab ∀(i, j) ∈ E (4.33)

yj,2j +

2�

a=1

2�

b=1

xijab ≤ 1 ∀j > i : (i, j) ∈ E (4.34)

�

j∈S
(xija1 + xija2) ≤ 1 ∀i, ∀S ⊆ N(i), S ∈ PG, |S| ∈ {2, 3}

∀a ∈ {1, 2} (4.35)

yir, sijr� ∈ {0, 1} ∀i ∈ V, ∀r ∈ C(i), ∀(i, j) ∈ E, ∀r� ∈ C(i, j)
xijab ∈ {0, 1} ∀(i, j) ∈ E, ∀a, b ∈ {1, 2}.

Constraints (4.1), (4.2) and (4.4)-(4.9) integrate (H) in the formulation except for the fact
that (4.3) are missing. These last constraints are replaced by (4.33), which are the result of
combining (4.3) and (4.14).

Constraints (4.34) are a stronger version of (4.15) of (M), since one variable, yj,2j , has been
added to the left-hand side. Note that, if yj,2j = 1, j is colored with 2j and 2j − 1. Since
j > i, i and j will not share any color in this case, so

�2
a=1

�2
b=1 xijab = 0. Constraints (4.35)

are (4.19) when |S| = 2 or |S| = 3, which in particular include (4.10). If |S1| = 2, |S2| = 3
and S1 ⊆ S2, we would only consider (4.35) for S2. Symmetry breaking constraints (4.18) of
formulation (M) are also included in (HMa).

The reader may have noticed that constraints (4.11)-(4.13) of (M) have not been included in
(HMa). Nevertheless, the formulation is valid since it somehow includes (H) —more precisely
it includes the modification of (H) that results from eliminating variables d. There is room for
wondering whether a solution of (HMa) is feasible for (M), though. In Proposition 4.1, we will
show that every feasible solution of (HMa) satisfies constraints (4.11)-(4.13). The following
lemma gives a partial result that will be crucial in the proof of Proposition 4.1.

Lemma 4.2. Let {i, j, k} ∈ Γ be a triangle in G and let (ȳ, s̄, x̄) be a feasible solution of (HMa).
If x̄ is such that one of the nodes in {i, j, k} shares the same color with the other two then there
exists r ∈ C such that ȳir = ȳjr = ȳkr = 1.

Proof. Suppose for instance that x̄jkac = x̄ikbc = 1, where a, b, c ∈ {1, 2}. That is, node k shares
its color in position c with both i and j. Recalling that nodes in the triangle are ordered, i.e.,
i < j < k, different assumptions can be made other than k sharing a color with i and j.
Namely, it could be that x̄ijab = x̄jkbc = 1 or x̄ijab = x̄ikac = 1. We will prove the lemma when
x̄jkac = x̄ikbc = 1 and overlook the other cases, which can be proven likewise.

Due to (4.33), ∃r1, r2 such that s̄ikr1 = s̄jkr2 = 1. Because of (4.5) and (4.6), we have that
ȳir1 = ȳkr1 = ȳjr2 = ȳkr2 = 1. For contradiction, suppose that r1 �= r2. We distinguish the
following cases:

100 Edge deletion and line graphs

1. c = 1 and r1 < r2.
Take (4.25) applied to indices j, k, r2:

s̄jkr2 −
�

r�>r2

ȳjr� −
�

r�>r2

ȳkr� ≤ x̄jk22.

Since s̄jkr2 = 1,
�

r�>r2
ȳkr� = 0 because r1 < r2 and x̄jk22 = 0 because c = 1, the

inequality above only stands if
�

r�>r2
ȳjr� = 1. If we now consider (4.26) with same

indices j, k, r2: �

u

s̄jku ≤ x̄jk12 +
�

r�<r2

ȳjr� +
�

r�>r2

ȳkr� ,

it implies x̄jk12 = 1, which is a contradiction.

2. c = 1 and r2 < r1.
The proof is analogous to the previous case just by taking (4.25) and (4.26) with indices
i, k, r1 instead of j, k, r2.

3. c = 2 and r1 < r2.
Take (4.27) applied to indices i, k, r1:

�

u

s̄iku ≤ x̄ik21 +
�

r�>r1

ȳir� +
�

r�<r1

ȳkr� .

Since
�

u s̄iku = 1, x̄ik21 = 0 due to c = 2 and
�

r�<r1
ȳkr� = 0 because r1 < r2, the

inequality above implies 1 =
�

r�>r1
ȳir� . Now take (4.24) again with indices i, k, r1:

s̄ikr1 −
�

r�<r1

ȳir� −
�

r�<r1

ȳkr� ≤ x̄ik11,

where s̄ikr1 = 1 and the rest terms on the left-hand side are zero, which yields x̄ik11 = 1.
This contradicts initial assumption c = 2.

4. c = 2 and r2 < r1.
The proof is analogous to the previous case just by taking (4.27) and (4.24) with indices
j, k, r2 instead of i, k, r1.

All the cases lead to a contradiction and hence we have found r := r1 = r2 as desired.

Proposition 4.1. Let (ȳ, s̄, x̄) be a feasible solution to (HMa). Then x̄ satisfy transitivity
constraints (4.11)-(4.13).

Proof. Let {i, j, k} ∈ Γ be a triangle in G. We have to prove that the coloring of nodes i, j, k
encoded by x̄ is transitive. That is, if, according to the solution, one of the nodes in the triangle
{i, j, k} shares the same color with the other two, we have to prove that the latter share that
color as well. Lemma 4.2 ensures that ȳir = ȳjr = ȳkr = 1 for some color r.

Given that ȳir = ȳjr = ȳkr = 1, s̄ijr = s̄jkr = s̄ikr = 1 follows from (4.4). Now, we can
define Y +

ir =
�

r�>r ȳir� and Y −
ir =

�
r�<r ȳir� , for all i ∈ V, r ∈ C(i). Constraints (4.24)- (4.26)

for the nodes of our triangle {i, j, k} are then:

1 ≤ xij11+ Y −
ir + Y −

jr 1 ≤ xik11+ Y −
ir + Y −

kr 1 ≤ xjk11+ Y −
jr+ Y −

kr

1 ≤ xij22+ Y +
ir + Y +

jr 1 ≤ xik22+ Y +
ir + Y +

kr 1 ≤ xjk22+ Y +
jr+ Y +

kr

1 ≤ xij21+ Y +
ir + Y −

jr 1 ≤ xik21+ Y +
ir + Y −

kr 1 ≤ xjk21+ Y +
jr+ Y −

kr

1 ≤ xij12+ Y −
ir + Y +

jr 1 ≤ xik12+ Y −
ir + Y +

kr 1 ≤ xjk12+ Y −
jr+ Y +

kr

An alternative approach 101

Since
�

r∈C(i) ȳir = 2, it is straightforward that either Y +
ir = 1 (and Y −

ir = 0) or Y −
ir = 1

(and Y +
ir = 0), and the same is true for j and k. Consider the group of rewritten constraints

for i, j, which are on the first column. In every solution, only one of the four constraints
has null Y -terms, which will indicate which of the xij-variables takes value one. The same
happens for the second and third columns of constraints. It is easy to check that any of the
nine possibilities regarding sums Y +,−

ir , Y +,−
jr , Y +,−

kr yield x-variables that respect transitivity

in the triangle {i, j, k}. For instance, suppose that Y +
ir = 1, Y −

jr = 1 and Y −
kr = 1. Then,

x̄ij12 = 1, x̄ik12 = 1 and x̄jk22 = 1 yield respectively from the fourth constraints in the first and
second columns and the second constraint in the third column. These values respect transitivity
constraints (4.11)-(4.13).

Proposition 4.1 is not true for fractional solutions to (HMa). This means that including
(4.11)-(4.13) in (HMa) could produce a formulation with stronger LP bounds than that of
(HMa). Nevertheless, computational experience shows that the LP bound of (HMa) is usually
not affected when (4.11)-(4.13) are included to the formulation. When this is not the case, the
improvement of the bound with respect to plain (HMa) is insignificant.

We noticed during the computational tests that running times of (HMa) can be significantly
reduced with little detriment in the LP bound, by removing some constraints. After a few
tests, we decided to consider as well the two following modifications of the initial combined
formulation.

(HMb) max
�

(i,j)∈E

2�

a=1

2�

b=1

xijab

s.t. (4.1), (4.2), (4.4)− (4.9), (4.18),

(4.33)− (4.35), (4.28− 4.32)

yi,r, sijr� , xijab ∈ {0, 1} ∀i ∈ V, ∀r ∈ Ci, ∀(i, j) ∈ E,

∀r� ∈ C(i, j), ∀a, b ∈ {1, 2}

(HMc) max
�

(i,j)∈E

2�

a=1

2�

b=1

xijab

s.t. (4.1), (4.2), (4.4)− (4.9), (4.18),

(4.33)− (4.35), (4.30)

yi,r, sijr� , xijab ∈ {0, 1} ∀i ∈ V, ∀r ∈ Ci, ∀(i, j) ∈ E,

∀r� ∈ C(i, j), ∀a, b ∈ {1, 2}.

Note that, due to the deletion of constraints, we can not guarantee that an optimal solution
of (HMb) or (HMc) is going to be feasible for (M). Nevertheless, we can ensure that variables
y codify the optimal solution. This is because the formulation that results after removing
variables d from (H) is embedded in both (HMb) and (HMc), which is given by constraints
(4.1), (4.2), (4.4)-(4.9), (4.33) and 4.34. Thus, in the case of (HMb) and (HMc), variables x are
just a tool to produce a tighter and therefore more efficient formulation, as the computational
experience reported in the next section proves.

102 Edge deletion and line graphs

Fork ineq. Sim. breaking Ineq. (4.22) and (4.23)

(M) No No
(M1) No Yes
(M2) No (4.18) No
(M3) No (4.18) Yes
(M4) No (4.16), (4.17) No
(M5) No (4.16), (4.17) Yes
(M6) Yes No
(M7) Yes Yes
(M8) Yes (4.18) No
(M9) Yes (4.18) Yes
(M10) Yes (4.16), (4.17) No
(M11) Yes (4.16), (4.17) Yes

Table 4.1: Configurations used in the preliminary study

4.6 Computational experiments

The aim of our computational study is twofold. First, we would like to study the effect of
the valid inequalities of Section 4.4 on (M), in order to determine whether it is convenient
to add them (or a subset of them) to the model. Second, we will compare the resulting best
configurations for (M) with (H), (HMa), (HMb) and (HMc).

The processor used for the tests was an Intel core i7-6700k CPU at 4.0 GHz × 8 with 16
GB of RAM memory. The solver was Cplex v12.6.3 64-bit under operating system Linux
Ubuntu 16.04. The testbed consisted of the following four families of instances, which we have
generated ourselves except for the last one.

1. Forbidden graphs: have been generated by combining some of the forbidden subgraphs
of Beineke (1970) several times and randomly adding more edges.

2. Random graphs: graphs randomly generated with different number of nodes and densities.

3. Perturbed line graphs: we use a graph as starting point, generate its line graph and then
we randomly add edges to it, until a maximum number of extra edges is reached. We use
the resulting graph as input of the problem. With this procedure we obtain a bound on
the optimal value (the number of edges added).

4. HapMap graphs: these instances have been provided by Hálldorsson and were used in
Halldórsson et al. (2013). They codify information from a sample of 77 individuals taken
from the populations collected by The International HapMap Consortium (2010).

4.6.1 Preliminary study

In the first part of our computational study, we have used (M) with different combinations of
the inequalities of Section 4.4:

- Either with fork inequalities (4.19) with |S| = 3 or without them.

- Three possibilities regarding symmetry breaking: without constraints, with (4.16) and
(4.17) or with (4.18),

- Either with valid inequalities (4.22) and (4.23) or without them.

Computational experiments 103

File n m den.% OPT LP OPT
H M M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

Forb1 20 100 53 43 11.5 0.0 0.0 8.5 8.5 8.5 8.5 32.5 32.5 34.6 34.6 34.4 34.4
Forb2 18 87 57 33 11.3 0.0 0.0 8.0 8.0 8.0 8.0 26.8 26.8 27.7 27.7 27.7 27.7
Forb3 20 110 58 43 12.0 0.0 0.0 9.0 9.0 9.0 9.0 35.5 35.5 37.2 37.2 37.2 37.2
Forb4 32 145 29 61 40.0 0.0 0.0 14.5 14.5 14.5 14.5 47.9 47.9 52.0 52.0 51.6 51.6
Forb5 21 116 55 45 18.4 0.0 0.0 8.8 8.9 8.8 8.9 37.2 37.2 38.9 38.9 38.8 38.8

Rand1 100 498 10 326 284.0 0.0 0.0 47.2 47.2 47.2 47.2 166.0 166.0 197.0 197.0 197.0 197.0
Rand2 20 122 64 42 13.4 0.0 0.0 9.5 9.5 9.5 9.5 34.5 34.5 35.3 35.3 35.2 35.2
Rand3 40 254 33 148 92.2 0.0 0.0 19.0 19.0 19.0 19.0 84.7 84.7 96.7 96.7 96.7 96.7
Rand4 50 256 21 150 106.0 0.0 0.0 23.5 23.5 23.5 23.5 85.3 85.3 100.0 100.0 100.0 100.0
Rand5 60 367 21 228 169.0 0.0 0.0 28.5 28.5 28.5 28.5 122.0 122.0 141.0 141.0 141.0 141.0

Pert1 86 957 26 45 41.0 0.0 0.0 23.0 25.3 23.0 25.3 45.0 45.0 45.0 45.0 45.0 45.0
Pert2 143 2004 20 72 72.0 0.0 0.0 36.0 40.4 36.0 40.2 72.0 72.0 72.0 72.0 72.0 72.0
Pert3 137 1851 20 69 69.0 0.0 0.0 34.0 38.6 34.0 38.5 69.0 69.0 69.0 69.0 69.0 69.0
Pert4 191 2461 14 102 99.0 0.0 0.0 48.0 49.2 48.0 49.2 102.0 102.0 102.0 102.0 102.0 102.0
Pert5 271 2550 7 136 135.0 0.0 0.0 74.2 74.8 74.2 74.8 136.0 136.0 136.0 136.0 136.0 136.0

Hap1 77 313 11 161 114.0 0.0 0.0 22.2 22.2 22.2 22.2 98.7 98.7 107.0 107.0 107.0 107.0
Hap2 77 253 9 130 83.0 0.0 0.0 21.0 21.0 21.0 21.0 83.5 83.5 90.8 90.8 90.6 90.6
Hap3 77 357 12 188 99.0 0.0 0.0 22.5 22.5 22.5 22.5 118.0 118.0 128.0 128.0 128.0 128.0
Hap4 77 338 12 146 91.0 0.0 0.0 23.7 23.7 23.7 23.7 107.0 107.0 113.0 113.0 112.0 112.0
Hap5 77 308 11 152 102.0 0.0 0.0 27.8 27.8 27.8 27.8 102.0 102.0 112.0 112.0 111.0 111.0

Table 4.2: Preliminary study results

After combining the options above, we obtain twelve configurations, which we call (M),
(M1),. . ., (M11) (see Table 4.1). We perform a preliminary study in order to find the best
configurations among the twelve. Here we use five instances from each of the four databases,
which makes a total of 20 instances. We fix a time limit of 300 seconds, disable Cplex dynamic
search to force Cplex to use traditional branch-and-cut strategy, and execute each experiment
with and without Cplex cuts.

Table 4.2 summarizes some results of this preliminary study. In the first five columns
we can see the name of the instances (File), the number of nodes (n), the number of edges
(m), the density as a percentage (den.%) and the optimal value for the EDPL (OPT). The
following columns show the optimal value of the linear relaxation of H, M, M1,. . .,M11. As
we mentioned in the previous section, there are instances for which H has the best LP bound,
while our formulations are better in this respect for some others (best LP bounds are in bold).

Table 4.3 gathers the running times obtained in this preliminary study when Cplex cuts
are activated (default) and when we disable them. It can be observed that the formulations
we propose obtain satisfactory results in comparison to (H), except for the third data set. The
configurations that obtained the best running times were (M4), (M8) and (M10).

4.6.2 Main computational study

The aim of the main study is to compare Halldórsson et al.’s formulation (H), three variants of
our proposed formulation, (M4), (M8) and (M10), and mixed formulations (HMa), (HMb) and
(HMc). For the experiments, we set a time limit of 900 seconds and disable Cplex dynamic
search and cuts. We use a testbed of 82 files: 23 forbidden graphs, 16 random graphs, 21
perturbed line graphs and 22 HapMap graphs. For the sake of clarity, all the diagrams and
charts reported here refer to the best configurations found among our proposals, which turn
out to be (M8), (HMb) and (HMc).

Figure 4.6 shows the percentage of instances (ordinate axis) that were solved after a certain
number of seconds (abscissa axis). Overall, (HMc) obtains the highest rates. (H) barely solved
60% of the instances within the time limit, while (M8), (HMb) and (HMc) could solve between
80% and 90%. The biggest step that separates (HMc) from the other models on the chart is
placed between 30 and 50 seconds, being (HMc) able to solve more than half of the instances
within 50 seconds. Figure 4.7 illustrates a similar comparison but in terms of the number
of nodes of the branching tree explored instead of the running time. Note that this chart

104 Edge deletion and line graphs

F
il
e

R
u
n
n
in
g
ti
m
e
w
it
h
/w

it
h
ou

t
C
p
l
e
x
cu
ts

H
M

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
1
0

M
1
1

F
or
b
1

8.
7

60
.8

10
.4

11
.0

17
5.
1

28
5.
4

3
.1

5
.8

63
.6

13
2.
6

7.
9

8.
3

11
8.
4

21
0.
7

14
.7

7.
0

3
0
0
.0

2
8
7
.0

5
.7

5
.2

7
0
.5

7
5
.5

5
.5

7
.0

1
0
4
.1

2
6
0
.1

F
or
b
2

4.
0

5.
0

6.
9

4.
4

12
3.
4

10
2.
1

2
.7

1
.8

23
.3

31
.6

5.
8

2
.2

38
.4

38
.3

7.
0

3.
5

1
2
7
.6

8
5
.7

2
.4

2
.1

3
1
.3

2
3
.6

4
.8

2
.3

4
8
.6

3
1
.3

F
or
b
3

15
.5

63
.2

14
.8

10
.4

30
0.
0

30
0.
0

9.
6

7.
6

16
0.
5

20
1.
9

8
.8

6
.0

12
0.
1

11
9.
1

13
.7

11
.4

3
0
0
.0

3
0
0
.0

1
0
.4

6
.4

9
6
.3

1
9
7
.3

9
.5

9
.4

1
2
2
.2

2
0
3
.6

F
or
b
4

1.
6

1.
9

5.
5

4.
2

89
.7

58
.4

2.
6

0
.5

12
.0

12
.3

0
.8

0
.5

12
.1

7.
2

2.
9

2.
7

3
4
.6

5
2
.0

2
.9

1
.4

1
2
.9

1
9
.9

1
.6

2
.0

1
0
.4

1
6
.6

F
or
b
5

11
.5

17
.3

13
.1

9.
5

24
2.
4

27
7.
3

4.
3

7.
2

39
.1

75
.3

3
.4

3
.8

52
.5

22
9.
9

11
.3

6.
2

2
6
5
.1

2
4
0
.8

4
.2

7
.1

2
2
.9

6
1
.7

4
.1

4
.1

2
5
.0

1
1
8
.4

R
an

d
1

1
.2

11
9.
8

2.
5

6.
9

5.
8

19
.4

1.
5

7.
7

3.
5

19
.3

1
.4

3.
4

2.
2

3.
9

1
.4

6.
7

4
.7

5
.0

2
.0

2
.4

4
.0

1
1
.3

1
.1

5
.4

2
.0

2
.8

R
an

d
2

66
.3

17
5.
6

23
5.
8

65
.8

30
0.
0

30
0.
1

69
.1

89
.9

30
0.
0

30
0.
0

17
5.
6

52
.4

30
0.
0

30
0.
0

18
1.
9

4
0
.8

3
0
0
.9

3
0
0
.0

4
4
.5

5
5
.8

3
0
0
.0

3
0
0
.2

3
0
0
.0

5
1
.0

3
0
0
.0

3
0
0
.0

R
an

d
3

36
.6

30
1.
4

48
.2

20
6.
3

30
0.
0

30
0.
0

49
.4

14
1.
5

30
0.
1

30
0.
1

2
9
.7

30
0.
0

30
0.
0

30
0.
1

56
.9

13
2.
1

3
0
0
.0

3
0
0
.0

7
5
.5

1
3
1
.3

3
0
0
.0

3
0
0
.0

3
8
.3

7
2
.5

3
0
0
.0

3
0
0
.0

R
an

d
4

1
.3

21
.1

1
.4

4.
0

8.
9

29
.1

1
.2

1.
1

4.
7

5.
5

1.
2

0
.3

2.
7

1.
1

1.
4

0
.7

5
.0

1
2
.5

0
.9

0
.5

2
.8

1
.1

1
.1

0
.4

5
.1

5
.2

R
an

d
5

8.
8

30
1.
1

16
.6

17
0.
7

30
0.
0

30
0.
0

9.
5

61
.5

34
.4

30
0.
0

6.
7

71
.4

50
.6

30
0.
0

32
.2

34
.8

3
0
0
.1

3
0
0
.0

5
.3

1
1
.7

3
7
.2

2
2
8
.8

8
.8

1
4
.7

4
6
.5

3
0
0
.0

P
er
t1

4
.4

8
.3

30
0.
1

30
0.
0

30
0.
2

30
0.
2

16
.5

16
.0

10
0.
1

99
.8

13
.4

13
.3

89
.8

92
.4

30
0.
1

30
0.
0

3
0
0
.2

3
0
0
.2

1
7
.0

1
6
.0

9
4
.3

1
0
8
.1

1
4
.0

1
3
.7

8
8
.7

9
1
.2

P
er
t2

1
2
.4

1
6
.4

30
0.
1

30
0.
1

30
0.
3

30
0.
3

10
8.
4

10
9.
8

30
0.
3

30
0.
3

86
.0

86
.4

30
0.
3

30
0.
3

30
0.
1

30
0.
1

3
0
0
.3

3
0
0
.3

1
0
9
.4

1
0
3
.6

3
0
0
.3

3
0
0
.3

8
9
.1

8
9
.0

3
0
0
.3

3
0
0
.3

P
er
t3

3
.4

3
.3

30
0.
1

30
0.
1

30
0.
2

30
0.
3

79
.4

80
.8

30
0.
3

30
0.
3

66
.7

66
.9

30
0.
2

30
0.
2

30
0.
1

30
0.
1

3
0
0
.5

3
0
0
.5

8
2
.9

8
2
.9

3
0
0
.3

3
0
0
.2

6
9
.1

6
9
.2

3
0
0
.3

3
0
0
.2

P
er
t4

2
.7

8
.6

30
0.
1

30
0.
1

30
0.
2

30
0.
2

13
5.
8

13
2.
2

30
0.
2

30
0.
2

12
6.
6

12
7.
3

30
0.
2

30
0.
2

30
0.
1

30
0.
1

3
0
0
.3

3
0
0
.2

1
4
2
.1

1
4
0
.9

3
0
0
.2

3
0
0
.2

1
1
8
.5

1
1
8
.9

3
0
0
.2

3
0
0
.2

P
er
t5

1
.8

3
.3

30
0.
1

30
0.
1

30
0.
2

30
0.
1

81
.1

80
.9

16
2.
5

16
3.
4

63
.6

63
.2

13
8.
9

14
4.
8

30
0.
1

30
0.
1

3
0
0
.2

3
0
0
.1

8
6
.9

8
5
.2

1
6
6
.8

1
6
6
.6

6
6
.0

6
6
.9

1
3
9
.9

1
3
9
.7

H
ap

1
1
0
.0

28
0.
1

44
.5

50
.6

30
0.
0

30
0.
0

18
.8

17
2.
2

30
0.
1

30
0.
1

36
.4

30
0.
0

30
0.
0

30
0.
1

43
.8

69
.1

3
0
0
.0

3
0
0
.0

2
9
.8

3
3
.6

3
0
0
.1

3
0
0
.1

4
6
.3

9
5
.2

3
0
0
.0

3
0
0
.0

H
ap

2
4.
2

22
.7

8.
7

9.
2

24
5.
6

22
6.
5

3
.5

8.
3

26
.8

50
.5

4.
3

7.
4

68
.4

16
8.
5

3
.8

8.
0

2
0
.2

2
0
9
.5

3
.2

7
.4

6
4
.1

3
5
.4

4
.0

5
.9

2
0
.4

1
1
6
.9

H
ap

3
2
9
.7

30
1.
7

12
3.
8

13
6.
4

30
0.
0

30
0.
0

47
.0

92
.7

30
0.
1

30
0.
1

30
0.
0

29
9.
2

30
0.
0

30
0.
0

11
6.
6

15
7.
5

3
0
0
.0

3
0
0
.1

3
9
.9

6
9
.0

3
0
0
.0

3
0
0
.1

3
0
0
.0

3
0
0
.0

3
0
0
.0

3
0
0
.1

H
ap

4
13
.7

12
0.
2

27
.6

59
.0

30
0.
0

30
0.
0

1
0
.6

38
.4

22
7.
9

30
0.
0

50
.4

13
3.
8

30
0.
0

30
0.
7

89
.1

51
.2

3
0
0
.0

3
0
0
.0

1
3
.9

1
9
.5

9
5
.2

3
0
0
.1

3
5
.5

1
6
7
.2

3
0
0
.0

3
0
0
.1

H
ap

5
6
.5

18
4.
3

18
.8

25
.0

30
0.
0

30
0.
0

6
.4

21
.6

16
0.
3

30
0.
0

10
.3

31
.7

24
7.
8

30
0.
0

19
.8

33
.5

3
0
0
.0

3
0
0
.0

1
0
.0

1
3
.2

2
8
3
.7

3
0
0
.0

9
.9

1
2
.8

1
2
9
.2

3
0
0
.0

T
a
b
le

4.
3:

R
u
n
n
in
g
ti
m
es

of
p
re
li
m
in
ar
y
st
u
d
y

Computational experiments 105

Time (s)

So
lve

d
in

st
an

ce
s

(%
)

5 10 20 30 50 100 200 300 400 600 800 900

10
20

30
40

50
60

70
80

90
10

0

H
HMc
HMb
M8

Figure 4.6: Percentage of solved instances after the seconds shown on the abscissa axis (this
axis is not scaled)

Nodes in the branching tree

So
lve

d
in

st
an

ce
s

(%
)

10 20 30 50 100 250 500 750 1000 5k 10k 25k 50k 100k 250k 500k 1M

40
50

60
70

80
90

10
0

H
HMc
HMb
M8

Figure 4.7: Percentage of solved instances after exploring as many nodes as on the abscissa
axis (this axis is not scaled)

106 Edge deletion and line graphs

Gap (%)

In
st

an
ce

s
(%

)

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

30
40

50
60

70
80

90
10

0

H
HMc
HMb
M8

Figure 4.8: Percentage of instances with a gap smaller than or equal to the gap shown on the
abscissa axis

only considers instances that all the compared models could solve (the comparison is pointless
otherwise). The difference on the overall performance of (H) and the rest of the models is
huge. While (H) solves less than half of the instances after exploring 5000 nodes, (HMc) solves
more than 90%. Up to 5000 nodes (HMc) is the overall winner, and (M8) and (HMb) reach
its performance from 5000 nodes on. Finally, (H) needs more than 500, 000 nodes to solve
all the instances. The last chart, depicted on Figure 4.8, shows the percentage of instances
(ordinate axis) that has a LP gap smaller than or equal to a certain limit (abscissa axis). The
LP gap gives the distance between the optimal value of the EDPL and the optimal value of
its relaxation, relative to the optimal value of the problem. Mixed models (HMb) and (HMc)
show the best overall trends, as they were meant to. (M8) also shows a good performance; the
number of instances within a given gap grow rapidly when the gap limit increases by steps of
five units. The chart shows that (HMc) has the overall tightest LP gap, which is smaller than
or equal to 45% for all the instances.

Figures 4.9 and 4.10 depict some statistical information about the running times of the
experiments. Bars on Figure 4.9 show the average running times for each model grouped by
data set. Although we observe that (H) has by far the tallest bars in general, this is not the
case for the perturbed line graphs data set, for which it clearly has the smallest running time.
As regards the other data sets, (HMc) seems to be a good alternative.

Figure 4.10 is a box-and-whisker diagram, which is also grouped by data sets. The bottom
and top of the boxes are the 25th and 75th percentile of the running times obtained, and the
band inside them is the median. The end of the whiskers are:

upper whisker = min(max
k

{RTk}, Q3 + 1.5 · IQR)

lower whisker = max(min
k

{RTk}, Q1 − 1.5 · IQR)

Computational experiments 107

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

Forb Rand Pert Hap
DataSet

Ti
m

e
(s

)

Model
(HMc)
(HMb)
(M8)
(H)

Figure 4.9: Average running time for the different models and data sets

0

100

200

300

400

500

600

700

800

900

Forb Rand Pert Hap
DataSet

Ti
m

e
(s

)

Model
(HMc)
(HMb)
(M8)
(H)

Figure 4.10: Box-and-whisker diagrams representing the running time for the different models
and data sets

108 Edge deletion and line graphs

where {RTk} is the sample of running times, Q1 and Q3 are the first and third quartiles and
IQR = Q3 − Q1 is the box length. Finally, dots on the chart are outliers, which fall out of
the whiskers limits. As opposed to the average, this kind of diagram allows us to observe the
spread of values. For example, (H) presents the largest interquartile range for forbidden and
HapMap graphs, which is almost equal to its overall range. This indicates that running times
are highly dispersed between 0 and the time limit; the fact that Q3 is nearly 900 reveals that
around 25% of the instances were not solved within the time limit. In the case of random
graphs, such percentage increases to 50% at least. Moreover, (H) solved the first 25% of the
instances within 550 seconds (Q1), as opposed to the rest of the formulations which only took
few seconds. Conversely, (H) is really effective solving perturbed line graphs. Its tight box-
and-whisker shows that it solved all the instances of this dataset within few seconds. As for
(M8), it features highly dispersed running times for forbidden and random graphs. Although
(M8) is rather fast for half of the complete testbed (see the illustration of the median for each
dataset, which remains low), it is never the alternative with lowest measure Q1, median or
Q3. In general, (M8), (HMb) and (HMc) present medians closest to the bottom of their boxes.
This reveals an asymmetry in the distribution of the running times, which is denser for smaller
values.

As a conclusion, we can say that (HMb) and (HMc) seem the best alternatives for all the
datasets but perturbed line graphs. The reason might be the structure of the target graph,
G = (V,E). In these instances, G is built as follows. We start from a graph, obtain its line graph
and finally add some edges to the latter. The resulting graph, G, has a strong structure where
nodes (edges of the original graph) are clustered according to the end-nodes that they shared,
which is not disrupt after adding some edges. This structure is inherited by the variables
and constraints of (H), which are defined for each edge of G (except for constraints (4.2)).
Conversely, constraints of (M) are defined in terms of two structures: triangles and triplets
{i, j, k} such that (i, j), (i, k) ∈ E and (j, k) /∈ E. This might lead to a model with no structure
and therefore harder to decompose and solve. In other words, (H) allows to exploit the structure
of L(G) better than (M) in this case. Regarding the other datasets, average running times on
Figure 4.10 suggested the use of (HMc), but Figure 4.10 shows that the running times of (HMb)
are in general less dispersed.

Chapter 5

Optimal unambiguous map labeling

Map design, which has been performed by cartographers for ages, is laborious and time-
consuming. As part of the methodology for map production, several fundamental subtasks
take place. First of all, the area to model must be delimited and projected on a flat medium.
Then, non-relevant characteristics should be identified according to some criteria, e.g. the tar-
geted audience, to be grouped or removed from the map. Finally, some descriptive information
has to be included. Such information is usually associated to the main features depicted and
comes in the shape of labels that have to be orchestrated on the map. The problem of map
labeling consists of deciding on the location of labels on the map so that some criteria regarding
legibility are optimized.

In the Digital Age, there is an increasing development of systems that replace or help
humans with hard tasks, including that of map production. In this context, most approaches
to map labeling so far developed are heuristics. Among them, simulated annealing is a frequent
choice and has been proved to produce better solutions than other heuristic algorithms (see for
instance Christensen, Marks & Shieber, 1995; Rylov & Reimer, 2014). Existing mathematical
programming approaches range from most simplified models as proposed by Zoraster (1990)
to multiobjective in Haunert & Wolff (2016), and include a PhD thesis devoted to orthogonal
placement problems, see Klau (2001). An extended review can be found in the survey by Neyer
(2003) or in the map-labeling on-line bibliography managed by Wolff & Strijk (2009).

We approach map labeling with especial focus on ambiguity reduction. Classic quality
indicators for map labeling are dispersion, reduced ambiguity, features priorities, balanced
distribution or consideration of hierarchy of objects. Among them, ambiguity, together with
overlapping labels, is one of the main obstacles for a correct map interpretation. To the best
of our knowledge, the problem of producing not very ambiguous maps has not been effectively
tackled yet. The only models in the literature that consider ambiguity are the heuristic of
Rylov & Reimer (2014) and the IP formulation of Haunert & Wolff (2016).

As opposed to previous studies that evaluated labels ambiguity by pairs, we propose to
measure the ambiguity of labels individually. We base our approach on the premise that prox-
imity of labels to unrelated features is what makes them ambiguous. Our main contributions
are four integer linear programming formulations, which incorporate the proposed ambiguity
measure and also address overlaps between labels. As an alternative for the formulations, we
develop a heuristic procedure to deal with large instances. Finally, computational experiments
made to evaluate the proposed formulations and heuristic are presented. Implications of using
the different models as well as parameters tuning recommendations are also discussed.

The problem studied in this chapter is closely related to the topics addressed in the first
part of the thesis. First, labels overlaps avoidance is modeled with set packing constraints.

109

110 Optimal unambiguous map labeling

Second, placing labels on point features very much resembles discrete location problems. We
will take inspiration from discrete ordered models in locational analysis to propose some of the
new models, which penalize ambiguous labels in a flexible manner.

5.1 Label placement

A fundamental problem within Cartography is to associate labels to the main features depicted,
usually known as map labeling or label placement. Automation of map labeling consists of
finding techniques to produce a good label arrangement, as a cartographer would do (see
e.g. Imhof, 1975; Dent, 1996; Robinson, 1958). According to Edmondson et al. (1996), label
placement involves three independent subtasks, namely

1. Candidate-position generation: Given a feature, identify a set of candidate locations for
its label. Feature types were identified by Imhof (1975) as points, lines or areas.

2. Position selection: Given the sets of candidate locations identified in previous subtask,
select one label position for each feature. The overall quality of the labeling produced,
which is determined by next subtask, should be as high as possible.

3. Position evaluation: Given an arrangement of the labels, compute a score that indicates
its quality.

Depending on the strategy followed to perform each subtask, different models for the automa-
tion of label placement may arise.

In the candidate-position generation phase, we find various alternatives regarding some
technical modeling aspects. Some authors consider continuous candidate sets, e.g. “sliding”
models like the one by Van Kreveld et al. (1999), “elastic labeling” tackled by Iturriaga &
Lubiw (1997) or “scaling” models like that proposed by Been et al. (2010). In contrast, there
are discrete models or “fixed-position models”, see for instance Klau & Mutzel (2003). Different
shapes and orientations of the labels might also be considered for candidate sets. In this same
phase, there are two alternative approaches concerning geographical aspects. A first strategy
is to select candidate locations in a more or less arbitrary way to make a nice map, regardless
of the geographical places actually occupied by features. Paradigmatic examples are metro
maps (see e.g. Nöllemburg & Wolff, 2011), where stations are organized in straight lines linked
by means of 45- or 90-degree angles, and consecutive stations are at the same distance. The
elimination of geographical restrictions in this phase overcomes obstacles like label overlaps,
making the next subtasks of position selection and evaluation less meaningful. A second option
is to choose candidate locations in agreement with the actual geographical position of features.
In this case, position selection and evaluation become challenging.

Most of the attempts to address label position selection assume that a discrete set of location
candidates has already been produced in the generation phase. Then, position selection reduces
to labeling point features, which will be also the starting point for the approaches presented
on this chapter. However, placing the label of each feature somewhere around is not an easy
task even if the position candidate sets are given. Naively placed labels will overlap in most
cases. In addition, they can produce ambiguity due to their location with respect to features.
Position selection then requires optimization. Different implementations of this phase include
exact methods and heuristic strategies, with the latter being far more common.

Finally, for the definition of quality that guides the position evaluation phase, we find a wide
range of alternatives. An initial rough classification of label-placement models in the literature

Problem setup 111

Figure 5.1: Locations of four labels with respect to the point labeled

5

6

8

7

5

6

7

8

Figure 5.2: Two alternative locations of a label with respect to its point feature

would distinguish between those that allow non-labeled features and those that do not. The
former usually forbid overlaps between labels and aim to maximize the number of features
labeled, possibly taking into account other quality indicators, such as dispersion, ambiguity,
or consideration of hierarchy of objects, see Imhof (1975). The latter allow overlaps between
labels and may consider the total overlapping area as an additional quality indicator.

5.2 Problem setup

Consider I = {1, . . . , n} a given set of point features in the plane with coordinates (αi,βi),
i ∈ I and let L = ∪i∈ILi be the discrete set of labels position candidates. Each point feature
i ∈ I has a set of potential labels, Li, which contains different translations of its name or
description. We assume Li ∩ Li� = ∅ ∀i �= i�, i.e., each label corresponds to only one feature.
Let A = (aj�)|L|×|L| be a binary symmetric matrix with aj� = 1 iff labels j and � either overlap
or belong to the same set Li. We define

E := {(j, �) ∈ L× L : j < �, |{j, �} ∩ Li| ≤ 1 ∀i ∈ I, aj� = 1},

the set of pairs of overlapping labels corresponding with different point features. There will be
pairs of features at a relative distance such that their labels will never be in conflict. To focus
on the conflicting cases, we also define

H := {(i, i�) ∈ I × I : i < i�,
�

j∈Li

�

�∈Li�

aj� ≥ 1},

the set of pairs of point features whose labels could overlap, which will be identified as conflicting
points.

There are some particular configurations within this general framework that have been
frequently addressed in the literature. The most common assumption is that of four rectangular
labels per point (see Figure 5.1). In this particular case Li = L4

i ,

L4
i := {(i, 1), (i, 2), (i, 3), (i, 4)} ∀i ∈ I,

where (i, k), k = 1, . . . , 4, represent four rectangles with opposite vertices {(αi,βi), (αi+wi,βi+
hi)}, {(αi,βi), (αi + wi,βi − hi)}, {(αi,βi), (αi − wi,βi − hi)} and {(αi,βi), (αi − wi,βi + hi)}

112 Optimal unambiguous map labeling

(a) Four points with their candidate labels (b) Six points with their candidate labels

Figure 5.3: Two point feature labeling instances with four candidate rectangular labels

respectively, for a given width wi and a given height hi associated to each point i ∈ I. We call
L4 := ∪i∈IL4

i . Some settings consider L4 plus other four rectangular labels, which are usually
displayed in one of the two alternative configurations shown by Figure 5.2.

The following example illustrates the configuration described by Figure 5.1 for four and six
point features and constant label width and height.

Example 5.1. Figure 5.3a depicts an instance with four point features and four candidate
labels each. Point features are numbered from 1 to 4, having coordinates (α1,β1) = (10, 10),
(α2,β2) = (22, 4), (α3,β3) = (23, 11) and (α4,β4) = (31, 14), respectively. Labels are 10 × 4
rectangles, i.e., wi = 10 and hi = 4 for all i ∈ I = {1, 2, 3, 4}. Taking, for instance, i = 2,
we have that its candidate labels are L4

2 = {(2, 1), . . . , (2, 4)}, with e.g. (2, 1) representing
rectangle with opposite vertices in (α2,β2) = (22, 4) and (αi + wi,βi + hi) = (32, 8), that is to
say, the label at the top-right of point 2.

The set of conflicting points is

H = {(1, 2), (1, 3), (2, 3), (3, 4)},

while overlapping labels are

E = {((1, 1), (3, 3)); ((1, 1), (3, 4)); ((1, 2), (2, 4)); ((1, 2), (3, 3));
((2, 1), (3, 2)); ((2, 1), (3, 3)); ((2, 4), (3, 3)); ((3, 1), (4, 1));
((3, 1), (4, 2)); ((3, 1), (4, 3)); ((3, 1), (4, 4)); ((3, 2), (4, 2));
((3, 2), (4, 3)); ((3, 3), (4, 3)); ((3, 4), (4, 3)); ((3, 4), (4, 4))}.

On the other hand, Figure 5.3b shows an instance with six points. The three first are at
the same positions as in Figure 5.3a, and points 4, 5 and 6 have coordinates (11, 5), (19, 7.5)
and (19.5, 7.7), respectively. The size of the labels is again 10× 4. In this case, every label of
points 5 and 6 overlaps all the labels of one of the remaining points in I \ {5, 6}. �

Labeling problems within this context are commonly grouped under the name Point-Feature
Label Placement (PFLP). The term does not correspond to a unique problem but is commonly
associated to two variants, given by the following definitions.

Definition 5.1 (PFLPmax). Given a set of point features I and a family of candidate labels
{Li}i∈I , PFLPmax consists of finding a subset of points I � ⊆ I with maximum cardinality such
that there is a labeling {�i}i∈I� with �i ∈ Li and no pair in {�i}i∈I� belonging to E. �
Definition 5.2 (PFLPmin). Given a set of point features I and a family of candidate labels
{Li}i∈I , PFLPmin consists of selecting a set of labels {�i}i∈I with �i ∈ Li and minimum number
of overlaps. �

Previous formulations 113

Figure 5.4: Optimal solution to formulation (Z) on Example 5.1

The problem in Definition 5.1 is to look for the most complete labeling without declining
legibility, while in Definition 5.2 all points must be labeled and the objective is to preserve
readability as much as possible. Different subvariants of the latter include minimizing the pairs
of overlapping labels in {�i}i∈I or just the number of labels in {�i}i∈I that overlap some other
label in the solution. More elements regarding other quality indicators could be incorporated to
these basic problem statements, which would give rise to more variants of the PFLP. Computa-
tional complexity results for both versions of the PFLP, which are NP-hard, can be consulted
in Marks & Shieber (1991); Formann & Wagner (1991).

5.3 Previous formulations

Existing formulations for the PFLP rely on a common framework of variables and constraints.
Here, we present the first models for the two versions of the problem described in definitions
5.1 and 5.2, which will introduce the reader to the notation and ideas of the formulations
presented in the chapter. Finally, two models that are somewhat related to our proposal are
also introduced.

Throughout the chapter, we will use the following binary variables, which are usually con-
sider when formulating the PFLP with a mathematical program:

xj = 1 if label j ∈ L is drawn,
yi = 1 if point i ∈ I is labeled.

5.3.1 First models

Zoraster (1990) was the first to propose an integer program to address the PFLPmax. He
used a large number M to ensure that maximizing the number of labeled points was the more
important part of the objective function. Minimizing a penalty fj , j ∈ L, associated with the
chosen labels was of secondary importance. Zoraster’s formulation reads

(Z) min
�

j∈L
fjxj +

�

i∈I
M(1− yi)

s.t.
�

j∈Li
xj = yi ∀i ∈ I (5.1)

xj + x� ≤ 1 ∀(j, �) ∈ E (5.2)

xj ∈ {0, 1} ∀j ∈ L

yi ∈ {0, 1} ∀i ∈ I.

114 Optimal unambiguous map labeling

Example 5.2. Applying formulation (Z) to Example 5.1 (Figure 5.3a) gives the optimal solu-
tion of Figure 5.4. Here we have taken fj = k−1 ∀i ∈ I, ∀j = (i, k) and thus have assumed that
(i, 1) is preferred to (i, 2) and so on. Points 1 and 4 are labeled without penalty (with labels
at the top-right) and points 2 and 3 are labeled with penalty 1 (with labels at the lower-right
part). �

Since aj� = 1 ∀i ∈ I, ∀j, � ∈ Li, (Z) is equivalent to

max
�

j∈L
(M − fj)xj

s.t. xj + x� ≤ 1 ∀(j, �) ∈ L× L : aj� = 1

xj ∈ {0, 1} ∀j ∈ L,

which is a particular case of set packing problem. This fact was observed by Verweij (2000)
(see also Verweij & Aardal, 1999). In his Ph.D. thesis, he studied the intersection graph of the
problem and designed a branch-and-cut solving strategy.

When all points must be labeled, the formulation proposed in Mauri et al. (2010) aims to
minimize the number of labels that overlap one or more other labels in the solution. Labels
penalties fj are also considered in the objective function. The authors introduced a new set of
binary variables defined as

zi = 1 if a label j ∈ L4
i is used and another label � such that aj� = 1 is also used, i ∈ I.

Their formulation of the PFLPmax reads

(MRL) max
�

j∈L4

(M − fj)xj −
�

i∈I
zi

s.t.
�

j∈L4
i
xj = 1 ∀i ∈ I (5.3)

xj + x� ≤ 1 + zi ∀i ∈ I, j ∈ L4
i , � ∈ L4 \ L4

i : aj� = 1 (5.4)

xj ∈ {0, 1} ∀j ∈ L4

zi ∈ {0, 1} ∀i ∈ I.

In (MRL), y-variables are not necessary, since all the points must be labeled, as stated by (5.3).
New z-variables are included in Zoraster’s constraints (5.2) to count how many times overlaps
occur, which leads to constraints (5.4).

Instead of minimizing the number of overlapping labels, Ribeiro & Lorena (2008) proposed
to minimize the number of overlapping pairs of labels. The variables used for quantifying these
overlaps were

zj� = 1 if a pair of overlapping labels (j, �) ∈ E are both used.

The alternative formulation of the PFLPmax is

(RL) min
�

j∈L4

fjxj +
�

j∈L4

�

�:
(j,�)∈E

zj�

s.t.
�

j∈L4
i
xj = 1 ∀i ∈ I

xj + x� ≤ 1 + zj� ∀(j, �) ∈ E

xj ∈ {0, 1} ∀j ∈ L4

zj� ∈ {0, 1} ∀(j, �) ∈ E.

Previous formulations 115

(a) Optimal solution of (MRL) (b) Optimal solution of (RL)

Figure 5.5: Optimal solutions of (MRL) and (RL) to the six-points instance of Figure 5.3b

Example 5.3. Figure 5.5 depicts optimal solutions for the instance of Figure 5.3b obtained
with formulations (MRL) and (RL). The number of overlapping labels in the optimal solution
of (MRL) is 3, while it is 4 in the solution of (RL). Nevertheless, the number of pairs of
overlapping labels with (MRL) is 3, and using formulation (RL) it is only 2. �

Other integer programming formulations of the PFLP include Verweij (2000); Klau (2001);
Klau & Mutzel (2003); Verweij & Aardal (1999); Mauri et al. (2010). A concise but descriptive
revision of these formulations is provided in Maŕın & Pelegŕın (2018b). In the following section,
we only describe the two integer programs that are closer to the approach we propose.

5.3.2 Related models

There are two models in the literature, both proposed by Gomes et al. (2013), oriented towards
spreading the labels. They address the second variant of the PFLP, where every point receives
a label. However, instead of minimizing the overlaps, they propose to maximize t, the minimum
of the distances between the centers of the overlapping labels. The desired effect is to spread
the conflicting labels on the map as much as possible, which is related to reducing ambiguity
in a way.

The formulation they proposed first is

(GRL1) max t

s.t.
�

j∈L4
i
xj = 1 ∀i ∈ I

t ≤ M(2− xj − x�) + dj� ∀(j, �) ∈ E (5.5)

xj ∈ {0, 1} ∀j ∈ L4.

Observe that constraints (5.5) influence the objective only when both xj and x� take value 1,
in which case t will be less than or equal to dj�, the Euclidean distance between the centers of
labels j and �.

In order to avoid the use of the big M , the authors proposed a second formulation,

(GRL2) max t

s.t.
�

j∈L4
i
xj = 1 ∀i ∈ I

t ≤ dj�(2− xj − x�) ∀(j, �) ∈ E (5.6)

xj ∈ {0, 1} ∀j ∈ L4.

Here, when both xj and x� take value 1 the objective value t will take value 0. The authors
then explain that “it is advantageous to assign zero to xj and x� so that t may increase to 2dj�,
avoiding possible conflicts”.

116 Optimal unambiguous map labeling

(a) Optimal solution of (GRL1) to Figure 5.3b (b) Optimal solution of (GRL2) to Figure 5.3a

Figure 5.6: Optimal solutions of (GRL1) and (GRL2) for two different instances

Example 5.4. Consider first formulation (GRL1). Applying it to the six points instance of
Figure 5.3b gives the optimal solution of Figure 5.6a. Since, in this example, some labels
necessarily overlap, (GRL1) works properly and a solution with labels as widely spread as
possible is given. The optimal value is 8.38, the distance between the centers of labels of
points 4 and 5. However, when (GRL1) is applied to the four-point instance given in Figure
5.3a, a solution without overlaps will have the effect of turning constraints (5.5) into t ≤
M +min{dj� : j, � ∈ L4, (j, �) ∈ E, xj = 1}. This is an undesired effect since these distances
take into consideration labels that were not drawn.

Consider now formulation (GRL2). Applying it to the four-points instance of Figure 5.3a
gives the optimal solution of Figure 5.6b. In this example (GRL2) works well, due to the
existence of solutions without overlaps, but constraints (5.6) have the effect of bounding t by
dj� when one of the labels is used but the other is not. The optimal value in the example
is 3.16, the distance between the labels of points 2 and 3. When (GRL2) is applied to the
six-point instance given in Figure 5.3b, a solution without overlaps does not exist, and then
the optimal value of (GRL2) is going to be 0 and all labelings are optimal, even if all labels
overlap each other. �

5.4 A new approach

Figure 5.7 shows two different labelings of the same set of points. In both cases the five points
are labeled without overlaps. However, the upper labeling is clearly ambiguous, since there are
several sets of labels that could correspond to the same point. The reason is that the corners
of some labels are too close to points to which they are not assigned. This gives the intuition
behind the quantitative estimation of ambiguity presented in the following definition.

Definition 5.3. Let I be a set of point features with candidate labels {Li}i∈I . The ambiguity
of a given label j ∈ Li will be the minimum distance from any of the corners of label j (except
the corner placed at point i) to any of the points in I \ {i}. This minimum will be named dj ,

dj := min{d(k, i�) : k is a corner of j, i� ∈ I; k �= i, i� �= i} ∀i ∈ I ∀j ∈ Li,

where d(·, ·) stands for the Euclidean distance in the plane. �
Definition 5.3 assumes that labels are rectangles with one of their corners placed on the

point to be labeled. Alternative configurations, such as different labels shape, would need
some slight modifications of the models but could also be approached without difficulty. As an
illustrative example, Figure 5.8 depicts a rectangular label j ∈ Li and seven points other than
i. Arrows indicate the closest corner to each point. If label j is used, the ambiguity produced
by j will be due to the point feature within the minimum distance, marked with a thick arrow.

A new approach 117

1

2
3

4
5

1

2
3

4
5

Figure 5.7: Different labelings of the same five points

id j Label j
Figure 5.8: Illustration of Definition 5.3

Using Definition 5.3 as starting point, we present a family of integer programming for-
mulations to reduce ambiguity in the PFLP. A first group of formulations, based on labels
classification in ambiguity classes, is presented in Section 5.4.1. The limits of these ambiguity
classes are an input parameter of the model, i.e., they should be determined by the user. For
an adaptive approach, which ranks all the labels by their ambiguity, we propose a second group
of formulations in Section 5.4.2, which are inspired on discrete ordered location models, Maŕın
et al. (2009, 2010). Both families consist of formulations for the two versions of the PFLP,
namely PFLPmax and PFLPmin. We will remove the labels � ∈ Li that overlap a point i� �= i,
i.e., we assume i� /∈ � ∀� ∈ Li with i� �= i. The number of labels in Li is not relevant in our
models, but it will be fixed for the computational experiments in Section 5.6. Finally, �i will
denote the label assigned to i, for all i ∈ I.

5.4.1 Building ambiguity classes

In this first model labels are classified depending on the ambiguity they produce. We define

C0 := 0 < C1 < · · · < Cρ := ∞

the endpoints of the ambiguity classes. The set of classes will be indexed by r ∈ {1, . . . , ρ},
with class r containing those labels j such that dj ∈ [Cr−1, Cr). Given a labeling, we will say
that a point i falls into a class r if its label, ji, is such that dji ∈ [Cr−1, Cr). The reader may
think of C1 as a value below which the label is extremely ambiguous, C2 a value below which
the label is very ambiguous, and so on. Apart from classifying labels into groups, this prevents
large distances from affecting the model (class [Cρ−1, Cρ) can be considered as a non-ambiguous
labels container).

The global ambiguity of a solution is obtained from the number of points in each ambiguity
class. Each class r is given a relative weight, called µr ≥ 0, which can be tuned according
to the decision maker’s taste. Concretely, the number of labels in the r-th class, nr, will be
multiplied by µr and the linear combination through the classes will be maximized. Then, if
the decision maker chooses µ1 = 0 and the remaining µr taking value 1, the model will try to

118 Optimal unambiguous map labeling

Figure 5.9: Result of Example 5.5

avoid extremely ambiguous labels and will not pay attention to the other classes of ambiguity.
If he/she chooses a vector µ = (µ1, . . . , µρ) = (0, M

2ρ−2 , . . . ,
M
2 ,M), less ambiguous classes are

prioritized by a factor of two. We propose two models to address the two variants of the PFLP.
The new IP formulation to address ambiguity reduction in the PFLPmax is

(MP1) max
�

i∈I
Myi +

ρ�

r=1

�

j∈L:
Cr−1≤dj<Cr

µrxj

s.t.
�

j∈Li

xj = yi ∀i ∈ I (5.7)

xj +
�

�∈Li:
aj�=1

x� ≤ 1 ∀(i, i�) ∈ H, j ∈ Li� (5.8)

yi, xj ∈ {0, 1} ∀i ∈ I, ∀j ∈ L

(5.9)

Constraints (5.7) and (5.8) keep track of the labels used and forbid overlapping labels. In
the objective function, we distinguish two parts. The first part,

�
i∈I Myi, guarantees that

the number of labeled points is going to be maximized. If M is sufficiently large, this part of
the objective is prioritized. The second part tries to reduce the ambiguity of the solution. The
following example illustrates (MP1).

Example 5.5. Consider the six points of Figure 5.3b, and labels of size 10×2 (in order to give
points 5 and 6 the possibility of being labeled). We take ρ = 5 classes, with C = (0, 1, 3, 5, 7,∞)
and µ = (1, 2, 3, 4, 5).

The optimal solution is depicted on Figure 5.9. Ambiguities associated to each pair point-
label (which are preprocessed data) and optimal values of the x-variables are given in the
following matrices:

d =




2.4 0.6 3.2 7.1
3.0 6.2 1.4 1.4
6.4 3.7 3.2 3.2
1.4 1.4 7.1 3.2
− 2.3 2.1 1.1
2.3 1.9 − 0.6




x∗ =




0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0
− 1 0 0
1 0 − 0




where “−” means that the label overlaps a point and cannot be used. From these two matrices,
we obtain the ambiguities of each label: (7.1, 6.2, 6.4, 7.1, 2.3, 2.3). The minimum ambiguity is
d5 = 2.3, which is the distance from point 6 to the left-bottom corner of �5. Since 2.3 lies in
the second class, [C1, C2) = [1, 3), we add 2 units to the objective function. Considering all the
labels one by one, the optimal value obtained with this formulation is 6M+2+2+4+4+5+5. �

A new approach 119

Formulation (MP1) allows unlabeled points. When all points must be labeled, we present
a modification, called (MP1’), that incorporates ambiguity reduction to the objective of mini-
mizing labels overlaps. Additional variables that keep track of the overlaps are needed,

y�ii� = 1 if labels assigned to conflicting points i, i� ∈ I overlap.

The formulation we propose for PFLPmin is

(MP1’) max
�

(i,i�)∈H
−My�ii� +

ρ�

r=1

�

j∈L:
Cr−1≤dj<Cr

µrxj

s.t.
�

j∈Li

xj = 1 ∀i ∈ I (5.10)

xj +
�

�∈Li:
aj�=1

x� ≤ 1 + y�ii� ∀(i, i�) ∈ H, ∀j ∈ Li� (5.11)

xj ∈ {0, 1} ∀j ∈ L

y�ii� ≥ 0 ∀(i, i�) ∈ H.

Here, y�ii� is used to limit the number of overlapping pairs of labels. Note that y�ii� is not
defined as a binary variable, but it will take value 1 or 0 at the optimal solution in any case.
To understand this, note that y�ii�-variables have negative coefficients in the objective function
(to be maximized) and they will take a positive value only if some of the constraints of the
problem forces it. However, for a fixed pair (i, i�) ∈ H, variable y�ii� only appears in constraints
(5.11), which establishes xj +

�
�∈Li:
aj�=1

x� − 1 as its lower bound for different values of j. Note

that this integer bound is always less than or equal to 1. This is due to the binarity of xj and
the fact that the term

�
�∈Li:
aj�=1

x� is upperly bounded by 1 because of constraints (5.10). In

fact, xj +
�

�∈Li:
aj�=1

x� − 1 only takes values in {−1, 0, 1}, which ensures that y�ii� is binary in the

optimal solution.
Formulations (MP1) and (MP1’) can be seen as variants of formulations (Z) and (RL),

respectively. Constraints to control labels overlaps are improved with tighter ones, and weights
of the ambiguity classes can be seen as labels priorities fj .

Example 5.6. Figure 5.10 (resp. 5.11) shows the result of applying formulations (GRL1) and
(GRL2) (resp. (MP1) and (MP1’)) to 45 towns in the Region of Murcia, in the south-east of
Spain. The size of the labels has been chosen to be proportional to the name of the towns, and
large enough to make it impossible to label all points without overlaps. Each point has eight
candidate labels, the four usual labels plus the four labels obtained from these by means of a 45-
degree counterclockwise rotation (see Figure 5.1 and left-hand side of Figure 5.2). Taking the
height of the labels as the unit, formulations (MP1) and (MP1’) are applied using parameters
C = (0, 0.4√

2
, 0.4, 0.4

√
2, 0.8,∞) and µ = (1, 2, 3, 4, 5) (note that

√
2 is related to the small side

of the sloping labels). The readability of the last two maps is much better, not only in their
central parts but also in the periphery.

�

5.4.2 An ordered model

The success of the previous model strongly depends on the choice of the class delimiters
C1, . . . , Cρ−1. Once we are given a concrete instance of the PFLP, a good selection crite-

120 Optimal unambiguous map labeling

ABANILLA

ALBUDEITE
ALCANTARILLA

LOS ALCAZARES
ALEDO

ALGUAZAS

ALHAMA DE MURCIA

ARCHENA

BENIEL

BLANCA

BULLAS

CALASPARRA

CAMPOS DEL RIO

CARAVACA DE LA CRUZ

CARTAGENA

CEHEGIN CEUTI

FORTUNA

LIBRILLA

LORCA

LORQUI
MOLINA DE SEGURA

MORATALLA

MULA
MURCIA

OJOS

PLIEGO

RICOTE

SAN JAVIER
SAN PEDRO DEL PINATAR

SANTOMERA

TORRE PACHECO

LAS TORRES DE COTILLAS

TOTANA

ULEA

LA UNION

VILLANUEVA DEL RIO SEGURA

JUMILLA

AGUILAS

MAZARRON

AB
AR

AN

C
IE
ZA

YE
CL
A

FU
EN

TE
AL
AM

O

PU
ER
TO

LU
M
BR

ER
AS

(a) Optimal solution of formulation (GRL1)

ABANILLA

ALCANTARILLA

ALEDO

CAMPOS DEL RIO

CARAVACA DE LA CRUZ
CEUTI

CIEZA
FORTUNA

FUENTE ALAMO
LORCA

LORQUI

PUERTO LUMBRERAS

RICOTE

SAN JAVIER

LA UNION

LOS ALCAZARES

CEHEGIN

MAZARRON

MOLINA DE SEGURA

MORATALLA

MULA

SAN PEDRO DEL PINATAR

ABARAN

JUMILLA

TOTANA

BU
LL
A
S

SA
NT

OM
ER

A

TO
RR

E
PA
CH

EC
OLA

S
T
O
R
R
E
S
D
E
C
O
T
IL
LA
S

AL
G
UA

ZA
S

A
LH
A
M
A
D
E
M
U
RC

IA

AR
CH

EN
A

CA
LA
SP
AR

RA

PL
IE
G
O

YE
CL
A

A
G
U
IL
A
S

A
LB
U
D
EI
TE

B
EN

IE
LBL

AN
CA

CA
RT
AG

EN
A

LI
B
R
IL
LA M

UR
CI
A

O
JO
S

UL
EA

V
IL
LA
N
U
EV
A
D
EL

R
IO

SE
G
U
R
A

(b) Optimal solution of formulation (GRL2)

Figure 5.10: Labeling of 45 towns in the Region of Murcia (Spain) with (GRL1) and (GRL2)

A new approach 121

BENIEL

LA UNION

LOS ALCAZARES

CARTAGENA

MURCIA

SAN JAVIER

LAS TORRES DE COTILLAS

AGUILAS

MORATALLA

PUERTO LUMBRERAS

ALEDO

CARAVACA DE LA CRUZ

JUMILLA

MAZARRON

BL
AN

CA

CA
LA
SP
AR

RA

O
JO
S

SA
NT

OM
ER

A
A
BA

N
IL
LA

AR
CH

EN
A

CE
H
EG

IN
C
IE
ZA

FO
RT
UN

A

L
O
R
Q
U
I

SA
N
PE
D
R
O
D
EL

PI
N
AT
A
R

V
IL
LA
N
U
EV
A
D
EL

R
IO

SE
G
U
R
A

YE
CL
A

A
LC
A
N
TA
R
IL
LA

A
LH
A
M
A
D
E
M
U
RC

IA

FU
EN

TE
AL
AM

OLI
B
R
IL
LA

LO
RC

A

PL
IE
G
O

R
IC
O
TE

UL
EAAB

AR
AN

A
LB
U
D
EI
TE

AL
G
UA

ZA
S

BU
LL
A
S

C
EU

T
I

M
UL
A

TO
RR

E
PA
CH

EC
O

TO
TA
NA

(a) Optimal solution of (MP1)

SANTOMERA

LA UNION

LOS ALCAZARES

BENIEL

MURCIA

SAN JAVIER

AGUILAS

ALBUDEITE
PLIEGO

PUERTO LUMBRERAS

RICOTE

ALEDO
ALHAMA DE MURCIA

CARAVACA DE LA CRUZ

MAZARRON

MORATALLA

MULA

TORRE PACHECO

AL
G
UA

ZA
S

AR
CH

EN
ACA

LA
SP
AR

RA

L
O
R
Q
U
I

UL
EA

V
IL
LA
N
U
EV
A
D
EL

R
IO

SE
G
U
R
A

A
BA

N
IL
LA

AB
AR

AN

BL
AN

CA

C
A
M
PO

S
D
EL

R
IO

C
IE
ZA

FO
RT
UN

A

SA
N
PE
D
R
O
D
EL

PI
N
AT
A
R

YE
CL
A

A
LC
A
N
TA
R
IL
LACE

H
EG

IN

C
EU

T
I

FU
EN

TE
AL
AM

O

JU
M
IL
LA

LO
RC

A
M
O
LI
N
A
D
E
SE
G
U
R
A

O
JO
S

LA
S
T
O
R
R
E
S
D
E
C
O
T
IL
LA
S

BU
LL
A
S

CA
RT
AG

EN
A

LI
B
R
IL
LA

TO
TA
NA

(b) Optimal solution of (MP1’) with µi = i

Figure 5.11: Labeling of 45 towns in the Region of Murcia (Spain) with (MP1) and (MP1’).
In the case of (MP1) there are two unlabeled points, enclosed with circles

122 Optimal unambiguous map labeling

rion to define the classes should be related to distances dj , j ∈ L. Otherwise, all the labels may
fall into the same class and therefore, our model would not address the problem of ambiguity.

In this section we build a more flexible model to tackle the problem of ambiguous labelings.
First, we remove from the objective barely ambiguous labels by setting a threshold T and
defining new sets of ambiguous labels for each point,

LT
i := {j ∈ Li : dj ≤ T}, i ∈ I.

Let L� ⊆ L be a feasible labeling and suppose, without loss of generality, that labels {j1, . . . , jt} ⊆
L� (t ≤ n) are below the threshold. Instead of grouping these labels by classes, consider a per-
mutation σ for which the following inequalities hold:

T ≥ djσ(1)
≥ djσ(2)

≥ · · · ≥ djσ(t)
.

Equivalently,
0 ≥ djσ(1)

− T ≥ djσ(2)
− T ≥ · · · ≥ djσ(t)

− T.

The objective function of our model will be partially obtained by multiplying these sorted
values by a set of parameters λi ≥ 0, that is to say, we want to include the non-linear term

λ1(djσ(1)
− T) + λ2(djσ(2)

− T) + · · ·+ λt(djσ(t)
− T) (5.12)

in the objective. As before, parameters λ can be varied according to the decision maker’s
taste. Since we will maximize the objective, λi, i = 1, . . . , t should be an increasing sequence.
Thus, the more ambiguous a label ji is (i.e., the shorter its distance dji is), the larger its
(negative) contribution to the objective becomes. This assures that dji is as large as possible in
the optimal solution. However, observe that, unlike T and λ, which are problem inputs, djσ(·)
values depend on the optimal solution.

In order to incorporate the idea described by (5.12) into an ILP formulation, we first sort
the dj-values of all labels in LT := ∪i∈ILT

i in decreasing order (avoiding ties) as

(T ≥) d�1 > d�2 > · · · > d�K > 0,

where K is the number of labels in LT with different dj-values. Since the number of values
in the solution falling below T is not previously known, the λ vector must be defined with
dimension n. Similarly, we extend σ to all the points given, that is, we will assume that:

djσ(1)
≥ djσ(2)

≥ · · · ≥ djσ(n)
.

These extensions are necessary in order to define the following variables correctly:

sik = 1 if djσ(i)
≤ d�k (< d�k−1 < · · · < d�1) and sik = 0 otherwise, ∀i ∈ I, k ∈ {1, . . . ,K}.

Assuming that the labels in the solution are ranked by ambiguity, sik = 1 if the ith label in
that ranking is at most as ambiguous as the kth ambiguous label in LT . The resulting matrix
of s-variables, (sik) will be ordered in two different senses. First, since d�k < d�k−1 < · · · < d�1,
sik = 1 implies that sir = 1 for r < k. As a consequence, rows in the matrix are made of
consecutive ones, followed by consecutive zeros. The transition from 1 (say at column k) to 0
(at column k+1) in a row i means that djσ(i)

= d�k. Secondly, columns in (sik) are increasingly

ordered by the number of zeros they contain. Note that column k refers the label of LT whose
ambiguity occupies the place kth in the ordering (T ≥) d�1 > d�2 > · · · > d�K > 0,. When k
increases, d�k decreases, and there are less labels in the solution with ambiguity smaller than or
equal to d�k.

A new approach 123

We consider the two variants of the PFLP and, based on the idea above, we propose
two alternative formulations. Using new s-variables along with the previously used x- and
y-variables, the first flexible formulation, which address the PFLPmax, is given by

(MP2) max

n�

i=1

λi

�
K−1�

k=1

(d�k − T)(sik − si,k+1) + (d�K − T)siK

�
+
�

i∈I

Myi

s.t. dummyspace
�

j∈Li

xj = yidummyspace ∀i ∈ I (5.13)

xj +
�

�∈Li:
aj�=1

x� ≤ 1 ∀(i, i�) ∈ H, j ∈ Li� (5.14)

�

i∈I

�

j∈LT
i

:

dj≤d�
k

xj =
n�

i=1

sik ∀k = 1, . . . ,K (5.15)

sik ≤ si+1,k ∀i ∈ I \ {n}, ∀k = 1, . . . ,K (5.16)

yi, xj , sik ∈ {0, 1} ∀i ∈ I, ∀j ∈ L, ∀k = 1, . . . ,K.

Similarly to previous formulations, (5.13) and (5.14) maintain record of the used labels and
control overlaps. Constraints (5.15) state that the number of ones in a column k of matrix
(sik) is precisely the number of points that are labeled with ambiguity not greater than d�k.
Constraints (5.16) ensure that the ones in each column are correctly distributed. In effect, if
si+1,k = 0 and djσ(i+1)

≤ djσ(i)
it must be si+1,k = 0. This accumulates the ones at the end of

the columns.

We distinguish two parts in the objective function. The second part,
�

i∈I Myi, guarantees
that the number of labeled points is going to be maximized. The first part tries to reduce
the ambiguity of the solution. We use the fact that the rows of the s-matrix are sorted
containing zeros in the right hand side and ones in the left hand side to obtain the sorted
values djσ(1)

, . . . , djσ(n)
.

Note that, were we to include the distances d1, . . . , dt in the objective without taking the
order into account, we would have a solution which would minimize the ambiguity in general.
This implies that several extremely ambiguous labels could make up for a great number of
unambiguous ones. The ordered model we propose allows us to control this effect. Moreover,
its flexibility makes it possible to represent specific objectives. Previous models with ordered
objectives have been successfully used in the Discrete Location field (Maŕın, Nickel, Puerto &
Velten, 2009; Maŕın, Nickel & Velten, 2010), which is a closely related issue. The following
example illustrates (MP2).

Example 5.7. Consider six points with coordinates (10, 10), (21, 16), (10, 11), (21, 12), (20, 9),
(10, 14) and candidates labels in L4, all of them of size 10×2. The values of ambiguity associated
to the 24 possible labels are

d =




1.0 1.0 3.0 1.0
6.0 2.0 1.0 2.2
1.0 0.0 1.0 1.0
2.0 1.4 1.0 1.0
1.4 5.1 1.0 0.0
1.0 1.0 1.0 5.0




.

124 Optimal unambiguous map labeling

If we consider the threshold value T = 3, and sort the values of the matrix not greater than
T , the result is d� = (3, 2.2, 2, 1.4, 1, 0), with K = 6. The optimal solution of (MP2) with
λ = (1, 2, 3, 4, 5, 6) consists of the following values for x-variables:

x∗ =




0 0 1 0
1 0 0 0
0 0 0 1
1 0 0 0
0 1 0 0
0 0 0 1




.

This matrix yields a labeling {�1, . . . , �6} with associated values of ambiguity (3, 6, 1, 2, 5.1, 5),
which produces the ordered vector djσ(·) = (6, 5, 5.1, 3, 2, 1). The optimal values of the s-
variables are given in the following matrix:

s∗ =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
1 1 1 0 0 0
1 1 1 1 1 0




.

Note that there are no 1’s in the first three rows because three labels have ambiguity above
the threshold, namely djσ(1)

= 6, djσ(2)
= 5 and djσ(3)

= 5.1. Since djσ(4)
= 3, which coincides

with T = d�1, the fourth row contains one 1. The three first entries of the fifth row contain ones
since djσ(5)

= d�3. Finally, s6k = 1 for all k = 1, . . . , 5 represents that djσ(6)
= d�5. The second

part of the objective function evaluated for this solution is

6�

i=1

λi(

5�

k=1

(d�k − 3)(sik − si,k+1) + (d�6 − 3)si6) =

1 · 0 + 2 · 0 + 3 · 0 + 4 · (d�1 − 3) + 5 · (d�3 − 3) + 6 · (d�5 − 3) =

1 · 0 + 2 · 0 + 3 · 0 + 4 · (3− 3) + 5 · (2− 3) + 6 · (1− 3),

which penalize those labels that exceed T according to the weights in λ. �
As for the PFLPmin, we present an alternative flexible model,

(MP2’) max
n�

i=1

λi(
K−1�

k=1

(d�k − T)(sik − si,k+1) + (d�K − T)siK) −
�

(i,i�)∈H

My�ii�

s.t.
�

j∈Li

xj = 1 ∀i ∈ I

xj +
�

�∈Li:
aj�=1

x� ≤ 1 + y�ii� ∀(i, i�) ∈ H, j ∈ Li�

�

i∈I

�

j∈LT
i

:

dj≤d�
k

xj =

n�

i=1

sik ∀k = 1, . . . ,K

sik ≤ si+1,k ∀i = 1, . . . , n− 1, ∀k = 1, . . . ,K

xj , sik ∈ {0, 1} ∀j ∈ L, ∀i ∈ I, k = 1, . . . ,K

y�ii� ≥ 0 ∀(i, i�) ∈ H.

A new approach 125

Again, y�ii� is used to limit the number of overlapping pairs of labels. Similarly to (MP1’), the
formulation implicitly makes these variables to take value 0 or 1 in any optimal solution.

Example 5.8. Figure 5.12 shows optimal solutions of formulations (MP2) and (MP2’) to
the instance consisting of 45 towns in the Region of Murcia. Model parameters are set to
λ = (1, 2, . . . ,K) and the threshold value T coincides with the height of the labels. The
solutions are very similar to that obtained with (MP1) and (MP1’) and depicted by Figure
5.11. �

5.4.3 Some practical observations

Since d�j-values are decreasingly ordered (d�1 > d�2 > . . . > d�K), if djσ(i)
is less than d�k, then it is

also less than d�i for i = 1, . . . , k− 1. Thus, the following inequalities are valid for formulations
(MP2) and (MP2’):

sik ≥ si,k+1 ∀i ∈ I, ∀k = 1, . . . ,K − 1.

On the other hand, note that variables yi can be omitted from models (MP1) and (MP2).
In the objective,

�
i∈I Myi can be replaced by

�
i∈I

�
j∈Li

Mxj . Then, constraints (5.7) and
(5.13) turn into the following:

�
j∈Li

xj ≤ 1 ∀i ∈ I.
When it comes to making the process of labeling simpler, the problem can be divided into

several subproblems. Consider, for example, a map depicting the most important cities in a
country or state. Less populated areas separating huge cities may naturally avoid potential
conflicts between labels. We aim to identify these independent areas in a general case, in order
to solve simpler independent subproblems instead of a bigger one. We will consider F ⊆ P(I)
the family of these areas. An element of the family, I � ∈ F , will represent a subset of point
features on one independent area of the map. Labels of points belonging to different sets
in F must not overlap and F must encompass every point in I. Concretely, the following
requirements are met:

1. Given a set in the family F , any two complementary subsets must contain respective
overlapping points, i.e.:

∀I � ∈ F , ∀J ⊂ I �, ∃i ∈ J, ∃i� ∈ I � \ J : Li ∩ Li� �= ∅.

2. The candidate labels of two points belonging to different sets in F do not overlap:

∀I �, I �� ∈ F , I � �= I ��, ∀i ∈ I �, ∀i� ∈ I ��, Li ∩ Li� = ∅.

3. The family F is a partition of I:

I � ∩ I �� = ∅ ∀I �, I �� ∈ F , I � �= I ��, ∪I�∈FI
� = I.

Once the previous division has been made, we can apply any of the proposed formulations to
each of the sets in F . In this context, we recall that we consider two objectives in our models:
avoidance or minimization of overlaps and reduction of ambiguity. Regarding overlaps, the
previous conditions divide the map into self-reliant areas. Conversely, the ambiguity of a label
may not be related to any of the points of the area that it belongs to. However, this fact
does not introduce any further complexity, since ambiguities are preprocessed data that can be
calculated before dividing the map into areas and solving each of the resulting subproblems.
Thus, each area I � ∈ F will be self-reliant even if for some label j ∈ Li of a point i ∈ I �, its
distance dj is related to a point in another area.

126 Optimal unambiguous map labeling

TORRE PACHECO

LA UNION

YECLA

ALCANTARILLA

LOS ALCAZARES

BENIEL
CEHEGIN

SAN PEDRO DEL PINATAR

ABARAN

AGUILAS

ALBUDEITEBULLAS

CARTAGENA

JUMILLA

MORATALLA

PLIEGO

RICOTE

TOTANA
ALEDO

ALHAMA DE MURCIA

CALASPARRA

CARAVACA DE LA CRUZ

CIEZA

LIBRILLA

LORCA

MAZARRON

MULA

PUERTO LUMBRERAS

SAN JAVIER

FO
RT
UN

A

M
UR

CI
A

UL
EA A

BA
N
IL
LA

AR
CH

EN
A

BL
AN

CA

M
O
LI
N
A
D
E
SE
G
U
R
A

SA
NT

OM
ER

A

V
IL
LA
N
U
EV
A
D
EL

R
IO

SE
G
U
R
A

FU
EN

TE
AL
AM

O

L
O
R
Q
U
IO

JO
S

LA
S
T
O
R
R
E
S
D
E
C
O
T
IL
LA
SC

EU
T
I

(a) Optimal solution of (MP2)

LORQUI

MURCIA

LA UNION

ALCANTARILLA

LOS ALCAZARES

SAN JAVIER

ABARAN

ALBUDEITE

LORCA

PLIEGO

PUERTO LUMBRERAS

RICOTE

AGUILAS

ALEDO

CARAVACA DE LA CRUZ

LIBRILLA

MAZARRON

MORATALLA

MULA

TORRE PACHECO

AL
G
UA

ZA
S

B
EN

IE
L

CA
LA
SP
AR

RA

C
IE
ZA

SA
NT

OM
ER

A

UL
EA A

BA
N
IL
LA

AR
CH

EN
A

BL
AN

CA

C
A
M
PO

S
D
EL

R
IO

FO
RT
UN

A

SA
N
PE
D
R
O
D
EL

PI
N
AT
A
R

V
IL
LA
N
U
EV
A
D
EL

R
IO

SE
G
U
R
A

YE
CL
A

A
LH
A
M
A
D
E
M
U
RC

IA

CE
H
EG

IN

C
EU

T
I

FU
EN

TE
AL
AM

OM
O
LI
N
A
D
E
SE
G
U
R
A

O
JO
S

LA
S
T
O
R
R
E
S
D
E
C
O
T
IL
LA
S

BU
LL
A
S

CA
RT
AG

EN
A

JU
M
IL
LA

TO
TA
NA

(b) Optimal solution of (MP2’) with λi = i

Figure 5.12: Labeling of 45 towns in the Region of Murcia (Spain) with formulations (MP2)
and (MP2’). In the case of (MP2) there are again two unlabeled points, encircled

Heuristic method 127

Finally, it would be interesting to have an index of ambiguity between 0 and 1 corresponding
to every labeling in order to allow possible comparisons. We obtain this index from the optimal
value. First, we remove the term relating to overlaps. Then, we normalize the remaining part
of the objective, called a, that accounts for the ambiguity of the labeling, in the following way:

• For each i ∈ I, let dmaxi = max{dj : j ∈ Li} and dmini = min{dj : j ∈ Li}.

• Obtain amax and amin as the ambiguity part of the objective function when points are
labeled with labels corresponding with dmaxi and dmini respectively, i ∈ I.

• The normalized ambiguity value of the problem is

�
1− a

amax

�� amax

amax − amin

�
.

A resulting value of 0 would mean that the labeling is not at all ambiguous, while a value of 1
represents maximum ambiguity.

5.5 Heuristic method

In this section, we describe a heuristic procedure to find good solutions of the proposed for-
mulations. This is to some extent naive and only intends to offer an alternative procedure for
those cases in which the exact solver fails to scale as were desirable. The use of more elab-
orated metaheuristics to frame the proposed formulations might produce better results than
those reported here, but would be worth a separated study.

Our heuristic also covers the two variants of the PFLP. The key idea, sequenced in Algorithm
5.1, is in both cases the same. The procedure starts by building an initial (potentially non-
feasible) solution. Such solution assigns to each point i the less ambiguous of its candidate
labels, j ∈ Li, with high probability (see Step 1 in Algorithm 5.1). To randomize this step,
function argmax70% is used. It works as a classic argmax function except that the current
maximum is updated with 70% probability. Should the resulting initial solution be feasible
(condition of Step 3.4 is true for each label in the solution), we consider its fitness and update
the current best solution if pertinent (Step 4). Otherwise, labels placement is rearranged. For
the new placement, points are first ordered in a list (Step 2 of Algorithm 5.1) and examined
one by one. The aim is to go through the points from the most crowded part of the map (in
terms of nearby features) to the outskirts. Each point i ∈ I will be given a rate τi, which
represents the sum of the number of overlaps that their labels can potentially produce, i.e.

τi = #{(j, �) : aj� = 1 for some j ∈ Li and � ∈ L \ Li}.

In each iteration of Step 3, a non-checked point i in the ordered list will be selected (or visited)
with a probability that is proportional to τi, so that the desired effect will be caused (see
steps 3.1-3.3). Suppose that point i is selected from the list and that j is its label. If j does
not overlap any other label of the current solution, it remains and the analysis of the points
from the list continues (Step 3.4). When overlaps occur, we define C1

i as the set of candidate
labels for i such that they do not overlap any label of the current solution (Step 3.5). If there
are labels in this set, the least ambiguous one is assigned to i (Step 3.6). Otherwise, C2

i is
defined as those labels in Li that are in conflict with labels of visited points (Step 3.6). The
least ambiguous label in this set will be placed at i, unless the set is empty (see Step 3.7). In
this case, the point will be left unlabeled when overlaps are not allowed (models (MP1) and

128 Optimal unambiguous map labeling

Algorithm 5.1 Heuristic labeling procedure

Input d: vector containing the value of ambiguity of each label.
τ : vector containing the number of potential overlaps corresponding to each point.
r: number used to generate the probability of visiting a point.
a: matrix A = (aij)|L|×|L|.
maxIte: maximum number of iterations.

Variables it: number of iterations performed so far.
L: ordered list of points in each iteration.
index: list index of the selected point from L in each iteration of Step 3.
xini: initial solution in each iteration, xini[i] is the label placed at i (potentially unfeasible).
fitness: quality value of the best solution found.

Output x: vector containing the label of each point, or -1 if the point is not labeled.

Step 0 fitness := −∞, it := 0.

Step 1 ∀i ∈ I xini[i] := argmax70%(dk : k ∈ Li).

Step 2 L :=list of points decreasingly ordered by τ , L = {L(1),L(2), . . . ,L(n)},
τ [L(i)] > τ [L(j)] ∀i, j = {1, . . . , n}, i < j.

Step 3 While there is a non-visited point in L do:

3.0 index = 1.

3.1 Find the next smallest index verifying that L(index) is non-visited.

3.2 Select point L(index) with probability p = 0.5(1− e−τ [index]
1
r) + 0.5.

3.3 If L(index) is not selected: index=(index+ 1) mod n, go to Step 3.1,

else i = L(index).
3.4 If xini[i] does not overlap any other label in xini, go to Step 3.

3.5 Lab = {� ∈ L : � = xini[j], for some j = 1, . . . , n},
C1

i = {k ∈ Li : ak� = 0 ∀� ∈ Lab \ Li}.
3.6 If C1

i �= ∅: xini[i] = argmax {dk : k ∈ C1
i }, go to Step 3,

else C2
i = {k ∈ Li : ∀� ∈ Lab ak� = 1 ⇒ r is non-visited, where xini[r] = �}.

3.7 If C2
i �= ∅: xini[i] = argmax {dk : k ∈ C2

i }, go to Step 3,

else xini[i] = −1 or xini[i] = k, where k is a label with minimum number of overlapping

labels of visited points (depending on the objective).

3.8 Go to Step 3.

Step 4 If fitness < evaluate(xini) then x = xini, fitness = evaluate(xini).

Step 5 it = it+ 1.
Step 6 If it < maxIte go to Step 1.
Step 7 Return x.

Computational study 129

(MP2)) and a label producing as few overlaps as possible will be chosen when all points must
be labeled (models (MP1’) and (MP2’)). When all the points of the list have been visited (end
of Step 3), a feasible solution has been produced. In Step 4 the current best solution found
and its fitness is updated, using the function evaluate. This function quantifies the fitness of a
solution in terms of an objective function. This objective function will be taken from models
(MP1), (MP1’), (MP2) or (MP2’). The process is repeated from Step 1 to generate another
feasible solution, up to a maximum number of iterations.

Example 5.9. At the top of Figure 5.13 we find the solution obtained by Algorithm 5.1 for
(MP1), while the solution for (MP1’) is depicted at the bottom. These two labelings coincide
with the heuristic labeling obtained by the same algorithm for (MP2) and (MP2’), respectively.
Comparing with Figures 5.10 and 5.11, we observe that the heuristic places one label fewer
than the exact formulations (MP1) and (MP2). Regarding (MP1’) and (MP2’) the difference
in the solution quality can not be appreciated at sight (but the objective value of the heuristic
solution is not optimal).

�

5.6 Computational study

In order to validate the different formulations and the heuristic proposed, we have conducted
a computational study. We formed a testbed made of input data of different size. Every
instance is solved under different values of the model parameters. The processor used for the
experiments was an Intel core i7-6700k CPU at 4.0 GHz × 8 with 16 GB of RAM memory.
The solver was Cplex v12.6.3 64-bit under operating system Linux Ubuntu 16.04.

5.6.1 Test design and output format

Out testbed consists of six different data files. These files contain information about the names
and the coordinates of several municipalities in Spain. Concretely, each file refers munici-
palities with more than 75, 000; 50, 000; 25, 000; 10, 000; 7, 500 and 5, 000 inhabitants. This
corresponds, respectively, to 88, 137, 274, 692, 872 and 1, 213 municipalities (point features)
for each file. The information in our data files was taken from the website of the Coventaria
(2012) consulting group. They extracted population data from the official census of 2011 in the
Spanish National Institute of Statistics website, and they took coordinates from Google Maps.
These coordinates are latitudes and longitudes in decimal degrees for the different municipali-
ties in Spain. To obtain coordinates in the plane we make the following transformation:

xi =
longitudi · 106

84750
, yi =

latitudei · 105
11111

.

The resulting point features (xi, yi), i ∈ I, would lie in a plane of dimensions 120×142. Labels
are placed on this flat mean with scale 0.1.

We have performed several experiments with each data file. For each point we considered
eight possible labels, the four usual labels (see Figure 5.1) plus the four labels obtained from
them by means of a 45-degree counterclockwise rotation (see left hand-side of Figure 5.2). First,
we tested each one of our models: (MP1), (MP1’), (MP2) and (MP2’). For each model and
data file tested, we varied different parameters. On the one hand, some parameters are involved
in all the models. These parameters are: M , the size of the labels, and the parameters of the
heuristic r and maxIte. We took M = 10000, r = 10 and maxIte = 500. We fixed a common

130 Optimal unambiguous map labeling

A
BA

N
IL
LA

ABARAN

A
G
U
IL
A
S

ALBUDEITE

A
LC
A
N
TA
R
IL
LA

LOS ALCAZARES
AL
ED

O

AL
G
UA

ZA
S

ALHAMA DE MURCIA

AR
CH

EN
A

B
EN

IE
L

BL
AN

CA

BU
LL
A
SCA

LA
SP
AR

RA

C
A
M
PO

S
D
EL

R
IO

CARAVACA DE LA CRUZ

CARTAGENA

CE
H
EG

IN

C
EU

T
I

C
IE
ZA

FU
EN

TE
AL
AM

O

JUMILLA

LIBRILLA

LORCA

M
AZ
AR

RO
N

M
O
LI
N
A
D
E
SE
G
U
R
A

M
OR

AT
AL
LA

MULA

M
UR

CI
A

O
JO
S

PLIEGO

PUERTO LUMBRERAS

RICOTE

SA
N
JA
V
IE
R

SA
N
PE
D
R
O
D
EL

PI
N
AT
A
R

SA
NT

OM
ER

A

TO
RR

E
PA
CH

EC
O

LA
S
T
O
R
R
E
S
D
E
C
O
T
IL
LA
S

TO
TA
NA

UL
EA

LA UNION

YECLA

(a) Solution of the heuristic for (MP1) and (MP2)

A
BA

N
IL
LA

ABARAN

A
G
U
IL
A
S

ALBUDEITE

A
LC
A
N
TA
R
IL
LA

LOS ALCAZARES

ALEDO

AL
G
UA

ZA
S

ALHAMA DE MURCIA

AR
CH

EN
A

B
EN

IE
L

BL
AN

CA

BU
LL
A
S

CA
LA
SP
AR

RA

C
A
M
PO

S
D
EL

R
IO

CARAVACA DE LA CRUZ

CA
RT
AG

EN
A

CE
H
EG

IN

C
EU

T
I

C
IE
ZA

FO
RT
UN

A

FU
EN

TE
AL
AM

O

JUMILLA

LIBRILLA

LORCA

LORQUI

MAZARRON

M
O
LI
N
A
D
E
SE
G
U
R
A

MORATALLA

MULA

M
UR

CI
A

O
JO
S

PLIEGO

PUERTO LUMBRERAS

RICOTE

SA
N
JA
V
IE
R

SA
N
PE
D
R
O
D
EL

PI
N
AT
A
R

SA
NT

OM
ER

A

TO
RR

E
PA
CH

EC
O

LA
S
T
O
R
R
E
S
D
E
C
O
T
IL
LA
S

TOTANA

UL
EA

LA UNION

V
IL
LA
N
U
EV
A
D
EL

R
IO

SE
G
U
R
A

YE
CL
A

(b) Solution of the heuristic for (MP1’) with µi = i and (MP2’) when λi = i

Figure 5.13: Labeling of 45 towns in the Region of Murcia, Spain, obtained by the heuristic
for (MP1) and (MP1’) with µi = i (these are also the solutions found for (MP2) and (MP2’)
when λi = i). In the case of (MP1) (or (MP2)) there are three unlabeled points, rounded with
circles

Computational study 131

µ1 = (1,2,3,4,5) λ1 = (1,2,3,4,5,0,. . .,0)

µ2 = (1,2,4,8,16) λ2 = (1,1,1,1,1,0,. . .,0)

µ3 = (1,4,8,9,10) λ3 = (10,0,. . .,0)

µ4 = (0.01,0.1,1,10,100) λ4 = (1,0,0,0,0,0,0,0,0,1,0,. . .,0)

Table 5.2: Vectors of weights that were used in the experiments

> 75, 000 > 50, 000 > 25, 000 > 10, 000 > 7, 500 > 5, 000

h = 0.1 13 17 35 94 117 269
h = 0.5 17 25 112 685 868 1212
h = 1 45 118 272 691 871 1212

Table 5.3: Subproblem maximum number of points

height for every label of the same experiment. We used three different heights: 0.1, 0.5 and 1.
The width varied depending on the length of the name of the specific town, which was scaled
in order to be proportional with the selected height in the different cases. On the other hand,
each model has its own parameters. Models (MP1) and (MP1’) are characterized by the class
limits C0 := 0, C1, . . . , Cρ := ∞ and the vector of weights µ = (µ1, . . . , µρ). The former were
always taken following a fixed strategy, which depends on the label height, h. Specifically, we
took ρ = 5 and C0 := 0, C1 =

c·h√
2
, C2 = c · h,C3 = c · h ·

√
2, C4 = c · h · 2, C5 := ∞, where c is

a constant that we fixed to 0.4. Models (MP2) and (MP2’) are characterized by the vector of
weights λ = (λ1, . . . ,λn) and the threshold T . We took T = 1.5·h. To generate our test battery,
we considered four possible choices of the vectors of weights (µ and λ respectively), displayed
on Table 5.2. As a result, we performed 6(files) × 4(models) × 3(sizes) × 4(µ or λ) = 288
experiments.

Recall that, to label a map, we divide it into several self-sufficient areas, in the sense
explained in Subsection 5.4.3. As a consequence, we are not actually solving labeling instances
of size 88, 137, 274, 692, 872 and 1213, but subproblems of these. Table 5.3 shows the number
of points of the biggest subproblem processed, which depends on the data file and the size of
labels.

In all the experiments both Cplex solver and our heuristic were applied. When summariz-
ing the running time results, we distinguish between two categories of instances: those where
Cplex was not capable of finding the optimum within a time limit and those where an optimal
solution was found. One instance will belong to the first category if some of its subproblems is
not solved within one hour. We analyze running results from three different perspectives: fixing
the model (Table 5.4), fixing the size of the labels and data file (Table 5.7) and fixing the model
and the vector of weights (Table 5.9). These tables summarize the average results obtained for
each case. Some of their entries are double, because they contain the same information, but
referring to the exact and the heuristic solution (upper and lower subentries, respectively). In
the following, we outline the meaning of the abbreviations in tables 5.4, 5.7 and 5.9.

LP : optimal value of the linear relaxation.

LB: lower bound on the objective value.

OPT : objective value of the solution found by Cplex/our heuristic (OPTh).

Norm: normalized objective value of the solution found by Cplex/our heuristic.

Gap: relative gap between LP and OPT/between OPT and OPTh (Gaph).

Nod: number of branching nodes that were processed in the Cplex solution.

132 Optimal unambiguous map labeling

%L: percentage of labeled points in the solution found by Cplex/our heuristic.

%O: percentage of overlaps in the solution found by Cplex/our heuristic.

Time: running time in seconds of Cplex/our heuristic.

Ci: number of labels in the optimal/heuristic solution in class of ambiguity i.

< T : number of labels in the optimal/heuristic solution below the threshold T .

%NS: percentage of instances that Cplex could not solve to optimality.

The strategy followed to generate a proper lower bound, LB, was different depending on the
formulation. For (MP1) and (MP2) setting all variables equal to zero is clearly a feasible
solution. Zero is then a valid lower bound. Formulations (MP1’) and (MP2’) force the labeling
of every point. Now, to get a feasible solution, we chose for each point the least ambiguous
label and calculated the objective value of the resulting solution. Note that this number is also
a lower bound on the objective value of the heuristic solution (in fact, it is the objective value
of the initial solution of the heuristic). These lower bounds are especially useful to get the
relative gaps when the objective function can be negative, which is the case of models (MP1’)
and (MP2’). We quantify the relative gaps as

Gap =
LP −OPT

LP − LB
· 100, Gaph =

OPT −OPTh

OPT − LB
· 100.

Note that, when the objective function is positive, LB = 0 is implicitly taken. Nevertheless,
when we are maximizing an objective function which takes negative values, we need a lower
bound in order to get a relative gap between 0% and 100%.

On the other hand, %O is related to the number of points, n, instead of the potential
number of overlaps

�
n
2

�
, which was considered too large. This might lead to values of %O

greater than 100. The normalized ambiguity of an instance, Norm, is obtained by averaging
the normalized values of the labelings of its subproblem. Labelings of areas with few points
barely produce ambivalence, thus diminishing the global ambiguity of the instance. Due to this,
Norm usually shows low values in the summary tables we report. Finally, since the running
time for a given instance is the sum of the running times of the corresponding subproblems,
Time values may be greater than the time limit of the solver (one hour).

5.6.2 Overall results

Tables 5.4 and 5.5 show the average experimental results obtained for each of the proposed
models, namely (MP1), (MP1’), (MP2) and (MP2’). Table 5.4 refers to the cases where an
optimal solution was found, while Table 5.5 below collects information about the rest of the
executions. Let us first focus on the upper subtable. The relative gaps are reasonably small
in all cases. This means that the heuristic objective value is close to the optimal value, which
at the same time is not far from the optimal value of the linear relaxation. The number
of nodes that are processed in the branch-and-bound algorithm increases from the top to
the bottom of the subtable. This seems reasonable, since the list of models in the subtable,
(MP1), (MP1’), (MP2) and (MP2’), is ordered increasingly with the number of variables. The
percentage of labeled points is not 100% even for models (MP1’) and (MP2’), since labels
containing points are discarded from our models. With respect to time, the heuristic algorithm
is faster on average. Model (MP2’) is the most time-consuming. Regarding Table 5.5, we
can see an increase in the difficulty of solving the model when we go from the top to the
bottom. First, model (MP1) does not appear in this subtable since it is optimally solved for
all the testing instances. Thus, with model (MP1’) we fail to solve to optimality 5.6% of the

Computational study 133

M
o
d
el

L
P

L
B

00
O
P
T

N
or
m

G
ap

N
o
d

%
L

%
O

T
im

e
C
1

C
2

C
3

C
4

C
5

<
T

(M
P
1)

-4
,4
20
,6
89

-0
0,
00
0,
00

0
-4
,0
34
,9
43

-3
,7
76
,2
78

0.
01
15

0.
01
07

7.
4

5.
7

2,
57
8

82
.1

78
.7

00 00
69
0

00
8.
2

05 06
06 8 0

10 10
16 14

36
6

33
9

0-

(M
P
1’
)

-1
,9
20
,0
43

-1
4,
15
3,
60
8

-2
,2
57
,8
47

-2
,5
78
,6
02

0.
01
43

0.
01
74

3.
5

3.
5

3,
16
1

92
.8

92
.8

28
.2

32
.5

19
2.
4

0
47
.5

11 12
11 13

18 20
27 28

37
9

37
4

0-

(M
P
2)

-3
,5
90
,7
34

-0
0,
00
0,
00

0
-3
,5
58
,1
77

-3
,5
27
,2
67

0.
01
03

0.
01
15

1.
5

1
4,
49
0

96
.4

95
.4

00 00
39
6.
6

00
0.
34

-
-

-
-

-
20 18

(M
P
2’
)

00
,-
77
,9
30

00
,-
98
0,
23
8

0,
-1
15
,1
22

0,
-1
55
,8
20

0.
01
16

0.
01
30

3.
3

3.
1

6,
36
4

98
.9

98
.9

05
.1

06
.2

88
1.
4

00
2.
1

-
-

-
-

-
26 25

T
a
b
le

5.
4:

A
v
er
a
ge

ex
p
er
im

en
ta
l
re
su
lt
s
fo
r
so
lv
ed

in
st
an

ce
s
as

a
fu
n
ct
io
n
of

th
e
m
o
d
el
s

M
o
d
el

L
P

L
B

00
O
P
T

N
or
m

G
ap

N
o
d

%
L

%
O

T
im

e
C
1

C
2

C
3

C
4

C
5

<
T

%
N
S

(M
P
1’
)

-5
,4
00

,2
23

-3
9,
20

9,
93

8
0-
6,
59

8,
04

4
0-
8
,2
4
3,
7
65

0.
03

94
0.
05

03
03

.5
05

89
,3
25

86 86
54

.6
68

.2
26

,0
21

.2
00

,3
18

.7
26 34

50 56
77 84

10
5

10
8

78
5

76
1

0-
05

.6

(M
P
2)

05
,6
91

,5
16

-0
0
,0
00

,0
0
0

-0
3,
0
17

,4
9
7

-0
4
,1
3
8,
5
63

0 0
44

.9
-

18
,1
39

41
.2

52
.4

0
0

0
0

13
,7
35

.3
00

,0
21

.3
-

-
-

-
-

02
0

18
9

38
.9

(M
P
2’
)

-5
,1
6
4,
97

2
-3
7,
17

8
,2
85

-1
1,
78

0,
00

8
0-
6
,9
8
5,
5
26

0.
00

01
0.
00

01
23

.6
-

24
,7
48

82
.9

82
.9

12
7.
0

0
76

.6
12

,7
61

.7
00

,1
57

.2
-

-
-

-
-

31
1

38
8

40
.3

T
ab

le
5
.5
:
A
v
er
ag

e
ex
p
er
im

en
ta
l
re
su
lt
s
fo
r
u
n
so
lv
ed
*
in
st
an

ce
s
as

a
fu
n
ct
io
n
of

th
e
m
o
d
el
s

*
U
n
so
lv
ed

in
st
an

ce
s
ar
e
th
os
e
th
a
t
w
er
e
n
ot

so
lv
ed

to
op

ti
m
al
it
y
w
it
h
in

th
e
ti
m
e
li
m
it
,
w
h
ic
h
w
as

on
e
h
ou

r
fo
r
ea
ch

of
th
ei
r
su
b
p
ro
b
le
m
s

134 Optimal unambiguous map labeling

��� ���� ��� ����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
�
��

��
��
�
��

��
��
�
��

��

�����

�
��
��
���
��
��
��
�

��� ���� ��� ����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
�
��

��
��
�
��

��
��
�
��

�����
���������

(a) Instances optimally solved by Cplex

���� ��� ����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
�
��

��
��
�
��

��

�����

�
��
��
���
��
��
��
�

���� ��� ����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
�
��

��
��
�
��

�����
���������

(b) Instances not optimally solved by Cplex

Figure 5.14: Comparison of objectives values from Cplex and our heuristic over the models

Computational study 135

n = 88 n = 137 n = 274 n = 692 n = 872 n = 1, 213

h = 0.1 2.3 2.8 6.8 8.9 10.5 11.1
h = 0.5 15.2 20.3 33.2 47.3 51 57.1
h = 1 29.8 36.8 52.4 69.5 73.3 80.1

Table 5.6: Subproblem percentage of discarded labels

instances. Nevertheless, in those cases the solution found by Cplex is better on average than
the heuristic solution. Finally, for models (MP2) and (MP2’), the heuristic procedure finds
a better solution than Cplex for 38.9% and 40.3% of the instances, respectively. In these
latter cases we observe a significant relative gap, which confirms that the objective value of
the solution found by Cplex is far from the bound. The relative gap between the solution
found by Cplex and the heuristic one is omitted (set to ’-’), since the latter is better this time.
Results in both tables confirm that models (MP2) and (MP2’) are harder to solve. For these
models, even when instances are solved to optimality, the heuristic algorithm represents a good
trade-off compared to Cplex (see double entries of columns T ime, %L for (MP2) and %O for
(MP2’) in the first subtable). We conclude that using the heuristic to solve models (MP2) and
(MP2’) is, on average, rewarding and supposes a good compromise between solution quality
and running time.

Figure 5.14 depicts box-and-whisker plots for the objective function values over the different
models. According with Figure 5.14a, (MP1’) is the model for which the heuristic worst
approaches the optimal solution found by Cplex. On the other hand, Figure 5.14b confirms
that the heuristic overcomes Cplex when it fails to find the optimum of (MP2) and (MP2’)
within the time limit.

5.6.3 Results as a function of instance size

The instance size varies with the number of points, i.e., the data file, and with the size of
the labels, which are both directly related with the number of potential overlaps. Thus, a
larger size of the instance corresponds in general to models with more variables, but also more
constraints. However, since labels that overlap an unrelated point are removed from the set
of candidates, larger instances can also lead to simpler models. The portion of labels that are
discarded under each configuration is shown in Table 5.6.

Tables 5.7 and 5.8 are devoted to the comparison of the average results produced when the
size of the instances is varied.Table 5.7 refers to the instances solved to optimality, while Table
5.8 collects information of the rest of the cases. In both tables, the first column shows the
height of the labels: 0.1, 0.5 and 1. For each height, the second column indicates the number
of point features, n: 88, 137, 274, 692, 872 and 1, 213.

As we can see from Table 5.7, when the height is fixed and the number of points increases,
the quality of the solution decreases and the running time is longer in general. However, when
the size of the instance increases the running time does not always follow its lead. An increase
of the instance size involves more potential overlaps between labels, but also between labels
and points. Therefore, more labels are potentially discarded for the model, which can lead
in extreme cases to easier instances. On the other hand, relative gaps are reasonably small,
always below 15%.

Moving on to Table 5.8, we see the information about the instances for which Cplex did
not find the optimum. The number of such instances grows as the size of the instance increases.
From the table, one could deduce that the problem of labeling towns with more than 5,000
inhabitants is harder when h = 0.5 than when h = 1. %NS is greater as are the number of

136 Optimal unambiguous map labeling

Size n LP LB 000OPT Norm Gap Nod % L % O Time

h = 0.1 88 -0,441,441 00,00-9,280 -0,441,441
-0,441,441

0
0

00
00

00,000 100
100

00
00

00,000
00,000

137 -0,687,243 00,0-18,878 -0,687,243
-0,687,243

0
0

00
00

00,000 100
100

00
00

00,000
00,000

274 -1,374,487 00,-182,757 -1,374,487
-1,364,478

0.0003
0.0003

00
01.5

00,000 100
099.8

00
00.2

00,000.2
00,000.1

692 -3,456,704 00,-544,341 -3,426,252
-3,376,172

0.0014
0.0022

01.7
03.2

00,184 099.7
099.4

00.4
00.8

00,005
00,000.9

872 -4,319,564 00,-882,897 -4,244,121
-4,154,034

0.0010
0.0010

03.2
03.8

00,809 099.4
099.0

01
01.6

00,043.9
00,001.7

1,213 -6,864,399 0-1,107,263 -6,759,572
-6,629,489

0.0005
0.0011

02.8
03.6

20,888 099.4
098.9

01
01.6

02,209.5
00,008.4

h = 0.5 88 -0,428,722 00,-119,293 -0,421,394
-0,411,383

0.0075
0.0081

01.9
02.9

00,000 098.9
098.3

01.1
01.7

00,000.2
00,000

137 -0, 659,270 00,-313,908 -0,637,121
-0,627,098

0.0078
0.0091

02.5
01.2

00,063 097.8
097.4

01.8
02.2

00,000.9
00,000.1

274 -1,167,724 0-1,147,924 -1,098,864
-1,033,826

0.0159
0.0179

03.0
03.0

03,942 092.5
091.6

04.7
06.2

00,106.2
00,001.0

692 -2,191,108 0-6,895,253 -1,621,902
-0,930,631

0.0094
0.0108

07.0
08.8

00,232 085.4
081.1

16.0
21.7

00,044.9
00,056.6

872 -2,055,931 -10,613,262 -1,290,173
-0,528,809

0.0116
0.0140

07.4
07.5

24,280 082.3
078.7

22.4
27.5

01,085.9
00,092.9

1,213 -9,288,893 -00,000,000 -8,082,697
-7,029,496

0.0319
0.0262

13
13

44,080 066.4
057.8

00
00

11,757.2
00,052.9

h = 1 88 -0,391,261 00,-214,339 -0,351,248
-0,346,204

0.0330
0.0384

07.8
00.6

00,074 094.9
094.3

05.7
05.7

00,001.5
00,000.1

137 -0,534,398 00,-498,992 -0,496,888
-0,466,828

0.0071
0.0088

03.5
02.9

02,975 092.7
091.2

08.0
08.8

00,079.0
00,000.9

274 -0,595,687 0-2,935,596 -0,397,828
-0,183,122

0.0292
0.0250

06.5
07.5

05,611 082.6
079.1

18.5
22.7

02,317.8
00,008

692 0,-529,801 -16,857,912 -1,584,226
-2,240,348

0.0403
0.0432

13.4
08.4

01,508 063.9
060.5

47.7
53.8

00,258.7
00,051.2

872 -1,533,510 -27,566,838 -2,722,948
-3,619,318

0.0417
0.0472

13.5
09.5

00,253 058.4
054.8

53.3
60

00,081.3
00,080.4

1,213 -3,636,645 -50,535,710 -5,207,194
-6,108,731

0.0448
0.0478

15
09.3

01,696 048.4
045.4

59.9
64.3

00,467.7
00,150.5

Table 5.7: Average results for solved instances as a function of the instance size

Size File LP LB 000OPT Norm Gap Nod % L % O Time %NS

h = 0.1 1,213 0, -141,145 0-2,610,002 00,-280,002
00,-450,002

0.0012
0.0021

05.6
07.3

230,875 99.9
99.9

2.3
3.7

21,821.7
00,018

12.5

h = 0.5 692 -2,173,628 0-6,905,003 0-1,472,503
-00,914,994

0
0

38
-

001,748 75.6
81.1

50.7
21.7

12,771.7
00,057.1

50

872 -2,034,856 -10,625,003 0-2,755,003
-00,509,995

0
0

37.3
-

001,396 71.8
78.7

58
27.5

14,578.4
00,095.8

50

1,213 0,-521,368 -26,149,981 0-6,275,183
0-3,167,926

0.0131
0.0168

28.5
-

029,775 70.7
76.6

65.1
45.5

14,384.3
00,234

75

h = 1 274 -0,965,791 0-2,267,149 -00,738,561
-00,548,560

0
0

08.4
07.1

103,497 79.7
76

14.2
17.5

24,216.8
00,006.6

43.8

692 0,-541,503 -16,865,006 0-4,472,507
0-2,250,011

0
0

36.9
-

001,432 53.9
60.5

79.2
53.8

12,932.1
00,052.1

50

872 -1,546,661 -27,575,006 0-7,271,257
0-3,630,011

0
0

40.5
-

000,341 47.1
54.8

94
60

11,028.6
00,082

50

1,213 -3,650,877 -50,545,006 -10,632,506
0-6,120,011

0
0

40.3
-

000,000 38.7
45.4

94.8
64.3

07,813.1
00,155.5

50

Table 5.8: Average results for unsolved instances as a function of the instance size

Computational study 137

Model W LP LB 000OPT Norm Gap Nod % L % O Time C1 C2 C3 C4 C5 < T0000000

(MP1) µ1 -4,409,804 -00,000,000 -4,024,716
-3,766,803

0.0092
0.0087

7.4
5.7

02,254 82.2
78.7

00
00

,0520.4
,0008.2

5
6

6
8

10
10

16
14

366
339

0-

µ2 -4,414,182 -00,000,000 -4,028,813
-3,770,601

0.0133
0.0122

7.4
5.7

02,303 82.2
78.7

00
00

,0755.9
,0008.2

5
6

6
8

9
10

15
14

366
339

0-

µ3 -4,411,945 -00,000,000 -4,026,685
-3,768,634

0.0066
0.0066

7.4
5.7

02,419 82.2
78.7

00
00

,0589.2
,0008.2

5
6

6
8

11
10

16
14

365
339

0-

µ4 -4,446,828 -00,000,000 -4,059,558
-3,799,075

0.0173
0.0154

7.4
5.8

03,338 82.2
78.7

00
00

,0894.9
,0008.2

5
6

6
8

9
10

15
14

366
339

0-

(MP1’) µ1 -1,930,646 -14,164,851 -2,268,495
-2,589,097

0.0117
0.0141

3.5
3.5

01,865 92.8
92.8

28.2
32.6

,0137.5
,0047.5

11
12

12
13

18
20

27
28

379
374

0-

µ2 -1,926,363 -14,160,330 -2,264,196
-2,584,854

0.0165
0.0198

3.5
3.5

02,778 92.8
92.8

28.2
32.6

,0199.8
,0047.6

11
12

12
13

18
20

27
28

379
374

0-

µ3 -1,928,503 -14,162,667 -2,266,348
-2,586,961

0.0084
0.0105

3.5
3.5

03,248 92.8
92.8

28.2
32.6

,0213.1
,0047.6

11
12

11
13

18
20

27
28

379
374

0-

µ4 -1,894,660 -14,126,584 -2,232,349
-2,553,496

0.0209
0.0252

3.5
3.5

04,752 92.8
92.8

28.2
32.6

,0219.2
,0047.5

11
12

11
13

18
20

27
28

380
374

0-

(MP2) λ1 -3,590,733 -00,000,000 -3,558,173
-3,527,263

0.0141
0.0151

1.5
1

02,712 96.4
95.4

00
00

,0146.9
,0000.3

- - - - - 19
17

λ2 -3,590,734 -00,000,000 -3,558,179
-3,527,270

0.0125
0.0136

1.5
1

04,330 96.4
95.4

00
00

,0363.5
,0000.3

- - - - - 19
17

λ3 -3,590,734 -00,000,000 -3,558,174
-3,527,265

0.0085
0.0099

1.5
1

03,915 96.4
95.4

00
00

,0176.2
,0000.3

- - - - - 22
18

λ4 -3,590,735 -00,000,000 -3,558,181
-3,527,272

0.0060
0.0076

1.5
1

07,002 96.4
95.4

00
00

,0899.7
,0000.3

- - - - - 21
19

(MP2’) λ1 -00-58,573 00,-791,010 00,-87,010
0,-117,011

0.0137
0.0176

3.2
2.8

00,838 99.1
99.1

04.6
05.4

,0039.2
,0001

- - - - - 22
21

λ2 0,-119,230 0-1,200,003 0,-161,822
0,-208,185

0.0131
0.0148

3.3
3.0

05,216 98.2
98.2

07.2
08.6

1,923.1
,0002.2

- - - - - 31
31

λ3 00-72,687 0-1,015,009 0,-115,009
0,-161,009

0.0117
0.0138

3.7
3.3

14,540 99.1
99.1

04.8
05.8

1,127.9
,0002.8

- - - - - 26
27

λ4 00-66,078 00,-956,365 0,-104,546
0,-147,274

0.0093
0.0074

3.4
3.2

05,679 99.1
99.1

04.3
05.3

,0461.5
,0002.6

- - - - - 27
25

Table 5.9: Average results for solved instances as a function of the models and the vectors of
weights

nodes and the running time. This could be explained by the fact that, while the number of
points of the largest subproblem to solve is 1,212 in both cases (see Table 5.3), when h = 0.5,
57.1% of the labels are discarded and when h = 1, discarded labels account for 80.1% of the
total. This is a practical example of how constantly increasing the size of the instances ceases
to make sense at some point. It also justifies our choice of the testing instances size.

5.6.4 Results as a function of model parameters

Tables 5.9 and 5.10 are a refinement of tables 5.4 and 5.5 respectively, where we differentiate
the vector of weights used with each model (recall Table 5.2 for the description of λ’s and µ’s).
Looking at Table 5.9, we observe that, once the model is fixed, %L and %O remain the same as
the vector of weights changes. This was the desired effect: varying the weights should change
the measure of ambiguity but not the main objective, which is to maximize the labels placed
or minimize the overlaps produced. It also proves that the choice of M is good in relation
to the dimension of the instances. However, the effect apparently does not appear for model
(MP2’). Note that for this model the percentage of non-solved instances, %NS changes when
λ varies. Even when the percentage coincides for different λ’s, the instances solved are not
the same. This justifies the different values obtained for %L and %O by model (MP2’), since

138 Optimal unambiguous map labeling

Model W LP LB 000OPT Norm Gap Nod % L % O Time C1 C2 C3 C4 C5 < T %NS

(MP1’) µ1 -5,422,560 -39,234,902 0-6,615,300
0-8,265,365

0.0313
0.0403

03.5
05.1

93,388 86
86

054.6
068.2

25,831.5
00,318.7

26
34

50
56

78
84

105
108

784
761

0- 5.6

µ2 -5,413,411 -39,224,783 0-6,616,146
0-8,256,478

0.0453
0.0580

03.6
05

91,314 86
86

054.7
068.2

26,154.8
00,318.5

26
34

50
56

76
84

104
108

787
761

0- 5.6

µ3 -5,417,650 -39,229,833 0-6,620,352
0-8,260,488

0.0209
0.0290

03.6
05

89,280 86
86

054.7
068.2

25,794.5
00,318.9

25
34

49
56

78
84

107
108

784
761

0- 5.6

µ4 -5,347,270 -39,150,234 0-6,540,378
0-8,192,730

0.0600
0.0739

03.5
05.1

83,316 86
86

054.6
068.2

26,304
00,318.7

26
34

51
56

77
84

104
108

785
761

0- 5.6

(MP2) λ1 -5,691,515 -00,000,000 -02,974,283
-04,138,555

0
0

45.8
-

15,326 40.7
52.4

000
000

13,089.2
000,20.9

- - - - - 017
189

38.9

λ2 -5,691,517 -00,000,000 -02,944,285
-04,138,566

0
0

46.4
-

22,267 40.1
52.4

000
000

15,325.4
000,21.2

- - - - - 016
189

38.9

λ3 -5,691,516 -00,000,000 -03,005,708
-04,138,560

0
0

45
-

12,879 41.1
52.4

000
000

13,383.6
000,21.8

- - - - - 017
189

38.9

λ4 -5,691,517 -00,000,000 -03,145,713
-04,138,569

0
0

42.3
-

22,083 43.1
52.4

000
000

13,143.2
000,21.4

- - - - - 032
189

38.9

(MP2’) λ1 -4,712,260 -34,021,266 -10,782,514
0-6,393,765

0.0002
0.0003

22.2
-

43,966 84.2
84.2

117.5
070.9

13,615.5
00,144.8

- - - - - 287
358

44.4

λ2 -5,281,751 -38,125,719 -12,458,576
0-7,147,148

0.0002
0.0003

25.6
-

28,333 83.4
83.4

132.5
075.2

11,788
00,160.7

- - - - - 308
391

38.9

λ3 -5,365,276 -38,508,583 -11,548,583
0-7,242,869

0
0

22.1
-

08,316 81.9
81.9

123.1
080.5

12,937.4
00,162.2

- - - - - 331
403

38.9

λ4 -5,365,273 -38,508,574 -12,472,859
0-7,242,859

0
0

24.9
-

15,630 81.9
81.9

135.9
080.5

12,584
00,163

- - - - - 321
402

38.9

Table 5.10: Average results for unsolved instances as a function of the models and the vectors
of weights

these percentages are not actually different if we compare them instance by instance. We have
to look at column Norm to appreciate the effect of changing the vector of weights in each
model, since it contains the information related to the ambiguity of the solution. Conversely,
in Table 5.10, the solution found by Cplex is not optimal and therefore %L and %O could
vary when the vector of weights changes. Many cells in Norm are zero in this subtable. Note
that low ambiguity is achieved here in detriment of more overlaps/ less labeled points. For
models (MP1) and (MP1’), the number of labels in each class of ambiguity changes when µ
varies, as was expected. For models (MP2) and (MP2’), the number of labels with ambiguity
value less than T also varies when λ does. Figures 5.15 and 5.16 give more detailed information
of this effect.

Figure 5.15 depicts how many labels in the solutions of (MP1) and (MP1’) are in each
ambiguity class, C1, . . . , C5. Data on this figure refer to solutions found by Cplex, regardless
of whether they are optimal or reported after the time limit. We shall now look at the left-
hand side of each subfigure, i.e., at the number of labels in each class for model (MP1). Such
diagrams suggest that µ3 is a good choice for the vector of weights. It not only produces
fewer labels belonging to C1 (the class with most ambiguous labels), but also more labels in
classes C3 and C4 (which collect moderate and little ambiguous labels). Regarding the class
of non-ambiguous labels, C5, most of the labels produced with µ3 belong to it, similarly as for
µ1, µ2, µ4 and µ5. To understand why µ3 produces well balanced labelings, we shall give some
insight into the interpretation of the chosen values for µ. First, µ1 = (1, 2, 3, 4, 5) gives weight
i to class Ci, i = 1, . . . , 5. Since we are maximizing the objective function, these weights favor
labels in the last classes. However, due to the monotonous increment of weights in one unit over
the classes, moving one label from class C1 to C2 has the same benefit as changing it from C4 to
C5. Conversely, for µ

2 = (1, 2, 4, 8, 16) rearrangement between last classes are considered more

Computational study 139

profitable than between the first ones (compare for instance the difference of 8 units between µ2
4

and µ2
5 with the difference of 1 between µ2

1 and µ2
2). Observe as well that, in this case, two labels

in opposite extreme classes C1 and C5, with profit 1+16 = 17, are preferable to a more balanced
distribution among classes C3 and C4, which would increase the objective in 4 + 8 = 12. The
choice of weights for vector µ3 = (1, 4, 8, 9, 10) tries to avoid unbalanced labelings. In this case,
for instance, µ3

1+µ3
4 = 10 < µ3

2+µ3
3 = 12 and µ3

1+µ3
5 = 11 < µ3

3+µ3
4 = 17. At the same time,

this third choice of µ gives preference to rearrangement of labels from the most ambiguous
classes forward (note high relative increments among the first weights in µ3 compared with the
unitary increment between its last components). Finally, µ4 = (0.01, 0.1, 1, 10, 100) is just a
geometric sequence with ratio 10. This vector of weights produces the same effect as µ2 but
labels in the last classes are more strongly prioritized in this case. We shall move on to the
right-hand side of each subfigure, i.e., the results obtained for model (MP1’). Regarding the
number of labels in each class, no significant differences are found this time when µ varies.
Vector µ3 could be considered slightly better, since it presents fewer labels on average in class
C1 and a shorter deviation for class C2. Model (MP1’) forces the labeling of every point feature,
trying to get the minimum number of overlaps as first objective and the minimum ambiguity
as the second. Once the number of overlaps in a solution has been determined, overlapping
labels would belong to class C1. Therefore, there are some labels that must belong to this class,
regardless of the choice of µ. According to the diagrams, this precondition seems not to give
room for a wide variety of distributions of the remaining labels, which must not produce new
overlaps, among the different classes.

Figure 5.16 shows how many labels in the solution found by Cplex are ambiguous (i.e.,
have ambiguity value below the threshold T) for models (MP2) and (MP2’). This information
is represented for each of the four different vectors of weights used in the experiments. When
using λ1 and λ2 only the five most ambiguous labels are considered, with different weights in
the first case and same weights in the latter. Vector λ3 concerns only the most ambiguous
label in the solution. Finally, when λ4 is the vector of weights, the total ambiguity of the 1st
and 10th most ambiguous labels in the solution is minimized. For (MP2), λ3 is the vector
of weights producing fewest ambiguous labels, while λ4 is the vector that produces the most
number of ambiguous labels. This is reasonable since, with λ3, the most ambiguous label in
the solution is as unambiguous as possible, so setting a bound on the ambiguity of the rest
of the labels. Conversely, λ4 stands for a tradeoff between the ambiguity of the 1st and 10th
most ambiguous labels. Taking now the results for (MP2’) depicted in the right-hand side of
the figure, we observe that the choice of λ does not have a significant impact on the number of
unambiguous labels in the solution. This also happens when we compare (MP1) and (MP1’) in
Figure 5.15 and is related with the fact that models (MP1) and (MP2) allow unlabeled points
while (MP1’) and (MP2’) do not.

5.6.5 Average running times

Finally, Table 5.11 shows the time needed to solve each model to optimality, depending on the
number of point features of the instances. A rigorous comparison with previous models tested
on instances of similar sizes is not possible due to the different settings of the experiments.
Nevertheless, these tables may provide the reader with an idea of the relative performance of
our approach. Model (MP1) can be seen as a particular case of formulation (Z) by Zoraster
(1990) with improved constraints and labels priorities based on ambiguity. Similarly, (MP1’)
is an improvement of (RL) (Ribeiro & Lorena, 2008), where labels priorities depend on their
ambiguity. Therefore, (MP1) and (MP1’) should perform at least as well as these previous

140 Optimal unambiguous map labeling

�� �� �� ��

�
�

��
��

�����������������������

�������

�
��
��
��
��
���
��
��
���
��
�

�� �� �� ��

�
��

��
��

��
��

��

������������������������

�������

�
��
��
��
��
���
��
��
���
��
�

(a) Number of labels in class C1

�� �� �� ��

�
�

��
��

��
��

�����������������������

�������

�
��
��
��
��
���
��
��
���
��
�

�� �� �� ��

�
��

��
��

��
��

������������������������

�������

�
��
��
��
��
���
��
��
���
��
�

(b) Number of labels in class C2

�� �� �� ��

�
��

��
��

�����������������������

�������

�
��
��
��
��
���
��
��
���
��
�

�� �� �� ��

�
��

��
��

��

������������������������

�������

�
��
��
��
��
���
��
��
���
��
�

(c) Number of labels in class C3

�� �� �� ��

�
��

��
��

��
��

��

�����������������������

�������

�
��
��
��
��
���
��
��
���
��
�

�� �� �� ��

�
��

��
��

��
��
�

��
�

������������������������

�������

�
��
��
��
��
���
��
��
���
��
�

(d) Number of labels in class C4

�� �� �� ��

��
�

��
�

��
�

��
�

��
��

��
��

�����������������������

�������

�
��
��
��
��
���
��
��
���
��
�

�� �� �� ��

��
�

��
�

��
�

��
�

��
��

��
��

������������������������

�������

�
��
��
��
��
���
��
��
���
��
�

(e) Number of labels in class C5

Figure 5.15: Number of labels in each ambiguity class in the solution found by Cplex

Computational study 141

λ� λ� λ� λ�

�
��

��
��

��

������������������������������

�������

�
��
��
��
��
���
��
��
��
���
��
�
��
��
���
��
��

λ� λ� λ� λ�

�
��
�

��
�

��
�

��
�

��
�

�������������������������������

�������

�
��
��
��
��
���
��
��
��
���
��
�
��
��
���
��
��

Figure 5.16: Number of labels below the threshold T in the solution found by Cplex

h = 0.1 n (MP1) (MP1’) (MP2) (MP2’)

88 0.0138 0.0129 0.0135 0.0019
137 0.0285 0.0255 0.0308 0.0038
274 0.2525 0.0943 0.2060 0.0961
692 0.8005 1.1003 10.4792 7.4827
872 3.1823 10.7719 78.4389 83.2927
1,213 13.0936 16.4320 3764.3517 7878.6107

h = 0.5 n (MP1) (MP1’) (MP2) (MP2’)

88 0.0577 0.0839 0.3518 0.3522
137 0.1312 0.3975 1.4610 1.6346
274 0.3831 1.0605 283.6772 139.5103
692 23.20 66.6595 - -
872 63.96 2107.8344 - -
1,213 11757.23 - - -

h = 1 n (MP1) (MP1’) (MP2) (MP2’)

88 0.0906 0.1264 2.8169 2.7792
137 0.1771 0.7282 220.4016 94.6540
274 1.9728 7.0889 - 20824.3579
692 75.4400 441.9159 - -
872 139.4286 23.2473 - -
1,213 342.2344 593.1018 - -

Table 5.11: Average CPU time (s) for instances solved by Cplex to optimality

142 Optimal unambiguous map labeling

h = 0.1 n (MP1) (MP1’) (MP2) (MP2’)

88 0.0054 0.0151 0.0057 0.0151
137 0.0106 0.0328 0.0114 0.0338
274 0.0452 0.1467 0.0471 0.1552
692 0.2439 1.2426 0.2561 1.7467
872 0.4320 2.5323 0.4536 3.5231
1,213 2.1241 15.5419 2.5021 18.2219

h = 0.5 n (MP1) (MP1’) (MP2) (MP2’)

88 0.0142 0.0315 0.0149 0.0329
137 0.0298 0.0855 0.0313 0.0903
274 0.2168 1.4056 0.2258 2.1565
692 14.7862 98.4754 13.5544 100.6715
872 25.6473 160.2071 25.4116 166.2849
1,213 52.9478 318.6947 56.8880 326.3519

h = 1 n (MP1) (MP1’) (MP2) (MP2’)

88 0.0342 0.1704 0.0358 0.1800
137 0.1594 1.3383 0.1652 2.1307
274 1.4488 12.9805 1.3396 13.7875
692 10.1916 92.2951 9.7540 94.5399
872 15.0327 145.8170 15.3891 148.6846
1,213 24.8154 276.1217 26.9102 284.0492

Table 5.12: Average CPU time (s) to obtain a heuristic solution

ILP formulations, and differences will be due only to the implementation and machine used.
Conversely, models (MP2) and (MP2’) are more complex than previous ILP formulations, not
only due to the number of variables and constraints (which is comparable to the size of (KM))
but also because of the idea they enclose. This increase of the complexity is clearly reflected
in the CPU times reported in Table 5.11, where we observe that the formulation is not even
able to scale for the largest instances. The difference is not so dramatic when we compare
CPU times of the heuristic for (MP1) and (MP1’) with the same times for (MP2) and (MP2’)
(Table 5.12). The reason is that, unlike the exact method, the heuristic does not vary its
computational complexity when we change from the first models to the last.

Chapter 6

Spotting key members in networks

The interest towards key nodes in networks emerged in the past century as a subject of Math-
ematical Sociology and Graph Theory, and has grown to the point of becoming one of the
most noteworthy challenges towards understanding social systems. State-of-the-art of network
analysis includes discerning the relevance of a group of nodes as network representatives. Many
sophisticated approaches based on techniques borrowed from disciplines such as Physics and
Statistics have been developed. However, only a few works use mathematical optimization to
address group relevance.

This chapter presents a mathematical programming formulation for identification of the
group of most relevant nodes and their communities. The initial idea was to explore the use
of eigenvector centrality, a well-known measure for individual nodes, to spot the group of key
members of a network. We realized that real networks are usually a combination of functional
subunits, known by social scientists as communities. Aiming at coverage, it appeared natural
to assume that targeted key members will belong to different communities. Our approach
emerged then as a combination of clustering, which uncovered the communities, and eigenvector
centrality, which quantified group relevance. Namely, a representative is chosen for each cluster
to be in the group of key members. The network clustering yielding maximum overall relevance
of the representatives, which is calculated as an eigenvector centrality, is selected.

Several interesting questions concerning the field of Operations Research arose when mod-
eling eigenvector centrality with clustering. The first one was to write a mathematical program
that we could manage. Naive attempts to model eigenvector centrality over the clusters lead to
highly nonlinear programs. Solving them by a sequential linearization approach turned out in-
operative. In the end, a more elaborated modeling of eigenvector calculation over the clusters,
which includes additional decision variables and constraints, resulted in a mixed-integer linear
program for the problem. Furthermore, different ways of improving the linear formulation
as well as the computational times were studied. First, variables reduction was investigated
for undirected networks. A second difficulty concerned symmetry breaking in integer pro-
gramming. Symmetry arose from the decision variables and constraints that model network
clustering, which produced a particular case of the set partitioning problem. Rediscovering the
facets of the partitioning orbitope introduced by Kaibel & Pfetsch (2008) allowed us to break
the symmetry and enhance our formulation.

This chapter addresses the technical details of the modeling process and ultimately focuses
on the applicability of the resulting formulation. Discussion includes experiments on small
real-life networks that reveal previously unnoticed key members. Additionally, clusters will
prove to be consistent with previous knowledge on the community structure of the networks.
Computational experience on larger synthetic networks demonstrates an adequate scalability

143

144 Spotting key members in networks

of the method, which will be able to find optimal solutions for networks of hundreds of nodes
and thousands of links.

The main contributions in this chapter can be summarized as follows. First, an innovative
model that combines optimization of group relevance and community discovery in the same
process is presented. Second, our exact approach shows the potential of mathematical pro-
gramming to uncover complex network structures, a context where heuristics abound. Finally,
the proposed model serves as a suitable adaptation of widespread PageRank to the problem of
group centrality.

6.1 Introduction

Identifying key members in a social network is critical to understand the underlying system
behaviour. When social networks analysis was still in its infancy, different strategies were
explored in order to determine the relevance of a single node, which gave rise to the so-called
centrality measures. Some of the classics are based on local criteria such as the number of
connections with other nodes of the network (degree centrality), the number of shortest paths
that contain the node (betweenness centrality, Freeman, 1977; Newman, 2005)) or the distance
between the node in question and the rest of the nodes in the network (closeness centrality,
Freeman, 1978; Sabidussi, 1966). A different approach assumes that one node’s importance not
only depends on its connections to the rest of the network, but also on the importance of its
neighbors. Translating such recursive definition into a mathematical formula yields the search of
the eigenvectors of a matrix, the matrix of relationships in Sociology and the adjacency matrix
in Graph Theory. The result is a decentralized measure that has been known as eigenvector
centrality (see Bonacich, 1972; Katz, 1953) and inspired popular Google’s method for rating
web pages, PageRank (see Page et al., 1999).

A first thought to identify a group of key members was to leverage previous knowledge of
the problem on a single node. But measures designed to discern the most central member fail to
identify a central group. Indeed, computing some of the above-mentioned measures for every
node gives a ranking from where selecting those with highest individual relevance, but says
nothing about their potential influence power as a group, though. As an illustrative example,
Figure 6.1 depicts the seven characters with highest eigenvector centrality in Les Misérables
network. This network is a popular benchmark for social science algorithms that represents
characters in the novel Les Misérables. Links connect any pair of characters that coappear
in the novel— weights to quantify the number of such coappearances are also considered, as
compiled by Knuth (1993). Evidence that eigenvector centrality fails to comply with network
coverage is noticeable from the figure; most of the top-7 characters fall in the same area. One of
the aspects that become crucial when determining joint relevance of multiple members is their
relative distance, see Kitsak et al. (2010); Zhang et al. (2016). Think about a marketer who
wants to sell a product. Targeting the two top influencers among its potential clients seems
a sensible strategy. However, if these celebrities happen to have lots of followers in common,
it seems more reasonable to replace them by a pair whose influence covers a bigger portion
of clients, even if they are less popular. While classical degree, closeness and betweenness
centralities have already been adapted to quantify group relevance (see Borgatti, 2006; Everett
& Borgatti, 1999), eigenvector centrality has been not.

We explore the use of eigenvector centrality to spot the key members of a network, ac-
counting for those fragments covered by their influence. The latter will form a partition of
the network and ultimately reveal its underlying organization. In fact, real networks usually
display a modular structure that emanates from the combination of compartments or func-

Introduction 145

tional subunits, identified by social scientists as communities, see Lancichinetti et al. (2008).
Our approach assumes that targeted key members will tend to be in different communities,
something that was already suggested in Li et al. (2016). Figure 6.2 shows the group of seven
most relevant characters in Les Misérables network (diamond nodes) together with their com-
munities (in different colors), according to our approach. The solution found exhibits a more
balanced distribution of key nodes than that of Figure 6.1 and further reveals the structural
relations between the characters of the novel. Valjean, the protagonist, has been identified as
a member of the top group. However, Javert, the antagonist, has been not. A community
only admits one leader; given two competing nodes, the model automatically discerns whether
the sphere of influence of one of them should absorb the other candidate or, conversely, there
is room for two leaderships. In this case, Javert is eclipsed by Valjean and embedded in his
community. Many other major characters are covered by Valjean’s influence sphere. In their
place, our method prefers secondary characters such as bishop Myriel or Courfeyrac to build
a more balanced and covering group of leaders. Case of Child1 is specially remarkable. The
character, of little significance for the novel, is, according to our solution, among the seven
most relevant ones. Indeed, Child1 and Child2 are to some extent isolated from the rest, and
it is precisely this distinct role what the model detects. Gueulemer is identified as the leader
of the group consisting of the gang of criminals made of Montparnasse, Claquesous, Babet and
himself, and Brujon, another criminal in the novel. Our formulation uses a coefficient to con-
trol how cohesive clusters in the solution are, which is named mixing parameter and denoted
by µ. Solution depicted on Figure 6.2 has been obtained under mixing parameter µ = 0.46.
This means that node relations within a cluster represents, for each node, at least a 54% of
its relations. The mixing parameter is an input of our model that can be tuned to control the
cohesiveness of the spheres of influence (clusters) in the solution.

Approaches to address group relevance have traditionally overlooked network modularity,
while community detection algorithms have ignored key nodes. Only in recent years has com-
munity discovery led by key nodes become a hot research topic in network analysis. In Li et al.
(2015), key nodes are first identified in accordance to their relevance and relative dispersion to
be then used as seeds for a k-means clustering. A different strategy also uses the key nodes
as seeds but interprets clustering as the result of a non-cooperative game where every node
tries to maximize its own social identity, see Bu et al. (2018). Other approaches use statistical
models, such as kernel functions in Li et al. (2016); Zhang et al. (2009) or unbiased random
walks in Stanoev et al. (2011), to represent relevance and select a number of centers. In a
second step, community memberships are determined by evolving a dynamical system where
centers memberships are immutable, see Li et al. (2016); Stanoev et al. (2011). Our approach
is conceptually different from the previous ones because community discovery and key nodes
identification go hand in hand.

For previous mathematical programming formulations to approach group relevance, we
can cite Arulselvan et al. (2009), who presented an integer linear program that determines
which nodes to remove so that the remaining ones has minimum pair-wise connectivity. More
recently, Furini et al. (2019) studied the clique interdiction problem, which consists in removing
at most k nodes from a graph in such a way that the size of the maximum clique in the
remaining graph is minimized. Fischetti et al. (2018) looked at the problem from a different
perspective. They proposed several integer linear programming formulations for least cost
influence propagation. They incorporated activation functions to represent which nodes are
reached by influence propagation. Based on the formulations, the authors developed an exact
method and also a heuristic algorithm that hinges on column generation.

146 Spotting key members in networks

Myriel

Napoleon

MlleBaptistine

MmeMagloire
CountessDeLo

Geborand

Champtercier

Cravatte

Count

OldMan

Valjean

Labarre

MmeDeR

Isabeau

Gervais

MmeThenardier

Thenardier

Cosette

Javert

Fauchelevent

Simplice

Scaufflaire

Woman

Woman

MotherInnocent

Gillenormand

MlleGillenormand

Marius

Toussaint

Marguerite

Fantine

Bamatabois

Judge
Champmathieu

Brevet

Chenildieu

Cochepaille

Gavroche

Enjolras

Bossuet
Gueulemer

Babet

Claquesous

Montparnasse

Eponine

Anzelma

Magnon

Pontmercy

Boulatruelle

Brujon

LtGillenormand

Gribier

BaronessT

MmePontmercyMlleVaubois

Mabeuf

Combeferre

Feuilly

Courfeyrac

Bahorel

Joly

Perpetue

Tholomyes

Listolier

Fameuil

Blacheville

Favourite

Dahlia

Zephine

Jondrette

MmeBurgon

Prouvaire

Grantaire

MmeHucheloup

Child1

Child2

MotherPlutarch

Figure 6.1: Top-7 nodes for Les Misérables network, according to eigenvector centrality

Introduction 147

Myriel

Napoleon

MlleBaptistine

MmeMagloire
CountessDeLo

Geborand
Champtercier

Cravatte

Count

OldMan

Valjean

Labarre

MmeDeR

Isabeau

Gervais

MmeThenardier

Thenardier

Cosette

Javert

Fauchelevent

Simplice

Scaufflaire

Woman

Woman

MotherInnocent

Gillenormand

MlleGillenormand

Marius

Toussaint

Marguerite

Fantine

Bamatabois

Judge
Champmathieu

Brevet

Chenildieu

Cochepaille

Gavroche

Enjolras

Bossuet
Gueulemer

Babet

Claquesous

Montparnasse

Eponine

Anzelma

Magnon

Pontmercy

Boulatruelle

Brujon

LtGillenormand

Gribier

BaronessT

MmePontmercyMlleVaubois

Mabeuf

Combeferre
Feuilly

Courfeyrac

Bahorel

Joly

Perpetue

Tholomyes

Listolier

Fameuil

Blacheville

Favourite

Dahlia

Zephine

Jondrette

MmeBurgon

Prouvaire

Grantaire

MmeHucheloup

Child1

Child2

MotherPlutarch

Figure 6.2: Optimal solution for Les Misérables network with p = 7 clusters and mixing
parameter µ = 0.46

148 Spotting key members in networks

6.2 Modeling node relevance

Let (V,E,W) be a weighted undirected graph with n nodes, V = {1, . . . , n}, and matrix of
weights W symmetric and positive: W = (wij) with wij = wji and wij ≥ 0 for every pair i, j ∈
V . Weight wij represents the strength of edge (i, j), if it exists, and it is 0 otherwise. To present
node relevance estimation, which will ultimately determine the clusters centroids, we first
introduce the concept of eigenvector centrality. Even though we will only consider undirected
graphs during our exposition, eigenvector centrality for the directed case is analogous. Our
proposal is also easy to adapt for directed graphs.

Eigenvector centrality

Eigenvector centrality of one node j ∈ V , πj , is defined as a weighted sum of the eigenvector
centralities of its neighbors Page et al. (1999); Hubbell (1965):

λπj =

n�

i=1

wijπi. (6.1)

Equation (6.1) indicates that one node’s importance depends on how notably it is linked to
other nodes and how important are such. This equation is equivalent to determining some of
the left eigenvectors of W and its associated eigenvalue. Indeed, (6.1) yields the eigenvector
equation λπ = πW . Solutions for such equation are only guaranteed to exist in Rn under
some especial conditions. Particularly, when all the entries of W are strictly positive and the
sum of any of its rows equals one— W is row stochastic— , W can be reinterpreted as the
transition matrix of an irreducible, aperiodic and positive recurrent Markov chain, see Serfozo
(2009). This fact ensures that λ = 1 is the largest eigenvalue of W with associated eigenvector
π unique and such that πi > 0 and

�n
i=1 πi = 1. Eigenvector π is then called a stationary

distribution of the Markov chain.

To guarantee solution existence, a fixed score ej is usually added to the eigenvector centrality
of j:

λπj =

n�

i=1

wijπi + ej , (6.2)

that is, λπ = πW + e, where e = (ej), ej > 0. Note that, if
�n

i=1 πi = 1, we can rewrite
previous equation as λπ = π(W +1T × e) where 1 = (1, . . . , 1) is the row vector of n ones, i.e.,
π is a left eigenvector of W +1T × e, whose entries are strictly positive. If W +1T × e was row
stochastic, λπ = π(W + 1T × e) would have a solution with λ = 1 and associated eigenvector
π in (R+)n such that

�n
i=1 πi = 1, which would be also a solution to (6.2). Vector e might

have different interpretations, including the “exogenous contribution” to a person’s status, see
Hubbell (1965), and the probability that an Internet surfer clicks on links at random, see Page
et al. (1999).

Clustering embedded eigenvector centrality

To introduce eigenvector computation for uncovering the groups of key nodes, let {Ck}pk=1

denote a partition of V in p clusters, i.e., ∪̇p
k=1Ck = V . We consider W � = (w�

ij), where
w�
ij = wij + � and � > 0. For each node i belonging to Ck, we denote with πik the eigenvector

Mathematical programming formulation 149

centrality of i within Ck. That is, node eigenvector centrality within cluster Ck, π·k, is computed
as a solution of the following system:

πjk =
�

i∈Ck

πik
w�
ij�

�∈Ck
w�
i�

∀j ∈ Ck (6.3)

0 < πik < 1 ∀i ∈ Ck (6.4)�

i∈Ck

πik = 1. (6.5)

Equation (6.3) is equivalent to π·k = π·kW �,k, where W �,k :=
� w�

ij�
�∈Ck

w�
i�

�
i,j∈Ck

is the subma-

trix of W � induced by Ck and normalized by rows. Normalization conceptually means that
the strength of one link ij is relative to the total influence power exerted from i, computed
as the sum of the corresponding row. Since W �,k has positive entries and is row stochastic

(
�

j∈Ck

w�
ij�

�∈Ck
w�

i�
= 1 for all i ∈ Ck), the system (6.3)-(6.5) has a unique solution π·k for each

Ck. Note that the introduction of parameter � is the equivalent of taking uniform vector e = (�).
Despite its possible interpretations, Page et al. (1999); Hubbell (1965), adding � responds to a
technical need: solution existence cannot be guaranteed otherwise. Therefore, we advise to set
� sufficiently small to prevent network nature from disruption.

6.3 Mathematical programming formulation

In order to model both, node-cluster assignment and eigenvector calculation, we define the
following mathematical programming variables for all i ∈ V and k = 1, . . . , p:

xik ∈ {0, 1}, xik = 1 iff i ∈ Ck;
Πik ∈ [0, 1], the eigenvector centrality of i within Ck if i ∈ Ck, 0 otherwise;
yik ∈ {0, 1}, yik = 1 iff i is the node with maximum eigenvector centrality within Ck;
zk ∈ [0, 1], the maximum eigenvector centrality in Ck, i.e., zk =

�n
i=1Πikyik.

Variables Π encode p eigenvectors, one per cluster. For each k, positive components of the
vector of variables Π·k = (Π1k, . . . ,Πnk) correspond with node eigenvector centralities within
Ck. Observe that we model eigenvector centralities as normalized vectors, i.e., Πik ∈ [0, 1].
Variables y represent clusters centroids, i.e., yik = 1 if and only if Πik = max{Πjk : j ∈ Ck}.

Given a network partition {Ck}pk=1, our vectors of variables Π·k = (Π1k, . . . ,Πnk), k =
1, . . . , p, must satisfy the following constraints (stationary distribution):

(i) Πjk = xjk
n�

i=1
xikΠik

w�
ij�n

�=1 w
�
i�x�k

, for all j = 1, . . . , n.

(ii) 0 ≤ Πik ≤ 1 for all i = 1, . . . , n.

(iii)
n�

i=1
Πik = 1.

These conditions are just a translation of system (6.3)-(6.5) into our modeling language with
decision variables. Note that condition (i) not only indicates eigenvector computation inside
Ck, but also ensures that Π·k components are zero for nodes outside Ck.

Any solution must additionally fulfill some constraints regarding clustering cohesion. Such
constraints restrict the cluster-external relations of one node to represent at most a fraction µ

150 Spotting key members in networks

of its relations within the entire network. The incorporation of this parameter to the model
avoids dummy solutions in which clusters have disconnected components or are singletons. But,
more interestingly, µ allows us to reinterpret clusters as network communities. A community
is usually defined as a group of nodes such that the density of links between nodes of the group
is higher than the average link density in the network, Fortunato & Castellano (2012). In
fact, 1 − µ determines community cohesion and µ has been known as the mixing parameter,
Lancichinetti et al. (2008).

The group of top relevance nodes— the cluster centroids— is made of those with the
highest eigenvector component in each cluster. The objective function is to find the partition
in clusters that maximizes the sum of centroids’ eigenvector components. Note that the fact
that eigenvectors are normalized prevents the optimization to produce biased solutions.

We have now the ingredients to present the following mixed-integer non-linear formulation
for the problem of group centrality, where i, j ∈ V and k = 1, . . . , p:

max
p�

k=1

zk (6.6)

s.t.
p�

k=1

xik = 1 ∀i (6.7)

n�
i=1

yik = 1 ∀k (6.8)

n�
i=1

Πik = 1 ∀k (6.9)

Πjk = xjk
n�

i=1
xikΠik

w�
ij�n

�=1 w
�
i�x�k

∀j, k (6.10)

Πik ≤ xik ∀i, k (6.11)

yik ≤ xik ∀i, k (6.12)

zk ≤ Πik + 1− yik ∀i, k (6.13)

yik ≤ 1 +Πik −Πjk ∀i, j, k (6.14)
n�

j=1
(wij + wji)xjk ≥ (1− µ)xik

n�
j=1

(wij + wji) ∀i, k (6.15)

Πik, zk ≥ 0 ∀i, k
xik, yik ∈ {0, 1} ∀i, k.

The objective function (6.6) is the sum of the greatest eigenvector components in each cluster.
Constraints (6.7) impose that each node is assigned to only one cluster, and (6.8) guarantee
that every cluster has only one centroid. Regarding eigenvectors, constraints (6.9) and (6.10)
ensure that stationary distribution equations (iii) and (i) are respectively satisfied. On the
other hand, (6.11) and (6.12) prevent Πik and yik to be positive when i is not in cluster
Ck. Constraints (6.13) have no effect when i is not a centroid and upperly bound zk by Πik

when it is; since (6.6) is to be maximized, zk will attain this bound in the optimal solution.
Constraints (6.14) ensure that binary variable yik is zero if there is a node with eigenvector
component greater than Πik. Note that they are not necessary to have a valid formulation
because, in an optimal solution, yik will always be one for the node with maximum centrality
in the cluster. Nevertheless, they serve to enhance the formulation. Finally, (6.15) guarantee
clusters cohesion as follows. Given that i ∈ Ck (i.e., xik = 1 on the right hand side of (6.15)),
the overall relations of i with nodes inside Ck (on the left hand side) must be greater than a
fraction 1− µ of its overall relations within the network,

�n
j=1(wij +wji). On the other hand,

Mathematical programming formulation 151

observe that cluster cohesion is imposed using W— and not W �— as a reference. Last lines in
the formulation determine the type of the variables— positive (Π and z) and binary (x and y).

Even though the previous is a valid formulation, it has a main drawback, namely that (6.10)
is highly non-linear. In order to linearize it, we introduce two families of continuous variables,
T and F , for all i, j ∈ V and k = 1, . . . , p:

Tik :=
xikΠik
n�

�=1

w�
i�x�k

(6.16)

Fijk := Tikxjk. (6.17)

Using T variables, eigenvector equation (6.10) can be rewritten as

Πjk = xjk

n�

i=1

w�
ijTik ∀i, k, (6.18)

while, using F variables, equation (6.16) reads

n�

�=1

w�
i�Fi�k = xikΠik ∀i, k. (6.19)

With the new variables, eigenvector computation is given by a system of equations consisting
of (6.17), (6.18) and (6.19). Note that all of them involve products between binary variables
and continuous ones. However, they can be linearized to rewrite previous non-linear model
into the following mixed-integer linear formulation:

(p-leaders) max
p�

k=1

zk

s.t. (6.7)− (6.9), (6.11)− (6.15)

Fijk ≤ Tik ∀i, j, k (6.20)

Fijk ≤ Mxjk ∀i, j, k (6.21)

Fijk ≥ Tik −M(1− xjk) ∀i, j, k (6.22)
n�

�=1

w�
i�Fi�k = Πik ∀i, k (6.23)

Tik ≤ Mxik ∀i, k (6.24)
n�

i=1
w�
ijTik ≤ Πjk +M �(1− xjk) ∀i, k (6.25)

n�
i=1

w�
ijTik ≥ Πjk − 1 + xjk ∀i, k (6.26)

Πik, zk, Tik, Fijk ≥ 0 ∀i, j, k
xik, yik ∈ {0, 1} ∀i, k.

Here, (6.20)-(6.22) serve to linearize equation (6.17). In effect, when xjk = 1, (6.20) and (6.22)
guarantee that Fijk = Tik, and Fijk = 0 otherwise due to (6.21). Equations (6.19) stand thanks
to (6.23) and (6.24). On the one hand, (6.23) are precisely (6.19) when xik = 1. On the other
hand, if xik = 0, the right hand side of (6.23) is zero because of (6.11), and so is its left
hand side due to (6.24) together with (6.20). Finally, (6.25) and (6.26) account for eigenvector

152 Spotting key members in networks

equation (6.18) when xjk = 1. Otherwise, (6.25) and (6.26) have no effect and (6.11) ensure
that (6.18) stand.

Constants M and M � should be large enough so that (p-leaders) is valid. Tight values for
them can be calculated in terms of W , as follows. If we consider inequalities (6.24) first, M
has to satisfy Tik ≤ M for all nodes i ∈ Ck and for all clusters Ck. But, if i ∈ Ck , we have
that:

Tik =
Πik

n�
�=1

w�
i�x�k

≤ 1
n�

�=1

w�
i�x�k

≤ 1

min
�:(�,i)∈E

{wi�}
.

Therefore, setting M := (min
�:(�,i)∈E

{wi�})−1 will do the work. Now we check that the chosen value

is adequate for (6.21) and (6.22). According to (6.21), if j ∈ Ck, M should satisfy Fijk ≤ M .
We distinguish two cases. If i ∈ Ck, constraints (6.20) and (6.24) imply that Fijk ≤ Tik ≤ M .
On the other hand, if i /∈ Ck, Fijk = 0 again due to (6.20) and (6.24) and the inequality
Fijk ≤ M also stands. Secondly, according to (6.22), if j /∈ Ck, it has to be Fijk ≥ Tik −M .
But this is always true because Tik −M is negative or zero. Finally, we have to give a value to
M �, which only appears in constraints (6.25). In this case, if xjk = 0, we have to ensure that
(6.25) are not too restrictive. If xjk = 0, also Πjk = 0, so M � should be an upper bound for
the left-hand side of (6.25),

n�

i=1

w�
ijTik =

�

i∈Ck

w�
ijTik +

�

i/∈Ck

w�
ijTik ≤

�

i∈Ck

w�
ijM.

Then, we set M � :=
�
i∈Ck

w�
ijM .

Formulation (p-leaders) can be now implemented in a computer and solved with any op-
timizer for mixed-integer linear programming such as Cplex, Gurobi or Xpress. All these
solvers feature exact procedures, i.e., the solution obtained is guaranteed to be optimal. Nev-
ertheless, a careful design of formulations is crucial for solvers success. In the following section,
we explore some modifications to improve (p-leaders).

6.4 Formulation improvements

Even though we have restricted to the undirected case, (p-leaders) is thought to be applied
to directed or undirected graphs— note how (6.15) is written without assuming that W is
symmetric. However, the following proposition shows that the size of the formulation can be
reduced when wij = wji for all (i, j) ∈ E.

Proposition 6.1. If G is undirected, a feasible solution of (p-leaders) satisfies that Tik = Tjk

for all i, j ∈ Ck and k = 1, . . . , p.

Proof. Let (x̄, ȳ, z̄, Π̄, T̄ , F̄) i, j ∈ Ck be a feasible solution of (p-leaders). Suppose that i and
j belong to the same cluster Ck in the solution, that is, x̄ik = x̄jk = 1. Then, T̄ik = T̄jk if and
only if

Π̄ik
n�

�=1

w�
i�x̄�k

=
Π̄jk

n�
�=1

w�
j�x̄�k

,

Formulation improvements 153

or, equivalently,

Π̄ik

n�

�=1

w�
j�x̄�k = Π̄jk

n�

�=1

w�
i�x̄�k.

Since (x̄, Π̄) satisfies (6.10), we can replace Π̄ik and Π̄jk using that relation. Previous equality
would be then

� n�

s=1

x̄skΠ̄sk
w�
si�n

r=1w
�
srx̄rk

� n�

�=1

w�
j�x̄�k =

� n�

s=1

x̄skΠ̄sk

w�
sj�n

r=1w
�
srx̄rk

� n�

�=1

w�
i�x̄�k.

Now, including all the terms in the same summation and applying the distributive property,
we have that

n�

s=1

� x̄skΠ̄sk�n
r=1w

�
srx̄rk

n�

�=1

w�
siw

�
j�x̄�k

�
=

n�

s=1

� x̄skΠ̄sk�n
r=1w

�
srx̄rk

n�

�=1

w�
sjw

�
i�x̄�k

�
;

n�

s=1

n�

�=1

� x̄skΠ̄sk�n
r=1w

�
srx̄rk

w�
siw

�
j�x̄�k

�
=

n�

s=1

n�

�=1

� x̄skΠ̄sk�n
r=1w

�
srx̄rk

w�
sjw

�
i�x̄�k

�
.

The last equality stands because W is symmetric and completes the proof.

Based on clustering, our approach involves symmetry issues regarding node-group assign-
ments, an so does (p-leaders). Given a feasible solution to (p-leaders), several (symmetric)
solutions can be produced by permuting clusters members, all them having the same objec-
tive value. This represents a serious hindrance for the solving procedure, which is based on
branching on the binary variables: the branching tree grows exponentially towards the different
equivalent feasible solutions. A natural approach to avoid this is to eliminate such symmetric
solutions obtained by permutations, i.e., to make them unfeasible for the model. In our case,
imposing some constraints that rule node-cluster assignment will cause the desired effect. For
each node i and cluster Ck, we consider the following mathematical programming constraints:

xik = 0 ∀i < k, ∀j ∈ V (6.27)
k�

s=1

xis +
i−1�

j=k

xjk ≥ 1 ∀i > k. (6.28)

Constraints (6.27) state that node 1 is assigned to C1, node 2 is assigned either to C1

or C2 and, in general, i is not assigned to Ck if k > i. These constraints also imply yik =
Πik = Tik = Fijk = 0 ∀i < k, ∀j ∈ V . For an interpretation of (6.28), assume without loss of
generality that nodes are assigned to their clusters in order by index, i.e., node 1 is assigned
first, node 2 is assigned in second place, and so on. If i is the next node to assign and Ck is
empty, i.e.

�i−1
j=k xjk = 0, then i will not be assigned to a cluster with index greater than k, i.e.�k

s=1 xis = 1. The following example demonstrates the effect of (6.28) on a feasible solution.

Example 6.1. Figure 6.3 illustrates (6.28) when k = 5, i = 16 and p = 7. In this example,
nodes from 1 to 15 have been placed inside clusters C1, . . . , C4. Constraints (6.28) forbid that
the next node, 16, is placed into clusters C6 or C7, because C5 is empty. Constraints (6.28)
together with (6.27) indeed constitute the following rule for node-cluster assignment: “every
node is assigned either to some of the already used clusters or to the first empty one”. �

154 Spotting key members in networks

C1 C2 C6

1

15 2

C7

39

7

16

13

C3 C4

10

12

116

814

C5

4

5

?

Figure 6.3: Realization of (6.28) when k = 5 and i = 16

Symmetry breaking constraints (6.28) were first introduced in Kaibel & Pfetsch (2008)
and are known as column inequalities. They remove symmetric solutions of the partition
problem, which is one of the seminal problems of Integer Programming. It consists in finding
a classification of all the elements of a set into disjoint subsets, which matches our network
clustering. Indeed, our binary variables xij serves to model a general partitioning problem; for
each element i and subset j, xij = 1 if and only if i is assigned to subset j. Let

M=
n,p :=

�
X = (xij)n×p : xij ∈ {0, 1},

p�

j=1

xij = 1 ∀i
�

be the set of 0/1 matrices of size n × p whose rows sum one, and let ≺ be such that X ≺ X �

with X = (xij), X
� = (x�ij) ∈ M=

n,p if and only if xk� < x�k�, being (k, �) the first position where
X and X � differ, with respect to the ordering

(1, 1) < (1, 2) < . . . < (1, p) < (2, 1) < . . . < (2, p) < . . . < (n, 1) < . . . < (n, p).

Let Mmax
n,p be the set of 0/1 matrices of size n × p that are ≺-maximal within their orbits

under the group that permutes its columns. Note that columns permutations are clusters
permutations in our model. The partitioning orbitope is defined in Kaibel & Pfetsch (2008) as
follows

O=
n,p := conv

�
Mmax

n,p ∩M=
n,p

�
.

The partitioning orbitope describes a feasible set for the partitioning problem with no sym-
metric solutions. The authors proved that column inequalities, together with

�p
j=1 xij = 1 for

all i, characterized the integer points of the partitioning orbitope. That is, these inequalities
completely remove the symmetry of the formulation with x-variables. They also provided a
complete description of the facets of the partitioning orbitope by generalizing the concept of
column inequalities.

6.5 Computational study

This section discusses the computational performance of the proposed approach. We conducted
experiments on two real-life networks and twenty synthetically generated networks. Our ex-
periments were run on an i7-6700k 4.0 GHz × 8 machine with 16 GB memory and the solver
used was Cplex v12.6.3.

Computational study 155

0

1

2

3
7

11

12

13

17
19

21

4

6

10

5

8

31

30

32

9

27

28

33

16

14

15
1820

22

23

25

29

24

26

(a) Ford-Fulkerson binary community detec-
tion algorithm applied by Zachary (1977)

0

1

2

3
7

8

11

12

13

17
19

21

31

4

6

10

5*

30

9

27

28

32

33*

14

15
1820

22

23

25

29

24

26

16

(b) Our method with p = 2, µ = 0.38

0*

1

2

3
7

11

12

13

17
19

21

4

6

10

5*

8

31

30

32

9

27

28

33*

16

14

15
1820

22

23

25

29

24

26

(c) Our method with p = 3, µ = 0.42

0*

1

4

10
11

13

17
19

21
2

3
7

8

12

31

5*

6

30

33*

28

32*

9

27

14

20

24

25

16

15
18

22

23

29

26

(d) Our method with p = 4, µ = 0.53

Figure 6.4: Social structures in the Zachary’s Karate Club weighted network Zachary (1977)
revealed by different methods. Edge weights are omitted in the illustration

156 Spotting key members in networks

0

1

2

3

4

5

6

7

8

9

10

11

12*

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

29

28

30

31

5885

71

32

33

35

37

40

41 42

43

44

45

46

47

48

49

50

51

52

38

39

55

56

36
54

57

77

53

64

65

69

68

102

72

76
34

67

66

70

104103

73

74

80

84*

86

93

99

100

88

89

90

96

97

7579

82

78

91

87

92

83

95

94

98

101

59

60

61

62

63

81

(a) Our method with p = 2, µ = 0.4. Nodes 84 and 12 are an optimal group of key members

0

1

2

3*

4

5

6

7

9

10

11

14

15

16

18

19

20

21

22

25

8*

12

13

23

24

26

27

17

29

28

30

31

5885

71

48

49

50

51

52

41

45

47

55

33

35

37

38

39

56

77

57

40

53

64

65

69

68

72

76
66

67

70

104

32

42 43

44

46

36

54

102

34

73

74

80

84*

86

93

99

100

88

89

90

96

97

7579

82

78

91

87

92

83

103

95

94

98

101

59

60

61

62

63

81

(b) Our method with p = 3, µ = 0.48. Nodes 84, 8 and 3 are an optimal group of key members

Figure 6.5: Key members and communities in the American Political Books (unweighted)
network Krebs. Circle, triangle and square nodes represent, respectively, liberal, conservative
and neutral books

Computational study 157

6.5.1 Real-life networks

As first real-word example, we use the Karate Club weighted network of Zachary (1977),
which is a standard for testing community detection algorithms. This network collects weights
relative to social interactions between the members of a university-based karate club. Figure 6.4
shows several illustrations that emphasize different social structures within the club, according
to different methods. Uncovered key nodes are represented with diamonds and labeled with
an asterisk. Nodes are labeled with numbers from 0 to 33 that represent anonymous club
members, except for the instructor Mr. Hi (node 0) and the administrator John A. (node 33).
After a conflict, the club separated into those members that formed a club around John A.
and those who remained with Mr. Hi. Figure 6.4a shows the community structure observed by
Zachary, which only misclassified node 8 with respect to the actual split. Regarding members
relevance, John A. and Mr. Hi occupy the first and second place respectively when nodes are
ranked by eigenvector centrality applied to the whole network. Conversely, (p-leaders) reveals
previously unnoticed node 5 as a key member for a choice of two candidates with minimum
cluster cohesion 1 − µ = 0.62, see Figure 6.4b. This exemplifies the formulation preference
for small communities, given that they satisfy constraints regarding cohesion. When a set of
three key members is selected, node 5 together with “ground truth” leaders John A. and Mr.
Hi are nominated. The increment entails a loss of cluster cohesion, which drops from 0.62
to 0.58. On the optimal solution, illustrated in Figure 6.4c, communities frontiers originally
observed by Zachary (Figure 6.4a) remain unaltered. However, Mr. Hi’s faction is divided into
two subunits, one led by member 5 and other led by himself. Finally, Figure 6.4d illustrates the
optimal group of four key members and their relative communities, which inevitably present
significant interrelations (µ = 0.53). Spotted key members are 0, 5, 32 and 33, as opposed to
the top four 33, 0, 32 and 2 according to a ranking by eigenvector centrality.

For a second test with real-word data, we use the American Political Books network com-
piled by Krebs (see Figure 6.5). Here, nodes are 105 books about US politics sold on Amazon,
and edges represent frequent co-purchasing of two books by the same buyers. The books of the
network were classified by Newman into three types, namely liberal, conservative or neutral
Newman (2006). These categories are represented with different node shapes, namely circles,
triangles and squares, respectively. Uncovered key nodes are displayed on a larger scale. When
the books are ranked by eigenvector centrality, books 8 and 12 draw as top ones, followed by 3
and 84, which also end in a tie. Conversely, our formulation identifies 84 (on the center of the
blue community in Figure 6.5a) and 12 (red community on the right part of Figure 6.5a) as
optimal group of two most influential books. This provides a more balanced solution in terms
of network coverage than that made of 8 and 12. Alternatively, 84 and 8 (which is next to 12
in Figure 6.5a) are also an optimal solution of size two. For the three most popular books,
(p-leaders) finds 84, 3 and 8, respectively in the green, red and blue communities depicted by
Figure 6.5b. This time ties between 8 and 12 are broken, and 12 is absorbed by the community
of 8, which is selected as one of the key books. Further, nodes 3 and 84 are identified as leading
books of distinct communities. Finally, one can observe from Figure 6.5 that network partitions
in our solutions fairly respect the categories identified by Newman.

6.5.2 Synthetic networks

The use of the generator of synthetic networks featuring modular structures in Lancichinetti
et al. (2008) allows us to test the scalability of the model while validating community discovery.
The resulting testbed gathers weighted networks of 50, 100, 150, 200 and 500 nodes, with links
densities ranging from 1.5 to 16 (%). The benchmarks feature between 3 and 13 communities

158 Spotting key members in networks

0 23

24
30*

33

12

1

46
47

48

49*

2

25

36
27

45

3

39

40

43

4 5

17

37
38

44

21

31

42

6

7

8 28
32

9

41

10

19

11

29

34

13

16
14

15

35 22

18
20

26

(a) p = 2, µ = 0.21, OPT=0.34

0 23

2430*

33

12

1

46
47

48

49*

2

25 36
27

45

3

39

40

43

4

5

17

37
38

44

21

31

42*

6
7

8 28
32

9

41

10

19

13

16

14

15

35 22

34

26

11

29

18

20

(b) p = 3, µ = 0.21, OPT=0.51

0 23

24
30*

33

12

1

46
47

48*

49*

3

39

40

43

6

7

8
28

32

13

16

2

25

36

27

45

4 9

4110

19

14

26

5

17

37*
38

44

21

31

42
11

29

34

15

35
22

1820

(c) p = 4, µ = 0.23, OPT=0.77

0 23

24
30*

33

12

1

46
47

48*

49*

3

39

40

43

6

7

8
28

32

13

16

2

25

36

27

45

4 9

4110

19

14

26

5

17

37
38

44*

21

31

42*

15

35
22

34 11

29

18

20

(d) p = 5, µ = 0.23, OPT=0.98

Figure 6.6: Optimal solutions to instance 50 1 for different p

whose interrelation accounts for at most a 58% of the links of one node in the less cohesive
network and a 8% in the most cohesive one. We compiled in total 20 benchmarks, four of each
size. Time limit was set to 5000 seconds.

For evaluating consistency of the method, for each of the 20 instances, we solve the model
for different values of p without exceeding the number of communities in the network according
to the benchmark generator of Lancichinetti et al. (2008). We observe whether the group of
key members is stable when p increases. Parameter µ, the maximum mixing allowed between
clusters, have to be tuned in each experiment. For instance, with p = 2, we begin with a small
µ of 0.1 or 0.2 and increment it until the model is feasible. Feasibility is rapidly discarded,
which allows us to tune by inspection. The number of clusters is increased at the cost of losing
cohesiveness, and µ has to be consequently updated with the increase of p. As an illustrative
example, Figure 6.6 shows the optimal solutions on a network of 50 nodes with p = 2, 3, 4
and 5. Different clusters are depicted in different colors and key members are marked with
an asterisk and displayed as diamond nodes. Figure 6.6d illustrates the optimal solution for
p = 5, which perfectly matches the community structure produced by the benchmark generator.
Taking then this figure as reference, one can observe that communities frontiers are maintained
for p < 5. Indeed, when p is decreased, the original five communities are placed one inside
another, like matryoshkas. Inspecting now how the optimal group of members varies when p
decreases, we find a singularity when p = 4. Member 37 is in the optimal group of four leaders
depicted on Figure 6.6c, while it is not among the optimal five key members in Figure 6.6d.
Despite the apparent contradiction, both solutions seem natural, since 37 is linked to members
42 and 44, the leaders of the original communities on Figure 6.6d that are merged to form a
bigger community on Figure 6.6c whose leader is now 37. These fluctuations in leaderships can
account for quite of the experiments made on one instance and may not occur for another. On

Computational study 159

p

1 2 3 4 5 6 7 8 9 10 11 12 13

50 1 0 21 21 23 23
50 2 0 41 41 44 48 48 48
50 3 0 17
50 4 0 36 36

100 2 00 29 29 30 34 34 37
100 3 0 25 26 -
100 5 0 22 22 23 23 27
100 6 0 27 27 28 30 35 35 -

150 1 0 27 27 28 33 - - -
150 4 0 22 23 24 24 25 25 27 30 30
150 5 0 26 26 28 29 31
150 7 0 26 26 27 - -

200 1 0 21 23 24 26 29 32
200 2 0 17 17 18 18 19 19 20 26
200 3 0 - - - - - - 21 - 23
200 4 0 14 14 15 15 15 16 16 17 18

500 1 0 5 6 6 8
500 2 0 7 7 7 11
500 3 0 19 19 20
500 4 0 19 24 30 30 - - 44

Table 6.1: Mixing parameter µ (in%) for different p throughout the benchmarks. Entries are
in bold when p equals the number of communities indicated by the benchmark generator

average, we have found that such changes occur in a 4.7% of our experiments. This tendency
may suggest the use of some ad hoc strategy to approximate a solution by successive steps.

Table 6.1 summarizes the experiments compiled. The benchmarks, whose nodes range from
50 to 500, are displayed on different rows. For each of them, we have executed our method
with p ranging from the number of connected components of the network to the number of
communities according to the benchmark generator Lancichinetti et al. (2008). The table
shows, for each instance and p, the minimum mixing parameter under which an optimal solution
is obtained. In other words, there is not a partition of the given network in p clusters with
mixing parameter smaller than that indicated in Table 6.1. Zero entries appear when p equals
the number of connected components of the network. In this case, our method simply computes
eigenvector centrality in each connected component. Bold entries correspond to experiments in
which p matches the number of communities identified by the benchmark generator. In those
experiments, the community structure produced by the generator was perfectly uncovered, i.e.,
it coincides with the optimal cluster partition identified by our method. Finally, dash entries
indicate unsolved configurations.

Table 6.1 shows that, when n = 50, the method is able to find the optimal key members
for all the experiments run, even when the mixing parameter is close to 0.5. The underlying
communities according to the benchmark generator are discovered in all the cases. When
n = 100 or n = 150, the method also finds optimal solutions for wide ranging sizes of the key
members group. However, sometimes p does not reach the number of underlying communities
when they are not well-cohered (a mixing parameter close to 0.5 or exceeding 0.5 has been
observed in those cases). For the last group of benchmarks, those with n = 200 and n = 500,
community structures produced by the generator are always uncovered. On the other hand,
Figure 6.7 gives quantitative information about the performance of (p-leaders). Namely, it
shows the percentage of instances (ordinate axis) that were solved after a certain number of
seconds (abscissa axis). Close to 90 % of the instances were solved, more than a half of them

160 Spotting key members in networks

Time (s)

So
lve

d
in

st
an

ce
s

(%
)

5 10 25 50 100 250 500 750 1K 2K 3K 4K 5K

10
20

30
40

50
60

70
80

90
10

0

Figure 6.7: Percentage of solved instances after the seconds shown on the abscissa axis

within few seconds.
Despite comparison with underlying structures for testing purposes, one should keep in

mind that parameters p and µ are not known a priori for a given network. Moreover, these
parameters present some degree of uncertainty in real applications, especially for large networks.
In this vein, difficulties in finding an optimal solution to, for instance, network 500 4 and p = 12,
are palliated by the discovery of 13 key members and their communities, which, as a matter of
fact, fit better with the actual network layout (see Figure 6.8). Indeed, if the model struggles
to find a solution, it is probably the case that the structures that are being searched for (which
are determined by p and µ) are far from the intrinsic network organization.

Figure 6.9 shows the average relevance (OPT) of the optimal key members by benchmarks
size. Each group of bars displays different values of p. Bar heights are averages of the optimal
values for the networks of n nodes solved with the same p Ticks on the bars represent lower
bounds on the objective function. Since p normalized eigenvectors are computed— one per
cluster— the sum of node relevance throughout the network equals p, and considering an
equitable distribution of such overall relevance serves as a lower bound on the optimal value.
The larger the optimal value is compared with that bound, the more outstanding the key nodes
are compared with the rest. The lower bound is frequently doubled by the optimal value. In
some extreme cases, e.g. n = 500 and p = 13, the optimal value surpasses by far the bound
due to the existence of several small connected components (see Figure 6.8).

Unlike the vast majority of existing approaches, which are of heuristic nature, results re-
ported here provide the best group of key members among all possible candidates. Finding
such optimum obviously has a computational cost, which can turn expensive depending on
the network at hand. Our computational experience on the proposed model demonstrates ex-
tremely good performance for the smallest instances and high flexibility for the largest ones,
even if sometimes optimal solutions are not achieved within a reasonable time limit through
the full range of possible values of p.

Computational study 161

0

8
441*

494

11 317

321

49

292

64
322

103

269

153

225

177

220

233

241

1

446

481*
472

450

492

497
493

31

482

35

37

43

74

426

467

80

83
8598 406 105

106

421

498

151158
164

327

173174

196

197

205

221
223297

420

228

229

236
276 316

331
344

333

336379
353

355

357

2

499*

3

5

9495

496

12

15

18

21

22

23

25

26

29

36

38

40
41

44

45

47

48

50

51

52

53

58

62
75

76

81

82

84

86

87

89

91

92

93

491

94

95

97

101

108

109

111

113
116

117

119

121

128

131

133
135

138

140

141142

146

148

149 154

155

157

161

162

163

167

169

170

171

172

175

176

182

184

186

187

188

189

193

194
195

208

214

218

219

227

230

231

232

234

235

237

238

239

240

242

246

247248

249

250

251253

254

255

258

260

261

264

268

275

277

282

283

284

288

289291

294

296

298

299

300

301

304

310

313

318

319

320

324
325

326

328

329

330

332

335

337

339
340

341 342
345

347

350

351

354

356
358

360

361

365

366
367

369

375

378

380

381

382

385
386

387

388

389

390

393

394

395

396

397

398

401

402

405
407

410
412

414
415

417458

419

432489

431

436

488

490*

433
442

486
487

438
479

439

444

460

445

455

485

480

484

478

448

464
451

452
453

456
470

471

477

473

476 457

463

469

459
465

474

466

7

17

14

215

33

462

468

34

39

403

461

429

435

46

54

55

56

59

454

61

66

73

78

96

99

104

107

112

114

115

122

123

425

129
132

134

137

143

257

145

150

156

159

165

166

178

180

181

185

192

198

199

409

443

418

200

206

209

216

217

222

363

224

244

252

262286

373

290

392

302

308

309

315

323

338

349

352

376

368

372

416

374

10
362

427*

383

428

13
19

110

371

201

226

243
259

295

278
20

422

434*

57 70
118

207

272

399

370

391

24

475 483*

28

32

423

449

440

447

424

63

67

71

266

72

77

79

100

124

139

144

168

183190

212

213 245
285

265

267

270

279

293

437

314
280

306

281

400

413

305

404

334

346

343

377

384

30

136

430*

65

408

88

102

203

311
210

256

274

4

263

411*

303

42

160364

60

359

120

125

202

6

147

191*

16

179

127

27 69

90*

68
287

348*

126

130152

204

307*

312

211
273

271

Figure 6.8: Optimal solution for synthetic benchmark 500 4 with n = 500, p = 13, µ = 0.44

162 Spotting key members in networks

50 100 150 200 500

Optimal value against n and p

n

O
P

T

p

1

2

3

4

5

6

7

8

9

10

11

12

13

0
.0

0
.3

0
.6

0
.9

1
.2

1
.5

1
.8

2
.1

2
.4

2
.7

Figure 6.9: Optimal value and lower bounds for different n and p

Bibliography

Aardal, K. (1998). Capacitated facility location: separation algorithms and computational
experience. Mathematical Programming , 81 , 149–175.

Ahn, Y., Bagrow, J., & Lehmann, S. (2010). Link communities reveal multiscale complexity
in networks. Nature, 466 , 761–764.

Arulselvan, A., Commander, C., Elefteriadou, L., & Pardalos, P. (2009). Detecting critical
nodes in sparse graphs. Computers & Operations Research, 36 , 2193–2200.

Balas, E. (1979). Disjunctive programming. Annals of Discrete Mathematics, 5 , 3–51.

Balas, E., Ceria, S., & Cornuéjols, G. (1993). A lift-and-project cutting plane algorithm for
mixed 0-1 programs. Mathematical Programming , 58 , 295–324.

Balas, E., & Padberg, M. W. (1976). Set partitioning: A survey. SIAM Review , 18 , 710–760.

Balas, E., & Saltzman, M. (1989). Facets of the three index assignment polytope. Discrete
Applied Mathematics, 23 , 201–229.

Barahona, F., & Mahjoub, A. (1994). Compositions of graphs and polyhedra ii: stable sets.
SIAM Journal on Discrete Mathematics, 7 , 359–371.

Beasley, J. (1990). Or-library. Available at http://people.brunel.ac.uk/~mastjjb/jeb/

orlib/pmedinfo.html.

Been, K., Nöollenburg, M., Poon, S., &Wolff, A. (2010). Optimizing active ranges for consistent
dynamic map labeling. Computational Geometry: Theory and Applications , 43 , 312–328.

Beineke, L. (1970). Characterizations of derived graphs. Journal of Combinatorial Theory , 9 ,
129–135.

Benders, J. (1962). Partitioning procedures for solving mixed-variables programming problems.
Numerische mathematik , 4 , 238–252.

Bomze, I., Budinich, M., Pardalos, P., & Pelillo, M. (1999). The maximum clique problem.
In P. Pardalos, D. Du, & R. Graham (Eds.), Handbook of Combinatorial Optimization (pp.
1–74). Springer, US.

Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique identifi-
cation. Journal of Mathematical Sociology , 2 , 113–120.

Borgatti, S. (2006). Identifying sets of key players in a social network. Computational &
Mathematical Organization Theory , 12 , 21–34.

163

164 Bibliograf́ıa

Brimberg, J., & ReVelle, C. (2000). The maximum return-on-investment plant location prob-
lem. Journal of the Operational Research Society , 51 , 729–735.

Bron, C., & Kerbosch, J. (1973). Algorithm 457: finding all cliques of an undirected graph.
Communications of the ACM , 16 , 575–577.

Bu, Z., Cao, J., Li, H., Gao, G., & Tao, H. (2018). Gleam: a graph clustering framework based
on potential game optimization for large-scale social networks. Knowledge and Information
Systems, 55 , 741–770.

Campbell, J., Ernst, A., & Krishnamoorthy, M. (2002). Hub location problems. In Z. Drezner,
& H. Hamacher (Eds.), Facility Location: Applications and Theory chapter 9. (pp. 373–407).
Springer volume 45.

Campêlo, M., Campos, V., & Corrêa, R. (2007). On the asymmetric representatives formulation
fot the vertex coloring problem. Discrete Applied Mathematics , 156 , 1097–1111.

Campêlo, M., Moura, P., & Santos, M. (2013). On the representatives k-fold coloring polytope.
Electronic Notes in Discrete Mathematics, 44 , 239–244.

Cánovas, L., Landete, M., & Maŕın, A. (2000). New facets for the set packing polytope.
Operations Research Letters , 27 , 153–161.

Cánovas, L., Landete, M., & Maŕın, A. (2002a). Facet obtaining procedures for set packing
problems. SIAM Journal on Discrete Mathematics, 16 , 127–155.

Cánovas, L., Landete, M., & Maŕın, A. (2002b). On the facets of the simple plant location
packing polytope. Discrete Applied Mathematics, 124 , 27–53.

Cheng, E., & Cunningham, W. (1997). Wheel inequalities for stable set polytopes. Mathemat-
ical Programming , 77 , 389–421.

Cho, D., Johnson, E., Padberg, W., & Rao, M. (1983a). On the uncapacitated plant location
problem i: valid inequalities and facets. Mathematics of Operations Research, 8 , 579–589.

Cho, D., Padberg, W., & Rao, M. (1983b). On the uncapacitated plant location problem ii:
facets and lifting theorems. Mathematics of Operations Research, 8 , 590–612.

Christensen, J., Marks, J., & Shieber, S. (1995). An empirical study of algorithms for point-
feature label placement. ACM Transactions on Graphics (TOG), 14 , 203–232.

Clark, A. (1990). Inference of haplotypes from pcr-amplified samples of diploid populations.
Molecular Biology and Evolution, 7 , 111–122.

Conforti, M., Cornuéjols, G., & Zambelli, G. (2014). Integer Programming . Graduate Texts in
Mathematics (GTM). Springer.

Cornaz, D., & Jost, V. (2008). A one-to-one correspondence between colorings and stable sets.
Operations Research Letters , 36 , 673–676.

Cornuéjols, G., Fisher, M., & Nemhauser, G. (1977). On the uncapacitated location problem.
Annals of Discrete Mathematics, 1 , 163–177.

Cornuéjols, G., & Thizy, J. (1982). Some facets of the simple plant location polytope. Mathe-
matical Programming , 23 , 50–74.

Bibliograf́ıa 165

Coventaria (2012). Data of population and coordinates of Spanish settled areas. Avaliable at
http://coventaria.es. Accessed on 15 May 2015.

Current, J., Min, H., & Schilling, D. (1990). Multiobjective analysis of facility location deci-
sions. European Journal of Operational Research, 49 , 295–307.

Dent, B. (1996). Cartography . Wm. C. Brown Publishers.

Dias, E., Castonguay, D., Longo, H., & Jradi, W. (2013). Efficient enumeration of chordless
cycles. ArXiv preprint arXiv:1309.1051.

Drezner, Z., & Hamacher, H. (Eds.) (2002). Facility Location: Applications and Theory .
Springer Science & Business Media.

Edmondson, S., Christensen, J., Marks, J., & Shieber, S. (1996). A general cartographic
labelling algorithm. Cartographica: The International Journal for Geographic Information
and Geovisualization, 33 , 13–24.

Escudero, L., Landete, M., & Maŕın, A. (2008). A branch-and-cut algorithm for the winner
determination problem. Decision Support Systems, 46 , 649–659.

Escudero, L., Landete, M., & Maŕın, A. (2009). A branch-and-cut algorithm for the winner
determination problem. Decision Support Systems, 46 , 649–659.

Evans, T., & Lambiotte, R. (2009). Line graphs, link partitions, and overlapping communities.
Physical Review E , 80 , 016105.

Everett, M., & Borgatti, S. (1999). The centrality of groups and classes. Journal of Mathe-
matical Sociology , 23 , 181–201.

Fischetti, M., Kahr, M., Leitner, M., Monaci, M., & Ruthmair, M. (2018). Least cost influence
propagation in (social) networks. Mathematical Programming , 170 , 293–325.

Formann, M., & Wagner, F. (1991). A packing problem with applications to lettering of maps.
In 7th Annual ACM Symposium on Computational Geometry (pp. 281–288).

Fortunato, S., & Castellano, C. (2012). Community structure in graphs. In Computational
Complexity (pp. 490–512). Springer, New York.

Freeman, L. (1977). A set of measures of centrality based on betweenness. Sociometry , 40 ,
35–41.

Freeman, L. (1978). Centrality in social networks conceptual clarification. Social Networks , 1 ,
215–239.

Furini, F., Ljubić, I., Martin, S., & Segundo, P. S. (2019). The maximum clique interdiction
problem. European Journal of Operational Research, 277 , 112–127.

Galli, L., Letchford, A., & Miller, S. (2015). New valid inequalities and facets for the simple
plant location problem. Work document.

Galluccio, A., Gentile, C., & Ventura, P. (2008). Gear composition and the stable set polytope.
Operations Research Letters , 36 , 419–423.

166 Bibliograf́ıa

Garey, M., & Johnson, D. (1979). Computers and intractability : a guide to the theory of
NP-completeness. New York: W.H. Freeman & Co.

Geoffrion, A. (1974). Lagrangean relaxation for integer programming. In M. Balinski (Ed.),
Approaches to integer programming (pp. 82–114). Springer, Berlin, Heidelberg.

Gomes, S., Ribeiro, G., & Lorena, L. (2013). Dispersion for the point-feature cartographic
label placement problem. Expert Systems with Applications , 40 , 5878–5883.

Gomory, R. (1960). An algorithm for the mixed integer problem. Technical Report RM-2597
The RAND corporation.

Gourdin, E., Labbé, M., & Yaman, H. (2002). Telecommunication and location. In Z. Drezner,
& H. Hamacher (Eds.), Facility Location: Applications and Theory chapter 9. (pp. 275–305).
Springer volume 45.

Grötschel, M., Lovász, L., & Schrijver, A. (1984). Polynomial algorithms for perfect graphs.
Annals of Discrete Mathematics, 21 , 325–356.

Guignard, M. (1980). Fractional vertices, cuts and facets of the simple plant location problem.
Mathematical Programming , 12 , 150–162.

Halldórsson, B., Blokh, D., & Sharan, R. (2013). Estimating population size via line graph
reconstruction. Algorithms for Molecular Biology , (pp. 8–17).

Haunert, J., & Wolff, A. (2016). Beyond maximum independent set: an extended model
for point-feature label placement. International Archives of the Photogrammetry, Remote
Sensing & Spatial Information Sciences, 41 .

Hoehe, M., Kopke, K., Wendel, B., Rohde, K., Flachmeier, C., Kidd, K., Berrettini, W.,
& Church, G. (2000). Sequence variability and candidate gene analysis in complex disease:
Association of µ opioid receptor gene variation with substance dependence. Human Molecular
Genetics , 9 , 2895–2908.

Hubbell, C. (1965). An input-output approach to clique identification. Sociometry , 28 , 377–
399.

Imhof, E. (1975). Positioning names on maps. The American Cartographer , 2 , 128–144.

Iturriaga, C., & Lubiw, A. (1997). Elastic labels: the two-axis case. In Graph Drawing (pp.
181–192). Springer.

Jünger, M., Liebling, T., Naddef, D., Nemhauser, G., Pulleyblank, W., Reinelt, G., Rinaldi,
G., & Wolsey, L. (Eds.) (2010). 50 Years of Integer Programming 1958-2008 . Springer.

Kaibel, V., & Pfetsch, M. (2008). Packing and partitioning orbitopes. Mathematical Program-
ming , 114 , 1–36.

Karch, O., Noltemeier, H., & Wahl, T. (2002). Location and robotics. In Z. Drezner, &
H. Hamacher (Eds.), Facility Location: Applications and Theory chapter 13. (pp. 409–438).
Springer volume 45.

Karp, R. (1972). Reducibility among combinatorial problems. In R. Miller, J. Thatcher,
& J. Bohlinger (Eds.), Complexity of Computer Computations (pp. 85–103). New York:
Plenum.

Bibliograf́ıa 167

Katz, L. (1953). A new status index derived from sociometric analysis. Psychometrika, 18 ,
39–43.

Kaufman, L., Eede, M., & Hansen, P. (1977). A plant and warehouse location problem. Journal
of the Operational Research Society , 28 , 547–554.

Kitsak, M., Gallos, L., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H., & Makse, H. (2010).
Identification of influential spreaders in complex networks. Nature Physics, 6 , 888–893.

Klau, G. (2001). A Combinatorial Approach to Orthogonal Placement Problems . Ph.D. thesis
Universidad de Saarlandes, Germany.

Klau, G., & Mutzel, P. (2003). Optimal labeling of point features in rectangular labeling
models. Mathematical Programming , 94 , 435–458.

Klose, A., & Drexl, A. (2005). Facility location models for distribution system design. European
Journal of Operational Research, 162 , 4–29.

Knuth, D. (1993). The stanford graphbase: A platform for combinatorial computing.

Krausz, J. (1943). Démonstration nouvelle d’une théoreme de Whitney sur les réseaux. Matem-
atikai és Fizikai Lapok , 50 , 75–85.

Krebs, V. (). Books about us politics. Avaliable at http://www.orgnet.com/.

Lancichinetti, A., Fortunato, S., & Radicchi, F. (2008). Benchmark graphs for testing commu-
nity detection algorithms. Physical Review E , 78 .

Landete, M. (2001). Obtención de facetas de poliedros asociados a problemas de empaque-
tamiento. Ph.D. thesis University of Murcia.

Laporte, G., Nickel, S., & da Gama, F. S. (Eds.) (2015). Location Science. Springer Interna-
tional Publishing.

Lehot, P. (1974). An optimal algorithm to detect a line graph and output its root graph.
Journal of the ACM , 21 , 569–575.

Li, H., Bu, Z., Li, A., Liu, Z., & Shi, Y. (2016). Fast and accurate mining the community
structure: integrating center locating and membership optimization. IEEE Transactions on
Knowledge and Data Engineering , 28 , 2349–2362.

Li, Y., Jia, C., & Yu, J. (2015). A parameter-free community detection method based on
centrality and dispersion of nodes in complex networks. Physica A, 438 , 321–334.

Lovász, L., & Schrijver, A. (1991). Cones of matrices and set-functions and 0–1 optimization.
SIAM journal on optimization, 1 , 166–190.

Magos, D., & Mourtos, I. (2009). Clique facets of the axial and planar assignment polytopes.
Discrete Optimization, 6 , 394–413.

Manka-Krason, A., Mwijage, A., & Kulakowski, K. (2010). Clustering in random line graphs.
Computer Physics Communications , 181 , 118–121.

Maŕın, A., Nickel, S., Puerto, J., & Velten, S. (2009). A flexible model and efficient solution
strategies for discrete location problems. Discrete Applied Mathematics , 157 , 1128–1145.

168 Bibliograf́ıa

Maŕın, A., Nickel, S., & Velten, S. (2010). An extended covering model for flexible discrete
and equity location problems. Mathematical Methods of Operations Research, 71 , 125–163.

Maŕın, A., & Pelegŕın, M. (2015). Set-packing problems in discrete location. In VI International
Workshop on Location Analysis and Related Problems (p. 49). Barcelona, Spain, November
25-27.

Maŕın, A., & Pelegŕın, M. (2018a). A new lifting theorem for vertex packing. Optimization
Letters , doi:10.1007/s11590-018-1312-4 .

Maŕın, A., & Pelegŕın, M. (2018b). Towards unambiguous map labeling: An integer program-
ming approach. Expert Systems with Applications , 98 , 221–241.

Maŕın, A., & Pelegŕın, M. (2019). Adding incompatibilities to the simple plant location prob-
lem: Formulation, facets and computational experience. Computers and Operations Re-
search, 104 , 174–190.

Marks, J., & Shieber, S. (1991). The computational complexity of cartographic label placement .
Technical Report Harvard Computer Science Group.

Mauri, G., Ribeiro, G., & Lorena, L. (2010). A new mathematical model and a Lagrangean
decomposition for point-feature cartographic label placement problem. Computers & Oper-
ations Research, 37 , 2164–2172.

Nemhauser, G., & Trotter, L. (1974). Poperties of vertex packing and independence system
polyhedra. Mathematical Programming , 6 , 48–61.

Nemhauser, G., & Wolsey, L. (1990). A recursive procedure to generate all cuts for 0–1 mixed
integer programs. Mathematical Programming , 46 , 379–390.

Newman, M. (2005). A measure of betweenness centrality based on random walks. Social
Networks , 27 , 39–54.

Newman, M. (2006). Modularity and community structure in networks. Proceedings of the
national academy of sciences, 103 , 8577–8582.

Neyer, G. (2003). Map labeling with application to graph labeling . John Wiley & Sons, Inc.

Nickel, S. (2001). Discrete ordered weber problems. In B. Fleischmann, R. Lasch, U. Derigs,
W. Domschke, & U. Rieder (Eds.), Operations Research Proceedings 2000 (pp. 71–76). Berlin,
Heidelberg: Springer.

Nickel, S., & Puerto, J. (2005). Facility Location - A Unified Approach. Springer Verlag.

Nöllemburg, M., & Wolff, A. (2011). Drawing and labeling high-quality metro maps by mixed-
integer programming. IEEE Transactions on Visualization and Computer Graphics, 17 ,
626–641.

Padberg, M. (1973). On the facial structure of set packing polyhedra. Mathematical Program-
ming , 5 , 199–215.

Padberg, M. (1975). A note on zero-one programming. Operations Research, 23 , 833–837.

Padberg, M. (1977). On the complexity of set packing polyhedra. Annals of Discrete Mathe-
matics , 1 , 421–434.

Bibliograf́ıa 169

Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The pagerank citation ranking:
Bringing order to the web.

ReVelle, C., & Eiselt, H. (2005). Location analysis: A synthesis and survey. European Journal
of Operational Research, 165 , 1–19.

ReVelle, C., Eiselt, H., & Daskin, M. (2008). A bibliography for some fundamental problem
categories in discrete location science. European Journal of Operational Research, 184 , 817–
848.

Revelle, C., & Laporte, G. (1996). The plant location problem: New models and research
prospects. Operations Research, 44 , 864–874.

Ribeiro, G., & Lorena, L. (2008). Lagrangean relaxation with clusters for the point-feature
cartographic label placement problem. Computers & Operations Research, 35 , 2129–2140.

Robinson, H. (1958). Elements of cartography . John Wiley & Sons, Inc.

van Rooij, A., & Wilf, H. (1965). The interchange graph of a finite graph. Acta Mathematica
Academiae Scientiarum Hungarica, 16 , 263–269.

Rossi, F., & Smriglio, S. (2001). A set packing model for the ground holding problem in
congested networks. European Journal of Operational Research, 131 , 400–416.

Roussopoulos, N. (1973). A max{m,n} algorithm for determining the graph h from its line
graph g. Information Processing Letters , 2 , 108–112.

van Roy, T. (1986). A cross decomposition algorithm for capacitated facility location. Opera-
tions Research, 34 , 145–163.

Rylov, M., & Reimer, A. (2014). A comprehensive multi-criteria model for high cartographic
quality point-feature label placement. Cartographica: The International Journal for Geo-
graphic Information and Geovisualization, 49 , 52–68.

Sabidussi, G. (1966). The centrality index of a graph. Psychometrika, 31 , 581–603.

Schrijver, A. (1998). Theory of linear and integer programming . John Wiley & Sons.

Serfozo, R. (2009). Basics of applied stochastic processes . Springer Science & Business Media.

Sherali, H., & Adams, W. (1990). A hierarchy of relaxations between continuous and convex hull
representations for zero one programming problems. SIAM Journal of Discrete Mathematics,
3 , 411–430.

Silvester, J. (2000). Determinants of block matrices. The Mathematical Gazette, 84 , 460–467.

Sousa, J., & Wolsey, L. (1992). A time indexed formulation of non-preemptive single machine
scheduling problems. Mathematical programming , 54 , 353–367.

Spoorendonk, S. (2008). Cut and Column Generation. Ph.D. thesis University of Copenhagen.

Stanoev, A., Smilkov, D., & Kocarev, L. (2011). Identifying communities by influence dynamics
in social networks. Physical Review E , 84 , 046102.

170 Bibliograf́ıa

Stojmenović, I. (Ed.) (2002). Handbook of Wireless Networks and Mobile Computing . John
Wiley & Sons, Inc.

Stollsteimer, J. (1963). A working model for plant numbers and locations. Journal of Farm
Economics, 45 , 631–645.

Swamy, C., & Shmoys, D. B. (2008). Fault-tolerant facility location. ACM Transactions on
Algorithms , 4 , 51.

Terwilliger, J., &Weiss, K. (1998). Linkage disequilibrium mapping of complex disease: Fantasy
and reality? Current opinions. Biotechnology , 9 , 579–594.

The International HapMap Consortium (2010). Integrating common and rare genetic variation
in diverse human populations. Nature, 467 , 52–58.

Trotter, L. (1975). A class of facet-producing graphs for vertex packing polyhedra. Discrete
Mathematics, 12 , 373–388.

Van Kreveld, M., Strijk, T., & Wolff, A. (1999). Point labeling with sliding labels. Computa-
tional Geometry , 13 , 21–47.

Verweij, A. M. (2000). Selected Applications of Integer Programming: A Computational Study .
Ph.D. thesis Universidad de Utrecht.

Verweij, B., & Aardal, K. (1999). An optimisation algorithm for maximum independent set
with applications in map labelling. In 7th Annu. Europ. Symp. Algorithms (ESA 99) (pp.
426–437). Prague, Czech Rep.: Springer volume 1643 of LNCS.

Warszawski, A. (1973). Multi-dimensional location problems. Operational Research Quarterly ,
24 , 165–179.

Whitney, H. (1992). Congruent graphs and the connectivity of graphs. In J. Eells, & D. Toledo
(Eds.), Hassler Whitney Collected Papers (pp. 61–79). Birkhäuser Boston.

Wierman, J., Naor, D., & Smalletz, J. (2007). Incorporating variability into an approximation
formula for bond percolation thresholds of planar periodic lattices. Physical Review E , 75 ,
011114.

Wolff, A., & Strijk, T. (2009). The map labeling bibliography. Avaliable at http://i11www.
iti.kit.edu/~awolff/map-labeling/bibliography/. Accessed on 27 Sep 2017.

Wolsey, L. (1998). Integer Programming . John Wiley & Sons.

Wolsey, L. A. (1976). Further facet generating procedures for vertex packing polytopes. Math-
ematical Programming , 11 , 158–163.

Xavier, A. S., & Campêlo, M. (2011). A new facet generating procedure for the stable set
polytope. Electronic Notes in Discrete Mathematics, 37 , 183–188.

Yannakakis, M. (1978). Node and edge deletion np-complete problems. In 10th Annual ACM
Symposium on Theory of Computing (pp. 253–264). New York.

Zachary, W. (1977). An information flow model for conflict and fission in small groups. Journal
of Anthropology Research, 33 , 452–473.

Bibliograf́ıa 171

Zhang, J., Chen, D., Dong, Q., & Zhao, Z. (2016). Identifying a set of influential spreaders in
complex networks. Scientific Reports-UK , 6 .

Zhang, J., Zhang, K., Xu, X., Chi, K., & Small, M. (2009). Seeding the kernels in graphs:
Toward multi-resolution community analysis. New Journal of Physics, 11 , 113003.

Zoraster, S. (1990). The solution of large 0-1 integer programming problems encountered in
automated cartography. Operations Research, 38 , 752–759.

