Supplementation of bovine follicular fluid during in vitro maturation increases oocyte cumulus expansion, blastocyst developmental kinetics, and blastocyst cell number.

Jordana Sena Lopes, Analuce Canha-Gouveia, Evelynne Paris-Oller, Pilar Coy

PII: S0093-691X(18)30760-X
DOI: 10.1016/j.theriogenology.2018.12.010
Reference: THE 14802
To appear in: Theriogenology
Received Date: 04 September 2018
Accepted Date: 03 December 2018

Please cite this article as: Jordana Sena Lopes, Analuce Canha-Gouveia, Evelynne Paris-Oller, Pilar Coy, Supplementation of bovine follicular fluid during in vitro maturation increases oocyte cumulus expansion, blastocyst developmental kinetics, and blastocyst cell number., Theriogenology (2018), doi: 10.1016/j.theriogenology.2018.12.010

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Title: Supplementation of bovine follicular fluid during in vitro maturation increases oocyte cumulus expansion, blastocyst developmental kinetics, and blastocyst cell number.

Authors: Jordana Sena Lopes, Analuce Canha-Gouveia, Evelynne Paris-Oller, Pilar Coy

Affiliations:
Department of Physiology, Faculty of Veterinary Medicine, University of Murcia – Campus Mare Nostrum, 30100 Murcia, Spain

Abstract

Bovine follicular fluid (bFF) is the natural milieu for oocyte growth and development. However, its value as supplementation to in vitro maturation medium is still questioned due to inconsistent results. In this study we hypothesized that adding 10% of follicular fluid as well as heat treating it to inhibit the complement system, would produce higher quality embryos. To do so, experiments were conducted to compare the effect of bFF and heat-treated bFF (bFFin) on oocyte competence assessed by different parameters such as nuclear and cytoplasmic maturation, IVF efficiency, in vitro embryo development and embryo survivability post-vitrification. No differences on nuclear maturation nor cortical granules migration were observed but differences were found on oocyte’s cumulus cell expansion, with bFF group having the highest increase (79.0±3.7%). bFFin had a negative impact on IVF efficiency (58.6±3.2%), but no differences were found between bFF (62.9±3.2%) and control (72.8±3.0%). Although the cleavage and blastocyst rate were similar between groups, the day 6 embryo development rate was higher in bFFin group, suggesting an accelerated developmental kinetics. Hatched blastocysts from the bFF group showed a higher cell count than the control group (241.3±20.1 and 185.8± 10.0, respectively), and bFFin embryos showed values in between (214.9±14.0). No difference on survivability post-vitrification was found between groups, although the blastocyst stage had a significant impact on the survival rate across all groups. In conclusion, using bFF as supplementation to maturation medium showed a higher benefit when comparing to the standard supplementation by having oocytes with higher cumulus expansion rate,
faster development of embryos and higher number of cells per embryo. Inactivation of bFF lowered IVF efficiency but didn’t compromise blastocyst development and quality.

Keywords
Bovine follicular fluid; maturation; heat-inactivation; embryo; vitrification

1. Introduction
Four decades ago, the birth of the first in vitro fertilization (IVF) derived calf [1] opened the doors to a commercially driven desire to produce fast and low-cost embryos while also overcoming infertility problems of high genetic merit animals. However, this calf was not entirely in vitro produced, since in vivo matured oocytes were used. Since then, an extensive and comprehensive research focused on in vitro production of embryos has been conducted [2]. It was not until 1987 that Fukuda et al. [3] were able to finally perform in vitro maturation (IVM), fertilization (IVF) and culture (IVC), followed by embryo transfer of fresh and frozen-thawed embryos, pregnancy to term and live offspring. Although several attempts to improve the efficiency of in vitro maturation, fertilization and culture have been performed, the outcome (viable blastocyst formation) remains unsatisfactory, being around 30-40% [4–6].

The quality or competence of the female gamete plays a key role in determining the blastocyst yield [4,7] and that feature can be assessed by its ability to achieve nuclear maturation together with cytoplasmic maturation [5]. Nuclear maturation refers to the capacity of the oocyte to resume meiosis. However, it is not enough to name an oocyte as competent by its nuclear status (reviewed by [7]), otherwise the difference in embryo quality found between in vivo or in vitro matured oocytes used for IVF, would not be observed [4,5,8,9]. Even if what defines cytoplasmic maturity in the oocyte is not yet completely understood, some features have been associated with this type of maturation such as: changes in the organelles (like mitochondria and cortical granules migration), accumulation of specific molecules (carbohydrate, lipids, mRNA and other proteins), the grade of communication between cumulus cells and the oocyte, that has influence on the meiotic maturation and metabolism of the oocyte, as well as enhances further development and promotes sperm capacitation [10–12] and even the secretion of oocyte-derived growth factors [7,13–15].
Among the strategies to reach an optimal maturation of bovine oocytes in vitro, the addition of follicular fluid to the maturation media seems a plausible option since it is the natural milieu for the oocytes in the ovarian follicle. This fluid contains proteins, cytokines, growth factors, steroids, metabolites and other undefined factors [16]. There have been several reports [17–27] showing the effect of the follicular fluid on IVM, IVF and blastocyst rate but the results aren’t coherent. Kim et al. [25] used 10, 30 and 60% bovine follicular fluid (bFF) and the data showed that lower concentrations resulted in higher number of cells in blastocysts when compared to control and that the higher concentration (60%) decreased blastocyst rate, suggesting that high concentrations of bFF might have an inhibitory effect over meiosis. Cruz et al. [22], using 0, 25, 50, 75 and 100% bFF in IVM medium, demonstrated that 50% of bFF increases the inner cell mass number count, but in these experiments 10% of fetal bovine serum was present in all media and could have a confounding effect on the interpretation of these results. Somfai et al. [21] compared the effects of supplementation between polyvinylpyrrolidone, bovine serum albumin (BSA), calf serum or bFF at 5%, and the results showed that follicular fluid supplementation promotes sperm penetration by enhancing cumulus expansion and ATP levels in oocytes, though blastocyst rate remained the same.

One of the issues brought up by researchers on the use of bFF is the inhibitory effect on the resumption of meiosis [25], even when collecting with heparin. Heat-treatment of bFF was used in other experiments as a way to inhibit the complement system, arguing that this could be the factor causing the maturation problems, but either the concentration used was too high [27], or there was no comparison with untreated bFF [19].

Current standard IVM protocols from different laboratories [28–30] still include 10% Fetal bovine/calf serum in the maturation medium. Different studies recently published suggesting that the use of natural fluids during the in vitro procedures could help producing embryos with less epigenetic and gene expression aberrations than standard protocols [29,31]. Bearing this in mind, we hypothesize that adding the natural fluid where in vivo maturation occurs (bFF), in absence of bovine serum, would
produce better results. Additionally, the comparison with the heat-treated bFF would allow us to clarify if inhibition of the complement system is necessary and beneficial. To test our hypothesis, we conducted three experiments to evaluate the effect of bFF (either heat inactivated or not) on oocyte competence assessed by different parameters related to nuclear and cytoplasmic maturation, followed by IVF efficiency, *in vitro* embryo development and survivability post-vitrification.

2. Material and methods

All chemicals were purchased from Sigma-Aldrich Chemical Company (Madrid, Spain), unless otherwise indicated.

2.1 Oocyte collection

Ovaries collected at a local slaughterhouse (Matadero Orihuela, S.A., Murcia - Spain), from postpubertal crossbred beef cattle, were transported in a thermo-flask with saline solution (0.9% wt/vol, supplemented with 100 mg/L of kanamycin sulfate) less than 2 hours after slaughter. Arrival temperature ranged between 32 and 35ºC and ovaries were washed with saline solution two times prior to use. Follicles between 2 and 8 mm were aspirated using a 10mL syringe coupled with an 18ga needle. Cumulus-oocyte-complexes (COC) were rinsed three times in collection medium, consisting of TCM-199 (with Hanks' salts) supplemented with 4.2mM sodium bicarbonate, 10mM HEPES, 2mM glutamine, 1% wt/v polyvinyl alcohol (PVA), 50IU/mL penicillin and 50µg/mL streptomycin. Only COCs with compact cumulus cells and uniform ooplasm were selected.

2.2 Bovine Follicular Fluid

The bFF samples (NaturARTs Cow BFF) were purchased from Embryocloud (Murcia, Spain). According to the manufacturer’s information, bFF was obtained by aspiration of superficial follicles with size between 4-7mm of abattoir ovaries, from animals at the early follicular stage of the estrus cycle. The fluid was centrifuged (3000 rpm, 30min at 4ºC), the supernatant was aspirated, filtered in sequence with 0.45µm and 0.22µm filters, aliquoted and stored at -20ºC until selling. The same batch was used for all
experiments. Quality control of the batch including endotoxin tests was performed by
the manufacturer.

Heat-Inactivation of follicular fluid was performed using a thermoblock set at 56ºC for
30 min, immediately prior to use.

2.3 Oocyte maturation
COC’s previously collected were washed twice in maturation medium, consisting of
TCM-199 (with Earle’s salts), supplemented with 26.2mM sodium bicarbonate, 0.2mM
sodium pyruvate, 2mM glutamine, 50µg/mL gentamycin, 10IU/mL equine chorionic
gonadotropin (Foligon; Intervet International BV, Netherlands) and 10IU/mL human
chorionic gonadotropin (Veterin Corion; Divasa Farmavic, Spain), divided in groups of
30 to 50 and transferred to four-well dishes (Nunc®, cell culture tested) in a total
volume of 500µl, with further supplementation, in a concentration of 10% (v/v), of
either fetal bovine serum (FBS, control), bovine follicular fluid (bFF) or bovine follicular
fluid heat-inactivated (bFFin). Incubation took place at 38.5ºC, humidified atmosphere
with 5% CO₂ for 22 to 24h. After maturation, COCs were either denuded with gentle
pipetting in Dulbecco’s phosphate-buffered saline (DPBS) and hyaluronidase (0.2% in
DPBS) for experiment 1, or transferred to IVF medium for experiment 2 and 3. For
nuclear maturation assessment, oocytes were considered matured when the first polar
body was visible and the metaphase plate was present. A total of 846 oocytes in 8
replicates were used for experiment 1.

2.4 Cumulus Oocyte Complex expansion measurement
This evaluation was done according to the methods described by Romero-
Aguirregomezcorta [32]. Photographs of the oocytes were taken using a Nikon SMZ-
10A stereomicroscope under X10 magnification, before incubation and after
incubation. Measurements were performed using ImageJ software
(http://imagej.nih.gov/ij), and a mean of three measurements of each oocyte (longest,
shortest and a medium distance between the zona pellucida and the extreme of the
cumulus cells) was calculated. Results represent the percentage of increment of
cumulus cells measurements from time 0 to 24h. Three replicates were measured with
a total of 386 oocytes examined.
2.5 In vitro fertilization

Thirty minutes before IVF, COCs were rinsed twice and transferred to Fert-TALP medium \[33\] - supplemented with 2µg/mL heparin and 50µg/mL gentamycin. Frozen semen from two bulls with known fertility was used. Thawing was performed in a water bath at 38ºC for 30sec, and the semen was transferred to a 15mL Falcon tube with 10mL Sperm-TALP medium ([34] with modifications -114 mM sodium chloride, 3.2mM potassium chloride, 0.5mM magnesium chloride hexahydrate, 10.0 sodium lactate) supplemented with 50µg/mL gentamycin, and incubated at 38ºC for 10 min. Sperm was centrifuged at room temperature at 700 X g for 3 min and the supernatant was discarded. Sperm motility and concentration were assessed and sperm was diluted in Fert-TALP prior to insemination at a final concentration of 1x10^6 spz/mL. IVF took place at 38.5ºC, humidified atmosphere, with 5% CO\(_2\) for 18 to 20h. IVF parameters assessed were the following: penetration rate (mean percentage of oocytes penetrated by at least one spermatozoon), monospermy rate (mean percentage of oocytes penetrated by only one spermatozoon), mean number of sperm per oocyte (S/O), male pronucleus formation (MPN – assessed by the presence of at least two pronuclei), mean number of sperm bound to the zona pellucida (S/ZP) and IVF efficiency (percentage of oocytes that were penetrated and monospermic). Five replicates were used for this experiment, totalling 691 putative zygotes.

2.6 In vitro culture

Eighteen to 20h post-insemination (hpi), potential zygotes were put in a 15mL Falcon tube with 2mL of DPBS and vortexed for 3 min. Presumptive zygotes were washed twice in DPBS and three times in culture medium (synthetic oviduct fluid Holms (HSOF)[8] supplemented with 5% FBS) before transferring them to 25µl microdrops covered with paraffin oil (NidOil\(^\text{TM}\), Nidacon, Sweden) in a maximum load of 25 embryos/drop. Incubation took place at 38.5ºC, 5% CO\(_2\), 5% O\(_2\) for 8 days. Cleavage rate was assessed 48hpi and development rates were recorded at days 6, 7 and 8 post-insemination.

2.7 Fixation and cell staining
Fixation took place 22 to 24 h post-IVM in the case of oocytes, 22 to 24 hpi for putative zygotes and 8 days post-insemination for blastocysts. Matured oocytes and zygotes were denuded with gentle pipetting and hyaluronidase (0.2% in DPBS) prior to fixation. All cells were incubated in glutaraldehyde (0.5% in DPBS) for 30 min at room temperature. After washing in DPBS, cells were stained with Hoechst (33342, 1 µg/mL) for 30 min in the dark at room temperature. The mounting media used was DPBS with glycerol and Hoechst (1:1:0.001) and the slides were sealed with nail polish. Evaluation took place under an epifluorescence microscope (Leica® DM4000B LED, Germany) under X200 and X400 magnifications.

2.8 Cortical granules staining

All steps were performed at room temperature. Protocol is the same as described by Coy et al. [35]. DPBS without calcium nor magnesium supplemented with PVA (0.5% v/v) was used, and between each step of the protocol, oocytes were washed three times in DPBS for 5 min. Zona pellucida of denuded matured oocytes was removed by incubating the oocytes in pronase (0.5% v/v DPBS) until the detachment was visible. The oocytes were fixed with paraformaldehyde (3.7% v/v DPBS) during 30 min. Permeabilization of the membrane was made using Triton X-100 (0.1% v/v DPBS) for 10 min. Thirty minutes of incubation with LCA-FITC (1% v/v DPBS) in the dark followed by another 30 min of nucleus staining with Hoechst, also in the dark. Using the SlowFade-Antifadekit® (Invitrogen, UK), oocytes were washed three times in equilibration buffer solution, put in a slide containing 3.5 µL of anti-fade mounting medium and covered with a coverslip. Slides were kept in the dark at 4°C before evaluation by confocal microscope (Nikon® Eclipse 90i, Japan). Distribution of cortical granules through the oocyte was evaluated according to Hosoe and Shioya [36] classification: type I being a distribution of granules in clusters, type II being granules dispersed and partly clustered, type III being granules all dispersed and type IV being no visible granules. Oocytes that were degenerated, or in telophase/anaphase I, were discarded from evaluation. Six replicates were used with a total of 460 oocytes evaluated.

2.9 Vitrification, Warming and survivability of embryos
Vitrification of blastocysts was made using the Cryotop® open system with its vitrification media (Kitazato-Dibimed, Spain). On day 7 post-insemination, only blastocysts of stage code 6 and 7 (according to Bo and Mapleton [37]) were selected for vitrification process. All steps performed according to manufacturer instructions. Briefly, embryos were put into the Equilibration Solution (ES) for 13 min, then Vitrification Solution (VS) for 30s and another 30s in VS finalized by putting the embryos on the cryotop sheet and submerging it into liquid nitrogen (-196°C). Embryos were vitrified in groups of 2 to 4 embryos per cryotop, group within treatment and stage code (6 or 7) and stored until thawing. A total of 72 embryos were vitrified from five replicates. Warming was also performed using a warming media (Kitazato-Dibimed, Spain) as described by manufacturer: the cryotop was submerged in Thawing Solution (TS) for 60s at 37°C, then progressively passed through Dilution Solution (DS) for 3 min, Washing Solution (WS) for 5 min, and WS again for 1 min. Warmed embryos were washed twice in culture medium and put in 25µL microdrops (one cryotop warmed per microdrop) covered with paraffin oil. Viability was assessed by the ability of the embryo to re-expand or hatch for 72h after warming, according to Lopera-Vásquez et al. [38].

2.10 Statistical analysis
Data in percentages were modelled according to the binomial mode of variables and arcsine transformation to achieve normal distribution. All the data were analysed by one-way analysis of variance (ANOVA). When ANOVA revealed significant differences, Tukey post-hoc tests were used. Differences were considered significant when p<0.05. The software used was IBM SPSS Statistics (v22.0).

2.11 Experimental design
All oocytes were matured using a supplement to maturation medium that consisted of either FBS (control), bFF or inactivated bFF (bFFin). Experiment 1 consisted of the evaluation of nuclear and cytoplasmic maturation by assessing statuses 24h post-IVM; Experiment 2 evaluated IVF parameters, 22 to 24 hpi, and Experiment 3 assessed of embryo development, quality and survivability post-vitrification.
3. Results

3.1 Experiment 1

Nuclear statuses assessed at 24h of maturation showed no significant differences between groups. The control group had a maturation rate of 72.9±2.7%, whereas the bFF and bFFin groups had rates of 72.1±2.7% and 77.1±2.5%, respectively (values indicate mean % ± S.E.M.).

Cortical granules distribution showed that rates of type III oocytes with a metaphase II plate were of 55.2±4.9% for control group, 55.2±4.6% for bFF group and 51.8±4.2% for bFFin group, without statistically significant differences. Rates of metaphase I oocytes or metaphase II oocytes with other type of cortical granules distribution (I and II) also did not have any significant difference between groups (data not shown).

Cumulus cell expansion (Table 1) showed a significantly higher expansion rate for the bFF (79.0±3.7%) than control (68.6±1.4%) and the bFFin group (62.1±3.1%).

3.2 Experiment 2

Sperm penetration rate was not significantly different between control and bFF but significant differences were found between control and bFFin groups, where the latter resulted in a lower penetration rate observed (Table 2). Monospermy, mean number of sperm per oocyte (S/O), and male pronucleus formation (MPN) showed no significant differences among groups. The mean number of sperm bound to zona pellucida (S/ZP) was different between groups, with the bFFin group showing the lowest value and control the highest. The efficiency of the IVF was also different with the highest value for the control group and the lowest for the bFFin group. However, there were no significant differences between the bFF group and the other two groups.

3.3 Experiment 3

Cleavage, blastocyst rate and kinetics of blastocyst development

Cleavage rate of presumptive zygotes as well as mean blastocyst formation weren’t significantly different between groups (Table 3). At day 6 of embryo development (Figure 1), bFFin group showed the highest percentage of expanded blastocysts,
significantly different from the control group, while the bFF group showed a value in between the other two groups. However, this difference disappeared by day 7 of IVC (Figure 2).

Embryo total cell number

As for day 8 embryo total cell count, mean values were significantly different between groups in hatched blastocysts (Table 4 and Figure 3). The bFF group had the highest value while the control group had the lowest and bFFin had a value in between the other two groups.

Embryo survivability post-warming

Survivability results (Figure 4) show that the stage of the embryo – blastocyst or expanded blastocyst – was critical for survivability: all blastocysts (stage 6) were dead by 48h after warming. No statistical differences were found between groups, but there was a tendency in expanded embryos survivability from bFF and bFFin groups to have higher values in t=4h and t=24h (p=0.051 and p=0.081 respectively) than control group. Hatched embryos were stained and total cell number is shown in Table 5.

4. Discussion

Even though current bovine IVP systems provide consistent results, the quality of these embryos is still far from optimal. The embryos obtained in vitro are of lesser quality than those obtained in vivo [4,39], clearly expressing the lack of specific components in chemically defined media. The IVM medium has not suffered major changes over the years and it is still very similar to the one used for culture and growth of cells [40]. However, one cannot compare immature oocytes to other diploidic cells since the latter won’t undergo the process of meiosis, donate half of the genetic data, and further host the future embryo. The maturation in vivo occurs within the follicle surrounded by follicular fluid and even though the inorganic components can be more easily traced and mimicked, the organic components are mostly missing under in vitro conditions. Thus, by including natural components such as the bFF, we intended to mimic the natural environment of oocyte development during follicular growth.
The follicular fluid supplementation as the main protein source has been used in several studies [16–27,41–43] but the origin of this fluid, whether it came from smaller or larger follicles, from pre-ovulatory or post-ovulatory phases, concentrations in IVM media, heat-treatment or not, or even its exclusive use as the main supplementation, was different between these studies. These differences were crucial for the outcomes and consequently for the conclusions of those experiments. Lonergan et al. [26] compared supplementation of maturation medium with fluid derived from follicles of different sizes and their results showed that 20% bFF from large follicles (>6mm) had a higher blastocyst yield than using 10% of either serum or bFF from small follicles (2-6mm). However, that difference was not observed when the amount of bFF from small follicles increased to 20% or when compared to 10% bFF from large follicles. Ali et al. [19] also compared different sizes of follicles but the bFF was heat-treated before use. They showed that 5% of bFF in from large follicles had the highest blastocyst outcome, when compared to the same concentration of bFF in from small follicles, BSA or no supplementation at all. But, in contrast to Lonergan et al. results, the IVP production decreased when the amount of bFF increased to 10%. This could be due to the heat treatment or different maturation protocols. Thus, in our study, we decided to compare supplementation of heat treated bFF and untreated bFF, at a fixed concentration to in vitro maturation media versus the most common supplementation (FBS) as control. Additionally, the same follicular phase was used to collect all follicular fluid to avoid different results attributed to the phase of the estrus cycle when the fluid was collected [44,45].

Heat inactivation of serum is still a common practice in cell-culture laboratories and its goal is, between others, inactivation of the complement system. Though nowadays the utility of the practice is questionable [46], we were not aware if the levels of complement factors present in bFF would be high enough to prevent embryo development, thus justifying our bFF in group. It had been tested before [17] that heating of bFF affected negatively the blastocyst yield. Nevertheless, those experiments included serum in the IVM medium and the origin of the bFF was from pre-ovulatory follicles so that their results are not comparable to ours.
As stated earlier, the developmental capacity of an oocyte doesn’t rely only on nuclear maturation. Our maturation data shows no significant differences regarding nuclear status which is in discordance to a previous study [27], that reported lower maturation rates when using bFF or bFFin as a supplement. However, the concentration used was far superior (50%) which itself could be the reason for those results, since others reported [25] that high concentrations of bFF might inhibit normal resumption of meiosis.

Cortical granules distribution pattern had no significant differences between groups, but we did find differences on cumulus expansion rate. The bFF group had the highest expansion and this is supported by a previous study [21]. The authors used 5% bFF during IVM and suggested that its use promotes the sperm penetration by enhancing the cumulus expansion as well as mitochondrial re-distribution. Despite this fact, we did not find a significant difference regarding IVF efficiency between the bFF group versus the control group, although we did find a negative effect of inactivating the bFF, since it lowered the efficiency when compared to control group. If this difference is related to the lower level of cumulus expansion of the bFFin group (vs. bFF), remains to be further investigated, but the fact that the number of sperm bound to zona pellucida was also significantly lower, indicates that there might be a relationship between both.

Cleavage and blastocyst rates did not differ between groups. This was an unexpected outcome for the bFFin group since its IVF efficiency rate had previously dropped (experiment 2). We theorized that heat treatment might have affected some of the growth factors present in the follicular fluid and, as a consequence, cumulus cell expansion was not so extensive which resulted in lower penetration rates when compared to control. Since the growth factors alone are not the only molecules responsible for maturation [42], it could be plausible that the developmental capacity of oocytes matured with bFFin is high enough to compensate that drawback. This reinforces the idea that changes in the early stages of embryo production are critical for the IVP efficiency.

Although the yield of IVP remained the same, the speed at which the embryos developed as well as their quality differed. Embryos from bFFin group developed faster
than those from control but similar to bFF, which is interesting because it is known
[8,47,48] that embryos produced with FBS have increased development rate, but until
know, there was no information about changes in embryo kinetics after using
exclusively bFF or bFFin in maturation medium. One of the issues brought up by the
faster development of embryos produced with serum is that the more advanced
embryo stage is not accompanied by cell proliferation [8], which was not the case with
the bFF/bFFin groups. These groups developed faster (bFFin vs. control) and the
growth was parallel with cell proliferation (bFF vs. control), indicating a possibility of
higher quality of embryos from bFF and bFFin groups. Nevertheless, the increase in
quality was not translated into a higher cryotolerance at a significant rate, despite a
tendency being observed, probably due to the criteria of selecting only embryos on
stage 6/7 to cryopreserve, which limited the amount of eligible embryos.

The composition of the follicular fluid is the core element for the differences found in
these experiments. Proteomic studies refer that the proteins found in follicular fluid
are mostly plasma-matched proteins [49], but in lesser concentrations [16]. Cytokines
and growth factors, like EGF, TGF-β, IGF-I, activin and inhibin, have been highly linked
to higher developmental competence of oocytes and embryos [41,50,51] and are also
present in the follicular fluid. Similarly, steroids in the fluid like estradiol are crucial for
cytoplasmic maturation [49]. Additionally, abundance of glucose and lactate as well as
fatty acid free lipids are a valuable source of energy for COC’s [30,49]. Recently, the
presence of extracellular vesicles found in the follicular fluid have shown to give a
protective effect over the oocyte during heat-shock [52]. Moreover, the exosomes
present in the serum are not the same as the ones in the follicular fluid, producing
different cumulus expansion as well as levels of gene expression [53]. Altogether, bFF
differs in the type, quantities and quality of the components from serum, providing a
richer environment to the COC maturation process.

It has been stated before [4] that the initial oocyte quality is a key factor for blastocyst
yield while the embryo culture influences the blastocyst quality. However, our
experiments show that changes in the in vitro maturation medium can also influence
the blastocyst quality, at least in terms of cell numbers. Our goal was to increase the
developmental potential of oocytes in order to produce higher quality embryos,
resembling more *in vivo* embryos. These minor changes in the IVP media can have a great impact on the embryos [31] as well as later on the offspring, giving rise to different genotypes and phenotypes[54].

5. Conclusion

In conclusion, the use of bFF improved IVP comparing to the standard IVM supplementation (FBS), by having higher cumulus expansion rate, faster development of embryos as well as a higher number of cells per embryo. Inactivation of the bFF lowered the IVF efficiency but it did not compromise the blastocyst development and quality. Additional studies should focus on analysing the gene expression of these embryos in order to understand if inactivation of the bFF has any effect at the molecular level. Moreover, it is still important to develop standardized protocols to collect and store batches of follicular fluid as well as oviductal and uterine fluids for IVF and EC giving consistent results in order to introduce its use in the current methods for producing bovine embryos in vitro.

Acknowledgments

This research was supported by European Union, Horizon 2020 Marie Sklodowska-Curie Innovative Training Network (REPBIOTECH675526), Ministry of Economy and Competitiveness (Spain) (AGL2015-66341-R MINECO-FEDER) and Fundación Séneca (20040/GERM/16). The authors are grateful to Matadero Orihuela, S.A., Murcia – Spain, for the kindness in providing biological material. The authors would also like to thank Dr. Raquel Romar for scientific and technical advice and Mikhael Poirier for critical review of the manuscript and English editing.

References

[27] Van Tol H, Bevers M. Partial Characterization of the Factor in Theca-Cell Conditioned Medium That Inhibits the Progression of FSH-Induced Meiosis of Bovine Oocytes Surrounded by Cumulus Cells Connected to the Membrana

[36] Hosoe M, Shioya Y. Distribution of cortical granules in bovine oocytes classified

Figure 1. Kinetics of embryo development on day 6 of culture after 24h of maturation with either fetal bovine serum (FBS), bovine follicular fluid (bFF) or heat inactivated bFF (bFFin) added into the maturation medium. Embryo stage: Morula, Early blastocyst (EarlyB), Blastocyst (Blast), Expanded blastocyst (ExB). Thirty two, 41 and 32 embryos from control, bFF and bFFin (respectively), from 10 replicates, evaluated on day 6. Values represent mean %± S.E.M. Different letters represent statistical difference, p<0.05.
Figure 2. Kinetics of embryo development on day 7 of culture after 24h of maturation with either fetal bovine serum (FBS), bovine follicular fluid (bFF) or heat inactivated bFF (bFFin) added into the maturation medium. Embryo stage: Morula, Early blastocyst (EarlyB), Blastocyst (Blast), Expanded blastocyst (ExB), Hatching blastocyst (HB) and Hatched blastocyst (HedB). Sixty three, 66 and 67 embryos from control, bFF and bFFin (respectively), from 10 replicates, were evaluated on day 7. Values represent mean %± S.E.M.
Figure 3. Hatched embryos stained with Hoechst. Control group (A), bFF group (B) and bFFin group (C).
Figure 4. Survivability post-vitrification/warming of day 7 bovine embryos after 24h of maturation with either fetal bovine serum (FBS), bovine follicular fluid (bFF) or heat inactivated bFF (bFFin) added into the maturation medium. Data are separated by type of embryo - Blastocyst or Expanded blastocysts - and respective group. Values represent mean %± S.E.M.
Highlights

- The supplementation of maturation medium with bovine follicular fluid shows higher expansion of cumulus cells in oocytes as well as higher total cell number in *in vitro* grown embryos.

- Inactivating the follicular fluid decreases the efficiency of the IVF but not of blastocyst production. It also promotes earlier development of embryos on day 6 of culture.

- Bovine follicular fluid is shown to be a better alternative to fetal bovine serum supplementation during *in vitro* maturation of bovine oocytes.
Table 1 Increment of cumulus cell expansion during in vitro maturation of bovine oocytes from 0 to 24h with either fetal bovine serum (FBS), bovine follicular fluid (bFF) or heat inactivated bFF (bFFin) added into the maturation medium

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>% Cumulus expansion after 24h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>139</td>
<td>68.6±1.4<sup>a</sup></td>
</tr>
<tr>
<td>bFF</td>
<td>123</td>
<td>79.0±3.7<sup>b</sup></td>
</tr>
<tr>
<td>bFFin</td>
<td>124</td>
<td>62.1±3.1<sup>a</sup></td>
</tr>
</tbody>
</table>

Values for cumulus expansion represent % increment ± S.E.M. Different letters indicate statistical difference, p<0.05.
Table 2. *In vitro* fertilization parameters for bovine oocytes after 24h of maturation with either fetal bovine serum (FBS), bovine follicular fluid (bFF) or heat inactivated bFF (bFFin) added into the maturation medium.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Penetration</th>
<th>Monospermy</th>
<th>S/O</th>
<th>MPN</th>
<th>S/ZP</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>228</td>
<td>90.8±1.9a</td>
<td>80.2 ± 2.8</td>
<td>1.3</td>
<td>85.5±2.5</td>
<td>4.5a</td>
<td>72.8±3.0a</td>
</tr>
<tr>
<td>bFF</td>
<td>229</td>
<td>83.0±2.5ab</td>
<td>75.8±3.1</td>
<td>1.3</td>
<td>87.4±2.4</td>
<td>3.3b</td>
<td>62.9 ± 3.2ab</td>
</tr>
<tr>
<td>bFFin</td>
<td>234</td>
<td>78.2±2.7b</td>
<td>74.8±3.2</td>
<td>1.3</td>
<td>85.3±2.6</td>
<td>2.0c</td>
<td>58.6±3.2b</td>
</tr>
</tbody>
</table>

S/O = spermatozoa per oocyte; *MPN* = Male Pronucleus formation; *S/ZP* = Spermatozoa bound to Zona Pellucida; *Efficiency* = Oocytes that were penetrated and monospermic. Values represent mean % ± S.E.M, except *S/O* and *S/ZP* that are represented by mean numbers. Different letters represent statistical difference, *p*<0.05.
Table 3. *In vitro* culture results on day 2 (Cleavage rate) and day 8 (Blastocyst formation) for bovine oocytes after 24h of maturation with either fetal bovine serum (FBS), bovine follicular fluid (bFF) or heat inactivated bFF (bFFin) added into the maturation medium.

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>% Cleavage</th>
<th>% Blastocyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>269</td>
<td>85.5±2.2</td>
<td>24.2±2.6</td>
</tr>
<tr>
<td>bFF</td>
<td>272</td>
<td>83.1±2.3</td>
<td>25.7±2.7</td>
</tr>
<tr>
<td>bFFin</td>
<td>270</td>
<td>82.6±2.3</td>
<td>27.8±2.7</td>
</tr>
</tbody>
</table>

Values represent mean % ± S.E.M.
Table 4. Total cell number in bovine embryos after 24h of maturation with either fetal bovine serum (FBS), bovine follicular fluid (bFF) or heat inactivated bFF (bFFin) added into the maturation medium.

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Blast</th>
<th>ExB</th>
<th>HB</th>
<th>HedB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>2</td>
<td>117.0±24</td>
<td>130.9±6.8</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>bFF</td>
<td>2</td>
<td>98.0±20</td>
<td>120.0±10.8</td>
<td>8</td>
<td>17</td>
</tr>
<tr>
<td>bFFin</td>
<td>3</td>
<td>108.0±18.2</td>
<td>150.9±10.8</td>
<td>5</td>
<td>21</td>
</tr>
</tbody>
</table>

Embryo stage: Blastocyst (Blast), Expanded blastocyst (ExB), Hatching blastocyst (HB) and Hatched blastocyst (HedB). Values represent mean of total cell number ± S.E.M. Different letters represent statistical difference, p<0.05.
Table 5. Total cell number for hatched bovine embryos after vitrification/warming maturated 24h of with either fetal bovine serum (FBS), bovine follicular fluid (bFF) or heat inactivated bFF (bFFin) added into the maturation medium.

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Hatched blastocysts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>3</td>
<td>188.7±25.8</td>
</tr>
<tr>
<td>bFF</td>
<td>2</td>
<td>205.0±24.0</td>
</tr>
<tr>
<td>bFFin</td>
<td>7</td>
<td>173.0±14.8</td>
</tr>
</tbody>
</table>

Values represent mean of total cell number ± S.E.M. No statistical analysis was performed with these data.