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1 Introducción.

La presente tesis tiene como objeto detectar, con una metodología altamente flexible,
la existencia de umbrales, para analizar relaciones macroeconómicas como la Regla
de Taylor, (que establece la asociación entre el estado coyuntural de la economía y las
decisiones de reacción sobre el tipo de interés de la autoridad monetaria), y la Ley de
Okun (que relaciona las variaciones de la actividad económica y las variaciones en la
tasa de desempleo); y, a su vez, aplicar la metodología desarrollada para abordar, en
un marco altamente interdisciplinar, el análisis de una de las preocupaciones actuales
más importantes de la Organización Mundial de la Salud (OMS) en materia de Salud
Pública: el desarrollo de la resistencia bacteriana a los antibióticos.

Desde el punto de vista de la teoría económica, aunque se ha debatido mucho acerca
de la no linealidad de la Regla de Taylor y de la Ley de Okun, y de sus implicaciones
para las políticas macroeconómicas, no se han alcanzado estimaciones ni resultados
que permitan implicaciones directas en el diseño de políticas públicas.

Desde el punto de vista de Salud Pública, el debate de la no linealidad entre el uso
de antibióticos y el cada vez más preocupante fenómeno de la resistencia bacteriana
a los antimicrobianos todavía se encuentra en sus fases iniciales. No obstante, la
preocupación mostrada tanto por la OMS (WHO, 2017) como por el G7 no sólo nos
impele a explorar la no linealidad de esta relación sino que además entendemos como
urgente la detección de umbrales, si existen, en la intensidad de uso de antibióticos,
para permitir orientar mejor el diseño de las necesarias políticas de Salud Pública.

Si estas relaciones macroeconómicas como la Regla de Taylor o la Ley de Okun,
así como la relación entre la resistencia bacteriana a los antibióticos y el uso de
los mismos tuvieran un comportamiento puramente lineal para todo el rango de las
variables explicativas, la evidencia empírica no debería mostrar comportamientos
no lineales y menos la existencia de umbrales. Así mismo, si existen umbrales en
estas relaciones, la metodología adecuada no debería imponer previamente modelos
lineales sin una fundamentación suficiente. Ésta debería permitir que sean los datos
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Chapter 1 Introducción.

los que hablen, no sólo para estimar el modelo, sino también para seleccionarlo.

A diferencia de lo métodos paramétricos que estiman los parámetros de un modelo
seleccionado previamente, los métodos no paramétricos permiten una flexibilidad
mayor, necesaria para estimar y analizar las relaciones objeto de esta tesis. La meto-
dología no paramétrica Multiple Adaptive Regression Splines (MARS) desarrollada
por Friedman (1991) permite seleccionar y estimar modelos detectando múltiples
umbrales en los efectos de varias variables explicativas a la vez, e incluso en los
efectos de interacción entre ellas si los hubiere. Si bien los modelos lineales pueden
ofrecer resultados interesantes en entornos locales, la metodología MARS permite
identificar cuándo esta linealidad cambia por regiones en las diferentes variables
explicativas.

De hecho, en las relaciones entre variables que se derivan de modelos macroeconó-
micos, la linealidad suele ser producto de la linearización del comportamiento del
sistema en un entorno local, para así aprovechar la versatilidad y simplicidad que
entrañan las estimaciones lineales. No obstante, en el comportamiento de las se-
ries temporales macroeconómicas no solamente existen fundadas sospechas de que
los procesos no lineales subyacen a los modelos de coyuntura económica (Hamilton,
2010), sino que además estos modelos pueden mostrar procesos de sobrerreacción.
Por eso, entre otras razones, en las últimas décadas, el análisis no lineal de series
temporales económicas ha profundizado en la estimación con métodos no paramé-
tricos.

Desde el trabajo pionero de Tong (1983), han proliferado los estudios en los que se
estiman cambios de régimen de comportamiento de las series temporales económicas.
Tong desarrolla modelos de umbral para estimar los cambios de comportamiento en
la variable dependiente en función de la región de valores del dominio de una variable
explicativa, o incluso de la propia variable dependiente retardada. En una primera
aproximación Tong (1987) supone la existencia de diferentes funciones lineales en
diferentes regiones del espacio de los estados de forma que “el análisis de un sistema
estocástico complejo puede ser realizado mediante su descomposición en subsiste-
mas más sencillos”. La metodología TAR (Threshold Autoregression) para series
temporales, desarrollada a partir de las ideas de Tong, ha dado lugar a una prolí-
fica literatura y a multitud de estimaciones de series temporales económicas como
el PIB de EEUU (Potter, 1995; Pesaran and Potter, 1997). Como refinamientos
de esta metodología surgieron métodos de estimación como SETAR (Self-exciting
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Introducción.

Threshold Autorregresive) y los que permiten una transición suavizada entre las
regiones, como los modelos STAR (Smooth Threshold Autoregression) desarrolla-
dos fundamentalmente por Chan and Tong (1986). No obstante, Lewis and Stevens
(1991) señalan que si bien la metodología TAR detecta regiones disjuntas, no lo hace
necesariamente para regiones de varias variables que puedan interactuar. Cuando
los fenómenos económicos son tales que el comportamiento no lineal de una variable
depende del comportamiento no lineal de otra, se debe poder definir regiones que
recojan efectos de interacción y se precisa el uso de funciones spline. En su crí-
tica, proponen el uso de la metodología MARS (Multivariate Adaptative Regression
Spline) de Friedman (1991).

En el capítulo 2 de la presente tesis, realizamos una descripción y un análisis en
profundidad de la metodología MARS. Se expone paso por paso cómo funciona el
algoritmo iterativo de selección del modelo y de estimación. Partiendo del modelo
más simple, MARS aproxima la función que relaciona los datos construyendo funci-
ones base mediante la inclusión iterativa de funciones splines truncadas linealmente.
En un proceso denominado “forward pass”, cada iteración selecciona umbrales, va-
riables y coeficientes de forma que minimiza la suma de los cuadrados de los errores
resultantes. Tras este paso, con la intención de reducir la complejidad innecesaria
del modelo, se procede a un “backward pass” en el que se reducen iterativamente los
términos seleccionados en el paso anterior. Usando el criterio Modified Gross Cross
Validation (MGCV) basado en Craven and Wahba (1979) que penaliza la compleji-
dad del modelo, en cada iteración se elimina aquel término cuya aportación al poder
explicativo del modelo no compensa la complejidad que induce.

Para comprobar la utilidad de la metodología hemos desarrollado simulaciones de
Monte Carlo sobre cuatro modelos diferentes de generación de datos. Estimamos
cada muestra tanto con MARS como linealmente y obtenemos las distribuciones
empíricas de los parámetros estimados. Demostramos que la metodología MARS se
revela como una metodología anidadora: si las relaciones subyacentes son en realidad
lineales, el procedimiento de estimación lo seleccionaría y estimaría como tal, y en el
caso de existir no linealidades y umbrales también los detectaría. Esto entraña una
gran ventaja, sujetarnos a un modelo lineal o a una función no lineal paramétrica
nos limita a encajar los datos en ese marco y, por lo tanto, nos expone al riesgo de
modelos mal especificados, mientras que con el método no paramétrico MARS los
datos permiten no sólo estimar la función sino también seleccionar un mejor modelo
(Friedman, 1991, 1993; Lewis and Stevens, 1991).
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Para acabar el capítulo sobre la metodología, describimos paso a paso un protocolo
básico de estimación que aprovecha las ventajas de MARS. Los pasos de este pro-
tocolo siguen una estructura lógica de estimación: en primer lugar, se contempla la
selección de variables relevantes aprovechando las capacidades del Generalized Addi-
tive Models (GAM) de Hastie and Tibshirani (1990); Hastie (2017) con la intención
de evitar problemas de concurvidad habituales en los procesos de selección de mo-
delos; se sugiere también el recurso al test de raíz unitaria con múltiples cambios
estructurales propuesto por Carrion-i Silvestre et al. (2009) y al test de cointegra-
ción MARS de Sephton (1994), cuando la naturaleza del fenómeno a estudiar lo
justifique; en segundo lugar, se procede al diseño del modelo econométrico general
y a su estimación con MARS; en tercer lugar, se obtienen medidas de la bondad
del ajuste; y, en cuarto lugar, se aplica una innovación metodológica de la presente
tesis que consiste en un procedimiento para la obtención de intervalos de confianza
de los múltiples umbrales detectados y localizados por MARS, adaptando para ello
la metodología propuesta por Hansen (2000) y mejorada por Donayre et al. (2018).
Finalmente, para completar el capítulo, describimos un protocolo particularizado
para cada relación objeto de estudio de esta tesis, de acuerdo con la naturaleza de
los datos o de los modelos existentes previamente en la literatura.

En el capítulo 3, abordamos el estudio de la Regla de Taylor desarrollando un modelo
teórico que generaliza el modelo gradual dinámico de Svensson (1997) de metas de
inflación. Nos centramos, tal y como hacen otros estudios (Cukierman and Musca-
telli, 2008; Surico, 2002, 2007a; Ruge-Murcia, 2002), en que la fuente de no linealidad
de la Regla de Taylor provenga de las características de la función de preferencias de
la autoridad monetaria sobre las desviaciones de la tasa de inflación y del producto
de la economía. En esta tesis proponemos y justificamos una generalización de las
funciones de preferencia sobre cada una de estas variables de forma que puedan
estar definidas como funciones continuas por partes, estrictamente convexas y con
una segunda derivada no continua. En el caso de que la función de preferencia sea
cuadrática y se defina igual para todo el dominio, tendríamos el modelo típico de
Svensson con una Regla de Taylor lineal. Nuestra estrategia consiste en que si las
funciones de preferencia pueden estar definidas de la forma indicada, la regla de
Taylor a estimar también pueda estar definida por regiones y así albergar umbrales,
incluso múltiples umbrales en efectos de interacción. Así pues, sin imponer una
forma funcional concreta, definiendo sus características necesarias y permitiendo la
posibilidad de estar definida por partes, nos dotamos de un fundamento teórico más
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Introducción.

flexible para estimar, en el caso de que existan, múltiples regímenes y umbrales en la
Regla de Taylor. Para acabar el capítulo, se calibran las respuestas en el tiempo del
tipo de interés, la tasa de inflación y las desviaciones del producto ante diferentes
shocks de oferta y demanda en un modelo con umbrales. Los resultados avalan que
el modelo con umbrales muestra ajustes más intensos y que se extienden más en el
tiempo ante los shocks que sin umbrales.

En el capítulo 4, incluimos el artículo de investigación en el que estimamos la Regla
de Taylor para la Reserva Federal de Estados Unidos aplicando el protocolo corre-
spondiente expuesto en el capítulo 2. Si bien la literatura empírica avala la evidencia
de no linealidad de la Regla de Taylor, son diversas las aproximaciones que ofrecen
resultados parciales. Los Smooth Transition AutoRegressive (STAR) (Granger et al.,
1993) utilizados por (Petersen et al., 2007; Cukierman and Muscatelli, 2008; Gerlach
and Lewis, 2014b; Lamarche and Koustasy, 2012; Kazanas et al., 2011; Gnabo and
Moccero, 2015) estiman transiciones entre regímenes en una sola variable explica-
tiva. Aunque el refinamiento de Ahmad (2016) usando Multiple Regime MRSTAR
permite estimar umbrales simultáneamente para las desviaciones del output y de la
inflación, esta metodología no aborda posibles efectos de interacción con umbrales
ni estima intervalos de confianza para cada umbral.

En nuestro artículo, aprovechamos la flexibilidad de MARS para estimar la Regla de
Taylor para la Reserva Federal de los Estados Unidos. No sólo detectamos umbrales
razonables en los efectos principales de las variables explicativas sino también en los
efectos de interacción. Además encontramos diferencias significativas en la reacción
de la Reserva Federal vinculadas a las diferentes presidencias. Otra de las innova-
ciones que aportamos es la estimación de intervalos de confianza de los umbrales
detectados de forma que ofrecemos una caracterización más completa de la Regla de
Taylor que las existentes hasta el momento. En consecuencia, este artículo aporta
innovaciones teóricas y empíricas en el continuado debate sobre la Regla de Taylor.

Dado que en el modelo expuesto en el capítulo 3 la fuente de la no linealidad de la
Regla de Taylor recae en las preferencias de la autoridad monetaria, resulta intere-
sante estimar la Regla de Taylor para el Banco Central Europeo con la metodología
propuesta en esta tesis y observar las diferencias con la estimación obtenida para
la Reserva Federal de Estados Unidos. En el capítulo 5, aportamos el artículo de
investigación en el que estimamos esta Regla de Taylor para la Eurozona aplicando
el protocolo correspondiente expuesto en el capítulo 2. De nuevo, en la literatura
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encontramos estimaciones de la Regla de Taylor para el Banco Central Europeo me-
diante regresiones no lineales por umbrales definidos sobre solo una de las variables
explicativas (Gerdesmeier and Roffia, 2004; Gerlach and Schnabel, 2000; Surico,
2007b; Aguiar and Martins, 2008; Ikeda, 2010; Klose, 2011; Kulikauskas, 2014).
Otras estimaciones se centran en la existencia de cambios estructurales en torno a
la Crisis del 2008 (Gerlach and Lewis, 2014a,b). Dado que MARS no excluye la
existencia de cambios estructurales, todos los modelos mencionados se pueden ver
como casos particulares de los modelos que MARS puede obtener y, por lo tanto,
no están excluidos de nuestro análisis. En nuestra estimación detectamos umbrales
tanto en las desviaciones del producto como en la tasa de inflación, y aportamos
sus respectivos intervalos de confianza. Concluimos que el BCE tiene en cuenta la
actividad económica más de lo que oficialmente declara y reacciona de forma más in-
tensa a las desviaciones de la inflación una vez que éstas han excedido con suficiente
margen el objetivo oficial del 2%. Por otra parte, si bien no se encuentran diferencias
significativas entre las tres presidencias del BCE, sí se evidencia una caída abrupta
en los tipos de interés asociada a la Crisis del 2008.

En el capítulo 6, proponemos un modelo simple para la Ley de Okun basado en
la hipótesis de que los empleadores en las empresas son aversos al riesgo. Desde
que Okun (1962) estableciera la existencia de esta relación entre las variaciones de
la actividad económica y las variaciones del desempleo, no han sido muchos los
esfuerzos que se han dedicado en ofrecer su fundamentación teórica para identificar
los factores que dan lugar a esta relación y menos para dar una justificación de su no
linealidad (Neftci, 1984; Prachowny, 1993; Zerbo et al., 2018; Adachi et al., 2015).

Silvapulle et al. (2004), en su revisión de las posibles causas de la no linealidad de la
Ley de Okun, recoge tres hipótesis principales: la “Hipótesis de la rigidez instituci-
onal”, relacionada con el coste del despido provocado por causas institucionales; la
“Hipótesis del acaparamiento de trabajo” que reflejaría la reticencia de los emplea-
dores a deshacerse de mano de obra en la que han invertido recursos de formación;
y, finalmente, la “Hipótesis de la aversión al riesgo de las empresas” que justificaría
una mayor reacción del desempleo en momentos de recesión que en momentos de
expansión, simplemente porque los empleadores suelen ponderar de forma más im-
portante las malas noticias que las buenas. Silvapulle concluye que sólo la “Hipótesis
de la aversión al riesgo de las empresas” tiene sustento en la evidencia empírica.

El modelo que proponemos se basa en la “Hipótesis de empresas aversas al riesgo“
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con un coeficiente de aversión que no se mantiene constante. Suponemos que es una
función que refleja las preferencias de aversión al riesgo de los empleadores y se define
por partes dependiendo de la variación de la actividad económica. Los umbrales en
la ley de Okun serían una consecuencia de los saltos que pueden darse en esta función
de aversión al riesgo. Por lo tanto, es razonable que pueda haber más de un umbral
y en un lugar del crecimiento económico diferente de cero. De hecho, la ubicación de
los umbrales tiene su relevancia porque permite debatir si la forma de la Ley de Okun
se debe a una combinación de hipótesis, en lugar de una hipótesis única excluyendo
a las demás. En concreto, se argumenta que una combinación de la "Hipótesis de
aversión al riesgo" y de la "Hipótesis de rigidez institucional" puede dar lugar a
una Ley de Okun convexa no lineal con al menos un umbral en la zona de recesión
(crecimiento negativo y aumento de la tasa de desempleo). La explicación consistiría
en que, en una economía con altos costes de despido, el valor absoluto del coeficiente
de Okun aumenta cuando la recesión resulta ser suficientemente intensa superando
ciertos niveles. De manera similar, la combinación de la "Hipótesis de aversión al
riesgo" con la "Hipótesis del acaparamiento de trabajo" puede dar lugar a una Ley de
Okun convexa no lineal con al menos un umbral en la zona de expansión (crecimiento
positivo y tasa de desempleo decreciente). Esto significaría que en una economía
donde las empresas invierten en la capacitación de sus trabajadores, el valor absoluto
del coeficiente de Okun disminuye cuando la expansión se vuelve suficientemente
intensiva más allá de ciertos niveles; de modo que las empresas desaceleran la tasa
de contratación de nuevos trabajadores por invertir en la capacitación de los ya
contratados. Todo esto implicaría que las estimaciones empíricas de la Ley de Okun
no deberían imponer previamente ni el número de umbrales, ni su ubicación.

En el capítulo 7, incluimos el artículo de investigación sobre la estimación de la Ley
de Okun. La literatura ha explorado ampliamente la evidencia empírica de la Ley
de Okun mientras que su su fundamentación teórcia ha sido bastante pobre. Su
estudio es relevante para el conocimiento del comportamiento del mercado laboral
de una economía, para la implementación y efectividad de las políticas en materia
laboral y para comprender la recuperación europea tras la crisis del 2008 con altas
tasas de desempleo.

Las investigaciones recientes evidencian cada vez más su naturaleza no lineal pero
con limitaciones que procuramos paliar en este capítulo. La mayoría de estudios
empíricos sobre la Ley de Okun utilizan modelos paramétricos imponiendo exógena-
mente la posición de un umbral (Economou and Psarianos, 2016; Huang and Chang,
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2005; Holmes and Silverstone, 2006; Valadkhani and Smyth, 2015; Tang and Bethen-
court, 2017; Koutroulis et al., 2016). En cambio, Jardin and Gaétan (2012) utilizan
un método semiparamétrico más flexible que confirma la no linealidad de la Ley de
Okun para 16 países europeos pero sin cuantificar la relación de dependencia entre
las variables ni estimar la posición de umbrales.

Creemos que para esta tarea se precisa un procedimiento de estimación flexible e in-
tegral para alcanzar tres objetivos principales: cuantificar la relación no lineal entre
el crecimiento del producto y la variación de la tasa de desempleo; detectar y locali-
zar, si existen, varios umbrales; y, finalmente, estimar posibles cambios estructurales
así como las diferencias entre países.

Para este propósito, en este artículo de investigación, estimamos la Ley de Okun
con MARS, aplicando el protocolo correspondiente expuesto en el capítulo 2, para
cuatro países de Europa: España, Alemania, los Países Bajos y Francia. Además,
en consonancia con la “Hipótesis de la aversión al riesgo de las empresas” hemos
incluido una variable dicotómica para controlar el posible efecto de la crisis en la
Eurozona para la Ley de Okun de cada uno de estos países.

A pesar de que nuestra metodología no impone un número preestablecido de regí-
menes y, por lo tanto, de umbrales, nuestros resultados para cada país confirman la
existencia de únicamente dos regímenes pero con umbrales cuyas posiciones difieren
entre países. De acuedo con los intervalos de confianza estimados, los umbrales son
significativamente distintos, salvo para Francia y Alemania donde no difieren entre
sí significativamente. Por un lado, nuestras estimaciones revelan que la Ley de Okun
de un país periférico como España tiene pendientes mucho más acusadas que las de
los países del núcleo. Por otro lado, las diferencias entre los coeficientes de Okun
por debajo y por encima del umbral son consistentes con la "Hipótesis de aversión al
riesgo de las empresas" según la cual el desempleo responde más fuertemente durante
las recesiones que durante las expansiones. Además, las diferencias estadísticamente
significativas entre las posiciones de los umbrales contribuyen al debate de que en
España la combinación de la aversión al riesgo con la “Hipótesis de rigidez insti-
tucional” tiene más fuerza que en el resto de países analizados, donde a su vez la
combinación con la “Hipótesis de acaparamiento laboral” sería más importante. Fi-
nalmente, los períodos de crisis económica en la zona del euro afectan la ley de Okun
en Francia, lo que refuerza la idea de que los empleadores aversos al riesgo están
preocupados por la información del área económica en la que están operando. A la
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luz de todos estos resultados, este artículo aporta innovaciones teóricas y empíricas
en el debate de la Ley de Okun.

Tal como señalábamos al principio de esta introducción, ante la preocupante ame-
naza para la Salud Pública que entraña la resistencia bacteriana a los antibióticos, el
interés actual y el paralelismo por su no linealidad y la posible existencia de umbra-
les nos han llevado a aplicar esta metodología de forma sistemática. Por lo tanto, en
el capítulo 8, incluimos un artículo de investigación, realizado en colaboración con
un equipo interdisciplinar de investigadores europeos, en el que hemos analizado,
utilizando MARS, la relación entre la intensidad de uso de antibióticos en diferen-
tes centros hospitalarios y de atención primaria de Europa y la aparición de cepas
resistentes a estos antibióticos.

Esta aplicación nos permite, además, particularizar el protocolo de estimación para
series temporales diferentes a las macroeconómicas y que se recoge en el capítulo 2.
A su vez, podemos contribuir de forma práctica en la detección de umbrales en la
intensidad de uso de antibióticos que ayuden a orientar el diseño de ciertas políticas
de Salud Pública, con resultados que pueden ser muy relevantes para un problema
objeto de preocupación en el más alto nivel de las autoridades sanitarios mundiales.

A pesar de que la mayoría de los estudios que investigan esta relación utilizan méto-
dos de estimación lineal, hace varias décadas Levy (1994) formuló la hipótesis de que
la aparición de cepas resistentes a los antimicrobianos podía estar asociada a que la
intensidad de uso de los antibióticos superase ciertos umbrales, estableciendo así las
bases para una relación no lineal. A su vez, una de las vertientes más fructíferas del
estudio epidemiológico de este grave problema de Salud Pública consiste en el uso de
la econometría de series temporales en la estimación de esta relación (López-Lozano
et al., 2000). Si bien la metodología hasta ahora empleada para este problema se
ha ceñido a modelos lineales, se revela cada vez más importante el uso de métodos
econométricos no lineales (Monnet et al., 2004; Lawes et al., 2015b,a, 2017).

Los resultados del artículo no sólo detectan umbrales precisos en la intensidad de
uso de los antibióticos en los centros hospitalarios y de atención primaria objeto de
estudio sino que además aportan intervalos de confianza que facilitan dar soporte
significativo a las recomendaciones de política sanitaria del uso restringido de an-
tibióticos. Esta línea de estudio nos ha permitido la publicación de tres artículos
más en revistas de impacto (Lawes et al., 2015b,a, 2017). El artículo de investiga-
ción de este capítulo contribuye con varias innovaciones empíricas en el debate de
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la racionalización en el uso de los antibióticos para hacer frente a la amenaza de la
resistencia bacteriana.

Finalmente, el capítulo 9 resume, a modo de conclusión, las principales contribuci-
ones de la presente tesis y apunta las futuras líneas de investigación a desarrollar.
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2 Methodology.

2.1 Overview.

This chapter describes the methodology we employ in this thesis to estimate dif-
ferent nonlinear relationships. Firstly, we introduce a nonparametric data driven
procedure that allows to select and estimate a model, detecting regions of the dom-
ain delimited by thresholds. This is Multiple Adaptive Regression Spline (MARS)
from Friedman (1991). To demonstrate that this estimation procedure is more gene-
ral, comprehensive and flexible, we provide Monte Carlo experiments with different
models. Afterwards, we introduce a basic protocol to estimate a nonlinear model
with possible multiple thresholds in the explanatory variables. Finally, we adapt
the basic protocol to three diverse relationships: Taylor rule, that relates interest
rate driven by the monetary authority to the inflation rate and the output gap of
an economy; Okun’s law, that associates variations in unemployment rate of an eco-
nomy to its output growth; and Antibiotic resistance, that links the antimicrobial
resistance to the use of antibiotics at medical centre level.

2.2 Multiple Adaptive Regression Splines.

Over the last decades, nonlinear time series techniques have been developed to model
complex dynamics that linear model is not able to represent. Nonparametric regres-
sion analysis avoid imposing linearity assumptions in modeling and enables more
flexibility to approach data. However, although this data mining provides flexibi-
lity, it also quickly results into unreliable in high dimensions. This is the so-called
curse of dimensionality due to sparseness of data when the number of possible struc-
tural relationship increases fast with dimension. Indeed, for a large dimensionality
any dataset tends to be sparse and almost all dataset shows concurvity that makes
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prediction unstable in certain regions Morlini (2006). Concurvity is the nonpara-
metric generalization of multicollineatiry; while multicollinearity takes place when
some of the explanatory variables are linearly dependent, concurvity occurs when
they lie close with a non linear dependency. The greater the number of explanatory
variables, the greater the possibility of concurvity to happen by chance (Bozdogan,
2003).

To exploit flexibility of nonparametric modeling and overcome the curse of dimen-
sionality, researchers have proposed some nonparametric methods with backfitting
algorithm to penalize complexity and overfitted models. One of them is the Multi-
variate Adaptive Regression Splines (MARS) procedure by Friedman (1991, 1993);
Friedman and Roosen (1995).

MARS is a nonparametric method that estimates nonlinear regression functions wit-
hout imposing previously functional forms, it means that data-based methodology
not only estimates but also selects the model. Given a set of explanatory variables,
it fits a model as an expansion in product of truncated linear spline functions se-
lected through a forward and backward recursive partitioning strategy. Hence, the
procedure accommodates both nonlinearities and interactions among the explana-
tory variables as a generalization of Recursive Partitioning (RP) (Friedman, 1977)
or Classification and Regression Trees (CART) (Friedman et al., 1984) and additive
modeling (Hastie and Tibshirani, 1984, 1987, 1990) that uses spline fitting instead
of other simple functions. RP is an approximation of an unknown function f(x)
at x using an expansion in a set of basis functions, where each basis function is a
product of univariate indicator functions 1. But Friedman (1991) and Lewis and
Stevens (1991) report some weaknesses associated with the RP. One of them is that
basis functions composed by indicator functions makes the estimated function to be
not continuous at the boundaries even when the true underlying function f(x) is
continuous. In addition, RP fails for a large number of explanatory variables or or
estimating additive models (Chung, 2012). MARS procedure solves these weaknes-
ses.

First, in order to tackle problems of RP in estimating linear and additive models,
Friedman (1991) proposes a simple innovation in the algorithm of MARS. On the
contrary to recursive partitioning, for each iteration the parent regions during the

1Given {Rj}s
j=1 a set of S disjoint subregions being a partitioning of the domain D, each basis

function is an indicator function Bj(x) = I {xεRj} that takes value one if it accomplishes the
condition xεRj and zero otherwise.
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creation of its related subregions are not automatically eliminated. Consequently
both the parent and its related subregions are can be chosen for further partitioning
in the next iterations resulting into possible overlapping subregions of the whole
domain. This innovation allows the algorithm to produce linear models with the
iterative partitioning of the initial region by different explanatory variables and the
addition of successive partitioning with different predictor variables.

The second innovation in MARS procedures consist of a modeling approach with
linear truncated splines (hinges) instead of indicator functions to eliminate discon-
tinuities at the boundaries of adjacent subregions. Thus, it produces models with
continuous functions and with discontinuous first partial derivative of f(x) at the
knot points of each explanatory variable. Even more, MARS also may produce ad-
ditive models allowing interactions and trading off the interaction order and model
complexity of the additive functions and interactions with a global criterion (Frank,
1995). Therefore, MARS produces a more flexible approach than ordinary linear re-
gression and additive modeling. In addition, MARS procedure endogenously detect
knots locations, i.e. thresholds, without previously imposing their existence, which
are the explanatory variables with thresholds and the number of them.

Lewis and Stevens (1991) extend this technique to nonlinear time series analysis
using lagged values of the time series as explanatory variables in MARS algorithm.
The models from this procedure are called Adaptive Spline Threshold AutoRegres-
sive (ASTAR) time series models that can be considered as a generalizations of
the Threshold Autoregresive (TAR) models initially introduced by Tong and Lim
(1980), Tong (1983), and Tong (1990).

To date, compared to the TAR models, the MARS methodology has not recei-
ved much attention in economics in spite of its great flexibility. Tong’s pioneering
contribution gave rise to a very extensive line of research that explores possible
thresholds in economics; Hansen (2011) provides an excellent review of the prolific
line of research derived from Tong’s work. The basic TAR model assumes that the
autoregressive structure of a variable varies according to the value reached by the
variable itself in the recent past.

A related line of research in recent decades examines using a threshold specification
in the context of a traditional regression model. In these studies, two distinct regres-
sion models are defined and simultaneously estimated for two disjoint regions defined
in a threshold variable, which needs not be the explained variable. However, even
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the more sophisticated threshold regression models consider the existence of only
one threshold variable and only one set of disjoint threshold-defined regions. These
are serious limitations if we suspect that f(x) could exhibit multiple thresholds asso-
ciated with various threshold variables and even interactions between them. Lewis
and Stevens (1991) present a general criticism of the limitations of traditional thres-
hold models and propose the MARS as a solution. Consequently, in contrast with
the traditional TAR and threshold regression models, it is unnecessary to determine
which variable generates a threshold behavior.

MARS for time series initiated by Lewis and Stevens (1991) has been extensively ex-
plored by Keogh (2010) with different autoregressive orders and temporal terms (TS-
MARS). While Self-Exciting Threshold AutoRegressive (SETAR) and Open Loop
Threshold AutoRegressive (TARSO) models introduced by Tong and Lim (1980) es-
timate piecewise linear functions over disjoint subregions but discontinuous at their
boundaries, TSMARS methodology obtains nonlinear threshold models continuous
in the domain of the explanatory variables and possible interactions between lagged
explanatory variables. Therefore TSMARS constitutes a generalization of Tong’s
models (Chung, 2012).

MARS procedure has been widely used to estimate functions in diverse fields of kno-
wledge as Natural Science: Ecology and Environmental Science (Kilinc et al., 2017;
Zhang and Hepner, 2017) or Oceanography (Lewis and Ray, 1997); Medical and
Health Science: Epidemiology (Lawes et al., 2015b,a, 2017) or Public Health (Va-
negas and Vásquez, 2017); Engineering and Technology: (Dey and Das, 2016; Goh
et al., 2018); Social Science: Economics and Finance (De Gooijer et al., 1998; Seph-
ton, 2001); Agricultural Science: (Deo et al., 2017; Mehdizadeh et al., 2017). Some
studies as Kuhnert et al. (2000); Muñoz and Felicísimo (2004); Mukkamala et al.
(2006); Mehdizadeh et al. (2017) also check the better performance of MARS than
other parametric and nonparametric techniques in terms of accuracy and flexibility.
Leathwick et al. (2006) provide evidence of MARS models are also parsimonious with
better predictions than General Additive Models from Hastie and Tibshirani (1987,
1990). Ture et al. (2005); Alvarado et al. (2010) remark the superior computation
efficiency of MARS procedure, its accuracy and interpretability of its results.

On the other hand, although Friedman (1991) establishes a minimum required data
of 50 observations, Jin et al. (2001) argue that small sample size deteriorates MARS
performance. Moreover Briand et al. (2000) note that MARS is sensitive to outlier

20



2.2 Multiple Adaptive Regression Splines.

effect and to strong collinearities among explanatory variables. These weaknesses
should be taken into account when the pool of explanatory variables and their lags
can be great or under the suspicion of the existence of outliers due to any problem in
data gathering procedure. Lawes et al. (2015b,a, 2017) propose to reduce the initial
pool of possible explanatory variables using Generalized Additive Models to discard
no significant potential predictors in the research on the effect of multiple antibiotic
use on the antimicrobial resistance. Thus, this previous step may collaborate with
backward fitting algorithm of MARS to tackle the curse of dimensionality.

2.2.1 MARS algorithm.

MARS algorithm is composed by some steps. The objective is to model the depen-
dence of variable yt on explanatory variables x1

t , ..., x
p
t . We define the model

yt = f(x1
t , ..., x

p
t ) + εt

over some domain DεRp containing the data and the error term εt is assumed to be
independently distributed with E(εt) = 0 and variance E(ε2

t ) = σ2. The function
f(x) is the true relationship between outcome time-series (yt) and a vector of p
explanatory variables xt = (x1

t . . . .x
p
t ) that we want to estimate from the data.

MARS procedure approximates this function2 as:

yt = β0 +
M∑
m=1

βmbm (xt) + εt

where;
2It is easy to see that a model specification with a threshold can be expressed as a combination of
hinge functions. Without loss of generality, let us consider a function with two regions delimited
by a threshold τ . For each region we have different slopes β1 and β2.{

y = a1 + β1x+ ε x ≤ τ
y = a2 + β2x+ ε x > τ

This specification can be rewritten as the sum of basis functions

y = α+ c1max(x− τ, 0)− c2max(τ − x, 0) + ε

where τ is the knot, and each basis function is composed by a hinge or truncated spline
function max() and coefficients that correspond to the previous specification c1 ≡ β1 and
c2 ≡ β2.
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β0 is a constant

βm is the coefficient for the mth basis function, m = 1, ...,M

bm(xt) is the mth basis function, m = 1, ...,M

εt is an independently distributed error term with E(εt) = 0 and variance E(ε2
t ) = σ2

The basis functions are products of up to a maximum interaction order mi trun-
cated linear splines or hinge functions (we usually restrict mi = 2), describing the
relationship between one or more explanatory variables and the outcome in terms of
segments of stable association separated by knots or thresholds values. These inte-
racting hinge functions allow us to identify possible interactions between variables.
Namely, for a mi = 2 the mth basis function takes one of the following two forms:

No interaction: bm (xt) = h
(
xkt , τk,m

)
for some k = 1, . . . , p

With interaction: bm (xt) = hm
(
xkt , τk,m

)
·hm

(
xjt , τj,m

)
for some k, j = 1, . . . , p, k 6= j

where τk,m is the threshold value of xkt in themth basis function and where h
(
xkt , τk,m

)
is a hinge function (or truncated linear spline) that takes the following form depen-
ding on whether the basis function takes effect above or below the threshold τk,m (
See Figure 2.1)

a) above the threshold: hm
(
xkt , τk,m

)
= max(xkt − τk,m, 0)

b) below the threshold: hm
(
xkt , τk,m

)
= max(τkm − xkt , 0)

Figure 2.1: Graph of the two truncated linear spline or hinge functions.
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If no knot (threshold) is detected, then a simple linear association between expla-
natory and outcome variable can be specified as a single function applied across the
total range of values of the explanatory variable.

In the algorithm, once we define xt = (x1
t . . . .x

p
t ) with all potentially significant

explanatory variables, including the associated lags, the model identification and
estimation proceed by an automated and iterative process. The description that
follows is mainly based on Friedman (1991, 1993); Chung (2012).

Forward pass: In general terms, MARS starts with the simplest model containing
only a constant basis function and iteratively generates a matrix of basis functions
in a forward stepwise manner. Candidate basis functions are added in order of
ability to improve model fit by minimizing the residual sum of squares (RSS) until
the model reaches a predefined limit of complexity. The candidate basis functions
are identified by a nested exhaustive search looping over the existing set of basis
functions, and all other possible explanatory variables (or interactions) and knot (
threshold) positions.

In more exhaustive terms, the forward pass proceeds in the following way. To
estimate f(xt) with data {yt, xkt }Tt=1, , for k = 1, ..., p let {Rm}Sm=1 be a set of
disjoint subregions of the domain such that D | D = ∪Sm=1Rm . MARS estimates
the function f(xt) at xt with

f̂(xt) =
S∑

m=1
βmbm(xt)

where bm are the basis functions associated with the subregions Rm. These basis
functions are of the form

bm(x) =
1, m = 1∏mi

j=1 hjm
(
x
k(jm)
t , τjm

)
m ≥ 2

where mi is the number of interaction order in the mth basis function, hjm indicates
the hinge function, k(jm) is the index of the explanatory variables and τjm is a knot
location on each of the corresponding variables.

MARS algorithm starts with only one basis function b1(xt) = 1 in the model which
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corresponds to selecting the initial subregion as R1 = D, the whole domain. After
the initial step, the algorithm first adds a pair of basis functions:

b2(xt) = b1(xt)max(xkt − τ, 0) and b3(xt) = b1(xt)max(τ − xkt , 0)

where t ∈ {xkt : 1 ≤ i ≤ N ; 1 ≤ k ≤ p}. The pair (xkt , τ) is found by minimizing the
RSS

N∑
i=1

[yt − β1 − β2max(xkt − τ, 0) + β3max(xkt − τ, 0)]2

for k = 1, ..., p. The estimation procedure is an exhaustive search method.

For every t ∈ {xkt : 1 ≤ i ≤ N ; 1 ≤ k ≤ p} and k = 1, ..., p, the ordinary least squares
method is performed and the pair (xkt , τ) with the minimum RSS is chosen. The
resulting model has the form f̂(x) = β1 + β2max(xk∗t − τ ∗, 0) + β3max(xk∗t − τ ∗, 0)

For the next iteration, a pair of products are included such that

bm(xt)max(xkt − τ, 0) and bm(xt)max(τ − xkt , 0)

where for bm(xt) we have the previously selected basis functions:

b1(xt) = 1, b2(xt) = max(xk∗t − τ ∗, 0) and b3(x) = max(τ ∗ − xk∗t , 0)

The selection of basis function depends on the RSS. The model shall contain 2M+1
basis functions after the Mth iteration. The next M + 1 iteration adds two new
basis functions:

b2M+2(xt) = bl(xt)max(xkt − τ, 0) and b2M+3(xt) = bl(x)max(τ − xkt , 0)

where 1 ≤ l ≤ 2M + 1 and the bl(xt) is already in the model. Therefore, l, k and τ
minimize the RSS. That is

(l, k, τ) = argmin
l,k,t

N∑
i=1

[yt −
2M+1∑
m=1

(βmbm(xt)− β2M+2bl(xt)max(xkt − τ, 0)−

− β2M+3bl(x)max(τ − xkt , 0)]2

24



2.2 Multiple Adaptive Regression Splines.

The algorithm iterates this forward step until the maximum number of basis functi-
ons Mmax (chosen by the user) is reached. This forward pass procedure provides a
model that overfits the data. Therefore, it is necessary a pruning pass to eliminate
those subregions whose basis functions do not sufficiently contribute to the accuracy
of the model.

Backwards (pruning) pass: During the subsequent pruning pass MARS removes
basis functions contributing least to model fit, until no significant improvement is
seen in a modified form of the generalized cross validation (MGCV) criterion that
penalizes model complexity, based on Craven and Wahba (1979). This criterion is
defined as

MGCV =
1
T

∑T
t=1(yt − f̂M (xt))2

[1− C (M) /T ]2

where T is the number of observations; C(M) is the model complexity penalty
function which is defined as C(M) = (M+1)+dM, whereM is the number of basis
functions retained in the model and M + 1 the number of parameters in f̂M (xt))
and d represents the degree of additional contribution brought by a basis function
to the model complexity, Friedman (1991) suggests a value for d between 2 and 4;
usually d = 3.

Therefore, this MGCV criterion accounts for the inherent improvement in explained
variance associated with increasing numbers of basis-functions, and its calculation
allows estimates of the relative importance of each basis function. Model selection
converges on a set of basis functions that most efficiently explain variation in de-
pendent variable.

Figure 2.2 illustrates the scheme of MARS procedure with forward and backward
passes compared with Ordinary Least Squares (OLS) estimation. It can be clearly
understood as a particular case of MARS where forward stepwise and pruning pass
do not detect any threshold for each of the explanatory variables.

According to the steps in forward pass in MARS procedure, the variable x is split
into two variables z1 = max(x − τ, 0) and z2 = max(τ − x, 0). Therefore, one of
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Chapter 2 Methodology.

Figure 2.2: Scheme for the Multiple Adaptive Regression Spline (MARS) proce-
dure and its comparison to the Ordinary Least Squares (OLS) estimation.
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the outputs we can obtain from MARS procedure is the matrix of split explanatory
variables corresponding to each basis function detected.

From the output of MARS model, it is useful to generate contribution charts illus-
trating how the outcome time-series depends on each explanatory variables across
the observed ranges. See Figure 2.3 for different examples of contributions3.

3For MARS estimations and plotting contributions, we created codes in R using packages Earth
and Plotmo (Milborrow, 2009, 2015). Also we use B34S programming language with SCAB34S
Splines module (available in SCA Workbench, Scientific Computing Associates Corp, Illinois,
USA) (Stokes and Lattyak, 2005, 2008b).
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2.2 Multiple Adaptive Regression Splines.

Figure 2.3: Example illustrations of contributions from MARS.

Fig iii. Illustrations of GAM and MARS procedures for non-linear time-series analysis 
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Contribution charts illustrating the case of basis functions of the relationship be-
tween the outcome (yt) and (i) a single explanatory variable with positive impact
only above threshold and (ii) interacting explanatory variables (x1, x2) with various
types of impact depending on the regions of the interacting variables

2.2.2 Monte Carlo experiments.

To impose strict linearity in estimations when the underlying relationship is non-
linear can result into misspecification with an important loss of information and
biased model coefficients. It is useful to run Monte Carlo experiments for demon-
strating this. In this subsection, we present some Monte Carlo experiments to check
the properties of the estimators and to compare them with that ones resulting from
linear estimation.

a) Comparing linear and non-linear time-series model performance.

We used a Monte Carlo experiment to compare the ability of linear (Ordinary Least
Squares, OLS) and non-linear (Multivariate Adaptive Regression Splines, MARS)
time-series models in identifying various predefined functional relationships between
simulated explanatory and outcome time-series. We hypothesized that for time-
series related by simple linear processes MARS and OLS regression methods would
perform equally well, but that only MARS would accurately identify non-linear as-
sociations. We generated 10000 simulated datasets using simple stochastic processes
incorporating the following predefined functional relationships (see Figure 2.4):
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Chapter 2 Methodology.

• (A) Non-autoregressive without threshold
yt = −4 + 2xt + ut ut ∼ N

(
0, σ2 = 0.1

)
∀t = 1, · · · , 200

• (B) Non-autoregressive with threshold if xt ≤ 2 yt = ut ut ∼ N (0, σ2 = 0.1)
if xt ≤ 2t yt = −4 + 2xt + ut ut ∼ N (0, σ2 = 0.1)

∀t = 1, · · · , 200

• (C) Autoregressive with threshold if xt ≤ 0 yt = 0.5yt−1 + ut ut ∼ N (0, σ2 = 0.1)
if xt > 0 yt = 0.5yt−1 + 1xt + ut ut ∼ N (0, σ2 = 0.1)

∀t = 1, · · · , 200

• (D) Threshold Autoregression if xt ≤ 0 yt = 0 + 0.25yt−1 + ut ut ∼ N (0, σ2 = 0.1)
if xt > 0 yt = 0 + 0.75yt−1 + ut ut ∼ N (0, σ2 = 0.1)

∀t = 1, · · · , 200

Where:
xt is the explanatory (independent) time-series variable at time t
yt is the outcome (dependent) time-series variable at time t
ut is the error term at time t , with Normal distribution, zero mean and variance σ2

yt−1 is an autoregressive term of order 1 (i.e. dated at t-1 )

For each dataset we fitted both linear and non-linear time-series analyses with
MARS, and recorded sample parameter estimates (a constant, b slope, and s2 as
the estimate of variance of error), a measure of goodness of fit (R2) and threshold.
Figure 2.4 illustrates histograms for the distributions of R2 values and parameter
estimates from both linear and non-linear models with MARS. Each column con-
tains the analysis from the Monte Carlo experiment associated to the (A) to (D)
models. They are headed by their respective mathematical model expression and
scatter plots representing one sample generated by the model and the actual model
for each experiment with solid lines. Each row, from the second to the fifth one,
contains the histograms of each estimated parameter distribution from both linear
and MARS, blue and red respectively. Red vertical lines are the actual values of
the parameters of each respectively model. Last row contains histograms of the
distribution for threshold estimates.

The model (A), in the first column, is a simple linear association between an expla-
natory variable xt and the explained variable yt with no threshold. The violet color
of the histograms reflects overlapped distributions of linear and MARS parameter
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2.2 Multiple Adaptive Regression Splines.

estimates4. They show that MARS and Ordinary Least Square give practically the
same estimate distributions.

The model (B), in the second column, is similar to the model (A) but with a thres-
hold in the predictor variable at 2. In this case, MARS identifies the lack of an
association below the threshold and correctly estimates the association above the
threshold in the defined stochastic process. By contrast, the linear approach re-
sults in biased estimations of coefficients with constant and slope at all levels of xt
(see histograms in 2.4 (B)). Moreover, the variance of residuals in the linear model
is significantly greater than the one in MARS which reflects the value in the pre-
defined stochastic process. This indicates that linear estimation ignores valuable
information on predictable variation in yt by describing it as error. This is reflected
in a lower proportion of total variation in the dependent variable explained by the
independent variable in OLS compared to MARS models.

The model (C) is a transfer function with an autoregressive term yt−1 and a transfer
variable xt with a threshold. In this case, as for the model (B) OLS is clearly worse
than MARS to approach the actual model.

4In this Monte Carlo experiment, we reject possible detected thresholds when the slopes of the ba-
sis functions and not significantly different using the computed distributions in the experiment
for the slopes.
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Figure 2.4: Monte Carlo experiments comparing linear and non-linear time-series
analyses (MARS).
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Ability to identify known relationships between explanatory (x) and outcome (yt) time-series was
assessed by applying both linear (ordinary least squares, OLS) and non-linear (Multivariate Adap-
tive Regression Splines, MARS) models to 10, 000 datasets generated through simple predefined
stochastic processes (A) to (D). Frequency distributions indicate estimates from these 10,000 mo-
dels of coefficients (constant a, slope b), and variance (s2) as well as summary of model fit (R2).
Comparison can be made to predefined values for coefficients and variance of error.
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2.2 Multiple Adaptive Regression Splines.

The model (D) is a simple Threshold Autoregressive model (TAR) with a threshold
in the autoregressive term yt−1. In this case, variance of residuals and the explained
variation are quite similar between both estimation procedures but MARS provi-
des unbiased estimators. On contrary to the previous models with thresholds, the
distribution of the estimated threshold for this model is not symmetric. Table 2.1
contains four sections, one for each model from (A) to (D). Actual values of each
parameter are in the Actual column, while OLS and MARS column include the
mean of each parameter estimates and its 95% confidence interval calculated from
the distributions extracted from the previous Monte Carlo experiments. Median
of distribution for each estimated parameters with MARS are provided in the last
column; therefore we can check the asymmetric distribution of the estimated para-
meters with MARS in case of a TAR model as in (D). According to these values,
we can conclude that for each nonlinear model, MARS not only provides a better
fit to data than OLS, as expected, but also a comprehensive methodology which
detects thresholds delimiting regions for each independent variable with a distinct
functional relationship with the dependent variable, and estimates OLS for each of
those regions.

Threshold distribution from the model (D) in table 2.1 is skew. To check the be-
havior of the threshold distribution from the model ( D) we have run Monte Carlo
experiments for a range of the variance of errors σ2 from 0.01 to 0.25. Figure 2.5
illustrates how the 95% confidence interval of the distribution of threshold estimates,
its mean and median depend on the variance of errors σ2. As logically, the greater is
the variance of errors, the lower is the accuracy of threshold detection and therefore
the greater is the 95% confidence interval. We have also computed Pearson’s coeffi-
cient of skewness for threshold distribution depending on the variance of errors, σ2;
the number of samples, N ; and the number of periods for each sample, T . Pearson’s
coefficient of skewness is constant on σ2 and N 5 and decreases on sample periods
but not monotonically (see Figure 2.6). Therefore, the greater the number of period
of the sample, the lower is the skewness of the threshold distribution, therefore its
mean and its median become closer.

5Given N = 10.000 and t = 200, Pearson’s coefficient of skewness is 0.91 for all the range of
σ2ε(0.01, 0.25). And for σ2 = 0.1 and t = 200, coefficient of skewness is hardly constant 0.9 for
all the range of Nε(500, 10.000),
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Table 2.1: Results from Monte Carlo experiments

Model Actual OLS

coefficients

MARS

coefficients

MARS

median

(A) Non-autoregressive without

threshold

Constant coefficient (a) -4.00 -4 (-4.09, -3.91) -4 (-4.09, -3.91) -4

Slope coefficient (b) 2.00 2 (1.96, 2.04) 2 (1.96, 2.04) 2

σ2 0.10 0.1 (0.08, 0.12) 0.1 (0.08, 0.12) 0.1

R2 - 0.98 (0.98, 0.99) 0.98 (0.98, 0.99) 0.98

(B) Non-autoregressive with

threshold

Constant coefficient (a) -1 (-1.21, -0.82)

Slope coefficient (b) 1 (0.91, 1.09)

Constant coeff. (ai) below threshold 0.00 0 (-0.13, 0.12) 0

Slope coefficient (bi) below threshold 0.00 0 (-0.12, 0.12) 0

Constant coeff. (aii) above threshold -4.00 -4 (-4.53, -3.53) -4

Slope coefficient (bii) above threshold 2.00 2 (1.83, 2.19) 2

Threshold 2.00 2 (1.89, 2.11) 2

σ2 0.10 0.43 (0.36, 0.5) 0.1 (0.08, 0.12) 0.1

R2 - 0.75 (0.7, 0.8) 0.94 (0.93, 0.96) 0.94

(C) Autoregressive with

threshold

Constant coefficient (a) 0.00 0.5 (0.44, 0.56) 0 (-0.15, 0.17) 0

Slope coefficient (b) 0.5 (0.44, 0.56)

Slope coefficient (bi) below threshold 0.00 0 (-0.14, 0.12) 0

Slope coefficient (bii) above threshold 1.00 1 (0.88, 1.14) 1

AR(1) coefficient (φ) 0.25 0.25 (0.16, 0.33) 0.25 (0.18, 0.31) 0.25

Threshold 0.00 0 (-0.26, 0.26) 0

σ2 0.05 0.18 (0.15, 0.22) 0.1 (0.08, 0.12) 0.1

R2 - 0.66 (0.59, 0.73) 0.82 (0.77, 0.86) 0.82

(D) Threshold Autoregressive

Constant coefficient (a) 0 0.07 (0.03, 0.12) 0.02 (-0.17, 0.36) -0.01

AR(1) coefficient (φ) 0.58 (0.44, 0.7)

AR(1) coefficient (φi) above threshold 0.75 0.76 (0.53, 1.02) 0.76

AR(1) coefficient (φii) below

threshold

0.25 0.18 (-0.34, 0.56) 0.21

Threshold 0 0.03 (-0.26, 0.54) 0

σ2 0.1 0.1 (0.08, 0.12) 0.1 (0.08, 0.12) 0.1

R2 0.34 (0.19, 0.48) 0.36 (0.22, 0.51) 0.36
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2.2 Multiple Adaptive Regression Splines.

Figure 2.5: Distributions of threshold estimates on different values σ2.
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This Figure illustrates how the 95% confidence interval of the distribution of thres-
hold estimates, its mean and median depend on the variance of errors σ2 we use for
the model to run Monte Carlo experiments.

Figure 2.6: Pearson’s coefficient of skewness for the threshold distribution the mo-
del (D) depending on sample periods T

200 400 600 800 1000 1200 1400

0.
4

0.
6

0.
8

1.
0

sample periods

S
ke

w
ne

ss

33



Chapter 2 Methodology.

2.3 Estimation protocols.

Our purpose in this thesis consist of approaching nonlinear relationships with MARS
methodology. In this subsection, we present a basic protocol, it means a list of some
basic steps for estimating nonlinear functions we suspect that contains thresholds
in the explaining variables. Afterwards, according to the nature of each time series
we adapt the basic protocol adding some steps. We use our methodology on three
different functional relationships.

The first one is Taylor rule: the reaction of the interest rate driven by the monetary
authority with respect to inflation rate and output gap of the economy; many studies
have attempted to estimate Taylor rule with nonlinear and both parametric and non
parametric methods but although the possible existence of multiple thresholds in
this function not many efforts have been addressed to estimate them. The flexibility
and comprehensiveness MARS methodology may allow to contribute with enrich
Taylor rule estimations not only with multiple thresholds but also with combined
thresholds in interaction effects if they exist.

The second one is Okun’s law: the relationship between the change in unemployment
rate of an economy and its output growth; even though researchers have devoted
efforts to estimating nonlinear Okun’s law, they usually impose the existence of only
one threshold and even its level. This strong assumption implies that only one of
the theoretical hypothesis that shape Okun’s law can be verified. Once more again,
flexibility of MARS methodology can provide richer estimations with multiple and
not previously imposed thresholds. This may shed light in the theoretical debate
about the hypothesis that shape Okun’s law.

The third one is the relationship between the antimicrobial resistence (AMR) and the
use of antibiotics. This is absolutely different to the previous two relationships but
it is of major current interest because of the World Heath Organization concerns
(WHO, 2017). In addition, it is a chance to apply MARS methodology to very
diverse data as epidemiological time series. Incipient research efforts have been
devoted (Lawes et al., 2015b,a, 2017) to detect possible thresholds in this relationship
as hypothesized Levy (Levy, 1994).

As it seems logical, in order to apply the basic protocol to each time series of the
relationships we want to model, it turns to be necessary to adapt it to the nature
of the data. For instance, unlike time series from national statistics offices Official
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Statistical Offices, quality of antibiotic use data gathered from hospital laboratories
may require an outlier treatment of the time series. Also, it is different if we need
to check previously which are the explanatory variables or if they come out directly
from a theoretical model. In the next subsections, we present the basic protocol and
the enhanced protocols we employ to estimate these mentioned relationships.

2.3.1 Basic protocol.

We propose a basic protocol composed by four steps. The first step consists of
selecting explanatory variables and their lags. The second one is the estimation
with MARS procedure and the contributions charts to understand the nonlinear
relationship between the explained variable and each one of the significant predictors.
The following step consists in some diagnostic checks to evaluate performance of
estimation. Finally, the last step is addressed to obtain 95% confidence bands for
each detected threshold.

Step 1. Set the pool of explanatory variables and their lags.

MARS is a data driven procedure that both selects and estimates the model. It
provides a high degree of flexibility but it may be affected by curse of dimensio-
nality or concurvity problem in high dimensions that makes prediction unstable in
certain regions (Morlini, 2006). Concurvity is the nonparametric generalization of
multicollineatiry. Therefore, the greater the number of explanatory variables, the
greater the possibility of concurvity to happen by chance (Bozdogan, 2003).

In case we obtain the pool of explanatory variables and their lags from a theoretical
model, we can proceed with MARS relying on its ability to discard no significant
predictors but it is likely to come out a concurvity problem. We propose to carry
out optionally an additional a priori data-based selection of candidate explanatory
variables and lags. This would be done through inspection of outputs from fitting
a General Additive Model (GAM) to the data. GAM is a very general procedure
that can be used for the identification of the most likely predictors, since it runs a
nonparametric estimation of the functional relationships between explanatory and
outcome time-series, based upon iterative data fitting, rather than prior assumpti-
ons. It also allows for variability in the functional relationships across different values
of the explanatory variables and can therefore capture nonlinear associations6.

6We use GAM package in B34S programming language with SCAB34S Splines module (available
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GAM estimates the relationship between p explanatory (xt) and the outcome (yt)
time-series as a sum of smooth, or spline, functions:

E(yt | x1t, x2t, . . . , xpt) = s0 +
p∑
j=1

sj(xjt)

where {sj(xjt)} are spline functions; they are standardised such that, after removal
of free constants (so) their expected contribution to the outcome (y) is zero (i.e.
E[sj(xjt)] = 0 for each j). The splines are obtained by a process of splitting the
time-series into sections, join at knot points, and fitting simple curves described
by cubic functions to the data in each section. The GAM methodology identifies
the optimal combination of spline functions sj(xj) following the iterative procedure
suggested by Hastie and Tibshirani (1990). Combining a local scoring algorithm and
a backfitting procedure reducing complexity in the association for each explanatory
variable, this method converges on a solution balancing data fit with smoothness.

To identify the most relevant explanatory time series from the initial pool, we run
iteratively by removing first those variables and lag combinations whose contribu-
tions were nonsignificant before re-running the GAM model on a reduced subset
of variables and lags. The process stops when the model contains only significant
contributions of variables and lags that are identified on contribution charts by the
zero line of nonassociation falling outside of 95% confidence intervals around the es-
timate (see some examples of contribution charts from GAM in Figure 2.7). These
constitute the restricted set of explanatory variables for the next step.

in SCA Workbench, Scientific Computing Associates Corp, Illinois, USA)(Stokes and Lattyak,
2008a). Also we created R codes using GAM package (Hastie, 2013).
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2.3 Estimation protocols.

Figure 2.7: Illustrations of GAM contribution charts with significant bands.
Fig iii. Illustrations of GAM and MARS procedures for non-linear time-series analysis 

 
(A) Examples of contribution charts from GAM procedure in (i) the absence and (ii) the 

presence of significant relationships between (x) and the outcome (y) variables. 
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above threshold  and (ii) interacting explanatory variables (x1, x2) with various types of 

impact depending on the regions of the interacting variables 
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the presence of significant relationships between (x) and the outcome (y) variables.
The blue bands represent the 95% confidence bands.

Step 2. Model estimation with MARS

After setting the pool of explanatory variables (and lags), and whether associations
with the outcome series were linear or non-linear, we used the MARS procedure7 to
obtain an easily interpretable characterization of these associations (Friedman, 1991)
detecting thresholds values of the explanatory variables, if they exist, delimiting
regions of individual or interacting explanatory variables within which associations
with the outcome differs substantially from those in other regions. MARS also
provides the most efficient explanation of the variation in outcomes with a systematic
estimation and automatic selection of the combination of explanatory variables and
threshold values. This combination can be obtained as an enhanced matrix.

It is necessary to compute the autocorrelation function (ACF) of the MARS resi-
duals to check they are whitened, otherwise statistical inference of the parameters
of the final model would be not reliable. Then, we run the Box Pierce test to de-
tect a significant autocorrelation in the residuals. If so, we iteratively estimate an
ARIMAX transfer function with the vectors of the enhanced matrix as regressors.
In each loop, the least significant variable is eliminated until the estimation process
converges to a model in which all the estimated coefficients are significant and the
errors are compatible with a white noise to make a more reliable statistical inference

7As usual for MARS estimations, we discard detection of possible thresholds in the 15% of extreme
values of the sample.
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of the parameters of the final model. In this sense, our procedure applies MARS on
time series data following TSMARS developed by Keogh (2010).

It is useful to generate contribution chart for each basis function to illustrate how
each significant explanatory variables from MARS contributes to the outcome vari-
ables . It is also interesting to estimate linear model as a benchmark for comparing
with MARS performance.

Step 3. Diagnostic checks.

Adequacy of model fit is defined by different criteria as normally distributed residuals
with homogeneous variance and mean equal to zero evaluated by a normality test;
also the absence of significant residual autoregression, that can be checked with
Box Pierce test (Box and Pierce, 1970): and the absence of residual nonlinearities
evaluated by a Hinich’s test (Hinich, 1982).

In addition some measures of goodness of fit can be reported as the modified generali-
zed cross validation (MGCV) based on Craven and Wahba (1979), the mean absolute
percentage error (MAPE), Akaike Information Criterion (Akaike, 1987) (AIC) or its
corrected bias version for small samples AICc (Hurvich and Tsai, 1989), Schwarz cri-
terion also known as Bayesian Information criterion (BIC) (Schwarz et al., 1978) and
the Log-likelihood criterion.

Step 4. Confidence intervals for thresholds values.

In the absence of an existing method for deriving measures of uncertainty around
thresholds derived from nonparametric MARS models, we develop a procedure in-
spired by Hansen (2000) to compute confidence intervals for thresholds detected by
MARS model. To the best of our knowledge, the computation of confidence intervals
for thresholds parameters in MARS model is an innovation of this. Hansen considers
a simple threshold model with only one variable affected by a threshold effect, and
obtains a distribution theory for the threshold parameter (τ) from which asymptotic
confidence intervals can be built. He first derives the limiting distribution of a Like-
lihood Ratio test (LR) for the null hypothesis that the threshold parameter τ= τ 0.
He then builds confidence intervals through the inversion of LR: the (1−α) Inverted
Likelihood Ratio (ILR) confidence interval consisting of all the possible values of τ
for which the null hypothesis would not be rejected at the α level. Donayre et al.
(2018) examine improvements of Hansen’s ILR confidence interval, increasing its
quality in finite samples with large threshold effects (i.e. when the change in slope
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from one side of the threshold to the other is large). They show that a “conserva-
tive modification” enlarging Hansen’s ILR confidence interval is optimal. In this
“conservative ILR confidence interval” the lower end of the interval is enlarged from
the first value lower than τl (lower bound of the confidence interval) for which the
null hypothesis is rejected, up to τl; at the upper end, it is enlarged from τu (upper
bound of the confidence interval) up to the first value greater than τu for which the
null hypothesis is rejected. According to Donayre et al. (2018), this modification
provides intervals at a confidence level at least as high as the nominal one that are
still informative.

We adapted this procedure for MARS estimations with more than one explanatory
variable containing thresholds, and one or more thresholds per variable, by using
the partial residuals – i.e. the estimated part of the outcome not explained by ot-
her explanatory variables and their thresholds. To simplify the explanation, let us
suppose that in modeling y, we have two explanatory variables, x1 and x2, and that
a threshold has been detected by MARS for each one, at τx1 and τx2 respectively.
To obtain the confidence interval associated with τx1 , we obtain the “partial resi-
duals relative to x1” , say y(x1), which is the part of y not explained byx2 (and its
threshold). We obtain it by subtracting from y the part of the full model related ex-
clusively with x2. Once y(x1) is obtained, we can apply on the data of y(x1) and x1

the procedure of Hansen (2000) improved by Donayre et al. (2018). In that way we
obtain a conservative ILR confidence interval for τ(x1) conditional on the estima-
ted values of the parameters (slopes and thresholds) related to x2. We then repeat
the same procedure interchanging the roles of x1 and x2, and we now obtain the
conservative ILR confidence intervals for τ(x2) conditional on the estimated values
of the parameters related to x1.

Under suspicion of heteroskedasticity, we follow the correction algorithm proposed
by Hansen (2000). It basically consists of dividing the ILR function by an estimation
of the nuisance parameter η2 that appears in the distribution of the Likelihood Ratio
statistic when heteroskedasticity is present (Hansen, 2000). The correcting factor is
computed with the following steps.

Firstly, given the kth explanatory variable xk with a threshold τ(xk) estimated by
MARS and its partial residual y(xk), we compute δk = θ̂1,1,k − θ̂1,2,k from the thres-
hold regression:
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y(xk) = θ0,1,k + θ1,1,kxk + e1,k xk ≤ τ(xk)

y(xk) = θ0,2,k + θ1,2,kxk + e2,k xk > τ(xk)

where θ̂i,j,k is the estimator of coefficient i in the equation j for variable k.

In a second step, we calculate a new pair of variables r̂1,k and r̂2,k as follows
r̂1,k = (δkxk)2(êkITxT ê′k)/σ̂2

r̂2,k = (δkxk)2

where σ̂2 = ê′kêk/(n−2k) , êk is the full vector of residuals that combines ê1,k and ê2,k,
k is the number of estimated parameters for each regression and ITxT is the identity
matrix TxT . ( It is easy to see that (ê′kITxT êk) is a vector with components that
are the square of the components of êk)

Thirdly, we estimate µ̂i,j,,k, with the following regressions:

r̂1,k = µ̂0,1,k + µ̂1.1,kxk + µ̂2,1,kx
2
k + ν̂1,k

r̂2,k = µ̂0,2,k + µ̂1,2,kxk + µ̂2,2,kx
2
k + ν̂2,k

where ν̂j,k are the residuals.

Finally, the nuisance parameter is estimated as follows
η̂2 = µ̂0,1,k + µ̂1.1,kτ(xk) + µ̂2,1,kτ(xk)2

µ̂0,2,k + µ̂1,2,kτ(xk) + µ̂2,2,kτ(xk)2

We use the nuisance parameter to calculate the Inverted Likelihood Ratio (ILR)
under heteroskedasticity as ILRh = ILR/η̂2

With the new ILRh, we proceed as in Donayre et al. (2018) to obtain the conserva-
tive ILRh confidence intervals for τ(xk) conditional on the estimated values of the
parameters related to the rest of xl 6=k. We call the resulting interval the Condidtional
Conservative ILR interval (CCILR in the sequel).

Performance evaluation of the procedure for threshold confidence in-
tervals.

In order to evaluate the performance of our procedure to estimate 95% confidence
intervals for thresholds, we examine the empirical coverage rates and the average
lengths of the confidence intervals obtained with Monte Carlo experiments. The
coverage rate is calculated as the frequency of constructed intervals containing the
true value of the threshold parameter. We define the average length of the confi-
dence interval as the difference between the upper and the lower boundaries of the
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confidence interval averaged across repetitions. We consider both homoscedastic
and heteroskedastic data generating processes from a basic model. The explanatory
variables are generated with a uniform distribution, so that the position of the thres-
hold in the variable range should not have any relevant effect on the results. We
evaluate the performance of the proposed procedure with 1000 replications for each
experiment with different sample size ranging from 50 to 1000 data with increments
of 50.

The homoscedastic data generating process contains a normally distributed error
term with a constant variance whatever the subregion in the domain:

yt = 2max(x1t − 1, 0) +max(x2t − 2, 0) + et et ∼ N(µ = 0, σ2 = 0.1) (2.1)

So the model contains the following regions;


if x1 ≤ 1, x2 ≤ 2 yt = 0x1t + 0x2t + et

if x1 ≤ 1, x2 > 2t y = 0x1t + 1(x2t − 2) + et

if x1 > 1, x2 ≤ 2 yt = 2(x1t − 1) + 0x2t + et

if x1 > 1, x2 > 2 y = 2(x1t − 1) + 1(x2t − 2) + et

Figure 2.8 is the graphical representation of the systematic part of the model.
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Figure 2.8: Basic model for the data generating processes (2.1) and (2.2).

Tables 2.2 and 2.3 summarize the results from the experiments, for the homosce-
dastic and heteroskedastic models, respectively. Each table reflects the coverage
rates and the average length of the CCILR confidence intervals for each threshold.
Each row refers to the Monte Carlo experiment for sample size T. We also compute
a synthetic measure to compare the informative content of the CCILR confidence
intervals with that of an alternative approach discussed below. Let the “coverage
efficiency measure” be the ratio between the coverage rate and the length of the
confidence interval. This ratio is of interest because for the same coverage rate, a
confidence interval obtained by one procedure is more informative than the other if
its length is shorter.
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Table 2.2: Monte Carlo experiments with homoscedastic data.

Homoscedastic data generated by (2.1)
Confidence Interval for threshold in x1, τ(x1) = 1 Confidence Interval for threshold in x2, τ(x2) = 2

Sample size T Coverage rate
(A1)

Average
length
(B1)

Coverage
efficiency

(A1)/(B1)=(E1)

Coverage rate
(A2)

Average
length
(B2)

Coverage
efficiency
(A2)/(B2)=(E2)

50 0.971 0.5330 1.8219 0.975 0.9126 1.0684
100 0.981 0.3351 2.9272 0.978 0.5954 1.6427
150 0.986 0.2581 3.8201 0.986 0.4673 2.1101
200 0.98 0.2162 4.5338 0.981 0.3966 2.4734
250 0.982 0.1878 5.2278 0.985 0.3494 2.8193
300 0.982 0.1696 5.7903 0.99 0.3158 3.1353
350 0.979 0.1543 6.3467 0.984 0.2903 3.3895
400 0.98 0.1424 6.8837 0.981 0.2692 3.6445
450 0.982 0.1325 7.4140 0.986 0.2525 3.9043
500 0.971 0.1263 7.6884 0.985 0.2388 4.1248
550 0.981 0.1186 8.2697 0.988 0.2264 4.3643
600 0.976 0.1127 8.6597 0.989 0.2158 4.5826
650 0.968 0.1082 8.9491 0.985 0.2055 4.7933
700 0.973 0.1038 9.3697 0.99 0.1974 5.0157
750 0.979 0.1001 9.7820 0.988 0.1902 5.1936
800 0.973 0.0967 10.0641 0.989 0.1838 5.3806
850 0.968 0.0933 10.3800 0.991 0.1780 5.5660
900 0.976 0.0904 10.8002 0.986 0.1724 5.7202
950 0.979 0.0878 11.1515 0.987 0.1675 5.8941
1000 0.969 0.0850 11.4006 0.987 0.1630 6.0563

For all the sample sizes considered in the experiments, we do not obtain any un-
dercoverage: all coverage rates are at least equal the the nominal size of 95%. On
the basis of the results of Donayre et al. (2018), the coverage rate of the confidence
interval is expected to be greater than the nominal confidence level and at least
asymptotically in the case of normally distributed errors. As expected, the greater
the sample size, the shorter the average confidence interval length and the more
accurate the location of the estimated threshold. Logically, the coverage efficiency
increases with the sample size.

The heteroskedastic data generating process is similar to the homoscedastic one
described above except for the variance of the error term that depends on whether
the evaluated point is above or below the threshold on x1t.

yt = 2max(x1t − 1, 0) +max(x2t − 2, 0) + eit eit ∼ N(µ = 0, σ2
i )

if x1t ≤ 1 e1t ∼ N(µ = 0, σ2
1 = 0.05) (2.2)

if x1t > 1 e2t ∼ N(µ = 0, σ2
2 = 0.1)
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

if x1t ≤ 1, x2t ≤ 2 yt = 0x1t + 0x2t + e1t

if x1t ≤ 1, x2t > 2t y = 0x1t + 1(x2t − 2) + e1t

if x1t > 1, x2t ≤ 2 yt = 2(x1t − 1) + 0x2t + e2t

if x1t > 1, x2t > 2 y = 2(x1t − 1) + 1(x2t − 2) + e2t

Table 2.3: Monte Carlo experiments with heteroskedastic data.

Heteroskedastic data generated by (2.2)
Confidence Interval for threshold in x1, τ(x1) = 1 Confidence Interval for threshold in x2, τ(x2) = 2

Sample size
T

Coverage rate
(C1)

Average
length
(D1)

Coverage
efficiency

(C1)/(D1)=(F1)

Coverage rate
(C2)

Average
length
(D2)

Coverage
efficiency

(C2)/(D2)=(F2)
50 0.956 0.5145 1.8581 0.954 0.7817 1.2204
100 0.968 0.3147 3.0759 0.977 0.5157 1.8944
150 0.982 0.2456 3.9986 0.98 0.4011 2.4432
200 0.979 0.2055 4.7647 0.981 0.3447 2.8460
250 0.969 0.1804 5.3719 0.977 0.3041 3.2128
300 0.976 0.1617 6.0347 0.988 0.2734 3.6131
350 0.979 0.1481 6.6093 0.99 0.2533 3.9082
400 0.973 0.1371 7.0947 0.984 0.2339 4.2067
450 0.973 0.1288 7.5542 0.983 0.2181 4.5062
500 0.97 0.1200 8.0829 0.989 0.2065 4.7894
550 0.976 0.1148 8.5032 0.99 0.1957 5.0595
600 0.972 0.1096 8.8703 0.985 0.1874 5.2556
650 0.97 0.1044 9.2938 0.99 0.1808 5.4771
700 0.969 0.1000 9.6889 0.983 0.1715 5.7322
750 0.97 0.0963 10.0753 0.985 0.1657 5.9438
800 0.978 0.0930 10.5132 0.982 0.1595 6.1561
850 0.979 0.0904 10.8289 0.988 0.1554 6.3590
900 0.973 0.0874 11.1282 0.982 0.1504 6.5274
950 0.976 0.0847 11.5184 0.985 0.1466 6.7208
1000 0.973 0.0821 11.8568 0.98 0.1423 6.8852

Table 2.3 for heteroskedastic data generated process by (2.2) summarizes coverage
rates and averages of the length of the confidence intervals for each threshold. As in
the previous table, for all the sample sizes considered in the experiments, all coverage
rates are at least 95%; as before and as expected, the average length decreases with
sample size; whereas the coverage efficiency increases.

We also compare the performance of our procedure with an alternative procedure
suggested by an anonymous referee for one of the papers of this thesis. The sug-
gestion consisted of computing the intervals by only conditioning on the rest of
thresholds (RTproc), letting the associated slopes free, i.e, reestimating these slopes
at each estimation point of the building process of the intervals. There are pros
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and cons for each procedure. The “Partial Residuals” approach (PRproc) has the
advantage of working with the final “optimal” pairs of thresholds and associated
slopes and to estimate the conditional likelihood profile for a much simpler model,
with only one variable and one threshold; this conditional model in fact constitutes
a particular case of Hansen’s model. It has the drawback of conditioning on more
parameters. The alternative RTproc approach has the advantage of conditioning on
less parameters but at the cost of computing the conditional likelihood profile in a
more complex model and obtaining the conditional intervals to some extent with less
sample information (less degrees of freedom) since it works works with a much more
general, and maybe complex, version of Hansen’s model. The conditional confidence
intervals of RTproc are therefore expected to be, in general, wider than those based
on PRproc. As a result, the former are also expected to have larger coverage rates
than the latter. So there is presumably a trade-off between coverage rate and length
of the interval, and in case both approaches reach coverage rates at least as large as
the nominal confidence level, it is interesting to compare the relative gains and costs
of each approach and see whether some pattern emerge from such a comparison.

So, we ran the same Monte Carlo experiments with the RTproc procedure. For each
sample size, we computed the coverage rate, the average length of the intervals and
the synthetic coverage efficiency measure.

The coverage rate never falls below the nominal level of 95% in the RTproc proce-
dure. So, it is important to examine which of the two procedures offers the best
information concerning the location of the threshold at the given level of confidence.
There is a necessary tradeoff between coverage and length (in the sense that we
prefer a large coverage rate with small intervals), therefore we built a ratio of the
coverage efficiency ratios ( rCER) as a synthetic measure of which approach works
better.

rCER = coverage efficiency ratio PRrproc
coverage efficiency ratio RTproc

A value of rCER above 1 favours the PRproc procedure developed in this thesis,
whereas a value below 1 favours the RTproc procedure. This rCER is presented in
Table 2.4 for both the homoscedastic and heteroskedastic cases, for each sample size.
Figure 2.9 represents the computed rCER for each threshold for homoscedastic and
heteroskedastic data. All the values, without exception, stand above 1 for all sample
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sizes and for both thresholds. So, these experiments suggest our Partial Residual
approach PRproc is more informative than the alternative RTproc for application
purposes.

Table 2.4: Ratio of the coverage efficiency ratios for PRproc and alternative RTproc

rCER Comparison between procedures
Homoscedasticity Heteroskedasticity

Sample
size
T

Confidence
Interval

for τ(x1) = 1

Confidence
Interval

for τ(x2) = 2

Confidence
Interval

for τ(x1) = 1

Confidence
Interval

for τ(x2) = 2
50 1.0174 1.0581 1.0001 1.0073
100 1.0039 1.0461 1.0004 1.0349
150 1.0177 1.0519 1.0111 1.0354
200 1.0186 1.0405 1.0171 1.0430
250 1.0189 1.0417 1.0162 1.0253
300 1.0174 1.0521 1.0022 1.0391
350 1.0181 1.0395 1.0132 1.0454
400 1.0172 1.0396 1.0108 1.0413
450 1.0207 1.0456 1.0114 1.0490
500 1.0018 1.0428 1.0193 1.0473
550 1.0188 1.0391 1.0161 1.0418
600 1.0088 1.0387 1.0064 1.0420
650 1.0071 1.0517 1.0030 1.0399
700 1.0104 1.0442 1.0083 1.0399
750 1.0207 1.0433 0.9996 1.0421
800 1.0035 1.0386 1.0156 1.0309
850 1.0044 1.0462 1.0161 1.0436
900 1.0131 1.0413 1.0083 1.0338
950 1.0181 1.0412 1.0080 1.0419
1000 1.0066 1.0420 1.0158 1.0440

46



2.3 Estimation protocols.

Figure 2.9: Ratios rCER for each threshold for homoscedastic ( — ) and hetero-
skedastic (- - -) data
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As a result, we recommend the partial residual approach. On the one hand, given the
presence of multiple thresholds, other alternatives, such as bootstrapped methods,
are not likely to give satisfactory results. They may be prohibitively time-consuming;
even in the case of only one threshold, bootstrapping is very time consuming and
has been shown to yield non informative confidence intervals (Enders et al., 2007).

2.3.2 Protocol for estimating Taylor Rule.

Here we introduce some specificities in the basic protocol to estimate TR.

Step 1. Set the pool of explanatory variables and their lags.

To estimate TR, we use monthly data to have time series as large as possible and
because it is consistent with the frequency of the monetary authority meetings. We
calculate the inflation rate, expressed in annual rates, from the seasonally adjus-
ted monthly Consumer Prices Index accessible in Statistics office of the monetary
authority. To compute the monthly output gap, we apply the Hodrick-Prescott fil-
ter with a smoothing parameter equal to 14400 (see Hodrick and Prescott (1997))
to the logarithm of the Industrial Production Index, that is usually available in the
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Statistics Office databases of the economic region. Using lagged values for the expla-
natory variables tackles the endogeneity problem and is also consistent with the idea
that the monetary authority decisions on nominal interest rates require information
that is time-consuming to collect. In addition, when data covers periods defined by
different chairmanships of the monetary authority or some abrupt changes in the
economy as a Crisis or an economic area enlargement (as in the European Union)
we include dummies variables in the model to capture possible effects.

Step 2. Model estimation with MARS.

To estimate TR we employ the partial adjustment specification from Judd and
Rudebusch (1998) that incorporates interest rate smoothing. Let us assume i∗t is
the interest rate recommended by the monetary authority such that

i∗t = r∗ + πt + α(πt − π∗) + β1ỹt + β2ỹt−1

and we use the partial adjustment process
∆it = γ(i∗t − it−1) + ρ∆it−1

where γ is the gradual adjustment coefficient. Therefore, we firstly construct the
MARS specification with the basis functions and possible interactions:

i∗t = (β0 + δdt) +
Mπ∑
mπ=1

(βmπ + δmπdt)b[πt−1, τmπ ]+

My

+
∑
my=1

(βmy + δmydt)b[ỹt−1, τmy ]+

Myπ

+
∑

myπ=1
(βmyπ + δmyπdt)b[πt−1, τπ,myπ ]b[ỹt−1, τy,myπ ] + ρ∆it−1 + εt

dt : dummy variable

After MARS estimation, we estimate the partial adjustment process of the interest
rate considered in Judd and Rudebusch (1998) with an ARIMAX transfer function
taking into account thresholds detected in i∗t .

Step 3 for diagnostic checks and the Step 4 for computing confidence
intervals for thresholds values are the same as in the basic protocol.
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2.3.3 Protocol for Okun’s Law

Here we introduce some specificities in the basic protocol to estimate Okun’s law.

Step 1. Set the pool of explanatory variables and their lags.

To estimate Okun’s law we use quarterly data due to the frequency of unemploy-
ment rate data release from Statistics offices. We also calculate quarterly output
growth rate from real GDP and introduce dummy variable for economic crisis peri-
ods according to Research institutions dating8.

Variables such that unemployment rate ut and the Gross Domestic Product (GDP)
of an economy may be cointegrated. Therefore, we firstly proceed to check the
integration order of the unemployment rate using the unit root test with multiple
structural change proposed by Carrion-i Silvestre et al. (2009). We need this more
complex unit root test that checks even up to for five possible structural changes
in the time series because it would be possible that outcome time series may be
stationary by periods with different levels depending on possible different regions
delimited by thresholds of the explanatory variables.

In case of unit root of unemployment rate, we use the MARS cointegration test
proposed by Sephton (1994) to check for cointegration between the unemployment
rate and real GDP to determine whether we have to discriminate between long term
and short term effects in Okun’s law. These two substeps allow us if we should
introduce a cointegration term in the specification of the MARS model.

Step 2. Model estimation with MARS.

The MARS specification for the Okun’s law that we propose is9:

4ut = (β0 + δ1dCt) +
M∑
m=1

βmb[γt, τm] + ρ14ut−1 + ρ24ut−2 + εt

ut : unemployment rate dCt: crisis dummy, γt : quarterly growth rate

Step 3 for diagnostic checks and the Step 4 for computing confidence
intervals for thresholds values are the same as in the basic protocol.

8CEPR Euro Area Business Cycle Dating Committee establishes the chronology of recessions and
expansions in Eurozone and NBER also stablishes it in USA.

9In case of cointegrated times series, we should also include as explanatory variable a cointegration
term that would reflect the long term association between unemployment rate and real GDP
in the following model specification.
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Chapter 2 Methodology.

2.3.4 Protocol for Antibiotic resistance

Due to several specificities and differences in this field with respect to the previous
two, we need to add some special considerations to the basic protocol. In summary,
we start by defining a set of explanatory variables (antibiotic use, infection control
time-series, population interactions, resistance in previous months, etc.). This set
is defined by (a) expert opinion informed by prior risk-factor studies, molecular
epidemiology in the region; and (b) inspection of resistance profiles of the pathogen
of interest. We consider delays between changes in explanatory time-series and
associated change in outcome time-series (lags) of up to 6 months.

Before analysis we check time-series and make adjustments for extreme values (out-
liers) or unexpected shifts in mean (structural changes). We also use vector au-
toregression (VAR) models to help distinguish any reverse causality in relations-
hips between explanatory and outcome series: this might occur, for example, if
prescribing behaviour was altered by resistance rates in the population in previous
months. Next, we restrict the set of explanatory variables, and lags, to be put into
final multivariable models. We use a procedure that fits smooth functions to relati-
onships between explanatory and outcome time-series, and allows visual inspection
of likely significant associations. After identifying the most promising explanatory
variables (and lags of effects), we estimate MARS model which both identifies signi-
ficant predictors, and defines any non-linear relations as a series of linear relations-
hips connected by ‘knots’ or thresholds. Model fit is checked by ensuring residuals
were normally distributed without unexplained nonlinearities. Confidence intervals
around each threshold were fit by a conditional conservative inverted likelihood ra-
tio (CCILR) method, using partial residuals. Finally we converted thresholds from
models into suggested maximum total treatment courses per month in the popu-
lation by multiplying model thresholds by the size of the population and dividing
by an average treatment course. It is useful to evaluate projections for alternative
antibiotic stewardship policy options by a counterfactual analysis.

Step 1. Set the pool of explanatory variables and their lags.

Subtep 1.1: Theoretical foundation

Participating centres identify a priori a minimum dataset of antibiotic sub-groups
or agents they consider most likely to affect the epidemiology of the resistant or-
ganism under investigation (target organism). Decisions are based upon: previous
empirical evidence of risk factors and molecular epidemiology in the study region
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or related contexts. Additionally, using antibiogram data from the study period
and population, we review co-resistances to other antibiotics among isolates of the
target organism with and without the resistance under investigation. We consider
antibiotics with the largest absolute rates of co-resistance in the resistant isolates to
be most likely to exert significant selection pressures (Søgaard, 1989; Møller, 1989).
Where data is available we integrate additional dummy explanatory variables on
hospital activity or infection control activities, associated with the outcome variable
in previous studies.

Substep 1.2: Data validation

To ensure consistent time-series we first account for known changes in exogenous
conditions, such as changes in laboratory method. We capture immediate and gra-
dual effects by entering a dummy variable and its interaction with an autoregressive
term, as explanatory variables. We then examine time series to detect potential
unknown measurement errors as follows. Visual inspection identify potential struc-
tural changes that can be seen for example as a large stepwise change in mean or
outliers that can be observed as values deviating largely from surrounding values.
We apply successive Chow tests in the time series to automatically detect the most
probable dates of structural changes and, where necessary, to disaggregate the sam-
ple into two or more segments, each with a stable mean. For each segment we apply
an outlier detection technique using the following criterion: an observation is con-
sidered as an outlier if Cook’s distance at this point is greater than five times the
mean of Cook’s distances of all the observations of the segment. Finally, we replace
outlier values with the mean of the three preceding and three following observations.

Subtep 1.3 Identifying the most likely predictors and their lags

Given the potentially complex relationships between ecological variables under in-
vestigation, we seek to refine our understanding of potential associations before
applying MARS model.

Firstly, situations of reverse causality could exist when ecological exposures- such as
rates of infections with resistant pathogens connected populations, or use of some
antibiotic groups in a given population- respond to, rather than predict, rates of
resistance. In order to minimise this risk, we check the direction of relationships
between explanatory and outcome time-series by applying Granger-causality test
and Vector Autoregression (VAR) models. Secondly, nonlinear models of the type
used in this study are potentially complex and difficult to extract form the data if too
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many predictors are used at the same time. Therefore, we carry out an additional
a priori data-based selection of candidate explanatory variables and lags. For each
centre we include all theoretically relevant variables at lags of 1 to 6 months and
autoregressive terms at lags 1 and 2 to fit a GAM. We limit lags to 6-months based
on widespread evidence of declining relevance of antibiotic exposures by time-since
exposure, and prior experience that considerations of longer lags lead to problems
of concurvity. On the basis of the GAM outputs, an explanatory variable with a
specific lag is retained in the model only if its contribution is significantly different
from zero at any part of its domain.

Step 2. MARS Multivariable model estimation.

The MARS specification that we propose for analyzing the model of Antimicro-
bial Resistance AMRtseries with K antibiotic use time series Abxi,t and a dummy
variable for the Infection control campaign if it has been undertaken in the cenr-
tre. To avoid a possible excess of complexity in the model, we restrict the MARS
specification with no interaction basis functions between antibiotic use time series.

AMRt = (β0 + δ1dt) +
MAR1∑
m=1

βAR1,mbm (AMRt−1) +
MAR1∑
m=1

δAR1,mbm (d1AMRt−1)

M1∑
m=1

βAbx1,mbm (Abx1,t) +
M2∑
m=1

βAbx2,mbm (Abx2,t) + . . .

+
Mi∑
m=1

βAbxi,mbm (Abxi,t) + . . .+
MK∑
m=1

βAbxK,mbm (AbxK,t) + εt

dt : Infection Control dummy variable

Step 3 for diagnostic checks and the Step 4 for computing confidence
intervals for thresholds values are the same as in the basic protocol.

Step 5. Interpretation

The minimum in the estimated confidence interval of the thresholds identified for
each significantly associated antibiotic group are translated into suggested maximum
numbers of patient treatments per month not expected to adversely affect resistance
at population levels. We multipliy the threshold, expressed in Defined Daily Doses
(DDD) per 1000 Occupied Bed Days (OBD) (or Inhabitants Days (ID)), by the size
of the monthly patient population (in thousands of OBDs or IDs), and then divide
by an average patient treatment course of 7 DDDs (except for aminoglycosides
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which were considered as 3 DDDs). These maximums are further compared to
contemporary levels of antibiotic use in the last year of study, to provide indications
of how current use of antibiotics should be modified to avoid resistance spread.

In addition, to illustrate the potential effects of restricting antibiotics to threshold
levels, we perform a counterfactual analysis to compare the expected evolution AMR
under a ‘business as usual’ scenario in which antibiotic use continued as in last year
of study to projected time-series with antibiotics restricted to threshold levels. We
use a breakpoint analysis to identify the last stationary segment in AMR time-series
from the study period. From this point we recursively evaluate MARS models using
means from these stationary segments as starting points to derive steady states for
AMR in community and hospital populations. Based on steady state values and
MARS models for the study period (baseline) it can be simulated 1000 samples of
24-month projections, incorporating random error term with variance as derived in
the baseline MARS model. For each sample projection we enter mean antibiotic
levels in the last year of the study period (‘business as usual’) and alternative levels
set at identified thresholds (antibiotic stewardship options). It can be calculated the
mean difference between business as usual and each policy option for every month
along with 95% confidence intervals. Finally, it is useful to illustrate alternative
projections and differences using medians of distributions from the 1000 sample
projections.
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3 A model for nonlinear Taylor rule.

3.1 Introduction.

Implementing optimal monetary policy corresponds to automatically set the policy
interest rate following an optimal policy function (Svensson, 2010). Optimal po-
licy functions obtained by targeting rules are more efficient than those obtained
by instrument rules as Svensson (1999) demonstrates. Although main concerns of
monetary authorities focus on stabilising inflation rate, inflation targeting does not
imply that monetary policy does not care about the stability of the real economy
(Svensson, 2010). Ball (1999) and Svensson (1999) expose that concern about output
gap stability as an intermediate target rule provides an explanation of gradual trans-
mission mechanism of the monetary policy. Therefore, an optimal policy function
will reflect the relative importance of both factors depending on their weights in
the monetary authority preference function (Ball, 1999; Taylor, 1999; Clarida et al.,
2000). These preferences are typically represented by a quadratic loss function de-
fined over the inflation deviation and the output gap. A linear dynamic system
describing the economy completes the linear-quadratic framework that generates li-
near optimal policy functions with a proportional adjustment of nominal interest
rates to the inflation deviations and the output gaps.

A quadratic loss function may provide a reasonable approach to the monetary aut-
hority preferences around a point in the short term but it does not imply that the
same quadratic function can give a reasonable approach for wider ranges; nonlinear
Taylor rules may be reasonable. The literature reports asymmetric preferences as
one of the main theoretical sources of nonlinearities in monetary authority behavi-
our. Ruge-Murcia (2002) and Cukierman and Muscatelli (2008) consider asymmetric
preferences of central banks and their rationale. Surico (2002); Ruge-Murcia (2002);
Cukierman and Muscatelli (2008) demonstrate that asymmetric preferences of cen-
tral banks generate nonlinearities in the interest-rate reaction rule using specific
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functions that nest a quadratic function as a particular case. Cukierman and Mus-
catelli (2008) propose a generic function but they impose an exogenous threshold
on the inflation rate target imposing two different regimes.

In this chapter, we introduce targeting rule models beyond the linear quadratic fra-
mework using a generic loss function that nests the quadratic function as a particular
case and that does not previously impose neither the number nor the location of
thresholds on the inflation rate and on the output gap. The first model we present
is a static version that allows a changing behavior of the central bank by regions
with piecewise continuous and strictly convex preference functions with nonconti-
nuous second derivative on the inflation rate and the output gap. Noncontinuous
second derivatives of these functions imply nonlinear Taylor rule defined by regi-
ons delimited by thresholds. The second model is a generalization of the dynamic
and partial adjustment model of Svensson (1999) with the central bank preference
function defined as in the static version.

In section 2, we present these two models; in section 3, we perform calibrations
to compare the response to diverse shocks of a model with thresholds to a model
without them.

3.2 Model: the optimal central bank behavior.

3.2.1 Static targeting model.

Let us consider a monetary authority minimising a loss function defined for the
inflation rate deviations and the output gap. We only assume that the loss function
is composed by two separable preference functions g(∼π) defined for the inflation
rate deviation and h(∼y) defined for the output gap of the economy. The parameter
λ weights the importance of preferences on the inflation gap with respect to the
preferences on the output gap in the loss function; it is assumed to be greater
than 1 reflecting the central bank’s concern about inflation rate deviations. Also,
the central bank takes its decisions observing the Aggregate Supply (3.1) in the
economy, the IS (3.2) and the Fisher equation (3.3).

i Policymaker Loss objective function
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3.2 Model: the optimal central bank behavior.

L(∼π,
∼
y) = λg(∼π) + h(∼y)
∼
π = (π − π∗), ∼y = (y − y∗)

π∗ : inflation rate target
y∗ : potential output

ii Aggregate Supply:
π = πe + α

∼
y + uπ (3.1)

uπ : inflation rate error term
πe : expected inflation rate

iii IS
∼
y = A− φ(r − _

r) + uy (3.2)
uy : output gap error term
r : real interest rate
r̄ : long term equilibrium real interest rate

iv Fisher equation
r = i− πe (3.3)

Therefore, the optimization problem of the monetary authority is

min
i

[
λg(∼π) + h(∼y)

]

s.t.


π = πe + α

∼
y + uπ

r = i− πe
∼
y = A− φ(r − _

r) + uy

(3.4)

The Taylor rule will be the solution of this minimisation problem. With these
generic functions, the coefficient for the inflation rate will depend on the second
derivatives of the central bank preference functions. Therefore, if the preference
functions of the central bank are defined as piecewise continuous and strictly convex
functions with noncontinuous second derivatives at the boundaries of the regions
of their domains (Figure 3.1), the Taylor rule would be nonlinear, different from
one region to another and delimited by thresholds. We are not previously imposing
any threshold but generalizing the preference function to any partitioning set of the
domain. This type of general function adapts the idea that the sensitivity reaction
of the monetary authority to the inflation rate or the output gap may differ if
they are above or below targets. Indeed, declarations of the governors suggest that
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a differentiated sensitivity is very likely, and this fact can not be reflected in the
preference functions considered so far. Therefore, we shall allow preference functions
may take this general piecewise-continuous form, to check implications in the TR.

In order to solve the (3.4) we take derivatives with respect to interest rate i .
λ
∂g(∼π)
∂π̃

∂π̃

∂ỹ

∂ỹ

∂r

∂r

∂i
+ ∂h(∼y)

∂ỹ

∂ỹ

∂r

∂r

∂i
= 0

∂π̃

∂ỹ
= α; ∂r

∂i
= 1; ∂ỹ

∂r
= −φ

=⇒

=⇒ λ
∂g(∼π)
∂π̃

α(−φ) + ∂h(∼y)
∂ỹ

(−φ) = 0

to obtain the optimal condition

∂g(∼π)
∂π̃

= 1
λα

∂h(∼y)
∂ỹ

(3.5)

The Taylor rule that solves (3.4) will be an interest rate function depending on the
inflation rate. The first derivative of the interest rate with respect to inflation rate
comes out from derivatives of the optimal condition (3.5) and the system (3.4).

∂2g(∼π)
∂π̃2 = 1

λα

∂2h(∼y)
∂ỹ2

∂ỹ

∂π̃
∂ỹ

∂π̃
= φ( ∂i

∂π̃
− 1)

Therefore, we obtain the following expression for ∂i
∂π̃

in the case of the static model
for the Taylor rule:

∂i

∂π̃
= 1 + 1

φ
λα

∂2g(∼π)
∂π̃2

∂2h(∼y)
∂ỹ2

(3.6)

Not imposing a specific functional form for g() and h() allows us to demonstrate that
the coefficient for the inflation rate and the output gap in the Taylor rule clearly
depends on the second derivatives of the monetary authority’s preference functions.
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3.2.2 Dynamic and gradualist targeting model.

Once we have demonstrated the relevance of the second derivative of the monetary
authority preference functions in a static model for shaping the Taylor rule, we move
to the dynamic and gradualist environment of Svensson (1999). We assume that the
central bank minimises an intertemporal loss function defined on the inflation rate
deviations and the output gap but considering now time path decisions subject to
the information set at the moment. Let us assume time separated loss functions with
time discounting parameter ,β. Also, the central bank takes its decisions observing
for each period the dynamic aggregate supply (3.7) in the economy, the IS function
(3.8) and the Fisher equation (3.9).

1. Policymaker loss function
Et
∞∑
s=0
βsL(π̃t+s, ỹt+s)

L(π̃t+s, ỹt+s) = [λg(π̃t+s) + h(ỹt+s)]
π̃t+s = πt+s − π∗, ỹt+s = yt+s − y∗t+s

2. Aggregate Supply
πt+1 = πt + α

∼
yt + uπ,t+1 (3.7)

3. IS
∼
yt+1 = δ

∼
yt + ηxt − ξrt + uy,t+1 (3.8)

4. Fisher equation
rt = it − Et(πt+1) (3.9)

The central bank faces now the optimal dynamic problem
min
it
Et
∞∑
s=0
βs [λg(π̃t+s) + h(ỹt+s)] (3.10)

s.t.


πt+1 = πt + α

∼
yt + uπ,t+1

∼
yt+1 = δ

∼
yt + ηxt − ξrt + uy,t+1

rt = it − Et(πt+1)
Equation (3.8) is a dynamic IS where the output gap exhibits sluggish adjustment
and depends on the real interest rate and on predetermined variable where xt may
capture other determinants of interest rate setting in open economies (Ball, 1999).
The transmission mechanism of the monetary policy is treated either in Svensson
(1999) or Ball (1999): monetary authority changes it and this implies a change
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in rt; from (3.10), it would affect ∼yt+1but not ∼yt, and so, ∼yt+2and also ∼πt+2. This
timing convention is consistent with the literature on the transmission mechanism
of monetary policy that establishes a change in monetary policy imply a variation in
the output in the short run and a change in the inflation rate slowly later (Christiano
et al., 1999). According to this transmission mechanism, this minimisation problem
may be simplified considering for each period the two subsequent periods as in
Svensson (1999).

We obtain the first order condition taking derivatives with respect to it
βEt(

∂h

∂ỹt+1

∂ỹt+1

∂rt

∂rt
∂it

) + β2λEt(
∂g

∂π̃t+2

∂π̃t+2

∂ỹt+1

∂ỹt+1

∂rt

∂rt
∂it

)+

+β2Et(
∂h

∂ỹt+2

∂ỹt+2

∂ỹt+1

∂ỹt+1

∂rt

∂rt
∂it

) = 0 (3.11)

Also we use derivatives from (3.10) and forwarded IS equation
∂rt
∂it

= 1; ∂
∼
yt+1
∂rt

= −ξ; ∂
∼
yt+2

∂
∼
yt+1

= δ; ∂
∼
πt+2

∂
∼
yt+1

= α

in (3.11) βEt(
∂h

∂ỹt+1
(−ξ)) + β2λEt(

∂g

∂π̃t+2
α(−ξ)) + β2Et(

∂h

∂ỹt+2
δ(−ξ)) = 0

to obtain Euler equation
Et−1( ∂h

∂ỹt
) + αβλEt−1( ∂g

∂π̃t+1
) + δβEt−1( ∂h

∂ỹt+1
) = 0 (3.12)

The solution of (3.10) is an implicit function it = i(Etπ̃t+1, Etỹt+1) that fulfills the
Euler condition, IS, Aggregate Supply and the Fisher equation.

Taking derivatives of the conditions with respect to the inflation rate deviation we
can obtain the slope of the Taylor rule for the inflation rate.

αβλEt−1( ∂2g

∂π̃2
t+1

) + δβEt−1( ∂
2h

∂ỹ2
t+1

∂ỹt+1

∂rt

∂rt
∂πt+1

) = 0
∂ỹt+1

∂πt+1
= −ξ ∂rt

∂πt+1
∂rt
∂πt+1

= ∂it
∂πt+1

− 1

∂it
∂πt+1

= 1 +
αλEt−1( ∂2g

∂π̃2
t+1

)

δξEt−1( ∂
2h

∂ỹ2
t+1

)

Similarly, the slope of the Taylor rule for the output gap comes out from taking
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derivatives with respect to it:

Et−1
∂2h

∂ỹ2
t

+ αβλEt−1( ∂2g

∂π̃2
t+1

∂π̃t+1

∂ỹt
) + δβEt−1( ∂

2h

∂ỹ2
t+1

∂ỹt+1

∂ỹt
) = 0

∂Et−1ỹt+1

∂ỹt
= δ − ξ ∂Et−1rt

∂ỹt
∂rt
∂ỹt

= ∂it
∂ỹt
− ∂Etπ̃t+1

∂ỹt
∂π̃t+1

∂ỹt
= α

Et−1
∂2h

∂ỹ2
t

+ αβλEt−1( ∂2g

∂π̃2
t+1

α) + δβEt−1( ∂
2h

∂ỹ2
t+1

(δ − ξ[ ∂it
∂ỹt
− α])) = 0 =⇒

=⇒ ∂it
∂ỹt

= α(1 +
αλEt−1( ∂2g

∂π̃2
t+1

)

δξEt−1( ∂
2h

∂ỹ2
t+1

)
) + δ

ξ
+

Et−1(∂
2h

∂ỹ2
t

)

δβξEt−1( ∂
2h

∂ỹ2
t+1

)

With these two partial derivatives we can construct the first order Taylor expansion
for the Taylor rule

it '

1 +
αλEt−1( ∂2g

∂π̃2
t+1

)

δξEt−1( ∂
2h

∂ỹ2
t+1

)

Etπt+1+

+

α(1 +
αλEt−1( ∂2g

∂π̃2
t+1

)

δξEt−1( ∂
2h

∂ỹ2
t+1

)
) + δ

ξ
+

Et−1(∂
2h

∂ỹ2
t

)

δβξEt−1( ∂
2h

∂ỹ2
t+1

)

 ỹt (3.13)

The first point in (3.13) is that the second derivatives of g() and h() are relevant
for the coefficients of the Taylor rule. Second, it is easy to check that a cross
effect between the inflation rate and the output gap can be obtained considering
the second degree Taylor expansion of (3.13). Finally, in case the functions g()
and h() are piecewise continuous and strictly convex functions with noncontinuous
second derivative, Taylor rule would exhibit nonlinearity defined by different regions
delimited by thresholds, as we show below.

3.2.3 Discussion about Taylor Rule Coefficients

We have stressed so far that, for our purpose, the most important feature of the cen-
tral bank loss function is its second derivatives in the inflation deviation and output
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gap. Let us then specify general assumptions about this loss function and explore
their consequences in how second derivatives affect the Taylor Rule coefficients.

We consider very general though simple characteristics for g() and h() functions that
give rise to interesting nonlinearities in the TR, which will take the form of multiple
thresholds: Some of these are associated with the value of a single variable (for
instance, the inflation deviation) and others take place for specific combinations of
two individual variables that interact with each other (for instance, the interaction
between the inflation deviation and the output gap at specific values of each).

Figure 3.1: Examples of preference (loss) functions on inflation deviation with
different regimes.
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We assume both functions can be piecewise continuous (Figure 3.1). Therefore, the
whole domain of π̃ can be split into n disjoint regions {Rπ

1 , R
π
2 , ..., R

π
n} Similarly, the

whole domain of ỹ can be split into m disjoint regions {Ry
1, R

y
2, ..., R

y
m} We assume

that the functions will be strictly convex (i.e., their second derivatives are strictly
positive). This implies the higher the marginal loss, the higher the deviation from
targets, which is a common-sense assumption.

We will see how the Taylor rule changes as a result of the combination of four
elements: (1) the characteristics of the second derivatives with respect to the output
gap, on one hand; (2) with respect to the inflation deviation, on the other; (3) the
region in which the economy stands at time t, (ỹt); and (4) the region in which the
monetary authority wants the economy to stand in the coming period (ỹt+1).
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Case A

The current output gap ỹt , as well as the short term output gap ỹt+1, lie on the

same region Ry
i , so that ∂

2h

∂ỹ2
t

= ∂2h

∂ỹ2
t+1

= c2. For simplicity, let us assume that this

second derivative is constant, ∂2h

∂ỹ2
t+1

= c2, and similarly for g() , ∂2g

∂π̃2
t+1

= c1

it '
[
1 + αλc1

δξc2

]
Etπt+1 +

[
α(1 + αλc1

δξc2
) + (1 + δ2β)

δβξ

]
ỹt

So, in this particular case, we obtain a Taylor rule function with constant coefficients
in this particular region. In another region these constant coefficients could vary
with changes in c1 and/or c2.

Case B

The current output gap ỹt, as well as the short term output gap objective ỹt+1, lie

on the same region Ry
i , so that ∂

2h

∂ỹ2
t

= ∂2h

∂ỹ2
t+1

and again assume as before ∂
2h

∂ỹ2
t+1

= c2.

By contrast, g() is such that ∂2g

∂π̃2
t+1

is not constant for the whole domain of g().
Then:

it '

1 +
αλ

∂2g

∂π̃2
t+1

δξc2

Etπt+1 +

α(1 +
αλ

∂2g

∂π̃2
t+1

δξc2
) + (1 + δ2β)

δβξ

 ỹt (3.14)

Consider two adjacent inflation regions such that:
∂2g

∂π̃2
t+1

=
 gi > 0 if π̃t+1 ∈ Rπ

i

gi+1 > gi, if π̃t+1 ∈ Rπ
i+1

In these circumstances, the Taylor rule reflects the existence of different regions for
the two components of the loss functions and exhibits threshold behavior:

i(π̃t+1, ỹt) '



[
1 + αλgi

δξc2

]
Etπt+1 +

[
α(1 + αλgi

δξc2
) + (1 + δ2β)

δβξ

]
ỹt if π̃t+1 ∈ Rπ

i[
1 + αλgi+1

δξc2

]
Etπt+1 +

[
α(1 + αλgi+1

δξc2
) + (1 + δ2β)

δβξ

]
ỹt if π̃t+1 ∈ Rπ

i+1

Case C

If the second derivative with respect to inflation is as in Case B
∂2g

∂π̃2
t+1

=
 gi > 0 if π̃t+1 ∈ Rπ

i

gi+1 > gi, if π̃t+1 ∈ Rπ
i+1
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and the second derivative with respect to the output gap is similarly defined as
∂2h

∂ỹ2
t

=
 hj > 0 if ỹt ∈ Ry

j

hj+1 > hj if ỹt ∈ Ry
j+1

then we may consider two different scenarios:

Scenario 1. The central bank is convinced that its decisions can reduce the output
gap by pushing the economy to another (adjacent) region. Then, the output gap ỹt
and the short term objective for it, ỹt+1, lie on different but adjacent regions Ry

j and

Ry
j+1 such that ∂

2h

∂ỹ2
t

= hj+1,
∂2h

∂ỹ2
t+1

= hj , and hj+1 > hj.

Therefore, the Taylor rule takes the following form:

i(π̃t+1, ỹt) '



[
1 + αλgi

δξhj

]
Etπt+1 +

[
α(1 + αλgi

δξhj
) + δ

ξ
+ hj+1

δβhj

]
ỹt if π̃t+1 ∈ Rπ

i , ỹt ∈ R
ỹ
j

[
1 + αλgi+1

δξhj

]
Etπt+1 +

[
α(1 + αλgi+1

δξhj
) + δ

ξ
+ hj+1

δβhj

]
ỹt if π̃t+1 ∈ Rπ

i+1, ỹt ∈ R
ỹ
j

Scenario 2. The central bank is not convinced of its ability to avoid expanding the
output gap. Then, the current output gap ỹt and short term output gap objective
ỹt+1 lie on different but adjacent regions Ry

1 and Ry
2 but now ∂2h

∂ỹ2
t

<
∂2h

∂ỹ2
t+1

.

∂2g

∂π̃2
t+1

=
 gi > 0 if π̃t+1 ∈ Rπ

i

gi+1 > g1 if π̃t+1 ∈ Rπ
i+1

∂2h

∂ỹ2
t

=
 hj > 0 if ỹt ∈ Ry

j

hj+1 > h1 if ỹt ∈ Ry
j

In this case, it can be shown that the Taylor rule takes the following form:

i(π̃t+1, ỹt) =



[
1 + αλgi

δξhj+1

]
Etπt+1 +

[
α(1 + αλgi

δξhj+1
) + δ

ξ
+ hj
δβhj+1

]
ỹt if π̃t+1 ∈ Rπ

i , ỹt ∈ R
ỹ
j

[
1 + αλgi+1

δξhj+1

]
Etπt+1 +

[
α(1 + αλgi+1

δξhj+1
) + δ

ξ
+ hj
δβhj+1

]
ỹt if π̃t+1 ∈ Rπ

i+1, ỹt ∈ R
ỹ
j

To sum up, these cases allow us to explain how different reactions by the central
bank depend upon the region characterized by the value of the second derivatives
of functions g() and h(). Hence, this Taylor rule could explain different and more
intensive central bank reactions when some thresholds have been exceeded. In ad-
dition, from this short discussion, a simple conclusion arises: if the components of
the central bank loss function concerning the output gap g() and the inflation devia-
tion h() are piecewise continuous and strictly convex functions with non continuous
second derivatives, then the Taylor rule will be nonlinear and will exhibit possibly
complex threshold behavior. Since there is no reason for thinking that central bank
has smooth and homogeneous preferences about the whole domain of the output

64



3.3 Calibrating the model

gap and the inflation deviations, it is necessary to use sufficiently flexible nonli-
near methods, at least in the form of nonconstant parameters with possible multiple
thresholds and even interaction effects for a reliable empirical estimation of the TR.

3.3 Calibrating the model

In order to understand how the model with thresholds works compared to the model
without thresholds, we calibrate responses of the interest rate to several shocks in
the inflation deviations and the output gap.

Our first calibration consists of simulating the response of the model (3.10) to a
2-period impulse in the inflation rate through uπ,t+1 in the Aggregate Supply (3.7).
The proposed impulse parameter values and the loss functions with thresholds are
as follows:

Parameter values:

α = 0.25, β = 0.95, δ = 0.75, η = 0.25, ξ = 10, λ = 2 (3.15)

Preference functions:

g(π̃t) =
 |π̃t| ≤ 0.02⇒ 10π̃2

t

|π̃t| > 0.02 =⇒ π̃2
t

h(ỹt) =
 |ỹt| ≤ 0.02⇒ 5ỹ2

t

|ỹt| > 0.02 =⇒ ỹ2
t

(3.16)

Impulse [inflation shock]:

uπ,1 = 0.1, uπ,2 = 0.1, uπ,j = 0, ∀j = 3, ....50 (3.17)

We consider the model composed by the following (more traditional) preference
functions g(π̃t) = π̃2

t , ∀π̃t and h(ỹt) = ỹ2
t , ∀ỹt as the benchmark.

Figure 3.2 illustrates the short-run responses of the interest rates to impulses in the
inflation rate (3.17). Interest rate positively responses to these positive inflation rate
shocks during some periods in the short run. As theoretically expected, this response
in the long term is zero for non-permanent shocks. The model with thresholds shows
a temporal trajectory of the interest rate response higher and more persistent than
that one for the model without thresholds. It means that when a central bank has
the proposed piecewise preference functions its reaction will be more intensive and
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persistent while the inflation rate and/or output gap of the economy are still above
the thresholds.

Figure 3.2: Interest rate short-run responses to impulses in the inflation rate.

Aggregate supply impulse in a model with and without thresholds.

Figure 3.3 shows different responses of interest rate to the shock in inflation rate
depending on the values of the coefficient α in the Aggregate Supply (3.7), and the
autoregressive coefficient δ in the IS function (3.8). The greater α, the sharper the
decrease of the interest rate after the inflationary shock, because of a the greater
sensitivity of the inflation rate to the output gap from the previous period, and
so the effectiveness of the monetary authority to control the inflation rate through
the interest rate. On the other hand, the greater the autoregressive coefficient δ
of the output gap in IS (3.8), the slower the decrease of the interest rate after the
inflationary shock because the monetary authority needs to keep higher interest rate
during more time to fight against the persistence of the output gap.
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Figure 3.3: Responses of interest rate to an impulse in the inflation deviation de-
pending on AS and IS parameters.

Response to an impulse in the inflation gap for different combinations of parameter
values of α and δ.

The second calibration consists of simulating the response of the interest rate to a
permanent shock in the output gap in the IS function such that:

Permanent impulse [output gap shock]: uy,j = 0.1 ∀j = 1, ....50 (3.18)

Figure 3.4 illustrates the response of the interest rate to a permanent shock in the
output gap (3.18). As expected in the model, this permanent shock in the output gap
permanently increases the nominal interest rate to a new steady state. This interest
rate steady state is greater for the model with threshold than the one for the model
without threshold, just because the output gap shock makes the monetary authority
react with more intensity related to values above the threshold for the output gap.
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Figure 3.4: Responses of the interest rate to a permanent shock in the output gap.

Calibration of a model with thresholds and a model without thresholds response
facing an IS permanent shock .

Figure (3.5) depicts the interest rate responses to a permanent shock in the output
gap depending on different values of the coefficient α in the Aggregate Supply (3.7),
and the autoregressive coefficient δ in the IS function (3.8). The greater α, the lower
the new steady state of the interest rate, because of a greater effectiveness of the
monetary policy. By contrast, for a greater value of the autoregressive coefficient δ
of the output gap in IS (3.8), the greater the new steady state for the interest rate
because it is necessary to keep higher interest rate to fight against the persistence
of the output gap.
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Figure 3.5: Responses of the interest rate to a permanent shock in the output gap
depending on AS and IS parameters.

Interest rate response to a permanent shock in the output gap for different
combinations of parameter values of α and δ.

The third calibration consists of simulating the response of the interest rate to an
output gap shock as before but only taking place during the first half of the total
number of periods. We call it as a semi-permanent impulse.

Semi-permanent impulse[output gap shock]: uy,j = 0.1 ∀j = 1, ....25 (3.19)
uy,j = 0 ∀j = 26, ....50

Figure (3.6)shows the response of the interest rate to this semi-permanent impulse
in the output gap (3.19). It may be understood as a number of periods with greater
government spending and a sudden cutoff after those periods. During the periods
with the positive shock, interest rate increases. As in the second calibration, the
model with threshold shows an interest rate time path with greater values than for
the model without threshold. For the following periods with no shock, interest rate
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decreases and again the model with threshold give us an interest rate trajectory
above the one for the model without threshold. Moreover, (3.6) provides the output
gap response series to the shock. When the positive impulse starts, the output gap
increases but it fades out even if the impulse keeps constant in time. This is because
of the monetary authority reaction with the interest rate. On the other hand, when
the impulse disappears, the interest rate falls and the output gap becomes negative
but smoothly converging to zero.

Figure 3.6: Response of the interest rate to a semi-permanent shock in output.

Calibration of a model with thresholds and a model without thresholds response
facing a semi-permanent output gap.

As in the previous calibration, we present in (3.7) how the response of the interest
rate to this impulse depends on the value of α in the Aggregate Supply (3.7). The
greater α, the greater effectiveness of the monetary policy, therefore for greater
values of α the interest rate is not only reaching lower maximum values but it also
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suffers abrupt reductions. The model with thresholds gives time trajectories for the
interest rate above those from the model without threshold.

Figure 3.7: Response of the interest rate to semi permanent shock in output de-
pending on AS parameter.

Model response to a semi-permanent shock in the output gap depending on
different parameter values of α.

The last calibration we propose consists of simulating the response of the interest
rate to combined random inflationary and output gap shocks in (3.7) and (3.8),
respectively. In this case, the impulse will be two series of inflationary and output
gap normally distributed random shocks, as follows:

Combined impulse series [inflationary and output gap shocks]:
∀t = 1, ....50 uπ,t ∼ N(0, σ = 0.1) uy,t ∼ N(0, σ = 0.1) (3.20)
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Figure 3.8: Response of the models to combined inflationary and output gap
shocks.

Calibration of the model with thresholds and the model without thresholds, both
with an impulse composed by random inflationary and output gap shocks.

Figure 3.8 shows the response of the interest rate, the inflation rate, and the output
gap to one sample of random shocks (3.20). According to the previous calibrations
the standard deviation of the interest rate results to be greater in the model with
thresholds than in the model without thresholds. Let us imagine data is generated
by a model with thresholds, if we try to estimate a linear Taylor rule from a model
without a threshold, the residuals will exhibit a great variance capturing as noise
information that is relevant for the model. Moreover, the estimators will be biased.

In order to check it, we run a Monte Carlo experiment to evaluate the effects of
estimating the Taylor rule by Ordinary Least Square: We generate 10000 samples
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generated by a nonlinear model with thresholds and random inflationary and output
gap shocks.

We use the following monetary authority preference functions for simulating samples:

g(π̃t+1) for the inflation rate deviation with an inflation target ( and threshold) of
0.02 (π̃t+1 = πt+1 − 0.02),

g(π̃t+1) =
{

(πt+1 − 0.02)2 if π̃t+1 ≤ 0.02
10 (πt+1 − 0.02)2 , if π̃t+1 > 0.02

and h(ỹt) for the output gap ỹt,

h(ỹt) =
{

(ỹt)2 if ỹt ≤ 0.02
10 (ỹt)2 , if ỹt > 0.02

In Figure 3.9, we provide the true values of the inflation rate and the output gap
coefficients according to the model (3.13). In addition, we provide histograms for
the estimators βπ and βy from the linear specification of the Taylor rule:

it = β0+βππ̃t + βyỹt + ε

The histograms show that both estimators are clearly and strongly biased with re-
spect to the true values. Consequently, if the monetary authority follows a nonlinear
policy rule as described in our model, the empirical results from a traditional linear
Taylor rule estimation can be seriously misleading.
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Figure 3.9: OLS estimations of 10.000 samples generated by a model with
thresholds.

𝑳𝒊𝒏𝒆𝒂𝒓 𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒊𝒐𝒏𝒔 𝒐𝒇 𝑻𝒂𝒚𝒍𝒐𝒓 𝒓𝒖𝒍𝒆 𝒖𝒔𝒊𝒏𝒈  
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4 Thresholds in the implementation
of Monetary Policy: The Taylor
Rule revisited.

This paper presents results for endogenous threshold estimations of the Taylor Rule.
We first propose and develop a theoretical model in which the central bank’s opti-
mal behavior is conveniently described by piecewise defined preference functions on
the inflation and the output gaps and we show that this implies thresholds in the
implementation of monetary policy. The empirical results we obtain with Multiple
Adaptive Regression Splines (MARS) confirm the theoretical conjecture.
We apply MARS to estimate the Fed Taylor rule from 1970 to 2014 with the par-
tial adjustment model from Judd and Rudebusch (1998). MARS not only de-
tects actual thresholds in monetary policy, but also fits the data better than the
usual linear models. The main thresholds are detected for inflation rate at 4.31%
95%CI(3.86%, 4.89%) and for the output gap at 0.012 95%CI(−0.0213, 0.0196)1.
As our theoretical framework predicted, an interaction effect appears between the
inflation rate and the output gap. Moreover, under Paul Volcker’s governance, this
methodology detects reactions from the U.S. Federal Reserve Bank that are stronger
than in previous periods and reveals that the inflation gap generates reactions at a
lower threshold level. Our paper thus innovates both theoretically and empirically,
and provides a more complete characterization of the nonlinear feature of the Taylor
Rule.

195%CI corresponds to the Confidence interval at this percentage
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4.1 Introduction.

Over the last two decades, researchers have devoted much effort to analyzing the
factors responsible for observed nonlinearities in the Taylor Rule (henceforth denoted
as TR), and to applying new empirical methodologies to detect and quantify them.
It is of utmost importance to correctly tackle this problem since, if TR estimations
disregard nonlinearities when they are present, the generated coefficients on the
inflation rate and on the output gap will be biased, and the evaluation of the policy
reactions of the central banks will be incorrect and misleading.

In this paper we analyze an important source of nonlinearities in the TR, which, to
the best of our knowledge, has not been considered in the literature: the discrete
changes that the central banks make at certain moments to the weights attached to
deviations of the rate of inflation, and/or of the output gap, from their targets once
one or the two fundamental determinants reach certain thresholds. Such behavior
translates into discrete jumps of the short-term interest rate policy, giving rise to
nonlinearities in the monetary policy rule. Indeed, our main theoretical argument in
this paper is that complex nonlinearities in the TR may arise as a result of specific
-though intuitively simple- characteristics of monetary authority’s preferences.

In the theoretical part of this paper, we derive a dynamic and general Taylor Rule
from a very general social loss function of the central bank. We substitute the
traditional assumption of a quadratic social loss function (that gives rise to a linear
TR) by simply assuming that the central bank has a piecewise-defined social loss
function that depends on the inflation and output gaps, and we derive from it
a monetary policy rule that exhibits thresholds. We show that multiple thresholds
may exist and may interact with each other. On the empirical side, we use the MARS
procedure, which is a technique particularly well suited to endogenously detecting
and quantifying multiple and interacting thresholds in the optimal behavior of the
central banks. We believe that our paper is the first application of this methodology
for the estimation of Taylor Rules.

We use the initial model specification from Judd and Rudebusch (1998) applying
MARS procedure to estimate the U.S. Fed monetary policy rule with monthly data
for the period 1970 to 2014. We detect thresholds for the inflation rate 4.31%
95%CI(3.86%, 4.89%) and at 0.012 95%CI(−0.0213, 0.0196) for the output gap. As
our theoretical framework predicts, we find an interaction between inflation and
output gap. We also estimate a stronger sensitivity of the Fed’s reaction in the
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Volcker-Greenspan period to inflation rate even at a lower threshold than in the
other period which is consistent with the literature; in addition, Bernanke period is
also characterized by a less intensive reaction to inflation rate and output gap.

The rest of the paper is organized as follows: In Section 2, we summarize the relevant
literature on nonlinearities in the TR. We develop optimal nonlinear threshold Taylor
Rules in Section 3, assuming a piecewise-defined structure for the social loss function
of the central bank. In Section 4, we explain the MARS methodology, describe
the data, estimate the model, and in section 5 we compare our results with the
findings. Finally, in Section 6, we present our conclusions and propose a more
complete characterization of the Taylor Rule derived from the empirical findings
that have confirmed our theoretical conjecture.

4.2 Literature review.

Up till now, the literature reports two main theoretical sources of nonlinearities
in the behavior of the central banks. The first one relies upon the asymmetrical
preferences of the central banks, in the sense that they give different weights to
inflation deviations and the output gap depending on the sign of those deviations.
The second source of nonlinearities is nonlinear short run trade-offs between output
and inflation (i.e. nonlinear Phillips Curve). It is easy to show that one or both
sources of nonlinearities give rise to nonlinear TRs when they are included in the
optimization process of the central banks.

As far as the first source is concerned, Robert Nobay and Peel (2003) take the
asymmetric preferences of central banks as given and explores which consequences
derive from this assumption for the monetary policy under both commitment and
discretion. Ruge-Murcia (2002) assumes that central banks have social preferences
that are asymmetric around inflation and unemployment targets, which implies that
both the size and the sign of the deviations matter to the central banker. Cukierman
and Muscatelli (2008) assume that the asymmetries in the social loss function derive
from the fact that the central banks have a stronger aversion to recessions than to
expansions because they must be accountable to democratically elected politicians.
Taking this a step further, some scholars demonstrate that the asymmetric preferen-
ces of central banks generate nonlinearities in the interest-rate reaction rule. See,
for instance, Orphanides and Wieland (2000), Surico (2002), Ruge-Murcia (2002),
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and Cukierman and Muscatelli (2008).

As regards the source of nonlinearities stemming from the structural system, Do-
lado et al. (2005) review the theoretical evidence on concave and/or convex short-run
Phillips curves in the literature, and explain how these nonlinearities generate op-
timal nonlinear monetary reaction functions. Orphanides and Wieland (2000) use
zone-linear Phillips curves to derive an optimal behavior of the central banks that
targets an inflation zone instead of an inflation point. Petersen et al. (2007) emp-
hasize that the inflation gap and the output gap are inherently nonlinear processes,
with output exhibiting short and sharp recessions, but long and smooth recoveries
over the business cycle. Neftci (1984) shows that the rate of unemployment exhibits
this asymmetric dynamics using the framework of finite state Markov processes. Un-
der such circumstances, the U.S. Fed responds differently to negative versus positive
inflation and output shocks when it tries to stabilize the business cycle.

Turning to the literature on the empirical findings, one strand investigates the pre-
sence of nonlinearities by applying parametric modeling techniques. Petersen et al.
(2007), Cukierman and Muscatelli (2008) and Gerlach and Lewis (2014b), among ot-
hers, estimate parametric Smooth Transition AutoRegressive (STAR) models (Gran-
ger et al., 1993). Some authors estimate Fed’s TR with STAR to identify gradual
policy changes between different regimes on the inflation rate (Lamarche and Kou-
stasy, 2012) or on the output gap (Kazanas et al., 2011) or other financial variables
(Gnabo and Moccero, 2015). Considering that the observed nonlinearity in Fed’s
TR may not come from only one threshold variable, Ahmad (2016) proposes to
estimate it with a Multiple Regime STAR (MRSTAR) model that simultaneously
considers the output gap and the inflation rate as threshold variables. He finds diffe-
rent regimes delimited by three thresholds: one on the output gap at 0.0047 and two
on the inflation rate at 1.45% and 3.10%. Although this flexible approach achieves
some interesting results, it is needed a measure of uncertainty around thresholds and
to allow possible interaction effects between the explanatory variables to provide a
more complete description of the regimes in the TR.

On the other hand Kim et al. (2005), Assenmacher-Wesche (2006) and Sims and
Zha (2006) apply Markov regime switching models, Dolado et al. (2005) test the
statistical significance of the interaction term between inflation deviations and the
output gap in the framework of two models: the Euler equation specification, on
the one hand, and an ordered probit model designed to analyze adjustments in the
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nominal interest rate, on the other. Klose (2011) builds a new approach to estimate
nonlinear Taylor reaction functions when asymmetries depend on the state of the
economy.

In a new strand of the empirical literature researchers have begun to apply semi-
parametric methodologies, which enable the analyst to use more flexible specifica-
tions and to estimate nonlinearities using a more data-driven approach. Hayat and
Mishra (2010) apply a generalized framework to explain the reaction of the U.S.
Fed to substantially different levels of both inflation and output gaps. The authors
find that the interaction between deviations in the inflation rate and the output
gap is a significant term of the policy rule in the case of forward-looking inflation
forecasts. De Sá and Portugal (2015) apply the sieve estimation technique, a fully
non parametric approach, to analyze monetary policy in the U.S. and Brazil.

To date, empirical studies on nonlinearities in the TR show contradictory results.
Clarida and Gertler (1997) test for the null hypothesis of symmetry and find evidence
against it in the case of the Bundesbank’s past policy actions. Dolado et al. (2004)
obtain a nonlinear rule for U.S. monetary policy during the recession after 1983,
but not before 1979. Surico (2007a) reaches the opposite conclusion. He finds
that the Fed’s interest rate reacted more strongly to output contractions than to
output expansions of the same magnitude before 1979. Petersen et al. (2007) find a
nonlinear TR for the monetary policy of the U.S. Fed during the 1983-2004 Great
Moderation period. They also discover that the Fed’s monetary actions during the
1970s are well characterized by a linear reaction function. Castro (2011) finds that
the behavior of the U.S. Fed can be accurately described by a linear TR augmented
by an index that reflects the financial conditions of the economy.

Hayat and Mishra (2010) find that the U.S. Fed’s monetary policy reacted with signi-
ficantly greater intensity to changes in inflation rates (and in inflation expectations)
when these rates reached levels in the range of 6.5% to 8.5%. This effect occurs
independently of the prevailing monetary policy regime, which is generally linked to
who chairs the Fed. Sims and Zha (2006) estimate a multivariate model, on U.S.
data since 1959, with regime switching both in the coefficients and the variances of
the model. They conclude that coefficients change as a function of the monetary
regime in force, but not enough to account for the rise and decline of the rate of
inflation in the U.S. during 1970s and 1980s. So, in their opinion, U.S. monetary
policy did not change much from the 1970s to the 1980s. Finally, Cukierman and
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Muscatelli (2008) obtain evidence in favor of nonlinearities in the Taylor Rules of
both the UK and U.S. except during the Volcker era (from September 1979 until
June 1987).

In our paper, we apply the flexible MARS methodology to investigate the monetary
policy of the U.S. Fed. We detect various thresholds as well as interaction effects (and
their confidence intervals) for both the inflation and the output gaps and we show
that MARS provides a more complete characterization of the nonlinear TR than
the other empirical techniques previous researchers have employed. By doing so, we
also confirm our theoretical conjecture about the existence of a much more general -
though simple- social loss function than that used in the previous literature. So, this
paper innovates both theoretically by identifying another source of nonlinearities in
the TR and empirically by making use of a non parametric method with results that
give support to our theoretical approach.

4.3 Central bank behavior with thresholds in
preferences.

In this section, we present a new version of the dynamic model of Svensson (1999), in
which the optimal central bank behavior is obtained from the minimisation of a ge-
neric loss function instead of a quadratic function. We allow this generic function to
vary by regions, depending on the values of the inflation deviations on one hand and
of the output gaps on the other. We demonstrate that the existence of these regions
generates an optimal behavior for the central bank which is described by a Taylor
Rule that possibly exhibits multiple thresholds and interaction effects between the
inflation rate and the output gap2.

4.3.1 The Model.

Let us define a generic central bank loss function, which is composed of two separable
additive and continuous functions of the deviation of the inflation rate from target,
(π̃ = π − π∗), and the output gap (ỹ = y − y∗), respectively:

L(π̃t, ỹt) = [λg(π̃t) + h(ỹt)]

2We provide the solutions for the model in Chapter 3.
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Parameter λ is the relative weight attached to the inflation function, which is as-
sumed to be greater than one to reflect the central bank’s particularly high level of
concern with the losses caused by the inflation differential.

The central bank decides it by minimizing the intertemporal loss function with a
time discount β ∈ (0, 1)

Et
∞∑
s=0
βsL(π̃t+s, ỹt+s) (4.1)

taking into account the dynamic aggregate supply (4.2), the IS function (4.3), and
the Fisher equation (4.4), which are formulated as follows, according to the monetary
transmission mechanism adopted in Svensson (1997) :

πt+1 = πt + αỹt + uπ,t+1 (4.2)

ỹt+1 = δỹt + ηxt − ξrt + uy,t+1 (4.3)

rt = it − Et(πt+1) (4.4)

4.3.2 Solving the dynamic model.

The IS equation in (4.3) is a schedule in which the output gap exhibits gradual ad-
justment and depends on the real interest rate as well as on predetermined variables
xt that may capture other determinants of interest rate setting in open economies
as in Ball (1999). The transmission mechanism of the monetary policy is treated
both in Svensson (1999) and in Ball (1999): the monetary authority changes it and
this in turn modifies rt; equation (4.3) reflects the assumption that this would af-
fect ỹt+1 but not ỹt, and then, ỹt+2 and π̃t+2 in (4.2). This timing convention is
consistent with the extensive literature on the monetary policy transmission mecha-
nism claiming that changes in monetary policy affect output in the short run and
slowly alters the inflation rate later on, Christiano et al. (1999). This transmission
mechanism allows us to simplify the minimisation problem as follows:

min
it
Etβ [λg(π̃t+1) + h(ỹt+1)] + Etβ

2 [λg(π̃t+2) + h(ỹt+2)] (4.5)

s.t.


πt+1 = πt + αỹt + uπ,t+1

ỹt+1 = δỹt + ηxt − ξrt + uy,t+1

rt = it − Et(πt+1)
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The implicit solution for this problem, available in Chapter 3, is a generic TR such
that

it = i(Etπ̃t+1, ỹt) (4.6)

Taking derivatives with respect to the inflation rate deviation and the output gap
helps us to understand how this Taylor Rule works under the generic loss function
adopted here.

∂it
∂π̃t+1

= 1 +
αλEt−1( ∂2g
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t+1

)

δξEt−1( ∂
2h

∂ỹ2
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)

∂it
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∂ỹ2
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)

So, the first order Taylor expansion of this TR will be

it '
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 ỹt (4.7)

It is worth noting the importance of the second derivatives of the loss functions in
determining the values of the TR coefficients: when a generic loss function is used,
the constant coefficients of the traditional TR are replaced by possibly non-constant
coefficients that depend crucially on the values of the second derivatives of the loss
function.

In the particular case where the central bank expects no change in the second de-
rivative of the loss function with respect to the output gap of the following period
and the next one, Et−1(∂

2h

∂ỹ2
t

) = Et−1( ∂
2h

∂ỹ2
t+1

) a simplified version of the Taylor Rule
arises.
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We discuss these expressions and their implications in more detail in the following
section.

4.3.3 Discussion: the Taylor Rule Coefficients.

We have stressed so far that, for our purpose, the most important feature of the cen-
tral bank loss function is its second derivatives in the inflation deviation and output
gap. Let us then specify general assumptions about this loss function and explore
their consequences in how second derivatives affect the Taylor Rule coefficients.

We consider very general though simple characteristics for g() and h() functions
that give rise to interesting non-linearities in the TR, which will take the form of
multiple thresholds: Some of these are associated with the value of a single variable
(for instance, the inflation deviation) and others take place for specific combinations
of two individual variables that interact with each other (for instance, the interaction
between the inflation deviation and the output gap at specific values of each).

We assume both functions are piecewise continuous. Therefore, the whole domain of
π̃ can be split into n disjoint regions {Rπ

1 , R
π
2 , ..., R

π
n} Similarly, the whole domain of

ỹ can be split into m disjoint regions {Ry
1, R

y
2, ..., R

y
m}We assume that the functions

will be strictly convex (i.e., their second derivatives are strictly positive). This
implies that the marginal loss is higher the higher the deviation from targets, which
is a common-sense assumption.

We will see how the TR changes as a result of the combination of four elements:
(1) the characteristics of the second derivatives with respect to the output gap, on
one hand; (2) with respect to the inflation deviation, on the other; (3) the region in
which the economy stands at time t, (ỹt); and (4) the region in which the monetary
authority wants the economy to stand in the coming period (ỹt+1).

Let us consider some cases to observe how TR changes. In the case of the current
output gap ỹt , as well as the short term output gap ỹt+1, lie on the same region Ry

i ,

so that ∂
2h

∂ỹ2
t

= ∂2h

∂ỹ2
t+1

= c2. For simplicity let us assume that this second derivative

is constant, ∂2h

∂ỹ2
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= c2, and similarly for g() , ∂2g

∂π̃2
t+1

= c1.
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So, in this particular case, we obtain a TR function with constant coefficients in
this particular region. In another region these constant coefficients could vary with
changes in c1 and/or c2.

In the case of the current output gap ỹt, as well as the short term output gap
objective ỹt+1, lie on the same region Ry

i , so that ∂
2h

∂ỹ2
t

= ∂2h

∂ỹ2
t+1

and again assume as

before ∂
2h

∂ỹ2
t+1

= c2. By contrast, g() is such that ∂2g

∂π̃2
t+1

is not constant for the whole

domain of g(). Then:
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Consider two adjacent inflation regions such that:
∂2g

∂π̃2
t+1

=
 gi > 0 if π̃t+1 ∈ Rπ

i

gi+1 > gi, if π̃t+1 ∈ Rπ
i+1

In these circumstances, the TR reflects the existence of different regions for the two
components of the loss functions and exhibits threshold behavior:

i(π̃t+1, ỹt) '
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ỹt if π̃t+1 ∈ Rπ

i+1

Consequently, this TR allows us to explain how different reactions by the central
bank depend upon the region characterized by the value of the second derivatives
of functions g() and h(). Moreover, it could explain different and more intensive
central bank reactions when some thresholds have been exceeded. A clear conclusion
arises: If the component of the central bank loss function concerning the output
gap g() and the inflation deviation h() are piecewise continuous and strictly convex
functions, then the TR will be nonlinear and will exhibit possibly complex threshold
behavior. Therefore, since there is no reason for thinking that the central bank has
smooth and homogeneous preferences about the whole domain of the output gap
and inflation deviations, for reliable empirical estimation of the TR, it is necessary
to use sufficiently flexible nonlinear methods, at least in the form of non-constant
parameters with possible multiple thresholds and even interaction effects.
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4.4 Methodology and estimation procedure.

In order to estimate TR that is possibly nonlinear with multiple and interacting
thresholds, we avoid imposing a predefined parametric model. Our strategy consists
of using a data-based methodology to select the model, as well as to estimate it. Mul-
tiple adaptive regression splines (MARS) is a nonparametric procedure that allows
us to endogenously select the best model and estimate it, as well as to endogenously
detect and estimate thresholds if there are any. To date, compared to the Threshold
Autoregressive (TAR) models initially introduced by Tong and Lim (1980),Tong
(1983), and Tong (1990), the MARS methodology has not received much attention
in economics in spite of its great flexibility. Tong’s pioneering contribution gave rise
to a very extensive line of research that explores possible thresholds in economics;
Hansen (2011) provides an excellent review of the prolific line of research derived
from Tong’s work. The basic TAR model assumes that the autoregressive structure
of a variable varies according to the value reached by the variable itself in the re-
cent past. A related line of research in recent decades examines using a threshold
specification in the context of a traditional regression model. In these studies, two
distinct regression models are defined and simultaneously estimated for two disjoint
regions defined in a threshold variable, which needs not be the explained variable.
The study by Shen et al. (1995) is probably the first instance of the use of this type
of model to fit the reaction function of the central bank. In this case, the threshold
parameter is estimated, whereas the threshold variable and its delay parameter are
exogenously determined; they use the current value of the inflation rate as threshold
variable. Baum and Karasulu (1997) go a step further and combine cointegration
and threshold models using the technique of threshold cointegration developed by
Balke and Fomby (1997) to model the Federal Reserve discount policy.

However, even the more sophisticated threshold regression models consider the ex-
istence of only one threshold variable and only one set of disjoint threshold-defined
regions. These are serious limitations for our purpose since we demonstrate that the
TR could exhibit multiple thresholds associated with various threshold variables
and even interactions between them. Lewis and Stevens (1991) present a general
criticism of this double limitation of traditional threshold models and propose the
MARS methodology from Friedman (1991, 1993) to endogenously detect and esti-
mate possible thresholds for each independent variable of the model under study,
together with possible interactions between them. Consequently, in contrast with
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the traditional TAR and threshold regression models, it is unnecessary to determine
which variable generates a threshold behavior.

MARS is a nonparametric estimation procedure that selects and fits the model en-
dogenously detecting and quantifying thresholds and complex nonlinearities if they
exist. Given a set of explanatory variables, MARS fits a model as an expansion in
products of truncated linear spline functions (hinge functions), which are selected
through recursive partitioning strategy with forward and backward passes. By using
products of hinge functions, the procedure accommodates both nonlinearities and
interactions among the explanatory variables as a generalization of Recursive Par-
titioning (RP) (Friedman, 1977). MARS for time series (TSMARS) initiated by
Lewis and Stevens (1991) has been extensively explored by Keogh (2010). While
SETAR and the self-exciting open-loop threshold autoregressive (TARSO) models of
Tong (1990) identify piecewise linear functions over disjoint subregions, with discon-
tinuities at the boundaries of the regions, TSMARS methodology obtains nonlinear
threshold models continuous in the domain of the predictor variables and with pos-
sible interactions among lagged predictor variables. Therefore TSMARS constitutes
a further generalization of Tong’s models (Chung, 2012).

MARS seeks to model the dependence of variable yt on a set of explanatory variables
x1
t , ..., x

p
t (where some of these variables may be lagged values of other, i.e. xptmight

be x1
t−1 for instance). The true unknown model

yt = f(x1
t , ..., x

p
t ) + εt

over some domain DεRp containing the data and the error term εt is assumed to be
independently distributed with E(εt) = 0 and variance E(ε2

t ) = σ2. The function
f(x) is the true relationship between outcome time-series (yt) and a vector of p
explanatory variables xt = (x1

t . . . .x
p
t ) that we want to estimate from the data.

MARS procedure approximates this function as:

yt = β0 +
M∑
m=1

βmbm (xt) + εt (4.9)

where;

β0 is a constant
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βm is the coefficient for the mth basis function, m = 1, ...,M

bm(xt) is the mth basis function, m = 1, ...,M

εt is an independently distributed error term with E(εt) = 0 and E(ε2
t ) = σ2

The basis functions are products of up to a maximum interaction order mi trun-
cated linear splines or hinge functions (we usually restrict mi = 2), describing the
relationship between one or more explanatory variables and the outcome in terms of
segments of stable association separated by knots or threshold values. These inte-
racting hinge functions allow us to identify possible interactions between variables.
Namely, for mi = 2 the mth basis function takes one of the following two forms:

No interaction: bm (xt) = hm
(
xkt , τk,m

)
for some k = 1, . . . , p

With interaction: bm (xt) = hm
(
xkt , τk,m

)
·hm

(
xjt , τj,m

)
for some k, j = 1, . . . , p, k 6= j

where τk,m is the threshold value of xkt in themth basis function and where h
(
xkt , τk,m

)
is a hinge function (or truncated linear spline) that takes the following form depen-
ding on whether the basis function takes effect above or below the threshold τk,m(
See Figure 4.1)

a) above the threshold: hm
(
xkt , τk,m

)
= max(xkt − τk,m, 0)

b) below the threshold: hm
(
xkt , τk,m

)
= max(τkm − xkt , 0)

Figure 4.1: Graph of the two truncated linear spline or hinge functions.
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If no knot (threshold) is detected, then a simple linear association between explana-
tory and outcome variables can be specified as a single function applied across the
total range of values of the explanatory variable.

In the algorithm, once we define xt = (x1
t . . . .x

p
t ) with all potentially significant

explanatory variables, including the associated lags, the model identification and
estimation proceed by an automated and iterative process. The description that
follows is mainly based on Friedman (1991, 1993); Chung (2012).

Forward pass: In general terms, starting with the simplest model containing only a
constant basis function, MARS iteratively generates a matrix of basis functions in
a forward stepwise manner. Candidate basis functions are added according to their
ability to improve model fit by minimizing the residual sum of squares (RSS) until
the model reaches a predefined limit of complexity. The candidate basis functions
are identified by a nested exhaustive search looping over the existing set of basis
functions, and all other possible explanatory variables (or interactions) and knot
(threshold) positions.

This forward pass procedure provides a model that overfits the data. Therefore, a
pruning process is required to remove the subregions whose product basis functions
do not sufficiently contribute to the accuracy of the model.

Backward (pruning) pass: During the backward pass, MARS iteratively prunes the
model obtained from the forward pass. It removes basis functions to reduce the
value of a modified form of the generalized cross validation (MGCV ) criterion that
penalizes model complexity, based on Craven and Wahba (1979) This pruning pass
runs until MGCV cannot be further reduced. This criterion is defined as

MGCV =
1
T

∑T
t=1(yt − f̂M (xt))2

[1− C (M) /T ]2

where T is the number of observations; C(M) is the model complexity penalty
function which is defined as C(M) = (M + 1) +dM, where M is the number of basis
functions retained in the model and M+1 the number of parameters in f̂M (xt)) and
d represents the degree of additional contribution brought by a basis function to the
model complexity, Friedman (1991) suggests a value for d between 2 and 4; usually
d = 3.
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Therefore, this MGCV criterion accounts for the inherent improvement in explained
variance associated with increasing numbers of basis-functions, and its calculation
allows estimates of the relative importance of each basis function so the model
selection process converges on a set of basis functions that most efficiently explain
variation in the dependent variable.

For easier understanding, we provide Figure 7.3 that schematize OLS procedure in
the left column and MARS procedure in the right one. While OLS directly proceeds
to estimate model parameters using the data, MARS uses them in each iteration of
forward and backward passes to select and estimate the final model. During these
passes, each variable x may be split into two variables z1 = max(x − τ, 0) and
z2 = max(τ − x, 0); therefore, at the end, MARS estimates a linear model with a
matrix of split explanatory variables corresponding to each basis function detected
for the final model. Consequently, OLS can be understood as a particular case of
MARS where forward and pruning passes do not detect any threshold for any of the
explanatory variables.

Figure 4.2: Comparison between the Ordinary Least Squares (OLS) estimation
and Multiple Adaptive Regression Spline (MARS) procedure.
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To exploit MARS capabilities for estimating TR for US Fed, we propose the following
protocol.
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Step 1. Set the pool of explanatory variables and their lags.

To estimate TR, we use monthly data to have time series as large as possible and
because it is consistent with the frequency of the monetary authority meetings.
We calculate inflation rate, expressed in annual rates, from the seasonally adjusted
monthly Consumer Prices Index accessible in statistics office of the monetary aut-
hority. To compute the monthly output gap, we apply the Hodrick-Prescott filter
with a smoothing parameter equal to 14400 (see Hodrick and Prescott (1997)) to
the logarithm of the Industrial Production Index, that is usually available in the
Statistics Office databases of the economic region. Using lagged values for the ex-
planatory variables tackles the endogeneity problem and is also consistent with the
idea that the monetary authority decisions on nominal interest rates require infor-
mation that is time-consuming to collect. In addition, when data covers periods
defined by different chairmanships of the monetary authority or some abrupt chan-
ges in the economy as a Crisis or an enlargement (as in the European Union) we
include dummies variables in the model to capture possible effects.

Step 2. Model estimation with MARS.

To estimate TR we employ the partial adjustment specification from Judd and
Rudebusch (1998) that incorporates interest rate smoothing. Let us assume i∗t is
the interest rate recommended by the monetary authority such that

i∗t = r∗ + πt + α(πt − π∗) + β1ỹt + β2ỹt−1

and we use the partial adjustment process
∆it = γ(i∗t − it−1) + ρ∆it−1 (4.10)

where γ is the gradual adjustment coefficient. Therefore, we firstly construct the
MARS specification with the basis functions and possible interactions:

i∗t = (β0 + δdt) +
Mπ∑
mπ=1

(βmπ + δmπdt)b[πt−1, τmπ ]+ (4.11)

My

+
∑
my=1

(βmy + δmydt)b[ỹt−1, τmy ]+

Myπ

+
∑

myπ=1
(βmyπ + δmyπdt)b[πt−1, τπ,myπ ]b[ỹt−1, τy,myπ ] + ρ∆it−1 + εt

dt : dummy variable

The model incorporates dummy variables to distinguish between the three US Fed
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chairmanship periods if relevant.

After estimating 4.11, we estimate 4.10with an ARIMA transfer function taking into
account thresholds detected in i∗t .

Step 3. Diagnostic checks.

For the adequacy of model fit, we provide Box Pierce test (Box and Pierce, 1970)to
check the absence of significant residual autoregression and the Akaike Information
Criterion (Akaike, 1987)(AIC) or its corrected bias version for small samples AICc
(Hurvich and Tsai, 1989), Schwarz criterion also known as Bayesian Information cri-
terion (BIC) (Schwarz et al., 1978) and the Log-likelihood criterion for comparison
purposes between models. (See Table 4.1)

Step 4. Confidence intervals for thresholds values.

In the absence of an existing method for deriving measures of uncertainty around
thresholds derived from non-parametric MARS models, we adapt to MARS model
a procedure inspired by Hansen (2000) and improved by Donayre et al. (2018) to
compute confidence intervals for thresholds parameters that constitutes an innova-
tion by itself. We adapted this procedure for MARS estimations with more than one
explanatory variable containing thresholds, and one or more thresholds per variable,
by using the partial residuals – i.e. the estimated part of the outcome not explained
by other explanatory variables and their thresholds. To simplify the explanation, let
us suppose that in modeling y, we have two explanatory variables, x1 and x2, and
that a threshold has been detected by MARS for each one, at τx1 and τx2 respecti-
vely. To obtain the confidence interval associated with τx1 , we obtain the “partial
residuals relative to x1” , say y(x1), which is the part of y not explained byx2 (and
its threshold). We obtain it by subtracting from y the part of the full model related
exclusively with x2. Once y(x1) is obtained, we can apply on the data of y(x1) and
x1 the procedure of Hansen (2000) improved by Donayre et al. (2018). In that way
we obtain a confidence interval for τ(x1) conditional on the estimated values of the
parameters (slopes and thresholds) related to x2. We then repeat the same proce-
dure interchanging the roles of x1 and x2, and we now obtain the confidence intervals
for τ(x2) conditional on the estimated values of the parameters related tox1. We
also use the correction procedure for heteroskedasticity proposed by Hansen (2000).
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4.5 Results.

We summarize linear Least Square (OLS) and MARS estimations in a table; the
column for the detected thresholds also provides significant coefficients for second
degree of interaction between variables such as the inflation and output gap and
dummies for different periods of the Fed. For instance, interaction between the
inflation deviation and the output gap gives us the estimated coefficient and the
threshold values related to each variable involved in it. In the case of an interaction
that results from an explanatory variable and a dummy variable, the coefficient
reflects the contribution of that variable in the fulfillment of the TR, conditioned on
the period defined by the dummy variable. In other words, given the definition of
the dummy variables, the coefficient indicates the amount by which the contribution
of the explanatory variable changes with respect to the pre-Volcker period. At the
bottom of the table we provide the AIC, AICc, and BIC criteria, as well as the
value of the log-likelihood function and a measure of the relative advantage of the
MARS procedure over OLS for evaluating the improvements in goodness of fit.

Additionally, for each MARS estimation we present three-dimensional graphs that
reflect the contributions of the variables to the interest rate evolution, which allow us
to understand the behavior of the TR over different regions of the relevant variables.
We also present three-dimensional graphs for OLS estimation in order to compare it
with the MARS methodology. Additionally, we offer the autocorrelation functions
of the residuals in each case.

Table 4.1 is structured in two sections: the upper one contains the estimations for
the coefficients of the variables of the model. There are two columns, one for the
thresholds and the second for the coefficients respectively under MARS estimation
and one column for OLS coefficients. Each threshold is presented with its 95% con-
fidence interval (CI). The sign "<" or ">" before the value of the detected threshold
indicates how the estimated coefficient of the same row is related to the threshold.
The interactions between two variables with a significant coefficient, selected by the
MARS procedure, appear in a row with the name of both variables together with the
threshold associated with each variable, except for cases where a dummy variable is
involved. The second section displays different measures of fit for MARS and linear
estimations; the middle column allows a comparison between both approaches since
it contains the improvement yielded by fitting with MARS instead of OLS.

The MARS estimation of the model 4.8 reveals that the most important detected
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threshold for inflation rate is located at 4.31% 95%CI(3.86%, 4.89%) for the main
effect and it is also located at 4.31% but with a wider 95%CI(2.77%, 6.56%) for
the interaction effect with output gap. Clearly, the intensity of the Fed’s reaction
above this threshold increases and as our flexible and comprehensive theoretical
model permits, we find an interaction effect between the inflation rate and the
output gap. The threshold for the output gap in this interaction effect is at 0.012
95%CI(−0.0213, 0.0196).

Significant coefficients are found for Volcker and Bernanke dummy variables. Ac-
cording to this, following the model, the different governance periods in the Fed are
detected as affecting changes in the interest rate. While Bernanke affects lowering
in parallel the contribution of inflation and output gap to the change in interest
rate, Volcker-Greenspan period shows a systematically greater sensitivity of the in-
terest rate to inflation then in other periods. This stronger reaction of the monetary
authority to inflation rate starts from a lower threshold than in other periods, at
2.87% 95%CI(2.74%, 3.17%) and also to output gap with a threshold at zero −0.001
95%CI(−0.0062, 0.0045)

According to the substantial improvements in the measures of fit, AIC, AICc, BIC
and Log-Likelihood, the MARS estimation achieves a better fit than linear estima-
tion.
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Table 4.1: Main results of the each country estimation.

Dependent variable

4interestt
MARS Linear

variables thresholds coefficients coefficients

intercept 0.0067 * 0.0012 *

<0.0431 (0.0386, 0.0489) 0.0614
inflationt−1 >0.0431 (0.0386, 0.0489) 0.1145 * 0.0278 *

> 0.0761 (0.0714, 0.0925) -0.2722 *
inflationt−1 >0.0431 (0.0277, 0.0656)

3.4363 *x outputt−1 > 0.0012 (-0.0213, 0.0196 )
inflationt−1
x V olckert

> 0.0287 (0.0274, 0.0317 ) 0.0991 *

outputt−1 < -0.001 (-0.0062, 0.0045) 0.1006 ·
x V olckert > -0.001 (-0.0062, 0.0045) 0.1878 *
Bernanket -0.0035 * -0.0015 *
interestt−1 -0.1483 * -0.0392 *
4interestt−1 0.4876 * 0.3801 *
ACF residual

Box Pierce Test
p-value

0.1732 0.1601

Improvements of measure of fit MARS vs Linear
AIC -4141.74 16.38 -4125.36
AICc -4141.39 16.25 -4125.15
BIC -4103.34 7.84 -4095.49

LogLik 2079.87 10.19 2069.68

Figure 4.3 shows the three dimensional contribution of the independent variables by
pairs to the change of the interest rate for both in MARS and linear estimation3.
We also provide the autocorrelation function of the residuals to demonstrate they
are compatible with white noise.

3In these graphs, contribution of the inflation rate to the interest rate in the MARS estimation
shows planes with close to zero slope for a very high level of inflation gaps, data related to both
oil crisis.
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Figure 4.3: Graphs of the model 4.11.

The three-dimensional contribution graphs clearly illustrate that flexibility of MARS
provides a better adjustment to data; they also illustrate that the Fed behavior is
fully compatible with the assumption of variable curvature of the social loss function
over regions that we stated in our theoretical model and that we expected in the
empirical application. In addition, it is easy to visualize the combined effect between
inflation and output gap.

4.6 Conclusions.

In this paper we focus on the nonlinearities in Taylor Rules that we derived the-
oretically from the characteristics of the preferences of the central banks. Unlike
the traditional approach, which imposes specific functional forms, we propose using
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central bank’s generic piecewise-defined social preferences. We show that the social
preferences of the central bank are a source of multiple thresholds and interaction
effects in the resulting TR. Also, we propose to estimate this nonlinear TR with
Multiple Adaptive Regression Splines, a flexible nonparametric estimation proce-
dure that enables us to endogenously detect various forms and combinations of
thresholds in the monetary policy responses. To the best of our knowledge, our
paper is the first application of this methodology to the estimation of TRs. We es-
timate the TR for the United States from 1970 to 2014 with monthly data. For the
estimated model, the measures of fit AIC,AICc,BIC, and Log-Likelihood criteria
indicate that MARS fits better data than linear estimation. Moreover, we detect
thresholds for the inflation rate at 4.31% 95%CI(3.86%, 4.89%) and for the output
gap at 0.0012 95%CI(−0.0213, 0.0196) . As the theoretical framework predicts, we
also find an interaction between inflation and output gap. We also estimate a stron-
ger sensitivity of the Fed’s reaction in the Volcker-Greenspan period to inflation
rate even at a lower threshold than in the other period which is consistent with
the literature; in addition, Bernanke period is also characterized by a less intensive
reaction to inflation and output gap.

Our empirical methodology also allows us to assess in a clearer and more rigorous way
the behavior of the Fed in each governance period compared with previous analysis.
All in all, the application of the MARS methodology, which is particularly well
suited to detecting and quantifying thresholds in the TR, not only gives support to
our theoretical conjecture but also provides a more complete characterization of the
nonlinear TR than alternative empirical techniques applied so far in the literature.

4.7 Appendix.

4.7.1 Time Series with detected thresholds.

In order to illustrate the estimation of 5.2, we provide a graph of interest rate time
series in which periods where inflation values above the detected threshold, 4.31%,
are clearly identified.
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Figure 4.4: Federal fund rate and periods where inflation was above the detected
threshold, 0.043.

4.7.2 From MARS to contributions of the variables.

In a linear estimation, the provided coefficients directly correspond to the contribu-
tions of each explanatory variable to the dependent variable. However, in MARS,
we have a group of basis functions setting up different regions and therefore we
should combine coefficients of each basis function to obtain the contribution of an
explanatory variable to the dependent variable on each region.

If we are interested in quantifying the contribution of a given variable at a specific
point of the variables space, we must first identify the region in which that point is
located; then, we need to identify the basis functions that are active in that region
for the relevant variables in order to compute the corresponding contribution. The
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contribution will be a composition of the β′s of those relevant variables. For a better
understanding, let us consider an example presented in Table 4.1. For example, let us
consider to evaluate the estimated contribution of the inflation rate to the change of
the interest rate during the previous Volcker period at the point where the inflation
rate is 5% and the output gap is 0.05 [point (π = 0.05, ỹ = 0.05, dV = 0, dB = 0)].
We first identify all the coefficients that are relevant in the region of this point to
compute the contribution of the inflation rateβ: 0.0067 0.1145, 3.4363

From Table 4.1, we can construct the estimated equation which is active in the
region at the point:

4it = 0.0067 + 0.1145max[(πt−1 − 0.0431), 0] +3.4363max[(πt−1 − 0.0431)(ỹt−1 −
0.0012), 0]− 0.1483it−1 + 0.48764it−1

Once the relevant equation is built, we can obtain the contribution of each explana-
tory variable in that region.

4it = 0.0067 + 0.1145πt−1 − 0.004935 +3.4363πt−1ỹt−1 − 0.0385πt−1 − 0.1481ỹt−1 −
0.00166− 0.1483it−1 + 0.48764it−1

4it = 0.000105+0.076πt−1+3.4363πt−1ỹt−1−0.1481ỹt−1−0.1483it−1+0.48764it−1

For the ỹt−1 = 0.05 the slope of the contribution of the inflation rate will be 0.2478
and for the πt−1 = 0.05 the slope of the contribution of the output gap will be 0.0275

If we consider the same point but in the Volcker period we will obtain

4it = 0.0067 + 0.1145max[(πt−1 − 0.0431), 0] + 3.4363max[(πt−1 − 0.0431)(ỹt−1 −
0.0012), 0] + 0.1878 ∗max[ỹt−1 − (−0.001), 0]− 0.1483it−1 + 0.48764it−1

4it = 0.000105 + 0.076πt−1 + 3.4363πt−1ỹt−1 − 0.1481ỹt−1 + 0.1878ỹt−1+
+ 0.1878 ∗ 0.001− 0.1483it−1 + 0.48764it−1

4it = 0.0002928+0.076πt−1+3.4363πt−1ỹt−1+0.0397ỹt−1−0.1483it−1+0.48764it−1
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5 New insights into the nonlinearity
of the ECB Taylor Rule.

We apply a nonparametric procedure, Multiple Adaptive Regression Splines (MARS),
to endogenously select the best multiple threshold model for the European Central
Bank (ECB) Taylor Rule (TR). MARS offers the advantage of not excluding simpler
models if they better fit the data. On monthly data from 1/2000 to 9/2016, the TR
exhibits thresholds for both the output gap and inflation and uncover interesting
information about the different sensitivity of the ECB to each variable. We conclude
that the ECB cares more about the economic activity than officially declared and
reacts to inflation deviations only if they sufficiently exceed the official 2% target.
We also detect an overall shift in the monetary policy during the 2008 financial cri-
sis that pushed the system towards the Zero Lower Bound (ZLB). We reach a more
complete description of the ECB TR than published so far.

5.1 Introduction

We estimate a non linear TR for the ECB within a very flexible empirical frame-
work. We use the nonparametric MARS methodology (Friedman, 1991; Lewis and
Stevens, 1991; Keogh, 2010) which endogenously detects whether the ECB decisions
concerning changes in the interest rate varies with the magnitude and the sign of
the output gap and inflation, and whether it is sensitive to certain combinations of
both magnitudes. This method can estimate models with multiple and endogenously
detected thresholds and transition variables with possible interactions. Therefore,
it offers empirical results of the ECB Taylor rule much more general than those
published to date. Most nonlinear ECB reaction functions estimated so far assume
that the Taylor rule is asymmetric around exogenously fixed targets for the output
gap (zero value) and for the inflation rate (2% value), assuming that these targets
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actually are the relevant ones for the ECB. See Surico (2007b), Aguiar and Mar-
tins (2008), Ikeda (2010) and Klose (2011). Kulikauskas (2014) on the other hand,
inspired in Gerdesmeier and Roffia (2004) and Gerlach and Schnabel (2000), uses
nonlinear threshold regressions with only one transition variable at a time. Finally,
Gerlach and Lewis (2014a,b) address the existence of a structural break around the
2008 crisis within an otherwise linear Taylor rule. Since MARS does not preclude
the existence of structural changes, all the aforementioned models are in fact parti-
cular cases of the models that MARS is able to reveal, and are thus not excluded
from our analysis.

Using monthly data for the period 1/2000 to 9/2016 we obtain a data-based TR
that exhibits thresholds for both the output gap and the inflation rate and obtain
interesting information about the different sensitivity of the ECB to each variable1.
We also detect an overall shift in the monetary policy as a result of the 2008 financial
crisis that pushed the system into the vecinity of the Zero Lower Bound (ZLB).
We therefore reach a more complex and complete description of the ECB reaction
function than published so far.

5.2 The model and estimations

The decision of estimating the TR with MARS stems from theoretical results obtai-
ned by Nebot et al. (2016). They assume a generic CB loss function with the only
characteristic that the amount of the loss may vary by region per inflation deviati-
ons and output gaps, reflecting that the ECB is more sensitive to inflation and/or
output gaps in some intervals of these variables than in others. They show that this
loss function can generate a TR with multiple thresholds for inflation and output
gaps and even interaction effects. Their loss function is composed of two separable
additive piecewise-continuous functions of the deviation of inflation from target (
π̃ = π − π∗) and the output gap (ỹ = y − y∗), respectively:

L(π̃t, ỹt) = [g(π̃t) + h(ỹt)]

1We use data of monthly frequency because MARS needs an important amount of data to select
and estimate the best model. Our sample period starts in 1/2000 for the following reasons: a)
Eurostat Industrial Production Index are estimated values for 1999 in contrast with the normal
values from 2000 onwards; b) computation of the inflation rates of 1999 needs the monthly
HCPI of 1998, a year in which the euro was not operating yet. Even so, we also estimated the
model with data from 1/1999 to 9/2016, and obtained no significant differences neither between
coefficients nor between thresholds.
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From that generic form they demonstrate that the constant coefficients of the tra-
ditional TR are replaced by possibly non-constant coefficients that depend crucially
on the values of the second derivatives of the loss function and can vary by region:

i∗t ' φπ

[
Et−1( ∂2g

∂π̃2
t+1

), Et−1( ∂
2h

∂ỹ2
t+1

)
]
Etπ̃t+1 + φy

[
Et−1( ∂2g

∂π̃2
t+1

), Et−1(∂
2h

∂ỹ2
t

), Et−1( ∂
2h

∂ỹ2
t+1

)
]
ỹt (5.1)

The estimation of the TR should then avoid imposing a predefined nonlinear pa-
rametric model. The non parametric MARS procedure allows for endogenously
detecting possible thresholds for each independent variable, as well as interactions,
without excluding simpler (or even linear) specifications if they fit better.

In spite of its great flexibility, MARS has not received as much attention in economics
as the TAR models introduced by Tong and Lim (1980) and Tong (1983). However,
estimations of the TR with TAR or Threshold Regression models impose one specific
threshold variable and assume a unique threshold (Shen et al. (1995) and Baum
and Karasulu (1997)). Furthermore, since the TR can exhibit multiple thresholds
associated with various variables this is too limiting. For such situations, Lewis and
Stevens (1991) propose employing the greater generality of MARS, which avoids
presetting which variable generates a threshold behaviour.

Thus, we use MARS to estimate the TR on monthly eurozone data covering three
ECB chairmanship periods (Duisenberg, 1/2000 to 10/2003; Trichet, 11/2003 to
10/2011; Draghi, 11/2011 to 9/2016). Per the literature we use the Euro Overnight
Index Average (EONIA) to derive the nominal interest. rate2. We compute the
inflation rate, expressed in annual rates, from the seasonally-adjusted monthly Har-
monized Consumer Prices Index. We compute the monthly output gap by applying
the Hodrick-Prescott filter to Industrial Production Index in logarithm (see Hodrick
and Prescott (1997)). The model specification is based on two ideas.

First, we introduce thresholds in the basic TR specification (Taylor (1999)), inclu-
ding dummy variables -dated in October 2008, after the Lehman-Brothers bankrup-
tcy3 to account for a general structural change that might have occurred in the

2Working with EONIA interest rates presents the advantage of not being constrained by the Zero
Lower Bound region as would be the case with official policy rates; this avoids the econometric
problems associated with censored data.

3We have also estimated different models moving the Crisis dummy from 6 months before to
6 months after the proposed date, with no changes either in the detected thresholds and no
significant changes in the estimated coefficients.
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model with the 2008 financial crisis4,5.

The MARS specification for i∗t in (5.1), with possible interaction between explana-
tory variables, is:

i∗t = (β0 + δ1dCt) +
Mπ∑
mπ=1

(βmπ + δ1,mπdCt)B[πt−1, τmπ ]+ (5.2)

My

+
∑
my=1

(βmy + δ1,mydCt)B[ỹt−1, τmy ]+

Myπ

+
∑

myπ=1
(βmyπ + δ1,myπdCt)B[πt−1, τπ,myπ ]B[ỹt−1, τy,myπ ] + εt

dCt : crisis dummy

Given a variable xt and an endogenously detected threshold τ associated to it, each
basis function B[xt, τ ] can be B[xt, τ ] = max[xt−τ, 0] or B[xt, t] = max[τ−xt, 0], to
allow for lower and/or upper thresholds. When a threshold in a regressor is detected,
MARS splits it into two separable variables (see for instance Keogh (2010)): one
with values under the threshold and another with values above it. Hence, from a
given matrix of regressors and a set of thresholds, we obtain an enhanced matrix
of split regressors. Using lagged values for the explanatory variables tackles the
endogeneity problem and is also consistent with the idea that the ECB decisions on
nominal interest rates require information that is time-consuming to collect.

Second, we adopt the partial adjustment process of the interest rate considered in
Judd and Rudebusch (1998)

∆it = ρ(i∗t − it−1) + (1− ρ)∆it−1 (5.3)

where i* comes from (5.2).

So, for the EONIA, the partial adjustment is:

4We checked for possible alterations of the monetary policy decisions as a result of the enlargement
of the Eurozone after May 2004, by including a dummy variable that activates from that date
onwards; no structural break was detected before and after the enlargement process.

5We also introduced dummy variables to distinguish between Duisenberg’s, Trichet’s and Draghi’s
chairmanships, but they were non significant.
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∆EONIAt = ρ1(i∗t − EONIAt−1) + ρ2∆EONIAt−1 (5.4)

Our estimation procedure comprises two sub-steps:

1. We apply MARS and detect the existence of thresholds, saving the enhanced
matrix of split regressors into basis functions6.

2. We iteratively estimate an ARIMA transfer function with the vectors of the en-
hanced matrix as regressors. In each loop, the least significant variable is eliminated
until the estimation process converges to a model in which all the estimated coef-
ficients are significant at 5% and the errors are compatible with white noise. The
objective of this second sub-step is to make a more reliable statistical inference of
the parameters of the final model. Our procedure applies MARS on time series data
following TS-MARS developed by Keogh (2010). We created codes in R for esti-
mations and processing the results. The main packages for estimation and plotting
results are Earth and Plotmo (Milborrow (2009, 2015)).

Table 5.1 shows our final estimations. We offer the results from TS-MARS and
from the Linear Transfer Function estimation as a benchmark (MARS and LTF
columns respectively). We also present several goodness of fit measures and the
differences between the two estimations to assess the improvements obtained with
our approach. Additionally, the autocorrelation functions of the residuals of the
TS-MARS estimation and the Box Pierce test, also provided, indicate no left auto-
correlation. MARS reliably yields a better goodness of fit per AIC, AICC, BIC, and
LogLikelihood measures than linear estimations.

6As usual for MARS estimations, we discard detection of possible thresholds in the 10% of extreme
values of the sample.
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Table 5.1: Estimation of ECB Taylor Rule.

Dependent 

variable: EONIA
LTF

Variables   Coefficient Threshold Coefficient

Inflation   0.3737** > 0.02666 0.1024*

0.0389* > ‐0.0172

0.122*** < ‐0.0172

Crisis ‐0.0043* ‐0.0046**

AR(3) 0.4177*** 0.4006***

ma(1) ‐0.2285** ‐0.2334**

dof 182 186

Reidual S.E   0.00165 0.0017037

Measures of fit

AIC ‐1959.60 10.57 ‐1949.02

AICC ‐1956.96 9.62 ‐1947.34

BIC ‐1936.58 7.28 ‐1929.29

LogLik 986.80 6.29 980.51

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Box Pierce test Chi2= 2.7301, df = 6, p-value = 0.8419

MARS

Improvements MARS vs linear TF

Output gap  0.0625***

Estimated thresholds with their respective 95% confidence interval:
for the inflation rate 2.66%; (2.46%, 2.83%) and for the output gap −0.0172

The first conclusion from 5.1 is that the TR is indeed non linear and characterized
by thresholds both in inflation and in output gap. The inflation and output gap
coefficients have the expected positive signs. As for the output gap, the ECB reaction
is much less intensive with positive or slightly negative output gaps (above -0.0172)
than with more negative ones (below -0.0172)7. These results reveal that the ECB

7Our output gap threshold is close to the threshold detected by Kulikauskas (2014), who separates
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cares much more about the economic activity than what is officially declared. On
the other hand, the ECB reacts to inflation only when it exceeds 2,66%, more than
half a point above its declared 2% inflation target, and its reaction is then, but only
then, much stronger than with respect to the output gap. Finally, the 2008 crisis
dummy variable does not affect neither the coefficients nor the thresholds; it only
shifts the whole Taylor rule downwards by -0.0043. This probably reflects a decrease
in the equilibrium interest rate in the ZLB period.

5.1 helps to interpret our results in the light of the historical evolution of the data.
The threshold values for inflation and for the output gap are represented with ho-
rizontal lines, as well as the official 2% inflation official objective of the ECB; the
vertical shaded areas identify the periods of inflation rate above 2.66%. It is worth
noting that the periods of intense inflation (above 2,66%) or intense negative out-
put gap (below -0.0172) have been unfrequent and short-lived. These periods are
precisely those in which the ECB reacted with more intensity to the determinants
of its monetary policy. The rest of the time, our results indicate that the ECB has
conducted a moderate policy guided more by the economic activity than by the level
of inflation.

the economy into two states according to an output gap value estimated at -0.0135. However,
he obtained either non-significant or negative coefficients for ECB response to inflation rates,
while we obtain a more complete map of ECB behaviour.
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Figure 5.1: Inflation and output gap time series.

5.3 Conclusion

In this paper we obtain a TR with multiple thresholds, which can be theoretically
derived from general and plausible characteristics of CB preferences. We use the
MARS procedure adapted to time series to endogenously detect thresholds using
the ARIMA transfer function refinement to whiten the error to increase inference
reliability.

To summarize our results: a) we detect thresholds both in the output gap and in the
inflation rate; b) the threshold level for the output gap is identified at −0.0172; 95%;
c) the ECB reaction is three times more intensive for output gaps below -0.0172 than
above it; d) the ECB is sensitive to the inflation rate only for high levels of inflation,
namely above 2.66%; 95%; e) above that level of inflation the ECB is much more
sensitive to inflation than to the output gap; f) the 2008 crisis provoked a more
abrupt decrease of the interest rate than expected according to the macroeconomic
circumstances, which is consistent with the theoretical literature on optimal mone-
tary policy in the vicinity of ZLB. Our empirical results also indicate that there are
no significant policy differences between the three successive chairmanships of the
ECB.
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5.3 Conclusion

We conclude that the ECB cares more about the economic activity than officially
declared and reacts intensively to inflation deviations once they sufficiently exceed
the official 2% target.

Finally, our results provide empirical support to Nebot et al. (2016) theoretical
conjecture and offer a more complete characterization of the ECB Taylor Rule than
more conventional approaches used to date.
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6 A model for nonlinear Okun’s law.

Since Okun (1962) formally stated the existence of an empirical negative relationship
between growth and variations of the unemployment rate from US statistical data,
numerous studies have focused on verifying the robustness of Okun’s law but very
few ones attempted to provide a theoretical foundation to identify possible factors
that cause the observed patterns. Prachowny (1993); Zerbo et al. (2018) model
linear Okun’s law from production functions. Adachi et al. (2015) use efficiency
wages in a Solow’s model to state a linear Okun’s law in the steady state. None of
them addresses the theoretical foundations of the nonlinearity of Okun’s law.

In this section, our purpose consist of developing a simple model that provides
nonlinear Okun’s law with a theoretical foundation. In their survey, Silvapulle et al.
(2004) collect three main theoretical hypotheses to explain asymmetries in Okun’s
Law:

• Hypothesis 1 (H1) - The “Institutional rigidity hypothesis” has to do with the
fact that employers face institutional restrictions to lay off workers, so that
employers fire less workers than desired in bad times.

• Hypothesis 2 (H2) - The “Labor hoarding hypothesis” reflects the impact on
unemployment of the employer’s decision to invest in the training of workers.
Firms with trained workers are loath to fire them in recessions.

• Hypothesis 3 (H3) - The “Firm’s risk aversion hypothesis” that justifies a
stronger response of unemployment in recession than in expansions is related
to the fact that employers give more weight to bad news than to good ones.

Taking separately each hypothesis, Okun’s law function may show at least two
different shapes. Under the “Institutional rigidity hypothesis” and the “Labour
hoarding hypothesis” the response of unemployment to economic activity would be
less intensive in recessions than in expansions. So that, it implies a concave Okun’s
law. On the opposite, the “Firm’s risk aversion hypothesis” justifies a stronger
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response of unemployment in recessions than in expansions. As a result, Okun’s law
exhibits a convex functional form.

As the main empirical studies point out the convex functional form of Okun’s law,
in this chapter, we develop a model assuming firm’s risk aversion. We introduce
the possibility that the risk aversion coefficient can be piecewise step function on
economic activity. The result will be a convex Okun’s law function with thresholds
related to the jumps in the piecewise step function of the risk aversion coefficient.

Let us assume there exist L competitive and risk averse firms maximizing profits
in an economy. In the short run, firms face capital cost as a fixed cost and they
maximize profits hiring nt workers at wage wt .

Max
nt

ce[yt]− wtnt − rk

The output yt with p = 1 corresponds to revenue. It is driven by a stochastic process.
The risk averse decision-takers in firms decide taking into account an approach to the
certainty equivalent function ce[y] (Sandmo, 1971; Subrahmanyam and Thomadakis,
1980) that we define as:

ce[yt] = E[yt]−
1
2raV ar[yt]

where ra is the Arrow Pratt risk aversion coefficient. (Pratt, 1964)

We assume the risk aversion coefficient ra shall depend on the overall state of the
economy, Yt. It means that firm’s decision-takers are concerned about the overall
economic activity news of the country or region. We define ra(4Y ) as a piecewise
step function increasing in its argument. The greater the change in the output, the
greater the risk aversion coefficient, ra.

Let us assume that the production of each competitive firm follows the same Cobb
Douglas function yt = Atk

α
t n

1−α
t and the total factor productivity At is a stochastic

process with constant E(At) = µA and V ar(At) = σ2
A.

The optimal decision problem will be the following:

Max
nt

E[Atkαt n1−α
t ]− 1

2raV ar[Atk
α
t n

1−α
t ]− wtnt − rk

Denoting yt = kαt n
1−α
t we simplify the problem.

Max
nt

µAyt −
1
2raσ

2
Ay

2
t − wtnt − rk (6.1)

We obtain the labor demand of each firm from the first order condition with respect
to nt of the (6.1).

E[At](1− α)
(
yt
nt

)
− raV ar(At)yt(1− α)

(
yt
nt

)
− wt = 0
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=⇒ ndt = 1− α
wt

[E[At] (yt)− raV ar(At)y2
t ]

Aggregating demands for k symmetrical firms and taking into account that
k∑
y2
t =

ky2
t = k(Y t

k
)2 = Y

2
t

k
we can obtain the aggregate labor demand.

Nd
t = 1− α

wt
(E[At]Y t − raV ar[At]

Y
2
t

k
) (6.2)

In the short term, let us assume sticky wage w in the labor market. Therefore, the
equilibrium condition in the labour market with an inelastic labor supply L and an
aggregated labour demand (6.2) will be:

L = Nd(wt) + Ut (6.3)

L− Ut = 1− α
w

(E[At]Y t − raV ar[At]
Y

2
t

k
)

L− Ut = 1− α
w

(E[At]Y t − ra
V ar[At]
E[At]2

(E[At]Y t)2

k
)

Denoting volatility as φ =
√
V ar[At]
E[At] and using E[At]Y t = E[Yt], the equilibrium

condition will be:

L− Ut = 1− α
w

(E[Yt]− raφ2E[Yt]2
k

)) (6.4)

With unemployment rate ut = Ut/L, we can obtain Okun coefficient for the output
growth rate version of Okun’s law by taking logs and derivatives with respect to
time from (6.4). The Okun coefficient will depend on ra.

ln(1− ut) = ln(1− α
w

) + ln(E[Yt]) + ln(1− raφ2E[Yt]
k

))− ln(L)

−∂ut/∂t
(1− ut)

= ∂E[Yt]/∂t
E[Yt]

−
∂E[Yt]/∂t rak φ

2

(1− ra
k
φ2E[Yt])

∂ut/∂t = −(1− ut)
∂E[Yt]/∂t
E[Yt]

(1−
E[Yt] rak φ

2

1− E[Yt] rak φ2 )

=⇒ ∂ut/∂t = −N
∗(w)
L

∂E[Yt]/∂t
E[Yt]

(1−
E[Yt] rak φ

2

1− E[Yt] rak φ2 )
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Denoting γet = ∂E[Yt]/∂t
E[Yt] is the expected growth rate of the economy.

∂ut/∂t = −N
∗(w)
L

(1−
E[Yt] rak φ

2

1− E[Yt] rak φ2 )γet

The Okun coefficient (OL) will be:

OL = −N∗(w)
L (1−

E[Yt] ra
k φ

2

(1− E[Yt] ra
k φ

2)) (6.5)

and its absolute value is decreasing with ra.

For a constant risk aversion firms for all output growth rate in the domain, we get a
simple linear negative relationship between output growth and unemployment rate
variation.

It is easy to see that if ra is an increasing piecewise step function on economic growth
rate, we get an Okun’s law with thresholds. Its shape will be convex according to
the firm’s risk aversion hypothesis (H3).

For instance, a risk aversion function such that ra(γet ) =

a γet ≤ 0

b > a γet > 0
reflects

a greater risk aversion for positive output growth rates than for a negatives, the
absolute value of the Okun coefficient will be lower for positive economic growth
rate than for negative ones. See Figure 6.1.

Figure 6.1: Okun’s law under firm’s risk aversion hypothesis with a threshold at
τγet = 0.
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Okun coefficient for the output gap Okun’s law version can be obtained by taking
partial derivatives from the equilibrium condition (6.4).

L− Ut = 1− α
w

(E[Yt]− raφ2E[Yt]2
k

))

−∂ut = ∂E[Yt]
1− α
wL

(1− 2raφ2E[Yt]
k

)

∂ut
∂E[Yt]

= −1− α
wL

(1− 2raφ2E[Yt]
k

) (6.6)

The absolute value of this Okun coefficient (6.6) depends negatively on ra. Indeed,
for a constant ra such that ra < k

2E[Yt]φ2 we get a linear Okun’s law with a negative
Okun coefficient.

For a risk aversion piecewise step function such that ra

a Yt ≤ Y P
t

b > a Yt > Y P
t

, where

Y P
t corresponds to the potential output, we get a greater risk aversion coefficient for

positive output gaps than for negative. As the absolute value of the Okun coefficient
negatively depends on ra

4| ∂U
∂E[Yt] |
4ra

= −1− α
w

2φ2E[Yt]
kL

) (6.7)

consequently we obtain that the greater the output gap, the greater the ra and so
the lower the absolute value of the Okun coefficient.

Flexibility of our model lays on how employer’s risk aversion depends on economic
growth rate or the output gap of the economy. So that, risk aversion preference
function with different steps may provide more than one threshold in Okun’s law
with different locations than zero growth rate or output gap.

If we restrict Okun’s law to have only one threshold at zero growth rate, only H3
“Firm’s risk aversion hypothesis” generates Okun’s law shape sustained by evidence,
as Silvapulle et al. (2004) point out. However, our flexible model allows to overcome
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this restriction. For instance, different threshold locations can reconcile evidence
with a combination of theoretical hypotheses. Let us consider that hypotheses H1
and H2 also may intervene together with H3 shaping Okun’s law. “Institutional
rigidity hypothesis”, H1, may be easily combined with H3 with a threshold on ne-
gative values. Risk averse employers would be more reluctant to fire workers when
facing higher costs of laying off them. Therefore, employer’s risk aversion coefficient
increases even for negative growth rates. The higher the firing costs and instituti-
onal rigidity, the more negative the threshold above which the employer becomes
more cautious and below which more intensively fire workers. Thus, our model can
combine H1 and H3 simply letting threshold lay on negative values of the growth
rate or the output gap when the unemployment rate is increasing. (See Figure 6.2).

Figure 6.2: Okun’s law under firm’s risk aversion and institutional rigidity hypot-
heses with a threshold τγet < 0.

Similarly H2, “Labor hoarding hypothesis”, may be easily combined with H3 with a
threshold on positive values. It may result into a non-linear convex Okun’s law with
at least a threshold in the expansion zone (positive growth and decreasing unem-
ployment rate). It means that in an economy where firms invest on training their
workers, the absolute value of the Okun coefficient decreases when the expansion
turns to be sufficiently intensive; so that, firms decelerate workers contracting rate
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for investing in training them. Thus, our model can combine H2 and H3 simply let-
ting threshold lay on positive growth rates or output gaps when the unemployment
rate is decreasing. (See Figure 6.3).

Figure 6.3: Okun’s law under firm’s risk aversion and “Labor hoarding hypotheses
with a threshold τγet > 0.

Therefore, our flexible model let us reconcile theoretical hypotheses combination in
Okun’s law by the difference between Okun coefficients for each region and by the lo-
cation of thresholds on the growth rate or the output gap. Consequently, in order to
estimate Okun’s law in which the different theoretical hypotheses could intervene, it
is required an empirical methodology sufficiently flexible that not previously impose
the number of thresholds an their locations.
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7 New insights into the nonlinearity
of Okun’s law.

We estimate Okun’s law for four European countries (France, Germany, the Net-
herlands and Spain) with a nonparametric procedure, without imposing a previous
specific functional form. We apply the non parametric MARS methodology that
endogenously detects multiple thresholds and therefore is able to identify multiple
possible regimes. In addition, we control for the Euro area crisis to capture possible
effects of the economic activity of neighbour countries on domestic unemployment
rate variations. Our results confirm the existence of two regimes in each country
but significantly different thresholds across countries. The form of Okun’s law for
Germany, France and the Netherlands are similar and quite different from Spain
where it is much steeper. Differences between Okun coefficients below and above
the threshold are consistent with the “firm’s risk aversion hypothesis”, but different
thresholds across countries may be related to the “labour hoarding hypothesis”. The
negative value of the threshold in Spain may reflect the “institutional rigidity hypot-
hesis”. Finally, the fact that the Euro area crisis may affect the domestic Okun’s
law is consistent with decision makers with risk aversion who use information from
the economic area they are operating in. These results not only potentially enrich
Okun’s law estimations but also opens the debate over how the different theoretical
hypothesis intervene and shape Okun’s law for each country.

7.1 Introduction.

The empirical validity of Okun’s law has been extensively explored in the literature.
Recent studies have provided theoretical explanations of responsiveness of unem-
ployment to output growth depending on whether the economy is in a recession
or an expansion, resulting in an asymmetric Okun´s law. In such a framework, a
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correct identification of the non-linear characteristics of the relationship between
unemployment and output is crucial for the correct design, the implementation and
the effectiveness of economic policies aimed at improving the labour market opera-
tion. This may be particularly important to better understand why after the recent
crisis, some European countries are facing high unemployment rates in spite of the
recovery.

Most of the empirical studies that investigate the nonlinearity of Okun’s law use
parametric models, often with exogenously imposed thresholds. To cite some of the
most recent ones, Economou and Psarianos (2016) find that the stronger the labour
market protection of a country the weaker its Okun coefficient, but some countries
as Spain contradict this finding. Huang and Chang (2005) also estimate for Canada
two regimes in output gap around a threshold but previously estimate a structural
break to capture the instability of the Okun’s coefficient over time. Owyang and
Sekhposyan (2012)also check with rolling regressions the instability over time of the
Okun coefficients. But non constant coefficients over time can be related to different
regimes in the explanatory variables rather than directly due to a structural change
associated with time; therefore, restricting the estimation to detect only one thres-
hold may induce to misleading detection of structural changes instead of additional
thresholds. Using a methodology similar to Holmes and Silverstone (2006), Valadk-
hani and Smyth (2015) estimate asymmetric Okun’s laws for the USA, although they
do so around an exogenously fixed zero value of cyclical unemployment; they also
detect two distinct Markow switching regimes of asymmetries but these switching
regimes have much to to do with a structural change from 1982 onwards. Tang and
Bethencourt (2017) estimate asymmetries with nonlinear autoregressive distributed
lag modeling but they previously and exogenously impose the two regimes. The use
of exogenously fixed thresholds is also the case of the study for Greece carried out
by Koutroulis et al. (2016). Jardin and Gaétan (2012) use a more flexible Kernel
semiparametric approach on a panel of data for 16 European countries and confirm
nonlinearity in the average Okun’s law of all these countries. However, their appro-
ach neither quantifies the relationship between output growth and unemployment
variations, nor estimates the thresholds positions at which this relationship suffers
modifications. Moreover, their results refer to the whole group of countries of the
panel, without distinction in nonlinearities between the individual members.

In our opinion, both a flexible and comprehensive estimation procedure is required
to reach three important objectives: to quantify the nonlinear relationship bet-
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ween output growth and unemployment, to endogenously detect and locate various
thresholds if they exist and possible structural breaks, and to allow for different non-
linearities in different countries. For that purpose, in this paper we estimate Okun’s
relationship for several individual European countries using the nonparametric Mul-
tiple Adaptive Regression Splines (MARS) methodology (Friedman, 1991; Lewis and
Stevens, 1991; Keogh, 2010), which is particularly suited to estimate models with
multiple and endogenously detected thresholds and transition variables with possible
interactions. Since our underlying interest is to understand the functioning of labour
markets under different institutional setups of the Eurozone, we examine Okun’s law
in four EMU countries: three considered part of the core, France, Germany and the
Netherlands, and one generally ranked as peripheral, Spain. The periods covered
by our analysis runs from 1970Q1 to 2018Q1 for France and the Netherlands; from
1992Q1 to 2018Q1 for Germany, and from 1995Q1 to 2018Q1 for Spain, depending
on the availability of homogeneous statistics. The time spans of our analysis allow
us to investigate whether Okun’s relationship changes in each country in recession
periods of the Euro area as a whole, controlling for the Euro area crisis variable
created by CEPR.

We obtain several interesting findings. As a first immediate result, Okun’s law for
the three core countries is very similar and quite flat, whereas it is much steeper for
Spain. On the other hand, our empirical findings help us discerning which explana-
tory theory of Okun’s law asymmetries, as synthetized by Silvapulle et al. (2004),
fits better into the estimated coefficients and thresholds of each country. Concre-
tely, in the first place, for each country, differences between Okun coefficients below
and above the threshold are consistent with the firm’s “risk aversion hypothesis”,
according to which unemployment responds more strongly during recessions than
during expansions. In the second place, differences between the threshold positions
across countries can be related to the “labour hoarding hypothesis”, which esta-
blishes that firms with trained workers are reluctant to fire them in recessions; our
results indicate in which countries firms are more reluctant to do so. In the third
place, the fact that the breaking point in unemployment deceleration for the Spa-
nish economy takes place at a negative rate of output growth is consistent with the
institutional obstacles the employers find in bad times to fire workers (“institutional
rigidity hypothesis”). Finally, the periods of economic crisis in the Euro area affect
Okun’s law in France, supporting the idea that decision makers in this country are
also concerned about the information from the economic area they are operating in,
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which gives further support to the firm’s risk aversion hypothesis.

The rest of the paper is set up as follows. In section 2, we discuss some new
considerations of the main theoretical hypothesis. The empirical methodology and
data are explained in section 4; in this section we explain an innovative procedure to
compute confidence intervals for the threshold locations. The results are presented
in section 5, and section 6 concludes and derives some policy prescriptions.

7.2 New considerations on the main theoretical
hypotheses of nonlinearities in Okun’s law.

Several studies attempted to explain theoretically the nonlinearities in Okun´s law.
Courtney (1991) attributes non linear responses of unemployment to the existence
of a non constant factor substitution rate during cycles. Harris and Silverstone
(2001) formulate asymmetric responses due to heterogeneity in plants in terms of
job creation and job destruction facing shocks. Mayes and Viren (2002) attribute
asymmetry to the behavior of the labour market due to mismatching between jobs
and unemployment in different regions and sectors. Campbell and Fisher (2000)
focus on aggregate asymmetries in job creation and destruction attributable to mi-
croeconomic asymmetries in adjustment costs so that firing workers responds more
than hiring new ones to positive external shocks. Summarizing all these theoreti-
cal considerations in a survey, Silvapulle et al. (2004) characterise three theoretical
explanations for asymmetries in Okun’s law. According to the “institutional rigi-
dity hypothesis” (H1) employers face institutional restrictions to lay off workers, so
that employers fire less workers than desired in bad times. The “labour hoarding
hypothesis” (H2) reflects the impact on unemployment of the employer’s decision
to invest in the training of workers: firms with trained workers are reluctant to fire
them in recessions. And the “firm’s risk aversion hypothesis” (H3) justifies a stron-
ger response of unemployment in recession than in expansions. This third hypothesis
has to do with the fact that employers give more weight to bad news than to good
ones. Although the studies tend to focus on one of these hypothesis excluding the
other ones, the debate over how the different theoretical hypotheses may intervene
together and shape Okun’s law is, however, desirable.

Under the “institutional rigidity hypothesis” and the “labour hoarding hypothesis”
the response of unemployment to economic activity would be less intensive in re-
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Okun’s law.

cession than in expansions. This on its own would imply a concave Okun’s law.
On the opposite, the “firm’s risk aversion hypothesis” justifies a stronger response
of unemployment in recession than in expansions. As a result, in expansion times,
firms would be reluctant to hire workers by fear of a possibly not long lasting re-
covery. Under this third hypothesis on its own, Okun’s law would exhibit a convex
functional form. In Figure 7.1, we reflect the different shapes under hypothesis H1,
H2 and H3 separately.

Figure 7.1: Shapes of Okun’s law with the different underlying theoretical
hypotheses.

However, as mentioned by Jardin and Gaétan (2012), there is no reason why non-
linearities in Okun’s law have to be attributed to only one of these hypotheses. In
fact, a combination of them might give rise to Okun’s laws that are more complex
than the one derived from one single hypothesis. If more than one hypotheses inter-
vene, and interact, more than two regimes might exist and so more complex Okun’s
laws might emerge from the data. Moreover, we argue that an hypothesis can affect
not only the Okun coefficient but also the position of thresholds. For instance, in
Figure 7.1 the shape under H3 with the threshold at a negative value could reflect
institutional rigidity in the labour market of the country. This would be the case
with firms facing high firing cost that would be reluctant to reduce their workforce
even for some negative values of economic growth; they would start firing workers
only when output growth exhibits sufficiently negative rates, that is rates below a
negative threshold. Furthermore, differences across countries in training workers
may justify different values of threshold along the growth rate axis. Although the
results from Jardin and Gaétan (2012) do not allow to estimate the thresholds po-
sitions and quantify Okun coefficients, their semiparametric approach empirically
opens the possibility that different hypothesis may simultaneously intervene to ex-
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plain Okun’s law shape. From the preceding reasoning we conclude that Okun’s law
should be estimated with a data-driven and very flexible methodology that allows
for possible multiple thresholds along with their precise location, completed with a
procedure able to compute confidence intervals for these locations; otherwise, im-
posing parametric functions could difficult a correct identification of the nonlinear
characteristics of the unemployment-output tradeoff.

7.3 Methodology and data.

Threshold regression models considered so far in the empirical literature consider
the existence of only one threshold variable and only one set of disjoint threshold-
defined regions. These are serious limitations for our purpose since we do not want
to previously restrict the number of regimes derived from the theoretical hypothesis
in Okun’s law. Lewis and Stevens (1991) criticize the limitations of traditional
threshold models and propose the MARS methodology from Friedman (1991) to
endogenously detect and estimate possibly multiple thresholds for each independent
variable of the model, and even possible interactions if suspected..

MARS is a nonparametric estimation procedure that selects and fits the model en-
dogenously detecting and quantifying thresholds and complex nonlinearities if they
exist. Given a set of explanatory variables, MARS fits a model as an expansion in
products of truncated linear spline functions (hinge functions), which are selected
through a recursive partitioning strategy with forward and backward passes. By
using products of hinge functions, the procedure accommodates both nonlinearities
and interactions among the explanatory variables as a generalization of Recursive
Partitioning (RP) (Friedman, 1977). MARS for time series (TSMARS) initiated by
Lewis and Stevens (1991) has been extensively explored by Keogh (2010). While
SETAR and the self-exciting open-loop threshold autoregressive (TARSO) models of
Tong (1990) identify piecewise linear functions over disjoint subregions, with discon-
tinuities at the boundaries of the regions, TSMARS methodology obtains nonlinear
threshold models that are continuous in the domain of the predictor variables, and
with possible interactions among lagged predictor variables. Therefore TSMARS
constitutes a further generalization of Tong’s models (Chung, 2012).

MARS seeks to model the dependence of variable yt on a set of explanatory variables
x1
t , ..., x

p
t (where some of these variables may be lagged values of other, i.e. xpt might
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be x1
t−1 for instance). The true unknown model is

yt = f(x1
t , ..., x

p
t ) + εt

where the error term εt is assumed to be independently distributed with E(εt) = 0
and variance E(ε2

t ) = σ2. The function f(x) is the true relationship between outcome
time-series (yt) and a vector of p explanatory variables xt = (x1

t . . . .x
p
t ) that we want

to estimate from the data.

MARS procedure approximates this function as:

yt = β0 +
M∑
m=1

βmbm (xt) + εt (7.1)

where;

β0 is a constant

βm is the coefficient for the mth basis function, m = 1, ...,M

bm(xt) is the mth basis function, m = 1, ...,M

εt is an independently distributed error term with E(εt) = 0 and E(ε2
t ) = σ2

The basis functions are products of up to a maximum interaction order mi trun-
cated linear splines or hinge functions (we usually restrict mi = 2), describing the
relationship between one or more explanatory variables and the outcome in terms of
segments of stable association separated by knots or threshold values. These inte-
racting hinge functions allow us to identify possible interactions between variables.
Namely, for mi = 2 the mth basis function takes one of the following two forms:

No interaction: bm (xt) = hm
(
xkt , τk,m

)
for some k = 1, . . . , p

With interaction: bm (xt) = hm
(
xkt , τk,m

)
·hm

(
xjt , τj,m

)
for some k, j = 1, . . . , p, k 6= j

where τk,m is the threshold value of xkt in themth basis function and where h
(
xkt , τk,m

)
is a hinge function (or truncated linear spline) that takes the following form depen-
ding on whether the basis function takes effect above or below the threshold τk,m(
See Figure 2.1)

a) above the threshold: hm
(
xkt , τk,m

)
= max(xkt − τk,m, 0)
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b) below the threshold: hm
(
xkt , τk,m

)
= max(τkm − xkt , 0)

Figure 7.2: Graph of the two truncated linear spline or hinge functions.
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If no knot (threshold) is detected in a given variable, then a simple linear association
between the explanatory and outcome variables can be specified as a single function
applied across the total range of values of that explanatory variable.

In the algorithm, once we define xt = (x1
t . . . .x

p
t ) with all potentially significant

explanatory variables, including the associated lags, the model identification and
estimation proceed by an automated, iterative, process. The description that follows
is mainly based on Friedman (1991, 1993); Chung (2012).

Forward pass: In general terms, starting with the simplest model containing only
a constant basis function, MARS iteratively generates a matrix of basis functions
in a forward stepwise manner. Candidate basis functions are added according to
their ability to improve the model fit by minimizing the residual sum of squares
(RSS), until the model reaches a predefined limit of complexity. The candidate
basis functions are identified by a nested exhaustive search looping over the existing
set of basis functions, and all other possible explanatory variables (or interactions)
and knot (threshold) positions.

This forward pass procedure provides a model that overfits the data. Therefore, a
pruning process is required to remove the subregions whose product basis functions
do not sufficiently contribute to the accuracy of the model.

Backward (pruning) pass: During the backward pass, MARS iteratively prunes the
model obtained from the forward pass. It removes basis functions to reduce the
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value of a modified form of the generalized cross validation (MGCV ) criterion that
penalizes model complexity, based on Craven and Wahba (1979). This pruning pass
runs until MGCV cannot be further reduced. This criterion is defined as

MGCV =
1
T

∑T
t=1(yt − f̂M (xt))2

[1− C (M) /T ]2

where T is the number of observations; C(M) is the model complexity penalty
function which is defined as C(M) = (M + 1) +dM, where M is the number of basis
functions retained in the model, M+1 the number of parameters in f̂M (xt)) and d
represents the degree of additional contribution brought by a basis function to the
model complexity. Friedman (1991) suggests a value for d between 2 and 4; usually
d = 3.

Therefore, this MGCV criterion accounts for the inherent improvement in explained
variance associated with increasing numbers of basis-functions, and its calculation
allows estimates of the relative importance of each basis function so the model
selection process converges on a set of basis functions that most efficiently explain
variation in the dependent variable.

For easier understanding, we provide Figure 7.3 that schematize OLS procedure in
the left column and MARS procedure in the right one. While OLS directly proceeds
to estimate model parameters using the data, MARS uses them in each iteration of
forward and backward passes to select and estimate the final model. During these
passes, each variable x may be splitted into two variables z1 = max(x − τ, 0) and
z2 = max(τ − x, 0); therefore, at the end, MARS estimates a linear model with a
matrix of split explanatory variables corresponding to each basis function detected
for the final model. Consequently, OLS can be understood as a particular case of
MARS where forward and pruning passes do not detect any threshold for any of the
explanatory variables.

For the estimation of Okun’s law, we propose a procedure to apply MARS metho-
dology that comprises four steps:

Step 1. For each country, we check the integration order of the unemployment rate
using the unit root test with multiple structural changes (up to 5) proposed by
Carrion-i Silvestre et al. (2009). In case of the existence of a unit root, we use
the MARS cointegration test proposed by Sephton (1994) to check for cointegration
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Figure 7.3: Comparison between the Ordinary Least Squares (OLS) estimation
and Multiple Adaptive Regression Spline (MARS) procedure.
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between the unemployment rate and real GDP, to determine whether we have to
discriminate between long term and short term effects in Okun’s law.

Step 2. Given the results of step 1, if cointegration is not detected we apply the
nonparametric procedure MARS to model 7.2, to allow for complex nonlinearities:
from the linear version of Okun’s law 4ut = β0 + βmπγt + ρ14ut−1 + ρ24ut−2 + εt,
the corresponding MARS specification would be:

4ut = (β0 + δ1dCt) +
M∑
m=1

βmb[γt, τm] + ρ14ut−1 + ρ24ut−2 + εt (7.2)

ut : unemployment rate dCt: crisis dummy, γt : quarterly growth rate

In the proposed specification we include the dummy variable dCt for the Euro area
crisis created by CEPR Euro Area Business Cycle Dating Committee that establishes
the chronology of recessions and expansions in the Eurozone, to allow the model to
capture the idea that employers also take into account the information of the whole
economic area they are operating in to take their employment decisions1.

In the case that cointegration were detected in Step 1, we would apply the MARS

1As usual for MARS estimations, we discard detection of possible thresholds in the 10% of extreme
values of the sample.
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specification of the Error Correction Model on the original variables. In both cases
(with or without cointegration), the MARS procedure gives us an enhanced matrix
of split regressors corresponding to each basis function detected (and finally selected
after the backward pruning pass). It is also interesting to estimate the linear version
of the model as a benchmark for comparative purposes.

Step 3. It is necessary to compute the autocorrelation function (ACF) of the MARS
residuals to verify that they are whitened; otherwise statistical inference on the
parameters of the final model would not be reliable. For that purpose, we run
the Box Pierce test to detect possible autocorrelations in the residuals. If so, we
iteratively estimate an ARIMA transfer function with the vectors of the enhanced
matrix as regressors. In each loop, the least significant variable is eliminated until
the estimation process converges to a model in which all the estimated coefficients
are significant and the errors are compatible with a white noise to make a more
reliable statistical inference of the parameters of the final model. In this sense,
our procedure applies MARS on time series data following TS-MARS developed by
Keogh (2010)2.

Step 4. Finally we construct 95% confidence intervals for each threshold applying
an innovative approach. In the absence of an existing method for deriving measures
of uncertainty around thresholds derived from non-parametric MARS models, we
adapt to MARS model a procedure inspired by Hansen (2000)3. Hansen considers
a simple threshold model with only one variable affected by a threshold effect, and
obtains a distribution theory for the threshold parameter (τ) from which asymptotic
confidence intervals can be built. He first derives the limiting distribution of a
Likelihood Ratio test (LR) for the null hypothesis τ= τ 0 for the threshold parameter
. He then builds confidence intervals through the inversion of LR: the (1 − α)
Inverted Likelihood Ratio (ILR) confidence interval consisting of all the possible
values of τ for which the null hypothesis would not be rejected at the α level.
Donayre et al. (2018) examine improvements of Hansen’s ILR confidence interval,
increasing its quality in finite samples with large threshold effects (i.e. when the
change in slope from one side of the threshold to the other is large). They show
that a “conservative modification” enlarging Hansen’s ILR confidence interval is
optimal. In this “conservative ILR confidence interval” the lower end of the interval

2We created codes in R for estimations and the processing of the results. The main packages for
estimation and plotting results are Earth and Plotmo (Milborrow (2009, 2015)).

3 To the best of our knowledge, the computation of confidence intervals for thresholds parameters
in MARS model is an innovation of this thesis.
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is enlarged from the first value lower than τl (lower bound of the confidence interval)
for which the null hypothesis is rejected, up to τl; at the upper end, it is enlarged
from τu (upper bound of the confidence interval) up to the first value greater than
τu for which the null hypothesis is rejected. According to Donayre et al. (2018), this
modification provides intervals at a confidence level at least as high as the nominal
one that are still informative.

We adapted this procedure for MARS estimations with possibly more than one
explanatory variable containing thresholds, and/or possibly one or more thresholds
per variable, by using the partial residuals – i.e. the variation in the outcome
not explained by other explanatory variables and their thresholds. To simplify the
explanation, let us suppose that in modeling y, we have two explanatory variables,
x1 and x2, and that a threshold has been detected by MARS for each one, at τx1ˆ and
τx2ˆ respectively. To obtain the confidence interval associated with τx1 , we obtain
the “partial residuals relative to x1” , say y(x1), which is the part of y not explained
by x2 (and its threshold). We obtain it by subtracting from y the part of the full
model related exclusively with x2. Once y(x1) is obtained, we can apply on the data
of y(x1) and x1 the procedure of Hansen (2000) improved by Donayre et al. (2018).
In that way we obtain a conservative ILR confidence interval for τ(x1) conditional
on the estimated values of the parameters (slopes and thresholds) related to x2.
We then repeat the same procedure interchanging the roles of x1 and x2, and we
now obtain the conservative ILR confidence intervals for τ(x2) conditional on the
estimated values of the parameters related tox1

4.

The present study use data for 4 European countries: France, Germany, the Net-
herlands and Spain5.

4Our Monte Carlo simulations, available on request, show that this procedure produce confidence
intervals with a confidence level at least equal to the nominal one and short enough to be
informative for the empirical analyst.

5We use harmonized unemployment rate and real GDP, both extracted from OECD Quarterly
National Accounts. The series for France and the Netherlands started from Q1:1970 and end in
Q1:2018. For the purpose of this study we avoid using retropolated data provided by OECD.
Consequently, Spain’s series start from Q1:1995 and end in Q1:2018. Germany’s series start
from Q1:1992 and end in Q1:2018.
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7.4 Results.

The first step in our procedure consists of testing for a unit root in the unemployment
rate of each country. We use the test proposed by Carrion-i Silvestre et al. (2009)
(henceforth, C-B-P test) that allows to consider multiple structural breaks under the
null hypothesis of unit root. Considering the possibility of multiple structural breaks
is important to avoid detecting spurious unit roots. Table 7.1 shows the values of C-
B-P test with up to 5 possible structural breaks, and the 5 percent critical value for
each country. This is a left-tailed test; therefore we cannot reject the null hypothesis
of unit root of unemployment rate for any country. Consequently, we run the MARS
cointegration test proposed by Sephton (1994) between unemployment rate and the
real GDP in a MARS model with a maximum of 10 possible basis functions, which
5% critical value is −4.46. It is also a left-tailed test under the null hypothesis of no
cointegration; therefore we find no evidence of cointegration between unemployment
rate and real GDP in all four countries.

Table 7.1: C-B-P test and MARS Cointegration test for each country.

C-B-P
test

C-B-P
test cv(5%)

unit root?
MARS

Cointegration test
Cointegration?
cv(5%)=−4.46

France 58.68 8.90 yes -3.45 no
Germany 47.20 9.34 yes -3.57 no

Netherlands 73.50 9.26 yes -2.83 no
Spain 90.60 9.32 yes -2.17 no

In accordance with these results, we proceed to estimate Okun’s law as specified in
equation (7.2). Table 7.2 provides the main results of estimation for each country
from steps 2 to 4 of our procedure. The first block, on the top of the table, offers the
significant coefficients of MARS estimation for each country. The “Thresholds” row
contains the detected thresholds; the next two rows contain the significant Okun
coefficients below and above the threshold, respectively. For comparison purposes
we include in the last row the Okun coefficient from fitting a linear Okun’s law.
The 95% confidence intervals are provided in brackets below each coefficient and
threshold. At the bottom of the table, we provide the improvements in measures of
fit when using our MARS procedure instead of a linear approach. Additionally, the
p-value from the Box-Pierce tests indicate no left autocorrelation.
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Although our estimation procedure is able to endogenously detect more than one
threshold, Table 7.2 reports only one detected threshold in the quarterly real growth
rate for each country. Figure 7.4 provides graphical representation of the results. It
is important to stress that all four Okun’s laws exhibit a steeper slope (in absolute
value) below the threshold than above it, which is consistent with the “firm’s risk
aversion hypothesis”.

Table 7.2: Main results of estimations.

France Germany Netherlands Spain

intercept
-0.0163

(-0.035, 0.002)

-0.034

(-0.059, -0.008)

-0.053

(-0.084, -0.022)

0.2086

(-0.019, 0.436)

∆ut−1
0.6376

(0.489, 0.786)

0.771

(0.669, 0.873)

0.766

(0.663, 0.869)

0.3906

(0.122, 0.659)

∆ut−2 - - - 0.2574

(-0.036, 0.551)

ma1
-0.2444

(-0.468, -0.021)
- - -

Thresholds
τ

0.4342

(0.39, 0.5)

0.385

(0.35, 0.46)

0.71

(0.63, 0.76)

-0.4073

(-0.96, -0.08)

Okun coeff.
above τ

- - - -0.2912

(-0.51, -0.072)

Okun coeff.
below τ

-0.1279

(-0.197, -0.059)

-0.094

(-0.132,. -0.056)

-0.135

(-0.195,-0.075)

-1.04367

(-1.582, -0.505)

Eurozone Crisis
0.0558

(0.00, 0.12)
- - .

Box Pierce Test
p-value

0.9397 0.1585 0.099 0.2255

Linear Okun
coeff.

-0.0637

(-0.103,-0.024)

-0.0577

(-0.085,-0.03)

-0.0856

(-0.131,-0.04)

-0.1399

(-0.245,-0.035)

Improvements of goodness of fit (MARS - OLS)
AIC 2.452 3.552 4.5712 3.77

AICC 2.452 3.388 4.5712 3.22

BIC 2.452 0.9076 4.5712 1.21

LogLik 1.226 2.776 2.2856 3.89

The results in Table 7.2 and Figure 7.4 also show that Okun’s laws are very similar
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Figure 7.4: Graphs of Okun’s law estimation for each country.

for Germany, France and the Netherlands. By contrast, Okun’s law in Spain is
strikingly different: in this country, Okun coefficients are higher in absolute value
than those for the rest of the countries. If we consider the difference between the
coefficient below and above the threshold as an approach to the degree of firm’s risk
aversion in the economy, risk aversion in Spain would be six times greater than in
France and eight times greater than in Germany.

Differences among the detected thresholds are also remarkable. Okun’s law for
France, Germany and the Netherlands exhibit thresholds at significantly positive
output growth rates (as reflected by their 95% confidence intervals all located at
positive values), and their differences could be related to differences on “labour
hoarding” described in H2: Germany and France would be more reluctant to fire
trained workers than the Netherlands (this is reflected not only in the point estimates
of the threshold but also in the CCILR interval estimation; the threshold for the
Netherlands is significantly higher than those of France and Germany which are
much closer - both algebraically and statistically- to each other ). On the other
hand, the threshold in Spain takes place at a significantly negative output growth
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rate, and substantially below the threshold values of the other three countries: not
only the threshold takes a negative value but the whole 95% CCILR confidence
interval covers negative values, in contrast with the point and interval estimates of
the thresholds of the other three countries. This might be due to the special rigidity
of the Spanish labour market, which is in turn directly related to the “institutional
rigidity” hypothesis. In other words, these results allow us to interpret that in
Spain the “institutional rigidity” hypothesis on Okun’s law gives rise to a threshold
at a negative rate of output growth instead of creating a linearly decreasing Okun’s
coefficient during recessions.

Figure 7.5 contains the graphs for all the countries at the same scale for comparison
purposes. France, Germany and the Netherlands show a much flatter Okun law
than Spain. The level of growth a country needs to start reducing unemployment
(the cut point in the x-axis) also differs among countries. The Netherlands, France
and Spain start reducing unemployment around 0.3 (1.2% annual growth rate). In
contrast, Germany starts reducing unemployment at a quarterly growth rate very
close to zero (0.025).

Another relevant point is the constant and small reduction of unemployment when
France, Germany and the Netherlands grow at a rate that exceeds their respective
thresholds. By contrast in Spain again, unemployment reduction takes place at a
linear increasing rate after the threshold, even for quarterly rates of output growth
higher than 1.5%. France Okun’s law deserves a final comment: it is the only one
affected by the Euro area crisis periods, that move it slightly upwards, as shown
by the results in Table 7.2 and reflected in the graph of Figures 7.4 and 7.5 by the
dashed line.
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Figure 7.5: Comparative of Okun’s law across countries (Spain scale).

Figure 7.6 shows the unemployment (dashed line) and the quarterly growth rate
(solid line) historical time series for each country, together with the detected thres-
hold for each country. The shaded vertical bands correspond to the Euro area crisis
periods when our dummy variable takes value 1. In each country graph, the horizon-
tal dot-dashed straight line corresponds to the detected threshold of the quarterly
growth rate as reported in Table 7.2. As already commented, all thresholds, except
for Spain, are located above zero.

As far as the influence of the Euro area crisis in France is concerned, time series
for France in Figure 6 shows that, in general terms, during Eurozone crisis periods
the increase in French unemployment is more intensive than outside these periods.
This reflects the idea that, at least in France, decision makers under the “firm’s
risk aversion hypothesis” are not only concerned by their own country economic
information but also by the information from the economic area they are operating
in.
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Figure 7.6: Quarterly growth and unemployment rate time series with Eurozone
crisis periods (shaded fringes) and the detected threshold.

7.5 Conclusions.

In this paper we estimate Okun’s law for four European countries (France, Ger-
many, the Netherlands and Spain) with the MARS procedure adapted to time series,
to endogenously detect possibly multiple thresholds. We use the ARIMA transfer
function refinement to whiten the error to increase inference reliability, and we com-
pute confidence intervals for the thresholds which inform us about the accuracy of
the estimates and allow us to test the significance, the sign and the value of the
thresholds. We also include the dummy variable for the Eurozone crisis created by
CEPR Euro Area Business Cycle Dating Committee, that establishes the chronology
of recessions and expansions in the Euro area.

To summarize our results: a) for each country we detect only one threshold in quar-
terly growth rate; b) Okun’s law for Germany, France and the Netherlands are very
similar and quite flat, whereas Okun’s law for Spain is much steeper; c) for each

134



7.5 Conclusions.

country, differences between Okun coefficients below and above the threshold are
consistent with the firm’s risk aversion hypothesis, and reveal particularly high risk
aversion in the Spanish firms; d) the differences between thresholds across countries
can be related to the “labour hoarding hypothesis”, and show that the German and
French firms are more reluctant to fire trained workers than the Dutch ones; e)
the fact that the detected threshold for Spain takes place at a significant negative
output growth rate, and is substantially lower than the significantly positive thres-
hold value for the other countries, is also consistent with the “institutional rigidity
hypothesis”; f) the Euro area crisis affects Okun’s law in France, reflecting the idea
that decision makers under firm’s risk aversion hypothesis are also concerned about
the information from the economic area they are operating in.

Our results potentially enrich not only Okun’s law estimations and interpretations
but also the debate over how the different theoretical hypothesis intervene and shape
the Okun’s law in each country. Combining nonlinearity and threshold location may
be helpful to better understand how the diverse theoretical hypotheses intervene in
the recovery after the recent crisis of some European countries facing high unem-
ployment rates. Since we are not imposing previously a fixed number of thresholds,
this data-driven procedure offers empirical results of the Okun’s law much more
general than those published to date.

The application of this approach to other European and/or OECD countries is
left for further research, with the hope of improving the understanding of how the
different hypotheses about nonlinearities of Okun’s law combine and interact with
each other.

Finally, a direct implication follows from our findings: the remarkable differences
between Okun’s law of the Eurozone countries, in particular between the core and
Spain, demonstrate the need to erode the institutional differences and of regulation of
the implied national labour markets. Otherwise, any demand policy at the European
level, and in particular the monetary policy of the ECB, which is necessarily the
same for all countries of the Eurozone, will have a very different impact on the
labour markets and on the macroeconomic magnitudes of the countries under study.
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8 Finding population antibiotic use
thresholds to control antibiotic
resistance.

Balancing the need for antibiotic use with the containment of antibiotic resistance
is a global public health priority. To date, both empirical evidence and antibiotic
stewardship policy have tended to consider use-resistance relationships to be linear.
However, theoretical and mathematical models give several reasons for relationships
being non-linear. One explanation is that resistance genes are commonly associated
with ‘fitness costs’, impairing the replication or transmissibility of the pathogen.
Therefore, resistant genes and pathogens may only gain a survival advantage, and
proliferate within populations, where antibiotic selection pressures exceed critical
thresholds. These thresholds may provide optimal targets for containing antibiotic
use while avoiding over-restriction. We evaluated the generalisability of a non-linear
time-series analysis approach for identifying thresholds using historical monthly data
on population use of antibiotics and rates of infection with different resistant patho-
gens from five European settings in Hungary, Spain (two sites), France, and Northern
Ireland. We frequently identified minimum thresholds in relationships between use
of selected antibiotic groups and resistance outcomes in both hospital and commu-
nity populations, and at different epidemiological phases. Utilising the increasing
availability of electronic data and surveillance systems, non-linear time-series can
identify context-specific quantitative targets for rationalising population antibiotic
use and controlling resistance.
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8.1 Introduction.

Antimicrobials have been a catalyst for improvements in health and food-security
worldwide. However, excessive use has led to increasing antimicrobial resistance
(AMR), undermining many aspects of healthcare and generating new disease bur-
dens (Laxminarayan, 2014; Laxminarayan et al., 2013; Group, 2016; O’Neill, 2017).
A key challenge is that while decisions around antimicrobial use are made by in-
dividual prescribers and patients, consequences of over-use are only fully apparent
across populations (Millar, 2012). As with other global common goods, such as
climate stability, competing needs and non-exclusivity can lead to a ‘tragedy of
the commons’(Laxminarayan, 2014; Laxminarayan et al., 2013). The Global Action
Plan on AMR therefore highlights the importance of cross-societal efforts to con-
serve the effectiveness of current antimicrobials (WHO, 2017). In healthcare, an-
timicrobial stewardship aims to control AMR by reducing inappropriate use, while
ensuring access to effective therapy (Laxminarayan et al., 2013). There is growing
evidence that reducing the use of antimicrobials strongly selecting for resistance,
can effectively reduce AMR (Davey et al., 2013). However, over-restriction may be
counter-productive. For example, use of alternative antimicrobials may increase in
response, leading to new selection pressures or resistance problems (Peterson, 2005).
Balancing the benefits and risks of antimicrobials in healthcare requires understan-
ding of their effects on AMR at population scales (Levy, 1994; Levin et al., 1997;
Austin et al., 1999).

To date, empirical evidence has generally considered use-resistance relationships as
linear (López-Lozano et al., 2000; Vernaz et al., 2011; Aldeyab et al., 2008; Monnet
et al., 2004; Aldeyab et al., 2012). These are useful for identifying the most salient
selection pressures in a population (López-Lozano et al., 2000), but theoretical and
mathematical models suggest that non-linear relationships are more likely (Levy,
1994; Levin et al., 1997; Austin et al., 1999; Haber et al., 2010). In particular,
selection pressures may only have notable impact on resistance rates, where volu-
mes of antibiotic use in the population are above minimum thresholds. Potential
explanations for minimum thresholds, include: antibiotic substitution with changes
in use (Peterson, 2005); associations between the strength of selection pressure and
induction of co-resistance (Oz et al., 2014); differential effects on sub-populations
within bacterial species (Arepyeva et al., 2017), or ecological niches (Kiffer et al.,
2011); and the ‘total use thresholds’ hypothesis Levy (1994). The latter concept
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arises from the observation that resistance genes are commonly associated with
‘fitness costs’ impairing pathogen replication or transmissibility (Vogwill and Ma-
cLean, 2015). Resistant pathogens may therefore only gain a survival advantage
over susceptible organisms, where selection pressures from antibiotic use outweigh
fitness costs (Levy, 1994). If identified, minimum thresholds may offer important
targets for antibiotic stewardship, indicating an upper limit of safe population an-
tibiotic use which does not substantially increase rates of resistance at population
scales.

Non-linear relationships between fluoroquinolone use and resistant E.coli and Stap-
hylococcus aureus have been reported using different methods (Kiffer et al., 2011;
Berger et al., 2004). We have previously shown that reducing antibiotic use to below
minimum thresholds predicted shifts in the molecular and clinical epidemiology of S.
aureus and Clostridium difficile (Lawes et al., 2015b,a, 2017). However, these studies
suggest antibiotic use-resistance relationships are likely to depend upon the clini-
cal population (Levy, 1994; Lawes et al., 2015b, 2017), pathogen genotypes (Lawes
et al., 2015a), intensity of infection control (Lawes et al., 2015a), and transmission
dynamics (Austin et al., 1999). Moreover, fitness costs associated with different
resistance genes are variable (Vogwill and MacLean, 2015). If ‘fitness costs’ are low,
or attenuated through epistasis (Wong, 2017) or compensatory mutations (Levin
et al., 2000), resistance may persist despite removing previously important antibio-
tic selection pressures (Andersson and Hughes, 2010). A generalisable method for
finding minimum thresholds should therefore provide context-specific information,
have relatively low-informational demands, and allow for iteration.

Here, we examined the generalisability of a non-linear time-series analysis methodo-
logy for identifying minimum threshold in use-resistance associations. Using routi-
nely generated healthcare data from five European centres, we show this pragmatic
approach can provide population-specific quantitative targets for antimicrobial ste-
wardship for a variety of resistance outcomes, epidemiological phases, transmission
dynamics, and clinical populations.
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8.2 Results.

Identifying nonlinear temporal relationships: from experiment to
application.

We used a Monte Carlo experiment to compare the ability of linear and non-linear
time-series analysis (Multivariate Adaptive Regression Splines, MARS) to identify
pre-defined relationships between simulated explanatory and outcome time-series (
See Appendix A Figure 8.7). Non-linear time-series analysis (NL-TSA) accurately
identified both truly linear and non-linear associations. However, linear time-series
analysis provided biased estimations and overall poorer data-fit if relationships were
non-linear. NL-TSA models applied to retrospective time-series data from five Euro-
pean study populations (Examples 1-5)1, frequently identified non-linear relations-
hips between explanatory and resistance time-series, including minimum thresholds
in antibiotic use-resistance relationships, (8.1, Figures 1-6). ‘Ceiling effects’, in which
further increases in explanatory variables did not further affect resistance rates, were
found at high-levels of use of some antibiotics and hand hygiene. Non-linearities in
autoregression and population interaction terms further indicated the complexity of
transmission dynamics within and between clinical populations.

1These results have been presented at 28th European Congress of Clinical Microbiology and
infectious Diseases in Madrid, and the results for Debreçen at Liverpool University.
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Table 8.1: Results of non-linear time-series analysis (MARS) models.

Predicting variable Laga 
Threshold 
 (95% CI)b 

Relation to 
thresholdc 

Coefficient  
(95% CI)d 

T-
ratio 

p value 

1: Carbapenem-resistant Acinetobacter baumannii (CRAb)‡ Debrecen, Hungary [R2 0.859; MAPE 45.3%; MGCV 2.254] 
Constant - - - 6.962 (6.157 to 7.767) 16.9 <0.0001 
Previous CRAb incidence density 1 6.2 (4.7 to 8.0) Below 0.563 (0.326 to 0.801) 4.64 <0.0001 
Previous CRAb incidence density 1 9.4 (7.0 to 11.2) Above 0.932 (0.478 to 1.386) 4.02 0.0001 
Previous CRAb incidence density 2 9.4 (7.8 to 12.3) Below 0.397 (0.235 to 0.559)  4.79 <0.0001 
Carbapenem use 3 15.4 (8.1 to 23.9) Above 0.067 (0.028 to 0.106) 3.39 0.0007 
Piperacillin-tazobactam use 3 7.0 (5.0 to 14.0) Above 0.296 (0.070 to 0.523) 2.56 0.0102 
Fluoroquinolone use 1 85.2 (65.6 to 103.0) Above 0.060 (0.019 to 0.100) 2.89 0.0038 

2: Extended-spectrum -lactamase producing E. coli (%Ec-ESBL+)^ Orihuela, Spain  

a) Hospital [R2 0.622; MAPE 57.1%; MGCV 19.97] 

Constant - - - 5.858 (3.288 to 8.428 ) 4.46 <0.0001 
Previous %Ec-ESBL+ (hospital) 3 9.9 ( 6.3 to 13.3) Below 0.266 (0.488 to 0.045 ) 2.51 0.0129 
Previous %Ec-ESBL+ (hospital) 3 9.9 ( 6.3 to 13.3) Above -0.254 (-0.45 to -0.058 ) 2.77 0.0061 
%Ec-ESBL+ (community) 2 10.1 (5.9 to 20.0) Below 0.359 (0.579 to 0.138 ) 3.08 0.0024 
%Ec-ESBL+ (community) 2 10.1 (5.9 to 20.0) Above -1.291 (-2.066 to -0.516 ) 3.26 0.0013 
Third-gen. ceph. use (hospital) 1 65.15 (36.5 to 95.5) Above 0.061 (0.029 to 0.093 ) 3.28 0.0012 
Fluoroquinolone use (hospital) 2 82.28 ( 70.5 to 101.1) Above 0.122 (0.085 to 0.159 ) 6.07 <0.0001 
Fluoroquinolone use (hospital) 2 150.83 ( 145.5 to 155.2) Above -0.269 (-0.495 to -0.044)e -2.34 0.0203 
Fluoroquinolone use (hospital) 2 160.32 ( 153.3 to 168.0) Above 0.010 (-0.300 to 0.319)e 0.06 0.9522 

b) Community [R2 0.768; MAPE 46.2%; MGCV 4.715] 
Constant - - - 4.828 (3.774 to 5.883) 8.97 <0.0001 
Previous %Ec-ESBL+  3 7.3 (5.9 to 10.3) Below 0.423 (0.266 to 0.597) 5.11 <0.0001 
Previous %Ec-ESBL+ 4 4.1 (2.1 to 5.8) Above 0.473 (0.302 to 0.645) 5.40 <0.0001 
Previous %Ec-ESBL+ 5 1.1 (0.9 to 4.7) Above 0.167 (0.062 to 0.273) 3.10 0.0021 
%Ec-ESBL+ (hospital) 1 5.5 (1.61 to 12.50) Below 0.286 (0.106 to 0.466) 3.11 0.0020 
Co-amoxiclav use (community) 4 6.7 (5.0 to 10.0) Above 0.549 (0.223 to 0.875) 3.30 0.0010 
Fluoroquinolone use (community) 6 2.8 (1.4 to 5.2) Above 0.635 (0.174 to 1.100) 2.70 0.0070 

3: Cefepime-resistant E. coli (%EcFepR)* Seville, Spain [R2 0.301; MAPE 41.6%; MGCV 12.11] 
Constant - - - 6.163 (5.164 to 7.161) 12.1 <0.0001 
Previous %EcFepR 12 11.6 (1.2 to 21.9) Above 0.580 (0.254 to 0.907) 3.48 0.0005 
Audit 2*%EcFepR 1 5.8 (4.6 to 7.0) Above -2.801 (-4.669 to -0.994) -2.93 0.0033 
Audit 2*%EcFepR 1 7.1 (5.8 to 8.4) Above 3.301 (0.923 to 5.680) 2.72 0.0065 
Fluoroquinolone use 3 138.2 (79.5 to150.4) Above 0.105 (0.012 to 0.198) 2.2 0.0272 
3rd/4th gen cephalosporin use 4 45.8 (29.1 to 55.6) Above 0.197 (0.103 to 0.291) 4.1 <0.0001 

4: Gentamicin-resistant Pseudomonas aeruginosa (GRPa)§ Besançon, France [R2 0.857; MAPE 27.3%; MGCV 2.66] 
Constant - - - 3.236 (2.894 to 3.577) 18.5 <0.0001 
Previous GRPa incidence density 1 4.8 (3.4 to 5.8) Above 0.670 (0.563 to 0.773) 12.4 <0.0001 
Previous GRPa incidence density 12 2.7 (1.6 to 5.1) Above 0.170 (0.073 to 0.268) 3.43 <0.0001 
Gentamicin and tobramycin use 1 8.0 (3.9 to 10.6) Above 0.221 (0.077 to 0.365) 4.18 <0.0001 
Fluoroquinolone use 1 81.0 (78.0 to 84.0) Above 0.045 (0.029 to 0.061) 3.01 0.003 

5: Methicillin-resistant Staphylococcus aureus (MRSA)§ Antrim, Northern Ireland [R2 0.561; MAPE 15.1%; MGCV 0.331] 
Constant - - - 1.982 (1.762 to 2.202) 17.6 <0.0001 
Previous MRSA incidence density 3 1.9 (1.1 to 2.5) Above 0.273 (0.086 to 0.460) 2.86 0.0042 
Fluoroquinolone use 3 16.8 (14.2 to 20.7) Above 0.003 (0.000 to 0.006) 2.13 0.0299 
Third-gen. cephalosporin use 3 4.9 (4.3 to 5.7) Above 0.026 (0.015 to 0.037) 4.51 0.0005 
Co-amoxiclav use 1 224.9 (132.8 to 296.6) Above 0.003 (0.002 to 0.005) 4.39 <0.0001 
Alcohol-based hand rub use 2 6.9 (3.9 to 16.1) Below -0.133 (0.047 to 0.218) 3.04  0.0024 

DDDs Defined Daily Doses; MGCV Modified Generalised Cross Validation criteria (a lower value indicates a more efficient model; MAPE 
Mean Average Percentage Error (observed/predicted × 100); OBDs Occupied Bed Days; R2 indicates the percentage of total variation in 
outcome explained.  
a average delay (in months) between change in predictive time-series and associated change in outcome time-series 
b value of the predicting variable at which the association with the outcome changes, with 95% conditional conservative inverted likelihood 
ratio (CCILR) confidence intervals (see Methodology section for details). 
c Indicator of whether the association is seen below or above the threshold. 
d Coefficient refers to the change in the outcome for a 1 unit (e.g. DDD) increase in the explanatory variable 
e contribution above this threshold derived from sum of coefficients operating above current and any other lower thresholds for same 
variable and lag combination. 
‡ Cases per 10 000 OBDs. § Cases per 1000 OBDs. ^ Percentage of all non-duplicate E. coli isolates positive for ESBL. * Percentage of all 
non-duplicate E. coli isolates resistant to cefepime. 
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Table 8.2: Translation of thresholds identified in non-linear models into
population-specific antibiotic stewardship policy suggestions.

Antibiotic 

Patient treatments per montha 

Maximum suggested 
by threshold         

(95% CI) 

Average use 
in last 12 
months of 

study 

Suggested reduction in use (%) 

Standard                  
(using point estimate for 

threshold) 

Conservative               
(using lower limit of 95% 

CI for threshold) 

1. Carbapenem-resistant Acinetobacter baumannii (CRAb)‡ Debrecen, Hungary 
Carbapenems 86 (45 to 134) 226 140 (62%) 181 (80%) 
3rd generation cephalosporins 203 (169-229) 299 96 (32%) 130 (57%) 
Fluoroquinolones 478 (367-576) 375 Maintain below threshold 9 (2%) 
Piperacillin-tazobactam 39 (28-78) 41 2 (5%) 13 (32%) 

2. Extended-spectrum β-lactamase producing Escherichia coli (%Ec-ESBL+) Orihuela, Spain 
a) Hospital population 

Fluoroquinolones 78 (67 to 96) 165 68 (41%) 87 (53%) 
Third-generation cephalosporins 62 (35 to 91) 78 16 (21%) 43 (55%) 

b) Community population 
Fluoroquinolones 80 (40 to 148) 66 Maintain below threshold 26 (39%) 
Co-amoxiclav 191 (142 to 284) 277 86 (31%) 135 (49%) 

3. Cefepime-resistant Escherichia coli (%EcFepR) Seville, Spain 
Fluoroquinolones 392 (225 to 426) 351 Maintain below threshold 126 (36%) 
3rd/4th generation cephalosporins 130 (83 to 158) 211 87 (41%) 128 (61%) 

4. Gentamicin-resistant Pseudomonas aeruginosa (GRPa) , France 
Gentamicin and tobramycin 75 (36-99)b 68 b Maintain below threshold 32 (47%) 
Fluoroquinolones 324 (316 to 330) 223 Maintain below threshold Maintain below threshold 

5. Methicillin-resistant Staphylococcus aureus (MRSA) Antrim, Northern Ireland 
Fluoroquinolones 24 (20 to 29) 39 15 (39%) 19 (49%) 
3rd generation cephalosporins 7 (6 to 8) 6 Maintain below threshold Maintain below threshold 
Co-amoxiclav 320 (189 to 422) 320 Maintain below threshold 131 (41%) 

a Derived by multiplying the threshold in table 1, expressed in DDDs per 1000 OBDs, by the size of the population (in 1000 OBDs or IDs), 
and then dividing by an average patient treatment (considered as 7 DDDs unless otherwise specified) 
b Average treatment course considered as 3 DDDs. 

Example 1: Carbapenem-resistant Acinetobacter baumannii
(Debrecen, Hungary)

Scenario: We examined ecological determinants of carbapenem-resistant Acineto-
bacter baumannii (CRAb) in a tertiary hospital population in Debrecen, Hungary
(Figure 1). Between Oct 2004 and Aug 2016 (n=143 months), incidence density of
CRAb increased from a 12-month average of 0.14 to 9.43 cases per 10000 OBDs,
while that of carbapenem susceptible A. baumannii (CSAb) remained relatively
constant. There were no planned antibiotic stewardship interventions in the study
period, but we observed increasing use of broad-spectrum antibiotics, including a
tripling in carbapenem use, and rising colistin use in later study months.

Hypothesis: Carbapenem resistance in this setting was conferred predominantly
byblaOXA−23−like carbapenemases, while blaOXA−24−like genes occurred sporadically
(Mózes et al., 2014). CRAb were significantly more likely to be resistant to ciprof-
loxacin, gentamicin, amikacin, piperacillin-tazobactam and ceftazidime than CSAb
(Figure 1a), although susceptibility testing for the latter two agents was disconti-
nued in 2013 as recommended by EUCAST. Colistin resistance was rare in both
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CRAb and CSAb (1% vs. 2%; p=0.06). Vector autoregression (VAR) models,
suggested that colistin use followed, rather than predicted, variation in CRAb in-
cidence density. We identified population use of carbapenems, fluoroquinolones,
piperacillin-tazobactam, third generation cephalosporins, and aminoglycosides as
potentially important explanatory variables.

Model estimation: Previous CRAb incidence density and recent hospital use of car-
bapenems, piperacillin-tazobactam, and fluoroquinolones were explanatory variables
in the best-fit (R2 = 0.86) non-linear TSA model (Table 8.1). In an almost identical
model, but with poorer trade-off of data fit and model complexity (higher Modified
Generalised Cross Validation, MGCV), fluoroquinolone use was replaced by the ef-
fect of third-generation cephalosporin use above a threshold of 36 (95% CI, 30 to
41) DDDs per 1000 OBDs (coefficient, 95% CI: 0.111, 0.018 to 0.203; p=0.019; lag
3).

Policy implications: In this setting increases in CRAb added to, rather than repla-
ced, clinical burdens from CSAb, suggesting CRAb occupied new ecological niches.
Strong autoregression in the CRAb time-series was consistent with previous evidence
for substantial within-hospital transmission (Mózes et al., 2014). CRAb incidence
density increased when population use of carbapenems, piperacillin-tazobactam, flu-
oroquinolones, and third-generation cephalosporins exceeded minimum thresholds.
By the end of the study period, use of fluoroquinolones had reduced to below thres-
hold. However, CRAb could be further controlled by reducing use of carbapenems
(-63%), third-generation cephalosporins (-32%) and piperacillin-tazobactam (-2%)
from present levels to respective thresholds (Table 8.2).
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Figure 8.1: Carbapenem-resistant A. baumannii and antibiotic use.
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Piperacillin-tazobactam 94% 22% 72.4	(69.1	to	75.6) <0.001

Ceftazidime 93% 56% 36.8	(33.0	to	40.6) <0.001
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(a) Frequency of co-resistances to other antibiotics in CRAb and CSAb (b) Time series for observed
and predicted incidence density of CRAb, with observed incidence density of CSAb (c) Time series
for use of potential explanatory antibiotic groups (5-month moving averages) (d) Contribution
charts illustrating the relationship between explanatory variables and CRAb incidence density. a
Change relative to median monthly CRAb incidence density for study period. CRAb, carbapenem-
resistant A. baumannii. CSAb, carbapenem-susceptible A. baumannii. DDDs, defined daily doses.
IQR, Interquartile range. MARS, Multivariate Adaptive Regression Splines. NL-TSA, non-linear
time series analysis. OBDs, occupied bed days.
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Example 2: Extended spectrum β-lactamase producing E. coli
(Orihuela, Spain)

Scenario: We examined ecological determinants of % E. coli infections producing
ESBL (%Ec-ESBL+) in connected district general hospital and community popu-
lations in Orihuela, Spain, between Jul 1991 and Oct 2016 (n=304 months, Figure
8.2). Limited outbreaks of ESBL-producing E. coli were noted in both community
and hospital from 1998, but from the last quarter of 2002 the %Ec-ESBL+ incre-
ased rapidly alongside escalating use of fluoroquinolones and co-amoxiclav (Figure
2b and 2c). While use of these agents later stabilised or declined, hospital use of
third-generation cephalosporins continued to increase.

Hypothesis: Over the study period, blaCTX−M genes were common in E. coli across
Spain, with both dissemination of the CTX −M − 15 producing O25b − ST131
clone and clonally unrelated strains harbouring CTX − M − 14 identified (Díaz
et al., 2010; Rodríguez-Baño et al., 2008). Acquisition of fluoroquinolone resistance
was a key step in the evolution of dominant blaCTX−M−15 containing sub-clones of
O25b−ST13 (Branger et al., 2005). In line with this, 81% of ESBL-producing E. coli
in Orihuela were non-susceptible to ciprofloxacin (Figure 2a). ESBL-producing E.
coli were also significantly more likely to be resistant to co-trimoxazole, co-amoxiclav
and aminoglycosides compared to non-ESBL E. coli. Preliminary vector autoregres-
sion models identified bidirectional interactions between community and hospital
%Ec-ESBL+ and showed that use of piperacillin-tazobactam and carbapenems fol-
lowed, rather than predicted, changes in %Ec-ESBL+. We built separate models
for hospital and community considering %Ec-ESBL in the other population, as an
explanatory variable.

Model estimation: The best-fit model (R2 = 0.62) hospital %Ec-ESBL+ was pre-
dicted by prior %EcESBL in hospital and community, and hospital use of third-
generation cephalosporins, and fluoroquinolones exceeding minimum thresholds. A
potential ‘ceiling’ effect was noted at high-levels of fluoroquinolone use, meaning
that when use exceeded a second upper threshold, further increases in %Ec-ESBL+
were marginal. An initial decrease in %Ec-ESBL+ where fluoroquinolone use was
between 151 and 161 DDDs per 1000 OBDs reflected uncertainty around this cei-
ling threshold, which may be resolvable with additional data. In the model for
community %Ec-ESBL+ (R2 = 0.767), associations were identified with hospital
%Ec-ESBL+, and community use of fluoroquinolones and co-amoxiclav above mi-
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nimum thresholds.

Policy implications: Autoregressive and population interaction effects suggested the
importance of horizontal transmission of ESBLs, with spread from community to
hospital particularly strong. Population use of broad-spectrum beta-lactams and
fluoroquinolones were also important in shaping the epidemiology of ESBL+ E.
coli in both settings. In the community, use of fluoroquinolones had fallen below
threshold levels and %Ec-ESBL+ had started to decrease by the end of the study.
However, translating thresholds into antibiotic stewardship targets (Table 8.2) sug-
gested further restricting community co-amoxiclav use by 31% and hospital use of
fluoroquinolones (-41%) and third-generation cephalosporins (-21%).

Using the fitted non-linear TSA model, we created projections for %Ec-ESBL+ in
the hospital and community over the next 24-months under different antibiotic ste-
wardship options, and compared these to expected %Ec-ESBL+ under a ‘business
as usual’ scenario of continuing antibiotic use patterns observed in the last year of
study (See Appendix A Figure 8.8). Immediate restriction of hospital fluoroquino-
lones and third-generation cephalosporin use to thresholds was predicted to cause
an abrupt and sustained reduction in hospital %Ec-ESBL+ from 9.89% to 2.35%
(mean difference, 95% CI: -7.54, -7.94 to -7.19 percentage points; p<0.0001) and,
due to population interactions, a gradual reduction in community %Ec-ESBL+ from
7.11% to 3.69% (-3.42, -3.60 to -3.18 percentage points; p<0.0001). Controlling co-
amoxiclav use in community was predicted to have a small but significant impact in
reducing community %Ec-ESBL+, but not to significantly affect hospital burdens.
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Figure 8.2: Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli
and antibiotic use in hospital and community.

0.0

1.0

2.0

3.0

4.0

0 5 10 15

%
Ec
-E
SB

L+
a

Co-amoxiclav use	(community),																		
DDDs	per	1000	IDs

0

2

4

6

8

10

1 51 101 151 201 251 301

%
Ec
-E
SB

L+
a

Fluroquinolone use,																																													
DDDs	per	1000	OBDs

0

5

10

15

20

Ho
sp
ita

l
%
Ec
-E
SB

L+ Observed	%Ec-ESBL
Non-linear	TSA	model

0

100

200

300

Ho
sp
ita

l	a
nt
ib
io
tic

	u
se
,		
				
				
				
				
		

DD
Ds
	p
er
	1
00
0	
O
BD

s 2nd	gen	cephalosporins
3rd	gen	cephalosporins
Coamoxiclav
Cotrimoxazole
Aminoglycosides
Fluoroquinolones

0

5

10

15

Co
m
m
un

ity
				
				
				
		

%
Ec
-E
SB

L+
	

Observed %ESBL
5m moving average

b

c

a

0
2
4
6
8
10
12

Co
m
m
un

ity
	a
nt
ib
io
tic
	u
se
,	

DD
Ds
	p
er
	1
00
0	
ID
s

Year	and	month

Fluoroquinolones
2nd	gen	cephalosporins
3rd	gen	cephalosporins
Cotrimoxazole
Co-amoxiclav

0

1

2

3

4

5

0 20 40 60 80 100 120 140

%
Ec
-E
SB

L+
a

3rd	gen.	cephalosporin	use,																																						
DDDs	per	1000	OBDs

0

1

2

3

4

0 1 2 3 4 5

%
Ec
-E
SB

L+
a

Fluroquinolone use	(community),																		
DDDs	per	1000	IDs

d

Co-resistance ESBL+	E.coli	(I/R%) ESBL- E.coli	(I/R%) Difference	in	%	resistance p-value

Cefuroxime 100% 2% 98.1	(96.2	to	100.0) <0.001
Ceftazidime 100% 7% 93.0	(90.1	to	95.9) <0.001
Aztreonam 99% 2% 96.9	(94.1	to	99.7) <0.001
Ciprofloxacin 81% 31% 49.8	(47.3	to	52.3) <0.001
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(a) Frequency of co-resistances to other antibiotics in ESBL+ and non-ESBL E. coli isolates. (b)
Time series for observed %Ec-ESBL+ with model fit and for use of potential explanatory antibiotic
groups in hospital population (5-month moving averages) (c) Time series for observed %Ec-ESBL+
with model fit and use of potential explanatory antibiotic groups in community population (5-
month moving averages) (d) Contribution charts illustrating the relationship between explanatory
variables and hospital or community %Ec-ESBL+ a compared to median monthly %Ec-ESBL+
for study period. %Ec-ESBL+, percentage of E. coli isolates producing extended-spectrum beta-
lactamases. DDDs, defined daily doses. IQR, Interquartile range. MARS, Multivariate Adaptive
Regression Splines. NL-TSA, non-linear time series analysis. OBDs, occupied bed days.
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Example 3: Cefepime-resistant Escherichia coli (Seville, Spain)

Scenario: We examined ecological predictors of cefepime resistance among all E. coli
urinary or invasive infections (%Ec-FepR) in a tertiary hospital in Seville, Spain.
Between March 2008 and December 2016 (n=108 months) %Ec-FepR fell from 12.6%
to 7.9% (Figure 8.3). Cefepime use was low, declining from 4.4 to 1.6 DDDs per 1000
OBDs with thrice-weekly (Jan 2012, audit1) and daily (Jan 2014, audit2) prescrip-
tion audits. By contrast, previously declining use of third-generation cephalosporins
increased from January 2013 when they replaced co-amoxiclav and ciprofloxacin as
first-line empirical therapy for intra-abdominal or urinary infections.

Hypothesis: Resistance to cefepime in E. coli is mostly conferred by ESBLs with high
affinity for cefepime (TEM-, SHV- and CTX-M-types). In addition to those agents
hypothesised to predict ESBL+ E. coli (see Example 2), we considered the role of
piperacillin-tazobactam, previously found to predict cefepime resistance in E. coli
(Vernaz et al., 2011). Due to low rates of cefepime prescribing, we grouped this with
third-generation cephalosporin use. We introduced variables for antibiotic auditing
interventions and for revised susceptibility breakpoints (Oct 2014) (Rodríguez-Baño
et al., 2012).

Model estimation: The final non-linear model (R2 = 0.30) identified associati-
ons with %Ec-FepR 12 months prior (seasonal effect) and use of third- or fourth-
generation cephalosporins and fluoroquinolones above minimum thresholds. A sig-
nificant interaction term between %Ec-FepR in the previous month (autoregression,
lag 1) and the second antibiotic auditing intervention suggested a gradual effect of
the audit in reducing %Ec-FepR.

Policy implications: Reductions in third- and fourth-generation cephalosporins and
fluoroquinolone use to below minimum thresholds explained modest declines in %Ec-
FepR between 2008 and 2012. Partial reversal in this trend was consistent with in-
creasing use of third-generation cephalosporins towards the end of the study period.
From the scenario in the last year of study, our model suggested %Ec-FepR could
be controlled further by reducing third- and fourth-generation cephalosporin use by
41% (Table 8.2).
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Figure 8.3: Cefepime-resistant Escherichia coli and antibiotic use.
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Example 4: Gentamicin-resistant Pseudomonas aeruginosa
(Besançon, France)

Scenario: We examined ecological variables explaining rates of gentamicin-resistant
P. aeruginosa (GRPa) among adult and paediatric admissions to a tertiary hospital
in Besançon, France (Figure 8.4). Between Jan 1999 and Dec 2014 (n=192 months),
incidence density of GRPa decreased from a 12-month average of 14.0 to 3.4 cases
per 1000 OBDs, and the proportion of P. aeruginosa isolates resistant to gentamicin
declined from 63% to 16%.

Hypothesis: Aminoglycoside modifying enzymes (AMEs) are the most common me-
diators of aminoglycoside resistance in P. aeruginosa; with acetyltransferases (e.g.
aac(6’)-Ib) and nucleotidyltransferases (e.g ant(2”)-Ia) most frequent in Europe
(Poole, 2011). Since common genes encode AMEs and -lactamases, β-lactam use
may also predict aminoglycoside resistance (Dubois et al., 2008). In previous analy-
ses from Besançon, aminoglycosides, cefepime and fluoroquinolones were predictors
of MexXY-OprM overproduction in P. aeruginosa (Hocquet et al., 2008). GRPa
isolates were also more likely to overproduce the chromosomally-encoded AmpC
cephalosporinase (56% vs. 20%; p<0.001) and be multi-drug resistant (65% vs.
13%; p<0.001). We hypothesized that GRPa incidence density may be predicted
by use of aminoglycosides, fluoroquinolones, extended-spectrum penicillins with β-
lactamase inhibitors, carbapenems, monobactams, and third- and fourth-generation
cephalosporins. Given potential intra-class differences in promoting resistance, we
grouped use of gentamicin and tobramycin separately from that of amikacin.

Model estimation: In the best-fit model (R2 = 0.86), GRPa incidence density was
strongly predicted by incidence density in the previous month, and hospital use of
gentamicin/tobramycin and fluoroquinolones above minimum thresholds. No inde-
pendent association with Amikacin use was identified.

Policy implications: Declining clinical burdens from GRPa were explained largely
by reductions in inpatient use of gentamicin/tobramycin, and, to a lesser extent,
fluoroquinolones. Use of both drug groups was maintained below minimum thres-
holds from around 2007. Continuing decreases in GRPa incidence density were at
least partially explained by autocorrelation when incidence density fell <14 cases
per 1000 OBDs. Reciprocal increases in gentamicin-susceptible P. aeruginosa over
the same period, and moderate inverse correlation (r = −0.55), suggest competi-
tion for the same niche as GRPa. Gentamicin/tobramycin and fluoroquinolone use
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should be maintained at, or below, identified thresholds to control GRPa.

Figure 8.4: Gentamicin-resistant Pseudomonas aeruginosa and antibiotic use.
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(a) Frequency of co-resistances to other antibiotics in gentamicin-resistant (GRPa) and gentamicin-
susceptible (GSPa) P. aeruginosa isolates in population. (b) Time series for observed and model
predicted incidence density of GRPa; (c) Time series for potential explanatory antibiotic groups (5-
month moving averages) (d) Contribution charts illustrating the relationship between explanatory
variables and GRPa incidence densitya

acompared to median monthly GRPa incidence density for study period. DDDs, Defined Daily
Doses. GRPa, gentamicin-resistant P. aeruginosa; GSPa, gentamicin-susceptible P. aeruginosa iso-
lates. IQR, Interquartile range. MARS, multivariate adaptive regression splines OBDs, Occupied
Bed Days.

151



Chapter 8 Antibiotic use thresholds to control antibiotic resistance.

Example 5: Methicillin-resistant Staphylococcus aureus (Antrim,
Northern Ireland)

Scenario: We evaluated incidence density of all MRSA clinical isolates in adult
admissions to a district general hospital in Antrim (Jan 2005 to Sep 2013, n=105
months). Between 2005 and mid-2008, incidence density of MRSA clinical isolates
remained stable at c.3.0 per 1000 OBDs (Figure 8.5). Following an intervention
restricting fluoroquinolones (January 2008) and intensification of infection control,
burdens gradually fell to 1.64 cases per 1000 OBDs in 2013.

Hypothesis: The epidemic hospital MRSA clonal complex CC22, predominated in
Northern Ireland during the study period: its success attributed to an ability to
acquire mobile genetic elements carrying multiple resistance genes, with limited fit-
ness costs (Horváth et al., 2012). Moreover, persistence of fluoroquinolone-resistance
mutations in CC22 explain its strong associations with prescribing fluoroquinolones.
Consistent with previous linear analyses from the region (Aldeyab et al., 2008), we
hypothesised MRSA burdens may be predicted by use of fluoroquinolones, third-
generation cephalosporins, co-amoxiclav, and macrolides.

Model estimation: In the best-fit model (R2 = 0.53), MRSA incidence density was
positively associated with rates of MRSA in the previous month and use of fluoro-
quinolones, third-generation cephalosporins, and co-amoxiclav exceeding minimum
thresholds. An inverse relationship was seen with increased hospital use of alcohol-
based hand rub (ABHR) up to 6.9 Litres per 1000 OBDs, above which further
increases in ABHR use was not associated with further declines in MRSA (ceiling
effect).

Policy implications: Declines in MRSA incidence density could be partly attri-
buted to deliberate restriction of fluoroquinolone use, and concurrent declines in
co-amoxiclav and third-generation cephalosporin use, intended to control C. diffi-
cile. Strong autoregression and inverse relation to ABHR use were consistent with
importance of infection prevention and control measures in interrupting horizontal
transmission. Reversal of previous declines in fluoroquinolone use were seen by the
last year of study. MRSA could be best controlled by maintaining antibiotic use
under thresholds, use of ABHR at, or above, threshold levels and reducing fluoro-
quinolone use by 39% (Table 8.2).
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Figure 8.5: Methicillin-resistant Staphylococcus aureus, hand hygiene, and anti-
biotic use.
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(a) Time series for observed and model predicted incidence density of MRSA (b) Time series for
potential explanatory antibiotic groups (5-month moving averages) (c) Time series for alcohol-based
hand rub (ABHR) use; (d) Contribution charts illustrating the relationship between explanatory
variables and MRSA incidence densitya

acompared to median monthly MRSA incidence density for study period. ABHR, alcohol-based
hand rub. DDDs, Defined Daily Doses. ECDC, European Centre for Disease Prevention and
Control. MRSA, Methicillin-resistant Staphylococcus aureus. OBDs, Occupied Bed Days.
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Discussion.

Using a non-linear time-series analysis (NL-TSA) approach, we found empirical evi-
dence of non-linear relationships between population antibiotic use and resistance
outcomes in five European settings. The method was generalisable to different clini-
cal populations, resistant pathogens, definitions of resistance burdens, and epidemi-
ological phases. We demonstrated that identification of minimum thresholds could
provide population-specific quantitative targets for antibiotic stewardship, balancing
the need for use with control of resistance.

Our approach builds upon earlier work using linear time-series analysis to explain
temporal relationships between antibiotic use and resistance (López-Lozano et al.,
2000; Vernaz et al., 2011; Aldeyab et al., 2008; Monnet et al., 2004; Aldeyab et al.,
2012). NL-TSA shares a number of strengths with linear models, including: low-
informational demands, requiring only aggregate prescribing and resistance data;
ease of reiteration as new data becomes available, providing context-specific re-
sults; adjustment for the non-independence of serial observations and stochasticity
inherent to time-series of communicable diseases; identification of temporality in
associations and ‘lagged’ effects; and integration of impacts of multiple exposures
(López-Lozano et al., 2000). Additionally, NL-TSA reveals non-linear relationships
between exposures and resistance, providing more accurate understanding of how
modifying antibiotic use, infection control or other exposures is likely to effect resis-
tance. General limitations of NL-TSA include: the need for longer time-series than
linear TSA; the potential for spurious thresholds in areas of limited data, including
at extremes of the exposure variable range; and difficulty in identifying thresholds
in associations in situations of stable resistance and prescribing. We note the poorer
predictive performance of some models (e.g. Example 3), may be explained by ab-
sence of data on infection prevention and control activities, and resistance levels in
interacting populations.

Non-linear relationships between population antibiotic use and clinical burdens from
resistance may have important implications for antibiotic stewardship. In general,
impacts of changes in antibiotic use on resistance vary dependent upon the antibio-
tic use level. More specifically, minimum thresholds may be interpreted as an upper
limit for ‘safe’ population antibiotic use which does not appear to substantially in-
crease resistance rates at the population level. Alternative theories may suggest the
threshold indicates: a maximum level of selection pressure not conferring a survival
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advantage to resistant pathogens to spread within populations or ecological niches
(Peterson, 2005; López-Lozano et al., 2000), or strong enough to induce resistance
(Oz et al., 2014); or a minimum level of use, below which antibiotic substitution cre-
ates equivalent or greater selection pressure (Peterson, 2005). Crucially, they may
provide quantitative targets for balancing the need to access therapies with control
of resistance, analogous to ‘quotas’ applied to other natural resources (e.g. fisheries,
forestries) which seek to maximize extracted value while maintain a non-declining
stock (Laxminarayan, 2014; Laxminarayan et al., 2013, 2001). Moving from current
qualitative targets of reducing use, to quantitative targets may also aid operational
effectiveness. Targets appear to work best if pragmatic, collaborative and iterative
(Berry et al., 2015). Complete restriction of use of some agents is not feasible, and
in balancing competing needs of use and control of resistance, quantitative targets
offer an opportunity to align interests and motivations of clinician and antimicrobial
management team (Hulscher et al., 2010).

We emphasise the need for caution with interpretations of thresholds. Firstly, thres-
holds should offer guidance rather than strict limits. Uncertainty around thresholds
is variable, as reflected in width of associated confidence intervals. Narrower confi-
dence intervals around threshold locate with reasonable precision the level of anti-
biotic use at which effects on resistance are substantially altered. Wider intervals
may indicate insufficient data or influence of additional explanatory variables. We
suggest a pragmatic approach, as in Table 8.2, of interpreting thresholds depen-
ding upon the policy scenario. Where the priority is strict control of resistance a
conservative approach of limiting use to the lower limit of the threshold confidence
interval is advisable. Where excessive restriction is a concern, the standard approach
of limiting use to the point estimate of the threshold is likely to offer the best ba-
lance between restriction and control of resistance. Secondly, changes in molecular
epidemiology under sustained antibiotic selection pressures, such as compensatory
mutations minimising fitness costs (Wong, 2017; Levin et al., 2000), or strain repla-
cement (Lawes et al., 2015a,b), mean thresholds may vary by epidemiological phase
and time. Variation in thresholds across populations can be anticipated, reflecting
host, environment, and organism factors (Lawes et al., 2015b,a, 2017). Therefore,
models based on local data and iterative analysis is necessary to ensure time and
context-specific guidance. Thirdly, it is important not to assume that all antibi-
otic use below thresholds is safe, since antibiotic exposures may be important for
individual patients, or cause unseen change in reservoirs of resistant pathogens in
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environment or hosts.

Potential foci for further research include: evaluating the consistency of thresholds
for specific antibiotic use-resistance combinations across different settings and iden-
tifying factors affecting thresholds; providing global recommendations for controlling
multiple AMR problems through applications of NL-TSA to composite indices of
resistance (Laxminarayan and Klugman, 2011; Hughes et al., 2016); the use of Bay-
esian approaches to standardise and accelerate selection of explanatory variables
and facilitate analysis with shorter time-series or rare resistance outcomes (Murphy
et al., 2011); applications to smaller populations, such as intensive care units; and
prospective studies to validate the effectiveness of quantitative targets in antibiotic
stewardship interventions.

We have illustrated how non-parametric time-series models based on empirical data,
can identify non-linear relationships between population antibiotic use and resistance
burdens. Further we have shown how identification of population-specific minimum
thresholds may guide rational compromises between control of resistance and access
to therapeutics. With the increasing availability of electronic surveillance and he-
althcare systems, this approach offers a useful tool for sustaining the effectiveness
of current antimicrobials in many areas of the world.

8.3 Methods.

Design and study populations.

This was a multi-centre time-series study. We used multivariable non-linear time-
series analysis to quantify associations between ecological exposures, including po-
pulation use of antibiotic groups, and rates of antibiotic-resistant infections in five
populations from France, Hungary, Northern Ireland (UK), and Spain (See Appen-
dix A Table 8.3)

The populations and resistance outcomes were a purposive sample, chosen to re-
flect varying epidemiological scenarios, clinical settings, and resistant infections in
European centres participating in the THRESHOLDS (THReshold EStimation to
Help Optimise Local Decisions on antibiotic Stewardship) study group. This colla-
borative aims to further the development of time-series analysis for understanding
antibiotic resistance and planning antibiotic stewardship. Members included centres
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with prior experience in applying linear time-series approaches. Investigators were
asked to identify an important resistance problem in a defined clinical population
from their region. Minimum data requirements were consistent microbiological and
prescribing data across a minimum of 60 monthly observations (5 years). Duration
of time-series was defined by the longest period of consistent data for a minimum
data set of the outcome and candidate explanatory variables.

For each population we described the regional scenario for the chosen outcomes,
the theoretical basis for inclusion of candidate explanatory variables, findings from
the non-linear time-series analysis, and how these could inform local antibiotic ste-
wardship policy.

Outcome and explanatory time series.

The outcome time-series for each population were: carbapenem-resistant Acineto-
bacter baumannii (Debrecen, Hungary); extended spectrum β-lactamase producing
Escherichia coli in hospital and community (Orihuela, Spain); cefepime-resistant
Escherichia coli (Seville, Spain); gentamicin-resistant Pseudomonas aeruginosa (Be-
sançon, France); and methicillin-resistant Staphylococcus aureus – MRSA (Antrim,
Northern Ireland). Cases were defined microbiologically as isolates from all rele-
vant body sites not identified as infection control specimens and meeting consistent
criteria for resistance or resistance mechanism (see supplemental file for details). Iso-
lates from the same patient identified within 30 days of a prior isolate with the same
organism were considered part of the same infectious episode and de-duplicated.
Outcomes were expressed, where possible, as monthly incidence density of resistant
infections (cases per 1000 or 10,000 occupied bed days, OBDs). Where there were
large changes in testing frequency or organism identification over time, we defi-
ned resistance as a percentage of clinical isolates from the same organism with any
susceptibility pattern.

The primary explanatory variables were monthly population use of antibiotic agents
classified by pharmacological sub-group of antibacterials for systemic use (J01) in the
2016 WHO/ATC index, and expressed as defined daily doses (DDDs) per 1000 OBDs
(hospital) or 1000 inhabitant-days (community). Candidate antibiotic sub-groups
were identified a priori, on the basis of regional co-resistance profiles, molecular
epidemiology in the region, reviews and prior evidence on individual or population
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level risk factors for acquisition of the resistant infection. We included separate time-
series for individual antibiotic agents or chemical sub-groups only where there were
strong theoretical grounds for investigating independent associations, such as prior
evidence of variable within-class actions or targeting within antibiotic stewardship
interventions.

In addition, we incorporated autoregressive terms capturing association between
current incidence density and incidence density in recent months. Where available,
we incorporated infection prevention and control (IPC) variables such as use of
alcohol-based hand-rub. Dummy variables were added to capture immediate and
gradual impacts of changes in laboratory methods or other planned interventions.
We considered lags in association of up to 6 months and seasonal autoregressive
terms (lag 12).

Data collection and laboratory procedures.

In all centres, microbiological and prescribing and IPC data were extracted from
electronic databases maintained for routine healthcare activities. Data were ano-
nymised and aggregated before electronic submission to the THRESHOLDS study
group. Meta-data on population characteristics, IPC activities, antibiotic stewards-
hip interventions and resources for control of antibiotic resistance were captured
using a standardised questionnaire.

Pathogens were identified using standard laboratory methods. Susceptibility testing
was by disc-diffusion (Besançon, Debrecen, Antrim) or broth microdilution (Seville,
Orihuela). Isolates were defined as resistant if not susceptible to an antibiotic agent
according to zone diameter (for disc-diffusion) or minimum inhibitory concentra-
tion (MIC, for broth microdilution) breakpoints as recommended by the European
Committee on Antimicrobial Susceptibility Testing (EUCAST) or Clinical & Labo-
ratory Standards Institute (CLSI). Details of standards used, and deviations from
EUCAST or CLSI criteria are detailed in Table 8.3. Known changes in breakpoints
and laboratory methods were adjusted for in time-series analysis.

Statistical methods.

In the following sections we provide a technical exposition of the statistical methods
used. We offer here, a brief description for the general reader.
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Before applying non-linear time-series analysis (NL-TSA) to real-world datasets
from study populations, we performed a statistical, Monte-Carlo, experiment to il-
lustrate its advantages over, more familiar, linear TSA. We applied both linear and
non-linear TSA to computer-simulated time-series, where the relationship between
the outcome and explanatory time-series was known. Three types of relationship
were explored: a linear relationship; a non-linear relationship without correlations
between successive data points in time-series (autoregression), and a non-linear re-
lationship with autoregression; By running this experiment over 10,000 simulated
datasets for each type of relationship we evaluated the typical ability of linear and
non-linear TSA to describe the relationships accurately.

We next applied a seven-step non-linear time-series analysis approach to resistance
problems in study populations (Figure 8.6).
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Figure 8.6: Summary of the 7-step non-linear time-series methodology and poten-
tial pitfalls.

 

Step 1: Theoretical foundation
Identification of antibiotic sub‐groups or agents, infection control interventions, and other
ecological variables hypothesised to predict the outcome:
• Prior evidence on risk‐factors
• Regional molecular epidemiology
• Most frequent co‐resistances in antibiograms of resistant pathogen

Step 2: Data validation
Review of time‐series to identifiy unanticipated step‐wise changes in time‐series (Chow’s test), 
or outliers (Cooks distances) and to make appropriate adjustment or replacements

Step 3: Identifying the most likely predictors and their lags

• Direction of temporal association explored by vector autoregression (VAR) analyses
• Significant associations (and lags) identified by inspection of plots from multivariable General 

Additive Model (GAM) plots.

Step 4. Multivariable model estimation

• Multivariate Adaptive Regression Splines (MARS) procedure to select and estimated final 
multivariable models, and describe associations in terms of one or more stable linear functions 
linked by thresholds or ‘knots’.

Step 5: Diagnostic checks of model fit

• Normal distribution of residuals with mean zero, and homogenous variance
• Absence of residual autocorrelation, evaluated by autocorrelation function (ACF) plots
• Absence of residual non‐linearities in Hinich Test

Step 6. Confidence intervals for thresholds

• Conditional conservative inverted Likelihood Ratio (CCILR) confidence intervals for each 
threshold generated using partial residuals after adjustment for other covariates and thresholds.

Step 7. Interpretation

• Suggested maximum total treatment courses per month calculated as:
Threshold values (DDDs per 1000 OBDs or IDs) x population size (OBDs or IDs per month)

Average treatment course in DDDs (e.g. 7).
• Comparison to current total treatment courses per month in population

Potential pitfalls Solution

Concurvity in associations Restricting candidate covariates (and lags) through steps 1 and 3. 
Spurious thresholds at extremes 
of explanatory variable range 

Constrain thresholds to 10‐90th centiles of explanatory variable 
range

Uncertainty in direction of 
temporal associations

Prior Grainger causality tests and Vector Autoregression (VAR) 
analysis to clarify temporality

Mirroring the approach with more familiar regression techniques, we started by de-
fining a set of explanatory variables (antibiotic use, infection control time-series,
population interactions, resistance in previous months – autoregression, etc.). This
set was defined by (a) expert opinion informed by prior risk-factor studies, molecular
epidemiology in the region; and (b) inspection of resistance profiles of the patho-
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gen of interest. We consider delays between changes in explanatory time-series and
associated change in outcome time-series (lags) of up to 6 months. Before analy-
sis we checked time-series and make adjustments for extreme values (outliers) or
unexpected shifts in mean (structural changes). We also used vector autoregression
(VAR) models to help distinguish any reverse causality in relationships between
explanatory and outcome series: this might occur, for example, if prescribing beha-
viour was altered by resistance rates in the population in previous months. Next we
restrict the set of explanatory variables, and lags, to be put into final multivariable
models. We use a procedure that fits smooth functions to relationships between ex-
planatory and outcome time-series, and allows visual inspection of likely significant
associations. After identifying the most promising explanatory variables (and lags
of effects) we enter these into a Multivariate Adaptive Regression Splines (MARS)
model which both identifies significant predictors, and defines any non-linear rela-
tions as a series of linear relationships connected by ‘knots’ or thresholds. Model
fit for MARS is checked by ensuring residuals were normally distributed without
unexplained non-linearities. Confidence intervals around each threshold were fit by
a conditional conservative inverted likelihood ratio (CCILR) method, using partial
residuals. Finally we converted thresholds from models into suggested maximum to-
tal treatment courses per month in the population by multiplying model thresholds
by the size of the population and dividing by an average treatment course.

To provide an example of how model findings can inform policy, for the Orihuela
population, we predicted the effects of restricting antibiotic use to threshold levels
compared to a ‘business as usual’ scenario of prescribing based on the last months
of study. We quantify impacts of immediate restriction sustained over two years.

A technical explanation follows:

a) Comparing linear and non-linear time-series model performance.

We used a Monte-Carlo experiment to compare the ability of linear (Ordinary Least
Squares, OLS) and non-linear (Multivariate Adaptive Regression Splines, MARS)
time-series models in identifying various pre-defined functional relationships bet-
ween simulated explanatory and outcome time-series. We hypothesised that for
time-series related by simple linear processes MARS and OLS regression methods
would perform equally well, but that only MARS would accurately identify non-
linear associations. We generated 10,000 simulated datasets using simple stochastic
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processes incorporating the following pre-defined functional relationships:

• Non-autoregressive without threshold
yt = −4 + 2xt + ut ut ∼ N

(
0, σ2 = 0.02

)
∀t = 1, · · · , 200

• Non-autoregressive with threshold if xt ≤ 2 yt = ut ut ∼ N (0, σ2 = 0.5)
if xt ≤ 2t yt = −4 + 2xt + ut ut ∼ N (0, σ2 = 0.5)

∀t = 1, · · · , 200

• Autoregressive with threshold if xt ≤ 0 yt = 0 + ρyt−1 + ut ut ∼ N (0, σ2 = 0.05)
if xt > 0 yt = 0 + ρyt−1 + 1xt + ut ut ∼ N (0, σ2 = 0.05)

∀t = 1, · · · , 200

Where:

xt is the explanatory (independent) time-series variable at time t

yt is the outcome (dependent) time-series variable at time t

ut is the error term at time t , with Normal distribution, zero mean and variance σ2

ρyt−1 is an autoregressive term or order 1 (i.e. dated at t-1 ) with ρ = 0.25

For each dataset we fitted both linear and non-linear time-series analyses, and re-
corded sample parameter estimates (a constant, b slope, and s2 as the estimate of
population variance) and a measure of goodness of fit (R2). Histograms were cre-
ated illustrating the distributions of R2 values and parameter estimates from both
linear and non-linear models. Visual comparison was made to pre-defined parameter
values to identify bias in parameter estimates. We used a t-test of mean difference
for independent samples to compare model performance based on R2 values.

b) Applications of non-linear time-series analysis to real-world datasets.

We applied a seven-step approach to generate non-linear time-series models descri-
bing how contemporaneous and prior population antibiotic use, and other ecological
variables, explain monthly variation in clinical burdens from antibiotic-resistant in-
fections in five European centres.
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Step 1: Theoretical foundation.

Participating centres identified a priori a minimum dataset of antibiotic sub-groups
or agents they considered most likely to affect the epidemiology of the resistant or-
ganism under investigation (target organism). Decisions were based upon: previous
empirical evidence of risk factors and molecular epidemiology in the study region or
related contexts. Additionally, using antibiogram data from the study period and
population, we reviewed co-resistances to other antibiotics among isolates of the
target organism with and without the resistance under investigation. We considered
antibiotics with the largest absolute rates of co-resistance in the resistant isolates to
be most likely to exert significant selection pressures (Søgaard, 1989; Møller, 1989).
Consensus on the list of potential predictive variables was found through discussion
among all THRESHOLDS study group members.

Where data was available we integrated additional explanatory variables on hospi-
tal activity or infection control activities, associated with the outcome variable in
previous studies.

Step 2: Data validation.

To ensure consistent time-series we first accounted for known changes in exogenous
conditions, such as changes in laboratory method. We captured immediate and
gradual effects by entering a dummy variable (0 in months before the change, 1 in
months after change) and its interaction with an autoregressive term, as explanatory
variables. We then reviewed time-series to detect possible unknown measurement
errors as follows. Visual inspection identified potential structural changes (seen as
large step-wise change in mean for instance) or outliers (seen as values deviating
substantially from surrounding values). Successive Chow tests were applied to au-
tomatically detect the most probable dates of structural changes in the time-series
and, where necessary, to disaggregate the sample into two or more segments, each
with a stable mean. For each segment we applied an outlier detection technique
using the following criterion: an observation was considered as an outlier if Cook’s
distance at this point was greater than five times the mean of Cook’s distances of all
the observations of the segment. Finally, we replaced outlier values with the mean
of the three preceding and three following observations.

Step 3 Identifying the most likely predictors and their lags.

Given the potentially complex relationships between ecological variables under in-
vestigation we sought to refine our understanding of potential associations before
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applying final multivariable non-linear models.

Firstly, situations of reverse causality could exist when ecological exposures - such
as rates of infections with resistant pathogens connected populations, or use of some
antibiotic groups in a given population - respond to, rather than predict, rates of
resistance. In order to minimise this risk, we tested direction of temporal relations-
hips between explanatory and outcome time-series by applying Granger-causality
analysis and Vector Autoregression (VAR) models. Secondly, non-linear models of
the type used in this study are potentially complex and difficult to extract form the
data if too many predictors are used at the same time. Therefore, we carried out
an additional a priori data-based selection of candidate explanatory variables and
lags (the lag refers to the delay in months between change in exposure and associa-
ted change in outcome). This was done through inspection of outputs from fitting
a General Additive Model (GAM) to the data. GAM is a very general procedure
that can be used for the identification of the most likely predictors, since it runs a
non-parametric estimation of the functional relationships between explanatory (x)
and outcome (y) time-series, based upon iterative data fitting, rather than prior
assumptions. It also allows for variability in the functional relationships across
different values of the explanatory variables and can therefore capture non-linear
associations between ecological variables and resistance outcomes (Donayre et al.,
2018). In particular, we used the GAM procedure in the SCAB34S Splines module
(available in SCA Workbench, Scientific Computing Associates Corp, Illinois, USA)
to define the relationship between p explanatory (x) and the outcome (y) time-series
as a sum of smooth, or spline, functions:

E(y | x1, x2, . . . , xp) = s0 +
p∑
j=1

sj(xj)

where (sj(xj)) are the spline functions; they were standardised such that, after
removal of free constants (so) their expected contribution to the outcome (y) is zero
(i.e. E[sj(xj)] = 0 for each j).

The splines were derived by a process of splitting the time-series into sections, joined
at knot points, and fitting simple curves described by cubic functions to the data in
each section. The GAM methodology identified the optimal combination of spline
functions sj(xj), following the iterative procedure suggested by Hastie and Tibshi-
rani (1990). Combining a local scoring algorithm and a backfitting procedure, this
method converges on a solution balancing data fit with smoothness.

To identify the most relevant explanatory time-series, for each centre we started
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with a multivariable GAM model including all theoretically relevant variables at
lags of 1 to 6 months and autoregressive terms at lags 1 and 2. We limited lags to 6-
months based on widespread evidence of declining relevance of antibiotic exposures
by time-since exposure, and prior experience that considerations of longer lags lead
to problems of concurvity. On the basis of the GAM outputs, an explanatory variable
with a specific lag was retained in the model only if its contribution was significant
at a 5% level of probability (identified on contribution charts by the zero line of non-
association falling outside of 95% confidence intervals around the estimate). The
process was run iteratively by removing first those variables and lag combinations
whose contributions were non-significant before re-running the GAM model on a
reduced subset of variables and lags. The process stopped when the model contained
only significant contributions of variables and lags. These constituted the restricted
set of explanatory variables for entry into MARS analysis.

A further objective of applying the GAM procedure was to determine whether consi-
deration of non-linear associations is justified in terms of improvement in predictive
performance. For each explanatory variable (and lag), GAM provides a comparison
of the data fit of a non-linear spline function (nl) with an analysis in which this re-
lationship is restricted to a linear function (l). Significant improvement in goodness
of fit over a linear fit is defined by an F -test, as follows:

F0 = (SSRl − SSRnl) / (pnl − pl)
SSRnl/(n− pnl)

∼ F(dfnl−dfl),(n−pnl)

where; SSR= Sum of squares of residuals, n= number of observations, p= number
of parameters, l= linear function, and nl= non-linear spline function.

The null hypothesis that estimates from an enhanced (non-linear) model do not
provide a significantly better fit than those from a linear model can be rejected where
F exceeds a critical value (a = 0.05) from an F-distribution with (pnl − pl, n− pnl)
degrees of freedom.

Step 4. Multivariable model estimation.

After identifying the most likely explanatory variables (and lags), and whether as-
sociations with the outcome series were linear or non-linear, we used the MARS
procedure (in the SCAB34S Splines module) to obtain an easily interpretable cha-
racterization of these associations(Friedman, 1991). MARS is a non-parametric re-
gression approach suitable for situations of non-linear associations that can provide
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more interpretable and interesting empirical results than GAM. Given our research
aims, its particular advantages were: (i) the ability to identify distinct threshold
values (‘knots’) of the explanatory variables delimiting regions (ranges of values)
of individual or interacting explanatory variables within which associations with
the outcome differs substantially from those in other regions; and (ii) a systematic
approach for model identification and estimation, which automatically selects the
combination of explanatory variables and threshold values which most efficiently
explain variation in outcomes. (See Appendix A Figure 8.9)

MARS approximates the functional relationship between an outcome time-series (yt)
and a vector of p explanatory variables xt = (x1

t . . . .x
p
t ) as:

yt = β0 +
M∑
m=1

βmbm (xt) + εt

where;

β0 is a constant

βm is the coefficient for the mth basis function, m = 1, ...,M

bm(xt) is the mth basis function, m = 1, ...,M

εt is an independently distributed error term.

The basis functions are products of up to two truncated linear or hinge functions,
describing the relationship between one or more explanatory variables and the out-
come in terms of segments of stable association separated by knots or thresholds
values. These interacting hinge functions allow us to identify possible interactions
between variables as in Figure 8.1C(ii). Namely, the mth basis function takes one of
the following two forms:

No interaction: bm (xt) = h
(
xkt , tk,m

)
for some k = 1, . . . , p

With interaction: bm (xt) = hm
(
xkt , tk,m

)
·hm

(
xjt , tj,m

)
for some k, j = 1, . . . , p, k 6=

j

where tk,m is the threshold value of xkt in themthbasis function and where h
(
xkt , tk,m

)
is a hinge function that takes the following form depending on whether the basis
function takes effect above or below the threshold tk,m

a) above the threshold: hm
(
xkt , tk,m

)
= max(xkt − tk,m, 0)

b) below the threshold: hm
(
xkt , tk,m

)
= max(tkm − xkt , 0)
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If no knot (threshold) is detected, then a simple linear (and therefore constant)
association between explanatory and outcome variable can be specified as a single
function applied across the total range of values of the explanatory variable.

All potentially significant explanatory variables, and associated lags, identified in
previous steps, were incorporated into models. Model identification and estimation
proceed by an automated, iterative, process:

Forward pass: starting with the simplest model containing only a constant basis
function, MARS generates a matrix of basis functions in a forward stepwise manner.
Candidate base functions are added in order of ability to improve model fit, until
the model reaches a predefined limit of complexity. The candidate basis functions
are identified by a nested exhaustive search looping over the existing set of basis
functions, and all other possible explanatory variables (or interactions) and knot
positions.

Backwards (pruning) pass: During the subsequent pruning pass MARS removes
basis functions contributing least to model fit, until no significant improvement is
seen in a modified form of the generalized cross validation (MGCV) criterion:

MGCV =
1
N

∑n
i=0(y − f (x))2

1− ((C (M) + dM)/n)2

Where; N is the number of observations,∑n
i=0(y − f(x))2 is the sum of square of residuals (observed - estimated y).

C(M) is the number of parameters being fitted,M the number of non-constant basis
functions and d = 3 (conventional value).

The MGCV incorporates a complexity penalty accounting for the inherent impro-
vement in explained variance associated with increasing numbers of basis-functions,
and its calculation allows estimates of the relative importance of each basis function.
Model selection therefore converges on a set of basis functions that most efficiently
explain variation in antibiotic resistance before a final model fit by OLS estimation.

From the output of each MARS model we generated contribution charts illustrating
the change in the outcome time-series across the observed ranges of explanatory
variables.

Step 5. Diagnostic checks

Adequacy of model fit was defined by three criteria: (i) Normally distributed re-
siduals – with homogeneous variance and mean equal to zero, as evaluated by a
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Normality test; (ii) absence of significant residual autoregression – identified in lags
0 to 6 on an autocorrelation function (ACF) plot; and (iii) absence of residual non-
linearities – as evaluated by a Hinich test. In addition to the MGCV we reported
more familiar measures of model performance such as R2 and the mean absolute
percentage error (MAPE).

Step 6: Confidence intervals for thresholds values

In the absence of an existing method for deriving measures of uncertainty around
thresholds derived from non-parametric MARS models, we develop a procedure
inspired by Hansen (2000). His procedure considers a simple threshold model with
only one variable affected by a threshold effect, and obtains a distribution theory for
the threshold parameter (τ) from which asymptotic confidence intervals can be built.
He first derives the limiting distribution of a Likelihood Ratio test (LR) for the null
hypothesis that the threshold parameter τ= τ 0 . He then builds confidence intervals
through the inversion of LR: the (1-α) Inverted Likelihood Ratio (ILR) confidence
interval consisting of all the possible values of τ for which the null hypothesis would
not be rejected at the α level. Donayre et al. (2018) examine improvements of
Hansen’s ILR confidence interval, increasing its quality in finite samples with large
threshold effects (i.e. when the change in slope from one side of the threshold to
the other is large). They show that a ‘conservative modification’ enlarging Hansen’s
ILR confidence interval is optimal. In this “conservative ILR confidence interval”
the lower end of the interval is enlarged from the first value lower than τl for which
the null hypothesis is rejected, up to τl; at the upper end, it is enlarged from τu

up to the first value greater than τu for which the null hypothesis is rejected. This
modification provides intervals at a confidence level at least as high as the nominal
one that are still informative.

We adapted this procedure for MARS estimations with more than one explanatory
variable containing thresholds, and one or more thresholds per variable, by using
the partial residuals –i.e. the variation in the outcome not explained by other expla-
natory variables and their thresholds. This allowed us to identify conservative ILR
confidence intervals for each explanatory variable, conditional on all the estimated
coefficients and thresholds other than the one for which the confidence interval is
computed. Since in MARS all thresholds and slope coefficients are anyway selected
and estimated to optimise overall model fit using conditional inference, identifying
these ‘conditional conservative ILR (CCILR) confidence intervals’ does not impose
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costs to reliability.

We adapted this procedure for MARS estimations with more than one explanatory
variable containing thresholds, and one or more thresholds per variable, by using
the partial residuals –i.e. the variation in the outcome not explained by other expla-
natory variables and their thresholds. This allowed us to identify conservative ILR
confidence intervals for each explanatory variable, conditional on all the estimated
coefficients and thresholds other than the one for which the confidence interval is
computed. Since in MARS all thresholds and slope coefficients are anyway selected
and estimated to optimise overall model fit using conditional inference, identifying
these ‘conditional conservative ILR (CCILR) confidence intervals’ does not impose
costs to reliability. Computing confidence intervals conditional only on other thres-
holds, but with re-estimation of coefficients describing piece-wise associations (slo-
pes), offers a valid alternative. In a Monte Carlo experiment (results available on
request) we found both approaches resulted in adequate coverage (>95% of intervals
including the actual value of the threshold) but CIs were wider with a procedure
with slope re-estimation, and less informative for a given coverage rate. As a result,
we recommend the partial residual approach. Other alternatives, such as bootstrap-
ped methods, are not likely to give satisfactory results. On the one hand, given the
presence of multiple thresholds, they may be prohibitively time-consuming; on the
other hand, even in the case of only one threshold, bootstrapping is very time con-
suming and has been shown to yield non informative confidence intervals (seeEnders
et al. (2007)) .

Step 7. Interpretation

The minimum thresholds identified for each significantly associated antibiotic group
were translated into suggested maximum numbers of patient treatment courses per
month not expected to adversely affect resistance at population levels. We multip-
lied the threshold, expressed in DDDs per 1000 OBDs (or IDs), by the size of the
monthly patient population (in thousands of OBDs or IDs), and then divided by an
average patient treatment course of 7 DDDs (except for aminoglycosides which were
considered as 3 DDDs). These maximums were further compared to contemporary
levels of antibiotic use in the last year of study, to provide indications of how current
use of antibiotics should be modified to avoid resistance spread.
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Projections for alternative antibiotic stewardship policy options.

To illustrate the potential effects of restricting antibiotics associated with %Ec-
ESBL+ to threshold levels in populations of Orihuela, we compared the expected
evolution of %Ec-ESBL+ under a ‘business as usual’ scenario in which antibiotic use
continued as in last year of study, to projected time-series with antibiotics restricted
to threshold levels.(Figure 8.8)

Firstly, we used a breakpoint analysis to identify the last stationary segment in %Ec-
ESBL+ time-series from the study period. We recursively estimated MARS models
using means from these stationary segments as starting points to derive steady
states for %Ec-ESBL+ in community and hospital populations. Based on steady
state values and MARS models for the study period (baseline) we simulated 1000
samples of 24-month projections, incorporating random error term with variance
as derived in the baseline MARS model. For each sample projection we entered
mean antibiotic levels in the last year of the study period (‘business as usual’) and
alternative levels set at identified thresholds (antibiotic stewardship options). We
calculated the mean difference between business as usual and each policy option for
every month along with 95% confidence intervals. Finally, we illustrated alternative
projections and differences using medians of distributions from the 1000 sample
projections.
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8.4 Appendix.

Extended data file.

Figure 8.7: Monte-Carlo experiments comparing linear and non-linear time-series
analyses-Fig i: Monte-Carlo experiments comparing linear and non-linear time-series analyses  

 
Ability to identify known relationships between explanatory (x) and outcome (yt) time-series 

was assessed by applying both linear (ordinary least squares, OLS) and non-linear 

(Multivariate Adaptive Regression Splines, MARS) models to 10,000 datasets generated 

through simple pre-defined stochastic processes (A) to (C). Frequency distributions indicate 

estimates from these 10,000 models of coefficients (constant a, slope b), and variance (s
2
) as 

well as summary of model fit (R
2
). Comparison can be made to pre-defined values for 

coefficients and variance. TSA, time-series analysis. 
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Ability to identify known relationships between explanatory (x) and outcome (yt)
time-series was assessed by applying both linear (ordinary least squares, OLS) and
non-linear (Multivariate Adaptive Regression Splines, MARS) models to 10000 data-
sets generated through simple pre-defined stochastic processes (A) to (C). Frequency
distributions indicate estimates from these 10000 models of coefficients (constant a,
slope b), and variance (s2) as well as summary of model fit (R2). Comparison can be
made to pre-defined values for coefficients and variance. (TSA, time-series analysis).

Figure 8.8: Projections of the percentage of extended-spectrum β-lactamase-
producing Escherichia coli (%Ec-ESBL) for hospital and community over next
24 months according to antibiotic stewardship intervention options.

Figure ii: Projections of the percentage of extended-spectrum β-lactamase-producing 

Escherichia coli (%Ec-ESBL) for hospital and community over next 24 months 

according to antibiotic stewardship intervention options.  

 
‘Business as usual’ scenario reflects expected %Ec-ESBL if antibiotic use patterns persist at 

levels seen in last 12-months of study period. Other projections based on immediate reduction 

of indicated antibiotic to level of minimum threshold. Note potential indirect effects due to 

population interactions. 
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Figure 8.9: Illustrations of GAM and MARS procedures for non-linear time-series
analysisFig iii. Illustrations of GAM and MARS procedures for non-linear time-series analysis 

 
(A) Examples of contribution charts from GAM procedure in (i) the absence and (ii) the 

presence of significant relationships between (x) and the outcome (y) variables. 

(B) Schematic comparing (i) linear (OLS) and (ii) non-linear (MARS) regression analyses. 

(C) Contribution charts illustrating the case of basis (spline) functions of the relationship 

between the outcome (yt) and (i) a single explanatory variable with positive impact only 

above threshold  and (ii) interacting explanatory variables (x1, x2) with various types of 

impact depending on the regions of the interacting variables 
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(A) Examples of contribution charts from GAM procedure in (i) the absence and (ii)
the presence of significant relationships between (x) and the outcome (y) variables. (B)
Schematic comparing (i) linear (OLS) and (ii) non-linear (MARS) regression analyses.
(C) Contribution charts illustrating the case of basis (spline) functions of the relationship
between the outcome (yt) and (i) a single explanatory variable with positive impact only
above threshold and (ii) interacting explanatory variables (x1, x2) with various types of
impact depending on the regions of the interacting variables

173



Chapter 8 Antibiotic use thresholds to control antibiotic resistance.

Table 8.3: Summary of study populations, outcomes and exposures

Centre 1. Debrecen (Hungary) 2. Orihuela  
(Spain) 

3. Seville 
 (Spain) 

4. Besançon  
(France) 

 5. Antrim (N.Ireland) 
 

Months of 
study (No.) 

Oct 2004 to  
Aug 2016 (N=143) 

July 1991 to  
Oct 2016 (N=304) 

Feb 2008 to  
Dec 2016 (N=108) 

Jan 1999 to  
Dec 2014 (N=192) 

Jan 2005 to  
Sep 2013 (N=105) 

Setting 1559-bed tertiary hospital. 
Serving population of  
1 500 000 

a) 350-bed district 
hospital 
b) Primary care 
(community) services for 
199 000. 

778 bed hospital 
Serving population of  
481 000 

1200-bed tertiary hospital. 
Serving population of  
1 200 000. 

340-bed teaching hospital. Serving 
population of  
147 103. 

Population General adult and paediatric 
inpatients, 75 ICU beds, 100 
chronic-care beds, haematology, 
oncology, transplantation 
services 
39 300 OBDs per month 

General adult inpatients, 
10-bed ICU. Oncology 
services. 
 
 
 
 
6 670 OBDs per month  

General adult and paediatric 
inpatients, 6-bed PICU, 6-
bed NICU, 50-bed ICU.  
Renal, oncology services. 
 
 
 
21 300 OBDs per month 

General adult and 
paediatric inpatients, 
including 40-bed ICU and 
12-bed NICU.  
 
 
 
27 710 OBDs per month  

General adult inpatients including 7-
bed ICU and oncology services, 
renal replacement therapy. 
 
 
 
9 750 OBDs per month 

Primary 
Outcome 

Carbapenem-resistant 
Acinetobacter baumannii isolates 
per 10 000 OBDs (CRAb) 

% Escherichia coli 
producing extended-
spectrum ß‐lactamases  
(%Ec-ESBL+)  

% Escherichia coli resistant 
to cefepime 
(%Ec-FepR) 

Gentamicin resistant 
Pseudomonas aeruginosa 
cases per 1000 OBDs 
(GRPa) 

Methicillin-resistant Staphylococcus 
aureus per 1000 OBDs (MRSA) 

Laboratory 
methods 
/susceptibility 
testing 

Disc-diffusion 
Breakpoint: 
- CLSI (to Aug 2013) 
- EUCAST (from Sep 2013) 
- Non-susceptible if zone 
diameter <23mm (for imipenem). 

Microdilution 
Breakpoint 
- CLSI (to Dec 2015)  
- EUCAst (from Jan 
2016). 
- ESBL+ if: 
(i) MIC >1mg/L for 
cefotaxime or ceftazidime.
and; 
(ii) ≥3 two-fold decrease 
in MIC when combined 
with clavulanic acid.  

Microdilution 
Breakpoint: 
- CLSI (to Dec 2015)  
- EUCAST (from Jan 2016) 
- Non-susceptible if MIC 
≤8mg/L (to Sep 2014) 
≤2mg/L (from Oct 2014) 
≤1mg/L (from Jan 2016) 

Disc-diffusion 
Breakpoint: 
- EUCAST (all months) 
- Non-susceptible if zone 
diameter <16mm. 

Disc-diffusion (Oxicillin to Nov 
2007, Cefoxitin from Nov 2007). 
Breakpoint: 
-NCCLS from (Jan 2005- Mar 
2007)                                                      
-CLSI (Mar 2007 - Nov 2011) 
-EUCAST (from Nov 2011) 
- Non-susceptible if zone diameter 
<22mm (Cefoxitin) 

Isolate types All body sites (excluding 
infection control isolates) 

All body sites (excluding 
infection control isolates) 

All body sites (excluding 
non-clinical isolates) 

All body sites   All body sites 

Hypothesised 
explanatory 
variables 

Carbapenems 
Fluoroquinolones 
Piperacillin-tazobactam 
Cephalosporins 
Aminoglycosides 
Glycopeptides 

2nd/3rd gen cephalosporins 
Co-amoxiclav 
Fluoroquinolones 
Co-trimoxazole 
Aminoglycosides 
%EcESBL+ in other 
population 

Fluoroquinolones 
3rd/4th gen cephalosporins 
Clindamycin 
Co-amoxiclav 
Carbapenems  

Aminoglycosides 
Fluoroquinolones 
Carbapenems 
3rd/4th gen cephalosporins 
Piperacillin-tazobactam 

Fluoroquinolones 
3rd/4th gen cephalosporins 
Clindamycin 
Co-amoxiclav 
Macrolides 
Alcohol-Based Hand Rub (Litres 
per 1000 OBDs) 

Antibiotic stewardship 
Resources None specific. Local AMT 

0.5 WTE antibiotic 
pharmacist 

0.5 WTE antibiotic 
pharmacist, 0.5 WTE 
stewardship doctor 

Regional and local AMT 
1.0 WTE antibiotic 
pharmacist. 

Regional AMT.  
1.5 WTE antibiotic pharmacists 

Restrictive 
interventions 

None. Permissions for use 
required for 
fluoroquinolones, 
linezolid, vancomycin, 3rd 
gen cephalosporins (from 
Jan 1995) 

None Permissions for use 
required for carbapenems, 
daptomycin  
(from Jan 2012) 

Removal of stock and permissions 
for use (from Jan 2008) for: 
clindamycin fluoroquinolones, 
cephalosporins, vancomycin, 
linezolid, colistin, amikacin, 
chloramphenicol, co-trimoxazole, 
meropenem,  
Limited disclosure of antibiograms 
(all years) 

Persuasive 
interventions 

Voluntary consultation with 
clinical microbiologist available 
throughout study period 

Empirical guidelines 
 

Empirical guidelines 
Education & reminders 
(from Jan 2012-) 
Ward-based audit (from Jan 
2013-)  
Root cause analysis for 
HCAIs (all months) 

Empirical Guidelines 
Ward-based audit of 
antibiotic use 
 

Empirical guidelines  
Ward-based audit 
Root-cause analysis for HCAIs (all 
study months) 

Infection prevention & control 

Resources 3.0 WTE ICN, 1.0 WTE ICD 1.0 WTE ICN, 1.0 WTE 
ICD 

4 WTE ICN, 0.5 WTE ICD 4 WTE ICNs, 2 WTE ICDs 10 WTE ICNs, 2 WTE ICDs 
 

Hand-hygiene ABHR throughout study period ABHR (Jan 2000 
ongoing) 
Regional / National Hand 
Hygiene campaign (Jan 
2000 ongoing) 

ABHR (2001-) 
Auditing of compliance 
(2006-) 
Regional hand-hygiene 
campaign (2008-) 

ABHR (Jan 2000 ongoing) 
Auditing of compliance. 

ABHR throughout study period, 
monthly hospital-wide consumption 
measured. 

Isolation 
practices 

MRSA cases isolated. 
Other multiresistant pathogens 
depend on isolation room 
availability 

As per CDC 
recommendations. 
Nasal mupirocin / 
chlorhexidine washes for 
MRSA (Jan 1991 - ) 

Of all CRE,VRE cases 
Nasal mupirocin for MRSA 

Isolation of MRSA, 
ESBLE, VRE, CRE, CDI  
and CRAb cases.` 
Nasal mupirocin for MRSA 

Isolation or cohorting of MRSA and 
CDI cases 

Admission 
screening for 
outcome 
pathogen 

No ICU (Jan 2013 -) No P. aeruginosa screening in 
both adult ICUs (Jan 2000-
) 

Risk-factor based screening for 
MRSA in all wards (all study 
months) 

Environmental 
interventions 

None Audit of hospital 
cleanliness (Jan 1995 - ) 
Hospital Environment 
Inspections –continuous 
(Jan 1995 - ) 

Audit of hospital cleanliness 
Hospital environment 
inspections 
 

None None 
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9 Conclusions

This thesis pretends to contribute to the ongoing debate on Macroeconomics about
the nonlinearity of the Taylor rule and of Okun’s law. For this purpose, we develop
a protocol to implement a methodology able to estimate multiple thresholds on the
explanatory variables in a very flexible manner. In the field of Public Heath, since
the uprising antimicrobial resistance has become one of the most important current
concerns of the World Health Organization (WHO), we also apply this methodology
to detect thresholds in the relationship between the intensity of use of different
antibiotics in several European medical centres and the antimicrobial resistance.
Both Macroeconomics and Public Health debates are of major interest; we hope our
humble contributions can be helpful to shed some light on them and may contribute
to the design of public policies.

Given the suspicion that these relationships are nonlinear, we are interested in esti-
mating possible and multiple thresholds with an appropriate and flexible data-driven
methodology that allows not only the estimation of the model but also its selection.
Unlike parametric methods that estimate the parameters of an a priori selected
model, non-parametric methods provide the greater flexibility needed to estimate
and analyse the relationships that are the object of this thesis. The nonparametric
Multiple Adaptive Regression Splines (MARS) methodology developed by Friedman
(1991) allows selecting and estimating models by detecting thresholds in the main
effects of several explanatory variables and even in interaction effects between them,
if they exist.

In Chapter 2, we described MARS methodology and proved its comprehensiveness
and its adequacy. We proposed a basic estimation protocol that exploits MARS
advantages and we particularize it for each relationship that we analyse. In the ab-
sence of an existing method for deriving measures of uncertainty around thresholds
derived from non-parametric MARS models, we develop a new procedure inspired
by Hansen (2000) and (Donayre et al., 2018) to complete the usefulness of our basic
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estimation protocol. To the best of our knowledge, the computation of confidence
intervals for thresholds parameters in MARS model is an innovation of this thesis.
Our Monte Carlo experiments indicate that our procedure is relevant since it gene-
rates confidence intervals that are more informative than alternative procedures.

In order to address the analysis of the first nonlinear macroeconomic relationship,
i.e. the Taylor rule, we first present a simple theoretical framework that generali-
ses Svensson’s model to allow possible thresholds in explaining variables, even in
interactions between them. Unlike the traditional approach, which imposes specific
functional forms, we propose using central bank’s generic piecewise-defined social
preferences. We show that the social preferences of the central bank may be a source
of multiple thresholds and interaction effects in the resulting Taylor rule. Using this
theoretical framework, we present two research papers estimating the Taylor rule
for the Federal Reserve in United States and that for the European Central Bank.

We estimate the TR for the United States from 1970 to 2014 with monthly data and
we detect thresholds for the inflation rate at 4.31%; 95% and for the output gap at
0.0012;. As the theoretical framework predicts, we also find an interaction between
inflation and output gap. We also confirm the stronger sensitivity of the Fed’s
reaction during the Volcker -Greenspan period to the inflation rate; the Bernanke
period is also characterized by a less intensive reaction to inflation as well as to the
output gap. One of the contributions of the paper consists of estimating not only a
stronger Fed’s reaction in the Volcker -Greenspan period but also highlighting the
fact that this sensitivity is triggered at an even lower threshold than in the other
periods. Our results provide a more complete characterization of the nonlinear
Taylor rule than alternative empirical techniques applied so far in the literature.

Our research paper that analyses the Taylor rule for the European Central Bank
also provides some interesting results. We detect thresholds both in the output
gap and in the inflation rate. Threshold level for the output gap is identified at
−0.0172; 95%, and the ECB reaction is three times more intensive for output gaps
below this threshold than above it. On the other hand, the ECB is sensitive to the
inflation rate only for high levels of inflation, namely above 2.66%; 95%; and above
that level of inflation rate the ECB is much more sensitive to inflation than to the
output gap. Finally, we confirm that the 2008 crisis provoked a more abrupt decrease
of the interest rate than expected according to the macroeconomic circumstances,
which is consistent with the theoretical literature on optimal monetary policy in
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the vicinity of the Zero Lower Bound. In contrast with what happens between
presidencies of the US Federal Reserve, our empirical results for the ECB show no
significant policy differences between the three successive chairmanships. One of the
contribution of our research paper is an empirical support to the idea that the ECB
cares more about the economic activity than officially declared and reacts intensively
to inflation deviations once they sufficiently exceed the official 2% target.

Our methodology and findings open some further research on estimating Taylor rule
for other central banks, to check if operating with thresholds is common practice
outside the Federal Reserve Bank or the ECB. It is also of interest for future research
the existence of possible nonlinear association with thresholds between the policy
rate decisions taken by ECB or by the Federal Reserve and the Taylor rule for central
banks from smaller economic areas. Finally, the identification of institutional or
political factors that could affect the thresholds is presently outside the scope of
this thesis but should be retained for further research.

Regarding nonlinear Okun’s law, we present a simple and flexible theoretical model
based on the hypothesis that the firm employers are risk averse. This theoretical
model is a contribution by its self because not many efforts have been devoted to
offering theoretical foundation to Okun’s law nonlinearity. Although the evidence
of nonlinearity in Okun’s is mainly attributed to the firm’s risk aversion hypothesis,
there is no reason why it must be attributed to only one hypotheses. In fact,
firm’s risk aversion hypothesis combined with the institutional rigidity or labour
hoarding hypotheses might give rise to more complex Okun’s laws than the one
derived from one single hypothesis. Our flexible methodology allows for endogenous
threshold detections and locations; it may thus reconcile the empirical evidence with
the combined influence of different theoretical hypotheses.

In this research paper, we estimate Okun’s law for four European countries (France,
Germany, the Netherlands and Spain) and we include the dummy variable for the
Eurozone crisis created by CEPR Euro Area Business Cycle Dating Committee, that
establishes the chronology of recessions and expansions in the Euro area. For each
country we detect only one threshold in quarterly growth rate. We also find that
Okun’s law for Germany, France and the Netherlands are very similar and quite flat,
whereas Okun’s law for Spain is much steeper. For each country, differences bet-
ween Okun coefficients below and above the threshold are consistent with the firm’s
risk aversion hypothesis, and reveal particularly high risk aversion in the Spanish
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firms. On the other hand, the differences between thresholds across countries can be
related to the “labour hoarding hypothesis”, and show that the German and French
firms are more reluctant to fire trained workers than the Dutch ones. The estimated
threshold for Spain takes place at a significant negative output growth rate, that
is substantially lower than the significantly positive threshold value for the other
countries. It is also consistent with the “institutional rigidity hypothesis”. Finally,
the Euro area crisis affects Okun’s law in France, reflecting the idea that decision
makers under firm’s risk aversion hypothesis are also concerned about the informa-
tion from the economic area they are operating in. These results enrich Okun’s law
estimations and give relevance to the differences among countries and their possible
causes.

A direct implication follows from our findings: the remarkable differences between
Okun’s law of the Eurozone countries, in particular between the core and Spain,
demonstrate the need to erode the institutional differences and of regulation of the
implied national labour markets. Otherwise, any demand policy at the European
level, and in particular the monetary policy of the ECB, which is necessarily the
same for all countries of the Eurozone, will have a very different impact on the
labour markets and on the macroeconomic magnitudes of the countries under study.

Our research paper contributes to the debate over how the different theoretical
hypothesis intervene and shape the Okun’s law in each country. Combining nonli-
nearity and threshold location may be a helpful strategy to better understand how
the diverse theoretical hypotheses intervene in the recovery after the recent crisis
of some European countries facing high unemployment rates. On the other hand,
since we are not previously imposing a fixed number of thresholds, this data-driven
procedure offers empirical results of the Okun’s law much more general than those
published to date.

Our findings open some further research on nonlinear Okun’s law from different eco-
nomic areas, for instance, by analysing differences between thresholds from Euro-
pean and American countries; further research on identifying economic and political
factors affecting thresholds, or research on the specific effect of the labour market
regulations in the shape of Okun’s law and its threshold locations, would also be of
interest .

Finally, we address the analysis of the Antimicrobial resistance because it has been
constituted as one of the most important current concerns of the World Health
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Organization (WHO) in the field of Public Health. We present in this thesis an
interdisciplinary research paper that analyses the relationship between the pressure
of antibiotic use in different European hospitals and primary care centers and the
emergence of resistant strains to these antibiotics. We find strong empirical evidence
of non-linear relationships between population antibiotic use and resistance outco-
mes in five European settings and confirms the existence of minimum thresholds in
the intensity of use of antibiotics in the hospital and primary care centres we have
analysed. Our pathbreaking findings in this field may have important implications
for the design of Public Health policies regarding antibiotic stewardship. Minimum
thresholds may be interpreted as an upper limit for “safe” population antibiotic use
which does not appear to substantially increase resistance rates at the population
level. Crucially, they may provide quantitative targets for balancing the need to
access therapies with control of resistance, analogous to “quotas” applied to other
natural resources.

Our research paper contributes with several empirical innovations to the debate
on the rationalization in the use of antibiotics to cope with the threat of bacterial
resistance. Our findings encourage us to explore a research line that could help to
orientate the design of Public Health policies about antibiotic stewardship.

Our results open some potential further research. One consists of evaluating the
consistency of thresholds for specific antibiotic use-resistance combinations across
different settings and identifying factors affecting thresholds. It is interesting to
provide global recommendations for controlling multiple antimicrobial resistance
problems. Another further line of research could be employing Bayesian approaches
to compensate the scarcity of available resistance time series or facilitate analysis
with shorter time-series or rare resistance outcomes; yet another direction of research
would consist of applications of the methodology to smaller populations, such as
intensive care units; and finally, prospective studies could be carried out to validate
the effectiveness of quantitative targets in antibiotic stewardship interventions.

Faithfully, we hope the results of this thesis may humbly contribute to shed some
light in the design of public policies to face the current challenges in Macroeconomics
and Public Health.
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