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Resumen  

 

Resumen General 

 

Los bosques tropicales desempeñan un papel importante para mantener el ambiente 

y mitigar el calentamiento  global del planeta. Al mismo tiempo, la agricultura es crítica para 

soportar tanto la vida humana como la mayor parte de la economía de los países asiáticos 

del suroeste, especialmente en Malasia. Esta tesis presenta los factores más destacables 

que contribuyen en las perturbaciones de los bosques tropicales y el desarrollo de la  

agricultura  en la región, y desarrolla  un sistema de modelado de bajos costes  que se 

podrían usar para evaluar los impactos humanos en la Producción Primaria Neta (PPN). El 

estudio ayudará a entender mejor las consecuencias de las perturbaciones humanas, 

incluyendo el crecimiento de la población y los cambios climáticos,  y de modo especial las 

sequía en los bosques y en las tierras de agricultura en el suroeste de Asia. Por ello se usa las 

imágenes de resolución moderada MODIS  junto con otros datos públicos disponibles para 

desarrollar este modelo. La tesis identifica los tres factores más cruciales: la variabilidad del 

clima, la productividad de la  vegetación y las perturbaciones humanas, incluyendo el 

crecimiento de la población. Este crecimiento poblacional es la causa de la mayor parte de 

los problemas ambientales de los bosques tropicales,  y por lo tanto facilitar orientaciones 

que puedan ayudar para el buen  desarrollo  de  la Política Nacional de los Bosques y de la 

Biodiversidad.            

El capítulo 1 introduce la metodología de análisis de imágenes de  MODIS para el 

desarrollo de los modelos SIG, así como la clasificación de las capas de información de los 

usos del suelo. El capítulo 1 se basa en  la viabilidad del uso de  las imágenes MODIS 

combinado con el uso del suelo, los mapas topográficos y las imágenes de ALOS que sirve 

para  clasificar las capas de uso del suelo. Particularmente para la resolución de mapas de 

los bosques naturales y las plantaciones.  

El capítulo 2 enfoca  los cambios de la vegetación en los bosques naturales y las 

plantaciones sometidos a las condiciones de la sequía. El  capitulo 2 desarrolla el monzón 
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del suroeste de Malasia (M-SWM) sometido a las condiciones de la sequía usando los 

índices de de la Malasia Peninsular.     

En el capítulo 3 se valora el impacto de las actividades humanas en estas áreas en 

producción primaria neta (conocido como HNPP). El capitulo3 enfoca el impacto de la 

actividad humana en la producción primaria neta que clasifica los niveles del impacto 

humano en las zonas forestales.  

El capítulo 4 evalúa el consumo de  la producción primaria neta per cápita, los 

recursos de extracción de los bosques y la contaminación que provienen de la actividad 

agricultura en dos bosques tropicales del suroeste de Asia situados en Malasia y Tailandia.   

El capítulo 4 compara el impacto de la proyeccion del crecimiento de la poblacion en el NPP, 

la extraccion de los recursos forestales y la contaminación en los bosques de Malasia y 

Tailandia en los proximos 30 años (2045).    

 

 

 

 

Resúmenes de los Capítulos 

 

Capítulo 1. Capacidad de integrar la imagen de MODIS y ALOS para el aceite 

palma, caucho y mapeado de las regiones en los bosques tropicales.   

El objetivo de este estudio es para desarrollar las técnicas de mapeado del uso ( ej.  

bosques perennes verdes, palma de aceite de palma y caucho) del sector agricola en los 

bosques tropicales  en la Reserva de los bosques de Pasoh (Malasia Peninsular). En 

particular, quisieramos determinar la capacidad de los datos de  MODIS para el mapeado de 

la cobertura de la tierra. En este trabajo se indica que si se usa el sistema y el programa 

adecuado para analizar los datos Modis y teniendo en cuenta que (estos estan disponibles 

sin costes y los costes de ejecución son reducidos, es una herramienta adecuada para 

analizar los bosques tropicales.  Otros datos públicamente disponibles, como el uso de la 

tierra, el mapa topográfico y los datos  de alta resolución de la imagen ALOS y MODIS 

permite producir un mapa de usos preciso con bajo coste.  El método  que desarrollamos en 
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este trabajo puede permitir a los responsables de los bosques tropicales conseguir un uso 

sostenible  de los bosques (SFM) en Malasia  con un mínimo coste de la mano de obra.     

 

 

Capítulo 2. La supervisión de la vegetación bajo las condiciones de sequía 

usando Los indices de MODIS para los bosques naturales y las zonas de la 

plantación en Malasia peninsular.  

Tras determinar la viabilidad de nuestros enfoques metodológicos, en este capítulo 

proponemos el uso de datos de MODIS  para acceder a los efectos de la sequía en la 

vegetación de los bosques y las zonas de plantación  en las localidades seleccionadas en 

Malasia peninsular. Nuestro método era para analizar los data de Modis usando (1) el 

criterio monzón de Suroeste, (2) la precipitación estandarizada tal como está definida  en el 

índice de  la precipitación estándar (SPI), (3) la precipitacion mensual, (4)  la temperatura 

mensual, y (5) los índices de MODIS de NDVI y MSI con el objetivo de desarrollar el sistema 

de clasificación para la evaluación de la sequía en las zonas propensas a la sequía.    

La clasificación de la sequía desarrollada aquí es útil para clasificar los niveles de la 

sequía y posibilitar la creación de las herramientas de su evaluación efectiva, lo que podría 

ayudar al departamento de meteorología de Malasia para determinar los meses con la 

probabilidad de la extrema sequía.    

 

 

Capítulo 3. Cartografía del impacto humano en la producción primaria neta 

usando datos  MODIS para mejorar el  desarrollo de la política de gestión. 

Nuestro tercer paso es determinar el impacto humano utilizando los datos de los 

flujos de la biomasa  del año 2000 (Global patrón) proporcionados por el Instituto  de  

Ecología Social, Viena (Krausmann et al. 2008). Los humanos dependen de los bosques, 

desde el cual extraen recursos para la vida o los convierten en tierras de agricultura . Ambas 

actividades pueden causar la desaparición de los bosques. Es importante estudiar la 
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apropriación de la produccion primaria neta para identificar la disponibilidad de la energía 

en el ecosistema de los bosques tropicales. Este capítulo desarrolla el mapa del impacto de 

los humanos en NPP, incorporando la actividad humana y su influencia para estimar la 

Producción Primaria Neta extraída por el hombre (HANPP) (Krausmann et al. 2008).   

El mapa final puede ser útil para aplicar una estrategia adecuada de conservación en 

la que se pueda minimizar el impacto humano en las zonas con vías de acceso para 

preservar la productividad primaria del bosque.  

 

 

 

Capítulo 4. El cultivo de palma aceitera en los bosques tropicales en el 

contexto del crecimiento de la población humana 

Para concluir esta tesis, evaluamos el consumo de la producción primaria neta per 

cápita para las zonas de los bosques y las tierras de agricultura de Malasia y Tailandia. La 

población humana está creciendo en un promedio de 2,5% por año. La presión adicional de 

la guerra civil y la pobreza en los países de Suroeste conduce cambios en patrón del 

consumo de los recursos naturales. Incluso Tailandia, con un crecimiento de población de 

solamente 0,3% para el año 2020,  está afectada por el crecimiento  del nivel de la vida, lo 

que ha conducido al aumento del consumo. La pérdida de los bosques debido a la 

perturbación humana en esta región  es una gran preocupación ya en ella se encuentra un 

punto caliente (hotspot) de biodiversidad del mundo. Para examinar este punto evaluamos 

el impacto del crecimiento de  la población, extracción de los recursos de los bosques y los 

patrones humanos de consumo de recursos naturales, los efectos de agroquímico en la 

productividad primaria neta en  dos bosques tropicales situados en Malasia y Tailandia. En 

este estudio se compara las zonas donde se proyectan el porcentaje más alto o el más bajo 

de crecimiento de la población en el momento actual y en el año 2045. Los resultados de 

este estudio pueden ayudar a los gestores a desarrollar políticas adecuadas para la 

sostenibilidad de los bosque tropicales  del sureste de Asia.  
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Introducción general  

 

Las tierras forestales y agrícolas: cambio climático, potencial económico y  

perspectivas de futuro. 

 

La sequia es un fenómeno y  uno de los cambios climáticos impactantes en Asia del 

suroeste y está reconocida como uno de los factores que causan la mortalidad humana y 

reduce la producción agrícola. Varios científicos se han preocupado por el impacto de los 

cambios climáticos en esta región, así que varios estudios se han elaborado en torno al 

fenómeno del ENSO ( Oscilación del Niño en el Suroeste), que causó el fenómeno de la 

sequía relacionada con la mortalidad (Boyd et al. 2001; Buckley et al. 2007; DID 2005; 

Khandekar et al. 2000; Nunes et al. 2012; Samanta et al. 2010). Desde el 1998, la sequía no 

deja de provocar el deterioro de los bosques de Malasia, ocasionando una nube de humo 

transfronteriza entre los países vecinos de Indonesia  que ha sido especialmente peligroso 

para la salud humana.  El polvo atmosférico que cubre Malasia y los otros países vecinos 

desde hace meses, amenazando la salud y la vida humana que se ha manifestado como un 

desastre en el área  regional (Othman et al. 2014). 

 

La función de los bosques tropicales como un sumidero de carbón, permitiendo el 

almacenamiento de una gran cantidad de carbono, está amenazada por las actividades 

humanas y por la atmosfera (Bonan 2008; Joseph et al. 2012; Ngo et al. 2013). Estos 

bosques  consisten en partes fotosintéticamente activas (la mayoría son cloroplasto)  y 

partes no fotosintética con función de soporte o transporte (ej. ramas y tallos) (Joseph et al. 

2012). Los bosque tropicales proveen alimento, combustible y refugio para todo el 

ecosistema (Milesi et al. 2005; Zhao et al. 2005). 

 

Varios estudios han destacado la disminución brusca de la pluviosidad durante la 

estación seca del monzón del suroeste, ocasionando los niveles más bajos de centenares de 

embalses y ríos de la región (Associated Press 2005; Wan Zin et al. 2013). Estos cambios 

afectan al rendimiento de las especies forestales (Corlett 2014) y a la estructura de los 
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bosques. Por lo tanto, la sequía afecta a la agricultura, la salud  humana, espacialmente  en 

las zonas más vulnerables que están próximas a los bosques. Dado que la precipitación está 

disminuyendo constantemente durante los últimos años,  las futuras sequías pueden 

agravar la situación y disminuir tanto en la producción agrícola  como la cualidad de la vida 

humana (Wan Zin et al. 2013).  

 

Teniendo en cuenta los riesgos de la sequías severas sería muy útil entonces seguir las 

medidas vigentes de la prevención de la sequía que se podría aplicar  en la zonas 

agriculturas, los gestores forestales podrían supervisar los sistemas en otras zonas como los 

bosques de los pantanos de turba  y los funcionarios de servicios de medio ambiente 

podrían preparar medidas de emergencia como ofrecer información sobre la escasez del 

agua en las zonas urbanas.       

 

El desarrollo de la agricultura basado en la transformación de los bosques en tierras 

cultivables ha sostenido la economía de varios países, incluido Malasia. Además, varios 

estudios han destacado que esta transformación del bosque, especialmente las asociadas a 

la obtención de aceite de la palma ha mejorado la economía del país, aliviando la pobreza 

entre los pequeños propietarios de tierras (Dayang Norwana et al. 201 1) y creando miles de 

puestos de trabajos en los pueblos (Arif and Tengku Mohd Ariff 2001).   Un estudio reciente 

destacó que el éxito de Malasia en esta zona tiende motivar a otros países como Tailandia a 

transformar la mayoría de sus cultivos del árbol de caucho (Hevea brasilienses) a palmeras 

de aceite,  una conclusión que ha sido apoyada por Sayer et al.(2012) y Tan (2014) . Un 

reportaje realizado por MPOB (2014) ha destacado que Malasia, que es la mayor 

exportadora del aceite de palma en el mundo, se han plantado 5 millones de hectáreas del 

aceite de palma. El estudio de esta transformación del uso de la tierra no sólo tiene gran 

interés científico sino que además es un desafío para el desarrollo sostenible del suroeste 

asiático. La figura1 demuestra la distribución  de los países del suroeste asiático (Wright 

2010).   

 

Como el aceite de palma tiene un coste bajo, producir más aceite por hectárea que 

la producción de otras plantas sería un excelente cultivo para los pequeños propietarios de 

tierras (Sheil et al. 2009). La sequía causa descensos fuertes en la producción (Rieley and 
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Page 1995). Sin embargo reemplazar los bosques predominantes por cultivos de palma 

reduce la habilidad del ecosistema para retener la lluvia, ya que el agua se vierte más 

rápidamente al río. Otros cultivos de suroeste de Malasia como el café , el arroz y el caucho, 

han sufrido recientemente sequías severas (Vu and Chaichalearmmongkol 2015). No 

obstante, el árbol de caucho clones es algo más que resistente a factores externos  como la 

sequía. A lo largo de los últimos diez años, la sequía ha causado varios desastres regionales  

(Associated Press 2005; Buckley et al. 2007; DID 2005), por ello existe una necesidad 

urgente para la evaluación de la sequía  en el Suroeste de Asia. Se debería realizar más 

investigaciones en torno de las catástrofes de la sequía para determinar los métodos 

eficaces y para apoyar la agricultura de Malasia, sobre todo en lo relacionado con la 

producción del cultivo del aceite de palma. Esta metodología debería ser económicamente 

factible para  las zonas de los bosques tropicales con cultivos comerciales. Para llevar a cabo 

esta investigación, una herramienta fundamental es la utilización de imágenes de  satélite 

MODIS  que permite realizar mapas de los cambios de uso del suelo  y proponer un 

equilibrio correcto entre la producción del aceite de palma y la conservación de los bosques 

tropicales. 
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Fig.  1: Distribución de la producción del  aceite de palma en los países del suroeste de Asia 

enfocado en Malasia, Tailandia y Andonesia (datos incompletos para Filipina).  Se ve 

claramente  el gran porcentaje de la tierra cultivada está en Malasia y Tailandia. Fuente: 

Fitzherbert et al. (2008).  

 

Evaluación del impacto humano en los bosques tropicales  

 

El crecimiento rápido de la población, la migración internacional y la pobreza ha 

aumentado las amenazas ambientales en los bosques tropicales (International Peace and 

Conflict Studies 2015). Por ejemplo, los campos de emigrantes en zonas profundas de los 
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bosques podrían amenazar la diversidad genética de los árboles, así como las fuentes de 

agua de los nativos de Orang Utan (Meijaard and Sheil 2013). Estos bosques tropicales 

suponen un componente crítico para el ecosistema global, como una fuente importante 

para recursos reciclables  o no  reciclables, y tiene un significado social y cultural. 

 

Prácticamente la totalidad de suroeste de Asia está experimentando un crecimiento 

rápido de la población. Sin embargo, algunos países (por ejemplo, Tailandia) están 

experimentando un declive de la población (con 0.3 % de la cifra del crecimiento predicha 

hasta 2020). Dos reportajes recientes que han cubierto Tailandia (UNPFA 2011) y Malasia 

(Department of Statistics 2012) demuestran la proyección del crecimiento de la población 

en suroeste de Asia, que alcanza aproximadamente 30 millones en el año 2020. Este 

crecimiento ha aumentado la necesidad de alojamiento. Además, a medida que la demanda 

para una la larga residencia se multiplica y las actividades recreativas aumentan, ejerciendo 

así más presión en los bosques que gozan de turismo y de alojamientos. Las viviendas de 

calidad, los parques de los bosques, caminatas por la naturaleza y el flujo comercial son 

ejemplos de estas nuevas facilidades.  

 

Hoy en día, la perturbación humana ha dejado  sus huellas en los bosques tropicales 

que han reducido su capacidad  de ofrecer los servicios ambientales óptimos (Berenguer et 

al. 2014; Gibson et al. 2011; Mon et al. 2012). La degradación de los bosques tropicales en 

los países de suroeste de Asia es particularmente alarmante puesto que estos bosques son 

sistemas claves para mantener el ecosistema tropical.   

 

Además, la larga escala de la plantación del aceite de palma ha causado la 

fragmentación de los bosques debido al aumento de las carreteras sobre todo después de 

que el fuego haya disminuido la superficie de los bosques y la sustitución de los cultivos 

tradicionales (Fitzherbert et al. 2008). Estas incursiones han aumentado la accesibilidad de 

estos bosques exponiéndolos a los cazadores y a sectores comerciales  No obstante, aunque 

los inversores y los responsables de la política reconocen la importancia de los bosques 

tropicales para mantener los servicios ecosistemas, en la práctica continúan los cambios en 

la cobertura de la tierra en los bosques tropicales de suroeste de Asia  desde el año 2005 

(Wicke et al. 2011). Investigaciones realizadas sobre el impacto del ser humano en las áreas 
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de bosques de China (Su et al. 2012; Yue et al. 2005), Jamaica (Newman et al. 2014) y Serbia 

(Bajat et al. 2011) deberán ser un modelo para conducir este análisis en sureste de Asia.   

Varios investigadores han estudiado los efectos del estilo urbano en los bosques tropicales 

(Broadbent et al. 2008),  de la utilización de herbicidas  en plantaciones de palma (Langner 

and Siegert 2009). También se ha indicado que estos herbicidas pueden tener un efecto 

adverso en los ríos en Malasia (Dayang Norwana et al. 2011). 

 

Se han usado varios enfoques para evaluar el impacto de los bosques (Haberl et al. 

2004; Krausmann et al. 2008; Ma et al. 2012), como la evaluación de las carreteras 

interurbanas, protección legal (Newman et al. 2014) y la intensificación de la agricultura 

(Firbank et al. 2008). No obstante, la identificación del impacto del área urbana en los 

recursos de los bosques (por ejemplo la proximidad del establecimiento de los sectores 

comerciales)  es importante para la conservación en sus estados naturales (Phua and 

Minowa 2005). La densidad humana podría ser el indicador más usado para el desarrollo del 

modelo de los bosques sometido a la modificación humana (Bistinas et al. 2013).  

Afortunadamente,  los datos públicos disponibles locales e internacionales (ej. datos de 

población de la ONU) permite disponer de bancos de datos disponibles para la realización 

de estudios poblacionales.      
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(a) 

(b) 

 

                           (c) 

Fig. 2. Fotos de bosques tropicales en el norte este Peninsular de Malasia.  a) claro con un 
camino; (b)  resultado de la plantación del aceite de palma (foto cogida en 26 Julio 2015); y 
(c) racimo de dátiles frescos. De los racimos de dátiles, además de aceite de palma,  también 
se obtiene fibra utilizada por la industria de la producción de derivados de madera. Fuente: 
Institute of Tropical Forestry and Forest Products (INTROP). 

Zonas abiertas en los bosques 

Establecimiento del cultivo de aceite de palma 

Racimo de dátiles frescos 
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Numerosos autores han indicado que la producción primaria neta es un indicador 

muy útil para medir las necesidades inmediatas de los humanos y otros organismos en el 

ecosistema tropical (Vu et al. 2014;Yang et al. 2014; Potter et al. 2013; Zhao and Running 

2010). Este indicador ha sido reconocido para la medida del intercambio del carbono entre 

la tierra y la atmosfera, que podría ser usado como un indicador biofísico para evaluar el 

requerimiento de la energía para los próximos años. Algunos autores han usado el concepto 

del HANPP (Productividad Primaria Neta Extraída por el Hombre)  para la análisis del 

impacto humano en los bosques (Haberl Haberl et al. 2004; Krausmann et al. 2008). Este 

tipo de estudios es útil para mejorar la conservación y gestión de los bosques (Imhoff et al. 

2004) que deberían estar enfocados en los bosques de altos riesgos (por ejemplo aquellos 

localizados cerca de las áreas urbanas , carreteras y zonas de construcción) en  la mayor 

conservación del valor de los bosques (Sharifi 2004) y la mayor conectividad del valor 

ecológico (Ferretti and Pomarico 2013;Pomarico 2013). 

 

El concepto HANPP necesita ser adaptado a su uso en los bosques tropicales del 

sureste de Asia, porque estos bosques  están fuertemente influidos por las comunidades de 

las localidades rurales que los usan para sectores que no son relacionados con los sectores 

de la producción forestales (NTFPS). En estos bosques tropicales, el estudio del HANPP ha 

sido escaso debido a la percepción de que estas zonas está bajo la Política Nacional de 

Biodiversidad (MOSTE 1998) de Malasia y asume que  áreas ya están “protegidas”. 

 

Teledetección: herramientas para la conservación de los bosques   

 

Los bosques tropicales se están convirtiendo en un estudio crítico para la 

investigación  sobre la conservación y el uso sostenible de los bosques (Phua and Minowa 

2005; Reza et al. 2013). El estudio debería concentrarse en la utilización de la información 

de las imágenes de alta resolución espectral y temporal suministrada por los satélites. Esta 

es la mejor opción para la observación de los bosques tropicales porque hace hincapié en las 

dificultades existentes en las zonas de montañosas gran altitud o en pendientes 

pronunciadas. En estas zonas la metodología usualmente utilizada en tierra es imposible o 

muy costosa. 
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Realizar mapas rápidamente de los usos del suero requiere un dato de satélite de alta 

cualidad como las proporcionadas por las imágenes MODIS. Gran parte  de la cartografía del 

uso del suero pertenece al departamento forestal de la península de Malasia y otros 

estudios que enfocan en pequeña escala han utilizado imágenes de alta resolución (Jusoff 

2009). En este contexto las imágenes de MODIS, son buena fuente para supervisar los datos 

de la cobertura de la tierra y los cambios climáticos  (por ejemplo, la sequía, inundación, los 

daños provocados por el viento). Su buena calidad ha sido reconocida y utilizada en diversos 

estudios tropicales (Galvão et al. 2011; Ladle et al. 2010; Luus and Kelly 2008; Xiao et al. 

2006). Tiene también una ventaja de la fácil interpretación y coste bajo (Wang et al. 2009; Li 

et al. 2012; Sheldon et al. 2012).Sin embargo, la información proporcionada por las 

imágenes MODIS puede verse comprometida en condiciones de lluvias intensas o cielo 

nuboso las condiciones nubosas. En estas condiciones es necesario complementarlo con los 

datos del tele detector de satélite de alta resolución como ALOS PALSAR y IKONOS (Dong et 

al. 2013; Sheldon et al. 2012).  

 

Por otra parte, los datos del tele detector del satélite convencional como NOAA 

AVHRR  no son adecuados para el estudio de la capa del estrés hídrico, pero MODIS es capaz 

de tener una configuración espectral adecuada para esta tarea (Fensholt et al. 2004). MODIS 

es capaz de ofrecer propiedades espectrales importantes, derivado de la longitud de onda la  

corta (infrarrojo) para  el  estudio del contenido en agua  (Cheng et al. 2006; Xiao et al. 

2006; Xie et al. 2010; Zhang et al. 2006). Varios estudios han empleado datos de MODIS del 

canal 5 (1230-1250 nm)  y el canal 6 (1628-1652) y han demostrado la correlación con el 

estrés hídrico (Fensholt y Proud 2012; Galvão et al. 2011; Propastin et al. 2012).  

 

La figura 3 muestra el enfoque triangular de sostenibilidad adaptado de Mata-Lima 

et al. (2012), donde se muestra la interrelación entre las políticas económicas, sociales, 

ambientales y la tecnología disponible para lograr la sostenibilidad en los ecosistemas. 

 

 



- 20 - 
 

 Tecnología

Económico

AmbientalSocial

 

Fig 3. Enfoque de sostenibilidad dirigida en un estudio de Mata-Lima y Alvino-Borba (2012). 

 

 

En este sentido hay un coste asumible y razonable utilizando la metodología de 

Sistema de Información Geográfica (GIS) para realizar mapas, visionar y evaluar los recursos 

naturales con la resolución de imágines de satélite (Macary et al. 2014; Valente and 

Vettorazzi 2008; Yates and Chen 2014; GEC 2010).  
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Objetivos de la tesis  

Los objetivos de esta tesis son: 

 

i. Evaluar la realización del mapeado de la imagen MODIS de los diferentes 

usos/cobertura de suelos de la Reserva del bosque Pasoh (península de Malasia) utilizando 

el método de clasificación de no supervisión  (capítulo 1). 

 

ii. Desarrollar el sistema de evaluación y clasificación de la sequía en Malasia  

suroeste durante la estación del monzón en una  zona propensa a la sequía usando los datos 

del satélite recogidos del MODIS (capítulo 2). 

 

iii. Evaluar la perturbación humana en NNPP y desarrollar un mapa de 

apropiación humana NPP usando el criterio de la actividad humana  (capítulo 3). 

 

 

iv. Comparar el impacto de crecimiento de la población humana en los dos 

bosques tropicales de Malasia y Tailandia (capítulo 4). 
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Abstract 

 

 Tropical forests play an important role in maintaining the environment and 

mitigating global warming. At the same time, agriculture is critical to support human life as 

well as a major part of the economy in Southeast Asian countries, particularly Malaysia.  This 

thesis presents the major factors contributing to disturbances in tropical forests and 

agricultural land in the region, and develops a low-cost modeling system that can be used to 

assess human impacts on Net Primary Productivity (NPP).  The study will assist in better 

understanding and appreciating the consequences of human disturbances, including 

population growth and climate change, particularly drought to the forests and agricultural 

lands in Southeast Asia. Moderate resolution MODIS image along with other publicly 

available data, are employed to develop this model. The thesis identifies the three most 

crucial factors: climate variability, vegetation productivity and human disturbance including 

population growth that cause most of the problems in tropical forests, hence providing 

insights that can be helpful in developing effective national forest and biodiversity policies.   

 

Chapter 1 introduces the method of using MODIS image for developing land 

use/land cover classification maps. Chapter 2 focuses on monitoring vegetation in natural 

forests and plantations under drought conditions.  Chapter 3 assesses the impact of human 

activities in these areas, on net primary productivity (known as HANPP), and Chapter 4 to 

assess net primary productivity consumption per capita, forest resource extraction and 

pollution from agricultural activity in two tropical forests of Southeast Asia, one in Malaysia 

and one in Thailand. 

 

Chapter 1 assesses the feasibility of using MODIS images, combined with land use 

and topographical maps and ALOS imaging, for classifying land cover for the study area, 

particularly for mapping natural forests and plantations.   

 

Chapter 2 develops the Malaysia Southwest Monsoon (M-SWM) drought 

classification using MODIS indices for Peninsular Malaysia.   
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Chapter 3 provides an assessment of human activity impact on net primary 

productivity that rating human impact levels for forest areas. 

 

Chapter 4 compares projected human population growth impacts on NPP, forest 

resource extraction and pollution on Malaysian and Thai forests, for the next 30 years (to 

2045). 
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General Introduction 

 

Forest and agricultural lands: Climate change, economic potential and the 

future   

 

Drought is one of the climate change phenomena impacting Southeast Asia and is 

recognized as one factor causing human mortality and reduced agricultural production.  

Many scientists are concerned about climate change impacts in this region, and various 

studies on tropical forests have documented a multi-occasion of ENSO (El Niño Southern 

Oscillation) phenomenon, which has caused a drought-related mortality phenomenon (Boyd 

et al. 2001; Buckley et al. 2007; DID 2005; Khandekar et al. 2000; Nunes et al. 2012; Samanta 

et al. 2010).  Every year of drought since 1998 has resulted in the deterioration of Malaysian 

forests and transboundary smoke haze from the neighbouring country of Indonesia is has 

been especially harmful.  Dusts covering Malaysia and other neighbouring countries for 

months, threatening human health and livelihoods which has several times been declared a 

regional disaster area (Othman et al. 2014). 

 

Tropical forests function as a carbon sink, enabling the sequestering of a large amount 

of carbon from human activities from the atmosphere annually (Bonan 2008; Joseph et al. 

2012; Ngo et al. 2013). These forests consist of both photosynthetically active (mostly 

chloroplast) and non-photosynthetic vegetation (foliage, branches and stems) (Joseph et al. 

2012), making them a food generator and a fuel and shelter provider, for the whole 

ecosystem (Milesi et al. 2005; Zhao et al. 2005).   

 

Many studies have found that during the dry season of the Southwest Monsoon 

rainfall declines sharply, causing hundreds of reservoirs and rivers to drop to the lowest 

water level in the region (Associated Press 2005; Wan Zin et al. 2013). This induces changes 

in species phenology (Corlett 2014) and forest size structure, and also leads to differential 

impacts on forest species performance.  The catastrophe affects forest, agricultural land, 

human health and livelihoods especially in the most vulnerable areas located adjacent to 
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the forests.  As mean precipitation consistently decreases, future drought may worsen this 

situation and affecting both crop production and the quality of human life (Wan Zin et al. 

2013). 

 

Determining the months with severe drought risk can therefore be very useful 

whereby dryness-prevention measures can be implemented in agricultural areas, forest 

managers can monitor systems in the other areas such as peat swamp forests and 

environmental officers can also prepare emergency measures such as early water-shortage 

warnings for urban areas. 

 

Increasing the acreage of agricultural lands by converting forests to farmland has 

sustained the economies of many countries, including Malaysia.  Furthermore, many studies 

have found that the expansion of oil palm areas has improved the country’s economy, 

allevating poverty among small landholders (Dayang Norwana et al. 2011) and creating 

thousands of jobs in villages (Arif and Tengku Mohd Ariff 2001).  A recent study  found that 

Malaysia’s success in this area likely motivated other countries such as Thailand to convert 

their major crop  from rubber trees (Hevea brasiliensis) to palm oil trees that other studies 

by Sayer et al. (2012) and Tan (2014)  have supported this conclusion.  A report by MPOB  

(2014) has found that as the world’s biggest palm oil exporter Malaysia has already planted 

5 million ha of oil palms and this acreage continues to increase making research 

concentrating on monitoring land cover changes in Southeast Asian countries both a 

necessity and a challenge.  Figure 1 shows the oil palm distribution for Southeast Asian 

countries, depicted as a colour-coded map.  

 

Because oil palm has lower production costs, produces more oil per acre than other 

oil producing plants it is an excellent crop for small landholders (Sheil et al. 2009).  Drought, 

however, causes a severe drop in production (Rieley and Page 1995) and replacing the 

overlying forest with oil palms reduces the ability of the ecosystem to hold rainfall, as water 

is flushed more quickly into the rivers.  Other Southeast Asian crops such as coffee, rice and 

rubber, have suffered from recent severe droughts (Vu and Chaichalearmmongkol 2015), 

although rubber tree clones are somewhat more resilient to stress from external factors 

such as drought (Rantala 2006).  Over the past ten years, drought has caused several 
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regional disasters (Associated Press 2005; Buckley et al. 2007; DID 2005), therefore clearly 

there is an urgent need for drought assessment for Southeast Asia and more research 

should be carried out on the drought catastrophes in the region, to determine effective 

methods of sustaining Malaysian agriculture, especially the critical crop of oil palm products. 

Such methods need to be economically feasible and sustainable and applicable to tropical 

forest areas where the most critical cash crops are grown. To carry out such research, high 

spectral and temporal resolution satellite image such as MODIS (Franklin and Wulder 2002) 

can be used to rapidly map land cover changes and propose the correct balance between 

palm oil production and forest conservation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Distribution of oil palm production in the Southeast Asian countries focused for 

Malaysia, Thailand and Indonesia.  Clearly, the highest percentages of cultivated land are in 

Malaysia and Thailand. Note: The map showed incomplete data for Philippines.  Source: 

Fitzherbert et al. (2008). 
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Evaluation of human impacts on tropical forests  

 

Rapid population growth, international migration and poverty have increased the 

environmental threats to tropical forests (International Peace and Conflict Studies 2015).  

For example, migrant camps deep in the forests can create new clearings in remote areas 

threatening genetic diversity among the trees, as well as water and food resources for 

native orang utan(Meijaard and Sheil 2013). These tropical forests comprise a critical 

component of the global ecosystem, are an important source of renewable and non-

renewable resources, and have social and cultural significance.  

 

Although some countries (e.g., Thailand) are experiencing a population declination 

(with 0.3 percent growth rate and no significant growth predicted at least until 2020), 

overall Southeast Asia is experiencing rapid population growth. Two recent reports covering 

Thailand(UNPFA 2011) and Malaysia (Department of Statistics 2012) show population 

growth projections for Southeast Asia of nearly 30 million by 2020 which this growth 

increases the need for housing. Furthermore, as standards of living raise the demand for 

larger residential lots and recreational activities increases, putting further pressure on 

forests and other rural areas from more upscale housing and tourism. Nature-friendly 

houses, forest parks, nature walks and commercial waterfalls are some examples of these 

new facilities. 

 

Today, human disturbance has left major impacts on tropical forests which reducing 

the capacity of the forests to supply optimum environmental services (Berenguer et al. 

2014; Gibson et al. 2011; Mon et al. 2012).  The degradation of tropical forests is particularly 

worrisome in Southeast Asian countries, as these forests are one of the keys to maintaining 

the tropical ecosystems.  

 

Furthermore, large scale oil palm plantations have caused forest fragmentation with 

road development particularly after forests have been degraded by fire and the 

displacement of other crops into forest regions (Fitzherbert et al. 2008).  These incursions 

even the most remote forest areas have increased accessibility to the forests and exposed 
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them to hunters and commercial timber extraction (Wright 2010).  Figure 2 shows a forest 

in the north eastern region of Peninsular Malaysia that was first opened with a road and 

then converted into an oil palm plantation, and a photo of a fresh fruit bunch from an oil 

palm; these bunches supply fibre for the wood-based product industry. Given all of these 

agricultural, housing and recreational pressures tropical forests should obviously be a high 

conservation priority. Yet, although investors and policy makers acknowledge the 

importance of tropical forests in sustaining ecosystems services, in practice there continued 

to be many changes in the land cover in Southeast Asian tropical forestss since 2005 (Wicke 

et al. 2011). Research on the human impact on forest areas conducted in China (Su et al. 

2012; Yue et al. 2005), Jamaica (Newman et al. 2014), and Serbia (Bajat et al. 2011), should 

be a model for conducting such analysis in Southeast Asia.   

 

Thus, many researchers have documented the degradation of tropical forests and 

some have emphasized the urban-edge effect (Broadbent et al. 2008), the effects of 

agrochemicals used for combating the grassland species of Imperata cylindrica in oil palm 

plantations(Langner and Siegert 2009), and the increasing agrochemical runoff in rivers in 

Malaysia (Dayang Norwana et al. 2011).  

 

Numerous approaches have been used for exploring the human impact on forests 

(Haberl et al. 2004; Krausmann et al. 2008; Ma et al. 2012), by assessing single impact 

factors such as distance to roads, legal protection (Newman et al. 2014) and agricultural 

intensification (Firbank et al. 2008).  However, because identifying an area’s impact on 

forest resources (e.g., proximity to settlements and commercial timbers) is important for 

conserving the forest and its natural resources  (Phua and Minowa 2005), human density 

can be a more useful indicator for developing  a human-modified forest model (Bistinas et 

al. 2013).  Fortunately, publicly available data pools shared by several institutions (e.g., 

gridded population data from the United Nations) make data gathering easier than it used 

to be, for this kind of study.   
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(a) 

(b) 

 

                           (c) 

Figure 2. Photos of (a) tropical forest in North eastern Peninsular Malaysian opened with a 
road; (b) resulting oil-palm plantation (photo taken on 26 July 2015); and (c) fresh fruit 
bunch. Source: Institute of Tropical Forestry and Forest Products (INTROP). 

Opened area in the forests 

New established oil palms 

Fresh fruit bunch  
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There are extensive references on net primary productivity, a highly useful indicator 

for measuring the immediate needs of humans and other organisms in tropical ecosystems.  

This indicator has been recognized for the measurement of carbon exchange between land 

and atmosphere, which can be used as a biophysical indicator to assess energy 

requirements for future years.  Studies by several authors, Vu et al. (2014) and Yang et al. 

(2014) applied NPP in their global studies, as did Potter et al. (2013) and Zhao and Running 

(2010) which many of these researchers highlighted specifically the impact on NPP from the 

human interference perspective.  Others have used NPP by means of remote sensing 

techniques for human impact analysis: for example a study by Haberl et al. (2004) and 

Krausmann et al. (2008), who introduced the concept of HANPP in their study.  This type of 

research is useful for better forest conservation and management (Imhoff et al. 2004), 

which should be focused on high risk forests (i.e., those located near urban areas, highways, 

and construction areas), high conservation value forests (Sharifi 2004) and high ecological 

connectivity value forests (Ferretti and Pomarico 2013).  

 

Conservation of forests by HANPP analysis can also be a powerful tool for measuring 

food security, as it could provide basic research evidence for land and habitat suitability 

analysis; it was used for example by Catullo et al. (2008) and Ferretti and Pomarico (2013). 

The concept needs to be refined though for use in the tropical forests of Southeast Asia 

because these tropical forests are heavily influenced by the local rural communities, who 

utilize them for ‘non-timber forest products’ (NTFPs). HANPP has also been poorly studied in 

these tropical forests because of the perception that these areas are under a forest 

governance policy the National Policy on Biodiversity (MOSTE 1998) for Malaysia and it is 

assumed that the areas are already “protected”. 

 

Remote sensing: Tools for forest conservation 

 

Tropical forests are becoming a critical research area for forest conservation and 

sustainable forest use (Phua and Minowa 2005; Reza et al. 2013). Study methods should 

concentrate on high spectral and temporal and also medium resolution satellite data. This is 

the best choice for observing tropical forests, because access is difficult in mountainous 
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zones at high attitudes or on steep slopes; in these areas, human impact assessment is 

impossible or too costly to assess using on the ground methods. 

 

Mapping rapid land cover changes requires high temporal satellite data such as 

unrestricted MODIS image.  Much of the current land cover mapping by the Forestry 

Department of Peninsular Malaysia and other researchers focuses on a small scale using 

high resolution image data, and some have also restricted their focus to develop mapping 

methods by employing high resolution data (Jusoff 2009).  More recently, however studies  

have demonstrated methods for mapping tropical forest areas and agricultural lands using 

medium resolution data (Senf et al. 2013; Sheldon et al. 2012).In this context, MODIS 

imaging is a good source of data for monitoring both land cover and climate changes (e.g., 

drought, flooding, wind damage); its capabilities have been recognised and verified in 

tropical applications (Galvão et al. 2011; Ladle et al. 2010; Luus and Kelly 2008; Xiao et al. 

2006). It also has the advantages of ease of interpretation, low costand global coverage 

(Wang et al. 2009). Many researchers have employed MODIS image for mapping forests and 

vegetation (Li et al. 2012; Sheldon et al. 2012).  Heavy rainfall or cloudy conditions, however 

can compromise MODIS data; hence it is necessary at times to supplement it with data from 

higher resolution sensors, such as ALOS PALSAR and IKONOS which these satellite have 

proven useful in several studies (Dong et al. 2013; Sheldon et al. 2012).   

 

On the other hand, remote sensing data from conventional satellites such as NOAA 

AVHRRare inadequate for studying canopy water stress, whereas MODIS sensors have 

suitable spectral configurations for this task (Fensholt et al. 2004).  MODIS is capable of 

supplying important spectral properties, derived from shortwave infrared wavelengths, for 

canopy water content studies (Cheng et al. 2006; Xiao et al. 2006; Xie et al. 2010; Zhang et 

al. 2006). Various studies  have employed MODIS Channel 5 (1230-1250 nm) and Channel 6 

(1628-1652 nm) data, and have shown a correlation with water stress  (Fensholt and Proud 

2012; Galvão et al. 2011; Propastin et al. 2012) that was earlier verified by (Gao 1996).  

Figure 3 is a sustainability triangle adapted from Mata-lima et al. (2012), depicted inter-

relation between economic, social, enviornmental  and technology available to achieve 

sustainability in the ecosystems. 
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Technology

Economic

EnvironmentalSocial

 

Figure 3.  Sustainability approach addressed in a study by Mata-lima and Alvino-borba 

(2012). 

 

Yet another cost effective way of mapping, monitoring and assessing natural 

resources is employing Geographical Information Systems (GIS) (Macary et al. 2014; Valente 

and Vettorazzi 2008; Yates and Chen 2014) at regular spatial resolution (GEC 2010).  Finally, 

the use of tools for mapping, monitoring and assessing the areas are examined.  Thus, it is 

studied the feasibility of remote sensing medium resolution of MODIS for balancing 

between economics benefits and forests conservation.  
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Objectives of thesis 

The aims of this thesis are: 

 

i. To assess the performance of MODIS imaging for mapping different 

land uses/covers in the Pasoh Forest Reserve, Peninsular Malaysia using unsupervised 

classification methods (Chapter 1). 

 

ii. To develop a classification system for drought assessment for the 

Malaysia Southwest Monsoon season, in a drought-prone area using satellite image 

data from MODIS (Chapter 2). 

 

iii. To assess human disturbance impacts on NPP and to develop maps of 

human appropriation of NPP using human activity criteria (Chapter 3). 

 

iv. To compare human population growth impacts on two tropical 

forests, one in Malaysia and one in Thailand (Chapter 4). 
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Chapter   
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Parts of this chapter have been published in: Sheriza M. R., Arnaldo Marin, N. A. Ainuddin, Helmi Zulhaidi, 

M. S., Hazandy, A. H. (2014).  Capability of Integrated MODIS Imagery and ALOS for Oil Palm, Rubber 

and Forest Areas Mapping in Tropical Forest Regions.  Sensors 14: 8259-8282. 
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Abstract 

 

Various classification methods have been applied for low resolution of the entire 

Earth’s surface from recorded satellite images, but insufficient study has determined 

which method, for which satellite data, is economically viable for tropical forest land 

use mapping. This study employed Iterative Self Organizing Data Analysis Techniques 

(ISODATA) and K-Means classification techniques to classified Moderate Resolution 

Imaging Spectroradiometer (MODIS) Surface Reflectance satellite image into forests, 

oil palm groves, rubber plantations, mixed horticulture, mixed oil palm and rubber; 

and mixed forest and rubber.  

 

Even though frequent cloud cover has been a challenge for mapping tropical 

forests, our MODIS land use classification map found that 2008 ISODATA-1 performed 

well with overall accuracy of 94%, with the highest Producer’s Accuracy of Forest with 

86%, and were consistent with MODIS Land Cover 2008 (MCD12Q1), respectively.  

 

The MODIS land use classification from our study was able to distinguish young 

oil palm groves from open areas, rubber and mature oil palm plantations, on the 

Advanced Land Observing Satellite (ALOS) map, whereas rubber was more easily 

distinguished from an open area than from mixed rubber and forest. This study 

provides insight on the potential for integrating regional databases and temporal 

MODIS data, in order to map land use in tropical forest regions. 

 

 

 

 

 

 

~~~~~~ 



- 51 - 
 

1. Introduction 

 

The natural land cover of the Peninsula of Malaysia is primarily evergreen forests, 

including mountain, hill, and lowland tropical forests, along with peat swamps and 

mangrove forests in the lake and river regions. The most significant land use change in the 

peninsula has been the clearing of forests for agricultural purposes and mining activities, as 

well as for the establishment of settlements along the coastal and riverine areas (Cleary and 

Goh 2000). The conversion of natural forest into agricultural uses such as for oil palm, 

rubber, coconut, pineapple, mixed horticulture, market gardening and floral farms, has been 

reflected in regional land use maps of the peninsula. By the 1960s, the Malaysian 

Agricultural Department had successfully produced the first land use classification maps for 

the West of Malaysia, with the cooperation of the Canadian Government. To date, the maps 

have been updated every two years based on soil surveys, satellite image interpretation, 

digitizing and ground verification through the utilization of satellite imagery such as aerial 

photos, Landsat Thematic Mapper (TM) and System Probatoire d’Observation de la Terre 

(SPOT). Utilization of high resolution satellite such as SPOT proved reputable in previous 

studies, since satellite imagery has been used for decades in many areas such as evergreen 

tropical forest and riparian studies (Kamp et al. 2013; Zhang and Zhang 2007). The process, 

however, is very expensive, requiring extensive human labour to interpret the results, 

maintain the software and monitor the equipment (Dong et al. 2013). Consequently, 

although land use maps for Peninsular Malaysia are available in digital format to the related 

government agencies, private or non-governmental sectors, non-profit making nature 

society, environmental public researchers and scientists have not been able to acquire these 

data because of the high cost.  

 

The classification of satellite imagery for land cover mapping requires the extensive 

skills of an experienced analyst (Aitkenhead and Aalders 2011). When such skills were not 

available, land cover classification maps have been developed through ground surveys and 

base maps such as digital topographic maps, recent land use maps and soil suitability 

agricultural maps; these techniques have been increasing the accuracy of land cover 

classification maps (Reichenbach and Geng 2003). Updating or replacing these maps with a 

large amount of remotely sensed data remains a very challenging task (Franklin and Wulder 
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2002). Yet both the private sector, governmental and non-governmental agencies are now 

depending on satellite applications for mapping their land uses. For example, the United 

States Geological Survey’s Gap Analysis Program, which started in 1998 (Scott and Jennings 

1998), and the National Land Use Change Program of China (Zhang and Zhang 2007), rely on 

such data.  

 

The 10th Conference of the Parties for the Convention on Biological Diversity, held in 

Japan, was aimed at achieving the Aichi Biodiversity Targets, whose goal is to at least halve 

and where feasible, bring close to zero the rate of loss of natural habitats, including forests, 

and to establish a conservation target of 17% of terrestrial and inland water areas and 10% 

of marine and coastal areas. One of the most crucial sectors where Earth Observation (EO) 

can assist in such land use and land cover mapping is by enabling the mapping of large 

inaccessible areas. Hence EO is playing a major role in providing essential tools to support 

national and international monitoring systems (Clerici et al. 2012).The objective of this study 

was to provide techniques for mapping land uses such as evergreen forests, oil palm and 

rubber farming, and other land use types.  

 

The rubber industry in particular is being given special attention, as it has great 

economic potential and provides income for over 400,000 small landholders. The area 

planted in oil palm has expanded year by year. In 1998 it was planted with 109,446 ha; this 

was increased to 123,343 ha in 2000 and to 134,427 ha in 2001. The area reached a 

maximum of 171,647 ha in 2008 but was reduced to 166,501 ha in the next year, and has 

continued to fall, to 164,362 ha in 2010 (MPOC 2010). The rubber plantation scenario 

presents a different pattern, as reported by the report. Rubber was planted in 1,430,680 ha 

in 2000, 1,325,600 ha in 2003, and 1,263,590 ha in 2006, and consistently dropped from 

2007 to 2010 (1,248,040 to 1,020,380 ha) (Figure 1). In addition, the National Key Economic 

Area (NKEAs) of Malaysia report identified oil palm and rubber as priority areas for 

contributing most of Malaysia’s economic performance by 2020 (MPOC 2011).  
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Figure 1. Graphs of area planted with oil palm and rubber from 1998 to 2010. 
 

With the increasing global demand for oil palms (at least before 2008) and rubber 

products, it is necessary to develop and update land use maps for improving our 

understanding of land use changes, with minimal labour and equipment cost. Furthermore, 

such maps provide information not only on existing land use types such as tropical 

evergreen forests, oil palm and rubber, but also on other agricultural uses such as 

pineapple, cocoa, mixed horticulture and other crops.  

 

2. Material and Methods  

Study Area 

 

Negeri Sembilan is located in the western part of the Peninsula of Malaysia. Research 

was conducted in an area of slightly more than 1,000 km2 centred on the Pasoh Forest 

Reserve (PFR). The PFR is located at 2°58'N, 102°18'E (Figure 2). It is connected to urban areas 

by the Kajang-Seremban Highway (E21), road number 86 and N23; travel time is about 2 

hours and 15 minutes from the Federal Territory of Kuala Lumpur. The PFR is covered with 

primary lowland mixed dipterocarp forest (tropical evergreen broadleaf forest) that includes 

various species of Shorea and Dipterocarps (Kosugi et al. 2008). There are numerous types 

of vegetation in the area surrounding the forest reserve. The oil palm plantations of Felda 
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Pasoh Dua known as PFR Corridor are dominant, covering the southern region and Felda 

Pasoh Empat in the northern part of the area. At the other site of the PFR is Felda Lui Barat, 

which is planted with both oil palm and rubber. Mean temperature recorded is 26.3°C 

measured for 2002–2005. Recent annual precipitation is 1,702 mm measured for 2000–

2011 (MMD 2008; NIES 2011; UKM 2011). Historically, most of the surrounding area has 

been natural forests, but human exploitation has led to a significant decrease in these 

primary forests, as they are turned into oil palm plantations (Manokaran 1990), with a total 

area of 568,561 ha planted in the peninsula by 1975 and dramatically increased for more 

than 1 million ha by 20 years.  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Location of the study area.  Source: Google Earth (2015). 
 

 

The objective of this study was to provide techniques for mapping land uses such as 

evergreen forests, oil palm and rubber farming, and other land use types. Negeri Sembilan, 

the location for the permanent research plot of Pasoh Forest Reserve in Southeast Asia, was 

chosen as the central point of the study area. The plot was used for intensive biomass and 
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productivity research from 1971–1973, under the International Biological Programme (IBP), 

Universiti Malaya (UM) and the UNESCO Biosphere Program (MAB), and the joint Rainforest 

Research Project of Universiti Malaya and the University of Aberdeen, UK.  The Negeri 

Sembilan region is a critical area for both oil palm and rubber production, and was chosen as 

a focus of the Malaysia Government’s Economic Transfer Programme.  

 

MODIS Data, Pre-Processing and Enhancement 

 

To carry out the objectives of this study, MODIS Surface Reflectance series data 

(MOD09A1) acquired in 2000, 2005 and 2008 were used. MODIS Land Cover products 

(MCD12Q1) was taken in 2001, 2005 and 2008 and ALOS was taken in 2008 (Table 1). The 

500 m MOD09A1 series data of 2000, 2005 and 2008, which could potentially be used for 

land use mapping (Braswell et al. 2003),was been inter-calibrated with other data such as 

National Oceanic and Atmospheric Administration Advanced Very High Resolution 

Radiometer (NOAA AVHRR) and linked to field census data such as in Huete et al. (2002). 

Table 1. Data used in the study. 

No. Data 
Resolution 

(meter) 
Year 

Source 

1. 
MODIS Surface 
Reflectance series 
data (MOD09A1)  

500 m 
2000, 
2005, 
2008 

LP DAAC (2011) 

2. 
MODIS Land Cover 
products 
(MCD12Q1)  

500 m 
2001, 
2005, 
2008 

LP DAAC (2011) 

3. ALOS AVNIR-2 10 m 2008 Imaging Cooperation 

 

 

Images were selected based on scale, availability of the image data, cost, time 

constraint and atmospheric correction (Lu and Weng 2007). The MOD09A1 500 m resolution 

was chosen because it’s covers the whole study area with one scene, hence, reducing times 

and cost for mosaicking the imageries. The images were collected based on the availability 

of the image with minimum cloud cover, which could decrease precision during image 

interpretation and classification. The high temporal resolution promotes good quality 
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imagery with limited cloud contamination (Wang et al. 2009). Unfortunately, good quality 

satellite data is often particularly difficult to obtain in tropical forest areas due to lower 

seasonality and heavy cloud cover conditions (Huete et al. 2008). We have downloaded more 

than fifty images for those years and reanalysed them with band matching for filtering a 

high quality image. Finally, with these disadvantages only one individual image were 

identified for each year for further processed. Higher frequencies of bright pixels were 

detected on forested areas, because clouds are generally bright in the visible spectrum and 

cold in the infrared spectrum. Therefore, to overcome these disadvantages cloud removal 

analysis were conducted using density slice and masking procedure techniques in Exelis 

Visual Information Solution (ENVI).  

 

In this study, cloud detection procedure were conducted based on comparison with 

Present Land Use map of Negeri Sembilan 2004 and the images in visible and infrared bands 

(focusing in band 1, band 2 and band 6), where cloud cover is the unwanted information in 

optical images. Furthermore, image enhancement were conducted using band combination 

techniques of: (i) 6, 4, 3; (ii) 1, 2, 3; (iii) 1, 3, 4; (iv) 5, 3, 4; (v) 3, 1, 2; and (vi) 2, 6, 1. The 

images were also enhanced using histogram equalization for further image interpretation 

(Tseng et al. 2008). MOD09A1 of 2000 and 2005 image were validated with Present Land 

Use map of Negeri Sembilan 2004. The land use map is updated every two years and 

reproduced with recent SPOT image and JUPEM (Malaysian Survey and Mapping 

Department), Topography Map Series 7030, which further verified with ground survey by 

land surveyor of Malaysian Agricultural Department. First, the map was geo-corrected using 

Topography Map Seremban 1996 Series 7030 and resample to 500 m pixel sizes as the same 

size of MOD09A1 data. The map was subset into an area of interest by using an areas similar 

with MOD09A1 data.  

 

MOD12Q1 500 m resolution was chosen based on availability of the image that was 

first produced from 2001. Therefore, we chose MCD12Q1 2001 data to compare with our 

land use classification from MOD09A1 2000 data. The MCD12Q1 2005 and 2008 were 

fortunately available for our study. ALOS had to order from our satellite data vendor, 

Satellite Imaging Corporation (SIC), therefore much time consuming waiting for choosing the 
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recent data, suitable image with minimal cloud cover, acquiring, pre-processing and 

mapping. We found ALOS 2008 was the best image data available for the study area. 

 

The study was conducted in four parts: (1) creating a MOD09A1 500 m land use 

classification map, employing unsupervised ISODATA and K-Means classification techniques; 

(2) creating an ALOS 10 m land cover types map from reclassification, proximity analysis and 

spatial analyst; (3) creating an elevation map from NFI-4 data; and (4) comparing the MODIS 

land use classification map with ground verification survey, NFI-4 data, Topographic data 

1997, MCD12Q1, ALOS land cover type and elevation.  

 

ALOS AVNIR-2 Data and Processing 

 

The ALOS is ALOS AVNIR-2 or Advanced Land Observing Satellite of Advanced Visible 

and Near Infrared Radiometer type 2 with 10 m resolution. The ALOS 2008 image was 

enhanced utilizing histogram equalization that was found to be effective at improving image 

interpretation for land uses such as rubber, oil palm plantations and forested areas (Tseng 

et al. 2008). 

 

 Image Classification and Unsupervised Classification (ISODATA and K-Means)  

 

Although many computer-aided techniques have been developed for land cover 

classification, the skills and experience of an analyst are still very important to the success of 

the image classification (Aitkenhead and Aalders 2011; Lu and Wong 2008). We chose 

ISODATA because our study area consisted a less complex land cover types, consisting 

forested areas and agricultural plantation mostly an oil palm or rubber—which are 

widespread in the peninsula. ISODATA is a suitable technique to be applied in forested areas 

with presence of agricultural plantations because most of forested areas which have been 

previously logged several years ago may have excellent ancillary data. Data such as land use 

maps, national land cover maps and as well as a good local knowledge of the terrain, 

vegetation and soil of an area are essential databases for logging managers. Therefore, the 

data is possibly to be acquired and employed in ISODATA classification for this area or other 

similar background area.  
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K-Means was chosen because the study area consisted with forested areas within 

lowland and hilly dipterocarp and also non-dipterocarp, peat swamp and mangrove forest. 

Most of forest and land managers in tropical forest were updated with new technology of 

land mapping. This is because they should facilitate ecological and monitoring systems with 

the aim of providing useful guidance on forest information included forests dynamics, 

regeneration, etc. (Secretariat of the Convention on Biological Diversity 2009). Therefore, 

with this current situation most of the information databases required for the classification 

are highly available. Because the K-means clustering technique is simple, where K is the 

desired number of clusters to be input, highly available database number increased the 

number of K. The classification adopted in this study is therefore applicable to the 

background of the study area.We therefore chose to adopt unsupervised classification, to 

overcome the challenges of mapping land use in a tropical region using mediumresolution 

satellite imagery.  

 

Mapping Land Use Classification 

Mapping MODIS 

 

The initial observations were conducted on a topographic map of Seremban and Kuala 

Pilah 1996; and Present Land Use maps of Negeri Sembilan from 1996 and 2004 as a base 

map for the classification. The land use map was produced by the Malaysian Agricultural 

Department whose study found that the land use map was a good background to present 

the land use classification map for the 2000–2008 MODIS data sets, since there had been no 

conversions of forest land to oil palm plantations at the border of PFR and Pahang since 

1997. The maps were registered using Rectified Skewed Orthomorgraphic (RSO) coordinate 

format, the format that has been utilized by Malaysian government agencies such as the 

Malaysian Forestry Department in registering their map for further image processing, 

analysis, spatial applications and also for decision making, for example forest fire risk 

assessment and forest resource updating.  

 

Furthermore, the maps were rectified based on Nearest Neighbor, 1st Order 

Polynomial with pixel size of 500 m and were projected to WGS 84, UTM Zone 48 N. Geo-

correction was based on four points: (i) an area at the boundary of Negeri Sembilan/Pahang; 
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(ii) an area bordering the oil palm plantation and PFR, of which the nearest point indicated 

in Google Earth is Kampung Lui; (iii) PFR, which is the nearest point to Felda Pasoh Dua; and 

(iv) PFR and an area bordering a rubber plantation in the southern part of PFR; in this study 

we used Google Earth images to locate points for image registration for this point (Dong et 

al. 2013). 

 

Unsupervised classification of ISODATA Gamma (ISODATA-1), ISODATA Kuan 

(ISODATA-2), K-Means Gamma (K-Means-1) and K-Means Kuan (K-Means-2) were employed 

in the study area as depicted in Table 2. The ISODATA was determined using maximum 

likelihood decision rule to calculate class mean that are evenly distributed in the data space 

and then iteratively clusters the remaining pixels, using minimum distance techniques 

(Melesse et al. 2007; Tou and Gonzales 1974). The K-Means was conducted using the Erdas 

Imagine 9.1 software. Parameters incorporated in the analysis for ISODATA were reported 

as the following: number of classes at minimum 5 and maximum 10; minimum pixel in 

classes, 1; minimum class distance, 5; and minimum merge pairs, 2. Finally, the clusters 

were classified in terms of the ground conditions they represented, identified from the 

ground survey and land use maps of 1997 and 2004 (Justice and Townshend 1982). The 

parameter for K-Means arranged was the number of classes at minimum 5. The Gamma and 

Kuan applied in the study following the methodology from Tung et al. (1998), tested for 

pixels filtering at 3 × 3 and 5 × 5 pixels window. After preliminary classification, 5 × 5 pixels 

window classifications were and applied to all the images. 

 

Mapping ALOS 

 

ALOS was subset to approximately 41 km2, or 3.7% of the whole 1,000 km2, at the 

west side of the study area. Prior to that, ALOS land cover types were derived from 

unsupervised classification. First the image had been classified into five land covers and 

were reclassified into four types because we are interested in assessing accuracy for the 

massive pixel size of MODIS, though, only the open areas, forests, oil palm and rubber 

plantations were considered in clustering; the others were merged and grouped as 

unclassified. Overall techniques employed to derive final map of ALOS incorporated of 
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reclassification, proximity analysis and spatial analyst of majority filtering by using ARC GIS 

10.0 as reported in Table 3.  

 

 

Table 2. Description of the classification label assigned. 

Methodology Description of Filtering (5 × 5) pixels 

 
ISODATA Gamma 

 
ISODATA-1  

ISODATA Kuan ISODATA-2 
K-Means Gamma K-Means-1 

K-Means Kuan K-Means-2 

 

We used ground verification survey, NFI-4 and Topographic data 1997, MOD12Q1, 

ALOS land cover type and elevation to evaluate the accuracy of the MODIS land use 

classification, since accuracy assessment is a critical step in analysing any map created from 

remotely sensed data (Wang et al. 2009). Standard assessment of accuracy included 

Producer’s, User’s and Overall Accuracy were employed for accuracy assessment (Ayhan 

and Kansu 2010; DeAlwis et al. 2007; Wessels 2004). The accuracy data were derived from 

error matrices table to find the reliability and accuracy of the maps produced (Manandhar 

et al. 2009). The accuracy is a direct interpretation of percentage of cases correctly classified 

(Gómez and Montero 2011). Producer’s Accuracy indicates the probability of a reference 

pixel being correctly classified. User’s Accuracy is where if the total number of corrected 

pixels in a category is divided by the total number of pixels that were classified in the 

category (Congalton 1991). Overall Accuracy is the simplest and one of the most popular 

accuracy measures computed as conducted by Ayhan and Kansu (2010).  

Table 3. ALOS land cover types development techniques. 

Methodology Parameters 
 
Reclassification 

 
Natural Breaks 

 
Proximity analysis 

 
Buffering features at 500 m 

Spatial Analyst with 
Majority Filter 

 
Aggregate Cell Factor is ''10–20'' 
Boundary Clean is ''Ascending''  
Number of Neighbours to use is ''8''  
Replacement threshold is ''Half'' 
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Sampling Points and Accuracy Assessment of MODIS Land Use Classification  

Comparison with NFI-4 and Topographic Data 1997 

 

We employed stratified random sampling points in order to assess the accuracy for 

MODIS land use classification. Because of moderate resolution of the MODIS satellite image 

employed and inaccessibly of the forested areas except for the central point (PFR) areas and 

agricultural areas limited number of sampling points were qualifying to locate and survey. 

This is because a low number of points may contribute to errors (Powell et al. 2004). 

Therefore, to supplement this, we used NFI-4 data to input more points which generated a 

total of 4,791 points on the MODIS land use classification. 

 

The points generated were for four different categories such as forests, oil palm, 

rubberand mixed horticulture. We used the NFI-4 data because it was produced for long-

term Malaysian forest inventory resources database (2000–2010), which also incorporated 

SPOT image of 2010 for delineation of forested area (FDPM 2014).  Furthermore, 

Topographic data 1997 (sheet codes 3957b, 3957d, 4056a and 4057c in CAD format); which 

had been ground proofed by the Malaysian Survey and Mapping Department was used for 

generation of sampling points. The complete data employed was presented in Table 4. 

 

Subsequently, all the points were ground verified to obtain an error matrix and overall 

accuracy of the classification. The areas surveyed included oil palm and rubber plantations, 

forests areas, paddy fields, and housing areas located among crop trees such as langsat 

(Langsium domesticum) trees, mangosteen (Garcinia mangostana) and coconut trees (Cocus 

nucifera) (Figures 3). The survey was started on 24 October 2011 and ended at the end of 

March 2012 with Global Positioning System (GPS) and digital camera as the main information 

capture tools. In order to conduct further comparison, percentages of land use classes were 

also derived.  
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Comparison with MCD12Q1 

 

This study extracted three data sets: MODIS 2000 ISODATA-2, MODIS 2005 K-Means-

1 and MODIS 2008 ISODATA-1 for further development of accuracy assessment with 

MCD12Q1 data sets as a result of a successful classification of those pixels into a land use 

classification. The land use classification of MODIS 2000, 2005 and 2008 have overall 

accuracy of 85%, 65% and 94%, respectively.  

 

A comparison between the land use classification and MCD12Q1 for all data sets was 

conducted, and an error matrix was generated to evaluate the consistency of the land cover 

classification results (Dong et al. 2013). MCD12Q1 data sets were regrouped into forest and 

non-forest based on NFI-4 data.  In this study, sample points of land use classification from 

MOD09A1 which covered as at least 95% pure on MCD12Q1 were assigned to the dominant 

cover (“forest or non-forest”), while points of our land use classification from MOD09A1 

that were below 95% on MOD12Q1 were also assigned as (“forest or non-forest”) class 

(Figure 4). 

Table 4. Data employed in the study for an accuracy assessment. 

Map Source 
Produced/Published, 

Year 

Present Land use—Negeri 
Sembilan 1997 and 2004, 

Scale: 1:150,000 

Malaysian 
Agricultural 

Department, 
Putrajaya 

Malaysian Agricultural 
Department, 

Putrajaya/Soil Resource 
Conservation and 

Management Division, 
Malaysian Agricultural 
Department, 1997 and 

2004 
Topographic map—

Seremban 1996 (Sheet 3856), 
Scale:  1:50,000 

 

Universiti Putra 
Malaysia 

JUPEM/Director of 
National Mapping, 1996 

JUPEM/Director of 
National Mapping 

Topographic map—Kuala 
Pilah (Sheet 3956) 

Scale:  1:50,000 
Topographic Sheet Code 
(3957b, 3957d, 4056a, 
4057c) (CAD format), 

Scale: 1:250,000 

NFI-4—2000–2010 
Peninsular 

Malaysian Forestry 
Department 

Peninsular Malaysian 
Forestry Department, 

2000–2010 

Note: JUPEM (Malaysian Survey and Mapping Department). 
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Previously, the sampling points on MCD12Q1 were buffered at 500 m, extracted and 

overlaid on the MODIS land use classification. The objective was to link with MCD12Q1 data 

to improve the purity level of the classification and to assess accuracy as modified by 

(Wessels 2004) such as sites that were at least 70% pure were assigned to the dominant 

cover type, while mixed sites (e.g., 67% conifer and 35% herbaceous) were classified as mixed 

coniferous/herbaceous. The objective of the appointment of purity was to avoid confusion 

during the evaluation of an accuracy of the points reaching the designated threshold. 

 

Validation of ALOS Land Cover Types 

 

In addition, sample images from Google Earth in 2008 were used as reference to the 

ALOS land cover types accuracy assessment. We matched and validated rubber and urban 

areas with Google Earth images of Thailand which were the areas studied by (Li et al. 2012; 

Tan et al. 2012). An area from a non-traditional rubber plantation planted on 10,000 ha to 

50,000 ha in Kuan Wan, Thailand which is near the border of Cambodia was used in the study. 

In addition, rubber estates in Kemayan, Negeri Sembilan and an open area in several areas in 

Penang Island of the peninsula were also incorporated in the study. Land Surface 

Temperature (LST) product derived from Landsat TM in a study conducted by Tan et al. (2012) 

were used to compare with urban areas, since, LST measure temperatures from land surface. 

The surface temperature (Ts) is related to percentage of green cover, hence, the lower the 

green cover the higher the surface temperature. 
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(a) (b) 

  
(c)                                                                                        (d) 

  

 (e)                                                                              (f) 

Figure 3. Ground proofing photos of (a) a housing area in the rubber and oil palm estate 
which also contained langsat (Langsium domesticum) trees, mangosteen (Garcinia 
mangostana) and rubber; (b) abandoned paddy field; (c) Rubber trees; (d) Oil Palm trees; (e) 
Bamboo trees (Bamboo spp.) and finally (f) Banana trees (Musa spp.) with other local fruits 
trees. 
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Figure 4. Land use classification sample points from MOD09A1, which are covered by at least 
95% pure on MCD12Q1 were assigned to the dominant cover (“forest or non-forest”)-red 
colour, while points of land use classification sample points from MOD09A1 that were below 
95% were assigned as (“forest or non-forest”) class. 
 

Comparison with ALOS Land Covers map 

 

Once a classification map is developed in this way, it needs to be validated against 

known data. Researchers have been validating their maps with available global satellite data 

land cover products such as the MODIS Land Cover Type product (MLC) (Friedl et al. 2010); 

Landsat-based National Land Cover datasets—for example, the IKONOS-derived forest map 

(Sheldon et al. 2012), China’s database (NLCD ) (Peng et al. 2002) and Google Earth (Li and 

Fox 2012), which has a high horizontal potential accuracy (Potere 2008). Mapping forests 

with ALOS PALSAR 50-m data, for example, was successfully used to differentiate between 

primary forest and newly deforested areas in the Brazilian Amazon (Almeida-Filho, 

Shimabukuro, 2009). However, we might have needed more ALOS data to represent our 

area, which significantly increased time and cost. Therefore, a combination of MODIS land 

use classification and highly satellite resolution data was the most feasible method of land 

Land use classification sample points from MOD09A1 
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use mapping in our tropical forest. The MODIS land use classification of 2008 ISODATA-1 

(our highest overall accuracy) was overlaid to compared and assess spatial distribution of 

the land use classification on higher resolution satellite image as a sample from all the maps. 

 

Elevation Map 

 

The elevation map was derived from following standard geo-statistical procedure of 

kriging interpolation analysis conducted in the ARC GIS 10.0. Elevation play a huge role in 

differentiating in soil and light resources hence appears related to stature of the forest 

(Ediriweera et al. 2008). A relevant study by Aiba et al. (2005) on species richness of 

different elevational of Mount Kinabalu in Borneo tropical rainforests found species pool 

among forests was one of the causal interpretation among dynamics, productivity and 

species richness of the study. Study by Ashton et al. (2001) has revealed rainforests from 

lower slopes up to 300 m elevation comprise the mixed dipterocarps community. In this 

sense, we sought to examine the distribution of forest clusters, again with the land use 

classification of MODIS 2008 (ISODATA-1) (our highest accuracy) with elevation as a sample. 

In addition, the NFI-4 data was overlaid with elevation map to further evaluate and 

validated the spatial distribution of land use classification (only for forest class).  

 

3. Results and Discussion 

MODIS Land Use Classification  

 

Overall classification methods within an overall accuracy of 57% to 94% and 

percentage of the clusters area are given in Table 5 and the results of the accuracies were 

depicted in Table 6.  The estimation of 10% incorporated mixed land uses indicated 

insufficient components or character of MODIS pixels to be classified into oil palm or rubber 

crops. The areas for MODIS 2005 were: 2% forest; 57% mixed forest and rubber; 39% oil 

palm; 2% mixed horticulture, indicating overlapping or misclassification of forest and 

rubber. The areas for MODIS 2008 were: 44% forest; 23% oil palm; 33% rubber, giving a 

better representation of the whole study area. Estimations of area percentage of MODIS 
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land use classification for data sets were different among the ISODATA and K-Means 

methods. The areas of land use classification are: 87% forest; 10% mixed oil palm and 

rubber; 3% mixed horticulture (MODIS 2000) (Table 5).  

 

As seen in Table 6 Forest was classified in all the data set maps excluding those for 

ISODATA-1 from MODIS 2005.The unclassified Forest from MODIS 2005 shows that forest 

areas in the data were underestimated in the southern part of the study area, as thin clouds 

over the forest were misclassified as crops. In Table 6 the Producer’s Accuracy for the Forest 

was highest in data sets from MODIS 2000 for K-Means-2 (87%) and lowest in data sets 

MODIS 2005 (71%) for K-Means-1. User’s Accuracy for the Forest was highest in data set 

MODIS 2000 and MODIS 2005 for K-Means-2 and K-Means-1 (100%). 

Table 5. Overall land use/land cover produced with 57%–94% overall accuracy. 

 

MODIS Land 
use 
classification 
Map 

Classification 
with Overall 
Accuracy (57%–
94%) 

Land Use/Land Cover Classes, 
Area (%) 

MODIS 2000  

ISODATA-2 
Forest (87), Mixed Oil Palm 
and Rubber (10); 
Mixed Horticulture (3) 

K-Means-2 

Forest (2), Mixed Oil Palm 
Rubber 
Oil Palm (79), Mixed 
Horticulture (19) 

MODIS 2005 

ISODATA-1 

Mixed Oil palm and Rubber 
(12); 
Oil Palm (76), Mixed 
Horticulture (12) 

K-Means-1 

Forest (4), Mixed Forest and 
Rubber (57); 
Oil Palm, Mixed Horticulture 
(39) 

MODIS 2008  
ISODATA-1 

Forest (44), Oil Palm (23), 
Rubber (33) 

ISODATA-2 
Forest (39), Oil Palm (16), 
Rubber (45) 

ALOS  

Reclassified, 
Proximity 
analysis and 
Spatial Analyst 

Open areas, Forests, Oil Palm, 
Rubber, Unclassified (Area not 
tested) 
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User’s Accuracy for the Forest was lowest in data set MODIS 2008 (90%) for both 

ISODATA-1 and ISODATA-2. Table 6 also depicted the highest overall accuracy was 94% for 

the data set MODIS 2008 for ISODATA-1, while the lowest overall accuracy was 57% for 

MODIS 2005, ISODATA-1. MODIS 2005 land use map had lower accuracy than 2000 because 

the image consisted with thin cloud cover over the forest areas. This is because tropical 

forest areas are a difficult site to obtain good quality satellite data due to heavy cloud cover 

conditions (Huete et al. 2008). Although, the image was improved by atmospheric 

correction and cloud screening by MODIS science team (Zhao et al. 2005) the image still 

influenced by minor cloud contamination.  

 

Table 6. Data employed in the study for an accuracy assessment. 

 
Land Use 

Map 

 
Classification 

 
Land use types 

 
Producer´s 
Accuracy 

 
User´s 

Accuracy 
 

 
Overall 

Accuracy 

 
 
 
 

MODIS 2000 
 

 
ISODATA-2 

Forest 60 90  
85 Mixed Oil Palm and Rubber 53 53 

Mixed Horticulture 0 33 
 

K-Means-2 
Forest 87 100  

67 Mixed Oil Palm and Rubber 53 45 
Oil Palm 50 50 

 
 
 
 

MODIS 2005 

 
 

ISODATA-1 

Mixed Oil Palm and Rubber 55 50  
57 Oil Palm 50 67 

Mixed Horticulture 50 33 
 

K-Means-1 
Forest 71 100  

65 Mixed Forest and Rubber 67 74 
Oil Palm 63 83 

Mixed Horticulture 63 33 

 
 
 

MODIS 2008 

ISODATA-1 Forest 78 90  
94 Oil Palm 80 94 

Rubber 45 29 

ISODATA-2 Forest 86 90  
76 Oil Palm 76 94 

Rubber 67 47 

 
Oil palm had the highest Producer’s and User’s Accuracy of 80% and 94%, respectively, 

in data sets from MODIS 2008 for ISODATA-1, where components of oil palm were also 

detected in every dataset map. However, oil palm was misclassified as Mixed Oil palm and 

Rubber in datasets from MODIS 2000 for ISODATA-2 and in the datasets map from MODIS 

2005 for ISODATA-1. Species such as Calopogonium mucunoides, C. caeruleum, Centrosema 

pubescens and Pueraria phaseoloides are legumes used as cover crops for oil palms for soil 
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erosion control during the 8–10 months of land clearing (Wahab 1991). In general, oil palm 

showed strong performance for accuracies in both data sets from MODIS 2008 for ISODATA-

1 and ISODATA-2.  

 

Heterogeneity of evergreen tropical forests with agricultural land was not 

acknowledged among the MODIS 2000 and 2005 dataset maps as reported in the results; 

however, this was relevant to MODIS 2008 for ISODATA-1 and ISODATA-2. An example of 

MODIS 2008 employing ISODATA-1 and ISODATA-2 is given in Figure 5. In general, Forest 

performed highly, as highlighted by a User’s Accuracy of 90% and Producer’s Accuracy of 

86% from the MODIS 2008 dataset for ISODATA-2. 

 

 

 

 

 

 

 

 

 

 

 

  

  
 
 
 
 
 
 
Figure 5. An example of land use classification of MODIS 2008. (a) ISODATA-2 (overall 
accuracy = 76%) and (b) ISODATA-1 (overall accuracy = 94%), that showed better accuracy. 

 

In this study, rubber trees (Rubber) in the plantation were misclassified into the more 

dominant evergreen forest. Multispectral reflectance of the trees leading to the 

misclassification led to over-estimation of the rubber area (Li and Fox 2012; Ozdogan 2010). 

Overall, ISODATA and Gamma (with filtering window 5 × 5) classification were very 

Land use classification of MODIS 2008 

(a) (b) 
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successful at classifying MODIS pixels into forest and non-forest, although the MODIS 2005 

data showed low overall accuracy and Forest percentage and also completely failed to 

discriminate the forest classification in ISODATA-1.  

 

Finally, the study found ISODATA revealed its capability at classifying homogeneity 

areas although overlapping occurred in MODIS 2005 ISODATA-1 (mixed oil palm and rubber 

classes). Again, misclassification may have been caused by thin or small areas of cloud cover, 

which occurred in some places in the study area. Generally, most clouds occurred in tropical 

forests with frequent rainfall during the time the images were sensed.  

 

A study on the Bukit Soeharto evergreen tropical forest on the east coast of 

Kalimantan (Indonesia) had similar problems in obtaining  

good-quality satellite data due to a lower seasonality and heavy cloud-cover conditions 

(Huete et al. 2008; Luus and Kelly 2008; Sheldon et al. 2012). We also highlighted that the 

loss of a large portion of forest classification in the MODIS 2005 for ISODATA-1 was not due 

to deforestation or human physical contact, but was a result of misclassification caused by 

the persistence of clouds in the image. ISODATA alone achieved  

85%–94% overall accuracy, indicating that ISODATA classification was successful at 

classifying coarse-resolution pixels such as MODIS images. Finally, we found that the overall 

accuracy of the 2008 data sets ISODATA-1 was more than acceptable as compared to the 

control data and presented as the best land use classification in the study. 

 

To explore the potential of MODIS image in the study, we found that an assortment of  

multi-temporal data effectively contributed to higher overall accuracy in the study. The 

MODIS 2000, MODIS 2005 and MODIS 2008 data represented a phenology of rubber in the 

study area, and since rubber is sensitive to temperature change, it has different 

phonological characteristics. The MODIS Enhance Vegetation Index (EVI) satellite phenology 

map was depicted for vegetation activity in Dong et al. (2013). However, we found the map 

too coarse to be spotted and compared with our study map. Our desire in employing the 

data in the study is to present a more understandable MODIS capability in the classification 

of land use in tropical forest regions. 
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 Validation of ALOS Land Covers Map with Google Earth image 

 

ALOS produced five land cover types, namely Open areas, Forests, Oil Palm, Rubber 

and Unclassified land cover (Figure 6). Oil palm areas were also consistent with Google Earth 

image which showed a comparable oil palm plantation adjacent to Kemayan, Negeri 

Sembilan. Open area which was identified to the same extent of higher reflectance after 

comparison with areas in Penang Island at a central point of 100°15'E 5°20'N (e.g, Batu 

Maung, Bayan Lepas, Air Itam, George Town and Gelugor. The study found that both open 

areas and urban areas had higher reflectance, indicated by optimum Land Surface 

Temperature (LST) image in a study conducted by Tan et al. (2012). The results showed good 

agreement of ALOS with Google Earth that confirmed the capability of ALOS image to 

further compare with MODIS map.  

 

Comparison of MODIS Land Use Classification ISODATA-1 and ALOS Map 

 

Clusters of MODIS 2008 data such as Forest, Rubber and Oil Palm overlaid on the ALOS 

map showed various proportions (Figure 6) that showed the classification consisted with 

ALOS land cover types. Visually, young oil palm groves could be distinguished from open 

areas or rubber on the ALOS, whereas rubber was more easily distinguished from an open 

area than from mixed rubber and forest. Mapping MODIS land use, combined with 

unsupervised classification of low and higher satellite resolution, compromise a low-cost 

land-use mapping production process and the data analysis can be rapidly performed.  

 

Comparison of MODIS Land Use Classification and MCD12Q1 

 

The accuracy results are given in Tables 7 and 8. The overall best accuracy for purity > 

95%, was 92%, which was the highest in the MODIS 2005 K-Means-1. Overall, the highest 

Producer’s Accuracy for forests was 73%; conversely, forest was better in User’s Accuracy 

for the data sets of MODIS 2000 ISODATA-2 and MODIS 2008 ISODATA-1 which indicated 

higher success for user interpretation (100%) for both data. Meanwhile, the Producer’s 

Accuracy was 100% (for MODIS 2000 and 2005) of non-forest, which separated the area 

very well and was expected to derive a higher User’s Accuracy, of more than 80%; however 
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it was low in 2008. The regrouping of pixels of the MCD12Q1 data sets led to a higher 

Producer’s Accuracy in the non-forest components.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. ALOS map overlaid with MODIS 2008 land use classification. 

 
Low overall accuracy for purity <95% averaged 55%. Forest had low Producer’s 

Accuracy from MODIS 2000, MODIS 2005 and MODIS 2008 of 60%, 44%, and 24%, 

respectively. However, it achieved a good agreement with User’s Accuracy for data sets 

from MODIS 2005 (90%), which again showed that the MCD12Q1 2005 was a very high-

quality global land cover map derived from MODIS satellite imagery, which also showed in 

accuracy for purity of >95%.  

 

As expected, visual interpretation of the comparison found that the PFR polygon 

delineated a good shape of forest reserved in the MCD12Q1 data, where most the sampling 

ALOS map overlaid with MODIS 2008  
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points for forest were distributed as observed in the map. This indicated a good agreement 

between the two products (Wessels 2004). 

 
Table 7. An accuracy assessment between land use classification and MOD12Q1data 
sets (sampling points >95% purity). 
 

MODIS 2000 ISODATA-2 Forest Non-Forest Total UA (%) 
Forest 20 0 20 100 

Non-Forest 8 33 41 80 
Total 28 33 61  

PA (%) 71 100  87 

MODIS 2005 K-Means-1 Forest Non-Forest Total UA (%) 
Forest 20 0 20 100 

Non-Forest 8 36 41 88 
Total 28 36 61  

PA (%) 71 100  92 

MODIS 2008 ISODATA-1 Forest Non-Forest Total UA (%) 
Forest 11 9 20 55 

Non-Forest 4 37 41 61 
Total 15 46 61  

PA (%) 73 80  79 

Note: PA=Producer’s Accuracy; UA =User’s Accuracy.  
 
 
 
Table 8. An accuracy assessment between land use classification and MOD12Q1 data 
sets (sampling points <95% purity). 
 

MODIS 2000 ISODATA-2 Forest Non-Forest Total UA (%) 
Forest 12 8 20 60 

Non-Forest 20 21 41 51 
Total 32 29 61  

PA (%) 60 72  54 

MODIS 2005 K-Means-1 Forest Non-Forest Total UA (%) 
Forest 18 2 20 90 

Non-Forest 23 18 41 44 
Total 41 20 61  

PA (%) 44 90  59 

MODIS 2008 ISODATA-1 Forest Non-Forest Total UA (%) 
Forest 4 16 20 20 

Non-Forest 13 24 41 68 
Total 17 44 61  

PA (%) 24 64  52 

Note: PA=Producer’s Accuracy; UA =User’s Accuracy.  
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Visually, we also found that MCD12Q1 2001 and 2008 data sets inadequately 

presented at least the heterogeneity of oil palm or rubber in the study area. We had limited 

ability to identify the growth stage of the oil palm and rubber trees from our MODIS land 

use classification, as our sampling points were not located according to different ages or 

maturity of the trees. Thus, we expect some misclassification of rubber plantations and 

forests, due to the homogeneity of forest trees, bushes, scrub and shrubs within rubber 

trees. The survey found that the rubber trees were mature, but that the land was also 

occupied by fallow vegetation.  

Comparison of MODIS Land Use Classifications with Elevation map 

 

The elevation ranged from approximately 23 m to 236 m is overlaid with MODIS 2008 

ISODATA-1 land use map (Figure 7). The map showed the forests are concentrated mainly in 

the higher and moderate elevations, with 49 m–76 m at the highest levels, although PFR is 

located at a lower elevation: 75 m–103 m, which is consistent to a study by Hirata et al. 

(2008) and agreed with Ediriweera et al. (2008). The study found significant benefits in 

applying elevation map to the land use classification, hence, enhanced better understanding 

of mixed dipterocarpaceae species distribution due to different elevation.  It also had a good 

agreement for forest clusters and the oil Palm was mainly distributed at a level similar to 

Forest: 103 m to 129 m, and Rubber was distributed much lower, at 23 m–49 m. Moreover, 

NFI-4 of forest class was observed to be consisted with the elevation, with distributed of 

mixed dipterocarpaceae at the highest elevation in the study area. 

 

4. Conclusions 

 

This study evaluated the application potential of ISODATA and K-Means (Gamma and 

Kuan) classification for delineation and land use mapping of evergreen tropical forests, oil 

palm and rubber plantations and other land uses in tropical zones. The study first 

constructed the accuracy assessment from our sampling methods. The most successful 

maps, ranging from 65% to 94% of overall accuracy, were then extracted for further 

comparisons. MODIS MCD12Q1 map from the years of 2000, 2005 and 2008 were employed 
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for accuracy assessment with the MODIS study map products.  Finally, we overlaid and 

compared the maps with NFI-4 data; topographic data 1997, ALOS land cover map and 

elevation map. The study revealed the advantages of using unsupervised ISODATA 

classification.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. ALOS map overlaid with MODIS 2008 land use classification and NFI-4 data. 

 

This study recommends that future works be concentrated on matching regional or 

local vegetation densities information (surveys) to compare with the vegetation density 

from MODIS satellite data such as EVI and Normalized Difference Vegetation Index (NDVI) 

(Clerici et al. 2012; Huete et al. 2008; Huete et al. 2002). Generally, NDVI have different 

values in evergreen tropical forest, both young and mature rubber plantings, and open 

areas in young oil palm plantations (Razali et al. 2010). By taking into account the vegetation 

indices, the map can be enhanced to show conditions as recent as the past 8 days, which 

can then be analysed for environmental stresses such as soil moisture stress and can also be 

ALOS map overlaid with MODIS 2008 land use classification and NFI-4 data 
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used for forest fire risk assessment (Fensholt 2003), as it can even assist in distinguishing 

fuel types. For example, Imperata grassland present in an oil palm growing region is a 

flammable material, and has a higher combustion rate that can express the proportion of 

biomass likely to be consumed by fire (Germer and Sauerborn. 2008). 

 

The oil palm classification in this land use classification map is also valuable for 

providing information about natural pasture in the area, and which vegetation can be 

utilized for forage for livestock production (Wahab 1991), especially since the areas 

between the rows in young oil palm groves are usually covered with vegetation comprising 

legumes, grasses, broadleaf species and ferns. Consequently we also suggest that oil palm, 

which is classified by employing low to moderate resolution imagery, should be recognized 

as mixed oil palm and other vegetation. We also recommend the (Huete et al. 2008) 

phenology vegetation activity map as a good foundation for phenology reference for future 

study in tropical forest land use classifications.  

 

Sustainable Forest Management (SFM) in Malaysia is a dynamic and evolving concept 

aimed to maintain and enhance economic, social and environmental value of all type of 

forests for the benefits of present and future generations (Secretariat of the Convention on 

Biological Diversity 2009). Robust economic development will remain in the medium-term 

as reported in 2013 particularly in Southeast Asia (surrounded by tropical evergreen 

broadleaf forest) (International Energy Agency 2013), leaved those countries facing 

upcoming limited or cutting down expending allocation to certain governmental sectors. 

With constraints allocation of funds from government and private sectors to achieve the 

aims, SFM would be not meaningful.  

 

MODIS imaging showed capability to provide economically viable updated imageries 

and integrated land use mapping. MODIS imaging with integrated land use mapping, 

highlighted by using higher resolution of ALOS imagery, could assist forest managers to 

achieve SFM aims through increased frequency of land use mapping within the 

management areas with minimum labour and equipment cost. This is because MODIS 

enables deriving data at no cost, requiring a very low human labour cost with additional 

powerful computers. Moreover, land use mapping and GIS application unit at Forestry 
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Departments could enhance their work through sustaining and updating their land use maps 

as a database which can be used by other governmental sectors.  

 

With this study, we hope that an exploration of the development of land use maps for 

tropical forests will continue and will increase the usefulness of EO data in the future. This 

study revealed that there is insufficient information for a crop data base for the study area 

and for the peninsula as a whole, a situation that might be corrected with the application of 

MODIS imaging. For example, site suitability, soil suitability class, and agro-climatic region 

maps produced by the Malaysian Agricultural Department, do not include information on 

crop growth.  But with a frequent data collection cycle (1–2 days) in 36 spectral imaging, 

maps could be produced for input and update to such a database. Furthermore, more rapid 

processing and analysis from higher-resolution remote sensing could lower the cost for 

image pre-processing. 
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Abstract 

 

Natural forest, oil palm and rubber plantations are economically and environmentally 

important for Peninsular Malaysia.  The present study analysed four years of Moderate 

Resolution Imaging Spectroradiometer (MODIS) surface reflectance data to develop spectral 

indices of vegetation, water availability and moisture stress for the study area.  The indices, 

the Normalized Difference Vegetation Index, the Normalized Difference Water Index and 

the Moisture Stress Index were applied to the three different habitats to monitor drought 

and develop a Malaysia Southwest Monsoon (M–SWM) classification.  By integrating 

indicators of the Southwest Monsoon, the Standard Precipitation Index, mean precipitation 

and temperature and spectral indices correlation analysis, M–SWM classification showed 

greater sensitivity to drought conditions than any of the individual indicators alone.  The 

results also found that July is the driest month; it was the only period classified as “Very 

Dry” based on the M–SWM.  
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1. Introduction 

  

  The Southwest Monsoon season (SWM) is a dry period for Peninsular Malaysia and 

particularly extreme for the states on the western coast of the peninsula.  This dry periods 

often results in drought, which has significant adverse effects on environmental, agricultural 

and socioeconomic conditions (Bhuiyan et al. 2006).  A report by the Climate Change 

Knowledge Portal (2013), compiling more than 100 years of data covering a period of 1900–

2009, showed a consistent decrease in mean precipitation for June and July.  Drought has 

led to reductions in both crop production and the quality of human life (Wan Zin et al. 

2013).   

  

  The natural forest cover in the study area is evergreen tropical forest with a 

dominance of Dipterocarpaceae family species in the upper layer, a pattern not found in any 

other tropical forest in the world (Corlett 2014).  These trees play a huge role in 

sequestering carbon from the atmosphere, as recently reported in many studies (Bonan 

2008; Girardin et al. 2014; Joseph et al. 2012).  However, an increase in the frequency of dry 

spells in Peninsular Malaysia has placed the forest in a drought risk situation.  In 2005, 

Malaysia, Indonesia, and Thailand collectively produced 69% of the world’s natural rubber. 

 

  A recent study found that this proportion has now increased to about 97% (Li and 

Fox 2012), indicating that the revenue from rubber plantations is critical to the economies 

of these Southeast Asian countries.  Rubber (Hevea brasiliensis) and oil palm (Elaeis 

guineensis) are tropical tree crops grown primarily in large estates in the region, and 

predictable seasonality is critical to the trees’ survival (Panuju and Trisasongko 2012).   

 

   In general, rubber is planted in two distinctive seasons and is sensitive to 

temperature change (Dong et al. 2013; Huete et al. 2008).  Good water management is 

essential, because drought can harm flower production and hence reduce crop yield (Corley 

and Tinker 2003).  A minimum of 2000 mm of annual precipitation is required for optimal 

production in a rubber plantation (Rantala 2006).  Because the rubber industry is of great 

economic value to the region and provides income for over 400,000 small land owners, 

rubber plantations need to be properly managed.  In addition to rubber, the government of 
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Malaysia is committed to supporting oil palm cultivation, to achieve sustainability and 

maintain a predominant market share.  Oil palm residues is highly beneficial for supplying 

fibre sources for wood-based industry and at the same time pre-treatment could enhance 

its properties to the required standard (INTROP 2010).  Besides, global demand for edible 

oils and animal protein tremendously increase area under oil palm cultivation  (Teoh 2002).   

 

  A recent study found that variability in either rainfall or temperature, or both, has a 

negative impact on palm oil revenue (Zainal et al. 2012).  After the 1998 drought episode in 

the peninsula, a Standard Operating Procedure was developed to support the National 

Drought Management Policy in response to severe drought in the region and in Malaysia as 

a whole.  The Standard Precipitation Index (SPI) and rainfall anomalies were employed to 

assess drought by assigning risk criteria to the region (Sani et al. 2012).   

 

  Satellite data have been used to detect damage to forest caused both by natural 

processes and by human interference (Fuller et al. 2002).  Various mathematical 

combinations of spectral channels in satellite images have been used as sensitive indicators 

of the presence, condition and vigour of green vegetation.  Vegetation indices normalize 

internal and external responses to detection signals (e.g., sun angle, topographic variation, 

plant textures and soil conditions) and thus enhance the sensitivity of the signals for 

measuring forest biophysical properties and their changes (Jensen 2000).  The Normalized 

Difference Vegetation Index (NDVI) is commonly used to express this information.  Satellite 

data analyses have verified the relationship between NDVI and vegetation productivity, 

because there is a link between the index and both the fraction of absorbed active radiation 

(fAPAR) and the absorbed active radiation (APAR), which  decrease along with NDVI (Li et al. 

2012).  Indeed, Propastin et al. (2012) found that increased leaf production enhances the 

absorption of radiation by vegetation and causes an increase in fAPAR, which is reflected in 

higher productivity.  NDVI has shown excellent sensitivity to green biomass in young and 

growing vegetation in tropical forests.  Furthermore, it measures the changes in chlorophyll 

content via absorption of visible red radiation in satellite images and in spongy mesophyll 

via reflected near–infrared (NIR) radiation within the vegetation canopy (Gu et al. 2007).  

Hence, the NDVI signal is sensitive to chlorophyll and photosynthetic vegetation (Hill et al. 
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2013) and therefore useful for detecting biomass reduction in tropical forests as a 

consequence of drought stress. 

 

  The Moisture Stress Index (MSI) has been applied to assess canopy water content.  

MSI has been shown to have a strong negative correlation with water parameters such as 

Equivalent Water Thickness (EWT) in subtropical secondary forests (Wang et al. 2009).  The 

Normalized Difference Water Index (NDWI), however, is the most useful tool for detecting 

forest die–back and recovery as a result of severe drought (Fensholt et al. 2004; Gu et al. 

2007).  Moreover, in a forest-fire study (Wang et al. 2009), NDWI showed a stronger 

significant correlation with the water concentration index and a better relationship with fuel 

moisture content (FMC) than did the MSI.   

 

  The objective of this study was to develop a classification system for drought 

assessment in a drought-prone area using satellite image data from MODIS.  The variables 

selected included all the critical drought-measuring parameters that could be integrated 

into the model: (1) the SWM, (2) standardized precipitation as defined by the SPI, (3) mean 

monthly precipitation, (4) mean monthly temperature and (5) the MODIS satellite indices of 

NDVI, NDWI and MSI.  

 

2. Drought classification system 

   

  A drought classification system is commonly used in a huge country such as the 

United States of America. Many drought classification schemes, such as the Standard 

Precipitation Index (SPI), the Palmer Drought Severity Index (PDSI) and the Keetch-Byram 

Drought Index (KBDI), have been developed in order to describe various levels of drought.   

 

  The SPI is a powerful and flexible index, yet is easy to calculate (World 

Meteorological Organization, 2015) because it is based exclusively on precipitation data. The 

more complex PDSI (Smakhtin and Highes, 2004), which represents soil moisture variations 

over a region, requires more input data and calculation effort. A study by Kogan (1995) 

suggested that PDIS is more useful when employed at the global scale. The KBDI is an index 

for determining forest fire potential; it has been used as a National Forest Fire Danger Point 



- 88 - 
 

Forecasting Tool in United States Forest Service wilderness areas.  A study conducted in 

Malaysia by Ainuddin and Ampun (2008) found a positive correlation of the index with fire 

frequency. 

 

  The SPI has been widely used by Khan and Gadiwala (2013) employed it for assessing 

drought levels in Pakistan for the period 1951 to 2010. SPI was also utilized for drought-

prone areas in India, such as Gujarat and Orissa (Patel et al., 2009).  Since the beginning of 

the 1998 El Niño episode in the Malaysian peninsula, a Standard Operating Procedure has 

been developed to support a National Drought Management Policy in response to drought 

severity in the region and in Malaysia as a whole, using the SPI and rainfall anomalies to 

assess drought by assigning risk criteria across regions (Sani et al. 2012).  A drought rating 

can be an additional indicator for monitoring drought–prone areas. The drought monitoring 

system used for this study is shown as a map that identifies general drought areas, labelling 

drought conditions by intensity (The National Drought Mitigation Center, 2015). 

 

3. Methodology 

Study area 

  

  The central point of the study area is located at 2°58'N, 102°18'E in the Pasoh Forest 

Reserve (PFR), Negeri Sembilan.  The annual precipitation is 1702 mm, as measured 

between 2000 and 2011 by the National Institute for Environmental Studies, Japan (NIES 

2011).  During the SWM season, the area had the lowest rainfall in the Negeri Sembilan 

region for 2000–2007, while the monthly mean temperature during the dry monsoon 

season was 26.3°C for 2002–2011. The research was conducted in three different habitats: 

evergreen tropical forest (referred to as natural forest), and oil palm and rubber plantations 

(Figure 1). 
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Figure 1.  Study area: (a) Southeast Asia (blank) (b) Peninsular Malaysia and (c) the Pasoh 
Forest Reserve, showing areas of natural forest, oil palm and rubber plantation habitats. 
 

  Since the 1998 El Niño, prolonged dry conditions have become a recurrent 

phenomenon on the peninsula (Wan Zin et al. 2011).  The El Niño event recurred in 2003 

and again in 2005.  A report by the Department of Irrigation and Drainage (2005) showed a 

huge reduction in precipitation during the June 2005 dry season.  The deficiencies, ranging 

from 18% to 44%, occurred from the west coast to the middle mainland regions (DID 2005).  

The study area experienced a similar reduction in precipitation during the El Niño, in a 

drought-prone area of the Regent estate.  An isohyetal contour map showed that the area 

experienced its lowest annual rainfall in 2002, perhaps because of its proximity to the 

drought-prone area (Razali et al. 2010). 
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Satellite Data 

 

  The present study was based on one of the MODIS satellite products, known as 

MOD09A1 (Surface Reflectance 8–day L3 Global), at 500m resolution, for 2000–2011.  

MOD09A1 is one of the inputs for the MODIS satellite used to produce other MODIS land 

data such as MOD12 and MOD13.  MOD12 is a land cover and MOD13 is a vegetation 

indices products. The data were derived at 8–day intervals and contained seven spectral 

bands (Xiong et al. 2006).  The spectral band on the MODIS is suitable for obtaining a 

vegetation signal as well as moisture and water stress indexes, by employing band 

information of near–infrared, red, green and shortwave infrared reflectance bands. 

 

  The satellite product is suitable for studying the drought situation in tropical forests 

because the MODIS satellite was built with special characteristics in its instruments and its 

spacecraft components, for thermal sensitivity and mechanical isolation structure (Xiong et 

al. 2006).  The data for this study were collected from the Land Process Distributed Active 

Archive Centre (LP DAAC 2011), the most convenient data archive platform available for 

browsing, data quality checking and data organizing. 

 

Image pre-processing  

 

  The images were collected on minimum cloud-cover days, because cloud cover 

contaminates information in optical images (Tseng et al. 2008) and can interfere with 

interpretation, thus reducing precision.  Cloud detection procedures were conducted by 

image enhancement using the band combination method: (i) 1, 4, 3 (true colours); (ii) 7, 2, 1 

and (iii) 2, 6, 1 (Huete et al. 2008; Tseng et al. 2008) to identify isolated clouds.  A 

reflectance value of > 0.2 was used to eliminate contaminated pixels from all the images.  

Density slices were taken and a masking procedure was followed, using Exelis Visual 

Information Solution (ENVI) slice tools to remove the clouds.  MODIS images with high 

visibility are often particularly difficult to obtain in tropical forest areas because of heavy 

cloud-cover conditions. 
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  To increase precision during sampling, we downloaded more than fifty images for 

the years in question and reanalysed them with band matching to obtain high-quality 

images. Finally, despite the inconvenience of isolated cloud cover we successfully obtained 

four years of MODIS data representing several seasons (Table 1). 

 

Spectral indices 

 

 For satellite indices, we used NDVI, NDWI and MSI as the vegetation, water and 

moisture-stress indices.  See Table 2 for descriptions of the indices utilised and the precise 

bands used for their formulation. where ρRed, ρNIR, ρGreen, and ρSWIR3 are the reflectance 

values for MODIS at bands 1 (645-670 nm), 2 (841-876 nm), 4 (545-565 nm) and 7 (2105-

2155 nm), respectively.   

 

Table 1. MODIS data used for the study.  

Season  Time frame of MODIS 
images 

Label 

Wet September 2000 S2000 

Dry July 2000, May 2009,  
May 2011, August 2005 
 

J2000, M2009, 
M2011, A2005 

Drought Year March 2005  M2005 

 

 

Table 2. Spectral reflectance indices and MODIS bands used in this study. 

 Index Formulation Source 

NDVI 𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝑒𝑑
 Rouse (1973) 

NDWI 𝜌𝑁𝐼𝑅 − 𝜌𝑆𝑊𝐼𝑅3

𝜌𝑁𝐼𝑅 + 𝜌𝑆𝑊𝐼𝑅3
 Gao (1996) 

MSI 𝜌𝐺𝑟𝑒𝑒𝑛

𝜌𝑁𝐼𝑅
 Hunt and Rock (1985) 

 

 

  These indices have been used extensively in recent studies, particularly for tropical 

forests (Asner and Alencar 2010; Panuju and Trisasongko 2012).  The indices have a native 
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scaling of -1 to +1.  Linear regression was performed for each of the satellite images for the 

three habitats. The correlation coefficients were obtained at a 0.01 level of significance to 

examine the correlations between NDVI and NDWI; and between NDVI and MSI (Rocha and 

Shaver 2009).   

 

  A study by Gu et al. (2007) showed that during dry periods vegetation had a greater 

loss of water content than during green periods, as is depicted in vegetation indices such as 

NDVI.  Here, we assumed that the NDVI was correlated with variations in photosynthetic 

activity (Pettorelli et al. 2005), whereas NDWI measured sensitivity to changes in the liquid 

water content (Gao 1996).  MSI is negatively correlated with water content, so that a 

reduction in vegetation canopy water content suggests an increase in MSI. To develop a 

complete drought classification index we created a drought rating and categorization 

scheme from the results of the linear regression model, for input to the M-SWM index, in 

order to determine the driest conditions that may possibly occur in the habitat.  

 

  The NDVI, NDWI and MSI indices were analysed with the Principal Coordinates 

Analysis (PCO) of Euclidean distance, which allowed the most relevant dry-period patterns 

to be observed. PCO was performed using Primer 6 and PERMANOVA plus (Anderson et al. 

2008; Clarke and Gorley 2006). This flexible ordination method was chosen because it can 

be based on any resemblance matrix, projecting the points onto axes that minimize residual 

variations in the space to which the resemblance measure is applied. 

 

Sampling of the habitats 

 

  Habitat samples of natural forest, oil palm and rubber plantation areas were 

extracted from the MODIS satellite images. A total of 18 samples were collected for the 

entire habitat area and used for satellite indices correlation analysis.  Sampling within each 

set of habitat points was structured to characterize the vegetation within an approximate 

500m x 500m-pixel-sized area.  The natural forest samples were located in the PFR in 

Compartments 22 and 23, an inland regenerating evergreen tropical forest.  The forest is 

adjacent to an oil palm plantation area, according to the Present Land Use map of Negeri 

Sembilan 2004 (Figure 1).  Points were first identified on pre–processed image, then 



- 93 - 
 

validated with higher-resolution 10m satellite images from the Advanced Land Observing 

Satellite, Advanced Visible and Near Infrared (ALOS AVNIR), the National Forest Inventory 

Series 4 and land use maps (FDPM 2004; DOA 2004).  The points were then transferred to a 

handheld global positioning system (GPS) with a spatial accuracy of ±15 m, verified and 

finally registered back to the image for further analysis.  The point locations were modified 

according to the suitability of the area.  An example of the points is shown in Table 3. 

 

Table 3. Example of sample point locations for the habitat sampling. 

No. Point coordinate Habitat 
1 102.28, 3.13 Natural forest 
2 102.35, 3.07 Oil palm 
3 102.27, 2.99 Rubber 

 

  

  Oil palm and rubber samples were collected based on ground point data taken at 

two plantations: Felda Pasoh Estate and Felda Pasoh Dua.  The samples were first identified 

with reference to non-traditional rubber plantation patterns in Kuan Wan, Thailand (Li and 

Fox 2012) and on Hainan Island (Dong et al. 2013).  The verification showed that rubber 

trees in the plantation grow alongside fallow shrubs and grassland.  The samples included 

trees in three phases of their life cycle: (1) young immature (0-3 years); (2) young mature (4-

8 years); and (3) mature (over 8 years). The samples were validated using Google Earth 

images from a study conducted by (Li and Fox 2012).   

 

Malaysia Southwest Monsoon (M–SWM) index 

 

  A similar qualitative model developed using the SPI and Palmer Drought Severity 

Index was used for drought categorization and rating based on all the M-SWM index 

variables (Gu et al. 2007) (Table 4). We assigned the MODIS images to different SWM 

categories based on information from several studies.  Two studies, by Yasuda et al. (2003) 

and  Okuda et al. (2004), showed distinct rainfall peaks in April-May and November-

December, while less precipitation was observed in the May-August period, known as the 

SWM (Jamaludin et al. 2010).  Cruz et al. (2013), defined SWM as the period from June to 
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September, based on the prevailing flow at the surface, analyzed using ERA-40 datasets 

from (Kallberg et al. 2007). 

 

  Precipitation is one of the most important aspects of monsoon climatology 

(Ranatunge et al. 2003).  In the study, data for precipitation and temperature were obtained 

from the (NIES 2011).  We calculated monthly mean precipitation for March to September, 

2000-2011 as in Figure 2, to determine the best dates for collecting MODIS satellite images.   

 

  Precipitation conditions and ratings were assigned based on precipitation data 

recorded at 41 rainfall stations over the entire Malaysian Peninsula during the April-June 

drought season 2005 (DID 2005).  Monthly mean temperature was also calculated for input 

to the M-SWM calculation.  The SPI data were retrieved from http://iridl.ldeo.columbia.edu, 

which contained data for the study area.   

  

  The satellite indices coefficient of correlation was assigned to four drought-rating 

categories. The M–SWM was then defined by accumulating the rating scores and simplifying 

them into one index.  In summary, the index was calculated according to Equation (1): 

 

𝑀 − 𝑆𝑊𝑀 = 𝑀𝑂𝐷𝑖=1−3 +  𝑆𝑃𝐼𝑗=1−7 + 𝑃𝑘=1−3 + 𝑇𝑙=1−3 + 𝑆𝐼𝑚=1−4          (1) 

 

where M-SWM is the Malaysia Southwest Monsoon index developed for the study and the 

subscripts i, j, k, l, and m indicate the variables for the index: MODIS Image (MOD), Standard 

Precipitation Index (SPI), monthly mean precipitation (P), monthly mean temperature (T), 

and satellite indices (SI). Using this equation, an accumulation index of 16-20 was classified 

as ‘Very Dry’ (VD); a range of 11-15 as ‘Mid Dry’ (MD); 6-10 and 1-5 as ‘Low Dry’ (LD) and 

‘Wet’ (W), respectively. A complete flowchart of the index development process is 

presented in Figure 3.Finally, to measure the relationships between the M–SWM index and 

the satellite indices; a correlation analysis was conducted for the study.   
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Table 4. Drought categorization for M–SWM index. 

 

Variable Condition  Categorization 
 

Rating 

 
MODi 

S2000 Wet 1 
M2009, M2011, J2000, A2005 Dry 2 

M2005 Drought Year 3 
 
 
 

SPIj 

> 3.0 – 3.0 Extremely wet 1 
   3.0 – 2.0 Moderately wet 2 
   2.0 – 1.0 Near normal 3 
 1.0 –   0 Normal 4 

      0 – -1.0 Moderately dry 5 
 -1.0 – -2.0 Severely dry 6 
 -2.0 – -3.0 Extremely dry 7 

 
 

Pk 

        130 – 195 mm Wet 1 
          65 – 130 mm Dry 2 

          0 – 65 mm Drought Year 3 
 
 

Tl 

     23 – 24 ºC Wet 1 
     24 – 25 ºC Normal 2 
     25 – 26 ºC Drought Year 3 

 
 
 
 

SIm 

R
2
< 0.6 (NDVI vs NDWI, MSI) Not Dry 1 

R
2
> 0.6 (NDVI vs NDWI) but 

R
2
< 0.6 (NDVI vs MSI): 

 
Dry 

 
2 

R
2
> 0.6 (NDVI vs NDWI, MSI) but 

(NDVI vs MSI) weaker than NDWI 
correlation 

 
Moderately Dry 

 
3 

R
2
> 0.6 (NDVI vs NDWI, MSI) Extremely Dry 4 

 

 

 

Figure 2. Monthly mean recorded precipitation and temperature for March to September, 
2000- 2011, for the study area. 
4. Results  
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M-SWM index  

 

 An index of the M–SWM was developed and is presented in Table 5.  As can be seen 

from the table, three of the six images analyzed in the study were associated with the 

drought rating index range 11-15, categorized as MD. The J2000 image was categorized as 

VD, with the highest drought-rating index of 16. The images of M2005 and A2005 were 

classified as MD, with a drought index of 14.  The M2009 image was also classified as MD 

with a drought index of 13.  The images of M2011 and S2000 were classified as LD with 

drought-rating indexes in the 6-10 range.   

 

MODIS Image (MODi) 

 

 Based on the SWM information from several studies, MODIS images were assigned to 

the SWM ratings (Table 5).  The M2005 image was assigned to Drought Year, with a 

drought-rating score of 3, meaning that M2005 was the highest drought rating in the study. 

The J2000, A2005, M2009 and M2011 images were all categorized as Dry, with a score of 2.  

Only one image, S2000, was categorized as Wet, with a score of 1. 
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Develop 
rating score

MOD (i) SPI (j) P (k) T (l) SI (m)

Image 
preprocessing and 
pixels sampling for 
natural forest, oil 
palm and rubber 

plantations

M-SWM

MODIS 
Satellite 
Images

Accumulate Scores

Assign Drought 
Classification

 

 

Figure 3.Flowchart of the M–SWM index processing. 

 

Table 5. Results for the M–SWM index. 

Note: VD: Very Dry; MD: Mid Dry; LD: Low Dry 

 

MODIS Image 
 

MODi 
 

SPIj 
 

Pk 
 

Tl 
 

SI(m) 
 

Rating 
Total 

 
Classification 

 Rating 
July 2000 (J2000) 2 4 3 3 4 16 VD 

March 2005 (M2005) 3 4 2 2 3 14 MD 
August 2005 (A2005) 2 3 3 3 3 14 MD 
May 2009 (M2009) 2 5 1 3 2 13 MD 
May 2011 (M2011) 2 4 1 1 1  9 LD 

September 2000 
(S2000) 1 3 1 2 1  8 LD 
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SPI (SPIj)  

 

 The highest rating score for SPI was for M2009, with a score of 5, which was 

categorized as Moderately Dry.  The Normal condition was reflected in the J2000, M2005 

and M2011 images, with a rating score of 4. The A2005 and S2000 images showed the 

smallest SPI rating score of 3—Near Normal. 

 

Precipitation (Pk)  

 

 The J2000 and A2005 images indicated clearly dry conditions with a rating score of 3 

and a Drought Year categorization. M2005 showed a clear difference from the other images, 

with rating score of 2, categorized as Dry. As anticipated, M2009, M2011 and S2000 had a 

rating score of 1, in the Wet category—lower than the M2005 image. 

 

Temperature (Tl)  

 

 The coolest area under the M–SWM classification was M2011, with the lowest rating 

score of 1, while the warmest were J2000, A2005 and M2009, with the highest rating score 

of 3.  The normal rating score in the study occurred in M2005 and S2000, with a rating score 

of 2. 

 

 

Satellite Indices (SIm)  

 

 The strongest correlation for the satellite indices was for J2000 (NDVI vs. NDWI, 

r2=0.99and NDVI vs. MSI, r2=0.96) giving the highest rating score of 4, which was classified as 

Extreme Dry. The weakest correlation was seen for S2000 (NDVI vs. NDWI, r2= 0.24 and 

NDVI vs. MSI, r2= -0.00 (Table 6). 
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Table 6. Correlation coefficients for spectral indices. 

 

 

M-SWM index and satellite indices correlation analysis 

 

 The relationship between the M–SWM index and the satellite indices is plotted in 

Figure 4 (a) to (c). The relationships varied widely among the three habitats. In general, the 

relationships of the indices with NDVI showed an r2ranging from 0.24 to 0.60, with a 

significant correlation only in the natural forest r2=0.60  However, the relationship of the 

index with NDWI showed insignificant correlation for all the habitats. The highest significant 

correlation, between the index and MSI relationships, occurred for the rubber plantations, 

r2=0.73. 

 

PCO Analysis  

 

 The PCO scores plotted for NDVI, NDWI and MSI indices are presented in Figure 5. The 

plot shows the J2000 samples of natural forest, oil palm and rubber separated from the 

other sample periods, indicating their dissimilarity, which is driven by the higher values of 

NDVI and NDWI. In the PCO analyses, the first two principal coordinates explained 83.7% 

and 9.4% of the variance, respectively. 

 Correlation (r2)  
MODIS Images NDVI vs NDWI NDVI vs MSI 

J2000 0.99 –0.96 
M2005 0.99 –0.61 
 A2005 0.99 –0.68 
M2009 0.95 –0.12 
 M2011 0.16 –0.40 
 S2000 0.24 –0.00 
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Figure 4. Correlation results for M–SWM index with satellite indices for the three habitats 
studied: (a) NDVI, (b) NDWI and (c) MSI.   
 
 

5. Discussion  

 

 Because the impact of drought is usually first apparent in agricultural areas (Bhuiyan 

et al. 2006), using an area such as oil palm and rubber plantations to develop a key indicator 

for drought classification makes sense both scientifically and economically. The variables 

integrated into the M–SWM index resulted in an indicator that successfully classifies levels 

of drought conditions using climatology and satellite indices of MODIS data.  
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Figure 5. PCO computed on Euclidean distance between NDVI, NDWI and MSI indices.  PCO1 
and PCO2 are the first and second principal coordinates, respectively.  The proportional 
variance explained by the principal coordinate is given in parentheses. 
 
  

A similar study from seasonal tropical forests (Asner et al. 2004), reported a close 

categorization of the dry category employed in this study, with the Amazon forests.  

Another study (Gu et al. 2007) found that a categorization assigned over the three different 

habitats (natural forest, oil palm and rubber plantations) can be accomplished using MODIS 

images. SPI was used here in combination with other inputs to the M–SWM in order to 

produce a more balanced view, since an SPI-based drought index would indicate a clear 

separation between drought and non-drought years but would ignore intermediate 

gradations.  Some authors (Almedeij 2014; Caccamo et al. 2011; Sani et al. 2012), however, 

have used the SPI alone to assess and monitor drought conditions in their regions. 

 

 Precipitation data used for drought index development showed a good agreement 

with other studies conducted in tropical regions during the drought season. Climate–

induced mortality events have occurred in various climates, wherever vegetation includes 

tropical rainforests with mean precipitation > 3000 mm/year (Allen et al. 2010).  Conversely, 
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another author (Mohamed et al. 2004) found a direct and immediate enhancement of 

vegetation production following a positive precipitation anomaly.  Meanwhile, the other 

major climate parameter in the study, the temperature plays an important role in forest 

areas that depend on high precipitation.  In our case, nearby water-dependent agricultural 

land may increase water stress for the forest in the presence of warmer temperatures 

during the drought season, by increasing agricultural irrigation.   

 

 There was also a strong correlation between NDVI and NDWI, as well as between NDVI 

and MSI, for the J2000 data which is the only Very Dry period in the study, with an M–SWM 

rating index of 16. The increasing NDVI values manifest as a “green–up” in the absence of 

precipitation, during the more severe drought periods.  Earlier, Huete et al. (2006) found a 

similar widespread greening in the dry season along the climate transect spanning central 

and eastern Amazon rainforests.  This effect can be attributed to the deeper root systems 

that trees in the studied habitats have developed, which gives them access to water 

resources during the monsoon drought periods.  Two other studies, (Breshears and Barnes 

1999; Rich et al. 2008), found that woody plants pursue a more gradual and steady growth 

trajectory, and are hence less reliant on precipitation input than is herbaceous vegetation.  

 

 Another plausible explanation of these high NDVI values may be changes in epiphylls 

(micro epiphytes colonizing leaf surfaces). Epiphylls decrease the NIR reflectance as well as 

the NDVI (Toomey et al. 2009).  On the other hand, Roberts et al. (1998) found that dry-

season leaf flush replacement of aging or epiphyll-covered foliage produces an increase in 

the NIR reflectance, and much smaller modifications in red reflectance.  Thus, the dry 

season leaf flush may potentially increase the NDVI of a tropical forest because this index is 

positively and strongly correlated with the NIR reflectance.  A recent study from seasonal 

evergreen forest sites (Galvão et al. 2011) detected an increase in canopy foliage during the 

dry season. 

 

 The PCO score plots showed a separation of the J2000 data from the other sample 

periods, which could be attributed to increasing NDVI and NWDI values during more severe 

drought periods.  In fact, during the start of the dry season, June to July, the most vigorous 

rubber trees succeeded in regenerating part of their canopy (Guyot et al. 2001).   
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In addition, Restrepo-Coupea et al. (2013) hypothesized that the seasonality of canopy 

photosynthetic capacity in tropical forests arises when the limiting resources for leaf growth 

are seasonal.  Other potential causes of the greening have also been identified, such as 

diurnal variability in leaf water (Frolking et al. 2011) or leaf chemistry and structure. The 

production of new leaves should occur during the season of maximal irradiance, which 

occurs during the dry season in our study area. This hypothesis agrees with our results 

because of the similar responses of natural forest, oil palm and rubber plantation habitats.  

This study also suggests that severe drought can even occur during the wet season of 

March-April (M2005).    

 

 The M–SWM index could be an important tool for detecting and monitoring drought 

in an area such as Malaysia and other locations with similar characteristics.  Therefore, the 

index can be a better tool for monitoring drought than any individual index alone. Such 

findings, however, should be accompanied by weather warning advisories derived from 

knowledge of within–season rainfall characteristics such as length of growing season, for 

effective agricultural planning.  

 

6. Conclusion  

 

 A drought classification system of M–SWM was produced for the study area. Although 

the classification was associated with low satellite and M–SWM index correlation, the 

developed index still proved useful in classifying levels of drought conditions.  It can be 

concluded that this model performed adequately in classifying the months subject to higher 

drought ratings.  The results also classified July as the driest month, based on the M–SWM.  

 

 The study demonstrated that the integration of SWM, SPI, mean precipitation and 

temperature and spectral indices correlation analysis is effective in increasing the model 

sensitivity.  The integration of the climatological and satellite remote sensing indices in this 

study made it possible to create an effective drought assessment tool for this study area, 

which could assist the Malaysian Meteorological Department in classifying months with the 

probability of extreme dryness. The results of this study can be used to support 
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governmental policies for responding to climate change, particularly to more extreme 

drought seasons. 
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Abstract 

 

Tropical forests support core biological, hydrological and socioeconomic functions 

essential to life on earth.  An assessment based on the Human Appropriation of Net Primary 

Production (HANPP) could help reduce exploitation of these forests, increasing their 

adaptive capacity and lessening their vulnerability to losses of Net Primary Productivity 

(NPP).  Here we apply HANPP to the study area, based on Land Use Impact variability 

between the forest and contiguous roads and plantations by application of Geographical 

Information Systems of Protected Area Tools.  We used the human activity index and 

biomass extraction from forest to study the effects of population pressure. The final land use 

impact map showed that the largest area of forest land (37%) is now in urban and 

agricultural use, and that these areas are located within 0–3 km of the forest land.NPP with 

human intervention showed, total NPP of the forest decreased by 7.4%, from 104.4 gCm-

2month-1 to 96.6 gCm-2month-1. This study developed a new HANPP model and enhanced the 

usefulness of HANPP indicators by demonstrating the impact of human activity inside the 

forest.  Because NPP changes most in higher–productivity areas, suitable policies should be 

enforced to avoid further human interference in the area.   
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1. Introduction 

 

Tropical forests are essential for sustaining hydrological, climatic and biogeochemical 

cycles (Huete et al. 2008). They also provide resources for fulfilling human biological and 

social needs in the form of, for example, fresh clean water, food and recreational areas. 

However, a rising human population, along with economic and social development, is 

causing increased demand for food, fibre and energy, resulting in the expansion of land 

dedicated for both agriculture and urbanization, including both buildings and infrastructure.  

Exactly how the human system affects the environment, though, is determined by factors 

such as the social and economic situation of individual households and communities, their 

geographical locations and cultural backgrounds (Seppala et al. 2009). 

 

Malaysia is projected to increase its population by 13.3%, to 32.4 million people, by 

2020, and another 19.1%, to 38.6 million, by 2040 (World Population Review  2014).  This 

rapid population increase will require extensive new housingconstruction, with consequent 

pressure on forest biomass resources. This pressure, combined with inadequate policy 

enforcement in forested areas, could result in serious disturbance to forest ecosystems.  In 

addition, the trend toward developing renewable energy resources in order to reduce 

greenhouse gas (GHG) emissions is leading to an increase in the use of biofuels, putting 

further pressure on forest biomass and not only in Malaysia.  Elsewhere, in the tropical 

forests of Africa, for example, where about half of the 2.6 billion people live without access 

to electricity, most of the population relies on the traditional use of biomass for cooking.  

Such increased direct use of biomass will contribute to an estimated 20% rise in energy–

related CO2 emissions by year 2035 (International Energy Agency 2013).  

 

Net Primary Productivity (NPP) is the amount of biomass produced by green 

vegetation, which provides the chemical energy driving most biotic processes on earth 

(Krausmann et al. 2008; Potter et al. 2013).  Meanwhile, Human Appropriation of Net 

Primary Production (HANPP) is an indicator used for measuring human impact on NPP, 

including (1) the human impact of land use changes (NPPLC) (land conversion) and (2) the 

harvesting and destruction of forests (NPPh) (Haberl et al. 2011).  A study by Krausmann et 
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al. (2008) provided an extensive analysis of the effects of timber extraction, by merging used 

and unused timber in order to estimate the removal and use of biomass from forest, known 

as Total Biomass Appropriation (TBA). 

 

Rapid social and climate change, however, has made it difficult to determine how 

human and natural systems interrelate, and little effort has been put into such studies (Su et 

al. 2012).  Nevertheless, the introduction of human dimension measurement, the Human 

Development Index (HDI), introduced by the United Nations Development Program (UNDP), 

has resulted in further studies in the field of human–environmental inter-relations.  

Moreover, since the concept of HANPP was first introduced, researchers have begun 

mapping HANPP variability using Geographical Information System (GIS) technology.  A study 

by Etter et al. (2011) developed maps based on integrating multi–biophysical variability, land 

use type and intensity for human footprint assessment.   

 

Recent studies found proximity analysis to be useful for assessing human influence on 

ecosystem services in China (Su et al. 2012; Yang et al. 2014; Zhou et al. 2015).  Elsewhere, 

the human impact on NPP has received a great deal of attention in drier areas of the world, 

such as in the semi–arid regions of Spain (Schwarzlmüller 2009).  Comparatively little study 

has been conducted in tropical forest areas, although some studies include tropical forests in 

a more global overview (Erb et al. 2009; Krausmann et al. 2008).  

 

Therefore, given this background there is an urgent need for assessing and developing 

maps of human impacts on NPP incorporating human activity and network influences, to 

estimate HANPP in tropical forest areas.  The objective of the present study was to develop a 

method that calculates HANPP and to map HANPP for the study area using a MODIS 

(Moderate Resolution Imaging Spectroradiometer) satellite image. 
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2. NPP and Human disturbance  

 

The calculation of NPP from remote sensing images is usually based on the analysis of 

low–resolution, high–spectral satellite images, such as these provided by MODIS (Anaya et 

al. 2009; Hazarika et al. 2005; Landmann and Dubovyk 2014; Liu et al. 2014).  MODIS has an 

excellent spectral range and is suitable for this application in tropical forests (Biudes et al. 

2014).  The MODIS product, MOD09A1 (Surface Reflectance 8–day L3 Global), at 500-metre 

resolution has become a standard for forest canopy and area study in tropical forests 

(Joseph et al. 2012; Xiao et al. 2005) and elsewhere (Kimball et al. 2006).  Other satellites 

such as SPOT (Satellite Pour l’Observation de la Terre), NOAA AVHRR (National Oceanic and 

Atmospheric Administration Advanced Very High Resolution Radiometer) and Landsat ETM+ 

(Enhanced Thematic Mapper Plus) with lower spectral ranges are not suitable for this type 

of application.   

 

Spectrally, the main advantage of MOD09A1 is the large number of spectral bands, 

including red and infrared bands, which make it ideal for quantifying NPP on the land 

surface.  In particular, MOD09A1 is operates with 36 spectral bands with wavelengths from 

0.41 to 14.4 µm (Xiong et al. 2009).  Band infrared and red in MODIS is usually best for 

studying vegetation dynamics, as demonstrated by recent studies (Fabricante et al. 2009; 

Rulinda et al. 2012).  Many studies used MODIS to derive vegetation index the Normalized 

Difference Vegetation Index (NDVI) by using a band combination of near infrared and red, as 

demonstrated by various studies in the Sahelian region, the Mediterranean Basin and 

Austria, respectively (Clerici et al. 2012; Fensholt and Sandholt 2003; Matsushita et al. 2007) 

which further used NDVI for NPP modelling (Donmez et al. 2011; Handcock and Csillag 

2004).  MOD09A1 data provide an appropriate way to derive NDVI and are also valid for 

estimating NPP due to 8–day and 16–day data availability.   

 

HANPP is an indicator of changes in the availability of energy in tropical ecosystems 

induced by land use (Harberl et. 2004; Krausmann et al. 2008).  This type of cartography 

helps identify of the land degradation and land conversion.   In addition to the use of 

remote sensing in estimating NPP, the use of GIS has made it possible to combine several 
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human influence parameters in order to produce HANPP for specific areas.  The main factors 

included in the development of HANPP in this study are the human activity index, and the 

influenced human population and roads or settlements (Su et al. 2012).  In particular, the 

use of proximity analysis has made it possible to produce HANPP modelling for example, 

distances to roads, buildings settlements and towns (Etter et al. 2011; Su et al. 2012).  Vu et 

al. (2014) assessed human–induced biomass productivity decline using physical accessibility 

to land, such as proximity to roads and towns that assist in the social–ecological 

development of agricultural and forested zones in Vietnam. 

 

Moreover, a study by Lele et al. (2010) incorporated population density to analyse 

forest change in Cauvery Basin in India. Few studies include the biomass extraction indicator 

in their HANPP model, although Krausmann et al. (2008) and Schwarzlmüller (2009) applied 

the indicator in their studies. 

 

Large–scale timber extraction, agricultural expansion and infrastructure development 

are recognised as the major drivers of tropical deforestation (Geist and Lambin 2002).  For 

example, infrastructure developed at forest plantations, perennial crops and annual 

intensive agriculture play a major role in assessing ecosystem and landscape responses to 

human disturbance (Etter et al. 2011).  Meanwhile, Zhou et al. (2014) in a human 

contribution and climate study in northwest China, combined actual NPP, potential NPP and 

a dynamic desertification model to quantify the relatives influence of human activity and 

climate for each region.   

 

 HANPP with its different categories is important for ranking NPP, which can decrease 

in the face of human activities.  A study by Wrbka et al. (2004) scaled HANPP to categorize 

the study area at different land altitudes in Austria. Researchers set great value by the 

HANPP map because the indicators can be used to bring ecological constraints and their 

potential implication for human well–being to the attention of a wider audience such as 

policy makers both, private and government sectors (Haberl et al. 2004).  These indicators, 

have been identified as being useful to combat biomass productivity degradation (Vu et al. 
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2014).  Policy makers often need information about areas of severe degradation in order to 

prioritize national budgets and plan strategic interventions (Le et al. 2012).  

 

For example, the National Biodiversity Policy 1998 (NRE 1998), which was formulated 

to protect Malaysia’s flora and fauna, will become more significant in the coming years only 

if it takes a broader approach, taking into consideration on all forest user sectors, for 

example, local peoples, aboriginal inhabitants, tourists, business and policy makers.  In 

addition, Qasim et al. (2013) has identified institutional factors and policies as underlying 

factors for biomass removal from forest.  The analysis showed the ineffectiveness of forest 

management systems such as the Forest Policy of North West Frontier Province in Swat, 

Pakistan, where rules in the policy are almost totally ignored.  This is because the forest area 

is harvested at a higher rate than the government records.  There are no doubts that HANPP 

is important for policy development.  However, Haberl et al. (2004) found the HANPP 

concept too incomplete to provide specific and comprehensive policy guidance. 

 

3. METHODS AND DATA 

Study area 

 

Located in Southeast Asia region, in the western part of the Peninsula Malaysia, the 

Pasoh Forest Reserve (PFR) (2°58'N, 102°18'E) is covered with lowland mixed dipterocarp 

forest, generally known as tropical evergreen broadleaf forest (Fig. 1).  The area includes 

various species of Shorea and Dipterocarps (Kosugi et al. 2008).  The PFR is generally 

characterized by the peninsular climate—warm, with an annual mean temperature of 26.3°C 

(measured in 2002–2005).  Land uses in this area consist of rubber and oil palm plantations.  

From 1975 to 1995 the area dedicated to oil palms grew for 568,561 ha to 1 million ha, all 

converted from natural forest (Wahid et al. 2002). 

 

The population in this area is projected to rise from 0.83 to 1.03 million people, at 

approximately 1.7% per annum, between now and 2040.  Since the 2000s, the number of 

pave roads in all the states of the Peninsula Malaysia has increased dramatically (64,404;  
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92,438 and 108,301 km in 2000 to 2009 and 2011, respectively) (Department of Statistics 

Malaysia 2012).   

 

Quantification of Net Primary Productivity 

 

NPP is usually calculated based on the Light Use Efficiency (LUE) model with the 

assumption that rates of primary productivity are proportional to the rates of solar radiation 

absorbed by vegetation (Potter et al. 2012; Sakamoto et al. 2011).  In our work, we 

calculated NPP using the MOD09A1 product at 500 m resolution, inter–calibrating the data 

with other data from NOAA AVHRR and to field census data as in Huete et al. (2002).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Study area with central point. 

 

The MODIS satellite instruments were built with special attention paid to the 

structure’s thermal sensitivity and the mechanical isolation of the instruments and 

spacecraft components.  This makes MODIS suitable for multipurpose forest canopy and 
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surface studies (Biudes et al. 2014; Fensholt and Sandholt 2003).  The MOD09A1 500 m 

resolution was chosen because it covers the whole study area with one scene, including the 

time needed for image pre-processing.  The resolution is suited to the context of tropical 

forest, as previously found in a study conducted in French Guiana (Pennec et al. 2011).   

 

 We estimated the NPP for 2000 because the year was "normal" with no drought 

events reported and based on the limited availability of MODIS data.  In tropical forest areas, 

good–quality satellite data are often particularly difficult to obtain due to heavy cloud cover 

conditions (Huete et al. 2008).   To carry out the objective, one of the MOD09A1 image 

acquired in 2000 was used for the study area.  Other MODIS images, for example 2005, 

provided lower NDVI values due to reduce of water availability, which alters vegetation 

greenness (Caccamo et al. 2011).  Similarly, Nepstad et al. (2004), who investigated the 

response of Amazon forest to drought, found that severe moisture deficits in tree stem–

wood can decrease annual carbon storage.  In addition, Malaysia experienced a severe 

drought in 2005 that affected the vegetation growth of agricultural industry crops (DID 

2005). 

 

First, a cloud removal analysis was conducted using masking procedure techniques in 

Exelis Visual Information Solution (ENVI).  The forest study area was demarcated by 

employing the National Forest Inventory Series 4 for Malaysia forest using "forest reserve 

boundary" layer obtained from Forestry Department of Peninsula Malaysia.  In this study, 

GPP was estimated using the following equation (Xiao et al. 2004): 

 

𝐺𝑃𝑃 = 𝑓𝐴𝑃𝐴𝑅 × 𝑃𝐴𝑅 =  𝜀 × 𝐴𝑃𝐴𝑅      (1) 

 

Where, the LUE (ɛ) equation highlights an important element of the radiation regime 

for tree growth: (i) incoming photosynthetically active radiation (PAR) (gMJ-1m-2) and (ii) the 

fraction of PAR intercepted by foliage (Fraction of photosynthetically active radiation or 

fAPAR).  PAR was derived from a reduction of 50% of solar radiation collected from Pasoh 

Forest Reserve climatological station.  We obtained the absorbed fraction of 

photosynthetically active radiation (APAR) (gMJ-1) by multiplying the two most important 
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elements of radiation, fAPAR and PAR (Coops et al. 2010).  In this study, LUE was calculated 

as (Handcock and Csillag 2004): 

 

𝐿𝑈𝐸 = 0.8932 + 𝑇𝑀𝑜𝑛𝑡ℎ + 0.0015 (𝑃𝑅𝐸𝐶𝐼𝑃𝑀𝑜𝑛𝑡ℎ) −  0.002 (𝐺𝐷𝐷)  (2) 

 

Where, the LUE (gMJ-1) equation was derived using a study by Band et al. (1999).  

TMonth is the monthly temperature in Celsius (oC); PRECIPMonth is the monthly precipitation in 

millimetres (mm) and GDD is the average number of growing degree days.  GDD was based 

on literature on the growth of tropical forests (1%), and was set to 1 based on a study 

conducted in several tropical forests, where growth of the aboveground biomass was about 

1% to 2% (Clark et al. 2001).   

 

The fAPAR was calculated based on a study by (Goward et al. 1994).  In this work, 

fAPAR was calculated as: 

 

𝑓𝐴𝑃𝐴𝑅 = 1.21 × 𝑁𝐷𝑉𝐼 −  0.04       (3) 

 

Equation 3 was applied to the study area which shares many climatic characteristics 

with the Mixed Plains ecozone in Ontario, Canada (long growing season and warm summers 

and abundant precipitation throughout the year).  A study by Rasib et al. (2008) used 

Equation 3 to derive fAPAR in a similar study area.   Elsewhere, in another study based on 

MODIS images, As-syakur et al. (2010) assessed the NPP for Southeast Asian countries with a 

closely related equation: fAPAR = 1.075 x NDVI–0.08.  Similarly a study in a similar area 

conducted by a group of NPP researchers used the equation: fAPAR = 1.24 x NDVI–0.168 

(Faidi et al. 2010).   

 

The NDVI was calculated as (Rouse et al. 1973): 

𝑁𝐷𝑉𝐼 =
(𝜌857− 𝜌645)

(𝜌857+ 𝜌645)
         (4) 

 

Where, ρ645 andρ857 are the reflectance of MODIS images at 645 nm (red band) and 

857 nm (infrared band), respectively.  The NPP (gCm-2month-1) was therefore estimated by 
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reducing the Gross Primary Productivity (GPP) by 50%.  This percentage was based on a 

study by Rasib et al. (2008) conducted in a similar area, and chosen after an extensive 

literature survey.  The NDVI of MODIS was used to calculate fAPAR because it is related to 

vegetation development, vigor and biomass (Prince and Goward 2011; Rulinda et al. 2012). 

In this study, we classify NPP based on Natural Breaks (Jenks optimization) applied in 

ArcMap.  A study by Potter et al. (2013) used this approach to divide NPP into low, 

moderate and high production forest categories in tropical forest of Southeast Asia.  The 

method minimized the average deviation of each class, while maximizing each class’s 

deviation from the means of the other groups (Jenks 1967).  The quantitative classification 

applied to the NPP values is intentionally based on assignment of NPP range, namely highest 

range as "very high" and the lowest range as "very low". 

 

Quantification of Human influence 

Land Use Impact (LUI) 

 

Man is the dominant factor in determining the extent of the world’s forests through 

forest clearing (UNDP 2013).  Human influence on forests can be measured using HANPP, 

which links: (1) the alteration of NPP through human–induced land use or land cover 

changes and (2) the extraction and destruction of forest biomass by human activities (Erb et 

al. 2009; Kastner 2009). 

 

To determine this impact, we first assessed land use changes, assigning to human 

access points, as defined by (1) distance to roads, (2) distance to urban buildings, (3) 

distance to rubber plantations, and (4) distance to oil palm plantations (Table 1).  

Agricultural expansion, infrastructure development and wood extraction are the obvious 

impact factors for land use changes (Qasim et al. 2013).  The above criteria were selected 

and represented in point format.  The data were digitized by Malaysian Survey and Mapping 

Department based on the location of urban buildings (JUPEM 2000).  

 

All datasets were placed into the same 500 m grid buffered using the Multiple Ring 

Buffer tool in ArcMap in ArcGIS 10.0.  The distances were set to 500 m in the dialog tools.   
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The data was classified into six levels of human-influenced, for every 500 m, from the value 

1 (indicating very low human impact) to 6 (indicating very high human impact on the forest 

area), as shown in Table 1.  Among these 4 land use impacts, urban building was difficult 

features to quantify and so we limited the distance buffer to a maximum of 2500 m, and a 

score value of 5. After weighting all the layers, we classified the values using the qualitative 

model developed by Mansor et al. (2004) and Razali et al. (2010), using the term of "low", 

"moderate", "high", "very high" and "extreme" disturbance.  Finally, we calculate area 

percentage for each of the classification. 

 

Table 1. Land Use Impact variables used in the study. 

Variable/type of measurement Distance (m) Score  
 
(a) Distance to roads/line 
(b) Distance to urban buildings  (settlements, 

shops)/points*) 
(c) Distance to rubber plantation/points 
(d) Distance to oil palm plantation/points 

0–500 6 
500–1000 5 

1000–1500 4 

1500–2000 3 
2000–2500 2 
2500–3000 1 

Note:* Maximum distance buffer; 2500 m, and Maximum score 5. 

 

In addition, we incorporated roads in the model because roads are important factors in 

reducing of the total area of an ecosystem, reducing in forest productivity by converting 

forest into an artificial surface (Valente and Vettorazzi 2008).  Roads can be helpful in serving 

to society, but a threat to the forest.  Many areas are deforested at lower altitude in Tarai, 

Pakistan, which has been mainly attributed to their accessibility by roads (Bhattarai et al. 

2009).  Urban buildings are an additional factor in modelling HANPP.  Study by Mon et al. 

(2012) conducted in Myanmar, found that a 1 km  increase in the distance to the nearest 

town decreased the probability of deforestation by approximately 6%.  Moreover, they 

reported that cultivated land or areas of permanent agricultural expansion in low lying areas 

is one of the factors contributed to forest degradation, thus decreasing NPP.   

 

 

 

Human Activity Index (HAI) 
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Secondly, we developed HAI index incorporating four human behaviour parameters 

that modify the environment.  The index was based on the year 2000, because of the 

availability of MODIS satellite data.  The equation was adapted from a method implemented 

in China, with the human population given a scale factor of 0.3 and road influence a scale 

factor of 0.2 (Su et al. 2012).  The equation developed for HAI is as follows: 

 

𝐻𝐴𝐼 =  𝑃(0.3)  +  𝑅(0.2)  +  𝐻𝐷𝐼 +  𝑇𝐵𝐴       (5) 

 

Where, P, R, HDI and TBA are the total human population of the area, road influence, 

the Human Development Index and Total Biomass Appropriation, respectively.  Total 

population is recognized as structure and dynamic factors (Vu et al. 2014).  Based on the 

Present Land Use map of Negeri Sembilan 2004 from the Department of Agriculture 

Malaysia, we identified all the paved roads as ‘county and township roads’, thereby 

quantifying the influence as 500  as shown in Table 2.  The extent to which each road type 

corresponded to human influenced was based on a dimensionless value.  The weight was 

ranked on a scale of 0–1200 (Hu et al. 2007).  After that, based on the influence value we 

derived the rate of human influence by using roads to the forest area by assigning scores, 1 

indicating low human influence and 7 very high human influences.  HDI was used as a 

measurement index for assessing progress in three basic dimensions of human 

development—namely, a long and healthy life, access to education, and a decent standard 

of living for all countries in the world (UNDP 2013).  The index is measured on a yearly basis 

and each country is given a rank compared to all other countries.   

 

Table 2. Road network influence and classification (Hu et al. 2007). 

Road rank Influence a Score b 
High–grade highway 12000 7 

National highway 10000 6 
Railway 10000 5 

Provincial highway 800 4 
County and township 

road c 
500 3 

Cart road 300 2 
Dirt road 200 1 

a Defined as a dimensionless value by Hu et al. (2007). 
b Developed in this study. 
c Road identified for this study. 
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TBA represented the total amount of biomass harvested from the forest (Erb et al. 

2009), for example, the extraction of forest products by local people for food, hand crafts, 

tools, fuel, grazing of livestock, etc. The TBA is very important for forest-dependent poverty-

stricken populations, for example in Africa.  The community is already vulnerable to climate 

change, which has forced them deeper into the forest to find marketable forest products, a 

situation exacerbated by lower government support and subsidies.  The following formula 

was use to derive the TBA: 

 

𝑇𝐵𝐴 =  
(𝑈𝑠𝑒𝑑 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛) + (𝑈𝑛𝑢𝑠𝑒𝑑 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛)

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
   (Krausmann et al. 2008)  (6) 

 

Most importantly, the TBA calculated for this study encompassed the most critical 

forest-related elements, (1) wood removal (used extraction, UE), and (2) unused below-

ground and felling losses in the forests (unused extraction).  The TBA elements in 2000 were 

summed and finally divided by the number of population living in Negeri Sembilan.  The data 

was entered into Microsoft Excel and calculated based on data provided by the Institute of 

Social Ecology, Vienna (Krausmann et al. 2008).  In this way, the biomass consumed per-

capita in Negeri Sembilan for the year 2000 is derived for the study.   

 

HANPP using Environment Risk Surface of PAT tool 

 

In this calculation ArcGIS 10.0 was used to perform all the analysis.  To analyse forest 

areas we extracted forest pixels from the National Forest Inventory Series 4 for Malaysia 

forest using "forest reserve boundary" polygon obtained from the Forestry Department of 

Peninsula Malaysia using Extract tools.  The LUI was weighted using the linear decay function 

by applying the Environmental Risk Surface model provided by Protected Area Tools (PAT) in 

ArcGIS 10.0.  The equation developed for HANPP was: 

 

 

𝐻𝐴𝑁𝑃𝑃 = 𝐿𝑈𝐼 + 𝐻𝐴𝐼 (1) 
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Where, LUI and HAI are Land Use Impact and Human Activity Index, respectively.  This 

model consisted of intensity value and influence distance elements to calculate LUI values.  

The intensity value represents the relative level of threat that the risk element poses to the 

forest, which in this study was the distances from roads (e.g., 0–500 m).    It is important to 

remember that the distances generated do not represent an absolute measure of human 

impact on NPP but it could be a guide.  The influence distance of each variable was assigned 

to determine spatial extent of the activity in the forest, representing the maximum distance 

at which the element has a negative impact on forest NPP, which in this study was 3000 m.  

The buffer effected increased with distance from the centre of the area (e.g., oil palm) 

where the targeted element is located.  At the same time, the intensity value diminishes 

gradually, which is known as the distance decay or decay function.  Therefore, the impact on 

the forest gradually decreases away from the area studied (McPherson et al. 2008) (Table 3).  

After that, the accumulated values were weighted and incorporated with the HAI values to 

develop a single layer using Map Algebra tools.  Then HANPP classification was made by 

grouping the HANPP values of the integrated layers based on the degree that each is 

considered to be a threat to the forest.   

 

A similar qualitative model to that developed by Mansor et al. (2004) and Razali et al. 

(2010),  combined with the Natural Breaks classification approach, was used in this study, 

using the classification terms "low", "moderate", "high", "very high" and "extreme" rather 

than the numbers 1 through 5.  In this way, the range 19.2–27.2 was classified as "extreme"; 

range 15.2–19.2 as "very high"; range 12.2–15.2, 8.2–12.2 and 5.2–8.2 as "high", 

"moderate" and "low", respectively.  The percentage for each of the classifications was also 

measured.  Furthermore, we calculated the NPP value of human influence by subtracting 

HANPP from NPP.  In addition, to analyse spatial difference in NPP (modifying by HANPP), 

the NPP map was also subtracted from the HANPP one.  Finally, we conducted a correlation 

analysis of NPP pixels with the HANPP for the study area. We separated the analysis into: (1) 

"very high" and (2) "high", "moderate", "low" and "very low" classes.   

 

Data sources 
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The MOD09A1 data acquired in 2000 was retrieved from the website of the United 

States Geological Survey (https://lpdaac.usgs.gov/data_access) and the NPP values were 

derived from these data.  Human population data for Malaysia and Negeri Sembilan for 2000 

were obtained from the Department of Statistics Malaysia (http://statistics.gov.my).   

 

Land use map data were digitized by the Malaysian Survey and Mapping Department 

(JUPEM 2000).  The data used in this study corresponded to the period 2000–2008, and 

were obtained from the Sultan Abdul Samad Library of Universiti Putra Malaysia, Serdang, 

Selangor.  The data, taken in CAD format, contained four series of 3957b, 3957d, 4056a, and 

4057c.  We assumed that the land taken for urbanization grew at an average rate of 2.8% 

from 2000 to 2010, as reported by the Federal Department of Town and County Planning 

(FDTCP 2003).  Similarly, Jaafar (2004), who investigated the trends of urbanization in 

Malaysia, assumed that the average growth rate of urbanization was 2.2–2.9% between 

1980 and 2000.  According to the report, such changes were only associated to the growth 

of isolated and small towns, which excluded conversion of forest land to agriculture. 

 

The HDI of Malaysia for 2000 was taken from UNDP 

(http://hdr.undp.org/eng/countries) from the Global Pattern of Socioeconomic Biomass 

flows for the year 2000, provided by the Institute of Social Ecology, Vienna (Krausmann et al. 

2008).   

 

MODIS image pre-processing and classification 

 

Isolated clouds identified based on a comparison with the Present Land Use map of 

Negeri Sembilan acquired in 2004 by focusing on visible and infrared bands during the 

procedure (band 1, band 2 and band 6).  Moreover, we conducted image enhancement using 

band combination techniques: (i) 1, 4, 3 (true colours), (ii) 7, 2, 1 and (iii) 2, 6, 1 for our 

image to further detect contaminated areas.  Later, we used blue band reflectance to 

eliminate the contaminated pixels.  Pixels with reflectance values of > 0.2 were eliminated 

from the image using a masking procedure (Xiao et al. 2005).  Using the land use map that 

depicted forest polygon, bands combinations and single blue band we focused on forest area 

to further validate the masked areas.  This is because in moist tropical forests areas satellite 

https://lpdaac.usgs.gov/data_access
http://statistics.gov.my/
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remote sensing images is frequently associated with cloudiness problem.  In addition, the 

image was enhanced using histogram equalization for further image interpretation and 

classification into forested areas (Tseng et al. 2008).  Iterative Self-Organizing Data Analysis 

Techniques (ISODATA) were used to classify the image into forested areas (Razali et al. 2014).     

 

 

4. Results 

Land Use Impact (LUI) 

 

LUI distances for all the variables ranged from 0 to 3000 m, in 500 m increments, 

indicating the distance from the point or layer to the forested area, using 1 as the lowest 

influence value and 6 as the highest in LUI, except for urban buildings, where the lowest 

value was 5 (Fig 2a-e). Road buffer is the land nearest and contiguous to the forest area, 

excluding other buffer layers.  The maximum accumulation of the index was 23 (Table 3).   

 

Table 3. Human land use impact from LUI variables applied in Protected Area Tools.  Grey is 

high land use impact and dark is low land use impact. 

 
Distance decay 

 
Intensity Value 

 

Variable 
                                Buffer distance (m) 

0–500 500–1000 1000–1500 1500–2000 2000–
2500 2500–3000 

Road 6 5 4 3 2 1 
Urban x 5 4 3 2 1 
Rubber 
plantation 6 5 4 3 2 1 

Oil Palm 
plantation 6 5 4 3 2 1 

Total Influence 
Values 23 Other Weighting Values 1 

Human Impact 
to forest NPP 

 
Very high land use impact                  Very low land use impact 
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The LUI map shows values from 1 to 23, with 1 indicating the lowest and 23 the 

highest land use impact on the NPP of the forest.  As can be seen from Fig. 2e, the LUI was 

classified into "low", "moderate", "high", "very high" and "extreme".  The area outside the 

buffer area, for which there were no data, was calculated as 0.   

 

The LUI that were generally concentrated at the edge of the forest, with values greater 

than 10 are "very high" and "extreme" classes.  The  LUI values that were located in the 

middle towards the southern edge of the forest, are the values of 1 to 10 ("low" to "high"); 

these were located 3000 m or more from roads, urban buildings, rubber plantation and the 

oil palms buffer.  LUI values of 7–10 classified as "high" occupied the largest part of the 

forest—37%, followed by values of 14–23 classified as "extreme" occupied the smallest 

area—8%. LUI values of 1–2 and 2–7 for "low" and "moderate" classes covered 11% and 25% 

of the study area, respectively.  Meanwhile, the LUI values of 10–14 for "low" class covered 

another 10% of the area (Fig. 2e). 

 

Human Activity Index (HAI) 

 

The population in 2000 for Negeri Sembilan was used as representative for the study 

area, encompassing 0.83 million people, or 3.7% of the 22.0 million population of Malaysia.  

TBA per capita for 2000 for Negeri Sembilan was 1.66 metric tonnes per year (t/cap/year). 

The HDI utilized in this study was 0.712 for Malaysia as a whole and the final value of the HAI 

index for the study area was 4.221. 

 

Human Appropriation of Net Primary Production (HANPP) 

 

The HANPP index is classified into five classifications based on Natural Breaks, with 5.2 

indicating the lowest and 27.2 as the extreme value.  The final HANPP map is shown in Fig. 3. 

In this study, the HANPP "extreme" covered 13% of the forested area, found primarily along 

the edge of the forest.  The range "very high" covered 22%, very similar to the "high" class at 

23%.  Moreover, "moderate" and "low" covered 33% and 9%, consequently "low" was 

characterized as the smallest proportion, 9%, situated in the southern part close to the area 
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outside the buffer zone.  In the study, LUI classified as "low" and "high" covered an area of 

11% and 37%, respectively, while HANPP used 9% and 23% for the same classification.  

 

Based on the results, these classifications recorded decrement of their coverage at 2% 

and 14%.  In other hand, "moderate", "very high" and" extreme" recorded increment of 4%–

8% of the forest area.  Therefore, authorities should introduce new guidelines and policies 

by assigning specific HANPP classifications for each of the forest areas.  
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Figure2.(a-d) LUI variables buffered and (e) final accumulation of LUI. 
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Figure 3. HANPP map with values, classification and percentage of occurrence. 

 

Net Primary Productivity (NPP) 

 

Using the Natural Breaks classifier, five NPP classes were derived: "very low", 

"low""moderate", "high" and "very high".  After alteration by the HANPP index which is 

finally known as NPP with human intervention, the NPP is decreased for "very high" area, 

nevertheless increased for the other areas.  Detail of the classification and results for NPP 

alteration are shown in Table 4 and Fig. 4. 

 

 

Table 4.NPP and NPP with human intervention. 

  NPP Coverage (%) 
Classification NPP (gCm-2month-1) NPP Human 

intervention 
Alterati
on 

Very High 202.2–213.5 54.7 1.1 – 53.6 
High 192.1–202.2 18.4 31.5 + 13.1 
Moderate 180.3–192.1 17.8 39.3 + 21.5 
Low 162.1–180.3 6.8 21.8 + 15.0 
Very Low 133.4–162.9 2.3 5.3 + 3.0 
Unclassified  (new 
classification) 

< 133.4 – 1.0 – 
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Meanwhile, the elevation and the results of the NPP maps are shown in Fig. 5a and 5b.  

The "very low", "low""moderate" and "high" were very closely located; however, "very high" 

NPP values were dispersed over a much higher gradient, and the values decreased as the 

gradient declined from north to south-west, from 463–780 to 92–176 metre above sea level 

shown in the NPP map. 

 

Figure 6 shows the NPP with human intervention map that permitted interpretation of 

the impact of human influence on NPP for the study area.  The main impact of human 

intervention was located in the forest with "very high" NPP, which was transformed to 

"moderate" and "high".  The "very high" NPP was reduced in testimonial area (1.1%) located 

on the decreasing level of altitude at about 92–176 meter above sea level.  The results 

showed the areas shifted further southward in the NPP with human intervention map.  

Overall, NPP is seen to be changing in high productivity areas.   

 

Moreover, the map showed the new NPP classification (unclassified) substitute in the 

centre of the "very low" area (1.0%).  As anticipated, "low" used additional areas in the 

NPP Classification

Very Low Low Moderate High Very High Unclassified 
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Figure4. Pixel counts in NPP and NPP with human intervention. 
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northwest replaced "high" and "moderate"; and "low" circulated within the "very low" at 

the lower altitude, that similarly occurred for both occasion. 

 

The correlation analysis showed no significant correlation between NPP pixels and the 

HANPP index for this study, R2 = 0.0039: "very high" pixels and R2=0.0027: "high", 

"moderate", "low" and "very low" pixels respectively.  Therefore, these results demonstrate 

a poor relation between NPP and HANPP index.  This is because the NPP calculated in the 

study is depending on climate impacts such as water stress, meanwhile HANPP index is 

expressed as the value that relying to the rate of human accessibility to the forests (ie. 

distance to roads).   

 

 

 

(a)                                                                   (b) 

Figure 5.Elevation of the study area derived from Digital Elevation Model (DEM) provided by 
Shuttle Radar Topography Mission (SRTM), 300 m.  The data was collected from CGIAR 
Consortium for Spatial-Information (CGISR-CSI) (a) and NPP classification (b). 
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The map suggests that a forest conservation strategy needs to be implemented to 

restrict access to high potential human impact areas such as those containing roads to 

preserve NPP for the area.  The global impact in the studied area showed that the total 

calculated NPP decreased by 7.4%, from 104.4 gCm-2month-1 to 96.6 gCm-2month-1.   

 

 

 

Figure 6. NPP with human intervention after application of HANPP index for the study area. 

 

5. Discussion 

 

Past studies have used various variables for assessing HANPP; for example, 

socioeconomic factors, including human population pressure (Kastner 2009), human 

activities (i.e. road construction, soil removal) combined with human population pressure 

(Su et al. 2012), and land–use changes (Schwarzlmüller 2009).  In our study, roads presented 

the major human impact, with numerous roads connecting the forest and the human 

community within the 0 to greater than 3000 m range.  Heavily used roads may trigger land 

use changes in an area.  For example, roads may be built to initiate deforestation and forest 

fragmentation may occur if a forest is exposed to long-term human pressure (Qasim et al. 

2013). 
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The present study found that LUI variables demonstrated the impact of human 

activities in the study area.  The LUI map showed 37% of the forest to be classified as "high" 

LUI, implying that urbanization and agricultural use covered much of the forest.  The LUI 

input to the HANPP (roads, agricultural land and urban sectors) can be used to manage 

forest areas, a finding that agricultural managers and urban planners can use in planning 

development projects.   

 

The lowest human impact on the forest area of LUI variables is from urban buildings; 

most of them are widely scattered outside the forest and hence have only a slight impact on 

the forest area, at least as predicted from this model.  The distance of the urban buildings 

from forests create large gaps, providing spaces for the forest to persist without human 

interference.  Furthermore, roads leading to these buildings from forests tend to be short, so 

that the forest has more opportunity to thrive without human interference. 

 

The HANPP model with exploration of TBA and HDI to develop the HAI showed 

proportionately to the LUI results.  Nevertheless, comparison of the HANPP with the LUI 

map, reveals a major different in "high" areas, representing 14% of the area.  This showed 

that including TBA and HDI in the HANPP improves human disturbance analysis in the study 

area.  TBA is a global average measurement for used and unused biomass in the forest by all 

the human population in a given area and year (t/cap/year) (Krausmann et al. 2008): for 

example, timber removed from forests by legal loggers (used) and biomass left after logging 

activities (unused), such as  buttresses, damaged trunks and  other logging residues.   

 

In this study, the area percentage obtained from HANPP classification (Fig. 3) agreed 

with suggestion in a study by Haberl et al. (2004), which reported an HANPP threshold of 

20%.  As anticipated in Fig. 3, "extreme" HANPP occupied only 13% of the forested areas so, 

if we assign "extreme" HANPP as our "sustainability threshold", our HANPP estimation is 

below that which represents a risk of destruction.  A sustainability threshold is a physical 

indicator of environmental stress that has been suggested for inclusion in assessment of 

environmental stress (Srebotnjak et al. 2010). 
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 The HAI index is predicted to rise with the projected increase in Malaysia’s 

population from 28.6 to 38.6 million inhabitants, between now and 2040.  TBA per capita, by 

contrast, is expected to decrease with the increase in population. There will be exceptions, 

though: for example, development factors such as the construction of highgrade highways 

for a new city in the buffer zone in the study area could increase TBA.  Such increases, 

however, could be balanced with the introduction or improved of economic policies. For 

example, New Economic Policy of Malaysia implemented in 2012, aims to narrow income 

gaps, thereby improving livelihoods, life expectancies, economic prospects, and access to 

health services and quality education.  However, the removal or drastic reduction in 

government subsidies for fertilizer, for example, could influence the sustainability of paddy 

production, because farmers will not be able to buy their own fertilizer (Ramli et al. 2012).   

 

Therefore, this study enhanced the HANPP model by mapping human activity inside 

the forest, and by including further variables of the human dimension.  The LUI and HANPP 

map of "extreme" areas seems valid, as found in the other studies: the forest pixels located 

closest to villages were predicted to have a lower basal area than pixels at greater distances 

from the villages and the roads (Ingram et al. 2005).   This is most likely due to the ease of 

access to these locations particularly, at the edge of the forest that closest to villages or 

settlements.  Thus, the HANPP model seems valid for application in tropical forest with 

similar forests types to that of the study area.   

 

 Lack of awareness and inadequate enforcement of policies designed to protect 

restricted areas may expose forests to biodiversity loss and hence reduce their productivity. 

In Indonesia, for example, the main driving forces of forest loss in provincial areas are poorly 

controlled infrastructure development, mining, and conversion to crop plantations (Potter et 

al. 2013).  Although these activities are legal, they should be shifted from high productivity 

areas to lower productivity areas, as depicted in Fig. 5b.  Appropriate policies need to be 

developed and enforced, to avoid further negative human impact on the high productivity 

areas. 

 

By deriving NPP using the integrated MODIS NPP model, this study closely reflects the 

findings of a similar study performed in this forest, utilizing the Global Production Efficiency 
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Model (GLO-PEM) (Faidi et al. 2010).  Furthermore, because MODIS produces a high 

temporal frequency satellite image, and is freely available, this cost effective method can be 

further used within topical forests.  MODIS has in fact proved useful in assessing inter annual 

variability in productivity for tropical forests (Ichii et al. 2005).  A comparison of the NPP at a 

"very high" area at 500–600 m.a.s.l with the findings of another study shows that the higher 

the altitude, the lower the human pressure on the forest, thus preserving NPP (Bhattarai et 

al. 2009). 

 

GIS can provide integrated analysis of spatial data (Shalaby and Tateishi 2007).  

Weighting variables using the Environmental Risk Surface Generator provided by PAT in 

ArcGIS 10.0 software can then generate multiple calculations of variables.  GIS mapping is 

highly efficient and enables the higher productivity areas of NPP within forested regions to 

be highlighted.  This tool has enabled researchers to improve their representation of 

numerical classification ranges into easily interpreted multi coloured maps.  HANPP map is 

useful for forest managers to model human activity for designing policy, particularly in 

higher productivity areas.  More research should be initiated in the higher productivity 

areas, using biodiversity study techniques currently implemented only in lower productivity 

areas: for example, a floristic composition of lowland areas (Kochummen 1990); carbon 

exchange (Kosugi et al. 2008), and assessment of NPP using remote sensing (Cracknell 2010; 

Faidi et al. 2010). Quantifying and evaluating the spatially explicit impact of human activities 

on ecosystems can provide an information base to raise awareness and make decisions to 

protect the environment (Etter et al. 2011).   

 

Finally, the political sector needs to be involved, in order to put scientific principles 

into practice by enacting and enforcing supporting policies.  A number of studies have 

resulted in the enactment of new ecological conservation policies, such as the "Grain for 

Green Project (GfG)" for China (Su et al. 2012).   

 

Our study has proved that the HANPP index is an efficient indicator for assessing NPP 

when both socioeconomic (LUI, HAI) and MODIS data are taken into consideration.  This 

model, using the above variables to assess HANPP for the study area, will be particularly 

useful because the HDI index is available yearly (UNDP 2013).  A study by Hou et al. (2014) 



- 138 - 
 

found that HDI is increasingly used to assess a country´s human and economic development 

for setting human population goals or designing and evaluating policies.   

 

6. Conclusions 

 

A HANPP map was produced for the study area.  Although the HANPP map showed 

that most of the area that it classified as "low", "moderate", "very high" and "extreme" was 

proportionately to LUI results, the HANPP model still proved useful for forest management.  

It can be concluded that HANPP can be assessed using proximity analysis in GIS and 

employing the variables presented here.  Our findings suggest that maps are the best 

medium for representing HANPP classifications, and that MODIS satellite images are capable 

of providing economically viable NPP data to be used in the model.  The integration of 

MODIS high spectral data and GIS techniques in this study made it possible to create an 

effective HANPP model and to develop a detailed HANPP map for the study area.   

 

This study found that the most important approach is to maintain and provide policy 

enforcement in areas with higher NPP.  The highest area is safe from human intervention 

because it is far from urbanization and agricultural land.  Globally, including in Peninsular 

Malaysia with its increasing population, forested land is seen as an alternative source for 

resource development.  This integration of spatial variables, therefore, is especially 

significant and useful for interrelated human environment research. 
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Abstract 

 

Human impacts on tropical forests from deforestation and over consumption of forest 

products directly affect global ecosystems. This study presents calculations of net primary 

productivity available from tropical forests based on current and future population growth.  

Human appropriation of forests through the direct use of forest products, as well as through 

agricultural development, results in deforestation and also generates agrochemical 

pollution. This research generated spatial change impact maps of tropical forests, showing 

the locations that create the most demand for energy, the most extractable forest products, 

and the most polluted areas, along with estimates of anticipated changes in both forest and 

agricultural land in two tropical forest regions.  The analysis reveals that in Malaysia the 

greatest degree of change impact (high change) between now and 2045 would be in 2% of 

the virgin forest area, and that 'intermediate' change will result from an increase in oil palm 

plantations and rapid population growth.  In Thailand, however, with its current and 

anticipated low population growth, forests will experience 'intermediate' change from an 

increase in oil palm plantations, due primarily to resultant improvements in standard of 

living and increased forest products consumption, but there will be little change in 

agricultural land. Both countries, however, will experience increased agrochemical pollution 

unless measures are introduced to limit it. 
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1. Introducción 

 

La rápida conversión de los bosques a tierra agrícola (ej. plantaciones para caucho y 

aceite de palma) ha supuesto un gran impacto ambiental, especialmente in áreas próximas a 

poblamientos humanos donde los bosques experimentan una rápida destrucción 

(Fitzherbert et al. 2008; Wicke et al. 2011).   

 

El crecimiento de la población y la alta vulnerabilidad al cambio climático son uno de 

los factores que más contribuyen a la degradación ambiental de los bosques. Esta situación 

es especialmente preocupante en los países en desarrollo donde estos dos factores tendrán 

una mayor intensidad (Jiang and Hardee 2009; Population Action International 2011).  El 

crecimiento medio de la población en países en desarrollo es 2,5% (Population Action 

International 2011), disminuyendo la posibilidad de mantener la disponibilidad de recursos 

forestales per cápita. 

 

Hoy en día en el sureste asiático, la emigración internacional, las guerras civiles 

(Institute of Peace and Conflicts Studies 2015) y los niveles crecientes de pobreza (Kaur 

2009) son los principales factores que condicionan el crecimiento poblacional. El 

crecimiento poblacional dispara cambios en el comportamiento de consumo y afecta a los 

niveles de emisión atmosférica. Las poblaciones humanas que viven en o alrededor de los 

bosques utilizan directamente madera y otros productos, los cuales son conocidos como 

non-timber forest products (NTFPs), para cubrir sus necesidades inmediatas de combustible 

y material de construcción (Kusmana 2011). La modernización ha traído modificaciones 

adicionales, como cambio en la dieta que incluye más alimentos procesados, incremento de 

la demanda de aceite de palma, el cual constituye un alimento de primera necesidad (Sayer 

et al. 2012).  El crecimiento poblacional también influye en las políticas gubernamentales, 

tales como un rendimiento sostenible de la economía (MPOC 2011), lo cual requiere un 

incremento en la producción de alimento y la transformación de tierras a usos agrícolas 

(Wicke et al. 2011). Se ha estimado que al menos 10 millones de ha de bosque han sido 

reemplazadas por plantaciones de palma aceitera y caucho durante el período 1995-2011 

en Malasia and Tailandia sólo (The Thai Rubber Association 2015; Manokaran 1990; MPOB 

2014).  
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Sobre todo, los impactos humanos en bosque tropicales continúan, con 

potencialmente nefastas consecuencias para la biodiversidad tropical y el medio ambiente 

(Gibson et al. 2011; Hartemink 2005).  Además, la expansión de las tierras agrícolas ha 

llevado a niveles más altos de utilización de agroquímicos (Hartemink 2005; Saswattecha et 

al. 2015). Esos pesticidas, herbicidas y fertilizantes inorgánicos también contribuyen al 

calentamiento global, acidificación, eutrofización y otros impactos ambientales 

(Saswattecha et al. 2015).  Un indicador preciso de los impactos humanos podría 

proporcionar una referencia importante para monitorizar el progresos hacia la conservación 

global (Ma et al. 2012) y la evaluación de los beneficios de la biodiversidadpara reducir la 

degradación del bosque tropical (Burgess et al. 2007; Williams 2013). 

 

2. Malasia y Tailandia  

 

Los bosque tropicales del  sureste asiático comprenden una región con alta 

biodiversidad, mientras que al mismo tiempo están bajo una enorme presión conducida por 

el crecimiento poblacional y la explotación de los recursos naturales. Malasia mostró un 

crecimiento anual de la población del 1,8% antes de 2010 (Department of Statistics Malaysia 

2012), mientras que otros países vecinos tales como Tailandia muestran un crecimiento muy 

bajo, proyectado a tan solo 0,3% entre hoy en día y el 2020, lo cual es atribuible a los bajos 

niveles de fertilidad (UNPFA 2011).   

 

Malasia ha doblado su área de plantación para la obtención de aceite de palma entre 

1995 y 2011, de 2,5 a 5,0 millones de ha, según informe de 2015 (see 

http://www.mpob.gov.my), plantando 1,4 millones de ha de árboles de caucho en el 2000 

para ayudar al crecimiento de la economía debido a que el caucho es la mayor exportación 

agrícola de este país (MPOC 2011). Tailandia, sin embargo, actualmente tiene 3,6 millones 

de ha de plantación de árboles de caucho, ha sobrepasado a Malasia como el mayor 

exportador y productor de caucho natural del mundo (see http://thainr.com).  Por el 

contrario,  el gobierno tailandés ha incentivado la tala de 350.000 árboles de caucho en un 

año y su sustitución por plantaciones de palma aceitera (The Wall Street Journal 2014).  

Mientras es imposible en este punto cuantificar la extensión del bosque que se ha 
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transformado en suelo agrícola, se podría al menos cuantificar el impacto de la 

transformación.  

 

Para examinar esta cuestión, en este trabajo hemos valorado el impacto del 

crecimiento poblacional humano, de la extracción de recursos y el uso de agroquímicos en 

la producción primaria de dos bosques tropicales localizados en Malasia y Tailandia. Este 

estudio compara estas dos localidades caracterizadas por tasas de crecimiento poblacional 

altas y bajas. 

 

 

3. Metodología  

 Previos trabajos han mostrado que el tamaño de la población es una variable 

demográfica crítica para determinar el impacto humano en la producción primaria neta 

(HANPP) (Ma et al. 2012).  Figura 1 muestra el crecimiento actual and previsto para Malasia 

and Tailandia para el período 2000 – 2045. 

 

   

Figura 1. Crecimiento actual and proyectado del crecimiento de la población en (a) Malasia y 

(b) Tailandia durante el período 2000-2045.  

 

El estudio era realizado en dos bosques tropicales perenes en el sureste asiático 

localizados en la región en Negeri Sembilan, Malasia peninsular y Nakhon Si Thammarat, 

Tailandia (Fig. 2). En Malasia se caracterizó el bosque tropical como bosque primario (o 

virgen) o bosque secundario.   
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Figura 2.  Área de estudio: localización geográfica (arriba)  y uso del suelo para cada uno de 
los píxeles en el área de estudio (abajo). Entre paréntesis se indica la superficie en 
porcentaje para Malasia y Tailandia respectivamente. 
 
 

Un bosque secundario es definido como un bosque que ha sido talado y se encuentra 

recubierto tanto natural como artificialmente.  El bosque primario en este estudio era 

considerado un bosque maduro que ha experimentado poca o ninguna perturbación 

humano (Gibson et al. 2011).  No todos los bosques secundarios proporciona el mismo valor 

para la sostenibilidad de la biodiversidad biológica o la producción de bienes y servicios 

como lo hacía el bosque primario que previamente existía en la misma localidad (CBD 2000).   
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Datos de series temporales de "Gridded Population of the World" (GPWD 2015) eran 

utilizados para calcular la variación temporal basándose en el método "population multiplier 

method (PoM)" como es definido a continuación:  

 

𝑃𝑜𝑀 (𝑌) =
𝑝𝑜𝑏𝑙𝑎𝑐𝑖ó𝑛 𝑒𝑛 𝑒𝑙 𝑎ñ𝑜 𝑌

𝑝𝑜𝑏𝑙𝑎𝑐𝑖ó𝑛 𝑚𝑒𝑑𝑖𝑎 𝑑𝑒 2000 − 2030
   (1) 

 

donde los años (Y) eran 2015 y 2045 en este estudio.  Se han incluido tres indicadores 

críticos para la valoración del impacto humano: “supply” (net primary productivity per 

capita: gC m2 yr-1 cap), “used” (extraction from forests and plantations: tan ha-1 yr-1) and 

“pollution” (agrochemical use, as a land cover: toxicity pressure indicator), como es 

expresando en la ecuación: 

 

𝐻𝑢𝑚𝑎𝑛 𝐼𝑚𝑝𝑎𝑐𝑡 = 𝑠𝑢𝑝𝑝𝑙𝑦 + 𝑢𝑠𝑒𝑑 + 𝑝𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛   (2) 

 

Para calcular el impacto humano (human impact) para 2015 y 2045 (Y), se ha utilizado la 

siguiente ecuación:  

 

𝐻𝑢𝑚𝑎𝑛 𝑖𝑚𝑝𝑎𝑐𝑡(𝑌)                                                                                                                   

=   
𝑁𝑃𝑃 𝑚𝑒𝑎𝑛 2000 − 2008

𝑃𝑜𝑀(𝑌)
+  𝑢𝑠𝑒𝑑 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛                               

+  𝑎𝑔𝑟𝑜𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 (3) 

 

 

donde NPP 2000-2008 (gC m2 yr-1) es el valor medio anua en esos ocho años, que 

proporciona a media de evaluación de los patrones espaciales en productividad así como las 

variaciones interanuales y  las tendencias a largo término en la biosfera (Turner et al 2006), 

como es representado por los datos de satélite MODIS (MOD17A2) (ver 

http://lpdaac.usgs.gov) a una resolución pixel de 1 km.  Se ha utilizado MODIS Land Cover 

data (MOD12Q1) basado en la clasificación proporcionada por Friedl et al. (2010) para 

representar los tipos de cobertura de suelo; estos tipos eran interpretados y validados por 

Razali et al. (2014).  En nuestros cálculos un incremento en el multiplicador de población 

http://lpdaac.usgs.gov/
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podría implicar un escalamiento de recursos y demandas en la productividad primaria neta 

per cápita para agricultura y bosque. Extracción (“used”) era calculado basándose en la 

información de los estudios de Krausmann et al. (2008) y Ngo et al. (2013), según se expresa 

a continuación: 

 

𝑈𝑠𝑒𝑑 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = (𝑈𝑠𝑒𝑑 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑥 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (𝑌))(4) 

 

Un estudio de Macary et al. (2014) era utilizado para determinar el indicador de 

presión de toxicidad del desarrollo (Apéndice 1). Los herbicidas son utilizados 

principalmente en herbáceas, especialmente  Imperata cylindrica que está distribuida en las 

plantaciones de palma aceitera y árbol de caucho, ya que estas herbáceas pueden generar 

peligro de incendio (Verheye 2010).  Una descripción plena de los indicadores de impacto 

humano se presenta en el Apéndice 2.  NPP per cápita era determinado basándose en los 

histogramas de frecuencia de ArcGIS 10.0 software.  Los impactos eran clasificados en tres 

categorías para incorporarlos en un valor de impacto simple para cada pixel, lo cual a este 

nivel es más fácil para interpretar por los potenciales usuarios (ej., gestores forestales, 

políticos e investigadores). Los píxeles eran agregados en rangos para representar el 

impacto general en los bosques y áreas agrícolas.  Finalmente, se valoraba los niveles de 

cambio del tipo de cobertura de suelo, mostrando dos diferentes niveles de impacto: alto 

(high) y ningún cambio (no-change). 

 

4. Resultados 

 

El mapa de usos que se muestra en la Figura 2 representa los 9 principales tipos de 

cobertura de suelo encontrados basándose en los datos de MOD12Q1.  En la Figura 3 se 

muestran imágenes de los usos del suelo, validando la clasificación de la cobertura de suelo 

frente a los datos del satélite. Un multiplicador de población era medido para determinar la 

fluctuación de la población para el área de estudio (Fig. 4). Este muestra un tendencia al 

incremento en Malasia, pero un decrecimiento en Tailandia con una caída próxima al 50% 

después de 2030.  Valores positivos de “used” indican suficiente productividad primaria 

neta para mantener la población humana, mientras que valores negativos indican deficiente 

productividad primaria neta para la población, basándose en la relación entre recursos y 
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demanda. Para ambas áreas, los recursos (“used”) están declinando, mientras que la 

demanda esta escalando (Fig. 5). Los resultados para los indicadores simples eran también 

representados espacialmente (Fig. 6) mostrando variación en cada área de estudio. Los 

impactos simples mostraban similar presión de agroquímicos para el período 2000 a 2045 

debido a que aplicamos las mismas imágenes de cobertura de suelo (del 2000) para ambos 

años, mientras que la productividad primaria neta si mostraba cambios.  

 

El impacto de los cambios en los dos principales tipos de uso del suelo, forestal y 

agrícola para el período 2015-2045 ilustra el patrón de distribución para el futuro para la 

productividad primaria neta, extracción (used) y toxicidad (Fig. 7).  Las áreas forestadas di 

Malasia muestran solo un modesto impacto de cambio comparado a las tierras de cultivo de 

palma aceitera. Por comparación, los cambios están actualmente afectando los bosques de 

Tailandia, pero no hay ninguna amenaza inminente para las tierras agrícolas.  En resumen, 

solo un 2% del bosque primario en Malasia experimentarán una alta tasa de cambio, 

mientras que las tierras agrícolas en este mismo área una alta superficie incurrirá en un 

cambio intermedio (clases intermedias combinadas: 17% y 76%). En Tailandia solo un 3% de 

las tierras agrícolas se espera que incurran en una alta tasa de cambio y más importante, la 

mayoría de las tierras agrícolas (73%) no experimentarán ningún cambio.  

 

  



- 156 - 
 

 

 

 

Figura 3.  Ejemplos de usos del suelo: Bosques, (a) plena cobertura de bosque primario y 
secundario; Agrícola: (b) plantación de árbol de caucho; (c) plantación del árbol del caucho 
cerca de caminos; y (d) plantación de palma aceitera. 
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Figura 4. Comparación de multiplicadores de población entre Malasia y Tailandia. 
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Figura 5. Frecuencia de extracción ("Used) en Malasia y Tailandia mostrando las funciones 

de suministro y demanda.  
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Figura 6.  Impacto humano con indicadores simples. 
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Figura 7. Impactos del cambio humano en el uso del suelo para el período 2015-2045. 

 

5. Discusión 

 

Mientras que el mapa MOD12Q1 con los tipos de usos del suelo en el área estudiada 

es ciertamente útil para definir como la extracción de recursos está afectando a los cambios 

de las tierras agrícolas y forestales de Malasia y Tailandia, un indicador complementario 

muy importante es el crecimiento de la población. La población humana es la fuerza que 

conduce los cambios y que se encuentra detrás de la extracción y consumo de bienes 

forestales.  
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Figura 8. Impactos del cambio asociado al tipo de uso del suelo.  

 

La tendencia positiva del multiplicador de población en Malasia primariamente refleja 

el rápido incremento de población esperado para 2020, de 150 a 230 persons/km2 (Fig. 1). 

Una escalada que ocurrirá antes de la implantación del programa Malasia Vision 2020 (NEAC 

2009). Tailandia, mientras tanto está entrando en un nuevo período de crecimiento 

poblacional lento que se espera persista hasta 2020 (UNFPA 2011).   

 

La principal causa del crecimiento de la población en Malasia es la alta tasa de 

inmigración. Entre 195 y 2010 esta tasa incrementó de 1 a 5 inmigrantes por cada 1000 

residentes. Aunque no tenemos la misma información para Tailandia, en base a datos 

indirectos podemos decir que este país presentará cero inmigrantes desde la actualidad 

hasta el 2045  (United Nation 2015).  Este crecimiento diferente incrementará el impacto en 

el bosque primario virgen de Malasia en comparación a Tailandia. Los bosques secundarios 

serán más importantes para mantener la biodiversidad y para incrementar la productividad 

primaria neta en un futuro (Gibson et al. 2011; Roy 2001).  El patrón de cambio de los 

impactos humanos es más elevado en las plantaciones de palmera aceitera donde se aplican 
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más agroquímicos por hectárea que en otros tipos de cultivo.  Mientras que el papel de las 

plantaciones de palma aceitera para Malasia es predominante (Fig. 7), en Tailandia ha 

desarrollado cultivos de caucho principalmente y por lo tanto los niveles de toxicidad son 

diferentes. También Tailandia está desarrollando plantaciones de palma aceitera y 

consecuentemente en algunas áreas los residuos tóxicos están incrementando. El cultivo de 

palma aceitera proporciona más beneficios, lo cual  cambia el bienestar de los habitantes 

incrementando sus entradas y mejorando sus condiciones de vida (Dayang Norwana et al. 

2011).  Estas mejoras incrementan consecuentemente el consumo de recursos, 

incrementando la presión en las tierras agrícolas y forestales incluso sin un aumento de la 

población.  

 

Los gestores forestales debería proteger más intensamente esas áreas y priorizarlas 

para la conservación de la biodiversidad. En un estudio global de los bosques tropicales 

realizado por Phalan et al. (2013) describía las medidas que deberían aplicarse para limitar 

la sobreexplotación e intensificar la protección de los bosques tropicales primarios de la 

deforestación.  

 

La transición a diferentes tipos de cultivos tiene impactos sociales y ambientales. En 

un estudio realizado en Sabah (Malasia)  Awang Ali et al. (2011) examinó los cambios en el 

bosque tropical causados por diferentes prácticas empleadas en las granjas. Por ejemplo, 

estos autores encontraron que el cambio de cultivo de árbol de caucho a palmera aceitera, 

como el gobierno de Tailandia está promoviendo  (The Thai Rubber Association 2015), 

producirá un alto impacto en las áreas agrícolas próximas a bosques tropicales.   

 

La mejora en la gestión de las plantaciones para la obtención de caucho y aceite de 

palma deberían estar basadas en el código de conducta de pesticidas (Foo and Hameed 

2010) y la utilización de los estándares de sostenibilidad global para la producción de aceite 

de palma conocido como Roundtable on Sustainable Palm Oil (RSPO) (Saswattecha et al. 

2015). Esta mejora podría reducir la cantidad necesaria de pesticidas aplicados. También, 

sistemas que permitan monitorizar la producción y las entradas a nivel de granja podría 

resultar un mejor control de la aplicación de pesticidas. 
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Sobre todo este estudio ha encontrado que futuro crecimiento poblacional en áreas 

de alto cambio de impacto probablemente empobrecerá y disminuirá los recursos 

forestales. Las áreas fuertemente impactadas requerirán elevado suministro de 

productividad primaria neta y bajas cantidades de extracción humana para adquirir un 

equilibrio en los patrones de consumo y minimizar el impacto humano. Políticas 

gubernamentales han guiado hacia la sustitución de la producción de caucho por aceite de 

palma en Malasia podría incrementar la cobertura vegetal, lo cual podría mejorar la 

biodiversidad y regenerar las áreas degradadas, y además incrementar la producción 

primaria neta y mantener las cosechas de las plantaciones (Gibson et al. 2011; Meijaard and 

Sheil 2013).  Propuestas para la creación de almazaras para las plantaciones de palmas 

aceiteras podría ayudar a promover aceite de palma barato, atrayendo a compañías como 

Ferrero, Mars y Mondelez (Fitzherbert et al. 2008; Nieburg 2013).   

 

De ahí, que los gestores forestales jueguen  un papel vital en la protección de los 

bosques vírgenes y en la restauración de bosques parcialmente talados (bosques primarios) 

más que en la regeneración de áreas degradadas ( ej. incendios forestales, etc.), tal y como 

ha sugerido Gibson et al. (2011).  Los patrones cambiantes del impacto humano tendrán 

importantes consecuencias para la biodiversidad tropical. Los mapas finales (Fig. 7) ilustran 

los impactos de la creciente población en la producción primaria neta y bienes de los 

bosques tropicales. Los resustados de este estudio pueden ayudar a predecir el futuro 

impacto humano en la biosfera tropical y monitorizar los cambios en esta región a lo largo 

del tiempo para ayudar a la implantación de posibles medidas gubernamentales que 

favorezcan la mitigación de los problemas ambientales.  

 

6. Conclusiones 

 

Este estudio muestra que en las futuras plantaciones para obtener aceite de palma 

habrá mayor impacto en las regiones tropicales. La predicción del crecimiento de la 

población para los próximos 30 años indica un incremento de la demanda de extracción 

humana y consecuentemente en el consumo de la productividad primaria neta per cápita. 

La gestión de medidas forestales juegan un papel fundamental en la salvaguarda de los 

bosques tropicales. 
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Conclusiones Generales 

 

Capítulo 1 

1. La cartografía final de usos del suelo obtenido con nuestra metodología 

muestra una precisión que oscilan entre el 65% y el 90%,  demostrando que la cartografía se 

puede utilizar posteriormente para la comparación con otras informaciones espaciales como 

National Forest Inventory (Inventario del Bosque Nacional), el mapa topográfico de 1997, la 

cobertura  de tierra de ALOS  y los mapas de elevación. 

 

2. La resolución media de imágenes MODIS mostró la capacidad significativa 

para la clasificación de la cobertura de la tierra en  bosques tropicales. Las áreas de cultivo 

de aceite de palma eran delineadas de forma precisa en los mapas. Esta información pueden 

permitir la identificación de la naturaleza del pasto en las zonas de forraje y producción 

ganadera. 

 

3. Las imágenes ALOS de alta resolución es el complemento más importante a 

las imágenes de media resolución MODIS para el mapeado de la cobertura del suelo. Con 

estos datos suplementarios, el uso del mapa de  la tierra podría desarrollarse en la gestión 

de los bosques con un mínimo coste de la mano de obra y equipamiento, permitiendo la 

producción más frecuente y cumpliendo con los objetivos de los gestores forestales para 

establecer una gestión sostenible. 

 

 

Capítulo 2 

4. Integrando los índices climáticos y de satélite, creamos una herramientas 

efectiva de valoración de la sequía, para asistir al Departamento Meteorológico de Malasia 

durante la estacion de sequía con la determinacion de los meses con probabilidad de 

extrema sequía.    
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5.  Los resultados de este estudio mostró que el criterio usado en el modelo M-

SWM, SPI, precipitación media-temperatura y los índices espectrales de análisis de 

correlación incrementaban la sensibilidad del modelo M-SWM para su empleo  en 

ambientes tropicales. Julio era identificado como el mes más seco utilizando el modelo M-

SWM. 

6. Este modelo puede ser usado para sostener las políticas gubernamentales 

para responder al cambio climático, particularmente para las estaciones de sequía más 

extremas. 

 

 

Capítulo 3 

7. El mapa de  HANPP puede ser útil para la gestión de los bosques como ha 

sido representado en diferentes niveles de intervenciones en el área forestal: baja, 

moderada, muy alta y extrema. 

8. Los resultados subrayan la utilidad de la proximidad del análisis en SIG 

empleando variables presentes en el estudio. La utilización de mapas  que muestren los 

niveles de intervención HANPP puede ser el medio más sostenible para evaluar las 

intervenciones humanas asociadas con los paisajes de bosque tropicales.    

9. Este trabajo ha demostrado que se puede desarrollar un modelo HANPP 

detallado utilizando datos espectrales MODIS y técnicas SIG.  

 

 

Capítulo 4 

9. En el futuro, la plantación del aceite de palma tendrá el mayor  impacto en 

las regiones de los bosques tropicales.  

10. La predicción del crecimiento de la población en los próximos 30 años indica 

un aumento de la demanda de extracción del usuario y consecuentemente en el consumo 

de producción primaria neta per cápita.  

11.  Las medidas de gestión forestal desempeñan un papel importante en 

salvaguardar los bosques tropicales.   



- 169 - 
 

General Conclusions 

 

Chapter 1 

 

(1) The final land use maps show an overall accuracy ranging from 65% to 94%, 

demonstrating that the maps can be further utilized for comparisons with other 

spatial data from the National Forest Inventory, Topographic map of 1997, ALOS land 

cover and elevation maps.   

 

(2) Medium resolution MODIS images showed significant capability for classifying land 

cover for tropical forest environments.  Oil palm areas were accurately delineated in 

the maps. These data can provide material for identifying natural pasture in the area 

for forage and livestock production. 

 

(3) Higher resolution ALOS imagery is the most important supplement to the medium 

resolution MODIS image, for mapping land cover.  With this supplementary data, 

land use maps can be developed within forest management areas with minimum 

labour and equipment costs, enabling them to be produced more frequently and 

accomplishing the objectives of forest managers for establishing sustainable forest 

management. 

 

 

Chapter 2 

 

(4) Integrating the climatological and satellite remote sensing indices, we created an 

effective drought assessment tool for this study area, to assist the Malaysian 

Meteorological Department during drought season by determining the months with 

the probability of extreme dryness.   
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(5) The outcome from the study showed that the criteria used in M-SWM model—SWM, 

SPI, mean precipitation and temperature and spectral indices correlation analysis 

increased the M-SWM model sensitivity for use in tropical forest environments. 

Using the M-SWM model, July was identified as the driest month. 

 

 

(6) This model can be used to support governmental policies for responding to climate 

change, particularly to more extreme drought seasons. Thus, full resources should be 

allocated during July. 

 

 

Chapter 3 

 

(7) The HANPP map can be useful for forest management as it represents different 

levels of human intervention on forest area: low, moderate, very highand extreme. 

 

(8) The results highlight the usefulness of proximity analysis in GIS by employing the 

variables presented in the study.  Maps showing the HANPP intervention levels may 

be the most sustainable medium for assessing human intervention associated with 

tropical forest landscapes. 

 

(9) A detailed HANPP model can be developed by employing MODIS high spectral data 

and GIS techniques. 

 

 

Chapter 4 

 

(10) In the future, oil palm plantations will have the greatest impact on tropical forest 

regions.   
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(11) The population growth prediction for the next 30 years indicates an increase in the 

user extraction demand and subsequently in the consumption of net primary 

productivity per capita.   

 

(12) Forest-management measures play an important role in safeguarding tropical 

forests.    
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