
Summary. Alzheimer’s disease (AD), the most
prevalent neurodegenerative disease worldwide, has two
main hallmarks: extracellular deposits of amyloid ß-
peptide (Aß) and intracellular neurofibrillary tangles
composed by tau protein. Most AD cases are sporadic
and are not dependent on known genetic causes; aging is
the major risk factor for AD. Therefore, the oxidative
stress has been proposed to initiate the uncontrolled
increase in Aß production and also to mediate the Aß’s
deleterious effects on brain cells, especially on neurons
from the cortex and hippocampus. The production of
free radicals in the presence of nitric oxide (NO) yields
to the peroxynitrite generation, a very reactive agent that
nitrotyrosinates the proteins irreversibly. The
nitrotyrosination produces a loss of protein physiological
functions, contributing to accelerate AD progression.
One of the most nitrotyrosinated proteins in AD is the
enzyme triosephosphate isomerase (TPI) that isomerises
trioses, regulating glucose consumption by both
phosphate pentose and glycolytic pathways and thereby
pyruvate production. Hence, any disturbance in the
glucose supply could affect the proper brain function,
considering that the brain has a high rate of glucose
consumption. Besides this directly affecting to the
energetic metabolism of the neurons, TPI modifications,
such as mutation or nitrotyrosination, increase
methylglyoxal production, a toxic precursor of advanced
glycated end-products (AGEs) and responsible for
protein glycation. Moreover, nitro-TPI aggregates
interact with tau protein inducing the intraneuronal
aggregation of tau. Here we review the relationship
between modified TPI and AD, highlighting the
relevance of this protein in AD pathology and the

consequences of protein nitro-oxidative modifications. 
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Introduction 

Aging is characterized by a lack in redox
homeostasis. Consequently, there is an increase in nitro-
oxidative stress, which plays a key role in the onset and
progression of neurodegenerative processes (Di Monte et
al., 1992; Halliwell, 1992; Omar and Pappolla, 1993;
Miranda et al., 2000; Guix et al., 2005). Nitro-oxidative
stress is directly related to mitochondrial dysfunction
(Schon et al., 1997), calcium deregulation (Mattson et
al., 1992) and protein aggregation (Guix et al., 2009;
Kummer et al., 2011), which induce neuronal death
(Praticò et al., 2001; Butterfield and Boyd-Kimball,
2004; Ill-Raga et al., 2010). All these features are found
in Alzheimer’s disease (AD).
Alzheimer’s disease 

AD hallmarks

AD is the most common form of dementia in the
elderly, accounting for 60–70% of all cases and affecting
10% of individuals older than 65, and nearly 50% of
those older than 85 (Malenka and Malinow, 2011;
Imbimbo et al., 2005). It courses with progressive
deterioration of memory, behaviour and cognition
because of major neuronal damages in the hippocampus
and neocortex. Memory decline initially manifests as a
loss of episodic memory, impeding recollection of recent
events, including autobiographical activities. The
progression of the disease causes a dramatic decline in
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cognitive abilities (Ball et al., 1985). The specific
therapies for AD address the cholinergic deficit and the
overstimulation of the glutamatergic NMDA receptors,
but they fail to avoid the progression of the disease. 

AD can be classified into two types depending on
the age of the disease onset. The early onset AD is
known as Familial AD (FAD) due to the mutations in
proteins such as amyloid precursor protein (APP) or
presenilins (PS) (Tanzi el al., 1992; Levy-Lehad et al.,
1995; Rogaev et al., 1995; Sherrington et al., 1995).
FAD appears before the patients are 65 years old, being
less common (less than 5% of the total AD cases) than
the late onset one, but it progresses very quickly. Late
onset AD is the most common AD and it has been
related to some polymorphisms, especially with ApoE4
(Saunders et al., 1993; reviewed in Wasco and Tanzi.,
1995).

Both types of AD are characterized by neuronal
death associated to extracellular amyloid ß-peptide (Aß)
deposits and intracellular neurofibrillary tangles (NFT),
composed of tau protein. Aß is a product of the cleavage
of APP by the sequential action of ß-aspartyl secretase
(BACE1) and γ-secretase (PS complex). Aß is able to
aggregate in ß-sheet, forming primary structures called
oligomers (dimers, trimers and tetramers) that can
assemble to form protofibrils (PF) as intermediate
structures between aggregates and mature fibrils.
Oligomers are considered the most toxic Aß forms
(Wang et al., 2002; Kelly and Ferreira, 2006; Shankar et
al., 2007), remaining in the proximity of the neuronal
membranes where they produce their harmful effects.
Currently, the mature fibrils aggregation forming senile
plaques and brain vascular deposits of amyloid are
considered a mechanism to avoid the high oligomer
neurotoxicity.

On the other hand, NFT are composed of tau
aggregates, a microtubule associated protein which,
detached from microtubules, aggregates to form the
paired helicoidal filaments (Braak et al., 1994; Bramblett
et al., 1993; Yoshida and Ihara, 1993; Morishima-
Kawashima et al., 1995). Tau is hyperphosphorylated
when forming NFT, which has produced a search for
different kinases, such as glycogen kinase 3-beta (GSK-
3ß), to be responsible for NFT formation (Moreno et al.,
1996; Illenberger et al., 1998). The relevance of NFT in
AD is supported by the correlationship between their
presence and the dementia level, a fact that is impossible
to establish with senile plaques, probably due to the
major effect of oligomers, which are histochemically
“invisible”.
Aß and nitro-oxidative stress

There is much evidence relating AD pathology with
nitro-oxidative stress. Aß aggregation into ß-sheet
induces the production of free radicals due to the
reduction of transition metals (Huang et al., 1999;
Varadarajan et al., 1999). Misfolded Aß is capable of
binding Cu (II) and Fe (III) and reduce these transitional

metals to Cu(I) and Fe(II), producing hidroxyl radicals
and H2O2, which causes cytotoxicity (Huang et al.,
1999; Cuajungco et al., 2000; Muñoz et al., 2002) by
inducing lipid peroxidation, protein oxidation,
nitrotyrosination and glycation, and DNA oxidation
(Miranda et al., 2000) (Fig.1).

The damage in membrane transporters and ion
channels leads to an increase in intracellular calcium
levels (Mattson et al., 1992; reviewed in Yu et al., 2009).
It produces the synthesis of nitric oxide (NO) by the
neuronal NO synthase (nNOS), since it is a Ca2+-
calmodulin-dependent enzyme (Guix et al., 2005). NO
has an unpaired electron in the last orbital acting as a
free radical (Stamler et al., 1992). Hence, NO can react
with other molecules such as superoxide anion (O2

·-),
forming peroxynitrite anion (ONOO-) (Beckman et al.,
1990), a short lived molecule but highly reactive.
Peroxynitrite nitrotyrosinates proteins, a process which
consists of the addition of a nitro group (NO2) totyrosine residue (Ischiropoulus et al., 1992).
Nitrotyrosination is highly spread in AD brains (Hensley
et al., 1998).

In our lab we have demonstrated that one of the
proteins most nitrotyrosinated due to Aß action is
triosephosphate isomerase (TPI) (Coma et al., 2005;
Guix et al., 2009), a key enzyme in the cell metabolism
that controls glycolytic flow and energy production
(Richard, 1993).
Triosephosphate isomerase

TPI cellular function

TPI is an enzyme that catalyses the interconversion
of D-glyceraldehyde-3-phosphate (GAP) to
dihydroxyacetone phosphate (DHAP) from both the
glycolytic and phosphate pentose pathways, the latter
being the most active glucose metabolic pathway in
neurons (Bolaños et al., 2010) in order to increase
antioxidant protection by producing GSH.

The rate of the catalysis is diffusion-limited, and the
equilibrium favours the formation of DHAP by 1:20
(Olah et al., 2002). TPI is essential for the efficient
energy production of glycolysis; therefore it is critical
for the functional activity of the cells (Fig. 2).
Interestingly TPI has been proposed to be affected in
aging, altering energy metabolism (Hipkiss, 2011).

GAP is diverted to pyruvate producing four
adenosine triphosphate (ATP) molecules. In brain cells
DHAP is not a dead-end product and it can be directed to
lipid synthesis (Kusaka et al., 2007). In fact, the
glycolytic pathway is interconnected with the lipid
metabolism, the pentose phosphate pathway, and the
gluconeogenesis pathway via GAP and/or DHAP. The
metabolic flow through these pathways will be affected
in the case of deficiencies in TPI activity (Richard, 2008;
Orosz et al., 2009).

The deficiency of this enzyme is characterized by
haemolytic anaemia. Interestingly, it is the only
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glycolytic enzyme defect that is associated with
neurodegeneration (Olah et al., 2005). The deficiencies
in TPI activity do not just affect cells by the reduction in
ATP and pyruvate supply, but also by the formation of
methylglyoxal (MG) (Ahmed et al., 2003). This is a
toxic triose formed at a very low rate as a side-product
of TPI, but its production increases when TPI is
damaged (Guix et al., 2009; Fig. 3). MG modifies
proteins by the glycation of different aminoacids.
TPI structure

TPI is a stable homodimer of two 27 kDa subunits.
Although every single monomer has the residues for the
catalytic activity, the dimerisation apparently rigidifies
each of the two separate active sites, providing full
catalytic power and being active just in its dimeric form
(Mainfroid et al., 1996; Wierenga et al., 2010). TPI
dimer is the most common quaternary structure, but in
thermophylic organisms TPI is known to occur as
tetramers (Maes et al., 1999). At present, there are at
least 118 crystal structures of TPIs in the PDB (RCSB
Protein Data Bank). Structural studies have shown that
the active site is at the dimer interface, with all catalytic
residues (Asn11, Lys13, His95 and Gly167) for a

particular active site coming from the same subunit.
Several water molecules are an integral part of the dimer
interface, and six of them are highly conserved (Thakur
et al., 2009). TPI has four tyrosines. The first two, Y47
and Y67, stay at the interface of the dimer in opposite
orientations, while the remaining two, Y164 and Y208,
interact directly and locate very close to the catalytic site
(Guix et al., 2009; Fig. 4).

The spatial structure of TPI is a (ß/α)8 barrel fold,
also known as a “TIM-barrel”. This fold consists of a
regular eightfold repeating pattern of ß-strands and α-
helices. The ß-strands form the inner set of eight parallel
ß-strands, covered on the outside by the subsequent α-
helices (Nagano et al., 2002). The α-helices and ß-sheets
are linked by loop regions. Three loops of the N-terminal
half of the molecule are involved in the intersubunit
interactions, another three participate in the active site.
Specifically, loop-1 has the residues Asn11 and Lys13;
loop-4 has His95 and loop-6 has Gly167 (Orosz et al.,
2009; Wierenga et al., 2010).

Loop-6 is very flexible and plays an important role
in substrate binding and catalysis. In the unliganded
conformation, loop-6 interacts with loop-5, whereas in
the closed/liganded conformation it interacts with loop-7
(Wierenga et al., 2010). Any variation in loop-6 could
affect the eficiency of the enzyme. A TPI variant, in
which four residues of that loop have been removed,
increases the synthesis of the toxic MG (Pompliano et
al., 1990). Similar results were obtained by our group
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Fig. 1. Aß induces TPI nitrotyrosination. Aß fibrils and oligomers
produce free radicals, which damage mitochondria. Consequently,
intracellular calcium levels raise and activate the enzyme nNOS.
Therefore, NO and superoxide anion react to form peroxynitrite that
nitrotyrosinates TPI. In the inset it is shown a western blot of human
neuroblastoma cells treated with Aß fibrils and untreated control cells
(C). TPI was immunoprecipitated and the western blot was revealed
with an antibody anti-nitrotyrosine.

Fig. 2. TPI nitrotyrosination decreases pyruvate production. Neurons
metabolize glucose mainly by the pentose phosphate cycle and at a
lower rate by glycolysis. Both pathways produce G3P. When TPI is
nitrotyrosinated there is a decrease in its isomerase activity and DHAP
increases. Pyruvate supply is low and it will produce a fall in the
mitochondrial membrane potential and acetyl-CoA, the precursor of
acetylcholine (ACh), which is a neurotransmitter depleted in AD.
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Fig. 3. Protein glycation by TPI
nitrotyrosination. A. TPI induces MG production
from DHAP. MG can be metabolized to lactate
by glyoxalase system under physiological
conditions. When MG production is triggered
due to TPI nitrotyrosination, it glycates proteins,
damaging them. B and C. The right panels
show slides obtained from the hippocampus of
a double transgenic mice overexpressing
human APP and PS1. Immunofluorescence
images were obtained by incubating with anti-
human Aß (B) and anti-glycated aminoacid
antibodies (C). High glycation is observed in the
hippocampus of this AD model animal.

Fig. 4. Tyrosines of TPI. TPI has 4 tyrosines. A.
Tyrosines 164 and 208, through hydrogen
bonding, regulate the hinge movement of loop 6
(residues from 168-178) over the catalytic site
formed by Glu165, His95 and Lys13. B. Tyrosine
47 (left) and tyrosine 67 (right panel) are located at
the interface of the dimer, probably contributing to
its stability and therefore to the activity of the
enzyme. The images were obtained by the
software Rasmol (www.rasmol.org) from the PDB
file 2JK2 containing the structure of human TPI.



when TPI was mutated at Tyr164 and Tyr208 by Phe or
by inducing the nitrotyrosination of the enzyme (Guix et
al., 2009).
TPI deficiencies

TPI is coded by one gene located at chromosome

12p13 in the human genome. Its amino acid sequence is
highly conserved among all known TPI proteins
(Schneider, 2000). There are TPI deficiencies due to
autosomal recessive multisystem genetic disorder,
characterized by decreased enzyme activity, which is
accompanied by an increase of DHAP. This deficiency is
manifested clinically, like many glycolytic
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Fig. 5. TPI nitrotyrosination induces its
aggregation. A. Immunohistochemical
analysis of a cortex sample from an AD
patient showing aggregated TPI inside
the neurons. The image was obtained
using an anti-TPI antibody and
peroxidase staining. B. Nitro-TPI
aggregates as shown in transmission
electron microscopy images obtained
with untreated TPI (right) and TPI
treated (left) with 50 mM peroxynitrite
donor (SIN-1) in vitro. C. Nitro-TPI
induces tau aggregation as shown in
the dot blots performed with samples
incubated from 0 up to 72 hours at 1:1
(w/w) ratio. Samples were centrifuged
and pellets were washed and
sonicated. A representative dot blot is
shown after incubation with an anti-tau
monoclonal antibody. In the
supernatants (right) there is a
decrease of free tau when incubated
with nitro-TPI from 24 up to 72 h. It
corresponds with the results obtained
in the pellets (left), where there is an
increase in high molecular tau
aggregates from 24 up to 72 h.

Fig. 6. Effects of TPI nitrotyrosination due to
Aß toxicity. This scheme summarizes all the
proposed effects of TPI nitrotyrosination in AD
linking Aß with neurodegeneration.



enzymopathies, as chronic hemolytic anemia, although
this disorder is unique among the glycolytic enzyme
defects associated with progressive neurological
dysfunction and, frequently, childhood death (Olah et al.,
2005; Orosz et al., 2006, 2009). The pathogenesis of this
disease is not well understood, and no effective therapy
is available. However, there are experiments showing the
normalization of DHAP levels in TPI-deficient cells
treated with the active form of the enzyme (Ationu et al.,
1999). 

Patients with various inherited mutations have been
identified. The most abundant missense mutation in
humans occurs at codon 104 in the TPI gene
(Glu104Asp mutant). This mutation is not only the most
common, but also causes the most severe symptoms
(Schneider, 2000; Orosz et al., 2009).

There are several theories to explain the low activity
in TPI deficient cells, but most of them have in common
the instability of the enzyme. Any mutation or
modification in the subunit interface results in loss of
activity, due to the dissociation of the active dimers into
inactive monomers (Ationu et al., 1999), or aberrant
dimerization (Orosz et al., 2009), and these changes
could play a crucial role in the etiology of the illness.
The heteroassociations with different cellular structures,
such as microtubules in neurons, result in alterations in
the catalytic and regulatory properties of the enzymes
(Ovadi et al., 2004). Finally, another possible theory is
the fact that a perturbation of the conserved network of
buried water molecules that bridge the two subunits
appears to be essential to maintain the stability of TPI
dimers (Rodríguez-Almazán et al., 2008).

Bioinformatic analysis, based on the 3D structure of
the wild-type enzyme, was used by Schneider (2000) to
explain the structural and catalytic properties of the
mutant enzymes observed in the patient’s hemolysates.
They mapped the amino acid residues, as well as the first
and second degree contacts of all the residues
comprising each of three functional domains of TPI
substrate binding, flexible loop and dimer interface
domains (Schneider, 2000).

Susan Hollán (1993) reported a very interesting case
in a Hungarian family with two germ-line identical but
phenotypically different heterozygote brothers who
inherited two independent mutations in TPI enzyme,
Phe240Leu and Glu145stop codon (Hollán et al., 1993).
The activity of TPI was dramatically reduced in both
brothers, resulting in 40-60-fold higher DHAP
concentration in their erythrocytes as compared with
normal controls (Eber et al., 1991; Valentin et al., 2000).
However, only the younger sibling (affected brother)
manifests neurological disorders. This fact may provide
key information about the etiology of neurodegenerative
symptoms associated with TPI deficiency. Some of the
features that are only present on the neurological
affected brother are:

i) A decrease in membrane plasmalogen and changes
of membrane reactivity and fluidity, enzyme activities,
signal transduction and sensitivity towards oxidative

stress.
ii) Imbalance of the prooxidant/antioxidant

homeostasis, highly related with neurodegeneration
iii) An increase in the expression of endothelial NOS

and a decrease in POP (prolyl-oligopeptidase). High NO
production is responsible for the broad protein
nitrotyrosination (Coma et al., 2005) while POP plays a
key role in neurotransmission and intracellular protein
degradation, and its reduction contributes to the
development of neurodegeneration (Ahmed et al., 2003;
Orosz et al., 2006).
DHAP increase and its consequences

The most important biochemical feature of TPI
deficiency seems to be the dramatic increase in the
cellular concentration of DHAP (20-60 fold) overall in
erythrocytes. DHAP is involved in lipid metabolism, and
its accumulation provokes a disturbance in the lipid
balance. The levels of plasmalogen, an ether lipid, are
reduced in TPI deficiency, and as a consequence, the
protection against oxidative stress related to this lipid is
impaired.

On the other hand DHAP is decomposed by non-
enzymatical reaction to MG, a highly reactive glycating
agent which is responsible for protein glycation and a
precursor of advanced glycation end-products (AGEs).
MG is toxic to neurons and may contribute to AD
progression (Kikuchi et al., 1999; Orosz et al., 2006).
Under oxidative stress conditions glyoxalases cannot
efficiently detoxify MG, which may underlie the
associated neurodegeneration (Ahmed et al., 2003; Fig.
3). 
TPI and Alzheimer’s disease

The nitration of tyrosines occurs in young and aged
individuals, but it is increased in the latter. Certain levels
of nitrotyrosination can be managed by the organism
eliminating the damaged proteins, but when the process
is accelerated it represents a pathological event that is
associated with neurodegenerative diseases, in particular
with AD (Smith et al., 1997). Specifically, O2

·-
superoxide anion, produced by Aß cell damage, and NO,
whose production is altered in AD, react to form the
highly reactive peroxynitrite anion, which generates
cytotoxic species that oxidize and nitrate proteins
(Castegna et al., 2003; Guix et al., 2005).

Glucose is the primary source of energy for the
brain, and the interruption of glycolysis causes brain
dysfunction and memory loss, favoring neuro-
degeneration. In fact, inefficient glucose metabolism is
characteristic in AD (Hoyer, 1996). A plausible
explanation is that TPI is one of the proteins most
nitrotyrosinated in AD (Coma et al., 2005; Butterfield et
al., 2006b, 2007) and when nitrotyrosinated it decreases
TPI isomerase activity, reducing the glycolytic flow, and
increasing MG production (Guix et al., 2009). The
relevance of nitrotyrosination in this effect was shown
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when TPI was mutated at Tyr164 and Tyr208 by Phe,
mimicking TPI nitrotyrosination, and producing similar
results (Guix et al., 2009). 

Since a lower amount of pyruvate would be
available for neurons, mitochondrial activity can be
decreased. There are no works addressing this scenario,
but a lower acetyl-CoA bioavailability can be expected,
and one of the consequences could be related with a
decreased production of acetylcholine (ACh),
contributing to the characteristic cholinergic deficit in
AD (Schliebs and Arendt, 2011).

Moreover, TPI nitrotyrosination as well as TPI
mutations induce the aggregation of the enzyme,
forming several ß-strands (Rice et al., 1990), a process
likely favored by its homology in the sequence with the
Aß peptide (Contreras et al., 1999). The presence of
intracellular nitro-TPI aggregates into ß-sheets was
demonstrated in immunoprecipitated samples from AD
cortex (Guix et al., 2009). Interestingly, TPI from
subjects with heterozygote variants of mutated enzyme,
bound more strongly to microtubules than TPI from
normal controls. The mutation in the enzyme could lead
to aberrant protein-protein interaction (Ovadi et al.,
2004), affecting the trafficking machinery of the cell
(Bonnet et al., 2004). In the same direction,
nitrotyrosinated TPI aggregates are able to bind tau
protein, a microtubule associated protein, inducing a
conformational change in tau that precipitates paired
helical filament formation, the other hallmark of AD
(Guix et al., 2009; Fig. 5). It would link the effects of Aß
oligomers and fibrils with the characteristic
intraneuronal tau aggregation and neurodegeneration
(Fig. 6).
Conclusions

The nitrotyrosination of the enzyme TPI by Aß
aggregates seems to be critical in AD neurodegeneration.
Nitro-TPI decreases G3P bioavailability that will affect
all cellular functions. Moreover, it produces toxic MG,
damaging proteins irreversibly. Besides this metabolic
and toxic effect, nitro-TPI can induce the aggregation of
tau protein, disassembling the neuronal cytoskeleton and
avoiding normal intracellular trafficking and the
intercommunication of the neurons.
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