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1 Resumen 

 

Resumen 

 
La producción científica ha crecido exponencialmente a lo largo de las últimas 

décadas en la mayoría de campos de investigación. Como consecuencia de este notable 

aumento de conocimiento, las tareas de síntesis y revisión han ganado importancia para 

entender el estado de la cuestión sobre un determinado tema. En este contexto, el meta-

análisis ha emergido como una metodología que permite a los investigadores integrar 

cuantitativamente los resultados de un conjunto de estudios primarios sobre un tópico 

común. Desde que Glass (1976) acuñó el término meta-análisis para referirse a este tipo 

de investigación metodológica hasta la actualidad, los meta-análisis han ganado 

popularidad en diferentes áreas de investigación como la educación, la psicología y las 

ciencias de la salud. Los tres principales objetivos en meta-análisis son estimar un tamaño 

del efecto medio a partir de los estudios primarios, estudiar la heterogeneidad de los 

tamaños del efecto en torno a ese tamaño del efecto medio, y buscar características de los 

estudios que pudieran explicar al menos parte de la variabilidad exhibida en los tamaños 

del efecto individuales (Botella y Gambara, 2002, 2006; Botella y Sánchez-Meca, 2015; 

Hedges y Olkin, 1985, Sánchez-Meca y Marín-Martínez, 2010).  

Los meta-análisis deben ser llevados a cabo con el mismo rigor científico que los 

estudios empíricos, es decir, objetividad, sistematización y replicabilidad. Debido a que 

el objetivo del meta-análisis es integrar estudios individuales, su unidad de análisis es el 

estudio, mientras que en la investigación primaria la unidad de análisis es el sujeto. Por 

tanto, el tamaño muestral en meta-análisis es el número de estudios. 

Actualmente, la mayor parte de las conclusiones sobre la acumulación del 

conocimiento en psicología están basadas en meta-análisis. La psicología basada en la 

evidencia es una herramienta metodológica que enfatiza la importancia de la evidencia 

científica en la práctica psicológica. El objetivo de esta estrategia consiste en modificar 

la forma de trabajo de los psicólogos, pues estos profesionales aplicados deben tener en 

cuenta la mejor evidencia científica para tomar sus decisiones sobre un cierto problema 
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(Sánchez-Meca y Botella, 2010). En este sentido, el meta-análisis es una metodología 

esencial que ayuda a los psicólogos aplicados a tomar decisiones bien informadas basadas 

en información científica.  

Un meta-análisis es una investigación científica y por tanto, su estructura es muy 

similar a la de cualquier estudio empírico, aunque con ciertas especificaciones. 

Básicamente, un meta-análisis se lleva a cabo siguiendo las siguientes seis fases: (1) 

Definición la pregunta de investigación, (2) búsqueda de estudios, (3) codificación de los 

estudios, (4) cálculo del índice del tamaño del efecto, (5) análisis estadístico, y (6) 

publicación (Botella y Gambara, 2002; Lipsey y Wilson, 2001; Sánchez-Meca y Marín-

Martínez, 2010). Esta tesis se centra en la fase relacionada con el análisis estadístico, 

concretamente en los métodos estadísticos aplicados en meta-análisis.  

Durante los últimos 30 años, se ha desarrollado una intensa actividad para mejorar 

y extender la aplicabilidad de la metodología meta-analítica. Uno de los campos que ha 

generado más investigación es el de los métodos estadísticos aplicados en meta-análisis. 

Se han realizado numerosos estudios de simulación Monte Carlo para investigar qué 

técnicas y procedimientos son los más adecuados dadas las características de una base 

meta-analítica. En el contexto del meta-análisis, los estudios de simulación Monte Carlo 

son especialmente necesarios cuando la teoría axiomática no es capaz de dar respuesta a 

los problemas relativos al funcionamiento de los procedimientos meta-analíticos. 

Además, el meta-análisis es una metodología relativamente joven y por ello, es también 

necesario el desarrollo de estudios de este tipo para perfeccionar las técnicas usualmente 

aplicadas.   

 En la literatura meta-analítica, existe consenso en considerar el modelo de efectos 

aleatorios y el modelo de efectos mixtos como los que mejor se ajustan a las 

características de los meta-análisis aplicados en las ciencias empíricas, en general, y en 

la psicología, en particular. Los métodos inferenciales aplicados bajo estos modelos 

muestran un funcionamiento deficiente bajo algunas condiciones. En este sentido, se han 

propuesto nuevos métodos para intentar mejorar los habituales métodos estándar, aunque 

aún es necesaria más investigación para estudiar su funcionamiento y así, poder responder 

a interrogantes todavía presentes.   

Esta tesis doctoral está compuesta por tres estudios de simulación Monte Carlo 

(Capítulos 3, 4 y 5) que comparan procedimientos y técnicas aplicados en meta-análisis 
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bajo los modelos de efectos aleatorios y efectos mixtos, con el objetivo último de 

proporcionar recomendaciones a los meta-analistas aplicados sobre qué métodos son los 

más óptimos bajo ciertas condiciones.  

Como paso previo, en el Capítulo 2 presentamos una revisión metodológica de 54 

meta-análisis sobre la efectividad de tratamientos psicológicos en el ámbito de la 

psicología clínica que emplearon como índice del tamaño del efecto la diferencia de 

medias estandarizada. Uno de los objetivos de esta revisión fue ayudarnos, tanto a 

nosotros como a otros investigadores, a diseñar nuestros futuros estudios de simulación 

Monte Carlo manipulando condiciones de la forma más realista posible. En este estudio 

analizamos la distribución de los tamaños muestrales en los estudios de cada meta-

análisis, la distribución de los tamaños del efecto en cada meta-análisis, la distribución de 

los valores de la varianza inter-estudios, y las correlaciones de Pearson entre el tamaño 

del efecto y el tamaño muestral de cada meta-análisis. Los resultados se presentan en 

función del tipo de diferencia media estandarizada: diferencia media tipificada calculada 

con las puntuaciones del postest, cambio medio tipificado del pretest al postest, y 

diferencia de cambio medio tipificado entre grupos. Uno de los hallazgos más interesantes 

encontrados en esta revisión fue que la mayoría de los meta-análisis usaron la diferencia 

media estandarizada a partir de las puntuaciones del postest para comparar dos grupos 

(por ejemplo, grupo experimental y grupo control), y aunque la mejor opción para 

comparar dos grupos es la diferencia de cambios medios tipificados, este índice rara vez 

se utilizó. Por otro lado, los resultados sugieren la existencia de un número de estudios 

relativamente bajo, gran cantidad de heterogeneidad en los tamaños del efecto, violación 

del supuesto de normalidad en la distribución de los tamaños del efecto, y correlaciones 

positivas y negativas entre los tamaños del efecto y los tamaños muestrales. Por último, 

también encontramos que los tres cuartiles de la distribución de los tamaños del efecto 

medios para los meta-análisis que usaron tanto la diferencia media tipificada con las 

puntuaciones del postest como la diferencia de cambios medios tipificados eran similares 

al criterio propuesto por Cohen (1988), mientras que los tres cuartiles de la distribución 

de los tamaños el efecto medios en los meta-análisis que usaron el cambio medio 

tipificado del pretest al postest fueron más grandes que los valores propuestos por Cohen 

(1988). Por tanto, de este resultado concluimos que el análisis de la distribución de los 

tamaños del efecto de los meta-análisis proporciona una guía específica y contextualizada 

para la interpretación de la significación clínica de los diferentes tipos de diferencias 
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medias tipificadas dentro del campo de la psicología clínica. El primer estudio de 

simulación, descrito en el Capítulo 3, tiene como objetivo estudiar la influencia del 

incumplimiento del supuesto de normalidad de la distribución de efectos paramétricos 

cuando se calcula el tamaño del efecto medio y su intervalo de confianza bajo el modelo 

de efectos aleatorios. En este trabajo se compara el funcionamiento de varios métodos 

meta-analíticos de efectos aleatorios (método estándar, método de Hartung, método de 

verosimilitud perfil, y el bootstrapping no paramétrico), aplicando a su vez tres 

estimadores de la varianza inter-estudios (DerSimonian y Laird, máxima verosimilitud 

restringida y el estimador empírico de Bayes). Los métodos se evaluaron en términos de 

sesgo y media cuadrática de error de las estimaciones del efecto medio, cobertura 

empírica y amplitud confidencial de los intervalos de confianza, y sesgo del error 

estándar. Los resultados sugieren que los métodos de efectos aleatorios son robustos a las 

desviaciones del supuesto de normalidad, siendo el método de Hartung y el método de 

verosimilitud perfil los que alcanzaron un mejor funcionamiento bajo condiciones 

subóptimas.  

Los estudios de simulación presentados en los Capítulos 4 y 5 de esta tesis se 

centran en el análisis de moderadores cualitativos - análisis de subgrupos - aplicando el 

modelo de efectos mixtos. Concretamente, el segundo estudio de simulación en el 

Capítulo 4 compara el impacto de dos procedimientos de estimación de la varianza inter-

estudios residual, estimaciones separadas en cada categoría del moderador versus 

estimación conjunta a partir de todas las categorías del moderador, sobre el 

funcionamiento estadístico del estadístico estándar de heterogeneidad intergrupos, la 

prueba 𝑄𝐵. El estimador de la varianza inter-estudios residual aplicado fue el método de 

DerSimonian y Laird. El funcionamiento de los métodos estudiados se evaluó en términos 

de error Tipo I y potencia estadística. Los resultados de este estudio sugieren un 

funcionamiento similar de ambos procedimientos de estimación de la varianza inter-

estudios residual siempre que el número de estudios del meta-análisis sea de al menos 20 

estudios y que además la distribución del número de estudios sea equilibrada en las 

categorías del moderador. Por el contrario, cuando el número de estudios se distribuye de 

forma desequilibrada, las consecuencias prácticas de tener varianzas inter-estudios 

residuales heterogéneas en las categorías del moderador son más evidentes. Bajo estas 

condiciones el procedimiento de estimación más adecuado es la estimación conjunta, a 

menos que las varianzas inter-estudios residuales de cada categoría sean claramente 
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diferentes y que haya un suficiente número de estudios en cada categoría para lograr 

estimaciones separadas concretas. 

El tercer y último estudio de simulación explicado en el capítulo 5 también se 

centra en el análisis de subgrupos bajo el modelo de efectos mixtos. Sin embargo, en este 

estudio damos un paso más y evaluamos el funcionamiento en análisis de subgrupos del 

conocido y mejorado método de Knapp y Hartung (2003) para moderadores continuos. 

Por tanto, en este estudio examinamos ambos procedimientos de estimación de la 

varianza inter-estudios residual (estimación conjunta versus estimación separada) en 

combinación con dos métodos para estudiar la significancia estadística de un moderador, 

el estadístico estándar de heterogeneidad intergrupos (la prueba 𝑄𝐵 ), y el estadístico 

mejorado de Hartung (la prueba F). Además, se aplicaron tres métodos diferentes para 

estimar la varianza inter-estudios residual (DerSimonian y Laird, máxima verosimilitud 

restringida, y Paule y Mandel). El funcionamiento de los diferentes métodos se evaluó 

también en términos de error Tipo I y potencia estadística. Los resultados de este estudio 

sugieren que el estadístico mejorado, la prueba F, calculado estimando la varianza inter-

estudios residual de forma conjunta a través de las categorías es la mejor opción en la 

mayoría de las condiciones estudiadas, aunque la prueba F calculada estimando la 

varianza inter-estudios residual de forma separada en cada categoría es preferible si las 

varianzas residuales de cada categoría son heterogéneas y el número de estudios de cada 

categoría se distribuye desequilibradamente. Por otro lado, los resultados mostraron el 

mismo patrón para todos los tres estimadores utilizados de la varianza inter-estudios 

residual. La principal conclusión de este estudio es que el método mejorado de Hartung, 

la prueba F, manifiesta ventajas sobre el método estándar, la prueba 𝑄𝐵, y que la elección 

del procedimiento de estimación de la varianza inter-estudios residual (separada versus 

conjunta) debería hacerse tras examinar las características de la base meta-analítica.  

La interpretación conjunta de los hallazgos encontrados en los cuatro estudios que 

forman la tesis permite ofrecer a los investigadores y/o meta-analistas aplicados una serie 

de recomendaciones. Por ejemplo, una de las principales aportaciones de este trabajo es 

la presentación a la comunidad científica de una guía contextualizada para la 

interpretación de los tamaños del efecto de la familia d en el ámbito de la psicología 

clínica, además de ayudar en el diseño de futuros estudios de simulación Monte Carlo 

utilizando como condiciones o parámetros manipulados las características metodológicas 

de los 54 meta-análisis. Por otro lado, otro hallazgo importante es la robustez de la 
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mayoría de los métodos meta-analíticos ante el incumplimiento del supuesto de 

normalidad en la distribución de los tamaños del efecto paramétricos. Para terminar, los 

resultados permiten aconsejar el uso del método mejorado de Hartung en análisis de 

subgrupos, estimando la varianza inter-estudios residual de forma conjunta a partir de las 

categorías del moderador, pero siempre tomando esta decisión tras examinar las 

características de los estudios que van a conformar tu meta-análisis.  
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Chapter 1 

 

Introduction 
 

 

1.1. Meta-analysis 

 

Research production has exponentially grown along the last decades in most 

scientific fields. As a consequence, the tasks of synthesis and revision are increasingly 

important in order to figure out the state of the art in a specific phenomenon. In this 

context, meta-analysis has emerged as a methodology that allows researchers to integrate 

quantitatively the results from a set of primary studies on a same topic. Since Glass (1976) 

coined the term meta-analysis to refer to this research methodology, meta-analyses have 

been gaining popularity in many different research areas such as education, psychology, 

and health care. The three main statistical objectives in a meta-analysis are to estimate 

the mean effect size through the primary studies, to assess the heterogeneity of the effect 

size estimates around the mean effect size, and to search for moderators that can explain 

part of the heterogeneity among the individual effect size estimates. In the behavioral, 

social, educational, and healthcare sciences, these moderators include the differential 

characteristics of the studies, such as the type of design, characteristics of the participant 

samples, or types of interventions (Botella & Gambara, 2006; Hedges & Olkin, 1985; 

Rosenthal, 1991; Sánchez-Meca & Marín- Martínez, 2010). 

Meta-analyses must be carried out with the same scientific rigor as that demanded 

for empirical studies, that is to say, objectivity, systematization and replicability. As meta-

analysis aims to integrate studies, the analysis unit is the study, whereas in primary 
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research the analysis unit is the subject. Thus, the sample size in meta-analysis is the 

number of studies.  

Nowadays, most conclusions about cumulative knowledge in psychology are 

based on meta-analyses. Evidence-based psychology is a methodological tool which 

emphasizes the importance of scientific evidence to inform psychological practice. This 

approach aims to modify the way psychologists work so that professionals take into 

consideration the best scientific evidence to make their decisions (Sánchez-Meca & 

Botella, 2010). In this vein, meta-analyses are an essential methodology to synthesize the 

scientific evidence available on a given research question at a give time point.  

 
1.2. Phases of a meta-analysis 

 
A meta-analysis is a scientific investigation and, consequently, it involves 

carrying out the same outline as in an empirical study. However, a few specificities need 

to be mentioned. Basically, a meta-analysis can be conducted following six phases: (1) 

Defining the research question, (2) literature search, (3) coding of studies, (4) calculating 

an effect-size index, (5) statistical analysis, and (6) publication (Cooper, Hedges, & 

Valentine, 2009; Lipsey & Wilson, 2001; Sánchez-Meca & Marín-Martínez, 2010).  

 
1.2.1. Defining the research question  

The background in a meta-analysis consists of defining clearly and objectively the 

research question. Thus, the constructs whose relationships are intended to be studied 

must be specified, as well as all variables implied in these relationships, including not 

only dependent and independent variables, but also some potential moderator variables. 

 

1.2.2. Literature search 

Once the research question has been formulated, the next step consists of defining 

the selection criteria that the primary studies must fulfil in order to be included in the 

meta-analysis. Although the selection criteria will depend on the question addressed in 

the meta-analysis, there are several criteria that should be present in any meta-analysis 
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such as range of years considered, design type in the empirical studies, language 

restrictions, and a minimum sample size.  

In order to search for the studies that fulfil the selection criteria, a combination of 

several formal and informal searching strategies should be the best option. Electronic 

bibliographic databases (e.g., PsycINFO, MedLine, ERIC, Google Scholar) should be 

consulted including the keywords used and how they were combined. To warrant the 

maximum comprehensiveness in this process, the formal search strategy is usually 

complemented by carrying out manual searches in specific journals and books for the 

topic of interest, by checking the references listed in the selected studies, and by 

contacting recognized researchers in the field.  

 

1.2.3. Coding of studies  

Once we have retrieved the primary studies to be included in the meta-analysis, 

the next step is to record all relevant study characteristics. To this end, a codebook and a 

protocol for registering the characteristics of the studies must be produced. Furthermore, 

the authors must make available the codebook and the protocol for the scientific 

community in order to warrant the transparency and replicability of the coding process. 

The relevant information to be extracted from each primary study includes numerical 

variables that will be used in the main analyses (see next section), but also potential 

moderators of the association of interest. Although that list of potential moderators will 

vary from one meta-analysis to another, three broad categories of moderator variables can 

be distinguished: methodological, substantive, and extrinsic variables. Substantive 

characteristics are those related to the research question of the meta-analysis, including 

sociodemographic characteristics of the sample. Methodological variables are 

characteristics of the designs and methods of the studies. It is advisable to register 

methodological variables that allow assessing the methodological quality of the studies, 

such as random versus non-random assignment of participants to the groups, experimental 

mortality and the use of blinded evaluators in assessing the outcomes. The meta-analyst 

can then make the decision to eliminate studies that do not have a minimum of 

methodological quality, or to include/exclude them in sensitivity analyses. Finally, 

extrinsic variables are those characteristics that have nothing to do with the research 

enterprise so that, in principle, they should not be related at all with the study results. 
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These include publication year of the study, publication status (published or unpublished), 

and the educational profile of the main author.  

In practice, the process of coding studies is often complex because the information 

reported in some primary studies may be incomplete or ambiguous. Therefore, the 

reliability of the coding process should be analysed. For that purpose, all or a random 

sample of the primary studies should be coded independently by two (or more) previously 

trained coders. The reliability can be assessed using indices such as intra-class 

correlations and kappa coefficients for continuous and categorical moderators, 

respectively. 

 

1.2.4. Calculating an effect-size index 

In addition to coding and recording the moderator variables of the studies, an 

essential issue in meta-analysis is to calculate a quantitative index that summarizes the 

results of each study in a common metric. It is very common that the studies included in 

the meta-analysis have measured the effects of treatment with different instruments (e.g., 

different psychological tests), so that their results are not directly comparable. 

Homogenization of results can be achieved by applying some effect size index. 

Depending on the study design and the type of dependent variables (e.g. continuous, 

dichotomous), different effect-sizes indices can be applied. The effect-size indices most 

frequently used in meta-analysis are grouped into: d family, r family, and risk indices.  

In psychology and related areas, one of the most frequently study design involves 

a comparison of two groups in a continuous variable. In a two-group design (usually 

experimental vs. control), the effect size most usually applied from the d family is the 

standardized mean difference, which enables to transform results using different scales 

into a common scale. The standardized mean difference is defined as the difference 

between two means divided by a pooled within-group standard deviation: (Hedges & 

Olkin, 1985; Rubio-Aparicio, Marín-Martínez, Sánchez-Meca, &  López-López, in 

press). In a repeated measures design, in which continuous pretest and posttest measures 

are registered for a sample of subjects (e.g., before and after the intervention, or before 

and at follow-up), the standardized mean change is a more appropriateeffect size, 

calculated as the difference between the pretest and posttest means divided by the pretest 

standard deviation: (Hedges & Olkin, 1985; Rubio-Aparicio et al., in press). Finally, if 
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the studies include experimental and control groups with pretest and posttest measures, it 

is recommendable to use the standardized mean change difference index (see e.g., Morris, 

2008; Rubio-Aparicio et al., in press).  The family d indices will be described with more 

detail in Chapter 2.  

On the other hand, when the primary study applied a correlational design to 

analyse the degree of association among two variables, a correlation coefficient can be 

used as the effect-size index (e.g., the Pearson correlation coefficient, its Fisher´s Z 

transformation, the phi coefficient, the point-biserial correlation coefficient, etc.).  

Lastly, when the dependent variables are dichotomous risk indices must be 

applied: the risk differences defined as the difference between the failure (or success) 

proportions for two groups, the risk ratio defined as the ratio between two proportions, 

and the odds ratio, defined as the ratio between the odds of the two groups, are some 

examples (Sánchez-Meca, Marín-Martínez, & Chacón-Moscoso, 2003).  

Once the effect-size index most appropriate to the characteristics of the studies 

has been selected, it is applied to each individual study and its sampling variance is also 

calculated with the corresponding formulas (e.g., Sánchez-Meca & Marín-Martínez, 

2010). In addition, as in process of coding the characteristics of the studies, the 

computation of the effect sizes must be subjected to an analysis of intercoder reliability. 

 

1.2.5. Statistical analysis and interpretation 

Once the information from the studies has been summarized, statistical analyses 

can be conducted. A preliminary step in the statistical analysis consists of describing the 

characteristics of the primary studies with the aim of portraiting the “typical” study in the 

data set, its composition and size.  

After descriptive analyses, the first inferential purpose in meta-analysis is to 

calculate an average effect size and its interval confidence. When computing this average, 

it iscustomary to apply weighting procedures to give more weight to the effect sizes 

obtained from the studies with larger sample sizes. The most appropriate weighting 

method involves using the inverse variance of each effect size estimate as the weighting 

factor (Cooper et al., 2009; Hedges & Olkin, 1985; Marín-Martínez & Sánchez-Meca, 

2010). To accomplish this first objective, two statistical models can typically considered: 
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the fixed-effect and the random-effects models. Under the fixed-effect model, it is 

assumed that all studies in the meta-analysis estimate a common population effect size 

and the only source of variability among the effect sizes is sampling error due to the 

random selection of participants in each study (Konstantopoulos & Hedges, 2009). 

Conversely, in the random-effects model it is assumed that each study in the meta-

analysis estimates a different population effect size, and that studies are randomly selected 

from a population of studies. It is also assumed that the corresponding population effect 

sizes are normally distributed. As a consequence, in the random-effects model, the effect 

sizes present two sources of variability: between-studies and within-study variability. 

Nowadays, there is broad consensus that the random effects model is more realistic than 

the fixed-effect model in most situations, due to the methodological and substantive 

differences that are typically found among the studies combined in a meta-analysis 

(Borenstein, Hedges, Higgins, & Rothstein, 2010; Hedges & Vevea, 1998; Raudenbush, 

1994, 2009). The model choice will have an influence on the statistical procedures 

implemented for integrating the information and on the generalizability of the results 

(Hedges & Vevea, 1998). Furthermore, there is currently wide consensus on the 

convenience of applying the improved method proposed by Hartung (1999; IntHout, 

Ioannidis, & Borm, 2014; Sánchez-Meca & Marín-Martínez, 2008) to compute the 

confidence interval around the overall effect size estimate.  

Secondly, the meta-analyst must assess the heterogeneity of the individual effect 

sizes around the average effect size. To that aim, the Q statistic (Hedges & Olkin, 1985) 

is often employed to test the null hypothesis that variability among the effect sizes is only 

due to random sampling error (e.g. there is no true heterogeneity among effect sizes). 

However, the Q test has poor statistical power to detect true heterogeneity among effect 

sizes when meta-analyses include a small number of studies (Sánchez-Meca & Marín-

Martínez, 1997). Thus, it is recommendable to complement the statistical conclusion of 

the Q test with the I2 index (Higgins & Thompson, 2002), which quantifies the 

heterogeneity exhibited by effect sizes as a percentage (Huedo-Medina, Sánchez-Meca, 

Marín-Martínez, & Botella, 2006).  

If substantial heterogeneity among the effect sizes is found in a meta-analysis (as 

is often the case), the third step consists of searching for moderator variables that can 

account for that variability. A general recommendation when conducting such moderator 

analyses is to adopt a mixed-effects model, in which the effect sizes are taken as a 
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random-effects variable, and study-level moderator variables – or individual-level 

moderators, should individual participant data be available – are taken as fixed-effects 

variables. Moderator analyses can be conducted through meta-regression analyses for 

continuous variables and weighted ANOVA for qualitative variables, with the improved 

method proposed by Knapp and Hartung (Knapp & Hartung, 2003; López-López, Botella, 

Sánchez-Meca, & Marín-Martínez, 2013; Viechtbauer, López-López, Sánchez-Meca, & 

Marín-Martínez, 2015). It is also recommendable to estimate the proportion of variance 

accounted for by the moderator variables calculated by means of R2 (López-López, 

Marín-Martínez, Sánchez-Meca, Van den Noortgate, & Viechtbauer, 2014).  

This dissertation is focused on this phase of a meta-analysis, concretely on the 

statistical methods applied in meta-analysis.  

 

1.2.6. Publication 

Finally, the results of a meta-analysis can be summarised in a report for further 

publication. Many guidelines have been developed with the aim of helping authors 

improve the reporting of meta-analyses. Of all of them, the PRISMA Statement (Preferred 

Reporting Items for Systematic reviews and Meta-Analyses; Moher, Liberati, Tetzlaff, 

Altman, & The PRISMA Group, 2009) and the AMSTAR statement (Assessment of 

Multiple SysTemAtic Reviews; Shea et al., 2007) are specially designed for their 

application in meta-analyses on effectiveness of interventions.  

The structure of a meta-analytic report is similar to that of any other scientific 

paper: Introduction, method, results, discussion, and conclusions. In the introduction the 

need to carry out a meta-analysis must be justified, together with the definitions of the 

constructs and variables implied in the research question. Furthermore, the purpose of the 

meta-analysis must be stated, specifying objectives and hypotheses, if applicable. In the 

method section, the selection criteria of the studies, the search strategies, the coding 

process of the study characteristics, the computation of the effect-size index, and the 

statistical analyses must be outlined. The results section must present some characteristics 

of the included studies, the effect-size distribution, the mean effect size, the assessment 

of the heterogeneity, the analyses of moderator variables, additional analyses (e.g., 

sensitivity analyses and assessment of publication bias), and as a further step, it is 

advisable to fit an explanatory model including the most relevant moderator variables (if 
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the number of studies allows it). In addition, including tables and charts (e.g., forest plots, 

funnel plots) in this section can be helpful to the reader. Finally, in the discussion and 

conclusions section the main results are presented and discussed in the light of previous 

meta-analyses. The implications for future research and limitations of the meta-analysis 

must be outlined.  

 

1.3. Monte Carlo studies in meta-analysis 

A simulation study entails drawing (usually large) random samples from a 

theoretical distribution function with known parameters Simulation studies allow 

researchers to examine the sampling distribution of one or more parameters of interest 

that could not be obtained with studies of real data alone. The label ‘Monte Carlo method’ 

is used for any empirical study in which randomly generated variables are present. Thus, 

in a Monte Carlo simulation study, several data sets are independently created by random 

number generation, using functions based on probability distributions (Burton, Altman, 

Royston, & Holder, 2006; Schulze, 2004). 

In a Monte Carlo simulation study, several steps can be found. Firstly,, the 

statistical model, the parameters to be estimated and the experimental factors must be 

defined, based on substantive knowledge. Then, the combinations of the experimental 

factors and the number of iterations are defined. In a simulation study, these aspects 

depend on the objectives and available resources (e.g, computational time). In a third step, 

in each combination of factors (or scenario) random data are generated, and the statistical 

methods under examination are implemented. This stage is repeated as many times as 

replicas have been previously defined. Finally, the results obtained must be analysed.  

Recent technological advances have resulted in the development of more powerful 

devices and more efficient algorithms, which has led to a substantial decrease in 

computational time. This explains the increasingly frequent use of computers to perform 

statistical analysis. In the context of meta-analysis, Monte Carlo simulation studies are 

designed to investigate the properties of statistical procedures and techniques usually 

applied when carrying out a meta-analysis. Monte Carlo simulation studies are 

particularly necessary when the axiomatic theory is not able to give answer to the issues 

relative to the performance of different meta-analytic procedures. Further, meta-analysis 

is a relatively young methodology, and hence it is also necessary to develop Monte Carlo 

simulation studies in order to investigate which among some newly developed procedures 
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are most adequate given the characteristics of a meta-analytic database. Nowadays, the 

scientific community recognizes meta-analysis as one of the methodologies able to offer 

the highest quality scientific evidence. In this vein, a growing community of researchers 

are finding out methodological alternatives to help applied meta-analysts conduct meta-

analytic reviews. The Meta-analysis Unit of the University of Murcia 

(http://www.um.es/metaanalysis/), headed by Dr. Julio Sánchez Meca, has been doing 

research on meta-analysis for more than 25 years. During this time, this team has 

developed a wide scientific production on the assessment and application of new 

statistical procedures in meta-analysis, including numerous Monte Carlo simulation 

studies.  

 

1.4. Optimizing statistical methods in meta-analysis 

The last 30 years have seen an intense activity aimed at improving the statistical 

methods applied in meta-analysis. This chapter provides an overview of the key analysis 

goals in a meta-analysis. As previously pointed out, nowadays there is consensus in 

considering random effects and mixed effects models as those that best fit the 

characteristics of most meta-analyses that are applied in the empirical sciences, in general, 

and in psychology in particular (Borenstein, Hedges, Higgins & Rothstein, 2009; Cooper 

et al., 2009; Hedges & Olkin, 1985). Nonetheless, the statistical inference methods 

usually applied in random and mixed-effects meta-analysis show deficient performance 

under some conditions. New methods have been proposed that try to outperform that the 

standards ones, but research is needed to assess their performance. In this vein, the 

purpose of this dissertation is to carry out Monte Carlo simulation studies to optimize the 

inferential statistical methods under random and mixed-effects models for their future 

application.  

First, in order to ensure that the manipulated conditions in our Monte Carlo 

simulation studies are as realistic as possible, a methodological review of meta-analyses 

of the effectiveness of clinical psychology treatments is carried out in Chapter 2. One of 

the purposes of this study is to offer a guide for the design of future research studies on 

the performance of meta-analytic procedures, based on the manipulation of realistic 

assumptions and parameters. Furthermore, the results of this review allow contextualized 

interpretation of the effect sizes in the specific area of the evaluation of the effectiveness 

of clinical psychological treatments.  

http://www.um.es/metaanalysis/
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Two of the main objectives in meta-analysis are to estimate the average effect size 

and to perform an analysis of moderators to identify sources of heterogeneity among the 

individual effect size estimates. Chapters 3, 4 and 5 present three Monte Carlo simulation 

studies examining the performance of several statistical methods available to address 

those goals. The first simulation study is conducted for the first objective and the second 

and third simulation study for the second objective.  

In Chapter 3, the influence of the departure from the normality assumption in the 

population effects distribution, when computing an average effect size and a confidence 

interval (CI) in random-effects meta-analysis, is assessed.  

Chapters 4 and 5 are focused on categorical moderator analyses under mixed-

effects models. Concretely, the main purpose in Chapter 4 was to compare the impact of 

two procedures for estimating the residual between-studies variance, separate estimates 

and pooled estimate in each category of the moderator, on the statistical performance of 

the standard between-groups heterogeneity statistic. Furthermore, Chapter 5 incorporates 

the Knapp-Hartung improved method in addition to examining both approaches for 

estimating the residual between-studies variance on the standard between-groups 

heterogeneity test.  

Finally, some general conclusions and recommendations for future research are 

provided in Chapter 6. 
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Chapter 2 

 

Study 1: 

 

“A methodological review of meta-

analyses of the effectiveness of 

clinical psychology treatments” 
 

 

 

 

2.1. Introduction 

 

Meta-analysis is a form of quantitative systematic review in which the results of 

a series of empirical studies on the same research topic are statistically summarized. 

When the individual studies report results in different scales (e.g., depression symptoms 

measured with different instruments), standardized effect size indices are often used to 

express the results across studies in a common metric. The standardized mean difference 

is one of the most used effect size indices in studies in which two or more groups are 

compared on a continuous outcome (Borenstein et al., 2009; Cooper et al., 2009). 
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The empirical analysis of the methodological characteristics of real meta-analyses 

in a specific area of study is useful, as it helps to portrait the “typical” meta-analytic 

review that is conducted in a research field (e.g., number of studies, sample size 

distribution in the primary studies, and effect size distribution). Furthermore, a 

methodological review of meta-analyses allows assessing the degree of compliance with 

model assumptions, such as normal distribution of the effect sizes and independence 

between the sample sizes and effect sizes.  

The aim of the present study was to explore the methodological characteristics of 

54 meta-analyses published in high standard journals, which examined the effectiveness 

of clinical psychological interventions using standardized mean differences as the effect 

size index. This enabled us to provide a guide for the interpretation and characterization 

of the meta-analyses in the context of clinical psychology.  

As in our study, Levine, Asada, and Carpenter (2009) explored the characteristics 

of 51 published meta-analyses on topics relevant to communication researchers (e.g., 

persuasion and interpersonal communication, language intensity effects, or viewing 

presidential debates). Interestingly, this study revealed a negative correlation between 

effect size and sample size for most of the meta-analyses reviewed, which may have been 

caused by publication bias. 

Another review of meta-analyses was conducted by Engels, Schmid, Terrin, 

Olkin, and Lau (2000). These authors revised 125 published meta-analyses in the field of 

clinical medicine. They compared the performance of two effect size indices, the odds 

ratio and risk difference, usually applied in studies with binary outcomes. Both indices 

yielded the same conclusion when testing the statistical significance of the mean effect 

size within the same meta-analysis. However, risk differences led to greater heterogeneity 

than did odds ratios. 

Schmidt, Oh, and Hayes (2009) selected 68 meta-analyses in which a fixed-effect 

model was assumed, and they reanalyzed the findings while applying the more realistic 

random-effects model. These meta-analyses focused on gender differences and the 

relations between personality and aggressive behaviour. The fixed-effect confidence 

intervals around mean effect sizes showed an overstated and unrealistic precision, as 

compared to the wider random-effects confidence intervals. 
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Finally, Lipsey and Wilson (1993) reported an extensive review of meta-analyses 

of the efficacy of psychological and educational treatments. Some of the analyzed 

characteristics were the magnitude of the effects, the sample sizes of the primary studies, 

and the methodological quality of the meta- analyses. The main purpose of this study was 

to show the ability of meta-analysis to rigorously assess the degree of effectiveness of the 

treatments. 

The present study focused on the methodological characteristics of meta-analyses 

of the effectiveness of treatments in the field of clinical psychology, with the standardized 

mean difference as the effect size index. Some of these methodological characteristics 

were the type of standardized mean difference (between groups or within groups), the 

distribution of the numbers of studies of the meta-analyses, the distribution of the sample 

sizes in the studies of each meta-analysis, the distribution of the effect sizes in each of the 

meta-analyses, the distribution of the between-studies variance values, and the Pearson 

correlations between the effect size and sample size in each meta-analysis. 

With this methodological review of meta-analyses, we intend to offer a guide for 

the design of future research studies on the performance of meta-analytic procedures (e.g., 

Monte Carlo or theoretical studies), based on the manipulation of realistic assumptions 

and parameters in the meta-analyses. Furthermore, the analysis of the distribution of the 

average effect sizes through the meta-analyses will provide a guide for the interpretation 

of the clinical significance of the different types of standardized mean differences, in the 

field of the effectiveness of the clinical psychological treatments. In addition, our results 

will offer realistic estimates of effect size in this context, which is valuable information 

for researchers aiming to determine the optimal sample size when planning their 

investigations. 

 

2.1.1. Types of standardized mean differences 

If all studies included in the meta-analysis reported a continuous outcome in the 

same metric, raw mean differences could be used as the effect size index. However, this 

is seldom the case in the behavioral and social sciences, where different instruments to 

measure the same construct are usually considered across studies. This is why 

standardized mean differences are widely used in meta-analyses conducted in these fields. 
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Different types of standardized mean differences suit different study designs. In a 

two-group design (usually experimental vs. control) with a continuous outcome, the most 

usual formula to estimate the population effect size is (Hedges & Olkin, 1985): 
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where d is an approximately unbiased estimator of the corresponding parameter, 
1y  and  

2y are the means of the two groups in the outcome, n1 and n2 are the sample sizes, and Ŝ  

is an estimator of the pooled within-group standard deviation given by:  
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1S and 
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2S  being the unbiased variances of the two groups.  

 Hedges and OIkin (1985) also derived the formula of the variance of the d index, 
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 In a repeated measures design, where continuous pretest and posttest measures are 

registered for a sample of subjects (e.g. before and after the intervention), Becker (1988) 

proposed the standardized mean change, based on the difference between the pretest and 

posttest means divided by a standard deviation. Depending on the value of the estimated 

standard deviation in the denominator, there are two proposed d indices that we will 

denote by dc1 and dc2, respectively.   
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 In a sample with n subjects, prey  and  posy  being the means in the pretest and 

posttest, respectively, dc1 is defined by (Gibbons, Hedeker, & Davis, 1993):  
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where dc1 is an approximately unbiased estimator of the corresponding parameter, and  Sc 

is the standard deviation of the change scores from pretest to posttest. The variance of dc1 

is given by (Morris & DeShon, 2002):  
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 The dc2 index is given by (Becker, 1988; Morris, 2000; Morris & DeShon, 2002):  
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where Spre is the standard deviation of the pretest scores, that is not influenced by the 

effects of the intervention. Morris (2000) derived the formula for estimating the variance 

of dc2: 
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where r is the Pearson correlation between the pretest and posttest scores.  
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 Note that, in studies with a two-independent-group design with continuous pretest 

and posttest measures, the most widely used effect size index is the standardized mean 

difference, d, as defined in Eq. 1, computed on the posttest scores. However, this index is 

only appropriate when there is random assignment of the subjects to the groups and 

equivalent pretest scores in both groups can be assumed. Furthermore, a disadvantage of 

computing the d index only on the posttest scores is that the valuable information of the 

pretest scores is ignored.  

 Becker (1988), Morris and DeSohn (2002), and Morris (2008) proposed three 

effect size indices based on the difference between the standardized mean change in the 

experimental and control groups, that we will denominate dg1, dg2, and dg3. These indices, 

unlike the standardized mean difference computed only on the posttest scores, take into 

account the information in both the pretest and posttest scores of the experimental and 

control groups.    

 The dg1 index is given by:  

 

                                                      dg1 = dc1,E  − dc1,C ,                                               (2.8)                                                                                                  

 

where dc1,E and dc1,C are the standardized mean change defined in Eq. 2.4, for the 

experimental and control groups, respectively. The variance of the dg1 can be estimated 

by:  
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Ccd  being the estimated variances of the dc1 indices computed by Eq. 2.5 

applied on the experimental and control groups, respectively.  

 An alternative index to dg1 is dg2, computed as the difference between the 

standardized mean change defined in Eq. 2.6 for the experimental and control groups: 

                                                       dg2 = dc2,E  − dc2,C .                                              (2.10)                                                                  
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 The estimated variance of the dg2 index is given by: 
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Ccd are the estimated variances of the dc2 indices computed by Eq. 2.7 

for the experimental and control groups, respectively.  

 Assuming the homogeneity of the pretest standard deviations in the experimental 

and control groups, the dg3 index is given by:  
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where nE and nC are the sample sizes of the experimental and control groups, Eprey , and 

Eposy ,  are the means of the experimental group in the pretest and posttest, Cprey ,  and 

Cposy ,  are the means of the control group in the pretest and posttest, and preS  is given by:  
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,CpreS being the variances of the experimental and control groups in the pretest.  

 

 Finally, the estimated variance of the dg3 index is given by:   
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where r is the mean of the Pearson correlations between the pretest and posttests scores 

in the experimental and control groups.  

 

2.2. Methodology 

2.2.1. Search procedure and selection criteria of the meta-analyses  

 The data for the present study were extracted from a sample of 50 published meta-

analyses about the effectiveness of psychological treatments and interventions. The meta-

analyses were obtained from journals with impact factor located in the first quartile of 

2011 Journal Citation Reports in the clinical psychology field (Clinical Psychology 

Review, Psychological Medicine, Journal of Consulting and Clinical Psychology, 

Depression and Anxiety, Health Psychology, Neuropsychology, Behaviour Research and 

Therapy, and Journal of Substance Abuse Treatment). The search was conducted in 

Google Scholar and limited to meta-analyses published between 2000 and 2012 with the 

key words “meta-analysis” OR “systematic review” in the tittle.   

 First, reading the title and abstract of each reference allowed us to preselect the 

meta-analyses about the effectiveness of psychological programs, treatments and 

interventions about psychological, educational and psychosocial disorders. To be 

included in or study, meta-analyses had to comply with several selection criteria. First, 

we only included meta-analyses using an effect size index from the d family: the posttest 

standardized mean difference (Eq. 2.1), standardized mean change (Eqs. 2.4 or 2.6), and 

standardized mean change difference (Eqs. 2.8, 2.10, or 2.12). Furthermore, the meta-

analyses should report the individual effect sizes and sample sizes for the primary studies. 

To ensure that the selected meta-analyses had sufficient data to provide valid results, they 

had to include seven or more studies, with sample sizes of at least five subjects per group. 

 A total of 206 published meta-analyses were revised of which 50 were finally 

included in the study. These included studies are marked with an asterisk in the references 

section. Some meta-analyses used two different effect sizes of the d family (Hesser, 

Weise, Westin, & Andersson, 2011; Nestoriuc, Rief, & Martin, 2008; Sockol, Epperson, 

& Barber, 2011; Virués-Ortega, 2010). In those cases, our decision was to consider them 

as independent meta-analyses. Thus, a total of 54 independent meta-analyses, or analysis 
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units, took part in the present study. These meta-analyses summarized the results of 1,285 

individual studies.  

 

2.2.2. Data extraction 

 A database was created in SPSS, in which the effects sizes and sample sizes of the 

individual studies were coded for each meta-analysis. For meta-analyses including 

several outcomes, we selected the most relevant clinical outcome taking into account the 

principal aim of the meta-analysis. The type of design in which the computation of the 

effect size was based, and the type of d index were also recorded. Designs were classified 

as between-groups and within-groups, and type of d was coded as posttest standardized 

mean difference (d in Eq. 2.1), standardized mean change (dc1 or dc2, in Eqs. 2.4 or 2.6, 

respectively), and standardized mean change difference (dg1, dg2, or dg3, in Eqs. 2.8, 2.10 

or 2.12, respectively). For each d value, its variance was estimated with Eqs. 2.3, 2.5, 2.7, 

2.9, 2.11, or 2.14, depending on the type of d.  

 The data from each meta-analysis were coded independently by two trained 

coders, with agreement percentages ranging between 94.44% and 100%. Inconsistencies 

between the coders were solved by consensus.     

 

2.2.3. Meta-analytic calculations 

 Several computations were carried out using each meta-analytic database. The 

weighted average effect size was estimated using the following expression:  
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where iT   refers to any d family effect size index, and iŵ  is the estimated weighting factor 

computed through )ˆˆ/(1ˆ 22

DLiiw   . The within-study variance of each individual study, 

2ˆ
i , was estimated using the formula corresponding to the type of d index (see Eqs. 2.3, 

2.5, 2.7, 2.9, 2.11, and 2.14).  The between-studies variance, 
2ˆ
DL , was calculated through 
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the procedure of DerSimonian and Laird (1986), the most commonly used in practice. In 

this procedure, the between-studies variance estimator is derived from the moment 

method 
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where k is the number of studies of the meta-analysis, and Q is a statistic to test the 

heterogeneity of the effect sizes, described by Cochran (1954), and obtained by 
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with 
*ˆ
iw  being the estimated weights assuming a fixed-effect model, 

2* ˆ/1ˆ
iiw  ; *T  

being the mean effect size also assuming a fixed-effect model-that is, applying Eq. 2.15, 

but using 
*ˆ
iw  as weighting factor; and c being given by 
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The mean effect size (Eq. 2.15) was always computed with DL estimator. 

Restricted Maximum Likelihood (REML) and Paule and Mandel (PM) estimators of   2̂  

were also applied in order to know the distributions of the between-studies variances. 

Next we present formulas for these estimators.  

The REML estimator is obtained iteratively from Sánchez-Meca and Marín-

Martínez (2008) and Viechtbauer (2005): 
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where iŵ  is the estimated weighting factor, iT  refers to any d family effect size index,  

2ˆ
i  is the within-study variance of each individual study, and T is defined in Eq. 2.15. 

When 
2ˆ
REML < 0, it is truncated to zero.  

The final estimator was also obtained through an iterative method, proposed by 

Paule and Mandel (1982). Applying this estimator, the between-studies variance is given 

by 

 

                                 (2.20)                                    

 

where iŵ  is the estimated weights, iT  is any of d family effect size, T  is defined 

in Eq. 2.15, and k is the number of studies.  

 To test for true heterogeneity among the population effect sizes, we calculated the 

Q-statistic defined in Eq. 2.17, for each meta-analysis. Under the hypothesis of 

homogeneity among the effect sizes, the Q statistic follows a chi-square distribution with 

k - 1 degrees of freedom.  

 The Q-statistic does not inform researchers of the extent of true heterogeneity, 

only of its statistical significance. Furthermore, the Q test has poor power to detect true 

heterogeneity among the effect sizes when the meta-analysis includes a small number of 

studies (k < 30, Sánchez-Meca & Marín-Martínez, 1997). To overcome the shortcomings 

of the Q test, Higgins and Thompson (2002; Higgins, Thompson, Deeks, & Altman, 2003) 

proposed the I2 index for assessing the magnitude of heterogeneity exhibited by the effect 

sizes. For each meta-analysis, the I2 index was computed as 
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 The I2 index was interpreted as the percentage of the total variability in a set of 

effect sizes due to true heterogeneity-that is, to between-studies variability. Indicatively, 
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I2 rates around 25%, 50% and 75% can be interpreted as reflecting low, medium and high 

heterogeneity, respectively (Huedo-Medina et al., 2006).   

                                                                                                

2.2.4. Data analysis  

 The statistical analyses were carried out in R. Specifically, the meta-analytic 

calculations were programmed with the metafor package (Viechtbauer, 2010), using the 

individual effect sizes and sample sizes coded for each meta-analysis as inputs. For 

repeated measures data, the correlation between pre- and post-assessment is required for 

computation of the variance of dc2 (Eq. 2.7), dg2 (Eq. 2.11), and dg3 (Eq. 2.14) indices. 

Following Rosenthal (1991), the criterion was set at r = 0.7, as a representative value of 

the expected correlation in this context.   

 The normality assumption for the effect size distribution in each meta-analysis 

was assessed with the Shapiro-Wilk test for small samples, and by computing the 

skewness and kurtosis of the distribution. Furthermore, the median, skewness and kurtosis 

were also computed for the sample size distribution in each meta-analysis. Descriptive 

analyses (minimum, maximum, mean, and quartiles) were carried out on the next indices 

across the meta-analyses: number of studies; mean effect size (Eq. 2.15); p-value of the 

Shapiro-Wilk test; skewness and kurtosis of the d values; median, skewness and kurtosis 

of the sample sizes distribution; Pearson correlation between effect sizes and sample 

sizes; and the p-value of the heterogeneity Q statistic (Eq. 17); I2
 index (Eq. 2.21); and 

2̂ index (Eqs. 2.16, 2.19 and 2.20). These analyses were performed separately for meta-

analyses using the posttest standardized mean difference, the standardized mean change, 

and the standardized mean change difference 

The R code is provided in Appendix 2A. The 54 meta-analytic databases are available 

in the Open Science Framework (https://osf.io/yd52u/).  
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2.3. Results 

2.3.1. Characteristics of the meta-analyses  

 A total of 54 meta-analyses were included in this study, of which 41 used the 

posttest standardized mean difference (between-groups design), 11 used the standardized 

mean change (within-groups design) and 2 used the standardized mean change difference 

(between-groups design). The database with the 54 meta-analyses is presented in the 

Appendix 2B. The type of d family effect size index, the equation applied to estimate the 

variance of each individual effect size, and some meta-analytic calculations were 

registered for each meta-analysis: number of studies, mean effect size, p-value associated 

with the Q statistic; I2 ; and 
2ˆ
DL , 

2ˆ
REML  and 

2ˆ
PM values. We performed these calculations 

using the values of the effect sizes and sample sizes from each meta-analysis.  

 The values of the d indices reported by the authors of the meta-analyses were 

computed as in Eqs. 2.1, 2.4, 2.6, 2.8, 2.10, and 2.12; or with some slight variations of 

these Equations. Specifically, in some meta-analyses, the dc2 index (Eq. 2.6) was 

computed using pooled standard deviations from pretest and posttest data, instead of the 

standard deviations in the pretest (meta-analyses in Casement & Swanson, 2012; Driessen 

et al., 2010; Hansen, Höfling, Kröner-Borowik, Stangier, & Steil, 2013; and Williams, 

Hadjistavropoulos, & Sharpe, 2006). Also, in the meta-analysis of Aderka, Nickerson, 

Bøe, and Hofmann (2012), the dg3 index (Eqs. 2.12 and 2.13) was computed using the 

variances of the change scores, instead of the variances in the pretest.      

Some meta-analyses included more than one type of d index and, consequently, 

the 50 published meta-analyses were disaggregated in 54 independent meta-analyses. For 

instance, the meta-analysis in Hesser et al. (2011) was disaggregated in two meta-

analyses, since the standardized mean difference was used to compare the treatment and 

control groups at posttest, and the standardized mean change was used to evaluate the 

differences from pretest to posttest for some treatment groups (see Appendix 2B).  

 Next, the distributions of the number of studies, effect sizes, sample sizes in the 

primary studies, correlations between effect sizes and sample sizes, and heterogeneity 

indices of the meta-analyses, are presented as a function of the type of d index. 

Descriptive analyses of these distributions are shown for the meta-analyses using the 

posttest standardized mean difference (see Table 2.1), the standardized mean change (see 
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Table 2.2) and the standardized mean change difference (see Table 2.3). Figure 2.1 shows 

the corresponding box plots of the analysed distributions, for the meta-analyses using the 

posttest standardized mean differences (d) and the standardized mean changes (dc), and 

Figure 2.2 presents histograms of mean effect sizes and between-studies variances 

distributions for the meta-analyses using the posttest standardized mean differences (d) 

and the standardized mean changes (dc). Only two meta-analyses used the standardized 

mean change difference. 

 

Table 2.1. Descriptive analyses of the meta-analytic calculations for posttest 

standardized mean difference.  

Note. Min. = minimum; 1st Qu. = First Quartile; 3rd Qu. = Third Quartile; Max. = maximum; k = 

number of studies; = average effect sizes applying DL to estimate the between-studies 

variance; p_norm = p-value associated to the Shapiro-Wilk test; d_skewness = skewness of effect 

sizes; d_kurtosis = kurtosis of effect sizes; N_median = median of sample sizes ; N_skewness = 

skewness of sample sizes; N_kurtosis = kurtosis of sample sizes;  = correlation between 

effect sizes and sample sizes; p_Q = p-value associated to the heterogeneity Q statistic; I2 = index 

to quantify the amount of heterogeneity (in %); 
2ˆ
DL = between-studies variance estimated using 

 Min. 1st Qu. Median Mean 3rd Qu. Max. 

K 7 14 18 24.2 25 70 

 0.068 0.249 0.409 0.472 0.695 1.075 

p_norm .000 .008 .138 .211 .312 .858 

d_skewness -1.947 0.179 0.571 0.503 0.994 2.354 

d_kurtosis -1.758 -0.839 -0.212 0.414 1.033 6.001 

N_median 16 32 46.5 48.6 64 87.5 

N_skewness -1.085 0.914 1.357 1.350 1.762 3.487 

N_kurtosis -1.512 -0.477 0.722 1.749 2.684 14.170 

 
-.612 -.329 -.212 -.119 .059 .734 

p_Q .000 .000 .000 .095 0.035 0.981 

I2 0 37.71 59.86 54 74.83 93.61 

2ˆ
DL  0.000 0.055 0.111 0.159 0.171 1.024 

2ˆ
REML  0.000 0.043 0.108 0.181 0.179 0.816 

2ˆ
PM  0.000 0.059 0.129 0.215 0.352 0.789 
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the DerSimonian and Laird (1986) method; 
2ˆ
REML  = between-studies variance estimated using 

restricted maximum likelihood; 
2ˆ
PM = between-studies variance estimated using Paule and 

Mandel’s (1982) method.  

 

 

Fig. 2.1.  Boxplots of some meta-analytic indices. Between-studies variance was 

estimated using the DerSimonian and Laird procedure. d = posttest standardized mean 

difference; dc = standardized mean change 
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Fig. 2.2. Histograms of the distribution of mean effect sizes and between-studies 

variances for posttest standardized mean difference (d) and standardized mean change 

(dc). The between-studies variance was estimated using the DerSimonian and Laird 

(1986) procedure. 

 

 

2.3.2. Number of studies  

 In the 41 meta-analyses that used the posttest standardized mean difference as the 

effect size index, the number of primary studies ranged from k = 7, the minimum number 

of studies for a meta-analysis to be included in this review, to k = 70. The first quartile, 

median, mean, and third quartile were 14, 18, 24.2, and 25 studies, respectively (see Table 
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2.1). These results reflect a clear positive skewness, or the predominance of meta-analyses 

with a small number of studies. Furthermore, as can be seen in Fig 2.1, there were four 

outliers, namely 45, 54, 61, and 70 studies, resulting in the mean, 24.2, being larger than 

the median, 18.  

The distribution of the number of studies in the standardized mean change meta-

analyses was more variable and more skewed than that of the posttest standardized mean 

difference meta-analyses (see Fig. 2.1). The first quartile, median, mean, and third 

quartile were 10, 13, 24.09, and 30 studies, respectively (see Table 2.2). These results 

evidenced a more pronounced positive skewness than in the case of the posttest 

standardized mean difference meta-analyses. Once again, most meta-analyses included a 

small number of studies. The number of studies for the two meta-analyses using the 

standardized mean change difference were 9 and 19, respectively (see Table 2.3).   

 

Table 2.2. Descriptive analyses of the meta-analytic calculations for standardized mean 

change. 

 Min. 1st Qu. Median Mean 3rd Qu. Max. 

K 8 10 13 24.09 30 70 

 
0.038 0.640 0.747 0.976 1.258 2.219 

p_norm .000 .001 .334 .320 .586 .830 

d_skewness -1.179 -0.114 0.562 0.476 0.951 2.347 

d_kurtosis -1.418 -0.869 -0.483 0.755 1.009 8.559 

N_median 9 16 19.5 30.86 37.5 74 

N_skewness 0.153 0.683 1.284 1.208 1.695 2.234 

N_kurtosis -1.859 -1.055 -1.088 1.078 2.265 6.149 

 
-.736 -.054 .045 .060 .318 .622 

p_Q .000 .000 .000 .002 .000 .013 

I2 44.99 64.86 72.67 72.74 81.61 93.46 

2ˆ
DL  0.056 0.099 0.124 0.185 0.163 0.512 

2ˆ
REML  0.064 0.105 0.136 0.211 0.219 0.588 

2ˆ
PM  0.062 0.088 0.161 0.299 0.341 0.588 
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Note. Min. = minimum; 1st Qu. = First Quartile; 3rd Qu. = Third Quartile; Max. = maximum; k = 

number of studies; = average effect sizes applying DL to estimate the between-studies 

variance; p_norm = p-value associated to the Shapiro-Wilk test; d_skewness = skewness of effect 

sizes; d_kurtosis = kurtosis of effect sizes; N_median = median of sample sizes ; N_skewness = 

skewness of sample sizes; N_kurtosis = kurtosis of sample sizes;  = correlation between 

effect sizes and sample sizes; p_Q = p-value associated to the heterogeneity Q statistic; I2 = index 

to quantify the amount of heterogeneity (in %); 
2ˆ
DL = between-studies variance estimated using 

the DerSimonian and Laird (1986) method; 
2ˆ
REML  = between-studies variance estimated using 

restricted maximum likelihood; 
2ˆ
PM = between-studies variance estimated through Paule and 

Mandel’s (1982) method. 

 

Table 2.3. Meta-analytic calculations for standardized mean change difference 

Note. Min. = minimum; 1st Qu. = First Quartile; 3rd Qu. = Third Quartile; Max. = maximum; k = 

number of studies; = average effect sizes applying DL to estimate the between-studies varian

ce; p_norm = p-value associated to the Shapiro-Wilk test; d_skewness = skewness of effect sizes

; d_kurtosis = kurtosis of effect sizes; N_median = median of sample sizes ; N_skewness = skew

ness of sample sizes; N_kurtosis = kurtosis of sample sizes;  = correlation between effect si

zes and sample sizes; p_Q = p-value associated to the heterogeneity Q statistic; I2 = index to qua

ntify the amount of heterogeneity (in %); 
2ˆ
DL = between-studies variance estimated using the De

 Meta-analysis 1 Meta-analysis 2 

K 9 19 

 1.307 0.629 

p_norm .173 .108 

d_skewness 0.383 -0.514 

d_kurtosis -1.358 -1.076 

N_median 28 38 

N_skewness 1.026 1.745 

N_kurtosis 0.006 2.296 

 
.258 -.496 

p_Q .001 .000 

I2 69.49 68.45 

2ˆ
DL  0.242 0.109 

2ˆ
REML  0.213 0.083 

2ˆ
PM  0.190 0.066 
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rSimonian and Laird (1986) method; 
2ˆ
REML  = between-studies variance estimated using restricte

d maximum likelihood; 
2ˆ
PM = between-studies variance estimated through Paule and Mandel’s  

(1982) method. 

 

2.3.3. Effect sizes distribution 

 The mean effect size, the p-value of the Shapiro-Wilk test for normality, and the 

skewness and kurtosis of the effect sizes were computed for each meta-analysis. To 

analyse the distribution of the mean effect sizes, these means were taken in absolute value. 

Note that the sign of a d index is arbitrary, since it depends on the order in which the 

means of the two groups in each primary study are subtracted. Then, our interest was on 

the magnitude of the mean effect sizes. 

 In the posttest standardized mean difference meta-analyses, the first quartile, 

median, mean, and third quartile of the mean effect sizes distribution, were 0.249, 0.409, 

0.472, and 0.695, respectively (see Table 2.1). These results are similar to the three values, 

0.2, 0.5, and 0.8, reflecting a low, medium, and high magnitude, respectively, according 

to Cohen (1988).    

 The shape of the distribution of the posttest standardized mean differences in each 

meta-analysis was also examined. The Shapiro-Wilk test for normality was statistically 

significant in 39.02% of the meta-analyses, with .211 as the mean p-value associated to 

this normality test. The skewness of distributions ranged from -1.947 to 2.354, with 0.179 

as the first quartile. Kurtosis ranged from -1.758 to 6.001 (see Table 2.1). This means that 

the effect size distribution was positively skewed in most meta-analyses, with a 

statistically significant departure from normality in almost 40% of the meta-analyses.   

 In the meta-analyses using the standardized mean change, the three quartiles, the 

mean, and the maximum values in the mean effect sizes distribution were larger than 

those in the standardized mean difference meta-analyses (see Table 2.2 and Figs. 2.1 and 

2.2). Specifically, the three quartiles were 0.640, 0.747, and 1.258, the mean was 0.976, 

and the maximum 2.219, which was treated as an outlier. Note that these results 

remarkably exceed the 0.2, 0.5, and 0.8 values proposed by Cohen (1988).      

 Similar to posttest standardized mean differences, the shape of the standardized 

mean change distributions deviated normality. This deviation was statistically significant 

in 36.36% of the meta-analyses, according to the Shapiro-Wilk test. The skewness and 
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kurtosis distributions ranged from negative values in the first quartile to positive ones in 

the third quartile (see Table 2.2).  

 In the two meta-analyses using the standardized mean change difference, the mean 

effect sizes were 1.307 and 0.629, respectively (see Table 2.3). The skewness and kurtosis 

values were 0.383 and -1.358 for the first meta-analysis, and -0.514 and -1.076 for the 

second meta-analysis. However, in both meta-analyses, the Shapiro-Wilk test was not 

statistically significant, the p-values being .173 and .108, respectively.  

 

2.3.4. Sample size distribution 

 We examined the sample size distribution through the k primary studies in each 

meta-analysis, by computing the median sample size, the skewness and kurtosis of the 

sample sizes. The distribution of these statistics was analyzed across the 41, 11, and 2 

meta-analyses with different d effect size indices.   

 In the posttest standardized mean difference meta-analyses, the median sample 

size ranged from 16 to 87.5, with the mean being 48.6 (see Table 2.1). The first quartile 

of the skewness values was 0.914, which reflects a positive skewness of the sample size 

distributions in most meta-analyses (e.g., the primary studies predominantly had small 

sample sizes). The kurtosis values showed a large dispersion, ranging from -1.512 to 

14.170, the first and third quartiles being -0.477 and 2.684, respectively. 

 The sample sizes in the primary studies of the standardized mean change meta-

analyses were lower than those in the posttest standardized mean difference meta-

analyses (see Table 2.2 and Fig. 2.1). The median sample size ranged from 9 to 74 (an 

outlier), with a positively skewed distribution, where the three quartiles and the mean (16, 

19.5, 37.5, and 30.86, respectively) were remarkably lower than those in the meta-

analyses using the posttest standardized mean difference (32, 46.5, 64, and 48.6, 

respectively). The skewness values of the sample size distributions were all positive, 

ranging from 0.153 to 2.234, again suggesting the predominance of small sample sizes. 

The kurtosis values, ranging from -1.859 to 6.149, once again showed a large variability. 

 In the two standardized mean change difference meta-analyses, the medians of the 

sample sizes were 28 and 38, respectively (see Table 2.3).  The skewness of the sample 
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sizes were similar in the two meta-analyses, whereas kurtosis values showed a higher 

discrepancy. 

  

2.3.5. Correlation between effect sizes and sample sizes 

 Regarding meta-analyses using the posttest standardized mean difference, the 

correlations between effect sizes and sample sizes ranged from -.612 to .734. Most 

correlations (70.73%) were negative, with -.119 as the mean value (see Table 2.1). Out 

of the total of correlations, 14.63% were statistically significant (three positive and three 

negative).  

 A wide range of correlations, from -.736 to .622, was also found in the 

standardized mean change meta-analyses (see Table 2.2 and Fig. 2.1). However, in this 

case most correlations (72.73%) were positive and the mean of the correlations was also 

positive (.060).  Out of the total of correlations, 27.27% were statistically significant (2 

positive and 1 negative).  

 As shown in Table 2.3, in the first meta-analysis the correlation between the 

standardized mean change differences and sample sizes was positive and not statistically 

significant (r = .258). In contrast, in the other meta-analysis the correlation was negative 

and statistically significant (r = -.496).  

 

2.3.6. Heterogeneity 

 Three meta-analytic indices were used in order to study the heterogeneity of the 

effect sizes in the included meta-analyses: the Q statistic (Eq. 2.17), the I2 index (Eq. 

2.21), and the between-studies variance, 2̂ , estimated using the DL, REML and PM 

procedures (Eqs. 2.16, 2.19 and 2.20, respectively). Because the results for the three 

estimators of the between-studies variance were very similar, we will only describe the 

findings relative to DL estimator, 
2ˆ
DL  .   

 In the meta-analyses using the posttest standardized mean difference, the third 

quartile of the distribution of p-values associated to the Q statistics was .035, below the 

.05 significance level (see Table 2.1). In particular, 75.6 % of the Q tests were statistically 

significant at the .05 level (see Appendix 2B).  
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 As also shown in Table 2.1, the three quartiles of the I2 distribution were 37.71%, 

59.86%, and 74.83%. These results are relatively close to the three values, 25%, 50%, 

and 75% proposed by Higgins and Thompson (2002) as reflecting low, medium and high 

heterogeneity, respectively. Furthermore, 87.80% of the I2 values were above 25%, that 

is to say, 36 out of the 41 meta-analyses showed a medium or high variability in the effect 

sizes (see Appendix 2B).  

In the same vein, the three quartiles of the 2ˆ
DL  values were  0.055, 0.111, and 

0.171, respectively, with four outliers in the distribution - namely 1.025, 0.433, 0.522, 

and 0.384 (see Figs. 2.1 and 2.2).  

 The heterogeneity Q test was statistically significant in all the standardized mean 

change meta-analyses (see Table 2.2). The I2 values ranged from 44.99% to 93.46%, and 

the 2ˆ
DL  ones ranged from 0.056 to 0.512. Thus, all the meta-analyses exhibited a medium 

to large heterogeneity. As shown in Fig. 2.1, the I2 and 2ˆ
DL  values were generally larger 

in these meta-analyses, as compared to the posttest standardized mean difference meta-

analyses.      

 The two meta-analyses using the standardized mean change difference showed a 

statistically significant heterogeneity, with large I2 and 2ˆ
DL  values, respectively above 

68% and 0.10 (see Table 2.3).      

 

2.4. Discussion 

 The aim of this study was to analyse the methodological characteristics of 54 

meta-analyses of the effectiveness of psychological treatments in the clinical psychology 

area that used the standardized mean difference as the effect size index. These meta-

analyses were extracted from the most high-impact journals in the field of clinical 

psychology, located in the first quartile of the ranking of the Journal Citation Reports.  

 The typical design in the primary studies evaluating the effectiveness of an 

intervention program was the pretest-postest-control group design. Most meta-analyses, 

41 out of 54, used the standardized mean difference computed from the posttest scores to 

compare experimental and control groups (Eq. 2.1). Eleven meta-analyses used the 

standardized mean change from pretest to posttest only in the treated groups (Eqs. 2.4 and 
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2.6), usually because some of the primary studies compared different treatments without 

including control groups. Finally, only two meta-analyses (Aderka et al. 2012 and Virués-

Ortega, 2010) used the standardized mean change difference proposed by Morris (2008) 

(Eq. 2.12), in which the gains from pretest to posttest are compared between the 

experimental and control groups. 

 The classic standardized mean difference computed from the posttest scores does 

not take into account the usual pre-differences between treatment and control groups, 

which also can occur in randomized studies. This poses a threat to the internal validity of 

the results. The standardized mean change from pretest to posttest in a treatment group 

can be affected by maturation, history or testing effects, which also represent a threat to 

the internal validity (Shadish, Cook, & Campbell, 2002). These limitations in both indices 

are partly overcome by using the standardized mean change difference between the 

experimental and control groups (Morris, 2008). Then, although in practice the 

standardized mean change difference is scarcely used (only in two out of our 54 meta-

analyses), it should be considered in future meta-analyses.  

 The standardized mean change difference gives very similar results to those of the 

standardized mean difference computed from the change scores from pretest to posttest. 

This is especially true when the pretest scores are similar in the experimental and control 

groups. As a consequence, the methodological characteristics of our 41 meta-analyses 

using the posttest standardized mean difference can also serve to guide the design of the 

future research about the meta-analyses using the standardized mean change difference, 

as well as the correct interpretation of these meta-analyses.  

 In the global analysis of the 54 meta-analyses, many of them presented a relatively 

low number of studies (below 20) and a substantial heterogeneity in the effect sizes, with 

I2 values generally larger than 50%, and 2̂  values larger than 0.10. Thus, the 

performance of the meta-analytic statistical methods under these conditions should be a 

research topic of interest. It is widely known that the Q statistic for heterogeneity is 

underpowered in meta-analyses with a low number of studies (Sánchez-Meca & Marín-

Martínez, 1997). However, in our review, 44 out of the 54 meta-analyses showed a 

statistically significant heterogeneity in the effect sizes (p < .05). This is because of the 

large I2 and 2̂ values found in most meta-analyses, with only two meta-analyses showing 

an I2 = 0% and 2̂ = 0. These findings are in line with other studies supporting the random-
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effects model as a more realistic option than the fixed-effect model, on the basis that there 

is substantial variability in the effect sizes of a meta-analysis (Hedges & Vevea, 1998; 

National Research Council, 1992; Raudenbush, 1994, 2009).  

 Cohen (1988) proposed a guide to interpret the magnitude of the standardized 

mean difference in the social sciences, where values around 0.2, 0.5, and 0.8, represent a 

low, medium and high magnitude, respectively. This guide should be adapted to the 

specific field of study, taking into account the typical distribution of effect sizes in the 

corresponding context (Ferguson, 2009; Hill, Bloom, Black, & Lipsey, 2008; Valentine 

& Cooper, 2003). In this vein, our study contributes to provide a tentative classification 

of the effect size magnitude of clinical psychology treatments, through the analysis of the 

distribution of mean effect sizes from our meta-analyses. Correct interpretation of the 

effect sizes in the empirical research makes it possible to determine the practical/clinical 

significance of the results, as a complement of the statistical significance (Kirk, 1996). 

Furthermore, the researcher can decide on the minimum effect size of interest to a priori 

determine the sample size of an empirical study, with the desired statistical power (Cohen, 

1988).  

 The three quartiles of the mean effect size distribution were 0.249, 0.409, and 

0.695, for the meta-analyses using the standardized mean difference computed from the 

posttest scores. These values, similar to those in Cohen (1988), could be interpreted as a 

low, medium, and high magnitude, respectively, in the clinical psychology context. To be 

more specific, for example, a value of d = 0.80 could be interpreted as a high magnitude 

above the 75th perventile in the distribution of average effect sizes in the clinical 

psychology area. An important point is that this classification can only be applied to the 

posttest standardized mean differences, and the standardized mean change differences, 

but not to the standardized mean changes from pretest to posttest.         

 Meta-analyses using the standardized mean change as an effect size index are 

more common than researchers would expect to find. This is because of the absence of 

control groups in the empirical research for ethical reasons, or when the studies are 

confined to compare different active treatments without including a control group. In 

general terms, the values of the standardized mean change are larger than those of the 

posttest standardized mean difference. According to our review, the three quartiles 0.64, 

0.747, and 1.258 could be interpreted as a low, medium, and high magnitude. This 
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classification should be used instead of Cohen’s proposal, for the interpretation of the 

standardized mean change values in the clinical psychological context.  

 The distribution of the effect sizes in the reviewed meta-analyses deviated from 

the normality assumption in the random-effects model. The skewness and kurtosis values 

ranged from negative to positive values of a remarkable magnitude, and the Shapiro-Wilk 

test for normality was statistically significant in almost 40% of the meta-analyses, in spite 

of the low number of studies in most of them, which reduces the statistical power of the 

test. These findings suggest the need to examine the robustness of the meta-analytic 

procedures to the violation of the normality assumption in the distribution of the effect 

sizes (see, for example, Kontopantelis & Reeves, 2012a, 2012b), as well as the 

development of new robust meta-analytic procedures.    

 The Pearson correlation between effect sizes and sample sizes was statistically 

significant in 10 out of the 54 meta-analyses, with five positive correlations and five 

negative. Once again, the low number of studies in numerous meta-analyses reduces the 

statistical power of the t-test for the significance of a correlation, thus preventing the 

recognition of part of the true correlations. The distribution of the Pearson correlations in 

the meta-analyses, with values of a remarkable magnitude, could reflect publication 

selection bias or possibly some other moderator confounded with sample size (e.g., 

implementation quality; Levine et al., 2009).  As a consequence, future research about 

the performance of different meta-analytic procedures should consider scenarios with 

positive and negative correlation values between effect sizes and sample sizes, similar to 

those found in our study.            

 The present review of meta-analyses provides the minimum, maximum, the mean, 

and three quartiles of the distribution of the different components in a meta-analysis: 

number of studies; mean effect size; skewness and kurtosis of the effect size distribution; 

median, skewness and kurtosis of the sample size distribution; Pearson correlation 

between effect sizes and sample sizes; and I2 and 2̂ heterogeneity indices (see Tables 2.1, 

2.2 and 2.3). These specific values are representative of the realistic conditions in a meta-

analysis, which should be contemplated in the research about the performance of the 

meta-analytic procedures (see section on recommendations below).  
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2.4.1. Limitations of the study 

A requirement of the current review was to include only meta-analyses that 

reported individual effect sizes and sample sizes for the primary studies. That inclusion 

criterion might lead to exclusion of meta-analyses with a large number of studies, due to 

journal space limitations. Nonetheless, our review included meta-analyses with a number 

of studies ranging from seven to 70, which can be regarded as a wide range that 

realistically covers the size of most meta-analyses conducted in social and behavioural 

sciences.  

Only two meta-analyses out of the 54 in the review used the standardized mean 

change difference (Eq. 2.12), where the change scores from pretest to posttest between 

the experimental and control groups were compared. This index, although scarcely used 

in practice, overcomes some important limitations of the posttest standardized mean 

difference and the standardized mean change. As a consequence, it is suggested that future 

reviews include a larger number of meta-analyses using the standardized mean change 

difference.  

This review is limited to meta-analyses about the effectiveness of clinical 

psychology treatments, using standardized mean differences as the effect index. Future 

reviews of meta-analyses in other research areas and with other effect size indices will 

shed light on the realistic meta-analytic conditions and the typical distribution of the effect 

sizes in those disciplines. 

 

2.4.2. Recommendations overview   

Several recommendations can be made for researchers carrying out a meta-

analysis, a Monte Carlo or theoretical study about meta-analytic methods, or a primary 

study. For studies with a pretest-posttest control group design, the best option is to 

compute the standardized mean change difference in each study with Eq. 2.12. This index, 

although scarcely used in practice, has the advantage of controlling for pretest differences 

between groups, as well as maturation, history or testing effects from pretest to posttest. 

Our study presents three indices of the standardized mean change difference: dg1, dg2, and 

dg3, (Eqs. 2.8, 2.10, and 2.12, respectively), and the latter has been found to outperform 
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the other indices in terms of bias, precision and robustness to heterogeneity of variance 

(Morris, 2008).           

The posttest standardized mean difference, d (Eq. 2.1), although widely applied 

in numerous meta-analyses, does not control for baseline differences between groups, 

which can also occur in randomized studies. However, in meta-analyses including studies 

with and without pretest, the d index is the best option for all studies. This is because 

different standardized mean differences (e.g. posttest standardized mean differences, 

standardized mean changes from pretest to posttest, or standardized mean change 

differences) should not be combined in the same meta-analysis, since they are not directly 

comparable.       

For studies with a pretest-posttest design without a control group, the usual 

approach is to compute a standardized mean change from pretest to posttest (dc1 and dc2 

indices in Eqs. 2.4 and 2.6, respectively). These indices may be affected by maturation, 

history or testing effects. However, in meta-analyses in which a sizeable number of 

studies do not include a control group, due to ethical reasons or that only active treatments 

are compared, the dc index could be computed in all studies. In this study we have 

presented two types of dc indices that differ in the estimator of the standard deviation in 

the denominator of their formulas. The dc1 index (Eq. 2.4) uses the standard deviation of 

the change scores from pretest to posttest, whereas the dc2 index (Eq. 2.6) uses the 

standard deviation of the pretest scores. Most primary studies report the standard 

deviations of the pretest and posttest scores, whereas the standard deviation of the change 

scores is less frequently reported. Therefore, the computation of dc2 index - based on the 

standard deviation of the pretest scores - will be more feasible in practice and will provide 

an estimation of the effect size more similar to those in the intergroup designs.    

Monte Carlo and theoretical studies with a scope including meta-analytic methods 

should consider scenarios found in real meta-analyses. Results in Tables 2.1, 2.2 and 2.3 

of this study can inform the design of methodological studies in this context. For example, 

in a Monte Carlo study simulating data from meta-analyses using the posttest 

standardized mean difference or the standardized mean change difference, the number of 

studies, the sample size distribution in the primary studies, or the variance in the effect 

size distribution could be manipulated using the values in Table 2.1. For the number of 

studies, k, five values could be considered: 7, 14, 18, 25, and 70 (minimum, three 
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quartiles, and maximum). Similarly, the sample size distribution could be manipulated 

with average values 16, 32, 46, 64, and 87 (minimum, three quartiles, and maximum), 

skewness of 1.357 (median), and kurtosis of .722 (median). Finally, the variance of the 

effect size distribution, 2̂ , could be set to values of 0, 0.055, 0.111, 0.171, and 1.024 

(minimum, three quartiles, and maximum). These results may also be useful in a Bayesian 

framework, since they can define the construction of an empirical prior.  

The distribution of average effect sizes throughout the reviewed meta-analyses 

can help researchers assess the practical significance (e.g. clinical significance) of an 

effect size in a primary empirical study or a meta-analysis in this context. For example, a 

value of d = 0.20 for the posttest standardized mean difference could be interpreted as a 

low magnitude below the 25th percentile (0.249) in the distribution of the average effect 

sizes in clinical psychology (see Table 2.1). Furthermore, the benchmarks (minimum, 

Quartiles 1-3, and maximum) can help the researcher decide on the minimum effect size 

to determine a priori the sample size of an empirical study with the desired statistical 

power.  

 

2.5. Conclusions 

 The results of this review of meta-analyses allow proper interpretation of the 

magnitudes of the different types of standardized mean differences in the specific area of 

the evaluation of the effectiveness of the clinical psychological treatments. This is 

valuable information for interpreting the clinical significance of the results in both a 

primary research study and a meta-analysis, in terms of either the effect sizes of individual 

studies, and the average effect size, both overall and by subgroups of studies, in a meta-

analysis. 

 Future research on the performance of the meta-analytic procedures should take 

into account the methodological characteristics of the real meta-analysis in different areas 

of research. Particularly, in this work we have analysed the number of studies, the sample 

size distribution in the studies, the effect size distribution, and the Pearson correlation 

between effect sizes and sample sizes of 54 real meta-analysis in the clinical psychology 

area. In this vein, Monte Carlo and theoretical studies could use the values reported in our 

study to simulate realistic scenarios. 
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Chapter 3 

 

Study 2: 

 

“Estimating an Overall Effect Size 

in Random-Effects Meta-analysis 

when the Distribution of Random 

Effects Departs from Normal” 
 

 

3.1. Introduction 

One of the main goals in a meta-analysis is to compute an overall effect estimate. 

This study is focused on various methods for computing an estimate of the mean effect 

size alongside its confidence interval (CI), when some assumptions of the underlying 

statistical model are not met. 

There are two general statistical models for meta-analysis, fixed-effect and 

random-effects. The choice of model is crucial as it determines the statistical procedures 

employed to estimate the mean effect and its CI, as well as the generalizability of the 

meta-analytic results (Borenstein et al., 2009; Hedges & Vevea, 1998; Sánchez-Meca, 

López-López, & López-Pina 2013). 
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             In this study we focused on the performance of the random-effects model, which 

allows for a broader generalization of results and conclusions and which is currently 

applied in most meta-analytic studies (Hedges & Vevea, 1998; Raudenbush, 2009).  

 

3.1.1. The Random-Effects Model 

             Let k denote the number of studies included in a meta-analysis and 
i̂  the effect 

size estimated in the ith study. The underlying statistical model can be defined as 

                                                       ,ˆ
iii e          (3.1) 

     

where i  is the effect parameter for the ith study and ie  is the sampling error of i̂ . 

Usually ie  is assumed to be normally distributed, ie ~ N(0, 2

i ), with 2

i  being the 

within-study variance for the ith study.  

              The random-effects model assumes that the effect parameters, i , are randomly 

selected from a population of parameters. Thus, i  can be defined as 

                                                     i =   + i  ,                   (3.2)                 

    

where  is a parameter representing the grand mean of the effect parameters, and i  

denotes the difference between the effect parameter of the ith study, i , and the grand 

mean . It is assumed that i  ~ N(0, 2 ), with 2  being the between-studies variance. 

Therefore, combining Eqs. 3.1 and 3.2 enables us to formulate the random-effects model 

as 

                                               i̂ =  + ei + i  ,     (3.3)                             

where i  and ie  are assumed to be independent and, as a result, the effect size estimates 

i̂  are assumed to be normally distributed with mean  and variance 2

i + 2 , that is, i̂

~ N(, 
2

i + 2 ) (Borenstein et al., 2010; Raudenbush, 2009). 
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             Figure 3.1 shows the double random sampling process underlying the standard 

(e.g. two-level) random-effects model. At the highest level, the k studies in the meta-

analysis are considered to be a random (or at least representative) sample from a 

population of studies. Consequently, the effect parameters, 1 , 
2 , ..., i , ..., k ,  are 

regarded as a random sample from a population of effect parameters. This population of 

parameters is usually assumed to be normally distributed, with mean  and variance 2

At the lowest level, the units (typically subjects) are also assumed to be randomly sampled 

from the target population in each study. Then, 1̂ , 2̂ , ..., i̂ , ..., k̂  denote the effect 

sizes for each primary study, which provide estimates of the effect parameters 1 , 
2 , ..., 

i , ..., k , respectively. 

 

Fig. 3.1. Graphical representation of the random-effects model. 

 

Although normality of the distribution of effect parameters is a common 

assumption in the random-effects model, it might not be realistic, even approximately, in 

a wide range of scenarios in practice (Borenstein et al., 2010; Brockwell & Gordon, 2001, 

2007; Hardy & Thompson, 1996; Kontopantelis & Reeves, 2012a, 2012b; Schmidt et al., 

2009). Departures from normality might affect the accuracy of results such as the 
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estimation of  and 2 . This has important practical implications, since a substantial 

proportion of the meta-analyses conducted over the last two decades performed random-

effects analyses on databases with a small to moderate number of studies. Therefore, 

assessing the consequences of the violation of the assumption of normality constitutes a 

relevant question in meta-analysis.  

        To the best of our knowledge, the works of Kontopantelis and Reeves (2012a, 

2012b) are the only simulation studies focused on comparing the performance of several 

statistical methods for random-effects meta-analysis under non-normal scenarios. Eight 

statistical methods were examined and a wide range of scenarios were considered. In 

particular, these authors manipulated the distribution of the effect parameters (normal, 

skew-normal, and “extremely” non-normal), the number of studies in the meta-analysis 

and heterogeneity. Most methods were found to be highly robust against violations of the 

assumption of normality. It must be noted that these previous studies focused on the field 

of epidemiology, and that the set of simulated scenarios and outcome measures, as well 

as the effect size index (odds ratios), were selected accordingly following the results of a 

survey of meta-analyses published in the medical field (Engels et al., 2000). 

Furthermore, Kontopantelis and Reeves (2012a, 2012b) generated the individual 

effect estimates following the method developed for log-odds ratios in Brockwell and 

Gordon (2001). That approach has two major limitations: the method of Brockwell and 

Gordon is not realistic, because it does not start from 2x2 tables (Hoaglin, 2015), and it 

is also not appropriate for other effect metrics. 

In the present study, we aimed to assess the consequences of the violation of the 

assumption of normality in random-effects meta-analyses conducted in the psychological 

field and, in particular, in meta-analyses about the effectiveness of psychological 

treatments on various psychological or psychiatric disorders.  

        To sum up, the purpose of our study was to compare the performance of various 

random-effects meta-analytic methods for computing an average effect size and a CI 

around it when the normality assumption is not met. With that purpose, a wide range of 

scenarios were considered, including conditions with some degree of departure from 

normality. A Monte Carlo simulation was carried out using standardized mean differences 

as the effect size index. To avoid the problems in the Kontopantelis and Reeves (2012a, 

2012b) studies, in our simulations the standardized mean differences were individually 
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generated by assuming non-central t-test distribution (Hedges & Olkin, 1985). Although 

our study focused on the random-effects model, the fixed-effect one was also included 

for comparison purposes. 

        In the next section, we outline the statistical methods considered in this study and 

describe the residual heterogeneity variance estimators. A simulation study comparing 

the performance of the methods is then detailed. Finally, a description of the results is 

provided and considerations arising from them are discussed.  

 

3.2. Methods to Estimate an Overall Effect Size 

3.2.1. The Fixed-Effect Model 

        The most efficient estimate of the mean effect size under a fixed-effect meta-analysis 

is given by the expression (Hedges & Olkin, 1985) 
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with FE

iw  being the optimal fixed-effect weights from the ith study defined as 

                                                        FE

iw  = 1/ 2

i ,                                                       (3.5)                                                           

and 2

i  the parametric within-study variance of i̂ . As the 2

i  parameters are unknown, 

the FE

iw  weights are usually estimated by  

                                                        FE

iŵ  = 1/ 2ˆ
i .                                                        (3.6)                                                    

Thus, in practice the common parametric effect size is estimated by  
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The sampling variance of FE̂  is usually estimated by 
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 Then, a 100(1- )% CI around the mean effect can be calculated by 

                                                   FEFE Vz ˆˆ
2/1  ,                                         (3.9)                                               

where  2/1 z  is the 100(1- 2/ ) percentile of the standard normal distribution,   being 

the significance level.  

 

3.2.2. The Random-Effects Model 

           In a random-effects model, the uniformly minimum variance unbiased estimator 

of   is given by (Sánchez-Meca & Marín-Martínez, 2008; Viechtbauer, 2005): 
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with 
RE

iw  being the optimal weights, defined as  221  i

RE

iw . The variance for 

UMVU̂  is given by: 
i

RE

iUMVU wV 1 .  

 However, 
2

i  and 2 are unknown in practice, hence they must be estimated from 

the studies. The grand mean, , can be estimated with 

                                                        

where RE

iŵ  is an estimate of the random-effects weight for the ith study computed with 

                                                   )ˆˆ(1ˆ 22   i

RE

iw ,                                               (3.12)                                                  

where 2ˆ
i is the estimated within-study variance of i̂  and 2̂  is an estimate of the 

between-studies variance. Several estimators of the between-studies variance are 

described in a further section.  

 In the present study, we compare four alternative random-effects methods to 

construct a CI around the mean effect size: the standard method, Hartung’s method, the 

profile likelihood (PL) method, and non-parametric bootstrapping. 
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 Standard method. The most frequently used method to obtain a CI around the 

mean effect size estimate, RE̂ , in a random-effects meta-analysis assumes a normal 

distribution for RE̂ , and its sampling variance is usually estimated by  
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1ˆ .                                                  (3.13)                                                             

Therefore, a 100(1- )% CI around the mean effect size can be computed as 

                                                   ,                                                (3.14)                                                           

with 2/1 z  being the 100(1- 2/ ) percentile of standard normal distribution and 1 -   

being the nominal confidence level.  

 Hartung´s method. Although the standard method is the usual procedure for 

calculating a CI around the mean effect size, this method assumes a normal distribution 

and does not take into account the uncertainty derived from the estimation process of the 

variance parameters. As a consequence, the z distribution-based CI has been shown to 

have empirical coverage below the nominal level, resulting in confidence intervals that 

are too narrow, especially as the between-studies variance increases and the number of 

studies decreases (Brockwell & Gordon, 2001). To solve that limitation, Hartung (1999) 

proposed assuming a t distribution, instead of the standard normal distribution, and using 

an improved variance estimator (see also Hartung & Knapp, 2001; Sidik & Jonkman, 

2002). Thus, a 100(1- )% CI is provided by the expression 

                                                   
HAkRE Vt ˆˆ

2/1;1                                               (3.15)                                                             

where 2/1;1 kt  is the 100(1- 2/ ) percentile of the t distribution with k – 1 degrees of 

freedom, RE̂  is computed by Eq. 3.11 and HAV̂  is an estimate of the sampling variance 

of RE̂  with a weighted extension of the usual formula 
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 Compared to the standard random-effects method, Hartung’s method has been 

found to yield wider CIs with better coverage probabilities, especially under suboptimal 

RERE Vz ˆˆ
2/1  
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scenarios (IntHout et al., 2014; Sánchez-Meca & Marín-Martínez, 2008), including 

scenarios with violation of the normality assumption (Kontopantelis & Reeves, 2012b).  

 Profile likelihood (PL) method. The profile likelihood (PL) is an iterative and 

computationally intensive method which can be used to obtain a likelihood-based CI 

around an overall estimate obtained with the random-effects model, taking into account 

the fact that  and 2 need to be estimated simultaneously (Hardy & Thompson, 1996). 

Conversely, the PL method provides two alternatives to calculate a CI around RE̂ : first-

order likelihood method and higher-order Skovgaard´s method. In a simulation study, 

Guolo (2012) suggested that Skovgaard’s method provides far more accurate results than 

first-order, especially with small sample sizes. More details for the coding scheme of this 

method are provided in Appendix 3A.   

 It is expected that likelihood approaches may improve the performance of 

standard random-effects methods in non-normal scenarios (Guolo, 2012; Hardy & 

Thompson, 1996; Henmi & Copas, 2010). While standard methods unrealistically assume 

that between-studies variance is known, the likelihood approach allows deriving 

likelihood-based confidence intervals for the between-studies variance and for the overall 

effect. The iterative and joint estimation of both parameters considers the fact that the 

other parameter is also unknown and must be estimated.  

 Non-parametric bootstrapping. Resampling methods may be appropiate when the 

data cannot be regarded as a random sample from a given population. In the context of a 

meta-analysis, bootstrapping methods are increasingly applied when the assumptions of 

the random-effects model are not met. This is due to the fact that they are free in 

theoretical distribution and therefore are expected to be more robust to violations of the 

normality assumption than standard meta-analytic techniques (Adams, Gurevitch, & 

Rosenberg, 1997; van den Noortgate & Onghena, 2005). In particular, a non-parametric 

bootstrapping approach consists of generating a distribution of the mean effect size 

estimate by resampling a large number of samples, for example, 1,000 samples (Efron, 

1987; Efron & Hastie, 2016). Then, an estimate of the parametric mean effect size is 

obtained averaging the 1,000 effect estimates, and a 95% CI is calculated with the 2.5 and 

97.5 percentiles of the effect estimates distribution. We examined two methods for the 

interval estimation of the mean effect size: the percentile method and the bias-corrected 

and accelerated (BCa) method. The percentile method involves calculating percentiles 
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from the bootstrap estimates. However, the BCa method is preferred in practice as it 

adjusts for both bias and skewness in bootstrap distribution (Efron, 1987, 1992). See 

Appendix 3A for computational details.  

 

3.2.3. Heterogeneity Variance Estimators 

 An estimate of τ2 is required to obtain the mean effect size estimate and its CI 

under a random-effects model, at least for the standard and Hartung’s approaches. Several 

methods have been proposed to estimate the between-studies variance, τ2, in random-

effects meta-analysis (Sánchez-Meca & Marín-Martínez, 2008; Veroniki et al., 2016; 

Viechtbauer, 2005). Next, we present formulas for the three estimators considered in this 

study. 

 Dersimonian and Laird (DL) Estimator. The most commonly used estimator is 

that proposed by DerSimonian and Laird (1986), which is derived from the moments 

method and computed with the expression,  
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where Q  is a heterogeneity statistic computed with  
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with FE̂  and FE

iŵ  already defined in Eqs. 3.7 and 3.6, respectively; whereas c is given 

by 
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When Q < (k – 1), then 
2ˆ
DL  is negative and usually truncated to zero to avoid negative 

values. When the estimated weights FE

iŵ are used instead of the optimal, the Q statistic 

no longer follows the chi-squared distribution usually assumed, and therefore will 

negatively affect the performance of 
2ˆ
DL  as estimator of the heterogeneity variance 

(Hoaglin, 2016; Kulinskaya, Dollinger, & Bjørkestøl, 2011). 
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Restricted Maximum Likelihood (REML) Estimator. Another alternative for 

estimating the heterogeneity variance component is based on restricted maximium 

likelihood estimation. The REML estimator is obtained iteratively from (Sánchez-Meca 

& Marín-Martínez, 2008; Viechtbauer, 2005) 
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with RE̂  and 
RE

iŵ  defined in Eqs. 3.11 and 3.12, respectively, whereas 2̂ is initially 

estimated by any of the non-iterative estimators of the heterogeneity variance.  

When 
2ˆ
REML < 0, it is truncated to zero.  

 Empirical Bayes (EB) Estimator. The final estimator of τ2 that we included is the 

EB one. It is also an iterative method obtained by replacing  2ˆ RE

iw  with
RE

iŵ in Eq. 3.20 

for 
2ˆ
REML  (Berkey, Hoaglin, Mosteller, & Colditz, 1995; Morris, 1983). Thus, the EB 

estimator is obtained by 
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Again negative values of 
2ˆ
EB  are truncated to zero.  The EB estimator is equivalent to the 

Paule-Mandel estimator (Veroniki et al., 2016; Viechtbauer et al., 2015).   

 

3.3. Method of the Simulation Study 

 In the previous section, we presented three methods for estimating the mean effect 

size,  (i.e., fixed-effect model, standard random-effects model, and non-parametric 

bootstrapping), six methods for computing a CI around an estimate of  (i.e., fixed-effect 

model, standard random-effects model, Hartung´s method, profile likelihood method with 



 
55 Chapter 3– Estimating an overall effect size 

higher-order Skovgaard´s approach, and non-parametric bootstrapping with the BCa and 

the percentile methods), and three estimators of τ2 (i.e., the DL, REML, and EB 

estimators) in the context of random-effects meta-analysis. The performance of 

combinations of these methods was compared using Monte Carlo simulation. However, 

not all of the methods were combined with each other. In particular, we combined the 

profile likelihood method with REML estimation and the non-parametric bootstrapping 

method with the DL estimator, whereas the standard and Hartung’s methods were 

combined with the three τ2 estimators, and no τ2 estimators were needed for the fixed-

effect model. This yielded five methods to estimate the mean effect size and 10 ways to 

calculate a CI around that estimate.   

          The simulation was programmed in R using the metafor (Viechtbauer, 2010), 

metaLik (Guolo & Varin, 2012), and boot (Canty & Ripley, 2012) packages. Appendix 

3A contains the full R code of our simulation study. The standardized mean difference 

was used as the effect size measure. Designs comparing two groups (experimental and 

control) with respect to a continuous dependent variable were simulated, a scenario that 

is often found in psychology. Both populations were assumed to be normally distributed 

with common variance, [N(µE, σ2), N(µC, σ2)]. For each study, the population 

standardized mean difference,  , was defined as (Hedges & Olkin, 1985) 

                                                                



 CE .                                             (3.22)                                                                     

            In a random effects model, a distribution of effect parameters, i, is assumed, with 

a specific mean, , heterogeneity variance, 2, and shape (details on how the distributions 

shapes were defined are provided below). To simulate a meta-analysis, k effect 

parameters are randomly selected from the distribution of effect parameters, so that there 

will be an individual parameter i for each study.  

          The parametric effect size for the ith study, i, is estimated using the nearly 

unbiased estimator proposed by Hedges and Olkin (1985, p. 81)  

                                                                gmc )(ˆ  ,                                               (3.23)                                                                     

 

g being a positively biased estimator computed from   



 
56 Chapter 3– Estimating an overall effect size 

                                                              
S

yy
g CE 
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and c(m) a correction factor for small sample sizes, given by 
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where 
Ey  and 

Cy  are the sample means of experimental and control groups, S is a pooled 

standard deviation computed through  
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nE and nC being the experimental and control sample sizes, respectively, 
2

ES  and 2

CS  being 

the unbiased variances of the two groups, and  N = nE + nC.  

       Eq. 3.23 applies to each study, so that i̂  is an estimate of the effect parameter i . 

Then, estimates of the sampling variance of ̂ in each study were obtained by means of 
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Hedges and Olkin (1985, p. 79) showed that gnnnn CECE )/(  follows a 

noncentral t-distribution with noncentrality parameter )/( CECE nnnn   and 

2 CE nn  degrees of freedom. Then for  the ith study in a particular meta-analysis 

estimating the population effect size ,i  the i̂ value was directly simulated from 

,// mXZ where Z is a random normal variable with distributioin N( , 1/nE + 1/nC) and 

X is a random chi-square variable with m =  2 CE nn  degrees of freedom. 
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       When calculating 
FE̂  (Eq. 3.7) and 

RE̂  (Eq. 3.11), a potential source of bias is the 

correlation between the standardized mean difference (Eq. 3.23) and its sampling 

variance (Eq. 3.27), in particular with small sample sizes.                         

        In order to identify a range of the most realistic scenarios in this field, the 

manipulated conditions in the present study were set according to the results of a 

systematic review of 50 meta-analyses on the efficacy of psychological interventions, all 

using standardized mean differences as the effect-size index (Rubio-Aparicio et al., in 

press). For the number of studies, k, four values were considered, 10, 20, 40, and 60, 

corresponding to a small to large number of studies for the meta-analysis. The grand mean 

of the distribution of effect parameters, , was set to 0, 0.2, 0.5, and 0.8, which reflect 

conditions of no effect and effects of low, medium, and large magnitude, respectively 

(Cohen, 1988). In addition, a wide range of values for the population between-studies 

variance, 2, was considered, 0, 0.03, 0.06, 0.11, 0.18, and 0.39. The simulated conditions 

for k, , and 2 were within the range of values found in the 50 meta-analyses reported 

in Rubio-Aparicio et al. (in press).  

        The shape of the distribution of effect parameters, i, was manipulated through six 

combinations of skewness and kurtosis values. First, a normal scenario (i.e., zero 

skewness and kurtosis) was set. To warrant realistic scenarios, five non-normal conditions 

were then considered based on the results found in Rubio-Aparicio et al. (in press). In that 

systematic review, the skewness distribution of the 50 meta-analyses presented a median 

value of 0.52, with 25 and 75 percentiles of 0.18 and 1.1, and minimum and maximum 

values of -2 and 3.67, respectively. Our purpose was to simulate a wide range of skewness 

values. Based on these results, skewness values of -2, -1, 0, 1, and 2 were selected to 

simulate the effect parameters distribution. Then, the nonlinear relationship exhibited by 

the 50 pairs of skewness and kurtosis found in the systematic review was used to predict   

kurtosis values. Figure 3.2 presents the scatterplot relating the skewness and kurtosis 

values of the 50 meta-analyses. A nonlinear predictive model was fitted to this dataset, 

leading to the predictive equation:  Kurtosis = -0.581 + 0.023*Skewness + 

1.069*Skewness2. For the five skewness values previously defined, the five non-normal 

combinations between skewness and kurtosis values were: (-2, 3.65), (-1, 0.47), (0, -0.58), 

(1, 0.51), and (2, 3.74). With illustrative purposes Figure 3.3 presents histograms of effect 

parameters distributions for the six simulated combinations of skewness and kurtosis. 
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Appendix 3B presents five examples of real meta-analyses selected from Rubio-Aparicio 

et al. (in press) with similar skewness and kurtosis values to each of the five non-normal 

scenarios defined in our simulation study. The individual standardized mean differences 

and sampling variances of each of the five real meta-analyses are available in the Open 

Science Framework (https://osf.io/z4vsg/).  

 

Fig. 3.2. Scatter plot of the skewness and kurtosis values found in a systematic review  of 

50 meta-analyses of on efficacy of psychological interventions (Rubio-Aparicio et al., in 

press). 

 

https://osf.io/z4vsg/
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Fig. 3.3. Simulated scenarios for the shape of the distribution of parametric effects, 

assuming = 0 and 2 =1.  

 

To generate distributions of effect parameters with a given mean (), variance 

(2), skewness, and kurtosis, the Fleishman (1978) algorithm was applied. In particular, 

the Fleishman power transformation, X = a + bZ + cZ2 + dZ3, applied on a standard normal 

distribution, Z ~ N(0,1), allows generating a non-normal random variable X with mean 0, 

variance 1, skewness γ1, and kurtosis γ2 . For a specific combination of γ1 and γ2 values, 

the equations to find the a, b, c, and d constants were calculated by solving the equation 

system presented in Fleishman (1978, p. 522-526). Table 3.1 presents the values of a, b, 

c, and d for the six combinations of γ1 and γ2 values in the simulated distributions of effect 

parameters. The linear transformation Y = m + nX was then applied to generate 

distributions with the manipulated values of the mean of the effect parameters ( = 0, 

0.2, 0.5, and 0.8) and the population between-studies variance ( = 0, 0.03, 0.06, 0.11, 

0.18, and 0.39), where  and . 

 

 

 



2
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Table 3.1. Values of the a, b, c, d constants in the algorithm of Fleishman for the six 

combinations of skewness and kurtosis. 

Skewness (γ1) Kurtosis (γ2) a b c d 

0 0 0 1 0 0 

-2 3.65 0.349 0.862 -0.349 -0.018 

-1 0.47 0.267 1.124 -0.267 -0.071 

0 -0.58 0 1.093 0 -0.032 

1 0.51 -0.256 1.112 0.256 -0.064 

2 3.74 -0.360 0.862 0.360 -0.021 

 

         The average total sample size of the individual studies, N , was manipulated with 

values 20, 30, 50, and 100. The primary studies were simulated within a two-group design 

with nE = nC. To simulate realistic scenarios, the distribution of individual sample sizes 

was based on the systematic review reported in Rubio-Aparicio et al. (in press) where the 

sample sizes distributions of the 50 meta-analyses exhibited a clear positive skewness, 

with average skewness = +1.423. To approach this distribution, a Chi-square distribution 

with 4 degrees of freedom was used to simulate the sample sizes, as the expected 

skewness for that distribution is 414.18 df , very similar to that empirically obtained. 

Next, 16, 26, 46, and 96 were added to achieve the desired average values.       

          When 2 = 0, the number of conditions was 64 [4 (k values) x 4 ( values) x 4( N

values)]. Regarding the other values of 2 , the number of conditions was 1,920 [4 (k) x 

4 () x 4 ( N ) x 6 (shape of the distribution of i values) x 5 ( 2 values)]. The total 

number of conditions was then 1,984 and for each one 10,000 meta-analyses were 

generated. Thus, 19,840,000 meta-analyses were simulated. Furthermore, 1,000 samples 

per iteration were used for the non-parametric bootstrapping method.  

         Several criteria were used to compare the performance of the methods for estimating 

the mean effect and constructing CIs. First, the bias of each of the five methods to estimate 

the mean effect size was assessed as the diference between the mean of the 10,000 
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empirical values of each method and condition and the parametric mean effect size for 

that scenario, . Second, variability in the estimates provided by these five methods was 

assessed by calculating the mean squared error with respect to the true value, , across 

the 10,000 replications of one single condition. Third, the confidence width of the 10 

methods to calculate a CI was estimated by averaging the confidence widths across 

10,000 replications for each condition. Fourth, the empirical coverage probability for the 

95% nominal confidence level of each method was calculated as the percentage of CIs 

that included the true mean effect size, , through the 10,000 replications for each 

condition. The last criterion was the empirical bias of the estimated standard errors for 

the standard, Hartung, non-parametric bootstrapping, and fixed-effect methods to the 

standard deviation of the mean effect estimates distribution. For a particular condition, 

this criterion was computed as 

 

                                               
 
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 ,                                            (3.28)                                              

 

with SD( ̂ ) being the standard deviation of the mean effect estimates obtained in 10,000 

replications of a given condition and Md(SE ( ̂ )) being the median of the estimated 

standard errors for the mean effect estimates through the 10,000 replications of the same 

condition. The reason for using the median instead of the mean was to avoid the potential 

influence of extreme values. Positive percentages with this formula indicated a negative 

bias of the estimated standard errors, whereas negative percentages suggested a positive 

bias.  

 

3.4. Results  

For brevity, we only included the data when the grand mean of the distribution of 

effect parameters was of medium magnitude, 0.5, and the average total sample size was 

30, since the pattern of results was very similar for the remaining levels of both factors. 

Moreover, the chosen value for the between-studies variance was the highest, 0.39, as the 

differences in the performance of the methods were more pronounced for that value, 
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although the trends observed in scenarios with less between-studies variation were 

analogous. The full set of results is available in the Open Science Framework 

(https://osf.io/z4vsg/).  

This section is divided into five parts, corresponding to the comparative criteria: 

bias and mean squared error of the average effect estimators, empirical coverage 

probability and width of the CIs, and bias of the estimated standard errors.  

 

3.4.1. Bias of the average effect estimators 

 Figure 3.4 shows the bias of the standard method with DerSimonian and Laird 

(DL), restricted maximum likelihood (REML), and empirical Bayes (EB) estimators of 

τ2, non-parametric bootstrapping method (BOOT), and fixed-effect method (FE), as a 

function of the number of studies, k, and the shape of the distribution of i .  

 All methods showed a small negative bias across all simulated scenarios for the 

shape of the distribution of parametric effects, regardless of the number of studies. The 

FE yielded the most negatively biased estimates across all conditions, as this model 

assumes a null between-studies variance (τ2 = 0). 

 Under the normality assumption (skewness = 0 & kurtosis = 0), the bias of DL, 

REML, EB and BOOT was very similar in all conditions for the number of studies. These 

methods provided the most negatively biased values with k = 20. For skewness = 0 and 

kurtosis = -.58, the performance shown for the five methods was quite similar to the 

normal condition. When the shape of the distribution of parametric effects was 

manipulated with skewness = -2 and kurtosis = 3.65, mean effects calculated under a RE 

model with the DL, REML, EB and BOOT methods were practically unbiased. Similar 

results were found with skewness = -1 and kurtosis = .47, although under this condition 

the five methods were more negatively biased. Under conditions with skewness = 1 and 

kurtosis = .51 and skewness = 2 and kurtosis = 3.74, the differences in bias among the 

DL, REML, EB and BOOT were practically negligible, with values of bias close to -.025 

for all conditions of k. The mean effect estimate under the FE model yielded more 

negatively biased estimates than the rest of the methods.  

 

https://osf.io/z4vsg/
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Fig. 3.4. Bias of the five methods to estimate . DL = standard method with DerSimonian 

and Laird estimator; REML = standard method with restricted maximum likelihood 

estimator; EB = standard method with empirical Bayes estimator; FE = fixed-effect 

model; BOOT = non-parametric bootstrapping. These results are for: 2 = 0.39, = 0.5, 

and N = 30. On average the standard error of the simulations was 0.0035 

 

3.4.2. Mean Squared Error of the average effect estimators 

 Figure 3.5 shows the mean squared error (MSE) of the standard random-effects 

methods compared. As expected, an increase in the number of studies led to a decrease 

in the MSE values of the five estimators of , regardless of the shape of the distribution 

of parametric effects. In addition, the results computed through all conditions of skewness 
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and kurtosis and the number of studies were generally similar in the five methods, without 

notable differences in their performance. The FE method showed slightly lower MSE 

values than those of the estimates based on the RE model with a small number of studies 

(k = 10).  

 

 

 

Fig. 3.5. Mean Squared Error (MSE) of the five methods to estimate . DL = standard 

method with DerSimonian and Laird estimator; REML = standard method with restricted 

maximum likelihood estimator; EB = standard method with empirical Bayes estimator;  

FE = fixed-effect model; BOOT = non-parametric bootstrapping. These results are for: 
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2 = 0.39, = 0.5, and N = 30. On average the standard error of the simulations was 

0.0022 

 

3.4.3. Coverage Probability of the CIs 

Figure 3.6 shows the empirical coverage probability of the six CIs compared. The 

standard and Hartung’s methods were not influenced by the heterogeneity estimator used 

(the DL, REML, and EB estimators). Therefore, only results for the REML estimator are 

presented.  

              Most CIs calculated with SM, HM, BOOT_P, BOOT_Bca, and PL methods 

offered better coverage as the number of studies increased, this improvement being 

especially evident for k = 10 and k = 20. Under normality (skewness = 0 & kurtosis = 0), 

some differences in coverage probabilities among the CIs obtained by SM, HM, 

BOOT_P, BOOT_Bca, and PL methods were found for small numbers of studies (k = 10 

and 20). In particular, CIs with HM and PL methods showed the best coverage of the 

nominal confidence level. For k = 10 and k = 20, HM method exhibited observed 

probabilities of .956 and .945, respectively, and PL method obtained .944 and .943. The 

same trend was found when the parametric effects were non-normally distributed.   

              The worst coverages of the nominal confidence level were found for skewness = 

1 and kurtosis = 0.51, and for skewness = 2 and kurtosis = 3.74. Under these two 

conditions of shape of the distribution of i , the CIs obtained by all methods generally 

showed empirical coverage probabilities slightly below the nominal confidence level, 

even for a large number of studies. Regarding the FE model, its empirical coverage was 

clearly under the nominal confidence level for all simulated scenarios.  
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Fig. 3.6. Empirical coverage probability for the six confidence interval (CI) methods. SM 

= standard method; HM =  Hartung’s method; FE = fixed-effect model; BOOT_P = non-

parametric bootstrapping with the percentile method; BOOT_Bca = non-parametric 

bootstrapping with the BCa method; PL= profile likelihood method. These results are for: 

2 = 0.39, = 0.5, and N = 30. On average the standard error of the simulations was 

0.0031 
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3.4.4. Width of the CIs 

Figure 3.7 shows the width of the six 95% CIs for  compared. Only results for 

the REML estimator are presented. The interval width of the six CI procedures uniformly 

decreased as the number of studies increased. For k = 10 and 20, the CIs obtained with 

the HM (especially) and PL methods were wider than those yielded by the other methods. 

Although this pattern was consistent across all scenarios, the CIs were narrower in 

conditions with some degree of departure from normality. This was due to a slight 

undercoverage of the nominal confidence level under scenarios with departures from 

normality. For instance, with k = 10 and under the normal scenario, the CI widths for HM 

and PL were 1.004 and .992, with empirical coverage probabilities of .956 and .944, 

respectively. Under highly non-normal distributions (e.g., skewness = -2 & kurtosis = 

3.65), the CI widths for HM and PL were .9456 and .9306, with empirical coverage 

probabilities of .948 and .941. The FE method consistently yielded the narrowest CIs at 

the expense of exhibiting a large undercoverage of the nominal confidence level.  
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Fig. 3.7. Width of the 95% CI for   of the six confidence interval (CI) methods. SM = 

standard method; HM =  Hartung’s method; FE = fixed-effect model; BOOT_P = non-

parametric bootstrapping with the percentile method; BOOT_Bca = non-parametric 

bootstrapping with the BCa method; PL= profile likelihood method. These results are for: 

2 = 0.39, = 0.5, and N = 30. On average the standard error of the simulations was 

0.0062 

 

3.4.5. Bias of the Standard Error 

Figure 3.8 shows the bias (in %) of the standard error estimates using the REML 

estimator. On average, all methods yielded estimated standard errors lower than the 
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standard deviation of the distribution of overall effect estimates empirically constructed 

through 10,000 replications in a given condition. SM, HM, and BOOT methods exhibited 

nearly unbiased estimates of the standard error in all manipulated conditions. Moreover, 

the good performance of the standard error estimates of these methods improved with 

larger number of studies regardless of shape of the distribution of i . The HM method 

systematically showed the best performance of the standard error estimates in contrast to 

the BOOT method, which exhibited the most pronounced negative bias (excluding the FE 

method). This same trend was found across all conditions of skewness and kurtosis 

regardless of the number of studies. On average, the negative bias of the standard errors 

for SM, HM, and BOOT was 3.52%, 1.89%, and 5.16%, respectively. These differences 

were larger for small k values. For instance, for k = 10 the average bias of the standard 

errors of SM, HM, and BOOT through the conditions of skewness and kurtosis was 

5.90%, 4.79%, and 10.18%, respectively. The FE method exhibited the largest negative 

bias, close to 50% across all scenarios of number of studies and shape of distribution. 

 



 
70 Chapter 3– Estimating an overall effect size 

 

Fig. 3.8. Bias of the Standard Error of the four methods. SM = standard method; HM = 

Hartung’s method; FE = fixed-effect model; BOOT = non-parametric bootstrapping. 

These results are for: 2 = 0.39, = 0.5, and N = 30. On average the standard error of 

the simulations was 0.0009 

 

3.5. Discussion 

 

In this study, we examined the bias and mean squared error of the average effect 

size, the empirical coverage and interval width of confidence intervals around the average 

effect size, and the bias of standard error estimates of various meta-analytic methods, 

when the normality assumption is not met in a random-effects model. A wide variety of 
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realistic scenarios in clinical psychology research was considered, and the standardized 

mean difference as the effect size measure.   

In the random-effects model, normality of the effect parameter distribution is a 

usual model assumption, and several authors have raised concerns regarding the potential 

impact of non-normality on the performance of meta-analytic techniques (Borenstein et 

al., 2010; Brockwell & Gordon, 2001, 2007; Kontopantelis & Reeves, 2012a, 2012b; 

Sidik & Jonkman, 2002, 2007). In our study the performance of several meta-analytic 

methods was compared, and our results suggested that most were not substantially 

affected by the underlying distribution of effect parameters, even under severe departures 

from normality. In fact, an unexpected result in our study was the slightly lower bias of 

the mean effect size estimates for conditions with the most severe departure from 

normality (skewness = -2 and kurtosis = 3.65) in comparison with the other combinations 

of skewness and kurtosis. Thus, violation of the normality assumption does not seem to 

be critical in the estimation of an overall effect in random-effects meta-analysis.  

Our findings are in agreement, in general, with the previous works of 

Kontopantelis and Reeves (2012a, 2012b) in the epidemiological field. In our study the 

manipulated conditions were related to the psychological field, where, for instance, it is 

more frequent to find meta-analyses with a larger number of studies and with the 

standardized mean difference as the effect size index. We also manipulated the average 

total sample size of the individual studies and the grand mean of the distribution of effect 

parameters. Furthermore, we considered other heterogeneity variance estimators different 

to DerSimonian and Laird and examined the non-parametric bootstrapping method. It is 

important to note that a limitation of Kontopantelis and Reeves (2012a, 2012b) works 

was that they used an inappropriate method to generate the individual log odd-ratios, a 

method that, contrary to what Kontopantelis and Reeves stated, cannot be applied to other 

effect metrics.  

It was not surprising to find a weak performance of the average effect based on 

the fixed-effect model in scenarios where > 0, as this method assumes that the studies 

estimate the same effect parameter (i.e., there is no between-studies variability).  

Regarding random-effects methods, which account for between-studies variability, 

results were not found to be affected by the heterogeneity estimator used.  
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Some authors have criticized the standard random-effects method for not taking 

into account the uncertainty due to the variance estimation process, which increases the 

risk of false positive results (e.g., Thompson & Higgins, 2002). Our results showed that 

the Hartung’s method outperformed the standard one, with a better coverage of the 

nominal confidence level. This trend was also reported in previous simulation studies 

restricted to normal scenarios (IntHout et al., 2014; Sánchez-Meca & Marín-Martínez, 

2008; Viechtbauer et al., 2015). Nevertheless, for a small number of studies the CIs 

obtained by Hartung’s method were very wide. Compared to Hartung’s, the profile 

likelihood method provided narrower CIs. Both methods achieved coverage probabilities 

close to the nominal confidence level, with slightly lower values for the profile likelihood 

method.   

The last method examined was non-parametric bootstrapping, which makes no 

distributional assumptions. Despite its theoretical advantage under non-normal scenarios, 

this method did not show a better performance than the standard, nor for Hartung’s nor 

profile likelihood methods across the set of manipulated conditions and the comparative 

criteria considered in our study. This method requires substantially more computational 

resources, and no empirical results were found to encourage its use. 

From the factors manipulated in this simulation, our results suggest that the 

number of studies exerts an important influence on the performance of the methods 

compared. With a small number of studies (less than 20) the performance of the methods 

was poorer and there were more notable differences among them than for a large number 

of studies. Similar results were observed in previous studies simulating normal scenarios 

(López-López et al., 2014; Rubio-Aparicio, Sánchez-Meca, López-López, Marín-

Martínez, & Botella, 2017). Many meta-analyses in clinical psychology include fewer 

than 20 studies, and the picture is even more extreme in other health sciences (Davey, 

Turner, Clarke, & Higgins, 2011). Moreover, our results suggest that a large between-

studies heterogeneity led to less accurate results and more pronounced differences among 

methods.  

In conclusion, the results of our simulation study suggest that the most commonly 

used meta-analytic techniques are robust to violation of the normality assumption of the 

parametric effects distribution. All random-effects methods examined, as well as non-

parametric bootstrapping, yielded similar results under optimal conditions (e.g. moderate 
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to large number of studies, small between-studies heterogeneity). However, we 

recommend using the Hartung’s method and profile likelihood method to construct a CI 

for the average effect, due to their suitability in a wide range of scenarios and their 

computational simplicity. Nonetheless, the results of our study are limited to the 

manipulated conditions, so that future studies are warranted to improve the 

generalizability of these findings, extending the manipulated conditions and considering 

other effect size indices. Finally, our conclusions do not only apply to the estimation of 

an overall effect size alongside its confidence interval under random-effects models, but 

also to the analysis of the influence of moderator variables under mixed-effects models. 

Indeed, when the influence of a categorical moderator variable on the effect sizes is 

investigated, average effect sizes and CIs for each subgroup are calculated. Thus, our 

recommendation of using Hartung’s or profile likelihood methods for that purpose can 

also be extended to the estimation of the true effect of each category of the moderator. 
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Chapter 4 

 

Study 3: 

 

“Analysis of categorical moderators 

in mixed-effects meta-analysis: 

Consequences of using pooled 

versus separate estimates of the 

residual between-studies variances 

 
4.1. Introduction 

 

One of the main purposes of meta-analysis is to examine whether the 

individual effect sizes are homogeneous around the average effect size. When there is 

more heterogeneity than expected from sampling error alone, the meta-analyst must 

search for study characteristics that can explain at least part of that variability. The 

moderators are considered as potential predictor variables and the effect sizes constitute 

the dependent variable (Borenstein et al., 2009). If the moderator variable is categorical, 

an analysis of variance, or subgroup analysis, can be formulated, while the continuous 

moderators are analysed using meta-analytic analogues to regression analysis. The 
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analysis of categorical moderators is usually referred to as ‘subgroup analysis’, and is the 

process of comparing the mean effect sizes in different subgroups of studies (Borenstein 

& Higgins, 2013).  

Several statistical models are available to examine the relationship between a 

categorical moderator and the effect sizes through a subgroup analysis. On the one hand, 

applying the logic of the general fixed-effect model to subgroup analyses, a fixed-effects 

model can be assumed in which all studies within the same category of the moderator 

share a common effect size. In other words, if a fixed-effect model is assumed within 

each subgroup, such model is called a fixed-effects model. On the other hand, the mixed-

effects model consists of assuming a random-effects model for each subgroup of studies. 

As a consequence, the mixed-effects model assumes that all studies within the same 

category of the moderator estimate a normal distribution of population effect sizes with a 

common mean effect size. The label ‘mixed-effects model’ is used because: (1) the 

moderator is considered a fixed-effects component, as the categories of the moderator are 

not a random sample of a larger number of categories, and (2) the effect sizes (i.e., the 

studies) include a random-effects component because they are considered a random 

sample of study effects pertaining to a population of studies in the same category 

(Borenstein et al., 2009; Viechtbauer, 2010). 

In this study, we focus on the performance of the mixed-effects model, which 

is nowadays routinely applied in most meta-analytic studies. 

 

4.1.1. Mixed-effects model 

 

Suppose that the k studies in a meta-analysis are grouped into m mutually 

exclusive categories of the moderator variable. Moreover, k1, k2, ..., km  denote the number 

of effect sizes of the categories 1, 2, ..., m, respectively, such that k1+ k2 + ... + km = k.  

 In a mixed-effects model the individual effect sizes, Tij, within the same category 

j are assumed to estimate a distribution of true effect sizes with mean µθj  and variance σij
2 

+ τj
2 , with σij

2 being the within-study variance for the ith study in the jth category of the 

moderator, and τj
2  the residual between-studies variance in that category.  
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 We must assume a random-effects model within each category of the moderator 

variable, thus the statistical model applied in the jth category will be Tij = µθj + εij + eij, 

where εij and eij are the within-study and between-studies errors, respectively. It is very 

common to assume that these two errors are independent of each other and, therefore, the 

estimated effect sizes are normally distributed: Tij ~ N(µθj, σij
2 + τj

2), where τj
2 is the 

common between-studies variance in jth category of the moderator. In addition, the 

parametric effect sizes of the jth category, θij, follow a normal distribution with mean µθj 

and between-studies variance τj
2 : θij ~ N(µθj, τj

2). 

 Under a mixed-effects model, the main goal in a subgroup analysis is to compare 

the parametric mean effect sizes from each category of the moderator variable, µθj, in 

order to test if the moderator is statistically related to the effect sizes. Consequently, first 

we need to estimate the mean parametric effect size of the jth category of the moderator, 

µθj, by means of  

 

(4.1) 

 

where ijŵ  are the estimated weights computed through )ˆˆ(1ˆ 22

jijijw   , with 
2ˆ
ij  being 

the estimated within-study variance of the ith effect size and 
2ˆ
j  the estimated residual 

between-studies variance of the jth category.  

 The sampling variance of the mean effect size in the jth category is estimated as 
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4.1.2. Omnibus Test of Between-Groups Differences 

 It is possible to test the statistical significance of a categorical moderator by means 

of the omnibus Wald-type 𝜒2 test, the 𝑄𝐵 test, obtained with (Borenstein et al., 2009)  
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                                                  
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ˆ ,                                         (4.3)                                                   

 

where jw
ˆ  is the inverse of Eq. 4.2 applied to the jth category of the moderator, jT  is the 

mean effect size of the jth category calculated by Eq. 4.1 and T represents the weighted 

grand mean of all effect sizes and is given by 
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where the total between-studies variance estimate, 
2̂ , is used to compute ijŵ . 

 Under the null hypothesis of no difference between the mean effect sizes for each 

of the m categories (H0: 1 = 2 = … = m), the QB statistic follows a Chi-square 

distribution with m – 1 degrees of freedom. Therefore, the null hypothesis will be rejected 

when QB exceeds the 100(1 - ) percentile point of the chi-square distribution. A 

statistically significant result for QB provides evidence that the moderator is statistically 

related to the effect sizes.  

 

4.1.3. Estimating the residual between-studies variance 

 Several methods have been proposed to estimate the total heterogeneity variance 

in the random-effects model. The most commonly used is that proposed by DerSimonian 

and Laird (1986), a heterogeneity variance estimator derived from the moment method.  

 At this point, it could be useful to make a distinction between the total between-

studies variance and the residual between-studies variance. On the one hand, when we 

apply the random-effects model to estimate the mean effect in a meta-analysis (i.e., 

without moderators being added to the model) there is an amount of heterogeneity due to 

sampling error in the selection of the studies in the meta-analysis. This heterogeneity is 
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estimated through the total between-studies variance, which represents the excess 

variation among the effects over that expected from within-study sampling error alone. 

On the other hand, in the mixed-effects model we include moderator variables aiming to 

explain at least part of the total heterogeneity in the effect sizes. Thus, after adding 

moderator variables the amount of heterogeneity that remains to be explained is the 

residual heterogeneity or the heterogeneity that cannot be explained by the moderators 

included in the model. 

 In the mixed-effects model, two approaches can be adopted to estimate the 

residual between-studies variance. One is to estimate the residual between-studies 

variance separately within each category of the moderator, and the other one is to 

calculate a pooled estimate across categories (Borenstein et al., 2009). 

 

Separate estimates of the residual between-studies variance 

 This procedure consists of estimating the residual between-studies variance within 

each category of the moderator. Thus, in a moderator variable with m categories, we need 

to calculate the residual between-studies variance estimates 
2

1̂ , 
2

2̂ , …, and 2ˆ
m  The 

residual between-studies variance for the jth category of the moderator, 
2ˆ
j , can be 

computed applying the Dersimonian and Laird estimator with the expression 
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where kj is the number of studies of the jth category, Qwj is the within-group homogeneity 

statistic of the jth category computed through  
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with *ˆ
ijw  being the estimated weights assuming a fixed-effect model, 2* ˆ1ˆ

ijijw  , and *

jT  

the mean effect size of the jth category of the moderator also assuming a fixed-effect 

model, that is, applying Eq. 4.1 but using *ˆ
ijw  as weighting factor; and cj is given by 
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 Therefore, Eq. 4.5 allows a separate estimate of the between-studies variance of 

each category, 
2ˆ
j , to be obtained, and these are used to calculate the weights, ijŵ , for 

each category of the moderator. This implies that in each category a different between-

studies variance is used to calculate the weights: 
2

1̂  for category 1, 
2

2̂  for category 2, 

and so on, that is,  22 ˆˆ1ˆ
jijijw   . Here we will name the QB statistic calculated with 

separate between-studies variances as QB(S).    

 

Pooled estimate of the residual between-studies variance 

 An alternative method to estimate the residual heterogeneity variance consists of 

averaging the residual between-studies variances of the m categories of the moderator 

variable, through the equation (Borenstein et al., 2009) 
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 Eq. 8 provides a pooled estimate of the residual between-studies variance, so that 

the weights, ijŵ , are obtained using a common between-studies variance through the 
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different categories of the moderator, that is,  22 ˆˆ1ˆ
  ijijw . Here we will use the term 

QB(P) to refer to the QB statistic calculated with a pooled estimate of the residual between-

studies variance, 2ˆ
 .   

 

4.1.4. An example 

 To illustrate how the QB statistic is calculated with the two different methods to 

estimate the residual between-studies variance (pooled vs. separate estimates), an 

example extracted from a real meta-analysis is presented here. The data were obtained 

from a meta-analysis about the efficacy of psychological treatments for panic disorder 

with or without agoraphobia (Sánchez-Meca, Rosa-Alcázar, Marín-Martínez, & Gómez-

Conesa, 2010). The effect size index in this meta-analysis was the standardized mean 

difference (d) between two groups (treated vs. control groups) defined in Eq. 4.1. Out of 

all the moderator variables analyzed in this meta-analysis, a dichotomous characteristic 

was selected to illustrate a subgroup meta-analysis: whether or not the assignment of the 

participants to the treated and control groups was at random. The database composed of 

50 studies is presented in Appendix 4A. 

 

Table 4.1. Results of the subgroup analysis for the moderator variable ‘random 

assignment’ in the Sánchez-Meca et al. (2010) meta-analysis by using separate 

estimates of the residual between-studies variance, 
2ˆ
j . 

Note. kj = number of studies in each category of the moderator; jd  = mean effect size for each    

category, obtained with Eq. 4.1; )( jdV  = estimated sampling variance of the mean effect size 

for each category, obtained with Eq. 4.2; dl and du = lower and upper confidence limits (for a 95% 

confidence level) for each mean effect size, obtained by means of )(96.1 jj dVd   (1.96 

 

Random assignment 

 

kj 

 

jd  

 

)( jdV  

95%  CI 

dl        du 

 

2ˆ
j  

No 

Yes 

8 

42 

0.545 

0.966 

0.024 

0.011 

0.242     0.847 

0.765     1.167 

0.053 

0.303 

Separate estimates of 
2ˆ
j : QB(S)(1) = 5.165, p = .023 
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being the 97.5% percentile of the standard normal distribution); 
2ˆ
j  = residual between-studies 

variance for each category, estimated with Eq. 4.5.  

 

Table 4.2. Results of the subgroup analysis for the moderator variable ‘random 

assignment’ in the Sánchez-Meca et al. (2010) meta-analysis by using a pooled estimate 

of the residual between-studies variance, 
2ˆ
 . 

Note. kj = number of studies in each category of the moderator; jd  = mean effect size for each 

category, obtained with Eq. 4.1; )( jdV  = estimated sampling variance of the mean effect size 

for each category, obtained with Eq. 4.2; dl and du = lower and upper confidence limits (for a 95% 

confidence level) for each mean effect size, obtained by means of )(96.1 jj dVd   (1.96 

being the 97.5% percentile of the standard normal distribution);
2ˆ
  = pooled estimate of the 

residual between-studies variances of the two categories, calculated with Equation 4.8.  

 

Tables 4.1 and 4.2 present the results yielded by the QB statistic with the two 

methods here compared, as well as the mean effects for each category of the moderator, 

the sampling variances, the residual between-studies variances and the 95% confidence 

intervals for each mean effect. Separate estimates of the residual between-studies 

variances for each category (
2ˆ
j ) were calculated using Eq. 4.5. As shown in Table 4.1, 

their values were 0.053 and 0.303 for non-random and random assignment, respectively. 

On the other hand, the pooled estimate of the residual between-studies variances 

calculated using Eq. 4.8 was 
2ˆ
  = 0.270 (Table 4.2). When the QB statistic was calculated 

taking separate estimates of the residual between-studies variances, the estimated weights 

for each study were obtained by means of )ˆˆ(1ˆ 22

jijijw   . Conversely, when the QB 

statistic was calculated taking a pooled estimate of the residual between-studies variances 

(
2ˆ
 ), the estimated study weights were )ˆˆ(1ˆ 22

  ijijw . This distinction affects the QB 

statistic, here referred as QB(S) and QB(P), respectively, as well as the mean effect from 

 

Random assignment 

 

kj 

 

jd  

 

)( jdV  

95%  CI 

dl        du 

 

2ˆ
  

No 

Yes 

8 

42 

0.559 

0.961 

0.053 

0.010 

0.109     1.009 

0.768     1.155 

0.270 

0.270 

Pooled estimate of 
2ˆ
j : QB(P)(1) = 2.588, p = .108 
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each category of the moderator, their sampling variances ( )( jdV ), and their confidence 

limits.  

 The mean effects for non-random and random assignment were 0.545 and 0.966, 

respectively (Table 4.1), when separate estimates of the residual between-studies 

variances were used (
2ˆ
j ), and 0.559 and 0.961 when a pooled estimate ( 2ˆ

 ) was used 

(Table 4.2). The sampling variances and the confidence limits also varied depending on 

the residual between-studies variances used in the calculations. However, the most 

dramatic discrepancy among methods involved the two versions of the QB statistic: the 

QB(S) and QB(P) statistics. The null hypothesis of equal mean effect sizes was rejected when 

separate estimates of the between-studies variances were used (Table 4.1: QB(S) = 5.165, 

p = .023), but not when a pooled estimate was considered (Table 4.2: QB(P) = 2.588, p = 

.108). 

 This example illustrates how results and their interpretation can be affected by the 

meta-analytic methods selected to undertake the statistical analyses. The choice of the 

meta-analyst will often be conditioned by the software used for the calculations and 

he/she will not be aware of which method was implemented. In fact, the most commonly 

used statistical programs for meta-analysis do not enable users to choose among the two 

methods to calculate the individual weights in a mixed-effects model. For instance, if the 

meta-analyst would use metafor (Viechtbauer, 2010), Comprehensive Meta-analysis 2.0 

(Borenstein, Hedges, Higgins, & Rothstein, 2005) or the SPSS macros elaborated by 

David B. Wilson to replicate this example, he/she would obtain the results presented in 

Table 4.2, whereas if using RevMan 5.3 (Review Manager, 2014), the results will be those 

presented in Table 4.1.  On the other hand, Comprehensive Meta-analysis 3.0 (Borenstein, 

Hedges, Higgins, & Rothstein, 2014) incorporates both methods so that the meta-analyst 

can use either to estimate the weights (in fact, the results in Tables 4.1 and 4.2 were 

obtained with this program).   

 

4.1.5. Purpose of the study 

It is not clear which of these two procedures (separate or pooled estimates) should 

be preferred in order to estimate the residual between-studies variance, which is involved 

in the subgroup analysis in a mixed-effects meta-analysis. At this point, it is useful to 
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revise the analogy between the subgroup analysis in a meta-analysis and the analysis of 

variance (ANOVA) for comparing means in a primary study. On the one hand, in the 

simplest case of a primary study with a two-independent group design (e.g. experimental 

vs. control group), the means of two samples of subjects are compared performing a t-test 

or an ordinary least squared ANOVA. On the other hand, in a meta-analysis with two 

subgroups of studies, the mean effect sizes in each subgroup are compared by performing 

a weighted least squared ANOVA, the weights being the inverse-variance of each effect 

size.  

Both the t-test or ANOVA for comparing the means of two or more independent 

groups of subjects assume homogeneity between variances in the two populations. The 

pooled variance is estimated through the mean squared error in the ANOVA. When the 

two population variances are heterogeneous, the so-called Behrens-Fisher problem arises, 

which requires an alternative procedure to the classic t-test or ANOVA. In practice, the 

usual solution to the Behrens-Fisher problem is to apply the Welch-Satterthwaite 

approach to correct the classical t-test (Welch, 1947).  

In the meta-analytic arena, the picture is a little more complex, as we are working 

with aggregate scores (e.g. effect sizes summarizing individual scores) studies instead of 

groups of subjects. While in a primary study each subject provides a score, in a meta-

analysis, each study provides an effect size.  The effect sizes of the studies in a meta-

analysis will exhibit different precision depending on the sample size of the study.  Effect 

sizes obtained from large samples will be more accurate (less variable) than those 

obtained from small ones. As a consequence, the appropriate mean of a set of effect sizes 

is a weighted average, the weights being the inverse-variance of each effect size. This 

weighting scheme affects all statistical calculations in a meta-analysis.  

The pooled estimation of the residual between-studies variance from two or more 

subgroups of studies in a meta-analysis, is akin to the estimation of the mean squared 

error in the ANOVA in a primary study, as both procedures assume the variance between 

groups to be homogeneous. When this assumption is not tenable, a problem similar to 

that of Behrens-Fisher emerges, which may lead to inaccurate estimation of the residual 

between-studies variance. To circumvent this problem, an alternative is the separate 

estimation of the residual between-studies variance for each subgroup of studies. 
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However, this approach can also yield inaccurate estimates if the number of studies in the 

subgroups is small (which will often be the case).     

In a mixed-effects meta-analysis, the residual between-studies variance is 

included in the weighting scheme. Thus, the estimation procedure for the residual 

between studies variance may have an impact on a wide range of meta-analytic outputs, 

including, such as: (1) the estimate of the average effect size for each category of the 

moderator (see Eq. 4.1); (2) their sampling variances; (3) the confidence intervals; and, 

(4) relevant to the present work, the computation of the between-group heterogeneity 

statistic, QB  (see Eq. 4.3).   

The large number of factors that can affect the performance of the QB(P) and QB(S) 

statistics lead to the need for simulation studies to determine which of them is a better 

option under different meta-analytic conditions. Previous simulation studies have 

examined the statistical performance of the t-test and ANOVA F-test in a primary study, 

assuming homogeneous and heterogeneous population variances. However, those studies 

do not address the more complex picture of subgroup analyses in meta-analysis, and 

therefore their findings might not be generalizable to the meta-analytic arena.    

The purpose of this work was to directly compare, by means of Monte Carlo 

simulation, the statistical performance of the QB statistic applied in meta-analysis, when 

two alternative procedures for estimating the residual between-studies variance (separate 

estimates and pooled estimate) are used. With that aim, the present work is the first 

simulation study where the QB(S) and QB(P) tests were compared, assessing their Type I 

error and statistical power in different meta-analytic scenarios.  

The existence of previous simulation studies addressing the heterocedasticity 

problem in primary studies enables us to formulate some expectations (Glass & Hopkins, 

1996; Glass, Peckham & Sanders, 1972; Hinkle, Wiersma & Jurs, 2003; Senn, 2008). 

First, in scenarios with balanced sample sizes, we expect QB(P) to provide an adequate 

adjustment of the Type I error, even with heterogeneous variances between subgroups. 

Second, in unbalanced scenarios with heterogeneous variances where the larger variance 

is associated with the bigger subgroup, the QB(P) test will be too conservative, and too 

liberal if the smaller variance is associated with the subgroup with the bigger subgroup 

instead.   
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4.2. Method of the Simulation Study 

 A simulation study was carried out in R using the metafor package (Viechtbauer, 

2010) and the two procedures (pooled versus separate) for estimating the residual 

between-studies variance were programmed. Meta-analyses of k studies were simulated 

with the standardized mean difference as the effect size index. Each individual study 

included in a meta-analysis compared two groups (experimental and control) with respect 

to some continuous outcome. Both populations were normally distributed with 

homogeneous variances, [N(µE, σ2), N(µC, σ2)]. The population standardized mean 

difference, , was defined as (Hedges & Olkin, 1985) 

.                                                          



 CE                                                      (4.9) 

The parametric effect size, , can be estimated by means of  

 𝜃 = 𝑐(𝑚)
�̅�𝐸 − �̅�𝐶

𝑠
, (4.10) 

 

where 
Ey  and 

Cy  are the sample means of experimental and control groups, S is a 

pooled standard deviation computed through  
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nE and nC being the experimental and control sample sizes, respectively, 2

ES  and 2

CS  being 

the unbiased variances of the two groups, and c(m) is a correction factor for small sample 

sizes, given by  
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being N = nE + nC. The estimated within-study variance of 𝜃, assuming equal variances 

and normality within each study, is given by  
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 We simulated a mixed-effects model involving a moderator variable with two 

categories. In each category of the moderator variable a population of parametric effect 

sizes was assumed, in addition to the within-group variability.  

 The number of studies of each simulated meta-analysis was defined as k = k1 + k2, 

with k1 and k2 being the number of studies falling into the first and second categories of 

the moderator, respectively.  

 The manipulated conditions in the present study were intended to represent the 

most realistic scenarios found in meta-analysis. For the number of studies, k, we 

considered four values, namely 12, 20, 40, and 60. Furthermore, we manipulated the 

distribution of k within each category of the moderator, so that in some conditions there 

was a balanced distribution (e.g. k1 = k2), while in the remaining conditions there was an 

unbalanced distribution between the two categories with the second category containing 

three times as many studies as the first category.  

We also manipulated the residual between-studies variance of each category of the 

moderator in two different ways. First, we considered two values for this parameter, 

namely 0.08 and 0.16. Second, we simulated a set of scenarios with homogeneous residual 

between-studies variances for both categories (τ1
2 = τ2

2), and also another set of 

heterogeneous conditions, with values τ1
2 = 0.08 and τ2

2 = 0.16 or τ1
2 = 0.16 and τ2

2 = 

0.08.  

The average sample size of the k studies in a meta-analysis was set to 60. Note that, 

for each study, N = nE + nC, with nE = nC. The selection of the sample sizes for the 

individual studies in each meta-analysis was performed from the generation of skewed 

distributions, applying the Fleishman’s algorithm (1978) with an average value of 60, a 

skewness index of 1.386, a kurtosis index of 1.427 and a standard deviation of 5.62. The 
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parameters of this distribution are similar to the distribution of sample sizes found in a 

recent review of 50 real meta-analyses on the effectiveness of psychological treatments 

(Rubio-Aparicio et al., in press).  

The parametric mean effect size of each category of the moderator was also 

manipulated. In some conditions the two parametric mean effects were equal to 0.5 (1 

= 2 = 0.5), whereas for other conditions they were set to different values: 1 = 0.5 and 

2 = 0.3 or 1 = 0.5 and 2 = 0.1. Moreover, when the parametric mean effect sizes 

were different for each category, their position was also manipulated, and hence we also 

generated scenarios with 1 = 0.3 and 2 = 0.5 or 1 = 0.1 and 2 = 0.5. The conditions 

with equal parametric mean effect sizes across categories allowed us to study the Type I 

error rate of the QB(S) and QB(P) statistics, whereas the conditions with different parametric 

mean effect sizes enabled us to assess their statistical power.  

 To assess the Type I error rate, the total number of conditions was: 4 (number of 

studies) x 2 (balanced-unbalanced number of studies in the two categories) x 4 (residual 

between-studies variance) = 32. With respect to the statistical power, the conditions were 

quadrupled regarding those of the Type I error by including two different parametric mean 

effect sizes and manipulating their position across categories, so that there were 32 x 4 = 

128 conditions defined. To sum up, the total number of conditions was 160 and for each 

one 10,000 replications were generated. Thus, 1,600,000 meta-analyses were simulated.  

 The QB(S) test (Eq. 4.3) using separate estimates of τ2 for each subgroup (Eq. 4.5) 

and the QB(P) test when using a pooled estimate of τ2 (Eq. 4.8) were applied to each one 

of these replications. In each of the 160 conditions of our simulation study, the proportion 

of rejections of the null hypothesis of equality of the parametric mean effect sizes of the 

moderator enabled us to estimate the Type I error rate and the statistical power.  

Appendix 4B shows the R code of our simulation study.  
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4.3. Results 

4.3.1. Type I error rate 

 Table 4.3 presents Type I error rates for the QB(S) and QB(P) statistics when using 

the two estimation procedures of the residual between-studies variance in the manipulated 

conditions. Table 4.4 summarizes the average Type I error rates as a function of the 

number of studies, balanced and unbalanced distribution of number of studies within each 

category of the moderator, and residual between-studies variance of each category of the 

moderator. Note that the nominal significance level was set to α = .05. 

 

 Table 4.3. Type I error for the two estimation procedures of the residual between studies 

variance 

 

 Balanced Unbalanced 

τ1
2 : τ2

2 k QB(S) QB(P) QB(S) QB(P) 

0.08 : 0.08 12 0.0611 0.0655 .0801 0.0719 

 

20 

40 

60 

0.0595 

0.0584 

0.0543 

0.0609 

0.0581 

0.0548 

0.0743 

0.0639 

0.0564 

0.0672 

0.0577 

0.0527 

0.16 : 0.16 12 0.0737 0.0761 0.0950 0.0976 

 

20 

40 

60 

0.0648 

0.0554 

0.0567 

0.0650 

0.0548 

0.0566 

0.0783 

0.0696 

0.0640 

0.0652 

0.0612 

0.0579 

0.08 : 0.16 12 0.0705 0.0733 0.0758 0.0524 

 

20 

40 

60 

0.0602 

0.0584 

0.0510 

0.0611 

0.0580 

0.0505 

0.0709 

0.0623 

0.0552 

0.0456 

0.0377 

0.0349 

0.16 : 0.08 12   0.0956       0.1013 

       

20 

40 

60 

  0.0886 

0.0716 

0.0606 

 0.0949 

0.0890 

0.0801 
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Note. τ1
2 = residual between-studies variance of the first category of the moderator; τ2

2  = residual 

between-studies variance of the second category of the moderator; k = number of studies; 

Balanced = balanced distribution of k within each category of the moderator; Unbalanced = 

unbalanced distribution of k within each category of the moderator, with fewer studies in the first 

category; QB(S) = QB test using separate estimates of τ2 for each subgroup; QB(P) = QB test using a 

pooled estimate of τ2.  

 

 

Table 4.4. Average Type I rates by number of studies (k), by balanced and unbalanced 

distribution of k, and by the residual between-studies variance of each category of the 

moderator (τ1
2 : τ2

2) 

 QB(S) QB(P) 

   k 

        12 

 

0.0788 

 

0.0738 

        20 0.0709 0.0657 

        40 0.0628 0.0595 

        60 0.0569 0.0553 

   Distribution of k   

        Balanced 0.0577 0.0577 

        Unbalanced 0.0679 0.0620 

   τ1
2 : τ2

2   

        0.08 : 0.08 0.0612 0.0585 

        0.16 : 0.16 0.0648 0.0601 

        0.08 : 0.16 0.0597 0.0479 

        0.16 : 0.08 0.0736 0.0880 

Note. QB(S) = QB test using separate estimates of τ2 for each subgroup; QB(P) = QB test using a 

pooled estimate of τ2.  

 

First, in most conditions results showed the empirical rejection rates of both 

estimation procedures above the nominal significance level (Tables 4.3 and 4.4). As 

expected, as the number of studies increased, the proportion of rejections of the null 

hypothesis of equality for QB(S) and QB(P) converged to the nominal significance level 

(Table 4.4) 
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 In general, when the number of studies was balanced across categories, both 

estimation procedures showed a good adjustment to the nominal level, with negligible 

differences among the empirical error rates. By contrast, under the conditions with an 

unbalanced distribution of studies between the two categories, the differences in error 

rates for both estimation procedures were most notable (Table 4.3).  

 As can be seen in Table 4.3, and focusing on unbalanced distribution of the 

number of studies within each category of the moderator, when the residual between-

studies variances of each category were homogeneous (τ1
2 = τ2

2 = 0.08 or τ1
2 = τ2

2 = 0.16), 

the QB(P) test presented a better control of the Type I error rate than QB(S). In contrast, 

when variances were heterogeneous, specifically under the condition where the value of 

the smallest residual between-studies variance, τ2 = 0.08, was associated with the category 

with the smallest number of studies (τ1
2 = 0.08; τ2

2 = 0.16), the QB(P) test showed Type I 

error rates below 0.05, whereas the QB(S) test yielded rates over nominal except for a large 

number of studies, k = 60 (k1 = 15 and k2 = 45). Under the condition where the value of 

the largest residual between-studies variance, τ2 = 0.16, was associated with the category 

with the smallest number of studies, (τ1
2 = 0.16; τ2

2 = 0.08), the QB(P) test showed empirical 

rejection rates above the nominal significance level, while the QB(S) test only showed 

results close to the nominal level with k = 60 (k1 = 15 and k2 = 45).  

 

4.3.2. Statistical power 

Table 4.5 shows the empirical power rates for QB(S) and QB(P) tests in the 

manipulated conditions. Table 4.6 summarizes the average power rates as a function of 

the magnitude of the difference between the parametric mean effect sizes of each category 

of the moderator, number of studies, balanced and unbalanced distribution of number of 

studies within each category of the moderator, and the residual between-studies variance 

for each category of the moderator. In general, the influence of the different conditions 

manipulated was equivalent for the QB(S) and QB(P) tests and, in most conditions, both tests 

yielded statistical power rates far below .80 (Tables 4.5 and 4.6). 

 Table 4.6 shows that, as expected, QB(S) and QB(P) tests increased their statistical 

power as the number of studies and the magnitude of the difference between the 

parametric effect size of each category increased. Furthermore, under the conditions with 
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a balanced distribution of the studies across categories, the QB(S) and QB(P) tests showed 

greater power than under the condition with an unbalanced distribution of the studies (see 

also Table 4.5). In relation to the conditions with homogeneous residual between-studies 

variances, large amounts of residual τ2 values correspond to smaller rejection rates for 

both tests. Accordingly, the highest power rates, QB(S) = 0.9760 and QB(P) = 0.9759, were 

obtained under optimal scenarios, that is, maximum difference between the parametric 

mean effect size of each category (|1 - 2| = 0.4), large number of studies (k = 60), 

balanced distribution of studies within each category and small and homogeneous values 

of the residual between-studies variance of each category (τ1
2 = 0.08 and τ2

2 = 0.08) 

(Table 4.5).  

As shown in Table 4.5, under a balanced distribution of the number of studies within each 

category of the moderator, the QB(S) and QB(P) tests performed very similarly, even when 

the assumption of homogeneity variances was not fulfilled. By contrast, when the number 

of studies was distributed unequally within each category of the moderator and the 

residual between-studies variances of each category were homogeneous, the QB(S) test 

yielded a slightly higher power than QB(P) test.  
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Table 4.5. Statistical Power Rates for the two estimation procedures of the residual 

between-studies variance 

Note. 1 = parametric mean effect size of the first category of the moderator; 2 = parametric 

mean effect size of the second category of the moderator; τ1
2 = residual between-studies variance 

of the first category of the moderator; τ2
2  = residual between-studies variance of the second 

category of the moderator; k = number of studies; Balanced = balanced distribution of k within 

each category of the moderator; Unbalanced = unbalanced distribution of k within each category 

of the moderator, where the number of studies in the first category is the lowest one; QB(S) = QB 

test using separate estimates of τ2 for each subgroup; QB(P) = QB test using a pooled estimate of τ2.  

 

 

 

 

                      |1 - 2| = 0.2 |1 - 2| = 0.4 

        Balanced              Unbalanced Balanced    Unbalanced 

τ1
2  :  τ2

2 k QB(S) QB(P) QB(S) QB(P) QB(S) QB(P) QB(S) QB(P) 

0.08 : 0.08 12 0.161 0.1701 0.1599 0.151 0.4383 0.4479 0.3645 0.3638 

 

 

20 0.2203 0.2235 0.1894 0.1827 0.6341 0.6385 0.5293 0.5298 

40 0.3796 0.3783 0.3028 0.2953 0.8988 0.9000 0.8028 0.8068 

60 0.5224 0.5220 0.4168 0.4116 0.9760 0.9759 0.9296 0.9323 

0.16 : 0.16 12 0.1446 0.1483 0.1505 0.1294 0.3298 0.3329 0.3012 0.2792 

 

 

20 0.1752 0.1768 0.1642 0.1489 0.4803 0.4804 0.4004 0.3893 

40 0.2756 0.2753 0.2269 0.2175 0.7501 0.7502 0.6305 0.6285 

60 0.3710 0.3700 0.3139 0.3060 0.8979 0.8971 0.7972 0.7994 

0.08 : 0.16 12 0.1512 0.1567 0.1405 0.1046 0.3759 0.3831 0.3342 0.2635 

 

 

20 0.1986 0.2025 0.1749 0.1261 0.5392 0.5443 0.4772 0.4022 

40 0.3136 0.3198 0.2802 0.2130 0.8275 0.8299 0.7542 0.6905 

60 0.4377 0.4432 0.3787 0.3024 0.9478 0.9493 0.9007 0.8615 

0.16 : 0.08 12 0.1466 0.1512 0.3808 0.1749 0.3677 0.3729 0.3204 0.3541 

 

 

20 0.1918 0.1922 0.1778 0.2062 0.5441 0.5443 0.4271 0.4823 

40 0.3146 0.3098 0.2489 0.2960 0.8241 0.8213 0.6763 0.7373 

60 0.4355 0.4274 0.3249 0.3832 0.9432 0.9422 0.8268 0.8748 
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Table 4.6. Average power values rates by difference between the parametric mean effect 

size of each category of the moderator (|1 - 2|), by number of studies (k), by balanced 

and unbalanced distribution of k, and by the residual between-studies variance of each 

category of the moderator (τ1
2 : τ2

2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. QB(S) = QB test using separate estimates of τ2 for each subgroup; QB(P) = QB test using a 

pooled estimate of τ2.  

 

4.4. Discussion 

 This study compares the impact of two procedures for estimating the residual 

between-studies variance, separate estimates and pooled estimate, on the statistical 

performance of the QB test for subgroup analyses assuming a mixed-effects meta-

analysis. Our work is the first simulation study addressing the question of which 

estimation procedure of the residual between-studies variance yields the most accurate 

 QB(S) QB(P) 

|1 - 2| 

    0.2 

 

0.2843 

 

0.2783 

    0.4 0.7102 0.7095 

k   

    12 0.2674 0.2418 

    20 0.3359 0.3307 

    40 0.5179 0.5148 

    60 0.6378 0.6362 

Distribution of k   

    Balanced 0.5458 0.5464 

    Unbalanced 0.4729 0.4676 

τ1
2 : τ2

2   

    0.08 : 0.08 0.5540 0.5530 

    0.16 : 0.16 0.4453 0.4405 

    0.08 : 0.16 0.5109 0.4711 

    0.16 : 0.08 0.4787 0.5109 
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results for the QB test under a set of realistic scenarios, and also allows us to explore the 

practical consequences of using separate estimates or a pooled estimate. 

 Under a balanced distribution of the number of studies across categories, we 

expected good performance of the QB(P) test even when the assumption of homogeneity 

of the residual between-studies variances was not fulfilled. This is a similar situation to 

that of the typical ANOVA F-test with equal sample sizes between groups of subjects, 

where the F-test is robust to violations of the homoscedasticity assumption (Glass & 

Hopkins, 1996; Senn, 2008). Our results showed similar Type I error rates for the QB(P) 

test in the conditions with homogeneous and heterogeneous residual between-studies 

variances. However, the empirical Type I error rates showed a good adjustment to the 

nominal level only in meta-analyses with large number of studies (40 or more studies), 

the adjustment becoming slightly more liberal as the number of studies decreased.  

           Comparing the performance of the QB(S) and QB(P) tests, their Type I error and 

statistical power rates were similar through all the conditions of subgroups with equal 

number of studies. This suggests that when the studies are distributed equally within each 

category of the moderator the meta-analyst may apply any of the procedures in order to 

estimate the residual between-studies variance. Nevertheless, if the number of studies and 

the residual between-studies variances are roughly similar across categories, using a 

pooled estimate would be expected to provide more accurate results for most scenarios, 

as it takes into account a larger number of studies. This can be particularly important if 

the total number of studies is small (e.g., <20), which has been found to be the case for 

most Cochrane Reviews (Davey et al., 2011). 

  When the number of studies was distributed unequally across categories, the 

practical consequences of having heterogeneous residual between-studies variances were 

more evident, with both tests leading to the wrong statistical conclusion more often than 

in the conditions with balanced subgroups. Specifically, under the condition of 

heterogeneity where the value of the smallest residual between-studies variance (τ2 = 

0.08) was associated with the category with the smallest number of studies, the QB(S) test 

showed adequate control of the Type I error rate with at least 60 studies, whereas that the 

QB(P) test yielded over-conservative Type I error rates and poor performance in terms of 

statistical power regardless of the number of studies. Under conditions where the value 

of the largest residual between-studies variance (τ2 = 0.16) was associated with the 
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category with the smallest number of studies, both tests provided inflated Type I error 

rates, with the QB(P) test showing a greater departure from the nominal significance level. 

Note that the performance of the QB(P) test was similar to that expected for the F-test in a 

typical ANOVA with unbalanced sample sizes, when the homoscedasticity assumption 

was not met (Glass et al., 1972; Hinkle et al., 2003). 

 Lastly, our results also reflect that the QB(P) test yielded more accurate control of 

error rates when the residual between-studies variances homogeneity assumption was 

fulfilled. In practice, the QB test is usually calculated using a pooled estimate (Borenstein 

et al., 2009; Viechtbauer, 2010). Borenstein et al. (2009) and Viechtbauer (2010) 

suggested using a pooled estimate of the residual between-studies variance except when 

the meta-analyst suspects that the true value of the residual between-studies may vary 

from one category to the next. 

 As pointed out in the introduction, the most popular statistical packages for meta-

analysis estimate the residual between-studies variance implementing only one of the two 

procedures described and compared throughout this study, so that choice of software 

determines the method to be used. Our results showed some evidence that pooled or 

separate estimates might lead to a different performance of the QB test under some 

scenarios. Therefore, it would be helpful for the different meta-analysis software options 

to allow users to implement either method based on the characteristics of the database, as 

it is already the case for Comprehensive Meta-analysis 3.0 (Borenstein et al., 2014). That 

would also allow undertaking sensitivity analyses if the meta-analyst suspects that the 

choice of procedure may have an impact on the results. 

 Results from our simulation study also shed some light on the accuracy of 

hypothesis testing for categorical moderators in meta-analysis, beyond the choice of 

pooled or separate variance estimates. The overall picture suggests that statistical tests 

can be expected to perform close to the nominal significance level in terms of Type I 

error, although greater between-studies variances and unbalanced category sizes may lead 

to inflated rates. Conversely, statistical power rates can be lower than desirable unless the 

difference among category effects and the number of studies are large enough. While the 

former may vary widely, the number of studies is often below 40 when the influence of a 

categorical moderator is statistically tested. Therefore, our results remark that most of 

those analyses might be underpowered.   
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 In conclusion, the results of our simulation study suggest that similar performance 

can be expected when using a pooled estimate or separate estimates of the residual 

between-studies variance to test the statistical association of a dichotomous moderator 

with the effect sizes, as long as there are at least 20 studies and these are roughly balanced 

across categories. Our results stress the need for a relatively large number of studies for 

the methods to have enough power to detect small to moderate differences among effect 

sizes from different subgroups. A pooled estimate will be preferable for most scenarios, 

unless the residual between-studies variances are clearly different and there are enough 

studies in each category to get precise separate estimates. Researchers are also encouraged 

to report the between-studies variance estimate(s) alongside its (their) confidence limits. 

 

4.4.1. Limitations and future research 

 There are some limitations to this study. First, results can onlybe generalized to 

the specific manipulated conditions. Although this study was focused on standardized 

mean differences as the effect size index, our findings may be generalized to other effect 

size measures which follow an approximately normal distribution. In future simulation 

studies, it would be advisable to extend the manipulated conditions, for example, using 

other effect size indices, increasing the number of categories of the moderator and varying 

the average sample size of each meta-analysis.  

 In future research, other estimators of the residual between-studies variance could 

be applied, such as the restricted maximum likehood estimator (Viechtbauer, 2005) and 

they may also consider alternatives to the normal distribution to generate parametric 

effects, in order to mimic realistic scenarios more closely. 

Finally, the Type I error and statistical power rates yielded by the methods 

considered in this study were suboptimal for many of the examined conditions. Previous 

simulation studies have demonstrated that the method proposed by Knapp and Hartung 

(2003) outperforms the standard method for testing the statistical significance of a 

continuous moderator (Viechtbauer et al., 2015). It should be interesting to evaluate the 

performance of this method to test for categorical moderators (see Chapter 5). 
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Chapter 5 

 

Study 4: 

 

“A comparison of hypothesis tests 

for categorical moderators in meta-

analysis using mixed-effects 

models” 
 

 

5.1. Introduction  

 In the present study, we are still interested in subgroup analyses, which are 

commonly used to examine the association between categorical moderator variables and 

the magnitude of the effect size. Based on a subgroup analysis, we can estimate the 

(average) effect size for each level of the moderator and test for between-group 

differences. Such analyses may provide valuable insights into circumstances and 

conditions under which an effect (e.g., the effectiveness of a treatment or intervention) is 

particularly large or small. 

 A general recommendation when conducting such moderator analyses is to adopt 

a mixed-effects model which explicitly models potential ‘residual heterogeneity’ in the 

effects, that is, heterogeneity in the true effects not accounted for by the moderator 
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variable(s) included in the model (Thompson & Higgins, 2002). For models with a 

categorical moderator, residual heterogeneity simply denotes heterogeneity in the true 

effects within the various levels of the moderator. 

 Two approaches can be used to estimate the amount of residual heterogeneity in 

the context of such models. One is to allow for and estimate a different between-studies 

variance component within each level of the moderator, while the other consists of 

assuming a common amount of residual heterogeneity across categories and to calculate 

a pooled estimate thereof (Borenstein et al., 2009). 

 Rubio-Aparicio, et al. (2017) recently carried out a simulation study (described in 

Chapter 4) to compare the statistical performance of the omnibus Wald-type 𝜒2 test, the 

𝑄𝐵 test, for between-group differences in the (average) effect sizes in terms of its Type I 

error and statistical power rates when the two alternative procedures for estimating the 

residual between-studies variance (i.e., separate vs. pooled estimation) are used. Results 

indicated that pooled estimation is preferable for most scenarios, unless the residual 

between-studies variance is different across categories and the number of studies in each 

category is large enough to obtain precise separate estimates. However, the Type I error 

rate of the 𝑄𝐵 test was not nominal for many of the conditions examined, regardless of 

the approach used in the estimation of the residual between-studies variance. A potential 

explanation is that the test does not take into account the uncertainty derived from the 

estimation process of the residual between-studies variance, which typically results in 

inflated rejection rates under the null hypothesis. 

 To address that limitation, Hartung, Makambi, and Argaç (2001), and Hartung, 

Argaç, and Makambi (2002) proposed an alternative method that accounts for the 

imprecision in the estimated amount of residual heterogeneity in subgroup analyses. This 

method is based on the same rationale that also underlies the improved method for meta-

regression proposed by Knapp and Hartung (2003), which has repeatedly been found to 

provide adequate control of the Type I error rate in several simulation studies (Huizenga, 

Visser, & Dolan, 2011; Knapp & Hartung, 2003; Sidik & Jonkman, 2005; Viechtbauer, 

et al., 2015) and is routinely recommended nowadays (Gonzalez-Mulé & Aguinis, in 

press). Nonetheless, the implementation of the alternative method is still relatively 

uncommon when testing for categorical moderators in contrast with growing popularity 

of the improved method for continuous moderators.  
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 The purpose of the present study was to examine the Type I error and statistical 

power rates of the improved method proposed by Hartung et al. (2001) for subgroup 

analyses under a mixed-effects model, as well as to compare its performance with that of 

the standard 𝑄𝐵 test. Furthermore, the impact of using a pooled estimate versus separate 

estimates of the residual between-studies variance on the statistical performance of both 

tests was also explored. 

This study is focused on the performance of the mixed-effects model, already 

described in Chapter 4 (see section 4.1.1). We now present the hypothesis tests and 

residual heterogeneity estimators that we examined in this study, in the context of the 

mixed-effects model. Then, the methods and results from a Monte Carlo simulation study 

comparing the performance of the different procedures are detailed. Last, a discussion of 

the main results and implications arising from them is provided. 

 

5.1.1. Tests of between-groups differences 

 

The statistical association of a categorical moderator with the effect sizes can be 

tested by means of a standard Wald-type 𝜒2 test, the 𝑄𝐵 test. The computation of this 

statistic can be found in the section 4.1.2 in Chapter 4.   

 An alternative method to test the statistical significance of a categorical moderator 

is computed with (Hartung et al., 2001) 

             𝐹 =

𝑄𝐵

𝑚 − 1
𝑄𝑊

𝑘 − 𝑚

, (5.1) 

 

where 𝑄𝑊 = ∑ 𝑄𝑤𝑗𝑗  and 

 𝑄𝑤𝑗
= ∑ �̂�𝑖𝑗(𝑇𝑖𝑗 − �̅�𝑗)

2

𝑘𝑗

𝑖=1

. (5.2) 
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Under the null hypothesis of no difference between the mean effect sizes across categories 

(𝐻0: 𝜇𝜃1
= 𝜇𝜃2

= ⋯ = 𝜇𝜃𝑚
), the F statistic follows asymptotically an F distribution with 

(m – 1) and (k – m) degrees of freedom. The equivalence between this F statistic for 

subgroup analyses and the method proposed by Knapp and Hartung (2003) for meta-

regression is shown in Appendix 5A. 

 

5.1.2. Estimating the residual between-studies variance 

 

 Most of methods proposed to estimate the between-studies variance in the context 

of the random-effects model estimators have also been extended to the mixed-effects 

model, and we selected three methods that are commonly implemented and have been 

found to perform adequately in previous simulation studies (López-López et al., 2014; 

Veroniki et al., 2016). Concretely, DerSimonian and Laird (DL) estimator, Restricted 

Maximum Likelihood (REML) estimator and Paule and Mandel (PM) estimator were 

used in the present study. In Chapter 4 (see section 4.1.3) we described the DL estimator 

using both separate estimates and pooled estimate of the residual between-studies 

variance. In this section, we describe the other two estimators (REML and PM) and their 

computation using both separate estimates and pooled estimate of the residual between-

studies variance. 

 

Restricted Maximum Likelihood (REML) estimator 

 

 The second method for estimating the residual between-studies variance is based 

on restricted maximium likelihood estimation. The REML estimator for the jth category 

of the moderator can be obtained iteratively from 

 

 �̂�𝑗
2(𝑅𝐸𝑀𝐿) =

∑ �̂�𝑖𝑗
2 [(𝑇𝑖𝑗 − �̅�𝑗)

2
− �̂�𝑖𝑗

2 ]𝑖

∑ �̂�𝑖𝑗
2

𝑖

+
1

∑ �̂�𝑖𝑗𝑖
 

                  

(5.3) 

 

 

by first computing the right-hand side using initial values for the weights (e.g., by 

setting �̂�𝑗
2 in �̂�𝑖𝑗 = 1/(�̂�𝑖𝑗

2 + �̂�𝑗
2) equal to the estimate obtained using the non-iterative 
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DL estimator), then updating the weights (and hence also �̅�𝑗) using the estimate of �̂�𝑗
2 

obtained, and then iterating this process until convergence. Should �̂�𝑗
2 ever become 

negative during this process, the estimate is truncated to zero. 

 The pooled REML estimate of the residual variance is again computed 

iteratively, but now using 

 �̂�+
2 (𝑅𝐸𝑀𝐿) =

∑ ∑ �̂�𝑖𝑗
2 [(𝑇𝑖𝑗 − �̅�𝑗)

2
− �̂�𝑖𝑗

2 ]𝑖𝑗

∑ ∑ �̂�𝑖𝑗
2

𝑖𝑗

+
𝑚

∑ ∑ �̂�𝑖𝑗𝑖𝑗
, (5.4) 

with weights �̂�𝑖𝑗 = 1/(�̂�𝑖𝑗
2 + �̂�+

2 ). 

 

Paule and Mandel (PM) estimator 

 

 The third estimator that we included in our simulation study was proposed by 

Paule and Mandel (1982). The PM estimate for the jth category is given by the solution 

to 

 ∑ �̂�𝑖𝑗(𝑇𝑖𝑗 − �̅�𝑗)
2

− (𝑘𝑗 − 1) = 0

𝑖

. (5.5) 

The left-hand side of Eq. 5.5 is a monotonically decreasing function of �̂�𝑗
2 and can be 

easily solved for 0 using any standard root finding algorithm. We denote the resulting 

estimate with �̂�𝑗
2(𝑃𝑀). Should Eq. 5.5 be negative for �̂�𝑗

2 = 0, then the estimate is 

truncated to zero. 

 To obtain the pooled estimate for the PM estimator, �̂�+
2 (𝑃𝑀), we must solve  

 ∑ ∑ �̂�𝑖𝑗(𝑇𝑖𝑗 − �̅�𝑗)
2

− ∑(𝑘𝑗 − 1)

𝑗

= 0

𝑖𝑗

, (5.6) 

with weights �̂�𝑖𝑗 = 1/(�̂�𝑖𝑗
2 + �̂�+

2 ). 
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5.2. Method of the Simulation Study 

 

 In the previous section, we presented two methods for testing the statistical 

significance of a categorical moderator (i.e., the 𝑄𝐵  and F tests) and three methods (i.e., 

the DL, REML, and PM estimators) which can be used to obtain either a pooled estimate 

or separates estimates for the residual between-studies variance. This yields 12 different 

ways of testing the statistical significance of a categorical moderator in a mixed-effects 

model subgroup analysis, namely the QB(S) test using separate estimates of the 

heterogeneity variance combined with either the DL, REML, or PM estimator 

(𝑄𝐵(𝑆)𝐷𝐿
,  𝑄𝐵(𝑆)𝑅𝐸𝑀𝐿

, and 𝑄𝐵(𝑆)𝑃𝑀
, respectively), the QB(P) test when using a pooled 

estimate using either the DL, REML, or PM estimator (𝑄𝐵(𝑃)𝐷𝐿
, 𝑄𝐵(𝑃)𝑅𝐸𝑀𝐿

, and 𝑄𝐵(𝑃)𝑃𝑀
, 

respectively), the F(S) test using separate estimates ( 𝐹(𝑆)𝐷𝐿
,  𝐹(𝑆)𝑅𝐸𝑀𝐿

, and 𝐹(𝑆)𝑃𝑀
, 

respectively), and the F(P) test when using a pooled estimate (𝐹(𝑃)𝐷𝐿
, 𝐹(𝑃)𝑅𝐸𝑀𝐿

, and 𝐹(𝑃)𝑃𝑀
, 

respectively). To compare the performance of these methods, we conducted a Monte 

Carlo simulation study programmed in R using the metafor package (Viechtbauer, 2010). 

Appendix 5B contains the full R code of our simulation study. 

 Meta-analyses of k studies were simulated with the standardized mean difference 

as the effect size index. Each individual study included in a meta-analysis compared two 

groups (experimental and control) with respect to some continuous outcome. For a given 

study, values of the outcome were sampled from normal distributions with equal 

variances (i.e., 𝑁(𝜇𝐸 , 𝜎2) and 𝑁(𝜇𝐶 , 𝜎2)). For each study, the population standardized 

mean difference,  , was defined as (Hedges & Olkin, 1985) 

 𝜃 =
𝜇𝐸 − 𝜇𝑐

𝜎
. (5.7) 

Without loss of generality, the normal distributions of the experimental and control 

populations were defined as 𝑁(𝜃, 1) and 𝑁(0,1), respectively. 

 The effect size was estimated by means of the nearly unbiased estimator proposed 

by Hedges and Olkin (1985, p. 81) 

 𝜃 = 𝑐(𝑚)
�̅�𝐸 − �̅�𝐶

𝑠
, (5.8) 
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where �̅�𝐸 and �̅�𝐶 are the sample means of the experimental and control groups, s is the 

pooled standard deviation computed with 

 𝑠 = √
(𝑛𝐸 − 1)𝑠𝐸

2 + (𝑛𝐶 − 1)𝑠𝐶
2

𝑛𝐸 + 𝑛𝐶 − 2
, (5.9) 

𝑛𝐸  and 𝑛𝐶  being the experimental and control group sample sizes, respectively, 𝑠𝐸
2 and 

𝑠𝐶
2 the variances of the two groups, and 𝑐(𝑚) is a correction factor for small sample sizes 

given by 

 𝑐(𝑚) = 1 −
3

4𝑁 − 9
, (5.10) 

where 𝑁 = 𝑛𝐸 + 𝑛𝐶 . The estimated within-study variance of  𝜃 , assuming equal 

variances and normality within each study, is given by 

 �̂�2 =
𝑛𝐸 + 𝑛𝐶

𝑛𝐸𝑛𝐶
+

𝜃2

2(𝑛𝐸 + 𝑛𝐶)
. (5.11) 

 The 𝑘 studies were assumed to fall into two categories (with 𝑘1 and 𝑘2 studies in 

each group). The true standardized mean differences within each subgroup were 

simulated from 𝑁(𝜇𝜃𝑗
, 𝜏𝑗

2) according to a mixed-effects model. 

 A systematic review of 50 meta-analyses on the efficacy of psychological 

interventions (Rubio-Aparicio, et al., in press) enabled us to identify a range of 

representative values for our simulation. We set the number of studies, k, to values of 12, 

20, 40, and 60. Moreover, we manipulated how k was distributed within each category of 

the moderator, so that in some conditions there was a balanced distribution (i.e., 𝑘1 =

𝑘2), while in the remaining conditions there was an unbalanced distribution (i.e., 𝑘1 ≠

𝑘2) between the two categories with the second category containing three times as many 

studies as the first category. For instance, when k = 12 we set 𝑘1 = 𝑘2 = 6 in the balanced 

conditions, and 𝑘1 = 3 and 𝑘2 = 9 in the unequal conditions. 

 Furthermore, 𝜏𝑗
2  was manipulated in two different ways. First, we considered 

three values for this parameter, 0.08, 0.16, and 0.32. Second, we simulated a set of 

scenarios with homoscedastic variances across categories (𝜏1
2 = 𝜏2

2), as well as another 

set of heteroscedastic conditions, with pairs of values 𝜏1
2 = 0.08 and 𝜏1

2 = 0.16, 𝜏1
2 =
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0.16  and 𝜏1
2 = 0.08 , 𝜏1

2 = 0.08  and 𝜏1
2 = 0.32 , 𝜏1

2 = 0.32  and 𝜏1
2 = 0.08 , 𝜏1

2 = 0.16 

and 𝜏1
2 = 0.32, and 𝜏1

2 = 0.32 and 𝜏1
2 = 0.16. 

 The average total sample size of the individual studies �̅� was set to 20, 40, 60, 

and 80. The data in the primary studies were simulated assuming 𝑛𝐸 = 𝑛𝐶 . A 𝜒2 

distribution with 4 degrees of freedom was used, so that the skewness of the distribution 

was +1.414. In addition, values equal to 16, 36, 56 or 76 were added to get the desired 

average value. 

 The mean effect size of each category of the moderator was also manipulated. In 

some conditions the two parametric mean effects were both equal to 0.5 (𝜇𝜃1
= 𝜇𝜃2

=

0.5), whereas for other conditions they were set to different values: 𝜇𝜃1
= 0.5 and 𝜇𝜃2

=

0.3, 𝜇𝜃1
= 0.5 and 𝜇𝜃2

= 0.1, and 𝜇𝜃1
= 0.7 and 𝜇𝜃2

= 0.1. The conditions with equal 

mean effect sizes across categories allowed us to study the Type I error rate, whereas the 

conditions with different mean effect sizes enabled us to assess the statistical power. 

 To assess the Type I error rate, the total number of conditions was: 4 (number of 

studies) × 2 (balanced-unbalanced number of studies in the two categories) × 4 (average 

total sample size) × 9 (residual between-studies variance) = 288. With respect to the 

statistical power, 288 × 3 = 864 conditions examined. Overall, the total number of 

conditions was therefore 1,152 and for each condition we generated 10,000 replications. 

Thus, 11,520,000 meta-analyses were simulated. The 12 methods (𝑄𝐵(𝑆)𝐷𝐿
, 𝑄𝐵(𝑆)𝑅𝐸𝑀𝐿

, 

𝑄𝐵(𝑆)𝑃𝑀
, 𝑄𝐵(𝑃)𝐷𝐿

,  𝑄𝐵(𝑃)𝑅𝐸𝑀𝐿
, 𝑄𝐵(𝑃)𝑃𝑀

, 𝐹(𝑆)𝐷𝐿
,  𝐹(𝑆)𝑅𝐸𝑀𝐿

, 𝐹(𝑆)𝑃𝑀
, 𝐹(𝑃)𝐷𝐿

,  𝐹(𝑃)𝑅𝐸𝑀𝐿
, and 

𝐹(𝑃)𝑃𝑀
) were applied to each one of these replications. In each of the 1,152 conditions of 

our simulation study, the proportion of rejections of the null hypothesis of equality of the 

mean effect sizes across categories of the moderator was examined. 

 

5.3. Results 

 

 In this section, we describe and compare the performance of the methods under 

the simulated conditions. For brevity, we only present the results for the PM estimator 

since the pattern of results was very similar for the remaining estimators. Nevertheless, 

Appendix 5C presents figures using the DL and REML estimators, and the full set of 

results is available in the Open Science Framework (https://osf.io/6ubxz/). This section is 

https://osf.io/6ubxz/
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divided into two parts, corresponding to the Type I error and statistical power rates, 

respectively. 

 

5.3.1. Type I error rate 

 

 Setting 𝜇𝜃1
= 𝜇𝜃2

= 0.5 allowed comparing the methods in terms of their Type I 

error rates. Figures in this section include dashed horizontal lines delimiting the range of 

values that can be considered as equivalent to the nominal significance level of 5%, after 

accounting for Monte Carlo error [.0543; .0457]. Therefore, empirical rejection rates 

within this interval indicate adequate control of the Type I error rate. 

 Figure 5.1 shows the average Type I error rates as a function of the number of 

studies, balanced and unbalanced distribution of number of studies within each category 

of the moderator, average sample size per study, and the amount of residual heterogeneity, 

in scenarios with homoscedastic residual between-studies variances across the categories 

of the moderator. As k increased (Figure 5.1A), the proportion of rejections of the null 

hypothesis of equality for QB(S), QB(P), and F(S), converged to the nominal significance 

level, whereas F(P) showed nominal levels regardless of the number of studies. Focusing 

on the balanced versus unbalanced distribution of the number of studies across categories 

(Figure 5.1B), QB(P) and F(P) were not influenced by this factor, whereas QB(S) and F(S) 

showed higher empirical rejection rates (above .05) when the number of studies was 

unbalanced across categories. Last, sample size and the amount of residual heterogeneity 

did not seem to have a strong influence on the rejection rates (Figures 5.1C and 5.1D), 

with F(P) consistently yielding the best control of the Type I error rate. 
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Fig. 5.1. Average Type I error rates in scenarios with homoscedastic residual between-

studies variances across the categories of the moderator. 

 

Figure 5.2 presents the average Type I error rates in conditions where the residual 

between-studies variances were heteroscedastic across the categories of the moderator, 

and the category with less studies had the smaller variance. The influence of the number 

of studies (Figure 5.2A) was more pronounced for the QB test, with lower Type I error 

rates as k increased, and QB(S) showing inflated rates with less than 40 studies. The F test 

was less affected, with F(S) showing an adequate control and F(P) yielding overly 

conservative results, regardless of the number of studies. Regarding the distribution of 

the number of studies (Figure 5.2B), QB(S) and F(S) were not influenced by this factor, 

whereas QB(P) and F(P) showed error rates below .05 under unbalanced distribution of the 

number of studies. Furthermore, results did not show important variations as a function 

of the average sample size and the amount of residual heterogeneity (Figures 5.2C and 
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5.2D), with F(S) and QB(P) leading to a good adjustment to the nominal level on average, 

F(P) yielding over-conservative results, and QB(S) showing inflated Type I error rates. 

 

 

Fig. 5.2. Average Type I error rates in scenarios with heteroscedastic residual between-

studies variances across the categories of the moderator and smaller variance in the 

smaller category. 

 

Figure 5.3 shows the average Type I error rates in scenarios with heteroscedastic 

residual between-studies variances across the categories of the moderator and larger 

variance for the category with less studies. When looking at the results as a function of 

the number of studies (Figure 5.3A), the rejection rates generally fell above the nominal 

significance level, with accurate rates provided only by QB(S) and F(S) with at least 60 and 

40 studies, respectively. Regarding the distribution of the number of studies in each 

category of the moderator, only F(P) and F(S) achieved good adjustment when the number 
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of studies was balanced across categories, with inflated Type I error rates for all methods 

in the unbalanced scenarios. The influence of the average sample size and the amount of 

residual heterogeneity were relatively minor (Figures 5.3C and 5.3D), and all methods 

yielded rejection rates that were too liberal. The F(S) test consistently provided the closest 

performance to the nominal significance level. 

 

 

Fig. 5.3. Average Type I error rates in scenarios with heteroscedastic residual between-

studies variances in each category of the moderator and larger variance in the smaller 

category. 

 

5.3.2. Statistical Power 

 Statistical power reflects the probability of a method rejecting the null hypothesis 

that is in fact false (i.e., 𝜇𝜃1
= 0.5 and 𝜇𝜃2

= 0.3, 𝜇𝜃1
= 0.5 and 𝜇𝜃2

= 0.1, and 𝜇𝜃1
=
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0.7 and 𝜇𝜃2
= 0.1 in our simulation study). In general, power rates equal to or greater 

than 0.8 are often considered as acceptable in field of psychology (Cohen, 1988). 

 Figure 5.4 presents the average power rates in scenarios with homoscedastic 

residual between-studies variances across the categories of the moderator. First, the 

influence of the different conditions manipulated was equivalent for QB(S), QB(P), F(S), and 

F(P) and, in most conditions, yielding statistical power below 0.8. As expected, for all 

methods, power increased as the number of studies (Figure 5.4A) and the magnitude of 

the difference between the mean effect sizes of the two categories (Figure 5.4E) increased, 

with at least 60 studies and a difference between the mean effect sizes equal to 0.6 (𝜇𝜃1
=

0.7 and 𝜇𝜃2
= 0.1) being needed for the methods to provide power rates close to 0.8. 

Furthermore, larger residual heterogeneity resulted in lower power rates (Figure 5.4D), 

whereas the distribution of the number of studies across categories (Figure 5.4B) and the 

average sample size per study (Figure 5.4C) did not show a substantial impact on the 

power rates of the methods under assessment. The QB test yielded slightly higher power 

rates than the F test across all manipulated conditions. 
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Fig. 5.4. Average power rates in scenarios with homoscedastic residual between-studies 

variances across the categories of the moderator. 

 

Figures 5.5 and 5.6 present the average power rates in scenarios were the residual 

between-studies variances were heteroscedastic across the categories of the moderator, 

with the largest variance either falling in the category with more (Figure 5.5) or with less 

studies (Figure 5.6). The influence of the different conditions manipulated on the power 

rates of QB(S), QB(P), F(S), and F(P) was very similar to those under homoscedastic residual 

between-studies variances (see Figure 5.4), with larger k and larger differences among 

the mean effects leading to higher power rates. It is worth noting the effect of the residual 

between-studies variance on the power rates. On the one hand, when the category with 

less studies had less heterogeneous effect sizes (Figure 5.5D), QB(S), QB(P), F(S), and F(P) 

yielded power rates relatively higher under the condition of 𝜏1
2 = 0.08 and 𝜏1

2 = 0.32. 

On the other hand, when the category with less studies was more heterogeneous (Figure 
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5.6D), power rates for all of methods were slightly higher under the condition of 𝜏1
2 =

0.16 and 𝜏1
2 = 0.08. 

 

 

Fig. 5.5. Average power rates in scenarios with heteroscedastic residual between-studies 

variances across the categories of the moderator and smaller variance in the smaller 

category. 
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Fig. 5.6. Average power rates in scenarios with heteroscedastic residual between-studies 

variances across the categories of the moderator and larger variance in the smaller 

category. 

 

5.4. Discussion 

 This study compared a variety of methods in the context of subgroup analyses 

using mixed-effects models. Specifically, two methods for testing the statistical 

significance of the categorical moderator (i.e., the 𝑄𝐵  and F tests), two procedures for 

estimating the residual between-studies variance (pooled or separates estimates), and 

three residual heterogeneity variance estimators (DL, REML, and PM) were combined to 

provide twelve analysis approaches that were examined in a Monte Carlo simulation 

study, with standardized mean differences as the effect size measure. Two comparative 

criteria, empirical Type I error and statistical power rates, were considered for assessing 
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the adequacy of each method across a wide variety of realistic scenarios in clinical 

psychology. 

 Results were not found to be affected by the residual between-studies variance 

estimator used. However, some notable differences were observed depending on the 

method employed for testing the statistical association of a categorical moderator and on 

the approach implemented to estimate the amount of residual heterogeneity in each 

category (pooled versus separate estimates). 

 Some authors have criticized that the standard random-effects method does not 

take into account the uncertainty derived from the variance estimation process, which can 

lead to wrong statistical conclusions (e.g., Thompson & Higgins, 2002). This led to the 

development of improved hypothesis tests by Hartung and colleagues in the context of 

random-effects meta-analysis (Hartung, 1999) and mixed-effects meta-regression (Knapp 

& Hartung, 2003). These tests are known to outperform the standard methods in terms of 

their control of the Type I error rate (Huizenga et al., 2011; Sánchez-Meca & Marín-

Martínez, 2008; Sidik & Jonkman, 2005; Viechtbauer et al., 2015) and are recommended 

for routine use nowadays. Hartung and colleagues (2001) also proposed an improved 

method for subgroup analyses using mixed-effects models using an F test, and we 

examined its performance compared to the typically implemented 𝑄𝐵 test. The empirical 

Type I error rates obtained by both methods suggest that the improved F test has clear 

advantages over the standard 𝑄𝐵 test. This leads us to encourage meta-analysts to apply 

the F test instead of the standard 𝑄𝐵 test in subgroup analyses. 

 The F test for subgroup analyses can be considered to be a special case of the 

improved method for meta-regression. In the meta-regression context, Knapp and 

Hartung (2003) proposed a multiplicative adjustment factor for the estimated variances 

of the model coefficients, and suggested to truncate this factor to one if a smaller value 

was obtained, in order to minimize false positive findings. Several pieces of meta-analytic 

software currently incorporate such truncation, including Comprehensive Meta-Analysis 

3.0 (Borenstein et al., 2014) and the metareg macro for Stata (Harbord & Higgins, 2008), 

whereas other alternatives like the metafor package for R (Viechtbauer, 2010) use the 

untruncated factor by default. This adjustment factor is equal to the denominator of the F 

formula (see Appendix 5A), hence implementing the truncation in the context of a 

subgroup analysis would be straightforward. However, Viechtbauer and colleagues 
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(2015) showed that the improved method for meta-regression provides an adequate 

adjustment of the nominal significance level without truncating, whereas overly 

conservative results may be obtained if the truncation is applied. Consequently, in the 

present study, we allowed the denominator of the F test to be smaller than one, and we 

generally would recommend this version of the test. 

 When comparing the performance of the F(P) and F(S) tests, under homoscedastic 

variances across categories, F(P) yielded the best control of the Type I error rates, 

regardless of how the number of studies was distributed across the categories of the 

moderator. Under heteroscedastic variances across categories, both F(P) and F(S) achieved 

adequate performance as long as the number of studies was distributed equally across 

categories. However, under an unbalanced distribution of the number of studies, the 

practical consequences of allowing for heteroscedastic residual between-studies variances 

were more evident. Concretely, the F(S) showed good adjustment when the value of the 

smallest residual between-studies variance was associated with the category with the 

smallest number of studies (see Figure 5.2), whereas when the value of the largest residual 

between-studies variance was associated with the category with the smallest number of 

studies, both tests showed a poor adjustment to the nominal level (see Figure 5.3). 

 These results allow us to recommend the use of the F(P) test in most conditions, 

except when the meta-analyst suspects that the true value of 𝜏𝑟𝑒𝑠
2  may vary across 

categories and the number of studies across categories is unbalanced. In that case, the F(S) 

test showed the best performance. Note that using a pooled estimate would be expected 

to provide more accurate results for most scenarios, as the estimate is then based on a 

larger number of studies. This can be particularly important if the total number of studies 

is small (e.g., 𝑘 < 20), which has been found to be the case for most Cochrane Reviews 

(Davey et al., 2011). 

 The statistical power of all methods was lower than .80 in most conditions, unless 

the magnitude of the difference between the mean effects across categories was equal to 

0.6. As expected, statistical power rates increased with a larger number of studies, 

yielding rates close to .80 with at least 60 studies (see Figures 5.4, 5.5, and 5.6). Note that 

the differences in the statistical power rates for the methods may also be caused by either 

inflated or overly conservative Type I error rates. 
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 In summary, results of our simulation study suggest that out of the different 

alternatives considered in the present study, the improved F test computed using a pooled 

estimate is the most suitable option to test the statistical association between a categorical 

moderator and the effect sizes in most conditions. Nevertheless, if the meta-analyst 

suspects that the residual between-studies variances are heteroscedastic across categories 

of the moderator and the number of studies is unbalanced across categories, then the F 

test using separate estimations of the residual between-studies variance may be 

preferable. 

 The present simulation study was conducted with standardized mean differences, 

but its results may be generalized to other effect size measures with (asymptotically) 

normal sampling distributions. Our results are limited to the manipulated conditions. 

Although the values for the parameters were chosen following a systematic review of 50 

meta-analyses on the efficacy of psychological interventions (Rubio-Aparicio et al., in 

press) to represent realistic conditions, additional simulation studies are needed to assess 

the performance of the methods under more adverse conditions, such as a non-normal 

distribution for the true effects within each category of the moderator.  

 Lastly, an important limitation in this field is that the meta-analyst cannot 

determine whether the residual between-studies variances are homoscedastic or 

heteroscedastic across categories, as the parameters are unknown. In the absence of a 

formal statistic to test the homoscedasticity of the residual between-studies variances 

across categories, it is possible to compare the model fit using separate or pooled 

estimates. 
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Chapter 6 

 

Conclusions 
 

Meta-analytic methodology allows quantitative integration of the results from a 

set of primary studies focused on a common topic, by the application of statistical 

methods (Borenstein et al., 2009; Botella & Gambara, 2006; Cooper et al., 2009; Lipsey 

& Wilson, 2001). The advantages of meta-analysis are numerous. Nowadays, most 

conclusions about cumulative knowledge in psychology and in other research areas are 

based on meta-analysis. For instance, applied professionals can make decisions based on 

the results extracted from a meta-analysis about which therapy is the most effective to 

treat a certain psychological disorder. Due to the broad scope of meta-analysis, it is really 

important to achieve valid results for the scientific community, applying the most optimal 

inferential methods in meta-analysis. Several Monte Carlo simulation studies have been 

developed in order to investigate which techniques and procedures are most adequate 

given the characteristics of a meta-analytic database.  

In this dissertation three Monte Carlo simulation studies comparing techniques 

and procedures usually applied in meta-analysis were carried out. The first simulation 

study (Chapter 3) was focused on computing an average effect size (first inferential 

objective in any meta-analysis) under a random-effects model, and the other two 

simulation studies (Chapters 4 and 5) were focused on subgroup analyses (third objective 

in any meta-analysis) under mixed-effects models. As a previous step, Chapter 2 

presented a methodological review of meta-analyses about the effectiveness of clinical 

psychology treatments, intended to help us design the scenarios for our simulation studies. 

In the following paragraphs, we summarize the principal conclusions extracted from the 

empirical part of this dissertation.   
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Chapter 2 presents a methodological review of 54 meta-analyses of the 

effectiveness of clinical psychology treatments, using standardized mean differences as 

the effect size index. We analysed the distribution of the number of studies of the meta-

analyses, the distribution of the sample sizes in the studies of each meta-analysis, the 

distribution of the effect sizes in each of the meta-analyses, the distribution of the 

between-studies variance values, and the Pearson correlations between effect size and 

sample size in each meta-analysis. Results were presented as a function of the type of 

standardized mean difference: posttest standardized mean difference, standardized mean 

change from prettest to postest, and standardized mean change difference between 

groups. The first interesting finding was that most meta-analyses used the standardized 

mean difference computed from the posttest scores to compare experimental and control 

groups, and although the best option to compare two groups is the standardized mean 

change difference, this index was scarcely used. On the other hand, results suggested the 

existence of a relatively low number of studies across most meta-analysis, with large 

heterogeneity among the effect sizes, violation of the normality assumption in the 

distribution of the effect sizes, and positive and negative correlation values between effect 

sizes and sample sizes. Finally, we found that the three quartiles of the mean effect size 

distribution for the meta-analyses using both the standardized mean difference computed 

from posttest scores and the standardized mean change differences were similar to those 

advocated by Cohen (1988) as indicating low, medium and large effect magnitudes; 

conversely, the three quartiles of the mean effect size distribution for the meta-analyses 

using the standardized mean changes from pretest to postest were larger than those in 

Cohen´s (1988) proposal. In sum, the analysis of the distribution of the mean effect sizes 

through the meta-analyses provides a specific and contextualized guide for the 

interpretation of the clinical significance of the different types of standardized mean 

differences within the field of evaluation of clinical psychological interventions. 

The first simulation study, described in Chapter 3, aimed to compare the 

performance of various random-effects meta-analytic methods (standard method, 

Hartung´s method, profile likelihood method and non-parametric bootstrapping) for 

computing an average effect size and a confidence interval (CI) around it when the 

normality assumption of the parametric effects distribution is not met. Three estimators 

of the heterogeneity variance (DerSimonian and Laird, restricted maximum likelihood, 

and empirical Bayes) were considered. For comparison purposes, estimates from the 
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fixed-effect model were also included. Performance of the methods was evaluated in 

terms of bias and mean squared error of the average effect estimators, empirical coverage 

probability and width of the CIs, and bias of the standard error. Results suggested that 

random-effects methods are robust to departures from the normality, with the Hartung´s 

method and profile likelihood method yielding the best performance under suboptimal 

conditions.  

The second simulation study, presented in Chapter 4, compared the impact of 

pooled versus separate estimates of the residual between-studies variance on the statistical 

performance the of QB(S) and QB(P) assuming a mixed-effects model. The residual 

between-studies variance was estimated using DerSimonian and Laird method. The 

performance of the methods was evaluated in terms of their Type I error and statistical 

power rates. Results suggested that similar performance can be expected as long as there 

are at least 20 studies and these are approximately balanced across categories. 

Conversely, when subgroups were unbalanced, the practical consequences of having 

heterogeneous residual between-studies variances were more evident, with both tests 

leading to the wrong statistical conclusion more often than in the conditions with balanced 

subgroups. A pooled estimate should be preferred for most scenarios, unless the residual 

between-studies variances are clearly different and there are enough studies in each 

category to obtain precise separate estimates.  

The last simulation study, explained in Chapter 5, examined both approaches, 

pooled versus separate estimations for the residual between-studies variance, in 

combination with two methods to test the statistical significance of the moderator, namely 

the routinely used the QB test and an improved F test, each combined with three different 

estimators of the residual between-studies variance (DerSimonian and Laird, restricted 

maximum likelihood, and Paule and Mandel). The performance of the twelve different 

alternatives was evaluated in terms of their Type I error and statistical power rates. Results 

suggested that the F test computed using a pooled estimate of the residual between-studies 

variance across categories was the most suitable option in most conditions, although the 

F test using separate estimates of the residual between-studies variance might be 

preferable if the residual heterogeneity variances are heteroscedastic, especially when the 

number of studies is unbalanced across categories. Results showed the same trends for all 

estimators of the residual between-studies variance. Our findings provide evidence that 

the F test has clear advantages over the typically implemented QB test, and that choice of 



 
119  Chapter 6 - Conclusions 

pooled versus separate estimation of the residual between-studies variance should be 

made after examining the characteristics of the meta-analytic database. 

To sum up, taking into account the results of this thesis, the principal 

recommendations for researchers are: 

 The summaries of methodological characteristics across 54 meta-analyses 

provided in Chapter 2, can be useful to design future Monte Carlo and theoretical 

studies in clinical psychology and related fields. 

 The application of the guidelines provided in Chapter 2 will help interpret 

correctly and in a contextualized way the magnitude of different types of 

standardized mean differences within the field of clinical psychology.  

 The standardized mean change difference should be used more frequently in meta-

analyses that of studies with a two-group design.  

 The number of studies has an important impact on the performance of the meta-

analytic methods compared. About 20 studies are required to get accurate results.  

 The heterogeneity variance estimator does not exert an important influence on the 

results of the statistical methods examined in this dissertation.  

 In general, random-effects methods are robust to violations of the normality 

assumption of the parametric effects distribution. However, Hartung´s and profile 

likelihood methods are preferable under suboptimal conditions.  

 The F method for testing the statistical significance of a categorical moderator 

outperforms the standard 𝑄𝐵 test in subgroup analyses.  

 A pooled between-studies variance estimate is preferred for most scenarios for 

subgroup analyses, unless the variances are clearly different across categories and 

there are enough studies in each category to obtain precise separate estimates
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Appendices 

 

Appendix 2A 

R code for posttest standardized mean difference in Chapter 2 

 
 
install.packages("metafor") 
install.packages("QRM") 
library (metafor) 
library (QRM) 
 
meta = 41 
vd = function (Ntratado,Ncontrol,d) {  
  var = 
(Ntratado+Ncontrol)/(Ntratado*Ncontrol)+d^2/(2*(Ntratado+Ncontrol)) 
  
} 
Is= rep(NA,meta)  
Qs = rep(NA,meta)  
pQs= rep (NA,meta)  
ks = rep(NA,meta)  
d_pnorms = rep(NA,meta) 
d_asims = rep(NA,meta)  
d_curts = rep(NA,meta)  
d_medias = rep(NA,meta)  
d_ICLi = rep(NA,meta)  
d_ICLs = rep(NA,meta)  
d_tau2s = rep(NA,meta)   
d_tau2sREML = rep(NA,meta)  
d_tau2sPM = rep(NA,meta) 
N_asims = rep(NA,meta)  
N_curts = rep(NA,meta) 
N_mins = rep(NA,meta)  
N_maxs = rep(NA,meta)  
N_medias = rep(NA,meta)  
N_mdns = rep(NA,meta)  
ratiovars = rep(NA,meta)  
corsNd = rep(NA,meta)  
corsNd_p = rep(NA,meta) 
cor_neg = 0 
cor_nula = 0 
cor_pos = 0 
for (i in (1:meta)) { 
 a = read.csv(paste("BASEd",i,".csv",sep=""), header = T, sep=";", 
dec=",") 
 vi =vd(a$Ntratado,a$Ncontrol,a$d) 
 ks[i] = length(a$d) 
  b = shapiro.test(a$d) 
  d_pnorms[i] = b$p.value 
  d_asims[i] = skewness(a$d) 
  d_curts[i] = kurtosis(a$d) 
   
  c = rma(a$d,vi,method="DL") 
  c_REML= rma(a$d,vi,method="REML") 
  c_PM= rma(a$d,vi,method="PM") 
 
  Is[i]=c$I2[1] 
  Qs[i]=c$QE[1] 
  pQs[i]=c$QEp[1]  
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  d_medias[i] = abs(c$b[1]) 
  d_ICLi[i]= c$ci.lb 
  d_ICLs[i]= c$ci.ub 
  d_tau2s[i] = c$tau2 
  d_tau2sREML[i] = c_REML$tau2 
  d_tau2sPM[i] = c_PM$tau2 
  N_asims[i] = skewness(a$Ntotal) 
  N_curts[i] = kurtosis(a$Ntotal) 
  N_mins[i] = min(a$Ntotal) 
  N_maxs[i] = max(a$Ntotal) 
  N_mdns[i] = median(a$Ntotal) 
  ratiovars[i] = mean(vi)/c$tau2 
  if(c$tau2==0){ 
    ratiovars[i]=NA} 
  e=cor.test(a$Ntotal,a$d) 
  corsNd[i] = e$estimate 
  corsNd_p[i] = e$p.value 
   
  if(e$estimate<0 & e$p.value<= .05) { 
    cor_neg = cor_neg+1 } 
  if(e$p.value> .05) { 
    cor_nula = cor_nula+1} 
  if(e$estimate>0 & e$p.value<= .05) { 
    cor_pos = cor_pos+1} 
  } 
######################################################### 
summary(ks)     
summary(d_pnorms)    
mean(d_pnorms <= .05,na.rm=T) 
summary(d_asims)     
summary(d_curts)     
summary(d_medias)    
summary(d_ICLi) 
summary(d_ICLs) 
summary(d_tau2s)     
summary(d_tau2sREML) 
summary(d_tau2sPM) 
summary(Is) 
summary(pQs) 
summary(N_asims)     
summary(N_curts)    
summary(N_mdns)     
data.frame(N_mins,N_maxs)  
summary(ratiovars,na.rm=T)     
summary(corsNd)     
mean(corsNd_p <= .05,na.rm=T)  
summary(corsNd_p) 
cor_neg 
cor_nula 
cor_pos 
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R code for standardized mean change in Chapter 2 

 

 
install.packages("metafor") 
install.packages("QRM") 
library (metafor) 
library (QRM) 
 
meta = 11 
vdintra1 = function(Ntotal,d) { 
  var = (Ntotal-1)/(Ntotal*(Ntotal-3))*(1+Ntotal*d^2)-d^2/((1-
3/(4*Ntotal-5)))^2 
  var 
} 
 
vdintra2=function(Ntotal,d){ 
   
  var=(0.7/Ntotal)*((Ntotal-1)/(Ntotal-3))*(1+((Ntotal*d^2)/(0.7)))-
d^2/((1-3/(4*Ntotal-5)))^2 
  var 
   
}  
 
Is= rep(NA,meta)  
Qs = rep(NA,meta)  
pQs= rep (NA,meta)  
ks = rep(NA,meta)  
d_pnorms = rep(NA,meta)  
d_asims = rep(NA,meta)  
d_curts = rep(NA,meta)  
d_medias = rep(NA,meta)  
d_ICLi = rep(NA,meta)  
d_ICLs = rep(NA,meta)  
d_tau2s = rep(NA,meta)  
d_tau2sREML = rep(NA,meta)  
d_tau2sPM = rep(NA,meta) 
N_asims = rep(NA,meta) 
N_curts = rep(NA,meta)  
N_mins = rep(NA,meta)  
N_maxs = rep(NA,meta)  
N_medias = rep(NA,meta)  
N_mdns = rep(NA,meta)  
ratiovars = rep(NA,meta)  
corsNd = rep(NA,meta)  
corsNd_p = rep(NA,meta) 
 
cor_neg = 0 
cor_nula = 0 
cor_pos = 0 
 
for (i in (1:meta)) { 
   
 
  a = read.csv(paste("BASEdMR",i,".csv",sep=""), header = T, sep=";", 
dec=",") 
    
   
if(i==4 || i==7 || i==9) {vi= vdintra1(a$Ntotal,a$d)}  else{ 
vi=vdintra2(a$Ntotal,a$d)} 
            
   
  ks[i] = length(a$d) 
  b = shapiro.test(a$d) 
  d_pnorms[i] = b$p.value 
  d_asims[i] = skewness(a$d) 
  d_curts[i] = kurtosis(a$d) 
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  c = rma(a$d,vi,method="DL") 
  c_REML= rma(a$d,vi,method="REML") 
  c_PM= rma(a$d,vi,method="PM") 
   
  Is[i]=c$I2[1] 
  Qs[i]=c$QE[1] 
  pQs[i]=c$QEp[1]  
   
  d_medias[i] = abs(c$b[1]) 
  d_ICLi[i]= c$ci.lb 
  d_ICLs[i]= c$ci.ub 
  d_tau2s[i] = c$tau2 
  d_tau2sREML[i] = c_REML$tau2 
  d_tau2sPM[i] = c_PM$tau2 
  N_asims[i] = skewness(a$Ntotal) 
  N_curts[i] = kurtosis(a$Ntotal) 
  N_mins[i] = min(a$Ntotal) 
  N_maxs[i] = max(a$Ntotal) 
  N_mdns[i] = median(a$Ntotal) 
  ratiovars[i] = mean(vi)/c$tau2 
  if(c$tau2==0){ 
    ratiovars[i]=NA} 
  e=cor.test(a$Ntotal,a$d) 
  corsNd[i] = e$estimate 
  corsNd_p[i] = e$p.value 
   
  if(e$estimate<0 & e$p.value<= .05) { 
    cor_neg = cor_neg+1 } 
  if(e$p.value> .05) { 
    cor_nula = cor_nula+1} 
  if(e$estimate>0 & e$p.value<= .05) { 
    cor_pos = cor_pos+1} 
   
} 
 
 
 
######################################################### 
 
 
summary(ks)     
summary(d_pnorms)     
mean(d_pnorms <= .05,na.rm=T)  
summary(d_asims)     
summary(d_curts)     
summary(d_medias)     
summary(d_ICLi) 
summary(d_ICLs) 
summary(d_tau2s)   
summary(d_tau2sREML) 
summary(d_tau2sPM)  
summary(Is) 
summary(pQs)  
summary(N_asims)     
summary(N_curts)     
summary(N_mdns)     
data.frame(N_mins,N_maxs)  
summary(ratiovars,na.rm=T)     
summary(corsNd)     
mean(corsNd_p <= .05,na.rm=T)  
summary(corsNd_p) 
cor_neg 
cor_nula 
cor_pos 
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R code for standardized mean change difference in Chapter 2 

 
install.packages("metafor") 
install.packages("QRM")  
library (metafor) 
library (QRM) 
 
meta = 2  
 
vdelta = function(Ntratado,Ncontrol,d) { 
  c1 = 0.6*((Ntratado+Ncontrol)/(Ntratado*Ncontrol)) 
  c2 = ((Ntratado+Ncontrol-2)/(Ntratado+Ncontrol-4)) 
  c3 = 1+(Ntratado*Ncontrol)/(0.6*(Ntratado+Ncontrol))*d^2 
  cm = 1-3/(4*(Ntratado+Ncontrol)-9) 
  c4 = d^2/cm^2 
  var = c1*c2*c3-c4 
  var 
} 
 
Is= rep(NA,meta)  
Qs = rep(NA,meta)  
pQs= rep (NA,meta)  
 
ks = rep(NA,meta)  
d_pnorms = rep(NA,meta)  
d_asims = rep(NA,meta) 
d_curts = rep(NA,meta) 
d_medias = rep(NA,meta) 
d_tau2s = rep(NA,meta) 
d_tau2sREML = rep(NA,meta) 
d_tau2sPM = rep(NA,meta) 
N_asims = rep(NA,meta)  
N_curts = rep(NA,meta) 
N_mins = rep(NA,meta)  
N_maxs = rep(NA,meta)  
N_medias = rep(NA,meta)  
N_mdns = rep(NA,meta) 
ratiovars = rep(NA,meta)  
corsNd = rep(NA,meta)  
corsNd_p = rep(NA,meta) 
 
cor_neg = 0 
cor_nula = 0 
cor_pos = 0 
 
for (i in (1:meta)) { 
   
a = read.csv(paste("BASEdc",i,".csv",sep=""), header = T, sep=";", 
dec=",") 
   
  vi =vdelta(a$Ntratado,a$Ncontrol,a$d) 
 
   
  ks[i] = length(a$d) 
  b = shapiro.test(a$d) 
  d_pnorms[i] = b$p.value 
  d_asims[i] = skewness(a$d) 
  d_curts[i] = kurtosis(a$d) 
  c = rma(a$d,vi,method="DL") 
  c_REML= rma(a$d,vi,method="REML") 
  c_PM= rma(a$d,vi,method="PM") 
  Is[i]=c$I2[1] 
  Qs[i]=c$QE[1] 
  pQs[i]=c$QEp[1]  
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  d_medias[i] = abs(c$b[1]) 
  d_tau2s[i] = c$tau2 
  d_tau2sREML[i] = c_REML$tau2 
  d_tau2sPM[i] = c_PM$tau2 
  N_asims[i] = skewness(a$Ntotal) 
  N_curts[i] = kurtosis(a$Ntotal) 
  N_mins[i] = min(a$Ntotal) 
  N_maxs[i] = max(a$Ntotal) 
  N_mdns[i] = median(a$Ntotal) 
  ratiovars[i] = mean(vi)/c$tau2 
  if(c$tau2==0){ 
    ratiovars[i]=NA} 
  e=cor.test(a$Ntotal,a$d) 
  corsNd[i] = e$estimate 
  corsNd_p[i] = e$p.value 
  if(e$estimate<0 & e$p.value<= .05) { 
    cor_neg = cor_neg+1 } 
  if(e$p.value> .05) { 
    cor_nula = cor_nula+1} 
  if(e$estimate>0 & e$p.value<= .05) { 
    cor_pos = cor_pos+1} 
   
} 
 
 
######################################################### 
 
summary(ks)     
summary(d_pnorms)     
mean(d_pnorms <= .05,na.rm=T)  
summary(d_asims)     
summary(d_curts)     
summary(d_medias)     
summary(d_ICLi) 
summary(d_ICLs) 
summary(d_tau2s)   
summary(d_tau2sREML) 
summary(d_tau2sPM)  
summary(Is) 
summary(pQs)  
summary(N_asims)     
summary(N_curts)     
summary(N_mdns)     
data.frame(N_mins,N_maxs)  
summary(ratiovars,na.rm=T)     
summary(corsNd)     
mean(corsNd_p <= .05,na.rm=T)  
summary(corsNd_p) 
cor_neg 
cor_nula 
cor_pos 
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Appendix 2B 

Characteristics of the meta-analyses included in the systematic review 

Meta-analysis d index 

(Equation) 

Formula for the 

sampling 

variance 

k 

 
�̅� 

2ˆ
DL  

2ˆ
REML  

2ˆ
PM  p  I2 

Abramowitz et al.  (2001) d (2.1) Eq. 2.3 54  0.250 0.522 0.625 0.719 < .0001 81.3 

Acarturk et al. (2009) d (2.1) Eq. 2.3 45 0.740 0.111 0.104 0.088 .0001 50.3 

Aderka et al. (2012) dg3 (2.12) Eq. 2.13 19 0.630 0.109 0.083 0.066 < .0001 68.5 

Bell & D'Zurilla (2009) d (2.1) Eq. 2.3 21 0.694 0.391 0.560 0.567 < .0001 83.6 

Benish et al.  (2008) d (2.1) Eq. 2.3 15 0.187 0.000 0.000 0.000 .9808 0 

Burke et al. (2003) d (2.1) Eq. 2.3 13 0.291 0.022 0.019 0.020 .0824 37.7 

Casement & Swanson (2012) dc2 (2.6) Eq. 2.7 13 0.696 0.090 0.070 0.062 < .0001 77.9 

Cuijpers et al. (2009) d (2.1) Eq. 2.3 19 0.307 0.002 0.012 0.001 .4098 3.8 

Cuijpers, Li et al. (2010) d (2.1) Eq. 2.3 70 0.195 0.058 0.056 0.070 .0021 35.8 

Cuijpers, Donker et al. (2010) d (2.1) Eq. 2.3 24 0.067 0.098 0.101 0.099 .0093 45.1 

Cuijpers et al.  (2011) d (2.1) Eq. 2.3 15 0.289 0.000 0.000 0.000 .8662 0 

Cuijpers et al. (2012) d (2.1) Eq. 2.3 18 0.589 0.008 0.007 0.008 .3501 8.8 

Dixon et al. (2007) d (2.1) Eq. 2.3 20 0.205 0.008 0.000 0.014 .2493 16.4 

Driessen et al. (2010) dc2 (2.6) Eq. 2.7 21 1.266 0.152 0.177 0.173 < .0001 72.7 

Ekers et al.  (2008) d (2.1) Eq. 2.3 14 0.072 0.051 0.038 0.061 .1607 27.4 

Gooding & Tarrier (2009) d (2.1) Eq. 2.3 18 0.726 0.163 0.179 0.164 < .0001 67.8 

Hanrahan et al. (2012) d (2.1) Eq. 2.3 19 0.928 0.433 0.689 0.789 < .0001 81.8 

Hansen et al. (2012) dc2 (2.6) Eq. 2.7 11 0.563 0.084 0.106 0.103 < .0001 83.1 

Harris (2006) d (2.1) Eq. 2.3 14 0.240 0.081 0.092 0.109 .0004 65.3 

Haug et al. (2012) d (2.1) Eq. 2.3 54 0.799 0.132 0.130 0.123 < .0001 71.8 

Hausenblas et al. (2013) dc1 (2.4) Eq. 2.5 54 0.038 0.056 0.064 0.069 < .0001 62.9 

Hesser et al. (2011)a d (2.1) Eq. 2.3 25 0.600 0.046 0.043 0.047 .0123 43.1 

Hesser et al. (2011)b dc2 (2.6) Eq. 2.7 10 0.584 0.100 0.104 0.102 < .0001 90.2 

Kalu et al. (2012) d (2.1) Eq. 2.3 7 0.738 0.272 0.311 0.389 .0266 58.0 

Kleinstäuber et al. (2011) d (2.1) Eq. 2.3 18 0.399 0.142 0.169 0.192 < .0001 75.1 

Lackner et al. (2004) d (2.1) Eq. 2.3 12 0.766 0.106 0.109 0.165 .0354 47.1 
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Meta-analysis 

 

d index 

(Equation) 

 

Formula for the 

sampling 

variance 

k 

 
�̅� 

2ˆ
DL  

2ˆ
REML  

2ˆ
PM  p I2 

Lansbergen et al.  (2007) d (2.1) Eq. 2.3 18 0.220 0.384 0.636 0.685 < .0001 86.1 

Lissek et al. (2005) d (2.1) Eq. 2.3 22 0.219 0.130 0.140 0.162 .0002 59.9 

Lundahl et al. (2006) d (2.1) Eq. 2.3 70 0.463 0.055 0.058 0.046 .0004 39.9 

Malouff et al.  (2007) d (2.1) Eq. 2.3 38 0.546 0.292 0.538 0.680 < .0001 83.6 

Malouff et al. (2008) d (2.1) Eq. 2.3 15 0.476 0.125 0.150 0.163 < .0001 74.8 

Nestoriuc et al. (2008)a d (2.1) Eq. 2.3 18 0.298 0.018 0.015 0.021 .2970 13.1 

Nestoriuc et al. (2008)b dc1 (2.4) Eq. 2.5 70 0.747 0.124 0.112 0.161 < .0001 44.9 

Oldham et al. (2012) d (2.1) Eq. 2.3 33 0.378 0.062 0.065 0.066 < .0001 65.0 

Opris et al. (2012) d (2.1) Eq. 2.3 23 0.490 0.255 0.294 0.352 < .0001 67.4 

Pérez-Mañá et al. (2011) d (2.1) Eq. 2.3 21 0.203 0.081 0.071 0.059 < .0001 63.4 

Prendergast et al.  (2001) d (2.1) Eq. 2.3 11 0.393 0.157 0.108 0.083 < .0001 75.0 

Richards& Richardson (2012) d (2.1) Eq. 2.3 33 0.565 0.141 0.139 0.129 < .0001 81.1 

Roberts et al. (2007) d (2.1) Eq. 2.3 14 0.363 0.023 0.011 0.027 .1971 23.8 

Rodenburg et al. (2009) d (2.1) Eq. 2.3 7 0.560 0.065 0.068 0.064 .1831 32.1 

Rosa-Alcázar et al (2008) d (2.1) Eq. 2.3 24 1.075 0.173 0.172 0.378 .0002 57.9 

Sánchez-Meca et al. (2010) d (2.1) Eq. 2.3 61 1.012 0.261 0.317 0.363 < .0001 71.0 

Shadish & Baldwin (2005) d (2.1) Eq. 2.3 30 0.708 0.160 0.035 0.431 .0014 49.3 

Smit et al. (2012) d (2.1) Eq. 2.3 10 0.331 1.024 0.816 0.789 < .0001 93.6 

Sockoll et al.  (2011)a d (2.1) Eq. 2.3 14 0.764 0.171 0.189 0.194 < .0001 70.4 

Sockoll et al.  (2011)b dc1 (2.4) Eq. 2.5 24 1.662 0.467 0.521 0.510 < .0001 80.1 

Spek et al. (2007) d (2.1) Eq. 2.3 11 0.409 0.077 0.134 0.145 < .0001 78.6 

Sprenger et al. (2011) d (2.1) Eq. 2.3 10 0.627 0.114 0.114 0.147 .0174 55.2 

Virués-Ortega (2010)a dc2 (2.6) Eq. 2.7 8 0.984 0.159 0.179 0.294 .0037 66.8 

Virués-Ortega (2010)b dg3 (2.12) Eq. 213 9 1.307 0.242 0.213 0.190 .0010 69.5 

Western & Morrison (2001) dc2 (2.6) Eq. 2.7 8 2.220 0.512 0.588 0.589 < .0001 93.5 

Williams et al. (2006) dc2 (2.6) Eq. 27 10 1.250 0.117 0.136 0.073 .0131 56.9 

Wittouck et al. (2011) d (2.1) Eq. 2.3 14 0.163 0.095 0.105 0.190 .0005 64.3 

Young et al. (2007) dc2 (2.6) Eq. 2.7 36 0.725 0.167 0.261 0.387 < .0001 71.0 
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Note. a and b labels after a study indicate separate analyses of two sets of reported effect sizes. d = posttest standardized mean difference; dc1 = standardized m

ean change calculated using in the denominator the standard deviation of the pretest-posttest change scores; dc2 = standardized mean change calculated using in

 the denominator the standard deviation of the pretest scores; dg3 = standardized mean change difference calculated using in the denominator an average of the 

pretest standard deviations in the experimental and control groups; k = number of studies;  = mean effect size applying DL to estimate the between-studies v

ariance;  
2ˆ
DL = between-studies variance estimated using the DerSimonian and Laird (1986) method; 

2ˆ
REML  = between-studies variance estimated using restrict

ed maximum likelihood; 
2ˆ
PM = between-studies variance estimated using Paule and Mandel’s (1982) method; p = p-value associated to the heterogeneity Q sta

tistic; I2 = index to quantify the amount of heterogeneity (%). 
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Appendix 3A 

R code of simulation study in Chapter 3  

 

#install.packages("metafor") 
#install.packages("metaLik") 
#install.packages("boot") 
 
### need to install metaLik version 0.41.0 to make this code work 
#install.packages("https://cran.r-
project.org/src/contrib/Archive/metaLik/metaLik_0.41.0.tar.gz") 
 
library(metafor) 
library(metaLik) 
library(boot) 
library(parallel) 
 
### load adjusted profile.metaLik() function that doesn't print output 
source("profile.metaLik.r") 
 
### Set of conditions 
v1.mus = c(0,.2,.5,.8) 
v2.tau2s = c(.03,.06,.11,.18,.39) 
v3.shapes = c(0,1,2,3,4,5) 
v4.ks = c(10,20,40,60) 
v5.averNs = c(20,30,50,100) 
 
### to split up by mu, set value of mu here 
v1.mus = 0 
 
tabla.condiciones0 = expand.grid(v1.mus, 0, 0, v4.ks, v5.averNs) 
tabla.condiciones1 = expand.grid(v1.mus, v2.tau2s, v3.shapes, v4.ks, 
v5.averNs) 
tabla.condiciones = rbind(tabla.condiciones0,tabla.condiciones1) 
colnames(tabla.condiciones) <- c("mus", "tau2s", "shapes", "ks", 
"averNs") 
 
iters = 10000 
 
cores <- 60 
cl <- makePSOCKcluster(cores) 
 
############################################## Fleishman`s Algorithm 
 
sandk <- function(x){ 
  ## 
  #Calculates the mean, variance, skew, and kurtosis# 
  # for a data set and returns them in that order.# 
  #The formulas for skew and kurtosis are from page 85# 
  # of Kendall and Steward 1969, vol.1# 
  ## 
  n <- length(x) 
  m1p <- mean(x) 
  m2 <- sum((x-m1p)^2)/n 
  m3 <- sum((x-m1p)^3)/n 
  m4 <- sum((x-m1p)^4)/n 
  k1 <- m1p 
  k2 <- n*m2/(n-1) 
  k3 <- ((n^2)/((n-1)*(n-2)))*m3 
  k4 <- (((n^2)/((n-1)*(n-2)))/(n-3))*((n+1)*m4 - 3*(n-1)*m2^2) 
  g1 <- k3/(k2^(3/2)) 
  g2 <- k4/(k2^2) 
  return(c(k1,k2,g1,g2)) 
} 
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fleishtarget <- function(x,a){ 
  ## 
  #The target function for solving equations 18, 19, and 20# 
  # from page 523 of Fleishman.# 
  #It does this by changing the system of three equations into a # 
  # minimization problem.  Set the equations equal to zero, square,# 
  # and sum up. The b, c, and d that minimize the set of equations # 
  # at zero must also solve the three individually.# 
  ## 
  b<-x[1] 
  cc<-x[2] 
  d<-x[3] 
  g1<-a[1] 
  g2<-a[2] 
  (2 - ( 2*b^2 + 12*b*d + g1^2/(b^2+24*b*d+105*d^2+2)^2 + 30*d^2 ) )^2 
+ 
    (g2 - ( 
24*(b*d+cc^2*(1+b^2+28*b*d)+d^2*(12+48*b*d+141*cc^2+225*d^2)) ) )^2+ 
    (cc - (g1/(2*(b^2+24*b*d+105*d^2+2)) ) )^2 
} 
 
findbcd <- function(skew,kurtosis){ 
  ## 
  #Uses the built in minimization function to solve for b, c, and d# 
  # if the skew and kurtosis are given. Try findbcd(1.75,3.75) and# 
  # compare to Table 1 on page 524 of Fleishman. 
  ## 
  optim(c(1,0,0),fleishtarget,a=c(skew,kurtosis),method="BFGS", 
        control=list(ndeps=rep(1e-10,3),reltol=1e-10,maxit=1e8)) 
} 
 
rfleish <- function(n,mean=0,var=1,skew=0,kurtosis=0){ 
  ## 
  #Generates n random variables with specified first four moments# 
  # using Fleishman's power method. Note that not all combinations# 
  # of skew and kurtosis are possible (see Figure 1 on page 527).# 
  #Must satisfy skew^2 < 0.0629576*kurtosis + 0.0717247.# 
  ## 
  Z<-rnorm(n,0,1) 
  bcd<-findbcd(skew,kurtosis)$par 
  b<-bcd[1] 
  cc<-bcd[2] 
  d<-bcd[3] 
  a<--1*cc 
  Y<-a+b*Z+cc*Z^2+d*Z^3 
  X<-mean+sqrt(var)*Y 
  return(X) 
} 
 
############################################# 
 
cmm.approx=function(mi){1-3/(4*mi-1)} 
 
### no longer needed 
#ghedges=function(ge,gc){num=mean(ge)-mean(gc); ne=length(ge); 
nc=length(gc) 
#den=sqrt(((ne-1)*(sd(ge)^2)+(nc-1)*(sd(gc)^2))/(ne+nc-2));num/den} 
#dhedges=function(ge,gc){gl=length(ge)+length(gc)-2; 
cmm.approx(gl)*ghedges(ge,gc)} 
#dhedvar=function(n,d){2/n+d^2/(4*n)} ### where n=ne=nc 
 
### function to directly simulate bias-corrected d-values and sampling 
variances without having to simulate raw data 
sim.d <- function(k, deltai, n1i, n2i) { 
  mi <- n1i + n2i - 2 
  yi <- rnorm(k, mean=deltai, sd=sqrt(1/n1i + 1/n2i)) / sqrt(rchisq(k, 
df=mi) / mi) 
  yi <- cmm.approx(mi) * yi 
  vi <- 1/n1i + 1/n2i + yi^2 / (2*(n1i + n2i)) 
  return(data.frame(yi, vi)) 
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} 
 
# bootstrap function 
 
boot.func = function(data, indices) { 
 
  #library(metafor) 
  #res = try(rma(yi, vi, data=data, subset=indices, method="DL"), 
silent=TRUE) 
  #if (is.element("try-error", class(res))) { 
  #  NA 
  #} else { 
  #  c(coef(res), vcov(res), res$tau2, res$se.tau2^2) 
  #} 
 
  dat <- data[indices,] 
 
  k <- nrow(dat) 
  yi <- dat$yi 
  vi <- dat$vi 
  wi <- 1/vi 
  theta.hat <- sum(wi*yi)/sum(wi) 
  Q <- sum(wi * (yi - theta.hat)^2) 
  sumwi <- sum(wi) 
  cval <- sumwi - sum(wi^2)/sumwi 
  tau2 <- max(0, (Q - (k-1)) / cval) 
  var.tau2 <- 2/cval^2 * (sum(wi^2 * (vi+tau2)^2) - 2*sum(wi^3 * 
(vi+tau2)^2)/sumwi + (sum(wi^2 * (vi+tau2)))^2 / sumwi^2) 
  wi <- 1/(vi + tau2) 
  sumwi <- sum(wi) 
  mu <- sum(wi*yi)/sumwi 
  var.mu <- 1/sumwi 
 
  return(c(mu, var.mu, tau2, var.tau2)) 
 
} 
 
for (condicion in 1:nrow(tabla.condiciones)) { 
 
  mu    <- tabla.condiciones[condicion,1] 
  tau2  <- tabla.condiciones[condicion,2] 
  shape <- tabla.condiciones[condicion,3] 
  k     <- tabla.condiciones[condicion,4] 
  averN <- tabla.condiciones[condicion,5] 
 
  if (shape==0) { # conditionals to set skewness and kurtosis values 
    asym = 0 
    curt = 0 
  } 
  if (shape==1) { 
    asym = -2 
    curt = 3.65 
  } 
  if (shape==2) { 
    asym = -1 
    curt = 0.47 
  } 
  if (shape==3) { 
    asym = 0 
    curt = -0.58 
  } 
  if (shape==4) { 
    asym = 1 
    curt = 0.51 
  } 
  if (shape==5) { 
    asym = 2 
    curt = 3.74 
  } 
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  name <- paste(mu, " ", tau2, " ", shape," ", k, " ", averN) 
 
  mDL=rep(NA,iters) 
  mREML=rep(NA,iters) 
  mEB=rep(NA,iters) 
  mFE=rep(NA,iters) 
  mBoots=rep(NA,iters) 
 
  cobDL=rep(NA,iters) 
  cobREML=rep(NA,iters) 
  cobEB=rep(NA,iters) 
  cobKHDL=rep(NA,iters) 
  cobKHREML=rep(NA,iters) 
  cobKHEB=rep(NA,iters) 
  cobFE=rep(NA,iters) 
  cobBootsP=rep(NA,iters) 
  cobBootsBCa=rep(NA,iters) 
  cobPL=rep(NA,iters) 
 
  ampDL=rep(NA,iters) 
  ampREML=rep(NA,iters) 
  ampEB=rep(NA,iters) 
  ampKHDL=rep(NA,iters) 
  ampKHREML=rep(NA,iters) 
  ampKHEB=rep(NA,iters) 
  ampFE=rep(NA,iters) 
  ampBootsP=rep(NA,iters) 
  ampBootsBCa=rep(NA,iters) 
  ampPL=rep(NA,iters) 
 
  etDL=rep(NA,iters) 
  etREML=rep(NA,iters) 
  etEB=rep(NA,iters) 
  etKHDL=rep(NA,iters) 
  etKHREML=rep(NA,iters) 
  etKHEB=rep(NA,iters) 
  etFE=rep(NA,iters) 
  etBoots=rep(NA,iters) 
 
  i = 1 
 
  while (i <= iters) { 
 
    ## simulate the data 
 
    deltas = rfleish(k,mu,tau2,asym,curt) 
    Ns = rchisq(k,4)+averN-4 # variable follows a chi-square 
distribution with mean averN and asymmetry around +1.4 
    ns = round(Ns/2) 
    data <- sim.d(k, deltas, ns, ns) 
 
    ##1 METHOD: ESTANDAR_DL 
 
    resDL = rma(yi, vi, data=data, method="DL") 
    mDL[i] = resDL$b 
    ampDL[i] = resDL$ci.ub - resDL$ci.lb 
    cobDL[i] = ifelse(mu <= resDL$ci.ub & mu >= resDL$ci.lb,1,0) 
    etDL[i] = resDL$se 
 
    ##2 METHOD: ESTANDAR_REML 
 
    resREML = try(rma(yi, vi, data=data, method="REML"), silent=TRUE) 
    if (inherits(resREML, "try-error")) ### skip iteration if REML   
doesn't converge 
      next 
    mREML[i] = resREML$b 
    ampREML[i] = resREML$ci.ub - resREML$ci.lb 
    cobREML[i] = ifelse(mu <= resREML$ci.ub & mu >= resREML$ci.lb,1,0) 
    etREML[i] = resREML$se 
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    ##3 METHOD: ESTANDAR_EB 
 
    resEB = rma(yi, vi, data=data, method="EB") 
    if (inherits(resEB, "try-error")) ### skip iteration if EB doesn't 
converge 
      next 
    mEB[i] = resEB$b 
    ampEB[i] = resEB$ci.ub - resEB$ci.lb 
    cobEB[i] = ifelse(mu <= resEB$ci.ub & mu >= resEB$ci.lb,1,0) 
    etEB[i] = resEB$se 
 
    ##4 METHOD: KNAPPHARTUNG_DL 
 
    resKHDL = rma(yi, vi, data=data, method="DL", knha=TRUE) 
    ampKHDL[i] = resKHDL$ci.ub - resKHDL$ci.lb 
    cobKHDL[i] = ifelse(mu <= resKHDL$ci.ub & mu >= resKHDL$ci.lb,1,0) 
    etKHDL[i] = resKHDL$se 
 
    ##5 METHOD: KNAPPHARTUNG_REML 
 
    resKHREML = rma(yi, vi, data=data, method="REML", knha=TRUE) 
    ampKHREML[i] = resKHREML$ci.ub - resKHREML$ci.lb 
    cobKHREML[i] = ifelse(mu <= resKHREML$ci.ub & mu >=     
resKHREML$ci.lb,1,0) 
    etKHREML[i] = resKHREML$se 
 
    ##6 METHOD: KNAPPHARTUNG_EB 
 
    resKHEB = rma(yi, vi, data=data, method="EB", knha=TRUE) 
    ampKHEB[i] = resKHEB$ci.ub - resKHEB$ci.lb 
    cobKHEB[i] = ifelse(mu <= resKHEB$ci.ub & mu >= resKHEB$ci.lb,1,0) 
    etKHEB[i] = resKHEB$se 
 
    ##7 METHOD: FIXED-EFFECT 
 
    resFE = rma(yi, vi, data=data, method="FE") 
    mFE[i] = resFE$b 
    ampFE[i] = resFE$ci.ub - resFE$ci.lb 
    cobFE[i] = ifelse(mu <= resFE$ci.ub & mu >= resFE$ci.lb,1,0) 
    etFE[i] = resFE$se 
 
    ##8 METHOD: NON PARAMETRIC BOOTSTRAPPING_DL 
 
    #res.boot = boot(data, boot.func, R=1000) 
    res.boot = boot(data, boot.func, R=1000, parallel="snow", cl=cl, 
ncpus=cores) 
    ciB = boot.ci(res.boot) 
    mBoots[i] = (ciB$normal[1,2] + ciB$normal[1,3]) / 2 
    ampBootsP[i] = ciB$percent[1,5] - ciB$percent[1,4] 
    ampBootsBCa[i] = ciB$bca[1,5] - ciB$bca[1,4] 
    cobBootsP[i] = ifelse(mu <= ciB$percent[1,5] & mu >= 
ciB$percent[1,4],1,0) 
    cobBootsBCa[i] = ifelse(mu <= ciB$bca[1,5] & mu >= 
ciB$bca[1,4],1,0) 
    etBoots[i] = (ciB$normal[1,3] - (ciB$normal[1,2] + 
ciB$normal[1,3]) / 2) / 1.96 
 
    ##9 METHOD: PROFILE LIKELIHOOD 
 
    mlik = metaLik(yi~1, sigma2=vi, data=data) 
    ciPL = profile.metaLik(mlik, param=1, display=FALSE) 
    ampPL[i] = ciPL$upper.rskov - ciPL$lower.rskov 
    cobPL[i] = ifelse(mu <= ciPL$upper.rskov  & mu >= 
ciPL$lower.rskov,1,0) 
 
    i = i + 1 
 
  } 
 
  bias_DL   = round(mean(mDL)-mu,4) 
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  bias_REML = round(mean(mREML)-mu,4) 
  bias_EB   = round(mean(mEB)-mu,4) 
  bias_FE   = round(mean(mFE)-mu,4) 
  bias_BOOT = round(mean(mBoots)-mu,4) 
 
  mse_DL   = round(mean((mDL-mu)^2),4) 
  mse_REML = round(mean((mREML-mu)^2),4) 
  mse_EB   = round(mean((mEB-mu)^2),4) 
  mse_FE   = round(mean((mFE-mu)^2),4) 
  mse_BOOT = round(mean((mBoots-mu)^2),4) 
 
  ajnc_DL       = round(mean(cobDL),4) 
  ajnc_REML     = round(mean(cobREML),4) 
  ajnc_EB       = round(mean(cobEB),4) 
  ajnc_KHDL     = round(mean(cobKHDL),4) 
  ajnc_KHREML   = round(mean(cobKHREML),4) 
  ajnc_KHEB     = round(mean(cobKHEB),4) 
  ajnc_FE       = round(mean(cobFE),4) 
  ajnc_BOOT_P   = round(mean(cobBootsP),4) 
  ajnc_BOOT_BCa = round(mean(cobBootsBCa),4) 
  ajnc_PL       = round(mean(cobPL),4) 
 
  ac_DL       = round(mean(ampDL),4) 
  ac_REML     = round(mean(ampREML),4) 
  ac_EB       = round(mean(ampEB),4) 
  ac_KHDL     = round(mean(ampKHDL),4) 
  ac_KHREML   = round(mean(ampKHREML),4) 
  ac_KHEB     = round(mean(ampKHEB),4) 
  ac_FE       = round(mean(ampFE),4) 
  ac_BOOT_P   = round(mean(ampBootsP),4) 
  ac_BOOT_BCa = round(mean(ampBootsBCa),4) 
  ac_PL       = round(mean(ampPL),4) 
 
  ajse_DL     = round(((sd(mDL)-median(etDL))/sd(mDL))*100,2) 
  ajse_REML   = round(((sd(mREML)-median(etREML))/sd(mREML))*100,2) 
  ajse_EB     = round(((sd(mEB)-median(etEB))/sd(mEB))*100,2) 
  ajse_KHDL   = round(((sd(mDL)-median(etKHDL))/sd(mDL))*100,2) 
  ajse_KHREML = round(((sd(mREML)-median(etKHREML))/sd(mREML))*100,2) 
  ajse_KHEB   = round(((sd(mEB)-median(etKHEB))/sd(mEB))*100,2) 
  ajse_FE     = round(((sd(mFE)-median(etFE))/sd(mFE))*100,2) 
  ajse_BOOT   = round(((sd(mBoots)-median(etBoots))/sd(mBoots))*100,2) 
 
  resultados <- 
cbind(bias_DL,bias_REML,bias_EB,bias_FE,bias_BOOT,mse_DL,mse_REML,mse_
EB,mse_FE,mse_BOOT,ajnc_DL,ajnc_REML,ajnc_EB,ajnc_KHDL,ajnc_KHREML,ajn
c_KHEB,ajnc_FE, 
  
ajnc_BOOT_P,ajnc_BOOT_BCa,ajnc_PL,ac_DL,ac_REML,ac_EB,ac_KHDL,ac_KHREM
L,ac_KHEB,ac_FE,ac_BOOT_P,ac_BOOT_BCa,ac_PL,ajse_DL,ajse_REML,ajse_EB,
ajse_KHDL,ajse_KHREML,ajse_KHEB,ajse_FE,ajse_BOOT) 
 
  if (length(v1.mus) > 1) { 
    write.table(cbind(name, resultados), "results.dat", append = TRUE, 
sep =" ", col.names = FALSE, row.names = FALSE, quote = FALSE) 
  } else { 
    write.table(cbind(name, resultados), paste0("results_mu=", v1.mus, 
".dat"), append = TRUE, sep =" ", col.names = FALSE, row.names = 
FALSE, quote = FALSE) 
  } 
 
} 
 
stopCluster(cl) 
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Appendix 3B 

Five examples of real meta-analyses selected from Rubio-Aparicio et 

al. (in press) systematic review 

 

 

 

The histogram represents five examples selected from the Rubio-Aparicio et al. 

(in press) systematic review. Each histogram refers to the estimated effect sizes 

distribution, in all cases being the standardized mean difference the effect size index 

(defined in our Eq. 3.23). These examples have been selected to illustrate the skewness 

and kurtosis combinations defined in our simulation study. Thus, histogram (a) shows the 

effect sizes distribution of the Dixon, Keefe, Scipio, Perri, and Abernethy (2009) meta-

analysis, which exhibited skewness = -1.95 and kurtosis = 2.8. These values are similar 

to the pair (-2, 3.65) included in our simulation study. Histogram (b) shows the effect 

distribution of the Roberts, Tchanturia, Stahl, Southgate, and Treasure (2007) meta-
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analysis, which exhibited skewness = -0.82 and kurtosis = 0.63. These values are similar 

to the pair (-1, 0.47) included in our simulation study. Histogram (c) shows the effect 

distribution of the Richards and Richardson (2012) meta-analysis, which exhibited 

skewness = -0.01 and kurtosis = -0.88. These values are similar to the pair (0, -0.58) 

included in our simulation study. Histogram (d) shows the effect distribution of the 

Malouff, Thorsteinsson, Rooke, Bhullar, and Schutte (2008) meta-analysis, which 

exhibited skewness = 1.15 and kurtosis = 0.45. These values are similar to the pair (1, 

0.51) included in our simulation study. Finally, histogram (e) shows the effect distribution 

of the Shadish and Baldwin (2005) meta-analysis, which exhibited skewness = 2.09 and 

kurtosis = 3.64. These values are similar to the pair (2, 3.74) included in our simulation 

study.  
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Appendix 4A 

Database for the example  

 

 

Study                 d              Sd Random assignment 

1 1.341 0.369 1 

2 0.581 0.340 1 

3 0.757 0.351 1 

4 0.508 0.479 1 

5 -0.023 0.558 1 

6 0.044 0.277 1 

7 0.428 0.270 1 

8 0.819 0.521 1 

9 -0.086 0.245 2 

10 0.602 0.258 2 

11 1.282 0.447 2 

12 1.023 0.388 2 

13 0.927 0.378 2 

14 0.483 0.236 2 

15 0.807 0.246 2 

16 0.692 0.246 2 

17 0.594 0.330 2 

18 0.582 0.320 2 

19 0.697 0.291 2 

20 0.833 0.326 2 

21 2.651 0.485 2 

22 1.232 0.386 2 

23 1.896 0.455 2 

24 1.837 0.451 2 

25 0.281 0.361 2 

26 0.410 0.377 2 
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Study d Sd Random assignment 

27 0.797 0.402 2 

28 0.431 0.377 2 

29 0.623 0.394 2 

30 0.650 0.365 2 

31 1.702 0.498 2 

32 1.073 0.480 2 

33 0.403 0.404 2 

34 3.468 0.520 2 

35 3.263 0.496 2 

36 3.023 0.488 2 

37 1.040 0.389 2 

38 1.473 0.460 2 

39 1.164 0.441 2 

40 0.993 0.427 2 

41 -0.344 0.381 2 

42 -0.098 0.361 2 

43 0.905 0.276 2 

44 0.665 0.264 2 

45 0.982 0.280 2 

46 0.727 0.252 2 

47 0.879 0.218 2 

48 0.681 0.439 2 

49 1.193 0.478 2 

50 1.131 0.466 2 

Note. d = standardized mean difference for each study; Sd = standard error for the d 

index in each study. Random assignment = 1, no; 2, yes  

Source: Sánchez-Meca et al. (2010). 

 

 

 



 
153 Appendices  

Appendix 4B 

R code of simulation study in Chapter 4  

 

#install.packages(“metafor”) 
#library(metafor) 
 
ks = c(12,20,40,60) 
Eqs = c(0,1)  
EqLabel = c("EQUILIBRADO", "DESEQUILIBRADO") 
tau2as = c(.08,.16)  
f1s = c(0,1)  
f1sLabel = c("tau2 iguales", "tau2 desiguales") 
deltas = c(0.5,0.3,0.1)  
f2s = c(0,1)  
f2sLabel=c("Grupo1 delta=0.5","Grupo2 delta=0.5") 
 
iters=10000 
 
############################################## Algoritmo de Fleishman. 
 
sandk<-function(x){ 
## 
#Calculates the mean, variance, skew, and kurtosis# 
# for a data set and returns them in that order.# 
#The formulas for skew and kurtosis are from page 85# 
# of Kendall and Steward 1969, vol.1# 
## 
n <- length(x) 
m1p <- mean(x) 
m2 <- sum((x-m1p)^2)/n 
m3 <- sum((x-m1p)^3)/n 
m4 <- sum((x-m1p)^4)/n 
k1 <- m1p 
k2 <- n*m2/(n-1) 
k3 <- ((n^2)/((n-1)*(n-2)))*m3 
k4 <- (((n^2)/((n-1)*(n-2)))/(n-3))*((n+1)*m4 - 3*(n-1)*m2^2) 
g1 <- k3/(k2^(3/2)) 
g2 <- k4/(k2^2) 
return(c(k1,k2,g1,g2)) 
} 
 
 
fleishtarget<-function(x,a){ 
## 
#The target function for solving equations 18, 19, and 20# 
# from page 523 of Fleishman.# 
#It does this by changing the system of three equations into a # 
# minimization problem.  Set the equations equal to zero, square,# 
# and sum up.  The b, c, and d that minimize the set of equations #  
# at zero must also solve the three individually.# 
## 
b<-x[1] 
cc<-x[2] 
d<-x[3] 
g1<-a[1] 
g2<-a[2] 
(2 - ( 2*b^2 + 12*b*d + g1^2/(b^2+24*b*d+105*d^2+2)^2 + 30*d^2 ) )^2 + 
(g2 - ( 24*(b*d+cc^2*(1+b^2+28*b*d)+d^2*(12+48*b*d+141*cc^2+225*d^2)) 
) )^2+ 
(cc - (g1/(2*(b^2+24*b*d+105*d^2+2)) ) )^2 
} 
 
 
findbcd<-function(skew,kurtosis){ 



 
154 Appendices  

## 
#Uses the built in minimization function to solve for b, c, and d# 
# if the skew and kurtosis are given. Try findbcd(1.75,3.75) and# 
# compare to Table 1 on page 524 of Fleishman. 
## 
optim(c(1,0,0),fleishtarget,a=c(skew,kurtosis),method="BFGS", 
control=list(ndeps=rep(1e-10,3),reltol=1e-10,maxit=1e8)) 
} 
 
 
rfleish<-function(n,mean=0,var=1,skew=0,kurtosis=0){ 
## 
#Generates n random variables with specified first four moments# 
# using Fleishman's power method. Note that not all combinations# 
# of skew and kurtosis are possible (see Figure 1 on page 527).#   
#Must satisfy skew^2 < 0.0629576*kurtosis + 0.0717247.# 
## 
Z<-rnorm(n,0,1) 
bcd<-findbcd(skew,kurtosis)$par 
b<-bcd[1] 
cc<-bcd[2] 
d<-bcd[3] 
a<--1*cc 
Y<-a+b*Z+cc*Z^2+d*Z^3 
X<-mean+sqrt(var)*Y 
return(X)} 
 
############################################# 
 
 
 
ghedges=function(ge,gc){ne=length(ge); nc=length(gc); num=mean(ge)-
mean(gc)  
den=sqrt(((ne-1)*(sd(ge)^2)+(nc-1)*(sd(gc)^2))/(ne+nc-2)); num/den} 
 
dhedges=function(ge,gc){ne=length(ge); nc=length(gc); cm=1-
3/(4*(ne+nc)-9); cm*ghedges(ge,gc)}  
 
dhedvar=function(n,d){2/n+d^2/(4*n)} 
 
qtest=function(d,w){m=sum(d*w)/sum(w); sum(w*(d-m)^2)} 
 
tasarechazo=array(NA,dim=c(2,length(deltas),length(ks),length(Eqs),len
gth(tau2as),length(f1s),length(f2s)),dimnames=list(c("Qpooled","Qsepar
ate"),deltas,ks,EqLabel,tau2as,f1sLabel,f2sLabel)) 
 
 
   for (k in ks){  
   for (Eq in Eqs){  
   for (tau2a in tau2as){  
   for (f1 in f1s){  
   for (delta in deltas){  
   for (f2 in f2s){   
 
ka = ifelse(Eq==0,k/2,k/4)  
kb = ifelse(Eq==0,k/2,3*k/4)  
tau2b0 = ifelse(f1==0,tau2a,0.08) 
tau2b = ifelse((tau2a==0.08 & f1==1),0.16,tau2b0)     
DELTAA = ifelse(f2==0,0.5,delta) 
DELTAB = ifelse(f2==0,delta,0.5) 
          
             p_Qs=rep(0,iters) 
             p_Qp=rep(0,iters) 
 
            cat("k =", k, "\tGrupos Equilibrados? =", Eq, "\ttau2a =", 
tau2a, "\ttau2 iguales? =", f1,"\tdelta =", delta,"\tPosición delta = 
", f2, "\n") 
 
             i=1 
             while(i<=iters){ 
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             deltasa=rnorm(ka,DELTAA,sqrt(tau2a)) 
             nsa=round(rfleish(ka,30,15,1.386,1.427)) 
 
             d1=rep(NA,ka) 
             mod1=rep(1,ka) 
 
 
             j=1 
             while (j<=ka){ 
               
             deltaa=deltasa[j]  
             na=nsa[j]       
    
             ge=rnorm(na,deltaa,1); gc=rnorm(na,0,1)    
 
             dh1=dhedges(ge,gc) 
             d1[j]=dh1 
 
             j=j+1 
              
             } 
 
             deltasb=rnorm(kb,DELTAB,sqrt(tau2b))  
             nsb=round(rfleish(kb,30,15,1.386,1.427)) 
 
             d2=rep(NA,kb) 
             mod2=rep(0,kb) 
                
             j=1 
             while (j<=kb){ 
              
             deltab=deltasb[j]              
             nb=nsb[j] 
 
             ge=rnorm(nb,deltab,1); gc=rnorm(nb,0,1)   
 
             dh2=dhedges(ge,gc) 
             d2[j]=dh2   
 
               
             j=j+1 
 
              
             } 
 
var1=dhedvar(na,d1) 
a1=rma(d1,var1,method="DL") 
tau21=a1$tau2 
w1=1/(var1+tau21) 
 
var2=dhedvar(nb,d2) 
a2=rma(d2,var2,method="DL") 
tau22=a2$tau2 
w2=1/(var2+tau22) 
 
dt=c(d1,d2) 
vt=c(var1,var2) 
wt=c(w1,w2) 
mod=c(mod1,mod2) 
 
###Qb separate 
 
qtest1=qtest(d1,w1) ; qtest2=qtest(d2,w2) ; qw= qtest1+qtest2 ; 
qtestt=qtest(dt,wt) 
 
Qb=qtestt-qw 
P_Qb=1-pchisq(Qb,1) 
 
if(P_Qb<=.05) 
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p_Qs[i]=1 
 
###Qb pooled 
 
m=rma(dt,vt,method="DL",mods=~factor(mod)) 
 
if(m$QMp<=.05) 
p_Qp[i]=1 
 
      i=i+1 
 
    } 
 
 
  
tasarechazo["Qpooled",as.character(delta),as.character(k),EqLabel[Eq+1
],as.character(tau2a),f1sLabel[f1+1],f2sLabel[f2+1]]=mean(p_Qp) 
  
tasarechazo["Qseparate",as.character(delta),as.character(k),EqLabel[Eq
+1],as.character(tau2a),f1sLabel[f1+1],f2sLabel[f2+1]]=mean(p_Qs) 
 
   
  dump("tasarechazo", file="error tipo I y 
potencia.txt",append=FALSE) 
  } 
 
 
   
   } 
 
} 
} 
} 
} 
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Appendix 5A 

Equivalence between the F statistic for subgroup analysis and meta-

regression 

 In the context of a simple meta-regression, the association of the moderator with 

the effect sizes can be tested with the 𝑄𝑅 statistic, which is analogous to 𝑄𝐵 (defined in 

Eq. 4.3). The 𝑄𝑅 statistic is computed with 

𝑄𝑅 =  𝑍2 = (
𝐵1

√𝑉(𝐵1)
)

2

, 

where 𝐵1 represents the slope estimate indicating how the size of the effect changes as 𝑋𝑖 

increases by one unit, and is obtained with 

𝐵1 =
∑ �̃�𝑖𝑋𝑖𝑇𝑖 −  ∑ �̃�𝑖𝑋𝑖  ∑ �̃�𝑖 𝑇𝑖

𝑘
𝑖=1

𝑘
𝑖=1

𝑘
𝑖=1

∑ �̃�𝑖𝑋𝑖
2𝑘

𝑖=1 −  (∑ �̃�𝑖𝑋𝑖
𝑘
𝑖=1 )

2  , 

with �̃�𝑖 =  𝑤𝑖/ ∑ 𝑤𝑖
𝑘
𝑖=1  and 𝑤𝑖 =  1/(�̂�𝑖

2 + �̂�𝑟𝑒𝑠
2 ). The variance of 𝐵1 can be estimated 

with 

𝑉𝑎𝑟[𝐵1] =  (
∑ 𝑤𝑖𝑋𝑖

2𝑘
𝑖=1 − (∑ 𝑤𝑖𝑋𝑖

𝑘
𝑖=1 )

2

∑ 𝑤𝑖
𝑘
𝑖=1

)

2

. 

 Similarly, model misspecification can be examined with 𝑄𝐸 , using the same 

principle as 𝑄𝑊 in subgroup analysis. The 𝑄𝐸 statistic is obtained with 

𝑄𝐸 =  ∑ 𝑤𝑖(𝑇𝑖 − 𝐵0 −  𝐵1𝑋𝑖)
2 ,

𝑘

𝑖=1
 

where 𝐵0 stands for the model intercept and is given by 

𝐵0 = ∑ �̃�𝑖

𝑘

𝑖=1
𝑇𝑖 −  𝐵1 ∑ �̃�𝑖

𝑘

𝑖=1
𝑋𝑖.  

 Then, if the moderator is dichotomous, an F statistic for meta-regression, with the 

same form as that presented in Eq. 5.1 for subgroup analysis, is given by 

𝐹 =

𝑄𝑅

(𝑚 − 1)
𝑄𝐸

(𝑘 − 𝑚)

 , 
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where m takes a value of 2 and k represents the number of studies. 

 Note that the denominator of the F statistic just presented corresponds to the 

adjustment factor proposed in Knapp and Hartung (2003) 

𝑠𝑤
2 =

∑ 𝑤𝑖(𝑇𝑖 − 𝐵0 − 𝐵1𝑋𝑖)
2𝑘

𝑖=1

𝑘 − 𝑚
=

𝑄𝐸

𝑘 − 𝑚
. 

Consequently, the t-test proposed by Knapp and Hartung to test for a moderator can be 

computed as 

                                                𝑡 =  
𝑍

√𝑠𝑤
2
 , or equivalently 𝐹 = 𝑡2 =

𝑍2

𝑠𝑤
2 . 
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Appendix 5B 

R code of simulation study in Chapter 5 

 

#install.packages("metafor") 
#library(metafor) 
 
v1.ks <- c(12,20,40,60) 
v2.Eqs <- c(0,1) ### 0 note balanced distribution of k and 1 
unbalanced distribution 
v3.tau2as <- c(0.08,0.16,0.32) 
v4.tau2bs <- c(0.08,0.16,0.32) 
v5.deltas <- c(1,2,3,4) 
v6.averNs <- c(20,40,60,80) 
 
tabla.condiciones <- expand.grid(v1.ks, v2.Eqs, v3.tau2as, v4.tau2bs, 
v5.deltas, v6.averNs) 
colnames(tabla.condiciones) <- c("ks", "Eqs", "tau2as", "tau2bs", 
"deltas","averNs") 
 
iters <- 10000 
 
ghedges <- function(ge,gc) { 
   ne  <- length(ge) 
   nc  <- length(gc) 
   num <- mean(ge)-mean(gc) 
   den <- sqrt(((ne-1)*(sd(ge)^2)+(nc-1)*(sd(gc)^2))/(ne+nc-2)) 
   num/den 
} 
 
dhedges <- function(ge,gc) { 
   ne <- length(ge) 
   nc <- length(gc) 
   cm <- 1-3/(4*(ne+nc)-9) 
   cm*ghedges(ge,gc) 
} 
 
dhedvar <- function(n,d) 
   2/n+d^2/(4*n) 
 
qtest <- function(d,w) { 
   m <- sum(d*w)/sum(w) 
   sum(w*(d-m)^2) 
} 
 
for (condicion in 1:nrow(tabla.condiciones)) { 
 
   k <- tabla.condiciones[condicion,1] 
   Eq <- tabla.condiciones[condicion,2] 
   tau2a <- tabla.condiciones[condicion,3] 
   tau2b <- tabla.condiciones[condicion,4] 
   delta <- tabla.condiciones[condicion,5] 
   averN <- tabla.condiciones[condicion,6] 
 
   name <- paste(k, " ", Eq, " ", tau2a," ", tau2b," ", delta, " ", 
averN) 
 
      ka <- ifelse(Eq==0, k/2, k/4)   ### with unbalanced 
distribution, group/category 1 will be the smallest (K/4) 
      kb <- ifelse(Eq==0, k/2, 3*k/4) ### with unbalanced 
distribution, group/category 1 will be the largest  (3K/4) 
 
      DELTAA <- ifelse(delta==4, 0.7, 0.5) 
      DELTAB <- ifelse(delta==1, 0.5, ifelse(delta==2, 0.3, 0.1)) 
 
      p_Qs_DL   <- rep(0, iters) 
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      p_Qp_DL   <- rep(0, iters) 
      p_Qs_REML <- rep(0, iters) 
      p_Qp_REML <- rep(0, iters) 
      p_Qs_PM   <- rep(0, iters) 
      p_Qp_PM   <- rep(0, iters) 
      p_Fs_DL   <- rep(0, iters) 
      p_Fp_DL   <- rep(0, iters) 
      p_Fs_REML <- rep(0, iters) 
      p_Fp_REML <- rep(0, iters) 
      p_Fs_PM   <- rep(0, iters) 
      p_Fp_PM   <- rep(0, iters) 
 
      i <- 1 
 
      while (i <= iters) { 
 
         deltasa <- rnorm(ka,DELTAA,sqrt(tau2a)) 
         nsa <- rchisq(ka,4)+averN-4 
 
         d1 <- rep(NA,ka) 
         mod1 <- rep(1,ka) 
 
         j <- 1 
 
         while (j <= ka) { 
 
            deltaa <- deltasa[j] 
            na <- nsa[j] 
 
            ge <- rnorm(na,deltaa,1) 
            gc <- rnorm(na,0,1) 
 
            dh1 <- dhedges(ge,gc) 
            d1[j] <- dh1 
 
            j <- j + 1 
 
         } 
 
         deltasb <- rnorm(kb,DELTAB,sqrt(tau2b)) 
         nsb <- rchisq(kb,4)+averN-4 
 
         d2 <- rep(NA,kb) 
         mod2 <- rep(0,kb) 
 
         j <- 1 
 
         while (j <= kb) { 
 
            deltab <- deltasb[j] 
            nb <- nsb[j] 
 
            ge <- rnorm(nb,deltab,1) 
            gc <- rnorm(nb,0,1) 
 
            dh2 <- dhedges(ge,gc) 
            d2[j] <- dh2 
 
            j <- j + 1 
 
         } 
 
         ###FIRST CATEGORY 
         var1 <- dhedvar(na,d1) 
 
         ##"DL" Estimator 
         a1DL    <- rma(d1, var1, method="DL") 
         tau21DL <- a1DL$tau2 
         w1DL    <- 1/(var1+tau21DL) 
 



 
161 Appendices  

         ##"REML" Estimator 
         a1REML    <- rma(d1, var1, method="REML") 
         tau21REML <- a1REML$tau2 
         w1REML    <- 1/(var1+tau21REML) 
 
         ##"PM" Estimator 
         a1PM    <- rma(d1, var1, method="PM") 
         tau21PM <- a1PM$tau2 
         w1PM    <- 1/(var1+tau21PM) 
 
         ###SECOND CATEGORY 
         var2 <- dhedvar(nb,d2) 
 
         ##"DL" Estimator 
         a2DL    <- rma(d2, var2,method="DL") 
         tau22DL <- a2DL$tau2 
         w2DL    <- 1/(var2+tau22DL) 
 
         ##"REML" Estimator 
         a2REML    <- rma(d2, var2, method="REML") 
         tau22REML <- a2REML$tau2 
         w2REML    <- 1/(var2+tau22REML) 
 
         ##"PM" Estimator 
         a2PM    <- rma(d2, var2, method="PM") 
         tau22PM <- a2PM$tau2 
         w2PM    <- 1/(var2+tau22PM) 
 
         dt     <- c(d1,d2) 
         vt     <- c(var1,var2) 
         wtDL   <- c(w1DL,w2DL) 
         wtREML <- c(w1REML,w2REML) 
         wtPM   <- c(w1PM,w2PM) 
         mod    <- c(mod1,mod2) 
 
         ###Qb pooled with "DL" 
         mDL <- rma(dt, vt, method="DL", mods=~factor(mod)) 
 
         if (mDL$QMp <= .05) 
            p_Qp_DL[i] <- 1 
 
         ###Qb pooled with "REML" 
         mREML <- rma(dt, vt, method="REML", mods=~factor(mod)) 
 
         if (mREML$QMp <= .05) 
            p_Qp_REML[i] <- 1 
 
         ###Qb pooled with "PM" 
         mPM <- rma(dt, vt, method="PM", mods=~factor(mod)) 
 
         if (mPM$QMp <=.05) 
            p_Qp_PM[i] <- 1 
 
         ###F pooled with "DL" 
         nDL <- rma(dt, vt, method="DL", knha=T, mods=~factor(mod)) 
 
         if (nDL$QMp <=.05) 
            p_Fp_DL[i] <- 1 
 
         ###F pooled with "REML" 
         nREML <- rma(dt, vt, method="REML", knha=T,    
mods=~factor(mod)) 
 
         if (nREML$QMp <=.05) 
            p_Fp_REML[i] <- 1 
 
         ###F pooled with "PM" 
         nPM <- rma(dt, vt, method="PM", knha=T, mods=~factor(mod)) 
 
         if (nPM$QMp <= .05) 
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            p_Fp_PM[i] <- 1 
 
         ##Qb separate with "DL" 
         qtest1sDL <- qtest(d1,w1DL) 
         qtest2sDL <- qtest(d2,w2DL) 
         qwsDL     <- qtest1sDL+qtest2sDL 
         qtesttsDL <- qtest(dt,wtDL) 
         QbsDL     <- qtesttsDL-qwsDL 
 
         if ((1-pchisq(QbsDL,1)) <=.05) 
            p_Qs_DL[i] <- 1 
 
         ##Qb separate with "REML" 
         qtest1sREML <- qtest(d1,w1REML) 
         qtest2sREML <- qtest(d2,w2REML) 
         qwsREML     <- qtest1sREML+qtest2sREML 
         qtesttsREML <- qtest(dt,wtREML) 
 
         QbsREML <- qtesttsREML-qwsREML 
 
         if ((1-pchisq(QbsREML,1)) <= .05) 
            p_Qs_REML[i] <- 1 
 
         ##Qb separate with "PM" 
         qtest1sPM <- qtest(d1,w1PM) 
         qtest2sPM <- qtest(d2,w2PM) 
         qwsPM     <- qtest1sPM+qtest2sPM 
         qtesttsPM <- qtest(dt,wtPM) 
 
         QbsPM <- qtesttsPM-qwsPM 
 
         if ((1-pchisq(QbsPM,1)) <= .05) 
            p_Qs_PM[i] <- 1 
 
         ##F separate with "DL" 
         FsDL <- QbsDL/(qwsDL/(k-2)) 
 
         if ((1-pf(FsDL,1,k-2)) <= .05) 
            p_Fs_DL[i] <- 1 
 
         ##F separate with "REML" 
         FsREML <- QbsREML/(qwsREML/(k-2)) 
 
         if ((1-pf(FsREML,1,k-2)) <= .05) 
            p_Fs_REML[i] <- 1 
 
         ##F separate with "PM" 
         FsPM <- QbsPM/(qwsPM/(k-2)) 
 
         if ((1-pf(FsPM,1,k-2)) <= .05) 
            p_Fs_PM[i] <- 1 
 
         i <- i + 1 
 
      } 
 
      Qpooled_DL     <- mean(p_Qp_DL) 
      Qseparate_DL   <- mean(p_Qs_DL) 
      Qpooled_REML   <- mean(p_Qp_REML) 
      Qseparate_REML <- mean(p_Qs_REML) 
      Qpooled_PM     <- mean(p_Qp_PM) 
      Qseparate_PM   <- mean(p_Qs_PM) 
      Fpooled_DL     <- mean(p_Fp_DL) 
      Fseparate_DL   <- mean(p_Fs_DL) 
      Fpooled_REML   <- mean(p_Fp_REML) 
      Fseparate_REML <- mean(p_Fs_REML) 
      Fpooled_PM     <- mean(p_Fp_PM) 
      Fseparate_PM   <- mean(p_Fs_PM) 
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      resultados <- cbind(Qpooled_DL, Qseparate_DL, Qpooled_REML, 
Qseparate_REML, Qpooled_PM, Qseparate_PM, Fpooled_DL, Fseparate_DL, 
Fpooled_REML, Fseparate_REML, Fpooled_PM, Fseparate_PM) 
 
      write.table(cbind(name, resultados), "Resultados_KH.dat", append 
= TRUE, sep = " ", col.names = FALSE, row.names = FALSE, quote = 
FALSE) 
 
} 
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Appendix 5C 

Supplementary figures using the DL and REML estimators 

 

 

Supplementary Fig. 5C.1. Average Type I error rates in scenarios with homoscedastic 

residual between-studies variances across categories of the moderator using the 

DerSimonian and Laird estimator. 
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Supplementary Fig. 5C.2. Average Type I error rates in scenarios with heteroscedastic 

residual between-studies variances across the categories of the moderator and smaller 

variance in the smaller category using the DerSimonian and Laird estimator. 
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Supplementary Fig. 5C.3. Average Type I error rates in scenarios with heteroscedastic 

residual between-studies variances in each category of the moderator and larger variance 

in the smaller category using the DerSimonian and Laird estimator. 
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Supplementary Fig. 5C.4. Average power rates in scenarios with homoscedastic residual 

between-studies variances across categories of the moderator using the DerSimonian and 

Laird estimator. 
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Supplementary Fig. 5C.5. Average power rates in scenarios with heteroscedastic 

residual between-studies variances across categories of the moderator and smaller 

variance in the smaller category using the DerSimonian and Laird estimator. 

 



 
169 Appendices  

 

Supplementary Fig. 5C.6. Average power rates in scenarios with heteroscedastic 

residual between-studies variances across categories of the moderator and larger variance 

in the smaller category using the DerSimonian and Laird estimator. 
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Supplementary Fig. 5C.7. Average Type I error rates in scenarios with homoscedastic 

residual between-studies variances across categories of the moderator using the restricted 

maximum likelihood estimator. 
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Supplementary Fig. 5C.8. Average Type I error rates in scenarios with heteroscedastic 

residual between-studies variances across the categories of the moderator and smaller 

variance in the smaller category using the restricted maximum likelihood estimator. 
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Supplementary Fig. 5C.9. Average Type I error rates in scenarios with heteroscedastic 

residual between-studies variances in each category of the moderator and larger variance 

in the smaller category using the restricted maximum likelihood estimator. 
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Supplementary Fig. 5C.10. Average power rates in scenarios with homoscedastic 

residual between-studies variances across categories of the moderator using the restricted 

maximum likelihood estimator. 
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Supplementary Fig. 5C.11. Average power rates in scenarios with heteroscedastic 

residual between-studies variances across categories of the moderator and smaller 

variance in the smaller category using the restricted maximum likelihood estimator. 
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Supplementary Fig. 5C.12. Average power rates in scenarios with heteroscedastic 

residual between-studies variances across categories of the moderator and larger variance 

in the smaller category using the restricted maximum likelihood estimator. 

 

 


