
Summary. Two hallmarks of Parkinson’s disease (PD)
are dopaminergic cell loss and the presence of
cytoplasmic inclusions (Lewy bodies). Different point
mutations in alpha-synuclein, the main constituent of
Lewy bodies, have been identified in familial PD.
Alpha-synuclein also constitutes one of the main
components of Lewy bodies in sporadic cases of PD.
Moreover, oxidant stress and generation of free radicals
from both mitochondrial impairment and dopamine
metabolism are considered to play critical roles in PD
etiopathogenesis. Melatonin, a known potent antioxidant
secreted by the pineal gland, may protect against the
effect of several Parkinsonogenic compounds that are
associated with progressive impairment of mitochondrial
function and increased oxidative damage. However, the
neuroprotective effect of melatonin has never been tested
in the newly available genetic models of PD based on
the viral expression of mutated alpha-synuclein.
Lentiviral vectors encoding A30P mutant human alpha-
synuclein (lenti-A30P) were stereotactically injected into
the right substantia nigra of adult male Sprague-Dawley
rats and neuroprotection was examined by
administration of melatonin or vehicle from two days
before nigral administration of lenti-A30P until eight
weeks after injection. It was found that lenti-A30P
induced a significant TH+ cell-loss both in the medial
and lateral substantia nigra versus the contrallateral side
injected with lenti-eGFP. However, melatonin

administration showed a total neuroprotective effect in
both regions of the substantia nigra. In conclusion, the
data here show that melatonin is neuroprotective against
mutant alpha-synuclein-induced injury in the substantia
nigra.
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Introduction

Parkinson’s disease (PD) is the second most
common neurodegenerative disorder, characterized by
the progressive loss of dopaminergic neurons in the
substantia nigra pars compacta (SNpc) (Lang and
Lozano, 1998). The causes of cell death in PD are still
poorly understood, but a defect in mitochondrial
oxidative phosphorylation and enhanced oxidative stress
has been proposed (Ebadi et al., 2005). One role of
alpha-synuclein (alpha-syn) in PD pathogenesis is
demonstrated by cases of familial PD resulting from
three point mutations (A53T, A30P and E46K) in the
alpha-syn gene (Polymeropoulos et al., 1997; Kruger et
al., 1998; Zarranz et al., 2004) or overexpression of
alpha-syn, as well as by the observation that SN neurons
in mice with alpha-syn deletion are protected against the
parkinsonian neurotoxins MPTP and 6-OHDA (Alvarez-
Fischer et al., 2008; Dauer et al., 2002). Later, alpha-
synuclein was identified as the major component of
Lewy bodies and Lewy neurites, the neuropathological
hallmarks of PD. The mechanisms by which alpha-
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synuclein toxicity is mediated are not fully understood,
but are thought to include free radical mediated damage,
mitochondrial dysfunction and the promotion of cell
death by apoptosis (Shapira, 2006). Moreover, alpha-syn
has been directly involved in toxin-induced forms of
parkinsonism (Moore et al., 2005). These findings have
prompted the development of animal models based on
the overexpression of human alpha-syn. 

Melatonin (N-acetyl-5-methoxytryptamine), an
indoleamine, is a highly conserved anti-oxidant
molecule secreted from the pineal gland, gastrointestinal
tract, ovaries, testes, bone marrow and eye lenses
(Esposito and Cuzzocrea, 2010). It scavenges hydroxyl,
carbonate and various organic radicals, peroxynitrite and
other reactive nitrogen species (Bonnefont-Rousselot et
al., 2011; Galano et al., 2011). It is also known to control
the transcription, translation and catalytic activities of
the preventive antioxidants, including glutathione
peroxidase, superoxide dismutase and catalase (Barlow-
Walden et al., 1995; Pablos et al., 1995; Rodriguez et al.,
2004). The decline in melatonin production in aged
individuals has been suggested as one of the primary
contributing factors for the development of age-
associated neurodegenerative diseases (Srinivasan et al.,
2005) and experimental studies using 1-methyl 4-phenyl
1, 2, 3, 6-tetrahydropyridine (MPTP), 6-hydroxy-
dopamine (6-OHDA), rotenone, maneb, metha-
mphetamine/amphetamine, and paraquat have shown an
enormous potential of melatonin in amelioration of
toxin-induced oxidative stress and the symptomatic
features of PD (Absi et al., 2000; Sharma et al., 2006;
Sae-Ung et al., 2012; Singhal et al., 2011, 2012).
However, there are conflicting reports suggesting that as
melatonin elicits significant functional changes in the
nigrostriatal dopamine system which may affect the
entry of some neurotoxins into cells, it does not provide
neuroprotection in these models (Itzhak et al., 1998; van
der Schyf et al., 2000; Morgan and Nelson, 2001; Tapias
et al., 2010). 

The neuroprotective effect of melatonin has never
been tested in the newly available genetic models of PD
based on the viral expression of mutated (A30P)-
synuclein. Brain delivery of human alpha-synuclein with
viral vectors is an ideal model for assessing protection,
because it does not rely on the dopamine transporter
uptake to exert neurotoxicity. As oxidant stress is one of
the intermediary risk factors that promote the
degeneration of DA neurons, and the mechanism of
synuclein cell entry is due to SN viral transduction, it
was decided to study here whether the therapeutic
potential of melatonin would also apply to synuclein-
induced PD-models, rather than be limited to
neurotoxins.
Materials and methods

Animals, stereotactic surgery and treatments

Two groups of seven male adult Sprague-Dawley

(250-300 g) rats housed with free access to food and
water at 12:12 dark-light cycle, 22±1°C temperature-
controlled room, and 50-70% humidity were used. All
animal experiments were approved by the bioethical
committee of the University of La Laguna. After
anesthesia, the animals were stereotactically injected
with lentiviral vectors (LV) encoding A30P mutant
human alpha-synuclein (lenti-A30P) into the right
substantia nigra (SN). LV overexpressing the green
fluorescent protein (lenti-eGFP) was injected into the
left SN to determine the efficiency of transgene
expression in the dopaminergic neurons of the rat SN.
The coordinates used were: SN (target AP 3.0, L 2.0, DV
7.0, from lambda). Eight µl of concentrated vector (108-
109 pg p24/ml) supplemented with 4 µg/ml polybrene at
a rate of 0.25 µl/min were injected. After injection, the
needle was left in place for an additional 10 minutes. 

Possible neuroprotection was evaluated by i.p.
injection, once a day, of melatonin (Sigma) (10 mg/kg)
or vehicle (saline in ethanol 0.5%) from two days before
nigral administration of lenti-A30P/lenti-eGFP until
eight weeks after injection. Melatonin was freshly
prepared each time and protected from light.
Lentiviral vector construction and production

The cDNA encoding human alpha-syn (A30P), obtained
from Dr. Kelly Conway (Center for Neurologic
Diseases, Boston, Mass.) was cloned into lentiviral
pHR’-derived transfer plasmid containing a central
polypurine tract sequence, the SIN-18 deletion, and the
woodchuck hepatitis posttranscriptional regulatory
element (Follenzi et al., 2000; Zennou et al., 2000;
Zufferey et al., 1998, 1999; Baekelandt et al., 2002). The
lentiviral vectors were produced as previously described
(Baekelandt et al., 2000). A second generation attenuated
packaging plasmid pCMVR8.91 lacking vif, vpr, vpu
and nef genes was used in this study (Zufferey et al.,
1997).
Histology

The animals were sacrificed eight weeks after
melatonin administration. Tyrosine hydroxylase
immunostaining was performed to visualize
dopaminergic neurons in the SN. The survival of
dopaminergic neurons in the SN pars compacta was
investigated by counting the number of dopaminergic
neurons in the SN. 

The rats were deeply anaesthetized with
pentobarbital and transcardially perfused with saline
followed by ice-cold 4% paraformaldehyde in PBS for
15 min to assess lentiviral transduction. The brain was
postfixed overnight in the same fixing solution, and
cryopreserved in 30% sucrose in PBS. Thirty µm-thick
coronal brain sections were cut with a freezing-
microtome and stored at 4°C. First, sections were treated
with 3% hydrogen peroxide and incubated overnight
with the primary mouse anti-tyrosine hydroxylase
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(Sigma, 1:12000), and rabbit anti-GFP (SySy, 1:1500) in
4% normal goat serum. The sections were then
incubated in biotinylated goat anti-mouse and anti-rabbit
secondary antibody respectively, followed by incubation
with Strept-ABC-HRP complex (DAKO). Detection was
with diaminobenzidine (DAB) using H2O2 as a
substrate.
Cell Counting

Cells that were clearly stained for TH with a visible
nucleus were counted. The SN was divided in two
different regions: medial and lateral (in each one SN
region a 134101, 63 um2 cell-counting square per
section was used), in every fifth 30 µm section, to
determine the number of TH positive cells. All TH+ cells
were counted at a magnification of 200x by two
independent observers, also using a microscope DM
4000 B (Leica) and the software Qwin V3 (Leica).
Statistical analysis

Statistical analysis was performed using the
Statistica software package (StatSoft, Inc.). Results are
expressed as means±SEM. Analysis of variance with
post hoc Scheffé’s test was used for intergroup
comparisons.
Results

Lentiviral vectors to overexpress a clinical mutant of
alpha-syn, A30P, in the rat right substantia nigra, were
used in this study. Moreover, the ability of melatonin to
prevent A30P-syn toxicity in vivo was evaluated.

Substantial eGFP-positive cells were evident in the
SN on the eGFP injected side, and along the needle track
at the site of injection (Fig. 1A). The eGFP carrying
lentivirus had no effect on the number of TH expressing
cells (Fig. 1B,C).The transduced cells displayed a
predominantly neuronal morphology, confirming the
strong tropism of LV for neuronal cells (Blömer et al.,
1997). The next step was to determine whether
lentiviral-mediated overexpression of mutant alpha-syn
(lenti-A30P) induced nigral neuron degeneration eight
weeks after viral injection. The results show a reduction
of TH-positive neurons which is appreciable in both the
medial and lateral regions of the SN (Fig. 1B,D) when
compared to the lenti-eGFP injected contralateral side
(Fig. 1B,C). This expression loss was restricted to the
substantia nigra region in all the injected animals (Fig.
1B,D). Nissl staining confirmed the reduction of
dopaminergic neurons in the SN of animals expressing
the A30P mutant (Fig. 1F) compared to the SN of
animals expressing eGFP (Fig. 1E). This neuro-
degeneration is not due to physical trauma since the
number of dopaminergic neurons after injection with LV
encoding eGFP did not differ, as mentioned above,
between the injected and non-injected hemisphere. A
stereological quantification of the number of

dopaminergic neurons was also carried out in the medial
and lateral SN to evaluate the lesion degree. A clear
reduction of dopaminergic neurons in the injected
hemisphere that varied between 20 and 40% with respect
to the side injected with lenti-eGFP was observed in the
lenti-A30P injected rats (Fig. 2). 

A histological analysis was performed in the brains
of rats injected with lenti-eGFP or lenti-A30P to evaluate
the neuroprotective effect of melatonin. The results
confirmed that the density of TH positive cells in the
medial and lateral SN was similar in both groups (Fig. 1
G,H). Quantification of the percentage of nigral TH-IR
neuron loss compared to the contralateral eGFP injected
side showed that melatonin significantly prevents TH-IR
cell loss in both the right medial and lateral SN (Fig. 2).
Interestingly, the results here show that melatonin
treatment rescued TH-IR neurons from A30P alpha-
synuclein neurotoxicity. 
Discussion

Along with their therapeutic potential for gene
therapy of CNS diseases, LV mediates stable and loco-
regional overexpression of disease-associated genes in
the adult brain. 

Neurodegeneration is a crucial feature of any in vivo
model for PD. In contrast to alpha-synuclein transgene
mouse models, expression of human alpha-syn with
lentiviral or adeno-associated viral vectors induces a
progressive degeneration of dopamine neurons in the
substantia nigra (Lo Bianco et al., 2002; Klein et al.,
2002; Kirik et al., 2002, 2003; Lauwers et al., 2003,
2007). Firstly, an LV was used in this study to
overexpress a clinical mutant of alpha-syn, A30P, in the
rat SN. According to previous data, the results here show
that LV-mediated overexpression of human-alpha-syn in
the SN reduces the viability of dopaminergic cells (Figs.
1, 2). Between 40% and 50% of dopaminergic neurons
identified by immunohistochemistry for tyrosine
hydroxylase are transduced in the SN of mice and rats
injected with LV (Déglon et al., 2000; Bensadoun et al.,
2000). The percentage of dopaminergic cell death in the
rats in this study (20% in medial SN and 40% in lateral
SN) (Fig. 2) is lower than that reported by other groups.
Differences between studies may relate to the use of
AAV vectors (Kirik et al., 2002; Klein et al., 2002)
versus LV or the use of different promoters (PGK versus
CMV) (Lo Bianco et al., 2002). However, the extent of
neuronal loss reached 40%, a high proportion
considering the limited degree of infection (Lo Bianco et
al., 2004). An interesting fact in PD is that not all
midbrain DA neurons show the same susceptibility to
degeneration. Neurons in the ventrolateral and caudal
regions of the SN (SNcv) are more vulnerable than those
in the rostromedial and dorsal region (SNrm) (German et
al., 1989; Damier et al., 1999). The higher percentage of
alpha-syn A30P mediated-dopaminergic cell loss
obtained in the lateral SN compared to medial SN is in
agreement with that reported for PD.
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It is
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Fig. 1. Immunohistochemistry evidence showing SN cell loss induced by LV encoding A30P mutant human alpha-synuclein (lenti-A30P) and the
neuroprotective effect of melatonin. A. GFP-immunohistochemistry after injection of lenti-eGFP into the left SN. B. TH-immunohistochemistry showing a
panoramic view of the ventral midbrain after injections of lenti-A30P and lenti-eGFP into the right and left SN respectively. C and D. TH-
immunohistochemistry at higher magnification with respect to B. TH immunohistochemistry and Nissl staining of the SN after injections of lenti-eGFP
(E) and lenti-A30P (F) into the left and right SN respectively. TH-immunohistochemistry in the SN of lenti-eGFP (G) AND LENTI-A30P (H) injected
animals and melatonin pre-treated. A, x 20; Scale bar: B, 1.2 mm; F (for E, F), 50 µm; H (for C, D, G, H), 700 µm.



important to point out that the possible involvement of
oxidative stress as an etiological factor of PD is further
supported by studies with specific neurotoxins which are
potent inducers of Parkinsonism in humans and animals
(Jenner, 1992; Coyle and Puttfarchen, 1993; Onyango,
2008; Singhal et al., 2012). The mechanisms by which
alpha-synuclein toxicity is mediated are not fully
understood, but are thought to include free radical
mediated damage, mitochondrial dysfunction and the
promotion of cell death by apoptosis (Schapira, 2006).
Moreover, studies with cell and animal models of PD
reveal an oxidative stress and alpha-synuclein
aggregation induced by different toxins (Betarbet et al.,
2000; Sherer et al., 2002; Uversky, 
2004; Bove et al., 2005; Betarbet et al., 2006;
Klongpanichapak et al., 2007, 2008; Ishido, 2007; Lin et
al., 2007; Cannon et al., 2009; Chau et al., 2010)

The results here support previous data which have
shown that over-expression of alpha-syn, and especially
PD-causing mutant isoforms, exaggerate the
vulnerability of neurons to dopamine-induced cell death
through excess intracellular ROS generation (Junn and
Mouradian 2002; Wersinger and Sidhu, 2003; Jiang et
al., 2007; Qian et al., 2008; Parihar et al., 2009). Nigral
degeneration was found eight weeks after lenti-A30P
injection, and cytoplasmic alpha-synuclein inclusions
into SN were not found in the present study. This is in
accordance with previous data in which alpha-syn
inclusions were detected in the SN ten months after
injection (Lauwers et al., 2003), suggesting that
oxidative stress induced by mutated synuclein may be an
early event in the nigral degeneration process. Other
findings also indicate that toxicity and aggregation are
two distinct phenomena in alpha-synuclein-induced

pathology. In fact, behavioral impairments linked to
neuronal dysfunction without aggregate formation in
transgenic mice expressing A53T human alpha-
synuclein have been reported (Gispert et al., 2003).
Additionally, toxicity induced by overexpression of
human alpha-synuclein in primary midbrain cells is not
associated with the presence of visible protein
aggregates (Petrucelli et al., 2002). Thus, mutations of
alpha-synuclein may lower the threshold to oxidative
damage (Junn and Moradiam, 2002). However, a
summation of effects and the possibility of participation
of other factors involved in the differential vulnerability
of SN DA-cells must also be considered (González-
Hernández et al., 2009).

Because of its previously mentioned powerful
antioxidant properties, melatonin has been proposed as a
potential therapeutic agent in diseases in which oxidative
stress is thought to be a major pathogenic factor. It is an
ideal neuroprotective agent as it can easily cross the
blood-brain barrier and enter the subcellular
compartments, and it lacks toxicity when compared with
other neuroprotective agents, and possesses effective
combating efficacy against oxidative stress-related DA
neuron degeneration (Zisapel, 2001; Gupta et al., 2003;
Sharma et al., 2006; Capitelli et al., 2008; Singhal et al.,
2011, 2012). Moreover, melatonin prevents toxin-
induced DA-cell line and nigral degeneration, as well as
alpha-synuclein aggregation (Ishido, 2007; Lin et al.,
2007, 2008; Klongpanichapak et al., 2008; Singhal et al.,
2012). However, there are few reports suggesting that
melatonin does not provide neuroprotection in 6-OHDA
and MPTP models of PD, because entry of both toxins
into dopaminergic neurons occurs through the dopamine
transporter (Itzhak et al., 1998; van der Schyf et al.,
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Fig. 2. LV-mediated mutant alpha-syn (A30P) injection in the right SN (lenti-A30P) induced a significant TH+ cell-loss in both the medial (20%) and
lateral (40%) SN versus contrallateral side injected with lenti-eGFP. However, melatonin administration showed a total neuroprotective effect in both
sides of the SN. Values refer to means ± SEM; n= seven animals per group; *p<0.01 and *p<0.001 vs lenti-eGFP-injected side.



2000; Morgan and Nelson, 2001; Tapias et al., 2010), a
required event in producing selective dopaminergic
neuron toxicity (Mayer et al., 1986; Schwarting and
Huston, 1996; Gainetdinov et al., 1997). As melatonin
down-regulates dopamine transporter expression (Lin et
al., 2008) and alters DA signaling (Alexiuk and Vriend,
2007), protection may be partially mediated by
alterations in neuronal toxin uptake. The next major goal
was to determine whether melatonin exerted a
neuroprotective effect on in vivo LV-mediated
expression of alpha-syn in the SN. In agreement with
previous neurotoxin studies, the major finding of this
report is that melatonin also efficiently prevents PD-
linked mutant (A30P)-synuclein-induced dopaminergic
cell loss in vivo (Figs. 1 G,H, 2). These data indicate that
melatonin administration showed a total neuroprotective
effect in both regions of the SN. It is of interest that,
with this LV-mediated alpha-syn A30P gene transfer
approach, alpha-syn enters cells independently of
transporters and, thus, is an ideal model for assessing
protection, because as the mechanism of cell entry is due
to viral transduction it does not rely on the dopamine
transporter uptake to exert neurotoxicity. Moreover, the
interpretation of results from experiments with
neurotoxins is complicated by the fact that they may
have pleiotropic pharmacological effects in DA neurons,
effects on non-DA cell types, or both (Smeyne and
Jackson-Lewis, 2005).

This is the first report suggesting that melatonin is
neuroprotective against LV-alpha-syn induced toxicity in
the rat SN and, therefore, melatonin does interfere with
pathways affected by mutated-synuclein toxicity.
Dissecting the molecular mechanism of MT protection
against A30P alpha-synuclein toxicity should provide
important clues about the unique vulnerability of
dopamine neurons in PD. In conclusion, the data here
suggest that melatonin may be clinically useful to
combat mutant alpha-synuclein-induced oxidative injury
in the CNS.
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