

UNIVERSIDAD DE MURCIA

DEPARTAMENTO DE QUÍMICA INORGÁNICA

Synthesis, Characterization and Reactivity of Mono-, Di-, and Tripalladated ortho-Substituted Arenes

Síntesis, Caracterización y Reactividad de Arenos Mono-, Diy Tripaladiados con Sustituyentes en orto

Dña. María José Fernández Rodríguez 2015

Synthesis, Characterization and Reactivity of Mono-, Di-, and Tripalladated ortho-Substituted Arenes

Síntesis, Caracterización y Reactividad de Arenos Mono-, Di- y Tripaladiados con Sustituyentes en orto

Memoria presentada por Dª María José Fernández Rodríguez para optar al grado de Doctor por la Universidad de Murcia

Dado que la presente Tesis ha sido redactada en inglés, se incluye un resumen en castellano, con una extensión de más de 2000 palabras y encuadernado como parte de la Tesis, en cumplimiento del Artículo 18 del Reglamento de Doctorado de la Universidad de Murcia ("Redacción de la Tesis").
D. JOSÉ J. VICENTE SOLER, Catedrático de Universidad, y Da ELOíSA MARTINEZ VIVIENTE, Profesora Titular de Universidad, ambos del Departamento de Química Inorgánica de la Universidad de Murcia, AUTORIZAN:

La presentación de la Tesis Doctoral titulada "sínTESIS, CARACTERIZACIÓN Y REACTIVIDAD DE ARENOS MONO-, DI- Y TRIPALADIADOS CON SUSTITUYENTES EN ORTO", realizada por Dña. MARÍA JOSÉ FERNÁNDEZ RODRÍGUEZ bajo su inmediata dirección y supervisión, y que presenta para la obtención del grado de Doctor por la Universidad de Murcia.

Murcia, 30 de septiembre de 2015

Fdo.: José J. Vicente Soler

Fdo.: Eloísa Martínez Viviente

Deseo expresar mi más sincero agradecimiento a todas las personas que de alguna forma me han ayudado en la realización de esta Tesis Doctoral, especialmente:

Al Prof. Dr. José Vicente Soler, director de esta Tesis y del Grupo de Química Organometálica, por darme la oportunidad de trabajar en este grupo de investigación y por haber confiado en mí para la realización de este trabajo.

A la Dra. Eloísa Martínez Viviente, codirectora de esta Tesis, por su dirección, por su paciencia, entrega y valiosos consejos; por su calidad como científica y por todo lo que me ha enseñado durante estos años.

A la Prof. Dra. María Teresa Chicote, por su especial apoyo y ánimo.
A las Prof. Dras. Isabel Saura y Aurelia Arcas, así como a los Dres. Juan Gil y Pablo González, que siempre me han ayudado durante estos años.

Al Prof. Dr. Peter G. Jones (Universidad Técnica de Braunschweig), quien ha resuelto la práctica totalidad de las estructuras cristalinas que se presentan en esta memoria.

Al personal del SUIC, Diego Martínez y la Dra. Ana de Godos, por su apoyo en el uso de los aparatos de RMN.

Al Prof. Dr. Armando J. L. Pombeiro (Universidad Técnica de Lisboa), por darme la oportunidad de trabajar en su grupo de investigación durante una estancia de tres meses, por su hospitalidad y el entrañable trato dispensado.

Al Prof. Dr. Jamal Lasri (Universidad Técnica de Lisboa), por su dirección, paciencia y ayuda durante mi estancia en Portugal.

A mis compañeros actuales del Grupo de Química Organometálica: María, Fabio y José Antonio, y a los que lo han sido durante estos años: Rashmi, Roberto, Antonio Abellán, Antonio Jesús, María Pérez, Natalia, Guijiang Zhou y María José Oliva.

A mis amigos, por seguir siéndolo y por los buenos ratos.

Y finamente a mi familia, en especial a mis padres, Francisco y María, por su apoyo incondicional y por haber estado siempre conmigo cuando lo he necesitado.

A la memoria de mi padre
INDEX i
Abbreviations vii
Resumen en Castellano ix
General Compound Chart xxiii
CHAPTER I. General Introduction
I. 1 Organization and Summary 3
I. 2 Organopalladium Chemistry 11
I. 3 Pd-Catalyzed Cross-Coupling Reactions 12
I.3.1 Pd-Catalyzed Carbon-Carbon Bond Forming Reactions 13
I.3.1.1 C-C Bond Forming Reactions with Olefins: The Heck Reaction 13
I.3.1.2 C-C Bond Forming Reactions with CO: The Heck Carbonylation. 15
I.3.1.3 C-C Bond Forming Reactions with Organometallic Reagents 16
I.3.2 Pd-Catalyzed Carbon-Heteroatom Bond Forming Reactions 19
I. 4 Arylpalladium(II) Complexes 21
I.4.1 Synthesis of ortho-Substituted Arylpalladium(II) Complexes 22
I.4.1.1 Orthopalladation Reactions 22
I.4.1.2 Transmetallation Reactions 23
I.4.1.3 Oxidative Addition Reactions 24
I.4.2 Reactivity of Arylpalladium(II) Complexes toward Unsaturated Organic Molecules:
Insertion of Unsaturated Molecules into the Aryl-Pd Bond 27
I.4.2.1 Insertion of Alkynes into Aryl-Pd Bonds 27
I.4.2.2 Insertion of CO and Isocyanides into Aryl-Pd Bonds 29
I. 5 References 33
CHAPTER II. Synthesis of Arylpalladium(II) Complexes Derived from Benzyl Alcohol, Reactivity toward Alkyl Halides, and Synthesis of Dinuclear Arylpalladium(II) Complexes
II. 1 Abstract 49
II. 2 Introduction 49
II. 3 Results and Discussion 51
II.3.1 Synthesis of $\left[\operatorname{PdI}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OH}-2\right)\left(\mathrm{N}^{\wedge} \mathrm{N}\right)\right]\left(\mathrm{N}^{\wedge} \mathrm{N}=\right.$ bpy (1a), tbbpy (1b), tmeda (1c)).. 51
II.3.2 Reactivity of $\left[\mathrm{PdI}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OH}-2\right)(\mathrm{bpy})\right]$ (1a) 52
II.3.3 Reactions of $\left[\mathrm{Pd}\left(\kappa^{2}-\mathrm{C}, \mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{O}-2\right)(\right.$ bpy $\left.)\right]$ (3) with XyNC and CO 52
II.3.4 Reactions of $\left[\mathrm{Pd}\left(\kappa^{2}-C, O-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{O}-2\right)(\mathrm{bpy})\right]$ (3) with Alkyl Halides 53
II.3.5 Synthesis of Dinuclear Palladium Complexes 54
II.3.6 NMR and IR Data 55
II.3.6.1 NMR and IR Data of Complexes 1a-c, I, and $\mathbf{3}$ 56
II.3.6.2 NMR Data of Complexes 5a-f, 6, and $\mathbf{7}$ 58
II.3.6.3 NMR and IR Data of $\mathbf{2}$ and $\mathbf{4}$. 59
II.3.7 X-Ray Structure Determinations. 59
II. 4 Conclusions 64
II. 5 References 65
CHAPTER III. Reactivity toward Nitriles, Cyanamides, and Carbodiimides of Palladium Complexes Derived from Benzyl Alcohol. Synthesis of a Mixed $\mathbf{P d}_{2} \mathbf{A g}$ Complex
III. 1 Abstract 71
III. 2 Introduction 71
III. 3 Results and Discussion 73
III.3.1 Reactions with Nitriles and Cyanamides 73
III.3.2 Reactions with Carbodiimides 75
III.3.3 NMR and IR Data. 78
III.3.4 X-Ray Structure Determinations 83
III. 4 Conclusions 91
III. 5 References 92
CHAPTER IV. Mono- and Dipalladated Derivatives of 2,5-Distyrylbenzene. Reactivity toward XyNC and Alkynes. Synthesis of Complexes with Indacenediide Ligands
IV. 1 Abstract 97
IV. 2 Introduction 97
IV. 3 Results and Discussion. 99
IV.3.1 Synthesis of $\left[\mathrm{C}_{6} \mathrm{H}_{2}\left\{\operatorname{PdBr}\left(\mathrm{~N}^{\wedge} \mathrm{N}\right)\right\}_{2}-1,4-((E)-\mathrm{CH}=\mathrm{CHPh})_{2}-2,5\right]\left(\mathrm{N}^{\wedge} \mathrm{N}=\right.$ tbbpy $(14 a)$, tmeda (14b)) 99
IV.3.2 Synthesis of Indacenediide Complexes 101
IV.3.3 Synthesis of Indenyl Complexes 102
IV.3.4 Steroselectivity of the Reactions with Alkynes. 102
IV.3.5 Regioselectivity of the Reactions with Alkynes 103
IV.3.6 Reactions with Isocyanides 103
IV.3.7 NMR Data 104
IV.3.7.1 NMR Data of 14a,b, 22, 23, and 23*. 109
IV.3.7.1.1 Assignment of the NMR Resonances of 23 and 23* 110
IV.3.7.1.2 Dynamic Behavior of 22, 23, and 23* 113
IV.3.7.2 NMR Data of the Indacenediide and Indenyl Complexes 16-21 115
IV.3.8 X-Ray Structure Determinations 116
IV. 4 Conclusions 125
IV. 5 References 126
CHAPTER V. Synthesis and Reactivity of Dipalladated Derivatives of Terephthalaldehyde
V. 1 Introduction 137
V. 2 Results and Discussion 138
V.2.1 Synthesis and Reactivity 138
V.2.2 NMR and IR Data 142
V.2.3 X-Ray Structure Determinations 145
V. 3 Conclusions 152
V. 4 References 153
CHAPTER VI. Synthesis of Mono- and Tripalladated 2,4,6-Trisubstituted Arenes. 3-Fold Insertion of XyNC into Three Aryl-Palladium Bonds on the Same Arene
VI. 1 Introduction 157
VI. 2 Results and Discussion 159
VI.2.1 Oxidative Addition Reactions 159
VI.2.2 Reactivity of the Tripalladated 2,4,6-Trisubstituted Arenes. 163
VI.2.3 NMR and IR Data. 164
VI.2.4 X-Ray Structure Determinations 168
VI. 3 Conclusions 171
VI. 4 References 172
CHAPTER VII. Microwave Synthesis of Bis(tetrazolato)-Pd(II) Complexes with PPh_{3} and Water-Soluble 1,3,5-Triaza-7-Phosphaadamantane (PTA). The First Example of C-CN Bond Cleavage of Propionitrile by a Pd(II) Centre
VII. 1 Abstract 179
VII. 2 Introduction 179
VII. 3 Results and Discussion 181
VII.3.1 Complexes with PPh_{3} 181
VII.3.2 Complexes with PTA 187
VII. 4 Conclusions 189
VII. 5 References 190
CHAPTER VIII. Experimental Section
VIII. 1 General Considerations and Characterization Techniques 195
VIII.1.1 Relating Compounds 1-32 195
VIII.1.2. Relating Complexes 33-36 197
VIII. 2 Synthesis and Characterization of Secondary Products 198
VIII. 3 Synthesis and Characterization of the Main Products 201
[$\mathrm{PdI}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OH}-2\right)($ bpy $\left.)\right](\mathbf{1 a})$ 201
[$\mathrm{PdI}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OH}-2\right)($ tbbpy $\left.)\right](1 b)$ 203
[$\mathrm{PdI}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OH}-2\right)($ tmeda $\left.)\right](\mathbf{1 c})$ 205
trans $-\left[\operatorname{PdI}\left\{\mathrm{C}(=\mathrm{NXy})\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OH}-2\right)\right\}(\mathrm{CNXy})_{2}\right]$ (2) 207
$\left[\mathrm{Pd}\left(\kappa^{2}-\mathrm{C}, \mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{O}-2\right)(\right.$ bpy $\left.)\right]$ (3). 209
N -(2,6-dimethylphenyl)-2-benzofuran-1(3H)imine (4) 211
[$\left.\mathrm{PdI}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OMe}-2\right)(\mathrm{bpy})\right](5 a)$ 213
$\left[\operatorname{PdBr}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{Ph}-2\right)(\right.$ bpy $\left.)\right](5 b)$ 215
$\left[\operatorname{PdBr}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{OCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{Br}-4\right)\right)-2\right\}(\mathrm{bpy})\right](\mathbf{5 c})$ 217
$\left[\operatorname{PdBr}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{OCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}-4\right)\right)-2\right\}(\right.$ bpy $\left.)\right](\mathbf{5 d})$ 219
$\left[\operatorname{PdBr}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{OCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}-4\right)\right)-2\right\}(\right.$ bpy $\left.)\right](\mathbf{5 e})$. 221
[$\mathrm{PdI}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{OCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}-4\right)\right)-2\right\}($ bpy $\left.)\right](5 f)$ 223
[\{(bpy) $\left.\left.\operatorname{BrPd}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OCH}_{2}-2\right)\right\}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}-1,4\right)\right]$ (6) 225
[(bpy) $\operatorname{IPd}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-2\right) \mathrm{O}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}-4\right) \mathrm{PdI}($ bpy $\left.)\right]$ (7) 227
$\left[\operatorname{Pd}\left\{\kappa^{2}-C, N-\mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{CH}_{2} \mathrm{OC}(=\mathrm{NH}) \mathrm{Me}\right\}-2\right\}(\mathrm{bpy})\right](\mathrm{OTf})(\mathbf{8})$ 229
$\left[\operatorname{Pd}\left\{\kappa^{2}-C, N-\mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{CH}_{2} \mathrm{OC}(=\mathrm{NH}) \mathrm{NMe}_{2}\right\}-2\right\}(\right.$ bpy $\left.)\right](\mathrm{OTf})(9 \mathbf{9})$ 231
$\left[\operatorname{Pd}\left\{\kappa^{2}-C, N-\mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{CH}_{2} \mathrm{OC}(=\mathrm{NH}) \mathrm{NEt}_{2}\right\}-2\right\}(\mathrm{bpy})\right](\mathrm{OTf})(9 b)$ 233
$\left[\mathrm{Pd}\left\{\kappa^{2}-C, N-\mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{CH}_{2} \mathrm{OC}\left(=\mathrm{N}^{i} \mathrm{Pr}\right) \mathrm{NH}^{i} \mathrm{Pr}\right\}-2\right\}(\mathrm{bpy})\right](\mathrm{OTf})(\mathbf{1 0 a})$ 235
$\left[\operatorname{Pd}\left\{\kappa^{2}-C, N-\mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{CH}_{2} \mathrm{OC}(=\mathrm{NTo}) \mathrm{NHTo}\right\}-2\right\}(\mathrm{bpy})\right](\mathrm{OTf})(\mathbf{1 0 b})$. 237
$\left[\operatorname{Pd}\left\{\kappa^{2}-C, N-\mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{CH}_{2} \mathrm{OC}(=\mathrm{NTo}) \mathrm{NTo}\right\}-2\right\}(\right.$ bpy $\left.)\right](\mathbf{1 1)}$ 239
$\left[\mathrm{Ag}(\mathrm{N}-11)_{2}\right](\mathrm{OTf})(\mathbf{1 2)}$ 241
$\left[\operatorname{Pd}\left\{\kappa^{2}-O, N-\mathrm{OCH}_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{C}\left(=\mathrm{N}^{i} \mathrm{Pr}\right) \mathrm{NH}^{i} \mathrm{Pr}\right\}-2\right\}(\mathrm{bpy})\right](\mathrm{OTf})(\mathbf{1 3})\right.$ 244
$\left[\mathrm{C}_{6} \mathrm{H}_{2}\{\mathrm{PdBr}(\mathrm{tbbpy})\}_{2}-1,4-((E)-\mathrm{CH}=\mathrm{CHPh})_{2}-2,5\right]$ (14a) 246
$\left[\mathrm{C}_{6} \mathrm{H}_{2}\{\mathrm{PdBr}(\text { tmeda })\}_{2}-1,4-((E)-\mathrm{CH}=\mathrm{CHPh})_{2}-2,5\right]$ (14b) 248
$\left[\mathrm{PdBr}\left\{\mathrm{C}_{6} \mathrm{H}_{2}(\mathrm{Br}-4)\left\{((E)-\mathrm{CH}=\mathrm{CHPh})_{2}-2,5\right\}(\mathrm{bpy})\right](\mathbf{1 5)}\right.$ 250
$\left[\left(\mu-\eta, \eta-\mathrm{C}_{12} \mathrm{H}_{2} \mathrm{Bn}_{2}-1,5-\mathrm{Ph}_{4}-2,3,6,7\right)\{\mathrm{Pd}(\mathrm{tbbpy})\}_{2}\right](\mathrm{OTf})_{2}(\mathbf{1 6 a})$ 252
$\left[\left(\mu-\eta, \eta-\mathrm{C}_{12} \mathrm{H}_{2} \mathrm{Bn}_{2}-1,5-\mathrm{Ph}_{4}-2,3,6,7\right)\{\mathrm{Pd}(\text { tmeda })\}_{2}\right](\mathrm{OTf})_{2}(\mathbf{1 6 b})$ 255
$\left[\left(\mu-\eta, \eta-\mathrm{C}_{12} \mathrm{H}_{2} \mathrm{Bn}_{2}-1,5-\mathrm{Me}_{4}-2,3,6,7\right)\{\mathrm{Pd}(\text { tbbpy })\}_{2}\right](\mathrm{OTf})_{2}(\mathbf{1 7 a})$ 257
$\left[\left(\mu-\eta, \eta-\mathrm{C}_{12} \mathrm{H}_{2} \mathrm{Bn}_{2}-1,5-\mathrm{Me}_{4}-2,3,6,7\right)\{\mathrm{Pd}(\mathrm{tmeda})\}_{2}\right](\mathrm{OTf})_{2}(\mathbf{1 7 b})$ 259
$\left[\left(\mu-\eta, \eta-\mathrm{C}_{12} \mathrm{H}_{2} \mathrm{Bn}_{2}-1,5-\mathrm{Ph}_{2}-2,6-\mathrm{Me}_{2}-3,7\right)\{\mathrm{Pd}(\text { tbbpy })\}_{2}\right](\mathrm{OTf})_{2}(\mathbf{1 8 a})$ 261
$\left[\left(\mu-\eta, \eta-\mathrm{C}_{12} \mathrm{H}_{2} \mathrm{Bn}_{2}-1,5-\mathrm{Ph}_{2}-2,6-\mathrm{Me}_{2}-3,7\right)\{\mathrm{Pd}(\mathrm{tbbpy})\}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}\left(\mathbf{1 8 a} \mathbf{a}^{\prime}\right)$ 263
$\left[\left(\mu-\eta, \eta-\mathrm{C}_{12} \mathrm{H}_{2} \mathrm{Bn}_{2}-1,5-\mathrm{Ph}_{2}-2,6-\mathrm{Me}_{2}-3,7\right)\{\mathrm{Pd}(\text { tmeda })\}_{2}\right](\mathrm{OTf})_{2}(\mathbf{1 8 b})$ 265
$\left[\mathrm{Pd}\left(\eta-\mathrm{C}_{9} \mathrm{H}_{2} \mathrm{Bn}-1-\mathrm{Ph}_{2}-2,3-(E-\mathrm{CH}=\mathrm{CHPh})-5-\mathrm{Br}-6\right)(\mathrm{bpy})\right](\mathrm{OTf})(\mathbf{1 9})$ 267
$\left[\mathrm{Pd}\left(\eta-\mathrm{C}_{9} \mathrm{H}_{2} \mathrm{Bn}-1-\mathrm{Ph}_{2}-2,3-(E-\mathrm{CH}=\mathrm{CHPh})-5-\mathrm{Br}-6\right)(\mathrm{bpy})\right]\left(\mathrm{ClO}_{4}\right)(\mathbf{1 9})$ 269
$\left[\mathrm{Pd}\left(\eta-\mathrm{C}_{9} \mathrm{H}_{2} \mathrm{Bn}-1-\mathrm{Me} 2_{2}-2,3-(E-\mathrm{CH}=\mathrm{CHPh})-5-\mathrm{Br}-6\right)(\mathrm{bpy})\right](\mathrm{OTf})(\mathbf{2 0})$ 271
$\left[\mathrm{Pd}\left(\eta-\mathrm{C}_{9} \mathrm{H}_{2} \mathrm{Bn}-1-\mathrm{Ph}-2-\mathrm{Me}-3-(E-\mathrm{CH}=\mathrm{CHPh})-5-\mathrm{Br}-6\right)(\mathrm{bpy})\right](\mathrm{OTf})(21)$ 273
$\left[\mathrm{C}_{6} \mathrm{H}_{2}\left\{\mathrm{C}(=\mathrm{NXy})\left(\text { trans }-\mathrm{PdBr}(\mathrm{CNXy})_{2}\right)\right\}_{2}-1,4-(E-\mathrm{CH}=\mathrm{CHPh})_{2}-2,5\right]$ (22) 276
$\left[\mathrm{C}_{6} \mathrm{H}_{2}\left\{\mathrm{C}(=\mathrm{NXy})\{\mathrm{C}(=\mathrm{NXy})\}_{2}\{\operatorname{PdBr}(\mathrm{CNXy})\}\right\}_{2}-1,4-(E-\mathrm{CH}=\mathrm{CHPh})_{2}-2,5\right]\left(\mathbf{2 3}, \mathbf{2 3}^{*}\right)$ 278
$\left[\left\{\mu-C l, C 4, N, N "-\mathrm{C}_{6} \mathrm{H}_{2}\left\{\mathrm{C}(\mathrm{H})=\mathrm{N}\left({ }^{\mathrm{n}} \mathrm{Bu}\right)\right\}_{2}-2,5\right\}\{\mathrm{Pd}(\text { tbbpy })\}_{2}\right](\mathrm{OTf})_{2}(\mathbf{2 4})$ 281
$\left[\mathrm{C}_{6} \mathrm{H}_{2}\{\mathrm{PdBr}(\mathrm{tbbpy})\}_{2}-1,4-(\mathrm{CHO})_{2}-2,5\right]$ (25a) 283
$\left[\mathrm{C}_{6} \mathrm{H}_{2}\left\{\mathrm{PdI}(\text { (bbpy) }\}_{2}-1,4-(\mathrm{CHO})_{2}-2,5\right]\right.$ (25b) 285
$\left[\mathrm{C}_{6} \mathrm{H}_{2}\{\mathrm{C}(\mathrm{O})\{\operatorname{PdBr}(\mathrm{tbbpy})\}\}_{2}-1,4-(\mathrm{CHO})_{2}-2,5\right]$ (26a) 287
$\left[\mathrm{C}_{6} \mathrm{H}_{2}\{\mathrm{C}(\mathrm{O})\{\operatorname{PdI}(\text { tbbpy })\}\}_{2}-1,4-(\mathrm{CHO})_{2}-2,5\right]$ (26b) 289
2,3,6,7-Tetrahydrobenzo[1,2-c:4,5-c']dipyrrole-1,5-dione-2,6-dixylyl-3,7-bis $\{=\mathrm{C}$ (NHXy)-C(=NXy)-[PdBr(CNXy) 2$]\}(27)$ 291
2,3,6,7-Tetrahydrobenzo[1,2-c:4,5-c']dipyrrole-1,5-dione-2,6-dixylyl-3,7-bis $\{=\mathrm{C}(\mathrm{NHXy})$ - C(O)NHXy (28) 293
$\left[\{\operatorname{PdI}(\text { tbbpy })\}_{3}\left(\mu_{3}-\mathrm{Cl}, \mathrm{C} 3, \mathrm{C} 5-\mathrm{C}_{6}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}-2,4,6\right\}\right]$ (29a) 295
[\{PdI(tmeda) $\left.\}_{3}\left(\mu_{3}-\mathrm{Cl}, \mathrm{C} 3, \mathrm{C} 5-\mathrm{C}_{6}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}-2,4,6\right\}\right]$ (29b). 297
trans- $\left.\left[\mathrm{Pd}_{\{ } \mathrm{C}_{6}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}-2,4,6-\mathrm{I}_{2}-3,5\right\} \mathrm{I}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right](\mathbf{3 0})$ 299
trans $-\left[\mathrm{Pd}\left\{\mathrm{C}_{6}(\mathrm{OH})_{3}-2,4,6-\mathrm{Br}_{2}-3,5\right\} \mathrm{Br}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left(\mathbf{3 0}^{\prime}\right)$ 301
trans $-\left[\mathrm{Pd}\left\{\mathrm{C}_{6}(\mathrm{OMe})_{3}-2,4,6-\mathrm{Br}_{2}-3,5\right\} \mathrm{Br}\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathbf{3 0}$ ") 303
trans $-\left[\operatorname{Pd}\left\{\mathrm{C}_{6}(\mathrm{OMe})_{3}-2,4,6-\mathrm{Br}_{2}-3,5\right\} \mathrm{Br}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right](\mathbf{3 1})$ 305
$\left[\mathrm{C}_{6}\left\{\mathrm{C}(=\mathrm{NXy})\left(\text { trans }-\mathrm{PdI}(\mathrm{CNXy})_{2}\right)\right\}_{3}-1,3,5-\mathrm{Me}_{3}-2,4,6\right]$ (32) 307
trans $-\left[\mathrm{Pd}\left(\mathrm{N}_{4} \mathrm{CMe}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (33a) 309
trans $-\left[\mathrm{Pd}\left(\mathrm{N}_{4} \mathrm{CPh}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (33b) 310
trans $-\left[\mathrm{Pd}\left(\mathrm{N}_{4} \mathrm{C}\left(4-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathbf{3 3 c})$ 311
trans $-\left[\mathrm{Pd}\left(\mathrm{N}_{4} \mathrm{C}\left(4-\mathrm{FC}_{6} \mathrm{H}_{4}\right)\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathbf{3 3 d})$ 312
trans- $\left[\mathrm{Pd}\left(\mathrm{N}_{4} \mathrm{C}\left(2-\mathrm{NC}_{5} \mathrm{H}_{4}\right)\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathbf{3 3 e})$ 313
trans $-\left[\mathrm{Pd}\left(\mathrm{N}_{4} \mathrm{C}\left(3-\mathrm{NC}_{5} \mathrm{H}_{4}\right)\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathbf{3 3 f})$ 314
trans $-\left[\mathrm{Pd}\left(\mathrm{N}_{4} \mathrm{C}\left(4-\mathrm{NC}_{5} \mathrm{H}_{4}\right)\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathbf{3 3 g})$ 315
trans $-\left[\mathrm{Pd}\left(\mathrm{N}_{4} \mathrm{CEt}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathbf{3 3 h})+$ trans $-\left[\mathrm{Pd}(\mathrm{CN})\left(\mathrm{N}_{4} \mathrm{CEt}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]\left(\mathbf{3 3 h}{ }^{\prime}\right)+$
5-ethyl-1 H -tetrazole 316
$\left[\mathrm{Pd}\left(\mathrm{N}_{3}\right)_{2}(\mathrm{PTA})_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathbf{3 4} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 317
trans $-\left[\mathrm{Pd}\left(\mathrm{N}_{4} \mathrm{CPh}\right)_{2}(\mathrm{PTA})_{2}\right] \cdot \mathrm{PhCN}(\mathbf{3 5 a} \cdot \mathrm{PhCN})$ 318
trans $-\left[\mathrm{Pd}\left(\mathrm{N}_{4} \mathrm{C}\left(2-\mathrm{NC}_{5} \mathrm{H}_{4}\right)\right)_{2}(\mathrm{PTA})_{2}\right]$ (35b) 319
trans $-\left[\mathrm{Pd}\left(\mathrm{N}_{4} \mathrm{C}\left(3-\mathrm{NC}_{5} \mathrm{H}_{4}\right)\right)_{2}(\mathrm{PTA})_{2}\right](\mathbf{3 5 c})$ 320
trans $-\left[\mathrm{Pd}\left(\mathrm{N}_{4} \mathrm{C}\left(4-\mathrm{NC}_{5} \mathrm{H}_{4}\right)\right)_{2}(\mathrm{PTA})_{2}\right](\mathbf{3 5 d})$ 321
$\left[\mathrm{PdCl}_{2}(\mathrm{PTA}-\mathrm{H})_{2}\right] \mathrm{Cl}_{2}(\mathbf{3 6})$ (liberation of 5-phenyl-1 H -tetrazole from 35a) 322
VIII. 4 References 323
CHAPTER IX. Conclusions 327

	ABBREVIATIONS
1D	one-dimensional
2D	two-dimensional
A	anion ($\mathrm{OTf}^{\text {or }} \mathrm{ClO}_{4}{ }^{-}$)
AcOH	acetic acid
app	apparent
APT	Attached Proton Test
aq	aqueous
Ar	aryl
B	base
Bn	benzyl
bpy	2,2'-bipyridyl
br	broad
${ }^{\text {t }} \mathrm{Bu}$	tert-butyl
${ }^{\mathrm{n}} \mathrm{Bu}$	n-butyl
ca	circa (approximately)
cat	catalyst
calcd	calculated
COSY	Correlation Spectroscopy
Cp	cyclopentadienyl
d	doublet
dba	dibenzylideneacetone
dd	doublet of doublets
ddd	doublet of doublets of doublets
dec	decompose
DMF	dimethylformamide
DMSO	dimethylsulfoxide
dsept	doublet of septuplets
dt	doublet of triplets
e.g.	for example
equiv	equivalent
ESI	Electrospray Ionization
Et	ethyl
EXSY	Exchange Spectroscopy
HMBC	Heteronuclear Multiple Bond Correlation
HMQC	Heteronuclear Multiple Quantum Correlation
HR	high resolution
${ }^{\text {i }} \mathrm{Pr}$	isopropyl
IR	infrared
L	neutral ligand (general), liter

m	multiplet (regarding NMR)
m	medium (regarding IR)
m	meta
Me	methyl
MS	Mass Spectrum / Mass Spectroscopy
Mp	melting point
MW	microwaves
m/z	mass/charge ratio
NMR	Nuclear Magnetic Resonance
$\mathrm{N}^{\wedge} \mathrm{N}$	chelate N -donor ligand (tmeda, bpy or tbbpy)
NOE	Nuclear Overhauser Effect
NOESY	Nuclear Overhauser Effect Spectroscopy
o	ortho
OTf	triflate (trifluoromethanesulfonate)
p	para
Ph	phenyl
phen	phenanthroline
ppm	parts per million
psi	pounds-force per square inch
PTA	1,3,5-triaza-7-phosphaadamantane
q	quadruplet
quint	quintuplet
R	alkyl group
rf	retardation factor
rt	room temperature
s	singlet (regarding NMR) / strong (regarding IR)
sept	septuplet
t	triplet
td	triplet of doublets
tbbpy	4,4'-di-tert-butyl-2,2'-bipiridyl
THF	tetrahydrofurane
tmeda	$N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine
TMS	tetramethylsilane
TOF	time of life
To	tolyl (p-methylphenyl)
vs	versus
vt	virtual triplet
VT-NMR	variable temperature Nuclear Magnetic Resonance
w	weak
Xy	xylyl (2,6-dimethylphenyl)

RESUMEN EN CASTELLANO

Síntesis, Caracterización y Reactividad de Arenos Mono-, Di- y Tripaladiados con Sustituyentes en orto

Esta Tesis está dividida en nueve capítulos, siendo el primero de ellos una Introducción General. Los Capítulos II-VI describen el trabajo desarrollado por la autora en el Grupo de Química Organometálica de la Universidad de Murcia, dirigido por el Prof. José Vicente Soler, y el Capítulo VII describe el trabajo realizado durante una estancia de tres meses en la Universidad Técnica de Lisboa, en el grupo del Prof. Armando Pombeiro. Cada uno de estos capítulos, del II al VII, corresponde a una publicación científica (ya en prensa o en preparación) y por tanto siguen la estructura general del artículo correspondiente, incluyendo el Resumen (excepto para las publicaciones en preparación), la Introducción (que en algunos aspectos pueden solaparse entre sí o con la Introducción General) y las Referencias. La Parte Experimental, por el contrario, se ha unificado en el Capítulo VIII de esta Tesis. La numeración de los complejos también ha sido unificada, de forma que sea consecutiva en esta Tesis (ver Tabla en págs. xxiii-xxiv), y puede haber cambios adicionales con respecto a los artículos ya publicados, especialmente en lo referente a la incorporación de contenidos que se encontraban en el Material Suplementario. El Capítulo IX contiene las Conclusiones de la Tesis, que se incluyen también en este Resumen.

Los artículos ya publicados son:

- J. Vicente, E. Martínez-Viviente, M.-J. Fernández-Rodríguez, Organometallics 2009, 28, 5845-5847 (corresponde a parte del Capítulo IV)
- J. Lasri, M.-J. Fernández-Rodríguez, M. F. C. Guedes da Silva, P. Smoleński, M. N. Kopylovich, J. J. R. Fraústo da Silva, A. J. L. Pombeiro, J. Organomet. Chem. 2011, 696, 3513-3520 (corresponde al Capítulo VII)
- M.-J. Fernández-Rodríguez, E. Martínez-Viviente, J. Vicente, P. G. Jones, Organometallics 2015, 34, 2240-2254 (corresponde al Capítulo IV)
- M.-J. Fernández-Rodríguez, E. Martínez-Viviente, J. Vicente, P. G. Jones, Organometallics 2015, 34, 3282-3291 (corresponde al Capítulo II)

En los siguientes párrafos se resumen los Capítulos II a VII de esta Tesis. Los cinco primeros (del II al VI) se enmarcan dentro de una línea de investigación que el Grupo de Química Organometálica de la Universidad de Murcia ha seguido con gran éxito, consistente en la síntesis de complejos de $\mathrm{Pd}(\mathrm{II})$ con ligandos arilo sustituidos en orto, y la investigación de su reactividad frente a moléculas orgánicas insaturadas. Con
frecuencia, se produce la inserción de dichas moléculas en el enlace aril-Pd, acompañada en ocasiones por su interacción con el sustituyente en orto, formando nuevos complejos (frecuentemente ciclopaladiados) o , tras reacciones de despaladación, moléculas orgánicas de interés. En los últimos años se ha intentado extender esta reactividad a arenos di- o tripaladiados, con sustituyentes en orto a cada átomo de Pd, con el objetivo de obtener novedosos complejos polinucleares o compuestos orgánicos policíclicos.

Capítulo II: Síntesis de aril complejos de Pd(II) derivados del alcohol bencílico; reactividad frente a haluros de alquilo y síntesis de aril complejos dinucleares de Pd(II).

El Capítulo II (Esquema 1) describe la síntesis, mediante reacciones de adición oxidante, de tres aril complejos de $\mathrm{Pd}(\mathrm{II})$, 1a-c, derivados del alcohol bencílico, así como de un complejo ciclopaladiado, $\mathbf{3}$, obtenido a partir de 1a mediante un reacción de desprotonación. Por reacción de $\mathbf{3}$ con distintos haluros de alquilo primarios se han obtenido una serie de complejos, 5a-e, resultado del ataque nucleófilo de $\mathbf{3}$ sobre el grupo alquilo del haluro, seguido de la coordinación del haluro al átomo de Pd y la apertura del anillo quelato. No existen precedentes para este tipo de reactividad en aril complejos de Pd . Se han preparado también dos novedosos complejos dinucleares, bien por reacción de $\mathbf{3}$ con un dihaluro de alquilo, o bien mediante una segunda reacción de adición oxidante sobre el aril complejo de Pd 5f, obtenido a partir de 5e mediante una reacción de intercambio de haluro. Los complejos 6 y 7 son los primeros ejemplos de complejos de bis(arilpaladio) en los que los grupos arilo tienen sustituyentes en orto. El Capítulo II también describe la reactividad de 1a y $\mathbf{3}$ frente a XyNC, que da lugar, respectivamente, a la formación del complejo 2, (resultado de una reacción de inserción en 1a) o a la formación del imidato ciclado 4, que no había sido descrito con anterioridad. Se describen las estructuras de difracción de rayos X de los complejos 1a, $\mathbf{3} \cdot \mathrm{H}_{2} \mathrm{O}$ y $\mathbf{5 e}$. Estos resultados han sido publicados en Organometallics, 2015, 34, 3282-3291.

Esquema 1. Reacciones y compuestos descritos en el Capítulo II

Capítulo III: Reactividad de complejos de Pd(II) derivados del alcohol bencílico frente a nitrilos, cianamidas y carbodiimidas. Síntesis de un complejo mixto $\mathbf{P d}_{2} \mathbf{A g}$.

El Capítulo III (Esquema 2) describe la reactividad del complejo ciclopaladiado 3 frente a $\mathrm{MeCN}, \mathrm{R}_{2} \mathrm{NCN}(\mathrm{R}=\mathrm{Me}, \mathrm{Et})$ y $\mathrm{RN}=\mathrm{C}=\mathrm{NR}\left(\mathrm{R}=\mathrm{To},{ }^{\mathrm{i}} \mathrm{Pr}\right)$, en presencia de AgOTf y agua residual, para formar los complejos $\mathbf{8}, \mathbf{9 a}, \mathbf{b}$ y 10a,b, que son el resultado de la inserción de las moléculas insaturadas en el enlace $\mathrm{O}-\mathrm{Pd}$ de $\mathbf{3}$, acompañada por la protonación de un átomo de N por parte del agua residual. Estas reacciones requieren la presencia de Ag , que probablemente forma in situ un complejo con las moléculas orgánicas, aumentando su carácter electrofílico y favoreciendo así el ataque nucléofilo del átomo de O del complejo 3. No existen en la bibliografía precedentes de reacciones de este tipo, en las que el nucleófilo sea un complejo. Cuando el complejo 3 reacciona $\mathrm{ToN}=\mathrm{C}=\mathrm{NT}$ o en ausencia de AgOTf se forma el complejo neutro 11, que es la base conjugada de 10b. En condiciones adecuadas, la reacción de $\mathbf{3}$ con $\mathrm{ToN}=\mathrm{C}=\mathrm{NT}$ y AgOTf también puede dar lugar a un complejo trinuclear de $\mathrm{Pd}_{2} \mathrm{Ag}$, $12\left(\mathbf{1 2}=\left[\mathrm{Ag}(N-11)_{2}\right](\mathrm{OTf})\right)$. El Capítulo III también
describe la reactividad del complejo 1a frente a las mismas moléculas insaturadas, aunque en estas reacciones el único resultado positivo ha sido la obtención y caracterización del complejo 13, que se forma debido a la inserción del ${ }^{i} \operatorname{PrN}=\mathrm{C}=\mathrm{N}^{\mathrm{i}} \operatorname{Pr}$ en el enlace aril-Pd de 1a. Se describen las estructuras de difracción de rayos X de los complejos 9a, 10a y $\mathbf{1 2} \cdot 2.5 \mathrm{CHCl}_{3} \cdot 0.5 \mathrm{Et}_{2} \mathrm{O}$, junto con las de los complejos II y III, que no han podido ser caracterizados. Estos resultados serán próximamente enviados para su publicación.

II

12

| |
| :--- | ---: |
| AgOTf |
| MeCN | \(\begin{array}{r}0.5 \mathrm{H}_{2} \mathrm{O}

-0.5 \mathrm{Ag}_{2} \mathrm{O}\end{array}\)

Esquema 2. Reacciones y compuestos descritos en el Capítulo III

Capítulo IV: Derivados mono- y dipaladiados de 2,5-diestirilbenceno. Reactividad frente a XyNC y alquinos. Síntesis de complejos con ligandos indacenodiilo.

El Capítulo IV (Esquema 3) describe la síntesis, mediante reacciones de adición oxidante, de derivados de 2,5-diestirilbenceno mono- (15) o dipaladiados ($\mathbf{1 4 a}, \mathbf{b})$. Los complejos $\mathbf{1 4 a , b}$ son los primeros derivados dipaladiados del benceno con sustituyentes alquenilo en el anillo aromático. Sus reacciones con $\mathrm{PhC} \equiv \mathrm{CPh}$, $\mathrm{MeC} \equiv \mathrm{CMe}$ y $\mathrm{PhC} \equiv \mathrm{CMe}$, en presencia de TlOTf o AgClO_{4}, dan lugar a la formación de indacenodiilos dipaladiados, 16a,b, 17a,b y 18a, $\mathbf{a}^{\prime}, \mathbf{b}$, que son los primeros compuestos de este tipo en ser descritos. Reacciones similares con el complejo monopaladiado 15 resultan en la formación de complejos de indenilpaladio, 19, 19’, 20 y 21. El Capítulo IV también describe la reactividad de los complejos 14a,b frente a XyNC , que da lugar a la inserción de una molécula del isocianuro en cada enlace aril-Pd, y el desplazamiento de los ligandos tbbpy o tmeda, formando el complejo dinuclear 22. Finalmente, la adición oxidante de trans,trans-2,5-diestiril-2,4dibromobenceno a $\left[\operatorname{Pd}(\mathrm{dba})_{2}\right]$ en presencia de XyNC resulta en la formación de una mezcla de dos estereoisómeros, 23,23*, en los que tres moléculas de isocianuro se insertan en ambos enlaces aril-Pd, coordinándose al Pd el átomo de N de una de ellas, de modo que se forman dos anillos quelato de cinco miembros. No se habían descrito anteriormente complejos dinucleares de Pd similares. Se describen las estructuras de difracción de rayos X de los complejos 16a $\cdot 7 \mathrm{CDCl}_{3}, \mathbf{1 6 b} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathbf{1 8 a} \cdot \cdot 4 \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathbf{1 9}$ y 21. Estos resultados se han publicado en dos artículos en Organometallics: una comunicación (2009, 28, 5845-5847) y un artículo (2015, 34, 2240-2254).

Esquema 3. Reacciones y compuestos descritos en el Capítulo IV

Capítulo V: Síntesis y reactividad de derivados dipaladiados del tereftaldehído.

El Capítulo V (Esquema 4) describe la síntesis de dos derivados dipaladiados del tereftaldehído, 25a,b, por hidrólisis de una base de Schiff dipaladiada, IX. Se describe también un derivado dicatiónico de dicha base, el complejo 24. Por reacción de los complejos 25a,b con CO se forman dos nuevos complejos, 26a,b, que son los primeros ejemplos de la inserción de CO en dos enlaces aril-metal en el mismo anillo aromático. La reacción de 25a con XyNC da lugar al complejo 27, que es el resultado de la tri-inserción del isocianuro en ambos enlaces aril-Pd, seguida por el ataque nucleófilo de uno de los isocianuros a cada uno del grupos formilo de 25a, junto con
el desplazamiento del ligando tbbpy. El complejo 27 reacciona con TlOTf en presencia de agua residual para formar el compuesto orgánico 28. Se describen las estructuras de difracción de rayos X de los complejos $\mathbf{2 4} \cdot 4 \mathrm{CHCl}_{3}$, $\mathbf{2 7} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot$ 3hexano y $\mathbf{2 8} \cdot 2 \mathrm{CDCl}_{3}$.

2 TIOTf	-2 BrTI, $-2 \mathrm{H}^{+}$
$2 \mathrm{H}_{2} \mathrm{O}$	$-2 \mathrm{Pd},-4 \mathrm{XyNC}$

$27 \mathrm{XyN}^{\text {// }}$

Esquema 4. Reacciones y compuestos descritos en el Capítulo V

Capítulo VI: Síntesis de arenos mono- y tripaladiados 2,4,6-trisubstituidos.

Triple inserción de $\mathbf{X y N C}$ en tres enlaces aril-Pd en un mismo areno.

El Capítulo VI (Esquema 5) describe la síntesis, mediante reacciones de adición oxidante, de arenos 2,4,6-trisubstituidos tripaladiados (29a,b) y monopaladiados (30, 30, 30" y 31). Por reacción con XyNC de un complejo trinuclear descrito con anterioridad (XVIII) se ha conseguido por primera vez la inserción de isocianuro en tres enlaces aril-Pd de un mismo anillo aromático, dando lugar al complejo 32. Se describen las estructuras de difracción de rayos X de los complejos 30" у 31 .

$\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$	-2 dba
$2 L$	

$\mathrm{N}^{\wedge} \mathrm{N}$
29a tbbpy
29b tmeda

	L	R	X
$\mathbf{3 0}$	PPh_{3}	$\mathrm{CH}_{2} \mathrm{OH}$	I
30'	PPh_{3}	OH	Br
30'	PPh_{3}	OMe	Br
$\mathbf{3 1}$	$\mathrm{PMe}_{2} \mathrm{Ph}$	OMe	Br

32

Esquema 5. Reacciones y compuestos descritos en el Capítulo VI

Capítulo VII: Síntesis mediante microondas de complejos bis(tetrazolato) de Pd(II) con PPh_{3} y de complejos con PTA (1,3,5-triaza-7-fosfaadamantano) solubles en agua. El primer ejemplo de ruptura del enlace $\mathbf{C}-\mathbf{C N}$ del propionitrilo por $\mathbf{P d}(I I)$.

El Capítulo VII (Esquema 6) describe la síntesis de una serie de complejos transbis(tetrazolato pentasustituido) de $\operatorname{Pd}($ II $)$, 33a-g y 35a-d, obtenidos por reacciones de cicloadición $[2+3]$ de dos complejos de partida, $\left(\right.$ trans $-\left[\mathrm{Pd}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ y su derivado hidrosoluble con PTA, trans- $\left[\mathrm{Pd}\left(\mathrm{N}_{3}\right)_{2}(\mathrm{PTA})_{2}\right]$ 34), con diferentes organonitrilos. La solubilidad en agua de la PTA permite la fácil liberación del tetrazolato coordinado en el complejo trans- $\left[\mathrm{Pd}\left(\mathrm{N}_{4} \mathrm{CPh}\right)_{2}(\mathrm{PTA})_{2}\right](\mathbf{3 5 a})$, lo que constituye una ruta sintética muy conveniente para la síntesis de tetrazoles sustituidos. En la reacción de trans$\left[\mathrm{Pd}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ con propionitrilo se obtiene una mezcla de dos complejos, el esperado trans- $\left[\mathrm{Pd}\left(\mathrm{N}_{4} \mathrm{CEt}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathbf{3 3 h})$, más trans- $\left[\mathrm{Pd}(\mathrm{CN})\left(\mathrm{N}_{4} \mathrm{CEt}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathbf{3 3 h}$ '), que es el resultado de una inusual ruptura del enlace NC-C del propionitrilo, que se comporta así
como una fuente de ligando cianuro. En la reacción también se detecta la formación de 5-etil- $1 H$-tetrazol, que debe proceder de la adición oxidante del nitrilo a $\mathrm{Pd}(\mathrm{II})$, seguida de una eliminación β de hidruro del ligando etilo, y una eliminación reductora del tetrazol. Estos resultados han sido publicados en J. Organomet. Chem., 2011, 696, 3513-3520.

Esquema 6. Reacciones y compuestos descritos en el Capítulo VII

CONCLUSIONES

1. Se han preparado nuevos aril-complejos de $\operatorname{Pd}(I I)$ (1a-c, ver Tabla en págs. xxiiixxiv) mediante reacciones de adición oxidante del alcohol 2-iodobencílico a $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$. Por reacción de 1a con XyNC o con $\mathrm{KO}^{t} \mathrm{Bu}$ se han obtenido productos resultantes de una reacción de inserción (2) o de desprotonación (3), respectivamente. El complejo $\mathbf{3}$ cristaliza como pares de moléculas unidas mediante enlaces por puente de H a moléculas de cristalización.
2. El complejo 3 reacciona con CO o con XyNC formando, respectivamente, ftalida o el imidato cíclico N-(2,6-dimetilfenil)-2-benzofuran-1(3H)-imino (4), no descrito anteriormente
3. El ataque nucleófilo de $\mathbf{3}$ sobre el grupo alquilo de haluros de alquilo primarios $\left(\mathrm{RCH}_{2} \mathrm{X}\right)$ resulta en la apertura del anillo quelato y la formación de los complejos 5,
con nuevos enlaces $\mathrm{RCH}_{2}-\mathrm{O}$ y $\mathrm{Pd}-\mathrm{X}$. No existe precedente en la bibliografía de este tipo de reactividad en grupos arilo C, O-ciclometalados. Se han preparado dos complejos dinucleares de bis(arilpaladio), bien por reacción de $\mathbf{3}$ con p $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{Br}\right)_{2}$ (complejo 6) o por reacción de $\mathbf{5 f}\left(\mathrm{R}=p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}\right)$ con $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ (complejo 7). Los complejos 6 y 7 son los primeros ejemplos de complejos de bis(arilpaladio) en los que los grupos arilo están sustituidos en orto.
4. El complejo 3 reacciona con acetonitrilo, cianamidas o carbodiimidas, en presencia de AgOTf y agua residual, para formar complejos iónicos (8-10) que son el resultado de la inserción de las moléculas orgánicas en el enlace $\mathrm{O}-\mathrm{Pd}$ de $\mathbf{3}$, y la protonación de uno de los átomos de N . Sugerimos que estas reacciones tienen lugar a través del ataque nucleófilo de 3 sobre el compuesto orgánico, activado previamente por coordinación a la Ag^{+}(una observación sin precedentes). En ausencia de AgOTf el complejo 3 sólo reacciona limpiamente con $\mathrm{ToN}=\mathrm{C}=\mathrm{NTo}$, formando un complejo neutro 11, que es la base conjugada de 10b. Los complejos $\mathbf{1 0 b}$ y 11 pueden interconvertirse mediante reacciones de protonación y desprotonación.
5. Se ha aislado y caracterizado un complejo bis-quelato heterometálico del tipo $\mathrm{Pd}_{2} \mathrm{Ag}$ (12 $\left.=\left[\operatorname{Ag}(N-11)_{2}\right](\mathrm{OTf})\right) . \mathrm{Su}$ novedosa estructura ha sido confirmada mediante cristalografía de rayos X .
6. Tan sólo en la reacción de 1a con ${ }^{i} \operatorname{PrN}=\mathrm{C}=\mathrm{N}^{\mathrm{i}} \mathrm{Pr}$ en presencia de TlOTf (en lugar de AgOTf) ha sido posible obtener un complejo (13) resultado de la inserción de la carbodiimida en el enlace aril-Pd de 1a. Por tanto, hemos constatado que la reactividad de los complejos 1a y $\mathbf{3}$ frente a nitrilos, cianamidas y carbodiimidas difiere de la de los complejos de $\operatorname{Pd}(\mathrm{II})$ con ligandos orto-fenol (previamente descritos), para los que el grupo OH directamente enlazado al areno promueve reacciones limpias de inserción de las moléculas orgánicas en el enlace aril-Pd.
7. Hemos preparado derivados mono- (15) y di-paladiados (14) de bencenos con sustituyentes alquenilo en orto, mediante reacciones de adición oxidante de trans, trans-2,5-diestiril-2,4-dibromobenceno a uno o dos equivalentes $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$. En las reacciones de estos complejos con alquinos hemos obtenido complejos de $\mathrm{Pd}(\mathrm{II})$ con ligandos indenilo altamente sustituidos (19-21), así como indacenodiilos dipaladiados (16-18). Esta es la primera síntesis de este tipo de complejos dinucleares en la que el ligando se forma por mediación del metal. Los datos de
difracción de rayos X y RMN de ${ }^{13} \mathrm{C}$ sugieren que el modo de coordinación de los ligandos indenilo e indacenodiilo en los complejos 16-21 está desplazado hacia η^{3}.
8. La reactividad frente a XyNC de los complejos dipaladiados $\mathbf{1 4}$ ha resultado en la primera inserción simultánea de isocianuro en dos enlaces aril-Pd en el mismo anillo aromático, formando el complejo dinuclear monoinsertado 22. La síntesis de los complejos 16-22 constituye el primer estudio de la reactividad de arenos dipaladiados frente a reactivos insaturados.
9. La adición oxidante de trans,trans-2,5-diestiril-1,4-dibromobenceno a $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ en presencia de XyNC ha dado lugar a la formación de dos complejos dinucleares isómeros (23,23*), en los que se han insertado tres moléculas de isocianuro en cada enlace aril-Pd. Ambos isómeros se encuentran en intercambio lento en disolución, según indica un espectro EXSY de ${ }^{1} \mathrm{H}$.
10. Hemos preparado dos derivados dipaladiados del tereftaldehído (25a,b), por hidrólisis de una base de Schiff dipaladiada (IX), previamente descrita. Un derivado dinuclear dicatiónico de dicha base de Schiff (24) ha sido también caracterizado, incluyendo su estructura de difracción de rayos X .
11. La reacción de $\mathbf{2 5 a}, \mathbf{b}$ con CO resulta en la primera inserción de CO en dos enlaces aril-metal en el mismo ligando arilo, formando los complejos dinucleares 26a,b. Los datos de RMN de estos complejos sugieren que una de las moléculas de CO insertadas forma un enlace por puente de H con el hidrógeno arílico situado en orto, mientras que lo mismo no ocurre con la otra molécula de CO.
12. La reacción de 25a con $X y N C$ da lugar a un complejo dinuclear de $\operatorname{Pd}(I I)$ (27), que es el resultado de la inserción de tres moléculas de XyNC en los dos enlaces aril-Pd, seguida por la interacción de dos de los isocianuros insertados con los grupos formilo en orto. No se habían descrito anteriormente complejos dinucleares similares.
13. Mediante la hidrólisis del complejo 27, promovida por Tl^{+}, se libera el ligando central formándose el heteropoliciclo 28.
14. Hemos preparado dos arenos tripaladiados con formula general $\mathrm{C}_{6} \mathrm{R}_{3}[\mathrm{Pd}]_{3}(\mathbf{2 9} \mathbf{a}, \mathbf{b})$ y cuatro complejos monopaladiados con fórmula general $\mathrm{C}_{6} \mathrm{R}_{3} \mathrm{X}_{2}[\mathrm{Pd}]$ (30-31), mediante reacciones de adición oxidante de 1,3,5-trihaloarenos 2,4,6-trisustituidos
$\left(\mathrm{C}_{6} \mathrm{R}_{3} \mathrm{X}_{3}, \mathrm{R}=\mathrm{CH}_{2} \mathrm{OH}, \mathrm{OH}, \mathrm{OMe} ; \mathrm{X}=\mathrm{Br}, \mathrm{I}\right)$ a $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ en presencia de ligandos auxiliares.
15. Hemos conseguido la primera inserción de XyNC en tres enlaces aril-Pd de un areno tripaladiado (XVIII), formándose un complejos trinuclear fluxional (32) que ha sido investigado mediante VT-RMN.
16. Los complejos di(azido) trans- $\left[\mathrm{Pd}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ y el hidrosoluble $\left[\operatorname{Pd}\left(\mathrm{N}_{3}\right)_{2}(\mathrm{PTA})_{2}\right]$ (34) son buenos productos de partida para la síntesis de una serie de complejos de $\operatorname{Pd}(\mathrm{II})$ trans-bis(tetrazolato-5-sustituido) (33,35), formados por reacciones de cicloadición $[2+3]$ con nitrilos. Estas reacciones son fuertemente aceleradas por irradiación con microondas.
17. El propionitrilo reacciona con el complejo trans- $\left[\mathrm{Pd}\left(\mathrm{N}_{4} \mathrm{CEt}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (33h) sufriendo una inusual ruptura del enlace NC-C y comportándose como una fuente de ligando cianuro, para formar el complejo mixto ciano-tetrazolato 33h' junto con 5-etil- $1 H$-tetrazol. Esta reacción transcurre mediante una inusual adición oxidante del nitrilo a $\operatorname{Pd}(\mathrm{II})$, seguida por una eliminación β de hidruro en el ligando etilo y una eliminación reductora del tetrazol. Esta es la primera síntesis de un complejo mixto ciano-tetrazolato de $\mathrm{Pd}(\mathrm{II})$ por ruptura de un enlace $\mathrm{C}-\mathrm{C}$ de un organonitrilo.
18. El estudio por difracción de rayos X del complejo 33b muestra que la disposición trans de los dos ligandos tetrazolato es la más favorecida, en contraste con lo que se había publicado anteriormente. La estructura de rayos X también muestra que los ligandos tetrazolato se coordinan a través del N^{2}.
19. Aprovechando la solubilidad en agua del ligando PTA, se ha logrado la liberación del ligando tetrazolato de la esfera de coordinación de un complejo bis(tetrazolato) de $\operatorname{Pd}($ II) (35a), lo que constituye un método sintético conveniente para la síntesis de tetrazoles sustituidos.
20. Los complejos descritos en esta Tesis han sido caracterizados mediante análisis elemental o espectroscopia de masas de alta resolución, así como por espectroscopia de IR y de RMN (experimentos 1D y 2D). Se han resuelto un total de 19 estructuras de difracción de rayos X .

10a $R=\mathrm{P} \mathrm{Pr}$
100 $\mathrm{R}=\mathrm{To}$

GENERAL COMPOUND CHART (Part I)

$\operatorname{PdBr}(b \mathrm{py})]$

$\stackrel{m}{\square}$

\times

$\stackrel{ }{\sim}$

(OTf)

, ${ }^{22}$
23, 23*

$\partial W=y$ sb $R=E t$
9 aa
9 b

$[\mathrm{Pd}]=[\mathrm{Pd}(\mathrm{bpy})]^{\mathrm{R}}$
$\begin{array}{cccc} & \mathrm{R} & \mathrm{R} & \mathrm{A} \\ & \mathrm{Ph} & \mathrm{Ph} & \text { Of }\end{array}$

General Introduction

I. 1 ORGANIZATION AND SUMMARY

This Thesis is divided in nine chapters, being Chapter I this General Introduction. Chapters II-VI describe the chemistry developed by the author at the University of Murcia, in the group of Prof. José Vicente Soler, and Chapter VII describes the work done during a 3-month stay at the University of Lisbon, in the group of Prof. Armando Pombeiro. Each of these chapters corresponds to a scientific publication (already published, or in different stages of preparation), and thus they follow in general the structure of the corresponding paper, including the Abstract (except for publications in preparation), Introduction (which may sometimes overlap with each other, or with this General Introduction), and References, but not the Experimental Section, which has been unified in Chapter VIII. The numbering of the compounds has also been unified, to achieve a consecutive numbering, and there are some additional changes with respect to the original papers, especially involving the inclusion of parts of the Supplementary Material in the main text. Chapter IX contains the Conclusions of the Thesis.

A brief summary of Chapters II-VII is given in the following paragraphs:

Chapter II: Synthesis of Arylpalladium(II) Complexes Derived from Benzyl Alcohol, Reactivity toward Alkyl Halides, and Synthesis of Dinuclear Arylpalladium(II) Complexes.

Chapter II (Scheme I.1) describes the synthesis by oxidative addition reactions of three arylpalladium(II) complexes, 1a-c, derived from benzyl alcohol, as well as a cyclopalladated complex, $\mathbf{3}$, obtained by a deprotonation reaction on 1a. By reaction of $\mathbf{3}$ with different primary alkyl halides a series of complexes, 5a-e, were obtained, resulting from the nucleophilic attack of $\mathbf{3}$ at the alkyl group of the halide, followed by the coordination of the halide to the Pd atom and the opening of the chelate ring. There is no precedent for this type of reaction in an arylpalladium complex. Two novel bis(arylpalladium) complexes, $\mathbf{6}$ and 7, have also been synthesized, either by reaction of $\mathbf{3}$ with an alkyl dihalide, or by a second oxidative addition reaction on the arylpalladium complex $\mathbf{5 f}$, obtained from $\mathbf{5 e}$ by an halide exchange reaction. $\mathbf{6}$ and $\mathbf{7}$ are the first examples of bis(arylpalladium) complexes where the aryl groups are ortho-substituted. Chapter II also describes the reactivity of 1a and $\mathbf{3}$ toward XyNC, resulting, respectively, in an insertion complex, 2, or in the formation of the cyclic
imidate 4, which had not been previously described. The X-ray structures of 1a, 3• $\mathrm{H}_{2} \mathrm{O}$, and 5e are described. These results have been published in Organometallics, 2015, 34, 3282-3291.

Scheme I. 1 Reactions and compounds described in Chapter II

Chapter III: Reactivity toward Nitriles, Cyanamides, and Carbodiimides of Palladium Complexes Derived from Benzyl Alcohol. Synthesis of a Mixed $\mathbf{P d}_{2} \mathbf{A g}$ Complex.

Chapter III (Scheme I.2) describes the reactivity of the cyclopalladated complex 3 toward $\mathrm{MeCN}, \mathrm{R}_{2} \mathrm{NCN}(\mathrm{R}=\mathrm{Me}, \mathrm{Et})$, and $\mathrm{RN}=\mathrm{C}=\mathrm{NR}\left(\mathrm{R}=\mathrm{To}\right.$, $\left.{ }^{\mathrm{i}} \mathrm{Pr}\right)$, in the presence of AgOTf and residual water, to form complexes 8, 9a,b, and 10a,b, resulting from the insertion of the unsaturated molecules into the O-Pd bond of $\mathbf{3}$, and the protonation of a N atom by the residual water. These reactions require the presence of Ag, which probably forms in situ a complex with the organic molecules, increasing their electrophilicity, and thus favoring the nucleophilic attack of the O atom of $\mathbf{3}$. There is no precedent in the literature for reactions of this type, where the nucleophile is a complex. When complex $\mathbf{3}$ reacts with $\mathrm{ToN}=\mathrm{C}=\mathrm{NTo}$ in the absence of AgOTf the neutral complex $\mathbf{1 1}$ is formed, which is the conjugate base of $\mathbf{1 0 b}$.

Under adequate conditions, the reaction of $\mathbf{3}$ with $\mathrm{ToN}=\mathrm{C}=\mathrm{NTo}$ and AgOTf can also yield the mixed-metal $\mathrm{Pd}_{2} \mathrm{Ag}$ complex $12\left(\mathbf{1 2}=\left[\mathrm{Ag}(N-11)_{2}\right](\mathrm{OTf})\right)$. Chapter III also describes the reactivity of complex 1a toward the same unsaturated molecules, although these reactions have only given a positive result in the isolation of complex 13, which is the result of the insertion of ${ }^{\mathrm{i}} \mathrm{PrN}=\mathrm{C}=\mathrm{N}^{\mathrm{i}} \mathrm{Pr}$ into the aryl- Pd bond of $\mathbf{1 a}$. The X-ray structures of $\mathbf{9 a}, \mathbf{1 0 a}$, and $\mathbf{1 2} \cdot 2.5 \mathrm{CHCl}_{3} \cdot 0.5 \mathrm{Et}_{2} \mathrm{O}$, together with those of the non-characterized products II and III, are described. These results will be soon submitted for publication.

Scheme I. 2 Reactions and compounds described in Chapter III

Chapter IV: Mono- and Dipalladated Derivatives of 2,5-Distyrylbenzene. Reactivity Toward XyNC and Alkynes. Synthesis of Complexes with Indacenediide Ligands.

Chapter IV (Scheme I.3) describes the synthesis by oxidative addition reactions of one mono- (15) and two dipalladated ($\mathbf{1 4 a , b}$) derivatives of 2,5-distyrylbenzene. $\mathbf{1 4 a}, \mathbf{b}$ are the first dipalladated benzene derivatives with alkenyl groups on the aryl ring. Their reactions with $\mathrm{PhC} \equiv \mathrm{CPh}, \mathrm{MeC} \equiv \mathrm{CMe}$, and $\mathrm{PhC} \equiv \mathrm{CMe}$, in the presence of TlOTf or AgClO_{4}, gave the dipalladated indacenediide complexes $\mathbf{1 6 a}, \mathbf{b}, \mathbf{1 7 a}, \mathbf{b}$, and $\mathbf{1 8 a}, \mathbf{a}, \mathbf{b}$, which are the first such compounds to be described. Similar reactions with the monopalladated complex 15 resulted in the indenylpalladium complexes 19, 19', 20, and 21. Chapter IV also describes the reactivity of $\mathbf{1 4 a}, \mathbf{b}$ toward XyNC , resulting in the insertion of one molecule of the isocyanide into each aryl-Pd bond, and the displacement of the tbbpy or tmeda ligands, to yield the dinuclear complex 22. Finally, the oxidative addition of trans,trans-2,5-distyryl-2,4-dibromobenzene to $\left[\operatorname{Pd}(\mathrm{dba})_{2}\right]$ in the presence of XyNC results in a mixture of two stereoisomers, 23,23*, in which three isocyanide molecules are inserted into both aryl- Pd bonds, with the N atom of one of them coordinated to Pd , foming two five-membered chelate rings. No such dinuclear Pd complexes had been described before. The X-ray structures of $\mathbf{1 6 a} \cdot 7 \mathrm{CDCl}_{3}, \mathbf{1 6 b} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathbf{1 8 a} \cdot \cdot 4 \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathbf{1 9}$, and $\mathbf{2 1}$ are described. These results have been published in two articles in Organometallics: a communication (2009, 28, 5845-5847) and a full paper (2015, 34, 2240-2254).

Scheme I. 3 Reactions and compounds described in Chapter IV

Chapter V: Synthesis and Reactivity of Dipalladated Derivatives of

 Terephthalaldehyde.Chapter V (Scheme I.4) describes the synthesis of two dipalladated derivatives of terephthalaldehyde, 25a,b, by hydrolysis of a dipalladated Schiff base, IX. A dicationic dinuclear derivative of the Schiff base, complex 24, has also been obtained. By reaction of $\mathbf{2 5 a}, \mathbf{b}$ with CO two new complexes, $\mathbf{2 6 a}, \mathbf{b}$, form, which are the first examples of a double insertion of CO into two separate aryl-metal bonds on the same aryl ring. The reaction of $\mathbf{2 5 a}$ with XyNC yields complex 27, which is the result from the triinsertion of the isocyanide into both aryl-Pd bonds, and the nucleophilic attack of one isocyanide to each formyl group of 25a, plus the displacement of the tbbpy ligand. Complex 27 reacts with TlOTf in the presence of residual water to form the organic compound 28 . The X-ray structures of $\mathbf{2 4} \cdot 4 \mathrm{CHCl}_{3}, \mathbf{2 7} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 3$ hexane, and $\mathbf{2 8} \cdot 2 \mathrm{CDCl}_{3}$ are described.

$-2^{n} \mathrm{BuNH}_{2}$	
-2 NaOAc	$\begin{array}{c}2 \mathrm{tbbpy} \\ \mathrm{AcOH}(1 \mathrm{~mL})\end{array}$
acetona/ $\mathrm{H}_{2} \mathrm{O}(5: 1)$	

XyN

Scheme I. 4 Reactions and compounds described in Chapter V

Chapter VI: Synthesis of Mono- and Tripalladated 2,4,6-Trisubstituted Arenes.

 3-Fold Insertion of $\mathbf{X y N C}$ into Three Aryl-Palladium Bonds on the Same Arene.Chapter VI (Scheme I.5) describes the synthesis by oxidative addition reactions of two tripalladated ($\mathbf{2 9} \mathbf{a}, \mathbf{b}$) and four monopalladated ($\mathbf{3 0}, \mathbf{3 0}, \mathbf{3 0}$ ’, and 31) 2,4,6trisubstituted arenes. By reaction of a previously described trinuclear complex, XVIII, with XyNC, the 3-fold insertion of the isocyanide into three aryl-Pd bonds on the same ring is achieved for the first time, forming complex 32. The X-ray structures of $\mathbf{3 0}$ " and $\mathbf{3 1}$ are described.

	L	R	X
30	PPh_{3}	$\mathrm{CH}_{2} \mathrm{OH}$	I
30'	PPh_{3}	OH	Br
30"	PPh_{3}	OMe	Br
31	$\mathrm{PMe}_{2} \mathrm{Ph}$	OMe	Br

32

Scheme I. 5 Reactions and compounds described in Chapter VI

Chapter VII: Microwave Synthesis of Bis(tetrazolato)-Pd(II) Complexes with $\mathbf{P P h}_{3}$ and Water-Soluble 1,3,5-Triaza-7-Phosphaadamantane (PTA). The First Example of C-CN Bond Cleavage of Propionitrile by a Pd(II) Center.

Chapter VII (Scheme I.6) describes the synthesis of a variety of trans-bis(5substituted tetrazolato)-Pd(II) complexes, 33a-g and 35a-d, derived upon [2+3] cycloaddition reactions of different organonitriles with two di(azido) compounds, trans$\left[\operatorname{Pd}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and its hydrosoluble PTA derivative, trans-[$\left.\mathrm{Pd}\left(\mathrm{N}_{3}\right)_{2}(\mathrm{PTA})_{2}\right]$ (34). The hydro-solubility of PTA allows the facile liberation of the coordinated tetrazolate from the coordination sphere of trans- $\left[\mathrm{Pd}\left(\mathrm{N}_{4} \mathrm{CPh}\right)_{2}(\mathrm{PTA})_{2}\right]$ (35a), providing a convenient synthetic method for substituted tetrazoles. In the reaction of trans- $\left[\mathrm{Pd}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ with propionitrile a mixture of two complexes is obtained, the expected trans$\left[\mathrm{Pd}\left(\mathrm{N}_{4} \mathrm{CEt}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathbf{3 3 h})$, plus trans-[$\left.\mathrm{Pd}(\mathrm{CN})\left(\mathrm{N}_{4} \mathrm{CEt}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathbf{3 3 h}$ '), which is the result of an unusual NC-C bond cleavage in the propionitrile, that behaves as a source of cyano ligand. 5-ethyl- $1 H$-tetrazole is also formed in this reaction, which is suggested to proceed via an unusual oxidative addition of the nitrile to $\mathrm{Pd}(\mathrm{II})$, followed by a β - H elimination from the ethyl ligand, and a reductive elimination of the tetrazole. These results have been published in J. Organomet. Chem., 2011, 696, 3513-3520.

Scheme I. 6 Reactions and compounds described in Chapter VII

I. 2 ORGANOPALLADIUM CHEMISTRY

Organometallic Chemistry is the chemistry of compounds containing at least one carbon-metal bond. It is a broad field, spanning the boundaries of Organic and Inorganic Chemistry, and which has evolved at a dizzying pace in recent decades, to acquire a great prominence in modern Chemistry. Its relevance is evidenced by the publication of several international jounals and book series of high impact factor $(i f)^{\text {a }}$ exclusively dedicated to this area, such as Advances in Organometallic Chemistry (first publication year, 1964; if 7.000), Topics in Organometallic Chemistry (1998, if 5.293), Organometallics (1982, if 4.126), Journal of Organometallic Chemistry (1963, if 2.173), and Applied Organometallic Chemistry (1987, if 2.248). In transition metal organometallic complexes, the bond between the organic ligand and the metal usually has a strong covalent character, very often with a π bond component involving the metal d orbitals. As a result, transition metals have a unique ability to activate organic compounds, and to catalyze the formation of new bonds. This is the main point of interest in Organometallic Chemistry, and the reason for its importance in Organic Synthesis. ${ }^{1}$

Within Organometallic Chemistry, Organopalladium Chemistry has emerged as a field of prime importance on its own. ${ }^{2,3}$ Palladium organometallic complexes display simultaneously a wide-range reactivity and high stereo-, regio-, and chemoselectivities. They are highly reactive, and yet stable enough to be used as recyclable reagents and intermediates in catalytic processes. Other late second-row transition metals, especially Rh and Ru , share these favorable characteristics, which seem to stem from: (i) relatively high electronegativity, (ii) moderately large atomic size (they are very "soft" elements), (iii) ready and simultaneous availability of both filled nonbonding and empty valence-shell orbitals, and (iv) ready and reversible availability of two oxidation states, separated by two electrons. Other favourable features from these metals, from a practical point of view, are: (v) the general lack of serious toxicity problems, (vi) the ease of handling, which often does not require rigorous exclusion of air and moisture, and (vii) the compatibility with sensitive funcional groups, which do not need to be protected. ${ }^{3}$ Palladium is, additionally, one

[^0]of the least expensive of the platinum group metals, and so its complexes have found application in almost all subdisciplines of modern Chemistry, from materials science to the synthesis of drug candidates and approved drugs. This progress is still on, without any end in sight.

Probably the most relevant application of organopalladium complexes is their use as catalysts in carbon-carbon ${ }^{4-15}$ and carbon-heteroatom ${ }^{12,14,16-22}$ bond forming reactions, which have become essential tools in Organic Synthesis. A key feature in these reactions is the ability of palladium complexes to undergo oxidative addition (to $\mathrm{Pd}(0)$) and reductive elimination (from $\mathrm{Pd}(\mathrm{II})$) reactions which, coupled with other transformations (β-hydride eliminations, carbometalations, migratory insertions, nucleophilic substitutions), provide a powerful method to construct σ-bonds within substrates. In the next section we revise the most important so-called "Pd-catalyzed cross-coupling reactions".

I. 3 Pd-CATALYZED CROSS-COUPLING REACTIONS

The transition-metal-catalyzed substitution of an aryl, vinyl or alkyl halide or pseudohalide by a nucleophile is generally refered to as a "cross-coupling reaction". The principle of these reactions is that the two molecules of interest are bonded to the metal, and thus they are brought very close to one another. Then they couple forming a new carbon-carbon ${ }^{4-15}$ or carbon-heteroatom ${ }^{12,14,16-22}$ (N, O, S) bond. Nowadays these reactions are key steps in virtually every synthesis of modern pharmaceuticals, agrochemicals, and otherwise biologically active compounds, as well as polymers or other fine chemicals, both in industrial settings and in laboratories, and it is difficult to imagine contemporary Organic Synthesis without them. ${ }^{1,14,22,23}$ Among the numerous developed methodologies, Pd-catalyzed reactions ${ }^{2,3,24}$ occupy a prominent position, as they fuction under mild conditions and with very high precision. Their imporance in modern Chemistry was recognized by the bestowal of the 2010 Nobel Prize in Chemistry to Richard F. Heck, ${ }^{25}$ Ei-ichi Negishi ${ }^{26}$ and Akira Suzuki ${ }^{27}$ for their development of "Palladium-Catalyzed Cross-Couplings in Organic Synthesis". Pd-catalyzed carbon-carbon and carbon-heteroatom bond-forming reactions are discussed separately in the following sections.

I.3.1 Pd-Catalyzed Carbon-Carbon Bond Forming Reactions

Pd-catalyzed carbon-carbon bond forming reactions start with the oxidative addition of an organohalide $\left(\mathrm{R}^{1} \mathrm{X}\right)$ or pseudohalide (e.g., $\mathrm{X}=\mathrm{OTf}$), to $\operatorname{Pd}(0)$, generating an organopalladium(II) complex, $\mathrm{R}^{1} \mathrm{PdX}$, where R^{1} is the electrophilic coupling partner. This complex will then react with a nucleophile, R^{2}, which can be a free molecule (such as an alkene or CO), or part of an organometallic compound, $\left(R^{2} M\right) . R^{2}$ will coordinate to Pd (via a ligand-displacement, usually followed by an insertion reaction, or via a transmetallation reaction), and then a carbon-carbon bond between R^{1} and R^{2} will form in the Pd coordination sphere. The resulting new molecule, $\mathrm{R}^{1}-\mathrm{R}^{2}$, will be eventually released from the Pd atom, and a new cycle will start. Two general examples are shown in Scheme I.7, and some important reactions are discussed in the following paragraphs.

Scheme I. 7 Pd-catalyzed carbon-carbon bond forming reactions

I.3.1.1 C-C Bond Forming Reactions with Olefins: The Heck Reaction

The Heck Reaction ${ }^{7,25}$ consists in the Pd-catalyzed carbon-carbon coupling between aryl, benzyl, or vinyl halides or pseudohalides, and an activated alkene (usually with electron-withdrawing substituents), in the presence of a base. After some preliminary reports, ${ }^{28}$ the standard version of the Heck Reaction was published in $1972,{ }^{29}$ and it was the first example of a carbon-carbon coupling reaction using a $\mathrm{Pd}(0) / \mathrm{Pd}(\mathrm{II})$ catalytic cycle. It is sometimes referred to as the "Mizoroki-Heck Reaction", to acknowledge the early contributions of T . Mizoroki ${ }^{30}$ in the development of this chemistry. The reaction is stereoselective toward the E isomer, and in its intramolecular version ${ }^{31}$ it is widely used for the synthesis of carbocyles and heterocycles. ${ }^{32}$ Scheme I. 8 shows the generally accepted mechanism. After the
oxidative addition of the organohalide $\mathrm{R}^{1} \mathrm{X}$ to the $\mathrm{Pd}(0)$ catalyst, the olefin coordinates to the resulting $\mathrm{Pd}(\mathrm{II})$ organometallic species, \mathbf{A}, forming a π-alkene complex, B. The syn migratory insertion of the olefin into the $\mathrm{Pd}-\mathrm{R}^{1}$ bond results in an alkyl complex, \mathbf{C}, where the R^{1} group is bonded to the less substituted carbon of the olefin. Compound \mathbf{C} rapidly decomposes through a β-hydride elimination, forming again a π-alkene complex, \mathbf{D}, where the olefin has adopted an sterically favored (E) geometry. The olefin is then released, resulting in the formation of a $\operatorname{Pd}($ II) hydride, E, which through a base-assisted hydrogen halide elimination regenerates the catalytically active $\operatorname{Pd}(0)$ species.

$\mathrm{R}=$ aryl, vinyl
$\mathrm{X}=$ halide, triflate

Scheme I. 8 Generally accepted mechanism for the Heck Reaction

In 1975, Heck and Cassar reported an extension of the Heck reaction to 1alkynes, catalyzed by a phosphine- $\operatorname{Pd}(0)$ complex in the presence of amines. ${ }^{33}$ In the
same year Sonogashira and Hagihara developed their successful $\mathrm{Pd}(0)-\mathrm{CuI}$-catalyzed coupling of alkynes with organic halides, where the alkyne is activated through the formation of a $\mathrm{Cu}(\mathrm{I})$ acetylide, and which follows a different mechanism (see Section I.3.I. 4 below). ${ }^{4}$

I.3.1.2 C-C Bond Forming Reactions with CO: The Heck Carbonylation

The Pd-catalyzed carbonylation of aryl and vinyl halides was first described more than 30 years ago by Richard Heck. ${ }^{34}$ However, limitations in the conditions originally described ${ }^{35}$ meant that this reaction achieved less prominence than the coupling reaction with alkenes described above. The so-called Heck Carbonylation ${ }^{13}$ involved the reaction of aryl and vinyl halides with carbon monoxide to form acylpalladium intermediates, which were then converted by reaction with a nucleophile to products such as carboxylic acids, esters, amides, or aldehydes. ${ }^{35}$ The addition of a base was necessary to react with the acid generated in the reaction, and to promote the formation of the $\operatorname{Pd}(0)$ catalyst. Scheme I. 9 shows the general mechanism for these reactions, ${ }^{13}$ involving the oxidative addition of the organohalide to the $\operatorname{Pd}(0)$ catalyst, forming a $\operatorname{Pd}(\mathrm{II})$ organometallic complex, A. Coordination of a molecule of CO to the Pd atom results in an organo(carbonyl)palladium complex B. ${ }^{36-39}$ These compounds are difficult to isolate, as they readily undergo migratory insertion to give an acyl derivative $\mathbf{C},{ }^{40-57}$ which may further react with an internal or external nucleophile to form a carbonyl-containing organic product upon depalladation. The utility of this chemistry for the synthesis of carbonyl derivatives has led many researchers to attempt to expand the scope of the reaction beyond the originally described bromide, iodide, and triflate substrates, with conditions suited to large-scale application (particularly low-pressure). To a large degree, this has now been achieved. ${ }^{35}$

B

Scheme I. 9 A general mechanism for the Heck Carbonylation

I.3.1.3 C-C Bond Forming Reactions with Organometallic Reagents

There is a quite long list of reactions involving the Pd-catalyzed coupling between organohalides or organotriflates with organometallic reagents. These reactions are usually named after their discoverers, being the most popular those using organotin (Stille), organoboron (Suzuki), and organozinc (Negishi) reagents, because of their stability and good functional group compatibility. An enduring objective in this field is the search for reactions that proceed under mild conditions, without toxic byproducts, and involving cheap and readily available starting materials. Scheme I. 10 summarizes the most important Pd-catalyzed carbon-carbon bond forming reactions with organometallic reagents, which are briefly described in the following paragraphs (the metal in the organometallic reagent and the year of discovery are given in brackets).

Scheme I.10 Pd-catalyzed carbon-carbon bond forming reactions with organometallic reagents
Kumada-Corriu Reaction ($\mathbf{M g}, \mathbf{1 9 7 5}$): ${ }^{9}$ The first version of this reaction was concurrently reported in 1972 by the Corriu ${ }^{58}$ and Kumada ${ }^{59}$ groups, and it described the coupling of Grignard reagents and organic halides, using Nicontaining catalysts. This was a truly ground-breaking discovery of a novel carbon-carbon bond forming process, ${ }^{15}$ and it foreshadowed the development of the many other related processes that followed. With the introduction of Pd catalysts in 1975 by the Murahashi group, ${ }^{60}$ the scope of the Kumada coupling reaction was further broadened. ${ }^{61}$ Still, its major drawback is the poor functional group tolerance of Grignard reagents, while its major advantage is that many of these reagents are commercially available, or easily synthesized, and so they can be directly used without the need of transmetallation reactions to prepare other metal-containing reagents.

Sonogashira Reaction (Cu, 1975): ${ }^{4}$ As described at the end of Section I.3.1.1, this reaction consists in the Pd -catalyzed cross-coupling between a terminal alkyne and a vinyl or aryl halide, using as cocatalyst a $\mathrm{Cu}(\mathrm{I})$ species that activates the alkyne through the formation of a $\mathrm{Cu}(\mathrm{I})$ acetylide. The presence of an amine base is also required. The reaction takes place under mild conditions, and it is compatible with a wide range of functional groups.

Negishi Reaction (Zn, 1977): ${ }^{5,26}$ This reaction uses organozinc species, which may be obtained by oxidative addition of an organohalide to $\mathrm{Zn}(0)$, or may be generated in situ by transmetalation of Grignard or organolithium reagents with ZnCl_{2}. It was the first reaction that allowed the preparation of unsymmetrical
biaryls in good yield, and it has a broad scope ($\mathrm{R}^{1}=$ alkenyl, aryl, allyl, benzyl, propargyl; $\mathrm{R}^{2}=$ alkenyl, aryl, alkynyl, alkyl, benzyl, allyl).

Stille Reaction (Sn, 1978): ${ }^{6}$ This is a versatile carbon-carbon bond forming reaction between organostannanes and halides or pseudohalides, with very few limitations on the nature of the $\mathrm{R}^{1}, \mathrm{R}^{2}$ groups. Its major drawback is the toxicity of the tin compounds.

Suzuki-Miyaura Reaction (B, 1979): $:^{8,27}$ The original Suzuki-Miyaura Reaction used organoboronic acids and halides (a base was needed to activate the acid), but later developments extended the scope of the reaction to (i) R groups other than aryls (alkyls, alkenyls, alkynyls), (ii) other organoboron reagents (trifluoroborates, organoboranes, or boronate esters), in place of boronic acids, and (iii) some pseudohalides (e.g. triflates), as coupling partners. Due to the stability, ease of preparation, and low toxicity of boronic acids, there is currently a widespread interest in applications of the Suzuki Coupling, with new improvements being constantly reported. This may soon lead to the same versatility in the Suzuki Reaction as in the Stille Reaction, without the drawback of using tin compounds.

Hiyama Reaction ($\mathbf{S i}, \mathbf{1 9 8 8}):{ }^{10}$ This is a Pd-catalyzed carbon-carbon bond forming reaction between aryl, alkenyl, or alkyl halides or pseudohalides, and organosilanes. Similarly to the Suzuki Reaction, it requires an activating agent, such as a fluoride ion or a base, to increase the polarization of the carbonsilicon bond. Organosilanes are stable and easily prepared compounds with low toxicity, and they are compatible with many functional groups. The Hiyama Reaction has become and interesting alternative to the Suzuki Reaction, with a comparable scope of conversions, although the broad commercial availability of boronic acids and boronates often makes the Suzuki Reaction the more convenient choice.

All the reactions described in the previous paragraphs follow the general mechanism depicted in Scheme I.11. The first step is again the oxidative addition of the organohalide $\mathrm{R}^{1} \mathrm{X}$ to the $\operatorname{Pd}(0)$ catalyst, forming a $\operatorname{Pd}(\mathrm{II})$ organometallic complex, A. Then, the organic group R^{2} is transferred to the Pd center by a transmetallation process. The resulting intermediate, \mathbf{B}, undergoes a reductive elimination, forming
the organic product of interest, $R^{1}-R^{2}$, and regenerating the $\operatorname{Pd}(0)$ catalyst.

$$
R^{1} X+M R^{2} \xrightarrow[-M-X]{\text { Pd-catalyst }} R^{1}-R^{2}
$$

$R=$ aryl, viny, alkyl, allyl, benzyl, etc.
$\mathrm{X}=$ halide, triflate

Scheme I.11 General mechanism for the Pd-catalyzed carbon-carbon bond forming reactions with organometallic reagents

I.3.2 Pd-Catalyzed Carbon-Heteroatom Bond Forming Reactions

A relatively recently success in Organometallic Catalysis is the discovery of reactions that form bonds between carbon and heteroatoms, such as $\mathrm{N}, \mathrm{O}, \mathrm{S}, \mathrm{Si}$, and B, via complexes of transition metals with amides, alcoxides, thiolates, silyl groups or boryl groups. These reactions are very important, as the functionality of many molecules, such as pharmaceuticals and conductive polymers, is often derived from the presence of heteroatoms ($\mathrm{N}, \mathrm{O}, \mathrm{S}$) within the carbon skeleton. Heterocyclic compounds with C-N, C-O, and C-S bonds are found in almost all applications of Chemistry. Moreover, useful intermediates in synthesis often contain C-B or C-Si bonds that are later converted into C-C, C-O, or C-N bonds in the final products. ${ }^{20}$

The first example for the Pd-catalyzed formation of a carbon-nitrogen bond was reported by Migita, ${ }^{62}$ and it used aryl bromides and tin amides, which are toxic and sensitive compounds. This work went unreferenced for a decade until John Hartwig started to investigate the mechanism of this reaction, discovering that it involved Ar$\mathrm{Pd}(\mathrm{II})$ compounds and a transmetallation step (of the amine) from Sn to Pd , similarly to the Stille reaction. ${ }^{63}$ Three months after Hartwig's paper was submitted, Stephen Buchwald submitted his first work on the same subject, extending the scope of the reaction by generating tin amines in situ. ${ }^{64}$ Both authors began then an ongoing trend of independent, overlapping research, publishing methods for tin-free Pd-catalyzed aryl-amine couplings, ${ }^{64,65}$ the use of bidentate phosphine ligands, ${ }^{66}$ the extension of the reaction to aryl iodides, triflates, ${ }^{65,67}$ and chlorides ${ }^{68}$ and, a major breakthrough, the formation of aryl-oxygen bonds. ${ }^{69}$ Several generations of catalyst systems have been developed, with each system allowing greater scope in terms of coupling partners and milder conditions, until nowadays virtually any amine can be coupled with a wide variety of aryls. Many reviews have been published by both authors, and the reaction is now known as the Hartwig-Buchwald Amination. ${ }^{17,20}$ The general accepted mechanism for this reaction is depicted in Scheme I.12, and it is similar to those described above for the Pd-catalyzed carbon-carbon coupling reactions. The main difference is that after formation of the $\operatorname{Pd}($ II) complex \mathbf{A}, by oxidative addition of the aryl halide to the $\operatorname{Pd}(0)$ species, the free amine coordinates to \mathbf{A} forming the amine complex \mathbf{B}. This complex is deprotonated by the action of a base, losing the halide ligand in the form of (baseH)X, and forming the intermediate amido complex C. Finally, a reductive elimination on \mathbf{C} forms the new amine, ArNRR', and regenerates the $\mathrm{Pd}(0)$ catalyst.

Alcohols can also be coupled with aryl halides to form the corresponding aryl ethers, under similar conditions to those of the the amination reaction. ${ }^{16}$ Thiols and thiophenols can participate in these reactions as well, forming the corresponding arylthioethers. ${ }^{19}$ Trifluoromethyl sulphides have also been used as a source of SCF_{3} groups. ${ }^{21}$

Scheme I. 12 General mechanism for the Hartwig-Buchwald Amination

I. 4 ARYLPALLADIUM(II) COMPLEXES

Arylpalladium(II) complexes play a prominent role in Organopalladium Chemistry. They display an especially rich chemistry, as a consequence of the relative lability of the Pd-aryl bond, and they are often involved in some of the most important Pd-mediated processes, as shown in Section I.3. Consequently, there have been intensive studies on the synthesis of $\mathrm{Pd}(\mathrm{II})$ aryl complexes and on the study of their reactivity.

Our research group has been specially interested in the synthesis of orthosubstituted arylpalladium complexes, ${ }^{44-49,51,53,54,56,57,70-87}$ and the investigation of their reactivity toward unsaturated organic molecules. ${ }^{39,44-57,71,72,74,76-80,82,83,85-99}$ These molecules often insert into the aryl-Pd bond, forming new palladium complexes, and this reactivity may be affected by the group in ortho, as a consequence of electronic or steric effects. Very often new ligands and/or organic compounds are formed, involving both the insertion of the organic molecule into the carbon-palladium bond and its interaction with the group in ortho position. ${ }^{39,47-50,53,54,57,71,72,74,77,80,82,83,86-88,90-}$

Cyclopalladated compounds ${ }^{100,101}$ (see Section I.4.1.1 below) are often involved in these reactions. ${ }^{50,72,77,79,81,82,86,89}$

In this section we will revise the main methods for the synthesis of (orthosubstituted) arylpalladium(II) complexes, as well as some of the most representative insertion reactions with organic molecules, namely alkynes, carbon monoxide, and isocyanides.

I.4.1 Synthesis of ortho-Substituted Arylpalladium(II) Complexes

The most popular methods for the synthesis of ortho-substituted arylpalladium(II) complexes are: (i) direct cyclopalladation (orthopalladation), (ii) transmetallation, and (iii) oxidative addition reactions.

I.4.1.1 Orthopalladation Reactions

Cyclopalladated compounds contain a Pd-C σ-bond stabilized by the coordination to Pd of a heteroatom of the ligand (Scheme I.13). They have been extensively investigated ${ }^{102}$ because they combine the reactivity of the Pd-C bond with a remarkable stability. Their electronic and steric properties can be modulated by changing (i) the size of the palladacycle (3- to 10-membered palladacyles are known), (ii) the nature of the carbon atom bonded to Pd (aromatic, aliphatic, vinylic...), (iii) the nature of the heteroatom bonded to Pd ($\mathrm{N}-, \mathrm{S}-, \mathrm{P}-, \mathrm{O}-$, etc.), (iv) the substituents on the heteroatom (or on other parts of the ligand), and (v) the rest of the ligands bonded to the Pd atom. ${ }^{103}$

Scheme I. 13 Schematic representation of a palladacycle

Most frequently, palladacycles are orthopalladacycles, i.e., arylpalladium complexes where the Pd atom is bonded to the carbon atom in ortho to the substituent which is also coordinated to Pd. They are usually prepared by direct activation (by reaction with an electrophilic $\mathrm{Pd}(\mathrm{II})$ compound, such as $\left[\mathrm{Pd}(\mathrm{OAc})_{2}\right], \mathrm{PdCl}_{2}$, or a $\left[\mathrm{PdCl}_{4}\right]^{2-}$ salt) of a C-H bond in ortho to a funcional group containing a suitable donor atom. This reaction is known as orthopalladation. ${ }^{104}$ The most common palladacycles are those derived from N -donor ligands, mainly imines and tertiary amines, and
containing 5- or 6-membered rings. ${ }^{103}$ Scheme I. 14 shows the orthopalladation of the diimine $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}=\mathrm{N}^{\mathrm{n}} \mathrm{Bu}\right)_{2}-1,4$ with $\left[\mathrm{Pd}(\mathrm{OAc})_{2}\right.$], forming the tetranuclear complex $\left[\left\{\mu-C 1, C 4, N, N "-\mathrm{C}_{6} \mathrm{H}_{2}\left\{\mathrm{C}(\mathrm{H})=\mathrm{N}\left({ }^{\mathrm{n}} \mathrm{Bu}\right)\right\}_{2}-2,5\right\}\{\mathrm{Pd}(\mu-\mathrm{OAc})\}\right]_{2}$ (IX), ${ }^{105}$ which is the starting material of the chemistry described in Chapter V of this Thesis.

Scheme I. 14 Orthopalladation of a diimine with $\operatorname{Pd}(\mathrm{OAc})_{2}{ }^{105}$

I.4.1.2 Transmetallation Reactions

A transmetallation reaction ${ }^{106}$ involves the transfer of a ligand from one metal to another. The general reaction involving organic ligands is: $M^{1}-R+M^{2}-R^{\prime} \rightarrow M^{1}-R^{\prime}+$ $M^{2}-R\left(R, R^{\prime}=\right.$ alkyl, aryl, alkynyl, allyl, etc.). Organolithium and organomagnesium reagents are commonly used transmetallation reagents, but they are not compatible with many functional groups, such as proton acids, electrophilic groups, or good leaving groups. Organomercurials, in contrast, are very easy to prepare and handle, and they have been used in our research group for the synthesis of aryl derivatives of $\mathrm{Pt},{ }^{107} \mathrm{Au},{ }^{108} \mathrm{Rh},{ }^{109}$ $\mathrm{Sn},{ }^{110} \mathrm{Tl},{ }^{111}$ and $\mathrm{Pd}^{71,72,112-115}$ (see Scheme I. 15 for an example).

Scheme I. 15 Synthesis of arylpalladium complexes with 2-formyl-4,5,6-trimethoxyphenyl, ${ }^{113}$ 2-acetyl-4,5,6-trimethoxyphenyl, ${ }^{114} 2$-ethoxy-4,5,6-trimethoxyphenyl, ${ }^{71} 2$-tert-butylcarbamoyl-4,5,6trimethoxyphenyl, ${ }^{72}$ and 2,5 -diformyl ${ }^{155}$ ligands, by transmetallation reactions involving organomercurials

Transmetallation reactions to Pd are a key step in Pd-catalyzed carbon-carbon bond forming reactions involving organometallic reagents, such as those described in Section I.3.1.3 (Kumada $(M=M g)$, Negishi $(M=Z n)$, Stille $(M=S n)$, Suzuki $(M=$ B), Hiyama $(\mathrm{M}=\mathrm{Si})$, and Sonogashira $(\mathrm{M}=\mathrm{Cu})$ reactions $)$.

I.4.1.3 Oxidative Addition Reactions

In an oxidative addition reaction, ${ }^{116}$ a compound A-B adds to a metallic complex [M]. As a result both fragments of the oxidant bond to the central atom of the complex, increasing both its oxidation state and its coordination number in two units:

$$
[\mathrm{M}]+\mathrm{A}-\mathrm{B} \rightleftharpoons \mathrm{C}=[\mathrm{M}]-\mathrm{B}
$$

The opposite reaction is the reductive elimination. ${ }^{117}$ Both reactions are very common in the chemistry of transition metals, because of the availability of different and easily accessible oxidation states. The most important systems are.

$$
\begin{array}{lll}
{[\mathrm{M}(0)]} & \rightleftharpoons[\mathrm{M}(\mathrm{II})] & \mathrm{M}=\mathrm{Ni}, \mathrm{Pd}, \mathrm{Pt} \\
{[\mathrm{M}(\mathrm{I})]} & \rightleftharpoons[\mathrm{M}(\mathrm{III})] & \mathrm{M}=\mathrm{Rh}, \mathrm{Ir}
\end{array}
$$

Oxidative additions are common for coordinatively unsaturated, electron-rich metal centers, in low oxidation states (mainly 0 and +1). Good σ-donor ligands, such as $\mathrm{R}_{3} \mathrm{P}$, bpy, alkyl and hydride ligands, favour the reaction, while π-acceptors, such as CO and olefins, hinder, or even prevent it. A wide range of A-B oxidants can be used in these reactions. They can be polar electrophiles such as $\mathrm{H}-\mathrm{X}, \mathrm{R}-\mathrm{X}, \mathrm{RCO}-\mathrm{X}$, and $\mathrm{RSO}_{2}-\mathrm{X}$, non polar electrophiles such as $\mathrm{X}_{2}, \mathrm{H}_{2}, \mathrm{R}_{3} \mathrm{Si}-\mathrm{H}, \mathrm{RCO}-\mathrm{H}, \mathrm{R}-\mathrm{H}$, and $\mathrm{Ar}-\mathrm{H}$, multiple bonds like in O_{2} or carbonyls, and even strained hydrocarbons. ${ }^{118}$

When A, B, or both are organic groups, oxidative addition reactions are very useful for the synthesis of organometallic compounds, and they are involved in important catalytic and stoichiometric reactions in metal-mediated Organic Synthesis, as described in Section I. 3 for Pd-catalyzed cross-coupling reactions. The most common reaction is the oxidative addition of an organic halide or pseudohalide, RX, where R is an organic group (alkyl, aryl, vinyl, benzyl, acyl, etc.) and X an anion such as bromide, iodide, acetate, or triflate (Eq. I.4). A major advantage of these reactions is that they allow the use of R groups containing reactive substituents such as carbonyls, amines, etc., which would be incompatible with organolithium or organomagnesium reagents.

$$
\left[M^{0}\right]+\mathrm{R}-\mathrm{X} \rightleftharpoons \mathrm{R}-\left[\mathrm{M}^{\prime \prime}\right]-\mathrm{X}
$$

A great number of reactions of organic halides or pseudohalides with Pd^{0} compounds ${ }^{119,120}$ have been described since the first reports by Fitton. ${ }^{121}$ Considerable attention has been paid to phosphine complexes, especially $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]^{70,122}$ These are easily prepared, and they are used in their stable chemical form, $\left[\mathrm{PdL}_{4}\right]$, although it seems that in solution the dissociation of two phosphine ligands takes place, affording dicoordinated species, $\left[\mathrm{PdL}_{2}\right]$, which are the real substrate of the oxidative addition (Scheme I.16). ${ }^{123}$ The low rate constant of the second dissociation step often makes the concentration of $\left[\mathrm{PdL}_{2}\right]$, which is the active catalyst, very low, and subsequently the overall kinetics is very slow. To avoid this problem, several methods have been developed to generate the $\left[\mathrm{PdL}_{2}\right]$ moiety in situ. One of them is the reduction of $\left[\mathrm{Pd}(\mathrm{OAc})_{2}\right]$ by phosphines, generally $\mathrm{PPh}_{3}{ }^{120,124}$ Once the $\left[\mathrm{PdL}_{2}\right]$ substrate is generated, it has been suggested that the oxidative addition takes place through a $\mathrm{S}_{\mathrm{N}} 2$ mechanism, as described also in Scheme I.16. ${ }^{125}$ Reactivity decreases in the sequence $\mathrm{ArI}>\mathrm{ArBr} \gg$ ArCl , in agreement with the cleavage of the $\mathrm{C}-\mathrm{X}$ bond being the rate-determining step. The rate constant increases with the electron-withdrawing character of the R substituent $\left(p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}>p-\mathrm{NCC}_{6} \mathrm{H}_{4} \mathrm{Cl}>p-\mathrm{PhC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right)$, which is consistent with a nucleophilic attack of the palladium on the aromatic carbon.

$$
\begin{aligned}
& {\left[\mathrm{PdL}_{4}\right] \rightleftharpoons\left[\mathrm{PdL}_{3}\right]+\mathrm{L}} \\
& {\left[\mathrm{PdL}_{3}\right] \rightleftharpoons\left[\mathrm{PdL}_{2}\right]+\mathrm{L}} \\
& \mathrm{~K} \ll 1 \mathrm{M} \\
& {\left[\mathrm{PdL}_{2}\right]+\mathrm{RX} \rightleftharpoons \mathrm{~K}^{\prime} \mathrm{M}}
\end{aligned}
$$

Scheme I. 16 Proposed mechanism for the generation of the $\left[\mathrm{PdL}_{2}\right]$ substrate ($\mathrm{L}=$ phosphine), and $\mathrm{S}_{\mathrm{N}} 2$ mechanism for the oxidative addition of aryl halides to $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}\right]$

This Thesis describes some oxidative addition reactions of aryl halides to a different $\operatorname{Pd}(0)$ compound, namely $\left[\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right] \cdot \mathrm{dba}$ ($\mathrm{dba}=$ dibencylidenacetone). This molecule is formed by two Pd atoms bridged by three dba molecules, and it crystallizes
with a fourth dba molecule (Scheme I.17). For simplicity, it is often written as $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$. This $\operatorname{Pd}(0)$ substrate is used in the presence of auxiliary ligands L, usually phosphines, or chelate N -donors such as $2,2^{\prime}$-bipyridyl (bpy) or $N, N, N^{`}, N^{\prime}$-tetramethylethylenediamine (tmeda), to complete the coordination sphere of the Pd. The general reaction is shown in Eq. I.5.

$$
\left[\mathrm{Pd}^{0}(\mathrm{dba})_{2}\right]+2 \mathrm{~L}+\mathrm{Ar}-\mathrm{X} \longrightarrow\left[\mathrm{Pd}^{\prime \prime} \mathrm{ArXL}_{2}\right]+2 \mathrm{dba}
$$

Scheme I. 17 Structure of $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$

Because the dba is a labile ligand, it was initially thought that it would be easily displaced from the metallic center by the other ligands (L), affording [PdL_{2}] in nearly quantitative yield. ${ }^{126}$ It is now known, however, that $\left[\mathrm{Pd}(\mathrm{dba}) \mathrm{L}_{2}\right]$ is generated instead, although it is in equilibrium with free dba and $\left[\mathrm{PdL}_{2}\right]$, which is the active species that reacts with RX to give $\left[\mathrm{PdXRL}_{2}\right]$. In fact, NMR and cyclic voltametry studies of the reaction of $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ with PPh_{3} show that the dba is a better ligand to $\left[\mathrm{Pd}_{(}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ than PPh_{3} itself, and that the concentration of free $\left[\mathrm{PdL}_{2}\right]$ in a mixture of $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ and PPh_{3} can be lower than in $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ solutions. ${ }^{127}$

In any case, this method is being increasingly used ${ }^{44,46,48,53,54,74-76,78-80,82-84,86,87,128}$ because it has important synthetic advantages. First of all, $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ is easily prepared and it is air-stable, so that it can be handled and stored without any special precautions (in contrast, for example, with $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$). As only two equivalents of phosphine are needed, expensive quiral phosphines can be used, and quiral catalysts can be generated in situ. Moreover, it is possible to prepare complexes with ligands other than phosphines, such as bpy, tmeda, or phen. Another important advantage of $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ is that the byproduct, dba , is easily separated from the products of the reaction. ${ }^{118}$

I.4.2 Reactivity of Arylpalladium(II) Complexes toward Unsaturated Organic
 Molecules: Insertion of Unsaturated Molecules into the Aryl-Pd Bond

An insertion reaction may be defined as the migration of a ligand from a metal center to an adjacent coordinated unsaturated molecule, resulting in the formation of a new complex. ${ }^{129}$ The new ligand thus generated may eventually be released from the complex (e.g., via a reductive elimination reaction) so that new organic products are formed. Insertion reactions are thus basic steps in many transition metal-catalyzed organic syntheses and, in particular, in Pd-catalyzed reactions, ${ }^{130}$ such as the Heck reaction (Section I.3.1.1), and the Heck carbonylation (Section I.3.1.2), where an alkene or a CO molecule is inserted into a carbon-palladium bond. Consequently, the investigation of stoichiometric insertion reactions may lead to a better understanding of the related catalytic cycles.

I.4.2.1 Insertion of Alkynes into Aryl-Pd Bonds

The first reports on the reactivity of palladium organometallic complexes with alkynes were due mainly to the group of Maitlis, ${ }^{131}$ who studied the oligomerization of alkynes in the presence of Pd complexes. Later, the reactivity of many arylpalladium complexes toward alkynes was also investigated, mainly in the groups of Pfeffer, ${ }^{37,132-140}$ Heck, ${ }^{141-145}$ and Larock, ${ }^{146,147}$ as well as ours. ${ }^{38,39,45,47,48,51,53,55,56,71,72,77,78,80,84,86-}$ 88,90,91,96,99,148-150 Many of these reactions involved N -donor palladacycles.

In the reactions of arylpalladium complexes with alkynes, the insertion of one, two, or three alkynes into the carbon-palladium bond has been described, giving in most cases products of the types A-C, represented in Scheme I.18. Vinylpalladium complexes (type A), are most frequently formed, while products of the type \mathbf{B} or $\mathbf{C}^{38,45,47,51,135,136,138,139,151-}$ ${ }^{153}$ are less common. Through depalladation processes, some of these complexes give new organic products such as spirocycles, ${ }^{71,72,88,139,149}$ indenols, indenones, ${ }^{77,91,148}$ other carbocycles, ${ }^{88,136,137,139,141,142,152,154}$ and heterocycles where the heteroatom is oxygen, ${ }^{140,155149,164}$ sulphur, ${ }^{53,134}$ or nitrogen. ${ }^{48,80,86,132,138,140,141,143,150,151}$ In some cases, the palladation reaction and the insertion of the alkyne are part of a catalytic cycle. ${ }^{144,146,147,156,157}$ Schemes I.19-21 show some examples of stoichiometric and catalytic syntheses of organic molecules, where the insertion of an alkyne into an aryl-Pd bond is a key step of the process.

Scheme I. 18 Insertion reactions of alkynes in arylpalladium(II) complexes

Scheme I. 19 Reactivity of arylpalladium(II) complexes toward alkynes, resulting in the formation of indenols and indenones ${ }^{77}$

Scheme I. 20 Reactivity of arylpalladium(II) complexes toward alkynes, resulting in the formation of S- ${ }^{53}$ or $\mathrm{N}-{ }^{86}$ containing heterocycles

Scheme I. 21 Pd-catalyzed $\left(\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]^{157}\right.$ or $\left.\left[\mathrm{Pd}(\mathrm{OAc})_{2}\right]^{147}\right)$ synthesis of organic molecules, involving the insertion of an alkyne into an aryl-Pd bond

I.4.2.2 Insertion of CO and Isocyanides into Aryl-Pd Bonds

Isocyanides (or isonitriles) and carbon monoxide are isoelectronic compounds and thus their chemical behaviour as ligands has many similarities. For example, both tend to coordinate to metals in low oxidation states, such as $\mathrm{Cr}(0), \mathrm{Mo}(0), \mathrm{W}(0), \mathrm{Mn}(0), \mathrm{Fe}(0)$, $\mathrm{Ni}(0)$, or $\operatorname{Pd}(0) .{ }^{158}$ However, there are also differences between them: ${ }^{118,159}$

- Unlike CO, isocyanides have a considerable dipolar moment, with the negative pole on the carbon, $\left(\mu_{\mathrm{CNPh}}=3.44\right.$ Debye, $\mu_{\mathrm{CO}}=0.1$ Debye $)$.
- It is not so common for isocyanides to act as bridging ligands as for CO, although there are some examples, such as $\left[(\mathrm{RNC})_{3} \mathrm{Co}\left((\mu-\mathrm{CNR})_{2}\right) \operatorname{Co}(\mathrm{CNR})_{3}\right]$ or $\left[\mathrm{Pd}_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Ph}_{5}\right)_{2}(\mu-\mathrm{XyNC})_{2}\right] .{ }^{160}$
- There is always a decrease in the $v(\mathrm{C} \equiv \mathrm{O})$ stretching band upon coordination of CO to a metal, while the $v(\mathrm{C} \equiv \mathrm{N})$ band of coordinated isonitriles may shift both to higher (most frequently), or lower frequencies with respect to the free ligand.
- Metallic isocyanides show a major tendency than carbonyls to exist in high oxidation states (M(II), M(III)). An example of this are the $\mathrm{Pd}(\mathrm{II})$ isocyanide complexes described in this Thesis.

The latter two differences are a consequence of isocyanides being better σ donors and weaker π acceptors than carbonyls. ${ }^{161}$ The σ component of the M-CO or M-CNR bond corresponds to a transfer of electron density from the antibonding HOMO of the ligand (wih sp σ^{*} symmetry), to empty d orbitals of the metal, whereas
the π bond component corresponds to a transfer of electron density from filled d metallic orbitals to the $\mathrm{p} \pi^{*}$ LUMO of the ligand (Scheme I.22). Thus, the σ component causes an increase (and the π component a decrease) in the $\mathrm{C}-\mathrm{O}$ or $\mathrm{C}-\mathrm{N}$ bond order. In metal carbonyls, the π component is always predominant, so that there is a decrease in the $v(\mathrm{C} \equiv \mathrm{O})$ upon coordination. In contrast, for isocyanide complexes, the importance of the π component varies with the nature of the metal and the R group of the isocyanide, so that sometimes there is an increase, and sometimes a decrease, in the $v(\mathrm{C} \equiv \mathrm{N})$ upon coordination.

Scheme I. 22σ and π components of the M-CNR bond
Organopalladium complexes react with CO to form acyl or aroyl complexes, ${ }^{40-}$ 57,162 which may further react with an internal or external nucleophile to form a carbonylcontaining organic product upon depalladation, ${ }^{48-50,96,98,100,163,164}$ and these reactions are a key step in Pd-catalyzed carbonilations, ${ }^{13,34,35,42,165}$ as described in Section I.3.1.2. Schemes I.23-25 show some interesting examples of the reactivity of $\operatorname{Pd}(\mathrm{II})$ organometallic complexes toward CO. Two of them (Schemes I. 24^{44} and $I .25^{39}$) have been reported by our research group.

Scheme I.23 Influence of the donor atom in a palladacycle on the reactivity toward CO^{41}

Scheme I. 24 Insertion of CO into the C-Pd bond of an ortho-aminophenylpalladium complex, followed by an unexpected oxidation of the resulting ortho-aminobenzoyl ligand ${ }^{44}$

Scheme I. 25
Isolation of a $\mathrm{Pd}(\mathrm{II})$ organocarbonyl intermediate in the synthesis of eight-membered lactams ${ }^{39}$

Isocyanides, in contrast, coordinate to $\mathrm{Pd}(\mathrm{II})$ to give stable compounds, which are more easily isolated than carbonyls. ${ }^{166}$ In the case of organopalladium complexes, the coordination of the isocyanide to the metal is frequently followed by the insertion into the carbon-palladium bond, forming iminoacyl Pd complexes, ${ }^{41,43,45-50,52-54,56,57,72,76,78-}$ 80,82,83,85-87,92-94,97,99,167-172 as generally shown in Scheme I.26. An example involving a cyclopalladated arylpalladium complex is shown in Scheme I.27. ${ }^{170}$ An increase in the electrophilic character of the isocyanide favours the insertion reaction. ${ }^{172}$

Scheme I. 26 Proposed mechanism for the insertion of isocyanides into carbon-palladium bonds

Scheme I.27 Coordination of an isocyanide to Pd(II), followed by insertion into the aryl-Pd bond ${ }^{170}$

While multiple insertions of CO into the carbon-palladium bond are virtually unknown, they are common with isocyanides. ${ }^{53,76,93,167,171}$ Two examples are shown in Scheme I. 28^{171} and I.29. ${ }^{93}$ The formation of oligomeric compounds, which implies a higher number of isocyanide insertions, has been observed in the palladium-catalyzed asymmetric helicoidal polymerization of isocyanides. ${ }^{173}$

Scheme I. 28 Selective diinsertion of isocyanide in a dinuclear palladium complex ${ }^{171}$

Scheme I. 29
Mono- and triinsertion of XyNC into an aryl-palladium bond. The product resulting from the triinsertion is stabilized by the formation of a five-membered chelate ${ }^{93}$

The insertion reactions of isocyanides in organopalladium complexes were initially investigated to get insight into the mechanisms of Pd-mediated carbonylation reactions, as a consequence of the isoelectronic nature of isocyanides and CO. Nowadays, however, they have acquired interest on their own, as they are involved in many stoichiometric ${ }^{47-}$ $50,72,92,163,168$ and catalytic ${ }^{174}$ syntheses of organic compounds. Scheme I. 30 shows the synthesis of a highly functionalized ketenimine by reaction of a 2,3,4-trimethoxy-6formylphenylpalladium complex with XyNC. ${ }^{72}$

Scheme I. 30 Obtention of a highly functionalized ketenimine by reaction of an arylpalladium complex with XyNC^{72}

I. 5 REFERENCES

1. Pearson, A. J., Metallo-Organic Chemistry. John Wiley \& Sons: Chichester (UK), 1985; Yamamoto, A., Organotransition Metal Chemistry. John Wiley \& Sons: New York, 1986; Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G., Principles and Applications of Organotransition Metal Chemistry. University Science Books: Mill Valley (CA), 1987; Diederich, F.; Stang, P. J. (Eds), Metal-Catalyzed Cross-Coupling Reactions. Wiley-VCH: Weinheim, 1998; Tsuji, J., Transition Metal Reagents and Catalysts: Innovations in Organic Synthesis. John Wiley \& Sons: Chichester (UK), 2002; Kurosawa, H.; Yamamoto, A. (Eds), Fundamentals of Molecular Catalysis. In Current Methods in Inorganic Chemistry, Elsevier: Amsterdam, 2003, Vol 3; de Meijere, A.; Diederich, F. (Eds), Metal-Catalyzed CrossCoupling Reactions. Wiley-VCH: Weinheim, 2004; Elschenbroich, C., Organometallics. Wiley-VCH: Weinheim, 2006; Hartwig, J. F., Organotransition Metal Chemistry. From Bonding to Catalysis. University Science Books: Mill Valley (CA), 2010; Crabtree, R. H., The Organometallic Chemistry of the Transition Metals. John Wiley \& Sons: Hoboken (NJ), 2014.
2. Heck, R. F., Palladium Reagents in Organic Synthesis. Academic Press: New York, 1985; Tsuji, J., Palladium Reagents and Catalysis: Innovations in Organic Synthesis. John Wiley \& Sons: Chichester (UK), 1995; Tsuji, J., Palladium Reagents and Catalysts: New Perspectives for the 21st Century. John Wiley \& Sons: Chichester (UK), 2004; Tsuji, J. (Ed), Palladium in Organic Synthesis. In Topics in Organometallic Chemistry, Springer: Berlin, 2005, Vol 14.
3. Negishi, E.; de Meijere, A. (Eds), Handbook of Organopalladium Chemistry for Organic Synthesis. John Wiley \& Sons: New York, 2002.
4. Sonogashira, K.; Tohda, Y.; Hagihara, N., Tetrahedron Lett. 1975, 16, 4467; Takahashi, S.; Kuroyama, Y.; Sonogashira, K.; Hagihara, N., Synthesis 1980, 627; Sonogashira, K., J. Organomet. Chem. 2002, 653, 46; Chinchilla, R.; Nájera, C., Chem. Rev. 2007, 107, 874; Chinchilla, R.; Nájera, C., Chem. Soc. Rev. 2011, 40, 5048.
5. King, A. O.; Okukado, N.; Negishi, E., J. Chem. Soc., Chem. Commun. 1977, 683; Negishi, E.; King, A. O.; Okukado, N., J. Org. Chem. 1977, 42, 1821; Knochel, P.; Singer, R. D., Chem. Rev. 1993, 93, 2117.
6. Milstein, D.; Stille, J. K., J. Am. Chem. Soc. 1978, 100, 3636; Milstein, D.; Stille, J. K., J. Am. Chem. Soc. 1979, 101, 4992; Stille, J. K., Angew. Chem., Int. Ed. Engl. 1986, 25, 508; Duncton, M. A. J.; Pattenden, G., J. Chem. Soc., Perkin Trans. 1 1999, 1235; Fugami, K.; Kosugi, M., Top. Curr. Chem. 2002, 219, 87; Carsten, B.; He, F.; Son, H. J.; Xu, T.; Yu, L., Chem. Rev. 2011, 111, 1493
7. Heck, R. F., Acc. Chem. Res. 1979, 12, 146; de Meijere, A.; Meyer, F. E., Angew. Chem. Int. Ed. Engl. 1994, 33, 2379; Beletskaya, I. P.; Cheprakov, A. V., Chem. Rev. 2000, 100, 3009; Whitcombe, N. J.; Hii, K. K.; Gibson, S. E., Tetrahedron 2001, 57, 7449; Heck, R. F., Synlett 2006, 2855; Mc Cartney, D.; Guiry, P. J., Chem. Soc. Rev. 2011, 40, 4879.
8. Miyaura, N.; Yamada, K.; Suzuki, A., Tetrahedron Lett. 1979, 20, 3437; Miyaura, N.; Suzuki, A., J. Chem. Soc., Chem. Commun. 1979, 866; Miyaura, N.; Suzuki, A., Chem. Rev. 1995, 95, 2457; Suzuki, A., J. Organomet. Chem. 1999, 576, 147; Miyaura, N., Top. Curr. Chem. 2002, 219, 11; Suzuki, A., Heterocycles 2010, 80, 15; Suzuki, A., Angew. Chem. Int. Ed. 2011, 50, 6723.
9. Kumada, M., Pure Appl. Chem. 1980, 52, 669.
10. Hatanaka, Y.; Hiyama, T., J. Org. Chem. 1988, 53, 918; Hiyama, T.; Hatanaka, Y., Pure Appl. Chem. 1994, 66, 1471; Hiyama, T.; Shirakawa, E., Top. Curr. Chem. 2002, 219, 61; Denmark, S. E.; Regens, C. S., Acc. Chem. Res. 2008, 41, 1486; Nakao, Y.; HIyama, T., Chem. Soc. Rev. 2011, 40, 4893.
11. Yamamoto, Y., J. Organomet. Chem. 1999, 576, xi; Solé, D.; Serrano, O., J. Org. Chem. 2008, 73, 9372; Alacid, E.; Nájera, C., J. Org. Chem. 2009, 74, 2321; Cho, E. J.; Senecal, T. D.; Kinzel, T.; Zhang, Y.; Watson, D. A.; Buchwald, S. L., Science 2010, 328, 1679; Selander, N.; Szabo, K. J., Chem. Rev. 2011, 111, 2048; Yeung, C. S.; Dong, V. M., Chem. Rev. 2011, 111, 1215; Carrow, B. P.; Hartwig, J. F., J. Am. Chem. Soc. 2011, 133, 2116; Yang, Y.; Mustard, T. J. L.; Cheong, P. H. Y.; Buchwald, S. L., Angew. Chem. Int. Ed. 2013, 52, 14098; Cohen, D. T.; Buchwald, S. L., Org. Lett. 2015, 17, 202; Xia, Y.; Liu, Z.; Ge, R.; Xiao, Q.; Zhang, Y.; Wang, J., Chem. Commun. 2015, 51, 11233.
12. Littke, A. F.; Fu, G. C., Angew. Chem. Int. Ed. 2002, 41, 4176; Bedford, R. B.; Cazin, C. S. J.; Holder, D., Coord. Chem. Rev. 2004, 2004, 2283; Larock, R. C.; Zeni, G., Chem. Rev. 2006, 106, 4644.
13. Yamamoto, A., Curr. Meth. Inorg. Chem. 2003, 3, 1.
14. Corbet, J. P.; Mignani, G., Chem. Rev. 2006, 106, 2651.
15. Knappke, C. E. I.; von Wangelin, A. J., Chem. Soc. Rev. 2011, 40, 4948.
16. Widenhoefer, R. A.; Zhong, H. A.; Buchwald, S. L., J. Am. Chem. Soc. 1997, 119, 6787; Mann, G.; Incarvito, C.; Rheingold, A. L.; Hartwig, J. F., J. Am. Chem. Soc. 1999, 121, 3224; Shelby, Q.; Kataoka, N.; Mann, G.; Hartwig, J., J. Am. Chem. Soc. 2000, 122, 10718; Vorogushin, A. V.; Huang, X.; Buchwald, S. L., J. Am. Chem. Soc. 2005, 127, 8146; Burgos, C. H.; Barder, T. E.; Huang, X.; Buchwald, S. L., Angew. Chem. Int. Ed. 2006, 45, 4321.
17. Hartwig, J. F., Synlett 1997, 4, 329; Hartwig, J. F., Angew. Chem. Int. Ed. 1998, 37, 2047; Hartwig, J. F., Acc. Chem. Res. 1998, 31, 852; Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L., Acc. Chem. Res. 1998, 31, 805; Hartwig, J. F., Pure Appl. Chem. 1999, 71, 1416; Yang, B. H.; Buchwald, S. L., J. Organomet. Chem. 1999, 576, 125; Muci, A. R.; Buchwald, S. L., Top. Curr. Chem. 2002, 219, 131; Buchwald, S. L.; Mauger, C.; Mignani, G.; Scholz, U., Adv. Synth. Catal. 2006, 348, 23; Hartwig, J. F., Acc. Chem. Res. 2008, 41, 1534; Surry, D. S.; Buchwald, S. L., Angew. Chem. Int. Ed. 2008, 47, 6338; Surry, D. S.; Buchwald, S. L., Chem. Sci. 2011, 2, 27.
18. Li, G. Y.; Zheng, G.; Noonan, A. F., J. Org. Chem. 2001, 66, 8677; Barluenga, J.; Fernández, M. A.; Aznar, F.; Valdés, C., Chem. Eur. J. 2005, 11, 2276; Sergeev, A. G.;

Spannenberg, A.; Beller, M., J. Am. Chem. Soc. 2008, 130, 15549; Watson, D. A.; Su, M.; Teverovskiy, G.; Zhang, Y.; García-Fortanet, J.; Kinzel, T.; Buchwald, S. L., Science 2009, 325, 1661; Hayashi, S.; Yorimitsu, H.; Oshima, K., J. Am. Chem. Soc. 2009, 131, 2052; Lee, H. G.; Milner, P. J.; Buchwald, S. L., J. Am. Chem. Soc. 2014, 136, 3792; Green, R. A.; Hartwig, J. F., Org. Lett. 2014, 16, 4388; Brusoe, A. T.; Hartwig, J. F., J. Am. Chem. Soc. 2015, 137, 8460; Park, N. H.; Vinogradova, E. V.; Surry, D. S.; Buchwald, S. L., Angew. Chem. Int. Ed. 2015, 54, 8259; Ruiz-Castillo, P.; Blackmond, D. G.; Buchwald, S. L., J. Am. Chem. Soc. 2015, 137, 3085.
19. Murata, M.; Buchwald, S. L., Tetrahedron 2004, 60, 7397; Fernández-Rodríguez, M. A.; Shen, Q.; Hartwig, J. F., Chem. Eur. J. 2006, 12, 7782; Fernández-Rodríguez, M. A.; Hartwig, J. F., J. Org. Chem. 2009, 74, 1663; Fernández-Rodríguez, M. A.; Hartwig, J. F., Chem. Eur. J. 2010, 16, 2355.
20. Hartwig, J. F., Nature 2008, 455, 314.
21. Teverovskiy, G.; Surry, D. S.; Buchwald, S. L., Angew. Chem. Int. Ed. 2011, 50, 7312.
22. Yudin, A. K. (Ed), Catalyzed Carbon-Heteroatom Bond Formation. Wiley-VCH: Weinheim, 2011.
23. Miyaura, N. (Ed), Cross Coupling Reactions: A Practical Guide. In Top. Curr. Chem., Springer: Berlin, 2002, Vol 219; Ritleng, V.; Sirlin, C.; Pfeffer, M., Chem. Rev. 2002, 102, 1731; Chem. Soc. Rev. 2011, 40.
24. J. Organomet. Chem. 1999, 576.
25. Negishi, E., J. Organomet. Chem. 1999, 576, xv.
26. Sugihara, T., Heterocycles 2012, 86, 5.
27. Bubnov, Y. N., Heterocycles 2010, 80, 1; Snieckus, V., Heterocycles 2010, 80, 7.
28. Heck, R. F., J. Am. Chem. Soc. 1968, 90, 5518; Heck, R. F., J. Am. Chem. Soc. 1968, 90, 5526; Heck, R. F., J. Am. Chem. Soc. 1968, 90, 5531; Heck, R. F., J. Am. Chem. Soc. 1968, 90, 5538; Heck, R. F., J. Am. Chem. Soc. 1968, 90, 5542; Heck, R. F., J. Am. Chem. Soc. 1969, 91, 6707.
29. Heck, R. F.; Nolley, J. P., J. Org. Chem. 1972, 37, 2320.
30. Mizoroki, T.; Mori, K.; Ozaki, A., Bull. Chem. Soc. Jpn. 1971, 44, 581.
31. Mori, M.; Chiba, K.; Ban, K., Tetrahedron Lett. 1977, 18, 1037.
32. Dounay, A. B.; Overman, L. E., Chem. Rev. 2003, 103, 2945; Link, J. T. (Ed), The Intramolecular Heck Reaction. In Organic Reactions, John Wiley \& Sons, Inc.: 2004, Vol 60; Le Bras, J.; Muzart, J., Chem. Rev. 2011, 111, 1170.
33. Cassar, L., J. Organomet. Chem. 1975, 93, 253; Dieck, H. A.; Heck, R. F., J. Organomet. Chem. 1975, 93, 259; Tsuji, J., Palladium Reagents and Catalysts: New Perspectives for the 21st Century. p 201. John Wiley \& Sons: Chichester (UK), 2004.
34. Schoenberg, A.; Bartoletti, I.; Heck, R. F., J. Org. Chem. 1974, 39, 3318; Schoenberg, A.; Heck, R. F., J. Org. Chem. 1974, 39, 3327; Schoenberg, A.; Heck, R. F., J. Am. Chem. Soc. 1974, 96, 7761.
35. Barnard, C. F. J., Organometallics 2008, 27, 5402.
36. Usón, R.; Forniés, J.; Martínez, F., J. Organomet. Chem. 1976, 112, 105; Usón, R.; Forniés, J.; Tomás, M.; Menjón, B., Organometallics 1985, 4, 1912; Usón, R.; Forniés, J.; Tomás, M.; Casas, J. M.; Navarro, R., J. Chem. Soc., Dalton Trans. 1989, 169; Vicente, J.; Arcas, A.; Borrachero, M. V.; Tiripicchio, A.; Tiripicchio-Camellini, M., Organometallics 1991, 10, 3873; Ara, I.; Forniés, J.; Navarro, R.; Sicilia, V.; Urriolabeitia, E. P., Polyhedron 1997, 16, 1963; Shen, H.; Jordan, R. F., Organometallics 2003, 22, 1878; Wu, F.; Foley, S. R.; Burns, C. T.; Jordan, R. F., J. Am. Chem. Soc. 2005, 127, 1841; Groux, L. F.; Weiss, T.; Reddy, D. N.; Chase, P. A.; Piers, W. E.; Ziegler, T.; Parvez, M.; Benet-Buchholz, J., J. Am. Chem. Soc. 2005, 127, 1854; Bianchini, C.; Meli, A.; Oberhauser, W.; Claver, C.; Garcia, E. J. S., Eur. J. Inorg. Chem. 2007, 2702; Bolligner, J. L.; Blacque, O.; Frech, C. M., Chem. Eur. J. 2008, 14, 7969; Ara, I.; Forniés, J.; Martín, A.; Martín, L. F.; Menjón, B.; Miedes, H., Dalton Trans. 2010, 39, 7301.
37. Ossor, H.; Pfeffer, M.; Jastrzebski, J. T. B. H.; Stam, C. H., Inorg. Chem. 1987, 26, 1169.
38. Vicente, J.; Saura-Llamas, I.; Ramírez de Arellano, M. C., J. Chem. Soc., Dalton Trans. 1995, 2529.
39. García-López, J.-A.; Oliva-Madrid, M. J.; Saura-Llamas, I.; Bautista, D.; Vicente, J., Organometallics 2013, 32, 1094.
40. Anderson, G. K., Organometallics 1983, 2, 665; Ozawa, F.; Sugimoto, T.; Yuasa, Y.; Santra, M.; Yamamoto, T.; Yamamoto, A., Organometallics 1984, 3, 683; Dekker, G.; Buijs, A.; Elsevier, C. J.; Vrieze, K.; Vanleeuwen, P.; Smeets, W. J. J.; Spek, A. L.; Wang, Y. F.; Stam, C. H., Organometallics 1992, 11, 1937; Markies, B. A.; Kruis, D.; Rietveld, M. H. P.; Verkerk, K. A. N.; Boersma, J.; Kooijman, H.; Lakin, M. T.; Spek, A. L.; van Koten, G., J. Am. Chem. Soc. 1995, 117, 5263; Hoare, J. L.; Cavell, K. J.; Hecker, R.; Skelton, B. W.; White, A. H., J. Chem. Soc., Dalton Trans. 1996, 2197; Lindsell, W. E.; Palmer, D. D.; Preston, P. N.; Rosair, G. M.; Jones, R. V. H.; Whitton, A. J., Organometallics 2005, 24, 1119; Komine, N.; Tsutsuminai, S.; Hirano, M.; Komiya, S., J. Organomet. Chem. 2007, 692, 4486; Meana, I.; Albéniz, A. C.; Espinet, P., Organometallics 2008, 27, 4193; Subramanium, S. S.; Slaughter, L. M., Dalton Trans. 2009, 6930; Luo, R.; Newsham, D. K.; Sen, A., Organometallics 2009, 28, 6994.
41. Dupont, J.; Pfeffer, M.; Daran, J. C.; Jeannin, Y., Organometallics 1987, 6, 899.
42. Moser, W. R.; Wang, A. W.; Kildahl, N. K., J. Am. Chem. Soc. 1988, 110, 2816.
43. Dupont, J.; Pfeffer, M., J. Chem. Soc., Dalton Trans. 1990, 3193; Kayaki, Y.; Shimizu, I.; Yamamoto, A., Bull. Chem. Soc. Jpn. 1997, 70, 917; Kim, Y. J.; Song, S. W.; Lee, S. C.; Lee, S. W.; Osakada, K.; Yamamoto, T., J. Chem. Soc., Dalton Trans. 1998, 1775.
44. Vicente, J.; Abad, J. A.; Frankland, A. D.; Ramírez de Arellano, M. C., Chem. Commun. 1997, 959; Vicente, J.; Abad, J. A.; Frankland, A. D.; Ramírez de Arellano, M. C., Chem. Eur. J. 1999, 5, 3066.
45. Vicente, J.; Saura-Llamas, I.; Turpín, J.; Ramírez de Arellano, M. C.; Jones, P. G., Organometallics 1999, 18, 2683.
46. Vicente, J.; Abad, J. A.; Förtsch, W.; Jones, P. G.; Fischer, A., Organometallics 2001, 20, 2704.
47. Vicente, J.; Abad, J. A.; López-Sáez, M. J.; Förtsch, W.; Jones, P. G., Organometallics 2004, 23, 4414.
48. Vicente, J.; Abad, J.-A.; López-Serrano, J.; Jones, P. G.; Nájera, C.; Botella-Segura, L., Organometallics 2005, 24, 5044.
49. Vicente, J.; Saura-Llamas, I.; García-López, J.-A.; Calmuschi-Cula, B.; Bautista, D., Organometallics 2007, 26, 2768.
50. Vicente, J.; Saura-Llamas, I.; García-López, J.-A.; Bautista, D., Organometallics 2009, 28, 448.
51. Vicente, J.; Saura-Llamas, I.; Turpín, J.; Bautista, D.; Ramírez de Arellano, M. C.; Jones, P. G., Organometallics 2009, 28, 4175.
52. Vicente, J.; Chicote, M. T.; Martínez-Martínez, A. J.; Abellán-López, A.; Bautista, D., Organometallics 2010, 29, 5693.
53. Vicente, J.; Abad, J. A.; López-Nicolás, R. M.; Jones, P. G., Organometallics 2011, 30, 4983.
54. Vicente, J.; González-Herrero, P.; Frutos-Pedreño, R.; Chicote, M. T.; Jones, P. G.; Bautista, D., Organometallics 2011, 30, 1079.
55. García-López, J.-A.; Oliva-Madrid, M. J.; Saura-Llamas, I.; Bautista, D.; Vicente, J., Chem. Commun. 2012, 48, 6744.
56. Chicote, M. T.; Vicente-Hernández, I.; Jones, P. G.; Vicente, J., Organometallics 2012, 31, 6252.
57. Oliva-Madrid, M. J.; García-López, J.-A.; Saura-Llamas, I.; Bautista, D.; Vicente, J., Organometallics 2012, 31, 3647.
58. Corriu, R. J. P.; Masse, J. P., J. Chem. Soc., Chem. Commun. 1972, 144a.
59. Tamao, K.; Sumitani, K.; Kumada, M., J. Am. Chem. Soc. 1972, 94, 4374.
60. Yamaura, M.; Moritani, I.; Murahashi, S.-I., J. Organomet. Chem. 1975, 91, C39.
61. Minato, A.; Suzuki, K.; Tamao, K.; Kumada, M., J. Chem. Soc., Chem. Commun. 1984, 511.
62. Kosugi, M.; Kameyama, M.; Migita, T., Chem. Lett. 1983, 927; Kosugi, M.; Kameyama, M.; Sano, H.; Migita, T., Nippon Kagaku Kaishi 1985, 3, 547.
63. Paul, F.; Patt, J.; Hartwig, J. F., J. Am. Chem. Soc. 1994, 116, 5969.
64. Guram, A. S.; Buchwald, S. L., J. Am. Chem. Soc. 1994, 116, 7901.
65. Louie, J.; Driver, M. S.; Hamann, B. C.; Hartwig, J. F., J. Org. Chem. 1997, 62, 1268.
66. Wolfe, J. P.; Wagaw, S.; Buchwald, S. L., J. Am. Chem. Soc. 1996, 118, 7215; Driver, M. S.; Hartwig, J. F., J. Am. Chem. Soc. 1996, 118, 7217.
67. Wolfe, J. P.; Buchwald, S. L., J. Org. Chem. 1996, 61, 1133.
68. Old, D. W.; Wolfe, J. P.; Buchwald, S. L., J. Am. Chem. Soc. 1998, 120, 9722.
69. Palucki, M.; Wolfe, J. P.; Buchwald, S. L., J. Am. Chem. Soc. 1996, 118, 10333; Mann, G.; Hartwig, J. F., J. Am. Chem. Soc. 1996, 118, 13109.
70. Vicente, J.; Abad, J. A.; Sánchez, J. A., J. Organomet. Chem. 1988, 352, 257.
71. Vicente, J.; Abad, J. A.; Fernández-de-Bobadilla, R.; Jones, P. G.; Ramírez de Arellano, M. C., Organometallics 1996, 15, 24.
72. Vicente, J.; Abad, J. A.; Shaw, K. F.; Gil-Rubio, J.; Ramírez de Arellano, M. C.; Jones, P. G., Organometallics 1997, 16, 4557.
73. Vicente, J.; Arcas, A.; Blasco, M. A.; Lozano, J.; Ramírez de Arellano, M. C., Organometallics 1998, 17, 5374; Vicente, J.; Saura-Llamas, I.; Oliva-Madrid, M. J.; GarcíaLópez, J.-A.; Bautista, D., Organometallics 2011, 30, 4624.
74. Vicente, J.; Abad, J. A.; Martínez-Viviente, E.; Ramírez de Arellano, M. C.; Jones, P. G., Organometallics 2000, 19, 752.
75. Vicente, J.; Abad, J. A.; Hernández-Mata, F. S.; Jones, P. G., Organometallics 2001, 20, 1109; Vicente, J.; Abad, J. A.; Hernandez-Mata, F. S.; Jones, P. G., J. Am. Chem. Soc. 2002, 124, 3848; Vicente, J.; Abad, J. A.; López-Nicolás, R. M.; Jones, P. G., Organometallics 2004, 23, 4325; Vicente, J.; Shenoy, R. V.; Martínez-Viviente, E.; Jones, P. G., Organometallics 2009, 28, 6101.
76. Vicente, J.; Abad, J. A.; Frankland, A. D.; Lopez-Serrano, J.; Ramirez de Arellano, M. C.; Jones, P. G., Organometallics 2002, 21, 272.
77. Vicente, J.; Abad, J. A.; López-Peláez, B.; Martínez-Viviente, E., Organometallics 2002, 21, 58.
78. Vicente, J.; Abad, J. A.; López-Serrano, J.; Clemente, R.; Ramírez de Arellano, M. C.; Jones, P. G.; Bautista, D., Organometallics 2003, 22, 4248.
79. Vicente, J.; Abad, J. A.; Hernández-Mata, F. S.; Rink, B.; Jones, P. G.; Ramírez de Arellano, M. C., Organometallics 2004, 23, 1292.
80. Vicente, J.; Abad, J. A.; López-Serrano, J.; Jones, P. G., Organometallics 2004, 23, 4711.
81. Vicente, J.; Saura-Llamas, I., Comments Inorg. Chem. 2007, 28, 39.
82. Vicente, J.; Chicote, M. T.; Martínez-Martínez, A. J.; Jones, P. G.; Bautista, D., Organometallics 2008, 27, 3254.
83. Vicente, J.; Chicote, M. T.; Martínez-Martínez, A. J.; Bautista, D., Organometallics 2009, 28, 5915.
84. Vicente, J.; Martínez-Viviente, E.; Fernández-Rodríguez, M. J.; Jones, P. G., Organometallics 2009, 28, 5845.
85. Vicente, J.; Chicote, M. T.; Abellán-López, A.; Bautista, D., Dalton Trans. 2012, 41, 752; Abellán-López, A.; Chicote, M. T.; Bautista, D.; Vicente, J., Dalton Trans. 2014, 43, 592.
86. Frutos-Pedreño, R.; González-Herrero, P.; Vicente, J.; Jones, P. G., Organometallics 2013, 32, 4664.
87. Abellán-López, A.; Chicote, M. T.; Bautista, D.; Vicente, J., Organometallics 2013, 32, 7612; Frutos-Pedreño, R.; González-Herrero, P.; Vicente, J.; Jones, P. G., Organometallics 2013, 32, 1892.
88. Vicente, J.; Abad, J. A.; Gil-Rubio, J.; Jones, P. G., Organometallics 1995, 14, 2677.
89. Vicente, J.; Saura-Llamas, I.; Palin, M. G.; Jones, P. G., J. Chem. Soc., Dalton Trans. 1995, 2535; Vicente, J.; Arcas, A.; Gálvez-López, M. D.; Juliá-Hernández, F.; Bautista, D.; Jones, P. G., Organometallics 2008, 27, 1582.
90. Vicente, J.; Abad, J. A.; Bergs, R.; Jones, P. G.; Ramírez de Arellano, M. C., Organometallics 1996, 15, 1422; Vicente, J.; Abad, J. A.; Bergs, R.; Ramirez de Arellano, M. C.; Martínez-Viviente, E.; Jones, P. G., Organometallics 2000, 19, 5597.
91. Vicente, J.; Abad, J. A.; Gil-Rubio, J., Organometallics 1996, 15, 3509.
92. Vicente, J.; Saura-Llamas, I.; Grünwald, C.; Alcaraz, C.; Jones, P. G.; Bautista, D., Organometallics 2002, 21, 3587.
93. Vicente, J.; Abad, J. A.; Martínez-Viviente, E.; Jones, P. G., Organometallics 2002, 21, 4454.
94. Vicente, J.; Abad, J. A.; Martínez-Viviente, E.; Jones, P. G., Organometallics 2003, 22, 1967.
95. Vicente, J.; Abad, J. A.; López-Sáez, M. J.; Jones, P. G., Organometallics 2006, 25, 1851; Vicente, J.; Abad, J. A.; López-Sáez, M. J.; Jones, P. G.; Bautista, D., Chem. Eur. J. 2010, 16, 661; Vicente, J.; Saura-Llamas, I.; García-López, J.-A.; Bautista, D., Organometallics 2010, 29, 4320; García-López, J.-A.; Saura-Llamas, I.; McGrady, J. E.; Bautista, D.; Vicente, J., Organometallics 2012, 31, 8333.
96. Frutos-Pedreño, R.; González-Herrero, P.; Vicente, J., Organometallics 2012, 31, 3361.
97. Abellán-López, A.; Chicote, M. T.; Bautista, D.; Vicente, J., Organometallics 2012, 31, 7434.
98. García-López, J.-A.; Oliva-Madrid, M. J.; Saura-Llamas, I.; Bautista, D.; Vicente, J., Organometallics 2012, 31, 6351.
99. Oliva-Madrid, M. J.; Saura-Llamas, I.; Bautista, D.; Vicente, J., Chem. Commun. 2013, 49, 7997.
100. Ryabov, A. D., Synthesis 1985, 233; Omae, I., Coord. Chem. Rev. 2004, 248, 995.
101. Dupont, J.; Consorti, C. S.; Spencer, J., Chem. Rev. 2005, 105, 2527; Omae, I., J. Organomet. Chem. 2007, 692, 2608; Aguilar, D.; Cuesta, L.; Nieto, S.; Serrano, E.; Urriolabeitia, E. P., Curr. Org. Chem. 2011, 15, 3441.
102. Dupont, J.; Pfeffer, M., Palladacycles: Synthesis, Characterization and Applications. WileyVCH: Weinheim, 2008; Elsevier, C. J.; Eberhard, M. R., Palladium-Carbon σ-Bonded Complexes. In Comprehensive Organometallic Chemistry III, Crabtree, R. H.; Mingos, M. P. (Eds), Vol 8. p 280. Elsevier: Amsterdam, 2007.
103. Oliva-Madrid, M. J. Synthesis and Reactivity of Palladacycles Containing Primary Amines of Pharmacological Interest. University of Murcia, 2013.
104. Trofimenko, S., Inorg. Chem. 1973, 12, 1215; Dunina, V. V.; Zalevskaya, O. A.; Potapov, V. M., Russ. Chem. Rev. 1988, 57, 250; Ryabov, A. D., Chem. Rev. 1990, 90, 403.
105. Hernández, F.-S. Síntesis, Caracterización y Reactividad de Complejos de Pd(II) con Ligandos Arilo Polifuncionalizados. University of Murcia, 2001.
106. Osakada, K., Curr. Meth. Inorg. Chem. 2003, 3, 233.
107. Vicente, J.; Chicote, M. T.; Martin, J.; Jones, P. G.; Fittschen, C.; Sheldrick, G. M., J. Chem. Soc., Dalton Trans. 1986, 2215; Vicente, J.; Chicote, M. T.; Martin, J.; Jones, P. G.; Fittschen, C., J. Chem. Soc., Dalton Trans. 1987, 881; Vicente, J.; Abad, J. A.; Teruel, F.; García, J., J. Organomet. Chem. 1988, 345, 233.
108. Vicente, J.; Bermúdez, M. D.; Escribano, J., Organometallics 1991, 10, 3380; Vicente, J.; Bermudez, M. D.; Carrillo, M. P.; Jones, P. G., J. Chem. Soc., Dalton Trans. 1992, 1975; Vicente, J.; Bermúdez, M. D.; Carrión, F. J.; Martínez-Nicolás, G., J. Organomet. Chem. 1994, 480, 103.
109. Vicente, J.; Martin, J.; Chicote, M. T.; Solans, X.; Miravitlles, C., J. Chem. Soc., Chem. Commun. 1985, 1004; Vicente, J.; Martin, J.; Solans, X.; Font-Altaba, M., Organometallics 1989, 8, 357; Vicente, J.; Abad, J. A.; Lahoz, F. J.; Plou, F. J., J. Chem. Soc., Dalton Trans. 1990, 1459.
110. Vicente, J.; Chicote, M. T.; Ramírez de Arellano, M. C.; Jones, P. G., J. Chem. Soc., Dalton Trans. 1992, 1839.
111. Vicente, J.; Abad, J. A.; Gutierrez-Jugo, J. F.; Jones, P. G., J. Chem. Soc., Dalton Trans. 1989, 2241.
112. Vicente, J.; Arcas, A.; Borrachero, M. V.; Hursthouse, M. B., J. Chem. Soc., Dalton Trans. 1987, 1655; Vicente, J.; Chicote, M. T.; Martin, J.; Artigao, M.; Solans, X.; Font-Altaba, M.; Aguiló, M., J. Chem. Soc., Dalton Trans. 1988, 141; Vicente, J.; Arcas, A.; Borrachero, M. V.; Molíns, E.; Miravitlles, C., J. Organomet. Chem. 1989, 359, 127.
113. Vicente, J.; Abad, J. A.; Jones, P. G., Organometallics 1992, 11, 3512.
114. Vicente, J.; Abad, J. A.; Gil-Rubio, J.; Jones, P. G.; Bembenek, E., Organometallics 1993, 12, 4151.
115. Vicente, J.; Abad, J. A.; Rink, B.; Hernández, F.-S.; Ramírez de Arellano, M. C., Organometallics 1997, 16, 5269.
116. Maitlis, P. M.; Espinet, P.; Russel, M. J. H., Complexes of Palladium(0). In Comprehensive Organometallic Chemistry, Wilkinson, G.; Stone, F. G. A.; Abel, E. W. (Eds), Vol 6. p 250. Pergamon: Oxford, 1982; Pearson, A. J., Metallo-Organic Chemistry. p 29. John Wiley \& Sons: Chichester (UK), 1985; Yamamoto, A., Organotransition Metal Chemistry. p 222. John Wiley \& Sons: New York, 1986; Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G., Principles and Applications of Organotransition Metal Chemistry. p 279. University Science Books.: Mill Valley (CA), 1987; Tsuji, J., Palladium Reagents and Catalysts: New Perspectives for the 21st Century. p 6. John Wiley \& Sons: Chichester (UK), 2004; Hartwig, J., Organotransition Metal Chemistry. From Bonding to Catalysis. p 261. University Science Books: Mill Valley (CA), 2010; Crabtree, R. H., The Organometallic Chemistry of the Transition Metals. p 163. John Wiley \& Sons: Hoboken (NJ), 2014.
117. Yamamoto, A., Organotransition Metal Chemistry. p 240. John Wiley \& Sons: New York, 1986; Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G., Principles and Applications of Organotransition Metal Chemistry. p 322. University Science Books: Mill Valley (CA), 1987; Ozawa, F., Curr. Meth. Inorg. Chem. 2003, 3, 479; Tsuji, J., Palladium Reagents and Catalysts: New Perspectives for the 21st Century. p 14. John Wiley \& Sons: Chichester (UK), 2004; Hartwig, J., Organotransition Metal Chemistry. From Bonding to Catalysis. p 321. University Science Books: Mill Valley (CA), 2010.
118. Martínez-Viviente, E. Síntesis, Caracterización y Reactividad de Complejos de Pd(II) con Ligandos Arilo Sustituidos en orto. Aplicaciones en Síntesis Orgánica. University of Murcia, 2001.
119. van Asselt, R.; Vrieze, K.; Elsevier, C. J., J. Organomet. Chem. 1994, 480, 27.
120. Amatore, C.; Carre, E.; Jutand, A.; Mbarki, M. A., Organometallics 1995, 14, 1818.
121. Fitton, P.; Johnson, M. P.; McKeon, J. E., Chem. Commun. 1968, 6; Fitton, P.; McKeon, J. E., Chem. Commun. 1968, 4.
122. Sie, Y.; Ng, S. C.; Wu, B. M.; Xue, F.; Mak, T. C. W.; Hor, T. S. A., J. Organomet. Chem. 1977, 175, 531; Ros, R.; Lenarda, M.; Boschi, T.; Roulet, R., Inorg. Chim. Acta 1977, 25, 15; Herrmann, W. A.; Brossmer, C.; Priermeier, T.; Ofele, K., J. Organomet. Chem. 1994, 481, 97; Casado, A. L.; Espinet, P.; Gallego, A. M., J. Am. Chem. Soc. 2000, 122, 11771; Fernández-Rivas, C.; Cárdenas, D. J.; Martín-Matute, B.; Monge, A.; Gutiérrez-Puebla, E.; Echavarren, A. M., Organometallics 2001, 20, 2998; Alami, M.; Amatore, C.; Bensalem, S.; Choukchou-Brahim, A.; Jutand, A., Eur. J. Inorg. Chem. 2001, 2675; Sole, D.; Vallverdu, L.; Solans, X.; Fontbardia, M.; Bonjoch, J., J. Am. Chem. Soc. 2003, 125, 1587; Shimizu, D.; Takeda, N.; Tokitoh, N., J. Organomet. Chem. 2007, 692, 2716.
123. Malatesta, L.; Cariello, C., J. Chem. Soc. 1958, 2323; Pearson, R. G.; Rajaram, J., Inorg. Chem. 1974, 13, 246; Mann, B. E.; Musco, A., J. Chem. Soc., Dalton Trans. 1975, 1673.
124. Amatore, C.; Jutand, A.; Mbarki, M. A., Organometallics 1992, 11, 3009.
125. Stille, J. K.; Lau, K. S., Acc. Chem. Res. 1977, 10, 434; Yamamoto, A., Organotransition Metal Chemistry. p 228. John Wiley \& Sons: New York, 1986.
126. Amatore, C.; Jutand, A.; Khalil, F.; Mbarki, M. A.; Mottier, L., Organometallics 1993, 12, 3168.
127. Amatore, C.; Broeker, G.; Jutand, A.; Khalil, F., J. Am. Chem. Soc. 1997, 119, 5176; Amatore, C.; Jutand, A., Coord. Chem. Rev. 1998, 180, 511.
128. Clark, P. W.; Dyke, S. F., J. Organomet. Chem. 1983, 259, C17; Clark, P. W.; Dyke, S. F., J. Organomet. Chem. 1985, 281, 389; Herrmann, W. A.; Thiel, W. R.; Brossmer, C.; Ofele, K.; Priermeier, T.; Scherer, W., J. Organomet. Chem. 1993, 461, 51; Wallow, T. I.; Goodson, F. E.; Novak, B. M., Organometallics 1996, 15, 3708; Rodríguez, G.; Albrecht, M.; Schoenmaker, J.; Ford, A.; Lutz, M.; Spek, A. L.; van Koten, G., J. Am. Chem. Soc. 2002, 124, 5127; Solé, D.; Díaz, S.; Solans, X.; Font-Bardia, M., Organometallics 2006, 25, 1995; Grushin, V. V.; Marshall, W. J., J. Am. Chem. Soc. 2006, 128, 12644; Ma, L.; Wobser, S. D.; Protasiewicz, J. D., J. Organomet. Chem. 2007, 692, 5331; Wakioka, M.; Nakajima, Y.; Ozawa, F., Organometallics 2009, 28, 2527.
129. Cavell, K. J., Coord. Chem. Rev. 1996, 155, 209.
130. Espinet, P.; Albéniz, A. C., Curr. Meth. Inorg. Chem. 2003, 3, 293; Kayaki, Y.; Yamamoto, A., Curr. Meth. Inorg. Chem. 2003, 3, 373.
131. Maitlis, P. M., J. Organomet. Chem. 1980, 200, 161.
132. Bahsoun, A.; Dehand, J.; Pfeffer, M.; Zinsius, M.; Bouaoud, S.-E.; Le Borgne, G., J. Chem. Soc., Dalton Trans. 1979, 547; Maassarani, F.; Pfeffer, M.; Le Borgne, G., Organometallics 1987, 6, 2029; Maassarani, F.; Pfeffer, M.; Le Borgne, G., Organometallics 1987, 6, 2043; Maassarani, F.; Pfeffer, M.; Le Borgne, G., J. Chem. Soc., Chem. Commun. 1987, 565; Beydoun, N.; Pfeffer, M., Synthesis 1990, 729; Maassarani, F.; Pfeffer, M.; Le Borgne, G., Organometallics 1990, 9, 3003; Pfeffer, M., Pure Appl. Chem. 1992, 64, 335; Spencer, J.; Pfeffer, M., Tetrahedron: Asymmetry 1995, 6, 419.
133. Dehand, J.; Mutet, C.; Pfeffer, M., J. Organomet. Chem. 1981, 209, 255; Arlen, C.; Pfeffer, M.; Bars, O.; Grandjean, D., J. Chem. Soc., Dalton Trans. 1983, 1535; Maassarani, F.; Pfeffer, M.; Le Borgne, G.; Wehman, E.; van Koten, G., J. Am. Chem. Soc. 1984, 106, 8002.
134. Dupont, J.; Pfeffer, M., J. Organomet. Chem. 1987, 321, C13; Spencer, J.; Pfeffer, M.; De Cian, A.; Fischer, J., J. Org. Chem. 1995, 60, 1005; Spencer, J.; Pfeffer, M.; Kyritsakas, N.; Fischer, J., Organometallics 1995, 14, 2214.
135. Maassarani, F.; Pfeffer, M.; Le Borgne, G., J. Chem. Soc., Chem. Commun. 1986, 488; Ryabov, A. D.; van Eldik, R.; Le Borgne, G.; Pfeffer, M., Organometallics 1993, 12, 1386.
136. Pfeffer, M.; Rotteveel, M. A.; Sutter, J.-P.; De Cian, A.; Fisher, J., J. Organomet. Chem. 1989, 371, C21.
137. Dupont, J.; Pfeffer, M.; Rotteveel, M. A.; De Cian, A.; Fischer, J., Organometallics 1989, 8, 1116; Pfeffer, M.; Sutter, J. P.; Rotteveel, M. A.; De Cian, A.; Fischer, J., Tetrahedron 1992, 48, 2427.
138. Pfeffer, M., Recl. Trav. Chim. Pays-Bas 1990, 109, 567; Beydoun, N.; Pfeffer, M.; De Cian, A.; Fischer, J., Organometallics 1991, 10, 3693; Maassarani, F.; Pfeffer, M.; Spencer, J.; Wehman, E., J. Organomet. Chem. 1994, 466, 265.
139. Dupont, J.; Pfeffer, M.; Theurel, L.; Rotteveel, M. A.; De Cian, A.; Fischer, J., New J. Chem. 1991, 15, 551.
140. Pfeffer, M.; Rotteveel, M. A.; Le Borgne, G.; Fischer, J., J. Org. Chem. 1992, 57, 2147; Pfeffer, M.; Sutter, J. P.; De Cian, A.; Fischer, J., Organometallics 1993, 12, 1167.
141. Wu, G.; Rheingold, A. L.; Heck, R. F., Organometallics 1986, 5, 1922.
142. Wu, G.; Rheingold, A. L.; Geib, S. J.; Heck, R. F., Organometallics 1987, 6, 1941; Wu, G.; Geib, S. J.; Rheingold, A. L.; Heck, R. F., J. Org. Chem. 1988, 53, 3238.
143. Wu, G.; Rheingold, A. L.; Heck, R. F., Organometallics 1987, 6, 2386.
144. Tao, W.; Silverberg, L. J.; Rheingold, A. L.; Heck, R. F., Organometallics 1989, 8, 2550.
145. Silverberg, L. J.; Wu, G. Z.; Rheingold, A. L.; Heck, R. F., J. Organomet. Chem. 1991, 409, 411.
146. Larock, R. C.; Yum, E. K., J. Am. Chem. Soc. 1991, 113, 6689.
147. Larock, R. C.; Yum, E. K.; Doty, M. J.; Sham, K. K. C., J. Org. Chem. 1995, 60, 3270.
148. Vicente, J.; Abad, J. A.; Gil-Rubio, J., J. Organomet. Chem. 1992, 436, C9.
149. Vicente, J.; Abad, J. A.; Gil-Rubio, J.; Jones, P. G., Inorg. Chim. Acta 1994, 222, 1.
150. Oliva-Madrid, M. J.; García-López, J.-A.; Saura-Llamas, I.; Bautista, D.; Vicente, J., Organometallics 2014, 33, 19.
151. Albert, J.; Granell, J.; Sales, J.; Solans, X., J. Organomet. Chem. 1989, 379, 177.
152. Sutter, J. P.; Pfeffer, M.; De Cian, A.; Fischer, J., Organometallics 1992, 11, 386.
153.Lopez, C.; Solans, X.; Tramuns, D., J. Organomet. Chem. 1994, 471, 265; Yagyu, T.; Osakada, K.; Brookhart, M., Organometallics 2000, 19, 2125.
154. Catellani, M.; Marmiroli, B.; Fagnola, M. C.; Acquotti, D., J. Organomet. Chem. 1996, 507, 157.
155. Trost, B. M.; Toste, F. D., J. Am. Chem. Soc. 1996, 118, 6305.
156. Wensbo, D.; Eriksson, A.; Jeschke, T.; Annby, U.; Gronowitz, S.; Cohen, L. A., Tetrahedron Lett. 1993, 34, 2823; Coperet, C.; Sugihara, T.; Wu, G. Z.; Shimoyama, I.; Negishi, E., J. Am. Chem. Soc. 1995, 117, 3422; Liao, H. Y.; Cheng, C. H., J. Org. Chem. 1995, 60, 3711; Trost, B. M.; Sorum, M. T.; Chan, C.; Harms, A. E.; Ruhter, G., J. Am. Chem. Soc. 1997, 119, 698; Fancelli, D.; Fagnola, M. C.; Severino, D.; Bedeschi, A., Tetrahedron Lett. 1997, 38, 2311; Fagnola, M. C.; Candiani, I.; Visentin, G.; Cabri, W.; Zarini, F.; Mongelli, N.; Bedeschi, A., Tetrahedron Lett. 1997, 38, 2307; Zhang, H. C.; Brumfield, K. K.; Maryanoff, B. E., Tetrahedron Lett. 1997, 38, 2439; Yamada, H.; Aoyagi, S.; Kibayashi, C., Tetrahedron Lett. 1997, 38, 3027; Larock, R. C.; Tian, Q. P., J. Org. Chem. 1998, 63, 2002; Park, S. S.; Choi, J. K.; Yum, E. K.; Ha, D. C., Tetrahedron Lett.

1998, 39, 627; Roesch, K. R.; Larock, R. C., J. Org. Chem. 1998, 63, 5306; Larock, R. C.; Yum, E. K.; Refvik, M. D., J. Org. Chem. 1998, 63, 7652; Gies, A. E.; Pfeffer, M.; Sirlin, C.; Spencer, J., Eur. J. Org. Chem. 1999, 1957; Cacchi, S., J. Organomet. Chem. 1999, 576, 42; Roesch, K. R.; Larock, R. C., J. Org. Chem. 2001, 66, 412; Roesch, K. R.; Zhang, H. M.; Larock, R. C., J. Org. Chem. 2001, 66, 8042; Roesch, K. R.; Larock, R. C., J. Org. Chem. 2002, 67, 86; Zeni, G.; Larock, R. C., Chem. Rev. 2004, 104, 2285; Zeni, G.; Larock, R. C., Chem. Rev. 2006, 106, 4644; Zhang, D.; Liu, Z.; Yum, E. K.; Larock, R. C., J. Org. Chem. 2007, 72, 251; Chinchilla, R.; Nájera, C., Chem. Rev. 2014, 114, 1783.
157. Karstens, W. F. J.; Stol, M.; Rutjes, F. P. J. T.; Kooijman, H.; Spek, A. L.; Hiemstra, H., J. Organomet. Chem. 2001, 624, 244.
158. Treichel, P. M., Adv. Organomet. Chem. 1973, 11, 21; Cotton, F. A.; Wilkinson, G., Advanced Inorganic Chemistry. p 255. John Wiley \& Sons: New York, 1989; Boyarskiy, V. P.; Bokach, N. A.; Luzyanin, V. Y., Chem. Rev. 2015, 115, 2698.
159. Elschenbroich, C.; Salzer, A., Organometallics, a Concise Introduction. p 240. VCH: Weinheim, 1992.
160. Tanase, T.; Fukushima, T.; Nomura, T.; Yamamoto, Y.; Kobayashi, K., Inorg. Chem. 1994, 33, 32.
161. Cotton, F. A.; Parish, R. V., J. Chem. Soc. 1960, 1440; Bancroft, G. M.; Mays, M. J.; Prater, B. E., J. Chem. Soc. A 1970, 956; Clark, H. C.; Manzer, L. E., Inorg. Chem. 1972, 11, 503; Cherwinski, W. J.; Clark, H. C.; Manzer, L. E., Inorg. Chem. 1972, 11, 1511.
162. Groen, J. H.; Vlaar, M. J. M.; Vanleeuwen, P.; Vrieze, K.; Kooijman, H.; Spek, A. L., J. Organomet. Chem. 1998, 551, 67.
163. O'Sullivan, R. D.; Parkins, A. W., J. Chem. Soc., Chem. Commun. 1984, 1165.
164. Tollari, S.; Demartin, F.; Cenini, S.; Palmisano, G.; Raimondi, P., J. Organomet. Chem. 1997, 527, 93; Nieto, S.; Arnau, P.; Serrano, E.; Navarro, R.; Soler, T.; Cativiela, C.; Urriolabeitia, E. P., Inorg. Chem. 2009, 48, 11963.
165. Mori, M.; Chiba, K.; Ban, Y., J. Org. Chem. 1978, 43, 1684; Negishi, E.-I.; Zhang, Y.; Shimoyama, I.; Wu, G., J. Am. Chem. Soc. 1989, 111, 8018; Yamamoto, Y., Bull. Chem. Soc. Jpn. 1995, 68, 433; Negishi, E.; Coperet, C.; Ma, S. M.; Mita, T.; Sugihara, T.; Tour, J. M., J. Am. Chem. Soc. 1996, 118, 5904; Wu, X.-F.; Neumann, H.; Spannenberg, A.; Schultz, T.; Jiao, H.; Beller, M., J. Am. Chem. Soc. 2010, 132, 14596; Wu, X.-F.; Neumann, H.; Beller, M., Chem. Soc. Rev. 2011, 40, 4986; Fusano, I.; Sumino, S.; Nishitani, S.; Inouye, T.; Morimoto, K.; Fukuyama, T.; Ryu, I., Chem. Eur. J. 2012, 18, 9415; Wu, X.-F.; Neumann, H.; Beller, M., Chem. Rev. 2013, 113, 1.
166. Maitlis, P. M.; Espinet, P.; Russel, M. J. H., Compounds with Palladium-Carbon σ-Bonds. In Comprehensive Organometallic Chemistry, Wilkinson, G.; Stone, F. G. A.; Abel, E. W. (Eds), Vol 6. 284. Pergamon: Oxford, 1982; Singleton, E.; Oosthuizen, H. E., Adv. Organomet. Chem. 1983, 22, 209.
167. Yamamoto, Y.; Yamazaki, H., Coord. Chem. Rev. 1972, 8, 225; Yamamoto, Y.; Yamakazi, H., Inorg. Chem. 1974, 13, 438; van Baar, J. F.; Klerks, J. M.; Overbosch, P.; Stufkens, D.
J.; Vrieze, K., J. Organomet. Chem. 1976, 112, 95; Crociani, B.; Sala, M.; Polo, A.; Bombieri, G., Organometallics 1986, 5, 1369; Yamamoto, Y.; Tanase, T.; Yanai, T.; Asano, T.; Kobayashi, K., J. Organomet. Chem. 1993, 456, 287; Onitsuka, K.; Joh, T.; Takahashi, S., J. Organomet. Chem. 1994, 464, 247.
168. Yamamoto, Y.; Yamazaki, H., Synthesis 1976, 750; Onitsuka, K.; Yamamoto, M.; Suzuki, S.; Takahashi, S., Organometallics 2002, 21, 581.
169. Otsuka, S.; Ataka, K., J. Chem. Soc., Dalton Trans. 1976, 327; Usón, R.; Fornies, J.; Espinet, P.; Pueyo, L.; Lalinde, E., J. Organomet. Chem. 1986, 299, 251; Veya, P.; Floriani, C.; Chiesivilla, A.; Rizzoli, C., Organometallics 1993, 12, 4899; Kim, Y.-J.; Chang, X.; Han, J.-T.; Lim, M. S.; Lee, S. W., Dalton Trans. 2004, 3699; Morishita, M.; Amii, H., J. Organomet. Chem. 2007, 692, 620; Canovese, L.; Visentin, F.; Santo, C.; Levi, C.; Dolmella, A., Organometallics 2007, 26, 5590; Martínez-Martínez, A. J.; Chicote, M. T.; Bautista, D.; Vicente, J., Organometallics 2012, 31, 3711.
170. Yamamoto, Y.; Yamazaki, H., Inorg. Chim. Acta 1980, 41, 229.
171. Onitsuka, K.; Ogawa, H.; Joh, T.; Takahashi, S.; Yamamoto, Y.; Yamazaki, H., J. Chem. Soc., Dalton Trans. 1991, 1531.
172. Delis, J. G. P.; Aubel, P. G.; Vrieze, K.; van Leeuwen, P. W. N. M.; Veldman, N.; Spek, A. L.; van Neer, F. J. R., Organometallics 1997, 16, 2948.
173. Ito, Y.; Miyake, T.; Hatano, S.; Shima, R.; Ohara, T.; Suginome, M., J. Am. Chem. Soc. 1998, 120, 11880; Takei, F.; Yanai, K.; Onitsuka, K.; Takahashi., Chem. Eur. J. 2000, 6, 983.
174. Saluste, C. G.; Whitby, R. J.; Furber, M., Angew. Chem., Int. Ed. Engl. 2000, 39, 4156; Onitsuka, K.; Suzuki, S.; Takahashi, S., Tetrahedron Lett. 2002, 43, 6197; Curran, D. P.; Du, W., Org. Lett. 2002, 4, 3215; Miura, T.; Nishida, Y.; Morimoto, M.; Yamauchi, M.; Murakami, M., Org. Lett. 2011, 13, 1429; Vlaar, T.; Ruitjer, E.; Znabet, A.; Janssen, E.; de Kanter, F. J. J.; Maes, B. U. W.; Orru, R. V. A., Org. Lett. 2011, 13, 6496; Fei, X., -D.; Ge, Z.-Y.; Tang, T.; Zhu, Y.-M.; Ji, S.-J., J. Org. Chem. 2012, 77, 10321; Nanjo, T.; Tsukano, D.; Takemoto, Y., Org. Lett. 2012, 14, 4270; Vlaar, T.; Maes, B. U. W.; Ruitjer, E.; Orru, R. V. A., Angew. Chem. Int. Ed. 2013, 52, 7048.

Synthesis of Arylpalladium(II) Complexes Derived from Benzyl Alcohol, Reactivity toward Alkyl Halides, and Synthesis of Dinuclear Arylpalladium(II)

Complexes

The results of this Chapter have been published in:
M.-J. Fernández-Rodríguez, E. Martínez-Viviente, J. Vicente, P. G. Jones, Organometallics 2015, 34, 3282-3291

II. 1 ABSTRACT

The arylpalladium complexes $\left[\operatorname{PdI}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OH}-2\right)\left(\mathrm{N}^{\wedge} \mathrm{N}\right)\right]\left(\mathrm{N}^{\wedge} \mathrm{N}=\right.$ bpy $=2,2^{\prime}-$ bipyridyl (1a), tbbpy $=4,4^{\prime}$-di-tert-butyl-2,2'-bipyridine (1b), tmeda $=N, N, N^{\prime}, N^{\prime}$ 'tetramethylethylenediamine (1c)) were synthesized by oxidative addition of 2-iodobenzyl alcohol to one equivalent of " $\left[\operatorname{Pd}(\mathrm{dba})_{2}\right]$ " $(\mathrm{dba}=$ dibenzylideneacetone $)$ in the presence of the $\mathrm{N}^{\wedge} \mathrm{N}$ ligands. By reaction of $\mathbf{1 a}$ with three equivalents of $\mathrm{XyNC}(\mathrm{Xy}=2,6$ dimethylphenyl) the insertion complex trans-[PdI\{C $\left.\left.=\mathrm{NXy})\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OH}-2\right)\right\}(\mathrm{CNXy})_{2}\right]$ (2) was formed. The reaction of $\mathbf{1 a}$ with $\mathrm{KO}^{t} \mathrm{Bu}$ resulted in the formation of the chelate complex $\left[\mathrm{Pd}\left(\kappa^{2}-C, O-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{O}-2\right)(\mathrm{bpy})\right]$ (3), which crystallizes as pairs of molecules bridged by hydrogen bonds to water of crystallization. Complex 3 reacts with XyNC forming the cyclic imidate N-(2,6-dimethylphenyl)-2-benzofuran-1(3H)-imine (4). By reaction of $\mathbf{3}$ with various primary alkyl halides $\mathrm{RCH}_{2} \mathrm{X}$, the complexes $\left[\mathrm{PdX}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{R}-2\right)(\mathrm{bpy})\right]\left(\mathrm{X}=\mathrm{I}, \mathrm{R}=\mathrm{H}(\mathbf{5 a}), \mathrm{X}=\mathrm{Br}, \mathrm{R}=\mathrm{Ph}(\mathbf{5 b}), p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{Br}\right.$ (5c), $p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}(\mathbf{5 d})$, and $\left.p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}(\mathbf{5 e})\right)$ were obtained. When the reaction of $\mathbf{3}$ with p $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{Br}\right)_{2}$ was carried out in a $2: 1$ ratio, the dinuclear arylpalladium complex [\{(bpy) $\left.\left.\operatorname{BrPd}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OCH}_{2}-2\right)\right\}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}-1,4\right)\right]$ (6) formed. An halide exchange reaction on 5e, using AgOTf and an excess of NaI, afforded [$\mathrm{PdI}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{OCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}-4\right)\right.\right.$)$2\}$ (bpy)] (5f), which by oxidative addition to $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ in the presence of bpy formed another dinuclear arylpalladium complex, $\quad\left[(b p y) I P d\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-2\right) \mathrm{O}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}-\right.\right.$ 4) $\operatorname{PdI}($ bpy $)]$ (7). All the complexes have been extensively characterized by NMR spectroscopy. The crystal structures of $\mathbf{1 a}, \mathbf{3} \cdot \mathrm{H}_{2} \mathrm{O}$, and $\mathbf{5 e}$ were determined by X-ray diffraction studies.

II. 2 INTRODUCTION

$\mathrm{Pd}($ II) aryl complexes have acquired a great relevance in Organometallic Chemistry, because of their involvement in carbon-carbon and carbon-heteroatom bondforming reactions of great synthetic importance. ${ }^{1}$ We have been especially interested in the synthesis of ortho-substituted arylpalladium complexes, ${ }^{2-8}$ as the substituent in ortho position may participate in the reactions with unsaturated organic molecules, forming new ligands and/or organic compounds. ${ }^{2-6,8-15}$ Very often, the ortho-substitution also results in the formation of cyclopalladated complexes. ${ }^{2,3,6-8,10,12-15}$

Within this line of research, our group has previously reported on the synthesis and reactivity of ortho-palladated phenol derivatives. ${ }^{5,12-14,16}$ Their reactions with CO,
isocyanides, alkenes, alkynes, and allenes did not involve the interaction with the OH group in ortho position. ${ }^{5,16}$ The electron-donating ability of this group, however, played a crucial role in the reactivity toward nitriles, ${ }^{12,14}$ carbodiimides, ${ }^{13,14}$ and isothiocyanates, ${ }^{14}$ which afforded the first examples of the insertion of these molecules into a C-M bond of a late transition metal. In view of these results, we decided to extend our research to ortho-palladated hydroxymethylphenyl complexes, to investigate how the methylene link in the alcoholic substituent would affect the reactivity of the complexes. 2Hydroxymethylphenyl palladium complexes with a dppf ligand (dppf $=1,1^{\prime}$ bis(diphenylphosphino)ferrocene) have been used as catalysts to build end-functionalized polyacetylenes. ${ }^{17}$ There has also been a report on oxapalladacycles derived from 2hydroxymethylbenzene ${ }^{18}$ and their use as precatalysts in Heck and cross-coupling reactions. ${ }^{19}$ However, the reactivity of these complexes toward unsaturated molecules has not been systematically investigated.

In this paper we report our first results with ortho-palladated hydroxymethylphenyl complexes, which involve the synthesis of a family of Pd complexes derived from benzyl alcohol, one of them a chelate complex resulting from the deprotonation of the alcohol. This chelate complex has shown an interesting chemistry toward alkyl halides, involving the nucleophilic attack of the coordinated oxygen on the alkyl group, and resulting in the opening of the chelate ring and the formation of new arylpalladium complexes with larger substituents on the aryl ring. We have found no precedent in the literature for this type of reactivity in a C, O-cyclometalated aryl group coordinated to a late transition metal. The reaction works very well for a variety of primary alkyl halides and can be a useful chemical tool to build ligands on a pre-existing complex.

Dinuclear Pd complexes have attracted considerable interest in the literature. There are examples where the two $[\mathrm{Pd}]$ moieties are attached to the same aryl ring, ${ }^{19-24}$ as well as examples where the two Pd atoms are linked by other ligands. ${ }^{8,23,25-33}$ These dinuclear complexes have in some cases been used as catalysts, e.g. for Heck, ${ }^{28}$ HartwigBuchwald, ${ }^{32}$ Hiyama, ${ }^{33}$ and Suzuki-Miyaura reactions. ${ }^{25,31}$ The presence of two Pd atoms can improve the efficiency and selectivity of a catalyst, promote reactions that are difficult to achieve with a mononuclear complex, and result in the formation of unexpected compounds. ${ }^{30,31}$ The dinuclear complexes that we report in this paper are quite novel in that they are bis(arylpalladium) complexes, for which there are very few precedents in the literature. ${ }^{8,23,26,29}$ Moreover, they are the first examples where the aryl
groups are ortho-substituted. Their reactivity in insertion ${ }^{8}$ or coupling ${ }^{26}$ reactions can afford interesting and novel compounds, and we plan to pursue this subject.

We also report in this paper the result of the reactions with XyNC of the complexes derived from benzyl alcohol, where a previously unknown cyclic imidate has been isolated and characterized. Five-membered cyclic imidates are expected to have potential bioactivities similar to those of their structurally similar isoindolin-1-one counterparts. ${ }^{34}$

II. 3 RESULTS AND DISCUSSION

II.3.1 Synthesis of $\left[\operatorname{PdI}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OH}-2\right)\left(\mathbf{N}^{\wedge} \mathrm{N}\right)\right]\left(\mathbf{N}^{\wedge} \mathrm{N}=\right.$ bpy (1a), tbbpy (1b), tmeda (1c))

Complexes 1a-c were obtained by oxidative addition of 2-iodobenzyl alcohol to one equivalent of $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ in the presence of bpy, tbbpy, and tmeda (Scheme II.1). We have similarly prepared the related complex $\left.\left[\operatorname{PdI}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OH}\right)-2\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (I), which had already been prepared using $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ as the oxidative addition substrate. ${ }^{18}$ In the synthesis of $\mathbf{1 b}\left(\mathrm{N}^{\wedge} \mathrm{N}=\right.$ tbbpy) and $\mathbf{1 c}\left(\mathrm{N}^{\wedge} \mathrm{N}=\right.$ tmeda) the reactants were used in stoichiometric amounts, while in the synthesis of $\mathbf{1 a}\left(\mathrm{N}^{\wedge} \mathrm{N}=\mathrm{bpy}\right)$ and $\mathbf{I}, 50 \%$ excess alcohol was used to obtain either a better yield (1a) or a clean product (I). Complexes $\mathbf{1 b , c}$ decompose in solution to form $\left[\operatorname{PdI}_{2}\left(\mathrm{~N}^{\wedge} \mathrm{N}\right)\right]\left(\mathrm{N}^{\wedge} \mathrm{N}=\right.$ tbbpy, tmeda $)$, which are identified by their characteristic ${ }^{1} \mathrm{H}$ NMR resonances at 9.84 ppm (dd) for $\left[\mathrm{PdI}_{2}(\operatorname{tbbpy})\right]$ (which also has a characteristic red color) or $2.95 \mathrm{ppm}(\mathrm{s})$ for $\left[\mathrm{PdI}_{2}\right.$ (tmeda) $]$. Attempts to prepare complexes similar to 1a-c with a Br ligand instead of I , starting from 2bromobenzyl alcohol, were unsuccessful.

Scheme II. 1 Synthesis of complexes 1-3

II.3.2 Reactivity of $\left[\operatorname{PdI}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathbf{O H}-2\right)(b p y)\right]$ (1a)

We have investigated the reactivity of complex 1a toward unsaturated molecules such as alkynes, alkenes, nitriles, cyanamides, allenes, and carbon monoxide, with and without the addition of TlOTf, but we were not able to obtain clean insertion (C-Pd bond) or addition ($\mathrm{O}-\mathrm{H}$ bond) products, in contrast to our previous observations with orthopalladated phenol derivatives. ${ }^{5,16}$ We had already proposed that the OH group directly bonded to the aryl ligand played a crucial role in the insertion reactions with nitriles, ${ }^{12,14}$ carbodiimides, ${ }^{13,14}$ and isothiocyanates, ${ }^{14}$ via a resonance form that locates the negative charge on the ipso carbon (see Scheme III. 2 in Chapter III for an example). ${ }^{12,14}$ It now seems that the methylene link is detrimental even in the reactions with other molecules such as alkynes, alkenes and CO, where the OH group did not seem to be involved. ${ }^{5,16}$ We have been successful only in the reaction of 1a with three equivalents of XyNC (Xy = 2,6-dimethylphenyl) which, when carried out in cold THF, instantaneously formed the insertion complex trans- $\left[\mathrm{PdI}\left\{\mathrm{C}(=\mathrm{NXy})\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OH}-2\right)\right\}(\mathrm{CNXy})_{2}\right] \quad(2$, Scheme II.1), which had to be isolated immediately to avoid decomposition. Complex $\mathbf{2}$ is the result of the insertion of one isocyanide molecule into the C-Pd bond and the displacement of the bpy ligand by two other molecules. The compound is stable in the solid state, but it decomposes in solution to form $\left[\mathrm{Pd}_{2} \mathrm{I}_{2}(\mathrm{CNXy})_{4}\right]$, which is easily identified by its ${ }^{1} \mathrm{H}$ NMR resonance at 2.53 ppm . Pd complexes similar to 2, with other functional groups in the aryl ring, have been previously prepared in a similar manner, mainly by our research group. ${ }^{5,6,8,10,11,35}$ We have also described a few dinuclear analogues, prepared by oxidative addition ${ }^{22}$ or by a double insertion reaction. ${ }^{8,24}$

The reaction of complex $\mathbf{1 a}$ with $\mathrm{KO}^{t} \mathrm{Bu}$ resulted in the abstraction of the alcoholic proton and the coordination of the oxygen to Pd, displacing the iodo ligand and forming the neutral chelate complex $\left[\operatorname{Pd}\left\{\mathrm{K}^{2}-C, O-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{O}\right)-2\right\}(\mathrm{bpy})\right]$ (3, Scheme II.1), which crystallizes as a dinuclear aqua-bridged species (see Section II.3.7 and Figure II.2).

II.3.3 Reactions of $\left[\mathrm{Pd}\left(\mathrm{K}^{2}-\mathrm{C}, \mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{O}-2\right)(\mathrm{bpy})\right]$ (3) with XyNC and CO

The reaction of $\mathbf{3}$ with XyNC resulted in the formation of N -(2,6-dimethylphenyl)-2-benzofuran-1 3 H)-imine (4) (Scheme II.2), which was isolated as a yellowish oil and characterized by NMR spectroscopy and high resolution mass spectroscopy (see Chapter VIII, Experimental Section). The cyclic imidate 4 had not been described before,
although the related compound with a ${ }^{\mathrm{t}} \mathrm{Bu}$ group instead of Xy had been prepared by reaction of a dimeric oxapalladacycle phosphine complex with ${ }^{\text {t BuNC. }}{ }^{18}$ The synthesis of other five-membered imidates by Pd-catalyzed reaction of 2-bromobenzyl alcohol and several isocyanides (not XyNC) ${ }^{36}$ or by other, unrelated methods ${ }^{37}$ has also been reported. The reaction of $\mathbf{3}$ with CO resulted in the decomposition of the complex to give $1(3 H)$-isobenzofuranone (phthalide) (Scheme II.2). Both cyclic compounds reasonably form through a XyNC or CO insertion reaction into the $\mathrm{C}-\mathrm{Pd}$ bond, followed by a $\mathrm{C}-\mathrm{O}$ coupling reaction. A CO insertion into the O-Pd bond would also be possible. ${ }^{38}$

Scheme II. 2 Synthesis of 4 and phthalide

II.3.4 Reactions of $\left[\mathrm{Pd}\left(\kappa^{2}-\mathrm{C}, \mathrm{O}-\mathrm{C}_{6} \mathbf{H}_{4} \mathrm{CH}_{2} \mathrm{O}-2\right)(\mathrm{bpy})\right]$ (3) with Alkyl Halides

By reaction of complex $\mathbf{3}$ with an excess of various primary alkyl halides of general formula $\mathrm{RCH}_{2} \mathrm{X}(\mathrm{X}=\mathrm{Br}, \mathrm{I})$, the complexes $\left[\mathrm{PdX}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{R}-2\right)(\right.$ bpy $\left.)\right](\mathrm{X}=\mathrm{I}, \mathrm{R}=$ $\mathrm{H}(\mathbf{5 a}), \mathrm{X}=\mathrm{Br}, \mathrm{R}=\mathrm{Ph}(\mathbf{5 b}), p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{Br}(\mathbf{5 c}), p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}(\mathbf{5 d})$, and $\left.p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}(\mathbf{5 e})\right)$ were obtained (Scheme II.3). These complexes result from the nucleophilic attack of the coordinated oxygen in $\mathbf{3}$ at the alkyl group of the halide, followed by the coordination of the halide to the Pd atom and the opening of the chelate ring. We have found no precedent for this type of reaction in an arylpalladium complex. A 5 -fold excess of $\mathrm{RCH}_{2} \mathrm{X}$ was enough for the synthesis of $\mathbf{5 d}$, \mathbf{e} in good yield, while for $\mathbf{5 a}$-c a 10 -fold excess was required (see Chapter VIII, Experimental Section). ${ }^{\text {a }}$ Similar reactions with PhI or ${ }^{\mathrm{i}} \mathrm{PrI}$ did not result in the formation of analogous complexes, suggesting that the success of the nucleophilic substitution requires a primary halide as substrate.

[^1]

Scheme II. 3 Synthesis of complexes 5a-f, 6, and 7

II.3.5 Synthesis of Dinuclear Palladium Complexes

When the reaction of 3 with $p-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{Br}\right)_{2}$ was carried out in a 2:1 ratio, we obtained the dinuclear Pd complex $\left[\left\{(\mathrm{bpy}) \mathrm{BrPd}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OCH}_{2}-2\right)\right\}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}-1,4\right)\right]$ (6, Scheme II.3), which is the result of the nucleophilic attack of $\mathbf{3}$ on both methylene groups of the dihalide.

We also attempted to prepare a dinuclear complex by oxidative addition of the C-X bond in $\mathbf{5 d}(\mathrm{X}=\mathrm{Br})$ or $\mathbf{5 e}(\mathrm{X}=\mathrm{I})$ to $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ in the presence of bpy. However, with $\mathbf{5 d}$ $(\mathrm{X}=\mathrm{Br})$ there was no oxidative addition, and with $\mathbf{5 e}(\mathrm{X}=\mathrm{I})$ we obtained a mixture of two complexes, probably as a consequence of the partial substitution by I of the Br ligand attached to Pd. We decided then to fully replace this Br ligand by I before the oxidative addition, by reaction of $\mathbf{5 e}$ with AgOTf and a large excess of NaI, obtaining complex [$\left.\mathrm{PdI}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{OCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}-4\right)\right)-2\right\}(\mathrm{bpy})\right]$ (5f, Scheme II.3). By reaction of $\mathbf{5 f}$ with $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ and bpy (1:1:1 ratio) we cleanly obtained the dinuclear Pd complex [(bpy) $\left.\operatorname{IPd}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-2\right) \mathrm{O}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}-4\right) \mathrm{PdI}(\mathrm{bpy})\right]$ (7, Scheme II.3). Similarly to 6, complex 7 shows a bridging organic chain with two aryl-Pd bonds, although now only one of them is ortho-substituted. Bis(arylpalladium) complexes are not common in the literature. ${ }^{8,23,26,29}$ Complexes $\mathbf{6}$ and $\mathbf{7}$ are the first examples with ortho-substituted aryl groups.

II.3.6 NMR and IR Data

								II. 1	${ }^{13} \mathrm{C}$	${ }^{1}$	NMR	data		r.t.)	co	lex		I, 3 ,		d 7					
	$\begin{aligned} & \mathrm{H} \\ & -\mathrm{PdIL}_{2} \\ & 6 \end{aligned}$	$\begin{aligned} & \text { ppy } \\ & \text { eda } \\ & \text { PPh } \end{aligned}$					${ }_{8}^{0}$				$\begin{aligned} & \quad \mathrm{R} \\ & \mathrm{H} \\ & \mathrm{Ph} \\ & p-\mathrm{C}_{6} \vdash \\ & p-\mathrm{C}_{6} \vdash \\ & p-\mathrm{C}_{6} \vdash \\ & p-\mathrm{C}_{6} \vdash \end{aligned}$		$\begin{gathered} \mathrm{Br} \\ \mathrm{Br} \\ \mathrm{Br} \\ \mathrm{Br} \\ \mathrm{Br} \end{gathered}$										$1 \int_{26}^{25}$ 7		
	$\begin{aligned} & \mathrm{L}_{2}=2 \mathrm{I} \end{aligned}$	PPh_{3}	$\underset{\mathrm{L}_{2}=\text { tmeda }}{\text { 1c }}$	$\begin{gathered} \mathbf{1 b} \\ L_{2}=\text { tbk } \end{gathered}$				3			$x=1$	$\mathrm{R}=\mathrm{Ph},$	$x=B r$		$\mathrm{H}_{2} \mathrm{Br}$				$\mathrm{X}=\mathrm{Br}$			6		7	
				Aryl lig	gand														ryl lig	and(s)					
	${ }^{13} \mathrm{C}$	${ }^{1} \mathrm{H}$	${ }^{13} \mathrm{C}$ 涪 ${ }^{1} \mathrm{H}$	${ }^{13} \mathrm{C}$	${ }^{1} \mathrm{H}$	${ }^{13} \mathrm{C}^{(0)}$	${ }^{1} H^{(c)}$	${ }^{13} \mathrm{C}$	${ }^{1} \mathrm{H}$																
C1	158.6		143.7	146.3		146.3		151.0		145.3		149.7		150.2		149.9		150.0		146.8		149.99, 149.96		148.8	
C2	144.4		145.0	144.8		145.4		166.2		142.2		141.9		141.8		141.6		141.7		142.0		142.05, 142.01		142.3	
CH3	128.6	6.41	128.4 7.11	128.6	7.20	128.8	7.11	119.1		127.1	7.24	128.1	7.30	128.1	7.30	128.1	7.23	128.1	7.23	128.0	7.23	128.08, 128.01	7.26, 7.21	128.6	7.21
CH4	123.8	6.62	123.7 6.93-	123.9	7.02-	124.3	6.93-	124.0	6.97	123.8	7.02-	123.9	7.05-	123.8	7.03-	123.9	7.04-	123.9	7.04-	123.7	7.01-	123.81, 123.77		123.4	6.96
CH5	125.9	6.47	126.26 .84	126.6	6.93	126.8	6.89	123.6		126.3	6.95	126.7	6.98	126.8	6.99	126.8	6.98	126.8	6.98	126.7	6.95	126.75, 126.69		126.9	7.02
CH6	134.2	7.06	135.6 7.29	136.2	7.50	136.6	7.38	131.7	7.21	136.1	7.48	135.0	7.50	135.0	7.51	135.0	7.48	135.0	7.48	136.3	7.48	$135.23,135.20$	7.53-7.49	136.3	7.59-7.53
$\mathrm{CH}_{2} \mathbf{- 7}$	68.4	4.16	69.15.43 4.68	68.8	$\begin{aligned} & 5.21 \\ & 4.66 \end{aligned}$	68.7	$\begin{aligned} & 4.99 \\ & 4.48 \end{aligned}$	78.4	5.21	78.5	$\begin{aligned} & 5.00 \\ & 4.77 \\ & \hline \end{aligned}$	76.0	$\begin{array}{r} 5.31 \\ 4.89 \\ \hline \end{array}$	76.2	$\begin{aligned} & 5.28 \\ & 4.85 \\ & \hline \end{aligned}$	76.1	$\begin{array}{r} 5.28 \\ 4.85 \\ \hline \end{array}$	76.1	$\begin{array}{r} 5.28 \\ 4.84 \\ \hline \end{array}$	77.1	$\begin{array}{r} 5.14 \\ 4.79 \\ \hline \end{array}$	75.8, 75.6	$\begin{gathered} 5.20,4.87 \\ 5.20,4.80 \end{gathered}$	77.6	5.22, 4.62
OH		0.02	3.00		2.89		2.66				$\mathrm{CH}_{2}-8$	72.6	$\begin{aligned} & 4.56 \\ & 4.52 \end{aligned}$	72.0	4.53	71.8	$\begin{array}{r} 4.52 \\ 4.46 \end{array}$	71.9	$\begin{array}{r} 4.51 \\ 4.46 \end{array}$	71.9	$\begin{aligned} & 4.49 \\ & 4.44 \end{aligned}$	72.4, 72.3	4.45-4.37	72.6	4.48, 4.40
											i-C	139.2		139.7		138.2		139.0		139.0		137.76, 137.75		133.8	
											$\bigcirc-\mathrm{CH}$	127.7		127.8	7.01	129.5	6.95	129.7	6.81	129.7	6.79	127.40, 127.35	6.77	126.5, 126.4	6.57,6.42
											m-CH	128.1		128.8	7.07	131.1	7.11	137.1	7.30	137.1	7.28		6.77	135.8, 135.6	7.03,6.85
											$\mathrm{p}-\mathrm{C}^{\text {d }}$	127.1		136.6		120.8		92.5		92.5				143.9	
				tbbp													y lig	and ${ }^{(\text {e) }}$							
				1 b		1		3	3	5		5	b	5		5					f	6		7	
				${ }^{13} \mathrm{C}$	${ }^{1} \mathrm{H}$	${ }^{13} \mathrm{C}^{(1)}$	${ }^{1} \mathrm{H}$																		
			C12	156.2		156.6		156.6		155.9		155.9		155.7		155.8		155.8		155.6		155.96, 155.93		155.7, 155.2	
			C12'	154.0		154.4		153.4		153.9		153.7		153.7		153.6		153.6		153.6		153.79, 153,71		154.5, 153.9	
			CH16	149.7	7.33	150.4	7.33	152.0	9.18	150.6	7.53	151.7	7.69	151.4	7.62	151.5	7.62	151.5	7.62	150.5	7.44	151.32, 151.30	7.58-7.56	150.6, 150.0	7.48-7.36
			CH16'	152.6	9.46	153.1	9.46	149.9	9.03	153.2	9.66	150.9	9.43	150.7	9.39	150.8	9.39	150.8	9.40	153.1	9.61	150.58, 150.57	9.36-9.33	153.0, 152.4	9.61, 9.57
			$\mathrm{CH} 14{ }^{(9)}$	163.6		139.6	7.94	138.1	8.03-	138.7	7.98	138.4	7.88	138.4	7.85	138.4	7.89	138.4	7.89	138.4	7.89	138.74, 138.66	7.89, 7.78	138.89, 138.86	8.02-7.87
			$\mathrm{CH} 14{ }^{\text {(g) }}$	163.6		139.5	7.98	138.8	7.96		8.01	138.9	8.03	139.0	8.01	139.0	8.03	139.0	8.03	138.7	8.02	139.23, 139.16	8.04, 7.88	138.8, 138.5	8.02-7.87
			CH15	123.9	7.28	127.2	7.25	126.6	7.59-	126.6	7.32	126.6	7.17	126.5	7.14	126.5	7.17	126.5	7.17	126.4	7.20	126.53, 126.49	7.17-7.11	126.4, 125.9	7.35, 7.11
			CH15'	124.2	7.53	127.6	7.53	126.3	7.52	127.1	7.57	126.7	7.60	126.7	7.57	126.8	7.57	126.8	7.58	127.0	7.55	126.66, 126.62	7.57-7.48	126.94, 126.92	7.59-7.41
			CH13	118.7	7.98	122.8	$8.06-$	122.5	8.08-	121.9	8.09-	121.8	7.97	122.0	7.94	121.8	7.98	121.8	7.97	121.7	7.95	122.39, 122.32	8.00-7.97	122.9, 122.4	8.17-8.02
			CH13'	118.2	7.97	122.4	8.02	121.1	8.03	121.6	8.04	121.3	8.03	121.6	8.01	121.5	8.03	121.5	8.03	121.6	8.02	121.91, 121.85	8.04, 7.99	122.0, 121.7	8.17-8.02

[^2]All the complexes reported in this paper were extensively studied by NMR spectroscopy (1D and 2D experiments), allowing an almost full assignment of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ resonances. To facilitate comparison, the data are collected in Table II.1. We also include the data of complex \mathbf{I}, which had been reported but not fully assigned. ${ }^{18}$

II.3.6.1 NMR and IR Data of Complexes 1a-c, I, and 3

The methylenic protons of the $\mathrm{CH}_{2} \mathrm{OH}$ groups are diastereotopic in complexes 1ac. Thus, they couple with each other and with the OH proton, as shown in Scheme II.4. In contrast, for the PPh_{3} complex \mathbf{I}, which has a symmetry plane, the two methylenic protons are equivalent, and they appear as a doublet coupled ($\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz}\right)$ with the OH proton, which is a triplet. In the chelate complex $\mathbf{3}$ the methylenic protons are also equivalent (they appear as a singlet). This is an indication that the molecule has a symmetry plane in solution. Indeed, even in the solid state the molecule is almost planar, as shown by the X-ray structure (see Section II.3.7 and Figure II.2).

Scheme II. 4 Coupling pattern within the $\mathrm{CH}_{2} \mathrm{OH}$ group in complexes 1a-c

The OH proton of \mathbf{I} is strongly shifted to lower frequency ($\delta 0.02 \mathrm{ppm}$, almost coincident with the TMS), with respect to $\mathbf{1 a}(\delta 2.66 \mathrm{ppm})$, $\mathbf{1 b}$ ($\delta 2.89 \mathrm{ppm}$), and $\mathbf{1 c}(\delta$ 3.00 ppm), as a consequence of the anisotropic effect of the PPh_{3} ligands. Another peculiarity of complex \mathbf{I} is the shift of the aryl ipso carbon to higher frequency (158.6 ppm) with respect to the complexes with N, N-donor ligands, $\mathbf{1 a - c}$ ($143.7-146.3 \mathrm{ppm}$). A similar trend has been observed previously by some of us for other arylpalladium complexes, ${ }^{3,21}$ and cannot be explained in terms of simplistic resonance or induction effects, as ${ }^{13} \mathrm{C}$ chemical shifts are mainly determined by the paramagnetic contribution to the shielding constant. ${ }^{39}$

The aryl ${ }^{13} \mathrm{C}$ chemical shifts of the chelate complex $\mathbf{3}$ differ from those of the "open" complexes 1a-c, I. Specially noteworthy is the large shift to higher frequency of C2
$(166.2 \mathrm{ppm})$ with respect to the $144-145 \mathrm{ppm}$ value in $\mathbf{1 a - c}$, \mathbf{I}. The methylenic carbon is also shifted to higher frequencies (78.4 ppm in $\mathbf{3}$ with respect to $68-69 \mathrm{ppm}$ in $\mathbf{1 a - c}, \mathbf{I}$).

In the tbbpy (1b) and bpy (1a) ligands, the ortho hydrogen atoms of the pyridyl ring cis to the aryl group (H16 in our numbering system) are strongly shielded ($\delta 7.33 \mathrm{ppm}$ for both complexes) with respect to those of the pyridyl ring trans to aryl (H16', 89.46 ppm for both). This is a common observation in arylpalladium complexes ${ }^{3,21,24}$ and is a consequence of the anisotropic effect of the aryl group on the closest hydrogen of the bpy or tbbpy ligand. The aryl group is perpendicular to the $\left[\operatorname{PdI}\left(\mathrm{N}^{\wedge} \mathrm{N}\right)\right]$ plane, so that the H 16 proton sits "on top" of the aryl ring, in the shielded zone (see Scheme II.5). For the chelate complex 3, in contrast, this effect is not observed ($\delta=9.03 \mathrm{ppm}$ for H16' and 9.18 ppm for H16), because the aryl group is forced to be almost coplanar with the bpy ligand by the formation of the O-Pd bond.

Scheme II. 5
Anisotropic effect of the aryl ligand on the H16 protons of a bpy ligand. The ortho substituent (R) usually hinders the rotation around the Ar-Pd bond. However, even when this rotation is allowed, e.g. in the complex $[\mathrm{PdXPh}(\mathrm{bpy})](\mathrm{X}=\mathrm{Br}, \mathrm{I}),{ }^{40}$ the Ar group still adopts a perpendicular disposition with respect to the $\left[\operatorname{PdX}\left(\mathrm{N}^{\wedge} \mathrm{N}\right)\right]$ plane, and the shielding of the H16 proton is observed

In the tmeda complex (1c) the presence of four ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ resonances for the Me groups of the tmeda indicates that the rotation around the Ar-Pd bond is hindered by the presence of the $\mathrm{CH}_{2} \mathrm{OH}$ substituent in ortho position. ${ }^{3}$

A single ${ }^{31} \mathrm{P}$ resonance for the PPh_{3} complex I (at 22.6 ppm , see Chapter VIII, Experimental Section) confirms the trans geometry of the complex. The aryl carbons C1, C2, and CH6, as well as the methylene carbon, appear as triplets because of the coupling with the two equivalent ${ }^{31} \mathrm{P}$ nuclei $\left({ }^{2} \mathrm{~J}_{\mathrm{CP}}=3 \mathrm{~Hz}\right.$ for $\mathrm{C} 1,{ }^{3} \mathrm{~J}_{\mathrm{CP}}=3 \mathrm{~Hz}$ for $\mathrm{C} 2,{ }^{3} \mathrm{~J}_{\mathrm{CP}}=4 \mathrm{~Hz}$ for CH 6 and ${ }^{4} \mathrm{~J}_{\mathrm{CP}}=3 \mathrm{~Hz}$ for CH_{2}). Both ${ }^{31} \mathrm{P}$ nuclei are magnetically non-equivalent, so that the ipso, ortho and meta carbons of the phosphine phenyl rings appear as virtual triplets $\left({ }^{1} \mathbf{J}_{\mathrm{CP}}{ }^{3} \mathbf{J}_{\mathrm{CP}}=46 \mathrm{~Hz}\right.$ for $i-\mathrm{C},{ }^{2} \mathbf{J}_{\mathrm{CP}}{ }^{4} \mathrm{~J}_{\mathrm{CP}}=12 \mathrm{~Hz}$ for $o-\mathrm{CH},{ }^{3} \mathbf{J}_{\mathrm{CP}}{ }^{5} \mathbf{J}_{\mathrm{CP}}=10 \mathrm{~Hz}$ for $\left.m-\mathrm{CH}\right)$.

Finally, the IR spectra of complexes 1a-c show the expected O-H bands at 3430, 3490 and $3305 \mathrm{~cm}^{-1}$, respectively.

II.3.6.2 NMR Data of Complexes 5a-f, 6, and 7

In the complexes $\mathbf{5 a - f}, \mathbf{6}$, and $\mathbf{7}$ the methylenic protons of the $\mathrm{CH}_{2}-7$ group (the one closer to the $[\mathrm{PdX}($ bpy $)]$ moiety) are always diastereotopic, and they appear as an AB system with ${ }^{2} \mathbf{J}_{\mathrm{HH}}=11 \mathrm{~Hz}$, similarly to $\mathbf{1 a} \mathbf{a}$. The methylenic protons of the RCH_{2} group $\left(\mathrm{CH}_{2}-8\right)$ appear as an AB system for $\mathbf{5 b}, \mathbf{d}, \mathbf{e}, \mathbf{f}$ and $7\left({ }^{2} \mathbf{J}_{\mathrm{HH}}=12 \mathrm{~Hz}\right.$ and chemical shifts almost coincident around 4.5 ppm), and as a singlet at 4.53 pm for $\mathbf{5 c} .{ }^{\mathrm{b}}$ For the dinuclear complex 6 the two non-equivalent $\mathrm{CH}_{2}-8$ groups appear as a multiplet at ca. 4.4 ppm .

In the complexes $\mathbf{5 c}$-f the two ortho protons and the two meta protons of the $\mathrm{C}_{6} \mathrm{H}_{4}$ moiety are each chemically (but not magnetically) equivalent, indicating that there is free rotation around the $\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}_{2}$ bond. These protons form an $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ ' system (two doublets, with ${ }^{3} \mathrm{~J}_{\mathrm{AB}}=8 \mathrm{~Hz}$).

For the dinuclear complex 6 we expected that both halves of the molecule would be equivalent in solution, but this is not the case, as we observe two sets of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ resonances that are almost coincident, with a few exceptions in the ${ }^{1} \mathrm{H}$ spectrum (see Table II.1, footnote c). The molecule seems to be too bulky to adopt a completely symmetric structure in solution. The four central $\mathrm{C}_{6} \mathrm{H}_{4}$ protons appear as a single sharp doublet with $\mathrm{J}=4 \mathrm{~Hz}$. Most probably these protons also form an AA'BB' system (as in $\mathbf{5 c}-\mathbf{f}$), where now A and B are isochrones (but not equivalent, so that they are coupled with each other).

Complex 7 shows, as expected, two clearly separated sets of bpy resonances, as the two $[\operatorname{PdI}(\mathrm{bpy})]$ moieties are non-equivalent. The $p-[\operatorname{PdI}(\mathrm{bpy})]$ fragment hinders the rotation of the $\mathrm{C}_{6} \mathrm{H}_{4}$ group, so that now the two ortho protons and the two meta protons are not equivalent, and they form an ABMN system, i.e., four (slightly broad) doublets with ${ }^{3} \mathrm{~J}_{\mathrm{AB}}={ }^{3} \mathrm{~J}_{\mathrm{MN}}=8 \mathrm{~Hz}$.

In the bpy ligand of complexes 5a-f, 6, and $\mathbf{7}$ the H 16 protons are also strongly shielded ($\delta=7.36-7.69 \mathrm{ppm}$) with respect to H16' $(\delta=9.33-9.66 \mathrm{ppm})$, again as a consequence of the anisotropic effect of the aryl group on the H16 protons. It is also noteworthy that the H16' proton (the one close to the halo ligand) is slightly deshielded in the iodo complexes ($\mathbf{5 a , f}$ and $\mathbf{7}, \delta=9.57-9.66 \mathrm{ppm}$) with respect to the bromo complexes ($\mathbf{5 b} \mathbf{- e}$ and $\mathbf{6}, \delta=9.33-9.43 \mathrm{ppm}$). The CH16' carbon is also deshielded in the
iodo complexes, with the result that it resonates at higher frequency ($\delta=152.4-153.2$ $\mathrm{ppm})$ than the CH 16 carbon ($\delta=150.0-151.7 \mathrm{ppm}$), as opposed to the bromo complexes where $\delta\left(\mathrm{CH}_{16}\right)>\delta\left(\mathrm{CH}^{\prime} 6^{\prime}\right)$. The same tendency, $\delta\left(\mathrm{CH}^{\prime} 6^{\prime}\right)>\delta(\mathrm{CH} 16)$, is observed in 1a (for bpy) and $\mathbf{1 b}$ (for tbbpy), which are also iodo complexes. For the quaternary carbons $\mathrm{C} 12,12$ ', we always observe that $\delta(\mathrm{C} 12)>\delta\left(\mathrm{C}_{12}\right)$ (for C12, in the pyridyl ring trans to I, Br or $\mathrm{O}, \delta=156.6-155.2 \mathrm{ppm}$, while for C 12 ', in the pyridyl ring trans to aryl, $\delta=$ $154.5-153.4 \mathrm{ppm}$).

II.3.6.3 NMR and IR Data of 2 and 4

The structure of the cyclic imidate $\mathbf{4}$ is confirmed by the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMBC}$ spectrum, where the expected two- and three-bond ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ correlations are observed. In the IR spectrum, the $\mathrm{C}=\mathrm{N}$ band appears at $1693 \mathrm{~cm}^{-1}$.

Finally, for complex 2, resulting from the reaction of 1a with XyNC , we have no ${ }^{13} \mathrm{C}$ NMR data, as the complex decomposes too rapidly in solution. In the ${ }^{1} \mathrm{H}$ NMR spectrum we observe the expected 1:2 methyl resonances corresponding, respectively, to the inserted and the two (equivalent) coordinated XyNC groups. These groups give characteristic IR bands at $2182 \mathrm{~cm}^{-1}$ for the coordinated $\mathrm{C} \equiv \mathrm{NXy}$ groups, and at $1606 \mathrm{~cm}^{-1}$ for the inserted $\mathrm{C}=\mathrm{NXy}$ group.

II.3.7 X-Ray Structure Determinations

The crystal structures of the complexes 1a (Figure II.1, Table II.3), 3• $\mathrm{H}_{2} \mathrm{O}$ (Figures II.2, II.3, and Table II.4), and 5e (Figure II. 4 and Table II.5), were determined by X-ray diffraction studies (see Table II. 2 for experimental details). ${ }^{\text {c }}$ The three structures show somewhat distorted square planar coordination around the Pd atoms. Mean deviations from the best plane through Pd and the four donor atoms are $0.05 \AA$ for $\mathbf{1 a}, 0.08 \AA$ for 3• $\mathrm{H}_{2} \mathrm{O}$, and $0.04 \AA$ for 5e. For $\mathbf{3} \cdot \mathrm{H}_{2} \mathrm{O}$, the distortion arises from the steric pressure between the two ligands, which are forced to be approximately coplanar with a short

[^3]contact $\mathrm{H} 6 \cdots \mathrm{H} 26,2.14 \AA$; N21 lies $0.34 \AA$ out of the plane of Pd and the other three ligand donor atoms. The lesser distortion for the other two structures might be a consequence of the chelating nature of the bpy ligand. The Pd-C bond distances are very similar for the three complexes (2.003(2) \AA for 1a, $1.9968(17) \AA$ for $3 \cdot \mathrm{H}_{2} \mathrm{O}$ and 1.9903(19) \AA for 5e) and in the range expected for Pd-C bonds trans to a N -donor ligand. ${ }^{3,21}$ The Pd-N bond distances follow the expected order of trans influence: ${ }^{41}$ Pd-N trans to aryl (2.1364(16) \AA in 1a, $2.1039(15) \AA$ in $\mathbf{3} \cdot \mathrm{H}_{2} \mathrm{O}$, and $2.1362(17) \AA$ in $\left.\mathbf{5 e}\right)>\mathrm{Pd}-$ N trans to $\mathrm{I}(2.0649(16) \AA$ in 1a) > Pd-N trans to $\mathrm{Br}(2.0563(17) \AA$ in 5e) >Pd-N trans to $\mathrm{O}\left(2.0379(15) \AA\right.$ in $\left.\mathbf{3} \cdot \mathrm{H}_{2} \mathrm{O}\right)$. From the three $\mathrm{Pd}-\mathrm{N}$ bond distances trans to aryl we can observe that in the chelate complex $\mathbf{3} \cdot \mathrm{H}_{2} \mathrm{O}$ the trans influence of the aryl ligand is lower than for $\mathbf{1 a}$ and $\mathbf{5 e}$.

The five-membered chelate ring in $3 \cdot \mathrm{H}_{2} \mathrm{O}$ displays an approximate envelope conformation, whereby the Pd atom lies $0.55 \AA$ out of the plane of the other four atoms (mean deviation $0.08 \AA$); the aryl ring is forced to an angle of only 26° with the plane defined by the bpy fragment, as opposed to the almost perpendicular disposition in 1a $\left(88^{\circ}\right)$ and $5 \mathbf{e}\left(87^{\circ}\right)$. Within the chelate ring, the O-Pd bond distance is $1.9916(12) \AA$, slightly shorter than the O-Pd distance $(2.048(3) \AA)$ found in a related 2hydroxymethylphenyl chelate complex that is a dimer with a PPh_{3} ligand trans to O and two Pd-O bridges. ${ }^{18}$ The C-O bond distance in $\mathbf{3} \cdot \mathrm{H}_{2} \mathrm{O}(1.419(2) \AA)$ is slightly shorter than the C-O bond distances in $\mathbf{1 a}(1.423(2) \AA$) and $\mathbf{5 e}$ (1.432(2) and $1.423(2) \AA$), and the ArCH_{2} bond distances are similar (all in the range $1.498-1.505 \AA$), indicating that the formation of the chelate ring does not involve a weakening of the bonds within the ring.

The packing of 1a involves $\mathrm{O}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bonds that connect the molecules via the n glide planes. The chelate complex $\mathbf{3} \cdot \mathrm{H}_{2} \mathrm{O}$ (Figure II.2) crystallizes with two molecules of water, both lying with the oxygen atom on a crystallographic 2-fold axis, which are hydrogen-bonded to the oxygen in the chelate ring, forming dimeric units $\left(\mathbf{3} \cdot \mathrm{H}_{2} \mathrm{O}\right)_{2}$ bridged by two water molecules. The central ring belongs to the graph set $\mathrm{R}_{4}^{2}(8)$. The $\left(\mathbf{3} \cdot \mathrm{H}_{2} \mathrm{O}\right)_{2}$ dimers are further connected by three-center interactions $\mathrm{H} 23 \cdots \mathrm{O} 1 \mathrm{~W}, \mathrm{O} 2 \mathrm{~W}$ to form ribbons of molecules parallel to the short b axis (Figure II.3).

Table II. 2 X-ray crystallographic data for compounds $\mathbf{1 a}, \mathbf{3} \cdot \mathbf{H}_{2} \mathbf{O}$, and $\mathbf{5 e}$

	1a	3. $\mathrm{H}_{2} \mathrm{O}$	5 e
Formula	$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{IN}_{2} \mathrm{OPd}$	$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Pd}$	$\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{BrIN}_{2} \mathrm{OPd}$
$M_{\text {r }}$	496.61	386.72	665.63
$T(\mathrm{~K})$	100(2)	133(2)	100(2)
$\lambda(\mathrm{A})$	0.71073	0.71073	0.71073
cryst syst	monoclinic	monoclinic	monoclinic
space group	$\mathrm{P} 2_{1} / \mathrm{n}$	C2/c	$\mathrm{P} 21 / \mathrm{c}$
cell constants			
$a(\AA)$	9.2580(2)	25.7969(16)	9.3227(3)
$b(\AA)$	16.3219(4)	7.2646(4)	13.4757(4)
$c(\AA)$	10.7044(3)	16.8495(11)	17.8619(5)
α (deg)	90	90	90
β (deg)	97.977(3)	109.801(3)	92.273(3)
γ (deg)	90	90	90
$V\left(\AA^{3}\right), Z$	1601.87(7), 4	2971.0(3), 8	2242.22(12), 4
ρ (calcd) ($\mathrm{Mg} \mathrm{m}^{-3}$)	2.059	1.729	1.972
abs. coef. (mm^{-1})	3.088	1.257	4.005
$F(000)$	952	1552	1280
cryst size (mm)	$0.25 \times 0.20 \times 0.10$	$0.33 \times 0.20 \times 0.12$	$0.40 \times 0.20 \times 0.15$
θ range (deg)	2.29-30.84	1.68-30.51	2.28-30.89
	$-12 \leq h \leq 13$	$-36 \leq h \leq 36$	$-12 \leq h \leq 13$
index ranges	$-23 \leq k \leq 23$	$-10 \leq k \leq 10$	$-19 \leq k \leq 18$
	$-15 \leq l \leq 15$	$-24 \leq l \leq 24$	$-25 \leq l \leq 25$
reflections collected	41363	33977	62095
independent reflections	4754	4528	6729
$R_{\text {int }}$	0.0280	0.0246	0.0380
abs corr	semi-empirical from equivalents	semi-empirical from equivalents	semi-empirical from equivalents
transmissions	1.000-0.654	0.864-0.700	1.000-0.418
refinement method	full-matrix least squares on F^{2}	full-matrix least squares on F^{2}	full-matrix least squares on F^{2}
no. of data/restraints/params	4754 / 0 / 203	4528 / 1 / 208	6729 / 0 / 271
goodness-of-fit on F^{2}	1.093	1.090	1.082
Final R indices $(I>2 \sigma(I))$			
$R 1$	0.0192	0.0225	0.0229
$w R 2$	0.0409	0.0522	0.0471
R indices (all data)			
R1	0.0239	0.0308	0.0304
$w R 2$	0.0429	0.0569	0.0496
largest diff peak (e \AA^{-3})	1.20	1.14	0.61
largest diff hole (e \AA^{-3})	-0.58	-0.43	-0.67

Figure II. 1 Thermal ellipsoid plot (50\% probability level) of 1a

Table II. 3 Selected bond lengths (\AA) and angles (deg) of 1a

$\mathrm{Pd}(1)-\mathrm{C}(1)$	$2.003(2)$	$\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{N}(22)$	$93.36(7)$
$\mathrm{Pd}(1)-\mathrm{N}(12)$	$2.1364(16)$	$\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{I}(1)$	$88.53(5)$
$\mathrm{Pd}(1)-\mathrm{N}(22)$	$2.0649(16)$	$\mathrm{N}(12)-\mathrm{Pd}(1)-\mathrm{N}(22)$	$78.80(6)$
$\mathrm{Pd}(1)-\mathrm{I}(1)$	$2.5810(2)$	$\mathrm{N}(12)-\mathrm{Pd}(1)-\mathrm{I}(1)$	$99.48(5)$
$\mathrm{C}(7)-\mathrm{O}(1)$	$1.423(2)$	$\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{N}(12)$	$171.18(7)$
$\mathrm{C}(2)-\mathrm{C}(7)$	$1.505(3)$	$\mathrm{N}(22)-\mathrm{Pd}(1)-\mathrm{I}(1)$	$177.02(5)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.399(3)$	$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{O}(1)$	$110.69(17)$
		$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	$119.46(18)$
		$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Pd}(1)$	$119.08(15)$

Figure II. 2 Thermal ellipsoid plot (30% probability level) of $\mathbf{3} \cdot \mathrm{H}_{2} \mathrm{O}$. Two adjacent molecules of $\mathbf{3}$ are connected by two water molecules, each of which lies on a 2 -fold axis

Table II. 4 Selected bond lengths (\AA) and angles (deg) of $\mathbf{3} \cdot \mathrm{H}_{2} \mathrm{O}$

$\mathrm{Pd}-\mathrm{O}(1)$	$1.9916(12)$	$\mathrm{C}(1)-\mathrm{Pd}-\mathrm{N}(21)$	$103.50(6)$
$\mathrm{Pd}-\mathrm{C}(1)$	$1.9968(17)$	$\mathrm{O}(1)-\mathrm{Pd}-\mathrm{C}(1)$	$82.54(6)$
$\mathrm{Pd}-\mathrm{N}(21)$	$2.0379(15)$	$\mathrm{O}(1)-\mathrm{Pd}-\mathrm{N}(11)$	$95.34(6)$
$\mathrm{Pd}-\mathrm{N}(11)$	$2.1039(15)$	$\mathrm{N}(21)-\mathrm{Pd}-\mathrm{N}(11)$	$79.21(6)$
$\mathrm{C}(7)-\mathrm{O}(1)$	$1.419(2)$	$\mathrm{C}(1)-\mathrm{Pd}-\mathrm{N}(11)$	$173.15(6)$
$\mathrm{C}(2)-\mathrm{C}(7)$	$1.498(3)$	$\mathrm{O}(1)-\mathrm{Pd}-\mathrm{N}(21)$	$172.22(6)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.409(2)$	$\mathrm{C}(7)-\mathrm{O}(1)-\mathrm{Pd}$	$111.32(10)$
		$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(2)$	$109.73(15)$
		$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	$115.65(15)$
	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Pd}$	$111.49(12)$	

Figure II. 3 Packing diagram of $\mathbf{3} \cdot \mathrm{H}_{2} \mathrm{O}$ viewed perpendicular to the $b c$ plane. Hydrogen bonds $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ are drawn as dashed bonds. Adjacent chains of molecules overlap in this view direction, but are not connected

Figure II. 4 Thermal ellipsoid plot (50\% probability level) of $\mathbf{5 e}$

Table II. 5 Selected bond lengths (\AA) and angles (deg) of $\mathbf{5 e}$

$\mathrm{Pd}(1)-\mathrm{C}(31)$	$1.9903(19)$	$\mathrm{C}(31)-\mathrm{Pd}(1)-\mathrm{N}(22)$	$93.59(7)$
$\mathrm{Pd}(1)-\mathrm{N}(22)$	$2.0563(17)$	$\mathrm{C}(31)-\mathrm{Pd}(1)-\mathrm{Br}(1)$	$90.12(6)$
$\mathrm{Pd}(1)-\mathrm{N}(12)$	$2.1362(17)$	$\mathrm{N}(12)-\mathrm{Pd}(1)-\mathrm{Br}(1)$	$97.49(5)$
$\mathrm{Pd}(1)-\mathrm{Br}(1)$	$2.4226(3)$	$\mathrm{N}(22)-\mathrm{Pd}(1)-\mathrm{N}(12)$	$78.86(7)$
$\mathrm{C}(44)-\mathrm{I}(1)$	$2.097(2)$	$\mathrm{C}(31)-\mathrm{Pd}(1)-\mathrm{N}(12)$	$172.34(7)$
$\mathrm{C}(37)-\mathrm{O}(1)$	$1.432(2)$	$\mathrm{N}(22)-\mathrm{Pd}(1)-\mathrm{Br}(1)$	$174.97(5)$
$\mathrm{C}(38)-\mathrm{O}(1)$	$1.423(2)$	$\mathrm{C}(32)-\mathrm{C}(37)-\mathrm{O}(1)$	$108.19(16)$
$\mathrm{C}(31)-\mathrm{C}(32)$	$1.398(3)$	$\mathrm{C}(37)-\mathrm{O}(1)-\mathrm{C}(38)$	$110.84(15)$
$\mathrm{C}(32)-\mathrm{C}(37)$	$1.498(3)$	$\mathrm{O}(1)-\mathrm{C}(38)-\mathrm{C}(41)$	$108.10(16)$
$\mathrm{C}(38)-\mathrm{C}(41)$	$1.501(3)$		

II. 4 CONCLUSIONS

We have synthesized new aryl Pd complexes derived from benzyl alcohol, one of them a chelate complex resulting from the deprotonation of the alcohol. The reactivity of these complexes toward XyNC has resulted in an insertion complex and a cyclic imidate. The chelate complex reacts with primary alkyl halides via a nucleophilic attack of the coordinated oxygen on the alkyl group, resulting in the opening of the chelate ring and the formation of new arylpalladium complexes with larger substituents on the aryl ring. Two novel dinuclear bis(arylpalladium) complexes have been prepared, either by reaction with an alkyl dihalide or by a secondary oxidative addition in one of the new complexes.

II. 5 REFERENCES

1. Tsuji, J., Palladium Reagents and Catalysis: Innovations in Organic Synthesis. John Wiley \& Sons: Chichester (UK), 1995; Miyaura, N.; Suzuki, A., Chem. Rev. 1995, 95, 2457; Hartwig, J. F., Angew. Chem. Int. Ed. 1998, 37, 2047; Wolfe, J. P.; Wagaw, S.; Marcoux, J.F.; Buchwald, S. L., Acc. Chem. Res. 1998, 31, 805; Littke, A. F.; Fu, G. C., Angew. Chem. Int. Ed. 2002, 41, 4176; Muci, A. R.; Buchwald, S. L., Top. Curr. Chem. 2002, 219, 131; Zeni, G.; Larock, R. C., Chem. Rev. 2004, 104, 2285; Bedford, R. B.; Cazin, C. S. J.; Holder, D., Coord. Chem. Rev. 2004, 2004, 2283; Larock, R. C.; Zeni, G., Chem. Rev. 2006, 106, 4644; Buchwald, S. L.; Mauger, C.; Mignani, G.; Scholz, U., Adv. Synth. Catal. 2006, 348, 23; Corbet, J. P.; Mignani, G., Chem. Rev. 2006, 106, 2651; Chinchilla, R.; Nájera, C., Chem. Rev. 2007, 107, 874; Fernández-Rodríguez, M. A.; Hartwig, J. F., J. Org. Chem. 2009, 74, 1663; Selander, N.; Szabo, K. J., Chem. Rev. 2011, 111, 2048; Le Bras, J.; Muzart, J., Chem. Rev. 2011, 111, 1170; Surry, D. S.; Buchwald, S. L., Chem. Sci. 2011, 2, 27; Yeung, C. S.; Dong, V. M., Chem. Rev. 2011, 111, 1215.
2. Vicente, J.; Abad, J. A.; Shaw, K. F.; Gil-Rubio, J.; Ramírez de Arellano, M. C.; Jones, P. G., Organometallics 1997, 16, 4557.
3. Vicente, J.; Abad, J. A.; Martínez-Viviente, E.; Ramírez de Arellano, M. C.; Jones, P. G., Organometallics 2000, 19, 752.
4. Vicente, J.; Abad, J. A.; López-Peláez, B.; Martínez-Viviente, E., Organometallics 2002, 21, 58; Vicente, J.; Abad, J. A.; López-Serrano, J.; Jones, P. G., Organometallics 2004, 23, 4711.
5. Vicente, J.; Abad, J. A.; López-Sáez, M. J.; Förtsch, W.; Jones, P. G., Organometallics 2004, 23, 4414.
6. Vicente, J.; Abad, J.-A.; López-Serrano, J.; Jones, P. G.; Nájera, C.; Botella-Segura, L., Organometallics 2005, 24, 5044; Vicente, J.; Chicote, M. T.; Martínez-Martínez, A. J.; Jones, P. G.; Bautista, D., Organometallics 2008, 27, 3254; Vicente, J.; Chicote, M. T.; Martínez-Martínez, A. J.; Bautista, D., Organometallics 2009, 28, 5915; Vicente, J.; González-Herrero, P.; Frutos-Pedreño, R.; Chicote, M. T.; Jones, P. G.; Bautista, D., Organometallics 2011, 30, 1079; Frutos-Pedreño, R.; González-Herrero, P.; Vicente, J.; Jones, P. G., Organometallics 2013, 32, 4664; Frutos-Pedreño, R.; González-Herrero, P.; Vicente, J.; Jones, P. G., Organometallics 2013, 32, 1892.
7. Vicente, J.; Saura-Llamas, I., Comments Inorg. Chem. 2007, 28, 39.
8. Vicente, J.; Abad, J. A.; López-Nicolás, R. M.; Jones, P. G., Organometallics 2011, 30, 4983.
9. Vicente, J.; Abad, J. A.; Bergs, R.; Ramírez de Arellano, M. C.; Martínez-Viviente, E.; Jones, P. G., Organometallics 2000, 19, 5597.
10. Vicente, J.; Saura-Llamas, I.; Grünwald, C.; Alcaraz, C.; Jones, P. G.; Bautista, D., Organometallics 2002, 21, 3587.
11. Vicente, J.; Abad, J. A.; Martínez-Viviente, E.; Jones, P. G., Organometallics 2002, 21, 4454; Vicente, J.; Abad, J. A.; Martínez-Viviente, E.; Jones, P. G., Organometallics 2003, 22, 1967.
12. Vicente, J.; Abad, J. A.; López-Sáez, M. J.; Jones, P. G., Angew. Chem. Int. Ed. 2005, 44, 6001.
13. Vicente, J.; Abad, J. A.; López-Sáez, M. J.; Jones, P. G., Organometallics 2006, 25, 1851.
14. Vicente, J.; Abad, J. A.; López-Sáez, M. J.; Jones, P. G.; Bautista, D., Chem. Eur. J. 2010, 16, 661.
15. Oliva-Madrid, M. J.; García-López, J.-A.; Saura-Llamas, I.; Bautista, D.; Vicente, J., Organometallics 2014, 33, 6420.
16. Vicente, J.; Abad, J. A.; López-Sáez, M. J.; Jones, P. G., Organometallics 2010, 29, 409.
17. Shiotsuki, M.; Nakagawa, A.; Rodríguez Castañón, J.; Onishi, N.; Kobayashi, T.; Sanda, F.; Masuda, T., J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 5549; Rodríguez Castañón, J.; Kuwata, K.; Shiotsuki, M.; Sanda, F., Chem. Eur. J. 2012, 18, 14085.
18. Fernández-Rivas, C.; Cárdenas, D. J.; Martín-Matute, B.; Monge, A.; Gutiérrez-Puebla, E.; Echavarren, A. M., Organometallics 2001, 20, 2998.
19. Muñoz, M. P.; Martín-Matute, B.; Fernández-Rivas, C.; Cárdenas, D. J.; Echavarren, A. M., Adv. Syn. Catal. 2001, 343, 338.
20. Trofimenko, S., Inorg. Chem. 1973, 12, 1215; Nanda, K. K.; Nag, K.; Venkatsubramanian, K.; Paul, P., Inorg. Chim. Acta 1992, 196, 195; Macdonald, P. M.; Hunter, A. D.; Lesley, G.; Li, J., Solid State Nucl. Magn. Reson. 1993, 2, 47; Vicente, J.; Abad, J. A.; Rink, B.; Hernández, F.-S.; Ramírez de Arellano, M. C., Organometallics 1997, 16, 5269; Carina, R. F.; Williams, A. F.; Bernardinelli, G., J. Organomet. Chem. 1997, 548, 45; El Hatimi, A.; Gómez, M.; Jansat, S.; Muller, G.; Fontbardia, M.; Solans, X., J. Chem. Soc., Dalton Trans. 1998, 4229; de Geest, D. J.; O'Keefe, B. J.; Steel, P. J., J. Organomet. Chem. 1999, 579, 97; Vicente, J.; Lyakhovych, M.; Bautista, D.; Jones, P. G., Organometallics 2001, 20, 4695; Bedford, R. B.; Blake, M. E.; Coles, S. J.; Hursthouse, M. B.; Scully, P. N., Dalton Trans. 2003, 2805; Slater, J. W.; Rourke, J. P., J. Organomet. Chem. 2003, 688, 112; Vicente, J.; Martínez-Viviente, E.; Fernández-Rodríguez, M. J.; Jones, P. G., Organometallics 2009, 28, 5845; Liu, B. B.; Wang, X. R.; Guo, Z. F.; Lu, Z. L., Inorg. Chem. Commun. 2010, 13, 814; Fernández, A.; López-Torres, M.; Castro-Juiz, S.; Merino, M.; Vázquez-García, D.; Vila, J. M.; Fernández, J. J., Organometallics 2011, 30, 386; Vicente, J.; Shenoy, R. V.; MartínezViviente, E.; Jones, P. G., Inorg. Chem. 2011, 50, 7189; Micutz, M.; Ilis, M.; Staicu, T.; Dumitrascu, F.; Pasuk, I.; Molard, Y.; Roisnel, T.; Circu, V., Dalton Trans. 2014, 43, 1151.
21. Vicente, J.; Shenoy, R. V.; Martínez-Viviente, E.; Jones, P. G., Organometallics 2009, 28, 6101.
22. Chicote, M. T.; Vicente-Hernández, I.; Jones, P. G.; Vicente, J., Organometallics 2012, 31, 6252.
23. Fu, H.; Song, Q.; Li, J.; Zhang, Z.; Li, X.; Zhan, H.; Cheng, Y., J. Coord. Chem. 2014, 67, 482.
24. Fernández-Rodríguez, M. J.; Martínez-Viviente, E.; Vicente, J.; Jones, P. G., Organometallics 2015, 34, 2240.
25. Mazet, C.; Gade, L. H., Organometallics 2001, 20, 4144.
26. Suzaki, Y.; Osakada, K., Organometallics 2003, 22, 2193.
27. Houjou, H.; Schneider, N.; Nagawa, Y.; Kanesato, M.; Ruppert, R.; Hiratani, K., Eur. J. Inorg. Chem. 2004, 4216; Ganesamoorthy, C.; Baladrishna, M. S.; Mague, J. T.; Tuononen, H. M., Inorg. Chem. 2008, 47, 7035; Valdés, H.; Poyatos, M.; Peris, E., Organometallics 2013, 32, 6445.
28. Zanardi, A.; Mata, J. A.; Peris, E., Organometallics 2009, 28, 1480; Prabhu, R. N.; Ramesh, R., Tetrahedron Lett. 2012, 53, 5961; Ma, M.-T.; Lu, J.-M., Appl. Organomet. Chem. 2012, 26, 175; Kalhapure, R. S.; Govender, T.; Akamanchi, K. G., Synth. Commun. 2014, 44, 337.
29. Altman, M.; Zenkina, O. V.; Ichiki, T.; Iron, M. A.; Evmenenko, G.; Dutta, P.; Van der Boom, M. E., Chem. Matter. 2009, 21, 4676.
30. Ohno, K.; Arima, K.; Tanaka, S.; Yamagata, T.; Tsurugi, H.; Mashima, K., Organometallics 2009, 28, 3256.
31. Tsukada, N.; Abe, T.; Inoue, Y., Helv. Chim. Acta 2013, 96, 1093.
32. Yang, J.; Li, P.; Zhang, Y.; Wang, L., J. Organomet. Chem. 2014, 766, 73.
33. Yang, J.; Li, P.; Zhang, Y.; Wang, L., Dalton Trans. 2014, 43, 7166.
34. Yu, Y.; Deck, J. A.; Hunsaker, L. A.; Deck, L. M.; Royer, R. E.; Goldberg, E.; Jagt, D. L. V., Biochem. Pharmacol. 2001, 62, 81; Mehta, S.; Yao, T.; Larock, R. C., J. Org. Chem. 2012, 77, 10938.
35. Vicente, J.; Abad, J. A.; Förtsch, W.; Jones, P. G.; Fischer, A., Organometallics 2001, 20, 2704; Vicente, J.; Abad, J. A.; Frankland, A. D.; Lopez-Serrano, J.; Ramírez de Arellano, M. C.; Jones, P. G., Organometallics 2002, 21, 272; Canovese, L.; Visentin, F.; Santo, C.; Levi, C.; Dolmella, A., Organometallics 2007, 26, 5590.
36. Saluste, C. G.; Crumpler, S.; Furber, M.; Whitby, R. J., Tetrahedron Lett. 2004, 45, 6995.
37. Stirling, C. J. M., J. Chem. Soc. 1960, 255; Tam, J. N. S.; Mojelsky, T.; Hanaya, K.; Chow, Y. L., Tetrahedron 1975, 31, 1123; Koseki, Y.; Nagasaka, T., Chem. Pharm. Bull. 1995, 43, 1604; Ma, S.; Xie, H., J. Org. Chem. 2002, 67, 6575; Yamamoto, Y.; Ishii, J.; Nishiyama, H.; Itoh, K., J. Am. Chem. Soc. 2005, 127, 9625; Ma, S.; Gu, Z.; Yu, Z., J. Org. Chem. 2005, 70, 6291; Esmaeili, A. A.; Zendegani, H., Tetrahedron 2005, 61, 4031; Tang, Y.; Li, C., Tetrahedron Lett. 2006, 47, 3823; Xiong, T.; Zhang, Q.; Zhang, Z.; Liu, Q., J. Org. Chem. 2007, 72, 8005.
38. Bryndza, H. E., Organometallics 1985, 4, 1686; Kim, Y.-J.; Osakada, K.; Sugita, K.; Yamamoto, T.; Yamamoto, A., Organometallics 1988, 7, 2182.
39. Martínez-Viviente, E.; Pregosin, P. S.; Tschoerner, M., Magn. Reson. Chem. 2000, 38, 23.
40. Markies, B. A.; Canty, A. J.; Degraaf, W.; Boersma, J.; Janssen, M. D.; Hogerheide, M. P.; Smeets, W. J. J.; Spek, A. L.; van Koten, G., J. Organomet. Chem. 1994, 482, 191.
41. Crabtree, R. H., The Organometallic Chemistry of the Transition Metals. Wiley: New York, 2005.

Reactivity toward Nitriles, Cyanamides, and Carbodiimides of Palladium Complexes Derived from Benzyl Alcohol. Synthesis of a Mixed $\mathbf{P d}_{2} \mathbf{A g}$ Complex

The results of this Chapter will soon be submitted for publication

III. 1 ABSTRACT

The chelate complex $\left[\mathrm{Pd}\left(\kappa^{2}-C, O-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{O}-2\right)(\right.$ bpy $\left.)\right]$ (3) reacts with acetonitrile, cyanamides or carbodiimides, in the presence of AgOTf (1:5:1 molar ratio) and residual water, to form complexes $\left[\operatorname{Pd}\left\{\kappa^{2}-C, N-\mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{CH}_{2} \mathrm{OC}(=\mathrm{NX}) \mathrm{Y}\right\}-2\right\}(\mathrm{bpy})\right](\mathrm{OTf})$, where $\mathrm{X}=$ $\mathrm{H}, \mathrm{Y}=\mathrm{Me}(\mathbf{8}), \mathrm{NMe}_{2}(\mathbf{9 a}), \mathrm{NEt}_{2}(\mathbf{9 b}), \mathrm{X}=\mathrm{R}, \mathrm{Y}=\mathrm{NHR}\left(\mathrm{R}={ }^{\mathrm{i}} \operatorname{Pr}(\mathbf{1 0 a}), \mathrm{To}(\mathbf{1 0 b})\right)$, as a result of the insertion of the unsaturated reagent into the O-Pd bond of $\mathbf{3}$, and the protonation of one of the N atoms. In the absence of AgOTf the reaction of $\mathbf{3}$ with $\mathrm{ToN}=\mathrm{C}=\mathrm{NTo}\left(\mathrm{To}=p\right.$-Tolyl) results in the formation of the neutral complex $\left[\operatorname{Pd}\left\{\kappa^{2}-C, N-\right.\right.$ $\left.\mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{CH}_{2} \mathrm{OC}(=\mathrm{NTo}) \mathrm{NTo}\right\}-2\right\}$ (bpy)] (11). Complexes $\mathbf{1 0 b}$ and $\mathbf{1 1}$ can be interconverted by deprotonation $\left(\mathbf{1 0 b}+\mathrm{KO}^{\mathrm{t}} \mathrm{Bu}\right)$ or protonation $(\mathbf{1 1}+\mathrm{KOTf}+\mathrm{HOTf})$ reactions. When the reaction of $\mathbf{3}$ with $\mathrm{ToN}=\mathrm{C}=\mathrm{NTo}$ in the presence of AgOTf is carried out in a 1:1:1 stoichiometric ratio, or for a short period of time, a mixture of $\mathbf{1 0 b}$ and a mixed heterometallic $\mathrm{Ag}_{2} \mathrm{Pd}$ complex $\mathbf{1 2}$ is obtained $\left(\mathbf{1 2}=\left[\mathrm{Ag}(N-11)_{2}\right](\mathrm{OTf})\right)$. Complex $\mathbf{1 2}$ is the major product when the AgOTf is added before the carbodiimide, and the reaction is stopped immediately. $\mathbf{1 2}$ can also be obtained by reaction of $\mathbf{1 1}$ with 0.5 equivalents of AgOTf. When complex $\left[\mathrm{PdI}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OH}-2\right)(\right.$ bpy $\left.)\right]$ (1a) reacts with ${ }^{\mathrm{i}} \mathrm{PrN}=\mathrm{C}=\mathrm{N}^{\mathrm{i}} \mathrm{Pr}$ in the presence of TlOTf, instead of AgOTf, a ca. 1:1 mixture of 10a and $\left[\operatorname{Pd}\left\{\kappa^{2}-O, N-\right.\right.$ $\left.\mathrm{OCH}_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{C}\left(=\mathrm{NH}^{i} \mathrm{Pr}\right) \mathrm{N}^{i} \mathrm{Pr}\right\}-2\right\}\right\}($ bpy $\left.)\right](\mathrm{OTf})$ (13) forms. Complex 13 is the result of the insertion of the carbodiimide into the C-Pd bond. Complexes $\mathbf{8 - 1 3}$ have been extensively characterized by NMR spectroscopy, and the crystal structures of $\mathbf{9 a} \cdot 0.19 \mathrm{H}_{2} \mathrm{O}, \mathbf{1 0 a}$, and $\mathbf{1 2} \cdot 2.5 \mathrm{CHCl}_{3} \cdot 0.5 \mathrm{Et}_{2} \mathrm{O}$ have been determined by X-ray diffraction studies.

III. 2 INTRODUCTION

The importance of $\mathrm{Pd}(\mathrm{II})$ aryl complexes in Organometallic Chemistry derives mainly from their involvement in carbon-carbon and carbon-heteroatom bond-forming reactions. ${ }^{1}$ Their reactivity with unsaturated molecules often results in the insertion of these molecules into the aryl-Pd bonds, forming new ligands or, after decomposition reactions, organic compounds. ${ }^{2}$ A valuable synthetic tool that we have extensively explored is the incorporation of a substituent at the ortho position of the aryl group, ${ }^{3-7}$ as this substituent can become involved in the reactivity with the Pd center and the organic substrate in many interesting ways. ${ }^{3-6,8-12}$ Very often, the ortho-substitution also results in the formation of cyclopalladated complexes. ${ }^{3,4,7,9-12}$

Following this line of research, our group has previously investigated the reactivity of ortho-palladated phenol derivatives. ${ }^{6,10-13}$ Their reactions with CO, isocyanides, alkenes, alkynes, and allenes did not involve the OH group in the ortho position. ${ }^{6,13}$ In contrast, the electron-donating ability of this group played a crucial role in the reactivity toward nitriles, ${ }^{10,12}$ carbodiimides, ${ }^{11,12}$ cyanamides, ${ }^{12}$ and isothiocyanates, ${ }^{12}$ which afforded the first examples of the insertion ${ }^{10-12}$ of these molecules into a C-M bond of a late transition metal. These insertion reactions occurred together with the deprotonation and coordination of the hydroxyl oxygen to Pd , forming six-membered chelate rings (Chart III.1). ${ }^{10-12}$ With carbodiimides, ${ }^{11}$ the addition of the $\mathrm{O}-\mathrm{H}$ group to one of the $\mathrm{C}=\mathrm{N}$ bonds of the substrate, together with the coordination of the other N to the Pd atom, was an alternative reaction to the insertion. ${ }^{11}$
$[\mathrm{Pd}]=\left[\mathrm{Pd}\left(\mathrm{N}^{\wedge} \mathrm{N}\right)\right]$

Chart III. 1
Insertion complexes obtained in the reaction of ortho-palladated phenol derivatives with nitriles, ${ }^{10,12}$ carbodiimides, ${ }^{11,12}$ cyanamides, ${ }^{12}$ and isothiocyanates. ${ }^{12}$

We have recently extended this research to ortho-palladated hydroxymethylphenyl complexes, ${ }^{14}$ where the methylene link in the alcoholic substituent might significantly influence the reactivity toward unsaturated molecules. There are very few reports of 2hydroxymethylphenyl palladium complexes ${ }^{15}$ or oxapalladacycles derived from them. ${ }^{16}$ These compounds have been used as precatalysts in Heck and cross-coupling reactions, ${ }^{17}$ but their reactivity toward unsaturated molecules had not been investigated. In our recent work (see Chapter II of this Thesis), ${ }^{14}$ we synthesized the complex $\left[\operatorname{PdI}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OH}\right.\right.$ 2)(bpy)] (1a) and investigated its reactivity toward alkynes, alkenes, nitriles, cyanamides, allenes, and carbon monoxide, which did not result in clean insertion (C-Pd bond) or addition (O-H bond) reactions. ${ }^{14}$ Only the reaction of 1a with XyNC gave a clean insertion product, trans- $\left[\mathrm{PdI}\left\{\mathrm{C}(=\mathrm{NXy}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OH}-2\right\}(\mathrm{CNXy})_{2}\right]$ (2). ${ }^{14}$ By deprotonation of 1a we prepared the chelate complex $\left[\operatorname{Pd}\left\{\kappa^{2}-C, O-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{O}\right)-2\right\}(\mathrm{bpy})\right]$ (3), which displayed an interesting reactivity toward primary alkyl halides, via a nucleophilic attack of the coordinated oxygen at the alkyl group of the halide. ${ }^{14}$ We describe now the
reactivity of $\mathbf{3}$ toward acetonitrile, cyanamides and carbodiimides, in the presence of AgOTf. These reactions have yielded novel complexes containing a $\left[\operatorname{Pd}\left\{k^{2}-C, N-\right.\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{CH}_{2} \mathrm{OC}(=\mathrm{NX}) \mathrm{Y}\right\}-2\right\}\right]$ chelate ring, resulting from insertion reactions of the $\mathrm{C} \equiv \mathrm{N}$ or $\mathrm{C}=\mathrm{N}$ bonds into the $\mathrm{O}-\mathrm{Pd}$ bonds of $\mathbf{3}$. We have found no precedent for such a chelate structure with any metal. The Ag^{+}cations play a key role in these reactions, which is also an unprecedented observation. An insertion reaction of a carbodiimide into the aryl-Pd bond of $\mathbf{1 a}$ is also described, as is a mixed-metal $\mathrm{Pd}_{2} \mathrm{Ag}$ complex, which has been characterized by X-ray crystallography. Other heterometallic $\mathrm{Pd}_{2} \mathrm{Ag}^{18}$ or $\mathrm{Pd}_{2} \mathrm{Ag}_{2}{ }^{19}$ complexes have been described in the literature, but their structures differ greatly from the one reported in this work.

III. 3 RESULTS AND DISCUSSION

III.3.1 Reactions with Nitriles and Cyanamides

The chelate complex $\left[\mathrm{Pd}\left\{\mathrm{\kappa}^{2}-\mathrm{C}, \mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{O}-2\right\}(\mathrm{bpy})\right]$ (3) reacts with acetonitrile and AgOTf (1:5:1 molar ratio, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), in the presence of residual water, to form $\left[\operatorname{Pd}\left\{\kappa^{2}-C, N-\mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{CH}_{2} \mathrm{OC}(=\mathrm{NH}) \mathrm{Me}\right\}-2\right\}(\mathrm{bpy})\right](\mathrm{OTf})(8$, Scheme III.1), the result of the insertion of the nitrile into the $\mathrm{O}-\mathrm{Pd}$ bond of $\mathbf{3}$, and the protonation of the N by the residual water. Complex 3 reacts similarly with the cyanamides $\mathrm{R}_{2} \mathrm{~N}-\mathrm{C} \equiv \mathrm{N}(\mathrm{R}=\mathrm{Me}, \mathrm{Et})$ and AgOTf to form $\left[\operatorname{Pd}\left\{\kappa^{2}-C, N-\mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{CH}_{2} \mathrm{OC}(=\mathrm{NH}) \mathrm{NR}_{2}\right\}-2\right\}(\mathrm{bpy})\right](\mathrm{OTf})(\mathrm{R}=\mathrm{Me}(9 \mathrm{a})$, $\mathrm{Et}(\mathbf{9 b})$, Scheme III.1). The presence of Ag^{+}is a requirement in these reactions (otherwise there is no reaction or, with TlOTf, mixtures of compounds are obtained), probably because it forms in situ a complex with the ligands, increasing the electrophilicity of the unsaturated carbon atom, and thus favoring the nucleophilic attack of the O atom of $\mathbf{3}$. This influence of added Ag^{+}on the reactivity of an arylpalladium complex toward unsaturated molecules is unprecedented. Although nucleophilic reactions at coordinated nitriles have been thoroughly investigated, ${ }^{20}$ this is the first nucleophilic attack of a complex at an (initially) uncoordinated nitrile or cyanamide. Seven-membered C_{3}-Pd-$\mathrm{N}=\mathrm{C}-\mathrm{O}$ chelate rings as those in $\mathbf{8}$ and $\mathbf{9 a , b}$ have not been described before for any metal.

We have not been able to achieve the insertion of nitriles or cyanamides into the CPd bond of complexes 1a or 3. This negative result contrasts with the successful insertion reactions that we observed with the related complexes $\left[\operatorname{PdI}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Y}-2\right)\right.$ (tmeda) $](\mathrm{Y}=\mathrm{OH}$, $\mathrm{NH}_{2}, \mathrm{~N}^{\wedge} \mathrm{N}=$ tmeda, bpy, tbbpy), and a wide variety of nitriles ${ }^{10,12}$ and cyanamides. ${ }^{12}$ In those reactions (see Scheme III. 2 for an example), we proposed that the electron-donating

OH or NH_{2} group in ortho position would play a key role in the mechanism, via delocalization of a negative charge on the aryl ipso carbon, so that this carbon would be the one attacking the nitrile (previously coordinated to the Pd atom). The aryl-Pd bond would then break and a new $\mathrm{O}-\mathrm{Pd}$ (or $\mathrm{N}-\mathrm{Pd}$) bond form, resulting in the insertion of the nitrile or cyanamide into the aryl-Pd bond, and the formation of a six-membered chelate ring. ${ }^{10,12}$ That mechanistic proposal is now supported by the failure of these insertion reactions with the complexes $\mathbf{1 a}$ and $\mathbf{3}$, for which the CH_{2} link between the OH function and the aryl ring prevents the delocalization of electron density.

3

9a $R=M e$
9b $R=E t$

8

Scheme III. 1 Synthesis of complexes 8, 9a,b, and II

In one of our attempts to react complex $\mathbf{3}$ with nitriles, we used 1,2-dichloroethane as solvent and heated to $60^{\circ} \mathrm{C}$. We obtained then the complex $\left[\mathrm{PdCl}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)-2\right\}(\right.$ bpy $\left.)\right]$ (II), which is the result of the nucleophilic attack of the oxygen in $\mathbf{3}$ at a CH_{2} group of the 1,2-dichloroethane solvent. Complex II has been characterized by X-ray diffraction studies (see Section III.3.4), but we have not been able to purify and fully characterize it. We have described similar reactions of $\mathbf{3}$ with alkyl halides (bromides and iodides) in a previous paper (see Chapter II of this Thesis). ${ }^{14}$

Scheme III. 2
Proposed mechanism for the insertion of nitriles into the aryl-Pd bond of $\left[\operatorname{PdI}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH}-2\right)(\text { tmeda })\right]^{10,12}$

III.3.2 Reactions with Carbodiimides

Complex 3 reacts with the carbodiimides $\mathrm{RN}=\mathrm{C}=\mathrm{NR}\left(\mathrm{R}={ }^{\mathrm{i}} \mathrm{Pr}\right.$, To) and AgOTf (1:5:1 molar ratio, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) in the presence of residual water, to form $\left[\operatorname{Pd}\left\{\kappa^{2}-C, N-\right.\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{CH}_{2} \mathrm{OC}(=\mathrm{NR}) \mathrm{NHR}\right\}-2\right\}(\mathrm{bpy})\right](\mathrm{OTf})\left(\mathrm{R}={ }^{\mathrm{i}} \operatorname{Pr}(\mathbf{1 0 a})\right.$, $\mathrm{To}(\mathbf{1 0 b})$, Scheme III.3) which, similarly to $\mathbf{8}$ and $\mathbf{9 a}, \mathbf{b}$, are the result of the insertion of the organic products into the OPd bond of $\mathbf{3}$.

When these reactions were performed in the absence of AgOTf, however, the results differed for the two carbodiimides investigated. With ${ }^{i} \operatorname{PrN}=\mathrm{C}=\mathrm{N}^{\mathrm{i}} \mathrm{Pr}$ there was no reaction, whereas with $\mathrm{ToN}=\mathrm{C}=\mathrm{NTo}$ the reaction in the absence of AgOTf resulted in the formation of $\left[\mathrm{Pd}\left\{\kappa^{2}-C, N-\mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{CH}_{2} \mathrm{OC}(=\mathrm{NTo}) \mathrm{NTo}\right\}-2\right\}(\mathrm{bpy})\right]$ (11, Scheme III.3), which is the conjugate base of $\mathbf{1 0 b}$. These results suggest that the 1,3 -di-p-tolylcarbodiimide is the only reactant investigated in this work that is electrophilic enough to undergo nucleophilic attack by the O atom in $\mathbf{3}$, without being previously activated by the coordination to Ag. Complex 11 has a characteristic red color, and it forms after only 5 min in the reaction with either one equivalent or excess of the carbodiimide. It is partially soluble in $\mathrm{Et}_{2} \mathrm{O}$.

Scheme III. 3 Reactions of complexes $\mathbf{1 a}$ and $\mathbf{3}$ with carbodiimides

By deprotonation of the ionic complex $\mathbf{1 0 b}$ with $\mathrm{KO}^{\mathrm{t}} \mathrm{Bu}$, it is possible to obtain the neutral complex $\mathbf{1 1}$ and, vice versa, by reaction of $\mathbf{1 1}$ with KOTf and HOTf complex 10b is obtained. In this reaction it is necessary to add the KOTf first and then the HOTf after a few minutes, as otherwise a different product forms, which could not be characterized. Thus, the K^{+}ion seems to stabilize the reaction intermediate, probably by coordinating to the O atom. The deprotonation of the ionic complex $\mathbf{1 0 a}\left(\mathrm{R}={ }^{\mathrm{i}} \mathrm{Pr}\right)$ with $\mathrm{KO}^{\mathrm{t}} \mathrm{Bu}$ gives a red neutral complex similar to 11, but it reprotonates very easily, so that it could not be characterized. Clearly, the To groups in $\mathbf{1 1}$ play a very important role in the stability of this complex, most probably through resonance effects.

Curiously, when the reaction of $\mathbf{3}$ with AgOTf and a 5 -fold excess of $\mathrm{ToN}=\mathrm{C}=\mathrm{NTo}$ was stopped after only 2 hours, or when it was performed in a ca. 1:1:1 stoichiometric ratio, a mixture of $\mathbf{1 0 b}$ and a different product formed. This product was identified by Xray crystallography (see Section III.3.4 and Figure III.4) as an ionic mixed-metal
trinuclear complex consisting of two molecules of $\mathbf{1 1}$ coordinated through N to one atom of Ag (complex $12=\left[\operatorname{Ag}(N-11)_{2}\right](\mathrm{OTf})$, Scheme III.3). The structure of $\mathbf{1 2}$ differs greatly from other heterometallic $\mathrm{Pd}_{2} \mathrm{Ag}^{18}$ or $\mathrm{Pd}_{2} \mathrm{Ag}_{2}{ }^{19}$ complexes found in the literature, and it is thus unprecedented. With ${ }^{1} \mathrm{PrN}=\mathrm{C}=\mathrm{N}^{1} \mathrm{Pr}$ we did not observe a similar reactivity. The formation of complex $\mathbf{1 2}$ is favored by a shorter reaction time and a smaller amount of carbodiimide, and we have also observed that it is strongly influenced by the order of addition of the reactants. Thus, in the reactions of $\mathbf{3}$ with one equivalent of $\mathrm{ToN}=\mathrm{C}=\mathrm{NTo}$ and AgOTf, if the carbodiimide is added first and then the AgOTf, the major product is 10b (even if the reaction is stopped immediately), although it forms together with a variable amount of 12. In contrast, if AgOTf is added first, followed by one equivalent of $\mathrm{ToN}=\mathrm{C}=\mathrm{NTo}$, and the reaction is stopped immediately, the trinuclear complex $\mathbf{1 2}$ is the major product, with only ca. 20% of $\mathbf{1 0 b}$ (this amount increases if a longer reaction time is allowed). Complex $\mathbf{1 2}$ can then be separated from 10b by exploiting differences in solubility (see Chapter VIII, Experimental Section). From these observations we suggest that the trinuclear complex $\mathbf{1 2}$ forms by the nucleophilic attack of $\mathbf{3}$ on a $\left[\mathrm{Ag}(\mathrm{ToN}=\mathrm{C}=\mathrm{NTo})_{2}\right]^{+}$intermediate, and then it reacts with residual water, losing the Ag atom and forming two molecules of 10b. This "decomposition" to $\mathbf{1 0 b}$ would be favored by an excess of carbodiimide, which would coordinate to the Ag facilitating the rupture of $\mathbf{1 2}$ (in an overnight reaction with a 5 -fold excess of $\mathrm{ToN}=\mathrm{C}=\mathrm{NTo}$, only $\mathbf{1 0 b}$ is detected, while the same reaction with only one equivalent of $\mathrm{ToN}=\mathrm{C}=\mathrm{NTo}$ gives a mixture of $\mathbf{1 0 b}$ and $\mathbf{1 2}$ in ca. 1:0.8 ratio). In contrast, when the carbodiimide is added before the AgOTf, it would immediately react with 3, forming, presumably, first the neutral complex 11 and then, upon addition of the AgOTf, the ionic complex 10b, so that $\mathbf{1 2}$ would only be a minor product. We have tried to obtain complex $\mathbf{1 2}$ by reaction of $\mathbf{1 1}$ with 0.5 equivalents of AgOTf and, after 2 hours in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the major product of this reaction was indeed the trinuclear complex 12, together with ca. 20% of $\mathbf{1 0 b}$. Thus, it seems that complex $\mathbf{1 1}$ can be transformed in the presence of AgOTf to both 10b or 12, and the favored product is determined by the reaction conditions.

Complexes 10a,b also form in the reaction of the 2-hydroxymethylphenyl Pd complex $\left[\mathrm{PdI}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OH}-2\right)(b p y)\right]$ (1a) with the corresponding carbodiimides and AgOTf, but with a lower yield and purity. When complex 1a reacts with ${ }^{\mathrm{i}} \mathrm{PrN}=\mathrm{C}=\mathrm{N}^{\mathrm{i}} \mathrm{Pr}$ in the presence of TlOTf, instead of AgOTf, a ca. 1:1 mixture of two complexes forms: one is again 10a (which is now the result of the addition of the OH group to the carbodiimide and the coordination of one of the N atoms to Pd) and the other is $\left[\operatorname{Pd}\left\{\kappa^{2}-O, N-\right.\right.$
$\left.\mathrm{OCH}_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{C}\left(=\mathrm{N}^{i} \mathrm{Pr}\right) \mathrm{NH}^{i} \mathrm{Pr}\right\}-2\right\}\right\}($ bpy $\left.)\right](\mathrm{OTf})(\mathbf{1 3}$, Scheme III.3), which is the result of the insertion of the carbodiimide into the C-Pd bond. We have not been able to obtain complex 13 independently of 10a, even by varying the amount of carbodiimide or the reaction time, but we have been able to separate it from 10a by preparative TLC on alumina (see Chapter VIII, Experimental Section). Additionally, from a CDCl_{3} solution of $\mathbf{1 3}$ we obtained single crystals, the X-ray structure of which showed them to be the unexpected complex III, apparently formed by reaction of $\mathbf{1 3}$ with the residual HCl of the deuterated solvent (the attack of HCl on $\mathbf{1 3}$ would promote the intramolecular attack of the O on the $\mathrm{C}=\mathrm{N}$ group of the inserted carbodiimide, the breaking of the $\mathrm{C}-\mathrm{N}$ and $\mathrm{Pd}-$ N bonds and the formation of a new Pd-N bond). Unfortunately, in spite of our much effort we have not been able to reproduce the synthesis of this complex, but we include the X-ray data in Section III.3.4. Finally, the reaction of $\mathbf{1 a}$ with $\mathrm{ToN=C=NTo}$ and TIOTf, instead of AgOTf, resulted in the formation of a complex that is probably an insertion product similar to $\mathbf{1 3}$ but that was not pure enough to be characterized. The (relatively) cleaner reactivity of the carbodiimides with 1a and TlOTf, compared to the similar reactions with acetonitrile and cyanamides, which gave intractable mixtures, is probably attributable to a combination of electronic and steric effects. The greater steric hindrance in the carbodiimides, together with their appreciable dipole moments, would favor one (or two) major reaction pathways while hindering other secondary reactions.

III.3.3 NMR and IR Data

All the complexes reported in this paper have been extensively studied by NMR spectroscopy (1D and 2D experiments), allowing an almost full assignment of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ resonances. To facilitate comparison, the data are collected in Table III.1. For the same reason, we include in this Table the data of complexes 1a and $\mathbf{3}^{14}$ (Chapter II).

For the complexes 8-12 the insertion of the organic molecules ($\mathrm{MeC} \equiv \mathrm{N}, \mathrm{R}_{2} \mathrm{~N}-\mathrm{C} \equiv \mathrm{N}$, or $\mathrm{RN}=\mathrm{C}=\mathrm{NR}$) into the $\mathrm{O}-\mathrm{Pd}$ bond, and not the C-Pd bond, is confirmed by the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMBC spectrum, where the three-bond correlation between the inserted $\mathrm{C}=\mathrm{N}$ carbon and the methylenic $\mathrm{CH}_{2} \mathrm{O}$ protons is always observed, while no correlation is observed between the $\mathrm{C}=\mathrm{N}$ carbon and the aryl H 6 proton, as would be the case for an insertion into the C-Pd bond (Scheme III.4). The halves of the bpy ligand in these complexes have been assigned based on NOE contacts between H16 and H6 of the aryl group, and between H16' and the protons which are close in space (see also Scheme III.4).
Table III. $1{ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR data (CDCl_{3}, r.t.) of complexes $\mathbf{8 - 1 3}, \mathbf{1 a},{ }^{14}$ and $\mathbf{3}^{14(a)}$

 I
 $=$
 13
 $)_{-2}^{0}$

	8		9a (R=Me)		9b (R=Et)		10b (R=To)		11		12		10a (R='Pr)		13		1 a		3	
Aryl ligand	${ }^{13} \mathrm{C}$	${ }^{1} \mathrm{H}$	${ }^{13} \mathrm{C}^{(6)}$	${ }^{1} \mathrm{H}$	${ }^{13} \mathrm{C}$	${ }^{1} \mathrm{H}$														
C1	152.0		153.1		153.0		153.7		149.6		150.0		153.6		134.2		146.3		151.0	
C2	139.4		139.3		139.1		137.9		140.7		138.9		138.3		146.0		145.4		166.2	
CH3	127.6	$\begin{aligned} & 7.15- \\ & 7.11 \end{aligned}$	127.6	$\begin{aligned} & 7.16- \\ & 7.10 \\ & \hline \end{aligned}$	127.4	$\begin{aligned} & 7.14- \\ & 7.12 \end{aligned}$	127.9	$\begin{aligned} & 7.22- \\ & 7.18 \end{aligned}$	124.9	6.70	126.6	6.66	127.4	7.03	130.8	7.43	128.8	7.11	119.1	$\begin{aligned} & 7.04- \\ & 6.97 \end{aligned}$
CH 4	125.4		125.1		125.0		125.6		123.5	6.93	124.1	7.17	124.7	7.07	131.3	7.40	124.3	$\begin{aligned} & 6.93- \\ & 6.89 \end{aligned}$	124.0	
CH5	130.6	7.29	130.3	$\begin{array}{r} 7.29- \\ 7.26 \end{array}$	130.2	$\begin{aligned} & 7.29- \\ & 7.26 \end{aligned}$	131.2	7.44	126.9	7.03	127.2	7.36	129.8	7.26	127.9	7.32	126.8		123.6	
CH6	134.7	7.22	134.9		134.9		134.2	7.50	136.2	7.70	136.1	7.84	134.4	7.39	128.0	7.55	136.6	7.38	131.7	7.21
CH_{2}	72.2	$\begin{aligned} & 6.60 \\ & 5.05 \end{aligned}$	73.2	$\begin{aligned} & 6.62 \\ & 5.10 \end{aligned}$	73.1	$\begin{aligned} & 6.66 \\ & 5.11 \end{aligned}$	74.2	$\begin{aligned} & 7.22 \\ & 5.27 \end{aligned}$	71.2	$\begin{gathered} 5.02 \\ 4.7 ?(\mathrm{br}) \end{gathered}$	72.9	$\begin{aligned} & 4.88 \\ & 4.19 \end{aligned}$	74.3	$\begin{aligned} & 6.65 \\ & 5.12 \end{aligned}$	69.9	$\begin{aligned} & 4.57 \\ & 3.84 \end{aligned}$	68.7	$\begin{aligned} & 4.99 \\ & 4.48 \end{aligned}$	78.4	5.21
$\mathrm{C}=\mathrm{NH} / \mathrm{NH}$	175.1	8.45	161.3	4.81	160.2	4.76	156.5	6.49	155.7		162.2		156.3	5.57	162.0	6.39				
					To ${ }^{\text {A }}$	i-C	133.4		147.9		143.6	6.8	45.4	389	48.9		$\mathrm{CH}^{\text {A }}$	'Pr ${ }^{\text {A }}$		
						$\mathrm{O}-\mathrm{CH}$	123.9	6.85	122.7	7.00-6.95	5 (c)	6.85 (br)	45.4	3.89	48.9	3.55	CH ${ }^{\text {a }}$			
						$m-\mathrm{CH}$	129.9	7.09	129.0	(br)	129.7 (br)	(c)	23.7	1.28	25.2	1.04	$M e^{A(e)}$			
						p-C	136.2		129.0		132.5		23.1	1.14	23.1	1.40				
					To ${ }^{\text {B }}$	i-C	141.8		146.4		146.4		51.0	3.78	50.7	4.25	$\mathrm{CH}^{\text {B }}$	${ }^{\prime} \mathrm{Pr}^{8}$		
						o-CH	125.9	7.29	124.6	$7.9{ }^{(a)}$	124.2	6.13								
						$m-\mathrm{CH}$	131.3	7.20	128.9	6.35	128.7	7.00	26.0	1.55	24.9	1.65	Me ${ }^{\text {B (e) }}$			
Bpy ${ }^{(7)}$						p-C	137.4		129.5		131.3		22.0	0.70	22.4	1.54				
C12	157.0		157.0		157.0		156.9		155.2		156.5		156.9		154.8		156.6		156.6	
C12'	152.6		153.1		153.2		153.4		153.1		153.7		153.1		155.7		154.4		153.4	
CH16	151.9	8.37	151.6	8.32	151.6	8.32	151.6	8.31	152.1	8.45	152.4	8.35	151.7	8.52	152.2	8.52	150.4	7.33	152.0	9.18
CH16'	151.0	8.89	149.1	8.65	148.9	8.58	149.3	8.61	149.3	8.39	149.0	8.13	150.8	8.68	148.1	8.85	153.1	9.46	149.9	9.03
CH14	140.1	8.07	140.3	8.14	140.3	8.15	141.0	8.18	138.8	7.96	139.8	8.10	140.3	8.16	140.1	8.00	139.6	7.94	138.1	$\begin{aligned} & 8.03- \\ & 7.96 \end{aligned}$
CH14'	140.1	8.11	140.5	8.08	140.6	8.13		8.14	139.1	7.91	139.9	8.00	140.4	8.15	140.6	8.08	139.5	7.98	138.8	
CH15	126.7	7.43	126.7	7.39	126.7	7.39	126.9	7.39	126.7	$\begin{array}{r} 7.39 \\ -7.30 \\ \hline \end{array}$	126.8	7.36	126.9	7.44	128.4	7.71	127.2	7.25	126.6	$\begin{aligned} & 7.59- \\ & 7.52 \end{aligned}$
CH15'	128.3	7.82	127.9	7.79	127.7	7.78	127.5	7.69	127.0		126.9	7.31	128.2	7.82	126.1	7.55	127.6	7.53	126.3	
CH13	123.0	8.25	123.8	8.42	123.9	8.44	124.5	8.54	122.1	8.06	123.4	8.33	123.5	8.40	122.8	8.04	122.8	$\begin{array}{r} 8.06- \\ 8.02 \\ \hline \end{array}$	122.5	$\begin{aligned} & 8.08- \\ & 8.03 \end{aligned}$
CH13'	122.1	8.17	123.0	8.35	123.2	8.39	123.8	8.50	121.6	8.02	122.7	8.28	122.7	8.35	122.4	8.08	122.4		121.1	

듣

(a) The data for the Me groups of $\mathbf{8 , 9 a}, \mathbf{1 0 b}, \mathbf{1 1}, \mathbf{1 2}$ and the Et groups of 9 b are not included in the tables for lack of space. The data highlighted in bold are commented in the text. (b) Measured at 213 K . (c) The To ${ }^{\mathrm{A}}$ group in $\mathbf{1 2}$ is
fluxional: for the $\mathrm{o}-\mathrm{CH}$ the ${ }^{13} \mathrm{C}$ resonance is not observed and the ${ }^{1} \mathrm{H}$ resonance is broad; for the m - CH the ${ }^{13} \mathrm{C}$ resonance is broad and the ${ }^{1} \mathrm{H}$ resonance is not observed. (d) This resonance appears in a multiplet together with the resonances of $\mathrm{H} 13,13$ ',14,14'. (e) For each Me group the corresponding ${ }^{13} \mathrm{C}$ and ${ }^{\prime} \mathrm{H}$ resonances are in the same line. (f) The two halves of the bpy ligands have been assigned based on NOE contacts between H 16 and the aryl group

Insertion into O-Pd bond

Insertion into C-Pd bond

Scheme III. 4
In blue: expected $\left.{ }^{3} \mathrm{~J}^{13} \mathrm{C}-{ }^{1} \mathrm{H}\right)$ correlations in the complexes resulting from the insertion of the organic molecules ($\mathrm{MeC} \equiv \mathrm{N}, \mathrm{R}_{2} \mathrm{NC} \equiv \mathrm{N}$, or $\mathrm{RN}=\mathrm{C}=\mathrm{NR}$) into the O-Pd bond (left) or C-Pd bond (right) of $\mathbf{3}$. Only the ${ }^{3} \mathrm{~J}_{\mathrm{CH}}$ coupling between the $\mathrm{C}=\mathrm{N}$ carbon and the methylenic protons is observed, indicating insertion into the O-Pd bond. In red: assignment of the halves of the bpy ligand in $\mathbf{8 - 1 2}$, based on selective NOE contacts

In complex 13, in contrast, the insertion of the carbodiimide into the C-Pd bond is confirmed by the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-HMBC and ${ }^{1} \mathrm{H}$-NOESY experiments (see Scheme III.5). The halves of the bpy ligand are assigned based on the NOE contacts, as well. Complex 13 is not an arylpalladium complex and this is reflected in the chemical shifts of the aryl carbons, which differ from those of $\mathbf{8 - 1 2}$, especially for $\mathrm{C} 1(\delta 134 \mathrm{ppm}$ for $\mathbf{1 3}$ and 149.6153.7 ppm for $\mathbf{8 - 1 2}$) and C2 ($\delta 146 \mathrm{ppm}$ for $\mathbf{1 3}$ and 137.9-140.7 ppm for $\mathbf{8 - 1 2}$).

Scheme III. 5
Observed NOE contacts between different groups in complex 13 (left), and observed ${ }^{3} \mathrm{~J}\left({ }^{13} \mathrm{C},{ }^{1} \mathrm{H}\right)$ correlations in the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMBC}$ spectrum (right), both confirming the insertion of the carbodiimide into the C-Pd bond, as well as the position of the proton on the uncoordinated nitrogen

The two ${ }^{i} \operatorname{Pr}$ groups in 10a and 13, as well as the two To groups in 10b, 11, and 12, (labeled A and B) are assigned based on NOE data. The two Me groups within each ${ }^{i} \mathrm{Pr}$ are always diastereotopic (inequivalent), as are the methylenic protons of all the
complexes (8-13). The methinic proton of ${ }^{i} \mathrm{Pr}^{\mathrm{A}}$ resonates as a doublet of septets $\left({ }^{3} \mathbf{J}_{\mathrm{HH}}=7\right.$ $\mathrm{Hz},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6 \mathrm{~Hz}$ for 10a, and ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=9 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6 \mathrm{~Hz}$ for 13), because of the coupling with the six methyl protons and the NH proton, which appears as a doublet $\left({ }^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz}\right.$ for $\mathbf{1 0 a}$, and ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=9 \mathrm{~Hz}$ for $\mathbf{1 3}$). This coupling pattern confirms the position of the NH proton in $\mathbf{1 0 a}$ and $\mathbf{1 3}$ on the N that is not coordinated to Pd , as also revealed by the NMR data (${ }^{1} \mathrm{H}$-NOESY and ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMBC}$) of 10a,b and $\mathbf{1 3}$ (see Scheme III. 5 for 13), and by the X-ray data of 10a (see Figure III.3). This position is similar to that observed in the related complexes resulting from the reaction with carbodiimides of ortho-palladated phenol derivatives. ${ }^{11,12}$

The $\mathrm{C}=\mathrm{NH}$ proton in complex 8 resonates at much higher frequency ($\delta 8.45 \mathrm{ppm}$) than in $\mathbf{9 a}, \mathbf{b}$ ($\delta 4.81$ and 4.76 ppm), for which the partial release of the lone pair from the NR_{2} group results in resonance form with a negative charge on the NH , an effect that is lacking in $\mathbf{8}$. This electronic delocalization along the $\mathrm{R}_{2} \mathrm{~N}-\mathrm{C}=\mathrm{NH}$ bonds is confirmed by the X-ray diffraction study of $\mathbf{9 a}$ (see Section III.3.4). For the complexes derived from carbodiimides, the three NHR chemical shifts are not very different: $\delta 5.57 \mathrm{ppm}$ for 10a, 6.49 ppm for $\mathbf{1 0 b}$ and 6.39 ppm for $\mathbf{1 3}$.

The neutral complex 11 shows a fluxional behavior within the chelate ring, which results in the broadening of one of the methylenic ${ }^{1} \mathrm{H}$ resonances, and also of the ${ }^{1} \mathrm{H}$ resonances of the more external tolyl group $\left(\mathrm{To}^{\mathrm{A}}\right)$. These resonances sharpen at low temperature (213 K), but the ${ }^{1} \mathrm{H}$ chemical shifts do not change significantly, so that the values at room temperature are given in Table III. 1 and in the Experimental Section (Chapter VIII). The ${ }^{13} \mathrm{C}$ NMR data, however, are given for 213 K , because at room temperature the S / N ratio of some resonances is too low.

In the mixed trinuclear $\mathrm{Pd}_{2} \mathrm{Ag}$ complex 12, the halves of the molecule are equivalent in solution (not in the solid state, see Section III.3.4), as only one set of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR resonances is observed. This is in contrast to what we have recently observed for another "dimeric" complex, $\left[\mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{CH}_{2} \mathrm{OCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\{\mathrm{PdBr}(\text { bpy })\}-2\right)\right\}_{2}-1,4\right]$ (6, Chapter II), where the halves of the molecule were not equivalent. ${ }^{14}$ The chelate nature of the Pd moieties in 12, as well as the linear geometry of the Ag bridge, seem to favor the symmetry of this complex in solution. The tolyl group To^{A} in $\mathbf{1 2}$ again shows strongly broadened ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ resonances, indicating that the rotation around the To-N bond is hindered by the steric crowding in the molecule. Curiously, in the ${ }^{1} \mathrm{H}$ spectrum the resonance of the o CH^{A} group is very broad and the resonance of the $m-\mathrm{CH}^{\mathrm{A}}$ group is not observed, while in
the ${ }^{13} \mathrm{C}$ spectrum the opposite is observed: $m-\mathrm{CH}^{\mathrm{A}}$ broad and $o-\mathrm{CH}^{\mathrm{A}}$ not observed. ${ }^{\mathrm{a}}$ This different behavior in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra can be explained by the frequency dependence of the NMR timescale. The To groups A and B are distinguished because To^{A} shows NOE contacts with $\mathrm{H} 3,4$ of the aryl group, as expected from the X-ray structure (see Figure III.1).

Figure III. 1
X-ray structure of $\mathbf{1 2}$, showing the proximity in space of the $o-\mathrm{H}^{\text {of }} \mathrm{To}^{\mathrm{A}}$ with the protons $\mathrm{H} 3,4$ of the aryl group

Within the bpy ligand, we observe that for the arylpalladium complexes $\mathbf{8 - 1 2}, \delta(\mathrm{C} 12)$ $>\delta\left(\mathrm{C} 12^{\prime}\right)$ (for C12, in the pyridyl ring trans to $\mathrm{N}, \delta=157.0-155.2 \mathrm{ppm}$, while for $\mathrm{C} 12^{\prime}$, in the pyridyl ring trans to aryl, $\delta=153.7-152.6 \mathrm{ppm})$. We had already observed in a previous paper, including complexes $\mathbf{1 a}$ and $\mathbf{3}$ (see Chapter II), ${ }^{14}$ that $\delta(\mathrm{C} 12)$ (trans to I, $\mathrm{Br}, \mathrm{O}, 156.6-155.2 \mathrm{ppm})>\delta\left(\mathrm{C}^{\prime} 2^{\prime}\right)$ (trans to aryl, $154.5-153.4 \mathrm{ppm}$). Combining now all the data it is clear that $\delta(\mathrm{C} 12)$ (trans to $\mathrm{I}, \mathrm{Br}, \mathrm{O}, \mathrm{N}, 157.0-155.2 \mathrm{ppm}$) is always larger than $\delta\left(\mathrm{C} 12\right.$ ') (trans to aryl, 154.5-152.6 ppm). For complex 13, the $\mathrm{C} 12,12{ }^{\prime}{ }^{13} \mathrm{C}$ chemical shifts are: $\delta(\mathrm{C} 12)=154.8 \mathrm{ppm}($ trans to O$) ; \delta \mathrm{C}\left(12^{\prime}\right)=155.7 \mathrm{ppm}($ trans to N$)$.

For all the complexes, $\mathbf{8 - 1 3}, \delta(\mathrm{CH} 16)(152.4-151.6 \mathrm{ppm})$ is also larger than $\delta\left(\mathrm{CH}^{\prime} 6^{\prime}\right)$ (151.0-148.1 ppm), although the difference is smaller than for C12,12'. In the iodo complex 1a however, this tendency is reversed ($\delta(\mathrm{CH} 16$), $150.4 \mathrm{ppm}<\delta(\mathrm{CH} 16$ '), 153.1 ppm), as we had already noted in our previous paper (Chapter II). ${ }^{14}$

The chemical shifts of the ortho hydrogen atoms of both pyridyl rings, H 16 and H16', are rather similar for $\mathbf{8 - 1 2}$ (H16, $\delta 8.31-8.52 \mathrm{ppm}$; H16', $\delta 8.13-8.89 \mathrm{ppm}$). Usually, in arylpalladium complexes the protons H16 (in the ring cis to the aryl group)

[^4]are strongly shielded with respect to H16', as a consequence of the anisotropic effect of the aryl group (see Scheme II.5, in Chapter II). ${ }^{4,14,21,22}$ Thus, for $\mathbf{1 a}, \delta(\mathrm{H} 16)=7.33 \mathrm{ppm}$ and $\delta\left(\mathrm{H}^{\prime} 6^{\prime}\right)=9.46 \mathrm{ppm}$. The chelate nature of complexes $\mathbf{8 - 1 2}$, which forces the orientation of the aryl ring toward the plane of the bpy ligand, would explain the absence of this effect (similarly to what is observed for the cycled complex $\mathbf{3},{ }^{14}$ where $\delta(\mathrm{H} 16)=$ 9.18 ppm and $\left.\delta\left(\mathrm{H} 16^{\prime}\right)=9.03 \mathrm{ppm}\right)$.

The IR bands of the $\mathrm{C}=\mathrm{N}$ bonds in $\mathbf{8}, \mathbf{9 a}, \mathbf{b}, \mathbf{1 0 a}, \mathbf{b}$ and $\mathbf{1 3}$ all appear in the range $1599-1635 \mathrm{~cm}^{-1}$. For complex 11, where the $\mathrm{C}=\mathrm{N}$ bond is uncoordinated, the corresponding IR band appears at higher frequency, $1660 \mathrm{~cm}^{-1}$. In the related complex 12 $\left(\mathbf{1 2}=\left[\operatorname{Ag}(N-11)_{2}\right](\mathrm{OTf})\right)$, however, the coordination of the $\mathrm{C}=\mathrm{N}$ bond to Ag shifts the IR band again to lower frequency, $1600 \mathrm{~cm}^{-1}$. The IR bands of the $\mathrm{N}-\mathrm{H}$ bonds in $\mathbf{8}, \mathbf{9 a}, \mathbf{b}$, $\mathbf{1 0 a}, \mathbf{b}$, and $\mathbf{1 3}$ are observed in the range $3213-3401 \mathrm{~cm}^{-1}$.

III.3.4 X-Ray Structure Determinations

The crystal structures of the complexes $\mathbf{9 a} \cdot 0.19 \mathrm{H}_{2} \mathrm{O}$ (Figure III.2, Table III.3), 10a (Figure III.3, Table III.4), and $\mathbf{1 2} \cdot 2.5 \mathrm{CHCl}_{3} \cdot 0.5 \mathrm{Et}_{2} \mathrm{O}$ (Figure III.4; only one of the two independent cations is shown, and Table III.5), have been determined by X-ray diffraction studies, as well as the crystal structures of the uncharacterized complexes II (Figure III.5, Table III.6) and III (Figure III.6, Table III.7). Table III. 2 contains experimental details on all the structures. ${ }^{\text {b }}$

The structures of $\mathbf{9 a} \cdot 0.19 \mathrm{H}_{2} \mathrm{O}, \mathbf{1 0 a}$, and $\mathbf{1 2} \cdot 2.5 \mathrm{CHCl}_{3} \cdot 0.5 \mathrm{Et}_{2} \mathrm{O}$ show somewhat distorted square planar coordination around the Pd atoms. Mean deviations from the best plane through Pd and the four donor atoms are $0.01 \AA$ for $9 \mathbf{a}, 0.02 \AA$ for $\mathbf{1 0 a}$, and 0.03 (Pd1), 0.14 (Pd 2), $0.04(\mathrm{Pd} 1$ '), and 0.01 (Pd 2 ') \AA for 12. The PdN 2 C 2 chelate rings are all essentially planar and also coplanar with the Pd coordination planes (maximum interplanar angle 8°). The seven-membered rings in 9a and 10a have similar conformations, with the five atoms, $\mathrm{Pd}, \mathrm{N} 1, \mathrm{O} 1, \mathrm{C} 7$, and C 8 approximately coplanar, and C1 and C2 lying out of the plane to the same side. For 12, however, all four seven-

[^5]membered rings have a different form in which $\mathrm{C} 1, \mathrm{C} 2, \mathrm{~N} 1$, and C 7 are coplanar, with $\mathrm{Pd}, \mathrm{O} 1$, and C 8 lying out of the plane to the same side.

The Pd-C bond distances for 9a and 10a are 1.981(3) \AA and $1.9716(15) ~ \AA$, respectively, both in the range expected for aryl ligands trans to N (ca. 1.97-2.00 \AA A). ${ }^{4,11,14,21}$ The two Pd-C bond distances for $\mathbf{1 2}$ are slightly longer, 2.014(7) \AA for $\operatorname{Pd}(1)-$ $\mathrm{C}(1)$ and $2.009 \AA$ for $\operatorname{Pd}(2)-\mathrm{C}(31)$. The $\operatorname{Pd}-\mathrm{N}($ trans to aryl) bond distances are very similar for the three complexes (between $2.115(5)$ and $2.118(2) \AA$), and they are longer than the Pd-N(trans to N) bond distances (in the range 2.026(2)-2.070(5) \AA), as expected for the stronger trans influence of the aryl ligand with respect to N -donor ligands.

The X-ray diffraction study of $\mathbf{1 2}$ (Figure III.4) confirms the structure proposed for this compound, consisting of two molecules of $\mathbf{1 1}$ coordinated via nitrogen to a silver atom. The two Ag-N bond lengths are 2.121(5) and 2.128(4) \AA, similar to other $\mathrm{Ag}-\mathrm{N}$ bond distances reported in the literature for compounds with a $\mathrm{N}-\mathrm{Ag}-\mathrm{N}$ moiety. ${ }^{23}$ The $\mathrm{N}(2)-\mathrm{Ag}(1)-\mathrm{N}(4)$ angle of $167.5(2)^{\circ}$ departs significantly from linearity, but is still close to those found in the literature (between 168 and 179°). ${ }^{23}$

For the three structures we can suggest electronic delocalization along the N-C-N group: the "single" bonds $\mathrm{Me}_{2} \mathrm{~N}(2)-\mathrm{C}(8)\left(1.343(4) \AA, 9\right.$ 9) ${ }^{\mathrm{i}} \operatorname{PrN}(2)-\mathrm{C}(8)(1.346(2) \AA$, 10a), and $\operatorname{ToN}(1)-C(7), \operatorname{ToN}(3)-C(37)(1.341(8)$ and $1.322(10) \AA, 12)$ are much shorter than the $\mathrm{C}-\mathrm{N}$ bonds ($\mathrm{Me}-\mathrm{N},{ }^{\mathrm{i}} \mathrm{Pr}-\mathrm{N}$ and $\mathrm{To}-\mathrm{N}$) in the same complexes, which measure between $1.415(10)$ and $1.494(2) \AA$. The corresponding "double" bonds $\mathrm{C}(8)=\mathrm{N}(1)$ (1.305(4) $\AA, \mathbf{9} \mathbf{9} ; 1.3054(18) \AA, \mathbf{1 0 a})$, and $\mathrm{C}(7)=\mathrm{N}(2), \mathrm{C}(37)=\mathrm{N}(4)$ (1.292(8), and 1.310(9) \AA, 12) are longer than the mean value in imines $(1.279 \AA) .{ }^{24}$ This $\mathrm{C}=\mathrm{N}$ bond lengthening can be attributed to both the electronic delocalization along the N-C-N bonds, and the coordination of the iminic nitrogen to Pd (in 9a, 10a) or Ag (in 12) (although it is interesting to note that the coordination of $\mathrm{N}(1)$ and $\mathrm{N}(3)$ to Pd in $\mathbf{1 2}$ does not cause a significant lengthening of the corresponding C-N single bonds (1.341(8) and 1.322(10) \AA) with respect to the values for the (uncoordinated) $\mathrm{C}(8)-\mathrm{N}(2)$ bonds in $9 \mathbf{a}(1.343(4) \AA$) and 10a (1.346(2) $\AA)$). Our group has previously observed a similar electronic delocalization along the $\mathrm{N}-\mathrm{C}-\mathrm{N}$ bonds for complexes resulting from the insertion of carbodiimides and cyanamides into the C-Pd bond, or the addition of carbodiimides to the O-H bond, of ortho-palladated phenol derivatives. ${ }^{12}$ It is also interesting to note that in the trinuclear complex $\mathbf{1 2}$ the electronic delocalization in one of the $\mathrm{N}-\mathrm{C}=\mathrm{N}$ moieties is much greater than in the other (bond lengths in $\mathrm{N}(1)-\mathrm{C}(7)=\mathrm{N}(2)$ are 1.292(8) and
$1.341(8) \AA$, while for $\mathrm{N}(3)-\mathrm{C}(37)-\mathrm{N}(4)$ the two bond lengths are more similar, 1.310(9) and $1.322(10) \AA$.

The structure of 10a shows a classical hydrogen bond between the NH proton of the complex and an oxygen atom of the triflate, with an $\mathrm{O}(3) \cdots \mathrm{H}-\mathrm{N}(2)$ distance of 2.22(2) Å.

The X-ray structure of II shows a distorted square planar coordination around the Pd atom, with a mean deviation from the best plane through Pd and the four donor atoms of $0.02 \AA$. The $\mathrm{Pd}-\mathrm{C}(1)$ bond distance of $1.981(3) \AA$ is in the range expected for Pd-C bonds trans to a N -donor ligand (ca. 1.97-2.00 \AA). ${ }^{4,11,14,21}$ The $\operatorname{Pd-N(11)~(2.121(3)~} \AA$) and Pd-N(21) (2.059(3) A) bond lengths follow the expected order of trans influence: Pd-N trans to aryl > Pd-N trans to Cl . The $\mathrm{Pd}-\mathrm{Cl}(1)$ bond length of 2.2977(9) \AA is in the range found for other aryl palladium complexes with bpy and a chloro ligand (ca. 2.28-2.31 $\AA) .{ }^{25}$ The $\mathrm{C}(9)-\mathrm{Cl}(2)$ bond distance of $1.795(6) \AA$ is close to the reported value of 1.790 \AA for $\mathrm{CH}_{2}-\mathrm{Cl}$ bonds. ${ }^{24}$

The structure of III shows a distorted square planar coordination around the Pd atom, with a mean deviation from the best plane through Pd and the four donor atoms of $0.04 \AA$. The three Pd-N bond distances are very similar, Pd-N(1), 2.0373(11) Å; Pd$\mathrm{N}(21), 2.0338(11) \AA$; and $\mathrm{Pd}-\mathrm{N}(11), 2.0210(11) \AA$, and shorter than the $\mathrm{Pd}-\mathrm{N}$ bond distances for N -donor ligands trans to aryl described so far in this Thesis (between $2.1039(15)$ and $2.1364(16) \AA) .{ }^{14}$ The $\mathrm{Pd}-\mathrm{Cl}$ bond length of 2.2914(4) \AA is very similar to that of II $(2.2977(9) \AA)$ and in the range found for other aryl palladium complexes with bpy and a chloro ligand (ca. 2.28-2.31 \AA). ${ }^{25}$ The coordination of the iminic nitrogen to Pd leads to a slight lengthening of the $\mathrm{C}=\mathrm{N}$ bond $(1.2890(17) \AA$) with respect to the mean value in imines $(1.279 \AA) .{ }^{24}$
Table III. 2 X-ray crystallographic data for compounds $\mathbf{9 a} \cdot 0.19 \mathrm{H}_{2} \mathrm{O}, \mathbf{1 0 a}, \mathbf{1 2} \cdot 2.5 \mathrm{CHCl}_{3} \cdot 0.5 \mathrm{Et}_{2} \mathrm{O}$, $\mathbf{I I}$, and $\mathbf{~ I I I}{ }^{(\mathrm{c})}$

	$9 \mathrm{a} \cdot 0.19 \mathrm{H}_{2} \mathrm{O}$	10a	12.2.5 $\mathrm{CHCl}_{3} \cdot 0.5 \mathrm{Et}_{2} \mathrm{O}$	II	III
Formula	$\mathrm{C}_{21} \mathrm{H}_{20.38} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{4.19} \mathrm{PdS}$	$\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{PdS}$	$\mathrm{C}_{69.5} \mathrm{H}_{63.5} \mathrm{AgCl}_{7.5} \mathrm{~F}_{3} \mathrm{~N}_{8} \mathrm{O}_{5.5} \mathrm{Pd}_{2} \mathrm{~S}$	$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{OPd}$	$\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{ClF}_{3} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{PdS}$
$M_{\text {r }}$	591.29	644.98	1774.39	467.65	622.33
T (K)	100(2)	103(2)	103(2)	133(2)	100(2)
$\lambda(\AA)$	1.54184	0.71073	1.54184	0.71073	0.71073
cryst syst	triclinic	orthorhombic	triclinic	monoclinic	triclinic
space group	$P(-1)$	Pbca	$P(-1)$	$P 2_{1} / n$	$P(-1)$
cell constants					
$a(\AA)$	7.5154(2)	7.9720(2)	12.8921(7) \AA	9.132(2) \AA	$8.0300(4) \AA$
$b(\AA)$	9.8002(3)	17.9802(5)	17.7080(10) \AA	$11.578(2) \AA$	$9.1108(4) \AA$
$c(\AA)$	15.6928(5)	36.9522(10)	33.077(2) \AA	17.024(3) \AA	16.7796(8) \AA
α (deg)	93.082(3)	90	84.739(5)	90	96.350(4)
β (deg)	93.631(3)	90	86.381(5)	91.879(8)	98.048(4)
γ (deg)	101.326(3)	90	79.154(5)	90	107.239(4)
$V\left(\AA^{3}\right), Z$	1128.44(6), 2	5296.7(2), 8	7376.9(7), 4	1798.9(6), 4	1145.78(9), 2
ρ (calcd) ($\mathrm{Mg} \mathrm{m}^{-3}$)	1.740	1.618	1.598	1.727	1.804
abs. coef. (mm^{-1})	8.070	0.840	9.284	1.338	1.079
$F(000)$	594	2624	3560	936	624
cryst size (mm)	$0.25 \times 0.15 \times 0.03$	$0.28 \times 0.25 \times 0.06$	$0.10 \times 0.08 \times 0.05$	$0.40 \times 0.23 \times 0.20$	$0.40 \times 0.25 \times 0.08$
θ range (deg)	$4.61 \quad 75.70$	$2.78 \quad 30.51$	3.4976 .49	$2.13 \quad 30.54$	$2.37 \quad 30.99$
	$-9 \leq h \leq 9$	$-11 \leq h \leq 9$	$-16 \leq h \leq 16$	$-13 \leq h \leq 12$	$-11 \leq h \leq 11$
index ranges	$-12 \leq k \leq 10$	$-25 \leq k \leq 25$	$-19 \leq k \leq 22$	$0 \leq k \leq 16$	$-13 \leq k \leq 13$
	$-19 \leq l \leq 19$	$-52 \leq l \leq 52$	$-41 \leq l \leq 41$	$0 \leq l \leq 24$	$-24 \leq l \leq 24$
reflections collected	45759	140731	135416	5343	43722
independent reflections	4664	8074	30575	5452	7294
$R_{\text {int }}$	0.0643	0.0512	0.0837	0.0000	0.0293
abs corr	semi-empirical from equivalents				
transmissions	$1.00000 \quad 0.24636$	$1.00000 \quad 0.92996$	$1.00000 \quad 0.88379$	$0.8622 \quad 0.7557$	$1.00000 \quad 0.83340$
refinement method	full-matrix least squares on F^{2}				
no. of data/restraints/params	4664 / 79 / 346	8074 / 0 / 351	30575/943/1836	5452 / $0 / 227$	7294/116/351
goodness-of-fit on F^{2}	1.071	1.019	1.056	1.086	1.050
Final R indices ($1>2 \sigma(I)$)					
R1	0.0363	0.0254	0.0652	0.0341	0.0209
wR2	0.0976	0.0599	0.1679	0.0827	0.0517
R indices (all data)					
R1	0.0369	0.0420	0.0965	0.0395	0.0254
wR2	0.0981	0.0619	0.1841	0.0851	0.0524
largest diff peak (e \AA^{-3})	0.776	0.447	2.639	1.270	0.771
	1.402	0.701	-1.586	-0.802	-0.838

(c) Exceptions and special features: For all disordered groups, appropriate restraints were employed to improve refinement stability, but the dimensions of disordered groups should always be interpreted with caution. For 9a: The triflate ion is disordered over two positions. A difference peak of ca. $2.3 \mathrm{e} \mathrm{A}^{-3}$ was tentatively interpreted as a partially occupied water site. It is impossibly close to O 3 and therefore was assigned the same occupation factor as the minor triflate component, with which it does not collide. Water H were not located. For 12: The asymmetric unit contains two molecules
of the $\mathrm{Pd} / \mathrm{Ag}$ complex, two triflates, five chloroforms and one ether. One of the triflates and two of the chloroforms are disordered. The ether has high U values. For II: The crystal was non-merohedrally twinned by 180° rotation about the a axis. The structure was refined using the 'HKLF 5' method, which involves different reflection classes for non-overlapped and overlapped reflections. Because of the special handling of twinned crystals (e.g. all equivalents are merged during the untwining process), the numbers of reflections should be treated with caution. The scale factor refined to $0.495(1)$. For
III: The triflate anion is disordered "head-to-toe".

Figure III. 2 Thermal ellipsoid plot (50% probability level) of $\mathbf{9 a} \cdot 0.19 \mathrm{H}_{2} \mathrm{O}$. Only the cation is shown

Table III. 3 Selected bond lengths (\AA) and angles (deg) of $\mathbf{9 a} \cdot 0 \cdot 19 \mathrm{H}_{2} \mathrm{O}$.

$\mathrm{Pd}(1)-\mathrm{C}(1)$	$1.981(3)$	$\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{N}(1)$	$87.22(11)$
$\mathrm{Pd}(1)-\mathrm{N}(1)$	$2.026(2)$	$\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{N}(11)$	$97.84(10)$
$\mathrm{Pd}(1)-\mathrm{N}(11)$	$2.051(2)$	$\mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{N}(21)$	$95.85(10)$
$\mathrm{Pd}(1)-\mathrm{N}(21)$	$2.118(2)$	$\mathrm{N}(11)-\mathrm{Pd}(1)-\mathrm{N}(21)$	$79.20(10)$
$\mathrm{O}(1)-\mathrm{C}(7)$	$1.462(4)$	$\mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{N}(11)$	$174.20(9)$
$\mathrm{O}(1)-\mathrm{C}(8)$	$1.334(4)$	$\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{N}(21)$	$176.21(9)$
$\mathrm{C}(8)-\mathrm{N}(1)$	$1.305(4)$	$\mathrm{C}(7)-\mathrm{O}(1)-\mathrm{C}(8)$	$120.0(2)$
$\mathrm{C}(8)-\mathrm{N}(2)$	$1.343(4)$	$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{N}(1)$	$124.7(3)$
$\mathrm{C}(9)-\mathrm{N}(2)$	$1.450(4)$	$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{N}(2)$	$112.2(3)$
$\mathrm{C}(10)-\mathrm{N}(2)$	$1.462(4)$	$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{N}(2)$	$123.1(3)$
		$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{Pd}(1)$	$136.3(2)$

Figure III. 3 Thermal ellipsoid plot (50\% probability level) of 10a

Table III. 4 Selected bond lengths (\AA) and angles (deg) of 10a

Pd-C(1)	$1.9716(15)$	$\mathrm{C}(1)-\mathrm{Pd}-\mathrm{N}(1)$	$84.69(6)$
$\mathrm{Pd}-\mathrm{N}(1)$	$2.0313(13)$	$\mathrm{C}(1)-\mathrm{Pd}-\mathrm{N}(21)$	$98.38(6)$
$\mathrm{Pd}-\mathrm{N}(21)$	$2.0331(13)$	$\mathrm{N}(1)-\mathrm{Pd}-\mathrm{N}(31)$	$97.75(5)$
$\mathrm{Pd}-\mathrm{N}(31)$	$2.1157(12)$	$\mathrm{N}(21)-\mathrm{Pd}-\mathrm{N}(31)$	$79.53(5)$
$\mathrm{O}(1)-\mathrm{C}(7)$	$1.4567(19)$	$\mathrm{N}(1)-\mathrm{Pd}-\mathrm{N}(21)$	$175.14(5)$
$\mathrm{O}(1)-\mathrm{C}(8)$	$1.3350(19)$	$\mathrm{C}(1)-\mathrm{Pd}-\mathrm{N}(31)$	$174.44(6)$
$\mathrm{C}(8)-\mathrm{N}(1)$	$1.3054(18)$	$\mathrm{C}(7)-\mathrm{O}(1)-\mathrm{C}(8)$	$123.79(12)$
$\mathrm{C}(8)-\mathrm{N}(2)$	$1.346(2)$	$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{N}(1)$	$125.21(14)$
$\mathrm{C}(9)-\mathrm{N}(1)$	$1.494(2)$	$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{N}(2)$	$111.20(13)$
$\mathrm{C}(12)-\mathrm{N}(2)$	$1.4658(19)$	$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{N}(2)$	$123.58(16)$
		$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{Pd}$	$125.84(12)$

Figure III. 4 Thermal ellipsoid plot (50% probability level) of $\mathbf{1 2} \cdot 2.5 \mathrm{CHCl}_{3} \cdot 0.5 \mathrm{Et}_{2} \mathrm{O}$. Only one of the two independent cations is shown

Table III. 5 Selected bond lengths (\AA) and angles (deg) of $\mathbf{1 2} \cdot 2.5 \mathrm{CHCl}_{3} \cdot 0.5 \mathrm{Et}_{2} \mathrm{O}$

$\mathrm{Ag}(1)-\mathrm{N}(4)$	$2.121(5)$	$\mathrm{N}(4)-\mathrm{Ag}(1)-\mathrm{N}(2)$	$167.5(2)$
$\mathrm{Ag}(1)-\mathrm{N}(2)$	$2.128(4)$	$\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{N}(1)$	$88.7(2)$
$\mathrm{Pd}(1)-\mathrm{C}(1)$	$2.014(7)$	$\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{N}(71)$	$96.5(3)$
$\mathrm{Pd}(1)-\mathrm{N}(1)$	$2.044(5)$	$\mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{N}(61)$	$95.7(2)$
$\mathrm{Pd}(1)-\mathrm{N}(71)$	$2.070(5)$	$\mathrm{N}(71)-\mathrm{Pd}(1)-\mathrm{N}(61)$	$78.5(2)$
$\mathrm{Pd}(1)-\mathrm{N}(61)$	$2.115(5)$	$\mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{N}(71)$	$171.9(2)$
$\mathrm{Pd}(2)-\mathrm{C}(31)$	$2.009(6)$	$\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{N}(61)$	$173.1(2)$
$\mathrm{Pd}(2)-\mathrm{N}(91)$	$2.045(5)$	$\mathrm{C}(31)-\mathrm{Pd}(2)-\mathrm{N}(91)$	$97.9(2)$
$\mathrm{Pd}(2)-\mathrm{N}(3)$	$2.054(6)$	$\mathrm{C}(31)-\mathrm{Pd}(2)-\mathrm{N}(3)$	$86.4(3)$
$\mathrm{Pd}(2)-\mathrm{N}(81)$	$2.117(6)$	$\mathrm{N}(91)-\mathrm{Pd}(2)-\mathrm{N}(81)$	$79.7(2)$
$\mathrm{O}(1)-\mathrm{C}(8)$	$1.439(8)$	$\mathrm{N}(3)-\mathrm{Pd}(2)-\mathrm{N}(81)$	$97.5(2)$
$\mathrm{O}(1)-\mathrm{C}(7)$	$1.368(7)$	$\mathrm{N}(91)-\mathrm{Pd}(2)-\mathrm{N}(3)$	$168.8(2)$
$\mathrm{N}(1)-\mathrm{C}(7)$	$1.341(8)$	$\mathrm{C}(31)-\mathrm{Pd}(2)-\mathrm{N}(81)$	$171.3(3)$
$\mathrm{N}(1)-\mathrm{C}(11)$	$1.422(8)$	$\mathrm{C}(7)-\mathrm{O}(1)-\mathrm{C}(8)$	$112.9(4)$
$\mathrm{N}(2)-\mathrm{C}(7))$	$1.292(8)$	$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{N}(1)$	$111.4(5)$
$\mathrm{N}(2)-\mathrm{C}(21)$	$1.418(8)$	$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{N}(2)$	$122.1(6)$
$\mathrm{O}(2)-\mathrm{C}(38)$	$1.456(9)$	$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{N}(2)$	$126.4(6)$
$\mathrm{O}(2)-\mathrm{C}(37)$	$1.390(7)$	$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{Pd}(1)$	$117.3(4)$
$\mathrm{N}(3)-\mathrm{C}(37)$	$1.322(10)$	$\mathrm{C}(37)-\mathrm{O}(2)-\mathrm{C}(38)$	$112.0(5)$
$\mathrm{N}(3)-\mathrm{C}(41)$	$1.416(8)$	$\mathrm{O}(2)-\mathrm{C}(37)-\mathrm{N}(3)$	$112.2(6)$
$\mathrm{N}(4)-\mathrm{C}(37)$	$1.310(9)$	$\mathrm{O}(2)-\mathrm{C}(37)-\mathrm{N}(4)$	$119.7(7)$
$\mathrm{N}(4)-\mathrm{C}(51)$	$1.415(10)$	$\mathrm{N}(3)-\mathrm{C}(37)-\mathrm{N}(4)$	$128.1(6)$
		$\mathrm{C}(37)-\mathrm{N}(3)-\mathrm{Pd}(2)$	$112.6(4)$

Figure III. 5 Thermal ellipsoid plot (50\% probability level) of II

Table III. 6 Selected bond lengths (\AA) and angles (deg) of II

$\mathrm{Pd}-\mathrm{C}(1)$	$1.981(3)$	$\mathrm{C}(1)-\mathrm{Pd}-\mathrm{N}(21)$	$93.77(12)$
$\mathrm{Pd}-\mathrm{N}(11)$	$2.121(3)$	$\mathrm{C}(1)-\mathrm{Pd}-\mathrm{Cl}(1)$	$89.76(10)$
$\mathrm{Pd}-\mathrm{N}(21)$	$2.059(3)$	$\mathrm{N}(11)-\mathrm{Pd}-\mathrm{N}(21)$	$78.97(11)$
$\mathrm{Pd}-\mathrm{Cl}(1)$	$2.2977(9)$	$\mathrm{N}(11)-\mathrm{Pd}-\mathrm{Cl}(1)$	$97.36(8)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.411(5)$	$\mathrm{N}(11)-\mathrm{Pd}-\mathrm{C}(1)$	$172.28(12)$
$\mathrm{C}(2)-\mathrm{C}(7)$	$1.497(5)$	$\mathrm{N}(21)-\mathrm{Pd}-\mathrm{Cl}(1)$	$175.54(8)$
$\mathrm{C}(7)-\mathrm{O}$	$1.424(4)$	$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{O}$	$108.9(3)$
$\mathrm{O}-\mathrm{C}(8)$	$1.417(6)$	$\mathrm{C}(7)-\mathrm{O}-\mathrm{C}(8)$	$110.7(4)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.456(7)$	$\mathrm{O}-\mathrm{C}(8)-\mathrm{C}(9)$	$111.2(5)$
$\mathrm{C}(9)-\mathrm{Cl}(2)$	$1.795(6)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{Cl}(2)$	$111.4(5)$

Figure III. 6 Thermal ellipsoid plot (50\% probability level) of III

Table III. 7 Selected bond lengths (\AA) and angles (deg) of III

Pd-N(1)	$2.0373(11)$	$\mathrm{N}(1)-\mathrm{Pd}-\mathrm{N}(21)$	$96.50(4)$
$\mathrm{Pd}-\mathrm{N}(11)$	$2.0210(11)$	$\mathrm{N}(1)-\mathrm{Pd}-\mathrm{Cl}$	$88.17(3)$
$\mathrm{Pd}-\mathrm{N}(21)$	$2.0338(11)$	$\mathrm{N}(11)-\mathrm{Pd}-\mathrm{N}(21)$	$80.66(4)$
$\mathrm{Pd}-\mathrm{Cl}$	$2.2914(4)$	$\mathrm{N}(11)-\mathrm{Pd}-\mathrm{Cl}$	$94.78(3)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.2890(17)$	$\mathrm{N}(11)-\mathrm{Pd}-\mathrm{N}(1)$	$175.39(5)$
$\mathrm{C}(1)-\mathrm{C}(7 \mathrm{~A})$	$1.4633(19)$	$\mathrm{N}(21)-\mathrm{Pd}-\mathrm{Cl}$	$175.05(3)$
$\mathrm{C}(1)-\mathrm{O}(2)$	$1.3517(16)$	$\mathrm{Pd}-\mathrm{N}(1)-\mathrm{C}(1)$	$124.05(10)$
$\mathrm{O}(2)-\mathrm{C}(3)$	$1.4571(16)$	$\mathrm{Pd}-\mathrm{N}(1)-\mathrm{C}(8)$	$118.57(8)$
$\mathrm{C}(3)-\mathrm{C}(3 \mathrm{~A})$	$1.496(2)$	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{O}(2)$	$119.96(12)$
		$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(7 \mathrm{~A})$	$130.51(12)$
		$\mathrm{C}(1)-\mathrm{O}(2)-\mathrm{C}(3)$	$110.44(11)$
		$\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(3 \mathrm{~A})$	$103.91(11)$

III. 4 CONCLUSIONS

We have investigated the reactivity of two Pd complexes derived from benzyl alcohol (one of them a $\kappa^{2}-C, O$ chelate) toward nitriles, cyanamides and carbodiimides. With the chelate complex we have obtained novel neutral or ionic complexes containing a seven-membered $\kappa^{2}-C, N$ chelate ring, resulting from the insertion of the organic molecules into the O-Pd bond. The presence of AgOTf was necessary for most of these reactions, an unprecedented observation. A novel heterometallic bis-chelate $\mathrm{Pd}_{2} \mathrm{Ag}$ complex has also been synthesized. Starting from the non-chelate complex, we have achieved the insertion of a carbodiimide into the aryl-Pd bond. All the new compounds have been extensively characterized by NMR spectroscopy, and three of them, including the mixed-metal complex, by X-ray crystallography.

III. 5 REFERENCES

1. Tsuji, J., Palladium Reagents and Catalysis: Innovations in Organic Synthesis. John Wiley \& Sons: Chichester (UK), 1995; Miyaura, N.; Suzuki, A., Chem. Rev. 1995, 95, 2457; Hartwig, J. F., Angew. Chem. Int. Ed. 1998, 37, 2047; Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L., Acc. Chem. Res. 1998, 31, 805; Littke, A. F.; Fu, G. C., Angew. Chem. Int. Ed. 2002, 41, 4176; Muci, A. R.; Buchwald, S. L., Top. Curr. Chem. 2002, 219, 131; Zeni, G.; Larock, R. C., Chem. Rev. 2004, 104, 2285; Bedford, R. B.; Cazin, C. S. J.; Holder, D., Coord. Chem. Rev. 2004, 2004, 2283; Larock, R. C.; Zeni, G., Chem. Rev. 2006, 106, 4644; Buchwald, S. L.; Mauger, C.; Mignani, G.; Scholz, U., Adv. Synth. Catal. 2006, 348, 23; Corbet, J. P.; Mignani, G., Chem. Rev. 2006, 106, 2651; Chinchilla, R.; Nájera, C., Chem. Rev. 2007, 107, 874; Fernández-Rodríguez, M. A.; Hartwig, J. F., J. Org. Chem. 2009, 74, 1663; Selander, N.; Szabo, K. J., Chem. Rev. 2011, 111, 2048; Le Bras, J.; Muzart, J., Chem. Rev. 2011, 111, 1170; Surry, D. S.; Buchwald, S. L., Chem. Sci. 2011, 2, 27; Yeung, C. S.; Dong, V. M., Chem. Rev. 2011, 111, 1215.
2. Spencer, J.; Pfeffer, M.; Kyritsakas, N.; Fischer, J., Organometallics 1995, 14, 2214; Catellani, M.; Motti, E.; Ghelli, S., Chem. Commun. 2000, 2003; Reddy, K. R.; Surekha, K.; Lee, G.-H.; Peng, S.-M.; Liu, S.-T., Organometallics 2001, 20, 5557; Sirlin, C.; Chengebroyen, J.; Konrath, R.; Ebeling, G.; Raad, I.; Dupont, J.; Paschaki, M.; KotzybaHibert, F.; HarfMonteil, C.; Pfeffer, M., Eur. J. Org. Chem. 2004, 1724; Canovese, L.; Visentin, F.; Santo, C.; Levi, C.; Dolmella, A., Organometallics 2007, 26, 5590; Cavell, K. J.; McGuinnes, D. S. (Eds), Palladium Complexes with Carbonyl, Isocyanide and Carbene Ligands. 197. In Comprehensive Organometallic Chemistry III, Pergamon Press: Oxford, UK, 2007, Vol 8; Bai, T.; Xue, L. Q.; Xue, P.; Zhu, J.; Sung, H. H. Y.; Ma, S. M.; Wiliams, I. D.; Lin, Z. Y.; Jia, G. C., Organometallics 2008, 27, 2614; Suzaki, Y.; Shirokawa, M.; Yagyu, T.; Osakada, K., Eur. J. Inorg. Chem. 2015, 2015, 421.
3. Vicente, J.; Abad, J. A.; Shaw, K. F.; Gil-Rubio, J.; Ramírez de Arellano, M. C.; Jones, P. G., Organometallics 1997, 16, 4557; Vicente, J.; Abad, J.-A.; López-Serrano, J.; Jones, P. G.; Nájera, C.; Botella-Segura, L., Organometallics 2005, 24, 5044; Vicente, J.; Chicote, M. T.; Martínez-Martínez, A. J.; Jones, P. G.; Bautista, D., Organometallics 2008, 27, 3254; Vicente, J.; Chicote, M. T.; Martínez-Martínez, A. J.; Bautista, D., Organometallics 2009, 28, 5915; Vicente, J.; González-Herrero, P.; Frutos-Pedreño, R.; Chicote, M. T.; Jones, P. G.; Bautista, D., Organometallics 2011, 30, 1079; Vicente, J.; Abad, J. A.; López-Nicolás, R. M.; Jones, P. G., Organometallics 2011, 30, 4983; Frutos-Pedreño, R.; González-Herrero, P.; Vicente, J.; Jones, P. G., Organometallics 2013, 32, 4664; Frutos-Pedreño, R.; González-Herrero, P.; Vicente, J.; Jones, P. G., Organometallics 2013, 32, 1892.
4. Vicente, J.; Abad, J. A.; Martínez-Viviente, E.; Ramírez de Arellano, M. C.; Jones, P. G., Organometallics 2000, 19, 752.
5. Vicente, J.; Abad, J. A.; López-Peláez, B.; Martínez-Viviente, E., Organometallics 2002, 21, 58; Vicente, J.; Abad, J. A.; López-Serrano, J.; Jones, P. G., Organometallics 2004, 23, 4711.
6. Vicente, J.; Abad, J. A.; López-Sáez, M. J.; Förtsch, W.; Jones, P. G., Organometallics 2004, 23, 4414.
7. Vicente, J.; Saura-Llamas, I., Comments Inorg. Chem. 2007, 28, 39.
8. Vicente, J.; Abad, J. A.; Bergs, R.; Ramírez de Arellano, M. C.; Martínez-Viviente, E.; Jones, P. G., Organometallics 2000, 19, 5597; Vicente, J.; Abad, J. A.; Martínez-Viviente, E.; Jones, P. G., Organometallics 2002, 21, 4454; Vicente, J.; Abad, J. A.; Martínez-Viviente, E.; Jones, P. G., Organometallics 2003, 22, 1967.
9. Vicente, J.; Saura-Llamas, I.; Grünwald, C.; Alcaraz, C.; Jones, P. G.; Bautista, D., Organometallics 2002, 21, 3587; Oliva-Madrid, M. J.; García-López, J.-A.; Saura-Llamas, I.; Bautista, D.; Vicente, J., Organometallics 2014, 33, 6420.
10.Vicente, J.; Abad, J. A.; López-Sáez, M. J.; Jones, P. G., Angew. Chem. Int. Ed. 2005, 44, 6001.
11.Vicente, J.; Abad, J. A.; López-Sáez, M. J.; Jones, P. G., Organometallics 2006, 25, 1851.
12.Vicente, J.; Abad, J. A.; López-Sáez, M. J.; Jones, P. G.; Bautista, D., Chem. Eur. J. 2010, 16, 661.
13.Vicente, J.; Abad, J. A.; López-Sáez, M. J.; Jones, P. G., Organometallics 2010, 29, 409.
14.Fernández-Rodríguez, M. J.; Martínez-Viviente, E.; Vicente, J.; Jones, P. G., Organometallics 2015, 34, 3282.
15.Shiotsuki, M.; Nakagawa, A.; Rodríguez Castañón, J.; Onishi, N.; Kobayashi, T.; Sanda, F.; Masuda, T., J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 5549; Rodríguez Castañón, J.; Kuwata, K.; Shiotsuki, M.; Sanda, F., Chem. Eur. J. 2012, 18, 14085.
16.Fernández-Rivas, C.; Cárdenas, D. J.; Martín-Matute, B.; Monge, A.; Gutiérrez-Puebla, E.; Echavarren, A. M., Organometallics 2001, 20, 2998.
17.Muñoz, M. P.; Martín-Matute, B.; Fernández-Rivas, C.; Cárdenas, D. J.; Echavarren, A. M., Adv. Syn. Catal. 2001, 343, 338.
18.Meana, I.; Espinet, P.; Albéniz, A. C., Organometallics 2014, 33, 1; Nakajima, T.; Tsuji, M.; Hamada, N.; Fukushima, Y.; Kure, B.; Tanase, T., J. Organomet. Chem. 2014, 768, 61.
19.Umakoshi, K.; Yamauchi, Y.; Nakamiya, K.; Kojima, T.; Yamasaki, M.; Kawano, H.; Onishi, M., Inorg. Chem. 2003, 42, 3907; Forniés, J.; Martín, A.; Sicilia, V.; Martín, M., Chem. Eur. J. 2003, 9, 3427; Ara, I.; Forniés, J.; Lasheras, R.; Martín, A.; Sicilia, V., Eur. J. Inorg. Chem. 2006, 948; Umakoshi, K.; Kojima, T.; Arikawa, Y.; Onishi, M., Chem. Eur. J. 2006, 12, 5094.
20.Michelin, R. A.; Mozzon, M.; Bertani, R., Coord. Chem. Rev. 1996, 147, 299; Kukushkin, V. Y.; Pombeiro, A. J. L., Chem. Rev. 2002, 102, 1771.
21.Vicente, J.; Shenoy, R. V.; Martínez-Viviente, E.; Jones, P. G., Organometallics 2009, 28, 6101.
22.Fernández-Rodríguez, M. J.; Martínez-Viviente, E.; Vicente, J.; Jones, P. G., Organometallics 2015, 34, 2240.
23.Majumdar, P.; Kamar, K. K.; Castineiras, A.; Goswami, S., Chem. Commun. 2001, 1292; Dinda, J.; Jasimuddin, S.; Mostafa, G.; Hung, C.-H.; Shinha, C., Polyhedron 2004, 23, 793;

Chen, C. L.; Tan, H. Y.; Yao, J. H.; Wan, Y. Q.; Su, C. Y., Inorg. Chem. 2005, 44, 8510; Bélanger-Gariépy, F.; Beauchamp, A. L., J. Am. Chem. Soc. 1980, 102, 3461.
24.Allen, F. H.; Kennard, O.; Watson, D. G.; Orpen, A. G.; Brammer, L.; Taylor, R., J. Chem. Soc., Perkin Trans. 2 1987, S1.
25.Vicente, J.; Abad, J. A.; Jones, P. G., Organometallics 1992, 11, 3512; Mentes, A.; Kemmit, R. D. W.; Fawcett, J.; Russell, D. R., Polyhedron 1999, 18, 1141; Vicente, J.; Abad, J. A.; Hernández-Mata, F. S.; Rink, B.; Jones, P. G.; Ramírez de Arellano, M. C., Organometallics 2004, 23, 1292; Blank, F.; Scherer, H.; Ruiz, J.; Rodríguez, V.; Janiak, C., Dalton Trans. 2010, 39, 3609; Camasso, N. M.; Pérez-Temprano, M. H.; Sanford, M. S., J .Am. Chem. Soc. 2014, 136, 12771.

Mono- and Dipalladated Derivatives of 2,5Distyrylbenzene. Reactivity toward XyNC and Alkynes. Synthesis of Complexes with Indacenediide Ligands

The results of this Chapter have been published in:
J. Vicente, E. Martínez-Viviente, M.-J. Fernández-Rodríguez,

Organometallics 2009, 28, 5845-5847
M.-J. Fernández-Rodríguez, E. Martínez-Viviente, J. Vicente, P. G. Jones,

Organometallics 2015, 34, 2240-2254

IV. 1 ABSTRACT

The dinuclear complexes $\left[\mathrm{C}_{6} \mathrm{H}_{2}\left\{\operatorname{PdBr}\left(\mathrm{~N}^{\wedge} \mathrm{N}\right)\right\}_{2}-1,4-((E)-\mathrm{CH}=\mathrm{CHPh})_{2}-2,5\right]\left(\mathrm{N}^{\wedge} \mathrm{N}=\right.$ tbbpy $=4,4$ '-di-tert-butyl-2,2'-bipyridine (14a), tmeda $=N, N, N^{\prime}, N^{\prime}$ 'tetramethylethylenediamine (14b)) have been synthesized by oxidative addition of trans,trans-2,5-distyryl-1,4-dibromobenzene to two equivalents of " $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ " $\left(\left[\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right] \cdot \mathrm{dba}\right.$; dba $=$ dibenzylideneacetone) in the presence of the $\mathrm{N}^{\wedge} \mathrm{N}$ ligands. A similar reaction with $\mathrm{N}^{\wedge} \mathrm{N}=$ bpy $=2,2$ '-bipyridine afforded the mononuclear complex $\left[\operatorname{PdBr}\left\{\mathrm{C}_{6} \mathrm{H}_{2}(\mathrm{Br}-4)\{((E)-\right.\right.$ $\left.\left.\left.\mathrm{CH}=\mathrm{CHPh})_{2}-2,5\right\}\right\}(\mathrm{bpy})\right]$ (15). The reaction of $\mathbf{1 4 a}, \mathbf{b}$ with $\mathrm{PhC} \equiv \mathrm{CPh}, \mathrm{MeC} \equiv \mathrm{CMe}$, and $\mathrm{PhC} \equiv \mathrm{CMe}$ in the presence of TlOTf or AgClO_{4} gave the dipalladated indacenediide complexes $\left[\left(\mu-\eta, \eta-\mathrm{C}_{12} \mathrm{H}_{2} \mathrm{Bn}_{2}-1,5-\mathrm{R}_{4}-2,3,6,7\right)\left\{\mathrm{Pd}\left(\mathrm{N}^{\wedge} \mathrm{N}\right)\right\}_{2}\right](\mathrm{OTf})_{2}(\mathrm{Bn}=$ benzyl, $\mathrm{R}=\mathrm{Ph}$, $\mathrm{N}^{\wedge} \mathrm{N}=$ tbbpy (16a), tmeda (16b); $\mathrm{R}=\mathrm{Me}, \mathrm{N}^{\wedge} \mathrm{N}=$ tbbpy (17a), tmeda (17b)) and $[(\mu-\eta, \eta-$ $\left.\left.\mathrm{C}_{12} \mathrm{H}_{2} \mathrm{Bn}_{2}-1,5-\mathrm{Ph}_{2}-2,6-\mathrm{Me}_{2}-3,7\right)\left\{\mathrm{Pd}\left(\mathrm{N}^{\wedge} \mathrm{N}\right)\right\}_{2}\right](\mathrm{A})_{2}\left(\mathrm{~N}^{\wedge} \mathrm{N}=\right.$ tbbpy, $\mathrm{A}=\mathrm{OTf}(\mathbf{1 8 a}), \mathrm{ClO}_{4}$ ($\left.\mathbf{1 8} \mathbf{a}^{\prime}\right) ; \mathrm{N}^{\wedge} \mathrm{N}=\mathrm{tmeda}, \mathrm{A}=\mathrm{OTf}(\mathbf{1 8 b})$). The reactions of $\mathbf{1 5}$ with the same alkynes afforded the indenyl complexes $\left[\mathrm{Pd}\left(\eta-\mathrm{C}_{9} \mathrm{H}_{2} \mathrm{Bn}-1-\mathrm{R}_{2}-2,3-((E)-\mathrm{CH}=\mathrm{CHPh})-5-\mathrm{Br}-\right.\right.$ 6)(bpy)](A) ($\left.\mathrm{R}=\mathrm{Ph}, \mathrm{A}=\mathrm{OTf}(19), \mathrm{ClO}_{4}\left(\mathbf{1 9}^{\prime}\right) ; \mathrm{R}=\mathrm{Me}, \mathrm{A}=\mathrm{OTf}(\mathbf{2 0})\right)$ and $[\mathrm{Pd}(\eta-$ $\left.\left.\mathrm{C}_{9} \mathrm{H}_{2} \mathrm{Bn}-1-\mathrm{Ph}-2-\mathrm{Me}-3-((E)-\mathrm{CH}=\mathrm{CHPh})-5-\mathrm{Br}-6\right)(\mathrm{bpy})\right] \mathrm{OTf}(21)$. By reaction of either 14a or $\mathbf{1 4 b}$ with $\mathrm{XyNC}(\mathrm{Xy}=2,6$-dimethylphenyl), the dinuclear complex $\left[\mathrm{C}_{6} \mathrm{H}_{2}\left\{\mathrm{C}(=\mathrm{NXy})\left(\text { trans }-\mathrm{PdBr}(\mathrm{CNXy})_{2}\right)\right\}_{2}-1,4-((E)-\mathrm{CH}=\mathrm{CHPh})_{2}-2,5\right] \quad$ (22) was obtained, while the oxidative addition of trans,trans-2,5-distyryl-1,4-dibromobenzene to $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ in the presence of eight equivalents of XyNC afforded the dinuclear complexes $\left[\mathrm{C}_{6} \mathrm{H}_{2}\left\{\mathrm{C}(=\mathrm{NXy})\{\mathrm{C}(=\mathrm{NXy})\}_{2}\{\operatorname{PdBr}(\mathrm{CNXy})\}\right\}_{2}-1,4-((E)-\mathrm{CH}=\mathrm{CHPh})_{2}-2,5\right]\left(\mathbf{2 3}, \mathbf{2 3}{ }^{*}\right)$ as a mixture of isomers ($1: 0.3$ ratio) which are in slow exchange in solution, as shown by an EXSY spectrum. The crystal structures of anti-16a $\cdot 7 \mathrm{CDCl}_{3}$, syn $\mathbf{- 1 6 b} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, anti$\mathbf{1 8 a} \cdot \cdot 4 \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathbf{1 9}$, and $\mathbf{2 1}$ have been determined by X-ray diffraction studies.

IV. 2 INTRODUCTION

$\mathrm{Pd}($ II) aryl complexes are a subject of great interest because of their participation in carbon-carbon and carbon-heteroatom bond-forming reactions. ${ }^{1,2}$ Our group has been particularly interested in the synthesis of ortho-substituted arylpalladium complexes ${ }^{3-20}$ and the investigation of their reactivity toward unsaturated organic molecules. ${ }^{3,5,7-33}$ Very often new ligands and/or organic compounds are formed, involving both the insertion of the organic molecule into the carbon-palladium bond and its interaction with the group in an ortho position. ${ }^{3,4,8,10,13-18,20-27,29,31,33}$ We are now exploring the extension of this
chemistry to complexes with two ${ }^{34-37}$ or three ${ }^{35,37} \mathrm{Pd}$ atoms around a benzene ring, each of them ortho to an organic group. The reactions of such complexes with unsaturated organic molecules could lead to novel polynuclear Pd complexes and/or new organic polycyclic compounds that are otherwise difficult to prepare.

In this article we report our results on mono- and dipalladated derivatives of 2,5distyrylbenzene and their reactivity toward several alkynes and xylyl isocyanide (XyNC). Although there have been previous reports on dipalladated ortho-substituted aryl complexes, these refer, with some exceptions, ${ }^{19,34-38}$ to dipalladacycles with $\mathrm{N}-{ }^{34,39}$ or $\mathrm{P}-$ donor ${ }^{40}$ groups, which afford chelates. We report here the first dipalladated benzene derivatives with alkenyl groups at the ortho position of the aryl ring, and describe their reactions with alkynes and XyNC. This is the first study of the reactivity of dipalladated arene derivatives with unsaturated reagents. Some of these results have been reported in a preliminary communication. ${ }^{36}$ It is well-known that arylpalladium complexes react with alkynes to give mono-, di-, and triinserted derivatives ${ }^{7,11,19,20,32,41,42}$ or, after depalladation, organic compounds ${ }^{43}$ such as spirocycles, ${ }^{3,4,21,23,42,44-46}$ benzofulvenes, ${ }^{21}$ indenols, ${ }^{8,10,23,45,47}$ indenones, ${ }^{10,23,47}$ carbocycles, ${ }^{42,44,48,49}$ and oxygen-, ${ }^{13,50,51}$ sulfur-, ${ }^{18,45,52}$ or nitrogen-containing ${ }^{4,14,15,31,33,48,50,53}$ heterocycles. Sometimes these reactions are part of catalytic cycles yielding interesting organic compounds. ${ }^{2,54-56}$

We have previously prepared highly functionalized indenylpalladium complexes by reaction of 2-styrylbenzene $\operatorname{Pd}($ II $)$ complexes with alkynes. ${ }^{22,24}$ Similarly, we have preliminarily reported the synthesis of the first $\mathrm{Pd}(\mathrm{II})$ complex with an indacenediide ligand. ${ }^{36}$ Homo- or heterobimetallated symmetric (syn) and antisymmetric (anti) indacenediide complexes have been described with $\mathrm{Fe},{ }^{57-65} \mathrm{Co},{ }^{59,60,63,66} \mathrm{Ni}$ i ${ }^{59,64,67}$ $\mathrm{Ru},{ }^{63,64,67,68} \mathrm{Rh},{ }^{62,63,67,69-74} \mathrm{Ir},{ }^{70,71} \mathrm{Mn},{ }^{64,67,73}$ and Ge^{75} Shortly after our first communication ${ }^{36}$ this type of complex was postulated as intermediate in the Pd-catalyzed cross-coupling of bromostilbene with a diarylalkyne to form s-indacenes. ${ }^{76, a}$ We now describe a series of dipalladated indacenediides, together with some mononuclear indenylpalladium complexes. The procedure represents the first synthesis of such dinuclear complexes through metal-mediated building of the ligand, as these are usually prepared by reaction of indacenes with metal salts ${ }^{57}$ or complexes. ${ }^{60-66,68,69,71-73,75}$ Five of

[^6]these complexes (three dinuclear and two mononuclear compounds) have been characterized by X-ray diffraction studies.

The reactivity toward XyNC of the mixture of trans,trans-2,5-distyryl-1,4dibromobenzene and " $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ " $\left(\left[\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right] \cdot \mathrm{dba}\right.$; dba $=$ dibenzylideneacetone $)$ and also of the dipalladated derivatives $\left[\mathrm{C}_{6} \mathrm{H}_{2}\left\{\operatorname{PdBr}\left(\mathrm{~N}^{\wedge} \mathrm{N}\right)\right\}_{2}-1,4-((E)-\mathrm{CH}=\mathrm{CHPh})_{2}-2,5\right]\left(\mathrm{N}^{\wedge} \mathrm{N}\right.$ $=$ tbbpy, tmeda) has been investigated as well, resulting in the tri- and monoinsertion (respectively) of the isocyanide into $\mathrm{C}-\mathrm{Pd}$ bonds. Although the insertion reactions of isocyanides into Ar-Pd bonds have been extensively investigated, ${ }^{4,9,11-20,25-27,30,33,77,78}$ this is the first report of the simultaneous insertion of isocyanide into two aryl-Pd bonds on the same benzene ring of a complex.

IV. 3 RESULTS AND DISCUSSION

IV.3.1 Synthesis of $\left.\left[\mathrm{C}_{6} \mathrm{H}_{2}\left\{\operatorname{PdBr}\left(\mathbf{N}^{\wedge} \mathrm{N}\right)\right\}_{2}-\mathbf{1 , 4 - (}(E)-\mathrm{CH}=\mathbf{C H P h}\right)_{2}-2,5\right]\left(\mathbf{N}^{\wedge} \mathrm{N}=\mathrm{tbbpy}\right.$ (1a), tmeda (1b))

The dinuclear complexes $\mathbf{1 4 a}, \mathbf{b}$ were obtained by oxidative addition of trans, trans-2,5-distyryl-1,4-dibromobenzene ${ }^{79}$ to two equivalents of $\left[\operatorname{Pd}(\mathrm{dba})_{2}\right]$ in the presence of tbbpy or tmeda (Scheme IV.1). Complexes 14a,b are the first dipalladated benzene derivatives with alkenyl groups on the aryl ring, although the synthesis of 14b was reported in a preliminary communication. ${ }^{36}$ The dinuclear complexes 14a,b form together with small amounts of the more soluble monopalladated derivatives $\left[\operatorname{PdBr}\left\{\mathrm{C}_{6} \mathrm{H}_{2}(\mathrm{Br}-4)\left\{((E)-\mathrm{CH}=\mathrm{CHPh})_{2}-2,5\right\}\right\}\left(\mathrm{N}^{\wedge} \mathrm{N}\right)\right]$ (less than 15%), from which they can be easily separated (see Chapter VIII, Experimental Section). In order to minimize the formation of the monopalladated complexes, the oxidative additions were carried out with a 15% excess of $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ and the $\mathrm{N}^{\wedge} \mathrm{N}$ ligands tbbpy and tmeda. When bpy was used as the $\mathrm{N}^{\wedge} \mathrm{N}$ chelating ligand, the result of the reaction was different, as the major product turned out to be the monopalladated complex $\left[\operatorname{PdBr}\left\{\mathrm{C}_{6} \mathrm{H}_{2}(\mathrm{Br}-4)\{((E)-\right.\right.$ $\left.\left.\mathrm{CH}=\mathrm{CHPh})_{2}-2,5\right\}(\mathrm{bpy})\right](\mathbf{1 5}$, Scheme $I V .1)$, together with only a very small amount (ca. $10 \%)$ of the expected dinuclear complex $\left[\mathrm{C}_{6} \mathrm{H}_{2}\{\mathrm{PdBr}(\mathrm{bpy})\}_{2}-1,4-((E)-\mathrm{CH}=\mathrm{CHPh})_{2}-2,5\right]$. Our group has already encountered difficulties in synthesizing polynuclear complexes with bpy as an auxiliary ligand, ${ }^{35}$ most probably caused by the lower solubility of bpy complexes in comparison to tmeda and tbbpy analogues. Even when different stoichiometries were used in the oxidative addition with bpy, the crude product was always a mixture of the mononuclear species $\mathbf{1 5}$ with small amounts of the dinuclear
complex and the starting dialkene. We finally established that the best option for the isolation of 15 was to use a 1:1.5:1.5 dialkene: $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$:bpy ratio and to purify the complex by solubility difference, first removing the less soluble dinuclear derivative, which was precipitated with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL} / 5 \mathrm{~mL})$, and then separating $\mathbf{1 5}$ from the more soluble starting dialkene by precipitation of $\mathbf{1 5}$ with acetone/ $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL} / 20 \mathrm{~mL})$ (see Chapter VIII, Experimental Section).

Scheme IV. 1 Synthesis of complexes 14-23

IV.3.2 Synthesis of Indacenediide Complexes

The reaction of $\mathbf{1 4 a}, \mathbf{b}$ with two equivalents of the alkynes $\mathrm{PhC} \equiv \mathrm{CPh}, \mathrm{MeC} \equiv \mathrm{CMe}$, and $\mathrm{PhC} \equiv \mathrm{CMe}$ in the presence of TlOTf or AgClO_{4} afforded the dipalladated $\mu_{2}-\eta, \eta-s-$ indacenediide complexes 16-18 (Scheme IV.1), which are the first indacenediide $\operatorname{Pd}(I I)$ complexes to be described (the synthesis of $\mathbf{1 6 b}$ was preliminarily reported). ${ }^{36}$ For the complexes with tbbpy, the reactions were cleaner in THF than in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. In contrast, with tmeda, the reactions in THF afforded mixtures of compounds, so that $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was the preferred solvent. All of the reactions were performed with an excess of the alkyne, and the purification of all the products required crystallization (see Chapter VIII, Experimental Section). For some of them the elemental analysis was too low in carbon, most probably because of combustion problems of the triflate anion, a problem already encountered by some of us. ${ }^{24}$ These substances were additionally characterized by highresolution mass spectroscopy (see Chapter VIII, Experimental Section). We explored the possibility of using AgClO_{4} instead of TlOTf as the Br -withdrawing agent, but the reactions did not improve. However, in one case (complex 18a') we obtained single crystals of the indacenediide complex, suitable for X-ray analysis (Figure IV.8), and thus this complex has been characterized as well. The reactions with the alkyne $\mathrm{MeO}_{2} \mathrm{CC} \equiv \mathrm{CCO}_{2} \mathrm{Me}$ yielded untractable mixtures.

Scheme IV. 2 shows the mechanism that we have proposed for these reactions. ${ }^{36}$ The first step (A) would be the insertion of the alkyne into the aryl C-Pd bond, followed by addition of the $\mathrm{C}-\mathrm{Pd}$ bond to the alkenyl group in an ortho position (step B). A β-hydride elimination (C) and readdition (D,E) would give a σ, σ-indacenediide complex, which would isomerize to the more stable $\eta: \eta$ derivative (\mathbf{F}).

Scheme IV. 2 Proposed mechanism for the formation of the indacenediide complexes

IV.3.3 Synthesis of Indenyl Complexes

As mentioned above, the oxidative addition of trans,trans-2,5-distyryl-1,4dibromobenzene to $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ in the presence of bpy does not give a dinuclear complex similar to $\mathbf{1 4 a , b}$ but the monopalladated analogue $\mathbf{1 5}$. We decided nonetheless to investigate the reactivity of $\mathbf{1 5}$ with the same alkynes used toward $\mathbf{1 4 a , b}$, to check if the additional styryl and Br substituents would interfere in the formation of indenylpalladium complexes similar to those described before by some of us. ${ }^{22,24}$ We were successful in preparing the new highly substituted indenylpalladium complexes 19-21 (Scheme IV.1), a result that confirms the potential of our synthetic route. The use of AgClO_{4} instead of TlOTf in these reactions was successful only with the alkyne $\mathrm{PhC} \equiv \mathrm{CPh}$, affording complex 19’, while for the other two alkynes the complexes obtained were too insoluble to be purified. The elemental analyses of two of the OTf complexes were again too low in carbon, and thus they were additionally characterized by high-resolution mass spectroscopy.

IV.3.4 Steroselectivity of the Reactions with Alkynes

Complexes 16-18 can form as two stereoisomers, symmetric (syn) or antisymmetric (anti) (Scheme IV.1), depending on the relative orientation of the two [Pd] moieties with respect to the indacenediide ligand, which can only be distinguished by X-ray crystallography. Both geometries have been described in the literature for other homonuclear bimetallic indacenediide complexes. ${ }^{59-61,66,68,71,72}$ We have observed that the stereoselectivity of our reactions and (when characterized) the geometry of the resulting products depend on the nature of the alkyne, the $\mathrm{N}^{\wedge} \mathrm{N}$ ligand, and the reaction conditions. Thus, with $\mathrm{PhC} \equiv \mathrm{CPh}$ the reactions (THF or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temperature) were always stereoselective although, surprisingly, the opposite isomers were obtained with tbbpy (anti-16a) and tmeda (syn-16b), ${ }^{36}$ as shown by X-ray diffraction studies (see Section IV.3.8). With the less voluminous alkynes $\mathrm{MeC} \equiv \mathrm{CMe}$ and the unsymmetric $\mathrm{MeC} \equiv \mathrm{CPh}$, we usually obtained mixtures of the two stereoisomers, although the stereoselectivity could be enhanced by increasing the excess of alkyne and (for tbbpy in THF) the temperature (THF was not a suitable solvent for the reactions with tmeda, as commented above). Thus, the reaction of $\mathbf{1 4 a}$ (tbbpy complex) with $\mathrm{MeC} \equiv \mathrm{CPh}$ and TlOTf in THF at $60^{\circ} \mathrm{C}$ afforded 18a as a single isomer, while in a similar reaction with 14b (tmeda complex), in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature, complex $\mathbf{1 8 b}$ formed together with a minor isomer, which was removed upon crystallization. No single crystals of $\mathbf{1 8 a}, \mathbf{b}$, suitable for

X-ray analysis, could be obtained, but the X-ray data of the perchlorate homologue of 18a (formed as a major isomer at room temperature in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) showed it to be the anti18a' isomer. With the less voluminous alkyne $\mathrm{MeC} \equiv \mathrm{CMe}$, the tbbpy complex 17 a could be obtained regioselectively in THF at $60^{\circ} \mathrm{C}$, by doubling the amount of alkyne (from $\times 8$ to $\times 16$) with respect to $\mathbf{1 6 a}$. However, for the analogous tmeda complex $\mathbf{1 7 b}$ the reaction in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature afforded a mixture of the two stereoisomers, even when the amount of alkyne was increased to $\times 32$. These isomers were present in a ratio of ca. 1:3.5 after recrystallization. All of our attempts to obtain suitable single crystals of 17a,b also failed. In conclusion, the stereoselectivity of these reactions with alkynes to form indacenediide complexes increases with the size of the alkyne, the temperature and the excess of alkyne. We cannot predict the geometry of the resulting complexes, but the three structures solved show that in the tbbpy complexes the anti isomers are favored, probably for steric reasons. The NMR data in solution do not allow a distinction between syn and anti isomers.

IV.3.5 Regioselectivity of the Reactions with Alkynes

With the unsymmetric alkyne $\mathrm{MeC} \equiv \mathrm{CPh}$ the formation of the complexes $\mathbf{1 8 a}, \mathbf{a}, \mathbf{b}$ and 21 always occurs regioselectively, with the Ph group in position 2 of the indenyl or indacenediide ligand, next to the benzyl group. These structures have been confirmed by X-ray diffraction data for complexes 18a' and 21, and by NMR data for all of them. According to the mechanism proposed in Scheme IV.2, the regioselectivity must be determined in the alkyne insertion step and in this case it seems to be attributable to steric effects. The preference of a CMe moiety over a CPh moiety to be attached to the carbon atom in an alkyne insertion reaction into a C-Pd bond has been observed before, ${ }^{23,24,55}$ although non-regioselective reactions have also been reported. ${ }^{56}$

IV.3.6 Reactions with Isocyanides

We have also investigated the reactivity toward isocyanides (${ }^{\mathrm{B}} \mathrm{BuNC}$ and XyNC) of the mixture trans,trans-2,5-distyryl-1,4-dibromobenzene plus $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$, and also of the dipalladated derivatives $\mathbf{1 4 a}, \mathbf{b}$. While the reactions with ${ }^{t} \mathrm{BuNC}$ afforded mixtures of compounds, with XyNC we were able to isolate the dinuclear complexes 22 and 23,23* (Scheme IV.1), resulting, respectively, from the mono- and triinsertion of the isocyanide into $\mathrm{C}-\mathrm{Pd}$ bonds.

Complex 22 forms in the reactions of both $\mathbf{1 4 a}$ and $\mathbf{1 4 b}$ with a stoichiometric amount of XyNC (although an excess can also be used with the same result), and it is formed by the insertion of one isocyanide molecule into each C-Pd bond, and the displacement of each of the $\mathrm{N}^{\wedge} \mathrm{N}$ ligands by two other molecules of isocyanide. The compound is stable in the solid state but it slowly decomposes in solution to form $\left[\mathrm{Pd}_{2} \mathrm{Br}_{2}(\mathrm{CNXy})_{4}\right]$, which is easily identified by its ${ }^{1} \mathrm{H}$ NMR resonance at 2.52 ppm . Mononuclear analogues to $\mathbf{2 2}$ have been previously prepared by insertion reactions of XyNC into C-Pd bonds of arylpalladium complexes. ${ }^{9,13,15,17,18,25,26,78}$ Three dinuclear complexes with a similar pattern around the Pd atoms have also been reported by our group: one of them was obtained by oxidative addition, instead of insertion into an already formed complex, ${ }^{19}$ and in the other two compounds the Pd atoms were not on the same aryl ring. ${ }^{18}$ Thus, this is the first report of the simultaneous insertion of isocyanide into two aryl-Pd bonds on the same benzene ring of a complex.

The triinserted complexes 23 and $\mathbf{2 3 *}^{*}$ form as a mixture of isomers (1:0.3 ratio) by oxidative addition of trans,trans-2,5-distyryl-1,4-dibromobenzene to $\left[\operatorname{Pd}(d b a)_{2}\right]$ in the presence of eight equivalents of XyNC . Both complexes have the same empirical formula and atom connectivities, as confirmed by the elemental analysis and NMR ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ correlations, but different NMR spectra. Consequently, they must be stereoisomers that probably differ in the mutual orientation, E or Z, of the iminoacyl groups. They are always present in the same ratio, even if the reaction conditions (excess of XyNC and temperature) are changed. The structure of one of them was confirmed by X-ray analysis, but the data were not of adequate quality to be reported, because of disorder effects. It was not possible to obtain $\mathbf{2 3 , 2 3 *}$ by reaction of 22 with XyNC , even at high temperature. Only a few mononuclear analogues of 23 and 23* have been reported, mainly by our research group, ${ }^{26,80}$ but no such dinuclear complex had been prepared until now.

IV.3.7 NMR Data

All the complexes reported in this paper have been extensively studied by NMR (1D and 2D experiments), allowing an almost full assignment of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ resonances. To facilitate comparison, the data are collected in Table IV. 1 (for 14a,b and 15), Table IV. 2 (for 22, 23 and 23*), and Table IV. 3 (for complexes 16-21). These Tables also contain some comments on the assignment process and on the chemical shifts.
Table IV. $1{ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR data ($\mathrm{ppm}, \mathrm{CDCl}_{3}$, r.t.) of the 2,5-distyrylbenzene complexes 14a, 14b, $\mathbf{1 5}$

	${ }^{13} \mathrm{C}$-NMR data. 2,5-distyrylbenzene																		${ }^{13} \mathrm{C}$ - NMR data. $\mathrm{N}^{\mathbf{N}} \mathrm{N}$ (tbbpy, bpy, tmeda) ${ }^{(8)}$						
	Aryl						$\mathrm{CH}=\mathrm{CH}-\mathrm{Ph}$												C12'	CH16'	C14'	CH15'	CH13'	C^{\prime}	'Bu'
	C1	C2	CH3				= $\mathrm{CH} \alpha$	= $\mathrm{CH} \beta$	i i-c	$\mathrm{o}-\mathrm{CH}$	m-CH	p-CH							C12	CH16	C14	CH15	CH13	c	'Bu'
14a	146.4	140.0	132.2				133.9	125.7	139.3	128.4	128.4	126.3							154.1	150.3	163.4	123.6	117.8	35.7	30.7
,																			155.7	151.9	162.8	124.9	118.4	35.6	30.4
									$\mathrm{CH}=$	H-Ph'					$\mathrm{CH}=\mathrm{CH}$				C12'	CH16'	CH14'	CH15'	CH13'		
	C1	C2	CH3	C4	C5	CH6	= $\mathrm{CH} \alpha^{1}$	= $\mathrm{CH} \mathrm{\beta}^{\prime}$	$i-\mathrm{C}$	$\mathrm{O}-\mathrm{CH}$	m-CH	p-CH	= $\mathrm{CHa}^{\prime \prime}$	=CH1"	$i-\mathrm{C}$	O-CH	m-CH	p-CH	C12	CH16	CH14	CH15	CH13		
15	150.4	143.2	129.2	121.5	133.8	133.3	132.2	127.3	138.2	126.9	128.6	127.9	127.7	130.4	137.8	126.9	128.9	127.8	153.8	151.1	139.2	127.0	121.5		
																			156.2	151.4	138.9	127.1	122.2		
									$\mathrm{CH}=\mathrm{C}$	H-Ph															
	C1	C2	CH3				= $\mathrm{CH} \alpha$	= $\mathrm{CH} \beta$	$i-\mathrm{C}$	O-CH	m-CH	p -CH								CH_{2}		Me			
14b	142.9	140.2	131.7				134.4	125.6	139.5	126.4	128.8	126.5								2.8, 58.5		.9, 49.9,	49.4, 47.9		

Ha ' (in 15) because the N N ligand lies in a plane perpendicular to the plane of the distyryben.
very close in the 'H spectrum, so that in the NCESY spectrum the cross-peak lies on the diagonal.

[^7]Table IV. $2{ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR data (ppm, CDCl_{3}, r.t.) of the complexes 22, 23, 23*

 (a) Some ${ }^{13} \mathrm{C}$ resonances of the 2,5 -distyrylbenzene group change significantly in $\mathbf{2 2 , 2 3 , 2 3 ^ { * }}$ with respect to $\mathbf{1 4 a}, \mathbf{1 4 b}, \mathbf{1 5}$. Thus, the carbons $C 1$ and $C 2$ are shifted to lower frequencies in $\mathbf{2 2 , 2 3 , 2 3 ^ { * }}$ and the relative
positions of the ethylene carbons $C H^{\alpha}$ and $C H^{\beta}$ are exchanged, with $\delta(C H \alpha)<\delta(C H \beta)$ in $22,23,23^{*}$ while the opposite is observed in $14 a, 14 b, 15 \delta(C H \alpha)>\delta(C H \beta)$. A similar effect is not observed for the protons $H \alpha$ (b) The imine carbon of the ${ }^{\text {a }} \mathrm{C}=\mathrm{N}$ - X $\mathrm{y}^{\text {in } A}$. group can be assigned based on the correlation with the H 3 proton in the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ - HMBC experiment. The other two $\mathrm{C}=\mathrm{N}$ - Xy resonances cannot be distinguished, because they do not correlate with any ${ }^{1} \mathrm{H}$ resonance.
(c) Too weak to be observed
(d) The assigned resonances of the minor isomer $\mathbf{2 3 ^ { * }}$ are included in the table in brackets and in grey.
Table IV. $3{ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR data ($\mathrm{ppm}, \mathrm{CDCl}_{3}$, r.t.) of the indenyl and indacenediide complexes $16-21^{\text {(a) }}$

Table IV. 3 (continuation)

(a) Two numbers separated by " $\&$ " indicate that it has not been possible to assign the separate resonances.
(b) The two halves of the tbbpy and bpy ligands have been assigned based on NOE contacts between $\mathrm{H} 16^{\prime}{ }^{\prime}{ }^{1}{ }^{1} \mathrm{H}$ resonances of the benzyl and R -2 groups, and between H 16 and ${ }^{1} \mathrm{H}$ resonances of the R-3 group. For complexes $\mathbf{1 7 a}$ and 20 the NOE contacts were not selective, and the distinction between the two halves of the $\mathrm{N}^{\wedge} \mathrm{N}$ ligands was not possible.
(d) The Me-2 groups are always deshielded (in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra) with respect to Me-3 groups, due (at least for the ${ }^{1} \mathrm{H}$ spectra) to the anisotropic effect of the benzyl group. (The variations in the ${ }^{13} \mathrm{C}$ chemical shifts are
usually influenced by more factors, involving the paramagnetic contributions to the NMR shielding constant)
For 17b: (e) ${ }^{13} \mathrm{C}$ data for the major isomer (g) Major isomer (h) Minor isomer

IV.3.7.1 NMR Data of 14a,b, 22, 23, and 23*

The dinuclear complexes containing the 2,5-distyrylbenzene moiety (14a,b, 22, 23, and 23*) show a single set of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR resonances for the halves of the molecule. We suggest that 14a,b, 22, and $\mathbf{2 3}$ contain an inversion center in solution (confirmed for 23 by low-quality X-ray analysis data, see Figure IV.4), while the minor isomer 23* would possess a C_{2} axis. The separate resonances of $\mathbf{2 3}$ and $\mathbf{2 3}$, in a 1:0.3 ratio, are clearly observed in the APT spectrum of the mixture (Figure IV.1).

174172 ppm

Figure IV. 1 APT spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of complexes $\mathbf{2 3}$ and $\mathbf{2 3}^{*}$ with expansions. The separate resonances for both complexes can be clearly observed in ca. 1:0.3 ratio. The Xy resonances of the major isomer (23) are labeled in capital letters, while those of the minor isomer ($\mathbf{2 3}^{*}$) are labeled in small-case letters. Only a weak $\mathrm{C} \equiv \mathrm{N}$ resonance is observed, which is assigned to the major isomer $\mathbf{2 3}$

IV.3.7.1.1 Assignment of the NMR Resonances of 23 and 23*

From the three inserted XyNC groups in 23 and 23* only the imine ${ }^{13} \mathrm{C}$ resonance of $\mathrm{XyNC}^{\mathrm{in}, \mathrm{A}}$ (for 23) and $\mathrm{XyNC}^{\text {in,a }}$ (for 23*) can be assigned, based on the correlation with the corresponding H 3 proton of the central aryl ring $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right.$ HMBC spectrum, Figure IV.2). The other two $\mathrm{C}=\mathrm{NXy}{ }^{13} \mathrm{C}$ imine resonances cannot be distinguished because they do not correlate with any ${ }^{1} \mathrm{H}$ resonances.

Figure IV. 2 Section of the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMBC spectrum of $\mathbf{2 3}$ and $\mathbf{2 3}$ * showing the ${ }^{3} \mathrm{~J}_{\mathrm{CH}}$ correlations between the imine carbons of $\mathrm{XyNC}^{\mathrm{in}, \mathrm{A}}$ (for 23) and $\mathrm{XyNC}^{\mathrm{in}, \mathrm{a}}$ (for 23*) with the corresponding H3 proton of the central aryl ring

Figure IV. 3 shows another section of the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMBC spectrum of 23 and $\mathbf{2 3 *}^{*}$, where the ${ }^{3} \mathrm{~J}_{\mathrm{CH}}$ couplings between the ipso carbons and the methyl protons within each of the three inserted XyNC groups in 23 ($\mathrm{XyNC}^{\mathrm{in}, \mathrm{A}}, \mathrm{XyNC}^{\mathrm{in}, \mathrm{B}}$, and $\mathrm{XyNC}^{\mathrm{in}, \mathrm{C}}$) and 23* $\left(\mathrm{XyNC}^{\mathrm{in}, \mathrm{a}}, \mathrm{XyNC}^{\mathrm{in}, \mathrm{b}}\right.$, and $\left.\mathrm{XyNC}{ }^{\mathrm{in}, \mathrm{c}}\right)$ can be clearly seen.

Figure IV. 3 Section of the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMBC spectrum of $\mathbf{2 3}$ and $\mathbf{2 3 *}$ showing the ${ }^{3} \mathrm{~J}_{\mathrm{CH}}$ correlations between the ipso carbons and the methyl protons within each of the inserted XyNC groups. The Me resonances of the major isomer (23) are labeled in capital letters, while those of the minor isomer (23*) are labeled in small-case letters

The distinction between the three inserted XyNC groups is based on selective NOE contacts found between the Me resonances of these groups and the protons $\mathrm{H} \alpha, \mathrm{H} \beta, \mathrm{H} 3$ and o - H of the central 2,5-distyrylbenzene moiety. The relevant section of the ${ }^{1} \mathrm{H}$ NOESY spectrum is shown in Figure IV. 4 together with an X-ray structure of $\mathbf{2 3}$ which was not of adequate quality to be reported, because of disorder effects. The NOE crosspeaks are surrounded by orange rectangles, and corresponding orange arrows have been drawn in the structure. We can make the following observations:
i) $\mathbf{X y N C}{ }^{\mathbf{i n}, \mathbf{B}}$ is assigned by the NOE between $\mathrm{Me}^{\mathrm{B}^{\prime}}$ and an o-H of the Ph group.
ii) XyNC ${ }^{\text {nn,C }}$ shows a weak NOE between Me^{C} and both $\mathrm{H} \alpha$ and $o-\mathrm{H}$ Ph. However, the assignment of this group is based mainly on the strong NOE between Me^{C} and $\mathrm{Me}^{\mathrm{A}^{\prime}}$, shown with a pink arrow in the structure in Figure IV. 3 and which can be observed in Figure IV. $4\left({ }^{1} \mathrm{H}\right.$ EXSY spectrum of $\mathbf{2 3}$ and $\left.\mathbf{2 3}^{*}\right)$, surrounded by a pink rectangle.
iii) The assignment of $\mathbf{X y N C}{ }^{\mathbf{i n , A}}$ is confirmed by the NOE between Me^{A} and both $\mathrm{H} \beta$ and H3 (Figure IV.4).
iv) For the minor isomer 23* the ${ }^{1} \mathrm{H}$ resonances are assigned from the exchange cross-peaks between the Me groups of $\mathbf{2 3}$ and $\mathbf{2 3 *}^{*}\left({ }^{1} \mathrm{H}\right.$ EXSY in Figure IV.4).
v) $\mathbf{M e}{ }^{\mathbf{A}}$ would be shifted to higher frequency because it sits on the plane of the central aryl ring and the styrene groups, and thus it is deshielded by their anisotropic effect. $\mathbf{M e}^{\mathbf{A}}$, on the contrary, would be shielded because it sits over the styrene group, where the anisotropic effect is negative. $\mathbf{M e}^{\mathbf{C}}$ would be strongly shielded by the ring current of $\mathrm{XyNC}^{\mathrm{in}, \mathrm{B}}$.
vi) No NOE cross-peaks are observed between $\mathrm{XyNC}^{\text {co }}$ and $\mathrm{XyNC}^{\mathrm{in}, \mathrm{C}}$, although a $\mathrm{Me}^{\mathrm{co}} / \mathrm{Me}^{\mathrm{C}}$ cross-peak could be obscured by the diagonal
vii) A strong NOE is observed between H 3 and $\mathrm{H} \beta$, showing that in solution the orientation of the styrene groups is the same as in the solid state.

Figure IV. 4 Section of the ${ }^{1} \mathrm{H}$ NOESY spectrum of $\mathbf{2 3}$ and $\mathbf{2 3 *}^{*}$. The NOE cross-peaks between some of the Me groups and the protons $\mathrm{H} \alpha, \mathrm{H} \beta, \mathrm{H} 3$ and $o-\mathrm{H} \mathrm{Ph}$ of the central 2,5-distyrylbenzene group are surrounded by orange rectangles and indicated by orange arrows in the X-ray structure. These NOE contacts allow the assignment of the three inserted XyNC groups. The (non-relevant) NOE cross-peaks within each Xy group (between the Me groups and the m-H's) are surrounded by black circles

IV.3.7.1.2 Dynamic Behavior of 22, 23 and 23*

The inserted XyNC groups in 22, 23 and 23* behave differently, as a single Me resonance is observed for $\mathbf{2 2}$ (indicating free rotation around the $\mathrm{N}-\mathrm{Xy}$ bond), while for 23 and 23* each of the inserted XyNC groups affords two separate Me resonances (as well as two separate o-C and m-CH resonances), indicating hindered rotation around the $\mathrm{N}-\mathrm{Xy}$ bond caused by the larger steric hindrance within the molecule. In contrast, the coordinated XyNC groups afford single $\mathrm{Me}, o-\mathrm{C}$, and m - CH resonances in each complex, because of free rotation around the $\mathrm{N}-\mathrm{Xy}$ bond (and the equivalence of the two CNXy groups on each Pd in complex 22).

The ${ }^{1} \mathrm{H}$ NOESY/EXSY spectrum of 23 and 23* affords more insight into the dynamic behavior of these complexes in solution. A section of the Me region of the spectrum is shown in Figure IV.5. Exchange cross peaks can be observed between the Me resonances of the major (23) and minor (23*) isomers, revealing a slow exchange process that interconverts both stereoisomers. This equilibrium explains why both isomers are always present in solution in the same ratio, even when crystals of the major isomer are dissolved. Additionally, the EXSY spectrum shows that the rotation around the $\mathrm{N}-\mathrm{Xy}$ bonds of two of the inserted isocyanides in the major isomer ($\mathrm{XyNC}^{\mathrm{in}, \mathrm{B}}$ and $\mathrm{XyNC}{ }^{\mathrm{in}, \mathrm{C}}$) is indeed taking place, although very slowly, while for the third group ($\mathrm{XyNC}^{\text {in,A }}$) no rotation is observed, probably because of the steric hindrance caused by the Br ligand. The same behavior is found for the minor isomer, 23*. Interestingly, each of the Me groups of $\mathrm{XyNC}^{\text {in,A }}$ exchanges with both Me groups in the minor isomer $\left(\mathrm{XyNC}^{\mathrm{in}, \mathrm{a}}\right)$, meaning that during the interconversion between stereoisomers the $\mathrm{N}-\mathrm{Xy}$ bond of this isocyanide can indeed rotate.

It is also interesting to observe that some of the Me resonances of $\mathbf{2 3}$ and $\mathbf{2 3 *}^{*}$ are almost coincident ($\mathrm{Me}^{\mathrm{A}} / \mathrm{Me}^{\mathrm{a}}, \mathrm{Me}^{\mathrm{B}} / \mathrm{Me}^{\mathrm{b}}, \mathrm{Me}^{\mathrm{C}^{\mathrm{c}}} / \mathrm{Me}^{\mathrm{c}^{\mathrm{c}}}$ and those of the coordinated XyNC), while others are quite separated in $\mathrm{ppm}\left(\mathrm{Me}^{\mathrm{A}^{\prime}} / \mathrm{Me}^{\mathrm{a}^{\mathrm{a}}}, \mathrm{Me}^{\mathrm{B}^{\prime}} / \mathrm{Me}^{\mathrm{b}^{\prime}}\right.$ and $\left.\mathrm{Me}^{\mathrm{C}} / \mathrm{Me}^{\mathrm{c}}\right)$, meaning that their magnetic environment is quite different in both isomers. We suggest that the interconversion between both stereoisomers takes place via rotation around the $\mathrm{C}-\mathrm{C}$ bond between the central ring and one of the $\left[\mathrm{C}(=\mathrm{NXy})\{\mathrm{C}(=\mathrm{NXy})\}_{2}\{\operatorname{PdBr}(\mathrm{CNXy})\}\right]$ moieties, as shown by the circular arrow in Figure IV.4. The Me groups which would be more affected in their chemical shifts by the rotation would be those directed toward the inner part of the molecule, which are indeed $\mathrm{Me}^{\mathrm{A}^{\prime}}, \mathrm{Me}^{\mathrm{B}^{\prime}}$ and Me^{C}.

Figure IV.5. Section of the ${ }^{1} \mathrm{H}$ NOESY/EXSY spectrum of $\mathbf{2 3}$ and $\mathbf{2 3}^{*}$, showing the Me region. The Me resonances of the major isomer (23) are labeled in capital letters, while those of the minor isomer (23*) are labeled in lower-case letters. The exchange cross-peaks are surrounded by dotted rectangles. No crosspeaks are observed between $\mathrm{Me}^{\mathrm{A}} / \mathrm{Me}^{\mathrm{A}^{\prime}}$ or between $\mathrm{Me}^{\mathrm{a}} / \mathrm{Me}^{\mathrm{a}^{3}}$ (empty blue rectangles). The observed exchange processes are summarized in the arrow diagram. The dotted arrows represent presumed exchange cross-peaks ($\mathrm{Me}^{\mathrm{A}} / \mathrm{Me}^{\mathrm{a}^{\mathrm{a}}}, \mathrm{Me}^{\mathrm{B}} / \mathrm{Me}^{\mathrm{b}}$, and $\mathrm{Me}^{\mathrm{C}} / \mathrm{Me}^{\mathrm{c}^{\mathrm{s}}}$) which cannot be observed because of their coincidence with the diagonal. The pink rectangles surround NOE cross-peaks found between Me^{C} and $\mathrm{Me}^{\mathrm{A}^{\prime}}$, as well as between Me^{c} and Me^{a}. These NOE cross-peaks have the same sign as the diagonal and exchange crosspeaks because of the size of the molecule (slow-motion regime).

IV.3.7.2 NMR data of the Indacenediide and Indenyl Complexes 16-21

For the dinuclear indacenediide complexes 16-18 (with the exception of 17b) a single set of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR resonances is observed. This is in agreement with the reactions being regio- and stereoselective, and with the presence of an inversion center (for the anti isomers) or a C_{2} symmetry axis (for the syn isomers) in the resulting complexes. The NMR data do not allow a distinction between syn and anti isomers, and thus these can only be identified when X-ray diffraction data are available. Interestingly, the phase-sensitive ${ }^{1} \mathrm{H}$-NOESY experiments have revealed a slow exchange process between the halves of the tbbpy and bpy ligands in all of the indenyl and indacenediide complexes, while for tmeda this behavior has only been observed for $\mathbf{1 7 b}$. This dynamic process might involve the coordination of the counteranion $\left(\mathrm{OTf}^{-}\right.$or ClO_{4}^{-}) to the Pd atom, leading to a five-coordinate intermediate, followed by dissociation of one of the N atoms which, after rotation around the remaining Pd-N bond and recoordination, would result in the exchange of the halves of the chelate ligands. Such exchange processes involving bpy ligands have been observed before, and a similar mechanism involving different counteranions was proposed. ${ }^{81}$ We consider a partial dissociation of the ligands more plausible than a rearrangement within the five-coordinate intermediate, because of the steric hindrance around the Pd atoms. In the tmeda complex 17b the exchange is selective between the opposed Me groups of the tmeda, ${ }^{\mathrm{b}}$ an indication that the process does not involve rotations and N -inversion processes within the ligand. Surprisingly, no slow exchange was observed for the tmeda complexes $\mathbf{1 6 b}$ and 18b. This different behavior could be explained by the lower electron-withdrawing ability of the tmeda ligand and the presence of Ph groups in the coordination sphere of the Pd in these two complexes, which could hinder the coordination of the anion and thus the exchange process. In the neutral 2,5-distyrylbenzene complexes $\mathbf{1 4 a , b}$ and 15 no exchange between the halves of the $\mathrm{N}^{\wedge} \mathrm{N}$ ligands was observed either, supporting the involvement of the counterions in this process.

The hapticity of indenyl ligands in solution can be assessed spectroscopically by the difference in the ${ }^{13} \mathrm{C}$ chemical shifts of the ring junction carbons with respect to those of NaInd, $\Delta \delta\left(\mathrm{C}_{\mathrm{junc}}\right) .{ }^{82-84}$ Large negative values of $\Delta \delta\left(\mathrm{C}_{\mathrm{junc}}\right)$ in the range of -30 to -45 ppm (shift to lower frequencies) indicate an η^{5} coordination of the indenyl ligand, ${ }^{84,85}$ while

[^8]positive values of $\Delta \delta\left(\mathrm{C}_{\mathrm{junc}}\right)$ above +20 ppm indicate an η^{3} coordination. ${ }^{84,86}$ Intermediate values, from ca. -25 to +10 ppm , are indicative of increasingly slipped η^{5}-indenyl ligands. ${ }^{83-85,87}$ For our indenyl complexes $\mathbf{1 9 - 2 1}, \Delta \delta\left(\mathrm{C}_{\text {junc }}\right)$ is +4.4 ppm for $\mathbf{1 9}^{\boldsymbol{`}},+6.8 \mathrm{ppm}$ for $\mathbf{2 0}$, and +6.0 ppm for $\mathbf{2 1}{ }^{\mathrm{c}}$, indicating that the indenyl ligands are significantly slipped toward an η^{3} coordination. These values are similar to those found for our previous Pd indenyl complexes, ${ }^{22,24}$ for which $\Delta \delta\left(\mathrm{C}_{\mathrm{junc}}\right)$ was in the range +2.2 to +6.7 ppm .

A large negative difference in chemical shift between the central and terminal "allylic carbons" $\left(\Delta \delta_{13 \mathrm{C}}=\delta_{\mathrm{C}(1,3)}-\delta_{\mathrm{C}(2)}\right)$ has also been proposed as an indication of a strong allyl-ene distortion in indenyl complexes. ${ }^{88}$ These $\Delta \delta 13_{\mathrm{C}}$ values are in the range -36.9 to $\mathbf{- 4 0 . 5} \mathrm{ppm}$ for $\mathbf{1 9 - 2 1}$, also supporting an η^{3} coordination. These solution data are in agreement with the degree of ring slippage observed in the X-ray structures of 19 and 21 (see Section IV.3.8).

The same ${ }^{13} \mathrm{C}$ NMR criteria can be applied to assess the hapticity of indacenediyl complexes. ${ }^{36,72}$ In our complexes $\mathbf{1 6 - 1 8}$, the ring junction carbons $C(4,5)$ all resonate at higher frequencies (in the range $133.5-138.6 \mathrm{ppm}$) in comparison to those in the s indacenediide anion $(127.8 \mathrm{ppm}),{ }^{89}$ affording $\Delta \delta\left(\mathrm{C}_{\mathrm{junc}}\right)$ values of +5.7 to +10.8 ppm . The $\left(\Delta \delta_{13_{\mathrm{C}}}=\delta_{\mathrm{C}(1,3)}-\delta_{\mathrm{C}(2)}\right)$ values are in the range -34.3 ppm (for $\mathbf{1 7 a}$) to -42.5 ppm (for 18b). Both sets of data suggest a significantly slipped η^{3}, η^{3} coordination mode for the ligands in solution, similar to that observed in the solid-state X-ray structures of $\mathbf{1 6 a}, \mathbf{b}$ and 18a' (see next Section).

IV.3.8 X-Ray Structure Determinations

The crystal structures of the indacenediide complexes anti-16a $\cdot 7 \mathrm{CDCl}_{3}$ (Figure IV.6), syn-16b. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Figure IV.7) and anti-18a' $\cdot 4 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Figure IV.8), and the indenyl complexes 19 (Figure IV.9) and 21 (Figure IV.10) have been determined by Xray diffraction studies (see also Tables IV.4-10). ${ }^{\text {d }}$

[^9]Table IV. 4 X-ray crystallographic data for compounds $\mathbf{1 6 a} \cdot 7 \mathrm{CDCl}_{3}, \mathbf{1 6 b} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathbf{1 8 a} \cdot \cdot 4 \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathbf{1 9}$, and $\mathbf{2 1}{ }^{\text {(2) }}$

	16a. $7 \mathrm{CDCl}_{3}$	16b. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$18 \mathrm{a} \cdot{ }^{\text {. }}$ CH2 Cl_{2}	19	21
Formula	$\mathrm{C}_{95} \mathrm{H}_{84} \mathrm{D}_{7} \mathrm{Cl}_{21} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Pd}_{2} \mathrm{~S}_{2}$	$\mathrm{C}_{65} \mathrm{H}_{70} \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Pd}_{2} \mathrm{~S}_{2}$	$\mathrm{C}_{80} \mathrm{H}_{88} \mathrm{Cl}_{10} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Pd}_{2}$	$\mathrm{C}_{47} \mathrm{H}_{34} \mathrm{BrF}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{PdS}$	$\mathrm{C}_{42} \mathrm{H}_{324} \mathrm{BrF}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{PdS}$
$M_{\text {r }}$	2527.13	1465.07	1800.84	950.13	888.07
T (K)	133(2)	100(2)	100(2)	100(2)	100(2)
$\lambda(\AA)$	0.71073	1.54184	0.71073	0.71073	0.71073
cryst syst	triclinic	triclinic	monoclinic	monoclinic	monoclinic
space group	$P \overline{1}$	${ }^{-1}$	$P 2_{1} / \mathrm{c}$	$P 2_{1} / n$	$P 2,1 / c$
cell constants					
$a(\AA)$	14.4062(12)	13.6279(6)	14.9171(2)	12.8550(4)	14.0869(3)
$b(\AA)$	19.8994(16)	13.8070(6)	$22.1678(3)$	24.6545(7)	14.8008(2)
$c(\AA)$	22.0291(18)	19.2244(10)	13.1545(3)	13.0448 (6)	18.4244(3)
α (deg)	64.271(4)	93.796(4)	90	90	90
β (deg)	74.026(4)	103.789(4)	108.661(2)	98.382(5)	108.439(3)
γ (deg)	88.309(4)	112.947(4)	90	90	90
$V\left(\AA^{3}\right), Z$	5439.8(8), 2	3183.4(3), 2	4121.24(12), 2	4090.2(3), 4	3644.25(11), 4
ρ (calcd) ($\mathrm{Mg} \mathrm{m}^{-3}$)	1.543	1.528	1.451	1.543	1.619
abs. coef. (mm^{-1})	0.947	6.547	0.816	1.540	1.722
$F(000)$	2544	1496	1844	1912	1784
cryst size (mm)	$0.4 \times 0.2 \times 0.05$	$0.2 \times 0.2 \times 0.1$	$0.4 \times 0.2 \times 0.1$	$0.40 \times 0.25 \times 0.05$	$0.35 \times 0.20 \times 0.20$
θ range (deg)	1.07-27.52	3.53-75.96	2.34-30.03	2.24-26.37	2.33-30.03
	$-18 \leq h \leq 18$	$-17 \leq h \leq 17$	$-20 \leq h \leq 20$	$-16 \leq h \leq 16$	$-19 \leq h \leq 19$
index ranges	$-25 \leq k \leq 25$	$-17 \leq k \leq 17$	$-31 \leq k \leq 31$	$-30 \leq k \leq 30$	$-20 \leq k \leq 20$
	$-28 \leq l \leq 28$	$-19 \leq l \leq 24$	$-18 \leq l \leq 18$	$-16 \leq l \leq 16$	$-25 \leq l \leq 25$
reflections collected	76772	51588	203781	101330	227869
independent reflections	24845	13164	11989	8359	10599
$R_{\text {int }}$	0.0667	0.0392	0.0303	0.0668	0.0346
abs corr	semi-empirical from equivalents	semi-empirical from equivalents	semi-empirical from equivalents	Gaussian (face-indexed)	semi-empirical from equivalents
transmissions	0.954-0.789	1.000-0.503	1.000-0.920	0.868-0.597	1.000-0.890
refinement method	full-matrix least squares on F^{2}				
no. of data/restraints/params	24845/1823/1237	13164/447/875	11989/86/510	8359/0/523	10599/0/480
goodness-of-fit on F^{2}	1.035	1.049	1.085	0.904	1.051
Final R indices ($1>2 \sigma(l)$)					
R1	0.0746	0.0395	0.0328	0.0305	0.0316
$w R 2$	0.1766	0.1113	0.0902	0.0688	0.0803
R indices (all data)					
R1	0.1287	0.0413	0.0417	0.0497	0.0383
$w R 2$	0.2010	0.1130	0.0929	0.0707	0.0845
largest diff peak (e \AA^{-3})	2.666	0.825	0.794	1.008	2.234
largest diff hole (e \AA^{-3})	-2.824	-1.373	-1.563	-0.415	-1.149

(a) Special features: For $\mathbf{1 6 a} \cdot \mathbf{7 \mathbf { C D C l } _ { 3 }}$, the Bu group at C 27 , the Ph ring at C 51 , the OTf at S 2 and the CDCl_{3} molecule at C 106 are all disordered over two positions; $\mathrm{Cl}_{1} 07$ and $\mathrm{C108}$ represent alternative
orientations of the same CDCl_{3} molecule. For $\mathbf{1 6 b} \cdot \mathbf{C H}_{2} \mathbf{C l}_{2}$, one OTf and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecule are disordered over two positions. For $\mathbf{1 8 a} \cdot \mathbf{4} \mathbf{C H}_{2} \mathbf{C l}_{2}$, the ClO_{4} anion and one $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ are slightly disordered (minor components $9 \%, 18 \%$ respectively). Suitable restraints were employed to improve the refinement of disordered groups, but their dimensions should be interpreted with caution.

The indacenediide complex with tmeda, syn $\mathbf{- 1 6 b} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Figure IV.7), shows a synfacial coordination of the two $[\mathrm{Pd}($ tmeda $)]$ moieties, with approximate C_{2} symmetry (although some of the ring orientations depart from this ideal symmetry). ${ }^{36}$ In contrast, both tbbpy complexes, anti-16a• $7 \mathrm{CDCl}_{3}$ (two molecules on inversion centers, Figure IV.6) and anti-18a' $\cdot 4 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (one molecule on an inversion center, Figure IV.8) show anti geometries, with the two $[\mathrm{Pd}(\mathrm{tbbpy})]$ moieties on opposite sides of the indacenediide plane. Maybe the larger volume of the tbbpy ligand plays a role in the anti steric preference observed with this ligand. Crystallographic investigations of other homonuclear bimetallic indacenediide complexes have revealed both $\operatorname{syn}^{60,61,66,71,72}$ and anti ${ }^{59,68,71}$ geometries. In the complex syn-16b (Figure IV.7), ${ }^{36}$ the steric interaction between the two [$\mathrm{Pd}($ tmeda $)$] moieties is diminished by a significant deviation from planarity of the indacenediide ligand, which loses part of its aromaticity upon coordination, (the atoms C1-7 and C10 are fairly coplanar, with a mean deviation of 0.04 \AA, but the atoms $\mathrm{C} 8,9,11,12$ lie $0.39,0.23,0.45$, and $0.26 \AA$, respectively, out of the plane, all to the same side). Similar deviations have been found in other syn indacenediide complexes, ${ }^{66,71,72}$ while in the anti isomers the ligand usually retains its planarity. ${ }^{68,71}$ Indeed, in our complexes anti-16a and anti-18a' the indacenediide is reasonably planar (mean deviations all $0.03 \AA$ excluding C 2 and its symmetryequivalent). For all three indacenediide complexes, anti-16a• $7 \mathrm{CDCl}_{3}$, syn-16b. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and anti-18a' $\cdot 4 \mathrm{CH}_{2} \mathrm{Cl}_{2}$, the bond distances between the ring junction carbons (C 4 and C 5 in our general numbering system; see Chart IV.1) ${ }^{\mathrm{e}}$ and the terminal "allylic carbons" (C1 and C3 in Chart IV.1) are significantly longer (1.473(4)-1.492(8) $\AA)$ than the other C-C bond distances within the indacenediide "core" (1.383(8)-1.447(8) $\AA)$. This feature is thus independent of the binding mode and probably reflects the different resonance forms contributing to the structure.

The degree of ring slippage from η^{5} to η^{3} in indenyl complexes can be related to three parameters, according to Taylor and Marder: ${ }^{84,85,87}$ the slip parameter (Δ), which is the difference in the average bond lengths of the metal to the indenyl ring junction carbons (C4, C5 in our numbering system; see Chart IV.1), and to the adjacent carbon atoms of the five-membered ring ($\mathrm{C} 1, \mathrm{C} 3$), the hinge angle (HA), which is the angle between normals to the least squares planes defined by $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3$ and by $\mathrm{C} 1, \mathrm{C} 5, \mathrm{C} 4$,

[^10]C3 (i.e., the bending of the indenyl ligand at C1, C3), and the fold angle (FA), which is the angle between normals to the least squares planes defined by $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3$ and by the six benzenoid carbons of the indenyl ligand (i.e., the bending of the indenyl ligand at the junction carbons). Other parameters (slip angle and slip distortion) ${ }^{f}$ have been suggested by other authors. ${ }^{90}$ In general, indenyl complexes considered to be ideally or only slightly distorted η^{5} show values of Δ less than ca. $0.15 \AA$ and HA, FA less than ca. 8-9 ${ }^{\circ} .{ }^{83-85,91-93}$ Stronger slip-fold distortions lead to values of Δ up to $0.50 \AA$ and HA, FA up to $16-17^{\circ}$. ${ }^{83-85,87,93,94}$ Complexes considered to be η^{3} show values of Δ between 0.7 and $0.8 \AA$ and HA, FA above $20^{\circ} .^{86,92,95}$ These parameters can also be applied to indacenediide complexes. ${ }^{36}$ Table IV. 5 shows the Δ, HA, and FA values for both Pd-C5 rings in anti16a, syn-16b and anti-18a', and also for the indenyl complexes 19 and 21, together with those of our previously reported indenylpalladium complexes: $\left[\mathrm{Pd}\left\{\eta-\mathrm{C} \mathrm{C}_{9} \mathrm{H}-\mathrm{Bn}-1-(\mathrm{Ph})_{2}-\right.\right.$
2,3-(OMe) $\left.{ }_{3}-5,6,7\right\}$ (tmeda)]OTf
(IV), ${ }^{22}$
$\left[\mathrm{Pd}\left\{\eta-\mathrm{C}_{9} \mathrm{H}_{2}-\mathrm{Bn}-1-\mathrm{Ph}-3-(\mathrm{OMe})_{3}{ }^{-}\right.\right.$ $5,6,7\}($ tmeda $)] O T f(V),{ }^{22}\left[\mathrm{Pd}\left\{\eta-\mathrm{C}_{9} \mathrm{H}_{2} \mathrm{Bn}-1-(\mathrm{Ac})-2-(\mathrm{OMe})_{3}-5,6,7\right\}\right.$-(tmeda) $] \mathrm{OTf}(\mathbf{V I}),{ }^{24}$ $\left[\operatorname{Pd}\left\{\eta-\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{Bn}-1-\mathrm{Ph}-3\right\}(\right.$ tmeda $\left.)\right] \mathrm{OTf} \quad$ (VII), ${ }^{24} \quad$ and $\quad\left[\mathrm{Pd}\left\{\eta-\mathrm{C}_{9} \mathrm{H}_{4} \mathrm{Bn}-1-\mathrm{Ph}-2-\mathrm{Me}-\right.\right.$ $3\}$ (bpy)]OTf (VIII). ${ }^{24}$ We have slightly modified the definition of the fold angle FA as the angle between the least squares planes defined by $\mathrm{C} 1, \mathrm{C} 5, \mathrm{C} 4, \mathrm{C} 3$ and by the six benzenoid carbons. We think that this is a better indication of the bending at $\mathrm{C} 4, \mathrm{C} 5$, considering the non-planarity of the five-membered ring. Indeed, some authors had already noticed that the FA as previously defined is not necessarily a good indication of η^{3}-slippage for indenyl groups: in some $\left[\mathrm{Pd}_{2}\left(\mu-\eta^{3} \text {-indenyl }\right)_{2}(\text { isocyanide })_{2}\right]$ complexes, a clear η^{3}-allyl-ene bonding mode of the indenyl groups was found, while the distortion of the indenyl groups from planarity was very small (FA $=10^{\circ}$), ${ }^{96}$ and in a dicarbonyl (η^{3} indenyl) (η^{5}-indenyl)vanadium(II) complex a Δ value of $0.50 \AA$ was accompanied by a small FA of 12°, for the η^{3}-indenyl group. ${ }^{97}$ The values shown in Table IV. 5 indicate that the hapticity of both our indacenediide and indenyl ligands is intermediate between η^{3} and η^{5}, the Δ values found for anti-16a and syn-16b being among the largest reported for any dinuclear indacenediide complex. ${ }^{59-61,63,66,68,71,72}$

[^11]

Chart IV. 1
Numbering system used in the crystallographic X-ray data discussion

Table IV. 5

Ring slippage parameters, $\Delta, \mathbf{H A}$, and $\mathbf{F A}$, obtained from crystallographic X-ray data for the indacenediide complexes anti-16a $\cdot 7 \mathrm{CDCl}_{3}$, syn-16b $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, and anti-18a' $\cdot 4 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the indenyl complexes 19, 21, and IV-VIII

Compound		$\Delta(\AA)^{\text {a }}$	HA (deg) ${ }^{\text {b }}$	FA (deg)	Reference
anti-16a	Pd1	0.35	15	5	this work
	Pd2	0.35	15	5	
syn-16b	Pd1	0.36	15	6	this work
	Pd2	0.38	17	8	
anti-18a'	Pd 1 and Pd2	0.27	14	5	this work
19		0.37	15	5	this work
21		0.42	17	1	this work
IV		0.35	13	7	22
V		0.39	12	10	22
VI		0.36	15	11	24
VII		0.41	15	18	24
VIII		0.42	16	15	24

${ }^{\text {a }} \Delta=$ average d[M-C1, C3] - average d[M-C4, C5]. ${ }^{\mathrm{b}} \mathbf{H A}$ (hinge angle) is the angle defined by [C1, $\mathrm{C} 2, \mathrm{C} 3]$ and $[\mathrm{C} 1, \mathrm{C} 5, \mathrm{C} 4, \mathrm{C} 3] .{ }^{\mathrm{c}} \mathbf{F A}$ (fold angle) is the angle defined by the six benzenoid carbons and [C1, C5, C4, C3]. The numbering system is shown in Chart IV.1. Note that for various reasons (crystallographic symmetry, more than one Pd atom in the asymmetric unit) the crystallographic numbering may differ from that in Chart IV.1.

Figure IV. 6
Thermal ellipsoid plot (50% probability level) of anti-16a $\cdot 7 \mathrm{CDCl}_{3}$. Only the cation is shown

Table IV. 6 Selected bond lengths (\AA) and angles (deg) of anti-16a•7CDCl ${ }_{3}$

$\mathrm{Pd}(1)-\mathrm{C}(1)$	2.208(6)	$\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{C}(2)$	37.9(2)
$\mathrm{Pd}(1)-\mathrm{C}(2)$	$2.180(5)$	$\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{C}(3)$	63.4(2)
$\mathrm{Pd}(1)-\mathrm{C}(3)$	2.193(6)	$\mathrm{C}(2)-\mathrm{Pd}(1)-\mathrm{C}(3)$	38.5(2)
$\mathrm{Pd}(1)-\mathrm{C}(4)$	2.549(5)	$\mathrm{N}(11)-\mathrm{Pd}(1)-\mathrm{N}(21)$	78.91(19)
$\operatorname{Pd}(1)-\mathrm{C}(5)$	$2.560(5)$	$\mathrm{N}(11)-\mathrm{Pd}(1)-\mathrm{C}(1)$	109.9(2)
$\mathrm{Pd}(1)-\mathrm{N}(11)$	2.070(5)	$\mathrm{N}(11)-\mathrm{Pd}(1)-\mathrm{C}(2)$	141.0(2)
$\mathrm{Pd}(1)-\mathrm{N}(21)$	2.076(5)	$\mathrm{N}(11)-\mathrm{Pd}(1)-\mathrm{C}(3)$	168.6(2)
$\mathrm{Pd}(2)-\mathrm{C}\left(1^{\prime}\right)$	2.189(6)	$\mathrm{N}(21)-\mathrm{Pd}(1)-\mathrm{C}(1)$	170.5(2)
$\mathrm{Pd}(2)-\mathrm{C}\left(2^{\prime}\right)$	2.185(6)	$\mathrm{N}(21)-\mathrm{Pd}(1)-\mathrm{C}(2)$	132.6(2)
$\mathrm{Pd}(2)-\mathrm{C}\left(3^{\prime}\right)$	2.188(6)	$\mathrm{N}(21)-\mathrm{Pd}(1)-\mathrm{C}(3)$	108.4(2)
$\operatorname{Pd}(2)-\mathrm{C}\left(4^{\prime}\right)$	2.532(5)	$\mathrm{C}\left(1^{\prime}\right)-\mathrm{Pd}(2)-\mathrm{C}\left(2^{\prime}\right)$	38.6(2)
$\mathrm{Pd}(2)-\mathrm{C}\left(5^{\prime}\right)$	$2.535(5)$	$\mathrm{C}\left(1^{\prime}\right)-\mathrm{Pd}(2)-\mathrm{C}\left(3^{\prime}\right)$	63.6(2)
$\mathrm{Pd}(2)-\mathrm{N}\left(11^{\prime}\right)$	2.080(5)	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{Pd}(2)-\mathrm{C}\left(3^{\prime}\right)$	37.9(2)
$\mathrm{Pd}(2)-\mathrm{N}\left(21{ }^{\prime}\right)$	2.086(5)	$\mathrm{N}\left(11^{\prime}\right)-\mathrm{Pd}(2)-\mathrm{N}\left(21^{\prime}\right)$	78.83(19)
		$\mathrm{N}\left(11^{\prime}\right)-\mathrm{Pd}(2)-\mathrm{C}\left(1^{\prime}\right)$	108.5(2)
		$\mathrm{N}\left(11^{\prime}\right)-\mathrm{Pd}(2)-\mathrm{C}\left(2^{\prime}\right)$	141.3(2)
		$\mathrm{N}\left(11^{\prime}\right)-\mathrm{Pd}(2)-\mathrm{C}\left(3^{\prime}\right)$	166.3(2)
		$\mathrm{N}\left(211^{\prime}\right)-\mathrm{Pd}(2)-\mathrm{C}\left(1^{\prime}\right)$	171.1(2)
		$\mathrm{N}\left(21^{\prime}\right)-\mathrm{Pd}(2)-\mathrm{C}\left(2^{\prime}\right)$	132.5(2)
		$\mathrm{N}\left(21^{\prime}\right)-\mathrm{Pd}(2)-\mathrm{C}\left(3^{\prime}\right)$	110.2(2)

Figure IV. 7
Thermal ellipsoid plot (30% probability level) of syn-16b$\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Only the cation is shown

Table IV. 7 Selected bond lengths (\AA) and angles (deg) of syn-16b $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$

$\mathrm{Pd}(1)-\mathrm{C}(7)$	$2.220(3)$	$\mathrm{C}(7)-\mathrm{Pd}(1)-\mathrm{C}(8)$	$37.82(10)$
$\mathrm{Pd}(1)-\mathrm{C}(8)$	$2.187(2)$	$\mathrm{C}(7)-\mathrm{Pd}(1)-\mathrm{C}(9)$	$63.14(9)$
$\mathrm{Pd}(1)-\mathrm{C}(9)$	$2.199(2)$	$\mathrm{C}(8)-\mathrm{Pd}(1)-\mathrm{C}(9)$	$38.42(9)$
$\mathrm{Pd}(1)-\mathrm{C}(1)$	$2.597(3)$	$\mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{N}(2)$	$84.11(9)$
$\mathrm{Pd}(1)-\mathrm{C}(2)$	$2.541(2)$	$\mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{C}(7)$	$106.65(9)$
$\mathrm{Pd}(1)-\mathrm{N}(1)$	$2.140(2)$	$\mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{C}(8)$	$136.34(10)$
$\mathrm{Pd}(1)-\mathrm{N}(2)$	$2.129(2)$	$\mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{C}(9)$	$168.11(10)$
$\mathrm{Pd}(2)-\mathrm{C}(10)$	$2.221(2)$	$\mathrm{N}(2)-\mathrm{Pd}(1)-\mathrm{C}(7)$	$168.12(9)$
$\mathrm{Pd}(2)-\mathrm{C}(11)$	$2.186(2)$	$\mathrm{N}(2)-\mathrm{Pd}(1)-\mathrm{C}(8)$	$134.91(10)$
$\mathrm{Pd}(2)-\mathrm{C}(12)$	$2.195(2)$	$\mathrm{N}(2)-\mathrm{Pd}(1)-\mathrm{C}(9)$	$105.58(10)$
$\mathrm{Pd}(2)-\mathrm{C}(4)$	$2.626(3)$	$\mathrm{C}(10)-\mathrm{Pd}(2)-\mathrm{C}(11)$	$37.75(10)$
$\mathrm{Pd}(2)-\mathrm{C}(5)$	$2.558(3)$	$\mathrm{C}(10)-\mathrm{Pd}(2)-\mathrm{C}(12)$	$63.16(9)$
$\mathrm{Pd}(2)-\mathrm{N}(3)$	$2.136(2)$	$\mathrm{C}(11)-\mathrm{Pd}(2)-\mathrm{C}(12)$	$38.33(9)$
$\mathrm{Pd}(2)-\mathrm{N}(4)$	$2.146(2)$	$\mathrm{N}(3)-\mathrm{Pd}(2)-\mathrm{N}(4)$	$83.96(9)$
		$\mathrm{N}(3)-\mathrm{Pd}(2)-\mathrm{C}(10)$	$166.35(10)$
		$\mathrm{N}(3)-\operatorname{Pd}(2)-\mathrm{C}(11)$	$137.35(10)$
		$\mathrm{N}(3)-\operatorname{Pd}(2)-\mathrm{C}(12)$	$105.88(9)$
		$\mathrm{N}(4)-\operatorname{Pd}(2)-\mathrm{C}(10)$	$106.12(9)$
		$\mathrm{N}(4)-\operatorname{Pd}(2)-\mathrm{C}(11)$	$135.27(10)$
		$\mathrm{N}(4)-\mathrm{Pd}(2)-\mathrm{C}(12)$	$168.28(10)$

Figure IV. 8
Thermal ellipsoid plot (50% probability level) of anti-18a' $\cdot 4 \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Only the cation is shown

Table IV. 8 Selected bond lengths (\AA) and angles (deg) of anti-18a' $\cdot 4 \mathrm{CH}_{2} \mathrm{Cl}_{2}$

$\mathrm{Pd}-\mathrm{C}(1)$	$2.1861(17)$	$\mathrm{C}(1)-\mathrm{Pd}-\mathrm{C}(2)$	$38.06(6)$
$\mathrm{Pd}-\mathrm{C}(2)$	$2.2200(17)$	$\mathrm{C}(1)-\mathrm{Pd}-\mathrm{C}(3)$	$63.28(6)$
$\mathrm{Pd}-\mathrm{C}(3)$	$2.2161(16)$	$\mathrm{C}(2)-\mathrm{Pd}-\mathrm{C}(3)$	$37.57(6)$
$\mathrm{Pd}-\mathrm{C}(4)$	$2.4690(17)$	$\mathrm{N}(11)-\mathrm{Pd}-\mathrm{N}(21)$	$78.65(6)$
$\mathrm{Pd}-\mathrm{C}(5)$	$2.4658(17)$	$\mathrm{N}(11)-\mathrm{Pd}-\mathrm{C}(1)$	$109.61(6)$
$\mathrm{Pd}-\mathrm{N}(11)$	$2.0724(14)$	$\mathrm{N}(11)-\mathrm{Pd}-\mathrm{C}(2)$	$135.47(6)$
$\mathrm{Pd}-\mathrm{N}(21)$	$2.0751(15)$	$\mathrm{N}(11)-\mathrm{Pd}-\mathrm{C}(3)$	$172.61(6)$
		$\mathrm{N}(21)-\mathrm{Pd}-\mathrm{C}(1)$	$169.32(6)$
		$\mathrm{N}(21)-\mathrm{Pd}-\mathrm{C}(2)$	$138.89(6)$
		$\mathrm{N}(21)-\mathrm{Pd}-\mathrm{C}(3)$	$108.65(6)$

Figure IV. 9
Thermal ellipsoid plot (50\% probability level) of 19. Only the cation is shown

Table IV. 9 Selected bond lengths (Å) and angles (deg) of 19

$\operatorname{Pd}-\mathrm{C}(1)$	$2.209(2)$	$\mathrm{C}(1)-\mathrm{Pd}-\mathrm{C}(2)$	$37.96(9)$
$\operatorname{Pd}-\mathrm{C}(2)$	$2.172(3)$	$\mathrm{C}(2)-\mathrm{Pd}-\mathrm{C}(3)$	$38.32(10)$
$\mathrm{Pd}-\mathrm{C}(3)$	$2.205(3)$	$\mathrm{C}(1)-\mathrm{Pd}-\mathrm{C}(3)$	$63.15(10)$
$\mathrm{Pd}-\mathrm{C}(4)$	$2.581(3)$	$\mathrm{N}(21)-\mathrm{Pd}-\mathrm{C}(1)$	$109.07(9)$
$\mathrm{Pd}-\mathrm{C}(5)$	$2.568(3)$	$\mathrm{N}(21)-\mathrm{Pd}-\mathrm{C}(2)$	$138.56(10)$
$\mathrm{Pd}-\mathrm{N}(11)$	$2.094(2)$	$\mathrm{N}(21)-\mathrm{Pd}-\mathrm{C}(3)$	$170.18(9)$
$\mathrm{Pd}-\mathrm{N}(21)$	$2.071(2)$	$\mathrm{N}(11)-\mathrm{Pd}-\mathrm{C}(3)$	$109.67(9)$
		$\mathrm{N}(11)-\mathrm{Pd}-\mathrm{C}(2)$	$132.40(9)$
		$\mathrm{N}(11)-\mathrm{Pd}-\mathrm{C}(1)$	$170.33(9)$

Figure IV. 10
Thermal ellipsoid plot (50\% probability level) of 21. Only the cation is shown

Table IV. 10 Selected bond lengths (\AA) and angles (deg) of 21

Pd-C(1)	2.1884(19)	$\mathrm{C}(1)$-Pd-C(2)	38.62(7)
$\mathrm{Pd}-\mathrm{C}(2)$	2.1609(19)	$\mathrm{C}(2)-\mathrm{Pd}-\mathrm{C}(3)$	38.00(7)
Pd-C(3)	2.229(2)	$\mathrm{C}(1)-\mathrm{Pd}-\mathrm{C}(3)$	63.11(7)
$\mathrm{Pd}-\mathrm{C}(3 \mathrm{~A})$	$2.632(32)$	$\mathrm{N}(41)-\mathrm{Pd}-\mathrm{N}(51)$	$78.35(7)$
$\mathrm{Pd}-\mathrm{C}(7 \mathrm{~A})$	$2.6174(19)$	$\mathrm{N}(41)-\mathrm{Pd}-\mathrm{C}(1)$	$110.10(7)$
Pd-N(41)	$2.1040(17)$	$\mathrm{N}(41)-\mathrm{Pd}-\mathrm{C}(2)$	$137.19(70)$
Pd-N(51)	$2.0836(17)$	$\mathrm{N}(41)-\mathrm{Pd}-\mathrm{C}(3)$	$173.13(7)$
		$\mathrm{N}(51)-\mathrm{Pd}-\mathrm{C}(1)$	171.01(7)
		$\mathrm{N}(51)-\mathrm{Pd}-\mathrm{C}(2)$	$136.05(7)$
		N(51)-Pd-C(3)	108.37(7)

IV. 4 CONCLUSIONS

We have prepared mono- and dipalladated benzene derivatives with alkenyl groups at the ortho position. In their reactions with alkynes we have obtained highly substituted indenylpalladium complexes and dipalladated indacenediides. This is the first synthesis of such dinuclear indacenediide complexes through metal-mediated building of the ligand. The stereo- and regioselectivity of the reactions have been discussed and the complexes have been extensively characterized by 2D-NMR and X-ray diffraction studies, which indicate that the hapticity of the indenyl and indacenediide ligands is intermediate between η^{3} and η^{5}. The reactivity toward XyNC of the dipalladated benzene derivatives has resulted in the simultaneous insertion of the isocyanide into both aryl-Pd bonds, forming a monoinserted dinuclear complex. A related triinserted dinuclear complex has been obtained as well, by reaction of XyNC with trans,trans-2,5-distyryl-1,4-dibromobenzene and $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$. This complex forms as a mixture of two isomers which are in slow exchange in solution, as shown by an EXSY spectrum.

IV. 5 REFERENCES

1. Tsuji, J., Palladium Reagents and Catalysis: Innovations in Organic Synthesis. John Wiley \& Sons: Chichester (UK), 1995; Miyaura, N.; Suzuki, A., Chem. Rev. 1995, 95, 2457; Hartwig, J. F., Angew. Chem. Int. Ed. 1998, 37, 2047; Wolfe, J. P.; Wagaw, S.; Marcoux, J.F.; Buchwald, S. L., Acc. Chem. Res. 1998, 31, 805; Whitcombe, N. J.; Hii, K. K.; Gibson, S. E., Tetrahedron 2001, 57, 7449; Littke, A. F.; Fu, G. C., Angew. Chem. Int. Ed. 2002, 41, 4176; Muci, A. R.; Buchwald, S. L., Top. Curr. Chem. 2002, 219, 131; Espinet, P.; Echavarren, A. M., Angew. Chem. Int. Ed. 2004, 43, 4704; Zeni, G.; Larock, R. C., Chem. Rev. 2004, 104, 2285; Bedford, R. B.; Cazin, C. S. J.; Holder, D., Coord. Chem. Rev. 2004, 2004, 2283; Buchwald, S. L.; Mauger, C.; Mignani, G.; Scholz, U., Adv. Synth. Catal. 2006, 348, 23; Corbet, J. P.; Mignani, G., Chem. Rev. 2006, 106, 2651; Chinchilla, R.; Nájera, C., Chem. Rev. 2007, 107, 874; Fernández-Rodríguez, M. A.; Hartwig, J. F., J. Org. Chem. 2009, 74, 1663; Watson, D. A.; Su, M.; Teverovskiy, G.; Zhang, Y.; García-Fortanet, J.; Kinzel, T.; Buchwald, S. L., Science 2009, 325, 1661; Selander, N.; Szabo, K. J., Chem. Rev. 2011, 111, 2048; Le Bras, J.; Muzart, J., Chem. Rev. 2011, 111, 1170; Surry, D. S.; Buchwald, S. L., Chem. Sci. 2011, 2, 27; Yeung, C. S.; Dong, V. M., Chem. Rev. 2011, 111, 1215; Yang, Y.; Mustard, T. J. L.; Cheong, P. H. Y.; Buchwald, S. L., Angew. Chem. Int. Ed. 2013, 52, 14098; Lee, H. G.; Milner, P. J.; Buchwald, S. L., J. Am. Chem. Soc. 2014, 136, 3792.
2. Zeni, G.; Larock, R. C., Chem. Rev. 2006, 106, 4644.
3. Vicente, J.; Abad, J. A.; Fernández-de-Bobadilla, R.; Jones, P. G.; Ramírez de Arellano, M. C., Organometallics 1996, 15, 24.
4. Vicente, J.; Abad, J. A.; Shaw, K. F.; Gil-Rubio, J.; Ramírez de Arellano, M. C.; Jones, P. G., Organometallics 1997, 16, 4557.
5. Vicente, J.; Abad, J. A.; Frankland, A. D.; Ramírez de Arellano, M. C., Chem. Commun. 1997, 959; Vicente, J.; Abad, J. A.; Frankland, A. D.; Ramírez de Arellano, M. C., Chem. Eur. J. 1999, 5, 3066.
6. Vicente, J.; Arcas, A.; Blasco, M. A.; Lozano, J.; Ramírez de Arellano, M. C., Organometallics 1998, 17, 5374; Vicente, J.; Abad, J. A.; Hernández-Mata, F. S.; Jones, P. G., Organometallics 2001, 20, 1109; Vicente, J.; Saura-Llamas, I., Comments Inorg. Chem. 2007, 28, 39; Vicente, J.; Saura-Llamas, I.; Oliva-Madrid, M. J.; García-López, J.-A.; Bautista, D., Organometallics 2011, 30, 4624.
7. Vicente, J.; Saura-Llamas, I.; Turpín, J.; Ramírez de Arellano, M. C.; Jones, P. G., Organometallics 1999, 18, 2683; Vicente, J.; Saura-Llamas, I.; Turpín, J.; Bautista, D.; Ramírez de Arellano, M. C.; Jones, P. G., Organometallics 2009, 28, 4175.
8. Vicente, J.; Abad, J. A.; Martínez-Viviente, E.; Ramírez de Arellano, M. C.; Jones, P. G., Organometallics 2000, 19, 752.
9. Vicente, J.; Abad, J. A.; Förtsch, W.; Jones, P. G.; Fischer, A., Organometallics 2001, 20, 2704; Vicente, J.; Abad, J. A.; Frankland, A. D.; Lopez-Serrano, J.; Ramirez de Arellano, M. C.; Jones, P. G., Organometallics 2002, 21, 272.
10. Vicente, J.; Abad, J. A.; López-Peláez, B.; Martínez-Viviente, E., Organometallics 2002, 21, 58.
11. Vicente, J.; Abad, J. A.; López-Serrano, J.; Clemente, R.; Ramírez de Arellano, M. C.; Jones, P. G.; Bautista, D., Organometallics 2003, 22, 4248.
12. Vicente, J.; Abad, J. A.; Hernández-Mata, F. S.; Rink, B.; Jones, P. G.; Ramírez de Arellano, M. C., Organometallics 2004, 23, 1292; Vicente, J.; Chicote, M. T.; Abellán-López, A.; Bautista, D., Dalton Trans. 2012, 41, 752; Abellán-López, A.; Chicote, M. T.; Bautista, D.; Vicente, J., Dalton Trans. 2014, 43, 592.
13. Vicente, J.; Abad, J. A.; López-Sáez, M. J.; Förtsch, W.; Jones, P. G., Organometallics 2004, 23, 4414.
14. Vicente, J.; Abad, J. A.; López-Serrano, J.; Jones, P. G., Organometallics 2004, 23, 4711.
15. Vicente, J.; Abad, J.-A.; López-Serrano, J.; Jones, P. G.; Nájera, C.; Botella-Segura, L., Organometallics 2005, 24, 5044; Frutos-Pedreño, R.; González-Herrero, P.; Vicente, J.; Jones, P. G., Organometallics 2013, 32, 4664; Frutos-Pedreño, R.; González-Herrero, P.; Vicente, J.; Jones, P. G., Organometallics 2013, 32, 1892.
16. Vicente, J.; Saura-Llamas, I.; García-López, J.-A.; Calmuschi-Cula, B.; Bautista, D., Organometallics 2007, 26, 2768; Oliva-Madrid, M. J.; García-López, J.-A.; Saura-Llamas, I.; Bautista, D.; Vicente, J., Organometallics 2012, 31, 3647; Oliva-Madrid, M. J.; GarcíaLópez, J.-A.; Saura-Llamas, I.; Bautista, D.; Vicente, J., Organometallics 2014, 33, 6420.
17. Vicente, J.; Chicote, M. T.; Martínez-Martínez, A. J.; Jones, P. G.; Bautista, D., Organometallics 2008, 27, 3254; Vicente, J.; Chicote, M. T.; Martínez-Martínez, A. J.; Bautista, D., Organometallics 2009, 28, 5915; Vicente, J.; González-Herrero, P.; FrutosPedreño, R.; Chicote, M. T.; Jones, P. G.; Bautista, D., Organometallics 2011, 30, 1079.
18. Vicente, J.; Abad, J. A.; López-Nicolás, R. M.; Jones, P. G., Organometallics 2011, 30, 4983.
19. Chicote, M. T.; Vicente-Hernández, I.; Jones, P. G.; Vicente, J., Organometallics 2012, 31, 6252.
20. Abellán-López, A.; Chicote, M. T.; Bautista, D.; Vicente, J., Organometallics 2013, 32, 7612.
21. Vicente, J.; Abad, J. A.; Gil-Rubio, J.; Jones, P. G., Organometallics 1995, 14, 2677.
22. Vicente, J.; Abad, J. A.; Bergs, R.; Jones, P. G.; Ramírez de Arellano, M. C., Organometallics 1996, 15, 1422.
23. Vicente, J.; Abad, J. A.; Gil-Rubio, J., Organometallics 1996, 15, 3509.
24. Vicente, J.; Abad, J. A.; Bergs, R.; Ramirez de Arellano, M. C.; Martínez-Viviente, E.; Jones, P. G., Organometallics 2000, 19, 5597.
25. Vicente, J.; Saura-Llamas, I.; Grünwald, C.; Alcaraz, C.; Jones, P. G.; Bautista, D., Organometallics 2002, 21, 3587.
26. Vicente, J.; Abad, J. A.; Martinez-Viviente, E.; Jones, P. G., Organometallics 2002, 21, 4454.
27. Vicente, J.; Abad, J. A.; Martínez-Viviente, E.; Jones, P. G., Organometallics 2003, 22, 1967; Vicente, J.; Saura-Llamas, I.; García-López, J.-A.; Bautista, D., Organometallics 2009, 28, 448.
28. Vicente, J.; Abad, J. A.; López-Sáez, M. J.; Jones, P. G., Angew. Chem. Int. Ed. 2005, 44, 6001; Vicente, J.; Arcas, A.; Gálvez-López, M. D.; Juliá-Hernández, F.; Bautista, D.; Jones, P. G., Organometallics 2008, 27, 1582; Vicente, J.; Abad, J. A.; López-Sáez, M. J.; Jones, P. G., Organometallics 2010, 29, 409.
29. Vicente, J.; Abad, J. A.; López-Sáez, M. J.; Jones, P. G., Organometallics 2006, 25, 1851; Vicente, J.; Abad, J. A.; López-Sáez, M. J.; Jones, P. G.; Bautista, D., Chem. Eur. J. 2010, 16, 661; Vicente, J.; Saura-Llamas, I.; García-López, J.-A.; Bautista, D., Organometallics 2010, 29, 4320; García-López, J.-A.; Saura-Llamas, I.; McGrady, J. E.; Bautista, D.; Vicente, J., Organometallics 2012, 31, 8333; García-López, J.-A.; Oliva-Madrid, M. J.; Saura-Llamas, I.; Bautista, D.; Vicente, J., Organometallics 2012, 31, 6351.
30. Vicente, J.; Chicote, M. T.; Martínez-Martínez, A. J.; Abellán-López, A.; Bautista, D., Organometallics 2010, 29, 5693; Abellán-López, A.; Chicote, M. T.; Bautista, D.; Vicente, J., Organometallics 2012, 31, 7434.
31. Frutos-Pedreño, R.; González-Herrero, P.; Vicente, J., Organometallics 2012, 31, 3361; García-López, J.-A.; Oliva-Madrid, M. J.; Saura-Llamas, I.; Bautista, D.; Vicente, J., Organometallics 2013, 32, 1094.
32. García-López, J.-A.; Oliva-Madrid, M. J.; Saura-Llamas, I.; Bautista, D.; Vicente, J., Chem. Commип. 2012, 48, 6744.
33. Oliva-Madrid, M. J.; Saura-Llamas, I.; Bautista, D.; Vicente, J., Chem. Commun. 2013, 49, 7997.
34. Vicente, J.; Abad, J. A.; Rink, B.; Hernández, F.-S.; Ramírez de Arellano, M. C., Organometallics 1997, 16, 5269.
35. Vicente, J.; Lyakhovych, M.; Bautista, D.; Jones, P. G., Organometallics 2001, 20, 4695.
36. Vicente, J.; Martínez-Viviente, E.; Fernández-Rodríguez, M. J.; Jones, P. G., Organometallics 2009, 28, 5845.
37. Vicente, J.; Shenoy, R. V.; Martínez-Viviente, E.; Jones, P. G., Organometallics 2009, 28, 6101; Vicente, J.; Shenoy, R. V.; Martínez-Viviente, E.; Jones, P. G., Inorg. Chem. 2011, 50, 7189.
38. Macdonald, P. M.; Hunter, A. D.; Lesley, G.; Li, J., Solid State Nucl. Magn. Reson. 1993, 2, 47.
39. Trofimenko, S., J.Am. Chem. Soc. 1971, 93, 1808; Trofimenko, S., Inorg. Chem. 1973, 12, 1215; Phillips, I. G.; Steel, P. J., J. Organomet. Chem. 1991, 410, 247; Chakladar, S.; Paul, P.; Nag, K., Polyhedron 1991, 1513; Chakladar, S.; Paul, P.; Venkatsubramanian, K.; Nag, K., J. Chem. Soc., Dalton Trans. 1991, 2669; Chakladar, S.; Paul, P.; Mukherjee, A. K.;

Dutta, S. K.; Nanda, K. K.; Podder, D.; Nag, K., J. Chem. Soc., Dalton Trans. 1992, 3119; Nanda, K. K.; Nag, K.; Venkatsubramanian, K.; Paul, P., Inorg. Chim. Acta 1992, 196, 195; Carina, R. F.; Williams, A. F.; Bernardinelli, G., J. Organomet. Chem. 1997, 548, 45; Lydon, D. P.; Rourke, J. P., Chem. Commun. 1997, 1741; Steenwinkel, P.; James, S. L.; Grove, D. M.; Kooijman, H.; Spek, A. L.; van Koten, G., Organometallics 1997, 16, 513; Steenwinkel, P.; Gossage, R. A.; Maunula, T.; Grove, D. M.; van Koten, G., Chem.-Eur. J. 1998, 4, 763; Steenwinkel, P.; Kooijman, H.; Smeets, W. J. J.; Spek, A. L.; Grove, D. M.; Van Koten, G., Organometallics 1998, 17, 5411; O'Keefe, B. J.; Steel, P. J., Organometallics 1998, 17, 3621; El Hatimi, A.; Gómez, M.; Jansat, S.; Muller, G.; Fontbardia, M.; Solans, X., J. Chem. Soc., Dalton Trans. 1998, 4229; Cardenas, D. J.; Echavarren, A. M.; Dearellano, M. C. R., Organometallics 1999, 18, 3337; de Geest, D. J.; O'Keefe, B. J.; Steel, P. J., J. Organomet. Chem. 1999, 579, 97; Muñoz, M. P.; MartínMatute, B.; Fernández-Rivas, C.; Cárdenas, D. J.; Echavarren, A. M., Adv. Syn. Catal. 2001, 343, 338; Fernández, A.; Pereira, E.; Fernández, J. J.; López-Torres, M.; Suárez, A.; Mosteiro, R.; Pereira, M. T.; Vila, J. M., New. J. Chem. 2002, 26, 895; López-Torres, M.; Fernandez, A.; Fernandez, J. J.; Suarez, A.; Castrojuiz, S.; Pereira, M. T.; Vila, J. M., J. Organomet. Chem. 2002, 655, 127; Slater, J. W.; Rourke, J. P., J. Organomet. Chem. 2003, 688, 112; Liu, B. B.; Wang, X. R.; Guo, Z. F.; Lu, Z. L., Inorg. Chem. Commun. 2010, 13, 814; Fernandez, A.; Lopez-Torres, M.; Castro-Juiz, S.; Merino, M.; Vázquez-García, D.; Vila, J. M.; Fernández, J. J., Organometallics 2011, 30, 386; Micutz, M.; Ilis, M.; Staicu, T.; Dumitrascu, F.; Pasuk, I.; Molard, Y.; Roisnel, T.; Circu, V., Dalton Trans. 2014, 43, 1151.
40. Bedford, R. B.; Blake, M. E.; Coles, S. J.; Hursthouse, M. B.; Scully, P. N., Dalton Trans. 2003, 2805.
41. Arlen, C.; Pfeffer, M.; Bars, O.; Grandjean, D., J. Chem. Soc., Dalton Trans. 1983, 1535; Maassarani, F.; Pfeffer, M.; Le Borgne, G., J. Chem. Soc., Chem. Commun. 1986, 488; Ossor, H.; Pfeffer, M.; Jastrzebski, J. T. B. H.; Stam, C. H., Inorg. Chem. 1987, 26, 1169; Albert, J.; Granell, J.; Sales, J.; Solans, X., J. Organomet. Chem. 1989, 379, 177; Ryabov, A. D.; van Eldik, R.; Le Borgne, G.; Pfeffer, M., Organometallics 1993, 12, 1386; Lopez, C.; Solans, X.; Tramuns, D., J. Organomet. Chem. 1994, 471, 265; Yagyu, T.; Osakada, K.; Brookhart, M., Organometallics 2000, 19, 2125; Yagyu, T.; Hamada, M.; Osakada, K.; Yamamoto, T., Organometallics 2001, 20, 1087; Reddy, K. R.; Surekha, K.; Lee, G.-H.; Peng, S.-M.; Liu, S.-T., Organometallics 2001, 20, 5557; Gül, N.; Nelson, J. H.; Willis, A. C.; Rae, A. D., Organometallics 2002, 21, 2041; Kelly, A. E.; Macgregor, S. A.; Willis, A. C.; Nelson, J. H.; Wenger, E., Inorg. Chim. Acta 2003, 352, 79; Albert, J.; Granell, J.; Luque, A.; Font-Bardia, M.; Solans, X., Polyhedron 2006, 25, 793.
42. Dupont, J.; Pfeffer, M.; Theurel, L.; Rotteveel, M. A.; De Cian, A.; Fischer, J., New J. Chem. 1991, 15, 551.
43. Pfeffer, M., Recl. Trav. Chim. Pays-Bas 1990, 109, 567; Pfeffer, M., Pure Appl. Chem. 1992, 64, 335.
44. Pfeffer, M.; Sutter, J. P.; Rotteveel, M. A.; De Cian, A.; Fischer, J., Tetrahedron 1992, 48, 2427.
45. Spencer, J.; Pfeffer, M.; Kyritsakas, N.; Fischer, J., Organometallics 1995, 14, 2214.
46. Nieto, S.; Arnau, P.; Serrano, E.; Navarro, R.; Soler, T.; Cativiela, C.; Urriolabeitia, E. P., Inorg. Chem. 2009, 48, 11963.
47. Vicente, J.; Abad, J. A.; Gil-Rubio, J., J. Organomet. Chem. 1992, 436, C9.
48. Wu, G.; Rheingold, A. L.; Heck, R. F., Organometallics 1986, 5, 1922.
49. Dupont, J.; Pfeffer, M.; Daran, J.-C.; Gouteron, J., J. Chem. Soc., Dalton Trans. 1988, 2421; Dupont, J.; Pfeffer, M.; Rotteveel, M. A.; De Cian, A.; Fischer, J., Organometallics 1989, 8, 1116; Pfeffer, M.; Rotteveel, M. A.; Sutter, J.-P.; De Cian, A.; Fisher, J., J. Organomet. Chem. 1989, 371, C21; Catellani, M.; Marmiroli, B.; Fagnola, M. C.; Acquotti, D., J. Organomet. Chem. 1996, 507, 157.
50. Pfeffer, M.; Sutter, J. P.; De Cian, A.; Fischer, J., Organometallics 1993, 12, 1167.
51. Trost, B. M.; Toste, F. D., J. Am. Chem. Soc. 1996, 118, 6305; Portscheller, J. L.; Malinakova, H. C., Org Lett 2002, 4, 3679.
52. Dupont, J.; Pfeffer, M., J. Organomet. Chem. 1987, 321, C13; Spencer, J.; Pfeffer, M.; De Cian, A.; Fischer, J., J. Org. Chem. 1995, 60, 1005.
53. Bahsoun, A.; Dehand, J.; Pfeffer, M.; Zinsius, M.; Bouaoud, S.-E.; Le Borgne, G., J. Chem. Soc., Dalton Trans. 1979, 547; Maassarani, F.; Pfeffer, M.; Le Borgne, G., Organometallics 1987, 6, 2029; Maassarani, F.; Pfeffer, M.; Le Borgne, G., Organometallics 1987, 6, 2043; Maassarani, F.; Pfeffer, M.; Le Borgne, G., J. Chem. Soc., Chem. Commun. 1987, 565; Wu, G.; Rheingold, A. L.; Heck, R. F., Organometallics 1987, 6, 2386; Wu, G.; Geib, S. J.; Rheingold, A. L.; Heck, R. F., J. Org. Chem. 1988, 53, 3238; Beydoun, N.; Pfeffer, M., Synthesis 1990, 729; Maassarani, F.; Pfeffer, M.; Le Borgne, G., Organometallics 1990, 9, 3003; Beydoun, N.; Pfeffer, M.; De Cian, A.; Fischer, J., Organometallics 1991, 10, 3693; Maassarani, F.; Pfeffer, M.; Spencer, J.; Wehman, E., J. Organomet. Chem. 1994, 466, 265; Albert, J.; Crespo, M.; Granell, J.; Rodríguez, J.; Zafrilla, J.; Calvet, T.; Font-Bardia, M.; Solans, X., Organometallics 2010, 29, 214; Oliva-Madrid, M. J.; García-López, J.-A.; Saura-Llamas, I.; Bautista, D.; Vicente, J., Organometallics 2014, 33, 19.
54. Wu, G.; Rheingold, A. L.; Geib, S. J.; Heck, R. F., Organometallics 1987, 6, 1941; Tao, W.; Silverberg, L. J.; Rheingold, A. L.; Heck, R. F., Organometallics 1989, 8, 2550; Wensbo, D.; Eriksson, A.; Jeschke, T.; Annby, U.; Gronowitz, S.; Cohen, L. A., Tetrahedron Lett. 1993, 34, 2823; Kundu, N. G.; Pal, M., J. Chem. Soc., Chem. Commun. 1993, 86; Larock, R. C.; Yum, E. K.; Doty, M. J.; Sham, K. K. C., J. Org. Chem. 1995, 60, 3270; Coperet, C.; Sugihara, T.; Wu, G. Z.; Shimoyama, I.; Negishi, E., J. Am. Chem. Soc. 1995, 117, 3422; Liao, H. Y.; Cheng, C. H., J. Org. Chem. 1995, 60, 3711; Trost, B. M.; Sorum, M. T.; Chan, C.; Harms, A. E.; Ruhter, G., J. Am. Chem. Soc. 1997, 119, 698; Fancelli, D.; Fagnola, M. C.; Severino, D.; Bedeschi, A., Tetrahedron Lett. 1997, 38, 2311; Fagnola, M. C.; Candiani, I.; Visentin, G.; Cabri, W.; Zarini, F.; Mongelli, N.; Bedeschi, A., Tetrahedron Lett. 1997, 38, 2307; Zhang, H. C.; Brumfield, K. K.; Maryanoff, B. E., Tetrahedron Lett. 1997, 38, 2439; Yamada, H.; Aoyagi, S.; Kibayashi, C., Tetrahedron Lett. 1997, 38, 3027; Park, S. S.; Choi, J. K.; Yum, E. K.; Ha, D. C., Tetrahedron Lett. 1998, 39, 627; Larock, R. C.; Tian, Q. P., J. Org. Chem. 1998, 63, 2002; Kundu, N. G.; Pal, M.; Nandi, B., J. Chem. Soc., Perkin Trans. 1 1998, 561; Quan, L. G.; Gevorgyan, V.; Yamamoto, Y., J. Am. Chem. Soc. 1999,

121, 3545; Gies, A. E.; Pfeffer, M.; Sirlin, C.; Spencer, J., Eur. J. Org. Chem. 1999, 1957; Cacchi, S., J. Organomet. Chem. 1999, 576, 42; Larock, R. C., J. Organomet. Chem. 1999, 576, 111; Roesch, K. R.; Larock, R. C., J. Org. Chem. 2001, 66, 412; Roesch, K. R.; Larock, R. C., J. Org. Chem. 2002, 67, 86; Zhou, H.; Liao, X. B.; Yin, W. Y.; Ma, J.; Cook, J. M., J. Org. Chem. 2006, 71, 251; Yang, F.; Zhang, J.; Yangjie, W., Tetrahedron 2011, 67, 2969; Chinchilla, R.; Nájera, C., Chem. Rev. 2014, 114, 1783.
55. Larock, R. C.; Yum, E. K., J. Am. Chem. Soc. 1991, 113, 6689; Larock, R. C.; Yum, E. K.; Refvik, M. D., J. Org. Chem. 1998, 63, 7652; Roesch, K. R.; Larock, R. C., J. Org. Chem. 1998, 63, 5306; Roesch, K. R.; Zhang, H. M.; Larock, R. C., J. Org. Chem. 2001, $66,8042$.
56. Larock, R. C.; Doty, M. J.; Cacchi, S., J. Org. Chem. 1993, 58, 4579.
57. Gitany, R.; Paul, I. C.; Acton, N.; Katz, T. J., Tetrahedron Lett. 1970, 2723; Ijima, S.; Motoyama, I.; Sano, H., Chem. Lett. 1979, 1349.
58. Davison, A.; Rudie, A. W., J. Organomet. Chem. 1979, 169, 69; Amshumali, M. K.; Arancibia, V.; Manríquez, J. M.; Chavez, I., Can. J. Chem. 2013, 91, 727.
59. Manríquez, J. M.; Ward, M. D.; Reiff, W. M.; Calabrese, J. C.; Jones, N. L.; Carroll, P. J.; Bunel, E. E.; Miller, J. S., J. Am. Chem. Soc. 1995, 117, 6182.
60. Cary, D. R.; Webster, C. G.; Drewitt, M. J.; Barlow, S.; Green, J. C.; O'Hare, D., Chem. Comтии. 1997, 953.
61. Roussel, P.; Cary, D. R.; Barlow, S.; Green, J. C.; Varret, F.; O'Hare, D., Organometallics 2000, 19, 1071.
62. Santi, S.; Ceccon, A.; Carli, F.; Crociani, L.; Bisello, A.; Tiso, M.; Venzo, A., Organometallics 2002, 21, 2679; Santi, S.; Orian, L.; Durante, C.; Bencze, E. Z.; Bisello, A.; Donolli, A.; Ceccon, A.; Benetollo, F.; Crociani, L., Chem. Eur. J. 2007, 13, 7933.
63. Adams, C.; Morales-Verdejo, C.; Morales, V.; MacLeod-Carey, D.; Manríquez, J. M.; Chávez, I.; Muñoz-castro, A.; Delpech, F.; Castel, A.; Gornitzka, H.; Rivière-Baudet, M.; Rivière, P.; Molins, E., Eur. J. Inorg. Chem. 2009, 784.
64. Morales-Verdejo, C.; Martinez, I.; MacLeod-Carey, D.; Chavez, I.; Manríquez, J. M.; Matioszek, D.; Saffon, N.; Castel, A.; Rivière, P.; Molins, E., Inorg. Chim. Acta 2013, 394, 752.
65. Morales-Verdejo, C.; Martínez-Díaz, I.; Adams, C.; Araneda, J. F.; Oehninger, L.; MacLeod-Carey, D.; Muñoz-Castro, A.; Arratia-Pérez, R.; Chávez, I.; Manríquez, J. M., Polyhedron 2014, 69, 15.
66. Roussel, P.; Drewitt, M. J.; Cary, D. R.; Webster, C. G.; O'Hare, D., Chem. Commun. 1998, 2205.
67. MacLeod-Carey, D.; Adams, C.; Muñoz-Castro, A.; Morales-Verdejo, C.; Araneda, J. F.; Chavez, I.; Manríquez, J. M.; Castel, A.; Rivière, P.; Rivière-Baudet, M.; Matioszek, D.; Septelean, R.; Martínez, I.; Arratia-Pérez, R., Inorg. Chim. Acta 2012, 392, 154.
68. MacLeod-Carey, D.; Morales-Verdejo, C.; Muñoz-Castro, A.; Burgos, F.; Abril, D.; Adams, C.; Molins, E.; Cador, O.; Chávez, I.; Manríquez, J. M.; Arratia-Pérez, R.; Saillard, J. Y., Polyhedron 2010, 29, 1137.
69. Bonifaci, C.; Ceccon, A.; Gambaro, A.; Manoli, F.; Mantovani, L.; Ganis, P.; Santi, S.; Venzo, A., J. Organomet. Chem. 1998, 557, 97.
70. Ganis, P.; Ceccon, A.; Köhler, T.; Manoli, F.; Santi, S.; Venzo, A., Inorg. Chem. Commun. 1998, $1,15$.
71. Ceccon, A.; Bisello, A.; Crociani, L.; Gambaro, A.; Ganis, P.; Manoli, F.; Santi, S.; Venzo, A., J. Organomet. Chem. 2000, 600, 94.
72. Esponda, E.; Adams, C.; Burgos, F.; Chavez, I.; Manriquez, J. M.; Delpech, F.; Castel, A.; Gornitzka, H.; Riviere-Baudet, M.; Riviere, P., J. Organomet. Chem. 2006, 691, 3011.
73. Morales-Verdejo, C.; Oehninger, L.; Martínez-Díaz, I.; MacLeod-Carey, D.; Arratia-Pérez, R.; Chávez, I.; Manríquez, J. M., Inorg. Chim. Acta 2013, 394, 132.
74. Adams, C.; Riviere, P.; Riviere-Baudet, M.; Morales-Verdejo, C.; Dahrouch, M.; Morales, V.; Castel, A.; Delpech, F.; Manríquez, J. M.; Chávez, I., J. Organomet. Chem. 2014, 749, 266.
75. Dahrouch, M.; Diaz, E.; Gatica, N.; Moreno, Y.; Chavez, I.; Manríquez, J. M.; Rivière, P.; Rivière-Baudet, M.; Gornitzka, H.; Castel, A., Appl. Organomet. Chem. 2012, 26, 410.
76. Levi, Z. U.; Tilley, T. D., J. Am. Chem. Soc. 2010, 132, 11012.
77. Yamamoto, Y.; Yamazaki, H., Synthesis 1976, 750; Yamamoto, Y.; Yamazaki, H., Inorg. Chim. Acta 1980, 41, 229; Usón, R.; Fornies, J.; Espinet, P.; Lalinde, E., J. Organomet. Chem. 1983, 254, 371; Crociani, B.; Sala, M.; Polo, A.; Bombieri, G., Organometallics 1986, 5, 1369; Usón, R.; Fornies, J.; Espinet, P.; Pueyo, L.; Lalinde, E., J. Organomet. Chem. 1986, 299, 251; Dupont, J.; Pfeffer, M.; Daran, J. C.; Jeannin, Y., Organometallics 1987, 6, 899; Dupont, J.; Pfeffer, M., J. Chem. Soc., Dalton Trans. 1990, 3193; Zografidis, A.; Polborn, K.; Beck, W.; Markies, B. A.; van Koten, G., Z. Naturforsch., B 1994, 49, 1494; Kim, Y. J.; Song, S. W.; Lee, S. C.; Lee, S. W.; Osakada, K.; Yamamoto, T., J. Chem. Soc., Dalton Trans. 1998, 1775; Böhm, A.; Polborn, K.; Sunkel, K.; Beck, W., Z. Naturforsch., B 1998, 53, 448; Kim, Y.-J.; Chang, X.; Han, J.-T.; Lim, M. S.; Lee, S. W., Dalton Trans. 2004, 3699; Martínez-Martínez, A. J.; Chicote, M. T.; Bautista, D.; Vicente, J., Organometallics 2012, 31, 3711.
78. Morishita, M.; Amii, H., J. Organomet. Chem. 2007, 692, 620; Canovese, L.; Visentin, F.; Santo, C.; Levi, C.; Dolmella, A., Organometallics 2007, 26, 5590.
79. Blum, J.; Zimmerman, M., Tetrahedron 1972, 28, 275.
80. Yamamoto, Y.; Tanase, T.; Yanai, T.; Asano, T.; Kobayashi, K., J. Organomet. Chem. 1993, 456, 287.
81. Macchioni, A.; Bellachioma, G.; Cardaci, G.; Travaglia, M.; Zuccaccia, C.; Milani, B.; Corso, G.; Zangrando, E.; Mestroni, G.; Carfagna, C.; Formica, M., Organometallics 1999, 18, 3061.
82. Kohler, F. H., Chem. Ber. 1974, 107, 570.
83. Baker, R., W.; Radzey, H.; Lucas, N. T.; Turner, P., Organometallics 2012, 31, 5622.
84. Westcott, S. A.; Kakkar, A. K.; Stringer, G.; Taylor, N. J.; Marder, T. B., J. Organomet. Chem. 1990, 394, 777.
85. Cadierno, V.; Diez, J.; Gamasa, M. P.; Gimeno, J.; Lastra, E., Coord. Chem. Rev. 1999, 195, 147.
86. Merola, J. S.; Kacmarcik, R. T.; Van Engen, D., J. Am. Chem. Soc. 1986, 108, 329; Forschner, T. C.; Cutler, A. R.; Kullnig, R. K., Organometallics 1987, 6, 889.
87. Zargarian, D., Coord. Chem. Rev. 2002, 233, 157.
88. Ceccon, A.; Gambaro, A.; Santi, S.; Valle, G.; Venzo, A., J. Chem. Soc., Chem. Commun. 1989, 51.
89. Cohen, Y.; Klein, J.; Rabinovitz, M., J. Am. Chem. Soc. 1988, 110, 4634.
90. Faller, W.; Crabtree, R. H.; Habib, A., Organometallics 1985, 4, 929; Honan, M. B.; Atwood, J. L.; Bernal, I.; Herrmann, W. A., J. Organomet. Chem. 1979, 179, 403.
91. O'Hare, D.; Murphy, V.; Diamond, G. M.; Arnold, P.; Mountford, P., Organometallics 1994, 13, 4689 ; Trnka, T. M.; Bonanno, J. B.; Bridgewater, B. M.; Parkin, G., Organometallics 2001, 20, 3255; Hung-Low, F.; Bradley, C. A., Organometallics 2011, 30, 2636; McGovern, G. P.; Hung-Low, F.; Tye, J. W.; Bradley, C. A., Organometallics 2012, 31, 3865.
92. Calhorda, M. J.; Veiros, L. F., Coord. Chem. Rev. 1999, 37, 185.
93. Schumann, H.; Stenzel, O.; Dechert, S.; Halterman, R. L., Organometallics 2001, 20, 1983.
94. Kakkar, A. K.; Jones, S. F.; Taylor, N. J.; Collins, S.; Marder, T. B., J. Chem. Soc., Chem. Commun. 1989, 1454; Kakkar, A. K.; Taylor, N. J.; Marder, T. B.; Shen, J. K.; Hallinan, N.; Basolo, F., Inorg. Chim. Acta 1992, 198-200, 219; Huber, T. A.; Bayrakdarian, M.; Dion, S.; Dubuc, I.; Bélanger-Gariépy, F.; Zargarian, D., Organometallics 1997, 16, 5811; Sui-Seng, C.; Enright, G. D.; Zargarian, D., J. Am. Chem. Soc. 2006, 128, 6508; Sui-Seng, C.; Groux, L. F.; Zargarian, D., Organometallics 2006, 25, 571.
95. Nesmeyanov, A. N.; Ustynyuk, N. A.; Makarova, L. G.; Andrianov, V. G.; Stuchkov, Y. T.; Andrae, S.; Ustynyuk, Y. A.; Malyugina, S. G., J. Organomet. Chem. 1978, 159, 189.
96. Tanase, T.; Nomura, T.; Yamamoto, Y.; Kobayashi, K., J. Organomet. Chem. 1991, 410, C25; Tanase, T.; Nomura, T.; Fukushima, T.; Yamamoto, Y.; Kobayashi, K., Inorg. Chem. 1993, 32, 4578.
97. Kowaleski, R. M.; Rheingold, A. L.; Trogler, W. C.; Basolo, F., J. Am. Chem. Soc. 1986, 108, 2460.

Synthesis and Reactivity of Dipalladated Derivatives of

Terephthalaldehyde

The results of this Chapter will soon be submitted for publication

V. 1 INTRODUCTION

We have already described in this Thesis (see Chapter I, General Introduction, and the Introductions to the Chapters II-IV) the importance of arypalladium complexes in Organometallic Chemistry, and how our group has been specially interested in the synthesis of ortho-substituted arylpalladium complexes and the investigation of their reactivity toward unsaturated organic molecules. These molecules may insert into the aryl-Pd bond and interact with the group in ortho position, resulting in the formation of novel ligands and/or organic compounds. Our group is now interested in the extension of this chemistry to polypalladated arenes, ${ }^{1-6}$ which could provide interesting structures and pave the way to the synthesis of organic polycyclic compounds that are otherwise difficult to prepare.

Although there have been previous reports on dipalladated ortho-substituted aryl complexes, these refer, with some exceptions ${ }^{1-8}$ to dipalladacycles with N -donor groups ${ }^{8-}$ ${ }^{11}$ (see Chart V.1). Our group ${ }^{8,12}$ has also been involved in this research, and it has reported the first "akimbo" complexes, ${ }^{5}$ where the two donor atoms are on the same substituent and thus the two palladacycles are fused:

"Akimbo" complex
"Traditional" dipalladacycle
Chart V. 1 "Traditional" dipalladacycles and "akimbo" complexes

In the previous Chapter we have described the synthesis and reactivity of dipalladated derivatives of 2,5-distyrylbenzene. ${ }^{2,6}$ In the present Chapter we will describe the synthesis of dipalladated derivatives of terephthalaldehyde (by hydrolysis of a "traditional" N-donor dipalladacycle) and their reactivity toward CO and XyNC. We have already commented on the importance of the insertion reactions of CO and isocyanides into the C-Pd bond of arylpalladium complexes (see Section I.3.2.2 in Chapter I, General Introduction). The reactions we describe now are quite novel in that they represent the first double insertion of CO into two separate aryl-metal bonds on the same aryl ring, as well as a double 3-fold insertion of XyNC which, together with an
interaction with the formyl groups in ortho position, results in the formation of a dinuclear $\operatorname{Pd}($ II) complex with a benzodipyrrole-1,5-dione core. The central ligand can be liberated from this complex by reaction with TlOTf.

V. 2 RESULTS AND DISCUSSION

V.2. 1 Synthesis and Reactivity

The tetranuclear complex $\left[\left\{\mu-C 1, C 4, N, N "-\mathrm{C}_{6} \mathrm{H}_{2}\left\{\mathrm{C}(\mathrm{H})=\mathrm{N}\left({ }^{\mathrm{n}} \mathrm{Bu}\right)\right\}_{2}-2,5\right\}\{\mathrm{Pd}(\mu-\right.$ $\mathrm{OAc})\}]_{2}(\mathbf{I X})$ had been previously prepared in our research group by palladation of the diimine $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}=\mathrm{N}^{\mathrm{n}} \mathrm{Bu}\right)_{2}-1,4$ with $\left[\mathrm{Pd}(\mathrm{OAc})_{2}\right] .{ }^{12}$ Complex IX is soluble in common solvents, in contrast to the similarly prepared complex with To instead of ${ }^{n} \mathrm{Bu} .{ }^{8}$ The reaction of $\mathbf{I X}$ with tbbpy and TIOTf results in the formation of the dicationic complex $\left[\left\{\mu-C l, C 4, N, N "-\mathrm{C}_{6} \mathrm{H}_{2}\left\{\mathrm{C}(\mathrm{H})=\mathrm{N}\left({ }^{\mathrm{n}} \mathrm{Bu}\right)\right\}_{2}-2,5\right\}\{\mathrm{Pd}(\mathrm{tbbpy})\}_{2}\right]$ (24, Scheme V.1). Complexes IX and $\mathbf{2 4}$ are of interest because they contain an aryl ligand capable of binding to two different metal centers simultaneously, in a tetradentate fashion, resulting in two independent palladacycles on the same aryl ring. Such complexes are still relatively rare in the literature, although some examples can be found, involving mainly N -donor groups. ${ }^{8-11}$ The examples most closely related to our work are the dipalladated Schiff bases reported by Vila and co-workers, prepared by palladation or oxidative addition reactions, followed by ligand-exchange. ${ }^{10,11}$ These dinuclear square-planar palladium(II) complexes with two blocked cis-coordination sites can be very useful as building blocks in Supramolecular Chemistry. ${ }^{11,13}$

The hydrolysis of IX by reaction with acetic acid in a 5:1 acetone/water mixture, and in the presence of two equivalents of tbbpy, and an excess of $\mathrm{NaX}(\mathrm{X}=\mathrm{Br}, \mathrm{I})$, yields the dipalladated terephthalaldehyde derivatives $\left[\mathrm{C}_{6} \mathrm{H}_{2}\{\mathrm{PdX}(\mathrm{tbbpy})\}_{2}-1,4-(\mathrm{CHO})_{2}-2,5\right](\mathrm{X}$ $=\operatorname{Br}(\mathbf{2 5 a}), \mathrm{X}=\mathrm{I}(\mathbf{2 5 b})$, Scheme V.2). There is a close precedent for this reaction in the
synthesis of the related complex with bpy, $\left[\mathrm{C}_{6} \mathrm{H}_{2}\{\mathrm{PdBr}(\mathrm{bpy})\}_{2}-1,4-(\mathrm{CHO})_{2}-2,5\right]$ (XI, see also Scheme V.2), by hydrolysis of an analogue to IX with To instead of ${ }^{\mathrm{n}} \mathrm{Bu}$ (complex $\mathbf{X}) .{ }^{8}$ However, in that reaction the insolubility of complex XI prevented complete purification, a problem which is common in polynuclear complexes containing bpy as an auxiliary ligand. ${ }^{1,6}$ Nonetheless, a more soluble derivative, $\left[\mathrm{C}_{6} \mathrm{H}_{2}\left\{\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)(\text { bpy })\right\}_{2}-1,4-\right.$ $\left.(\mathrm{CHO})_{2}-2,5\right]$ (XII, Scheme V.2), was prepared by reaction of XI with PPh_{3} and KOTf. Complex XII was partially characterized, although no ${ }^{13} \mathrm{C}$ NMR data could be obtained. ${ }^{8}$ Complexes 25a,b, in contrast, are soluble in common solvents and have been fully characterized. The reaction of $\mathbf{I X}$ with tmeda instead of tbbpy, and either NaBr or NaI , has given mixtures of compounds which could not be separated. 25a,b, XI, and XII are the only known examples of dipalladated phthalaldehydes. Mono-, di- and tripalladated derivatives of benzenetricarboxaldehyde have also been reported by our group. ${ }^{3}$

Scheme V. 2 Synthesis of complexes 25a,b, and related complexes XI, XII

By reaction of 25a,b with CO we have obtained the complexes 26a,b, resulting from the insertion of CO into both aryl-Pd bonds (Scheme V.3). This is the first double insertion of CO into two separate aryl-metal bonds on the same aryl ligand. The NMR data (see Section V.3) of these complexes suggest that one of the inserted CO groups forms a hydrogen bond with the aryl hydrogen, while, surprisingly, the same does not happen with the other inserted CO. The insertion of the CO molecules is confirmed by the IR spectra (see Section V.3). However, and curiously, the mass spectra of 25a and 26a both show the same main peak, at $\mathrm{m} / \mathrm{z} 961.13$, corresponding to the loss of the Br ligand (for 25a) plus two CO fragments (for 26a). The same happens for 25b and 26b,
which show the main peak at m / z 1008.12, corresponding to the loss of the I ligand (for $\mathbf{2 6 a}$) plus two CO fragments (for 26b). The syntheses of 26a,b are best carried out in distilled THF (and heating to $60^{\circ} \mathrm{C}$ for several hours). If $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or 1,2-dichloroethane are used as solvent instead of THF, compounds 26a,b also form but together with some impurities. A reaction time of only 20 minutes results in an incomplete reaction.

Scheme V.3. Synthesis of complexes 26a,b

In the reaction of $\mathbf{2 5 a}(\mathrm{X}=\mathrm{Br})$ with an excess (2 -fold) of XyNC in acetone the dinuclear complex 27 precipitates as a red solid (Scheme V.4). This complex is the result of the insertion of three molecules of the isocyanide into each aryl-Pd bond and the nucleophilic attack of one isocyanide to each formyl group, followed by an intramolecular proton migration (Scheme V.5). The tbbpy ligands on the Pd atoms are displaced by two other XyNC molecules which, as usual, adopt a trans disposition. We haven't found in the literature molecules with a structure related to complex 27. The only precedent for this reaction is the synthesis of the mononuclear complex XIII (Scheme V.6), containing an isoindolinone moiety, which was prepared by some of us by reaction of an ortho-formyl arylpalladium complex with XyNC . ${ }^{14}$ Similar reactions with $\mathbf{2 6 b}$ ($\mathrm{X}=$ I), or with ${ }^{\text {t BuNC instead of } \mathrm{XyNC} \text {, result in mixture of compounds. Complex } 27}$ decomposes slowly in solution to give $\left[\mathrm{PdBr}_{2}(\mathrm{XyNC})_{4}\right]$, which is easily identified by its ${ }^{1} \mathrm{H}$ NMR resonance at 2.52 ppm .

Scheme V.4. Synthesis of compounds 27 and 28

Scheme V. 5 Mechanism for the formation of complex 27

Scheme V. 6 Synthesis of compounds XIII and XIV

Finally, the reaction of $\mathbf{2 7}$ with TlOTf in 1,2-dichloroethane, at $70^{\circ} \mathrm{C}$, results in the decomposition of the complex yielding the organic compound 28, containing a benzodipyrrole-1,5-dione core with two alkylidene substituents in positions 2,6. This reaction is promoted by the precipitation of TlBr , which would favor the displacement of both $\left[\mathrm{PdBr}(\mathrm{XyNC})_{2}\right]$ moieties by hydroxyl groups from residual water molecules. A tautomeric equilibrium would then result in the formation of the amide functions in 27. We can find a mononuclear parallel for this reaction in the formation of the organic compound XIV, by reaction of XIII with TlOTf (Scheme V.5), reported by some of us. ${ }^{14}$ In that reaction compound XIII formed together with its tautomeric form, in a 2:3 ratio, and both could be separated by differences in solubility. ${ }^{14}$ The structures of both 27 and 28 have been confirmed by X-ray crystallography (see Section V.4).

V.2.2 NMR and IR Data

Compounds $\mathbf{2 5 - 2 8}$ have been extensively studied by NMR spectroscopy (1D and 2 D experiments), allowing an almost full assignment of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ resonances. Complex 24 is an exception, as it shows a fluxional behavior at room temperature, resulting in broad ${ }^{1} \mathrm{H}$ resonances for the tbbpy ligand. This dynamic process might involve the coordination to the OTf anion to the Pd atom, leading to a five-coordinate intermediate in which dissociation of one of the N atoms, followed by rotation around the remaining Pd-N bond, and recoordination, would result in the exchange of the halves of the tbbpy ligand. We have described a similar process for the bpy and tbbpy complexes 16-21 in Chapter IV. ${ }^{6}$ Complex 24 shows the expected IR bands for the imine $\mathrm{C}=\mathrm{N}$ bond $\left(1614 \mathrm{~cm}^{-1}\right)$ and the $\mathrm{S}=\mathrm{O}$ bond of the OTf anion (1030, $1280 \mathrm{~cm}^{-1}$).

For the tbbpy complexes $\mathbf{2 5 a}, \mathbf{b}$ and $\mathbf{2 6 a}, \mathbf{b}$, as usual, the H16 protons are shielded (δ $=7.78-7.38 \mathrm{ppm})$ with respect to H16' $(\delta=9.53-9.24 \mathrm{ppm})$, as a consequence of the anisotropic effect of the aryl group on the H16 protons (see Scheme II.4, in Chapter II).

Complexes 25a,b show the expected IR bands for the formyl $\mathrm{C}=\mathrm{O}$ bonds at 1672 and $1662 \mathrm{~cm}^{-1}$, respectively. For the complexes 26a,b, resulting from the insertion of CO into both aryl-Pd bonds of 25a,b, we observe a broad band at $1682 \mathrm{~cm}^{-1}$ (for 26a) or two bands, at 1662 and $1678 \mathrm{~cm}^{-1}$ (for 26b) confirming the presence of additional $\mathrm{C}=\mathrm{O}$ bonds within these molecules.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 5 a}, \mathbf{b}$ and 26a,b, show the expected resonances for the formyl groups (see Table V.1), but for 26a,b we have not been able to observe the ${ }^{13} \mathrm{C}$ resonances of the inserted CO groups, even when using long relaxation delays between scans of up to 10 s (to allow for the longer relaxation times usually associated to quaternary carbons).

As shown in Table V.l, complexes 25a,b show a single set of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR resonances for the halves of the molecule, an indication that they possess an inversion center in solution. We expected that complexes 26a,b would show a similar symmetry, but, surprisingly, we observed two well-separated ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR resonances for the two CH groups of the aryl ring (CH3 and CH3"), and only for them (Table V.1). We think that the inequivalence of the two CH groups can be explained by the formation of a hydrogen bond between one of the inserted CO groups and the adjacent aryl proton, while the same would not happen for the other CO group, as a result of steric or electronic reasons. The aryl hydrogen involved in the hydrogen bond (H3") would be shifted to higher frequencies (data in red in Table V.1) with respect to $\mathbf{2 5 a}, \mathbf{b}$, while the other aryl hydrogen would resonate at a similar frequency to 25a,b (data in blue). The ${ }^{13} \mathrm{C}$ resonances of CH 3 and CH 3 " would also be affected, but the chemical shifts of the other aryl carbons ($\mathrm{C} 1,1$ ", $\mathrm{C} 2,2^{\prime \prime}$) and of the formyl groups, $\mathrm{CHO}, \mathrm{CHO}$ ", would be very similar, resulting in single resonances (indeed, the APT spectrum of 26b, when processed without window function, ${ }^{\text {a }}$ shows a significant broadening of the ${ }^{13} \mathrm{C}$ resonances of the CHO/CHO", C1/C1" and C2/C2" carbons, and not of those of the tbbpy ligand).

Table V.1. Selected ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data (ppm) for 25a,b and 26a,b.

								X(tbbpy) a $\mathrm{X}=$ b $\mathrm{X}=$	
	25a		25b			26a		26b	
	${ }^{13} \mathrm{C}$	${ }^{1} \mathrm{H}$	${ }^{13} \mathrm{C}$	${ }^{1} \mathrm{H}$		${ }^{13} \mathrm{C}$	${ }^{1} \mathrm{H}$	${ }^{13} \mathrm{C}$	${ }^{1} \mathrm{H}$
C1	152.6		149.2		C1	168.3		165.7	
C2	143.9		143.6		C2	138.7		138.9	
CH	135.8	8.12	136.6	8.11	CH3"	144.6	8.48	146.5	8.48
					CH3	128.5	8.14	128.3	8.14
CHO	197.4	11.10	197.8	11.03	CHO	196.3	11.01	196.8	10.95

[^12]As we were not able to observe the ${ }^{13} \mathrm{C}$ NMR resonances of the inserted CO groups in 26a,b, we decided to carry out the reaction of $\mathbf{2 5 a}$ with ${ }^{13} \mathrm{CO}$, in order to confirm by ${ }^{13} \mathrm{C}$ NMR the presence of these inserted CO groups. ${ }^{\text {b }}$ The APT spectra of the product showed the presence of two very weak resonances at 240.5 and 237.0 ppm (Figure V.1), confirming the presence of two non-equivalent inserted CO groups. But, surprisingly, the CHO resonance was the most strongly affected by the introduction of ${ }^{13} \mathrm{CO}$, suggesting an unexpected exchange process between the inserted CO and the formyl group. In the ${ }^{1}$ H NMR spectrum (box in Figure V.1), the formyl resonance was also strongly affected, showing strong ${ }^{13} \mathrm{C}$ satellites.

Figure V. 1
${ }^{1} \mathrm{H}(300 \mathrm{MHz})$ and APT (75.6 MHz) spectra of the reaction of 25a with ${ }^{13} \mathrm{CO}$

The IR spectrum of complex 27 shows the expected bands for the $\mathrm{N}-\mathrm{H}$ bond (3376 cm^{-1}), the $\mathrm{C} \equiv \mathrm{N}$ bonds of the coordinated isocyanides ($2182 \mathrm{~cm}^{-1}$), the carbonyl $\mathrm{C}=\mathrm{O}$ bonds ($1682 \mathrm{~cm}^{-1}$), and the $\mathrm{C}=\mathrm{N}$ bond of the inserted isocyanide $\left(1614 \mathrm{~cm}^{-1}\right)$. For the organic compound 28 we observe an N-H band at $3369 \mathrm{~cm}^{-1}$, and a broad $\mathrm{C}=\mathrm{O}$ band at $1674 \mathrm{~cm}^{-1}$. Both 27 and 28 posses an inversion center in solution, so that the halves of the molecules are equivalent, and only a set of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR resonances is observed. The NMR data also indicate that there is free rotation around all the N -Xy bonds, making both Me groups on each ring equivalent. For complex 27, the two XyNC ligands on each Pd are also equivalent, confirming the trans geometry proposed for this complex.

[^13]
V.2.3 X-Ray Structure Determinations

The crystal structures of $\mathbf{2 4} \cdot \mathbf{4} \mathrm{CHCl}_{3}$ (Figure V.2), $\mathbf{2 7} \cdot \mathbf{2} \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 3$ hexane (Figure V.3) and $\mathbf{2 8} \cdot 2 \mathrm{CDCl}_{3}$ (Figure V.4) have been determined by X-ray diffraction studies (see also Tables V.2-5). ${ }^{\text {c }}$

The structure of $\mathbf{2 4} \cdot 4 \mathrm{CHCl}_{3}$ (Figure V. 2 and Table V.3), in which the complex displays crystallographic inversion symmetry, confirms the doubly chelating nature of the diimine ligand. The chelate ring is to a good approximation planar, with a mean deviation of $0.014 \AA$. The coordination of the iminic nitrogen to Pd leads to a slight lengthening of the $\mathrm{C}=\mathrm{N}$ bond (1.291(7) \AA) with respect to the mean value in imines $(1.279 \AA) .{ }^{15}$ The coordination around the Pd atoms is square planar, but is markedly distorted to avoid a close contact between H3 and H26 (for which the observed distance is $2.12 \AA$); the atoms Pd, N11, N21 and N1 are coplanar (mean deviation $0.04 \AA$) but C2 lies $0.64 \AA$ outside the plane thus defined. The Pd-C bond distance in $\mathbf{2 4} \cdot 4 \mathrm{CHCl}_{3}$ is $2.002(5) \AA$, similar to the values reported by us for other aryl palladium complexes with the aryl ligand trans to bpy or tbbpy (between ca. 1.97 and $2.00 \AA$) ${ }^{3,16,17}$ Because there is no significant difference in trans influence between the Br and tbbpy ligands, the Pd-C bond distance in $\mathbf{2 4} \cdot \mathbf{4} \mathrm{CHCl}_{3}(2.002(5) \AA$) is similar to that found for complexes $\mathbf{3 0}$ " (2.012(3) \AA) and $31(2.004(2) \AA$) (see Chapter VI), where the aryl ligand is trans to Br . This similarity has been observed before. ${ }^{17}$ The three Pd-N bond distances in $\mathbf{2 4} \cdot \mathbf{4 \mathrm { CHCl } _ { 3 }}$ follow the expected order of trans influence: Pd-N trans to aryl (2.160(4) \AA) > Pd-N trans to $\mathrm{N}(2.039(5) \AA$ and 2.058(5) $\AA)$.

The structure of complex 27 is confirmed by its X-ray diffraction study (Figure V.3); like 24, it displays crystallographic inversion symmetry. Unfortunately the large amount of included solvent leads to data with poorer resolution than one would expect at low temperature. The structure is closely related to the structure of the mononuclear analogue XIII, also drawn in the Figure. ${ }^{18}$ Table V. 4 shows, for comparison, the bond

[^14]distances and angles for both complexes, 27.2 $\mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 3$ hexane and XIII• $\mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{18}$ Similarly, the structure of 28 (Figure V.4) is closely related to the structure of the 3-alkylidene-2,3-dihydroisoindolinone XIV, ${ }^{14}$ and Table V. 5 shows, for comparison, the bond distances and angles for both compounds, $\mathbf{2 8} \cdot 2 \mathrm{CDCl}_{3}$ and XIV•0.5Et $\mathrm{E}_{2} \mathrm{O} .{ }^{14}$ Chart V. 1 shows the numbering system used in this work for the complexes 27 and XIII, as well as for the organic compounds 28 and XIV. ${ }^{\text {d }}$

27 and XIII

28 and XIV

Chart V. 1 Numbering system used in the X-ray data discussion of $\mathbf{2 7}$ and $\mathbf{2 8}$

The Pd atom in $27 \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 3$ hexane shows square planar coordination to a reasonable approximation, with a mean deviation from the best plane through Pd and the four donor atoms of $0.07 \AA$. The $\mathrm{Pd}-\mathrm{C}(10)$ bond distance of the iminoacyl ligand is $2.041(7) \AA$, similar to that of XIII• $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.031(3) \AA),{ }^{18}$ and considerably longer than the Pd-C bond distances in the aryl palladium complexes reported in this Thesis (between 1.9903(19) and 2.012(3) Å). Pd-C bond distances in iminoacyl ligands vary considerable depending on the influence of the trans ligand. ${ }^{18,19}$ The Pd-C bond distances of the isocyanide ligands, $\mathrm{Pd}-\mathrm{C}(40)$ and $\mathrm{Pd}-\mathrm{C}(50)$, are slightly shorter in $27 \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 3$ hexane (both $1.969(8) \AA$) than in XIII• $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1.986(3) and $1.999(3) \AA$) and similar to the values found in other Pd complexes with two mutually trans XyNC ligands (ca. 1.96$1.99 \AA$ in those reported by us). ${ }^{18-20}$ Finally, the Pd-Br bond distances of $2.5338(10) \AA$ for $27 \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 3$ hexane and $2.5288(4) \AA$ for XIII $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2},{ }^{18}$ are similar to those observed in other complexes where the Br ligand is trans to an iminoacyl ligand. ${ }^{18,21}$

The data in Tables V. 4 and V. 5 suggest for the four compounds, $\mathbf{2 7} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 3$ hexane, XIII• $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathbf{2 8} \cdot 2 \mathrm{CDCl}_{3}$, and XIV•0.5Et O , a delocalization of π electron density along the $\mathrm{N}-\mathrm{C}(4)=\mathrm{O}$ bonds within the five-membered ring (Chart V.1). This suggestion is based on the short N-C(4) bond distance (ca. $1.38 \AA$), compared with

[^15]the ca. 1.43-1.44 \AA value for the $\mathrm{N}(3)-\mathrm{C}(30)$ ($\mathbf{2 7}$ and XIII) or $\mathrm{N}(1)-\mathrm{C}(1)$ ($\mathbf{2 8}$ and XIV) bonds, within the same ring. The angles around the N atoms within the five-membered ring $(\mathrm{N}(3)$ or $\mathrm{N}(1))$ also support this suggestion, as their values are ca. 112° (for $\mathrm{C}(4)$ -$\mathrm{N}(3)-\mathrm{C}(30)$ or $\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(1)), 118-121^{\circ}$ (for $\mathrm{C}(4)-\mathrm{N}(3)-\mathrm{C}(31)$ or $\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(11)$), and $127-129^{\circ}$ (for $\mathrm{C}(30)-\mathrm{N}(3)-\mathrm{C}(31)$ or $\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(11)$).

We also find a delocalization of π electron density along the $\mathrm{N}(2)-\mathrm{C}=\mathrm{C}$ bonds, $(\mathrm{N}(2)-\mathrm{C}(20)-\mathrm{C}(30)$ for 27 and XIII, and $\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(1)$ for 28 and XIV). This suggestion is based again on the short $\mathrm{N}(2)-\mathrm{C}(20)$ or $\mathrm{N}(2)-\mathrm{C}(6)$ bond lengths of ca. 1.37$1.39 \AA$, which are intermediate between the values for the double bonds $\mathrm{N}(1)=\mathrm{C}(10)$ (in 27 and XIII; 1.261(9) and 1.267(3) \AA, respectively) and the single bonds $\mathrm{N}(2)-\mathrm{C}(21)$ (ca. 1.42-1.43 \AA for the four compounds). The wide C-N(2)-C(21) angles (between ca. 125 and 129°), and the short $\mathrm{C}=\mathrm{C}$ bonds $(\mathrm{C}(30)-\mathrm{C}(20)$ or $\mathrm{C}(1)-\mathrm{C}(6)$, all ca. $1.36 \AA$), compared with the adjacent $\mathrm{C}(30)-\mathrm{C}(2)$ ($\mathbf{2 7}$ and XIII) or $\mathrm{C}(1)-\mathrm{C}(2)$ ($\mathbf{2 8}$ and XIV) bonds (ca. 1.46$1.47 \AA$), also support this suggestion.

The delocalization of π electron density is also reflected in the almost planar arrangement of the atoms in the heterocyclic core, $\mathrm{O}(1)$, the carbons of the aliphatic chain and $\mathrm{N}(2)$. Thus, for 27 and XIII the atoms $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}-\mathrm{N}(3)-\mathrm{C}(31)-$ $\mathrm{C}(30)-\mathrm{C}(20)-\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{C}(21)$ are almost coplanar (mean deviation $0.07 \AA$ for 27), as are (to a lower degree), for $\mathbf{2 8}$ and XIV the atoms $\mathrm{C}(5)-\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{C}(31)-$ $\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(21)$ (the mean deviation is larger, $0.17 \AA$ for $\mathbf{2 8}$).

In the organic compounds, $28 \cdot 2 \mathrm{CDCl}_{3} \cdot$ and $\mathrm{XIV} \cdot 0.5 \mathrm{Et}_{2} \mathrm{O}$, we also find a delocalization of electron density over the bonds $\mathrm{N}(3)-\mathrm{C}(7)-\mathrm{O}(2)$, as shown by the coplanarity of the group of atoms $\mathrm{C}(31)-\mathrm{N}(3)-\mathrm{C}(7)-\mathrm{O}(2)-\mathrm{C}(6)$, with mean deviations of $0.02 \AA$ for 28 and $0.01 \AA$ for XIV. ${ }^{14}$ The angle between this plane and the major plane described in the previous paragraph is 89.5° for 28 . The $\mathrm{N}(3)-\mathrm{C}(7)$ bond lengths (1.3540(19) \AA for 28 and 1.358(3) \AA for XIV) are even shorter than the $\mathrm{N}(1)-\mathrm{C}(4)$ (1.3799(19) \AA for 28 and 1.379(3) \AA for XIV) and $\mathrm{N}(2)-\mathrm{C}(6)$ bond lengths (1.3721(19) \AA for 28 and 1.371(3) \AA for XIV). The carbonyl $\mathrm{C}=\mathrm{O}$ bond lengths ($\mathrm{C}(7)-\mathrm{O}(2)$, $1.2195(19) \AA(\mathbf{2 8})$ and $1.224(2) \AA(\mathbf{X I V}) ; \mathrm{C}(4)-\mathrm{O}(1), 1.2252(19) \AA(28)$ and $1.234(2) \AA$ $(\mathbf{X I V}))$ are as expected for $\mathrm{C}_{\mathrm{sp} 2}=\mathrm{O}$ amides. ${ }^{15}$

Table V. 2 X-ray crystallographic data for compounds $\mathbf{2 4} \cdot 4 \mathrm{CHCl}_{3}, \mathbf{2 7} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 2$ hexane, and $\mathbf{2 8} \cdot 2 \mathrm{CDCl}_{3}$

	$\mathbf{2 4} \cdot 4 \mathrm{CHCl}_{3}$	27.2 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. 2 hexane	28.2 CDCl_{3}
Formula	$\mathrm{C}_{58} \mathrm{H}_{74} \mathrm{Cl}_{12} \mathrm{~F}_{6} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{Pd}_{2} \mathrm{~S}_{2}$	$\mathrm{C}_{118} \mathrm{H}_{140} \mathrm{Br}_{2} \mathrm{Cl}_{4} \mathrm{~N}_{10} \mathrm{O}_{2} \mathrm{Pd}_{2}$	$\mathrm{C}_{64} \mathrm{H}_{60} \mathrm{D}_{2} \mathrm{Cl}_{6} \mathrm{~N}_{6} \mathrm{O}_{4}$
$M_{\text {r }}$	1767.55	2244.82	1193.91
T (K)	133(2)	133(2)	100(2)
$\lambda(\AA)$	0.71073	0.71073	0.71073
cryst syst	Triclinic	Monoclinic	Triclinic
space group	$\mathrm{P}(-1)$	$\mathrm{P} 21 / \mathrm{n}$	$\mathrm{P}(-1)$
cell constants			
$a(\AA)$	11.9565(7)	16.1438(19)	8.7235(8)
$b(\AA)$	12.5085(8)	19.885(2)	12.5281(12)
$c(\AA)$	13.4126(8)	18.120(2)	14.1188(14)
α (deg)	105.376(3)	90	101.419(4)
β (deg)	94.960(3)	103.313(3)	94.655(4)
γ (deg)	102.884(3)	90	99.974(4)
$V\left(\AA^{3}\right), Z$	1862.7(2), 1	5660.5(11), 2	1478.9(2), 1
ρ (calcd) ($\mathrm{Mg} \mathrm{m}^{-3}$)	1.576	1.317	1.340
abs. coef. (mm^{-1})	1.034	1.171	0.344
$F(000)$	894	2328	622
cryst size (mm)	$0.40 \times 0.30 \times 0.15$	$0.40 \times 0.30 \times 0.15$	$0.25 \times 0.15 \times 0.13$
θ range (deg)	1.59-30.03	1.52-25.53	2.39-30.51
	$-16 \leq h \leq 16$	$-19 \leq h \leq 19$	$-12 \leq h \leq 12$
index ranges	$-17 \leq k \leq 17$	$-24 \leq k \leq 24$	$-17 \leq k \leq 17$
	$-18 \leq l \leq 18$	$-21 \leq l \leq 21$	$-20 \leq l \leq 20$
reflections collected	37843	47241	37642
independent reflections	10792	10450	9012
$R_{\text {int }}$	0.0329	0.1178	0.0268
abs corr	Semi-empirical from equivalents	Semi-empirical from equivalents	None
transmissions	0.8604-0.7421	0.8439-0.5900	0.9566-0.9189
refinement method	Full-matrix leastsquares on F^{2}	Full-matrix leastsquares on F^{2}	Full-matrix leastsquares on F^{2}
no. of data/restraints/params	10792 / 331 / 547	10450 / 927 / 620	9012 / 40 / 388
goodness-of-fit on F^{2}	1.232	1.067	1.029
Final R indices ($I>2 \sigma(I)$)			
$R 1$	0.0685	0.0821	0.0527
$w R 2$	0.1841	0.1823	0.1345
R indices (all data)			
R1	0.0806	0.1424	0.0686
$w R 2$	0.1889	0.2065	0.1463
largest diff peak (e \AA^{-3})	1.450	1.327	0.856
largest diff hole (e \AA^{-3})	-1.428	-1.180	-0.756

Figure V. 2
Thermal ellipsoid plot (50% probability level) of $\mathbf{2 4} \cdot \mathbf{4} \mathrm{CHCl}_{3}$. Only the cation is shown

Table V. 3 Selected bond lengths (\AA) and angles (deg) of $\mathbf{2 4} \cdot 4 \mathrm{CHCl}_{3}$

$\mathrm{Pd}-\mathrm{C}(2)$	$2.002(5)$	$\mathrm{C}(2)-\mathrm{Pd}-\mathrm{N}(1)$	$80.3(2)$
$\mathrm{Pd}-\mathrm{N}(1)$	$2.058(5)$	$\mathrm{C}(2)-\mathrm{Pd}-\mathrm{N}(21)$	$98.5(2)$
$\mathrm{Pd}-\mathrm{N}(21)$	$2.039(5)$	$\mathrm{N}(21)-\mathrm{Pd}-\mathrm{N}(11)$	$78.14(17)$
$\mathrm{Pd}-\mathrm{N}(11)$	$2.160(4)$	$\mathrm{N}(1)-\mathrm{Pd}-\mathrm{N}(11)$	$104.84(17)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.428(7)$	$\mathrm{N}(21)-\mathrm{Pd}-\mathrm{N}(1)$	$172.26(19)$
$\mathrm{C}(1)-\mathrm{C}(4)$	$1.428(7)$	$\mathrm{C}(2)-\mathrm{Pd}-\mathrm{N}(11)$	$165.77(19)$
$\mathrm{N}(1)-\mathrm{C}(4)$	$1.291(7)$	$\mathrm{C}(4)-\mathrm{C}(1)-\mathrm{C}(2)$	$114.1(5)$
		$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Pd}$	$113.1(4)$
		$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(1)$	$117.8(5)$
	$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{Pd}$	$114.6(4)$	

Figure V. 3
Thermal ellipsoid plot (50% probability level) of $\mathbf{2 7} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 3$ hexane

Table V. 4
Comparison of selected bond lengths (\AA) and angles (deg) of $\mathbf{2 7} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 3$ hexane and XIII $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$

	$\mathbf{2 7}$	XIII		$\mathbf{2 7}$	XIII
$\mathrm{Pd}-\mathrm{C}(40)$	$1.969(8)$	$1.999(3)$	$\mathrm{C}(40)-\mathrm{Pd}-\mathrm{C}(10)$	$89.8(3)$	$90.64(11)$
$\mathrm{Pd}-\mathrm{C}(50)$	$1.969(8)$	$1.986(3)$	$\mathrm{C}(50)-\mathrm{Pd}-\mathrm{C}(10)$	$92.5(3)$	$93.09(11)$
$\mathrm{Pd}-\mathrm{C}(10)$	$2.041(7)$	$2.031(3)$	$\mathrm{C}(40)-\mathrm{Pd}-\mathrm{Br}$	$88.5(2)$	$88.30(8)$
$\mathrm{Pd}-\mathrm{Br}$	$2.5338(10)$	$2.5288(4)$	$\mathrm{C}(50)-\mathrm{Pd}-\mathrm{Br}$	$89.7(2)$	$88.25(9)$
$\mathrm{N}(1)-\mathrm{C}(10)$	$1.261(9)$	$1.267(3)$	$\mathrm{C}(40)-\mathrm{Pd}-\mathrm{C}(50)$	$174.0(3)$	$173.50(12)$
$\mathrm{N}(2)-\mathrm{C}(20)$	$1.389(9)$	$1.378(3)$	$\mathrm{C}(10)-\mathrm{Pd}-\mathrm{Br}$	$174.9(2)$	$176.82(7)$
$\mathrm{N}(3)-\mathrm{C}(30)$	$1.428(9)$	$1.439(3)$	$\mathrm{C}(20)-\mathrm{C}(10)-\mathrm{Pd}$	$114.1(5)$	$112.93(17)$
$\mathrm{C}(2)-\mathrm{C}(30)$	$1.471(10)$	$1.476(4)$	$\mathrm{C}(30)-\mathrm{C}(20)-\mathrm{C}(10)$	$123.2(6)$	$123.0(2)$
$\mathrm{N}(1)-\mathrm{C}(11)$	$1.428(9)$	$1.413(4)$	$\mathrm{C}(20)-\mathrm{C}(30)-\mathrm{N}(3)$	$125.4(6)$	$123.6(2)$
$\mathrm{N}(2)-\mathrm{C}(21)$	$1.421(10)$	$1.426(3)$	$\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{C}(11)$	$127.2(6)$	$127.9(3)$
$\mathrm{N}(3)-\mathrm{C}(31)$	$1.437(10)$	$1.440(3)$	$\mathrm{C}(20)-\mathrm{N}(2)-\mathrm{C}(21)$	$125.3(6)$	$125.8(2)$
$\mathrm{C}(10)-\mathrm{C}(20)$	$1.475(10)$	$1.503(4)$	$\mathrm{C}(4)-\mathrm{N}(3)-\mathrm{C}(30)$	$112.6(6)$	$112.3(2)$
$\mathrm{C}(20)-\mathrm{C}(30)$	$1.364(10)$	$1.368(4)$	$\mathrm{C}(4)-\mathrm{N}(3)-\mathrm{C}(31)$	$117.9(6)$	$119.7(2)$
$\mathrm{O}-\mathrm{C}(4)$	$1.217(9)$	$1.220(3)$	$\mathrm{C}(30)-\mathrm{N}(3)-\mathrm{C}(31)$	$129.5(6)$	$127.9(2)$
$\mathrm{N}(3)-\mathrm{C}(4)$	$1.388(10)$	$1.384(4)$	$\mathrm{N}(4)-\mathrm{C}(40)-\mathrm{Pd}$	$175.1(7)$	$171.9(3)$
$\mathrm{N}(4)-\mathrm{C}(40)$	$1.159(9)$	$1.151(4)$	$\mathrm{C}(40)-\mathrm{N}(4)-\mathrm{C}(41)$	$168.0(8)$	$173.7(3)$
$\mathrm{N}(5)-\mathrm{C}(50)$	$1.167(9)$	$1.150(4)$	$\mathrm{N}(5)-\mathrm{C}(50)-\mathrm{Pd}$	$169.2(7)$	$169.3(3)$
$\mathrm{N}(4)-\mathrm{C}(41)$	$1.414(10)$	$1.408(4)$	$\mathrm{C}(50)-\mathrm{N}(5)-\mathrm{C}(51)$	$171.0(8)$	$174.5(3(1)$
$\mathrm{N}(5)-\mathrm{C}(51)$	$1.404(10)$	$1.410(3)$			

Table V. 5 Selected bond lengths (\AA) and angles (deg) of $\mathbf{2 8} \cdot 2 \mathrm{CDCl}_{3}$. and XIV•0.5 $\mathrm{Et}_{2} \mathrm{O}$

	$\mathbf{2 8}$	II		$\mathbf{2 8}$	XIV
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.357(2)$	$1.357(3)$	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{N}(1)$	$125.80(13)$	$125.57(19)$
$\mathrm{C}(1)-\mathrm{N}(1)$	$1.4270(18)$	$1.438(2)$	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	$128.67(13)$	$129.02(19)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.4621(19)$	$1.465(3)$	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$105.35(12)$	$105.17(17)$
$\mathrm{C}(4)-\mathrm{O}(1)$	$1.2252(19)$	$1.234(2)$	$\mathrm{C}(5)-\mathrm{C}(2)-\mathrm{C}(3)$	$118.98(13)$	$118.83(19)$
$\mathrm{C}(4)-\mathrm{N}(1)$	$1.3799(19)$	$1.379(3)$	$\mathrm{C}(5)-\mathrm{C}(2)-\mathrm{C}(1)$	$133.20(13)$	$133.56(19)$
$\mathrm{C}(4)-\mathrm{C}(3)$	$1.467(2)$	$1.458(3)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$107.81(12)$	$107.60(18)$
$\mathrm{C}(6)-\mathrm{N}(2)$	$1.3721(19)$	$1.372(3)$	$\mathrm{C}(5)-\mathrm{C}(3)-\mathrm{C}(2)$	$124.62(13)$	$121.9(2)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.522(2)$	$1.519(3)$	$\mathrm{C}(5)-\mathrm{C}(3)-\mathrm{C}(4)$	$126.67(13)$	$128.7(2)$
$\mathrm{C}(7)-\mathrm{O}(2)$	$1.2195(19)$	$1.224(2)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$108.70(13)$	$109.34(18)$
$\mathrm{C}(7)-\mathrm{N}(3)$	$1.3540(19)$	$1.358(3)$	$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{N}(1)$	$125.13(14)$	$124.1(2)$
$\mathrm{C}(11)-\mathrm{N}(1)$	$1.4334(18)$	$1.442(3)$	$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	$128.96(14)$	$129.88(19)$
$\mathrm{C}(21)-\mathrm{N}(2)$	$1.419(2)$	$1.432(3)$	$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	$105.88(12)$	$106.00(17)$
$\mathrm{C}(31)-\mathrm{N}(3)$	$1.4397(19)$	$1.445(3)$	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{N}(2)$	$124.75(14)$	$123.67(19)$
			$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$118.67(12)$	$118.38(18)$
			$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	$116.50(13)$	$117.83(18)$
			$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{N}(3)$	$123.66(14)$	$123.43(19)$
			$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	$120.29(13)$	$119.80(18)$
			$\mathrm{N}(3)-\mathrm{C}(7)-\mathrm{C}(6)$	$116.04(13)$	$116.73(18)$
			$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(1)$	$112.18(12)$	$111.79(17)$
			$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(11)$	$120.43(12)$	$120.86(17)$
			$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(11)$	$127.29(12)$	$126.79(16)$
			$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}(21)$	$125.75(14)$	$128.62(19)$
			$\mathrm{N}(3)-\mathrm{C}(31)$	$122.54(13)$	$123.47(18)$

V. 3 CONCLUSIONS

We have prepared two dipalladated derivatives of terephthalaldehyde by hydrolysis of a previously described dipalladated Schiff base. A dicationic dinuclear derivative of the Schiff base has also been characterized, including an X-ray diffraction structure. The reactivity of the dinuclear terephthalaldehyde complexes towards CO and XyNC has been investigated. Thus, the first double insertion of CO into two separate aryl-metal bonds on the same aryl ligand has been achieved. In the resulting complexes the two inserted CO groups are inequivalent, as one of them seems to form a hydrogen bond with the adjacent aryl proton, while the same would not happen for the other CO group. These insertion reactions have been investigated with the help of ${ }^{13} \mathrm{CO}$, whereby an unexpected exchange process between the inserted CO and the formyl group in ortho position was evidenced. In the reactions with XyNC we have isolated a novel dinuclear $\mathrm{Pd}(\mathrm{II})$ complex, resulting from a double 3-fold insertion of XyNC into the aryl-Pd bonds, followed by the interaction of two of the inserted isocyanide molecules with the formyl groups in ortho. This complex has been characterized by X-ray crystallography. By a Tl^{+}-promoted hydrolysis of the complex the central ligand can be released, and the resulting polycyclic heterocycle has also been characterized by X-ray crystallography.

V. 4 REFERENCES

1. Vicente, J.; Lyakhovych, M.; Bautista, D.; Jones, P. G., Organometallics 2001, 20, 4695.
2. Vicente, J.; Martínez-Viviente, E.; Fernández-Rodríguez, M. J.; Jones, P. G., Organometallics 2009, 28, 5845.
3. Vicente, J.; Shenoy, R. V.; Martínez-Viviente, E.; Jones, P. G., Organometallics 2009, 28, 6101.
4. Vicente, J.; Shenoy, R. V.; Martínez-Viviente, E.; Jones, P. G., Inorg. Chem. 2011, 50, 7189.
5. Chicote, M. T.; Vicente-Hernández, I.; Jones, P. G.; Vicente, J., Organometallics 2012, 31, 6252.
6. Fernández-Rodríguez, M. J.; Martínez-Viviente, E.; Vicente, J.; Jones, P. G., Organometallics 2015, 34, 2240.
7. Macdonald, P. M.; Hunter, A. D.; Lesley, G.; Li, J., Solid State Nucl. Magn. Reson. 1993, 2, 47; Bedford, R. B.; Blake, M. E.; Coles, S. J.; Hursthouse, M. B.; Scully, P. N., Dalton Trans. 2003, 2805.
8. Vicente, J.; Abad, J. A.; Rink, B.; Hernández, F.-S.; Ramírez de Arellano, M. C., Organometallics 1997, 16, 5269.
9. Trofimenko, S., J .Am. Chem. Soc. 1971, 93, 1808; Trofimenko, S., Inorg. Chem. 1973, 12, 1215; Phillips, I. G.; Steel, P. J., J. Organomet. Chem. 1991, 410, 247; Chakladar, S.; Paul, P.; Nag, K., Polyhedron 1991, 1513; Chakladar, S.; Paul, P.; Venkatsubramanian, K.; Nag, K., J. Chem. Soc., Dalton Trans. 1991, 2669; Chakladar, S.; Paul, P.; Mukherjee, A. K.; Dutta, S. K.; Nanda, K. K.; Podder, D.; Nag, K., J. Chem. Soc., Dalton Trans. 1992, 3119; Nanda, K. K.; Nag, K.; Venkatsubramanian, K.; Paul, P., Inorg. Chim. Acta 1992, 196, 195; Carina, R. F.; Williams, A. F.; Bernardinelli, G., J. Organomet. Chem. 1997, 548, 45; Lydon, D. P.; Rourke, J. P., Chem. Commun. 1997, 1741; Steenwinkel, P.; James, S. L.; Grove, D. M.; Kooijman, H.; Spek, A. L.; van Koten, G., Organometallics 1997, 16, 513; Steenwinkel, P.; Gossage, R. A.; Maunula, T.; Grove, D. M.; van Koten, G., Chem.-Eur. J. 1998, 4, 763; Steenwinkel, P.; Kooijman, H.; Smeets, W. J. J.; Spek, A. L.; Grove, D. M.; Van Koten, G., Organometallics 1998, 17, 5411; O'Keefe, B. J.; Steel, P. J., Organometallics 1998, 17, 3621; El Hatimi, A.; Gómez, M.; Jansat, S.; Muller, G.; Fontbardia, M.; Solans, X., J. Chem. Soc., Dalton Trans. 1998, 4229; Cardenas, D. J.; Echavarren, A. M.; Dearellano, M. C. R., Organometallics 1999, 18, 3337; de Geest, D. J.; O'Keefe, B. J.; Steel, P. J., J. Organomet. Chem. 1999, 579, 97; Vila, J. M.; Pereira, M. T.; Suárez, A.; Fernández, J. J.; Ortigueira, J. M.; Fernández, A.; López-Torres, M.; Rodríguez, C., Trends Organomet. Chem. 1999, 3, 71; Muñoz, M. P.; Martín-Matute, B.; FernándezRivas, C.; Cárdenas, D. J.; Echavarren, A. M., Adv. Syn. Catal. 2001, 343, 338; Slater, J. W.; Rourke, J. P., J. Organomet. Chem. 2003, 688, 112; Liu, B. B.; Wang, X. R.; Guo, Z. F.; Lu, Z. L., Inorg. Chem. Commun. 2010, 13, 814; Micutz, M.; Ilis, M.; Staicu, T.; Dumitrascu, F.; Pasuk, I.; Molard, Y.; Roisnel, T.; Circu, V., Dalton Trans. 2014, 43, 1151.
10. Vila, J. M.; Gayoso, M.; Pereira, M. T.; Torres, M. L.; Fernández, J. J.; Fernández, A.; Ortigueira, J. M., Z. Anorg. Allg. Chem. 1997, 623, 844; Fernández, A.; Pereira, E.; Fernández, J. J.; López-Torres, M.; Suárez, A.; Mosteiro, R.; Pereira, M. T.; Vila, J. M., New. J. Chem. 2002, 26, 895; López-Torres, M.; Fernandez, A.; Fernandez, J. J.; Suarez, A.; Castrojuiz, S.; Pereira, M. T.; Vila, J. M., J. Organomet. Chem. 2002, 655, 127; Fernandez, A.; Lopez-Torres, M.; Castro-Juiz, S.; Merino, M.; Vázquez-García, D.; Vila, J. M.; Fernández, J. J., Organometallics 2011, 30, 386; Fernandez, A.; Fernandez, J. J.; Lopeztorres, M.; Suarez, A.; Ortigueira, J. M.; Vila, J. M.; Adams, H., J. Organomet. Chem. 2000, 612, 85.
11. López-Torres, M.; Fernandez, A.; Fernandez, J. J.; Suarez, A.; Pereira, T.; Ortigueira, J. M.; Vila, J. M.; Adams, H., Inorg. Chem. 2001, 40, 4583.
12. Hernández, F.-S. Síntesis, Caracterización Y Reactividad De Complejos De Pd(Ii) Con Ligandos Arilo Polifuncionalizados. University of Murcia, 2001.
13. Jones, C. J., Chem. Soc. Rev. 1998, 27, 289.
14. Vicente, J.; Abad, J. A.; Martínez-Viviente, E.; Jones, P. G., Organometallics 2003, 22, 1967.
15. Allen, F. H.; Kennard, O.; Watson, D. G.; Orpen, A. G.; Brammer, L.; Taylor, R., J. Chem. Soc., Perkin Trans. 2 1987, S1.
16. Vicente, J.; Abad, J. A.; López-Sáez, M. J.; Jones, P. G., Organometallics 2006, 25, 1851; Fernández-Rodríguez, M. J.; Martínez-Viviente, E.; Vicente, J.; Jones, P. G., Organometallics 2015, 34, 3282.
17. Vicente, J.; Abad, J. A.; Martínez-Viviente, E.; Ramírez de Arellano, M. C.; Jones, P. G., Organometallics 2000, 19, 752.
18. Vicente, J.; Abad, J. A.; Martinez-Viviente, E.; Jones, P. G., Organometallics 2002, 21, 4454.
19. Vicente, J.; Abad, J. A.; Förtsch, W.; Jones, P. G.; Fischer, A., Organometallics 2001, 20, 2704; Vicente, J.; Abad, J. A.; Frankland, A. D.; Lopez-Serrano, J.; Ramirez de Arellano, M. C.; Jones, P. G., Organometallics 2002, 21, 272; Vicente, J.; Chicote, M. T.; MartínezMartínez, A. J.; Bautista, D., Organometallics 2009, 28, 5915.
20. Vicente, J.; Abad, J. A.; López-Sáez, M. J.; Jones, P. G., Organometallics 2010, 29, 409.
21. Vicente, J.; Abad, J. A.; López-Nicolás, R. M.; Jones, P. G., Organometallics 2011, 30, 4983; Vicente, J.; Abad, J. A.; López-Nicolás, R. M.; Jones, P. G., Organometallics 2004, 23, 4325.

CHAPTER VI

Synthesis of Mono- and Tripalladated 2,4,6Trisubstituted Arenes. 3-Fold Insertion of XyNC into Three Aryl-Palladium Bonds on the Same Arene

The results of this Chapter will soon be submitted for publication

VI. 1 INTRODUCTION

Our group is interested in the synthesis of polypalladated benzene derivatives with functionalized organic substituents ortho to each Pd atom (Chart VI.1) ${ }^{1-6}$ as an extension of our successful chemistry with (mononuclear) ortho-substituted arylpalladium complexes, and their reactivity with unsaturated organic molecules (see Chapter I, General Introduction, and the Introductions to the Chapters II-IV). These molecules may insert into the aryl-Pd bonds and interact with the groups in ortho position, providing interesting polynuclear organometallic complexes and organic polycyclic compounds.

(A)

(B)

Chart VI. 1 Di- (A) and tri-(B) palladated ortho-substituted arenes
Several groups, including ours, ${ }^{2,6,7}$ have reported on dipalladated ortho-substituted aryl complexes of type (A) (Chart VI.1), usually dipalladacycles with N -donor groups. ${ }^{7,8}$ Chapters IV and V of this Thesis describe the synthesis and reactivity of dipalladated derivatives of 2,5 -distyrylbenzene ${ }^{2,6}$ and terephthalaldehyde, respectively. In this Chapter our aim was to prepare tripalladated derivatives of type (B), i.e. with general formula $\mathrm{C}_{6} \mathrm{R}_{3}[\mathrm{Pd}]_{3}$ (Chart VI.1).

Although the synthesis and applications of polymetalated derivatives of benzene $\left(\mathrm{C}_{6} \mathrm{R}_{6-\mathrm{n}} \mathrm{M}_{\mathrm{n}}, \mathrm{n}=3-6\right)$ are well-documented, most of them involve representative elements. The element best studied is $\mathrm{Hg}(\mathrm{II})$, for which examples with three ${ }^{17}$, four, ${ }^{18-20}$ five ${ }^{19,21,22}$ and six ${ }^{9}$ metal atoms around a benzene ring have been reported. Hexalithiobenzene has also been described, and shown to possess excellent thermodynamic stability. ${ }^{10}$ There are also many reports on $1,3,5$-trilithiobenzene ${ }^{11,12}$ (the use of which to prepare trimetalated Mg, Hg and Sn derivatives has also been described ${ }^{11}$), and symmetrically 2,4,6trisubstituted derivatives thereof. ${ }^{13}$ 1,3,5-tris(trimethylstannyl)benzene ${ }^{14}$ has been obtained by several routes ${ }^{20,24,27,28}$ and it has been used in coordination, ${ }^{15}$ transmetallation, ${ }^{12,16}$ and $\mathrm{C}-\mathrm{C}$ bond forming reactions. ${ }^{17}$ 1,3,5Tris(trimethylgermyl)benzene ${ }^{18}$ and hexakis(trimethylgermyl)benzene ${ }^{19}$ have also been reported.

As regards transition metal derivatives, research has been conducted on metal clusters with face-capping arene ligands $\mu^{3}, \eta^{2}, \eta^{2}, \eta^{2}$ coordinated to three metal atoms such as $\mathrm{Co},{ }^{20} \mathrm{Ru},{ }^{35,36} \mathrm{Rh},{ }^{21}$ and Os. ${ }^{35,38,39}$ An unusual $\mu^{3}, \eta^{1}, \eta^{1}, \eta^{1}$ coordination mode has been described as well. ${ }^{22}$ These compounds have been proposed as models for benzene adsorption at a 3-fold site on the surface of a close-packed metal lattice. ${ }^{23}$ Very recently, a similar situation has been described for Pd in a μ^{3}-tripalladium sandwich complex, ${ }^{24}$ and there are also reports on Pd 3 to Pd 5 sheets between polycyclic aromatic hydrocarbon ligands. ${ }^{25}$ However, there has been very little research on σ-bonded polymetalated derivatives of benzene with transition metals. Until recently the only examples were $1,3,5-\mathrm{C}_{6} \mathrm{H}_{3}\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]_{3},{ }^{26} \quad 1,3,5-\mathrm{C}_{6} \mathrm{H}_{3}\left[\mathrm{Fe}\left(\eta^{5}-\mathrm{Cp}\right)(\mathrm{CO})_{2}\right]_{3},{ }^{26,27}$ and $\quad 1,3,5-\mathrm{C}_{6} \mathrm{H}_{3}\left[\mathrm{Fe}\left(\eta^{5}-\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)(\mathrm{CO})_{2}\right]_{3},{ }^{28}$ prepared in two steps involving the reaction of $\mathrm{Na}[\mathrm{M}]([\mathrm{M}]=$ $\left[\mathrm{Mn}(\mathrm{CO})_{5}\right],\left[\mathrm{Fe}\left(\eta^{5}-\mathrm{Cp}\right)(\mathrm{CO})_{2}\right]$ or $\left.\left[\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)(\mathrm{CO})_{2}\right]\right)$, with $1,3,5-\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{COCl})_{3}$, and subsequent decarbonylation of the resulting $1,3,5-\mathrm{C}_{6} \mathrm{H}_{3}[\mathrm{C}(\mathrm{O}) \mathrm{M}]_{3}$ triacyl complexes. The two first complexes were later prepared by reaction of 1,3,5-triiodobenzene with three equivalents of $\left[\mathrm{KMn}(\mathrm{CO})_{5}\right]$ or $\left[\mathrm{Fe}\left(\eta^{5}-\mathrm{Cp}\right)(\mathrm{CO})_{2}\right] \mathrm{ZnCl}$, respectively. ${ }^{29}$ In 2001 our group published the first tripalladated benzene derivative, prepared by oxidative addition of $1,3,5$-triiodomesitylene to three equivalents of $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ in the presence of chelating N donor ligands. ${ }^{1}$ Shortly after that, another group reported the first 3-fold cyclopalladation of a single benzene ring, 1,3,5-tris(di-2-pyridylamino)benzene. ${ }^{30}$ In 2009 we published a report on mono-, di-, and tripalladated 1,3,5-benzenetricarboxaldehyde complexes ${ }^{3}$ and in 2011 we reported a $\mathrm{Pd}_{3} \mathrm{Tl}$ derivative prepared by reaction of a trinuclear Pd complex of type $\mathbf{B}(\mathrm{R}=\mathrm{Me})^{1}$ with TlOTf (see Scheme VI.4 in this Chapter). ${ }^{4}$ Since then there have been no further reports on the subject, in spite of its potential interest for the Pd-mediated synthesis of organic polycyclic compounds and in the field of metallodendrimers. ${ }^{31}$

We have tried to extend this chemistry to tripalladated derivatives of type (B) (Chart VI.1), with $\mathrm{R}=\mathrm{CH}_{2} \mathrm{OH}, \mathrm{OH}$, and OMe . These R groups were chosen with the aim of expanding the chemistry developed with the related mononuclear complexes, $\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{R}$ 2)[Pd], in Chapters II and III of this Thesis $\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{OH}\right){ }^{32}$ or in previous publications of our group $(\mathrm{R}=\mathrm{OH}) .{ }^{33,34}$ The group $\mathrm{R}=\mathrm{OMe}$ was chosen (with no success) when the synthesis of a tripalladated derivative with $\mathrm{R}=\mathrm{OH}$ failed (see Section VI.2.1). We have nonetheless been successful in the synthesis of two tripalladated complexes with $\mathrm{R}=$ $\mathrm{CH}_{2} \mathrm{OH}$ and, although the investigation of its reactivity towards unsaturated molecules
has not given positive results yet, we have achieved a 3-fold insertion of XyNC into the aryl- Pd bonds of the trinuclear derivative with $\mathrm{R}=\mathrm{Me}$.

VI. 2 RESULTS AND DISCUSSION

VI.2.1 Oxidative Addition Reactions

Scheme VI. 1 Synthesis of complexes 29a,b

The trisubstituted trihaloarene $1,3,5-\mathrm{C}_{6}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3} \mathrm{I}_{3}$ ($\mathbf{X V}$, Scheme VI.1) has been prepared according to a literature procedure ${ }^{35, \mathrm{a}}$ (see Chapter VIII, Experimental Section). By oxidative addition of $\mathbf{X V}$ to three equivalents of $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$, in the presence of tbbpy or tmeda, the trinuclear arylpalladium complexes $\left[\left\{\operatorname{PdI}\left(\mathrm{N}^{\wedge} \mathrm{N}\right)\right\}_{3}\left(\mu_{3}-C 1, C 3, C 5-\right.\right.$ $\left.\left.\mathrm{C}_{6}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}-2,4,6\right\}\right]\left(\mathrm{N}^{\wedge} \mathrm{N}=\right.$ tbbpy (29a), $\mathrm{N}^{\wedge} \mathrm{N}=$ tmeda (29b), Scheme VI.1) have been obtained. A similar reaction with bpy resulted in an insoluble product which we could not characterize (low solubility is often a drawback when using bpy as an auxiliary ligand in polynuclear arylpalladium complexes). ${ }^{1,3,6}$ Complex 29a was obtained with higher purity when using a 20% excess of $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ and tbbpy, while for 29b a stoichiometric amount of the reactants was sufficient. Both reactions have to be conducted carefully, under N_{2} and in distilled toluene, to avoid the formation of $\left[\mathrm{PdI}_{2}\left(\mathrm{~N}^{\wedge} \mathrm{N}\right)\right]\left(\mathrm{N}^{\wedge} \mathrm{N}=\right.$ tbbpy, tmeda). These undesired byproducts are identified by their characteristic NMR resonances at 9.84 ppm (dd) or 2.95 ppm (s), respectively, as well as by the red color of the tbbpy complex. Once they are formed in the reaction they are very difficult to separate from 29a,b. Complexes $\left[\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OH}-2\right) \mathrm{I}\left(\mathrm{N}^{\wedge} \mathrm{N}\right)\right]\left(\mathrm{N}^{\wedge} \mathrm{N}=\right.$ bpy (1a), tbbpy (1b), and tmeda (1c), Chapter II) ${ }^{32}$ are mononuclear analogues to 29a,b with a single $\mathrm{CH}_{2} \mathrm{OH}$ substituent on the arene.

[^16]As already mentioned in the Introduction to this Chapter, our research group has similarly prepared other tripalladated benzene derivatives, with $\mathrm{R}=\mathrm{Me}, \mathrm{X}=\mathrm{I}, \mathrm{N}^{\wedge} \mathrm{N}=$ tbbpy, bpy, ${ }^{1}$ and $\mathrm{R}=\mathrm{CHO}, \mathrm{X}=\mathrm{Br}, \mathrm{N}^{\wedge} \mathrm{N}=$ tmeda, tbbpy. ${ }^{3}$ Starting from them it was possible to synthesize complexes of general formula $\left[\left\{\mathrm{PdX}\left(\mathrm{PMe}_{3}\right)_{2}\right\}_{3}\left(\mu_{3}-\mathrm{Cl}, \mathrm{C3}, \mathrm{C} 5-\right.\right.$ $\left.\mathrm{C}_{6} \mathrm{R}_{3}-2,4,6\right\}$] ($\mathrm{R}=\mathrm{Me}, \mathrm{X}=\mathrm{I} ; \mathrm{R}=\mathrm{CHO} ; \mathrm{X}=\mathrm{Br}$, Scheme VI.2), by displacement of the $\mathrm{N}^{\wedge} \mathrm{N}$ ligands with an excess of PMe_{3}. A similar reaction with 29a or 29b also results in the formation of the corresponding PMe_{3} complex, $\left[\left\{\mathrm{PdI}\left(\mathrm{PMe}_{3}\right)_{2}\right\}_{3}\left(\mu_{3}-\mathrm{Cl}, \mathrm{C} 3, \mathrm{C} 5-\right.\right.$ $\left.\left.\mathrm{C}_{6}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}-2,4,6\right\}\right]$, but this product could not be sufficiently purified for a full characterization.

Scheme VI. 2 Synthesis of trinuclear PMe_{3} complexes starting from complexes with $\mathrm{N}^{\wedge} \mathrm{N}$ ligands

The use of substoichiometric amounts of $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ and tmeda/tbbpy in the synthesis of $\mathbf{2 9} \mathbf{a}, \mathbf{b}$ results in the formation of the same trinuclear complexes, although with a lower yield and purity. This behavior is similar to that observed with the arene $1,3,5-\mathrm{C}_{6} \mathrm{Me}_{3} \mathrm{I}_{3}$. ${ }^{1}$ In contrast, with $1,3,5-\mathrm{C}_{6}(\mathrm{CHO})_{3} \mathrm{Br}_{3},{ }^{3}$ the electron-withdrawing nature of the CHO groups allowed a selectivity in the number of oxidative additions undergone by the arene, and thus mono- $\left.\left(\left[\mathrm{Pd}_{\{ } \mathrm{C}_{6}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}-2,4,6-\mathrm{Br}_{2}-3,5\right\} \mathrm{Br}\left(\mathrm{N}^{\wedge} \mathrm{N}\right)\right]\right)$ and dinuclear $\left(\left[\left\{\operatorname{PdBr}\left(\mathrm{N}^{\wedge} \mathrm{N}\right)\right\}_{2}\left(\mu_{2}-\mathrm{Cl}, \mathrm{C} 3-\mathrm{C}_{6}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}-2,4,6-\mathrm{Br}-5\right)\right]\right)$ palladium complexes could be isolated.

To further expand our chemistry on tripalladated trisubstituted arenes we have synthesized the trihaloarenes $1,3,5-\mathrm{C}_{6} \mathrm{R}_{3} \mathrm{X}_{3}\left(\mathrm{R}=\mathrm{OH}, \mathrm{X}=\mathrm{I}(\mathbf{X V I}),{ }^{36} \mathrm{R}=\mathrm{OH}, \mathrm{X}=\mathrm{Br}\right.$ (XVI'), ${ }^{37} \mathrm{R}=\mathrm{OMe}, \mathrm{X}=\mathrm{I}(\mathbf{X V I I}),{ }^{38} \mathrm{R}=\mathrm{OMe}, \mathrm{X}=\mathrm{Br}(\mathbf{X V I I})^{39}$, Scheme VI.1). Unfortunately, their reactions with $[\mathrm{Pd}(\mathrm{dba})]_{2}$ in the presence of tmeda or tbbpy have resulted in mixtures of compounds (with a predominance of $\left[\mathrm{PdX}_{2}\left(\mathrm{~N}^{\wedge} \mathrm{N}\right)\right]$). It would seem that the presence of an O atom directly bonded to the arene is highly detrimental for the success of multiple oxidative addition reactions. In contrast, the oxidative addition of

2-iodophenol ${ }^{33,40}$ or 2-iodoanisole ${ }^{41}$ to $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ in the presence of different $\mathrm{N}^{\wedge} \mathrm{N}$ ligands (bpy, tbbpy, tmeda, phen), to form complexes $\left[\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OR}-2\right) \mathrm{I}\left(\mathrm{N}^{\wedge} \mathrm{N}\right)\right](\mathrm{R}=\mathrm{H}$, $\mathrm{Me}, \mathrm{N}^{\wedge} \mathrm{N}=\mathrm{bpy}$, tbbpy, tmeda, phen), is a facile reaction.

We have also investigated the oxidative addition reactions of the trihaloarenes XVXVII to $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ in the presence of phosphine ligands. In our previous experience with $1,3,5-\mathrm{C}_{6} \mathrm{Me}_{3} \mathrm{I}_{3}{ }^{1}$ and $1,3,5-\mathrm{C}_{6}(\mathrm{CHO})_{3} \mathrm{Br}_{3}{ }^{3}$, the oxidative additions in the presence of PPh_{3} afforded only mononuclear complexes of general formula trans- $\left[\operatorname{Pd}\left\{\mathrm{C}_{6} \mathrm{R}_{3}-2,4,6-\mathrm{X}_{2}-\right.\right.$ $\left.3,5\} \mathrm{X}\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathrm{R}=\mathrm{Me}, \mathrm{X}=\mathrm{I} ; \mathrm{R}=\mathrm{CHO}, \mathrm{X}=\mathrm{Br})$, while the reactions with the more basic and less sterically demanding $\mathrm{PMe}_{2} \mathrm{Ph}$ allowed the synthesis of mono- (trans$\left.\left[\operatorname{Pd}\left\{\mathrm{C}_{6} \mathrm{R}_{3}-2,4,6-\mathrm{X}_{2}-3,5\right\} \mathrm{X}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]\right)$ and dinuclear ([\{trans-PdX $\left.\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right\}_{2}\left(\mu_{2}-\right.$ $\left.\left.C 1, C 3-\mathrm{C}_{6} \mathrm{R}_{3}-2,4,6-\mathrm{X}-5\right)\right]$) complexes ($\mathrm{R}=\mathrm{Me}, \mathrm{X}=\mathrm{I} ; \mathrm{R}=\mathrm{CHO}, \mathrm{X}=\mathrm{Br}$). In our present work, we have been able to synthesize the mononuclear complexes trans-[$\operatorname{Pd}\left\{\mathrm{C}_{6} \mathrm{R}_{3}-\right.$ $\left.\left.2,4,6-\mathrm{X}_{2}-3,5\right\} \mathrm{X}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{OH}, \mathrm{X}=\mathrm{I}(\mathbf{3 0}), \mathrm{R}=\mathrm{OH}, \mathrm{X}=\mathrm{Br}\left(\mathbf{3 0}^{\prime}\right), \mathrm{R}=\mathrm{OMe}, \mathrm{X}=\right.$ $\mathrm{Br}\left(\mathbf{3 0}\right.$ "), Scheme VI.3), by reaction of XV, XVI' and XVII' with $\left[\operatorname{Pd}(\mathrm{dba})_{2}\right]$ in the presence of PPh_{3}.

Scheme VI. 3 Synthesis of complexes 30, 30', 30’, and $\mathbf{3 1}$

In these reactions with PPh_{3}, the conditions have to be carefully adjusted to obtain pure products. Thus, in the reaction with $1,3,5-\mathrm{C}_{6}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3} \mathrm{I}_{3}(\mathbf{X V})$ a 3 -fold excess of PPh_{3} was necessary (ratio $\left.\mathbf{X V}:\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]: \mathrm{PPh}_{3} 1: 1: 6\right)$, and the reaction was finished at $0^{\circ} \mathrm{C}$ in only 15 min . Other reactant ratios (1:1:2, 1:1:4 or 1:3:6) resulted in the formation of undesired products, together with 30. With $1,3,5-\mathrm{C}_{6}(\mathrm{OH})_{3} \mathrm{Br}_{3}$ (XVI') we always obtained a mixture of $\mathbf{3 0}$, with $\left[\mathrm{PdBr}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$, which is identified by its ${ }^{31} \mathrm{P}$ resonance at 25 ppm (in CDCl_{3}). Different reactant proportions or reaction times only resulted in a different ratio of the two products, but not in the formation of pure $\mathbf{3 0}$. The reaction temperature had to be kept low ($0^{\circ} \mathrm{C}$ or room temperature), because heating resulted in
the formation of mostly OPPh_{3}. We finally established that the best conditions for this reaction were using a 2 -fold excess of PPh_{3} (ratio $\mathbf{X V I}:\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]: \mathrm{PPh}_{3} 1: 1: 4$), and leaving the reaction at room temperature overnight. The ratio $\mathbf{3 0}{ }^{\prime}:\left[\mathrm{PdBr}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ in the crude product was thus ca. $3: 1$, and $\mathbf{3 0}$ ' could be purified by washing with cold CHCl_{3}, in which $\mathbf{3 0}{ }^{\prime}$ is less soluble than $\left[\mathrm{PdBr}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (see Chapter VIII, Experimental Section). With the arene $1,3,5-\mathrm{C}_{6}(\mathrm{OMe})_{3} \mathrm{Br}_{3}(\mathbf{X V I I})$, the clean synthesis of complex $\mathbf{3 0}$ " required an excess of the arene (ratio XVII': $\left.\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]: \mathrm{PPh}_{3} 2: 1: 2\right)$ and high temperature $\left(110^{\circ} \mathrm{C}\right.$, 45 min), as otherwise mixtures of compounds were obtained. These different reactions conditions required for the synthesis of $\mathbf{3 0}, \mathbf{3 0}$, and $\mathbf{3 0}$ " are in contrast with our previously reported syntheses of trans-[Pd\{ $\left.\left.\mathrm{C}_{6} \mathrm{R}_{3}-2,4,6-\mathrm{X}_{2}-3,5\right\} \mathrm{X}\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathrm{R}=\mathrm{Me}, \mathrm{X}=$ $\mathrm{I} ;{ }^{1} \mathrm{R}=\mathrm{CHO}, \mathrm{X}=\mathrm{Br}^{3}$), which proceeded cleanly when using a stoichiometric 1:1:2 ratio (arene: $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]: \mathrm{PPh}_{3}$). The analogous PPh_{3} complexes with monosubstituted arenes, trans- $\left[\mathrm{Pd}\left\{\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{R}-2\right\} \mathrm{X}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{OH}, \mathrm{X}=\mathrm{Br},{ }^{42} \mathrm{I}^{32,43} ; \mathrm{R}=\mathrm{OH}, \mathrm{X}=\mathrm{I}^{40}\right.$ (not Br), and $\mathrm{R}=\mathrm{OMe}, \mathrm{X}=\mathrm{I}^{44}$ (not Br)), are known and have also been prepared by oxidative addition reactions (trans- $\left[\mathrm{Pd}\left\{\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OH}-2\right\} \mathrm{Br}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ is a commercial catalyst for the low pressure carbonylation of arylmethyl halides leading to phenylacetic acids ${ }^{45}$). The reactions of the tri-iodo arenes $1,3,5-\mathrm{C}_{6}(\mathrm{OR})_{3} \mathrm{I}_{3}(\mathrm{R}=\mathrm{H}(\mathbf{X V I})$, $\mathrm{Me}(\mathbf{X V I I})$) with $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ and PPh_{3} resulted in mixtures of compounds, and they were not further pursued after the characterization of the bromo complexes $\mathbf{3 0}$, and $\mathbf{3 0}$ " was finally achieved.

The oxidative addition reactions of the trihaloarenes XV-XVII to $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ in the presence of $\mathrm{PMe}_{2} \mathrm{Ph}$ have only given a positive result with $1,3,5-\mathrm{C}_{6}\left(\mathrm{OMe}_{3}\right)_{3} \mathrm{Br}_{3}$ (XVII'), which formed the mononuclear complex trans- $\left[\operatorname{Pd}\left\{\mathrm{C}_{6}(\mathrm{OMe})_{3}-2,4,6-\mathrm{Br}_{2}-\right.\right.$ $\left.\left.\left.3,5\} \mathrm{Br}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]\right)(\mathbf{3 1}, \text { Scheme VI.3), even when the ratio XVII':[Pd(dba) })_{2}\right]: \mathrm{PMe}_{2} \mathrm{Ph}$ was 1:2:4 (the adequate ratio for the synthesis of a dinuclear complex). Heating the reaction or using a larger excess of $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ and $\mathrm{PMe}_{2} \mathrm{Ph}$ did not result in the formation of a dinuclear complex, either. When the stoichiometric ratio XVII': $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]: \mathrm{PMe}_{2} \mathrm{Ph}$ was 1:1:2, the mononuclear complex $\mathbf{3 1}$ was also obtained, although in a lower yield and less pure. Preliminary reactions with the tri-iodo analogue, $1,3,5-\mathrm{C}_{6}(\mathrm{OMe})_{3} \mathrm{I}_{3}(\mathbf{X V I I})$, and $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ and $\mathrm{PPh}_{2} \mathrm{Me}$ did not give a better result and were thus abandoned. Similar reactions with $1,3,5-\mathrm{C}_{6}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3} \mathrm{I}_{3}(\mathbf{X V})$, under different conditions and stoichiometric $\mathbf{X V}:\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]: \mathrm{PPh}_{2} \mathrm{Me}$ ratios resulted in mixtures of mono- and dinuclear complexes (plus other products), which could not be separated or characterized. Finally the reactions of $1,3,5-\mathrm{C}_{6}(\mathrm{OH})_{3} \mathrm{I}_{3}(\mathbf{X V I})$ and $1,3,5-\mathrm{C}_{6}(\mathrm{OH})_{3} \mathrm{Br}_{3}(\mathbf{X V I})$ with $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ and $\mathrm{PPh}_{2} \mathrm{Me}$
resulted in mixtures of $\left[\mathrm{PdX}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right](\mathrm{X}=\mathrm{Br}, \mathrm{I})$ and other, unidentified, products. The analogue complexes to 31 with a single substituent on the arene, trans- $\left[\mathrm{Pd}\left\{\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{R}\right.\right.$ $\left.\left.2\} \mathrm{X}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right], \mathrm{R}=\mathrm{CH}_{2} \mathrm{OH}, \mathrm{OH}, \mathrm{OMe} ; \mathrm{X}=\mathrm{Br}, \mathrm{I}\right)$ have not been described.

VI.2.2 Reactivity of the Tripalladated 2,4,6-Trisubstituted Arenes

We have investigated the reactivity of the tripalladated complexes 29a,b toward carbon monoxide, xylyl isocyanide and several nitriles, with and without the presence of TlOTf, but we have always obtained mixtures of compounds which we could not characterize. As described in Chapter II, the mononuclear analogue [$\mathrm{PdI}\left\{\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OH}\right.$ $2\}$ (bpy)] (1a), ${ }^{32}$ has not given good results in insertion reactions either, except with XyNC, which formed the unstable product trans- $\left[\operatorname{PdI}\left\{\mathrm{C}(=\mathrm{NXy})\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OH}-\right.\right.\right.$ 2) $\left.\}(\mathrm{CNXy})_{2}\right]$ (2). ${ }^{32}$ Although this reactivity toward XyNC could not be reproduced with the trinuclear complexes 29a,b, we have been successful in achieving a 3 -fold XyNC insertion, in three separate C-Pd bonds on the same aryl ring, starting from the related complex $\left[\{\mathrm{PdI}(\mathrm{tbbpy})\}_{3}\left(\mu_{3}-\mathrm{Cl}, C 3, C 5-\mathrm{C}_{6} \mathrm{Me}_{3}-2,4,6\right\}\right]$ (XVIII), ${ }^{1}$ with Me substituents instead of $\mathrm{CH}_{2} \mathrm{OH}$. Thus, complex XVIII reacts with 9 molecules of XyNC to form the trinuclear complex $\left[\mathrm{C}_{6}\left\{\mathrm{C}(=\mathrm{NXy})\left(\text { trans }-\mathrm{PdI}(\mathrm{CNXy})_{2}\right)\right\}_{3}-1,3,5-\mathrm{Me}_{3}-2,4,6\right]$ (32, Scheme VI.4), resulting from the insertion of one XyNC molecule into each aryl-Pd bond of XVIII, and the displacement of each tbbpy ligand by two other XyNC molecules. Although mono- ${ }^{32,33,40,46,47}$ and dinuclear ${ }^{5,6,47}$ analogues to $\mathbf{3 2}$ have been reported in the literature, mainly by our research group, this is the first such 3-fold insertion on the same aryl ring.

Scheme VI. 4 Reactivity of XVIII toward TlOTf and XyNC

We have previously reported that complex XVIII reacts with TlOTf to form an adduct of stoichiometry XVIII•Tl (Complex XIX, Scheme VI.4), ${ }^{4}$ containing Tl(I)-I and $\mathrm{Tl}(\mathrm{I})-\eta^{6}$-mesitylene bonds, and existing in the solid state as a $2: 1$ mixture of the monomer and an I-bridged dimer. Complexes 29a,b, in contrast, react with TIOTf under different conditions to form mixture of compounds.

VI.2.3 NMR and IR Data

Compounds 29-31 have been extensively studied by NMR spectroscopy (1D and 2D experiments), allowing an almost full assignment of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ resonances. To facilitate comparison, the data are collected in Table VI.1, together with the numbering system used in the following discussion.

The trinuclear complexes 29a,b show in their NMR spectra a 2:1 pattern for all ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ resonances. This observation is consistent with the structure depicted for these complexes in Scheme VI. 1 and Table VI.1, where two of the I atoms lie on one side of the aryl plane, while the third I atom points to the other side. The rotation around the Pd-aryl bonds would be hindered (a usual feature in ortho-substituted arylpalladium complexes), ${ }^{7,48,49}$ and the molecule would possess a symmetry plane perpendicular to the aryl plane, and containing the carbon atoms C 1 and C 4 (C_{s} symmetry). Thus, the methylenic protons within the two equivalent $\mathrm{CH}_{2} \mathrm{OH}$ substituents in positions 2 would be diastereotopic, forming an ABX system with the OH proton. In contrast, the methylenic protons of the $\mathrm{CH}_{2} \mathrm{OH}$ substituent in position 4 would be enantiotopic, forming an $\mathrm{A}_{2} \mathrm{X}$ system. For the tmeda complex 29b, the four Me groups of the two equivalent tmeda ligands in positions 3 would be inequivalent, resulting in four Me resonances corresponding to two Me groups each. In contrast, for the tmeda ligand in position 1, the symmetry plane would render the two Me groups on each N equivalent, resulting in two Me resonances corresponding to two Me groups each. Thus, complex 29b shows six ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ methyl resonances of similar intensity, corresponding each of them to two Me groups.

The mononuclear complexes $\mathbf{3 0 , 3 0}, \mathbf{3 0}, \mathbf{3 1}$ all have a trans geometry for the two phosphine ligands, confirmed by the presence of a single ${ }^{31} \mathrm{P}$ NMR resonance. The ${ }^{31} \mathrm{P}$ chemical shift, as usual, ${ }^{3}$ is negative for the $\mathrm{PMe}_{2} \mathrm{Ph}$ ligands (-5.6 ppm), and above 20 ppm for the PPh_{3} ligands (21.1 ppm for $\mathbf{3 0}, 24.9 \mathrm{ppm}$ for $\mathbf{3 0}{ }^{\boldsymbol{\prime}}$ and 23.8 ppm for $\mathbf{3 0}{ }^{\prime}$). Most of the aryl carbons appear as triplets because of the coupling with the two
equivalent ${ }^{31} \mathrm{P}$ nuclei, while the ipso, ortho and meta carbons of the phosphine phenyl ring (and the Me carbons in the $\mathrm{PMe}_{2} \mathrm{Ph}$ ligands) resonate as virtual triplets as a consequence of the magnetic non-equivalence of the two ${ }^{31} \mathrm{P}$ nuclei. These phosphine complexes have a $C_{2 v}$ symmetry, with a C_{2} axis along the Ar-Pd-X bond, which renders two of the three R substituents equivalent. Additionally, there is a symmetry plane on the aryl ring and thus, for $\mathbf{3 0}$, all the methylenic protons are enantiotopic, forming two $\mathrm{A}_{2} \mathrm{X}$ systems in a 2:1 ratio.

In the trinuclear complexes 29a,b the aryl carbon atoms bonded to $\mathrm{Pd}(\mathrm{C} 1$ and C 3$)$, resonate at higher frequencies (between 152.2 and 147.5 ppm) than the carbon atoms C 2 and C 4 , bonded to $\mathrm{CH}_{2} \mathrm{OH}$ (144.1-142.7 ppm). In the mononuclear complex 30, with $\mathrm{CH}_{2} \mathrm{OH}$ groups as well, the C 1 chemical shift is even higher (169.0 ppm) as it is usually the case when comparing PPh_{3} and $\mathrm{N}^{\wedge} \mathrm{N}$ complexes containing the same aryl ligand. ${ }^{3,32,48}$ The C3 carbons in $\mathbf{3 0}$ are bonded to I and shifted to lower frequencies (106.0 ppm). For the mononuclear complexes with $\mathrm{OH}(\mathbf{3 0})$ or OMe groups ($\mathbf{3 0}$ ", $\mathbf{3 1}$), the aryl carbons at higher frequencies are $\mathrm{C} 2, \mathrm{C} 4$, bonded to the OR substituents ($\delta 146.7$ and 149.9 ppm for $\mathbf{3 0}^{\prime}$, and 151.9-157.3 ppm for $\mathbf{3 0}{ }^{\prime}, \mathbf{3 1}$). The C 3 carbons, bonded to Br , appear at low frequencies (88.3 ppm for $\mathbf{3 0}^{\boldsymbol{\prime}}$ and ca . 107 ppm for $\mathbf{3 0}{ }^{\prime}, \mathbf{3 1}$), and the ipso carbon C 1 resonates at 140.6 ppm for $\mathbf{3 0}$ ", 137.7 pm for $\mathbf{3 1}$ and, unexpectedly low, 118.5 ppm , for $\mathbf{3 0}^{\prime}$. This low C1 chemical shift in $\mathbf{3 0}$ ' is in contrast with the usual shift to higher frequencies of aryl carbons directly bonded to Pd^{50} and it is difficult to explain $\left({ }^{13} \mathrm{C}\right.$ chemical shifts in organometallic complexes depend mostly on the paramagnetic contribution to the shielding constant). ${ }^{50}$

In the tbbpy complex 29a, as usual, the H 16 protons are shielded $(\delta=7.93,7.76$ $\mathrm{ppm})$ with respect to $\mathrm{H} 16^{\prime}(\delta=9.45,9.30 \mathrm{ppm})$, as a consequence of the anisotropic effect of the aryl group on the H16 protons.

The OH protons in $\mathbf{3 0}$ are shifted to lower frequency (1.17 and 1.94 ppm) with respect to the OH protons in 29a,b (2.83-3.63 ppm), probably as a consequence of the anisotropic effect of the Ph groups of the PPh_{3} ligands.
Table VI. $1{ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR data ($\mathrm{ppm}, \mathrm{CDCl}_{3}$, r.t.) of complexes $\mathbf{2 9} \mathbf{a}, \mathbf{b}, \mathbf{3 0}, \mathbf{3 0}, \mathbf{3 0}$ ", and $\mathbf{3 1}$. Reference ${ }^{13} \mathrm{C}$-NMR data of the trihaloarenes $1,3,5-\mathrm{C}_{6} \mathrm{R}_{3} \mathrm{X}_{3}$, are included in the box
(

The trinuclear complex 32 (Figure VI.1), resulting from the reaction of XVIII with XyNC, is not included in Table VI.l because it is not an arylpalladium complex. Its ${ }^{1} \mathrm{H}$ NMR spectrum shows a fluxional behavior at room temperature, which makes the three $\mathrm{Me}^{\mathrm{Ar}}$ groups equivalent (affording a single ${ }^{1} \mathrm{H}$ resonance at 3.05 ppm , corresponding to 9 protons), and also all the $\mathrm{Me}^{\mathrm{Xy}}$ groups of the isocyanides (inserted and coordinated), affording a single ${ }^{1} \mathrm{H}$ resonance at 2.25 ppm , corresponding to 54 protons. Thus, at room temperature there is a rapid exchange of all the XyNC groups within the molecule. When the temperature is decreased to 243 K , the dynamic process is slow on the NMR timescale and we observe two ${ }^{1} \mathrm{H} \mathrm{Me}^{\mathrm{Ar}}$ resonances at $3.18 \mathrm{ppm}(3 \mathrm{H})$ and $3.01 \mathrm{ppm}(6 \mathrm{H})$, indicating that only two of the $\mathrm{Me}^{\mathrm{Ar}}$ groups are now equivalent. In the $\mathrm{Me}^{\mathrm{Xy}}$ region we observe five resonances at $2.33 \mathrm{ppm}(6 \mathrm{H}), 2.28 \mathrm{ppm}(24 \mathrm{H}), 2.22 \mathrm{ppm}(6 \mathrm{H}), 2.18 \mathrm{ppm}$ $(12 \mathrm{H})$, and $2.08 \mathrm{ppm}(6 \mathrm{H})$. We can explain these signals assuming that at low temperature the molecules possess a symmetry plane perpendicular to the aryl plane (Cs symmetry), making the two $\mathrm{C}(=\mathrm{NXy})\left[\mathrm{PdI}(\mathrm{XyNC})_{2}\right]$ moieties in position 3 equivalent. Within each $\left[\operatorname{PdI}(\mathrm{XyNC})_{2}\right]$ fragment, the two XyNC groups in trans would also be equivalent, and within each Xy group a free rotation around the $\mathrm{N}-\mathrm{Xy}$ bonds would make the two Me groups equivalent as well. Thus, a single ${ }^{1} \mathrm{H}$ resonance corresponding to 24 protons would be observed for the two equivalent $\left[\mathrm{PdI}(\mathrm{XyNC})_{2}\right]$ fragments in position 3 , and another ${ }^{1} \mathrm{H}$ resonance corresponding to 12 protons would be observed for the third $\left[\operatorname{PdI}(\mathrm{XyNC})_{2}\right]$ moiety in position 1 . As for the inserted $\mathrm{C}(=\mathrm{NXy})$ groups, we observe three ${ }^{1} \mathrm{H}$ resonances, integrating for 6 protons each. Two of them would correspond to the two equivalent $\mathrm{C}(=\mathrm{NXy})$ groups in positions 3 , for which the rotation around the $\mathrm{N}-\mathrm{Xy}$ would be hindered, resulting in two inequivalent Me resonances (corresponding to 6 H each). In contrast, for the third $\mathrm{C}(=\mathrm{NXy})$ group, in position 1, the rotation around the N Xy bond would be allowed, so that the two Me groups would be equivalent, resulting in a single Me resonance (integrating for 6 H as well).

The complexes with hydroxyl groups, 29a,b, 30, and 30', show characteristic IR bands between 3451 and $2492 \mathrm{~cm}^{-1}$, corresponding to the O-H bonds. Complex $\mathbf{3 2}$ gives an IR bands at $1630 \mathrm{~cm}^{-1}$ for the inserted $\mathrm{C}=\mathrm{NXy}$ groups, and another at $2174 \mathrm{~cm}^{-1}$ for the coordinated $\mathrm{C} \equiv \mathrm{NXy}$ groups.

Figure VI. 1 Section of the ${ }^{1}$ H NMR spectra of complex 32 at 298 K (up) and 243 K (down), showing the Me region. $\mathrm{Me}^{\mathrm{Ar}}$ represents the Me groups bonded to the arene, and $\mathrm{Me}^{\mathrm{Xy}}$ the Me groups of the XyNC ligands.

VI.2.4 X-Ray Structure Determinations

The crystal structures of 30" (Figure VI.2) and 31 (Figure VI.3) have been determined by X-ray diffraction studies (see also Tables VI.2-3). ${ }^{\text {b }}$ Compound 30" crystallizes with two independent molecules in the asymmetric unit, which are essentially similar, with an r.m.s. deviation of $0.27 \AA$. Both structures show slightly distorted square planar coordination around the Pd atoms. Mean deviations from the best plane through Pd and the four donor atoms are $0.06,0.06 \AA$ for $\mathbf{3 0 "}$ and $0.01 \AA$ for $\mathbf{3 1}$. The Pd-C bond distances are 2.012(3), 2.100(3) \AA for $\mathbf{3 0 "}$ and 2.004(2) \AA for 31, in the range expected for Pd-C bonds trans to a Br ligand (between 1.991(2) \AA and 2.033(4) \AA in our previous reports). ${ }^{3,47,48,51}$ The $\mathrm{Pd}-\mathrm{Br}$ bond distances are almost identical in both complexes (2.4915(5), 2.4968(5) \AA for $\mathbf{3 0 "}$ and 2.4958(3) \AA for 31), and similar to those found in other trans aryl-Pd(II) phosphine complexes with Br ligands prepared in our group (between $2.5462(5) \AA$ and $2.4865(2) \AA$).3,47,48,51 The two, mutually trans, Pd-P bond distances (2.3340(9), 2.3280(9) and 2.3267(9), 2.3288(9) \AA in 30" and 2.3205(6), $2.3210(6) \AA$ in 31), are also similar to the reported values in those papers (between $2.3142(11) \AA$ and $2.3426(4) \AA$). ${ }^{3,47,48,51}$

[^17]Table VI. 2 X-ray crystallographic data for compounds $\mathbf{3 0}$ " and $31{ }^{\text {(a) }}$

	30"	31
Formula	$\mathrm{C}_{45} \mathrm{H}_{39} \mathrm{Br}_{3} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{Pd}$	$\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{Br}_{3} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{Pd}$
$M_{\text {r }}$	1035.83	787.57
T (K)	133(2)	100(2)
$\lambda(\AA)$	0.71073	0.71073
cryst syst	Monoclinic	Monoclinic
space group	P2 1_{1}	$\mathrm{P} 21 / \mathrm{c}$
cell constants		
$a(\mathrm{~A})$	10.8767(12)	14.8070(3)
$b(\AA)$	22.461(2)	12.5410(3)
$c(\AA)$	17.017(2)	17.5117(4)
α (deg)	90	90
β (deg)	96.801(4)	114.594(3)
γ (deg)	90	90
$V\left(\AA^{3}\right), Z$	4128.0(8), 4	2956.81(11), 4
ρ (calcd) ($\mathrm{Mg} \mathrm{m}^{-3}$)	1.667	1.769
abs. coef. $\left(\mathrm{mm}^{-1}\right)$	3.471	4.814
$F(000)$	2056	1544
cryst size (mm)	$0.30 \times 0.15 \times 0.07$	$0.4 \times 0.4 \times 0.2$
θ range (deg)	$1.21-30.51$	2.56-32.03
	$-15 \leq h \leq 15$	$-22 \leq h \leq 22$
index ranges	$-32 \leq k \leq 32$	$-17 \leq k \leq 17$
	$-24 \leq l \leq 24$	$-26 \leq l \leq 26$
reflections collected	86739	89518
independent reflections	25102	9942
$R_{\text {int }}$	0.0496	0.0362
abs corr	Semi-empirical from equivalents	Semi-empirical from equivalents
transmissions	0.7932-0.5845	1.00000-0.32514
refinement method	Full-matrix least-squares on F^{2}	Full-matrix least-squares on F^{2}
no. of data/restraints/params	25102 / 1/346	9942 / 0 / 314
goodness-of-fit on F^{2}	0.997	1.090
Final R indices ($I>2 \sigma(I)$)		
R1	0.0336	0.0339
$w R 2$	0.0581	0.0592
R indices (all data)		
R1	0.0541	0.0448
$w R 2$	0.0638	0.0615
largest diff peak (e \AA^{-3})	0.905	1.373
largest diff hole (e \AA^{-3})	-0.555	-0.799

(a) Special features: Compound 30" is achiral, but nonetheless crystallizes in a chiral (Sohncke) space group. The Flack parameter refined to 0.003(3)

Figure VI. 2 Thermal ellipsoid plot (50\% probability level) of 30"

Table VI. 3 Selected bond lengths (\AA) and angles (deg) of $\mathbf{3 0}$ "

$\mathrm{Pd}(1)-\mathrm{C}(1)$	$2.012(3)$	$\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{P}(1)$	$88.55(9)$
$\mathrm{Pd}(1)-\mathrm{P}(1)$	$2.3340(9)$	$\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{P}(2)$	$90.25(9)$
$\mathrm{Pd}(1)-\mathrm{P}(2)$	$2.3280(9)$	$\mathrm{P}(2)-\mathrm{Pd}(1)-\operatorname{Br}(1)$	$89.92(2)$
$\mathrm{Pd}(1)-\operatorname{Br}(1)$	$2.4915(5)$	$\mathrm{P}(1)-\mathrm{Pd}(1)-\operatorname{Br}(1)$	$91.56(2)$
		$\mathrm{P}(1)-\mathrm{Pd}(1)-\mathrm{P}(2)$	$175.66(3)$
		$\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{Br}(1)$	$176.13(9)$

Table VI. 4 Selected bond lengths $(\AA$) and angles (deg) of $\mathbf{3 1}$

$\mathrm{Pd}-\mathrm{C}(1)$	$2.004(2)$	$\mathrm{C}(1)-\mathrm{Pd}-\mathrm{P}(1)$	$87.98(6)$
$\mathrm{Pd}-\mathrm{P}(1)$	$2.3205(6)$	$\mathrm{C}(1)-\mathrm{Pd}-\mathrm{P}(2)$	$90.58(6)$
$\mathrm{Pd}-\mathrm{P}(2)$	$2.3210(6)$	$\mathrm{P}(2)-\mathrm{Pd}-\operatorname{Br}(1)$	$91.062(17)$
$\operatorname{Pd}-\operatorname{Br}(1)$	$2.4958(3)$	$\mathrm{P}(1)-\mathrm{Pd}-\operatorname{Br}(1)$	$90.373(16)$
		$\mathrm{P}(1)-\mathrm{Pd}-\mathrm{P}(2)$	$178.54(2)$
		$\mathrm{C}(1)-\mathrm{Pd}-\operatorname{Br}(1)$	$177.78(6)$

VI. 3 CONCLUSIONS

We have prepared two tripalladated arene derivatives of general formula $\mathrm{C}_{6} \mathrm{R}_{3}[\mathrm{Pd}]_{3}$ $\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{OH}\right)$ and four monopalladated derivatives of general formula $\mathrm{C}_{6} \mathrm{R}_{3} \mathrm{X}_{2}[\mathrm{Pd}],(\mathrm{R}=$ $\mathrm{CH}_{2} \mathrm{OH}, \mathrm{OH}, \mathrm{OMe}$), by oxidative addition reactions of the corresponding 2,4,6trihaloarenes $\mathrm{C}_{6} \mathrm{R}_{3} \mathrm{X}_{3}(\mathrm{X}=\mathrm{Br}, \mathrm{I})$ to $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ in the presence of tbbpy, tmeda, PPh_{3}, or $\mathrm{PMe}_{2} \mathrm{Ph}$. Two of the mononuclear complexes have been characterized by X-ray crystallography. The first insertion of XyNC into three aryl-Pd bonds of a tripalladated arene has been achieved, resulting in a fluxional trinuclear complex that has been investigated by VT-NMR.

VI. 4 REFERENCES

1. Vicente, J.; Lyakhovych, M.; Bautista, D.; Jones, P. G., Organometallics 2001, 20, 4695.
2. Vicente, J.; Martínez-Viviente, E.; Fernández-Rodríguez, M. J.; Jones, P. G., Organometallics 2009, 28, 5845.
3. Vicente, J.; Shenoy, R. V.; Martínez-Viviente, E.; Jones, P. G., Organometallics 2009, 28, 6101.
4. Vicente, J.; Shenoy, R. V.; Martínez-Viviente, E.; Jones, P. G., Inorg. Chem. 2011, 50, 7189.
5. Chicote, M. T.; Vicente-Hernández, I.; Jones, P. G.; Vicente, J., Organometallics 2012, 31, 6252.
6. Fernández-Rodríguez, M. J.; Martínez-Viviente, E.; Vicente, J.; Jones, P. G., Organometallics 2015, 34, 2240.
7. Vicente, J.; Abad, J. A.; Rink, B.; Hernández, F.-S.; Ramírez de Arellano, M. C., Organometallics 1997, 16, 5269.
8. Trofimenko, S., J.Am. Chem. Soc. 1971, 93, 1808; Trofimenko, S., Inorg. Chem. 1973, 12, 1215; Phillips, I. G.; Steel, P. J., J. Organomet. Chem. 1991, 410, 247; Chakladar, S.; Paul, P.; Venkatsubramanian, K.; Nag, K., J. Chem. Soc., Dalton Trans. 1991, 2669; Chakladar, S.; Paul, P.; Mukherjee, A. K.; Dutta, S. K.; Nanda, K. K.; Podder, D.; Nag, K., J. Chem. Soc., Dalton Trans. 1992, 3119; Nanda, K. K.; Nag, K.; Venkatsubramanian, K.; Paul, P., Inorg. Chim. Acta 1992, 196, 195; Lydon, D. P.; Rourke, J. P., Chem. Commun. 1997, 1741; Vila, J. M.; Gayoso, M.; Pereira, M. T.; Torres, M. L.; Fernández, J. J.; Fernández, A.; Ortigueira, J. M., Z. Anorg. Allg. Chem. 1997, 623, 844; Steenwinkel, P.; James, S. L.; Grove, D. M.; Kooijman, H.; Spek, A. L.; van Koten, G., Organometallics 1997, 16, 513; Steenwinkel, P.; Kooijman, H.; Smeets, W. J. J.; Spek, A. L.; Grove, D. M.; Van Koten, G., Organometallics 1998, 17, 5411; O'Keefe, B. J.; Steel, P. J., Organometallics 1998, 17, 3621; El Hatimi, A.; Gómez, M.; Jansat, S.; Muller, G.; Fontbardia, M.; Solans, X., J. Chem. Soc., Dalton Trans. 1998, 4229; Cardenas, D. J.; Echavarren, A. M.; Dearellano, M. C. R., Organometallics 1999, 18, 3337; de Geest, D. J.; O'Keefe, B. J.; Steel, P. J., J. Organomet. Chem. 1999, 579, 97; Vila, J. M.; Pereira, M. T.; Suárez, A.; Fernández, J. J.; Ortigueira, J. M.; Fernández, A.; López-Torres, M.; Rodríguez, C., Trends Organomet. Chem. 1999, 3, 71; Fernández, A.; Pereira, E.; Fernández, J. J.; López-Torres, M.; Suárez, A.; Mosteiro, R.; Pereira, M. T.; Vila, J. M., New. J. Chem. 2002, 26, 895; López-Torres, M.; Fernandez, A.; Fernandez, J. J.; Suarez, A.; Castrojuiz, S.; Pereira, M. T.; Vila, J. M., J. Organomet. Chem. 2002, 655, 127; Slater, J. W.; Rourke, J. P., J. Organomet. Chem. 2003, 688, 112; Liu, B. B.; Wang, X. R.; Guo, Z. F.; Lu, Z. L., Inorg. Chem. Commun. 2010, 13, 814; Fernandez, A.; Lopez-Torres, M.; Castro-Juiz, S.; Merino, M.; Vázquez-García, D.; Vila, J. M.; Fernández, J. J., Organometallics 2011, 30, 386; Micutz, M.; Ilis, M.; Staicu, T.; Dumitrascu, F.; Pasuk, I.; Molard, Y.; Roisnel, T.; Circu, V., Dalton Trans. 2014, 43, 1151; López-Torres, M.; Fernandez, A.; Fernandez, J. J.; Suarez, A.; Pereira, T.;

Ortigueira, J. M.; Vila, J. M.; Adams, H., Inorg. Chem. 2001, 40, 4583; Fernandez, A.; Fernandez, J. J.; Lopeztorres, M.; Suarez, A.; Ortigueira, J. M.; Vila, J. M.; Adams, H., J. Organomet. Chem. 2000, 612, 85.
9. Deacon, G. B.; Farquharson, G. J., J. Organomet. Chem. 1974, 67, C1; Deacon, G. B.; Farquharson, G. J., Aust. J. Chem. 1976, 29, 627; Deacon, G. B.; Farquharson, G. J., Aust. J. Chem. 1977, 30, 1701.
10. Winter, C. H.; Seneviratne, K. N.; Bretschneiderhurley, A., Comments Inorg. Chem. 1996, 19, 1; Baran, J. R. J.; Hendrickson, C.; Laude, D. A.; Lagow, R. J., J. Org. Chem. 1992, 57, 3759; Moreno, D.; Martínez-Guajardo, G.; Díaz-Celaya, A.; Mercero, J. M.; de Coss, R.; Pérez-Peralta, N.; Merino, G., Chem. Eur. J. 2013, 19, 12668.
11. Rot, N.; Bickelhaupt, F., Organometallics 1997, 16, 5027.
12. Rot, N.; de Kanter, F. J. J.; Bickelhaupt, F.; Smeets, W. J. J.; Spek, A. L., J. Organomet. Chem. 2000, 593-594, 369.
13. Adamson, G. A.; Rees, C. W., J. Chem. Soc., Perkin Trans. 1 1996, 1535; Howells, R. D.; Gilman, H., Tetrahedron Lett. 1974, 14, 1319; Buck, P.; Köbrich, G., Chem. Ber. 1970, 103, 1420.
14. Schultz, G.; Hargittai, I.; Rot, N.; Bickelhaupt, F., Struct. Chem. 1998, 9, 209.
15. Gibson, S. E.; Steed, J. W.; Sur, S., J. Chem. Soc., Perkin Trans. 1 2001, 636.
16. Fidelibus, P. M.; Silbestri, G. F.; Lockhart, M. T.; Mandolesi, S. D.; Chopa, A. B.; Podestá, J. C., Appl. Organomet. Chem. 2007, 21, 682.
17. Córsico, E. F.; Rossi, A. R., Synlett 2000, 2000, 230; Córsico, E. F.; Rossi, A. R., J. Org. Chem. 2002, 67, 3311; Lo Fiego, M. J.; Badajoz, M. A.; Silbestri, G. F.; Lockhart, M. T.; Chopa, A. B., J. Org. Chem. 2008, 73, 9184.
18. Yamakawa, T.; Kagechika, H.; Kawachi, E.; Hashimoto, Y.; Shudo, K., J. Med. Chem. 1990, 33, 1430.
19. Weissensteiner, W.; Schuster, I. I.; Blount, J. F.; Mislow, K., J. Am. Chem. Soc. 1986, 108, 6664.
20. Wadepohl, H.; Büchner, K.; Pritzkow, H., Angew. Chem. Int. Ed. Engl. 1987, 26, 1259; Wadepohl, H.; Büchner, K.; Herrmann, M.; Pritzkow, H., Organometallics 1991, 10, 861; Wadepohl, H.; Büchner, K.; Herrmann, M.; Metz, A.; Pritzkow, H., J. Organomet. Chem. 1998, 571, 267.
21. Müller, J.; Gaede, P. E.; Qiao, K., Angew. Chem. Int. Ed. Engl. 1993, 32, 1697; Müller, J.; Hirsch, C.; Guo, A.; Qiao, K., Z. Anorg. Allg. Chem. 2000, 626, 2069; Lee, K.; Song, H.; Kim, B.; Park, J. T.; Park, S.; Choi, M.-G., J. Am. Chem. Soc. 2002, 124, 2872.
22. Lau, J. P.-K.; Lin, Z.-Y.; Wong, W.-T., Angew. Chem. Int. Ed. 2003, 42, 1935.
23. Johnson, B. F. G.; Lewis, J.; Gallup, M.; Martinelli, M., Faraday Discuss. 1991, 92, 241.
24. Murahashi, T.; Fujimoto, M.; Kawabata, Y.; Inoue, R.; Ogoshi, S.; Kurosawa, H., Angew. Chem. Int. Ed. 2007, 46, 5440.
25. Murahashi, T.; Fujimoto, M.; Oka, M.; Hashimoto, Y.; Uemura, T.; Tatsumi, Y.; Nakao, Y.; Ikeda, A.; Sakaki, S.; Kurosawa, H., Science 2006, 313, 1104; Murahashi, T.; Kato, N.; Uemura, T.; Kurosawa, H., Angew. Chem. Int. Ed. 2007, 46, 3509.
26. Hunter, D. J. B.; Szigety, A. B., Organometallics 1989, 8, 2670.
27. Hunter, A. D., Organometallics 1989, 8, 1118.
28. Hunter, A. D.; McLernon, J. L., Organometallics 1989, 8, 2679.
29. Artamkina, G. A.; Shilova, E. A.; Shtern, M. M.; Beletskaya, I. P., Russ. J. Org. Chem. 2003, 39, 1282; Artamkina, G. A.; Beletskaya, I. P., Mendeleev Commun. 2003, 13, 43.
30. Sumby, C. J.; Steel, P. J., Organometallics 2003, 22, 2358.
31. Newkome, G. R.; He, E.; Moorefield, C. N., Chem. Rev. 1999, 99, 1689.
32. Fernández-Rodríguez, M. J.; Martínez-Viviente, E.; Vicente, J.; Jones, P. G., Organometallics 2015, 34, 3282.
33. Vicente, J.; Abad, J. A.; López-Sáez, M. J.; Förtsch, W.; Jones, P. G., Organometallics 2004, 23, 4414.
34. Vicente, J.; Abad, J. A.; López-Sáez, M. J.; Jones, P. G., Organometallics 2006, 25, 1851; Vicente, J.; Abad, J. A.; López-Sáez, M. J.; Jones, P. G., Organometallics 2010, 29, 409; Vicente, J.; Abad, J. A.; López-Sáez, M. J.; Jones, P. G.; Bautista, D., Chem. Eur. J. 2010, 16, 661; Vicente, J.; Abad, J. A.; López-Sáez, M. J.; Jones, P. G., Angew. Chem. Int. Ed. 2005, 44, 6001.
35. Almen, T.; Andersson, S.; Wistrand, W. L.-G.; Golman, K.; et al. US Patent. 1999.
36. Thomsen, I.; Torssell, K. B. G., Acta Chem. Scand. 1991, 45, 539.
37. Kiehlmann, E.; Lauener, R. W., Can. J. Chem. 1989, 67, 335.
38. Muraki, T.; Togo, H.; Yokoyama, M., J. Org. Chem. 1999, 64, 2883.
39. Engman, S. L.; Hellberg, J. S. E., J. Organomet. Chem. 1985, 296, 357.
40. Vicente, J.; Abad, J. A.; Förtsch, W.; Jones, P. G.; Fischer, A., Organometallics 2001, 20, 2704.
41. Suzaki, Y.; Shirokawa, M.; Yagyu, T.; Osakada, K., Eur. J. Inorg. Chem. 2015, 2015, 421.
42. Lindsell, W. E.; Palmer, D. D.; Preston, P. N.; Rosair, G. M.; Jones, R. V. H.; Whitton, A. J., Organometallics 2005, 24, 1119.
43. Fernández-Rivas, C.; Cárdenas, D. J.; Martín-Matute, B.; Monge, A.; Gutiérrez-Puebla, E.; Echavarren, A. M., Organometalics 2001, 20, 2998.
44. Wallow, T. I.; Goodson, F. E.; Novak, B. M., Organometallics 1996, 15, 3708.
45. Jones, R. V. H.; Lindsell, W. E.; Palmer, D. D.; Preston, P. N.; Whitton, A. J., Tetrahedron Lett. 2005, 46, 8695.
46. Vicente, J.; Saura-Llamas, I.; Grünwald, C.; Alcaraz, C.; Jones, P. G.; Bautista, D., Organometallics 2002, 21, 3587; Vicente, J.; Abad, J. A.; Frankland, A. D.; Lopez-

Serrano, J.; Ramirez de Arellano, M. C.; Jones, P. G., Organometallics 2002, 21, 272; Vicente, J.; Abad, J. A.; Martinez-Viviente, E.; Jones, P. G., Organometallics 2002, 21, 4454; Vicente, J.; Abad, J.-A.; López-Serrano, J.; Jones, P. G.; Nájera, C.; BotellaSegura, L., Organometallics 2005, 24, 5044; Canovese, L.; Visentin, F.; Santo, C.; Levi, C.; Dolmella, A., Organometallics 2007, 26, 5590; Morishita, M.; Amii, H., J. Organomet. Chem. 2007, 692, 620; Vicente, J.; Chicote, M. T.; Martínez-Martínez, A. J.; Jones, P. G.; Bautista, D., Organometallics 2008, 27, 3254; Vicente, J.; Chicote, M. T.; Martínez-Martínez, A. J.; Bautista, D., Organometallics 2009, 28, 5915; Vicente, J.; González-Herrero, P.; Frutos-Pedreño, R.; Chicote, M. T.; Jones, P. G.; Bautista, D., Organometallics 2011, 30, 1079; Frutos-Pedreño, R.; González-Herrero, P.; Vicente, J.; Jones, P. G., Organometallics 2013, 32, 4664; Frutos-Pedreño, R.; González-Herrero, P.; Vicente, J.; Jones, P. G., Organometallics 2013, 32, 1892.
47. Vicente, J.; Abad, J. A.; López-Nicolás, R. M.; Jones, P. G., Organometallics 2011, 30, 4983.
48. Vicente, J.; Abad, J. A.; Martínez-Viviente, E.; Ramírez de Arellano, M. C.; Jones, P. G., Organometallics 2000, 19, 752.
49. Brown, J. M.; Perez-Torrente, J. J.; Alcock, N. W.; Clase, H. J., Organometallics 1995, 14, 207.
50. Martínez-Viviente, E.; Pregosin, P. S.; Tschoerner, M., Magn. Reson. Chem. 2000, 38, 23.
51. Vicente, J.; Abad, J. A.; López-Nicolás, R. M.; Jones, P. G., Organometallics 2004, 23, 4325.

Microwave Synthesis of Bis(tetrazolato)-Pd(II)

Complexes with $\mathbf{P P h}_{3}$ and Water-Soluble 1,3,5-Triaza-7-Phosphaadamantane (PTA). The First Example of C-

CN Bond Cleavage of Propionitrile by a Pd(II) Centre

The results of this Chapter have been published in:
J. Lasri, M.-J. Fernández-Rodríguez, M. F. C. Guedes da Silva, P. Smoleński, M. N. Kopylovich, J. J. R. Fraústo da Silva, A. J. L. Pombeiro, J. Organomet. Chem. 2011, 696, 3513-3520

VII. 1 ABSTRACT

[2+3] Cycloaddition reactions of the di(azido)-Pd(II) complex trans$\left[\operatorname{Pd}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ with an organonitrile RCN , under heating for 12 h , give the bis(tetrazolato) complexes trans-[Pd($\left.\left.\mathrm{N}_{4} \mathrm{CR}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathbf{3 3})[\mathrm{R}=\mathrm{Me}(\mathbf{3 3 a})$, $\mathrm{Ph}(\mathbf{3 3 b}), 4-$ $\mathrm{ClC}_{6} \mathrm{H}_{4}$ (33c), $4-\mathrm{FC}_{6} \mathrm{H}_{4}$ (33d), $2-\mathrm{NC}_{5} \mathrm{H}_{4}$ (33e), $3-\mathrm{NC}_{5} \mathrm{H}_{4}$ (33f), $4-\mathrm{NC}_{5} \mathrm{H}_{4}$ (33g)]. The reaction of trans- $\left[\mathrm{Pd}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ with propionitrile also affords, apart from trans$\left[\mathrm{Pd}\left(\mathrm{N}_{4} \mathrm{CEt}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathbf{3 3 h})$, the unexpected mixed cyano-tetrazolato complex trans$\left[\mathrm{Pd}(\mathrm{CN})\left(\mathrm{N}_{4} \mathrm{CEt}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]\left(\mathbf{3 3 h}^{\prime}\right)$ which is derived from the reaction of the bis(tetrazolato) 33h with propionitrile, with concomitant formation of 5-ethyl-1H-tetrazole, via a suggested unusual oxidative addition of the nitrile to $\mathrm{Pd}(\mathrm{II})$. The [$2+3$] cycloadditions of $\left[\mathrm{Pd}\left(\mathrm{N}_{3}\right)_{2}(\mathrm{PTA})_{2}\right]$ (34) (PTA $=1,3,5$-triaza-7-phosphaadamantane) with RCN, under heating for 12 h , give the bis(tetrazolato) complexes trans- $\left[\mathrm{Pd}\left(\mathrm{N}_{4} \mathrm{CR}\right)_{2}(\mathrm{PTA})_{2}\right](\mathbf{3 5})[\mathrm{R}=$ $\left.\mathrm{Ph}(\mathbf{3 5 a}), 2-\mathrm{NC}_{5} \mathrm{H}_{4}(\mathbf{3 5 b}), 3-\mathrm{NC}_{5} \mathrm{H}_{4}(\mathbf{3 5 c}), 4-\mathrm{NC}_{5} \mathrm{H}_{4}(\mathbf{3 5 d})\right]$. All these reactions are greatly accelerated by microwave irradiation ($1 \mathrm{~h}, 125{ }^{\circ} \mathrm{C}, 300 \mathrm{~W}$). Taking advantage of the hydro-solubility of PTA, a simple liberation of 5-phenyl- 1 H -tetrazole from the coordination sphere of trans-[$\left.\mathrm{Pd}\left(\mathrm{N}_{4} \mathrm{CPh}\right)_{2}(\mathrm{PTA})_{2}\right]$ (35a) was achieved. The complexes were characterized by IR, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopies, ESI ${ }^{+}$-MS, elemental analyses and, for 33b, also by X-ray structure analysis. Weak agostic interactions between the CH groups of the triphenylphosphines and the palladium(II) centre were found.

VII. 2 INTRODUCTION

Tetrazoles constitute an important class of compounds with applications in areas of coordination chemistry, materials science and medicinal chemistry. ${ }^{[1-4]}$ They can be synthesized by $[2+3]$ cycloaddition of an organonitrile with an azide, but only a few activated nitriles are known to undergo this reaction in an intermolecular fashion. ${ }^{[5]}$ When the azide and the nitrile moieties are in the same molecule, the rate of cycloaddition can be greatly enhanced and polycyclic fused tetrazoles can be synthesized via intramolecular $[2+3]$ cycloaddition. ${ }^{[6]}$ The cycloaddition can also be promoted by using fluorous tin or trimethylsilyl azide, ${ }^{[7]}$ a strong Lewis acid ${ }^{[8]}$ or a strong acidic media. ${ }^{[9]}$ Sharpless et al. ${ }^{[10]}$ improved the synthetic method by using a zinc salt as the Lewis acid and performing the reaction in aqueous medium. Amantini et al. ${ }^{[11]}$ efficiently
synthesized tetrazoles by reaction of trimethylsilyl azide with a nitrile using tetrabutylammonium fluoride as catalyst. The use of nanocrystalline ZnO as an heterogeneous catalyst, ${ }^{[12]}$ and microwave irradiation ${ }^{[13]}$ to shorten the reaction time have also been reported. Phthalonitrile and terephthalonitrile react with azides in the presence of a metal chloride to give mono-tetrazoles. ${ }^{[14]}$

Moreover, the formation of substituted tetrazoles can be achieved by using an azide coordinated to a transition metal and free organonitriles, ${ }^{[15]}$ isocyanides ${ }^{[16 a]}$ or isothiocyanates. ${ }^{[16 b]}$ For example, we have shown ${ }^{[17]}$ that the di(azido) complexes of the type cis- $\left[\mathrm{Pt}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ can react with nitriles NCR to give the bis(tetrazolato) compounds trans- $\left[\mathrm{Pt}\left(\mathrm{N}_{4} \mathrm{CR}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ from which the tetrazoles can be liberated. Very recently, we have reported that $[2+3]$ cycloaddition of cis- $\left[\operatorname{Pt}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ with 4cyanobenzaldehyde furnishes a (formylphenyl)tetrazolate complex that reacts with 2dimethylaminoethylamine to give the corresponding Schiff base derivative, the latter undergoing hydrolysis in the presence of a metal salt, while the reactions of di(azido) complexes with dicyanobenzenes give (cyanophenyl)tetrazolate complexes. ${ }^{[18]}$ In addition, the reactions of bis(tetrazolato)- $\mathrm{Pt}(\mathrm{II})$ compounds with propionitrile furnish mono- or dicyano-complexes, via an unusual oxidative addition involving NC-C bond cleavage of one or two propionitrile molecules, respectively. ${ }^{[17 \mathrm{a}-\mathrm{c}]}$ On the other hand, in Organometallic Chemistry, activation of carbon-carbon bonds has been a popular topic and a few examples of NC-C bond cleavage in organonitriles by group 10 transition metal complexes are known ${ }^{[19]}$ when the metals are in zero oxidation state. Moreover, the first example of $\mathrm{C}-\mathrm{C}$ cleavage by oxidative addition of the $\mathrm{C}-\mathrm{CN}$ bond to a $\mathrm{Rh}(\mathrm{I})$ centre has been recently reported. ${ }^{[20]}$

Concerning the $\mathrm{Pd}(\mathrm{II})$-assisted $[2+3]$ cycloadditions of azides to organonitriles, Beck and co-workers ${ }^{[21]}$ have investigated the reaction of benzonitrile with $\left[\mathrm{Pd}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$, by the traditional heating method, leading to cis- $\left[\mathrm{Pd}\left(\mathrm{N}_{4} \mathrm{CPh}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and the structure of the cycloadduct was confirmed by X-ray diffraction analysis. In this case, both 5-phenyltetrazolato ligands are coordinated to Pd by the N^{2} atom. On the other hand, the crystal structure of the related complex cis-[$\left.\mathrm{Pd}\left(\mathrm{N}_{4} \mathrm{CMe}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ demonstrates that both tetrazolato rings are N^{1}-bonded. ${ }^{[22]}$

The coordination chemistry of the aqua-soluble phosphine 1,3,5-triaza-7phosphaadamantane (PTA) and derived species has received an increased interest in
recent years, in view of the good solubility of their complexes in water, thus making possible their efficient application in aqueous phase catalysis, as water-soluble antitumor agents and photoluminescent materials. ${ }^{[23]}$ Four- and five-coordinated diazidoplatinum(II) complexes cis-[Pt($\left.\left(\mathrm{N}_{3}\right)_{2}(\mathrm{PTA})_{2}\right]$ and $\left[\mathrm{Pt}\left(\mathrm{N}_{3}\right)_{2}(\mathrm{PTA})_{3}\right]$ were obtained by us, ${ }^{[17 \mathrm{a}]}$ in reaction of cis- $\left[\operatorname{Pt}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ with stoichiometric amounts of PTA. [2+3] Cycloadditions with organonitriles NCR give the bis(tetrazolato) trans$\left[\mathrm{Pt}\left(\mathrm{N}_{4} \mathrm{CR}\right)_{2}(\mathrm{PTA})_{2}\right]$ species, ${ }^{[17 \mathrm{a}]}$ from which the tetrazoles can be liberated and also conveniently isolated in a pure form on account, on one hand, of the high water solubility of the concomitantly formed PTA-platinum complex and, on the other hand, of the water insolubility of the tetrazole which spontaneously precipitates out from the solution. In this way, the 5 -substituted tetrazoles were obtained and isolated as solids by an easy single-pot process upon simple treatment of the respective tetrazolato complexes with aqueous diluted HCl . However, the generality of this rather convenient preparative method was not established.

Thus, the aims of the current work are: i) to extend the number of trans tetrazolato$\mathrm{Pd}(\mathrm{II})$ complexes synthesized by [2+3] cycloaddition of a nitrile with an azide coordinated to a palladium(II) metal centre using PPh_{3} and hydrosoluble PTA ligands; ii) to check if the mentioned reaction of azido-Pd(II) species with propionitrile as a starting material involves carbon-carbon bond cleavage similarly to that observed for the tetrazolato-Pt(II) complexes; iii) to investigate the effect of focused microwave irradiation (M.W.), since M.W. is an alternative way to the traditional refluxing method with the possible advantages ${ }^{[24]}$ of increasing the selectivity and reducing the reaction time.

VII. 3 RESULTS AND DISCUSSION

VII.3.1 Complexes with $\mathbf{P P h}_{3}$

Treatment of the di(azido)-Pd(II) complex trans-[Pd($\left.\left.\mathrm{N}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ with an organonitrile RCN , under heating for 12 h , gives the corresponding bis(tetrazolato) compounds trans- $\left[\mathrm{Pd}\left(\mathrm{N}_{4} \mathrm{CR}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathbf{3 3})\left[\mathrm{R}=\mathrm{Me}(\mathbf{3 3 a}), \mathrm{Ph}(\mathbf{3 3 b}), 4-\mathrm{ClC}_{6} \mathrm{H}_{4}(\mathbf{3 3 c}), 4-\right.$ $\left.\mathrm{FC}_{6} \mathrm{H}_{4}(\mathbf{3 3 d}), 2-\mathrm{NC}_{5} \mathrm{H}_{4}(\mathbf{3 3 e}), 3-\mathrm{NC}_{5} \mathrm{H}_{4}(\mathbf{3 3 f}), 4-\mathrm{NC}_{5} \mathrm{H}_{4}(\mathbf{3 3 g})\right]$, isolated as white or yellow crystalline solids in moderate yields (ca. 65-54\%) (Scheme VII.1). When using a liquid organonitrile (acetonitrile and benzonitrile), this behaves also as the solvent
whereas, in the case of solid nitriles dimethylformamide (DMF) is the solvent used. The reactions are undertaken either in solvent refluxing conditions (for 12 h) by conventional heating or under focused microwave (M.W.) irradiation ($1 \mathrm{~h}, 125^{\circ} \mathrm{C}, 300 \mathrm{~W}$). The latter method greatly accelerates the reactions, leading only in 1 h to yields that are comparable to those obtained after 12 h under conventional heating. The tetrazolato-Pd(II) complexes are formed via $[2+3]$ cycloaddition of the organonitriles with the ligated azides.

Scheme VII. 1 Synthesis of complexes 33a-g

The obtained complexes 33a-g were characterized by elemental analyses, IR and ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$, and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectroscopies, and ESI ${ }^{+}$-MS. Their IR spectra do not show the typical azide band at $c a .2036 \mathrm{~cm}^{-1}$ and display a new strong band within the 1615-1638 cm^{-1} range due to the tetrazole ring, in agreement with the literature. ${ }^{[17]}$ No band assigned to $\mathrm{N}-\mathrm{H}$ stretching or bending was observed, in contrast to typical bands of triphenylphosphine ligands at $c a .1436 \mathrm{~cm}^{-1}$ and $693 \mathrm{~cm}^{-1}$, which are also displayed by the starting complex trans- $\left[\mathrm{Pd}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of complexes $\mathbf{3 3}$ show the characteristic signal in the $151-164 \mathrm{ppm}$ range due to the carbon of the tetrazolato ring.

Moreover, the NMR spectra of $\mathbf{3 3}$ often display more than one peak for each particular type of atoms, what can be accounted for by linkage isomerism due to the possible ambidentate behaviour of the tetrazolate ligand which, in principle, can bind to the metal through either the N^{1} or the N^{2} atom leading to the possibility of existence of several isomers ($N^{1} N^{1}, N^{2} N^{2}$ and $N^{1} N^{2}$ combinations), in addition to cis- and transisomers ${ }^{[17 \mathrm{c}]}$ (Scheme VII.2). However, $N^{2} N^{2}$-coordinated is sterically favourable and is that established in the solid state by X-ray diffraction (see below).

(a) $N^{1} N^{1}$-coordination

(b) $N^{2} N^{2}$-coordination

(c) $N^{1} N^{2}$-coordination

Scheme VII. 2 Isomers due to the ambidentate behaviour of the tetrazolate ligand

For instance, the ${ }^{1} \mathrm{H}$ NMR spectrum of cis/trans- $\left[\mathrm{Pd}\left(\mathrm{N}_{4} \mathrm{CMe}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (33a) shows four signals for the methyl protons at $\delta 1.88,2.01,2.21$, and 2.24 , whereas in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum four resonances for the methyl carbon are detected at $\delta 9.93,9.95,10.60$, and 10.69 , suggesting the presence of four isomers in solution. In the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, also four signals were observed at $\delta 17.65,18.08,23.02$, and 29.19. Those four isomers concern 33a obtained under M.W. irradiation ($1 \mathrm{~h}, 125{ }^{\circ} \mathrm{C}, 300 \mathrm{~W}$). Nevertheless, the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3 3 a}$ synthesized by conventional heating methods (reflux, 12 h) shows only three signals at $\delta 17.65,23.02$, and 29.19 , probably due to the conversion of the cis isomer $\left({ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\right.$ NMR δ 18.08) into the thermodynamically more stable trans form.

In our previous work, ${ }^{[17 \mathrm{c}]}$ we found that the 5-phenyltetrazolato-Pt(II) complex trans- $\left[\mathrm{Pt}\left(\mathrm{N}_{4} \mathrm{CPh}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ exhibits one signal at $\delta 17.11\left(J_{\mathrm{Pt}-\mathrm{P}}=2720 \mathrm{~Hz}\right)$ in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, due to the presence of only one isomer in solution. Moreover, the single trans isomer was prepared by both conventional heating methods and under M.W. irradiation. However, the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the analogous $\mathrm{Pd}(\mathrm{II})$ complex $\left[\mathrm{Pd}\left(\mathrm{N}_{4} \mathrm{CPh}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathbf{3 3 b})$ prepared under M.W. irradiation ($1 \mathrm{~h}, 125{ }^{\circ} \mathrm{C}, 300 \mathrm{~W}$) shows three resonances at $\delta 18.40,22.82$, and 29.25 . When 33b is prepared under solvent refluxing conditions (12 h), only one signal at $\delta 18.40$ is observed in its ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum. This is indicative that in this case the possible cis/trans isomers (with different coordination modes) can also convert into the thermodynamically more stable trans one, and in order to avoid steric congestion, both the bulky phenyl-tetrazolato rings are conceivably coordinated to the metal centre only by the N^{2} atom. ${ }^{[17 \mathrm{c}]}$

The single crystal X-ray diffraction analysis of 33b confirms the proposed structure (crystal data and details of data collection are given in Table VII.1). The structure (Figure VII.1) clearly displays the $N^{2} N^{2}$-coordination mode of the tetrazolato ligands. The metal lies on a crystallographic inversion point in a slightly distorted square-planar geometry
with the two tetrazolato rings in mutually trans position. The tetrazole rings are essentially planar and their phenyl moieties are twisted out of the $\mathrm{N}_{4} \mathrm{C}$ plane with a dihedral angle of 16.43°. Moreover, the phenyl substituents attached to the tetrazolato rings are oriented in the opposite direction (anti orientation), while the phosphine groups take a staggered conformation. The Pd-N bond distance (1.9953(15) Å) is comparable with those found (ca. $2.08 \AA$) in other bis-tetrazolato $\operatorname{Pd}(\mathrm{II})$ complexes, ${ }^{[21,22]}$ and is somewhat shorter than the sum of the metal and nitrogen covalent radii $(1.39+0.68 \AA)$ suggesting a partial π-character in this bond. The Pd-P bond distance $(2.3469(4) \AA)$ is also shorter than the metal and phosphorus covalent radii $(1.39+1.05 \AA)$, what is commonly found in mutually trans-phosphines.

Thermal ellipsoid plot, drawn at the 50% probability level, of the trans 5-phenyltetrazolato $\mathrm{Pd}(\mathrm{II})$ complex 33b with atomic numbering scheme. Selected bond lengths (\AA) and angles ${ }^{\circ}$): Pd1-P1 2.3469(4), Pd1-N2 1.9953(15), P1-Pd1-N2 91.49(4), N2-Pd1-P1a 88.50(4). $\pi \cdots \pi$ and agostic interactions (shown as dashed lines): centroid \cdots centroid $3.6536(12) \AA$; $d(\mathrm{H} 12 \cdots \mathrm{Pd} 1) 3.40 \AA, \angle(\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{Pd} 1) 107.09^{\circ} ; d(\mathrm{H} 36 \cdots \mathrm{Pd} 1) 2.93 \AA, \angle(\mathrm{C} 36-\mathrm{H} 36 \cdots \mathrm{Pd} 1)$ 119.51°. Hydrogen atoms not involved in fundamental interactions are omitted for clarity. Symmetry code to generate equivalent atoms: a) $-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}$

The complex molecule conformation is stabilized by intramolecular $\pi \cdots \pi$ interaction involving the tetrazole ring and the phosphine $\mathrm{C} 11>\mathrm{C} 16$ phenyls (centroid \cdots centroid distance of $3.6536(12) \AA$). Moreover, reasonably strong intramolecular agostic interactions were also found, involving the metal and aromatic phosphine hydrogens (H12 $\cdots \mathrm{Pd} 13.40 \AA, \mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{Pd} 1107.09^{\circ}$; H36 $\cdots \mathrm{Pd} 12.93 \AA$, C36-H36‥Pd1 119.51°). Therefore, the above considered square-planar geometry
around the $\mathrm{Pd}(\mathrm{II})$ centre in $\mathbf{3 3 b}$ can be envisaged as a distorted octahedron if the longer agostic $\mathrm{Pd} 1 \cdots \mathrm{H}$ interactions are taken into consideration.

Table VII. 1 X-ray crystallographic data for trans- $\left[\mathrm{Pd}\left(\mathrm{N}_{4} \mathrm{CPh}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathbf{3 3 b})^{(\mathrm{a})}$

Formula	$\mathrm{C}_{50} \mathrm{H}_{40} \mathrm{~N}_{8} \mathrm{P}_{2} \mathrm{Pd}$	Mr	921.24
$\lambda(\AA)$	0.71073		
cryst syst	Triclinic	space group	$\mathrm{P}-1$
$a(\AA)$	$8.7688(3)$	$\alpha(\mathrm{deg})$	$68.890(2)$
$b(\AA)$	$11.7142(4)$	$\beta(\mathrm{deg})$	$76.809(3)$
$c(\AA)$	$11.7416(4)$	$\gamma(\mathrm{deg})$	$72.483(2)$
$V\left(\AA^{3}\right), \mathrm{Z}$	$1063.20(7), 1$		
$\rho_{\text {calcd }}\left(\mathrm{mg} / \mathrm{m}^{3}\right)$	1.439	$\mu(\mathrm{Mo} \mathrm{K} \alpha)\left(\mathrm{mm}^{-1}\right)$	0.558
no. of collected reflns	25117	no. of unique reflns	6886
$R_{\text {int }}$	0.0403	Final $R 1^{(b)}, w R 2^{(c)}(I \geq 2 \sigma)$	$0.0373,0.0821$
GOF on F^{2}	1.049		

${ }^{(a)}$ Intensity data were collected using a Bruker AXS-KAPPA APEX II diffractometer using graphite monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation. Data were collected at 150 K , using omega scans of 0.5° per frame and a full sphere of data was obtained. Cell parameters were retrieved using Bruker SMART software and refined using Bruker SAINT on all the observed reflections. Absorption corrections were applied using SADABS. ${ }^{[25]}$ Structures were solved by direct methods by using the SHELXS-97 package ${ }^{[26]}$ and refined with SHELXL-97. ${ }^{[26]}$ Calculations were performed with the WinGX System-Version 1.80.03. ${ }^{[27]}$ All hydrogens were inserted in calculated positions. Least square refinement with anisotropic thermal motion parameters for all the non-hydrogen atoms and isotropic for the remaining were employed.
${ }^{(b)} \mathrm{R} 1=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| / \Sigma\left|F_{\mathrm{o}}\right|$
${ }^{(c)} \mathrm{wR} 2=\left[\Sigma\left[w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{\mathrm{o}}{ }^{2}\right)^{2}\right]\right]^{1 / 2}$
Similarly to the case of platinum(II) complexes, ${ }^{[17 c]}$ the reaction of propionitrile with trans- $\left[\mathrm{Pd}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$, by refluxing for 12 h or under M.W. irradiation (1 h, 125 ${ }^{\circ} \mathrm{C}$, 300 W), gives not only the expected trans- $\left[\mathrm{Pd}\left(\mathrm{N}_{4} \mathrm{CEt}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (33h), but also the cyano-complex trans-[Pd(CN)($\left.\left.\mathrm{N}_{4} \mathrm{CEt}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]\left(\mathbf{3 3 h}{ }^{\prime}\right)($ Scheme VII.3).

Scheme VII. 3 Synthesis of 33h and 33h ${ }^{\prime}$

The formation of $\mathbf{3 3 h}^{\prime}$ is believed to proceed via the bis(tetrazolato) compound $\mathbf{3 3 h}$, propionitrile being the precursor of the cyanide ligand. The initial formation of complex 33h via the $[2+3]$ cycloaddition of the propionitrile (as observed with the other nitriles) with a ligated azide is kinetically driven and such a complex, upon prolonged reaction time, converts into the thermodynamically more stable cyano-complex $\mathbf{3 3 h}^{\prime}$.

A possible pathway for the unexpected conversion of $\mathbf{3 3 h}$ into the corresponding cyano-complex 33h' is proposed in Scheme VII.4. It involves an oxidative addition of propionitrile (which thus undergoes NC-C bond cleavage ${ }^{[17 c, 19,20]}$) to $\operatorname{Pd}($ II) to give a cyano-ethyl-Pd(IV) intermediate, followed by β-elimination from the ethyl ligand to form ethylene, ${ }^{\text {a }}$ and reductive elimination of 5-ethyl- $1 H$-tetrazole, which could be isolated and characterized by IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopies and ESI ${ }^{+}$-MS.

Scheme VII. 4 Synthesis of $\mathbf{3 3 h}^{\prime}$ and 5-ethyl-1H-tetrazole

Complex $\mathbf{3 3} \mathbf{h}^{\prime}$ cannot be isolated in a pure form, by thermal heating or under M.W. irradiation, and a mixture of $\mathbf{3 3 h}$ and $\mathbf{3 3} \mathbf{h}^{\prime}$ was obtained. The mixture has been characterized by IR and ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopies, and ESI ${ }^{+}$-MS. The IR spectrum of the mixture shows a strong band at $1630 \mathrm{~cm}^{-1}$ due to the tetrazole rings, and a band at $2139 \mathrm{~cm}^{-1}$ is assigned to $v(\mathrm{CN})$ of the cyano ligand (complex $\mathbf{3 3 h}{ }^{\prime}$). The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonances at 126.9 and 166.5 ppm confirm the presence of cyano and tetrazolato ligands, respectively. ${ }^{[17]}$ The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction mixture shows two resonances at $\delta 23.0$ and 30.2 ($3: 1$ relative intensities).

[^18]
VII.3.2 Complexes with PTA

As mentioned above, PTA can be an alternative and useful phosphine for further applications in aqua-systems. Hence, we decided to synthesize analogous complexes with PTA instead of PPh_{3}, and to carry out the liberation of ligated tetrazole in aqueous medium. The reaction of stoichiometric quantities of PTA and trans- $\left[\operatorname{Pd}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (Pd:PTA $=1: 2$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature leads to the precipitation of $\left[\operatorname{Pd}\left(\mathrm{N}_{3}\right)_{2}(\mathrm{PTA})_{2}\right]$ (34) as an yellow microcrystalline solid in 60% yield (Scheme VII.5). Complex 34 is stable in the solid state and in solution. The bis(tetrazolato) complexes trans $-\left[\mathrm{Pd}\left(\mathrm{N}_{4} \mathrm{CR}\right)_{2}(\mathrm{PTA})_{2}\right](\mathbf{3 5})\left[\mathrm{R}=\mathrm{Ph}(\mathbf{3 5 a}), 2-\mathrm{NC}_{5} \mathrm{H}_{4}(\mathbf{3 5 b}), 3-\mathrm{NC}_{5} \mathrm{H}_{4}(\mathbf{3 5 c})\right.$ or 4$\left.\mathrm{NC}_{5} \mathrm{H}_{4}(\mathbf{3 5 d})\right]$ were synthesized by reaction of $\left[\mathrm{Pt}\left(\mathrm{N}_{3}\right)_{2}(\mathrm{PTA})_{2}\right]$ (34) with the appropriate organonitrile NCR, and the reaction is accelerated by M.W. ($125^{\circ} \mathrm{C}, 1 \mathrm{~h}, 300 \mathrm{~W}$). They were isolated in moderate yields (ca. $50-55 \%$) as yellow powders (Scheme VII.5). The tetrazolato-Pd(II) complexes 35a-d are formed via [2+3] cycloaddition of the organonitriles with the ligated azides and they are stable in the solid state. Complex 35a is soluble in middle polar solvents, such as CHCl_{3} and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, sparingly soluble in polar ones such as $\mathrm{H}_{2} \mathrm{O}$, MeOH , MeCN and $\mathrm{Me}_{2} \mathrm{SO}$, while compounds 35b-d are insoluble in common organic solvents and water.

Scheme VII. 5 Synthesis of $\mathbf{3 4}$ and $\mathbf{3 5}$

Compounds 34 and 35 have been characterized by elemental analyses, IR and NMR spectroscopies. The IR spectrum of $\mathbf{3 4}$ exhibits the typical azide band ($2037 \mathrm{~cm}^{-1}$). The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3 5}$ a shows the characteristic signal at 165 ppm due to the tetrazolato ring carbon. The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 4}$ and 35a at room temperature show two types of methylene protons. One of them, $\mathrm{P}^{-} \mathrm{CH}_{2}-\mathrm{N}$, occurs as a broad singlet at δ
4.35 and 4.20 , respectively. The second type, $\mathrm{N}-\mathrm{CH}_{2}-\mathrm{N}$, displays for $\mathbf{3 4}$ and $\mathbf{3 5 a}$ an AB spin system centred at $\delta 4.47$ and $4.44\left(J_{\mathrm{AB}}=13\right.$ and 15 Hz$)$, respectively, assigned to the $\mathrm{N}-\mathrm{CH}_{\mathrm{ax}}-\mathrm{N}$ and the $\mathrm{N}-\mathrm{CH}_{\mathrm{eq}}-\mathrm{N}$ protons. ${ }^{[23]}$ The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{3 4}$ and $\mathbf{3 5 a}$ display singlets at -30.2 and -47.3 ppm , respectively.

Liberation of the ligated tetrazole from the coordination sphere of the bis(tetrazolato)-Pd(II) complex trans-[Pd($\left.\left.\mathrm{N}_{4} \mathrm{CPh}\right)_{2}(\mathrm{PTA})_{2}\right]$ (35a) was achieved by treatment with aqueous HCl , similarly to the previously described ${ }^{[17 \mathrm{a}]}$ reaction of the platinum compounds trans-[Pt($\left.\left.\mathrm{N}_{4} \mathrm{CR}\right)_{2}(\mathrm{PTA})_{2}\right]\left(\mathrm{R}=\mathrm{Ph}, 4-\mathrm{ClC}_{6} \mathrm{H}_{4}\right.$, or $\left.3-\mathrm{NC}_{5} \mathrm{H}_{4}\right)$ with diluted HCl (Scheme VII.0). The method is simple and convenient in terms of providing an easy separation of the tetrazole products. It involves refluxing a suspension of 35a in aqueous 0.5 M HCl for 1 h . The precipitate formed during the reaction was separated by filtration and the white solid was then extracted with chloroform, and shown (by IR and NMR spectroscopies) to be the corresponding 5-phenyl-1 H-tetrazole (yield ca. 50\%). ${ }^{[17 a]}$ The remaining white-yellow precipitate is completely insoluble in chloroform, which, by IR (KBr) and elemental analysis, was shown to be $\left[\mathrm{PdCl}_{2}(\mathrm{PTA}-\mathrm{H})_{2}\right] \mathrm{Cl}_{2}(\mathbf{3 6})(\mathrm{PTA}-\mathrm{H}=$ N-protonated PTA cation). Its insolubility in most solvents precluded NMR analysis, but it is deprotonated by base (NaOH) to give the expected known $\left[\mathrm{PdCl}_{2}(\mathrm{PTA})_{2}\right],{ }^{[28]}$ as proved by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR in a $\mathrm{D}_{2} \mathrm{O}$ solution with NaOH .

Scheme VII. 6 Synthesis of 36 and 5-phenyl-1H-tetrazole

VII. 4 CONCLUSIONS

In this work we have shown that the di(azido) compounds trans-[$\left.\mathrm{Pd}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and the hydrosoluble $\left[\mathrm{Pd}\left(\mathrm{N}_{3}\right)_{2}(\mathrm{PTA})_{2}\right]$ (34) are good starting materials for a variety of trans bis(5-substituted tetrazolato)-Pd(II) complexes derived upon [2+3] cycloadditions with nitriles. We have also found that propionitrile, on reaction with trans$\left[\mathrm{Pd}\left(\mathrm{N}_{4} \mathrm{CEt}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathbf{3 3 h})$, undergoes an unusual NC-C bond cleavage behaving as a source of a cyano ligand to give trans- $\left[\mathrm{Pd}(\mathrm{CN})\left(\mathrm{N}_{4} \mathrm{CEt}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]\left(\mathbf{3 3 h}^{\prime}\right)$ and 5-ethyl-1Htetrazole, via a suggested unusual oxidative addition of this nitrile to $\mathrm{Pd}(\mathrm{II})$ followed by β-H-elimination from the derived ethyl ligand and reductive elimination of the tetrazole. This provides, to our knowledge, the first example of synthesis of a mixed cyanotetrazolato $\mathrm{Pd}(\mathrm{II})$ complex, which is obtained by $\mathrm{C}-\mathrm{C}$ bond cleavage of an organonitrile.

The trans arrangement of the two tetrazolato ligands appears to be the most favourable one, in contrast to the previous reports, ${ }^{[21,22,29]}$ as clearly established by X-ray diffraction analysis. Different linkage isomers, on account of the ambidentate character of the tetrazolato ligand that can coordinate by either the N^{l} or the N^{2} mode, have been spectroscopically detected in solution, but the resolved crystal structure of complex 33b shows that, in the solid state, the mode of tetrazolato binding is through the N^{2}-atom. The multifunctionality of the tetrazolato and of the cyano-tetrazolato complexes provides a potential convenient entry to polynuclear assemblies which deserves to be explored.

Taking advantage of the hydro-solubility of PTA, a simple liberation of the ligated tetrazolate from the coordination sphere of trans- $\left[\mathrm{Pd}\left(\mathrm{N}_{4} \mathrm{CPh}\right)_{2}(\mathrm{PTA})_{2}\right]$ was achieved, similarly to related $\mathrm{Pt}(\mathrm{II})$ complexes, what constitutes a convenient metal-mediated synthetic method for substituted tetrazoles.

Finally, microwave irradiation promotes the [2+3] cycloaddition of organonitriles with azide, resulting in a pronounced shortening of the reaction time relatively to the conventional heating.

VII. 5 REFERENCES

[1] R. N. Butler, in: A. R. Katritzky, C. W. Rees, E. F. V. Scriven (Eds.), Comprehensive Heterocyclic Chemistry, vol.4, Pergamon, Oxford, UK, 1996.
[2] a) L. Carlucci, G. Ciani, D. M. Proserpio, Angew. Chem. Int. Ed. 1999, 38, 3488; b) V. A. Ostrovskii, M. S. Pevzner, T. P. Kofmna, M. B. Shcherbinin, I. V. Tselinskii, Targets Heterocycl. Syst. 1999, 3, 467; c) C. Janiak, T. G. Scharmann, W. Gunter, F. Girgsdies, H. Hemling, W. Hinrichs, D. Lentz, Chem. Eur. J. 1995, 1, 637; d) C. Janiak, J. Chem. Soc. Chem. Commun. 1994, 545; e) G. B Ansell, J. Chem. Soc. Dalton Trans. 1973, 371.
[3] a) S. Bhandari, M. F. Mahon, J. G. McGinley, K. C. Molloy, C. E. E. Roper, J. Chem. Soc. Dalton Trans. 1998, 3425; b) M. Hill, M. F. Mahon, K. C. Molloy, J. Chem. Soc. Dalton Trans. 1996, 1857; c) S. Bhandari, M. F. Mahon, K. C. Molloy, J. S. Palmer, S. F. Sayers, J. Chem. Soc. Dalton Trans. 2000, 1053; d) S. Bhandari, C. G. Frost, C. E. Hague, M. F. Mahon, K. C. Molloy, J. Chem. Soc. Dalton Trans. 2000, 663.
[4] a) L. -Z. Wang, Z. -R. Qu, H. Zhao, X. -S. Wang, R. -G. Xiong, Z. -L. Xue, Inorg. Chem. 2003, 42, 3969; b) R. -G. Xiong, X. Xue, H. Zhao, X. -Z. You, B. F. Abrahams, Z. Xue, Angew. Chem. Int. Ed. 2002, 41, 3800; c) X. Xue, X. -S. Wang, L. Z. Wang, R. -G. Xiong, B. F. Abrahams, X. -Z. You, Z. Xue, C. -M. Che, Inorg. Chem. 2002, 41, 6544; d) J. Tao, Z.-J. Ma, R.-B. Huang, L.-S. Zheng, Inorg. Chem. 2004, 43, 6133.
[5] a) W. R. Carpenter, J. Org. Chem. 1962, 27, 2085; b) H. Quast, L. Bieber, Tetrahedron Lett. 1976, $18,1485$.
[6] a) Z. P. Demko, K. B. Sharpless, Org. Lett. 2001, 3, 4091; b) T. C. Porter, R. K. Smalley, M. Teguiche, B. Purwono, Synthesis 1997, 7, 773; c) B. Davis, T. Brandstetter, C. Smith, L. Hackett, B. G. Winchester, G. Fleet, Tetrahedron Lett. 1995, 36, 7507; d) L. Garanti, G. Zecchi, J. Org. Chem. 1980, 45, 4767; e) R. Fusco, L. Garanti, G. Zecchi, J. Org. Chem. 1975, 40, 1906; f) P. A. S. Smith, J. M. Clegg, J. H. Hall, J. Org. Chem. 1958, 23, 524.
[7] a) D. P. Curran, S. Hadida, S.-Y. Kim, Tetrahedron 1999, 55, 8997; b) S. J. Wittenberger, B. G. Donner, J. Org. Chem. 1993, 58, 4139.
[8] a) A. Kumar, R. Narayanan, H. Shechter, J. Org. Chem. 1996, 61, 4462; b) B. E. Huff, M. A. Staszak, Tetrahedron Lett. 1993, 34, 8011.
[9] a) K. Koguro, T. Oga, S. Mitsui, R. Orita, Synthesis 1998, 910; b) W. G. Finnegan, R. A. Henry, R. Lofquist, J. Am. Chem. Soc. 1958, 80, 3908.
[10] a) Z. P. Demko, K. B. Sharpless, J. Org. Chem. 2001, 66, 7945; b) F. Himo, Z. P. Demko, L. Noodleman, K. B. Sharpless, J. Am. Chem. Soc. 2003, 125, 9983.
[11] D. Amantini, R. Beleggia, F. Fringuelli, F. Pizzo, L. Vaccoro, J. Org. Chem. 2004, 69, 2896.
[12] M. L. Kantam, K. B. Shiva Kumar, C. Sridhar, Adv. Synth. Catal. 2005, 347, 1212.
[13] a) L. V. Myznikov, J. Roh, T. V. Artamonova, A. Hrabalek, G. I. Koldobskii, Russ. J. Org. Chem. 2007, 43, 765; b) M. Alterman, A. Hallberg, J. Org. Chem. 2000, 65, 7984.
[14] a) Z. Ma, J. Tao, R.-B. Huang, L.-S. Zhang, Acta Cryst. 2005, E61, m1; b) Mitsui Toatsu Chem Inc. (MITK-C) Patent JP 54041878-A, 1979.
[15] a) V. Y. Kukushkin, A. J. L. Pombeiro, Chem. Rev. 2002, 102, 1771; b) H.-W. Frühauf, Chem. Rev. 1997, 97, 523; c) R. A. Michelin, M. Mozzon, R. Bertani, Coord. Chem. Rev. 1996, 147, 299.
[16] a) Y.-J. Kim, Y.-S. Kwak, Y.-S. Joo, S.-W. Lee, Dalton Trans. 2002, 144; b) Y.-J. Kim, J.T Han, S. Kang, W. S. Han, S.-W. Lee, Dalton Trans. 2003, 3357.
[17] a) P. Smoleński, S. Mukhopadhyay, M. F. C. Guedes da Silva, M. A. Januário Charmier, A. J. L. Pombeiro, Dalton Trans. 2008, 6546; b) S. Mukhopadhyay, J. Lasri, M. F. C. Guedes da Silva, M. A. Januário Charmier, A. J. L. Pombeiro, Polyhedron 2008, 27, 2883; c) S. Mukhopadhyay, J. Lasri, M. A. Januário Charmier, M. F. C. Guedes da Silva, A. J. L. Pombeiro, Dalton Trans. 2007, 5297; d) S. Mukhopadhyay, B. G. Mukhopadhyay, M. F. C. Guedes da Silva, J. Lasri, M. A. Januário Charmier, A. J. L. Pombeiro, Inorg. Chem. 2008, 47, 11334.
[18] J. Lasri, M. F. C. Guedes da Silva, M. N. Kopylovich, B. G. Mukhopadhyay, A. J. L. Pombeiro, Eur. J. Inorg. Chem. 2009, 5541.
[19] a) T. Li, J. J. García, W. W. Brennessel, W. D. Jones, Organometallics 2010, 29, 2430; b) D.-G. Yu, M. Yu, B.-T. Guan, B.-J. Li, Y. Zheng, Z.-H. Wu, Z.-J. Shi, Org. Lett. 2009, 11, 3374 ; c) T. A. Atesin, T. Li, S. Lachaize, W. W. Brennessel, J. J. Garcia, W. D. Jones, J. Am. Chem. Soc. 2007, 129, 7562; d) T. Schaub, C. Döring, U. Radius, Dalton Trans. 2007, 1993; e) J. J. Garcia, N. M. Brunkan, W. D. Jones, J. Am. Chem. Soc. 2002, 124, 9547; f) G. W. Parshall, J. Am. Chem. Soc. 1974, 96, 2360.
[20] M. E. Evans, T. Li, W. D. Jones, J. Am. Chem. Soc. 2010, 132, 16278.
[21] P. Kreutzer, C. Weis, H. Boehme, W. Beck, T. Kemmeric, Z. Natur. B. 1972, 27, 745.
[22] G. B. Ansell, J. Chem. Soc. Dalton Trans. 1973, 371.
[23] a) J. Bravo, S. Bolãno, L. Gonsalvi, M. Peruzzini, Coord. Chem. Rev. 2010, 254, 555; b) A. D. Phillips, L. Gonsalvi, A. Romerosa, F. Vizza, M. Peruzzini, Coord. Chem. Rev. 2004, 248, 955; c) S. Chatterjee, I. Biondi, P. J. Dyson, A. Bhattacharyya, Biol. Inorg. Chem. 2011, 16, 715; d) W. H. Ang, A. Casini, G. Sava, P. J. Dyson, J. Organomet. Chem. 2011, 696, 989; e) E. Vergara, E. Cerrada, A. Casini, O. Zava, M. Laguna, P. J. Dyson, Organometallics 2010, 29, 2596; f) A. Mena-Cruz, P. Lorenzo-Luis, V. Passarelli, A. Romerosa, M. Serrano-Ruiz, Dalton Trans. 2011, 40, 3237; g) A. Lis, M. F. C. Guedes da Silva, A. M. Dirillov, P. Smolenski, A. J. L. Pombeiro, Cryst. Growth Des. 2010, 10, 5245.
[24] a) A. Loupy, ed. Microwaves in Organic Synthesis, Wiley/VCH, Weinheim, 2002; b) J. P. Tierney, P. Lidström, eds. Microwave Assisted Organic Synthesis, Blackwell Publishing/CRC Press, Oxford, 2005.
[25] G. M. Sheldrick, Acta Crystallogr. Sect. A 1990, 46, 467.
[26] G. M. Sheldrick, SHELXL-97, University of Gottingen, Germany, 1997.
[27] L. J. Farrugia, J. Appl. Crystallogr. 1999, 32, 837.
[28] D. J. Darensbourg, T. J. Decuir, N. W. Stafford, J. B. Robertson, J. D. Draper, J. H. Reibenspies, Inorg. Chem. 1997, 36, 4218.
[29] W. P. Fehlhammer, T. Kemmerich, W. Beck, Chem. Ber. 1983, 116, 2691.

CHAPTER VIII

Experimental Section

VIII. 1 GENERAL CONSIDERATIONS AND CHARACTERIZATION TECHNIQUES

VIII.1.1 Relating Compounds 1-32

Complexes 1-32 have been prepared at the Inorganic Chemistry Department of the University of Murcia. Unless otherwise stated, all experiments have been conducted under a N_{2} atmosphere using Schlenk techniques. Toluene, THF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, hexane, and $\mathrm{Et}_{2} \mathrm{O}$ were degassed and dried using a Pure Solv MD-5 solvent purification system from Innovative Technology, Inc. All other solvents have been obtained from commercial sources and used without further purification. Chromatographic separations were achieved by preparative thin layer chromatography using silica gel 60A. For colorless compounds ca. 5% of silica gel $60 \mathrm{GF}_{254}$ was added and the bands were located with the help of a $254 / 365 \mathrm{~nm}$ lamp. The following paragraphs describe the synthesis of some of the starting materials. All other reagents have been obtained from commercial sources and used without further purification.

- $\left[\mathbf{P d}(\mathbf{d b a})_{2}\right]$ was prepared according to literature procedures. ${ }^{1}$
- trans,trans-2,5-Distyryl-1,4-dibromobenzene (Chapter IV) was prepared according to the procedure reported by Blum and Zimmerman ${ }^{2}$ (Scheme VIII.1). As the authors do not report NMR data of the intermediate and final compounds, these data are included in the Scheme, together with the observed colors. ${ }^{3}$

(i): ${ }^{1} \mathrm{H}$-NMR: $\delta 7.66(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}), 4.51\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$. White crystals
(ii): ${ }^{1} \mathrm{H}-\mathrm{NMR}: ~ \delta 7.64\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2 \mathrm{~Hz}\right.$), 4.07 (quint, $8 \mathrm{H}, \mathrm{OCH}_{2},{ }^{3} J_{\mathrm{HH}}=7 \mathrm{~Hz}$), $3.33(\mathrm{~d}, 4 \mathrm{H}$, $\left.\mathrm{PCH}_{2},{ }^{3} \mathrm{~J}_{\mathrm{PH}}=21 \mathrm{~Hz}\right), 1.28\left(\mathrm{t}, 12 \mathrm{H}, \mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P}-\mathrm{NMR}: \delta 24.6(\mathrm{~s})$. White crystals.
(iii): 'H-NMR: 87.88 (s, 2H, CH-3), 7.55 (d, 4H, CH Ph), 7.4-7.25 (several m, 8H, Ph and $\mathrm{CH}=\mathrm{CH}$), $7.06\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH},{ }^{3} J_{\mathrm{HH}}=16 \mathrm{~Hz}\right)$. Yellow crystals.

Scheme VIII. 1 Synthesis of trans,trans-2,5-distyryl-1,4-dibromobenzene

- TIOTf was prepared by the reaction of $\mathrm{Tl}_{2} \mathrm{CO}_{3}$ and triflic acid (1:2) in water and recrystallized from acetone/Et $\mathrm{E}_{2} \mathrm{O}$. AgOTf was obtained from TCI , and $\mathbf{A g C l O}_{\mathbf{4}}$ (anhydrous) from Alfa Aesar.
- $\left[\left\{\mu-C 1, C 4, N, N "-\mathbf{C}_{6} \mathbf{H}_{2}\left\{\mathbf{C}(\mathbf{H})=\mathbf{N}\left({ }^{\mathrm{n}} \mathbf{B u}\right)\right\}_{2}-\mathbf{2}, \mathbf{5}\right\}\{\mathbf{P d}(\mu-\mathbf{O A c})\}\right]_{2}(\mathbf{I X})$ (Chapter V) had been previously prepared in our research group by palladation of the diimine $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}=\mathrm{N}^{\mathrm{n}} \mathrm{Bu}\right)_{2}-1,4$ (generated in situ) with $\left[\mathrm{Pd}(\mathrm{OAc})_{2}\right] .{ }^{4}$ The experimental data for this compound can be found in a PhD Thesis ${ }^{4}$ but they have not been otherwise published yet. For this reason we reproduce them in Section VIII.2.
- 1,3,5-Triiodo-2,4,6-trihydroxymethylbenzene (XV) ${ }^{5}$

Tribromophloroglucinol (XVI') ${ }^{6}$

2,4,6-Tribromo-1,3,5-trimethoxybenzene (XVII') ${ }^{7}$

These trisubstituted trihaloarenes (Chapter VI) were prepared according to literature procedures (Scheme VIII.2): ${ }^{5-7}$

Scheme VIII. 2 Synthesis of trisubstituted trihaloarenes ${ }^{5-7}$

For the characterization of compounds 1-32, the following equipment and techniques have been used:

Elemental analyses: C, H, N, and S elemental analyses were carried out with a Carlo Erba 1106 microanalyzer.

Melting points: Melting points were determined on a Reichert apparatus and are uncorrected.

Conductivity: Molar conductivities were measured for ca. $5 \times 10^{-4} \mathrm{M}$ solutions in acetone, using a CRISON micro CM 2200 conductivity meter. In these conditions, W. J. Geary ${ }^{8}$ gives the following reference values:

Electrolyte	$\Lambda_{\mathrm{M}}\left(\Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\right)$
$1: 1$	$100-140$
$2: 1$	$160-200$
$3: 1$	270

Mass spectra: High resolution ESI mass spectra were recorded on an Agilent 6220 Accurate-Mass TOF LC/MS spectrometer

IR spectra: Infrared spectra were recorded in the range $4000-200 \mathrm{~cm}^{-1}$ on a Perkin Elmer Spectrum 100 spectrophotometer using Nujol mulls (bands at 2960-2840, 1455 and $1370 \mathrm{~cm}^{-1}$) between polyethylene sheets (bands at 728 and $718 \mathrm{~cm}^{-1}$).

NMR spectra: NMR spectra were recorded on Bruker Avance 200, 300, 400, or 600 spectrometers at 298 K unless otherwise indicated. Chemical shifts are referred to internal TMS (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$) or $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}\left({ }^{31} \mathrm{P}\right)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ resonances were assigned with the help of 2D experiments (${ }^{1} \mathrm{H}$-COSY, ${ }^{1} \mathrm{H}$-NOESY, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMQC, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMBC}$).

X-ray diffractions structures: All the X-ray diffraction structures have been solved by Prof. Dr. Peter G. Jones at the Institute for Inorganic and Analytic Chemistry of the Technical University of Braunschweig. Details for each structure are given in the corresponding Chapters.

VIII.1.2 Relating Complexes 33-36

Complexes 33-36 have been prepared at Centro de Química Estrutural of the Instituto Superior Técnico, University of Lisbon (Portugal). Solvents were purchased from Aldrich and dried by usual procedures. Trans- $\left[\mathrm{Pd}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{9}$ and PTA (1,3,5-triaza-7-phosphaadamantane) ${ }^{10}$ were prepared according to published procedures.

For the characterization of compounds 33-36, the following equipment and techniques have been used:

Elemental analyses: C, H, and N elemental analyses were carried out by the Microanalytical Service of the Instituto Superior Técnico of Lisbon (Portugal) by using a Perkin Elmer PE 2400 Series II microanalyzer.

Mass spectra: Electrospray mass spectra were carried out with a Varian 500-MS LC Ion Trap Mass Spectrometer equipped with an electrospray (ESI) ion source. The solutions in methanol were continuously introduced into the mass spectrometer
source with a syringe pump at a flow rate of $10 \mu \mathrm{~L} / \mathrm{min}$. The drying gas temperature was maintained at $350{ }^{\circ} \mathrm{C}$ and N_{2} was used as nebulizer gas at a pressure of 35 psi . Scanning was performed from $m / z=50$ to 1500 .

Microwave irradiation experiments: Microwave irradiation experiments were undertaken in a focused microwave CEM Discover reactor ($10 \mathrm{~mL}, 13 \mathrm{~mm}$ diameter, 300 W) fitted with a rotational system and an IR detector of temperature.

IR spectra: Infrared spectra were recorded in the range $4000-400 \mathrm{~cm}^{-1}$ on a Bio-Rad FTS 3000MX instrument in KBr pellets.

NMR spectra: NMR spectra were measured on Bruker Avance II 300 and 400 MHz spectrometers at ambient temperature unless otherwise indicated. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ chemical shifts (δ) are expressed in ppm relative to TMS (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$) or 85% $\mathrm{H}_{3} \mathrm{PO}_{4}\left({ }^{31} \mathrm{P}\right)$.

X-ray diffractions structures: The X-ray diffraction structure of complex 33b has been solved by Prof. Dr. M. Fátima C. Guedes da Silva at the Instituto Superior Técnico of the Technical University of Lisbon. Details for the structure are given in Chapter VII.

VIII. 2 SYNTHESIS AND CHARACTERIZATION OF SECONDARY PRODUCTS

Synthesis of trans-[PdI\{ $\left.\left.\mathrm{C}_{6} \mathbf{H}_{4}\left(\mathrm{CH}_{2} \mathbf{O H}\right)-2\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathrm{I})^{11}$

2-Iodobenzyl alcohol ($183 \mathrm{mg}, 0.782 \mathrm{mmol}$) was added to a suspension of $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right](300 \mathrm{mg}, 0.521 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(273 \mathrm{mg}, 1.04 \mathrm{mmol})$ in dry degassed toluene (20 mL) under N_{2}. The resulting brownish suspension was stirred for 15 min at room temperature and then concentrated in vacuo. The residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and the extract was filtered over Celite. The resulting yellow solution was evaporated to dryness and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added forming a pale pink suspension which was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and dried in vacuo to
give \mathbf{I} as an orange solid, which is soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Yield: 256 $\mathrm{mg}(56.8 \%)$. $\mathrm{Mp}: 142{ }^{\circ} \mathrm{C} . \mathrm{IR}\left(\mathrm{cm}^{-1}\right): v(\mathrm{OH}): 3566 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.497.42 (m, 12H, $o-\mathrm{CH} \mathrm{PPh}_{3}$), $7.37-7.31\left(\mathrm{~m}, 6 \mathrm{H}, p-\mathrm{CH} \mathrm{PPh}_{3}\right), 7.28-7.22(\mathrm{~m}, 12 \mathrm{H}, m-\mathrm{CH}$ PPh_{3}), 7.08-7.04 (m, 1H, H6 aryl), $6.62\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,1 \mathrm{H}, \mathrm{H} 4 \operatorname{aryl}\right), 6.47\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7\right.$, $1 \mathrm{H}, \mathrm{H} 5$ aryl), $6.41\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,1 \mathrm{H}, \mathrm{H} 3\right.$ aryl), $4.16\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.02\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}\right.$ $=7,1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $158.6\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=3,2 \mathrm{C}, \mathrm{C} 1\right.$ aryl), $144.4\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{CP}}=3,1 \mathrm{C}, \mathrm{C} 2\right.$ aryl), $135.1\left(\mathrm{vt},{ }^{2} \mathrm{~J}_{\mathrm{CP}}+{ }^{4} \mathrm{~J}_{\mathrm{CP}}=12,4 \mathrm{C}, o-\mathrm{CH} \mathrm{PPh}_{3}\right), 134.2(\mathrm{t}$, ${ }^{3} \mathrm{~J}_{\mathrm{CP}}=4,2 \mathrm{C}, \mathrm{CH} 6$ aryl), $132.0\left(\mathrm{vt},{ }^{1} \mathrm{~J}_{\mathrm{CP}}+{ }^{3} \mathrm{~J}_{\mathrm{CP}}=46,2 \mathrm{C}, i-\mathrm{C} \mathrm{PPh}_{3}\right), 130.2(\mathrm{~s}, 6 \mathrm{C}, p-\mathrm{CH}$ PPh_{3}), 128.6 (s, 1C, CH 3 aryl), $128.1\left(\mathrm{vt}^{3}{ }^{3} \mathrm{~J}_{\mathrm{CP}}+{ }^{5} \mathrm{~J}_{\mathrm{CP}}=10,4 \mathrm{C}, m-\mathrm{CH} \mathrm{PPh}_{3}\right.$), $125.9(\mathrm{~s}$, CH5 aryl), 123.8 (s, CH4 aryl), 68.4 ($\mathrm{t},{ }^{4} \mathrm{~J}_{\mathrm{CP}}=3, \mathrm{CH}_{2}$) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (161.9 MHz , CDCl_{3}): 22.6 (s). Anal. Calcd for $\mathrm{C}_{43} \mathrm{H}_{37} \mathrm{IOP}_{2} \mathrm{Pd}: \mathrm{C}, 59.70 ; \mathrm{H}, 4.31$. Found: C, 59.35; H, 4.47.

Reaction of 3 with CO to give phthalide

CO was bubbled for 5 min through a solution of $\mathbf{3}(100 \mathrm{mg}, 0.271 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL), whereby extensive decomposition was observed. The mixture was stirred for 1 h in a CO atmosphere. It was then filtered over MgSO_{4}, and the resulting yellow solution was evaporated to dryness, whereby a reddish color appeared in the residue. This residue was extracted with cold $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$, and the resulting yellowish solution was filtered over Celite and then dried in vacuo to give a solid (45 mg), which is shown by ${ }^{1} \mathrm{H}$ NMR spectroscopy to be a clean mixture of $1(3 H)$ isobenzofuranone (phthalide) and bpy in a $1: 1$ ratio. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $8.69\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5,2 \mathrm{H}\right.$, bpy), $8.40\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,2 \mathrm{H}\right.$, bpy $), 7.94\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,1 \mathrm{H}\right.$, phthalide), $7.83\left(\mathrm{td},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,2 \mathrm{H}\right.$, bpy), $7.69\left(\mathrm{td},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}\right.$, phthalide), $7.54\left(\mathrm{td},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}\right.$, phthalide), $7.50\left(\mathrm{dt},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}\right.$, phthalide), 7.32 (ddd, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=5,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,2 \mathrm{H}$, bpy), $5.33(\mathrm{~s}, 2 \mathrm{H}$, phthalide).

Synthesis of $\left[\left\{\mu-C 1, C 4, N, N "-\mathbf{C}_{6} \mathbf{H}_{2}\left\{\mathbf{C}(\mathbf{H})=\mathbf{N}\left({ }^{\mathrm{n}} \mathrm{Bu}\right)\right\}_{2}-\mathbf{2 , 5}\right\}\{\mathbf{P d}(\mu-\mathbf{O A c})\}\right]_{2}(\mathbf{I X})^{4}$

A solution of ${ }^{\mathrm{n}} \mathrm{BuNH}_{2}(1.00 \mathrm{~g}, 7.45 \mathrm{mmol})$ and terephthalaldehyde $(250 \mathrm{mg}$, 1.86 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was stirred for 1.5 h . The solvent and the excess amine were then evaporated in vacuo, leaving a yellow oil to which $[\mathrm{Pd}(\mathrm{OAc})]_{2}(877 \mathrm{mg}$, $3.91 \mathrm{mmol})$ and toluene $(60 \mathrm{~mL})$ were added. The mixture was refluxed for 4 h in a CaH_{2}-containing Soxhlet, and then it was concentrated in vacuo. The residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ and the extract was filtered over Celite. The resulting red solution was concentrated in vacuo to ca. 3 mL . $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ was added forming an orange suspension which was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$, and dried in vacuo to give IX as an orange solid, which is soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and acetone. For a complete purification the solid was dried in an oven at $70^{\circ} \mathrm{C}$ for 24 h and then in a desiccator over $\mathrm{P}_{2} \mathrm{O}_{5}$ for 5 days. Yield: 826 mg (77%). $\mathrm{Mp}: 240{ }^{\circ} \mathrm{C}(\mathrm{dec}) . \mathrm{IR}\left(\mathrm{cm}^{-1}\right)$: $v(\mathrm{C}=\mathrm{O}): 1576 ; v(\mathrm{C}=\mathrm{N}): 1556 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.62 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{HC}=\mathrm{N}$), 6.48 (s, 2 H , aryl), 3.75-3.55 and 3.25-3.05 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{nBu}$), 2.19 and $2.00(\mathrm{~s}, 3 \mathrm{H}$, MeCO_{2}), 1.95-1.65 (m, 4H, $\left.\mathrm{CH}_{2} \mathrm{nBu}\right), 1.50-1.15\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{nBu}\right), 0.93\left(\mathrm{t}^{3} \mathrm{~J}_{\mathrm{HH}}=7\right.$ $\mathrm{Hz}, 6 \mathrm{H}, \mathrm{Me} \mathrm{nBu}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 181.2 and $179.7\left(\mathrm{MeCO}_{2}\right)$, $172.6(\mathrm{C}=\mathrm{N}), 152.0$ and 145.3 (aryl C), $129.9(\operatorname{aryl} \mathrm{CH}), 59.7,31.7$, and $19.8\left(\mathrm{CH}_{2}\right.$ $\mathrm{nBu})$, 24.5 and $24.3\left(\mathrm{MeCO}_{2}\right), 13.6(\mathrm{Me} \mathrm{nBu})$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Pd}_{2}$: C, 41.90; H, 4.93; N, 4.89. Found: C, 42.17; H, 5.00, N, 4.88.

VIII. 3 SYNTHESIS AND CHARACTERIZATION OF THE MAIN PRODUCTS
 [$\left.\mathrm{PdI}\left(\mathrm{C}_{6} \mathbf{H}_{\mathbf{4}} \mathrm{CH}_{\mathbf{2}} \mathbf{O H}-2\right)(b p y)\right](1 a)$

2-Iodobenzyl alcohol ($183 \mathrm{mg}, 0.782 \mathrm{mmol}$) was added to a suspension of $\left[\operatorname{Pd}(\mathrm{dba})_{2}\right](300 \mathrm{mg}, 0.521 \mathrm{mmol})$ and bpy $(81.4 \mathrm{mg}, 0.521 \mathrm{mmol})$ in dry degassed toluene (20 mL) under N_{2}. The resulting mixture was stirred in an ice bath for ca. 90 min until the dark red color of $\left[\operatorname{Pd}(\mathrm{dba})_{2}\right]$ was no longer observed. The brownish suspension was then concentrated in vacuo, and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The extract was filtered over Celite, and the orange solution was evaporated to dryness. $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added, and the resulting pale pink suspension was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and dried in vacuo to give 1a as a pale reddish solid. Yield: 124 mg (48%).

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, J[Hz], integral, assignment):

${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $9.46\left(\mathrm{ddd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,{ }^{5} \mathrm{~J}_{\mathrm{HH}}=1\right.$, H16' bpy), 8.06-8.02 (m, 2H, H13,13' bpy), $7.98\left(\mathrm{td}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2\right.$, H14' bpy), 7.94 (td, $1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2$, H14 bpy), $7.53\left(\mathrm{dd},{ }^{3} \mathbf{J}_{\mathrm{HH}}=8,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,1 \mathrm{H}, \mathrm{H} 15\right.$, bpy), 7.39-7.36 (m, 1H, H6 aryl), 7.33 (ddd, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=5,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,{ }^{5} \mathrm{~J}_{\mathrm{HH}}=1, \mathrm{H} 16$ bpy), 7.277.23 (m, 1H, H15 bpy), 7.13-7.10 (m, 1H, H3 aryl), 6.93-6.89 (m, 2H, H5,H4 aryl), 4.99 $\left(\mathrm{dd},{ }^{2} \mathbf{J}_{\mathrm{HH}}=12,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=3,1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.48\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=12,{ }^{3} \mathbf{J}_{\mathrm{HH}}=10,1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.66(\mathrm{dd}$, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=10,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=3,1 \mathrm{H}, \mathrm{OH}\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}$ ($150.9 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): 156.6 (C 12 bpy), 154.4 (C12' bpy), 153.1 (CH16' bpy), 150.4 (CH16 bpy), 146.3 (C1 aryl), 145.4 (C2 aryl), 139.6 (CH14 bpy), 139.5 (CH14’ bpy), 136.6 (CH6 aryl), 128.8 (CH3 aryl), 127.6 (CH15’ bpy), 127.2 (CH15 bpy), 126.8 (CH5 aryl), 124.3 (CH4 aryl), 122.8 (CH13 bpy), 122.4 (CH13' bpy), $68.7\left(\mathrm{CH}_{2}\right)$.

IR ($\mathbf{c m}^{-1}$): $v(\mathrm{O}-\mathrm{H}): 3430$.
Melting point: $229^{\circ} \mathrm{C}$ (dec).
Elemental analysis (\%):
C, 40.98
H, 3.06
N, 5.70
Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{IN}_{2} \mathrm{OPd}$:
C, 41.11
H, 3.04
N, 5.64
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.
X-ray crystallography: Single crystals of $\mathbf{1 a}$ were grown by liquid diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a solution of 1a in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

[PdI($\left.\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OH}-2\right)(\mathrm{tbbpy})\right]$ (1b)

2-Iodobenzyl alcohol ($122 \mathrm{mg}, 0.521 \mathrm{mmol}$) was added to a suspension of $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right](300 \mathrm{mg}, 0.521 \mathrm{mmol})$ and tbbpy ($\left.140 \mathrm{mg}, 0.521 \mathrm{mmol}\right)$ in dry degassed toluene (20 mL) under N_{2}. The resulting mixture was stirred in an ice bath for 2 h until the dark red color of $\left[\operatorname{Pd}(\mathrm{dba})_{2}\right]$ was no longer observed. The brownish suspension was then concentrated in vacuo, and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The extract was filtered over Celite, and the orange solution was evaporated to dryness. Warm hexane (20 mL) was added, and the resulting yellow suspension was filtered off, washed with warm hexane ($3 \times 5 \mathrm{~mL}$), and dried in vacuo to give $\mathbf{1 b}$ as a pale yellow solid. Yield: 133 mg (42\%).

NMR data. $\delta(\mathrm{ppm})$ (multiplicity, $\mathrm{J}[\mathrm{Hz}]$, integral, assignment):

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $9.46\left(\mathrm{~d},{ }^{3} \mathbf{J}_{\mathrm{HH}}=6,1 \mathrm{H}, \mathrm{H} 16\right.$ ' tbbpy), $7.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 13$ tbbpy), 7.97 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H} 13$ ' tbbpy), 7.53 (dd, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,1 \mathrm{H}, \mathrm{H} 15$ ' tbbpy), $7.50(\mathrm{dd}$, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,1 \mathrm{H}, \mathrm{H} 6$ aryl), $7.33\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,1 \mathrm{H}, \mathrm{H} 16\right.$ tbbpy), $7.28\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6\right.$, ${ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,2 \mathrm{H}, \mathrm{H} 15$ tbbpy), $7.20\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,1 \mathrm{H}, \mathrm{H} 3\right.$ aryl), 7.02-6.93 (m, 2H, H5, H4 aryl), $5.21\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=12,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=3,1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.66\left(\mathrm{app} \mathrm{t}, \mathrm{J}_{\mathrm{HH}}=10,1 \mathrm{H}, \mathrm{CH}_{2}\right)$, 2.92-2.86 (m, 1H, OH), 1.43 (s, 9H, 'Bu' tbbpy), 1.38 (s, 9H, 'Bu tbbpy).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 163.62 (C14 tbbpy), 163.58 (C14' tbbpy), 156.2 (C12 tbbpy), 154.0 (C12’ tbbpy), 152.6 (CH16' tbbpy), 149.7 (CH16 tbbpy), 146.3 (C1 aryl), 144.8 (C2 aryl), 136.2 (CH6 aryl), 128.6 (CH3 aryl), 126.6 (CH5 aryl), 124.2 (CH15' tbbpy), 123.93 (CH4 aryl), 123.91 (CH15 tbbpy), 118.7 (CH13 tbbpy), 118.2 (CH13' tbbpy), $68.8\left(\mathrm{CH}_{2}\right), 35.74$ (CMe ${ }_{3}$ tbbpy), $35.70\left(\mathrm{CMe}_{3}{ }^{\prime}\right.$ tbbpy), 30.6 (CMe ${ }_{3}{ }^{\text {' }}$ tbbpy), 30.5 (CMe3 tbbpy).

IR ($\mathbf{c m}^{-1}$): $v(\mathrm{O}-\mathrm{H}): 3490$.

Elemental analysis (\%):	C, 49.43	$\mathrm{H}, 5.11$	$\mathrm{~N}, 4.68$
Calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{IN}$			
2			

Melting point: $217^{\circ} \mathrm{C}$ (dec).
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, acetone, and $\mathrm{Et}_{2} \mathrm{O}$ (partially). Insoluble in hexane.

[PdI($\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OH}-2\right)($ tmeda $\left.)\right](1 \mathrm{c})$

2-Iodobenzyl alcohol ($122 \mathrm{mg}, 0.521 \mathrm{mmol}$) was added to a suspension of $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right](300 \mathrm{mg}, 0.521 \mathrm{mmol})$ and tmeda $(78.2 \mu \mathrm{~L}, 0.521 \mathrm{mmol})$ in dry degassed toluene (20 mL) under N_{2}. The resulting mixture was stirred in an ice bath for 4 h until the dark red color of $\left[\operatorname{Pd}(\mathrm{dba})_{2}\right]$ was no longer observed. The brownish suspension was then concentrated in vacuo, and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The extract was filtered over Celite, and the reddish solution was evaporated to dryness. $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added, and the resulting pale pink suspension was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and dried in vacuo to give 1c as an orange solid. Yield: $140 \mathrm{mg}(59 \%)$.

NMR data. $\delta(p p m)$ (multiplicity, J[Hz], integral, assignment):

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.29\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,1 \mathrm{H}, \mathrm{H} 6\right.$ aryl), $7.11(\mathrm{dd}$, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,1 \mathrm{H}, \mathrm{H} 3$ aryl), 6.93-6.84 (m, 2H, H5, H4 aryl), $5.43\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=11,{ }^{4} \mathrm{~J}_{\mathrm{HH}}\right.$ $\left.=3,1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.68\left(\mathrm{appt}, \mathrm{J}_{\mathrm{HH}}=11,1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.00\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=10,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=3,1 \mathrm{H}, \mathrm{OH}\right)$, 2.95-2.86 (m, $1 \mathrm{H}, \mathrm{CH}_{2}$ tmeda), 2.75-2.45 (several m, $3 \mathrm{H}, \mathrm{CH}_{2}$ tmeda), 2.72, 2.69, 2.48, and 2.12 (s, 3H, Me tmeda).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 145.0(\mathrm{C} 2$ aryl), $143.7(\mathrm{C} 1$ aryl), $135.6(\mathrm{CH} 6$ aryl), $128.4\left(\mathrm{CH} 3\right.$ aryl), 126.2 (CH 5 aryl), $123.7\left(\mathrm{CH} 4\right.$ aryl), $69.1\left(\mathrm{CH}_{2}\right), 62.4\left(\mathrm{CH}_{2}\right.$ tmeda), $58.5\left(\mathrm{CH}_{2}\right.$ tmeda), 51.2 and 50.7 (Me tmeda), 49.0 (2C, Me tmeda).

IR ($\mathbf{c m}^{-1}$): $v(\mathrm{O}-\mathrm{H}): 3305$.
$\begin{array}{llll}\text { Elemental analysis (\%): } & \mathrm{C}, 34.54 & \mathrm{H}, 5.02 & \mathrm{~N}, 5.94 \\ \text { Calcd for } \mathrm{C}_{25} \mathrm{H}_{31} \mathrm{IN} \mathrm{N}_{2} \mathrm{OPd}: & \mathrm{C}, 34.19 & \mathrm{H}, 5.08 & \mathrm{~N}, 6.13\end{array}$
Melting point: $105^{\circ} \mathrm{C}$.
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.

trans $-\left[\operatorname{PdI}\left\{\mathrm{C}(=\mathrm{NXy})\left(\mathrm{C}_{6} \mathbf{H}_{4} \mathrm{CH}_{2} \mathrm{OH}-2\right)\right\}(\mathrm{CNXy})_{2}\right]$ (2)

XyNC ($159 \mathrm{mg}, 1.21 \mathrm{mmol}$) was added to a solution of $\mathbf{1 a}(200 \mathrm{mg}, 0.403$ $\mathrm{mmol})$ in dry degassed THF (20 mL), under N_{2} and in an ice bath. The solvent was immediately evaporated in vacuo, and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added under N_{2}, forming a yellow suspension, which was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and dried in vacuo to give $\mathbf{2}$ as a yellow solid. Yield: 147 mg (50%).

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, J[Hz], integral, assignment):

${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $8.56\left(\mathrm{~d}^{3}{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,1 \mathrm{H}\right.$, aryl), 7.56-7.48 (m, 1H, aryl), 7.41-7.37 (m, 2H, aryl), 7.26-7.18 (m, 2H, Xy ${ }^{\mathrm{co}}$), $7.06\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,4 \mathrm{H}, \mathrm{Xy}^{\mathrm{co}}\right), 6.95$ (br s, $\left.3 \mathrm{H}, \mathrm{Xy}^{\text {in }}\right), 5.12\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,1 \mathrm{H}, \mathrm{OH}\right), 4.70\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.192\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me} \mathrm{Xy}^{\text {in }}\right)$, 2.186 (s, 12H, Me Xy ${ }^{\mathrm{co}}$).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR: No ${ }^{13} \mathrm{C}$ NMR data are available because the complex decomposes rapidly in solution.

IR ($\left.\mathbf{c m}^{-1}\right): v(\mathrm{O}-\mathrm{H}): 3311, v(\mathrm{C} \equiv \mathrm{N}): 2182, v(\mathrm{C}=\mathrm{N}): 1606$.

Elemental analysis (\%):	C, 55.57	$\mathrm{H}, 4.80$	$\mathrm{~N}, 5.64$
Calcd for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{OPd}:$	$\mathrm{C}, 55.64$	$\mathrm{H}, 4.67$	$\mathrm{~N}, 5.72$

Melting point: $130{ }^{\circ} \mathrm{C}$.
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.

IR spectrum of 2

${ }^{1} \mathrm{H}$-RMN spectrum $(\mathbf{3 0 0} \mathbf{~ M H z})$ of 2

$\left[\mathrm{Pd}\left(\kappa^{2}-\mathrm{C}, \mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{O}-2\right)(\mathrm{bpy})\right]$ (3)

$\mathrm{KO}^{\mathrm{t}} \mathrm{Bu}(361 \mathrm{mg}, 3.22 \mathrm{mmol}$) was added to a solution of $\mathbf{1 a}(400 \mathrm{mg}, 0.805$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL) under N_{2}, whereby the color changed from reddish to yellow. The mixture was stirred for 15 min at room temperature and then filtered over Celite. The resulting yellow solution was evaporated to dryness, and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added to precipitate a solid, which was filtered off, thoroughly washed with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 5 \mathrm{~mL}$), and dried in vacuo to give 3 as a yellow solid. Yield: 227 mg (77%).

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, J[Hz], integral, assignment):

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $9.18\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5,1 \mathrm{H}, \mathrm{H} 16 \mathrm{bpy}\right), 9.03\left(\mathrm{ddd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5\right.$, ${ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,{ }^{5} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}, \mathrm{H} 16 '$ ' bpy $), 8.08-7.96(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 13,13$ ', 14,14 ' bpy), 7.59-7.52 (m, 2H, H15,15' bpy), 7.23-7.19 (m, 1H, H6 aryl), 7.04-6.97 (m, 3H, H3,4,5 aryl), 5.21 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$).
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}$ ($100.6 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): 166.2 (C 2 aryl), 156.6 (C12 bpy), 153.4 (C12’ bpy), 152.0 (CH16 bpy), 151.0 (C1 aryl), 149.9 (CH16' bpy), 138.8 (CH14’ bpy), 138.1 (CH14 bpy), 131.7 (CH6), 126.6 (CH15 bpy), 126.3 (CH15' bpy), 124.0 (CH4 aryl), 123.6 (CH5 aryl), 122.5 (CH13 bpy), 121.1 (CH13' bpy), 119.1 (CH3 aryl), 78.4 $\left(\mathrm{CH}_{2}\right)$.

Elemental analysis (\%):
C, 55.12
H, 3.74
N, 7.43
Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OPd}$:
C, 55.37
H, 3.83
N, 7.60
Melting point: $129{ }^{\circ} \mathrm{C}$ (dec).
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.
X-ray crystallography: Single crystals of $\mathbf{3} \cdot \mathrm{H}_{2} \mathrm{O}$ were grown by liquid diffusion of hexane into a solution of $\mathbf{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

N-(2,6-dimethylphenyl)-2-benzofuran-1(3H)imine (4)

XyNC ($35.6 \mathrm{mg}, 0.271 \mathrm{mmol}$) was added to a solution of $\mathbf{3}(100 \mathrm{mg}, 0.271$ mmol) in THF (20 mL) under N_{2}. The mixture was stirred for 2 h in an ice bath, whereby the color changed from yellow to black. It was then filtered over MgSO_{4}, and the resulting yellow solution was evaporated to dryness, leaving a yellow oil. This oil was washed with cold hexane (10 mL), to eliminate the bpy ligand, and then dried in vacuo to give $\mathbf{4}$ as a yellow oil. Yield: 29.0 mg (45\%).

NMR data. $\delta(\mathrm{ppm})$ (multiplicity, $\mathrm{J}[\mathrm{Hz}]$, integral, assignment):

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $8.05\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,1 \mathrm{H}, \mathrm{H} 7\right), 7.59\left(\mathrm{t},{ }^{3} \mathbf{J}_{\mathrm{HH}}=7,1 \mathrm{H}, \mathrm{H} 5\right)$, $7.53\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,1 \mathrm{H}, \mathrm{H} 6\right), 7.41\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,1 \mathrm{H}, \mathrm{H} 4\right), 7.05\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,2 \mathrm{H}, m-\mathrm{H} \mathrm{Xy}\right)$, $6.93\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,1 \mathrm{H}, p-\mathrm{H}\right.$ Xy), $5.31\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.16$ ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Me} \mathrm{Xy}$).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 158.1 ($\mathrm{C}=\mathrm{N}$), 145.4 ($i-\mathrm{C} \mathrm{Xy}$), 143.9 (C3), 132.1 (CH5), 129.9 (C8), 128.9 (CH6), 128.4 (2C, o-C Xy), 127.8 (2C, m-CH Xy), 124.4 (CH7), 123.3 (p-CH Xy), 121.7 (CH4), 72.6 (CH_{2}), 18.5 (2C, Me Xy).

IR (cm^{-1}): $v(\mathrm{C}=\mathrm{N}): 1693$.
Exact Mass: HR ESI+ TOF MS: calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO} \mathrm{m} / \mathrm{z} 238.1226$, found 238.1226, Δ $=0.0 .00 \mathrm{ppm}$.

Calculated:	$\mathbf{2 3 8 . 1 2 2 6}$ $(\mathbf{1 0 0})$	239.1259 (17.89)	240.1289 (1.71)
Found:	$\mathbf{2 3 8 . 1 2 2 6}$ $(\mathbf{1 0 0})$	239.1251 (18.99)	240.1280 (1.76)

Solubility: Soluble in $\mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in hexane.

IR spectrum of 4

APT spectrum ($\mathbf{1 0 0 . 6} \mathbf{~ M H z) ~ o f ~} 4$

$\left[\mathrm{PdI}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OMe}-2\right)(\mathrm{bpy})\right](5 \mathrm{5a})$

MeI ($169 \mu \mathrm{~L}, 2.71 \mathrm{mmol}$) was added to a solution of $\mathbf{3}(100 \mathrm{mg}, 0.271 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ under N_{2}. The mixture was stirred in the dark for 4 h at room temperature, whereby the yellow color darkened. It was then filtered over Celite, and the resulting yellow solution was concentrated in vacuo to a volume of ca. $1 \mathrm{~mL} . \mathrm{Et}_{2} \mathrm{O}$ $(15 \mathrm{~mL})$ was added to precipitate a solid, which was filtered off, thoroughly washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and dried in vacuo to give $\mathbf{5 a}$ as a yellow solid. Yield: 101 mg (73\%).

NMR data. $\delta(\mathrm{ppm})$ (multiplicity, $\mathrm{J}[\mathrm{Hz}]$, integral, assignment):

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $9.66\left(\mathrm{ddd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,{ }^{5} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}, \mathrm{H} 16\right.$, bpy), 8.09-8.04 (m, 2H, H13,13' bpy), $8.01\left(\mathrm{td},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,1 \mathrm{H}, \mathrm{H} 14\right.$ ' bpy), 7.98 (td, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,1 \mathrm{H}, \mathrm{H} 14$ bpy), $7.57\left(\mathrm{ddd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}, \mathrm{H} 15\right.$, bpy), 7.53 (ddd, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,{ }^{5} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}, \mathrm{H} 16$ bpy), $7.50-7.45$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H} 6$ aryl), 7.32 (ddd, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}, \mathrm{H} 15$ bpy), 7.26-7.22 (m, $1 \mathrm{H}, \mathrm{H} 3$ aryl), 7.02$6.95\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 4,5\right.$ aryl), 5.00 and $4.77\left(\mathrm{AB}\right.$ system, $\left.{ }^{2} \mathrm{~J}_{\mathrm{HH}}=11,2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.32(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{Me})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}$ ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 155.9 (C12 bpy), 153.9 (C12' bpy), 153.2 (CH16' bpy), 150.6 (CH16 bpy), 145.3 (C1 aryl), 142.2 (C2 aryl)), 138.74 (CH14' bpy), 138.69 (CH14 bpy), 136.1 (CH6 aryl)), 127.08 (CH3 aryl)), 127.05 (CH15' bpy), 126.6 (CH15 bpy), 126.3 (CH5 aryl)), 123.8 (CH4 aryl)), 121.9 (CH13 bpy), 121.6 (CH13' bpy), $78.5\left(\mathrm{CH}_{2}\right), 58.5(\mathrm{Me})$.
$\begin{array}{llll}\text { Elemental analysis (\%): } & \mathrm{C}, 41.97 & \mathrm{H}, 3.23 & \mathrm{~N}, 5.53 \\ \text { Calcd for } \mathrm{C}_{18} \mathrm{H}_{17} \text { IN } \mathrm{N}_{2} \mathrm{OPd}: & \mathrm{C}, 42.34 & \mathrm{H}, 3.36 & \mathrm{~N}, 5.49\end{array}$
Melting point: $202{ }^{\circ} \mathrm{C}$.
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.

$\left[\operatorname{PdBr}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{Ph}-2\right)(\right.$ bpy $\left.)\right](5 b)$

$\mathrm{PhCH}_{2} \mathrm{Br}(322 \mu \mathrm{~L}, 2.71 \mathrm{mmol})$ was added to a solution of $\mathbf{3}(100 \mathrm{mg}, 0.271$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ under N_{2}. The mixture was stirred for 4 h at room temperature with no significant change in color. It was then filtered over Celite, and the resulting yellow solution was evaporated in vacuo to dryness. Cold $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added to precipitate a solid, which was filtered off, thoroughly washed with cold $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and dried in vacuo to give $\mathbf{5 b}$ as a pale yellow solid. Yield: 122 mg (83\%).

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, $\mathbf{J}[\mathrm{Hz}]$, integral, assignment):

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 9.43 (ddd, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=5,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,{ }^{5} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}, \mathrm{H} 16$, bpy), 8.06-7.99 (m, 2H, H14', 13' bpy), $7.97\left(\mathrm{~d}^{3}{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,1 \mathrm{H}, \mathrm{H} 13 \mathrm{bpy}\right), 7.88\left(\mathrm{td},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=\right.$ $8,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,1 \mathrm{H}, \mathrm{H} 14$ bpy), $7.69\left(\mathrm{ddd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,{ }^{5} \mathrm{~J}_{\mathrm{HH}}=2,1 \mathrm{H}, \mathrm{H} 16\right.$ bpy), 7.627.57 (m, 1H, H15' bpy), 7.53-7.47 (m, 1H, H6 aryl), 7.32-7.27 (m, 1H, H3 aryl), 7.17 (ddd, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}, \mathrm{H} 15 \mathrm{bpy}\right), 7.12-7.05(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 7.05-6.98(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H} 4,5$ aryl), 5.31 and $4.89\left(\mathrm{AB}\right.$ system, $\left.{ }^{2} \mathrm{~J}_{\mathrm{HH}}=11,2 \mathrm{H}, \mathrm{CH}_{2}-7\right), 4.56$ and $4.52(\mathrm{AB}$ system, ${ }^{2} \mathrm{~J}_{\mathrm{HH}}=12,2 \mathrm{H}, \mathrm{CH}_{2}-8$).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}$ ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 155.9 (C12 bpy), 153.7 (C12' bpy), 151.7 (CH16 bpy), 150.9 (CH16' bpy), 149.7 (C 1 aryl), 141.9 (C2 aryl), 139.2 (i-C Ph), 138.9 (CH14' bpy), 138.4 (CH14 bpy), 135.0 (CH6 aryl), 128.13 (CH3 aryl), 128.12 (2C, mCH Ph), 127.7 (2C, o-CH Ph), 127.1 ($p-\mathrm{CH} \mathrm{Ph}$), 126.74 (CH 15 ' bpy), 126.71 (CH 5 aryl), 126.6 (CH15 bpy), 123.9 (CH 4 aryl), 121.8 (CH 13 bpy), 121.3 (CH 13 ' bpy), $76.0\left(\mathrm{CH}_{2}{ }^{-}\right.$ 7), $72.6\left(\mathrm{CH}_{2}-8\right)$.

Elemental analysis (\%):	C, 53.65	H, 4.04	N, 5.42
Calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{BrN}_{2} \mathrm{OPd}:$	C, 53.40	$\mathrm{H}, 3.92$	$\mathrm{~N}, 5.19$

Melting point: $171^{\circ} \mathrm{C}$.
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Partially soluble in $\mathrm{Et}_{2} \mathrm{O}$. Insoluble in hexane.

$\left[\operatorname{PdBr}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{OCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{Br}-4\right)\right)-\mathbf{2}\right\}(\mathrm{bpy})\right](5 \mathrm{c})$

p-Xylylene dibromide ($715 \mathrm{mg}, 2.71 \mathrm{mmol}$) was added to a solution of $\mathbf{3}$ (100 $\mathrm{mg}, 0.271 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ under N_{2}. The mixture was stirred for 4 h at room temperature, whereby the color changed from yellow to orange. It was then filtered over Celite, and the resulting yellow solution was concentrated in vacuo to a volume of ca .1 mL . $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added to precipitate a solid, which was filtered off, thoroughly washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and dried in vacuo to give $\mathbf{5 c}$ as a yellow solid. Yield: 104 mg (61\%).

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, $\mathrm{J}[\mathrm{Hz}]$, integral, assignment):

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 9.39 (ddd, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=5,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,{ }^{5} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}, \mathrm{H} 16$, bpy), 8.03-7.99 (m, 2H, H14', 13' bpy), $7.94\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,1 \mathrm{H}, \mathrm{H} 13 \mathrm{bpy}\right), 7.85\left(\mathrm{td},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=\right.$ $8,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,1 \mathrm{H}, \mathrm{H} 14$ bpy), $7.62\left(\mathrm{ddd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,{ }^{5} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}, \mathrm{H} 16\right.$ bpy), 7.597.54 (m, 1H, H15' bpy), 7.53-7.48 (m, 1H, H6 aryl), 7.32-7.27 (m, 1H, H3 aryl), 7.14 (ddd, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}, \mathrm{H} 15$ bpy), 7.07 (A part of AB system, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=8$, $2 \mathrm{H}, m-\mathrm{H} \mathrm{C}_{6} \mathrm{H}_{4}$), 7.01 (B part of AB system, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,2 \mathrm{H}, o-\mathrm{H} \mathrm{C}_{6} \mathrm{H}_{4}$), 7.03-6.99 (m, 2 H , $\mathrm{H} 4,5$ aryl), 5.28 and $4.85\left(\mathrm{AB}\right.$ system, $\left.{ }^{2} \mathrm{~J}_{\mathrm{HH}}=11,2 \mathrm{H}, \mathrm{CH}_{2}-7\right), 4.53\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-8\right), 4.41$ (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Br}$).
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 155.7 (C12 bpy), 153.7 (C12' bpy), 151.4 (CH16 bpy), 150.7 (CH16' bpy), 150.2 (C 1 aryl), 141.8 (C 2 aryl), 139.7 ($i-\mathrm{C}$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{Br}$), 139.0 (CH 14 ' bpy), 138.5 (CH 14 bpy), 136.3 ($p-\mathrm{C} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{Br}$), 135.0 (CH6 aryl), 128.8 (2C, m-CH $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{Br}$), 128.1 (CH 3 aryl), 127.8 (2C, $o-\mathrm{CH}$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{Br}$), 126.8 (CH5 aryl), 126.7 (CH15' bpy), 126.5 (CH15 bpy), 123.8 (CH4 aryl), 122.0 (CH 13 bpy), 121.6 (CH 13 ' bpy), $76.2\left(\mathrm{CH}_{2}-7\right), 72.0\left(\mathrm{CH}_{2}-8\right), 34.0\left(\mathrm{CH}_{2} \mathrm{Br}\right)$.

Elemental analysis (\%):	C, 47.47	$\mathrm{H}, 3.78$	$\mathrm{~N}, 4.30$
Calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{OPd}:$	$\mathrm{C}, 47.46$	$\mathrm{H}, 3.50$	$\mathrm{~N}, 4.43$

Melting point: $103{ }^{\circ} \mathrm{C}$ (dec).
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.

$\left[\operatorname{PdBr}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{OCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}-4\right)\right)-\mathbf{2}\right\}(\right.$ bpy $\left.)\right](5 d)$

4-Bromobenzyl bromide ($340 \mathrm{mg}, 1.36 \mathrm{mmol}$) was added to a solution of $\mathbf{3}$ (100 $\mathrm{mg}, 0.271 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ under N_{2}. The mixture was stirred for 4 h at room temperature, whereby the color changed from yellow to orange. It was then filtered over Celite, and the resulting yellow solution was concentrated in vacuo to a volume of ca .1 mL . $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added to precipitate a solid, which was filtered off, thoroughly washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and dried in vacuo to give $\mathbf{5 d}$ as a yellow solid. Yield: 145 mg (87\%).

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, $\mathrm{J}[\mathrm{Hz}]$, integral, assignment):

${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $9.39\left(\mathrm{~d}^{3}{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5,1 \mathrm{H}, \mathrm{H} 16\right.$ ' bpy), 8.05-8.01 ($\mathrm{m}, 2 \mathrm{H}$, $\mathrm{H}^{\prime} 3^{\prime}, 14^{\prime}$ bpy), $7.98\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,1 \mathrm{H}, \mathrm{H} 13 \mathrm{bpy}\right), 7.89\left(\mathrm{td},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,1 \mathrm{H}, \mathrm{H} 14\right.$ bpy), $7.62\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,1 \mathrm{H}, \mathrm{H} 16 \mathrm{bpy}\right), 7.61-7.53\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 15{ }^{\prime}\right.$ bpy), 7.51-7.46 (m, 1H, H6 aryl), 7.26-7.21 (m, 1H, H3 aryl), 7.17 (ddd, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}, \mathrm{H} 15$ bpy), 7.11 (A part of AB system, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,2 \mathrm{H}, m-\mathrm{H} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}$), 7.04-6.98 (m, 2H, H4,5 aryl), 6.95 (B part of AB system, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,2 \mathrm{H}, o-\mathrm{H} \mathrm{C} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}\right), 5.28$ and 4.85 (AB system, $\left.{ }^{2} \mathrm{~J}_{\mathrm{HH}}=11,2 \mathrm{H}, \mathrm{CH}_{2}-7\right), 4.52$ and $4.46\left(\mathrm{AB}\right.$ system, $\left.{ }^{2} \mathrm{~J}_{\mathrm{HH}}=12,2 \mathrm{H}, \mathrm{CH}_{2}-8\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 155.8 (C12 bpy), 153.6 (C12, bpy), 151.5 (CH16 bpy), 150.8 (CH16' bpy), 149.9 (C1 aryl), 141.6 (C2 aryl), 139.0 (CH14’ bpy), 138.4 (CH 14 bpy), 138.2 ($i-\mathrm{C} \mathrm{C} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}$), 135.0 (CH 6 aryl), 131.1 ($2 \mathrm{C}, m-\mathrm{CH} \mathrm{C} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}$), 129.5 (2C, o-CH C ${ }_{6} \mathrm{H}_{4} \mathrm{Br}$), 128.1 (CH 3 aryl), 126.82 (CH5 aryl), 126.76 (CH15' bpy), 126.5 (CH15 bpy), 123.9 (CH4 aryl), 121.8 (CH13 bpy), 121.5 (CH13' bpy), 120.8 (p-C $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}\right), 76.1\left(\mathrm{CH}_{2}-7\right), 71.8\left(\mathrm{CH}_{2}-8\right)$.

Elemental analysis (\%): $\quad \mathrm{C}, 46.51 \quad \mathrm{H}, 3.23 \quad \mathrm{~N}, 4.36$
Calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{OPd}: \mathrm{C}, 46.59 \quad \mathrm{H}, 3.26 \quad \mathrm{~N}, 4.53$
Melting point: $185^{\circ} \mathrm{C}$.
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.

$\left[\operatorname{PdBr}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{OCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}-4\right)\right)-\mathbf{2}\right\}(\mathrm{bpy})\right](5 \mathrm{e})$

4-Iodobenzyl bromide ($404 \mathrm{mg}, 1.36 \mathrm{mmol}$) was added to a solution of $\mathbf{3}$ (100 $\mathrm{mg}, 0.271 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ under N_{2}. The mixture was stirred for 4 h at room temperature with no significant change in color. It was then filtered over Celite, and the resulting yellow solution was concentrated in vacuo to a volume of ca. 1 mL . $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added to precipitate a solid, which was filtered off, thoroughly washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and dried in vacuo to give $\mathbf{5 e}$ as a pale yellow solid. Yield: 167 mg (93\%).

NMR data. $\delta(\mathrm{ppm})$ (multiplicity, $\mathrm{J}[\mathrm{Hz}]$, integral, assignment):
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $9.40\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5,1 \mathrm{H}, \mathrm{H} 16{ }^{\prime}\right.$ bpy), 8.05-8.01 (m, 2H, $\mathrm{H}^{\prime}{ }^{\prime}, 14^{\prime}$ bpy), 7.97 (d, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,1 \mathrm{H}, \mathrm{H} 13 \mathrm{bpy}\right), 7.89\left(\mathrm{td},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,1 \mathrm{H}, \mathrm{H} 14\right.$ bpy), $7.62\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,1 \mathrm{H}, \mathrm{H} 16 \mathrm{bpy}\right), 7.58\left(\mathrm{td},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=3,1 \mathrm{H}, \mathrm{H} 15\right.$, bpy), 7.517.46 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H} 6$ aryl), 7.30 (A part of AB system, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,2 \mathrm{H}, m-\mathrm{H} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}$), 7.25-7.20 $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H} 3\right.$ aryl), $7.17\left(\mathrm{ddd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}, \mathrm{H} 15\right.$ bpy), 7.04-6.98(m, $2 \mathrm{H}, \mathrm{H} 4,5$ aryl), 6.81 (B part of AB system, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,2 \mathrm{H}, o-\mathrm{H} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}$), 4.84 and $5.28(\mathrm{AB}$ system, $\left.{ }^{2} \mathrm{~J}_{\mathrm{HH}}=11,2 \mathrm{H}, \mathrm{CH}_{2}-7\right), 4.51$ and $4.46\left(\mathrm{AB}\right.$ system, $\left.{ }^{2} \mathrm{~J}_{\mathrm{HH}}=12,2 \mathrm{H}, \mathrm{CH}_{2}-8\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 155.8 (C12 bpy), 153.6 (C12' bpy), 151.5 (CH16 bpy), 150.8 (CH16' bpy), 150.0 (C1 aryl), 141.7 (C2 aryl), 138.99 (CH14' bpy), 138.96 ($i-\mathrm{C} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}$), 138.4 (CH 14 bpy), 137.1 ($2 \mathrm{C}, m-\mathrm{CH} \mathrm{C} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}$), 135.0 (CH 6 aryl), 129.7 ($2 \mathrm{C}, o-\mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}$), 128.1 (CH 3 aryl), 126.83 (CH5 aryl), 126.76 (CH 15 ' bpy), 126.5 (CH15 bpy), 123.9 (CH4 aryl), 121.8 (CH13 bpy), 121.5 (CH13' bpy), 92.5 (p-C $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}\right)$, $76.1\left(\mathrm{CH}_{2}-7\right)$, $71.9\left(\mathrm{CH}_{2}-8\right)$.

Elemental analysis (\%):	$\mathrm{C}, 43.41$	$\mathrm{H}, 3.03$	$\mathrm{~N}, 4.42$
Calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{BrIN}_{2} \mathrm{OPd}:$	$\mathrm{C}, 43.30$	$\mathrm{H}, 3.03$	$\mathrm{~N}, 4.21$

Melting point: $173{ }^{\circ} \mathrm{C}$.
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.
X-ray crystallography: Single crystals of $\mathbf{5 e}$ were grown by liquid diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a solution of $\mathbf{5 e}$ in $\mathbf{C H}_{2} \mathrm{Cl}_{2}$.

$\left[\mathrm{PdI}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{OCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}-4\right)\right)\right.\right.$-2 $\left.\}(\mathrm{bpy})\right](5 f)$

AgOTf ($38.5 \mathrm{mg}, 0.150 \mathrm{mmol}$) and an excess of $\mathrm{NaI}(2250 \mathrm{mg}, 15.0 \mathrm{mmol}$) were added to a solution of $\mathbf{5 e}(100 \mathrm{mg}, 0.150 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ under N_{2}. A suspension formed immediately, which was stirred for 1 h at room temperature. It was then filtered over MgSO_{4}, and the resulting orange solution was concentrated in vacuo to a volume of ca. $1 \mathrm{~mL} . \mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ was added to precipitate a solid, which was filtered off, thoroughly washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and dried in vacuo to give $\mathbf{5 f}$ as an orange solid. Yield: 51.0 mg (48\%).

NMR data. $\delta(\mathrm{ppm})$ (multiplicity, $\mathrm{J}[\mathrm{Hz}]$, integral, assignment):

${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 9.61 (ddd, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=5,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,{ }^{5} \mathrm{~J}_{\mathrm{HH}}=2$, $1 \mathrm{H}, \mathrm{H} 16$, bpy), 8.04-8.00 (m, 2H, H13',14' bpy), 7.97-7.85 (m, 2H, H13,14 bpy), 7.58-7.52 (m, $1 \mathrm{H}, \mathrm{H} 15$ ' bpy), $7.50-7.42$ (m, 2H, H6 aryl, H16 bpy), 7.28 (A part of AB system, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=$ 8, 2H, $m-\mathrm{H} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}$), 7.25-7.17 (m, 2H, H3 aryl, H15 bpy), 7.01-6.95 (m, 2H, H4, H5 aryl), 6.79 (B part of AB system, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,2 \mathrm{H}, o-\mathrm{H} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}\right), 5.14$ and $4.79\left(\mathrm{AB}\right.$ system, ${ }^{2} \mathrm{~J}_{\mathrm{HH}}=$ $11,2 \mathrm{H}, \mathrm{CH}_{2}-7$), 4.49 and $4.44\left(\mathrm{AB}\right.$ system, $\left.{ }^{2} \mathrm{~J}_{\mathrm{HH}}=12,2 \mathrm{H}, \mathrm{CH}_{2}-8\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 155.6 (C 12 bpy), 153.6 (C 12 ' bpy), 153.1 (CH16' bpy), 150.5 (CH16 bpy), 146.8 (C 1 aryl), 142.0 (C2 aryl), 139.0 (i-C $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}$), 138.7 (CH14' bpy), 138.4 (CH14 bpy), 137.1 (2C, $m-\mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}$), 136.3 (CH 6 aryl), 129.7 (2C, o-CH C ${ }_{6} \mathrm{H}_{4}$), 128.0 (CH 3 aryl), 127.0 (CH15' bpy), 126.7 (CH5 aryl), 126.4 (CH15 bpy), 123.7 (CH4 aryl), 121.7 (CH13 bpy), 121.6 (CH13' bpy), 92.5 ($p-\mathrm{C} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}$), $77.1\left(\mathrm{CH}_{2}-7\right), 71.9\left(\mathrm{CH}_{2}-8\right)$.
Elemental analysis (\%):
C, 40.20
H, 2.68
N, 4.00
Calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{OPd}$:
C, 40.45
H, 2.83
N, 3.93

Melting point: $145{ }^{\circ} \mathrm{C}$.
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.

p-Xylylene dibromide ($35.9 \mathrm{mg}, 0.136 \mathrm{mmol}$) was added to a solution of $\mathbf{3}$ (100 $\mathrm{mg}, 0.271 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ under N_{2}. The mixture was stirred for 4 h at room temperature with no significant change in color. It was then filtered over Celite, and the resulting yellow solution was concentrated in vacuo to a volume of ca. 1 mL . $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added to precipitate a solid, which was filtered off, thoroughly washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and dried in vacuo to give $\mathbf{6}$ as a yellow solid. Yield: 115 mg (85\%).

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, $\mathbf{J}[\mathrm{Hz}]$, integral, assignment):

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 9.36-9.33 (m, 2H, H16', 16 ' bpy), 8.06-8.03 (m, 2H, H14', 13' bpy), 8.00-7.97 (m, 3H, H13', 13, 13 bpy), 7.89 and $7.88\left(\mathrm{td},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2\right.$, $1 \mathrm{H}, \mathrm{H} 14,14{ }^{\prime}$ bpy), $7.78\left(\mathrm{td},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,1 \mathrm{H}, \mathrm{H} 14 \mathrm{bpy}\right), 7.58-7.53(\mathrm{~m}, 3 \mathrm{H}$, H16,16,15' bpy), 7.53-7.48 (m, 3H, H6,6 aryl and H15' bpy), 7.28-7.24 (m, 1H, H3 aryl), 7.23-7.19 (m, 1H, H3 aryl), 7.17-7.11 (m, 2H, H15,15 bpy), 7.06-6.98 (m, 4H, $\mathrm{H} 5,5,4,4), 6.77\left(\mathrm{~d}^{3}{ }^{3} \mathrm{~J}_{\mathrm{HH}}=4,4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 5.20$ and $4.87\left(\mathrm{AB}\right.$ system, ${ }^{2} \mathrm{~J}_{\mathrm{HH}}=11,2 \mathrm{H}, \mathrm{CH}_{2}-$ 7), 5.20 and $4.80\left(\mathrm{AB}\right.$ system, $\left.{ }^{2} \mathrm{~J}_{\mathrm{HH}}=11,2 \mathrm{H}, \mathrm{CH}_{2}-7\right), 4.45-4.37\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}-8, \mathrm{CH}_{2}-8\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 155.96 and 155.93 (C12 bpy), 153.79 and 153.71 (C12' bpy), 151.32 and 151.30 (CH16 bpy), 150.58 and 150.57 (CH16’ bpy), 149.99 and 149.96 (C 1 aryl), 142.05 and 142.01 (C2 aryl), 139.23 and 139.16 (CH14' bpy), 138.74 and 138.66 (CH14 bpy), 137.76 and 137.75 ($i-\mathrm{C} \mathrm{C}_{6} \mathrm{H}_{4}$), 135.23 and 135.20 (CH6 aryl), 128.08 and 128.01 (CH 3 aryl), 127.40 and 127.35 ($2 \mathrm{C}, \mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4}$), 126.75 and 126.69 (CH5 aryl), 126.66 and 126.62 (CH15' bpy), 126.53 and 126.49 (CH15 bpy), 123.81 and 123.77 (CH 4 aryl), 122.39 and 122.32 (CH 13 bpy), 121.91 and 121.85 (CH13' bpy), 75.78 and $75.63\left(\mathrm{CH}_{2}-7\right), 72.41$ and $72.30\left(\mathrm{CH}_{2}-8\right)$.

Elemental analysis (\%):	C, 50.03	$\mathrm{H}, 3.50$	$\mathrm{~N}, 5.62$
Calcd for $\mathrm{C}_{42} \mathrm{H}_{36} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Pd}_{2}:$	C, 50.37	$\mathrm{H}, 3.62$	$\mathrm{~N}, 5.59$

Melting point: $137^{\circ} \mathrm{C}$.
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.

[(bpy)IPd($\left.\mathrm{C}_{6} \mathbf{H}_{4} \mathrm{CH}_{2}-\mathbf{2}\right) \mathrm{O}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right.$-4) $\left.\mathbf{P d I}(\mathrm{bpy})\right]$ (7)

$5 f$

7

5f $(71.0 \mathrm{mg}, 0.100 \mathrm{mmol})$ was added to a suspension of $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right](57.6 \mathrm{mg}$, $0.100 \mathrm{mmol})$ and bpy ($15.6 \mathrm{mg}, 0.100 \mathrm{mmol}$) in dry degassed toluene (20 mL) under N_{2}. The resulting mixture was stirred in an ice bath for ca. 2.5 h until the dark red color of $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ was no longer observed. The brownish suspension was then concentrated in vacuo, and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The extract was filtered over Celite, and the orange solution was evaporated to dryness. $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added and the resulting orange suspension was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and dried in vacuo to give 7 as an orange solid. Yield: 55.0 mg (56\%).

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, J[Hz], integral, assignment):

${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 9.61 and 9.57 (ddd, ${ }^{3} \mathbf{J}_{\mathrm{HH}}=5,{ }^{4} \mathbf{J}_{\mathrm{HH}}=2,{ }^{5} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}$, H16',26' bpy), 8.17-8.02 (several m, 4H, H13,13',23,23' bpy), 8.02-7.92 (several m, 4H, $\mathrm{H} 14^{\prime}, 24^{\prime}$ and H 14 or H24 bpy), 7.87 (td, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,1 \mathrm{H}, \mathrm{H} 24$ or H14 bpy), 7.597.53 (m, 2H, H6 aryl and H15' or 25' bpy), 7.48-7.36 (m, 3H, H16,26, H25'or 15' bpy), $7.35\left(\mathrm{ddd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}, \mathrm{H} 15\right.$ or 25 bpy$), 7.21\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2\right.$, $1 \mathrm{H}, \mathrm{H} 3$ aryl), 7.11 (ddd, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}, \mathrm{H} 25$ or 15 bpy$), 7.02\left(\mathrm{td},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=\right.$ $7,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,1 \mathrm{H}, \mathrm{H} 5$ aryl), 6.96 (td, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}, \mathrm{H} 4$ aryl), 7.03 and 6.85 (br, A part of AB system, $\left.1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8, m-\mathrm{H} \mathrm{C}_{6} \mathrm{H}_{4}[\mathrm{Pd}]\right), 6.57$ and 6.42 (br, B part of AB system, $\left.1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8, o-\mathrm{H} \mathrm{C}_{6} \mathrm{H}_{4}[\mathrm{Pd}]\right), 5.22$ and $4.62\left(\mathrm{AB}\right.$ system, $\left.{ }^{2} \mathrm{~J}_{\mathrm{HH}}=11,2 \mathrm{H}, \mathrm{CH}_{2}-7\right), 4.48$ and $4.40\left(\mathrm{AB}\right.$ system, $\left.{ }^{2} \mathrm{~J}_{\mathrm{HH}}=11,2 \mathrm{H}, \mathrm{CH}_{2}-8\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 155.7$ and 155.2 (C12,22 bpy), 154.5 and 153.9 (C12',22' bpy), 153.0 and 152.4 (C16',26' bpy), 150.6 and 150.0 (CH16,26 bpy), 148.8 (C 1 aryl), 143.9 ($p-\mathrm{C} \mathrm{C}_{6} \mathrm{H}_{4}[\mathrm{Pd}]$), 142.3 (C 2 aryl), $138.89,138.86,138.8$, and 138.5 (CH14,14',24,24' bpy), 136.3 (CH6 aryl), 135.8 and 135.6 ($m-\mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4}[\mathrm{Pd}]$), 133.8 ($i-\mathrm{C}$ $\left.\mathrm{C}_{6} \mathrm{H}_{4}[\mathrm{Pd}]\right)$, 128.6 (CH 3 aryl), 126.94, 126.92, and 126.86 ($\mathrm{CH} 15^{\prime}, 25^{\prime}$ and CH 5 bpy), 126.5 and 126.4 ($o-\mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4}[\mathrm{Pd}]$), 126.4 and 125.9 ($\mathrm{CH} 15,25$ bpy), 123.4 (CH 4 aryl), 122.9, 122.4, 122.0, and 121.7 (CH13,13',23,23' bpy), $77.6\left(\mathrm{CH}_{2}-7\right), 72.6\left(\mathrm{CH}_{2}-8\right)$.
Elemental analysis (\%):
C, 41.80
H, 3.23
N, 5.53
Calcd for $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{I}_{2} \mathrm{~N}_{4} \mathrm{OPd}_{2}$:
C, 41.87
H, 2.89
N, 5.74

Melting point: $153{ }^{\circ} \mathrm{C}$.
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.

IR spectrum of 7

$\left[\mathrm{Pd}\left\{k^{2}-\mathrm{C}, \mathrm{N}-\mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{CH}_{2} \mathrm{OC}(=\mathrm{NH}) \mathrm{Me}\right\}-2\right\}(\mathrm{bpy})\right](\mathrm{OTf})(8)$

3

8

Acetonitrile ($71.0 \mu \mathrm{~L}, 1.36 \mathrm{mmol}$) and AgOTf ($69.6 \mathrm{mg}, 0.271 \mathrm{mmol}$) were added to a solution of $\mathbf{3}(100 \mathrm{mg}, 0.271 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ under N_{2}. The mixture was stirred in the dark for 16 h at room temperature (the color darkened and a precipitate formed). It was then filtered over Celite, and the resulting yellow solution was concentrated in vacuo to a volume of ca. $1 \mathrm{~mL} . \mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added to precipitate a solid, which was filtered off, thoroughly washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and dried in vacuo to give $\mathbf{8}$ as a yellow solid. Yield: 85 mg (56%).

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, $\mathbf{J}[\mathrm{Hz}]$, integral, assignment):

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 8.89 (ddd, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=5,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,{ }^{5} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}, \mathrm{H} 16$, bpy), 8.45 (br s, $1 \mathrm{H}, \mathrm{NH}$), 8.37 (ddd, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,{ }^{5} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}, \mathrm{H} 16$ bpy), $8.25(\mathrm{~d}$, ${ }^{3} \mathbf{J}_{\mathrm{HH}}=8,1 \mathrm{H}, \mathrm{H} 13$ bpy), $8.17\left(\mathrm{~d},{ }^{3} \mathbf{J}_{\mathrm{HH}}=8,1 \mathrm{H}, \mathrm{H} 13\right.$ ' bpy), $8.11\left(\mathrm{td},{ }^{3} \mathbf{J}_{\mathrm{HH}}=8,{ }^{4} \mathbf{J}_{\mathrm{HH}}=2,1 \mathrm{H}\right.$, H14' bpy), 8.07 (td, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,1 \mathrm{H}, \mathrm{H} 14 \mathrm{bpy}\right), 7.82\left(\mathrm{ddd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5,{ }^{4} \mathrm{~J}_{\mathrm{HH}}\right.$ $=1,1 \mathrm{H}, \mathrm{H} 15$ ' bpy), $7.43\left(\mathrm{ddd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}, \mathrm{H} 15\right.$ bpy), 7.31-7.27 (m, $1 \mathrm{H}, \mathrm{H} 5$ aryl), $7.22\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,1 \mathrm{H}, \mathrm{H} 6\right.$ aryl), 7.15-7.11 (m, 2H, H3,4 aryl), 6.60 and 5.05 (AB system, ${ }^{2} \mathrm{~J}_{\mathrm{HH}}=11,2 \mathrm{H}, \mathrm{CH}_{2}$), $2.30(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 175.1(\mathrm{C}=\mathrm{NH}), 157.0(\mathrm{C} 12 \mathrm{bpy}), 152.6(\mathrm{C} 12$, bpy), 152.0 (C1 aryl), 151.9 (CH16 bpy), 151.0 (CH16' bpy), 140.09 and 140.06 (CH14,14' bpy), 139.4 (C2 aryl), 134.7 (CH6 aryl), 130.6 (CH5 aryl), 128.3 (CH15' bpy), 127.6 (CH3 aryl), 126.7 (CH15 bpy), 125.4 (CH4 aryl), 123.0 (CH13 bpy), 122.1 (CH13' bpy), $121.0\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=320\right.$, OTf), $72.2\left(\mathrm{CH}_{2}\right), 23.6(\mathrm{Me})$.

IR (cm^{-1}): $v(\mathrm{~S}=\mathrm{O}) 1029,1279 ; v(\mathrm{C}=\mathrm{N}): 1635 ; v(\mathrm{NH}) 3213$.

Elemental analysis (\%):	C, 42.58	H, 2.92	$\mathrm{~N}, 7.19$	$\mathrm{~S}, 5.42$
Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{PdS}:$	$\mathrm{C}, 42.91$	$\mathrm{H}, 3.24$	$\mathrm{~N}, 7.51$	$\mathrm{~S}, 5.73$

Melting point: $99^{\circ} \mathrm{C}$.
Conductivity: Λ_{M} (acetone): $115 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.

$\left[\mathrm{Pd}\left\{\kappa^{2}-\mathrm{C}, \mathrm{N}-\mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{CH}_{2} \mathrm{OC}(=\mathrm{NH}) \mathrm{NMe}_{2}\right\}-2\right\}(\mathrm{bpy})\right](\mathrm{OTf})(9 \mathrm{a})$

Dimethylcyanamide ($110 \mu \mathrm{~L}, 1.36 \mathrm{mmol}$) and AgOTf ($69.6 \mathrm{mg}, 0.271 \mathrm{mmol}$) were added to a solution of $\mathbf{3}(100 \mathrm{mg}, 0.271 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ under N_{2}. The mixture was stirred in the dark for 16 h at room temperature (the color darkened and a precipitate formed). It was then filtered over Celite, and the resulting pale yellow solution was concentrated in vacuo to a volume of ca. $1 \mathrm{~mL} . \mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added to precipitate a solid, which was filtered off, thoroughly washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and dried in vacuo to give $\mathbf{9 a}$ as a pale yellow solid. Yield: 91 mg (57\%).

NMR data. $\delta(\mathrm{ppm})$ (multiplicity, $\mathrm{J}[\mathrm{Hz}]$, integral, assignment):

${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.65\left(\mathrm{ddd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,{ }^{5} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}, \mathrm{H} 16\right.$, bpy), $8.42\left(\mathrm{~d},{ }^{3} \mathbf{J}_{\mathrm{HH}}=8,1 \mathrm{H}, \mathrm{H} 13 \mathrm{bpy}\right), 8.35\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,1 \mathrm{H}, \mathrm{H} 13\right.$ ' bpy), $8.32\left(\mathrm{ddd},{ }^{3} \mathbf{J}_{\mathrm{HH}}=\right.$ $6,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,{ }^{5} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}, \mathrm{H} 16$ bpy), $8.14\left(\mathrm{td},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,1 \mathrm{H}, \mathrm{H} 14 \mathrm{bpy}\right), 8.08(\mathrm{td}$, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,1 \mathrm{H}, \mathrm{H} 14$ ' bpy), 7.79 (ddd, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}, \mathrm{H} 15$ ' bpy), $7.39\left(\mathrm{ddd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}, \mathrm{H} 15 \mathrm{bpy}\right), 7.29-7.26(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 5,6$ aryl), 7.16$7.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 3,4\right.$ aryl), 6.62 and $5.10\left(\mathrm{AB}\right.$ system, $\left.{ }^{2} \mathrm{~J}_{\mathrm{HH}}=11,2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.81(\mathrm{~s}, 1 \mathrm{H}$, NH), 3.00 (s, 6H, Me).
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 161.3(\mathrm{C}=\mathrm{NH}), 157.0(\mathrm{C} 12 \mathrm{bpy}), 153.13$ and 153.11 (C12' bpy and C1 aryl), 151.6 (CH16 bpy), 149.1 (CH16' bpy), 140.5 (CH14’ bpy), 140.3 (CH14 bpy), 139.3 (C2 aryl), 134.9 (CH6 aryl), 130.3 (CH5 aryl), 127.9 (CH15' bpy), 127.6 (CH3 aryl), 126.7 (CH15 bpy), 125.1 (CH4 aryl), 123.8 (CH13 bpy), $123.0\left(\mathrm{CH} 13\right.$ ' bpy), $121.0\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=320\right.$, OTf), $73.2\left(\mathrm{CH}_{2}\right), 38.0(\mathrm{Me})$.

IR ($\mathbf{c m}^{-1}$): $v(\mathrm{~S}=\mathrm{O}): 1029,1275 ; \mathrm{v}(\mathrm{C}=\mathrm{N}): 1602 ; \mathrm{v}(\mathrm{NH}): 3306$.

Elemental analysis (\%):	C, 42.81	H, 3.60	N, 9.43	S, 5.12
Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{PdS}:$	C, 42.83	$\mathrm{H}, 3.59$	$\mathrm{~N}, 9.51$	$\mathrm{~S}, 5.44$

Melting point: $182{ }^{\circ} \mathrm{C}(\mathrm{dec}) . \quad$ Conductivity: Λ_{M} (acetone): $125 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.
X-ray crystallography: Single crystals of 9a were grown by liquid diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a solution of $9 \mathbf{a}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

$\left[\operatorname{Pd}\left\{\kappa^{2}-C, N-\mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{CH}_{2} \mathrm{OC}(=\mathrm{NH}) \mathrm{NEt}_{2}\right\}-2\right\}(\mathrm{bpy})\right](\mathrm{OTf})(9 b)$

3

9b

Diethylcyanamide ($158 \mu \mathrm{~L}, 1.36 \mathrm{mmol}$) and $\mathrm{AgOTf}(69.6 \mathrm{mg}, 0.271 \mathrm{mmol})$ were added to a solution of $\mathbf{3}(100 \mathrm{mg}, 0.271 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ under N_{2}. The mixture was stirred in the dark for 16 h at room temperature (the color darkened and a precipitate formed). It was then filtered over Celite, and the resulting pale yellow solution was concentrated in vacuo to a volume of ca. $1 \mathrm{~mL} . \mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added to precipitate a solid, which was filtered off, thoroughly washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and dried in vacuo to give $\mathbf{9 b}$ as a pale yellow solid. Yield: 100 mg (54\%).

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, $\mathbf{J}[\mathrm{Hz}]$, integral, assignment):

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $8.58\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}, \mathrm{H} 16\right.$ ' bpy), $8.44(\mathrm{~d}$, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,1 \mathrm{H}, \mathrm{H} 13$ bpy), $8.39\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,1 \mathrm{H}, \mathrm{H} 13\right.$ ' bpy), $8.32\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1\right.$, $1 \mathrm{H}, \mathrm{H} 16$ bpy), $8.15\left(\mathrm{td},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}, \mathrm{H} 14 \mathrm{bpy}\right), 8.13\left(\mathrm{td},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}\right.$, H14' bpy), 7.78 (ddd, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}, \mathrm{H} 15$ ' bpy), 7.39 (ddd, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=8$, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}, \mathrm{H} 15$ bpy), 7.29-7.26 (m, 2H, H5,6 aryl), 7.14-7.12 (m, 2H, H3,4 aryl), 6.66 and $5.11\left(\mathrm{AB}\right.$ system, $\left.{ }^{2} \mathrm{~J}_{\mathrm{HH}}=11,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 3.33(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.13\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 160.2(\mathrm{C}=\mathrm{NH}), 157.0(\mathrm{C} 12 \mathrm{bpy})$, 153.2 (C12, bpy), 153.0 (C1 aryl), 151.6 (CH16 bpy), 148.9 (CH16' bpy), 140.6 (CH14' bpy), 140.3 (CH14 bpy), 139.1 (C2 aryl), 134.9 (CH6 aryl), 130.2 (CH5 aryl), 127.7 (CH15’ bpy), 127.4 (CH3 aryl), 126.7 (CH15 bpy), 125.0 (CH4 aryl), 123.9 (CH 13 bpy), 123.2 (CH13' bpy), $121.0\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=321\right.$, OTf), $73.1\left(\mathrm{CH}_{2} \mathrm{O}\right), 43.3\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 13.6\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.

IR ($\left.\mathbf{c m}^{-1}\right): v(\mathrm{~S}=\mathrm{O}): 1030,1277 ; v(\mathrm{C}=\mathrm{N}): 1599 ; v(\mathrm{NH}): 3321$.

Elemental analysis (\%):	C, 44.95	H, 4.22	N, 8.85	S, 4.89
Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{PdS}:$	C, 44.78	H, 4.08	N, 9.08	S, 5.20

Melting point: $104{ }^{\circ} \mathrm{C}$.
Conductivity: Λ_{M} (acetone): $123 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.

APT spectrum ($\mathbf{1 0 0 . 6} \mathbf{~ M H z) ~ o f ~ 9 b ~}$

$\left[\mathrm{Pd}\left\{\kappa^{2}-\mathrm{C}, \mathrm{N}-\mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{CH}_{2} \mathrm{OC}\left(=\mathrm{N}^{i} \mathrm{Pr}\right) \mathrm{NH}{ }^{i} \mathrm{Pr}\right\}-2\right\}(\right.$ bpy $\left.)\right](\mathrm{OTf})(10 \mathrm{a})$

3

10a

1,3-Diisopropylcarbodiimide ($213 \mu \mathrm{~L}, 1.36 \mathrm{mmol}$) and $\mathrm{AgOTf}(69.6 \mathrm{mg}, 0.271$ $\mathrm{mmol})$ were added to a solution of $\mathbf{3}(100 \mathrm{mg}, 0.271 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ under N_{2}. The mixture was stirred in the dark for 16 h at room temperature. It was then filtered over Celite, and the resulting yellow solution was concentrated in vacuo to a volume of ca .1 mL . $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added to precipitate a solid, which was filtered off, thoroughly washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and dried in vacuo to give $\mathbf{1 0 a}$ as a pale yellow solid. Yield: 104 mg (60\%).

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, J[Hz], integral, assignment):

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.68\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}, \mathrm{H} 16{ }^{\prime}\right.$ bpy), $8.52(\mathrm{dd}$, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=5,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}, \mathrm{H} 16$ bpy $), 8.40\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,1 \mathrm{H}, \mathrm{H} 13 \mathrm{bpy}\right), 8.35\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,1 \mathrm{H}\right.$, H13' bpy), 8.16 (td, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,1 \mathrm{H}, \mathrm{H} 14$ bpy), $8.15\left(\mathrm{td},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,1 \mathrm{H}\right.$, H14' bpy), 7.82 (ddd, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}, \mathrm{H} 15$ ' bpy), 7.44 (ddd, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=8$, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=5,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}, \mathrm{H} 15$ bpy $), 7.39\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}, \mathrm{H} 6\right.$ aryl), $7.26\left(\mathrm{td},{ }^{3} \mathrm{~J}_{\mathrm{HH}}\right.$ $=7,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,1 \mathrm{H}, \mathrm{H} 5$ aryl), $7.07\left(\mathrm{td},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}, \mathrm{H} 4\right.$ aryl), $7.03\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7\right.$, ${ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,1 \mathrm{H}, \mathrm{H} 3$ aryl), 6.65 (A part of AB system, $\left.{ }^{2} \mathrm{~J}_{\mathrm{HH}}=11,1 \mathrm{H}, \mathrm{CH}_{2}\right), 5.57\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7\right.$, $1 \mathrm{H}, \mathrm{NH}$), 5.12 (B part of AB system, ${ }^{2} \mathrm{~J}_{\mathrm{HH}}=11,1 \mathrm{H}, \mathrm{CH}_{2}$), 3.89 (dsept, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6$, $\left.1 \mathrm{H}, \mathrm{CH}{ }^{i} \mathrm{Pr}^{\mathrm{A}}\right), 3.78\left(\right.$ sept, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,1 \mathrm{H}, \mathrm{CH}{ }^{\mathrm{i}} \mathrm{Pr}^{\mathrm{B}}\right), 1.55\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,3 \mathrm{H}, \mathrm{Me}^{\mathrm{i}} \mathrm{Pr}^{\mathrm{B}}\right), 1.28(\mathrm{~d}$, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,3 \mathrm{H}, \mathrm{Me}{ }^{\mathrm{i}} \mathrm{Pr}^{\mathrm{A}}\right), 1.14\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,3 \mathrm{H}, \mathrm{Me}{ }^{\mathrm{i}} \mathrm{Pr}^{\mathrm{A}}\right), 0.70\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,3 \mathrm{H}, \mathrm{Me}\right.$ of $\left.{ }^{\mathrm{i}} \mathrm{Pr}^{\mathrm{B}}\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}$ ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 156.9 (C12 bpy), $156.3(\mathrm{C}=\mathrm{N})$, 153.6 (C 1 aryl), 153.1 (C12' bpy), 151.7 (CH16 bpy), 150.8 (CH16' bpy), 140.4 (CH14' bpy), 140.3 (CH14 bpy), 138.3 (C2 aryl), 134.4 (CH6 aryl), 129.8 (CH5 aryl), 128.2 (CH15' bpy), 127.4 (CH3 aryl), 126.9 (CH15 bpy), 124.7 (CH4 aryl), 123.5 (CH13 bpy), 122.7 (CH13' bpy), $121.1\left(\mathrm{q}^{1}{ }^{1} \mathrm{~J}_{\mathrm{CF}}=320\right.$, OTf), $74.3\left(\mathrm{CH}_{2}\right), 51.0\left(\mathrm{CH}^{\mathrm{i}} \mathrm{Pr}^{\mathrm{B}}\right), 45.4\left(\mathrm{CH}{ }^{\mathrm{i}} \mathrm{Pr}^{\mathrm{A}}\right), 26.0$ $\left(\mathrm{Me}^{\mathrm{i}} \mathrm{Pr}^{\mathrm{B}}\right), 23.7\left(\mathrm{Me}^{\mathrm{i}} \mathrm{Pr}^{\mathrm{A}}\right)$, $23.1\left(\mathrm{Me}^{\mathrm{i}} \mathrm{Pr}^{\mathrm{A}}\right), 22.0\left(1 \mathrm{C}, \mathrm{Me}^{\mathrm{i}} \mathrm{Pr}^{\mathrm{B}}\right)$.

IR (cm^{-1}): $\mathrm{v}(\mathrm{S}=\mathrm{O}): 1028,1276 ; \mathrm{v}(\mathrm{C}=\mathrm{N}): 1611 ; v(\mathrm{NH}): 3354$.

Elemental analysis (\%):	C, 46.67	$\mathrm{H}, 4.40$	$\mathrm{~N}, 8.37$	$\mathrm{~S}, 4.59$
Calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{PdS}:$	$\mathrm{C}, 46.55$	$\mathrm{H}, 4.53$	$\mathrm{~N}, 8.69$	$\mathrm{~S}, 4.97$

Melting point: $195{ }^{\circ} \mathrm{C}$.
Conductivity: Λ_{M} (acetone): $140 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.

Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.
X-ray crystallography: Single crystals of 10a were grown by liquid diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a solution of 10a in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

IR spectrum of 10 a

$\left[\mathrm{Pd}\left\{\kappa^{2}-\mathrm{C}, \mathrm{N}-\mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{CH}_{2} \mathrm{OC}(=\mathrm{NTo}) \mathrm{NHTo}\right\}-2\right\}(\mathrm{bpy})\right](\mathrm{OTf})(\mathbf{1 0 b})$

Starting from 3: 1,3-Di-p-tolylcarbodiimide ($302 \mathrm{mg}, 1.36 \mathrm{mmol}$) and $\mathrm{AgOTf}(69.6 \mathrm{mg}$, $0.271 \mathrm{mmol})$ were added to a solution of $\mathbf{3}(100 \mathrm{mg}, 0.271 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20$ mL) under N_{2}. The mixture was stirred in the dark for 16 h at room temperature. It was then filtered over Celite, and the resulting yellow solution was concentrated in vacuo to a volume of ca. $1 \mathrm{~mL} . \mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added to precipitate a solid, which was filtered off, thoroughly washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and dried in vacuo to give 10b as a yellow solid. Yield: 128 mg (64%).

Starting from 11: KOTf ($190 \mathrm{mg}, 1.01 \mathrm{mmol}$) was added to a solution of $\mathbf{1 1}(60 \mathrm{mg}$, 0.101 mmol) in commercial $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and in an open flask. The mixture was stirred for 20 min at room temperature, with no change in the yellow color. Then a solution of HOTf in commercial $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15.0 \mathrm{mg}, 0.100 \mathrm{mmol}$, in 2 mL) was added dropwise (whereupon the color changed from yellow to red). After the addition the mixture was filtered over Celite, and the resulting yellow solution was concentrated in vacuo to a volume of ca. $1 \mathrm{~mL}^{2} \mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added to precipitate a solid, which was filtered off, thoroughly washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and dried in vacuo to give $\mathbf{1 0 b}$ as a yellow solid. Yield: 46.2 mg (62%).

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, $\mathbf{J}[\mathrm{Hz}]$, integral, assignment):
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $8.61\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5,1 \mathrm{H}, \mathrm{H} 16\right.$ ' bpy), $8.54\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8\right.$, $1 \mathrm{H}, \mathrm{H} 13 \mathrm{bpy}), 8.50\left(\mathrm{~d},{ }^{3} \mathbf{J}_{\mathrm{HH}}=8,1 \mathrm{H}, \mathrm{H} 13{ }^{\prime}\right.$ bpy), $8.31\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5,1 \mathrm{H}, \mathrm{H} 16\right.$ bpy), $8.18(\mathrm{t}$, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,1 \mathrm{H}, \mathrm{H} 14$ bpy), $8.14\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,1 \mathrm{H}, \mathrm{H} 14{ }^{\prime}\right.$ bpy), $7.69\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5,1 \mathrm{H}\right.$, H15' bpy), $7.50\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,1 \mathrm{H}, \mathrm{H} 6\right.$ aryl), $7.44\left(\mathrm{td},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,1 \mathrm{H}, \mathrm{H} 5\right.$ aryl), 7.39 (dd, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5,1 \mathrm{H}, \mathrm{H} 15$ bpy), 7.29 (part A of AB system, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,2 \mathrm{H}, o-\mathrm{H} \mathrm{To}^{\mathrm{B}}$), 7.22 (part A of AB system, ${ }^{2} \mathrm{~J}_{\mathrm{HH}}=11,1 \mathrm{H}, \mathrm{CH}_{2}$), 7.20 (part B of AB system, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=8$, $2 \mathrm{H}, m-\mathrm{H} \mathrm{To}^{\mathrm{B}}$), 7.22-7.18 (m, 2, H3,4 aryl), 7.09 (part A of AB system, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,2 \mathrm{H}, m-$ $\mathrm{H} \mathrm{To}^{\mathrm{A}}$), 6.85 (part B of AB system, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,2 \mathrm{H}, o-\mathrm{H} \mathrm{To}^{\mathrm{A}}$), $6.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 5.27$ (part B of AB system, $\left.{ }^{2} \mathrm{~J}_{\mathrm{HH}}=11,1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me} \mathrm{To}^{\mathrm{A}}\right), 2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me} \mathrm{To}^{\mathrm{B}}\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 156.9$ (C12 bpy), 156.5 ($\mathrm{C}=\mathrm{N}$), 153.7 (C1 aryl), 153.4 (C12' bpy), 151.6 (CH16 bpy), 149.3 (CH16' bpy), 141.8 ($i-\mathrm{C} \mathrm{To}^{\mathrm{B}}$), 141.0 (2C, CH14,14' bpy), 137.9 (C 2 aryl), 137.4 ($p-\mathrm{C} \mathrm{To}^{\mathrm{B}}$), 136.2 ($p-\mathrm{C} \mathrm{To}^{\mathrm{A}}$), 134.2 (CH6
aryl), $133.4\left(i-\mathrm{C} \mathrm{To}^{\mathrm{A}}\right), 131.3\left(2 \mathrm{C}, m-\mathrm{CH} \mathrm{To}^{\mathrm{B}}\right)$, $131.2\left(\mathrm{CH} 5\right.$ aryl), $129.9\left(2 \mathrm{C}, m-\mathrm{CH} \mathrm{To}^{\mathrm{A}}\right)$, 127.9 (CH3 aryl), 127.5 (CH15' bpy), 126.9 (CH15 bpy), 125.9 (2C, $\left.o-\mathrm{CH} \mathrm{To}^{\mathrm{B}}\right), 125.6$ (CH4 aryl), 124.5 (CH 13 bpy), $123.9\left(2 \mathrm{C}, o-\mathrm{CH} \mathrm{To}{ }^{\mathrm{A}}\right), 123.8\left(\mathrm{CH} 13\right.$ ' bpy), $74.2\left(\mathrm{CH}_{2}\right)$, $21.14\left(\mathrm{Me} \mathrm{To}^{\mathrm{B}}\right), 21.11\left(\mathrm{Me} \mathrm{To}^{\mathrm{A}}\right)$. The OTf carbon is not observed.

IR (cm^{-1}): $v(\mathrm{~S}=\mathrm{O}): 1030,1259 ; v(\mathrm{C}=\mathrm{N}): 1600 ; v(\mathrm{NH}): 3401$.
Elemental analysis (\%):
C, 53.12
H, 3.64
N, 7.52
S, 4.09
Calcd for $\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{PdS}$:
C, 53.48
H, 3.94
N, 7.56
S, 4.33

Melting point: $182{ }^{\circ} \mathrm{C}$.
Conductivity: Λ_{M} (acetone): $125 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.

$\left[\operatorname{Pd}\left\{k^{2}-C, N-\mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{CH}_{2} \mathrm{OC}(=\mathrm{NTo}) \mathrm{NTo}\right\}-2\right\}(\mathrm{bpy})\right](11)$

Starting from 3: 1,3-Di-p-tolylcarbodiimide ($60 \mathrm{mg}, 0.27 \mathrm{mmol}$) was added to a solution of $\mathbf{3}(100 \mathrm{mg}, 0.27 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ under N_{2}. The mixture was stirred for 5 min at room temperature, with a change in color from yellow to red. It was then filtered over Celite, and the resulting red solution was evaporated to dryness in vacuo. Cold $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added to precipitate a solid, which was filtered off, washed with cold $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and dried in vacuo to give $\mathbf{1 1}$ as a red solid. Yield: 130 mg (81\%).

Starting from 10b: $\mathrm{KO}^{t} \mathrm{Bu}(27 \mathrm{mg}, 0.24 \mathrm{mmol})$ was added to a solution of $\mathbf{1 0 b}(60 \mathrm{mg}$, $0.08 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ under N_{2}. The mixture was stirred for 10 min at room temperature, with a change in color from yellow to red. Work-up as in the previous reaction gave $\mathbf{1 1}$ as a red solid. Yield: $38 \mathrm{mg}, 80 \%$.

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, $\mathbf{J}[\mathrm{Hz}]$, integral, assignment):
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $8.45\left(\mathrm{~d},{ }^{3} \mathbf{J}_{\mathrm{HH}}=5,1 \mathrm{H}, \mathrm{H} 16 \mathrm{bpy}\right), 8.39\left(\mathrm{~d},{ }^{3} \mathbf{J}_{\mathrm{HH}}=5\right.$, $1 \mathrm{H}, \mathrm{H} 16{ }^{\prime}$ bpy), $8.06\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,1 \mathrm{H}, \mathrm{H} 13 \mathrm{bpy}\right), 8.02\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,1 \mathrm{H}, \mathrm{H} 13\right.$ ' bpy), $7.96(\mathrm{t}$, $\left.{ }^{3} \mathbf{J}_{\mathrm{HH}}=8,1 \mathrm{H}, \mathrm{H} 14 \mathrm{bpy}\right), 7.91\left(\mathrm{t},{ }^{3} \mathbf{J}_{\mathrm{HH}}=8,1 \mathrm{H}, \mathrm{H} 14\right.$ ' bpy), 7.9 (A part of AB system, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}$ $\left.=8,2 \mathrm{H}, o-\mathrm{H} \mathrm{To}^{\mathrm{B}}\right), 7.70\left(\mathrm{~d}^{3} \mathrm{~J}_{\mathrm{HH}}=7,1 \mathrm{H}, \mathrm{H} 6\right.$ aryl), 7.39-7.30 (m, $2 \mathrm{H}, \mathrm{H} 15,15$ ' bpy), 7.03 $\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,1 \mathrm{H}, \mathrm{H} 5 \operatorname{aryl}\right), 7.00-6.95\left(\mathrm{br} \mathrm{m}, 4 \mathrm{H}, o, m-\mathrm{H} \mathrm{To}^{\mathrm{A}}\right), 6.93\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,1 \mathrm{H}, \mathrm{H} 4\right.$ aryl), 6.85 (B part of AB system, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,2 \mathrm{H}, m-\mathrm{H} \mathrm{To}^{\mathrm{B}}\right), 6.70\left(\mathrm{~d}^{3}{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,1 \mathrm{H}, \mathrm{H} 3\right)$, 5.02 and $4.73(\mathrm{br})\left(\mathrm{AB}\right.$ system, $\left.{ }^{2} \mathrm{~J}_{\mathrm{HH}}=14,2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me} \mathrm{To}^{\mathrm{A}}\right), 2.16(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{Me} \mathrm{To}{ }^{\mathrm{B}}$), 1.54 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{O}$).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 213 \mathrm{~K}\right): 155.7(\mathrm{C}=\mathrm{N})$, 155.2 (C12 bpy), 153.1 (C12' bpy), 152.1 (CH16 bpy), 149.6 (C1 aryl), 149.3 (CH16' bpy), 147.9 ($i-\mathrm{C} \mathrm{To}^{\mathrm{A}}$), 146.4 (i-C To ${ }^{\text {B }}$), 140.7 (C 2 aryl), 139.1 (CH14' bpy), 138.8 (CH14 bpy), 136.2 (CH6 aryl), $129.5\left(\mathrm{p}-\mathrm{C} \mathrm{To}^{\mathrm{B}}\right), 128.97\left(2 \mathrm{C}, m-\mathrm{CH} \mathrm{To}^{\mathrm{A}}\right), 128.92\left(p-\mathrm{C} \mathrm{To}^{\mathrm{A}}\right), 128.91(2 \mathrm{C}, m-\mathrm{CH}$ To^{B}), 127.0 (CH 15 ' bpy), 126.9 (CH5 aryl), 126.7 (CH15 bpy), 124.9 (CH3 aryl), 124.6 $\left(2 \mathrm{C}, o-\mathrm{CH} \mathrm{To}{ }^{\mathrm{B}}\right), 123.5$ (CH 4 aryl), 122.7 ($2 \mathrm{C}, o-\mathrm{CH} \mathrm{To}^{\mathrm{A}}$), 122.1 (CH 13 bpy), 121.6 (CH13' bpy), $71.2\left(\mathrm{CH}_{2}\right), 21.1\left(\mathrm{Me} \mathrm{To}^{\mathrm{A}}\right), 21.0\left(\mathrm{Me} \mathrm{To}^{\mathrm{B}}\right)$.

IR ($\left.\mathbf{c m}^{-1}\right): v(\mathrm{C}=\mathrm{N}): 1660$.
Elemental analysis (\%):
C, 63.25
H, 4.68
N, 9.27
Calcd for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Pd}\left(\mathbf{1 1} \cdot \mathrm{H}_{2} \mathrm{O}\right)$:
C, 63.11
H, 4.96
N, 9.20

Melting point: $96^{\circ} \mathrm{C}$.
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Partially soluble in $\mathrm{Et}_{2} \mathrm{O}$. Insoluble in hexane.

$\left[\operatorname{Ag}(N-11)_{2}\right](O T f)(12)$

Starting from 3: AgOTf ($57 \mathrm{mg}, 0.22 \mathrm{mmol}$) was added to a solution of $\mathbf{3}^{12}(100 \mathrm{mg}$, 0.27 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ under N_{2}, followed by 1,3 -di- p-tolylcarbodiimide ($60 \mathrm{mg}, 0.27 \mathrm{mmol}$). The solvent was immediately evaporated in vacuo and $\mathrm{Et}_{2} \mathrm{O}$ $(15 \mathrm{~mL})$ was added to precipitate a solid, which was filtered off, thoroughly washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and dried in vacuo to give a mixture of $\mathbf{1 2}$ and $\mathbf{1 0 b}$ in ca. 1:0.2 ratio. Yield, 192 mg . This solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and the resulting solution was filtered over Celite. The yellow solution was then concentrated in vacuo to a volume of ca. 1 mL . A small amount of $\mathrm{Et}_{2} \mathrm{O}(7 \mathrm{~mL})$ was added to precipitate a solid, which was filtered off, thoroughly washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and dried in vacuo to give pure $\mathbf{1 2}$ as a yellow solid. Yield: 124 mg (64\%).

Starting from 11: AgOTf ($13 \mathrm{mg}, 0.05 \mathrm{mmol}$) was added to a solution of $\mathbf{1 1}(60 \mathrm{mg}$, $0.10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ under N_{2}. The mixture was stirred for 2 h at room temperature, with a change in color from red to yellow. It was then filtered over Celite, and the resulting yellow solution was evaporated to dryness in vacuo. $\mathrm{Et}_{2} \mathrm{O}$ (15 mL) was added to precipitate a solid, which was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}$ $(3 \times 5 \mathrm{~mL})$, and dried in vacuo to give a mixture of $\mathbf{1 2}$ and $\mathbf{1 0 b}$ in ca. 1:0.2 ratio. Yield: 71 mg . This solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and the resulting solution was filtered over Celite. The yellow solution was then concentrated in vacuo to a volume of ca. 0.5 mL . A small amount of $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added to precipitate a solid, which was filtered off, thoroughly washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and dried in vacuo to give pure $\mathbf{1 2}$ as a yellow solid. Yield: $38 \mathrm{mg}(53 \%)$.

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, $\mathrm{J}[\mathrm{Hz}]$, integral, assignment):

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $8.35\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5,2 \mathrm{H}, \mathrm{H} 16 \mathrm{bpy}\right), 8.33\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8\right.$, $2 \mathrm{H}, \mathrm{H} 13$ bpy), 8.28 (d, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,2 \mathrm{H}, \mathrm{H} 13$ ' bpy), 8.13 ($\mathrm{d}^{3} \mathrm{~J}_{\mathrm{HH}}=5,2 \mathrm{H}, \mathrm{H} 16$ ' bpy), 8.10
$\left(\mathrm{td},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,2 \mathrm{H}, \mathrm{H} 14 \mathrm{bpy}\right), 8.00\left(\mathrm{td},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,2 \mathrm{H}, \mathrm{H} 14{ }^{\prime}\right.$ bpy), $7.84(\mathrm{~d}$, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,2 \mathrm{H}, \mathrm{H} 6$ aryl), 7.39-7.33 (m, 4H, H15 bpy, H5 aryl), 7.33-7.30 (m, 1H, H15' bpy), $7.17\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,2 \mathrm{H}, \mathrm{H} 4\right.$ aryl), 7.00 (A part of AB system, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,4 \mathrm{H}, m-\mathrm{H} \mathrm{To}^{\mathrm{B}}$), 6.95-6.75 (br, $4 \mathrm{H}, o-\mathrm{H} \mathrm{To}^{\mathrm{A}}$), $6.66\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,2 \mathrm{H}, \mathrm{H} 3\right.$ aryl), 6.13 (B part of AB system br, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,4 \mathrm{H}, o-\mathrm{H} \mathrm{To}^{\mathrm{B}}\right), 4.88$ and $4.19\left(\mathrm{AB}\right.$ system, $\left.{ }^{2} \mathrm{~J}_{\mathrm{HH}}=12,2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.37(\mathrm{~s}, 6 \mathrm{H}$, $\mathrm{Me} \mathrm{To}{ }^{\mathrm{B}}$), 2.04 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Me} \mathrm{To}^{\mathrm{A}}$). The $m-\mathrm{H} \mathrm{To}^{\mathrm{A}}$ protons are not observed.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 162.2 (2C, C=N), 156.5 (2C, C12 bpy), 153.7 (2C, C12' bpy), 152.4 (2C, CH16 bpy), 150.0 (2C, C1 aryl), 149.0 (2C, CH16' bpy), $146.4\left(2 \mathrm{C}, i-\mathrm{C} \mathrm{To}^{\mathrm{B}}\right), 143.6\left(2 \mathrm{C}, i-\mathrm{C} \mathrm{To}^{\mathrm{A}}\right), 139.9$ (2C, CH14' bpy), 139.8 ($2 \mathrm{C}, \mathrm{CH} 14$ bpy), 138.9 ($2 \mathrm{C}, \mathrm{C} 2$ aryl), 136.1 ($2 \mathrm{C}, \mathrm{CH} 6$ aryl), 132.5 ($2 \mathrm{C}, p-\mathrm{C} \mathrm{To}^{\mathrm{A}}$), 131.3 ($2 \mathrm{C}, p-\mathrm{C} \mathrm{To}^{\mathrm{B}}$), $129.7\left(4 \mathrm{C}, \mathrm{br}, m-\mathrm{CH} \mathrm{To}^{\mathrm{A}}\right), 128.7\left(4 \mathrm{C}, m-\mathrm{CH} \mathrm{To}{ }^{\mathrm{B}}\right.$), 127.2 ($2 \mathrm{C}, \mathrm{CH} 5$ aryl), 126.9 (2 C , CH15' bpy), 126.8 (2C, CH15 bpy), 126.6 (2C, CH3 aryl), 124.2 (4C, $o-\mathrm{CH} \mathrm{To}^{\mathrm{B}}$), 124.1 (2C, CH4 aryl), 123.4 (2C, CH13 bpy), 122.7 (2C, CH13' bpy), 119.9 ($\mathrm{q}^{1} \mathrm{~J}^{1} \mathrm{~J}_{\mathrm{CF}}=321$, OTf), $72.9\left(2 \mathrm{C}, \mathrm{CH}_{2}\right), 21.2\left(2 \mathrm{C}, \mathrm{Me} \mathrm{To}^{\mathrm{B}}\right), 21.0\left(2 \mathrm{C}, \mathrm{Me} \mathrm{To}^{\mathrm{A}}\right)$. The $o-\mathrm{CH} \mathrm{To}{ }^{\mathrm{A}}$ and OTf carbons are not observed.

IR ($\mathbf{c m}^{-1}$): $v(\mathrm{~S}=\mathrm{O}): 1030,1272 ; \mathrm{v}(\mathrm{C}=\mathrm{N}): 1600$.

Elemental analysis (\%):	$\mathrm{C}, 54.11$	$\mathrm{H}, 3.81$	$\mathrm{~N}, 7.86$	$\mathrm{~S}, 2.07$
Calcd for $\mathrm{C}_{65} \mathrm{H}_{56} \mathrm{AgF}_{3} \mathrm{~N}_{8} \mathrm{O}_{5} \mathrm{Pd}_{2} \mathrm{~S}:$	$\mathrm{C}, 54.25$	$\mathrm{H}, 3.92$	$\mathrm{~N}, 7.79$	$\mathrm{~S}, 2.23$

Melting point: $159{ }^{\circ} \mathrm{C}$.
Conductivity: Λ_{M} (acetone): $148 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.
X-ray crystallography: Single crystals of $\mathbf{1 2} 2.5 \mathrm{CHCl}_{3} \cdot 0.5 \mathrm{Et}_{2} \mathrm{O}$ were grown by liquid diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a solution of $\mathbf{1 2}$ in CHCl_{3}.

${ }^{1} \mathrm{H}$-RMN spectrum $(\mathbf{6 0 0} \mathbf{M H z})$ of 12

$\left[\operatorname{Pd}\left\{\kappa^{2}-O, N-O_{2} H_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{C}\left(=\mathrm{N}^{i} \operatorname{Pr}\right) \mathrm{NH}^{i} \operatorname{Pr}\right\}-2\right\}\right\}(\mathrm{bpy})\right](\mathrm{OTf})(13)$

1,3-Diisopropylcarbodiimide ($252 \mathrm{mg}, 2.0 \mathrm{mmol}$) and $\mathrm{TlOTf}(70 \mathrm{mg}, 0.20$ $\mathrm{mmol})$ were added to a solution of $\mathbf{1 a}(100 \mathrm{mg}, 0.20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ under N_{2}. The mixture was stirred for 16 h at room temperature. It was then filtered over Celite and the resulting yellow solution was concentrated in vacuo to a volume of ca. $1 \mathrm{~mL} . \mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added to precipitate a solid, which was filtered off, thoroughly washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and dried in vacuo to give a mixture of $\mathbf{1 0 a}$ and $\mathbf{1 3}$ in a $1: 1.3$ ratio. Yield: 97 mg . The products were separated by preparative TLC on alumina using acetone as eluent. The band with $\mathrm{Rf}=0.48$ was collected, and the product was extracted with acetone (30 mL). Evaporation of the acetone and addition of $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ resulted in the formation of a precipitate, which was filtered off, thoroughly washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and dried in vacuo to give $\mathbf{1 3}$ as a yellow solid. Yield: 54 mg (31\%).

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, $\mathrm{J}[\mathrm{Hz}]$, integral, assignment):

${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $8.85\left(\mathrm{~d},{ }^{3} \mathbf{J}_{\mathrm{HH}}=5,1 \mathrm{H}, \mathrm{H} 16\right.$ ' bpy), $8.52\left(\mathrm{~d},{ }^{3} \mathbf{J}_{\mathrm{HH}}=5\right.$, $1 \mathrm{H}, \mathrm{H} 16$ bpy), 8.10-8.06 (m, 2H, H13', $14{ }^{\prime}$ bpy), $8.04\left(\mathrm{~d}^{3}{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,1 \mathrm{H}, \mathrm{H} 13 \mathrm{bpy}\right), 8.00$ (td, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}, \mathrm{H} 14 \mathrm{bpy}\right), 7.71\left(\mathrm{td},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}, \mathrm{H} 15 \mathrm{bpy}\right), 7.57-$ 7.53 (m, 2H, H15' bpy, H6 aryl), 7.43 (d, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,1 \mathrm{H}, \mathrm{H} 3$ aryl), $7.40\left(\mathrm{td},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{4} \mathrm{~J}_{\mathrm{HH}}\right.$ $=1,1 \mathrm{H}, \mathrm{H} 4$ aryl), $7.32\left(\mathrm{td},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}, \mathrm{H} 5\right.$ aryl), $6.39\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=9,1 \mathrm{H}, \mathrm{NH}\right)$, 4.57 and $3.84\left(\mathrm{AB}\right.$ system, $\left.{ }^{2} \mathrm{~J}_{\mathrm{HH}}=10,2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.25\left(\mathrm{sept},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,1 \mathrm{H}, \mathrm{CH}{ }^{\mathrm{i}} \mathrm{Pr}^{\mathrm{B}}\right), 3.55$ (dsept, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=9,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,1 \mathrm{H}, \mathrm{CH}{ }^{\mathrm{i}} \mathrm{Pr}^{\mathrm{A}}$), 1.65 and $1.54\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,3 \mathrm{H}, \mathrm{Me}^{\mathrm{i}} \mathrm{Pr}^{\mathrm{B}}\right), 1.40$ and $1.04\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,3 \mathrm{H}, \mathrm{Me}^{\mathrm{i}} \mathrm{Pr}^{\mathrm{A}}\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 162.0(\mathrm{C}=\mathrm{N}), 155.7$ (C12' bpy), 154.8 (C12 bpy), 152.2 (CH16 bpy), 148.1 (CH16' bpy), 146.0 (C2 aryl), 140.6 (CH14' bpy), 140.1 (CH14 bpy), 134.2 (C1 aryl), 131.3 (CH4 aryl), 130.8 (CH3 aryl), 128.4 (CH15 bpy), 128.0 (CH6 aryl), 127.9 (CH5 aryl), 126.1 (CH15’ bpy), 122.8 (CH13 bpy), 122.4 (CH13' bpy), $121.2\left(\mathrm{q}^{1}{ }^{1} \mathrm{~J}_{\mathrm{CF}}=321\right.$, OTf $), 69.9\left(\mathrm{CH}_{2}\right), 50.7\left(\mathrm{CH}^{\mathrm{i}} \mathrm{Pr}^{\mathrm{B}}\right), 48.9\left(\mathrm{CH}^{\mathrm{i}} \mathrm{Pr}^{\mathrm{A}}\right), 25.2$ $\left(\mathrm{Me}^{\mathrm{i}} \mathrm{Pr}^{\mathrm{A}}\right), 24.9\left(\mathrm{Me}^{\mathrm{i}} \mathrm{Pr}^{\mathrm{B}}\right), 23.1\left(\mathrm{Me}^{\mathrm{i}} \mathrm{Pr}^{\mathrm{A}}\right), 22.4\left(1 \mathrm{C}, \mathrm{Me}^{\mathrm{i}} \mathrm{Pr}^{\mathrm{B}}\right)$.

IR ($\left.\mathbf{c m}^{-1}\right): v(\mathrm{~S}=\mathrm{O}): 1032,1262 ; v(\mathrm{C}=\mathrm{N}): 1609 ; v(\mathrm{NH}): 3318$.
Elemental analysis (\%):
C, 46.38
H, 4.80
N, 8.54
S, 4.98
Calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{PdS}$:
C, 46.55
H, 4.53
N, 8.69
S, 4.97

Melting point: $177{ }^{\circ} \mathrm{C}$.
Conductivity: Λ_{M} (acetone): $122 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.

$\left.\left[\mathrm{C}_{6} \mathrm{H}_{2}\{\operatorname{PdBr}(\text { tbbpy })\}_{2} \mathbf{- 1 , 4 - ((E) - C H = C H P h}\right)_{2}-\mathbf{2 , 5}\right](\mathbf{1 4 a})$

trans,trans-2,5-Distyryl-1,4-dibromobenzene ($200 \mathrm{mg}, 0.45 \mathrm{mmol}$) was added to a suspension of $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right](605 \mathrm{mg}, 1.05 \mathrm{mmol})$ and tbbpy $(282 \mathrm{mg}, 1.05 \mathrm{mmol})$ in dry degassed toluene $(15 \mathrm{~mL})$ under N_{2}. The resulting mixture was stirred at $100^{\circ} \mathrm{C}$ for 2 h until the dark red color of $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ was no longer observed. The brownish suspension was then concentrated in vacuo, and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The extract was filtered over Celite, and the resulting yellow solution was evaporated to dryness. $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added, and the resulting yellow suspension was filtered off and washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. To eliminate traces of a mononuclear complex, this solid was placed in a flask and a small amount (5 mL) of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added. The resulting suspension was stirred for 5 min , affording a yellow precipitate that was filtered off, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and dried in vacuo to give 14a as a yellow solid. Yield: 278 mg (52\%).

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, $\mathbf{J}[\mathrm{Hz}]$, integral, assignment):

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $9.36\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,2 \mathrm{H}, \mathrm{H} 16\right.$ ' tbbpy), $8.18\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=\right.$ $16,2 \mathrm{H}, \mathrm{H} \alpha), 7.94\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=2,2 \mathrm{H}, \mathrm{H} 13\right.$ ' tbbpy), $7.89\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=2,2 \mathrm{H}, \mathrm{H} 13\right.$ tbbpy), 7.70 (s, 2H, H3 aryl), $7.66\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,2 \mathrm{H}, \mathrm{H} 16\right.$ tbbpy), $7.55\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,2 \mathrm{H}, \mathrm{H} 15\right.$, tbbpy), $7.46\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,4 \mathrm{H}, o-\mathrm{H} P \mathrm{Ph}\right), 7.33\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,2 \mathrm{H}, \mathrm{H} 15\right.$ tbbpy), 7.25 $\left(\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=16,2 \mathrm{H}, \mathrm{H} \beta\right), 7.19\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,4 \mathrm{H}, m-\mathrm{HPh}\right), 7.06\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,2 \mathrm{H}, p-\mathrm{H} P \mathrm{Ph}\right)$, 1,44 ($\mathrm{s}, 18 \mathrm{H},{ }^{\text {t }}$ Bu' tbbpy), 1.34 ($\mathrm{s}, 18 \mathrm{H},{ }^{\text {t }}$ Bu tbbpy).
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}$ ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 163.4 (2C, C14' tbbpy), 162.8 (2C, C14 tbbpy), 155.7 (2C, C12 tbbpy), 154.1 (2C, C12' tbbpy), 151.9 (2C, CH16 tbbpy), 150.3 (2C, CH16' tbbpy), 146.4 (2C, C1 aryl), 140.0 (2C, C2 aryl), 139.3 (2C, $i-\mathrm{C} \mathrm{Ph}$), 133.9 ($2 \mathrm{C},=\mathrm{CH} \alpha$), 132.2 ($2 \mathrm{C}, \mathrm{CH} 3$ aryl), 128.4 ($4 \mathrm{C}, m-\mathrm{CH} \mathrm{Ph}$), 128.4 ($4 \mathrm{C}, o-\mathrm{CH} \mathrm{Ph}$), 126.3 (2C, $p-\mathrm{CH} \mathrm{Ph}), 125.7(2 \mathrm{C},=\mathrm{CH} \beta$), 124.9 ($2 \mathrm{C}, \mathrm{CH} 15$ tbbpy), 123.6 ($2 \mathrm{C}, \mathrm{CH} 15$ ' tbbpy), 118.4 (2C, CH13 tbbpy), 117.8 (2C, CH13' tbbpy), 35.7 (2C, CMe $_{3}$ ' tbbpy), 35.6 (2C, CMe ${ }_{3}$ tbbpy), 30.7 (6C, CMe ${ }_{3}{ }^{\prime}$ tbbpy), 30.4 (6C, CMe e_{3} tbbpy).
Elemental analysis (\%):
C, 58.93
H, 5.42
N, 4.73
Calcd for $\mathrm{C}_{58} \mathrm{H}_{64} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{Pd}_{2}$:
C, 58.55
H, 5.42
N, 4.71

Melting point: $293{ }^{\circ} \mathrm{C}$ (dec).
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.

IR spectrum of $\mathbf{1 4 a}$

$\left.\left[\mathrm{C}_{6} \mathrm{H}_{2}\{\mathrm{PdBr}(\text { tmeda })\}_{2} \mathbf{- 1 , 4 - ((E) - C H = C H P h}\right)_{2}-\mathbf{2 , 5}\right](\mathbf{1 4 b})$

trans,trans-2,5-Distyryl-1,4-dibromobenzene ($200 \mathrm{mg}, 0.45 \mathrm{mmol}$) was added to a suspension of $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right](605 \mathrm{mg}, 1.05 \mathrm{mmol})$ and tmeda ($\left.158 \mu \mathrm{~L}, 1.05 \mathrm{mmol}\right)$ in dry degassed toluene $(15 \mathrm{~mL})$ under N_{2}. The resulting mixture was stirred at $100^{\circ} \mathrm{C}$ for 2 h until the dark red color of $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ was no longer observed. The brownish suspension was then concentrated in vacuo, and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The extract was filtered over Celite, and the resulting yellow solution was evaporated to dryness. $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added to precipitate a yellow solid, which was filtered off and washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. To eliminate traces of a mononuclear complex, this solid was placed in a flask and a small amount (5 mL) of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added. The resulting suspension was stirred for 5 min , affording a yellow precipitate that was filtered off, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and dried in vacuo to give 14b as a yellow solid. Yield: 195 mg (49\%).

NMR data. $\delta(\mathrm{ppm})$ (multiplicity, $\mathrm{J}[\mathrm{Hz}]$, integral, assignment):

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.26\left(\mathrm{~d},{ }^{3} \mathbf{J}_{\mathrm{HH}}=16,2 \mathrm{H}, \mathrm{H} \alpha\right), 7.62\left(\mathrm{~d},{ }^{3} \mathbf{J}_{\mathrm{HH}}=8,4 \mathrm{H}, o-\right.$ $\mathrm{HPh}), 7.48\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=16,2 \mathrm{H}, \mathrm{H} \beta\right), 7.35\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,4 \mathrm{H}, m-\mathrm{H} \operatorname{Ph}\right), 7.26(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H} 3$ aryl), $7.20\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.0,2 \mathrm{H}, p-\mathrm{H} \mathrm{Ph}\right), 2.86-2.6\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$ tmeda), 2.72 and $2.69(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}$ tmeda), 2.6-2.4 (m, 4H, CH_{2} tmeda), 2.47 and 2.12 ($\mathrm{s}, 6 \mathrm{H}$, Me tmeda).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 142.9$ (2C, C1 aryl), 140.2 (2C, C2 aryl), 139.5 ($2 \mathrm{C}, i-\mathrm{C} \mathrm{Ph}$), $134.4(2 \mathrm{C},=\mathrm{CH} \alpha$), 131.7 ($2 \mathrm{C}, \mathrm{CH} 3$ aryl), 128.8 ($4 \mathrm{C}, m-\mathrm{CH} \mathrm{Ph}$), $126.5(2 \mathrm{C}, p-\mathrm{CH} \mathrm{Ph}), 126.4(4 \mathrm{C}, o-\mathrm{CH} \mathrm{Ph}), 125.6(2 \mathrm{C},=\mathrm{CH} \beta), 62.8$ and $58.5\left(2 \mathrm{C}, \mathrm{CH}_{2}\right.$ tmeda), 51.9, 49.9, 49.4, and 47.9 (2C, Me tmeda).

Elemental analysis (\%):
C, $45.85 \quad \mathrm{H}, 5.50$
N, 6.35
Calcd for $\mathrm{C}_{34} \mathrm{H}_{48} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{Pd}_{2}$:
C, 46.12
H, 5.46
N, 6.33
Melting point: $215^{\circ} \mathrm{C}(\mathrm{dec})$.
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.

IR spectrum of $14 b$

$\left[\operatorname{PdBr}\left\{\mathrm{C}_{6} \mathrm{H}_{2}(\mathrm{Br}-4)\left\{((\boldsymbol{E})-\mathrm{CH}=\mathbf{C H P h})_{2} \mathbf{- 2 , 5 \}}\right\}(\mathrm{bpy})\right](15)\right.$

trans,trans-2,5-Distyryl-1,4-dibromobenzene ($200 \mathrm{mg}, 0.45 \mathrm{mmol}$) was added to a suspension of $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right](389 \mathrm{mg}, 0.67 \mathrm{mmol})$ and bpy ($\left.105 \mathrm{mg}, 0.67 \mathrm{mmol}\right)$ in dry degassed toluene $(15 \mathrm{~mL})$ under N_{2}. The resulting mixture was stirred at $90^{\circ} \mathrm{C}$ for 2 h until the dark red color of $\left[\operatorname{Pd}(\mathrm{dba})_{2}\right]$ was no longer observed. The brownish suspension was then concentrated in vacuo, and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The extract was filtered over anhydrous MgSO_{4}, and the resulting yellow solution was evaporated to dryness. To eliminate traces of a dinuclear complex, a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL}: 5 \mathrm{~mL})$ was added and the resulting suspension was stirred for 5 min and again filtered over anhydrous MgSO_{4}. To eliminate traces of the starting arene, the resulting yellow solution was evaporated to dryness and a mixture of acetone $/ \mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL}: 20 \mathrm{~mL})$ was added, affording a yellow precipitate that was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$ and dried in vacuo to give 15 as a yellow solid. Yield: $141 \mathrm{mg}, 45 \%$.

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, $\mathrm{J}[\mathrm{Hz}]$, integral, assignment):

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $9.52\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5,1 \mathrm{H}, \mathrm{H} 16{ }^{\prime}\right.$ bpy), $8.15\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=16\right.$, $\left.1 \mathrm{H}, \mathrm{H} \alpha^{\mathrm{I}}\right), 8.07-8.04\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 14^{\prime}, 13,13\right.$ ' bpy), $7.96\left(\mathrm{td},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,1 \mathrm{H}, \mathrm{H} 14\right.$ bpy $)$, 7.93 (s, 1H, H6 aryl), 7.77 (dd, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}, \mathrm{H} 16$ bpy), $7.73(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 3$ aryl), $7.63\left(\mathrm{td},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=3,1 \mathrm{H}, \mathrm{H} 15\right.$ ' bpy $), 7.51\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,2 \mathrm{H}, o-\mathrm{H} \mathrm{Ph}^{\mathrm{II}}\right), 7.47\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}\right.$ $\left.=7,2 \mathrm{H}, o-\mathrm{H} \mathrm{Ph}^{\mathrm{I}}\right), 7.42\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=16,1 \mathrm{H}, \mathrm{H} \alpha^{\mathrm{II}}\right), 7.36-7.3\left(\mathrm{~m}, 3 \mathrm{H}, m-\mathrm{H} \mathrm{Ph}^{\mathrm{II}}, \mathrm{H} 15 \mathrm{bpy}\right)$, 7.25-7.2 (m, $\left.3 \mathrm{H}, p-\mathrm{H}^{\mathrm{II}}{ }^{\mathrm{II}}, m-\mathrm{H} \mathrm{Ph}^{\mathrm{I}}\right), 7.18-7.14\left(\mathrm{~m}, 1 \mathrm{H}, p-\mathrm{H} \mathrm{Ph}^{\mathrm{I}}\right), 7.14\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=16,1 \mathrm{H}\right.$, $\left.H \beta^{\text {I }}\right), 7.10\left(\mathrm{~d}^{3}{ }^{3} \mathrm{~J}_{\mathrm{HH}}=16,1 \mathrm{H}, \mathrm{H} \beta^{\mathrm{II}}\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 156.2 (1C, C12 bpy), 153.8 (1C, C12' bpy), 151.4 (1C, CH16 bpy), 151.1 (1C, CH16' bpy), 150.4 (1C, C1 aryl), 143.2 (1C, C2 aryl), 139.2 ($1 \mathrm{C}, \mathrm{CH} 14$ ' bpy), 138.9 ($1 \mathrm{C}, \mathrm{CH} 14$ bpy), 138.2 ($1 \mathrm{C}, i-\mathrm{C} \mathrm{Ph}^{\mathrm{I}}$), 137.8 ($1 \mathrm{C}, i-\mathrm{C} \mathrm{Ph}^{\mathrm{II}}$), 133.8 ($1 \mathrm{C}, \mathrm{C} 5$ aryl), 133.3 ($1 \mathrm{C}, \mathrm{CH} 6$ aryl), $132.2\left(1 \mathrm{C},=\mathrm{CH} \alpha^{\mathrm{I}}\right.$), 130.4 ($1 \mathrm{C},=\mathrm{CH}{ }^{\mathrm{II}}$),
129.2 ($1 \mathrm{C}, \mathrm{CH} 3$ aryl), 128.9 (2C, $m-\mathrm{CH} \mathrm{Ph}^{\mathrm{II}}$), 128.6 ($2 \mathrm{C}, m-\mathrm{CH} \mathrm{Ph}^{\mathrm{I}}$), 127.9 ($1 \mathrm{C}, p-\mathrm{CH}$ $\left.\mathrm{Ph}^{\mathrm{I}}\right), 127.8\left(1 \mathrm{C}, p-\mathrm{CH} \mathrm{Ph}{ }^{\mathrm{II}}\right), 127.7\left(1 \mathrm{C},=\mathrm{CH} \alpha^{\mathrm{II}}\right), 127.3\left(1 \mathrm{C},=\mathrm{CH} \beta^{\mathrm{I}}\right), 127.1(1 \mathrm{C}, \mathrm{CH} 15$ bpy), 127.0 ($1 \mathrm{C}, \mathrm{CH} 15$ ' bpy), 126.9 ($2 \mathrm{C}, o-\mathrm{CH} \mathrm{Ph}^{\mathrm{I}}$), 126.9 ($2 \mathrm{C}, o-\mathrm{CH} \mathrm{Ph}^{\mathrm{II}}$), 122.2 (1 C , CH13 bpy), 121.5 (1C, CH13' bpy), 121.5 (1C, C4 aryl).
Elemental analysis (\%):
C, 54.96
H, 3.10
N, 4.13
Calcd for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{Pd}$:
C, 54.69
H, 3.44
N, 3.99

Melting point: $111{ }^{\circ} \mathrm{C}$.
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.

$\left[\left(\mu-\eta, \eta-\mathrm{C}_{12} \mathrm{H}_{2} \mathrm{Bn}_{2} \mathbf{- 1 , 5}-\mathrm{Ph}_{4}-\mathbf{2 , 3 , 6 , 7}\right)\{\mathbf{P d}(\text { tbbpy })\}_{2}\right](\text { OTf })_{2}(\mathbf{1 6 a})$

$\mathrm{PhC} \equiv \mathrm{CPh}(114 \mathrm{mg}, 0.64 \mathrm{mmol})$ was added to a suspension of $\mathbf{1 4 a}(100 \mathrm{mg}, 0.08$ mmol) and $\operatorname{TlOTf}(56 \mathrm{mg}, 0.16 \mathrm{mmol})$ in THF (15 mL) under N_{2}. The mixture was stirred for 24 h at room temperature (color changed from yellow to brown) and filtered over Celite. The resulting brownish solution was evaporated to dryness. $\mathrm{Et}_{2} \mathrm{O}$ $(20 \mathrm{~mL})$ was added to precipitate a brownish solid which was filtered off and thoroughly washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. Yield: 110 mg . This solid was divided into four parts, and each of them was purified by crystallization from $2 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2} / 8 \mathrm{~mL}$ $\mathrm{Et}_{2} \mathrm{O}$, yielding brown crystals of pure 16a. Yield: $59 \mathrm{mg}(44 \%)$.

NMR data. $\delta(\mathrm{ppm})$ (multiplicity, $\mathrm{J}[\mathrm{Hz}]$, integral, assignment):

${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $9.10\left(\mathrm{~d},{ }^{3} \mathbf{J}_{\mathrm{HH}}=6,2 \mathrm{H}, \mathrm{H} 16\right.$ ' tbbpy), $8.23\left(\mathrm{dd},{ }^{3} \mathbf{J}_{\mathrm{HH}}=\right.$ $6,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,2 \mathrm{H}, \mathrm{H} 15$ ' tbbpy), 8.09 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H} 13$ ' tbbpy), 8.00 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H} 13$ tbbpy), 7.60 (d, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,4 \mathrm{H}, o-\mathrm{H} \mathrm{Ph}^{\mathrm{III}}\right), 7.45(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H} 6), 7.45-7.42\left(\mathrm{~m}, 2 \mathrm{H}, p-\mathrm{H} \mathrm{Ph}^{\mathrm{III}}\right), 7.42-7.37(\mathrm{~m}, 4 \mathrm{H}$, $\left.m-\mathrm{H} \mathrm{Ph}^{\mathrm{III}}\right), 7.22-7.13\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}^{\mathrm{II}}\right), 7.06\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,2 \mathrm{H}, \mathrm{H} 15\right.$ tbbpy $), 7.00$ $\left(\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,2 \mathrm{H}, \mathrm{H} 16\right.$ tbbpy $), 6.99-6.96\left(\mathrm{~m}, 4 \mathrm{H}, o-\mathrm{H} \mathrm{Ph}^{\mathrm{I}}\right), 6.80-6.77\left(\mathrm{~m}, 6 \mathrm{H}, m, p-\mathrm{H} \mathrm{Ph}^{\mathrm{I}}\right)$, 4.30 and $3.78\left(\mathrm{AB}\right.$ system, $\left.{ }^{2} \mathrm{~J}_{\mathrm{HH}}=14,4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}^{\mathrm{I}}\right), 1.50\left(\mathrm{~s}, 18 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}{ }^{\prime}\right.$ tbbpy), $1.39(\mathrm{~s}$, 18H, 'Bu tbbpy).
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}$ ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 165.5 (2C, C14' tbbpy), 165.2 (2C, C14 tbbpy), 154.8 (2C, CH16' tbbpy), 153.9 (2C, C12 tbbpy), 152.3 (2C, C12' tbbpy), 151.3 (2C, CH16 tbbpy), 136.1 (2C, C5), 135.9 (2C, $i-\mathrm{C} \mathrm{Ph}^{\mathrm{I}}$), 133.5 (2C, C4), 131.8 (2C, $i-\mathrm{C}$ $\mathrm{Ph}^{\mathrm{II}}$), 131.1 ($4 \mathrm{C}, \mathrm{CH} \mathrm{Ph}^{\text {II }}$), 130.3 ($4 \mathrm{C}, o-\mathrm{CH} \mathrm{Ph}^{\text {III }}$), 129.8 ($2 \mathrm{C}, p-\mathrm{CH} \mathrm{Ph}^{\text {III }}$), 129.7 ($4 \mathrm{C}, m-$ CH Ph ${ }^{\text {III }}$), 129.7 (2C, C2), 129.5 ($2 \mathrm{C}, i-\mathrm{C} \mathrm{Ph}^{\text {III }}$), 129.0 ($4 \mathrm{C}, o-\mathrm{CH} \mathrm{Ph}^{\mathrm{I}}$), 128.8 ($4 \mathrm{C}, \mathrm{CH}$ $\mathrm{Ph}^{\mathrm{II}}$), 128.5 ($2 \mathrm{C}, p-\mathrm{CH} \mathrm{Ph}^{\mathrm{II}}$), 128.2 ($4 \mathrm{C}, m-\mathrm{CH} \mathrm{Ph}^{\mathrm{I}}$), 127.1 (2C, CH15' tbbpy), 126.1 (2 C , p-CH Ph ${ }^{\mathrm{I}}$), 123.9 (2C, CH15 tbbpy), 119.8 (2C, CH13' tbbpy), 119.2 (2C, CH13 tbbpy), 107.3 (2C, CH6), 95.8 (2C, C1), 93.3 (2C, C3), 36.1 (2C, CMe ${ }^{\prime}$ tbbpy), 35.9 (2C, CMe $_{3}$ tbbpy), 30.6 (6C, CMe ${ }_{3}$ 'tbbpy), 30.5 ($6 \mathrm{C}, \mathrm{CM} e_{3}$ tbbpy), $30.1\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Ph}^{\mathrm{I}}\right.$).

IR ($\mathbf{c m}^{-1}$): $v(\mathrm{~S}=\mathrm{O}): 1030,1256,1270$.
Elemental analysis (\%):
C, 61.82;
H, 4.83;
N, 3.15;
S, 3.62
Calcd for $\mathrm{C}_{88} \mathrm{H}_{84} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Pd}_{2} \mathrm{~S}_{2}$:
C, 62.74;
H, 5.03;
N, 3.33;
S, 3.81

With respect to the deviation of the C percentage see discussion in Chapter IV.
Exact Mass: HR ESI+ TOF MS: calcd for [16a-OTf] ${ }^{+}\left(\mathrm{C}_{87} \mathrm{H}_{84} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Pd}_{2} \mathrm{~S}\right) \mathrm{m} / \mathrm{z}$ 1535.4324, found $1535.4322, \Delta=0.13 \mathrm{ppm}$.

Calculated:	1532.4324 (67.79)	1533.4324 (83.86)	1534.4329 (87.85)	$\mathbf{1 5 3 5 . 4 3 2 4}$ $(\mathbf{1 0 0})$	1536.4337 (82.22)	1537.4332 (79.49)	1538.4347 (52.73)
Found:	1532.4334 (66.04)	1533.4329 (82.68)	1534.4330 (87.42)	$\mathbf{1 5 3 5 . 4 3 2 2}$ $(\mathbf{1 0 0})$	1536.4341 (82.49)	1537.4333 (79.81)	1538.4359 (53.02)

Melting point: $295{ }^{\circ} \mathrm{C}$.
Conductivity: Λ_{M} (acetone): $255 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.
X-ray crystallography: Single crystals of anti-16a $\cdot 7 \mathrm{CDCl}_{3}$ were grown by slow evaporation of a CDCl_{3} solution of $\mathbf{1 6 a}$.

IR spectrum of $\mathbf{1 6 a}$

$\left[\left(\mu-\eta, \eta-\mathbf{C}_{\mathbf{1 2}} \mathbf{H}_{\mathbf{2}} \mathrm{Bn}_{\mathbf{2}} \mathbf{- 1 , 5 - \mathrm { Ph } _ { 4 } \mathbf { - 2 , 3 , 6 , 7 }) \{ \mathrm { Pd } (\text { tmeda }) \} _ { 2 }] (\mathbf { O T f }) _ { 2 } (\mathbf { 1 6 b })}\right.\right.$

$\mathrm{PhC} \equiv \mathrm{CPh}(96 \mathrm{mg}, 0.54 \mathrm{mmol})$ was added to a suspension of $\mathbf{1 4 b}(60 \mathrm{mg}, 0.067$ $\mathrm{mmol})$ and $\mathrm{TlOTf}(47 \mathrm{mg}, 0.13 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ under N_{2}. The mixture was stirred for 24 h at room temperature (color changed from yellow to dark green) and filtered over Celite. The resulting greenish solution was evaporated to dryness. $\mathrm{Et}_{2} \mathrm{O}$ $(20 \mathrm{~mL})$ was added to precipitate a greenish solid which was filtered off and thoroughly washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. Yield: 68 mg . This solid was divided into four parts, and each of them was purified by crystallization from $2 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2} / 8 \mathrm{~mL}$ $\mathrm{Et}_{2} \mathrm{O}$, yielding green crystals of pure $\mathbf{1 6 b} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Yield: $47 \mathrm{mg}(48 \%)$.

NMR data. $\delta(\mathrm{ppm})$ (multiplicity, $\mathrm{J}[\mathrm{Hz}]$, integral, assignment):

${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.45-7.35 (m, 12H, $\mathrm{Ph}^{\mathrm{II}}, p-\mathrm{H} \mathrm{Ph}{ }^{\mathrm{III}}$), 7.3-7.2 (m, 6 H , $\left.m, p-\mathrm{H}^{\mathrm{I}}\right), 7.19\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,4 \mathrm{H}, m-\mathrm{H} \mathrm{Ph}^{\text {III }}\right), 7.10\left(\mathrm{~d}^{3}{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,4 \mathrm{H}, o-\mathrm{H}^{\mathrm{I}}{ }^{\mathrm{I}}\right), 7.09(\mathrm{~s}, 2 \mathrm{H}$, H6), $7.07\left(\mathrm{~d}^{3}{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,4 \mathrm{H}, o-\mathrm{H}^{\mathrm{Ph}}{ }^{\text {III }}\right), 3.60$ and $3.32\left(\mathrm{AB}\right.$ system, $\left.{ }^{2} \mathrm{~J}_{\mathrm{HH}}=15,4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}^{\mathrm{I}}\right)$, 3.45-3.38, 3.15-3.08, 3.06-2.98, and 2.62-2.56 (m, 2H, CH ${ }_{2}$ tmeda), 3.03, 3.02, 2.50, and 2.27 (s, 6H, Me tmeda).
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 137.9 (2C, C5), 135.7 (2C, $i-\mathrm{C} \mathrm{Ph}^{\mathrm{I}}$), 133.9 (2C, C4), 132.5 (2C, C2), 132.1 ($2 \mathrm{C}, i-\mathrm{C} \mathrm{Ph}^{\mathrm{II}}$), 131.0 (4C, $\mathrm{CH} \mathrm{Ph}^{\mathrm{II}}$), 130.7 (2C, $i-\mathrm{C} \mathrm{Ph}{ }^{\mathrm{III}}$), 129.5 (4C, $o-\mathrm{CH} \mathrm{Ph}^{\text {III }}$), 129.4 (2C, $p-\mathrm{CH} \mathrm{Ph}^{\text {III }}$), 129.3 ($4 \mathrm{C}, o-\mathrm{CH} \mathrm{Ph}^{\mathrm{I}}$), 129.2 ($4 \mathrm{C}, m-\mathrm{CH}$ $\mathrm{Ph}^{\mathrm{III}}$), 129.2 ($4 \mathrm{C}, \mathrm{CH} \mathrm{Ph}^{\mathrm{II}}$), 129.1 (2C, $p-\mathrm{CH} \mathrm{Ph}^{\mathrm{II}}$), 128.9 ($4 \mathrm{C}, m-\mathrm{CH} \mathrm{Ph}^{\mathrm{I}}$), 127.2 ($2 \mathrm{C}, p$ CH Ph ${ }^{\mathrm{L}}$), 108.4 (2C, CH6), 92.1 (2C, C3), 91.4 (2C, C1), 63.5 and 61.7 ($2 \mathrm{C}, \mathrm{CH}_{2}$ tmeda), $53.9,53.2,52.3$ and 49.2 (2C, Me tmeda), $31.4\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Ph}^{\mathrm{I}}\right)$.
IR ($\mathbf{c m}^{-1}$): $\mathrm{v}(\mathrm{S}=\mathrm{O}): 1030,1261$.
Elemental analysis (\%): \quad C, $53.38 \quad \mathrm{H}, 5.08 \quad \mathrm{~N}, 3.82 \quad \mathrm{~S}, 4.38$

Calcd for $\mathrm{C}_{65} \mathrm{H}_{70} \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Pd}_{2} \mathrm{~S}_{2}$:
C, 53.28
H, 4.82
N, 3.82
S, 4.38
Melting point: $199^{\circ} \mathrm{C}$.
Conductivity: Λ_{M} (acetone): $222 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.
X-ray crystallography: Single crystals of syn-16b$\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ were grown by liquid diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a solution of $\mathbf{1 6 b}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

IR spectrum of 16b

${ }^{1} \mathrm{H}$ NMR spectrum $(\mathbf{6 0 0} \mathbf{~ M H z)}$ of $\mathbf{1 6 b}$

$\left[\left(\mu-\eta, \eta-\mathbf{C}_{\mathbf{1 2}} \mathbf{H}_{2} \mathrm{Bn}_{2}-\mathbf{1 , 5 - M e} \mathbf{e}_{4} \mathbf{- 2 , 3 , 6 , 7}\right)\{\mathbf{P d}(\text { tbbpy })\}_{2}\right](\mathbf{O T f})_{2}(\mathbf{1 7 a})$

$\mathrm{MeC} \equiv \mathrm{CMe}(96 \mu \mathrm{~L}, 1.28 \mathrm{mmol})$ was added to a suspension of $\mathbf{1 4 a}(100 \mathrm{mg}, 0.08$ mmol) and TlOTf ($56 \mathrm{mg}, 0.16 \mathrm{mmol}$) in THF (15 mL) under N_{2}. The mixture was stirred for 24 h at $60^{\circ} \mathrm{C}$ (color changed from yellow to brown) and filtered over Celite. The resulting brownish solution was evaporated to dryness. $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added to precipitate a brownish solid which was filtered off and thoroughly washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. Yield: 63 mg . This solid was divided into four parts, and each of them was purified by crystallization from $2 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2} / 8 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$, yielding brown crystals of pure 17a. Yield: 44 mg (38\%).

NMR data. $\delta(\mathrm{ppm})$ (multiplicity, $\mathrm{J}[\mathrm{Hz}]$, integral, assignment):

${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 8.84 and $8.64\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,2 \mathrm{H}, \mathrm{H} 16\right.$ ', 16 tbbpy), 7.89 (m, 4H, H13', H13 tbbpy), 7.83 and $7.78\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,2 \mathrm{H}, \mathrm{H} 15{ }^{\prime}, \mathrm{H} 15\right.$ tbbpy), $7.38\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} \mathbf{J}_{\mathrm{HH}}=7, o-\mathrm{H} P \mathrm{Ph}\right), 7.31\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7, m-\mathrm{H} P \mathrm{P}\right), 7.23\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathbf{J}_{\mathrm{HH}}=7, p-\mathrm{H}\right.$ $\mathrm{Ph}), 7.08(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H} 6), 4.22$ and $3.32\left(\mathrm{AB}\right.$ system, $\left.{ }^{2} \mathrm{~J}_{\mathrm{HH}}=15,4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 2.28(\mathrm{~s}, 6 \mathrm{H}$, Me-2), 1.67 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Me}-3$), 1.35 and 1.33 ($\mathrm{s}, 18 \mathrm{H},{ }^{\mathrm{t}}{ }^{\mathrm{B}} \mathrm{Ju}$ tbbpy).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 164.6$ (4C, C14', 14 tbbpy), 154.3 and 153.5 (2C, CH16', 16 tbbpy), 152.6 and 152.5 (2C, C12', 12 tbbpy), 137.4 (2C, C4), 136.1 (2C, C5), 135.9 (2C, i-C Ph), 128.9 (4C, $m-\mathrm{CH} \mathrm{Ph}$), 128.7 (4C, $o-\mathrm{CH} \mathrm{Bn}$), 126.8 (2C, $p-\mathrm{CH}$ Ph), 126.1 ($2 \mathrm{C}, \mathrm{C} 2$), 125.6 and 125.5 ($2 \mathrm{C}, \mathrm{CH} 15$ ', 15 tbbpy), 118.7 ($4 \mathrm{C}, \mathrm{CH} 13$ ', 13 tbbpy), 105.7 (2C, CH6), 91.9 (2C, C3), 91.8 (2C, C1), 35.8 and 35.7 (2C, CMe 3 tbbpy), 30.8 (2C, $\mathrm{CH}_{2} \mathrm{Ph}$), 30.5 (12C, CMe tbbpy), 13.2 (2C, Me-2), 10.4 (2C, Me-3).

IR ($\left.\mathbf{c m}^{-1}\right): v(\mathrm{~S}=\mathrm{O}): 1030,1260,1274$.

Elemental analysis (\%):	C, 55.71	H, 5.31	$\mathrm{~N}, 4.20$	$\mathrm{~S}, 4.18$
Calcd for $\mathrm{C}_{68} \mathrm{H}_{76} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Pd}_{2} \mathrm{~S}_{2}:$	$\mathrm{C}, 56.86$	H, 5.33	$\mathrm{~N}, 3.90$	$\mathrm{~S}, 4.46$

With respect to the deviation of the C percentage see discussion in Chapter IV.

Exact Mass: HR ESI+ TOF MS: calcd for [17a-OTf] ${ }^{+}\left(\mathrm{C}_{67} \mathrm{H}_{76} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Pd}_{2} \mathrm{~S}\right) \mathrm{m} / \mathrm{z}$ 1287.3690 , found $1287.3692, \Delta=0.15 \mathrm{ppm}$.

Melting point: $233{ }^{\circ} \mathrm{C} . \quad$ Conductivity: Λ_{M} (acetone): $252 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.

IR spectrum of $\mathbf{1 7 a}$

$\left[\left(\mu-\eta, \eta-\mathrm{C}_{12} \mathrm{H}_{2} \mathrm{Bn}_{2} \mathbf{- 1 , 5 - \mathrm { Me } _ { 4 } - \mathbf { 2 } , \mathbf { 3 } , 6 , 7)}\{\mathbf{P d}(\text { tmeda })\}_{2}\right](\mathrm{OTf})_{2}(\mathbf{1 7 b})\right.$

$\mathrm{MeC} \equiv \mathrm{CMe}(42 \mu \mathrm{~L}, 0.54 \mathrm{mmol})$ was added to a suspension of $\mathbf{1 4 b}(60 \mathrm{mg}, 0.067$ mmol) and TlOTf ($47 \mathrm{mg}, 0.13 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ under N_{2}. The mixture was stirred for 24 h at room temperature (color changed from yellow to greenish) and filtered over Celite. The resulting greenish solution was evaporated to dryness. $\mathrm{Et}_{2} \mathrm{O}$ $(20 \mathrm{~mL})$ was added to precipitate a greenish solid which was filtered off and thoroughly washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. Yield: 48 mg . This solid was divided into four parts, and each of them was purified by crystallization from $2 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2} / 8 \mathrm{~mL}$ $\mathrm{Et}_{2} \mathrm{O}$, yielding green crystals of pure $\mathbf{1 7 b}$, as a mixture of syn and anti isomers. Yield: 28 mg (37\%).

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, J[Hz], integral, assignment):

${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): Major isomer, 7.30-7.26 ($\mathrm{m}, 4 \mathrm{H}, m-\mathrm{H} \mathrm{Ph}$), 7.25-7.21 $(\mathrm{m}, 6 \mathrm{H}, o, p-\mathrm{H} \mathrm{Ph}), 6.63(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H} 6), 3.66$ and $3.24\left(\mathrm{AB}\right.$ system, $\left.{ }^{2} \mathrm{~J}_{\mathrm{HH}}=15,4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, 3.23-3.16 and 2.7-2.6 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2}$ tmeda), 2.88, 2.80, 2.72 and 2.61 ($\mathrm{s}, 6 \mathrm{H}$, Me tmeda), 2.35 (s, 6H, Me-2), 1.41 (s, 6H, Me-3). Minor isomer, 7.33-7.19 (several m, 10H, Ph), $6.28(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H} 6), 3.45$ and $3.28\left(\mathrm{AB}\right.$ system, $\left.{ }^{2} \mathrm{~J}_{\mathrm{HH}}=15,4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.23-3.16$ and 2.72.6 (several m, $8 \mathrm{H}, \mathrm{CH}_{2}$ tmeda), 2.67, 2.66, 2.49, and 1.99 (s, 6 H , Me tmeda), 2.42 (s, $6 \mathrm{H}, \mathrm{Me}-2$), 1.42 (s, 6H, Me-3).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): Major isomer, 138.6 (2C, C4), 137.3 (2C, C5), 135.3 ($2 \mathrm{C}, i-\mathrm{C} \mathrm{Ph}$), 129.0 (4C, $m-\mathrm{CH} \mathrm{Ph}$), 128.5 ($4 \mathrm{C}, o-\mathrm{CH} \mathrm{Ph}$), 127.1 ($2 \mathrm{C}, p-\mathrm{CH}$ Ph), 126.6 (2C, C2), 104.2 (2C, CH6), 89.2 (2C, C3), 89.0 (2C, C1), 61.62 and 61.59 (2C, CH_{2} tmeda), 52.5, 52.2, 52.0, and 51.5 (2C, Me tmeda), 31.2 ($2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Ph}$), 13.2 (2C, Me-2), 10.6 (2C, Me-3).

IR ($\mathbf{c m}^{-1}$): $\mathrm{v}(\mathrm{S}=\mathrm{O}): 1030,1262,1273$.

Elemental analysis (\%):	C, 46.33	$\mathrm{H}, 4.99$	$\mathrm{~N}, 4.55$	$\mathrm{~S}, 5.24$
Calcd for $\mathrm{C}_{44} \mathrm{H}_{60} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Pd}_{2} \mathrm{~S}_{2}:$	$\mathrm{C}, 46.69$	$\mathrm{H}, 5.34$	$\mathrm{~N}, 4.95$	$\mathrm{~S}, 5.66$

Melting point: $175{ }^{\circ} \mathrm{C}$.
Conductivity: Λ_{M} (acetone): $217 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.

IR spectrum of 17b

The resonances of the two isomers are distinguished by the symbols \bullet / \circ

(Only the resonances of the major isomer are observed)
$\left[\left(\mu-\eta, \eta-\mathrm{C}_{12} \mathrm{H}_{2} \mathrm{Bn}_{2} \mathbf{- 1 , 5 - \mathrm { Ph } _ { 2 } - \mathbf { 2 , 6 } - \mathrm { Me } _ { 2 } - \mathbf { 3 , 7 }) \{ \mathbf { P d } (\text { tbbpy }) \} _ { 2 }] (\text { OTf }) _ { 2 } (\mathbf { 1 8 a })}\right.\right.$

$\mathrm{PhC} \equiv \mathrm{CMe}(80 \mu \mathrm{~L}, 0.64 \mathrm{mmol})$ was added to a suspension of $\mathbf{1 4 a}(100 \mathrm{mg}, 0.08$ mmol) and TlOTf ($56 \mathrm{mg}, 0.16 \mathrm{mmol}$) in THF (15 mL) under N_{2}. The mixture was stirred for 24 h at $60^{\circ} \mathrm{C}$ (color changed from yellow to brownish) and filtered over Celite. The resulting brownish solution was evaporated to dryness. $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added to precipitate a brownish solid which was filtered off and thoroughly washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. Yield: 72 mg . This solid was divided into four parts, and each of them was purified by crystallization from $2 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2} / 8 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$, yielding brown crystals of pure 18a. Yield: 36 mg (29\%).

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, $\mathrm{J}[\mathrm{Hz}]$, integral, assignment):

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $8.89\left(\mathrm{~d},{ }^{3} \mathbf{J}_{\mathrm{HH}}=6,2 \mathrm{H}, \mathrm{H} 16\right.$ ' tbbpy), $8.20\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6\right.$, $2 \mathrm{H}, \mathrm{H} 16$ tbbpy), 8.05 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H} 13$ ' tbbpy), 8.02 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H} 13 \mathrm{tbbpy}$), 7.97 ($\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6$, ${ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,2 \mathrm{H}, \mathrm{H} 15$ ' tbbpy), $7.61\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,2 \mathrm{H}, \mathrm{H} 15\right.$ tbbpy), 7.37-7-33 (m, $4 \mathrm{H}, o-\mathrm{H} \mathrm{Ph}^{\mathrm{II}}$), 7.30-7.27 (m, 6H, $m, p-\mathrm{H} \mathrm{Ph}^{\mathrm{II}}$), 7.29 (s, 2H, H6), 7.08-7.05 (m, 4H, $o-\mathrm{H}$ $\left.\mathrm{Ph}^{\mathrm{I}}\right)$, 6.93-6.90 (m, 6H, m,p-H Ph ${ }^{\mathrm{I}}$), 4.13 and $3.51\left(\mathrm{AB}\right.$ system, $\left.{ }^{2} \mathrm{~J}_{\mathrm{HH}}=14,4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}^{\mathrm{I}}\right)$, 1.70 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Me}-3$), 1.47 ($\mathrm{s}, 18 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}{ }^{\prime}$ tbbpy), 1.46 ($\mathrm{s}, 18 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}$ tbbpy).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}$ ($150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 165.3 (2C, C14' tbbpy), 165.2 (2C, C14 tbbpy), 154.3 (2C, CH16' tbbpy), 153.4 (2C, C12 tbbpy), 152.3 (2C, C12' tbbpy), 151.5 (2C, CH16 tbbpy), 136.2 (2C, C4), 136.1 (2C, $i-\mathrm{C} \mathrm{Ph}^{\mathrm{I}}$), 135.0 (2C, C5), 131.5 (2C, $i-\mathrm{C}$ $\mathrm{Ph}^{\mathrm{II}}$), 130.9 ($4 \mathrm{C}, o-\mathrm{CH} \mathrm{Ph}^{\mathrm{II}}$), 129.3 ($4 \mathrm{C}, o-\mathrm{CH} \mathrm{Ph}^{\mathrm{I}}$), 129.1 ($2 \mathrm{C}, \mathrm{C} 2$), 128.8 ($4 \mathrm{C}, m-\mathrm{CH}$ $\mathrm{Ph}^{\mathrm{II}}$), 128.7 ($2 \mathrm{C}, p-\mathrm{CH} \mathrm{Ph}^{\mathrm{II}}$), 128.3 ($4 \mathrm{C}, m-\mathrm{CH} \mathrm{Ph}^{\mathrm{I}}$), 126.3 (4C, CH15' tbbpy, $p-\mathrm{CH} \mathrm{Ph}^{\mathrm{I}}$, 124.7 (2C, CH15 tbbpy), 119.5 (2C, CH13' tbbpy), 119.3 (2C, CH13 tbbpy), 105.9 (2C, CH6), 94.0 (2C, C3), 93.1 (2C, C1), 36.0 (2C, CMe ${ }_{3}$ 'tbbpy), 35.9 (2C, CMe ${ }_{3}$ tbbpy), 30.6 (12C, CMe 3_{3} tbbpy), 30.4 (2C, $\mathrm{CH}_{2} \mathrm{Ph}^{\mathrm{I}}$), 11.3 (2C, Me-3).

IR ($\left.\mathbf{c m}^{\mathbf{- 1}}\right): v(\mathrm{~S}=\mathrm{O}): 1030,1270$.
Elemental analysis (\%):
C, 59.40
H, 5.34
N, 3.59
S, 3.85
Calcd for $\mathrm{C}_{78} \mathrm{H}_{80} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Pd}_{2} \mathrm{~S}_{2}$:
C, 60.03
H, 5.17
N, 3.59
S, 4.11

With respect to the deviation of the C percentage see discussion in Chapter IV.
Exact Mass: HR ESI+ TOF MS: calcd for [18a-OTf] ${ }^{+}\left(\mathrm{C}_{77} \mathrm{H}_{80} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Pd}_{2} \mathrm{~S}\right) \mathrm{m} / \mathrm{z}$ 1411.4007, found 1411.3983, $\Delta=1.7 \mathrm{ppm}$.

Melting point: $212{ }^{\circ} \mathrm{C} . \quad$ Conductivity: Λ_{M} (acetone): $231 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.

IR spectrum of 18a

$\left[\left(\mu-\eta, \eta-\mathbf{C}_{12} \mathbf{H}_{2} \mathbf{B n}_{2}-\mathbf{1 , 5}-\mathbf{P h}_{2} \mathbf{- 2 , 6 - M e} \mathbf{M}_{2}-\mathbf{3}, 7\right)\{\mathbf{P d}(\text { tbbpy })\}_{2}\right]\left(\mathbf{C l O}_{4}\right)_{2}\left(\mathbf{1 8 a}{ }^{\prime}\right)$

$\mathrm{PhC} \equiv \mathrm{CMe}(40 \mu \mathrm{~L}, 0.32 \mathrm{mmol})$ was added to a suspension of $\mathbf{1 4 a}(100 \mathrm{mg}, 0.08$ $\mathrm{mmol})$ and $\mathrm{AgClO}_{4}(33 \mathrm{mg}, 0.16 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ under N_{2}. The mixture was stirred for 24 h at room temperature (color changed from yellow to brownish) and filtered over Celite. The resulting brownish solution was evaporated to dryness. $\mathrm{Et}_{2} \mathrm{O}$ $(20 \mathrm{~mL})$ was added to precipitate a brownish solid which was filtered off and thoroughly washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. Yield: 90 mg . This solid was divided into four parts and each of them was purified by crystallization from $2 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2} / 8 \mathrm{~mL}$ $\mathrm{Et}_{2} \mathrm{O}$, yielding brown crystals of pure 18a'. Yield: 39 mg (33%).

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, $\mathbf{J}[\mathrm{Hz}]$, integral, assignment):
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $8.89\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,2 \mathrm{H}, \mathrm{H} 16\right.$ ' tbbpy), $8.19\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6\right.$, $2 \mathrm{H}, \mathrm{H} 16$ tbbpy), 8.06 ($\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=2,2 \mathrm{H}, \mathrm{H} 13$ ' tbbpy), 8.03 (d, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=2,2 \mathrm{H}, \mathrm{H} 13$ tbbpy), $8.00\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,2 \mathrm{H}, \mathrm{H} 15\right.$ ' tbbpy), $7.59\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,2 \mathrm{H}, \mathrm{H} 15\right.$ tbbpy), 7.36-7-32 (m, 4H, o-H Ph ${ }^{\mathrm{II}}$), 7.30-7.27 (m, 6H, $m, p-\mathrm{H} \mathrm{Ph}^{\mathrm{II}}$), 7.27 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H} 6$), 7.06-7.03 (m, $\left.4 \mathrm{H}, o-\mathrm{H} \mathrm{Ph}^{\mathrm{I}}\right), 6.94-6.88\left(\mathrm{~m}, 6 \mathrm{H}, m, p-\mathrm{H} \mathrm{Ph}^{\mathrm{I}}\right), 4.09$ and $3.50(\mathrm{AB}$ system, $\left.{ }^{2} \mathrm{~J}_{\mathrm{HH}}=14,4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}^{\mathrm{I}}\right), 1.72(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}-3), 1.47\left(\mathrm{~s}, 18 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}{ }^{\prime}\right.$ tbbpy), $1.46\left(\mathrm{~s}, 18 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right.$ tbbpy).

IR ($\mathbf{c m}^{-1}$): $v(\mathrm{Cl}-\mathrm{O}): 623,1093$.
Elemental analysis (\%): \quad C, $62.42 \quad \mathrm{H}, 5.71 \quad \mathrm{~N}, 3.81$
Calcd for $\mathrm{C}_{76} \mathrm{H}_{80} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Pd}_{2}$:
C, 62.47
H, 5.52
N, 3.83
Melting point: $286^{\circ} \mathrm{C}$.
Conductivity: Λ_{M} (acetone): $257 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.
X-ray crystallography: Single crystals of anti-18a' $\cdot 8 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ were grown by liquid diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a solution of $\mathbf{1 8 a}{ }^{\prime}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

IR spectrum of 18a,

$\left[\left(\mu-\eta, \eta-\mathrm{C}_{\mathbf{1 2}} \mathrm{H}_{2} \mathrm{Bn}_{2} \mathbf{- 1 , 5 - \mathrm { Ph } _ { 2 } - \mathbf { 2 , 6 } - \mathrm { Me } _ { 2 } - \mathbf { 3 } , 7) \{ \text { Pd(tmeda) } \} _ { 2 }] (\text { OTf }) _ { 2 } (\mathbf { 1 8 b })}\right.\right.$

$\mathrm{PhC} \equiv \mathrm{CMe}(68 \mu \mathrm{~L}, 0.54 \mathrm{mmol})$ was added to a suspension of $\mathbf{1 4 b}(60 \mathrm{mg}, 0.067$ mmol) and TlOTf ($47 \mathrm{mg}, 0.13 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ under N_{2}. The mixture was stirred for 24 h at room temperature (color changed from yellow to greenish) and filtered over Celite. The resulting greenish solution was evaporated to dryness. $\mathrm{Et}_{2} \mathrm{O}$ $(20 \mathrm{~mL})$ was added to precipitate a greenish solid which was filtered off and thoroughly washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. Yield: 63 mg . This solid was divided into four parts, and each of them was purified by crystallization from $2 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2} / 8 \mathrm{~mL}$ $\mathrm{Et}_{2} \mathrm{O}$, yielding green crystals of pure 18b. Yield: 38 mg (45\%).

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, $\mathrm{J}[\mathrm{Hz}]$, integral, assignment):
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 7.49-7.45 (m, $4 \mathrm{H}, m-\mathrm{HPh}^{\mathrm{II}}$), 7.45-7.40 (m, 6H, o, $p-$ $\mathrm{H} \mathrm{Ph}^{\mathrm{II}}$), 7.15-7.13 (m, 6H, $\left.p, m-\mathrm{H} \mathrm{Ph}^{\mathrm{I}}\right)$, 6.97-6.95 (m, 4H, $o-\mathrm{H} \mathrm{Ph}^{\mathrm{I}}$), $6.90(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H} 6), 3.54$ and $3.29\left(\mathrm{AB}\right.$ system, $\left.{ }^{2} \mathrm{~J}_{\mathrm{HH}}=15,4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}^{\mathrm{I}}\right), 3.35-3.24\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$ tmeda), 3.00, 2.90, 2.82, and 2.53 ($\mathrm{s}, 6 \mathrm{H}$, Me tmeda), 2.78-2.70 (m, 4H, CH_{2} tmeda), 1.36 (s, 6H, Me-3).
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR ($150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 138.3 (2C, C4), 136.7 (2C, C5), 135.7 (2C, i C Ph^{I}), 132.4 (2C, C2), 131.6 (2C, $i-\mathrm{C} \mathrm{Ph}^{\mathrm{II}}$), 130.5 ($4 \mathrm{C}, o-\mathrm{CH} \mathrm{Ph}^{\mathrm{II}}$), 129.3 ($4 \mathrm{C}, m-\mathrm{CH}$ $\mathrm{Ph}^{\mathrm{II}}$), 129.1 (2C, $p-\mathrm{CH} \mathrm{Ph}^{\mathrm{II}}$), 128.9 (4C, $o-\mathrm{CH} \mathrm{Ph}^{\mathrm{I}}$), 128.7 ($4 \mathrm{C}, m-\mathrm{CH} \mathrm{Ph}^{\mathrm{I}}$), 126.9 (2C, $p-$ $\left.\mathrm{CH} \mathrm{Ph}^{\mathrm{II}}\right), 105.6(2 \mathrm{C}, \mathrm{CH} 6), 91.4(2 \mathrm{C}, \mathrm{C} 3), 88.5(2 \mathrm{C}, \mathrm{C} 1), 61.9$ and $61.8\left(2 \mathrm{C}, \mathrm{CH}_{2}\right.$ tmeda), $52.8,52.3,52.2$, and 51.7 (2C, Me tmeda), $31.1\left(2 \mathrm{C}, C \mathrm{H}_{2} \mathrm{Ph}^{\mathrm{I}}\right), 11.3$ (2C, Me-3).

IR ($\mathbf{c m}^{-1}$): $\mathrm{v}(\mathrm{S}=\mathrm{O}): 1029,1264$.
Elemental analysis (\%):
C, 50.32
H, 4.93
N, 4.61
S, 4.95
Calcd for $\mathrm{C}_{54} \mathrm{H}_{64} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Pd}_{2} \mathrm{~S}_{2}$:
C, 51.64
H, 5.14
N, 4.46
S, 5.11

With respect to the deviation of the C percentage see discussion in Chapter IV.
Exact Mass: HR ESI+ TOF MS: calcd for [18b-OTf] ${ }^{+}\left(\mathrm{C}_{53} \mathrm{H}_{64} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Pd}_{2} \mathrm{~S}\right) \mathrm{m} / \mathrm{z}$ 1107.2746 , found $1107.2753, \Delta=0.6 \mathrm{ppm}$.

Calculated:	1104.2751 (72.36)	1105.2746 (84.75)	1106.2753 (83.61)	$\mathbf{1 1 0 7 . 2 7 4 6}$ $(\mathbf{1 0 0})$	1108.2763 (68.38)	1109.2750 (75.92)	1110.2771 (37.53)
Found:	1104.2757 $(70.49$	1105.2750 (82.63)	1106.2757 (82.66)	$\mathbf{1 1 0 7 . 2 7 5 3}$ $(\mathbf{1 0 0)}$	1108.2767 (67.80)	1109.2756 (76.27)	1110.2776 (35.92)

Melting point: $185^{\circ} \mathrm{C}$.
Conductivity: Λ_{M} (acetone): $237 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.

$\left[\mathrm{Pd}\left(\eta-\mathrm{C}_{9} \mathrm{H}_{2} \mathrm{Bn}-1-\mathrm{Ph}_{2}-2,3-(E-\mathrm{CH}=\mathrm{CHPh})-5-\mathrm{Br}-6\right)(\mathrm{bpy})\right](\mathrm{OTf})(19)$

$\mathrm{PhC} \equiv \mathrm{CPh}(157 \mathrm{mg}, 0.88 \mathrm{mmol})$ was added to a suspension of $\mathbf{1 5}(80 \mathrm{mg}, 0.11$ mmol) and TlOTf ($39 \mathrm{mg}, 0.11 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ under N_{2}. The mixture was stirred for 24 h at room temperature (color changed from yellow to brown) and filtered over Celite. The resulting brownish solution was evaporated to dryness. $\mathrm{Et}_{2} \mathrm{O}$ $(20 \mathrm{~mL})$ was added to precipitate a brownish solid which was filtered off, thoroughly washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$ and dried in vacuo to give 19 as a brown solid. Yield: 73 $\mathrm{mg}(70 \%)$.

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, $\mathbf{J}[\mathrm{Hz}]$, integral, assignment):
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $8.88\left(\mathrm{~d},{ }^{3} \mathbf{J}_{\mathrm{HH}}=8,1 \mathrm{H}, \mathrm{H} 13\right.$ ' bpy), $8.77\left(\mathrm{~d},{ }^{3} \mathbf{J}_{\mathrm{HH}}=8\right.$, $1 \mathrm{H}, \mathrm{H} 13 \mathrm{bpy}), 8.69\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5,1 \mathrm{H}, \mathrm{H} 16{ }^{\prime}\right.$ bpy), $8.39\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,1 \mathrm{H}, \mathrm{H} 14{ }^{\prime}\right.$ bpy), $8.16(\mathrm{t}$, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,1 \mathrm{H}, \mathrm{H} 14 \mathrm{bpy}\right), 7.84\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,1 \mathrm{H}, \mathrm{H} 15\right.$ ' bpy), $7.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 9), 7.56-7.51(\mathrm{~m}$, $\left.5 \mathrm{H}, o, p-\mathrm{H} \mathrm{Ph}^{\text {III }}, o-\mathrm{H}^{\mathrm{IV}}{ }^{\text {IV }}\right), 7.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 6), 7.49\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5,1 \mathrm{H}, \mathrm{H} 16 \mathrm{bpy}\right), 7.38\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}\right.$ $\left.=8,2 \mathrm{H}, m-\mathrm{H} \mathrm{Ph}^{\text {III }}\right), 7.36\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,2 \mathrm{H}, m-\mathrm{H} \mathrm{Ph}^{\mathrm{IV}}\right), 7.34\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=16,1 \mathrm{H}, \mathrm{H} \alpha\right), 7.34-$ $7.27\left(\mathrm{~m}, 4 \mathrm{H}, m, p-\mathrm{H} \mathrm{Ph}^{\mathrm{II}}, p-\mathrm{H} \mathrm{Ph}^{\mathrm{IV}}\right), 7.26-7.20\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 15 \mathrm{bpy}, o-\mathrm{H}^{\mathrm{II}}\right.$), 7.19-7.14 (m, $\left.3 \mathrm{H}, m, p-\mathrm{H} \mathrm{Ph}^{\mathrm{I}}\right), 7.01\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=16,1 \mathrm{H}, \mathrm{H}\right), 6.98-6.95\left(\mathrm{~m}, 2 \mathrm{H}, o-\mathrm{H} \mathrm{Ph}^{\mathrm{I}}\right), 3.79$ and 3.73 (AB system, $\left.{ }^{2} \mathrm{~J}_{\mathrm{HH}}=14,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}^{\mathrm{I}}\right)$.

IR ($\mathbf{c m}^{-1}$): $v(\mathrm{~S}=\mathrm{O}): 1030,1264$.
Elemental analysis (\%):
C, 58.90
H, 3.65
N, 2.92
S, 3.36
Calcd for $\mathrm{C}_{47} \mathrm{H}_{34} \mathrm{BrF}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SPd}$:
C, 59.41
H, 3.61
N, 2.95
S, 3.37
With respect to the deviation of the C percentage see discussion in Chapter IV.
Exact Mass: HR ESI+ TOF MS: calcd for [19-OTf] ${ }^{+}\left(\mathrm{C}_{46} \mathrm{H}_{34} \mathrm{BrN}_{2} \mathrm{Pd}\right) \mathrm{m} / \mathrm{z} 801.0944$, found $801.0944, \Delta=0.00 \mathrm{ppm}$.

Calculated:	798.0961 (41.09)	799.095 (73.56)	800.0956 (63.69)	$\mathbf{8 0 1 . 0 9 4 4}$ $(\mathbf{1 0 0})$	802.097 (44.05)	803.0945 (64.43)	804.0971 (29.11)
Found:	798.0959	799.0952	800.0954	$\mathbf{8 0 1 . 0 9 4 4}$	802.0966 (42.81)	803.0947 (72.23)	804.0966 (62.72)
	(323.72)	(27.07)					

Melting point: $186^{\circ} \mathrm{C}$.

Conductivity: Λ_{M} (acetone): $150 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.
X-ray crystallography: Single crystals of $\mathbf{1 9}$ were grown by liquid diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a solution of $\mathbf{1 9}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

$\left[\mathrm{Pd}\left(\eta-\mathrm{C}_{9} \mathrm{H}_{2} \mathrm{Bn}-1-\mathrm{Ph}_{2}-\mathbf{2 , 3 -}(\boldsymbol{E}-\mathrm{CH}=\mathrm{CHPh})-5-\mathrm{Br}-6\right)(\mathrm{bpy})\right]\left(\mathrm{ClO}_{4}\right)\left(\mathbf{1 9}^{\prime}\right)$

$\mathrm{PhC} \equiv \mathrm{CPh}(157 \mathrm{mg}, 0.88 \mathrm{mmol})$ was added to a suspension of $\mathbf{1 5}(80 \mathrm{mg}, 0.11$ $\mathrm{mmol})$ and $\mathrm{AgClO}_{4}(23 \mathrm{mg}, 0.11 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ under N_{2}. The mixture was stirred for 24 h at room temperature (color changed from yellow to brown) and filtered over Celite. The resulting brownish solution was evaporated to dryness. $\mathrm{Et}_{2} \mathrm{O}$ $(20 \mathrm{~mL})$ was added to precipitate a brownish solid which was filtered off, thoroughly washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$ and dried in vacuo to give $\mathbf{1 9}^{\prime}$ as a brown solid. Yield: 58 mg (58\%).

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, J[Hz], integral, assignment):

${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $8.75\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,1 \mathrm{H}, \mathrm{H} 13\right.$ ' bpy), $8.73\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5\right.$, $1 \mathrm{H}, \mathrm{H} 16{ }^{\prime}$ 'bpy), $8.64\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,1 \mathrm{H}, \mathrm{H} 13 \mathrm{bpy}\right), 8.36\left(\mathrm{t},{ }^{3} \mathbf{J}_{\mathrm{HH}}=8,1 \mathrm{H}, \mathrm{H} 14^{\prime}\right.$ bpy), $8.15(\mathrm{t}$, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,1 \mathrm{H}, \mathrm{H} 14 \mathrm{bpy}\right), 7.86\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,1 \mathrm{H}, \mathrm{H} 15\right.$ ' bpy), $7.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 9), 7.57-7.51(\mathrm{~m}$, $\left.5 \mathrm{H}, o, p-\mathrm{H} \mathrm{Ph}^{\text {III }}, o-\mathrm{H}^{\mathrm{IV}}{ }^{\mathrm{IV}}\right), 7.52(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 6), 7.50\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5,1 \mathrm{H}, \mathrm{H} 16 \mathrm{bpy}\right), 7.38\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}\right.$ $\left.=8,2 \mathrm{H}, m-\mathrm{H} \mathrm{Ph}^{\text {III }}\right), 7.36\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,2 \mathrm{H}, m-\mathrm{H} \mathrm{Ph}^{\text {IV }}\right), 7.34\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=16,1 \mathrm{H}, \mathrm{H} \alpha\right), 7.34-$ $7.27\left(\mathrm{~m}, 4 \mathrm{H}, m, p-\mathrm{H} \mathrm{Ph}^{\mathrm{II}}, p-\mathrm{H} \mathrm{Ph}^{\mathrm{IV}}\right.$), 7.26-7.20 (m, 3H, H15 bpy, o-H Ph ${ }^{\mathrm{II}}$), 7.18-7.13 (m, $\left.3 \mathrm{H}, m, p-\mathrm{H} \mathrm{Ph}^{\mathrm{I}}\right), 7.01\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=16,1 \mathrm{H}, \mathrm{H} \beta\right), 6.99-6.95\left(\mathrm{~m}, 2 \mathrm{H}, o-\mathrm{H} \mathrm{Ph}^{\mathrm{L}}\right), 3.80$ and 3.76 (AB system, ${ }^{2} \mathrm{~J}_{\mathrm{HH}}=14,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}^{\mathrm{I}}$).
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 154.0$ (1C, C12 bpy), 153.8 (1C, C12' bpy), 152.3 (1C, CH16' bpy), 151.4 (1C, CH16 bpy), 142.2 (1C, CH14' bpy), 141.8 (1C, CH14 bpy), 137.5 ($1 \mathrm{C}, \mathrm{C} 8$), 136.8 ($1 \mathrm{C}, i$ - $\mathrm{Ch}^{\mathrm{IV}}$), 136.0 ($1 \mathrm{C}, \mathrm{C} 5$), 134.4 ($1 \mathrm{C}, i-\mathrm{C} \mathrm{Ph}^{\mathrm{I}}$), 134.2 ($1 \mathrm{C}, \mathrm{C} 4$), 132.1 ($1 \mathrm{C},=\mathrm{CH} \beta$), 131.2 ($1 \mathrm{C}, \mathrm{C} 2$), 131.0 ($2 \mathrm{C}, o-\mathrm{CH} \mathrm{Ph}^{\mathrm{II}}$), 130.8 ($1 \mathrm{C}, i-$
 $\left(1 \mathrm{C}, i-\mathrm{C} \mathrm{Ph}^{\mathrm{III}}\right.$), 129.2 ($1 \mathrm{C}, p-\mathrm{CH} \mathrm{Ph}^{\mathrm{II}}$), 129.15 and 129.09 ($4 \mathrm{C}, m-\mathrm{CH} \mathrm{Ph}^{\mathrm{I}}, \mathrm{Ph}^{\mathrm{IV}}$), 129.0 ($2 \mathrm{C}, m-\mathrm{CH} \mathrm{Ph}^{\mathrm{I}}$), 128.7 ($1 \mathrm{C}, p-\mathrm{CH} \mathrm{Ph}^{\mathrm{IV}}$), 128.7 ($2 \mathrm{C}, o-\mathrm{CH} \mathrm{Ph}^{\mathrm{I}}$), 128.3 ($1 \mathrm{C}, \mathrm{CH} 15$, bpy), $127.6(1 \mathrm{C},=\mathrm{CH} \alpha), 127.4\left(1 \mathrm{C}, p-\mathrm{CH} \mathrm{Ph}^{\mathrm{I}}\right), 127.2(1 \mathrm{C}, \mathrm{CH} 15 \mathrm{bpy}), 127.1\left(2 \mathrm{C}, o-\mathrm{CH}^{\mathrm{P}}{ }^{\mathrm{IV}}\right.$), 125.7 (1C, CH13' bpy), 125.1 (1C, CH13 bpy), 124.1 (1C, C7), 122.8 (1C, CH6), 114.7 (1C, CH9), 94.1 (1C, C3), 93.1 (1C, C1), 31.2 (1C, $\mathrm{CH}_{2} \mathrm{Ph}^{\mathrm{I}}$).

IR ($\mathbf{c m}^{-1}$): $v(\mathrm{Cl}-\mathrm{O}): 622,1087$.
Elemental analysis (\%):
C, 61.73
H, 3.77
N, 3.15
Calcd for $\mathrm{C}_{46} \mathrm{H}_{34} \mathrm{BrClN}_{2} \mathrm{O}_{4} \mathrm{Pd}$:
C, 61.35
H, 3.81
N, 3.11

Melting point: $194{ }^{\circ} \mathrm{C}$.
Conductivity: Λ_{M} (acetone): $144 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.

IR spectrum of $\mathbf{1 9}^{\prime}$

$\left[\mathrm{Pd}\left(\eta-\mathrm{C}_{9} \mathrm{H}_{2} \mathrm{Bn}-1-\mathrm{Me}_{2}-\mathbf{2 , 3 -}(\boldsymbol{E}-\mathrm{CH}=\mathrm{CHPh})-5-\mathrm{Br}-6\right)(\mathrm{bpy})\right](\mathrm{OTf})(20)$

$\mathrm{MeC} \equiv \mathrm{CMe}(69 \mu \mathrm{~L}, 0.88 \mathrm{mmol})$ was added to a suspension of $15(80 \mathrm{mg}, 0.11$ mmol) and TlOTf ($39 \mathrm{mg}, 0.11 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(15 \mathrm{~mL}\right.$) under N_{2}. The mixture was stirred for 24 h at room temperature (color changed from yellow to brown) and filtered over Celite. The resulting brownish solution was evaporated to dryness. $\mathrm{Et}_{2} \mathrm{O}$ $(20 \mathrm{~mL})$ was added to precipitate a brownish solid which was filtered off, thoroughly washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$ and dried in vacuo to give $\mathbf{2 0}$ as a reddish brown solid. Yield: 45 mg (50\%).

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, $\mathbf{J}[\mathrm{Hz}]$, integral, assignment):

${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 8.61 and $8.59\left(\mathrm{~d}^{3}{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,1 \mathrm{H}, \mathrm{H} 13,13 '\right.$ bpy), 8.53 and $8.49\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5,1 \mathrm{H}, \mathrm{H} 16,16{ }^{\prime}\right.$ bpy), 8.25 and $8.32\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,1 \mathrm{H}, \mathrm{H} 14,14^{\prime}\right.$ bpy), 7.74 and $7.71\left(\mathrm{t}^{3} \mathrm{~J}_{\mathrm{HH}}=6,1 \mathrm{H}, \mathrm{H} 15,15\right.$ ' bpy $), 7.54\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,2 \mathrm{H}, o-\mathrm{H} \mathrm{Ph}^{\mathrm{IV}}\right)$, 7.38-7.30 $\left(\mathrm{m}, 7 \mathrm{H}, \mathrm{Ph}^{\mathrm{I}}, m-\mathrm{H} \mathrm{Ph}^{\mathrm{IV}}\right), 7.33(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 9), 7.31\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=16,1 \mathrm{H}, \mathrm{H} \alpha\right), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}$, $\left.p-\mathrm{H} \mathrm{Ph}^{\mathrm{IV}}\right), 7.19(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 6), 7.12\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=16,1 \mathrm{H}, \mathrm{H} \beta\right), 3.90$ and $3.53\left(\mathrm{AB}\right.$ system, ${ }^{2} \mathrm{~J}_{\mathrm{HH}}$ $\left.=14,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}^{\mathrm{I}}\right), 2.42(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-2), 1.82(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-3)$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 153.7$ and 153.5 (1C, C12,12' bpy), 152.1 and 151.7 ($1 \mathrm{C}, \mathrm{CH} 16,16$ ' bpy), 141.6 (2C, CH14,14' bpy), 137.6 (1C, C4), 137.4 (1C, C5), 137.0 ($1 \mathrm{C}, i-\mathrm{C} \mathrm{Ph}^{\mathrm{IV}}$), 136.1 ($1 \mathrm{C}, \mathrm{C} 8$), 134.5 ($\left.1 \mathrm{C}, i-\mathrm{C} \mathrm{Ph}^{\mathrm{I}}\right), 131.8$ ($1 \mathrm{C},=\mathrm{CH} \beta$), 129.4 $\left(2 \mathrm{C}, m-\mathrm{CH} \mathrm{Ph}^{\mathrm{I}}\right), 129.0\left(2 \mathrm{C}, m-\mathrm{CH} \mathrm{Ph}^{\mathrm{IV}}\right), 128.5\left(1 \mathrm{C}, p-\mathrm{CH} \mathrm{Ph}^{\mathrm{IV}}\right), 128.3\left(2 \mathrm{C}, o-\mathrm{CH} \mathrm{Ph}^{\mathrm{I}}\right)$, 128.0 and 127.7 ($1 \mathrm{C}, \mathrm{CH} 15,15$ ' bpy), 127.7 ($1 \mathrm{C}, p-\mathrm{CH} \mathrm{Ph}{ }^{\mathrm{I}}$), 127.6 ($1 \mathrm{C}, \mathrm{C} 2$), 127.1 (2 C , $\left.o-\mathrm{CH} \mathrm{Ph}^{\text {IV }}\right), 127.0(1 \mathrm{C},=\mathrm{CH} \alpha), 124.93$ and $124.87(1 \mathrm{C}, \mathrm{CH} 13,13$ ' bpy), $124.1(1 \mathrm{C}, \mathrm{C} 7)$, 120.3 (1C, CH6), 113.6 ($1 \mathrm{C}, \mathrm{CH} 9$), 91.3 ($1 \mathrm{C}, \mathrm{C} 3$), 90.1 ($1 \mathrm{C}, \mathrm{C} 1$), 31.4 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Ph}^{\mathrm{I}}$), 13.2 (1C, Me-2), 10.8 (1C, Me-3).

IR ($\mathbf{c m}^{-1}$): $v(\mathrm{~S}=\mathrm{O}): 1029,1263$.
Elemental analysis (\%):
C, 53.52
H, 3.94
N, 3.48
S, 3.59
Calcd for $\mathrm{C}_{37} \mathrm{H}_{30} \mathrm{BrF}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{PdS}$:
C, 53.80
H, 3.66
N, 3.39
S, 3.88

Melting point: $208{ }^{\circ} \mathrm{C}$.
Conductivity: Λ_{M} (acetone): $154 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.

IR spectrum of 20

$\left[\mathrm{Pd}\left(\eta-\mathrm{C}_{9} \mathrm{H}_{2} \mathrm{Bn}-1-\mathrm{Ph}-2-\mathrm{Me}-3-(\boldsymbol{E}-\mathrm{CH}=\mathrm{CHPh})-5-\mathrm{Br}-6\right)(\mathrm{bpy})\right](\mathrm{OTf})(21)$

$\mathrm{PhC} \equiv \mathrm{CMe}(110 \mu \mathrm{~L}, 0.88 \mathrm{mmol})$ was added to a suspension of $15(80 \mathrm{mg}, 0.11$ mmol) and TlOTf ($39 \mathrm{mg}, 0.11 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ under N_{2}. The mixture was stirred for 24 h at room temperature (color changed from yellow to brown) and filtered over Celite. The resulting brownish solution was evaporated to dryness. $\mathrm{Et}_{2} \mathrm{O}$ (20 mL) was added to precipitate a brownish solid which was filtered off, thoroughly washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$ and dried in vacuo to give 21 as a brown solid. Yield: 79 mg (81%).

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, J[Hz], integral, assignment):

${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $8.77\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,1 \mathrm{H}, \mathrm{H} 13\right.$ ' bpy), $8.72\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8\right.$, $1 \mathrm{H}, \mathrm{H} 13 \mathrm{bpy}), 8.59\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}, \mathrm{H} 16{ }^{\prime}\right.$ bpy), $8.41\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1\right.$, $1 \mathrm{H}, \mathrm{H} 16$ bpy), 8.33 (td, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}, \mathrm{H} 14$ ' bpy), $8.25\left(\mathrm{td},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1\right.$, $1 \mathrm{H}, \mathrm{H} 14$ bpy), 7.74 (ddd, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}, \mathrm{H} 15$ ' bpy), 7.69 (ddd, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=8$, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1,1 \mathrm{H}, \mathrm{H} 15 \mathrm{bpy}\right), 7.55-7.52\left(\mathrm{~m}, 2 \mathrm{H}, o-\mathrm{H} \mathrm{Ph}^{\mathrm{IV}}\right), 7.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 9), 7.39(\mathrm{~s}$, $\left.5 \mathrm{H}, \mathrm{Ph}^{\mathrm{II}}\right), 7.35\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,2 \mathrm{H}, m-\mathrm{H} \mathrm{Ph}^{\mathrm{IV}}\right), 7.33\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=16,1 \mathrm{H},=\mathrm{CH} \alpha\right), 7.31(\mathrm{~s}, 1 \mathrm{H}$, H6), 7.30-7.28 (m, $\left.1 \mathrm{H}, p-\mathrm{H} \mathrm{Ph}^{\mathrm{IV}}\right), 7.22-7.19\left(\mathrm{~m}, 3 \mathrm{H}, m, p-\mathrm{H} \mathrm{Ph}^{\mathrm{I}}\right), 7.14\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=16,1 \mathrm{H}\right.$, $=\mathrm{CH} \beta), 7.00-6.98\left(\mathrm{~m}, 2 \mathrm{H}, o-\mathrm{H} \mathrm{Ph}^{\mathrm{I}}\right), 3.72$ and $3.53\left(\mathrm{AB}\right.$ system, $\left.{ }^{2} \mathrm{~J}_{\mathrm{HH}}=14,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}^{\mathrm{I}}\right)$, 1.76 (s, 3H, Me-3).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 154.0$ ($1 \mathrm{C}, \mathrm{C} 12$ ' bpy), 153.6 ($1 \mathrm{C}, \mathrm{C} 12 \mathrm{bpy}$), 151.8 (1C, CH16' bpy), 151.4 (1C, CH16 bpy), 142.0 (1C, CH14' bpy), 141.9 (1C, CH14 bpy), 137.0 ($1 \mathrm{C}, i-\mathrm{C} \mathrm{Ph}^{\text {IV }}$), 136.9 ($1 \mathrm{C}, \mathrm{C} 4$), 136.9 ($1 \mathrm{C}, \mathrm{C} 8$), 136.4 ($1 \mathrm{C}, \mathrm{C} 5$), 134.7 $\left(1 \mathrm{C}, i-\mathrm{C} \mathrm{Ph}^{\mathrm{I}}\right), 132.2(1 \mathrm{C},=\mathrm{CH} \beta), 132.1(1 \mathrm{C}, \mathrm{C} 2), 130.7\left(2 \mathrm{C}, o-\mathrm{CH} \mathrm{Ph}^{\mathrm{II}}\right), 130.5(1 \mathrm{C}, i-\mathrm{C}$ $\mathrm{Ph}^{\mathrm{II}}$), 129.5 ($1 \mathrm{C}, p-\mathrm{CH} \mathrm{Ph}^{\mathrm{II}}$), 129.2 (2C, m - $\mathrm{CH} \mathrm{Ph}^{\mathrm{II}}$), 129.1 (4C, $m-\mathrm{CH} \mathrm{Ph}^{\mathrm{I}}, \mathrm{Ph}^{\mathrm{IV}}$), 128.6 $\left(1 \mathrm{C}, p-\mathrm{CH} \mathrm{Ph}{ }^{\mathrm{IV}}\right), 128.5\left(2 \mathrm{C}, o-\mathrm{CH} \mathrm{Ph}^{\mathrm{I}}\right), 128.0(1 \mathrm{C}, \mathrm{CH} 15 \mathrm{bpy}), 127.8$ ($1 \mathrm{C}, \mathrm{CH} 15$ ' bpy), $127.5\left(1 \mathrm{C}, p-\mathrm{CH} \mathrm{Ph}^{\mathrm{I}}\right), 127.1\left(2 \mathrm{C}, o-\mathrm{CH} \mathrm{Ph}^{\mathrm{IV}}\right), 127.0(1 \mathrm{C},=\mathrm{CH} \alpha), 125.5(1 \mathrm{C}, \mathrm{CH} 13$, bpy), 125.4 (1C, CH13 bpy), 124.7 (1C, C7), 121.3 (1C, CH6), 114.2 (1C, CH9), 92.8 (1C, C3), 90.5 (1C, C1), 31.4 (1C, $\mathrm{CH}_{2} \mathrm{Ph}^{\mathrm{I}}$), 11.4 (1C, Me-3).

IR ($\left.\mathbf{c m}^{-1}\right): v(\mathrm{~S}=\mathrm{O}): 1030,1258,1274$.
Elemental analysis (\%):
C, 55.79
H, 3.26
N, 3.26
S, 3.52
Calcd for $\mathrm{C}_{42} \mathrm{H}_{32} \mathrm{BrF}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{PdS}$:
C, 56.80
H, 3.63
N, 3.15
S, 3.61

With respect to the deviation of the C percentage see discussion in Chapter IV.
Exact Mass: HR ESI+ TOF MS: calcd for [21-OTf] ${ }^{+}\left(\mathrm{C}_{41} \mathrm{H}_{32} \mathrm{BrN} 2 \mathrm{Pd}\right) \mathrm{m} / \mathrm{z} 739.0785$, found $739.0773, \Delta=1.6 \mathrm{ppm}$.

Calculated:	736.0804 (41.51)	737.0792 (73.82)	738.0798 (61.83)	$\mathbf{7 3 9 . 0 7 8 5}$ $(\mathbf{1 0 0})$	740.0813 (40.07)	741.0786 (64.35)	742.0813 (26.57)
Found:	736.0784 (44.29)	737.0776 (75.18)	738.0781 (65.08)	$\mathbf{7 3 9 . 0 7 7 3}$ $(\mathbf{1 0 0})$	740.0794 (44.17)	741.0770 (68.12)	742.0794 (29.84)

Melting point: $192{ }^{\circ} \mathrm{C}$.
Conductivity: Λ_{M} (acetone): $165 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.
X-ray crystallography: Single crystals of 21 were grown by liquid diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a solution of $\mathbf{2 1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

IR spectrum of 21

APT spectrum ($\mathbf{1 5 0 . 9} \mathbf{~ M H z) ~ o f ~} 21$

$\left[\mathrm{C}_{6} \mathrm{H}_{2}\left\{\mathrm{C}(=\mathrm{NXy})\left(\text { trans }-\mathrm{PdBr}(\mathrm{CNXy})_{2}\right)\right\}_{2} \mathbf{- 1 , 4}-(\boldsymbol{E}-\mathrm{CH}=\mathrm{CHPh})_{2}-\mathbf{2}, 5\right](22)$

XyNC ($89 \mathrm{mg}, 0.68 \mathrm{mmol}$) was added to a solution of $\mathbf{1 4 a}$ ($131 \mathrm{mg}, 0.11 \mathrm{mmol}$) or $\mathbf{1 4 b}$ ($100 \mathrm{mg}, 0.11 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under N_{2}, and the resulting mixture was stirred at room temperature for 30 min . Evaporation of the solvent in vacuo and addition of $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ yielded a solid, which was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}$ $(3 \times 5 \mathrm{~mL})$, and dried in vacuo to give 22 as a yellow solid. Yield: $120 \mathrm{mg}(76 \%)$ from $\mathbf{1 4 a}$ and $112 \mathrm{mg}(71 \%)$ from $\mathbf{1 4 b}$.

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, $\mathrm{J}[\mathrm{Hz}]$, integral, assignment):
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $8.24\left(\mathrm{~d},{ }^{3} \mathbf{J}_{\mathrm{HH}}=16,2 \mathrm{H}, \mathrm{H} \alpha\right), 8.12$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H} 3$ aryl), 7.34-7.29 (m, 4H, $o-\mathrm{H} \operatorname{Ph}), 7.26-7.14\left(\mathrm{~m}, 10 \mathrm{H}, m, p-\mathrm{H} \mathrm{Ph}, p-\mathrm{H} \mathrm{Xy}^{\mathrm{co}}\right.$), $7.03-6.92(\mathrm{~m}, 16 \mathrm{H}$, $m-\mathrm{H} \mathrm{Xy}^{\mathrm{co}, \mathrm{in}}, p-\mathrm{H} \mathrm{Xy}^{\mathrm{in}}, \mathrm{H} 5$), 2.33 ($\mathrm{s}, 12 \mathrm{H}, \mathrm{Me} \mathrm{Xy}{ }^{\mathrm{in}}$), 2.22 ($\mathrm{s}, 24 \mathrm{H}, \mathrm{Me} \mathrm{Xy}{ }^{\mathrm{co}}$).
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 176.2$ (2C, C=N), 150.3 (2C, i-C Xy ${ }^{\text {in }}$), 144.2 (2C, C 1 aryl), $143.3\left(4 \mathrm{C}, \mathrm{C} \equiv \mathrm{N}\right.$), 137.2 ($2 \mathrm{C}, i-\mathrm{C} \mathrm{Ph}$), 136.0 ($8 \mathrm{C}, o-\mathrm{C} \mathrm{Xy}^{\mathrm{co}}$), 131.2 (2C, C 2 aryl), $131.0(2 \mathrm{C},=\mathrm{CH} \beta), 130.3\left(4 \mathrm{C}, p-\mathrm{CH} \mathrm{Xy}{ }^{\mathrm{co}}\right), 128.7(4 \mathrm{C}, m-\mathrm{CH} \mathrm{Ph}), 128.6(4 \mathrm{C}, m-\mathrm{CH}$ $\mathrm{Xy}^{\text {in }}$), 128.2 ($8 \mathrm{C}, m-\mathrm{CH} \mathrm{Xy}{ }^{\mathrm{co}}$), 128.0 (2C, $p-\mathrm{CH} \mathrm{Ph}$), 127.1 ($2 \mathrm{C}, \mathrm{CH} 3$ aryl), 127.0 ($4 \mathrm{C}, o-$ C Xy ${ }^{\text {in }}$), 126.9 ($4 \mathrm{C}, o-\mathrm{CH} \mathrm{Ph}$), $126.6(2 \mathrm{C},=\mathrm{CH} \alpha), 125.5$ (br, 4C, $i-\mathrm{C} \mathrm{Xy}^{\mathrm{co}}$), 123.9 (2C, $p-$ CH Xy ${ }^{\text {in }}$), 19.6 (4C, Me Xy ${ }^{\text {in }}$), 18.9 ($8 \mathrm{C}, \mathrm{Me} \mathrm{Xy}^{\mathrm{co}}$).

IR ($\left.\mathrm{cm}^{-1}\right): v(\mathrm{C} \equiv \mathrm{N}): 2184, v(\mathrm{C}=\mathrm{N}): 1629$.
Elemental analysis (\%): C, $63.25 \quad \mathrm{H}, 5.12 \quad \mathrm{~N}, 5.93$
Calcd for $\mathrm{C}_{76} \mathrm{H}_{70} \mathrm{Br}_{2} \mathrm{~N}_{6} \mathrm{Pd}_{2}$:
C, 63.39
H, 4.90
N, 5.84
Melting point: $226^{\circ} \mathrm{C}(\mathrm{dec})$.
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.

IR spectrum of $\mathbf{2 2}$

$\left[\mathrm{C}_{6} \mathrm{H}_{2}\left\{\mathrm{C}(=\mathrm{NXy})\{\mathrm{C}(=\mathrm{NXy})\}_{2}\{\operatorname{PdBr}(\mathrm{CNXy})\}\right\}_{2}-\mathbf{1 , 4}-(\boldsymbol{E}-\mathrm{CH}=\mathrm{CHPh})_{2}-2,5\right](23,23 *)$

trans,trans-2,5-Distyryl-1,4-dibromobenzene ($200 \mathrm{mg}, 0.45 \mathrm{mmol}$) was added to a suspension of $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right](518 \mathrm{mg}, 0.90 \mathrm{mmol})$ and $\mathrm{XyNC}(472 \mathrm{mg}, 3.60 \mathrm{mmol})$ in dry degassed toluene (15 mL) under N_{2}. The resulting mixture was refluxed for 5 h and then stirred at room temperature for 16 h . No significant color change was observed. The mixture was then concentrated in vacuo, and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The extract was filtered over anhydrous MgSO_{4}, and the resulting dark red solution was concentrated in vacuo to a volume of ca. 5 mL . Addition of $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ yielded a solid, which was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 5 \mathrm{~mL}$) and dried in vacuo to give 23,23* as a red solid. Yield: 322 mg (43\%).

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, $\mathrm{J}[\mathrm{Hz}]$, integral, assignment):

${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): Major isomer (23), 7.50-7.47 (m, 4H, o-H Ph), 7.32 (s, 2H, H3 aryl), $7.25\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=16,2 \mathrm{H}, \mathrm{H} \alpha\right), 7.25-7.22\left(\mathrm{~m}, 6 \mathrm{H}, m, p-\mathrm{H}\right.$ Ph), $7.21\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}\right.$ $\left.=7,2 \mathrm{H}, m-\mathrm{H} \mathrm{Xy}^{\mathrm{in}, \mathrm{A}}\right), 7.12-7.07\left(\mathrm{~m}, 4 \mathrm{H}, p-\mathrm{H} \mathrm{Xy}^{\mathrm{co}}, p-\mathrm{H} \mathrm{Xy}^{\mathrm{in}, \mathrm{A}}\right), 6.98\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,2 \mathrm{H}, m-\right.$ $\left.\mathrm{H} \mathrm{Xy}^{\mathrm{in}, \mathrm{B}}\right), 6.95-6.84\left(\mathrm{~m}, 12 \mathrm{H}, m-\mathrm{H}^{\mathrm{co}}, m^{\prime}-\mathrm{H} \mathrm{Xy}^{\mathrm{in}, \mathrm{B}}, m^{\prime}-\mathrm{HXX}^{\mathrm{in}, \mathrm{A}}, m-\mathrm{HXy}^{\mathrm{in}, \mathrm{C}}, p-\mathrm{H} \mathrm{Xy}^{\mathrm{in}, \mathrm{B}}\right)$, $6.67\left(\mathrm{~d}^{3}{ }^{3} \mathrm{~J}_{\mathrm{HH}}=16,2 \mathrm{H}, \mathrm{H} \beta\right), 6.40-6.34\left(\mathrm{~m}, 4 \mathrm{H}, m^{\prime}-\mathrm{H} \mathrm{Xy}^{\mathrm{in}, \mathrm{C}}, p-\mathrm{H} \mathrm{Xy}^{\mathrm{in}, \mathrm{C}}\right), 2.77(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}$ $\mathrm{Xy}^{\mathrm{in}, \mathrm{A}}$), 2.33 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Me} \mathrm{Xy}{ }^{\mathrm{in}, \mathrm{B}}$), 2.26 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Me} \mathrm{Xy}{ }^{\mathrm{in}, \mathrm{C}}$), 2.13 ($\mathrm{s}, 12 \mathrm{H}, \mathrm{Me} \mathrm{Xy}^{\mathrm{co}}$), 2.06 (s , $6 H^{\prime}, \mathrm{Me}^{\prime} \mathrm{Xy}^{\mathrm{in}, \mathrm{B}}$), $1.66\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}^{\prime} \mathrm{Xy}^{\mathrm{in}, \mathrm{A}}\right.$), 1.15 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Me}^{\prime} \mathrm{Xy}^{\mathrm{in}, \mathrm{C}}$). Minor isomer ($\mathbf{2 3}^{*}$, only some resonances), $7.39\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H} 3\right.$ aryl), $7.07\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=16,2 \mathrm{H}, \mathrm{H} \alpha\right), 6.78\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=\right.$ $16,2 H, H \beta$), 2.75 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Me} \mathrm{Xy}^{\text {in,a }}$), 2.48 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Me} \mathrm{Xy}^{\text {in,c }}$), 2.34 (s, 6H, Me Xy ${ }^{\text {in,b }}$), 2.15 (s, 12H, Me Xy ${ }^{\mathrm{co}}$), 2.04 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Me}^{\prime} \mathrm{Xy}^{\mathrm{in}, \mathrm{a}}$), 1.69 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Me}^{\text {' }} \mathrm{Xy}^{\mathrm{in}, \mathrm{b}}$), 1.11 (s, $6 \mathrm{H}, \mathrm{Me}^{\text {, }}$ $X y^{\text {in, } c}$).
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}$ (150.9 MHz, CDCl_{3}): Major isomer (23), $174.81\left(2 \mathrm{C}, \mathrm{C}^{\mathrm{A}}=\mathrm{N}\right)$, $174.75(2 \mathrm{C}, \mathrm{C}=\mathrm{N}), 169.7(2 \mathrm{C}, \mathrm{C}=\mathrm{N}), 151.0\left(2 \mathrm{C}, i-\mathrm{C} \mathrm{Xy}^{\mathrm{in}, \mathrm{C}}\right), 147.8\left(2 \mathrm{C}, i-\mathrm{C} \mathrm{Xy}^{\mathrm{in}, \mathrm{B}}\right), 143.4$ (2C, $i-\mathrm{C} \mathrm{Xy}^{\mathrm{in}, \mathrm{A}}$), 138.3 (br, 2C, C $\equiv \mathrm{N}$), 136.2 ($2 \mathrm{C}, i-\mathrm{C} \mathrm{Ph}$), 134.90 ($4 \mathrm{C}, o-\mathrm{C} \mathrm{Xy}^{\mathrm{co}}$), 134.8 (2C, C2 aryl), 134.1 ($2 \mathrm{C},=\mathrm{CH} \beta$), 131.93 ($2 \mathrm{C}, \mathrm{C} 1$ aryl), 131.5 ($2 \mathrm{C}, o-\mathrm{C} \mathrm{Xy}^{\mathrm{in}, \mathrm{A}}$), 129.5 (2C, $p-\mathrm{CH} \mathrm{Xy}{ }^{\mathrm{co}}$), 129.11 ($2 \mathrm{C}, p-\mathrm{CH} \mathrm{Ph}$), 129.08 ($4 \mathrm{C}, m-\mathrm{CH} \mathrm{Ph}$), 128.8 ($2 \mathrm{C}, m^{\prime}$ '- CH
$\left.\mathrm{Xy}^{\mathrm{in}, \mathrm{A}}\right), 128.39\left(2 \mathrm{C}, m-\mathrm{CH} \mathrm{Xy}{ }^{\mathrm{in}, \mathrm{C}}\right)$, 128.2 (2C, $\left.m^{\prime}-\mathrm{CH} \mathrm{Xy}{ }^{\mathrm{in}, \mathrm{B}}\right)$, 127.99 (2C, $m-\mathrm{CH} \mathrm{Xy}^{\mathrm{in}, \mathrm{B}}$), 127.9 ($2 \mathrm{C}, o^{\prime}-\mathrm{C} \mathrm{Xy}^{\mathrm{in}, \mathrm{A}}$), 127.70 ($4 \mathrm{C}, m-\mathrm{CH} \mathrm{Xy}{ }^{\mathrm{co}}$), 127.68 ($2 \mathrm{C}, o^{\prime}-\mathrm{C} \mathrm{Xy}^{\mathrm{in}, \mathrm{C}}$), 127.6 (2 C , $m-\mathrm{CH} \mathrm{Xy}{ }^{\mathrm{in}, \mathrm{A}}$), 127.43 ($2 \mathrm{C}, p-\mathrm{CH} \mathrm{Xy}{ }^{\mathrm{in}, \mathrm{A}}$), 127.32 ($4 \mathrm{C}, o-\mathrm{CH} \mathrm{Ph}$), 127.21 ($2 \mathrm{C}, m^{\prime}-\mathrm{CH}$ $\left.\mathrm{Xy}^{\mathrm{in}, \mathrm{C}}\right), 127.18\left(2 \mathrm{C}, o^{\prime}-\mathrm{C} \mathrm{Xy}{ }^{\mathrm{in}, \mathrm{B}}\right), 126.6$ (2C, i-C Xy $\left.{ }^{\mathrm{in}, \mathrm{D}}\right), 126.25$ (2C, CH3 aryl), 125.3 ($2 \mathrm{C}, o-\mathrm{C} \mathrm{Xy}^{\mathrm{in}, \mathrm{C}}$), 124.33 (2C, $p-\mathrm{CH} \mathrm{Xy}^{\mathrm{in}, \mathrm{B}}$), 124.27 ($2 \mathrm{C}, p-\mathrm{CH} \mathrm{Xy}{ }^{\mathrm{in}, \mathrm{C}}$), 123.67 (2 C , $=\mathrm{CH} \alpha), 122.0\left(2 \mathrm{C}, o-\mathrm{CXX}^{\mathrm{in}, \mathrm{B}}\right), 20.8\left(2 \mathrm{C}, \mathrm{Me} \mathrm{Xy}^{\mathrm{in}, \mathrm{A}}\right), 20.0\left(2 \mathrm{C}, \mathrm{Me} \mathrm{Xy}^{\mathrm{in}, \mathrm{C}}\right), 19.1$ (2C, Me $\left.\mathrm{Xy}^{\mathrm{in}, \mathrm{B}}\right), 18.89$ (2C, Me' $\mathrm{Xy}^{\mathrm{in}, \mathrm{B}}$), 18.72 (4C, Me Xy ${ }^{\mathrm{co}}$), 18.3 (2C, Me' $\mathrm{Xy}^{\mathrm{in}, \mathrm{A}}$), 17.7 (2C, Me' $\mathrm{Xy}^{\mathrm{in}, \mathrm{C}}$). Minor isomer ($\mathbf{2 3}^{*}$), $174.9(2 \mathrm{C}, \mathrm{C}=\mathrm{N}), 174.5\left(2 \mathrm{C}, \mathrm{C}^{\mathrm{a}}=\mathrm{N}\right), 169.1(2 \mathrm{C}, \mathrm{C}=\mathrm{N})$, 150.8 ($2 \mathrm{C}, i$ - $\mathrm{CXy}^{\mathrm{in}, \mathrm{c}}$), 147.6 (2C, i-C Xy ${ }^{\text {in,b }}$), 143.3 (2C, i-C Xy ${ }^{\text {in,a }}$), 136.3 (2C, $i-\mathrm{C} \mathrm{Ph}$), 134.91 ($4 \mathrm{C}, o-\mathrm{C} \mathrm{Xy}{ }^{\mathrm{co}}$), 134.5 (2C, C2 aryl), 133.6 ($2 \mathrm{C},=\mathrm{CH} \beta$), 131.85 ($2 \mathrm{C}, \mathrm{C} 1$ aryl), 131.1 ($2 \mathrm{C}, o-\mathrm{C} \mathrm{Xy}^{\mathrm{in}, \mathrm{a}}$), 129.5 ($2 \mathrm{C}, p-\mathrm{CH} \mathrm{Xy}{ }^{\mathrm{co}}$), 129.11 ($2 \mathrm{C}, p-\mathrm{CH} \mathrm{Ph}$), 129.04 ($4 \mathrm{C}, m-\mathrm{CH}$ Ph), 128.9 ($2 \mathrm{C}, m^{\prime}-\mathrm{CH} \mathrm{Xy}{ }^{\mathrm{in}, \mathrm{A}}$), 128.43 (2C, $m-\mathrm{CH} \mathrm{Xy}{ }^{\mathrm{in}, \mathrm{C}}$), 128.11 ($2 \mathrm{C}, o^{\prime}-\mathrm{C} \mathrm{Xy}^{\mathrm{in}, \mathrm{B}}$), 128.08 ($2 \mathrm{C}, m^{\prime}-\mathrm{CH} \mathrm{Xy}^{\text {in,b }}$), 128.01 ($2 \mathrm{C}, m-\mathrm{CH} \mathrm{Xy}{ }^{\mathrm{in}, \mathrm{b}}$), 127.97 ($2 \mathrm{C}, o^{\prime}-\mathrm{C} \mathrm{Xy}^{\text {in,c }}$), 127.8 $\left(2 \mathrm{C}, o^{\prime}-\mathrm{C} \mathrm{Xy}^{\mathrm{in}, \mathrm{a}}\right), 127.70\left(4 \mathrm{C}, m-\mathrm{CH} \mathrm{Xy}{ }^{\mathrm{co}}\right), 127.5\left(2 \mathrm{C}, m-\mathrm{CH} \mathrm{Xy}{ }^{\mathrm{in}, \mathrm{a}}\right), 127.43(2 \mathrm{C}, p-\mathrm{CH}$ $\left.\mathrm{Xy}^{\mathrm{in}, \mathrm{a}}\right), 127.42(4 \mathrm{C}, o-\mathrm{CH} \mathrm{Ph}), 127.25\left(2 \mathrm{C}, m^{\prime}-\mathrm{CH} \mathrm{Xy}{ }^{\mathrm{in}, \mathrm{c}}\right), 126.6$ (2C, $\left.i-\mathrm{C} \mathrm{Xy}^{\mathrm{co}}\right), 125.79$ (2C, CH3 aryl), 125.0 (2C, $o-\mathrm{C} \mathrm{Xy}^{\text {in, }}$), 124.33 ($2 \mathrm{C}, p-\mathrm{CH} \mathrm{Xy}{ }^{\text {in,b }}$), 124.27 ($2 \mathrm{C}, p-\mathrm{CH}$ $\mathrm{Xy}^{\mathrm{in}, \mathrm{c}}$), 123.91 ($2 \mathrm{C},=\mathrm{CH} \alpha$), 121.7 ($2 \mathrm{C}, o-\mathrm{C} \mathrm{Xy}^{\mathrm{in}, \mathrm{b}}$), 20.5 ($2 \mathrm{C}, \mathrm{Me} \mathrm{Xy}^{\mathrm{in}, \mathrm{a}}$), 20.4 (2C, Me $\mathrm{Xy}^{\mathrm{in}, \mathrm{c}}$), 19.3 (2C, Me Xy ${ }^{\mathrm{in}, \mathrm{b}}$), 18.85 (2C, Me' $\mathrm{Xy}^{\mathrm{in}, \mathrm{a}}$), 18.73 (4C, Me Xy ${ }^{\text {co }}$), 18.6 (2C, Me' $\left.X y^{i n, b}\right), 17.8\left(2 \mathrm{C}, \mathrm{Me}^{\prime} \mathrm{Xy}^{\mathrm{in}, \mathrm{c}}\right)$. The $\mathrm{C} \equiv \mathrm{N}$ resonance of the minor isomer is too weak to be observed.

IR (cm^{-1}): $v(\mathrm{C} \equiv \mathrm{N}): 2186, ~ v(\mathrm{C}=\mathrm{N}): 1632(\mathrm{br})$.
Elemental analysis (\%): C, $66.06 \quad \mathrm{H}, 5.33 \quad \mathrm{~N}, 6.53$
Calcd for $\mathrm{C}_{94} \mathrm{H}_{88} \mathrm{Br}_{2} \mathrm{~N}_{8} \mathrm{Pd}_{2}$:
C, 66.32
H, 5.21
N, 6.58
Melting point: $233{ }^{\circ} \mathrm{C}$.
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.

IR spectrum of $\mathbf{2 3 , 2 3 *}$

TlOTf ($123 \mathrm{mg}, 0.349 \mathrm{mmol}$) and tbbpy ($93 \mathrm{mg}, 0.349 \mathrm{mmol}$) were added to a solution of $\mathbf{I X}(100 \mathrm{mg}, 0.0872 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was stirred for 16 h at room temperature (color changed from reddish to yellow). Then, it was filtered over Celite, and the resulting yellow solution was evaporated to dryness. $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added to precipitate a solid, which was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and dried in vacuo to give $\mathbf{2 4}$ as a yellow solid. Yield: 206 mg (92%)

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, $\mathbf{J}[\mathrm{Hz}]$, integral, assignment):

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 9.08 (br s, 2H, tbbpy), 8.74 (s, 2H, HC=N), 8.57 (br s, 2 H , tbbpy), 8.20-7.95 (br m, 6 H , tbbpy), 7.69 (br s, 2 H , tbbpy), 7.49 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H} 3$ aryl), $3.92\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,4 \mathrm{H}, \mathrm{CH}_{2}{ }^{\mathrm{n}} \mathrm{Bu}\right.$), 1.83 (quint, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,4 \mathrm{H}, \mathrm{CH}_{2}{ }^{\mathrm{n}} \mathrm{Bu}\right), 1.52\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$ $\left.{ }^{\mathrm{n}} \mathrm{Bu}\right), 1.49\left(\mathrm{~s}, 36 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right.$ tbbpy), $0.96\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,6 \mathrm{H}, \mathrm{CH}_{3}{ }^{\mathrm{n}} \mathrm{Bu}\right)$.

IR ($\left.\mathrm{cm}^{-1}\right): v(\mathrm{C}=\mathrm{N}): 1614, v(\mathrm{~S}=\mathrm{O}): 1030,1280$.

Elemental analysis (\%):	C, 50.03	$\mathrm{H}, 5.58$	$\mathrm{~N}, 6.17$	$\mathrm{~S}, 4.73$
Calcd for $\mathrm{C}_{54} \mathrm{H}_{70} \mathrm{~F}_{6} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{Pd}_{2} \mathrm{~S}_{2}:$	$\mathrm{C}, 50.17$	$\mathrm{H}, 5.22$	$\mathrm{~N}, 6.45$	$\mathrm{~S}, 4.72$

Melting point: $204{ }^{\circ} \mathrm{C}$.
Conductivity: Λ_{M} (acetone): $143 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.
X-ray crystallography: Single crystals of $\mathbf{2 4} \cdot \mathbf{4} \mathrm{CHCl}_{3}$ were grown by liquid diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a solution of $\mathbf{2 4}$ in CHCl_{3}.

$\left.\left[\mathrm{C}_{6} \mathrm{H}_{2}\{\mathrm{PdBr}(\text { tbbpy })\}_{2} \mathbf{- 1 , 4 - (C H O}\right)_{2}-2,5\right](25 a)$

Complex IX ($500 \mathrm{mg}, 0.436 \mathrm{mmol}), \mathrm{NaBr}(897 \mathrm{mg}, 8.72 \mathrm{mmol})$, and $\mathrm{AcOH}(1$ mL) were added to a solution of tbbpy ($467 \mathrm{mg}, 1.74 \mathrm{mmol}$) in a 72 mL mixture of acetone and water (5:1), and the resulting suspension was refluxed for 6 h . A solid formed, which was filtered off, washed with water ($3 \times 10 \mathrm{~mL}$), and a small amount of acetone (2 mL). The solid was then redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, stirred with MgSO_{4} for 30 min and then filtered over additional MgSO_{4}, yielding a yellow solution, which was evaporated to dryness. $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added to precipitate a solid, which was filtered off, thoroughly washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and dried in vacuo to give 25a as a yellow solid. Yield: 852 mg (94%).

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, J[Hz], integral, assignment):

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $11.10(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CHO}), 9.31\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,2 \mathrm{H}, \mathrm{H} 16\right.$, tbbpy), 8.12 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H} 3$ aryl), $8.00\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,2 \mathrm{H}, \mathrm{H} 13\right.$ ' tbbpy), $7.98\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,2 \mathrm{H}\right.$, H 13 tbbpy), $7.57\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,2 \mathrm{H}, \mathrm{H} 15\right.$ ' tbbpy), $7.55\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,2 \mathrm{H}, \mathrm{H} 16\right.$ tbbpy), 7.33 (dd, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,2 \mathrm{H}, \mathrm{H} 15$ tbbpy), 1.45 ($\mathrm{s}, 18 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}{ }^{\prime}$ tbbpy), 1.38 (s, $18 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}$ tbbpy).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}$ (100.6 MHz, CDCl_{3}): 197.4 (2C, CHO), 163.9 (2C, C14' tbbpy), 163.7 (2C, C14 tbbpy), 156.1 (2C, C12 tbbpy), 154.1 (2C, C12' tbbpy), 152.6 (2C, C1 aryl), 151.3 (2C, CH16 tbbpy), 150.4 (2C, CH16' tbbpy), 143.9 (2C, C2 aryl), 135.8 (2C, CH3 aryl), 124.8 (2C, CH15 tbbpy), 124.0 (2C, CH15' tbbpy) 118.7 (2C, CH13 tbbpy), 118.2 (2C, CH13' tbbpy), 35.7 (4C, CMe_{3} and $\mathrm{CMe}{ }_{3}$ ' tbbpy), 30.6 (6C, $\mathrm{CMe}_{3}{ }^{\prime}$ tbbpy), 30.4 (6C, CMe ${ }_{3}$ tbbpy).

IR ($\left.\mathbf{c m}^{-1}\right): v(\mathrm{C}=\mathrm{O}): 1672$.
Elemental analysis (\%):
C, $50.82 \quad \mathrm{H}, 4.79$
N, 5.36
Calcd for $\mathrm{C}_{44} \mathrm{H}_{52} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Pd}_{2}$:
C, $50.74 \quad \mathrm{H}, 5.03$
N, 5.38

Melting point: $262{ }^{\circ} \mathrm{C}$.
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and CHCl_{3}. Low solubility in acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.

IR spectrum of $\mathbf{2 5 a}$

$\left[\mathrm{C}_{6} \mathrm{H}_{2}\{\mathrm{PdI}(\mathrm{tbbpy})\}_{2} \mathbf{- 1 , 4 - (C H O}\right)_{2}-\mathbf{2 , 5]}(\mathbf{2 5 b})$

Complex IX ($500 \mathrm{mg}, 0.44 \mathrm{mmol}$), $\mathrm{NaI}(1319 \mathrm{mg}, 8.8 \mathrm{mmol})$ and $\mathrm{AcOH}(1 \mathrm{~mL})$ were added to a solution of tbbpy ($472 \mathrm{mg}, 1.76 \mathrm{mmol}$) in a 72 mL mixture of acetone and water (5:1), and the resulting suspension was refluxed for 6 h . A solid formed, which was filtered off and washed with water $(3 \times 10 \mathrm{~mL})$ and a small amount of acetone (2 mL). The solid was then redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, stirred with MgSO_{4} for 30 min and then filtered over additional MgSO_{4}, yielding a yellow solution which was evaporated to dryness. $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added to precipitate a solid, which was filtered off, thoroughly washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and dried in vacuo to give 25b as a yellow solid. Yield: 879 mg (89%).

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, J[Hz], integral, assignment):

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $11.03(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CHO}), 9.53\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,2 \mathrm{H}, \mathrm{H} 16\right.$, tbbpy), 8.11 (s, 2H, H3 aryl), 7.99 (br s, 2H, H13' tbbpy), 7.95 (br s, 2H, H13 tbbpy), 7.54 (dd, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,2 \mathrm{H}, \mathrm{H} 15$ ' tbbpy) 7.38 (s, 4H, H15,16 tbbpy), 1.45 (s, 18H, ${ }^{\text {t}} \mathrm{Bu}{ }^{\prime}$ tbbpy), 1.39 ($\mathrm{s}, 18 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}$ tbbpy).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}$ ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 197.8 (2C, CHO), 163.42 and 163.37 (2C, C14,14' tbbpy), 155.7 (2C, C12 tbbpy), 154.1 (2C, C12' tbbpy) 152.6 (2C, CH16' tbbpy), 150.2 (2C, CH16 tbbpy), 149.2 (2C, C1 aryl), 143.6 (2C, C2 aryl), 136.6 (2C, CH3 aryl), 124.6 (2C, CH15 tbbpy), 124.0 (2C, CH15' tbbpy), 118.4 (2C, CH13 tbbpy), 118.1 (2C, CH13' tbbpy), 35.54 and 35.51 ($2 \mathrm{C}, \mathrm{CMe}_{3}$ tbbpy), 30.4 ($6 \mathrm{C}, \mathrm{CMe}_{3}{ }^{\prime}$ tbbpy), 30.2 (6C, CMe 3 tbbpy).

IR (cm^{-1}): $v(\mathrm{C}=\mathrm{O}): 1662$.
Melting point: $217^{\circ} \mathrm{C}$ (dec).
Elemental analysis (\%):
C, 46.59
H, 4.64
N, 5.03
Calcd for $\mathrm{C}_{44} \mathrm{H}_{52} \mathrm{I}_{2} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Pd}_{2}$:
C, 46.54
H, 4.62
N, 4.93

Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and CHCl_{3}. Low solubility in acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.

IR spectrum of $\mathbf{2 5 b}$

$\left.\left[\mathrm{C}_{6} \mathrm{H}_{2}\{\mathrm{C}(\mathrm{O})\{\mathrm{PdBr}(\text { tbbpy })\}\}_{2}-\mathbf{1 , 4 - (C H O}\right)_{2}-\mathbf{2 , 5}\right](26 a)$

26a

CO was bubbled for 30 min through a solution of $\mathbf{2 5 a}$ ($100 \mathrm{mg}, 0.08896 \mathrm{mmol}$) in THF (20 mL) under N_{2}, whereby the yellow color darkened. The mixture was then heated to $60^{\circ} \mathrm{C}$ for 4 h , in a CO atmosphere (whereby the color changed to red), and then filtered over MgSO_{4}, yielding a red solution which was evaporated to dryness. $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added to precipitate a solid, which was filtered off, thoroughly washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and dried in vacuo to give 26a as a pink solid. Yield: 72 mg (68\%).

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, J[Hz], integral, assignment):

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 11.01 (s, 2H, CHO,CHO"), $9.24\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,2 \mathrm{H}\right.$, H16' tbbpy), 8.48 (s, 1H, H3" aryl), 8.14 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H} 3$ aryl), 7.96 ($\mathrm{d},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,2 \mathrm{H}, \mathrm{H} 13$ ' tbbpy), 7.95 ($\mathrm{d},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,2 \mathrm{H}, \mathrm{H} 13$ tbbpy), 7.78 (d, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,2 \mathrm{H}, \mathrm{H} 16$ tbbpy), 7.53 (dd, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,2 \mathrm{H}, \mathrm{H} 15$ ' tbbpy), 7.38 (dd, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,2 \mathrm{H}, \mathrm{H} 15$ tbbpy), 1.44 (s, $18 \mathrm{H},{ }^{\text {t }} \mathrm{Bu}{ }^{\prime}$ tbbpy), 1.38 ($\mathrm{s}, 18 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}$ tbbpy).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 196.3 (2C, CHO,CHO"), 168.3 (2C, C1,1" aryl), 163.9 (2C, C14’ tbbpy), 163.7 (2C, C14 tbbpy), 155.9 (2C, C12 tbbpy), 154.1 (2C, C12' tbbpy) 151.6 (2C, CH16 tbbpy), 150.3 (2C, CH16' tbbpy), 144.6 (1C, CH3" aryl), 138.7 (2C, C2,2" aryl), 128.5 (1C, CH3 aryl), 124.7 (2C, CH15 tbbpy), 123.9 (2C, CH15' tbbpy), 118.6 (2C, CH13 tbbpy) 118.1 (2C, CH13' tbbpy), 35.7 (4C, CMe_{3} and CMe ${ }_{3}{ }^{\prime}$ tbbpy), 30.6 (6C, $\mathrm{CMe}_{3}{ }^{\prime}$ tbbpy), 30.4 (6C, CMe_{3} tbbpy).

IR (cm^{-1}): $v(\mathrm{C}=\mathrm{O}): 1682(\mathrm{br})$.
Melting point: $223^{\circ} \mathrm{C}$ (dec).
$\begin{array}{llll}\text { Elemental analysis (\%): } & \text { C, } 50.34 & \mathrm{H}, 4.78 & \mathrm{~N}, 5.10 \\ \text { Calcd for } \mathrm{C}_{46} \mathrm{H}_{52} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Pd}_{2}: & \text { C, } 50.12 & \mathrm{H}, 4.52 & \mathrm{~N}, 4.93\end{array}$
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.

IR spectrum of $\mathbf{2 6 a}$

$\left.\left[\mathrm{C}_{6} \mathrm{H}_{2}\{\mathrm{C}(\mathrm{O})\{\mathrm{PdI}(\text { tbbpy })\}\}_{2} \mathbf{- 1 , 4 - (C H O}\right)_{2}-\mathbf{2 , 5}\right](\mathbf{2 6 b})$

25b

$60^{\circ} \mathrm{C}, 4 \mathrm{~h}$
was bubbled for 30 min through a solution of $\mathbf{2 5 b}(100 \mathrm{mg}, 0.088 \mathrm{mmol})$ in THF (20 mL) under N_{2}, whereby the yellow color darkened. The mixture was then heated to $60^{\circ} \mathrm{C}$ for 4 h , in a CO atmosphere, and then filtered over MgSO_{4}, yielding a pink solution which was evaporated to dryness. $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added to precipitate a solid, which was filtered off, thoroughly washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and dried in vacuo to give 26b as a pink solid. Yield: 76 mg (73%).

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, J[Hz], integral, assignment):

${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $10.95(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CHO}, \mathrm{CHO}), 9.46\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,2 \mathrm{H}\right.$, H16' tbbpy), 8.48 (s, 1H, H3" aryl), 8.14 (s, 1H, H3 aryl), 7.96 (d, ${ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,2 \mathrm{H}, \mathrm{H} 13$ ' tbbpy), 7.95 ($\mathrm{d},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,2 \mathrm{H}, \mathrm{H} 13$ tbbpy), $7.64\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,2 \mathrm{H}, \mathrm{H} 16\right.$ tbbpy), $7.50(\mathrm{dd}$, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,2 \mathrm{H}, \mathrm{H} 15$ ' tbbpy), 7.43 (dd, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,2 \mathrm{H}, \mathrm{H} 15$ tbbpy), 1.43 (s, $18 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}{ }^{\prime}$ tbbpy), 1.38 ($\mathrm{s}, 18 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}$ tbbpy).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 196.8 (2C, CHO,CHO"), 165.8 (2C, C1,1" aryl), 163.7 (2C, C14 tbbpy), 163.6 (2C, C14’ tbbpy), 155.8 (2C, C12 tbbpy), 154.4 (2C, C12' tbbpy) 152.7 (2C, CH16' tbbpy), 150.6 (2C, CH16 tbbpy), 146.5 (1C, CH3" aryl), 138.9 (2C, C2,2" aryl), 128.3 (1C, CH3 aryl), 124.7 (2C, CH15 tbbpy), 124.1 (2C, CH15' tbbpy), 118.5 (2C, CH13 tbbpy) 118.2 (2C, CH13' tbbpy), 35.8 (2C, CMe_{3} tbbpy), 35.7 (2C, $\mathrm{CMe}_{3}{ }^{\prime}$ tbbpy), 30.6 (6C, CMe ${ }_{3}$ ' tbbpy), 30.5 (6C, CMe ${ }_{3}$ tbbpy).

IR ($\mathbf{c m}^{-1}$): $v(\mathrm{C}=\mathrm{O}): 1662,1678$.
Melting point: $258^{\circ} \mathrm{C}$ (dec).

Elemental analysis (\%):	C, 46.69	$\mathrm{H}, 4.67$	$\mathrm{~N}, 4.67$
Calcd for $\mathrm{C}_{46} \mathrm{H}_{52} \mathrm{I}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Pd}_{2}:$	$\mathrm{C}, 46.37$	$\mathrm{H}, 4.40$	$\mathrm{~N}, 4.70$

Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.

IR spectrum of $\mathbf{2 6 b}$

2,3,6,7-Tetrahydrobenzo[1,2-c:4,5-c’]dipyrrole-1,5-dione-2,6-dixylyl-3,7-bis\{=C ($\mathbf{N H X y}$)-C(=NXy)-[PdBr(CNXy)2] (27)

$\mathbf{2 5 a}$ ($300 \mathrm{mg}, 0.29 \mathrm{mmol}$) was added to a solution of $\mathrm{XyNC}(760 \mathrm{mg}, 5.8 \mathrm{mmol})$ in acetone under N_{2}, and the resulting mixture was stirred at $50^{\circ} \mathrm{C}$ for 16 h . A red solid formed, which was filtered off, washed with a small amount of acetone $(2 \times 3 \mathrm{~mL})$, and dried in vacuo to give 27 as a red solid. Yield: 226 mg (43\%).

NMR data. $\boldsymbol{\delta}(\mathbf{p p m})$ (multiplicity, $\mathbf{J}[\mathrm{Hz}]$, integral, assignment):
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 8.91 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H} 7$), $7.18-7.08\left(\mathrm{~m}, 10 \mathrm{H}, p-\mathrm{H} \mathrm{Xy}{ }^{\mathrm{in} 3}, p-\mathrm{H}\right.$ $\left.\mathrm{Xy}^{\mathrm{co}}, m-\mathrm{H} \mathrm{Xy}^{\mathrm{in} 3}\right), 6.91\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,8 \mathrm{H}, m-\mathrm{H} \mathrm{Xy}{ }^{\mathrm{co}}\right), 6.84\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,4 \mathrm{H}, m-\mathrm{H} \mathrm{Xy}^{\mathrm{in} 2}\right)$, $6.83\left(\mathrm{~d}^{3}{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,4 \mathrm{H}, m-\mathrm{H} \mathrm{Xy}^{\mathrm{in} 1}\right), 6.64\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,2 \mathrm{H}, p-\mathrm{H} \mathrm{Xy}^{\mathrm{in} 2}\right), 6.60\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8,2 \mathrm{H}\right.$, $p-\mathrm{H} \mathrm{Xy}^{\text {in } 1}$), 5.57 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NH}$), 2.62 ($\mathrm{s}, 12 \mathrm{H}, \mathrm{Me} \mathrm{Xy}^{\text {in1 }}$), 2.49 ($\mathrm{s}, 12 \mathrm{H}, \mathrm{Me} \mathrm{Xy}^{\text {in } 2}$), 2.20 (s , $12 \mathrm{H}, \mathrm{Me} \mathrm{Xy}{ }^{\mathrm{in} 3}$), 2.06 ($\mathrm{s}, 24 \mathrm{H}, \mathrm{Me} \mathrm{Xy}^{\mathrm{co}}$).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 167.4(2 \mathrm{C}, \mathrm{C}=\mathrm{N})$, 165.8 (2C, $\mathrm{C}=\mathrm{O}$), 149.1 (2C, $\left.i-\mathrm{C} \mathrm{Xy}^{\mathrm{in1}}\right)$, $142.8(2 \mathrm{C}, \mathrm{C} \equiv \mathrm{N}), 138.8$ (2C, C2), 138.7 (2C, $i-\mathrm{C} \mathrm{Xy}^{\mathrm{in} 2}$), 137.2 ($2 \mathrm{C}, i-\mathrm{C}$ $\mathrm{Xy}^{\mathrm{in} 3}$), 137.0 (4C, o-C Xy ${ }^{\mathrm{in} 3}$), 136.0 ($8 \mathrm{C}, o-\mathrm{C} \mathrm{Xy}^{\mathrm{co}}$), 134.57 (4C, $o-\mathrm{C} \mathrm{Xy}^{\mathrm{in} 2}$), 134.59 and 130.2 (2C, C4 and C5), 130.0 (4C, $p-\mathrm{CH} \mathrm{Xy}{ }^{\mathrm{co}}$), 129.7 ($2 \mathrm{C}, p-\mathrm{CH} \mathrm{Xy}{ }^{\mathrm{in} 3}$), 129.5 ($4 \mathrm{C}, o-\mathrm{C}$ $\left.\mathrm{Xy}^{\text {in } 1}\right), 129.29\left(4 \mathrm{C}, m-\mathrm{CH} \mathrm{Xy}{ }^{\text {in } 1}\right), 129.26\left(4 \mathrm{C}, m-\mathrm{CH} \mathrm{Xy}{ }^{\text {in } 3}\right), 128.9\left(4 \mathrm{C}, m-\mathrm{CH} \mathrm{Xy}^{\text {in } 2}\right)$, $128.0\left(8 \mathrm{C}, m-\mathrm{CH} \mathrm{Xy}{ }^{\mathrm{co}}\right.$), 125.9 ($2 \mathrm{C}, p-\mathrm{CH} \mathrm{Xy}{ }^{\mathrm{in} 2}$), 125.6 ($4 \mathrm{C}, i-\mathrm{C} \mathrm{Xy}^{\mathrm{co}}$), 124.6 ($2 \mathrm{C}, p-\mathrm{CH}$ $\mathrm{Xy}^{\mathrm{in} 1}$), 119.4 (2C, CH7), 112.2 (2C, C3), 21.5 (4C, Me Xy ${ }^{\text {in1 }}$), 20.6 (4C, Me Xy ${ }^{\text {in2 }}$), 19.1 ($8 \mathrm{C}, \mathrm{Me} \mathrm{Xy}{ }^{\mathrm{co}}$), 18.3 (4C, Me Xy ${ }^{\text {in3 }}$).

IR ($\left.\mathbf{c m}^{-1}\right): v(\mathrm{~N}-\mathrm{H}): 3376, v(\mathrm{C} \equiv \mathrm{N}): 2182, v(\mathrm{C}=\mathrm{O}): 1682, v(\mathrm{C}=\mathrm{N}): 1614$
Melting point: $217{ }^{\circ} \mathrm{C}$.
Elemental analysis (\%):
$\begin{array}{lll}\text { C, 64.80 } & \text { H, 5.22 } & \text { N, 7.71 } \\ \text { C, } 64.53 & \text { H, } 5.06 & \text { N, 7.78 }\end{array}$
Calcd for $\mathrm{C}_{98} \mathrm{H}_{94} \mathrm{Br}_{2} \mathrm{~N}_{10} \mathrm{O}_{2} \mathrm{Pd}_{2}$:
C, 64.53
N, 7.78
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.
X-ray crystallography: Single crystals of $\mathbf{2 7} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 2$ hexane were grown by liquid diffusion of hexane into a solution of 27 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

2,3,6,7-Tetrahydrobenzo[1,2-c:4,5-c']dipyrrole-1,5-dione-2,6-dixylyl-3,7-bis\{=C (NHXy)-C(O)NHXy (28)

TIOTf ($97.6 \mathrm{mg}, 0.276 \mathrm{mmol}$) was added to a solution of $27(250 \mathrm{mg}, 0.138$ mmol) in 1,2-dichloroethane (20 mL) under N_{2}, whereby the color changed from red to black. The mixture was heated to $70^{\circ} \mathrm{C}$ for 16 h , and then it was filtered over MgSO_{4}, yielding a yellow solution which was concentrated in vacuo to a volume of ca. 2 mL . A small amount of $\mathrm{Et}_{2} \mathrm{O}$ (ca. 5 mL) was added slowly until a yellow solid started to precipitate. The mixture was left in an ice bath for 24 h and then it was filtered over Celite, yielding again a yellow solution which was evaporated in vacuo to dryness. Hexane (15 mL) was added to precipitate a solid, which was filtered off, washed with hexane ($3 \times 5 \mathrm{~mL}$) and a small amount of cold $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$, and dried in vacuo to give $\mathbf{2 8}$ as a yellow solid. Yield: 25 mg (56\%).

NMR data. $\delta(p p m)$ (multiplicity, J[Hz], integral, assignment):

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 8.34 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H} 7$), $7.25-7.17$ ($\mathrm{m}, 6 \mathrm{H}, m, p-\mathrm{H} \mathrm{Xy}^{3}$), 7.06-7.00 (m, $2 \mathrm{H}, p-\mathrm{H} \mathrm{Xy}^{1}$), 7.00-6.92 (m, 10H, $m-\mathrm{H} \mathrm{Xy}^{1}, m, p-\mathrm{H} \mathrm{Xy}^{2}$), $6.89(\mathrm{~s}, 2 \mathrm{H}$, NH^{1}), $5.12\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}^{2}\right), 2.22\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{Me} \mathrm{Xy}{ }^{3}\right), 2.21\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{Me} \mathrm{Xy}^{2}\right), 1.70(\mathrm{~s}, 12 \mathrm{H}, \mathrm{Me}$ $X y^{1}$).
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 164.8 (2C, CO^{6}), $161.7\left(2 \mathrm{C}, \mathrm{CO}^{1}\right), 137.6(4 \mathrm{C}$, $o-\mathrm{C} \mathrm{Xy}^{3}$), 137.2 (2C, $i-\mathrm{C} \mathrm{Xy}^{2}$), 135.8 (2C, $i-\mathrm{C} \mathrm{Xy}^{3}$), 135.6 (4C, o-C Xy ${ }^{2}$), 135.2 (4C, o-C Xy^{1}), 133.4 (2C, C4 or C5), 132.5 (2C, $i-\mathrm{C} \mathrm{Xy}^{\mathrm{I}}$), 130.7 (2C, C5 or C4), 130.0 (2C, $p-\mathrm{CH}$ Xy^{3}), 129.3 (4C, $m-\mathrm{CH} \mathrm{Xy}^{2}$), 129.2 ($4 \mathrm{C}, m-\mathrm{CH} \mathrm{Xy}{ }^{3}$), 128.7 ($4 \mathrm{C}, m-\mathrm{CH} \mathrm{Xy}^{1}$), 127.7 (2C, $p-\mathrm{CH} \mathrm{Xy}{ }^{1}$), 127.4 (2C, C2), 126.9 (2C, $p-\mathrm{CH} \mathrm{Xy}$ 2), 118.2 (2C, CH7), 113.4 (2C, C3), 18.9 (4C, Me Xy ${ }^{2}$), 18.4 (4C, Me Xy ${ }^{3}$), 18.1 (4C, $\mathrm{Me} \mathrm{Xy}^{2}$).

IR (cm ${ }^{-1}$): $v(\mathrm{~N}-\mathrm{H}): 3369, v(\mathrm{C}=\mathrm{O}): 1674$ (br)
Exact Mass: HR ESI+ TOF MS: calcd for $28+\mathrm{H}^{+}\left(\mathrm{C}_{62} \mathrm{H}_{61} \mathrm{~N}_{6} \mathrm{O}_{4}\right) \mathrm{m} / \mathrm{z} 953.4749$, found $953.4758, \Delta=0.99 \mathrm{ppm}$.

Calculated:	$\mathbf{9 5 3 . 4 7 4 9}$ $(\mathbf{1 0 0})$	954.4781 (70.01)	955.4812 (25.03)	956.4842 (6.06)	957.4872 (1.12)
Found:	$\mathbf{9 5 3 . 4 7 5 8}$ $(\mathbf{1 0 0)}$	954.4789 (68.53)	955.4815 (22.15)	956.4835 (5.14)	957.491 (1.17)

Melting point: $217^{\circ} \mathrm{C}$
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Partially soluble in $\mathrm{Et}_{2} \mathrm{O}$ and insoluble in hexane.

X-ray crystallography: Single crystals of $\mathbf{2 8} \cdot 2 \mathrm{CDCl}_{3}$. were grown by slow evaporation of a solution of $\mathbf{2 8}$ in CDCl_{3}.

IR spectrum of 28

[$\{\text { PdI }(\text { tbbpy })\}_{3}\left(\mu_{3}-\mathrm{Cl}, \mathrm{C3}, \mathrm{C5}-\mathrm{C}_{6}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3} \mathbf{- 2 , 4 , 6 \}}\right]$ (29a)

29a

1,3,5-triiodo-2,4,6-trihydroxymethylbenzene (XV) ($76 \mathrm{mg}, 0.14 \mathrm{mmol}$) was added to a suspension of $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right](300 \mathrm{mg}, 0.52 \mathrm{mmol})$ and tbbpy $(140 \mathrm{mg}, 0.52$ $\mathrm{mmol})$ in dry degassed toluene (15 mL) under N_{2}. The resulting mixture was stirred at $90^{\circ} \mathrm{C}$ for 1 h until the dark red color of $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ was no longer observed. The brownish suspension was then concentrated in vacuo, and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The extract was filtered over Celite, and the resulting orange solution was evaporated to dryness. $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added to precipitate a solid, which was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and dried in vacuo to give 29a as a yellow solid. Yield: $445 \mathrm{mg}, 62 \%$.

NMR data. $\delta(\mathrm{ppm})$ (multiplicity, $\mathrm{J}[\mathrm{Hz}]$, integral, assignment):

${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $9.45\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,2 \mathrm{H}, \mathrm{H} 16\right.$ ' tbbpy), $9.30\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6\right.$, $1 \mathrm{H}, \mathrm{H} 16$ ' tbbpy), 7.93 ($\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,2 \mathrm{H}, \mathrm{H} 16$ tbbpy), 7.92 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H} 13$ tbbpy), 7.91 ($\mathrm{s}, 2 \mathrm{H}$, H13' tbbpy), 7.90 (s, 2H, H13 tbbpy), 7.87 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H} 13$ ' tbbpy), 7.76 ($\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,1 \mathrm{H}$, H16 tbbpy), $7.51\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,1 \mathrm{H}, \mathrm{H} 15\right.$ tbbpy), $7.45\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2\right.$, $2 \mathrm{H}, \mathrm{H} 15$ ' tbbpy), 7.41 (dd, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2,1 \mathrm{H}, \mathrm{H} 15$ ' tbbpy), 7.31 (dd, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=$ $2,2 \mathrm{H}, \mathrm{H} 15$ tbbpy), 5.88 (A part of ABX system, ${ }^{3} \mathrm{~J}_{\mathrm{AX}}=12,{ }^{2} \mathrm{~J}_{\mathrm{AB}}=11,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}-2$), 5.79 (B part of ABX system, $\left.{ }^{3} \mathrm{~J}_{\mathrm{BX}}=1,{ }^{2} \mathrm{~J}_{\mathrm{AB}}=11,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}-2\right), 5.74\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,2 \mathrm{H}\right.$, $\left.\mathrm{CH}_{2} \mathrm{OH}-4\right), 3.11$ (X part of ABX system, ${ }^{3} \mathrm{~J}_{\mathrm{AX}}=12,{ }^{3} \mathrm{~J}_{\mathrm{BX}}=1,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}-2$), $2.83(\mathrm{t}$, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}-4\right), 1.41\left(\mathrm{~s}, 9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right.$ tbbpy), $1.40\left(\mathrm{~s}, 18 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right.$ tbbpy), 1.39 (s, 18H, ${ }^{\text {t}} \mathrm{Bu}$ ' tbbpy), 1.39 ($\mathrm{s}, 9 \mathrm{H},{ }^{\text {t }} \mathrm{Bu}$ ' tbbpy).
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR ($150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 162.94 (2C, C14' tbbpy), 162.90 ($1 \mathrm{C}, \mathrm{C} 14{ }^{\text {' }}$ tbbpy), 162.7 (2C, C14 tbbpy), 162.6 (1C, C14 tbbpy), 156.1 (2C, C12 tbbpy), 155.1 (1C, C12 tbbpy), 154.7 (1C, C12' tbbpy), 154.0 (2C, C12’ tbbpy), 152.5 (1C, CH16 tbbpy), 152.4 (2C, CH16' tbbpy), 152.2 ($1 \mathrm{C}, \mathrm{C} 1$ aryl), 151.9 (2C, C3 aryl), 151.7 (1C,

CH16' tbbpy), 150.9 (2C, CH16 tbbpy), 143,9 (1C, C4 aryl), 143.5 (2C, C2 aryl), 124.6 (1C, CH15 tbbpy), 123.8 (2C, CH15' tbbpy), 123.3 (1C, CH15’ tbbpy), 122.8 (2C, CH15 tbbpy), 118.5 (2C, CH13 tbbpy), 118.0 (1C, CH13 tbbpy), 117.9 (3C, CH13' tbbpy), 71.3 (2C, $\mathrm{CH}_{2}-2$), 70.8 ($1 \mathrm{C}, \mathrm{CH}_{2}-4$), 35.6 ($1 \mathrm{C}, C \mathrm{Me}_{3}$ tbbpy), 35.6 ($2 \mathrm{C}, C \mathrm{Me}_{3}$ tbbpy), 35.5 ($2 \mathrm{C}, \mathrm{CMe}_{3}{ }^{\prime}$ tbbpy), 35.5 ($1 \mathrm{C}, \mathrm{CMe}_{3}{ }^{\prime}$ tbbpy), 30.57 and 30.54 ($3 \mathrm{C}, \mathrm{CMe}{ }_{3}$ and $\mathrm{CMe} e_{3}$, tbbpy), 30.56 and 30.53 ($6 \mathrm{C}, \mathrm{CMe}_{3}$ and $\mathrm{CMe}_{3}{ }^{\prime}$ tbbpy).

IR ($\mathbf{c m}^{-1}$): v(O-H): 3492.
Melting point: $219^{\circ} \mathrm{C}(\mathrm{dec})$.
Elemental analysis (\%):
C, 45.21
H, 4.74
N, 5.01
Calcd for $\mathrm{C}_{63} \mathrm{H}_{81} \mathrm{I}_{3} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{Pd}_{3}$:
C, 45.30
H, 4.89
N, 5.03

Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.

$\left[\{\text { PdI }(\text { tmeda })\}_{3}\left(\mu_{3}-\mathbf{C l}, \mathrm{C3}, \mathrm{C} 5-\mathrm{C}_{6}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3} \mathbf{- 2 , 4 , 6}\right\}\right](29 \mathrm{~b})$

1,3,5-triiodo-2,4,6-trihydroxymethylbenzene (XV) ($93 \mathrm{mg}, 0.17 \mathrm{mmol}$) was added to a suspension of $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right](300 \mathrm{mg}, 0.52 \mathrm{mmol})$ and tmeda $(78 \mu \mathrm{~L}, 0.52$ $\mathrm{mmol})$ in dry degassed toluene $(15 \mathrm{~mL})$ under N_{2}. The resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 1 h until the dark red color of $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ was no longer observed. The brownish suspension was then concentrated in vacuo, and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The extract was filtered over Celite, and the resulting yellow solution was evaporated to dryness. $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added to precipitate a solid, which was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and dried in vacuo to give 29b as a yellow solid. Yield: $124 \mathrm{mg}, 60 \%$.

NMR data. $\delta(\mathrm{ppm})$ (multiplicity, $\mathrm{J}[\mathrm{Hz}]$, integral, assignment):

${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 6.01 (A part of ABX system, ${ }^{2} \mathrm{~J}_{\mathrm{AB}}=11,{ }^{3} \mathrm{~J}_{\mathrm{AX}}=11$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}-2$), 5.98 (B part of ABX system, ${ }^{2} \mathrm{~J}_{\mathrm{AB}}=11,{ }^{3} \mathrm{~J}_{\mathrm{BX}}=3,2 \mathrm{H}, C \mathrm{H}_{2} \mathrm{OH}-2$), 5.64 (d, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}-4\right), 3.63\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}-4\right), 3.57(\mathrm{X}$ part of ABX system, ${ }^{3} \mathrm{~J}_{\mathrm{AX}}=11,{ }^{3} \mathrm{~J}_{\mathrm{BX}}=3,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}-2$), 2.92-2.85 (m, 2H, CH CH_{2} tmeda), 2.75-2.45 (several m, $10 \mathrm{H}, \mathrm{CH}_{2}$ tmeda), 2.73, 2.71, 2.69, 2.49, 2.38 and 2.23 (s, 6H, Me tmeda).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($150.9 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): 148.6 (1C, C 1 aryl), 147.5 (2C, C 3 aryl), 144.1 ($2 \mathrm{C}, \mathrm{C} 2$ aryl), 142.7 ($1 \mathrm{C}, \mathrm{C} 4$ aryl), 72.4 ($2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{OH}-2$), 69.5 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{OH}-4$), 63.0 ($1 \mathrm{C}, \mathrm{CH}_{2}$ tmeda), 62.9 ($2 \mathrm{C}, \mathrm{CH}_{2}$ tmeda), 58.65 ($1 \mathrm{C}, \mathrm{CH}_{2}$ tmeda), $58.61\left(2 \mathrm{C}, \mathrm{CH}_{2}\right.$ tmeda), 51.9, 51.3, 50.8, 50.4, 49.9 and 49.4 (2C, Me tmeda).

IR (cm $\left.{ }^{-1}\right): \mathrm{v}(\mathrm{O}-\mathrm{H}): 3465$.
Melting point: $197{ }^{\circ} \mathrm{C}$.

Elemental analysis (\%):	C, 27.07	H, 4.57	N, 6.63
Calcd for $\mathrm{C}_{27} \mathrm{H}_{57} \mathrm{I}_{3} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{Pd}_{3}:$	$\mathrm{C}, 26.72$	$\mathrm{H}, 4.73$	$\mathrm{~N}, 6.92$

Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.

IR spectrum of 29b

trans-[Pd\{ $\mathbf{C}_{6}\left(\mathrm{CH}_{2} \mathbf{O H}\right)_{3} \mathbf{- 2 , 4 , 6 - \mathrm { I } _ { \mathbf { 2 } } - \mathbf { 3 } , 5 \} \mathbf { I } (\mathbf { P M e } _ { 2 } \mathbf { P h }) _ { 2 }] (3 0)}$

$\mathrm{PPh}_{3}(268 \mathrm{mg}, 1.02 \mathrm{mmol})$ was added to a suspension of $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right](100 \mathrm{mg}$, 0.17 mmol) and 1,3,5-triiodo-2,4,6-trihydroxymethylbenzene (XV) ($93 \mathrm{mg}, 0.17$ $\mathrm{mmol})$ in dry degassed toluene $(15 \mathrm{~mL})$ under N_{2}, whereby the dark red color of $\left[\operatorname{Pd}(\mathrm{dba})_{2}\right]$ immediately disappeared. The mixture was stirred in an ice bath for 15 min and then the solvent was evaporated in vacuo and the residue extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL). The extract was filtered over Celite, and the resulting yellow solution was evaporated to dryness. $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added to precipitate a solid, which was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and dried in vacuo to give $\mathbf{3 0}$ as a pale pink solid. Yield: $94 \mathrm{mg}, 47 \%$.

NMR data. $\delta(\mathrm{ppm})$ (multiplicity, $\mathbf{J}[\mathrm{Hz}]$, integral, assignment):

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 7.66-7.42 (br s, $12 \mathrm{H}, o-\mathrm{H} \mathrm{PPh}_{3}$), 7.42-7.33 (m, 6 H , $\left.p-\mathrm{H} \mathrm{PPh}_{3}\right), 7.33-7.24\left(\mathrm{~m}, 12 \mathrm{H}, m-\mathrm{H}_{\mathrm{PPh}}^{3}\right.$), $4.96\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}-2\right), 4.94(\mathrm{~d}$, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}-4\right), 1.94\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}-4\right), 1.17\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}-\right.$ 2).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 169.0\left(\mathrm{t},{ }^{3} \mathbf{J}_{\mathrm{PC}}=1,1 \mathrm{C}, \mathrm{C} 1 \operatorname{aryl}\right), 145.1\left(\mathrm{t},{ }^{3} \mathbf{J}_{\mathrm{PC}}\right.$ $=3,2 \mathrm{C}, \mathrm{C} 2$ aryl), $141.9\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{PC}}=1,1 \mathrm{C}, \mathrm{C} 4\right.$ aryl), $135.0\left(\mathrm{br}, 12 \mathrm{C}, o-\mathrm{CH} \mathrm{PPh}_{3}\right), 131.2$ (vt, ${ }^{1} \mathrm{~J}_{\mathrm{CP}}+{ }^{3} \mathrm{~J}_{\mathrm{CP}}=47,6 \mathrm{C}, i$ - CPPh_{3}), $130.8\left(\mathrm{~s}, 6 \mathrm{C}, p-\mathrm{CH} \mathrm{PPh}_{3}\right), 128.2\left(\mathrm{vt},{ }^{3} \mathrm{~J}_{\mathrm{CP}}+{ }^{5} \mathrm{~J}_{\mathrm{CP}}=10\right.$, $12 \mathrm{C}, m-\mathrm{CH} \mathrm{PPh}_{3}$), 106.0 ($\mathrm{s}, 2 \mathrm{C}, \mathrm{C} 3$ aryl), 76.6 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{OH}-4$), 74.1 ($\mathrm{t},{ }^{4} \mathrm{~J}_{\mathrm{PC}}=1,2 \mathrm{C}$, $\mathrm{CH}_{2} \mathrm{OH}-2$).
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$-NMR (161.9 MHz, CDCl_{3}): 21.1 (s).
IR (cm $\left.{ }^{-1}\right): \mathbf{v (O - H) : ~} 3476$.
$\begin{array}{lll}\text { Elemental analysis (\%): } & \text { C, } 45.57 & \mathrm{H}, 3.37 \\ \text { Calcd for } \mathrm{C}_{45} \mathrm{H}_{39} \mathrm{I}_{3} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{Pd}: & \mathrm{C}, 45.93 & \mathrm{H}, 3.34\end{array}$
Melting point: $241{ }^{\circ} \mathrm{C}$.
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.

IR spectrum of 30

trans $-\left[\operatorname{Pd}\left\{\mathrm{C}_{6}(\mathbf{O H})_{3} \mathbf{- 2 , 4 , 6}-\mathrm{Br}_{2}-\mathbf{3 , 5} \mathbf{5} \mathbf{B r}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left(\mathbf{3 0}{ }^{\prime}\right)\right.$

$\mathrm{PPh}_{3}(294 \mathrm{mg}, 1.12 \mathrm{mmol})$ was added to a suspension of $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right](161 \mathrm{mg}$, 0.28 mmol) and $1,3,5$-tribromophloroglucinol (XVI') ($100 \mathrm{mg}, 0.28 \mathrm{mmol}$) in dry degassed toluene (15 mL) under N_{2}. The mixture was stirred at room temperature for 16 h , whereby the color changed from reddish to yellow. Then the solvent was evaporated in vacuo and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The extract was filtered over Celite, and the resulting yellow solution was evaporated to dryness. $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added to precipitate a solid, which was filtered off, washed with a small amount of cold $\mathrm{CHCl}_{3}(3 \times 2 \mathrm{~mL})$ (to dissolve the $\left[\mathrm{PdBr}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ formed in the reaction), and dried in vacuo to give $\mathbf{3 0}$ ' as a white solid. Yield: $100 \mathrm{mg}, 36 \%$.

NMR data. $\delta(\mathrm{ppm})$ (multiplicity, $\mathrm{J}[\mathrm{Hz}]$, integral, assignment):

${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $7.75-7.6\left(\mathrm{~m}, 12 \mathrm{H}, o-\mathrm{H} \mathrm{PPh}_{3}\right), 7.4-7.2(\mathrm{~m}, 18 \mathrm{H}, p, m-$ $\mathrm{H} \mathrm{PPh}_{3}$), 5.27 (s, 2H, OH-2), 5.10 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}-4$).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $149.9\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{CP}}=3,2 \mathrm{C}, \mathrm{C} 2\right.$ aryl), $146.7\left(\mathrm{t},{ }^{5} \mathrm{~J}_{\mathrm{CP}}=\right.$ $1,1 \mathrm{C}, \mathrm{C} 4$ aryl), $134.7\left(\mathrm{vt},{ }^{2} \mathrm{~J}_{\mathrm{CP}}+{ }^{4} \mathrm{~J}_{\mathrm{CP}}=13,12 \mathrm{C}, o-\mathrm{CH} \mathrm{PPh}_{3}\right), 131.0\left(\mathrm{vt},{ }^{1} \mathrm{~J}_{\mathrm{CP}}+{ }^{3} \mathrm{~J}_{\mathrm{CP}}=48\right.$, $6 \mathrm{C}, i-\mathrm{C} \mathrm{PPh}_{3}$), $130.5\left(\mathrm{~s}, 6 \mathrm{C}, p-\mathrm{CH} \mathrm{PPh}_{3}\right), 128.1\left(\mathrm{vt},{ }^{3} \mathrm{~J}_{\mathrm{CP}}+{ }^{5} \mathrm{~J}_{\mathrm{CP}}=10,12 \mathrm{C}, m-\mathrm{CH} \mathrm{PPh}_{3}\right)$, $118.5\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=5,1 \mathrm{C}, \mathrm{C} 1\right.$ aryl), 88.3 ($\mathrm{s}, 2 \mathrm{C}, \mathrm{C} 3$ aryl).
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$-NMR (121.4 MHz, CDCl_{3}): 24.9 (s).
IR ($\mathbf{c m}^{-1}$): v(O-H): 3451, 3480.
Elemental analysis (\%):
C, 50.78
H, 3.68
Calcd for $\mathrm{C}_{42} \mathrm{H}_{33} \mathrm{Br}_{3} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{Pd}$:
C, 50.76
H, 3.35

Melting point: $174{ }^{\circ} \mathrm{C}$.
Solubility: Soluble in acetone. Low solubility in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and CHCl_{3}. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.

IR spectrum of 30,

trans $-\left[\operatorname{Pd}\left\{\mathrm{C}_{6}(\mathrm{OMe})_{3}-\mathbf{2 , 4 , 6 - B r} \mathbf{r}_{2}-\mathbf{3 , 5}\right\} \operatorname{Br}\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathbf{3 0 `})$

$\mathrm{PPh}_{3}(89 \mathrm{mg}, 0.34 \mathrm{mmol})$ was added to a suspension of $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right](100 \mathrm{mg}, 0.17$ mmol) and 1,3,5-tribromo-2,4,6-trimethoxybenzene (XVII') ($138 \mathrm{mg}, 0.34 \mathrm{mmol}$) in dry degassed toluene $(15 \mathrm{~mL})$ under N_{2}, whereby the dark red color of $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ immediately disappeared. The mixture was stirred at $100^{\circ} \mathrm{C}$ for 45 min , and then the solvent was evaporated in vacuo and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL). The extract was filtered over Celite, and the resulting yellow solution was evaporated to dryness. $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added to precipitate a solid, which was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and dried in vacuo to give $\mathbf{3 0 "}$ as a white solid. Yield: $62 \mathrm{mg}, 35 \%$.

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, $\mathrm{J}[\mathrm{Hz}]$, integral, assignment):

${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 8.0-7.5 (br, $12 \mathrm{H}, o-\mathrm{H}^{\mathrm{PPh}}{ }_{3}$), 7.5-7.2 (br, 18H, $p, m-\mathrm{H}$ PPh_{3}), 3.75 (s, 6H, OMe-2), 3.56 (s, 3H, OMe-4).
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 155.9\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{CP}}=3,2 \mathrm{C}, \mathrm{C} 2 \operatorname{ary}\right), 152.3\left(\mathrm{t},{ }^{5} \mathrm{~J}_{\mathrm{CP}}\right.$ $=1,1 \mathrm{C}, \mathrm{C} 4$ aryl), $140.6\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=5,1 \mathrm{C}, \mathrm{C} 1\right.$ aryl), 135.2 (br, 12C, o-CH PPh_{3}), 131.6 (vt, ${ }^{1} \mathrm{~J}_{\mathrm{CP}}+{ }^{3} \mathrm{~J}_{\mathrm{CP}}=48,6 \mathrm{C}, i-\mathrm{C} \mathrm{PPh}_{3}$), 130.4 (br, 6C, $p-\mathrm{CH} \mathrm{PPh}_{3}$), 127.9 (br, $12 \mathrm{C}, m-\mathrm{CH} \mathrm{PPh}_{3}$), 107.6 (s, 2C, C3 aryl), 60.6 (s, 1C, OMe-4), 60.1 ($\mathrm{s}, 2 \mathrm{C}, \mathrm{OMe}-2$).
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$-NMR (161.9 MHz, CDCl_{3}): 23.8 (s).
Elemental analysis (\%):
C, 52.20
H, 3.90
Calcd for $\mathrm{C}_{45} \mathrm{H}_{39} \mathrm{Br}_{3} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{Pd}$:
C, 52.18
H, 3.79

Melting point: $240{ }^{\circ} \mathrm{C}$.
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.
X-ray crystallography: Single crystals of $\mathbf{3 0}$ " were grown by liquid diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a solution of $\mathbf{3 0}$ " in CDCl_{3}.

${ }^{1} \mathrm{H}$ NMR spectrum $(\mathbf{3 0 0} \mathbf{M H z})$ of $\mathbf{3 0}$ "

trans $-\left[\operatorname{Pd}\left\{\mathrm{C}_{6}(\mathrm{OMe})_{3}-\mathbf{2 , 4 , 6 - B r} \mathbf{r}_{2}-\mathbf{3 , 5}\right\} \mathrm{Br}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right](\mathbf{3 1})$

$\mathrm{PMe}_{2} \mathrm{Ph}(148 \mu \mathrm{~L}, 1.04 \mathrm{mmol})$ was added to a suspension of $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right](300 \mathrm{mg}$, 0.52 mmol) and 1,3,5-tribromo-2,4,6-trimethoxybenzene (XVII') ($105 \mathrm{mg}, 0.26$ mmol) in dry degassed toluene (15 mL) under N_{2}. The mixture was stirred at room temperature for 2 h , whereby the color changed from reddish to yellow. Then the solvent was evaporated in vacuo and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The extract was filtered over Celite, and the resulting orange solution was evaporated to dryness. $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ and hexane $(10 \mathrm{~mL})$ were added to precipitate a solid, which was filtered off, washed with hexane ($3 \times 5 \mathrm{~mL}$), and dried in vacuo to give $\mathbf{3 1}$ as a white solid. Yield: $131 \mathrm{mg}, 64 \%$.

NMR data. $\delta(p p m)$ (multiplicity, J[Hz], integral, assignment):

${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.58-7.53\left(\mathrm{~m}, 4 \mathrm{H}, o-\mathrm{H}, \mathrm{PMe}_{2} \mathrm{Ph}\right), 7.32-7.27(\mathrm{~m}, 6 \mathrm{H}$, $\left.p, m-\mathrm{H}, \mathrm{PMe}_{2} \mathrm{Ph}\right), 3.89(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OMe}-2), 3.66$ (s, 3H, OMe-4), 1.69 (vt, $12 \mathrm{H}, \mathrm{PMe} 2_{2} \mathrm{Ph},{ }^{2} \mathrm{~J}_{\mathrm{PH}}$ $+{ }^{4} \mathrm{~J}_{\mathrm{PH}}=7$).
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 157.3\left(\mathrm{t},{ }^{3} \mathbf{J}_{\mathrm{PC}}=3,2 \mathrm{C}, \mathrm{C} 2\right.$ aryl), $151.9\left(\mathrm{t},{ }^{5} \mathbf{J}_{\mathrm{PC}}\right.$ $=2,1 \mathrm{C}, \mathrm{C} 4$ aryl), $136.7\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{PC}}=6,1 \mathrm{C}, \mathrm{C} 1\right.$ aryl), $134.8\left(\mathrm{vt},{ }^{1} \mathrm{~J}_{\mathrm{CP}}+{ }^{3} \mathrm{~J}_{\mathrm{CP}}=47,2 \mathrm{C}, i-\mathrm{C}\right.$ $\mathrm{PMe}_{2} P h$), 131.2 ($\mathrm{vt},{ }^{2} \mathrm{~J}_{\mathrm{CP}}+{ }^{4} \mathrm{~J}_{\mathrm{CP}}=11,4 \mathrm{C}, o-\mathrm{CH} \mathrm{PMe}_{2} P h$), 129.7 (s, 2C, $p-\mathrm{CH} \mathrm{PMe}_{2} P h$), $128.1\left(\mathrm{vt},{ }^{3} \mathrm{~J}_{\mathrm{CP}}+{ }^{5} \mathrm{~J}_{\mathrm{CP}}=10,4 \mathrm{C}, m-\mathrm{CH} \mathrm{PMe}_{2} P h\right), 107.9\left(\mathrm{t},{ }^{4} \mathrm{~J}_{\mathrm{PC}}=1,2 \mathrm{C}, \mathrm{C} 3\right.$ aryl), $60.7(\mathrm{~s}$, $1 \mathrm{C}, \mathrm{OMe}-4), 60.2$ (s, 2C, OMe-2), $14.7\left(\mathrm{vt},{ }^{1} \mathrm{~J}_{\mathrm{CP}}+{ }^{3} \mathrm{~J}_{\mathrm{CP}}=321,4 \mathrm{C}, \mathrm{PMe} e_{2} \mathrm{Ph}\right)$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$-NMR ($121.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -5.6 (s).
Elemental analysis (\%):
C, 38.32
H, 3.72
Calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{Br}_{3} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{Pd}$:
C, $38.12 \quad \mathrm{H}, 3.97$

Melting point: $159{ }^{\circ} \mathrm{C}$.
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Partially soluble in $\mathrm{Et}_{2} \mathrm{O}$. Insoluble in hexane.

X-ray crystallography: Single crystals of $\mathbf{3 1}$ were grown by liquid diffusion of hexane into a solution of $\mathbf{3 1}$ in $\mathrm{Et}_{2} \mathrm{O}$.

$\left[\mathrm{C}_{6}\left\{\mathrm{C}(=\mathrm{NXy})\left(\text { trans }-\mathrm{PdI}(\mathrm{CNXy})_{2}\right)\right\}_{3}-1,3,5-\mathrm{Me}_{3}-2,4,6\right](32)$

XyNC ($97 \mathrm{mg}, 0.74 \mathrm{mmol}$) was added to a solution of complex XVIII (80 mg , $0.049 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ under N_{2}, and the resulting mixture was stirred at room temperature for 24 h . It was then filtered over Celite and the resulting yellow solution was evaporated to dryness. $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added to precipitate a solid, which was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and dried in vacuo to give $\mathbf{3 2}$ as a yellow solid. Yield: $62 \mathrm{mg}, 62 \%$.

NMR data. $\delta(\mathrm{ppm})$ (multiplicity, $\mathrm{J}[\mathrm{Hz}]$, integral, assignment):

${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{2 9 8 K}$): 7.11-7.06 (m, 6H, p-H Xy ${ }^{\mathrm{co}}$), 6.98-6.94 (m, $12 \mathrm{H}, m-\mathrm{H} \mathrm{Xy}^{\mathrm{co}}$), 6.81-6.75 (m, 9H, p, m-H Xy ${ }^{\text {in }}$), 3.05 (s, 9H, Me), 2.25 ($\mathrm{s}, 54 \mathrm{H}, \mathrm{Me} \mathrm{Xy)}$.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{2 4 3 K}$): $7.16\left(\mathrm{t},{ }^{3} \mathbf{J}_{\mathrm{HH}}=7,4 \mathrm{H}, p-\mathrm{H} \mathrm{Xy}^{\mathrm{co}}-3\right)$, $7.11(\mathrm{t}$, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,2 \mathrm{H}, p-\mathrm{H} \mathrm{Xy}^{\mathrm{co}}-1\right), 7.02\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7,8 \mathrm{H}, m-\mathrm{H} \mathrm{Xy}^{\mathrm{co}}-3\right), 6.97\left(\mathrm{~d}^{3} \mathrm{~J}_{\mathrm{HH}}=7,4 \mathrm{H}, m-\mathrm{H}\right.$ $\mathrm{Xy}^{\mathrm{co}}-1$), 6.87-6.79 (m, 9H, p,m-H Xy ${ }^{\text {in }}$), 3.18 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}-4$), 3.01 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Me}-2$), 2.33 (s , $6 \mathrm{H}, \mathrm{Me} \mathrm{Xy}{ }^{\mathrm{in}}$), 2.28 (s, $24 \mathrm{H}, \mathrm{Me} \mathrm{Xy}{ }^{\mathrm{co}}-3$), 2.22 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Me} \mathrm{Xy}{ }^{\mathrm{in}}$), 2.18 (s, $12 \mathrm{H}, \mathrm{Me} \mathrm{Xy}^{\mathrm{co}}-1$), 2.08 (s, 6H, Me Xy ${ }^{\text {in }}$).
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{2 4 3 K}\right.$): 178.2 ($1 \mathrm{C}, \mathrm{C}=\mathrm{N}-1$), 178.0 ($2 \mathrm{C}, \mathrm{C}=\mathrm{N}-$ 3), 150.5 ($1 \mathrm{C}, i-\mathrm{C} \mathrm{Xy}^{\mathrm{in}}-1$), 150.2 ($2 \mathrm{C}, i-\mathrm{C} \mathrm{Xy}^{\mathrm{in}}-3$), 146.3 ($2 \mathrm{C}, \mathrm{C} \equiv \mathrm{N}-1$), 145.6 ($4 \mathrm{C}, \mathrm{C} \equiv \mathrm{N}-$ 3), 142.9 ($2 \mathrm{C}, \mathrm{C} 2$ aryl), 142.7 ($1 \mathrm{C}, \mathrm{C} 4$ aryl), 135.5 ($8 \mathrm{C}, o-\mathrm{C} \mathrm{Xy}^{\mathrm{co}}-3$), 135.3 (4C, o-C $\mathrm{Xy}^{\mathrm{co}}-1$), 130.0 ($4 \mathrm{C}, p-\mathrm{CH} \mathrm{Xy}{ }^{\mathrm{co}}-3$), 129.9 ($2 \mathrm{C}, p-\mathrm{CH} \mathrm{Xy}{ }^{\mathrm{co}}-1$), 128.13 ($12 \mathrm{C}, m-\mathrm{CH} \mathrm{Xy}^{\mathrm{co}}-3$ $\left.+\mathrm{Xy}^{\text {in }}\right), 128.09(2 \mathrm{C}, m-\mathrm{CH} \mathrm{Xy}$ in $), 127.9\left(4 \mathrm{C}, m-\mathrm{CH} \mathrm{Xy}{ }^{\mathrm{co}}-1\right), 127.54,127.52$, and 127.46 (2 C each, $o-\mathrm{C} \mathrm{Xy}^{\text {in }}$), 126.3 ($2 \mathrm{C}, \mathrm{C} 3$ aryl), 126.2 ($1 \mathrm{C}, \mathrm{C} 1$ aryl), 125.2 ($2 \mathrm{C}, i-\mathrm{C} \mathrm{Xy}^{\mathrm{co}}-1$), 125.0 ($4 \mathrm{C}, i-\mathrm{C} \mathrm{Xy}^{\mathrm{co}}-3$), 123.85 ($1 \mathrm{C}, p-\mathrm{CH} \mathrm{Xy}{ }^{\mathrm{in}}-1$), 123.78 ($2 \mathrm{C}, p-\mathrm{CH} \mathrm{Xy}{ }^{\mathrm{in}}-3$), 21.3 (2 C , Me-2), 20.7 (1C, Me-4), 20.1, 20.0 and 19.5 (2C each, Me Xy ${ }^{\text {in }}$), 19.4 (8C, Me Xy ${ }^{\mathrm{co}}-3$), 18.8 (4C, Me Xy ${ }^{\mathrm{co}}-1$).

IR ($\left.\mathrm{cm}^{-1}\right): v(\mathrm{C} \equiv \mathrm{N}): 2174, v(\mathrm{C}=\mathrm{N}): 1630$.
Elemental analysis (\%):
C, 53.76
H, 4.56
N, 6.29
Calcd for $\mathrm{C}_{90} \mathrm{H}_{90} \mathrm{I}_{3} \mathrm{~N}_{9} \mathrm{Pd}_{3}$:
C, 54.11
H, 4.54
N, 6.31

Melting point: $229^{\circ} \mathrm{C}$ (dec).
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.

IR spectrum of 32 (298K)

${ }^{1} \mathrm{H}$ NMR spectrum $(600 \mathrm{MHz}, 298 \mathrm{~K})$ of 32

${ }^{1} \mathrm{H}$ NMR spectrum $(600 \mathrm{MHz}, 243 \mathrm{~K})$ of 32

trans $-\left[\mathbf{P d}\left(\mathbf{N}_{4} \mathbf{C M e}\right)_{2}\left(\mathbf{P P h}_{3}\right)_{2}\right](\mathbf{3 3 a})$

This complex was prepared by two different methods:
(i) By refluxing: A solution of trans- $\left[\mathrm{Pd}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](20.0 \mathrm{mg}, 0.028 \mathrm{mmol})$ in acetonitrile (4 mL) was refluxed for 12 h , whereupon the solvent was removed in vacuo. The residue was washed with $\mathrm{Et}_{2} \mathrm{O}$ to obtain a white crystalline solid. Recrystallization from a $\mathrm{CHCl}_{3} / \mathrm{Et}_{2} \mathrm{O}$ mixture gave the complex 33a as a white solid. Yield: 60\%.
(ii) By focused microwave irradiation: Identical amounts of the reagents described above were added to a cylindrical Pyrex tube which was then placed in the focused microwave reactor. The system was left under irradiation for 1 h at $125^{\circ} \mathrm{C}$. The solvent was then removed in vacuo and the resulting solid residue was treated in a manner similar to that described above to obtain 33a as a white crystalline solid. Yield: 58\%.

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, $J[H z]$, integral, assignment):

${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 1.88,2.01,2.21$, and $2.24(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}), 7.30-7.72(\mathrm{~m}, 30 \mathrm{H}$, aromatic).
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right): 9.93,9.95,10.60$, and 10.69 (Me), 125.44-135.64 ($\mathrm{C}_{\text {aromatic }}$), 151.44, 156.74, 157.01, and $161.27(\mathrm{C}=\mathrm{N})$.
${ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right): 17.65,18.08,23.02$ and 29.19 (the signal in italic was not observed when the complex was prepared under refluxing conditions).

IR ($\left.\mathbf{c m}^{\mathbf{- 1}}, \mathbf{K B r}\right): 693$ and $1436\left(\mathrm{PPh}_{3}\right), 1630(\mathrm{C}=\mathrm{N})$
Elemental analysis (\%):
C, $60.51 \quad \mathrm{H}, 4.31$
N, 14.30
Calcd for $\mathrm{C}_{40} \mathrm{H}_{36} \mathrm{~N}_{8} \mathrm{P}_{2} \mathrm{Pd}$:
C, 60.27
H, 4.55
N, 14.06
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.
$\mathbf{E S I}^{+}$-MS: $m / z 798[\mathbf{M}+1]^{+}$

trans $-\left[\mathbf{P d}\left(\mathbf{N}_{4} \mathbf{C P h}\right)_{2}\left(\mathbf{P P h}_{3}\right)_{2}\right](\mathbf{3 3 b})$

This complex was prepared by two different methods:
(i) By refluxing: A solution of trans- $\left[\mathrm{Pd}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](20.0 \mathrm{mg}, 0.028 \mathrm{mmol})$ in benzonitrile (4 mL) was refluxed for 12 h , whereupon the solvent was removed in vacuo. The residue was washed with $\mathrm{Et}_{2} \mathrm{O}$ to obtain a white crystalline solid. Recrystallization from a $\mathrm{CHCl}_{3} / \mathrm{Et}_{2} \mathrm{O}$ mixture gave the complex $\mathbf{3 3 b}$ as a white solid. Yield: 58\%.
(ii) By focused microwave irradiation: Identical amounts of the reagents described above were added to a cylindrical Pyrex tube which was then placed in the focused microwave reactor. The system was left under irradiation for 1 h at $125^{\circ} \mathrm{C}$. The solvent was then removed in vacuo and the resulting solid residue was treated in a manner similar to that described above to obtain 33b as a white crystalline solid. Yield: 62\%.

NMR data. $\delta(\mathrm{ppm})$ (multiplicity, $\mathrm{J}[\mathrm{Hz}]$, integral, assignment):

${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 7.21-7.59(\mathrm{~m}, 40 \mathrm{H}$, aromatic).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): 126.24-135.52\left(\mathrm{C}_{\text {aromatic }}\right), 164.54(\mathrm{C}=\mathrm{N})$.
${ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right): 18.40,22.82$, and 29.25 (only the signal in italic was observed when the complex was obtained under refluxing conditions).

IR ($\left.\mathbf{c m}^{\mathbf{- 1}}, \mathbf{K B r}\right): 693$ and $1437\left(\mathrm{PPh}_{3}\right), 1638(\mathrm{C}=\mathrm{N})$
Elemental analysis (\%): C, $65.56 \quad \mathrm{H}, 4.19 \quad \mathrm{~N}, 11.93$
Calcd for $\mathrm{C}_{50} \mathrm{H}_{40} \mathrm{~N}_{8} \mathrm{P}_{2} \mathrm{Pd}$:
C, 65.19
H, 4.38
N, 12.16
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.
ESI ${ }^{+}$-MS: $m / z 922[\mathrm{M}+1]^{+}$.
X-ray crystallography: Single crystals of 33b were grown by slow evaporation of a CHCl_{3} solution of the product.
trans-[$\left.\mathbf{P d}\left(\mathbf{N}_{4} \mathrm{C}\left(4-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)\right)_{2}\left(\mathbf{P P h}_{3}\right)_{2}\right](\mathbf{3 3 c})$

This complex was prepared by two different methods:
(i) By refluxing: To a 4 mL solution of trans- $\left[\mathrm{Pd}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](20.0 \mathrm{mg}, 0.028$ mmol) in DMF was added 4-chlorobenzonitrile (0.280 mmol). The resulting mixture was refluxed for 12 h . The solution became turbid as the product started to precipitate. The mixture was cooled and the solid was filtered off, washed several times with 5 mL portions of $\mathrm{Et}_{2} \mathrm{O}$, and dried in vacuo to give $\mathbf{3 3 c}$ as a white solid. Yield: 55\%
(ii) By focused microwave irradiation: Complex 33c was also prepared by dissolving the above mentioned amounts of the reagents in DMF (4 mL) and irradiating the solution with focused microwave for 1 h at $125^{\circ} \mathrm{C}$. A white precipitate formed which was washed several times with $\mathrm{Et}_{2} \mathrm{O}$ and dried in vacuo to give $\mathbf{3 3 c}$ as a white solid. Yield: 58\%.

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, $\mathrm{J}[\mathrm{Hz}]$, integral, assignment):

${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 7.19-7.79(\mathrm{~m}, 38 \mathrm{H}$, aromatic).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right): 127.39-135.63$ ($\mathrm{C}_{\text {aromatic }}$). The signal of the imine moiety $(\mathrm{C}=\mathrm{N})$ could not be observed even after more scans and/or by using DMSO- d_{6} as solvent.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right): 18.53,20.05,22.91$, and 29.23 (only one signal of ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR in DMSO- d_{6} at $\delta 25.65$ was observed when the complex was obtained under refluxing conditions).

IR ($\left.\mathbf{c m}^{\mathbf{- 1}}, \mathbf{K B r}\right): 691$ and $1438\left(\mathrm{PPh}_{3}\right), 1630(\mathrm{C}=\mathrm{N})$
$\begin{array}{llll}\text { Elemental analysis (\%): } & \text { C, } 60.41 & \text { H, 3.71 } & \text { N, } 11.50 \\ \text { Calcd for } \mathrm{C}_{50} \mathrm{H}_{38} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{P}_{2} \mathrm{Pd}: & \text { C, } 60.65 & \text { H, 3.87 } & \text { N, } 11.32\end{array}$
Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.
ESI ${ }^{+}$-MS: $m / z 991[\mathbf{M}+1]^{+}$.

trans $-\left[\mathbf{P d}\left(\mathbf{N}_{4} \mathbf{C}\left(4-\mathrm{FC}_{6} \mathbf{H}_{4}\right)\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](33 d)$

This complex can be prepared by two different methods:
(i) By refluxing: To a 4 mL solution of trans- $\left[\mathrm{Pd}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](20.0 \mathrm{mg}, 0.028$ mmol) in DMF was added 4-fluorobenzonitrile (0.280 mmol). The resulting mixture was refluxed for 12 h . The solution became turbid as the product started to precipitate. The mixture was cooled and the solid was filtered off, washed several times with 5 mL portions of $\mathrm{Et}_{2} \mathrm{O}$, and dried in vacuo to give 33d as a white solid. Yield: 54\%
(ii) By focused microwave irradiation: Complex 33d was also prepared by dissolving the above mentioned amounts of the reagents in DMF (4 mL) and irradiating the solution with focused microwave for 1 h at $125^{\circ} \mathrm{C}$. A white precipitate formed which was washed several times with $\mathrm{Et}_{2} \mathrm{O}$ and dried in vacuo to give 33d as a white solid. Yield: 56\%.

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, $\mathrm{J}[\mathrm{Hz}]$, integral, assignment):
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 7.26-7.71(\mathrm{~m}, 38 \mathrm{H}$, aromatic).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: 129.17-133.71 ($\left.\mathrm{C}_{\text {aromatic }}\right), 161.11,161.83$, and 162.41 ($\mathrm{C}=\mathrm{N}$).
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}$ (DMSO- d_{6}): 25.50.
IR ($\left.\mathbf{c m}^{-1}, \mathbf{K B r}\right): 694$ and $1451\left(\mathrm{PPh}_{3}\right), 1615(\mathrm{C}=\mathrm{N})$
Elemental analysis (\%):
C, $62.41 \quad \mathrm{H}, 4.21$
N, 11.49
Calcd for $\mathrm{C}_{50} \mathrm{H}_{38} \mathrm{~F}_{2} \mathrm{~N}_{8} \mathrm{P}_{2} \mathrm{Pd}$:
C, 62.74
H, 4.00
N, 11.71

Solubility: Soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.
ESI ${ }^{+}$-MS: $m / z 958[\mathbf{M}+1]^{+}$
trans $-\left[\mathbf{P d}\left(\mathbf{N}_{4} \mathbf{C}\left(2-\mathrm{NC}_{5} \mathrm{H}_{4}\right)\right)_{2}\left(\mathbf{P P h}_{3}\right)_{2}\right](\mathbf{3 3 e})$

This complex can be prepared by two different methods:
(i) By refluxing: To a 4 mL solution of trans- $\left[\mathrm{Pd}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](20.0 \mathrm{mg}, 0.028$ mmol) in DMF was added 2-cyanopyridine (0.280 mmol). The resulting mixture was refluxed for 12 h . The solution became turbid as the product started to precipitate. The mixture was cooled and the solid was filtered off, washed several times with 5 mL portions of $\mathrm{Et}_{2} \mathrm{O}$, and dried in vacuo to give $\mathbf{3 3 e}$ as a white solid. Yield: 60%
(ii) By focused microwave irradiation: Complex 33e was also prepared by dissolving the above mentioned amounts of the reagents in DMF (4 mL) and irradiating the solution with focused microwave for 1 h at $125^{\circ} \mathrm{C}$. A white precipitate formed which was washed several times with $\mathrm{Et}_{2} \mathrm{O}$ and dried in vacuo to give $\mathbf{3 3} \mathrm{e}$ as a white solid. Yield: 62%.

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, J[Hz], integral, assignment):

${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 7.34-7.75$ ($\mathrm{m}, 38 \mathrm{H}$, aromatic).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right)$: This spectrum was not possible to obtain due to the very poor solubility of $\mathbf{3 3 e}$ in common solvents $\left(\mathrm{CDCl}_{3}, \mathrm{MeOD}-d_{4}\right.$ or DMSO- $\left.d_{6}\right)$.
${ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right): 23.50$
IR ($\left.\mathbf{c m}^{\mathbf{- 1}}, \mathbf{K B r}\right): 719$ and $1450\left(\mathrm{PPh}_{3}\right), 1619(\mathrm{C}=\mathrm{N})$
Elemental analysis (\%):
C, $62.33 \quad \mathrm{H}, 4.44$
N, 15.45
Calcd for $\mathrm{C}_{48} \mathrm{H}_{38} \mathrm{~N}_{10} \mathrm{P}_{2} \mathrm{Pd}$:
C, 62.44
H, 4.15
N, 15.17
Solubility: Only slightly soluble in $\mathrm{CHCl}_{3}, \mathrm{MeOH}$ or DMSO . Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.

ESI ${ }^{+}$-MS: $m / z 924[\mathbf{M}+1]^{+}$
trans $-\left[\mathbf{P d}\left(\mathbf{N}_{4} \mathbf{C}\left(\mathbf{3}-\mathrm{NC}_{5} \mathbf{H}_{4}\right)\right)_{2}\left(\mathbf{P P h}_{3}\right)_{2}\right](\mathbf{3 3 f})$

This complex can be prepared by two different methods:
(i) By refluxing: To a 4 mL solution of trans- $\left[\mathrm{Pd}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](20.0 \mathrm{mg}, 0.028$ $\mathrm{mmol})$ in DMF was added 3-cyanopyridine $(0.280 \mathrm{mmol})$. The resulting mixture was refluxed for 12 h . The solution became turbid as the product started to precipitate. The mixture was cooled and the solid was filtered off, washed several times with 5 mL portions of $\mathrm{Et}_{2} \mathrm{O}$, and dried in vacuo to give $\mathbf{3 3 f}$ as a white solid. Yield: 61%
(ii) By focused microwave irradiation: Complex $\mathbf{3 3 f}$ was also prepared by dissolving the above mentioned amounts of the reagents in DMF (4 mL) and irradiating the solution with focused microwave for 1 h at $125^{\circ} \mathrm{C}$. A white precipitate formed which was washed several times with $\mathrm{Et}_{2} \mathrm{O}$ and dried in vacuo to give $\mathbf{3 3 f}$ as a white solid. Yield: 60\%.

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, $\mathrm{J}[\mathrm{Hz}]$, integral, assignment):

${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 7.44-7.72$ ($\mathrm{m}, 38 \mathrm{H}$, aromatic).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right): 128.40-134.02\left(\mathrm{C}_{\text {aromatic }}\right)$. The signal of the imine moiety $(\mathrm{C}=\mathrm{N})$ could not be observed even after more scans.
${ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right): 29.25$.
IR ($\left.\mathbf{c m}^{-1}, \mathbf{K B r}\right): 693$ and $1436\left(\mathrm{PPh}_{3}\right), 1630(\mathrm{C}=\mathrm{N})$
Elemental analysis (\%):
C, $62.38 \quad \mathrm{H}, 4.55$
N, 15.37
Calcd for $\mathrm{C}_{48} \mathrm{H}_{38} \mathrm{~N}_{10} \mathrm{P}_{2} \mathrm{Pd}$:
C, 62.44
H, 4.15
N, 15.17
Solubility: Soluble in $\mathrm{CHCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.
$\mathbf{E S I}^{+}$-MS: $m / z 924[\mathbf{M}+1]^{+}$

```
trans \(-\left[\mathbf{P d}\left(\mathbf{N}_{4} \mathbf{C}\left(4-\mathrm{NC}_{5} \mathbf{H}_{4}\right)\right)_{2}\left(\mathbf{P P h}_{3}\right)_{2}\right](\mathbf{3 3 g})\)
```


This complex can be prepared by two different methods:
(i) By refluxing: To a 4 mL solution of trans- $\left[\mathrm{Pd}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](20.0 \mathrm{mg}, 0.028$ mmol) in DMF was added 4-cyanopyridine (0.280 mmol). The resulting mixture was refluxed for 12 h . The solution became turbid as the product started to precipitate. The mixture was cooled and the solid was filtered off, washed several times with 5 mL portions of $\mathrm{Et}_{2} \mathrm{O}$, and dried in vacuo to give $\mathbf{3 3 g}$ as a white solid. Yield: 63%
(ii) By focused microwave irradiation: Complex $\mathbf{3 3 g}$ was also prepared by dissolving the above mentioned amounts of the reagents in DMF (4 mL) and irradiating the solution with focused microwave for 1 h at $125^{\circ} \mathrm{C}$. A white precipitate formed which was washed several times with $\mathrm{Et}_{2} \mathrm{O}$ and dried in vacuo to give $\mathbf{3 3 g}$ as a white solid. Yield: 65\%.

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, $\mathbf{J}[\mathrm{Hz}]$, integral, assignment):
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 7.19-7.67(\mathrm{~m}, 38 \mathrm{H}$, aromatic).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): 120.80-150.15$ ($\left.\mathrm{C}_{\text {aromatic }}\right)$, 161.67, 161.87, 162.09, and $162.50(\mathrm{C}=\mathrm{N})$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right): 18.96,24.22,26.34$, and 29.41 (only the signal in italic was observed when the complex was obtained under refluxing conditions).

IR ($\left.\mathbf{c m}^{-1}, \mathbf{K B r}\right): 694$ and $1436\left(\mathrm{PPh}_{3}\right), 1619(\mathrm{C}=\mathrm{N})$
Elemental analysis (\%): $\quad \mathrm{C}, 62.41 \quad \mathrm{H}, 4.20 \quad \mathrm{~N}, 15.27$
Calcd for $\mathrm{C}_{48} \mathrm{H}_{38} \mathrm{~N}_{10} \mathrm{P}_{2} \mathrm{Pd}: \quad \mathrm{C}, 62.44 \quad \mathrm{H}, 4.15 \quad \mathrm{~N}, 15.17$
Solubility: Soluble in $\mathrm{CHCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.
$\mathbf{E S I}^{+}-\mathbf{M S}: m / z 924[\mathrm{M}+1]^{+}$

```
trans \(-\left[\mathbf{P d}\left(\mathbf{N}_{4} \mathbf{C E t}\right)_{2}\left(\mathbf{P P h}_{3}\right)_{2}\right](\mathbf{3 3 h})+\) trans \(-\left[\mathbf{P d}(\mathbf{C N})\left(\mathbf{N}_{4} \mathbf{C E t}\right)\left(\mathbf{P P h}_{3}\right)_{2}\right]\left(\mathbf{3 3 h}^{\prime}\right)+\) 5-ethyl-1H-tetrazole
```


$+$

33h

33h'

A solution of trans-[$\left.\mathrm{Pd}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](20.0 \mathrm{mg}, 0.028 \mathrm{mmol})$ in propionitrile (4 $\mathrm{mL})$ was refluxed for 12 h or irradiated under M.W. $\left(1 \mathrm{~h}, 125^{\circ} \mathrm{C}, 300 \mathrm{~W}\right)$ whereupon the solvent was removed in vacuo. The white solid ($\mathbf{3 3 h}$ and $\mathbf{3 3 h}$ ') was filtered off and washed with $\mathrm{Et}_{2} \mathrm{O}$ for several times. The mother liquor was evaporated to dryness and the resulting compound was identified as 5 -ethyl- $1 H$-tetrazole.

$\underline{\text { Data for trans }-\left[\mathbf{P d}\left(\mathbf{N}_{4} \mathbf{C E t}_{2}\left(\mathbf{P P h}_{3}\right)_{2}\right](\mathbf{3 3 h})+\operatorname{trans}-\left[\mathbf{P d}(\mathbf{C N})\left(\mathbf{N}_{4} \mathbf{C E t}^{\mathbf{C l}}\left(\mathbf{P P h}_{3}\right)_{2}\right]\left(\mathbf{3 3 h}{ }^{\prime}\right): ~\right.\right.}$

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, $\mathbf{J}[\mathrm{Hz}]$, integral, assignment):
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 0.84-1.33\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 2.18-2.37\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 7.35-7.69(\mathrm{~m}$, 60 H , aromatic).
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right): 10.87,12.41$, and $12.55\left(\mathrm{CH}_{3}\right), 18.64$ and $18.78\left(\mathrm{CH}_{2}\right)$, $126.97(\mathrm{C} \equiv \mathrm{N}), 127.59-134.39\left(\mathrm{C}_{\text {aromatic }}\right), 166.53(\mathrm{C}=\mathrm{N})$.
${ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right): 23.0$ and 30.2.
IR ($\left.\mathbf{c m}^{-1}, \mathbf{K B r}\right): 2139(\mathrm{C} \equiv \mathrm{N}), 1630(\mathrm{C}=\mathrm{N})$
Solubility: Soluble in $\mathrm{CHCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and acetone. Insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and hexane.
ESI $^{+}$-MS: $m / z 825[\mathbf{M}+1]^{+}(\mathbf{3 3 h})$ and $755[\mathbf{M}+1]^{+}\left(\mathbf{3 3 h}^{\prime}\right)$.

Data for 5-ethyl-1H-tetrazole:

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, $\mathbf{J}[\mathrm{Hz}]$, integral, assignment):
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 1.30\left(\mathrm{t}, J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.87\left(\mathrm{q}, J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 2 \mathrm{H}\right.$, CH_{2}).
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right): 14.16\left(\mathrm{CH}_{3}\right), 19.33\left(\mathrm{CH}_{2}\right), 159.86(\mathrm{C}=\mathrm{N})$
IR ($\left.\mathbf{c m}^{-1}, \mathbf{K B r}\right): 1638(\mathrm{C}=\mathrm{N})$
ESI ${ }^{+}$-MS: $m / z 99[\mathrm{M}+1]^{+}$
Solubility: Soluble in $\mathrm{CHCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, acetone and $\mathrm{Et}_{2} \mathrm{O}$.
$\left[\mathbf{P d}\left(\mathbf{N}_{3}\right)_{\mathbf{2}}(\mathbf{P T A})_{2}\right] \cdot \mathbf{C H}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}\left(\mathbf{3 4} \cdot \mathbf{C H}_{\mathbf{2}} \mathrm{Cl}_{\mathbf{2}}\right)$

To a solution of trans-[$\left.\mathrm{Pd}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](200.0 \mathrm{mg}, 0.28 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25$ mL), PTA ($88.0 \mathrm{mg}, 0.56 \mathrm{mmol}$) was added. The mixture was stirred for $c a .1 \mathrm{~h}$ under N_{2} at room temperature. The yellow precipitate was separated from the brown solution by filtration, washed with $\mathrm{CHCl}_{3}(3 \times 10 \mathrm{~mL})$ and dried in vacuo to afford complex $34 \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as a yellow microcrystalline solid. Yield: 85 mg (60%).

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, $\mathrm{J}[\mathrm{Hz}]$, integral, assignment):

${ }^{1} \mathbf{H}$ NMR (DMSO- d_{6}): $5.75\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 2 \mathrm{H}\right), 4.53 \mathrm{H}^{\mathrm{A}}$ and $4.41 \mathrm{H}^{\mathrm{B}}\left(J_{\mathrm{AB}}=13.0 \mathrm{~Hz}\right.$, $\left.\mathrm{NCH}^{\mathrm{A}} \mathrm{H}^{\mathrm{B}} \mathrm{N}, 12 \mathrm{H}\right), 4.35\left(\mathrm{~s}, \mathrm{PCH}_{2} \mathrm{~N}, 12 \mathrm{H}\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (DMSO- d_{6}): 72.6 ($\mathrm{s}, \mathrm{N}-\mathrm{CH}_{2}-\mathrm{N}, \mathrm{PTA}$), 55.8 ($\mathrm{s}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$), 52.3 (br s, P-CH2-N, PTA).
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (DMSO- d_{6}): -30.2 (s).
IR ($\left.\mathbf{c m}^{-1}, \mathbf{K B r}\right): 2930\left(\mathrm{~s}\right.$ br) $v(\mathrm{CH}), 2037\left(\mathrm{~s}\right.$ br) $v\left(\mathrm{~N}_{3}\right), 1278(\mathrm{~m}), 1242(\mathrm{~s}), 1099(\mathrm{~m})$, 1014 (s , 972 (s$), 943$ (s$), 904$ (m), 805 (m), 741 (m), 582 (m) (PTA) cm ${ }^{-1}$.
Elemental analysis (\%):
C, 26.00
H, $29.11 \mathrm{~N}, 4.45$
Calcd for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~N}_{12} \mathrm{P}_{2} \mathrm{Pd}\left(\mathbf{3 4} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$:
C, 26.48
H, 28.50
N, 4.44

Solubility: Soluble in $\mathrm{H}_{2} \mathrm{O}$ and DMSO, slightly soluble in MeOH and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and insoluble in $\mathrm{C}_{6} \mathrm{H}_{6}$.

trans $-\left[\mathbf{P d}\left(\mathbf{N}_{4} \mathbf{C P h}\right)_{2}(\mathbf{P T A})_{2}\right] \cdot \mathbf{P h C N}(\mathbf{3 5 a} \cdot \mathbf{P h C N})$

A mixture of $\left[\mathrm{Pd}\left(\mathrm{N}_{3}\right)_{2}(\mathrm{PTA})_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathbf{3 4} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)(59.0 \mathrm{mg}, 0.10 \mathrm{mmol})$ and benzonitrile ($5 \mathrm{~mL}, 48.5 \mathrm{mmol}$) was added to a cylindrical Pyrex tube which was then placed in the focused microwave reactor. The system was left under irradiation for 1 h at $125^{\circ} \mathrm{C}$ (the same product was obtained when the mixture of reagents was refluxed for 12 h). After reaction, the excess of benzonitrile was removed in vacuo and the resulting residue was washed repeatedly with 10 mL portions of $\mathrm{Et}_{2} \mathrm{O}$. Recrystallization from a $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ mixture afforded complex $\mathbf{3 5 a} \cdot \mathrm{PhCN}$ as a yellow microcrystalline solid. Yield: 45 mg (55\%).

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, $\mathrm{J}[\mathrm{Hz}]$, integral, assignment):
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 8.18-7.45(\mathrm{~m}, 2 \mathrm{Ph}+\mathrm{PhCN}, 15 \mathrm{H}), 4.48 \mathrm{H}^{\mathrm{A}}$ and $4.40 \mathrm{H}^{\mathrm{B}}\left(J_{\mathrm{AB}}=\right.$ $15.0 \mathrm{~Hz}, \mathrm{NCH}^{\mathrm{A}} \mathrm{H}^{\mathrm{B}} \mathrm{N}, 12 \mathrm{H}$), $4.20\left(\mathrm{~s}, \mathrm{PCH}_{2} \mathrm{~N}, 12 \mathrm{H}\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right.$) : 165.0 ($\mathrm{s}, \mathrm{N}_{4} \mathrm{C}$), 126.4-135.0 ($\mathrm{C}_{\text {aromatic }}$), 73.1 ($\mathrm{s}, \mathrm{N}^{2} \mathrm{CH}_{2}-\mathrm{N}$, PTA), 50.9 (br s, P-CH2-N, PTA).
${ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right):-47.3$ (s).
IR ($\mathbf{c m}^{-1}, \mathbf{K B r}$): 2931 (m br), 2230 (w), 1629 (m), 1443 (m), 1384 (m), 1369 (w), 1285 (m), 1245 (m), 1101 (m), 1013 (s), 975 (s), 945 (s), 800 (m), 741 (m), 580 (m).
Elemental analysis (\%):
C, 48.38
H, 24.76
N, 4.50
Calcd for $\mathrm{C}_{33} \mathrm{H}_{39} \mathrm{~N}_{15} \mathrm{P}_{2} \mathrm{Pd}(\mathbf{3 5 a} \cdot \mathrm{PhCN})$:
C, 48.68
H, 25.81
N, 4.83

Solubility: Soluble in DMSO, CHCl_{3}, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, sparingly soluble in $\mathrm{H}_{2} \mathrm{O}$, and insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{C}_{6} \mathrm{H}_{6}$.

trans $-\left[\mathbf{P d}\left(\mathbf{N}_{4} \mathrm{C}\left(2-\mathrm{NC}_{5} \mathrm{H}_{4}\right)\right)_{2}(\mathbf{P T A})_{2}\right](\mathbf{3 5 b})$

A mixture of $\left[\mathrm{Pd}\left(\mathrm{N}_{3}\right)_{2}(\mathrm{PTA})_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathbf{3 4} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)(59.0 \mathrm{mg}, 0.10 \mathrm{mmol})$ and 2-cyanopyridine ($104 \mathrm{mg}, 1.0 \mathrm{mmol}$) in DMF (5 mL) was added to a cylindrical Pyrex tube which was then placed in the focused microwave reactor. The system was left under irradiation for 1 h at $125^{\circ} \mathrm{C}$ (the same products were obtained when the mixture of reagents in DMF was refluxed for 12 h). After reaction, the solvent was removed in vacuo and the resulting residue was washed repeatedly with 10 mL portions of EtOH and $\mathrm{Et}_{2} \mathrm{O}$ affording complex $\mathbf{3 5 b}$ as a yellow microcrystalline solid. Yield: 39 mg (55\%).

IR ($\left.\mathbf{c m}^{-1}, \mathbf{K B r}\right): 2933$ (m br), 1671 (m), 1619 (m), 1449 (m), 1421 (m), 1284 (m), 1168 (m), 1010 (s , 974 (s$), 945$ (s$), 808$ (m), 580 (m).
Elemental analysis (\%):
C, 40.50
H, 4.50
N, 30.11
Calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{16} \mathrm{P}_{2} \mathrm{Pd}$:
C, 40.43
H, 4.52
N, 31.43

Solubility: Insoluble in common organic solvents and water.

trans-[Pd($\left.\left.\mathbf{N}_{4} \mathrm{C}\left(3-\mathrm{NC}_{5} \mathrm{H}_{4}\right)\right)_{2}(\mathbf{P T A})_{2}\right](\mathbf{3 5 c})$

A mixture of $\left[\mathrm{Pd}\left(\mathrm{N}_{3}\right)_{2}(\mathrm{PTA})_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathbf{3 4} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)(59.0 \mathrm{mg}, 0.10 \mathrm{mmol})$ and 3 -cyanopyridine ($104 \mathrm{mg}, 1.0 \mathrm{mmol}$) in DMF (5 mL) was added to a cylindrical Pyrex tube which was then placed in the focused microwave reactor. The system was left under irradiation for 1 h at $125^{\circ} \mathrm{C}$ (the same products were obtained when the mixture of reagents in DMF was refluxed for 12 h). After reaction, the solvent was removed in vacuo and the resulting residue was washed repeatedly with 10 mL portions of EtOH and $\mathrm{Et}_{2} \mathrm{O}$ affording complex $\mathbf{3 5 c}$ as a yellow microcrystalline solid. Yield: 36 mg (50\%).

IR (cm ${ }^{-1}$, KBr): 2933 (m br), 1634 (m), 1423 (m), 1284 (m), 1241 (m), 1097 (m), 1011 (s), 974 (s ,, 945 (s$), 807(\mathrm{~m}), 580(\mathrm{~m}) \mathrm{cm}^{-1}$.

Elemental analysis (\%):
C, 40.98
H, 4.48
N, 32.00
Calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{16} \mathrm{P}_{2} \mathrm{Pd}$:
C, 40.43
H, 4.52
N, 31.43
Solubility: Insoluble in common organic solvents and water.
trans $-\left[\mathbf{P d}\left(\mathbf{N}_{4} \mathrm{C}\left(4-\mathrm{NC}_{5} \mathrm{H}_{4}\right)\right)_{2}(\mathbf{P T A})_{2}\right](35 d)$

10 4-cyanopyridine

DMF, Reflux, 12 h

34

A mixture of $\left[\mathrm{Pd}\left(\mathrm{N}_{3}\right)_{2}(\mathrm{PTA})_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathbf{3 4} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)(59.0 \mathrm{mg}, 0.10 \mathrm{mmol})$ and 4-cyanopyridine ($104 \mathrm{mg}, 1.0 \mathrm{mmol}$) in DMF (5 mL) was added to a cylindrical Pyrex tube which was then placed in the focused microwave reactor. The system was left under irradiation for 1 h at $125^{\circ} \mathrm{C}$ (the same products were obtained when the mixture of reagents in DMF was refluxed for 12 h). After reaction, the solvent was removed in vacuo and the resulting residue was washed repeatedly with 10 mL portions of EtOH and $\mathrm{Et}_{2} \mathrm{O}$ affording complex $\mathbf{3 5 d}$ as a yellow microcrystalline solid. Yield: 37 mg (52\%).

IR (cm ${ }^{-1}$, KBr): 2936 (m br), 1671 (w), 1622 (m), 1446 (m), 1420 (m), 1283 (m), 1242 (m), 1097 (m), 1036 (m), 1011 (s), 973 (s), 944 (s), 803 (m), 700 (m), 580 (m).

Elemental analysis $(\%):$	$\mathrm{C}, 40.40$	$\mathrm{H}, 4.50$	$\mathrm{~N}, 31.00$
Calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{16} \mathrm{P}_{2} \mathrm{Pd}:$	$\mathrm{C}, 40.43$	$\mathrm{H}, 4.52$	$\mathrm{~N}, 31.43$

Solubility: Insoluble in common organic solvents and water.
$\left[\mathrm{PdCl}_{2}(\mathbf{P T A}-\mathrm{H})_{2}\right] \mathrm{Cl}_{2} \mathbf{(3 6)}$ (Liberation of 5-phenyl-1H-tetrazole from 35a)

36
A yellow suspension of trans- $\left[\mathrm{Pd}\left(\mathrm{N}_{4} \mathrm{CPh}\right)_{2}(\mathrm{PTA})_{2}\right] \cdot \mathrm{PhCN}(\mathbf{3 5 a} \cdot \mathrm{PhCN})(40.7$ $\mathrm{mg}, 0.05 \mathrm{mmol})$, in aqueous $0.5 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$ was refluxed for 1 h . The white precipitate formed during the reaction was separated by filtration and extracted with CHCl_{3}. The extract was shown (by IR and NMR spectroscopies) to contain the corresponding 5 -phenyl- 1 H -tetrazole. ${ }^{13}$ The remaining white-yellow precipitate (insoluble in CHCl_{3}) was shown, by $\mathrm{IR}(\mathrm{KBr})$ and elemental analysis, to be $\left[\mathrm{PdCl}_{2}(\mathrm{PTA}-\mathrm{H})_{2}\right] \mathrm{Cl}_{2}(\mathbf{3 6})(\mathrm{PTA}-\mathrm{H}=N$-protonated PTA cation). The insolubility of $\mathbf{3 6}$ in common solvents precluded direct NMR analysis, but, upon addition of a diluted NaOH solution in $\mathrm{D}_{2} \mathrm{O}$ (in an NMR tube), the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum exhibits the expected signal of the known deprotonated complex $\left[\mathrm{PdCl}_{2}(\mathrm{PTA})_{2}\right] .{ }^{14}$ Additionally, its $\mathrm{ESI}^{+}-\mathrm{MS}$ spectrum showed the expected (for the deprotonated complex) isotopic pattern centred at $\mathrm{m} / \mathrm{z} 491\left([\mathrm{M}+1]^{+}\right)$.

Data for 36:

IR (cm ${ }^{-1}$, KBr): 2925 (m br), 1443 (m), 1418 (m), 1365 (w), 1286 (m), 1241 (m), 1103 (m), 1014 (s), 973 (s$), 898(\mathrm{~m}), 810(\mathrm{~m}), 740(\mathrm{~m}), 575(\mathrm{~m})$.

Elemental analysis (\%):
C, 25.60
H, 4.71
N, 14.55
Calcd for $\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{Cl}_{4} \mathrm{~N}_{6} \mathrm{P}_{2} \mathrm{Pd}$:
C, 25.53
H, 4.64
N, 14.89
Solubility: Insoluble in common organic solvents and water.

Data for 5-phenyl-1H-tetrazole:

NMR data. $\delta(\mathbf{p p m})$ (multiplicity, $\mathrm{J}[\mathrm{Hz}]$, integral, assignment):
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 7.43-8.16(\mathrm{~m}, 5 \mathrm{H}$, aromatic).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right): 126.34-133.93$ ($\mathrm{C}_{\text {aromatic }}$), $158.49(\mathrm{C}=\mathrm{N})$.
IR ($\left.\mathbf{c m}^{-1}, \mathbf{K B r}\right): 1636(\mathrm{C}=\mathrm{N})$
ESI' $^{+}$-MS: $m / z 145[\mathrm{M}-\mathrm{H}]^{-}$

VIII. 4 REFERENCES

1. Takahashi, Y.; Ito, S.; Sakai, S.; Ishii, Y., J. Chem. Soc., Chem. Commun. 1970, 1065.
2. Blum, J.; Zimmerman, M., Tetrahedron 1972, 28, 275.
3. Vicente, J.; Martínez-Viviente, E.; Fernández-Rodríguez, M. J.; Jones, P. G., Organometallics 2009, 28, 5845.
4. Hernández, F.-S. Síntesis, Caracterización y Reactividad de Complejos de Pd(II) con Ligandos Arilo Polifuncionalizados. University of Murcia, 2001.
5. Almen, T.; Andersson, S.; Wistrand, W. L.-G.; Golman, K.; et al. US Patent. 1999.
6. Kiehlmann, E.; Lauener, R. W., Can. J. Chem. 1989, 67, 335.
7. Engman, S. L.; Hellberg, J. S. E., J. Organomet. Chem. 1985, 296, 357.
8. Geary, W. J., Coord. Chem. Rev. 1971, 7, 81.
9. Michelin, R. A.; Facchin, G.; Uguagliati, P., Inorg. Chem. 1984, 23, 961.
10. Daigle, D. J., Inorg. Synth. 1998, 32, 40; Daigle, D. J.; Pepperman Jr, A. B.; Vail, S. L., J. Heterocyclic Chem. 1974, 11, 407.
11. Fernández-Rivas, C.; Cárdenas, D. J.; Martín-Matute, B.; Monge, A.; Gutiérrez-Puebla, E.; Echavarren, A. M., Organometallics 2001, 20, 2998.
12. Fernández-Rodríguez, M. J.; Martínez-Viviente, E.; Vicente, J.; Jones, P. G., Organometallics 2015, 34, 3282.
13. Smoleński, P.; Mukhopadhyay, S.; Guedes da Silva, M. F. C.; Januário Charmier, M. A.; Pombeiro, A. J. L., Dalton Trans. 2008, 6546.
14. Darensbourg, D. J.; Decuir, T. J.; Stafford, N. W.; Robertson, J. B.; Draper, J. D.; Reibenspies, J. H., Inorg. Chem. 1997, 36, 4218.

CHAPTER IX

Conclusions

1. New aryl $\operatorname{Pd}(\mathrm{II})$ complexes (1a-c, see the General Compound Chart in pp xxiii-xxiv), have been synthesized by oxidative addition reactions of 2-iodobenzyl alcohol to $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$. By reaction of $\mathbf{1 a}$ with XyNC or with $\mathrm{KO}^{\mathrm{t}} \mathrm{Bu}$ the product of an insertion (2), or deprotonation (3) reaction, respectively, has been obtained. Complex 3 crystallizes as pairs of molecules bridged by hydrogen bonds to water of crystallization.
2. Complex $\mathbf{3}$ reacts with CO or XyNC forming, respectively, phthalide or the cyclic imidate N-(2,6-dimethylphenyl)-2-benzofuran-1(3H)-imine (4), which had not been previously described.
3. The nucleophilic attack of $\mathbf{3}$ at the alkyl group of primary alkyl halides $\left(\mathrm{RCH}_{2} \mathrm{X}\right)$ results in the opening of the chelate ring and the formation of complexes $\mathbf{5}$, with new $\mathrm{RCH}_{2}-\mathrm{O}$ and $\mathrm{Pd}-\mathrm{X}$ bonds. There is no precedent in the literature for this type of reactivity in a C, O-cyclometalated aryl group. Two novel dinuclear bis(arylpalladium) complexes have been prepared, either by reaction of $\mathbf{3}$ with p $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{Br}\right)_{2}$ (complex 6) or by reaction of $\mathbf{5 f}\left(\mathrm{R}=p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}\right)$ with $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ (complex 7). 6 and 7 are the first examples of bis(arylpalladium) complexes where the aryl groups are ortho-substituted.
4. Complex $\mathbf{3}$ reacts with acetonitrile, cyanamides, or carbodiimides, in the presence of AgOTf and residual water, to form ionic complexes (8-10) resulting from the insertion of the organic molecules into the $\mathrm{O}-\mathrm{Pd}$ bond of $\mathbf{3}$, and the protonation of one of the N atoms. These reactions are suggested to proceed via a nucleophilic attack of $\mathbf{3}$ on the organic molecule, previously activated by the coordination to Ag^{+} (an unprecedented observation). In the absence of AgOTf complex $\mathbf{3}$ only reacts cleanly with $\mathrm{ToN}=\mathrm{C}=\mathrm{NTo}$, forming a neutral complex 11, which is the conjugate base of $\mathbf{1 0 b}$. Complexes $\mathbf{1 0 b}$ and $\mathbf{1 1}$ can be interconverted by deprotonation or protonation reactions.
5. An heterometallic bis-chelate $\mathrm{Pd}_{2} \mathrm{Ag}$ complex $\left(\mathbf{1 2}=\left[\mathrm{Ag}(N-\mathbf{1 1})_{2}\right](\mathrm{OTf})\right)$ has been isolated and characterized. Its novel structure has been confirmed by X-ray crystallography.
6. Only in the reaction of $\mathbf{1 a}$ with ${ }^{\mathrm{i}} \mathrm{PrN}=\mathrm{C}=\mathrm{N}^{\mathrm{i}} \mathrm{Pr}$ in the presence of TlOTf (instead of AgOTf) a complex (13) resulting from the insertion of the carbodiimide into the
aryl-Pd bond of $\mathbf{1 a}$ could be isolated. Thus, the reactivity of $\mathbf{1 a}$ and $\mathbf{3}$ toward nitriles, cyanamides, and carbodiimides has been shown to differ from that previously described for ortho-phenol $\mathrm{Pd}(\mathrm{II})$ complexes, for which the OH group directly bonded to the arene promoted clean insertion reactions of the organic molecules into the aryl-Pd bond.
7. We have prepared mono- (15) and di-palladated (14) benzene derivatives with alkenyl groups at the ortho position, by oxidative addition of trans,trans-2,5-distyryl-2,4-dibromobenzene to one or two equivalents of $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$. In their reactions with alkynes we have obtained highly substituted indenylpalladium complexes (19-21) and dipalladated indacenediides (16-18). This is the first synthesis of this type of dinuclear complexes through metal-mediated building of the ligand. X-ray and ${ }^{13} \mathrm{C}$ NMR data both suggest a significantly slipped η^{3} coordination mode for the indenyl and indacenediyl ligands in 16-21.
8. The reactivity toward XyNC of the dipalladated benzene derivatives $\mathbf{1 4}$ has resulted in the first reported simultaneous insertion of isocyanide into two aryl-Pd bonds on the same benzene ring, forming the monoinserted dinuclear complex 22. The synthesis of complexes $\mathbf{1 6 - 2 2}$ is the first study of the reactivity of dipalladated arene derivatives with unsaturated reagents.
9. The oxidative addition of trans,trans-2,5-distyryl-1,4-dibromobenzene to $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ in the presence of XyNC has afforded a mixture of two isomeric dinuclear complexes (23,23*) with three isocyanide molecules inserted into each aryl-Pd bond. Both isomers are in slow exchange in solution, as shown by a ${ }^{1} \mathrm{H}$-EXSY NMR spectrum.
10. We have prepared two dipalladated derivatives of terephthalaldehyde (25a,b), by hydrolysis of a previously described dipalladated Schiff base (IX). A dicationic dinuclear derivative (24) of the Schiff base has also been characterized, including an X-ray diffraction structure.
11. The reaction of $\mathbf{2 5 a}, \mathbf{b}$ with CO results in the first insertion of CO into two separate aryl-metal bonds on the same aryl ligand, forming the dinuclear complexes 26a,b. The NMR data of these complexes suggest that one of the inserted CO groups forms a hydrogen bond with the aryl hydrogen in ortho position, while the other does not.
12. The reaction of 25a with XyNC yields a novel dinuclear $\mathrm{Pd}(\mathrm{II})$ complex (27), resulting from a double 3 -fold insertion of XyNC into the aryl-Pd bonds, followed by the interaction of two of the inserted isocyanide molecules with the formyl groups in ortho position. No similar dinuclear complex had been described before.
13. By a Tl^{+}-promoted hydrolysis of 27 the central ligand can be released, yielding the heteropolycycle 28.
14. We have prepared two tripalladated arene derivatives of general formula $\mathrm{C}_{6} \mathrm{R}_{3}[\mathrm{Pd}]_{3}$ (29a,b) and four monopalladated complexes of general formula $\mathrm{C}_{6} \mathrm{R}_{3} \mathrm{X}_{2}[\mathrm{Pd}](\mathbf{3 0}-\mathbf{3 1})$, by oxidative addition reactions of 2,4,6-trisubstituted-1,3,5-haloarenes $\left(\mathrm{C}_{6} \mathrm{R}_{3} \mathrm{X}_{3}, \mathrm{R}=\right.$ $\left.\mathrm{CH}_{2} \mathrm{OH}, \mathrm{OH}, \mathrm{OMe} ; \mathrm{X}=\mathrm{Br}, \mathrm{I}\right)$ to $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ in the presence of auxiliary ligands.
15. The first insertion of XyNC into three aryl-Pd bonds of a tripalladated arene (XVIII) has been achieved, resulting in a fluxional trinuclear complex (32) that has been investigated by VT-NMR.
16. The di(azido) compounds trans- $\left[\mathrm{Pd}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and the hydrosoluble $\left[\mathrm{Pd}\left(\mathrm{N}_{3}\right)_{2}(\mathrm{PTA})_{2}\right]$ (34) are good starting materials for a variety of trans-bis(5substituted tetrazolato)-Pd(II) complexes $(\mathbf{3 3}, \mathbf{3 5})$ derived upon $[2+3]$ cycloadditions with nitriles. These reactions are greatly accelerated by microwave irradiation.
17. Propionitrile, on reaction with trans- $\left[\mathrm{Pd}\left(\mathrm{N}_{4} \mathrm{CEt}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (33h), undergoes an unusual NC-C bond cleavage behaving as a source of a cyano ligand to give a mixed cyano-tetrazolato complex ($\mathbf{3 3 h}^{\prime}$) and 5 -ethyl- $1 H$-tetrazole. This reaction proceeds via an unusual oxidative addition of the nitrile to $\mathrm{Pd}(\mathrm{II})$, followed by β - H elimination from the derived ethyl ligand and reductive elimination of the tetrazole. This is the first synthesis of a mixed cyano-tetrazolato $\mathrm{Pd}(\mathrm{II})$ complex obtained by $\mathrm{C}-\mathrm{C}$ bond cleavage of an organonitrile.
18. An X-ray diffraction study of 33b shows that the trans arrangement of the two tetrazolato ligands appears to be the most favourable one, in contrast to previous reports. The X-ray structure also shows that the mode of tetrazolato binding is through the N^{2}-atom.
19. Taking advantage of the hydrosolubility of PTA, a simple liberation of the ligated tetrazolate from the coordination sphere of a bis(tetrazolato) Pd (II) complex (35a)
was achieved. This is a convenient metal-mediated synthetic method for substituted tetrazoles.
20. The complexes in this Thesis have been characterized by elemental analyses or high resolution mass spectroscopy, as well as IR and NMR (1D and 2D) spectroscopy. A total of 19 X-ray crystal structures have been solved.

[^0]: ${ }^{\mathrm{a}}$ Impact factors given are for 2014

[^1]: ${ }^{\text {a }}$ A reviewer has suggested that a more polar solvent, such as acetone, could enhance the reactivity and decrease the amount of substrate required in these reactions.

[^2]: the molecule in 6 are not equivalent (the NMR resonances are duplicated). The ' H resonances are coincident (but not idenical) except those of the aryl $\mathrm{H3}$, one CH - -7 proton, and $\mathrm{H} 14,14$ ' and 13 ' of the bpy ligand, which appear separated in the
 spectrum. (d) For $5 \mathrm{~b}, p$ - p. (e) The two halves of the tbbpy and bpy ligands have been assigned based on NOE contacts between H 16 and the aryl group. (f) it has not been possible to distinguish the resonances of the two different bpy ligands which are thus written together. (g) For 1a, C14,14

[^3]: ${ }^{\mathrm{b}}$ The $\mathrm{CH}_{2} \mathrm{Br}$ group in $\mathbf{6 c}$, not included in Table II.1, also appears as a singlet.
 ${ }^{\text {c }}$ Crystals were mounted in inert oil on glass fibres. Intensity data were recorded on various diffractometers of the firms Bruker or Oxford Diffraction using monochromated Mo $K \alpha$ or mirror-focused $\mathrm{Cu} K \alpha$ radiation. Absorption corrections were based on multi-scans. Structures were refined anisotropically on F^{2} using the program SHELXL-97 (G. M. Sheldrick, University of Göttingen). Hydroxyl and water hydrogens were refined freely (but for $\mathbf{3} \cdot \mathrm{H}_{2} \mathrm{O}$ with OH distance restraints). Methyls were refined as idealized rigid groups allowed to rotate but not tip. Other H atoms were included using a riding model starting from calculated positions.

[^4]: ${ }^{\text {a }}$ This resonances have been assigned based on ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ correlation and ${ }^{1} \mathrm{H}$ NOE data. The chemical shifts are similar to those of the related complex 11.

[^5]: ${ }^{\mathrm{b}}$ Crystals were mounted in inert oil on glass fibres. Intensity data were recorded on various Bruker or Oxford Diffraction diffractometers using either monochromated Mo $K \alpha$ or mirror-focused $\mathrm{Cu} K \alpha$ radiation. Absorption corrections were based on multi-scans. NH hydrogens were refined freely; other hydrogen atoms were included using either rigid methyl groups or a riding model. Structures were refined anisotropically on F^{2} using the program SHELXL-97 (G. M. Sheldrick, University of Göttingen, Germany).

[^6]: ${ }^{\text {a }} s$-Indacenes and $a s$-indacenes differ in the relative orientation of the three fused rings (our complexes are all s-indacenediide complexes). This nomenclature should not be confused with the syn and anti isomers of bimetallated indacenediide complexes, which differ in the relative orientation of the two metallic moieties (syn: both in the same side of the ligand; anti: one in each side of the ligand).

[^7]: (b) The H 16 protons of $\mathbf{1 4 a}$ and 15 are shielded with respect to H 16 ' as a consequence of the anisotropic effect of the central aromatic ring.

[^8]: ${ }^{\text {b }}$ Considering the plane defined by the $\mathrm{N}^{1}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}^{2}$ groups, the Me group which points "up" on N^{1} exchanges only with the Me group which points "down" on N^{2}, and vice versa.

[^9]: ${ }^{\text {c }}$ We have used the chemical shift of the ring junction carbons in NaInd (130.7 ppm), as reported by Cadierno et al. in Coord. Chem. Rev. 1999, 195, 147, because our free indenyls have not been characterized. The addition of substituents to the indenyl moiety might affect the chemical shifts of the bridgehead carbons, but we think that the general trend is still valid.
 ${ }^{\mathrm{d}}$ Crystals were mounted in inert oil on glass fibres. Intensity data were recorded on various diffractometers of the firms Bruker or Oxford Diffraction using wither monochromated Mo $K \alpha$ or mirror-focused $\mathrm{Cu} K \alpha$ radiation. Absorption corrections were based on multi-scans. Structures were refined anisotropically on F^{2} using the program SHELXL-97 (G. M. Sheldrick, University of Göttingen, Germany). Me groups were refined as idealized rigid groups allowed to rotate but not tip; other H's were included using a riding model starting from calculated positions.

[^10]: ${ }^{\mathrm{e}}$ The numbering system used in the X-ray structures of anti-16a $\cdot 7 \mathrm{CDCl}_{3}$, syn- $\mathbf{1 6 b} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and anti$\mathbf{1 8 a} \cdot 4 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ differs, in part because of crystallographic symmetry within the molecules. In Chart IV. 1 we propose a common numbering system for the discussion of crystallographic (and NMR) data.

[^11]: ${ }^{\mathrm{f}}$ The slip angle or angle slip is the angle between the normal to the plane of the five-membered ring and the centroid-metal vector. The slip distortion is the length of the slip vector, which is the vector connecting the projection of the five-membered ring centroid and the projection of the metal atom on the plane

[^12]: ${ }^{a}$ Using the command ft instead of ef, or using the command ef with $\mathrm{lb}=0$ (for Bruker software)

[^13]: ${ }^{\text {b }}{ }^{13} \mathrm{CO}$ was bubbled for 3 min through a solution of $\mathbf{2 5 a}(60.0 \mathrm{mg}, 0.0576 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ under N_{2}. The mixture was then heated to $60^{\circ} \mathrm{C}$ for 24 h , and then it was stirred at rt for another 24 h . Workup as in the reaction with ${ }^{12} \mathrm{CO}$ (see Chapter VIII, Experimental Section), yielded 19 mg of a pink solid.

[^14]: ${ }^{\text {c }}$ Crystals were mounted in inert oil on glass fibers. Intensity data were recorded on a Bruker SMART 1000 CCD (24, 27),or a Bruker APEX-2 diffractometer (28) using monochromated Mo $K \alpha$ radiation. Absorption corrections were based on multi-scans. The NH hydrogens, where present, were refined freely but with distance restraints. Other hydrogen atoms were included using rigid methyl groups or a riding model. Structures were refined anisotropically on F^{2} using the program SHELXL-97 (G. M. Sheldrick, University of Göttingen, Germany). Special features and exceptions: In structure 24, both chloroform molecules, the triflate anion and one t-butyl group are disordered. The dataset for $\mathbf{2 7}$ was of limited resolution because of the large amount of solvent. For 28 no absorption correction was applied; the CDCl_{3} molecule was disordered.

[^15]: ${ }^{\mathrm{d}}$ The original numbering in the X-ray diffraction studies of compounds XIII• $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and XIV $\cdot 0.5 \mathrm{Et}_{2} \mathrm{O}$ was different from the numbering used here for $27 \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 3$ hexane and $28 \cdot 2 \mathrm{CDCl}_{3}$. To facilitate comparison, in this work we have changed the numberings in XIII• $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and XIV• $0.5 \mathrm{Et}_{2} \mathrm{O}$ to make them compatible with those of $\mathbf{2 7} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 3$ hexane and $\mathbf{2 8} \cdot 2 \mathrm{CDCl}_{3}$.

[^16]: ${ }^{\text {a }}$ The tribrominated analogue, $1,3,5-\mathrm{C}_{6}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3} \mathrm{Br}_{3}$, is also known (Bruns, D.; Miura, H.; Stanger, A.; Vollhardt, K. P. C.; Organic Letters 2003, 5, 549), but we have not investigated its chemistry in this work.

[^17]: ${ }^{\mathrm{b}}$ Crystals were mounted in inert oil on glass fibers. Intensity data were recorded on a Bruker SMART 1000 CCD (30") or an Oxford Diffraction Xcalibur diffractometer (31) using monochromated Mo K α radiation. Absorption corrections were based on multi-scans. Hydrogen atoms were included using rigid methyl groups or a riding model. Structures were refined anisotropically on F^{2} using the program SHELXL-97 (G. M. Sheldrick, University of Göttingen, Germany).

[^18]: ${ }^{\text {a }}$ Ethylene cannot be detected in solution by NMR on account of its too low amount relatively to that of the propionitrile solvent bearing the interfering strong propyl NMR resonances. However, the formation of ethylene is corroborated by the stoichiometry of the reaction (Scheme VII.4).

