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General Introduction

1.1. Reference frame

Parkinson’s disease (PD) is a highly complex neurological disorder. Its main 
pathological feature is the presence of Lewy bodies, which consists of aggregated α-synuclein 
protein in dopaminergic neurons of the Substantia Nigra pars compacta (SNpc) (1).  

1.1.1. Epidemiology

PD is the second most prevalent age-related neurodegenerative disorder in the 
world, after Alzheimer’s disease, affecting between 100 to 200 people out of 100,000 
people at the age between 65 and 70 years (2). Specifically, it is reported that it affects 1% 
of the population over 60 years of age, 2% over 70 years and 3% over 80-year-old., where 
men are 1.5 times more likely to have PD than women. As the aging population rate in 
our society increases, it is projected that approximately 9 million people will suffer from 
PD in the year 2030 in the 10 most populous countries. The impact cost of this projected 
data is estimated in billions of euros (3). For that reason, there is an immediate need 
to delay the development of PD by modifying the main risk factors and identifying the 
patients in the early stages of the disease for enrolment in clinical trials which are aimed 
to prevent the disease (4). 

1.1.2. Etiology

Despite the efforts and advances in the knowledge of the cause of PD, its early 
development is mostly idiopathic and is still unknown. Epidemiologic studies in the 
population point out that aging is considered a major risk factor in the development 
of the disease (5). It has been linked in addition with complex interactions between the 
exposure to environmental (6)  and, to a lesser extent, to genetic factors (7). 

Data from epidemiological (8), animal and in vitro studies support the important 
impact of different prevalent environmental compounds on the development of PD. 
This negative effect is described for pesticides (rotenone, paraquat or organochloride 
compounds), polychlorinated biphenyls, solvents (trichloroethylene, TCE, and 
perchloroethylene, PERC), metals (iron, lead, manganese and mercury) and, other less 
evident risk factors such as infection or air pollution (9).
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On the other hand, it has reported that genetic causes only accounts 10% of the 
diagnosed (7) PD cases when the genetic factor mainly contributes in the development 
of PD is due to a specific mutation that was observed into different PD genetic forms: 
autosomal dominant (PARK1 or PARK4), autosomal recessive (PARK2 or PARK6), 
X-linked inheritance (PARK12) and unclear (PARK10 and PARK16). It has also been 
described that alterations in these PD-related genes support a risk factor increasing 
the predisposition to develop the disease. Thus, it has been suggested that most of the 
sporadic PD cases are due to a cumulation of environmental and genetic factors (10). 

It would be interesting in future research lines to focus on how are associated 
and involved environmental and genetic factors with common metabolic pathways in the 
aetiology of PD. 

1.1.3. Symptomatology

The development of the clinical symptoms of PD are divided in different phases 
(11) (Figure 1.1). The first phase involves a long latent period with the progression of 
the neurodegeneration without motor symptoms (12). In the early stages of the disease, 
non-motor symptoms start to occur, and they can be distinguished as sleep disorders, 
autonomic dysfunction, psychiatric symptoms, pain, cognitive impairment, olfactory 
dysfunction and fatigue (13). Some of these non-motor symptoms can be explained 
because it is demonstrated that, apart from the nigrostriatal pathway, non-dopaminergic 
structures as the olfactory bulb or the gut myenteric plexus are affected in PD as well 
(14,15). Moreover, as the disease further progresses and 60-80% of the dopaminergic 
neurons in the SNpc have already been lost, motor symptoms begin to appear. In this line, 
the main motor alterations include stiffness, bradykinesia, muscular rigidity and postural 
instability. Thus, the pathological processes involved in PD results in a heterogeneous 
symptomatology which non-motor and motor alterations throughout the different phases 
of the development of the disease. For the design of therapeutic strategies, it is important 
to consider the intervention as there is a window-of-opportunity of several years before 
the manifestation of the clinical motor symptoms. 

1.2. Statement of the problem 

One of the main challenges in the research of PD is to describe the mechanisms 
underlying the progressive degeneration of dopaminergic neurons in the nigrostriatal 
pathway. In the last years, several investigations hallmarked that both the peripheral as 
well as the central nervous system (CNS) contribute to the pathogenesis (16). In addition, 
several pathways and molecular mechanisms are implicated, such as mitochondrial 
dysfunction, oxidative stress, calcium homeostasis and neuroinflammation (17). 



17

General Introduction

Specifically, different studies have demonstrated the involvement of 
neuroinflammation by persistent activated and uncontrolled glial response, which 
exacerbate neuronal cell death in the SNpc as observed in post-mortem brains from PD 
patients (18). Glial cells mediate the primary immune response in the CNS, which is 
initiated by microglial cells and, then, astrocytes amplified by reactive astrogliosis, in 
order to maintain brain homeostasis after an insult (19).  

Microglia are the resident macrophages of the CNS which, under physiological 
conditions, co-exist in equilibrium between phenotype M1 or pro-inflammatory and, M2 
or anti-inflammatory (20,21). In a healthy brain, there is a balance between microglia 
M1 and M2 in order to maintain the integrity of the CNS. However, apoptosis causes 
the migration of microglia cells from the M1 phenotype to the damaged area. It is 
reported that in PD, the progressive degeneration of dopaminergic neurons leads to 
an imbalance between M1/M2 that maintains the inflammatory phenomena, with an 
excessive production of pro-inflammatory cytokines and neurotrophic factors.

This uncontrolled neuroinflammatory microglia cells activate astrocytes, which 
begin a process known as reactive astrogliosis. During this process astrocytes secrete 
pro-inflammatory cytokines and reactive oxygen species (ROS). This will amplify 

Figure 1.1. Clinical symptoms and course development of PD.
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the inflammatory process affecting healthy neurons and generating a vicious cycle of 
neurodegeneration (21,22). Astrocytes, whose name refers to their star shape, are the 
most numerous cells of the CNS. They are specialized in providing support to neurons 
by regulating the ionic composition of the microenvironment, giving access to nutrients, 
growth factors or releasing neurotransmitters (23). 

It is evident that inflammatory processes are implicated in the pathogenesis 
and progression of PD but the level to which they are involved is still unknown. Some 
authors support that inflammatory mechanisms precede neuronal degeneration while 
others defend that neuroinflammation appears as a consequence of the neuronal cell 
death (22,24). Thus, it is necessary to uncover the role of neuroinflammation on the onset 
of PD with the objective of reversing or slowing down the progression of the disease (25). 
As a consequence, in the last years a new concept has been implemented, called “Drug 
Repositioning” which consists of the re-use of drugs already approved by the EMA and 
FDA (26). This new therapy strategy is very attractive since it focuses on drugs with 
clinical safety data that could speed up their clinical use in PD patients and it could use 
to identify new molecular targets (26). 

1.3. Thesis research approach 

Based on the strengths and limitations of PD’s research, the overall aim of 
this thesis was to investigate the role of neuroinflammation using an induced model 
of Parkinsonism in mice (Figure 1.2). To address this question, the research line was 
organized in two main experimental parts divided into the following chapters: 

PART I, the question about the cause of the progression of the neurodegeneration 
in PD is approached since in the last years different studies have suggested that both 
brain and peripheral inflammation could play a key role. In the early stages of the 
disease, inflammation could be circumscribed to only one peripheral system as the 
gastrointestinal tract, in line with Braak’s theory in which the disease could begin in 
the gut and α-syn aggregates spreads to the brain via the gut-brain axis (27). However, 
considering that midbrain dopaminergic neurons express the highest vulnerability to 
insults (as proposed by the “threshold theory” for PD (28)), in Chapter 3, it was explored 
if a systemic inflammation produced by a local injury circumscribed to the colon, by 
dextran sulfate sodium (DSS) administration in a Parkinsonism mouse model, is able to 
significantly enhance dopaminergic neurodegeneration and inflammation in the SNpc and 
in the striatum. 

Regarding the significant link between inflammation and dopaminergic 
degeneration, PART II was based on “Drug Repositioning” which involves the re-use 



19

General Introduction

of anti-inflammatory and anti-oxidant drugs. The main advantage of this therapeutic 
strategy is that the feasibility and safety studies in humans are already done. Considering 
this fact, in Chapter 4, a combination of an anti-inflammatory, HA-1077 (31,32), and an 
anti-oxidant, N-acetyl-cysteine, NAC (33-35) were used to study their possible synergistic 
beneficial effect in old Parkinsonian mice.

Following this line, the aim of Chapter 5 was to analyse the relationship between 
physical activity, consider a non-pharmacological strategy in PD (36), combined with an 
antioxidant, NAC (33-35), and its influence in reducing the inflammatory processes in 
parkinsonized animals treated subchronically with MPTP.

The final study presented in Chapter 6 takes a step away trying to clarify the 
role of MAPKs pathway, considered a molecular target of NAC, on the dopaminergic 
neuronal death and its association with neuroinflammatory mechanisms triggered after 
an acute intoxication regime of MPTP in old mice. 
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2.1. Neuroinflammation in PD

2.1.1. General framework

In the molecular pathogenesis of Parkinon’s Disease (PD) several pathways 
and mechanisms are involved such as calcium homeostasis, α-synuclein proteostasis, 
mitochondrial dysfunction, oxidative stress or neuroinflammation. Specifically, sustained 
inflammatory response is unlikely the first direct cause of this disease but emerging 
evidence from experimental, genetic and epidemiological reports have shown that it may 
contribute and perpetuate the initial neurodegenerative processes (Table 2.1) (1). 

 The clearest starting point of the neuroinflammation-PD relationship arises from 
observations of activated and branched microglia in post-mortem tissue from PD patients.  
McGeer et al. first described the inflammatory component in the substantia nigra (SN) of 
PD brains showing reactive microglia expressing human leukocyte antigen - DR isotype 
(HLA)-DR and CD11b (2). Subsequently, several research studies have reinforced this 
association by describing increased microglial activation with pro-inflammatory factors 
released in post-mortem brains (3,4). At the same time, protoplasmic astrocytes (5) and, 
to a lesser extent, oligodendrocytes (6,7), have been joined as important parameters in 
neuroinflammatory processes involved in neurodegenerative disorders as PD. In this sense, 
the development of experimental models of PD are crucial for the understanding of the 
role of the glial response. This could be the case of a neurotoxin called 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) which produces a permanent Parkinsonian syndrome 
in human and in non-human primates. In 1982, it was described by Dr. Langston after 
observing that a group of drugs addicts presented similar symptoms to idiopathic PD. 
After several studies, it was deduced that the heroin that these Frozen Addicts had been 
consumed was intoxicated with MPTP (8). Importantly, in 1999, three of the patients 
died and the post-mortem studies showed the depletion of dopaminergic (DA) neurons 
in the SN and active microglia expressing HLA-DR (9), as McGeer’s previously had 
described.

Moreover, it has been reported genetic evidence that support the importance of 
the involvement of neuroinflammation in PD. Several studies have identified that some 
PD-related genes are directly implicated in the progression of chronic PD by stimulating 
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inflammatory processes via microglia and astroglia response. For instance, leucine-rich 
repeat kinase 2 (LRRK2) (10,11) or Parkin (12,13) are highly expressed in microglial 
cells indicating a functional role in the immune system. Other reports demonstrated that 
inducing the deficiency of genes as PTEN induced putative kinase 1 (PINK1) (14) or DJ-1 
(15) in mice triggers microglia vulnerability and increase cytokines release in response to 
brain injury.  It is also importance to hallmark that the mutation in α-syn in PD induces 
microglia cells activation (16). In addition, these genes regulate different functions of glial 
cells. Mainly, DJ-1, PINK1 and Parkin regulates proliferation, glucose metabolism or 
mitochondrial function in astrocytes (17). In microglial cells, inflammation, surveillance 
or phagocytosis are regulated by DJ-1, PINK, LRRK2 and α-syn (reviewed in reference 
(18)). 

Together with the experimental and genetic evidence, epidemiological studies 
based on the use of nonsteroidal anti-inflammatory drugs (NSAIDs) were performed to 
observe their effects on the onset of PD, but the data results in discrepant information. As 
it has been discussed, these could be because of the methodological differences between 
retrospective and prospective studies (19) as well as the starting time point and duration 
of the treatment. The idea is that NSAIDs have been proposed as a beneficial alternative 
in the primary and secondary prevention of PD (20,21) and, in fact, it is described that 
ibuprofen might have a slight protective effect on the development of PD (22). However, 
more scrupulous clinical studies based on the use of specific anti-inflammatory drugs are 
needed in order to clarify their involvement in the onset of PD (23). 

Regardless of the use of NSAIDs, pathway analysis-based GWAS identified 
significant implication of genes involved in the “regulation of leucocyte/lymphocyte 
activity” and “cytokine-mediated signalling” that may confer an increased susceptibility 
to PD (24). In another study was found the high association signals at the HLA regions 
including HLA-DRA, HLA-DRB9, HLA-DRB1, HLA-DQA1, HLA-DRB9, and HLA-
DPB2. These genes encoded proteins of the major histocompatibility complex which 
main roles are antigen presentation and immunity (25). More recently, since March 2018, 
there is an ongoing clinical trial with the objective of studying if the concentration and 
regional brain distribution of activated brain microglia/macrophages, using the PET 
ligand [18F]DPA-714, are increased in PD patients compared to controls (26). 

This points towards an evident link between neuroinflammation and dopaminergic 
degeneration associated with PD but there are still many questions concerning the 
mechanism of action of glial cells, involving its morphological changes, functionality and 
activation, in both health and disease. 
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Table 2.1. Antibodies and protocols for the different techniques

Year Evidence description Ref.

1987 Astrocytes are involved in the induction of Parkinsonism by MPTP. (27)

1988 Active and branched microglia expressing HLA-DR in PD patients’ brains (2)

1993 The scavenging of H2O2 by glutathione peroxidase contained in the glial cells produces a 
protective effect in the midbrains of PD patients. (28)

1994 IL-1β, IL-6, EGF, TGF-α are increased. (3,4)

1995
High brain levels of β2-microglobulin levels (29)

IL-1β and IL-6 are increased in the CSF of de novo PD and AD patients. (30)

1998 Presence of IgG to ovalbumin modified by dopamine oxidation (31)

1999 Active nerve cells degeneration after MPTP administration in humans related to the presence of 
gliosis and clustering of microglia (9)

2000
Microgliosis is not accompanied by reactive astrocytosis. (5)

iNOS, lipocortin-1 and -2 is contained in amoeboid microglia. (32)

2002

Increase levels of neurotrophic factors, such as BDNF, NT-3 and NGF, triggered by dopaminergic 
neuronal loss (33)

IL-1β T genotype is associated with idiopathic PD cases. (34)

Role of astrocytes in PD caused by parkin dysfunction. (13)

2003

Activated microglia is highly distributed in brain areas with damaged neurons and neurites. (35)

Nonsteroideal anti-inflammatory drugs may delay or prevent the onset of PD. (21)

PINK1 is found in glial cytoplasmic inclusions. (36)

2004 Glial response is associated with long-term neurodegeneration. (37)

2005

Microglial activation is developed in the midbrain of PD patients at an early stage and it may 
be associated with apoptotic events. (38)

Ibuprofen may delay or prevent the onset of PD. (22)

2006
PAR-1 is increased in astrocytes. (39)

Evidence from experimental studies suggest limited support for the for the hypothesis that the 
use of aspirin may reduce the risk of this disease. (40)

2007 A cohort study does not support the hypothesis that NSAIDs might decrease the risk of 
Parkinson disease. (41)

2012 LRRK2 inhibition attenuates microglia activation. (11)

2013 GWAS study identified genes involved in the “regulation of leucocyte/lymphocyte activity” and 
“cytokine-mediated signalling”. (24)

2014 DJ-1-deficient microglia have reduced the risk of neuroinflammation in PD. (15)

Note: Evidence from experimental studies (blue), genetic studies (yellow) and epidemiological studies (red). 
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2.2. Glial cells in PD

In the central nervous system (CNS), glial cells are CNS-resident immune cells 
that mainly mediate the innate immune response. The mechanism that underlies the 
crosstalk between microglia cells and astrocytes after an injury awakened the curiosity of 
scientists to relate it to degenerative processes.

2.2.1. Microglia

In 1919, Del Rio Hortega defined the “third element” (42,43) and demonstrated the 
reactive nature and phagocytic capacity of microglial cells (42). Although its observations 
were questioned, nowadays, microglia cells are highly described (44). Microglial cells 
are ubiquitous but not uniformly distributed. Thus, microglial cells represent 5-20% of 
the total glial cells population in the adult mouse brain (10% of the total glial cells in 
adult brains) and the most densely populated areas are the SN and the basal ganglia 
(45). Microglial cells are in constant activity extending and retracting their ramifications 
controlling the extracellular environment (46). 

It is thought that the origin of microglial cells arises from monocytes (from bone 
marrow) as progenitors that can cross the wall of blood vessels into the fetal brain (47). 
At this stage, immature and amoeboid microglia cells are implicated in the selection of 
neurons. Although, it is described that there is practically no exchange between blood 
and brain parenchyma; some reports point out that monocytes cross the blood brain 
barrier (BBB) during adulthood (48,49). In the adult brains, these cells acquire a ramified 
morphology as a quiescent (not stationary) microglia with a dynamic surveillance activity 
(Figure 2.1) (46). In a recent study, it is demonstrated that in vitro microglia, from 
male rats, showed higher migration rates than microglia from female rats under normal 
and stimulated conditions because of an increase of mRNA levels of migratory genes 
(MCP1 and RANTES). On the other hand, microglia cells from female rats have higher 
phagocytic activity in both scenarios (50). 

In healthy brains or early stages of the disease, the activation of microglial cells 
can be beneficial to host by polarization of the anti-inflammatory phenotype (or M2). 
Microglia of M2 phenotype produce a wide variety of cytokines such as IL-4, IL-13, IL-10 
and TGF-β. However, as the disease progresses, it has been shown that there will be a 
misbalance towards a pro-inflammatory phenotype (or M1) (51). Both damaged neurons 
and activated astrocytes release a cocktail of high levels of ATP, adenosine and cytokines 
that stimulate microglial cells (52). M1 is characterized by the increase production of 
tumour necrosis factor α (TNF-α), IL-6 and IL-12. In addition, it has also been described 
that microglia cells are a robust source of oxidative stress producing superoxide (SOD) and 
reactive oxygen species (ROS) (53) contributing to the amplification of the inflammatory 
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response in brain and exacerbating neurodegeneration (51). Finally, activated microglia 
can become phagocytic to clear tissue debris or damaged neurons (54). Taken together, 
M1 microglial cells release pro-inflammatory mediators enhancing the degeneration of 
neurons causing a vicious circle of neuronal damage (55,56).

Figure 2.1. Representation of microglia processes during embryonic development and health and pathology 
condition in adult brain. (a) Progenitors from bone narrow cross the BBB into the brain to become immature 
microglia. (b) In the adult brain, resting microglia have a ramified morphology with highly motile processes. 
(c) In healthy brains or in the early state of the disease, M2 phenotype have a protective role. (d) Several 
stimuli as aging, protein aggregation, genetic mutations or environmental factor transform microglia into 
M1 phenotype. (e) As the disease progresses, the number of damaged DA neurons is increased enhancing 
microglial activation and stimulating the migration of microglia from blood vessels to the damaged area. (f) 
Finally, microglia transform into phagocytes. 
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2.2.2. Astroglia

In 1856, Rudolf Virchow defined “neuroglia” as connective tissue which embed nerve 
cells (57). In 1893, Mihály Lenhossék added the concept of “astroglia” to his observations 
of star-shaped cells (58). From that moment, with the advance of immunohistochemical 
staining methods and microscopic techniques, its morphology and functionality could be 
described (59). 

Astrocytes constitute the most abundant glial cells in the adult brain (60) 

and, represent a heterogeneous population organized in strategic positions in relation 
to neurons (61). Depending on their morphological characteristics and their anatomical 
distribution, they can be divided into two subtypes: (i) protoplasmic, mostly located in 
the gray matter and characterized by numerous fine processes, and (ii) fibrous, found 
in the white matter with long fiber-like processes (62). To date, important functions 
have been related to astrocytes including formation of the BBB, involvement in the 
tripartite synapse or regulation of water and ion homeostasis, making them crucial for 
maintaining neuronal health. Furthermore, they are especially interesting for participating 
in neuroinflammatory processes related to a specific damage or to a degenerative state. 
In this line, since their discovery 100 years ago, the number of research articles published 
about their function in disease has increased from 12 in 1990 to 1034 in 2017 (63). 

Specifically, some evidence are emerging describing how astrocytes are involved 
in dopaminergic neuronal degeneration (17). In general, astrocytes respond to injury and 
disease in the CNS through a process called reactive astrogliosis (64). This mechanism 
has been reported to be a complex process which includes potential changes from cellular 
and molecular to gene level, which can have an impact both positive and negative on the 
surrounding neuronal and non-neuronal cells (64). These alterations in astrocytes depend 
on the severity of the insult entailing morphological changes such as hypertrophy in 
moderate states or proliferation and scar formation in severe conditions (60) . Particularly, 
in the most cases of PD and related syndromes, reactive astrogliosis has been described as 
mild or moderate in autopsies of the SN from PD patients (5). Expression of glial fibrillary 
acid protein (GFAP) is widely used as a marker for immunohistochemical studies of 
astrocytes and for the identification of reactive astrogliosis since its isolation form in old 
demyelinated plaques from multiple sclerosis patients (65). Briefly, the process implicates 
the migration of astrocytes to the damaged area adopting the main morphological and 
functional features of astrogliosis. Once they get to the site of injury, they wall it off while 
they secrete pro-inflammatory and neurotrophic factors that may stimulate microglial 
cells (66,67). It has been described that this mechanism follows dopaminergic cell death in 
SN in PD patients (28,68) and in parkinsonian monkeys (37).  Halliday et al. point out that 
glia plays a fundamental role in an early period of tissue damage. Thus, the accumulation 
of a-syn in astrocytes stimulates the activation and recruitment of phagocytic microglia 
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that selectively damages dopaminergic neurons (69). Surprisingly, in experimental models 
in rodents, it has been suggesting that it follows microglial activation in SN and striatum 
(70,71). These conflicted data lead to the question of how and why glia cells adopt 
different mechanisms between species after dopaminergic insult. 

Altogether suggest that astrocytes have a detrimental, active and direct effect on 
the regulation of neuronal survival that can be translated to different neurodegenerative 
disorders (59,61,72–74). In this context, the crucial roles of astrocytes constitute an 
interesting development with promising novel therapeutic strategies for the pathogenesis 
of neurodegenerative diseases (75). 

2.3. PD Experimental Models in Rodent

2.3.1. The utopia of an experimental model for PD?

Animal models are essentials to identify molecular targets needed to design 
new therapeutic strategies. To validate a new experimental model, it has to respond to 
the medications already used to alleviate or to exacerbate the characteristic symptoms 
described in the clinical pathophysiology of the disease. Specifically, PD is a multisystem 
neurodegenerative disorder with both motor as well as non-motor symptoms. Ideally, an 
experimental model of PD should collect the clinical pathological framework observed 
in patients: α-synuclein aggregation, gastrointestinal dysfunction, neuronal death, 
motor disability and depression (Figure 2.2). Unlikely, it is difficult to replicate all the 
pathological features of the human disease in one experimental model. In this line, PD 
experimental models described for rodent offer a wide spectrum of possibilities to address 
specific questions (76). 

PD models in rodents have been widely reported to elucidate the pathological 
mechanisms of dopaminergic neuronal death. The experimental models currently used can 
be classified into three groups based on the induction method of the specific pathogenic 
mechanism: genetic, pharmacological and neurotoxic (76,77).

It has been reported that the genetic relevance of PD incidence is significantly 
lower than its environmental causes at aged population (78). Thus, the exposure to highly 
used pesticides, such as rotenone and paraquat, has been considered as important risk 
factors for PD (79). In addition, neurotoxic-based models of PD are interesting in order 
to overcome deficiencies in sustained dopaminergic neuronal depletion that characterizes 
pharmacological models (80). Among the different neurotoxins, 6-hydroxydopamine (6-
OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) are highlighted for 
their reliability and reproducibility.
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 Both 6-OHDA and MPTP have important characteristics as experimental models 
suitable for investigations focused on neuroprotection. It is well-defined that a therapeutic 
strategy is “neuroprotective” if acts reducing the process of neuronal depletion. Since their 
respective discoveries, the use and description of these experimental models has increased 
considerably in the published studies from 1 in 1963 to 293 in 2018 publications about 
6-OHDA; and, from 7 in 1983 to 334 publications in 2018 about MPTP (Figure 2.3). In 
this sense, neurotoxin based-models are interesting to use for studies with this purpose 
(76).

2.3.2. Description of neuroinflammation in 6-OHDA-induced 
Parkinsonism model 

6-OHDA was used as PD experimental model in 1968 by Ungerstedt (81). Its 
mechanism of action is based on its structure, which is similar to dopamine but with a 
hydroxyl group on the six prime carbon allowing it to specifically kill DA and norepinephrine 
(NE) neurons. In the brain, it gets inside the DA and NE neurons through the respective 
transporters DAT and NET (82,83). Once transferred into neurons, 6-OHDA induces 
cell death via oxidative stress inhibiting mitochondrial respiration (84) and, in part, 
through the stimulation of inflammatory processes (85). Over the years, it has become 

Figure 2.2. Representation of the relationship between PD human symptoms and PD experimental models.   
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the most widely used experimental model because it mimics both early and late stages 
of the neurodegeneration. As it does not cross the BBB, it has to be locally injected 
directly into: SNpc, medial forebrain bundle (MFB) or striatum (83). The most used 
administration is via unilateral injection into the MFB rat. Although, its main limitation 
is that it cannot be used to study the mechanisms of protein aggregation (α-synuclein 
inclusions) and it produces acute and unilateral non-progressive neurodegeneration.

As in PD patients whose motor symptoms appear once the loss of dopaminergic 
neurons is 30% in SNpc and 50% of striatal DA; the intrastriatal injection of 6-OHDA 
produces a heterogeneous dopaminergic depletion pattern having to reach a threshold 
of dopaminergic loss to trigger the onset of motor symptoms (86). In addition, 6-OHDA 
offers another pathological feature of PD, i.e. the glia-mediated response. Microglial 
activation was observed using in vivo positron emission tomography (PET) imaging in 
rats after unilateral intrastriatal administration of 6-OHDA (87). Later, it was supported 
by different studies that pointed out an increase of pro-inflammatory mediators (85). 
However, the pattern of inflammation followed after 6-OHDA lesion is difficult to establish 
because published results generate some inconsistencies, since it depends on both timing 
of administration and region of the injection. For instance, one report described that 
when  6-OHDA is administrated by bilateral intrastriatal injection, microglial response 
is significantly increased in SN, striatum and hippocampus after 7 days (88). However, in 
other study, it has been described that the microglial response seems to be more significant 
in the striatum than in the SN, both 7 and 28 days after injection (89). Depino et al. also 
previously observed this glial activation pattern indicating non-astrocytic activation in 
the SNpc but a microglial and an astroglial response in the striatum (90). In addition, 

Figure 2.3. Graphs related to the number of published studies about 6-OHDA and MPTP from their 
respective descoveries in PubMed-NCBI. 
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it was reported an increase of microglial and astroglial activation in both lesioned and 
unlesioned striatum (91).    

On the other hand, results from studies based on unilateral 6-OHDA injections 
in the MFB generate mixed data concerning glial activation. In this sense, it had 
been described that microglial activation is a secondary phenomenon associated with 
dopaminergic cell death (92) while other study showed that microglial activation precedes 
DA neuronal death. Consequently, neurons degeneration may be phagocytosed in an 
early stage by phagocytic microglia cells which are stimulated by apoptosis signals (93).  

Taking all the information together it can be appreciated a promising 
relationship between neurodegeneration caused by the injection of 6-OHDA with related 
neuroinflammatory processes. Nevertheless, there are still many questions to be resolved 
regarding the role of glial response in this model based on a neurotoxin analogous to DA.

2.3.3. Modeling MPTP-intoxicated mice by neuroinflammatory 
insights

Since the discovery that MPTP could be used as a Parkinsonism-inducing 
neurotoxin, our understanding of the cause and course of PD has improved (8). MPTP is 
a byproduct in the synthesis of a meperidine analog whose MPP+ metabolite selectively 
destroys neurons in the SN, which results in an acute and irreversible human Parkinsonism 
(94,95). One of the major features of this neurotoxin is its lipophilic property that allows 
easily crossing the BBB. Once in the brain, MPTP is converted to the intermediate 
species MPDP+ (1-methyl-4-phenyl-2,3-dihydropyridinium) by the astrocytic monoamine 
oxidase B (MAO-B) and sequentially oxidized to the active toxic compound MPP+ 
(1-methyl-4-phenylpyridinium) (96,97). MPP+ is released into the extracellular space 
from astrocytes through the organic cation transporter 3 (27). To gain access to neurons, 
it depends on the plasma membrane because of its polar molecule properties. MPP+ has 
high affinity for the plasma membrane dopamine transporter, as well as for serotonin 
and norepinephrine transporters (98). In dopaminergic neurons, MPP+ accumulates in 
synaptosomal vesicles or concentrates in mitochondria inducing neurotoxicity primarily 
by inhibiting complex I of the mitochondrial electron transport chain (99,100), which 
results in ATP depletion (101) and an increase in ROS production (102), followed by 
neuronal death. 

It has been described that MPTP has a toxic effect in a variety of species from 
invertebrates such as C. elegans, zebrafish to rodents and non-human primates. However, 
the MPTP mouse model has been the most commonly used model for elucidating 
neuronal death and inflammation through the nigrostriatal pathway in PD (103,104). 
In this context, rats have been excluded from the modelling of PD because they are 
exceptionally resistant to MPTP (without MAO-B). Stereotaxic injection of MPP+ or 
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intranasal administration of MPTP are the alternatives options used to model PD in rats. 

As an experimental model, its main disadvantages are the large variability in 
behavioral and biochemical impairments depending on the mouse strain, age, gender or 
body weight, it does not present α-synuclein inclusions and it is a non-progressive model. 
The inbred mouse strain C57BL/6 is sensitive to MPTP intoxication due to its high 
MAO-B activity. On the other hand, its main advantages are that it causes PD motor 
impairments, it does not require intracerebral injections and it can be combined with 
genetic models. 

2.3.4. Neuroinflammatory processes triggered by MPTP intoxication

From the point of view of neuroinflammatory processes, the MPTP-based model 
has provided new insights that highlight the importance of the glial response in the 
development of dopaminergic degeneration (105). However, it must be taken into account 
that the published studies cover different MPTP administration regimes that may affect 
the obtaining of different data (106). In this sense, regimen can be divided mainly into: 
(i) acute, (ii) sub-acute or sub-chronic and (iii) chronic (Table 2.2). All the degenerative 
events and associated inflammatory responses depend on the regimen, which involves 
doses (number of injections, concentration and interval time); and, days of administration.

In general, acute administration regimens in young mice (9-12 weeks old) are 
the most widely used because MPTP has a fast toxicokinetics with non-progressive effect 
(76). Thus, after the exposure to MPTP, the nigrostriatal pathway is firstly affected. 
Specifically, it has been reported that dopaminergic striatal innervations are more sensitive 
to MPTP insult than dopaminergic neurons in the SNpc. Furthermore, glial processes 
begin with the activation of microglia cells detected in the striatum 90 min after the last 
injection of MPTP (119). Then, 12h after the administration of MPTP, active microglia 

Table 2.2. MPTP intoxication protocols most used depending on the administration regimen. 

Regimen Doses Time of administration References

Acute

(4 x 5-15 mg/kg, 1-2 h) 1 day (127,128)2,*

(4 x 15-20 mg/kg, 2 h) 1 day (129-132)1,2,*

(<4 x 20-25 mg/kg, 2 h) 1 day (123,124)2,*

Sub-acute

(1 x 10-20 mg/kg, 24 h) 4-5 days (132)2,*

(2 x 15-25 mg/kg, 6-12 h) 2 days (125)2,*

(1 x 20-30 mg/kg, 24 h) 4-5 days
(133)1,*

(134,135)2,*

(136)1,*,**

Chronic (1 x 20-30 mg/kg, 56 h) 1-3 months (136)2,**, (137)2,*

1Free base MPTP dose. 
21 mg of MPTP-HCl equal to 0.826 mg of free base MPTP (118). 
*i.p. / **s.c. 
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cells are present in both the striatum and the SNpc although the hydropyridine or the 
metabolite product from MPTP is cleared from the brain (120,121), preceding neuronal 
death and, after 24h, striatal depletion still decreasing along with the increase of microglial 
activation (104). Microglial cells reach their maximum activation peak 48h after the last 
MPTP injection (104). Astrocytes identified by GFAP+ expression do not change until 3 
days after MPTP intoxication (122) and, it has been reported that they can be activated 
till 90 days after the last injection (105). Astrocytes have a delayed response mediating 
long-term inflammatory mechanisms related to degenerative processes (70) (Figure 2.4.a). 

In the other hand, regimes known as sub-acute and chronic are, indeed, serial 
acute insults over days or weeks. In a recent study, chronic regimen was stablished from 
1 to 3 months of MPTP administration (Table 2.2). It was demonstrated a progressive 
and stable neurodegeneration of striatal depletion and dopaminergic cell loss in the SNpc 
throughout the 3 months. Regarding glial activation, they showed a significant increase 
of active Iba-1+ cells both in the striatum and in the SNpc. On the other hand, they 
reported that GFAP+ reached a peak of astroglial response 5 and 15 days of MPTP that 
progressively and slightly decreases, although staying higher that the control group. In 
SNpc, GFAP+ cells are significantly increase since the first month (117) (Figure 2.4.b). 

2.4. Therapeutics strategies

Idiopathic PD is a heterogeneous disorder that involves both motor and non-
motor complications. This feature makes research for an effective therapy a complicated 

Figure 2.4. Comparative representations of changes in glial response and neuronal death in both (a) acute 
and (b) chronic MPTP regimens (Data based on the study from Muñoz-Manchado et al. (117)).  
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challenge (Table 2.3). Currently, the problem is that the commonly used therapies 
(pharmacological, surgical and supportive) only treat the symptoms without disease-
modifying effect (123). Specifically, current pharmacological treatments for PD are 
dopamine receptors such us MAO-B inhibitors and COMT inhibitors. Levodopa-based 
therapy is usually used in the early stage of the motor symptoms development (5-10 
years after the disease is diagnosed) alleviating the characteristic motor symptoms of 
this phase (bradykinesia, rigidity and tremor). However, as the disease progresses, the 
medications response decrease and the appearance of side effects become significant. It 
is also described that these treatments have limited effect on non-motor symptoms as 
cognition and depression, which implicates complications in the most advanced stages of 
the disease encouraging the increase of morbidity. This fact makes currently therapeutic 
approaches in PD limited to treat effectively motor symptoms in the early stages and to 
address insufficient functional deficiencies in later stages, aside from failing to stop the 
progression of the disease.

Thus, it is an urgent necessity accelerate the process of identifying new treatments 
for PD. During the last years, a new therapeutic strategy has been suggested entitled “drug 
repositioning” (124). It is an attractive option since it is focuses on drugs whose clinical 
safety data have been approved. In fact, the re-use of treatments in some therapeutic areas 
has provided strategic and important advances in the understanding and identifying new 
pharmacological targets. The success rates of the use of the repositioning of drug which 
have already passed the safety studies in Phase I can approach 30%, which represents a 
huge improvement and advantage compared to traditional forms of drug discovery that 
it is less than 10%.

Table 2.3. The key questions for the design of an effective therapy for PD. 

Questions Answers Future directions

What is the main problem? Current treatments for PD remain 
symptomatic.  

Design a therapy with disease-modifying 
effect to prevent the progression.

What is the target? 

- Motor symptoms: tremor, rigidity, 
bradykinesia, postural instability…
- Non-motor symptoms: depression, 
anxiety, sleep disturbance, pain, fatigue…

(i)Therapy that prevents the 
manifestation. 
(ii) Combined treatment for both type of 
symptoms. 
(iii) Therapy that slows down the 
progression. 

What must be considered? Time of onset, duration of the disease, 
type of disease, age and social situation

(i) Specific therapies with short- and 
long-term efficacy. 
(ii) Personalized treatments

What should be avoided? Side effects Improve the quality of life of PD patients.

What should be maintained? Independence in the ability to carry out 
daily routine situations

Enhance supportive therapy as education, 
nutrition or exercise.
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In this line, the study on the relationship between neurodegenerative and 
inflammatory processes may be interesting for the design of new therapeutic strategies 
(125). In the last years, different anti-inflammatory drugs have been analyzed in both 
epidemiological and experimental studies (including cell culture and animal models) 
(124). The data obtained from epidemiological studies are conflicted and not clarify if 
the use of NSAIDs could delay or prevent the onset of PE. In this line, the paradox in 
the use of anti-inflammatories, as treatment for PD, arises when it takes into account the 
following situations proposed by Patrick L. and Edith G. McGeer: (i) if inflammation is 
combating the disease, this type of treatment makes us more vulnerable to degeneration?; 
(ii) if anti-inflammatory drugs only help to remove debris, is there any effect?; and, (iii) if 
microglial cells have autotoxic actions, when patients consume anti-inflammatories drugs, 
is the degeneration of the disease slowing down? (66). 

It is evident that more studies are needed to determine if these drugs can be used 
as promising treatment in PD. To date, only works carried out with experimental models 
offer us more conclusive results regarding the use of anti-inflammatories or anti-oxidants 
drugs with an immunomodulatory effect (reviewed in (126)). 

At this point, we wonder why the results obtained from both experimental and 
epidemiological studies are so discordant. Regardless of the differences in the regulation 
of degenerative processes between species (human versus rodent), we believe that one 
of the reasons lies in the fact that most studies are carried out in young/adult animals. 
This consideration implies obviating the deleterious mechanisms that underlie aging. 
From the point of view of neuroinflammation, a concept called “neuro-inflammaging” 
defines a state in aged and PD brains with basal levels of chronic inflammation with 
different and complex changes in the activity of microglia and astrocytes (127). This 
feature together with all physiological events occur in aging may result in a different 
response to pharmacological treatments (128). 

2.5. Concluding remarks 

Taking everything together, the beginning of the neuroinflammation process is a 
fundamental piece to understand the cause of the progression of degeneration processes 
in PD. Thus, unmasking the roles of glial cells in the CNS under pathological conditions 
could bring us an important point of view of the environment where dopaminergic 
neuronal cell death occur. The tools available for study, such as experimental models, are 
essential to recreate that situation. Considering both, the advantages and disadvantages 
of 6-OHDA and MPTP model, the most important features make them very interesting 
to study the effect of different anti-inflammatory drugs in dopaminergic degeneration 
and neuroinflammation. For this reason, the study of strategies based on the effect of 
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glial response could delay progression and not only treat the symptoms, being closer to a 
therapy with disease-modifying effect
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DSS intoxication exacerbates neuroinflammation in parkinsonian mice

Abstract

The cause of progressive degeneration in Parkinson’s disease is not clear, 
although, in the last years, different studies have suggested that both brain and 
peripheral inflammation could play a key role in the progression of this disorder. In our 
study, we aimed to analyze the effect of an acute inflammation confined to the colon on 
dopaminergic neuronal death and glial response in mice intoxicated with MPTP. The 
results obtained show a very significant decrease of dopaminergic neurons in the SNpc as 
well as a significant decrease of dopaminergic fibers in the striatum of the MPTP+DSS-
treated group compared with the control animals. In addition, there was a significant 
exacerbation of microglial and astrocytes activation in MPTP+DSS animals compared 
with the control group. This data suggests that a specific gastrointestinal injury, which 
induces a systemic inflammatory response, is able to exacerbate cell death mechanisms of 
the remaining dopaminergic neurons and then contributes to the persistent progression of 
the disease. These results leave open new lines of research on the role of exclusive colonic 
inflammation and the progression of nigrostriatal dopaminergic degeneration.
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NAC+HA-1077 treatment exacerbates neuroinflammation in MPTP old mice

Abstract

The design of therapeutic strategies that focus on the repositioning of anti-
inflammatory and antioxidant drugs are a great bet to slow down the progression of 
neurodegenerative disorders. Despite the fact that Parkinson’s disease (PD) is an age-
related pathology, almost all experimental studies are carried out in young animals. Here, 
we evaluated the possible neuroprotective effect of the combination of the antioxidant 
N-acetylcysteine (NAC) and the anti-inflammatory HA-1077 in aged 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP)-treated mice (C57BL/6 mice, 20 months old), whose 
individual treatment has been shown to have neuroprotective effects in this Parkinsonism 
model. Interestingly, NAC+HA-1077-based treatment produced a significant increase in 
dopaminergic neuronal death accompanied by an increase in microglial and astroglial 
activation in the Substantia Nigra pars compacta (SNpc) and striatum of old-Parkinsonian 
mice compared to their control group. The astroglial response was also explored by co-
immunostaining for GFAP and S100b together with p-JNK and it was found to be 
particularly exacerbated in the MPTP+NAC+HA-1077 group. The unexpected toxic 
effects found in the combined use of NAC and HA-1077 in old-Parkinsonian mice 
highlight the importance of taking into account that in elderly Parkinsonian patients the 
combination of some drugs (most of them used for other different age-related alterations) 
can have side effects that may result in the exacerbation of the neurodegenerative process.
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PA is not enough for neuroprotection in MPTP mice

Abstract

BACKGROUND: Neuroprotective strategies are becoming relevant to slow 
down dopaminergic cell death and inflammatory processes related to the progressive 
neurodegeneration in Parkinson’s disease (PD). Interestingly, among others, physical 
activity (PA) or anti-oxidant agents (such as N-acetyl-L-cysteine, NAC) are common 
therapeutic strategies. Therefore, this study aims to analyze if there is a synergistic 
effect of physical activity along with NAC treatment on dopaminergic degeneration and 
neuroinflammatory response in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-
induced Parkinsonism model after subchronic intoxication.

METHODS: To ascertain this possibility, 48 8-week-old male mice (C57BL/6 
strain) were used. Twenty four of them were placed individually in cages where voluntary 
physical activity was automatically monitored during 30 days and were divided into 
groups: (i) control; (ii) NAC; (iii) MPTP, and (iv) MPTP+NAC. The other 24 mice were 
divided into the same four groups but without physical activity.

RESULTS: The data collected during the treatment period showed that there 
was an overall increase in the total running distance in all groups under physical activity, 
including Parkinsonian animals. However, the monitoring data per day showed that the 
activity routine by MPTP and MPTP+NAC groups was disrupted by alterations in the 
circardian rhythm because of MPTP intoxication. Results from post-mortem studies in 
the substantia nigra pars compacta (SNpc) showed significant decrease in the number of 
TH+ cells in all MPTP groups. Moreover, TH+ expression in the striatum was significantly 
decreased in all MPTP groups. Thus, PA + NAC treatment do not protect dopaminergic 
neurons against a subchronic intoxication of MPTP. Regarding glial response, the results 
obtained from microglial analysis do not show significant increase in the number of Iba-
1+ cell in MPTP+NAC and MPTP+PA + NAC. In the striatum, a significant decrease 



68

Chapter 5

is observed only in the MPTP+NAC group compared with that of the MPTP group. The 
microglial results are reinforced by those obtained from the analysis of astroglial response, 
in which a decrease in the expression of GFAP+ cells are observed in MPTP+NAC and 
MPTP+PA + NAC compared with MPTP groups both in the SNpc and in the striatum. 
Finally, from the study of the astroglial response by the co-localization of GFAP/S100b, 
we described some expression patterns observed based on the severity of the damage 
produced by the MPTP intoxication in the different treated groups.

CONCLUSIONS: These results suggest that the combination of physical activity 
with an anti-oxidant agent does not have a synergistic neuroprotective effect in the 
nigrostriatal pathway. Our results show a potential positive effect, only due to NAC 
treatment, on the neuroinflammatory response after subchronic MPTP intoxication. 
Thus, physical activity is not essential, under these conditions. However, we believe that 
physical activity, used for therapeutic purposes, has a beneficial long-term effect. In this 
line, these results open the door to design longer studies to demonstrate its promising 
effect as neuroprotective strategy.
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Neuronal death, glial response and MAPKs pathway

Abstract

In order to establish new therapeutic strategies that slow down neuronal death, 
one of the great challenges of the present is to describe which are the conditions that 
perpetuate degeneration and neuroinflammation associate with Parkinson’s disease (PD). 
Thus, mitogen-activated protein kinases (MAPKs) has been implicated in the development 
of PD. To further define the mechanism of MAPKs expression with the glial response and 
neuronal death, Parkinsonism was induced in old mice and sacrifice was carried out at 
different time points (4h, 8h, 24h and 48h) after MPTP injections. The results revealed 
that neuronal death decreases as glial response increases in the nigrostriatal pathway. 
Moreover, p-ERK levels decrease while p-p38 expression increases. The importance of these 
data lies in the possibility of elucidating the underlying mechanisms of neurodegenerative 
processes to provide knowledge for the search for solutions that slow down the progression 
of PD.

Keywords

MAPKs, Parkinsonism, Aging, Neuroinflammation, Neurodegeneration





Conclusions

CHAPTER 7.





75

Conclusions

7.1. Key findings

“A question that turns on your thoughts, that connects your 
ideas, that projects a world full of possible answers.” 

This thesis contributes to the investigation of one of the most complex question 
to answer in the research of Parkinson’s disease: what is the main cause of the progression 
of dopaminergic neurodegeneration? Among all the possible answers, this dissertation is 
focused on describing the relationship between dopaminergic neuronal cell death and glial  
cell activation. 

To address this issue, Chapter 1 commences with the exposition of the reference 
frame of the disease followed by the description of the main challenges in the research of PD. 
Right from the beginning, the involvement of persistent neuroinflammatory mechanisms 
in the onset of PD is suggested. The clinical frame of the disease is provided with a special 
focus on the multiple factors that can trigger and maintain dopaminergic degeneration. 
Once the complex nature of PD is stated, it becomes clear that, among several pathways 
and molecular mechanism, neuroinflammation have an important contribution to the 
pathogenesis of the disease. 

After this preface, in Chapter 2, the contribution in relation to the involvement 
of glial cells in Parkinson’s disease is reviewed. Starting with a timeline of evidence from 
experimental, genetic and epidemiological studies that point out a direct association 
between neuroinflammation and dopaminergic degeneration in PD. From this, it is 
described the dynamic changes of microglia cells and astrocytes within the central 
nervous system under health and pathological conditions and, it is highlighted the crucial 
cross-talk between glial cell and neurons. In this sense, most of the contributions come 
from experimental studies based on the use of animal models. To this, it is questioned if 
we are facing an impossible scenario because this kind of disorders, such as Parkinson’s 
disease, are multisystem affected which make it unlikely the fact that an experimental 
model could collect the entire human clinical frame. Nevertheless, experimental models, 
specifically in rodent, offer a wide range of possibilities. To study the mechanisms focused 
on neuroinflammation and neuroprotection, those models based on neurotoxins are 
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reported to be more suitable. In this chapter, the MPTP-intoxicated based model is 
widely described as all the studies included within this thesis rely on it. At this point, the 
potential deleterious implication of inflammatory processes in PD leads to the following 
question: could therapies based on anti-inflammatory drugs delay the progression of 
PD? It seems that the answer, so far, is not entirely clear because the results in both 
experimental and epidemiological investigations are discordant. That is why there is an 
urgent necessity to gather information in studies that clarify this question. In that way, the 
present dissertation attempts to elucidate the effects of common drugs on Parkinsonism 
and to explore the possible molecular targets that are triggered to get an approach of a 
better understanding.

Following up this exposition of the status of the research in PD; in Chapter 3, 
it is aimed whether a systemic inflammation, due to a local injury in the colon by the 
administration of DSS, is able to exacerbate the neuroinflammation produced by MPTP 
intoxication. The data obtained support that gut inflammation and the subsequent 
systemic inflammation may lead to nigrostriatal inflammatory changes (both in microglial 
and astroglial response) that increase dopaminergic neuron vulnerability in the SNpc. 
Moreover, the loss of dopaminergic neurons in mice treated with DSS alone is particularly 
interesting and more in-depth studies would be needed to describe the mechanisms that 
are involved. 

In this sense, it is important to highlight one of the most commented 
observations of this study since the loss of dopaminergic neurons in the nigra does not 
lead to significant loss of DA terminals in the striatum and rotarod performance. Based 
on these appreciations and the published literature, the remaining neurons in the nigra 
could be able to compensate for the decrease of TH expression in the terminals from the 
neurons, which have disappeared by compensatory mechanisms. In line with this, DSS 
intoxicated animals did not show a significant increase in motor dysfunction because 
the clinical effects occur when the loss of dopamine is high enough in the striatum. 
Taking all together, the main observation of this chapter is based on the larger functional 
reserve of dopamine neurons in the midbrain and how the administration of a toxic, 
producing a systemic inflammation, could enhance the degeneration of dopaminergic 
neurons previously affected by the MPTP intoxication, to reach the functional threshold 
in which Parkinsonism motor symptoms occur. 

Once described the relationship between neurodegenerative and inflammatory 
processes in MPTP mice, the studies included in Part II are focused on the administration 
of combinations of common drugs based on “Drug Repositioning”. 

In Chapter 4, it is tested if an anti-inflammatory drug, HA-1077, and an anti-
oxidant agent, NAC, can block the neurotoxicity observed in the nigrostriatal pathway 
in old parkinsonian mice. Strikingly, it was observed that the individual drugs, but 
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particularly NAC, exert a neuroprotective effect in old parkinsonian mice, while the 
combination of these drugs resulted in the exacerbation of neurodegeneration via the 
inflammatory response. Based on the outcomes showed, it was further analyzed a possible 
metabolic pathway that could be affected by the combined treatment. Thus, for being one 
of the most well-known targets of NAC, JNK expression, belonging to the MAPKinases 
protein family, was analyzed. The data showed an increase of the phosphorylated form 
in all parkinsonian groups, except for those animals treated with NAC. The significance 
of this finding suggests an interesting line of research to expand, by which blocking the 
expression of this protein, neuroprotective effects are observed in parkinsonian mice. 
Overall, this chapter highlighted the possible deleterious effect when combining common 
drugs in the treatment for elderly Parkinsonian patients. In this sense, the importance 
to increase the studies using old animals is crucial to understand the processes related to 
aging since elderly brains are more vulnerable. Considerably, future perspectives should 
attempt to overcome the side effects produced by common drugs by the support of 
personalized therapy.  

In light of the previous results, in Chapter 5, we examined the effects of NAC in 
combination with physical activity on dopaminergic degeneration and neuroinflammatory 
response in an MPTP-induced Parkinsonism model after subchronic intoxication. 
Although the main objective was to observe a synergistic positive action, the results 
reported that the principal beneficial effect was only due to the NAC administration and, 
physical activity, under these conditions, was not essential. The key findings were in line 
with the observations made in the previous chapter because the data not only reinforced 
the neuroprotective role of NAC but also added a description of its beneficial effect on 
Parkinsonian adult mice under a sub-chronic regime. On a side note, it is obliquely 
highlighted some considerations regarding immunofluorescence analysis. Based on the 
dual immunolabeling for GFAP and S100b, it was described different expression profiles 
that suggest changes in the cellular location of these proteins depending on the severity 
of the injury. This data is especially interesting to identify astrocytes in different states of 
activation and, therefore, to recognize the degree of severity of the disease. 

Finally, in Chapter 6, it is converged the most fundamental aspects previously 
highlighted. It is a more in-depth study that aimed to examine over time the relation 
between dopaminergic cell death, astroglial response and MAPKinase in old mice after 
an acute intoxication of MPTP. Thus, it is shown the primary events triggered after 
the MPTP intoxication. The main observation of this study is, under this regime of 
intoxication, that events related to neurodegeneration and astroglial response begin to be 
significant after 48h after the last injection of MPTP. In the same way, the expression of 
phospho-p38 starts to be significantly detected. 
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7.2. Limitations and strenghs

“I was taugh that the way of progress was 
neither swift nor easy”. Marie Curie

This thesis is a collection of projects with a common denominator; the interrogation 
about the involvement of neuroinflammation in age-related disorder, like Parkinson’s 
disease. A major strong aspect of the studies presented here is the consistency throughout 
the results. That is, all studies point to the crucial effect of neuroinflammation on the 
dopaminergic neuronal death.  

However, there are some general as well as specific limitations inherent in the 
biological research, and the studies presented in this thesis are also subjected to some of 
them. One of the most controversial limitations lies in the data coming from the use of 
experimental models. Generally, it is difficult to work with a large and homogeneous sample 
population since the funds are not enough, the regulation for animal experimentation 
is increasingly restrictive and the biological system respond differently depending on 
variables, which sometimes the researchers do not even control. As a consequence, the 
moment to statistically analyse and interpret the results becomes a real headache. 

In the present dissertation, the results have been analysed statistically with 
caution since we handled a small to moderate sample size. However, it is important 
to be aware that the reduced sample size implies different problems, since, sometimes, 
it makes difficult to obtain enough power to detect changes with a significant p-value. 
This means that as the power decreases, the probability of finding true effects also 
decreases. In addition, another compromised problem is the reproducibility of the results. 
Surprisingly, this is exemplified in this thesis by the results from the administration of a 
combined treatment of drugs, which individually has been related to positive results in 
young parkinsonian mice. However, we obtained a clear and an unexpected exacerbation 
of dopaminergic degeneration together with an activation of the glial response in old 
parkinsonian mice. To this, the heterogeneity within and between experimental groups in 
this kind of studies is a characteristic that it must be kept in mind from the beginning 
of the research until the interpretation of the results. Despite these implicit limitations, 
the results from these studies have been discussed and rigorously interpreted, taking into 
account all these considerations. 

Other concern throughout the studies collected in this thesis constitutes the 
disadvantages subjected to experimental models (reviewed in Chapter 2). The major 
limitation is not to gather all the pathological features of the disease. For instance, in 
Chapter 3, we were asked about the effect of the intoxication of MPTP and DSS on 
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the accumulations of a-synuclein. However, it is highly described that it is not observed 
retrograde transport of a-syn depositions after an acute regimen of MPTP intoxication 
(1). In addition, in an attempt to study motor performed by open-field and rotarod test, 
we found it extremely complex to obtain homogeneous results. These difficulties are 
supported by other previous studies that showed that under an acute administration of 
MPTP, motor symptoms are hardly exerted (2–5). A way to overcome these limitations, 
is the development of experimental models combining different kind of them (for example, 
genetic and neurotoxic based models) to address a greater range of aspects of the disease. 

It is also important to be aware of the extent limitations of the methodology 
used to investigate. The main techniques used throughout the thesis have been 
immunohistochemistry/immunofluorescence (Chapters 3, 4 and 5) and western-blot 
(Chapter 4 and 6) for the detection of different markers. Specifically, despite being a 
simple technique, immunohistochemistry entails different particularities that depend on 
many factors (6). Especially, it is important to optimize and adapt the protocols for 
each antibody so that false positives are avoided or to get the maximum signal based 
on the right dilution and/or incubation time. The interpretation of the data must be 
done with carefulness. In this thesis, the use of immunohistochemistry has been based 
on the foundations and procedures of stereology. Thus, all the quantifications have been 
performed by a systemic, random and unbiased selection of the brain areas. A way to 
strengthen and empower results from these methodologies is to perform studies regarding 
the advances in microarray and sequencing techniques to generate data that offers a 
wider vision. 

Finally, it is part of my responsibility to highlight one of the most important 
limitations that the scientific system is facing: the publication bias. The pressure that 
researchers are subjected to link one grant to another one has turned out to be a race 
to get the maximum number of publications. In addition, the “obsession” of high impact 
journals to publish only positive results, only complicates the situation. However, this 
fact will also be an advantage for the young researchers, since they will have more 
opportunities to be more cited. All this has led to a loophole of publication bias. In fact, 
I have experienced this situation during the publication process of the papers concerning 
Chapters 4 and 5. It have been especially difficult to get these papers accepted because 
they mainly show unexpected results. This kind of data should be more valued because it 
would save time and resources, especially if the study is based on animal experimentation.  
Definitely, the lack of interest of the scientific community in negative results is one of the 
most important challenges that the scientific/academic system needs to face. 
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7.3. Future perspectives

“When we thought we had all the answers, 
suddenly, all the questions changed”. Mario Bennedeti

The key findings described in each chapter together with the limitations 
previously exposed leave the door open to answer more questions. The future challenges 
are aimed to innovate and to improve the methodology to obtain results close to the 
cause and development of the disease. From the first to the last chapter, “time” has 
been a crucial aspect when designing the experiments. The molecular mechanisms are 
constantly changing and describing them through a temporary window is fundamental 
to the diagnosis and the treatment in order to slow down or reverse the progression 
of Parkinson’s disease. Therefore, since these studies have been carried out under an 
acute regime in order to evaluate the immediate response of the treatments; it would be 
interesting to study the long-term effects.

Another decisive characteristic has been the use of old animals. To this, it is 
necessary to expand the studies also to describe possible differences in gender. With 
the exception of some reports, it is hardly known if there are differences related to glial 
response males and females or if there is a different response to treatments. In this sense, 
and as it has been mentioned, the design and the implementation of personalized medicine, 
that takes into account age or gender could benefit the progression and development of 
effective therapeutic strategies for complex diseases such as PD. 

Finally, there is a rapidly evolving field whose techniques and methods are crucial 
for the understanding and the modelling of different processes in the brain. Computational 
neuroscience supposes an essential tool based on mathematical modelling to describe 
the vast complexity of neurobiological systems and their numerous interactions. The 
development of integrative genomics, transcriptomics, and epigenomics approaches offer 
an innovative and advanced point of view. The future perspectives related to these studies 
are promising to generate and to exchange big datasets. 
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Summary

Summary

Different shreds of evidence have been point out that the 
neuroinflammatory processes have a key role in the initial state and progression 
of Parkinson’s disease. These mechanisms are mainly regulated by glial cells 
from which microglial cells and astrocytes stand out. These cells are the 
main components involve when neuroinflammation processes are triggered 
after a dopaminergic insult. In fact, one of the considerations that deserve 
attention is the study of the cross talk between glial cells and dopaminergic 
neurons in both health and pathological conditions since is still unclear. In 
this line, experimental models based on the induction of Parkinsonism by a 
neurotoxin, such as 6-OHDA or MPTP, are very useful to elucidate these 
mechanisms in order to find new molecular targets. To this, therapeutic 
strategies based on anti-inflammatory drugs are studied in detail in order 
to design new ones more effective that can reduce or avoid the side effects 
produced by the current treatments commonly used in Parkinson’s disease. 
Thus, the research focus on the effect of glial response, mediated by microglial 
cells and astrocytes, on the dopaminergic neurodegeneration could offer new 
insights to delay the progression of Parkinson’s disease by a therapy with 
disease-modifying effect. With this in mind, the work presented in this thesis 
examines and explores the involvement of neuroinflammatory processes in the 
dopaminergic neurodegeneration produced by the induction of Parkinsonism 
by the administration of MPTP in both young and old mice. 

First, Chapter 1 familiarizes the reader with the pathology and 
pathogenesis of Parkinson’s disease and draws the attention to the main 
problem to be addressed in this work and how it has been approached. After 
this brief introduction, Chapter 2 presents a thorough overview of the role of 
neuroinflammation in Parkinson’s disease. This report unfolds the timeline 
of the main contributions, from experimental, genetic and epidemiological 
studies, that involve inflammatory processes as crucial in the development of 
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the disease. Finally, it is exposed the main challenges that the research focus on 
therapeutic strategies to treat PD patients has to overcome. As an alternative, 
it is suggested the different advantages that the “drug repositioning” offers to 
avoid possible side effects, since the compounds have already passed the safety 
studies in Phase I, and to accelerate the identification of new pharmacological 
targets.  

The first experimental part of this thesis, Chapter 3, starts off with an 
investigation about the effect of systemic inflammation in the neurodegeneration 
and glial activation in Parkinsonian mice. The hypothesis of this work is 
inspired by the literature that suggests that both brain and peripherally 
inflammation could play a key role in the progression of this disorder. In the 
study, a model of ulcerative-colitis induced by the administration of DSS 
was carefully combined with an experimental model of Parkinsonism induced 
by MPTP intoxication. Thus, this chapter aimed to analyze the effect of a 
systemic inflammation triggered by a local injury confined to the colon on 
the dopaminergic neuronal death and glial response in parkinsonian mice. 
The study was performed on 22 four-months male mice (C57BL/6 strain) 
distributed into four groups: (a) Control, mice drinking tap water; (b) DSS, 
mice drinking 2-2.5% DSS; (c) MPTP, mice drinking tap water and receiving 
MPTP injections; and (d) MPTP+DSS, mice drinking 2-2.5% DSS and 
receiving MPTP injections. The development of the ulcerative-colitis was 
carefully monitored over the 8 days of the intoxication. The in vivo results 
presented clear clinical features of ulcerative colitis that were confirmed by 
the histopathological analysis of colon sections. On the other hand, motor 
behaviour was evaluated by the rotarod test. The data showed significantly 
lower performance in motor coordination in animals that were MPTP-injected 
compared to the control groups. Afterwards, post-mortem studies of the brain 
sections showed a very significant decrease of dopaminergic neurons in the 
SNpc. We also observed a significant decrease of dopaminergic fibers in the 
striatum of the MPTP+DSS-treated group compared with control animals. 
In addition, there was a significant exacerbation of microglial and astroglial 
activation in the MPTP+DSS animals compared to the untreated group. 
Overall, the data indicated that a specific gastrointestinal injury, which 
induces a systemic inflammatory response, is able to exacerbate cell death 
mechanisms of the remaining dopaminergic neurons and then, contributes 
to the persistent progression of the disease. These results open new lines of 
research about the role of exclusive colonic inflammation and the progression 
of nigrostriatal dopaminergic degeneration. 

The design of therapeutic strategies focus on “drug repositioning”, the 
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re-use of anti-inflammatory and anti-oxidant drugs are a great bet to slow down 
the progression of neurodegenerative disorders. In Chapter 4, it was evaluated the 
possible neuroprotective effect of the combination of two different common drugs: 
(i) the N-acetylcysteine (NAC), a glutathione precursor and JNK inhibitor with 
anti-oxidant actions, and (ii) HA-1077, a ROCKinase inhibitor and microglia 
polarizer. Along with this, it was taking into account the fact that despite 
that Parkinson’s disease is an age-related pathology, almost all experimental 
studies are carried out in young animals. Consequently, it was studied the effect 
of the combination of NAC and HA-1077 on the neurodegeneration and glial 
response in aged 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated 
mice. 64 twenty-weeks-old male mice (C57BL/6 strain) were used in this study 
and they were randomly divided into two main groups: 24 of them were non-
MPTP mice and the other 40 animals were acutely intoxicated with MPTP. At 
the same time, the animals were divided into four equal subgroups according 
to the different treatments: i) Control (untreated); ii) MPTP+NAC; iii) 
MPTP+HA-1077; iv) MPTP+NAC+HA-1077. Interestingly, the post-mortem 
studies showed that NAC+HA-1077-based treatment produced a significant 
increase in the degeneration of the dopaminergic striatal terminals. This event 
was accompanied by an increase in microglial and astroglial activation in the 
SNpc and in the striatum of old-Parkinsonian mice compared to their control 
groups. To these results, it was added further analysis of the astroglial response 
by the co-immunostaining of GFAP and S100b together with p-JNK and the 
quantification of the expression of JNK, as possible disrupted metabolic pathway. 
From there, it was observed that JNK and p-JNK expression was particularly 
exacerbated in all MPTP groups while the levels remained decreasing in 
MPTP+NAC treated mice. On the whole, the unexpected toxic effects, found 
after the combined administration of NAC and HA-1077 in old-Parkinsonian 
mice, highlight the importance of taking into account that in elderly Parkinsonian 
patients the combination of some drugs (most of them used for other different 
age-related alterations) can have side effects that may result in the exacerbation 
of the neurodegenerative process. Therefore, in order to overcome this situation, 
it is important to support the research focused on the development of more 
personalized therapeutic strategies. 

Chapter 5 covers a similar line of research as the previous chapter. Thus, 
according to the neuroprotective effects obtained by the administration of NAC, 
this study aimed to analyse if there was a synergistic positive effect of NAC along 
voluntary physical activity (PA) on dopaminergic neurodegeneration and glial 
response in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced 
Parkinsonism model after sub-chronic intoxication. Among other strategies, 
physical activity is described as a non-pharmacological strategy that takes part 
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in different brain functions, especially, by inflammatory modifying effects. To 
ascertain this possibility, 48 eight-week-old male mice (C57BL/6 strain) were 
used. Twenty four of them were housed individually where voluntary physical 
activity was automatically monitored during 30 days and animals were divided 
into four groups: (i) control; (ii) NAC; (iii) MPTP, and (iv) MPTP+NAC. The 
other 24 mice were divided into the same four groups but without physical 
activity. The data collected during the treatment period showed that there was 
an overall increase in the total running distance in all groups under physical 
activity, including Parkinsonian animals. However, the monitoring data per 
day showed that the activity routine by MPTP and MPTP+NAC groups was 
disrupted by alterations in the circadian rhythm because of MPTP intoxication. 
Moreover, the results from post-mortem studies in the substantia nigra pars 
compacta (SNpc) showed a significant decrease in the number of TH+ cells in all 
MPTP groups. TH+ expression in the striatum was significantly decreased in all 
MPTP groups. Thus, the combined treatment does not overprotect dopaminergic 
neurons against a subchronic intoxication of MPTP. Regarding glial response, the 
results obtained from microglial analysis do not show a significant increase in the 
number of Iba-1+ cell in MPTP+NAC and MPTP+PA+NAC. In the striatum, 
a significant decrease is observed only in the MPTP+NAC group compared to 
the MPTP group. The microglial results are reinforced by those obtained from 
the analysis of astroglial activation, in which a decrease in the expression of 
GFAP+ cells are observed in MPTP+NAC and MPTP+PA+NAC compared 
with MPTP groups both in the SNpc and in the striatum. Finally, from the 
study of the astroglial response by the co-localization of GFAP/S100b, it was 
described different expression profiles regarding the cellular location of these 
proteins observed depending on the degree of severity produced by the MPTP 
intoxication in the different treated groups. To end, this study indicates that 
the combination of physical activity with an anti-oxidant agent does not have a 
synergistic neuroprotective effect in the nigrostriatal pathway. Our results show a 
potential positive effect, only due to NAC treatment, on the neuroinflammatory 
response after subchronic MPTP intoxication. Thus, physical activity is not 
essential, under these conditions. However, we believe that physical activity, 
used for therapeutic purposes, has a beneficial long-term effect but more studies 
are needed to confirm it. In this line, these results open the door to design longer 
studies to demonstrate its promising effect as a neuroprotective strategy.

The final experimental part of this thesis is presented in Chapter 6, 
which delves into the changes, over time, of the events related to the dopaminergic 
degeneration, the astroglial response and the expression of the MAPKinases. As 
it has been highlighted throughout the chapter of this dissertation, it is important 
to establish new therapeutic strategies that slow down the dopaminergic neuronal 
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death at the right time and, importantly, that consider the deleterious processes 
associated with aging. In this line, mitogen-activated protein kinases (MAPKs) 
has been pointed out as one of the main metabolic pathways involved in the 
regulation of inflammation and, as a consequence, it has been related to different 
neurodegenerative diseases. To further define the relationship between MAPKs 
expression with the glial response and the dopaminergic neurodegeneration, 40 
twenty-weeks-old mice (C57BL/6 strain) were randomly distributed into the 
control group (untreated mice) and the MPTP group. Animals were sacrificed 
at different time points after the last injection of MPTP: 4h, 8h, 24h and 48h. 
The results showed that both processes related to neurodegeneration and 
astroglial response started to increase significantly in comparison to untreated 
animals from 24h. The results revealed that dopaminergic neurons decrease as 
astroglial response increases. Moreover, no significant differences were found in 
the expression phospho-ERK while the levels of phospho-p38 increased from 4h 
in the nigrostriatal pathway and, specifically, they became significant at 48h 
only in the striatum. The importance of these data lies in the description of the 
primary events triggered in old mice after the MPTP intoxication. In conclusion, 
these results open the door to deeper studies to evaluate the different metabolic 
pathways both upstream and downstream together with their comparison 
between different intoxication regimens (acute and chronic). 

In this project, treatments are designed based on the use of anti-
inflammatories and/or antioxidants to see its effect on dopaminergic neuronal 
death and on the activation of neuroinflammatory processes in parkinsonian 
mice (young and old). The importance of these studies lies in the possibility 
of elucidating the underlying mechanisms of neurodegenerative processes to 
improve the quality of life of the patient and provide knowledge for the search 
for solutions that slow down the development and progression of Parkinson’s 
disease. Thus, this strong clinical relevance is translated into the development of 
tools for early diagnosis and design of more personalized therapeutic strategies. 
This dissertation provides different observations that highlight the importance 
of the involvement of neuroinflammatory processes, mediated by glial cells, in 
the development and exacerbation of neurodegenerative processes in Parkinson’s 
disease. In addition, it launches the question to the questionable positive effect 
in some combinations of drugs, commonly used, may accelerate the onset of 
neurodegenerative diseases related to age, such as Parkinson’s disease.
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Diferentes estudios señalan que los procesos neuroinflamatorios 
tienen un papel fundamental en el inicio y en la progresión de la enfermedad 
de Párkinson. Estos mecanismos están regulados principalmente por las 
células de la glia, de las que destacan las células microgliales y los astrocitos. 
Estas células son los principales componentes que intervienen en los 
procesos neuroinflamatorios desencadenados tras una lesión en las neuronas 
dopaminérgicas. Es por esto que una de las consideraciones que merecen más 
atención, pues no están del todo claras, es el estudio de las interacciones 
que se establecen entre las células gliales y las neuronas dopaminérgicas, 
tanto en condiciones de homeostasis como patológicas. En esta línea, los 
modelos experimentales basados en la inducción de parkinsonismo por una 
neurotoxina, como 6-OHDA o MPTP, son muy útiles para dilucidar estos 
mecanismos con el fin de encontrar nuevas dianas moleculares. Asimismo, 
se investigan posibles estrategias terapéuticas basadas en anti-inflamatorios 
y/o anti-oxidantes para diseñar tratamientos más efectivos que reduzcan 
o eviten los efectos secundarios producidos por los fármacos actuales 
comúnmente utilizados en la enfermedad de Párkinson. Con esto en mente, 
los trabajos presentados en esta tesis examinan la implicación de los procesos 
neuroinflamatorios en la neurodegeneración dopaminérgica producida por 
la inducción de parkinsonismo por la administración de MPTP en ratones 
jóvenes y viejos.

En primer lugar, el Capítulo 1 familiariza al lector con la patología 
y la patogénesis de la enfermedad de Párkinson. A lo largo del capítulo se 
va focalizando la atención sobre el principal problema a abordar en este 
trabajo. Seguido de esta breve introducción, el Capítulo 2 presenta una 
amplia descripción de la importancia de la neuroinflamación en la enfermedad 
de Párkinson. En esta revisión se recogen las principales contribuciones 
desde los primeros trabajos que sugirieron la implicación de los procesos 
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neuroinflamatorios en la enfermedad de Párkinson hasta las principales 
cuestiones todavía por resolver. Se exponen que los principales desafíos que 
debe superar la investigación están centrados en las estrategias terapéuticas 
para tratar a los pacientes con EP. Como alternativa, se presentan las diferentes 
ventajas que ofrece el “reposicionamiento de fármacos” como evitar posibles 
efectos secundarios, ya que consisten en compuestos que han superado los 
estudios de seguridad en Fase I, y acelerar la identificación de nuevas dianas 
farmacológicas.

El primer trabajo experimental de esta tesis, recogido en el Capítulo 
3, comienza con una investigación sobre el efecto de la inflamación sistémica 
en la neurodegeneración y en la activación glial en ratones parkinsonianos. 
La hipótesis de este trabajo está inspirada en publicaciones que sugieren que 
tanto la inflamación cerebral como la periférica podrían desempeñar un papel 
clave en la progresión de este trastorno. Para llevar a cabo este trabajo, se 
utilizó un modelo de colitis ulcerosa inducido por la administración de DSS 
y se combinó cuidadosamente con un modelo experimental de parkinsonismo 
inducido por la intoxicación de MPTP. Por lo tanto, este capítulo tuvo como 
objetivo analizar el efecto de una inflamación sistémica, provocada por una 
lesión circunscrita en el colon, sobre la muerte neuronal dopaminérgica y 
la respuesta glial en ratones parkinsonianos. El estudio se realizó en 22 
ratones machos (C57BL/6, 4 meses de edad) distribuidos en cuatro grupos: 
(i) Control, ratones que bebían agua del grifo; (ii) DSS, ratones que bebían 
2-2.5% de DSS; (iii) MPTP, ratones que bebían agua del grifo y recibieron 
inyecciones de MPTP; y (iv) MPTP+DSS, ratones que bebían 2-2.5% de 
DSS y recibieron inyecciones de MPTP. El desarrollo de la colitis ulcerosa 
se monitorizó minuciosamente durante los 8 días de la intoxicación. Los 
resultados in vivo de los animales tratados con DSS presentaron claras 
características clínicas de colitis ulcerosa, que se confirmaron posteriormente 
mediante el análisis histopatológico de las secciones de colon. Por otro lado, 
el comportamiento motor se evaluó mediante la prueba de Rotarod. Los datos 
mostraron un rendimiento significativamente menor en la coordinación motora 
en animales que fueron intoxicados con MPTP en comparación con los grupos 
no parkinsonianos. Los estudios post-mortem de las secciones de cerebro 
mostraron una disminución muy significativa de las neuronas dopaminérgicas 
en la Substancia Nigra pars compacta (SNpc), así como un descenso de las 
terminaciones dopaminérgicas al nivel del estriado, especialmente significativo 
en los ratones tratados con MPTP+DSS en comparación con los animales 
control. Respecto a la respuesta glial, se observó una exacerbación en la 
activación de células de la microglia y astrocitos en el grupo MPTP+DSS. 
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En general, los datos indican que una lesión gastrointestinal específica, que 
induce una respuesta inflamatoria sistémica, puede exacerbar los mecanismos 
de muerte celular de las neuronas dopaminérgicas restantes desencadenando 
en una degeneración progresiva en la enfermedad. Estos resultados dejan 
abiertas nuevas líneas de investigación sobre el papel de la inflamación 
sistémica, desencadenada por una lesión gastrointestinal, en la progresión de 
la degeneración dopaminérgica nigrostriatal.

La segunda parte de esta tesis recoge estudios experimentales enfocados 
en el diseño de estrategias terapéuticas basados en el “reposicionamiento 
de fármacos” pues la re-utilización de agentes anti-inflamatorios y anti-
oxidantes supone una gran apuesta para frenar la progresión de los trastornos 
neurodegenerativos. De esta manera, en el Capítulo 4, se evaluó el posible 
efecto neuroprotector de la combinación de dos fármacos comunes: (i) la 
N-acetilcisteína (NAC), un agente anti-oxidante, precursor del glutatión e 
inhibidor de la expresión de JNK, y (ii) HA-1077, un anti-inflamatorio, inhibidor 
de la ROCKinase y polarizador de microglia. Junto con esto, se tuvo en cuenta 
el hecho de que, a pesar de que la enfermedad de Párkinson es una patología 
relacionada con el envejecimiento, casi todos los estudios experimentales se 
llevan a cabo en animales jóvenes. Con esto en mente, se evaluó el efecto de 
la combinación de NAC y HA-1077 sobre la neurodegeneración y la respuesta 
glial en ratones añosos tratados con 1-metil-4-fenil-1,2,3,6-tetrahidropiridina 
(MPTP). Se utilizaron 74 ratones machos (C57BL/6, 20 semanas de edad) 
y se dividieron al azar en dos grupos: veinticuatro de ellos eran ratones sin 
MPTP y los cuarenta restantes se intoxicados de forma aguda con MPTP. 
Al mismo tiempo, los animales se dividieron en cuatro subgrupos de acuerdo 
con los diferentes tratamientos: (i) Control (sin tratar); (ii) MPTP+NAC; 
(iii) MPTP+HA-1077; (iv) MPTP+NAC+HA-1077. Sorprendentemente, los 
estudios post-mortem mostraron que el tratamiento basado en NAC+HA-1077 
producía un aumento significativo en la degeneración de las terminales 
dopaminérgicas al nivel del estriado. Junto a este hecho, se observó un 
aumento en la activación microglial y astroglial en la SNpc y en el estriado de 
los ratones parkinsonianos en comparación con sus grupos control. Además, 
se realizó un análisis más amplio enfocado en la respuesta astroglial mediante 
la inmunotinción de GFAP, S100b y p-JNK, y la cuantificación de la expresión 
de los niveles de JNK, como posible vía metabólica alterada. Así, se observó 
que la expresión de JNK y p-JNK se exacerbaba particularmente en todos los 
grupos intoxicados con MPTP, mientras que los niveles se mantenían bajos en 
el grupo MPTP+NAC. En general, los inesperados efectos tóxicos encontrados 
tras la administración combinada de NAC y HA-1077 en ratones viejos 
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parkinsonianos, resaltan la importancia de tener en cuenta la cuestionable 
acción terapéutica al combinar ciertos fármacos en pacientes ancianos con 
enfermedad de Párkinson. Esto es, diferentes alteraciones relacionadas con la 
edad pueden tener efectos secundarios que pueden resultar en la exacerbación 
del proceso neurodegenerativo. Como alternativa para evitar estas situaciones, 
es importante apoyar la investigación centrada en el desarrollo de estrategias 
terapéuticas más personalizadas.

El Capítulo 5 cubre una línea de investigación similar a la del 
capítulo anterior. En base a los efectos neuroprotectores obtenidos por la 
administración de NAC, este estudio tuvo como objetivo analizar si se produce 
un efecto sinérgico positivo del tratamiento con NAC al combinarlo con 
actividad física voluntaria (PA) sobre la neurodegeneración dopaminérgica 
y la respuesta glial en un modelo de parkinsonismo inducido por 1-metil-4-
fenil-1,2,3,6-tetrahidropiridina (MPTP). Entre otras estrategias, la actividad 
física se ha descrito como un tratamiento no farmacológico que participa en 
diferentes funciones cerebrales, especialmente, mediante la modificación de 
la respuesta inflamatoria. Para llevar a cabo este estudio, se utilizaron 48 
ratones machos (cepa C57BL/6, 8 semanas de edad). 24 de ellos se colocaron 
individualmente en jaulas donde la actividad física voluntaria se controló 
automáticamente durante 30 días. A su vez, se dividieron en cuatro subgrupos 
en función de los tratamientos: (i) Control; (ii) NAC; (iii) MPTP, y (iv) 
MPTP+NAC. Los otros 24 ratones restantes se dividieron en los mismos 
cuatro subgrupos pero sin actividad física. Los datos recopilados durante el 
período de actividad física mostraron que hubo un aumento general en la 
distancia total recorrida en todos los grupos con actividad física, incluidos los 
animales parkinsonianos. Sin embargo, los datos de la monitorización diaria 
mostraron que la rutina de actividad de los grupos MPTP y MPTP+NAC 
se veía alterada por cambios en el ritmo circadiano debido a la intoxicación 
por MPTP. Los resultados de los estudios post-mortem en la SNpc y en el 
estriado mostraron una disminución significativa en el número de células 
TH+ en todos los grupos intoxicados por MPTP. Por lo tanto, el tratamiento 
combinado no protege a las neuronas dopaminérgicas contra una intoxicación 
subcrónica de MPTP. Con respecto a la respuesta glial, los resultados 
obtenidos del análisis microglial no muestran un aumento significativo en el 
número de células Iba-1+ en los grupos MPTP+NAC y MPTP+PA+NAC. 
En el estriado, se observa una disminución significativa solo en el grupo 
MPTP+NAC en comparación con el grupo MPTP. Los resultados microgliales 
se ven reforzados por los obtenidos del análisis de la activación astroglial, en 
la que se observa una disminución en la expresión de células GFAP+ en 
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MPTP+NAC y MPTP+PA+NAC en comparación con los grupos MPTP 
tanto en la SNpc como en el estriado. Finalmente, a partir del estudio de la 
respuesta astroglial por la co-localización de GFAP/S100b, se describieron 
diferentes perfiles de expresión con respecto a la ubicación celular de estas 
proteínas según el grado de severidad producido por la intoxicación con 
MPTP. En definitiva, este estudio indica que la combinación de actividad 
física con un agente antioxidante no tiene un efecto neuroprotector sinérgico en 
la vía nigrostriatal. Los resultados muestran un efecto positivo potencial, solo 
debido al tratamiento con NAC, en la respuesta neuroinflamatoria después de 
una intoxicación por MPTP. Por lo tanto, la actividad física no es esencial, 
bajo estas condiciones. Sin embargo, creemos que la actividad física, utilizada 
con fines terapéuticos, tiene un efecto beneficioso a largo plazo. En esta línea, 
estos resultados sugieren que estudios más largos podrían demostrar su efecto 
como estrategia neuroprotectora.

La parte experimental final de esta tesis se presenta en el Capítulo 
6, que profundiza en los cambios, a lo largo del tiempo, de los eventos 
relacionados con la degeneración dopaminérgica, la respuesta astroglial y la 
expresión de las MAPKinasas. Como se ha destacado a lo largo de esta 
disertación, es importante establecer nuevas estrategias terapéuticas que 
retrasen la muerte neuronal dopaminérgica y, especialmente, que tengan en 
cuenta los procesos deletéreos asociados con el envejecimiento. En esta línea, 
las proteínas quinasas activadas por mitógenos (MAPK) ha sido destacadas 
como una de las principales vías metabólicas involucradas en la regulación de 
la neuroinflamación y, como consecuencia, se han relacionado con diferentes 
enfermedades neurodegenerativas. Para definir la relación entre la expresión 
de MAPKs con la respuesta glial y la neurodegeneración dopaminérgica, 40 
ratones machos (cepa C57BL/6, 20 semanas de edad) se distribuyeron al 
azar en dos grupos: grupo control (ratones no tratados) y grupo MPTP. Los 
animales se sacrificaron en diferentes puntos temporales después de la última 
inyección de MPTP: 4 h, 8 h, 24 h y 48 h. Los resultados mostraron que 
los procesos relacionados con la neurodegeneración y la respuesta astroglial 
comenzaron a detectarse significativamente, en comparación con los animales 
no tratados, a partir de las 24 h. Los resultados revelaron que las neuronas 
dopaminérgicas disminuyen a medida que aumenta la respuesta astroglial. Por 
otro lado, no se encontraron diferencias significativas en la expresión p-ERK 
mientras que los niveles de p-p38 se identificaron de manera aumentada desde 
las 4 h en la vía nigrostriatal siendo significativos a las 48 h en el cuerpo 
estriado. La importancia de estos datos radica en la identificación de los 
eventos primarios desencadenados en ratones viejos después de la intoxicación 
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con MPTP. En conclusión, estos resultados abren la puerta a estudios más 
profundos para evaluar las diferentes vías metabólicas tanto en aguas-arriba 
como aguas-abajo, junto con su comparación entre diferentes regímenes de 
intoxicación (aguda y crónica).

En este proyecto, los tratamientos están diseñados en función del 
uso de anti-inflamatorios y/o anti-oxidantes para ver su efecto en la muerte 
neuronal dopaminérgica y en la activación de procesos neuroinflamatorios en 
ratones parkinsonianos (jóvenes y viejos). La importancia de estos estudios 
radica en la posibilidad de dilucidar los mecanismos subyacentes de los 
procesos neurodegenerativos para mejorar la calidad de vida del paciente 
y proporcionar conocimientos para la búsqueda de soluciones que retrasen 
el desarrollo y la progresión de la enfermedad de Párkinson. Por lo tanto, 
esta fuerte relevancia clínica se traduce en el desarrollo de herramientas 
para el diagnóstico temprano y el diseño de estrategias terapéuticas más 
personalizadas. Esta tesis proporciona diferentes observaciones que resaltan 
la importancia de la participación de los procesos neuroinflamatorios, 
mediados por las células de la glía, en el desarrollo y la exacerbación de 
los procesos neurodegenerativos en la enfermedad de Párkinson. Además, 
expone, mediante resultados, el cuestionable efecto positivo de algunas 
combinaciones de medicamentos, de uso común, que pueden acelerar la 
aparición y progresión de enfermedades neurodegenerativas relacionadas con 
la edad, como la enfermedad de Párkinson.
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