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Título: La automaticidad en las restas depende del tamaño del problema.  
Resumen: Existe considerable evidencia que muestra que las multiplica-
ciones y las sumas simples se resuelven de manera directa y automática. Sin 
embargo, la evidencia sobre la automaticidad de restas y divisiones es me-
nos convincente. Usando el paradigma de interferencia en la operación, el 
presente estudio explora si el resultado de una resta puede ser recuperado 
inintencionadamente y el rol que juega el tamaño del problema en este pro-
ceso. Sesenta y dos participantes tomaron parte en este estudio y tenían que 
decidir si el resultado de una adición era o no correcto. En las adiciones in-
correctas el resultado podía ser la sustracción de los sumandos (7 + 4 = 3) 
o un número no relacionado (7 + 4 = 5). Nuestros resultados mostraron 
más errores y respuestas más lentas en aquellos problemas cuyo resultado 
era la sustracción de los sumandos que en los problemas no relacionados. 
Sin embargo, estos resultados sólo se encontraron en problemas pequeños 
(7 + 4 = 3 vs. 7 + 4 = 5) y no en problemas más grandes (14 + 8 = 6 vs. 14 
+ 8 = 7). Estos resultados sugieren que las sustracciones pequeñas pueden 
ser recuperadas directamente, cuestionando la existencia de disociaciones 
entre operaciones. Argumentamos que dependiendo de nuestra experiencia, 
las mismas representaciones y procesos pueden estar implicados en la reso-
lución de multiplicaciones, adiciones y sustracciones.   
Palabras clave: Sustracciones; automaticidad; tamaño del problema; reso-
lución aritmética. 

  Abstract: The evidence showing that simple multiplications and additions 
can be solved by direct retrieval is considerable. However evidence about 
division and subtraction is less compelling. By using a ―cross-operation in-
terference paradigm‖ the present research explores whether subtraction 
problems can be retrieved without intention and the role of operands‘ 
problem-size in this process. Sixty-two participants decided whether the 
displayed addition was correct or not. In ―false additions problems‖ the 
answer could be the result of the subtractions of the addends (e.g., 7 + 4 = 
3) or an unrelated number (e.g., 7 + 4 = 5). Results showed an interference 
effect, that is, more errors and slower response times in subtraction related 
problems than in unrelated problems. More importantly, this effect was re-
stricted to small problems (7 + 4 = 3 vs. 7 + 4 = 5), whereas no differ-
ences were found for large problems (14 + 8 = 6 vs. 14 + 8 = 7). These re-
sults suggest that small subtractions can be retrieved directly as multiplica-
tions, questioning a traditional dissociation between operations. We argue 
that, depending on individual experience, the same representation and pro-
cesses can be involved in solving additions, subtractions and multiplica-
tions. 
Key words: Subtractions; automaticity; problem-size; arithmetic problem 
solving 

 

   Introduction 

 
Simple arithmetic problem solving is so commonplace that 
frequently we are not aware of its relevance and complexity. 
In fact, without this ability it would be risky to go shopping, 
it would be difficult to understand our watches or to know 
the influence of scoring a goal on the result of a soccer 
match. Fortunately for most of us, we can solve these kinds 
of problems easily. Cognitive psychologists have been trying 
for several decades to understand how our mathematical 
skills work, but in spite of this, the processes involved in 
solving arithmetical problems remain the subject of an in-
tense debate (e.g., see Campbell, 2005, for review).  

Models of mathematical cognition make different as-
sumptions regarding how simple arithmetic problems are 
solved. According to the Triple-Code Model (Dehaene, 
1992; Dehaene & Cohen, 1995) additions and multiplica-
tions are retrieved directly from memory, because verbal se-
quences such as /three times six eighteen/, which were over-
learned during schooling, are stored in our memory. Accord-
ing to this mechanism the processing of the operands would 
trigger the completion of the verbal sequence using rote 
verbal memory. On the other hand, when participants have 
to solve subtractions, the operands are processed as quantity 
representations and the result is obtained by using semanti-
cally meaningful manipulations (e.g., counting). This proce-
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dure is followed ―…whenever rote verbal knowledge of the 
operation result is lacking, most typically for subtraction 
problems‖ (Dehaene & Cohen, 1997, p.322). Although 
Dehaene, Piazza, Pinel & Cohen (2003) have attenuated this 
view suggesting that some subtractions could be recovered 
automatically, empirical evidence was not shown. In a simi-
lar vein, other models of mathematical cognition (McClos-
key, 1992; Cipolotti & Butterworth, 1995) consider that 
arithmetic operations are solved with specific representa-
tions and mechanisms that are fully independent. Conse-
quently, subtraction would follow different procedures and 
would employ different mechanisms to those employed in 
multiplication solving. 

Contrasting with the above models, some theories about 
arithmetical fact retrieval consider that repeated encounters 
with multiplications and additions is in the origin of the de-
velopment of strong associations between problems and 
their corresponding solutions (e.g., Ashcraft, 1987, 1992; 
Cambpell, 1987; Siegler & Jenkins, 1989). In other words, 
problem frequency would influence if a problem is solved by 
procedural or automatic retrieval. Although these models 
have been applied to multiplications, the learning mecha-
nism they propose could be applied to any operation. 
Hence, the more frequent subtractions might be learnt for 
associations and thus, they could be solved by direct retriev-
al just as is the case of multiplications and additions.  

Research has shown that simple additions (e.g., 2 + 3; 
LeFevre, Bisanz, & Mrkonjic, 1988; Winkelman & Schmidt, 
1974; Zbrodoff & Logan, 1986) and multiplications (e.g., 2 x 
3; Galfano, Rusconi & Umiltà, 2003; García-Orza, Damas-
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López, Matas & Rodríguez, 2009; Thibodeau, Lefevre & 
Bisanz, 1996; Zbrodoff & Logan, 1986), are usually solved 
by retrieval. This memory retrieval process is considered to 
be fast, accurate, does not require much attentional re-
sources (Campbell & Alberts, 2010; García-Orza et al., 2009; 
Imbo & Vandierendonck, 2008) and is usually associated 
with a high level of mathematic skills (e.g., Campbell & Xue, 
2001; LeFevre et al., 1996). In other words, retrieval of solu-
tions seems to be automatic. Interestingly, the automatic re-
trieval of multiplications and additions seems to be modulat-
ed by the problem-size effect (problems with smaller oper-
ands are solved faster) as retrieval seems to be the preferred 
strategy for small problems (e.g., 3 x 4, 3 + 4), while differ-
ent strategies would be employed to large problems (e.g., 8 x 
9, 8 + 9; see Zbrodoff & Logan, 2005, for review). The 
strongest support for this statement comes from self-report 
studies: participants report the use of automatic retrieval for 
small additions and an increment in the use of procedural 
strategies, like repeated addition or combination of opera-
tions, for large problems (see e.g., Hecht, 1999; LeFevre et 
al., 1996). These results seem to support the aforementioned 
models of mathematical cognition.  

However, the evidence for the use of automatic retrieval 
in simple subtractions, the focus of our interest, is less con-
vincing and more disputed. LeFevre, DeStefano, Penner-
Wilger and Daley (2006) conducted a study in which their 
participants had to solve subtractions and inform how they 
had solved each problem. This research showed that a large 
percentage of their participants used retrieval to solve small 
subtractions (i.e., minuend up to 10) most of the time (see 
Geary, Frensch & Wiley, 1993; Seyler, Kirk & Ashcraft, 
2003; Campbell & Xue, 2001, for similar results). Interest-
ingly, when large subtractions (i.e., minuend between 11 and 
18) were presented, participants reported that they tended to 
use an inverse-reference strategy. The inverse-reference 
strategy consists in using the inverse arithmetical fact to 
solve operations, so in the case of the subtraction 13 – 6 = 
7, participants may adopt the inverse addition, 7 + 6 = 13, to 
solve the operation. Although verbal reports are not free 
from criticism (see Kirk & Ashcraft, 2001), these data sug-
gested that retrieval was employed by participants mainly in 
relation to small problems (97-73%) but also in large sub-
tractions (66-42%). More recently, Campbell and Alberts 
(2010; Campbell, 2008) used an inverse format paradigm to 
explore the use of the inverse fact strategy for solving sub-
traction. Under this paradigm, both the standard subtraction 
format (13 – 6 =?) and the inverse subtraction format (6 + ? 
= 13) were presented. These authors, based on the assump-
tion that participants may use the inverse-reference para-
digm in large subtractions, argued that when the inverse sub-
traction format is presented, participants should be able to 
speed-up their response, especially in the case of large sub-
tractions. Accordingly, they demonstrated that large subtrac-
tions problems (minuend > 10) were solved more quickly 
when the operation was presented in inverse format. These 
results were not obtained in the case of small subtractions 

(minuend < 10; see for similar results in divisions Mauro, 
LeFevre & Morris, 2003). Campbell and Alberts‘ results 
seem to indicate that different strategies are used to solve 
small and large subtractions, and, although they suggest that 
retrieval would be the preferred strategy for small problems, 
their data do not clarify whether automatic retrieval or 
counting was used. 

Thevenot, Castel, Fanget and Fayol (2010), using the op-
erand recognition paradigm (see Thevenot, Fanget & Fayol, 
2007) also found evidence indicating that both high and low 
skilled arithmetic performers solve small subtractions (minu-
end < 10) by memory retrieval. Moreover, they found that 
highly skilled participants also solved subtractions involving 
minuend from 11 to 18 by retrieving their results directly 
from long term memory. Although this paradigm has been 
brought into question (see Metcalfe & Campbell, 2010, 
2011), it suggests that not only small subtractions, but also 
large subtractions, could be recovered directly from 
memory. However, these same researchers have recently 
questioned the use of retrieval strategies in relation to addi-
tion and subtraction. Fayol and Thevenot (2012) found that 
participants solved one-digit additions and subtractions fast-
er when the operands were preceded by their sign (+ or -) 
than when the problem was presented simultaneously. On 
the contrary, no differences were found in multiplications. 
They concluded that different procedures were employed 
for multiplications —memory retrieval— than for additions 
and subtractions —compacted procedures presumably based 
on quantity representations—.  

Clear evidence supporting that subtractions can be au-
tomatically retrieved from long term memory comes from a 
study by Lara-Carmona, García-Orza and Carratalá (2009) 
using a ―cross-operation-interference paradigm‖. This para-
digm has provided significant support for the automatic re-
trieval of multiplication facts, as it has shown that people are 
slower in rejecting false additions when the stated result is 
the correct result of a multiplication (associative lure; e.g., 3 
+ 4 = 12) (see, e.g., Winkelman & Schmidt, 1974; Zbrodoff 
& Logan, 1986). That is, participants‘ response times are 
slower when the displayed (incorrect) result is the correct re-
sult of another operation, a multiplication in this case, and 
this suggests that the solving of the sums is being interfered 
by multiplications. Using this paradigm Lara-Carmona et al. 
(2009) presented false additions that could be the result of a 
correct subtraction (e.g.: 5 + 2 = 3) or unrelated errors (e.g., 
5+2= 4). Participants took longer to recognize as an error 
those false additions that were subtraction-related as op-
posed to those unrelated. This means that a problem like 5 - 
2 = 3 was also represented in participants‘ minds, and this 
interfered with the operation displayed, slowing down its re-
jection. Unfortunately, larger subtractions (minuend > 10) 
were not tested in their study, hence it is not clear whether 
the same pattern of results would be found when using such 
stimuli.  

The purpose of the present research is to investigate 
whether subtractions are retrieved automatically. Our hy-
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pothesis is that the use of direct retrieval strategy does not 
depend on the type of operation, as is usually assumed (e.g., 
Dehaene, 1992; Dehaene & Cohen, 1997; McCloskey, 1992) 
but depends instead on previous experience with those 
problems (frequency). According to the literature, problem-
size can be considered to be an indirect measure of frequen-
cy: Ashcraft and Christy (1995) reported lower frequencies 
of larger multiplication problems in arithmetic books for 
primary schools. Additionally, in daily life it is reasonable for 
us to deal with small problems more frequently (Dehaene & 
Mehler, 1992). Hence, it seems that large problems could be 
less well stored in our memory than small problems as con-
sequence of their more reduced frequency. This argument 
applied to subtractions implies that small subtractions 
should be more strongly associated (with their solution) in 
our memory than large subtractions and, hence, small sub-
tractions could be retrieved directly from memory, as it is 
the case in additions and multiplications.  

In the research presented here we have tried to deter-
mine whether small (one-digit minuend minus one-digit sub-
trahend) and large (minuend between 11 and 17 minus one-
digit subtrahend) subtractions are recovered automatically. 
With this aim, we have used a cross-operation interference 
paradigm where participants had to decide whether the sum 
presented was correct (verification task). Incorrect results 
could be the correct result of a subtraction (interference 
condition, e.g., 7 + 3 = 4) or an unrelated number (control 
condition, e.g., 7+3=5). If both small and large subtractions 
are retrieved directly from memory, participants‘ longer re-
sponse times will be longer under subtraction-related condi-
tion than in the control condition. If only small problems are 
solved by retrieval an interaction between problem-size and 
type of problem is expected (e.g., Thevenot et al., 2010). Fi-
nally, no effects are expected if, as assumed by some authors 
(e.g., Cohen & Dehaene, 1997; Dehaene, 1992; Fayol & 
Thevenot, 2012), subtractions are solved simply by using a 
non-retrieval mechanisms, i.e., procedural strategies, that in-
volve the use of the quantity codes (semantic elaboration). 
 

Method 
 

Participants 
 
Sixty-two undergraduate psychology students took part 

in this experiment for course requirement (age range: 21-43, 
54 females). They were naïve regarding the purpose of the 
study. They had normal or corrected to normal vision and 
reported no deficits in numerical or calculation skills. They 
all had attended to Spanish schools where only multiplica-
tion tables are taught by verbal recitation.  

 
Apparatus 
 
Stimulus presentation and data recording were accom-

plished via ERTS software (ERTS: Beringer, 1999) under 
MS-DOS, running on a Pentium 133 PC.  The stimuli were 

presented on a 17‘‘ color monitor, with refresh cycles of 60 
msec. 

 
Materials 
 
Stimuli employed in the experiment appear in Appendix 

1. We selected 20 sums for the experiment. Half of the op-
erations were large problems (i.e. 14 + 8), where the first 
addend was a number between 11 and 17 and the second 
addend a one-digit number. The other half of the problems 
were small ones (i.e. 7 + 3), where both addends were one-
digit numbers. In the correct response condition, each sum 
was followed by its correct result (i.e. 14 + 8 = 22). In the 
incorrect response condition the same sums were employed, 
but this time each sum was followed either by the correct re-
sult of the subtraction of the addends (i.e. 14 + 8 = 6; sub-
traction-related condition), or by a number without any rela-
tion with the addends (i.e.: 14 + 8 = 7); unrelated condition). 
The solutions provided for false problems were always a 
one-digit number. To avoid the influence of split effects (i.e., 
in incorrect problems, the bigger the distance of the incor-
rect result to the correct result, the faster its rejection, see 
Ashcraft & Battaglia, 1978), the numerical distance between 
the results in the different conditions and in the correct re-
sults was the same.  

A standard cross-operation-interference-paradigm was 
used (see Lefevre et al., 1988): stimuli were presented in two 
identical blocks. In each block, the 20 sums were presented 
followed by a correct result twice. In the incorrect results, 
the 20 sums were presented once in the interference condi-
tion and once in the unrelated condition. This makes a total 
of 80 trials per block making a total of 160 trials for each 
participant during the whole experiment. This counterbal-
ancing assures that the results will not be due to specific fea-
tures of the different numbers involved in each operation1.2 

 
Procedure 
 
For the experimental task, participants sat in front of a 

computer monitor placed at an approximate distance of 60 
cm. Stimuli were presented on a 17-in. color screen in a 
white on black background with Arial font 24. A trial began 
with a fixation point (#) during 500 ms and was followed 
immediately by the problem and its solution which remained 

                                                           
12Although the standard cross-operation-interference-paradigm comprises 
two different blocks (see Lefevre et al., 1988), one of the reviewer suggested 
that it might be possible that the continuous repetition of problems through 
the experiment might induce an artificial activation of arithmetic facts. To 
test this hypothesis, a three-way ANOVA was performed on median correct 
response times, with relationship (subtraction related vs. unrelated), prob-
lem-size (small problem-size vs. large problem-size) and block (one vs. two) 
as within participants factors. We found a main effect of problem size [F(1, 
61) = 56.3,  p <  .01] and an interaction between relationship and problem 
size [F(1, 61) = 9.73, p <  .01]. Importantly, neither a main of effect of block 
nor an interaction involving this variable arose (all Fs < 1). This seems to 
indicate that the repetition of the problems in the experiment did not con-
duct to the artificial activation of arithmetical facts. 
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in the center of the screen until participants‘ response. Par-
ticipants were instructed to indicate as rapidly and as accu-
rately as possible if the result presented with the sum was 
correct or incorrect by pressing the right or left button re-
spectively. The order of trials was randomized for each par-
ticipant. 

 
Design 
 
Our interest is only focused on ―no‖ responses or rejec-

tions, as only those results allow us to explore our hypothe-
sis about automaticity in subtractions. The variables manipu-
lated were problem-size (small vs. large) and relationship 

(subtraction-related, unrelated). This resulted in a within 
subjects 2x2 factorial design. 
 

Results 
 
Two two-way ANOVAs were performed on median correct 
response times and mean errors, with relationship (subtrac-
tion related vs. unrelated) and problem-size (small problem-
size vs. large problem-size) as within participants factors. 
Median was used in responses time to avoid extremes val-
ues. Median latencies and percentage of error responses are 
shown in table 1.  

 
Table 1. Mean response times in milliseconds and mean proportion of errors for correct problems and incorrect subtraction-related and unrelated addition 
problems in small and large problems (Standard Deviation between brackets). 

 Correct Problems Incorrect Problems 

   Subtraction Related Unrelated 

 RTs Errors RTs Errors RTs Errors 

Small problems 941 (199) .03 (.02) 1045 (203) .08 (.07) 1012 (177) .03 (.03) 
Large problems 1032 (204) .04 (.03) 1131 (208) .04 (.04) 1154 (239) .04 (.04) 

 
Latency analysis included only correct responses times to 

incorrect problems (i.e. Correct rejections).  The ANOVA 
revealed a non-significant effect of relationship, F(1, 610) = 

.25,  MSE = 6679.1; p  =  .61, ῃ2 = .004. A significant effect 
of problem-size was found, F(1, 61) = 54.2, MSE = 15022.2; 

p < .01, ῃ2= .047, showing that rejecting large problems took 
115 ms more than rejecting small problems. More interest-
ingly, an interaction between relationship and problem-size 

was found, F(1, 61) = 7.6, MSE = 6404.6; p < .01, ῃ2 = .11. 
This interaction showed that the difference of about 33 ms 
between the subtraction-related and unrelated conditions in 
small problems was significant, t(61)=2.88; p < .01. Regard-
ing large problems, in which even the unrelated problems 
were rejected 23 ms slower than subtraction-related (an in-
verse interference effect), no significant differences arose, 
t(61)= -1.33; p = .18. 

Error rates were very low (4.2%). The two-way ANOVA 
on mean error responses revealed a significant main effect 

of relationship, F(1, 61)=19.6, MSE=.002; p < .01, ῃ2= .24, 
showing about 2.5 % more errors in the subtraction-related 
condition than in the unrelated condition. No effects of 
problem-size were found, F(1, 61)=2.9, MSE=.002; p = .93, 

ῃ2= .004. As in the analysis of response times, an interaction 
effect between relationship and problem-size arose, F(1, 61) 

= 21.4, MSE = .002; p < .01, ῃ2 = .25, showing differences 
between subtraction-related and unrelated conditions in 
small problems, t(61)= 5.38, p < .01, but not in large prob-
lems, t(61)= 0.05, p = .61.2 

                                                           
21As one reviewer indicated, in our experiment, the variable problem size has 
two levels: one digit problems and two digits problems. So it might be pos-
sible that our results are due to different strategies used for one and two dig-
it problems rather than to the problem size. An additional analysis was con-
ducted to rule out this hypothesis.  We use a similar procedure to Campbell 
and Xue (2001) to categorize problems as small, medium or large: a problem 
was considered small if the result of the multiplication of its addends was 

No accuracy trade-off was observed as indicated by a 
positive, although non-significant, Spearman correlation be-
tween median RT and mean proportion of errors over the 
four cells of the design, r=+.31, n=4, p = .68. 

 
General discussion  
 
The present research was aimed to investigate whether sub-
tractions are retrieved directly from our memory and wheth-
er this retrieval is modulated by problem-size. To accom-
plish this we used a cross-operation interference paradigm in 
a verification task. Participants had to indicate whether the 
operation presented was correct or not. Results showed that 
participants took longer to reject subtraction-related addi-
tions (e.g. 7 + 5 = 2) than unrelated additions (e.g. 7 + 5 = 
3), suggesting that the representation of the corresponding 
subtraction (e.g., 7 – 5 = 2) was activated in their memory. 

                                                                                               
less than 25 (seven operations). A problem was considered medium if the 
result of the multiplication of its addends was between 25 and 70 (six opera-
tions). Finally, a problem was considered large if the result of the multiplica-
tion of its addends was more than 70 (seven operations).  A two-way 
ANOVA was performed on median correct response times and on mean er-
rors with relationship (subtraction related vs. unrelated) and problem-size 
(small problem-size vs. medium problem-size vs. large problem-size). As the 
results were similar to those reported in the result section, only the results 
involving the interaction between relationship and problem size will be re-
ported.  For reaction times, an interaction between problem-size and rela-
tionship arose [F(2,122)=4.4, p < .02 ]. To further explore this interaction, 
multiple comparisons (Bonferroni corrected) were performed. For small 
problems subtractions related problems were rejected slower than unrelated 
problems (p < .01). However, these differences were not found either in 
medium or large problems (both ps>.05). For mean errors, the interaction 
was also significant [F(2,122)=11.4, p < .01]. Multiple comparisons revealed 
more errors in subtractions related problems in both small and medium 
problems (both ps < .01) than in unrelated problems. However, these differ-
ences were not found in large problems (p > .05). All together, these results 
seem to show that the problem-size, and not the presence of one or two 
digit in the addends, modulates the way we solve subtractions. 
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However this effect was modulated by the problem-size: in-
terference was only obtained for small problems (one-digit 
addends: e.g., 7 + 5 = 2) but not for large problems (first 
addend between 11 and 17, e.g., 17 + 8 = 9). These data 
seem to indicate that small subtractions are recovered direct-
ly from our memory whereas no evidence of such activation 
is observed in larger problems. 

Alternatively, it is possible that when presented with 7 + 
3 = 4 participants activate the fact that 7 = 3 + 4, in this 
case, the true addition relationship among the elements of 
the problem would interfere with performance, questioning 
the direct retrieval of subtraction problems. Although this 
alternative account of our data cannot be fully discarded, it 
is difficult to assume for several reasons: i) It implies that 
when presented with an addition problem, e.g., 7 + 3 = 4, 
participants activate all the different combinations of addi-
tions between the three numbers, i.e., (7 + 3; 7 + 4 and 3 + 
4) what seems implausible. ii) Campbell and Albert (2010) 
found that when solving big subtractions (minuend > 10) 
participants sometimes rely on an addition-based strategy, 
however, no evidence of the use of this strategy was found 
when presented with small subtractions. This is in line with 
our account of an automatic solving of these problems. iii) 
Additionally, it seems also implausible that the strategy of 
solving subtraction problems by reversing the direction of 
the problem and then solving an addition could be em-
ployed by participants when, in this case, it has a detrimental 
effect on the task.  

Our results extend previous findings regarding the use of 
retrieval in subtraction problems that had been obtained in 
self-report studies (e.g., Cambpell & Xue, 2001; LeFevre et 
al., 2006; Seyler et al., 2003) as well as in experiments that 
employed other paradigms (Thevenot et al., 2010). Our re-
sults directly replicate those by Lara-Carmona et al., (2009) 
which, using exactly the same task as was employed in this 
experiment, found a cross-operation interference effect of 
about 65 ms in small problems. The interference effect 
found in the current experiment by virtue of these problems 
(33 ms) provides additional support to that data, but also ex-
tends it by demonstrating the lack of such effects in the case 
of large subtraction problems (those with a minuend be-
tween 11 and 17). In addition, the problem-size effect found 
in this experiment agrees with the strong discontinuity found 
both in terms of response times and errors described by Sey-
ler et al. (2003) when the size of the minuend in subtraction 
problems was larger than 10.  

The findings in the present experiment have important 
implications for number processing accounts. The triple-
code model (Dehaene, 1992; Dehaene & Cohen, 1995) and 
other models of arithmetical cognition (McCloskey, 1992; 
see also Cipolotti & Butterworth, 1995) assume that subtrac-
tions are solved through procedures, like counting, that in-
volve the use of the magnitude code. No direct retrieval is 
expected to be found in these problems and if it is then it 
would be residual. On the contrary, the present research 
supports the hypothesis that small (the most frequent) sub-

tractions, such as 7 - 3 are retrieved directly from our 
memory. The evidence has been obtained using a cross-
operation interference paradigm, i.e., a paradigm usually 
considered as a marker of automatic retrieval (e.g., Winkel-
man & Schmidt, 1974; Zbrodoff & Logan, 1986). According 
to our findings, the use of memory retrieval or strategic pro-
cedures would not depend on the type of operation present-
ed (i.e., addition, multiplication or subtraction) but on the 
experience previously gained in regarding those problems. 
The same mechanism proposed by models of arithmetic fact 
retrieval to generate associations between multiplication 
problems and their solution, frequency (see Ashcraft, 1987, 
1992; Cambpell, 1987; Siegler & Jenkins, 1989), would also 
be responsible in the case of subtractions. Small problems 
seem to be more frequent in our daily life (Ashcraft & Chris-
ty, 1995; Dehaene & Mehler, 1992), being exposed to them 
repeatedly makes the establishment of associative links be-
tween the operands and the solution in our memory possi-
ble. These associative links allow us retrieving the infor-
mation directly. On the contrary, as large subtractions are 
less frequent, we have not developed strong enough associa-
tions between the operands and their corresponding solution 
in our memory. This impedes an automatic access to the so-
lution from the operands, and would force people to rely on 
the use of procedural strategies that would involve the use 
of semantic codes (e.g., inverse addition or counting) to 
solve large problems. If as suggested by a classical model of 
arithmetic, Siegler‘s distribution of associations model (e.g., 
Siegler & Jenkins, 1989), individuals generate an association 
between problems and the way they should be solved, our 
results suggest that small subtractions, at least for university 
students, are associated with a memory retrieval procedure, 
while large subtractions would be associated with strategic 
procedures.  

Despite the conflict between our data and the proposal 
of most of the arithmetical cognition models (e.g., Cipolotti 
& Butterworth, 1995; Dehaene, 1992; Dehaene & Cohen, 
1995; McCloskey, 1992), our results and their theoretical 
consequences can be easily accommodated by them. Simply, 
it should be assumed that experience (and size would be an 
indirect measure of frequency) would play an important role 
in the way people solve arithmetic problems, being the type 
of operation less relevant. No specific representations have 
to be proposed for each operation, instead, operations 
seems to be solved by two different procedures that would 
imply different mechanisms and representations and, conse-
quently, cerebral structures. One way of solving problems 
would imply semantic elaboration, this procedure would in-
clude different types of strategies that will have in common 
the manipulation of magnitude representations, and would 
be more demanding in terms of working memory resources. 
The other way of solving problems would be through a 
memory retrieval process that would depend on the strength 
of associations between the operands and its solution. Using 
one or other procedure would not depend on the type of 
operation, but on the educational strategies and the frequen-
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cy of occurrences of each arithmetical problem individuals 
are exposed to. If a solution is available by retrieval with a 
sufficient level of confidence, this procedure would be em-
ployed, otherwise the individual would call on semantic 
elaboration. 

Working on the assumption that retrieval is also em-
ployed in subtraction, a look at those self-report studies that 
have compared the use of strategies in the three basic opera-
tions reveals that multiplication is the operation more usually 
solved by retrieval, followed by additions and finally by sub-
tractions and divisions (see e.g., Campbell & Xue, 2001).  
 

Conclusion 
 
The present research adds weight to other experimental evi-
dence that suggests that small subtractions can be solved by 
retrieval. These results do not rule out the possibility of us-
ing different procedures and representations to solve the 
four basic operations. We simply argue that although differ-
ent processes (e.g., semantic elaboration and memory re-
trieval) and representations (e.g., abstract numerical repre-

sentations-verbal associations) can be employed to solve dif-
ferent operations, the experience previously gained with 
each particular problem seems to modulate the use of the 
one or the other procedure. Within this frame, the frequency 
of solving seems to play an important role in the direct re-
trieval of the result of the problem, irrespectively of the type 
of operation. This possibility has been neglected by most of 
the relevant models of arithmetical cognition that assume, in 
a simplistic way, that different procedures are involved in 
solving multiplications and subtractions. The evidence pro-
vided here suggests that small subtractions are usually solved 
by retrieval. 

Further research should be devoted to testing subtrac-
tion retrieval in people with different arithmetical skills, as 
this could provide converging evidence about the role of ex-
perience in the way arithmetical operations are represented 
in our mind. As suggested by Thevenot et al. (2010), partici-
pants with different skills should show a different pattern of 
behavior mainly with larger operations, these problems 
could be solved by memory retrieval by some highly skilled 
participants but not by low-skilled.  
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Appendix I 
 
Stimuli employed in the verification task. Addition problems were presented twice with the corresponding correct result and 
once with each of the two incorrect result conditions: subtraction- related results (i.e., the result is correct if the arithmetic 
problem was a subtraction) and unrelated results. 
 

Addition Problems Correct Solutions Subtraction- Related Solutions Unrelated Solutions 

Small problems    

7+3= 10 4 5 

9+2= 11 7 6 

8+1= 9 7 6 

9+4= 13 5 6 

5+1= 6 4 3 

6+2= 8 4 5 

8+6= 14 2 1 

7+4= 11 3 2 

6+4= 10 2 3 

5+2= 7 3 4 

Large Problems    

11+3= 14 8 6 

11+6= 17 5 8 

12+8= 20 4 8 

13+6= 19 7 9 

14+5= 19 9 5 

14+8= 22 6 7 

15+7= 22 8 9 

16+7= 23 9 6 

16+9= 25 7 4 

17+8= 25 9 9 

 
 
 
 


