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Resumen

Esta memoria ha sido elaborada durante el período de disfrute de una beca FPU
de la Universidad de Murcia. Una ayuda complementaria de dicho programa ha
permitido al autor realizar una estancia en el Institute of Mathematics of the Polish
Academy of Sciences en Varsovia (abril-junio de 2016).

Esta investigación también ha sido financiada parcialmente por los proyectos
de investigación 19275/PI/14 de la Fundación Séneca - Agencia de Ciencia y Tec-
nología de la Región de Murcia y por el Ministerio de Economía y Competitividad
y FEDER (proyecto MTM2014-54182-P).

La memoria recoge a lo largo de tres capítulos la investigación realizada por el
autor durante su doctorado.

El primer capítulo está dedicado a la integral de Riemann para funciones
tomando valores en un espacio de Banach. El estudio de la relación entre la
integrabilidad Riemann y la continuidad en espacios de Banach comenzó en 1927
cuando L.M. Graves mostró en [Gra27] la existencia de una función integrable Rie-
mann con valores en un espacio de Banach que no es continua en casi todo punto
(c.t.p.). Surge así el siguiente problema:

Dado un espacio de Banach X, determinar condiciones suficientes y nece-
sarias para la integrabilidad Riemann de una función f : [0, 1]→ X.

Un espacio de Banach X en el que cualquier función integrable Riemann
f : [0, 1] → X es continua en c.t.p. se dice que tiene la propiedad de Lebesgue
(LP). Ningún espacio de Banach clásico de dimensión infinita, excepto `1, tiene
la LP. La sección 1.2 recoge gran parte del conocimiento existente sobre la LP
y su relación con otras propiedades. En particular, algunos resultados de K.M.
Naralenkov, A. Pełczyńsky, G.C. da Rocha Filho, J. Bourgain and H. Rosenthal
relacionan la LP con espacios de Banach asintóticamente `1 y la propiedad de
Schur. En esta sección también estudiamos operadores que transforman funciones
integrables Riemann en funciones continuas en c.t.p.

Por otro lado, A. Alexiewicz y W. Orlicz construyeron en 1951 una función
integrable Riemann que no era continua en c.t.p. [AO51]. Un espacio de Banach X
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se dice que tiene la propiedad débil de Lebesgue (WLP) si toda función integrable
Riemann f : [0, 1]→ X es débil continua en c.t.p. Esta propiedad fue definida por
primera vez en [Wan96]. Todo espacio de Banach con dual separable tiene la WLP
y el ejemplo de [AO51] muestra que C([0, 1]) no tiene la WLP. Otros espacios con
la WLP, como L1([0, 1]), aparecen en [CRSP10] y [WW01].

En la sección 1.3 presentamos nuevos resultados sobre la WLP. En particu-
lar, probamos que el espacio de James JT no tiene la WLP (Teorema 1.3.7) y
estudiamos cuándo `p(Γ) y c0(Γ) tienen la WLP en el caso no separable (Teorema
1.3.13). Además, probamos que la WLP es estable bajo `1-sumas (Teorema 1.3.18)
y como consecuencia obtenemos que el espacio C(K)∗ tiene la WLP siempre que
K sea un espacio compacto de la clase MS, es decir, siempre que toda medida de
probabilidad regular y de Borel sobre K sea separable (Corolario 1.3.21).

Alexiewicz y Orlicz también aportaron en [AO51] un ejemplo de una función
débil continua la cual no es integrable Riemann. V. Kadets probó en [Kad94]
que un espacio de Banach X tiene la propiedad de Schur si y sólo si toda función
continua f : [0, 1] → X es integrable Riemann. C. Wang y Z. Yang extendieron
este resultado en [WY00] a cualquier topología localmente convexa más débil que
la topología de la norma. En la sección 1.4 damos una versión cuantitativa de estos
resultados que, en particular, responde postivamente una pregunta formulada por
M.A. Sofi en [Sof12].

Parte del material de este capítulo se encuentra publicado en [MC16b].

En el segundo capítulo estudiamos algunas clases de espacios compactos aso-
ciadas a clases de espacios de Banach. En particular estudiamos la clase de los
compactos débil Radon-Nikodým (WRN) y su relación con las clases de compactos
Radon-Nikodým, compactos de Corson y compactos de Eberlein. Un espacio com-
pacto es WRN si es homeomorfo a un subconjunto compacto en la topología débil*
del dual de un espacio de Banach sin copias de `1. Es inmediato que todo com-
pacto Radon-Nikodým es WRN. La clase de compactos WRN fue estudiada por
E. Glasner y M. Megrelishvili en [GM12] y [GM14]. Sin embargo, esta clase de
compactos también fue previamente considerada por C. Stegall en [Ste90] bajo el
nombre de compactos dual non `1. Además, esta clase coincide con la clase de
espacios compactos asociada a la clase de espacios de Banach débilmente precom-
pactamente generados considerada por R. Haydon en [Hay81] (véase la sección 2.1
y el corolario 2.1.6).

La clase de espacios compactos WRN está íntimamente relacionada con la
clase de compactos Radon-Nikodým; ambas clases tienen una caracterización en
términos de fragmentabilidad (cf. sección 2.2). Una pregunta habitual a la hora
de estudiar una clase de espacios compactos es su estabilidad mediante imágenes
continuas. Son resultados clásicos que las clases de espacios compactos de Eberlein
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y las clases de espacios compactos de Corson son cerradas bajo imágenes continuas.
E. Glasner and M. Megrelishvili preguntaron en [GM14] si la imagen continua
de un compacto WRN es WRN. La pregunta análoga para compactos Radon-
Nikodým fue planteada en 1987 por I. Namioka en [Nam87]. La pregunta de
Namioka provocó la aparición en la literatura de varias superclases de la clase
de imágenes continuas de compactos Radon-Nikodým, e.g. la clase de compactos
numerablemente inferiormente fragmentables, la clase de compactos Quasi Radon-
Nikodým y la clase de los compactos fuertemente fragmentables. Sin embargo, I.
Namioka [Nam02] y A. Avilés [Avi05] probarón que estas tres clases son realmente
la misma, aunque sigue siendo un problema abierto si la clase de compactos Quasi
Radon-Nikodým coincide con la clase de imágenes continuas de compactos Radon-
Nikodým.

De manera similar, en la sección 2.3 definimos la clase de los compactos Quasi
WRN, que también es una superclase de la clase de imágenes continuas de com-
pactos WRN. Al igual que sucede con la clase de los compactos Radon-Nikodým
y los compactos Quasi Radon-Nikodým, probamos que esta clase es estable bajo
imágenes continuas (Teorema 2.3.6) y que todo compacto cero-dimensional Quasi
WRN es WRN (Teorema 2.3.8). Además, la sección 2.4 contiene algunos resulta-
dos y ejemplos de compactos WRN y compactos Quasi WRN que relacionan estas
clases con las clases de compactos de Eberlein, Corson y Radon-Nikodým. En
particular, en esta sección se incluye un ejemplo de un espacio compacto Corson
y WRN que no es Eberlein y se prueba que todo espacio de Filippov es WRN.

La pregunta de Namioka fue finalmente respondida negativamente por A. Avilés
y P. Koszmider en [AK13]; dieron una construcción de una imagen continua de un
compacto Radon-Nikodým que no era Radon-Nikodým. Usando esta construcción
aportamos una respuesta negativa a la pregunta de Glasner y Megrelishvili en la
sección 2.5. Concretamente, una modificación de esta construcción da un ejemplo
de una imagen continua de un compacto Radon-Nikodým que no es WRN.

Un espacio compacto WRN no es necesariamente sucesionalmente compacto.
R. Haydon preguntó en [Hay81] si cualquier compacto infinito WRN contiene una
sucesión convergente no trivial. Esta pregunta motiva el estudio de los compactos
cero-dimensionales WRN desde el punto de vista de las álgebras de Boole (Sección
2.6). En particular, decimos que un álgebra de Boole es WRN si el compacto aso-
ciado mediante la dualidad de Stone es WRN. La proposición 2.6.3 caracteriza esta
clase de álgebras y nos ayuda a entender mejor su comportamiento. Por ejemplo,
una consecuencia inmediata es que un compacto WRN no puede contener copias
de βN. Esta y otras propiedades de las álgebras de Boole WRN son compartidas
con la clase de las álgebras de Boole mínimamente generadas. Además, las ál-
gebras de Boole mínimamente generadas han resultado ser una herramienta muy
útil durante las últimas décadas para construir, bajo ciertos axiomas adicionales,
ejemplos de espacios compactos infinitos sin sucesiones convergentes no triviales.
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No obstante, a pesar de las propiedades similares que comparten la clase de ál-
gebras de Boole WRN y la clase de álgebras de Boole mínimamente generadas,
concluímos que ambas clases son incomparables (véase la sección 2.7).

En la sección 2.8 introducimos dos subclases de la clase de álgebras de Boole
WRN; la clase de las álgebras uniformemente WRN y la clase de las álgebras
fuertemente WRN. Estas clases de álgebras de Boole son el resultado de endure-
cer la caracterización de las álgebras de Boole WRN obtenida en la proposición
2.6.3. A lo largo de esta sección obtenemos algunos resultados que relacionan estás
álgebras con la clase de álgebras mínimamente generadas y probamos que ambas
clases son incomparables.

Finalmente, en la sección 2.9 estudiamos la existencia de ciertas medidas en
estas subclases y en la clase de compactos WRN motivados por un resultado de
J. Rodríguez que establece que toda medida de probabilidad regular y de Borel en
un compacto WRN es separable (Proposición 2.9.9).

Los resultados principales de este capítulo pueden encontrarse en [MC15] y
en el trabajo [AMCP16] realizado conjuntamente por A. Avilés, G. Plebanek y el
autor.

En el tercer capítulo estudiamos distintas propiedades secuenciales de espacios
topológicos. La más restrictiva de ellas es la propiedad de Fréchet-Urysohn (FU).
Un espacio topológico es FU si todo punto en la clausura de un subespacio es
el límite de una sucesión en el subespacio. Dos propiedades más débiles son la
secuencialidad y la estrechez numerable. Un espacio topológico es secuencial si
todo subespacio sucesionalmente cerrado (es decir, cerrado a través de límites de
sucesiones convergentes) es cerrado. Por otro lado, un espacio topológico tiene
estrechez numerable si todo punto en la clausura de un subespacio está también
en la clausura de un subconjunto numerable del subespacio. Puede probarse fá-
cilmente que todo espacio topológico secuencial tiene estrechez numerable (Lema
3.1.1). Además, si estas dos propiedades son iguales sobre la clase de los espacios
topológicos compactos es indecidible en ZFC. Si nos restringimos a la clase de espa-
cios topológicos compactos, entonces secuencialidad también implica compacidad
secuencial. A lo largo de este capítulo se estudia cuándo la bola dual de un espacio
de Banach con la topología débil* tiene alguna de estas propiedades. También con-
sideramos versiones convexas de todas estas propiedades. En la página 68 puede
verse un diagrama con las relaciones entre estas y otras propiedades.

En la sección 3.2 estudiamos aquellos espacios de Banach cuya bola dual es
débil*-sucesionalmente compacta. J. Diestel dedicó el Capítulo XIII de su libro
[Die84] a este tema, donde escribió lo siguiente:

Hasta la fecha no hay ninguna caracterización de aquellos espa-
cios de Banach X que no tienen bola dual débil*-sucesionalmente com-
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pacta. Además, parece que ninguna de las clases de espacios de Ba-
nach estudiadas en la actualidad ofrece ninguna esperanza de ser un
candidato viable para la caracterización de los espacios con bola dual
débil*-sucesionalmente compacta.

Por supuesto, cualquier espacio de Banach separable tiene bola dual débil*-
metrizable y por tanto débil*-sucesionalmente compacta. Es también inmediato
que todo espacio de Banach reflexivo tiene bola dual débil*-sucesionalmente com-
pacta. Más aún, una consecuencia del Teorema `1 de Rosenthal es que todo espacio
de Banach cuyo dual no contiene a `1 tiene bola dual débil*-sucesionalmente com-
pacta. Además, todo espacio de Banach WLD y todo espacio de Asplund tienen
bola dual débil*-sucesionalmente compacta.

Por otro lado, si un espacio de Banach contiene a `∞ o a `1(c) entonces su bola
dual con la topología débil* contiene una copia homeomorfa de βN y por tanto
no es débil*-sucesionalmente compacta. Además, J. Hagler y E. Odell e indepen-
dientemente R. Haydon dieron ejemplos de espacios de Banach sin copias de `1

que no tienen bola dual débil*-sucesionalmente compacta. Parece por tanto que
las palabras de Diestel siguen siendo válidas en el presente; estamos todavía lejos
de encontrar una caracterización de los espacios de Banach con bola dual débil*-
sucesionalmente compacta. En la sección 3.2 tratamos este tema atendiendo a
las clases de compactos estudiadas en el segundo capítulo. Finalmente nos cen-
tramos en la pregunta de Haydon sobre la existencia de compactos infinitos WRN
sin sucesiones convergentes no triviales, obteniendo una respuesta negativa en el
caso de los compactos asociados a la clase más restrictiva de álgebras de Boole
uniformemente WRN (corolario 3.2.5) También consideramos en esta sección es-
pacios de Banach con bola dual débil*-compacta bloque convexa, que no es más
que la versión convexa de la compacidad secuencial. En particular, el Teorema
3.2.11 muestra la relación entre esta propiedad y otras propiedades mencionadas
anteriormente.

La sección 3.3 se centra en los espacios de Banach con bola dual débil*-
secuencial. Puede verse fácilmente que todo espacio de Banach WLD tiene bola
dual débil*-secuencial (incluso débil*-FU). En esta sección damos condiciones su-
ficientes para que un espacio de Banach tenga bola dual débil*-secuencial.

Estos resultados son aplicados en la sección 3.4 para contestar una pregunta de
A. Plichko sobre la existencia de espacios de Banach con bola dual débil*-secuencial
sin dual débil*-angelical. Concretamente probamos que estos resultados se pueden
aplicar para obtener que el espacio de Johnson-Lindenstrauss JL2 tiene bola dual
débil*-secuencial con orden secuencial 2 (Teorema 3.4.2).

Otra consecuencia de los resultados obtenidos es que C(K) tiene bola dual
débil*-secuencial para todo espacio compacto disperso K de altura numerable
(véase el teorema 3.4.5). Sin embargo, es un problema abierto si existe en ZFC
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un espacio compacto secuencial de orden estrictamente mayor que 2. Usando una
construcción de A.I. Baškirov y otra de A. Dow concluímos la consistencia de la
existencia de espacios de Banach con bola dual débil*-secuencial de orden mayor
que 2 y de órdenes numerables arbitrariamente grandes (véase el corolario 3.4.6).

Parte del material de este capítulo puede encontrarse en [MC16a] y [AMCP16].

En el segundo capítulo se han usado algunos resultados combinatorios que, por
su interés, hemos decidido incluir en este trabajo en los apéndices finales A y B.

Concretamente en el Apéndice A se prueban algunas propiedades del árbol de
Todorcevic que, junto con el Lema 2.4.7, ayudan a construir un ejemplo de espacio
compacto WRN y Corson que no es Eberlein. En el Apéndice B se demuestra
el Lema de Sauer-Shelah, que resulta imprescindible para la demostración del
Teorema 2.6.6.



Abstract

This work gathers in three chapters the research done by the author during his
PhD Thesis. During this period the author was supported by a FPU grant from the
University of Murcia. A fellowship from the same program allowed the author to
carry out a stay in the Institute of Mathematics of the Polish Academy of Sciences
in Warsaw from April to June 2016.

This research was also partially supported by the research project 19275/PI/14
funded by Fundación Séneca - Agencia de Ciencia y Tecnología de la Región
de Murcia within the framework of PCTIRM 2011-2014 and by Ministerio de
Economía y Competitividad and FEDER (project MTM2014-54182-P).

The first chapter examines the Riemann integral of vector-valued functions.
The study of the relation between Riemann integrability and continuity in Banach
spaces started in 1927, when Graves showed in [Gra27] the existence of a vector-
valued Riemann integrable function not continuous almost everywhere (a.e. for
short). Thus, the following problem arises:

Given a Banach space X, determine necessary and sufficient conditions for
the Riemann integrability of a function f : [0, 1]→ X.

A Banach space X for which every Riemann integrable function f : [0, 1] → X is
continuous a.e. is said to have the Lebesgue property (LP for short). All classi-
cal infinite-dimensional Banach spaces except `1 do not have the LP. Section 1.2
surveys the knowledge about the LP and its relation with other properties. In
particular, we include some results from K.M. Naralenkov, A. Pełczyńsky, G.C. da
Rocha Filho, J. Bourgain and H. Rosenthal which relate the LP to spreading mod-
els, asymptotic `1 Banach spaces and the Schur property. In this section we also
study operators which transform Riemann integrable functions in a.e. continuous
functions.

On the other hand, A. Alexiewicz and W. Orlicz constructed in 1951 a Riemann
integrable function which is not weakly continuous a.e. [AO51]. A Banach space
X is said to have the weak Lebesgue property (WLP for short) if every Riemann
integrable function f : [0, 1] → X is weakly continuous a.e. This property was
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introduced in [Wan96]. Every Banach space with separable dual has the WLP
and the example of [AO51] shows that C([0, 1]) does not have the WLP. Other
spaces with the WLP, such as L1([0, 1]), can be found in [CRSP10] and [WW01].
In Section 1.3 we present new results on the WLP. In particular, we prove that
the James tree space JT does not have the WLP (Theorem 1.3.7) and we study
when `p(Γ) and c0(Γ) have the WLP in the nonseparable case (Theorem 1.3.13).
Moreover, we prove that the WLP is stable under `1-sums (Theorem 1.3.18) and
we apply this result to obtain that C(K)∗ has the WLP whenever K is a compact
space in the classMS, i.e. whenever K is a compact space such that every regular
Borel probability measure on K is separable (Corollary 1.3.21).

Alexiewicz and Orlicz also provided in [AO51] an example of a weakly continu-
ous non-Riemann integrable function. V. Kadets proved in [Kad94] that a Banach
space X has the Schur property if and only if every weakly continuous function
f : [0, 1]→ X is Riemann integrable. C. Wang and Z. Yang extended this result in
[WY00] to arbitrary locally convex topologies weaker than the norm topology. In
Section 1.4 we give an operator theoretic form of these results that, in particular,
provides a positive answer to a question posed by M.A. Sofi in [Sof12].

The material of this chapter is published in [MC16b].

In the second chapter we study some classes of compact spaces associated
to classes of Banach spaces. In particular we study the class of weakly Radon-
Nikodým (WRN) compact spaces and its relation with the classes of Radon-
Nikodým compacta, Corson compacta and Eberlein compacta. A compact space
is WRN if it is homeomorphic to a weak*-compact subset of the dual of a Banach
space containing no copy of `1. Obviously every Radon-Nikodým compact space
is WRN. The class of WRN compact spaces was studied by E. Glasner and M.
Megrelishvili in [GM12] and [GM14]. Nevertheless, this class of compact spaces
was also considered by C. Stegall in [Ste90] under the name of dual non `1 compact
spaces. Moreover, this class coincides with the class of compact spaces associated
to weakly precompactly generated Banach spaces considered by R. Haydon in
[Hay81] (cf. Section 2.1 and Corollary 2.1.6).

The class of WRN compact spaces is closely related to the class of Radon-
Nikodým compact spaces; both classes have a characterization in terms of frag-
mentability (cf. Section 2.2). E. Glasner and M. Megrelishvili asked in [GM14]
whether the continuous image of a WRN compact space is WRN. The analogous
question for Radon-Nikodým compact spaces was posed in 1987 by I. Namioka
[Nam87]. Namioka’s question caused the apparition in the literature of several
superclasses of the class of continuous images of Radon-Nikodým compact spaces,
e.g. the class of countably lower fragmentable compact spaces, the class of quasi



xiii

Radon-Nikodým compact spaces and the class of strongly fragmentable compact
spaces. Nevertheless, I. Namioka [Nam02] and A. Avilés [Avi05] proved that these
classes are all the same. However, it is still an open problem whether every Quasi
Radon-Nikodým compact space is a continuous image of a Radon-Nikodým com-
pact space.

In a similar way, in Section 2.3 we define the class of Quasi WRN compact
spaces. We prove that this class is stable under continuous images (Theorem 2.3.6)
and that every zero-dimensional Quasi WRN compact space is WRN (Theorem
2.3.8). Moreover, Section 2.4 contains some results and examples of WRN and
Quasi WRN compact spaces that relates these classes to the classes of Eberlein,
Corson and Radon-Nikodým compacta. In particular, this section includes an
example of a Corson WRN compact space which is not Eberlein and it is also
proved that Filippov spaces are WRN.

Namioka’s question was answered negatively by A. Avilés and P. Koszmider in
[AK13]; they constructed a continuous image of a Radon-Nikodým compact space
which is not Radon-Nikodým. Using this construction we are able to provide a
negative answer to Glasner and Megrelishvili’s question in Section 2.5. Namely,
this construction provides an example of a continuous image of a Radon-Nikodým
compact space which is not WRN.

R. Haydon asked in [Hay81] whether every infinite WRN compact space con-
tains a nontrivial convergent sequence. This question motivates us to study WRN
compact spaces from the Boolean algebra setting (Section 2.6). Namely, we say
that a Boolean algebra is WRN if the compact space associated through the Stone
duality is WRN. Proposition 2.6.3 provides a useful characterization of this class
of Boolean algebras. In particular, it follows that a WRN compact space cannot
contain a copy of βN. The class of minimally generated Boolean algebras share
some properties (like not containing βN) with the class of WRN Boolean alge-
bras. Furthermore, minimally generated Boolean algebras provide an important
tool for constructing infinite compact spaces containing no nontrivial convergent
sequences. Nevertheless, despite the similarities between these classes of Boolean
algebras, we conclude in Section 2.7 that both classes are uncomparable.

In Section 2.8 we introduce two subclasses of the class of WRN Boolean alge-
bras; the class of uniformly WRN algebras and the class of strongly WRN algebras.
These classes appears in a natural way by strengthening the characterization of
WRN Boolean algebras obtained in Proposition 2.6.3. Throughout this section
we obtain some results relating these classes to the class of minimally generated
Boolean algebras and we prove that both subclasses are uncomparable.

Finally, in Section 2.9 we study measures on these subclasses and on the class
of WRN compact spaces motivated by a result of J. Rodríguez which states that
every regular Borel probability measure on a WRN compact space is separable
(Proposition 2.9.9).
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The main results of this chapter correspond to [MC15] and to the paper
[AMCP16], which is a joint work with A. Avilés and G. Plebanek.

In the third chapter we study sequential properties. A topological space is said
to be Fréchet-Urysohn (FU) if the closure of every subspace coincides with the
set of limits of sequences in the subspace. A generalization of FU property are
sequentiality and countable tightness. A topological space is sequential if every
nonclosed subspace contains a sequence converging to a point which is not in the
subspace. On the other hand, a topological space has countable tightness if the
closure of every subspace coincides with the union of closures of countable subsets
of the subspace. It can be easily checked that every sequential topological space has
countable tightness (Lemma 3.1.1). Furthermore, whether every compact space
with countable tightness is sequential is known as the Moore-Mrowka Problem and
it is undecidable in ZFC. Notice that every sequential compact space is sequentially
compact. Throughout this chapter we study Banach spaces whose dual ball with
the weak*-topology has some of these properties. We also consider convex versions
of the previous properties. A diagram with the relations among these properties
can be seen in page 68.

In Section 3.2 we study Banach spaces with weak*-sequentially compact dual
ball. J. Diestel devoted Chapter XIII of [Die84] to this topic, where he wrote the
following:

To date, there is no characterization of those Banach spaces X
having weak* sequentially compact dual balls. Furthermore, it appears
that none of the classes of Banach spaces presently under study offers
any hope of a viable candidate for the characterization of spaces with
sequentially compact dual balls.

Of course, every separable Banach space has weak*-metrizable dual ball and
therefore weak*-sequentially compact dual ball. It is also immediate that every
reflexive Banach space has weak*-sequentially compact dual ball. It follows from
Rosenthal’s `1 Theorem that if a dual Banach space X∗ does not contain `1 then
X has weak*-sequentially compact dual ball. Moreover, every WLD and every
Asplund space have weak*-sequentially compact dual ball.

On the other hand, if a Banach space X contains `∞ or `1(c) then the dual
ball of X contains a homeomorphic copy of βN and therefore it is not weak*-
sequentially compact. Furthermore, J. Hagler and E. Odell and, independently, R.
Haydon provided examples of Banach spaces without a copy of `1 whose dual ball
is not weak*-sequentially compact. It seems that Diestel’s words remain valid at
present; we are still far from finding a characterization of those Banach spaces with
weak*-sequentially compact dual ball. In Section 3.2 we treat this topic looking
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at those classes of compact spaces studied in the second chapter and finally we
focus on Haydon’s question concerning the existence of infinite WRN compact
spaces without nontrivial convergent sequences. In particular we obtain a negative
answer for the class of compact spaces associated to the class of uniformly WRN
algebras (Corollary 3.2.5). We also consider Banach spaces with weak*-convex
block compact dual ball, which can be seen as the convex version of sequential
compactness. In particular, Theorem 3.2.11 shows the relation among this property
and the properties mentioned above.

In Section 3.3 we focus on Banach spaces with weak*-sequential dual ball. It
can be easily seen that every WLD Banach space has weak*-sequential dual ball
(even weak*-FU). We also provide sufficient conditions for a Banach space to have
weak*-sequential dual ball.

These results are applied in Section 3.4 to answer a question of A. Plichko
about the existence of Banach spaces with weak*-sequential dual ball which do
not have weak*-angelic dual. Namely, we show that these results can be applied
to prove that the Johnson-Lindenstrauss space JL2 has weak*-sequential dual
ball with sequential order 2 (Theorem 3.4.2). Moreover, we obtain that C(K)
has weak*-sequential dual ball whenever K is a scattered compact space with
countable height (Theorem 3.4.5). Nevertheless, it is an open problem whether
there exist in ZFC compact spaces of sequential order greater than 2. Using
constructions of A.I. Baškirov and A. Dow we conclude the consistency of the
existence of Banach spaces with weak*-sequential dual ball with sequential order
greater than 2 (Corollary 3.4.6).

The material of this chapter is based on [MC16a] and [AMCP16].

Some interesting combinatorial results used along the second chapter have been
included in Appendices A and B of this work. Namely, in Appendix A we prove
some properties of the Todorcevic tree that, together with Lemma 2.4.7, provide an
example of a WRN and Corson compact space which is not Eberlein. In Appendix
B it is proved the Sauer-Shelah Lemma, which is used in the proof of Theorem
2.6.6.
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Terminology

For any set A in a topological space, we denote by A the closure of A and by
Int(A) the interior of A. The density character dens(T ) of a topological space T
is the minimal cardinality of a dense subset.

c denotes the cardinality of the continuum. By ω we denote the least infinite
ordinal and by ω1 the least uncountable ordinal.

All Banach spaces are assumed to be real. In what follows, X∗ denotes the
dual of a Banach space X. The weak and weak∗ topologies of a Banach space will
be denoted by w and w∗ respectively. For any set A in a Banach space, span(A)
denotes the linear subspace generated by the elements of A and by span(A) we
denote span(A).

Let (xi)
∞
i=1 be a sequence in a Banach space X. (xi)

∞
i=1 is said to be normalized

if ‖xi‖ = 1 for every i ∈ N. (xi)
∞
i=1 is said to be a basis in X if for every x ∈ X

there is a unique sequence of scalars (ai)
∞
i=1 such that the series

∑
aixi converges

to x in norm. If (xi)
∞
i=1 is a basis in X, then there are functionals (x∗i )

∞
i=1 in X∗

such that x∗i (xj) = 0 if i 6= j and x∗i (xi) = 1 for every i. In this case, (x∗i )
∞
i=1

are called the biorthogonal functionals of (xi)
∞
i=1. A basis (xi)

∞
i=1 is said to be

shrinking if the biorthogonal functionals (x∗i )
∞
i=1 are a basis in X∗. If (xi)

∞
i=1 is a

basis in span{xi : i ∈ N}, then we say that (xi)
∞
i=1 is a basic sequence.

The series
∑
xi is said to be unconditionally convergent if for every sequence

εi ∈ {−1, 1}, the series
∑
εixi converges. It is said to be absolutely convergent if∑ ‖xi‖ converges. A nonzero vector x of the form

∑n
i=m aixi is said to be a block

with respect to the sequence (xi)
∞
i=1 and the set of integers i for which ai 6= 0 is

denoted by suppx. Moreover, {yi}ni=1 are called successive blocks with respect to
(xi)

∞
i=1 if max supp yi < min supp yi+1 for every i = 1, 2, . . . , n− 1.

If {Xi : i ∈ Γ} is a family of Banach spaces, then the `p-sum of this family is
denoted by (

⊕
i∈ΓXi)`p , i.e.
(⊕

i∈Γ

Xi

)

`p

= {(xi)i∈Γ : xi ∈ Xi, (‖xi‖)i∈Γ ∈ `p(Γ)}.

The c0-sum of a family of Banach spaces is analogously defined.
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Throughout this work, by a compact space we mean a compact Hausdorff
topological space. For any compact space K, we denote by C(K) the Banach
space consisting of real continuous functions on K equipped with the supremum
norm.

A property P of Banach spaces is said to be a three-space property if whenever
Y ⊆ X are Banach spaces such that Y and X/Y have property P then X has
property P .
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Chapter 1

Riemann integrability of
vector-valued functions

Section 1.1
Notation and preliminaries

In this chapter we study the Riemann integral of functions taking values in a
Banach space. We start with some notation. We denote the Lebesgue measure in R
by µ. A partition of the interval [a, b] ⊆ R is a finite collection of nonoverlapping
closed subintervals covering [a, b]. A tagged partition of the interval [a, b] is a
partition {[ti−1, ti] : 1 ≤ i ≤ N} of [a, b] together with a set of points {si : 1 ≤ i ≤
N} that satisfy si ∈ (ti−1, ti) for each i.

Let P = {(si, [ti−1, ti]) : 1 ≤ i ≤ N} be a tagged partition of [a, b] and X a
Banach space. For every function f : [a, b] → X we denote by f(P) the Riemann
sum

f(P) :=
N∑

i=1

(ti − ti−1)f(si).

The norm of the tagged partition P is

‖P‖ := max{ti − ti−1 : 1 ≤ i ≤ N}.

We say that a function f : [a, b]→ X is Riemann integrable, with integral x ∈ X,
if for every ε > 0 there is δ > 0 such that ‖f(P)− x‖ < ε for all tagged partitions
P of [a, b] with norm less than δ. In this case x is unique and it is denoted by∫ b
a
f(t)dt or

∫ b
a
f .

Some of the classical results of the Riemann integral in the real case remain
valid in the general case. We summarize in the next theorem some basic properties
which will be used along this chapter:



2 Chapter 1. Riemann integrability of vector-valued functions

Theorem 1.1.1 ([Gor91]). Let X be a Banach space and f : [a, b]→ X a Riemann
integrable function.

1. The function f is Riemann integrable on every subinterval of [a, b].

2. If ‖f(t)‖ ≤M for every t ∈ [a, b] then ‖
∫ b
a
f(t)dt‖ ≤M(b− a).

3. If T : X → Y is a bounded linear operator, then Tf is Riemann integrable
on [a, b] and

∫ b
a
Tf = T (

∫ b
a
f). In particular, for each x∗ ∈ X∗, x∗f is

continuous almost everywhere.

From now on we work with the unit interval [0, 1]. The following criterion will
be our main tool for proving the Riemann integrability of many functions:

Theorem 1.1.2 ([Gor91]). Let X be a Banach space and f : [0, 1]→ X a function.
The following statements are equivalent:

1. The function f is Riemann integrable.

2. For each ε > 0 there exists a partition Pε of [0, 1] with ‖f(P1)− f(P2)‖ < ε
for all tagged partitions P1 and P2 of [0, 1] that have the same intervals as
Pε.

3. There is x ∈ X such that for every ε > 0 there exists a partition Pε of [0, 1]
such that ‖f(P)− x‖ < ε whenever P is a tagged partition of [0, 1] with the
same intervals as Pε.

For functions taking values in the real line, the Riemann integral can also be
defined using upper and lower sums. For functions taking values in a Banach space
we can provide a similar definition using the oscillation of a function:

Definition 1.1.3. Let X be a Banach space and f : [0, 1]→ X a function.

• For any subinterval I of [0, 1], we denote the oscillation of f on I by

Osc(f, I) := sup{‖f(t)− f(t′)‖ : t, t′ ∈ I}.

• For each t ∈ (0, 1), we denote by

Osc(f, t) := lim
ε→0+

Osc(f, [t− ε, t+ ε])

the oscillation of f at t. Analogously, Osc(f, 0) := limε→0+ Osc(f, [0, ε]) and
Osc(f, 1) := limε→0+ Osc(f, [1− ε, 1]).
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• f is Darboux integrable if for every ε > 0 there exists δ > 0 such that

n∑

i=1

µ(Ii)Osc(f, Ii) < ε

whenever P = {I1, I2, . . . , In} is a partition of [0, 1] with ‖P‖ < δ.

Notice that if f : [0, 1] → X is a function taking values in a Banach space X,
then the set of points of discontinuity of f is

Disc(f) = {t ∈ [0, 1] : Osc(f, t) > 0}.

It is easy to see that every Darboux integrable function is Riemann integrable.
Moreover, a standard argument shows the following:

Theorem 1.1.4. A function f : [0, 1]→ X taking values in a Banach space X is
Darboux integrable if and only if it is bounded and continuous almost everywhere.

Section 1.2
The Lebesgue property

The well-known Lebesgue’s criterion for Riemann integrability states that a real
function is Riemann integrable if and only if it is bounded and continuous almost
everywhere (a.e. for short). However, L.M. Graves showed in [Gra27] the exis-
tence of a Riemann integrable function f : [0, 1] → `∞([0, 1]) which is everywhere
discontinuous. A Banach space X for which every Riemann integrable function
f : [0, 1] → X is continuous a.e. is said to have the Lebesgue property (LP for
short)1. The spaces c0, `p with p > 1 and Lp([0, 1]) with p ≥ 1 does not have the
LP. Nevertheless, A.S. Nemirovski, M.Ju. Ochan and R. Redjouani [NOR73] and
G.C. da Rocha Filho [dRF79] proved independently that `1 has the LP. Moreover,
da Rocha Filho proved that the Tsirelson space also has the LP. The behavior of the
Lebesgue property has been well studied in [dRF79] and [Piz89]. We summarize
here some relevant results concerning this property:

Theorem 1.2.1. 1. The LP is separably determined, i.e. a Banach space has
the LP if and only if every separable subspace has the LP. Moreover, a Banach
space has the LP if and only if every subspace with a basis has the LP ([Piz89,
Theorem 1.14]).

1This property is also known in the literature as the Darboux property.
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2. The LP is stable under `1-sums ([dRF79, Theorem 3.b.14]).

3. The LP is a three-space property ([Piz89, Proposition 1.19]).

The following properties are related with the LP:

Definition 1.2.2. • A Banach space X has the Schur property if every weakly
convergent sequence in X is norm convergent.

• A Banach space is asymptotic `1 with respect to a normalized basis (ei)
∞
i=1

if there exists a constant C ≥ 1 such that for every n ∈ N there is a function
Fn : N ∪ {0} → N with

C−1

n∑

i=1

|ai| ≤
∥∥∥∥

n∑

i=1

aixi

∥∥∥∥

for all normalized successive blocks {xi}ni=1 with respect to (ei)
∞
i=1 that satisfy

Fn(0) ≤ suppx1 and Fn(max suppxi) < min suppxi+1 for all i = 1, 2, ..., n−
1 and for all {ai}ni=1 ⊆ R. In this case the basis (ei)

∞
i=1 is said to be an

asymptotic `1 basis. Moreover, if we can take Fn(k) = k for every n, k ∈ N,
then the basis (ei)

∞
i=1 is said to be stabilized asymptotic `1.

• Let (ei)
∞
i=1 be a normalized basic sequence in a Banach space. A basic se-

quence (xi)
∞
i=1 is said to be a spreading model of (ei)

∞
i=1 if there is a decreasing

sequence of positive numbers εn converging to zero such that
∣∣∣∣∣

∥∥∥∥
n∑

i=1

aieki

∥∥∥∥−
∥∥∥∥

n∑

i=1

aixi

∥∥∥∥

∣∣∣∣∣ < εn

for all n ≤ k1 ≤ ... ≤ kn and all {ai}ni=1 ⊆ [−1, 1].

Theorem 1.2.3. [Nar07] Let X be a Banach space.

1. If X is asymptotic `1 with respect to its normalized basis {ei}, then X has
the LP.

2. If X has the LP, then each spreading model of X is equivalent to the standard
unit vector basis of `1 (A. Pełczyński and G.C. da Rocha Filho).

Moreover, if a Banach space X has the Schur property then each spreading
model of X is equivalent to the standard unit vector basis of `1. Thus, we have
the following implications among these properties:
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X is asymptotic `1 ⇒ X has the LP ⇒ Every spreading model of X
is equivalent to the `1 basis

⇑
X has the Schur property

A. Pełczyńsky and G.C. da Rocha Filho proved that if X is a subspace of
L1([0, 1]) such that every spreading model of X is equivalent to the standard unit
vector basis of `1, then X has both the LP and the Schur property. Moreover,
J. Bourgain and H. Rosenthal [BR80] constructed a subspace of L1([0, 1]) with
the Schur property (so with the LP too) which fails the Radon-Nikodým prop-
erty. Since every stabilized asymptotic `1 basis is boundedly complete [Dew02,
Proposition 3.3.1] and every Banach space with a boundedly complete basis has
the Radon-Nikodým property [DU77, page 64, Theorem 6], the Banach space con-
structed by J. Bourgain and H. Rosenthal is a Banach space with the LP but with
no stabilized asymptotic `1 basis.

On the other hand, some examples of Banach spaces with the Schur property
failing the LP were constructed by E. Odell, R. Haydon and K.M. Naralenkov
(see [Nar07] and [Hay84]). We provide here another example of a Schur space
which fails the LP. Moreover, our example is the dual of a Banach space with an
unconditional shrinking basis. We represent the dyadic tree by

T = {(n, k) : n = 0, 1, 2, . . . and k = 1, 2, . . . , 2n}.

A node (n, k) ∈ T has two immediate successors (n + 1, 2k − 1) and (n + 1, 2k).
Moreover, for every node p = (n, k) ∈ T , we write |p| = n. The order in the
dyadic tree is given by the relation p ≤ q if and only if there is a finite sequence
{p1, . . . , pm} in T such that p1 = p, pm = q and pj+1 is an immediate successor of
pj for every j = 1, 2, . . . ,m − 1. For any p ∈ T and n = 0, 1, 2, ..., we denote by
p|n the unique element q ∈ T such that |q| = n and q ≤ p. We define the Banach
space T1 as the completion of c00(T ) with the norm

‖x‖ = sup
n≥1

{∑

|p|=n
sup{|x(q)| : q ≥ p}

}
.

This space is defined in [Lin04, Section 5.5] and it is a generalization of the
space constructed by Talagrand in [Tal83]. For every (n, k) ∈ T , we denote by
e(n,k) the characteristic function of (n, k) ∈ T .
Theorem 1.2.4. [Lin04, Theorem 5.5.3] T1 has a shrinking unconditional basis
{e(n,k) : (n, k) ∈ T} and the dual space T ∗1 has the Schur property.
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Theorem 1.2.5. T ∗1 does not have the LP.

Proof. Set {e∗(n,k) : (n, k) ∈ T} the biorthogonal functionals of {e(n,k) : (n, k) ∈ T}.
Define f : [0, 1]→ T ∗1 as follows:

f(t) =

{
e∗(n−1,k) if t = 2k−1

2n
with n ∈ N and k = 1, 2, . . . , 2n−1;

0 in any other case.

The function f is not continuous at any point, since the dyadic points {2k−1
2n

:
(k, n) ∈ T} are dense in [0, 1]. Therefore, it is enough to show that f is Riemann
integrable. Notice that if p1, p2, . . . , pm are elements in T such that pi|n 6= pj|n
whenever i 6= j, then

∥∥∥∥
∑

i

aie
∗
pi

∥∥∥∥ ≤ sup
x∈BT1

∑

i

|aix(pi)| ≤ max{|ai|} sup
x∈BT1

{∑

i

|x(pi)|
}
≤

≤ max{|ai|} sup
x∈BT1

{∑

|p|=n
{|x(q)| : q ≥ p}

}
≤ max |ai|,

where the last inequality follows from the definition of the norm in T1. Therefore,∥∥∥∥
∑

aie
∗
pi

∥∥∥∥ ≤ max |ai| (1.1)

Take N ∈ N and {I1, I2, . . . , I2N−1} a family of disjoint intervals of [0, 1] such
that

∑

1≤n≤2N−1

µ(In) ≤ 1

2N
and

n

2N
∈ Int(In) for every 1 ≤ n ≤ 2N − 1. (1.2)

Let J1, J2, . . . , J2N be the closed disjoint intervals of [0, 1] determined by

[0, 1] \
⋃

1≤n≤2N−1

Int(In).

It follows from (1.1) that for any points ti ∈ Ji, i = 1, 2, . . . , 2N ,
∥∥∥∥
∑

µ(Ji)f(ti)

∥∥∥∥ ≤ maxµ(Ji) ≤
1

2N
,

where the last inequality follows from (1.2).
Therefore, every tagged partition PN with intervals J1, I1, J2, . . . , I2N−1, J2N

and points t1, t′1, t2, . . . , t′2N−1, t2N satisfies

‖f(PN)‖ ≤
∥∥∥∥
∑

µ(Ji)f(ti)

∥∥∥∥+

∥∥∥∥
∑

µ(Ii)f(t′i)

∥∥∥∥ ≤
1

2N
+

1

2N
=

1

2N−1
.

Since the previous inequality holds for any N ∈ N, it follows from Theorem
1.1.2 that f is Riemann integrable with integral zero.
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Another related problem is to study which operators transform Riemann in-
tegrable functions in a.e. continuous functions. A. Pełzyński and G.C. da Rocha
Filho studied this class of operators and called them Darboux operators.

Definition 1.2.6. Let X, Y be Banach spaces and T : X → Y a bounded linear
operator

1. T is Darboux if for every Riemann integrable function f : [0, 1] → X, the
function Tf is continuous a.e.

2. T is compact if T (BX) is relatively compact.

3. T is absolutely summing if for every sequence (xn)∞n=1 in X such that
∑
xn

converges unconditionally, the series
∑
Txn converges absolutely.

In particular, it is mentioned without proof in [PdRF80] that every compact
operator and every absolutely summing operator is Darboux. We include here a
proof of the last fact:

Theorem 1.2.7. Let X, Y be Banach spaces and T : X → Y an absolutely sum-
ming operator. Then T is Darboux.

Proof. Let f : [0, 1] → X be a Riemann integrable function. We prove that Tf
is continuous a.e. Notice that T is absolutely summing if and only if there exists
C > 0 such that for every n ∈ N and every x1, x2, ..., xn ∈ X,

∑

i≤n
‖Txi‖ ≤ C max

S⊆{1,...,n}

∥∥∥∥
∑

i∈S
xi

∥∥∥∥.

Let E = {t ∈ [0, 1] : Osc(Tf, t) > 0} and En = {t ∈ [0, 1] : Osc(Tf, t) ≥ 1
n
} for

every n ∈ N. Then, E =
⋃

n∈N
En. Since each En is closed, the set E is measurable

and we must show that µ(E) = 0. If µ(E) 6= 0, then there exists N ∈ N such
that µ(EN) > 0. Let P = {I1, I2, ..., Ip} be any partition of [0, 1] with ‖P‖ < 1

N

and let J = {j ≤ p : µ(EN ∩ Int(Ij)) > 0}. For each j ∈ J , we can take
tj, t

′
j ∈ EN ∩ Int(Ij) such that ‖Tf(tj)− Tf(t′j)‖ > 1

2N
. The latter implies

∑

j≤p
µ(Ij)‖Tf(tj)− Tf(t′j)‖ >

µ(EN)

2N
.

On the other hand, since T is an absolutely summing operator, there exists
C > 0 such that

∑

j≤p
µ(Ij)‖Tf(tj)− Tf(t′j)‖ ≤ C max

S⊆{1,...,p}
‖
∑

j∈S
µ(Ij)(f(tj)− f(t′j))‖ =
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= C‖f(P1)− f(P2)‖
for certain tagged partitions P1, P2 with ‖P1‖ = ‖P2‖ = ‖P‖. Due to the Riemann
integrability of f , we can choose P such that

∑

j≤p
µ(Ij)‖Tf(tj)− Tf(t′j)‖ <

µ(EN)

2N
,

in contradiction with
∑
j≤p

µ(Ij)‖Tf(tj)− Tf(t′j)‖ > µ(EN )
2N

.

Section 1.3
The weak Lebesgue property

Definition 1.3.1. A Banach space X is said to have the weak Lebesgue property
(WLP for short) if every Riemann integrable function f : [0, 1] → X is weakly
continuous a.e.

The WLP property was introduced in [Wan96]. In 1951 A. Alexiewicz and W.
Orlicz constructed a Riemann integrable function f : [0, 1]→ C([0, 1]) which is not
weakly continuous a.e. [AO51]. In particular, they showed that C([0, 1]) does not
have the WLP. Nevertheless, every Banach space with separable dual has the WLP.
Every Banach space with the LP property has the WLP property and, moreover,
if a Banach space has the Schur property then it has the LP if and only if it has the
WLP. Other spaces with the WLP, such as L1([0, 1]), can be found in [CRSP10]
and [WW01].

The following lemma provides a useful tool in the study of weak continuity:

Lemma 1.3.2. Let X be a Banach space, D = {x∗i }i∈Γ be a dense subset of X∗
(or, more generally, whose linear span is dense in X∗), f : [0, 1]→ X be a bounded
function, E ⊆ [0, 1] be the set of points of weak discontinuity of f and Ei be the set
of points of discontinuity of x∗i f : [0, 1]→ R for each i ∈ Γ. Then, E =

⋃
i∈ΓEi.

Proof. Notice that Ei ⊆ E for every i ∈ Γ. Since the set of points of discontinuity
of any linear combination of {x∗i f}i∈Γ is contained in

⋃
i∈ΓEi, we may suppose

that D is dense in X∗. We prove that f is weakly continuous at every point of
(
⋃
i∈ΓEi)

c. Let x∗ ∈ X∗ and let M be an upper bound for {‖f(t)‖ : t ∈ [0, 1]}.
Fix ε > 0 and t ∈ (

⋃
i∈ΓEi)

c. Then, there exists x∗i ∈ D such that ‖x∗i −x∗‖ < ε
3M

.
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Since t /∈ Ei, there exists a neighborhood U of t such that |x∗i f(t) − x∗i f(t′)| < ε
3

for every t′ ∈ U . Thus,

|x∗f(t)− x∗f(t′)| ≤ |x∗f(t)− x∗i f(t)|+ |x∗i f(t)− x∗i f(t′)|+ |x∗i f(t′)− x∗f(t′)| < ε

for every t′ ∈ U . Therefore, x∗f is continuous at each t ∈ (
⋃
i∈ΓEi)

c for every
x∗ ∈ X∗.

We need to introduce some cardinal invariants. By cov(M) we denote the
smallest cardinal κ such that there exist κ nowhere dense sets in [0, 1] whose union
is the interval [0, 1]. We are interested in the following characterization of this
cardinal:

Theorem 1.3.3 ([BS92]). The cardinal cov(M) coincides with the smallest cardi-
nal κ such that there exist κ closed sets in [0, 1] with Lebesgue measure zero whose
union does not have Lebesgue measure zero.

A set A ⊆ R is said to be strongly null if for every sequence of positive reals
(εn)∞n=1 there exists a sequence of intervals (In)∞n=1 such that µ(In) < εn for every
n ∈ N and A ⊆ ⋃n∈N In. The following result provides a useful characterization
of strongly null sets:

Theorem 1.3.4 ([Paw96]). A set A ⊆ R is strongly null if and only if for every
closed set F with Lebesgue measure zero, the set A+F = {a+z : a ∈ A and z ∈ F}
has Lebesgue measure zero.

We will denote by non(SN ) the smallest cardinal of a nonstrongly null set. We
have

ℵ1 ≤ cov(M) ≤ non(SN ) ≤ c.

Furthermore, under Martin’s axiom, and therefore under the Continuum Hypothe-
sis too, non(SN ) = cov(M) = c. Furthermore, if b = c then non(SN ) = cov(M),
where b denotes the bounding number2. However, there exist models of ZFC sat-
isfying cov(M) < non(SN ). For further references and results on this cardinals
we refer the reader to [BJ95].

It is known that every Banach space with separable dual has the WLP [WW01].
Next theorem gives a generalization in terms of cov(M).

Theorem 1.3.5. Every Banach space X such that dens(X∗) < cov(M) has the
WLP.

2b is the smallest cardinality of an unbounded set in (NN,≤∗), where f ≤∗ g if and only if
f(n) ≤ g(n) for all but finitely many n ∈ N.
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Proof. Let D = {x∗i }i∈Γ be a dense subset in X∗ with |Γ| < cov(M) and take
f : [0, 1]→ X a Riemann integrable function. We prove that f is weakly continuous
a.e. Let Ei be the set of points of discontinuity of x∗i f for every i ∈ Γ. Since
every function x∗i f is Riemann integrable, each Ei is a countable union of closed
sets with measure zero. Since |Γ| < cov(M), it follows from Theorem 1.3.3 that
E :=

⋃
i∈ΓEi has measure zero. By Lemma 1.3.2, E is the set of points of weak

discontinuity of f , so f is weakly continuous a.e.

Corollary 1.3.6. Every Banach space with separable dual has the WLP.

The space `1 has the WLP because it has the LP. Using Theorem 1.2.3, it is
easy to find a separable Banach space with nonseparable dual such that it does
not contain an isomorphic copy of `1 but it has the LP (for example, the space
defined by Odell in [Ode85]). On the other hand, the James tree space JT (see
[AK06, Section 13.4]) is a separable Banach space with nonseparable dual such
that it does not contain an isomorphic copy of `1 and it does not have the WLP:

Theorem 1.3.7. The James tree space does not have the WLP.

Proof. Let us recall the definition of the James tree space. We consider again the
dyadic tree

T = {(n, k) : n = 0, 1, 2, . . . and k = 1, 2, . . . , 2n}.
A segment of T is a finite sequence {p1, . . . , pm} such that pj+1 is an immediate
successor of pj for every j = 1, 2, . . . ,m − 1. The James tree space JT is the
completion of c00(T ) with the norm

‖x‖ = sup

√√√√√
l∑

j=1


 ∑

(n,k)∈Sj

x(n, k)




2

<∞,

where the supremum is taken over all l ∈ N and all sets of pairwise disjoint
segments S1, S2, . . . , Sl. Let {e(n,k)}(n,k)∈T be the canonical basis of JT , i.e. e(n,k)

is the characteristic function of (n, k) ∈ T . Define f : [0, 1]→ JT as follows:

f(t) =

{
e(n−1,k) if t = 2k−1

2n
with n ∈ N and k = 1, 2, . . . , 2n−1

0 in any other case.

We claim that f is Riemann integrable. Fix N ∈ N and let {I1, I2, . . . , I2N−1} be
a family of closed disjoint intervals of [0, 1] with

∑

1≤n≤2N−1

µ(In) ≤ 1

2N
and

n

2N
∈ Int(In) for each 1 ≤ n ≤ 2N − 1.
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Let J1, J2, . . . , J2N be the closed disjoint intervals of [0, 1] determined by

[0, 1] \
⋃

1≤n≤2N−1

Int(In).

Then, µ(Jn) ≤ 1
2N

and ‖∑2N

n=1 anf(tn)‖ ≤
√∑2N

n=1 a
2
n for every an ∈ R and every

tn ∈ Jn due to the definition of the norm in JT . Thus, any tagged partition PN
with intervals J1, I1, J2, . . . , I2N−1, J2N and points t1, t′1, t2, . . . , t′2N−1, t2N satisfies

‖f(PN)‖ ≤
∥∥∥∥

2N∑

n=1

µ(Jn)f(t2n−1)

∥∥∥∥+
2N−1∑

n=1

µ(In) ≤

≤

√√√√
2N∑

n=1

µ(Jn)2 +
1

2N
≤

√√√√
2N∑

n=1

1

22N
+

1

2N
≤ 2√

2N
.

Hence, ‖f(PN)‖ N→∞−−−→ 0 and f is Riemann integrable with integral zero.
We show that f is not weakly continuous at any irrational point t ∈ [0, 1]. Fix

a irrational point t ∈ [0, 1]. There exists a sequence of dyadic points
(

2kj−1

2nj

)∞
j=1

converging to t with (nj − 1, kj)
∞
j=1 a sequence in T such that (nj+1 − 1, kj+1) is

an immediate successor of (nj − 1, kj) for every j ∈ N. Then,
∑∞

j=1 e
∗
(nj−1,kj)

is a
functional in JT ∗, so the sequence f(

2kj−1

2nj
) = e(nj−1,kj) is not weakly null and f is

not weakly continuous at t.

Corollary 1.3.8 ([AO51]). C([0, 1]) does not have the WLP.

Proof. Since every subspace of a Banach space with the WLP has the WLP and
every separable Banach space is isometrically isomorphic to a subspace of C([0, 1]),
it follows from the previous theorem and the separability of JT that C([0, 1]) does
not have the WLP.

Corollary 1.3.9. Let K be a compact Hausdorff space.

1. If K is metrizable, then C(K) has the WLP if and only if K is countable.

2. If C(K) has the WLP then K is scattered. The converse is not true since
c0(c) does not have the WLP (Theorem 1.3.13) and it is isomorphic to a
C(K) space with K scattered.

Proof. IfK is a countable compact metric space, then C(K)∗ is separable [FHH+11,
Theorem 14.24], so C(K) has the WLP (Theorem 1.3.5). If K is an uncountable
compact metric space, then Milutin’s Theorem states that C(K) is isomorphic to
C([0, 1]) [AK06, Theorem 4.4.8], so C(K) does not have the WLP (Corollary 1.3.8).
Finally, if K is not scattered, then C(K) has a subspace isomorphic to C([0, 1])
(see the proof of [FHH+11, Theorem 14.26]), so C(K) does not have the WLP.
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Remark 1.3.10. Let {Xi}i∈Γ be a family of Banach spaces and X := (
⊕

i∈ΓXi)`p
with 1 < p <∞ or X := (

⊕
i∈ΓXi)c0. If f : [0, 1]→ X is a bounded function with

f(t) = (fi(t))i∈Γ and fi(t) ∈ Xi, then, due to Lemma 1.3.2, its set of points of weak
discontinuity is E =

⋃
i∈ΓEi, where Ei is the set of points of weak discontinuity

of the corresponding fi. Thus, the countable `p-sum or c0-sum of Banach spaces
with the WLP has the WLP. We cannot extend this result to uncountable `p-sums
or c0-sums even when Xi = R for every i ∈ Γ (Theorem 1.3.13).

Now, we study the WLP for the spaces of the form c0(κ) and `p(κ) with κ a
cardinal.

Theorem 1.3.11. For any cardinal κ and any 1 < p < ∞, if c0(κ) or `p(κ) has
the WLP, then X has the WLP for every Banach space X with dens(X∗) ≤ κ.

Proof. Suppose X is a Banach space without the WLP and such that dens(X∗) =
κ. Therefore, there exists a Riemann integrable function f : [0, 1]→ X which is not
weakly continuous a.e. Set {x∗α}α<κ a dense set in the dual ball BX∗ and fix fα =
x∗αf for every α < κ. Let En

α be the set of points where fα has oscillation strictly
bigger than 1

n
for every n ∈ N. Note that each En

α has Lebesgue measure zero.
Since f is not weakly continuous a.e., Lemma 1.3.2 asserts that

⋃
α<κ

(⋃
n∈NE

n
α

)

does not have Lebesgue measure zero, so there exists n ∈ N such that
⋃
α<κE

n
α

does not have Lebesgue measure zero.
Set F0 := En

0 and Fα := En
α \

(⋃
β<αE

n
β

)
for every α ∈ κ \ {0}. The sets

Fα are pairwise disjoint. Let χFα : [0, 1] → {0, 1} be the characteristic function
of Fα for every α < κ and g : [0, 1] → c0(κ) the function defined by the formula
g(t) =

∑
α<κ χFα(t)eα for every t ∈ [0, 1], where {eα}α<κ is the canonical basis of

c0(κ).
Notice that g is not weakly continuous a.e. since each χFα is not continuous at

any point of Fα (because µ(Fα) = 0) and
⋃
α<κ Fα =

⋃
α<κE

n
α is not Lebesgue null.

We claim that g is Riemann integrable. Let ε > 0. Since f is Riemann integrable,
there exists a partition Pε of [0, 1] such that ‖f(P1) − f(P2)‖ < ε

n
for all tagged

partitions P1 and P2 of [0, 1] that have the same intervals as Pε. For every α < κ
and any tagged partitions P1 and P2 of [0, 1] that have the same intervals as Pε,

|χFα(P1)− χFα(P2)| ≤
N∑

i=1

µ(Ii) ≤ n|fα(P ′1)− fα(P ′2)| ≤ n‖f(P ′1)− f(P ′2)‖ < ε

for suitable tagged partitions P ′1 and P ′2 of [0, 1] with the same intervals as Pε,
where I1, I2, . . . , IN are the intervals of Pε whose interior has non-empty intersec-
tion with En

α. Therefore, g is Riemann integrable and c0(κ) does not have the
WLP.

Fix 1 < p < ∞. We have to prove that `p(κ) does not have the WLP. Let
h : [0, 1] → `p(κ) be the function given by the formula h(t) =

∑
α<κ χFα(t)ẽα,
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where {ẽα}α<κ is the canonical basis of `p(κ). Since the sets Fα are pairwise
disjoint, the function h is well-defined. Moreover, h is not weakly continuous
a.e. because I ◦ h = g, where I : `p(κ) → c0(κ) is the canonical inclusion. Set
F =

⋃
α<κ Fα and φ : F → κ such that φ(t) = α if t ∈ Fα. We claim that h is

Riemann integrable with integral zero. Let ε > 0 and Pε = {I1, I2, . . . , IM} be a
partition of [0, 1] such that ‖g(P ′)‖ < ε for any tagged partition P ′ of [0, 1] with
the same intervals as Pε. Notice that

µ

( ⋃

Int(Ii)∩Fα 6=∅
Ii

)
< ε for every α < κ. (1.3)

Thus, for any tagged partition P = {(si, Ii)}Mi=1 the following inequalities hold:

‖h(P)‖ =

∥∥∥∥
∑

si∈F
µ(Ii)ẽφ(si)

∥∥∥∥ =

∥∥∥∥
∑

α<κ

µ

( ⋃

φ(si)=α

Ii

)
ẽα

∥∥∥∥ =

=

(∑

α<κ

µ

( ⋃

φ(si)=α

Ii

)p) 1
p

=

(∑

α<κ

µ

( ⋃

φ(si)=α

Ii

)p−1

µ

( ⋃

φ(si)=α

Ii

)) 1
p

≤

(1.3)

≤ ε
p−1
p

(∑

α<κ

µ

( ⋃

φ(si)=α

Ii

)) 1
p

≤ ε
p−1
p

Therefore, h is Riemann integrable with Riemann integral zero.

Since dens(c0(κ)∗) = dens(`p(κ)∗) = κ for any cardinal κ and any 1 < p <∞,
the following result is an immediate consequence of the previous theorem:

Corollary 1.3.12. For any cardinal κ and any 1 < p <∞, c0(κ) has the WLP if
and only if `p(κ) has the WLP.

The LP is separably determined [Piz89]. Nevertheless, it follows from the
following theorem that the WLP is not separably determined, since every separable
infinite-dimensional subspace of `2(κ) is isomorphic to `2 (which has separable
dual).

Theorem 1.3.13. Let κ be a cardinal and X = c0(κ) or X = `p(κ) with 1 < p <
∞.

1. If κ < cov(M) then X has the WLP.

2. If κ ≥ non(SN ) then X does not have the WLP.
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Proof. It is enough to prove the result when X = c0(κ) due to Corollary 1.3.12.
Since dens(c0(κ)∗) = κ, it follows from Theorem 1.3.5 that c0(κ) has the WLP if
κ < cov(M).

Suppose non(SN ) ≤ κ ≤ c. Due to Theorem 1.3.4, there exist a closed
Lebesgue null set F and a set E = {xα}α<κ in R such that E + F does not
have Lebesgue measure zero. Without loss of generality, we may assume that
E,F ⊆ [0, 1

2
] and consequently (E + F ) ⊆ [0, 1]. Set F0 := x0 + F and Fα :=

(xα + F ) \
(⋃

β<α Fβ

)
for every 0 < α < κ. Let χFα : [0, 1] → {0, 1} be the char-

acteristic function of Fα for every α < κ and f : [0, 1]→ c0(κ) the function defined
by the formula f(t) =

∑
α<κ χFα(t)eα for every t ∈ [0, 1], where {eα}α<κ is the

canonical basis of c0(κ).
Since the sets Fα are pairwise disjoint, the function f is well-defined. Each χFα

is not continuous at Fα, since Fα cannot contain an interval of [0, 1]. Therefore, f
is not weakly continuous a.e. because

⋃
α<κ Fα = E + F does not have Lebesgue

measure zero.
We claim that f is Riemann integrable. For every α < κ and every tagged

partition P = {(si, Ii)}Ni=1 we have

χFα(P) =
N∑

i=1

µ(Ii)χFα(si) ≤
N∑

i=1

µ(Ii − xα)χF (si − xα) = χF (P ′)

for a suitable tagged partition P ′ with ‖P‖ = ‖P ′‖. Since F is a closed Lebesgue
null set, the characteristic function χF is Riemann integrable due to Lebesgue’s
Theorem. Then, for every ε > 0 there exists δ > 0 such that χF (P) < ε for every
tagged partition P with ‖P‖ < δ. Therefore, for every ε > 0 there exists δ > 0
such that χFα(P) < ε for all tagged partitions P with ‖P‖ < δ and for every
α < κ. Thus, f is Riemann integrable since ‖f(P)‖ = supα<κ χFα(P) < ε for
every tagged partition P of [0, 1] with ‖P‖ < δ.

The facts that the countable `1-sum of spaces with the WLP has the WLP
(Theorem 1.3.16) and that L1(λ) has the WLP if dens(L1(λ)) < cov(M) (Theorem
1.3.17) will be a consequence of the following lemma.

Lemma 1.3.14. Let (Ω,Σ, λ) be a probability space and P = {PA : X → X : A ∈
Σ} a family of bounded linear operators on a Banach space X such that

(1) PA + PΩ\A = PΩ = idX for every A ∈ Σ.

(2) ‖PA(x)‖ ≤ ‖x‖ for every x ∈ X and every A ∈ Σ.

(3) ‖PA(x)‖+ ‖PB(x′)‖ ≤ max{‖x+x′‖, ‖x−x′‖} for every x, x′ ∈ X whenever
A ∩B = ∅.
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(4) limλ(A)→0 ‖PA(x)‖ = 0 for every x ∈ X.

Let f : [0, 1] → X be a Riemann integrable function. Then there is a measur-
able set E ⊆ [0, 1] with µ(E) = 1 such that, for every sequence (tn)∞n=1 in [0, 1]
converging to some t ∈ E, the set {f(tn) : n ∈ N} is P-uniformly integrable, in
the sense that

lim
λ(A)→0

sup
n∈N

∥∥PA(f(tn))
∥∥ = 0.

Proof. The proof is similar to that of [CRSP10, Lemma 2.3] and [WW01, Lemma
3]. Fix β > 0 and denote by Eβ the set of points t ∈ [0, 1] such that for every
δ > 0 there exist t′ ∈ [0, 1] with |t′ − t| < δ and a set A ∈ Σ with λ(A) < δ such
that

‖PA(f(t)− f(t′))‖ > β.

Let µ∗ be the Lebesgue outer measure in [0, 1]. We show that µ∗(Eβ) = 0 with a
proof by contradiction. Suppose µ∗(Eβ) > 0. Since f is Riemann integrable, we
can choose a partition P = {J1, . . . , Jm} of [0, 1] such that

∥∥∥∥
m∑

j=1

µ(Jj)(f(ξj)− f(ξ′j))

∥∥∥∥ < βµ∗(Eβ) (1.4)

for all choices ξj, ξ′j ∈ Jj, 1 ≤ j ≤ m. Let S = {j ∈ {1, . . . ,m} : Ij ∩ Eβ 6= ∅},
where Ij = Int(Jj) for each j = 1, . . . ,m. Thus,

∑

j∈S
µ∗(Ij ∩ Eβ) = µ∗(Eβ). (1.5)

It is not restrictive to suppose S = {1, . . . , n} for some 1 ≤ n ≤ m.
Because of the definition of Eβ and I1, there exist points t1 ∈ I1 ∩ Eβ and

t′1 ∈ I1 such that ‖f(t1)−f(t′1)‖ ≥ ‖PA(f(t1)−f(t′1))‖ > β for some A ∈ Σ, hence
‖µ(I1)(f(t1)− f(t′1))‖ > βµ(I1).

Fix 1 ≤ k < n and assume that we have already chosen points tj, t′j ∈ Ij for all
1 ≤ j ≤ k with the property that

∥∥∥∥
k∑

j=1

µ(Ij)(f(tj)− f(t′j))

∥∥∥∥ > β

( k∑

j=1

µ(Ij)

)
.

Define x :=
k∑
j=1

µ(Ij)(f(tj)− f(t′j)) ∈ X and

α := ‖x‖ − β
( k∑

j=1

µ(Ij)

)
> 0.
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Due to (4), we can choose δ > 0 such that ‖PA(x)‖ < α whenever A ∈ Σ satisfies
λ(A) < δ. Take tk+1, t

′
k+1 ∈ Ik+1 and a set A ∈ Σ with λ(A) < δ such that

‖PA(f(tk+1)− f(t′k+1))‖ > β, so y := µ(Ik+1)(f(tk+1)− f(t′k+1)) satisfies

‖PA(y)‖ > βµ(Ik+1).

By the choice of A, (1) and (3), we also have (interchanging the role of tk+1

and t′k+1 if necessary)

∥∥∥∥
k+1∑

j=1

µ(Ij)(f(tj)− f(t′j))

∥∥∥∥ ≥ ‖PA(y)‖+ ‖PAc(x)‖ ≥ ‖PA(y)‖+ ‖x‖ − ‖PA(x)‖ >

> βµ(Ik+1) + α + β
k∑

j=1

µ(Ij)− ‖PA(x)‖ > β
k+1∑

j=1

µ(Ij).

Thus, there exist tj, t′j ∈ Ij for all 1 ≤ j ≤ n such that

∥∥∥∥
n∑

j=1

µ(Ij)(f(tj)− f(t′j))

∥∥∥∥ > β

( n∑

j=1

µ(Ij)

)
(1.5)

≥ βµ∗(Eβ),

which contradicts the inequality (1.4). So we can conclude that µ∗(Eβ) = 0.
Therefore, E := [0, 1] \⋃n∈NE 1

n
is measurable with µ(E) = 1. Fix t ∈ E and

m ∈ N. Since t /∈ E 1
m
, there exists δm > 0 such that for every t′ ∈ [0, 1] with

|t′ − t| < δm and every set A ∈ Σ with λ(A) < δm,

‖PA(f(t)− f(t′))‖ ≤ 1

m
.

Thus, for every m ∈ N, every sequence (tn)∞n=1 converging to t and every A ∈ Σ
with λ(A) < δm,

‖PA(f(tn))‖ ≤ ‖PA(f(t))‖+
1

m
for n big enough depending only on m.

Now the conclusion follows from (4).

Let {Xi}i∈Γ be a family of Banach spaces. We denote by πj : (
⊕

i∈ΓXi)`1 → Xj

the canonical projection onto Xj for each j ∈ Γ.
We will need the following property of `1-sums and the space L1(λ) for Theo-

rems 1.3.16 and 1.3.17:

Lemma 1.3.15. Let (Ω,Σ, λ) be a probability space and {Xi}i∈Γ a family of Ba-
nach spaces. Then:
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1. max{‖x + y‖, ‖x − y‖} ≥ ∑
i∈A ‖πi(x)‖ +

∑
i∈B ‖πi(y)‖ for every vectors

x, y ∈ (
⊕

i∈ΓXi)`1 and any disjoint sets A,B ⊆ Γ.

2. max{‖f + g‖, ‖f − g‖} ≥
∫
A
|f |dλ +

∫
B
|g|dλ for any f, g ∈ L1(λ) and any

disjoint sets A,B ∈ Σ.

Proof. The second part is essentially Lemma 2 of [WW01]. The proof of the
first part is analogous and we include it for the sake of completeness. Let x, y ∈
(
⊕

i∈Γ Xi)`1 and A,B ⊆ Γ be disjoint sets. The conclusion follows from the fol-
lowing elementary consequence of the triangle inequality 1

2
(‖u + v‖ + ‖u− v‖) ≥

max{‖u‖, ‖v‖} and the following inequalities:

max{‖x+ y‖, ‖x− y‖} ≥ 1

2
(‖x+ y‖+ ‖x− y‖)

=
∑

i∈Γ

1

2
(‖πix+ πiy‖+ ‖πix− πiy‖)

≥
∑

i∈Γ

max{‖πix‖, ‖πiy‖}

≥
∑

i∈A
max{‖πix‖, ‖πiy‖}+

∑

i∈B
max{‖πix‖, ‖πiy‖}

≥
∑

i∈A
‖πix‖+

∑

i∈B
‖πiy‖.

Theorem 1.3.16. Let {Xi}i∈N be Banach spaces with the WLP. Then the space
X := (

⊕
i∈NXi)`1 has the WLP.

Proof. We are going to apply Lemma 1.3.14. Take Ω := N, Σ := P(N) the power
set of N, λ(A) :=

∑
n∈A 2−n and P = {PA : A ∈ Σ} with

πi(PA(x)) =

{
πi(x) if i ∈ A
0 if i /∈ A

for every A ∈ Σ and every x ∈ X. Property (3) of Lemma 1.3.14 is Lemma
1.3.15(1) and property (4) holds because if λ(A) < 1

2n
, then A ⊆ {n, n + 1, . . . },

so
‖PA(x)‖ =

∑

i∈A
‖πi(x)‖ ≤

∑

i≥n
‖πi(x)‖

for every x ∈ X. Therefore, we can apply Lemma 1.3.14, so there exists a mea-
surable set E ⊆ [0, 1] with µ(E) = 1 such that for every sequence (tn)∞n=1 in [0, 1]
converging to some t ∈ E the set {f(tn) : n ∈ N} is P-uniformly integrable. We
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can assume that, for each i ∈ N, the map t 7→ πi(f(t)) is weakly continuous at
each point of E because each Xi has the WLP.

It is a well-known fact that a sequence (xn)∞n=1 in X converges weakly to x ∈ X
if and only if it satisfies the following two conditions:

(i) πi(xn)→ πi(x) weakly in Xi for every i ∈ N;
(ii) for every ε > 0 there is a finite set J ⊆ N such that supn∈N ‖PN\J(xn)‖ ≤ ε.

Since P-uniform integrability is equivalent to (ii), it follows that f is weakly
continuous at each point of E.

A similar idea to that of Theorem 1.3.16 lets us prove the following theorem,
which improves [WW01, Theorem 5] and [CRSP10, Proposition 2.10].

Theorem 1.3.17. Let (Ω,Σ, λ) be a probability space.

1. If dens(L1(λ)) < cov(M) then L1(λ) has the WLP.

2. If dens(L1(λ)) ≥ non(SN ) then L1(λ) does not have the WLP.

Proof. Fix a Riemann integrable function f : [0, 1] → L1(λ). Take PA(x) := xχA
for every A ∈ Σ and every x ∈ L1(λ). The family of operators {PA : A ∈ Σ}
fulfills the requirements of Lemma 1.3.14 (bear in mind Lemma 1.3.15). Then
P-uniform integrability is the usual uniform integrability and therefore a set is
bounded and P-uniformly integrable if and only if it is relatively weakly compact
due to Dunford’s Theorem (see [AK06, Theorem 5.2.9]). Lemma 1.3.14 ensures
that there exist a measurable set E ⊆ [0, 1] with µ(E) = 1 such that for every
sequence (tn)∞n=1 in [0, 1] converging to some t ∈ E, the set {f(tn) : n ∈ N} is
relatively weakly compact.

Let C ⊆ Σ be a dense family of λ-measurable sets, i.e. such that

inf
C∈C

λ(A4 C) = 0 for every A ∈ Σ.

Let (hn)∞n=1 be a relatively weakly compact sequence in L1(λ) and h ∈ L1(λ).
Since C is a dense family of λ-measurable sets, if

∫
C
hn dµ →

∫
C
h dµ for every

C ∈ C, then h = w-limhn.
Suppose dens(L1(λ)) < cov(M). Then C can be taken such that |C| < cov(M).

Therefore, we can assume that, for each C ∈ C, the Riemann integrable map
t 7→

∫
C
f(t) dλ is continuous at each point of E. Then, for every sequence (tn)∞n=1

in [0, 1] converging to a point t ∈ E, we have f(t) = w-lim f(tn).
Now suppose ν = dens(L1(λ)) ≥ non(SN ). Due to Maharam’s Theorem (see

[Lac12, p. 127, Theorem 9]), L1(λ) contains an isometric copy of L1(µν), where
µν is the usual product probability measure on {0, 1}ν . Since L1(µν) contains an
isomorphic copy of `2(ν) (see [Lac12, p. 128, Theorem 12]) and `2(ν) does not have
the WLP (Theorem 1.3.13), we conclude that L1(λ) does not have the WLP.
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Theorem 1.3.16 can be extended to arbitrary `1-sums:

Theorem 1.3.18. The arbitrary `1-sum of a family of Banach spaces with the
WLP has the WLP.

Proof. The proof uses some ideas of [MdRF84]. Let f : [0, 1]→ X := (
⊕

i∈Γ Xi)`1
be a Riemann integrable function, where {Xi}i∈Γ is a family of Banach spaces
with the WLP. For each J ⊆ Γ, we denote by PJ : X → X the function defined by
πi (PJ(x)) = πi(x) if i ∈ J and πi (PJ(x)) = 0 in any other case. Let (rn)∞n=1 be an
enumeration of the rational numbers in [0, 1] and fix a countable set L ⊆ Γ such
that PL(f(rn)) = f(rn) for every n ∈ N. Then, f = (f − PLf) + PLf . Since PLf
is Riemann integrable and takes values in the space

X|L := {x ∈ X : πi(x) = 0 for each i /∈ L},

which is isomorphic to a countable `1-sum of spaces with the WLP, by Theorem
1.3.16 PLf is weakly continuous almost everywhere.

Therefore, we can assume that
∫ 1

0
f(t)dt = 0 and that f is null over a dense

set. Let

AJn := {t ∈ [0, 1] : ‖PJc(f(t))‖ ≥ 1

n
}

for each n ∈ N and each subset J ⊆ Γ. If J1 ⊆ J2 ⊆ Γ, then AJ2n ⊆ AJ1n .

Claim: For every n ∈ N there exists a countable set J ⊆ Γ with µ
(
AJn

)
= 0.

Suppose this is not the case. Then, there exist n ∈ N and δ > 0 with µ
(
AJn

)
>

δ for every countable subset J ⊆ Γ (if for every m ∈ N we can take a countable
set Jm ⊆ Γ with µ

(
AJmn

)
< 1

m
, then J =

⋃
m∈N Jm satisfies µ

(
AJn

)
= 0). Let

P = {I1, I2, . . . , IN} be a partition of [0, 1] such that

∥∥∥∥
N∑

j=1

µ(Ij)(f(ξj)− f(ξ′j))

∥∥∥∥ <
δ

n
for all choices ξj, ξ′j ∈ Ij, 1 ≤ j ≤ N. (1.6)

Notice that since we can choose any arbitrary subcollection of ξj, ξ′j from the dense
subset where f = 0, the same inequality as (1.6) remains valid for any arbitrary
partial sum

∑
j∈M µ(Ij)(f(ξj) − f(ξ′j)) with M ⊆ {1, ..., N}. Let J ⊆ Γ be a

countable subset. Since
N∑
j=1

µ
(
Ij ∩ AJn

)
= µ

(
AJn

)
> δ and f is null over a dense

set, we can suppose that there exist ξ1 ∈ Int(I1) ∩ AJn and ξ′1 ∈ I1 such that
‖µ(I1)(f(ξ1) − f(ξ′1))‖ ≥ 1

n
µ(I1). Let J1 = supp f(ξ1) ∪ supp f(ξ′1). By (1.6)
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we have µ(I1) < δ <
∑N

j=1 µ
(
Ij ∩ AJ1n

)
and so it is not restrictive to suppose

Int(I2)∩AJ1n 6= ∅. Thus, due to Lemma 1.3.15, we can choose ξ2, ξ
′
2 ∈ I2 such that

‖µ(I1)(f(ξ1)− f(ξ′1)) + µ(I2)(f(ξ2)− f(ξ′2))‖ ≥ 1

n
(µ(I1) + µ(I2)).

Fix 1 ≤ k < N and assume that we have already chosen points ξj, ξ′j ∈ Ij for all
1 ≤ j ≤ k with the property that

∥∥∥∥
k∑

j=1

µ(Ij)(f(ξj)− f(ξ′j))

∥∥∥∥ ≥
1

n

(
k∑

j=1

µ(Ij)

)
.

Set Jk :=
⋃k
j=1 supp f(ξj) ∪ supp f(ξ′j), which is countable. By (1.6) we have

k∑
j=1

µ(Ij) < δ <
∑N

j=1 µ
(
Ij ∩ AJkn

)
, hence it is not restrictive to suppose that

Int(Ik+1) ∩ AJkn 6= ∅ and therefore that there exist points ξk+1, ξ
′
k+1 ∈ Ik+1 such

that ∥∥∥∥
k+1∑

j=1

µ(Ij)(f(ξj)− f(ξ′j))

∥∥∥∥ ≥
1

n

(
k+1∑

j=1

µ(Ij)

)
.

Since
N∑
j=1

µ(Ij) = 1 > δ, it follows that there exist ξj, ξ′j ∈ Ij for every 1 ≤ j ≤ N

such that ∥∥∥∥
N∑

j=1

µ(Ij)(f(ξj)− f(ξ′j))

∥∥∥∥ ≥
δ

n
.

But this is a contradiction with (1.6). Therefore, the Claim is proved.
Thus, for every n ∈ N there exists a countable set Jn such that µ

(
AJnn

)
= 0.

Fix J :=
⋃
n∈N Jn. Theorem 1.3.16 guarantees the existence of a set F ⊆ [0, 1]

of measure one such that PJ(f) is weakly continuous at every point of F . Let
E = F \⋃n∈NA

J
n. Then, µ(E) = 1, f = PJ(f)+PJc(f), PJ(f) is weakly continuous

at each point of E and PJc(f) is norm continuous at each point of E (if tn →
t ∈ E then PJc(f)(t) = 0 and for every m ∈ N, tn /∈ AJm for n big enough so
‖PJc(f)(tn)‖ < 1

m
).

Corollary 1.3.19 ([Piz89, NOR73]). `1(κ) has the LP for any cardinal κ.

Proof. Since `1(κ) has the Schur property, `1(κ) has the LP if and only it has the
WLP. Therefore, the conclusion follows from Theorem 1.3.18.

As an application of 1.3.18 we also obtain the following result:
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Corollary 1.3.20. Let K be a compact Hausdorff space. Then, C(K)∗ has the
WLP if dens(L1(λ)) < cov(M) for every regular Borel probability measure λ on
K.

Proof. For every compact Hausdorff space K, the Banach space C(K)∗ is isometric
to an `1-sum of L1(λ) spaces, where each λ is a regular Borel probability measure
on K (see the proof of [AK06, Proposition 4.3.8]). Thus, C(K)∗ has the WLP if
each space L1(λ) has the WLP, due to Theorem 1.3.18. Hence, the result follows
from Theorem 1.3.17.

Corollary 1.3.21. If K is a compact Hausdorff space in the class MS (i.e. L1(λ)
is separable for every regular Borel probability measure on K), then C(K)∗ has the
WLP.

Some classes of compact spaces in the class MS are metric compacta, Eberlein
compacta, Radon-Nikodým compacta, Rosenthal compacta and weakly Radon-
Nikodým compacta (see next chapter for definitions). For more details on this
class, we refer the reader to [DK95], [MP12] and [PS15].

The LP is a three-space property, i.e. ifX is a Banach space and Y is a subspace
of X such that Y and X/Y have the LP, then X has the LP [Piz89, Proposition
1.19]. This result follows from Michael’s Selection Theorem. However, as far as
we are concerned, it is not known whether the WLP is a three-space property. We
have a positive result in the following case:

Theorem 1.3.22. Let X be a Banach space and Y a subspace of X. If Y is
reflexive, dens(Y ) < cov(M) and X/Y has the WLP, then X has the WLP.

Proof. Let Q : X → X/Y be the quotient operator and φ : X/Y → X be a norm-
norm continuous map such that Qφ = 1X/Y given by Michael’s Selection Theorem
(see [FHH+11, Section 7.6]). Let f : [0, 1]→ X be a Riemann integrable function.
Then, since Qf is Riemann integrable and X/Y has the WLP, there exists a set
E ⊆ [0, 1] with µ(E) = 1 such that Qf is weakly continuous at every point of E.
Set

C = {x ∈ X : ∃ (tn)∞n=1 converging to some t ∈ E with x = w- lim f(tn)}. (1.7)

First we are going to see that dens(C) < cov(M). Let x ∈ C and (tn)∞n=1 as in
(1.7). Then Qx = w-limQf(tn) = Qf(t). Therefore, x = φ(Qx)+(x−φ(Qx)) with
φ(Qx) ∈ φ(Qf(E)) and x−φ(Qx) ∈ Y . Notice that φ(Qf(E)) is separable because
of the w-separability of Qf(E) and Mazur’s Lemma. Thus, C ⊆ φ(Qf(E)) + Y
satisfies dens(C) < cov(M).

Let {x∗α}α∈Γ ⊆ X∗ be a set separating points of C with |Γ| < cov(M). Set
E0 ⊆ E with µ(E0) = 1 such that x∗αf is continuous at every point of E0 for every
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α ∈ Γ. Notice that this can be done because the set of discontinuity points of
each x∗αf is an Fσ Lebesgue null set and |Γ| < cov(M). We claim that f is weakly
continuous at each point of E0. Let t ∈ E0 and (tn)∞n=1 be a sequence converging
to t. Since Qf(t) = w-limQf(tn), the set {Qf(tn) : n ∈ N} is relatively weakly
compact in X/Y . From the reflexivity of Y , it follows that Q is a Tauberian
operator (i.e. Q∗∗−1

(X/Y ) ⊆ X), so {f(tn) : n ∈ N} is relatively weakly compact
in X (see [GMA10, Theorem 2.1.5 and Corollary 2.2.5]). Therefore, it is enough
to prove the uniqueness of the limit of the subsequences of (f(tn))∞n=1. Let x = w-
lim
k
f(tnk). Then, x, f(t) ∈ C and x∗α(x) = lim

k
x∗α(f(tnk)) = x∗α(f(t)) for every

α ∈ Γ, so x = f(t).

Section 1.4
Weak continuity does not imply integrability

It is not true that every weakly continuous function is Riemann integrable
[AO51]. In fact, V. Kadets proved the following theorem:

Theorem 1.4.1 ([Kad94]). If X is a Banach space without the Schur property,
then there is a weakly continuous function f : [0, 1] → X which is not Riemann
integrable.

The proof of the previous theorem together with Josefson-Nissenzweig Theorem
(see [Die84, Chapter XII]) gives the following corollary:

Corollary 1.4.2. Given an infinite-dimensional Banach space X, there always
exists a weak* continuous function f : [0, 1]→ X∗ which is not Riemann integrable.

In [WY00], Wang and Yang extend the previous result to a general locally
convex topology weaker than the norm topology. In this section, we generalize
these results in Theorem 1.4.4.

Following the terminology used in [EGS14], we say that a subsetM of a Banach
space is spaceable if M ∪ {0} contains a closed infinite-dimensional subspace.

We start with the definitions of τ -Dunford-Pettis operators and the τ -Schur
property, which coincide with the classical definitions of Dunford-Pettis or com-
pletely continuous operator and the Schur property when τ is the weak topology.

Definition 1.4.3. Let X and Y be Banach spaces and τ a locally convex topology
on X weaker than the norm topology. An operator T : X → Y is said to be τ -
Dunford-Pettis (τ -DP for short) if it carries bounded τ -null sequences to norm
null sequences. A Banach space X is said to have the τ -Schur property if the
identity operator I : X → X is τ -DP.
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Theorem 1.4.4. Let X and Y be Banach spaces and τ be a locally convex topology
on X weaker than the norm topology. If T : X → Y is an operator which is not
τ -DP, then the family of all bounded τ -continuous functions f : [0, 1] → X such
that Tf is not Riemann integrable is spaceable in `∞([0, 1], X), the space of all
bounded functions from [0, 1] to X with the supremum norm.

Proof. The proof uses ideas from [Kad94]. Since T is not τ -DP, we can take a
bounded sequence (xn)∞n=1 that is τ -convergent to zero such that ‖Txn‖ = 1 for
all n ∈ N.

Let K ⊆ [0, 1] be a copy of the Cantor set constructed by removing from [0, 1]
an open interval I1

1 in the middle of [0, 1] and removing open intervals In1 , In2 , . . . In2n
from the middles of the remaining intervals in each step. Suppose that the removed
intervals are so small that µ(K) > 2

3
. Let Ca([0, 1]) be the closed subspace of

C([0, 1]) consisting of all continuous functions g : [0, 1] → R antisymmetric with
respect to the axis x = 1

2
and with g(0) = g(1) = 0. For every g ∈ Ca([0, 1]) and

every open interval I = (a, b) in [0, 1], we define the functions gI : [0, 1] → R and
fg : [0, 1]→ X as follows

gI(t) =

{
0 if t /∈ (a, b),

g( t−a
b−a) if t ∈ [a, b].

fg(t) =

{
0 if t ∈ K,
gInk (t)xn if t ∈ Ink .

The function φ : Ca([0, 1]) → `∞([0, 1], X) given by the formula φ(g) := fg for
every g ∈ Ca([0, 1]) is a linear map and satisfies ‖φ(g)‖ = (supn ‖xn‖)‖g‖ for every
g ∈ Ca([0, 1]). Therefore, φ is a multiple of an isometry. Thus, V := φ(Ca([0, 1]) is
an infinite-dimensional closed subspace of `∞([0, 1], X).

We are going to check that each function fg 6= 0 is τ -continuous but Tfg is
not Riemann integrable. Since g is continuous, g(0) = g(1) = 0 and xn

τ−→ 0, fg is
τ -continuous. Suppose Tfg is Riemann integrable. Then,

y∗
(∫ 1

0

Tfg(t)dt

)
=

∫ 1

0

y∗Tfg(t)dt =
∑

k,n

y∗(Txn)

∫

Ink

gInk (t)dt = 0

for each y∗ ∈ Y ∗. The only possible value for the Riemann integral of Tfg is 0
due to the above equality. Choose a partition P = {J1, J2, . . . , JN} of [0, 1]. Let
A = {j : 1 ≤ j ≤ N, Int Jj ∩ K 6= ∅}. We can take m ∈ N such that if j ∈ A
then Jj contains some interval Imk . Hence, if j ∈ A, there is tj ∈ Jj such that
fg(tj) = ‖g‖xm. If j /∈ A, then we pick any tj ∈ Int Jj. From the inequality∑

j∈A µ(Jj) ≥ µ(K) > 2
3
, we deduce

∥∥∥∥
N∑

j=1

µ(Jj)Tfg(tj)

∥∥∥∥ =

∥∥∥∥
∑

j∈A
µ(Jj)Tfg(tj) +

∑

j /∈A
µ(Jj)Tfg(tj)

∥∥∥∥ ≥
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≥
∥∥∥∥
∑

j∈A
‖g‖µ(Jj)Txm

∥∥∥∥−
∥∥∥∥
∑

j /∈A
µ(Jj)Tfg(tj)

∥∥∥∥ >
2

3
‖g‖ − 1

3
sup
t∈[0,1]

‖Tfg(t)‖ =
1

3
‖g‖.

Then, Tfg is Riemann integrable if and only if g = 0 if and only if fg = 0.

The next corollary gives an affirmative answer to a question posed by Sofi in
[Sof12].

Corollary 1.4.5. Given an infinite-dimensional Banach space X, the set of all
weak* continuous functions f : [0, 1] → X∗ which are not Riemann integrable is
spaceable in `∞([0, 1], X∗).

Proof. X∗ is not w∗-Schur for any infinite-dimensional Banach space X due to
the Josefson-Nissenzweig Theorem. Thus, the conclusion follows from Theorem
1.4.4.

Given a Banach space X, a function f : [0, 1] → X is said to be scalarly Rie-
mann integrable if every composition x∗f with x∗ ∈ X∗ is Riemann integrable.

We can also characterize Dunford-Pettis operators thanks to Theorem 1.4.4.
The equivalence (1)⇔ (3) in the following corollary was mentioned without proof
in [PdRF80].

Corollary 1.4.6. Let X and Y be Banach spaces and T : X → Y be an operator.
The following statements are equivalent:

1. T is Dunford-Pettis.

2. Tf is Riemann integrable for every w-continuous function f : [0, 1]→ X.

3. Tf is Riemann integrable for every scalarly Riemann integrable function
f : [0, 1]→ X.

Proof. (2) ⇒ (1) is a consequence of Theorem 1.4.4. Since every w-continuous
function f : [0, 1] → X is scalarly Riemann integrable, (3) implies (2). Therefore,
it remains to prove (1) ⇒ (3). Suppose T is Dunford-Pettis and fix (Pn)∞n=1 a
sequence of tagged partitions of [0, 1] with ‖Pn‖ n−→ 0. Let f : [0, 1] → X be
a scalarly Riemann integrable function. Then, x∗f(Pn)

n−→
∫ 1

0
x∗f(t)dt for every

x∗ ∈ X∗. Thus, f(Pn) is a w-Cauchy sequence in X, so Tf(Pn) is norm convergent
to some y ∈ Y . The limit y does not depend on the sequence of tagged partitions,
since if (P ′n)∞n=1 is any other sequence of tagged partitions with ‖P ′n‖

n−→ 0, then
f(Pn)−f(P ′n) is weakly null and this in turn implies that ‖Tf(Pn)−Tf(P ′n)‖ n−→ 0.
Thus, Tf is Riemann integrable.



Chapter 2

Weakly Radon-Nikodým compact
spaces

Section 2.1
Introduction

In [Nam87], I. Namioka defined a compact space K to be Radon-Nikodým
(RN for short) if and only if it is homeomorphic to a weak∗-compact subset of
a dual Banach space with the Radon-Nikodým property. C. Stegall proved that
the dual X∗ of a Banach space X has the Radon-Nikodým property if and only if
every separable subspace of X has separable dual. In this case X is said to be an
Asplund space.

Since every Asplund Banach space does not contain an isomorphic copy of `1,
the class of weakly Radon-Nikodým compact spaces generalizes the class of RN
compact spaces. In [GM12], E. Glasner and M. Megrelishvili define a compact
space to be weakly Radon-Nikodým (WRN for short) if and only if it is home-
omorphic to a weak∗-compact subset of the dual of a Banach space not containing
an isomorphic copy of `1. The name of this class is motivated by a characterization
of dual Banach spaces with the weak Radon-Nikodým property1 as those Banach
spaces whose predual does not contain an isomorphic copy of `1.

In this chapter we focus on the class of WRN compacta. Nevertheless, we also
study some other classes of compact spaces associated to classes of Banach spaces.

Definition 2.1.1. Let X be a Banach space.

1The weak Radon-Nikodým property is analogous to the Radon-Nikodým property but with
respect to Pettis integral instead of Bochner integral.
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• A sequence (xn)∞n=1 in X is said to be weakly Cauchy if x∗(xn) is convergent
for every x∗ ∈ X∗.

• A set W ⊆ X is said to be weakly precompact if every sequence in W has a
weakly Cauchy subsequence. Notice that, by the Eberlein-Šmulian Theorem,
every weakly precompact set is weakly compact.

• X is said to be weakly compactly generated (WCG for short) if there exists
a weakly compact set W ⊆ X such that span(W ) = X.

• X is said to be weakly precompactly generated (WPG for short) if there exists
a weakly precompact set W ⊆ X such that span(W ) = X.

• X is said to be Asplund if every separable subspace of X has separable dual.

• X is said to be Asplund generated if there exist an Asplund space Y and a
bounded linear operator T : Y → X with dense range.

• X is said to be weakly Lindelöf determined (WLD) if (X∗, w∗) can be topo-
logically embedded in a Σ-product

Σ(Γ) = {x ∈ RΓ : supp(x) is countable}

with the topology of pointwise convergence.

These classes of Banach spaces are related with the following classes of compact
spaces (see [Kos15b]):

Definition 2.1.2. Let K be a compact space.

• K is said to be in the class MS if every regular Borel measure on K is
separable.

• K is said to be Eberlein if it is homeomorphic to a weakly compact subset of
a Banach space.

• K is said to be Corson if it can be embedded in a Σ-product Σ(Γ) for some
set Γ.

Theorem 2.1.3. Let X be a Banach space and K a compact space.

• K is Eberlein if and only if C(K) is WCG.

• If X is WCG then (BX∗ , w
∗) is Eberlein. Moreover, X is a subspace of a

WCG space if and only if (BX∗ , w
∗) is Eberlein.

• K is Corson and it is in the class MS if and only if C(K) is WLD.
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• X is WLD if and only if (BX∗ , w
∗) is Corson.

• K is RN if and only if C(K) is Asplund generated.

• If X is Asplund generated then (BX∗ , w
∗) is RN.

The class of WPG Banach spaces was introduced by R. Haydon in [Hay81]. In
this paper he considered the class of compact spaces K such that C(K) is WPG.
Namely, he said the following:

The present author would be interested to know whether WPG spaces
have any of the good properties of these other classes, and whether there
is a nice characterization of those compact spaces T for which C(T ) is
WPG. One obvious question is whether every such space T contains a
nontrivial convergent sequence.

We finish this section with results analogous to Theorem 2.1.3 for WPG Banach
spaces and WRN compact spaces. In particular, we prove that the class of compact
spaces considered by R. Haydon is exactly the class of WRN compacta.

Theorem 2.1.4. Let K be a WRN compact space. Then C(K) is WPG.

Proof. Without loss of generality, we suppose that K is a subspace of (BX∗ , w
∗)

for some Banach space X not containing `1. Then, Rosenthal’s `1-theorem 2.2.9
asserts that BX is a weakly precompact set.

Let T : X → C(K) be the bounded linear operator determined by the for-
mula (Tx)(x∗) = x∗(x) for every x∗ ∈ K and every x ∈ X. Notice that every
bounded linear operator transforms weakly Cauchy sequences into weakly Cauchy
sequences and therefore weakly precompact sets into weakly precompact sets.
Thus, T (BX) ⊆ C(K) is a weakly precompact set in C(K) separating the points
of K. Set W = T (BX)∪ {1}, which is also a weakly precompact set in C(K), and
take

Wn =
W n

2n
=

{
f1f2 . . . fn

2n
∈ C(K) : f1, . . . fn ∈ W

}
.

Each Wn is also weakly precompact. Fix L =
⋃
n∈NWn. Since every sequence

in L has a subsequence convergent to zero or a subsequence in some Wn, the set
L is also weakly precompact. Notice that span(L) is a subspace of C(K) closed
under multiplication which contains constant functions and separates points of K.
By the Stone-Weierstrass Theorem, we have spanL = C(K) and therefore C(K) is
WPG.

Theorem 2.1.5. If X is a WPG Banach space then (BX∗ , w
∗) is WRN.
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Proof. An analogous version of the Davis-Figiel-Johnson-Pełczińsky Factorization
Method [DFJP74] states that a Banach space X is WPG if and only if there exists
a Banach space Y not containing `1 and a bounded linear operator T : Y → X
with dense range (see for example [AGL+16, Section 4]). Then T ∗ : X∗ → Y ∗

restricted to BX∗ is a weak*-embedding from BX∗ into the dual of a Banach space
not containing `1, so BX∗ is WRN.

Corollary 2.1.6. A compact space K is WRN if and only if C(K) is WPG.

Proof. Since every subspace of a WRN compact space is WRN and K is homeo-
morphic to a subset of BC(K)∗ , the result is a consequence of Theorems 2.1.4 and
2.1.5.

It is not true in general that if X has WRN dual ball then X is WPG. A
Banach space is said to be weakly sequentially complete if every weakly Cauchy
sequence in it is weakly convergent. Therefore, by the Eberlein-Šmulian Theorem,
a weakly sequentially complete Banach space is WPG if and only if it is WCG. For
every measure µ, the space L1(µ) is weakly sequentially complete. H. Rosenthal
constructed a probability measure µ and a nonWCG subspaceX of L1(µ) [Ros74b].
Therefore, this space is an example of a nonWPG Banach space with WRN dual
ball (BX∗ is Eberlein since it is a continuous image of the dual ball of L1(µ) and
L1(µ) is WCG).

Section 2.2
Topological characterizations of WRN compact spaces

Some of the classes introduced in the previous section have nice topological
characterizations. For example, D. Amir and J. Lindenstrauss proved that a com-
pact space K is Eberlein if and only if it can be embedded in c0(Γ) for some set
Γ, where c0(Γ) ⊆ RΓ is equipped with the topology of pointwise convergence.

Moreover, I. Namioka provided the following characterization of RN compact
spaces.

Definition 2.2.1. Let K be a compact space and d : K ×K → R a metric on K,
not necessarily related with the topology on K.

• The metric d is said to fragment K if for every ε > 0 and every nonempty
closed set F ⊆ K there is an open set U ⊆ K such that U ∩ F 6= ∅ and

diamd(U ∩ F ) = sup{d(x, y) : x, y ∈ U ∩ F} < ε.
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• For any sets U, V ⊆ K we denote

d(U, V ) := inf{d(x, y) : x ∈ U, y ∈ V }.

• The metric d is said to be lower semicontinuous (l.s.c.) if for every distinct
points x, y ∈ K and every 0 < δ < d(x, y) there are open sets U, V with
x ∈ U and y ∈ V such that d(U, V ) > δ.

Theorem 2.2.2. [Nam87] A compact space K is RN if and only if there is a l.s.c.
metric on K which fragments K.

We are going to see a characterization of WRN compact spaces in terms of
fragmented families of functions.

Definition 2.2.3 ([GM12]). Let K be a compact space. A family of functions
F ⊆ C(K) is said to be fragmented if for every nonempty subset A of K and
every ε > 0 there exists an open subset U in K such that U ∩ A is nonempty and
f(U ∩A) has diameter smaller than ε for every f ∈ F . F is said to be eventually
fragmented if every sequence in F has a subsequence which is a fragmented family
on K.

The equivalence among conditions 2, 3 and 4 in the following theorem is clas-
sical; see for example [Tal84, Theorem 14.1.7].

Theorem 2.2.4. ([GM12, Fact 4.3 and Proposition 4.6]) Let K be a compact
space and F ⊆ C(K) a uniformly bounded family of continuous functions. Then
the following conditions are equivalent:

1. F is an eventually fragmented family.

2. F is weakly precompact.

3. Every sequence in F has a pointwise convergent subsequence.

4. F does not contain `1-sequences.

Theorem 2.2.5 ([GM12, Theorem 6.5]). Let K be a compact space. Then K is
WRN if and only if there exists an eventually fragmented uniformly bounded family
of continuous functions F ⊆ C(K) which separates the points of K.

Another useful characterization of WRN compact spaces is given in terms of
independent sequences:
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Definition 2.2.6. A sequence (A0
n, A

1
n)n∈N of disjoint pairs of subsets of a set

S is said to be independent if
⋂n
k=1A

ε(k)
k 6= ∅ for every n ∈ N and every

ε : {1, 2, ..., n} → {0, 1}.
A sequence of functions (fn)n∈N ⊆ RS is said to be independent if there exist

real numbers p < q such that the sequence (A0
n, A

1
n)n∈N is independent, where

A0
n = {s ∈ S : fn(s) < p} and A1

n = {s ∈ S : fn(s) > q} for every n ∈ N.
Remark 2.2.7. A sequence (A0

n, A
1
n)n∈N of disjoint pairs of subsets of a set S is

independent if and only if for every n ∈ N and every ε : {1, 2, ..., n} → {0, 1} the
set
⋂n
k=1A

ε(k)
k is infinite, since if

∣∣⋂n
k=1A

ε(k)
k

∣∣ = m is finite then we can extend ε
to ε′ : {1, 2, ..., n+m} → {0, 1} satisfying

∣∣∣∣
n+j⋂

k=1

A
ε′(k)
k

∣∣∣∣≤ m− j

for every 0 ≤ j ≤ m.

Theorem 2.2.8 ([Ros74b]). Let S be a set and fn : S → R a uniformly bounded
sequence of functions. Then fn has a pointwise convergent subsequence or an
independent subsequence.

Since every uniformly bounded independent sequence of functions is equivalent
in the supremum norm to the usual `1-basis, an easy application of the previous
result yields the well-known Rosenthal’s `1-Theorem:

Theorem 2.2.9 (Rosenthal’s `1-Theorem, [Ros74b]). Let X be a Banach space
and (xn)∞n=1 a bounded sequence in X. Then (xn)∞n=1 contains a weakly Cauchy
subsequence or a subsequence equivalent to the `1-basis.

Thus, we obtain the following characterization of WRN compact spaces:

Theorem 2.2.10. A compact space K is WRN if and only if there exist a set Γ and
a homeomorphic embedding e : K → [0, 1]Γ such that for every p < q, the family
of disjoint pairs of subsets (A0

α, A
1
α)α∈Γ does not contain independent sequences,

where A0
α = {x ∈ K : e(x)α < p} and A1

α = {x ∈ K : e(x)α > q} for every α ∈ Γ.

Proof. If there exists such an embedding, then the family of functions F = {fα}α∈Γ

is a weakly precompact family of continuous functions separating the points of K,
where fα(x) = e(x)α for every x ∈ K and every α ∈ Γ. Therefore, K is WRN due
to Theorems 2.2.4 and 2.2.5.

On the other hand, if K is WRN then there exists a uniformly bounded family
F ⊆ C(K) without independent sequences and separating the points of K. If
‖f‖ ≤M for every f ∈ F , then set

Γ =
F +M

2M
=

{
f +M

2M
: f ∈ F

}
⊆ [0, 1]K
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and define e : K → [0, 1]Γ such that e(x)α = α(x) for every α ∈ Γ. Since Γ
separates the points of K and it does not contain an independent sequence of
functions, e is an embedding which satisfies the conditions of the theorem.

We can extend the previous characterization by generalizing the definition of
independent sequence of functions:

Definition 2.2.11. Let K,L be compact spaces. A sequence of functions fn : K →
L is said to be L-independent if there exist closed disjoint sets C,C ′ in L such that
the sequence (f−1

n (C), f−1
n (C ′))n∈N is independent.

Lemma 2.2.12. Let K,L be compact spaces and fn : K → L an L-independent
sequence of continuous functions. Then fn does not have pointwise convergent
subsequences.

Proof. Take C,C ′ closed sets as in the Definition 2.2.11. Take any subsequence
fnk . Since

(
f−1
nk

(C), f−1
nk

(C ′)
)
n∈N is an independent sequence consisting of compact

subsets of K, we can take t ∈ ⋂k∈N

(
f−1
n2k

(C) ∩ f−1
n2k+1

(C ′)
)
. Thus, fnk(t) cannot

be a convergent sequence since C and C ′ are disjoint closed sets.

Lemma 2.2.13. Let S be a set, M a metric compact space and fn : S → M
a sequence of functions. Then fn has a pointwise convergent subsequence or an
M-independent subsequence.

Proof. Take q : M → [0, 1]N an embedding from M into the Hilbert cube and
denote by qn the nth-coordinate function of q. Suppose fn does not have an M -
independent subsequence. Then, q1◦fn does not have an independent subsequence.
By Theorem 2.2.8 there exists a convergent subsequence of q1 ◦ fn. A standard
diagonal argument provides a subsequence fnk such that (qm ◦ fnk)∞k=1 converges
for every m ∈ N. Thus, fnk is a convergent subsequence of fn.

Theorem 2.2.14. Let K, M be compact spaces and F a family of continuous
functions from K to M which separates the points of K. If M is metrizable and
F does not have M-independent sequences, then K is WRN.

Proof. As in the previous proof, take q : M → [0, 1]N an embedding from M into
the Hilbert cube, with qn the coordinate functions of q. Set Fn = { qn◦f

n
: f ∈ F}

and F ′ =
⋃
n∈NFn. Then, each Fn does not contain independent sequences of

functions and it is immediate that F ′ is a family of continuous functions which
separates the points of K and with no independent subsequences. Therefore, K is
WRN.
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Section 2.3
Quasi WRN compact spaces

In [Arv02] and [FHM98] two superclasses of continuous images of RN compacta
are defined. In [Avi05] it is proved that both superclasses are equal. Compact
spaces of these superclasses are called QRN.

Definition 2.3.1. Let ε > 0 and K a compact space.

• A pseudometric d : K ×K → R is a symmetric nonnegative function which
satisfies the triangle inequality and such that d(x, x) = 0 for every x ∈ K,
but we may have d(x, y) = 0 for distinct x, y.

• A pseudometric d : K × K → R on K is said to ε-fragment K if for each
nonempty subset L of K there is a nonempty relatively open subset U of L
of d-diameter smaller than ε.

• A compact space K is QRN if and only if there are uniformly bounded
sets {An,p : n, p ∈ N} in C(K) such that C(K) =

⋃
n∈NAn,p for every

p ∈ N, and K is 1
p
-fragmented by the pseudometric dAn,p, where dAn,p(x, y) =

supf∈An,p |f(x)− f(y)| for every x, y ∈ K and every n, p ∈ N.

We will use this definition of QRN compacta in Theorem 2.3.3, although some
other equivalent definitions of QRN compact spaces might be sometimes more
convenient (see for example the comment that follows Definition 2.5.1).

In [Arv02] it is proved that zero-dimensional QRN compact spaces are RN and
that continuous images of QRN compact spaces are QRN. In essence, our definition
of QWRN compact spaces is analogous to the definition of QRN compacta given
in [FHM98]. In this section, we prove similar results for QWRN compact spaces.

Definition 2.3.2. A compact space K is quasi WRN (QWRN for short) if there
exists a homeomorphic embedding e : K → [0, 1]Γ such that for every ε > 0 there
exists a decomposition Γ =

⋃
n∈N Γεn such that for every p < q with q − p > ε,

the family of pairs (A0
α, A

1
α)α∈Γεn

does not contain independent sequences for every
n ∈ N, where A0

α = {x ∈ K : e(x)α < p} and A1
α = {x ∈ K : e(x)α > q} for every

α ∈ Γ.

It follows from Theorem 2.2.10 that every WRN compact space is QWRN.
Moreover, it follows from this characterization of QRN compact spaces that every
QRN compact space is QWRN:

Theorem 2.3.3. Every QRN compact space is QWRN.
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Proof. Let K be a QRN compact space. It follows from Definition 2.3.1 that
there exist uniformly bounded sets {An,p : n, p ∈ N} in C(K) such that C(K) =⋃
n∈NAn,p for every p ∈ N and such that K is 1

p
-fragmented by the pseudometric

dAn,p , where dAn,p(x, y) = supf∈An,p |f(x) − f(y)| for every x, y ∈ K and every
n, p ∈ N.

Take Γ = {f ∈ C(K) : f(K) ⊆ [0, 1]}. Since the functions of Γ separate the
points of K, the function e : K → [0, 1]Γ given by e(x)α = α(x) determines a
homeomorphic embedding. Fix ε > 0 and take p ∈ N such that 1

p
< ε. Then

Γ =
⋃
n(An,p ∩Γ) =

⋃
n Γεn, where Γεn = An,p ∩Γ for every n ∈ N. Fix q1 < q2 with

q2 − q1 > ε and take A0
α = {x ∈ K : e(x)α ≤ q1} and A1

α = {x ∈ K : e(x)α ≥ q2}
for every α ∈ Γ. We are going to prove that (A0

α, A
1
α)α∈Γεn

does not contain
independent sequences by contradiction.

Suppose there exists an independent sequence
(
A0
αm , A

1
αm

)
m∈N with αm ∈ Γεn

for every m ∈ N. By Zorn’s Lemma there is a closed subspace L of K such that(
A0
αm ∩ L,A1

αm ∩ L
)
m∈N is an independent sequence and if L′ ( L is a proper closed

subspace of L, then the sequence
(
A0
αm ∩ L′, A1

αm ∩ L′
)
m∈N is not independent.

Now, since K is 1
p
-fragmented by the pseudometric dAn,p , there exists a nonempty

relative open subset U of L with diameter smaller than 1
p
with respect to dAn,p .

Take L′ = L∩U c, which is a proper closed subset of L. By hypothesis, there exist
finite disjoint sets S1, S2 of N such that

(⋂
k∈S1

A0
αk

)
∩
(⋂

k∈S2
A1
αk

)
∩L′ = ∅. Take

any element m ∈ N \ (S1 ∪ S2). Notice that, since U has diameter smaller than
1
p
< ε, we have that U ∩ A0

αm or U ∩ A1
αm is empty. Without loss of generality,

suppose U ∩ A0
αm = ∅. Then,


 ⋂

k∈S1∪{m}
A0
αk


 ∩

(⋂

k∈S2

A1
αk

)
∩ L = ∅

and therefore
(
A0
αm ∩ L,A1

αm ∩ L
)
m∈N is not an independent sequence, in contra-

diction with our assumption.

A useful characterization of QWRN compact spaces is given by the following
lemma:

Lemma 2.3.4. A compact space K is QWRN if and only if there exists a home-
omorphic embedding e : K → [0, 1]Γ satisfying that for every p < q there exists a
countable decomposition Γ =

⋃
n∈N Γp,qn such that the family of pairs (A0

α, A
1
α)α∈Γp,qn

does not contain independent sequences for every n ∈ N, where A0
α = {x ∈ K :

e(x)α < p} and A1
α = {x ∈ K : e(x)α > q} for every α ∈ Γ.

Proof. If K is QWRN, then we can take Γp,qn = Γ
q−p
2

n for every n ∈ N.
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Now we prove the other implication. Fix ε > 0. There exist 0 ≤ p1 < p2 <
... < pm ≤ 1 such that for every p < q with q−p > ε, there exist p < pj < pj+1 < q
for some j < m. Thus, we can obtain a countable decomposition of

Γ =
⋃

(n1,...,nm−1)∈Nm−1

m−1⋂

j=1

Γpj ,pj+1
nj

,

with each
⋂m−1
j=1 Γ

pj ,pj+1
nj satisfying that for every p < q with q−p > ε, the family of

pairs (A0
α, A

1
α)
α∈⋂m−1

j=1 Γ
pj,pj+1
nj

does not contain independent sequences, where A0
α =

{x ∈ K : e(x)α < p} and A1
α = {x ∈ K : e(x)α > q} for every α ∈ Γ.

The following lemma is a modification of Lemma 3 in [Ros74a] due to S. Todor-
cevic.

Lemma 2.3.5 ([GM14, Lemma 9.5]). Let (A0
n, A

1
n)n∈N be an independent sequence

of disjoint pairs of subsets of a set S. Suppose there exist N ∈ N and N sequences
of disjoint pairs (A0

n,j, A
1
n,j)n∈N with j = 1, 2, ..., N such that

A0
n × A1

n ⊆
N⋃

j=1

A0
n,j × A1

n,j for every n ∈ N.

Then, there is j0 ∈ {1, 2, ..., N} and a subsequence (nk)k∈N of N such that(
A0
nk,j0

, A1
nk,j0

)
k∈N is an independent sequence.

Theorem 2.3.6. The continuous image of a QWRN compact space is QWRN.

Proof. Let f : L → K be a continuous surjective function with K ⊆ [0, 1]Γ, L ⊆
[0, 1]Λ and Λ satisfying the conditions of Definition 2.3.2. We are going to prove
that Γ satisfies the conditions of Lemma 2.3.4.

Fix p < p′ < q′ < q and A0
α = {x ∈ K : xα < p}, A1

α = {x ∈ K : xα > q} for
every α ∈ Γ. A basis for the topology of L is given by the open sets

U(β,r,s) = {y ∈ L : ri < yβi < si for each i = 1, ..., n}
with β = (β1, ..., βn) ∈ Λn, r = (r1, ..., rn), s = (s1, ..., sn) ∈ [−1, 2]n and n ∈ N.
Therefore,

f−1(A0
α) ⊆ f−1({x ∈ K : xα ≤ p}) ⊆ f−1({x ∈ K : xα < p′}) =

⋃

(β,r,s)∈S′α

U(β,r,s)

for some set S ′α. Due to the compactness of f−1({x ∈ K : xα ≤ p}), there exists a
finite set Sα ⊆ S ′α such that f−1(A0

α) ⊆ ⋃(β,r,s)∈Sα U(β,r,s). Similarly, there exists a
finite set S1

α such that

f−1(A1
α) ⊆

⋃

(β,r,s)∈S1
α

U(β,r,s) ⊆ f−1({x ∈ K : xα > q′}.
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Without loss of generality, we can take for every α ∈ Γ a natural number nα
such that |Sα| = |S1

α| = nα. Set

{U(β,r,s) : (β, r, s) ∈ Sα} =: {Uα,0
i : i = 1, 2, ..., nα}

and
{U(β,r,s) : (β, r, s) ∈ S1

α} =: {Uα,1
i : i = 1, 2, ..., nα}.

For every U(β,r,s) and m ∈ N, we define

m(U(β,r,s)) :=

{
y ∈ L : yβi < ri −

1

m
or yβi > si +

1

m
for some i

}
.

Notice that Uα,0
i ∩ Uα,1

j = ∅ for every i, j = 1, 2, ..., nα. Therefore, for each α ∈ Γ
we can fix mα ∈ N such that

Uα,1
j ⊆ mα(Uα,0

i ) for every i, j = 1, 2, ..., nα.

For every ε > 0, we have a decomposition Λ =
⋃
n Λε

n with each Λε
n satisfying the

conditions of Definition 2.3.2. For every n,m,N ∈ N, define Γn,m,N ⊆ Γ the set
of all points α ∈ Γ with nα = n, mα = m, |β| ≤ N and βi ∈

⋃N
k=1 Λ

1
2m
k for every

(β, r, s) ∈ Sα.
We claim that (A0

α, A
1
α)α∈Γn,m,N

has no independent sequences. If not, the
family (

f−1
(
A0
α

)
, f−1

(
A1
α

))
α∈Γn,m,N

contains an independent sequence too. Since

f−1(A0
α)× f−1(A1

α) ⊆
⋃

i,j=1,...,n

Uα,0
i × Uα,1

j ,

there exist i, j ∈ {1, 2, ..., n} such that the family
(
Uα,0
i , Uα,1

j

)
α∈Γn,m,N

contains an

independent sequence, due to Lemma 2.3.5. Therefore,
(
Uα,0
i ,m

(
Uα,0
i

))
α∈Γn,m,N

contains an independent sequence. By definition,

m(Uα,0
i ) =

⋃

t=1,...,k

{
y ∈ L : yβαt < rαt −

1

m

}
∪
{
y ∈ L : yβαt > sαt +

1

m

}
,

where Uα,0
i = U(β,r,s) and β = (βα1 , ..., β

α
k ), r = (rα1 , ..., r

α
k ) and s = (sα1 , ..., s

α
k ).

Without loss of generality, we suppose that
(
Uα,0
i ,

{
y ∈ L : yβαt < rαt −

1

m

})

α∈Γn,m,N
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contains an independent sequence. Since Uα,0
i ⊆

{
y ∈ L : yβαt > rαt

}
, the family of

pairs
({
y ∈ L : yβαt > rαt

}
,
{
y ∈ L : yβαt < rαt − 1

m

})
α∈Γn,m,N

contains an indepen-
dent sequence. Therefore, there exists an independent sequence of the form(

{y ∈ L : yβk > rk} ,
{
y ∈ L : yβk < rk −

1

m

})

k∈N

with βk ∈ Λ
1

2m
1 ∪Λ

1
2m
2 ∪ ...∪Λ

1
2m
N for every k ∈ N. Taking a subsequence if necessary,

we can suppose that there exist t ∈ {1, 2, ..., N} such that βk ∈ Λ
1

2m
t for every k

and that rk converges to r ∈ [−1, 2]. Therefore,
({

y ∈ L : yβ > r − 1

8m

}
,

{
y ∈ L : yβ < r − 3

4m

})

β∈Λ
1

2m
t

contains an independent sequence. This is a contradiction with the definition of
Λ

1
2m
t because r − 1

8m
− (r − 3

4m
) = 5

8m
> 1

2m
.

Thus, Γ =
⋃
n,m,N∈N Γn,m,N and (A0

α, A
1
α)α∈Γn,m,N

does not contain independent
sequences for any n,m,N ∈ N.

Since we have not made any assumption on the family Γ, the previous argument
applied to L = K proves the following criterion:
Lemma 2.3.7. A compact space K is QWRN if and only if for every homeo-
morphic embedding e : K → [0, 1]Γ and for every ε > 0 there exists a countable
decomposition Γ =

⋃
n∈N Γεn such that for every p < q with q− p > ε, the family of

pairs (A0
α, A

1
α)α∈Γεn

does not contain independent sequences for every n ∈ N, where
A0
α = {x ∈ K : e(x)α < p} and A1

α = {x ∈ K : e(x)α > q} for every α ∈ Γ.

As in the case of QRN and RN compact spaces, every zero-dimensional QWRN
compact space is WRN.
Theorem 2.3.8. Let K be a zero-dimensional QWRN compact space. Then K is
WRN.
Proof. Since K is zero-dimensional, we can suppose that K ⊆ {0, 1}Γ for some
set Γ. Due to Lemma 2.3.7, there exists a decomposition Γ =

⋃
n∈N Γn such that

for every p < q with q − p > 1
2
, the family of pairs A0

α = {x ∈ K : xα < p},
A1
α = {x ∈ K : xα > q} with α ∈ Γn does not contain independent sequences.

Since K ⊆ {0, 1}Γ, each Γn does not contain an independent sequence of functions.
Let F = {fα}α∈Γ ⊆ C(K), where fα(x) = xα

n
for every n ∈ N, α ∈ Γn and x ∈ K.

The family F separates the points of K and it does not contain an independent
sequence of functions, so K is WRN.

As a corollary of Theorems 2.3.6 and 2.3.8, we obtain the following result:
Corollary 2.3.9. Zero-dimensional continuous images of WRN compact spaces
are also WRN.
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Section 2.4
Examples and relations with other classes of compact spaces

In [GM14], E. Glasner and M. Megrelishvili studied the class of WRN compact
spaces and proved the following result, from which it follows that the split interval
is WRN (but it is not RN):

Theorem 2.4.1 ([GM14, Theorem 8.7]). Every linearly ordered compact space is
WRN.

Proof. Let K be a WRN compact space. Set F the set of increasing functions
from K to [0, 1]. F separates the points of K [Nac65]. Moreover, for any two
functions f, g ∈ F and any p < q, we have

{x ∈ K : f(x) < p} ∩ {x ∈ K : g(x) > q} = ∅

or
{x ∈ K : f(x) > q} ∩ {x ∈ K : g(x) < p} = ∅.

Namely, if x′ ∈ {x ∈ K : f(x) < p} ∩ {x ∈ K : g(x) > q}, then for every y > x′

we have g(y) > q and for every y < x′ we have f(y) < p, so {x ∈ K : f(x) >
q} ∩ {x ∈ K : g(x) < p} = ∅. Thus, F does not contain independent sequences
and K is WRN.

The split interval is the space [0, 1]× {0, 1} \ {(0, 0), (1, 1)} endowed with the
lexicographic order.

Corollary 2.4.2 ([GM14, Corollary 8.8]). The split interval is WRN but not RN.

Proof. The split interval is WRN because of Theorem 2.4.1. I. Namioka proved
that it is not RN because it is not fragmented by a metric [Nam87].

On the other hand, it follows from a result of Talagrand [Tal81] that the Stone-
Čech compactification of the natural numbers βN is not WRN (another proof of
S. Todorcevic is included in [GM14, Appendix]). This fact is also a consequence
of Corollary 2.6.5.

In order to study the relation between WRN compact spaces and the classes
of compact spaces introduced in the first section, we need some classical results.
V. Farmaki gave the following characterization of Corson compacta which are
Eberlein:

Theorem 2.4.3 ([Far87]). A compact space K ⊆ Σ(Γ) is Eberlein if and only if
for every ε > 0 there exist a countable decomposition Γ =

⋃
n∈N Γεn such that for

every x ∈ K and every n ∈ N, the set {α ∈ Γεn : |xα| > ε} is finite.
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Talagrand’s compact is defined as the subspace of {0, 1}NN which consists of
all characteristic functions 1A with A ⊆ NN such that there exists n ∈ N with
x(k) = y(k) for every k = 1, 2, ..., n and x(n + 1) 6= y(n + 1) for every x, y ∈
A with x 6= y. Talagrand’s compact is an example of a Corson compact space
which is not Eberlein [Tal79].

However, every Corson and RN compact space is Eberlein:

Theorem 2.4.4 ([Ste94, OSV91]). A compact K is Eberlein if and only if it is
Corson and RN.

It is proved in [Arv02] that the previous theorem can be extended to QRN
compact spaces, i.e. K is Eberlein if and only if it is Corson and QRN. We define
a compact space K ⊆ RΓ to be solid if for every finite subset A ⊆ Γ and every
x ∈ K, the element x1A belongs to K, where

x1A(γ) =

{
x(γ) if γ ∈ A;

0 in any other case.

Next theorem improves last theorem of [Ste90]. If the compact space is solid,
then Theorem 2.4.4 can also be extended to QWRN compact spaces:

Theorem 2.4.5. Let K ⊆ Σ(Γ) be a solid Corson compact space. Then, K is
WRN if and only if it is QWRN if and only if it is Eberlein.

Proof. Since every Eberlein compact space is WRN and every WRN compact space
is QWRN, we have to show that if K is QWRN then it is Eberlein. Suppose K
is QWRN and fix ε > 0. There exists a decomposition Γ =

⋃
n∈N Γn such that

the family
(
A0
γ, A

1
γ

)
γ∈Γn

does not contain independent sequences for every n ∈ N,
where A0

γ = {x ∈ K : xγ > ε} and A1
γ = {x ∈ K : xγ <

ε
2
}. Let x ∈ K. We

are going to see that {γ ∈ ΓN : |xγ| > ε} is finite for every N ∈ N. Suppose
(γn)n∈N ⊆ ΓN is a sequence of coordinates with |xγn| > ε. Since K is solid,
for every δ : {1, 2, ..., n} → {0, 1}, the element x1{γk:δ(k)=0} is in K and, therefore
(A0

γn , A
1
γn) is independent, since

x1{γk:δ(k)=0} ∈
n⋂

k=1

Aδ(k)
γk

.

Thus, {α ∈ ΓN : |xα| > ε} is finite for every N ∈ N and K is Eberlein due to
Farmaki’s Theorem 2.4.3.

Corollary 2.4.6. Talagrand’s compact is not QWRN.

Proof. Since Talagrand’s compact is solid, Corson and not Eberlein, the conclusion
follows from Theorem 2.4.5.
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Nevertheless, Theorem 2.4.4 cannot be extended to WRN. The existence of
Corson WRN compact spaces which are not Eberlein follows from the results in
[Arg92]. Namely, Argyros proved that the family of all segments of Todorcevic
tree and Reznichenko’s family satisfy the conditions of the following lemma:

Lemma 2.4.7. Let Γ be a set and S a family of subsets of Γ which satisfy the
following conditions:

(1) The space K = {1s : s ∈ S} ⊆ {0, 1}Γ is compact.

(2) Each s ∈ S is countable.

(3) For every s ∈ S, the set Ls = {s ∩ t : t ∈ S} is countable.

(4) For every countable decomposition Γ =
⋃
n Γn there exist a set s ∈ S and

n0 ∈ N such that s ∩ Γn0 is infinite.

Then the compact space K is Corson and WRN but it is not Eberlein.

Proof. Condition (2) implies that K is Corson and it follows from Farmaki’s The-
orem 2.4.3 that condition (4) implies that K is not Eberlein. We prove that
condition (3) implies that K is WRN. We consider the elements of Γ as functions
γ : K → {0, 1}, with γ(1s) = 1s(γ). Since Γ separates the points of K, it is enough
to prove that it does not contain independent sequences. Suppose γn is an inde-
pendent sequence in Γ. Thus, for every infinite set N ⊆ N there exists an element
sN ∈ S such that γn(1sN ) = 1 if and only if n ∈ N . Then

LsN = {sN ∩ t : t ∈ S} ⊇ {sN ∩ sN : N ⊆ N},

which gives a contradiction with property (3) since the set on the right-hand side
is uncountable.

For the sake of completeness we include in Appendix A the construction of
Todorcevic tree and we prove that the family of all segments in it satisfies the
hypothesis of Lemma 2.4.7.

We finish the section by studying split compact spaces. In Section 2.5 we use
split compact spaces to construct a continuous image of an RN compact space
which is not WRN. Furthermore, the class of split compact spaces was used by
P. Koszmider in [Kos16] and [Kos15a] for constructing counterexamples to some
classical problems. In particular, he provided consistent examples of nonmetriz-
able compact spaces K such that all zero-dimensional subspaces of all continuous
images of K are metrizable. A compact space with this property cannot be Eber-
lein neither Rosenthal, but it is consistent that there are Corson compact spaces
with this property (see [Kos16][Proposition 4.2]). Nevertheless, Koszmider also
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proved that under Martin’s axiom and the negation of the Continuum Hypothesis,
compact spaces with this property cannot be Corson. Notice that any Souslin
line is a WRN compact space (it is a linearly ordered compact space) with this
property (see the proof of [Kos16][Proposition 4.2 (5)]). Moreover, we prove that
there are WRN compact spaces with this property even under Martin’s axiom and
the negation of the Continuum Hypothesis (Corollary 2.4.11).

Definition 2.4.8. Let M be a metric compact space, L a compact space, κ an
ordinal, {rξ : ξ < κ} a family of distinct points of L and fξ : L \ {rξ} → M a
continuous function for every ξ < κ. The split L induced by {fξ : ξ < κ} is the
subspace K of L{∗} ×Mκ consisting of points of the form

{xξ,t : ξ < κ, t ∈M} ∪ {xr : r ∈ L \ {rξ : ξ < κ}},
where

• xξ,t(∗) = rξ, xξ,t(ξ) = t and xξ,t(η) = fη(rξ) if η 6= ξ.

• xr(∗) = r and xr(ξ) = fξ(r) for all r ∈ L \ {rξ : ξ < κ} and every ξ < κ.

Notice that ifK is the split L induced by {fξ : ξ < κ}, where L and {fξ : ξ < κ}
are as in Definition 2.4.8, then the complement of K in L{∗}×Mκ consists of points
x ∈ L{∗}×Mκ such that x(∗) = rξ but x(η) 6= fη(rξ) for some ξ, η < κ with η 6= κ
or x(∗) /∈ {rξ : ξ < κ} but x(η) 6= fη(x(∗)) for some η < κ. It follows from the
continuity of the functions fξ that Kc is open and therefore K is compact.

The classical split interval is an example of a split compact space of this form.
Moreover, the example of Theorem 2.7.10 is also a split Cantor space. We provide
in Theorem 2.4.9 a sufficient condition for a split compact space to be WRN.

We say that the sequence of functions fξn : L \ {rξn} →M is M -independent if
there exists an extension (probably not continuous) gξn : L→M of fξn for each n ∈
N such that the sequence gξn is M -independent. Notice that fξn is M -independent
if and only if every extension provides an M -independent sequence, i.e. if gn and
hn are different extensions of fξn then the sequence gn is M -independent if and
only if hn is M -independent. Namely, if gn is not M -independent then there are
closed disjoint sets C, C ′ of M and disjoint finite subsets S1, S2 of N such that

(⋂

k∈S1

g−1
k (C)

)
∩
( ⋂

k′∈S2

g−1
k′ (C ′)

)
= ∅.

But then
(⋂

k∈S1

h−1
k (C)

)
∩
( ⋂

k′∈S2

h−1
k′ (C ′)

)
⊆ {rξn : n ∈ S1 ∪ S2}

is a finite set and therefore hn is not M -independent because of Remark 2.2.7.
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Theorem 2.4.9. Let K be the split L induced by {fξ : ξ < κ}, where L and
{fξ : ξ < κ} are as in Definition 2.4.8. If {fξ : ξ < κ} does not contain M-
independent sequences and L is WRN, then K is WRN.

Proof. Denote by π∗ : K → L the projection onto the first coordinate (i.e. π∗(x) =
x(∗) for every x ∈ K ⊆ L{∗} ×Mκ) and by πξ : K → M the projection onto the
ξ-coordinate of M , i.e. πξ(x) = x(ξ) for every x ∈ K, ξ < κ. We claim that
{πξ : ξ < κ} does not contain M -independent sequences. Take a sequence πξn .
Since {fξ : ξ < κ} does not contain M -independent sequences, by Lemma 2.2.13
we may suppose that fξn is pointwise convergent, in the sense that (fξn(x))n∈N,ξn 6=x
converges for every x ∈ L. Notice that for every x ∈ K, πξn(x) = fξn(x(∗)) for
all except at most one n ∈ N. Thus, the sequence πξn is pointwise convergent and
therefore it does not contain M -independent subsequences due to Lemma 2.2.12.
Hence {πξ : ξ < κ} does not contain M -independent sequences. Since L is WRN,
there exists a family F of continuous functions from L to [0, 1] separating points
and with no independent sequences. Since the family of functions

{πξ : ξ < κ} ∪ {f ◦ π∗ : f ∈ F}

separates the points of K, a similar argument to the one used in Theorem 2.2.14
proves that K is WRN.

Example 2.4.10. Set L = [0, 1]2, M = S, where S is the unit sphere in R2

with the Euclidean metric, {rξ : ξ < κ} ⊆ L and fξ : L \ {rξ} → M defined as
fξ(x) =

x−rξ
d(x,rξ)

for every ξ < κ, where d is the Euclidean distance in [0, 1]2. Let K
be the split L induced by {fξ : ξ < κ}. K is said to be a Filippov space. We claim
that K is WRN. By Theorem 2.4.9, it is enough to check that every sequence fξn
does not contain an M-independent subsequence. However, since rξn is a sequence
in [0, 1]2, we may suppose without loss of generality that rξn converges to some
r ∈ [0, 1]2. But then, notice that fξn(x) =

x−rξn
d(x,rξn )

converges to x−r
d(x,r)

for every
x 6= r. Passing to a subsequence if necessary, we may suppose that the sequence
fξn(r) is also convergent. Thus, fξn does not contain M-independent subsequences
and we conclude that K is WRN.

Corollary 2.4.11. Under Martin’s axiom and the negation of the Continuum
Hypothesis there is a WRN nonmetrizable compact space K such that all zero-
dimensional subspaces of all continuous images of K are metrizable.

Proof. It is a consequence of Example 2.4.10 and [Kos16, Theorem 4.5], where it
is proved that there is a Filippov space with this property.
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Section 2.5
A continuous image of an RN compact space which is not

WRN

The class of Corson compact spaces and the class of Eberlein compact spaces
are closed under continuous images (see [BRW77] and [Gul77]).

In [Nam87] I. Namioka asked whether the class of RN compact spaces is closed
under continuous images. This question was solved negatively by A. Avilés and P.
Koszmider in [AK13]. E. Glasner and M. Megrelishvili posed the same question for
the class of WRN compact spaces in [GM14]. In this section we answer negatively
the question of E. Glasner and M. Megrelishvili by proving that a modification of
the construction given in [AK13] provides an example of a continuous image of an
RN compact space which is not WRN.

Definition 2.5.1. Let K be a compact space. A metric d : K × K → R is
Reznichenko if for every distinct points x, y ∈ K there are open sets U, V in K
with x ∈ U , y ∈ V and d(U, V ) = inf{d(u, v) : u ∈ U, v ∈ V } > 0.

By a result of Namioka [Nam02], a compact space K is QRN if and only if
there exists a Reznichenko metric which fragments K.

During this section we denote by ∆ = 2N = {0, 1}N the Cantor set with the
topology induced by the metric ρ : ∆×∆→ R given by ρ(x, y) = 2−min{k: xk 6=yk} if
x 6= y and by q : ∆→ [0, 1] the continuous surjective function given by the formula
q(t1, t2, ...) =

∑
k∈N

tk
2k
. We are going to construct an RN compact space L0, a

nonWRN compact space L1 and a surjective continuous function π : L0 → L1 in a
way similar to [AK13]. In particular, we construct a zero-dimensional RN compact
space L, a set B ⊆ L and continuous functions gx : L \ {x} → ∆, fx = q ◦ gx for
every x ∈ B. Then, L0 is the split L induced by {gx : x ∈ B} and L1 is the split
L induced by {fx : x ∈ B}. Since L and ∆ are zero-dimensional, L0 is also zero-
dimensional. Arvanitakis [Arv02] proved that continuous images of QRN compact
spaces are QRN and that a zero-dimensional compact space is QRN if and only if
it is RN. The fact that L0 is RN will be a consequence of the previous results of
Arvanitakis and the following lemma:

Lemma 2.5.2. Let K be the split L induced by {fξ : ξ < κ}, where L and {fξ :
ξ < κ} are as in Definition 2.4.8. Take d′ a metric on M . Suppose there is a
Reznichenko metric d : L×L→ R which fragments L (i.e. L is QRN). Moreover,
suppose that for every rξ there exists an open set Uξ in L such that:

(1) Uξ ∩ {rξ′ : ξ′ < κ} = {rξ};
(2) if un, vn are sequences in Uξ \ {rξ} with d(un, vn) converging to zero, then

there exist subsequences unk , vnk of un, vn such that d′(fξ(unk), fξ(vnk)) also
converges to zero;
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(3) d(rξ, u) ≥ 1 for every u ∈ L with u 6= rξ.

Then K is QRN.

Proof. Without loss of generality, d′ ≤ 1. Consider the map δ : K×K → R defined
as:

• δ(x, x) = 0 for every x ∈ K;

• δ(x, y) = d(x(∗), y(∗)) if x(∗) 6= y(∗);
• δ(x, y) = d′(x(ξ), y(ξ)) if x(∗) = y(∗) = rξ.

Obviously δ is nonnegative, symmetric and it vanishes on (x, y) if and only if
x = y. Since d′ ≤ 1, condition (3) ensures that δ is a metric. We prove first that
δ is Reznichenko. Take two points x, y ∈ K with 0 < δ(x, y). If x(∗) 6= y(∗), then
there exist open sets U1, U2 in L such that x(∗) ∈ U1, y(∗) ∈ U2, d(U1, U2) > 0 and
we can take V1 = (U1 ×Mκ) ∩K, V2 = (U2 ×Mκ) ∩K which are open sets in K
with x ∈ V1, y ∈ V2 and δ(V1, V2) > 0. If x(∗) = y(∗) = rξ, then there are open sets
U1, U2 in M such that x(ξ) ∈ U1, y(ξ) ∈ U2 and d′(U1, U2) > 0. Set V1 = π−1

ξ (U1),
V2 = π−1

ξ (U2), where πξ : K → M is the projection in the ξ-coordinate of M .
Finally take U ′1 = (Uξ ×Mκ)∩V1, U ′2 = (Uξ ×Mκ)∩V2, which are open sets in K
with x ∈ U ′1 and y ∈ U ′2. We claim that δ(U ′1, U ′2) > 0. If not, there are sequences
xn in U ′1 and yn in U ′2 with δ(xn, yn) converging to zero. Since d′(U1, U2) > 0,
we have that xn(∗), yn(∗) ∈ Uξ \ {rξ} for all except at most finitely many n ∈ N.
Therefore, we may suppose that δ(xn, yn) = d(xn(∗), yn(∗)) for every n ∈ N. Thus,
condition (2) provides subsequences xnk , ynk with d′(xnk(ξ), ynk(ξ)) converging to
zero. But this contradicts the fact that d′(U1, U2) > 0, since xnk(ξ) ∈ U1 and
ynk(ξ) ∈ U2 for every k ∈ N. Thus, δ is Reznichenko.

We prove now that δ fragments K. Take F ⊆ K and 1 > ε > 0. Set F (∗) :=
{x(∗) ∈ L : x ∈ F}. Since d fragments L, there exists an open set U in L with
U ∩ F (∗) 6= ∅ and diamd(U ∩ F (∗)) < ε. Since ε < 1, condition (3) implies that
U ∩F (∗) = {rξ} for some ξ < κ or U ∩F (∗)∩{rξ : ξ < κ} = ∅. If U ∩F (∗) = {rξ},
then we can take some open set V in M with V ∩ πξ(F ∩ (U ×Mκ)) 6= ∅ and
diamd′(V ) < ε. Then, the open set U ′ = (U×Mκ)∩K∩π−1

ξ (V ) satisfy U ′∩F 6= ∅
and diamδ(U

′ ∩ F ) < ε. On the other hand, if U ∩ F (∗) ∩ {rξ : ξ < κ} = ∅,
then the open set U ′ = (U ×Mκ) ∩ K satisfy U ′ ∩ F 6= ∅ and diamδ(U

′ ∩ F ) =
diamd(U ∩ F (∗)) < ε. Thus, we conclude that δ is a Reznichenko metric which
fragments K and therefore K is QRN.

Now we are going to construct the RN compact space L. Let T = 2<ω denotes
the set of all finite sequences of 0’s and 1’s and, for every t ∈ T , |t| denotes the
length of t. For every t = (t1, t2, ..., tn) ∈ T and z = (z1, z2, ...) ∈ T ∪∆, we write

t_z := (t1, t2, ..., tn, z1, z2, ...) ∈ T ∪∆.
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We consider T ∪∆ equipped with the lexicographical order. By G we denote all
finite sets g = {s1, ..., sn} such that s1, ..., sn ∈ T satisfy |s1| = ... = |sn|. Given
t ∈ T and g ∈ G we define Γtg : ∆→ ∆ as:

• Γtg(s
_λ) = t_λ if s ∈ g and λ ∈ ∆;

• Γtg(z) = t_(0, 0, ...) in the rest of points.

Notice that each Γtg is continuous.
The main difference between our construction and the one in [AK13] is the

choice of the functions Γtg with g ∈ G and t ∈ T . This choice lets us prove that L1

is not WRN.

Let K =
⋃
t∈T At ∪B ∪ C be a scattered compact space such that:

(1) all points of A =
⋃
t∈T At are isolated in K and the sets {At : t ∈ T} are

pairwise disjoint;

(2) for every x ∈ B there exists an infinite set Bx ⊆ A such that Bx = Bx ∪ {x}
and moreover, Bx is open in K;

(3) there exists a function ψ : B → GT such that for any family of subsets of A
of the form {X t

g : g ∈ G, t ∈ T} with At =
⋃
g∈GX

t
g for every t ∈ T , there

exists x ∈ B such that Bx ∩X t
ψ(x)[t] is infinite for all t ∈ T .

A. Avilés and P. Koszmider called a compact space of the previous form a basic
space and they provided some examples of such compact spaces. Notice that, since
K is scattered, it is RN.

Consider L = (A × ∆) ∪ B ∪ C. We equip L with the following topology. A
basic neighborhood of a point (a, t) in L is of the form {a} × U where U is a
neighborhood of t in ∆. A basic neighborhood of a point x ∈ B ∪C is of the form
((U ∩A)×∆)∪ (U \A), where U is a neighborhood of x in K. Notice that L is a
zero-dimensional compact space. Consider the metric δ′ : L × L → [0, 1] given by
the formula

(i) δ′(x, y) = 0 if x = y;

(ii) δ′((a, t), (a, t′)) = ρ(t, t′) for every a ∈ A, t ∈ ∆;

(iii) δ′(x, y) = 1 in any other case.

It is immediate that δ′ is a l.s.c. metric which fragments L and therefore L is
RN.

Consider L0, L1 and π : L0 → L1 defined in the same way as in [AK13]:
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• For every x ∈ B, gx : L \ {x} → ∆ is the continuous function given by the
formula gx(a, z) = Γtψ(x)[t](z) for every a ∈ At ∩ Bx, z ∈ ∆ and gx(y) = 0 in
any other case.

• For every x ∈ B, fx : L \ {x} → [0, 1] is the continuous function fx = q ◦ gx.

• L0 = {[u, v] ∈ L ×∆B : gx(u) = vx for all x ∈ B \ {u}}, i.e. L0 is the split
L induced by {gx : x ∈ B}.

• L1 = {[u, v] ∈ L× [0, 1]B : fx(u) = vx for all x ∈ B \{u}}, i.e. L1 is the split
L induced by {fx : x ∈ B}.

• π : L0 → L1 is the continuous function given by the formula π[u, v] =
[u, q (vx)x∈B].

It is clear that π is continuous and surjective. Although L is an RN compact
space, Theorem 2.4.9 cannot be applied in this case because {gx : x ∈ B} and
{fx : x ∈ B} contain independent sequences.

Lemma 2.5.3. L0 is RN.

Proof. Since L0 is zero-dimensional, it is enough to prove that δ′ satisfies the con-
ditions of Lemma 2.5.2. For x ∈ B, take the open set in L, Ux = (Bx ×∆) ∪ {x}.
Then Ux ∩ B = {x}. Moreover, for every x ∈ B we have δ′(x, y) = 1 for
every x 6= y. Thus, conditions (1) and (3) of Lemma 2.5.2 are satisfied and
we only have to prove that if un = (an, zn), vn = (a′n, z

′
n) are sequences in

Ux \ {x} = Bx × ∆ with δ′(un, vn) converging to zero, then there exists sub-
sequences unk , vnk such that ρ(gx(unk), gx(vnk)) converges to zero. Notice that
since δ′(un, vn) converges to zero, we may assume that an = a′n for every n ∈ N.
Thus, either there is a subsequence of an which is contained in some At with
t ∈ T , or there is a subsequence ank with ank ∈ Atk and |tk| converges to infin-
ity. In the first case, we may suppose that an ∈ At for every n ∈ N and then
gx((an, zn)) = Γtψ(x)[t](zn) and gx((an, z′n)) = Γtψ(x)[t](z

′
n) for every n ∈ N. But since

Γtψ(x)[t] is continuous and δ
′(un, vn) = ρ(zn, z

′
n) converges to zero, we conclude that

ρ(gx(un), gx(vn)) = ρ
(

Γtψ(x)[t](zn),Γtψ(x)[t](z
′
n)
)
also converges to zero. In the sec-

ond case we have a subsequence ank ∈ Atk with |tk| converging to infinity. But
then diamρ

(
Γtnψ(x)[tn](∆)

)
converges to zero and we can also conclude in this case

that ρ(gx(un), gx(vn)) converges to zero, so the proof is complete.

Since the continuous image of an RN compact space is QRN, L1 is QRN.
Nevertheless, it is not WRN:

Theorem 2.5.4. L1 is not WRN.
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Proof. Suppose that F ⊆ C(L1) is an eventually fragmented uniformly bounded
family. We will find two points that are not separated by F . For every a ∈ A and
every z1 ≤ z2 ∈ ∆, we denote by a + z1 the point of L1 of the form [(a, z1), v],
where vx = fx(a, z1) for every x ∈ B. We denote by a + [z1, z2] the set of points
a+ z with z ∈ [z1, z2], where the order in ∆ is the lexicographical order. Similarly,
for every x ∈ B and every ξ1 ≤ ξ2 ∈ [0, 1] we denote by x ⊕ ξ1 = [x, v] ∈ L1 the
point given by the formula vy = fy(x) for every y ∈ B \ {x} and vx = ξ1 and by
x⊕ [ξ1, ξ2] we denote the set of points x⊕ ξ with ξ ∈ [ξ1, ξ2]. For every a ∈ At and
f ∈ F , we can find sf (a) ∈ T such that

diam (f(a+ [sf (a)_(0, 0, ...), sf (a)_(1, 1, ...)])) <
1

4|t|
.

For each a ∈ A and f ∈ F fix sf (a) with the previous property and |sf (a)|
minimum.

Then, the set {sf (a) : f ∈ F} is finite for every a ∈ A. Namely, if this set
were not finite, there would exist a ∈ At for some t ∈ T and a sequence {fn}n∈N
in F such that |sfn(a)| → ∞, so {fn : n ∈ N} would not have a fragmented
subsequence, since for any open subset O of a+ ∆ there would exist N such that
fn(O) has diameter bigger than 1

4|t| for every n > N . Therefore, {sf (a) : f ∈ F}
is finite for every a ∈ A due to the eventual fragmentability of F . Thus, for every
a ∈ At there exists ga ∈ G such that for every f ∈ F we can find s ∈ ga with

diam (f(a+ [s_(0, 0, ...), s_(1, 1, ...)])) <
1

4|t|
.

Let X t
g = {a ∈ At : ga = g} for every t ∈ T and every g ∈ G. These sets satisfy

At =
⋃
g∈GX

t
g for every t ∈ T . Due to property (3) of the basic space K, there

exists x ∈ B such that Bx ∩X t
ψ(x)[t] is infinite for every t ∈ T .

We are going to prove that F does not separate the points of L1 by showing
that f(x ⊕ 0) = f(x ⊕ 1) for every f ∈ F . Fix f ∈ F and an infinite subset
{an : n ∈ N} ⊆ Bx ∩X t

ψ(x)[t]. Since gan = ψ(x)[t] ∈ G for every n ∈ N and ψ(x)[t]

is finite, there exist a subsequence {ank}k∈N and s ∈ ψ(x)[t] such that

diam (f(ank + [s_(0, 0, ...), s_(1, 1, ...)])) <
1

4|t|
for every k ∈ N.

Notice that

fx(ank + s_(i, i, ...)) = q(Γtψ(x)[t](s
_(i, i, ...)) = q(t_(i, i, ...)) =: ti

for every i ∈ {0, 1}. Taking limits we obtain ank + s_(i, i, ...) → x ⊕ ξi for every
i ∈ {0, 1}, where

ξi = lim
n
fx(ank + s_(i, i, ...)) = ti.
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For every ξ0, ξ1 ∈ [t0, t1], there exist λ0, λ1 ∈ ∆ such that q(t_λi) = ξi and
therefore ank + s_λi → x⊕ ξi, so

d(f(x⊕ ξ0), f(x⊕ ξ1)) = lim
n
d(f(ank + s_λ0), f(ank + s_λ1)) ≤ 1

4|t|
.

Thus,

diam
(
f(x⊕ [t0, t1])

)
≤ 1

4|t|
.

Now, since for every m ∈ N

{[t0, t1] : t ∈ T, |t| = m} = {[(k − 1)2−m, k2−m] : k = 1, 2, ..., 2m},

it follows that diamf(x ⊕ [0, 1]) ≤ 2m 1
4m

= 1
2m

for every m ∈ N. Therefore,
f(x⊕ 0) = f(x⊕ 1) and F does not separate x⊕ 0 and x⊕ 1.

Since the continuous image of an RN compact space is QRN, L1 is an example
of a QRN compact space which is not WRN.

Section 2.6
WRN Boolean algebras

In this section we study Boolean algebras associated to zero-dimensional WRN
compact spaces. We consider abstract Boolean algebras A,B, . . ., keeping the
usual set-theoretic notation. In particular, ac denotes the complement of a ∈ A,
but we shall also write a1 = a and a0 = ac when convenient.

Given an algebra A and any G ⊆ A, we denote by 〈G〉 the algebra generated
by G, i.e. the smallest subalgebra of A containing G. If 〈G〉 = A then G is called
a generating family.

For an algebra A, by ult(A) we denote its Stone space (of ultrafilters on A) and

A 3 a→ â ∈ Clop(ult(A))

is the Stone isomorphism between A and the algebra of clopen subsets of its Stone
space.

Recall that an indexed family of elements {ai : i ∈ I} in an algebra A is
independent if ⋂

i∈I′
ai ∩

⋂

i∈I′′
aci 6= 0,

for every pair I ′, I ′′ of finite disjoint subsets of I. As we have seen, independent
sequences play a fundamental role in the study of WRN compact spaces. More-
over, the existence of independent sequences can be deduced from the existence
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of measures with certain properties. By a measure µ on an algebra A we mean
a finitely additive nonnegative probability functional A → [0, 1]. We say that
a family E of elements of a Boolean algebra A is ε-separated by a measure µ if
µ(a 4 b) ≥ ε for all distinct a, b ∈ E , where by a 4 b we denote the symmetric
difference a4 b = (a ∩ bc) ∪ (ac ∩ b).

Lemma 2.6.1 ([FP04]). If ε > 0 and E is an infinite family ε-separated by some
measure µ then E contains an infinite independent sequence.

Note that, in turn, if (an)n is an independent sequence in some Boolean algebra
A then there is a measure µ on A such that µ(an) = 1/2 for every n and an are
(stochastically) µ-independent. In particular, if n 6= k then µ(an 4 ak) = 1/2 so
an are separated by µ.

Definition 2.6.2. A Boolean algebra A is weakly Radon-Nikodým (WRN) if there
is a family G ⊆ A generating A such that G can be written as G =

⋃
n∈N Gn, where,

for every n, Gn contains no infinite independent sequence.

The name of this class of Boolean algebras is motivated by the following The-
orem:

Proposition 2.6.3 ([AMCP16]). The following conditions are equivalent for a
Boolean algebra A:

(i) A is WRN;

(ii) there is a decomposition A =
⋃
n∈N En such that, for every n, En contains no

infinite independent sequence;

(iii) the Stone space ult(A) of A is WRN.

Although Proposition 2.6.3 can be deduced from Lemma 2.3.7 and Theorem
2.3.8, in this section we are going to prove it by studying the behavior of families
containing no infinite independent sequences or independent sequences of size n
for some n ∈ N.

Note that condition (ii) provides an equivalent definition of WRN algebras that
is sometimes more convenient; for instance it yields the following.

Corollary 2.6.4. If A is a WRN algebra then every subalgebra B ⊆ A is WRN
too.

Clearly every countable algebra is WRN. More generally, if A is an interval
algebra, that is A = 〈G〉 where the family G is linearly ordered, then A is WRN. It
follows from Corollary 2.6.4 that every subalgebra of an interval algebra is WRN.
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This is also a consequence of a result due to Heindorf [Hei97], stating that an
algebra A embeds into some interval algebra if and only if A = 〈G〉, where G has
the property that any two elements of G are either comparable or disjoint.

Note that a Boolean algebra A does not contain an infinite independent se-
quence if and only if the space ult(A) is scattered, i.e. A is superatomic. Moreover,
we say that a Boolean algebra A is RN if ult(A) is RN. It follows from [Arv02,
Corollary 3.7] that A is RN if and only if there is a decomposition A =

⋃
n∈NAn

such that, for every n, An is a Boolean subalgebra containing no independent se-
quence. Therefore, every RN Boolean algebra is WRN.

To give some examples of Boolean algebras that are not WRN note another
obvious consequence of Proposition 2.6.3.

Corollary 2.6.5. If A is a WRN algebra then A contains no uncountable inde-
pendent sequence.

Hence P (ω), P (ω)/fin, Clop(2ω1) are not WRN; moreover, no infinite complete
algebra can be WRN. In particular, the Stone-Čech compactification of the natural
numbers βN is not WRN, as it was mentioned after Corollary 2.4.2.

We start studying families with no independent families of size n for some
n ∈ N. The proof of the next result uses the Sauer-Shelah Lemma B.1, which is
recalled together with a proof in the Appendix B.

Theorem 2.6.6 ([AMCP16]). Let E be a family in a Boolean algebra A such that
E contains no independent family of size n. Fix r ≥ 1 and set

I(n, r) := min{s ∈ N :

(
rs

0

)
+

(
rs

1

)
+ · · ·+

(
rs

n− 1

)
< 2s}.

Then, for any Boolean polynomial p(x1, . . . , xr) the family p(E) = {p(a1, . . . , ar) :
a1, . . . ar ∈ E} contains no independent sequence of length I(n, r).

Proof. Suppose p(E) contains an independent sequence of length I(n, r). Then
there exist

b1 = p(a1,1, a1,2, . . . , a1,r),

b2 = p(a2,1, a2,2, . . . , a2,r),

...

bI(n,r) = p(aI(n,r),1, aI(n,r),2, . . . , aI(n,r),r)

such that b1, b2, . . . , bI(n,r) is an independent family. Without loss of generality,
we may suppose that E = {ai,j : 1 ≤ i ≤ I(n, r), 1 ≤ j ≤ r}. Let us put,
for convenience, N = rI(n, r) and E = {a1, a2, . . . , aN}. Since 〈E〉 contains an
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independent family of size I(n, r), it must contain at least 2I(n,r) atoms. Moreover,
every atom of 〈E〉 has a unique representation of the form a

f(1)
1 ∩af(2)

2 ∩· · ·∩af(N)
N ,

where f ∈ 2{1,2,...,N} and for each element a ∈ 〈E〉, we denote the complement of a
as a0 and a as a1. Set

F = {f ∈ 2{1,2,...,N} : a
f(1)
1 ∩ af(2)

2 ∩ · · · ∩ af(N)
N is an atom of 〈E〉}.

We claim that |F| ≤
(
N
0

)
+
(
N
1

)
+ · · · +

(
N
n−1

)
. If not, by the Sauer-Shelah

Lemma (see Lemma B.1) there exists a set S ⊆ {1, 2, . . . , N} with |S| = n such
that

{f |S : f ∈ F} = 2S.

But this means that {ai : i ∈ S} is an independent family, since for each f ∈
2S, the element

⋂
i∈S a

f(i)
i is nonempty because it contains an atom. This is in

contradiction with the hypothesis on E , so

|F| ≤
(
N

0

)
+

(
N

1

)
+ · · ·+

(
N

n− 1

)
.

Since the number of atoms of 〈E〉 is exactly |F|, we conclude that

2I(n,r) ≤
(
N

0

)
+

(
N

1

)
+· · ·+

(
N

n− 1

)
=

(
rI(n, r)

0

)
+

(
rI(n, r)

1

)
+· · ·+

(
rI(n, r)

n− 1

)
,

in contradiction with the definition of I(n, r).

Theorem 2.6.6 has the following counterpart:

Theorem 2.6.7 ([AMCP16]). Let E be a family in some Boolean algebra A such
that E contains no infinite independent sequence. Let, for a fixed r, p(x1, x2, . . . , xr)
be any Boolean polynomial. Then the family

p(E) = {p(a1, . . . , ar) : a1, . . . , ar ∈ E}

contains no infinite independent sequence.

Proof. Consider first the polynomial p(x, y) = x ∩ y. Suppose that p(E) contains
cn = an ∩ bn with an, bn ∈ E such that the sequence (cn)n is independent. By the
remark following Lemma 2.6.1 there is a probability measure µ on A such that
µ(cn) = 1/2 and cn’s are stochastically independent with respect to µ.

For k < n we have

1/4 = µ(ck \ cn) ≤ µ(ck \ an) + µ(ck \ bn),
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so either µ(ck \ an) ≥ 1/8 or µ(ck \ bn) ≥ 1/8. Say that the pair {k, n} with
k < n gets the color a if the first inequality holds and the color b otherwise. By
the Ramsey theorem there is an infinite N ⊆ N such that whenever k, n ∈ N are
different then {k, n} has the same color; say that this is a.

It follows that for k, n ∈ N , k < n, we have

µ(ak 4 an) ≥ µ(ak \ an) ≥ µ(ck \ an) ≥ 1/8,

so the family {an : n ∈ N} is 1/8-separated by µ. Applying Lemma 2.6.1 we get
a contradiction.

We can assume that E is closed under taking complements. If we consider the
polynomial p′(x, y) = x∪y then p′(x, y) = (p(xc, yc))c so the result follows for p(E)
by the argument above.

The general case follows by induction on the complexity of the Boolean poly-
nomial in question.

Proof of Theorem 2.6.3. (i) ⇒ (ii): Suppose that G ⊆ A is a family generating
A such that G =

⋃
n Gn where each Gn does not contain infinite independent

sequences. Without loss of generality, we may suppose Gn ⊆ Gn+1 for every n ∈
N. Take {pn : n ∈ N} an enumeration of all Boolean polynomials. Then A =⋃
n,m∈N pn(Gm) and each pn(Gm) does not contain independent sequences due to

Theorem 2.6.7. Thus, A satisfyies (ii).
(ii)⇒ (iii): Notice that each element a ∈ A determines a continuous function

fa : ult(A) → {0, 1} given by the formula fa(u) = 1 if and only if a ∈ u for every
u ∈ ult(A). If there is a decomposition A =

⋃
n En such that each En contains no

infinite independent sequence, then the family

F = { 1

n
fa : n ∈ N, a ∈ En}

is a uniformly bounded family of continuous functions which separates the points
of ult(A) and with no independent sequences. Thus, ult(A) is WRN.

(iii) ⇒ (i): Suppose K = ult(A) is WRN. Then, there exists a uniformly
bounded family of functions F ⊆ C(K) which separates the points of K and
with no independent sequence. Without loss of generality, we may suppose that
F ⊆ [0, 1]K . Let {(pn, qn) : n ∈ N} be an enumeration of all pairs of rational
numbers in [0, 1] with pn < qn. For every function f ∈ F and every n ∈ N, we fix
a clopen set Cf,n of K such that

{x ∈ K : f(x) ≤ pn} ⊆ Cf,n ⊆ {x ∈ K : f(x) < qn}.
Notice that the family of clopen sets Γ = {Cf,n : f ∈ F , n ∈ N} separates

points of K and therefore it generates A. Moreover, each Γn = {Cf,n : n ∈ N}
does not contain independent sequences since

{x ∈ K : f(x) < pn} ⊆ Cf,n and {x ∈ K : f(x) > qn} ⊆ (Cf,n)c.
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Thus, A is a WRN Boolean algebra.

Section 2.7
A minimally generated Boolean algebra which is not WRN

In Section 3.2 we will study a question of R. Haydon about the existence
of nontrivial convergent sequences on WRN compact spaces. Since minimally
generated Boolean algebras provide an important tool for constructing compact
spaces without nontrivial convergent sequences, it is natural to study what is the
relation between these classes of Boolean algebras. We prove in this section that
the class of WRN Boolean algebras and the class of minimally generated Boolean
algebras are incomparable.

The notion of minimal extensions of algebras was introduced by S. Koppelberg,
see [Kop89]; the basic facts we mention below can be found in [Kop89] or [BN07].

If B is a subalgebra of a Boolean algebra A and x ∈ A \B then B(x) denotes
the subalgebra of A generated by B ∪ {x}, that is

B(x) = {(b ∩ x) ∪ (b′ ∩ xc) : b, b′ ∈ B}.
B(x) is said to be a minimal extension of B if for any algebra C, if B ⊆ C ⊆ B(x)
then either C = B or C = B(x). We recall the following basic fact on minimal
extensions, see Proposition 3.1 in [Kop89].

Proposition 2.7.1. Let A be a Boolean algebra, B ≤ A a subalgebra and x ∈ A.
Then B(x) is a minimal extension of B if and only if for every b ∈ B, x ∩ b or
x ∩ bc is in B.

Proof. Suppose that the extension B ≤ B(x) is minimal. Take b ∈ B. If x ∩ b is
not in B, then B(x ∩ b) = B(x). Therefore, there exist a1, a2 ∈ B such that

x =
(
a1 ∩ (x ∩ b)

)
∪
(
a2 ∩ (x ∩ b)c

)
= (a1 ∩ x ∩ b) ∪ (a2 ∩ (xc ∪ bc)).

Hence x ∩ bc = a2 ∩ bc ∈ B.
Suppose now that for every b ∈ B, either x∩ b or x∩ bc is in B. Consider any

element y ∈ B(x) \B. Then there are disjoint a1, a2, a3 ∈ B such that

y = (a1 ∩ x) ∪ (a2 ∩ xc) ∪ a3.

Since a2 ∩ xc = a2 ∩ (a1 ∪ xc) = a2 ∩ ((ac1 ∩ x)c), it follows that either a1 ∩ x or
a2 ∩ xc is in B. By symmetry, we can assume that a2 ∩ xc ∈ B. Then y can be
written as y = (a1 ∩ x)∪ c where a1, c ∈ B are disjoint. It follows that a1 ∩ x /∈ B
and a1 ∩ x = y ∩ cc ∈ B(y). Since ac1 ∩ x must be in B, we get x ∈ B(y) so
B(x) = B(y), as required.
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Corollary 2.7.2. In the setting of Proposition 2.7.1, if for every finite B0 ≤ B
there is a finite subalgebra B1 with B0 ≤ B1 ≤ B such that B1 ≤ B1(x) is a
minimal extension then B(x) is a minimal extension of B.

A Boolean algebra A is minimally generated over B if B ≤ A and A can be
written, for some limit ordinal γ, as a union

A =
⋃

ξ<γ

Bξ,

where B0 = B, Bξ+1 is a minimal extension of Bξ for every ξ < γ and Bη =⋃
ξ<ηBξ for every limit ordinal η ≤ γ. Finally, A is said to be minimally generated

if it is minimally generated over the trivial algebra B = {0, 1}.

The dual concept of minimally generated Boolean algebras are continuous in-
verse systems of simple extensions:

Definition 2.7.3. (Kξ, π
η
ξ )ξ<η<κ is an inverse system if each πηξ is a continuous

map from Kη to Kξ for every ξ < η < κ and πηξ = πη
′

ξ ◦πηη′ for every ξ < η′ < η < κ.
The inverse limit of the system is the subspace of

∏
ξ<κKξ consisting of all points

x which satisfy πηξ (xη) = xξ for every ξ < η < κ.
(Kξ, π

η
ξ )ξ<η<κ is said to be continuous if Kκ′ is the inverse limit of (Kξ, π

η
ξ )ξ<η<κ′

for every limit ordinal κ′ < κ. Moreover, it is said to be based on simple extensions
if for every ξ < κ, the bonding map πξ+1

ξ : Kξ+1 → Kξ has the property that there is
a unique xξ ∈ Kξ such that |(πξ+1

ξ )−1(xξ)| = 2, and |(πξ+1
ξ )−1(x)| = 1 for x 6= xξ.

Note that if A is minimally generated then its Stone space ult(A) can be seen
as a limit of a continuous inverse system based on simple extensions (Kξ, π

η
ξ )ξ<η<κ,

where K0 = {0, 1} and every Kξ is compact.

The following result name common features of the classes of minimally gener-
ated algebras and WRN algebras.

Theorem 2.7.4 ([Kop89]). • Every subalgebra of an interval algebra is mini-
mally generated.

• Every superatomic Boolean algebra is minimally generated.

• A minimally generated algebra cannot contain an uncountable independent
family.

Nevertheless, we show below that there is a WRN Boolean algebra which is
not minimally generated and we give an example of a minimally generated algebra
which is not WRN.
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Example 2.7.5 ([AMCP16]). There exists a WRN Boolean algebra which is not
minimally generated.

Proof. Let B be the algebra of subsets of [0, 1) generated by the chain {[0, t) : 0 <
t < 1}. Then B is an interval algebra and therefore it is minimally generated, see
Example 2.1 in [Kop89] (note that its Stone space is the familiar split interval).

S. Koppelberg [Kop88, Example 1] proved, in particular, that the free product
A = B⊗B is not minimally generated. Such a free product is generated by

G =
{

[0, a)× [0, 1) : 0 < a < 1
}
∪
{

[0, 1)× [0, a) : 0 < a < 1
}
.

Note that no three elements of G are independent so A is a WRN algebra.

During the rest of this section we construct a minimally generated Boolean
algebra which is not WRN. We shall work in the Cantor set 2ω; let A0 = Clop(2ω).
For every partial function σ on ω to 2 we write

[σ] = {x ∈ 2ω : x(i) = σ(i) for every i ∈ domσ}.

Let T = {3n : n ∈ ω} and let S(T ) be the space of all permutations of T .
Let x ∈ 2ω, ϕ ∈ S(T ) be given. We shall define a certain set A(x, ϕ) ⊆ 2ω.

First define partial functions σn(x, ϕ) on ω as follows.

(i) σn(x, ϕ)(i) = x(i) if i ∈ 3n \ T ;

(ii) σn(x, ϕ)(ϕ(i)) = x(ϕ(i)) if i ∈ T and i < 3n;

(iii) σn(x, ϕ)(ϕ(3n)) = (x(ϕ(3n)) + 1) mod 2.

Note that every σn(x, ϕ) is defined on the set

(3n \ T ) ∪ ϕ({i ∈ T : i ≤ 3n}),

so the domain of σn(x, ϕ) is of size 3n+ 1. We now set

A(x, ϕ) =
⋃

n

[σn(x, ϕ)] .

We shall say below that a sequence (An)n of subsets of 2ω converges to a point
x ∈ 2ω if every neighborhood of x contains An for almost all n.

Claim 2.7.6. For any x and ϕ, ([σn(x, ϕ)])∞n=1 is a sequence of disjoint clopen
subsets of 2ω converging to x.
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Proof. If n < k then σn(x, ϕ)(ϕ(3n)) 6= σk(x, ϕ)(ϕ(3n)) so the clopen sets in
question are disjoint. If τ is any partial function with a finite domain I and
x ∈ [τ ] then take n0 such that

I ⊆ (3n0 \ T ) ∪ ϕ({i ∈ T : i < 3n0}).

Then σn(x, ϕ) extends τ so [σn(x, ϕ)] ⊆ [τ ] for every n ≥ n0.

Notice that S(T ) is a Gδ-set in T T , which is separable and completely metriz-
able, so S(T ) is a Polish space. Let us now fix a Borel bijective map g : 2ω → S(T )
(recall that between any two uncountable Polish spaces there is always a Borel
isomorphism; the fact that g is Borel will be needed for the proof of Theorem
2.7.10). For every x ∈ 2ω take Ax = A(x, g(x)). We define the desired algebra A
of subsets of 2ω as the one generated by A0 together with the family {Ax : x ∈ 2ω}.
Notice that the compact space ult(A) is just the split Cantor space induced by the
family of continuous characteristic functions {1Ax : 2ω \ {x} → {0, 1} : x ∈ 2ω}.

Claim 2.7.7. The algebra A is minimally generated.

Proof. Note that for any distinct x, y ∈ 2ω, [σn(x, g(x))] and [σn(y, g(y))] are
sequences of clopen sets converging to x and y, respectively. It follows that either
x /∈ Ay and then Ax∩Ay is clopen or, x ∈ Ay and then Ax\Ay is clopen. Therefore,
A is minimally generated over A0 by Proposition 2.7.1 and hence A is minimally
generated (since A0 is minimally generated because it is countable).

Claim 2.7.8. The algebra A is not WRN.

Proof. Take any decomposition A =
⋃
n<ωAn. We shall prove that there is n < ω

such that An contains an independent sequence.
Define Φn = {g(x) : Ax ∈ An} for every n < ω. Since

⋃
n Φn = g(2ω) = S(T )

and S(T ) is a Polish space, the Baire Category Theorem asserts that there exists
n0 < ω and a partial function ψ from ω to ω such that Φn0 ∩ [ψ] is dense in
S(T ) ∩ [ψ]. We can assume that the domain of ψ is {0, 3, ..., 3(p− 1)} for some p;
fix also i0 ∈ ω such that the range of ψ is included in {0, 3, ..., 3(i0 − 1)}.

Note that, by density, for any i ≥ i0 there is xi ∈ 2ω such that Axi ∈ An0 ,
g(xi)(3p) = 3i and g(xi)(3j) = ψ(3j) for every j < p. Passing to a subsequence of
i’s, we can additionally assume that xi have constant values for all n < 3p. Then
the following are satisfied:

(a) for every n < p and for every i, j,

[σn(xi, g(xi))] = [σn(xj, g(xj))] .
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(b) there is a partial function σ from ω to 2 with domain of size 3p such that for
every i ≥ i0 we have

[σp(xi, g(xi))] = [σ] ∩ Cεi
i ,

where we write Cεi
i = {x ∈ 2ω : x(3i) = εi} for the corresponding one-

dimensional cylinder in 2ω.

Let µ be the canonical product measure on 2ω. We shall prove that {Axi}i≥i0
is ε-separated for some ε > 0.

Note that for every xi and every n < ω,

µ([σn(xi, g(xi))]) =
1

23n+1
.

Using (a)–(b) above, for distinct i, j ≥ i0 we get

µ(Axi \ Axj) ≥ µ
((

([σ] ∩ Cεi
i ) \ ([σ] ∩ Cεj

j )
)
\
( ⋃

n>p

[σn(xj, g(xj))]
))
≥

≥ 1

23p+2
−
∑

n>p

1

23n+1
=

1

23p+2
− 1

23p+4

1

1− 2−3
=

5

7

1

23p+2
.

It follows that the sets Axi for i ≥ i0 are ε-separated with ε > 0 so by Lemma
2.6.1 there is an independent subsequence in An0 and we are done.

The following result summarizes our considerations and gives another property
of the Boolean algebra we have constructed. Recall that a function f : L → R
over a topological space L is a Baire-one function if it is the pointwise limit of a
sequence of continuous functions on L. By B1(L) we denote the space of Baire-one
functions on L equipped with the topology of pointwise convergence. A compact
space K is said to be Rosenthal if it can be embedded into B1(L) with L a Polish
space, i.e. L a separable completely metrizable topological space. We shall use the
following result.

Theorem 2.7.9. [Deb14, Corollary 4.9] Every separable compact space consisting
of Borel functions over a Polish space is Rosenthal.

Theorem 2.7.10 ([AMCP16]). There is a minimally generated algebra A such
that its Stone space K = ult(A) is a separable Rosenthal compact space which is
not WRN.

Proof. By Claim 2.7.8 the algebra A is not WRN so K = ult(A) is not WRN. It
follows easily from Claim 2.7.7 that A0 is a dense subalgebra of A. Hence K has a
countable π-base so is, in particular, separable. We prove below that K is indeed
Rosenthal.
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Given an ultrafilter u ∈ K, let zu be the unique point in 2ω such that
⋂
{C ∈ Clop(2ω) : C ∈ u} = {zu}.

Claim A. For every u ∈ K we have

{y ∈ 2ω : zu ∈ Ay} ⊆ {y ∈ 2ω : Ay ∈ u} ⊆ {y ∈ 2ω : zu ∈ Ay} ∪ {zu}.

The first inclusion is clear. To check the latter, note first that Ay = Ay∪{y} for
every y ∈ 2ω since Ay is the union of clopen sets converging to y. Hence if Ay ∈ u
and zu /∈ Ay then y = zu (otherwise, zu /∈ Ay which contradicts the definition of
zu).

Claim B. For every u ∈ K, {y ∈ 2ω : Ay ∈ u} is a Borel subset of 2ω.

By Claim A, it is sufficient to check that for any z ∈ 2ω the set {y ∈ 2ω : z ∈ Ay}
is Borel. But

{y ∈ 2ω : z ∈ Ay} =
⋃

n

{y ∈ 2ω : z ∈ [σn(y, g(y))]},

and every set {y ∈ 2ω : z ∈ [σn(y, g(y))]} is Borel because the function g is Borel.
Consider now the following mapping f : K → 2ω × 22ω

f(u) =
(
zu, χ{y∈2ω :Ay∈u}

)
.

Then f is injective since every ultrafilter u ∈ K is uniquely determined by the
family of generators of the algebra A that are in u. It is clear that f is continuous.
It follows from Claim B that K is homeomorphic to a pointwise-compact set of
Borel functions on a Polish space. Since K is separable, K is Rosenthal compact
by Theorem 2.7.9.

Section 2.8
Uniformly WRN and Strongly WRN Boolean algebras

In this section we introduce two subclasses of WRN algebras; they are defined
by natural conditions that are slightly stronger than that of Definition 2.6.2.

Definition 2.8.1. A Boolean algebra A is in the class I(n), where n ≥ 1, if A is
generated by a family G ⊆ A such that G contains no n+ 1 independent elements.
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Definition 2.8.2. A Boolean algebra A is uniformly weakly Radon-Nikodým
(UWRN) if A is generated by a family G =

⋃
n∈N Gn such that no Gn contains

an independent sequence of length n.

Notice that Theorem 2.6.6 provides an analogue result of Proposition 2.6.3 for
UWRN Boolean algebras.

Corollary 2.8.3 ([AMCP16]). A Boolean algebra A is UWRN if and only if there
is a decomposition A =

⋃
n∈N En such that no En contains an independent sequence

of length n.
Consequently, the class of UWRN algebras is stable under taking subalgebras.

Note that every interval algebra is in I(1). In turn, the following holds.

Theorem 2.8.4 ([AMCP16]). Every Boolean algebra from I(1) is minimally gen-
erated.

Proof. Take a Boolean algebra A ∈ I(1) and a family G generating A containing
no independent pairs of elements. We shall check the following.

Claim. For every finite J ⊆ G and every x ∈ G, the extension 〈J 〉 ≤ 〈J ∪ {x}〉
is minimal.

It is clear that Claim holds if J = {y}, since x, y are not independent. We
argue by induction on |J |.

Suppose that every extension 〈J 〉 ≤ 〈J ∪ {x}〉 is minimal whenever |J | = n.
Take x ∈ G and J ⊆ G with |J | = n + 1. We prove that the extension 〈J 〉 ≤
〈J ∪ {x}〉 is also minimal. Choose y ∈ J and set S = J \ {y}. We are going to
prove that for every z ∈ 〈J 〉, z ∩ x or zc ∩ x is in 〈J 〉. Since z ∈ 〈J 〉 = 〈S ∪ {y}〉,
we know that

z = (a ∩ y) ∪ (b ∩ yc) for some a, b ∈ 〈S〉.
Since |S| = n, we know that a∩ x or ac ∩ x is in 〈S〉, and b∩ x or bc ∩ x is in 〈S〉.

Without loss of generality, suppose that z ∩ x /∈ 〈J 〉. Since

z ∩ x = (a ∩ y ∩ x) ∪ (b ∩ yc ∩ x),

then either a ∩ y ∩ x /∈ 〈J 〉 or b ∩ yc ∩ x /∈ 〈J 〉.
Consider the case when a ∩ y ∩ x /∈ 〈J 〉. Then a ∩ x /∈ 〈S〉 so ac ∩ x ∈ 〈S〉.

Moreover, it follows that x∩ y 6= 0 and y 6⊆ x. Since y and x are not independent,
this leaves us two possibilities: either x ⊆ y or x ∪ y = 1. Hence yc ∩ x = 0 or
yc ∩ x = yc so yc ∩ x ∈ 〈J 〉 in both cases. By easy calculation we get

zc = (a ∩ y)c ∩ (b ∩ yc)c = (ac ∪ yc) ∩ (bc ∪ y) = (ac ∩ bc) ∪ (ac ∩ y) ∪ (bc ∩ yc) =
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= (ac ∩ y) ∪ (bc ∩ yc),
and it follows that

zc ∩ x =
(
(ac ∩ x) ∩ y

)
∪
(
(yc ∩ x) ∩ bc

)
∈ 〈J 〉.

If b ∩ yc ∩ x /∈ 〈J 〉 then in a similar way we get bc ∩ x ∈ 〈S〉 and x ∩ y ∈ 〈J 〉,
giving zc ∩ x ∈ 〈J 〉. This finishes the proof of Claim.

Now we conclude the proof of the theorem applying Claim and Corollary 2.7.2.

Note that Example 2.7.5 in fact gives the following.

Corollary 2.8.5. There exists a Boolean algebra in I(2) which is not minimally
generated.

We can also strengthen the condition of Definition 2.6.2 in the following way.

Definition 2.8.6. Let us say that a Boolean algebra is strongly WRN (SWRN) if
it is generated by a family containing no infinite independent sequence.

The classes of UWRN and SWRN Boolean algebras are incomparable, see
Corollary 3.2.6 and the following result.

Proposition 2.8.7. There exists a UWRN algebra which is not SWRN.

Proof. Let A be the algebra of clopen sets of a countable product of one point
compactifications of a discrete set of cardinality ω1. Let F = {enα : n ∈ N, α < ω1}
be the canonical generators of A which are independent except for the relation
enα ∩ enβ = 0 whenever α 6= β. Clearly the algebra A is UWRN. We prove below
that it is not SWRN.

Suppose that G is a system of generators. It is enough to check that the image
of G under some quotient contains an infinite independent sequence. Express each
enα as a Boolean polynomial of generators from G and in turn each such generator
as a Boolean polynomial of generators from F . Let Fk(enα) be the set of all β < ω1

such that ekβ appears in such expression of enα. Notice that for every α < ω1, n ∈ N
each set Fk(enα) is finite and, moreover, Fk(enα) = ∅ for all except finitely many
k ∈ N. By passing, for each n, to an uncountable subset An ⊆ ω1 (by this we
mean, making a quotient that makes each enα, α 6∈ An vanish), we can suppose that
for every n there is mn ∈ N such that Fk(enα) = ∅ if k ≥ mn and |Fk(enα)| < mn if
k < mn. Moreover, we can also suppose that each family {Fk(enα) : α ∈ An} is a
∆-system. By removing all roots (that form just a countable set), we can suppose
that the family {Fk(enα) : α ∈ An} is always pairwise disjoint. Now it is easy to get
αn ∈ An such that Fk(enαn)∩Fq(emαm) = ∅ for all k, q, n,m with n 6= m. If we make
vanish all generators of F except the enαn ’s, we will find that one of the generators
from G (call it gn) in the expression of enαn is enαn itself. Thus, there is an infinite
independent sequence in G.
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Section 2.9
Measures on WRN compact spaces

Recall that by a measure µ on a Boolean algebra we mean a finitely additive
nonnegative probability functional A→ [0, 1].

Definition 2.9.1. Let µ be a measure on an algebra A. We say that the measure
µ

(i) is nonatomic if for every ε > 0 there are n ≥ 1 and a finite partition
{a1, . . . , an} of 1A such that µ(ai) < ε for every i ≤ n.

(ii) has countable type (or is separable) if there is a countable subalgebra B of
A such that for every a ∈ A we have

inf{µ(a4 b) : b ∈ B} = 0.

(iii) is strongly countably determined (or uniformly regular) if there is a countable
subalgebra C ⊆ A such that for every a ∈ A we have

µ(a) = sup{µ(c) : c ∈ C, c ⊆ a}.

Clearly a strongly countably determined measure has countable type; recall
that the reverse implication does not hold in general.

Definition 2.9.2. Let µ be a regular Borel probability measure on a compact space
K.

(i) A zero set in K is a set of the form f−1({0}), where f ∈ C(K).

(ii) The measure µ is uniformly regular if there is a countable family Z of zero
subsets of K such that for every open set U in K

µ(U) = sup{µ(C) : C ∈ Z, C ⊆ U}.

(iii) We say that µ is concentrated on a Borel set C ⊆ K if µ(C) = 1.

Notice that every measure µ in a Boolean algebra A determines a measure µ̂
in ult(A) such that µ̂(â) = µ(a) for every a ∈ A. If µ is a measure with countable
type, then µ̂ is separable, i.e. L1(µ) is separable as a Banach space. Moreover, if
µ is strongly countable determined then µ̂ is uniformly regular.

Every uniformly regular measure on a compact space is separable and is con-
centrated on a separable subspace. We prove in this section that every measure
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on a WRN compact space is separable and study the problem of the existence of
measures on WRN compact spaces which are not concentrated on a separable set.

Let us start by studying the case of WRN Boolean algebras. P. Borodulin-
Nadzieja [BN07] proved the following result concerning minimally generated alge-
bras:

Theorem 2.9.3. Let A be a minimally generated algebra. Then every measure µ
on A has countable type.

Proposition 2.9.4 ([AMCP16]). If µ is a measure on a WRN algebra A then µ
has countable type.

Proof. Suppose otherwise; note that then there is ε > 0 and an uncountable family
F such that µ(a4 b) ≥ ε for any distinct a, b ∈ F .

Since A is WRN, we have a decomposition A =
⋃
n En as in Proposition 2.6.3(ii).

But then F ∩ En is uncountable for some n and we arrive at a contradiction with
Lemma 2.6.1.

Remark 2.9.5. Notice that if every measure on a Boolean algebra A has count-
able type, then A contains no uncountable independent sequence and, consequently,
ult(A) cannot be mapped onto 2ω1. In particular, the Stone space of any minimally
generated algebra or WRN algebra cannot contain a copy of βN.
Proposition 2.9.6 ([AMCP16]). If µ is a nonatomic measure on A and A ∈ I(1)
then µ is strongly countably determined.

Proof. By the assumption, A = 〈G〉 where G contains no independent pair.
Fix ε > 0. There is a finite G0 ⊆ G such that B = 〈G0〉 has all atoms of measure

< ε. Take any g ∈ G and consider b0, b1 ∈ B, where b0 is the maximal element of
B contained in g, while b1 is the minimal element of B containing g.

Claim. b1 \ b0 is an atom of B.

Indeed, for any h ∈ G0, either h ⊆ g which implies h ⊆ b0, or h ∩ g = 0 which
gives h ∩ b1 = 0, or g ⊆ h which implies b1 ⊆ h, or else h ∪ g = 1 and in this case
h ⊇ b1 \ b0. So b1 \ b0 is split by no h ∈ G0 and hence it is an atom of B.

It follows from Claim that µ(b1 \ b0) < ε, so

µ(b0) = µ(b1)− µ(b1 \ b0) ≥ µ(g)− ε,
so b0 approximates g from inside; likewise, bc1 ⊆ gc and µ(gc \ bc1) ≤ ε. Now, taking
a countable G ′ ⊆ G such that µ is nonatomic on C = 〈G ′〉, it follows that for every
g ∈ G, we have

µ(g) = sup{µ(c) : c ∈ C, c ⊆ g} and µ(gc) = sup{µ(c) : c ∈ C, c ⊆ gc}.
By a standard argument we conclude that µ(a) = sup{µ(c) : c ∈ C, c ⊆ a} for
every a ∈ A, so µ is strongly countably determined.
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P. Borodulin-Nadzieja [BN07, Corollary 4.11 and Example 4.12] proved that
a nonatomic measure on an algebra that is minimally generated by a sequence
of order type ω1 is strongly countably determined but this is no longer true for
arbitrary minimally generated algebras.

Problem 2.9.7. Is it true that for every n and every algebra A ∈ I(n), every
nonatomic measure on A is strongly countably determined?

Note that if the answer to the above problem is positive then every nonatomic
measure on a UWRN algebra is strongly countably determined. In turn, this
would imply that if K is a zero-dimensional compact space with Clop(K) being
a UWRN algebra then every regular Borel measure on K is concentrated on a
separable subspace.

Problem 2.9.8 (J. Rodríguez). Is it true that every regular Borel probability mea-
sure on a WRN compact space K is concentrated on a separable subspace of K?

This question is motivated by the following results due to J. Rodríguez:

Proposition 2.9.9 ([AMCP16]). If K is WRN compact and if µ is a regular Borel
probability measure on K then µ has countable type (i.e. L1(µ) is separable).

Proof. Since K is WRN compact, C(K) is spanned by some weakly precompact
set W ⊆ C(K). If we consider the natural embedding C(K) ↪→ L1(µ) then the
image of W is norm-separable. Indeed, otherwise for some ε > 0 we could find
functions fn ∈ W such that

∫
K
|fn − fk| dµ ≥ ε for n 6= k. But then (fn)n admits

no weakly Cauchy subsequence, a contradiction.
Since W is norm-separable in L1(µ), a standard argument gives that C(K) ⊆

span(W ) is also norm-separable in L1(µ). But C(K) is dense in L1(µ) so L1(µ) is
separable itself.

Let X be a Banach space and let K be a weak*-compact subset of the dual
unit ball BX∗ . Let µ be a regular Borel probability measure on K; denote by
f : K → X∗ the identity function. Then for every B ∈ Borel(K) there is a vector
ν(B) =

∫
B
f dµ ∈ X∗ which is the Gelfand integral of f on B, that is

〈ν(B), x〉 =

∫

B

x dµ (2.1)

for every x ∈ X, see [DU77, page 53]. Here every x ∈ X is seen as a continuous
function K 3 x∗ → x∗(x) on K. In other language, ν(B) is the barycenter of a
measure 1/µ(B) · µB which is the normalized restriction of µ to B.

Theorem 2.9.10. Let X be a Banach space and K ⊆ BX∗ a weak*-compact
and convex subset. Then for every probability regular Borel measure µ on K with
countable type there is a weak*-closed and weak*-separable set L ⊆ K such that
µ(L) = 1, i.e. µ is concentrated on a separable subspace of K.
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Proof. Consider the set

S :=

{
1

µ(B)

∫

B

f dµ : B ∈ Borel(K), µ(B) > 0

}
.

As above, we write ν(B) =
∫
B
f dµ for simplicity.

Claim. The set S is norm-separable.

Since µ is separable there is a countable family A of Borel subsets of K of
positive measure such that inf{µ(A4B) : A ∈ A} = 0 for every Borel set B ⊆ K.
Note that

‖ν(B)− ν(A)‖ = sup
x∈BX

∣∣∣∣
∫

B

x dµ−
∫

A

x dµ

∣∣∣∣ ≤ µ(B 4 A). (2.2)

Fix ε > 0 and a Borel set B of positive measure; take A ∈ A such that
µ(B 4 A) < ε · µ(B) and |1/µ(B)− 1/µ(A)| < ε. Then, using (2.2) we get
∥∥∥∥

1

µ(B)
ν(B)− 1

µ(A)
ν(A)

∥∥∥∥≤
∥∥∥∥

1

µ(B)
ν(B)− 1

µ(B)
ν(A)

∥∥∥∥+

∥∥∥∥
1

µ(B)
ν(A)− 1

µ(A)
ν(A)

∥∥∥∥

≤ 1

µ(B)
‖ν(B)− ν(A)‖+ ‖ν(A)‖

∣∣∣∣
1

µ(B)
− 1

µ(A)

∣∣∣∣ ≤ 2ε.

and the claim is proved.
Since S is norm-separable in X∗, the weak*-closed convex hull L := co(S)

w∗
is

weak*-separable. Let us check that L fulfills the required properties.
First note that L ⊆ K. To verify this it suffices to check that S ⊆ K. Take

any x∗ ∈ X∗ \ K. By the Hahn-Banach theorem, there is x ∈ X such that
x∗(x) > α := sup{y∗(x) : y∗ ∈ K}, therefore

〈
1

µ(B)

∫

B

f dµ, x

〉
(2.1)
=

1

µ(B)

∫

B

x dµ ≤ α < x∗(x),

for every B ∈ Borel(K) with µ(B) > 0. Hence x∗ 6∈ S.
It remains to prove that µ(L) = 1; we achieve it by checking that for every

x∗ ∈ K \ L there is a weak*-open set U ⊆ K such that x∗ ∈ U and µ(U) = 0.
Again, the Hahn-Banach theorem ensures the existence of x ∈ X such that

x∗(x) > β := sup
y∗∈S

y∗(x)
(2.1)
= sup

{
1

µ(B)

∫

B

x dµ : B ∈ Borel(K), µ(B) > 0

}
.

Fix β < γ < x∗(x). Then x∗ belongs to the weak*-open set U := {y∗ ∈ K :
y∗(x) > γ} and

∫
U
x dµ ≥ γµ(U). On the other hand, by the very definition of β

we also have βµ(U) ≥
∫
U
x dµ. Then βµ(U) ≥ γµ(U) and so µ(U) = 0.
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As a consequence of Proposition 2.9.9 and Theorem 2.9.10 we get the following:

Corollary 2.9.11. Suppose that X is a Banach space not containing `1 and that
the set K ⊆ BX∗ is weak*-compact and convex. Then every probability regular
Borel measure µ on K is concentrated on a separable subspace of K.



Chapter 3

Sequential properties

Section 3.1
Introduction

In this chapter we study sequential topological properties. In particular, we
focus in Banach spaces whose dual ball (with the weak*-topology) is sequentially
compact or sequential. A topological space T is said to be sequentially compact
if every sequence in T contains a convergent subsequence. Moreover, T is said to
be Fréchet-Urysohn (FU for short) if the closure of any subset F of T coincides
with the set of limits of convergent sequences in F . Every FU compact space is
sequentially compact. A Banach space is said to have weak*-angelic dual if its
dual ball with the weak*-topology is FU.

Sequential spaces generalize FU spaces. If T is a topological space and F is a
subspace of T , the sequential closure of F , which we denote by S(F ), is the set of
limits of convergent sequences in F . F is said to be sequentially closed if it coincides
with its sequential closure. A topological space is said to be sequential if any
sequentially closed subspace is closed. Thus, every FU space is sequential. Another
natural generalization of the FU property is countable tightness. A topological
space T is said to have countable tightness if the closure of any subspace F of T
coincides with the union of closures of countable subsets of F . Obviously, every
FU space has countable tightness. Moreover, the following holds:

Lemma 3.1.1. Every sequential topological space T has countable tightness.

Proof. Take F a subset of T and put

F̂ = {x ∈ T : There exists a countable set C ⊆ F with x ∈ C}.
We have to prove that F̂ = F . It is immediate that F̂ is sequentially closed, so
the conclusion follows from the sequentiality of T .
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Example 3.1.2. [Fra69] Let T = βN be the topological space whose topology is
generated by the open sets of βN and the sets of the form {x}∪N with x ∈ βN\N.
Since βN does not contain convergent sequences, it is immediate that T is not
sequential. On the other hand, if F ⊆ T and x ∈ F , then ({x} ∪ N) ∩ F 6= ∅, so
x ∈ F or x ∈ F ∩ N. Thus, F = F ∪ (F ∩ N) and T has countable tightness.

Example 3.1.2 provides a topogical space with countable tightness which is not
sequential. Nevertheless, whether every compact space with countable tightness is
sequential is known as the Moore-Mrowka Problem and it is undecidable in ZFC
[Bal88]. Moreover, Fedorchuk [Fed77] provided a consistent example of a compact
space with countable tightness with no convergent subsequences, so which is non-
sequentially compact. Therefore, for a compact space K, we have the following
implications:

K is FU ⇒ K is sequential ⇒ K is sequentially compact

⇓
K has countable tightness

In [Pli15] A. Plichko asked the following:

Question 3.1.3. Does every Banach space with weak*-sequential dual ball have
weak*-angelic dual?

In Section 3.3 we provide sufficient conditions for a Banach space to have weak*-
sequential dual ball. Finally, we provide a negative answer to Plichko’s question
in Section 3.4, showing several examples of Banach spaces with weak*-sequential
dual ball and no weak*-angelic dual.

Another property studied by A. Plichko in [Pli15] is property E of Efremov.
A Banach space X is said to have property E if the weak*-closure of any convex
subset C of BX∗ coincides with the weak*-sequential closure of C. Moreover, we
say that X has property E ′ if every weak*-sequentially closed convex subset of BX∗

is weak*-closed. Thus, if X has weak*-angelic dual then it has property E and if
X has weak*-sequential dual ball then X has property E ′.

Another related Banach space properties are Mazur property and property (C)
of Corson. A Banach space X has Mazur property if every weak*-sequentially
continuous functional x∗∗ ∈ X∗∗ is weak*-continuous and, therefore, x∗∗ ∈ X. The
relation between Mazur property and Banach spaces with weak*-sequential dual
ball is given by the following Lemma:
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Lemma 3.1.4. A topological space T is sequential if and only if every sequentially
continuous function f : T → T ′ is continuous for every topological space T ′.

Proof. If T is sequential and C ⊆ T ′ is closed, then f−1(C) is sequentially closed by
the sequential continuity of f . Thus, f−1(C) is closed for every closed set C ⊆ T ′

and f is continuous.
If T is not sequential, then we can take T ′ the topological space with T as

underlying set and such that a set U is open in T ′ if and only if its complementary is
sequentially closed in T . It can be easily seen that the identity function i : T → T ′

is sequentially continuous but not continuous.

Thus, it follows from the Banach-Dieudonné Theorem that every Banach space
with weak*-sequential dual ball has the Mazur property. Moreover, the following
holds:

Lemma 3.1.5. If X has property E ′ then it has Mazur property.

Proof. Take any weak*-sequentially continuous functional x∗∗ : X∗ → R. It is
enough to prove that x∗∗ is weak*-continuous over BX∗ . Without loss of generality,
‖x∗∗‖ ≤ 1. Take any closed interval C = [a, b] ⊆ [−1, 1]. Then, {x∗ ∈ BX∗ :
x∗∗(x∗) ∈ C} is a weak*-sequentially closed convex subset of BX∗ , so it is weak*-
closed by property E ′. Thus, {x∗ ∈ BX∗ : x∗∗(x∗) ∈ C} is weak*-closed for every
closed interval C ⊆ [−1, 1], which implies that x∗∗ is weak*-continuous.

A Banach space X has property (C) of Corson if every family of closed convex
subsets of X with empty intersection contains a countable subfamily with empty
intersection. R. Pol discovered that property (C) is a convex analogue to countable
tightness:

Theorem 3.1.6 ([Pol80]). A Banach space X has property (C) if and only if every
point in the weak*-closure of any convex subspace C ⊆ BX∗ is in the weak*-closure
of a countable subset of C.

Thus, we have the following implications among these Banach space properties
(for the definition of a Banach space with weak*-convex block compact dual ball
see Definition 3.2.9):



68 Chapter 3. Sequential properties

X has weak*-
angelic dual

X has
property E

X has weak*-
sequential
dual ball

X has
property E ′

X has weak*-
sequentially
compact
dual ball

X has weak*-
convex block
compact
dual ball

X has Mazur
property

X has prop-
erty (C)

(BX∗ , w
∗)

has countable
tigthness

Notice that C([0, ω1]) has weak*-sequentially compact dual ball but it does not
have property (C). Moreover, `1(ω1) has the Mazur property [Edg79, Section 5]
but it does not have property (C).

In [PY00] it is asked whether property (C) implies property E . J.T. Moore in
an unpublished paper and C. Brech in her PhD Thesis [Bre08] provided a negative
answer under some additional consistent axioms, but the question is still open in
ZFC. Notice that the convex version of Plichko’s question is whether property E ′
implies property E . A negative answer to this question would provide an example
of a Banach space with property (C) not having property E .

Section 3.2
Sequential compactness

In Chapter 2 we studied several classes of compact spaces. Notice that every
separable subspace in a Σ-product Σ(Γ) is metrizable, so every Eberlein and every
Corson compact space is sequentially compact. Moreover, every RN and every
QRN compact space is sequentially compact due to the following result [Fab97,
Theorem 5.1.12]:
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Lemma 3.2.1. Every compact space fragmented by a metric is sequentially com-
pact.

Proof. Let K be a compact space fragmented by a metric d and take tn a sequence
in K. Set F =

⋂
n∈N {ti : i ≥ n}, which is a nonempty compact space in K. Since

d fragments K, we can construct by induction a sequence Un of open sets in K
with Un ∩ (F ∩⋂i<n Ui) 6= ∅, diamd(Un ∩ (F ∩⋂i<n Ui)) <

1
n
and Un+1 ⊆ Un for

every n ∈ N. Notice that

C :=
⋂

n∈N
Un ∩ F =

⋂

n∈N
Un ∩ F

has diameter zero, so C = {t} for some t ∈ F . Take tnk ∈ Uk for every k ∈ N. We
claim that the subsequence tnk converges to t. Suppose that s is a cluster point of
tnk . Then, s ∈

⋂
n∈N Un ∩ F = C, so s = t and we conclude that K is sequentially

compact.

Moreover, H. Rosenthal proved that every Rosenthal compact space is sequen-
tially compact [Ros78, Lemma 3.8].

Nevertheless, R. Haydon provided an example of a WRN compact space which
is not sequentially compact. Let us recall the construction of D. H. Fremlin used
by Haydon [Hay81]. In particular, this construction provides an example of an
SWRN Boolean algebra F such that ult(F) is not sequentially compact.

Example 3.2.2. Let G be a family of subsets of N maximal with respect to the
condition that for every A,B ∈ G there exists ε1, ε2 ∈ {0, 1} such that Aε1 ∩Bε2 is
finite. Let F be the subalgebra of subsets of N generated by G (note that G contains
all finite subsets of N). It is clear that G does not contain an infinite independent
sequence, so F is an SWRN algebra.

Notice that ult(F) contains a natural copy of N which consists of principal
ultrafilters of F. By the maximality of G every infinite A ⊆ N is split into two
infinite parts by some G ∈ G. Consequently, the sequence of natural numbers
in ult(F) does not contain a converging subsequence, and therefore ult(F) is not
sequentially compact.

Note that ult(F) \ N is a compact space which is homeomorphic to the Stone
space of the quotient Boolean algebra A = F/fin. Then A is generated by G• =
{G• : G ∈ G}, where by G• we denote the class of G ∈ G in A = F/fin. Since no
pair from G• is independent, A is in I(1). J. Bourgain proved that every sequence
of nonprincipal ultrafilters in ult(F) contains a convergent subsequence, cf. [HS80].
Thus, ult(A) is sequentially compact.

We shall now generalize Bourgain’s idea mentioned above.
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Theorem 3.2.3. Let K be a compact space, n ∈ N and F ⊆ C(K) a uniformly
bounded family of continuous functions separating the points of K and such that
F does not contain independent families of size n + 1. Then K is sequentially
compact.

Proof. Fix a sequence tk ∈ K and define

t̂k : F → R

by the formula t̂k(f) = f(tk) for every f ∈ F . Since F is uniformly bounded, the
sequence t̂k is also uniformly bounded.

We claim that t̂k has a pointwise convergent subsequence. Suppose this is not
the case. By Theorem 2.2.8, passing to a subsequence if necessary, we may suppose
that t̂k is an independent sequence of functions. Thus, there exists p < q such that
the sequence (A0

k, A
1
k)k∈N is independent, where A0

k = {f ∈ F : t̂k(f) = f(tk) < p}
and A1

k = {f ∈ F : t̂k(f) = f(tk) > q}. Write {0, 1}n+1 = {ε1, ε2, . . . , ε2n+1} and
take

fk ∈
2n+1⋂

i=1

A
εi(k)
i for every k = 1, 2, . . . , n+ 1.

Notice that for any εi ∈ {0, 1}n+1 we have that fk(ti) > q if εi(k) = 1 and
fk(ti) < q if εi(k) = 0 for every k = 1, 2, ..., n + 1. This is a contradiction since
then {f1, f2, . . . , fn+1} ⊆ F is an independent family of size n+1.

Thus t̂k has a pointwise convergent subsequence. Let ˆtnk be a subsequence
converging to a function t̂ : F → R. Then,

lim
k
f(tnk) = lim

k
ˆtnk(f) = t̂(f) for every f ∈ F .

In particular, for any cluster points t, s of the sequence tnk , we have

f(t) = lim
k
f(tnk) = t̂(f) = f(s) for every f ∈ F .

Since F separates points, we conclude that t = s and tnk is a convergent subse-
quence.

Corollary 3.2.4 ([AMCP16]). If A is a Boolean algebra in I(n) for some n ∈ N,
then ult(A) is sequentially compact.

Proof. Let A be a Boolean algebra in I(n) for some n ∈ N and take G ⊆ A
such that G does not contain independent families of size n+1. Then, F =
{χg : ult(A)→ R : g ∈ G} satisfies the conditions of Theorem 3.2.3.

Corollary 3.2.5 ([AMCP16]). If A is a UWRN Boolean algebra, then ult(A) is
sequentially compact.
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Proof. Since A is UWRN we have A = 〈G〉, and the decomposition G =
⋃
n Gn as

in Definition 2.8.1. If we let An = 〈Gn〉 for every n we have an obvious embedding

ult(A)→
∞∏

n=1

ult(An).

We conclude the proof applying Corollary 3.2.5 and the fact that the class of
sequentially compact spaces is stable under closed subspaces and countable prod-
ucts.

Corollary 3.2.6 ([AMCP16]). The Boolean algebra F from Example 3.2.2 is
SWRN but not UWRN.

We remark that another example of an SWRN Boolean algebra which is not
UWRN is given by the well-known example of an Eberlein compact space which
is not uniformly Eberlein constructed by Y. Benyamini and T. Starbird [BS76].

As far as we are concerned, the following problem is open:

Problem 3.2.7. (Haydon, [Hay81]) Does every infinite WRN compact space con-
tain a nontrivial convergent sequence?

As we noted above in Remark 2.9.5, typical spaces without nontrivial con-
vergent sequences, such as βN, are not WRN. Problem 3.2.7 is related with a
well-known problem posed by Efimov:

Problem 3.2.8. (Efimov) Does every infinite compact space contain a nontrivial
convergent sequence or a homeomorphic copy of βN?

An infinite compact space not containing nontrivial convergent sequences nei-
ther a homeomorphic copy of βN is said to be an Efimov space. Although there
are several consistent examples of Efimov spaces, it is unknown whether an Efimov
space can be constructed in ZFC. Notice that Haydon’s problem is equivalent to
ask whether there exists a WRN Efimov space. We highlight the consistency of
the existence of Efimov compact spaces in the class MS [BN07].

Although there are WRN algebras which are not SWRN, in order to give an
answer to Problem 3.2.7 for zero-dimensional compact spaces, it is enough to
consider SWRN algebras because we can use a similar argument as in the proof of
Corollary 3.2.5.

We finish this section with a convex version of sequential compactness:

Definition 3.2.9. If (xn)n∈N is a sequence in a Banach space, we say that (yk)k∈N
is a convex block subsequence of (xn)n∈N if there is a sequence (Ik)k∈N of finite
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subsets of N with max(Ik) < min(Ik+1) and a sequence an ∈ [0, 1] with
∑

n∈Ik an =
1 for every k ∈ N such that yk =

∑
n∈Ik anxn.

A Banach space X is said to have weak*-convex block compact dual ball if every
bounded sequence in X∗ has a weak*-convergent convex block subsequence.

Every Banach space containing no isomorphic copies of `1 has weak*-convex
block compact dual ball [Bou79]. Therefore, every WPG Banach space also has
weak*-convex block compact dual ball. Moreover, if a Banach space X does not
have weak*-convex block compact dual ball then X∗ contains an isometric copy of
L1({0, 1}ω1), cf. [HLO87, Corollary 3c] and [Sch89]. Therefore, C(K) has weak*-
convex block compact dual ball for every compact space K in the class MS.

We finish the section proving that every Banach space with property E ′ has
weak*-convex block compact dual ball. First we need the following lemma:

Lemma 3.2.10. Let X be a Banach space with property E ′ and C ⊆ BX∗ a convex
subset. If the weak*-sequential closure of C is equal to C‖·‖, then Cw∗

= C
‖·‖.

Proof. Obviously C‖·‖ is contained in S(C) (the weak*-sequential closure of C).
Suppose S(C) = C

‖·‖ but Cw∗ 6= C
‖·‖. Then S(C) is not weak*-closed. Since X

has property E ′, there exists a sequence x∗n ∈ S(C) which converges to a point
x∗ /∈ S(C). It follows from the equality S(C) = C

‖·‖ that there exists y∗n ∈ C such
that ‖y∗n−x∗n‖ < 1

2n
for every n ∈ N. Then, y∗n = x∗n+(y∗n−x∗n) is weak*-convergent

to x∗. Thus x∗ ∈ S(C) in contradiction with our assumption.

Theorem 3.2.11. Let X be a Banach space with property E ′. Then X has weak*-
convex block compact dual ball.

Proof. Let (x∗n)∞n=1 be a sequence in BX∗ . Set C the convex hull of {x∗n : n ∈ N}.
We divide the proof in two cases.

Consider first the case S(C) = C
‖·‖. Then S(C) = C

w∗
= C

‖·‖ by Lemma
3.2.10. In particular, Cw∗ is a weak*-closed set which is norm-separable. We prove
that this implies that Cw∗ with the weak*-topology is metrizable. Let D ⊆ C be a
countable norm-dense set in C and fix a set D′ = {xd,d′ ∈ BX : d, d′ ∈ D}, where
‖d−d′‖

2
≤ d(xd,d′)− d′(xd,d′) for every d, d′ ∈ D. If x∗, y∗ ∈ S(C), then we can take

dn, d
′
n ∈ D with ‖x∗ − dn‖ < 1

2n
and ‖y∗ − d′n‖ < 1

2n
for every n ∈ N. Notice that

‖dn − d′n‖ ≤ 2(dn(xdn,d′n)− d′n(xdn,d′n)) ≤ 2(x∗(xdn,d′n)− y∗(xdn,d′n)) + 2(
1

2n
+

1

2n
)

= 2(x∗(xdn,d′n)− y∗(xdn,d′n)) +
1

2n−2
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for every n ∈ N. Thus, if x∗(x) = y∗(x) for every x ∈ D′, then ‖dn−d′n‖ converges
to zero and therefore x∗ = lim dn = lim d′n = y∗. This implies that D′ determines
a countable family of weak*-continuous functions on Cw∗ which separates points.
Thus, Cw∗ is metrizable.

Therefore, if S(C) = C
‖·‖

= C
w∗ , then Cw∗ is weak*-metrizable and, in partic-

ular, (x∗n)∞n=1 contains a weak*-convergent subsequence.

We consider now the second case. Suppose that there exists x∗ ∈ S(C) \ C‖·‖.
Let (y∗n)∞n=1 be a sequence in C weak*-convergent to x∗. Write

y∗n =
∞∑

k=1

λnkx
∗
k,

with
∞∑

k=1

λnk = 1, 0 ≤ λnk ≤ 1 and λnk = 0 for all except finitely many k ∈ N

for every n ∈ N. Without loss of generality, we may suppose that (λnk)∞n=1 converges
to some point λk for every k ∈ N. Moreover, a standard diagonal argument proves
that we can assume that each sequence (λnk)∞n=1 is eventually monotone. Notice
that 0 ≤ ∑∞

k=1 λk ≤ 1. We claim that
∑∞

k=1 λk < 1. If
∑∞

k=1 λk = 1 then∑∞
k=1 λkx

∗
k ∈ C

‖·‖ and it can be easily seen that x∗ =
∑∞

k=1 λkx
∗
k, in contradiction

with x∗ /∈ C‖·‖.
Thus, 0 ≤ λ :=

∑∞
k=1 λk < 1. Set Nn = {k ∈ N : λnk > λk} for every n ∈ N.

Notice that Nn 6= ∅ and that

∑

k∈Nn
(λnk − λk) = 1−

∑

k∈Nn
λk −

∑

k/∈Nn

λnk ≥ 1−
∞∑

k=1

λk = 1− λ > 0. (3.1)

Passing to a subsequence if necessary, we suppose that there exists

λ′ = lim
n

∑

k∈Nn
(λnk − λk) ≥ 1− λ > 0. (3.2)

Set y+
n =

∑
k∈Nn λ

n
kx
∗
k and y−n =

∑
k/∈Nn λ

n
kx
∗
k. We claim that y−n is Cauchy and

therefore norm-convergent. Fix ε > 0 and take N0, N1 ∈ N such that
∑

k>N0
λk <

ε
4
, (λnk)n≥N1 is monotone for every k ≤ N0 and

N0∑

k=1

|λnk − λmk | <
ε

2
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for every n,m ≥ N1. Then,

‖y−n − y−m‖ ≤
N0∑

k=1

|λnk − λmk |+
∑

k>N0, k /∈Nn

λnk +
∑

k>N0, k /∈Nm

λmk ≤
ε

2
+ 2

∑

k>N0

λk < ε

for every n,m ≥ N1. Thus, y−n is norm convergent and, since y+
n = y∗n − y−n , the

sequence (y+
n )
∞
n=1 is weak*-convergent to a point y∗.

Set

z∗n =
1∑

k∈Nn(λnk − λk)
∑

k∈Nn
(λnk − λk)x∗k =

1∑
k∈Nn(λnk − λk)

(y+
n −

∑

k∈Nn
λkx

∗
k)

for every n ∈ N. It follows from (3.1) and (3.2) that z∗n is well-defined, z∗n ∈ C and
it converges to 1

λ′ (y
∗ −∑k∈M λkx

∗
k), where

M = {k ∈ N : (λnk)∞n=1 is eventually decreasing}.

For each n, k ∈ N, write βnk =
λnk−λk∑

k′∈Nn (λn
k′−λk′ )

if k ∈ Nn and βnk = 0 if k /∈
Nn. Then, (βnk )∞n=1 converges to zero and z∗n =

∑∞
k=1 β

n
kx
∗
k. By taking small

perturbations of z∗n, we are going to construct a convex block subsequence (u∗n)∞n=1

of (x∗n)∞n=1 with the same limit than (z∗n)∞n=1.
Fix u∗1 = z∗1 and take a finite subset I1 of N such that u∗1 =

∑
k∈I1 β

1
kx
∗
k. Fix n1 ∈

N such that
∑

k∈I1 β
n
k <

1
2
for every n ≥ n1 and take a finite set I2 with max(I1) <

min(I2) such that z∗n1
=
∑

k∈I1∪I2 β
n1
k x

∗
k. Take u∗2 = 1∑

k∈I2 β
n1
k

∑
k∈I2 β

n1
k x

∗
k. Notice

that u∗2 ∈ C and

‖z∗n1
− u∗2‖ <

1

2
+
∑

k∈I2
βn1
k

(
1∑

k′∈I2 β
n1

k′
− 1

)
≤ 1

2
+

(
1∑

k∈I2 β
n1
k

− 1

)
.

Repeating this argument we construct a sequence (u∗n)∞n=1 in C, an increasing
sequence (nk)

∞
k=1 in N and a sequence of finite sets (Ik)

∞
k=1 of N with max(Ik) <

min(Ik+1) such that ∑

k∈I1∪I2∪···∪Ir
βmk <

1

2r

for every m ≥ nr,
z∗nr =

∑

k∈I1∪I2∪···∪Ir+1

βnrk x
∗
k,

u∗r+1 =
1∑

k∈Ir+1
βnrk

∑

k∈Ir+1

βnrk x
∗
k
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and

‖z∗nr − u∗r+1‖ <
1

2r
+
∑

k∈Ir+1

βnrk

(
1∑

k′∈Ir+1
βnrk′
− 1

)
≤ 1

2r
+

(
1∑

k∈Ir+1
βnrk
− 1

)

≤ 1

2r
+

(
2r

2r − 1
− 1

)
=

1

2r
+

1

2r − 1
,

where the last inequality follows from

∑

k∈Ir+1

βnrk = 1−
∑

k∈I1∪I2∪···∪Ir
βnrk ≥ 1− 1

2r
=

2r − 1

2r
.

Since ‖z∗nr − u∗r+1‖ converges to zero, we conclude that (u∗r)
∞
r=1 is a convex

block subsequence of (x∗n)∞n=1 which is weak*-convergent with the same limit than
(z∗n)∞n=1.

Section 3.3
Sequential topological spaces

Definition 3.3.1. Let T be a topological space and F a subspace of T . For any
α ≤ ω1 we define Sα(F ) the αth sequential closure of F by induction on α:

• S0(F ) = F ;

• Sα+1(F ) is the sequential closure of Sα(F ) for every α < ω1;

• Sα(F ) =
⋃
β<α Sβ(F ) if α is a limit ordinal.

Notice that Sω1(F ) is sequentially closed for every subspace F . Thus, a topo-
logical space T is sequential if and only if Sω1(F ) = F for every subspace F of T .
We say that T has sequential order α if Sα(F ) = F for every subspace F of T and
for every β < α there exists F with Sβ(F ) 6= F . Therefore, a topological space T
is sequential with sequential order ≤ 1 if and only if it is FU.

Every Eberlein and, in general, every Corson compact space is FU.

Lemma 3.3.2. Every Corson compact space K ⊆ Σ(Γ) is FU.

Proof. Let F ⊆ K and t ∈ F . Set supp(t) = {γ ∈ Γ : t(γ) 6= 0}. Since supp(t)
is countable, we can take Fn an increasing family of finite subsets of supp(t) such
that supp(t) =

⋃
n∈N Fn. Fix t1 ∈ F such that |t1(γ)− t(γ)| < 1

2
for every γ ∈ F1.

Again, we can write supp(t1) =
⋃
n∈N F

1
n , where F 1

n is an increasing family of
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finite subsets. Repeating this argument, we can construct a sequence (tk)
∞
k=1 in F

such that supp(tk) =
⋃
n∈N F

k
n with F k

n an increasing family of finite subsets and
|tk(γ)− t(γ)| < 1

2k
for every γ ∈ Fk ∪ F 1

k ∪ F 2
k ∪ · · · ∪ F k−1

k for every k ≥ 2. Then,
it is clear that (tk)

∞
k=1 converges to t.

Moreover, J. Bourgain, D. Fremlin and M. Talagrand proved that every Rosen-
thal compact space is FU [BFT78]. Nevertheless, RN compact spaces might not be
sequential; [0, ω1] is an RN compact space which does not have countable tightness
and, therefore, it is not sequential.

We provide in this section some sufficient conditions for a Banach space to have
weak*-sequential dual ball. We need first the following Lemma:

Lemma 3.3.3. Let f : K → L be a continuous function, where K,L are topological
spaces and K is sequentially compact. Then, f(Sα(F )) = Sα(f(F )) for every
F ⊆ K and every ordinal α.

Proof. The inclusion f(Sα(F )) ⊆ Sα(f(F )) follows from the continuity of f .
We prove the other inclusion by induction on α. The case α = 0 is immediate.

Suppose α = 1. Take s ∈ S1(f(F )). Then, there exists a sequence tn in F
such that f(tn) converges to s. Since K is sequentially compact, without loss of
generality we may suppose tn is converging to some point t. Then, it follows from
the continuity of f that f(t) = s. Thus, s ∈ f(S1(F )).

Now suppose the result true for every β < α and α ≥ 2. If α is a limit ordinal
then

f(Sα(F )) = f

(⋃

β<α

Sβ(F )

)
=
⋃

β<α

f(Sβ(F )) =
⋃

β<α

Sβ(f(F )) = Sα(f(F )).

If α = β + 1 is a successor ordinal then

f(Sα(F )) = f(S1(Sβ(F ))) = S1(f(Sβ(F ))) = S1(Sβ(f(F ))) = Sα(f(F )).

Theorem 3.3.4. Let X be a Banach space with weak*-sequentially compact dual
ball. Let Y ⊆ X be a subspace with weak*-sequential dual ball with sequential order
≤ γ1 and such that X/Y has weak*-sequential dual ball with sequential order ≤ γ2.
Then X has weak*-sequential dual ball with sequential order ≤ γ1 + γ2.

Proof. We have to prove that if F ⊆ BX∗ and x∗ ∈ F
w∗ then x∗ ∈ Sγ1+γ2(F ).

Without loss of generality, we suppose x∗ = 0. Let R : X∗ → Y ∗ be the restriction
operator. For each finite set A ⊆ BX and each ε > 0, define

FA,ε = {x∗ ∈ F : |x∗(x)| ≤ ε for all x ∈ A}.
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Since R is weak*-weak* continuous and 0 ∈ FA,εw
∗
, it follows that

0 ∈ R(FA,ε)
w∗

= Sγ1(R(FA,ε)) = R(Sγ1(FA,ε)),

where the last equality follows from Lemma 3.3.3.
Thus, for every finite set A ⊆ BX and every ε > 0 we can take x∗A,ε ∈ Sγ1(FA,ε)

such that R(x∗A,ε) = 0. Notice that every weak*-open neighborhood of 0 contains
a point of the form x∗A,ε. Therefore, 0 ∈ Gw∗ , where

G := {x∗A,ε : A ⊆ BX finite, ε > 0} ⊆ Y ⊥ ∩BX∗ .

Note that (Y ⊥ ∩ BX∗ , w
∗) is homeomorphic to the dual ball of (X/Y )∗ with

the weak*-topology. Hence it is sequential with sequential order ≤ γ2, so

0 ∈ Sγ2(G) ⊆ Sγ2(Sγ1(F )) = Sγ1+γ2(F ).

For any ordinal γ ≤ ω1, we say that X has property E(γ) if Sγ(C) = C for every
convex subset C in (BX∗ , w

∗). Thus, property E is property E(1) and property E ′
is property E(w1).

Lemma 3.3.5. Let X and Y be Banach spaces. Set R : X∗ → Y ∗ a weak*-weak*
linear continuous function. If X has weak*-convex block compact dual ball, then
R(Sα(F )) = Sα(R(F )) for every convex set F ⊆ BX∗ and every ordinal α.

Proof. We only prove S1(R(F )) ⊆ R(S1(F )), since the rest of the proof is anal-
ogous to the proof of Lemma 3.3.3. Let s ∈ S1(R(F )). Fix a sequence tn in F
such that R(tn) converges to s. Since X has weak*-convex block compact dual
ball, there exists a weak*-convergent convex block subsequence t′n of tn. Let t
be the weak*-limit of t′n. Since F is convex, t′n is a sequence in F and, there-
fore, t ∈ S1(F ). Since every convex block subsequence of R(tn) converges to s,
it follows from the linearity and continuity of R that R(t) = limR(t′n) = s, so
s ∈ R(S1(F )).

Using Lemma 3.3.5 instead of Lemma 3.3.3, the proof of Theorem 3.3.4 trans-
fers verbatim to give a proof of the following Theorem:

Theorem 3.3.6. Let X be a Banach space with weak*-convex block compact dual
ball. Let Y ⊆ X be a subspace with property E(γ1) such that X/Y has property
E(γ2). Then X has property E(γ1 + γ2).



78 Chapter 3. Sequential properties

Theorem 3.3.7. Let X be a Banach space and (Xn)n∈N an increasing sequence of
subspaces with X =

⋃
n∈NXn. Suppose that each Xn has weak*-sequential dual ball

with sequential order αn. Then X has weak*-sequential dual ball with sequential
order ≤ α + 1, where α := sup{αn : n ∈ N}.

Proof. Set Rn : X∗ → X∗n the restriction operator for every n ∈ N. Since the
countable product of sequentially compact spaces is sequentially compact and
(BX∗ , w

∗) is homeomorphic to a subspace of
∏

(BX∗n , w
∗), it follows that X has

weak*-sequentially compact dual ball.
In order to prove the theorem, it is enough to prove that if F ⊆ BX∗ and

0 ∈ F
w∗ then 0 ∈ Sα+1(F ). Since BX∗ is weak*-sequentially compact, we have

that 0 ∈ Rn(F )
w∗

= Sα(Rn(F )) = Rn(Sα(F )) for every n ∈ N, where the last
equality follows from Lemma 3.3.3. Thus, we can take a sequence x∗n ∈ Sα(F )
such that Rn(x∗n) = 0. Now there exists some subsequence of x∗n converging to
a point x∗ ∈ Sα+1(F ). Since Rn(x∗) = 0 for every n ∈ N, we conclude that
x∗ = 0.

Corollary 3.3.8. Let X be a Banach space and (Xα)α<γ an increasing sequence
of subspaces with X =

⋃
α<γ Xα, where γ is a countable limit ordinal. Suppose that

each Xα has weak*-sequential dual ball with sequential order ≤ θα. Then X has
weak*-sequential dual ball with sequential order ≤ θ+1 where θ := sup{θα : α < γ}.

Proof. Take γn an increasing sequence of ordinals with supn γn = γ an apply
Theorem 3.3.7 to (Xγn)n∈N.

The next theorem follows from combining Theorem 3.3.4 and Corollary 3.3.8:

Theorem 3.3.9. Let γ be a countable ordinal, Xγ a Banach space and (Xα)α≤γ
an increasing sequence of subspaces of Xγ such that:

(1) X0 has weak*-sequential dual ball with sequential order ≤ θ;

(2) each quotient Xα+1/Xα has weak*-angelic dual;

(3) Xα =
⋃
β<αXβ for every limit ordinal α ≤ γ;

(4) Xγ has weak*-sequentially compact dual ball.

Then each Xα has weak*-sequential dual ball with sequential order ≤ θ+α if α < ω
and sequential order ≤ θ + α + 1 if α ≥ ω.

Proof. It follows from (4) that every Xα has weak*-sequentially compact dual ball.
Thus, the result for α < ω follows by applying inductively Theorem 3.3.4.

Suppose α ≥ ω and Xβ has weak*-sequential dual ball with sequential order
≤ θ + β + 1 for every β < α. If α is a limit ordinal then it follows from (3) and
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from Corollary 3.3.8 that Xα has weak*-sequential dual ball with sequential order
≤ supβ<α{θ+ β + 1}+ 1 = θ+ α+ 1. If α is a successor ordinal then the result is
a consequence of Theorem 3.3.4.

We prove now a convex version of Corollary 3.3.8:

Lemma 3.3.10. Let X be a Banach space and (Xα)α<γ an increasing sequence of
subspaces with X =

⋃
α<γ Xα, where γ is a countable limit ordinal. Suppose that

each Xα ∈ E(θα) for some ordinal θα. Then X ∈ E(θ+ 1) where θ := sup{θα : α <
γ}.
Proof. It is enough to prove the result for (Xn)n∈N and apply the argument of
Corollary 3.3.8. By Theorem 3.2.11, each Xn has weak*-convex block compact
dual ball. Set Rn : X∗ → X∗n the restriction operator for every n ∈ N. We prove
first that X∗ also has weak*-convex block compact dual ball. Let (x∗n)n∈N be a
sequence in BX∗ . Then, we can construct inductively sequences (x∗m,n)n∈N for every
m ∈ N such that:

(1) x∗1,n = x∗n for every n ∈ N;

(2) each sequence (x∗m+1,n)n∈N is a convex block subsequence of (x∗m,n)n∈N;

(3) each sequence (Rm+1(x∗m+1,n))n∈N is weak*-convergent.

Notice that a convex block subsequence of a convex block subsequence of
(x∗n)n∈N is also a convex block subsequence of (x∗n)n∈N. Thus, each (x∗m,n)n∈N
is a convex block subsequence of (x∗n)n∈N by (1) and (2). Moreover, the se-
quence (x∗n,n)n∈N is also a convex block subsequence of (x∗n)n∈N. We claim that
(x∗n,n)n∈N is weak*-convergent. Let x∗ ∈ X∗ be the unique functional which
satisfy x∗(x) = limnRm+1(x∗m+1,n(x)) for every x ∈ Xm+1 and every m ∈ N.
Then, limnRm+1(x∗n,n(x)) = x∗(x) for every x ∈ Xm+1 and every m ∈ N, i.e.
limn x

∗
n,n(x) = x∗(x) for every x ∈ ⋃n∈NXn. Since X =

⋃
n∈NXn, we conclude

that (x∗n,n)n∈N is weak*-convergent to x. Therefore, X has weak*-convex block
compact dual ball.

Take F ⊆ BX∗ a convex set with 0 ∈ F
w∗ . In order to finish the proof it is

enough to check that 0 ∈ Sθ+1(F ). Since X has weak*-convex block compact dual
ball, it follows from Lemma 3.3.5 that

0 ∈ Rn(F )
w∗

= Sθ(Rn(F )) = Rn(Sθ(F )).

Thus, we can take a sequence x∗n ∈ Sθ(F ) with Rn(x∗n) = 0 for every n ∈ N.
Let y∗n be a weak*-convergent convex block subsequence of x∗n. Then, y∗n is weak*-
convergent to zero since limn y

∗
n(x) = limn x

∗
n(x) = 0 for every x ∈ ⋃n∈NXn. Thus,

0 ∈ Sθ+1(F ) and the proof is complete.
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We also have the following convex equivalent version of Theorem 3.3.9.

Theorem 3.3.11. Let γ be a countable ordinal, Xγ a Banach space and (Xα)α≤γ
an increasing sequence of subspaces of Xγ such that:

1. X0 has property E(θ);

2. each quotient Xα+1/Xα has E;

3. Xα =
⋃
β<αXβ if α is a limit ordinal;

4. Xγ has weak*-convex block compact dual ball.

Then each Xα has property E(θ+ α) if α < ω and property E(θ+ α+ 1) if α ≥ ω.

Proof. The proof is verbatim the same as in Theorem 3.3.9, using Lemma 3.3.10
instead of Corollary 3.3.8 and Theorem 3.3.6 instead of Theorem 3.3.4.

Section 3.4
Banach spaces with weak*-sequential dual ball nonFU

In this section we apply the results of Section 3.3 in order to provide a negative
answer to Plichko’s question 3.1.3. We see first an example of a sequential compact
space which is not FU:

Example 3.4.1. Let {Nr : r ∈ Γ} be an uncountable maximal almost disjoint
family of infinite subsets of N, i.e. an uncountable maximal family with respect
to the condition that each Nr is an infinite subset of N and Nr ∩ Nr′ is finite
for every r 6= r′. Consider A the Boolean algebra of subsets of N generated by
{Nr : r ∈ Γ}⋃{F : F ⊆ N is finite}. The compact space K = ult(A) contains
a natural copy of N which consists of principal ultrafilters of A. It can be easily
seen that K = N ∪ {ur : r ∈ Γ} ∪ {∞}, where each ultrafilter ur corresponds to
the unique ultrafilter containing Nr and not containing any Nr′ with r′ 6= r neither
any finite set of N and where ∞ denotes the unique ultrafilter not containing finite
sets neither sets of the form Nr. If (nk)k∈N is a sequence in N ⊆ K consisting
of different elements, then, by the maximality of the family {Nr : r ∈ Γ}, there
exists Nr such that the set Nr ∩ {nk : k ∈ N} =: {mk : k ∈ N} is infinite. Thus,
the sequence (mk)k∈N is a subsequence of (nk)k∈N which converges to ur. On the
other hand, if urn 6= urm whenever n 6= m, then the sequence (urn)n∈N converges
to ∞. Thus, it is clear that for every set F ⊆ K we have S2(F ) = F and that
S1(N) = N ∪ {ur : r ∈ Γ}, S2(N) = S1(N) ∪ {∞}. Therefore, we conclude that K
is a sequential compact space with sequential order 2.
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We recall the definition of Johnson-Lindenstrauss space JL2. Let {Nr : r ∈ Γ}
be an uncountable maximal almost disjoint family of infinite subsets of N. For
each Nr, we denote by χNr the characteristic function of Nr in `∞. The Johnson-
Lindenstrauss space JL2 is defined as the completion of span (c0 ∪ {χNr : r ∈ Γ}) ⊆
`∞ with respect to the norm

∥∥∥∥x+
∑

1≤i≤k
aiχNri

∥∥∥∥ = max

{∥∥∥∥x+
∑

1≤i≤k
aiχNri

∥∥∥∥
∞
,

(∑

1≤i≤k
|ai|2

) 1
2
}
,

where x ∈ c0 and ‖ · ‖∞ is the supremum norm in `∞.
Notice that each vector y ∈ span (c0 ∪ {χNr : r ∈ Γ}) has a unique expression

of the form y = x+
∑

1≤i≤k aiχNri , where x ∈ c0 and each ai 6= 0. Moreover, each
ai is determined by ai = limn∈Nri y(n) for every i = 1, 2, . . . k. Thus, the norm ‖ · ‖
is well-defined.

If we just consider the supremum norm in the definition of JL2 then we obtain
the space JL0. Notice that JL0 is isomorphic to C(K), where K is the compact
space in Example 3.4.1; the hyperplane H = {f ∈ C(K) : f(∞) = 0} is isomorphic
to C(K) (see Remark 3.4.4) and the operator T : H → JL0 given by the formula
T (f) = f |N for every f ∈ H defines an isometry between H and JL0.

Moreover, we can also define a bounded linear operator S : JL2 → JL0 such
that

S(x+
∑

1≤i≤k
aiχNri ) = x+

∑

1≤i≤k
aiχNri

for every x ∈ c0 and every scalars ai, 1 ≤ i ≤ k. Since S has dense range and
‖S‖ ≤ 1, we conclude that S∗ determines a weak*-embedding from BJL∗0 into BJL∗2 .
In particular, K is homeomorphic to a subset of BJL∗2 with the weak*-topology, so
JL2 does not have weak*-angelic dual.

We refer the reader to [JL74] for more details about these spaces.

Theorem 3.4.2. The Johnson-Lindenstrauss space JL2 has weak*-sequential dual
ball with sequential order 2.

Proof. Using the definition of the norm in JL2, it can be easily seen that JL2 has
a natural copy of c0 such that JL2/c0 is isometric to `2(Γ) [JL74].

Since c0 and `2(Γ) are Asplund spaces and being Asplund is a three-space
property [CG97, Theorem 4.11.a], we have that JL2 is Asplund and, in particular,
BJL∗2 with the weak*-topology is Radon-Nikodým, so it is sequentially compact
due to Lemma 3.2.1.

Moreover, c0 and `2(Γ) have weak*-angelic dual. It follows from Theorem 3.3.7
that JL2 has weak*-sequential dual ball with sequential order ≤ 2. Since JL2 does
not have weak*-angelic dual, we conclude that JL2 has weak*-sequential dual ball
with sequential order 2.
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Thus, Johnson-Lindenstrauss space JL2 provides a negative answer to Plichko’s
Question 3.1.3. Since BJL∗0 is weak*-homeomorphic to a subspace of BJL∗2 and
BJL∗0 is not FU because it contains a copy of K, where K is the compact space in
Example 3.4.1, the space JL0 is another example of a Banach space with weak*-
sequential dual ball which does not have weak*-angelic dual (its dual ball has
sequential order 2).

We are going to prove that, in general, the dual ball of a C(K) space with K
a scattered compact space of countable height has weak*-sequential dual ball.

Definition 3.4.3. Let K be a scattered compact space. We define the γth Cantor-
Bendixson derivative K(γ) by induction in γ:

1. K(0) = K;

2. K(α+1) is the set of nonisolated points of K(α);

3. K(α) =
⋂
β<αK

(β) if α is a limit ordinal.

We denote by ht(K) the height of K, i.e. the minimal ordinal γ such that the
γth Cantor-Bendixson derivative K(γ) is finite.

Remark 3.4.4. Recall that, as a consequence of the Hahn-Banach Theorem, every
two subspaces of a Banach space with the same finite codimension are isomorphic.
Since c0 is isomorphic to every finite-codimensional subspace of c0, if X is a Banach
space containing a complemented copy of c0 then

X ≈ Z ⊕ c0 ≈ Z ⊕ (c0 ⊕ Rn) ≈ (Z ⊕ c0)⊕ Rn ≈ X ⊕ Rn

for every n ∈ N, where ⊕ denotes the direct sum and ≈ denotes that the corre-
sponding spaces are isomorphic.

Thus, if X is a Banach space containing a complemented copy of c0, then X is
isomorphic to every subspace of X of finite codimension.

Since every Banach space with weak*-sequential dual ball has the Mazur prop-
erty (see Lemma 3.1.5), the following theorem improves [Kap86, Theorem 4.1]:

Theorem 3.4.5. Let K be an infinite scattered compact space. If ht(K) < ω
then C(K) has weak*-sequential dual ball with sequential order ≤ ht(K). If ω ≤
ht(K) < ω1 then C(K) has weak*-sequential dual ball with sequential order ≤
ht(K) + 1.
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Proof. Since K is scattered, it is Radon-Nikodým. Thus C(K) is Asplund and
BC(K)∗ is Radon-Nikodým. In particular, C(K) has weak*-sequentially compact
dual ball due to Lemma 3.2.1.

Denote by {K(α) : α ≤ γ} the Cantor-Bendixson derivatives of K, where
γ = ht(K) is the height of K. For every α ≤ γ, set

Xα = {f ∈ C(K) : f(t) = 0 for every t ∈ K(α)}.

Since K is infinite and sequentially compact, C(K) contains a complemented
copy of c0 and every finite-codimensional subspace of C(K) is isomorphic to C(K)
due to Remark 3.4.4. Therefore, since Xγ is a finite-codimensional subspace of
C(K), it is isomorphic to C(K).

For every α ≤ γ and every t ∈ K(α) \ K(α+1) fix a clopen set Ct in K with
{t} = Ct ∩K(α). Notice that Xα = span{χCt : t ∈ K \K(α)} for every α ≤ γ. For
every 0 ≤ α < γ the family

{χCt +Xα : t ∈ K(α) \K(α+1)} ⊆ Xα+1/Xα

is equivalent to the canonical basis of c0(K(α) \K(α+1)). Thus for every 0 ≤ α < γ
we have that Xα+1/Xα is isomorphic to c0(K(α) \K(α+1)). Moreover, if α ≤ γ is a
limit ordinal then

⋂
β<αK

(β) = K(α) and therefore

⋃

β<α

Xβ = span{χCt : t∈K\K(β) for some β <α} = span{χCt : t∈K\K(α)} = Xα.

Now the conclusion follows from Theorem 3.3.9.

Notice that the split interval SI is FU since it is Rosenthal. Nevertheless, R.
Pol proved that C(SI) does not have property (C) [Pol80]. Thus, it is not true for
a general compact space K that if K is sequential then BC(K)∗ is weak*-sequential.
We refer the reader to [FPRN00] for a discussion on this topic.

Since JL0 is isomorphic to C(K) with K the scattered compact space of Ex-
ample 3.4.1, which has ht(K) = 2 and sequential order 2, it follows from Theorem
3.4.5 that JL0 has weak*-sequential dual ball with sequential order 2.

The known examples in ZFC of sequential compact spaces are all of sequential
order ≤ 2. Nevertheless, A.I. Baškirov constructed sequential compact spaces of
any sequential order ≤ ω1 under the Continuum Hypothesis [Baš74]. A different
construction was also given by V. Kannan in [Kan79]. Baškirov’s construction is
studied in detail in [Bal10] and, as C. Baldovino highlights in [Bal10, Remark 6.8],
these constructions are scattered compact spaces such that the sequential order
and the scattering height coincide whenever the sequential order is a successor
ordinal.
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Moreover, A. Dow constructed under the assumption b = c a scattered compact
space K of sequential order 4 such that the sequential order and the scattering
height coincide [Dow05].

Corollary 3.4.6. Under the Continuum Hypothesis, there exist Banach spaces
with weak*-sequential dual ball with arbitrarily large countable sequential order.
Moreover, for any α < ω there exists a Banach space with weak*-sequential dual
ball with sequential order α.

On the other hand, under b = c, there exist Banach spaces with weak*-sequential
dual ball of any sequential order ≤ 4.
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Appendix A

Todorcevic Tree

S. Argyros pointed out that the family of all segments of the Todorcevic tree satisfy
the conditions of Lemma 2.4.7. We include a complete proof of this fact in this
Appendix.

Definition A.1. Let A be a subset of ω1 with A and Ac stationary sets, i.e. sets
whose intersection with every closed and unbounded subset of ω1 is nonempty.
Consider T the set of closed subsets of ω1 which are contained in A and define an
order ≤ in T by the formula s ≤ t if t ∩ α = s for some α < ω1, i.e. if s is an
initial segment of t. The set T equipped with the order ≤ is called the Todorcevic
tree.

The existence of a set A such that A and Ac are stationary follows from [Kun77,
Theorem 3.2]. Let S be the family of all segments of the Todorcevic tree, where
by a segment we mean a linearly ordered subset S of T such that if s1, s2 ∈ S and
s1 ≤ s2 then the set [s1, s2] = {s ∈ T : s1 ≤ s ≤ s2} is contained in T .

Proposition A.2. S satisfies conditions (1), (2) and (3) of Lemma 2.4.7.

Proof. Take K = {1S : S ∈ S} ⊆ {0, 1}Γ, where Γ = T . If S /∈ S, then S is not
linearly ordered and therefore there exist s1, s2 ∈ S with s1 � s2 and s2 � s1 or
there exist s1, s2 ∈ S and s3 /∈ S with s1 ≤ s3 ≤ s2. In both cases it is clear that
we can find an open neighborhood of 1S in {0, 1}Γ whose intersection with K is
empty, so K is compact.

Suppose now that there exists S ∈ S uncountable. Then, the set B =
⋃
s∈S s is

uncountable and since S is a segment in T , B is closed in ω1. This is a contradiction
since Ac ∩B = ∅ and Ac is stationary. Thus property (2) is also satisfied.

In order to finish the proof, we have to show that if S ∈ S then the set
LS = {S ∩ S ′ : S ′ ∈ S} is countable. Since S is countable, there are at most
countably many segments S ′ ⊆ S. Since LS consists of segments contained in S,
we conclude that LS is countable and the proof is complete.
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In fact, if we fix a tree T ′ with no uncountable branch, then the family of all
segments of the tree T ′ also satisfies conditions (1), (2) and (3) of Lemma 2.4.7.

It follows from [Tod84, Lemma 9.12] that S satisfies condition (4) of Lemma
2.4.7. Todorcevic’s proof is based on metamathematical arguments. R. Haydon
provided another proof using games [Hay95, Theorem 3.2] and A. Avilés gave
another combinatorial proof in [Avi07, Theorem 12]. We include here a proof
based on the one given in [Avi07]. Recall that a set D ⊆ T is dense if for every
t ∈ T there exists t′ ∈ D with t ≤ t′.

Lemma A.3. Let D be a dense subset of T and R ⊆ D a countable set with
γ = sup{max(t) : t ∈ R}. Then there exists a countable subset R′ ⊆ D with
R ⊆ R′, γ < γ′ = sup{max(t) : t ∈ R′}, γ′ 6= max(t) for every t ∈ R′ and such
that for every t ∈ R′ and every η ∈ A with max(t) < η < γ′ there exists t′ ∈ R′
with t ∪ {η} ≤ t′.

Proof. Take R0 = R, γ0 = γ and η0 ∈ A with γ0 < η0. Since D is dense, for every
t ∈ R0 and every η ∈ A with max(t) < η ≤ η0 we can fix an element st,η ∈ D with
t ∪ {η} ≤ st,η. Set R1 = R0 ∪ {st,η : t ∈ R0, η ∈ A, max(t) < η ≤ η0}. Since
R0 and η0 are countable, R1 is also countable. Repeating this argument we can
construct a increasing sequence Rn of countable subsets of D and an increasing
sequence ηn in A such that ηn > γn := sup{max(t) : t ∈ Rn} and for every t ∈ Rn

and η ∈ A with max(t) < η ≤ ηn there exists t′ ∈ Rn+1 with t ∪ {η} ≤ t′. Thus,
R′ =

⋃
n∈NRn satisfies the condition of the Lemma.

Proposition A.4. S satisfies condition (4) of Lemma 2.4.7.

Proof. We have to prove that if T =
⋃
n∈N Γn then there exist S ∈ S and n0 ∈ N

such that Γn0∩S is infinite. Suppose by contradiction that there exists a countable
decomposition T =

⋃
n∈N Γn with Γn ∩ S finite for every n ∈ N and every S ∈ S.

This implies that each Γn does not contain infinite increasing sequences of T .
Without loss of generality, we may suppose that Γn is an increasing sequence of
subsets of T . Notice that the set D = {t ∈ T : t is maximal for some Γn} is dense
in T .

Iterating Lemma A.3, we can construct an increasing family {Rξ : ξ < ω1}
of countable subsets of D such that if ξ is a limit ordinal then Rξ =

⋃
ξ′<ξ Rξ′

and such that if γξ = sup{max(t) : t ∈ Rξ} then (γξ)ξ<ω1 is strictly increasing,
max(t) < γξ for every t ∈ Rξ and for every η ∈ A and t ∈ Rξ with max(t) < η < γξ
there exists t′ ∈ Rξ with t ∪ {η} ≤ t′. Notice that the set {γξ : ξ < ω1} is a closed
uncountable subset of ω1. Since A is stationary, there exists γξ ∈ A.

By definition of γξ, we can take an increasing sequence ηn in A converging to
γξ. We construct an increasing sequence tn in Rξ with max(tn) converging to γξ.
Fix t1 ∈ Rξ. If tn is already defined, take i with max(tn) < ηi and set tn+1 ∈ Rξ
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such that tn ∪ {ηi} ≤ tn+1. It is clear that max(tn) converges to γξ. Since γξ ∈ A,
we have that t =

⋃
n∈N tn ∪ {γξ} is a closed subset of A, so t ∈ T . Since D is

dense, there is t′ ∈ D with t ≤ t′. Then, there exists n0 ∈ N with t′ maximal in
Γn0 . Since tn ≤ t′ and tn ∈ D for every n ∈ N, we conclude that tn is an increasing
sequence in Γn0 , contradicting our initial assumption.

The reader can find in [Arg92] and [Fab97] the construction of Recničenko’s
family and the proof of the fact that this family of sets also satisfy the conditions
of Lemma 2.4.7.
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Appendix B

Sauer-Shelah Lemma

The following proof of the Sauer-Shelah Lemma is based on the proof contained
in Gil Kalai’s blog [Kal].

Lemma B.1 (Sauer-Shelah). Let N, n be natural numbers with 1 ≤ n ≤ N and
let T = {1, 2, . . . , N}. Then for every family C ⊆ 2T with

|C| >
(
N

0

)
+

(
N

1

)
+ · · ·+

(
N

n− 1

)
,

there exists a set S ⊆ T with |S| = n such that {f |S : f ∈ C} = 2S.

Proof. We first prove the following stronger result:

Claim. For every family C ⊆ 2T there exists a family of sets F ⊆ P(T ) such
that |F| = |C| and

{f |S : f ∈ C} = 2S for any S ∈ F .
We check the claim by induction on |C|. If |C| = 1 then take F = {∅}. Suppose

|C| ≥ 2. Without loss of generality, we may suppose that both the families

C0 = {f ∈ C : f(1) = 0} and C1 = {f ∈ C : f(1) = 1},

are nonempty. Put T ′ = T \ {1}. By induction, there exists F0 ⊆ P(T ′) with
|F0| = |C ′0| such that

{f |S : f ∈ C ′0} = 2S for any S ∈ F0,

where C ′0 = {f |T ′ : f ∈ C0}. Now take C ′1 = {f |T ′ : f ∈ C1}. Again by induction,
there exists F1 ⊆ P(T ′) with |F1| = |C ′1| such that

{f |S : f ∈ C ′1} = 2S for any S ∈ F1.

Set
F = F0 ∪ F1 ∪ {S ∪ {1} : S ∈ F0 ∩ F1},



92 Chapter B. Sauer-Shelah Lemma

and note that

|F| = |F0|+ |F1| = |C ′0|+ |C ′1| = |C0|+ |C1| = |C|.

Therefore it is enough to prove that {f |S : f ∈ C} = 2S for any S ∈ F , but this
is a consequence of the properties of F0 and F1. Thus the claim is proved.

Now the lemma follows from the fact that T has exactly
(
N
0

)
+
(
N
1

)
+ · · ·+

(
N
n−1

)

subsets of cardinality smaller than n, so by the assumption on |C| there exists a
set S ⊆ T with |S| ≥ n such that {f |S : f ∈ C} = 2S.
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