
UNIVERSIDAD DE MURCIA

D. Jordi Ortiz Murillo
2018

ESCUELA INTERNACIONAL DE DOCTORADO

Evaluation of Video Transmission Systems over
Information Centric Content Delivery Networks:

towards the ICNaaS

Evaluación de Sistemas de Transmisión de Vídeo sobre
Redes de Distribución de Contenidos Centradas en

Información: hacia un ICNaaS

Universidad de Murcia
Facultad de Informática

Evaluation of video transmission systems over

information centric content delivery networks:

towards the ICNaaS

Evaluación de sistemas de transmisión de vídeo sobre
redes de distribución de contenidos centradas en

información: hacia un ICNaaS
Tesis Doctoral

Presentada por:
Jordi Ortiz Murillo

Supervisada por:
Prof. Antonio F. Skarmeta Gómez

Murcia, Junio de 2018

Resumen

Las computadoras toman su nombre de su capacidad de administrar, almacenar y
operar con datos para resolver problemas de distinta índole. Inicialmente dichos datos
eran expuestos mediante paneles de control, posteriormente impresoras y finalmente con
pantallas o monitores. Con la aparición de las pantallas y los monitores no se tardó
en introducir mecanismos gráficos para expresar datos que a la postre darían paso a la
representación de imágenes. Estas imágenes en muchos casos tenían que ser persistentes
y almacenadas en soporte no volátil. Debido a los limitados recursos de las computadoras
de la época, tanto en capacidad de cómputo como de almacenamiento, optimizaciones en
cuanto a la codificación y almacenamiento de imágenes fueron investigadas dando lugar a
los codecs (acrónimo de la unión codificador-decodificador) y formatos de imagen.

De forma similar a cómo una secuencia de fotos capturadas a gran velocidad
constituyó la aparición del vídeo en el mundo analógico, la aparición de imágenes en
la era digital acarreó consigo la aparición del vídeo digital. Análogamente a cómo el
tratamiento y almacenamiento de imágenes digitales ha ido evolucionando, el tratamiento
y almacenamiento de vídeo digital dio paso a los codecs y formatos de vídeo, los cuales han
evolucionado fuertemente ligados a la potencia de los ordenadores así como a las redes de
computadoras, pues uno de los principales acometidos de almacenar un vídeo digital es su
diseminación y por tanto su transmisión.

Las redes de ordenadores y su mayor exponente, Internet, han evolucionado desde
líneas de pocos hasta miles de millones Bits por Segundo (bps), de sistemas punto a punto
a medios compartidos y de sistemas terrestres a medios aéreos. Los codecs de vídeo han
aumentado sus capacidades de compresión, en algunos casos estableciendo como objetivos
mínimos aquellos estándares que definían las conexiones de red. De manera paralela,
diversos protocolos han emergido para facilitar la tarea de transmitir vídeo y sobretodo
para permitir la reproducción de flujos o transmisión por secuencias (más conocido por su
término anglosajón streaming) de vídeo.

La red ha visto emerger multitud de protocolos, destacando el artífice de su
universalidad y convertido en el estándar de facto, el protocolo de Internet (IP). El

v

protocolo IP define el nivel de red, siendo en el nivel de transporte donde comienza la
heterogeneidad de la red con protocolos como Transmission Control Protocol (TCP), User
Datagram Protocol (UDP) o el menos conocido y moderno Stream Control Transmission
Protocol (SCTP) entre los estándares y viéndose ampliado en el nivel de aplicación
(aglutinando sesión, presentación y aplicación del modelo de capas Open Systems
Interconnection (OSI)) con protocolos más específicos como Real-time Transport Protocol
(RTP), Session Description Protocol (SDP) o Real-time Streaming Protocol (RTSP), por
nombrar algunos de los más influyentes históricamente en streaming de vídeo.

El empleo de IP para todo tipo de escenarios y sus deficiencias, muchas de ellas debido
a su diseño inicial el cual por otro lado ha sobrepasado toda expectativa, ha llevado
a limitaciones que poco a poco se van tornando insalvables o simplemente demasiado
complejas debido a la retro-compatibilidad. Este estancamiento en la evolución de la
red u osificación de la misma es combatido por lo que se ha venido denominando el
Future Internet (FI) o Internet del Futuro. Dentro de FI nos encontramos propuestas
a medio/largo plazo para solventar desde la conectividad en general hasta problemas muy
específicos, pasando por nuevos paradigmas que cambian completamente la visión de la
red en sí como podría ser el Internet of Things (IoT) (Internet de la cosas). Entre ellas
una tecnología que ha atraído la atención de la industria por sus capacidades de facilitar la
incorporación de otras propuestas a entornos de producción es Software Defined Networking
(SDN) (o redes definidas por software).

Esta Tesis se centrará en el análisis, aplicación y definición de nuevos sistemas de
transmisión de vídeo con el objetivo de mejorar el uso efectivo de la red, involucrando a la
misma como parte del proceso. Las propuestas que formarán parte de esta tesis encaran
la optimización de la transmisión de vídeo sobre la red desde tres metodologías distintas,
una continuista, otra transgresora y finalmente una conciliadora con respecto a su posible
impacto en su adopción sobre la actual red. La metodología continuista está basada en un
protocolo ya estandarizado por el Internet Engineering Task Force (IETF) como es SCTP.
Por su parte, la apuesta transgresora pasa por analizar cómo afecta la transmisión de vídeo
en redes de las denominadas FI y cómo nuevos entornos más restrictivos como son las
redes IoT pueden afectar al transporte de vídeo sobre las mismas. Finalmente, la apuesta
conciliadora pasa por aprovechar las posibilidades que ofrece SDN para ofrecer servicios
de transmisión de vídeo avanzados, mejorando las alternativas de forma transparente y no
rupturista.

La propuesta de empleo de SCTP es específica para la transmisión de vídeo escalable
dadas las propiedades inherentes del mismo. La idea consiste en aprovechar el concepto
de flujos de una asociación SCTP junto con la definición de capas y sus dependencias del

vídeo escalable para permitir distintos tipos de protección para las mismas, dependiendo
de la relevancia de las capas para la decodificación del vídeo. En particular se propone
el uso de Scalable Video Coding (H.264/SVC) en el que su capa base es completamente
retro-compatible con uno de los codecs de vídeo más extendidos Advanced Video Coding
(H.264/AVC). La capa base de H.264/SVC es independiente de cualquier otra capa para
su decodificación y las capas de mejora suponen como su nombre indica, mejoras en la
calidad percibida en tres sentidos, tamaño, tasa de refresco de imágenes (Frames per
second (FPS)) o definición. Por lo tanto, es lógico ofrecer mayor nivel de protección
a las capas de las que otras capas dependen, siendo el mayor exponente la capa base.
Algunos de los mecanismos evaluados en la tesis no han sido estandarizados todavía,
pero ofrecen características muy interesantes en general para la transmisión de contenido
multimedia. SCTP posee características muy deseables como son el multi-homing o
su capacidad de emplear múltiples direcciones de red para evitar pérdidas de conexión
aprovechando las capacidades multi-interfaz que muchos dispositivos poseen. Además
algunas de las propuestas existentes pretenden emplear esta capacidad para conseguir la
emisión/recepción paralela por distintas interfaces consiguiendo así un aumento en el ancho
de banda disponible. La evaluación del sistema es realizada mediante simulaciones.

A continuación se resaltan algunas de las aportaciones en el ámbito de la transmisión
de vídeo escalable con SCTP realizadas:

• Posiblemente fuese la primera asociación de transporte de vídeo con SCTP y más en
particular, el mapeo de las capas H.264/SVC con streams de SCTP.

• Combinación de distintos niveles de protección en la capa de transporte dependiendo
del contenido del nivel de aplicación. En particular, protegiendo la capa base de
H.264/SVC permitiendo pérdidas en capas de mejora que no son imprescindibles
para la obtención de un servicio mínimo.

• Posiblemente esta haya sido una de las primeras aplicaciones prácticas para la
propuesta Concurrent MultiPath Transfer for Stream Control Transmission Protocol
(CMT-SCTP), frente a la típica evaluación con tasa de transferencia constante.

• Implementación de un alimentador de paquetes RTP de tamaño variable con marca
de tiempo para el simulador NS-2 con el fin de obtener resultados más representativos
en el ámbito de la transmisión de vídeo, además de un sistema multi-traza para poder
modelar flujos multi-capa como H.264/SVC. Una traza hace referencia a un fichero
con información relativa a cada uno de los paquetes de vídeo que serían transportados

en un entorno real con datos como el tamaño o el instante en que debe ser enviado
durante la reproducción.

• Extracción de pistas de hint de ficheros mp4 a trazas, dónde cada capa de H.264/SVC
es exportada a una traza distinta simplificando el posterior proceso de simulación.

• Resultados expuestos a la comunidad científica en los artículos ’SCTP as scalable
video coding transport’ [1] y ’Video Adaptation based on SVC File Format [2]’ entre
otros.

La opción rupturista viene de la mano de Heterogeneity Inclusion and Mobility
Adaptation through Locator ID Separation (HIMALIS) y Content-Centric Networking
(CCN), dos arquitecturas de FI que rompen con la asunción de que una dirección de
red debe estar asociada con una localización, tal y como asumen las redes basadas en
Internet Protocol (IP). Mientras que HIMALIS ofrece una infraestructura de red completa
con un sistema de rutas basado en direcciones de red, CCN aboga por la metodología
Information Centric Networking (ICN) o redes centradas en información con un sistema de
rutas basado en el empleo de Uniform Resource Locators (URLs) en la que es el contenido
en sí el objetivo del sistema de direcciones y no su localización. Evaluamos por tanto
el uso de estas dos arquitecturas para la transmisión de vídeo sobre HyperText Transfer
Protocol (HTTP) adoptando por tanto una de las últimas tendencias más extendidas en
cuanto a la transmisión de vídeo. Adicionalmente la tesis evalua las posibilidades de dichos
sistemas para la transmisión de vídeo producido o consumido por ’cosas’ en el ámbito
de IoT. En este caso la metodología empleada es la del despliegue de las arquitecturas
sobre laboratorios globalmente distribuidos, aportando por tanto la credibilidad de los
resultados al ser evaluados directamente sobre Internet y obteniendo repetibilidad mediante
la adopción de sistemas de gestión de experimentación.

Acto seguido se enumeran las más relevantes aportaciones e hitos de esta tesis en su
propuesta rupturista de transmisión de vídeo en FI.

• Evaluación de sistemas de transmisión de vídeo sobre HTTP en redes del futuro.

• Comparación de dos sistemas contrapuestos como son HIMALIS y CCN.

• Aproximación al efecto de redes IoT en dichos sistemas.

• Despliegue y evaluación en entorno altamente distribuido y públicos.

• Experimentación instrumentalizada con el foco puesto en la repetibilidad.

• Resultados expuestos en capítulo de libro ’6. Information-Centric Network for Future
Internet Video Delivery.’ del libro ’User-centric and Information-centric Networking
and Services: Access Networks and Emerging Trends.’ [3].

Finalmente, esta tesis propone un sistema capaz de sustituir los actuales sistemas
de distribución de contenido Content Delivery Network (CDN) de forma transparente,
integrando algunos de sus elementos actuales y aportando características deseables a
dichos sistemas como son la segmentación por proveedor o CDN como servicio (por sus
siglas en inglés aaS - as a Service) de contenidos mediante el uso de SDN. Además una
aproximación de tipo ICN es adoptada, de ahí que nos refiramos en la tesis a Information
Centric Network as a Service (ICNaaS), ofreciendo optimizaciones específicas en la red
en cuanto a la localización del contenido basada en la meta-información del mismo, en
particular mostrando el caso de uso de video escalable sobre HTTP. Para ello se define una
arquitectura de capas sobre el controlador SDN y se definen las interfaces a emplear por
los distintas entidades involucradas en la provisión del servicio. Además se diferencian dos
redes de control, a la ya existente red de control SDN, se añade una red de control ICN
específica para los elementos de red implicados en la provisión del servicio, y dos redes de
administración, a la ya existente red de administración para la SDN se añade la red de
administración ICN encargada de la gestión de las instancias ICN.

La propuesta es evaluada en dos despliegues reales sobre la red de la Universidad
de Murcia, inicialmente con instancias virtuales de los elementos de red y finalmente con
equipamiento compatible. A su vez, la evaluación del sistema emplea un sistema de gestión
de experimentación fruto de la experiencia obtenida durante la evaluación de FI para
garantizar la repetibilidad.

Las aportaciones realizadas como parte de la propuesta conciliadora basada en SDN
en contrapartida a la propuesta transgresora basada en HIMALIS y CCN se enumeran a
continuación:

• Propuesta de un sistema de distribución de contenidos y caches como servicio,
ICNaaS.

• Propuesta de un sistema de transporte de HTTP basado en el uso de SDN y
transparente a los participantes (end-points).

• Guiado del tráfico en base a la URL y a la instancia ICN a la que pertenece. Lo que
implica la inspección de datos de nivel de aplicación fuera de las capacidades nativas
ofrecidas por los elementos de red que conforman una SDN basada en OpenFlow
Protocol (OpenFlow).

• Propuesta de un sistema de capas para aplicaciones SDN aplicado a la propuesta de
ICNaaS para transmisión de vídeo escalable H.264/SVC sobre HTTP.

• Propuesta de un sistema de precarga adelantada o prefetching transparente para
HTTP. Aplicación del sistema al caso de video H.264/SVC transportado con Dynamic
Adaptive Streaming over HTTP (DASH)

• Implementación y evaluación de la propuesta en laboratorio, siendo además los dos
primeros despliegues SDN de la Universidad de Murcia.

Para cada alternativa se presentan conclusiones y vías futuras. De entre ellas la más
interesante a corto/medio plazo teniendo en cuenta los últimos acontecimientos en la
comunidad investigadora sería la inclusión de la propuesta de ICN como servicio en entornos
de virtualización de funciones de red o Network Function Virtualisation (NFV). Además,
aunque el caso de uso para el cual ICNaaS fue diseñado está orientado a la transmisión de
vídeo, el sistema es lo bastante genérico para ser empleado en otros entornos que emplean
HTTP como medio de transporte.

Agradecimientos

Esta página espero que sirva de agradecimiento a todos los que de una forma u otra habéis
hecho posible esta tesis.

Como no podía ser de otra manera quiero empezar agradeciendo a mi mujer, Mari
Ángeles, por su apoyo, amor y sobretodo paciencia estos interminables años, por tus
¡Aprovecha!, porque lo que tenía que ser una carrera de obstáculos he conseguido que
se convirtiese en un maratón. A mis tres niños, Rodrigo, Ángeles y Neus por darle sentido
a todo y en particular a este libro, os debo muchas horas de juego en algunos de los años
más importantes de vuestras vidas.

A mis padres, que siempre habéis visto en mi las partes buenas y se os habéis ocupado
de enseñarme desde niño que a ningún sitio se llega sin esfuerzo. Por obligarme cuando
no tenía ganas y por apoyarme cuando no tenía fuerzas. A mi hermanita, porque con un
buen ejemplo siempre es más fácil llegar lejos.

A Antonio, director de esta Tesis, por abrirme las puertas del trabajo de mi vida y
haberme hecho mejorar como investigador y como persona, a veces con la mano izquierda
y a veces con la derecha que suele ser la que más necesito. Gracias por los ’Jordi, céntrate!’
que tan bien me vienen y que espero seguir recibiendo durante muchos años. Gracias por
hacer de nuestro hormiguero una pequeña familia.

A todos los profesores de la Facultad de Informática que habéis forjado y seguís forjando
la materia prima que sirvió para llegar hasta aquí, en especial a Eduardo por tus buenos
consejos. A todos mis compañeros de departamento a los que muchos considero mis amigos,
gracias por las palabras de ánimo y por meteros conmigo cuando tocaba, habéis sido parte
importante de mi motivación. Por supuesto, no puedo olvidar a mis muchos compañeros
de estudios y de trabajo. A Alejandro Rosúa fue un placer tenerte como compañero y es un
privilegio tenerte como amigo. A Elena y los Alejandros, por las visitas, por las comidas,
por las risas. A Pedro J y nuestros viajes a Aveiro. A Pedro Martínez por dejarme trastear
en Gaia y por los buenos ratos que en ella hemos pasado. A todos los que desde DibuLibu
y sus alrededores habéis tenido tiempo para ayudarme y aconsejarme. A mis amigos en
ATICA, por vuestra disponibilidad y porque siempre hubiese sido más fácil decir que no.
A José Luis Álcoba, gracias por haberme enseñado que un ordenador no sólo sirve para
jugar y al resto de mis compañeros de la cadena Fiesta.

xi

Finalmente, a la Universität Klagenfurt, a Hermann Hellwagnner y a Michael Ransburg
por haberme acogido y haber abierto mi mente a otras formas de pensar. A Hilda por
haberme acogido en su casa permitiéndome experimentar la verdadera vida Austriaca.

University of Murcia
Faculty of Computer Science

Evaluation of video transmission systems over

information centric content delivery networks:

towards the ICNaaS

PhD Thesis

Author:
Jordi Ortiz Murillo

Thesis Advisors:
Prof. Antonio F. Skarmeta Gómez

Murcia, June 2018

Abstract

The term computer, as defined by the Oxford dictionary, referenced initially to a ’person’
who carried out calculations or computations. Later, the word acquired the meaning by
which we all understand it now as a ’machine’ that carries out calculations.

The data fed to a computer as well as the outputs produced by the calculations were
initially represented by means of patch panels, followed by printers and finally with screens.
The screen adoption as the mechanism to communicate with humans rapidly lead to the
usage of graphic charts to represent data which in turn resulted in the representation
of picture. Those pictures were usually stored in a persistent storage media. Due to
the scarce computer resources in that time period, in terms of computing power and
storage, optimizations to represent graphics and in particular pictures were researched.
As a consequence what we all know as picture codecs (from coder-decoder) and formats.

Similarly to how a high speed captured sequence of photos fostered the appearance of
analog video, the advances in picture processing in computers forged the digital video era.
In parallel with picture codec and format evolution, video codecs and formats have been
emerging and evolving. The video coding evolution has been heavily linked with computer
network as well as computing power capabilities. It has to be taken into account that
one of the primary objectives of storing and processing digital video is its transmission to
another peer.

Computer networks and its main representative, the Internet, have grown from single
point few Bits per Second (bps) wide land lines to multi-point millions bps wireless
connections. Video codecs have been increasing their compression capabilities, sometimes
taking as reference objectives the minimum rate defined by network standards. At the
same time, several protocols intending to facilitate video transmission have appeared also
focusing on allowing the consumption of video streams, therefore the appearance of the
term ’video streaming ’.

The IP stands out among all of the protocols that have been emerging as the responsible
for the Internet itself as we all know it, becoming the ’de facto’ standard for the network
layer. The transport layer is where Internet’s heterogeneity starts with TCP, UDP or the

xv

less popular SCTP among the standardized options. The heterogeneity is even wider in
the application layer (which includes session, presentation and application layers from the
OSI heap) with more specific and application oriented protocols like RTP, SDP or RTSP,
just enumerating some of the historically relevant protocols related to video streaming.

The usage of IP for any scenario and its drawbacks, highly tied to its initial design which
has in the end exceeded any expectations, has imposed limitations which have turned
unavoidable or simply too complex due to the need of retro-compatibility. The halt in
network evolution or ossification is faced by what has been named as the FI. What are
known as FI mid and long term proposals to solve from generic connectivity problems up
to very narrow and specific problems also facing new paradigms like the IoT where the
usage of the network is transformed as well as the actors involved in the communication
process. Among the FI proposals, the SDN has attracted industry’s attention due to its
capabilities to facilitate other proposals deployment into production.

This Thesis focuses on the analysis, applicability and definition of new video
transmission systems intended to enhance the effective network usage, involving the
network itself as part of the solution. The proposals included in this work approach
network optimization for video transmission from three different strategies, conservative,
clean-slate and evolutionary in terms of its possible impact in case of its adoption taking
into account the actual network architecture. The conservative approach is based on an
already IETF standardized protocol, SCTP. The clean-slate approach focuses on analyzing
how video transmission would affect the new FI networks and how new and more restrictive
environment, such as IoT, could affect video transmission on top of them. Finally the
evolutionary approach takes advantage of SDN characteristics to offer advanced video
streaming services, enhancing actual alternatives transparently and without breaking with
actual networking concepts.

The proposal based on SCTP is scalable video coding specific due to its design
characteristics. The main idea is to take profit of the stream definition within an
SCTP association in coordination with the layer definition and its dependencies from
scalable video codecs to provide with different protection levels depending on the layer
relevance for video decoding process. The usage of H.264/SVC is proposed since its base
layer is completely backward-compatible with one of the more extended video codecs,
H.264/AVC. H.264/SVC’s base layer is independently decodable from any other layer and
the enhancement layers serve as enhancements in three different dimensions, size, frame
rate or definition. Hence, it is logical to offer higher protection to those layers of which
other layers depend, having as the main representative the base layer. Some mechanisms
evaluated in this Thesis haven’t still been yet standardized, but they offer very interesting

capabilities for the transmission of multimedia content. SCTP has already interesting
characteristics such as multi-homing or its capability to employ multiple network addresses
to avoid connectivity loss by employing multi-interface characteristics that nowadays most
devices have. In addition some of the proposals employ this capability to achieve parallel
data transmission over multiple interfaces thus achieving a bandwidth enhancement. The
evaluation is performed through simulations.

A list of contributions in scalable video transmission with SCTP are listed below:

• This was probably the first approach that associated video transport with SCTP and
in particular the mapping of H.264/SVC layers with SCTP streams.

• Merging the different protection levels offered at the transport layer depending on
the content at the application level. In particular, protecting the H.264/SVC base
layer allowing losses in enhancement layer which are not indispensable for achieving
a minimum service.

• Definitely this was one of the first proposals to employ CMT-SCTP in a practical
application instead of the typical bulk rate simulation.

• Development of a RTP packet feeder with variable packet size with timestamping
for the NS-2 simulator to obtain meaningful results in field of video transmission, in
addition a multi-trace system was also implemented to model multi-layer flows such
as H.264/SVC. A trace makes reference to a file with information relative to each
of the video packet as it would be transported in a real scenario with related data
such as size or timestamp in which it should be sent over the network (usually the
decoding order and not the presentation order).

• Hint track extraction from mp4 files to traces, where each H.264/SVC layer is
exported to one trace file therefore easing the later simulation process.

• Results delivered to the research community in the papers ’SCTP as scalable video
coding transport’ [1]’ and ’Video Adaptation based on SVC File Format [2]’ among
others.

The clean-slate approach is supported by HIMALIS and CCN, two FI architectures that
break with the premise that each network address must be associated with a location, like
in IP networks. While the HIMALIS architecture offers a complete network infrastructure
with a routing system based on network addresses, CCN follows an ICN methodology with
a routing system leveraging on URL being the content the objective and not its location.

Therefore this work evaluates the usage of these two architectures for video transmission
on top of HTTP thus following the last tendencies in this field. Additionally this Thesis
evaluates the possibilities offered by such systems in terms of transmitting video produced
or consumed by ’things’ in the IoT context. In this case the methodology followed is the
deployment of the architectures over globally distributed laboratories, therefore adding
credibility to the obtained results since the transmission is done over the real Internet while
achieving the desired repeatability by means of adopting experimentation management
systems.

An enumeration of the more relevant contributions on the clean-slate approach of this
work follows:

• Evaluation of HTTP based video streaming systems in FI networks.

• Comparison of two differentiated FI systems like HIMALIS and CCN.

• IoT effect approach on such systems.

• Deployment and evaluation in a highly distributed and public environment.

• Automated experimentation focused on achieving repeatability.

• Results disseminated in book chapter ’6. Information-Centric Network for Future
Internet Video Delivery.’ del libro ’User-centric and Information-centric Networking
and Services: Access Networks and Emerging Trends.’ [3].

Finally, a system envisioned to transparently replace current CDNs services is
proposed, integrating some of their current elements and adding desirable characteristics
to such systems like provider based segmentation or CDN as a Service leveraging on
SDN. Furthermore, ICN philosophy is adopted, therefore the term ICNaaS is used,
offering specific in-network optimizations in terms of content location based on its own
meta-information, in particular showing the scalable video streaming over HTTP use case.
To that end, a layered architecture sitting on top of the SDN controller is defined in addition
to the interfaces to be used by the variety of entities involved in the service provision. Two
control networks are identified, to the already existing SDN control plane, a specific ICN
control plane is specified, as well as two administration networks, to the already existing
SDN management network, an specific ICN management networks is added.

The proposal is evaluated in two different real deployments on top of University of
Murcia network, initially with virtual network elements and finally with OpenFlow capable

hardware. In addition, the system evaluation leverages on an experimentation management
system result of the experience gained during the FI evaluation to obtain repeatability.

Outcomes from the evolutionary approach based on SDN are listed below:

• Proposal of a cache and content distribution service as a service, ICNaaS.

• Proposal of a transport system for HTTP based in SDN and transparent to the
end-points.

• Traffic steering based in URL and the ICN instance to which it belongs. Which on
the other hand implies the analysis of application layer data in the network elements,
exceeding the capabilities of the network elements belonging to the SDN based in
OpenFlow.

• Proposal of a layering system for SDN applications applied to the ICNaaS proposal
for scalable video streaming (H.264/SVC) on top of HTTP.

• Proposal of a transparent HTTP prefetching system. Employ the system to the
H.264/SVC streaming over DASH case.

• Development and evaluation of the proposal in the laboratory, which in turn have
been the two first SDN deployments in the University of Murcia.

For each alternative conclusions and future work is presented. Among them, the
more interesting in the short-term taking into account the current events in the research
community is the inclusion of ICNaaS in NFV environments. Although the ICNaaS has
been designed having in mind video streaming, the system is generic enough to be applied
to other environments in which are transported on top of HTTP.

Acknowledgements

I hope this page serves to show my gratefulness to those that one way or another had made
possible this thesis.

There is no other way to start but by thanking my wife, Mari Ángeles, for her support,
love and above all her patience all these unending years, for those ’Take your chance!’,
because what should have been an obstacle course has become a full marathon. To my
three little kids, Rodrigo, Angeles and Neus since you give meaning to everything and
particularly to this book, I owe you too much play time in some of the more important
years of your life.

To my parents, you have always seen the best parts in me and have taught me that
everything comes at a cost. For forcing me when I was lazy and supporting me when I was
too tired. To my sister, its always easier to get further if one has a good reference.

To Antonio, this thesis adviser, for letting me to get into the job of my life and making
me advance as a researcher and as a human being, sometimes smoothly and sometimes
sharply as I usually be in need of. Thank you for those ’Jordi, Focus!’, that are so useful
to me and that I hope I’ll keep getting for some years. Thank you for making our ant’s
nest a small family.

To all the Faculty of Computer Science’s teachers for forging the raw material that
served to reach this point, specially to Eduardo for his good advice. To all my colleagues
in the department most of whom I consider my friends, thank you for your support and
for pushing me when needed, you have been present in my motivation. I can not forget my
studies and work mates. To Alejandro Rosúa, it was my pleasure to have you as colleague
and my privilege to have you as a friend. To Elena and the Alejandros, for visiting me in
the lab, lunch time and the laughs. To Pedro J and our Aveiro trips. Pedro Martínez for
letting me play in the Gaia playground and the good times we spent there together. To
all of you in Dibulibu and around that have had the time to help and give advice. To my
friends in ATICA, for your availability and because it would have been easier to say no. To
José Luis Alcoba, thank you for teaching me that a computer is not only a play machine
and to the rest of my colleagues in Fiesta.

Finally, to Klagenfurt Universität, to Herman Hellwagner and Michael Ransburg for
letting me join them and having opened my mind to other ways of thinking. To Hilda for
opening her home and letting me enjoy the real Austrian life.

xxi

xxii

Contents

List of Figures xxviii

List of Tables xxix

List of Listings xxxi

1 Introduction 1
1.1 Contextualization . 1
1.2 Objectives of the Thesis . 3

1.2.1 H.264/SVC on SCTP . 4
1.2.2 FI and video streaming for IoT . 5
1.2.3 H.264/SVC video delivery and ICNaaS on SDN 6
1.2.4 Experimentation infrastructures . 6

1.3 Contributions . 7
1.4 Thesis structure . 8
1.5 Related publications . 8

1.5.1 Indexed Journals . 8
1.5.2 Book Chapters . 9
1.5.3 Conferences . 9

2 Problem Statement - Video in Future Internet 11
2.1 State of the Art . 11

2.1.1 Video transmission . 11
2.1.2 Codec evolution . 13
2.1.3 HTTP . 18
2.1.4 CDN . 21

2.2 SCTP . 23
2.2.1 CMT-SCTP . 26

2.3 SDN . 27
2.4 Future Internet - ICN . 36

2.4.1 Separation of Identifiers and Locators 37
2.4.2 HIMALIS . 39
2.4.3 Integrated Content Delivery . 39

xxiii

CONTENTS

2.5 ICNaaS . 41
2.6 Scalable video in FI . 44
2.7 Conclusions . 45

3 Evaluation of Scalable video delivery over SCTP 47
3.1 Description . 47
3.2 Evaluation Scenarios . 50
3.3 Evaluation Results . 52

3.3.1 TCP . 54
3.3.2 RTP . 54
3.3.3 Reliable baseline SCTP . 54
3.3.4 Unreliable baseline SCTP . 55
3.3.5 Mixed reliability with baseline SCTP 55
3.3.6 CMT-SCTP . 55

3.4 Conclusions . 55

4 Video transmission in the FI 71
4.1 Description . 72
4.2 Testbeds and tools . 73
4.3 IoT video in FI . 74

4.3.1 Generating IoT video . 74
4.3.2 HIMALIS . 77
4.3.3 CCN . 89
4.3.4 CCN on top of HIMALIS . 108

4.4 Conclusions . 113

5 SDN ICNaaS for HTTP Video Streaming 115
5.1 Description . 116
5.2 ICNaaS Concept and Motivation . 118
5.3 SDN Controller layering . 125

5.3.1 ICNaaS layer . 125
5.3.2 Protocol Specific Layer . 128
5.3.3 Data Specific Layer - H.264/SVC 128

5.4 Caching Policies Algorithms . 129
5.4.1 H.264/AVC over DASH . 130
5.4.2 H.264/SVC over DASH . 130

5.5 User driven . 132
5.6 Conclusions . 138

6 SDN ICNaaS evaluation 141
6.1 Architecture Elements . 141

6.1.1 ICNaaS . 141
6.1.2 Proxy . 148

xxiv

CONTENTS

6.1.3 Prefetcher . 149
6.1.4 SVC Video Player . 149
6.1.5 Video Sources . 149

6.2 Floodlight evaluation . 150
6.3 ONOS evaluation . 153

6.3.1 Experimentation ICNaaS Results 163
6.3.2 Analyzing the layering problems . 169
6.3.3 Evaluating the Prefetching Mechanism 176

6.4 Conclusions . 176

7 Conclusions and future work 179
7.1 Summary and main contributions . 179
7.2 Future work . 181

7.2.1 SCTP . 181
7.2.2 FI . 181
7.2.3 ICNaaS . 182

Bibliography 189

xxv

CONTENTS

xxvi

List of Figures

2.1 H.264/SVC Structure and dependencies . 17
2.2 Network Operating System (NOS) to pc operating system analogy 32
2.3 OpenFlow concept. 33
2.4 Match fields for OpenFlow "Type 0" switch. 33
2.5 OpenFlow sequence diagram . 34
2.6 From base HTTP services to ICNaaS . 43

3.1 Ns-2 simulation scenario. 56
3.2 Uniform 10[Pleaseinsertintopreamble]2 30 Mbps CMTMultiReliable. 58
3.3 Uniform 10−2 30 Mbps CMTMultiUnreliable. 59
3.4 Uniform 10−2 30 Mbps CMTMultiMixed. 60
3.5 Uniform 10−2 30 Mbps SCTPMultiReliable. 61
3.6 Uniform 10−2 30 Mbps SCTPMultiUnreliable. 62
3.7 Uniform 10−2 30 Mbps SCTPMultiMixed. 63
3.8 Uniform 10−2 30 Mbps SCTPReliable. 64
3.9 Uniform 10−2 30 Mbps SCTPUnreliable. 65
3.10 Uniform 10−2 30 Mbps RTPMulti. 66
3.11 Uniform 10−2 30 Mbps RTP. 67
3.12 Uniform 10−2 30 Mbps TCP. 68

4.1 DASH chunk file and size relation. 76
4.2 Himalis PlanetLab deployed scenario. 79
4.3 HIMALIS and flow control header detail. 81
4.4 App layer transmission protocol used on top of HIMALIS 81
4.5 Himalis deployment entities and relations 82
4.6 DASH over HIMALIS transmission in neighbor domains. 83
4.7 Maximum Transmission Unit (MTU) variation study in HIMALIS neighbor

domains . 85
4.8 Luma Peak Signal Noise Ratio (PSNR) values for original and retrieved video. 88
4.9 MTU variation study in HIMALIS separated domains 90
4.10 CCN deployment entities and relations . 92
4.11 DASH/CCN network exchange sequence 93
4.13 CCN transmission results with 1024 bytes MTU 96

xxvii

LIST OF FIGURES

4.14 Results for basic topology (I) . 98
4.15 Results for basic topology (II) . 99
4.16 32 bytes MTU . 100
4.17 Visual result frame 603 with a bitrate of 79kbps. 103
4.18 Results of CCN with limited packet size and timeout 48 bytes MTU. . . . 106
4.19 Results of CCN with limited packet size and timeout 64 bytes MTU. . . . 107
4.20 CCN over HIMALIS flow diagram . 109
4.21 CCN over HIMALIS flow diagram, domain federation specific 111
4.22 CCN over HIMALIS federation results. 112

5.1 Controller interfaces . 120
5.2 Leveraging SDN for ICNaaS . 122
5.3 ICN over SDN with Proxy . 124
5.4 Interactions diagram . 127
5.5 Best effort approach . 135
5.6 Minimal values approach . 136
5.7 Layer drop priority approach . 136
5.8 Combined approach . 137

6.1 ICNaaS REpresentation State Transfer (REST) api. 143
6.2 ICNaaS resource diagram. 146
6.3 ICNaaS reduced core diagram. 147
6.4 ONOS Abstraction. 148
6.5 Floodlight Evaluation Scenario . 151
6.6 ONOS Evaluation Scenario . 156
6.7 Near, empty, DPID=2, times . 169
6.8 Client near, cache full, frame size 360p, Layer 18 mean time for

proxy-controller interactions. 173
6.9 Central Processing Unit (CPU) usage of the switches in the testbed 174

xxviii

List of Tables

3.1 Strategies overview . 53
3.2 No error . 56
3.3 Uniform 10−4 . 56
3.4 Uniform 10−3 . 57
3.5 Uniform 10−2 . 57

4.1 HIMALIS deployment and DASH experiment summary. 78
4.2 DASH over HIMALIS transmission in neighbor domains timetable. 84
4.3 DASH over HIMALIS transmission in neighbor domains MTU variation

study timetable. 86
4.4 DASH over HIMALIS transmission in separated domains MTU variation

study timetable. 91
4.5 Experimentation with 38 kbps bitrate . 100
4.6 Experimentation with 58 kbps bitrate . 101
4.7 Experimentation with 79 kbps bitrate . 101
4.8 PSNR 3 seconds timeout study with 38 kbps bitrate 103
4.9 PSNR 5 seconds timeout study with 38 kbps bitrate 104
4.10 PSNR 5 seconds timeout study with 58 kbps bitrate 105
4.11 PSNR 5 seconds timeout study with 79 kbps bitrate 108

6.1 ICNaaS’s Provider northbound interface. 142
6.2 ICNaaS’s internal northbound interface. 142
6.3 ICNaaS’s prefetcher northbound interface. 146
6.4 Streaming Client Experimentation results 154
6.5 Per Chunk Experimentation Results . 155
6.6 Summary client near results . 165
6.7 Summary client far results . 166
6.8 Summary controller results . 167
6.9 Summary controller far results . 168
6.10 Detail of client logs in which the performance is degraded. 171
6.11 Detail of cache logs in which the performance is degraded. 172

xxix

LIST OF TABLES

xxx

List of Listings

2.1 Typical DASH MPD file . 21
5.1 H.264/AVC representation definition in an Media Presentation Description

(MPD) file. 130
5.2 H.264/SVC representation definition in an MPD file. 131
5.3 Algorithm Pseudo-Code . 133
6.1 Tracepath time from Gaia to Universität Klagenfurt where the videos are

publicly hosted. 157
6.2 Shell script to launch the scenarios . 159
6.3 Shell script to deploy onos with the ICNaaS application and register the

scenario . 159
6.4 Network Experimentation Programming Interface (NEPI) script to execute

each experiment with empty cache and retrieve the output 163

xxxi

LIST OF LISTINGS

xxxii

Chapter 1

Introduction

This chapter gives a brief introduction to the key concepts, technologies and their evolution
that will contextualize the rest of this Thesis. A brief introduction to computer video
coding evolution is followed by an introduction to video transmission on top of computer
networks, also known as video streaming. The Future Internet keyword is also introduced
pointing out some of the architectures and concepts that will be employed thorough the
Thesis, followed by the notion of video streaming in Future Internet (FI). Finally, the
objective, contributions and structure of the Thesis are introduced followed by a list of
related publications.

1.1 Contextualization

Computers take their name of their ability to manage and apply operations over data to
solve a wide variety of problems. The resulting computations were usually to be output
and offered to the user. The data that was printed to paper or shown with lights on a
control panel on the early days was conveniently sent to screens soon afterwards. The
output to screen as a consequence of computer graphics research and the popularization of
home computers immediately introduced the representation of data in still images such as
data charts. The desire to store those still images in a durable device so that they could be
recovered afterwards appeared naturally soon after. Computer resources were scarce and
expensive therefore a way to save them was needed and that is how picture coding and
image formats came into scene.

Similarly to how photos evolved to film as a succession of very fast captured moments,
computer video appeared also as a sequence of still images. Initially taking advantage
from the compression methods offered by their contemporary still image counterparts and

1

1. Introduction

eventually taking profit of the similarities in the picture sequences to introduce specific
video compression techniques, video codecs came into play.

The main and solely objective of computer networks was to transmit information. Text
at a first step but soon after pictures and finally video as the final consequence. The
transmission of pictures and video was to a high degree the precursor of picture and video
coding techniques since although the resources in computers were scarce, resources in
computer networks were even more limited.

Video transmission over networks, also known as video streaming, is one of the more
resource consuming applications for computer networks. While picture files were, in
general, transmitted as a whole, video can also be transmitted as a whole, nevertheless
the term streaming refer to the real-time playback of video content reducing the time to
wait for the video playing to the minimum possible.

The new challenge that offered video streaming, also audio streaming was a challenge
but with a considerable lower amount of information per file, introduced new techniques
oriented to enhancing user experience while reducing network utilization. There has been
an evolution in transmission techniques triggered by network evolution from datagram
based streaming on the early Integrated Services Digital Network (ISDN) days to the
HyperText Transfer Protocol (HTTP) based transmission of today’s fiber environment.

Video codecs have been affected by these techniques also, usually in terms of the
minimum bit-rate available to be used for data transmission (such as the conformance
of MPEG-2 to sustain a bit-stream capable to be transported on top of ISDN) but also
with new use cases such as in-network adaptation (like scalable video codecs that allow
in-network bit-rate adaptation at a very low amount of processing power) and stereoscopic
view and what is to come in the future.

Nowadays there is a new trend in computer networks that claim to break the
’ossification’ of the Internet as we know it. The Future Internet (FI) is known as a general
term for new architectures that will enable the Internet of the future. Some of these
architectures are clean-slate, others are evolution from nowadays networks and others are
considered as enablers for new functionalities that haven’t been envisioned and are yet to
come.

Among the architectures presented as part of the FI, three are key concepts in the
successive parts of this Thesis. As an enhancement of the content distribution systems
actually deployed such as the Content Delivery Network (CDN), the Information Centric
Networking (ICN) philosophy (mainly represented by the Content-Centric Networking
(CCN) architecture) focus on the content being transmitted and not on the networks edges
of the communication any more, that philosophy implies the separation from identifier and

2

1.2 Objectives of the Thesis

locator that subsequent network architectures propose, such as Heterogeneity Inclusion
and Mobility Adaptation through Locator ID Separation (HIMALIS) or CCN. Finally, the
inclusion of a low level network architecture that enables new protocols and clean-slate
approaches to be deployed with hardware support and the centralization of network
control decisions, represented by the Software Defined Networking (SDN) approach, that
is envisioned as necessary to represent viable solutions that could reach in a short period
the production level and therefore be deployed in real environments. Another key pattern
already spreading and foreseeable as one of the more influencing characteristic for the near
future is Internet of Things (IoT).

The appearance and possible adoption of the FI does not exclude video as the key and
more resource consuming content to be transmitted in the near future, at least until our
brains can be fed another way which is yet to come. In that sense applying and evaluating
video transmission techniques to FI is a key research as well as proposing new mechanisms
to save network resources is the goal to be achieved in the short term.

1.2 Objectives of the Thesis

This Thesis has the main objective of evolving the network layer by keeping in mind the
application layer and in particular the transmission of video as its key contribution.

To that end, video streaming has been faced employing three very different approaches
from the network point of view. Stream Control Transmission Protocol (SCTP) represents
a conservative or legacy approach in which the Internet Protocol (IP) ossification is
maintained and enhancements specific to the application level are addressed by adopting
a ’nouveau’ but already standardized protocol like SCTP and the adoption of Scalable
coding (Scalable Video Coding (H.264/SVC)), which in turn is also standardized. Next, a
clean-slate approach has been evaluated, focusing in the FI and how different architectures
deal with the current all-HTTP approach for video transmission. Finally, an evolutionary
approach is designed and evaluated in which a technology enabler like SDN is employed to
transparently add new features to the content (and in particular video) distribution but
focusing on taking profit of the existing evolved content distribution infrastructure.

To that extend, the Thesis has explored transmission mechanisms available but not
yet employed for video streaming such as SCTP and its extensions. Has taken into
account FI technologies, such as CCN and HIMALIS, and deployments, like IoT, for
video transmission. And has proposed backwards compatible and nowadays deployable
streaming techniques to evolve the actual content delivery paradigm leveraging on the

3

1. Introduction

SDN architecture.
In addition to the typical simulation processes employed for evaluation of protocols,

this Thesis has made intensive usage of real experimentation, leveraging on international
testbeds as well as local infrastructure with the focus on validation and repeatability of
the results obtained.

1.2.1 H.264/SVC on SCTP

The H.264/SVC offers some particularities that can be exploited to enhance end-to-end
video delivery. The dependency between the coded video layers imply precedence in terms
of importance to obtain the desired quality level also known as operation point. In that
sense layers on which the operation point does not depend shouldn’t be transmitted on the
network but what is more important, those on which the operation point depends should
be prioritized and/or protected during network transmission.

The SCTP protocol is general purpose although it was designed and standardized
having telephony signaling in mind. Despite its origin, the protocol has some characteristics
that make it really interesting for other uses and in particular for video delivery. Some
amendments have been proposed to the original protocol, of which some have been already
accepted such as the Potentially Failed SCTP or Stream Control Transmission Protocol
Potentially Failed (SCTP-PF) [4] which allows loss recovery on demand at different
levels or the Concurrent Multipath Transfer or Concurrent MultiPath Transfer for Stream
Control Transmission Protocol (CMT-SCTP) [5] that tries to take advantage of the native
multi-homing capabilities of the protocol to exceed the available bandwidth offered by just
one interface overcoming the eternal ip binding problem. In addition, the multi-homing
characteristic has probed already to be useful for mobility scenarios.

Applying SCTP and its extensions to H.264/SVC offers a full range of possibilities. First
of all, each H.264/SVC layer can be transmitted on an independent SCTP stream which
means that each of them has its own flow control. The SCTP-PR [6] (Partial Reliability
extension) allows the loss of messages on demand which is an interesting feature for data
that has inherently the expiration concept such as video. It is unnecessary to re-transmit
a video chunk that should have been already played in the client. Finally, exploiting the
multi-homing and multi-interface of nowadays computers (and why not, mobile phones)
seems to be a good idea, therefore SCTP-CMT is employed to transmit over multiple
network interfaces obtaining enhanced bandwidth which potentially allows using higher
bit-rates. Recently approved extensions, such as SCTP-PF, allow the protection reduction
for the enhancement layers ensuring that the base layer is always received, thus providing a

4

1.2 Objectives of the Thesis

minimum quality service and no frame is completely loss, enhancement layers on the other
hand arrive with a best effort approach.

The study compares the proposed solution with typical transmission methods used for
video delivery which rely on Transmission Control Protocol (TCP) and User Datagram
Protocol (UDP).

This study [1] was performed as a side work of the SCALNET project [7].

1.2.2 FI and video streaming for IoT

With the appearance of IoT and the FI and the generalized adoption of HTTP for video
streaming, new horizons appeared in research. In terms of video in general, there is the
question of what type of video streams could be considered if possible for the kind of
devices and networks to be found in the IoT world. In terms of transmission, inspecting
the impact of such an stream to be encapsulated into a HTTP compatible stream and
in particular with the Dynamic Adaptive Streaming over HTTP (DASH) standard was
a natural next-step. Finally, applying other FI approaches to the aforementioned video
elements was an interesting movement.

Some IoT compatible video parameters are to be defined and justified taking into
account the type of nodes and networks, so that the video could potentially be natively
encoded, decoded and transmitted. How that would be done is out of the scope of this
Thesis and the expertise of the writer but in any case, that stream will arrive to a border
where full featured networks are to be used. At that point, the use of DASH is envisioned.

At the same time, it is clear that IoT deployment numbers will obsolete the IP world
certifying its ossification and the need to break with it to some extent. The ICN paradigm
solves the problem of content distribution and this Thesis evaluates a geographically
widespread deployment for transmitting the video streams.

Other FI architectures such as the HIMALIS architecture propose a complete
architecture offering a clean-slate proposal in terms of identification scheme breaking with
IP and focusing on heterogeneity and mobility. The former characteristic is the one this
Thesis will take profit of to evaluate not only IoT video transmission but also to provide
with the hints of what IoT over CCN over HIMALIS would look like.

The evaluation of these architectures was carried out on top of the PlanetLab
Europe (PLE) and employing the Network Experimentation Programming Interface
(NEPI) software for defining the experiments and retrieving the results. Therefore, the
repeatability and validity of the results is entrusted to the experimentation management
software and to the testbed itself respectively.

5

1. Introduction

The results of this study [8] were partly the outcome of the OpenLab [9] project.

1.2.3 H.264/SVC video delivery and Information Centric Network
as a Service (ICNaaS) on SDN

From the previous work done, the adoption of DASH (a suboptimal solution in terms of
bandwidth consumption) by the industry, the feeling that a clean-slate approach is not
welcome and that the easiness of deployment is a requirement for any proposal, in addition
to the appearance of SDN in the horizon provided with the spark to light the subsequent
proposal of this Thesis.

Leveraging on SDN, the concept of ICN in which the edges of the communication
depend on the content and not on the network identifiers can be carried out by installing the
necessary flows in the network elements. Therefore, the centralized control plane from SDN
simplifies the network based optimizations for higher layers such as the application level.
Since DASH is the industry key technology for the video transmission, if no clean-slate
approach is to be offered, DASH must be the key element of the proposed solution. As
such, the first challenge is to steer HTTP traffic. The second challenge is to steer the
traffic not only based on the protocol but also on the data being transported (the Uniform
Resource Locator (URL)) and to maintain a register of where the content can be located.
Finally, taking advantage of the gained knowledge about H.264/SVC and scalable codecs
in general, specific optimizations are proposed for such a case.

Nonetheless, there is another key factor for ICN like deployments to be accepted by
the industry. Providing with the easiness of operation for the users implicated in video
content distribution, content provider, network operator and the client. In addition, the
XaaS approach is also taken into account by offering an ICNaaS solution that will allow
content providers to control the video delivery from the origin to the destination being able
to remove or limit the need for third parties CDNs on demand. On the other hand, CDN
operators are not rejected directly by the proposal by allowing them to remain as caching
muscle for the content oriented architecture.

The work related to this study was initiated as part of the GN3plus [10] project.

1.2.4 Experimentation infrastructures

One of the objectives of this Thesis was to be able to experiment with different methods
and compare them in terms of validity, complexity and capabilities for future research.
Therefore, simulation software like NS-2 [11] was employed as the first approach. Next step

6

1.3 Contributions

was to employ a public distributed testbed like PLE in which external influence is part of
the results obtained and finally a exclusive testbed is employed such as Gaia Testbed [12]
partly to avoid the external influences but mainly due to the use of specific hardware.

1.3 Contributions

As a result of the previously highlighted objectives and the haunt to face them, some
contributions in form of software were made, some of those contributions didn’t make it to
this Thesis but made it to the open source community.

As part of the SCTP research, the ns-2 simulator had to be modified so that the
Real-time Transport Protocol (RTP) implementation already present accepted variable
length packets as payload. That modification allowed to simulate the video streaming over
the rtp, in addition, synchronization was also introduced so that the packets being sent
were in line with the video frame rate.

During the same period of time, several patch sets were merged into Open source
audio and video processing tools (LibAV) [13] master branch therefore contributing to the
networking and coding capabilities of the ffmpeg fork. An early SCTP implementation
was updated and merged finally becoming available for anyone. In addition, Real-time
Streaming Protocol (RTSP) and Real-time Messaging Protocol (RTMP) listen function so
that server side communication with these protocols could be set was added. As a side
study the wavelet based video coding was inspected as a parallel line for the scalable video
alternative, therefore libschroedinger and dirac support was also updated for the library.

The amendments made publicly available can be found here: https:

//patches.libav.org/project/libav-devel/list/?submitter=410&

state=*&q=&archive=both&delegate=

The involvement in SDN resulted finally in the collaboration within Open Network
Operating System (ONOS) [14] community as part of the ’ONOS brigades’. The work
was in this case directed to the capabilities of ONOS regarding meters, a key feature for
Quality of Service (QoS) and bandwidth control for which this Thesis has some proposals.

The amendments are publicly available and can be found here: https:

//gerrit.onosproject.org/#/q/owner:%22Jordi+Ortiz+%253Cjordi.

ortiz.umu%2540gmail.com%253E%22

Therefore, this Thesis have made contributions to the community that will hopefully
help others businesses and research projects.

7

https://patches.libav.org/project/libav-devel/list/?submitter=410&state=*&q=&archive=both&delegate=
https://patches.libav.org/project/libav-devel/list/?submitter=410&state=*&q=&archive=both&delegate=
https://patches.libav.org/project/libav-devel/list/?submitter=410&state=*&q=&archive=both&delegate=
https://gerrit.onosproject.org/#/q/owner:%22Jordi+Ortiz+%253Cjordi.ortiz.umu%2540gmail.com%253E%22
https://gerrit.onosproject.org/#/q/owner:%22Jordi+Ortiz+%253Cjordi.ortiz.umu%2540gmail.com%253E%22
https://gerrit.onosproject.org/#/q/owner:%22Jordi+Ortiz+%253Cjordi.ortiz.umu%2540gmail.com%253E%22

1. Introduction

1.4 Thesis structure

The reminder of this Thesis is structured as follows:
Chapter 2 acts as an introduction and state of the art of the technologies employed

thorough the Thesis and introduces the open gaps that the subsequent chapters will be
facing.

Chapter 3 presents the work produced in relation to SCTP as video streaming protocol
and presents the results.

Chapter 4 evaluates FI architectures for video streaming.
Chapter 5 introduces the ICNaaS architecture based on SDN.
Chapter 6 evaluates the architecture introduced in the previous chapter and provides

with results.
Chapter 7 exposes the conclusions and future work.
Finally, the Glossary and Bibliography are presented.

1.5 Related publications

1.5.1 Indexed Journals

• Integrating Adaptive Video Streaming Service with Multi-access Network Management
(Mobile Networks and Applications. The Journal of SPECIAL ISSUES on Mobility
of Systems, Users, Data and Computing 2012 - Q2). Tiia Ojanperä, Markus Luoto,
Jordi Ortiz & Mikko Myllyniemi

http://scimagojr.com/journalsearch.php?q=27306&tip=sid&

clean=0

• SCTP as Scalable Video Coding transport (Eurasip Journal on Signal Processing 2013
- Q3). Jordi Ortiz, Eduardo Martínez, Antonio Skarmeta

http://scimagojr.com/journalsearch.php?q=15300154801&tip=

sid&clean=0

• Matching federation identities, the eduGAIN and STORK approach. (Journal of
Future Generation Computer Systems 2017 - Q1). Elena M. Torroglosa-Garcia,
Jordi Ortiz-Murillo, Antonio F. Skarmeta-Gomez. http://scimagojr.com/

journalsearch.php?q=12264&tip=sid&clean=0

8

http://scimagojr.com/journalsearch.php?q=27306&tip=sid&clean=0
http://scimagojr.com/journalsearch.php?q=27306&tip=sid&clean=0
http://scimagojr.com/journalsearch.php?q=15300154801&tip=sid&clean=0
http://scimagojr.com/journalsearch.php?q=15300154801&tip=sid&clean=0
http://scimagojr.com/journalsearch.php?q=12264&tip=sid&clean=0
http://scimagojr.com/journalsearch.php?q=12264&tip=sid&clean=0

1.5 Related publications

1.5.2 Book Chapters

• Information Centric Networking Future Internet Video Delivery (In book,
"User-Centric and Information-Centric Networking and Services Access Networks,
Cloud and IoT Perspective", CRC Press, USA.). Jordi Ortiz, Pedro Martinez-Julia,
Antonio Skarmeta [3]

https://www.bookdepository.com/User-Centric-Information-Centric-Networking-Services-M-Bala-Krishna/

9781138633322

• Federated Experimentation Infrastructure Interconnecting Sites from Both Europe
and South Korea (SmartFIRE) (In book, "Building the Future Internet through
FIRE. 2016 FIRE Book: a Research and Experimentation based Approach"). Kostas
Choumas, Thanasis Korakis, Jordi Ordiz, Antonio Skarmeta, Pedro Martinez-Julia,
Taewan You, Heeyoung Jung, Hyunwoo Lee, Ted “Taekyoung” Kwon, Loic Baron,
Serge Fdida, Woojin Seok, Minsun Lee, Jongwon Kim, Song Chong and Brecht
Vermeulen. [15]

Book: http://www.riverpublishers.com/research_details.php?

book_id=427

Chapter: http://www.riverpublishers.com/pdf/ebook/chapter/RP_

9788793519114C30.pdf

1.5.3 Conferences

• Towards User-driven Adaptation of H.264/SVC Streams. (QoEMCS Junio 2010)
Tampere. Finlandia. Jordi Ortiz Murillo, Michael Ransburg, Eduardo Martínez
Graciá, Michael Sablatschan, Antonio F. Gómez Skarmeta, Hermann Hellwagner

• Scalable Video Transmission in Home PLC networks. (WMDCT Septiembre 2010)
Valencia. España. Eduardo Martínez, Jordi Ortiz, Alejandro Rosúa, Antonio F.
Skarmeta, Marcos Martínez.

• Analysis and performance modeling of the packet-level loss process in wireless
channels.(MSWiM Octubre 2010) Bodrum. Turquía. Eduardo Martínez Graciá,
Jordi Ortiz Murillo, Antonio F. Gómez Skarmeta.

• Scalable Video Coding Impact on Networks. (SVCVision Septiembre 2010). Lisboa.
Portugal. Michael Ransburg (Klagenfurt University, Austria), Eduardo Martinez

9

https://www.bookdepository.com/User-Centric-Information-Centric-Networking-Services-M-Bala-Krishna/9781138633322
https://www.bookdepository.com/User-Centric-Information-Centric-Networking-Services-M-Bala-Krishna/9781138633322
http://www.riverpublishers.com/research_details.php?book_id=427
http://www.riverpublishers.com/research_details.php?book_id=427
http://www.riverpublishers.com/pdf/ebook/chapter/RP_9788793519114C30.pdf
http://www.riverpublishers.com/pdf/ebook/chapter/RP_9788793519114C30.pdf

1. Introduction

(Univ. of Murcia, Spain), Tiia Sutinen (VTT Technical Research Centre of Finland),
Jordi Ortíz (Univ. of Murcia, Spain), Michael Sablatschan, Hermann Hellwagner
(Klagenfurt University, Austria)

• Efficient SVC-to-AVC Conversion at a Media Aware Network Element (Demo Paper
- SVCVision Septiembre 2010). Lisboa. Portugal. Michael Sablatschan (Klagenfurt
University, Austria), Jordi Ortíz (Univ. of Murcia, Spain), Michael Ransburg,
Hermann Hellwagner (Klagenfurt University, Austria)

• Video Adaptation based on SVC File Format (IARIA CONTENT 2013). Eduardo
Martínez, Jordi Ortiz, Rafael López, Antonio Skarmeta

• Evaluating Video Streaming in Network Architectures for the Internet of Things
(IMIS/esIoT2013) Pedro Martínez Juliá, Elena Torroglosa García, Jordi Ortiz
Murillo, and Antonio F. Skarmeta.

• Scholar European Electronic Identity Federation (TNC2015). Jordi Ortiz, Pedro
Martinez-Julia, Christos Kanellopoulos, Antonio Skarmeta

• SDN Integration and Management Solutions for Campus Network Enhanced Services
(ICIN2016) Jordi Ortiz, José I. Aznar, Alaitz Mendiola, Kostas Giotis

• Towards an SDN-based Bandwidth on Demand Service for the European Research
Community. Alaitz Mendiola , Jasone Astorga , Jordi Ortiz , Jovana Vuleta-Radoicic,
Artur Juszczyk, Kostas Stamos, Eduardo Jacob and Marivi Higuero (SDNFlex 16)

• Deploying SDN in GEANT production network. P. Luigi Ventre (University of
Rome Tor Vergata, Italy); J. Ortiz (University of Murcia, Spain); A. Mendiola
(University of the Basque Country, Spain); C. Fernandez (I2CAT, Spain); A.
Pavlidis (National Technical University of Athens, Greece); P. Sharma (RENATER,
France); S. Buscaglione (GEANT, United Kingdom (Great Britain)); K. Stamos,
Mr (University of Patras and CTI & Technological Educational Institute of Patras,
Greece); A. Sevasti (GRNET, Greece); D. Whittaker (Corsa Technologies, Canada)
(IEEE SDN NFV 2017)

10

Chapter 2

Problem Statement - Video in Future
Internet

2.1 State of the Art

Human beings are visual creatures, "Video and audio are accepted as the most natural
way to communicate" [16]. Even if visual information is important for humans, first
photographies are from mid-1820s [17]. Video as we understand video nowadays, and
omitting invents like Huygens’ magic lantern, was firstly researched in 1880s and apart
from the inclusion of sound and color small advances were introduced until the arrival of
computers.

Computers, on the other hand, have evolved from simple calculators to something
complex and powerful. Tasks performed by computers are heterogeneous since their
conception, one of the roles adopted by computers is still and moving picture processing,
that is video.

Computer networks appeared later as a consequence of the need of sharing information
between devices. From the early 1970s [18] the idea of transmitting voice an video on
packet networks like the Internet was there. Networks have been evolving to accommodate
video and video codecs have been evolving to accommodate themselves to the available
networks.

2.1.1 Video transmission

Once the transmission speed arrived to a minimum with which a page full of ASCII
characters could be transmitted in a reasonable time, pictures have been transmitted [16] in

11

2. Problem Statement - Video in Future Internet

order to represent information in computers networks, starting by ANSI art representations
in Bulletin Board Systems (BBS) in the early 1980s. Even the apparition of the HyperText
Markup Language (HTML) observed the need for representing images as part of the
information. Next evolution of visual data transmission due to enhancement of networking
capabilities appeared in the form of audio and video transmission, the so called multimedia.
From the first voice transmission using Network Voice Protocol (NVP) in the early 1970s
in the ARPANET. The creation in 1980s of the 3Mpbs Wideband Satellite Network
Protocol called the Stream Protocol (ST and later ST-II) [18] allowed the first video packet
transmission thus creating the Packet Video Protocol. In the 90s the satellite network was
replaced the terrestrial wide area networks that operated IP layer in parallel with ST and
ST-II which were relegated to government and research networks mostly.

Contemporary to this early voice packet attempts, the digitalized version of telephone
lines called Integrated Services Digital Network (ISDN) was deployed in conjunction of
a set of video conferencing standards based around ITU recommendation H.320. At the
same time in parallel with all the ITU[Pleaseinsert\PrerenderUnicode{âĂŹ}intopreamble]s
Telecommunication Standardization Sector (ITU-T) ISDN based initiatives, the World
Wide Web (WWW) phenomenon arose and popularized the audio and video content within
web pages. RealAudio and QuickTime were the first approaches to multimedia delivery over
the internet closely followed by Internet Engineering Task Force (IETF) standards such
as Real-time Streaming Protocol (RTSP), Real-time Transport Protocol (RTP), Session
Description Protocol (SDP) among others that raised the popularization of audio and
video consumption over the Internet which was joined by intense efforts in evolving video
and audio coding.

In general, any video file can be uploaded to a server with any file transfer protocol
such as FTP and be downloaded by similar means, HyperText Transfer Protocol (HTTP)
among others. Nevertheless, downloading a video file from a content server as it is and
reproducing it afterwards is not considered Video Streaming. A video streaming or video on
demand service in addition to providing with the data to the client, controls the delivery
rate providing with real-time playing capabilities. In addition, it is considered that a
streaming service should provide Video Cassette Recorder (VCR) capabilities meaning
that the stream can be paused, rewind or fast forwarded (in case of non-live content). In
the case of live video streaming, the content needs to be encapsulated onto the transport
mechanism on-the-fly. The major difference between video on demand and live streaming
is the absence of a prearranged end time [16].

Both video on demand and live streaming depend on the amount of available bandwidth
to provide a real-time service. If the available bandwidth is cut down underneath the video

12

2.1 State of the Art

bit-rate being streamed, the Quality of Experience (QoE) perceived by user is reduced.
To mitigate or even eliminate the drawbacks caused by network shortage, adaptation is
performed. In the case of live streaming only transcoding, i.e, decoding and reencoding of
the video source with different parameters, is possible unless a scalable video codec is used.
With video on demand the possibility of encoding multiple formats and storing them, either
in different files or in a multi-hint container is also possible. Adaptation might produce
other drawbacks related to the switching between bit-rates such as reinforced artifacts or
video quality degradation and upgrade switch, these changes can produce a loss in the QoE
to a user which might prefer a constant reduced quality [19].

Interest in video transmission on the Internet comes from the early 90s [18]. This
interest appeared partly as a consequence of the increase in computer processing power.
This increase allowed real time capture, compression and transmission of video streams.
The research in multicast IP and other related datagram transmission techniques also
contributed to rise the interest in this field. RTP [20] was introduced by the IETF in
the period 1992-1996 and became the sole transmission protocol for multicast conferencing
systems. RTP not only allows data transmission but also managed data control. In addition
to RTP as transport protocol, a solution for announcing multicast sessions was introduced,
Session Announcement Protocol (SAP) [21]. In addition, to describe the transport streams
the SDP [22] was introduced. In parallel with the multicast conferencing systems the
WWW emerged. The increases in bandwidth in addition to the already mentioned increase
in computing processing power allowed the inclusion of multimedia, audio and video,
content into web pages. The pioneers in this field were Realtime and Quicktime. At
that time (1998) the RTSP [23] standard appeared providing the VCR like control. RTSP
relied on already existing protocols and followed a command signaling very similar to
the already widespread HTTP. Other protocol worth mentioning is Adobe’s Real-time
Messaging Protocol (RTMP) [24].

At the same time Video and Audio coding techniques evolved. Video coding is
considered to have 4 steps, partition, predict (subtract) transform and entropy encode
meanwhile video decoding has the reverse 4 steps, entropy decode, inverse transform,
predict (add) and reconstruct. Different partition, prediction and transform techniques
have produced an evolution and wide variety of video codecs.

2.1.2 Codec evolution

Regarding source video compression, it is still common to find MPEG-2 and Advanced
Video Coding (H.264/AVC) as the video codecs in use. But the main profiles of these codecs

13

2. Problem Statement - Video in Future Internet

were designed to cope with a fixed space-temporal video signal because they were conceived
to be employed with guaranteed resources for transmission and decoding. Although the
extended profiles permit some degree of scalability, they are seldom used because of the
strong processing power that they compel. In video streaming, nowadays the prevalent
choice to handle the adaptation to varying network conditions comprises the generation
of several versions of the compressed video at different bit-rates and spatial dimensions.
During the streaming session the server monitors the connection to decide which is the
best version to use. The server can jump from one to another version at periodic points
in the video time line Less frequent is the use of real-time video transcoding to perform a
fine-grain adaptation. Both solutions involve a prohibitive amount of storage or processing
resources at the server side.

The reference in video coding field were and continue nowadays being the codecs
developed by ITU-T Video Coding Experts Group (VCEG) and ISO/IEC Moving Picture
Experts Group (MPEG). Starting from MPEG-1 [25] Part 2 firstly released in 1993 which
was rapidly continued by MPEG-2 [26] Part 2 also known as ITU-T H.262, released for the
first time in 1995 and last amendment made in 2013, which became the standard de facto
for video storage and transmission. Among its capabilities was to maintain a fixed rate
that could be introduced into a Integrated Services Digital Network (ISDN) channel. The
next remarkable evolution in video codecs appeared in 2003 (evolving until 2014) with the
MPEG-4 [27] Part 10 H.264/AVC or ITU-T H.264 which is considered today’s standard
and in integrated in almost any device available. Other alternatives in video coding have
appeared in this period of time. The VPx family created by On2 and purchased by Google
to make it free for use with open source implementations. The Xiph Theora [28] family
which was born completely Open or the BBC Dirac codec based in wavelets instead of the
typical DCT approach.

In the present the two main video codec standards are High Efficiency Video Coding
(HEVC)/H.265/MPEG-H [29] and Google’s VP9 [30], both released in 2013. Both codecs
focused in reducing the amount of bandwidth requested for a certain quality level in a
50% with respect to their predecessors H.264 and VP8 respectively. Other proposals for
stereoscopic video and scalable video [31] [32] have been produced along the way. Some
were related to enhanced visual experience such as Stereoscopic or Multi View Coding [33]
techniques while others such as Scalability extensions were directed to enhance network
and storage adaptability of the codecs.

14

2.1 State of the Art

2.1.2.1 Scalable Video Coding (SVC)

The glssvc [34] [35], an standardized extension of the well known H.264/AVC [36] video
codec. Scalable Video Coding (H.264/SVC) enables the generation of a video coded
bitstream from which a set of different video representations, defined by operational points
in the spatial, temporal and quality video dimensions, can be extracted. Each of them is
characterized by a bandwidth requirement. For streaming applications, the server can select
the appropriate video representation to be delivered according to an updated description
of the streaming context that includes the available bandwidth and the end device features
(screen size, for example). The selected video representation is structured as a set of
layers dependent in an incremental way. For video transmission, the set of video layers can
adequately be split in different streams according to their importance in the hierarchical
relationship. Scalable coding has a long tradition in compression standards. In a certain
way, progressive modes of JPEG were a form of scalable coding, and MPEG-2 SNR, Spatial
and High profiles were design to permit the generation of enhanced video.

A scalable bitstream consists of a number of layers, including a base layer and one or
more enhancement layers [37]. The base layer can be decoded independently, and provides
the elementary video quality which in turn is backward compatible with H.264/AVC.
A higher quality can be obtained by decoding the base layer plus enhancement layers,
improving the perception of the decoded sequence as more enhancement layers are used.
There are three modes of video scalability: spatial scalability, temporal scalability and
quality or Signal-Noise-Ratio (SNR) scalability.

When using spatial scalability, the base layer is coded at a low spatial resolution, and
enhancement layers give progressively higher spatial resolution. With temporal scalability
layers improve the frame rate. Take into account that temporal scalability is available
in any video codec that enables a hierarchical structure of reference frames in a group
of pictures (GOP), but H.264/SVC includes control headers to identify temporal layers.
Quality scalability generates layers with progressively higher picture fidelity. The base layer
contains a strongly compressed version of each picture, and enhancement layers incorporate
more information to increase the SNR value. These three scalability dimensions can be
combined together in a three dimensional coordinate space, as shown in figure 1. Note
that a scalable video can use any combination of the three dimensions. For instance, it is
possible to use quality and temporal scalability, and no spatial scalability at all.

H.264/SVC inherits from H.264/AVC the division of the codec design in two main
blocks: Video Coding Layer (VCL), in charge of the source video coding, and Network
Abstraction Layer (NAL), dedicated to the adaptation of the bitstream produced by the

15

2. Problem Statement - Video in Future Internet

VCL to networking or storage. For video streaming purposes only the NAL subsystem
needs to be understood and studied since it provides enough information to identify the
data pertaining to each layer. This is, precisely, the advantage of the VCL and NAL
separation.

The elementary concept at the NAL level is the NAL unit (NALU). An H.264/AVC
NALU contains a header followed by a raw byte sequence payload. This header is made
of a unique byte, and includes a field to identify the type of NALU. A complete picture
can be segmented into multiple NALUs each carrying usually a coded slice or control
information. The set of NALUs needed to decode a complete picture is called access unit.
H.264/AVC introduces a special type of access unit called Instantaneous Decoding Refresh
(IDR), which can be identified through the inspection of the NALU header. A sequence of
access units starting with an IDR can be decoded independently of any previous pictures in
the bitstream. The maximum NALU size can be configured as a parameter of the encoder,
in order to be adjusted to the maximum transmission unit (MTU).

H.264/SVC is backwards compatible with H.264/AVC. The base layer of a scalable video
is represented with a set of NALUs that can be decoded by any compatible H.264/AVC
decoder. Additional NALU types are defined by H.264/SVC. The main characteristic of
these new NALUs is the use of a sequence of three bytes, following the H.264/AVC header,
that contain three identifiers: temporal identifier (TID), dependency identifier (DID) and
quality identifier (QID). These identifiers represent a point in the temporal, spacial and
quality scalable dimensions respectively. The inspection of these fields permit to identify
NALUs belonging to a specific enhancement layer. H.264/SVC access units start with base
layer NALUs followed by enhancement layer NALUs, organized with increasing values in
the (DID, QID, TID) triple identifier. The exact number of NALUs per access unit depends
among others on the number of enhancement layers. Figure 2.1 shows the structure of
H.264/SVC and the relations between identifiers and layers as well as the relation with
H.264/AVC.

A special H.264/SVC control NALU at the beginning of the bitstream contains
metadata about the scalable structure of the video. It is the Scalability Info, a description
of the enhancement layers of the video that includes the resolution of the spatial layers,
the frame rate of the temporal layers, and the average bandwidth required to transmit the
video up to each layer. This information can be used at different control points in the
streaming system in charge of doing rate shaping of the video. It could be the streaming
server or a Media Aware Network Element (MANE) located at the frontier between two
network domains, one with a big bandwidth and the other with a more limited one. No
transcoding is necessary, but a simple discarding of NALUs. Dynamic switching between

16

2.1 State of the Art

Figure 2.1: H.264/SVC Structure and dependencies

17

2. Problem Statement - Video in Future Internet

enhancement layers is possible during the streaming session at IDR access units. Scalable
information can also be used when doing Forward Error Correction (FEC) or any other
technique to improve the robustness of the more sensitive data. The base layer can be
transmitted with more care than any other layer, as it is the more important piece of
information required to perform a correct decoding.

2.1.3 HTTP

The Internet has become one of the best ways to exchange information all over the world.
Part of its success is associated to the introduction of the Hypertext Transfer Protocol [38]
(HTTP) that evolved in what is today known as the abstract concept World Wide Web
(www). Many computer communication protocols have been designed for specific tasks
but the most versatile has demonstrated to be HTTP. HTTP is transported using the
Transmission Control Protocol [39] (TCP) which was designed having network congestion
avoidance in mind when network bandwidth was a scarce resource.

Nowadays video distribution is considered one of the most bandwidth consuming
services. (Cisco, 2015) points out that "Globally, consumer internet video traffic will be 80
percent of all consumer Internet traffic in 2019, up from 64 percent in 2014" [40]. Video
streaming services have been historically addressed by specific protocols and technologies.
With the growth of the home broadband services there is a new trend into using HTTP as
transport protocol for multimedia services. One technical reason to accept this solution is
the consideration that (Wang, 2008) "TCP generally provides good streaming performance
when the achievable TCP throughput is roughly twice the media bitrate, with only a few
seconds of startup delay" [41], [42] which is effectively true with the increase of home
bandwidth.

With the increase of available bandwidth in the last mile, the need of adjusting the
stream bit-rate to the available bandwidth has become less relevant. It is considered
that having twice the bit-rate available as bandwidth using Transmission Control Protocol
(TCP) (and thus HTTP) is sufficient for achieving good performance with a few seconds
delay [43]. Providing multimedia content over HTTP [44] has some inconveniences
related to suboptimal storage, exceeded bandwidth consumption or complex bit-rate logic,
nevertheless the advantages regarding simplicity in deployment, economics and scalability
have surpassed the inconveniences for the industry. In this approach the server becomes
a passive element just offering the content and some metadata that allows the client
to decide which resources need to be retrieved, in which order and at what moment of
time. The approach is very attractive since any HTTP deployment is easily converted in a

18

2.1 State of the Art

Video Streaming deployment without specific infrastructure. As a counterpart control on
bandwidth consumption of the provider is lost.

In 2009 Apple introduced their HTTP Live Streaming (HLS) [45] solution, Microsoft
proposed the Microsoft Smooth Streaming meanwhile Adobe proposed the HTTP Dynamic
Streaming and finally on the standardization bodies we can find the Adaptive HTTP
Streaming (AHS) from the 3GPP and the MPEG Dynamic Adaptive Streaming over
HTTP (DASH) [46] [47] [48]. Each of these systems are based on their own manifests
and file formats. Apple system uses m3u playlist and video must be encoded with
MPEG2-TS. Microsoft requires a server manifest and a client manifest file and defines
a smooth streaming format based on the ISO Base media File Format [49]. Adobe makes
use of their own Flash media manifest and F4F file format (also based in ISO Base Media
File Format. The 3GPP proposal (AHS) defines a Media Presentation Description (MPD)
acting as manifest file and also extends the ISO Base Media File Format for storing the
media. Finally MPEG proposal (DASH) adopted the 3GPP’s MPD description file as a
starting point while media segments must be compatible with the ISO Base Media File
Format (ISOBMFF) [49]. As can be easily seen there are two common factors in each
approach. The definition of a manifest/session file and the compliance with the ISO Base
Media File Format.

These HTTP based streaming systems can take advantage of any existing and/or
incoming enhanced distribution mechanisms designed for standard HTTP content including
caching systems, proxies, load balancers, ... and off course any Uniform Resource Locator
(URL) based enhancement.

2.1.3.1 DASH

The Dynamic Streaming over HTTP or DASH is the proposal made by the MPEG to
the trend of HTTP based streaming. The idea behind these HTTP based streaming
mechanisms is to produce metadata with information about the media to be streamed
and the media itself so that can be served by standard HTTP servers with the subsequent
advantages in terms of deployment, taking advantage of all the optimization mechanism
that have been researched since its definition.

The standard [46] in particular takes advantage of the MPD as defined by the 3GPP
and the ISOBMFF. Each mpd file has information related to the bitstream which can be
in a single file and be accessed by means of the byte-range HTTP header, a segment list
(each segment indicating the full-url), a time based segment list in which each url has a
reference of the starting time or finally a numbered/sequential segment list. Listing 2.1

19

2. Problem Statement - Video in Future Internet

shows a typical MPD file, in this case one corresponding to sequential segment list with just
one representation, it must be noted that multiple representations can be defined in the
same MPD file and switching between representations is allowed to the clients, what that
switching implies for the codec is out of the scope of this thesis but suffice to say that codecs
like H.264/AVC define the switching frames to be able to change video quality without the
need of resetting the decoder. Among the parameters shown, there are some which are
quite important for the player since help the decision algorithm within the DASH client
which representation to select or when a particular chunk should be downloaded. Line
7 defines the total duration of the stream while line 8 defines the minimum quantity of
data corresponding to the value in time units to be stored before start playing, the so
called buffering time. Frame rate and frame size are part of the representation while an
adaptation set containing multiple representations has the maximum frame rate and frame
size values among all the possible representations.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <MPD xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

3 xmlns="urn:mpeg:DASH:schema:MPD:2011"

4 xsi:schemaLocation="urn:mpeg:DASH:schema:MPD:2011"

5 profiles="urn:mpeg:dash:profile:isoff-main:2011"

6 type="static"

7 mediaPresentationDuration="PT596.458S"

8 minBufferTime="PT2.0S">

9 <BaseURL>http://serverexample.domain/path</BaseURL>

10 <Period start="PT0S">

11 <AdaptationSet bitstreamSwitching="true"

12 mimeType="video/264"

13 startWithSAP="1"

14 maxWidth="640" maxHeight="360"

15 maxFrameRate="24"

16 par="16:9">

17 <SegmentBase>

18 <Initialization sourceURL="isobmffbasechunk.avc"/>

19 </SegmentBase>

20 <Representation id="0" codecs="AVC" mimeType="video/264"

21 width="640" height="360" frameRate="6"

22 sar="1:1" bandwidth="390965">

23 <SegmentList duration="12" timescale="6">

24 <SegmentURL media="isobmffchunk0.avc"/>

25 <SegmentURL media="isobmffchunk1.avc"/>

26 <SegmentURL media="isobmffchunk2.avc"/>

20

2.1 State of the Art

27 <SegmentURL media="isobmffchunk3.avc"/>

28 <SegmentURL media="isobmffchunk4.avc"/>

29 <SegmentURL media="isobmffchunk5.avc"/>

30 </SegmentList>

31 </Representation>

32 </AdaptationSet>

33 </Period>

34 </MPD>

Listing 2.1: Typical DASH MPD file
The server does not necessarily have any logic to support dash streams, although it is not
forbidden. Usually, the intellect in this system falls on client shoulders. This approach
has introduced a new field of research in caching algorithms among others that now are
directed by the view of the network of the client or even user-driven as is happening in
most Video on Demand (VoD) services that allow the user to change the desired quality
of the stream without the need of a signaling channel to the server side, contrary to the
old fashioned RTSP way among others.
This introduction to DASH does not intend to be complete and readers are pointed to
bibliography for more details, nevertheless the basic concepts needed for understanding
the rest of this thesis have been introduced.

2.1.4 Content Delivery Network (CDN)

’A CDN is a collection of network elements arranged for more effective delivery of content
to end-users’ [50].
Nowadays content delivery, with emphasis in video streaming, is the major source of
bandwidth consumption in the Internet, so efficient and effective content distribution is a
key aspect to deploy bandwidth demanding services at large scales. As a solution, Content
Delivery Networks (CDNs) are being deployed and offered to content providers and carriers
as cost saving solutions, but they add undesired complexity to end-to-end operations and
content state management, becoming too closed and hard to adapt to new workflows.
The so called Content Delivery Network (CDN) services aim to enhance network
performance as well as perceived Quality of Service (QoS) by replication of content into
net- work edges caches maintaining the content correctness.
Those solutions are also limited by the strict environment established by underlying
architectures, which are typically tied to IP and conducting to the ossification of networks.
CDNs appear as a consequence of growth in network traffic and the adoption of

21

2. Problem Statement - Video in Future Internet

broadband networks. The latter increases the expectations by end-users that frequently got
disappointed by the lack of Quality of Service (QoS) produced by single point congestion,
the web server. Content providers see the Internet as a transport for their contents and
suffer from third parties issues such as Internet Service Provider (ISP) congestion.
To mitigate the downgrade in the perceived service quality some actions have been
historically taken.

• Enhance the web server hardware, which has effect to a certain extent but is limited
and might finally result in completely migrating to new hardware, not to speak about
the costs related to this alternative. Server farms are another possibility but still lack
the proximity to the end-user since they are usually collocated in the content-provider
premises.

• Deployment of proxy caches, usually done by the ISP or the provider, geographically
distributed and usually referred as hierarchical caching. In the case of ISP proxies all
the traffic for a end-user goes through the same proxy. This provides enhancements in
terms of bandwidth saving and performance improvements. In addition, the caching
is based on client demands which might potentially turn back the bottleneck to the
origin, despite being mitigated.

To overcome these issues, the CDN concept appeared in the 1990s having among their
functionalities:

• Manage redirections to the closest surrogate server/proxy/cache to take profit of
location.

• Content replication in a pull model, where the CDN can replicate content by
monitoring the content provider or in a push fashion.

• Offer differentiated services to specific users or groups of users.

• Management services of network elements and caches among others, as well as,
accounting services.

CDNs outperform standard content delivery by strategically deploying content replication
network elements in widespread locations. The CDN can be seen as a new virtual overlay
on top of the application layer since it sits on top of protocols as HTTP or RTSP.
Although there is no official CDN generation distinction, it is considered an evolution in
CDNs from static and dynamic content provision on the first generation to video and

22

2.2 SCTP

multimedia content in general on the second phase. Some might also say that the third
generation is the social media, although is it not different from the formers, and the
generation to come to be the Internet of Things (IoT).
Among the desirable business characteristics of a CDN, scalability, security, reliability,
responsiveness and performance are accounted. One of these characteristics is of great
importance and not trivial for the acceptance of CDNs by the industry, security. Apart
from ensuring the stability of the service against massive attacks such as Denial of Service
(DoS), a CDN needs to ensure the content-provider that the content is not accessible by
illegitimate customers nor corrupted and in the other hand ensure the customer that the
content received is legitimate. There is a 3 point trustiness relation that has been accepted
but implies in most cases inconsistencies such as a third partie (the CDN) being presented to
the customer as the content-provider. This relation has introduced important controversy
mostly speaking about HTTP over TLS (HTTPS) and the certificate management.

2.2 Stream Control Transmission Protocol (SCTP)

SCTP is a general purpose transport protocol initially conceived for conveying telephony
signaling messages over IP best-effort networks. The baseline SCTP, defined in RFC
4960 [51], offers a transport service that aims to solve some well-known problems of TCP
that affect the performance of highly delay constrained services. This section is dedicated
to the description of the main features of SCTP and Concurrent MultiPath Transfer for
Stream Control Transmission Protocol (CMT-SCTP). For a complete description of the
protocol, the reader is referred to [52]. An excellent survey about the SCTP research can
be found in [53].
SCTP is located at the transport level in the Internet network architecture, and works
directly over IP. It permits to use a connection oriented service, similar to that of TCP,
but bypassing some of its limitations such as the head-of-line blocking or the restriction
of using single-homed connections. Hence, SCTP offers an standardized alternative to the
implementation of application-dependent reliable data transfer protocols on top of UDP.
The protocol employs the concept association to manage the relationship between two
endpoints. At a given time, only one SCTP association can exist between two SCTP
endpoints. The association is established with a four-way handshake based on a cookie
mechanism that protects against synchronization attacks. An SCTP endpoint on a
multi-homed host is a combination of transport addresses from which SCTP packets can
be received. All transport addresses involved in an SCTP endpoint have the same port but

23

2. Problem Statement - Video in Future Internet

can use multiple IP addresses. Participating addresses are notified to the other end during
the association setup. This multi-homing feature is used as a fault-tolerant mechanism
for the association. An SCTP peer monitors which of the addresses at the other end are
available for receiving user messages by means of special control messages called heartbeats.
Responding addresses are considered active and thus available for communication. One of
them will be used as the default destination, so that there will be a primary path between
both ends, but if there is a failure detection - the primary address stops sending back
acknowledgments - a different destination address can be used to generate a backup path,
and the communication can continue.
Additionally, SCTP permits to bind user messages to streams in the context of an
association. During the association setup, both ends negotiate the number of streams that
will be used. A stream is a unidirectional sequence of messages that SCTP must deliver
in order to the upper layer at the receiving end. Streams are implemented with stream
identifiers and stream sequence numbers (SSN) that are attached to user messages. When
a transmission error occurs, the negative effects will be restricted to the streams involved
in the packet loss. As a consequence, the increase in the delay due to retransmissions
(head-of-line blocking) will not affect other streams. SCTP permits sending messages that
bypass the normal ordered delivery. These messages are delivered as soon as they are
received.
SCTP packets contain a common SCTP header, followed by one or more chunks. A chunk
may carry user data or control signaling, and a single SCTP packet may transport user
data associated with multiple streams. In order to implement acknowledgments and loss
or duplicate detection, data chunks have a unique Transmission Sequence Number (TSN)
that is maintained at the association level. Regarding the size of user messages, SCTP
may fragment a message that causes the packet to exceed the path MTU. The receiving
end will reassemble fragments in order to keep the message boundaries when data is finally
delivered to the upper layer. As a consequence, SCTP is a message oriented protocol,
similar in this aspect to UDP, instead of a stream oriented protocol such as TCP.
SCTP employs a flow control mechanism that is nearly the same as the one used in TCP.
The algorithm is based on the use of a receiver window (rwnd) variable at the sender side.
This variable gives an indication of the available buffer space at the receiver end. During
the association setup, each endpoint notifies its reception buffer size, and rwnd is initialized
with this value. When a data chunk is transmitted, the sender endpoint subtracts the size
of the data from the current value of rwnd. A special type of control chunk, called Selective
Acknowledgement (SACK), is used by the receiver to inform about data reception. At the
sender end, SACKs are processed to check if the rwnd must be increased. Three pieces

24

2.2 SCTP

of information included in the SACK are used to update the rwnd value. The first one
is called advertised receiver window (a_rwnd), and it indicates the available space in the
reception buffer. As the receiver buffer is filled with data chunks, the a_rwnd variable is
decreased, and it is increased when chunks are delivered to the upper level. The second
one is the cumulative TSN ack, that is, the largest TSN received in sequence. And the
third piece of information is a list of blocks of consecutive data chunks that have been
received after a gap of missing chunks. When a SACK is received, the cumulative TSN
and the list of gap blocks are used to calculate the amount of outstanding bytes, that is, the
total size of chunks already sent and not yet acknowledged. The rwnd variable is updated
with the a_rwnd value minus the outstanding bytes. At any time, if rwnd equals zero, the
sender stops sending data. Nevertheless, if there is no congestion, the sender can have one
outstanding data chunk per round trip time to force the reception of a_rwnd updates.
The congestion control algorithm used in SCTP employs the well known strategy called
additive increase and multiplicative decrease used in TCP, but with some modifications
needed due to its multi-homing nature. The congestion control uses three variables
to regulate the transmission: the congestion control window (cwnd), the slow-start
threshold (ssthresh) and the partially acknowledged bytes (partial_bytes_acked). The main
difference between the congestion control algorithms used in TCP and SCTP stem from
the fact that SCTP uses separate cwnd and ssthresh variables for each of the destination
addresses, and as a consequence, the congestion control is applied independently to each
path. The algorithm has two main states per destination: slow-start and congestion
avoidance. The initial slow-start state probes the path to determine the available capacity.
The cwnd variable keeps an approximation of the amount of data that can be injected
into the path before causing congestion. This value is used to limit how much outstanding
data can be flying to the destination address. The amount of outstanding data is called
flightsize. At any given time, the sender must not transmit new data if the flightsize is
greater or equal to the cwnd of the destination. During the slow-start phase, the cwnd have
a minimal value of one MTU and the ssthresh could be initialized to the receiver window.
The value of cwnd increases when an incoming SACK advances the cumulative TSN point.
Take into account that SCTP associations can have multiple destination addresses, and as
a consequence a SACK received from one destination address may acknowledge data sent
to other addresses. If some of the acknowledged data was sent to a destination address, and
the congestion window is being fully utilized (the flightsize is greater or equal to the cwnd)
the sender increases cwnd proportionally to the amount of acknowledged data sent to that
destination. When the cwnd reaches the ssthresh, there is a transition to the congestion
avoidance state. During congestion avoidance, the cwnd is incremented only by one MTU

25

2. Problem Statement - Video in Future Internet

when the congestion window is fully utilized and a SACK increases the cumulative TSN
point. The auxiliary variable partial_bytes_acked helps in the implementation of this
mechanism, counting the amount of bytes acknowledged since the last update of the cwnd
variable.
The multiplicative decrease of the congestion window is activated when a packet loss is
detected. One of the mechanisms to detect packet losses is based on the retransmission
timers. Each time a data chunk is sent to a destination address, the retransmission timer
of that destination is initialized with the value of the estimated Retransmission Timeout
(RTO), computed with the smoothed round-trip time and variation of the corresponding
path. If the retransmission timer expires, SCTP assumes a severe congestion problem
causing the congestion control to go back to the slow start state. Additionally the ssthresh
is reduced to a half of the cwnd, and the cwnd is reset to one MTU. On the other hand, if the
loss is detected with the inspection of gap blocks in a received SACK, both the ssthresh and
the cwnd are reduced to a half of the previous value of cwnd. If three consecutive SACKs
report the same missing TSNs, fast retransmission is activated. In this case, the sender
determines how many chunks marked for retransmission fit in a single packet, and this
packet is sent ignoring the value of cwnd and without delay. Then the transmission enters
in fast recovery mode and the highest outstanding TSN is marked as the fast recovery exit
point. While in this mode, the ssthresh and cwnd should not be reduced due to subsequent
fast recovery events. The fast recovery mode is exited when all TSNs up to and including
the exit point are acknowledged.

2.2.1 CMT-SCTP

CMT-SCTP is a proposed extension for SCTP designed to enable simultaneous data
delivery through all the available paths between a pair of source and destination endpoints.
The extension, proposed by researchers from the University of Delaware, is fully described
in [5]. The goal pursued by CMT-SCTP is the increase in fault-tolerance and in global
transmission performance with respect to the baseline SCTP, where only one path is used
at a time. The extension is designed under the assumption that the bottleneck queues
on the end-to-end paths are independent. This assumption is important to maintain a
TCP-friendly flow and congestion control over all the available paths.
CMT-SCTP schedules the transmission of new data through the available paths as soon
as the corresponding cwnds allow it. When there is space for transmission simultaneously
for several destinations, data is sent uniformly through all of them. However, taking into
account that each path has different delay and bandwidth characteristics, this simultaneous

26

2.3 SDN

transmission incurs in a significant packet reordering at the receiver end. This effect,
connatural to CMT-SCTP, provokes a substantial degradation in the performance of the
basic algorithms of SCTP. In [5], three negative effects of packet reordering are identified:
unnecessary fast retransmissions triggered by an increase in the number of gap reports;
a slow increase of cwnd due to the lack of cumulative TSN acknowledgements; and an
increase of acknowledgment traffic due to immediate delivery of SACKs when out-of-order
data is detected at the receiver end.
CMT-SCTP uses three new algorithms to cope with these problems. The Split Fast
Retransmission (SFR) algorithm keeps an independent virtual queue for each path within
the retransmission buffer. Additional variables associated with each virtual queue permit
to apply the fast retransmission procedure on a per destination basis, keeping track of
the path that was used to transmit each TSN. The Cwnd Update for CMT-SCTP (CUC)
algorithm allows to increase the destination cwnd with SACKs that do not advance the
cumulative TSN point. The algorithm tracks the earliest outstanding TSN per path and
updates the path’s cwnd just with the information contained in gap blocks, even if the
cumulative TSN is not modified. The Delayed Ack for CMT-SCTP (DAC) algorithm is
designed to reduce the acknowledgment traffic. The baseline SCTP protocol is designed
with the assumption that data received out-of-order indicates possible loss, and accordingly
the receiver should immediately send a SACK with a gap report to trigger fast recovery as
soon as possible. The DAC algorithm specifies a different receiver and sender behavior to
infer when a gap report is caused by loss and not reordering. In [5], the authors indicate
that the combination of the three mentioned algorithms improves the aggregate cwnd
growth in comparison with multiple SCTP associations (one per path) between the sender
and the receiver. The same article explores different retransmission policies and concludes
that it is beneficial to send retransmissions to the destination with the largest cwnd or
ssthresh, instead of using the same destination employed in the initial transmission.

2.3 SDN

The past recent years have witnessed the birth of a new paradigm in networks. The so
called Software Defined Networking (Software Defined Networking (SDN)) have evolved
from a promising technology enabler to a production ready solution already deployed in
several environments.
’SDN was developed to facilitate innovation and enable simple programmatic control of
the network data-path’ [54]. OpenFlow Protocol (OpenFlow) is considered the industry’s

27

2. Problem Statement - Video in Future Internet

favourite approach for SDN by means of its control plane and data plane separation and
its ability during its early years to accommodate existing hardware.
But SDN is not a solution designed explicitly to address a certain problem but a solution
emerged from a evolution in networking history. To understand how SDN has become
so rapidly a key technology, the history of programmable networks as a way to facilitate
network evolution needs to be revisited.

2.3.0.1 First approaches to externally control the data-plane

In the last decade of last century, computer networks were formed by network devices
exchanging information with their neighbors. That information was needed by the running
algorithms to take the decisions that finally were translated to hardware instructions which
at last made the information flow.
The devices took decisions based on their local perception on the network but were
unable to see the big picture. Network operators on the other hand were willing to gain
some network-management capabilities that weren’t available at the moment like traffic
engineering with which they would be able to mitigate network problems thanks to the
operator heuristic knowledge.
The increase of link speeds and congestion in backbone networks those days lead vendors to
implement traffic-forwarding logic directly in hardware. In addition, the hardware and the
software (firmware) of the devices was tightly tied to the protocols accepted by the device
which in turn slowed down the evolution of protocols and the deployment new network
solutions since it was up to the device vendors their implementation and deployment.
Some alternatives to split control and data planes started to arise.
Giving access to the hardware implemented data plane capabilities to a remote entity
allowed to extract the control protocols to commodity hardware which was also increasing
its capabilities dramatically those days.
Open Signalling
Around 1995 the Open Signalling Working Group (OPENSIG) [55] [54] Working Group
realised that, in order to speed up network equipment deployment in ATM networks, the
vertically aligned closed switches should be able to expose their network hardware by means
of open programmable interfaces. As a consequence of the group research, the General
Management Switch Protocol (GSMP) was proposed. The aim of GSMP was ’simply’
to control a label switch, meaning operating resource reservation, port and connectivity
configuration, etc... the Working Group stayed active until 2002.
Active Networks

28

2.3 SDN

In parallel (1997) with OPENSIG, the Active Networks initiative appeared. Network
research those days was based on small experiments in laboratories that were lately
verified with simulations of bigger networks and if funding and interest was continued, the
proposal was submitted to Internet Engineering Task Force (IETF) to potentially become
a standard. The process was tedious and some researches tried to apply the easiness in
reprogramming similarly to software development in stand-alone PC to networks.
In addition of the device programmability capabilities introduced by OPENSIG, the
concept of ’capsules’ is introduced. The capsules were defined as small fragments of code
carried in user messages, that were intended to be interpreted by ’Active’ routers which
would coexist with ’standard’ routers. The key technology enablers to trigger the Active
Networks appearance were the reduction in computing costs and the appearance of portable
code such as java, as well as virtual machine concepts that allowed sandboxing processes
in the device.
Active Networks didn’t attract the attention of the industry (with the exception of DARPA)
but came ahead of their time in terms of innovation introducing the foundation key concepts
for SDN:

• Network function programmability thus allowing innovation. In the case of Active
Networks the focus was on data-plane programmability while later work has been
focused on control-plane to regain interest in data-plane lately.

• Network virtualisation and program demultiplexion by means of specific packet
headers.

• Focused on middle-boxes and how to compound functions through the network.

On the other hand, it was not clear at that time where Active Networks should be applied,
they were expensive (since active routers which were dedicated hardware needed to be
deployed) and had some problems related to security and interoperability. In addition, the
use of capsules implied a user with a programmer role which is not always the case.

2.3.0.2 Extracting the control-plane from networking devices

In the early 2000s it was clear that that network-management was something desirable
and to be researched. The new focus was on network administrators and how to simplify
their lives while expanding their capabilities. In that sense, providing control-plane
programmability and de-localize the control plane decisions from a device scope to a
network scope making them wiser looked like the path to follow.

29

2. Problem Statement - Video in Future Internet

Forwarding and Control Element Separation (ForCES)
The IETF with the ForCESworking group proposed an open standard interface to the data
plane to enable innovation in control-plane software. To that intent a framework [56] and
a protocol [57] were defined so that the control-plane and the data-plane could be logically
separated which in turn makes them available for physical separation. If the interface to
communicate the control-plane with the data-plane is open and standard effectively allows
multi-vendor scenarios.
In ForCES terminology any device in the network is considered a Network Element (NE)
that is composed of one or more Forwarding Elements (FE) as well as one or more Control
Elements (CE) that collaborate together to produce the provided capability. The FEs
compose the data-plane and the CE compose the control-plan. Apart from the FEs and
CEs which are considered part of the NE, the ForCES framework defines two new entities,
the ’CE manager’ and the ’FE manager’ which may or may not be located outside the
NE. The CE manager is responsible of determining which FEs will control a FE. A FE
manager, is responsible of determining to which CE a FE will communicate. There are no
restrictions on how the managers take their decisions giving place for innovation.
The ForCES protocol was designed for the signaling between a FE and a CE and although
is dependent on the communication between the managers and the FE/CE, it is not
employed on that communication. The ForCES protocol is able to transport packets from
the data-plane (received in FEs) and intended for control such as Border Gateway Protocol
(BGP). The FEs are able to identify the control messages and redirect them to the proper
CE, since all the CEs do not necessarily implement all the control protocols but rather a
subset of them.
Unfortunately ForCES didn’t attract the attention of network vendors since it produced a
breach from what was actually deployed.
Routing Control Platform (RCP)
Similarly to ForCES, RCP [58] was aimed in controlling the data-plane of the device but
contrary to the former no protocol was defined but an already existing one was used, BGP.
Therefore, RCP is limited to control layer 3 networking, meaning Internet Protocol (IP).
The idea is to install forwarding-table entries in legacy routers. Therefore a RCP is a
single entity per Autonomous System (AS) that decides the values the routing tables must
have thanks to having a full knowledge of the network topology. The proposal specifies
three steps: replacing Internal Border Gateway Protocol (iBGP), act as External Border
Gateway Protocol (eBGP) endpoint and finally being able to change inter-AS routing by
employing RCP instead of routers in order to exchange routes via eBGP or any other
protocol existent or to be invented.

30

2.3 SDN

In addition, higher level policies could potentially be implemented in RCP which would
mitigate the unexpected results of BGP attributes employed until then to that intent.
This logically centralized entity, RCP, needs to be reliable and physically distributed to
cope with possible failures. The challenges identified for RCP centralized controller will
accompany data from control separation centered network evolution history.
Network Configuration Protocol (NetConf)
Firs time proposed in 2006 [59] and revisited in 2011 [60], the IETF NetConf protocol
is intended for configuring network devices, it is based in eXtensible Markup Language
(XML) and acts on the devices via Remote Procedure Call (RPC).
NetConf is arguably considered SDN or programmable network. First of all, data-plane and
control-plane are not separated, to continue with, it does not intended to micro-manage
state of the device, the primary role of NetConf is change device configuration which will
evolve the state but not directly influence on it. The working group also defined the YANG
data modeling language to model state and data configuration, RPC calls and notifications.
Despite its limitations, it highly accepted by vendors and is becoming more and more
usual in controllers southbound interfaces as a mean to influence in network. Thinking in
proactive network programmability NetConf still has some usage.
Ethane: A Protection Architecture for Enterprise Networks (Ethane)
Trying to rise the abstraction level in enterprise network-management a step further,
Ethane focused on converting policies and security directives directly to network rules.
To achieve that objective, Ethane, simplifies the network elements to simple flow tables
that receive the flows to be installed from a central entity, the controller, that is able to
understand high-level directives and convert them to low-level instructions.
Ethane is considered the predecessor of OpenFlow, appearing only one year (2007) before
the latter, and established the foundations of what today is understood as the SDN
paradigm.

2.3.0.3 Network Operating System (NOS) era

The separation of control-plane and data-plane and extracting the former from the network
elements lead almost unavoidably to the appearance of network controllers. These initially
simple controllers have been evolving unstoppable to follow the computer operating system
analogy by offering a base layer on top of which applications can be deployed to produce
added value. In addition, the drivers approach is replicated by offering what is commonly
known as southbound protocols that allow enforcing the application operations on different
network elements as can be seen in Figure 2.2.

31

2. Problem Statement - Video in Future Internet

Figure 2.2: NOS to pc operating system analogy

One of the most widespread southbound protocols for NOS is OpenFlow and many would
say that NOS were born because of OpenFlow. Indeed, as the successor of Ethane the
OpenFlow switches are so simple that are considered useless unless they are managed by
a controller/NOS.
OpenFlow
The OpenFlow [61] protocol was born as a result of Stanford’s Clean Slate Program while
trying to provide an experimentation environment comparable to real life but at the same
time at a tractable scale, their objective was set on to the campus networks.
Two are the key factors why OpenFlow has become so widespread, its capability to enable
and absorb existing hardware and the versatility of its proposal covering from layer zero
to layer 4 in the Open Systems Interconnection (OSI) model. This versatility attracted
immediately the attention of the research community eager to experiment with clean slate
networks to produce new solutions that can finally break the Internet ossification [62] [63].
Motivation to design and propose OpenFlow was ’As researchers, how can we run
experiments in our campus networks?’ [61]. Authors stated that there were two approaches
to achieve switch programmability through open interfaces those days: Asking the vendors
which was unlikely to happen, since that would lower the barrier-to-entry for new
competitors or use open software platforms that provided low performance, low port density
or were extremely expensive for the purpose.
With the following objectives in mind:

• High-performance and low-cost implementation

• Unrestricted research capabilities

• Production and research traffic isolation

the authors proposed OpenFlow as an open protocol [64] to program different switches

32

2.3 SDN

Figure 2.3: OpenFlow concept.

Figure 2.4: Match fields for OpenFlow "Type 0" switch.

and routers. The idea is to extend existing hardware functionality by taking profit of
already existing flow-tables (which have general common similarities regardless the vendor)
providing access to create, delete and modify entries from the flow-table.
So OpenFlow requires three components to be present on a switch:

• OpenFlow protocol implementation that is responsible from parsing and creating
OpenFlow messages employed for the communication with the controller.

• A secure channel between the switch and the controller with which the OpenFlow
messages are transported.

• Flow tables that associate a flow or match pattern with an action to be performed.
Initially three basic actions were defined, forward the packet to a port, encapsulatethe
packet and send it to the controller and drop the packet silently discarding it.

Apart from matching patterns and actions, the flow-tables store statistics for each
flow-table entry storing amount of data and time that the flow was idle. This data can be
useful not only for the straightforward maintenance of the flow table by removing unused
entries but also for changing network behavior based on the values or for future forensics
analysis.
The authors studied pipelines and located a common set of fields for the matching pattern
that were present in general in any vendor device. These field became the T̈ype 0ḧeader
fields (see Figure 2.4) for the first version of OpenFlow.
The OpenFlow protocol has continued evolving being its last version the 1.5.1 [65] and 1.6

33

2. Problem Statement - Video in Future Internet

Figure 2.5: OpenFlow sequence diagram

is about to come out but the more deployed and available from vendors the 1.3.X [66] in
which we will focus to summarize the extensions suffered by the protocol since its definition.
OpenFlow 1.3 added new possibilities to the base definition and not limited by the need of
being backward compatible with existing devices. The devices fully supporting this version
of the protocol must be specifically addressed for OpenFlow. Among the new possibilities
the metering capabilities is one of the more interesting allowing bandwidth enforcements
related to flows and not ports.
Figure 2.5 shows the messages exchanged in an OpenFlow communication.
As a consequence of OpenFlow two type of OpenFlow hardware devices are defined:
OpenFlow-dedicated
These switches only run OpenFlow and receive all the control-plane decisions via the open

34

2.3 SDN

interface. They act as simple forwarding elements and (depending on the vendor) become
hubs or blocks if no controller is attached.
In this category fit what is in the argot known as ’white boxes ’ which refer to new vendors
that taking profit of the open interface and the higher accessibility to silicon and lower
prices offer as an alternative to the historically present vendors from the old days.
OpenFlow-enabled
In this category fits any device that has been provided with new software or firmware to
expose an OpenFlow interface even if not designed by the vendor initially for that purpose
or the ones that the vendor willingly offers OpenFlow as a feature but, on the contrary to the
OpenFlow-dedicated switches, these devices still have independent switching capabilities
that allow to run production legacy traffic at the same time that the OpenFlow service is
provided.
The production traffic needs to be isolated from experimental. Two approaches are known
to do so: Adding a special action to send the packet to the processing pipeline (standard
switch pipeline with the legacy protocols) or create separate Virtual Local Area Network
(VLAN) for the experimental traffic.
A new term has been coined as ’brite boxes ’. These boxes are not technically speaking
OpenFlow-enabled boxes since they are not boxes that open their internals to OpenFlow
as happened before but are designed to be opened and offer a small amount of the legacy
functionality mainly for migration purposes and service deployment simplicity. The term
brite-box was introduced by Karen Benson as a contraction of ’Branded Switching +
White-Box Switching ’ [67].
Proactive vs Reactive forwarding
One of the actions added to OpenFlow and inherited from Ethane among others is the
ability to send the received packet to the controller. The packet is encapsulated in an
OpenFlow message and is sent over the OpenFlow secure channel to the controller so
that can be analyzed and can potentially produce changes on the network, meaning new
flows to be deployed on that switch or any other switch in the network. This behavior is
denominated reactive forwarding.
Reactive forwarding is clearly a key capability that will define future networking but it
introduces some handicaps to be at least inspected when designing a OpenFlow solution.
It introduces a negligible impact on the flow introduced by the Round Trip Time (RTT)
between the controller and the switch. This is partially true since widely deployed SDN
networks could have controllers far away from devices. Also, it might not be a good idea to
apply this kind of forwarding to protocols without session, such as User Datagram Protocol
(UDP) in which the controller would be asked for each packet coming into the network.

35

2. Problem Statement - Video in Future Internet

On the other hand proactive forwarding is off course allowed and even desirable. In that
case, the controller would install flows on the devices that would provide with the rules to
forward packets in the ordinary network operations and would leave the reactive approach
to special or out of the normality cases.

2.3.0.4 Controllers

From an OpenFlow point of view, a controller is an entity that sends flows to the devices.
But controllers, as we pointed out before, have become something more. Indeed their main
purpose is to manage the control-plane and take any decisions based on the centralized
network information obtained and the policies embedded by the network operators.
These policies are becoming more and more applications that sitting on top of the controller
modify the network behavior not only based on standard protocols and network location but
on higher level information and, in some cases as pointed out before, heuristic information.
Among the functionalities covered by the controller, forensics is becoming one of the most
demanded features and some vendors like Big Switch with their fabric use-case leverage on
SDN to monitor the production network. Several are the unthinkable use-cases that have
become affordable thanks to the appearance of the SDN paradigm and among them there
is one clearly outlined by the related bibliography [63] [68] [69], the Information Centric
Networking (ICN).

2.4 Future Internet - ICN

The Future Internet (FI) proposals are centered in providing an evolutive or disruptive
path to evolve the underlying network architecture. Some of these architectures have been
centered in separating identifiers from locators.
In order to resolve part of the limitations exposed by CDNs and thus break the ossification
of networks in content distribution, the Information Centric Networking (ICN) [70]
paradigm has proliferated to exploit the possibilities that intermediate network elements
have to achieve efficient and effective content delivery. Within ICN we find some
outstanding solutions, such as NDN/CCN [71], PURSUIT [72] and NetInf [73], which
provide mechanisms to change the way content is represented in the network traffic and
intermediate elements.
At the same time, the Information Centric Networking (ICN) paradigm employs
intermediate network elements for content distribution while also separating identifiers
from locators.

36

2.4 Future Internet - ICN

2.4.1 Separation of Identifiers and Locators

Instead of fixing the problems with complementary mechanisms, there is some consensus
in the research community in that some problems related to end-to-end communications
may be resolved by separating the location and identifier of a network node. This
approach is followed by two outstanding architectures, Host Identity Protocol (HIP) [74]
and Location/ID Separation Protocol (LISP) [75,76], as well as other derivatives and totally
new proposals.
The HIP introduces cryptographic host identifiers forming a new global name space as
a new intermediate layer between the IP and transport layers. It decouples the endpoint
identifier and locator enabling the transport on host identifiers and routing on IP addressing
that serve as pure locators. Although this seems a good solution, it presents many problems
to be deployed because of the intrinsic meaning of identifiers and, in general, its weak
solution to all requested capabilities for the Future Internet (FI).
On the other hand, the LISP is a routing-based solution using map-and-encap at border
routers. The upstream IP address of border routers is used as Routing Locators (RLOCs)
of hosts residing in the local domain to perform inter-domain routing, while intra-domain
routing is performed using conventional IP addresses also referred to as Endpoint Identifiers
(EIDs). These EIDs can potentially be associated with a group of RLOCs to support
multi-homing. LISP tunnels data packets between source and destination RLOCs using the
LISP database, which contains the RLOC/EID relation for each local domain to interpret
packets. It also uses an on demand cache to select the destination RLOC for sending
packets towards specific destinations. As the main drawbacks exposed by this architecture
we highlight the need of maintaining a LISP database, because it raises scalability concerns,
and that the creation of an on demand cache to route packets among different domains is
not clearly defined. As a HIP derivative, the BLIND architecture [77] enhances HIP with
security and identity protection, as well as location privacy by introducing new forwarding
agents. Even though this is an interesting architecture from the security point of view, it
inherits the same problems that HIP has.
Also being similar to HIP, the Routing Architecture for the Next Generation Internet
(RANGI) [78] introduces a new layer called Node Identity Internetworking Architecture
(NodeID), which is used for transport related communications instead of IP addresses.
RANGI adopts a hierarchical structure of host identifies employing special IPv6 addresses.
The main benefit of RANGI is scalability but its main drawback is the complexity related
with fundamental modifications into the IP addressing scheme and the Domain Name
System (DNS) entry to store the required mappings.

37

2. Problem Statement - Video in Future Internet

The NodeID [79] proposal from the EU FP6 Ambient Networks project is also similar to
HIP and LISP and introduces an architecture based on separation of locator, address,
and administrative domains. Nevertheless, it is a network layer solution based on a
locator/identifier split approach, and thus did not address session or identity management
at all. Also, this architecture suffers from scalability problems related to inter-domain
routing; a process based on routing tags, which contain domain information about the
location of a concrete node identifier.
The Mobile Oriented Future Internet (MOFI) [80] proposes an architecture that considers,
from the beginning, that network elements (hosts) can move across networks while also
considering the existence of current IP networks as backbone for communicating separated
edge networks. In contrast, it proposes new control and data planes for those edge networks
to optimize mobility. The simplicity of this architecture and the organization of the
functions provided in separated functional blocks (components) make it very interesting
for adopting new functions into the Internet. However, it does not address the security or
discovery problems.
The ILNP architecture [81] approaches the id/loc split by proposing a modification to the
current DNS to use it to resolve names to identifiers and identifiers to addresses. It also
proposes the incorporation of the identifiers as part of the IPv6 addresses used in network
interactions. This proposal currently is being studied by the Internet Research Task Force
(IRTF) [82]. Although this is a very lightweight and promising approach, it is host-centric
and does not provide fine granularity or flexible naming. Also, the DNS infrastructure is
not prepared to support the highly dynamic workloads required by the FI.
Finally, defined within the AKARI project, which was carried out by the National
Institute of Information and Communication Technology of Japan (NICT), we find
the Heterogeneity Inclusion and Mobility Adaptation through Locator ID Separation
(HIMALIS) architecture [83]. It proposes a complete architecture that shares features with
HIP and LISP but targets on a new identification scheme, different from IP and capable
to support sensor networks and the IoT. The major benefits of HIMALIS reside in their
simple targets of heterogeneity and mobility. It provides the necessary functional blocks to
complement the current Internet architecture and allow it to evolve to a more functional
network. However, there are still functions not covered by this architecture, specially
those related to address the identities of network elements and manage communications
according to them.

38

2.4 Future Internet - ICN

2.4.2 HIMALIS

The HIMALIS experimentation framework is formed by different modules that can be
deployed both together in one machine or in separated machines. Depending on the
installed components, a network element will play a role or another. Those elements
are HNR, DNR, IDR, GW, Viewer, and Clients. Below we give a brief description of each
component.
The Host Name Registry (HNR) is an element dedicated to keep a mapping table with the
domain names of the registered hosts in the network and their identifiers and addresses. It
is used by other network elements, such as clients, to determine the identifier and locator
of a host.
The Domain Name Registry (DNR) is a global and hierarchical infrastructure that manages
the assignment of domains with HNR elements. It is used by network elements to determine
the HNR that responds to the resolution requests of the specified domain.
The ID Registry (IDR) is a global and overlay infrastructure used to communicate updates
of the identities and locators to the gateways of the corresponding communication nodes.
Thus, every node retains its reach-ability after moving from one network to another.
The gateway (GW) component provides the mechanism to connect access networks, which
use their own locator namespace, to the global transit network (the Internet), which also
uses its own locator namespace (IP addressing). This element contacts with the HNR to
resolve the locator to which send the packets it receives, both from the global network or
from the local network.
The Viewer component provides the possibility of knowing the current state of the current
mapping tables of the gateways. It shows the host names, their identifiers and their locators
at certain specific time, also showing how they are updated when a host moves from one
network to another.
Finally, the clients are special software entities that use the HNR of their corresponding
domain to resolve host names to their identifiers, establish new communications, and
and configure the hosts with the necessary artifacts to permit them send and receive
identifier-based packets.

2.4.3 Integrated Content Delivery

Besides the architecture approaches presented in previous subsections, the ICN approach
has been a disruptive but well accepted and supported trend for future networks. It breaks
with current node-centric networking by claiming that the majority of data communications

39

2. Problem Statement - Video in Future Internet

in the Internet are held to request or deliver content from a provider to a consumer, so
they have an information-centric nature. Today, information is hosted by specific nodes and
the only way for retrieving it is via establishing an end-to-end communication with them.
Recent research efforts towards developing architectures for the FI have adopted a totally
different point of view to address network operations by raising the role of information to
the center of communications. In these approaches, the network does not connect nodes
with links and processes via end-to-end connections, as is the case in the current Internet,
but connects information consumers with the information they request, that is provided
in a decoupled way by producers and distributors. This opens up new opportunities for
accommodating, for example, sporadically connected nodes efficiently. However, it is not
considering the identities of network nodes in any way.
The EU-funded projects 4WARD [84] and SAIL [85], its successor, defined and motivated
the introduction of a new FI architectural paradigm called Network of Information
(NetInf) [73] that extends the concept of identifier/locator split with another level of
indirection and decouples self-certifiable objects from their storage location/s. NetInf
distinguishes between Data Objects (DO), always encoded in a particular scheme
(bit-pattern), and Information Objects (IO), i.e., information at a level above particular
encodings. For example, much of the web content found today is semantically related,
but this relationship is not represented in any way in the Internet. Similarly, relationships
between copies of the same content are not represented. By employing bindings between
IOs and DOs, information can be unambiguously replicated and located in the network.
Moreover, since objects are self-certifiable, users can effectively employ access patterns that
are reminiscent of any-casting and obtain the object that is closer (in network terms) to
their access device.
Another pair of EU-funded projects, Publish-Subscribe Internet Routing Paradigm
(PSIRP) [86] and Publish Subscribe Internet Technology (PURSUIT) [72], which is its
successor, also approach ICN but from a totally different point of view. They propose a
publish/subscribe scheme for the Internet, where information consumers subscribe to the
information they want and information providers publish that information. In contrast with
NetInf, this solution also approaches the information (data) delivery process and propose
different identification schemes for information, subscribers, publishers, and intermediate
nodes.
The Data-Oriented Network Architecture (DONA) architecture [87] is a communications
architecture that replaces DNS names with self-certifying flat names and a name-based
anycast primitive above the current Internet. Instead of certifying the content, DONA
certifies the publishers and labels the data. Also, the data can not be dynamically

40

2.5 ICNaaS

generated, it must be first registered in the trusted resolution handlers (RHs). Once the
content requested by a client is found, it is delivered using IP routing. The security in
DONA is achieved by content and provider validation.
The Content-Centric Networking (Content-Centric Networking (CCN)) approach [71]
proposes an architecture similar to PSIRP/PURSUIT but enlarging intermediate
content-centric elements to all intermediate elements in the network (i.e. switches and
routers). In CCN, information consumers tell the network their interest for certain
information item (content object) and then the network operates to provide it. Information
producers do not need to react to consumers, they just drop the information to the network,
as the network will deal wit it. This approach can be seen as a globally distributed cache,
that fits perfectly in CDN scenarios. The problem with this architecture is that also leave
aside the identity of communication parties, so it does not considers endpoint security or
privacy. It is highly extensible, as shown in [88], and supports many traffic types.

2.5 Information Centric Network as a Service (ICNaaS)

CDNs are usually third parties offering their expertise and resources for caching or
replicating content near the user. We introduced previously 2.1.4 the CDN [50] concept
and stated that it is a three actors system. Now we contradict that sentence by introducing
the fourth actor in the system, the ISP. ISPs have been seen as transport pipes but have
been evolving recently to provide differentiated services and content as a consequence.
Content distribution services are traditionally implemented through a mix of techniques
like HTTP redirection, DNS load distribution, anycast routing, and application-specific
solutions, among others. As a result, a complex distributed system is in charge of
redirecting users’ requests to clusters of network caches. Such decision, i.e. the right
cache(s) that must serve the content, is usually made based on the communicating
endpoints (IP addresses) involved. Contrary to this, the Information-Centric Networking
(ICN) paradigm advocates for delivering requested resources based on their name and
independently from the data transport [82]. This can potentially increase the efficiency
and scalability of content distribution, but it typically requires the deployment of
state-of-the-art protocols like CCNx [71].
On the other hand, in the last few years we have witnessed the rise of Software-Defined
Networks (SDN) and the high momentum they have gained [54]. By means of a
logically centralized controller that maintains the global view of the network and exposes
a programmatic interface, SDN offers huge opportunities for network programmability,

41

2. Problem Statement - Video in Future Internet

service automation, and simplified management.
Can we leverage SDN to provision CDNs as a Service (CDNaaS) which are led by ICN
(ICNaaS) principles? What are the benefits of such approach? What challenges must
be faced? Our claim is that provisioning CDN services with SDN is possible without a
considerable lost of performance while increasing the dynamism of caching systems by
adopting the ICN principles.
Figure 2.6 tries to show how the content provision has evolved. The first approach and the
more abstract view of service provisioning is that of a central server providing the content
for each content provider, let these be A and B in Figure 2.6a. To overcome the limitations
of the former approach and overcome the geographical distribution of clients, surrogate
servers are located nearer to the user thus increasing the QoS, this kind of approach is
what is known as CDN and usually are provided by third parties, reflected as C in Figure
2.6b. To avoid all the problems related to IP ossification and avoid the implicit relation
between network addresses and geographical location, the ICN initiative breaks with this
philosophy by basing the routing on the content itself instead of the host where it is present.
To that end, URL alike based routing is performed and usually accompanied by in-network
caching as shown in Figure 2.6c. The ICNaaS proposal goes a step further providing with
the means of having a CDN alike caching which can be potentially instantiated per content
provider as a service in which the location of the content is performed likewise ICN but at
the same time offering the possibility to integrate existing caching mechanisms such as the
ones offered by CDNs operators nowadays. Despite being innovative, it is less disruptive
and accommodates existing infrastructure as well as existing business models. A very
simple overview of the ICNaaS is shown in Figure 2.6d.
Among the vast bibliography related to ICN two are the most related contributions to the
work that is going to be introduced in this thesis. Both studies employ DASH as a mean
for VoD.
Authors in [89] introduce the ’Cache as a Service’ proposal and base their OpenCache
(OpenCache) in SDN for VoD. In their proposal the control and decision of what content
is to be cached is delegated to the ISP Network Operations Center (NOC) that has the
knowledge and ability to optimize network utilization and possibly save its precious up-link
bandwidth to other ISP. The authors also introduce the concept that given certain Service
Level Agreements (SLAs), the solution could be also exposed to content providers such as
CDNs. We actually agree with this view and even go further thinking that what should be
offered to content providers is the instantiation of exclusive ICN/CDN instances that can
be customized and controlled by the providers and implemented in the ISP premises.
Among the motivation of the authors, they state that ’Currently, BoD requests are handled

42

2.5 ICNaaS

(a) Provider own servers. (b) Introducing CDNs.

(c) Introducing ICN. (d) Introducing ICNaaS.

Figure 2.6: From base HTTP services to ICNaaS

individually leading to an independent low in the distribution network serving each user’s
request ’ [89], not taking profit of the repeatability of video objects transmission over the
same link or network. Although nowadays CDNs already are able to cache video content,
it is true that this is not always possible and I agree with their view.
The OpenCache proposal defines three elements to define the architecture, the OpenCache
controller (OCC) orchestrating caching and distribution functionalities, the OpenCache
nodes (OCNs) in charge of actually caching the content and deployed over the ISP network,
and the VoD server which is not necessarily within the same ISP network.
The OCC accepts regular expression syntax to define the matching of the content in the
requests although limited by the granularity level of OpenFlow. It also implements the
caching behavior and manages the OCNs’ resources. Finally it maintains the OpenFlow
forwarding flows. The OCN ’simply’ caches the content and maintains session status with
OCC.
Authors in [89] also highlight the benefits of leveraging on SDN to implement caching

43

2. Problem Statement - Video in Future Internet

services thanks to the dynamism in packet routing and rewriting and the transparency
to the customer obtained thanks to packet rewriting. Additionally network hardware
monitoring.
Similarly, authors in [90] evaluate the VoD paradigm on FI architectures, in particular
CCN (which is one of the more deployed, studied and well known ICN implementations)
and leveraging on SDN. The motivation for their proposal and the previous study is the
collision of interests between client based rate adaptation in DASH and the in network
transparent content caching paradigm and how the later confuses the former.
In the study made by the authors, they stated that even in a stable environment the video
representation selected by the DASH client was not stable obtaining an oscillating pattern.
Although the experimentation was performed with wireless connectivity, the authors clarify
that the Wireless Local Area Network (WLAN) coverage was perfect and no mobility was
employed. They also conclude that DASH chunk requests are spread among the available
rates unlikely repeating them on the retrieval of the same video any time in the future.
In their evaluation of CCN for DASH the authors introduce a proxy to translate the HTTP
requests to CCN interests and employ a SDN controller for network traffic. The findings
are that ICN has two negative impacts on DASH: reduced cache hit rate and imprecise
rate estimation in the client due to the difference appreciated in channels to cache and to
VoD server. In their solution proposal, the authors rewrite the MPD offered to the client
extending it with the information related to the cache.

2.6 Scalable video in FI

The Scalable Video approaches, designed to confront the challenge of transmitting and
storing high-definition video while reducing the needed bandwidth and storage size, lost
its raison d’être with the adoption of end-to-end HTTP transmission due to the appearance
of the high bandwidth last-mile connectivity, as well as, the decrease on the storage prices.
Nevertheless, new trends in communications such as video conferencing systems based on
Web Real-Time Communications (WebRTC) and ICN itself, have reactivated the interest
on this kind of scalable video compression mechanisms [91] that allows in-network bitrate
adaptation within a single stream.
Video coding has suffered of a certain parallelism with video transmission, while video
designed solutions were left unused in exchange of HTTP streaming, scalable coding and
recent video codecs have been put apart by the omnipresent H.264/AVC.
Despite this trend in industry, research in the field of scalable video coding continued

44

2.7 Conclusions

and new standards such as the Scalable High-Efficiency Video Coding (SHVC) [91] have
appeared. Vidyo in partnership with Google has also declared the intention of providing
scalability for the open alternative codec VP9 [92] and its importance for the WebRTC
systems.
Applying scalable media coding to ICN [93] [94] [95] is a topic naturally emerged due ICN’s
in-network caching concept and the heterogeneity of devices to receive the video content.
To reduce the access time, the amount of bandwidth required for each particular version
of the media content and to avoid in-network transcoding and not ’reinvent the wheel’
directly pointed out, again, to scalable coding.

2.7 Conclusions

This section has introduced the basic technologies and have pointed to the primary
bibliography related to them needed to understand the proposals that follow in next
chapters.
After a brief introduction to video coding and video streaming evolution, highlighting
H.264/SVC introduced in Section 2.1.2.1 that represents the scalable video coding
approach, the SCTP protocol and its extensions have been described in Section 2.2 serving
as reference to Chapter 3 proposal. The ICN concept employed in chapters 4 and 5 was
introduced in Section 2.4 which in addition to SDN introduced in Section 2.3 act as the
basis to the proposal ICNaaS motivated in Section 2.5 that is finally defined in Chapter 4
and evaluated in Chapter 6.
In the following chapters, the SCTP protocol will be evaluated as transport layer for
H.264/SVC taking profit of the parallelism of SCTP stream with H.264/SVC layer which
to the best of my knowledge was the first approach to linking both concepts with the
aim to obtain different levels of protection depending on the application level information.
HTTP based video streaming is evaluated in the environment of FI and for the nowadays so
relevant IoT paradigm. Finally, a nouveau solution to provide CDN alike as a service with
ICN capabilities is designed and evaluated leveraging on SDN to transparently provide with
HTTP video streaming, in addition, the characteristics of the application level metadata
is employed to steer the traffic to the appropriate cache which is demonstrated with the
dependency characteristics of H.264/SVC video.

45

2. Problem Statement - Video in Future Internet

46

Chapter 3

Evaluation of Scalable video delivery
over SCTP

As a first approach to close the gap between the application layer, and in particular video
streaming, and the network layer, a conservative approach has been followed in which
Internet Protocol (IP) ossification is continued and enhancements are introduced in a non
disruptive way. To that end, within standardized bodies two elements have been added
without having the impact expected, joining forces might produce the necessary outcome
to boost their adoption.
On the Transport layer the Stream Control Transmission Protocol (SCTP) is the
alternative to the well known alternatives Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP). From the Application layer perspective, the contender is the
Scalable Video Coding (H.264/SVC). Both elements have in common the subdivision into
parts, while SCTP splits its association into streams, H.264/SVC separates the video
stream into dependable layers. Although SCTP has been previously employed to transport
video [96] [97], this is the first time to the best of our knowledge that the multi-streaming
capability of SCTP is employed with a scalable codec.
In this chapter SCTP is evaluated as transport of H.264/SVC video on top of Real-time
Transport Protocol (RTP).

3.1 Description

In parallel with the enhancement of computer capabilities in terms of processing power
and network bandwidth has been a growth in the use of multimedia services and more
recently video transmission is becoming the killer application, in the format of Video on

47

3. Evaluation of Scalable video delivery over SCTP

Demand (VoD), video conferencing systems and/or live streaming. Historically the two
major transport layer protocols available TCP and UDP have been used for multimedia
streaming, being the later favored for its maximum bandwidth throughput while the
former has been the choice when resiliency was requested. Nowadays video is delivered
to a highly heterogeneous device variety which usually implies wireless connectivity hence
implying mobility in most of the cases. The two predominant network protocols are lacking
capabilities in terms of resiliency or performance.
Although the way to transmit the video is a very important matter and is actually the term
on which this document focus, there is a more important factor, the video itself. While
it is still common to find ancient (in computer evolution scale) codecs such as MPEG-2
while the standard is using Advanced Video Coding (H.264/AVC). Several video codecs
are available in terms of efficiency or even licensing but most of them lack the capability
to be adapted efficiently during the transmission stage. The usual way to deal with such
restrictions, the network might not be able to transmit the whole stream in time or the
device might be unable to play the stream in the hardware available, is to either transcode
(term employed for decode and reencode at once) the video stream to the new restrictions
or pre-encode several versions of the stream at origin with the unavoidable computing
overload. Therefore during the transmission stage the streaming the communication edges
monitor the available bandwidth and configure the transcoding stage or switch over the
different available representations of the media to one that suits the parameters. Both
approaches have their drawbacks and benefits but in general transcoding is a Central
Processing Unit (CPU) consuming process while encoding multiple versions is storage
consuming.
Scalability has been present in video coding since early stages but it hasn’t been until
the definition of H.264/SVC [34] [35] that a real and industry standards capable codec
appeared. The H.264/SVC is the standardized scalable extension for the also standardized
and well-known H.264/AVC [36]. The major capability of H.264/SVC is to produce a video
bit stream that produces different outputs in the temporal, quality or frame size domains.
The three parameters can vary and each 3-tuple or triple is an operation point which in
turn requires a certain bit-rate. Thanks to the Network Abstraction Layer Unit (NALU)
structure (introduced in section 2.1.2.1), each H.264/SVC network data chunk is identified
with the triple to which it belongs. Therefore, steering traffic to a certain bit-rate is just
a matter of dropping the NALUs belonging to any non-dependable layer of the selected
operation point. Every layer may depend from ’lower level’ layers, meaning those with lower
values in the triple defining the operation point. One of the key features of H.264/SVC
is the backward compatibility of the base layer with the almost omnipresent H.264/AVC

48

3.1 Description

which ensures a minimum service for almost any device in the world and usually with
hardware decoding support.
With regards to transmission, both TCP and UDP are considered not well suited for
the transmission of multimedia information when network conditions are poor. As an
alternative to the lack of multimedia aware network protocol, the RTP [18] protocol is
an application layer protocol that is usually encapsulated on top of UDP taking the flow,
congestion control, retransmission events and redundancy to the application layer when
needed. This approach has been extensively used and is considered as a proper method to
transmit video (and audio as far as is concerned) over computer networks.
The SCTP protocol is a general purpose standardized transport layer protocol that was
in origin designed for telephony signaling. It is able to provide a reliable full-duplex
transmission with flow and congestion control, multi-streaming and multi-homing. The
protocol, which has been already introduced in section 2.2, introduces the concept of
stream in an association, meaning that the connection between two sctp peers for a
certain pair of ports can transport different flows which in turn have their independent
flow control reducing the head-of-line blocking TCP problem. SCTP is reliable using
similar mechanisms to those of TCP but is inherently message oriented similarly to UDP.
The streams are unidirectional and are delivered in order to the corresponding endpoint.
SCTP allows each endpoint to have multiple network addresses and dynamically change
them which was mentioned previously as multi-homing. Originally SCTP uses one of the
addresses as the primary and the other addresses as fail-safe alternatives, nevertheless the
Concurrent MultiPath Transfer for Stream Control Transmission Protocol (CMT-SCTP)
extension has been defined [5] to support parallel usage of the multiple interfaces therefore
balancing the traffic.
SCTP and H.264/SVC can naturally be combined to map the former streams to the
later layers, taking advantage of the multi-streaming and also from the multi-homing
mechanisms provided by SCTP. Both capabilities are of relevance for mobile devices
which usually have restricted video hardware having usually multiple network interfaces
on the other hand, like cellular and wireless. The proposal examines different strategies
to transmit H.264/SVC with SCTP demonstrating how TCP and UDP get outperformed
by the approach. The study was carried out with the ns-2 [98] simulator by employing an
SCTP implementation provided by University of Delaware [99].
The remainder of this chapter is structured as follows. Section 3.2 the simulation
environment is introduced and the multiple combinations of SCTP and H.264/SVC are
introduced. Next results are show and analyzed in section 3.3. Finally, conclusions are
presented in last section.

49

3. Evaluation of Scalable video delivery over SCTP

3.2 Evaluation Scenarios

In this section we aim to describe the simulation environment used to demonstrate the
advantages of using SCTP as the H.264/SVC video transport protocol, in comparison
with other protocols (RTP and TCP) currently used. The main strategy to show the out
performance of SCTP is based on sending H.264/SVC layers as SCTP streams over a SCTP
association, while also using the multi-homing features of the protocol. The scenario in
which the comparison is established employs strongly lossy networks. The simulations are
carried out using ns-2 (v. 2.34). It includes the implementation of the SCTP transport
protocol with Delaware’s University extensions.
In order to implement our source agent, we use trace files generated from real mp4 files
created with a modified version of mp4creator developed in the SCALNET project [100] [7].
This tool permits to employ the mp4 file format as the container of H.264/SVC video,
according to the ISO standard [101]. We use mp4 files that contain, in addition to the
actual bitstream, some extractor and hint tracks that ease the streaming process done by
the server. The generated traces contain not only the size of each RTP packet but also the
packet number within the frame, the frame number, the sequence number and a stream
identifier that is used within SCTP. We built two types of video source, one taking only
one stream as input and the other taking multiple streams. We have also developed a video
sink that generates an output trace of the received video events. This trace permits us to
generate, using the original mp4 file, SVC files in which all the lost NALUs are removed.
Instead of generating one H.264/SVC file to represent the received video for the whole
transmission, we produce one H.264/SVC file per frame. With this approach we pretend
to have a fine grain control over the decoding process to know whether a particular frame
has been successfully decoded, or there is not enough information to decode it at all. In
case a particular frame is not decoded, we replicate last decoded frame. With this we
can calculate the PSNR value of each frame with the certitude that it is aligned with
the original video sequence. Obviously this decision lead us to encode our test stream
with I frames exclusively. We employ a unique video sequence for a complete set of
transmission scenarios. It is the Big Buck Bunny sequence with two layers, the base
layer and and additional quality enhancement layer, with average bit rates of 800 and
3500 kbps respectively. The video is VBR encoded, causing some severe variations in the
transmission rate, that globally rise over 8000 kbps at some segments of the video. The
duration of the encoded stream is 7500 frames streamed at 25 frames per second, permitting
a long duration test of 300 seconds. The generated H.264/SVC file have an average PSNR
of 13.4502 dBs. The sequence is encapsulated in an mp4 file and hinted with an MTU

50

3.2 Evaluation Scenarios

limit of 1350 bytes. Transmission using TCP is treated as special case because it is not a
message oriented protocol. The TCP agent collocated with the video sink agent produces
reception events indicating amounts of received bytes which do not respect NALU blocks.
In this case, the agent waits until all the bytes for a NALU have been received before
including it in the reception trace.
The simulated scenario is represented in figure 3.1. It is really simple, with two nodes
connected by two duplex links. These nodes are actually modeled with three nodes each
(a core node and two nodes for the network interfaces), as proposed by CMT-SCTP
module authors [102]. Each core node employs a transport agent. In order to establish
a comparison, we use SCTP, CMT-SCTP, TCP/FullTCP and RTP transport agents.
At the emitter end, the transport agent is attached to a video source application that
reads information from the pre-generated video trace. At the receiver end, the transport
agent connects to a video sink that generates the reception trace. We left most of SCTP
parameters in ns-2 with their default values. Nevertheless, there are some exceptions
that have been modified. The pathMaxRetrans_ and changePrimaryThresh_ govern the
decision of which interface to use in case a retransmission has to be done. We set both
parameters to 1, implying that after a packet loss the SCTP agent will resend it on the
secondary interface. Additionally, we set the Reliability_ parameter to 0 to test the use
the SCTP protocol in unreliable mode, which is basically a best effort approach similar to
UDP. The results of each simulation include following information, averaged per second:

• diff. time, that is, the delay experimented by video packets in the transit from source
to sink.

• bandwidth used in each interface.

• discarded packets detected in each interface, due to router congestion or link failure.

• loss bandwidth detected at the video sink, after packet retransmissions.

• PSNR, objective measure of the received video quality with respect to the original
file.

Simulations use three different link bandwidths: 6, 8 and 10 Mbps. Both links have the
same bandwidth. Each of these bandwidth configuration is tested with four different error
distributions: no loss, uniform loses with 10−4 probability, with 10−3 probability and with
10−2 probability. Losses start at second 20 in the first link and at second 40 in the second.
Both links are configured with a constant delay of 10 ms. For each combination of network

51

3. Evaluation of Scalable video delivery over SCTP

bandwidth and error distribution, we have tested eleven different transmission strategies.
Due to the amount of combinations, we describe each one with a label that is used in the
rest of the paper:

• CMTMultiReliable: CMT-SCTP transmission, with base and enhancement layers
using different streams, both with reliable transmission.

• CMTMultiUnreliable: similar to the previous one, but using unreliable transmission
for both layers.

• CMTMultiMixed : similar to the previous one, but using reliable transmission for the
base layer, and unreliable for the enhancement layer.

• SCTPMultiReliable: Baseline SCTP transmission, with base and enhancement layers
using different streams, both with reliable transmission.

• SCTPMultiUnreliable: similar to the previous one, but using unreliable transmission
for both layers.

• SCTPMultiMixed : similar to the previous one, but using reliable transmission for
the base layer, and unreliable for the enhancement layer.

• SCTPReliable: Baseline SCTP transmission, with base and enhancement layers using
the same stream with reliable transmission.

• SCTPUnreliable: similar to the previous one, but using unreliable transmission.

• RTPMulti : RTP transmission, with base and enhancement layers being sent through
the first and second interfaces respectively.

• RTP : similar to the previous one, but using only the first interface.

• TCP : TCP transmission with both layers sent through the first interface.

Table 3.1 summarizes the characteristics of these eleven strategies.

3.3 Evaluation Results

This section shows the results of the simulations and describes the obtained values.
There is an explosion in the combinations of the eleven transmission strategies, four error

52

3.3 Evaluation Results

Strategy MultiStreaming Reliable Unreliable Mixed
CMTMultiReliable

√ √
© ©

CMTMultiUnreliable
√

©
√

©
CMTMultiMixed

√
© ©

√

SCTPMultiMixed
√

© ©
√

SCTPMultiReliable
√ √

© ©
SCTPMultiUnreliable

√
©

√
©

SCTPReliable ©
√

© ©
SCTPUnreliable © ©

√
©

RTPMulti
√

©
√

©
RTP © ©

√
©

TCP ©
√

© ©

Table 3.1: Strategies overview

configurations and three bandwidth configurations. As a result, only the average values
of all the combinations are summarized in tables 3.2 to 3.5. On the other hand, figures
3.2 to 3.12 present more detailed information for the 6 Mbps bandwidth and 10−2 uniform
loss rate combination. This scenario represents the worst case of all those studied, with a
strong packet loss rate and also congestion due to peaks in the video bandwidth.
Figures 3.2 to 3.12 represent a mosaic of three or four graphs for each transmission strategy.
The top left plot shows data about the eth0 interface. Similarly, the bottom left plot
presents the same information for the eth1 interface (some strategies use only the first
one). Both plots present the bandwidth usage on the scale of the left axis of the plot,
while the amount of discarded packets is represented with reference to the right axis. The
use of two axis tries to ease the practical representation of data that would be impossible
in some cases with just one axis. This dual vertical axis is also used in bottom right
plot, in which the average delay of packets is shown using the left axis, whereas the loss
bandwidth calculated at the video sink is shown using the right axis. Finally, the top right
plot represents the PSNR of the received video.
As shown in figures 3.2, 3.3 and 3.4, CMT transmissions use both interfaces fully. All
the other strategies present a clear unbalance in the use of both interfaces. Most of them
employ preeminently the first interface, with the exception of RTPMulti, shown in figure
3.10, where the second interface is used to send the enhancement layer, that has a bigger
bandwidth consumption than the base layer. Some SCTP multi-interface transmission
strategies (figures 3.4 and 3.5) make a sparse use of the second interface, reduced to the
retransmission of lost packets belonging to the reliable stream.
Taking a look at figure 3.11 corresponding to the RTP scenario, it is possible to see how

53

3. Evaluation of Scalable video delivery over SCTP

congestion affects strongly the quality of the transmission when the sending rate exceeds
the available bandwidth. Each time the network usage of the first link exceeds 6 Mbps,
the loss bandwidth at the reception rises clearly. This is also true in all the CMT-SCTP
and SCTP cases where unreliable streams are used (figures 3.3, 3.4, 3.6, 3.7 and 3.9).
We present the information for all the scenarios in four tables, one for each error distribution
value. These tables contain values that measure the average delay and Peak Signal Noise
Ratio (PSNR) for each transmission strategy.

3.3.1 TCP

Looking at the tables 3.2 to 3.5, it is observed that TCP performs pretty good on error free
environments, but as the number of errors rises up the average delay grows prohibitively.
Also TCP has a better delay average than SCTP in scenarios where there is no error but
exclusively congestion periods, as can be seen in table 3.2 in the 6 Mbps column.

3.3.2 RTP

As expected, TCP has the worst PSNR value but the best average delay value. We have
to take into account that packet losses are not retransmitted, so there is no penalization
to the delay but the negative influence in the quality of the received video is excessive.

3.3.3 Reliable baseline SCTP

The SCTP reliable approach outperforms TCP on lossy scenarios and scenarios where
bandwidth is sufficient. In table 3.1 it is shown that, in the reliable strategy at 10 Mbps,
the SCTP agent stops delivering video to the sink agent at instant 160.68. There is no
clear reason for this, but our hypothesis is that the pathmaxretrans_ parameter set to 1
produces, when the available bandwidth is high and there is a big error rate, an increment
in disordered packets, for which baseline SCTP is not well prepared. This is precisely the
motivation of the three algorithms SFR, CUC and DAC, employed by the CMT-SCTP
extension. Looking at the ns-2 traces it is possible to observe that the cumulative TSN in
SACKs gets frozen from the indicated time instant, provoking a stall in the transmission.
Sending each layer in a different stream (SCTPMultiReliable) enhances the transmission
performance on lossy scenarios in comparison with the use of a unique stream
(SCTPReliable), as can be seen in tables 3.2 to 3.5.

54

3.4 Conclusions

3.3.4 Unreliable baseline SCTP

In our opinion, the unreliable approach is not worth when retransmissions are deactivated.
The results show that, with an error probability 10−4 and 10−3, there is nearly no difference
in the value of the average delay (at best it is equal) in comparison with the reliable
approach, but, the big difference comes in relation with the PSNR value. The unreliable
approach provokes a strong reduction in the quality of the video, traduced in black square
artifacts due to complete video slices lost, which result in pictures with artifacts. With
error probability 10−2 the unreliable approach outperforms the average delay of the reliable
approach, but still having a very high cost in video quality. In this case, sending layers in
different streams seems to be a good idea although the PSNR is low.

3.3.5 Mixed reliability with baseline SCTP

To get a compromise between error resilience and delay, we test scenarios in which the base
layer is protected using a reliable transmission while the enhancement layer is sent with
an unreliable approach. The results exposed in the SCTPMultiMixed columns in tables
3.2 to 3.5 show that this mixed approach globally reduces the average time with respect to
the only-reliable approach, while obtaining a greater PSNR than the only-unreliable one.
The enhancement of this approach could not only be measured in terms of the delay and
objective quality, but also in the Quality of Experience (QoE) results for the user, as only
packets of the enhanced layer will be affected by losses, reducing the overall impact on the
quality of the image.

3.3.6 CMT-SCTP

We studied transmission mechanisms with CMT-SCTP and the three alternatives in
relation with the reliability of the streams (reliable streams, unreliable streams and a
mixed combination of both) and our conclusion is that, thanks to the good performance of
using reliable streams in CMT-SCTP, CMTMultiReliable is always the best choice of all,
because the delay is kept low and the PSNR is always the maximum.

3.4 Conclusions

SCTP has been one of the most promising protocols for multimedia communications and
is still employed as part of conferencing systems. Its massive deployment has only been
delayed by the sudden increase in the last-mile bandwidth capabilities that have reanimated

55

3. Evaluation of Scalable video delivery over SCTP

Strategy 30Mb 45Mb 60Mb
avg diff time PSNR avg diff time PSNR avg diff time PSNR

CMTMultiReliable 0.0057 34,4653 0.0056 34,4653 0.0055 34,4653
CMTMultiUnreliable 0.0057 34,4653 0.0056 34,4653 0.0055 34,4653
CMTMultiMixed 0.0057 34,4653 0.0056 34,4653 0.0055 34,4653

SCTPMultiReliable 1.6108 34,4653 0.0172 34,4653 0.0061 34,4653
SCTPMultiUnreliable 1.6108 34,4653 0.0172 34,4653 0.0061 34,4653
SCTPMultiMixed 1.6108 34,4653 0.0172 34,4653 0.0061 34,4653
SCTPReliable 1.6105 34,4653 0.0171 34,4653 0.0060 34,4653
SCTPUnreliable 1.6105 34,4653 0.0171 34,4653 0.0060 34,4653

RTPMulti 0.0061 33,4609 0.0052 34,4653 0.0052 34,4653
RTP 0.0094 29,8153 0.0059 33,6131 0.0052 34,4653
TCP 2.4409 34.4653 0.2865 34.4653 0.0583 34.4653

Table 3.2: No error

Strategy 30Mb 45Mb 60Mb
avg diff time PSNR avg diff time PSNR avg diff time PSNR

CMTMultiReliable 0.0057 34,4653 0.0056 34,4653 0.0055 34,4653
CMTMultiUnreliable 0.0057 34,4653 0.0056 34,4653 0.0055 34,4653
CMTMultiMixed 0.0057 34,4653 0.0056 34,4653 0.0055 34,4653

SCTPMultiReliable 1.6146 34,4653 0.0174 34,4653 0.0062 34,4653
SCTPMultiUnreliable 1.6146 34,4653 0.0174 34,4653 0.0062 34,4653
SCTPMultiMixed 1.6146 34,4653 0.0174 34,4653 0.0062 34,4653
SCTPReliable 1.6149 34,4653 0.0172 34,4653 0.0061 34,4653
SCTPUnreliable 1.6149 34,4653 0.0172 34,4653 0.0061 34,4653

RTPMulti 0.0061 33,4229 0.0052 34,4272 0.0052 34,4272
RTP 0.0094 29,7677 0.0059 33,5600 0.0052 34,4159
TCP 2.4581 34,4653 0.2865 34,4653 0.0583 34,4653

Table 3.3: Uniform 10−4

Figure 3.1: Ns-2 simulation scenario.

56

3.4 Conclusions

Strategy 30Mb 45Mb 60Mb
avg diff time PSNR avg diff time PSNR avg diff time PSNR

CMTMultiReliable 0.0244 34,4653 0.0101 34,4653 0.0057 34,4653
CMTMultiUnreliable 0.0300 34,4596 0.0101 34,4653 0.0057 34,4653
CMTMultiMixed 0.0300 34,4596 0.0101 34,4653 0.0057 34,4653

SCTPMultiReliable 1.9877 34,4653 0.0458 34,4653 0.0556 34,4653
SCTPMultiUnreliable 1.9877 34,4653 0.0458 34,4653 0.0556 34,4653
SCTPMultiMixed 1.9877 34,4653 0.0458 34,4653 0.0556 34,4653
SCTPReliable 3.0093 34,4653 0.0466 34,4653 0.1124 34,4653
SCTPUnreliable 2.0130 34,4653 0.0466 34,4653 0.1124 34,4653

RTPMulti 0.0061 32,9780 0.0052 33,9753 0.0052 33,9753
RTP 0.0094 29,2786 0.0059 33,0309 0.0052 33,8717
TCP 2.9667 34,4653 0.4165 34,4653 0.1325 34,4653

Table 3.4: Uniform 10−3

Strategy 30Mb 45Mb 60Mb
avg diff time PSNR avg diff time PSNR avg diff time PSNR

CMTMultiReliable 1.3272 34,4653 0.0644 34,4653 0.6181 34,4653
CMTMultiUnreliable 0.4039 34,4372 0.7470 34,4417 0.4098 34,4367
CMTMultiMixed 1.7904 34,2869 0.7470 34,4417 0.4026 34,4427

SCTPMultiReliable 41.1406 34,4653 20.3130 34,4653 3.5188 34,4653
SCTPMultiUnreliable 17.2343 33,9208 12.4975 34,1825 13.0626 34,1603
SCTPMultiMixed 17.2308 33,9577 12.4961 34,1896 13.0586 34,1666
SCTPReliable 44.7756 34,4653 19.2490 34,4653 9.7437 34,4653
SCTPUnreliable 18.2282 33,9311 12.1949 34,1579 11.1983 34,0951

RTPMulti 0.0061 29,5685 0.0052 30,5368 0.0052 30,5368
RTP 0.0094 24,7738 0.0059 28,5860 0.0052 29,3284
TCP 37.1808 34,4653 25.5925 34,4653 23.5196 34,4653

Table 3.5: Uniform 10−2

57

3. Evaluation of Scalable video delivery over SCTP

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

Mb/s Mb/s

Seconds

eth0

Discarded eth0

 0

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100

 0

 0.2

 0.4

 0.6

 0.8

 1

Seconds Mb/s

Seconds

DiffTime

LossBitRate

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 500 1000 1500 2000

dB

Frames

psnr

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

Mb/s Mb/s

Seconds

eth1

Discarded eth1

Figure 3.2: Uniform 10−2 30 Mbps CMTMultiReliable.

58

3.4 Conclusions

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

Mb/s Mb/s

Seconds

eth0

Discarded eth0

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 20 40 60 80 100

 0

 0.005

 0.01

 0.015

 0.02

 0.025

Seconds Mb/s

Seconds

DiffTime

LossBitRate

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 500 1000 1500 2000

dB

Frames

psnr

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

 0

 0.05

 0.1

 0.15

 0.2

 0.25

Mb/s Mb/s

Seconds

eth1

Discarded eth1

Figure 3.3: Uniform 10−2 30 Mbps CMTMultiUnreliable.

59

3. Evaluation of Scalable video delivery over SCTP

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

Mb/s Mb/s

Seconds

eth0

Discarded eth0

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100

 0

 2

 4

 6

 8

 10

 12

 14

Seconds Mb/s

Seconds

DiffTime

LossBitRate

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 500 1000 1500 2000

dB

Frames

psnr

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

Mb/s Mb/s

Seconds

eth1

Discarded eth1

Figure 3.4: Uniform 10−2 30 Mbps CMTMultiMixed.

60

3.4 Conclusions

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100

 0

 0.05

 0.1

 0.15

 0.2

 0.25

Mb/s Mb/s

Seconds

eth0

Discarded eth0

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 20 40 60 80 100

 0

 0.2

 0.4

 0.6

 0.8

 1

Seconds Mb/s

Seconds

DiffTime

LossBitRate

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 500 1000 1500 2000

dB

Frames

psnr

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 20 40 60 80 100

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

Mb/s Mb/s

Seconds

eth1

Discarded eth1

Figure 3.5: Uniform 10−2 30 Mbps SCTPMultiReliable.

61

3. Evaluation of Scalable video delivery over SCTP

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

Mb/s Mb/s

Seconds

eth0

Discarded eth0

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 20 40 60 80 100

 0

 5

 10

 15

 20

 25

 30

Seconds Mb/s

Seconds

DiffTime

LossBitRate

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 500 1000 1500 2000

dB

Frames

psnr

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 20 40 60 80 100

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

Mb/s Mb/s

Seconds

eth1

Discarded eth1

Figure 3.6: Uniform 10−2 30 Mbps SCTPMultiUnreliable.

62

3.4 Conclusions

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100

 0

 0.05

 0.1

 0.15

 0.2

 0.25

Mb/s Mb/s

Seconds

eth0

Discarded eth0

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 20 40 60 80 100

 0

 5

 10

 15

 20

 25

 30

Seconds Mb/s

Seconds

DiffTime

LossBitRate

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 500 1000 1500 2000

dB

Frames

psnr

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 20 40 60 80 100

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

Mb/s Mb/s

Seconds

eth1

Discarded eth1

Figure 3.7: Uniform 10−2 30 Mbps SCTPMultiMixed.

63

3. Evaluation of Scalable video delivery over SCTP

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

Mb/s Mb/s

Seconds

eth0

Discarded eth0

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100

 0

 0.2

 0.4

 0.6

 0.8

 1

Seconds Mb/s

Seconds

DiffTime

LossBitRate

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 500 1000 1500 2000

dB

Frames

psnr

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 20 40 60 80 100

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

Mb/s Mb/s

Seconds

eth1

Discarded eth1

Figure 3.8: Uniform 10−2 30 Mbps SCTPReliable.

64

3.4 Conclusions

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

Mb/s Mb/s

Seconds

eth0

Discarded eth0

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 20 40 60 80 100

 0

 5

 10

 15

 20

 25

 30

Seconds Mb/s

Seconds

DiffTime

LossBitRate

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 500 1000 1500 2000

dB

Frames

psnr

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 20 40 60 80 100

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

Mb/s Mb/s

Seconds

eth1

Discarded eth1

Figure 3.9: Uniform 10−2 30 Mbps SCTPUnreliable.

65

3. Evaluation of Scalable video delivery over SCTP

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

Mb/s Mb/s

Seconds

eth0

Discarded eth0

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0 20 40 60 80 100

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Seconds Mb/s

Seconds

DiffTime

LossBitRate

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 500 1000 1500 2000

dB

Frames

psnr

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Mb/s Mb/s

Seconds

eth1

Discarded eth1

Figure 3.10: Uniform 10−2 30 Mbps RTPMulti.

66

3.4 Conclusions

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Mb/s Mb/s

Seconds

eth0

Discarded eth0

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 20 40 60 80 100

 0

 2

 4

 6

 8

 10

 12

 14

 16

Seconds Mb/s

Seconds

DiffTime

LossBitRate

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 500 1000 1500 2000

dB

Frames

psnr

Figure 3.11: Uniform 10−2 30 Mbps RTP.

67

3. Evaluation of Scalable video delivery over SCTP

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Mb/s Mb/s

Seconds

eth0

Discarded eth0

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100

 0

 2

 4

 6

 8

 10

 12

Seconds Mb/s

Seconds

DiffTime

LossBitRate

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 500 1000 1500 2000

dB

Frames

psnr

Figure 3.12: Uniform 10−2 30 Mbps TCP.

68

3.4 Conclusions

TCP thanks to the adoption of the more comfortable HyperText Transfer Protocol (HTTP)
protocol. Still the capabilities offered by CMT-SCTP are not offered to the best of my
knowledge by any alternative and even though nowadays connections have increased their
available bandwidth, employing multiple connections has still some relevance for other
use cases (not bandwidth limitations) like economical saving options. H.264/SVC never
reached the masses but has been employed in production scenarios and what is more
important, has been superseded by its next generation homonym Scalable High-Efficiency
Video Coding (SHVC).
The presented results show empirically how mixing SCTP streams with H.264/SVC layers is
a natural and profitable approach for video delivery in networks with high error rates. This
study could be enhanced by tuning the configurable SCTP parameters such as the reliability
level or the path and association retransmission limits, among others. The incorporation
of other extensions such as the Stream Control Transmission Protocol Potentially Failed
(SCTP-PF) [4] offering a non-duplicate transport service with tunable loss recovery linked
with the importance of a layer for the actual operation point. Enhancing the video
characteristics by employing High Definition (HD) streams and at least temporal scalability
would have been also desirable and the limitations imposed by software decoding vanished
thanks to processor evolution and software decoder maturity, not to speak about hardware
coding.
Finally, a real implementation of these transmission techniques could permit to contrast
the simulation results obtained in this study.

69

3. Evaluation of Scalable video delivery over SCTP

70

Chapter 4

Video transmission in the Future
Internet (FI)

Video streaming as a flow of time tagged (RTP) datagrams (UDP) has been slowly replaced
by a less logical connection oriented methodology (TCP). The adoption of Real-time
Messaging Protocol (RTMP) first and HTTP based video streaming techniques later was
backed up by the increase in network bandwidth. At the same time, new paradigms have
appeared.
The FI introduces new concepts, solutions and architectures that impose new challenges
to the existing services. Clearly, most FI architectures imply a clean-slate adoption,
therefore their evaluation should not only be focused in bulk transmission capabilities
but also taking into account application payloads. In that sense, video streaming is one
of the more resource hungry payloads while also being one of the more popular. The
adoption of HTTP as a basis for transmitting almost anything, regardless its adequacy
or not for certain traffic, supported by the increasingly available networking bandwidths,
makes it the ideal candidate to start with this application evaluation. Therefore, with
the support of the ANA4IoT project [103], three promising and rather independent
architectures are evaluated. Heterogeneity Inclusion and Mobility Adaptation through
Locator ID Separation (HIMALIS) as the representative of clean-slate architecture to break
IP ossification, Content-Centric Networking (CCN) as an overlay to evolve the ’Net’ into
the Information Centric Networking (ICN) model and finally the Internet of Things (IoT)
which imports restrictions from the deployment and the hardware back to the network and
its logic.

71

4. Video transmission in the FI

4.1 Description

The main objective of the ANA4IoT [103] experiment within the OpenLab project has
been to determine the adequacy of different architecture proposals for the Future Internet
when applied to typical scenarios of the IoT. At the same time, and as expected outcome,
valuable feedback was obtained that may help the designers and developers of both the
selected architectures and the infrastructures used to run the experiments to improve
them. The analysis is focused on HIMALIS [83] and CCN [71], which are two outstanding
architectures that offer different networking views for the Future Internet. The HIMALIS
architecture is based on end-to-end communications but resolves the drawbacks found in the
current Internet by separating global and local routing, so the general routing scalability is
improved, and by separating identifiers from locators, so achieving indirection to seamlessly
support mobility and multi-homing. The CCN architecture offers a totally different view of
the network. It is designed following the ICN approach and, thus, places information pieces
(content) as the central element of the network, making clients declare their “interest” on
content pieces and providers to offer and deliver them to the intermediate network elements
which, in turn, collaborate to deliver the requested content pieces to those clients.
Using prototype implementations of the aforementioned architectures a batch of tests
(sub-experiments) were performed that exercised some specific capabilities required both
by IoT scenarios and, in general, by the Future Internet. To get approximate results to
those obtained in the real world and when running those architectures in real networks,
the tests were carried out with different and heterogeneous topologies built on top of
GAIA [12] [104], Heterogeneous Experimental Network (HEN) [105], PlanetLab Europe
(PLE) [106]. In some sub-experiments, interconnecting those architectures to get richer
observations and measurements was intended. The feedback extracted from this project will
be also valuable for the different testbeds to know the difficulties that each one introduces
to the experimenter.
In this group of experiments how reducing the Maximum Transmission Unit (Maximum
Transmission Unit (MTU)) of the network was studied in relation to how affects to different
aspects and elements of the deployed architectures. This gave us a profile of their behavior
when running in constrained networks, like the typically found and associated to IoT. In
particular, different values for the MTU were used and, for each one, the performance of
both the global transit network (the Internet) and the access network was demonstrated.
This means that the bandwidth, throughput, and latency for each situation and section of
the network was obtained.
The main hypothesis aimed to be demonstrated or invalidated with this experiment is that

72

4.2 Testbeds and tools

IoT workloads require specific support from network architectures because of its small
packet size. Performance descriptors are not just hurted by the extra headers introduced
but also by the behavior of intermediate switching and routing machinery regarding their
queuing policies. Demonstrating this will help to improve future designs by, for instance,
aggregating traffic or folding packet headers into a minimal flow identification header.
Moreover, analyzing the results obtained from this experiment the minimum MTU required
for each architecture is determined in order to work properly with IoT workload, which is
an important aspect of IoT networks because they have had constrained resources, reflected
in the reduced packet size introduced above. Moreover, for each performance descriptor,
mainly throughput and latency.
Apart from the network profiling, the results were compared and analyzed to determine
the benefits and drawbacks when using different values for the MTU of the network.
Furthermore, the effect of network size and topology were studied through the performance
descriptors by experimenting with different topologies and network sizes.

4.2 Testbeds and tools

The GAIA testbed, short name of the GAIA Extended Research Infrastructure, is located
at the southeast of Spain. It targets the research of Future Internet architectures and
comprises several facilities from the University of Murcia and the Spanish government.
It offers a vertical infrastructure, composed of a backend with high capacity of data
storage, communication, and processing, together with a frontend with an extended set
of multidisciplinary testbeds, deployments, and living labs for the ubiquitous monitoring,
sensing, and processing. That said, it offers a highly flexible framework for experimentation
with architectures and protocols for the Future Internet. In fact, it has been used in many
research projects to evaluate their outputs from the communications and telematics point
of view.
PLE is the European arm of the global PlanetLab system, the world’s largest research
networking testbed, which gives users access to Internet-connected Linux virtual machines
on over 1000 networked servers located in the United States, Europe, Asia, and elsewhere.
PLE is being currently developed by the OneLab initiative. The PlanetLab Europe
Consortium has 150 signed member institutions: mostly universities and industrial research
laboratories, each of which hosts a minimum of two servers that are made available to the
global system. These institutions are home to near 1000 users. On a typical recent day,
around 250 were connected to on-going experiments.

73

4. Video transmission in the FI

HEN (Heterogeneous Experimental Network) is a testbed designed for conducting
a wide range of network experiments, from congestion control, large-scale routing,
Denial-of-Service and others to experiments in mobile systems and sensor networks. To
achieve this, the core of HEN will consist of about 80 to 100 computer nodes, each having 4
Gigabit Ethernet experimental interfaces and one Gigabit Ethernet management interface
used for net-booting the node, controlling the experiment, and backing up the results. In
addition to the computer nodes, a number of routers and other networking equipment will
be included in HEN as experimentation equipment. The testbed will also include a large
amount of wireless equipment, including 802.11 and sensors.
Regarding experimentation tools the conclusions are that, from the tools offered as part of
the OpenLab project, the Network Experimentation Programming Interface (NEPI) [107]
is the one that best fits with the requirements. It permits to abstract the experiment
definition from the experiment execution in a very simple an easy way. It currently supports
PLE, and will support other platforms as it gains support for OMF. With such new version,
those experiments that involve many testbeds can be directly integrated through NEPI.

4.3 IoT video in FI

4.3.1 Generating IoT video

In order to evaluate how video is consumed within an IoT network we have created some
video resources limiting the maximum slice size of the H264/AVC [36] streams to 81 bytes.
This means that this slices could be directly transported over the typical constrained
network protocols used by IoT, such as 6LOWPAN [108], without the need of introducing
fragmentation with the consequent packet aggregation at the receiver. In addition, we
encoded the videos trying not to exceed 250 kbps of bit-rate to cope with the top speed
specified by the IEEE 802.15.4 [109] standard.
The video used has been encoded using the JSVM 9.19 reference software [110]. In addition,
limiting the codec to intra frames was decided (frames encoded using information from
within themselves) because the less powerful things would only be able to keep into memory
one decoded frame, either to be encoded or to be displayed. For the same reason, the frame
size has also been limited to CIF. In case that the thing would be native video capable,
this is, the thing has some specific hardware to encode/decode video such as a camera
already capable of producing encoded video, the thing would not need to store the frame
in its own memory and would not need to do the encoding/decoding job but in any case
it is regarded that prediction, motion estimation, and compensation procedures could lead

74

4.3 IoT video in FI

to battery draining (even with specific hardware) which is something to be avoided. Just
like that, the frame rate of the videos has been limited to 5 frames per second.
That said, the video selected in the experiment is a concatenation of the very well known
bridge and bridge far test videos [111] with a length of 4100 frames, which give us 820
frames at 5 FPS. This results in 164 seconds of video.
These videos were selected for their slow motion which makes them similar to videos
obtained by a surveillance camera or similar environments in which low power things could
probably get involved. To encode the video with different bit-rates different static QP
(Quantization Parameter) have been used producing average bitrates of 38, 58, and 79
kbps. The average PSNR values are 28.9331 Y, 30.2404 U and 31.2660 V for luma and
both chroma respectively. As can be seen in Figure 4.8 the PSNR is increased from frame
400 onwards. At that point is where the second concatenated video starts.
Although adaptation is one of the key features of DASH, to carry out the experiments
specific bit-rates per iteration have been used. This will ease the data analysis. The
different techniques to be developed to decide the adaptation logic are completely out of
the scope of this project.

4.3.1.1 Dynamic Adaptive Streaming over HTTP (DASH) encapsulation

To create the DASH streams, the ”libdash” [112] implementation and DASHEncoder from
ITEC-UNIKLU were used. The DASHEncoder software is intended to read the raw input,
encode it with x264 [113] and generate the DASH video with its slices. In this case, an
already encoded stream is provided as an input. Therefore, the DASHEncoder sources
have been slightly modified avoiding the x264 encoder part and all the related code and
substituting it by a link to the encoded file.
The reason why the unmodified software was not used as it is, is that to the best of my
knowledge the x264 implementation did not accept the maximum slice size parameter at
the moment that the experiments were carried out, which was used to simulate the IoT
video source.
On the other hand in order to be able to use reduced MTU, simple URL compression
methods were used to avoid exceeding the MTU size. In order to do it, the operating
system hosts file was tuned to redirect a only one letter host name to the web server in
CCN cases. Unlike in CCN, in HIMALIS it is a bit different as the requests must go always
to the local adapter so localhost is always used.
As it is shown in Figure 4.1, the DASH chunk sizes vary depending on the part of the
video involved. As can be observed the first 200 files have over 4.5K size while from file

75

4. Video transmission in the FI

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0 100 200 300 400 500 600 700 800 900

b
y
t
e
s

Frame num

DASH file chunk size

Figure 4.1: DASH chunk file and size relation.

76

4.3 IoT video in FI

400 the file size is reduced drastically to 1K. It is clear taking a look at Figures 53 and 54
the relation between the PSNR and the DASH chunk size.

4.3.2 HIMALIS

In this section, HIMALIS is introduced and evaluated as the FI architecture solution for
IoT enabled video in a multi-domain environment. The HIMALIS architecture is deployed
on top of the PLE distributed testbed. The deployment and the later experimentation on
top of the architecture is scheduled and performed by means of Network Experimentation
Programming Interface (NEPI), ensuring the repeatability and validity of the results.
Deploying HIMALIS on top of PLE ensure the validity of the results, not only because of
the possibilities in terms of repeatability that a public and open testbed offers but also
due to the fact that PLE is deeply geographically distributed across Europe. NEPI on
the other hand, not only helps in terms of facilitating repeatability to other researchers
but also in the extraction of the here presented results. Thanks to NEPI the testbed can
be clean-slate deployed on each experiment, in addition, synchronization mechanisms for
launching each part of the experiment are provided, e.g. so that the client does not try to
start the connection before the server is launched. Finally, NEPI offers with the means to
retrieve the distributed experimentation data, such as application logs, that are analyzed
to present the results.
DASH is the application with which the HIMALIS architecture is evaluated, differentiating
this study from others where less representative applications like simple Internet Control
Message Protocol (ICMP) messages or bulk transmission. Using DASH video streaming
provides information about the feasibility and performance evaluation for the two more
representative technologies being used and likely relevant for the foreseeable future like
HTTP and Video. The third future technology not covered directly by DASH is IoT. To
cover that spot in the experiments, the videos encapsulated into DASH comply with what
an IoT network is able to transport in terms of packet size and bit-rate. In addition, the
performance analysis of the architecture has gone further in the direction of IoT with the
reduction of the MTU to values typical in these kind of networks.
The HIMALIS software was provided by the National Institute of Information and
Communications Technology (NICT, Japan). The software is split in two different planes.
The signaling plane leverages on web services and allows node and connection management.
The data plane is c++ based and is triggered by the signaling plane to notify the GW
nodes the required forwarding characteristics serving as well as endpoint software.

77

4. Video transmission in the FI

4.3.2.1 Experimentation summary

Achieving successful HIMALIS deployment and data transmission on top of PLE has a
certain degree of randomness. A successful experiment is considered when the full DASH
stream is transmitted from the server to the client. A minimum of 4 successful experiments
have been considered to continue with the next experiment parametrization. The number
of 4 comes from the experience in terms of timing. Also from that experience, the PLE slice
providing the list of nodes was trimmed without those nodes that were producing recursive
failures and weekends were prioritized for experimentation hence the good results of some
of the experiments as detailed in Table 4.1. The table specifies the number of experiment
launch performed in column # Launch while # OK denote the number of successful
experiments achieved. From those experiments not belonging to the later, # PlanetLab
NOK and # HIMALIS NOK account the failures due to PLE problems and HIMALIS
initialization or data transmission errors respectively.
There is no clear relation between the failures and the achievements with the number of
launches and the MTU which was predictable since the signaling and deployment is not
affected by the reduction in the MTU.

Launch #PlanetLab NOK # HIMALIS NOK # OK
Domain1-Domain5 1024 bytes 53 34 15 4
Domain1-Domain5 512 bytes 59 32 23 4
Domain1-Domain5 128 bytes 16 11 2 4
Domain1-Domain5 50 bytes 74 46 22 6
Domain1-Domain4 512 bytes 15 8 2 5
Domain1-Domain4 128 bytes 13 0 3 10
Domain1-Domain4 50 bytes 14 5 2 7

Table 4.1: HIMALIS deployment and DASH experiment summary.

4.3.2.2 HIMALIS Scenario Deployed on PLE

The scenario deployed on top of PLE is that of a pentagon (as shown in Figure 4.2)
representing a backbone ring with one local domain per vertex. Each local domain consists
of a HNR/DNR/GW node that holds the HIMALIS’ control and data planes functionality.
A node acting as a switch to which the nodes acting as clients are connected through vtun
tunnels, as well as the HNR/DNR/GW does.
It must be highlighted that although in the topology two nodes might be neighbors one
from the other, in terms of geographical location the nodes might be hundreds miles away

78

4.3 IoT video in FI

Figure 4.2: Himalis PlanetLab deployed scenario.

79

4. Video transmission in the FI

from each other. It is therefore possible that the Round Trip Time (RTT) between two
clients of neighboring domains might be bigger than the RTT from two clients with multiple
jumps in between them. The reason for this variability is the randomness introduced by
NEPI on the node selection algorithm for the deployment phase. The experiment defines
the number of nodes to be used and NEPI extracts them from a poll of available nodes,
which in turn is requested from the PLE slice associated to the researcher. Then it is
up to the experiment to assign a role to each machine which in this case is not based on
geographical location.
The HIMALIS implementation deployed for these series of experiments provides
non-connection oriented (UDP) data tunneling on top of the HIMALIS architecture, hence
the data transmission is unreliable. To overcome that limitation, a rather simplistic
approach of a flow control has been implemented, see Figure 4.4 to avoid data loss and
synchronize data transmission. Each HIMALIS Packet consists of 44 bytes of HIMALIS
fixed header and 5 bytes used for app signaling, including 1 byte message code, 2 bytes
sequence number, 2 bytes last sequence number to be received as shown in Figure 4.3.
The application layer flow control introduced above is not network agnostic and in addition
both, the DASH client and the DASH server which in turn are an HTTP client and
server correspondingly. Hence, an adapter that speaks TCP/HTTP on one side and
UDP/HIMALIS on the other side is needed. This adapter is also in charge of introducing
the application specific flow control header and/or remove it on arrival. On one side
the HIMALIS HTTP Adapter Client receives HTTP requests and forward them to the
corresponding HIMALIS HTTP Adapter Server. The HIMALIS HTTP Adapter Server
receives the request and performs a complete HTTP transaction with a standard HTTP
server sending back the result. The flow control mechanism retries up to 3 times to recover
a lost application layer packet before leaving it as unrecoverable. In fact the video player
would discard any DASH chunk that arrives after the current playing instant so it is
worthless keep trying to download such chunk.
To clarify the entities involved in the communication and the protocols being used and
transported on each entity the Figure 4.5 was introduced.

4.3.2.3 DASH streaming - Base Case

To evaluate the feasibility of DASH video transmission over HIMALIS with IoT restrictions,
first the base case for standard DASH video transmission needed to be performed. To that
end, transmission of DASH video with a packet size of 1024 between two neighbor HIMALIS
domains was performed. From the deployment shown in Figure 4.2, the domains 1 and 5

80

4.3 IoT video in FI

Figure 4.3: HIMALIS and flow control header detail.

Figure 4.4: App layer transmission protocol used on top of HIMALIS

81

4. Video transmission in the FI

Figure 4.5: Himalis deployment entities and relations

are used. The biggest down rate is performed from domain 5 to domain 1, meaning that
the HTTP adapter server is collocated in one of the HIMALIS client nodes in domain 5
while the HTTP adapter client and the client itself are deployed in domain 1. It is worth
to note that the HTTP server containing the video bit-stream is located in Gaia testbed
in the University of Murcia, the communication between the domain 5’s HTTP adapter
server and the server itself is performed through the Internet without tunneling or any
other means.
Figure 4.6 represents the retrieval time of 4 fruitful experiments. The term fruitful here
means that HIMALIS scenario was deployed from scratch on top of PLE, the control plane
was triggered correctly so that the associations between the domains and each domain
entities were performed correctly and that finally the video played from the client. In
all the experiments it is easily seen that there is a steep increase in the time needed to
download the chunks from the server. For a small amount of data, the retrieval time
is increased which corresponds exactly with the retrieval of the second part of the video
in which the sequence Bridge Far takes place. At that point and as can be seen in the
Figure 4.1 the relation between the size for each chunk is reduced drastically which means
that more retrieval processes need to be issued hence producing more overload per data
byte transmitted. In fact, although not so noticeable, from 1000 ilobytes onwards there is
already a small change in the slope which corresponds to the frames between 200 and 400
also on Figure 4.1.
In addition to the data retrieval time, Table 4.2 shows information related to the installation

82

4.3 IoT video in FI

Figure 4.6: DASH over HIMALIS transmission in neighbor domains.

83

4. Video transmission in the FI

time of all the entities involved in the experiment and the connection time for the
infrastructure to finally be ready to transmit data. The achievement of the ready state
depends on the distribution of the assigned PLE nodes as well as the processor and memory
load of those nodes. The HIMALIS signaling plane takes some time to be stable, we perform
reconnect retries until we obtain a successful connection. Depending on the load of the
HNR/DNR/GW machine and the Client machine (as it is the local tomcat the one in
charge to communicate with the remote tomcat), differences in times may occur, as is seen
in Table 4.2.

Install Connect Data Retrieval Size
625.039718 sec 40.094038 sec 366.095788925 sec 1994004 bytes
626.834500 sec 40.062966 sec 361.223042294 sec 1994247 bytes
626.999327 sec 40.090127 sec 362.135886942 sec 1994247 bytes
639.830867 sec 13.356959 sec 361.417529530 sec 1994247 bytes

Table 4.2: DASH over HIMALIS transmission in neighbor domains timetable.

4.3.2.4 Video for IoT

Once the base case for transmitting IoT video encapsulated into DASH over HIMALIS
have been performed, next step is to investigate the effect of the underlying network MTU
size restrictions in the same use case. For these series of experiments, the restriction is
applied only to the data plane and not for the signaling. First of all, the data plane packets
would usually be the ones to reach the edge of the network where IoT devices are deployed.
Consider a HNR/DNR restricted to that kind of networks is not considered probable. At
last, from the experience gained in the previous experiments, deploying the scenarios has
been hard enough with proper signaling capabilities.

4.3.2.4.1 Neighbor Domains First series of experiments are performed as an
extension of the experiments introduced in section 4.3.2.3. Neighbor domains 1 and 5
and therefore used for the transmission and MTU is reduced to values of 512, 128 and 50
bytes respectively.
The first experiment is a continuation of the experiment described above. The video is
retrieved from a node in Domain 5, which in turn, retrieves the content from the web
server located in GAIA, to a node in Domain 1. These nodes despite the nomenclature
are neighbor domains as there is only one HIMALIS hop between them, no other GW is
involved between the GWs being used. Figure 4.2 shows a representation of the scenario.

84

4.3 IoT video in FI

(a) Domain 1 to Domain 5 transmission with 512 bytes MTU

(b) Domain 1 to Domain 5 transmission with 128 bytes MTU

(c) Domain 1 to Domain 5 transmission with 50 bytes MTU

Figure 4.7: MTU variation study in HIMALIS neighbor domains

85

4. Video transmission in the FI

MTU Install Connect Data Retrieval Size
Experiment1 512 bytes 629.7680 sec 39.8204 sec 362.9083 sec 1993739 bytes
Experiment2 512 bytes 610.4218 sec 39.8790 sec 371.8765 sec 1993771 bytes
Experiment3 512 bytes 610.5264 sec 39.8979 sec 365.3348 sec 1992872 bytes
Experiment4 512 bytes 617.7914 sec 39.9150 sec 362.9633 sec 1993865 bytes
Experiment1 128 bytes 619.6756 sec 40.0530 sec 367.1119 sec 1994165 bytes
Experiment2 128 bytes 621.7051 sec 39.8445 sec 366.1240 sec 1980308 bytes
Experiment3 128 bytes 639.7902 sec 39.9862 sec 366.3618 sec 1980400 bytes
Experiment4 128 bytes 628.6526 sec 39.8701 sec 367.7630 sec 1994180 bytes
Experiment1 50 bytes 613.2309 sec 40.0539 sec 396.2406 sec 1989440 bytes
Experiment2 50 bytes 610.3639 sec 40.0590 sec 372.4797 sec 1908269 bytes
Experiment3 50 bytes 600.3610 sec 40.0801 sec 383.6383 sec 1961807 bytes
Experiment4 50 bytes 613.3122 sec 40.0250 sec 363.3388 sec 1960619 bytes
Experiment5 50 bytes 613.8812 sec 40.0553 sec 354.4483 sec 1889848 bytes
Experiment6 50 bytes 599.5804 sec 40.0678 sec 362.7165 sec 1921674 bytes

Table 4.3: DASH over HIMALIS transmission in neighbor domains MTU variation study
timetable.

Figures 4.7a, 4.7b and 4.7c represent the analysis of download time analog to the one
shown in Figure 4.6 but for a limited MTU of 512, 128 and 50 bytes respectively. As can
be easily observed in the figures, the results for 512 and 128 bytes are really similar to
those of the base case and only for 50 bytes restriction can be observed a real difference
which is even more noticeable on the last part of the video source where the number
DASH chunks is increased with an average reduction in size. It must be noted that a
chunk is not considered downloaded until all the app layer flow control fragments (See
Figure 4.3) arrive the destination. Despite parallel transmission would be possible, in these
experiments another DASH chunk is not downloaded until previous chunks have finished
which, corresponding with the worst case in terms of parallelism, is the worst approach
a client could adopt, again, the idea is to approach to the worst case understanding that
results could be enhanced by means of proper pipelining in the client side.
On the other hand, it was expected that the overload produced by fragmentation would
have greater impact on the overall transmission which would be increased due to the
lack of pipelining. Nevertheless, the transmission of the app layer flow control fragments
is parallelized affecting the transmission only if a packet is loss therefore forcing the
retransmission and consequently delaying the start of next DASH chunk download.
In addition to graphical assessment provided by the figures, Table 4.3 details information
about the retrieval time as well as deployment and signaling time as was already done in

86

4.3 IoT video in FI

Table 4.2. For MTU of 512 bytes a mean of 365.77 seconds was obtained while retrieving
the data with a standard deviation of 4.22. For 128 bytes the mean is 366.84 with a
standard deviation of 0.74. The variability is lower on the second case although in average
the amount of time expend was higher. For 50 bytes the mean is increased to 372.14 and
also the standard deviation roses up to 15.44.
Looking at the amount of data retrieved for all the experiments in Table 4.3, one can
observe that for 50 bytes experiments there is a general downward trend. This trend
affects negatively to QoE since missing packets result in video decoding issues. A common
practice in video decoders is to duplicate previous frame in case of non decodable frame,
the effect for the viewer is still image which is in general better than an empty image.
As an example of this effect, an analysis of the PSNR for Figure 4.7c ’Experiment 5’ and
’Experiment5 50 bytes’ from Table 4.3, the experiment with more losses, is shown in Figure
4.8. The differences with the original PSNR marked with the red cross are not big partly
because of the frame duplication mechanism introduced above. As was already stated in
Section 4.3.1, the video is like the one obtained from a surveillance camera and because of
that, anything that is not moving is exact to the previous frames. In this case in the video
the only movement are the waves from water as well as the walkers over the bridge. Since
copies of previous frames are introduced in case of missing frames, the difference in the
PSNR is not too high in value but from the point of view of human senses one sees how
the walkers would jump backward when frames are lost and previous ones are introduced.

4.3.2.4.2 3-domain setup In order to evaluate the influence of inter-domain
HIMALIS routing and signaling, the neighboring domains experiment is extended by
introducing another domain in between them, thus having 3 domains involved and therefore
having the same amount of gateways. For this series of experiments the communication is
established by Domains 1 and 4 while Domain 5 acts as relying party.
Looking at Figures 4.9a, 4.9b and 4.9c its easy comparing with Figures 4.7a, 4.7b and
and 4.7c that there is no effect in having one relying party in the communication, the
results are very similar with what has been shown for the neighboring domains. Only
remarkable fact is that in this case the stability achieved in the testbed was higher, therefore
more successful results were obtained. Only a few cases where HIMALIS was successfully
deployed and the communication between the two endpoints could be established are
worth mentioning, ’Experiment2 128 bytes’, ’Experiment6 128 bytes’, ’Experiment6 50
bytes’ and ’Experiment7 50 bytes’. Looking in detail at the experimentation log, the
conclusion is that communication was impossible after a certain point in the communication
or synchronization failure on the app layer flow control mechanism occurred . For example

87

4. Video transmission in the FI

Figure 4.8: Luma PSNR values for original and retrieved video.

88

4.3 IoT video in FI

for ’Experiment6 50 bytes’ the client is able to download chunks up to # 180/800, after
that, all the retrievals timeout until the experiment is finally aborted, nevertheless the
requests are arriving at the HTTP adapter server but this entity is unable to decode them
due to state machine at bad state.
The former ratifies the problem of not offering a connection oriented service on the
HIMALIS architecture placing the weight of transmission error resiliency on top of the
application level shoulders. The prototypes employed for this experiments were not aimed
and produced as final pieces of software, hence the small amount of error recovery. It is
also important to remind that these experiments were executed without human intervention
fulfilling one of the objectives introduced, experiment automation and repeatability.
Looking at the results from all the experiments, it is clear that it is feasible to transmit
IoT video encapsulated with DASH on an IoT network employing a FI architecture as
HIMALIS. Nevertheless, the results in terms of timing are not within desirable values
since the amount of time expend for a 3 minute video is far above 5 minutes. Despite
the bad results, it has to be taken into account the highly distributed nature of PLE plus
the usage of tunnel based network overlay and the draft condition of the network adapters
employed in the experiments. Adapter request pipelining could have offered higher rates
at the cost making more difficult the debug task.
Conclusion is that there is no drawback that avoids from using HIMALIS over IoT
architectures in general and in particular to transport video. It would be desirable having
TCP over HIMALIS tunnels. That would have avoided the need of introducing the
signaling used onto UDP which leads unavoidably, due to human errors and/or network
errors, to racing conditions in which the software does not behave as expected, although
this happens in very few cases as has been demonstrated.

4.3.3 CCN

Also in the context of OpenLab and taking advantage of the experience gained with
the evaluation of HIMALIS, the evaluation of another key concept for the FI, ICN
was performed. Among the architectures available leveraging on the ICN for content
distribution, the CCN is one of the more widely deployed and extended.
The objective of these series of experiments is the evaluation of a complete CCN
architecture on top of a geographically distributed and widespread deployment thanks
to PLE. Similarly to the work presented in Section 4.3.2, DASH is employed as the
mechanism to encapsulate, split and stream videos. The use of DASH offers a simple
deployment and distribution mechanism while maintaining desired features such as bit-rate

89

4. Video transmission in the FI

(a) Domain 1 to Domain 4 transmission with 512 bytes MTU

(b) Domain 1 to Domain 4 transmission with 128 bytes MTU

(c) Domain 1 to Domain 4 transmission with 50 bytes MTU

Figure 4.9: MTU variation study in HIMALIS separated domains

90

4.3 IoT video in FI

mtu Install Connect Data Retrieval Total Size (bytes)
Experiment1 512 bytes 639.4993 40.0778 333.2514 1993328
Experiment2 512 bytes 966.5911 40.1735 335.0967 1994247
Experiment3 512 bytes 607.4486 40.0381 336.6219 1993306
Experiment4 512 bytes 614.1696 40.4283 346.5841 1994247
Experiment1 128 bytes 612.8764 40.039 342.7470 1994247
Experiment2 128 bytes 625.9332 40.1679 150.1093 1422921
Experiment3 128 bytes 593.2233 40.0120 341.5366 1994247
Experiment4 128 bytes 626.5330 40.0550 336.3641 1994247
Experiment5 128 bytes 628.2406 40.0330 338.3113 1994247
Experiment6 128 bytes 606.4055 40.0480 65.7491 699630
Experiment7 128 bytes 613.0728 40.0200 337.7257 1994247
Experiment8 128 bytes 626.4426 40.0310 336.7822 1994247
Experiment9 128 bytes 612.9821 40.3020 342.2818 1994247
Experiment10 128 bytes 609.2002 40.0340 340.0761 1994247
Experiment11 128 bytes 613.1250 40.0350 340.9835 1994247
Experiment12 128 bytes 612.8836 39.9980 328.3043 1954349
Experiment1 50 bytes 620.248361 40.0400 348.4795 1994173
Experiment2 50 bytes 619.563842 40.0408 322.0301 1916082
Experiment3 50 bytes 629.838211 40.0650 313.1267 1920756
Experiment4 50 bytes 613.575704 40.1459 340.9295 1995474
Experiment5 50 bytes 624.284409 43.1638 356.0917 1902898
Experiment6 50 bytes 619.942278 40.0850 90.9474 892073
Experiment7 50 bytes 605.701077 39.8110 270.9041 1440640
Experiment8 50 bytes 627.097452 40.0719 321.1288 1927776
Experiment9 50 bytes 619.893201 40.0470 332.8402 1965636

Table 4.4: DASH over HIMALIS transmission in separated domains MTU variation study
timetable.

91

4. Video transmission in the FI

Figure 4.10: CCN deployment entities and relations

adaptation which is foreseeable as necessary in networks such as IoT with highly variable
and constrained bandwidth characteristics. Again, the use of HTTP/CCN adapters is
leveraged to provide with the means to adapt the current Internet TCP/HTTP approach
to technologies of the FI.
After unfruitful experiments leveraging on ccnx [114] adapters, the client and server CCN
adapters were implemented using python language and the library pyccn. This library is
provided by UCLA, and offers Python bindings for the C version of with the the goal of
speeding up the development by having an OOP style interface to CCNx but without the
overhead of Java. Occupying only around 100 lines each of the adapters, they are capable
of performing correct translation between CCN and HTTP and easily configure certain
parameters of interest for the experiments, such as the CCN chunk size.
The adaptation between HTTP and CCN are provided by two adapters corresponding to
each side of a typical HTTP connection, server side (CCN to HTTP adapter) and client
side (HTTP to CCN adapter). Figure 4.10 shows how the DASH client is connected to an
adapter (’HTTP/CCN Adapter CLient’) listening to connection in localhost transforming
the incoming HTTP requests to CCN interests and therefore converting the CCN data

92

4.3 IoT video in FI

HTTP

Server

DASH

Client

HTTP GET MPD

CCN INTEREST HTTP GET MPD

HTTP 200 OK
CCN CONTENT

...
HTTP 200 OK

HTTP GET CHUNK

CCN INTEREST HTTP GET CHUNK

HTTP 200 OK

CCN CONTENT
...

HTTP 200 OK

CCN/HTTP

Adapter

Server

CACHE

CACHE

CACHE

HTTP/CCN

Adapter

Client

CACHE

CCN

Routing

Figure 4.11: DASH/CCN network exchange sequence

packets to HTTP responses. The generated interest packets are hence forwarded to the
next node in the CCN topology which is labeled in the schema as ’CCN Routing Node’
which in turn would redirect the packet to another ’CCN Routing Node’, if needed, finally
arriving to the ’CCN/HTTP Adapter Server’ which reverses the process started by the
’HTTP/CCN Adapter Client’ performing the HTTP request to the server and reshaping
the HTTP response into CCN data packets, a more abstract view of the process is shown
in Figure 4.11.
The CCN Signaling Plane is built on top of Tomcat running web based services. ’CCN
routing node’s Nodes are registered through the former Signaling plane. Also connection
establishment. The web service generates an ’idl’ configuration file that is provided to the
Data Plane as well as the adapters. As part of this experimentation a library to generate
native CCN packets was produced.

4.3.3.1 CCN Scenario Deployed on PLE

This section describes the topologies deployed in PLE to perform the experiments. There
are two topologies, the topology shown in Figure 4.12a that has independent paths with
different number of hops from the leaf nodes to the root node and the topology in Figure

93

4. Video transmission in the FI

4.12b that offers different number of hops were the nodes in the path coincide as shown
schematically in Figure 4.12c. These topologies allow the study of different parameters
such as the number of jumps and their effect in the video retrieval time, the effect of chunk
size, the network latency and or the packet loss ratio.

(a) CCN simple scenario (b) CCN full deployed scenario with paths
employed for experimentation

(c) CCN full scenario schematic video of the different selected paths.

The topology described in Figure 4.12b includes a central backbone of five interconnected
nodes that are necessarily traversed by interests sent by clients (leaf nodes at the bottom of
the figure) trying to get to the content providers (root nodes on the top of the figure). Each
line leaving the cloud represents a whole subdomain in CCN terminology with different
subnetwork, hence routing is performed through the mechanisms provided by the CCN
protocol.

94

4.3 IoT video in FI

4.3.3.2 DASH streaming - base case

Evaluation of DASH on top of CCN is performed by employing the topology in which the
nodes in the path coincide (Figure 4.12b). The experiments are performed by deploying the
’HTTP/CCN Adapter Server’ one node further each iteration so that the obtained network
deployment is that of Figure 4.12c Type B.1, Type B.2, so on and so forth. Obtaining
as a result the behavior of CCN from 2 hops up to 5 hops. Remaining parameters of
the experiments are statically configured not affecting the evaluation. As a side note, the
MTU size for these series of experiments is of 1024, a large enough value to be considered
Internet standard and small enough so that no underlying network (such as the vtun used
for PLE deployment) affect the measurements.
For the topology described in 4.12c Type B.1 described as the 2 hops case, the clients
involved will be nodes numbered as 15, 16 and 18 retrieving successively the video in that
precise order. Finally, clients 15 and 16 will repeat the retrieval to observe in-network
caching effect.
Figure 4.13a shows the results of the streaming process. Node 15 and 18 have the highest
values since they need 2 jumps to reach the content. Node 16 enjoys a significant reduction
in download time, the deployment situated the node nearer from the common node
originating that the RTT is significantly lower. Node 15 second request results resemble
those of Node 16 second request where in-network caching is applied and content is served
by common ancestor in Node 14. Similarly to the results of HIMALIS in section 4.3.2,
it can be observed that the last 400 data bytes produce a proportionally higher increase
in the download time. As introduced before, the cause for that increase is the growth in
number of chunks with the reduction of size per chunk as can be seen in Figure 4.1.
Results for 3 hops are presented in Figure 4.13b. There is a clear similarity to the results
for 2 hops but a small tendency to Node 18 results to be nearer to those of Node 15 can be
envisioned, as well as the unification of times for the second round of downloads. Those two
tendencies are confirmed by the results shown in Figures 4.13c and 4.13d corresponding to
4 hops and 5 hops respectively.

4.3.3.3 Reducing Maximum Transmission Unit

Similarly to the study made for HIMALIS where the MTU was reduced progressively to
analyze the influence of that parameter in the transmission of DASH video on top of
HIMALIS, same experimentation was performed for CCN. In this case, the scenario used
for the experimentation is the one presented in Figure 4.12a. In this case the topology is
fixed and different hops to a common node focusing the experiment variability in to the

95

4. Video transmission in the FI

(a)
2
hops

(b)
3
hops

(c)
4
hops

(d)
5
hops

F
igure

4.13:
C
C
N

transm
ission

results
w
ith

1024
bytes

M
T
U

96

4.3 IoT video in FI

MTU size.
Thanks to the designed topology the experiment for each MTU value is performed by
retrieving the content from nodes 1, 3 and 6 respectively with empty in-network cache that
produces results for 1, 2 and 3 hops respectively, finally repeating the retrieval from nodes
3 and 6 to show the in-network caching (populated in the first round) effect.
The chunk sizes for these series of experiments go from 1024, complementing the results
from previous subsection, to 32 bytes, reaching the boundaries of IoT transmission
standards (e.g. 81 bytes in the case of 6LOWPAN [108]). Within the boundaries of what
is considered IoT, 64, 48 and 32 bytes were experimented, going far beyond the theoretical
limits of what CCN supports causing special adaptation during the experiments.
Figures 4.14a to 4.16 represents the time progress of clients at Nodes 1, 3 and 6 after two
consecutive requests for MTU sizes varying from 512 bytes to 32 bytes.
During the first part of the experiment, the nodes 1, 3, and 6 (as shown in Figure 4.12a)
will sequentially request the video stream for the first time, what has been denominated
’Cache Miss’. Then, the nodes 3 and 1 will request the video stream again retrieving the
cached version, what has been denominated as ’Cache Hit’. This way, it can be observed
and measure how video delivery is affected by CCN caching.
On a first round of experiments the performance of CCN for IoT HTTP without any
timing restriction applied, meaning that the whole stream is downloaded without taking
into account any play time like a bulk download. Tables 4.5, 4.6 and 4.7 list the results
for the bulk download of the video sources encoded at 38, 58 and 79 kilobit per second
(kbps) respectively. In general cache hit values are lower that their cache miss counterparts,
nevertheless the differences are not sufficient to determine that the CCN in-network caching
imply a direct benefit for the client not taking into account the saving in terms of bandwidth
for the network operator. From tables it is clear that the reduction of the CCN MTU size
implies a loss in performance increasing the download time exponentially. There is also a
direct relation between the number of CCN hops and the retrieval time. In general, for
any bit-rate and/or MTU size can be observed that the difference between the cache miss
and the cache hit time for a certain node is smaller in terms of the total download time.
In Figures 4.15, 4.14 and 4.16, the relation between the elapsed time each client node spent
to download the 58 kbps video version corresponding to Table 4.6 is shown.
As already stated, with the figures can be visually confirmed that the increase in download
time is proportional to the decrease in MTU.
For each case it is also possible to confirm the relation between the number of hops between
the client and the ’CCN/HTTP Adapter Server’ and the increase in the retrieval time.
All the graphs present a variation in the angle to a more horizontal one from frame 410

97

4. Video transmission in the FI

 0

 50

 100

 150

 200

 250

 300

 350

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

Time (seconds)

F
ram

e N
um

C
ache H

it - N
ode 1

C
ache H

it - N
ode 3

C
ache M

iss - N
ode 1

C
ache M

iss - N
ode 3

C
ache M

iss - N
ode 6

(a)
1024

bytes
M
T
U

 0

 100

 200

 300

 400

 500

 600

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

Time (seconds)

F
ram

e N
um

C
ache H

it - N
ode 1

C
ache H

it - N
ode 3

C
ache M

iss - N
ode 1

C
ache M

iss - N
ode 3

C
ache M

iss - N
ode 6

(b)
512

bytes
M
T
U

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

Time (seconds)

F
ram

e N
um

C
ache H

it - N
ode 1

C
ache H

it - N
ode 3

C
ache M

iss - N
ode 1

C
ache M

iss - N
ode 3

C
ache M

iss - N
ode 6

(c)
256

bytes
M
T
U

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

Time (seconds)

F
ram

e N
um

C
ache H

it - N
ode 1

C
ache H

it - N
ode 3

C
ache M

iss - N
ode 1

C
ache M

iss - N
ode 3

C
ache M

iss - N
ode 6

(d)
192

bytes
M
T
U

F
igure

4.14:
R
esults

for
basic

topology
(I)

98

4.3 IoT video in FI

 0

 2
00

 4
00

 6
00

 8
00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

Time (seconds)

F
ra

m
e

N
um

C
ac

he
 H

it
 -

 N
od

e
1

C
ac

he
 H

it
 -

 N
od

e
3

C
ac

he
 M

is
s

-
N

od
e

1
C

ac
he

 M
is

s
-

N
od

e
3

C
ac

he
 M

is
s

-
N

od
e

6 (a
)
12

8
by

te
s
M
T
U

 0

 5
00

 1
00

0

 1
50

0

 2
00

0

 2
50

0

 3
00

0

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

Time (seconds)

F
ra

m
e

N
um

C
ac

he
 H

it
 -

 N
od

e
1

C
ac

he
 H

it
 -

 N
od

e
3

C
ac

he
 M

is
s

-
N

od
e

1
C

ac
he

 M
is

s
-

N
od

e
3

C
ac

he
 M

is
s

-
N

od
e

6 (b
)
92

by
te
s
M
T
U

 0

 5
00

 1
00

0

 1
50

0

 2
00

0

 2
50

0

 3
00

0

 3
50

0

 4
00

0

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

Time (seconds)

F
ra

m
e

N
um

C
ac

he
 H

it
 -

 N
od

e
1

C
ac

he
 H

it
 -

 N
od

e
3

C
ac

he
 M

is
s

-
N

od
e

1
C

ac
he

 M
is

s
-

N
od

e
3

C
ac

he
 M

is
s

-
N

od
e

6 (c
)
64

by
te
s
M
T
U

 0

 5
00

 1
00

0

 1
50

0

 2
00

0

 2
50

0

 3
00

0

 3
50

0

 4
00

0

 4
50

0

 5
00

0

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

Time (seconds)

F
ra

m
e

N
um

C
ac

he
 H

it
 -

 N
od

e
1

C
ac

he
 H

it
 -

 N
od

e
3

C
ac

he
 M

is
s

-
N

od
e

1
C

ac
he

 M
is

s
-

N
od

e
3

C
ac

he
 M

is
s

-
N

od
e

6 (d
)
48

by
te
s
M
T
U

F
ig
ur
e
4.
15

:
R
es
ul
ts

fo
r
ba

si
c
to
po

lo
gy

(I
I)

99

4. Video transmission in the FI

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 1
0
0

 2
0
0

 3
0
0

 4
0
0

 5
0
0

 6
0
0

 7
0
0

 8
0
0

 9
0
0

T
im

e
 (

s
e
c
o
n
d
s
)

Frame Num

Cache Hit - Node 1
Cache Hit - Node 3
Cache Miss - Node 1
Cache Miss - Node 3
Cache Miss - Node 6

Figure 4.16: 32 bytes MTU

Bytes N1Miss N1Hit N3Miss N3Hit N6Miss
32 1686,0579 1665,3442 3407,6152 3392,2056 3676,5575
48 668,7148 658,0254 1547,9900 1555,4722 3268,7163
64 805,0028 752,0781 1325,8520 1421,4504 2530,6700
92 379,1102 359,1160 1092,7789 1099,6510 1723,3172
128 306,9185 278,9557 734,1414 798,5298 1137,7130
192 257,4231 232,9028 297,1269 324,3383 758,9249
256 276,7760 238,0714 372,0721 385,3181 573,7049
512 203,9962 168,3308 214,3915 228,7382 292,8262
1024 167,3246 162,0324 165,8882 162,3756 205,8480

Table 4.5: Experimentation with 38 kbps bitrate

100

4.3 IoT video in FI

Bytes N1Miss N1Hit N3Miss N3Hit N6Miss
32 2118,1373 2097,1697 2877,0511 2902,7176 6209,2617
48 1628,9004 1594,7934 1031,5177 1029,8626 4323,3920
64 1081,4020 1055,4288 739,2264 774,2104 3873,9569
92 864,1175 839,6645 543,2547 547,4849 2841,0136
128 689,2486 619,7700 579,5825 661,6352 1699,3918
192 451,7747 381,5972 666,6065 703,0290 1293,6931
256 361,5066 309,5498 486,8731 480,0760 989,8218
512 247,8281 210,3649 204,0162 232,4632 459,0574
1024 160,1961 160,1581 214,0908 209,5092 329,0974

Table 4.6: Experimentation with 58 kbps bitrate

Bytes N1Miss N1Hit N3Miss N3Hit N6Miss
32 3319,0994 2976,7420 4836,4743 FAILED 9085,2073
48 1310,2709 1265,1468 1905,6432 1946,8194 6186,4586
64 1645,4683 1636,9633 1339,5937 1614,4556 4829,9400
92 1141,9833 118.8758 7120.2064 729.1005 3085.2014
128 181,3390 159,6204 1607,7552 1590,2523 2898,6299
192 563,3972 491,3653 787,9775 845,9573 1540,1011
256 418,9757 381,1457 526,5776 529,0240 1392,3111
512 296,6672 256,7014 242,0550 278,1475 685,3320
1024 166,8538 159,7497 289,3108 277,0339 427,8385

Table 4.7: Experimentation with 79 kbps bitrate

101

4. Video transmission in the FI

onwards corresponding to the reduction in the DASH chunk size. At frame 410 there is
a decrease on the frame size originated by the second part of the video ’Bridge far’. In
general, the first part of video ’Bridge’ has more moving elements still visible after the high
submitted compression (waves, pedestrians, ...) meanwhile in the second part those objects
are in most cases visually discarded by compression therefore reducing the amount of data
to be encoded hence limiting the frame size. The performance of each node is independent
of the others and has to be seen as an independent even originated by the randomness of
PLE. It has to be taken into account that each figure is a full new deployment were all the
nodes get reallocated depending on the PLE status.
The former values served the purpose of studying how the CCN network would behave
with a small MTU but without taking into account the application on top, video. It is true
that the data source was IoT video and that influenced on the file type produced but it
was not taken into account how the download would affect a video streaming client. That
last variable is taken into account in the next series of experiments.

4.3.3.4 PSNR study

In order to take into account the lifespan of a frame into a video streaming application, the
client was configured with different timeouts per chunk. The timeout trigger make the video
chunk ignored for playing therefore stopping the download for that precise chunk. For this
scenario the number of hops parameter is ignored since the focus is on the network packet
size restriction in addition to the timeout. Only Node 1 of the topology was employed for
these series of experiments.
As a consequence of the timeout per chunk, some of the chunks are not downloaded. When
a chunk is discarded, the player replaces it with the previously downloaded one (as may
video decoders do). Duplicating last frame has two advantages, in terms of QoE since
the user observes a still image which is (unless there was a scene change) more natural
than a full color frame and in terms of this experiment allowing to make a frame by frame
comparison of the PSNR values providing with and objective assessment of the perceived
quality. Picture 4.17 shows an example of the difference 4.17c between a frame (#603)
replaced with the previous one 4.17a and a frame successfully downloaded 4.17b although
to human eye the differences are imperceptible.
The first iteration of the study was performed for the lowest bit-rate (38 kbps) with 1, 3
and 5 seconds timeout. The results showed that 1 second timeout was inadequate for the
scenario since most of the chunks were not downloaded. One of the reasons for this result
(which was partly expected) is the average RTT of PLE which is measured around 300ms.

102

4.3 IoT video in FI

(a) Cache Miss frame 603. (b) Cache Hit frame 603. (c) Differences frame 603.

Figure 4.17: Visual result frame 603 with a bitrate of 79kbps.

Tables 4.8 and 4.9 represent the average PSNR values obtained in Cache Miss and Cache
Hit cases for node 1 with each network packet size restriction retrieving the 38 kbps video
version as well as the number of chunks retrieved. In order to make easier the analysis of
the results, two extra columns for the δ values in terms of average PSNR value and number
of retrieved chunks were appended. Negative δ PSNR values indicate an increase in the
video quality which means that the result was nearer to that of the original video, while
an increase of the δ number of chunks implies an increase of the number of downloaded
chunks for the cache hit case. Looking at the tables can be clearly noted that the use of
cached data has a positive influence on the perceived quality since the δ PSNR values are
always lower than the cache miss scenario.

Table 4.8: PSNR 3 seconds timeout study with 38 kbps bitrate

Cache Miss # chunks Cache Hit # chunks δ PSNR δ chunks
0092 28,8025 405 28,8231 410 -0,0206 5
0128 28,8012 537 28,8195 609 -0,0183 72
0192 28,8088 467 28,8164 608 -0,0076 141
0256 28,8037 504 28,8231 613 -0,0194 109
0512 28,8029 612 28,8541 695 -0,0512 83
1024 28,8342 684 28,9044 814 -0,0702 130

Both tables (4.8 and 4.9) indicate that there is a direct relation between the MTU and
the timeout. To obtain a successful service when the former is decreased the later must
be increased which implies a smaller QoE since a bigger buffer time is required. On
Table 4.9, rows corresponding to 48 and 64 bytes MTU show a reduction on the number
of successfully downloaded chunks while the average PSNR stays at a higher value for the

103

4. Video transmission in the FI

Table 4.9: PSNR 5 seconds timeout study with 38 kbps bitrate

Cache Miss # chunks Cache Hit # chunks δ PSNR δ chunks
0048 21.1791 283 28.5491 277 -7.3700 -6
0064 28,8081 407 28,8295 404 -0,0214 -3
0092 28,8001 407 28,8342 410 -0,0341 3
0128 28,8093 409 28,8342 410 -0,0249 1
0192 28,8050 472 28,8231 613 -0,0181 141
0256 28,7987 600 28,8229 618 -0,0242 18
0512 28,8057 468 28,8231 612 -0,0174 144
1024 28,8559 695 28,9062 818 -0,0503 123

cache hit scenario in comparison with the cache miss. For the 48 bytes case, the problem
was the inability of the client to download the first 7 frames producing a drift on the PSNR
calculation (the total number of frames was lower than that of the original video). For the
64 bytes case the chunks lost were of the second part of the video which as was already
commented has smaller frame size and each chunk carries less information, nevertheless
losing more chunks on this last part of the video is producing a better PSNR value but
that doesn’t imply an increase on the subjective QoE perception.
Although the results are promising, it has to be noted that some MTU values are missing
for each table and in particular 32 bytes experiments were completely unsuccessful. As
a consequence of these results and to entrust the assertion that the combination of 32
bytes MTU and a timeout restriction below 5 seconds was not capable of transmitting the
desired bit-stream, a series of experiments with higher timeout values for the 32 bytes MTU
case were performed choosing increases of 2.5 seconds in the timeout as tentative values
therefore experimenting with 7.5, 10 and 12,5 seconds. From these series of experiments
a result of a minimum of 10 seconds timeout per chunk was needed to successfully stream
32 bytes reduced MTU streams. The obtained PSNR for the cache miss case is 28.8329 db
and the corresponding cache hit value is of 28.8085 db. The values can be considered good
unless the final retrieval time is taken into account. The download time for each case is of
1046.87 seconds and 1043.31 seconds respectively. In comparison the experiments with 92
bytes MTU and 3 seconds timeout achieve values around 400 seconds which already was
double the time of the source video duration.
Taking into account the obtained results, two extra experimentation rounds were performed
but with increased bit-rate (58 and 79 kbps) not exceeding the bandwidth of a typical IoT
scenario also restricting the MTU to that of these scenarios between 48 and 128 bytes. An

104

4.3 IoT video in FI

Table 4.10: PSNR 5 seconds timeout study with 58 kbps bitrate

Cache Miss # chunks Cache Hit # chunks δ PSNR δ chunks
0048 30,0619 691 30,1837 803 -0,1218 112
0064 29,8381 359 29,8830 348 -0,0449 -11
0064 30,1323 742 30,1973 817 -0,0650 75
0064 30,1353 747 30,1981 818 -0,0628 71
0092 30,0070 400 29,9999 385 0,0071 -15
0092 30,0134 408 30,0328 406 -0,0194 -2
0092 30,0099 405 30,0325 405 -0,0226 0
0092 30,1741 792 30,1981 818 -0,0240 26
0128 30,1910 810 30,1981 818 -0,0071 8
0128 29,9986 428 30,0198 574 -0,0212 146
0128 30,0100 406 29,9090 359 0,1010 -47
0128 30,0087 473 30,0216 613 -0,0129 140

increase on the bit-rate shifts the weight on the network with the side effects of an increase
of the QoE and/or a reduction of the coding complexity, allowing the codec to produce
higher bit-rates while maintaining the video quality allows the possibility to remove costly
procedures in the encoding in case that the encoding is performed by software. The PSNR
study for these two rounds of experiments is shown in Tables 4.10 and 4.11 and some
visual results are also shown in Figures 4.18 and 4.19 corresponding to 48 and 64 bytes
MTU respectively. Each figure shows two plots, the one on the top showing the relation
between the downloaded size (not all the chunks are downloaded therefore the size varies)
and the time consumed and the bottom showing the δ PSNR in which the represented
points below the x-axis 0 represent visual enhancements for the cache hit case while points
above the axis imply a reduction in the perceived quality. All the presented values show
an increase in the perceived quality while there is a reduction in the expended time for the
cache hit (as expected) thus demonstrating that in-network caching is a desirable capability
for the FI networks.
Despite the randomness of the PLE node selection of the experiments, the results provide
with a good approach of what could be achieved by encapsulating IoT video in DASH and
distributing it with an ICN approach leveraging on CCN while the transmission channel
remains within IoT parameters.
These series of experiments have successfully demonstrated that IoT video can be easily
encapsulated into DASH streams providing with easier deployment without requiring any

105

4. Video transmission in the FI

 0

 50

 100

 150

 200

 250

 300

 350

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 500

 1000

 1500

 2000

 2500

 3000

Time (seconds)

KB

Fram
e N

um
seconds elapsed C

ache M
iss

seconds elapsed C
ache H

it
bytes dow

nloaded C
ache M

iss
bytes dow

nloaded C
ache H

it

-20

-15

-10 -5 0 5

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

δPSNR (db)

Fram
e N

um
δ cache M

iss P
S

N
R

 and C
ache H

it P
S

N
R

(a)
48

bytes,5
seconds

tim
eout,58

kbps

 0

 50

 100

 150

 200

 250

 300

 350

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 500

 1000

 1500

 2000

 2500

 3000

Time (seconds)

KB

Fram
e N

um
seconds elapsed C

ache M
iss

seconds elapsed C
ache H

it
bytes dow

nloaded C
ache M

iss
bytes dow

nloaded C
ache H

it

-20

-15

-10 -5 0 5

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

δPSNR (db)

Fram
e N

um
δ cache M

iss P
S

N
R

 and C
ache H

it P
S

N
R

(b)
48

bytes,48
seconds

tim
eout,79

kbps

F
igure

4.18:
R
esults

ofC
C
N

w
ith

lim
ited

packet
size

and
tim

eout
48

bytes
M
T
U
.

106

4.3 IoT video in FI

 0 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

 3
50

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 5
00

 1
00

0

 1
50

0

 2
00

0

 2
50

0

 3
00

0

Time (seconds)

KB

Fr
am

e
N

um
se

co
nd

s
el

ap
se

d
C

ac
he

 M
is

s
se

co
nd

s
el

ap
se

d
C

ac
he

 H
it

by

te
s

do
w

nl
oa

de
d

C
ac

he
 M

is
s

by
te

s
do

w
nl

oa
de

d
C

ac
he

 H
it

-1

-0
.8

-0
.6

-0
.4

-0
.2 0

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

δPSNR (db)

Fr
am

e
N

um
δ

ca
ch

e
M

is
s

P
S

N
R

 a
nd

 C
ac

he
 H

it
P

S
N

R

(a
)
64

by
te
s,

5
se
co
nd

s
ti
m
eo
ut
,5

8
kb

ps

 0 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

 3
50

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 5
00

 1
00

0

 1
50

0

 2
00

0

 2
50

0

 3
00

0

 3
50

0

 4
00

0

Time (seconds)

KB

Fr
am

e
N

um
se

co
nd

s
el

ap
se

d
C

ac
he

 M
is

s
se

co
nd

s
el

ap
se

d
C

ac
he

 H
it

by

te
s

do
w

nl
oa

de
d

C
ac

he
 M

is
s

by
te

s
do

w
nl

oa
de

d
C

ac
he

 H
it

-2

-1
.5-1

-0
.5 0

 0
.5 1

 1
.5 2

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

δPSNR (db)

Fr
am

e
N

um
δ

ca
ch

e
M

is
s

P
S

N
R

 a
nd

 C
ac

he
 H

it
P

S
N

R

(b
)
64

by
te
s,

5
se
co
nd

s
ti
m
eo
ut
,7

9
kb

ps

F
ig
ur
e
4.
19

:
R
es
ul
ts

of
C
C
N

w
it
h
lim

it
ed

pa
ck
et

si
ze

an
d
ti
m
eo
ut

64
by

te
s
M
T
U
.

107

4. Video transmission in the FI

Table 4.11: PSNR 5 seconds timeout study with 79 kbps bitrate

Cache Miss # chunks Cache Hit # chunks δ PSNR δ chunks
0048 30,9516 654 31,0540 713 -0,1024 59
0048 30,5292 305 30,7512 330 -0,2220 25
0048 30,9659 667 31,0742 730 -0,1083 63
0064 30,4641 300 30,4765 302 -0,0124 2
0064 31,0744 723 31,1878 809 -0,1134 86
0064 30,4198 293 30,4334 293 -0,0136 0
0092 30,5083 306 30,9169 393 -0,4086 87
0092 30,3773 286 30,3529 280 0,0244 -6
0092 30,4487 300 30,4516 296 -0,0029 -4
0128 30,5010 324 30,9535 410 -0,4525 86
0128 30,9153 458 30,9192 611 -0,0039 153
0128 30,9234 407 30,9535 410 -0,0301 3

unavailable technology and with the extra benefit of taking advantage of all the caching
mechanisms developed for the WWW during the last years. In addition, the experiments
have demonstrated that CCN is capable of transmitting content under different network
packet sizes restrictions. This capability is in particular really interesting to IoT due
its usual restrictions. The constraints introduced by PLE suppose an extreme case and
deploying this system on a real IoT network, could only lead to better performance due
to the reduction of RTT. It is clear that the junction of IoT, DASH and CCN is, in
consequence, a good first approach for video on things in the environment of Future
Internet.

4.3.4 CCN on top of HIMALIS

Taking advantage of the aforementioned experiments for both FI architectures, the natural
next experiment to be carried out was to collocate CCN on top of HIMALIS. The HIMALIS
identifier based connectivity system substitutes the CCN routing system while the CCN
layer avoids the necessity of employing such identifiers in the application layer relying on
Uniform Resource Identifiers (URIs) for referencing to the content as is usually done in
ICN architectures. Figure 4.20 shows a diagram of how the combination works and the
messages exchanged by the various entities in the system.
The integration of CCN with HIMALIS produces a very desirable outcome for the former.
The ICN paradigm benefits from the HIMALIS’s multi-domain dimension, federating two

108

4.3 IoT video in FI

Figure 4.20: CCN over HIMALIS flow diagram

109

4. Video transmission in the FI

(or more) HIMALIS domain which on top run the CCN architecture for content distribution
and in particular for video streaming over HTTP. The integration produces implications
in terms of authorization, security and network performance since now there will be, at
least, two ICN instances sharing content and, at least, two networking domains allowing
connectivity between each other. One of the more interesting issues pointed out in the CCN
bibliography is the control over the in-network cached content by the content provider and
what is more important how to charge the rightful users.
Figure 4.21 shows the retrieval of the Media Presentation Description (MPD) file in a
federated CCN over HIMALIS scenario. The term Local makes reference to the client’s
administrative domain and Remote to the provider’s domain. Obviously, these terms do
not imply geographical distribution, therefore a request to the Local ’CCN NetFetch’ might
imply traversing multiple domains. It is not intended with this figure to describe precisely
all the messages neither all the combinations.HIMALIS itself would employ more messages
both in the signaling plane and the data plane just to rely a simple packet. Also the DNR
and HNR entities which have been deployed collocated on the same host could be split in
multiple hosts leading to extra signaling over the network which now is carried on within
localhost.
To get an idea of how such integrated architecture would behave and taking profit of the
NEPI scenario descriptions of previous experimentation, some experiments that simulate
the packet exchange have been performed. Although the executions of CCN and HIMALIS
are isoolated from each other, the results are analyzed together. The experiment therefore
consists on a DASH client retrieving the content from an HTTP server, both entities being
collocated on different HIMALIS nodes. Figure 4.22 show the experiment results, including
the data from a ’raw’ HIMALIS transmission (green line), the CCN cache miss (blue line)
and hit (cyan line) values and finally the integration of CCN on top of HIMALIS with
cache miss (red line) and hit (brown line).
It must be noted that Figure 4.22 shows the time employed by HIMALIS to ’warm-up’
the infrastructure which is around 40 seconds, therefore all HIMALIS based data do not
start at the axis. For the CCN over HIMALIS case, the connection times are added to
the initial time, this extra overload would probably be reduced by the fact that all the
CCN routing and topology could be flattened since now from the CCN point of view all
the destinations would be one jump away since it is HIMALIS in charge of the underlying
connectivity. On the other hand, it would be desirable and easier to centralize the cache
structure to obtain as many cache hits as possible.
Finally, it is worth to mention that the benefits given by the coalition between HIMALIS
and CCN regarding content delivery are mainly related to the hybridization of the network.

110

4.3 IoT video in FI

F
ig
ur
e
4.
21

:
C
C
N

ov
er

H
IM

A
LI
S
flo

w
di
ag

ra
m
,d

om
ai
n
fe
de
ra
ti
on

sp
ec
ifi
c

111

4. Video transmission in the FI

Figure 4.22: CCN over HIMALIS federation results.

112

4.4 Conclusions

While CCN works very well when transferring and caching content, it does not work so
well with end-to-end communications. This is where HIMALIS comes into play. Also,
HIMALIS provides a good underlying infrastructure to decouple CCN from IP and thus
obtaining increased scalability in the network offering a clean-slate approach in terms of
geo-localization of the network addresses breaking with the so-called ossification. Moreover,
CCN traffic may be directly translated to HIMALIS traffic in the intermediate gateways,
enabling the existence of CCN-only clients or servers. This is feasible because HIMALIS
separates identifiers from locators, so content may be transmitted by using its name as
HIMALIS identifier without worrying about the underlying locators and the corresponding
transmission operations.

4.4 Conclusions

This chapter has explored various FI architectures and analyzed their effect on video
streaming by deploying them on top of worldwide distributed testbeds.
From the point of view of the architectures being inspected, HIMALIS is a more connection
oriented approach while CCN relies on a ICN design and leaves underlying connectivity to
other architectures (legacy or even HIMALIS as has been shown in this chapter). Although
it is true that HIMALIS seems to be more versatile, it is also true that the difficulties in
its deployment are quite higher than those of CCN, nevertheless CCN introduces other
complexities related to the in-network caching, so choosing one or another or a combination
of both depends pretty much on the application layer.
Regarding the application layer, the transmission of video using the so well known DASH
protocol over the two aforementioned technologies has been carried out and demonstrated,
in addition, the inclusion of IoT capable encoded videos in the experimentation introduced
a third FI technology in the experimentation results.
The MTU reduction affected differently to each architecture. The bigger impact on CCN
shown in the obtained results can be related to the fact that HIMALIS is connection
oriented which in turn implies having a faster packet loss recovery mechanism integrated
as part of any communication being carried out on top of it. However, a caching system
should be integrated in these series of experiments on top of HIMALIS to obtain a fairer
comparison with CCN.
From the results it is clear as expected that the higher the MTU the better, however it is
also clear from the results that for IoT traffic traversing core networks some aggregation
techniques must be considered to release the load on the network nodes. In particular for

113

4. Video transmission in the FI

video, the http-based streaming techniques seem to be a good approach in that sense.
Finally, the experimentation on top of worldwide distributed testbeds and employing
the NEPI software to design the deployment of the scenarios and the execution of the
experiments provides with repeatability characteristics to the results and representative
numbers in terms of distances between the nodes.

114

Chapter 5

SDN ICNaaS for HTTP Video
Streaming

The clean-slate approach of the FI although necessary in a near future seems risky and
not easily accepted by the industry. A key enabler for FI, is Software Defined Networking
(SDN). SDN was born in the academia but is gaining progressively more attention from
industry, therefore making it more feasible in the short-term. Proposals based on SDN can
be evolutive and non-disruptive. The control plane centralization with the early hardware
support rocketed SDN as a solution to adopt and evolve the new architectures. The
feasibility of SDN for video streaming, content distribution and caching have already been
in the research focus. The difference with the previous work in this thesis lies in the limited
impact this last proposal applies onto already existing content delivery elements, despite
the adoption of SDN and the ICN architecture, the key players remain there just slightly
modifying their role in some cases. Three are the main contributions of this proposal, the
Information Centric Network as a Service (ICNaaS) in which the provision of independent
ICN instances per provider allow the isolation and ease the acceptance of the new paradigm,
to provide ICN like communications without new protocols or mixtures of TCP and UDP
using well-known techniques such as delayed-binding and finally incorporate elements from
nowadays Content Delivery Networks (CDNs) into possible future enhancements like caches
thanks to maintaining HTTP during the whole communication. All these contributions
are provided by means of SDN.

115

5. SDN ICNaaS for HTTP Video Streaming

5.1 Description

Humans are visual beings [115], consequently, we aim for visual communication. Therefore,
it is just natural for us transmitting graphical information by any means at our reach.
Unavoidably, the appearance of computer networks, text based at first and picture capable
later on, and their democratisation and enhancements in terms of bandwidth in the 90s
lead to transmit video on top of the Internet which has commonly been known as ’video
streaming’.
Video streaming, as any other technology, has evolved from its simpler approach to more
complicated forms, answering to the challenges imposed by the environment. The first
issues to overcome were processing power and bandwidth limitations. The democratisation
of the Internet produced also as a side effect the birth of de facto standards in terms of what
could be expected as available for the two former limitations. As a consequence, specific
standards for video coding and video transmission were defined by standardisation bodies
like Organization for Standardization (ISO), International Electrotechnical Commission
(IEC) or Internet Engineering Task Force (IETF), among others.
Traditionally video transmission techniques have been based in a conjunction of session
oriented connectivity (mainly TCP) for signaling and datagram oriented connectivity
(mainly UDP) for data transmission. The use of datagram oriented connectivity was aimed
to maximize the available bandwidth while minimising the delay for each video data piece.
This has been true up to the democratisation of high speed links provision by Internet
Service Providers (ISPs) in the last mile, as well as the evolution of the computing power.
These two milestones have completely changed the way we face video transmission from
’what do we have available’ to ’what is the maximum we can afford for’.
Available bandwidth increase has been the most important factor in the recent video
streaming evolution. Session oriented protocols (TCP based) are nowadays employed for
data transmission, breaking with the historical election of the datagram based ones. The
rise of this approach was fostered by the difficulties that firewalls and Network Address
Translations (NATs) imposed to the traditional datagram transmission, among others. In
addition, it has been demonstrated [43] that having twice the bandwidth available related
to the desired bit-rate makes TCP affordable as transmission technique.
Once TCP has been accepted as a desirable solution, it was a matter of time that
the universal keystone of the Internet, the HTTP protocol, came into play. DASH
[44] [46], previously introduced in this document in section 2.1.3, is the acronym for
Dynamic Adaptive Streaming over HTTP. It reuses already existing and consolidated
technologies, such as HTTP and eXtensible Markup Language (XML), to enable efficient

116

5.1 Description

and high-quality media delivery through networks. The idea behind DASH is to create
redundant metadata, which provides extra functionality with insignificant overload to the
network architecture and service provider. Thus, it delegates to the client most of the
complexity.
To ease the streaming process DASH splits the media into small chunks of data which
are indexed with a so called MPD file. A single MPD file is able to contain different
representations for the same content with different characteristics. Therefore, a client
can easily select or switch between different versions of the delivered (streamed) file, with
different qualities like bit-rate or picture size. The standard does not define how, when,
and why a client should take any particular version of the media and this aspect is an open
research field right now.
That said, the main advantage of DASH over other (non HTTP based) existing streaming
mechanisms is that both the chunks and MPD files can be easily stored in already existing
HTTP caching infrastructures. In addition, DASH will straightforward take advantage
of almost any optimization that could have been applied to the existing infrastructures
such as the CDNs. For this and other applications, the DASH standard defines profiles
and allows different modes (live, on-demand, and others) to provide interoperability and
suitability for different services.
As an evolution of both, the TCP/IP model and the CDN model, the Content
Centric Networking (CCN) architecture brings the benefits to the network level of the
move from host-to-host, end-to-end communications to network-guided, content-centric
communications. It is designed following the ICN approach and, thus, places information
pieces (content) as the central element of the network, making clients declare their “interest”
on content pieces and providers to offer and deliver them to the intermediate network
elements which, in turn, collaborate to deliver the requested content pieces to those clients.
CCN protocol bases its operation on two message types. The Interest message is used
to request data by content name and it can even identify a specific chunk of content to
retrieve. On the other hand, the Content Object message is used to supply data. The
messages of this type contain, besides data payloads, the identifying names, mandatory
cryptographic signatures, and identifications of the signers (called the publishers) along
with other information about the signing. Formally, a Content Object message is an
immutable binding of a name, a publisher, and a chunk of data.
The approach followed in CCN departs from a clean slate where all the advances in the
Internet infrastructure from the last years are discarded for the sake of breaking the IP
ossification and applying named routing and in-network caching. For that to happen,
adapters are needed so that for the customer applications the changes are transparent.

117

5. SDN ICNaaS for HTTP Video Streaming

On the other hand, reusing the existing CDN actors such as caches and the efforts and
evolution of those networks elements in a transparent way without completely breaking
the ossified network seems to be a good preliminary approach to the deployment of other
more disruptive ICN solutions. On that behalf, a proposal for directing traffic from clients
to caching elements and servers based on the content and not on the addresses by the
communications peers is done.
Finally, SDN as one of the key enablers for the FI has been also envisioned as a possible
solution to achieve the ICN deployment in the real life. The use of SDN provides with the
means to redirect application level traffic, replace addressing where needed and react to
network events dynamically. Although SDN is in some circles also understood as a clean
slate, which is partially true for the link layer, in others is envisioned as the tool that is
allowing a non-disruptive apparition of new solutions which discard the pre-established
architectures.
In this section a Content and Information-Centric Distribution Networks as a service is
defined, extending the XaaS ecosystem by employing SDN related technologies. The goal is
to provide the means to offer content providers with differentiated caching services provided
with enough dynamism to cope with user changing behavior offering the best quality of
experience. We aim for a non-disruptive approach in which the actors and software entities
involved in the final service provision and consumption are not modified.

5.2 ICNaaS Concept and Motivation

Content distribution services are traditionally implemented through a mix of techniques
like HTTP redirection, Domain Name System (DNS) load distribution, anycast routing,
and application-specific solutions, among others. As a result, a complex distributed
system is in charge of redirecting users’ requests to clusters of network caches. Such
decision, i.e. the right cache(s) that must serve the content, is usually made based on the
communicating endpoints (IP addresses) involved. Contrary to this, the ICN paradigm
advocates for delivering requested resources based on their name and independently from
the data transport [82]. This can potentially increase the efficiency and scalability of
content distribution, but it typically requires the deployment of state-of-the-art protocols
like CCNx [71] as introduced previously.
Authors in [50] highlighted some future directions that are directly related to the ICNaaS
proposal:

• Service Ortiented Architecture - Or Service composition highly motivated by user

118

5.2 ICNaaS Concept and Motivation

preferences.

• Dynamic Content - Content that is generated on the fly.

• An adaptive CDN for media streaming - Hosting on demand media content.

On the other hand, in the last few years we have witnessed the rise of SDNs and the
high momentum they have gained [54]. By means of a logically centralized controller that
maintains the global view of the network and exposes a programmatic interface, SDN
offers huge opportunities for network programmability, service automation, and simplified
management.
Until now and to the best of our knowledge, ICN and CDN alternatives are focused on
providing one service for all the customers, meaning that unless different companies offer
the service, the resources are the same for all the customers and personalization is to that
end limited. In general, the information is cached in the nearest network node in the case of
CCN with its replacement policy and in the CDN in the nearest cache with its replacement
policy.
We consider that an enhanced service to be provided by ISPs would be enabling the
content provider to arrange its own ICN within the ISP premises. With that and the
adoption of ICN initiatives, the ISP benefits of uplink bandwidth consumption reduction
in cases in which the content provider is not within the service provider’s network and
also diversification of market by offering CDN services, clearly differentiated from the
competence, thanks to the integration on the network. As a consequence of adopting SDN,
the CDN can be easily and dynamically rearranged, the provider himself could interact
with the system. Also the caching mechanism can be modified on demand as well as
the content to cache assignment algorithm. The content provider could potentially select
where the data is stored based on the data itself and not only on the consumer location.
In addition, the proposed system avoids contacting the provider each time some content is
requested and is the network itself who resolves the request. Meanwhile, the client receives
its content transparently, if desired by the provider, or after any bootstrapping action that
could be also configurable, like payment or successful authentication among others.
In addition and thanks to the transparent approach of the proposed system, any existing
caching entity, either hardware or software can be leveraged for the sake of performance.
So even if it is true that virtualization technologies and Mobile Edge Computing (MEC)
can play a role in the deployment of ICN in a near future by deploying software caches on
the edge of the network, it is also true that can not compete with hardware appliances in
some scenarios.

119

5. SDN ICNaaS for HTTP Video Streaming

Figure 5.1: Controller interfaces

To clarify what is the environment of a SDN controller providing ICNaaS by having an
application sitting on top of the controller or an entity collaborating closely with such
controller, Figure 5.1 is provided.
A typical SDN controller environment is composed primarily of the, so called in the related
bibliography as, control plane (SDN CONTROL PLANE in Figure 5.1) and the data plane
(’SDN DATA PLANE’ in Figure 5.1). The data plane makes reference to the switches
and the links between them to which the controller does not (usually) have direct access
(unless in-line control plane is used). The control plane is the usually private network
that provides access to the administrative network, on top of which OpenFlow Protocol
(OpenFlow) messages are exchanged.
Usually, a SDN controller offers an external interface in the form of REpresentation State
Transfer (REST) Application Programming Interface (API) and/or web interface as well
as cli commands. That is represented as ’SDN Management’ in Figure 5.1.
Apart from the usual interfaces employed and offered by a SDN controller, the ICNaaS
proposal provides with two new interfaces related to ICN, the ’ICN Management’ interface
to be employed by the provider to set up and operate its ICN instances as well as the ISP
to modify the service as a whole. And the ’ICN Control’ that is employed by the proxy
to communicate with the ICNaaS application usually sitting on top of the SDN controller.
More details of these two layers can be found in 5.3.1.1 and 5.3.1.2 respectively.
Adopting ICN for HTTP services has a major drawback, the Uniform Resource Locator
(URL) needs to be inspected to decide the final destination of the communication. For that,

120

5.2 ICNaaS Concept and Motivation

in general two approaches are followed, introducing an adapter that transforms the request
once the HTTP containing the URL is received to a domain specific request (Interest in
the case of CCN), or introducing a proxy in the middle that acts as a man-in-the-middle
similarly to how CDNs capture customer requests having two TCP sessions on each side of
the proxy, one for the customer and one for the media source (the provider or the cache).
Usage of proxy is advocated due to the interest in maintaining the HTTP communication
between the man-in-the-middle in charge of extracting the URL and the media source.
In the proposal, traffic traverses the network as it leaves the source. In that sense, the
traffic leaving the customer would be directed to the provider IP address with the mac
solved by Address Resolution Protocol (ARP) and with source IP address the customer’s.
Although the SDN will redirect the TCP SYN message to the proxy it won’t be accepted
unless iptables and other tricky mechanisms are employed, the same would do for the
traffic from the proxy to the media source. Taking advantage of the SDN network IP
and Media Access Control (mac) rewriting are employed. Speaking about OpenFlow, this
means that the minimal version acceptable for this traffic treatment is 1.3. And, off course,
the rewriting needs to be reverted by rewriting source IP and mac on the way back.
In my vision, the same content provider could desire different caching algorithms based on
the type of content being requested (web pages vs multimedia content), the user requesting
the content (premium user differentiation) or any other future strategy.
In Figure 5.2 a multi-site SDN enabled ISP network is represented. Customers of the
network are represented with laptop figures and content providers are situated apart of
the ISP network but could be also part of it, this representation of the providers does
not tie them to a single server but as a single management entity. The SDN Controller
with its primary role is represented as well. At the bottom of the figure the ICN
overlay is represented. On that overlay, three different ICN instances are represented.
The simplest ICN instance (’ICN instance 1’ in the figure) corresponding to Provider1,
another rather simple ICN instance denominated ’ICN Instance Basic’ which is related
to Provider2 and intended to support users with basic contract with Provider1 and finally
’ICN Instance Premium’ also related to Provider2 which is intended to offer high availability
and performance to provider’s premium users. Note that the terms Provider’s user and
ISP’s users are differentiated although they are the same so collaboration between ISP and
provider is foreseen as interesting for both sides.
Having multiple ICN instances not only allows customized behavior per provider but
also provides with the means to have customized behavior for different customers and/or
contents for the same provider, as has been represented in Figure 5.2 with the ICN Instance
premium.

121

5. SDN ICNaaS for HTTP Video Streaming

Figure 5.2: Leveraging SDN for ICNaaS

122

5.2 ICNaaS Concept and Motivation

Let’s focus on how the ICNaaS is delivering the content for each provider and client.
’Client1’ wants to access ’URL1’ of ’Provider1’ via HTTP. The request arrives to the
SDN network and is redirected to the ’Proxy Site1’. At this step the first decision has
been made, which proxy is going to serve which clients, unfortunately and because of the
backward compatibility with HTTP we are not still in the position to inspect which content
is going to be requested, so the decision must be made in an ossified manner for each ICN
instance but being possible to be different for other ICN instances. After finishing the TCP
handshake, the HTTP request is received and thus the ’URL1’ is acquired and delivered to
the ’ICN controller’ (which is can be sitting on top of the SDN controller or at least tightly
related to it). The ’ICN controller’ makes a decision to which cache the request should be
directed if any, as can be seen in the request to ’Provider1’ from ’Client3’ the request could
be directed to the source based on billing, regional policies or whatever decision is codified
on the caching policy algorithm. The proxy request is then redirected to the ’Provider1’
to obtain the desired resource. The term redirect here employed means programming the
SDN network to make the packets flow from one point to the other of the network plus
adapting each packet to the destination characteristics to be accepted by the Operating
System network heap of the receiver.
’Client3’ is also customer of ’Provider2’ and when ’URL1’ is requested to the former it is
redirected to ’Proxy Site2’ from the ’ICN Instance Basic’. Similarly to in the previous case
the request is served by ’Cache Site2’ after accessing to ’Provider2’ web server. ’Client2’
on the other hand is also client of ’Provider2’ but is subscribed to a premium account
and thus is redirected to ’ICN Instance Premium’. How ’Client2’ is identified as premium
is completely out of the scope but suffice to say that a previous authentication could
bootstrap the ICN Instance with the information needed to identify it, this information is
nowadays limited to the matching fields of the SDN network (primarily OpenFlow).
’Client4’ performs three different requests for different content which is served by the
nearest cache (’Cache Site 3’), another served by Site2 cache and finally content directly
provided by the provider itself. All these requests have the exact same source network
address(IP of ’Client4’), the same destination network address(IP of ’Provider2’) and the
same destination transport port(TCP port for HTTP). Nevertheless and following the ICN
premises they are served by different entities based on the URI in the request. How the
destination of the request is decided is something that is addressed in Section 5.4.
Although it is out of the scope how the proxies and caches could be instantiated it is clear
that virtualisation could come into place taking advantage of MEC deployments to bring
caching elements and proxies closer to the customer.

123

5. SDN ICNaaS for HTTP Video Streaming

Figure 5.3: ICN over SDN with Proxy

124

5.3 SDN Controller layering

5.3 SDN Controller layering

The SDN Controller intelligence needs to be extended by means of applications running on
top of it. From my point of view three extra layers (see Figure 5.3) need to be incorporated
to the system to achieve the desired results:

• ICNaaS layer - In charge of providing with the interfaces that allow the provider to
instantiate its own ICN, register caches, proxies and if desired select which clients
and servers will be involved in the ICN instance.

• Protocol Specific - In our case the application is DASH video with its particularities.

• Data specific - Different video codecs can be used on top of DASH and in particular
H.264/SVC with its particularities regarding scalability and the possibilities this
technology offers from the point of view of network optimisation and storage.

5.3.1 ICNaaS layer

The ICNaaS layer provides with the means for a content provider to create and manage
ICN instances. Related to those instances some information needs to be stored in order to
allow the system to operate taking into account that the technology involved is SDN.
In order to make any communication agnostic of the ossified IP layer that the software
entities might be running on top of, the assigned IP address as well as the TCP port in
which the deployed element is working are needed. In addition, to direct the flows to the
desired location, the network element identifier (i.e, the OpenFlow Datapath ID (dpid) in
OpenFlow) and the port number are needed. Since the system will be redirecting traffic to
different machines from which it was originally directed, the mac address is also required
to be rewritten.
Data to be stored per entity involved in the communication:

• Base URL - The Base URL(s) to which the ICN is attached and will react to.

• Caches - The cache IP address, TCP port and mac, as well as the dpid and port of
the network element to which the cache is attached.

• Proxies - The proxy IP address, TCP port and mac, as well as the dpid and port of
the network element to which the proxy is attached. Also the IP address of the SDN
controller is needed for signaling.

125

5. SDN ICNaaS for HTTP Video Streaming

• Content Servers - The content server IP address. It is not expected to have the
content server as part of the icn but af an already deployed service available on
the Internet, therefore only the address is needed and default network resolution
mechanisms would be used.

• Clients - The client filter is completely optional but it is foreseen as interesting being
able to determine to which clients the ICN instance will be serving. Filters can be
produced by any means included in the OpenFlow matching field but in general IP
address ranges with TCP ports and dpids with ports would be envisioned as desirable.

5.3.1.1 ICN management communication specification

The provider needs an interface that provides with the means to manage the ICN instances,
the ICN management plane (see Figure 5.1). This interface should offer at least the
following actions:

• Create a ICN instance with a name or description. In addition, the caching policy
algorithm could be specified. And for that an interface for retrieving the available
algorithms should be provided.

• Assign caches to an ICN instance. The minimum information to be provided are
the mac and IP addresses of the entity, while TCP port would be desirable and if
possible also the location in the SDN network. The location is usually represented
by the dpid/port duet.

• Assign proxies to an ICN instance. The parameters required are the same as for the
caches.

• Register the provider(s) to which an ICN instance aim optimizing.

5.3.1.2 ICN control communication specification

The ’ICN Control’ on the other hands must at least offer the possibility to inform about
the URL being requested to the ICNaaS so that the caching policy algorithm is fed, the
decision on the content source to be employed is taken and the network is programmed
properly before the proxy actually makes the connection attempt. In addition, this interface
provides with the means to the ICNaaS to influence on the data plane in a rather complex
way, since it is true that a controller can generate traffic in the data plane through the
network elements (switches) by employing the control plane protocol (OpenFlow) but in

126

5.3 SDN Controller layering

Figure 5.4: Interactions diagram

some cases it is interesting to delegate part of this burden to third parties such as a the
proxy.
From the point of view of an ISP exposing internals of their networks such as dpid and ports
numbers. Nevertheless information about the location of the caches is needed so that the
provider can arrange the caching topology in a meaningful way for the supported service
and the intended users. Moreover with the network slicing and virtualization technologies
being researched and deployed nowadays, the network elements might probably be virtual
instances offered exclusively to that precise provider at that precise moment, reducing the
exhibition of the ISP internals.

127

5. SDN ICNaaS for HTTP Video Streaming

5.3.2 Protocol Specific Layer

The protocol specific layer is in charge of directing the flows to the ICN elements and to
attend the proxy signaling to behave in concordance to the information being requested.
In the case HTTP in general is driven by the inherent nature of the underlying transport
protocol TCP. Before any data belonging to HTTP is transmitted there is a connection
handshake which, from the point of view of an network element, is composed of three
messages [116]. In order to be able to extract the requested URL which is in turn the
information requested, the interest continuing with CCN terminology, a full handshake
process is needed. Once the handshake is finished it is impossible to transparently redirect
the client to another data source. That is the point were the proxy comes into play. The
TCP splicing [117] or delayed binding [116] is a technique widely used and introduced by
proxies to leverage on the kernel the rest of the communication once a milestone has been
reached, reducing resource consumption. In this case the SDN controller leverages on the
proxy to reduce bandwidth consumption by delegating the TCP operations to the proxy
as well as the HTTP inspection.
The connection is directed to the proxy that after finishing the 3-way TCP handshake
receives the request with the URL (i.e, HTTP GET). In that precise moment, the
obtained URL is provided to the SDN controller DASH layer. With the configuration
already provided to the ICNaaS layer by the provider and the url, the next hop in the
communication is to be decided.
The caching policies algorithm, that decides which cache or server is going to be directed
the communication to or if the communication is going to be dropped, is configurable per
ICN instance by the provider and can potentially be changed at any time.

5.3.3 Data Specific Layer - H.264/SVC

The Data Specific Layer is in charge of providing the system with behavior related to the
data domain, in the case of DASH video streaming it is related to the video/audio coding.
In case the requested URL was a MPD, the ICNaaS sitting on top of the SDN controller
downloads a copy and employs it as input for the caching policies algorithm associated
with the ICN instance.
If the MPD contained H.264/SVC video definition, some interesting properties of the
format can be leveraged. H.264/SVC video provides the system with the means to
hierarchically distribute the cached content based not only on the URL as content identifier
but also on the scalability level that indicates the relevance of the data chunk for the whole

128

5.4 Caching Policies Algorithms

service. Thanks to the scalability level, the caching policies algorithms can be easily driven
to reduce the uplink bandwidth to the provider server, reduce the delay for the user, among
others, as is extended in 5.4.
Other Data Specific Layers are envisioned such as for H.264/MVC for stereoscopic video.

5.3.3.1 ICN control communication specification

At this point, the future content could be pushed into the proper caches (prefetching) [94]
actively instead of reactively when the requests are performed increasing the cache hit
ratio, depending on the policy. To that end, the role of ’cache accelerator’ is introduced.
Although some appliances could offer with the means to request for content caching, there
is also the possibility to actually create fake HTTP requests that will trigger the caching
mechanism transparently and vendor agnostic. The term fake here make reference to
the fact that these requests are not issued by a customer but by the ICNaaS predicting
what will be the behaviour of the customer for the actual network. The introduction of
the actual network in the equation is an important step that, thanks to the involvement
of the ISP’s sdn controller has advantage in the information of the available bandwidth
for the customer. With that information, the video versions with a bit-rate higher than
the available bandwidth could be directly discarded and thus not prefetched. The cache
accelerator can perfectly be implemented as part of the proxy reducing the number of trust
relations of the ICNaaS application that sits on top of the ISP SDN controller that is a
critical component of the network.

5.4 Caching Policies Algorithms

The caching policy algorithm is in charge of deciding which cache or server is the
communication going to be directed to, or if it is going to be dropped.
Although the caching policies should be configurable for the provider, it is also true that
the ISP could benefit too from specific policies (e.g, reduce the backbone utilization by
leaving the more information the better nearer to the customer). It is foreseeable a pricing
system in which the algorithms that benefit the ISP could be awarded with lower billing
for the content provider hence the relation between the ISP and the ICN Management in
Figure 5.1. Nevertheless this feature is out of the scope of this thesis and is left as future
research.
Main factors to decide on which cache a content should be directed to and hence cached
is the cache size and the cache location. The objective is to maximize the amount of data

129

5. SDN ICNaaS for HTTP Video Streaming

stored in the caching system while bringing it closer to the customer. So there are two
main problems, what needs to be cached and where.
Since the focus is on video streaming over HTTP and DASH in particular, the caching
decision can not be decided by file extension, unless the particular case of MPD files which
is negligible compared to the size of a video stream. But for the case of H.264/SVC some
techniques can be applied to prioritize chunks based on the layering scheme.

5.4.1 H.264/AVC over DASH

Usually H.264/AVC streams over dash are encoded with multiple representations each of
which has its own parameters as can be seen in Listing 5.1.

1 <Representation id="1920x1080p25" codecs="avc3.640028"

2 height="1080" width="1920" bandwidth="4741120" />

3 <Representation id="896x504p25" codecs="avc3.64001f"

4 height="504" width="896" bandwidth="1416688" />

Listing 5.1: H.264/AVC representation definition in an MPD file.
Each representation has its own Segments and is independent from each other which means
that two clients requesting the same content at different bit-rates will need independent
content caching procedures.
It is important to take into account how the Rate Determination Algorithm (RDA)
executed in the streaming client is affected by the caching decisions taken on the network.
Authors in [118] already took into consideration the effect of cache hit and miss on the
RDA producing bit-rate oscillations for DASH. Authors introduce the ’ViSIC’ caching
system that performs traffic shaping to avoid the changes in the perceived bandwidth in
the RDA that produces the oscillations. Thanks to the SDN on which the ICNaaS proposal
relies, meters can be used to shape the cache responses for a certain customer avoiding this
effect. In this solution the MPD request is duplicated within the ICNaaS application and
is processed to use it as input.

5.4.2 H.264/SVC over DASH

Unlike H.264/AVC, H.264/SVC over DASH representations are dependable in the same
relation that the H.264/SVC layers depend on each other as can be seen in Listing 5.2
where representation 2 depends on 1 and 0 while representation 1 depends on 0 only.

130

5.4 Caching Policies Algorithms

1 <Representation id="0" codecs="AVC" mimeType="video/264"

2 width="1920" height="1080" frameRate="6"

3 sar="1:1" bandwidth="2325553">

4 <Representation id="1" dependencyId="0" codecs="SVC"

5 mimeType="video/264" width="1920" height="1080"

6 frameRate="12" sar="1:1" bandwidth="3209141">

7 <Representation id="2" dependencyId="1 0" codecs="SVC"

8 mimeType="video/264" width="1920" height="1080"

9 frameRate="24" sar="1:1" bandwidth="4019194">

Listing 5.2: H.264/SVC representation definition in an MPD file.
Evidently, all the representations depend on the base layer (with representation id 0)
which in turn is an H.264/AVC stream. Meaning that in the same case as in H.264/AVC
where two clients request different representations of H.264/SVC streams, there is a higher
probability of having the content cached, depending on the H.264/SVC encoding options
set and the layers obtained, assuming infinite cache sizes, after the first retrieval the base
layer will be always cached and thus a 100% cache hit ratio is obtained. However, each
representation downgrades the codification efficiency in not more than a 10% [119] and by
using H.264/SVC more video clips at different representations can be cached.
Authors in [120] highlight the possibilities of H.264/SVC for transport and caching
differentiation. Focusing on caching differentiation, authors state that H.264/SVC aware
eviction mechanisms can boost the efficiency of network caching. The idea is to take
advantage of the manifest file to avoid eviction of future video chunks once an ancestor is
requested, since following chunks will probably retrieved later. The authors also introduce
the possibility of prefetching as an enhancement.
Next, there is a list of ideas on how caching distribution could be steered to take advantage
of the H.264/SVC characteristics while employing the ICNaaS. The ICNaaS offers the
possibility to have different caching distribution algorithms per ICN instance. The eviction
policy is restricted to the possible connection from the ICNaaS towards the cache node
for signaling the decision, since that is highly dependable on the caching solution it is not
desired for an architecture that tries to integrate existing solutions smoothly. Nevertheless,
it would be possible to implement it but methods to retrieve the cache size and to signal
eviction victims would be needed.
In tree like networks were the cache nodes present a hierarchical structure, considering a
leaf node, the caching node nearer to the client and a root node those that are closer to
the upstream link and therefore the content provider:

131

5. SDN ICNaaS for HTTP Video Streaming

• Cache base layer on root nodes and enhancements in leafs. Minimize trunk traffic
after content cached. Maximizes hit for base layer but with bigger delay. Off course,
if the tree has a depth greater than one, different enhancement layers can be cached
at different levels of the tree.

• Cache base layer on leafs minimizing the delay needed to the reproduction to start
if the client accepts start playing with lower quality, that part can not be influenced
by the network.

Other approaches can be implemented in almost any network structure, let it be
hierarchical, full mesh or any other:

• Collocate N first chunks for every layer on the closest cache. In this case, the playing
delay is definitely reduced and the client cache can compensate the delay of having
the rest of the stream further away.

• Avoid costly or problematic links by caching the content on a certain position in
the network. Although the ICNaaS hasn’t got a Path Computation Element (PCE)
itself, it may extract information from the controller to decide whether a position in
the network, as an example, can reduce congestion.

• Cost based. Caches might have different costs, if storage is SSD or legacy or if it
is located in the ISP premises or in a third party. Based on that information the
algorithm might take decisions to minimize costs while maximizing Quality of Service
(QoS)

5.5 User driven

Historically, multimedia adaptation to network conditions has been performed on the server
side or in Media Aware Network Elements (MANEs) that downgraded the content to fit
into the actual network condition. In [121] a proposal for a H.264/SVC aware MANE was
made that would receive the user preferences for the three possible scalability parameters
of an H.264/SVC stream so that the unavoidable adaptation decided by the network was
driven by the user.
The proposal was not meant to replace automatic adaptation, but rather to enhance it by
enabling the user to steer it. We therefore introduced two steering parameters:

• Layer drop priority.

132

5.5 User driven

• Minimum number of enhancement layers for each scalability dimension.

The layer drop priority is expressed as an ordered relation of the scalability dimensions
D (for spatial resolution), Q (for fidelity) and T (for temporal resolution). This way the
client is able to specify the requirements through the dropping priority of the scalability
dimensions. Optionally, minimum values can be set for each of the scalability dimensions.
Note that the priority id which is defined as a header field in H.264/SVC [34] has similar
semantics, but cannot be used for expressing user preferences, since it is bound to the
content.
Besides the steering parameters, the usage of a constrained environment is required to
trigger the adaptation. Note that below the focus is on the available bandwidth, however
this could in theory be replaced by any other constraint which may trigger an adaptation.
The algorithm for the DQT selection, based on the steering parameters, is defined using
pseudo code as follows:

Listing 5.3: Algorithm Pseudo-Code� �
Sort s c a l a b i l i t y dimensions accord ing to drop p r i o r i t y ,
from h ighe s t to lowest ;

while (a v a i l a b l e bandwidth <
b i t r a t e o f cur rent enhancement l ay e r s e l e c t i o n) {

for each s c a l a b i l i t y dimension {
i f (num l ay e r s o f s c a l a b i l i t y dimension >

min l a y e r s s e l e c t e d by the c l i e n t) {
Star t f i l t e r i n g the cu r r en t l y h ighe s t l ay e r

from th i s s c a l a b i l i t y dimension ;
Stop f i l t e r i n g l a y e r s from s c a l a b i l i t y

dimensions with h igher drop p r i o r i t y ;
Se lect ionFound = true ;
End for loop ;

}
}
i f (Select ionFound == f a l s e) {
Perform best e f f o r t adaptat ion ;

}
}
� �
Obviously it would make no sense to adapt the bit-stream if there is enough bandwidth
available. Thus, the algorithm is only triggered if the available bandwidth is smaller than
the maximum bit rate of the H.264/SVC. In this case layers have to be dropped in order
to decrease the bit rate, as indicated by the steering parameters. This is done until a
configuration of enhancement layers is found which has a bit rate smaller than or equal to
the available bandwidth.
If no suitable enhancement layer configuration can be found, best effort adaptation is
performed, selecting the base layer in the worst case.
In order to evaluate the approach the NS-2 simulator [11] was extended to include
RTCP feedback and TFRC calculation. Additionally, the different layer selection

133

5. SDN ICNaaS for HTTP Video Streaming

approaches presented below were implemented. The simulation setup consists of two
nodes, representing a streaming server and a streaming client connected by a link. The
bidirectional wire is configured to offer a total bandwidth of 2.9 Mb/s while the H.264/SVC
video is encoded with an average bit rate of 2.89 Mb/s.
TCP Friendly Rate Control (TFRC) [122] is used to calculate the available bandwidth
T for a certain session as defined in Equation 5.1.This function gives an upper limit to
the bandwidth available in terms of bytes per second. The inputs to this functions are
the packet size s, the Round Trip Time (RTT) r, the loss event rate p and the TCP
retransmission timeout TRTO. The implementation uses a mean of all packet sizes for s
and a weighted moving average of the fraction lost for p, as shown in (5.1).

T =
s

r
√

2p
3
+ tRTO(3

√
3p
8
)p(1 + 32p2)

(5.1)

Having calculated the available bandwidth, the DQT selection algorithm is triggered.
Congestion is simulated after four seconds, as can be seen in the Figures 5.5b, 5.6b, 5.7b
and 5.8b. There is a delay until the actual adaptation begins, which can be explained with
the weighted mean of the fraction lost p in Equation 5.1.
Another possibility to trigger the DQT selection is to manually change the available
bandwidth, referred to as user triggered adaptation. This situation was simulated within
the interval between seconds 14 and 18.
Four different approaches are compared in the evaluation. The first approach represents
a best effort adaptation which selects the layer combination fitting best into the available
bandwidth. The second approach sets minimal values for each scalability dimension D, Q
and T, but no layer drop priority. The third approach supports layer drop priority but
no minimal values. Finally the fourth approach corresponds to the one proposed in this
paper, including minimal values and layer drop priority.
The video used in the simulations is the City MPEG reference video sequence with 2
spatial, 2 quality and 4 temporal enhancement values. The highest layer corresponds to
4CIF spatial resolution at 30 FPS with just one quality enhancement. For both lower
spatial resolutions (CIF and QCIF) a second quality enhancement was encoded.
For the evaluation the layer drop priority has been set to D > Q > T , the minimum values
chosen were D=1, Q=1, T=2. These minimum values correspond to CIF size and a frame
rate of 7.5 FPS.
Figure 5.5 shows the results using the first approach, i.e. best effort adaptation. Figure
5.6 represents the second approach with minimal values for the scalability dimensions and

134

5.5 User driven

 0

 1

 2

 3

 4

 5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

5
.0

5
.5

6
.0

6
.5

7
.0

7
.5

8
.0

8
.5

9
.0

9
.5

1
0

.0

1
0

.5

1
1

.0

1
1

.5

1
2

.0

1
2

.5

1
3

.0

1
3

.5

1
4

.0

1
4

.5

1
5

.0

1
5

.5

1
6

.0

1
6

.5

1
7

.0

1
7

.5

1
8

.0

1
8

.5

1
9

.0

1
9

.5

D
 Q

 T
 V

a
lu

e

Seconds

D

Q

T

(a) DQT Selection
 0

 5
0
0

 1
0
0
0

 1
5
0
0

 2
0
0
0

 2
5
0
0

 3
0
0
0

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

5
.0

5
.5

6
.0

6
.5

7
.0

7
.5

8
.0

8
.5

9
.0

9
.5

1
0

.0

1
0

.5

1
1

.0

1
1

.5

1
2

.0

1
2

.5

1
3

.0

1
3

.5

1
4

.0

1
4

.5

1
5

.0

1
5

.5

1
6

.0

1
6

.5

1
7

.0

1
7

.5

1
8

.0

1
8

.5

1
9

.0

1
9

.5

K
b
/s

Seconds

Selected Bit Rate
Available Bandwidth

(b) Bit-rate evolution

Figure 5.5: Best effort approach

Figure 5.7 corresponds to the third approach including the layer drop priority. Finally in
Figure 4 one can see the results achieved by the proposed approach using minimal values
and layer drop priority combined. Each figure consists of two diagrams. The left one
shows the selection of DQT values by the approaches, while the right diagram depicts the
available bandwidth which triggered the selection, as well as the corresponding selected bit
rate.
In the interval between the seconds 4 and 5.5 one can observe that the approaches with
layer drop priority D > Q > T (Figure 5.7 and Figure 5.8) try to keep the temporal value
as high as possible. When looking at seconds 10 to 11 in Figure 5.7a and Figure 5.8a, the
difference between using drop priority or a combined approach becomes clearer. When in
Figure 5.8a, the fidelity stays higher even at the cost of loosing temporal resolution due to
the defined minimums.
When looking at second 14 in the Figures the effect of the minimums becomes clearer.
The result of the first approach (Figure 5.5) is a 4CIF slide show (1.875 FPS), while in the
second approach (Figure 5.6) the user receives a video in CIF resolution, at high quality
and with 15 frames per second. The algorithms with layer drop priority (Figure 5.7 and
Figure 5.8) keep 30 FPS although at the cost of reduced quality, which corresponds to
the user request. Moreover, with the third and the fourth approach less bandwidth is
required compared to the first and the second approach, while perfectly matching the
user preferences using the fourth approach. This shows that both layer drop priority and
minimum values are relevant for an increased QoE at reasonable bandwidth utilization.
The adaptation using this approach enables a higher QoE compared to existing adaptation

135

5. SDN ICNaaS for HTTP Video Streaming

 0

 1

 2

 3

 4

 5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

5
.0

5
.5

6
.0

6
.5

7
.0

7
.5

8
.0

8
.5

9
.0

9
.5

1
0

.0

1
0

.5

1
1

.0

1
1

.5

1
2

.0

1
2

.5

1
3

.0

1
3

.5

1
4

.0

1
4

.5

1
5

.0

1
5

.5

1
6

.0

1
6

.5

1
7

.0

1
7

.5

1
8

.0

1
8

.5

1
9

.0

1
9

.5

D
 Q

 T
 V

a
lu

e

Seconds

D

Q

T

(a) DQT Selection

 0
 5

0
0

 1
0
0
0

 1
5
0
0

 2
0
0
0

 2
5
0
0

 3
0
0
0

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

5
.0

5
.5

6
.0

6
.5

7
.0

7
.5

8
.0

8
.5

9
.0

9
.5

1
0

.0

1
0

.5

1
1

.0

1
1

.5

1
2

.0

1
2

.5

1
3

.0

1
3

.5

1
4

.0

1
4

.5

1
5

.0

1
5

.5

1
6

.0

1
6

.5

1
7

.0

1
7

.5

1
8

.0

1
8

.5

1
9

.0

1
9

.5

K
b
/s

Seconds

Selected Bit Rate
Available Bandwidth

(b) Bit-rate evolution

Figure 5.6: Minimal values approach

 0

 1

 2

 3

 4

 5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

5
.0

5
.5

6
.0

6
.5

7
.0

7
.5

8
.0

8
.5

9
.0

9
.5

1
0

.0

1
0

.5

1
1

.0

1
1

.5

1
2

.0

1
2

.5

1
3

.0

1
3

.5

1
4

.0

1
4

.5

1
5

.0

1
5

.5

1
6

.0

1
6

.5

1
7

.0

1
7

.5

1
8

.0

1
8

.5

1
9

.0

1
9

.5

D
 Q

 T
 V

a
lu

e

Seconds

D

Q

T

(a) DQT Selection

 0
 5

0
0

 1
0
0
0

 1
5
0
0

 2
0
0
0

 2
5
0
0

 3
0
0
0

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

5
.0

5
.5

6
.0

6
.5

7
.0

7
.5

8
.0

8
.5

9
.0

9
.5

1
0

.0

1
0

.5

1
1

.0

1
1

.5

1
2

.0

1
2

.5

1
3

.0

1
3

.5

1
4

.0

1
4

.5

1
5

.0

1
5

.5

1
6

.0

1
6

.5

1
7

.0

1
7

.5

1
8

.0

1
8

.5

1
9

.0

1
9

.5

K
b
/s

Seconds

Selected Bit Rate
Available Bandwidth

(b) Bit-rate evolution

Figure 5.7: Layer drop priority approach

136

5.5 User driven

 0

 1

 2

 3

 4

 5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

5
.0

5
.5

6
.0

6
.5

7
.0

7
.5

8
.0

8
.5

9
.0

9
.5

1
0

.0

1
0

.5

1
1

.0

1
1

.5

1
2

.0

1
2

.5

1
3

.0

1
3

.5

1
4

.0

1
4

.5

1
5

.0

1
5

.5

1
6

.0

1
6

.5

1
7

.0

1
7

.5

1
8

.0

1
8

.5

1
9

.0

1
9

.5

D
 Q

 T
 V

a
lu

e

Seconds

D

Q

T

(a) DQT Selection

 0
 5

0
0

 1
0
0
0

 1
5
0
0

 2
0
0
0

 2
5
0
0

 3
0
0
0

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

5
.0

5
.5

6
.0

6
.5

7
.0

7
.5

8
.0

8
.5

9
.0

9
.5

1
0

.0

1
0

.5

1
1

.0

1
1

.5

1
2

.0

1
2

.5

1
3

.0

1
3

.5

1
4

.0

1
4

.5

1
5

.0

1
5

.5

1
6

.0

1
6

.5

1
7

.0

1
7

.5

1
8

.0

1
8

.5

1
9

.0

1
9

.5

K
b
/s

Seconds

Selected Bit Rate
Available Bandwidth

(b) Bit-rate evolution

Figure 5.8: Combined approach

mechanisms at the same bit rate.
In the environment of H.264/SVC DASH video transmission, although it is true that
naturally adaptation is made in the client side thanks to the RDA, it is also true that
the ISP SDN controller on top of which this proposal is collocated has the information
relative to the bandwidth consumed and available. It is therefore straightforward to make
an adaptation of the H.264/SVC stream by informing the ICNaaS about the available
bandwidth and trimming the requests that would exceed that value. But multiple layers
of H.264/SVC could offer that working point in which the stream wouldn’t exceed the
bandwidth. Mixing in the user driven concept introduced in [121] would optimize that
point providing not only with a better QoS but also a better QoE since it is the user
perception and preferences the ones to steer the adaptation. Unfortunately this approach
as was introduced in previous work there is a need for signaling which means that this
approach would only be possible with client side coordination.
In addition, this approach is able to feed the caching policy algorithm to limit the prefetch
of data chunks to those that fit into the available bandwidth thus reducing the uplink usage
wasted in chunks that won’t be able to go through the user link.
Since the proposal of obtaining the available bandwidth from the ISP SDN controller is
limited to sitting on top of it plus limited by possible policy, political and law restrictions
(such as anonymity), another system is proposed with which the available bandwidth
can be calculated. The proposal is to employ the meter capability to collect statistics
(OFPMF_STATS) [66] during the streaming. Those statistics give an idea on the mean
bit-rate employed by the RDA so that when the latter tries to go over the average the
requests can be blocked.

137

5. SDN ICNaaS for HTTP Video Streaming

Another scenario in which the adaptation might be needed and user preferences could
enhance the perceived QoE is in the case that the uplink to the provider is congested, in
that case the ICNaaS could avoid launching requests from the caches to the provider.

5.6 Conclusions

This chapter introduced the proposal of ICNaaS and how it is possible to merge the ICN
approach to that of the actual CDNs providing dynamism as an added value to the content
provider while still maintaining the actual CDN providers but in a side role by employing
SDN.
The ’as a Service’ part is really important because it aligns with the network slicing
techniques that are being researched, in that sense, the ICNaaS system could be provided
by the operator as a slice, or a third party could offer the service on top of the network
operator slice or even further, each icn instance could be provided on top of a network
slice. From the point of view of the proposal this changes completely the role of the SDN
controller and the scope that is affected by the decisions made by the application.
Furthermore, offering ICN as part of Network Function Virtualisation (NFV) is foreseeable
and this proposal serves as an starting point to provide this kind of services.
The presented approach leverages on SDN as many others do in the bibliography but the
difference here is that the service is offered in a non-disruptive approach, by offering end
to end HTTP without adapters as the basis for the communication, therefore making it
transparent to most users nowadays. In addition, the proposal integrates actual caching
systems avoiding ’nouveau’ approaches thus relying on well known and reliable systems.
This chapter also has highlighted the importance of the SDN controller application layering.
In addition to the separation of the controller APIs into northbound, southbound, REST
among others, the SDN applications themselves need to take into account the diversity of
the actions being taken by splitting in layers each functionality therefore making the code
reusable and extensible.
The adoption of ICN with the centralized control system of SDN offers a new world
of possibilities in terms of caching algorithms and how the traffic can be easily steered
transparently to the decided end-point which in turn will provide with the requested
content. The example of applicability to DASH and to H.264/SVC demonstrated the
potential of this kind of systems.
Finally, scalable coding is regaining momentum thanks to the in-network caching and their
inherent characteristics that allow distribution among the caching system related to the

138

5.6 Conclusions

relevance of the data itself.
One field on which the work presented in this chapter, and the rest of this Thesis, could be
extended by the introduction of security in the equation. It is clear that the proposal of
this chapter relies on the proxy to extract the URL from the HTTP connection, which in
turn means, that the certificate of the server endpoint need to be deployed into the proxy
as well, so that HTTP over TLS (HTTPS) transmission is possible and the endpoint is
identified as the desired destination of the connection. This approach is already present in
nowadays CDNs but the ICNaaS approach could simplify the deployment of the keys and
what is more important the control over which entities store them.
The use of HTTP historically ties implicitly to TCP. Once enough bandwidth is assumed,
TCP provides with reliable transmission not only in terms of packet transmission but also
in terms of confidence onto the communication. Despite its skills, TCP complicates the
task of actually inspecting what is going on for a certain transmission while its unreliable
counterpart not tied to peer to peer binding makes easier steering the traffic. In TCP the
traffic can naturally only be steered or redirected on the SYN message while UDP can
be redirected afterwards thanks to the absence of session information (although SDP and
RTSP could provide such session capabilities, they are bonded to the application level).
Although it is true that HTTP historically is tied to TCP, it is also true that other
transport protocols have been used with HTTP, one of those protocols is SCTP and
similarly to the proposal of Chapter 3 the mapping of H.264/SVC layers with SCTP streams
could be utilized by the network to apply optimizations, deny access or apply bandwidth
enforcement. The solution would nevertheless require a minimal synchronization between
the SDN controller and the video player to inform which SCTP stream would be used
by each scalability level. Other emerging protocols like QUIC and others related with
HTTP/2 could be taken into consideration.
The term bandwidth enforcement in OpenFlow clearly calls for the meter feature as has
been already commented above. Exploiting this feature to avoid waste of resources in
DASH connections is also an interesting field of research. The idea would be to mitigate
the effect of the bandwidth estimation algorithm on the client side by applying a meter
to all the traffic related to that stream directed to the client. The challenge there is the
limited meter amount that OpenFlow devices provide.

139

5. SDN ICNaaS for HTTP Video Streaming

140

Chapter 6

Development and Evaluation of SDN
ICNaaS

The design introduced in the previous chapter has been implemented and evaluated to
asses the feasibility of the proposal. In this chapter, the details on the work performed to
implement the proposed solution are introduced and evaluated not only the performance
of the implementation but also the difficulties in integrating today’s entities such as DASH
clients, HTTP caches and HTTP servers into the ICNaaS proposal based on SDN.
Two set of experiments were performed. The former was carried on employing virtual
infrastructure while the later has been performed by means of hardware switches. The
experience obtained with the deployment of the first proof of concept served us as input for
the design and deployment of the final experimentation. During the first experimentation
phase, the ICNaaS was evaluated as a generic HTTP service where any static web based
content could be delivered following the ICN paradigm by a provider that registered it in the
system. On a second phase, the inclusion of the application level (DASH and H.264/SVC)
inside the proposal is faced, covering one of the most important market niches in today’s
networks, video streaming.

6.1 Architecture Elements

6.1.1 ICNaaS

Three are the main parts of the ICNaaS application. The REST interface serving the
content provider, the REST interface accepting requests from the proxy and the ICN
functionality and flow management based on the caching policies.

141

6. SDN ICNaaS evaluation

Source Destination URL Parameters
1 Provider ICNaaS onos/icn/icn name, description, type
2 Provider ICNaaS onos/icn/proxy name, description, mac, ip, port,

prefetch_port, type, location (dpid,port)
isProactive

3 Provider ICNaaS onos/icn/cache instance, name, description, mac, ip, port,
type, location (dpid,port)

4 Provider ICNaaS onos/icn/provider instance, name, description, network, uripattern, hostpattern

Table 6.1: ICNaaS’s Provider northbound interface.

Source Destination URL Parameters
1 Proxy ICNaaS /onos/icn/proxyrequest uri, hostname, smac,

source ip, destination ip,
protocol, source port, destination port

Table 6.2: ICNaaS’s internal northbound interface.

The REST interface with the provider allows the creation, modification and removal of
ICN instances, as well as, registering proxies, caches and providers’ servers. The classes
providing the REST api defined in Table 6.1 are shown in Figure 6.1 and correspond to the
’ICN Management’ interface shown in Figure 5.1. To implement the functionality the tools
already offered by the ONOS Controller are used, in this case the AbstractWebResource
which inherits from BaseResource that facilitates the implementation of REST interfaces
for apps sitting on top of ONOS. The Path class is employed to create the URL that will
be providing the REST call. The content of the calls is encoded as json and, despite not
being represented in Figure 6.1, Codec classes are implemented for each Northbound class
to ’de/jsonify’ the internal representation of the ICNaaS elements into and from classes.
There is another REST interface that is intended for communication with the proxy
and represented by the ProxyRequestNorthbound in 6.1 and defined in Table 6.2 that
corresponds with the communication of the ’ICN Control’ interface as shown in Figure
5.1. These notifications are the ones carrying the URL requested by the user and are
responsible of triggering the ICN mechanism to redirect the communication to the desired
content source (a cache or provider itself).
We are going to take profit of Figure 6.1 to enumerate the entities involved in the ICNaaS
application:

• IcnService → The ICNaaS itself. The one in charge of keeping track of the ICN,
instances and the proxies in the system. The IcnService is also in charge of creating

142

6.1 Architecture Elements

Figure 6.1: ICNaaS REST api.

143

6. SDN ICNaaS evaluation

the paths for the data to flow.

• Icn→ Represents each ICN instance held in the system. It stores the information to
the Caches and Providers related to the ICN instance as well as the information of
the Resources already managed by the ICN instance.

• Provider → Represents a Provider which includes management of url pattern
matching, as well as, IP address ranges belonging to the instance. It also manages
providers’ servers provided as content source at the ICN boot up instance.

• Proxy → Represents a Proxy instance deployed in the system. Information related
to identification such as IP, mac or location (dpid and port) is stored.

• Cache → Represents a Cache instance deployed in the System.

• Resource → Represents a Resource already retrieved through the ICN instance and
present in the caching system.

The IcnService is the central class of the ICNaaS architecture, as can be seen in Figure
6.3. The class is implemented as a Karaf Component and Service so that it can be easily
instantiated from other Karaf components if needed. The decision to employ Karaf derives
from the controller election since Open Network Operating System (ONOS) is based
on Karaf and therefore the applications are developed as components. It contains the
mechanisms to create paths between IMiddleBox elements (Proxy and Cache) and stores
the information about the ICN instances present in the system. In addition it contains
the IcnPacketProcessor that is in charge of reactively inspect TCP packets directed to the
HTTP port registered in the provider server call #4 from Table 6.1 coming into the SDN
(produced by a OFPT_PACKET_IN message coming from the OpenFlow switch to the
controller) and redirect them to the nearest proxy, this behavior can be overridden when
registering the proxy with the ’Proactive’ flag. In the case that ’Proactive’ is selected, the
paths between the nearest ports and the Proxies are created prior to data coming into the
network, discharging from that burden to the controller and reducing the time for a request
to be treated. Nevertheless, the ’Reactive’ form of client-proxy path creation is set with
high flow timeout to avoid flows from being discarded and recreated regularly, since it is
based always on proximity and unless the proxy is removed or the client moves, the proxy
to which a client is redirected is not foreseeable going to be changed.
The IcnService implements IIcnPrivateService that provides with the abstractions to be
used by the REST API in Table 6.2 as well as the capability to issue path creation requests

144

6.1 Architecture Elements

for the prefetching engine (as an internal call and not a REST call since the controller here
acts as the client, initiating the connection to the prefetcher). The IIcnService interface
on the other hand offers the abstractions needed by the 6.1.
Lastly the IcnService reacts to Flow events issued by ONOS to identify expirations and
remove the internal representations of the flows.
The Resource interface defines a common definition of what a Resource should be, thus
enabling extensibility. ResourceHTTP stores the relation between the already requested
URLs with the cache holding it and statistics such as how many times a resource has been
requested. If the content was decided to be provided directly from the provider server, then
the cache stored is the provider. Similarly, the ResourceHTTPDASH is implemented to
store information specific to the DASH domain. It stores the URLs listed in the MPD for
each representation. The RepresentationDASH is defined to store information related to the
representation such as the frame size, the frame rate and the bandwidth among others. It
also optionally (if the stream is H.264/SVC) the dependencies from other representations.
One of the more important functionalities around these classes is the capability to map
a URL with the ResourceDASH and retrieve which representation is it contained in, for
H.264/SVC streams. This correspondence is employed by the prefetcher to be able to also
prefetch the representations on which the actual URL depends.
The ICN instances are modelled after the Icn interface. With this approach, any ICN
behavior can be easily implemented by inheritance. As an example, the IcnClosestCache
implementation redirects the traffic to the Proxy’s closest cache which, in turn, was the
closest one to the client. That implementation is extended in the IcnClosestCacheDASH,
which as its name implies, is designed to cope with DASH streams. This implementation
checks the url of the resource being inserted into the Icn and if it is an MPD, it is
downloaded and parsed in the MPDParser internal class and optimizations are applied,
e.g.: prefetching the DASH chunks as introduced in Section 5.3.3.1 and implemented
in RepesentationPrefetcher which in addition is able to prefetch H.264/SVC streams
by analyzing the dependencies between layers (so that non-dependable layers are not
requested) defined in the MPD.
Figure 6.2 shows the relation between Resources and Icn implementations and how the
implementation evolved from the HTTP transport service corresponding to what was
defined in section 5.3.2 to the DASH data aware service corresponding to 5.3.3.
As a consequence, the Prefetcher REST interface is defined as in Table 6.3, to enable the
communication of the ICNaaS and the entity issuing the requests that will populate the
cache prior to being requested. Note that in this case the ICNaaS acts as a client and not
as the service. This functionality could have been implemented as part of the controller

145

6. SDN ICNaaS evaluation

Figure 6.2: ICNaaS resource diagram.

Source Destination URL Parameters
1 ICNaaS Prefetcher /prefetch uri, server, port

Table 6.3: ICNaaS’s prefetcher northbound interface.

by means of OFPT_PACKET_IN and OFPT_PACKET_OUT messages which would in
turn imply at least 5 TCP messages (the 3-way handshake, the http request and the FIN).
That approach would depend nevertheless on the caching entity behavior when receiving
the FIN, if it still continues downloading on the server side, it would be fruitful, if not, it
would be a waste. On the other hand, this process would take these 5 messages per chunk
which would rise linearly in relation with the number of SVC layers desired. The prefetcher
implements a full HTTP heap which means that issues requests identical to those issued
by clients so that any caching system would be able to be used.
The ICNaaS application is developed as an ONOS app. The app relies on ONOS to
calculate paths between the elements of the ICN architecture and to enforce the decisions
into the network via the FlowObjective service. The FlowObjective service is an abstraction
that avoids the application the need of being aware of what actually is the methodology
to enforce the actions, meaning the Southbound provider being employed, such as if the
protocol below is OpenFlow 1.0 or 1.3.

146

6.1 Architecture Elements

F
ig
ur
e
6.
3:

IC
N
aa

S
re
du

ce
d
co
re

di
ag

ra
m
.

147

6. SDN ICNaaS evaluation

Figure 6.4: ONOS Abstraction.

6.1.2 Proxy

The proxy is in charge of the TCP Splicing as introduced in Section 5.3.2. Therefore client’s
requests are directed to the proxy. The proxy extracts the URL and notifies through the
REST API using message #1 from Table 6.2. The controller creates the corresponding
flows for adaptation.
In the first approach the proxy was implemented in python 2.6 and based on the httplib
and BaseHTTPServer libraries.
For the second proof of concept a thorough implementation was done based on the tornado
[123] python 3.6 framework. In addition, a nginx [124] proxy was deployed collocated
with the python script to redirect connections locally to the python script. This way,
incoming connections are managed by the nginx which is well known for its performance
and scalability capabilities. Source code of the proxy can be found at https://gitlab.
atica.um.es/gn3plus/gn3proxy.

148

https://gitlab.atica.um.es/gn3plus/gn3proxy
https://gitlab.atica.um.es/gn3plus/gn3proxy

6.1 Architecture Elements

6.1.3 Prefetcher

The prefetcher is the element in charge of transparently precaching content in the cache. It
implements the REST API defined in Table 6.3. This element simply issues a HTTP GET
request to the URI passed as an argument but using at the TCP/IP level the server and
port as defined in the arguments so that the connection is steered by the channel created
by the ICNaaS on top of the SDN. This approach makes the prefetching system backward
compatible with any caching software or hardware.
For simplicity the prefetcher was deployed as a side entity of the proxy but it could be
deployed anywhere into the network (even collocated with each cache). In that case the API
in Table 6.2 would be extended with a new message to register the prefetcher independently
removing the prefetch_port from message #2. The pyprefetcher is implemented in python
also based on tornado and also taking profit (thanks to being collocated with the proxy) of
the nginx Source code of pyprefetcher can be found at https://gitlab.atica.um.
es/jordi.ortiz.um.es/pyprefetcher.
Some caching appliances or software might offer other means to explicitly indicate that
a certain URI should be present in the cache. In that case, the prefetcher might make
use of that method and in some cases the ICNaaS might itself contact the cache directly.
Therefore, the cache should be also connected to ’ICN Control’ (’ICN Control’ is shown in
Figure 5.1).

6.1.4 SVC Video Player

In order to automate the execution of the evaluation and in order to measure times per
request, the ’umulibdashplayer’ was played based on the libdash library. The client issues
the chunk requests on time on forked processes and takes time and size measurement upon
completion. The client receives as an argument the desired scalability level (Dependency
Id in DASH nomenclature) and downloads the corresponding chunks as well as the
dependencies without switching. Basically, the client side adaptation algorithm were
trimmed from it. Source code can be found at https://gitlab.atica.um.es/

jordi.ortiz.um.es/umulibdashplayer.

6.1.5 Video Sources

For the first evaluation implemented in floodlight on the feasibility of employing SDN to
steer HTTP traffic on an ICN fashion, the need of eliminating the client side adaptation
factor to compare objectively the executions. The fastest way to obtain the desired results

149

https://gitlab.atica.um.es/jordi.ortiz.um.es/pyprefetcher
https://gitlab.atica.um.es/jordi.ortiz.um.es/pyprefetcher
https://gitlab.atica.um.es/jordi.ortiz.um.es/umulibdashplayer
https://gitlab.atica.um.es/jordi.ortiz.um.es/umulibdashplayer

6. SDN ICNaaS evaluation

is to encapsulate just one representation into the DASH stream. To that end, the well
known Big Buck Bunny H.264/AVC coded stream in 480p http://plexp.inf.um.es/
bitdash/bunny/ and 1080p http://plexp.inf.um.es/bitdash/bunny1080p/
was encapsulated. In addition each chunk is limited to one second of video, the minimum
encapsulation size allowed by the mp4box software.
For the evaluation of the final approach implemented on top of ONOS which
included the use of SVC streams that employed the publicly available resources from
Universität Klagenfurt Information Technology (http://www-itec.uni-klu.ac.
at/dash/?page_id=207). In particular, the Big Buck Bunny video encoded with 50
scalability levels in 360p and 720p resolutions was used.

• http://concert.itec.aau.at/SVCDataset/dataset/mpd-temp/

BBB-I-360p.mpd

• http://concert.itec.aau.at/SVCDataset/dataset/mpd-temp/

BBB-I-720p.mpd

• http://concert.itec.aau.at/SVCDataset/dataset/mpd-temp/

BBB-I-1080p.mpd

6.2 Floodlight evaluation

A first version of ICNaaS application was developed on top of Floodlight within the
environment of the GN3Plus project. The application was intended to be integrated in
the OpenNaaS framework which would be the one interacting with the ICNaaS REST
interface.
In order to evaluate our proposal, an SDN based two cache system has been deployed (see
Fig. 6.5) over University of Murcia campuses in the context of the Gaia Testbed [12] as part
of the SmartFire [125] federation. The elements smartfire3 and gaia-cache act as caches.
The gaia-proxy acts as proxy. Meanwhile smartfire2 is the streaming client and omf-gaia-1
acts as router to provide internet access to the SDN network. The controller is placed in
ATICA building collocated with the video HTTP server (http://plexp.inf.um.es).
The deployed caches are based in Squid 2.7 [126] and are configured as transparent [116]
cache. All the switches represented in the scenario are based in OpenVSwitch 1.4.2 [127].
To perform the streaming the bitdash [128] javascript software was employed. Our SDN
application has been built on top of the Floodlight controller [129] using OpenFlow protocol
as a mean to modify the switches forwarding plane.

150

http://plexp.inf.um.es/bitdash/bunny/
http://plexp.inf.um.es/bitdash/bunny/
http://plexp.inf.um.es/bitdash/bunny1080p/
http://www-itec.uni-klu.ac.at/dash/?page_id=207
http://www-itec.uni-klu.ac.at/dash/?page_id=207
http://concert.itec.aau.at/SVCDataset/dataset/mpd-temp/BBB-I-360p.mpd
http://concert.itec.aau.at/SVCDataset/dataset/mpd-temp/BBB-I-360p.mpd
http://concert.itec.aau.at/SVCDataset/dataset/mpd-temp/BBB-I-720p.mpd
http://concert.itec.aau.at/SVCDataset/dataset/mpd-temp/BBB-I-720p.mpd
http://concert.itec.aau.at/SVCDataset/dataset/mpd-temp/BBB-I-1080p.mpd
http://concert.itec.aau.at/SVCDataset/dataset/mpd-temp/BBB-I-1080p.mpd
http://plexp.inf.um.es

6.2 Floodlight evaluation

Figure 6.5: Floodlight Evaluation Scenario

151

6. SDN ICNaaS evaluation

The computers holding the OpenVSwitch are deployed in different university premises and
are connected to a Network Operations Center (NOC) provided Virtual Local Area Network
(VLAN) on top of which VTUN virtual tunnels are created providing direct connectivity
between the OpenVSwitch instances.
The software developed and deployed to evaluate this publication is publicly accessible:

• Floodlight cdn app: http://gitlab.atica.um.es/gn3plus/

cdn-floodlight

• Proxy : http://gitlab.atica.um.es/gn3plus/gn3proxy . The proxy
implements iptables to redirect all the incoming connections regardless the ip address
to the local proxy port.

First of all and as a basis for any conclusion the NOCACHE case has been tested, in this
case the client retrieve video directly from the server. Then, a typical caching system,
NOICN case, where client uses a predefined cache is tested. Finally, this paper’s proposal
or ICN case is tested. The scenario is always the same with the same caching software but
in the NOCACHE and NOICN cases the SDN controller is programmed as a L2 learning
switch.
Looking at Table 6.4 one can observe that the NOCACHE cases take longer while
downloading less data than the cases in which caches are involved. The reason for such
a difference is that the caching systems involved force pipelining allowing parallel chunk
download. On the other hand, comparing the two caching system results, it is clear that
there is no big negative impact in the streaming process when introducing the ICN approach
and no negative optical influence was detected. Note that the ICN cases achieve higher
download rates while duration is slightly higher than the NOICN cases due the initial delay
produced by the proxy signalling through the REST API. Timing takes into account from
TCP SYN message until the last TCP ACK while the DOWNRATE takes into account
only incoming packages.
In order to have experimentation results non dependent neither from web browser nor from
streaming library, another set of experiments was performed but downloading each chunk
(including the mpd file) independently, not in a video streaming process. This approach
also avoids the cloaking of any possible drawback of the solution caused by web browser
caching or pipelining systems, meaning that the NOCACHE system is also using one TCP
flow per chunk. Table 6.5 shows the statistics per chunk. As can be seen in AVERAGE
column, representing the average time in seconds for a chunk to be retrieved in each
scenario, the ICN cases mean an increase in time from 7% to 1026% but not exceeding in

152

http://gitlab.atica.um.es/gn3plus/cdn-floodlight
http://gitlab.atica.um.es/gn3plus/cdn-floodlight
http://gitlab.atica.um.es/gn3plus/gn3proxy

6.3 ONOS evaluation

any case more than 0,2 seconds per chunk, an acceptable value taking into account that the
average size of a chunk is approximately 416K for 480p and 1.2M for 1080p which is a 1s
video chunk. The best conclusion extracted is that for our ICN (0.41-4.608% enhancement
in nearest cache case) the distance between cache and client is not relevant in comparison
with the non-ICN case (80-246% enhancement in nearest cache case). The reason for
this result comes from the northbound API signalling that becomes an important part
of the consumed time per chunk. This results are for 1s video chunk which means that
fine grain video scrolling is possible without downloading extra data and reducing power
consumption. Bigger video chunks would decrease the relevance of the northbound API
signalling while smaller video chunks would not have sense for human vision although they
would influence caching fragmentation.
The TIMExBYTE column adds the chunk size as input element. Caching systems offer
the poorest results in cache miss (empty cache) cases, while best results are achieved with
the same systems in cache hit (filled up cache) cases. There is, as expected, also a slight
performance decrease when introducing this paper solution in front of the NOICN caching
but still producing enhancement over the NOCACHE case. This measurement is considered
of relevance since chunk sizes differ due to variable birate video coding (VBR) and thus
the effect in terms of TCP/HTTP overload differ as well as the burden of Northbound
signalling.

6.3 ONOS evaluation

The first evaluation performed on the Gaia Testbed with OpenVSwitch demonstrated the
feasibility of the solution, but, with the migration of the virtual OpenVswitch environment
to a hardware based scenario with the acquisition of HPE Aruba 2920 switches, the
limitations of the Floodlight controller and the arrival of new alternatives such as ONOS,
triggered the decision of migrating the system to a new controller.
To get rid of the virtual tunnels, a new infrastructure was deployed on top of our own
CWDM which was distributed among two buildings (ATICA and GaiaLab). Leveraging
on VLAN tagging and configuring QinQ the links that interconnect the SDN devices were
instantiated as shown in Figure 6.6a.
The software entities of the system (client, proxy, controller and prefetcher) virtually run
on top of LibVirt managed commodity servers and employ VLAN tagging to reach the
SDN devices. Since in this case we are not interested in introducing VLAN as part of the
equation, the VLANs are removed by employing loops on the devices that convert access

153

6. SDN ICNaaS evaluation

SCENARIO SIZE DURATION DOWNRATE
(bytes) (sec) (bps)

NOCACHE 239.891.091 557,0853 3.440.749,24
NOICN NEAREST CACHE EMPTY 272.818.063 557,4943 3.718.256,96
NOICN NEAREST CACHE FULL 251.868.515 556,9431 3.589.009,28
NOICN FURTHEST CACHE EMPTY 270.913.384 557,5884 3.712.513,85
NOICN FURTHEST CACHE FULL 267.028.208 556,8303 3.495.248,51

480p ICN NEAREST CACHE EMPTY 260.976.310 557,0979 3.747.654,28
ICN NEAREST CACHE FULL 261.228.081 557,0549 3.751.559,80
ICN FURTHEST CACHE EMPTY 261.424.570 557,1328 3.753.856,57
ICN FURTHEST CACHE FULL 261.486.751 557,4061 3.752.908,06
NOCACHE 636.082.418 562,0779 9.049.156,84
NOICN NEAREST CACHE EMPTY 788.450.118 558,8509 10.749.786,39
NOICN NEAREST CACHE FULL 729.040.424 556,9834 10.236.077,81
NOICN FURTHEST CACHE EMPTY 778.085.776 556,2790 10.691.572,16
NOICN FURTHEST CACHE FULL 770.755.922 557,2209 10.641.239,69

1080p ICN NEAREST CACHE EMPTY 758.935.705 558,8510 10.770.887,16
ICN NEAREST CACHE FULL 757.339.029 557,5036 10.867.575,12
ICN FURTHEST CACHE EMPTY 759.486.883 558,0119 10.798.963,94
ICN FURTHEST CACHE FULL 759.542.011 557,4960 10.899.336,58

Table 6.4: Streaming Client Experimentation results

ports to nearby untagged ports, thus being presented to the switch as independent clients
each one on an independent OpenFlow port. The scenario can be seen in Figure 6.6c and
the ONOS’ view of the scenario is shown in Figure 6.6b.
This evaluation not only aimed at achieving a deeper study on the effect of proxy location
on the video streaming leveraging this proposal but also introducing the H.264/SVC factor
in the equation. In addition, the original approach in which iptables was needed to make
the packets directed to the server to be accepted by the proxy or the cache, was migrated
to field rewrite inside the OpenFlow switches. To that end the results of the following
milestones are presented in this section.

• Video resolution and scalability level. The testing was performed with video
resolution in 360p, 720p and 1080p for dependency ids 1 , 2, 17 and 18 for the
videos from Universtität Klagenfurt introduced in 6.1.5.

• Proxy location. In the same switch as the client and the furthest location related to
the client.

• Cache empty and full

154

6.3 ONOS evaluation

SC
E
N
A
R
IO

AV
E
R
A
G
E

M
E
D
IA

N
ST

D
E
V
P

M
IN

M
A
X

T
IM

E
x
B
Y
T
E

se
co
nd

s
se
co
nd

s
se
co
nd

s
se
co
nd

s
se
co
nd

s
se
co
nd

s
N
O
C
A
C
H
E

0,
19

75
0,
17

38
0,
10

82
0,
01

54
1,
64

08
4,
74
39
·1
0−

7

N
O
IC

N
N
E
A
R
E
ST

C
A
C
H
E

E
M
P
T
Y

0,
26

71
0,
23

44
0,
14

21
0,
01

01
1,
53

08
6,
41
63
·1
0−

7

N
O
IC

N
N
E
A
R
E
ST

C
A
C
H
E

F
U
LL

0,
01

20
0,
00

75
0,
02

55
0,
00

17
0,
37

10
0,
28
97
·1
0−

7

N
O
IC

N
F
U
R
T
H
E
ST

C
A
C
H
E

E
M
P
T
Y

0,
10

00
0,
08

30
0,
06

33
0,
01

54
0,
79

95
2,
40
09
·1
0−

7

48
0p

N
O
IC

N
F
U
R
T
H
E
ST

C
A
C
H
E

F
U
LL

0,
06

08
0,
05

46
0,
02

38
0,
00

72
0,
15

81
1,
46
00
·1
0−

7

IC
N

N
E
A
R
E
ST

C
A
C
H
E

E
M
P
T
Y

0,
24

82
0,
21

93
0,
10

07
0,
08

46
1,
31

82
5,
96
12
·1
0−

7

IC
N

N
E
A
R
E
ST

C
A
C
H
E

F
U
LL

0,
13

60
0,
12

07
0,
05

42
0,
04

33
0,
36

75
3,
26
55
·1
0−

7

IC
N

F
U
R
T
H
E
ST

C
A
C
H
E

E
M
P
T
Y

0,
22

83
0,
20

21
0,
11

22
0,
05

83
1,
64

17
5,
48
40
·1
0−

7

IC
N

F
U
R
T
H
E
ST

C
A
C
H
E

F
U
LL

0,
12

97
0,
11

64
0,
04

81
0,
04

05
0,
33

06
3,
11
50
·1
0−

7

N
O
C
A
C
H
E

0,
36

79
0,
33

60
0,
16

17
0,
04

87
1,
61

19
8,
83
69
·1
0−

7

N
O
IC

N
N
E
A
R
E
ST

C
A
C
H
E

E
M
P
T
Y

0,
24

72
0,
21

65
0,
10

49
0,
01

12
0,
86

22
5,
93
75
·1
0−

7

N
O
IC

N
N
E
A
R
E
ST

C
A
C
H
E

F
U
LL

0,
04

09
0,
03

54
0,
02

34
0,
00

16
0,
14

61
0,
98
21
·1
0−

7

N
O
IC

N
F
U
R
T
H
E
ST

C
A
C
H
E

E
M
P
T
Y

0,
24

31
0,
20

78
0,
14

07
0,
03

21
1,
48

85
5,
83
99
·1
0−

7

10
80

p
N
O
IC

N
F
U
R
T
H
E
ST

C
A
C
H
E

F
U
LL

0,
14

16
0,
11

97
0,
06

98
0,
00

70
0,
43

91
3,
40
01
·1
0−

7

IC
N

N
E
A
R
E
ST

C
A
C
H
E

E
M
P
T
Y

0,
54

01
0,
46

47
0,
25

22
0,
06

84
2,
53

48
12
,9
73
3
·1
0−

7

IC
N

N
E
A
R
E
ST

C
A
C
H
E

F
U
LL

0,
29

34
0,
24

63
0,
14

27
0,
04

12
0,
83

55
7,
04
64
·1
0−

7

IC
N

F
U
R
T
H
E
ST

C
A
C
H
E

E
M
P
T
Y

0,
43

75
0,
38

53
0,
19

77
0,
13

92
1,
97

69
10
,5
09
7
·1
0−

7

IC
N

F
U
R
T
H
E
ST

C
A
C
H
E

F
U
LL

0,
29

46
0,
24

74
0,
14

51
0,
03

95
0,
85

20
7,
07
53
·1
0−

7

Ta
bl
e
6.
5:

P
er

C
hu

nk
E
xp

er
im

en
ta
ti
on

R
es
ul
ts

155

6. SDN ICNaaS evaluation

(a) SDN over CWDM with QinQ (b) ONOS Scenario view

(c) ONOS Scenario details

Figure 6.6: ONOS Evaluation Scenario

156

6.3 ONOS evaluation

• Finally prefetching mechanism has been evaluated

The distance from the testbed to the video sources is shown in Listing 6.1 showing a
tracepath to the server hosting the files.

1: gateway (155.54.95.1) 0.546ms

2: labredes-reservada.inf.um.es (155.54.210.254) 21.205ms

3: firewall-lan.red.um.es (155.54.213.3) 3.529ms

4: f_integra-lan.red.um.es (155.54.213.66) 4.232ms

5: XE1-0-3-60.cica.rt1.and.red.rediris.es (130.206.194.53) 12.920ms

6: CICA.AE4.ciemat.rt1.mad.red.rediris.es (130.206.245.37) 24.745ms

7: CIEMAT.AE2.telmad.rt4.mad.red.rediris.es (130.206.245.2) 25.163ms

8: rediris.mx1.mar.fr.geant.net (62.40.124.192) 43.147ms

9: ae3.mx1.mil2.it.geant.net (62.40.98.71) 45.356ms

10: ae5.mx1.vie.at.geant.net (62.40.98.38) 60.353ms

11: aconet-gw.mx1.vie.at.geant.net (62.40.124.2) 56.673ms

12: gigabitethernet9-1.klu1.aco.net (193.171.18.17) 67.056ms

13: ubwcis.edvz.uni-klu.ac.at (193.171.18.18) 66.576ms

Listing 6.1: Tracepath time from Gaia to Universität Klagenfurt where the videos are
publicly hosted.
For this evaluation, the video player described in Section 6.1.4 was employed and the
proxy’s last version as described in 6.1.2 arranged as displayed in Figure 6.6c. Finally, to
demonstrate the prefetching approach the pyprefetcher software described in 6.1.3.
In order to achieve repeatability and simplify the task of retrieving results from the testbed
the nepi-ng [130] framework was employed, developed by INRIA in the onelab context with
the experience gained during the OpenLab [9] project, which enables the automation of
experiment execution and result gathering.
Script in Listing 6.2 launches the executions for the milestones detailed above. The reasons
to have this script out of the NEPI’s script are two, the need to control the initialization
of the controller (Listing 6.3) that turned harder to be done in the python script and the
use of timeout for each run so that if any of the components falls in an infinite loop, the
execution of the rest of the experiments is not stopped. Take into account the duration of
all the execution runs:
2 clients x 2 frame sizes x 4 svc layers x 2 cache states x 20 iterations = 640 executions

640 executions x 10
min

execution
= 6400 min ≈ 106hours40minutes

157

6. SDN ICNaaS evaluation

1 #!/bin/bash

2

3 onos_app_path=/home/nenjordi/icn_onos_app/

4 this_path=$PWD

5

6 for case in "CLIENT_NEAR" "CLIENT_FAR"

7 do

8 if [[case="CLIENT_NEAR"]]

9 then

10 clientip=10.207.0.52

11 else

12 clientip=10.207.0.51

13 fi

14 mkdir -p $case/CACHE_EMPTY/

15 mkdir -p $case/CACHE_FULL/

16

17 for size in "360p" "720p"

18 do

19 for dependency in 1 2 17 18

20 do

21 for iteration in $(seq -f '%05g' 1 20)

22 do

23 date

24 echo "Launching $case($clientip) $size $dependency $iteration"

25 echo "Restarting Onos"

26 cd $onos_app_path

27 ./preparescenario.sh

28 cd $this_path

29 echo Running $case $cache $size $iteration\

30 iteration on dependency $dependency

31 cache="CACHE_EMPTY"

32 timeout 40m python ../src/emptycache.py \

33 -u http://concert.itec.aau.at/SVCDataset/dataset/mpd-temp/BBB-I-"$size".mpd \

34 -c $clientip -e 10.207.0.102 -p 10.207.0.101 \

35 -d $dependency \

36 -k "$case/$cache/$size"_"$iteration"_"$dependency"

37 timeout 40m python ../src/fullcache.py \

38 -u http://concert.itec.aau.at/SVCDataset/dataset/mpd-temp/BBB-I-"$size".mpd \

39 -c $clientip -e 10.207.0.102 -p 10.207.0.101 \

40 -d $dependency \

41 -k "$case/$cache/$size"_"$iteration"_"$dependency"

42 date

158

6.3 ONOS evaluation

43 done

44 done

45 done

46 done

47 done

Listing 6.2: Shell script to launch the scenarios

1 #!/bin/bash

2

3 ssh 10.7.0.4 -t sudo docker stop onos_phd

4 ssh 10.7.0.4 -t sudo docker rm onos_phd

5 ssh 10.7.0.4 -t sudo docker run -d -i -e KARAF_DEBUG=true \

6 -e ONOS_APPS=openflow --name onos_phd -p 6633:6633 -p 8181:8181 \

7 -p 8101:8101 -p 5005:5005 -p 8080:8080 onosproject/onos:1.10.2

8

9 nc -z 10.7.0.4 8101

10 while [$? -ne 0]

11 do

12 echo "Wainting for 10.7.0.4 to become available"

13 sleep 60

14 nc -z 10.7.0.4 8101

15 done

16 # install app

17 curl -sS --user karaf:karaf --noproxy localhost -X POST -HContent-Type:application/octet-stream http://10.7.0.4:8181/onos/v1/applications?activate=true --data-binary @icn-sdn-1.3-SNAPSHOT.oar

18 sleep 15

19 /home/nenjordi/icn_onos_app/icncreationitecuniklu.sh

Listing 6.3: Shell script to deploy onos with the ICNaaS application and register the
scenario
Listing 6.4 shows the NEPI script that arranges and synchronizes the different elements
of the experiment. Four schedulers are defined, installation, launch, stop and pull data.
Installation is in charge of launching the different components involved in each run and
cleaning any previous state if needed. Launch, launches the streaming client right after
previous phase finalization. Stop, is obviously in charge of stopping services when necessary
and finally Pull Data phase recovers the log files from the different computers to apply
further analysis. The correspondent execution for full cache case, needs to change the
commands in line 71 to stop squid, remove the squid log and start squid again which
produces a clean log file for later analysis hence using disk cache to support the relaunch
of the service and still having the data available for following requests.

159

6. SDN ICNaaS evaluation

1 #!/usr/bin/env python3

2

3 from asynciojobs import Scheduler, Job

4

5 from apssh import SshNode, SshJob, Pull, Run, RunScript

6

7 from optparse import OptionParser

8 import os

9

10 usage = ("usage: %prog -u <url> -d <dependencyid> -k <keyexp> -c <clientip> -e <cacheip> -p <proxy>")

11

12 parser = OptionParser(usage = usage)

13 parser.add_option("-u", "--url", dest="url",

14 help="DASH URL", type="str")

15 parser.add_option("-d", "--dependencyid", dest="depid",

16 help="Scalability layer to download", type="str")

17 parser.add_option("-k", "--keyexp", dest="keyexp",

18 help="Key to be used as key for values such as output path", type="str")

19 parser.add_option("-c", "--client", dest="clientip",

20 help="Client IP address", type="str")

21 parser.add_option("-e", "--cache", dest="cacheip",

22 help="Cache IP address", type="str")

23 parser.add_option("-p", "--proxy", dest="proxyip",

24 help="Proxy IP address", type="str")

25 (options, args) = parser.parse_args()

26

27 url = options.url

28 depid = options.depid

29 keyexp = options.keyexp

30 clientip = options.clientip

31 cacheip = options.cacheip

32 proxyip = options.proxyip

33

34 if not os.path.exists(keyexp):

35 os.makedirs(keyexp)

36

37 verbose_ssh = False

38

39

40 ##########

41 # Create a scheduler

42 installationscheduler = Scheduler()

160

6.3 ONOS evaluation

43 launchscheduler = Scheduler()

44 stopscheduler = Scheduler()

45 pulldatascheduler = Scheduler()

46

47 ##########

48 # Video streaming client

49 client = SshNode(hostname = clientip, username = 'nenjordi',

50 verbose = verbose_ssh)

51

52

53 ##########

54 # Proxy

55 proxy = SshNode(hostname = proxyip, username = 'nenjordi',

56 verbose = verbose_ssh)

57

58 ##########

59 # Cache

60 cache = SshNode(hostname = cacheip, username = 'root',

61 verbose = verbose_ssh)

62

63 ##########

64 # Jobs

65 cachecleanjob = SshJob(

66 # on what node do we want to run this:

67 node = cache,

68 # assign the scheduler

69 scheduler = installationscheduler,

70 # what to run

71 commands = [

72 Run('systemctl stop squid'),

73 Run('rm /var/log/squid/* -f'),

74 Run('rm /var/spool/squid/* -rf'),

75 Run('squid -z'),

76 Run('systemctl start squid'),

77],

78)

79

80 proxystartjob = SshJob(

81 # on what node do we want to run this:

82 node = proxy,

83 # assign the scheduler

84 scheduler = installationscheduler,

85 # what to run

161

6. SDN ICNaaS evaluation

86 commands = [

87 Run('cd /home/nenjordi/gn3proxy'),

88 Run('/home/nenjordi/gn3proxy/stopproxy.sh'),

89 Run('/home/nenjordi/gn3proxy/launchproxy.sh')

90],

91)

92

93 clientjob = SshJob(

94 # on what node do we want to run this:

95 node = client,

96 # assign the scheduler

97 scheduler = launchscheduler,

98 # what to run

99 command = ['/home/nenjordi/umulibdashplayer/libdash/bin/umuplayer', url, depid,\

100 '|', 'tee', '/tmp/client.log'],

101)

102

103

104 proxystopjob = SshJob(

105 # on what node do we want to run this:

106 node = proxy,

107 # assign the scheduler

108 scheduler = stopscheduler,

109 # what to run

110 command = ['/home/nenjordi/gn3proxy/stopproxy.sh'],

111)

112

113

114 # Pull data jobs

115 pullclientjob = SshJob (

116 node = client,

117 scheduler = pulldatascheduler,

118 commands = [

119 Run("echo Recovering client data from $(hostname)"),

120 Pull('/tmp/client.log', keyexp + '/client.log')

121],

122)

123

124 pullproxyjob = SshJob (

125 node = proxy,

126 scheduler = pulldatascheduler,

127 commands = [

128 Run("echo Recovering proxy data from $(hostname)"),

162

6.3 ONOS evaluation

129 Pull('/home/nenjordi/gn3proxy/icnproxy.log', keyexp + '/icnproxy.log')

130],

131)

132

133 pullcachejob = SshJob (

134 node = cache,

135 scheduler = pulldatascheduler,

136 commands = [

137 Run("echo Recovering cache data from $(hostname)"),

138 Pull('/var/log/squid/access.log', keyexp + '/squidaccess.log'),

139],

140)

141

142

143 # run the scheduler

144 ok = installationscheduler.orchestrate()

145 # give details if it failed

146 ok or installationscheduler.debrief()

147

148 ok = launchscheduler.orchestrate()

149 ok or installationscheduler.debrief()

150

151 ok = stopscheduler.orchestrate()

152 ok or stopscheduler.debrief()

153

154 ok = pulldatascheduler.orchestrate()

155 ok or pulldatascheduler.debrief()

156

157 # return something useful to your OS

158 exit(0 if ok else 1)

159

Listing 6.4: NEPI script to execute each experiment with empty cache and retrieve the
output

6.3.1 Experimentation ICNaaS Results

To present an overview of the experimentation results, Tables 6.6 and 6.7 present a
summary of the results obtained from streaming the three different frame size (360p,
720p and 1080p in column Size) for four different scalability layers (1, 2, 17 and 18 in
column Layer) with the cache both empty and full (column cache) from the client located

163

6. SDN ICNaaS evaluation

(column Position) "far" connected to the BBAA switch as shown in Figure 6.6c and "near"
being collocated with the proxy at MAT switch. For each combination, twenty streaming
processes have been sequentially carried out of which this data is representing only the
successful ones (meaning that the client didn’t abort the transmission) being represented
in the last column (#) of the tables. For each execution the mean download time per
chunk employed by the client is calculated and for the means of all the combination’s
execution the mean (µ time(s)), standard deviation (σ), minimum (Min) and maximum
(Max) values are shown.
In general the mean download time increases in relation with the number of layers and
the frame size and is reduced for the same values when the cache is full. The distance to
the proxy is clearly also affecting the mean download time. There is just an exception on
the observed values present in results for nearer client with cache empty with a frame size
of 360p and scalability layer 2 which is marked in Table 6.6. It is clear that some of the
executions have produced spikes just looking at the standard deviation or at the max value
for the row, in particular experiment number 1 has a mean of 3.9118 being the maximum
and experiment number 14 has a value of 3.4244 as can be seen in Figure 6.7. There is no
direct relation between the spurious events in each of the cases, while experiment number
1 has several values over 10 seconds in mid of the streaming process, experiment number
14 has the spurious events near the end of the process actually delaying the end of the
streaming.
Another event to be examined is the high number of failures for some of the cases also
highlighted in the tables in row #. All these cases are due a failure in the download
of the mpd file, therefore aborting the full execution of the case. Since in most cases
the connectivity fails for both the empty cache and the full cache cases which are run
sequentially thus can be assumed that it is a general connectivity problem and not a
problem in the TCPPacketProcessor or in any of the flows installed on the devices. In
addition these cases always occur in the time period between 00:00am and 05:00am which
is the time in which servers perform their backups for our lab and also for university central
offices, so although not sure it is likely that these series of experiments were affected by
those events. To what extent these experiments are influenced by the backups can be
easily accounted by the fact that the entities involved in them are virtual machines that
are backed up by the same backups.
A key factor for reactive SDN designs is the time spent in controller interaction. In this case,
the call to the northbound by the proxy is measured in contrast with the time spent by the
transaction from the proxy point of view without taking into account the communication
with the client.

164

6.3 ONOS evaluation

Position Cache Size Layer µ time(s) σ Min Max #
NEAR EMPTY 360p 1 0.5566 0.0986 0.4575 0.8349 18
NEAR EMPTY 360p 2 0.9822 0.9050 0.6192 3.9118 20
NEAR EMPTY 360p 17 0.8640 0.0281 0.8331 0.9353 18
NEAR EMPTY 360p 18 1.3140 0.0304 1.2439 1.3761 20
NEAR EMPTY 720p 1 0.7200 0.0458 0.6501 0.8655 20
NEAR EMPTY 720p 2 0.9263 0.0666 0.8478 1.0834 19
NEAR EMPTY 720p 17 1.4491 0.0467 1.3778 1.5471 20
NEAR EMPTY 720p 18 4.0224 0.1419 3.7391 4.2124 13
NEAR EMPTY 1080p 1 2.0263 0.1212 1.8678 2.3150 20
NEAR EMPTY 1080p 2 5.5988 1.2927 3.1918 8.0564 17
NEAR EMPTY 1080p 17 23.9344 4.9793 16.2921 36.0098 14
NEAR EMPTY 1080p 18 57.8806 1.9719 54.9597 61.8601 17
NEAR FULL 360p 1 0.3194 0.0340 0.2498 0.3722 19
NEAR FULL 360p 2 0.4915 0.0247 0.4499 0.5484 19
NEAR FULL 360p 17 0.7339 0.0350 0.6642 0.8016 19
NEAR FULL 360p 18 1.2505 0.0297 1.2051 1.3082 19
NEAR FULL 720p 1 0.4557 0.0391 0.3823 0.5229 20
NEAR FULL 720p 2 0.7383 0.0561 0.6569 0.9055 19
NEAR FULL 720p 17 1.2357 0.0723 1.1338 1.3917 20
NEAR FULL 720p 18 3.7616 0.1379 3.5371 4.0348 13
NEAR FULL 1080p 1 0.8795 0.0591 0.8070 1.0634 20
NEAR FULL 1080p 2 1.7749 0.1818 1.5298 2.0564 17
NEAR FULL 1080p 17 3.0292 0.2262 2.7690 3.6320 14
NEAR FULL 1080p 18 38.5018 5.7604 35.8250 56.7763 19

Table 6.6: Summary client near results

165

6. SDN ICNaaS evaluation

FAR EMPTY 360p 1 0.5963 0.0750 0.5223 0.8973 20
FAR EMPTY 360p 2 0.7341 0.0546 0.6715 0.8942 20
FAR EMPTY 360p 17 0.9997 0.0349 0.9447 1.0501 19
FAR EMPTY 360p 18 1.5339 0.0309 1.4774 1.5873 20
FAR EMPTY 720p 1 0.9612 0.0684 0.8645 1.1555 20
FAR EMPTY 720p 2 1.1508 0.0919 1.0406 1.3656 20
FAR EMPTY 720p 17 1.8513 0.0870 1.7252 2.0419 20
FAR EMPTY 720p 18 3.4871 0.2373 3.2324 4.0027 20
FAR EMPTY 1080p 1 2.9213 0.3621 2.4022 3.6007 18
FAR EMPTY 1080p 2 5.9315 1.3266 4.8449 10.5962 20
FAR EMPTY 1080p 17 23.9077 4.8543 15.2383 30.7734 18
FAR EMPTY 1080p 18 58.4258 1.4205 55.3091 61.1419 20
FAR FULL 360p 1 0.3945 0.0468 0.3203 0.5220 16
FAR FULL 360p 2 0.5615 0.0322 0.5182 0.6190 15
FAR FULL 360p 17 0.8958 0.0285 0.8291 0.9394 18
FAR FULL 360p 18 1.4229 0.0447 1.3605 1.5347 17
FAR FULL 720p 1 0.6900 0.0668 0.5699 0.8210 17
FAR FULL 720p 2 0.9457 0.0889 0.8361 1.1786 20
FAR FULL 720p 17 1.6825 0.0896 1.5422 1.8934 18
FAR FULL 720p 18 3.2933 0.1911 3.0086 3.7977 16
FAR FULL 1080p 1 1.5112 0.0711 1.3781 1.6486 13
FAR FULL 1080p 2 2.9461 0.3364 2.5351 3.7240 18
FAR FULL 1080p 17 5.0242 0.3315 4.2775 5.6981 16
FAR FULL 1080p 18 41.0001 1.0068 39.6597 43.8372 18

Table 6.7: Summary client far results

166

6.3 ONOS evaluation

P
os
it
io
n

C
ac
he

Si
ze

La
ye
r

µ
fu
ll
(s
)

σ
M
in

M
ax

µ
ct
rl
(s
)

σ
M
in

M
ax

#

N
E
A
R

E
M
P
T
Y

36
0p

1
0.
51

25
0.
09

89
0.
41

40
0.
79

02
0.
00

73
0.
00

01
0.
00

70
0.
00

75
18

N
E
A
R

E
M
P
T
Y

36
0p

2
0.
87

37
0.
74

80
0.
56

80
3.
29

54
0.
00

70
0.
00

01
0.
00

68
0.
00

72
20

N
E
A
R

E
M
P
T
Y

36
0p

17
0.
79

32
0.
02

75
0.
76

33
0.
86

56
0.
00

66
0.
00

02
0.
00

64
0.
00

70
18

N
E
A
R

E
M
P
T
Y

36
0p

18
1.
18

48
0.
02

83
1.
12

87
1.
24

21
0.
00

65
0.
00

01
0.
00

63
0.
00

68
20

N
E
A
R

E
M
P
T
Y

72
0p

1
0.
62

71
0.
04

56
0.
55

66
0.
77

16
0.
00

74
0.
00

02
0.
00

69
0.
00

78
20

N
E
A
R

E
M
P
T
Y

72
0p

2
0.
80

71
0.
06

03
0.
73

12
0.
93

83
0.
00

71
0.
00

01
0.
00

69
0.
00

73
19

N
E
A
R

E
M
P
T
Y

72
0p

17
1.
20

99
0.
03

49
1.
15

19
1.
25

80
0.
00

69
0.
00

02
0.
00

66
0.
00

73
20

N
E
A
R

E
M
P
T
Y

72
0p

18
2.
34

90
0.
04

31
2.
25

20
2.
39

14
0.
00

68
0.
00

02
0.
00

65
0.
00

73
13

N
E
A
R

E
M
P
T
Y

10
80

p
1

1.
51

70
0.
06

87
1.
40

89
1.
65

64
0.
00

69
0.
00

01
0.
00

67
0.
00

71
20

N
E
A
R

E
M
P
T
Y

10
80

p
2

2.
88

88
0.
32

74
2.
01

61
3.
31

44
0.
00

66
0.
00

03
0.
00

63
0.
00

72
17

N
E
A
R

E
M
P
T
Y

10
80

p
17

5.
90

49
0.
16

78
5.
43

74
6.
17

79
0.
00

55
0.
00

01
0.
00

53
0.
00

58
14

N
E
A
R

E
M
P
T
Y

10
80

p
18

4.
79

33
0.
07

44
4.
59

79
4.
89

15
0.
00

51
0.
00

02
0.
00

50
0.
00

58
17

N
E
A
R

F
U
LL

36
0p

1
0.
27

52
0.
03

37
0.
20

34
0.
32

71
0.
00

52
0.
00

01
0.
00

50
0.
00

55
19

N
E
A
R

F
U
LL

36
0p

2
0.
44

22
0.
02

46
0.
40

14
0.
49

88
0.
00

48
0.
00

02
0.
00

45
0.
00

50
19

N
E
A
R

F
U
LL

36
0p

17
0.
66

62
0.
03

40
0.
60

24
0.
73

21
0.
00

48
0.
00

02
0.
00

45
0.
00

53
19

N
E
A
R

F
U
LL

36
0p

18
1.
12

04
0.
02

88
1.
08

20
1.
17

67
0.
00

46
0.
00

01
0.
00

44
0.
00

49
19

N
E
A
R

F
U
LL

72
0p

1
0.
36

59
0.
03

83
0.
29

24
0.
43

25
0.
00

53
0.
00

01
0.
00

50
0.
00

55
20

N
E
A
R

F
U
LL

72
0p

2
0.
61

32
0.
04

01
0.
54

48
0.
71

66
0.
00

48
0.
00

01
0.
00

46
0.
00

52
19

N
E
A
R

F
U
LL

72
0p

17
1.
01

88
0.
05

85
0.
93

26
1.
13

64
0.
00

49
0.
00

01
0.
00

47
0.
00

51
20

N
E
A
R

F
U
LL

72
0p

18
2.
20

27
0.
04

18
2.
14

51
2.
28

01
0.
00

48
0.
00

01
0.
00

45
0.
00

50
13

N
E
A
R

F
U
LL

10
80

p
1

0.
67

72
0.
05

46
0.
61

31
0.
85

21
0.
00

50
0.
00

01
0.
00

48
0.
00

54
20

N
E
A
R

F
U
LL

10
80

p
2

1.
37

27
0.
14

11
1.
17

03
1.
57

26
0.
00

46
0.
00

01
0.
00

43
0.
00

48
17

N
E
A
R

F
U
LL

10
80

p
17

2.
13

76
0.
09

78
2.
01

68
2.
38

00
0.
00

46
0.
00

01
0.
00

44
0.
00

47
14

N
E
A
R

F
U
LL

10
80

p
18

4.
59

23
0.
05

76
4.
55

20
4.
81

55
0.
00

42
0.
00

03
0.
00

41
0.
00

51
19

Ta
bl
e
6.
8:

Su
m
m
ar
y
co
nt
ro
lle
r
re
su
lt
s

167

6. SDN ICNaaS evaluation
P
osition

C
ache

Size
Layer

µ
full(s)

σ
M
in

M
ax

µ
ctrl(s)

σ
M
in

M
ax

#

FA
R

E
M
P
T
Y

360p
1

0.4545
0.0740

0.3854
0.7534

0.0073
0.0002

0.0071
0.0076

20
FA

R
E
M
P
T
Y

360p
2

0.5704
0.0484

0.5222
0.7324

0.0071
0.0001

0.0068
0.0073

20
FA

R
E
M
P
T
Y

360p
17

0.7854
0.0261

0.7335
0.8242

0.0069
0.0001

0.0066
0.0072

19
FA

R
E
M
P
T
Y

360p
18

1.1913
0.0202

1.1498
1.2297

0.0067
0.0002

0.0065
0.0072

20
FA

R
E
M
P
T
Y

720p
1

0.6331
0.0552

0.5635
0.7847

0.0073
0.0001

0.0071
0.0076

20
FA

R
E
M
P
T
Y

720p
2

0.8320
0.0933

0.7323
1.0584

0.0064
0.0001

0.0062
0.0066

20
FA

R
E
M
P
T
Y

720p
17

1.2940
0.0664

1.2034
1.4398

0.0063
0.0001

0.0062
0.0065

20
FA

R
E
M
P
T
Y

720p
18

2.1258
0.0667

2.0228
2.2962

0.0064
0.0002

0.0061
0.0071

20
FA

R
E
M
P
T
Y

1080p
1

1.6132
0.1664

1.3964
2.0449

0.0069
0.0001

0.0067
0.0071

18
FA

R
E
M
P
T
Y

1080p
2

2.9218
0.3896

2.4507
4.2046

0.0068
0.0001

0.0065
0.0070

20
FA

R
E
M
P
T
Y

1080p
17

5.9263
0.1846

5.5105
6.1192

0.0057
0.0002

0.0055
0.0063

18
FA

R
E
M
P
T
Y

1080p
18

4.8560
0.0535

4.7451
4.9392

0.0052
0.0001

0.0050
0.0053

20
FA

R
F
U
LL

360p
1

0.2526
0.0470

0.1788
0.3828

0.0052
0.0001

0.0051
0.0054

16
FA

R
F
U
LL

360p
2

0.4024
0.0280

0.3479
0.4638

0.0048
0.0001

0.0046
0.0051

15
FA

R
F
U
LL

360p
17

0.6847
0.0243

0.6232
0.7385

0.0049
0.0001

0.0047
0.0052

18
FA

R
F
U
LL

360p
18

1.0951
0.0351

1.0440
1.1870

0.0049
0.0002

0.0046
0.0052

17
FA

R
F
U
LL

720p
1

0.3792
0.0601

0.2803
0.5001

0.0054
0.0001

0.0051
0.0056

17
FA

R
F
U
LL

720p
2

0.6331
0.0921

0.5468
0.8658

0.0045
0.0001

0.0042
0.0046

20
FA

R
F
U
LL

720p
17

1.1341
0.0545

1.0600
1.2380

0.0045
0.0001

0.0044
0.0046

18
FA

R
F
U
LL

720p
18

2.0029
0.0510

1.9217
2.1403

0.0046
0.0001

0.0044
0.0051

16
FA

R
F
U
LL

1080p
1

0.8040
0.0353

0.7432
0.8818

0.0049
0.0001

0.0047
0.0052

13
FA

R
F
U
LL

1080p
2

1.6489
0.1318

1.4554
1.9139

0.0046
0.0001

0.0044
0.0048

18
FA

R
F
U
LL

1080p
17

2.6838
0.1637

2.4095
3.0885

0.0047
0.0003

0.0044
0.0056

16
FA

R
F
U
LL

1080p
18

4.6805
0.0380

4.6282
4.7765

0.0041
0.0001

0.0040
0.0043

18

Table
6.9:

Sum
m
ary

controller
far

results

168

6.3 ONOS evaluation

Figure 6.7: Client near, cache empty, 360p, layer 2 mean dowload time value for each
succesful experiment

Tables 6.8 and 6.9 show the results from the perspective of the proxy, showing the mean
time spent for the full download (µfull(s)) from the point of view of the proxy, meaning
that timer is started when the request from the client arrives to the proxy and is stopped
when the cache has returned the data, and the mean controller time (µctrl(s)) or how much
time the REST interface with the controller is spent. Although the last value includes the
calculations for which cache to be employed or if the element is already cached among
others, it has to be taken into account that ONOS makes use of internal stores that take
the flow changes immediately but apply them afterwards on the network with a small
delay. Nevertheless, it can be easily seen that the time spent is not scaling as rapidly as
for Tables 6.6 and 6.7 which means that most of the time is spent on the link between the
proxy and the client, in addition, it is clear that the time spent by the REST interface is
almost despicable.

6.3.2 Analyzing the layering problems

It can be observed that the performance of the system is degraded when the number
of layers increases. There is no explanation in terms of algorithms for such degradation
since each HTTP request is an independent event and there is no indicative that the
controller, neither the cache were introducing extra delay. It seems that the reason for

169

6. SDN ICNaaS evaluation

such degradation is indeed related to the H.264/SVC layers involved in the experiment but
due to the fact that the switches are running OpenFlow 1.3 which is run partly on software
on the device and not by the video structure itself. To ensure that this claim is true, an
analysis was made and an example of such a case is shown in detail.
The situation analyzed and shown in detail corresponds to the execution on a client
collocated on the same switch with the proxy (near case), one jump away from the cache
which in this case was full mitigating therefore the impact of the Internet connection,
streaming the 360p version of the video and dependency id 18 (meaning that layers 18,
17, 2, 1 and 0 need to be downloaded for each chunk). In particular this corresponds
to the sixth iteration out of 20 for this particular use case. Table 6.10 shows the time
spent for each data chunk in the moment in which the degradation is perceived. Layers of
segment 277 take in average more than 2 seconds to be downloaded. Taking into account
that 2 seconds is a proper caching time for DASH video clients this would mean that
this chunks would arrive late to the decoding and either would be discarded either would
stop the decoding process performing frozenness to the video play. Table 6.11 shows the
corresponding timing in the squid cache and as can be observed, the increase is not related
to the cache miss/hit case (although all the chunks have been previously cached, squid
has its own eviction policies which can cause cache miss events), as a particular example
seg279-L2 needs 2 ms for the cache while the result is over 1.4 seconds.
The next element to be analyzed while looking for explanations is the sdn controller and
the time taken to serve the proxy request (the flow creation contained in that time). The
mean for the controller request is of 0.00466778 seconds (as shown in Figure 6.8), while
the full time (including the time to recover the data from the cache) is of 1.10853. The
conclusion is that the data plane is introducing the delay. And finally taking a look at
Figure 6.9, that presents the CPU usage of the network nodes recovered with SNMP and
dumped on a InfluxDB which in turn is accessed by Kibana for plotting the figure, can
be observed that at 17:55:30 there is a peak of 100% cpu corresponding to the analyzed
moment. The timestamps of the three elements shown in the study are partly synchronized
by Network Time Protocol (NTP) and even though it is not precise to microsecond, it is
accurate enough to correlate the information and describe the problem.
In addition to that particular case, it can be seen thorough the observation of the effect
of a complete series of twenty executions on each client how the cpu of the switches is
used and therefore its effects on Tables 6.6 and 6.7 last rows (highlighted in gray). Figure
6.10a and Figure 6.10b show the cpu usage for the client’s switch collocated with the proxy
(near scenario and tagged as MAT) and the client’s switch placed on the other end of the
scenario(far scenario tagged as BBAA) as well as the switch bordering with the router

170

6.3 ONOS evaluation

TimeStamp Download Time Data chunk size
Wed Dec 20 17:55:28 2017 0.315126 sec 360p/BBB-I-360p.seg278-L18.svc 38773bytes
Wed Dec 20 17:55:29 2017 1.7521 sec 360p/BBB-I-360p.seg277-L17.svc 55108bytes
Wed Dec 20 17:55:29 2017 1.82293 sec 360p/BBB-I-360p.seg277-L2.svc 69702bytes
Wed Dec 20 17:55:29 2017 2.01693 sec 360p/BBB-I-360p.seg277-L1.svc 101344bytes
Wed Dec 20 17:55:29 2017 2.20274 sec 360p/BBB-I-360p.seg277-L16.svc 133002bytes
Wed Dec 20 17:55:29 2017 2.37001 sec 360p/BBB-I-360p.seg277-L0.svc 149206bytes
Wed Dec 20 17:55:30 2017 1.73863 sec 360p/BBB-I-360p.seg278-L17.svc 45568bytes
Wed Dec 20 17:55:30 2017 1.77656 sec 360p/BBB-I-360p.seg278-L2.svc 48789bytes
Wed Dec 20 17:55:30 2017 1.94013 sec 360p/BBB-I-360p.seg278-L1.svc 73112bytes
Wed Dec 20 17:55:30 2017 2.07093 sec 360p/BBB-I-360p.seg278-L16.svc 106739bytes
Wed Dec 20 17:55:30 2017 2.20616 sec 360p/BBB-I-360p.seg278-L0.svc 153626bytes
Wed Dec 20 17:55:31 2017 1.21208 sec 360p/BBB-I-360p.seg279-L18.svc 19456bytes
Wed Dec 20 17:55:32 2017 0.0819143 sec 360p/BBB-I-360p.seg280-L18.svc 13750bytes
Wed Dec 20 17:55:32 2017 1.41701 sec 360p/BBB-I-360p.seg279-L2.svc 23061bytes
Wed Dec 20 17:55:32 2017 1.5106 sec 360p/BBB-I-360p.seg279-L17.svc 33973bytes
Wed Dec 20 17:55:32 2017 1.61031 sec 360p/BBB-I-360p.seg279-L1.svc 54744bytes
Wed Dec 20 17:55:33 2017 1.86638 sec 360p/BBB-I-360p.seg279-L16.svc 96010bytes
Wed Dec 20 17:55:33 2017 1.95353 sec 360p/BBB-I-360p.seg279-L0.svc 118385bytes
Wed Dec 20 17:55:33 2017 1.2821 sec 360p/BBB-I-360p.seg280-L2.svc 11132bytes
Wed Dec 20 17:55:33 2017 1.53678 sec 360p/BBB-I-360p.seg280-L17.svc 32539bytes
Wed Dec 20 17:55:33 2017 1.55224 sec 360p/BBB-I-360p.seg280-L1.svc 33484bytes
Wed Dec 20 17:55:34 2017 1.89187 sec 360p/BBB-I-360p.seg280-L0.svc 96057bytes

Table 6.10: Detail of client logs in which the performance is degraded.

171

6. SDN ICNaaS evaluation

TimeStamp Time(ms) cache result element
20/Dec/2017:17:55:27 36 TCP_HIT/200 360p/BBB-I-360p.seg277-L18.svc
20/Dec/2017:17:55:28 205 TCP_MISS/200 360p/BBB-I-360p.seg278-L18.svc
20/Dec/2017:17:55:28 233 TCP_MISS/200 360p/BBB-I-360p.seg277-L17.svc
20/Dec/2017:17:55:28 274 TCP_HIT/200 360p/BBB-I-360p.seg277-L2.svc
20/Dec/2017:17:55:28 498 TCP_HIT/200 360p/BBB-I-360p.seg277-L1.svc
20/Dec/2017:17:55:29 656 TCP_HIT/200 360p/BBB-I-360p.seg277-L16.svc
20/Dec/2017:17:55:29 746 TCP_HIT/200 360p/BBB-I-360p.seg277-L0.svc
20/Dec/2017:17:55:29 134 TCP_HIT/200 360p/BBB-I-360p.seg278-L17.svc
20/Dec/2017:17:55:29 177 TCP_HIT/200 360p/BBB-I-360p.seg278-L2.svc
20/Dec/2017:17:55:29 376 TCP_HIT/200 360p/BBB-I-360p.seg278-L1.svc
20/Dec/2017:17:55:30 601 TCP_HIT/200 360p/BBB-I-360p.seg278-L16.svc
20/Dec/2017:17:55:30 804 TCP_HIT/200 360p/BBB-I-360p.seg278-L0.svc
20/Dec/2017:17:55:31 1 TCP_HIT/200 360p/BBB-I-360p.seg279-L18.svc
20/Dec/2017:17:55:32 1 TCP_HIT/200 360p/BBB-I-360p.seg280-L18.svc
20/Dec/2017:17:55:32 2 TCP_HIT/200 360p/BBB-I-360p.seg279-L2.svc
20/Dec/2017:17:55:32 106 TCP_HIT/200 360p/BBB-I-360p.seg279-L17.svc
20/Dec/2017:17:55:32 169 TCP_HIT/200 360p/BBB-I-360p.seg279-L1.svc
20/Dec/2017:17:55:32 460 TCP_HIT/200 360p/BBB-I-360p.seg279-L16.svc
20/Dec/2017:17:55:32 591 TCP_HIT/200 360p/BBB-I-360p.seg279-L0.svc
20/Dec/2017:17:55:33 1 TCP_HIT/200 360p/BBB-I-360p.seg280-L2.svc
20/Dec/2017:17:55:33 113 TCP_HIT/200 360p/BBB-I-360p.seg280-L17.svc
20/Dec/2017:17:55:33 113 TCP_HIT/200 360p/BBB-I-360p.seg280-L1.svc
20/Dec/2017:17:55:33 463 TCP_HIT/200 360p/BBB-I-360p.seg280-L0.svc

Table 6.11: Detail of cache logs in which the performance is degraded.

172

6.3 ONOS evaluation

Figure 6.8: Client near, cache full, frame size 360p, Layer 18 mean time for proxy-controller
interactions.

giving access to the Internet (labeled as GAIA).
It can be seen how the switch to which the proxy is connected (MAT) is almost constantly
at 100% cpu. The overhead in this switch is in two factors, one is that it receives the
traffic from the client and also the traffic directed to the cache. This last one is important
because each http connection is managed with two OpenFlow flows. The effect can also
be seen in GAIA that is holding the cache and acting as a pass-through switch for the
proxy-client connection (case far shown in Figure 6.10b) therefore having the same amount
of packets passing by. There is a slight reduction in GAIA cpu in the case in which the
client is collocated with the proxy, traffic between them is not passing through GAIA
(corresponding to case near and shown in Figure 6.10a) and despite having a high cpu
usage, it can be seen easily the reduction. The same effect can be seen in BBAA which is
only having traffic in the far case (b). The cpu usage for BBAA in that case is very low
which is explained that the fact that the switch is only rewriting ip addresses and macs
for the response packets in the TCP connection between client and proxy. These series
of tests show clearly how just one client overwhelms the switches when the packets need
to be sent to the operating system kernel for advanced computations not available in the
hardware pipeline.

173

6. SDN ICNaaS evaluation

F
igure

6.9:
C
P
U

usage
ofthe

sw
itches

in
the

testbed

174

6.3 ONOS evaluation

(a
)
C
P
U

us
ag

e
of

th
e
sw

it
ch
es

in
th
e
te
st
be

d,
al
le

xe
cu
ti
on

s
fo
r
cl
ie
nt

ne
ar
,
ca
ch
e
fu
ll,

10
80

p
an

d
La

ye
r

18 (b
)
C
P
U

us
ag

e
of

th
e
sw

it
ch
es

in
th
e
te
st
be

d,
al
le

xe
cu

ti
on

s
fo
r
cl
ie
nt

fa
r,
ca
ch
e
fu
ll,

10
80

p
an

d
La

ye
r
18

175

6. SDN ICNaaS evaluation

6.3.3 Evaluating the Prefetching Mechanism

The prefetching mechanism described in 6.1.3 has been evaluated by a series of executions
of the scenario in which the client farther away from the proxy streams 360p video at
H.264/SVC layer 17. 182 Streaming processes were carried out with a clean squid cache for
each process. In terms of cache hit ratio the prefetching mechanisms achieves in average
60.37% while the same case for the 20 executions carried out as the evaluation of the
ICNaaS achieved a 98, 66% with a squid from which a second round for the same video is
retrieved, meaning that the cache has been already filled. In average 2013 HTTP requests
are performed to the cache of which 722 are hits that for each layer has a ratio of L0 →
57, 87%, L1 → 76, 26%, L16 → 51, 50% and L17 → 55, 84%. In average the first hit is
achieved 1,8 seconds after the MPD file is retrieved while the precaching process is finished
4 minutes and 43 seconds afterwards.
Analyzing why the results are so distant from the 100% cache hit ratio, there is a
slight difference between the number of requests received by the prefetche, the prefetcher
receives in mean 817 requests from the controller while only 722 materialize into cache hits
afterwards. In any case, there should be 1196 requests corresponding to 299 files per layer
so there are some requests not being performed from the controller. Looking at the logs
in general there is a delay on the requests for the two higher layers. In general, the two
lower layers (0 and 1) are fully requested prior to any chunk of the upper layers. Although
debugging of the controller’s prefetching algorithms and prefetching threading should be
done to achieve better results, the experiments achieved the goal proposed for this Thesis.
Demonstrate that the SDN controller can take profit of the data layer (the H.264/SVC
chunk description in the MPD) to trigger protocol specific (prefetcher DASH flows to the
cache) actions in real time.

6.4 Conclusions

This chapter has introduced and evaluated the implementations of the proposal described
in Chapter 4. The results shown in this chapter are the evolution of research in SDN and
ICN as well as CDN within the context of the gn3plus [10] project.
The proof of concepts have shown the feasibility of proxying an HTTP connection by means
of SDN traffic steering and how the inspection of the application layer can be fed to the
SDN controller to steer the proxy connection to the content source based on the url and
some other metadata, such as the MPD for DASH connections or the scalability layer for
H.264/SVC on top of DASH.

176

6.4 Conclusions

Additionally, the whole ICNaaS concept is demonstrated by implementing the REST
interfaces that would be used by the Content Provider as a mean to instantiate and
configure the ICN instances.
The prefetching concept is demonstrated for any DASH stream and in particular for
H.264/SVC by taking profit of the inter-layer dependency at the moment of selecting which
chunks should be downloaded. The backward compatibility of the concept is demonstrated
by employing a standard squid cache, a well known and widely deployed piece of software.
As a result of the evolution of the architecture presented in previous chapter two software
implementations were performed and evaluated. One on top of the floodlight [129]
controller and another on top of ONOS [14], a growing trend in terms of open source
SDN controllers. As a side effect of the elaboration of this Thesis, contributions to the
core code of ONOS have been made while investigating the Meter concept introduced with
OpenFlow 1.3.
One of the more promising capabilities of OpenFlow is the standardization of a common
communication channel and set of capabilities that homogenize the device ’flora’.
Nevertheless and as has been explained in this Chapter, not taking into account the
hardware capabilities of a device is a fatal error, although capabilities can be retrieved from
the switch and the software tables can be avoided unless really necessary, that approach is
only feasible for a small amount of packets.
The approach introduced in this Thesis for inspecting the URL is based on the introduction
of a stateful proxy that remains during the whole conversation as a man-in-the-middle but
its purpose is finished just after the URL is obtained and the controller is notified with the
value. Two ways to remove the proxy are envisioned:

• One is introducing a padding that synchronizes the ack values for the proxy server side
and the controller server side so that when the url is retrieved some flows rewriting
IP addresses can directly connect the client and the server side overlooking the proxy.
The big problem with this approach is that TCP is so well designed that the sequence
number ranges are up to 4 Gigabytes which is too much information to be used as
padding. Multiple connections could be started from the proxy, as many as the
statistics demonstrates enough to obtain the desired results and a study would be
needed, and use the connection which produces an ack value on the server nearer to
the one employed with the client by the proxy, nevertheless it is not a predictable
method since is based on statistics and would probably be limited by Denial of Service
(DoS) countermeasures.

• Another method would be a more hardware related one in which the openflow

177

6. SDN ICNaaS evaluation

protocol would introduce a new action dedicated to shift the sequence number values
in the TCP connections, it is a ’simple’ addition to a 32 bit field per packet and would
probably be interesting for other applications. Despite the simplicity, it is also true
that it probably would be an optional action that the vendor might see as expendable,
like the ip address rewriting in the switches employed in the Gaia laboratory. In
this direction the P4 [131] protocol, intended to modify programmable data-plane of
the network switches, could be employed since it already defines in section 8.5 the
addition operation on unsigned integers.

Despite the fact that remaining loyal to HTTP and TCP introduces a hughe cost and
complexity, it is also true that both protocols are the standard de-facto and must be
integrated in any proposal for the future internet in a seamless and transparent manner.
Adopting UDP adaptors allow for a more richful work on the backplane with the OpenFlow
switches but introduces problems related to breaking the connection chain on upper levels.
The work presented in this chapter could be easily extended by incorporating the NFV
paradigm. A proposal that reuses the ICNaaS and the SDN leveraged HTTP ICN paradigm
has been presented already (waiting for review) to be used within a Mobile Edge Computing
positioning system to provide faster network interactions independent from the network
address employed and tied to content generation position.

178

Chapter 7

Conclusions and future work

This chapter provides a summary of the thesis, its main contributions and conclusions, and
discusses the envisaged future work.

7.1 Summary and main contributions

The increase in network bandwidth capabilities gave rise also to the emergence of video
streaming services. In the case of the Internet, this rise is estimated to consume 80% of all
consumer traffic by 2019 [40] therefore the importance to analyze and optimize how video
is transported over the network.
This Thesis has suffered a technological evolution hand by hand with that of video
streaming and computer networks. First related works were linked to the Scalnet Project
[100] and were surrounded by datagram based video streaming, synchronized and signaled
by the well known RTP and Real-time Streaming Protocol (RTSP) protocols. At the
same time the work was influenced by the appearance of H.264/SVC as a mean to reduce
bandwidth consumption by exploiting picture similarities at different operation points.
The PhD work analyzed an available and standardized transmission mechanism (SCTP)
to be employed as video transmission mechanism and in particular H.264/SVC video. The
research work investigated the different possibilities offered by SCTP and its extensions,
applying them to the solely purpose of reducing bandwidth consumption while asserting
the best QoE possible for the same QoS.
Soon, and in the context of the OpenLab [9] and SmartFire [125] projects, the video
streaming paradigm evolved with the standardization of DASH and the appearance of other
HTTP-based video streaming mechanisms, therefore further research was accomplished
having in mind the new de facto standard. At the same time but in the networking field,

179

7. Conclusions and future work

the research community had started to face the ossification of the IP based networking and
the FI emerged. Hence, this Thesis has evaluated two different paradigms related to the
FI, HIMALIS and CCN which employ a clean-slate approach to the network ossification.
In addition, the emerging IoT ecosystem captured the attention of the community as well
as mine and decided to take profit of the aforementioned systems evaluation to inspect how
video encoded for and by the ’things’ would affect the networks on which was foreseeable
to be transmitted the data. The exposed work and the articles in which it is supported,
provide with a first evaluation of these systems albeit leaving the simulators to use a world
wide testbed such as PLE. In addition, evaluation repeatability, usually a lack in our
research field, was obtained by using NEPI framework.
Finally, the SDN paradigm and its maximum exponent OpenFlow emerged, germinating
from the seeds spread with its standardization. Apart from the technical qualities of
OpenFlow, one of its more interesting characteristics is the attention it attracted from
the networking industry in general. National Research and Education Networks (NRENs)
and in particular their European counterpart, G’eant, were also attracted by the new
paradigm, therefore G’eant projects last three years have been pursuing the adoption of
this technology for the provision of enhanced services. The experience gained during the
project and the feedback obtained by NREN’s colleagues gave birth to the ICNaaS proposal
and its two implementations. ICNaaS is an ’as a Service’ approach to the provision of ICN
alike services with a high backward compatibility. The layered design of the solution makes
it easily extensible and migratable to other application domains. The two evaluations
performed have demonstrated the feasibility of the system despite the problems found on
each implementation. In order to be able to evaluate such systems the first two and only
University of Murcia’s SDN networks deployments have been performed as part of this
Thesis and will remain there for further research.
Part of the research performed has produced technical outputs that have already been
placed on the opensource community in the form of contributions to two of the most
influencing pieces of software in their scope. The Open source audio and video processing
tools (LibAV) [13] as a mainstream library for video and audio coding and transmission,
which received SCTP as well as dirac contributions (the last one out of the scope of this
thesis) and ONOS [14] one of the two more popular opensource SDN controllers which
received several patch-sets related to OpenFlow’s metering capability as a result of the
interest provoked by the pursuit of QoS for the H.264/SVC over ICNaaS evaluation.

180

7.2 Future work

7.2 Future work

In order to close this Thesis, a few future research lines, as well as side enhancements to
the presented work, are introduced. The items are presented in an order relative to this
document chapters being at the same time a summary with few extensions of the future
work introduced in each chapter.

7.2.1 SCTP

7.2.1.1 Research lines

The extensions introduced in this work already introduce a new plethora of parameters
and the inclusion of new extensions such as the commented SCTP-PF extension.

7.2.1.2 Technical gaps

The study presented in this Thesis related to SCTP as a mean to transport H.264/SVC
video could be extended with a thorough study of SCTP’s parameters for each video
streaming use case, meaning live video and Bandwidth On Demand (BoD).
The promising results presented in this Thesis should be backed up by a real evaluation.
This work that should be trivial for a standardized IETF protocol should not be
underestimated. SCTP implementations for various systems are minimal, the best
support is provided by FreeBSD with a patch including the aforementioned extensions
to be applied to the BSD kernel https://github.com/sctplab/sctp-refimpl/
tree/master/KERN, while linux support is restricted to the already standardized
implementation and not frequently updated, Windows systems on the other hand do not
have SCTP native support at all. A good option to carry out such an evaluation would
be using the multi-platform non-kernel libraries from sctplab https://github.com/

sctplab/usrsctp, despite not being code not part of the operating system kernel which
means that is executed at lower priority, it would allow a thorough evaluation and to be
installed in distributed testbeds such as PLE in which the kernel is limited to that being
executed at the host.

7.2.2 FI

The FI approach is still valid and has become more important each day. What was
considered future, such as IoT or SDN has become the present as the industry has started
to accept them and take profit of their capabilities or their business value.

181

https://github.com/sctplab/sctp-refimpl/tree/master/KERN
https://github.com/sctplab/sctp-refimpl/tree/master/KERN
https://github.com/sctplab/usrsctp
https://github.com/sctplab/usrsctp

7. Conclusions and future work

7.2.2.1 Research lines

Some others had not attracted industry’s attention but have not yet been superseded such
as HIMALIS, alternatives have though been available for long like Mobile Oriented Future
Internet (MOFI).
The validity of ICN principles has increased and attracts more attention each time,
therefore upgrading the study of this Thesis on FI architectures for content centered
delivery would be desirable.
Focusing on the IoT and its evolution, now that IoT devices are easily available, an study
of their video capabilities, formats and network streams should be made, updating the
premises in which the study presented in this Thesis was founded.

7.2.2.2 Technical gaps

New ICN software has been delivered by the community (such as Named Data Networking
(NDN) hosted by the ’Named data networking’ project [132]) and distributed deployments
have (such as CiCN [133]) have been instantiated simplifying the process of creating a
proof of concept with which validate the studies.

7.2.3 ICNaaS

ICNaaS architecture presented in Chapter 5 is a generic HTTP content centered delivery
system, therefore easily adaptable to other application domains not centered on DASH
video streaming.

7.2.3.1 Research lines

As a first approach, it has been proposed as a mechanism to optimize communications in
a location system, where the user mobile phone employs REST calls to a server to off-load
position calculations to a commodity server. With the adoption of the ICNaaS architecture,
those calls are directed to the nearest commodity server in a ’fog’ like approach allowing
later requests for the data to be optimally directed to the commodity server that made the
calculation, that work is under review process.
The video application of ICNaaS still has some fields in which can be extended, and in
particular taking profit of scalable or multi-view coding, such as the caching algorithms
and how the content can be balanced over the caches depending on the business strategy,
that strategy can be in addition observed from two point of view, the content provider who

182

7.2 Future work

probably wants to reduce the latency and enhance the perceived QoE of the user and the
ISP that would probably focus on reducing the backbone stress.
One of the items not faced by the work carried out and of capital relevance in nowadays
communications is security.
Later technologies like NFV and Management and Orchestration (MANO) offer, among
other capabilities, the virtualisation of network elements such as the named proxy, but
even without adopting those technologies, the proposal in this Thesis already considered
the possibility of having various proxies per ICN instance, up to one proxy per client,
more could be registered but would be unused. In general when speaking about video
transmission optimisation techniques, security is delegated to a second phase and although
there is work already done in the research community it is an open field for research.
The ICNaaS architecture could be enhanced by adopting transport layer protocols more
suitable for transmission, speaking about multimedia transmissions, the presented SCTP
extensions could be adopted and/or other emerging protocols like QUIC could be studied
as TCP alternatives.
Finally, the adoption of orchestration mechanisms and the integration of the ICNaaS as an
NFV service is envisioned as crucial for the continuity of the proposal. Should the SDN
controller within the NFV be exposed to the ICNaaS? Should the ICNaaS be sitting on
top of such a controller? Should a virtual network be exposed to a virtual SDN controller
running on top of the NFV architecture? There are still some open questions and work to
be done.

7.2.3.2 Technical gaps

The impact of adopting HTTPS in the ICNaaS architecture should be similar to that of
adopting that technology on CDNs. The proxy in charge of inspecting the URL and acting
as relying party between the HTTP client and the data source needs the cryptographic
material from the content provider in order to be identified as part of the later. That
is a common practice in CDNs, the advantage is that there is no need to deploy that
same material on the nodes actually providing with the content, mainly the caches. The
disadvantage is that the proxy becomes a bottleneck when not properly scaled.
The experience obtained while evaluating the ICNaaS proposal demonstrated that,
although the SDN controllers try (in general) to abstract the network programmer from
the devices running the network, it is necessary to make the applications aware of the
capabilities of the devices. Therefore a review on the northbound interfaces exposed by
controllers is needed, if not capabilities per device, certainly there is a need for capabilities

183

7. Conclusions and future work

per path and the possibility to forbid the software based capabilities. From the practical
experience, unless the devices is very powerful, while performing software modifications to
the packet in the device it is better to adopt a virtual switch on a commodity server where
CPU power is not a concern.
The proxy removal by synchronizing the client side and the server side TCP streams could
probably be accomplished with programmable switches by means of the P4 [131] protocol.
P4 indeed opens a new world of possibilities but also new challenges.

184

Glossary

AHS Adaptive HTTP Streaming. 23

API Application Programming Interface. 115, 136, 140, 141

ARP Address Resolution Protocol. 116

AS Autonomous System. 30

BGP Border Gateway Protocol. 30

CCN Content-Centric Networking. 2, 3, 5, 40, 42, 69, 89–95, 99, 103, 106–110, 112–114,
116, 123

CDN Content Delivery Network. 2, 6, 25–27, 40–42, 112–114, 116

CMT-SCTP Concurrent MultiPath Transfer for Stream Control Transmission Protocol.
47, 49, 50, 52, 53, 67

CPU Central Processing Unit. 46, 158, 159

DASH Dynamic Adaptive Streaming over HTTP. 5, 6, 23–25, 41–43, 73–76, 79–82, 84,
86, 88, 89, 92, 93, 99, 103, 106, 108, 112, 119, 120, 123, 125, 131, 133, 137, 141, 142,
155

DNS Domain Name System. 37–39, 113

DONA Data-Oriented Network Architecture. 39, 40

DoS Denial of Service. 27

dpid OpenFlow Datapath ID. 120, 121, 136

eBGP External Border Gateway Protocol. 30

185

Glossary

EID Endpoint Identifier. 37

Ethane Ethane: A Protection Architecture for Enterprise Networks. 31, 35

FI Future Internet. 1–3, 5, 42, 69, 70, 72–110, 113

ForCES Forwarding and Control Element Separation. 29, 30

GSMP General Management Switch Protocol. 28

H.264/AVC Advanced Video Coding. 14, 24, 43, 46, 125, 126, 142

H.264/SVC Scalable Video Coding. 3, 4, 6, 45–48, 67, 120, 123, 125–127, 131, 133, 137,
146, 155

HD High Definition. 67

HEVC High Efficiency Video Coding. 14

HIMALIS Heterogeneity Inclusion and Mobility Adaptation through Locator ID
Separation. 2, 3, 5, 38, 69, 74–76, 78–84, 86–89, 93, 106–110

HIP Host Identity Protocol. 37, 38

HLS HTTP Live Streaming. 23

HTTP HyperText Transfer Protocol. 2, 3, 5, 6, 12, 13, 22–24, 26, 42, 43, 67, 74, 76, 79,
86, 89, 95, 106, 108, 112, 113, 116, 118, 123–125, 133, 136–138, 140–142, 145, 155

HTTPS HTTP over TLS. 27

iBGP Internal Border Gateway Protocol. 30

ICMP Internet Control Message Protocol. 74

ICN Information Centric Networking. 2, 5, 6, 36, 38, 39, 41–43, 69, 89, 103, 106, 112–116,
118–121, 123, 124, 133, 134, 136–138, 141

ICNaaS Information Centric Network as a Service. 6, 40, 41, 113, 115, 117, 118, 120,
121, 123–125, 131–139, 141, 142, 151

IEC International Electrotechnical Commission. 111

186

Glossary

IETF Internet Engineering Task Force. 28–30, 111

IoT Internet of Things. 3, 5, 27, 38, 69, 70, 72–75, 77, 79, 81, 83, 85–87, 89, 91, 93, 95,
97, 99, 101–103, 105–107, 109

IP Internet Protocol. 3, 5, 30, 45, 108, 112–114, 116, 118, 120, 121, 136, 141

IRTF Internet Research Task Force. 38

ISDN Integrated Services Digital Network. 2, 14

ISO Organization for Standardization. 111

ISP Internet Service Provider. 26, 40–42, 111, 114–116, 121, 124, 131

ITU-T ITU’s Telecommunication Standardization Sector. 12

kbps kilobit per second. 95, 100, 102

LISP Location/ID Separation Protocol. 37, 38

mac Media Access Control. 116, 120, 121, 136

MANE Media Aware Network Element. 126

MEC Mobile Edge Computing. 114, 119

MOFI Mobile Oriented Future Internet. 38

MPD Media Presentation Description. 23, 24, 43, 106, 112, 123, 125, 126, 137

MPEG Moving Picture Experts Group. 13, 14, 23

MTU Maximum Transmission Unit. 70, 75, 81–84, 87, 88, 93–99, 101–105

NALU Network Abstraction Layer Unit. 46

NAT Network Address Translation. 112

NEPI Network Experimentation Programming Interface. 5, 74, 76, 108, 149, 151, 155

NetConf Network Configuration Protocol. 30, 31

NetInf Network of Information. 39

187

Glossary

NICT National Institute of Information and Communication Technology of Japan. 38

NOC Network Operations Center. 41, 142

NodeID Node Identity Internetworking Architecture. 37

NOS Network Operating System. 31, 32

NTP Network Time Protocol. 158

ONOS Open Network Operating System. 7, 136

OpenCache OpenCache. 41, 42

OpenFlow OpenFlow Protocol. 27, 31–33, 35, 36, 42, 115, 116, 118, 120, 121, 136, 138,
142, 146, 155

OPENSIG Open Signalling Working Group. 28

OSI Open Systems Interconnection. 32

PLE PlanetLab Europe. 5, 6, 74–76, 79, 81, 86, 89, 91, 93, 99, 100, 103, 106

PSIRP Publish-Subscribe Internet Routing Paradigm. 39, 40

PSNR Peak Signal Noise Ratio. 52, 53, 84, 85, 99–103

PURSUIT Publish Subscribe Internet Technology. 39, 40

QoE Quality of Experience. 12, 53, 84, 100–103

QoS Quality of Service. 7, 26

RANGI Routing Architecture for the Next Generation Internet. 37

RCP Routing Control Platform. 30

RDA Rate Determination Algorithm. 125, 131

REST REpresentation State Transfer. 115, 133–137, 140–142

RLOC Routing Locator. 37

RPC Remote Procedure Call. 30, 31

188

Glossary

RTMP Real-time Messaging Protocol. 7, 13

RTP Real-time Transport Protocol. 7, 13, 45, 47–49, 51, 52

RTSP Real-time Streaming Protocol. 7, 13, 25, 26

RTT Round Trip Time. 35, 76, 93, 100, 106

SAP Session Announcement Protocol. 13

SCTP Stream Control Transmission Protocol. 3, 4, 7, 8, 14, 45–54, 56, 58, 60, 62, 64,
66–68

SDN Software Defined Networking. 3, 4, 6, 7, 27, 29–31, 35, 36, 41, 42, 113–116, 118,
120, 121, 123–125, 131, 133, 136, 141, 142

SDP Session Description Protocol. 13

SHVC Scalable High-Efficiency Video Coding. 43, 67

SLA Service Level Agreement. 41

TCP Transmission Control Protocol. 5, 22, 45–49, 52, 67, 76, 89, 111, 112, 116, 118, 120,
121, 123, 136, 138, 141

UDP User Datagram Protocol. 5, 35, 45–47, 76, 86, 111

URI Uniform Resource Identifier. 106, 118, 141

URL Uniform Resource Locator. 6, 23, 116, 120, 121, 123, 134, 137, 140

VCEG Video Coding Experts Group. 13

VCR Video Cassette Recorder. 12, 13

VLAN Virtual Local Area Network. 35, 142

VoD Video on Demand. 25, 41–43, 45

WebRTC Web Real-Time Communications. 43

WLAN Wireless Local Area Network. 42

XML eXtensible Markup Language. 30, 112

189

Glossary

190

Bibliography

[1] Jordi Ortiz, Eduardo Graciá, and Antonio F Skarmeta. SCTP as scalable video
coding transport. EURASIP Journal on Advances in Signal Processing, 2013(1):115,
2013.

[2] Eduardo Martinez, Jordi Ortiz, L Rafael, and Antonio F Skarmeta. Video adaptation
based on the SVC file format. CONTENT 2013 : The Fifth International Conference
on Creative Content Technologies, (c):30–37, 2013.

[3] Jordi Ortiz, Pedro Martinez-Julia, and Antonio Skarmeta. 6. information-centric
network for future internet video delivery. In User-centric and Information-centric
Networking and Services: Access Networks and Emerging Trends. Taylor & Francis,
2018.

[4] Y. Nishida, P. Natarajan, A. Caro, P. Amer, and K. Nielsen. SCTP-PF: A Quick
Failover Algorithm for the Stream Control Transmission Protocol. Technical report,
2016.

[5] J. Iyengar, P. Amer, and R. Stweart. Concurrent multipath transfer using sctp
multihoming over independent end-to-end paths. IEEE/ACM Transactions on
Networking, 14(5), 2006.

[6] R. Stewart, M. Ramalho, Q. Xie, M. Tuexen, and P. Conrad. RFC 3758: Stream
Control Transmission Protocol Partial Reliability Extension. Internet Engineering
Task Force, 2004.

[7] M. Ransburg, E. Martínez Graciá, T. Sutinen, J. Ortiz, M. Sablatschan, and
H. Hellwagner. Scalable video coding impact on networks. 2010.

[8] Pedro Martinez-Julia, Elena Torroglosa Garcia, Jordi Ortiz Murillo, and Antonio F.
Skarmeta. Evaluating video streaming in network architectures for the internet of

191

BIBLIOGRAPHY

things. Proceedings - 7th International Conference on Innovative Mobile and Internet
Services in Ubiquitous Computing, IMIS 2013, pages 411–415, 2013.

[9] OpenLab project. http://www.ict-openlab.eu/.

[10] GN3 Plus project. https://geant3plus.archive.geant.net/Pages/

default.aspx.

[11] ns-2 Network Simulator. http://nsnam.isi.edu/nsnam.

[12] Gaia Testbed. http://projects.sigma-orionis.com/smartfire/

european-testbeds/gaia-testbed-umu/.

[13] LibAV - Open source audio and video processing tools. http://libav.org.

[14] ONOS project. http://www.onosproject.org/.

[15] Kostas Choumas, Thanasis Korakis, Jordi Ortiz, Antonio Skarmeta, Pedro
Martinez-Julia, Taewan You, Loic Baron, Serge Fdida, Woojin Seok, Minsun Lee,
et al. Federated experimentation infrastructure interconnecting sites from both
europe and south korea (smartfire). In Building the Future Internet through FIRE,
pages 717–743. 2016.

[16] Adam Austerberry. The technology of Video & Audio Streaming. Elsevier, second
edition, 2005.

[17] Ramesh Jain. Let’s Weave the Visual Web. IEEE Multimedia, 22(3):66–72, 2015.

[18] C. Perkins. RTP. Audio and Video for the Internet. Addison-Wesley, 2003.

[19] Benny Bing. Next-Generation Video Coding and Streaming. Wiley, 2015.

[20] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport Protocol
for Real-Time Applications. Technical report, Internet Engineering Task Force, July
2003. Standard, RFC 3550.

[21] Mark Handley, Colin Perkins, and Edmund Whelan. Session announcement protocol.
2000.

[22] M. Handley, V. Jacobson, and C. Perkins. SDP: Session Description Protocol.
Technical report, Internet Engineering Task Force, July 2006. Proposed Standard,
RFC 4566.

192

http://www.ict-openlab.eu/
https://geant3plus.archive.geant.net/Pages/default.aspx
https://geant3plus.archive.geant.net/Pages/default.aspx
http://nsnam.isi.edu/nsnam
http://projects.sigma-orionis.com/smartfire/european-testbeds/gaia-testbed-umu/
http://projects.sigma-orionis.com/smartfire/european-testbeds/gaia-testbed-umu/
http://libav.org
http://www.onosproject.org/

BIBLIOGRAPHY

[23] H. Schulzrinne, A. Rao, and R. Lanphier. Real Time Streaming Protocol (RTSP).
Technical report, Internet Engineering Task Force, April 1998. Proposed Standard,
RFC 2326.

[24] H Parmar and M Thornburgh. Adobe’s real time messaging protocol. Copyright
Adobe Systems Incorporated, pages 1–52, 2012.

[25] ISO/IEC 11172-2:1993 - Coding of moving pictures and associated audio for digital
storage media at up to about 1,5 Mbit/s – Part 2: Video . Technical report, 1993.

[26] ISO/IEC 13818-2:2013 - Generic coding of moving pictures and associated audio
information – Part 2: Video . Technical report, 2013.

[27] ISO/IEC 14496-2:2004 - Coding of audio-visual objects – Part 2: Visual . Technical
report, 2004.

[28] Theora Specification, 2004.

[29] ISO/IEC 23008-2:2013 High efficiency coding and media delivery in heterogeneous
environments – Part 2: High efficiency video coding . Technical report, 2013.

[30] Adrian Grange and Harald Alvestrand. A vp9 bitstream overview. 2013.

[31] H. Schwarz, D. Marpe, and T. Wiegand. Overview of the Scalable Video Coding
Extension of the H.264/AVC Standard. IEEE Transactions on Circuits and Systems
for Video Technology, 17(9):1103–1107, September 2007.

[32] Yan Ye and Pierre Andrivon. The scalable extensions of HEVC for
ultra-high-definition video delivery, 2014.

[33] Ying Chen, Ye-Kui Wang, Kemal Ugur, Miska M Hannuksela, Jani Lainema, and
Moncef Gabbouj. The Emerging MVC Standard for 3D Video Services. EURASIP
Journal on Advances in Signal Processing, 2009(1):786015, 2009.

[34] T. Wiegand, G. Sullivan, H. Schwarz, and M. Wien. ISO/IEC 14496-10:2005/Amd3:
Scalable Video Coding. International Standardization Organitation, 2007.

[35] H. Schwars, D. Marpe, and T. Wiegand. Overview of the scalable video coding
extension of the h.264/avc standard. IEEE Transactions on Circuits and Systems
for Video Technology, 17(9), 2007.

193

BIBLIOGRAPHY

[36] T. Wiegand, G. Sullivan, G. Bjntegaard, and A. Luthra. Overview of the h.264/avc
video coding standard. IEEE Transactions on Circuits and Systems for Video
Technology, 13(7), 2003.

[37] Iain E. G. Richardson. Video Codec Design. John Wiley & Sons, 2002.

[38] Roy Fielding, James Gettys, Jeff Mogul, Henrik Frystyk, Larry Masinter, P. Leach,
and Tim Berners-Lee. RFC2616 - Hypertext transfer protocol–HTTP/1.1. Internet
Engineering Task Force, pages 1–114, 1999.

[39] J Postel. RFC 793 - Transmission Control Protocol. Rfc 793, 25(September):1–85,
1981.

[40] Cisco. Cisco Global Cloud Index : Forecast and Methodology , 2014–2019. White
Paper, pages 1 – 41, 2014.

[41] Wang Bing, J I M Kurose, Prashant Shenoy, and D O N Towsley. Multimedia
Streaming via TCP: An Analytic Performance Study. ACM Transactions on
Multimedia Computing, Communications & Applications, 4(2):16:1 – 16:22, 2008.

[42] Patrick Seeling, Frank H. P. Fitzek, Gergö Ertli, Akshay Pulipaka, and Martin
Reisslein. Video network traffic and quality comparison of VP8 and H.264 SVC.
Proceedings of the 3rd workshop on Mobile video delivery - MoViD ’10, page 33,
2010.

[43] Arkadiusz Biernacki and Kurt Tutschku. Performance of HTTP video
streaming under different network conditions. Multimedia Tools and Applications,
72(2):1143–1166, 2014.

[44] Hina Rani and Er.khushboo Bansal. A Review on HTTP Streaming Strategies in
Media Streaming. International Journal Of Engineering And Computer Science,
4(8):14033–14035, 2015.

[45] Roger Pantos. Http live streaming - draft-pantos-http-live-streaming-19.
Internet-draft, 2015. draft-pantos-http-live-streaming-19.

[46] Information technology — Dynamic adaptive streaming over HTTP (DASH) — Part
1: Media presentation description and segment formats. 2013:1–61, 2013.

[47] Christian Timmerer and Christopher Mueller. HTTP Streaming of MPEG Media.
Proceedings of the Multimedia Communication 26 (MM 26), pages 1–4, 2010.

194

BIBLIOGRAPHY

[48] MG Michalos, SP Kessanidis, and SL Nalmpantis. Dynamic adaptive streaming over
http. Journal of Engineering Science and Technology Review, 5(2):30–34, 2012.

[49] D. Singer, editor. ISO/IEC 14496-12:2005 Part 12: ISO Base Media File Format.
International Organization for Standardization, 2005.

[50] Al-mukaddim Khan Pathan and Rajkumar Buyya. A Taxonomy and Survey of
Content Delivery Networks. Grid Computing and Distributed Systems GRIDS
Laboratory University of Melbourne Parkville Australia, 148:1–44, 2006.

[51] R. Stewart. Rfc 4960, stream control transmission protocol. Technical report, 2007.

[52] R. Stewart and Qiaobing Xie. Stream control Transmission Protocol. A Reference
Guide. Addison-Wesley, 2002.

[53] L. Budzisz, J. Garcia, A. Brunstrom, and R. Ferrús. A taxonomy and survey of sctp
research. ACM Computing Surveys, 44(4), 2012.

[54] Bruno AA Nunes, Manoel Mendonca, Xuan-Nam Nguyen, Katia Obraczka, and
Thierry Turletti. A survey of software-defined networking: Past, present, and
future of programmable networks. Communications Surveys & Tutorials, IEEE,
16(3):1617–1634, 2014.

[55] Andrew T. Campbell, Irene Katzela, Kazuho Miki, and John Vicente. Open signaling
for ATM, internet and mobile networks (OPENSIG’98). ACM SIGCOMM Computer
Communication Review, 29(1):97, 1999.

[56] R. Yang, L. and Dantu, R. and Anderson, T. and Gopal. Forwarding and
Control Element Separation (ForCES) Protocol Specification. RFC Editor,
(RFC3746):1689–1699, 2010.

[57] A Doria, J Hadi Salim, R Haas, H Khosravi, W Wang, J Gopal, and J Halpern.
Forwarding and Control Element Separation (ForCES) Protocol Specification. RFC
Editor, (RFC5810):1689–1699, 2010.

[58] Nick Feamster, Hari Balakrishnan, Jennifer Rexford, Aman Shaikh, and Jacobus
van der Merwe. The case for separating routing from routers. Proceedings of the
ACM SIGCOMM workshop on Future directions in network architecture - FDNA
’04, page 5, 2004.

[59] R Enns. NETCONF Configuration Protocol. Technical Report Xml, 2006.

195

BIBLIOGRAPHY

[60] A Bierman, M Bjorklund, J Schoenwaelder, and A Bierman. Network Configuration
Protocol (NETCONF). Technical report, 2011.

[61] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,
Jennifer Rexford, Scott Shenker, and Jonathan Turner. OpenFlow: Enabling
Innovation in Campus Networks. ACM SIGCOMM Computer Communication
Review, 38(2):69, 2008.

[62] Nick Feamster, Jennifer Rexford, and Ellen Zegura. The Road to SDN:
An Intellectual History of Programmable Networks. ACM Sigcomm Computer
Communication, 44(2):87–98, 2014.

[63] B Astuto. A Survey of Software–Defined Networking: Past, Present, and Future
of Programmable Networks,. in IEEE Communications surveys & tutorials, 16(3),
2014.

[64] Ben Pfaff, Brandon Heller, Dan Talayco, David Erickson, Glen Gibb, Guido
Appenzeller, Jean Tourrilhes, Justin Pettit, KK Yap, Martin Casado, Masayoshi
Kobayashi, Nick McKeown, Peter Balland, Reid Price, Rob Sherwood, and Yiannis
Yiakoumis. OpenFlow Switch Specification 1.0.0. Current, 0:1–36, 2009.

[65] Anders Nygren, Ben Pfaff, Bob Lantz, Brandon Heller, Casey Barker, Curt
Beckmann, Dan Cohn, Dan Malek, Dan Talayco, David Erickson, David McDysan,
David Ward, Edward Crabbe, Fabian Schneider, Glen Gibb, Guido Appenzeller, Jean
Tourrilhes, Johann Tonsing, Justin Pettit, KK Yap, Leon Poutievski, Linda Dunbar,
Lorenzo Vicisano, Martin Casado, Masahiko Takahashi, Masayoshi Kobayashi,
Michael Orr, Navindra Yadav, Nick McKeown, Nico DHeureuse, Peter Balland,
Rajesh Madabushi, Rajiv Ramanathan, Reid Price, Rob Sherwood, Saurav Das,
Shashidhar Gandham, Spike Curtis, Sriram Natarajan, Tal Mizrahi, Tatsuya Yabe,
Wanfu Ding, Yiannis Yiakoumis, Yoram Moses, and Zoltán Lajos Kis. OpenFlow
Switch Specification 1.5.1. Current, 0:1–36, 2015.

[66] Ben Pfaff, Bob Lantz, Brandon Heller, Casey Barker, Curt Beckmann, Dan Cohn,
Dan Talayco, David Erickson, David McDysan, David Ward, Edward Crabbe,
Glen Gibb, Guido Appenzeller, Jean Tourrilhes, Johann Tonsing, Justin Pettit,
KK Yap, Leon Poutievski, Lorenzo Vicisano, Martin Casado, Masahiko Takahashi,
Masayoshi Kobayashi, Navindra Yadav, Nick McKeown, Nico DHeureuse, Peter,
Balland, Rajiv Ramanathan, Reid Price, Rob Sherwood, Saurav Das, Shashidhar

196

BIBLIOGRAPHY

Gandham, Tatsuya Yabe, Yiannis Yiakoumis, and Zoltán Lajos Kis. OpenFlow
Switch Specification 1.3.0. Current, 0:1–36, 2012.

[67] K Benson and A Lerner. Brite-Box: Branded Switching + White-Box Switching .
http://blogs.gartner.com/andrew-lerner/2014/11/19/britefuture/.

[68] Meng Zhang, Hongbin Luo, and Hongke Zhang. A survey of caching mechanisms
in information-centric networking. IEEE Communications Surveys and Tutorials,
17(3):1473–1499, 2015.

[69] Athanasios V. Vasilakos, Zhe Li, Gwendal Simon, and Wei You. Information centric
network: Research challenges and opportunities. Journal of Network and Computer
Applications, 52:1–10, 2015.

[70] Gabriel M. Brito, Pedro Braconnot Velloso, and Igor M. Moraes. Information-Centric
Networks: A New Paradigm for the Internet. 2013.

[71] Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F. Plass, Nicholas H.
Briggs, and Rebecca L. Braynard. Networking named content. In Proceedings of the
5th International Conference on Emerging Networking Experiments and Technologies
(CoNEXT ’09), pages 1–12, New York, NY, USA, 2009. ACM.

[72] Dirk Trossen et al. Pursuing a Pub/Sub Internet (PURSUIT), 2011. http://www.
fp7-pursuit.eu.

[73] Bengt Ahlgren, Matteo D’Ambrosio, Christian Dannewitz, et al. Netinf evaluation.
Technical Report FP7-ICT-2007-1-216041-4WARD/D-6.3, 2010. Deliverable D-6.3,
4WARD EU FP7 Project, http://www.4ward-project.eu.

[74] R. Moskowitz and P. Nikander. Host Identity Protocol (HIP) Architecture, 2006.
http://www.ietf.org/rfc/rfc4423.txt.

[75] David Meyer. The locator identifier separation protocol (lisp). The Internet Protocol
Journal, 11(1):23–36, 2008.

[76] D. Farinacci, V. Fuller, D. Meyer, and D Lewis. Locator/id separation protocol
(LISP). Internet-draft, IETF, 2011.

[77] Jukka Ylitalo and Pekka Nikander. BLIND: A complete identity protection
framework for end-points. Lecture Notes in Computer Science, 3957:163–176, 2006.

197

http://www.fp7-pursuit.eu
http://www.fp7-pursuit.eu
http://www.4ward-project.eu
http://www.ietf.org/rfc/rfc4423.txt

BIBLIOGRAPHY

[78] X. Xu. Routing Architecture for the Next Generation Internet (RANGI).
Internet-draft, IETF, 2009.

[79] B. Ahlgren, J. Arkko, L. Eggert, and J. Rajahalme. A node identity internetworking
architecture. In Proceedings of the 25th IEEE International Conference on Computer
Communications (INFOCOM 2006), pages 1–6, Washington, DC, USA, 2006. IEEE.

[80] Heeyoung Jung and Seok Joo Koh. MOFI: Future internet architecture
with address-free hosts for mobile environments. Telecommunications Review,
21(2):343–358, 2011.

[81] Randall Atkinson, Saleem Bhatti, and Stephen Hailes. ILNP: mobility, multihoming,
localised addressing and security through naming. Telecommunication Systems,
42(3):273–291, 2009.

[82] Information-centric networking research group, 2012. https://irtf.org/

icnrg.

[83] Ved P. Kafle and Masugi Inoue. HIMALIS: Heterogeneity inclusion and mobility
adaptation through locator id separation in new generation network. IEICE
Transactions on Communications, E93-B(3):478–489, 2010.

[84] Marcus Brunner, Henrik Abramowicz, Norbert Niebert, and Luis M. Correia.
4WARD: A european perspective towards the future internet. IEICE Transactions
on Communications, E93-B(3):442–445, 2010.

[85] Thomas Edwall et al. Scalable and Adaptive Internet Solutions (SAIL), 2011. http:
//www.sail-project.eu.

[86] Vladimir Dimitrov and Ventzislav Koptchev. PSIRP project – publish-subscribe
internet routing paradigm: New ideas for future internet. In Proceedings of the 11th
International Conference on Computer Systems and Technologies and Workshop for
PhD Students in Computing on International Conference on Computer Systems and
Technologies, pages 167–171, New York, NY, USA, 2010. ACM.

[87] Teemu Koponen, Mohit Chawla, Byung-Gon Chun, Andrey Ermolinskiy, Kye Hyun
Kim, Scott Shenker, and Ion Stoica. A data-oriented (and beyond) network
architecture. SIGCOMM Computer Communication Review, 37(4):181–192, 2007.

198

https://irtf.org/icnrg
https://irtf.org/icnrg
http://www.sail-project.eu
http://www.sail-project.eu

BIBLIOGRAPHY

[88] Pedro Martinez-Julia and Antonio F. Gomez-Skarmeta. Using identities to achieve
enhanced privacy in future content delivery networks. Computers and Electrical
Engineering, 38(2):346–355, 2012.

[89] Panagiotis Georgopoulos, Matthew Broadbent, Bernhard Plattner, and Nicholas
Race. Cache as a service: Leveraging SDN to efficiently and transparently support
video-on-demand on the last mile. Proceedings - International Conference on
Computer Communications and Networks, ICCCN, 2014.

[90] Reinhard Grandl, Kai Su, and Cedric Westphal. On the interaction of adaptive
video streaming with content-centric networking. 2013 20th International Packet
Video Workshop, PV 2013, 2013.

[91] Jill M. Boyce, Yan Ye, Jianle Chen, and Adarsh K. Ramasubramonian. Overview
of SHVC: Scalable extensions of the high efficiency video coding standard. IEEE
Transactions on Circuits and Systems for Video Technology, 26(1):20–34, 2016.

[92] Alex Eleftheriadis. Recent Developments in Scalable Coding in VP9. Chicago, 2016.

[93] Michael Grafl, Christian Timmerer, Hermann Hellwagner, George Xilouris, Georgios
Gardikis, Daniele Renzi, Stefano Battista, Eugen Borcoci, and Daniel Negru. Scalable
media coding enabling content-aware networking. IEEE Multimedia, 20(2):30–41,
2013.

[94] Junghwan Lee, Kyubo Lim, and Chuck Yoo. Cache replacement strategies for scalable
video streaming in CCN. 2013 19th Asia-Pacific Conference on Communications,
APCC 2013, pages 184–189, 2013.

[95] Saeed Ullah, Choong Seon Hong, and South Korea. Opportunistic Quality
Adaptation for Scalable Video Streaming in Information Centric Networks. pages
1241–1243, 2015.

[96] Horacio Sanson, Alvaro Neira, Luis Loyola, and Mitsuji Matsumoto. PR-SCTP for
Real Time H.264/AVC Video Streaming. 2010.

[97] M Molteni and M Villari. Using SCTP with Partial Reliability for MPEG-4
Multimedia Streaming. pages 1–8, 2002.

[98] Information Sciences Institute (University of Southern California). The network
simulator ns-2.

199

BIBLIOGRAPHY

[99] Protocol Engineering Laboratory (University of Delaware). ns-2 sctp module.

[100] Celtic Scalnet project. https://www.celticplus.eu/project-scalnet/.

[101] P. Amon, T. Rathgen, and D. Signer. File format for scalable video coding. IEEE
Transactions on Circuits and Systems for Video Technology, 17(9), 2007.

[102] PD. Amer, AL. Caro Jr., J. Iyengar, P. Natarajan, and N. Ekiz. ns-2
sctp readme file. "http://nsnam.cvs.sourceforge.net/viewvc/nsnam/
ns-2/sctp/sctp.README", 2009.

[103] Anastasius Gavras, Andrzej Bak, Gergely Biczók, Piotr Gajowniczek, András Gulyás,
Halid Hrasnica, Pedro Martinez-Julia, Felicián Németh, Chrysa Papagianni, Symeon
Papavassiliou, Marcin Pilarski, and Antonio Skarmeta. Heterogeneous testbeds,
tools and experiments - Measurement requirements perspective. In Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 2013.

[104] Pedro Martinez-Julia, Antonio J. Jara, and Antonio F. Skarmeta. GAIA extended
research infrastructure: Sensing, connecting, and processing the real world. In
Lecture Notes of the Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering, volume 44 LNICST, pages 3–4, 2012.

[105] Heterogeneous Experimental Network. http://mediatools.cs.ucl.ac.uk/

nets/hen.

[106] PlanetLab Europe. http://www.planet-lab.eu.

[107] Alina Quereilhac, Mathieu Lacage, Claudio Freire, Thierry Turletti, and Walid
Dabbous. NEPI: An integration framework for Network Experimentation. SoftCOM
2011, 19th International Conference on Software, Telecommunications and Computer
Networks, pages 1–5, 2011.

[108] Geoff Mulligan. The 6LoWPAN architecture. In Proceedings of the 4th workshop on
Embedded networked sensors - EmNets ’07, page 78, 2007.

[109] Ed Callaway, Paul Gorday, Lance Hester, Jose A. Gutierrez, Marco Naeve, Bob Heile,
and Venkat Bahl. Home networking with IEEE 802.15.4: A developing standard
for low-rate wireless personal area networks. IEEE Communications Magazine,
40(8):70–77, 2002.

200

https://www.celticplus.eu/project-scalnet/
http://nsnam.cvs.sourceforge.net/viewvc/nsnam/ns-2/sctp/sctp.README
http://nsnam.cvs.sourceforge.net/viewvc/nsnam/ns-2/sctp/sctp.README
 http://mediatools.cs.ucl.ac.uk/nets/hen
 http://mediatools.cs.ucl.ac.uk/nets/hen
 http://www.planet-lab.eu

BIBLIOGRAPHY

[110] Joint Scalable Video Model, 2007.

[111] Xiph.org video test media. http://media.xiph.org/video/derf/.

[112] Libdash: ISO/IEC MPEG-DASH reference software. https://bitmovin.com/
libdash/.

[113] Videolan x264. https://www.videolan.org/developers/x264.html.

[114] Content-Centric Networking Project. http://www.ccnx.org.

[115] M.R. Rohrer. Seeing is believing: the importance of visualization in manufacturing
simulation. Proceedings of the 2000 Winter Simulation Conference, pages 1211–1216,
2000.

[116] Chandra Kopparapu. Load Balancing Servers, Firewalls, and Caches. Robert Ipsen,
2002.

[117] Andrej Binder, Tomas Boros, and Ivan Kotuliak. A SDN Based Method of TCP
Connection Handover. pages 13–19, 2015.

[118] Danny H Lee, Constantine Dovrolis, and Ali C Begen. Caching in HTTP Adaptive
Streaming: Friend or Foe? Proceedings of Network and Operating System Support
on Digital Audio and Video Workshop, pages 31:31—-31:36, 2013.

[119] Yago Sanchez, Thomas Schierl, Cornelius Hellge, Thomas Wiegand, Dohy Hong,
Danny De Vleeschauwer, Werner Van Leekwijck, and Yannick Lelouedec. Improved
caching for HTTP-based Video on Demand using Scalable Video Coding. 2011 IEEE
Consumer Communications and Networking Conference (CCNC), pages 595–599,
2011.

[120] Raf Huysegems, Bart De Vleeschauwer, Tingyao Wu, and Werner Van Leekwijck.
SVC-Based HTTP Adaptive Streaming. Bell Labs Technical Journal, 16(4):25–42,
2012.

[121] Jordi Ortiz, Michael Ransburg, Eduardo Martinez, Michael Sablatschan, Antonio
Skarmeta, and Hermann Hellwagner. Towards User-driven Adaptation of H.264/SVC
Streams. Proceedings of EuroITV2010, pages 289–292, 2010.

[122] M. Handley, S. Floyd, J. Padhye, and J. Widmer. TCP Friendly Rate Control
(TFRC): Protocol Specification. Technical report, Internet Engineering Task Force,
January 2003. Standard, RFC 3448.

201

 http://media.xiph.org/video/derf/
https://bitmovin.com/libdash/
https://bitmovin.com/libdash/
https://www.videolan.org/developers/x264.html
http://www.ccnx.org

BIBLIOGRAPHY

[123] Tornado Web Server. http://www.tornadoweb.org/en/stable/.

[124] Nginx - high performance load balancer, web server & reverse proxy. https://

www.nginx.com.

[125] SmartFire project. http://eukorea-fire.eu/.

[126] Squid: Optimising Web Delivery. http://www.squid-cache.org.

[127] Openvswitch - Production Quality, Multilayer Open Virtual Switch. http://

openvswitch.org.

[128] Bitmovin: MPEG-DASH Players High Streaming Quality. https://www.

bitmovin.com/bitdash-mpeg-dash-player/.

[129] Floodlight project. http://www.projectfloodlight.org/floodlight/.

[130] NEPI new generation. https://nepi-ng.inria.fr/.

[131] Language Consortium. P4 16 Language Specification - version 1.0.0. pages 1–104,
2017.

[132] Named-data project codebase. https://named-data.net/codebase/

platform/.

[133] Community Information Centric Networking. https://wiki.fd.io/view/

Cicn#Introduction.

202

http://www.tornadoweb.org/en/stable/
https://www.nginx.com
https://www.nginx.com
http://eukorea-fire.eu/
http://www.squid-cache.org
http://openvswitch.org
http://openvswitch.org
https://www.bitmovin.com/bitdash-mpeg-dash-player/
https://www.bitmovin.com/bitdash-mpeg-dash-player/
http://www.projectfloodlight.org/floodlight/
https://nepi-ng.inria.fr/
https://named-data.net/codebase/platform/
https://named-data.net/codebase/platform/
https://wiki.fd.io/view/Cicn#Introduction
https://wiki.fd.io/view/Cicn#Introduction

	Title Page
	Title Page
	Resumen
	Agradecimientos
	Title Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Contextualization
	Objectives of the Thesis
	svc on sctp
	fi and video streaming for iot
	svc video delivery and icnaas on sdn
	Experimentation infrastructures

	Contributions
	Thesis structure
	Related publications
	Indexed Journals
	Book Chapters
	Conferences

	Problem Statement - Video in Future Internet
	State of the Art
	Video transmission
	Codec evolution
	HTTP
	cdn

	sctp
	cmt

	SDN
	Future Internet - ICN
	Separation of Identifiers and Locators
	himalis
	Integrated Content Delivery

	icnaas
	Scalable video in FI
	Conclusions

	Evaluation of Scalable video delivery over sctp
	Description
	Evaluation Scenarios
	Evaluation Results
	tcp
	rtp
	Reliable baseline sctp
	Unreliable baseline sctp
	Mixed reliability with baseline sctp
	cmt

	Conclusions

	Video transmission in the fi
	Description
	Testbeds and tools
	iot video in fi
	Generating iot video
	himalis
	ccn
	ccn on top of himalis

	Conclusions

	SDN ICNaaS for HTTP Video Streaming
	Description
	icnaas Concept and Motivation
	SDN Controller layering
	ICNaaS layer
	Protocol Specific Layer
	Data Specific Layer - svc

	Caching Policies Algorithms
	avc over dash
	svc over dash

	User driven
	Conclusions

	SDN ICNaaS evaluation
	Architecture Elements
	icnaas
	Proxy
	Prefetcher
	SVC Video Player
	Video Sources

	Floodlight evaluation
	ONOS evaluation
	Experimentation ICNaaS Results
	Analyzing the layering problems
	Evaluating the Prefetching Mechanism

	Conclusions

	Conclusions and future work
	Summary and main contributions
	Future work
	sctp
	fi
	icnaas

	Bibliography

