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La descripción y la cuantificación de la biodiversidad son dos de los grandes retos a los 

que se enfrentan los científicos. Bajo el escenario de cambio global en el que nos 

encontramos, ésta es una ardua tarea dado el riesgo de que muchas especies 

desaparezcan incluso antes de que sean descritas. La taxonomía tradicional se ha basado 

fundamentalmente en la morfología de las especies, aunque también a menudo se han 

tenido en cuenta datos sobre su ecología y fisiología. Con el desarrollo de las técnicas 

moleculares (principalmente de la PCR) se ha facilitado la obtención de marcadores 

genéticos que en muchas ocasiones clarifican las relaciones sistemáticas entre las 

especies, especialmente cuando éstas presentan un continuo en su variación morfológica 

o incluso son crípticas. Sin embargo, fenómenos como la introgresión o la segregación 

incompleta de los linajes complican la interpretación de los datos genéticos. La 

información morfológica y la molecular pueden apuntar hacia conclusiones diferentes, 

incluso se pueden observar inconsistencias entre diferentes marcadores moleculares. 

Todo ello pone en evidencia la necesidad de usar una metodología integrativa para 

arrojar luz sobre los mecanismos de especiación. 

 Los briófitos, que incluyen musgos, hepáticas y antocerotas, constituyen el 

segundo grupo de plantas terrestres más diverso después de las angiospermas. Su 

aparato vegetativo es pequeño y de anatomía sencilla. Una de sus características más 

destacables es la dominancia de la generación haploide en su ciclo de vida (el 

gametófito). Dado que el agua es necesaria para que se lleve a cabo la reproducción 

sexual, están frecuentemente asociados a ambientes húmedos. Pero a pesar de ello, los 

briófitos  están presentes en todos los ambientes terrestres, desde las zonas polares hasta 

los trópicos, incluso en los desiertos. 

 En esta tesis se ha utilizado como objeto de estudio el género de musgos 

Ceratodon Brid., perteneciente a la familia Ditrichaceae, que fue revisado a nivel 

mundial por Burley and Pritchard (1990). En un admirable trabajo de síntesis, estos 

autores reconocieron tan solo cuatro especies, entre ellas, la cosmopolita C. purpureus 

(Hedw.) Brid. con una amplia variación morfológica, por lo que distinguieron tres 

subespecies, cada una con un patrón biogeográfico definido, al igual que el resto de los 

taxones. Sin embargo los datos genéticos obtenidos por McDaniel and Shaw (2005) a 
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nivel mundial no apoyaron estos resultados. Ceratodon purpureus es dioica y se 

reproduce abundantemente. Junto con Physcomitrella patens (Hedw.) Bruch & Schimp. 

y Funaria hygrometrica Hedw., es una de las especies de musgos empleadas como 

sistema modelo para estudios sobre fisiología, genética y evolución de plantas y además 

su genoma completo ha sido secuenciado. Por todo ello, el género Ceratodon es idóneo 

para estudiar uno de los mayores problemas de la taxonomía: si la variación 

morfológica de las especies en condiciones naturales es debida a la diferenciación 

genética y por tanto corresponden a unidades evolutivas distintas, o si es causada por la 

variación ambiental. La delimitación de especies en organismos con un elevado 

potencial de dispersión mediante esporas en ambientes muy variables y con una 

considerable variación morfológica sigue siendo un gran desafío. 

 Este trabajo de investigación se ha enfocado desde un punto de vista 

multidisciplinar con el objetivo general de estudiar la diversidad, la biología evolutiva y 

la taxonomía en el género Ceratodon en el sur de Europa. Se han combinado estudios 

de morfometría, análisis filogenético basado en secuencias de ADN y citometría de 

flujo para determinar el tamaño del genoma. Asimismo se han tenido en cuenta datos de 

biogeografía y ecología. Los objetivos específicos fueron los siguientes: 

1.   Revisar la taxonomía y nomenclatura del género Ceratodon en el sur de Europa. 

2.   Conocer la diversidad genética de las poblaciones de Ceratodon en las áreas 

montañosas del Mediterráneo. 

3.   Evaluar si las poblaciones del sur de Europa pertenecen a la misma especie o si 

por el contrario, la diversidad genética encontrada entre ellas define quizás 

especies diferentes y en este caso arrojar luz sobre el proceso de especiación. 

4.   Comprobar si los especímenes de Ceratodon del sur de Europa muestran 

diferencias en la proporción de sexos y en la cantidad de ADN en los núcleos. 

5.   Determinar la proporción de variación morfológica en Ceratodon que es debida 

al medio ambiente o si esta tiene una base genética. 

6.   Utilizando una metodología integrativa, obtener conclusiones taxonómicas sobre 

las muestras del sur de España que presentan una morfología diferente a la 

descrita para C. purpureus. 
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7.   Reconstruir la historia evolutiva de las especies de Ceratodon presentes en el sur 

de Europa y sus interacciones vía hibridación. 

8.   Estimar los parámetros demográficos y evaluar los posibles escenarios 

evolutivos en las poblaciones del sur de Europa. 

Esta tesis se estructura en cuatro capítulos íntimamente relacionados, 

presentados como artículos científicos.  

 Con el fin de conocer la morfología de las especies susceptibles de estar 

presentes en el área mediterránea, en el primer capítulo se llevó a cabo la revisión del 

tipo nomenclatural de Ceratodon conicus (Hampe ex Müll. Hal.) Lindb. y de los  

sinónimos propuestos por Burley and Pritchard (1990). Para ello se estudiaron los 

especímenes tipo designados por estos autores y se compararon con los datos de los 

protólogos. El lectótipo de C. conicus, basado en un ejemplar depositado en el herbario 

GOET, fue confirmado, pero el material de los isolectótipos de los herbarios FH, 

GOET, y MANCH no se correspondieron con el protólogo de la especie. Además, los 

tipos de los tres sinónimos de C. conicus: C. cedricola J.J Amann depositado en el 

herbario Z+ZT, C. dimorphus H. Philib. en el herbario BM, and C. purpureus var. 

graefii Limpr. en el BR, considerados como holótipos por Burley and Pritchard (1990), 

fueron aquí designados como lectótipos ya que no existe un ejemplar original 

inequívoco en ningún caso. Por último, C. purpureus var. graefii fue considerado por 

nosotros como sinónimo de C. purpureus s.l., ya que sus características morfológicas 

coinciden con las descritas para esta especie y no con las de C. conicus. 

 Un periodo de alopatría se cree que es fundamental para que tenga lugar un 

aislamiento reproductivo. Sin embargo, una estricta alopatría puede ser difícil de lograr 

en especies cosmopolitas que se dispersan mediante esporas, como los musgos. En el 

segundo capítulo, con el fin de evaluar el papel de la alopatría y el cambio de ploidía en 

la divergencia de las poblaciones, se examinó la diversidad genética y el tamaño del 

genoma en las poblaciones del sur de Europa de Ceratodon. Para ello se muestrearon 

áreas montañosas y tierras bajas de la región Mediterránea, así como de Europa 

occidental y central. Se realizaron análisis filogenéticos y de coalescencia con las 

secuencias del ADN de cinco intrones nucleares y un locus cloroplastidial. También se 

estimó el tamaño del genoma mediante citometría de flujo y se determinó el sexo de las 
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plantas mediante un marcador genético ligado al sexo. Los análisis filogéneticos 

resolvieron dos clados bien diferenciados, que discriminaron dos grupos homogéneos: 

uno correspondiente a la especie cosmopolita C. purpureus y otro restringido a las 

montañas del sur de España. Las muestras de este grupo local también poseían un 

tamaño del genoma un 25% más grande que el de C. purpureus, y eran exclusivamente 

hembras. También se encontraron híbridos, y algunos de ellos tenían un tamaño de 

genoma equivalente a la suma del genoma de C. purpureus y el de los especímenes del 

sur de España, lo que hace pensar que se formaron por alopoliploidía. Todos estos datos 

sugieren que una especie nueva de Ceratodon surgió por un proceso de especiación 

peripátrica, lo que potencialmente implicó un cambio en el tamaño del genoma y una 

fuerte desviación en la proporción de sexos. También se observaron procesos de 

hibridación entre la nueva especie y C. purpureus.  

 Para evaluar el efecto de la variación ambiental en la taxonomía del género 

Ceratodon, se realizó un análisis biométrico basado en 22 caracteres morfológicos, 

tanto en plantas recolectadas en campo como en plantas cultivadas in vitro (crecidas a 

partir de las mismas plantas de campo). Estos datos se compararon con los del análisis 

filogenético basado en sus secuencias de ADN y los de tamaño del genoma obtenidos 

en el capítulo anterior. Se encontró que la expresión de varios rasgos gametofíticos 

cambió entre las muestras recolectadas en campo y las muestras cultivadas in vitro, lo 

que confirmó que la variabilidad ambiental complica las inferencias taxonómicas y 

sugirió que algunos caracteres deben usarse con precaución para la distinción entre 

especies. Sin embargo, coincidiendo con los datos genéticos y de citometría de flujo, se 

encontró una clara discontinuidad biométrica entre algunas plantas del sur de España y 

las de otras partes del mundo. Las muestras de origen híbrido fueron morfológicamente 

muy similares a las plantas de las montañas del sur de España. La aproximación 

integrativa basada en datos genéticos, del tamaño del genoma y morfométricos apoyó de 

manera inequívoca el reconocimiento de la nueva especie, que se describió formalmente 

con el nombre de Ceratodon amazonum Nieto-Lugilde, O. Werner, S.F. McDaniel & 

Ros. Los resultados también sugirieron que la previamente reconocida C. conicus es un 

recombinante entre C. purpureus y C. amazonum. Por ello se consideró como una 

notoespecie, para la cual se designó un epitipo porque el lectótipo es demostrablemente 

ambiguo. 
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 La diferencia en la escala de tiempo entre la evolución que lleva al aislamiento 

reproductivo y el cambio en las condiciones ecológicas implica que las áreas actuales de 

distribución de las especies sean aproximaciones imperfectas de las que tenían en el 

momento de la especiación. Un desafío clave en la biología evolutiva es identificar 

fuentes alternativas de información que puedan proporcionar más datos sobre el proceso 

de especiación. Análisis estadísticos de la estructura genética actual y de la diversidad 

genética de las poblaciones de especies relacionadas pueden identificar procesos de 

vicarianza, la historia de la dispersión y los episodios de expansión y contracción de los 

tamaños de las poblaciones. En el cuarto capítulo de esta tesis se reconstruyó la historia 

demográfica y evolutiva de C. purpureus, su especie hermana, C. amazonum, y la 

recombinante C. ×conicus, algo que ha sido realizado en pocas especies de briófitos. Se 

generó un mayor número de datos genéticos que en capítulos anteriores aumentando 

tanto el número de muestras europeas analizadas como los marcadores genéticos 

empleados, que ascendieron a nueve. Se calcularon parámetros estadísticos de genética 

de poblaciones y se realizaron análisis filogenéticos; además, se estimaron los 

parámetros demográficos bajo un modelo de aislamiento en presencia de migración 

entre las especies y se infirieron posibles fluctuaciones históricas en el tamaño efectivo 

de las poblaciones. Finalmente, se realizó un análisis para determinar el número de 

eventos por los que se originaron los especímenes recombinantes, y se evaluaron los 

posibles escenarios evolutivos para las especies. Se encontró evidencia de flujo génico 

asimétrico entre C. purpureus y C. amazonum, lo que favoreció la introgresión de la 

especie cosmopolita en la especie aislada del sur de Europa. El tamaño efectivo de la 

población de C. amazonum resultó ser más pequeño que el de C. purpureus. Esto 

sugiere que si el evento de especiación que produjo estas dos especies hermanas 

involucró un cuello de botella poblacional, el tamaño efectivo de la población de C. 

amazonum se recuperó de manera relativamente rápida, potencialmente como 

consecuencia del flujo de genes recurrentes de C. purpureus. Finalmente, se 

encontraron evidencias claras de que C. ×conicus se formó por múltiples eventos de 

hibridación entre C. purpureus y C. amazonum, lo que apoya aún más el papel del flujo 

génico en el proceso de especiación en briófitos. 

 En conjunto esta tesis pone de manifiesto las carencias actuales en el 

conocimiento sobre la diversidad de briófitos y en los mecanismos que la generan, 

incluso en especies comunes y ampliamente distribuidas, y demuestra que las especies 
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silvestres cosmopolitas tienen el potencial de revelar las diversas causas genéticas de la 

especiación. Asimismo, confirma que los fenómenos de hibridación y poliploidía son 

mecanismos que también intervienen en la especiación de briófitos. Todavía hay 

aspectos importantes por tratar y descubrir, como la distribución real de C. amazonum y 

C. ×conicus, comparar los genomas de C. amazonum y C. purpureus, e incluso de los 

híbridos entre ellas, y conocer su arquitectura genética. Además, una línea de 

investigación muy interesante sería el estudio de los efectos epigenéticos a largo plazo 

en las poblaciones naturales para comprender sus consecuencias en la morfología o 

fisiología en función de las condiciones ambientales, para generar un conocimiento más 

profundo del origen de la variación morfológica y los mecanismos evolutivos. 
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THE STUDY OF BIODIVERSITY 

The variety of life forms that we currently find on planet Earth is the result of long 

processes of evolution and diversification since its origin about 3 800 million years ago 

(mya) or possibly earlier (Schidlowski et al., 1979; Rosing, 1999; Hedges, 2002; 

Nutman et al., 2016). The biodiversity is a multi-dimensional concept, with features like 

genetic and phenotypic variation, diversity between species, and diversity with respect 

to functional roles in the ecosystems or network structures of whole communities (Page, 

2010; Burch-Brown & Archer, 2017). Estimating the number of species inhabiting 

Earth is among the most fundamental questions in science (Erwin, 1991; May, 1992; 

Stork, 1993; Mora et al., 2011; Grosberg et al., 2012), and one of the individual 

measures commonly used to represent the biological diversity. The present number of 

formally described species is approximately 1.8 million (Roskov et al., 2019), however 

more species exist. Estimates of undescribed species range from 0.5-10 million to at 

least 1 to 6 billion (Mora et al., 2011; Costello et al., 2013; Larsen et al., 2017) and 

remain highly uncertain. The process of evolution and the increase in species number 

has not been gradual, but has been interrupted on multiple occasions by catastrophic 

extinction events, eliminating a high proportion of populations, which is a prelude to 

species extinction (Raup, 1986; McElwain & Punyasena, 2007; Ceballos et al., 2017). 

Extinction events are often viewed as disturbances to the evolutionary process. 

Although they are unpredictably destructive, extinction events may in the long term 

accelerate evolution by increasing evolvability (Lehman & Miikkulainen, 2015). Even 

though the disappearance of some populations or species may favor divergence, but 

very high levels of extinction may lead to the disappearance of species even before they 

have been described (Staab et al., 2015). 

 Species is the basic unit for studies in biodiversity, biogeography, ecology, 

evolutionary biology, as well as for conservation biology and therefore determining 

what constitutes a species is a crucial step. A universal species definition has not been 

found, and multiple attempts have been made (there are even more than 20 species 

concepts) based on morphology, reproductive isolation, ecological niche, phylogeny... 
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or combinations of them. Some scholars even argue that species are not individual real 

entities, but should be considered as man-made constructs (Hey, 2006; Mallet, 2013). 

Obviously the species concept used will influence the analyses, the interpretation of 

data and the conclusions of any study carried out in the fields mentioned above. 

Taxonomists are the scientists who describe, name, revise and synonymize taxa 

ultimately (Agapow, 2004). A key step is the reexamination and review by other 

subsequent authorities that support or deny the conclusions (Raczkowski & Wenzel, 

2007). The traditional taxonomic classification is based on morphological similarities 

between species, an eminently descriptive approach, although sometimes ecological or 

physiological characteristics were noted (Wheeler, 2004). The origin of modern 

taxonomy is the publication of the first edition of Systema Naturae by Carolus Linnaeus 

in 1735, proposing a binomial naming of species and a standardized system of 

classification of living beings. But the morphological taxonomy is complicated by 

phenomena such as cryptic speciation (Shaw, 2001; Bickford et al., 2007; Struck et al., 

2018), species with high morphological plasticity (de Kroons & Hutchings, 1995; 

reviewed by Price et al., 2003), or by sexual dimorphism (Punzalan & Hosken, 2010; 

Barrett & Hough, 2013; Berns, 2013; Charlesworth, 2018). 

 When the polymerase chain reaction (PCR) was developed, it became possible 

to sequence DNA markers with the help of universal primers in a routine manner (e.g.; 

Soltis et al., 1992; Hillis et al. 1996). Although molecular and especially DNA sequence 

data helped in many cases to clarify the systematic relationships between species and to 

delimit species boundaries (reviewed by Duminil & Michele, 2009; Huttunen & 

Ignatov, 2010; Stech et al., 2013) phenomena such as incomplete lineage sorting or 

hybridization may lead to severe difficulties in their application (Mallet, 2005; 

Vanderpoorten & Shaw, 2010; Naciri & Linder, 2015). Inconsistencies between 

morphological and molecular data on the one hand and between different molecular 

markers on the other hand may be due to the moment in which the speciation process 

occurred, due to the fact that distinct markers do not diverge in time at the same rate (de 

Queiroz, 2007; Heinrichs et al., 2009; reviewed by Vanderpoorten & Shaw, 2010). 

 There is not a single key methodology (e.g. morphology or DNA sequencing) 

for the determination of species. While technological advances are continuously 

integrated in systematic studies, established methods still contribute substantially. As a 
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consequence, integrative taxonomy emerged with the aim to use the richness of 

available methods from different fields that lead to more rigorous, accurate and 

complete scientific hypothesis on species diversity (Dayrat, 2005; Will et al., 2005; 

Renzaglia et al., 2007; Padial et al., 2010; Schlick-Steiner et al., 2010; Heethoff et al., 

2011; Medina et al., 2012; Renner et al., 2013; Lee & Palci, 2015; Pante et al., 2015; 

Caparrós et al., 2016). Schlick-Steiner et al. (2010) recommended the use of at least 

three methodologies, among which morphology (phenotypic information) should be 

prioritized, along with genetic data (mainly nuclear but also plastidial markers) and 

finally another that provides complementary information. The incorporation of new 

techniques and bioinformatic tools to study diversity and its classification make the 

taxonomy a discipline under strong renewal (de Carvalho et al., 2007). There is even a 

wide debate in the taxonomic literature on the possibility of discarding the current 

biological codes based on Linnaean system, the International Codes of Nomenclature 

for algae, fungi, and plants (ICBN), animals (ICZN), bacteria (ICNB), and viruses 

names strictly on the basis of phylogeny (Cantino & de Queiroz, 2000, 2014). Another 

choice of scientific names of taxa (using the binary names of Linnaean system) but not 

the circumscription, position, or rank of the taxa themselves (Greuter et al., 1998, 2011). 

But none of them, for the moment, is having too much impact and acceptance. From 

what has been said so far, we can deduce that species names give relatively little 

information, they do not tell us about the function or evolutionary history of species 

(Swenson, 2011). But having a name is an important step to be recognized and 

collaborate or train together with a strict taxonomist (Raczkowski & Wenzel, 2007). 

MAIN CHARACTERISTICS OF BRYOPHYTES 

Land plants first appeared in the time from the Middle Cambrian-Early Ordovocian 

period, about 500 mya (Morris et al., 2018) to the Middle Ordovician period, about 470 

mya (Strother et al., 1996; Wellman et al., 2003; Rubinstein et al., 2010; Lenton et al., 
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2012). The bryophytes comprise about 15 000 known species (Hallingbäck & Hodgetts, 

2000), including liverworts, hornworts, and mosses. There are discrepancies about this 

part of the tree of life when different phylogenetic methods are used, some data is 

consistent with monophylly of bryophytes (Goremykin & Hellwig, 2005; Ruhfel et al., 

(liverworts and mosses) a sister clade of hornworts. However other analyses support the 

hypothesis that bryophytes are paraphyletic, with liverworts often placed sister to all 

other land plants, followed by mosses, and with hornworts sister to Tracheophyta (Qiu 

et al., 2006; Qiu, 2008; Ruhfel et al., 2014). From all other land plants, bryophytes are 

distinguishable in having a dominant gametophyte life cycle and unbranched 

sporophytes that develop from an embryo embedded within and nutritionally dependent 

on the gametophyte (Vanderpoorten & Goffinet, 2009). Even though a fraction of sperm 

cells are tolerant to environmental desiccation for extended periods, an aqueous medium 

is essential for the sperm to get from the antheridia to the eggs located in the archegonia 

(Rosenstiel & Eppley, 2009; Shortlidge et al., 2012). However these characteristics 

associated with water do not limit the expansion of mosses in terrestrial environments, 

and we can find them in deserts (Smith, 1982; Bowker et al., 2000; Zheng et al., 2011), 

artics or in tropical forests and from sea level to alpine peaks. (Richardson, 1981; Smith, 

1982; Richards, 1984). 

BRYOGEOGRAPHY 

There are bryophyte species that show restricted to very specific distribution patterns 

and others are found in all continents with a very widespread distributions (van Zanten, 

1978; van Zanten & Pocs, 1981; Schuster, 1983; Schofield, 1984, 1988, 1992; 

Vanderpoorten & Goffinet, 2009). Some examples are in Mediterranean climate: 

Bartramia aprica Müll. Hal., (Damayanti et al., 2012); Australia: Archidium thalliferum 

I.G. Stone (Stone, 1985); Fuerteventura: Orthotrichum handiense F. Lara, Garilleti & 

Mazimpaka (Patiño et al., 2013); or with worldwide distribution Funaria hygrometrica 

Hedw., (Ochyra et al., 2008) and Bryum argenteum Hedw. (Pisa et al., 2014). The 

bryophytes have low levels of endemicity compared to other plant groups. For example, 
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in the flora of the Canary Islands, endemic species reach 40% in angiosperms and only 

1.5% in bryophytes (Patiño et al., 2014); and in peninsular Spain the percentage of 

endemicity of vascular plants arrives to 15.5% (Aedo et al., 2013), and in bryophytes 

(including even the territory of the Balearic Islands) it is only a scant 0.5% (Infante et 

al., 2017). The small size allows them to inhabit microhabitats and facilitate their 

survival on adverse environments (Anderson, 1963; Patiño et al., 2016). Moreover, 

bryophytes are totipotent: all cells have the ability to differentiate into a meristematic 

state and develop a new plant from any small fragment. This confers them great 

advantages in establishment, colonization, and maintenance in ecosystems; It has been 

shown that under the specific conditions of permafrost a successful regeneration of 

bryophytes after some centuries (even millennia) is possible (La Farge et al., 2013; 

Roads et al., 2014; Cannone et al., 2017).  

 Diaspores (spores, gemmae or gametophyte fragments) have an outstanding 

capability for dispersal including long distances, mainly by air currents (van Zanten, 

1978; van Zanten & Pocs, 1981; Muñoz et al., 2004; Lönnell et al., 2012; Norros et al., 

2014; Lönnell, 2014; Biersma et al., 2017), or through animals (Parsons et al., 2007; 

Lewis et al., 2014; Wilkinson et al., 2017; Chmielewski & Eppley, 2019). Around 60% 

of the moss species and 70% of liverworts are dioicous (Patiño & Vanderpoorten, 

2018). Most of the reported sex ratios in dioicous bryophytes are female biased (Bisang 

& Hedenäs, 2005, 2013; Rydgren et al., 2010), including sex expressing and 

nonexpressing plants (Bisang & Hedenäs, 2013). In dioicous species the population sex 

ratios can be altered because one sex may be less stress tolerant than the other sex 

(Stark et al., 2005a, b; Benassi et al., 2011), affecting the probability of sexual 

reproduction (Casanova-Katny et al., 2016). An evolutionary adjustment of the size, 

shape and ornamentation of the spores, as well as the height and timing of the release, 

can significantly change the expected distribution of the dispersion of organisms with 

spores (Johansson et al., 2014; Zanatta et al., 2016). Usually monoicous species present 

sporophytes, given the high level of intragametophytic selfing (Anderson, 1963; 

Mishler, 2001; Eppley et al., 2007; Karlin et al., 2011). On the contrary, dioicous 

species more rarely produce sporophytes (Longton & Miles, 1982; Longton, 1992), 

given the difficulty of finding a male and a female relatively close (Vanderpoorten & 

Goffinet, 2009). The sporophyte frequency is correlated with sex ratio (Rydgren et al., 

2010) and with microclimates (temperature: Casanova-Katny et al., 2016). Many 
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species do not reproduce by spores, and no differences were observed in effectiveness 

of diaspore dispersal between generative and vegetative propagation, even reaching 

several 100 km in both cases (Frahm, 2008). However other studies showed evidences 

of usually short distance dispersal for asexual propagules, due to their weight 

(Kimmerer, 1991, 1994; Löbel et al., 2006). Moreover, no correlation was found 

between the presence of asexual propagules and dioicy in mosses and liverworts 

(Laenen et al., 2016). The mating system does not cause changes on allele frequency in 

the absence of evolutionary forces, selfing bisexual or asexual bryophytes have no 

lower gametophytic variation than outcrossing unisexual ones. But this behavior 

changes in several ways when mating system is combined with (at least one) 

evolutionary forces: selection, gene flow, genetic drift, and mutation (Stenøien & 

Såstad, 2001). 

 Due to small size and ability to produce spores (and others dormant stages), 

which facilitate dispersal by air and migrating animals, Baas Becking (1934) proposed 

in microorganisms, everything is everywhere, but the environment selects . This 

tenet was tested for the cosmopolitan moss Bryum argenteum in which a genetic 

variation significantly correlated with the elevation was found in Spanish Sierra Nevada 

Mountains; the results indicated that genetic structure in cosmopolitan mosses may be 

due mainly to ecological specialization and not so much to the limitation of dispersion 

(Pisa et al., 2013; Magdy et al., 2016), supporting what Baas Becking said. On the other 

hand, in spite of the fact that some mosses have a high production of diaspores, not all 

of them have a wide distribution (Frahm, 2008). Even considering only seemingly 

suitables habitats, bryophytes present limitations to effective dispersal (Medina et al., 

2011). Two alternative views can explain the main bryophyte disjunctions and they are 

frequently discussed and revised: vicariance, where the fragmentation of a previous 

continuous range takes place, and dispersal within and among species (Crum, 1972; 

Buck, 1990; Shaw et al., 2003; McDaniel & Shaw, 2003, 2005; Devos & 

Vanderpoorten, 2009; Heinrichs et al., 2009; Vanderpoorten et al., 2010; Shaw et al., 

2014, 2015a; Biersma et al., 2017). Probably these distribution patterns are formed by 

events like short distance dispersal, long distance dispersal, extinction, recolonization 

and diversification (Heinrichs et al., 2009). In some species of Polytrichales with 

extreme bipolar disjuntion, major trans-equator dispersal events (very long-dispersal) 

have occured but are extremely rare and occur only sporadically on multi-million-year 
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timescales (Biersma et al., 2017). However, more typical long-distance dispersal events 

(around 1.5 to more than 100 km) may be the rule and not the exception in bryophyte 

metacommunities (Barbé et al., 2016; Lönnell & Hylander, 2018). But what we 

consider short or long distances of dispersal will depend on the ecosystem and the taxon 

(Barbé et al., 2016). To know the dispersal mechanisms of a species is important for 

understanding and predicting its distribution dynamics in space and time, being able to 

influence speciation processes (Johansson et al., 2014). 

 The Mediterranean area (Taberlet et al., 1998; Vogel et al., 1999; Mejías et al., 

2007), Asia Minor (Ansell et al., 2011) and central Europe (Provan & Bennett, 2008) 

served as refugia for animals and plants along the period of multiple glacial cycles 

during the Quaternary (2.6 mya to present). Among the mountainous systems the Sierra 

Nevada Mountains in southern Spain are especially interesting (Fig. 1), because there 

populations of many species were moving up or down in the mountains according to the 

climatic conditions reigning during the glaciations (Gutiérrez Larena et al., 2002). This 

mountainous system began to rise during the Tertiary period from the collision of the 

continental plates of Africa and Eurasia (Channell & Medizza, 1981; Sanz de Galdeano 

& López Garrido, 2000). It is situated inside the Baetic range and presents the highest 

peak on Iberian Peninsula (Mulhacén: 3481 m above sea level), with other important 

peaks above 3000 m, and the southermost glacial cirques in Europe (Gómez-Ortiz et al., 

2015). Sierra Nevada Mountains are exposed to Mediterranean climate in its 

pluviseasonal oceanic variant (Rivas Martínez et al., 2007), with a pronounced summer 

drought and precipitation as snow above 2000-2500 m almost always during the winter 

season (Blanca et al., 2009; Fernández Calzado et al., 2010). The peculiar situation and 

characteristic of these mountains allow them to have a relevant biological richness (Gil, 

1976; Molero Mesa & Pérez Raya, 1987; Rams Sánchez, 2007; Rams et al., 2014; 

Lorite, 2016) and to host a large number of endemic vascular plants (Prieto Fernández, 

1975; Blanca et al., 1998; Blanca & Molero, 1990; Blanca, 2002). 
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SPECIATION IN MOSSES 

The bryophytes exhibit a comparatively lower extant diversity than tracheophytes 

(Laenen et al., 2014; reviewed by Patiño & Vanderpoorten, 2018), which might be due 

to a lack of opportunities for allopatric speciation by intense gene flow (Wilkinson, 

2001; Finlay, 2002), or might result from lower net diversification due to elevated 

extinction or decreased speciation rates (Laenen et al., 2014). Alternatively, the species 

richness of bryophytes might be underestimated by the existence of cryptic species or 

taxonomic shortcomings (Konrat et al., 2010; Medina et al., 2012; Hedenäs et al., 2014; 

Caparrós et al., 2016; Renner et al., 2017). 

 

Fig. 1. View of Sierra Nevada Mountains. Photo by Marta Nieto Lugilde 

 In bryophytes the limited number of good morphological diagnostic traits 

between species favors cryptic speciation, hiding the genetic structure (Shaw, 2001). 

Many taxa (especially dioicous species) rarely or never produce sporophytes (Longton 

& Schuster, 1983), making it difficult to identify taxa. Apparently some widely 

distributed bryophyte species actually correspond to complexes of multiple species with 

narrower distribution ranges (reviewed by Patiño & Vanderpoorten, 2018). 

 On island archipelagos the most frequent speciation mode in bryophytes is 

anagenesis (Patiño et al., 2014), in which changes accumulate over time within the same 

lineage (temporal continuum). This way founder events do not produce evolutionary 

radiation on an island and the number of species is not increased (Stuessy et al., 2006). 
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However, in angiosperms congeneric endemic species generally result from the 

diversification of a single common ancestor in a cladogenetic speciation (Patiño & 

Vanderpoorten, 2015). 

 Hybridization causes the so-called reticulated evolution and is due to genetic 

exchange in moments of sympatry both in animals and plants (Dowling & Secor, 1997; 

Natcheva & Cronberg, 2007). In many cases there are no clear limits (neither 

morphological nor reproductive) that allow to delimit the species without problems, 

being fundamental the study of genetic architecture of speciation (Heinrichs et al., 2009; 

Harrison & Larson, 2014). 

 Polyploidy is an important, well-established phenomenon in plants (Soltis et al., 

2018), but an interesting recent debate about if, once established, new polyploid 

lineages enjoy or not increases in diversification rates has arisen (Wood et al., 2009; 

Mayrose et al., 2011; Arrigo & Barker, 2012; Soltis et al., 2014; Mayrose et al., 2015). 

Due to the lower incidence of genetic compatibility problems, most reported cases of 

polyploidy are autopolyploid (doubling of an individual taxon), but numerous cases of 

allopolyploid (doubling of a combination of the genomes of two taxa) speciation have 

occurred for example within the Physcomitrium (Brid.) Brid.-Physcomitrella Bruch & 

Schimp. complex (Beike et al., 2014), and there are other well-know examples in 

bryophyte genera like Atrichum P. Beauv. (Perley & Jesson, 2015), Plagiomnium T.J. 

Kop. (Wyatt et al., 1988, 1992; Jankowiak-Siuda et al., 2008) or the peatmoss 

Sphagnum L. (Karlin et al., 2009, 2010; Shaw et al., 2015 b). 

THE GENUS CERATODON BRID. 

Bridel (1826) created the genus Ceratodon when he separated C. purpureus (Hedw.) 

Brid. and C. chloropus (Brid.) Brid. from Dicranum Hedw. Ceratodon plants are 

characterized by the following description (Burley & Pritchard, 1990): acrocarpous, 

habit caespitose or crowded turf, scarcely branched, 5-60 mm high, reddish rhizoids at 

lower part of stems. Leaves ovate to linear-lanceolate, obtuse to acuminate; margin 

recurved, rarely plane, variably dentate to serrate near apex or entire; nerve sub-
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percurrent to longly excurrent; mid-leaf cells quadrate to isodiametric, smooth and 

unistratose. Dioicous; occasionally with asexual filamentous propagules in axils of 

leaves. Seta yellow to red, 5-40 mm long; capsule ellipsoid to cylindrical; calyptra 

cuculate; annulus revoluble, 2-3 seriate; operculum conical to rostrate; peristome teeth 

16, 250-600 µm long, bifid nearly to base, with 4-18 articulations (and 0-13 

trabeculate), strongly papillose, usually with a membranous border. Spores papillose, 

sub-spherical, 10 21 µm in diameter. 

 The number of species of the moss genus Ceratodon is controversial (Burley & 

Pritchard, 1990; Ochyra, 1998; O'Shea, 2006; McIntosh, 2007), mainly due to their high 

polymorphism (Dixon & Jameson, 1896; Watson, 1968; Crum & Anderson, 1981), 

hindering the discrimination between them. Burley and Pritchard (1990), based on a 

worldwide morphometric study including an extensive taxonomic and nomenclatural 

synthesis, recognized four species: C. antarcticus Cardot, C. conicus (Hampe ex Müll. 

Hal.) Lindb., C. heterophyllus Kindb., and C. purpureus with three subspecies: subsp. 

purpureus, subsp. convolutus (Reichardt) Burley, and subsp. stenocarpus (Bruch & 

Schimp.) Dixon. But the grouping of subespecies on the basis of latitudinal variation in 

continuously varying morphological traits of Burley and Pritchard (1990), were not 

sustained by the genealogical results obtained by McDaniel and Shaw (2005); however 

they found limited population structure across the global distribution, suggesting that 

long-distance migration is common in the genus, at least within the Northern 

Hemisphere and Australasian regions. 

 The most abundant species with worldwide distribution is C. purpureus (Fig. 2; 

Crum, 1973), which grows in quite diverse habitats, usually in places where the 

competition between plants is limited due to stress or disturbance (Jules & Shaw, 1994; 

Eversman, 2001). It can colonize a wide range of substrata, such as bare ground, rock, 

wood, and sand (Crum, 1973). Moreover it is common from natural and well conserved 

North 

America for its habit of colonizing recently burned places (Duncan & Dalton, 1982; 

Foster, 1985; Clément & Touffet, 1990). This moss emits volatile cue substances (more 

transport vectors) during the sperm dispersion, increasing moss fertilization (Rosenstiel 

et al., 2012). In addition to this affinity for practically any habitat, its facility to produce 



General Introduction 

 

21 

many sporophytes with reddish or purple capsules and hundreds of spores per 

sporophyte, make it a great pioneering species (Shaw et al., 1991; Beever et al., 1992; 

Shaw & Beer, 1999; Taylor et al., 2007). 

 

Fig. 2. The cosmopolitan moss Ceratodon purpureus. Photo by Olaf F. Werner. 

With the discovery and development of homologous recombination technologies at a 

reasonably efficiency in the moss Physcomitrella patens (Hedw.) Brach & Schimps. 

(Schaefer & Zrÿd, 1997) and later in C. purpureus (Zeidler et al., 1999; Brücker et al., 

2005), an efficient tool for the analysis of gene functions was provided. The use of 

bryophytes as model organisms in land plant studies is due to characteristics such as: 

free-living dominant haploid life stage, which allows the effects of recessive mutations 

to be observed directly; easily cultured through vegetative propagation under controlled 

conditions; excellent opportunity to observe developmental processes at the level of the 

single cell on protonemata stage; possession of relative small genome and tolerance to 

induced mutations (Cove et al., 1997). A major difference to other moss species used as 

model plants (P. patens and Funaria hygrometrica) is that C. purpureus is dioicous. 

Today the complete genome sequencing is done for C. purpureus 

(https://genome.jgi.doe.gov/portal/ThemosCpurpureus/ThemosCpurpureus.info.html). 

An important advantage of the use of a common species like C. purpureus as a model 

plant is that it offers a substantial number of individuals, simplifying the logistics of the 

sampling, reducing the harmful impact on natural populations and facilitating the 

statistical validation of the results in studies of intraspecific variation (Steel et al., 

2013). 

https://genome.jgi.doe.gov/portal/ThemosCpurpureus/ThemosCpurpureus.info.html
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 Sex determination in dioicous mosses differs from vascular plants, because it 

takes place at the haploid gametophyte stage, where female and male plants carry 

different sex chromosomes called U and V, respectively (Bachtrog et al., 2011). The 

diploid sporophytes are heterozygous for the sex chromosomes. The sex specific region 

of the U-V chromosomes is non-recombining, but a part of the U-V chromosomes 

carries genes that are not sex related and can recombine during cross-over (Bachtrog et 

al., 2011). Because both chromosomes are subject to purifying selection during the 

haploid phase neither chromosome is expected to loose a high number of genes by 

degeneration, contrary to what is observed for example in mammals with their X-Y 

system (Bachtrog et al., 2011). As a consequence of this system in mosses both female 

and male sex chromosomes have a similar (although not always identical) size (Allen, 

1945) and in C. purpureus they are even five times larger than average autosomes 

(McDaniel et al., 2007). Several studies addressed the ratio of female and male plants in 

C. purpureus. Shaw and Gaughan (1993) found a heterogeneous sex ratio between 

populations but male biases occur only in two of 11 populations, and 9/11 were female 

biased; moreover at time of germination a three females/two males ratio was observed 

with sexually dimorphic traits, probably associated with the differences of life history. 

However, Eppley et al. (2018) discovered that the ratio of sexes in artificial populations 

changed over time, but not in all populations. Those in which the females predominated 

retained their high female bias and produced a large number of sporophytes, but in the 

populations where the males predominated significantly, they moved towards a 

deviation for the females and most of the populations did not produce sporophytes. The 

sex ratios are influenced at spore stage (Norrell et al., 2014) but also during the 

gametophytic stage, probably caused by differential survival or growth of clones during 

both intra and interspecific competition (Eppley et al., 2018). The genetic differentiation 

in morphological and life history observations among populations showed sexually 

dimorphic traits with respect to size, physiology, maturation rates, and reproductive 

output between male and female gametophytes (Shaw & Gaughan, 1993; Shaw & Beer, 

1999; McDaniel, 2005; Slate et al., 2017). Multiple complex genetic factors contribute 

to divergence among population of C. purpureus; some hybrid progeny from a cross 

between isolates of different populations that represent extremes of the morphological 

distribution of the species showed abnormal development phenotype and a segregation 
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pattern that it is consistent with Dobzhansky-Muller interactions (McDaniel et al., 2007, 

2008). 

AIMS OF THE THESIS 

The main aim of this thesis was to study the diversity, evolutionary biology and 

taxonomy of the populations of the genus Ceratodon in southern Europe. The specific 

aims of the thesis were: 

1.   To review the taxonomy and nomenclature of the genus Ceratodon in southern 

Europe. 

2.   To know the genetic diversity of Ceratodon populations in Mediterranean 

mountain areas. 

3.   To evaluate if the Ceratodon populations of southern Europe belong to the same 

species or, on the contrary, if the genetic diversity found between them defines 

perhaps different species and in this case shed light on the speciation process. 

4.   To test if southern European Ceratodon specimens show differences in sex ratio 

and DNA amount in nuclei. 

5.   To determine in what proportion the morphological variation in Ceratodon is 

due to the environment or if it has a genetic basis. 

6.   Using an integrative methodology, to reach a taxonomic conclusion about 

samples from southern Spain that have different morphology from that described 

for C. purpureus. 

7.   To reconstruct the evolutionary history of Ceratodon species present in southern 

Europe and their interaction via hybridization. 

8.   To estimate demographic parameters and evaluate possible evolutionary 

scenarios in southern European populations of Ceratodon. 
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THESIS STRUCTURE 

The bulk of this thesis is structured in four chapters. Each of them contains a study 

focused on different aspects of the evolutionary biology or the taxonomy of the moss 

genus Ceratodon in southern Europe. All the chapters are presented as scientific papers. 

These are followed by a general discussion and the conclusions of this thesis. The 

following is a brief summary of each chapter. 

Chapter I. Taxonomical and nomenclatural notes on the moss Ceratodon conicus 

(Ditrichaceae, Bryophyta). In this work the revision of the nomenclatural type of 

Ceratodon conicus and the three synonyms proposed in the world study of the genus 

Ceratodon published by Burley and Pritchard (1990) was carried out (C. cedricola, C. 

dimorphus, and C. purpureus var. graefii) with the aim of knowing the morphology of 

the species susceptible of been present in the Mediterranean area (specific aim 1). 

Chapter II. Peripatric speciation associated with genome expansion and female-

biased sex ratios in the moss genus Ceratodon. The genetic and genome size diversity 

in European populations of the moss Ceratodon purpureus s.l. was examined to 

evaluate the role of allopatry and ploidy change in population divergence (specific aims 

2, 3 and 4). Phylogenetic and coalescent analyses on sequences from five nuclear 

introns and a chloroplast locus were performed to reconstruct their phylogenetic history. 

The genome size using flow cytometry was also estimated, and the sex of the samples 

determined. These data suggested that a new species of Ceratodon arose via peripatric 

speciation, potentially involving a genome size change and a strong female-biased sex 

ratio. The new species hybridized in the past with C. purpureus. 

Chapter III. Environmental variation obscures species diversity in southern 

European populations of the moss genus Ceratodon. Biometric analyses based on 22 

morphological gametophytic characters on both field collected plants and cultivated 

plants of Ceratodon populations from Mediterranean mountain areas, other European 

mountain systems and lowlands were compared to a clustering based on DNA sequence 

and genome size data obtained on previous chapter, to evaluate the effect of 
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environmental variation on the taxonomy of the moss genus Ceratodon and reach a 

taxonomic conclusion (specific aims 5 and 6). It was confirmed that environmental 

variability complicates taxonomic inferences. However, integrative taxonomy based on 

genetic diversity, genome size and morphological data unambiguously supports the 

recognition of a new species, Ceratodon amazonum Nieto-Lugilde, O. Werner, S.F. 

McDaniel & Ros. The chapter includes the formal description of C. amazonum, a 

morphology based key for its distinction from C. purpureus and the nothospecies C 

×conicus, which is considered to be of recombinant origin, and for wich an epitype is 

designated. 

Chapter IV. Testing the evolutionary history of Ceratodon amazonum, C. 

purpureus, and the recombinant C. ×conicus. It is focused on testing the peripatric 

speciation and reconstructing the demographic and evolutionary history in the 

cosmopolitan moss C. purpureus, the sister species C. amazonum, and the recombinant 

C. ×conicus, based on nucleotide polymorphism data (specific aims 7 and 8). For these 

aims, populations genetic summary statistics were calculated, demographic parameters 

(divergence time, effective population sizes and migration rates) were estimated and 

evolutionary scenarios were simulated. Moreover, it was calculated if hybridization 

between parental taxa occurred in one or several events. Ceratodon purpureus almost 

always had higher levels of genetic diversity than C. amazonum. A recent speciation 

event was confirmed, the divergence time between both parental species was about 1.7 

mya, and C. ×conicus was no originated by a unique and rare hybridization event. 
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ABSTRACT 

A revision of the nomenclatural and taxonomical data related to Ceratodon conicus 

(Hampe ex Müll. Hal.) Lindb. and its synonyms published by Burley and Pritchard 

(1990) was carried out. The lectotype designated from material filed in GOET was 

confirmed, but the material from duplicates of lectotype specimens filed in FH, GOET, 

and MANH was found not corresponding with the protologue of the species. In 

addition, the types of three synonyms of Ceratodon conicus, C. cedricola J.J Amann 

from Z+ZT, C. dimorphus H. Philib. from BM, and C. purpureus var. graefii Limpr. 

from BR, designated as holotypes by Burley and Pritchard, are here designated as 

lectotypes as no unequivocal original specimen exists in any case. Finally, Ceratodon 

purpureus var. graefii is better considered to be a synonym of C. purpureus (Hedw.) 

Brid. sensu lato, as its morphological characteristics match the description of this 

species and not that of C. conicus. 



Nieto Lugilde (2019) Ceratodon: studies of evolutionary biology and taxonomy in southern Europe 

 

48 

INTRODUCTION 

Burley and Pritchard (1990) recognized four species in the genus Ceratodon Brid. in 

their worldwide taxonomical revision: C. antarcticus Cardot, C. conicus (Hampe ex 

Müll. Hal.) Lindb., C. heterophyllus Kindb., and C. purpureus (Hedw.) Brid. with three 

subspecies. Their study was based on an extensive morphometric study including a 

great taxonomic and nomenclatural synthesis. 

 Ceratodon conicus was described as Trichostomum conicum Hampe ex Müll. 

Hal. (Müller, 1849), based on material received in litt. from the German botanist Georg 

Ernst Ludwig Hampe (1795- Germania septentrionalis, 

Flegesen circa Hameln prope Hohnsen in muris: Schlotheuber

validly combined in the genus Ceratodon by Lindberg (1879). Interestingly, Carl Müller 

himself later (Müller, 1899) proposed the illegitimate homonymous combination 

Ceratodon conicus, based on Barbula conica Spreng. from South Africa, that according 

to Burley and Pritchard (1990) is a synonym of C. purpureus subsp. stenocarpus (Bruch 

& Schimp.) Dixon. 

 According to Burley and Pritchard (1990), the most important diagnostic 

features of Ceratodon conicus from the other species in the genus are: the ovate-

lanceolate, slightly concave leaves, the entire, recurved to apex or just below margins, 

the costa excurrent in an arista of variable length, and the yellow to orange-reddish 

peristome teeth, 21- -5 trabeculae and 5-9 

articulations, with narrow or absent border. The gametophytic characters were not found 

sufficiently stable by Burley and Pritchard (1990), which lead the authors to state that, 

in the absence of mature capsules, it is not possible to distinguish C. conicus from some 

morphs of C. purpureus with confidence. 

 Ceratodon conicus can be found with certainty in North America (Canada and 

U.S.A.), Europe (Austria, Germany, Norway, Switzerland, United Kingdom) and North 

Africa (Morocco); its habitat is terrestrial on bare earth, but it also occurs on soil-capped 

limestome walls, rock crevices and mountain ledges; it is probably is xerophytic and 

strictly calcicolous (Burley & Pritchard, 1990). 
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 The acceptance of C. conicus at species level has been disputed, and some 

authors (Husnot, 1884; Dixon, 1896) have moved it to varietal rank given the scarce and 

unreliable diagnostic morphological characters of the gametophyte, and the usual 

absence of sporophytes. While the authors of major large European checklists (Hill et 

al., 2006; Ros et al., 2013) accepted the taxonomic view of Burley and Pritchard (1990), 

others have had taxonomic difficulties deciding about the certainty of its occurrence 

subspecific level as McIntosh 

(2007) in the Flora of North America. 

 Burley and Pritchard (1990) revised most of the approximately 70 names 

attributable to the genus Ceratodon, which were included in Index Muscorum (Wijk et 

al., 1959, 1969). They designated the lectotype and three isolectotypes for 

Trichostomum conicum, and put into its synonymy three additional names: Ceratodon 

cedricola Amann from Morocco, C. dimorphus Philib., and C. purpureus var. graefii 

Limpr., the latter two from Switzerland. 

 In the course of a taxonomical study of Ceratodon species, some nomenclatural 

and taxonomical inconsistencies in the treatment of Burley and Pritchard (1990) were 

found. Based on the study of the protologues and the types designated by these authors, 

in this paper intends to solve the problems detected and to know the morphology of the 

species susceptible of been present in the Mediterranean area. 

MATERIALS AND METHODS 

We revised the types of Trichostomum conicum designated by Burley and Pritchard 

(1990), which were the lectotype and isolectotypes from GOET at the Georg-August-

Universität Göttingen and borrowed the isolectotype from FH. The label data of the 

isolectotype from MANCH was analyzed through photographs sent by the curator of the 

herbarium, together with other specimens identified under this name. We also borrowed 

a specimen from STU, mentioned by Meinunger and Schröder (2007) as a possible type. 

Additionally, we revised the types of the three synonyms proposed by Burley and 
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Pritchard (1990), namely Ceratodon cedricola from Z+ZT, C. dimorphus from BM, and 

C. purpureus var. graefii from BR. 

RESULTS AND DISCUSSION 

Type revision of Ceratodon conicus 

Ceratodon conicus (Hampe ex Müll. Hal.) Lindb., Musci Scand. 27. 1879 (non 

Ceratodon conicus (Lindb.) Müll. Hal., Hedwigia 38: 98. 1899, hom. illeg.). Basionym: 

Trichostomum conicum Hampe ex Müll. Hal., Syn. Musc. Frond. 1: 575. 1849; 

Ceratodon purpureus var. conicus (Hampe ex Müll. Hal.) Husn., Muscol. Gall. 60. 

1884; Ceratodon purpureus subsp. conicus (Hampe ex Müll. Hal.) Dixon, Stud. Handb. 

Brit. Mosses 68. 1896. Lectotype (designated by Burley & Pritchard, 1990): [Germany, 

coll. Schlotheuber pastor eccl. 784, Hampe misit 15/2 48, C. Müller det. (GOET 

011795!). 

 Burley and Pritchard (1990) designated the lectotype of Ceratodon conicus from 

GOET and also four isolectotypes from FH, GOET (2) and MANCH. Nevertheless, at 

are preserved. All of them have a revision label handwritten by J. S. Burley in 1985, on 

which he writed C. conicus 

specimen is barcoded (GOET 011795) and considered an isotype by the herbarium 

keepers (Fig. I.1). 

As no more specimens were found at GOET whose label matches exactly the 

protologue, and we have not found any other potential type specimen exhibiting a 

revision label of Burley, we consider the above described specimen as the lectotype. 

Nevertheless, there is a non-barc Trichostomum 

conicum 

collector name and date. However, the locality data do not correspond with those of the 

lectotype, as it is in the neighboring zones of the locality of the lectotype (Flegessen) 

but at a certain distance. Although it has not a revision label of Burley, it could be the 
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GOET isolectotype mentioned by Burley and Pritchard (1990), since the locality data 

are the same as in the next two herbaria specimens, which were also considered 

isolectotypes by these authors. 

Fig. I.1. Leptotype of Trichostomum conicum Hampe ex Müll designated by Burley and Pritchard (1990). 
Photo by Marta Nieto Lugilde. 

 The MANCH specimen studied and annotated by Burley in 1985, and 

Hachmühlen Hannover, Pastor Schlotheuber

the type material. The reason is that it was collected from a different locality (the same 

as the above mentioned specimen from GOET). Besides, it was collected one year 

earlier than the lectotype specimen. There is another specimen kept at MANCH that 

was collected from one of the above mentioned neighboring localities by the same 

Ceratodon conicus, Hannover, 

Legit Schlotheuber

considered part of the type material. 

 Th Ceratodon purpureus minor, 

Trichostomum conicum 

without collecting date, might also belong to above mentioned non-type Hachmühlen 
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collection, parts of which are filed at GOET and MANCH. Morphologically, the 

specimen seems to correspond to the concept of C. conicus of Burley and Pritchard 

(1990): ovate to lanceolate leaves, entire margin, excurrent costa in most of the leaves, 

cross-section of leaves without guide cells; two-three sheeting internal perichaetial 

leaves, widely ovate to orbicular, rounded to obtuse, apiculate or not, with narrow, 

poorly developed costa, excurrent in a short apiculus or not; capsule not strumose and 

erect, peristome teeth not bordered, 30-32 µm wide at the base each, with 3-5 trabeculae 

and 3-4 articulations; spores 10-12 µm in diameter. 

 

Ceratodon purpureus (L.) Brid. var. conicus Trichostomum 

conicum Kr. Hameln, Hachmühlen auf der Gartenmauer der Gastwirtschaft, VI. 1880, 

leg. Schlotheuber This specimen was mentioned in The atlas of German mosses 

(Meinunger & Schröder, 2007), together with the lectotype as the only certain German 

occurrences of the species, considering that other collections from the country are sterile 

and therefore doubtful. Also in this case, the collecting site is different from that of the 

lectotype and the same as the above mentioned specimens from FH, GOET and 

MANCH; moreover label data given do not match the information on collecting date 

(June 1880). According to Wagenitz (1988), the Hannovarian ecclesiastic pastor and 

botanist Schlotheuber lived between 1789 and 1866. The label is hand-written by Fritz 

Koppe (Martin Nebel, curator of STU, pers. comm.). Probably, he or another person 

separated a part of the original specimen to a duplicate with a new label in which 

mistakes were inserted. 

The type of Ceratodon cedricola 

Ceratodon cedricola J.J. Amann, Rev. Bryol. 51: 57. 1924. Holotype (as considered by 

Burley & Pritchard, 1990): Ceratodon sp. nova, cedricola Amann, Maroc. Atlas moyen. 

Ras El Ma, sur tronc de Cèdre. 27.3.23, l. P. Jaccard (Z+ ZT!). Lectotype, designated 

here: based on the former specimen, instead of holotype (= Ceratodon conicus (Hampe 

ex Müll. Hal.) Lindb., Musci Scand. 27. 1879) (Fig. I.2). 

 Burley and Pritchard (1990) considered the specimen mentioned above to be the 

holotype of this name, kept at Z+ ZT, but due to the fact that Amann did not designate 
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any specimen as the nomenclatural type and no unequivocal specimen exists, in our 

opinion the specimen kept at Z+ ZT should be better designated as lectotype. 

 The study of the type allowed us to confirm that the morphological 

characteristics of the specimen correspond to those given by Burley and Pritchard 

(1990) for C. conicus: leaves ovate to lanceolate, with entire margin and excurrent 

costa, with 3-4 guide cells in cross-section; both internal perichaetial leaves wide ovate 

to orbicular, strongly sheathing, with rounded to obtuse, non apiculate apex, costa 

narrow, poorly developed and non excurrent; capsule slightly strumose, erect to 

inclinate; peristome teeth not bordered, 32 µm wide at the base, with 4-5 trabeculae and 

3-5 articulations; spores inmature. Amann (1924), when describing the species, 

considered C. cedricola to be closely related to C. corsicus Bruch & Schimp. (= C. 

purpureus subsp. stenocarpus) and distinguishable from the last one by the dense, tight, 

felted and smaller sized tufts (4-5 mm), the characteristics of perichaetial leaves, the 

small and narrow capsule, and the smooth and not bordered peristome teeth. 

Nevertheless, most of these characters are shared also by C. purpureus s.l. 

Fig. I.2. Lectotype of Ceratodon cedricola J.J. Amann designated as holotype by Burley and Pritchard 
(1990). Photo by Marta Nieto Lugilde. 
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The type of Ceratodon dimorphus 

Ceratodon dimorphus H. Philib., Rev. Bryol. 15: 28. 1888; Ceratodon purpureus subsp. 

dimorphus (H. Philib.) Limpr., Laubm. Deutsch. 3: 683. 1901; Ceratodon purpureus 

var. dimorphus (H. Philib.) Mönk., Allg. Bot. Z. Syst. 15: 92. 1909; Ceratodon 

purpureus fo. dimorphus (H. Philib.) Mönk., Laubm. Eur. 158. 1927. Holotype (as 

considered by Burley & Pritchard, 1990): Husnot, Musci Galliae 814. Ceratodon 

dimorphus Phil. Sur le col du Simplon (Valais). Altitude 2000 m, juillet 1887, 

PHILIBERT (BM 000965220!). Lectotype, designated here: based on the former 

specimen, instead of holotype (= Ceratodon conicus (Hampe ex Müll. Hal.) Lindb., 

Musci Scand. 27. 1879) (Fig. I.3). 

 

Fig. I.3. Lectolotype of Ceratodon dimorphus H. Philib designated as holotype by Burley and Pritchard 
(1990). Photo by Marta Nieto Lugilde. 

 Burley and Pritchard (1990) considered the BM specimen mentioned above as 

holotype, but as in Ceratodon cedricola, the author of the name did not designate any 

specimen as the nomenclatural type, and no unequivocal specimen exists. Therefore, it 

should be considered a lectotype, which is done here. 
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 The specimen shows plane, ovate to linear-lanceolate leaves, with entire to 

dentate margins, costa excurrent in a short apiculus, rarely percurrent, with 2-3 guide 

cells in cross-section; sheathing and obtuse perichaetial leaves; capsule not strumose, 

slightly inclinate, peristome teeth narrowly bordered, 20-26 µm wide at the base, with 

3-4 trabeculae and 4-6 articulations; spores 8-10 µm in diameter. 

 The morphological characteristics of the peristome of this specimen correspond 

to those given by Burley and Pritchard (1990) for Ceratodon conicus, but the leaves are 

more variable and are not typical for this species. It seems to present intermediate 

characteristics with C. purpureus subsp. stenocarpus, although we agree with Burley 

and Pritchard (1990) to identify it as C. conicus. 

The type of Ceratodon purpureus var. graefii 

Ceratodon purpureus var. graefii Schlieph. ex Limpr., Laubm. Deutschl. 1: 487. 1887; 

Ceratodon graefii Schlieph., nom. nud. in synon., Laubm. Deutschl. 1: 487. 1887; 

Ceratodon purpureus fo. graefii (Schlieph. ex Limpr.) Mönk., Laubm. Eur. 158. 1927. 

Holotype (as considered by Burley & Pritchard, 1990): Ceratodon graefianus Limpr. ex 

Schliephacke, Helvetia, Ober Hasli ad terram, juni 1883 leg ... Dr. H. Graef com. 

Schliephacke (BR-BRYO 165426-41!). Lectotype, designated here: based on the 

former specimen, instead of holotype (= Ceratodon purpureus (Hedw.) Brid., Bryol. 

Univ. 1: 480. 1826) (Fig. I.4). 

 Burley and Pritchard (1990) selected the BR specimen mentioned above as 

holotype, but also in this case the author of the name did not designate any specimen as 

the nomenclatural type and no unequivocal specimen exists, and therefore, it should 

have been designated as lectotype. Also it seems that Burley and Pritchard were not 

aware that this name at the specific rank is invalid. 

 The morphological characteristics of the specimen are the followings: plane, 

ovate to linear-lanceolate leaves, with entire to crenulate margins, costa excurrent in an 

apiculus, cross section with 2 guide cells; internal perichaetial leaves sheathing with 

obtuse apex; capsule not strumose, erect or inclinate, slightly sulcate to smooth, 

peristome teeth strongly bordered, 46-50 µm wide at the base, with 4-5 trabeculae and 

4-5 articulations; spores inmature. It is worth mentioning that some characteristics of 
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the capsule and the leaves do not fit the diagnostic characters given for C. conicus by 

Burley and Pritchard (1999), especially the basally wide, strongly bordered peristome 

teeth. Taking into consideration the characters considered in the revision of Burley and 

Pritchard (l.c.), this specimen falls within the variation described for Ceratodon 

purpureus s.l. and therefore should not be considered a synonym of C. conicus. 

Fig. I.4. Lectotype of Ceratodon purpureus var. graefii Schlieph. ex Limpr. designated as holotype by 
Burley and Pritchard (1990). Photo by Marta Nieto Lugilde.  
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ABSTRACT 

A period of allopatry is widely believed to be essential for the evolution of reproductive 

isolation. However, strict allopatry may be difficult to achieve in some cosmopolitan, 

spore-dispersed groups, like mosses. We examined the genetic and genome size 

diversity in Mediterranean populations of the moss Ceratodon purpureus s.l. to evaluate 

the role of allopatry and ploidy change in population divergence. We sampled 

populations of the genus Ceratodon from mountainous areas and lowlands of the 

Mediterranean region, and from western and central Europe. We performed 

phylogenetic and coalescent analyses on sequences from five nuclear introns and a 

chloroplast locus to reconstruct their evolutionary history. We also estimated genome 

size using flow cytometry (employing propidium iodide) and determined the sex of 

samples using a sex-linked PCR marker. Two well-differentiated clades were resolved, 

discriminating two homogeneous groups: the widespread C. purpureus and a local 

group mostly restricted to the mountains in southern Spain. The latter also possessed a 

genome size 25% larger than the widespread C. purpureus, and the samples of this 

group consist entirely of females. We also found hybrids, and some of them had a 

genome size equivalent to the sum of the C. purpureus and Spanish genome, suggesting 

that they arose by allopolyploidy. These data suggest that a new species of Ceratodon 

arose via peripatric speciation, potentially involving a genome size change and a strong 

female-biased sex ratio. The new species has hybridized in the past with C. purpureus.
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INTRODUCTION 

The origin of new species represents a major unsolved problem in evolutionary biology 

(Rieseberg & Willis, 2007; Seehausen et al., 2014; Dev, 2015). Theory shows that the 

simplest mechanism for generating new species is through allopatric speciation, in 

which some portion 

natural selection or genetic drift to drive allele frequency changes that ultimately 

generate additional reproductive barriers (Mayr, 1963; Barraclough & Vogler, 2000; 

Coyne & Orr, 2004). This is because even modest levels of gene flow can homogenize 

allele frequencies between populations, retarding divergence (Wright, 1931). While 

local adaptation can drive peripatric or sympatric divergence in cases where the 

immigrant rate is less than the intensity of selection (Lenormand, 2002), most empirical 

studies cannot exclude the possibility that speciation was preceded by a period of 

allopatry (Nadachowska-Brzyska et al., 2013; Shaner et al., 2015). This presents a 

paradox in species-rich groups like mosses, where long-distance migration appears to be 

common, but speciation and diversification have occurred in spite of the fact that 

geographic barriers may not cause a long-term impediment to gene flow (Shaw et al., 

2003; Piñeiro et al., 2012; Lewis et al., 2014a; Szövényi et al., 2014; Barbé et al., 2016). 

 One potential resolution to this paradox is sympatric speciation through 

polyploidy, which is frequent in flowering plants (Ramsey & Schemske, 1998; Mallet, 

2005), and potentially in mosses (Crosby, 1980; Kuta & Przywara, 1997; Såstad, 2005; 

McDaniel et al., 2010; Rensing et al., 2013). Polyploidy generates a strong reproductive 

barrier in a single mutational event (Ramsey & Schemske, 1998; Madlung, 2013). 

However, the homogeneity in bryophyte genome sizes (Voglmayr, 2000) raises the 

possibility that the role played by polyploidy in moss speciation may be small in 

relation to other speciation mechanisms. The nature of the genomic, demographic, or 

ecological factors (beyond geographic isolation and polyploidy) that generate 

reproductive barriers between nascent species of mosses remain poorly characterized 

(McDaniel et al., 2010; Yousefi et al., 2017). 
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 Within mosses, the genetic basis of reproductive barriers is best characterized 

among populations of Ceratodon purpureus (Hedw.) Brid. (Ditrichaceae) (McDaniel et 

al., 2007, 2008). Moreover, the developing genomic and laboratory tools make this 

species a promising model for further ecological genomic study (McDaniel et al., 2016). 

Ceratodon purpureus is abundant on every continent and grows on a wide variety of 

substrates (Crum, 1973). Molecular population genetic analyses indicated that gene 

flow among Northern Hemisphere and even Southern Hemisphere populations was 

frequent but that tropical populations were more genetically isolated (McDaniel & 

Shaw, 2005). These observations suggest that the current level of sampling may be 

insufficient to detect the full scope of population structure among populations in this 

taxon. Indeed, partial hybrid breakdown was clearly evident in crosses between a 

temperate and a tropical population, suggesting that reproductive barriers may be in the 

process of evolving between ecologically distinct regions of the distribution of C. 

purpureus (McDaniel et al., 2007, 2008). These barriers did not involve ploidy 

differences. However, the genome size of C. purpureus is well characterized in only a 

modest number of European samples (mean ± SD = 0.39 ± 0.0046 pg, n = 10; 

Voglmayr, 2000), leaving open the possibility that polyploidy contributes to 

reproductive isolation among isolates from other parts of its broad cosmopolitan 

distribution. 

 In a previous phylogeographic analysis (McDaniel & Shaw, 2005), the 

Mediterranean region contained several rare haplotypes that were distantly related to the 

common haplotypes found throughout the range of C. purpureus. In the present study, 

we tested for the existence of any relationship between the genetic diversity and DNA 

content found in the Mediterranean area in the moss genus Ceratodon. McDaniel and 

Shaw (2005) argued that frequent gene flow maintained the genetic homogeneity of the 

species, at least among the temperate Northern Hemisphere populations, but that the 

divergent populations were simply outside the main area of spore rain, and therefore 

had not yet been homogenized. Alternatively, these isolated populations could represent 

cryptic species, and reproductive isolation evolved in spite of this gene flow (McDaniel 

et al., 2007, 2008). To distinguish between these alternatives, we evaluated the patterns 

of polymorphism in five nuclear introns and a single chloroplast locus in plants sampled 

from mountainous areas of the Mediterranean region and other mountain regions and 

lowlands, mostly from southern Europe. We also estimated the genome size of these 
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isolates using flow cytometry. These data clearly show that a new species has evolved 

within the genus Ceratodon, accompanied by both large non-polyploid and 

allopolyploid changes in genome size and, potentially, by major changes in sexual 

system. These insights also highlight the complexity of peripatric speciation 

mechanisms in bryophytes. 

MATERIALS AND METHODS 

Plant material 

For this study, we generated genetic data for a total of 93 samples, 71 (76.4%) from 

Mediterranean mountain areas (47 from the Spanish Sierra Nevada, 19 from the Spanish 

central mountain ranges, three from the Spanish southeastern mountains, and two from 

Sicilian Mount Etna). Of the remaining 22 samples, 11 (11.8%) were from other 

European mountainous systems (eight from the Alps and three from the Pyrenees) and 

11 specimens (11.8%) were from lowlands (three from Czech Republic, two from 

Germany, two from Sweden, two from United Kingdom, and two from South Africa). 

Mainly between April and November 2011-2014 (for more detailed information, see 

Annex II.1), we collected 84 new samples for this study, all of which are deposited at 

MUB (Herbarium of the University of Murcia, Spain); nine samples were loaned from 

herbaria, including BOL (Bolus Herbarium, University of Cape Town, South Africa), 

CBFS (University of South Bohemia, Czech Republic), and S (Herbarium of the 

Swedish Museum of Natural History, Sweden); and two samples were donated from 

Laura Forrest (at Royal Botanic Garden Edinburgh, United Kingdom). We sequenced 

four specimens of Cheilothela chloropus (Brid.) Lindb. to use as an outgroup (voucher 

information and GenBank accession numbers are listed in Annex II.1). 

DNA sequencing 

To examine the genealogical relationships among the 93 isolates, we sequenced five 

nuclear exon-primed intron-spanning loci, including rpL23A and TRc1b3.05 (McDaniel 

et al., 2013b; referenced by EST accessions AW086590 and AW098560), hp23.9, PPR, 

and TBP (McDaniel et al., 2013a, b), and a single chloroplast locus (trnL). We 
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amplified all loci 

DreamTaq DNA Polymerase (Thermo Fisher Scientific, Waltham, Massachusetts, 

USA). The cycling conditions were 94°C for 2 min, then 10 cycles of 94°C for 15 s, an 

annealing temperature of 65°C that dropped one degree each cycle, and 72°C for 1 min, 

followed by 20 cycles of 94°C for 15 s, 56°C for 30 s, and 72°C for 1 min, and 

terminating with 72°C for 7 min (McDaniel et al., 2013a). To make the resulting PCR 

products ready for sequencing, we removed unincorporated primers and inactivated 

unincorporated nucleotides using PCR clean-up reaction with Exo I and FastAP 

Alkaline Phosphatase enzymes (Thermo Fisher Scientific). Both enzymes were heat 

inactivated by maintaining the mixture at 85°C for 15 min. Sequencing was 

accomplished on an ABI3730XL DNA Analyzer, Applied Biosystems (Macrogen 

Europe, Amsterdam, The Netherlands). 

Cloning of DNA sequences 

In samples where we observed double peaks in the chromatograms, we cloned all loci. 

PCR products were isolated from agarose gels, and cloned using the CloneJet PCR 

Cloning Kit (Thermo Fisher Scientific). Cloning efficiency and accuracy were checked 

using PCR reactions. Successful clones then were sequenced using an ABI3730XL 

DNA Analyzer (Macrogen). 

Phylogenetic analyses 

We aligned the DNA sequences using CLUSTALW (Larkin et al., 2007) as 

implemented in Bioedit (Hall, 1999) and manually resolved inconsistencies in the 

resulting alignment. DnaSP v5 (Librado & Rozas, 2009) was used to observe 

characteristics such as total length with and without gaps, number of constant positions 

and number of parsimony-informative variable positions about all loci. We coded gaps 

as informative with a simple indel coding strategy (Simmons & Ochoterena, 2000) 

implemented in SeqState (Müller, 2005). We performed phylogenetic analyses using 

MrBayes version 3.2 (Ronquist et al., 2012). The need for a priori model testing was 

removed using the substitution model space in the Bayesian MCMC analysis itself 

(Huelsenbeck et al., 2004) with the option nst = mixed. The sequence and indel data 

were treated as separate and unlinked partitions. The a priori probabilities supplied were 

those specified in the default settings of the program. Posterior probability distributions 
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of trees were generated using the Metropolis-coupled Markov chain Monte Carlo 

(MCMCMC) method. To search for convergence in the phylogenetic analyses, we used 

two runs with different settings for some of the loci. For hp23.9, TBP, and trnL, four 

chains with 1 × 107 generations were run simultaneously, with the temperature of the 

single heated chain set to the default in MrBayes. Nevertheless, eight chains with 1 × 

106 generations each were run, changing the temperature of the single heated chain set 

to 2 (PPR), 3 (TRc1b3.05), and 6 (rpL23A), because with the default temperature 

setting, convergence was not reached in initial runs. Chains were sampled every 1000 

generations and the respective trees were written into a tree file. The first 25% of the 

total sampled trees of each run were discarded as burn-in. Consensus trees and posterior 

probabilities of clades were calculated by combining the two runs and using the trees 

sampled after the chains converged and had become stationary. The sump command of 

MrBayes was used to check whether an appropriate sample from the posterior was 

obtained. To do so, we first inspected visually the log likelihood plot, which should not 

show tendencies to decrease or increase over time; the different runs should show 

similar values. Then we checked that the effective sampling size (ESS) values for all 

parameter was ~ 1.00. The genealogies were rooted with sequences from Cheilothela 

chloropus. The final trees were edited with TreeGraph2 (Stöver & Müller, 2010). We 

performed phylogenetic analyses using the same setting as before, combining the new 

sequences generated here with other sequences for the TBP locus available on GenBank 

from Antarctica (1), Australia (1), and eastern North America (54), which were 

previously reported by McDaniel et al. (2013a). 

 Low resolution in phylogenetic reconstructions can sometimes be caused by 

incongruence or conflicts in the molecular datasets that lead to different, equally 

possible, solutions (Huson & Bryant, 2006; Draper et al., 2015). To evaluate this 

possibility, we reconstructed a phylogenetic network based on the neighbor-net method 

(Bryant & Moulton, 2004) using the program SplitsTree4 version 4.13.1 (Huson & 

Bryant, 2006) for the six concatenated loci. The calculations were based on uncorrected 

p-distances. To test the hypothesis of recombination in each graph, a pairwise 

homoplasy index (phi-test) was calculated, which is a robust and reliable statistic to 

detect recombination. This estimates the mean refined incompatibility score from 

nearby sites. Under the null hypothesis of no recombination, the genealogical 
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correlation of adjacent sites is invariant to permutations of the sites because all sites 

have the same history. The order of the sites is important when levels of recombination 

are finite, because distant sites will tend to have less genealogical correlation than 

adjacent sites (Bruen et al., 2006). The significance is then tested using a permutation 

test by default. In accordance with Bruen et al. (2006) for the phi-test of recombination, 

P < 0.05 indicates the presence of recombination signal. 

Coalescent stochasticity analyses 

Individual gene trees often differ from each other and from the species tree (Rosenberg, 

2002; Mao et al., 2014). To check whether the differentiation we found between the 

Sierra Nevada (SN) and Worldwide (Ww) clades was a good fit to the multispecies 

coalescent model (MSCM), we employed an approach based on posterior predictive 

simulation 

et al., 2016). In this approach, a posterior distribution of gene genealogies estimated 

from empirical data is compared to a posterior predictive distribution of genealogies 

simulated under a model of interest. We first used *BEAST (Heled & Drummond, 

2010) to infer genealogies and species trees, and the simulation of genealogies under the 

MSCM with ms program (Hudson, 2002) under a JC +I +G nucleotide substitution 

model selected as the most probable in all loci using jModelTest (Posada, 2008). Gaps 

were included as a character state in these analyses. The run was conducted assuming a 

strict clock for each locus

the default values for MCMC analysis were used. We compared the genealogies from 

the posterior distribution to the species trees and compared the genealogies from the 

posterior predictive distribution to the species tree using two descriptive summary 

statistics: lcwt (likelihood of the coalescent waiting times) and ndc (number of deep 

coalescences). When samples are drawn from data with a good fit to the MSCM, the 

summary statistics from each distribution should be approximately equal and the 

expected difference between the two is zero (Reid et al., 2014). Data that are a poor fit 

to the MSCM are indicated by a deviation from the expectation of a difference 

distribution that is centered on zero is encountered above a specified quantile level 

(Gruenstaeudl et al., 2016). 
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Genome size determination 

We used flow cytometry (FCM) technology for 75 specimens to estimate nuclear DNA 

content. One shoot of each sample was chopped with a razor blade together with the 

internal standard Carex acutiformis Ehrh. 1C = 0.41 pg; Lipnerová et al., 2012) or Bellis 

perennis L. (1C = 1.56 pg; our own calibration against Carex acutiformis) in 1 mL of 

 and RNase IIa 

cytometer equipped with a 532 nm (green) diode-pumped solid-state laser (100 mW 

output); the fluorescence intensity of 12 000 particles was recorded. When possible, we 

used in vitro cultivated fresh material, but for 47 samples that did not grow satisfactorily 

in vitro, we used dry material collected in the years 2009 2014. The fluorescence 

histograms were processed using FlowJo version 10.2 (https://www.flowjo.com/). 

Sex determination 

To determinate sex, one plant per sample was employed. We amplified the rpS15A sex-

linked locus by PCR and digested the product with HindIII. An intron in the rpS15A 

amplicon contains a cut-site difference between the male and female products (Norrell 

et al., 2014) that is clearly observable in the banding patterns, which were visualized 

after electrophoresis in an agarose gel and scored by hand. We identified the sex of 82 

samples, 88.17% of the total, which were from the Spanish Sierra Nevada (42), Spanish 

central mountain ranges (16), Spanish southeastern mountains (3), Sicilian Mount Etna 

(2), Alps (7), Pyrenees (3), South Africa (2), Germany (2), Czech Republic (3), and 

Sweden (2). For the remaining samples, we could not unambiguously interpret the 

pattern in the restriction-site fragment length polymorphism in the rpS15A amplicon. 

We express the results as a proportion of males and computed the 95% confidence 

Team, 2017). 

Calculation of the binomial proportion confidence interval 

If the total number of experiments and the number of positive outcomes of a success-

failure experiment are known, it is possible to calculate the CIs for the probability of 

https://www.flowjo.com/
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success. As a consequence, the CI for the proportion of males (or females) in a 

population (success) based on the results of sex-determination of a given number of 

-

Pearson) to calculate CIs (presented in parentheses below). 

RESULTS 

Phylogenetic analyses 

The sequence alignments varied in total length between 207 (215 with coded gaps) and 

848 (891 with coded gaps) positions, for hp23.9 and rpL23A, respectively. The number 

of constant positions was between 186 and 715 for the above-mentioned loci, and the 

parsimony-informative variable positions differed between 5 and 95 for trnL and 

rpL23A, respectively (Table II.1). The loci PPR, TBP, rpL23A, and TRc1b3.05 showed 

two well-differentiated clades with support of 0.87 (0.85 0.88) to 0.77 (0.75 0.79) 

posterior probability (pp), 0.96 (0.95 0.96) to 1.00 (1.00 1.00) pp, 1.00 (1.00 1.00) to 

1.00 (1.00 1.00) pp, and 1.00 (1.00 1.00) to 1.00 (1.00 1.00) pp, respectively (Fig. II.1; 

see also the Annex II.2, Annex II.3, Annex II.4). 

Table II.1. Characteristics of the loci used for molecular evolutionary analyses. The genomic location 
-  

Locus Genomic location Sequence length 
(with gaps) Invariant sites 

Parsimony-
informative 

sites 

hp23.9 Nuclear-autosomal 207 (215) 186 15 

PPR Nuclear-U/V 331 (334) 309 8 

rpL23A Nuclear-putative 
autosomal 848 (891) 715 95 

TBP Nuclear-autosomal 365 (365) 337 11 

TRc1b3.05 Nuclear-putative 
autosomal 402 (417) 362 28 

trnL Chloroplast 320 (320) 311 5 
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Fig. II.1. Phylogenetic trees inferred from two of the studied loci: (A) nuclear TRc1b3.05 and (B) 
chloroplast trnL. For each tip in the trees, geographical origin and herbarium number are given (numbers 
without letters are 
cloning is in parentheses if there was more than one; and bold letters indicate recombinant samples. 
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In the case of rpL23A, sequences of Cheilothela chloropus were not obtained for use as 

outgroup, but again two clades were resolved. The hp23.9 locus had a support for one 

clade of 1.00 (1.00 1.00) pp but the other clade had a value of 0.55 (0.45 0.61) pp 

(Annex II.5). In all the five nuclear loci studied, one of the clades was formed always by 

34 Sierra Nevada samples and one of the Spanish southeastern mountains (hereafter 

rest of the sampled areas, including one from the Sierra Nevada and two from the 

TBP) we 

added sequences available at GenBank, including samples from Antarctica, Australia, 

and North America. The resulting tree topology shows that our samples give a 

reasonable good representation of the Ww group and that none of these additional 

sequences is closely related to the SN samples (Annex II.6). The remaining 17 

sequenced samples were strongly resolved in either the SN clade or the Ww clade, 

depending on the studied locus (they did not present intermediate sequences between 

applied to bryophytes should strictly be used only for the sporophytic hybrids (2n) 

(Anderson, 1980); for their gametophytic progeny (n) showing combination of parental 

confuse these with hybrids observed among vascular plants. The recombinants were 

derived mainly from the Sierra Nevada, but also from the Spanish central mountain 

ranges, the Alps, and the lowlands of the United Kingdom (Fig. II.2). The chloroplast 

locus showed one well-supported clade 0.96 (0.95 0.98) pp, and all remaining samples 

with deeper coalescent events (Fig. II.1). All the samples considered as recombinants 

based on the nuclear markers were closely related and sister to the rest of the SN 

samples, with the only exception of one specimen from the Sierra Nevada (MUB 

49528), which is a recombinant and belongs to the Ww chloroplast clade. 

 The apparently uncertain position of some individuals is clarified by the result of 

the Neighbor-Net network (Fig. II.3). Moreover, for the phi-test when the six loci were 

studied together, a highly significant P value (0.0) was obtained, confirming the 

presence of recombination signal. Graphically, two extreme groups can be observed, the 

SN group and the Ww group, with some individuals in intermediate positions. 
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Cloning DNA sequences 

Cloning of loci confirmed that diploid specimens (see below) present two different 

copies of the same loci in most cases. The loci TRc1b3.05, PPR, and rpL23A presented 

predominantly a single copy, although some individuals presented the two copies in 

other loci (Annex II.7). Some haploid individuals presented two different copies of a 

Fig. II.3. Neighbor-Net network to test signals of reticulate evolution between the samples. The main 
groups are highlight by colored circles matched to their names. The P value from the phi-test of 
recombination is indicated. 

Fig. II.2. Geographic location of Ceratodon samples included in this study. Pie charts indicate proportion 
of samples of each genomic group by area (black: Ww group; gray: SN group; white: recombinant 
samples), with number of samples for each. 



Chapter II. Peripatric speciation in the moss genus Ceratodon 

 

73 

locus. This may be due to the possibility of gene redundancy, which can result from 

unequal crossing over, retroposition, or chromosomal (or genome) duplication 

(Magadum et al., 2013). 

Coalescent stochasticity analyses 

Although our data suggested the existence of recombinants between the two groups, 

incomplete lineage sorting and hybridization may result in similar molecular signals. 

Nevertheless, the two summary statistics ndc and lcwt, employed for the comparison of 

the genealogies from the posterior distribution to the species trees and from the 

posterior predictive distribution to the species trees, show significant (P < 0.05) 

differences between our data with respect to MSCM (Table II.2), indicating that 

incomplete lineage sorting (coalescent model) alone cannot explain the different tree 

topologies. 

Table II.2. Results of P2C2M analysis in which lcwt and ndc descriptive summary statistics are shown 
for each DNA locus analyzed. All loci under study are of nuclear origin, except trnL. Asterisks indicate 
poor model fit at a probability level of 0.05; n.a. = not applicable. 

Locus lcwt ndc 

hp23.9 510.16 ± 117.86* -57.46 ± 29.93* 

PPR 530.67 ± 121.31* -59.88 ± 29.87* 

rpL23A 462.75 ± 110.74* -53.04 ± 29.16* 

TBP 525.94 ± 120.55* -59.56 ± 29.77* 

TRc1b3.05 516.43 ± 121.96* -58.31 ± 29.96* 

trnL n.a. -65.33 ± 29.26* 

Sum of all genes n.a. -353.59 ± 105.62* 

 

Flow cytometry analyses 

We obtained three clearly differentiated groups of cytotypes for both fresh and dry 

material (Table II.3 and Fig. II.4). Measurements from dry material gave higher values 

(by 18% on average) than those from fresh material, and therefore a conversion factor 

(1/1.18 = 0.85) was applied to the former. When fresh and dry materials were 
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Table II.3. Nuclear DNA content as measured by flow cytometry. Cytotypes considered, number of 
samples used in the analyses (n), mean value of DNA, standard deviation, and range of values obtained 
for each cytotype are given (asterisk indicates conversion factor of 0.85 applied to dry material when 
fresh and dry material are combined). 

 Cytotype n Mean (pg) Standard 
deviation 

Minimum 
(pg) 

Maximum 
(pg) 

Fresh material 

a 5 0.36 < 0.01 0.36 0.37 

b 20 0.46 0.01 0.45 0.48 

c 3 0.81 0.01 0.81 0.82 

Dry material 

a* 25 0.44 0.01 0.41 0.45 

b* 21 0.54 0.01 0.52 0.57 

c* 1 0.97 -- -- -- 

Fresh + dry material 
(*) 

a + a* 30 0.37 0.01 0.35 0.38 

b + b* 41 0.46 0.01 0.44 0.48 

c+c* 4 0.82 0.01 0.81 0.82 

  75     

considered together, the first cytotype had a mean value of 1C = 0.37 pg, and the second 

one showed 25.4% more DNA content (1C = 0.46 pg). The third cytotype had 1C = 

0.82 pg mean value of DNA content. All specimens of the Ww group belonged to the 

smallest cytotype, while all those of the SN group were categorized in the second 

cytotype, and the recombinant specimens were found in both the second and the third 

cytotype (Annex II.7). 

 

 

 

 

 

Fig. II.4. Histogram of genome sizes of representative samples of Ceratodon generated by flow 
cytometry. A conversion factor of 0.85 was applied to the data obtained from dry material. 
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Sex determination 

All samples from the SN group (29) and all the recombinant samples (15) were females, 

while the Ww group (38) consisted mainly of females and two males (one from the 

Sierra Nevada and the other from the Alps; see Annex II.1). The high proportion of 

females in the Ww samples may be due to a collection bias, given that we preferentially 

chose moss cushions with sporophytes, because sporophyte morphology is one of the 

few characters that enabled us to make a clear distinction in the field between 

Ceratodon and other morphologically similar genera (e.g., in the Bryales Limpr. and 

Pottiales M. Fleisch.). The presence of sporophytes, however, indicates that males must 

have been present. Male buds (perigonia) are deciduous and may not be produced each 

season, which means that sterile plants may have been males. In the Sierra Nevada, we 

never observed sporophytes (the identity of all samples was verified in the laboratory by 

examining microscopic gametophytic characters). Similarly, Rams et al. (2014) reported 

finding no sporophytes in deep sampling carried out in the Sierra Nevada from early 

spring to autumn from 2002 to 2004, and García-Zamora et al. (1998) found only one 

fructified specimen identified as C. purpureus in a survey of a zone close to the Sierra 

Nevada in 1990 1991. Moreover, none of the Ceratodon samples from southeastern 

Spain in the MUB and GDA/GDAC (University of Granada, Spain) herbaria showed 

sporophytes. If we exclude a possible bias in the case of the Sierra Nevada samples, we 

can conclude, based on the binominal distribution, that the 95% CI for the probability of 

encountering males in the SN-type populations lies in the range of p = 0.00 for the 

- ), which means that males might even be completely absent. 

DISCUSSION 

In most major models of speciation, a period of allopatry is essential to the evolution of 

reproductive isolation (Coyne & Orr, 2004). However, in many cosmopolitan species, 

including many mosses and ferns, the entire habitable range of the species is within the 

range of the dispersal distance of its spores (Muñoz et al., 2004; Frahm, 2007; Pisa et 

al., 2013), making strict allopatry unlikely. Therefore, it is reasonable to propose that 
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speciation mechanisms that either occur in sympatry or accommodate some gene flow 

contribute to generating the extant diversity in such groups. The two best-studied 

sympatric speciation mechanisms in plants are polyploidy and the evolution of self-

fertilization (Barringer, 2007). Here we show that the evolution of a new species, 

closely related to the cosmopolitan Ceratodon purpureus, was associated with a 25% 

increase in genome size and a significant decrease in frequency of males (Nieto-Lugilde 

et al., 2018). Surprisingly, although we have found neither males nor evidence of recent 

sexual reproduction (i.e., sporophytes) in the new species, the genetic diversity among 

members of this species is relatively high. Despite the long period of isolation suggested 

by the sequence divergence between C. purpureus and the new species, we have found 

evidence of interspecific hybridization, suggesting that the new species apparently has 

retained the capacity for sexual reproduction. In a separate paper, we discuss the 

taxonomic implications of this discovery (Nieto-Lugilde et al., 2018). Here we use 

genealogical and genome size data to make inferences regarding the genetic architecture 

of speciation, and the demographic parameters that permit such divergence. 

 Taxonomists have struggled with species delimitation in the genus Ceratodon 

since the description of the genus. Burley and Pritchard (1990) found references for 

nearly 50 specific or subspecific taxa within Ceratodon, but based on an extensive 

survey of herbarium specimens recognized only four species: C. antarcticus Cardot., 

C. conicus (Hampe) Lindb., C. heterophyllus Kindb., and C. purpureus, including three 

infraspecific taxa (subsp. convolutus (Reichardt) Burley, subsp. purpureus, and subsp. 

stenocarpus (Bruch & Schimp.) Dixon). Previous molecular population genetic analyses 

indicated that disjunct populations of C. purpureus were sometimes very closely related, 

clearly showing that long-distance dispersal, even among continents, was frequent 

enough to erase any signal of strong population structure (McDaniel & Shaw, 2005). 

However, these data did not provide strong genealogical support either for or against the 

existence of distinct species other than C. purpureus. Subsequent classical genetic 

analyses showed that geographically and ecologically distant populations were partially 

reproductively isolated from one another (McDaniel et al., 2007, 2008), but these 

appeared to be somewhat porous reproductive barriers, and it was unclear that the 

populations represented different species. 
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 McDaniel and Shaw (2005) did find some isolates of C. purpureus that were 

genetically distant from the more common haplotypes found in northern temperate 

regions. Here we found strong evidence that haplotypes that are distantly related to the 

typical C. purpureus haplotypes are locally abundant in the Sierra Nevada of southern 

Spain. We also found populations containing SN haplotypes and recombinants, together 

with some rare samples with exclusively the typical C. purpureus haplotypes. To 

evaluate the possibility that the segregation of these divergent haplotypes in the SN 

populations represents the retention of ancestral variation in the species (i.e., coalescent 

stochasticity causing incomplete lineage sorting), we generated coalescent simulations 

using *BEAST and P2C2M. These analyses showed that the divergence between these 

two haplotypic classes was too great to be explained by coalescent stochasticity. The 

fact that this polymorphism is found in all the nuclear loci that we sampled, and that it is 

geographically concentrated to the Sierra Nevada region, suggests that balancing 

selection is also an unlikely explanation. Collectively, these data suggest that the SN 

haplotypes constitute a rare species, sister to and partially reproductively isolated from 

the cosmopolitan C. purpureus. 

 The default mode for the evolution of reproductive isolation is allopatric 

speciation. The sympatric occurrence of typical C. purpureus haplotypes and SN 

haplotypes, even at modest frequencies, contradicts the suggestion by McDaniel and 

Shaw (2005) that the Mediterranean populations were isolated from the rest of the 

species as a result of decreased spore rain in peripheral populations separated by 

prevailing global wind patterns. If we assume that the current dispersal capabilities of C. 

purpureus represent the ancestral condition, this suggests that geography may not have 

been the primary isolating mechanism between the nascent species. Morphological 

analysis of plants of both species grown in a common garden (as well as putative 

recombinants between them; Nieto-Lugilde et al., 2018) indicate that members of the 

Ww group can be distinguished morphologically from the SN group on the basis of 

multivariate biometrical evaluation of microscopic features of the caulidia and phyllidia 

(stem length, presence or absence of apical comal tuft, leaf size and shape, leaf costa 

width at base of lamina, and leaf costa excurrence). Nevertherless, we were unable to 

distinguish between the SN group plants and recombinants in field samples, which 

suggests that the environment influences the variance in taxonomically important 
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characters. It is certainly possible that an extrinsic factor, like a habitat preference, 

isolated the two species. 

 It is also possible that an intrinsic factor isolated the two species. Remarkably, 

however, we detected only females in the SN species, which suggests that male lethality 

could contribute to isolating the two species. Sex in dioecious bryophytes like C. 

purpureus is determined at meiosis, by the segregation of a UV chromosome pair, 

meaning that ~ 50% of the spores produced in a population should be males. Some 

meiotic sex ratio variation has been observed in this species in natural populations 

(overall mean of proportion of males was 0.41 [95% CI: 0.17 0.72]; Norrell et al., 

2014) and artificial crosses (male-biased sex ratio = 60%; McDaniel et al., 2008). Even 

given our sample size (n = 29, with no males), we can conclude that the percentage of 

males in the SN populations is much lower (95% CI included 0-12%; additional 

samples not included in this study lower the 95% CI to a range of 0-6.7%). We do not 

know whether the decrease in males coincided with the speciation event, or occurred 

subsequent to the evolution of reproductive isolation. The evolution of apomixis or 

obligate selfing from historically outcrossing lineages is a well-documented route to the 

evolution of new species in plants (Stebbins, 1974; Barrett, 2010; Wright et al., 2013), 

and parthenogenetic lineages associated with the loss of males are frequent in some 

animal lineages (insects: Hagimori et al., 2006; Montelongo & Gómez-Zurita, 2015; 

vertebrates: Neaves & Baumann, 2011; Gutekunst et al., 2018). However, we know of 

no other cases where the loss of males has been associated with speciation in 

bryophytes. 

 The presence of recombinants containing both typical C. purpureus alleles and 

alleles from the SN species indicated that rare interspecies hybridization has occurred 

between individuals of the two species. Most of the recombinants possessed the SN 

chloroplast type, based on the trnL sequence data, which suggests that this species was 

more often the maternal parent (consistent with the rarity of males). We found one 

instance of a recombinant plant that had a typical C. purpureus trnL sequence, but we 

cannot determine whether this was a rare case of a hybridization involving an SN male 

(i.e., a cross in the opposite direction) or whether this resulted from a backcross of a 

male recombinant to a typical C. purpureus female. Intrinsic genetic incompatibilities 

are often manifest as Dobzhansky-Muller interactions, which result in asymmetric 
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introgression patterns at the causative loci (McDaniel et al., 2008) due to the death of 

incompatible multilocus genotypes. Although we sampled only six loci across the 

genome, the recombinants tended to have the SN alleles at the TBP and rpL23A loci. 

We are currently examining the frequency of polymorphism across the genome of the 

SN and recombinant genotypes to distinguish among forms of extrinsic and intrinsic 

isolation between the SN and typical C. purpureus populations. 

 The flow cytometric data also showed that members of the SN species had a 

genome ~ 25% larger than typical members of C. purpureus. It is possible that the 

speciation involved a whole-genome duplication event followed by rapid genome 

reduction, the duplication of large chromosomes (Inoue et al., 2015; Panchy et al., 

2016), or the accumulation of transposable elements (TEs), which contribute to the 

extraordinary variation in genome size within even closely related species in 

angiosperms (Vitte & Bennetzen, 2006). Although the current data represent the most 

comprehensive sampling of variation in genome size in Ceratodon, we still lack 

cytological data to determine whether variation in nuclear DNA content is due to an 

increase in the size of chromosomes or to the increase in the number of chromosomes. 

The variance in genome size is almost equal between the two groups, which suggests 

that the SN species is fixed for whatever loci underlie the genome size change. 

Additionally, recombinants between the two groups have the genome size of SN 

species, not an intermediate value, suggesting that the increase in genome size may 

come from a single genomic change, rather than many small changes across genome. 

One hypothesis is that these plants have gained DNA on the sex chromosome, which 

comprises nearly one-third of the genome (Heitz, 1932; Jachimsky, 1935; McDaniel et 

al., 2007). Sex chromosomes in other organisms are known to accumulate genomic 

material rapidly, sometimes in large translocations, and potentially generating 

pronounced evolutionary and ecological consequences (Tennessen et al., 2018). We are 

now attempting to generate artificial crosses to evaluate the genetic basis of the genome 

size difference. 

 We also found a third rare cytotype with a genome size approximately twice that 

of either SN plants or typical C. purpureus plants. These isolates all had mixed 

haplotypes (i.e., gene sequences from both the SN and typical C. purpureus clades) and 

a genome size very close to the sum of the SN group and Ww group (~ 1.2% smaller 
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than the sum of the group means), suggesting that they arose from an allopolyploid 

event. Without more sequence or cytological data, we cannot formally eliminate the 

possibility that the larger cytotype arose from autopolyploidy followed by hybridization, 

although this would require the gain of ~ 10% or loss (~ 12%) of the genomic DNA. 

Additionally, allopolyploidy is a widely observed mechanism to restore the fertility of 

F1 hybrids between partially reproductively isolated species with karyotypic differences 

and exhibit meiotic abnormalities (De Storme & Mason, 2014). 

 Finally, the new SN species apparently maintains levels of genetic diversity 

nearly equivalent to typical populations of its sister species C. purpureus without 

obviously undergoing sexual reproduction. Sexual reproduction in mosses occurs when 

males and females grow in close proximity, and sperm cells disperse, typically in humid 

conditions, from male to female plants, producing sporophytes, a very common 

observation in most populations of C. purpureus. Given the complete absence of 

sporophytes in observed Sierra Nevada samples, reproduction seems to be 

predominantly by fragmentation of the gametophores. Moss gametophores can persist 

for many years, even in relatively stressful conditions, and easily spread clonally by 

fragmentation. In some cases, such fragments may be dispersed a considerable distance 

(Frahm, 2007; Lewis et al., 2014b). It is clear that spatially heterogeneous selection 

(Vrijenhoek, 1978) or frequency-dependent selection (Weeks and Hoffmann, 2008) can 

maintain high genetic diversity in clonal organisms. Antarctic populations of C. 

purpureus, which similarly lack any sexual reproduction, were also quite variable, 

although less polymorphic than was observed in the closely related nearby populations 

from Australia (Clarke et al., 2009). Also similar to the Antarctic studies, we found 

polymorphic nuclear ITS sequences between samples collected a few meters apart (M. 

Nieto-Lugilde, O. Werner, S. F. McDaniel, R. M. Ros, unpublished data), indicating 

that these localities were colonized several times independently. However, unlike the 

Antarctic case, the SN isolates are genetically distinct from any known spore source. It 

is possible that sexual reproduction in the SN species generated the current variation 

under a past climate regime, or in undetected localities, although it is clearly far rarer 

than in C. purpureus. Further analyses of the evolutionary history of the SN population 

are likely to produce a better understanding of the phenomena that generate new species 

in cosmopolitan taxa. 
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ANNEXES 

Annex II.1. Voucher information for the studied specimens. For each sequenced sample the next 
information is given: herbarium code (herbaria acronyms follow Index Herbariorum); geographical 
origin, collection date (year-month-day), gender if known (F for female, M for male), presence of 
sporophyte if appropriate, indicated by an asterisk (*), GenBank accession numbers for the six loci 
studied, given in the next order: hp23.9, PPR, rpL23A, TBP, TRc1b3.05 and trnL; sequences obtained by 
cloning are indicated by their GenBank accession number given in parentheses. 

Ingroup 

Mediterranean mountain areas 

MUB 43730: Spanish southeastern mountains, 2011-11-13, F, KP825628, KP826017, KP826181, 
KP826402, KP826531, KY229001. MUB 49304: Sierra Nevada Mountains, 2012-07-20, F, KP825703, 
KP826091, KP826265, KP826473, KP826601, MG050779. MUB 49306: Sierra Nevada Mountains, 
2012-07-20, F, KP825701, KP826089, KP826263, KP826471, KP826599, KY229023. MUB 49318: 
Sierra Nevada Mountains, 2012-07-20, KP825698, KP826086, KP826260, KP826468, KP826596, . 
MUB 49319: Sierra Nevada Mountains, 2012-07-20, KP825697, KP826085, KP826259, KP826467, 
KP826595, MG050780. MUB 49323: Sierra Nevada Mountains, 2012-07-20, F, KP825696, KP826084, 
KP826258, KP826466, KP826594, KY229040. MUB 49326: Sierra Nevada Mountains, 2012-07-20, F, 
KP825693, KP826081, KP826255, KP826463, KP826591, MG050781. MUB 49327: Sierra Nevada 
Mountains, 2012-07-20, F, KP825692, KP826080, KP826254, KP826462, KP826590, . MUB 49329: 
Sierra Nevada Mountains, 2012-07-20, F, KP825690, KP826078, KP826252, KP826460, KP826588, 
KY229024. MUB 49331: Sierra Nevada Mountains, 2012-07-20, F, KP825688, KP826076, KP826250, 
KP826459, KP826586, . MUB 49339: Sierra Nevada Mountains, 2012-07-20, F, (MG050789, 
MG050790, MG050791, MG050792, MG050793, MG050794, MG050795, MG050796, MG050797, 
MG050798, MG050799), (KP826073, MG050748, MG050749, MG050750, MG050751, MG050752), 
KP826248, (KP826456, MG050761, MG050762, MG050763, MG050764, MG050765), KP826583, 
KY229035. MUB 49341: Sierra Nevada Mountains, 2012-07-20, F, KP825683, KP826071, KP826246, 
KP826454, KP826581, MG050782. MUB 49342: Sierra Nevada Mountains, 2012-07-20, F, KP825682, 
KP826070, KP826245, KP826453, KP826580, . MUB 49351: Sierra Nevada Mountains, 2012-07-20, F, 
KP825681, KP826069, KP826244, KP826452, KP826579, . MUB 49353: Sierra Nevada Mountains, 
2012-07-20, F, KP825679, KP826067, KP826242, KP826450, , . MUB 49356: Sierra Nevada 
Mountains, 2012-07-20, KP825677, KP826065, KP826239, KP826448, KP826577, KY229030. MUB 
49357: Sierra Nevada Mountains, 2012-07-20, F, KP825676, KP826064, KP826241, KP826447, 
KP826576, . MUB 49366: Sierra Nevada Mountains, 2012-07-21, F, KP825670, KP826058, KP826238, 
KP826442, KP826570, KY229011. MUB 49370: Sierra Nevada Mountains, 2012-07-21, KP825674, 
KP826062, KP826234, KP826446, KP826574, KY229015. MUB 49373: Sierra Nevada Mountains, 
2012-07-21, F, KP825671, KP826059, KP826233, KP826443, KP826571, . MUB 49382: Sierra Nevada 
Mountains, 2012-07-21, F, KP825669, KP826057, KP826180, KP826441, KP826569, . MUB 49387: 
Sierra Nevada Mountains, 2012-07-21, F, KP825666, KP826054, KP826230, KP826438, KP826565, . 
MUB 49399: Sierra Nevada Mountains, 2012-07-21, F, KP825663, KP826051, KP826224, KP826435, 
KP826563, KY229033. MUB 49403: Sierra Nevada Mountains, 2012-07-21, F, KP825660, KP826048, 
KP826182, KP826432, KP826560, . MUB 49408: Sierra Nevada Mountains, 2012-07-21, F, KP825657, 
KP826045, KP826222, , KP826557, KY229005. MUB 49410: Sierra Nevada Mountains, 2012-07-21, 
F, KP825655, KP826043, KP826220, KP826428, KP826555, . MUB 49411: Sierra Nevada Mountains, 
2012-07-21, F, KP825654, KP826042, KP826219, KP826427, KP826554, MG050783. MUB 49412: 
Sierra Nevada Mountains, 2012-07-21, F, KP825653, KP826041, KP826218, KP826426, KP826553, . 
MUB 49413: Sierra Nevada Mountains, 2012-07-21, F, KP825652, KP826040, KP826217, KP826425, 
KP826552, KY229008. MUB 49424: Sierra Nevada Mountains, 2012-07-21, F, KP825651, KP826039, 
KP826216, KP826424, KP826551, . MUB 49426: Sierra Nevada Mountains, 2012-07-21, F, KP825649, 
KP826037, KP826214, KP826422, KP826549, . MUB 49427: Sierra Nevada Mountains, 2012-07-21, F, 
KP825648, KP826036, KP826213, KP826421, KP826548, . MUB 49442: Sierra Nevada Mountains, 
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2012-07-21, F, KP825643, KP826031, KP826208, KP826417, KP826544, . MUB 49443: Sierra Nevada 
Mountains, 2012-07-21, F, KP825642, KP826030, KP826207, KP826416, KP826543, . MUB 49444: 
Sierra Nevada Mountains, 2012-07-21, F, KP825641, KP826029, KP826206, KP826415, KP826542, 
MG050784. MUB 49445: Sierra Nevada Mountains, 2012-07-21, KP825640, KP826028, KP826209, 
KP826414, KP826541, . MUB 49451: Sierra Nevada Mountains, 2013-07-12, F, (KP825639, 
MG050800, MG050801, MG050802, MG050803, MG050804, MG050805, MG050806, MG050807, 
MG050808), (KP826027, MG050753), (KP826204, MG050869, MG050870), KP826413, KP826540, 
KY229045. MUB 49461: Sierra Nevada Mountains, 2013-07-12, F, KP825638, KP826026, KP826203, 
KP826412, KP826539, KY229052. MUB 49471: Sierra Nevada Mountains, 2013-07-12, M, KP825706, 
KP826094, KP826201, KP826476, KP826604, KY229043. MUB 49473: Sierra Nevada Mountains, 
2013-07-12, F, (KP825637, MG050809, MG050810, MG050811, MG050812, MG050813, MG050814, 
MG050815, MG050816, MG050817, MG050818, MG050819), KP826025, (MG050871, MG050872, 
MG050873, MG050874, MG050875, MG050876), (MG050766, MG050767, MG050768, MG050769, 
MG050770), KP826538, KY229041. MUB 49480: Sierra Nevada Mountains, 2013-07-12, F, 
(KP825636, MG050820, MG050821, MG050822, MG050823, MG050824, MG050825, MG050826), 
KP826024, KP826199, KP826410, KP826537, KY229046. MUB 49485: Sierra Nevada Mountains, 
2013-07-12, F, (KP825635, MG050827, MG050828, MG050829, MG050830, MG050831, MG050832, 
MG050833), (KP826023, MG050754, MG050755, MG050756, MG050757, MG050758), (MG050877, 
MG050878, MG050879, MG050880, MG050881, MG050882), (KP826409, MG050771, MG050772, 
MG050773, MG050774, MG050775, MG050776), KP826536, KY229032. MUB 49492: Sierra Nevada 
Mountains, 2013-07-13, F, (MG050834, MG050835, MG050836, MG050837, MG050838, MG050839, 
MG050840), KP826022, KP826198, KP826408, , KY229037. MUB 49501: Sierra Nevada Mountains, 
2013-07-13, F, KP825633, , KP826197, KP826407, KP826535, KY229042. MUB 49504: Sierra 
Nevada Mountains, 2013-07-13, F, (KP825632, MG050841, MG050842, MG050843, MG050844, 
MG050845), KP826021, KP826196, KP826406, (MG050867, MG050868), KY229047. MUB 49505: 
Sierra Nevada Mountains, 2013-07-13, F, KP825631, KP826020, KP826195, KP826405, KP826534, 
KY229031. MUB 49518: Sierra Nevada Mountains, 2013-07-13, F, (KP825630, MG050846, 
MG050847, MG050848, MG050849, MG050850, MG050851, MG050852, MG050853, MG050854), 
(KP826019, MG050759), KP826194, KP826404, KP826533, KY229038. MUB 49528: Sierra Nevada 
Mountains, 2013-07-13, F, (KP825629, MG050855, MG050856, MG050857, MG050858, MG050859, 
MG050860), (KP826018, MG050760), KP826193, (MG050777, MG050778), KP826532, KY229027. 
MUB 49538: Spanish central mountain ranges, 2011-10-27, F, KP825762, KP826150, KP826192, 
KP826528, KP826659, KY229021. MUB 49540: Spanish central mountain ranges, 2011-10-27, F, 
KP825760, KP826148, KP826191, KP826526, KP826657, . MUB 49541: Spanish central mountain 
ranges, 2011-10-27, F, KP825759, KP826147, KP826190, KP826525, KP826656, MG050785. MUB 
49542: Spanish central mountain ranges, 2011-10-27, F, KP825758, KP826146, KP826188, KP826524, 
KP826655, . MUB 49545: Spanish central mountain ranges, 2011-10-27, KP825755, KP826143, 
KP826186, KP826521, KP826652, KY229029. MUB 49550: Spanish central mountain ranges, 2011-10-
27, F*, KP825750, KP826138, KP826179, KP826516, KP826647, MG050786. MUB 49552: Spanish 
central mountain ranges, 2011-10-27, F*, KP825748, KP826136, KP826177, KP826514, KP826645, 
MG050787. MUB 49553: Spanish central mountain ranges, 2011-10-27, F*, KP825747, KP826135, 
KP826176, KP826513, KP826644, . MUB 49554: Spanish central mountain ranges, 2011-10-27, F*, 
KP825746, KP826134, KP826175, KP826512, KP826643, KY229017. MUB 49555: Spanish central 
mountain ranges, 2011-10-27, KP825745, KP826133, KP826174, KP826511, KP826642, . MUB 
49557: Spanish central mountain ranges, 2011-10-27, F, KP825743, KP826131, KP826173, KP826509, 
KP826640, MG050788. MUB 49558: Spanish central mountain ranges, 2011-10-28, F, KP825742, 
KP826130, KP826172, KP826508, KP826639, . MUB 49560: Spanish central mountain ranges, 2011-
10-28, F*, KP825740, KP826128, KP826170, KP826506, KP826637, KY229013. MUB 49562: Spanish 
central mountain ranges, 2011-10-28, KP825738, KP826126, , KP826504, KP826635, . MUB 49564: 
Spanish central mountain ranges, 2011-10-28, F*, KP825736, KP826124, KP826168, KP826502, 
KP826633, . MUB 49566: Spanish central mountain ranges, 2011-10-28, F, KP825734, KP826122, 
KP826167, KP826500, KP826631, KY229044. MUB 49567: Spanish central mountain ranges, 2011-10-
28, F*, KP825733, KP826121, KP826166, KP826499, KP826630, KY229003. MUB 49568: Spanish 
central mountain ranges, 2011-10-29, F, KP825732, , KP826165, , KP826629, KY229048. MUB 
49569: Spanish central mountain ranges, 2011-10-29, F*, KP825731, KP826119, KP826164, KP826497, 
KP826628, KY229009. MUB 49570: Sicilian Mount Etna, 2013-09-07, F, KP825714, KP826107, , 
KP826478, KP826606, KY229016. MUB 49593: Sicilian Mount Etna, 2013-09-08, F, KP825715, 
KP826106, KP826163, KP826479, KP826607, KY229034. MUB 49600: Spanish southeastern 
mountains, 2013-11-15, F*, KP825722, KP826104, KP826159, KP826486, KP826613, KY229022. 



Chapter II. Peripatric speciation in the moss genus Ceratodon 

 

91 

MUB 49602: Spanish southeastern mountains, 2013-11-15, F, KP825723, KP826105, KP826160, 
KP826487, KP826614, KY229050. 

Other mountainous systems 

CBFS 6159: Alps, 1997-08-14, KP825712, KP826100, , KX503294, , . CBFS 6162: Alps, 1997-08-
14, F, KP825711, KP826099, KP826154, KP826483, KP826611, KY229028. CBFS 13557: Alps, 2009-
07-23, F, KP825708, KP826096, KP826151, , KP826608. MUB 49604: Alps, 2012-09-14, F*, 
KP825627, KP826016, KP826162, KP826401, KP826530, KY229053. MUB 49606: Alps, 2012-09-14, 
F*, KP825727, KP826115, KP826161, KP826493, KP826624, --. MUB 49613: Alps, 2012-09-16, F*, 
KP825726, KP826114, , KP826492, KP826623, KY229051. MUB 49617: Alps, 2012-09-16, F*, 
KP825725, KP826113, , KP826491, KP826622, KY229002. MUB 49619: Alps, 2012-09-17, M, 
KP825724, KP826112, , KP826490, KP826621, KY229000. MUB 49624: Pyrenees, 2012-08-31, F*, 
KP825730, KP826118, , KP826496, KP826627, KY229007. MUB 49629: Pyrenees, 2012-08-31, F*, 
KP825729, KP826117, KP826158, KP826495, KP826626, KY229055. MUB 49650: Pyrenees, 2012-09-
02, F*, KP825728, KP826116, KP826157, KP826494, KP826625, KY229004. 

Lowlands 

BOL 46302: South Africa, 2002-10-25, F*, KP825717, KP826109, , KX503295, KP826618, 
KY229010. BOL 46303: South Africa, 2002-11-16, F*, KP825716, KP826108, , , KP826617, --. 
MUB 49652: Germany, 2011-08-11, F*, KP825718, KP826110, KP826156, KP826488, KP826619, 
KY229039. MUB 49653: Germany, 2011-02-09, F*, KP825719, KP826111, , KP826489, KP826620, 
KY229020. MUB 49654: Czech Republic, 2014-04-11, F*, KX503276, , KX503286, KX503291, 
KX503306, KY229012. MUB 49655: Czech Republic, 2014-04-11, F*, KX503275, , KX503288, 
KX503290, KX503305, KY228999. MUB 49659: Czech Republic, 2014-04-12, F*, KX503274, , 
KX503287, KX503289, KX503304, KY229006. MUB 52185: United Kingdom, 2014-12-10, 
KX503277, KX503282, KX503284, KX503292, KX503307, KY229049. MUB 52186: United Kingdom, 
2014-04-03, (MG050861, MG050862, MG050863, MG050864, MG050865, MG050866), KX503283, 
KX503285, KX503293, KX503308, KY229054. S B201182: Sweden, 1985-07-16, F*, KP825721, 
KP826103, , KX503296, KP826616, KY229018. S B201183: Sweden, 1985-07-21, F*, KP825720, 
KP826102, , KP826485, KP826615, KY229014. 

Outgroup: Cheilothela chloropus 

MUB 52416: Sierra Nevada Mountains, 2011-04-28, KX503273, KX503281, , KX503299, KX503303, 
KY229025. MUB 52417: Sierra Nevada Mountains, 2011-04-28, , KX503280, , KX503298, 
KX503302, . MUB 52418: Sierra Nevada Mountains, 2011-04-28, , KX503279, , KX503297, 
KX503301, KY229026. MUB 52419: Sierra Nevada Mountains, 2011-04-28, , KX503278, , , 
KX503300, . 
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Annex II.2. Phylogenetic tree inferred from the nuclear rpL23A locus. For each tip in the trees 
geographical origin and number of herbarium are given (numbers without letters are from MUB); 2x is 
used to highlight diploid samples; number of equal sequences obtaine by cloning is indicated between 
parentheses if there was more than one; asterisk (*) is used for indicating samples with more than one 
copy for the locus; bold letters indicate recombinant samples. 
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Annex II.3. Phylogenetic tree inferred from the nuclear TBP locus. Information about the data given for 
each tip in the tree as in Annex II.2. 
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Annex II.4. Phylogenetic tree inferred from the nuclear PPR locus. Information about the data given for 
each tip in the tree as in Annex II.2. 
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Annex II.5. Phylogenetic tree inferred from the nuclear hp23.9 locus. Information about the data given 
for each tip in the tree as in Annex II.2. 
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Annex II.6. Phylogenetic tree inferred from the nuclear TBP locus adding to the samples used in this 
work other Ceratodon samples from Antarctica, Australia, and North America (GenBank accession 
numbers: KC436690 to KC436698, KC436701 to KC436706 and KC436710 to KC436750); To simplify 
the representation, we collapsed terminals of each group of individuals by area (total number of samples 
is given in parentheses). 
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Annex II.7. List of samples employed, indicating for each DNA locus analyzed, to which clade obtained 
in the phylogenetic analysis they belong (blue: SN clade, grey: Ww clade), the state of material used in 
cytometry analysis, and the amount of DNA (in case of dry material corrected by a factor of 0.85). 

Specimen hp23.9 PPR rpL23A TBP TRc1b3.05 TrnL 

State of 
material 

used 

Amount of 
DNA (pg) 

BOL 46302 Ww Ww  Ww Ww Ww -- -- 
BOL 46303 Ww Ww   Ww  -- -- 
CBFS 13557 Ww Ww Ww  Ww  dry 0,36 
CBFS 6159 Ww Ww  Ww   -- -- 
CBFS 6162 Ww Ww Ww Ww Ww Ww -- -- 
MUB 43730 SN SN SN SN SN SN dry 0,44 
MUB 49304 SN SN SN SN SN SN dry 0,47 
MUB 49306 SN SN SN SN SN SN -- -- 
MUB 49318 SN SN SN SN SN  fresh 0,47 
MUB 49319 SN SN SN SN SN SN fresh 0,45 
MUB 49323 SN SN SN Ww SN SN fresh 0,46 
MUB 49326 SN SN SN SN SN SN dry 0,46 
MUB 49327 SN SN SN SN SN  -- -- 
MUB 49329 SN SN SN SN SN SN dry 0,45 
MUB 49331 SN SN SN SN SN  fresh 0,46 
MUB 49339 Ww/SN Ww/SN SN Ww/SN Ww SN fresh 0,82 
MUB 49341 SN SN SN SN SN SN fresh 0,45 
MUB 49342 SN SN SN SN SN  fresh 0,46 
MUB 49351 SN SN SN SN SN  fresh 0,47 
MUB 49353 SN SN SN SN   dry 0,45 
MUB 49356 SN SN SN SN SN SN fresh 0,47 
MUB 49357 SN SN SN SN SN  dry 0,48 
MUB 49366 SN SN SN SN SN SN fresh 0,46 
MUB 49370 SN SN SN SN SN SN dry 0,46 
MUB 49373 SN SN SN SN SN  dry 0,47 
MUB 49382 SN SN SN SN SN  dry 0,48 
MUB 49387 SN SN SN SN SN  dry 0,47 
MUB 49399 SN SN SN SN SN SN fresh 0,47 
MUB 49403 SN SN SN SN SN  fresh 0,47 
MUB 49408 SN SN SN  SN SN dry 0,45 
MUB 49410 SN SN SN SN SN  dry 0,45 
MUB 49411 SN SN SN SN SN SN fresh 0,47 
MUB 49412 SN SN SN SN SN  dry 0,48 
MUB 49413 SN SN SN SN SN SN dry 0,45 
MUB 49424 SN SN SN SN SN  dry 0,46 
MUB 49426 SN SN SN SN SN  dry 0,44 
MUB 49427 SN SN SN SN SN  fresh 0,46 
MUB 49442 SN SN SN SN SN  dry 0,45 
MUB 49443 SN SN SN SN SN  dry 0,46 
MUB 49444 SN SN SN SN SN SN fresh 0,47 
MUB 49445 SN SN SN SN SN  dry 0,47 
MUB 49451 Ww/SN Ww/SN SN SN Ww SN fresh 0,46 
MUB 49461 SN SN SN SN Ww SN dry 0,47 
MUB 49471 Ww Ww Ww Ww Ww Ww fresh 0,37 
MUB 49473 Ww/SN Ww Ww/SN Ww/SN Ww SN fresh 0,81 
MUB 49480 Ww/SN Ww SN SN Ww SN dry 0,47 
MUB 49485 Ww/SN Ww/SN Ww/SN Ww/SN Ww SN dry 0,82 
MUB 49492 Ww/SN Ww SN SN Ww SN fresh 0,46 
MUB 49501 Ww  SN SN SN SN -- -- 
MUB 49504 Ww/SN Ww SN SN SN SN fresh 0,82 
MUB 49505 Ww Ww SN SN Ww SN -- -- 
MUB 49518 Ww/SN Ww/SN SN SN Ww SN fresh 0,45 
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Specimen hp23.9 PPR rpL23A TBP TRc1b3.05 TrnL 

State of 
material 

used 

Amount of 
DNA (pg) 

MUB 49528 Ww Ww/SN SN Ww/SN Ww Ww fresh 0,46 
MUB 49538 Ww Ww Ww Ww Ww Ww dry 0,35 
MUB 49540 Ww Ww Ww Ww Ww  dry 0,37 
MUB 49541 Ww Ww Ww Ww Ww Ww dry 0,37 
MUB 49542 Ww Ww Ww Ww Ww  -- -- 
MUB 49545 Ww Ww Ww Ww Ww Ww dry 0,35 
MUB 49550 Ww Ww Ww Ww Ww Ww fresh 0,36 
MUB 49552 Ww Ww Ww Ww Ww Ww fresh 0,36 
MUB 49553 Ww Ww Ww Ww Ww  dry 0,38 
MUB 49554 Ww Ww Ww Ww Ww Ww dry 0,35 
MUB 49555 Ww Ww Ww Ww Ww  dry 0,37 
MUB 49557 Ww Ww Ww Ww Ww Ww dry 0,37 
MUB 49558 Ww Ww Ww Ww Ww  dry 0,38 
MUB 49560 Ww Ww Ww Ww Ww Ww dry 0,36 
MUB 49562 Ww Ww  Ww Ww  dry 0,36 
MUB 49564 Ww Ww Ww Ww Ww  dry 0,37 
MUB 49566 Ww Ww Ww Ww Ww Ww dry 0,36 
MUB 49567 Ww Ww Ww Ww Ww Ww -- -- 
MUB 49568 Ww  SN  Ww SN -- -- 
MUB 49569 Ww Ww Ww Ww Ww Ww -- -- 
MUB 49570 Ww Ww  Ww Ww Ww fresh 0,37 
MUB 49593 Ww Ww Ww Ww Ww Ww fresh 0,36 
MUB 49600 Ww Ww Ww Ww Ww Ww -- -- 
MUB 49602 Ww Ww Ww Ww Ww Ww -- -- 
MUB 49604 SN Ww SN SN Ww SN fresh 0,48 
MUB 49606 Ww Ww Ww Ww Ww  dry 0,37 
MUB 49613 Ww Ww  Ww Ww Ww dry 0,38 
MUB 49617 Ww Ww  Ww Ww Ww dry 0,38 
MUB 49619 Ww Ww  Ww Ww Ww dry 0,37 
MUB 49624 Ww Ww  Ww Ww Ww dry 0,37 
MUB 49629 Ww Ww Ww Ww Ww Ww -- -- 
MUB 49650 Ww Ww Ww Ww Ww Ww dry 0,38 
MUB 49652 Ww Ww Ww Ww Ww Ww dry 0,37 
MUB 49653 Ww Ww  Ww Ww Ww dry 0,37 
MUB 49654 Ww  Ww Ww Ww Ww dry 0,37 
MUB 49655 Ww  Ww Ww Ww Ww dry 0,38 
MUB 49659 Ww  Ww Ww Ww Ww dry 0,38 
MUB 52185 Ww Ww SN SN SN SN -- -- 
MUB 52186 Ww/SN Ww SN SN SN SN fresh 0,47 
S B201182 Ww Ww  Ww Ww Ww -- -- 
S B201183 Ww Ww  Ww Ww Ww -- -- 
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ABSTRACT 

A major problem in taxonomy is to determine if morphological variation in field-

collected specimens is caused by genetic differentiation, and therefore corresponds to 

evolutionary distinct units, or is caused by environmental variation acting on a single 

interbreeding population. To evaluate the effect of environmental variation on the 

taxonomy of the moss genus Ceratodon, we compared biometric analyses based on 22 

morphological characters on both field-collected plants and cultivated plants to a 

clustering based on DNA sequence and genome size data published previously. We 

sampled Ceratodon species from mountainous areas of the Mediterranean region, and 

other mountain regions and lowlands, mostly from southern Europe. We found that the 

expression of several gametophytic traits changed between field and laboratory 

conditions, confirming that environmental variability complicates taxonomic inferences, 

and suggesting that some characters should be used with caution in distinguishing 

among species. However, consistent with the genetic and flow cytometry data, we found 

a clear biometric discontinuity between some plants collected from southern Spain, and 

those from other parts of the world. Samples considered of hybrid origin, based on 

genetic data, were morphologically indistinguishable from plants from the southern 

Spanish mountains. Integrative taxonomy based on genetic, genome size and 

morphological data unambiguously support the recognition of a new species, Ceratodon 

amazonum. These data also suggest that the previously recognized C. conicus is a 

recombinant between C. purpureus and C. amazonum and is considered here to be a 

nothospecies, for which an epitype is here designated because the lectotype is 

demonstrably ambiguous. 
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INTRODUCTION 

Phenotypic variation within species may be caused by genotypic differences (Såstad et 

al., 1999; Savolainen et al., 2013) or by differential gene expression induced by 

environmental variability (Price et al., 2003; Pigliucci et al., 2006). Assessing the 

adaptive significance of morphological trait variation is a fundamental issue in 

evolutionary ecology (Såstad et al., 1999; Yousefi et al., 2017) and in systematics 

(Shaw & Bartow, 1992; Såstad, 1999), avoiding the overestimation of biodiversity. On 

the other hand, relying on morphological methods alone may miss cryptic species and 

therefore underestimate species diversity (Bickford et al., 2007). Cases of cryptic 

speciation have been widely documented in bryophytes (Shaw, 2001; McDaniel & 

Shaw, 2003; Hedenäs & Eldenäs, 2007; Kreier et al., 2010; Heinrichs et al., 2010, 2011; 

Ramaiya et al., 2010; Hutsemékers et al., 2012; Medina et al., 2012; Caparrós et al., 

2016; Patiño et al., 2017), in which substantial genetic divergence within 

morphologically complex groups was observed. Genetic adaptation to habitats with 

relatively minor differences in ecological conditions was demonstrated in mosses as 

well (Såstad et al., 1999). Controlled experiments are the only way to determine 

functional correspondence between morphological, genotypic and environmental 

variability (Såstad, 1999; Såstad et al., 1999; Yousefi et al., 2017). 

The delimitation of species in organisms with high dispersal potential by spores 

across variable environments and with considerable morphological variation remains a 

great challenge, such that any single methodology may not be sufficient to discriminate 

between species (Medina et al., 2012, 2013; Renner et al., 2013; Hedenäs et al., 2014; 

Draper et al., 2015; Caparrós et al., 2016; Gama et al., 2017; Patiño et al., 2017). In 

such cases, an integrative taxonomic approach (combining morphology, phylogeny, 

biogeography, ecological niche or genome size studies) is necessary. 

The genus Ceratodon Brid. is distinguishable from other members of the family 

Ditrichaceae by molecular data (Cox et al., 2010; Stech et al., 2012; Fedosov et al., 

2016) and morphological characters (Magill, 1981; Allen, 1994; Chien et al., 1999; Frey 

et al., 2006; McIntosh, 2007). Nevertheless, species within the genus are highly 

polymorphic (Dixon & Jameson, 1896; Watson, 1968; Crum & Anderson, 1981). The 



Chapter III. Species diversity in the genus Ceratodon 

 

103 

most abundant species, C. purpureus (Hedw.) Brid. occurs on every continent (Crum, 

1973). Wijk et al. (1959, 1969) listed 22 Ceratodon species, and within C. purpureus 

alone two subspecies and 31 varieties. In a global survey of the genus, Burley and 

Pritchard (1990) recognized four species. Ceratodon antarcticus Cardot grows on bare 

soil, rock crevices and ledges in the Antarctic region. Ceratodon conicus (Hampe) 

Lindb. is found on calcareous substrates of arid habitats in North America, Europe and 

Africa. Ceratodon heterophyllus Kindb. is known from arctic bare soils in North 

America, Europe and Asia. Finally, C. purpureus is frequent on a wide range of 

substrata (acid-calcareous), bare disturbed ground, soil covered rock ledges, sand dunes 

or on rotten wood. This latter species is common from natural and well conserved to 

contaminated sites (Shaw et al., 1991), and is a frequent colonizer of recently burned 

places (Duncan & Dalton, 1982; Foster, 1985; Clément & Touffet, 1990). Burley and 

Pritchard (1990) recognized three infraspecific taxa for C. purpureus: subsp. purpureus 

and subsp. convolutus (Reichardt) Burley, both found in temperate areas, and subsp. 

stenocarpus (Bruch & Schimp.) Dixon, found in tropical regions. Ceratodon purpureus 

subsp. purpureus and C. purpureus subsp. stenocarpus are fairly well differentiated 

based on morphological characteristics, largely due to sporophyte features, and they 

would be recognized with the rank of species if it were not for the existence of plants 

with intermediate characteristics between both of them, which they called C. purpureus 

subsp. convolutus. 

The taxonomic treatment of Burley and Pritchard (1990) has been challenged by 

numerous authors based on the heterogeneous distribution of morphological variation 

within the range of the taxa and on the apparent gradation in all the diagnostic 

characters. For example, Ochyra (1998) considered both C. heterophyllus and C. 

antarcticus to be synonyms of C. purpureus; O'Shea (2006) questioned the value of C. 

purpureus subsp. purpureus and C. purpureus subsp. convolutus; and McIntosh (2007) 

considered C. conicus a subspecies within the C. purpureus complex based on the 

apparent gradation and reduction of all the characters that Burley and Pritchard (1990) 

used in their treatment. Phylogenetic analyses of DNA sequences generally have not 

strongly supported recognizing these taxa as distinct. For example, several authors 

found no evidence that the Antarctic specimens formed distinct genetic clusters relative 

to Australasian and Subantarctic isolates, in spite of finding high levels of genetic 

variability (Clarke et al., 2009). Additionally, McDaniel and Shaw (2005) performed 
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population genetic analyses of DNA sequence data from three unlinked loci to examine 

biogeographical patterns in a global sampling of Ceratodon. They found limited 

population structure across the global distribution, suggesting that long-distance 

migration is common, at least within the Northern Hemisphere and Australasian 

regions, although migration among equatorial populations was not frequent. 

In parallel to the morphometric study presented here, we carried out a genetic 

and genome size study, including identifying the sex of not fructified individuals 

(Nieto-Lugilde et al., 2018a). In that paper we describe a phylogenetic analyses based 

on five nuclear introns and a single chloroplast locus of Ceratodon specimens from 

Mediterranean mountainous areas, other European mountainous systems and western 

and central European and South African lowlands. We could clearly distinguish two 

groups of specimens, corresponding to the cosmopolitan C. purpureus and a newly 

discovered species, the latter only known at present from the Sierra Nevada and the 

southeastern mountains of Spain. Coalescent simulations showed that the divergence 

between C. purpureus and the newly discovered species was too great to be explained 

by coalescent stochasticity. Several isolates had sequences from both species, which we 

interpreted as recombinants produced by meiosis from a hybrid sporophyte. We also 

examined the genome sizes of these taxa using flow cytometry. We discovered that 

specimens of C. purpureus had the smallest genome, while the new species possessed a 

genome 25% larger than C. purpureus, and the recombinants had the genome size either 

of the new species or the sum of the genome sizes of C. purpureus and the new species, 

the latter group potentially arising by allopolyploidy. Curiously, we found no male 

individuals in samples of the new species, either scanning for antheridia using a 

dissection microscope or using the PCR-based approach proposed by Norrell et al. 

(2014). 

Here we use a common garden experiment to test the role of environmental 

variance in shaping the phenotype in the field of these distinct genetic entities. This is 

generally significant because we have a relatively poor understanding of the potential 

for the environment to shape our taxonomic concepts of bryophyte species 

(Vanderpoorten et al., 2002). In the present study we carried out a morphometric study, 

both from field collected and in vitro cultivated plants (laboratory isolates grown from 

field plants), on a subset of the plants used previously in the phylogenetic and genome 
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size study (Nieto-Lugilde et al., 2018a). We had three main goals: (i) to determine what 

the relevance of environmental variance in morphological variation in the genus 

Ceratodon is (i.e. to determine which proportion of the morphological variation has a 

genetic basis, and which proportion is due to environment); (ii) to search for relevant 

characters to discriminate molecularly defined species in the genetically-induced 

morphological variation, and (iii) to make a taxonomical proposal according to the 

results obtained. 

MATERIALS AND METHODS 

Plant material 

We performed a morphological analysis of 64 samples of the genus Ceratodon 

(Voucher information is listed in Annex III.1). We collected 43 specimens (67.2% of 

the total) from Mediterranean mountain areas (28 from Spanish Sierra Nevada; ten from 

the Spanish Sistema Central, three from the Spanish southeastern mountains [Eastern 

Sierra del Segura and Sierra de Alcaraz], and two from Sicilian Mount Etna). Of the 

remaining 21 samples, nine (14.1%) were from other European mountainous systems 

(six from the Alps and three from the Pyrenees) and 12 specimens (18.7%) were from 

lowlands (three from Czech Republic, three from Germany [including the type of 

Ceratodon conicus], two from Sweden, two from United Kingdom, and two from South 

Africa). Most of the studied samples (55) were collected by the authors and are 

deposited at MUB (Herbarium of the University of Murcia, Spain), and the rest (nine) 

were loaned from several herbaria: BOL (Bolus Herbarium, University of Cape Town, 

South Africa), CBFS (University of South Bohemia, Czech Republic), GOET 

(University of Göttingen, Germany), S (Herbarium of the Swedish Museum of Natural 

History, Sweden), and two samples were donated by Laura Forrest (at Royal Botanic 

Garden Edinburgh, United Kingdom). 

In vitro cultures 

We generated in vitro cultures for 32 out of the 64 specimens. Apart from the type 

specimen that could not be used for axenic culture, 31 field specimens did not grow 
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successfully in vitro (Annex III.1). As most of the samples did not produce sporophytes 

(only 11 presented mature capsules), the cultures were prepared from gametophytic 

material for all the specimens. First, several gametophore fragments from field collected 

plants were put on polystyrene Ø 55 x 14 mm petri dishes with moistened quartz sand 

containing a nutrient solution (Murashige and Skoog basal salt solution 0,4x) and kept 

in a growth chamber with 22 ± 3ºC and 16/8h of light to darkness supplied by cool-

white fluorescent tubes (Lumilux, Osram Germany) at a photon fluency rate of 33.5-

55.0 µmol m-2s-1. To reduce the risk of death of the samples by contamination of fungi 

and algae when the fragments began to develop protonemata, they were sterilized with 

0.10% sodium dichloroisocyanurate (C3Cl2N3NaO3) for 10s. We then washed the 

samples with sterile distilled water and dried them on absorbent paper to remove any 

residual of sodium dichloroisocyanurate, and put them on polystyrene Ø 55 x 14 mm 

petri dishes containing GelzanTM with MS (half-strength Murashige and Skoog basal 

medium) with cellophane overlays, and maintained in the growth chamber with the 

same conditions as above. When the protonemata developed rhizoids, caulidia and 

several phyllidia (80-278 days), they were used for biometric study as it was done with 

the field collected plants. During the period in growth chamber, plates were changed 

from position in the chamber, two times per week, to reduce chamber effect (Measures 

et al., 1973; Porter et al., 2015). 

Biometric study 

We selected 22 descriptive morphological characters, following the morphological 

results of Burley and Pritchard (1990) and our own observations (Table III.1). Of these, 

nine were qualitative and 13 quantitative characters. Terms used in the present work are 

Glossarium polyglottum bryologiae

(Magill, 1990). No sporophytic characters were considered for the biometric study 

because of the absence of capsules in the field-collected specimens and because the 

plants obtained in vitro never developed sporophytes. When they were available, 

sporophyte traits were only studied to confirm the identity of the specimens. We also 

estimated the pH of the substrate on which the moss was growing by placing a few 

drops of hydrochloric acid (HCl) in soil present in each sample. HCl reacts with 

carbonated minerals (calcite, CaCO3, is the most commonly encountered) such that  
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Table III.1. Descriptive morphological characters included in the biometric study and HCl soil reaction 
of the substrate of the Ceratodon Brid. samples, with indication of the number of items studied, 
abbreviations used, type (QL = qualitatitive, QT = quantitative) and status characters. 

 Abbreviation Character Type and status character 
Substrate SR HCl soil reaction QL: Acidic (0); Basic (1) 

Caulidium 
(2 caulidia per 

collection) 

PP Phyllidium posture in the 
caulidium when moist 

QL: Straight (1); Curved (2) 

CT Comal tuft in the 
caulidium apex 

QL: Absent (0); Present (1) 

CL Caulidium length QT (mm) 

Phyllidium  
(10 phyllidia: 5 from 

each caulidium) 

LL Lamina length  

LLW Lamina length from apex 
to widest part 

 

LW Lamina width at widest 
part 

 

AT Teeth at apical part of 
lamina 

QL: Absent (0); Dentate (1); Serrate (2) 

PM Phyllidium margins QL: Plane at midle part of lamina (0); 
Recurved at midle part of lamina (1); 
Recurved at midle and apical part of 
lamina (2) 

PA Phyllidium apex QL: Acute (1); Obtuse (2) 

EN Excurrent nerve QL: Absent (0); Present (1) 
ENL Excurrent nerve length  

NW Nerve width at base of 
lamina 

 

NC Nerve color QL: Reddish (1); Greenish (2) 

CS Middle laminal cells 
shape 

QL: Rounded (0); Quadrate (1) 

LL/LLW Lamina length/lamina 
length from apex to widest 
part ratio 

QT 

LL/LW Lamina length/lamina 
width in widest part ratio 

QT 

LL/NW Lamina length/nerve 
width at base of lamina 
ratio 

QT 

ENL/LL Excurrent nerve 
length/lamina length ratio 

QT 

NW/LW Nerve width at base of 
lamina/lamina width at 
widest part ratio 

QT 

Middle laminal cells  
(12 cells: 3 from each 2 
phyllidia coming from 

2 caulidia) 

CW Cells width  

CWT Cells wall thickness QL:    

Phyllidium cross 
sections 

(6 sections: 3 from each 
phyllidium coming 

from 2 caulidia) 

NGC Number of guide cells QT (number of cells) 
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carbon dioxide bubbles (effervescence) are produced if the soil presented basic 

characteristics, and no effervescence if the soil was acidic.  

 In each collection, the HCl soil reaction (SR) was tested and two gametophore 

shoots were taken, in which the next characters were observed: phyllidium posture in 

the caulidium when moist (PP), presence/absence of a comal tuft in the caulidium apex 

(CT) and caulidium length (CL). Five phyllidia of the middle part of each caulidium 

were dissected, in which the following characters were studied (Fig. III.1): lamina 

length (LL), lamina length from apex to widest part (LLW), lamina width at widest part 

(LW), presence /absence of teeth at apical part of lamina and apical phyllidium margins 

if present (AT), phyllidium margins as seen in section (PM), phyllidium apex (PA), 

presence/absence of excurrent nerve (EN), excurrent nerve length (ENL), nerve width at 

base of lamina (NW), nerve color (NC), middle laminal cells shape (CS), lamina length 

/lamina length from apex to widest part ratio (LL/LLW), lamina length/lamina width in 

widest part ratio (LL/LW), lamina length/nerve width at base of lamina ratio (LL/NW), 

excurrent nerve length /lamina length ratio (ENL/LL), and nerve width at base of 

lamina /lamina width at widest part ratio (NW/LW). Two phyllidia from each of the two 

caulidia were selected, in each of them three measures were taken of the middle laminal 

cells width (CW) and their wall thickness (CWT). After selection of one phyllidium 

coming from each caulidium, at least three cross sections were made at the basal part 

near the middle of each phyllidium for observation of the number of guide cells (NGC). 

We measured the morphological parameters using a light microscope (Olympus BH2) 

with a micrometer inserted in an ocular and in a stereomicroscope (Leica A8APO) with 

a video camera connected (Leica camera: DFC295) in order to transfer the images to a 

computer. The Leica Application Suite, Version 4.1.0 was used for image analysis. 

Statistical analyses 

All characters were entered in a LibreOffice spreadsheet (Calc program, The Document 

Foundation) and then imported in R (R Core Team, 2016). For the evaluation of 

morphological characters and multivariate analyses, the specimens were assigned to one 

of three groups based on the phylogenetic analyses of the specimens carried out by 

Nieto-Lugilde et al. (2018a): 1) Sierra Nevada (SN) group: formed by 14 Sierra Nevada 
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 samples and one of the Spanish southeastern mountains, included in a highly supported 

clade by all the six loci studied (SN clade); 2) Worldwide (Ww) group, that consistently 

included 31 specimens mostly coming from the rest of the sampled areas, but also 

including a low number from SN and Spanish southeastern mountains, also in a highly 

supported clade by all the six loci studied (Ww clade); and 3) Recombinant group: 

formed by 17 samples mainly coming from Sierra Nevada, but also from Spanish 

Sistema Central, Alps and United Kingdom; that were strongly resolved in either the SN 

clade or the Ww clade, depending on the studied locus. Each group was subdivided into 

two subgroups: field-collected plants and cultivated plants. All samples from SN group 

and Ww group for which the genome size could be determined previously were haploid 

(13 and 20 respectively); the recombinant samples contained four putative 

allopolyploids and nine haploids (Annex III.1). The type of Ceratodon conicus was 

studied morphologically and considered a recombinant based on its morphological 

characteristics, because neither the genotype nor the genome size could be determined. 

Fig. III.1. Diagrammatic definition of the quantitative morphological characters included in the biometric 
study of Ceratodon. LL: lamina length, LLW: lamina length from apex to widest part, ENL: excurrent 
nerve length, LW: lamina width, NW: nerve width at base of lamina, CW: middle laminal cells width, 
CWT: middle laminal cells wall thickness, and NGC: number of guide cells in phyllidium cross section. 
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 We used Wilcoxon test (non-parametric test; Wilcoxon, 1945) to examine the 

significance of the differentiation between different subgroups, and we adjusted the p-

value to test the significance level using the Benjamini-Hochberg correction (Benjamini 

& Hochberg, 1995). We plotted the reaction norms for each quantitative morphological 

character for the cultivated plants and the corresponding field-collected plants for each 

genetic group. The set of R functions for the morphometric analysis was based on 

Koutecký (2015). The transformations performed to improve their distribution were: 

Log10 (CL), Log10 (LL/LLW), Log10 (ENL + 1) and Log10 (ENL/LL × 100 + 1). The 

characters AT and PM were split in two binary characters: AT d (dentate), AT s 

(serrate), PM p (plane) and PM r2 (recurved at middle and apical part of lamina). We 

performed two-way ANOVAs on each quantitative morphological character to study the 

effect of environmental conditions and the genotype, and the interaction term between 

them. The environment where the plants were grown was employed as variation factor 

with two levels (field collected plants and cultivated plants) and the genetic groups 

obtained in Nieto-Lugilde & al. (2018a) were used as variation factor with three levels 

(SN group, Ww group and Recombinant group). Finally we performed three 

multivariate morphometric analyses: Principal Component Analysis (PCA), Linear 

Discriminant Analysis (LDA) and Classificatory Discriminant Analysis (CDA). PCA 

converts a set of observations of possibly correlated variables into a set of values of 

linearly uncorrelated variables called principal components (PC). The essential part of 

LDA is a dimensionality reduction, which allows replacing the original variables-

classifiers by the linear discriminants (LD), a smaller number of derivate classifiers. 

LDA finds the line that best separates the classes, on the contrary to PCA that is not 

optimal for classification. In addition we performed two types of significance tests of 

individual characters, first the marginal effects (i.e., when a character is alone in the 

model) and second the unique contributions of the characters (i.e., the addition of each 

character into the model with all other characters). The CDA quantifies the proportion 

of specimens correctly assigned to a species by the best combination of morphological 

characters. We performed a LDA using the real morphological character as variables in 

the discriminant analysis; moreover we tested the use of the PC as variables in LDA 

(PCA-LDA). To avoid using highly correlated characters (r > |0.95|) in the discriminant 

analysis (Koutecký, 2015) 

coefficients of the characters. Only the characters LL and LLW showed high correlation 
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between them (r = 0.989). For this reason, LL was omitted for discriminant analysis. 

re selected as optimal number of variables (Kaiser, 

1960), moreover the amount of explained variance was 70-80%. The most useful 

characters for separating the three groups of samples both field-collected plants and 

cultivated plants were determined by a higher absolute value of contribution of 

characters to individual axes (both LD1 and LD2). These values were standardized by 

within group variance and reflected better the relative importance of the characters 

 

RESULTS 

Environmental variance in morphological variation 

The statistical results of qualitative and quantitative characters included in the biometric 

study are shown in Table III.2, and the results of analyses of the variance (two-way 

ANOVAs) of the quantitative morphological characters are given in Table III.3. 

 M

environment (except LL/NW) and genotype (except NW/LW) on ANOVAs. Only Log10 

(ENL + 1) and Log10 (ENL/LL × 100 + 1) did not show significant effects due to the 

interaction between genotype and the environment (G × E). The p-value for some 

characters are greater for the genotype factor than for the environment. The 

environment factor explains more than 50% of the observed phenotypic variation for 

Log10 (CL), LW, Log10 (ENL + 1), NW. The genetic factor explains more than 50% of 

the variation in LL, LLW, LL/LW, LL/NW, Log10 (ENL/LL × 100 + 1) and NGC. 

Finally the interaction between the two factors explains more than 50% of the variation 

in Log10 (LL/LLW) and NW/LW, but in these cases the environment factor is more 

important than the genetic factor. Furthermore, the character CW does not show a clear 

explanation by only one factor (E = G x E = 40.24%). In general, the morphological 

variation within the genus Ceratodon is more influenced by environmental variation in 

seven characters and by genetic variation in six characters. Reaction norm plots for each
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quantitative morphological trait (except NGC) were shown in Annex III.2. All 

morphological characters presented environmental variance for all or at least some of 

the genotypes. The magnitude of environmental variance was quantified by the slope of 

the line which varies enormously between genotypes. It is usually observed that the 

characters vary in the same sense although each genotype varies with a different 

magnitude, the exceptions were LL/LLW, LL/LW, LL/NW, NW/LW, and CW. 

Wilcoxon´s test also confirmed clear differences between field-collected plants and 

cultivated plants in most of the studied characters (Table III.4); in the samples from SN 

(Sierra Nevada) and Ww (Worldwide) groups 81.8% of the characters studied were 

different, but the recombinants presented a little more variation between different 

environments (86.4%). We could not detect a significant environmental response in 

samples from SN group in the characters CL, NC, CS and CW (p > 0.05), and LLW and 

-0.05). 

Table III.3. Analyses of the variance (ANOVAs, two way factorial design) of the quantitative 
morphological characters. The environment of growing (E) was employed as variation factor with two 
levels: field collected plants and cultivated plants under laboratory conditions; the genetic species (G; 
obtained in Nieto-Lugilde et al. 2018a) was used as variation factor with three levels: SN = Sierra Nevada 
group samples, Ww = Worldwide group samples, and Recombinant group samples. The residuals tell us 
about the variation within each level. Character abbreviations follow those given in Table III.1.; the 
transformations performed to improve their distribution were: Log10 (CL), Log10 (LL/LLW), Log10 (ENL 
+ 1) and Log10 (ENL/LL × 100 + 1). Df = Degree of freedom; Values with statistically significant 

 

Characters 
studied 

Variation 
factors 

Df Sum of 
Squares 

Mean 
Squares 

F value P value 
 (> F) 

Variance 
explained  

CL E 1 5.856 5.856 155.68 < 2e-16 66.95% 
 G 2 0.985 0.492 13.09 7.07e-06  11.26% 
 G x E 2 1.906 0.953 25.34 6.27e-10  21.79% 
 Residuals 122 4.590 0.038    

LL E 1 13098465 13098465 216.3 < 2e-16 25.89% 
 G 2 33017908 16508954 272.6 < 2e-16 65.27% 
 G x E 2 4469967 2234984 36.9 6.93e-16 8.84% 
 Residuals 634 38400805 60569    

LLW E 1 10536668 10536668 193.90 < 2e-16 26.40% 
 G 2 24834829 12417414 228.51 < 2e-16 62.22% 
 G x E 2 4544316 2272158 41.81 < 2e-16 11.38% 
 Residuals 634 34451281 54340    

LW E 1 3078582 3078582 567.966 < 2e-16 88.19% 

 G 2 345789 172894 31.897 6.32e-14  9.91% 

 G x E 2 66654 33327 6.149 0.00227 1.90% 

 Residuals 634 3436510 5420    
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ENL E 1 7.324 7.324 136.387 < 2e-16 89.73% 

 G 2 0.665 0.332 6.190 0.00229 8.15% 

 G x E 2 0.173 0.086 1.608 0.20185 2.12% 
 Residuals 336 18.043 0.054    

NW E 1 78322 78322 271.023 < 2e-16 74.05% 

 G 2 23613 11807 40.855 < 2e-16 22.32% 
 G x E 2 3841 1920 6.645 0.00139 3.63% 
 Residuals 634 183219 289    

LL/LLW E 1 0.0476 0.04756 21.968 3. 40e-06 34.07% 

 G 2 0.0203 0.01016 4.693 0.00948 14.53% 
 G x E 2 0.0718 0.03592 16.590 9.49e-08 51.40% 

 Residuals 634 1.3726 0.00217    

LL/LW E 1 4.6 4.63 8.787 0.00315 2.45% 
 G 2 148.4 74.20 140.897 < 2e-16 79.15% 
 G x E 2 34.5 17.27 32.792 2.81e-14 18.40% 
 Residuals 634 333.9 0.53    

LL/NW E 1 1 0.60 0.047 0.8283 0.030% 
 G 2 3104 1552.2 127.384 < 2e-16 94.55% 
 G x E 2 178  89.20 7.318 0.000721 5.42% 
 Residuals 634 7725 12.2    

ENL/LL E 1 2.122 2.1223 48.071 2.11e-11 24.73% 
 G 2 6.235 3.1176 70.614 < 2e-16 72.66% 

 G x E 2 0.224 0.1121 2.539 0.0805 2.61% 

 Residuals 336 14.834 0.0441    

NW/LW E 1 0.0543 0.05428 25.737 5.15e-07 29.88% 
 G 2 0.0127 0.00634 3.007 0.0502 6.99% 
 G x E 2 0.1147 0.05737 27.202 4.63e-12 63.13% 

 Residuals 634 1.3372 0.00211    

CW E 1 231 230.78 50.27 3.05e-12 40.24% 
 G 2 112 55.90 12.18 6.22e-06 19.52% 

 G x E 2 231 115.56 25.17 2.59e-11 40.24% 
 Residuals 762 3498 4.59    

NGC E 1 254.2 254.20 188.72 < 2e-16 42.01% 

 G 2 318.7 159.33 118.28 < 2e-16 52.67% 
 G x E 2 32.2 16.09 11.95 9.49e-06 5.32% 
 Residuals 357 480.9 1.35    

In the samples from the Ww group, the CT, PA, LL/LW and NW/LW characters were 

not different. In the recombinant samples the CS, LL/LLW and LL/NW characters were 

not -0.05).
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We have highlighted differences between field-collected plants and cultivated plants in 

the box-plots (Figs. III.2-III.3), in which the data obtained for 12 of the 13 quantitative 

characters studied were shown (with the exception of CW). Most quantitative plant 

characters presented low mean values for cultivated plants in comparison with field 

collected plants, as observed in LL, LLW, LW, ENL, NW, ENL/LL or NGC (Table 

III.2). 

Relevant characters to discriminate molecularly defined species 

Studying the three genetic groups of field-collected plants separately, approximately 

one-third (36.4%) of the means of the measured morphological characters differed 

between the SN group samples and Recombinant group samples from Ww group 

samples (PP, CT, CL, AT, PA, NW, ENL/LL and NW/LW; Tables III.2-III.4). Slightly 

higher proportion of the characters (40.9%) separated the three genetic groups (LL, 

LLW, EN, ENL, CS, LL/LLW, LL/LW, LL/NW and NGC; Tables III.2-III.4). In these 

characters, the differences between the mean values in the Ww group and the other two 

groups were always larger (2-5.5 times) than the difference between the SN group and 

the Recombinant group. Two characters were homogeneous among the three groups 

(LW and CWT; Table III.4). The SN group samples were indifferent to the type of soil 

(50% acid), while the Ww group and Recombinant group samples showed a preference 

for acid soils, 96.6 and 82.3% respectively (Table III.2). 

 In the PCA, 46.08% of the total variance was explained with the first two PC 

(32.35% PC1 and 13.73% PC2), and 14 PC explained 96.51% of the total variance. PC1 

separated the Ww samples from the SN and recombinant samples (Fig. III.4A), while 

the other PCs did not clearly separate any group. Six PCs had an eigenvalue higher than 

one (73.77% of the variance); the contributions of morphological characters are shown 

in Annex III.3. We performed a LDA using the morphological variables (Fig. III.4B). 

The LD1 (74.21%) separated two clear groups: Ww group with positive score values 

and SN group together with Recombinant group with negative score values. The LD1 

was influenced primarily by LL/LW and LLW, and the next most important characters 

were NGC, and Log10 (ENL/LL × 100 +1) (Annex III.4). The LD2 (25.79%) slightly 

separated SN group and Recombinant group, and the Ww group samples show value 

ranges as broad as the other two groups together; the LL/LW loaded heavily also on 

LD2, together with PM p, PM r2 and LL/NW (Annex III.4). 
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Fig. III.2. Box-plots of some of the principal morphological characters studied: caulidium length (CL), 
lamina length (LL), length of lamina from apex to widest part (LLW), lamina width at widest part (LW), 
excurrent nerve length (ENL), nerve width at base of lamina (NW), lamina length/length of lamina from 
apex to widest part ratio (LL/LLW) and lamina length/lamina width in widest part ratio (LL/LW). 
Number of groups as in Table III.4. Significant p-value < 0.01 and 0.01 < p-value < 0.05 after being 
corrected with Benjamini-Hochberg test are indicated with *** and **, respectively. 
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The first significance test (marginal effects) highlighted all characters with p < 0.05, 

except LW and CWT. On the other hand, the second significance test (unique 

contributions) showed only LL/NW and Log10 (ENL/LL × 100 + 1) with p < 0.05. The 

CDA showed the correctness of classification. For the Ww group it was 90.32%, while 

for the SN group and Recombinant group it was 63.33% and 63.88% respectively. 

 Two caulidia of the lectotype of Ceratodon conicus were included in 

multivariate analyses. In the PCA analysis they are together with the Recombinant 

group and SN group, but in LDA and PCA-LDA analysis they are grouped with the 

recombinants and separated from the SN group (Fig. III.4A, B). One sample from 

Austria without sporophytes (CBFS 6162, included in this study) showed some 

morphological characteristics typical of C. heterophyllus, such as broadly ovate, 

concave, almost cucullate phyllidia, and nerves ending shortly below the obtuse apex. 

Nevertheless, despite these morphological characteristics, the Austrian sample belongs 

to the Ww group based on genetic data. Our PCA results slightly discriminate this 

sample from most of the Ww group samples, but LDA results indicated that this sample 

could not be separated by morphological gametophytic characters from C. purpureus 

(Fig. III.4A, B). Two samples with sporophytes from South Africa studied here (BOL 

Fig. III.3. Box-plots of some of the principal morphological characters studied: lamina length/nerve 
width at base of lamina ratio (LL/NW), excurrent nerve length/lamina length ratio (ENL/LL), nerve width 
at base of lamina/lamina width at widest part ratio (NW/LW) and number of guide cells (NGC). Number 
of groups as in Table III.4. Significant p-value < 0.01 after being corrected with Benjamini-Hochberg test 
is indicated with asterisks. 
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46302 and BOL 46303) presented the morphological diagnostic characters of C. 

purpureus subsp. stenocarpus: erect to sub-erect, smooth to slightly sulcate when dry, ± 

lacking struma capsules, and peristome teeth usually narrowly bordered, with 0-5 

trabeculae (C. purpureus subsp. purpureus, in contrast, presents inclined to horizontal, 

deeply sulcate when dry, strumose capsules, and peristome teeth with broad and 

prominent border, and with (5)7-9(13) trabeculae). Based on genetic data, these two 

African samples also belonged to the Ww group. According with that, our 

morphological analyses did not differentiate them from the rest of samples from Ww 

group. 

 Comparing each genotype from cultivated plants, we observed that nine out of 

22 morphological characters separate the SN group samples and Recombinant group 

samples from Ww group samples (LL, LLW, LW, EN, NW, CW, NGC, LL/NW and 

ENL/LL). Only one character (LL/LW) differed among the three genetic groups in 

culture, and nine characters did not differ among groups (PP, CT, CL, PM, PA, ENL, 

CS, CWT and LL/LLW). The other three characters (AT, NC and NW/LW) separate the 

Ww group samples and Recombinant group samples. The groups were barely 

intermingled with each other in the PCA, but no clear-cut discontinuity was detected 

among them (Fig. III.4C). Six PCs had an eigenvalue higher than 1 (77.06% of the 

variance), the contribution of morphological characters is shown in Annex III.3. In LDA 

analyses we obtained results similar to field-collected plants, but LD1 discriminated 

62.09% and LD2 37.91% (Fig. III.4D). Looking at the contribution of characters 

(Annex III.4), it was observed that LW, Log10 (ENL/LL × 100 + 1), together with 

LL/NW were the characters with the highest influence on LD1, while on LD2 were 

Log10 (CL), NW/LW, NC and Log10 (ENL/LL × 100 + 1). The first significance test 

(marginal effects) showed less amount of significant characters than in field-collected 

plants; Log10 (CL), LLW, LW, Log10 (ENL + 1), NW, LL/LW, LL/NW, NW/LW, 

Log10 (ENL/LL × 100 + 1), CW and NGC presented p < 0.05. The second significance 

test (unique contributions) showed only CL and CW with p < 0.05. The CDA showed 

here less capacity to discriminate groups than for field-collected plants. For the Ww 

group it was 89.29%, while for SN group and Recombinant group it was 62.50% and 

58.82% respectively. 
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Fig. III.4. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) plots for 
Ceratodon samples showing separation of morphotypes. Grouping samples according to Nieto-Lugilde et 
al. (2018a): SN = Sierra Nevada group samples, Ww = Worldwide group samples, and Recombinant = 
Recombinant group samples. The grouped samples from Ww group correspond with C. heterophyllus 
sample and the two grouped recombinants are the type of C. conicus. A) PCA plot analyzing only field 
collected samples; B) LDA plot analyzing only field collected samples; C) PCA plot analyzing only in 
vitro cultivated samples; D) LDA plot analyzing only in vitro cultivated samples. 

 

In addition, for field-collected plants as well as cultivated plants we performed a LDA 

analysis employing the six most important PC as variables, PCA-LDA and a CDA (data 

not shown). The results were very similar but with less capacity of discrimination 

between conflicting groups (Recombinant group and SN group). 

 We also conducted the same analyses using genome size data obtained by flow 

cytometry as a clustering criterion. Although only four allopolyploid individuals were 
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found, we obtained biometric data of all, from field-collected plants and cultivated 

plants. The morphological characters CW and NGC showed significant p-values 

between 0.01-0.05 after being corrected with Benjamini-Hochberg test, and LL, LLW, 

LW, ENL, NW presented significant p-value < 0.01 from field-collected plants (Table 

III.5). From cultivated plants only ENL, ENL/LL and NC showed significant p-values. 

Although the Wilcoxon test showed these differences when we performed the LDA, the 

allopolyploid recombinants were mixed with the haploid recombinants, hindering their 

signaling in the graphs (data not shown). We obtained four LD from field-collected 

plants and, only LD3 (15.03%) showed the allopolyploid recombinants in an 

intermediate zone between the group of SN (haploid) and the haploid recombinants, but 

without any clear separation. The CDA showed 37.50% of the correctness of 

classification for the allopolyploid recombinants, the SN group and haploid 

recombinants were 56.66% and 57.69% respectively, and the Ww group was 88.70%. 

On other hand, the LDA from cultivated plants showed three LD, but any of them 

showed clear separation between allopolyploids and haploids (both SN group or 

Recombinant group). Finally the CDA highlighted similar results for allopolyploid 

recombinants, SN group and Ww group (37.50%, 56.25% and 85.71%, respectively), 

but haploid recombinants presented minor correctness of classification (22.22%). 

DISCUSSION 

A central challenge in taxonomy is to identify morphological variants that distinguish 

separate species but remain homogeneous among groups of interbreeding populations. 

This is particularly difficult in widespread species with distributions that span multiple 

environmental gradients. Our most important finding is that a higher proportion of 

morphological characters in Ceratodon varies stronger due to environmental factors 

than to genetic factors compared to vice versa. This was observed for the three 

cytotypes and for the genetic groups found previously (SN group, Ww group and 

Recombinant group). Furthermore, the genetic factor has a very important role, too. We 

found that in spite of the great variability in phyllidia and sporophytes within the Ww 

 



Chapter III. Species diversity in the genus Ceratodon 

 

123 

Table III.5. Statistical results of qualitative and quantitative morphological characters of recombinants 
samples included in the biometric study. Character abbreviations follow those given in Table III.1. The 
field-collected plants and in vitro cultivated plants were subdivided according to the cytotypes obtained 
from flow cytometry analyses (Nieto-Lugilde et al., 2018a). Number (n) of specimens examined for each 
group is given. Descriptive statistics (mean ± SD [range]) for quantitative characters are presented. All 
measurements are given in m, except for CL in mm. Significant p-values < 0.01 are written in bold after 
being corrected with Benjamini-Hochberg test; * means 0.01 < p-value < 0.05. 

 Field collected plants Cultivated plants 
Characters 

studied Haploids (n = 9) Diploids (n = 4) Haploids (n = 3) Diploids (n = 4) 

SR 77.77% Acidic 100.00% Acidic -- -- 
PP 94.44% Straight 100.00% Straight 100.00% Curved 100.00% Curved 
CT 61.11% Present 62.50% Present 100.00% Absent 100.00% Absent 
CL 5.58 ± 2.43 

[2.94-10.01] 
4.16 ± 1.70 
[2.26-6.92] 

2.00 ± 0.42 
[1.52-2.54] 

2.36 ± 0.55 
[1.60-2.94] 

LL 781.50 ± 210.22 
[400.00-1350.00] 

581.00 ± 121.69 
[354.60-830.00] 

514.50 ± 127.19 
[322.40-800.00] 

569.40 ± 135.96 
[370.80-846.30] 

LLW 621.30 ± 210.90 
[270.00-1200.00] 

457.50 ± 112.41 
[241.80-700.00] 

395.40 ± 111.32 
[241.80-700.00] 

444.70 ± 123.19 
[225.70-685.10] 

LW 401.90 ± 94.00 
[230.00-710.00] 

321.90 ± 86.36 
[193.40-510.00] 

215.50 ± 34.07 
[137.00-270.00] * 

247.00 ± 55.07 
[153.10-346.60] * 

AT 100% Absent 100% Absent 70.00% Absent: 
30.00% Dentate 

55.00% Absent: 
45.00% Dentate 

PM 98.88% (2): 
1.11% (0) 

95.00% (0):  
2.50% (1):  
2.50% (2) 

46.67% (2):  
40.00% (0):  
13.33% (1) 

40.00% (0):  
32.50% (2):  
27.50% (1) 

PA 94.44% Acute 95.00% Acute 100.00% Acute 100.00% Acute 
EN 92.22% Present 95.00% Present 50.00% Present 75.00% Present 

ENL 185.50 ± 106.16 
[40.00-600.00] 

121.10 ± 65.13 
[40.00-310.00] 

107.48 ± 57.72 
[16.12-225.68] 

48.09 ± 26.64  
[24.18-128.96] 

NW 69.30 ± 16.05 
[25.00-135.00] 

55.99 ± 15.70 
[30.00-85.00] 

46.27 ± 13.70  
[25.00-74.00] 

52.85 ± 11.83  
[30.00-90.00] 

NC 86.66% Greenish 80.00% Greenish 53.33% Reddish 87.50% Greenish 
CS 98.88% Quadrate 100% Quadrate 100% Quadrate 100% Quadrate 

LL/LLW 1.29 ± 0.18 
[1.00-2.00] 

1.29 ± 0.12 
[1.10-1.57] 

1.32 ± 0.14 
[1.09-1.67] 

1.30 ± 0.13 
[1.07-1.66] 

LL/LW 1.96 ± 0.40 
[1.25-2.93] 

1.88 ± 0.49 
[1.34-3.18] 

2.41 ± 0.58 
[1.55-4.00] 

2.36 ± 0.60 
[1.39-3.86] 

LL/NW 11.51 ± 2.76 
[5.33-21.25] 

10.77 ± 2.15 
[6.26-15.52] 

11.98 ± 4.32 
[6.33-22.00] 

11.05 ± 2.54 
[6.24-15.58] 

ENL/LL 0.24 ± 0.13 
[0.05-0.60] 

0.20 ± 0.09 
[0.05-0.54] 

0.22 ± 0.13 
[0.03-0.46] 

0.09 ± 0.04 
[0.04-0.17] 

NW/LW 0.17 ± 0.03 
[0.10-0.28] 

0.17 ± 0.03 
[0.12-0.26] 

0.22 ± 0.06 
[0.10-0.35] 

0.22 ± 0.05 
[0.11-0.32] 

CW 7.88 ± 1.94 
[4.00-12.50] * 

8.84 ± 1.67 
[5.00-12.50] * 

9.54 ± 2.37 
[6.00-15.00] 

9.62 ± 2.69 
[6.00-16.00] 

CWT     
NGC 1.519 ± 1.37 

[0.00-5.00] * 
0.50 ± 0.88 

[0.00-2.00] * 
0.00 ± 0.00 
[0.00-0.00] 

0.00 ± 0.00 
[0.00-0.00] 
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group of C. purpureus, as well as the demonstrable importance of environmentally 

induced variation in some characters, other morphological traits allowed us to clearly 

distinguish the Ww group from the SN group and Recombinant group. Similarly, in 

agreement with Burley and Pritchard (1990), we could not separate C. heterophyllus 

(CBFS 6162 sample) from members of the Ww group of C. purpureus by 

morphological analysis of gametophytic characters, nor could we morphologically 

differentiate (with gametophytic characters) the African samples (BOL 46302 and BOL 

46303) from the Ww genetic group (although these samples presented sporophytes 

typical of C. purpureus subsp. stenocarpus). Together these data highlight the 

complexity of the morphological variation within the Ww group of C. purpureus. 

 The fact that some morphological characters were influenced strongly by 

environmental factors are is shown in the SN and Ww groups by the gametophytic 

characters PP, CT, CL, AT, PM, PA, ENL, CS, LL/LLW and NW/LW in field-collected 

plants, which were clearly different, but these differences disappeared when comparison 

was made in culture plants. This is not surprising because the field-collected plants 

studied here grew in locations with different climates (mainly from Mediterranean 

mountains, but also from Alpine mountains and Atlantic lowlands). Nevertheless, these 

data suggest that such characters should be used with caution when delimiting species 

based on morphology. 

 However, some characters differing between species appear to be regulated by 

genetic factors independent of the environment, such as NW, LL/LW and ENL/LL 

because they vary the same way both in field and in cultures. An additional factor that 

cannot be discounted is that variation observed under controlled growth conditions 

would not be expressed in the field, due to G × E. Our data show a high proportion of 

characters clearly influenced by this interaction. Some studies performed a reciprocal 

transplant experiment (Såstad, 1999; Såstad et al., 1999; Hassel et al., 2005; Yousefi et 

al., 2017) to advise on the adaptive capacity of morphological characters. Ecological 

gradients have been studied extensively in the moss genus Sphagnum L. species from 

the same natural area, where variations in pH or water level are easily observable 

(Såstad, 1999; Såstad et al., 1999). In the case of Ceratodon, these key ecological 

gradients have not yet been detected, but the genus seems to have a widespread 

ecological distribution. We should caution that relying exclusively on cultivated plants 
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could lead to an under-estimation of the range of variation that could be displayed along 

an environmental gradient (Såstad, 1999). Whereas characters that do not differ much 

between field-collected plants and cultivated plants may be useful for identification, 

characters that are expressed in the specific natural habitats may be even more 

indicative (shown by the fact that the field collected plants were more frequently placed 

in the correct genotype group by the CDA). Such diagnostic characters may not be 

expressed under axenic culture (Anderson et al., 1992).  

 These data show that plants of the Ww group can be distinguished 

morphologically from the SN group and Recombinant group samples using careful, 

multivariate biometrical study of caulidia and phyllidia, although the differences are 

quantitative rather than qualitative: longer caulidia without a comal tuft, phyllidia 

straight or curved when moist, with margins sometimes dentate, acute apex, wider nerve 

at base of lamina, excurrent nerve length/lamina length ratio smaller, and nerve 

width/lamina width ratio bigger are characteristic of C. purpureus. On the contrary, 

plants of the SN group and Recombinant group samples often present shorter caulidia, 

sometimes with a comal tuft, phyllidia straight when moist, with margins mostly entire, 

apex generally acute but sometimes obtuse, narrower nerve at base of lamina, excurrent 

nerve length/lamina length ratio bigger, and nerve width/lamina width ratio smaller. The 

Ww and SN groups are also clearly distinguishable by flow cytometry (Nieto-Lugilde et 

al., 2018a), as the Ww group had a DNA mean content of 0.37 pg versus 0.46 pg in the 

SN group. 

 Based on our morphological results in field-collected samples it was not possible 

to distinguish clearly between the SN group and Recombinant group. The recombinants 

did manifest a higher percentage of phyllidia showing excurrent nerves, and the average 

length of the awn was greater than in the pure SN genotype, although these differences 

were based on statistical tests, the distributions between the species are broadly 

overlapping. Depending upon the genetic architecture of the group differences, 

recombinants may be morphologically intermediate between the two parental species or 

virtually indistinguishable from one of the parental species. The few available studies 

reveal that the viable recombinant progeny tend to resemble one of the parental species 

(bibliographic review in bryophytes by Natcheva & Cronberg, 2004), probably because 

incompatibility between the genomes makes complete mixtures unviable (Cronberg & 
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Natcheva, 2002; Natcheva & Cronberg, 2007, McDaniel et al., 2007, 2008). We also 

observed that the Recombinant group had two different cytotypes (Nieto-Lugilde et al., 

2018a), one the size of the SN species (0.46 pg) and another the sum of the genome 

sizes of the SN species and C. purpureus (0.82 pg). We observed no clear 

morphological differences between haploid recombinants and allopolyploids, although 

we cannot rule out that it this is due to the low number (four) of putative allopolyploids 

studied. However, no observable morphological differences are rarely recorded between 

haploids and diploids of bryophyte taxa in nature (Anderson, 1980; Chopra, 1998; Ricca 

et al., 2008). 

 It is possible that the lack of males in our sample of SN individuals could elevate 

the morphological and genetic differences between the Ww and SN groups. Since C. 

purpureus is strongly sexually dimorphic (Shaw & Beer, 1999; McDaniel, 2005; Slate 

et al., 2017), the trait distributions for the SN group could be narrower and shifted 

toward the female value. While different sex ratios in the samples from the SN and Ww 

groups may play a role, we do not believe that sexual dimorphism can explain the 

strong differences that we found between these groups for two main reasons. First, we 

could not morphologically distinguish between the SN group, in which we detected no 

males nor any signs of sexual reproduction, and recombinants, which has sporophytes 

and genetic signatures of recombination, indicating that males must be present. Thus, 

the recombinant males are likely to be similar to the SN females. Additionally, in the 

Ww group the male and female trait distributions are statistically different but broadly 

overlapping (Shaw & Beer, 1999; McDaniel, 2005). Slate et al. (2017) observed higher 

levels of variation among females within and among populations than among males. 

Therefore, we conclude that the morphological gaps observed between species in our 

data are greater than those that may exist between males and females within the same 

species. 

 These morphological analyses, combined with DNA sequence and genome size 

data, indicate that two clearly separated lineages exist in the studied samples of 

Ceratodon. Moreover, we find evidence for hybridization signals between them. One 

lineage was only found in southern Spanish mountains, mainly in Sierra Nevada. The 

other one has a worldwide distribution. The SN genotype is very abundant locally, but 

seems to decline rapidly in frequency northwards in the Iberian Peninsula, as it has not 
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been found in Spanish Sistema Central or even in sites with similar Mediterranean 

climatic conditions, like the Sicilian Mount Etna, which is situated at almost the same 

latitude and has a very similar altitude as Sierra Nevada. We think that the potential 

distribution of the SN genotype in southern Spain is broader than presently known, as 

many other recorded samples from neighboring areas have been previously reported as 

C. purpureus or C. conicus (Martínez Sánchez et al., 1991; García-Zamora et al., 1998; 

Cano et al., 2010; Rams et al., 2014), but show the morphology of SN and Recombinant 

group samples, as observed after revision of MUB and GDA/GDAC (Herbarium of the 

University of Granada, Spain) herbaria samples. Outside southern Spanish mountains, 

only Ww genotype and recombinants were found. Therefore, if the SN genotype is 

present outside southeastern Spain, it is probably rare and seems to be less frequent than 

recombinants, at least in central Europe where the type of C. conicus comes from.  

 Our morphological multivariate analyses situated the lectotype of C. conicus 

together with the recombinant samples including two samples identified as C. conicus 

from United Kingdom lowlands (MUB 52185 and MUB 52186), where C. conicus has 

been found several times but is not common (Smith, 2004; Porley, 2013; Martin, 2014). 

We must highlight that C. conicus has never been found again in the type locality 

(Flegessen, Lower Saxony, Germany) (Nieto-Lugilde & al., 2018b), despite of the 

efforts of multiple many bryologists (Meinunger & Schröder, 2007). Moreover, we 

identified a sample from the Alps (MUB 49604) that was a recombinant, based on 

sequence data, with a genome size equivalent to the SN pure genotype (Nieto-Lugilde 

& al., 2018a), and presented sporophytic and gametophytic characters similar to the 

lectotype of Ceratodon conicus (GOET 011795). The samples identified as C. conicus 

from Europe that we have sequenced are also clearly morphologically similar to the 

recombinants. The broad distribution of recombinants across Europe suggests that they 

originate not simply through regional introgression where the two species are in contact. 

The genotype of the type of C. conicus is unknown. Therefore, there will always be a 

doubt related to its genetic composition. Ceratodon conicus is scarce outside of Spain 

and we suspect that we have not fully examined the variability of the species. 

Nevertheless, although a higher number of samples with morphology similar to C. 

conicus from outside southeastern Spain would have been desirable, the basic outline of 

our results seems to be reliable. 
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 The most parsimonious conclusion from these data is that there are three entities: 

the pure SN genotype represents a one species, the Ww genotype corresponds to 

another species, and a swarm of recombinants (hybrids) exists. There is no doubt that 

the Ww genotype is C. purpureus. Whether the type of C. conicus is a recombinant or a 

pure SN type is not known at this moment, but the genetic, biogeographic, and 

reproductive data strongly favor the recombinant status. Therefore, we formally propose 

that C. conicus is a nothospecies, and the parents are the cosmopolitan C. purpureus and 

the SN species. The latter represents a new species of the genus Ceratodon, here 

described, for which we propose the name Ceratodon amazonum. We consider that 

recombinants and the new genotype must not be considered the same species, as the 

ICN (Turland et al., 2018) allows describing nothoespecies based on their morphology. 

There are some cases of moss species described as hybrids (Williams, 1966; Anderson 

& Lemmon, 1972; Guerra et al., 1994; Ros et al., 1994; Werner et al., 2014). In our 

case, the nothospecies (C. conicus) and one parent (C. purpureus) were first described, 

and later we have discovered the other parent. Therefore, we consider that the temporal 

sequence in the description of species or nothospecies should not be taken as an 

argument for not given giving a name already described to a hybrid. We cannot exclude 

the possibility that some of the samples identified as pure SN based on our genetic data 

are indeed recombinants that lack the Ww-type allele at the marker genes we employed 

in our genetic analysis. In contrast to vascular plants, where the F1 generation of 

hybrids is long-lived, bryophyte F1 sporophytes are quite ephemeral, meaning that the 

persistent recombinant gametophytes produced from F1 meiosis will not be 

heterozygous across the genome but rather will show different patterns of interspecies 

haplotypes. However, it is well known from other studies that the assignment of 

individuals to pure species or hybrid lines is not always perfect, especially in homoploid 

hybrids where backcrosses are possible (Nielsen et al., 2006; Gramlich et al., 2016).  

 In Sierra Nevada metamorphic and carbonate rocks predominate and soils are 

very diverse, some of them having acidic and other basic characteristics (Molero Mesa 

et al., 1992). Most of our Sierra Nevada samples were observed to grow on acid 

substrates, although some samples were found on basic soils. Burley and Pritchard 

(1990) and many floras (e.g. Smith, 2004; Frey et al., 2006) described C. conicus as 

strictly calcicolous. Perhaps for this reason previous authors identified samples 

collected in Sierra Nevada as xeric forms of C. purpureus and discarded the presence of 
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C. conicus in this area (Höhnel, 1895; Rams et al., 2014; Brugués & Ruiz, 2015). 

Unfortunately, Burley and Pritchard (1990) did not describe the methodology employed 

to elucidate the type of substrate on which the 18 representative specimens they studied 

grew (from Canada, England, Norway, Scotland and United States). It cannot be 

discarded that the substrate of these specimens and maybe others (probably excluded 

because they do not present sporophytes) would have given an acid reaction according 

to the method applied by us. The recombinant samples found outside Sierra Nevada 

grew mainly on basic substrate, except MUB49568 from Spanish Sistema Central. Our 

representatives of C. conicus are limited as we have previously stated, but our results 

indicate that both recombinants and C. amazonum sp. nov. can be found on basic and 

acid substrates. The type of substrate does not seem to be a limiting factor in the 

distribution of Ceratodon species here studied. 

TAXONOMIC CONCLUSIONS 

Species description 

Ceratodon amazonum Nieto-Lugilde, O. Werner, S.F. McDaniel & Ros, sp. nov. 

Holotype: SPAIN, Granada province, Sierra Nevada, ascent to El Dornajo by the road 

A4025, km 3, 37°07'46.7''N, 03°25'34.9''W, bare soil between spiny pillow bushes, 

1850 m a.s.l. (sample 6/16), R.M. Ros & O. Werner s.n., 21/07/2012 (MUB 49413; 

isotype: FLAS B66910). 

See Fig. III.5 for images of the holotype and other specimens, and Fig. III.6 for images 

of habitats and turfs of the species in Sierra Nevada. 

Specific diagnosis 

Plants in compact turfs. Caulidia 2.05-6.76(9.45) mm high. Phyllidia sometimes 

forming a comal tuft, phyllidia of the middle part of caulidia plane or concave, ovate or 

longly ovate, rarely lanceolate, (0.35)0.43-0.76(1.15) x (0.20)0.30-0.46(0.56); nerves 

(25.0)46.8-86.7(114.0) µm wide at base of lamina, generally excurrent in a smooth awn, 
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(40.0)60.0-198.0(322.0) µm long, excurrent nerve length/lamina length ratio between 

(0.05)0.10-0.34 (0.74), rarely percurrent, lamina length/nerve width ratio (5.4)7.0-

12.0(18.0); middle phyllidia cross-section crescent-shaped, with 0-3 guide cells. 

Propagules absent. Gametangia and sporophyte unknown. It differs from C. purpureus 

by having shorter caulidia, comal tuft often present, phyllidia of the middle part of 

Fig. III.5. Ceratodon amazonum. A, habit; B-F, phyllidia of the middle part of caulidium; G-H, middle 
phyllidia cross-sections; I, caulidium cross-section; J, middle laminal cells. --A, D, E, F and J, MUB 
49413 (holotype); B and C, MUB 49427; G, MUB 49306; H and I, MUB 43730. Photos by Marta Nieto 
Lugilde. 
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caulidia mostly ovate or longly ovate, nerve narrower at base of lamina, and generally 

excurrent in a relatively long awn. 

 

Fig. III.6. Habitats and turfs of Ceratodon amazonum    
2 690 m a.s.l.; B, El Dornajo, at 1 850 m a.s.l. C-D, turfs on bare soil; E-F, details of turfs. Photos A, B, C 
and E by Rosa M. Ros Espín; D and F by Marta Nieto Lugilde. 

Description 

Plants in compact turfs, usually yellow-green or yellowish. Caulidia 2.05-6.76(-9.45) 

mm, often branched, 110-160 µm diameter in cross-section, with central strand 15-25 

µm wide, central cylinder and cortex with 1(2) layers of cells sometimes differentiated 

as sclerodermis. Rhizoids orange, smooth or slightly papillose. Phyllidia straight to 

slightly twisted when dry, sometimes forming a comal tuft, erecto-patent to spreading 

when wet, phyllidia of the middle part of caulidia plane or concave, ovate or longly 
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ovate, rarely lanceolate, (0.35)0.43-0.76(1.15) x (0.20)0.30-0.46(0.56) mm; margins 

recurved to near apex, rarely plane, usually entire; apices mostly acute, rarely obtuse; 

nerves mostly greenish, rarely reddish, (25.0)46.8-86.7(114.0) µm wide at base of 

lamina, generally excurrent in a smooth awn, (40.0)60.0-198.0(322.0) µm long, 

excurrent nerve length/lamina length ratio between (0.05)0.10-0.34(0.74), rarely 

percurrent, lamina length/nerve width ratio (5.4)7.0-12.0(18.0), superficial cells 

elongate ventrally, rectangular dorsally; middle phyllidia cross-section crescent-shaped, 

with 0-3 guide cells, stereid dorsal band well developed, ventral stereid band absent, 

and ventral epidermal cells well developed, often so big as the guide cells; middle 

laminal cells quadrate, rarely isodiametric, smooth, (4.0)6.2-

walls rarely thicker than 2 µm. Propagules absent. Gametangia and sporophyte 

unknown. 

Distribution 

Southern Spain: Sierra Nevada Mountains (Andalusia) and mountains in NW of Murcia 

Region. 

Habitat 

Acid or basic soils, very frequently without plant cover in open areas, sometimes in 

more developed soils and somehow protected under herbaceous plants or small shrubs, 

at 1290-2870 m a.s.l. altitude. 

Etymology 

The specific epithet refers to the Amazons, name given in Greek mythology to a tribe 

formed and governed entirely by women warriors, given the absence of males in the 

present known populations of the species. 

Paratypes 

SPAIN, Murcia province, mountains in the NW, El Sabinar, 38°13'41.2'' N, 02°02'46.6'' 

W, 1290 m a.s.l., R.M. Ros & O. Werner s.n., 13/11/2011 (MUB 43730). Granada 

03°23'06.5''W, 2690 m a.s.l., R.M. Ros & O. Werner s.n., 20/07/2012 (MUB 49306). 

Ibidem, down to Barranco de San Juan, 37°05'12.4''N, 03°22'44.4''W, 2540 m a.s.l., R. 
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M. Ros & O. Werner s.n., 20/07/2012 (MUB 49327 and MUB 49329). Ibidem, Hoya de 

la Mora, 37°05'36.7''N, 03°23'11.3''W, 2510 m a.s.l., R.M. Ros & O. Werner s.n., 

20/07/2012 (MUB 49342). Ibidem , 

37°06'47.9''N, 03°25'10.0''W, 2205 m a.s.l., R.M. Ros & O. Werner s.n., 20/07/2012 

(MUB 49356). Ibidem

1667 m a.s.l., R.M. Ros & O. Werner s.n., 21/07/2012 (MUB 49366 and MUB 49370). 

Ibidem, road GR-

03°25'34.4''W, 1539 m a.s.l., R.M. Ros & O. Werner s.n., 21/07/2012 (MUB 49382). 

Ibidem, road GR-

visitantes El Dor R.M. Ros & O. 

Werner s.n., 21/07/2012 (MUB 49399). Ibidem, ascent to El Dornajo by the road 

A4025, km 3, 37°07'46.7''N, 03°25'34.9''W, 1850 m a.s.l., R.M. Ros & O. Werner s.n., 

21/07/2012 (MUB 49408). Ibidem, ascent to El Dornajo by the road A4025, km 5, 

37°07'09.1''N, 03°26'23.4''W, 2020 m a.s.l., R.M. Ros & O. Werner s.n., 21/07/2012 

(MUB 49426 and MUB 49427). Ibidem, ascent to El Dornajo by the road A4025, km 7, 

37°07'28.8''N, 03°25'52.2''W, 2093 m a.s.l., R.M. Ros & O. Werner s.n., 21/07/2012 

(MUB 49442). 

Key to species 

In order to facilitate the distinction of C. amazonum from C. purpureus a key is 

presented based on morphological characteristics of field plants studied in this work. As 

in many individuals it is impossible to assign them to either C. amazonum or the 

nothospecies Ceratodon ×conicus based on morphological data, they are keyed 

together. Nevertheless, based on results of the statistical analyses of the biometric study 

presented here, the most easily observable differences that allow identifying samples at 

the extremes of the variability are indicated for each of them. 

1. Caulidia length (2.8)5.1-16.2(29.0) mm, comal tuft usually absent; phyllidia of the 

middle part of caulidia ovate, ovate-lanceolate, lanceolate or triangular-lanceolate, 

(0.4)0.8-1.5(2.6) mm long; lamina length/lamina width in widest part ratio (1.06)2.13-

3.79 (5.83); nerve (38.0)61.8-96.5(140.0) µm wide at base of lamina, percurrent or 

excurrent in a smooth awn 24-350 µm long; excurrent nerve length/lamina length ratio 

(0.02)0.04-0.14 (0.30); lamina length/nerve width ratio (5.8)10.5-

.. Ceratodon purpureus 
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1. Caulidia length (2.0)2.5-7.1(10.0) mm, comal tuft usually present; phyllidia of the 

middle part of caulidia ovate or longly ovate, rarely lanceolate, 0.4-0.9(1.4) mm long; 

lamina length/lamina width in widest part ratio (0.85)1.26-2.33(3.18); nerves 

(25.0)46.8-86.7(140.0) µm wide at base of lamina, rarely percurrent, usually excurrent 

in a smooth awn 40-600 µm long; excurrent nerve length/lamina length ratio between 

(0.05)0.11-0.34(0.74); lamina length/nerve width ratio (5.3)7.0-

13.6(21.25)......................................................................................................... 2 

2. Phyllidia of the middle part of caulidia ovate or longly ovate, rarely lanceolate; 

lamina length/lamina width in widest part ratio (0.85)1.26-1.90 (2.78); nerve 

(25.0)46.8-86.7(114.0) µm wide at base of lamina, generally excurrent in a smooth awn, 

40-322 µm long; lamina length/nerve width ratio (5.4)7.0-

Ceratodon amazonum 

2. Phyllidia of the middle part of caulidia ovate, longly ovate or ovate- lanceolate; 

lamina length/lamina width in widest part ratio (1.07)1.49-2.33 (3.18); nerve 

(25.0)48.3-86.7(140.0) µm wide at base of lamina, generally excurrent in a smooth awn, 

40-600 µm long; lamina length/nerve width ratio (5.3)8.3-13.6(21.25) 

. Ceratodon ×conicus 

Typification of the name Ceratodon ×conicus 

Ceratodon ×conicus (Hampe ex Müll. Hal.) Lindb. (Ceratodon amazonum × 

Ceratodon purpureus) in Musci Scand. 27. 1879 (non Ceratodon conicus (Lindb.) Müll. 

Hal. in Hedwigia 38: 98. 1899, hom. illeg.). Basionym: Trichostomum conicum Hampe 

ex Müll. Hal. in Syn. Musc. Frond. Ceratodon purpureus var. conicus 

(Hampe ex Müll. Hal.) Husn. in Muscol. Gall Ceratodon purpureus subsp. 

conicus (Hampe ex Müll. Hal.) Dixon in Stud. Handb. Brit. Mosses 68. 1896. 

Lectotype (designated by Burley & Pritchard, 1990): [Germany, Niedersachsen] Auf 

ohnsen, Mai coll. Schlotheuber 

pastor eccl. 784, Hampe misit 15/2 48, C. Müller det. (GOET barcode 011795!). 

Epitype here designated: ITALY, Südtirol, Stilfser Joch, 46°31'43.7''N, 10°27'09.7''E, 

on accumulated earth at the base of an artificial wall in anthropized area, frequently 

cover by snow, 2763 m a.s.l., R.M. Ros & O. Werner s.n., 14/09/2012 (MUB 49604!). 
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 More data on the taxonomy and nomenclature of this species are given in Nieto-

Lugilde et al. (2018b). 

 It was considered necessary to select an epitype of Ceratodon ×conicus to serve 

as an interpretative type because the lectotype is demonstrably ambiguous with regards 

to its genotype and amount of nuclear DNA and cannot be critically identified for 

purposes of the precise application of the name to the nothospecies (Art. 9.9 of ICN, 

Turland et al., 2018). The MUB 49604 sample was designated as epitype as it presents 

similar morphology and diagnostic characteristics (gametophytic and sporophytic) to 

those showed by the lectotype of C. ×conicus, it was sequenced showing a recombinant 

genotype and its DNA amount was measured, being 0.48 pg. 
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ANNEXES 

Annex III.1. Voucher information of the specimens studied. For each sample, information is given as 
follows: herbarium code; geographic origin; MC letters in the case that in vitro cultivated plants were 
included in the biometric study; genomic group based on phylogenetic study of Nieto-Lugilde et al., 
(2018a); genome size determined by flow cytometry technology if known (H for haploid sample, A for 
allopolyploid sample) from Nieto-Lugilde et al., (2018a); sex if known (F = female, M = male) from 
Nieto-Lugilde et al., (2018a); presence of sporophyte if appropriate (indicated by an asterisk). For the 
type specimen, also collection data are given. 

Mediterranean mountain areas 

MUB 43730: Spanish south eastern mountains (Eastern Sierra del Segura), SN group, H, F. MUB 49306: 
Spanish Sierra Nevada (hereafter Sierra Nevada), SN group, F. MUB 49323: Sierra Nevada, MC, 
Recombinant group, H, F. MUB 49327: Sierra Nevada, SN group, F. MUB 49329: Sierra Nevada, MC, 
SN group, H, F. MUB 49339: Sierra Nevada, MC, Recombinant group, A, F. MUB 49342: Sierra 
Nevada, MC, SN group, H, F. MUB 49356: Sierra Nevada, SN group, H. MUB 49366: Sierra Nevada, 
MC, SN group, H, F. MUB 49370: Sierra Nevada, SN group, H. MUB 49382: Sierra Nevada, SN group, 
H, F. MUB 49399: Sierra Nevada, MC, SN group, H, F. MUB 49408: Sierra Nevada, MC, SN group, H, 
F. MUB 49413: Sierra Nevada, MC, SN group, H, F. MUB 49426: Sierra Nevada, MC, SN group, H, F. 
MUB 49427: Sierra Nevada, MC, SN group, H, F. MUB 49442: Sierra Nevada, MC, SN group, H, F. 
MUB 49451: Sierra Nevada, Recombinant group, H, F. MUB 49461: Sierra Nevada, MC, Recombinant 
group, H, F. MUB 49471: Sierra Nevada, MC, Ww group, H, M. MUB 49473: Sierra Nevada, MC, 
Recombinant group, A, F. MUB 49480: Sierra Nevada, Recombinant group, H, F. MUB 49485: Sierra 
Nevada, MC, Recombinant group, A, F. MUB 49492: Sierra Nevada, MC, Recombinant group, H, F. 
MUB 49501: Sierra Nevada, MC, Recombinant group, F. MUB 49504: Sierra Nevada, MC, 
Recombinant group, A, F. MUB 49505: Sierra Nevada, Recombinant group, F. MUB 49518: Sierra 
Nevada, Recombinant group, H, F. MUB 49528: Sierra Nevada, Recombinant group, H, F. MUB 49538: 
Spanish Sistema Central, MC, Ww group, H, F. MUB 49545: Spanish Sistema Central, Ww group, H. 
MUB 49554: Spanish Sistema Central, Ww group, H, F. MUB 49560: Spanish Sistema Central, MC, 
Ww group, H, F*. MUB 49562: Spanish Sistema Central, Ww group, H. MUB 49564: Spanish Sistema 
Central, Ww group, H. MUB 49566: Spanish Sistema Central, MC, Ww group, H, F. MUB 49567: 
Spanish Sistema Central, Ww group, F. MUB 49568: Spanish Sistema Central, MC, Recombinant group, 
F. MUB 49569: Spanish Sistema Central, Ww group, F. MUB 49570: Sicilian Mount Etna, Ww group, 
H, F. MUB 49593: Sicilian Mount Etna, Ww group, H, F. MUB 49600: Spanish south eastern mountains 
(Sierra de Alcaraz), MC, Ww group, F*. MUB 49602: Spanish south eastern mountains (Sierra de 
Alcaraz), MC, Ww group, F. 

Other European mountainous systems 

CBFS 6159: Alps, Ww group. CBFS 6162: Alps, Ww group, F. MUB 49604: Alps, Recombinant group, 
H, F*. MUB 49613: Alps, MC, Ww group, H, F*. MUB 49617: Alps, Ww group, H, F*. MUB 49619: 
Alps, Ww group, H, M. MUB 49624: Pyrenees, MC, Ww group, H, F*. MUB 49629: Pyrenees, MC, 
Ww group, F. MUB 49650: Pyrenees, MC, Ww group, H, F*. 

Lowlands 

BOL 46302: South Africa, Ww group, F*. BOL 46303: South Africa, Ww group, F*. GOET 011795: 
Germany, *, Trichostomum conicum Hampe ex Müll. Hal. lectotype, Schlotheuber s.n., 15/2/1848. MUB 
49652: Germany, MC, Ww group, H, F*.MUB 49653: Germany, Ww group, H, F*. MUB 49654: Czech 
Republic, MC, Ww group, H, F. MUB 49655: Czech Republic, MC, Ww group, H, F. MUB 49659: 
Czech Republic, MC, Ww group, H, F. MUB 52185: United Kingdom, Recombinant group. MUB 
52186: United Kingdom, Recombinant group, H. S B201182: Sweden, Ww group, F. S B201183: 
Sweden, Ww group, F. 
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Annex III.2. Reaction norm plots for morphological characters: caulidium length (CL), lamina length 
(LL), length of lamina from apex to widest part (LLW), lamina width at widest part (LW), excurrent 
nerve length (ENL), nerve width at base of lamina (NW), lamina length/length of lamina from apex to 
widest part ratio (LL/LLW), lamina length/lamina width in widest part ratio (LL/LW), lamina 
length/nerve width at base of lamina ratio (LL/NW), excurrent nerve length/lamina length ratio 
(ENL/LL), nerve width at base of lamina/lamina width at widest part ratio (NW/LW), and cells width 
(CW). Continuous line: Recombinants; dashed line: SN group; and dotted line: Ww group. The 
environmental growth conditions are indicated from in vitro cultures (C) and from field (F). 
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Annex III.3. Contribution of morphological characters in the six most informative Principal Components 
(PC) in Principal Component Analysis (PCA) for field collected plants and in vitro cultivated plants. 
Variables with the highest contributions are written in bold. Character abbreviations follow those given in 
Table III.1; the characters AT and PM were split in two binary characters: AT d (dentate), AT s (serrate), 
PM p (plane) and PM r2 (recurved at middle and apical part of lamina); the transformations performed to 
improve their distribution were: Log10 (CL), Log10 (LL/LLW), Log10 (ENL + 1) and Log10 (ENL/LL × 
100 + 1). 

 

 

 Field collected plants Cultivated plants 

Characters 
studied PC1 PC2 PC3 PC4 PC5 PC6 PC1 PC2 PC3 PC4 PC5 PC6 

PP 0.5017 0.1484 0.3861 -0.3525 -0.3764 -0.0546       

CT -0.3789 -0.3701 -0.0946 0.0332 -0.1705 0.5699       

CL 0.6394 0.1261 -0.0567 -0.1791 0.0599 0.4496 -0.4752 0.3257 0.0565 0.1121 0.2984 -0.4486 

LL 0.9498 -0.0709 -0.0569 -0.1608 -0.0148 0.1383 -0.8583 -0.4764 0.0129 0.0828 0.0042 0.1093 

LLW 0.9535 -0.0860 -0.0309 -0.1620 -0.0485 0.1558 -0.9155 -0.3565 -0.0526 0.0656 0.0236 0.0730 

LW 0.2849 -0.6789 -0.4285 -0.2121 -0.1266 0.1704 -0.1857 -0.6739 0.4854 0.3155 0.2402 0.0262 

AT d 0.3063 0.4721 -0.0715 0.0107 -0.4957 0.0938 -0.1171 -0.2609 0.2541 0.0822 -0.6791 -0.4333 

AT s       -0.2428 -0.2257 0.5146 -0.0075 0.1600 -0.1603 

PM p -0.4014 0.4190 -0.2538 -0.6457 0.1816 0.0266 0.5711 -0.1941 -0.0925 0.5025 -0.2503 0.2160 

PM r2 0.3217 -0.3523 0.2999 0.6618 -0.2578 -0.1754 -0.3104 0.2300 0.4944 -0.5385 -0.0841 -0.1176 

PA -0.3245 0.2508 0.3473 -0.3732 -0.1089 -0.1560 0.3234 -0.2887 0.3824 -0.3363 -0.0968 0.4738 

ENL -0.2365 -0.7269 0.4176 -0.3133 0.0913 0.0074 -0.4159 0.6593 0.4603 0.1530 -0.1222 0.1383 

NW 0.6760 -0.5845 -0.1382 -0.1153 0.1104 -0.0565 -0.6708 -0.1342 0.2352 0.5666 0.1342 0.2245 

NC -0.2276 -0.1469 0.4548 -0.3411 -0.3833 -0.1633 0.3027 -0.1064 0.3534 0.4804 -0.3199 -0.2817 

CS -0.5086 0.1305 0.0963 0.1443 -0.5255 -0.0051 0.0792 -0.0311 -0.6195 0.4766 -0.0585 -0.1087 

LL/LLW -0.5988 0.2461 -0.1251 -0.0435 0.2308 -0.1919 0.6462 -0.3540 0.2302 -0.0915 -0.1744 0.2676 

LL/LW 0.8961 0.2584 0.1742 -0.0397 0.0364 0.0782 -0.8606 -0.1237 -0.3450 -0.1053 -0.1482 0.1771 

LL/NW 0.7783 0.3690 -0.0012 -0.1223 -0.1588 0.2323 -0.5635 -0.5961 -0.2447 -0.3439 -0.0901 -0.0622 

NW/LW 0.6301 -0.0284 0.3747 0.1393 0.3296 -0.2805 -0.5295 0.5624 -0.2002 0.2994 -0.1204 0.3221 

ENL/LL -0.4953 -0.6313 0.4046 -0.2327 0.0252 -0.0039 -0.1955 0.7579 0.4680 0.1296 -0.1499 0.1824 

CW -0.2714 -0.2865 -0.5134 -0.1756 -0.2611 -0.2534 0.5738 -0.6352 0.1169 0.1345 0.1060 0.0519 

CWT -0.0352 0.2534 0.5020 -0.0182 0.3219 0.5000 -0.4494 -0.0834 -0.2666 -0.2109 -0.4715 0.0752 

NGC 0.8054 -0.2646 -0.1169 -0.0891 0.0268 -0.0644 -0.7037 -0.3733 0.2506 0.0672 -0.0404 -0.0090 
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Annex III.4. Correlation of morphological characters studied in each derivate classifier (CCA1 and 
CCA2) in Linear Discriminant Analysis (LDA) for field collected plants and in vitro cultivated plants. 
Variables with the highest contributions are written in bold. Character abbreviations follow those given in 
Table III.1; the characters AT and PM were split in two binary characters: AT d (dentate), AT s (serrate), 
PM p (plane) and PM r2 (recurved at middle and apical part of lamina); the transformations performed to 
improve their distribution were: Log10 (CL), Log10 (LL/LLW), Log10 (ENL+1) and Log10 
(ENL/LL*100+1). 

 Field collected plans Cultivated plants 
Characters studied CCA1 CCA2 CCA1 CCA2 

PP 0.1443 -0.0670   
CT -0.2660 -0.0489   
CL 0.3749 -0.2203 -0.0953 0.3327 

LLW 0.4366 -0.2816 0.2724 -0.0922 
LW 0.0342 0.0151 0.3452 0.0414 

AT d 0.1129 0.0129 0.0989 0.1054 
AT s   0.0678 0.0081 
PM p -0.1188 0.4427 0.0571 0.0290 
PM r2 0.0828 -0.4496 -0.1031 0.0552 

PA -0.1297 -0.0820 0.0395 0.1040 
ENL -0.2303 -0.2744 -0.2682 -0.1702 
NW 0.2125 -0.0985 0.1511 -0.1117 
NC -0.1258 -0.2128 0.0590 0.2112 
CS -0.3048 -0.1390 -0.0043 -0.1498 

LL/LLW -0.1450 0.1448 0.0636 0.0028 
LL/LW 0.4753 -0.3926 0.1455 -0.1808 
LL/NW 0.3710 -0.3557 0.3434 -0.0554 
NW/LW 0.2723 -0.2119 -0.1559 -0.2342 
ENL/LL -0.4097 -0.2577 -0.3557 -0.2099 

CW -0.1081 0.2625 0.2217 -0.0949 
CWT -0.0359 -0.1174 0.0347 0.1665 
NGC 0.4115 -0.2240 0.2874 0.0342 
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ABSTRACT 

The difference in time scale between the evolution or reproductive isolation and 

changing ecological circumstances means that current species ranges are likely to be 

imperfect proxies for distributions at the time of speciation. A key challenge, therefore, 

is to identify alternative sources of information that can provide insights into the 

speciation process in particular groups. To test the peripatric speciation and 

reconstructing the demographic and evolutionary history in the cosmopolitan moss C. 

purpureus, the sister species C. amazonum, and the recombinant C. ×conicus, nine 

nuclear loci were sequenced. Population genetic summary statistics and phylogenetic 

analyses were calculated. Moreover demographic parameters (divergence time, effective 

population sizes and migration rates) were estimated and evolutionary scenarios were 

simulated. Finally, it was calculated if hybridization between parental taxa occurred in 

one or several events. Ceratodon purpureus almost always had higher levels of genetic 

diversity than C. amazonum, and asymmetric gene flow was found between them. The 

effective population size of C. amazonum was smaller than C. purpureus, but 

estimations were broadly overlapping. Finally, we found clear evidence that C. 

×conicus was formed by multiple hybridization events between C. purpureus and C. 

amazonum, further supporting the role of gene flow in the speciation process in 

bryophytes.
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INTRODUCTION 

The evolution of reproductive isolation involves the cessation of gene flow between 

nascent species (Endler, 1977; Barton & Bengtsson, 1986; Futuyma, 1998). Studies of 

speciation have frequently used geography as a proxy for gene-flow  allopatric 

speciation implies a complete lack of gene flow, while peripatric, parapatric, and 

sympatric speciation imply increasing levels of genetic exchange over the course of the 

speciation process (Coyne & Orr, 2004). However, it is increasingly apparent that the 

evolutionary time scale over which speciation occurs is typically longer than the 

ecological time scale of range expansion or contraction in response to climate change; 

the difference in time scale between the evolution or reproductive isolation and 

changing ecological circumstances means that current species ranges are likely to be 

imperfect proxies for distributions at the time of speciation (Parmesan, 2006). A key 

challenge, therefore, is to identify alternative sources of information that can provide 

insights into the speciation process in particular groups. 

 In principle, genetic data could provide insights into the demography integrated 

over many generations, potentially providing more direct insights into the interaction 

between external factors, such as climate and community shifts, and features of the 

organisms in question. Statistical analysis of present genetic structure and diversity of 

populations of related species can identify historical vicariance, dispersal history and 

episodes of expansion and contraction of population size from species using a handful 

of DNA markers (Feng et al., 2014; Merceron et al., 2017). For speciation an event long 

ago that involved equal population sizes, we expect that the daughter species should 

show similar patterns of population genetic variation; however, for peripatric speciation 

events involving unequal population sizes or population bottlenecks, we expect 

asymmetric patterns of population genetic variation; gene flow homogenizes allele 

frequencies among descendant species, and can obscure some of these patterns 

(Templeton, 1980; Charlesworth et al., 1997). However, recent migration leaves a 

signiture that is detectable by methods that examine the genealogical relationships 

among alleles (Rosenberg & Nordborg, 2002). Inferences drawn from an Approximate 
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Bayesian Computation (ABC) framework may help to understand the demographic 

history of species (Csilléry et al., 2010; Roux et al., 2011; Leroy et al., 2014). 

 The use of ABC approaches is particularly valuable in species like bryophytes, 

where numerous moss species exhibit limited genetic differentiation among widely 

disjunct populations (Shaw et al., 2003; McDaniel & Shaw, 2005; Désamoré et al., 

2016; Lewis et al., 2017). Under these circumstances geographic barriers are 

particularly poor proxies for species barriers; however, evaluating the demographic 

history of speciation requires a quantity of genetic data which has been generated for 

relatively few bryophyte species (Yousefi et al., 2017). One such species is Ceratodon 

purpureus (Hedw.) Brid., a cosmopolitan species that grows on a wide variety of 

substrates (Crum, 1973). It frequently produces sporophytes and abundant spores that 

may maintain their viability for up to 16 years (Malta, 1922). A global view of the 

molecular population genetics of C. purpureus was provided by McDaniel and Shaw 

(2005), confirming that this species can disperse long distances (Muñoz et al., 2004). 

Moreover this species is considered a promising model for further ecological and 

genomic studies (McDaniel et al., 2016). 

 The taxonomy of the genus Ceratodon Brid. is complex, largely because many 

of the historically recognized species within the genus are scarcely distinguishable, 

morphologically or genetically, from the widespread and polymorphic C. purpureus 

(Burley & Pritchard, 1990; McDaniel & Shaw, 2005). Recently a new species, C. 

amazonum Nieto-Lugilde, O. Werner, S.F. McDaniel & Ros, was described, which is 

distinct from the cosmopolitan species C. purpureus based on a 25% increase in 

genome size as well as by genetic markers and morphology and a strong female-biased 

sex ratio (Nieto-Lugilde et al., 2018a, b). These authors observed that C. amazonum is 

locally abundant in Sierra Nevada Mountains in southern Spain and almost totally 

displaced C. purpureus in this region. Based on analyses of these data, Nieto-Lugilde et 

al. (2018a, b) suggested that C. amazonum may have arisen via peripatric speciation. 

Interestingly, C. amazonum was never was found with sporophytes, so sexual 

reproduction and dispersal by spores currently may be limited or absent. Population 

genetic theory predicts that small and isolated populations progressively lose genetic 

diversity as a consequence of genetic drift (Hedrick, 2001), making them less able to 

adapt to environmental change and diminishing their long-term reproduction and 
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survival. However, Nieto-Lugilde et al. (2018a, b) also reported evidence that a 

hybridization event between C. amazonum and C. purpureus gave rise to the previously 

recognized species C. ×conicus (Hampe) Lindb. some of which were diploid, 

presumably of allopolyploid origin. Populations with high level of hybridization may 

have a greater chance at long term survival, but not remain distinct species (Wang et al., 

1999; Keller & Waller, 2002; Hufbauer et al., 2015; Huisman et al., 2016). Thus, the 

zone of sympatry between C. purpureus; and C. amazonum allows to inquire about the 

demography of speciation in cosmopolitan taxa. 

 The main goal of the present work was to reconstruct the demographic and 

evolutionary history of the cosmopolitan moss C. purpureus, the sister species C. 

amazonum, and the recombinant C. ×conicus, based on coalescent analyses of 

nucleotide polymorphism data. Specifically we asked: i) Did the speciation event 

between C. purpureus and C. amazonum involve a population bottleneck, consistent 

with peripatric speciation? or ii) Did speciation proceed in the presence of ancestral or 

ongoing gene flow, consistent with parapatric speciation?, and iii) Did the recombinant 

C. ×conicus form once or multiple times? We found evidence for asymmetric gene flow 

between between C. purpureus and C. amazonum, favoring introgression from the 

common, cosmopolitan species to the rare southern European species. We estimated the 

effective population size of C. amazonum to be smaller than C. purpureus, although the 

distribution of probable values was broadly overlapping between the two species. These 

observations suggest that if the event that produced these two daughter species involved 

a population bottleneck, the effective population size of C. amazonum has recovered 

relatively quickly, potentially as a consequence recurrent of gene flow C. purpureus. 

Finally, we find clear evidence that C. ×conicus was formed by multiple hybridization 

events between C. purpureus and C. amazonum, further supporting the role of gene 

flow in the speciation process in bryophytes. 
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MATERIALS AND METHODS 

Plant material 

A total of 190 specimens of the genus Ceratodon were used for this study. Detailed 

information is listed in the Annex IV.1. We generated genetic data for 56 specimens of 

C. amazonum, 26 of C. ×conicus, and 51 of C. purpureus (of these 34, 17 and 37 

respectively were used before, Nieto-Lugilde et al., 2018a, b). We collected 45 of these 

samples, all of which were deposited at MUB (Herbarium of the University of Murcia, 

Spain). Nine samples were loaned from herbaria, including BOL (Bolus Herbarium, 

University of Cape Town, South Africa), CBFS (University of South Bohemia, Czech 

Republic), and S (Herbarium of the Swedish Museum of Natural History, Sweden), and 

two samples were donated by Laura Forrest (at Royal Botanic Garden Edinburgh, 

United Kingdom). Moreover the Genbank accessions for 57 specimens from Antarctica, 

Australia and North America, previously published by McDaniel et al. (2013b) were 

downloaded to increase the sampling area of C. purpureus. We sequenced four 

specimens of Cheilothela chloropus (Brid.) Lindb. from Spanish Sierra Nevada 

Mountains, to use as an outgroup (GenBank accession numbers are listed in Annex 

IV.1). Ceratodon amazonum specimens were from Spanish Sierra Nevada Mountains 

and one from Spanish southeastern mountains. Ceratodon ×conicus specimens were 

from Alps, Czech Republic, Sierra Nevada Mountains, Spanish central mountain ranges 

and United Kingdom. Ceratodon purpureus specimens were from Alps, Antarctica, 

Australia, Czech Republic, Germany, North America, Pyrenees, Sicilian Mount Etna, 

South Africa, Spanish central mountain ranges, Spanish Sierra Nevada Mountains, 

Spanish southeastern mountains and Sweden. 

DNA sequencing 

We sequenced the nuclear ribosomal Internal Transcribed Spacer 2 (ITS2) and eight 

nuclear exon-primed intron-spanning loci, including hp23.9, PPR, TBP (McDaniel et 

al., 2013a, b; Nieto-Lugilde et al., 2018a), rpL23A, TRc1b3.05 (McDaniel et al., 2013a; 

Nieto-Lugilde et al., 2018a), hp23.3, KIAA0187 and rpS18A (McDaniel et al., 2013a, b). 

Genomic DNA was extracted using cetyltrimethyl ammonium bromide (CTAB) 
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extraction (Doyle & Dickson, 1987; Doyle & Doyle, 1987; Cullings, 1992). We 

amplified all loci 

DNA Polymerase (Thermo Fisher Scientific Inc.), following the PCR conditions 

employed before by McDaniel et al. (2013b) and Nieto-Lugilde et al. (2018a). In 

samples where we observed double peaks in the chromatograms, we cloned the loci by 

isolating the PCR products from agarose gels and cloning using the CloneJet PCR 

Cloning Kit (Thermo Fisher Scientific). We checked cloning efficiency and accuracy 

using PCR. Unincorporated primers and unincorporated nucleotides were removed 

using Exo-AP Clean-up reaction. The resulting cleaned PCR products were sequenced 

on an ABI3730XL DNA Analyzer, Applied Biosystems (Macrogen Europe, The 

Netherlands, Amsterdam). 

Phylogenetic analyses 

We followed the methodology employed before by Nieto-Lugilde et al. (2018a). In 

general, we aligned the DNA sequences, we coded gaps as informative, and we 

performed phylogenetic analyses using MrBayes v.3.2 (Ronquist et al., 2012). To 

search for convergence in these phylogenetic analyses we used two runs with different 

setting for some of the loci; for hp23.9, TBP, PPR, TRc1b3.05 and rpL23A we 

employed the same condition as used in Nieto-Lugilde et al. (2018a); And four chains 

with 1 × 107 generations were run simultaneously for hp23.3, ITS2, KIAA0187 and 

rpS18A, with the temperature of the single heated chain set to the default in MrBayes. 

The genealogies were rooted with sequences from Cheilothela chloropus, when it was 

possible. The final trees were edited with TreeGraph2 (Stöver & Müller, 2010). 

Analysis of divergence and polymorphism 

The population genetic summary statistics were calculated for each locus using the 

software DnaSP v5 (Librado & Rozas, 2009). All multiple alignment columns with 

missing data or gaps were ignored. For this reason, we make estimates using only the 

complete sequences. All markers included in this study were clustered by genealogies, 

as C. amazonum or C. purpureus. We calculated the number of segregating 

erson, 1975), 

Nei, 1987; Nei & Miller, 1990
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& Li, 1993) for both species separately in each locus. We also tested for evidence of 

historical recombination (Rm, Hudson & Kaplan, 1985) at each locus separately, 

observing possible recombination events in each species. Moreover the average number 

of nucleotide substitutions per site (Dxy, Nei, 1987) between C. amazonum and C. 

purpureus was calculated. 

Analysis of parameters of the isolation migration model 

In order to estimate the parameters of the isolation migration model between species, 

we generated molecular demographic parameters, such as historical (NA) and current 

effective population sizes for C. amazonum and C. purpureus (Nca and Ncp), rates of 

gene flow between species (mCa-Cp and mCp-Ca) and divergence time (Tsplit), using the 

program IMa2 (Hey & Nielsen, 2004, 2007; Hey, 2010a, b). This software implements 

a Markov Chain Monte Carlo (MCMC) search strategy to identify maximum likelihood 

estimates (MLEs) of demographic parameter values given in the sampled data. The 

"Isolation with Migration" (IM) model implemented in IMa2 involves several 

simplifying assumptions. These include no recombination within each locus, free 

recombination among all loci, no population structure within each species, no genetic 

contribution from unsampled populations or species and selective neutrality. The 

samples were grouped by species excluding specimens of C. ×conicus, based on 

morphological and phylogenetic previous studies (Nieto-Lugilde et al., 2018a, b). We 

divided the sequences into segments that did not violate the four-gamete test (historical 

recombination), based on the output from DnaSP. The locus rpL23A showed a 

minimum of ten recombination events, for this reason the locus was excluded for the 

testing. Based on the Akaike information criterion, the Hasegawa-Kishino-Yano 

mutation model (Hasegawa et al., 1985) was used for all loci. Each locus was assigned 

an inheritance scalar, 1.0 for autosome loci and 0.5 for sex-linked loci (PPR and 

rpS18A). We calculated values for the prior distributions according to program 

documentations (q = 30, t = 12 and m = 0.33), and conducted an initial run of the 

program to establish parameter maxima where the MLEs reached zero probability, and 

an appropriate burn-in period. We then conducted three additional runs of more than 

one million steps (run of 1 119 119 steps for data shown), each with a burn-in of 30 000 

steps, a random different seed number, the lowest effective sample size (ESS) among 

the parameters was at least 100, and checked convergence among the three runs. 
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Calculation of ancestral effective population size is in the most of cases really complex 

due to presence of migration between species (Edwards & Beerli, 2000; Tseng et al., 

2014). To test the size of ancestral effective population without migration we conducted 

three additional runs. We assumed that C. purpureus produces one sporophyte 

generation per year, and used rates of 1 × 10  neutral mutations per site per generation 

(µ); however, because we have no bryophyte-based calibration for this molecular clock, 

we provided the dates only as a rough estimate. All parameters were scaled by µ as 

per gene copy, T represents divergence time estimated in years, and N represents the 

effective population size. 

Population size fluctuations through time 

The Extended Bayesian Skyline Plot (EBSP), a coalescent-based graphical method, was 

carried out in BEAST v.2.3.2 (Drummond & Rambaut, 2007; Drummond et al., 2012; 

Bouckaert et al., 2014) for both species independently to infer potential historical 

fluctuations in effective population size. EBSP analysis was run using recommendations 

of Joseph Heled (Extended Bayesian Skyline Plot tutorial for BEAST 2), empirical 

HKY substitution model, specific mode of inheritance for each locus and strict clock 

models. Per species mutation rate (µ) 1 × 10  was used. All analyses were run three 

times to check for convergence with 5 × 107 generations, and sampling every 5 × 103 

generations. The first 10 % of the genealogies were discarded as burn-in. Convergence, 

stationarity, effective sample size each parameter of interest and the appropiate burn-in 

were evaluated using the software TRACER v. 1.6 (Rambaut et al., 2014). We 

considered a generation time of one year to rescale the uncorrected population size, 

because it is the time that C. purpureus employs in developing the sporophytic 

generation in its life cycle that reach an age of 2-5 years (During, 1979). 

Test of diversification scenarios 

To investigate in more detail the divergence history of C. amazonum and C. purpureus, 

we used ABC approaches to make inferences with complex models based on molecular 

data. We carried out a statistical evaluation of a total of 14 models of speciation (Fig. 

IV.1). All of these models included the subdivision of an ancestral panmictic population 

into two daughter species (C. amazonum and C. purpureus) at time Tsplit. The scenarios 
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were divided into two types: A) the species had independent effective population size 

that remained constant (homogeneus) over time and, B) heterogeneus effective 

population size over time. For each one four general models were tested. Three of the 

scenarios assumed substantial gene flow since Tsplit: isolated with migration (constant 

migration over time, IM), ancient migration (AM), and secondary contacts (SC). 

Fig. IV.1. Alternative scenarios and models of speciation for Ceratodon amazonum and C. purpureus. 
All models assume an ancestral population of effective population size (NA) split at divergence time 
(Tsplit) into two populations of effective population size (Nca and Ncp). Two scenarios including 
homogeneity and heterogeneity of effective population size, each one with four models are compared: SI 
(strict isolation, no migration), IM (isolation with migration over time), AM (ancient migration assuming 
that populations started diverging in the presence of gene flow, TAM), and SC (secondary contact in which 
populations diverged in the absence of gene flow followed by a single period of secondary contact, TSC). 
For each model including migration (asymmetric migration between both species in all cases) two 

) of 
effective migration rate across the genome. 
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The other model assumed strict isolation (SI), without migration. Each scenario was 

tested assuming homo- and heterogeneus migration over the genome but asymmetric 

between them. Following Roux et al. (2016) homogeneous effective population size 

scenarios are assumed, which means that most of the genetic variation in the genome is 

unaffected by selection at linked sites. For this reason a single value of effective 

population size shared by all loci across the genome was used, but effective population 

size differed among populations. On the contrary, heterogeneous effective population 

size scenarios account for local genomic effects of directional selection (background 

selection, selective sweeps) by considering a variable effective population size among 

loci. Submodels with homogeneous migration rate assume that all loci share the same 

probability to receive alleles from the sister species. Alternatively, the heterogeneous 

migration rates submodels account for the existence of local barriers to gene flow, of 

variable strengths, and of variable levels of genetic linkage to the sampled loci (more 

data see Roux et al., 2016). We simulated ten million multilocus data sets with msnsam, 

s program allowing variability of sample size across 

loci (Hudson, 2002; Ross-Ibarra et al., 2008). Each data set was composed of 21 

fragments of loci fitting the length and sampling size of the 21 fragments of observed 

loci (employed for IMa2). Simulations were performed with random priors drawn from 

a modified version of priorgen (Ros-Ibarra et al., 2008; Leroy et al., 2017). We used the 

1 2, Tajima, 

D1 and D2, Tajima, 1989b, c) for each population, and the FST 

between populations. The average and standard deviation across the loci of these 

statistics were calculated with the program MScalc (Ross-Ibarra et al., 2008, 2009; 

Roux et al., 2011; Leroy et al., 2017). Large uniform prior distributions were used for 

all parameters common to all scenarios, based on previous information given for IMa2 

analysi Ca ref Cp ref distributions were uniform at intervals 0- ref= 

2Nrefµ, Nref is the number of effective individuals of the reference population, arbitrarily 

set at 100 000, and µ is the mutation rate of 1 × 10-6/bp/generation, as we commented 

anc ref was uniform over the 0-25 interval. The 

Tsplit/(2Nref) ratio was sampled from the interval 0-20 generations, conditioning the 

parameters TAM and TSC to be uniformly chosen within the 0-Tsplit interval. For 

speciation scenarios assuming homogeneous migration of loci, all loci moving in a 

given direction had the same effective migration rate, which was independent of that for 
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migration in the opposite direction. Mca (= 2NCamCp-Ca) and Mcp (= 2NCpmCa-Cp) were 

sampled from uniform distributions (0-0.5), where mCp-Ca and mCa-Cp are the proportions 

of migrants from C. purpureus in C. amazonum and migrants from C. amazonum in C. 

purpureus, respectively. There are two important genomic features known to bias 

demographic inferences: genomic heterogeneities in effective migration rates and 

effective population sizes. For scenarios assuming genomic heterogeneity in effective 

migration rates, locus-specific effective migration rates were randomly sampled from a 

-20, and 0-200 

respectively). We statistically evaluated alternative speciation models by a hierarchical 

procedure (Fagundes et al., 2007; Oliveira et al., 2015). First, for each model we 

tely compared the best version between the two 

supported versions of the four scenarios were evaluated. Posterior probabilities for each 

scenario were estimated with a neural network under the ABC framework, in the R 

observed values of the summary statistics were selected for the two first comparison and 

for the last one we used 200 000 replicate simulations. Finally, we checked simulated 

models fit to the observed data, plotting the histogram of the null distribution under 

different models on which we superimpose the observed value. 

Analysis of recombinant specimens origin 

The hypothesis of a monophyletic origin of C. ×conicus was explicitly tested by 

contrasting the likelihood of two competing topologies, one that resulted from the 

unconstrained analyses, and one produced under the constraint that all recombinant 

specimens are included within the same clade, following the approach described in 

Bergsten et al. (2013). Model marginal likelihoods were estimated with the stepping-

stone method (Xie et al., 2011) as implemented in MrBayes 3.2 (Ronquist et al., 2012) 

with the following settings: ngen = 25 000 000; diagnfreg = 250 000. A log diference 

above five is considered very strong evidence (Kass & Raftery, 1995). 
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RESULTS 

Cloning DNA sequences 

Cloning of loci confirmed that some specimens presented two different copies of the 

same loci in most cases. Only from few samples we obtained cloned sequences of 

KIAA0187. The ITS2 together with TRc1b3.05, PPR, and rpL23A presented 

predominantly a single copy, although some individuals presented the two copies in 

other loci. These results are similar to those reported before (Nieto-Lugilde et al., 

2018a). Finally we employed for this study a total of 1632 accessions of genus 

Ceratodon (Annex IV.1). 

Phylogenetic analyses 

For locus ITS2 two clades were resolved 1.00-0.92 pp (Annex IV.2), but sequences of 

Cheilothela chloropus were not obtained for using as outgroup. In the case of hp23.3 

the sequences of C. chloropus were identical with one clade of Ceratodon, for this 

reason it was not useful to root the tree, but the other clade was well differentiated 1.00 

pp (Annex IV.3). The loci rpS18A (Annex IV.4) and KIAA0187 (Annex IV.5) showed 

one well supported clade 0.99 pp and 1.00 pp respectively, and all remaining samples 

with deeper coalescent events. The remaining loci showed similar results according 

with those obtained in Nieto-Lugilde et al. (2018a) (data not shown). One of these 

clades corresponded with the socalled SN clade in Nieto-Lugilde et al. (2018a), formed 

always mainly by Sierra Nevada Mountains samples but also by Spanish southeastern 

mountains. The second clade consistently included specimens coming from the rest of 

the sampled areas, including Sierra Nevada and Spanish southeastern mountains (named 

Ww clade in Nieto-Lugilde et al., 2018a). Some samples were resolved in either the SN 

clade or the Ww clade, depending on the studied locus, they were considered as 

recombinants. 

Genetic diversity 

The TBP and hp23.3 alignments did not present indels. No indels larger than one and 

four bases were evident for PPR and ITS2 alignments respectively. The rpL23A 
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alignments showed six bases indel for C. amazonum while some sequences of C. 

purpureus had an insertion of seven bases. Samples of C. amazonum had an indel 

(GTGT) for the hp23.9 alignment; and for KIAA0187 alignment, the samples of C. 

purpureus presented an indel of ten bases. And finally the rpS18A and TRc1B3.05 

alignment showed indels of 30 and eight bases, respectively, but they were not useful to 

discriminate between species. Several standard summary statistics (Table IV.1) were 

calculated to understand the population genetic processes shaping variation on the two 

species. The sex-linked loci (rpS18A and PPR) exhibited lower values of segregating 

sites compared with most of the autosomal loci, but two autosomal loci (hp23.9 and 

TBP) had similar low values. Ceratodon purpureus, with values ranging from nine 

(TRc1B3.05) to 60 (rpL23A), was higher than C. amazonum, with values ranging from 

one (PPR) to 30 (rpL23A). The exception was the TRc1B3.05 locus in which the value 

of segregating sites was larger in C. amazonum (22) than in C. purpureus (nine). The 

w) in C. purpureus were higher than that in C. 

amazonum. The mean value was 0.0071 for C. amazonum, 0.0007 (PPR) to 0.0121 (TR 

C1B3.05), and 0.0100 for C. purpureus. The nucleotide diversity in most of the loci 

studied had higher values in C. purpureus than C. amazonum (except ITS2, KIAA0187, 

TBP and TRc1B3.05 loci). The Tajima's D values suggested that the loci have 

experienced different histories. They were negative in C. amazonum for six of nine loci 

(mean value = - 0.56) indicating a recent population expansion or chromosome-wide 

selective sweep, but only one of them was significantly different, having a positive 

value (TBP). In C. purpureus, seven loci were negative (mean value = - 0.95) and four 

of them were significantly different (ITS2, KIAA0187, TBP and TRc1b3.05). Positive 

but any of the positive loci were significantly different. F

C. amazonum showed four loci (ITS2, KIAA0187, rpL23A and TBP) with statistical 

significant values (only TBP with a positive value) and C. purpureus three (hp23.9, 

KIAA0187 and TBP) and another time the same locus with positive value. The rest of 

the loci y negative at the 

2% level, which corresponds to a 5% rejection rate (Fu, 1997). Again, most of the loci 

significantly negative values for C. amazonum (rpS18A and TBP) and three for C. 

purpureus (hp23.9, TBP and TRc1b3.05). The loci hp23.3, PPR, rpS18A and TBP were 
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the only ones that did no present evidences of recombination in both species. The 

average proportion of nucleotide differences between species ranged from 0.0238 

(rpS18A) to 0.0808 (PPR). 

Past population history 

The estimations scaled of current and ancestral effective population sizes, migration 

rates, and divergence times calculated with the program IMa2 for Ceratodon amazonum 

and C. purpureus are shown in Table IV.2 and Fig. IV.2. 

Table IV.2. Parameter estimates in IMa2 analyses. HiPt: the bin with the highest probability in the 
estimation; HPD95Lo: the lower bound of the estimated 95% highest posterior density (HPD) interval; 
HPD95Hi: the upper bound of the estimated 95% HPD interval; N: effective population size (individuals) 
for Ceratodon amazonum (Ca), C. purpureus (Cp) and ancestral population (A); m: population migration 
rate for both directions (from C. amazonum to C. purpureus and vice versa); T: divergence time in years. 

: unstable along different runs. The mutation rate per generation (µ) employed was 1 x 10-6. 

 Value NCa NCp NA mCa-Cp mCp-Ca Tsplit 

Analysis with 
migration 

HiPt 277 500 427 500 277 500  1.3 × 10-8 4.2 × 10-8 1 686 000 

HPD95Lo 157 500 247 500 22 500  0.0 0.0 930 000 

HPD95Hi 472 500 622 500 1 450 000  10.1 × 10-8 16.4 × 10-8 2 358 000 

Analysis without 
migration 

HiPt 292 500 427 500 1 102 500   1 074 000 

HPD95Lo 157 500 247 500 427 500   426 000 

HPD95Hi 472 500 637 500 2 137 500   1 638 000 

 

The results showed that the current effective population size for C. amazonum (NCa) and 

C. purpureus (NCp) was approximately 277 500 individuals (HPD95= 157 500-472 500) 

and 427 500 (HPD95= 247 500-622 500; Fig. IV.2A, B) respectively. The ancestral 

effective population size (NA) was unstable, flat, converged and reached zero along 

different runs. But when we tested the same runs without migration between the species, 

it was stable and more than double of NCp (NA = 1 102 500 individuals, HPD95= 427 

500-2 137 500; Fig. IV.2B), whereas the current effective population sizes were 

approximately equal. The maximum likelihood estimates (MLE) of migration rates from 

C. purpureus to C. amazonum (mCp-Ca = 4.2 × 10-8, HPD95= 0.000-16.4 × 10-8) was 

larger than that from C. amazonum to C. purpureus (mCa-Cp = 1.3 × 10-8, HPD95= 

0.000-10.1 × 10-8; Fig. IV.2C). Neither of the two converged but both reached zero. 

Also we estimated the divergence time between species found around 1.68 (HPD95= 

0.93-2.35) million years ago (mya; Fig. IV.2D). Reconstruction of the population size 
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history by means of EBSP suggested an expansion episode for C. amazonum c. 6 600 

years before present (Fig. IV.3). The mean number of population size changes 

throughout its history was estimated as 1.3 (95% HPD 1-2). However our data failed to 

find convergence when we studying C. purpureus. 

 

Fig. IV.2. Marginal posterior probability distribution of the parameters estimated using the Isolation with 
Migration model between Ceratodon amazonum and C. purpureus. A) Effective population size of 
species and the ancestral population considering migration; B) Effective population size of species and 
the ancestral population without migration between them; C) Migration rate between species; D) 
Divergence time in millions of years since the split of species. 

Diversification scenarios 

Analysis of IMa2 suggested the existence of gene flow during the formation of the two 

current species. However, migration could have occurred at different stages of 

speciation. To reveal the divergence history, 14 models were proposed and simulated. 

First we compared the submodels of mutation rate between them across the three 

models with migration (IM, AM and SC). For AM and SC comparison the submodels 

homogeneous mutation rate across the genome were selected (PP = 0.59-0.77) but in the 

case of IM was heterogeneous mutation rate (PP = 0.57-0.76; Annex IV.6), both in the 

case of homogeneous and heterogeneous effective population size scenarios. When we 

compared the best models selected in the step before between the two scenarios 
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(homogeneous vs. heterogeneous effective population size) in all cases were the 

homogeneous effective population size scenarios selected (PP = 0.62-0.94). Finally all 

general models (SI, IM, AM and SC) were compared using the best models of step 

before, the selected model was SC (PP = 0.8304). During the step of fit, we did not get a 

good fit; the simulated data did not approximate our observed data. For this reason we 

should not consider these results as reliable. 

Origin of recombinant specimens 

The Bayesian analyses consistently favored the unconstrained tree topology over the 

constrained topologies for all loci (Table IV.3). Ceratodon ×conicus was found to be 

polyphyletic and not monophyletic. Indicating that the recombinants between C. 

amazonum and C. purpureus currently found have evolved from several independent 

hybridization events and not from a single hybridization event. 

Fig. IV.3. Extended Bayesian Skyline Plots of Ceratodon amazonum. The dotted line represents the 
median of the effective population size parameter and the grey zone the 95% Central Posterior Density 
(CPD) interval. 
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Table IV.3. Estimates of the marginal model likelihoods (ln units) for the studied loci. Topologies with 
and without constrained recombinant samples are compared. The statistically better model for each locus 
is highlighted in bold. A log diference above five is considered very strong evidence. 

Locus Unconstrained model Constrained model 

hp23.3 -1392.04 -1462.20 

hp23.9 -1699.35 -1780.42 

ITS2 -3773.92 -3957.17 

KIAA0187 -1665.25 -1689.34 

PPR -1437.27 -1461.54 

rpL23A -5289.10 -5695.93 

rpS18A -2076.01 -2343.98 

TBP -1360.31 -1400.03 

TRc1b3.05 -1586.14 -1727.56 

DISCUSSION 

A major problem in evolutionary biology is to identify the processes that lead to the 

generation of reproductive isolation and the cessation of gene flow between new 

species. The geographic distribution of daughter species has long provided critical 

information regarding the patterns of gene flow that occurred over the course of a 

speciation event. However, geography may be a poor proxy for gene flow in species 

capable of frequent long distance dispersal, like free-spawning marine animals, ferns, 

and bryophytes. In this study we used genetic data to reconstruct the demographic and 

evolutionary history of the cosmopolitan moss C. purpureus, its geographically 

restricted sister species C. amazonum, and the nothospecies C. ×conicus. Previous data 

suggested that C. amazonum arose from a peripatric speciation event with C. purpureus, 

and C. ×conicus subsequently formed from hybridization between C. amazonum and C. 

purpureus. Using coalescent analyses we show that the speciation event between C. 

purpureus and C. amazonum occurred approximately 1.7 mya, but introgression 

occurred between the two species, more often from C. purpureus into C. amazonum. 

We also find that C. ×conicus was formed by multiple such hybridization events. These 

results highlight the complex role that gene flow can play during the speciation process. 
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 We had initially predicted that the nucleotide diversity in C. amazonum would 

be much lower than that in C purpureus. Given the difference in the sizes of their 

geographic distributions, we hypothesized that C. amazonum diverged peripatrically 

from a geographically widespread common ancestor (Nieto-Lugilde et al., 2018a), a 

process would presumably involve a population bottleneck. Additionally, C. amazonum 

was never observed reproducing sexually. Indeed, our results show that the more 

abundant species (C. purpureus) almost always had higher levels of diversity than the 

less common species (Neutral theory: Kimura, 1983), probably due to a combination of 

demographic factors, including faster generation times, high rates of gene flow and 

large local population size (and effective population sizes). 

 Surprisingly, current effective population size of C. amazonum is relatively close 

to that of C. purpureus, despite the differences in census size. And neither species 

showed evidence of a population expansion. Demographic changes (bottleneck, 

population split) affect all loci whereas selection is expected to be locus-specific and is 

therefore distinguishable if multiple loci are analyzed. Our current results do not support 

a genome-wide historical event (for any of both species), which influenced all regions 

in the same way regardless of genomic position. Similar conclusion were obtained 

previously in C. purpureus, estimated 

mean = 0.014 (0.0-0.14). This degree of variation illustrates the among-locus 

heterogeneity in evolutionary history within this species (McDaniel et al., 2013a). The 

loci that are more diverged reflect locus-specific rather than genome-wide evolutionary 

processes (McDaniel & Shaw, 2005; McDaniel et al., 2013a). Overall nucleotide 

diversity was low in both species (C. amazonum and C. purpureus) compared to 

estimations in seed plants (reviewed in Wright & Gaut, 2004), which might be a general 

trend in bryophytes (Szövényi et al., 2007).  

 It is possible that low levels of introgression from C. purpureus into C. 

amazonum maintain similar levels of nucleotide diversity in the two species. We found 

clear evidence of ongoing asymmetric gene flow between the two species, with the bias 

favoring introgression into C. amazonum. In addition, the fact that the recombinant C. 

×conicus was formed by multiple events is also consistent with ongoing interspecific 

gene-flow. This indicates that reproductive isolation between the two species is not 

complete. In addition, recombinant diploid gametophytes were reported in Ceratodon 
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(Nieto-Lugilde et al., 2018a) and their sequences do not differ from those of haploid 

recombinants, this indicates that both haploid and diploid hybridization events are very 

recent. Our data revealed that C. purpureus was more introgressed than C. amazonum, 

moreover multiple independent hybridization events have occurred. The fact that the 

hybridization between both lineages is not rare, probably indicates that the genomic 

imbalances derived from this hybridization are solved by both haploid and diploid 

recombinant individuals. 

 The lack of obvious population structure in either C. purpureus or C. amazonum 

suggests that both species have the capacity for some long-distance dispersal making it 

unlikely that the speciation event separating them involved a long period of allopatry. 

Accordingly with the worldwide sampling (McDaniel & Shaw, 2005), in our sampling 

little or no genetic structure has been found associated with geography in C. purpureus 

(even considering the samples from North America), probably due to a really efficient 

spore dispersal. For C. amazonum, no genetic population structure was observed, 

despite the fact that sporophytes were never observed (Nieto-Lugilde et al., 2018a). 

Thus, the fact that in Sierra Nevada Mountains C. purpureus is displaced by C. 

amazonum remains mysterious. It could be explained by density-dependent processes, 

such as gene surfing, high-

principle: Waters et al., 2013) or other not necessarily density-dependent and not 

mutually exclusive processes (dispersal ability or social behavior, niche specialization, 

genetic incompatibility or assortative mating: Buckley et al., 2013). It is possible that C. 

amazonum is locally adapted to the region, but C. purpureus occupies many sites that 

are superficially similar to habitats in the Sierra Nevada. 

 Molecular clocks are widely used to date phylogenetic events (Bromham & 

Penny, 2003; Kumar, 2005; Weir & Schluter, 2008), and there are evidences that 

substitution rates of mosses are considerably lower than in vascular plants (Stenøien, 

2008). Previously, a mutation rate of 1 × 10-8 neutral mutations per site per generation 

was employed in C. purpureus (McDaniel et al., 2013b). However greater mutation 

rates can be considered for Ceratodon species, based on the results in the Moss and 

Liverwort Tree of Life with five species and calculated by three different methods, 

which indicate that the median age of the stem of Ceratodon genus is 12.6-19.0 × 106 

years (Laenen et al., 2014). We estimated a divergence time near to 1.7 mya, however, 
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if a lower mutation rate (around to 1 × 10-7 mutations per site per generation) is 

considered, the split time will be of 17 mya and is in this hypothetical case near to the 

origin of the genus. However, mutation rate variation has been associated with dramatic 

changes in genome size and complexity (Sloan et al., 2012), much like that in C. 

amazonum, meaning that mutation processes may not be consistent between the two 

species or over time. 

 Results from IMa2 program show that probably the effective population size of 

the ancestor was near the double of the current C. purpureus effective population size. 

Usually effective population sizes are lower than ecologically observed population 

sizes, but not always (Braude & Templeton, 2009; Nunney, 2016). The structure of the 

population through breeding individuals (sex ratio or gene flow), as well as variation in 

Wang et al., 2016; Bobay & Ochman, 2018) could vary over time, 

explaining this decrease. Probably a sterile condition associated with a significant 

decrease in the presence of males in C. amazonum (Nieto-Lugilde et al., 2018a) may 

depress the effective population size of this species. However, C. purpureus is very 

common now, reproduces frequently, and has a close to even sex ratio. Several of these 

features would have had to be quite different for this species to have had an effective 

population size twice as big in the past. 

 One possible explanation for the decreased genetic diversity relative to the 

estimated ancestral population size is recurrent selection reducing nucleotide diversity 

in our sampled loci. The deviations from neutrality can be due to selective and/or 

demographic events, confounding the interpretation of tests. The three tests to study the 

deviation of neutrality selected here were different by d

differences between estimators of the population mutation rate and differed in their 

 The power of these statistics 

can vary depending on sample size, number of segregating sites, recombination rates 

and demographic events (Ramos-Onsins & Rozas, 2002; Ramírez-Soriano et al., 2008). 

Therefore, because of the risk to over- 

we present the other two tests. The combined results suggest that the loci have 

experienced different histories, and indicate that the species has expanded recently 
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across the whole investigated areas. This was also supported by the results of EBSP at 

least for C. amazonum. 

 Similarly, the ABC analyses are difficult to apply to such circumstances, in spite 

of their flexiblity and power (Bertorelle et al., 2010). Models are always approximations 

of reality, and they should be as simple as possible, but not more so, as Einstein said in 

one of the great quotes in science (Saracci, 2006; Csilléry et al., 2010). We considered 

different testable scenarios that would cope to the extant distribution of genetic 

variation. It is difficult and practically impossible to find a simulation model that fits the 

data. For this reason, it is a common practice in ABC to use one or more summary 

statistics of the data rather than the data itself (Sadegh & Vrugt, 2014). We tried six to 

22 summary statistics used successfully in other works, but they were not sufficient to 

provide as much information for the model parameters as the original data set itself. The 

effect of competing models, the number of simulations, the choice of summary 

statistics, or the acceptance threshold should be evaluated and tested in each study 

(Bertorelle et al., 2010). We also considered important to incorporate the heterogeneity 

in migration rates among loci, and to account for the semi-permeability of the barrier to 

gene flow between recently diverged species (Roux et al., 2013, 2016). In this way we 

can incorporate the effect of background selection and genetic hitchhiking in regions of 

low recombination in demographic inferences (Sousa & Hey, 2013; Roux et al., 2016; 

Fraïsse et al., 2018). Despite our efforts to simulate data, these were not successful, 

perhaps due to greater selective pressure or maybe due to more complex scenarios that 

we did not take into account. 

 Taken as a whole, the demographic history that we have inferred from DNA 

sequencing data indicates that C. amazonum experienced a recent population expansion, 

whereas it was not conclusive for C. purpureus. These results indicate that more 

complex phenomena are affecting the populations of C. purpureus and possibly are the 

culprits of the failure to simulate the data. Despite these limitations, demographic 

insights from this study illustrate the value of a long term evolutionary perspective, as 

well as an understanding of ongoing population processes. These mosses form a 

complex scenario that are of particular interest for such a study given their obscure 

morphologies species diversity, and their contrasting distribution around the Earth, from 

a restricted (C. amazonum) to a worldwide distribution (C. purpureus). Disentangling 
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the effects of selective and demographic processes poses a serious challenge, due to the 

fact that both may result in similar patterns of nucleotide variability (Csilléry et al., 

2010).
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ANNEXES 

Annex IV.1. Voucher information for the studied specimens. For each sequenced sample the next 
information is given: herbarium code (or Genbank identification code); geographical origin, Genbank 
accession numbers for the nine loci studied, given in the next order: hp23.3, hp23.9, ITS2, KIAA0187, 
PPR, rpL23A, rpS18A, TBP and TRc1b3.05. Sequences obtained by cloning (Nieto-Lugilde et al., 2018a) 
are indicated by their GenBank accession number given in parentheses. 

Ceratodon amazonum 

MUB 43730: Spanish south-eastern mountains, KP825494, KP825628, KP825765, KP825883, 
KP826017, KP826181, KP826270, KP826402, KP826531. MUB 49302: Sierra Nevada Mountains, 
KP825570, KP825705, KP825825, KP825958, KP826093, KP826267, KP826346, KP826475, 
KP826603. MUB 49303: Sierra Nevada Mountains, KP825569, KP825704, KP825817, KP825957, 
KP826092, KP826266, KP826345, KP826474, KP826602. MUB 49304: Sierra Nevada Mountains, 
KP825568, KP825703, KP825824, KP825956, KP826091, KP826265, KP826344, KP826473, 
KP826601. MUB 49305: Sierra Nevada Mountains, KP825567, KP825702, KP825823, KP825955, 
KP826090, KP826264, KP826343, KP826472, KP826600. MUB 49306: Sierra Nevada Mountains, 
KP825566, KP825701, KP825822, KP825954, KP826089, KP826263, KP826342, KP826471, 
KP826599. MUB 49317: Sierra Nevada Mountains, KP825564, KP825699, KP825819, KP825952, 
KP826087, KP826261, KP826340, KP826469, KP826597. MUB 49318: Sierra Nevada Mountains, 
KP825563, KP825698, KP825818, KP825951, KP826086, KP826260, KP826339, KP826468, 
KP826596. MUB 49319: Sierra Nevada Mountains, KP825562, KP825697, KP825816, KP825950, 
KP826085, KP826259, KP826338, KP826467, KP826595. MUB 49321: Sierra Nevada Mountains, 
KP825560, KP825695, KP825814, KP825948, KP826083, KP826257, KP826336, KP826465, 
KP826593. MUB 49326: Sierra Nevada Mountains, KP825558, KP825693, KP825812, KP825946, 
KP826081, KP826255, KP826334, KP826463, KP826591. MUB 49327: Sierra Nevada Mountains, 
KP825557, KP825692, KP825821, KP825945, KP826080, KP826254, KP826333, KP826462, 
KP826590. MUB 49328: Sierra Nevada Mountains, KP825556, KP825691, KP825811, KP825944, 
KP826079, KP826253, KP826332, KP826461, KP826589. MUB 49329: Sierra Nevada Mountains, , 
KP825690, KP825810, KP825943, KP826078, KP826252, KP826331, KP826460, KP826588. MUB 
49330: Sierra Nevada Mountains, KP825555, KP825689, KP825809, KP825942, KP826077, KP826251, 
KP826330, , KP826587. MUB 49331: Sierra Nevada Mountains, KP825554, KP825688, KP825808, 
KP825941, KP826076, KP826250, KP826329, KP826459, KP826586. MUB 49341: Sierra Nevada 
Mountains, KP825549, KP825683, KP825806, KP825937, KP826071, KP826246, KP826324, 
KP826454, KP826581. MUB 49342: Sierra Nevada Mountains, KP825548, KP825682, KP825805, 
KP825936, KP826070, KP826245, KP826323, KP826453, KP826580. MUB 49351: Sierra Nevada 
Mountains, KP825547, KP825681, KP825804, KP825935, KP826069, KP826244, KP826322, 
KP826452, KP826579. MUB 49352: Sierra Nevada Mountains, KP825546, KP825680, KP825803, 
KP825934, KP826068, KP826243, KP826321, KP826451, . MUB 49353: Sierra Nevada Mountains, 
KP825545, KP825679, KP825802, KP825933, KP826067, KP826242, KP826320, KP826450, . MUB 
49355: Sierra Nevada Mountains, KP825544, KP825678, , KP825932, KP826066, KP826240, 
KP826319, KP826449, KP826578. MUB 49356: Sierra Nevada Mountains, KP825543, KP825677, 
KP825801, KP825931, KP826065, KP826239, KP826318, KP826448, KP826577. MUB 49357: Sierra 
Nevada Mountains, KP825542, KP825676, KP825800, KP825930, KP826064, KP826241, KP826317, 
KP826447, KP826576. MUB 49366: Sierra Nevada Mountains, KP825537, KP825670, KP825797, 
KP825924, KP826058, KP826238, KP826311, KP826442, KP826570. MUB 49370: Sierra Nevada 
Mountains, KP825540, KP825674, , KP825928, KP826062, KP826234, KP826315, KP826446, 
KP826574. MUB 49373: Sierra Nevada Mountains, KP825538, KP825671, KP825798, KP825925, 
KP826059, KP826233, KP826312, KP826443, KP826571. MUB 49375: Sierra Nevada Mountains, 
KP825539, KP825672, KP825799, KP825926, KP826060, KP826236, KP826313, KP826444, 
KP826572. MUB 49377: Sierra Nevada Mountains, , KP825673, , KP825927, KP826061, KP826237, 
KP826314, KP826445, KP826573. MUB 49382: Sierra Nevada Mountains, KP825536, KP825669, 
KP825796, KP825923, KP826057, KP826180, KP826310, KP826441, KP826569. MUB 49384: Sierra 
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Nevada Mountains, KP825535, KP825668, KP825795, KP825922, KP826056, KP826232, KP826309, 
KP826440, KP826568. MUB 49387: Sierra Nevada Mountains, KP825533, KP825666, , KP825920, 
KP826054, KP826230, KP826307, KP826438, KP826565. MUB 49389: Sierra Nevada Mountains, 
KP825532, KP825665, KP825793, KP825919, KP826053, KP826228, KP826306, KP826437, 
KP826564. MUB 49390: Sierra Nevada Mountains, KP825531, KP825664, , KP825918, KP826052, 
KP826229, KP826305, KP826436, KP826566. MUB 49399: Sierra Nevada Mountains, KP825530, 
KP825663, KP825792, KP825917, KP826051, KP826224, KP826300, KP826435, KP826563. MUB 
49400: Sierra Nevada Mountains, KP825529, KP825662, KP825791, KP825916, KP826050, KP826223, 
KP826299, KP826434, KP826562. MUB 49403: Sierra Nevada Mountains, KP825527, KP825660, 
KP825790, KP825914, KP826048, KP826182, KP826303, KP826432, KP826560. MUB 49405: Sierra 
Nevada Mountains, KP825525, KP825658, , KP825912, KP826046, KP826225, KP826301, KP826430, 
KP826558. MUB 49408: Sierra Nevada Mountains, KP825524, KP825657, , KP825911, KP826045, 
KP826222, KP826298, , KP826557. MUB 49409: Sierra Nevada Mountains, KP825523, KP825656, 
KP825789, KP825910, KP826044, KP826221, KP826297, KP826429, KP826556. MUB 49410: Sierra 
Nevada Mountains, KP825522, KP825655, KP825788, KP825909, KP826043, KP826220, KP826296, 
KP826428, KP826555. MUB 49411: Sierra Nevada Mountains, KP825521, KP825654, KP825787, 
KP825908, KP826042, KP826219, KP826295, KP826427, KP826554. MUB 49412: Sierra Nevada 
Mountains, KP825520, KP825653, KP825786, KP825907, KP826041, KP826218, KP826294, 
KP826426, KP826553. MUB 49413: Sierra Nevada Mountains, KP825519, KP825652, KP825785, 
KP825906, KP826040, KP826217, KP826293, KP826425, KP826552. MUB 49424: Sierra Nevada 
Mountains, KP825518, KP825651, KP825784, KP825905, KP826039, KP826216, KP826292, 
KP826424, KP826551. MUB 49425: Sierra Nevada Mountains, KP825517, KP825650, KP825783, 
KP825904, KP826038, KP826215, KP826291, KP826423, KP826550. MUB 49426: Sierra Nevada 
Mountains, KP825516, KP825649, KP825782, KP825903, KP826037, KP826214, KP826290, 
KP826422, KP826549. MUB 49427: Sierra Nevada Mountains, KP825515, KP825648, KP825781, 
KP825902, KP826036, KP826213, KP826289, KP826421, KP826548. MUB 49428: Sierra Nevada 
Mountains, KP825514, KP825647, , KP825901, KP826035, KP826212, KP826288, , KP826547. 
MUB 49429: Sierra Nevada Mountains, KP825513, KP825646, KP825780, KP825900, KP826034, , 
KP826287, KP826420, . MUB 49439: Sierra Nevada Mountains, KP825512, KP825645, KP825779, 
KP825899, KP826033, KP826211, KP826286, KP826419, KP826546. MUB 49440: Sierra Nevada 
Mountains, KP825511, KP825644, , KP825898, KP826032, KP826210, KP826285, KP826418, 
KP826545. MUB 49442: Sierra Nevada Mountains, KP825510, KP825643, KP825778, KP825897, 
KP826031, KP826208, KP826284, KP826417, KP826544. MUB 49443: Sierra Nevada Mountains, 
KP825509, KP825642, KP825777, KP825896, KP826030, KP826207, KP826283, KP826416, 
KP826543. MUB 49444: Sierra Nevada Mountains, KP825508, KP825641, KP825776, KP825895, 
KP826029, KP826206, KP826282, KP826415, KP826542. MUB 49445: Sierra Nevada Mountains, 
KP825507, KP825640, KP825775, KP825894, KP826028, KP826209, KP826281, KP826414, 
KP826541. 

Ceratodon ×conicus 

CBFS3416: Czech Republic, KP825495, , KP825764, KP825969, KP826015, , KP826268, KP826400, 
KP826529. CBFS13223: Czech Republic, KP825579, KP825710, KP825763, KP825965, KP826098, , 
KP826353, KP826482, KP826610. MUB 49307: Sierra Nevada Mountains, (KP825565, MH790737), 
(MH790742, MH790743, MH790744, MH790745, MH790746, MH790747, MH790748, MH790749), 
(MH790800, MH790801, MH790802, MH790803, MH790804), , (KP826088, MH790821), KP826262, 
(MH790841, MH790842), (KP826470, MH790850), KP826598. MUB 49323: Sierra Nevada Mountains, 
KP825561, KP825696, KP825815, KP825949, KP826084, KP826258, KP826337, KP826466, 
KP826594. MUB 49337: Sierra Nevada Mountains, (KP825553, MH790738), (MH790750, MH790751, 
MH790752, MH790753, MH790754, MH790755, MH790756, MH790757, MH790758, MH790759), 
(MH790805, MH790806, MH790807, MH790808, MH790809), , (KP826075, MH790822), KP826249, 
(KP826328, MH790847), (KP826458, MH790851), KP826585. MUB 49338: Sierra Nevada Mountains, 
(KP825552, MH790739), (MH790760, MH790761, MH790762, MH790763, MH790764, MH790765, 
MH790766, MH790767, MH790768), KP825829, , (MH790823, MH790824), , KP826327, 
(KP826457, MH790852), KP826584. MUB 49339: Sierra Nevada Mountains, KP825551, (MG050789, 
MG050790, MG050791, MG050792, MG050793, MG050794, MG050795, MG050796, MG050797, 
MG050798, MG050799), KP825820, KP825938, (KP826073, MG050748, MG050749, MG050750, 
MG050751, MG050752), KP826248, (KP826326, MH790844), (KP826456, MG050761, MG050762, 
MG050763, MG050764, MG050765), KP826583. MUB 49340: Sierra Nevada Mountains, (KP825550, 
MH790740), (MH790769, MH790770, MH790771, MH790772), KP825830, , (MH790825, 
MH790826), KP826247, (KP826325, MH790848), (KP826455, MH790853), KP826582. MUB 49385: 
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Sierra Nevada Mountains, KP825534, KP825667, KP825794, KP825921, KP826055, KP826231, 
KP826308, KP826439, KP826567. MUB 49404: Sierra Nevada Mountains, KP825526, (MH790778, 
MH790779, MH790780), (MH790810, MH790811, MH790812, MH790813, MH790814, MH790815), 
(KP825913, MH790820), (MH790828, MH790829, MH790830, MH790831, MH790832, MH790833), 
KP826226, (KP826302, MH790849), (KP826431, MH790855), KP826559. MUB 49407: Sierra Nevada 
Mountains, (KP825528, MH790741), (MH790773, MH790774, MH790775, MH790776, MH790777), 
KP825827, , (KP826049, MH790827), , (KP826304, MH790843), (KP826433, MH790854), 
KP826561. MUB 49451: Sierra Nevada Mountains, KP825506, (KP825639, MG050800, MG050801, 
MG050802, MG050803, MG050804, MG050805, MG050806, MG050807, MG050808), (KP825774, 
MH790781, MH790782, MH790783, MH790784), KP825893, (KP826027, MG050753), (KP826204, 
MG050869, MG050870), KP826280, KP826413, KP826540. MUB 49461: Sierra Nevada Mountains, 
KP825505, KP825638, (KP825773, MH790785, MH790786, MH790787, MH790788), KP825892, 
KP826026, KP826203, KP826279, KP826412, KP826539. MUB 49473: Sierra Nevada Mountains, 
KP825504, (KP825637, MG050809, MG050810, MG050811, MG050812, MG050813, MG050814, 
MG050815, MG050816, MG050817, MG050818, MG050819), KP825826, KP825891, KP826025, 
(MG050871, MG050872, MG050873, MG050874, MG050875, MG050876), (KP826278, MH790845), 
(MG050766, MG050767, MG050768, MG050769, MG050770), KP826538. MUB 49480: Sierra Nevada 
Mountains, (KP825503, MH790735), (KP825636, MG050820, MG050821, MG050822, MG050823, 
MG050824, MG050825, MG050826), KP825772, KP825890, KP826024, KP826199, KP826277, 
KP826410, KP826537. MUB 49485: Sierra Nevada Mountains, (KP825502, MH790736), (KP825635, 
MG050827, MG050828, MG050829, MG050830, MG050831, MG050832, MG050833), MH790797, 
KP825889, (KP826023, MG050754, MG050755, MG050756, MG050757, MG050758), (MG050877, 
MG050878, MG050879, MG050880, MG050881, MG050882), (KP826276, MH790846), (KP826409, 
MG050771, MG050772, MG050773, MG050774, MG050775, MG050776), KP826536. MUB 49492: 
Sierra Nevada Mountains, KP825501, (MG050834, MG050835, MG050836, MG050837, MG050838, 
MG050839, MG050840), (KP825771, MH790789, MH790790, MH790791, MH790792), KP825888, 
KP826022, KP826198, KP826275, KP826408, . MUB 49501: Sierra Nevada Mountains, KP825500, 
KP825633, KP825770, KP825887, , KP826197, KP826274, KP826407, KP826535. MUB 49504: Sierra 
Nevada Mountains, KP825499, (KP825632, MG050841, MG050842, MG050843, MG050844, 
MG050845), KP825769, , KP826021, KP826196, (MH790836, MH790837), KP826406, (MG050867, 
MG050868). MUB 49505: Sierra Nevada Mountains, KP825498, KP825631, KP825768, KP825886, 
KP826020, KP826195, KP826273, KP826405, KP826534. MUB 49518: Sierra Nevada Mountains, 
KP825497, (KP825630, MG050846, MG050847, MG050848, MG050849, MG050850, MG050851, 
MG050852, MG050853, MG050854), (KP825767, MH790793, MH790794, MH790795, MH790796), 
KP825885, (KP826019, MG050759), KP826194, KP826272, KP826404, KP826533. MUB 49528: Sierra 
Nevada Mountains, KP825496, (KP825629, MG050855, MG050856, MG050857, MG050858, 
MG050859, MG050860), KP825828, KP825884, (KP826018, MG050760), KP826193, (MH790838, 
MH790839), (MG050777, MG050778), KP826532. MUB 49568: Spanish central mountain ranges, , 
KP825732, KP825851, KP825984, , KP826165, KP826369, , KP826629. MUB 49604: Alps, 
KP825493, KP825627, KP825766, KP825882, KP826016, KP826162, KP826269, KP826401, 
KP826530. MUB 52185: United Kingdom, MH790732, KX503277, , MH790818, KX503282, 
KX503284, MH790840, KX503292, KX503307. MUB 52186: United Kingdom, (MH790733, 
MH790734), (MG050861, MG050862, MG050863, MG050864, MG050865, MG050866), (MH790798, 
MH790799), MH790819, KX503283, KX503285, , KX503293, KX503308. 

Ceratodon purpureus 

ADM1: North America, KC436450, KC436508, , KC436546, KC436899, , KC437031, KC436690, . 
ADM2: North America, KC436451, KC436509, , , KC436900, , KC437032, KC436691, . ADM3: 
North America, KC436452, KC436510, , KC436547, KC436901, , KC437033, KC436692, . ADM4: 
North America, KC436453, , , KC436548, , , , KC436693, . ADM5: North America, KC436454, 
KC436511, , KC436549, KC436902, , KC437034, KC436694, . ADM6: North America, KC436455, 

, , KC436550, , , , , . ADM7: North America, KC436456, KC436512, , KC436551, KC436903, 
, KC437035, KC436695, . ADM8: North America, KC436457, KC436513, , KC436552, KC436904, 
, , KC436696, . ANT: Antarctica, KC436458, , , KC436553, , , KC437036, KC436697, . 

AUST: Australia, KC436459, , , KC436554, , , KC437037, KC436698, . BOL 46302: South 
Africa, KP825574, KP825717, , KP825970, KP826109, , , KX503295, KP826618. BOL 46303: 
South Africa, KP825573, KP825716, , , KP826108, , , , KP826617. CBFS 13557: Alps, 
KP825577, KP825708, KP825835, KP825963, KP826096, KP826151, KP826351, KP826480, 
KP826608. CBFS 14587: Czech Republic, KP825582, KP825713, KP825838, KP825968, KP826101, 
KP826155, , KP826484, KP826612. CBFS 14724: Czech Republic, KP825578, KP825709, , 
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KP825964, KP826097, KP826152, KP826352, KP826481, KP826609. DIN1: North America, 
KC436460, KC436514, , KC436555, KC436905, , KC437038, KC436701, . DIN2: North America, 
KC436461, KC436515, , KC436556, KC436906, , KC437039, KC436702, . DIN3: North America, 
KC436462, , , KC436557, , , , KC436703, . DIN4: North America, KC436463, , , , , , , , 
. DIN6: North America, KC436464, , , KC436558, KC436907, , KC437040, KC436704, . DIN7: 
North America, KC436465, , , KC436559, KC436908, , KC437041, KC436705, . DIN8: North 
America, KC436466, , , KC436560, , , KC437042, KC436706, . DUR1: North America, 
KC436468, KC436517, , KC436563, KC436909, , KC437045, KC436710, . DUR2: North America, 
KC436469, KC436518, , KC436564, , , KC437046, KC436711, . DUR3: North America, 
KC436470, , , KC436565, , , , KC436712, . DUR4: North America, KC436471, , , KC436566, 

, , , KC436713, . DUR5: North America, KC436472, KC436519, , KC436567, , , KC437047, 
KC436714, . DUR6: North America, KC436473, KC436520, , KC436568, KC436910, , KC437048, 
KC436715, . DUR7: North America, KC436474, KC436521, , KC436569, KC436911, , KC437049, 
KC436716, . DUR8: North America, KC436475, KC436522, , KC436570, KC436912, , KC437050, 
KC436717, . ESX1: North America, KC436476, , , KC436571, KC436913, , KC437051, 
KC436718, . ESX2: North America, KC436477, KC436523, , KC436572, KC436914, , KC437052, 
KC436719, . ESX3: North America, KC436478, , , KC436573, KC436915, , KC437053, 
KC436720, . ESX4: North America, KC436479, KC436524, , KC436574, KC436916, , KC437054, 
KC436721, . ESX5: North America, KC436480, , , KC436575, KC436917, , KC437055, 
KC436722, . ESX6: North America, KC436481, KC436525, , KC436576, KC436918, , KC437056, 
KC436723, . ESX7: North America, KC436482, , , , , , , KC436724, . ESX8: North America, 
KC436483, KC436526, , KC436577, KC436919, , KC437057, KC436725, . MUB 49471: Sierra 
Nevada Mountains, KP825571, KP825706, KP825831, KP825959, KP826094, KP826201, KP826347, 
KP826476, KP826604. MUB 49538: Spanish central mountain ranges, KP825626, KP825762, 
KP825881, KP826014, KP826150, KP826192, KP826399, KP826528, KP826659. MUB 49539: Spanish 
central mountain ranges, KP825625, KP825761, KP825880, KP826013, KP826149, KP826205, 
KP826398, KP826527, KP826658. MUB 49540: Spanish central mountain ranges, KP825624, 
KP825760, KP825879, KP826012, KP826148, KP826191, KP826397, KP826526, KP826657. MUB 
49541: Spanish central mountain ranges, KP825623, KP825759, KP825878, KP826011, KP826147, 
KP826190, KP826396, KP826525, KP826656. MUB 49542: Spanish central mountain ranges, 
KP825622, KP825758, KP825877, KP826010, KP826146, KP826188, KP826395, KP826524, 
KP826655. MUB 49544: Spanish central mountain ranges, KP825620, KP825756, KP825875, 
KP826008, KP826144, KP826189, KP826393, KP826522, KP826653. MUB 49545: Spanish central 
mountain ranges, KP825619, KP825755, KP825874, KP826007, KP826143, KP826186, KP826392, 
KP826521, KP826652. MUB 49546: Spanish central mountain ranges, KP825618, KP825754, 
KP825873, KP826006, KP826142, KP826185, KP826391, KP826520, KP826651. MUB 49547: Spanish 
central mountain ranges, KP825617, KP825753, KP825872, KP826005, KP826141, KP826184, 
KP826390, KP826519, KP826650. MUB 49548: Spanish central mountain ranges, KP825616, 
KP825752, KP825871, KP826004, KP826140, KP826183, KP826389, KP826518, KP826649. MUB 
49549: Spanish central mountain ranges, KP825615, KP825751, KP825870, KP826003, KP826139, , 
KP826388, KP826517, KP826648. MUB 49550: Spanish central mountain ranges, KP825614, 
KP825750, KP825869, KP826002, KP826138, KP826179, KP826387, KP826516, KP826647. MUB 
49551: Spanish central mountain ranges, KP825613, KP825749, KP825868, KP826001, KP826137, 
KP826178, KP826386, KP826515, KP826646. MUB 49552: Spanish central mountain ranges, 
KP825612, KP825748, KP825867, KP826000, KP826136, KP826177, KP826385, KP826514, 
KP826645. MUB 49553: Spanish central mountain ranges, KP825611, KP825747, KP825866, 
KP825999, KP826135, KP826176, KP826384, KP826513, KP826644. MUB 49554: Spanish central 
mountain ranges, KP825610, KP825746, KP825865, KP825998, KP826134, KP826175, KP826383, 
KP826512, KP826643. MUB 49555: Spanish central mountain ranges, KP825609, KP825745, 
KP825864, KP825997, KP826133, KP826174, KP826382, KP826511, KP826642. MUB 49556: Spanish 
central mountain ranges, KP825608, KP825744, KP825863, KP825996, KP826132, , KP826381, 
KP826510, KP826641. MUB 49557: Spanish central mountain ranges, KP825607, KP825743, 
KP825862, KP825995, KP826131, KP826173, KP826380, KP826509, KP826640. MUB 49558: Spanish 
central mountain ranges, KP825606, KP825742, KP825861, KP825994, KP826130, KP826172, 
KP826379, KP826508, KP826639. MUB 49559: Spanish central mountain ranges, KP825605, 
KP825741, KP825860, KP825993, KP826129, KP826171, KP826378, KP826507, KP826638. MUB 
49560: Spanish central mountain ranges, KP825604, KP825740, KP825859, KP825992, KP826128, 
KP826170, KP826377, KP826506, KP826637. MUB 49561: Spanish central mountain ranges, 
KP825603, KP825739, KP825858, KP825991, KP826127, KP826169, KP826376, KP826505, 
KP826636. MUB 49562: Spanish central mountain ranges, KP825602, KP825738, KP825857, 
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KP825990, KP826126, , KP826375, KP826504, KP826635. MUB 49563: Spanish central mountain 
ranges, KP825601, KP825737, KP825856, KP825989, KP826125, , KP826374, KP826503, KP826634. 
MUB 49564: Spanish central mountain ranges, KP825600, KP825736, KP825855, KP825988, 
KP826124, KP826168, KP826373, KP826502, KP826633. MUB 49565: Spanish central mountain 
ranges, KP825599, KP825735, KP825854, KP825987, KP826123, , KP826372, KP826501, KP826632. 
MUB 49566: Spanish central mountain ranges, KP825598, KP825734, KP825853, KP825986, 
KP826122, KP826167, KP826371, KP826500, KP826631. MUB 49567: Spanish central mountain 
ranges, KP825597, KP825733, KP825852, KP825985, KP826121, KP826166, KP826370, KP826499, 
KP826630. MUB 49569: Spanish central mountain ranges, KP825596, KP825731, KP825850, 
KP825983, KP826119, KP826164, KP826368, KP826497, KP826628. MUB 49570: Sicilian Mount 
Etna, KP825576, KP825714, KP825833, KP825962, KP826107, , KP826350, KP826478, KP826606. 
MUB 49593: Sicilian Mount Etna, KP825575, KP825715, KP825834, KP825961, KP826106, 
KP826163, KP826349, KP826479, KP826607. MUB 49600: Spanish south-eastern mountains, 
KP825587, KP825722, , KP825974, KP826104, KP826159, KP826357, KP826486, KP826613. MUB 
49602: Spanish south-eastern mountains, KP825588, KP825723, KP825847, KP825975, KP826105, 
KP826160, KP826358, KP826487, KP826614. MUB 49606: Alps, KP825592, KP825727, , KP825979, 
KP826115, KP826161, KP826364, KP826493, KP826624. MUB 49613: Alps, KP825591, KP825726, 
KP825846, KP825978, KP826114, , KP826363, KP826492, KP826623. MUB 49617: Alps, KP825590, 
KP825725, KP825845, KP825977, KP826113, , KP826362, KP826491, KP826622. MUB 49619: Alps, 
KP825589, KP825724, KP825844, KP825976, KP826112, , KP826361, KP826490, KP826621. MUB 
49624: Pyrenees, KP825595, KP825730, KP825841, KP825982, KP826118, , KP826367, KP826496, 
KP826627. MUB 49629: Pyrenees, KP825594, KP825729, KP825840, KP825981, KP826117, 
KP826158, KP826366, KP826495, KP826626. MUB 49650: Pyrenees, KP825593, KP825728, 
KP825839, KP825980, KP826116, KP826157, KP826365, KP826494, KP826625. MUB 49652: 
Germany, KP825583, KP825718, KP825842, KP825971, KP826110, KP826156, KP826359, KP826488, 
KP826619. MUB 49653: Germany, KP825584, KP825719, KP825843, KP825972, KP826111, , 
KP826360, KP826489, KP826620. REN1: North America, KC436485, KC436527, , KC436578, 
KC436920, , , KC436727, . REN2: North America, KC436486, , , KC436579, KC436921, , 
KC437058, KC436728, . REN3: North America, KC436487, KC436528, , KC436580, KC436922, , 
KC437059, KC436729, . REN4: North America, KC436488, KC436529, , KC436581, KC436923, , 
KC437060, KC436730, . REN5: North America, KC436489, , , , , , , KC436731, . REN6: 
North America, KC436490, KC436530, , KC436582, KC436924, , KC437061, KC436732, . REN7: 
North America, KC436491, KC436531, , KC436583, , , KC437062, KC436733, . REN8: North 
America, KC436492, KC436532, , KC436584, KC436926, , KC437063, KC436734, . S B201182: 
Sweden, KP825586, KP825721, KP825849, , KP826103, , KP826356, KX503296, KP826616. S 
B201183: Sweden, KP825585, KP825720, KP825848, KP825973, KP826102, , KP826355, KP826485, 
KP826615. STG1: North America, KC436493, KC436535, , KC436586, KC436927, , KC437064, 
KC436735, . STG2: North America, KC436494, KC436536, , KC436587, KC436928, , KC437065, 
KC436736, . STG3: North America, KC436495, , , KC436588, , , , KC436737, . STG4: North 
America, KC436496, KC436537, , KC436589, KC436929, , KC437066, KC436738, . STG5: North 
America, KC436497, KC436538, , KC436590, KC436930, , KC437067, KC436739, . STG6: North 
America, KC436498, , , KC436591, KC436931, , KC437068, KC436740, . STG7: North America, 
KC436499, KC436539, , KC436592, KC436932, , KC437069, KC436741, . STG8: North America, 
KC436500, KC436540, , KC436593, , , KC437070, KC436742, . WST1: North America, 
KC436501, , , KC436594, KC436933, , KC437071, KC436743, . WST2: North America, 
KC436502, KC436541, , KC436595, KC436934, , KC437072, KC436744, . WST3: North America, 

, KC436542, , KC436596, KC436935, , KC437073, KC436745, . WST4: North America, 
KC436504, KC436543, , KC436597, KC436936, , KC437074, KC436746, . WST5: North America, 
KC436505, , , KC436598, , , , KC436747, . WST6: North America, , KC436544, , KC436599, 
KC436937, , KC437075, KC436748, . WST7: North America, KC436506, KC436545, , KC436600, 
KC436938, , KC437076, KC436749, . WST8: North America, KC436507, , , KC436601, , , 
KC437077, KC436750, . 

Cheilothela chloropus (Outgroup) 

MUB52416: Sierra Nevada Mountains, MH790731, KX503273, , , KX503281, , MH790834, 
KX503299, KX503303. MUB52417: Sierra Nevada Mountains, MH790730, , , MH790817, 
KX503280, , MH790835, KX503298, KX503302. MUB52418: Sierra Nevada Mountains, MH790729, 

, , , KX503279, , , KX503297, KX503301. MUB52419: Sierra Nevada Mountains, MH790728, , 
, MH790816, KX503278, , , , KX503300. 
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Annex IV.2. Bayesian phylogenetic tree inferred from the nuclear ITS2 locus. For each tip in the trees 
geographical origin and number of herbarium are given (numbers without letters are from MUB); number 
of equal sequences obtained by cloning is indicated between parentheses if there was more than one. 
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Annex IV.3. Bayesian phylogenetic tree inferred from the nuclear hp23.3 locus. Data for each tip as in 
Annex IV.2.  
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Annex IV.4. Bayesian phylogenetic tree inferred from the nuclear rpS18A locus. Data for each tip as in 
Annex IV.2. 
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Annex IV.5. Bayesian phylogenetic tree inferred from the nuclear KIAA0187 locus. Data for each tip as 
in Annex IV.2. 
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Annex IV.6. Results from ABC analyses assuming different scenarios of diversification and models of 
speciation for Ceratodon amazonum and C. purpureus as shown in Fig. IV.1. Values represent posterior 
probabilities of comparisons within each scenario, model or submodel. Preferred model at each 
comparison is highlighted in bold. A) Comparisons between the same scenario and model but with 
different migration patterns (submodels: homogeneous or heterogeneus across the genome; tolerance of 
0.0005). B) Comparisons for different effective population sizes (homogeneous vs heterogeneous along 
the time of species; tolerance of 0.0005) among the best submodels selected for each before comparison. 
C) Comparison among the best models selected for each before comparison (tolerance of 0.005). Homo 
N: homogeneous effective population size; Hetero N: heterogeneous effective population size; IM: 
isolation with migration over time; AM:  ancient migration assuming that populations started diverging in 
the presence of gene flow, TAM; SC: Secondary contact in which populations diverged in the absence of 
gene flow followed by a single period of secondary contact, TSC; SI: strict isolation, no migration; M 
homo: homogeneity of effective migration rate across the genome; M hetero: heterogeneity of effective 
migration rate across the genome. 

 Scenarios Models Submodels PP 

A) 

Homo N 

IM 
M homo 0.2353 

M hetero 0.7647 

AM 
M homo 0.6455 

M hetero 0.3545 

SC 
M homo 0.7086 

M hetero 0.2914 

Hetero N 

IM 
M homo 0.4228 

M hetero 0.5772 

AM 
M homo 0.5932 

M hetero 0.4068 

SC 
M homo 0.7714 

M hetero 0.2286 

B) Homo N 
SI -- 

0.7657 

Hetero N 0.2343 

Homo N 
IM 

M hetero 0.9459 

Hetero N M hetero 0.0541 

Homo N 
AM 

M homo 0.6995 

Hetero N M homo 0.3005 

Homo N 
SC 

M homo 0.6235 

Hetero N M homo 0.3765 

C) Homo N SI -- 0.0545 

Homo N IM M hetero 0.0591 

Homo N AM M homo 0.0560 

Homo N SC M homo 0.8304 
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DELIMITATION OF SPECIES IN BRYOPHYTES 

One of the great current challenges in biology is to understand the diversity that 

surrounds us (Erwin, 1991; May, 1992; Stork, 1993; Mora et al., 2011; Grosberg et al., 

2012), not only the number of species but also the evolutionary processes that generate 

this diversity (Rieseberg & Willis, 2007; Seehausen et al., 2014; Dev, 2015). Within 

this diversity, some species or species complexes possess elevated levels of 

morphological variation and a wide distribution. In these cases it is often difficult to 

determine whether the sub-units should be recognized as distinct species, because 

sometimes single species contain a morphological continuum with very different 

extremes (van Zanten & Pócs, 1981). Although the taxonomic treatment in these cases 

is often complicated, they can be very interesting models to study speciation 

mechanisms "in action". The results of the work carried out in this thesis highlight the 

gaps in knowledge about bryophytes diversity (and the mechanisms that generate it), 

even in common and abundant species, and demonstrate that wild cosmopolitan species 

have the potential to illustrate the several genetic causes of speciation despite of a 

certain level of gene flow between them. The broad morphological variation, together 

with the mistaken perception of the supposedly limited dispersion of the bryophytes, led 

to the past the overestimation of the diversity of the genus Ceratodon, reaching 22 

species, and even within C. purpureus two subspecies and 31 varieties (Wijk et al., 

1959, 1969) were described. But later the diversity of the genus Ceratodon was also 

underestimated when C. purpureus was considered a species with a high morphological 

plasticity, and probably the frequent demonstration of long-distance dispersal of certain 

species of bryophytes (van Zanten & Pócs, 1981; Muñoz et al., 2004; Parsons et al., 

2007; Lönnell et al., 2012; Lewis et al., 2014; Norros et al., 2014; Biersma et al., 2017), 

and specifically C. purpureus (McDaniel & Shaw, 2005) may have contributed to this 

underestimation as well.  

 In this thesis has been shown that despite of the capacity for long-distance 

dispersal in the genus Ceratodon, the existence of C. amazonum, the determination of 

C. ×conicus as recombinant between C. purpureus and C. amazonum, and the presence 

of polyploid individuals, confirm that the number of species of Ceratodon may be 
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greater than was previously considered. Numerous authors have discussed the number 

of bryophyte species, due to the demonstration of the existence of cryptic species 

(Medina et al., 2012; Vigalondo et al., 2016, 2019; Patiño et al., 2017), in which the 

interpretation of morphological characters are complex and a broad concept of species 

is traditionally employed. The use of an integrative taxonomy is already widely 

accepted (Dayrat, 2005; Padial et al., 2010; Schlick-Steiner et al., 2010; Heethoff et al., 

2011; Pante et al., 2015; Zamora et al., 2015; Renner et al., 2017) and can often solve 

the problems generated by each methodology individually, and provide data, not only to 

discriminate species, but also to understand the evolutionary processes that take place in 

different taxonomic groups. Employing at least three techniques seems adequate to 

reach a consensus on the discrimination between species in complex cases and also be 

able to infer the mechanisms of speciation.  

 In the present thesis, the delimitation of Ceratodon species has been made based 

on the results obtained with three different techniques (morphometry, phylogenetic 

analysis based on DNA sequences, and flow cytometry). If we had not used flow 

cytometry, we would have overlooked polyploidy an important mechanism of 

speciation in this genus. Polyploid recombinants have a similar morphology, both to C. 

amazonum and to haploid recombinants and their DNA sequences belong to the clade of 

C. purpureus or to C. amazonum depending on the locus studied and the specific 

individual. In Ceratodon it is possible to check the sex of plants by a simple test using 

restriction fragment length polymorphism of PCR amplified DNA fragments. If we had 

not checked the sex of the plants with this technique, in spite of not showing any 

external sign of sexual reproduction, we would not have detected the important bias of 

female individuals versus males in C. amazonum. Although three or more 

methodologies have been used in some animals (mites: Heethoff et al., 2011; bats: 

Taylor et al., 2018) and even in bryophytes (hornworts: Villarreal et al., 2017), the most 

studies on these plants use two of these methods: morphology (sometimes using 

statistical analysis) and DNA sequencing (employing two to six molecular markers, 

both nuclear and plastidial). Both seem sufficient, in most cases, to delimit species 

(Werner et al., 2003a, b, 2004, 2007, 2009, 2013, 2014, 2015; Ros & Werner, 2007; 

Köckinger et al., 2010, 2018; Medina et al., 2012, 2013; Draper et al., 2015; Caparrós et 

al., 2016; Renner et al., 2017; Mamontov & Vilnet, 2017; Schäfer-Verwimp et al., 

2017; Sim-  
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 However, we must prioritize the use of a greater number of genetic markers to 

obtain more solid results on the delimitation of species (Rokas & Carroll, 2005), as well 

as other methodologies that enrich evolutionary perspectives (Schlick-Steiner et al., 

2010). It is important to note that in molecular plant systematics the use of several 

chloroplast markers is studied (e.g. rps4, rbcL, trnL-F

nuclear marker is the ITS region (Liu et al., 2010; Stech & Quandt, 2010). But 

chloroplast markers are genetically linked and not independent, because chloroplast 

DNA has reduced recombination and usually chloroplasts are uniparentally inherited 

(reviewed in Birky, 2001; Odahara et al., 2015). On the contrary, nuclear markers 

recombine freely if they are located on different chromosomes and even if they are on 

the same chromosome recombination occurs during meiosis with certain frequency. As 

a consequence, different nuclear markers provide truly independent information while 

for chloroplast markers this is not the case. One of the major obstacles that impede a 

wider use of nuclear markers is the lack of universal primers to amplify specific nuclear 

regions. McDaniel et al. (2013) published a list of potential nuclear markers for 

bryophytes based on Physcomitrella patens and Ceratodon purpureus genome data. In 

this thesis we used a total of nine nuclear markers. This proved to be essential to 

establish the recombinant status of many samples because almost all of the 

recombinants share the chloroplast haplotypes of C. amazonum. 

MECHANISMS OF SPECIATION IN BRYOPHYTES 

The increase in the amount of DNA in the nuclei, polyploidization and the phenomena 

of hybridization and introgression are mechanisms that can give rise to groups of taxa 

with complex relationships with each other (Wyatt et al., 1988; Derda & Wyatt, 2000; 

Shaw et al., 2005; Ricca et al., 2008). We now know that polyploidy events occur in 

almost all vascular plant lineages of most of the current species (Wood et al., 2009; Alix 

et al., 2017; Soltis et al., 2018). These processes can generate taxonomic confusion and 

numerous misinterpretations during identification species process (Ennos et al., 2005). 

In some bryophytes such as Anthoceros L., few studies have documented phenomena of 

hybridization and polyploidy (Villarreal et al., 2014). However, in mosses and 

liverworts these issues have been treated more frequently. For example, in the moss 



Nieto Lugilde (2019) Ceratodon: studies of evolutionary biology and taxonomy in southern Europe 

 

198 

Racomitrium canescens (Hedw.) Brid., investigators have found no evidence of 

hybridization and the "morphological" species (despite the extensive morphological 

variability) correspond to the clades resulting in the phylogenetic analyses (Stech et al., 

2013). However, it is common to find in the literature on bryophytes numerous 

examples with complex relationships. The family Funariaceae presents interfertility 

among its species, forming intricate networks such as the Physcomitrella-

Physcomitrium complex, in which hybrid taxa such as Physcomitrium collenchymatum 

Gier and P. eurystomum Sendtn. have been formed from the same parents, P. 

sphaericum (C. Ludw.) Fürnr. and P. pyriforme (Hedw.) Hampe (McDaniel et al., 

2010), with significant variations in the size of their genome (Beike et al., 2014). 

Moreover the genera Entosthodon Schwägr., Physcomitrella and Physcomitrium were 

determinated as polyphyletic entities with potential hybridizations (Liu et al., 2012; 

Medina et al., 2018), even using only sequences of organellar loci (reflecting the 

maternal history). Medina et al. (2018) found rapid diversification of the Entosthodon-

Physcomitrium complex., potentially facilitated by a whole genome duplication event. 

In the liverwort complex Aneura pinguis (L.) Dumort, in which different 

morphologically indistinguishable but genetically different species are accepted, three 

clades with an intimate relationship with A. mirabilis (Malmb.) Wickett & Goffinet. 

were distinguished, demonstrating that the cryptic species of A. pinguis do not derive 

 

 In Ceratodon purpureus, despite being a widely studied species, evidence for 

species beyond the widespread C. purpureus was lacking. Studying the intricate species 

complexes demonstrates our ability to delimit species and our vision of evolution and 

ecology. The greater size of the genome of C. amazonum, as well as the existence of 

polyploid individuals, provides valuable sources of genetic diversity, even in the future 

we could identify functionally important variants for ecological speciation. The 

distribution patterns of the species provide valuable data to understand their ecology 

and their possible current relationship with other species. But it is not known if cryptic 

speciation occurs between sympatric populations, or if it is allopatric, with a subsequent 

dispersal that leads to secondary sympatric distributions (Shaw, 2001). Probably the 

origin of many cryptic species is due to restricted mating and different ecological 

preferences, rather than geographical disjunction (Shaw, 2001). Signs of local 

adaptation (ecotypes) have been observed in bryophytes in different circumstances 
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(Jules & Shaw, 1994; Såstad et al., 1999; Gunnarsson et al., 2007; Szövényi et al., 2009; 

Hutsemekers et al., 2010; Pisa et al., 2013; Magdy et al., 2016). The pH and magnesium 

showed an adaptive role in the populations of Sphagnum warnstorfii Russow 

strong environmental filters), without excluding the existence of a large-scale 

metapopulation. Even the mechanisms and processes of the origin of the diversity of 

cryptic species or species with a wide morphological variation are little known, 

especially in relation to environmental factors (Yu et al., 2013). 

 The morphological variation of the bryophyte species can be truly misleading 

due to a high morphological plasticity (Buryová & Shaw, 2005; Hassel et al., 2005) or 

by the adaptive convergence of distant taxa (Feldberg et al., 2010; Huttunen et al., 

2012). Different environments directly induce changes in the morphology and 

physiology of a genotype, but if these changes (plasticity) are adaptive or not, has been 

widely discussed (Price et al., 2003; Pigliucci et al., 2006). The degree of plasticity is 

specific to each individual trait and environmental conditions (Pigliucci et al., 2006). 

The morphological characters can be determined at genetic level in different ways 

(different genes, different number of genes, epistasia...) in the different taxonomic 

groups; therefore, the way in which the attributes are expressed under the same 

environmental conditions can vary enormously (Huttunen et al., 2012). In addition, 

epigenetic mechanisms driven by environmental signals can promote long-term 

phenotypic changes without affecting the nucleotide sequences (reviewed in Balao et 

al., 2018).  

 The data presented here show that a greater percentage of morphological 

characters in Ceratodon vary more strongly due to environmental factors than to genetic 

factors, and only a few of them seem to be regulated more strongly by genetic factors, 

but we must not forget that there are also characters that are expressed differently 

according to the specific genotype-environment interaction and that can be very useful 

in the identification of species in field. Phenotypic plasticity influences environmental 

tolerance. Therefore, the greater the plasticity, the greater the range of environmental 

variation in which the species can inhabit will be (Ackerly et al., 2000). In addition, it 

allows the appearance of a new phenotype induced by the environment, and after new 

selective pressures on the expression of said phenotype appearance, it can end up 
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"fixing" it, that is, assimilated genetically (Pigliucci et al., 2006). Local adaptation may 

be impeded by weak selection or gene flow between populations, even if sufficient 

genetic variation is present (Antonovics, 1976). The complexity of the genetic structure 

that underlies phenotypic evolution is one of the classic problems of evolutionary 

biology (Orr & Coyne, 1992). Genetic analyzes and experiments with transplants are 

essential to discriminate between phenotypic plasticity and local adaptation (Nahum et 

al., 2008), and could explain a great variety of ecological evolutionary processes 

(Pigliucci et al., 2006). Studies of rapid climate change scenarios suggest that 

phenotypic plasticity may eclipse the importance of genetic diversity in species 

persistence, at least in the short term (Vitasse et al., 2010). 

 Establishing divergence time and understanding the processes of speciation are 

intimately connected and are central issues in the study of the evolutionary history of 

organisms (Soltis & Soltis, 2009), but their study is really complicated. The difficulty 

lies in the variations in the size of the ancestral population or in the genealogical 

variation between the different loci, indicating the mode of speciation according to the 

presence or absence of gene flow (Edwards & Beerli, 2000; Wu, 2001; Tseng et al., 

2014). The divergence between species will be more complex if there is gene flow 

between them (Abbott et al., 2013; Leaché et al., 2014), and it is fundamental to 

consider the heterogeneity along the genome in the rates of introgression (Roux et al., 

2013). Evidence of genetic exchange between C. purpureus and C. amazonum is clear 

when observing the incongruities between the phylogenetic trees made independently 

for each locus, which also allows the detection of recombinant individuals. But also, in 

the case studied, these have originated from repeated hybridization events, giving 

different genetic mosaics among the recombinants. All this, together with the 

determination of the demographic parameters, reveals a recent episode of speciation 

possibly formed from an isolated peripheral population (peripatric speciation), with 

gene flow, a female biased sex-ratio, and an increase in the size of the genome. 
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ONGOING PROJECTS AND FUTURE PERSPECTIVES 

Although the delimitation of Ceratodon species has been made integrating different 

methodologies, there are still important aspects to be treated and discovered, such as the 

biogeography of C. amazonum and C. ×conicus. If the determining factor in speciation 

were microclimatic, the distribution of C. amazonum could spread through North Africa 

or other areas of the Mediterranean, since morphologies similar to C. amazonum / C. 

×conicus have been observed in Morocco (for example, the type specimen of C. 

cedricola). However, certain genetic incompatibilities have been found at the extremes 

of the morphological variation of C. purpureus (McDaniel et al., 2007, 2008), which 

together with the genetic porosity (C. ×conicus) observed in the crosses between C. 

amazonum and C. purpureus, and the presence of polyploid individuals, highlight the 

need to study the genomes of these species and understand the genetic architecture that 

allows the formation of new species in Ceratodon. We are already on the way to 

explore a greater number of genes through massive sequencing techniques (GBS), both 

of C. amazonum and of C. ×conicus, which will be compared with the worldwide data 

of C. purpureus. In addition, studying the epigenetic effects of natural populations in 

the long term to understand their morphological or physiological responses to 

environmental fluctuations would generate a deeper knowledge of the origin of 

morphological variation and evolutionary mechanisms. 
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The main conclusions of this thesis are the followings: 

1.   The lectotype of Ceratodon conicus designated by Burley and Pritchard (1990) 

is confirmed, but not the isolectotypes, as they cannot be considered part of the 

type material. 

2.   The types of the three synonyms of C. conicus proposed by Burley and Pritchard 

(1990), namely C. cedricola, C. dimorphus, and C. purpureus var. graefii, 

designated as holotypes, are here considered as lectotypes, because in any case 

the author of the names designated any specimen as the nomenclatural type and 

no unequivocal specimen exists. 

3.   The conspecifity of C. cedricola and C. dimorphus with C. conicus is confirmed, 

but not that of C. purpureus var. graefii which is identified as C. purpureus s.l., 

as its morphological characteristics match the description of this species and not 

that of C. conicus. 

4.   A high genetic diversity is observed in Mediterranean populations of Ceratodon 

delimiting two phylogenetic entities, which show also different genome size. 

One corresponds to the widespread C. purpureus and the other to a local group 

to our present knowledge restricted to the mountains in southern Spain. Also 

recombinants are detected. 

5.   The local phylogenetic entity is considered to be a new species, which is 

described as C. amazonum, and differs from the cosmopolitan C. purpureus by a 

25% increase in genome size, significant differences in several DNA sequence 

markers, and a big decrease in frequency of males. Given the complete absence 

of sporophytes in C. amazonum, the predominant reproduction way seems to be 

by fragmentation of the gametophores. 

6.   Recombinant specimens are haploid and polyploid. Ceratodon ×conicus belongs 

to this group. Therefore it is considered a nothospecies, with cosmopolitan C. 

purpureus as male parental line and C. amazonum as female parental line. 

7.   The number of morphological characters in Ceratodon that vary stronger due to 

environmental factors than to genetic factors is higher than the number of 

morphological characters that vary stronger due to genetic factors. 
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8.   Ceratodon purpureus can be distinguished morphologically from C. amazonum 

and C. ×conicus. But it is not possible to distinguish between the last two in field 

samples. Neither there are morphological differences between haploid and 

polyploid C. ×conicus. 

9.   The most relevant characters to discriminate C. amazonum and C. ×conicus. 

from C. purpureus are the followings: caulidia length, presence/ausence of 

comal tuft, phyllidia shape and length, lamina length/lamina width ratio, nerve 

wide, percurrent/excurreny awn, awn length, excurrent nerve length/lamina 

length ratio, and lamina length/nerve width ratio. While C. amazonum and C. 

×conicus can be weakly differentiated by shape of phyllidia, lamina 

length/lamina width ratio, nerve wide, awn length, and lamina length/nerve 

width ratio. 

10.  The complexity of the morphological variation within C. purpureus is 

highlighted. Neither C. heterophyllus nor C. purpureus subsp. stenocarpus can 

be differentiated by morphological analysis of gametophytic characters. 

11.  Ceratodon amazonum is until now only known from southern Spain, mainly in 

Sierra Nevada Mountains, where it is very abundant. The opposite occurs with 

C. purpureus, being prevalent in other geographical areas but almost absent in 

Sierra Nevada. Ceratodon ×conicus has a broad distribution across Europe from 

Sierra Nevada Mountains to United Kingdom and central Europe, but it is very 

scarce. The type of substrate does not seem to be a limiting factor in the 

distribution of Ceratodon species here studied. 

12.  A peripatric speciation event in the genus Ceratodon seems to have occurred 

around 1.7 mya, giving rise to C. amazonum and C. purpureus. Both have high 

levels of genetic diversity although C. purpureus produces abundant spores, 

whereas C. amazonum does not. Ceratodon ×conicus was originated from 

multiple, independent and recent hybridization events. 


