
 

    

 

DEPARTAMENTO DE INFORMÁTICA Y  

SISTEMAS 

 





An Approach for
Model-Driven Data

Reengineering

A dissertation presented by
Francisco Javier Bermúdez Ruiz

and supervised by
Jesús Joaquín García Molina & Oscar

Díaz García

In partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the subject of Computer Science

University of Murcia
January 2016



Copyright © 2016 Francisco Javier Bermúdez Ruiz.
Some rights reserved.

This work is licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License. To view a copy of this license, visit http:
//creativecommons.org/licenses/by-nc-nd/4.0/.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Un Enfoque de Reingeniería de Datos Dirigido
por Modelos

Resumen extendido de la tesis
La Ingeniería de Datos es la disciplina de Informática que se encarga de los

principios, técnicas, métodos y herramientas para permitir la gestión de los datos
en el desarrollo de software. Los datos de una aplicación son habitualmente al-
macenados en sistemas gestores de bases de datos (por ejemplo, bases de datos
relacionales, orientadas a objetos o NoSQL). La Ingeniería de Datos se ha cen-
trado principalmente en los datos relacionales, aunque actualmente está aumen-
tando el interés hacia aproximaciones no relacionales, como las bases de datos
NoSQL. En esta tesis, se han abordado cuestiones relacionadas con algunos de los
principales temas de la Ingeniería de Datos como: reingeniería de datos, ingeniería
inversa de datos, integración de datos entre distintas herramientas y herramientas
para la gestión de procesos de reingeniería de datos. Más concretamente en esta
tesis se ha explorado la aplicación de técnicas de Ingeniería Software Dirigidas por
Modelos (Model-Driven Software Engineering, MDSE o simplemente MDE) en las
cuestiones de Ingeniería de Datos mencionadas anteriormente.

MDE pone énfasis en el uso sistemático de modelos para la mejora de la pro-
ductividad en el desarrollo de software y en algunos aspectos sobre la calidad del
software tales como el mantenimiento o la interoperabilidad. Las técnicas MDE
han probado ser útiles no solo en el desarrollo de nuevas aplicaciones software, sino
también en la reingeniería de sistemas legados. Modelos y metamodelos proporcio-
nan un alto grado de formalismo con el que representar los artefactos comúnmente
manipulados en las diferentes etapas de un proceso de evolución de software (por
ejemplo, una migración de aplicaciones) mientras que las transformaciones de mod-
elos permiten la automatización de las tareas de evolución a ser aplicadas. Aunque
recientemente se han presentado algunas propuestas y experiencias de reingeniería
de software dirigida por modelos, la mayoría se han centrado principalmente en el
código de las aplicaciones mientras que las cuestiones relativas a la reingeniería de
datos han sido pasadas por alto.

i



Un proceso de reingeniería de datos debe ser cubierto a través de tres dimen-
siones: conversión de esquema, conversión de datos y conversión de programas.
Esta tesis está centrada en la primera dimensión de la reingeniería de datos. En
concreto, se presenta un proceso basado en MDE para la conversión de esquemas
cuyo propósito es mejorar la calidad del esquema lógico dentro de un escenario de
migración de una base de datos relacional. El enfoque propuesto se organiza sigu-
iendo las tres etapas de un proceso de reingeniería: primero se aplica ingeniería
inversa para extraer una descripción lógica del sistema; a continuación se realiza
la reestructuración del sistema a través de transformaciones de las descripciones
lógicas obtenidas en la etapa anterior; finalmente se ejecuta la etapa de inge-
niería directa o generación del nuevo sistema a partir de las nuevas descripciones
lógicas. Cada etapa has sido implementada mediante cadenas de transformación
de modelos que incluyen transformaciones de tres tipos: texto a modelo (T2M),
modelo a modelo (M2M) y modelo a texto (M2T). Nuestro proceso no solo realiza
una migración tecnológica si no que también incluye una conversión de esquema
de base de datos con el que proporcionar mejoras en la calidad de los datos.

La mayoría de los sistemas gestores de bases de datos relacionales actuales dispo-
nen de un control para la aplicación de restricciones de integridad referencial (im-
plementado mediante claves ajenas). Sin embargo, son muchos los sistemas de
información legados que no hacen uso de este importante control, principalmente
si el diseño de la base de datos precedió a una posterior disponibilidad del so-
porte para las claves ajenas. La detección de claves ajenas implícitas en sistemas
legados ha sido un tema de investigación desde hace tiempo en la comunidad de
reingeniería de base de datos. Se han propuesto una gran variedad de métodos
diferentes, los cuales están basados en el análisis de los tres tipos de artefactos
que conforman un sistema de información de datos: esquema, código de la apli-
cación y datos. El proceso de conversión de esquemas aquí propuesto mejora la
calidad de los datos de un sistema mediante la elicitación de claves ajenas a través
de estrategias basadas en el análisis del esquema, de los datos y de código de los
programas.

La primera etapa de nuestro proceso comienza inyectando los datos del sistema
legado en modelos. Para ello se han usado como artefactos fuente los scripts SQL
de definición del esquema y los datos de la base de datos, así como el código fuente

ii



de la aplicaciones legadas que se encarga del acceso a los datos. A continuación,
sobre los modelos extraídos en la primera etapa se aplica un proceso de inferencia
o elicitación de claves ajenas implícitas en los datos (aunque no definidas sobre el
propio esquema). Los tres análisis anteriormente mencionados han sido implemen-
tados combinando diferentes estrategias basadas todas en el uso de técnicas MDE.
Ya en la segunda etapa del proceso, mediante un asistente se solicita la intervención
manual de los desarrolladores de la migración para confirmar el descubrimiento in-
dividual de cada una de las claves ajenas propuestas por nuestra solución. Una
vez validada la elicitación, se añaden las nuevas claves ajenas al modelo que rep-
resenta el esquema y los datos de la base de datos legada. Se aplica entonces un
proceso de normalización que se encarga de comprobar la forma normal de cada
relación del esquema y se aplican los algoritmos de normalización (descomposición
y/o síntesis), si fuera necesario, para dejar el esquema en al menos tercera forma
normal. En este etapa, además de intervenir diversas transformaciones de mode-
los, es necesario integrar el uso de la herramienta Concept Explorer (ConExp) que
nos permite la identificación automática de dependencias funcionales necesarias
para la normalización. En la tercera y última etapa del proceso se generan los
artefactos del nuevo sistema software: los nuevos scripts SQL de base de datos
y/o el código JPA (JAva Persistence API) para el acceso y generación del nuevo
esquema. El enfoque aquí propuesto se ha validado a través de su aplicación en
una base de datos real de un sistema legado, en concreto OSCAR (Open Source
Clinical Application Resource), una herramienta para el cuidado de la salud que
tiene un amplio uso fundamentalmente en centros hospitalarios de Canadá desde
hace mas de 15 años. Se ha proporcionado también una valoración del uso de las
técnicas basadas en modelos en nuestra implementación.

Debido a que la evidencia empírica en la elicitación de claves ajenas en sistemas
industriales a gran escala es escasa y a menudo los problemas (casos de estudio)
usados son cuidadosamente seleccionados para cumplir con una solución particular,
en lugar de que fuera al revés, en este trabajo también hemos llevado a cabo un
enfoque distinto: aplicar una reingeniería sobre un sistema de información real y
crítico. Las dimensiones y complejidad del caso de estudio han conllevado realizar
un nuevo análisis complementario (en este caso manual) que ha consistido en la
triangulación de los resultados obtenidos en los anteriores análisis. Se han definido

iii



varios criterios para la aceptación de claves ajenas candidatas que hayan sido
descubiertas en el esquema, en los datos o en el código de la aplicación, y se ha
proporcionado una discusión acerca de la confiabilidad de los resultados finales.

Tal y como se ha comentado, el proceso de conversión de esquemas también
ha considerado la comprobación y corrección automática (si fuera necesario) del
nivel de normalización de la base de datos, para lo que ha sido necesario integrar
la herramienta ConExp en nuestro proceso de reingeniería de datos MDE. Con
esta experiencia, y a partir del conocimiento obtenido de la integración, hemos
continuado explorando las capacidades que ofrece MDE en al área de la interoper-
abilidad de herramientas mediante la creación de un puente MDI (Model-Driven
Interoperability) entre nuestro proceso y la herramienta de ingeniería de datos
DB-Main. Un puente bidireccional entre DB-Main y la tecnología MDE (también
conocida como Modelware) está formado por un metamodelo que representa la
información manejada por la herramienta (denominado metamodelo pivote) junto
con un inyector que genera modelos a partir de la información proporcionada por
la herramienta y un extractor que realiza la operación inversa. Estos dos últimos
artefactos conforman lo que se conoce en MDI como correspondencia sintáctica de
un puente de interoperabilidad. Puesto que DB-Main ofrece diferentes alternativas
para acceder a sus datos (un API de métodos Java, un fichero de exportación de
datos en formato XML y un fichero en formato propietario con todos los datos
de un proyecto), hemos decidido evaluar diferentes estrategias para implementar
la correspondencia sintáctica (es decir, la creación de extractores e inyectores de
modelos). Una vez completado este puente, se ha realizado la construcción de un
último puente bidireccional que, en este caso, requiere la implementación de una
correspondencia semántica entre los datos de dos herramientas a integrar represen-
tados a través de los correspondientes metamodelos pivote. Para ejemplificar este
puente se tomó como herramientas la antes mencionada DB-Main y la herramienta
de ingeniería de requisitos Objectiver. Esto nos ha permitido experimentar con
la aplicación del lenguaje QVT-Relational para implementar una correspondencia
semántica bidireccional dentro del puente de interoperabilidad.

Uno de los principales retos en la adopción de MDE en procesos de construcción
de software de gran escala y complejos es todavía la disponibilidad de herramientas
para el soporte de procesos basados en técnicas MDE y que permitan integrar la

iv



ejecución de tareas manuales y automáticas. Por lo tanto, en esta tesis también
se ha propuesto una herramienta con la que proporcionar el soporte para la defini-
ción y la ejecución de procesos de migración MDE en general, y que soporta la
ejecución de nuestro proceso de reingeniería de datos en particular. La ausencia
de entornos de desarrollo capaces de integrar la ejecución de tareas automáticas
junto con la de tareas manuales que sean aplicadas por los desarrolladores de la
migración ha motivado la creación de la herramienta descrita en esta tesis. La
herramienta tiene como objetivos permitir: la definición de planes de migración, la
instanciación de esos planes sobre proyectos de migración reales (es decir, sistemas
de información legados) y la ejecución (mediante un intérprete) de los planes de
migración instanciados sobre sistemas legados. Para ello, primero se ha abordado
la creación de un lenguaje para la definición de modelos que representen planes de
migración. Se trata de un lenguaje específico de dominio (DSL) basado en SPEM y
orientado a la definición de procesos de migración implementados mediante tareas
MDE. Para cada proyecto de migración particular, estos modelos son instanciados
con el objetivo de contener toda la información necesaria para la ejecución real del
proceso (por ejemplo, las rutas de los recursos y las herramientas de transforma-
ción). Una vez instanciado un plan de migración para un proyecto, los modelos
son ejecutados mediante un interprete de procesos encargado de generar tickets en
un servidor Trac que se corresponden con: scripts de tareas Ant para la ejecución
automática y entradas en Mylyn para que la gestión manual de tareas pueda ser
integrada en un entorno de desarrollo. Puesto que tanto las tareas manuales como
las automáticas son generadas a partir de tickets en Trac, este tipo de servidor
permite definir dependencias entre tareas que derivan en bloqueos que garantizan
que una tarea no se ejecute hasta que todas sus dependencias han sido resueltas
(tareas completadas). Asimismo, el uso de una herramienta como Mylyn permite
la asignación de tareas manuales a los desarrolladores de la migración, facilitando
por tanto la gestión de los recursos en los proyectos de migración así como el
seguimiento y control del proyecto por parte del responsable del mismo.

Resumiendo, el objetivo de esta tesis ha sido aplicar técnicas MDE en un esce-
nario de de reingeniería de datos con tres propósitos diferentes, pero relacionados:
abordar la conversión de esquemas durante un proceso de reingeniería de datos
común en proyectos de migración, proporcionar la implementación de un enfoque

v



que nos permita la integración de una herramienta de reingeniería de datos con
otras herramientas software y construir una herramienta capaz de automatizar la
definición y ejecución de procesos de migración. Con los dos primeros objetivos,
se han investigado los beneficios de usar una implementación MDE con respecto a
abordarla con técnicas tradicionales. Con el último objetivo se ha evaluado cómo
las técnicas MDE pueden ser útiles para desarrollar herramientas para el soporte
de procesos software.

vi



An Approach for Model-Driven Data
Reengineering

Abstract
Data Engineering is the Computer Science discipline concerned with the principles,
techniques, methods and tools to support the data management in the software
development. Data are normally stored in database management systems (e.g.
Relational, Object-oriented or NoSQL) and Data Engineering has been mainly
focused on relational data so far, although interest is shifting towards NoSQL
databases. In this thesis, we have addressed issues which are related to some of
the main topics of Data Engineering, such as Data Reengineering, Data Reverse
Engineering, Data Integration and Data Tooling. More specifically, we have ex-
plored the application of Model-Driven Engineering (MDE) in data engineering.

MDE emphasizes the systematic use of models to improve software productivity
and some aspects of the software quality, such as maintainability or interoperabil-
ity. Model-driven techniques have proven useful not only as regards developing
new software applications but also the reengineering of legacy systems. Models and
metamodels provide a high-level formalism with which to represent artefacts com-
monly manipulated in the different stages of a software evolution process (e.g., a
software migration) while model transformation allows the automation of the evo-
lution tasks to be performed. Some approaches and experiences of model-driven
software reengineering have recently been presented but they have been focused
on the code while data reengineering aspects have been overlooked.

A data reengineering should be covered through three dimensions: schema con-
version, data conversion and program conversion. This thesis focuses on the first
dimension of data reengineering. We present an MDE-based process for the schema
conversion whose purpose is to improve the quality of the logical schema in a rela-
tional database migration scenario. The approach proposed is organised following
the three stages of a software reengineering process: reverse engineering, restruc-
turing and forward engineering. Each stage has been implemented by means of

vii



model transformation chains. We have validated our approach through its appli-
cation to a real widely-used database. We also provide an assessment of the use
of MDE techniques in our implementation.

Our process applies not only a technological migration but also a schema con-
version with which to provide data quality improvements. Most modern relational
database management systems have the ability to monitor and enforce referen-
tial integrity constraints (implemented by foreign key) but heavily evolved legacy
information systems may not make use of this important feature, if their design
predates its availability.

The detection of implicit foreign keys in legacy systems has been a long-term
research topic in the database reengineering community and a variety of different
methods have been proposed, which are based on the analysis of the three kinds
of artefacts that form a data-intensive information system, namely schema, appli-
cation code and data. Our schema conversion process improves the data quality
of a system by eliciting foreign keys through strategies of analysis of schema, data
and application code analysis.

Owing to empirical evidence on eliciting foreign keys in large-scale industrial
systems is scarce and often ”problems” (case studies) are carefully selected to
fit a particular ”solution” (method), rather than the other way around, we also
carry out a different approach: we re-engineer a real, complex and mission-critical
information system and it leads to a new manual and complementary analysis
that consists of the triangulation of the results obtained in all of our previous
analysis. We define several criteria for the acceptance of the candidate foreign
keys discovered in the schema, data and application code analysis and we discuss
the final results.

The schema conversion process has also considered checking and fixing auto-
matically, if necessary, the database normalisation level. For this task, we have
integrated the Concept Explorer tool (ConExp) into our MDE solution in order
to identify functional dependencies in a relational database. From the knowl-
edge gained from the integration of ConExp, we explore the MDE capabilities for
the tool interoperability through the creation of a bidirectional bridge between
the DB-Main data reengineering tool and the Objectiver requirement engineering
tool. As DB-Main offers several alternatives to access its data (API, and XML

viii



and proprietary formats), we have evaluated different strategies to implement the
syntactic mapping (i.e. creating model injectors and extractors). In addition, we
have explored the use of QVT relational to implement the semantic mapping.

One of the main challenges in the adoption of MDE in large and complex pro-
cesses is still the availability of tools to support MDE-based processes which in-
tegrate manual and automated tasks. Therefore, in this thesis we have also pro-
posed a tool with which to provide the definition and enactment of MDE migration
processes in general, and which supports the execution of our data reengineering
process in particular. The lack of IDEs capable of integrating the execution of
automated tasks and manual tasks to be performed by developers has motivated
the creation of the tool described in this thesis. We have defined a SPEM-based
language for defining models that represent migration plans. For each particular
migration project, these models are instantiated in order to contain all the infor-
mation needed for the enactment (e.g. resource paths and transformation tools).
Then, these models are enacted by means of a process interpreter which generates
Ant scripts to execute the automated tasks and Trac tickets for managing manual
tasks with the Mylyn tool.

Summarizing, the aim of our work has been applying MDE techniques with three
different purposes: tackling the schema conversion during a data reengineering,
approaching the integration of a database reengineering tool with other software
tools, and building a tool able to automate the development of migration processes.
With the two former, we have investigated the benefits of MDE with regard to
traditional solutions, and the latter objective addressed how MDE may be useful
to develop tools supporting software processes.

ix





Contents

1 INTRODUCTION 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 BACKGROUND 13
2.1 Database concepts: Referential Integrity

Constraints and Normalisation . . . . . . . . . . . . . . . . . . . . . 13
2.2 Characterising Data Reengineging . . . . . . . . . . . . . . . . . . . 15
2.3 Basis of Model-Driven Engineering . . . . . . . . . . . . . . . . . . 16
2.4 Basis of Model-Driven Interoperability . . . . . . . . . . . . . . . . 20
2.5 Modelling and enactment of migration processes . . . . . . . . . . . 23

2.5.1 Software Process Languages . . . . . . . . . . . . . . . . . . 26

3 STATE OF THE ART 31
3.1 Foreign Key Discovering Techniques . . . . . . . . . . . . . . . . . . 31
3.2 Model-driven Data Reengineering . . . . . . . . . . . . . . . . . . . 33
3.3 Migration Process Tool . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 SPEM extensions . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.2 BPMN language . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.3 Using MDE in Software Process Engineering . . . . . . . . . 44

3.4 Tool Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . 47

xi



4 OVERVIEW 51
4.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 A Model-based Data Reengineering Process . . . . . . . . . . . . . 55

4.2.1 Reverse engineering . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.2 Restructuring . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.3 Forward engineering . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Strategies for the Foreign Key Discovering . . . . . . . . . . . . . . 57
4.4 A Tool to Define and Enact Model-based Migration Processes . . . 58

4.4.1 Process definition . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4.2 Process instantiation . . . . . . . . . . . . . . . . . . . . . . 59
4.4.3 Process enactment . . . . . . . . . . . . . . . . . . . . . . . 60
4.4.4 Technology-Independence . . . . . . . . . . . . . . . . . . . 61

4.5 A Tool Interoperability Architecture . . . . . . . . . . . . . . . . . 62
4.6 A Case Study: the OSCAR system . . . . . . . . . . . . . . . . . . 63

5 STRATEGIES OF DEFECT DISCOVERING 67
5.1 Schema Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3 Static SQL Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4 Hibernate Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.5 JPA Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.6.1 Raw data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.6.2 Acceptance criteria . . . . . . . . . . . . . . . . . . . . . . . 77
5.6.3 Rejected and Unlikely candidates . . . . . . . . . . . . . . . 78
5.6.4 Final results . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.7 Discussion and Limitations of the manual approach . . . . . . . . . 81

6 DATA MODEL-DRIVEN REENGINEERING PROCESS 83
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2 Running Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3 Reverse Engineering Stage: Obtaining the Defect Model . . . . . . 88

6.3.1 Defect Metamodel . . . . . . . . . . . . . . . . . . . . . . . 89

xii



6.3.2 Data Model Injection. DDL and DML metamodels . . . . . 90
6.3.3 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3.3.1 Strategy . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3.3.2 Implementation . . . . . . . . . . . . . . . . . . . . 92
6.3.3.3 Example . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3.4 Code Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3.4.1 Strategy . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3.4.2 Implementation . . . . . . . . . . . . . . . . . . . . 98

6.3.5 Comparison of Strategies . . . . . . . . . . . . . . . . . . . . 103
6.4 Restructuring Stage: Applying Defect Correction and Normalisation 106

6.4.1 Defect correction . . . . . . . . . . . . . . . . . . . . . . . . 106
6.4.2 Normalisation . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.4.3 Schema normalisation . . . . . . . . . . . . . . . . . . . . . 114

6.5 Forward Engineering Stage: Generating Restructured Database . . 114
6.6 Applying our approach to the real-world case study . . . . . . . . . 117
6.7 Assessment of the approach . . . . . . . . . . . . . . . . . . . . . . 119

6.7.1 Reverse engineering . . . . . . . . . . . . . . . . . . . . . . . 120
6.7.2 Data restructuring . . . . . . . . . . . . . . . . . . . . . . . 123
6.7.3 Forward engineering . . . . . . . . . . . . . . . . . . . . . . 124
6.7.4 Gain in productivity . . . . . . . . . . . . . . . . . . . . . . 125
6.7.5 Benefits and drawbacks . . . . . . . . . . . . . . . . . . . . . 128

6.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7 MIGRATION TOOL 133
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.2 Running Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.3 Process Definition: A DSL for migration processes . . . . . . . . . . 137

7.3.1 The Migration Metamodel . . . . . . . . . . . . . . . . . . . 138
7.3.2 Application of MigrationDSL to the running example . . . . 143

7.4 Process Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . 146
7.4.1 Instantiation of Concrete Migration models . . . . . . . . . . 146
7.4.2 Inventory metamodel . . . . . . . . . . . . . . . . . . . . . . 147
7.4.3 MigrationGuides . . . . . . . . . . . . . . . . . . . . . . . . 148

xiii



7.4.4 Concrete Migration model for the running example . . . . . 149
7.5 Process Enactment . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.5.1 Process Interpretation model . . . . . . . . . . . . . . . . . . 150
7.5.2 Trac customisation . . . . . . . . . . . . . . . . . . . . . . . 152
7.5.3 Mylyn integration . . . . . . . . . . . . . . . . . . . . . . . . 154
7.5.4 Enactment of the running example . . . . . . . . . . . . . . 155

7.6 Use of the Models4Migration tool . . . . . . . . . . . . . . . . . . . 155
7.6.1 Creation of Migration Cartridges . . . . . . . . . . . . . . . 156
7.6.2 Enactment of Migration Cartridges . . . . . . . . . . . . . . 157

7.7 Applying our tool to the real-world case study . . . . . . . . . . . . 160
7.7.1 Context of the case study . . . . . . . . . . . . . . . . . . . 161
7.7.2 Evaluation of the approach . . . . . . . . . . . . . . . . . . . 162

7.8 Lessons learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
7.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

8 TOOL INTEROPERABILITY 171
8.1 The tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
8.2 Pivot Metamodels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
8.3 Syntactic Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

8.3.1 Strategies to implement the injection . . . . . . . . . . . . . 176
8.3.2 Strategies to implement the extraction . . . . . . . . . . . . 178
8.3.3 Assessment of the strategies . . . . . . . . . . . . . . . . . . 179

8.4 Semantic Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
8.5 Applying the bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
8.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

9 CONCLUSIONS 193
9.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

9.1.1 G1. Data Reengineering Process . . . . . . . . . . . . . . . . 196
9.1.2 G2. Strategies of FK Discovering . . . . . . . . . . . . . . . 197
9.1.3 G3. Migration Tool . . . . . . . . . . . . . . . . . . . . . . . 198
9.1.4 G4. Tool Interoperability . . . . . . . . . . . . . . . . . . . . 200

9.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

xiv



9.2.1 G1. Data Reengineering Process . . . . . . . . . . . . . . . . 200
9.2.2 G2. Strategies of FK Discovering . . . . . . . . . . . . . . . 201
9.2.3 G3. Migration Tool . . . . . . . . . . . . . . . . . . . . . . . 202
9.2.4 G4. Tool Interoperability . . . . . . . . . . . . . . . . . . . . 203

9.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
9.3.1 G1. Data Reengineering Process . . . . . . . . . . . . . . . . 204
9.3.2 G2. Strategies of FK Discovering . . . . . . . . . . . . . . . 205
9.3.3 G3. Migration Tool . . . . . . . . . . . . . . . . . . . . . . . 205
9.3.4 G4. Tool Interoperability . . . . . . . . . . . . . . . . . . . . 206

9.4 Publications related to the thesis . . . . . . . . . . . . . . . . . . . 206
9.4.1 Journals with an impact factor . . . . . . . . . . . . . . . . 206
9.4.2 International conferences and workshops . . . . . . . . . . . 206
9.4.3 National conferences . . . . . . . . . . . . . . . . . . . . . . 207

9.5 Projects that are related to this thesis . . . . . . . . . . . . . . . . 208
9.6 Research stays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
9.7 Transfer of technology . . . . . . . . . . . . . . . . . . . . . . . . . 209

REFERENCES 224

xv





Listing of figures

1.1 Research methodology used in our work. . . . . . . . . . . . . . . . 10

2.1 Model-driven reengineering stages (extracted from [42]) . . . . . . . 15
2.2 Schema conversion in a Data Reengineering (extracted from [17]) . 16
2.3 Model-driven reengineering stages . . . . . . . . . . . . . . . . . . . 19
2.4 Applying MDI techniques between two systems (extracted from [34]). 21
2.5 Fragment of the SPEM v2 metamodel . . . . . . . . . . . . . . . . . 27

3.1 KDM layers and packages . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Model-based data reengineering process. . . . . . . . . . . . . . . . 56
4.2 Instantiation and enactment of migration processes. . . . . . . . . . 60
4.3 Process Interpreter in the migration process tool proposed. . . . . . 62
4.4 Objectiver/DB-Main bridge. . . . . . . . . . . . . . . . . . . . . . . 64

5.1 Initial report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Accepted FKs after having applied our acceptance criteria. . . . . . 78
5.3 Example of bi-directionality. . . . . . . . . . . . . . . . . . . . . . . 79
5.4 Example of unicity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.5 Example of transitivity. . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.6 Accepted FKs after having applied our rejection criteria. . . . . . . 81

6.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Defect identification stage . . . . . . . . . . . . . . . . . . . . . . . 89
6.3 Defect metamodel simplified . . . . . . . . . . . . . . . . . . . . . . 90

xvii



6.4 Database injection pre-stage . . . . . . . . . . . . . . . . . . . . . . 90
6.5 DDL Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.6 DML Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.7 Database tables for representing defects . . . . . . . . . . . . . . . . 94
6.8 Defect model of the running example . . . . . . . . . . . . . . . . . 96
6.9 Defect identification based on analysing of the application source

code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.10 Fragment Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.11 SELECT file generation. . . . . . . . . . . . . . . . . . . . . . . . . 100
6.12 SELECT metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.13 SELECT model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.14 Defects in the wizard . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.15 Defect correction stage . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.16 Normalisation task . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.17 Functional Dependencies metamodel . . . . . . . . . . . . . . . . . 109
6.18 Functional Dependencies model for the running example . . . . . . 110
6.19 Generation of new data . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.20 JPA metamodel simplified . . . . . . . . . . . . . . . . . . . . . . . 116
6.21 JPA model simplified of running example for Customer and City

tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.1 Scenario of the tool. . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.2 Migration plan of the running example. . . . . . . . . . . . . . . . . 136
7.3 Fragment of the UML2 Activity Diagram . . . . . . . . . . . . . . . 138
7.4 Migration metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.5 Abstract Migration model example . . . . . . . . . . . . . . . . . . 145
7.6 Inventory Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.7 Process Interpretation model. . . . . . . . . . . . . . . . . . . . . . 149
7.8 Task Metamodel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.9 Trac transition diagram. . . . . . . . . . . . . . . . . . . . . . . . . 153
7.10 Roles using the migration tool. . . . . . . . . . . . . . . . . . . . . 156
7.11 Creating a migration project. . . . . . . . . . . . . . . . . . . . . . 157
7.12 Introducing data into the Inventory model. . . . . . . . . . . . . . . 158

xviii



7.13 Mylyn can query and obtain the Trac tickets. . . . . . . . . . . . . 159
7.14 Ticket information. . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
7.15 Eclipse environment context for a manual task. . . . . . . . . . . . 161
7.16 Tasks generated for the case study. . . . . . . . . . . . . . . . . . . 163
7.17 Percentage of code generated in the application layers. . . . . . . . 164
7.18 Hours to create the tasks of the migration plan. . . . . . . . . . . . 165
7.19 Hours for the ROI of our approach. . . . . . . . . . . . . . . . . . . 165

8.1 Excerpt of the Objectiver pivot metamodel. . . . . . . . . . . . . . 174
8.2 DB-Main pivot metamodel. . . . . . . . . . . . . . . . . . . . . . . 175
8.3 Injectors and extractors for DB-Main. . . . . . . . . . . . . . . . . . 177
8.4 Semantic mapping for tables↔ entities. . . . . . . . . . . . . . . . 182
8.5 Semantic mapping for foreign keys↔ relationships. . . . . . . . . 182
8.6 Goal model of the running example. . . . . . . . . . . . . . . . . . . 187
8.7 Object model of the running example. . . . . . . . . . . . . . . . . . 187
8.8 Ecore model of the Objectiver project. . . . . . . . . . . . . . . . . 188
8.9 Ecore model of DB-Main after the semantic mapping. . . . . . . . . 188
8.10 DB-Main project extracted by the syntactic mapping. . . . . . . . . 189
8.11 Ecore model of the Objectiver project after the modification. . . . . 189

xix





List of Tables

3.1 Related work on FK discovery. . . . . . . . . . . . . . . . . . . . . . 33
3.2 Related work on model-driven data reengineering. . . . . . . . . . . 40
3.3 Related work on migration process tools. . . . . . . . . . . . . . . . 47
3.4 Related work on tool interoperability. . . . . . . . . . . . . . . . . . 49

5.1 List of acceptance criteria for the candidate FK. . . . . . . . . . . . 78
5.2 Final results of the discovering FK. . . . . . . . . . . . . . . . . . . 81

6.1 Data reengineering tasks and MDE techniques used in the scenario
in which defects are removed. . . . . . . . . . . . . . . . . . . . . . 86

6.2 Comparison of strategies implemented for the FK discovering. . . . 106
6.3 Formal Context for the running example. . . . . . . . . . . . . . . . 112
6.4 Manual tasks vs MDE tasks . . . . . . . . . . . . . . . . . . . . . . 125

7.1 Graphical notation of MigrationDSL for defining MDE migration
processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.1 Assessment of the strategies . . . . . . . . . . . . . . . . . . . . . . 179

9.1 Fulfilment of the general requirements . . . . . . . . . . . . . . . . . 196
9.2 Fulfilment of the requirements of goal G1 . . . . . . . . . . . . . . . 197
9.3 Fulfilment of the requirements of goal G2 . . . . . . . . . . . . . . . 198
9.4 Fulfilment of the requirements of goal G3 . . . . . . . . . . . . . . . 199
9.5 Fulfilment of the requirements of goal G4 . . . . . . . . . . . . . . . 200

xxi





Agradecimientos

Han sido varios años los invertidos en el trabajo que se recoge ahora en
este documento. Multitud de experiencias han ido acompañando a esta
tesis, moldeándola con mayor o menor influencia. Y llegó el momento de

recordar y agradecer a todas las personas que me han ayudado desde una perspec-
tiva profesional, y por supuesto personal, en el largo recorrido que ha supuesto la
realización de la tesis. Pero es justo ahora cuando más dubitativo me encuentro
pues intento analizar desde un punto de vista científico cuál sería la forma más
correcta de ordenar a los a continuación mencionados. ¿Los incluyo midiendo el
impacto que han tenido en mis investigaciones o comunicaciones?... o tal vez ¿de-
bería cuantificar como me han apoyado en lo personal para soportar los baches
profesionales en los que he sucumbido en esta carrera hacia el reconocimiento
científico? Es una difícil decisión... O quizás no, y es más sencillo que todo lo an-
teriormente mencionado. Tal vez tan solo deba confiar en la justicia de mi corazón
y reconocer que todos los aquí mencionados son parte de la tesis que por fin hoy
acabo. Todos por igual, sin importar el orden o si tan solo compartieron conmigo
una pequeña fracción de tiempo a lo largo de todos estos años como doctorando.
Quiero, por tanto, dar mi agradecimiento a todos los aquí presentes. Y puede
que algunos puedan pensar que apenas han contribuido al resultado final aquí pre-
sentado, pues no fueron muchas las veces que me preguntaron o animaron en mis
tareas de investigación. Sin embargo, todos ellos contribuyeron con tan solo traer
algo de luz a aquellos oscuros días de trabajo en los sucumbí presa de la frustación.

Voy a empezar dando mi mas profundo agradecimiento a mi familia. A los que
me han tenido que soportar todos los días, y han sobrellevado de la mejor manera
posible los problema que del trabajo me llevaba muy a menudo. A Claudia y

xxiii



a Raquel, por que son la razón de mi existencia y el motor que me impulsa a
sobrepasar los obstáculos de la vida. A mi esposa Antonia Mari, el incondicional
apoyo sin el cuál me resultaría imposible imaginar la consecución de mis éxitos.
A mis padres, Antonio y Paquita, que germinaron en mi los valores personales
y profesionales que tanto me enorgullece demostrar y a quienes anhelo siquiera
asemejarme algún día. A mis hermanos y cuñados, Maribel y Jose Manuel, Jose
Antonio y Mari Carmen. Y por supuesto a mis queridas sobrinas: Isabel y la
recién llegada Gema. Todos ellos me han acompañado en esta travesía y apoyado
cuando lo he necesitado.

Quiero por supuesto dar mi agradecimiento a mis directores de tesis, Oscar Díaz
y especialmente a Jesús García, pues son los mayores responsables en el ámbito
profesional de conseguir hacerme llegar finalmente a la meta. Un carrera larga en
la que he invertido más tiempo del esperado, pero en la que por fin hoy rompo
la cinta de llegada gracias a que su constancia no me dejó desfallecer en ningún
momento y a que me ofrecieron más tiempo del que disponían.

No voy a dejar sin mencionar a mis amigos, Antonio y Verónica, Ricardo y
Laura, y por último pero no menos importante, a Fernando. Han supuesto el
combustible que necesitaba en mis días fuera de la oficina, y sin el cual hubiera
resultado imposible atravesar el largo puente del lunes al viernes. De todos ellos
aprendo cada día algo valioso y que seguro que habré reflejado de alguna modo en
mi investigación.

Numerosos agradecimientos deben ir a parar a otros amigos, los que he cono-
cido en el laboratorio donde he ido realizando la tesis. Empezaré mencionando de
manera especial a Juan Manuel y a Oscar Sánchez. Tal vez los que hayan dejado
una huella mas palpable en mis logros investigadores. Muchas son las horas que
hemos compartido en nuestro trabajo. Muchas las enseñanzas, conversaciones,
cafés, y en general, experiencias. Momentos que estarán para siempre en mi re-
cuerdo. Quiero mencionar también a los amigos que siempre han estado allí donde
los necesitaba, que se han preocupado y han respondido con paciencia a todas
mis dudas de investigador novato: Jesús Sánchez y Javier Cánovas. No me quiero
dejar a Javier Espinazo quien también ha tenido una gran influencia en los resul-
tados que recoge esta tesis. Y a Fernando, Joaquín y Fran, a los que conocí en
el laboratorio y con los que fue fácil establecer amistad por la excelencia de sus

xxiv



personas. Y sería injusto no mencionar a Mari Luz por su apoyo en mi segunda
andadura universitaria.

Quiero también dedicar un largo y sentido párrafo a todos aquellos con los
que he tenido la poca fortuna de tan solo coincidir un breve tiempo de mi etapa
investigadora. Empezaré por aquellos que me ayudaron en una parte importante
de la consecución de la tesis: Anthony y Jens. A menudo pienso que realmente
me ofrecieron más oportunidades profesionales de las que yo jamás creí merecer.
Y si me muevo a tierras belgas, me niego a cerrar mis agradecimientos sin resaltar
a los amigos que allí dejé. Mis compañeros de laboratorio Loup y Nesrine, en
los que espero haber sembrado la amistad que ellos plantaron en mí. Me resulta
imposible olvidarme de los que hicieron que mi estancia en Namur se convirtiera en
inolvidable y seguro que irrepetible: Francesco, Silvia, Frédéric y Marco. El buen
sabor que dejaron en mi fue comparable al de las deliciosas piadinas de Giuseppe.
Quisiera expresar un especial agradecimiento a Sofia, Manal, Saad y Lamya. Su
generosa amistad y los días vividos en Marruecos perdurarán para siempre en mi
memoria. Ellos me enseñaron el auténtico sentido de la hospitalidad. También
quiero dar mi agradecimiento a Paul por su incansable disponibilidad.

Por último, no me gustaría dejar de mencionar a Begoña, Marcos, Joaquín,
Rafa, Fabian, James y Jose Ramón.

A todos ellos, muchas gracias.

xxv



”Colour my life with the chaos of trouble” from The Boy With
The Arab Strap, Belle and Sebastian

xxvi



(Suggested by Claudia and Raquel)

(Suggested by Antonia Mari)

”Por el día nos encierran en sus jaulas de cemento y
aprendemos del león. Por las noches atrapamos cora-
zones asfixiados y disparos en su honor. Mírame, soy
feliz, tu juego me ha dejado así. Consumir, producir,
la sangre cubre mi nariz. No sé dónde quedó el rumor
que nos vió nacer... pagó la jaula al domador.”

from Un día en el mundo, Vetusta Morla

”Failure teaches us that life is but a draft, a long
rehearsal for a show that will never play.”

from Le fabuleux destin d’Amélie Poulain 1
Introduction

Data Engineering is the Computer Science discipline concerned with the prin-
ciples, techniques, methods and tools to support the data management in the
software development. Data are normally stored in database management sys-
tems (e.g. Relational, Object-oriented or NoSQL) and Data Engineering has been
mainly focused on relational data so far, although interest is shifting towards
NoSQL databases. In this thesis, we have addressed issues which are related to
some of the main topics of Data Engineering, such as Data Evolution (e.g. data
reengineering), Data Reverse Engineering, Data Integration and Data Tooling.

Businesses have legacy applications that were built in the past and have been
working since then. However, in the long term, the maintenance of these appli-
cations is rather complicated [1]. On the one hand, technologies used or design
choices may require a data or software quality improvement. For instance, in the
case of data-intensive systems, some legacy databases were defined without con-
sidering referential integrity constraints, so they become even more difficult to
maintain as time goes by. On the other hand, nowadays there are plenty of tech-

1



nologies and devices that are either more attractive to users or better fit the needs
of businesses. All these reasons have meant that a large number of businesses
are modernising their legacy systems to new platforms (typically web platforms),
which better meet their needs of extensibility, maintainability, as well as improving
other aspects such as extensibility, performance or distribution.
Application modernisation can be defined as the refactoring, re-purposing or

consolidation of legacy software systems in order to align them more closely with
current business needs. Reengineering is a kind of software modernisation in which
the system quality is improved by means of a systematic process over three stages
[2]: reverse engineering, restructuring and forward engineering. Firstly, a reverse
engineering stage analyses the existing system and extracts knowledge which is rep-
resented at different abstraction levels. A second stage restructures these abstract
representations to establish a mapping between the existing system and the target
system. Finally, a forward engineering stage obtains the target artefacts from the
output of the restructuring stage. A migration is a special case of reengineering in
which a software system is moved from one technology to another.

Data-intensive systems include two main components: a set of software programs
and a database. Data-intensive system reengineering therefore surpasses code so
as to also include data. In fact, software system reengineering is traditionally
organised into two separated areas: software reengineering and data reengineering.
As noted in [3] this separation is particularly clear in reverse engineering in which
there have over the years been significant contributions in each field. Software and
data reengineering have developed theories, methods and tools which have been
adopted by the industry although both communities ”must still face numerous
challenges to properly address data-intensive systems” [4].

A mature, stable and functionally complete tooling is one of the most impor-
tant requirements in the software industry in order to adopt a systematic software
process which produces results in accordance with high quality standards. A mi-
gration process can benefit tools that automate a specific task of data reengineering
or other tools that can simply be useful in completing a data modernisation. For
instance, a software process engineering tooling supporting the definition and en-
actment of migration process could provide a high level of productivity when a
application modernisation must be performed.

2



Over the last few years, Model-Driven Engineering (MDE) is increasingly gaining
acceptance, mainly owing to its ability to tackle software complexity and improve
the software productivity [5] [6]. MDE promotes the systematic use of models in
order to raise the level of abstraction at which software is specified and to increase
the level of automation in the development of software. Although the objective of
the most common MDE approaches, e.g. MDA [7] and domain-specific develop-
ment [8], is to build new software systems (forward engineering), MDE has also
shown its potential as a reverse engineering technique. Specifically, metamodelling
and model transformations have proven to be useful in the automation of many
basic activities in software evolution processes, such as representing source code
[9] and data [10] at a higher level of abstraction or obtaining information such as
metrics [11].

The aim of our work has been applying MDE techniques with three different
purposes: (1) tackling the improvement of the logical schema quality in a rela-
tional database migration scenario; (2) approaching the integration of a database
engineering tool with other software tools; and (3) building a tool able to auto-
mate the development of migration processes. By means of the two former, we
have investigated the benefits of MDE with regard to traditional solutions, and by
the latter objective provided us insights on how MDE may be useful in developing
tools supporting software processes. Next, we motivate these objectives.

1.1 Motivation

In recent years, some model-driven reengineering (a.k.a. model-driven modernisa-
tion) experiences have been reported [12] [13] [14] and tools with which to support
model-driven modernisation are now emerging [15]. Moreover, the OMG launched
the initiative Architecture-Driven Modernisation (ADM) initiative with the aim
of providing standard metamodels with which to represent information commonly
managed in modernisation tasks and thus promoting in this way the model-driven
modernisation [14] [16]. However, the focus is on software reengineering (i.e. code)
while model-driven data reengineering has been overlooked. It is also worth noting
that the data engineering community have paid little attention to the application
of MDE so far. Therefore, to the best of our knowledge, there are not enough

3



case studies which have been applied to data reengineering approaches and have
provided assessment that illustrate the benefits of using MDE techniques in this
area.

Data reengineering involves the transformation of legacy artefacts (i.e. schema,
data and code) into artefacts of the target system. Transformational approaches
have therefore traditionally been used to automate data reengineering tasks such
as normalisation, schema conversion, or schema integration as explained in detail
in [17][18]. The implementation of such tasks could be facilitated by MDE. The
rationales should be sought in MDE, which provides specific technologies (princi-
ples, techniques and tools) with which to build transformational solutions such as
metamodelling and model transformations. Metamodelling foundations are well
established and a sound theoretical underpinning is emerging for model trans-
formations [5]. With regard to the techniques, it is well worth mentioning that
metamodelling provides a uniform formalism that can be used to represent any
kind of information [19] which promotes interoperability and integrability among
other quality software factors [20]. And finally, MDE tooling (e.g., Modelling
Project in Eclipse) provides (i) metamodelling languages (e.g., Ecore) that can be
used to create metamodels and (ii) model transformation languages with which
to write model-to-model transformations (e.g., ATL and QVT) and model-to-text
transformations (e.g., Acceleo and Xpand).

Referential integrity is an important quality attribute of data stored in relational
information systems. It refers to the state where data stored in related tables
obeys to the foreign key (FK) constraints defined between those tables. Most
modern database management systems purposed for business applications provide
features for declaring and automatically enforcing FK constraints. However, many
legacy information systems do not use these features - or use them only to a
limited degree, for more recently developed functionality. Therefore, it is not
unusual that foreign key constraints are left implicit, i.e., they are not explicitly
declared in the DDL1 code of the database. Several reasons can be identified: the
lack of background in database design in the software development teams [21],
the limitations of the target database platform, or the necessity to (temporarily)

1DDL stands for Data Description Language

4



tolerate data inconsistencies [22].
Such applications must be reengineered in order to benefit from automated in-

tegrity enforcement. From a high level perspective, this reengineering process
consists of two subsequent steps, namely FK identification and FK implementa-
tion. Research activity in this area has primarily focused on the first step (iden-
tification), which can be viewed as a form of design recovery. A wealth of dif-
ferent methods and tools have been proposed to recover FKs from a variety of
data sources, including the database schema, application code, data instances,
and documentation. While many FK identification methods have been proposed,
empirical evidence about their comparative effectiveness in real-world industrial
settings remains rare. Even less research has been devoted to the second step of the
reengineering process, as the implementation of FKs (once identified) is commonly
considered a simple and straight-forward process.

On the other hand, building tools for supporting MDE software processes is a
challenge that must be met to achieve the industrial adoption of MDE [5]. As
Leon J. Osterweil stated in his influential paper [23] about the nature of soft-
ware processes, ”software processes are software too”, so they can be described
by specifications (i.e. models) that can be executable. Process Engineering [24]
is the Software Engineering area focused on the modelling and enactment of pro-
cess models. MDE techniques can significantly leverage this area as some works
recently presented have illustrated. Most of the activity have been focused on
the SPEM metamodel [25] and the approaches proposed to enact SPEM models
such as UML4SPM [26], xSPEM [27] and eSPEM [28]. However, the number of
proposals that illustrate how real software projects would be supported by using
MDE process engineering is very limited up to now [29]. MDE software processes
integrate automated tasks (e.g. model-to-text transformations) with tasks to be
manually performed by developers (e.g. writing code for the business logic layer.
A process engineering tool supporting such processes should provide basic func-
tionality such as: i) the specification of the software process, ii) the execution of
the automated tasks, iii) the support and guidance for the software managers and
developers involved in the manual tasks, and iv) the integration of manual and
automated tasks into a task workflow. To our knowledge, no MDE approaches
to the implementation of such tools has been published so far, although the inte-

5



gration of manual and automated tasks have been addressed in building a build
server prototype [29].

Finally, data reengineering processes can take advantage of existing tools. For
instance, DB-Main [30] includes tools for data reengineering such as: extractors of
legacy database schema, transformations between schemas, data and code analysis
tools, data viewers, among others. Another example is the Concept Explorer [31]
tool which uses FCA (Formal Context Analysis) for identifying functional depen-
dencies in relational databases [32]. The functionality offered by these tools could
be integrated into model-driven data engineering solutions by building interoper-
ability bridges. In [33], interoperability is defined as ”the ability of two or more
systems or components to exchange information and to use the information that
has been exchanged”. System interoperability deals with syntactic aspects (i.e.
formats which are used by software systems in order to store data) and semantic
aspects (how systems interpret data), as stated in [34].

1.2 Problem statement

This thesis is mainly focused on applying MDE techniques to a data reengineer-
ing process which is covered through three dimensions: schema conversion, data
conversion and program conversion. This thesis focuses on the first dimension of
data reengineering. In particular, we analyse to what extent the use of models
facilitates the implementation of the data quality improvement of a legacy system
by means of a schema conversion, which is a common data modernisation scenario.
The schema conversion implemented in our approach addresses the elicitation of
implicit referential integrity constraints (declared in database by foreign keys)
along with checking and fixing the appropriate normalisation level in a schema.
Several techniques for discovering foreign keys should be combined in order to
obtain more reliable results. Furthermore, an automation of migration processes
is tackled. We have built a tool that supports the definition and enactment of
migration processes, which have been validated for the data migration case study.
In addition, MDE solutions normally require the integration with a third-party
tool which allows an automatic normalisation step. This requirement leads us to
develop an architectural solution to ease tool interoperability and then to inte-

6



grate other useful tools (from the data engineering and requirement areas) to the
migration process here proposed.

From the statement of the problem we can therefore infer the following objectives
of this thesis:

(G1) An implementation of a data reengineering process by using MDE
techniques. As we stated before, our data reengineering process chases the
data quality improvement in a legacy system by means of a schema conver-
sion. As proof of concept, it has dealt with the absence of explicit foreign key
constraints in the schema along with the deactivation of constraints. Also,
an automatic checking of the database normalisation level in the relational
schema is supported. Functional dependencies should be harvested from the
database automatically along with a checking of the normalisation level of a
database, and a correction if needed. The approach should be validated in a
real case study. In addition, we should provide an assessment of the use of
MDE techniques, along with a list of benefits and drawbacks found in each
stage of the reengineering process.

(G2) The use of different strategies in order to elicit foreign keys for
the restructuring stage of the process. A schema conversion analyses
a legacy application to extract the source schema and transforms it into a
target schema [35]. In our case, the transformation consists of modifying
the relations in a legacy database in order to avoid data redundancies and
inconsistencies. We should address the discovery of referential integrity con-
straints which are not explicit in a schema, as well as the checking of the
appropriate normalisation level. For the former, three kinds of analysis must
be implemented and tested: data analysis, schema analysis and static code
analysis, taking into account several kinds of sources and techniques.

(G3) Building a tool able to automate the development of model-driven
reengineering processes. We will create a tool specially intended to par-
tially automate model-driven reengineering process. According to the re-
quirements exposed above, this tool should support the definition and enact-
ment of migration processes. A domain-specific language should be therefore

7



created to define migration process models and these process models should
be enacted by generating automated and manual tasks. Then, automated
tasks could be directly executed and manual tasks could be provided on a
task management tool in order to save effort to developers and team leader.
With this tool, the approach defined as goal G1 could be automated.

(G4) To tackle the MDE-base tool interoperability through the build-
ing of some bidirectional bridge. An infrastructure based on the use of
model-driven interoperability techniques must be provided in order to facili-
tate the integration of useful tools, such as DB-Main and Concept Explorer,
into our data reengineering process. A bridge must be defined and imple-
mented in order to allow bidirectional interoperability between two tools or
processes. The bridge must be applied during the accomplishment of the
main goal in order to facilitate the implementation of the normalisation step
(for the identification of functional dependencies).

1.3 Research Methodology

Because the Oracle company discontinued its Oracle Forms technology, many com-
panies have been migrating their applications to modern platforms such as Java
EE or .NET. The ModelUM group started a research project to investigate to
what extent an MDE-based solution could automate such migrations [36]. For
this purpose, it was necessary to develop a tooling for automating the migration
of the GUI and data layers. This was the starting point of the research of the PhD
candidate.

In order to achieve the objectives of this thesis that were introduced above, we
have followed the design science research methodology (DSRM) described in [37]
[38]. The design process consists of six activities:

1. Problem identification and motivation.

2. Define the objectives of a solution.

3. Design and development.

8



4. Demonstration.

5. Evaluation.

6. Conclusions and communication.

This is an iterative process, where the knowledge produced throughout the pro-
cess by constructing and evaluating new artifacts served as feedback for a better
design and implementation of the final solution.

Figure 1.1 shows the DSRM activities applied in this work. Figure 1.1(a) depicts
the process followed at the starting point of the thesis. The main problem was
identified and motivated in the first stage. The main goal that we established was
the definition of a model-driven reengineering process not only for technological
modernisation but also for the schema conversion, which includes a data quality
improvement. Sections 1.1 and 1.2 stated the problem and motivated the necessity
of providing the schema conversion for legacy databases.

Next, we studied the related works, presented in Chapter 3, which referred to the
discovery of FK and MDE-based data reengineering processes. We then devised
then our solution and the requirements to be satisfied to achieve the objectives
of such a solution. In particular, we found that a data reengineering approach
should be developed along with an assessment of the use of MDE techniques in
this scenario.

In the third activity, the stages comprising the data reengineering process were
designed, including the strategies to elicit the foreign key and the techniques and
algorithms to perform the normalisation stage (goal G2). First, we experimented
with a partial implementation of the process where only one raw strategy to elicit
foreign key was provided and code generation was applied. Later, the process
was completed and new strategies were integrated into it, as well as the last code
generation step. Lastly, we introduced the normalisation step for checking and
normalising the schema. In this step we encountered a new problem and we de-
cided to explore the area of model-driven interoperability for data engineering
tools. Database normalisation requires the identification of functional dependen-
cies in the relations in order to check the normal form of the schema. To automate
the discovery we used a third-party tool. Thus we had to integrate a tool sup-
porting the identification of functional dependencies into our process by using an

9



Migrate legacy  
databases  
using MDE 

1 

Data reengineering  
process   

Schema conversion 

2 

Reverse engineering  
+ restructuring  

+ forward engineering 

3 

OSCAR system 

4 

Assessment  
with OSCAR 

5 

Conference and  
journal publications 

6 

Interoperability for  
data engineering  

tooling 

1 

Building a  
MDI bridge 

2 

Pivot metamodel  
+ syntax and  

semantic mapping. 

3 

OSCAR system 
Train control system 

4 

Assessment of  
mapping  

implementations 

5 

Conference  
publications 

6 

Automating the definition  
and enactment of 

migration processes 

1 

Creating tooling to  
support MDE migration 

2 

MDE design and  
implementation of  
Models4Migration 

3 

Demonstration for  
schema conversion 

4 

Assessment for  
generated artefacts   

5 

Conference and  
journal publications 

6 

1 

2 

3 

4 

5 

6 

Problem identification and motivation 

Objectives of a solution 

Design and development 

Demonstration 

Evaluation 

Conclusion and communication 

(a) 

(b) 

(c) 

Figure 1.1: Research methodology used in our work.

10



MDE bridge. Figure 1.1(c) illustrates the six DSRM activities applied in this new
research corresponding to the G4 goal.

Once we implemented the proposed reengineering approach, we applied the solu-
tion implemented in a real case study. During the 3-month research stay that the
PhD candidate did in the Precise group (University of Namur, Belgium), we could
access the real legacy database of the OSCAR system, a healthcare application
widely used in Canada. For applying our process in the case study we had to in-
vestigate a new research line: in particular the building of an MDE-based tool for
supporting the automation of model-driven reengineering processes. Figure 1.1(b)
shows the DSRM activities designed for the G3 goal.

We conducted an assessment of the approach from the results achieved in the
application of our process to the OSCAR system, our case study. In the last ac-
tivity, we extracted the conclusions and we disseminated the results in conferences
and journals. Both conclusions and results are included in Chapter 9 of this thesis.

We summarise in Figures 1.1(b) and (c) the activities followed to fulfill the
goals G3 and G4, respectively. Regarding G3, the solution involves the creation
of a SPEM-based DSL to define migration processes as well as the design of an
interpretation process to enact the migration models defined with this DSL. This
solution was demonstrated and evaluated by defining a migration model for the
reengineering approach defined to migrate schemas.

With respect to G4, we first built two partial bridges in order to integrate
two data engineering tools into our solution: (1) ConExp, a tool for discovering
functional dependencies, and (2) the DB-Main data engineering tool. The for-
mer enabled the normalisation implementation and the latter allowed us to inte-
grate data engineering functionalities into our data reengineering process. We also
built a bidirectional bridge to integrate DB-Main with the Objectiver requirement
engineering tool. In the design and implementation, we explored several MDE
techniques and tools for injecting models and extracting software artifacts from
models. In addition, we addressed the definition of bidirectional model-to-model
transformation with QVT relational [39]. We demonstrated and validated the
bridges by means of the OSCAR database schema and the traffic control system,
a well-known example in the goal (requirement) engineering area.

11



1.4 Outline

The structure of the rest of this document is as follows:

• Chapter 2 introduces the background needed for a better understanding
of this thesis. It comprises basic concepts of database related to this the-
sis (such as foreign keys and normalisation), features of a data reengineering
process, basis of model-driven engineering and model-driven interoperability,
and finally, we characterise the definition and enactment of a migration pro-
cess (including descriptions about software process languages such as SPEM
or BPMN).

• Chapter 3 analyses the state of the art following the four goals of this thesis:
elicitation of foreign keys, MDE data reengineering, migration process tools
and MDE tool interoperability.

• Chapter 4 outlines our proposal for applying a data reengineering process
which provides data quality improvements by means of a schema conversion.
We also outline the migration tool supporting the definition and enactment
of the process, as well as the model-driven approach implemented in order
to provide interoperability tool to the process.

• Chapter 5, 6, 7 and 8 describe in details how each goal of this thesis is
achieved and present an assessment and evaluation of the results obtained
in the fulfillments of the goals.

• Chapter 9 concludes this thesis by analysing the level of achievement of
the goals we presented in Chapter 1 and the requirements enumerated in
Chapter 4. A discussion of each result is presented along with their contri-
butions. We end by showing the future works and the publications, projects
and research stays related to this thesis.

12



(Suggested by Antonio and Paquita)

”Reek, my lord. Your man. I’m Reek, it
rhymes with sneak.”
”It does. When my father brings you back,
I’m going to take another finger. I’ll let you
choose which one.”

A Dance with Dragons, G.R.R. Martin

2
Background

This chapter introduces the background needed for a better understanding of
this thesis, which consists of: the definition of basic relational database concepts
such as the foreign key constraint and the normalisation process, a characterisation
of data reengineering, the basis of Model-Driven Engineering and Model-Driven
Interoperability, concerns about the modelling and enactment of migration pro-
cesses, and finally some considerations for addressing migration processes with
MDE.

2.1 Database concepts: Referential Integrity
Constraints and Normalisation

In relational databases, referential integrity constraints (RICs) are usually declared
by means of foreign keys. A foreign key is a simple and intuitive construct through
which a row in a table can reference another row in another table. Let us recall
the definition of foreign keys in the classical (first Normal Form) relational model.

13



Considering a table S with primary key KS on the one hand, and a set FR of
columns of table R on the other hand, if R.FR −→ S.KS is declared as a foreign
key, then for each row r ∈ R (that is not null) there should exist a row s in table
S such that r.FR = s.KS. In other words, the set of values of FR that appears
in table R must be a part of the set of values of KS of table S. The foreign key
FR acts as a reference to the rows of S.

Database normalisation is a formal analysis of relational schemas for detecting
and solving problems in relation schemas. Anomalies in a schema that imply
redundant data is one of the most common schema problems. A key concept in
relational schema design theory is the functional dependency, which is defined as
a constraint between two sets of attributes from the database [40]. A functional
dependency (denoted by X ->Y ) between two sets of attributes X and Y included
in a relation (table) R specifies a constraint on the possible tuples that can form
a relation state r of R. The constraint restricts that any two tuples t1 and t2 in r

that have t1[X] = t2[X] they must also have t1[Y ] = t2[Y ]. This means that the
values of the Y attributes of a tuple in r depend on (or are determined by) the
values of the X attributes; alternatively, the values of the X attributes of a tuple
uniquely determine the values of the Y attributes. The abbreviation for functional
dependency is FD.

Functional dependencies are used to identify redundant definitions in a rela-
tional schema. The normalisation process takes a relation schema and applies
to it a series of tests to check whether it satisfies a certain normal form. Three
normal forms are proposed: first (1NF), second (2NF), and third (3NF) normal
form. A stronger definition of 3NF, named the Boyce-Codd normal form (BCNF),
was proposed later [40]. All these normal forms are based on a single analyti-
cal concept: the existence of functional dependencies among the attributes of a
relation. Database normalisation can be considered as a process of analysing a
given relation schemas through their FDs and primary keys to achieve the desir-
able properties of (1) minimising redundancy and (2) minimising the insertion,
deletion, and update anomalies. Unsatisfactory relations that do not meet certain
conditions (the normal form) are decomposed into smaller relations that possess
the desirable conditions. Therefore, the normalisation process provides a formal
analysis in order to normalise each individual relation to any desired degree. De-

14



Figure 2.1: Model-driven reengineering stages (extracted from [42])

composition and synthesis algorithms [40] were designed in normalisation theory
to be applied alternatively in order to assure that each relation in a schema is, at
least, in 3FN. Decomposition applies a top-down approach by decomposing and
setting up a relation according to the FDs in a relation as described before. Syn-
thesis applies a bottom-up approach by setting up new relations according to the
FDs in a schema.

2.2 Characterising Data Reengineging

Software reengineering is a systematic way of modernising (e.g., a migration) a
legacy system [2]. A reengineering process is normally applied in three stages [41],
as shown in Figure 2.1. Firstly, a reverse engineering stage analyses the legacy
system and extracts knowledge which is represented at different abstraction levels.
A second stage restructures these abstract representations in order to establish a
mapping between the existing system and the target system. Finally, a forward
engineering stage obtains the target artefacts from the output of the restructuring
stage. Each of these stages consists of a transformational process.

A data-intensive software system consists of programs that access business data
stored into databases. A reengineering approach for the migration of these systems
is described in [17], in which the migration process is separated into a synchronised
conversion of three different artefacts: data, schemas and programs. Since the
changes to the schema affect programs and data, the transformations involved in

15



Figure 2.2: Schema conversion in a Data Reengineering (extracted from [17])

this evolution must be coupled as illustrated in Figure 2.2.
Firstly, a semantic-preserving transformation must be applied to the legacy

schema in order to obtain a new schema for the target technology. Once this
target schema has been generated, data and program transformations are applied
next. A new database that is compliant with the new schema is generated from the
legacy database. Likewise, legacy programs are modernised for the new database
schema. Note that both data/schema and program evolution can be implemented
by means of a reengineering strategy.

2.3 Basis of Model-Driven Engineering

Transformational approaches have traditionally been proposed for the automation
of data reengineering tasks [18] [17]. Metamodelling and model transformations
are the core elements of MDE [34] and they are used to automate tasks by means
of transformational solutions (i.e. model transformation chains). MDE may there-
fore be very useful as regards implementing data transformation strategies. In this
section, we shall explain how metamodels and the different kinds of model trans-
formations can be applied in order to implement a reengineering process, such
as that shown in Figure 2.1. This explanation facilitates the understanding of
the model transformation chains presented throughout the article, which imple-
ment the three stages of the proposed approach. We shall, however, first briefly

16



introduce the metamodel and model transformation concepts.

A metamodel is a formalism that is used to describe the structure of models
so that they can be processed by tools. A model is therefore an instance of a
metamodel, and the conforms-to term is normally used to express the instance-of
relationship between a model and its metamodel [34]. Metamodels are defined
by means of meta-modelling languages such as Ecore [43] and MOF [44], ], which
provide the basic constructs of the object-oriented conceptual modelling. In the
case of model-driven data reengineering, metamodels can be used to represent
information such as data schemas (e.g. a DDL script and a conceptual schema) or
knowledge extracted from the data or programs (e.g. Defects model or Functional
Dependencies model).

An MDE solution is a model transformation chain which generates target soft-
ware artefacts from input models. Two kinds of model transformations are com-
monly used in a transformation chain [45]: model-to-model (M2M) transformations
which generate a target model from a source model, and model-to-text (M2T)
transformations which generate some kind of textual information (e.g. source
code or a XML document) from a source model. A model transformation chain
normally consists of one or more M2M transformations and one M2T transfor-
mation as its last step. The M2M transformations are intermediate stages which
reduce the semantic gap, while the final M2T transformation generates the soft-
ware artefacts desired. In the case of a model-driven reengineering, a third kind
of model transformation is needed. In this scenario, the chain should start with a
text-to-model (T2M) transformation that obtains the initial model from the legacy
textual software artefacts (e.g. source code or DDL scripts). This initial stage is
commonly known as model injection, which consists of a parsing followed by a
model generation.

M2M and M2T transformations are normally expressed using model transfor-
mation languages. ATL 1 and QVT 2 are two widely used M2M transformation

1https://eclipse.org/atl/
2http://www.omg.org/spec/QVT/1.1/

17



languages, whereas Acceleo 3 and MOFScript 4 are two popular templates lan-
guages with which to write M2T transformations. Since M2M transformations
can become very complex, the M2M languages should combine declarative and
imperative constructs. We have therefore used the RubyTL 5 language, which is
a M2T transformation language that is embedded in Ruby whose declarative part
is inspired by ATL and whose imperative part is reused from Ruby for free (i.e.,
any Ruby construct is valid in RubyTL).

With regard to model injection, some tools which have been specially tailored for
this task have recently been proposed in order to inject models from source code,
in particular the Modisco framework [46] and the Gra2Mol T2M language [47].
Modisco is a Java framework whose aim is to support model-driven modernisa-
tions tasks. For example, it facilitates the implementation of model injectors
(discoverers), and it currently provides discoverers for Java, JSP and XML. On
the other hand, Gra2MoL is the only T2M language available to our knowledge,
which has been used in our work in several tasks such as injecting models from
DDL scripts and Java source code. This language allows us to write transforma-
tions whose execution has as input a textual artefact which conforms to a grammar
(e.g. source code) and generates as output a model which conforms to a target
metamodel. Gra2Mol provides a language which allows us to express the map-
pings between a source grammar and a target metamodel. Gra2MoL is a language
based on ATL-like rules which allows to express the mappings between a source
grammar (ANTLR format) and a target metamodel (Ecore format). In addition,
it provides an XPath-like language to declare queries on the syntax tree of the
grammar. These queries are used to retrieve the grammar elements to be used
in the mappings. Another tool created for injecting models, in this case for data
stored into database, is Schemol [48]. This tool provides a language with which
to write transformations that express the correspondence between the database
schema and the target metamodel. Textual domain-specific languages definition

3https://eclipse.org/acceleo/
4http://eclipse.org/gmt/mofscript/
5http://rubytl.rubyforge.org/

18



Figure 2.3: Model-driven reengineering stages

tools such as Xtext 6 and EMFText 7 can also be used to inject models, but they
are less appropriate in the case of GPL code as discussed in [47].

As depicted in Figure 2.3, a model-driven software reengineering process is com-
posed of three stages. Firstly, a reverse engineering stage analyses the legacy sys-
tem and extracts knowledge which is represented at different abstraction levels.
A second stage restructures these abstract representations in order to establish a
mapping between the existing system and the target system. Finally, a forward
engineering stage obtains the target artefacts from the output of the restructur-
ing stage. Each of these stages consists of a transformational process which can
be implemented by means of a model transformation chain whose initial model is
injected with a T2M transformation. This chain is divided into the three parts of
a reengineering process: (1) reverse engineering, which is realised by means of an
M2M transformation chain; (2) restructuring, which also involves an M2M trans-
formation, and finally (3) forward engineering, which is made up of an M2M chain
followed by a final M2T transformation that generates the target artefacts. In the
case of data reengineering, three kinds of artefacts (data, schema and program)
should be addressed in each stage. We have used RubyTL, Gra2MoL, Schemol and
MOFScript to write the model transformations, but the approach is independent

6http://eclipse.org/Xtext/
7http://www.emftext.org/

19



of the implementation technologies. It should be noted that data knowledge can
be harvested from data stored, schemas and program code.

Finally, models are commonly expressed by means of Domain-Specific Languages
(DSLs). Such languages normally consist of three components [49]: a metamodel
that describes the abstract syntax of the language, i.e. the set of language concepts
and their relationships; the notation or concrete syntax of the language, which can
be graphical, textual or hybrid (in the case of graphical notation, the modelling
language term is often used instead of DSL); and the semantics, defined either by
means of a transformation to another language with a well-defined semantics or an
interpretation process. Since the abstract syntax of metamodelling languages such
as Ecore or MOF is defined by a metamodel, then a metamodel is an instance of
the meta-metamodel of a metamodelling language (i.e. a conforms-to relationship
is also established between a metamodel and a metamodelling language).

2.4 Basis of Model-Driven Interoperability

The development of software systems commonly involves the need to integrate
tools. A kind of integration is the exchange of data between tools [50]. Such an
integration is called tool interoperability and it is defined as the ability of two
tools to exchange information so that the information generated by one tool can
be used by the other [33] [50]. Because the exchanged data are represented and
interpreted in a different way in each tool, building an interoperability solution
(commonly known as a bridge) normally requires the implementation of syntactic
and semantic mapping. MDE techniques, especially metamodelling and model
transformation, are appropriate to implement such bridges, and Model-Driven
Interoperability (MDI) is one of the recognised application scenarios of MDE [34].

Interoperability normally requires addressing both syntactic and semantic map-
pings because each tool or component to be integrated can represent the exchanged
information in a different format and can also give a different meaning to this infor-
mation. MDE facilitates the implementation of tool interoperability through the
use of metamodelling and model transformation. Models and metamodels provide
a high-level representation for the exchanged information, and they act as a lingua
franca between the tools [34]. Model transformations ease the implementation of

20



model 

Model A 

metam 

Metamodel A 
format 

Format A 

file 

Input A 

metam 

Metametamodel 

inyección 

extracción 
model 

Model B 

metam 

Metamodel B 

extracción 

inyección 

format 

Format B 

file 

Input B 

M3 

M2 

M1 transformación 

Figure 2.4: Applying MDI techniques between two systems (extracted
from [34]).

the necessary mappings. In addition, existing MDE tooling can automate some
implementation tasks.

MDE facilitates the implementation of tool interoperability through the use
of metamodelling and model transformation. Models and metamodels provide a
high-level representation for the exchanged information, and they act as a lingua
franca between the tools [34]. Model transformations ease the implementation of
the necessary mappings. In addition, existing MDE tooling can automate some
implementation tasks. Figure 2.4 shows the elements of a generic MDI bridge
for tools A and B, each one using its own data format. Applying MDE in order
to build an interoperability bridge involves defining a pivot metamodel for each
tool, which represents the concepts underlying to the information managed by
the tool. In Figure 2.4, metamodels A and B are the pivot metamodels and
both share the same meta-metamodel (e.g. Ecore). Once the pivot metamodels
are created, the syntax and semantic mappings can then be implemented. A
bidirectional transformation between the pivot metamodels performs the semantic
mapping between both tools. If the bridge is bidirectional then two model-to-model
(M2M) transformations should be implemented, one for each direction, unless the
M2M transformation language supports bidirectionality. Since each tool uses its
own format to represent data, the semantic mapping requires a syntactic mapping
which consists of two processes: i) the injection process: the exchanged data by the

21



source tool must be converted into the input model to the M2M transformation,
and ii) the extraction process: data to be used by the target tool are generated
from the model outputted by the M2M transformation. Therefore the building of
an MDI bridge implies the following four development tasks:

• Creating the pivot metamodel for each tool. These metamodels should not
be created if the two tools support exportation of the exchanged information
to a metamodel and both metamodels have been defined with the same
metamodelling language (e.g. Ecore). If the metamodels have been created
with different metamodelling languages then an interoperability at level of
meta-metamodel must be defined. An approach to bridge Ecore metamodels
and metamodels created with DSL Tools is described in [51]. Actually, most
existing tools do not support exportation to models, and those that export
some kind of information to models use Ecore metamodels.

• Creating injectors. An injector obtains a model, which conforms to a meta-
model, from data expressed in another technology (e.g. XML or source code).
In MDE interoperability, the injectors are used to represent the source tool
data in the form of models that conform to the source pivot metamodel.
An injector performs two tasks. Firstly, it parses the source information ex-
pressed in the format used by the tool (e.g. a proprietary format or XML).
Then, it creates the model that conforms to the source metamodel. How in-
jectors are built depends on the data format. Most tools use a textual format
to represent information (e.g. XML or file format). Therefore, the injectors
must normally implement text-to-model transformations. Several strategies
for building injectors for different formats are analysed in Chapter 8.

• Creating semantic mappers. If the bridge is unidirectional any M2M trans-
formation language could be used. However, if the bridge is bidirectional, a
language supporting bidirectionality should be used to write only one trans-
formation instead of writing one for each direction. QVT Relational is a
good option for this purpose, although the bidirectionality is still an issue
open in QVT [52].

• Creating extractors. An extractor performs the opposite operation to an

22



injector. In MDE interoperability, the extractors are used to obtain data
usable by the target tool from a model that conforms to the target pivot
metamodel. As indicated above, most tools represent the information in
textual format. Therefore extractors are normally implemented by means of
model-to-text transformations. Several strategies for building extractors for
different formats are analysed in Chapter 8.

2.5 Modelling and enactment of migration processes

A software process involves the accomplishment of a workflow of activities which
create the software artefacts of the target system. Each of these activities can
be composed of several tasks which indicate how to fulfill them. For example,
the migration of procedures that implement business logic can be done by per-
forming an automatic translation by some means, or by a development team that
implement them by hand. Tasks can be classified accordingly to the way they are
accomplished in three categories:

• Automated tasks: the goal of the task can be achieved without any human
intervention, usually by the execution of one or more tools. For instance,
the execution of model transformations by means of a model transformation
engine.

• Manual tasks: the goal of the task must be achieved by a human, either
because it is difficult to automate or because it requires supervision. For
instance, a code completion task where a developer has to implement some
functionality.

• Semi-automated tasks: the goal of the task is achieved in a partly automated
way as it requires human performance or interaction at some point. For
instance, an assistant window which requires some data from an developer
to complete some functionality.

It is interesting to differentiate that activities show what to do, and the tasks
show how to do it. Therefore, note that activities are more abstract concepts than

23



tasks. It is also worth noting that activities as well as tasks must be arranged in
order for the process to be analysed or executed.

A process model specifies the workflow of activities indicating the artefacts that
are input and output to each of tasks. Such a model is expressed in terms of types of
tasks (e.g. a M2M transformation), tools (e.g. a M2M transformation engine) and
artefacts (e.g. files with extension .atl or .ecore). Thus, these models include sym-
bolic names or parameters to refer to tasks and artefacts. They must therefore be
instantiated prior to be enacted, i.e. the types of tasks, tools and artefacts must be
replaced by actual elements (e.g. the path /project/ migration/class2relational.atl
and meaningful names). We will use the Abstract Model and Concrete Model terms
to distinguish between a process model and its instantiation for a particular ap-
plication. Note that both models are at the same level of abstraction, only that a
Concrete model assigns values (information on actual elements) to the parameters
(i.e. types of elements) included in the Abstract model.

• Abstract Migration model: it is designed for a particular pair of source and
target technologies. It defines the tools and artefacts involved in the migra-
tion and also specifies the order in which the different tasks must be applied.

• Concrete Migration model: it is a kind of instance of the Abstract Migration
model for a concrete migration application.

Enacting a process model involves the execution of the automated tasks and
the support for managers and developers in performing the manual and semi-
automated tasks. In addition, the enactment of a process model also requires
organising its tasks according to the order and dependency relationships among
them (i.e. the workflow). In the approach here presented, we have integrated a
ticket management tool (Trac) and a task management tool (Mylyn) as target
platform of the enactment. Both kinds of tools are commonly used in software
companies, and Trac and Mylyn are also plugins of Eclipse, which is a very popular
Integrated Development Environment (IDE).

When a development process is aimed to migrate a legacy application, the ac-
tivities workflow results in a migration process which defines how the existing code
and data will be migrated, as well as the deployment approach for the new system.

24



We will refer as migration plan to the specification of a migration process by using
a determined formalism. In our work, metamodelling is the used formalism and
we will refer to migration plans as migration models. The differentiation between
abstract and concrete models will be also done for migration plans.

In order to tackle any migration, two higher-level activities must be performed:
i) the design of the migration plan itself, and ii) the execution of the tasks specified
in the plan. We can suppose that these two activities will be assigned to three
different roles: the former for designer and the latter for software manager and
developer. Designers specify the workflow of the migration plan, i.e. the flow of
tasks, the input and output artefacts for each task and the agents that perform
the tasks (tools or developers). Software managers initiate the migration project
to enacting it, track the tasks pending to be done and assign them to developers,
whereas developers are in charge of fulfilling the manual and semi-automated tasks.
Automated tasks are always executed by tools.

Therefore, a tool supporting a migration process must provide functionality
for these three roles. Designers require some facilities to define migration plans.
Managers require support for enacting migration plans and monitoring task ex-
ecution. Developers require support and guidance for implementing manual and
semi-automated tasks. Moreover, the tool itself must be able to manage the se-
quencing of tasks following the dependency restrictions established in a migration
plan, determining which ones must be performed at a given time.

When addressing migration with MDE, two issues related to the migration and
process modelling are introduced: the implementation of the different types of
tasks in a model-driven migration and the modelling of processes. These issues
will be further addressed later in this thesis.

We have previously identified three kinds of tasks in a development process:
automated tasks, semi-automated tasks and manual tasks. In the case of a model-
driven migration, the automated and semi-automated tasks would be implemented
using MDE technologies. For instance, an automated task could be implemented
as a model transformation chain since it does not require human interaction at
all. Some examples of semi-automated tasks are the use of interactive models
transformations [53] which prompt the user for input during their execution and
the use of wizards to configure the execution of a model transformation through

25



the user input. Finally, the programming of source code either from scratch or
from automatically generated code is a manual task. Our re-engineering approach
combines these three kinds of tasks.

Actually, these three kinds of tasks can be part of any software development
regardless of MDE techniques are or not used. However, in model-driven migration
processes, a model transformation chain is normally applied to a large number of
existing artefacts. The automation of this repetitive and laborious task means a
considerable saving of effort to developers and managers. A tool could locate the
files to be migrated and execute the model transformation chains by applying the
automated tasks and generating tickets for manual tasks, as indicated above. This
particularity motivates the focus of the here presented tool on migration processes
instead of software processes in general. Nonetheless, our approach can be easily
generalised to any kind of software process.

2.5.1 Software Process Languages

A software process modelling language (i.e. a DSL) provides means for describing
the workflow of a software process, that is, the set of activities and tasks that must
be executed during the enactment of that process and the order and dependency
relationships among them. For instance, SPEM (Software and System Process
Engineering Metamodel) [25] is a language for process modelling defined by the
OMG. The SPEM metamodel has been implemented both with the Ecore and
MOF metamodelling languages. Figure 2.5 shows an excerpt of the SPEM 2.0
metamodel, including some of the most significant elements. Below we briefly
introduce this metamodel by providing the knowledge needed to understand the
extension of SPEM proposed in this work.

SPEM is composed of two main parts: the Method Content and the Process
Structure. In Figure 2.5, the top of the figure shows the ProcessStructure
package and the bottom shows the MethodContent package. There is a clear
separation of method content definitions from their application in concrete de-
velopment processes (e.g. SCRUM), so a method content is a reusable element
that can be applied in different processes. The Method Content part provides ele-
ments that define elements of a software process, regardless the actual placement

26



RoleUse TaskUse

BreakdownElement

ActivityWorkProductUse

WorkBreakdownElement

ProcessParameter

WorkProductDefinition TaskDefinitionToolDefinition

WorkSequence

MethodContentElement

RoleDefinition

1

*

0..1

*

* *

1
predecessor

*

1
successor

*

0..1

*

0..1

* 0..1

* *

*

1

1 *
ProcessPerformer

RoleUse

  1..*

 *

Method
Content

Process 
Structure

Figure 2.5: Fragment of the SPEM v2 metamodel

of that element in the whole development life-cycle. As observed in Figure 2.5,
such elements are, for instance, TaskDefinitions, WorkProductDefinitions (i.e.
tangible or non-tangible artefacts consumed, produced, or modified by tasks),
ToolDefinitions (i.e. software tools), and RoleDefinitions (i.e. roles played
by people participating in a software process). TaskDefinitions are associated
with the ToolDefinitions used to accomplish the tasks, and ToolDefinitions
are associated with the WorkProductDefinitions involved.

The Process Structure part defines elements that use the ones defined by the
Method Content and relate them into partially ordered sequences that are cus-
tomised for specific kinds of projects. For instance, for each one of the men-
tioned MethodContent elements, ProcessStructure includes the corresponding
class that represents an use of these general definitions in a particular process (e.g.
WorkProductUse and TaskUse). In addition, it includes elements to represent
Activities, and its sequencing WorkSequence (i.e. the workflow of activities). An
Activity also represents a software process itself.

27



The following relationships are defined in this package:

• TaskUse and WorkProductUse are related by ProcessParameter, meaning
that a task has several parameters of the work product type.

• ProcessPerformer relates TaskUse and RoleUse to explain which process
roles are involved in a task.

• Activities contain TaskUses, WorkProductUses and RoleUses; this is used
in our approach in order to define functionality for each activity.

• WorkBreakdownElements are sorted by means of WorkSequences, so activi-
ties and tasks can be sequenced.

With regard to the process enactment, SPEM does not provide its own behaviour
modelling concepts. SPEM rather defines the ability for implementers to choose
the generic behaviour modelling approach that best fits their needs (e.g. UML
activity diagrams). Two strategies are suggested in the specification to enact
processes: i) mapping SPEM process models to project plans and then enacting
them with project planning and enactment systems such as Microsoft Project, and
ii) linking process models to business flow or execution languages and then enact
them with a workflow engine (e.g. a WSBPEL engine).

ControlFlow_ext and Activity_ext are proxy elements in SPEM that can be
used to link external process models to SPEM models, in particular, to elements
of the Process Structure package. As shown in Figure 7.3, we have used these
proxies to connect UML2 Activity Diagrams to our SPEM-based metamodel.

As indicated in Section 2.5, when modelling software processes is needed to dis-
tinguish between the definition of a process and its application in a particular case.
This is achieved in SPEM by means of classes that represent concrete elements, for
instance TaskUse for concrete tasks and WorkProductUse for concrete artefacts.
However, the SPEM metamodel does not provide elements to define the processes
at the detail level needed to achieve a high degree of automation (e.g. executing
M2M or M2T transformations or creating Trac tickets). For example, an instance
of TaskUse has links to input and output types that define WorkProductUses to
be managed in the task.

28



SPEM provides an extension mechanism based on the Kind metaclass. A Kind
instance is a user-defined type, which can be used to represent a process spe-
cific concept (e.g. a model transformation in a model-driven migration process).
Therefore, a new type of element can be defined by linking a Kind instance to
a SPEM element that must be a subclass of the ExtensibleElement abstract
metaclass. For example, a code file artefact could be represented by linking an
instance of WorkProductDefinition to a new kind named CodeFile. In this
sense, the specification defines a Base Plugin with kinds of several elements,
for instance the Whitepaper and Report kinds for the Guidance extensible ele-
ment. In order to extend the SPEM metamodel, an option is to use this exten-
sion mechanism to define new types for elements of the MethodContent package.
The problem of this approach is that new attributes or relationships cannot be
defined for the new types. For example, if we defined a TaskDefinition with
a new Kind named M2MTransformation, but additional attributes such as the
transformationLanguage, which would register the M2M transformation lan-
guage used, could not be defined.

29





(Suggested by Maribel)

(Suggested by Jose Antonio)

”I went to the woods because I wished to live
deliberately, to front only the essential facts of
life, and see if I could not learn what it had to
teach, and not, when I came to die, discover
that I had not lived.”

from Walden, Henry David Thoreau

”Success flourishes only in perseverance cease-
less, restless perseverance”

Baron Manfred von Richthofen (Red Baron),
Imperial German Army Air Service 3

State of the art

This chapter presents the review of the state of the art that we have carried out
to analyse the existing proposals related to our work. This review is organised in
four sections according to the main goals of this thesis: foreign key discovering,
model-based data reengineering, migration process tool and tool interoperability.

3.1 Foreign Key Discovering Techniques

The problem of undeclared foreign keys elicitation has already been extensively
studied and a large variety of techniques have been proposed in the last two
decades. [54–64]. Discovering implicit schema constructs, especially undeclared
foreign keys, is usually based on ad hoc techniques depending on the nature and
reliability of the information sources. Several techniques have been proposed, each
considering a particular information system artifact as the main source of infor-
mation:

• Schema analysis [65, 66]. Spotting similarities in names, value domains and

31



representative patterns may help identify hidden constructs such as foreign
keys.

• Data analysis [67–70]. Mining the database contents can be used in two
ways. Firstly, to discover implicit properties, such as functional and referen-
tial dependencies. Secondly, to check hypothetic constructs that have been
suggested by the other techniques. Considering the combinatorial explosion
that threatens the first approach, data analysis is most often applied to check
the existence of formerly identified patterns.

• Screen/report layout analysis [71–73]. Forms, reports and dialog boxes are
user-oriented views on the database. They exhibit spatial structures (e.g.,
data aggregates), meaningful names, explicit usage guidelines and, at run-
time, data population and error messages that, combined with dataflow anal-
ysis, provide information on data structures and schema properties.

• Static program analysis [61, 74–76]. Even a simple analysis, such as dataflow
graph exploration, can give valuable information on field structure and mean-
ingful names. More sophisticated techniques such as dependency analysis
and program slicing can be used to identify complex constraint checking
or foreign keys. SQL statements examination is one of the most powerful
variants of source code analysis.

• Dynamic program analysis [63, 64]. In the case of highly dynamic program-
database interactions, the database queries may only exist at runtime. Hence
recent techniques which allow the capture and analysis of SQL execution
traces in order to retrieve, among others, implicit referential links between
columns of distinct tables.

The next Table 3.1 categorises the indicated approaches according to four crite-
ria: the kind of analysis; the validation by means of a case study; the existence of
tools for automating the approach; and the combination of results obtained from
different kinds of analysis. The last row categorises our proposal.

It is essential to note that none of the above techniques is generally sufficient to
recover all implicit referential constraints. In other words, there is no formal way

32



Approach Analysis Case study Automated Combinated
[65] Markowitz90 schema no manual no
[66] Premerlani94 schema yes manual no
[67] Chiang94 data yes (small) manual no
[68] Lopes02 data yes (medium) manual no
[69] Yao08 data yes (medium) automated no
[70] Pannurat10 data yes (medium) semi-automated no
[71] Choobineh92 screen yes (not explained) automated no
[72] Terwilliger06 screen no automated no
[73] Ramdoyal10 screen no automated no
[74] Petit94 program (static) no manual no
[75] DiLucca00 program (static) yes manual no
[76] Henrard03 program (static) no manual no
[61] Cleve06 program (static) yes automated no
[63] Cleve11 program (dynamic) yes automated no
[64] Cleve12 program (dynamic) yes automated no
our proposal schema, data and

static program
yes automated yes

Table 3.1: Related work on FK discovery.

to prove that all the undeclared foreign keys, and only these have been discovered
through a particular technique. As often in the field of reverse engineering, auto-
mated analysis techniques may only suggest possible foreign key candidates with
a certain level of confidence. In addition, the availability of a ground truth, allow-
ing the evaluation of a particular detection technique, is not a realistic working
assumption, especially in the context of large legacy systems.

3.2 Model-driven Data Reengineering

Model-driven reengineering (a.k.a. Model-driven modernisation) has recently emerged
as a use case of MDE, signifying that the research and development effort in this
area has, to date, been very limited. Moreover, most publications are focused on
the program dimension rather than the data dimension of the software applica-
tions. In fact, model-based transformational approaches have traditionally been
applied to database development since the 1970s. However, MDE provides a more
systematic means to define and manage database schemas, mainly through the use
of metamodelling techniques and model transformation languages.

KDM [77] is a common intermediate representation proposed by the OMG for
existing software systems and their operating environments, which defines common
metadata required for deep semantic integration of Application Lifecycle Manage-

33



Figure 3.1: KDM layers and packages (extracted from [77]).

ment tools and which was defined for software modernisation in the context of
the Architecture-Driven Modernisation (ADM) proposal. KDM is a metamodel
aimed at representing software systems at different levels of abstraction which
range from program elements to business rules. KDM is intended to facilitate the
interoperability between software modernisation tools, as a common representa-
tion for software artefacts. It is a very large metamodel that is composed of twelve
packages organised in four layers: Infrastructure, Program elements, Runtime re-
sources and Abstractions (see Figure 3.1). Each package defines a set of metamodel
elements whose purpose is to represent a certain independent facet of knowledge
related to existing software systems. The packages defined in the specification are:

• Core and Kdm: define common elements that constitute the infrastructure
for other packages.

• Source: enumerates the artefacts of the existing software system and defines
the mechanism of traceability links between the KDM elements and their
original representation.

• Code. focused on representing common program elements supported by
various programming languages, such as data types, data items, classes,
procedures, macros, prototypes, and templates, and several basic structural

34



relationships between them.

• Action: along with the Code package, this represents the implementation
level assets of the existing software system. This package is focused on
behaviour descriptions and control and data-flow relationships determined
by them.

• Platform: defines a set of elements whose purpose is to represent the run-
time operating environments of existing software systems.

• UI: represents facets of information related to user interfaces, including their
composition, their sequence of operations, and their relationships to the ex-
isting software systems.

• Event: specifies the high-level behaviour of applications, in particular event-
driven state transitions.

• Data: is used to describe the organisation of data in the existing software
system.

• Structure: is aimed at representing architectural components of existing
software systems, such as subsystems, layers, packages, etc. and define trace-
ability of these elements to other KDM facts for the same system.

• Conceptual: provides constructs for creating a conceptual model during
the analysis phase of knowledge discovery from existing code.

• Build: represents the facts involved in the build process of the given software
system (including but not limited to the engineering transformations of the
“source code” to “executables”).

The Data package defines a set of meta-model elements whose purpose is to
represent organisation of data in the existing software system. This fact of knowl-
edge corresponds to the logical view. It is determined by a data description lan-
guage.The Data model uses the foundation provided by the Code package related
to the representations of simple datatypes. The Data model represents complex

35



data repositories, such as record files, relational databases, structured data stream,
XML schemas and documents.

The Data package is a very large metamodel which is extremely complicated to
manage as explained in [11]. In our experience, creating one’s own metamodels
is more convenient than extending KDM with new elements. The metamodel
is neither appropriate for modelling sentences extracted from a DML script nor
establishing references between DML and DDL elements. In addition, the concept
of functional dependency is out of the scope of the metamodel. Summarising,
the Data package in the KDM metamodel defines the general elements in order
to model a legacy information system (including code and data) but, when more
details are needed (as our solution requires) then KDM is hard to manipulate.

We next discuss some of the most relevant works concerning the application of
MDE in Data Reengineering and data reverse engineering.

• A conceptual framework for the evaluation and improvement of database
schemas is presented in [78], and is based on semantics-preserving transfor-
mations and the identification of specific patterns in schemas. This frame-
work deals with database schemas at any level of abstraction and relies on
three main ideas: i) the definition of equivalence classes that includes a set
of constructs representing the same intention as that of a modeller, ii) the
formal definition of the quality requirements, iii) the existence of evalua-
tion and improvement methods. A defect taxonomy has additionally been
proposed for this framework in [79], which classifies the design flaws into sev-
eral categories and establishes semantic-preserving transformations in order
to replace a defect with a construct that belongs to the same equivalence
class. Our approach could be a good starting point at which to develop the
framework and the taxonomy proposed.

• AnMDE reverse engineering approach with which to elicit relational database
schemas from embedded SQL code is described in [80]. The elicitation pro-
cess removes the dead parts of the schema which are not used by database
programs. This problem is similar to that of removing defects from schemas
and we have therefore carefully contrasted this approach with our proposal.
A two-stage process is applied to generate the new schema. Firstly, an SQL

36



sentence model is obtained by means of a static analysis of the source code,
and a model-to-model transformation is then applied to a reverse engineer-
ing process in order to transform this model into a database schema model
which represents the schema that is really managed by the SQL code. The
reengineering process is confusedly and poorly explained. For instance, the
authors use KDM but do not clarify how the KDM models are obtained or
how they are related to the SQL sentence model and the database schema
model. Nor do they explain how restructuring and forward engineering are
performed. Unlike with our approach, the authors have manually developed
a parser (i.e. an injector) to inject models (KDM and SQL sentences mod-
els) from the SQL source code. We have defined our own metamodels rather
than using KDM. Moreover, the description of the approach lacks the level
of detail needed to understand how the MDE techniques have been applied,
and an assessment on the application of MDE is not provided.

• An MDE approach for data conversion has recently been presented in [81].
Logical and conceptual schemas are inferred, as are the mappings between
them. The inferred schemas and mappings are refined by means of con-
sultation with domain experts. These mappings are represented as models
that represent Datalog-like queries which are converted in a data flow graph.
Moreover, a query translator converts the SQL queries in the source schema
into the equivalent query in the target schema. The tool was built in a 1
person year and it has been applied in a real migration scenario that had
previously been manually migrated with an effort of more than 5 person
years. The estimated gain in productivity is therefore about 80%. The au-
thors do not provide an analysis of the advantages or drawbacks of using
MDE techniques in the implementation of the tool presented.

• Some strategies with which to reengineer a legacy information system are
described in [18], which addresses both program and data migration. Al-
though a transformation strategy is applied in the schema conversion, MDE
techniques are not used, but instead a DDL parser library is provided to ex-
tract an ad-hoc representation of the physical schema of the database from
certain data-managing languages (such as SQL, Cobol, or XML, among oth-

37



ers). Data and programs are analysed in order to obtain the information
needed to refine the physical schema generated in a logical schema which
is finally transformed into a conceptual schema and stored in a proprietary
format named GER model. These transformations are implemented with
the transformation toolkit provided by DB-MAIN [82]. The most important
downsides of implementing these strategies are the automation and interop-
erability levels.

• A data reengineering approach is defined in [83] in order to generate a new
application in a multilayer system using different programming languages
and platforms (JSP, Java Swing, EJB, Windows Forms) from a physical
schema of the database. Firstly, a platform independent model is injected
from the physical schema. This model is then transformed into a UML-like
class model which represents a possible conceptual schema of a database,
and this class model is eventually used to generate the new application. The
injection step is implemented by reading directly into the data dictionary
of a Database Management System (DMS), like our DAS-D strategy. This
approach is therefore an ad-hoc solution for each DMS. Implementations for
the most common DMS (e.g. Oracle and SQLServer) are included in this
work. Metamodels are represented as a Java class model and transformations
are implemented by means of Java code. This proposal is more limited than
our approach since the defect correction and possible schema normalisation
are not considered. Moreover, the implementation does not take advantage
of the existing MDE techniques/technologies.

• The automation of the schema normalisation task has been tackled in some
works, but a model-driven solution is only considered in [84]. The authors
define an approach with which to achieve a conversion between normal forms
which is based on (i) the definition of a UML-like class metamodel for ex-
pressing database schemas, (ii) OCL statements with which to specify the
normal form levels, (iii) and graph-based transformations that can be used
to write transformation rules that define the mapping between normal forms.
However, they do not address the extraction of functional dependencies from
data schemas, which our approach automates by applying the FCA theory

38



and the integration of the ConceptExplorer tool [31].

• DB-MAIN [82] is a toolbox that offers a complete functionality with which
to apply data engineering (i.e. from data requirement definition to data evo-
lution and maintenance), which includes tools for data reengineering such
as: extractors of legacy database schema, transformations between schemas,
data and code analysis tools, data viewers, among others. The development
of this tool is the result of a great number of research contributions to the
data reengineering area over the last few years by the LIBD laboratory at Na-
mur University. With regard to our work, in the schema transformation they
apply a transformation strategy but they do not use MDE techniques and
they implement a DDL parser which extracts the database physical schema
and then analyses the applications and the data to extract the information
needed to refine the schema obtained in a logical schema which is eventually
transformed into a conceptual schema. They use a schema transformation
toolkit provided by DB-MAIN. The degree of automation and interoperabil-
ity achieved by means of MDE techniques in our proposal is better than that
achieved in DB-MAIN.

Table 3.2 summarises the previous works according to the next features (last
row points the values of our proposal out):

• (1) MDE - Is this an MDE solution?
• (2) Stages - What Data Reengineering stages are implemented?
• (3) Data - Are data considered in the Data Reengineering process?
• (4) Extensible - Could the approach implementation be extended with new

defects/fixings?
• (5) Metamodel - Indicates the technology used to define the metamodel.
• (6) Assessment - Is some kind of assessment provided in the approach?
• (7) Automated - Is the solution automated through a tool or similar?
The previous table denotes that all analysed works present some kind of automa-

tion except [78] and [79] which present a conceptual framework aimed at improving
schemas quality. All the works (except our proposal) lack some assessment that
results from its application to a case study or running example. Only [80] uses the
KDM metamodel. However how KDM is applied is not described or some lesson

39



Approach MDE Stages Data Ext. Metamodel Assessment Automated
[78][79] Lemaitre10 Lemaitre11 8 all ? 8 4 - 8 8

[80] Perez12 4 all 8 8 KDM 8 4

[81] Yeddula15 4 all 4 8 UML 8 4

[18][82] Hainaut05 Hainaut94 8 all 4 4 GER 8 4

[83] Polo07 8 all 4 8 UML 8 4

[84] Akehurst02 4 reest. 4 8 UML 8 4 (no FD)
our proposal 4 all 4 4 ECORE 4 4

Table 3.2: Related work on model-driven data reengineering.

learned on the use of this metamodel.
A survey of software reengineering tools is presented in [85]. The authors review

eleven tools which are categorised according to several criteria. Four of them are
based on MDE: Blue Age, Modisco, Obeo Agility and Moose. Application migra-
tion is supported by Blue Age and Obeo. Modisco is an MDE-based framework
that offers KDM model injectors for several languages such as Java and JSP. It is
worth noting that only one of the reviewed tools (DB-Main) is intended for data
reengineering and most of the reviewed tools are commercial.

3.3 Migration Process Tool

Our work is related to the Process Engineering area, which is concerned with the
definition and enactment of software process models. In this setting, the works
related to our proposal belong to two main categories: SPEM-based approaches
to enact software process models and the use of MDE techniques to create process
engineering tools. In addition, we also consider Business Process Model and No-
tation (BPMN) [86] as an choice to define a new DSL for modelling and enacting
processes.

3.3.1 SPEM extensions

As indicated in Section 2.5.1, SPEM does not address the enactment of process
models, but SPEM models must be linked to behaviour models expressed with
other formalisms. This design choice aimed at providing flexibility for SPEM im-
plementors, so that they can select any behaviour modelling formalism. However,
a significant research effort has been devoted to extending SPEM to make it a

40



Process Modelling Language (PML) with capabilities of executing process. The
proposed approaches differ in the way of extending the SPEM metamodel, the
notation provided to express behaviour models, the formalism used to define the
semantics, and the goals of the enactment of software processes. Next we will
discuss three of the most relevant proposals: UML4SPM [26], xSPEM [27] and
eSPEM [28].

UML4SPM is a metamodel based on UML 2.0 activity diagrams intended to
overcome some limitations of SPEM 1.1, in particular the lack of behaviour models
and some issues related to the expressiveness (e.g. constructs to model the human
interaction during the development of a process and the existence of different work
products). An operational semantics (named Execution Model) has been defined
for UML4SPM as the basis of the execution support [26]. In [87], a UML4SPM-
based framework, which combines the aspect-oriented and MDE approaches, is
proposed for modelling and executing process models. In this framework, the
process models are made executable by means of execution models expressed in
the Kermeta language [88]. Rather than integrating with management tools, the
framework supports executing automated and manual tasks as Java programs from
Kermeta code. UML4SPM extends the UML activity diagram metamodel with
concepts needed to enact software process, such as Tool, but we have encountered
some limitations in using UML4SPM in our approach. For instance it does not
allow the definition of how tasks are executed on tools (e.g. its input parameters,
dependencies, etc.). In addition, concepts and notation are less suitable than using
a SPEM-based metamodel.

The main goals of xSPEM are the execution and validation of software processes.
Process validation is achieved by using translational semantics, i.e. transforming
SPEM models into Petri nets and then checking them using a dedicated tool.
Process execution is supported by WSBPEL through the definition of a mapping
between xSPEM and a WSBPEL extension called BPEL4People [89]. We have
not used xSPEM due to the difficult of adapting the enactment provided in our
approach. Moreover, the metamodel is complex and it would be necessary to
complete and modify the generated code for supporting the process execution.

The extension eSPEM has been mainly designed to solve three shortcomings of
SPEM, namely: (i) its lack of behaviour modelling; (ii) it does not support the

41



definition of new tasks when the process is already being executed; and (iii) it does
not facilitate the configuration of a process for several methods. eSPEM is based
on UML activities and state machines for the execution of processes. The eSPEM
operational semantic has been formalised with fUML [90] in order that the tools
based on eSPEM can support process validation. Several editors are available for
creating eSPEM models and an integrated chain of tools allows the modelling and
the enactment of software process models [91]. Once the process models are cre-
ated by using the editors of the Process Modelling Environment (PME), they can
be deployed into a Process Execution Machine (PEX) where a management team
can access it to create development projects which are performed by the develop-
ers. The PEX offers support and guidance (a sensitive context help for tasks) to
the developers and allows the control of the process to the managers by report-
ing on the tasks performed, deviations and traceability. A significant difference
between eSPEM and xSPEM is that the former provides fine-grained constructs
of behaviour models as decisions or tasks scheduling. Despite some advantages
over UML4SPM and xSPEM, we have found that the eSPEM metamodel does not
include the elements needed to achieve the execution desired in our approach, i.e.
executing automated tasks and generating tickets which are integrated into a task
management tool.

Whereas the existing SPEM extensions aim to offer a general-purpose process
modelling language, our approach is specific to a software development domain, in
particular software model-driven migration processes. In this setting, our goal was
to express a migration process at a granularity level that is appropriate for execut-
ing automated tasks (e.g. model transformations) and controlling the execution
of manual tasks by integrating tools like Mylyn and Trac. The greater specificity
of our approach favours a model enactment that conveys the execution of tasks,
since our process models contain all the needed information. The enactment based
on the integration of Trac and Mylyn for the manual tasks and the execution of
Ant files for the automated tasks is the main characteristic that differentiates our
approach. To the best of our knowledge, our approach is the first approach to
define migration process models that are enacted for concrete migration scenarios.
However, the current version of Models4Migration does not address some aspects
that are commonly supported in process-centered environments, such as validation

42



and monitoring.

3.3.2 BPMN language

BPMN [86] is an OMG specification aimed at providing a graphical language for
business processes. The language has been specifically designed to coordinate the
sequence of tasks in a set of activities, and the messages that flow between the
different participants that perform those tasks. The BPMN specification defines a
mapping for WSBPEL (Web Services Business Process Execution Language) [92],
which is an XML-based language for describing business processes in which most
of the tasks represent interactions between the process and external web services.
The WSBPEL process itself is represented as a web service, and is interpreted by a
WSBPEL engine which executes the process description. Therefore, the enactment
of BPMN diagrams can be performed with WSBPEL.

Although BPMN supports process execution in workflow engines by using exe-
cution languages such as WSBPEL, we consider that this is not suitable for our
approach because BPMN lacks expressiveness in the area of software processes,
in particular migration processes, so it would have to be extended with new ele-
ments, which will not be available in BPMN editors. Moreover, the mapping from
BPMN to WSPBEL would have to be extended to support these new elements.
In addition, workflow engines such as the WSBPEL engine cannot be easily inte-
grated with development environments (IDEs). For example, there is no support
to communicate the workflow with an IDE in such a way that the IDE shows a list
of methods to implement, and the workflow engine updates this when the methods
are completed.

In short, we conclude that neither BPMN nor SPEM can be directly used for
our purposes. SPEM has been conceived for software processes but it does not
provide enactment and can not be easily extended to allow software processes to
be expressed at the level of detail required for automating tasks, such as execut-
ing a model transformation or generating tickets. BPMN supports the process
enactment but we cannot take advantage of this feature since the language is not
targeted at software processes. With regard to SPEM extensions, we have found
that the defined metamodels do not include the elements needed for our approach

43



and the enactment provided cannot be easily adapted in order to automate and
control programming tasks. We therefore decided to create a new DSL whose
metamodel is based on SPEM. In particular we have adopted the SPEM core con-
cepts (tasks, roles, work products, tools, etc.) and we have extended them to fit
the software migration domain. For enacting the models we have implemented
used activity diagrams.

3.3.3 Using MDE in Software Process Engineering

A pioneer work on model-driven process engineering was presented in [93]. A
software environment is viewed as a bus where tools are plugged in and models
provide a standard interface, i.e. the data managed by a tool is transformed
into a model that conforms to the metamodel of that tool. This idea is widely
used in our framework and we have gone a step further by defining the concept
of cartridge, which holds all the artefacts needed to generate a specific migration
environment. Moreover, we have tackled the execution of automated tasks and the
control of the manual programming tasks. The emergence of the SPEM language
has caused an increased interest in applying MDE in process engineering, and most
of the approaches to model software processes are based on this OMG standard.
However, these works have not had an impact on the industry yet.

To our knowledge, the automated support of MDE development has been only
addressed in [29]. In particular, the authors present a prototype of a MDE-based
build server which manages the integration of automated and manual tasks. Auto-
mated tasks are automatically executed and users are notified that a manual task
should be done. Every time a task is completed, other automated tasks can be
triggered and/or manual tasks be notified to users. The scripts allow specify verifi-
cations and validations operations on the artefacts created and consumed in tasks.
The tool is based on a metamodel that represents artefacts, operations and several
kinds of verifications. The Operation metaclass includes a boolean attribute to
indicate if the task is manual or automated and references to the source and tar-
get artefacts. Each operation has two UUID’s to indicate the implementation and
technology. The Artefact metaclass includes attributes whose values are assigned
in build time, which provide information on the execution status of the artefact.

44



Artefacts also include an UUID to indicate its location. This metamodel is used
to create build script models which are interpreted by the tool implemented.

Next, we comment on the most significant differences between this build server
and Models4Migrations. Our approach is focused on a migration process scenario
that needs to apply the same transformation process to a large number of legacy re-
sources many times. Therefore, it would be required to generate many tasks (even
more than legacy resources to be migrated), and they should be automatically
generated in order to alleviate effort for designers and managers of the migration
process. Moreover, in [29] the authors propose their own task and dependency
management system instead of using a well-known system, such as Trac, which
provides blocking/unblocking of tasks along with a dependency control among
them. The Trac server enables the migration managers to define (i) the depen-
dencies among tasks, (ii) the task assignments to developers and, (iii) in general,
a complete control flow of the enactment of process tasks. We have integrated
Trac and Mylyn which allows the use of the generated tasks in widely used envi-
ronments such as Eclipse. The approach proposed in [29] supports process partial
execution, which allows the execution of tasks even when all their inputs are not
provided.
Method Engineering is a software engineering area related to Process Engineer-

ing, which is focused on the creation and customisation of software methods [94].
Several works have illustrated how MDE techniques, such as metamodelling and
model transformations are very useful in this area. For instance, MetaEdit illus-
trated the concept of a metamodelling-based tool that generates editors supporting
method notations sixteen years ago [95]. Although our work does not fit in Method
Engineering, it can be related to the proposals for creating method definition tools.
For instance, Cervera et al. [96] have recently presented an MDE approach to
extend the modelling tool Moskitt [97] with SPEM support in order to provide
capabilities for the definition and configuration of software methods and the au-
tomatic generation of the tool to support them. The methods are customised
to a specific context by linking them to concrete technologies (i.e. editors and
model transformations). This approach, unlike ours, provides neither enactment
nor guidance to developers.

Regarding the migration tools, traditional tools (e.g., JANUS from Software

45



Revolution 1), do not offer enough flexibility to define custom migration processes
and enact them. Some model-based migration tools (e.g., Agility from OBEO 2 or
the migration tool from BluAge 3) are emerging, but they use models to improve
some aspects of the software quality such as interoperability and productivity,
and they do not provide a process modelling language to define custom migration
processes.

Task-based development processes such as the one proposed in our approach
are commonly used in software construction (e.g., agile methodologies or the de-
velopment of free and open source software) to identify and perform the required
development tasks. Bug-tracking (e.g., BugZilla 4 and Trac 5) and issue-tracking
systems (e.g., Mantis 6) are normally used with Mylyn (and extensions such as
TaskTop 7) to drive development processes. However, both tool integration and
task creation have to be manually performed by developers. We propose a seamless
integration with the migration process, as well as the generation of the required
migration tasks. A related approach in the context of IDE plugins is proposed in
[98]. The authors present a framework that extends IDEs with task-based plug-
ins and workflows that automatically execute multiple tools and integrate their
results. Compared to this approach, our tool is integrated into an IDE (Eclipse)
and it not only provides executing automation applications, but also programming
support facilities.

We next summarise in Table 3.3 the tools to support software process that
we have presented in this section (last row presents the values of our proposal),
according to the following features:

• (1) Migration - Is this a migration-specific solution?.

1http://www.tsri.com/about-us/tsri-services.html (accessed on 11-20-2014)
2http://www.obeo.fr
3http://www.bluage.com/en
4http://www.bugzilla.org
5http://trac.edgewall.org/
6http://www.mantisbt.org/
7http://tasktop.com/mylyn

46



• (2) MDE - Has MDE been used in implementing the tool?
• (3) Tasks - Does it generates manual or automatic tasks to be integrated into

an IDE?
• (4) Cartridge - Is it an extensible tool?
• (5) Definition - Does it support process definition?
• (6) Instantiation - Is instantiation or similar supported?
• (7) Enactment - Does it provide enactment support?

Approach Migration MDE Tasks Extensible Process Definition Instantiation Enactment
[93] Bezivin01 8 8 8 8 4 (no SPEM) 8 4

[29] Steudel12 8 8 4 8 4 8 4

[96] Cervera10 8 4 4 (tool) 8 4 (SPEM) 4 8

[98] Mariani13 8 8 4 (semi-auto) 8 4 (workflow) 8 4

JANUS 4 8 4 (partial) 8 8 ? 8

OBEO 4 4 4 4 8 4 4

BluAge 4 4 ? 8 ? 4 8 4 4

our proposal 4 4 4 4 4 (SPEM-like) 4 4

Table 3.3: Related work on migration process tools.

The first four related works compared in the table are not aimed at applying
migration process, thus they lack of process instantiation which is a relevant feature
in the migration scenario (except [96], that provides a sort of process instantiation
but not process enactment). On the other hand, commercial solutions such as
JANUS, OBEO and BluAge do not include the ability to define a migration process
by means of a process language. Finally, only OBEO and BlueAge (as well as our
proposal) were built on an extensible architecture which provides the mechanism
for adding new kind of tasks, artefacts and technologies during process definition.

3.4 Tool Interoperability

Tool integration has been a topic of great interest from the early years of software
engineering. In [50], tool integration is analysed from several dimensions and more
recently a research agenda has been proposed in [99]. According to the definitions
proposed in [50], our work is focused on tool interoperability In the review of
the literature presented in [99], Model-driven interoperability approaches are not
considered since MDE was then just emerging and XMI is shown only as a novel
format which exchanges data.

47



The injection and extraction processes needed in a model-driven interoperability
are an example of bridging Modelware technology (i.e. MDE) and other technolo-
gies (e.g. XML, Grammarware and APIs). The concept of technical space was
introduced in [100] to define technologies at a high-level of abstraction. This
notion was used in [93] to establish bridges between different technologies (e.g.
Grammarware, Modelware and Ontologies). Each technical space is characterised
by the pair of concepts data/format and the formalism used to define the data
formats, e.g. code/grammar and EBNF for Grammarware, and model/metamodel
and metamodelling language for Modelware. In this way, mapping between tech-
nologies can be established at three different levels: data, format and formalism.
Gra2MoL [47] and Api2MoL [101] are examples of tools created in order to build
bridges between Modelware and other technical spaces, in particular Grammar-
ware and APIs, respectively. Textual DSL workbenches also bridge Modelware
and Grammarware. Support in order to bridge Modelware and XML technology is
provided by EMF [43]. In the case of the Objectiver/DB-Main bridge, Modelware
can be mapped to three different technical spaces: Grammarware (LUN format),
XML and APIs (JIDBM). Therefore, we have considered the above mentioned
tools.

We next enumerate the MDI approaches that will be compared to our solution:

• How MDE could be used in the tool interoperability scenario was shown in
[102] for the AMMA MDE framework. This work proposed implementing
semantic mapping by means of a weaving model created with the AWM
(Atlas Weaver Model) tool. The approach was illustrated by means of a
bidirectional bridge between two bug tracking tools. A weaving model allows
only express links between model elements, and this can only be applied if
the mapping is very simple. Therefore, M2M transformations are normally
used to implement MDI bridges.

• In [103], another MDI approach is presented for the AMMA framework,
which uses an M2M transformation to implement a unidirectional semantic
mapping for converting textual reports generated by a clone detection tool
into SVG files. AMMA provides a DSL definition tool named TCS (Textual
Concrete Syntax), which is used to automatically generate the injector for

48



the clone detection reports.

• A similar approach to the integrations of tools is described in [104] for the
MOFLON framework, which uses MOF as metamodelling language. In con-
trast to these two approaches our work has tackled the building of a bidirec-
tional bridge for EMF that is the most widely used MDE platform. Moreover,
we have considered different alternatives for implementing the injector and
extractor.

• A bridge for integrating models created with different metamodelling lan-
guages, in particular Ecore and metamodelling language used in some Mi-
crosoft modelling tools (e.g. DSL Tools) is proposed in [51]. This approach
could be used in our work if a platform different to EMF is used to integrate
Objectiver with other tools.

Table 3.4 summarises how each MDI stage is implemented in the commented
approaches. Again, last row describes our proposal.

Approach Pivot Metamodel Syntactic Mapping Semantic Mapping

[102] Fabro06 Ecore (AMW) no? 4 bidirectional
8 simple mapping

[103] Sun08 MOF 4 injector autogenerated
8 unidirectional (no extrac.)

8 unidirectional mapping

[104] Amelunxen08 MOF (UML) 8 manual? 4 TGG (Triple Graph Grammars)
4 bidirectional mapping

[51] Bruneliere10 several metamodels 4 XML injector
8 not extractor yet

8 unidirectional mapping (ATL)

our proposal EMF 4 several alternatives (inj+ext) 4 bidirectional (QVT)

Table 3.4: Related work on tool interoperability.

The works commented in the previous table are applying MDI to specific prob-
lems. Therfore, they are not intended to explore and analyse different strategies
with which to implement the mappings of a model-driven bridge. In [103] and [51],
the semantic and syntactic mappings are unidirectional and they only provide in-
jectors but not extractors. In [102] and [104], syntactic mapping (injectors and
extractors) is not provided and these solutions are focused on providing a trans-
formational bridge between the tool data once they are stored in models. It is
worth remarking that [51] is the only MDI approach able to deal with different
metamodels.

49



Applying MDE techniques to automate tasks in the area of requirement en-
gineering has been widely addressed in the literature. Great research effort has
been devoted to defining MDE solutions that generate software artefacts from
requirement models. For instance, conceptual multidimensional models for data
warehouses are generated from i* goal models in [10], security software artifacts
(e.g. rules implementing security policies or security code for a database from
security models in [105], or KAOS goal models from mind maps in [106]. Note
that the work presented here is mainly focused on building MDI bridges, rather
than addressing other topics related to the model-driven requirement engineering.
However, it is worth remarking that our approach illustrates an MDE application
scenario to be explored in this area. That is, how requirement tools may be inte-
grated with other tools in building software systems, and how software artefacts
can be generated from requirement models.

50



(Suggested by Jesús García)

”Do not tell me how I can reengi-
neer my mind or life, tell me how I
can undo the past”

anonymous

4
Overview

In previous chapters we have stated four high-level objectives to be achieved in
this thesis work through an analysis of the state of the art in model-driven software
reengineering. This chapter is devoted to outline the approaches proposed to fulfil
the goals. Previously, a set of requirements is elicited for each goal.

4.1 Requirements

The main goal of this thesis was defined in Section 1.2. It consists on applying
MDE techniques to a data reengineering process and analysing to what extent the
use of models facilitates the implementation of the data quality improvement in
a schema conversion. This goal is separated into four high level goals: (G1) an
implementation of a data reengineering process by using MDE techniques, (G2) the
use of different strategies in order to elicit foreign keys for the restructuring stage
of the process, (G3) an implementation of a process tool with which to provide the
support for the definition and enactment of MDE-based data migration processes,
and (G4) building a model-driven bidirectional bridge in order to investigate the

51



integration of external tools into a data reengineering process.
We have elicited a set of requirements for our solution, which can be organised

in five groups: the first one defines the general requirements for the work to be
developed in this thesis and the other groups are related to the four high-level
goals. Next, we will present all these requirements.

Our work of applying MDE to improve tasks of data reengineering has been
driven by the following general requirements:

(R1) Productivity. Productivity is one of the main factors to be taken into
account in the implementation of any software system. Developers of a data
reengineering solution have to generate new artefacts on schedule and by
using the least resources as possible.

(R2) Automation. We are interested in automating our data reengineering pro-
cess as much as possible so that it can be easily applied our data reengineering
process to a large number of legacy systems with minimum effort.

(R3) Modularity, Extensibility and Reusability. It would be desirable to
split the data reengineering process into simpler stages to make it maintain-
able. In addition, a solution split in decoupled stages would facilitate exten-
sion (for instance, to add new processing stages) and reusability in different
projects. The reuse of solutions or partial implementations is mandatory to
attain high levels of productivity.

(R4) Evolvability. As stated in [4], the integration of software and database
evolution processes is one of the current challenges to be addressed by the
reengineering community. They usually evolve independently thus leading
to inconsistencies resulting in high costs of software and data maintenance.

(R5) Consistency. Another challenge identified in [4] is the lack of synchroni-
sation among the database schema changes and code that accesses data by
means of an Object-Relational Mapper (ORM). In software evolution, de-
velopment teams sometimes work in an undisciplined manner (i.e., database
evolves without considering the ORM definitions and vice versa)

52



(R6) Technology Independence. The data reengineering process should be
easy to reuse with different technologies (source independence). Further-
more, it must be extensible, so that new target platforms can be added
without changing the reverse engineering and restructuring stages (target
independence).

With regard to the implementation of an MDE data reengineering process (G1)
we have identified the next requirements:

(R7) Representing a database at high abstraction level. Database infor-
mation related to a data reengineering process must be provided in terms of
high-level concepts, such as possible defects or functional dependencies.

(R8) Providing manual support to the migration actors in order to man-
age the schema conversion. The database administrator’s knowledge
should be considered in order to decide which of defects detected must be re-
moved from the schema. This kind of solution would be according to human
aware [107].

(R9) Variability in the generated artefacts. Multiple kinds of artefacts
should be generated in accordance with the migration requirements: scripts
for re-generating the database, new middleware code for accessing data or
both.

Regarding the use of different strategies in order to elicit foreign keys (G2) we
have defined the next requirements:

(R10) Use of multiple sources for the analysis. Database information to be
analysed could be harvested from schemas, database records or programs.

(R11) Use of different techniques for the analysis. The same analysis could
be implemented using different MDE techniques.

(R12) Combining results from the different analysis. Instead of consider a
unique set of results obtained from one strategy, it would be desirable to
consider a combination of the results of each strategy.

53



With respect to the implementation of a tool supporting a model-driven reengi-
neering process (G3) we have established the following specific requirements:

(R13) Supporting for the process definition. The tool should provide a lan-
guage tailored to the definition of migration processes. Process definition
scripts should be injected as models in order to apply model-driven tech-
niques in the implementation.

(R14) Ability to define migration processes in abstract and concrete form.
A process definition (i.e. an abstract process model) is independent from
concrete artefacts. They use symbolic names instead of concrete references to
tools and workproducts. However, the enactment of a process model requires
references to the concrete artefacts involved into the execution. Therefore,
process models must be instantiated to replace symbolic names by the legacy
resources of the system to be reengineered (i.e. concrete process models).
This is a specific requirement of a migration scenario which differs from
another one.

(R15) Supporting for the process enactment. The tool should enact the data
migration process by automatically performing the automated tasks and gen-
erating manual tasks to be manually completed (guided if possible).

(R16) Integration with existing development environments. Productivity
could be facilitated if the completion of manual tasks could be performed by
using complete and mature developing environments (e.g. Eclipse).

(R17) Tasks should define dependencies among them. Manual or automated
tasks should represent dependencies among them in order to enact a data
migration process. Tasks will be in a blocked or unblocked status. A task
could only be executed if all its precedent tasks (in terms of dependency) are
unblocked.

(R18) Supporting for task assignment. Managers of a migration process should
deliver tasks among the migration developers. The tool must provide support
to ease how tasks are assigned and who are the developers in charge of its
completion.

54



Last set of requirements are referred to a model-based architecture in order to
allow the tool interoperability (G4):

(R19) Bidirectionality. It would be desirable that given two tools A and B to be
integrated, data in A format could be used by the B tool and vice versa.

(R20) Dealing with different scenarios. In particular the MDE interoperability
should be investigated in two scenarios of integration: a third-party tool is
integrated into a model-based solution and two tools are integrated being
one of them a data engineering tool.

In order to attain the goals stated in accordance with the requirements defined,
we proposed (1) the implementation of a model-based data reengineering approach
for the schema conversion in a migration along with (2) a tool with which to define
and enact the process. The process proposed requires the use of an external tool
in order to search for the functional dependencies as part of the normalisation
step applied during the restructuring stage. The integration of external tools has
been achieved by developing (3) a tool interoperability solution by means of MDE
techniques. Finally, we have defined (4) several strategies for the foreign key
discovering in the reverse engineering stage of our process, by creating algorithms
with which to implement schema, data and static code analysis. We will next
outline each of the achievements identified above. In the following chapters, we
will describe in detail all of them.

4.2 A Model-based Data Reengineering Process

In Section 1.2, we stated a problem regarding the recovery of implicit constructs
(i.e. potential defects in the database schema), in particular, foreign keys and
check constraints. Our approach is a model-driven software reengineering process
as depicted in Figure 2.3. The outline of the reengineering approach proposed to
solve the problem is shown in Figure 4.1. Each reengineering stage corresponds to
one of the three tasks into which the problem is decomposed (see Figure 2.3). The
defects in the original schema are detected in the reverse engineering stage; the
changes made to the schema in order to correct defects and apply a normalisation

55



Figure 4.1: Model-based data reengineering process.

process, if needed, correspond to the restructuring stage; and forward engineering
techniques are applied to generate the new artefacts of the migrated system. The
steps to be performed in each stage are briefly introduced below. We will provide
a detailed description of how each of the stages has been implemented by means
of model transformations in Chapter 6.

4.2.1 Reverse engineering

Program and data analysis are two complementary strategies that are commonly
used to elicit implicit constructs in database schemas [108] [109]. In our case, the
data analysis is performed on either data stored in the database or on data models
injected from DML (Data Manipulation Language) scripts. Whatever the strategy
applied, the database schema must also be analysed; a schema model has therefore
been injected from the DDL script. Furthermore, the code analysis is performed
on models injected from the source code of database programs. Both strategies
are implemented by means of M2M transformations and generate a Defect model
which includes the defects to be removed from the legacy schema. The strategies
we have implemented in our approach were combined and presented in [108] in

56



collaboration with the Precise research group. Section 6.3 will show how they
have been implemented as part of a model transformation chain following an MDE
approach.

4.2.2 Restructuring

The legacy schema is firstly modified to remove the defects. This schema con-
version is implemented as an M2M transformation. Once the schema has been
fixed, an analysis is performed to check whether the normalisation level should be
changed or not. Functional dependencies are first identified by using a specific tool
and then, a normalisation is applied if necessary. This process is implemented as
an M2M transformation chain that integrates the tool used to detect functional
dependencies. The result of this stage is therefore a fixed and normalised schema
(Fixed Data Model in Figure 4.1). This stage will be explained in Section 6.4.

4.2.3 Forward engineering

Finally, the source code of target artefacts is generated from the model obtained in
the previous stage. Two kinds of artefacts are generated: SQL scripts with which
to regenerate the database and the code of a middleware that is used to access the
new schema. JPA is the standard technology to implement the persistence layer of
a Java application. Our approach generates the Java code and configuration files
according to the new schema resulting from the restructuring stage. This process
is also implemented as a model transformation chain, which will be described in
Section 6.5.

4.3 Strategies for the Foreign Key Discovering

The data reengineering process, which is defined in this thesis, deals with the
discovering of referential integrity constraints (RIC) not declared in relational
schemas, along with the detection of constraints disabled (foreign keys and check
constraints). We have implemented two strategies that extract the knowledge from
different sources: database and program source code. The first strategy, which is
based on database information, is composed of two analyses that have to be ap-

57



plied orderly: firstly a database schema analysis and then a data analysis. The
second strategy, which is based on program code, uses a static code analysis of
the SQL sentences embedded in the source code of the database applications. The
implementation of the two strategies are included as part of the reverse engineering
stage of our data reengineering approach and they will be described in Chapter 5.

We have also defined a manual process to tackle the RIC detection in a legacy
system through the joint analysis of multiple sources of information: the database
schema, the database contents and the program source code. The results obtained
by each analysis technique are then combined in order to find a certain number of
likely foreign key candidates. This work was carried out in collaboration with the
Precise group at the University of Namur during the predoctoral stay of the PhD
candidate.

4.4 A Tool to Define and Enact Model-based Migration
Processes

In this section we will outline the design choices we have taken to satisfy the
requirements of the tool built to support MDE-based migration processes. The
tool has been implemented by applying MDE techniques.

4.4.1 Process definition

A modelling language (i.e. a DSL) is a desirable feature of the tool in order to
make labour of specifying software processes easier to designers. We have found
that SPEM is not suitable for modelling software processes when enacting and
interacting with external tools is required (i.e. model transformation engines),
due to the following reasons:

• Lack of detail: the concepts provided by SPEM work at a high abstraction
level, while our approach needs to define processes at a low-level of detail for
the execution of tasks, what implies including information such as resource
paths or configuration options.

• Lack of enactment support: SPEM does not support the enactment of pro-
cess models since it does not provide execution semantics. SPEM strategies

58



to provide enactment support are not suitable since no mapping for work-
flow engines is provided and project management tools do not really execute
process models.

Therefore, SPEM as-is cannot be used for our purposes since we want it to
include MDE domain concepts and additional information to allow enactment. It
is worth noting that the extension mechanism described in 2.5.1 is not appropriate
as new attributes and relationships cannot be defined for the new types. Since
that several approaches have been presented to extend SPEM in order to enact
software processes, we have analysed some significant proposals to assess if they are
able of supporting the enactment of our approach. This analysis is summarised in
Chapter 3 where we indicate the limitations of these extensions to support the kind
of enactment proposed in our approach. We have therefore chosen to create a new
DSL to define migration process. This language is based on SPEM and lets defining
the elements (e.g. tasks and workproducts) and workflow related to migration
plans, as well the information required for the enactment. The metamodel used to
define the abstract syntax of the DSL will be referred to as Migration metamodel
and will be described in Section 7.3.1.

4.4.2 Process instantiation

As explained in Chapter 2, a Concrete Migration plan must be instantiated from
an Abstract Migration plan in order to perform the enactment for a particular
application. Both Abstract and Concrete Migration plans are represented in our
approach as models, namely the Abstract Migration model and the Concrete Mi-
gration model, respectively; both models conform to the Migration metamodel.
An Abstract Migration model is created by the designer for a pair of source and
target technologies and it is specified in terms of variables that denote some kind
of elements or artefacts involved in the migration (e.g. a JPA Java class or a DDL
script). A Concrete Migration model is the result of instantiating an Abstract
Migration model for a particular application to be migrated. This instantiation
consists of replacing each variable of the Abstract Migration model by its corre-
sponding concrete artefacts (e.g. actual resources with real names and paths),
which are part of the source application.

59



Figure 4.2: Instantiation and enactment of migration processes.

The instantiation of an Abstract Migration model into a Concrete Migration
model is implemented as an M2M transformation which has the Migration meta-
model as its source and target metamodel. In addition, this transformation also
uses an Inventory model that provides the input artefacts that are needed to in-
stantiate a given Abstract Migration model. Therefore, the transformation has an
Abstract Migration model and an Inventory model as its inputs, and generates a
Concrete Migration model, as shown in Figure 4.2.

4.4.3 Process enactment

The instantiation creates an enactable process from a process definition. Each
task of an enactable process is interpreted and carried out by an agent (person
or machine), depending on if the task is manual or automated. A tool support-
ing process models must provide a high-level of automation in the execution of
enactable tasks. In our approach, two model transformation chains automate the
enactment of a concrete migration plan, as illustrated in Figure 4.2. This enact-
ment is achieved by the execution of the automated tasks and the support of the
manual tasks. The execution of automated tasks is done by using the Ant build
tool. The Ant file to be executed, namely Automated Tasks file, is generated by
an M2T transformation which input is the concrete migration plan. With regard
to the manual tasks, the tool generates information that can be integrated into
management tools. The support is currently provided by the integration of the
Trac bug server with the Mylyn tool, which is a contribution of our work.

60



We use Trac tickets to represent pending tasks which are integrated into Mylyn,
an Eclipse plugin for the management of tasks, which configures the user interface
of the Eclipse IDE showing only the resources that the developer needs to fulfil
a certain task. The Trac-Mylyn integration is based on an M2M transformation
which generates a Task model from the Concrete Migration model, and a Java
process which creates the tickets into the Trac server by means of querying the
Task model by EMF API and creating the tickets by the Java Trac API.

4.4.4 Technology-Independence

A tool supporting software processes should be independent of the implementation
technologies used. In our case, an independence of source and target technologies
is achieved by using models to define the migration plans and the way they are
interpreted. Models4Migration is a cartridge-based tool implemented as an Eclipse
plugin. A Migration Cartridge is a pluggable module that encapsulates an
Abstract Migration model (i.e. the migration process), a Process Interpretation
model (i.e. the definition of the behaviour to be performed when enacting the
migration plan), and all the resources required to enact the Abstract Migration
model. Both models conform to the Migration Plan metamodel and they are
expressed in terms of the source and target technologies.

While an Abstract Migration model specifies the workflow for a migration (e.g.
Oracle Forms to Java), a Process Interpretation model specifies how to interpret
this model in order to extract manual and automated tasks to be integrated into the
process management tools. Therefore, the Process Interpretation model describes
the chain of model transformation shown in Figure 4.2, although extensions to
this chain may be needed depending on the pair of specific technologies, as we will
explain in Section 7.5.

The basic process executed by the Models4Migration tool is described in Fig-
ure 4.3. A Process Interpreter has the Inventory model and the models encap-
sulated into the Migration Cartridge as its inputs and generates the Task model,
which defines contexts (explicit information about the tasks and resources) for
the tasks defined in the Concrete Migration model, and the Automated Task file,
which is executed by the Ant tool creating a new Eclipse project with the resources

61



Figure 4.3: Process Interpreter in the migration process tool proposed.

generated by those tasks. The Task model reduces the semantic gap between the
Concrete Migration model and the Trac API. This model is interpreted by a Java
program to create tickets on a Trac server.

Transformations shown in Figure 4.3 were implemented by means of the facil-
ities included in the AGE environment [110], using the RubyTL transformation
language for the M2M transformations and the MOFScript language for the T2M
transformation.

The sections in Chapter 7 describe in more detail the elements introduced above
and their application to the running example. We will start with a section that
analyses the suitability of existing process model languages to describe software
processes in a way appropriate to the kind of enactment applied in our approach.

4.5 A Tool Interoperability Architecture

As indicated in Section 2.4, tool interoperability normally requires addressing both
syntactic and semantic mappings because each tool or component to be integrated
can represent the exchanged information in a different format and can also give a
different meaning to this information.

In this thesis, we firstly tackled the tool interoperability issue through the imple-
mentation of a bridge between the Concept Explorer tool and our data reengineer-
ing process. Afterwards, we implemented another bridge between the DB-Main

62



tool and our process. In this second case, we experimented with several strate-
gies for creating injectors and extractors, in order to compare them. Both bridges
only implement a syntax mapping to integrate such tools in the MDE technical
space. Hence, we implemented a third bridge aimed to integrate the DB-Main and
Objectiver tools, which is shown in Figure 4.4. In this bridge, database schemas
and KAOS object models are the information to be exchanged. Since Objectiver
imports/exports KAOS models from/to an Ecore metamodel, we have just defined
a pivot metamodel which represents the database schemas in DB-Main. Therefore,
the creation of an injector and an extractor is not needed for Objectiver. Instead,
three kinds of injectors have been created for DB-Main, taking into account the
three options provided by this tool which can be used to access its information:
a Java API named JIDBM, a XML file generated by an exportation plugin and
the DB-Main project file (.lun files). As shown in Figure 4.4, for each option two
implementation strategies have been considered. For the JIDBM API we have
used EMF API and the Api2Mol tool [101]. For the XML file we have used EMF
API along with JAXP 1 and JAXB 2, and on the other hand, the XML serialiser
of EMF. Finally, for the project files we have explored the use of the Gra2Mol tool
and DSL workbenches, such as Xtext 3 and EMFText4. QVT Relational has been
used to implement the semantic mapping.

4.6 A Case Study: the OSCAR system

This section will introduce the main case study used in our schema conversion
process and the strategies for FK discovering. It is worth remarking that the case
study used in the migration process tool is our own migration process.

Our case study is an information system that is widely used in the health-
care industry in Canada, called OSCAR (Open Source Clinical Application Re-
source) [111]. OSCAR is a so-called Electronic Medical Record (EMR) system.

1http://jcp.org/en/jsr/detail?id=63
2http://jcp.org/en/jsr/detail?id=222
3http://www.eclipse.org/Xtext/
4http://www.emftext.org/index.php/EMFText

63



DB-Main 
Tool 

Model 

DB-Main 
Model  

XML 

LUN 

JIDBM 

SAX or JAXB + Api EMF 
EMF XML + m2m 

QVT 

Objectiver/DB-Main 

Objectiver 
Tool 

Model 

Objectiver 
Model  

Api JIDBM + Api EMF 
Api2Mol 

Gra2MoL + m2t  
DSL workbench 

Figure 4.4: Objectiver/DB-Main bridge.

Its primary purpose is to maintain electronic patient records and interface with
a variety of other information systems used in the healthcare industry, such as
laboratory systems, pharmacy systems, specialist information systems, etc. It also
provides advanced functionality related to typical clinical workflows, e.g., elec-
tronic prescribing functions. OSCAR has been developed since 2001, originally by
the Department of Family Practice at McMaster University. Today it is one of
the most popular EMR systems in Canada and in use by thousands of GPs across
the country. As the acronym suggests, OSCAR is open source software. Current
development activities on OSCAR are coordinated by a not-for-profit company
(“OSCAR EMR”), under an ISO 13485 certified development process.

OSCAR has been using MySQL as its DBMS platform. MySQL supports the
choice of different alternative storage engines. During the first five years of OS-
CAR development, MySQL did not support a storage engine capable of enforcing
referential integrity. Consequently, OSCAR’s database implementation does not
make significant use of FK constraints but rather consists of seemingly unrelated

64



tables. Over the last several years, OSCAR has been migrating to MySQL’s newer
InnoDB storage engine, which provides full support for referential integrity enforce-
ments. Since then, more recently developed parts of the system have made use
of FK constraints. Still, the vast majority of the database tables remain without
any explicit relationships in the schema. This situation has been a frequent source
of frustration in the OSCAR developer community as it impedes program under-
standing and maintenance. It has also raised concerns with respect the integrity of
patient health information and, ultimately, patient safety. Therefore, it has been
a goal to reengineer OSCAR with respect to establishing more referential integrity
constraints.

The database was originally supported in a MySQL system but it was also
recreated in an Oracle database, in order to apply some of the analysis implemented
in this thesis. As it is said below, the database used is encrypted for the sake of
privacy.

We encountered a number of challenges in our case study which affect directly
to the FK discovering proposed in our solution. The most important ones are
pointed out here.

• Size. One obstacle in this process is the sheer size of the database schema.
With close to five hundred tables and some of the larger tables comprising
over thousands of columns, identifying FKs cannot be a manual process but
requires automated tool support.

• Multi-paradigm architecture. Another challenge is the unevenly evolved na-
ture of the OSCAR architecture, which uses a multitude of different paradigms
to access the database. Some older application modules still use embedded
(dynamic) SQL queries, while newer modules use object-relational middle-
ware descriptors (Hibernate mapping files), and yet newer application code
uses code annotation tags based on the Java Persistence Architecture (JPA)
standard. Therefore, no single method for detecting FKs in application code
is likely to recall all relevant relationships.

• Confidential data. Knowledge about the actual database instances is an im-
portant prerequisite for the process of identifying RICs. It is not uncommon

65



that the data in legacy information systems is considered business confiden-
tial. However, patient records are among the most sensitive and highly regu-
lated information items in any industry and they cannot commonly be made
available for the purpose of software engineering, even under non-disclosure
agreements. We had to create software and a process to securely encrypt
the data prior to FK analysis and attain approval from the University ethics
board prior to our reengineering study.

66



(Suggested by Nesrine)

(Suggested by Loup)

”L’amitié est une religion sans dieu ni juge-
ment dernier. Sans diable non plus. Une reli-
gion qui n’est pas étrangère à l’amour. Mais
un amour où la guerre est la haine sont pro-
scrite, où le silence est possible”

Tahar Ben Jelloun

”These are the two pillars of a Trappist life.
There has to be a balance between work and
monastic life. We earn our living. There’s no
reason to change that, or make more money”

Brother Joris, Westvleteren brewery 5
Strategies of Defect Discovering

This chapter will be devoted to presenting the strategies used to elicit the foreign
key constraints applied in our approach. We shall describe these strategies from
an algorithmic point of view, i.e. without dealing with implementation details.
The following sections will not therefore include explanations about the MDE
techniques used to implement the algorithms.

As noted in Chapter 4, in this thesis we have implemented three analyses in order
to discover the FK. The first two analyses used the legacy database as a source
and had to be applied in a orderly manner: firstly a database schema analysis
and then a data analysis. The third analysis was based on taking the program
code as source and used a static code analysis of the SQL sentences embedded
in the legacy applications. Our three analysis techniques will be described in the
following sections, after which two more brief sections will be devoted to outlining
the two analysis developed by the Precise group. We shall conclude the chapter
by showing the triangulation of all the results and discussing it.

It should be noted that the triangulation of the results was realised manually

67



and it is no implemented inside our data reengineering process. Moreover, we will
just outline the last two analysis techniques (Hibernate and JPA analysis) because
they were not implemented for this thesis but they were developed by members of
the Precise group and more details can be found in [108]. We have just included
the results obtained by these two analysis in order to show how they were combined
along with the results obtained from our analysis (schema, data and static SQL
analysis).

5.1 Schema Analysis

The Schema Analysis process is guided by the primary key constraints found in
the tables of the schema. Each column columnPK contained in a primary key
of a table is used to search for other columns in the database schema that could
reference columnPK. Algorithm 1 specifies this process. We use tablePK and
columnPK variables to refer to the table and the column, respectively, of the
primary key side.

Algorithm 1 Schema Analysis algorithm
result← ∅
for tablePK ∈ schema do

for columnPK ∈ tablePK.constraintPK do
result← result+ SearchForFK(tablePK,

columnPK)
end for

end for
return result

In the SearchForFK function, columns are searched based on their names and
data types (SQL type, length and precision) as we show in Algorithm 2. Variables
table and column are used to refer to the table and the column, respectively,
analysed as a candidate foreign key.

The EqualsNames function returns true if the names of the columns and tables
analysed are compatible, and returns false otherwise. Algorithm 3 explains in a
precise way what ’compatibility’ means in this context, and shows how the function
works.

68



Algorithm 2 searchForFK function
procedure SearchForFK(tablePK, columnPK)

result← ∅
for table ∈ schema do

for column ∈ table do
if column ̸= columnPK then

if column.type = columnPK.type
& column.length ≥ columnPK.length
& column.precision ≥ columnPK.precision
& EqualsNames(table, column,

tablePK, columnPK)
then

result← result+ (tablePK, columnPK,
table, column)

end if
end if

end for
end for
return result

end procedure

First, the equalsColumnNames function checks the length of the column name
considered as foreign key candidate (column).

• If the length is equal or greater than 5 characters we check whether the
tablePK and/or the columnPK names is included in the column name. We
only use the columnPK name if its length is greater than 2 characters. Oth-
erwise, we consider that this name is not meaningful enough to be used in
the search.

• If the length is less than 5 characters we do not check if the tablePK name is
contained in column name, mainly because we consider that 5 characters is
the minimum length to deal with table names providing meaningful names.
So, in this case, we only check the length of the columnPK name. If it is
greater than 2 characters, the algorithm checks if columnPK name is con-
tained in column name analysed as foreign key. Otherwise, if the columnPK
name has a length of 1 or 2 characters, we could suppose that columnPK

69



Algorithm 3 EqualsNames function
procedure EqualsNames(table, column, tablePK, columnPK)

if column.name.length ≥ 5 then
return (columnPK.name.length > 2
& (column.name.contains(columnPK.name)

or column.name.contains(tablePK.name))
)
or
(columnPK.name.length ≤ 2
& column.name.contains(tablePK.name))

else
return ((columnPK.name.length > 2
& column.name.contains(columnPK.name))
or
(columnPK.name.length ≤ 2
& tablePK.name.contains(

column.name.eliminate(columnPK.name)
.eliminate(′_′))

))
end if

end procedure

has a name like ’id’ or something similar. In this scenario, a specific check
is performed: we eliminate in column name the appearances of the colum-
nPK name and some other special characters like ’_’. Then, we verify if the
resulting name is part of the tablePK name. Let us illustrate this concrete
scenario based on an example. We could have a foreign key column named
’prid’ which would be analysed in relation to a columnPK named ’id’ in
a table named ’provider’. After elimination of the columnPK name from
column name, we would have the string ’pr’ which would be contained in
tablePK name.

The length thresholds used in the Schema Analysis process can be reconfigured.
The values chosen in this thesis have been proposed after several tests because
they proved to generate the best results in the foreign key detection.

70



5.2 Data Analysis

The Data Analysis process utilises the results generated by the Schema Analysis
process as starting point. This approach is usually a necessity for large-scale legacy
databases, as a brute-force data analysis with respect to detecting all potential
foreign keys is usually computationally prohibitive.

Algorithm 4 shows how the data analysis is applied. Taking a set of foreign
key candidates, the algorithm calculates the matching of values involved on each
candidate. This matching defines how many values in tableFK.columnFK can be
found in tablePK.columnPK. This matching value must be measured in relation
to the number of rows in tableFK to calculate the percentage of matching values.
The number of rows in tablePK is reported too for calculation of the matching
percentage (i.e. a high percentage value for a tablePK containing millions of rows
provides stronger support for a hypothetical FK than a high matching percentage
of a table with only a few rows).

Algorithm 4 is set up by means of a threshold value which is established to only
return candidate foreign keys (tabPK, colPK, tabFK, colFK) having a percentage
value above the threshold value.

Algorithm 4 Data Analysis algorithm
result← ∅
for (tabPK.colPK, tabFK.colFK)
∈ set(tablePK.columnPK, tableFK.columnFK) do

countPKReg ← select count(∗) from tabPK
countFKReg ← select count(∗) from tabFK
matching ← select colFK from TabFK

intersect all
select colPK from TabPK

percentage← (matching ∗ 100)/countFKReg
if percentage ≥ threshold then

result← result+ (tabPK, colPK, tabFK,
colFK)

end if
end for
return result

71



5.3 Static SQL Analysis

Some technologies are able to embed SQL sentences in business logic using delim-
iter characters. For instance, the JDBC API1 on the Java platform can embed
strings (using double quotes) defining SQL sentences as parameters. Sometimes
one must define complete SQL sentences and sometimes it is possible to include a
sentence in several fragments of SQL code.

The Static SQL Analysis process enables to analyse the source code of the
programs in order to identify, parse and exploit the SQL code fragments they
contain. It is a linear process composed of 5 steps, where the output of one step
constitutes the input of the next step. This process has as first identify the Java
files implementing the OSCAR client applications. The main task of the SQL
analysis is to parse the client program source code searching for literal strings
containing SQL SELECT sentences. Once these sentences have been retrieved,
they are parsed to extract the FROM and WHERE clauses. The former is used
to relate alias to tables which are required to identify columns involved in a join
condition in the latter. For instance, a sentence like ”SELECT * FROM table1 t1,
table2 t2 WHERE t1.name = t2.name” has one join and to identify each prefixed
column it is necessary to resolve what table is referenced by each alias. A join
condition in a WHERE clause must comply with the following syntax: ’columnA
= columnB’, where columns could be prefixed by table alias or table names. As
future work, we have to consider others way to define a join, like using the in
operator and nested queries. We assume in our analysis process that literal strings
composing an SQL sentence are adjacent and properly ordered. We need to make
this assumption as we use static analysis and the program code is not interpreted
by our analyser. In the following, we explain briefly how the program analysis
process is carried out by executing five distinct steps.

• 1st step: A parser is used to extract string literals, i.e. sequences of charac-
ters between two delimiters, in each Java file of the OSCAR system. Delim-
iters are special language-dependent characters, like the double-quote or the
single-quote.

1Java Database Connectivity

72



• 2d step: Then, we analyse the strings obtained so far and all those which
are not related to a SQL SELECT statement are discarded. We assume
that a string is only related to a SELECT statement if it does contain some
keywords of the SQL SELECT statement syntax or some table and column
names occurring in the legacy database schema.

• 3rd step: Once we have only strings related to SQL SELECT sentences, we
are able to re-create a complete SELECT sentence by concatenating two or
more strings. To do this, information about the string in needed like: the
name of the Java file where it was found, the line number in the file and the
position of the first character in the line.

• 4th step: A second parser is used for extracting the FROM and WHERE
clauses from the resulting SELECT sentences. A pre-parsing step deals with
discarding literal strings included after the 3rd step but which generates noise
due to the presence of parameters that are only determined at runtime, right
before the SQL query is executed by the program.

• 5th step: The final step analyses the content of the WHERE clauses, search-
ing for a join condition and resolving the identity of each column involved
in it, by using the table definitions in the FROM clause.

Now, we will use an example to illustrate the SQL analysis implementation.
One of the OSCAR Java files is ’OscarCommLocationsDao.java’, that contains
the following code fragment:

Listing 5.1: Code fragment of OscarCommLocationsDao.java
1 @NativeSql ({ ” messagetbl ” , ” oscarcommlocat ions ” })
2 public List <Object [] > findFormLocationByMesssageId ( String messId ) {
3 String s q l = ” s e l e c t o c l . l ocat ionDesc , mess . th e sub j e c t ” +
4 ” from messagetbl mess , oscarcommlocat ions o c l ” +
5 ” where mess . sentByLocation = o c l . l o c a t i o n I d and mess . messageid = ’

” + messId + ” ’ ” ;
6 Query query = entityManager . createNat iveQuery ( s q l ) ;
7 return query . g e t R e s u l t L i s t ( ) ;
8 }

73



After applying the first step, the searching of strings found six literals. The pair
of numbers indicates the line number and the position of the first character.

Listing 5.2: Output of first step
1 (61 ,14) ” messagetbl ”
2 (61 ,28) ” oscarcommlocat ions ”
3 (63 ,15) ” s e l e c t o c l . l ocat ionDesc , mess . th e sub j e c t ”
4 (64 ,04) ” from messagetb l mess , oscarcommlocat ions o c l ”
5 (65 ,04) ” where mess . sentByLocation = o c l . l o c a t i o n I d and mess .

messageid = ’ ”
6 (65 ,83) ” ’ ”

The next step excludes the sixth string because it does not contain any SQL
keyword nor any table name, nor any column name. The output of this step is:

Listing 5.3: Output of second step
1 (61 ,14) ” messagetb l ”
2 (61 ,28) ” oscarcommlocat ions ”
3 (63 ,15) ” s e l e c t o c l . l ocat ionDesc , mess . th e sub j e c t ”
4 (64 ,04) ” from messagetbl mess , oscarcommlocat ions o c l ”
5 (65 ,04) ” where mess . sentByLocation = o c l . l o c a t i o n I d and mess .

messageid = ’ ”

Our third step creates one SELECT sentence. The two first strings are not
included in the sentence, so the output shows three strings:

Listing 5.4: Output of third step
1 (61 ,14) ” messagetb l ”
2 (61 ,28) ” oscarcommlocat ions ”
3 (63 ,15) ” s e l e c t o c l . l ocat ionDesc , mess . th e sub j e c t from messagetb l

mess , oscarcommlocat ions o c l where mess . sentByLocation = o c l .
l o c a t i o n I d and mess . messageid = ’ ”

The next step discards the two first strings due to their unresolved parameters.
Then, it analyses and extracts the FROM and WHERE clauses.

Listing 5.5: Output of fourth step
1 SELECT
2 FROM : ” from messagetbl mess , oscarcommlocat ions o c l ”
3 WHERE: ”where mess . sentByLocation = o c l . l o c a t i o n I d

74



4 and mess . messageid = ’ ”

Finally, one join is found and gives rise to a potential foreign key candidate.

Listing 5.6: Output of fifth step
1 /OscarCommLocationsDao . java :
2 (PK) ” oscarcommlocat ions . l o c a t i o n I d ”
3 (FK) ” messagetbl . sentByLocation ”

5.4 Hibernate Analysis

A large part of the OSCAR applications uses the Hibernate Object-Relational
Mapping (ORM) to access the database. Hibernate allows developers to map Java
classes to database tables. Those mappings are usually declared in a mapping
file (an XML document) that instructs Hibernate how to map the Java classes
to the database tables. Since those files map the relational database schema to
the object-oriented structures (Java) of the application program, it can contain
valuable information about the database schema and might be an important in-
formation source for the detection of RICs. Therefore we consider the Hibernate
XML mapping files as another possible way to infer implicit foreign keys.

The Hibernate parser searches in each mapping file for a ’class’ tag, where an
entity name is mapped to a table name by means of ’name’ and ’table’ attributes,
respectively. If both names are equals, ’table’ attribute could be omitted. In a
similar way, the attributes in an entity are declared by a ’property’ tag and ’name’
and ’column’ attributes. Declarations of RICs can be defined using the following
tags: ’many-to-one’, ’one-to-many’ and ’many-to-many’. Different kinds of RICs
are permitted in a mapping file.

5.5 JPA Analysis

JPA2 is a Java specification for persistence programming which describes the man-
agement of relational data in applications. JPA is a generic standard, indepen-

2Java Persistence API

75



dently of any particular ORM middleware. Different concrete ORM middleware
products support JPA, including the aforementioned Hibernate middleware. How-
ever, using Hibernate “the JPA way” consists in using Java code annotations rather
than XML mapping files to specify how persistent objects and their relationships
are mapped to relational table structures. The most recent OSCAR components
use JPA annotations rather than Hibernate mapping files. Thus, we also consider
those JPA annotations as a relevant information source for inferring RICs.

A parser for JPA code annotations was implemented. For each JPA entity
file a ’Table’ annotation is searched, where an entity name is mapped to a table
name by means of the ’name’ attribute. If both names are equal, the ’Table’
annotation can be omitted. Declarations of RICs are defined using one of the
following annotations: ’ManyToOne’, ’OneToMany’ and ’ManyToMany’.

5.6 Results

The five techniques described above were implemented for recovering implicit for-
eign keys. The three first of them were designed and developed by the PhD candi-
date. In this Section, we will firstly present the results obtained by combining the
different techniques and secondly describe our chosen strategy for accepting and
discarding the foreign keys.

5.6.1 Raw data

After having applied those 5 techniques on the OSCAR system code, we extracted
1.899 foreign key candidates. Figure 5.1 illustrates the distribution through the
5 techniques. 1.818 FK candidates have been detected by the schema analysis.
291 FK candidates could have been verified by the data analysis. 28 FK candi-
dates have been proposed by the Hibernate analysis. 40 FK candidates have been
extracted by the JPA analysis, while 50 FK candidates have been inferred from
the static SQL analysis.

76



Figure 5.1: Initial report

5.6.2 Acceptance criteria

However another iteration is needed for further exploiting those first results. In-
deed, we defined a list of criteria (Table 5.1) allowing us to consider a candidate
as accepted. Every candidate respecting at least one of those criteria is accepted.
1st criterion. Each FK candidate proposed by the schema analysis and having
a matching percentage above or equal 90% is retained.
2nd criterion. Each FK candidate proposed by the Hibernate analysis is re-
tained.
3rd criterion. Each FK candidate proposed by the JPA analysis is retained.
4th criterion. Each FK candidate proposed by the SQL static analysis is retained
only if this FK refers to a primary/unique key.

After having applied those four criteria, we moved from 1.899 potential to 215
accepted candidates. Figure 5.2 synthesises these results. The 1.684 remain-
ing ones are considered as unlikely. We should point up that: (1) among the 18
candidates in the intersection of SchemaAnalysis/DataAnalysis and JPAAnalysis,
14 candidates could not be verified by the data analysis because the tables were

77



Schema Data SQL Hibernate JPA
1 4 ≥ 90 %
2 4

3 4

4 PK

Table 5.1: List of acceptance criteria for the candidate FK.

empty; (2) among the 6 candidates in the intersection of SchemaAnalysis/Data-
Analysis and StaticSQLAnalysis, 4 candidates could not be verified by the data
analysis for the same reason.

Figure 5.2: Accepted FKs after having applied our acceptance criteria.

5.6.3 Rejected and Unlikely candidates

Up to now, we have defined 2 disjoint categories of candidates, the accepted ones
and the unlikely ones. However, in order to bring more precision to our analysis,
we defined a third category, the rejected candidates. This is why we identified 4
rejection criteria.

78



1. Matching percentage All the unlikely candidates having a matching value
lower than 90% (Data analysis) are rejected.

2. Bi-directionality All the unlikely candidates such as there exists an ac-
cepted candidate expressing an opposite direction constraint, are rejected.
Figure 5.3 illustrates an example of bi-directionality. The candidate FK
provider[provider_no] → provider_site[provider_no] is rejected ac-
cording to the bi-directionality criterion.

Figure 5.3: Example of bi-directionality.

3. Unicity All the unlikely candidates such as there exists an accepted can-
didate defined on the same column(s), are rejected. Figure 5.4 shows an
example of unicity. The candidate FK provider_site[provider_no] →
providerbillcenter[provider_no] is rejected according to the unicity cri-
terion.

Figure 5.4: Example of unicity.

4. Transitivity All the accepted candidates which might be derived from other
accepted candidates by applying the transitivity property are rejected. An

79



example of transitivity is depicted by Figure 5.5. The candidate FK provider-
archive[provider_no] → provider[provider_no] is rejected according
to the transitivity criterion.

Figure 5.5: Example of transitivity.

Figure 5.6 represents the distribution of the accepted candidates through the
5 information sources after having considered our rejection criteria. 146 unlikely
candidates have been rejected because they do not respect the minimal matching
value. 1.219 unlikely candidates have been rejected by unicity, 23 unlikely can-
didates by bi-directionality while 37 previously-accepted candidates have been
rejected by transitivity. It is worth noting that: (1) among the 17 candidates
in the intersection of SchemaAnalysis/DataAnalysis and JPAAnalysis, 14 candi-
dates could not be verified by the data analysis because the tables were empty; (2)
among the 6 candidates in the intersection of SchemaAnalysis/DataAnalysis and
StaticSQLAnalysis, 4 candidates could not be verified by the data analysis for the
same reason.

5.6.4 Final results

We presented our automated approach allowing us to recover some implicit foreign
keys. Our process is divided into three steps. Firstly, we identified a set of FK
candidates. The second step permitted us to accept some candidates whereas the
third step rejected some candidates. Table 5.2 summarises the final results of

80



Figure 5.6: Accepted FKs after having applied our rejection criteria.

the third step. 178 candidates are accepted and 1.425 are definitely rejected.
However, 296 candidates have not been clearly classified because of the lack of
information and would deserve a further study despite their unlikelihood.

Accepted Unlikely Rejected
178 296 1.425

Table 5.2: Final results of the discovering FK.

5.7 Discussion and Limitations of the manual approach

The results we obtained manually when identifying FK candidates in the OSCAR
system allow us to make some interesting concluding observations, both for RIC
detection and foreign key implementation. First, we can observe that the different
sources of information have different levels of reliability. While we do not know
the actual list of implicit foreign keys that are valid in the OSCAR system, we can
already say that the schema analysis technique when used in isolation (without
the backup of data analysis) may potentially lead to overly noisy results.

81



However, there is no perfect source of information that would, alone, be sufficient
for identifying the full list of implicit foreign keys of a legacy system. For instance,
the Hibernate mapping file and the JPA annotations of OSCAR both are reliable
sources of information, and this does not come as a surprise. However, they only
allowed to recover a limited subset of the implicit foreign keys in the OSCAR
database schema, i.e., those involved in the most recent tables of the database.

The above observation directly relates to the evolution history of the system.
We saw, in particular, that the management of implicit RICs in a system may
be largely inconsistent, both in the same system version and across the successive
versions of the systems. Some old referential constraints have never been explicit
declared, some more recent ones have been specified through Hibernate mapping
declarations, while some others have been declared through JPA annotations.

Hence, the RIC detection proposal based on the triangulation of several RIC
identification techniques for confirming/rejecting RIC candidates through cross-
checking seems very promising in the context of a legacy system that has already
been subject to a long evolution history.

Furthermore, this combination of techniques is also valuable for the FK imple-
mentation phase of the reengineering process. Indeed, the results obtained allow
one to analyse, for each FK candidate, the impact of making the FK explicit in the
database schema. In case the FK candidate is violated by the data: the impact is
at least twofold: (1) the inconsistent data will need to be corrected or discarded
and (2) source code modifications will be required in order to ensure the adequate
management of the FK constraint everywhere the programs insert, update and
delete rows in the related tables.

Although it has shown some merits, the multi-source FK identification process
suffers from several limitations. First, the threshold of 90% for the data consistency
heuristics could be further calibrated with respect to the number of rows in the
referencing table. In addition, since we did not have access to a ground truth, it
was difficult for us to precisely quantify the reliability and the complementarity of
the different identification techniques we combine. This will be a prerequisite to
further improve our triangulation process and devise a more accurate FK candidate
ranking method. Finally, because some OSCAR tables involved in a RIC candidate
being empty, our results are partially incomplete as well.

82



(Suggested by Antonio)

(Suggested by Veronica)

”All that is gold does not glitter,
Not all those who wander are lost.”

from The Fellowship of the Ring,
J.R.R. Tolkien

”Some cause happiness wherever
they go; others whenever they go.”

Oscar Wilde

6
Data Model-Driven Reengineering

Process

In this chapter we present an MDE approach for data reengineering. We also
analyse to what extent the use of MDE techniques facilitates the implementation
of a schema conversion. In particular, we have defined an MDE-based data reengi-
neering approach with which to improve the quality of a legacy schema, which is
a common data modernisation scenario.

This chapter is organised as follows. The first section is devoted to briefly
describing the improvement of data quality implemented and explaining how a
data reengineering process is traditionally tackled. The following section will show
a running example and we shall then provide a detailed description of how the
three stages of a reengineering process have been implemented in our approach:
reverse engineering, restructuring and forward engineering. We shall go on to
describe the results of applying our reengineering process to the case study and
provide an assessment of the use of MDE techniques in our approach. Finally, we

83



shall present our conclusions.

6.1 Introduction

Legacy databases may have defects as the result of a bad design, limitations of the
database platform (e.g. the MyISAM storage engine in MySQL does not support
foreign keys), or changes made once the database is in use (e.g. changes made to
increase efficiency) [2]. For instance, some of the defects frequently encountered
in a database migration are an inappropriate normalisation level or undefined
integrity constraints (e.g. foreign keys not declared) [109].

We have therefore addressed the improvement of data quality by fixing defects
in the relational data schema and applying data normalisation if necessary. A
defect taxonomy can be found in [79], although we illustrate the approach for two
cases, namely:

• (i) Undeclared foreign keys. If a value matching is detected between one
or more columns in a table and the columns of which the primary key in
another table is composed, and the corresponding foreign key does not exist
in the source schema, this foreign key will be a candidate to be added to the
target schema;

• (ii) Disabled constraints. Foreign keys and check constraints will be candi-
dates to be enabled if they have been disabled for reasons such as adaptation
to new requirements or changes made to improve the efficiency.

With regard to normalisation, the legacy schema must be analysed to detect
whether the normalisation level is appropriate, and a normalisation algorithm
must be performed if the level has to be changed. Figure 6.1 shows the two
activities involved in the problem addressed. The task of discovering the two kinds
of defects chosen currently involves addressing the well-know problem of recovering
implicit information from data: ”eliciting data structures or data properties, such
as integrity constraints, that are an integral part of the database, though they have
not been explicitly declared in the DDL specifications” [109]. Once the schema has
been fixed and correctly normalised, the new schema can be generated (i.e. Data

84



Figure 6.1: Problem description

Description Language (DDL) scripts) along with some of the software artefacts
required to access data on the target platform (e.g. Java JPA code).

With regard to the three kinds of transformations involved in data reengineer-
ing, it is worth noting that in our case (i) the schema conversion has the aim of
improving the data quality, (ii) only the data which verifies the constraints in-
cluded into the new schema are migrated to the new database, and (iii) program
conversion is not within the scope of this work.

Data reengineering involves different development tasks such as creating parsers,
defining formats with which to represent information, or writing code that imple-
ments the required data, schema or program transformations. Table 6.1 shows
the tasks to be performed (and artefacts) in the case of the schema modernisation
scenario explained above, which has been implemented by means of a software
reengineering process. As shown in Table 6.1, extracting knowledge from database
requires the creation of the following artefacts: (i) parsers with which analyse
schemas and source code, ii) formats in order to represent the information involved
into the process, and iii) programs written in purpose-general programming lan-
guages (GPL) that can be used to extract knowledge from this information. Data
restructuring is performed by manually correcting the defects identified and a tool
is then used to detect functional dependencies as a previous step to applying a
normalisation algorithm. Tool interoperability is one of the challenges to be tack-

85



led in data reengineering [4], which we shall address here by integrating a tool
that identifies functional dependencies. Finally, the new schema will be generated
by creating the corresponding DDL code and JPA (Java Persistence API) code.
Regenerating the database and transforming the existing programs such that they
conform to the new schema will require the implementation of the correspond-
ing transformations. ETL (Extract, Transform and Load) processors are used in
data conversion, and the programs are normally rewritten so as to access the new
schema although other techniques such as the creation of data wrappers could also
be applied [17].

Various tools that can be used to facilitate the implementation of data reengi-
neering processes exist. DB-Main [17] is a data engineering environment with
built-in DDL parsers for some popular database management systems and anal-
ysis program tools, among other features that are useful for data reengineering.
program transformations languages such as Stratego [112] can be used to imple-
ment the database application transformations in the form of rewritten rules and
strategies.

Stage Tasks (Artefacts) MDE solution

S1. Reverse
engineering

T1.1. Creating Parsers (DDL and
Java code fragment)
T1.2. Defining formats (DDL, DML,
Java Fragments, SELECT sentences,
Defects)
T1.3. Implementing data and pro-
gram analysis

- Parsers are automatically created
(e.g. using Gra2MoL)
- DDL, DML, Fragment, Select and
Defects metamodels are created
- M2M transformations are created
for implementing algorithms

S2. Data
Restructuring

T2.1. Correcting defects in the
database schema
T2.2. Detecting functional depen-
dencies (using specific tool)
T2.3. Implementing Normalisation
algorithms

- M2M transformation to correct de-
fects
- Tool integrating for detecting func-
tional dependencies
- M2M transformations to create the
normalised schema

S3. Forward
Engineering

T3.1. Creating the new schema
T3.2. Generating the new database
(not addressed)
T3.3. Creating the new database ac-
cess logic (not addressed)

- Model transformation to automati-
cally generate JPA code

Table 6.1: Data reengineering tasks and MDE techniques used in the scenario in
which defects are removed.

The reengineering tasks (and artefacts involved) in our data modernisation sce-
nario (”Tasks(Artefacts)” column) and the techniques and tools used in the MDE
solution (”MDE Solution” column) are summarised in Table 6.1. After explaining

86



the MDE approach in the following sections, we shall then go on to analyse this
table in depth.

The three stages of the applied model-driven data reengineering process are
described in detail in next Sections 6.3, 6.4 and 6.5. We then show the results
of its application to a real case study (i.e. the OSCAR system) in Section 6.6.
Finally, Section 6.7 discusses the assessment carried out through the case study.

6.2 Running Example

In order to guide the next explanations of the three stages, we present first a
typical retail application which has to be migrated and whose defects must be
removed from the schema. We have considered a simple application which is more
illustrative than using the real case study, which will be used before to present the
assessment of the approach. Input models for the reengineering process will be
obtained from two elements of that application: the logical data schema and the
source code of the application. The persistence technology used is JDBC (Java
Database Connectivity). The migration process results in a new fixed schema and
JPA code with which to access to data by means of an object-relational framework.

Our example schema is a small excerpt which is formed of the following tables:
Customer, Order, OrderLine and Product:

Listing 6.1: Tables of the running example
1 TABLE Customer ( idCustomer , name , c i ty , country )
2 PK <idCustomer>
3 TABLE Order ( idOrder , date , idCustomer )
4 PK<idOrder>
5 TABLE OrderLine ( idLine , idOrder , amount , idProduct )
6 PK <idLine , idOrder>
7 FK <idOrder −> Order ( idOrder )>
8 TABLE Product ( idProduct , name , pr i c e , a v a i l a b i l i t y )
9 PK <idProduct>

10 CK <a v a i l a b i l i t y in ’ in−s tock ’ , ’ unava i l ab l e ’ ,
11 ’ pre−order ’> d i s ab l ed

Each table in the example schema includes a primary key (PK); moreover, the
OrderLine table includes a foreign key (FK) for the Order table, and the Product

87



table has a check constraint (CK). This schema has a pair of defects or anomalies
that could be fixed: (i) the Order table contains an attribute that has the same
name as the primary key of the Customer table (idCustomer), although there is
no foreign key from Order to Customer; (ii) the check constraint in the Product
table is disabled.

A snippet of the example code is shown following. This snippet of Java code
merely defines a method which executes a simple query retrieving information
concerning orders (its identifier and the customer name). The code that assigns
a database connection (i.e. a Connection object) to the variable con has been
omitted for the sake of simplicity. The query results are returned in a ResultSet
object.

Listing 6.2: Code of the running example
1 public Resu l tSet queryOrdersWithCustomer ( ) {
2 try {
3 Statement statement = con . createStatement ( ) ;
4 System . out . p r i n t l n ( ” Querying orde r s and t h e i r customers . ” ) ;
5 String query = ”SELECT o . idOrder , c . name ” ;
6 query = query + ”FROM Order o , Customer c ” ;
7 query = query + ”WHERE o . idCustomer = c . idCustomer ” ;
8 Resu l tSet r e s u l t s = stm . executeQuery ( query ) ;
9 return r e s u l t s ;

10 } catch ( SQLException e ) {
11 System . e r r . p r i n t l n ( ”SQLException : ”
12 +e . getMessage ( ) ) ;
13 }
14 }

6.3 Reverse Engineering Stage: Obtaining the Defect
Model

This section shows how MDE techniques could be applied in data reverse engi-
neering for data and code analysis. Before providing a detailed explanation of
the model transformation chains that implement the analysis strategies devised
(see Figure 6.2), we shall present the Defect metamodel along with the DDL and

88



Figure 6.2: Defect identification stage

DML metamodels to which the injected models conform. For each kind of analy-
sis, the strategy applied is first explained. The model transformation chain that
implements the strategy is then described in detail; the running example is used
to illustrate how the analysis obtains the Defect model in each case. Finally, the
strategies are compared, considering several criteria.

6.3.1 Defect Metamodel

As indicated in Section 1.2, we have considered the detection of two defects related
to the integrity database: (i) a foreign key is missing, and (ii) either a foreign key
or a check constraint is declared but disabled.

Figure 6.3 shows the Defect metamodel that represents the two defects consid-
ered. The Defect abstract class is the root of the classes that represent defects,
i.e. the ForeignKeyDefect and CheckDefect classes. The former represents the fact
that a foreign key has been disabled or does not exist; this class has two references
to the Table class, signifying that an instance of ForeignKeyDefect will have a ref-
erence to the table in which a foreign key must be created (ownerTable reference)
and the table referenced by this foreign key (referencedTable reference). The latter
represents a check constraint which is disabled; this class has a reference to the
ColumnCK class which represents a column in which a check constraint is defined
by means of the Expression class. It is worth noting that this metamodel could

89



Figure 6.3: Defect metamodel simplified

Figure 6.4: Database injection pre-stage

easily be extended to represent other defects, e.g. non-minimal identifiers in a
table [79].

6.3.2 Data Model Injection. DDL and DML metamodels

Three models have been injected by using the Gra2MoL language: (i) DDL models
represent the logical data schemas and they are obtained from DDL scripts; (ii)
DML models represent the data stored in the database and they are obtained from
DML scripts; (iii) SQL Code Fragment models, which are obtained from the source
code. The first two injections comprise the database injection pre-stage (see Figure
6.4). In order to use Gra2MoL in this stage, we have defined the DDL and DML
metamodels and grammars. The third injection will be explained in Section 6.3.4.

Figure 6.5 shows the DDL metamodel. It represents a DDL script as a set of
CreateStatement which can be of two kinds: CreateDatabase or CreateTable. A
CreateTable statement is formed of a set of ColumnDeclaration and has references
to elements that represent the declarations of the primary key, the foreign key and
the check constraints. We have considered only basic logical information and not
physical information (e.g., tablespaces) or other elements from database schemas,
such as views, indexes, sequences or procedures.

With regard to the DML metamodel, we have solely represented the insert

90



Figure 6.5: DDL Metamodel

Figure 6.6: DML Metamodel

statements, as shown in Figure 6.6. This statement is used to add tuples to an
existing database, so that an instance of the InsertInto class has the tuples stored
in the legacy database for the referenced table.

6.3.3 Data Analysis

6.3.3.1 Strategy

Once the DML and DDL models have been injected, they are explored in order
to discover occurrences of the two kinds of defects considered in this work, and a
Defect model is generated. A large number of strategies with which to elicit foreign
keys have been proposed over the last two decades. We have applied the algorithm
presented in detail in [108] which was devised in the context of this work. Since
the focus here is the application of MDE in data reengineering, we shall briefly

91



introduce this algorithm.
The algorithm is organised in two stages. Firstly, all the primary keys are

iterated and the set of candidate foreign keys is obtained for each primary key.
Given a primary key column, the algorithm searches for other columns in the
database schema that could reference it. This search is based on the names and
data types of the columns and returns a set of pairs of columns, in which the first
column represents a primary key and the second represents a candidate foreign
key (composite foreign keys are not considered).

In the second stage, the algorithm iterates over the set of pairs of columns
previously obtained and calculates the percentage of value matching between the
foreign key column and the primary key column for each pair. This percentage is
calculated from the total number of tuples in the table containing the potential
foreign key (i.e. the percentage indicates how many values in the candidate foreign
key column out of the total match a value in the primary key column of the
referenced table). When this percentage is higher than a certain threshold, the
potential foreign key is added to a set which stores the undeclared foreign keys
discovered by the algorithm.

6.3.3.2 Implementation

We have experimented with two implementations of the algorithm presented, one
of which works with data models (named DAS-M, Data Analysis Strategy based
on Model) and the other of which directly accesses the database (named DAS-D,
Data Analysis Strategy with Data stored).

The DAS-M strategy does not have to be connected to the database since the
analysis is performed on data models injected from DDL and DML scripts. In
particular, the algorithm manages a model that integrates the DDL and DML
models injected, which is named Data model. A model-to-model transformation
generates a Data model from the DML and DDL models. This model contains all
the information from both models and it includes a new reference from the values
(records) declared in the DML model to columns identified in the DDL model.
This integration enables the algorithm to detect the possible defects since data
values and their references to columns are easy to use.

92



Using a Data model instead of directly accessing the database provides inde-
pendence from the database system and DDL language. However, a significant
weakness must be considered owing to the need to mange a large model (i.e. the
Data model). The size of this model could be considerably reduced by selecting
a representative set of the data stored. This requires an analysis of the data con-
tained in tables before discarding records, since the data values related by means
of the foreign keys declared in the schema have to be kept together in the repre-
sentative set.

Instead of injecting the Data model, the DAS-D strategy discovers defects by
directly exploring the data stored in the legacy database. The algorithm has been
implemented in PL-SQL and accesses the database dictionary for a particular
database system (e.g. Oracle database). Therefore, unlike the DAS-M strategy, the
DAS-D strategy provides an efficient and complete access to data, but the solution
depends on the database system. Writing the algorithm in a procedural language,
such as PL-SQL, is easier using a model-to-model transformation language. Most
of these languages are designed to declaratively express mappings between models
and they support algorithmic strategies, such as those performed in data reverse
engineering, by providing imperative constructs that differ for each language.

In order to obtain the Defect model, the PL-SQL program stores the defects
discovered in a database and an injection process is then applied. We have taken
advantage of the Schemol tool [48], which generates model injectors for relational
databases as indicated in Section 2.3. The Schemol program should specify a map-
ping between the database schema that stores defects and the Defect metamodel.
We have therefore defined a database schema in which to store the defects, as
shown in Figure 6.7.

6.3.3.3 Example

We shall now show how the defect detection algorithm works for the running
example introduced in Section 6.2. We shall suppose the database contains the
following tuples for the Customer, Order, OrderLine and Product tables.

93



Figure 6.7: Database tables for representing defects

Listing 6.3: Tuples stored in the running example
1 Customer ( idCustomer , name , c i ty , country ) :
2 [ LR2 , Liam , London , UK] ,
3 [DC3, Dean , Paris , FRA] ,
4 [ SA2 , Samuel , London , UK] ,
5 [ PS5 , Peter , London , UK] ,
6 [ JM1, James , Paris , FRA]
7 Order ( idOrder , date , idCustomer ) :
8 [ V1 , 20/12/2011 , LR2 ] ,
9 [ V2 , 01/05/2009 , JM1] ,

10 [ V4 , 19/05/2009 , DC3] ,
11 [ V5 , 20/06/2011 , unknown ] ,
12 [ V3 , 05/09/2010 , LR2 ] ,
13 [ V6 , 18/12/2010 , DC3]
14 Product ( idProduct , name , pr i c e , a v a i l a b i l i t y )
15 [ P1 , LCD monitor , 120 , unava i l ab l e ] ,
16 [ P2 , Pr inter , 150 , in s tock ] ,
17 [ P3 , LED monitor , 175 , in s tock ] ,
18 [ P4 , Hard Disk , 90 , pre−order ]
19 OrderLine ( idLine , idOrder , amount , idProduct )
20 [ LV1 , V1 , 2 , P2 ] , [ LV2 , V1 , 1 , P4 ] ,
21 [ LV1 , V2 , 3 , P4 ] , [ LV2 , V2 , 1 , P1 ] ,
22 [ LV3 , V2 , 1 , P3 ]

94



The matching operation applied to detect the lack of foreign keys would find that
the values of the pair of columns <Customer(idCustomer), Order(idCustomer)>
match at a percentage of 83%. If this percentage is greater than the threshold
value then a new foreign key between both columns would be added to the Defect
model (i.e. a ForeignKeyDefect instance). This added instance would contain ref-
erences to the Order and Customer tables. The reference (referencedTable) to
Order would establish in what table the foreign key would be created (the column
of the pair is not primary key), while the reference (ownerTable) to Customer
would establish what table is referenced by the foreign key (the column of the pair
is primary key). Furthermore, the matching algorithm would also discover a possi-
ble foreign key in the OrderLine table (idProduct column) for the Product table
(whose idProduct column is primary key), but in this case the percentage calcu-
lated would be 100%. Our algorithm would additionally find a check constraint
disabled in the Product table and calculate that constraint activation would have
100% coincidence in the Product table. The activation of this check constraint
is therefore considered to be a possible defect and an instance of CheckDefect is
added to the defect model. The resulting Defect model is shown in Figure 6.8 as
a UML object diagram.

6.3.4 Code Analysis

6.3.4.1 Strategy

As indicated above, code analysis is also applied in data reverse engineering. Ac-
cessing a database from applications can be performed through the use of various
techniques such as embedding SQL sentences in the source code of the business
logic using delimiter characters (e.g. JDBC in Java platform) or by means of an-
notated files (e.g. JPA in Java platform), among others. For instance, the JDBC
API on the Java platform can embed strings (using double quotes), defining SQL
sentences as parameters. Ot is possible to either define complete SQL sentences
or build such sentences using several fragments of SQL code. We have defined an
SQL code analysis strategy (named CAS, Code Analysis Strategy) which applies
text searching pattern-based techniques [113] to the source code of the database
applications.This strategy was outlined in [108] and here we shall describe how it

95



Figure 6.8: Defect model of the running example

has been implemented as part of the chain of model transformations. The pro-
cess of source code analysis consists of five steps in which the output of one step
constitutes the input of the next one.

• Step 1: Client program source code is parsed in order to search for string
literals, i.e. sequences of characters between two delimiters (e.g. the double-
quote or the single-quote). String literals are keep orderly according to how
they are found in the program code.

• Step 2: The strings retrieved are analysed in order to select SQL SELECT
statements, and those strings that are not selected are discarded. We assume
that a string is only related to a SELECT statement if it does contain some
keywords of the SQL SELECT statement syntax or some table and column
names that occurr in the legacy database schema.

• Step 3: Once we have obtained only strings related to SQL SELECT sen-
tences, we are able to re-create in a file a complete SELECT sentence by
concatenating two or more strings. To do this, information about the string
is needed, such as the name of the code file in which it was found, the line

96



number in the file and the position of the first character in the line.

• Step 4: A second parsing is applied to the resulting SQL SELECT sentences
in order to extract the FROM and WHERE clauses. A pre-parsing step
deals with discarding literal strings included after the third step but which
generate noise owing to the presence of parameters that are only determined
at runtime, just before the SQL query is executed by the program.

• Step 5: The final step analyses the content of the WHERE clauses, searching
for a join condition and resolving the identity of each column involved in it,
by using the table definitions in the FROM clause. A FROM clause is used
to relate an alias to tables which are required to identify columns involved
in a join condition in the WHERE clause. For instance, a sentence like
”SELECT * FROM table1 t1, table2 t2 WHERE t1.name = t2.name” has
one join, and in order to identify each prefixed column it is necessary to
resolve what table is referenced by each alias. A join condition in a WHERE
clause must comply with the following syntax: ’columnA = columnB’, where
columns could be prefixed by table alias or table names.

Our approach for the static analysis of Java code would also be applicable to
technologies which use SQL code to directly (complete or fragmented) access data
(e.g., Oracle Forms code). In this case, the first stage, whose aim is to extract
SQL sentences, would not be necessary. It is worth noting that the strategy im-
plemented is only valid for technologies which have SQL sentences embedded in
them. Others that use different techniques to access database (e.g., annotations
on JPA) could not be used in our approach. Moreover, as future work, we should
consider others ways in which to define a join, such as using the in operator and
nested queries. In our analysis process we assume that the literal strings compris-
ing an SQL sentence are adjacent and properly ordered. It is necessary to make
this assumption as we use static analysis and the program code is not interpreted
by our analyser.

97



Figure 6.9: Defect identification based on analysing of the application source
code

6.3.4.2 Implementation

A detailed explanation of the model transformation chain defined to implement
the five-step strategy of SQL code analysis, which is outlined in Figure 6.9, is
provided as follows. The code shown in Section 6.2, which access the data schema
in the running example, will be used to illustrate each of the stages. Henceforth we
shall use the code fragment term to refer to String literals in JDBC code and SQL
fragment to refer to those code fragments that contain part of an SQL sentence.
Whatever the technology applied, SQL code fragments must be identified and
parsed in order to perform an analysis whose aim is to discover possible defects in
the database schema.

Fragment Metamodel

The source code is represented as models that conforms to the Fragment meta-
model, which is shown in Figure 6.10. This metamodel is very simple and repre-
sents a source code file (File class) as a set of code fragments (Fragment class);
a File has a name and a Fragment contains information on a code fragment: the
number of the line in the file, the position in which the fragment starts in the
line, and the fragment text. There are two references from File to Fragment: (a)
fragments is used to refer to each fragment found in source code (please recall
that in this strategy a fragment is a char sequence enclosed by some delimiter, in
our case, a double quotes char); (b) SELECTfragments is used to refer to each

98



Figure 6.10: Fragment Metamodel

fragment that contains the keyword ”SELECT” to identify the beginning of an
SQL query (this reference will be populated in the following steps of the process).

Each stage of the transformation chain defined is described below. The corre-
sponding step of our strategy is indicated for each stage.

Step 1. Fragment model injection

A Fragment model is injected from the source code of the legacy application.
This injection task has been implemented with the Gra2MoL language introduced
in Section 2.3 and the grammar required only defines the main clauses in a SE-
LECT sentence: select, from, where, group by, having and order. It is necessary to
identify each table (with its alias) involved in a SELECT query by using the from
clause, while the how columns are related to each other by means the where clause.
The rest of the information specified in the SELECT clause is not necessary for
the analysis. Note that this task, in addition to injecting the input model into the
transformation chain, performs the parsing indicated in step 1 of our strategy.

The Fragment model generated for the running example code would contain five
Fragment elements representing the following code fragments.

Listing 6.4: Fragment elements after Step 1.
(1 ) − ” Querying orde r s and t h e i r customers . ”
(2 ) − ”SELECT o . idOrder , c . name ”
(3 ) − ”FROM Order o , Customer c ”
(4 ) − ”WHERE o . idCustomer = c . idCustomer ”
(5 ) − ”SQLException : ”

99



Figure 6.11: SELECT file generation.

Steps 2 and 3. SELECT file generation

The goal of this second stage is to create a file that will store all the SELECT
SQL sentences in the source code analysed. This task is accomplished by means
of a three-step model transformation chain as shown in Figure 6.11. This trans-
formation chain performs a simple parsing on the original code in order to find the
SELECT sentences and has two input models: the fragment model injected in the
previous stage and the DDL model.

Firstly, all the fragments that are not SQL fragments are removed from the
Fragment model. To achieve this, each fragment is analysed to check whether the
text contains any keywords of the SQL grammar. In our example, the first and
fifth of the fragments shown above would be removed (”Querying orders and their
customers.”, ”SQLException: ”). Another M2M transformation is then applied
to the Fragment model obtained in order to remove those fragments that do not
represent SELECT SQL sentences. In the example, all the fragments correspond
to SELECT SQL sentences. Finally, the new Fragment model is the input to an
M2T transformation that generates a textual file containing the SQL code of the
SELECT sentences in the legacy code. We shall refer to this file as the SELECT
file. In the case of the example code, the SELECT file would contain the following
lines:

100



Figure 6.12: SELECT metamodel

Listing 6.5: Fragment elements after Step 3.
(2 ) − ”SELECT o . idOrder , c . name ”
(3 ) − ”FROM Order o , Customer c ”
(4 ) − ”WHERE o . idCustomer = c . idCustomer ”

Step 4. SELECT model injection

In this third stage, Gra2MoL is again used, now to inject a SELECT model
from the SELECT file generated in the previous stage. This model conforms to
the SELECT metamodel shown in Figure 6.12, which represents the clauses of a
SELECT sentence. The SELECT model could in fact have been generated in the
previous stage rather than generating a text file. How-ever, the M2M transforma-
tion required would involve a parsing of fragments, which is not necessary when
Gra2MoL is used. Please recall that Gra2MoL automatically generates a parser for
the input grammar of the transformation. Writing the M2T trans-formation that
generates the SELECT file and the T2M trans-formation that injects the SELECT
model is simpler than writing the M2M transformation that converts a Fragment
model into a SELECT model, and less effort is therefore required.

A significant advantage of generating the SELECT file is that the SQL sentence
discovering process is clearly separated from the other stages in which the SELECT
sentences obtained are analysed. This makes it possible to perform or not perform
the three first steps, de-pending on the technology to be analysed. For example, in

101



Figure 6.13: SELECT model

the case of the JDBC technology, the generation of the SELECT file is necessary
as the SELECT sentences are embedded in Java code. However, this step would
not be necessary in the case of Oracle Forms.

The SELECT model generated for our example code is shown in Figure 6.13.

Step 5. Defect model generation

In the last stage, the SELECT model is analysed to find possible defects in
the legacy data schema, which are output in the form of a Defect model. This
task is accomplished by means of an M2M transformation which has two input
models: the SELECT and DDL models. Each SELECT element is analysed to
check the two defects considered in our work, namely undefined foreign keys and
disabled check constraints. SELECT statements are analysed. The DDL model
is consulted whenever a possible defect is found. The analysis is performed as
follows. WHERE clauses are examined to check whether they contain either joins
or a constraint on the values of a column. When a join is found, the DDL model
is accessed to check whether one of the two columns is primary key. Three cases
are therefore possible:

• None of the columns is primary key and no ForeignKeyDefect is therefore
created.

• One of the columns is primary key. The DDL model is therefore accessed
in order to discover whether the schema includes the foreign key. A For-

102



eignKeyDefect is created if such a foreign key does not exist previously in
the DDL model.

• Both of the columns are primary key. The DDL model is then accessed in
order to discover whether the schema includes one foreign key for one of the
columns. If there is one, then no ForeignKeyDefect is created, because the
only possible foreign key is already in the DDL model. Otherwise two For-
eignKeyDefect (one for each column) are created. However, since a schema
can not include a foreign key from a column a1 to a column b1 if a foreign key
from b1 to a1 exists, it would be mandatory to discard one of the two For-
eignKeyDefect created (a wizard is provided to accept or reject each foreign
key proposed).

When this strategy is applied to our code example it detects a possible foreign
key between the columns idCustomer(Order) and idCustomer(Customer) since
idCustomer is a primary key in Customer and idCustomer is not declared as a
foreign key in Order. The Defect model obtained is composed solely of the first
ForeignKeyDefect shown in Figure 6.8.

It should be noted that the Defect model includes possible defects in the legacy
data schema, but that these may originate in from design choices made by the
database administrator. We have therefore developed a wizard (see Figure 6.14)
in order to allow the administrator or reengineering team leader to confirm what
defects should really be fixed. The wizard shows the defects in the Defect model
and allows the user to select those to be removed, thus generating the final Defect
model. In Figure 6.14a the wizard shows all the defects found during the analysis.
By selecting each defect, the wizard shows information related to the constraint
proposed. Figure 6.14b shows information about a foreign key.

The wizard allows us to keep or ignore the constraints proposed to deal with
each defect. When the constraint is kept, a boolean attribute for the Defect class
in the Defect model is set to true.

6.3.5 Comparison of Strategies

To conclude this section, the three strategies presented are compared according to
five criteria: technology (database system and language) independence, database

103



Figure 6.14: Defects in the wizard

104



size independence, reliability and efficiency.

• Database system independence. The data analysis strategy that uses a Data
model (DAS-M) and the code analysis strategy (CAS) are completely inde-
pendent of the database system. Code fragments analysed in the CAS strat-
egy are database independent, whereas independence is achieved by injecting
DML and DDL models in the case of the DAS-M strategy. However, the data
analysis strategy that directly queries the database (DAS-D) is database de-
pendent because the code that explores the data schema performs queries
using the data dictionary.

• Data access technology independence. Unlike the CAS strategy, DAS strate-
gies are independent of languages or technologies used to implement client
applications because they deal only with tuples stored in a database and not
with any source code.

• Database size independence. The CAS strategy is independent of database
size since it requires only the source code of client applications. However the
DAS strategies explore the legacy database signifying that the database size
will negatively affect the execution time. Moreover, the size of a DML model
may become so large that its manipulation requires model repositories, such
as CDO [114] or Morsa [115].

• Reliability of the detection. The CAS strategy is more reliable than DAS
strategies since defects are detected by analysing the SQL code which reflects
how the schema is really used to access data (i.e. the usage of the database
schema by the programers), rather than applying a set of heuristics to the
data values, e.g. the matching between columns applied to detect foreign
keys.

• Efficiency. DAS strategies are based on exploring data values and schema
constructs whereas the CAS strategy analyses source code in the search for
data access sentences. In both cases, efficiency will depend on certain factors
such as size of programs or databases. However, the CAS strategy searches

105



directly for data access sentences which contain information regarding pos-
sible defects, whereas the DAS strategies first search in the schema struc-
tures, after which a data stored matching is necessary. This matching uses
heavy queries crossing records between columns which are less efficient than
directly extracting knowledge from the data access sentences found in the
CAS strategy.

The comparison for the three strategies is summarised in Table 6.2. In the first
three rows of the table, the mark indicates what strategies satisfy the corresponding
criterion of independence, while the more reliable and efficient strategy is marked
in the last two rows.

DAS-D DAS-M CAS
Database System Independence 4 4

Data access technology Independence 4 4

Database Size Independence 4 4

Reliability 4

Efficiency 4

Table 6.2: Comparison of strategies implemented for the FK discovering.

6.4 Restructuring Stage: Applying Defect Correction
and Normalisation

In this section we shall describe how the data restructuring stage has been carried
out. As shown in Figure 6.15, the defects contained in the Defect model are first
removed in order to improve the quality of the legacy schema. The new Data
model is then analysed to check whether or not the normalisation level of the
schema is appropriate.

6.4.1 Defect correction

The defect correction task is implemented by means of an M2M transformation
whose inputs are the Defect model and the Data model and which generates a

106



Figure 6.15: Defect correction stage

new fixed Data model. This transformation iterates over the defects in the Defect
model and for each Defect instance modifies the Data model according to the
kind of defect. For instance, in the case of a ForeignKeyDefect instance, a new
foreign key must be added to the Data model. This involves the creation of a
CreateFK instance whose column and ColumnRef references must be linked to
the ColumnDeclaration specified in the Defect model. Note that the Defect model
used in this stage is the model generated by interacting the user with the defect
selection wizard.

Two Data models will therefore be managed from this stage on:

• The first is a Data model (fixed Data model) which contains the new con-
straints added after the Defect correction step and the data values which
verify these new constraints.

• The second is a Data model (residual Data model) which maintains the
original schema and contains only those data values that do not verify the
new constraints added to the previous Data model. This residual Data model
allows database administrator to decide what to do with the excluded data
values which do not conform to the new constraints added to the fixed Data
model.

6.4.2 Normalisation

Database normalisation is a two-fold process consisting of functional dependency
identification and normalisation. First, functional dependencies [40] are identified
in order to detect database redundancies and inconsistencies. Next, a strategy
based on decomposition or synthesis algorithms is applied in order to eliminate

107



Figure 6.16: Normalisation task

functional dependencies. Figure 6.16 shows the model transformation chain de-
vised to implement this process, which is explained below.

Identification of functional dependency .

As we commented in Chapter 2, the functional dependency theory is used in
relational database design, and particularly, in database normalisation [40]. A
functional dependency is a semantic constraint between two sets of columns in
a table. Given a table T, a set of columns Y in T is said to be functionally
dependent (denoted X ->Y) on a set of attributes X, also in T, if and only if for
each X value (i.e. a given set of values for each attribute in X) that appears in T
the corresponding Y value is unique. The Y set is known as the dependant part
and the X set as the determinant part. In the running example, a dependency:
city ->country can be found in the Customer table.

In order to represent functional dependencies as models, we have defined the
FD metamodel which is shown in Figure 6.17. The main concepts of a relational
schema are represented in this metamodel, such as Table, Column and Restrictions
(primary key and foreign key). It also includes

some elements with which to represent specific information on functional de-
pendencies. FunctionalDependency represents a functional dependency and has
references to the dependant and determinant parts (i.e. a set of Columns); the Re-
strictionColumn represents those columns involved in a constraint that are related
to another RestrictionColumn (by means of the pkRestrictionCol reflexive refer-
ence), i.e. columns in a foreign key which have to refer to the column in a primary

108



Figure 6.17: Functional Dependencies metamodel

key to which they are related (reference column). A Restriction is composed of a
collection of RestrictionColumn (by means of the restrictionCols reference).

An excerpt of the FD model for the running example is shown in Figure 6.18.
This model includes a FunctionalDependency that represents the functional de-
pendency city->country in the Customer table, and three RestrictionColumns
that represent: the following restrictions: the idCustomer column is PK in the
Customer table, the idOrder column is PK in the Order table, and the idCustomer
column is a FK in the Order table. The model also shows a pkRestrictionCol ref-
erence between two RestrictionColumns that relates the column in the FK to the
column in the PK.

The identification of functional dependencies has been performed by using the
Formal Concept Analysis (FCA) method. The fundamental notions of FCA are
formal concept, concept lattice and formal context.

A formal context is defined by using three elements: a set of objects O (cluster
of objects), a set of attributes or properties P (cluster of attributes), and a binary
relation R between O and P . A pair < o, p > (o ∈ O and p ∈ P ) belongs to R if
the object o satisfies the property p. A formal concept can be represented using
a Boolean matrix whose values indicate whether or not an object o ∈ O satisfies
a property p ∈ P . This matrix has a row for each object in the set O and a

109



Figure 6.18: Functional Dependencies model for the running example

110



column for each property in the set P . Given a formal concept, a pair < X, Y >

(X ⊆ O and Y ⊆ P ) is said to be a formal context if and only if each of the
objects in the set X satisfies all the properties in the set Y , and Y includes only
those properties satisfied by all the objects in X. Finally, the set containing the
all formal contexts defined for a given formal concept is called a concept lattice.
Data dependencies can be extracted from a concept lattice by obtaining a set of
property implications. A property implication is an expression A ⇒ B where A

and B are a set of attributes (A ⊆ P and B ⊆ P ), signifying that if an object has
all the properties in A then it also has all the properties in B.

When FCA is applied in order to detect functional dependencies in relational
databases [32], a formal context is defined for each table. In these contexts, the
cluster of properties or attributes is formed of the columns in the table and the
cluster of objects is formed of all the possible combinations of two tuples which are
formed of the set of tuples stored in the table. In the boolean matrix defined for
each table, each value indicates whether or not the two tuples associated with the
row have the same value as the attribute associated with the column. Functional
dependencies are therefore expressed as attribute implications.

Given the following tuples for the Customer table used in the the running ex-
ample, the formal context is given by the matrix shown in Table 6.3, in which the
idCustomer column is represented by (a), name column by (b), city column by (c)
and country column by (d). With regard to the implications, since there are four
pairs of tuples in which the city attribute value determines the country attribute
value, this denotes a functional dependency for the implication city ⇒ country.

Listing 6.6: Tuples of the Customer table.
1 Customer ( idCustomer , name , c i ty , country ) :
2 [ LR2 , Liam , London , UK] ,
3 [DC3, Dean , Paris , FRA] ,
4 [ SA2 , Samuel , London , UK] ,
5 [ PS5 , Peter , London , UK] ,
6 [ JM1, James , Paris , FRA]

There are several software tools which allow a FCA-based data analysis to be
applied. We have used a well-known FCA tool named Concept Explorer (Con-
Exp) [31], but other FCA tools could also be used. ConExp requires as input a

111



a b c d
[LR2, Liam, London, UK] [DC3, Dean, Paris, FRA]

[LR2, Liam, London, UK] [SA2, Samuel, London, UK] 8 8

[LR2, Liam, London, UK] [PS5, Peter, London, UK] 8 8

[LR2, Liam, London, UK] [JM1, James, Paris, FRA]

[DC3, Dean, Paris, FRA] [SA2, Samuel, London, UK]

[DC3, Dean, Paris, FRA] [PS5, Peter, London, UK]

[DC3, Dean, Paris, FRA] [JM1, James, Paris, FRA] 8 8

[SA2, Samuel, London, UK] [PS5, Peter, London, UK] 8 8

[SA2, Samuel, London, UK] [JM1, James, Paris, FRA]

[PS5, Peter, London, UK] [JM1, James, Paris, FRA]

Table 6.3: Formal Context for the running example.

formal context which is provided as an XML file. A formal concept analysis is
performed to obtain a set of implications. Each line of the output has the follow-
ing structure in BNF notation: number <number of objects> <implication>,
where number denotes a unique numeric identifier, number of objects denotes
the number of objects which verifies the implication that is expressed in the
form premise ==> conclusion, where premise and conclusion each denote a set
of attributes, which express the determinant and dependant parts of the concept
analysed, respectively. For the Customer table example, ConExp would generate
a file which would only contain the following line: 1 <4> city ==> country.

After applying ConExp tool (see Figure 6.16), its output file (i.e. functional
dependencies) is injected into a functional dependency model that conforms to the
FD metamodel shown in Figure 6.17. This injection has been also implemented by
Gra2MoL and we have defined a simple grammar for the format used in ConExp
in order to express implications.

Automating the usage of ConExp

When using ConExp to detect functional dependencies, the user has to input
the context matrix for each table and the tool then generates a file containing
the implications. The task of creating the XML documents (.cex files) that de-
fine the context matrices is tedious, and we have therefore developed a Schema

112



Generic Access (SchemaGA) driver which provides a uniform accessing mechanism
for database schemas and thus allows the definition of a Schema Generic Access
Algorithm (SchemaGA-A) with which to explore any database schema, as shown
in Figure 6.16. Given a particular database system (e.g. Oracle or MySQL), the
concept matrices for any database schema could therefore be automatically gen-
erated by using the SchemaGA-A algorithm. SchemaGA has been implemented
using JDBC/Java and it has taken advantage of the mechanisms provided by this
technology to access the database metadata. The driver has an API which allows
a database schema to be explored in order to obtain information about its ele-
ments, such as tables, attributes (columns) and rows (tuples). The following code
fragment illustrates how the driver could be used:

Listing 6.7: Example of the use of the driver.
1 Schema schema = SchemaConnection . getSchema (
2 SchemaConnection .JDBC, driverName ,
3 urlConnect ion , user , password ) ;
4 Table t ab l e=schema . getTable ( tableName ) ;
5 HashMap<String , Attr ibute> a t t r i b u t e s=tab l e . g e tAt t r i bu t e s ( ) ;
6 Set<String> attr ibutesNames=a t t r i b u t e s . keySet ( ) ;

The schema variable refers a Schema object that contains information about the
database schema. A Schema object is obtained by means of the getSchema() class
method in the SchemaConnection class. This method has five parameters, which
are the type of the database connection and four strings that express: the class
name of the connection driver, the url of the database connection, and the user and
password needed to access the database. The Schema class has the getTable()
and getTables() methods which allow one or all the tables of the database to be
obtained, respectively. The former is used in the code example to obtain the table
whose name is provided by the tableName variable. In a similar way, rows and
attributes can be obtained from a Table object by means of the getAttributes()
and getRows() methods, respectively.

Moreover, in the case of a large database schema, creating all the context ma-
trices could be a time-consuming operation since it is necessary to generate all the
combinations of pair of tuples (2-combination) for each table. We have improved
the efficiency, by implementing the inverted indexes strategy [32] which can reduce

113



the pairs of tuples that must be combined. It only iterates once for each row of a
table, and pairs of tuples without a matching attribute are omitted.

6.4.3 Schema normalisation

Once the functional dependencies have been obtained in the FD model, a normali-
sation process is applied if needed, which has also been implemented as a two-step
model transformation chain. The fixed Data model is first transformed into a
model in the first normal form (1NF), which in turn, is transformed into a model
in the third normal form (3NF) or in the Boyce-Codd normal form (BCNF) by
means of a second M2M transformation. The first M2M transformation imple-
ments a simple algorithm which extracts multi-valued columns from a new table,
and the second implements both the decomposition and synthesis methods [40].

As demonstrated in database design theory, the decomposition method can gen-
erate a final normalised schema whose structure is more similar to the original
schema than when using the synthesis method. We have chosen to attempt firstly
a decomposition, in which the synthesis is performed only if the decomposition can-
not remove all the functional dependencies from the tables. Given the FD model
obtained for the running example in the previous stage of functional dependency
identification, which would include the city ->country functional dependency
for the Customer table, the normalisation process would obtain a new Fixed and
Normalised Data model in which the original Customer table would be divided into
two tables in BCNF: Customer (idCustomer, name, city) and City (city,
country).

It is worth noting that the database administrator might prefer to keep the
schema in a denormalised status for reasons of performance.

6.5 Forward Engineering Stage: Generating Restruc-
tured Database

The forward engineering stage generates the final source code of the target arte-
facts.

In our approach, this stage aims to either regenerate the database in a new

114



Figure 6.19: Generation of new data

database management system or to provide code for data accessing by means of
specific middleware (e.g. JPA). As shown in Figure 6.19, two code generations
could therefore be considered: (1) a new database schema or (2) the middleware
that generates the new schema and provides access to it.
Schema generation. With regard to implementation, this is carried out using an

M2T transformation that generates the DDL and DML scripts from the fixed and
normalised Data model which is the output of the normalisation process. After
executing these scripts a new database schema and data values are generated. This
option is preferred when companies migrating data layers need to directly access
their database relational schemas because they use technologies such as Oracle
Forms or database stored procedures. This allows companies to have a precise
control over the structures (database tables) in the new schema that have been
generated.
Middleware generation. This second option allows the new database schema to

be generated automatically by means of a middleware such as JPA (Java Persis-
tence API). This allows companies to attain a higher abstraction level when manip-
ulating databases, and the client applications can take advantage of functionalities
provided by these middlewares (e.g. JPA provides object-relational mapping and
automatically regenerates and synchronises the database schema). However, this
comes at a price: the companies must then depend on third-party implementa-
tions. In order to implement this alternative, we have designed a two-step model
transformation chain: an M2M transformation first converts the Fixed and Nor-
malised Data model into a JPA model, and an M2T transformation then generates
the middleware source code from this JPA model. Although the transformation
could have been implemented in a single step by eliminating the intermediate
JPA model, we have defined this step in order to make the attainment of the fi-
nal M2T transformation simpler. Creating intermediate models is a well-known

115



Figure 6.20: JPA metamodel simplified

Figure 6.21: JPA model simplified of running example for Customer and City
tables

technique as regards tackling the complexity of transformation by decomposing a
large and complex transformation into several smaller and simpler transformations
[116][117]. Figure 6.20 shows an excerpt of the JPA metamodel we have created
to represent the JPA basic elements, such as entities, properties and annotations;
a hierarchy is included to represent the different kinds of relations between tables
(one-to-one,one-to-many, many-to-one, many-to-many).

In order to obtain the JPA model it is necessary to identify the different kinds
of relations between tables by interpreting the information from the relational
schema. The M2T transformation generates: (1) an entity class for each table,
with attributes and the accessor methods get() and set() to provide access to each
column, and (2) the annotations for the class columns which are the identifier and
the relations identified.

With regard to the running example, Figure 6.21 shows the JPA model obtained
during the last stage of code generation. From this model, the following artefacts
would be created: (1) the JPA configuration file (i.e. persistence.xml) and (2) the
following annotated classes: Customer.java, City.java, Order.java, OrderLine.java

116



and Product.java. An excerpt of the code generated for the annotated class City
is shown below in order to illustrate what code is generated by the M2T transfor-
mation:

Listing 6.8: JPA entity geenrated class City.java
1 @Entity
2 @Table ( schema=”TEST” )
3 public class City implements S e r i a l i z a b l e {
4 @Id
5 @Column(name=”CITY” )
6 private String c i t y ; . . .
7 @OneToMany(mappedBy=” c i t y ” )
8 private List <Customer> customers ; . . .
9 public List <Customer> getCustomers ( ) {

10 return this . customers ;
11 } . . .
12 }

6.6 Applying our approach to the real-world case study

This section shows our MDE approach at work in a real data modernisation sce-
nario: the Open Source Clinical Application Resource (OSCAR) [111]. The goal
of this section is to demonstrate the feasibility of applying our approach. We shall
show the partial and final results achieved in each stage of the data reengineering
process implemented. The version of the OSCAR database schema used in this
work as a case study is exactly composed of 445 tables. The results obtained after
applying our approach to OSCAR are shown as follows.
Reverse engineering stage. The DAS-M strategy could not be performed owing

to the size of the database (more than 8 gigabytes). Our current implementation of
the DAS-M strategy is very limited because the modelling technologies (e.g. model
transformation engines) are not able to deal with such large models, and several
memory problems were found when using our approach. Some considerations
related to these problems will be commented on Section 6.7. It was, however,
possible to apply the DAS-D strategy successfully and a total of 127 foreign keys
which have a matching percentage above or equal to 90% were found, from a total

117



of 291 pairs of columns which have a matching percentage of over 0%. In addition,
0 check constraints were found. The execution time was 3m 44s, using a server
with the following specifications: Intel(R) Core(TM) i7-3770 3.40GHz processor
and 16 GB DDR3 (1333 MHz) of main memory. With regard to the CAS strategy,
the results of the analysis performed for each step are shown below. The execution
time was 9h. 42m.:

• Step 1. Fragment model injection: 3.533 Java files were analysed and 82.009
literal strings were found

• Step 2. SELECT file generation: 19.344 strings containing SQL Select code
were found

• Step 3. SELECT file generation: 4.445 strings were considered to be SQL
Select sentences, corresponding to only 221 Java files

• Step 4. SELECT model injection: 502 complete sentences containing 197
joins were re-created

• Step 5. Defect model generation: 21 foreign key candidates were found

Restructuring stage. We considered that all the undeclared foreign keys were de-
fects and we then fixed the database schema. We encountered problems as regards
identifying functional dependencies owing to the size of the OSCAR database, in
which a few tables store more than 500.000 records and the average per table is
almost 10.000 records. However, the ConExp tool is not able to manage such a
large data input (even when modifying ConExp execution parameters such as heap
memory size). We used different table sizes to analyse how the ConExp input file
grows with an increasing the number of tuples in a table. We then decided to eval-
uate the normalisation process for tables containing 400 records, which was the
largest amount of records producing ConExp input files of under 1 Gbyte in size
(the greatest input file size that proves to be feasible for ConExp, after modifying
the execution parameters).

We measured the execution time that ConExp requires for each individual input
file. As expected, time varies depending on the file size: the bigger the size, the

118



longer the time, but not in a lineal progression. For instance, files of about 1 Gbyte
required approximately 21 minutes, whereas files of about 0,5 Gbytes required 14
minutes and those of approximately 0.25 Gbytes required no more than 10 minutes.
The total time spent executing ConExp on OSCAR database was 56 hours, 43
minutes and 20 seconds.

For each of these tables we then took a random sample of 400 records and
applied our normalisation process. We found 19 functional dependencies in the
445 tables of the OSCAR schema. 15 tables were affected by these functional
dependencies. The decomposition algorithm produced a total of 19 new tables
in the OSCAR schema (one table for each functional dependency found) and the
synthesis algorithm was not needed. Each new table had its own foreign key for
the table which previously contained the functional dependency.
The forward engineering stage was eventually applied and the SQL and JPA

code was generated. The SQL code included the CREATE TABLE statements for
the 464 tables in the new schema (445 original tables and 19 new tables) and their
corresponding foreign keys. The JPA code was composed of the same quantity
of annotated JPA entities (464 entities) and the corresponding configuration file
(persistence.xml).

6.7 Assessment of the approach

Throughout this chapter we have illustrated how MDE techniques can be applied
during data reengineering in a data modernisation scenario. This section analyses
to what extent the use of MDE has facilitated this undertaking. To this end, Table
6.4 refines Table 6.1 by comparing for each task the traditional approach (”Tradi-
tional” column) with the MDE approach (”MDE” column). We shall first describe
how each of the three stages of which a data reengineering process is composed can
take advantage of MDE techniques (Sections 6.7.1, 6.7.2 and 6.7.3). We shall then
calculate the gain of productivity by comparing effort required (as regards time)
for the traditional and the MDE approaches (Section 6.7.4). Finally, we conclude
with the benefits and drawbacks of applying MDE to a data reengineering scenario
(Section 6.7.5).

119



6.7.1 Reverse engineering

Creating parsers

The effort involved in creating the parsers required can be significantly alle-
viated by using MDE tools in order to automatically generate model injectors,
which combine parsing and model generation, such as textual DSL definition tools
(e.g. Xtext [118]) or domain-specific languages tailored to the injection of models
(e.g. Gra2MoL [47]). We have used Gra2MoL to generate parsers for DDL and
DML scripts, and for Java code fragments. Injectors for Java and KDM could be
reused from the Modisco framework [46]. As noted in Section 3.2, the DB-Main
environment provides parsers for DDL scripts but they are built into this tool and
cannot be reused.

Defining formats

Metamodelling provides a very expressive formalism with which to represent
both the information to be parsed (i.e. schema and code) and the knowledge
extracted. The most widely used metamodelling languages (e.g. Ecore) used to
create metamodels provide greater expressiveness than the XML language com-
monly used to define metadata. Using metamodels in data reengineering is not
a new idea. For instance, a metamodel that could be used to represent any data
model (e.g. relational or object) was proposed twenty years ago [119], as was the
idea of mapping between schemas (i.e. instances of the proposed metamodel).
However, metamodelling was, at that time, an immature discipline and developers
lacked metamodelling tools, signifying that a deductive object manager was used
in [119] to define metamodels and mappings.

In our case, we have defined data and code metamodels using Ecore. Since
the metamodels created represent standard languages or widely used information,
they could have been available in a metamodel repository, such as Zoos 1 which is
maintained by the AtlanMod group. In this case, we could have avoided the effort
needed to define them. In fact, in 2003 the OMG launched the ADM initiative

1http://www.emn.fr/z-info/atlanmod/index.php/Zoos

120



[16] in order to provide a set of standard metamodels with which to represent the
information commonly used in reengineering tasks, and a metamodel that could
be used to represent data in software applications was included as part of the
KDM metamodel. Injectors for these metamodels were also made available to the
public. For instance, a KDM injector is provided by Modisco, as indicated above.
However, we have not used KDM since the part of this metamodel that represents
database concepts (i.e. the Data package) has some weaknesses in the context of
our approach. In particular, defects, functional dependencies and DML sentences
are not modelled. KDM is a very large metamodel which is extremely complicated
to manage as explained in [11]. In our experience, creating one’s own metamodels
is more convenient than extending KDM with new elements.

Implementing data and program analysis

Representing software artefacts as models makes it possible to take advan-
tage of model transformations to automate development tasks. Most widely used
M2M transformation languages (e.g., ATL[120], QVT[39] and ETL [121] integrate
declarative and imperative constructs. The objective of the former is to express
mappings between the elements and queries of metamodels in models, and the
latter are needed to provide support when implementing algorithmic strategies.
These languages are more efficient than GPL languages as regards expressing how
a target model is generated from a source model (e.g. a mapping between a UML
class model and a Relational Schema model) or how a model may be refined (e.g.,
correcting defects in a Schema model). However, they have significant limitations
when implementing more or less complex algorithms that require non trivial data
structures. Since this situation is common in reverse engineering algorithms, M2M
transformation languages providing a rich set of imperative constructs are needed.
The traditional strategy of using a GPL to write code that analyses representations
obtained by parsers and represent knowledge extracted in a format such as that of
XML documents would be less effective than managing models as the input and
output of the reverse engineering process since they allow us to work at a higher
level of abstraction.

In our case, we have implemented the DAS-M and CAS analysis strategies by

121



means of M2M transformations by taking advantage of the hybrid nature of the
RubyTL language. Ruby code can be written at any point of a transformation be-
cause RubyTL has been implemented by embedding specially tailored constructs
in order to write M2M transformations in the Ruby language. Furthermore, the
DAS-D strategy has evidenced that a procedural language (i.e. PL-SQL) is more
appropriate than M2M transformations as regards analysing data. This implemen-
tation has shown that employing a model injector (i.e. a Schemol transformation)
may avoid the need of use a metamodelling API to generate a model as the output
of the analysis.

It is worth noting that using a GPL to write model transformations for algorith-
mic strategies would be less productive than using embedded languages such as
RubyTL since developers should manage a metamodelling API (e.g., EMF API).
However, this alternative should be considered by taking in account the limitations
of most transformation languages when writing complex imperative code and the
immaturity of the tooling that supports these languages [5] [6].

Other Comments

Note that our solution is platform independent (e.g. tools or languages). This is
because the DDL, DML and Fragment metamodels separate the reverse engineer-
ing transformation chain from a concrete platform. DDL and Fragment injectors
must be created for each database technology (e.g. Oracle Forms) or program-
ming language (e.g. PL-SQL). This implementation can be addressed using T2M
languages such as Gra2Mol, rather than manually creating a parser from scratch.
Both parser and model generator are produced automatically from the ANTLR
grammar of the language (DDL, DML and Java fragments in our case) along with
a mapping that establishes the correspondence between grammar elements and
metamodel elements. In our case, the grammars are simple and the mappings are
easy to write owing to the small semantic gap between the grammar and the target
metamodel.

122



6.7.2 Data restructuring

Correcting defects in the database schema

This task has been automated by means of an M2M transformation and a wizard
in order to select the defects to be corrected. Here, using M2M transformations
is clearly more appropriate than creating a GPL program since a mapping must
be implemented: the original schema is transformed into the fixed schema. It
is also worth noting that our solution is according to human aware [107]. The
database administrator’s knowledge is considered in order to decide which of de-
fects detected must be removed from the schema. This knowledge is represented
by modifying the defect model when the administrator interacts using a wizard
created for this purpose. In general, human knowledge could be expressed by
either creating models or transforming previously generated models.

Detecting functional dependencies

Our approach shows the ability of models to ease the integration of third-party
tools into a MDE solution (i.e. a transformation chain), specifically the Con-
Exp tool which is used to detect functional dependencies. These integrations are
achieved by means of model transformations: the output of the tool to be inte-
grated is converted into one of the models of the chain or the input is obtained
from one of the models of the chain. These two transformations are needed to
integrate the tool into the intermediate point of a chain, and only one is needed if
the tool is integrated at the beginning or at the end. In the case of ConExp, we
have created a Gra2MoL transformation to inject FD models from a proprietary
format. With regard to the input, it could be automatically generated from the
DML model, but these models are very large owing to the fact that it is necessary
to combine all the tuples in each table, and we have therefore created a tool (i.e.
the SchemaGA driver) to automate the task of obtaining the input XML file.

Implementing Normalisation algorithms

123



Schema normalisation is performed by means of an M2M transformation chain
that implements the decomposition and synthesis algorithms. These involve a
significant amount of imperative code, including recursion (e.g. the backtracking
technique is used in the decomposition algorithm). We again found the hybrid
nature of the RubyTL language very useful. In a traditional approach, this task is
normally implemented in the form of GPL code that manages XML documents.

6.7.3 Forward engineering

Creating the new schema

As indicated in Table 6.1, we have only addressed the regeneration of the
database schema. This task has involved the creation of the JPA code that im-
plements the data access and the SQL scripts that define the database schema.
While these artefacts should be created manually in a traditional migration pro-
cess, they have been generated automatically by using model transformations. For
instance, JPA code has been generated automatically as explained in Section 6.5.
An M2T transformation might have been sufficient to generate this code from the
Data model resulting from the normalisation process. However, an intermediate
M2M transformation was introduced to make it simpler to write the M2T transfor-
mation. We chose the MOFScript language to write M2T transformations. This
has recently been discontinued despite being one of the most widely used M2T
languages, which evidences the lack of stability in MDE tools.

The reverse engineering and data restructuring stages are independent of tar-
gets platforms. This signifies that the forward engineering stage is in charge of
generating the artefacts for a particular platform, in our case JPA.

Note that the model transformation chains defined in our approach could be
reused in other MDE solutions. For instance, the forward engineering chain could
be integrated into a generative architecture with which to automate the creation of
applications that integrate a data access layer, and the reverse engineering chain
could be used into a defect analysis or metrics tool. If a model transformation
chain is reused it is only necessary for its input or output model to be integrated
at some point of the new solution i.e. the two metamodels involved are the same

124



Tasks Traditional MDE
T1.1 Parsers ad-hoc for DDL, DML and SQL-

embedded.
Auto-generated parsers by using T2M lan-
guages.

T1.2 Using of XML Schema and XML. Using of metamodels and models.
T1.3 Using of GPLs and XML technologies.

e.g. JAXP (Java Api Xml Processing) and
XQuery.

Using of hybrid languages to combine imper-
ative and declarative bussines logic.
e.g. RubyTL language.

T2.1 Implementing a wizard to assist users.
T2.2 Integration with ConExp tool.

Generating .cex files (e.g. by XSLT) and im-
plementing and parser ad-hoc for the ConExp
output (not XML).

Integration with ConExp tool.
Generating .cex files from models by M2T
languages (e.g. MOFScript) and using
T2M languages for the ConExp output (e.g.
Gra2Mol).

T2.3 Using of GPLs and XML technologies.
e.g. JAXP (Java Api Xml Processing) and
XQuery.

Using of hybrids languages to combine imper-
ative and declarative bussines logic.
e.g. RubyTL model-to-model language.

T3.1 Using of XSLT and XPath. Using of M2T languages.

Table 6.4: Manual tasks vs MDE tasks

or a mapping can be established.

6.7.4 Gain in productivity

Productivity is the main factor that encourages the use of MDE [5]. Here we shall
therefore present an estimation of the productivity gained by the MDE techniques.
This will be done by first measuring the effort needed to implement the proposed
approach, and then contrasting the result obtained with the effort involved in
using the traditional approach (i.e., manual approach). In this comparison, we
have identified those development tasks that are more efficiently implemented by
means of MDE techniques.

Our approach has been implemented by three developers with no initial expe-
rience of MDE techniques, signifying that a 60-hour training period was initially
needed. Each developer made an implementation effort of about 210 hours (6
weeks), and we have therefore calculated that a total of 690 hours would be needed
to implement our solution. Tasks 1.1 and 1.2 required the definition of both the
DDL and DML grammars and a grammar for a reduced subset of the SELECT
SQL statement. These were not created from scratch, but were adapted from
previous works taken from grammar repositories and zoos, such as the ”Software

125



Language Processing Suite” 2. This adaptation and the definition of the mapping
rules in Gra2Mol required a total of 120 hours. In task 1.3, the use of RubyTL
eased the implementation of the algorithms used to discover the Foreign Keys. We
combined model queries with the imperative functions (helper functions written
in Ruby) in a declarative manner, about 110 hours. In task 2.1, the wizard im-
plementation was performed in 100 hours. Task 2.2 was again implemented by
taking advantage of Gra2Mol, even when parsing a non-XML input (which is the
result of using ConExp). About 90 hours were required, along with 60 more hours
to implement the decomposition and synthesis algorithms. We noticed that the
hybrid nature of RubyTL again facilitated this task since both the model queries
and the implementation of backtracking-based techniques such as recursion were
facilitated. Finally, we used MOFScript in task 3.1 in which about 150 hours were
required to implement the code generation templates.

Table 6.4 evidences that the principal reason why MDE provides a productivity
gain is to the use of DSLs (Gra2MoL, Schemol and RubyTL in our case) and the
fact that models provide a larger level of abstraction than formats such as XML,
JSON or proprietary formats and they are very appropriate when performing tasks
such as tool interoperability. The tasks in Table 6.4 in which MDE leads to more
productivity than a traditional approach are shown as follows, along with a brief
justification of why this gain is obtained.

• We used Gra2MoL, which automatically generates injectors from declarative
rules that establish a mapping between grammar elements and metamodel
elements, in tasks T1.1 and T2.2. A detailed explanation of the benefits of
this language versus the alternative of manually creating parsers is shown in
[47]. Some data engineering tools (e.g. DB-Main) have the built-in parsers
required in data migration but they are part of a proprietary solution and
they cannot be used separately.

In [122] it is calculated that the effort needed to learn Gra2MoL and Ruby
is similar (although, according to the effort estimated in [123], Gra2MoL is
1,64 times more difficult to learn than Java). However, the effort required

2http://slps.github.io/zoo

126



to implement parsers and model generators by means of Gra2Mol is consid-
erably less than that involved in writing them by means of a GPL such as
Ruby or Java owing to the fact that the size of a Gra2MoL program is quite
a lot smaller that the size of injectors written with a GPL. For example, in
order to create a DDL injector in Gra2MoL it was necessary to program 783
LOC (corresponding to 131 lines for the DDL metamodel, 150 lines for DDL
grammar and 502 lines for mapping rules). On the other hand, the parser
and model generator automatically generated by Gra2Mol are composed of
10,448 LOC in Java language, which means 92,50% more effort than when
using an MDE technology such as Gra2Mol.

• Writing the algorithms involved in reverse engineering and normalisation
(tasks T1.3 and T2.3) is more effective when using models and a model-
to-model transformation language (i.e. a DSL) than when using an XML
format and GPL code. This second option, which is commonly used, implies
programming at a lower level of abstraction and uses XML technologies such
as JAXP and XPath. As noted in [122], RubyTL is easier to learn than
Gra2MoL and moreover, there is no need to use APIs to manage models (in
the case of XML documents is needed to use JAXP).

• Models facilitate tool interoperability as discussed above for task T2.2. MDE
techniques allow us to bridge the interoperability gap at the syntactic and
semantic levels, as explained in [34].

We have estimated the following cost for the traditional and MDE implementa-
tion. The cost for the traditional solution has been estimated using the code lines
generated in each case.

• 240 hours for the three injectors required in tasks 1.1 and 1.2. When using
MDE, we performed these tasks in 120 hours.

• 140 hours for the algorithms that identify the defects, which is a little more
than when using MDE (110 hours).

• 160 hours for the integration of ConExp and 80 hours for the normalisation

127



algorithms. As stated above, when using MDE we required a total of 150
hours.

We therefore estimate that a traditional strategy for our approach would require
240 hours more than using an MDE solution, which supposes 34,78% more effort.

6.7.5 Benefits and drawbacks

According to the above discussion and our previous experience in, for example,
the works presented in [11] [47] [9], we have identified the following main benefits
of using MDE in data reengineering, some of which are also applicable to software
reengineering.

• Productivity. A productivity gain is achieved principally because using DSLs
reduces the effort required to perform two tasks: creating parsers and gen-
erating software artefacts, which should be manually implemented. In ad-
dition, model transformations are more appropriate than GPL code when
expressing the mappings involved in data reengineering. There are many
domain-specific languages that are specially tailored in order to write model
transformations (see Section 2.3).

• Expresiveness. Metamodelling is a more expressive formalism than XML
and JSON when representing the information involved in a data reengi-
neering process. Rather than using proprietary formats, models allow the
information to be uniformly represented, which favours software quality,
e.g. interoperability, extensibility or reuse. The existence of widely adopted
metamodelling languages (e.g. Ecore) strengthens the benefit of metamodels
with regard to proprietary formats.

• Easy tool integration. Models ease the integration of tools/solutions that are
available to support some of the tasks to be performed. The input/output
artefacts of software tools are injected/transformed into models in the MDE
solution.

• Database and software evolvability. As stated in [4], the integration of soft-
ware and database evolution processes is one of the current challenges to be

128



addressed by the reengineering community. They usually evolve indepen-
dently thus leading to inconsistencies resulting in high costs of software and
data maintenance. Using MDE build software could improve the capabili-
ties of the integration between the software and database subsystems, i.e. a
model transformation chain could generate the changes in the target artefact
from a model representing the changes in the source target.

• Consistency. Another challenge identified in [4] is a lack of synchronisation
among the database schema changes and code that accesses data by means
of an Object-Relational Mapper (ORM). In software evolution, development
teams sometimes work in an undisciplined manner (i.e., database evolves
without considering the ORM definitions and vice versa). Again, a transfor-
mation chain could allow the consistency between database and data access
code to be maintained.

• Reuse of solutions. Metamodels and model transformation chains can easy
be reused in another different solution to that for which they were created. In
order to reuse a chain, the inputs and outputs of this transformation chain
must be connected to another solution by injecting/transforming them in
accordance with the proper formats required by the other solution. This is
a special case of the integration benefit annotated above.

• Platform independence. Independence of source and target technologies can
be achieved the use of models. This would be a particular case of reuse: a
solution is adapted to specific platforms by means of M2M transformations.
An M2M transformation converts a source platform model into the solution’s
input model and (ii) source platform artefacts are generated in two steps:
an M2M transformation firstly converts the solution’s output model into a
target platform model, and an M2T then generates target software artefacts.

• Standarisation. A set of standard metamodels could be defined to represent
the information commonly used in data reengineering tasks (e.g. a DDL
Schema), in order for them to be reused in different applications. ADM is
an initiative with this purpose, as explained at the beginning of this section.
Moreover, injectors for these metamodels could be made publicly available.

129



We have also encountered some drawbacks which could make the adoption of
MDE techniques in reengineering difficult.

• Scalability. It is often necessary to manage large models (e.g. database
models) in a reengineering process. Although several model repositories are
emerging which are intended to efficiently manage large models [115] [114],
this technology is not as yet sufficiently mature.

• Tool maturity. While MDE has been the focus of a great deal of academic
interest over the last decade, its adoption by industry is far from having
been achieved [5]. Except for some DSL definition tools, most MDE tools
and environments lack the robustness and level of maturity required to allow
the developer’s productivity to be similar to that achieved with traditional
tools. This limitation is particularly evident in model transformation engines
which are usually discontinued and most of which appear as prototypes of
research tasks (e.g. MediniQVT 3 or RubyTL).

• Lack of standards. The KDM standard metamodel provided by ADM to
represent, the code and data involved in software systems at different levels
of abstraction is very large, and this makes it difficult to understand [47]. As
explained at the beginning of this section, the Data package requires more
expressivity to model all aspects addressed in our approach.

• Lack of metamodel and injector repositories. Although metamodels for lan-
guages which are frequently involved in reengineering processes (e.g. PL/SQL
and COBOL) are publicly available, there are no injectors for them and they
must be created in each project. Moreover, the existence of different versions
of the languages and platforms makes it difficult to have a repository that
contains the metamodels (and the corresponding injectors) for them.

• Transformation expresiveness. It is often necessary to implement more or
less complex algorithms, which requires the definition of non trivial data
structures (e.g. using graphs or recursion for the backtracking technique).

3http://projects.ikv.de/qvt/

130



Most M2M transformation languages are not appropriate for the implemen-
tation of these algorithms, which usually have to be written in a GPL code
(e.g. Java) that uses a model management API (e.g. EMF). It is not there-
fore possible to take advantage of the declarative constructs of most M2M
transformation languages, e.g. declarative model navigation languages.

Finally, it is worth noting that our work has not addressed data and program
conversions. With regard to data conversion, there are a number of commercial
ETL tools that support the automation of this task, which are used by companies
involved in data migrations. Program transformation languages have, meanwhile,
been specially designed to specify program conversion and may be useful in data
reengineering, as noted in [17]. However, model transformation languages are more
appropriate when a complex reverse engineering must be performed (e.g. the layout
inference described in [9]). Moreover the integration and scalability of program
transformation systems are still challenges to be addressed [124]. With regard to
the existing proprietary tools for software (e.g. DMS 4) and data reengineering
(e.g. DB-Main), the problem is the variability management and the difficulties
involved in adapting these tools to concrete problems (e.g. migrations).

6.8 Conclusions

We have presented an MDE-based reengineering approach with which to tackle the
well-know problem of recovering implicit information from relational data in order
to elicit defects in the database schema design. In particular, we have illustrated
our approach with two kinds of defects: undeclared or disabled foreign keys and
disabled check constraints. In order to create the new fixed schema, we apply
a normalisation if necessary. Finally, the new schema is created by generating
either DDL scripts or JPA code. The approach has been validated in a real data
modernisation scenario and we have rigorously assessed the approach by comparing
how the tasks performed in a data reengineering process can be automated by
means of MDE techniques and tools. We have concluded by summarising the
benefits and drawbacks that we have identified. When MDE is applied to data

4http://semdesigns.com/Products/DMS

131



reengineering, some specificities are evidenced regarding model-driven software
reengineering, but the majority of concerns are common to both areas.

Next, we will present an important lack we found as resulted of applying our
reengineering approach and which motivates the G3 goal of this thesis and the
works presented in next Chapter. Finally, we will outline the challenges to be
tackled by MDE in the data migration context.

After more than a decade since the emergence of MDE (e.g. MDA in 2000,
ADM in 2003), the industrial adoption of this new technology is still very lim-
ited. In [125], the results of a survey of MDE practitioners were reported and they
evidenced that MDE is principally being adopted to create small domain-specific
languages, which automate some development tasks, rather than being used to
build whole systems or reengineering legacy systems. However, poor tool support
is still one of the main limitations as regards achieving the adoption of MDE, as
noted in [5] [126]. The success of a new development paradigm requires robust,
usable and efficient tools and environments that are able to support software de-
velopment processes. As noted in [126], MDE tools need to be more resilient and
simple since ”MDE can work but it is a struggle”. As evidenced in our work, MDE
techniques can be very useful in data reengineering to represent harvested knowl-
edge in reverse engineering, automate the creation of parsers or generate target
system’s artefacts, among other benefits. But the lack of appropriate tools has led
to a reduced impact of MDE in the software and data reengineering areas, which
require sophisticated tools. It is necessary for developers to have environments
that provide MDE tooling (e.g. injectors for different source artefacts and appro-
priate model transformation languages). In addition, these tools should be easily
integrated with existing reengineering tools.

The main challenges in data-intensive evolution are discussed in [4]. MDE tech-
niques could be useful for tackling some of them. For instance, tools developed for
the automation of software and data reengineering tasks could be integrated by
means of models, as explained in this thesis as regards integrating ConExp into a
model transformation chain. Models could also be useful to support traceability
between the object-oriented schemas managed by object-relational tools (ORM)
and a database schema in order to avoid inconsistencies.

132



(Suggested by Ricardo and Laura)

”I slept and dreamt that life was
joy. I awoke and saw that life was
service. I acted and behold, service
was joy.”

Rabindranath Tagore

7
Migration Tool

This chapter is devoted to present the tool built for supporting the definition
and enactment of our data reengineering process. As motivated in Chapter 1, the
tool is intended to support model-driven reengineering process (e.g. migrations),
in general. We shall firstly introduce the scenario of the tool, identifying its inputs
and outputs. Next section will present the running example which is the data
reengineering process presented in Chapter 6. Then, three sections will deeply de-
scribe the main requirements of a migration tool: process definition, instantiation
and enactment. Following, we shall explain how to use the tool in a software mi-
gration and then, we will show the results of applying the tool to our case study.
This will provide an assessment along with a set of lessons learned that will be
summarised in the corresponding section. We will end the chapter presenting the
conclusions of the tool built.

133



Figure 7.1: Scenario of the tool.

7.1 Introduction

The tool presented in this chapter is aimed to perform MDE-based migrations.
So, we do not address software migrations in general, but those relying on MDE
solutions. The scenario of use of the tool can be therefore seen in Figure 7.1.

The starting point of the scenario is a source system (the entire system or a part
of it) that needs to be migrated, and a set of MDE resources (i.e. metamodels
and transformations) aimed at performing the migration from one technology to
another one. For example, we could think of a Oracle Forms application that has
to be migrated to Java, and we have developed a set of transformations to take
Forms source code files and generates Java code files.

In order to migrate the source system, some transformations have to be applied
on certain resources, and some transformations have to be executed after others.
This is, the execution order of the transformations has to be defined, as well
as the artefacts, tools and resources that are the required input to execute the
transformations. It can be seen that there is a workflow of transformations that
defines what it must be done to migrate some artefacts, whereas the metamodels
and transformations indicate how to perform the steps of such migration.

It is desirable to specify this workflow with independence of the concrete source

134



application so it can be reused in different source applications, and it would be
interesting to have some graphical facility to define such workflows.

Then, the inputs of our tool are:

• The artefacts of the source system.

• The metamodels and transformations to migrate the source system (they
must be available).

• The workflow that indicates how to apply the transformations to the source
artefacts (actually it will be created with a DSL provided by Models4Migration).

And the output of the tool are:

• The artefacts of the target system that can be automatically generated.

• The tickets for manual tasks which are integrated into a task management
tool.

• Some facilities that are integrated in a development IDE (e.g. Eclipse) to
assist developers in the manual migration of some parts of the system.

7.2 Running Example

As said in Section 1.3, our research group collaborated with a software company in
a pilot project aimed at applying MDE techniques in the migration of Oracle Forms
applications to the platform Java (Java Swing and JPA). The Models4Migration
tool was developed to support the model-driven reengineering process defined in
such a migration project. This process involves manual, automated and semi-
automated tasks and the automation is achieved through several chains of model
transformations that generate some artefacts of the target system (e.g. code of
presentation and persistence layers). With regard to the data layer, these meta-
models and model transformations correspond to the data reengineering process
presented in Chapter 6.

Hence, the database schema conversion proposed in this thesis is an appropriate
context to define a running example which can illustrate the explanations of the

135



Figure 7.2: Migration plan of the running example.

tool that we shall include in this chapter. The running example presented in
Section 6.2 will be also taken, where JPA (Java Persistence API) is used as the
target framework for the persistence layer. Figure 7.2 shows a resume of the
model transformation chain defined in Chapter 6 to transform the legacy database
schemas (i.e. DDL/SQL scripts) into the JPA artefacts and the DDL script which
regenerated the new database schema.

Throughout this chapter, a simplification of the database schema example used
in Section 6.2 will be used here (we shall omit the OrderLine and Product tables
due to more complexity do not contribute to clarify this chapter). However, in
this We introduce

Listing 7.1: Database schema of the running example for the tool
1 TABLE Customer ( idCustomer , name , c i ty , country )
2 PK<idCustomer>
3 TABLE Order ( idOrder , date , idCustomer )
4 PK<idOrder>

This schema presents a potential defect that could be fixed. The defect is that
the Order table contains an attribute that has the same name that the primary
key (PK) of the Customer table (idcustomer), nevertheless there is no foreign key
(FK) from Order to Customer. Sections 7.3 and 7.4 show how our approach deals
with this running example.

136



7.3 Process Definition: A DSL for migration processes

The emergence of the SPEM language has caused an increased interest in apply-
ing MDE in process engineering, and most of the approaches to model software
processes are based on this OMG standard. However, these works have not had an
impact on the industry yet. As explained in Chapter 3, SPEM 2.0 does not address
the enactment of process models, but SPEM models must be linked to behaviour
models expressed in other formalisms (e.g. UML activity diagrams). To overcome
this lack of enactment, some SPEM extensions have been proposed in order to
provide a Process Modelling Language with capabilities of executing process. As
discussed in Section 7.3, currently available SPEM extensions are not suitable for
the kind of enactment required in our approach, which must automatically exe-
cute model transformations and manage manual tasks by means of tools which
are widely used by software companies, such as Trac and Mylyn. We therefore
decided to create a new DSL whose metamodel is based on SPEM. Particularly
we have adopted the SPEM core concepts (tasks, roles, work products, tools, etc.)
and we have extended them to fit the software migration domain. For enacting
the models we have implemented used activity diagrams.

In this section we will present the Migration metamodel proposed to define
migration processes, which has been created as an extension of SPEM. We will pay
special attention to describe the elements defined to provide us the level of detail
needed to enact migration process models. A graphical concrete syntax has been
defined for this metamodel with the aim of supporting designers when modelling a
migration plan (e.g. the Abstract Migration model shown in Figure 4.2). Creating
these models by hand can be tedious and unproductive and the Migration DSL
greatly facilitates this task. The DSL concrete syntax is based on the SPEM
notation which is increasingly used by the software community, and so the designers
which are used to SPEM to quickly master our DSL. With regard to the DSL
semantics, this is given by means of a interpretation process. We will introduce
the DSL notation in this section through a process model of the running example,
while that the process interpreter is described in Section 7.5.

137



Action

WorkSequenceWorkDefinition Activity_ext
*1

ControlFlow_ext

* 1

ActivityNode ActivityEdge

ControlNode

1
source

*

1
target

*

ControlFlow

ActivityFinalNodeInitialNode

1..*
*

1..*
*

Figure 7.3: Fragment of the UML2 Activity Diagram

7.3.1 The Migration Metamodel

A concrete model instantiates an abstract model by providing the information
needed for enacting the process. Both models can be defined in terms of the same
concepts, so a unique metamodel can be used to represent them. As illustrated in
Figure 4.2, this separation between abstract and concrete model is also needed in
migration processes, as a particular case of software processes.

The standard metamodels (e.g. UML and KDM) are usually too large and
complex and theirs extension mechanisms are not enough to the needs of designers.
For instance, the use of KDM standard [77] was discarded for implementing the
reverse engineering stage in [9]. In the case of the Migration metamodel, we have
also found that SPEM is not appropriate due to the reasons explained in the
previous section, and a custom metamodel would better meet our requirements.
However, instead of starting from scratch, we have created a metamodel based
on SPEM with the aim of reducing the effort required in its definition, as well as
to take advantage of the benefits and experience captured in this OMG standard
specification. We have reused the SPEM metamodel, and we have defined new
elements in order to represent specific concepts of the MDE migration processes.
More specifically, we have reused the elements in the excerpt of SPEM shown in
Figure 2.5.

As shown in Figure 7.3, we have used the Activity_ext and ControlFlow_ext
proxy elements to connect UML2 Activity Diagrams to our metamodel, through

138



of the borrowed SPEM elements, in order to provide it with behaviour modelling
concepts. The Activity_ext and ControlFlow_ext elements are proxies that
refer to the ActivityNode and ActivityEdge of the Activity Diagram.

Figure 7.4 shows the Migration metamodel that we have devised. This meta-
model has been designed to deal with migrations that can be both partly auto-
mated by means of MDE techniques and manually implemented at some parts.
To achieve the level of detail required for the enactment of our approach, we
have defined classes which represent the concepts of a MDE migration, such as
TransformationChain, M2MDefinition or M2MEngine, and they extend SPEM
classes. We have only extended the ProcessStructure package since it allows
the definition of ordered tasks; the MethodContent is omitted, given that it is
not useful for our solution because only a fixed set of elements is needed as our
approach is intended to define only software migration processes. Basically, the ex-
tension of SPEM consists in adding three main concepts by defining three classes:
MigrationTaskUse, MigrationToolUse and MigrationWorkProductUse (see Fig-
ure 7.4a). These classes extend the classes defined in SPEM’s ProcessWithMethods
package, which refines metaclasses in the ProcessStructure package in order to
relate it to the MethodContent package. Each one of the new classes is explained
below.

MigrationTaskUse (see Figure 7.4b) is a TaskUse that is the root of the hier-
archy of migration tasks. Each task can be Automated, Manual or Semi (semi-
automated).

• A Transformation is a task which takes some input and generates some
output. We have defined a subclass for each kind of transformation:

– Injection is a transformation that obtains models from source files, so
the models mirror the structure of the source language,

– M2M is a model-to-model transformation and

– M2T is a model-to-text transformation (code generation).

• A TaskChain is a task that is composed of one or more sub-tasks. A
TransformationChain is a subtype of TaskChain that is composed of Transformations.

139



«enum»
TaskType

MANUAL
AUTOMATIC
SEMIASSISTED

«enum»
AutomationToolType

ANT
RAKE

«enum»
PlatformType

JAVA
DOTNET
RUBY
ECLIPSE

«enum»
LanguageType

JAVA
PLSQL
DELPHI

«enum»
ModelType

ECORE
MOF
KM3

«enum»
InjectorType

XTEXT
GRA2MOL

«enum»
M2MEngineType

RUBYTL
ATL
QVTRELATIONS

«enum»
CodeUnitType

CLASS
PACKAGE
FUNCTION
METHOD

«enum»
M2TGeneratorType

RUBYTL
MOFSCRIPT
XPAND

«enum»
ResourceType

IMAGE
ICON
VIDEO

   *

requires

MigrationToolUse

version: String
path: String

TransformationEngine ExternalTool

Injector

type: InjectorType

M2MEngine
type: M2MEngineType

M2TEngine

type: M2TGeneratorType

Platform

type: PlatformType

Plugin library

1

dependsOn

AutomationTool

type: AutomationToolType

ToolParameter

name: String
value: String

*

(c)

Model

type: ModelType

CodeFile

type: LanguageType

TransformationDefinition

MigrationWorkProductUse
path: String

*
units

CodeUnit

type: CodeUnitType
resourceID: String
pattern: String

InjectorDefinition M2MDefinition M2TTemplate *

units

GraphicalResource
type: ResourceType

(d)

SPEM::ProcessWithMethods::
TaskUse

MigrationTaskUse

SPEM::ProcessWithMethods::MethodContentUse

ToolUse

MigrationToolUse

SPEM::MethodContent
ToolDefinition0..1

tool SPEM::ProcessWithMethods::
WorkProductUse

MigrationWorkProductUse
*

usedTools

(a) MigrationGuide

TaskMigrGuide

nameTemplate:OCLExpr
descrTemplate:OCLExpr

WorkProductMigrGuide

nameTemplate: OCLExpr
pattern: OCLExpr
filter: OCLExpr

1 1

Transformation

Injection M2M M2T

Coding

MigrationTaskUse

TaskChainDelegatedTask

taskType:TaskType

*

Wizard

(b)

Automated Semi Manual

Figure 7.4: Migration metamodel

• A DelegatedTask is a task that is accomplished by an external tool or a
third-party application. This type of task needs an attribute to explicitly

140



indicate whether the task is automated, manual or semi-automated.

• Wizard represents a task that prompts an user some input in order to ac-
complish some other tasks (in order to create semi-automated tasks).

• A Coding is a kind of task that represents manual coding tasks, such as
manual translations of a source artefact to a new one in the target technology
or, basically, manual programming in order to create new artefacts.

MigrationToolUse (see Figure 7.4c) inherits from ToolUse, which is not in-
cluded in the SPEM specification, but extends the MethodContentUse element for
the sake of consistency. The separation of the ToolDefinition and ToolUse con-
cepts stems from the fact that a concrete tool (e.g. a Java Virtual Machine | JVM)
must be separated from a concrete use of the tool (e.g. the standard JVM included
in the JDK 1.7 that is accesible from certain local path). A MigrationToolUse can
have a version, a path and some parameters (ToolParameter). Some concrete
subclasses of MigrationToolUse are the following:

• Injector, M2MEngine and M2TEngine are tools that can perform the Injection,
M2M and M2T tasks, respectively.

• AutomationTool is a tool that can generate a new software artefact based
on some inputs. Such a tool could also prompt developers to provide some
kind of data.

• Platform, Plugin and Library are used to represent the software depen-
dencies that are required for a tools to be executed properly.

MigrationWorkProductUse (see Figure 7.4d) is a specialisation of WorkProductUse.
Some concrete subclasses of MigrationWorkProductUse are the following:

• InjectorDefinition, M2MDefinition and M2TTemplate represent the trans-
formation definitions (e.g. transformation files), and are associated with the
Injection, M2M and M2T tasks, respectively.

• Model represents a model artefact.

141



• CodeFile can be used to represent any source file, and significant CodeUnits
can be defined for it. For example, a Java file (CodeFile) can contain one
or more classes which can contain several methods (CodeUnit). The type of
the units and the pattern that matches them with EBNF notation can be
defined if needed.

• Other work products can be modeled with dedicated classes, such as GraphicalResources
for modelling images.

The Migration metamodel defines use relationships between each kind of Transformation
and its corresponding TransformationEngine (a type of MigrationToolUse) and
TransformationDefinition (a type of MigrationWorkProductUse). Concretely,
Injection is related to Injector and InjectorDefinition, M2M is related to
M2MEngine and M2MDefinition, and M2T is related to M2TEngine and M2TTemplate;
these relationships have been omitted in Figure 7.4 for the sake of clarity.

Finally, a MigrationGuide indicates how to instantiate an element in the Con-
crete Migration model from one or more elements from the source application
(greater detail on this is provided in Section 7.4.3). Two subclasses of MigrationGuide
have been defined:

• TaskMigrGuide defines the template to create the concrete task names (nameTemplate
attribute) and descriptions (descTemplate attribute).

• WorkProductMigrGuide is more complex, and it allows the definition of
patterns and filters to identify the artefacts (or parts of the artefacts)
to be migrated from the source application, in addition to the name of the
concrete work product names (nameTemplate attribute).

As mentioned before, the graphical notation of MigrationDSL is rather similar
to the one of SPEM. Table 7.1 shows the notation for each element included in
MigrationDSL (see Figure 7.4). Some elements of the UML Activity Diagrams,
such as the initial state, have been omitted in the table. More information about
bridging abstract (metamodel) and concrete syntaxes (notation) can be found in
[127].

142



Concrete syntax Abstract syntax

Activity.

MigrationTaskUse. For each type of task, a different label is included in the icon. These
labels are: Chain (TaskChain), Inject (Injection), M2M, M2T, Deleg (DelegatedTask),
Wizard and Coding. DependencyContraints have no graphical notation but they are defined
as properties of Coding tasks.

MigrationToolUse. For each type of tool, a different label is included in the icon. These
labels are: inject (Injection), m2m (M2MEngine), m2t (M2TEngine) extern (ExternalTool),
autom (AutomationTool), platform, plugin and library.

MigrationWorkProductUse. For each type of work product, a different label is in-
cluded in the icon. These labels are: inject (Injection), M2M (M2MDefinition), M2T
(M2TTemplate), M (Model), res (GrahicalResource), C (CodeFile) and U (CodeUnit).

RoleUse.

MigrationGuide.

Containment between BreakdownElements (such as TaskUses) and Activities (i.e. used to
represent the TaskUses contained in Activities). Also used to represent the containment
of CodeUnits inside CodeFiles.

ProcessParameter of type in that represents a WorkProductUse as an input of a TaskUse.

ProcessParameter of type out that represents a WorkProductUse as an output of a TaskUse.

A control flow between two Activities or between two TaskUses.

A dependency between TaskUses and ToolUses, or between Taskuses and RoleUses.

Table 7.1: Graphical notation of MigrationDSL for defining MDE migration pro-
cesses.

7.3.2 Application of MigrationDSL to the running example

We have modelled the data migration process defined in the running example
(see Figure 7.2) with MigrationDSL and the resulting Abstract Migration model

143



can be seen in Figure 7.5. The MigrationGuides and some input and output
WorkProductUses such as the metamodels and the model transformation defini-
tions, have been omitted for the sake of clarity. The running example is composed
of three activities (see Figure 7.5a):

1. Data Inject injects a model from a legacy database schema; the resulting
model can be analised by means of model transformations (see Figure 7.5b).

2. Data Restructuring checks and fixes the model obtained in the previous step
(see Figure 7.5c), including a database normalisation task if needed (see
Figure 7.5d).

3. Code Generation generates JPA code to create and access to the migrated
database DDL Scripts that regenerates diectly the new schema in a database
(see Figure 7.5e).

These activities involve both automated (Inject DDL, Abstract Data and other
M2M and M2T transformations) and semi-automated (Confirm Errors Wizard)
tasks. Each task references the tools it uses: Injector, M2MEngine or M2TEngine,
which respectively have GRA2MOL, RUBYTL and MOFSCRIPT as their type.
The generated work products are:

• Models: DDL Model, Data Model, Defect Model, Data Fixed Model, FD Model
and JPA Model.

• Input artefacts obtained from the legacy system: DDL Script.

• Output artefacts of the migrated system: JPA Code and CodeFiles which
contain CodeUnits such as getColumnMethod to refer to each JPA method,
and DDL script which contains SQL sentences to regenerate the new schema
in a database.

It would be necessary to explain briefly the database normalisation step shown
in Figure 7.5d. When a fixed schema is obtained (on the Data Fixed model), it
is possible to configure our migration process to normalise the new schema. In
this case, the normalisation level is checked on the schema and, if needed, the

144



Figure 7.5: Abstract Migration model example

functional dependencies are found (FD model) and normalisation algorithms are
applied (normalisation by decomposition algorithm -Norm Decompos task- or by
synthesis algorithm -Norm Synthesis task- if the first fails).

145



7.4 Process Instantiation

This section describes how a Concrete Migration model is instantiated from an
Abstract Migration model. Firstly, the instantiation process is illustrated; then,
the Inventory metamodel is described; the use of the MigrationGuide class is
explained in detail next and finally, the Concrete Migration model for the running
example is described.

7.4.1 Instantiation of Concrete Migration models

The instantiation process has been implemented by means of an M2M transforma-
tion, as indicated in Section 4.4 (see Figure 4.2), which has the Abstract Migration
and an Inventory model as inputs.

Since an Abstract Migration model is a general description intended to migrate
any application that conforms to a source technology, the work products involved
in the migration are expressed as variables instead of actual artefacts. For instance,
the DDL Script work product of the running example (see Figure 7.5) is used as
a variable that denotes any script that defines a legacy schema. Therefore, the
instantiation of a Concrete Migration model from an Abstract Migration model
requires replacing these variables with actual resources of the application to be
migrated. Moreover, an Abstract Migration model may define fixed work products
that must be included in the Migration Cartridge (as said in Section 4.4.4). The
instantiation of a Concrete Migration model also involves the generation of one
or more tasks for each concrete work product that has replaced the variable that
represents the input of that task. For instance, in the running example, an Inject
DDL task is created for each concrete file that replaces DDL Script.

The resulting Concrete Migration model is used by our tool to generate the
actual tasks that must be executed or manually completed by developers. As
commented in Section 4.4, the M2M transformation that performs the instantiation
also requires an Inventory model that provides information about the resources of
the application to be migrated.

146



MigrationConfig

cartridgePath: String
projectName: String
repURI: String
workingPath: String
targetPath: String

ResourceRepository

File

path: String
type: String

MigrationResource

key: String
name: String
version: String
meaningfulType: String

Executable

path: String

DatabaseConnection

connURI: String

*

1

Figure 7.6: Inventory Metamodel

7.4.2 Inventory metamodel

According to the metamodel shown in Figure 7.6, an Inventory model defines
a collection of MigrationResources. MigrationResource represents the arte-
facts or work products of the application, and its instances have a key to iden-
tify it, a name of the file, the version of the resource, and a meaningfulType
tag that explicitly indicates the purpose of the file (it is useful when files of
the same type can be used for different purposes). A hierarchy of subclasses
of MigrationResource represents the different kinds of artefacts such as File,
Executable and DatabaseConnection. A File is specified with the path and
type of the file, an Executable just need the path, and a DatabaseConnection
must include all the information required to connect to a database (connURI at-
tribute).

Every Inventory model must also specify a set of parameters (MigrationConfig
class) needed for the enactment such as the path to the Migration Cartridge
(cartridgePath attribute), the name of the generated Eclipse project (projectName
attribute), a connection string (repURL attribute) to the Trac repository and some
other paths as working and target directories. In the running example, the Inven-
tory model would specify all these parameters plus a database connection (instance
of DatabaseConnection) to the new system and the path to the DDL file (instance
of File) containing the definition of the legacy relational schema. Noting that
these parameters depend on the kind of enactment supported.

The Models4Migration tool displays wizard to make the creation of an Inventory

147



model easier, allowing developers to select the resources needed for the migration
and automatically generating the Inventory model. This wizard is generated at
runtime: any work product of the Abstract Migration model that is not fixed or
generated by a task is automatically recognised and requested by the wizard; paths
to the tool engines used in the process are also requested.

7.4.3 MigrationGuides

An Inventory model that includes all the elements needed to instantiate a Concrete
Migration model from an Abstract Migration model may be too large and its
creation would be a tedious and error-prone task for the developer. Therefore, the
Migration metamodel (see Figure 7.4) defines MigrationGuides to support the
automatic inference of resources and also the generation of concrete work products
and tasks in the Concrete Migration model.

Each WorkProductUse or TaskUse in an Abstract Migration model can be anno-
tated with a WorkProductMigrGuide or TaskMigrGuide, respectively, establishing
how a concrete work product or task is generated from an abstract one, which may
include inferring information from the source application. MigrationGuides guide
the instantiation transformation by indicating:

1. which resources must be inspected in order to generate a concrete work
product or task from an abstract one,

2. how these resources are obtained and

3. how the attributes of the generated elements are filled.

The instantation transformation uses MigrationGuides to inspect the artefacts
specified in the Inventory model in order to generate the Concrete Migration model
by performing the actions indicated above on the abstract model: replacing the
variables denoting work products by references to concrete artefacts and generating
a concrete task for each input artefact.

One concrete task is instantiated for each combination of an abstract task de-
fined in the Abstract Migration model and a concrete work product that has been
generated from an input of that task. Each instantiated concrete task has a dif-
ferent name and its inputs and outputs refer to the instantiated WorkProductUses

148



Figure 7.7: Process Interpretation model.

(e.g. concrete work products) instead of the abstract (variable) ones. TaskMigrGuide
provides an expression to infer the name of each generated task.

7.4.4 Concrete Migration model for the running example

A Concrete Migration model can be instantiated from the Abstract Migration
model of the running example (see Figure 7.5). With regard to work products, the
instantiation distinguishes between existing work products which are an input to
a task (e.g. DDL script) and work products generated as result of executing a task
(e.g. DDL model, Error model and JPA code). For the former, the information
to fill the generated work products (e.g. paths and file names) is obtained from
the Inventory model; for the latter, the information is obtained by means of a
WorkProductMigrGuide. For instance, JPA Code would be transformed into many
concrete Java files that correspond to every JPA class created during the process.
One of these Java files would be Order.java which defines the Order class with
JPA annotations and accessor methods such as the getIdOrder() method, that is
derived from the JPA Code and getColumnMethod variables, respectively.

Regarding to the generation of concrete tasks, each abstract task in the Migra-
tion model is instantiated in a set of concrete tasks, one for each input existing
artefact. Each instantiated concrete task has a different name and its inputs
and outputs refer to the instantiated WorkProductUses (e.g. concrete elements)
instead of the variables. The name of the tasks is obtained by means of the in-

149



formation provided by a TaskMigrGuide. In the running example, an Inject DDL
task is generated for each existing DDL Script and for each one of these tasks, a
different DDL Model is generated as output. The names and path files would be
a combination of the name and path of the actual resource and DDL Script, such
as ddlFile1_Inject_DDL for the task name and ddlFile1_DDL_Model.xmi for the
DDL Model path.

7.5 Process Enactment

An introduction of the approach devised to implement the enactment of migration
plans was given in Section 4.4. In this section, we give an in-depth explanation
of the Process Interpretation model and the support for the execution of tasks,
which is based on Trac and Mylyn.

7.5.1 Process Interpretation model

The enacting of a Concrete Migration model is itself a process that can be defined
using a model that conforms to the Migration metamodel, since it involves work
products, tools, activities and tasks. This model is called the Process Interpretation
model and must be created by the designer, along with the Abstract Migration
model. However, it is worth remarking that the Process Interpretation model will
rarely change between migration projects, so frequently no extra effort will be
needed.

The definition of a Process Interpretation model is based on the process shown
in Figure 4.2, which represents the steps to be always performed by the Mod-
els4Migration tool. This process may be extended by the designer with new steps
depending on the specific pair of source and target technologies, as explained later.
Figure 7.7 expresses the Process Interpretation model for the process of the Fig-
ure 4.2 with MigrationDSL.

Models4Migration executes the Process Interpretation model using the Process
Interpreter and returns at least two outputs, according to three mandatory activ-
ities shown in Figure 7.7: an Automated Task file and a Task model. The former
is an Ant file that executes all the automated and semi-automated tasks of the
migration process; it also declares every tool needed for the migration.

150



The Task model conforms to the Task metamodel, which defines tasks with
names, descriptions and associated contexts (i.e. work products related to tasks).
Figure 7.8 shows an excerpt of this metamodel. The Task model is an intermediate
model that makes the transformation of tasks defined in the Concrete Migration
model to Trac tickets easier. Note that tasks may depend on other tasks and
their contexts are composed of a hierarchy of components such as projects, fold-
ers, packages and classes; this information is used by the Models4Migration tool
to generate Mylyn tasks and contexts, as explained later in this section. The auto-
mated and semi-automated tasks defined in the Task model refer to the Ant tasks
in the Automated Task file and their execution is performed by the Trac server.

As shown in Figure 7.7, both the Automated Task file and the Task model
are generated by model transformations that have the Concrete Migration model
as their input. A Process Interpretation model must always define the following
three activities (along with their related tasks) to ensure the generation of those
artefacts:

1. Concrete Migration Model Generation. It executes the Abstract2Concrete
task, an M2M transformation which produces a Concrete Migration model
from an Abstract Migration model using an Inventory model. This transfor-
mation performs the instantiation described in Section 7.4.1.

2. Tasks Model Generation. It executes the Concrete2Tasks task, an M2M
transformation which produces the Task model.

3. Automated Task File Generation. It executes the GenerateAutomatedTasks
task, an M2T transformation which produces the Automated Task file.

Moreover, the designer may add custom steps to the Process Interpretation
model. For instance, the MigrationGuide elements defined in the Abstract Mi-
gration model may require an additional model, e.g. a model representing the
legacy application to migrate from which to extract information for the instan-
tiation process. The injection of such model from the legacy application would
have to be performed before the Abstract2Concrete transformation, where the
MigrationGuide elements are used, so an additional step would be added to the
Process Interpretation model to perform such injection.

151



Figure 7.8: Task Metamodel.

Migration plans are enacted by Models4Migration via the execution of auto-
mated tasks and the support for manual tasks. Once the activities of the Process
Interpretation model have been performed, Models4Migration exports the tasks
from the Task model to a Trac server as tickets. Initially all tickets corresponding
to automated tasks, which do not have any unresolved dependencies, are executed
by Ant. Every time a task is completed, Trac checks if there is any automated
task ready to be executed and, if so, invokes its related Ant tasks. This behaviour
is a customisation of Trac that we have implemented as an extension of the Mas-
terTickets Trac plugin 1.

7.5.2 Trac customisation

Trac is a bug repository aimed at creating tickets, which represent pending tasks
to be performed and include metadata to represent information such as task de-
scription, keywords, assigned developer, etc. as well as attached files. Each ticket
has a state (new, closed, open, assigned, etc.) and the transitions between states
are declared in a Trac workflow. We have implemented a customisation of Trac in
order to support the migration processes managed by Models4Migration.

1http://trac-hacks.org/wiki/MasterTicketsPlugin

152



Figure 7.9: Trac transition diagram.

Tickets are used in our approach as tasks to be completed. To do this, we
have defined two new states: blocked and unblocked, which are used to reflect the
dependency relationships defined by the activities and tasks of the concrete plan.
A blocked ticket represents a task whose dependencies have not been satisfied, i.e.
the tasks (tickets) that are blocking it have not been completed yet. An unblocked
ticket is a task without dependencies or whose dependencies have been satisfied
and is available for execution.

Figure 7.9 shows the Trac transition diagram (i.e. the Trac workflow) for a mi-
gration process. It can be seen the different states of the tickets and the transitions
among them (gray for new states and white for original states). Each transition
is defined by an event and an associated action (shown in italic style). For exam-
ple, the transition between the Blocked and Closed states is triggered by a resolve
event, and it executes the ticket modify action to mark the ticket as closed.

A customisation of the MasterTickets Trac plugin has been implemented in or-
der to support the blocked and unblocked states. This plugin allows specifying
dependency relationships among tickets, but it does not manage the state changes
concerning these dependencies. The developed plugin extension provides auto-
matic blocking and unblocking of tasks. Whenever a ticket is completed, all the
dependant tickets are checked and unblocked if necessary.

Tickets are assigned to developers according to the roles (RoleUse) to which the

153



manual and semi-automated tasks are related. Since Trac does not support users,
the tickets are assigned by managers to the users (developers) defined in the server
on which Trac runs, so a server software (e.g. Apache server) must be configured
with the same roles that appear in the Abstract Migration model.

7.5.3 Mylyn integration

Mylyn is an Eclipse plugin that manages bug repositories such as Trac or Bugzilla,
among others. An essential feature of Mylyn is the ability to establish task con-
texts. A context is the set of resources that are involved in a certain task. My-
lyn obtains and stores the task contexts in the form of files attached to tasks.
Whenever a context is loaded by Mylyn, the Eclipse perspective shows only the
resources declared in that context. This makes the developers focus on the tasks
they are assigned, increasing their productivity [128]. In addition, Mylyn supports
querying the Trac task repository and updating the state of the tasks. In the
Models4Migration tool, the integration between Mylyn and Trac is used in the
following way:

1. The context of a task (i.e. its related work products) is encoded as an
XML file and attached to the corresponding ticket in the Trac repository.
This context is defined in the Task model using the classes that extend
AbstractContextComponent (see Figure 7.8). This file is a Mylyn context.

2. The context of a task is obtained and interpreted by Mylyn to configure the
visualisation of the Eclipse IDE, displaying only the related work products.

3. A Mylyn query is configured by Models4Migration to retrieve only unblocked
tickets from the Trac server, so developers can only work on the available
tasks, i.e. the tasks that have all their dependencies satisfied.

4. A task can be marked as completed within the user interface of Mylyn. A
trigger in the MasterTickets Trac plugin customisation checks the dependant
tasks and unblock them, being the changes automatically visible in Mylyn.
Moreover, this trigger detects which of this dependant tasks are automated
tasks and executes them by invoking their related Ant tasks.

154



7.5.4 Enactment of the running example

Following with the running example, the Concrete Migration model derived from
the Abstract Migration model shown in Figure 7.5 is transformed into an Ant file
and a Task model. The Ant file defines an Ant task for all the automated tasks
defined in the Concrete Migration model, so these tasks can be accomplished just
by executing the suitable Ant tasks. The Task model includes all the tasks of the
Concrete Migration model, which is managed by the Trac server.

The tool first creates an Eclipse project to store the result of the enactment.
Then, it creates the Tickets into Trac by means of an access API, and finally it
delegates to Trac the enactment of the process.

Trac will invoke the corresponding Ant task for each automated or semi-automated
task that it has to be dealt with. For each manual task to be completed, Trac pro-
vides Mylyn with useful information to complete the tasks. In the example there
is one semi-automated task is defined: the confirmation of errors detected into
the legacy schema. The wizard associated to this semi-automated task is firstly
executed by means of an invokation to an Ant task. The control flow is stopped
while the user is in charge of selecting the errors in the schema to be fixed. When
the user confirms the errors, the wizard application automatically generates a fixed
data model that will be the input of an automated task, and the control flow is
unblocked. In the end, all the automatically generated and manually coded files
are included in the Eclipse project.

7.6 Use of the Models4Migration tool

This section covers the use of the Models4Migration tool, describing the creation
of Migration Cartridges and the enactment of the processes encapsulated in such
cartridges. Afterwards, the migration from Oracle Forms to Java is used as a real-
world case study of the use of our tool, showing the results of its application. As
introduced in Section 2.5, Models4Migration distinguishes between three user roles:
the designer of a migration plan, the manager of the migration process and the
developer that performs the manual and semi-automated tasks. Figure 7.10 shows
the three components provided for supporting the enactment (Process Interpreter,

155



Figure 7.10: Roles using the migration tool.

Project Generator and Ticket Generator), as well as the interactions between roles
and our tool, which are explained in greater detail below.

7.6.1 Creation of Migration Cartridges

When a migration project between a pair of specific source and target technologies
is started by a company, one or more designers should define a Migration Cartridge
(see Section 4.4.4) containing: i) an Abstract Migration model, ii) a Process In-
terpretation model and iii) the executable artefacts and resources referred by the
Abstract Migration model. For each task in the Abstract Migration model, the
designers must specify the input and output work products, as well as the tools
used to accomplish it.

The Process Interpretation model is created with the same tools as the Ab-
stract Migration model (see Figure 7.7), as they both conform to the Migration
metamodel; however, the Process Interpretation model must always define three
activities that are mandatory for the enactment of processes, as explained in Sec-
tion 7.5.1, along with their related tasks, work products and tools. Moreover,
the designer can add additional activities, tasks, work products and tools to the
Process Interpretation model. The executable artefacts and tools that support
the execution of automated and semi-automated tasks, such as RubyTL M2M
transformations or Gra2MoL injections, must also be defined in the Abstract Mi-
gration model and should be included in the Migration Cartridge for the sake of
encapsulation and ease of use.

Finally, the Migration Cartridge is plugged into the Models4Migration tool by
simply deploying it (i.e. copying it to the file system). The Migration Cartridge
for the running example is composed of the Abstract Migration model shown in

156



Figure 7.11: Creating a migration project.

Figure 7.5, the Process Interpretation model shown in Figure 7.7 and the resources
required by the former (e.g. the JPA.ecore metamodel and the GenerateJPA.m2t
template which support the GenerateJPA task defined in the abstract plan).

7.6.2 Enactment of Migration Cartridges

In order to enact a migration plan, the Migration Cartridge that represents it must
be enacted, meaning that its Process Interpretation model must be interpreted by
the Process Interpreter and the resulting tasks must be performed. This is done
by one or more managers and developers. The enactment process also requires an
Inventory model which declares the input parameters of the Process Interpretation
model and the project deployment paths (e.g. working and generation directory),
as explained in Section 7.4.2.

Firstly, the manager of the migration creates a new Eclipse Migration Project
by means of Models4Migration as shown in Figure 7.11. Then, a wizard that
automatically generates an Inventory model is shown to the manager to introduce
all the information required to generate such model. Figure 7.12 shows an example

157



Figure 7.12: Introducing data into the Inventory model.

of such a wizard. The information can be migration-dependant, e.g. paths to the
initial work products and tools, which is gathered by the plain-labelled fields shown
at the top of Figure 7.12, or migration-independent, e.g. parameters needed for
the tool execution (see Section 7.4.2), which are gathered by the bold-labelled
fields shown at the bottom of Figure 7.12. Once these fields are filled, the wizard
automatically generates the Inventory model.

Then, the Process Interpreter is executed, which creates a Concrete Migration
model, and based on this model it creates the Ant file with the automated tasks,
and the Task model which contains all the tasks. Next, the Project Generator
creates a new Eclipse project in which all the automatically generated files will be
placed. The Ticket Generator analyses the Task model and exports the tasks to
a Tract server as tickets. If there are any unblocked automated tasks, they are
executed. The manager is then shown a set of Mylyn tasks representing the manual
and semi-automated tasks that are unblocked, that is, ready to be performed; each
one of these tasks must be assigned by the manager to one or more developers. The
manager can query Mylyn from the Eclipse enviroment to obtain all the unblocked

158



Figure 7.13: Mylyn can query and obtain the Trac tickets.

tasks by using the name of the migration project as specified in the Inventory model
(this is shown in Figure 7.13). When a manager selects an unblocked task from
the query, some information about the task is shown, e.g. the description and the
dependant (blocking) tasks, as shown in Figure 7.14. Note that the task context
is retrieved using an option of the context menu.

Finally, the developer that is assigned a task is shown only the resources that
are necessary for that task. Figure 7.15 shows the perspective of a developer for
the manual migration of a Forms trigger: the Eclipse environment is focused on
the Java method corresponding to the trigger, showing only the resources related
to the completion of the task. The code of the method also includes some guiding
information as code comments about what to do, making the task easier. Note
that neither the managers nor the developers are aware of the generation of the

159



Figure 7.14: Ticket information.

Concrete Migration model, since they only have to deal with Mylyn tasks and
their associated contexts.

7.7 Applying our tool to the real-world case study

Models4Migration has been applied in a pilot project aimed to apply MDE tech-
niques in software migration, as commented in Section 7.2. The goal of the case
study was to migrate a research project management application from the Oracle
Forms 6i platform to the Java platform, specifically based on the Swing and JPA
technologies. The migration has been defined as a software process that integrates
automated tasks (e.g. obtaining Java GUIs from Forms and generating the per-

160



Figure 7.15: Eclipse environment context for a manual task.

sistence layer code from DDL scripts) with tasks to be manually performed by
developers (e.g. writing code for the business logic layer).

7.7.1 Context of the case study

In this subsection we will present the technologies involved in the case study as
well as the resources which compose the application to be migrated.

Technologies Oracle Forms 6i is a discontinued technology for developing 2-
layers applications, where all the code of a system is in the client side and just
database is in the server side. Swing and JPA are standard technologies provided
by the Java platform for implementing the user interface and persistence layers,
respectively.

Resources of the legacy application The legacy application to be mi-
grated is a software system for managing the lifecycle of research projects: project
register according to a call, budget distribution and outgoings, among others. The
source application contains 28 Forms resources such as FMB, MMB and PLL

161



files 2; moreover, it uses an Oracle database schema with 112 tables and other
database resources such as views or constraints.

7.7.2 Evaluation of the approach

We have conducted an experiment with 7 programmers and 2 analysts to vali-
date our approach. They are workers from the company that proposed our case
study. The programmers have played the role of migration developers and the
analysts have acted as migration designers and managers. The designer role re-
quires some skill of modelling because they should define the Abstract Migration
plan by means of the provided DSL. The manager role should have proven specific
abilities in project management owing to it must assign manual tasks to develop-
ers and monitor the status of the migration project. The developer role does not
require concrete skills, apart from being able to complete the manual migration
tasks which usually imply to implement new code.

Methodology The methodology we have used is the following. Firstly, in
order to use our tool, a Migration Cartridge (namely Forms2Java) was created,
containing: i) an Abstract Migration model which defines how to migrate Oracle
Forms 6i applications to the Java platform using MDE techniques, ii) a Process
Interpretation model similar to the one shown in Figure 7.7, and iii) all the re-
sources required for the execution of the tasks defined in the Abstract Migration
model.

Designers have defined both the Abstract Migration and Process Interpreta-
tion models. Migration developers have provided all the resources referred in the
Abstract Migration.

Needless to say, the project had to be deployed in an execution environment
which provided all the tools to run the Models4Migration tool and enact the mi-
gration process, such as model transformation engines (e.g. the RubyTL transfor-
mation engine).

The defined Abstract Migration model contains over one hundred elements:

2Forms window files, Forms menu files and Forms libraries, respectively.

162



• 72 work products such as a DDL script, 15 Ecore models, 15 Ecore meta-
models, 11 M2M transformations, 2 T2M transformations, 7 M2T transfor-
mations, and 8 Java classes with 26 methods that represent the generated
components of an MVC architecture (e.g. windows, widgets, controllers and
data elements).

• The activities and tasks for injecting Forms models and transforming them
into intermediate GUI models that are finally transformed into Swing source
code. These activities include the injection of the Forms model, the gener-
ation of the view and controller layers using the GUIZMO framework [9],
the migration of the database as explained in the running example and the
manual completion of each layer.

• 34 tasks that implement the activities.

Results After applying Models4Migration, a Concrete Migration model was
obtained which defines, among others, 73 Java classes with over 600 methods.
Moreover, more than 800 tasks were generated, from which about 60% were manual
tasks, 35% automated tasks and 5% were semi-automated tasks (see Figure 7.16).

60%

35%
5%

Manual
Automated
Semi-automated

Figure 7.16: Tasks generated for the case study.

As specified in the Abstract Migration model, the persistence layer was com-
pletely generated as JPA code and the presentation layer was completed up to an
80% (some customisation is needed after the generation). Therefore, most man-
ual tasks were related to the implementation of the domain layer (i.e. business
logic). Only a 10% of business code was generated, which corresponds to method
definitions and comments. Figures 7.17 depicts the percentage of code generated

163



automatically by our proposal (automatic) and code which required to be imple-
mented manually (manual).

Figure 7.17: Percentage of code generated in the application layers.

Assessment by the migration participant Our tool provided a useful plan-
ning (in terms of sequenced tasks) to guide the migration project, so the tasks can
be easily managed and distributed among the developers involved in the migration
project by using the generated manual Mylyn tasks. This plan was strongly well
valued by all the participants included in the migration owing to the next reasons:

• Designers saved time and effort in creating tickets as they only had to assign
tasks to developers.

• Managers were freed from the task of creating of the Eclipse project. More-
over, they did not have to deal with automated ANT scripts, because these
scripts were automatically generated, and the code was error-free and the
scripts were ready to be executed.

• Programmers were assisted in completing manual tasks by means of provid-
ing the fragment of legacy code to be migrated in each task (inside comments)
and the Mylyn context which helped developers to focus on the specific re-
sources (usually classes) involved in the task.

Assessment in terms of productivity An estimation of the productivity
gains of our approach for a concrete migration project requires comparing the
cost of creating the Abstract Migration model and the benefit in automatically
generating the artefacts obtained as output of the enactment: automated task

164



files, the Trac tickets and the Eclipse configured project. In our case, creating the
Abstract Migration model with our MigrationDSL required 4 hours. We estimated
in 80 hours the manual creation of: i) the ANT file with the automated tasks (18
hours = 280 automated tasks, 4 min. per task definition), ii) the Mylyn tickets
with the manual and semi-automated tasks (52 hours = 520 manual and semi-
automated tasks, 6 min. per task definition) and iii) the Eclipse project with the
skeleton of the new classes (10 hours), which are generated by our tool.

Figure 7.18: Hours to create the tasks of the migration plan.

The Models4Migration implementation cost (including the MigrationDSL def-
inition) took about 360 hours (2 developers dedicating about 30 hours each one
per week during 6 weeks). Therefore, the number of migration projects needed for
the return of investment (ROI) is 5, assuming our case study as a medium-sized
project.

Figure 7.19: Hours for the ROI of our approach.

165



7.8 Lessons learned

Since that one of the contributions of our work is applying MDE techniques to
implement a process engineer tool, in this section we present some of the benefits
and drawbacks of MDE that we have obtained during the implementation of the
tool, as well as the qualities that MDE has brought to out solution.

• Productivity. This is one of the most important benefits when using MDE.
The use of transformations provides automation that results in productiv-
ity. The development of a model-based solution requires the effort of de-
signing the metamodels and transformations, which is later compensated by
the amount or size of the artefacts that are automatically generated. As
a rule, an MDE solution is more profitable as it is applied to a greater
number of source artefacts. In our case, transformation chains allow us to
automate the instantiation and enactment phases. In implementing process
engineering tools, the usage of MDE techniques seems more convenient than
traditional techniques (e.g. general-purpose programming languages) as the
management of process models is the central task. For instance, model trans-
formation languages allow writing code in a declarative style. We have used
the RubyTL language whose hybrid nature [129] eases to implement complex
transformations. In addition, the RubyTL modularity mechanism helped us
to write composable and reusable transformations as explained in [129].

• Technology independence. Our approach is independent of the project man-
agement tools (i.e. Ant, Trac and Mylyn) that we use to create the final
system. This independence is achieved thanks to the Task metamodel that
decouples the migration definition and instantiation from the enactment with
the mentioned management tools. Task models express tasks without relying
on technology-specific concepts. Therefore, if we would like to use different
management tools, only the model-to-text transformations based on the Task
model would need to be replaced.

• Reusability. Metamodels and transformations can be reused between differ-
ent projects, thus reducing the effort of developing MDE solutions. We have

166



reused standard metamodels, particularly the SPEM and the UML2 Activity
Diagram metamodels, what greatly simplified the creation of the Migration
metamodel as we only had to add some concepts on top of these specifi-
cations. Transformations can be reused by defining metamodels that make
some parts independent of other parts and defining the transformations from
and to those metamodels. This mechanism can be used to reuse metamod-
els and transformations. In our case, we had a metamodel for representing
tasks (the Task metamodel) and a Java program that takes Task models and
interacts with the Trac server, so we were able to reuse that metamodel and
the Java program in our solution just by transforming from the Concrete
Migration model to the Task model.

• Extensibility. A transformation chain can be extended with new stages or
even it can be modified with new stages that replace the existing ones. There-
fore, models can be seen as extension points for modifying or adding new
stages to a chain. As we already mentioned in Section 7.4, new steps could
be added to the Process Interpretation model if it were required, for example
injecting a source code model that would be used in the Abstract2Concrete
transformation. This feature of MDE endows our solution with flexibility to
be used in projects of different nature.

• Easy creation of DSLs.

As noted in [130], DSLs have been a part of the computing landscape since
the early years of programming. However, the emergence of MDE has orig-
inated a growing interest in DSLs and the development of metamodelling-
based tools (language workbenchs) supporting the definition of textual or
graphical DSLs. In our case, we tackled the development of the graphical
DSL after the metamodel concepts were estabilised as it is recommended
in [131].

• Problems to work with big models. The instantiation of the Abstract Migra-
tion model in a complete real migration can result in thousands of elements
in the Concrete Migration model. Moreover, the injection of the models
specified in the Abstract Migration model can be slow and the tools can

167



even crash because the system runs out of memory. The management of big
models is a current research topic in MDE. Morsa citemorsa and CDO [114]
are two of the most promising efforts in this area.

• Immaturity of the MDE development environments. Despite being useful,
MDE lacks of mature development environments, which limits its applica-
bility in industrial settings. For example, debugging model-to-model trans-
formation is more complicated than in common programming languages,
since no interactive debugging or high level information is displayed. Trans-
formation testing is another example. Although there are works aimed at
addressing these problems, the solutions are neither robust nor integrated in
MDE tools.

7.9 Conclusions

The tool presented in this chapter addresses the requirements mentioned in Sec-
tion 2.5. It is agnostic to any specific technology, hence achieving a relevant degree
of flexibility and reusability. We assume that the source artefacts of the application
to migrate are available to the tool. If this assumption was not true the approach
that we propose would still be valid, but activities would have to be included in
order to recover or infer information about the source from the execution traces.
It is worth noting that the definition of a migration plan actually requires more
complex activities than defining the development task workflow, such as viability
analysis, cost evaluation or version control, which are out of the scope of this work.

When addressing the definition of the proposed reengineering approach we re-
alised the convenience of having a tooling to support model-driven migration pro-
cesses. We have therefore tackled the building of a tool named Models4Migration
for supporting the definition and enactment of model-driven migration processes.
Four basic functionalities have been identified for this tool: i) provide a means
to specify migration workflows (i.e. model transformation chains); ii) ability to
execute the automated tasks (e.g. model transformations) without human inter-
vention; iii) support and guidance for the development of manual tasks, and iv)
integration of manual and automated tasks into the migration workflow.

168



Since the SPEM extensions support the enactment of software development pro-
cesses, they are not appropriate to our goal, so we have defined our own DSL named
MigrationDSL. While SPEM extensions are applicable to any software process, our
language is tailored to model-driven migration processes. This allows us to achieve
the execution of automated tasks and the support for manual programming tasks
through the integration of the Trac and Mylyn tools. Thus, the developers involved
in a migration project are guided based on the task context and team leaders save
time thanks to the automatic generation of tickets (i.e. Mylyn tasks). It is worth
noting that this support for manual tasks which is based on the integration of Trac
and Mylyn is one of the novel contributions of this work.

It is clear that our proposal will produce important benefits when, due to the
nature of the migration project, the majority of the generated tasks are automatic.
However, even though the migration scenario produces a number of manual tasks
much bigger than the automatic ones the tool is still useful. In this case, the mi-
gration managers remark that our tool provides a real ticket management support
by Mylyn and Trac. They find very useful that all the manual tasks are described
by tickets which offer a project environment and a set of application resources
defining a context. Moreover, the tasks are related which imposes the completion
of some tasks before finishing other ones.

The use of MDE has been crucial for achieving the goals, since the implementa-
tion of the functionality of the tool has been tackled using metamodels, models and
model transformations. To our knowledge this work is the first one that describes
in detail how MDE techniques can be applied to building a software production
environment. A chain of model transformations generates the artefacts that are
needed (i.e. Ant file and Trac tickets) to enact a migration process model expressed
with the MigrationDSL language.

The approach is technology-independent, which means that it can be configured
to deal with specific technologies by means of the cartridges, which encapsulate
the migration strategy (i.e. the Abstract Migration process model) and their
interpretation (i.e. a Process Interpretation model). Once a cartridge is plugged
into Models4Migration, new migration projects can be created in Eclipse from an
Inventory model that specifies the involved artefacts.

Finally, we have shown how the different stakeholders involved in a migration

169



process can use our tool and we have provided some information related to its
application in a real case study.

170



(Suggested by Fernando)

”Should I bolt every time I get that feel-
ing in my gut when I meet someone new?
Well, I’ve been listening to my gut since
I was 14 years old, and frankly speaking,
I’ve come to the conclusion that my guts
have shit for brains.”

from High Fidelity

8
Tool Interoperability

Software reuse is one of the techniques used to insure quality and productivity
in the building of new solutions. As we showed in Chapter 6, the data reengineer-
ing approach proposed is required to integrate the Concept Explorer (ConExp)
tool into the normalisation step in order to identify functional dependencies. We
then experimented in building an MDI bridge for this tool. This bridge is in fact
solely required to implement a syntax mapping for ConExp (i.e. injector and ex-
tractor) because its output data were injected into FD models that are used in
our approach. From this experience, we continued exploring the MDE capabilities
to integrate tools. In particular, we first build the infrastructure (i.e. meta-
model, injectors and extractors) so as to integrate the DB-Main tool into MDE
setting, and we then used this tooling to create a bidirectional bridge between the
DB-Main and Objectiver tools. More specifically, the objective of this bridge is
to interchange DB-Main database schemas and Objectiver Object models. The
integration of DB-Main into MDE allowed us to create several injectors and ex-
tractors, and building the DB-Main/Objectiver bridge required us to address the

171



implementation of bidirectional semantic mappings.
The basis of the Model-driven interoperability we stated in Section 2.4. A

detailed description of the architecture of the Objectiver/DB-Main bridge will be
presented in the following sections. We will start by presenting the tools involved
in the integration and shall then define the pivot metamodels used in this kind of
solution. After that, we shall describe how we have implemented the syntax and
semantic mapping, which bridge the gap between the two tools. The former deals
with aspects related to the data format of each tool, while the latter covers the
conceptual differences of the data of each tool.

8.1 The tools

Building software systems involves using multiple tools with different purposes,
which cover all the stages of the software development life-cycle. Therefore, tool
integration has always been a topic of great interest for the software community
[50]. We have tackled the integration of the DB-Main database engineering tool 1

with the Objectiver requirement engineering tool 2, as part of a collaboration with
the Precise research group, which created DB-Main at 1993.
DB-Main is a mature and free tool with a rich functionality for data engineering.

To facilitate integration with other tools, DB-Main provides an API Java named
JIDBM (Java Interface for DB-Main) which allows data and metadata of DB-Main
projects to be manipulated. The DB-Main project files (.lun extension) offer an
alternative to the use of this API; they represent all the information involved in a
DB-Main project in a non-XML proprietary format (hereafter LUN format), which
defines a complex structure with which to save and load the DB-Main projects.
In addition, a plugin that exports historical data and schemas in XML format is
being developed, and an initial version of this plugin is supported in a beta version
(at this moment the tool does not yet support the XML importation).

KAOS is a well-known goal-oriented requirement engineering method [132]. The
basic concepts of this method are the following: (i) requirements are described by

1http://www.db-main.be/
2http://www.objectiver.com/

172



means of a hierarchy of goals (i.e. desired system properties); (ii) each goal is
assigned to the agent (or agents) responsible for achieving it; (iii) goals involve
domain entities (a.k.a. objects) and relationships between them; and (iv) be-
haviour that agents need to fulfill is expressed by means of operations, which are
triggered by events, and work on objects. A requirement elicitation is therefore
expressed by means of four kinds of models: Goal model, Responsibility model, Ob-
ject model and Operation model. Objectiver is a payment tool supporting KAOS
methodology: it allows analysts to create KAOS models and generates require-
ment documents conforming to existing standards, among other functionalities.
This tool not only allows the export/import of project data in XML format, but
also as Ecore models [43]. To achieve this, Objectiver defines an Ecore metamodel
which describes the four kind of KAOS models. This feature promotes the MDE
interoperability of the tool as will be discussed later.

We have experimented the building of an MDE interoperability bridge between
Objectiver and DB-Main (henceforth Objectiver/DB-Main), whose architecture
was illustrated in Figure 4.4. More specifically, a bridge able to establish a bidi-
rectional mapping between Objectiver object models and DB-Main logical schemas.
Objectiver object models (which represents the concepts of the application domain
in KAOS methodology) are used to create a database schema in DB-Main. On the
other hand, the changes applied to database schemas in DB-Main are propagated
to the object model managed by Objectiver. Therefore, the solution not only al-
lows the generation of a final system’s software artifact (i.e. a database schema)
from a requirement model (i.e. the object model), but the inverse transformation is
also possible. In this way, the object model and the schema are kept synchronised.

8.2 Pivot Metamodels

In building a MDI bridge, the first stage is the creation of the pivot metamodels.
In the case of the Objectiver/DB-Main bridge, only the pivot metamodel for DB-
Main must be created. Objectiver includes a KAOS metamodel that defines 44
elements, but we have only considered those related to the object model. Figure
8.1 shows this part of the KAOS metamodel. An Objectiver model is represented
by a KModel and this is made up of one package (KPackage) named rootPackage.

173



KModel KPackage 

KConcept 

KDiagram 

KRelationship 

KEntity 

AbstractObject AbstractProperty 

Objective 

TerminalGoal 

Expectation Requirement 

Agent Goal 

Entity 

NamedResponsability 

Responsibility 

id 
revision 
openId 

rootPackage  1 

* diagrams entities * 

* relationships 

1 package name 
def 

Attribute 
name 
domain 

attributes * 

requirement   1 

responsible 1 

KConcept 

Relationship 

* link 
Link 

multiplicity 

1   linksTo 

Figure 8.1: Excerpt of the Objectiver pivot metamodel.

Packages are composed of KAOS diagrams (KDiagram), KAOS entities (KEntity)
and KAOS relationships (KRelationship). KAOS Diagrams provide graphical data
in order to visualise models. KAOS Relationships allow the definition of responsi-
bilities (Responsibility) between agents (Agent) and requirements (Requirement).
KAOS Entities are the basic elements of the Objectiver models. In addition to the
requirements and expectations properties (Expectation), the following abstract ob-
jects (AbstractObject) are defined: (i) agents (Agent), (ii) goals (Goal), (iii) entity
objects (Entity) that represent the objects in the Object model, and (iv) relation-
ships (Relationship) which contain links (Link) that define connections between
abstract objects and register the multiplicity of the link. These abstract objects
are characterised by attributes (Atribute) which contain a name and a domain.

We have defined the DB-Main metamodel shown in Figure 8.2. This metamodel
has been devised according to the data structure used in DB-Main to represent
database schemas. Thereby, the implementations of injectors/extractors to/from
DB-Main are less complex. A database schema (Schema) is composed of a collec-
tion of tables (Table) and a collection of foreign keys (ForeignKey). Each table is
formed by a collection of columns (Column), and references to collections of in-
dexes (Index) and identifiers (Identifier). Each column has a type (ColumnType)

174



column_type 

Column Table 

Schema 

ColumnType 

tables id 
name 

foreign_keys 

* 

* 

* 1 

columns 

ForeignKey 

minCard 
maxCard 
type 
length 
decimalNumber 
defaultValue 

Index 
id 

Identifier 
id 
isPrimary 

id 
name 

* * 

columns 

columns 

identifiers 

indexes 
* 

* 

id 

ColumnsFK 

* * 
source destination 

columns 

1 

1 

table 

Figure 8.2: DB-Main pivot metamodel.

whose attributes are: type which defines the domain of a column; minCard and
maxCard which define the cardinality in case of the multivalued columns; length
which delimits the size in the case of a string type; decimalNumber which delimits
the precision of the decimal part in the case of a number type; and defaultValue
which establishes a default value for the type. Schemas, tables and columns have
a name. Each identifier has a boolean attribute isPrimary to indicate if it is the
primary key of the table that references it. Foreign keys (ForeignKey) reference
the source and destination columns, which are stored in two ordered sets of the
same size. Given a position, a column in the source set represents the foreign key
column of a table which references a column in the destination set which represents
the primary key column of another table.

8.3 Syntactic Mapping

Once the pivot metamodels are available, the injectors and extractors must be
created if the tool does not support the facilities to export/import data to/from
Ecore models. As indicated previously, we have only created injectors/extractors
for DB-Main, since they are already included in the Objectiver tool.

Several MDE tools may be used in order to automate the creation of injectors
and extractors. For XML schemas, Eclipse/EMF provides a generic injector/ex-
tractor to/from Ecore models. EMF requires the XML Schema of the XML docu-

175



ments, and automatically generates a metamodel which represents the information
specified in the XML Schema. The EMF injector transforms a XML document
conforming to the XML Schema in a model conforming to the previously generated
metamodel. The EMF extractor performs the reverse process.

For a grammar format, DSL definition tools (a.k.a. DSL workbenches), such
as Xtext 3 and EMFText4, can be used to automatically generate an injector
and extractor. The grammar is specified by means of the notation provided by
the workbench to express the DSL grammar. Injectors can also be automatically
generated by means of a text-to-model transformation language, such as Gra2MoL
[47], which allows the expression of mappings between grammars and metamodels.

The use of a Java API can be automated by means of the API2MoL tool [101],
which automates the creation of (i) the API metamodel, (ii) the injector that
obtains a model from API objects, and (iii) the extractor that generates API
objects from models.

As indicated in previously, DB-Main provides three alternatives for integrating
data: the JIDBM API, and the LUN and XML formats. Figure 8.3 shows four di-
agrams which outline the injection/extraction strategies that can be implemented
for DB-Main, which are explained below.

8.3.1 Strategies to implement the injection

For the JIDBM API (see Figure 8.3(a)), we have contrasted the manual creation
of a Java application with the automated generation of the injector by means of
the API2MoL tool.

• Using the EMF API. A Java application uses JIDBM to access the DB-Main
data (it is not required that the tool was in execution) and the reflective EMF
API to create the DB-Main model which represents the database schema.
The persistence service of EMF is used to store the model.

• Using API2MoL. API2MoL automatically generates the JIDBM metamodel
and the injector/extractor for this metamodel. The API2MoL input should

3http://www.eclipse.org/Xtext/
4http://www.emftext.org/index.php/EMFText

176



Model 

Pivot  
Model 

DB-Main 
Objects 

injector 

extractor 

JIDBM 

JIDBM EMF 

EMF 

Generated by 
Api2Mol 

Model 

Pivot 
Model   

injector 

extractor 

SAX/JAXB 

DOM/JAXB EMF 

EMF 

XML 
DB-Main 

< XML > 

XML Serializer 
In EMF 

Model 

XML 
Model   

EMF Parser 

DB-Main 
XML file 

< XML > 
Model 

Pivot 
Model   

m2m 
Model 

Pivot  
Model   

injector 

extractor 
m2t: Xpand, Acceleo 

DB-Main 
Project file 

LUN 

t2m: Gra2Mol 

(a) (b) 

(c) (d) 

injector 

extractor 

EMFText 
Xtext 

Figure 8.3: Injectors and extractors for DB-Main.

be a Java program using the API. For the bridge proposed here, the program
uses JIDBM to recover all the data of a DB-Main project. Regarding the
previous solution, API2MoL avoids implementing the manual task of creating
the model by using the EMF API. In our case, the generated API metamodel
is slightly different to the defined DB-Main metamodel. Hence an additional
M2M transformation is needed, although it could also have been used as the
pivot metamodel.

For the XML format (see Figures 8.3(b) and (c)), we have contrasted the manual
creation of a Java application with the automated generation of the injector by
means of the EMF generic injector.

• Using the EMF API. The EMF API can be used to create a model from
either the data produced in an XML parsing or the Java objects obtained
in a XML-to-Java mapping. We have created a XML parser using the SAX
parser included in JAXP 5. Although JAXP also provides a DOM parser that

5http://jcp.org/en/jsr/detail?id=63

177



loads all the data contained in the XML document in memory at once, the
restrictions in the queries of the XML document promote the use of SAX.
On the other hand, we have used the JAXB API 6, which maps Java objects
to XML documents and vice versa. To build an injector, the unmarshall tool
provided in JAXB allows the loading of the XML data into memory as Java
objects. Then, a Java program can analyse these objects and use the EMF
API to create a model that conforms to the DB-Main metamodel.

• Using the generic XML injector provided by EMF. As indicated above, EMF
provides a generic injector for XML documents. The models injected con-
form to the XML Schema metamodel. An additional M2M transformation
that converts the model injected into a DB-Main model would be therefore
necessary.

LUN files store the data and metadata of a DB-Main project, in particular the
database schema, the history of the different schema versions, and the operations
applied in a data engineering process. Since the LUN format is defined by a
grammar, DSL workbenches and text-to-model transformations may be used to
automate the building of injectors. Therefore, we have again contrasted an EMF-
based manual solution with the use of DSL workbenches, in particular EMFText,
and the Gra2MoL language (see Figure 8.3(d)). However, the complexity and
variability of the LUN format makes it very difficult to implement the EMFText
grammar as well as the Gra2MoL transformation. For instance, the meaning of
some data are dependent of their position and type in the LUN file.

8.3.2 Strategies to implement the extraction

As with injectors, we have experimented with several strategies for each DB-Main
interoperability option (see Figure 8.3). In the case of JIDBM (Figure 8.3(a)),
the two strategies previously described for the injectors are bidirectional because
JIDBM also includes methods for creating and updating the DB-Main data. There-
fore, the JIDBM and EMF APIs could be used to create an extractor manually.
However, this extractor could be automatically generated by using API2MoL.

6http://jcp.org/en/jsr/detail?id=222

178



Table 8.1: Assessment of the strategies

Strategy Automation Bidirectional Easiness Maturity
JIDBM EMF 8 8 3 3

API2MoL 333 3 8 8

XML SAX/DOM or JAXB + EMF 8 8 3 3

EMF XML + m2m 33 3 3 3

LUN manual pars./gen. + EMF 8 8 3 3

Gra2MoL + m2t 3 8 8 8

DSL workbench 333 3 3 3

Using the XML schema, the strategies used for injectors are bidirectional, so
that they can again be applied to create extractors but in the opposite direction.

• The EMF API is used to traverse the DB-Main pivot model, and a XML
parser or the JAXB mapper in order to create the XML document (Fig-
ure 8.3(b)). In this scenario, the DOM parser could be more appropriate
than the SAX parser due to the fact it eases the creation of XML trees.

• The generic extractor available in EMF could be used by previously writing
an M2M transformation that converts the DB-Main model into a model that
conforms to the XML schema’s metamodel. Then, the generic extractor
could serialise the XML model into a XML document (Figure 8.3(c)). It
is worth remarking that a single M2M transformation could be enough if a
M2M transformation language supporting bidirectionally is used.

Finally, a LUN file could be generated from a DB-Main model by using a M2T
transformation (see Figure 8.3(d)). However, the complexity of the LUN grammar
makes it difficult to implement this transformation and the effort required is much
greater than for the other implementation strategies.

8.3.3 Assessment of the strategies

In the previous section, different strategies have been proposed which implement
the Objectiver/DB-Main bridge for the EMF framework. Four main criteria could
be considered to choose the most appropriate strategy:

179



• Automation Level. Instead of creating solutions from scratch by means of
GPLs and APIs, MDE technology (tools and languages) can be used to
automate the creation process. In this way, the effort involved in development
is significantly reduced.

• Bidirectionality. Which bidirectionality facilities are provided should be
taken into account. An ideal solution would be to implement the injection
and extraction process at once.

• Ease of learning. Learning the applied technologies involves an effort which
must be taken into consideration when evaluating the cost of developing a
solution.

• Maturity Level of Tools. The lack of mature MDE tools is hindering its
industrial adoption. Many tools stem from academic projects and they lack
the required standards of quality.

Table 8.1 summarises the assessment of the applied strategies regarding the con-
sidered criteria. With regard to the level automation, the following marks are used:
8 indicates that the solution is totally manual, 3 if the automation is achieved
by writing model transformations, 33 if an additional m2m transformation is
required, and 333 when injectors and extractors are automatically generated.
Bidirectionality is supported if the injector/extractor can be generated from an
only specification (or program). In assessing easiness, we have considered that
GPLs, involved APIs, and BNF grammars are easy to use and learn. Finally, we
have considered as mature tools those created by companies or consortium that
have provides an stable support for several years.

The ideal strategy would be a strategy capable of automatically creating a bidi-
rectional solution (i.e. injector and extractor are automatically generated), and is
based on mature technology which is easy to use and learn. Next, we will analyse
the MDE technology involved in the outlined strategies.

API2MoL is shown as the best choice from a technical point of view, because
it automatically generates a bidirectional solution. This tool also generates the
API metamodel (in this case, the JIDBM metamodel), which could be adequate
as a pivot metamodel. An additional M2M bidirectional transformation would be

180



needed if the API metamodel is not the pivot metamodel, and developers should
just write a simple program that uses the API for building the data objects to
be injected. However, API2MoL is an academic tool that has been discontinued.
Moreover, lack of documentation makes learning it difficult. It is also worth noting
that the metamodel generated by API2MoL may be incomplete, as discussed in
[101]. Developers should therefore write an APi2MoL specification in order to ob-
tain the complete metamodel, as well as the corresponding injector and extractor.
In our case, the metamodel generated by API2MoL was complete.

EMF also provides a bidirectional solution through the generic injector and
extractor available for a XML Schema. As indicated above, an additional M2M
transformation is always needed to map the XML schema metamodel and the pivot
metamodel. This mapping should be implemented by means of a bidirectional
transformation. Regarding API2MoL, the use of these tools is simpler and the
effort involved in learning it is significant lower.

With regard to the grammar format, DSL workbenches allow the obtaining of
a bidirectional solution from a BNF-like grammar specification. In addition, T2M
and M2T transformations may be used to implement injectors and extractors, re-
spectively. To our knowledge, Gra2MoL is the only available T2M transformation
language, but this language is specially tailored to inject models from GPL code.
A detailed comparison of Gra2MoL and DSL workbenches is discussed in [47].
On the other hand, M2T transformation languages (e.g. Acceleo and Xpand) are
widely used to generate textual software artefacts from models, and they are easy
to learn and use. In our case, these three strategies are the choice that involve a
larger development effort due to the complexity of the LUN format.

8.4 Semantic Mapping

Once the syntactic mapping has been created, the semantic mapping could be
implemented. In our case, a bidirectional mapping between the DB-Main pivot
metamodel shown in Figure 8.2 and the excerpt of the Objectiver metamodel shown
in Figure 8.1. A bidirectional M2M transformation should be written to implement
such a mapping, instead of writing two unidirectional M2M transformations. In
this way, the implementation and maintenance effort would be reduced. Among

181



dbm: Schema 

tables: Table 

kaos: KModel 
rootPackage: KPackage   

entities: Entity 

[isObjectModel = true] 

name 

id , name 

columns: Column 

identifiers: Identifier 

new columnKey:: Column 

id := new 
name := ‘id’ + name 

type := ‘INTEGER’ 

DB-Main Model Objectiver Model 

new identifier:: Identifier 

id:= new 
isPrimary:= ‘true’ 

columns:=  
OrderedSet { ‘id’ + name }  

attributes: Attribute 

name , 
colum_type == domain 

Figure 8.4: Semantic mapping for tables↔ entities.

dbm: Schema 

tables: Table 

dbm: Schema 

tables: Table 

foreign_keys: 
 ForeignKey 

columns: ColumnsFK 

DB-Main Model Objectiver Model 

kaos: KModel 
rootPackage: KPackage   

relationships:  
Relationship 

link1: Link 

link2: Link 

multiplicity = 1 
linksTo: Entity 

multiplicity = N 
linksTo: Entity 

source: Column 
destination: Column 

id , name 

identifiers: Identifier 

columns: Column 

id 
name 

id , name 

columns: Column 

id , name 

id 
name 

new columnFK:: Column 

Figure 8.5: Semantic mapping for foreign keys↔ relationships.

182



the most widely used M2M transformation languages, QVT Relational is the only
one supporting bidirectionality. Although QVT was proposed with the purpose of
becoming a standard language for M2M transformations, only a few implementa-
tions are currently available and none have achieved the desired level of maturity.
ModelMorf 7 and Medini QVT 8 are the commonly used implementations. We
have used Medini QVT ”due to its greater visibility on the Web, Eclipse integra-
tion, debugging facilities and other developer-friendly features” [52]. Below, we
describe the defined QVT transformation.

Figure 8.4 represents the mapping applied without considering foreign keys
(FK). The graphical notation depicts the metamodel’s classes as boxes and the
semantic links between them as bidirectional arrows. The arrows are labeled by
the attributes mapped in the link (== is used to denote the mapping but it is omit-
ted if the name is the same in both metamodels). The reference and aggregation
relationships between classes are represented by means of nested boxes. Figure 8.4
shows that a DB-Main schema (Schema) maps to a root package (KPackage) of
an Objectiver model (KModel). The schema and the root package will have the
same name, and each table (Table) of the schema maps to an entity object (En-
tity) of the package. A table and its mapped entity will have the same name and
identifier (id). Each column (Colum) of a table maps to an attribute (Attribute)
of an entity. A column and its mapped attribute will have the same name and the
column type are given by the domain of the attribute. A new column for register-
ing the primary key is directly instantiated. Its type is 'INTEGER' and its name
is formed by concatenating the table name to the prefix ’id’. It is worth noting
that the attributes of an entity do not have id but columns and identifiers in the
DB-Main model and require an unique id. New ids for the elements of a DB-Main
table are created by systematically concatenating the id of the container element
to a sequential counter which starts from zero for each container element. A new
identifier is also instantiated. Its isPrimary attribute is 'true' and its columns
attribute is the name of the new column key added.

Figure 8.5 represents how FKs are mapped to relationships. This mapping is

7http://www.tcs-trddc.com
8http://projects.ikv.de/qvt

183



similar to the conversion between the Entity/Relationship model and the Rela-
tional model (without considering optional/mandatory relationships, i.e. not con-
sidering multiplicity 0). The conversion implies that the table having multiplicity 1
propagates the columns of its primary key to the table with multiplicity N, where a
new FK comprising the propagated columns is added. An Objectiver object model
can include three kinds of relationships: 1:1, 1:N and N:N. A FK (ForeignKey)
of a table maps a relationship (Relationship) between entities. A relationship has
two links that represent the multiplicities at each end. For relationships 1:1 and
1:N, each link maps a table, more specifically the table mapped to the entity refer-
enced by the link (reference linksTo). In accordance with the previously explained
conversion, the entity in the link with the multiplicity 1 corresponds to the table
that propagates its primary column to the other table as the FK column. Note
that the column propagation occurs only in the DB-Main model. As we can see
in Figure 8.5, links are mapped to tables by the attribute linksTo. Once we have
identified both the tables in DB-Main involved in the relationship of Objectiver,
the propagation of the new column in the DB-Main model is simple. We should
create a new column from the column that comprises the identifier of a table in
order to represent the new columnFK in the other table. Both columns, the new
FK column of a table and the identifier column of the other one are the source
and destination columns of the ColumnsFK element in the DB-Main model, re-
spectively. For N:N relationships a new table is generated in the DB-Main model.
It is composed of the columns which comprise the primary key of the two tables
involved in the N:N relationship. The two new 1:N relations between the new table
and the tables of the relationship are resolved by using the previous 1:N mapping.

Once the semantic mapping of our bridge is defined, we shall illustrate how the
mapping has been implemented by means of Medini QVT. We shall show only one
pair of QVT relations due to space limitations.

The next relation corresponds to the mapping between schemas and Objectiver
models. It is only applied when the Objectiver model is an object model. For this,
the isObjectModel() helper checks if the name of the Objectiver model contains the
”object” string. The mapping establishes that entities and tables have the same
name. Finally, the Table2Entity relation that maps the tables of the schema and
the entities of the root package is resolved. The TableKey2Entity relation that

184



establishes a table identifier for each entity is also resolved.

Listing 8.1: Medini QVT Relation for schemas and object models.
1 top relation SchemaToModel {
2 n : String ;
3 idModel : String ;
4 en f o r c e domain dbmain dbm : dbmain : : Schema {
5 name = n ,
6 t a b l e s = tb : dbmain : : Table {}
7 } ;
8 en f o r c e domain o b j e c t i v e r obj : kaos : : KModel {
9 rootPackage = root : kaos : : KPackage {

10 subPackages = subs : kaos : : KPackage {
11 name = n ,
12 e n t i t i e s = en : kaos : : Ent ity {}
13 }}
14 } ;
15 when { isObjectModel (n) ; }
16 where {
17 idModel = root . id . sub s t r i ngBe f o r e ( ’ : ’ ) ;
18 TableKey2Entity ( tb , en , idModel ) ;
19 Table2Entity ( tb , en , idModel ) ;
20 }
21 }

The relation that maps to 1 : N relationships is shown below. When this relation
is applied the identifiers are mapped and the ColumnsFK2Links relation is resolved
in order to map the FK columns and the two links of the relationship.

185



Listing 8.2: Medini QVT Relation for foreign keys and 1N realtions.
1 relation FK2Relation1N {
2 i : String ;
3 i d I : Integer ;
4 l k1 : kaos : : Link ; lk2 : kaos : : Link ;
5 en f o r c e domain dbmain fk :
6 dbmain : : ForeignKey { id = i d I } ;
7 en f o r c e domain o b j e c t i v e r r e l :
8 kaos : : Re l a t i on sh ip { id = i } ;
9 p r i m i t i v e domain idModel : String ;

10 when {
11 i d I = t o I d I n t e g e r ( i ) ;
12 i = to IdS t r i ng ( idModel , fk . id ) ;
13 }
14 where {
15 l k1 . m u l t i p l i c i t y = ’ 1 ’ ;
16 l k2 . m u l t i p l i c i t y = ’n ’ ;
17 ColumnsFK2Links ( c l , lk2 , lk1 ) ;
18 }
19 }

8.5 Applying the bridge

We have taken an excerpt of the automated train control system example presented
in [133] to illustrate the bridge between Objectiver and DB-Main. This example
shows how KAOS can be used to model the requirements involved in a train traffic
security system. The goal model is shown in Figure 8.6 and defines an expectation
(Safe transport), a main goal to accomplish (Avoid train collisions) and
several refinements by using simpler requirements. The agents involved in the
goals are: Speed control system, On board train controller and Tracking
system. The entities managed by the goals are Train, Line and TrackSegment.

The object model is shown in Figure 8.7. As can be observed in this figure,
the notation for these models complies with those used in UML for class dia-
grams. This model represents the entities (Train, Line, and TrackSegment) and
the relationships between entities, but agents are not included. Train has its own

186



Figure 8.6: Goal model of the running example.

Figure 8.7: Object model of the running example.

association to be able to define the precedence between trains. Line includes the
position attribute which refers to the position inside the track segment (consid-
ering that each line has a position in each track). Each Line contains one or more
TrackSegments and each TracSegment could be assigned to one or more Lines
(contain association).

To apply our bridge to the previous example, we must firstly export the Ob-
jectiver project to an Ecore model, conforming to the Objectiver metamodel (see
Figure 8.8). We should then apply the previously presented QVT transformation
to obtain the DB-Main model (see Figure 8.9). Next, we have performed the
API2MoL extractor to generate the DB-Main database schema, which is shown

187



Figure 8.8: Ecore model of the Objectiver project.

Figure 8.9: Ecore model of DB-Main after the semantic mapping.

in Figure 8.10. Each relationship has been converted into a foreign key. For the
N:N relationship a new table has been created (LineTrackSegment) along with its
foreign keys.

Next, we applied some changes to the generated schema and the object model in
order to test the synchronisation. For instance, we added a new number attribute

188



Figure 8.10: DB-Main project extracted by the syntactic mapping.

Figure 8.11: Ecore model of the Objectiver project after the modification.

to the Train table in the DB-Main schema (wagons). After applying the injection
process and the semantic mapping, the new object model shown in Figure 8.11
was generated.

8.6 Conclusions

We have presented an MDI approach for a case study based on the integration
of Objectiver and DB-Main. This integration have allowed us to experiment with

189



the majority of concerns involved in the construction of an MDI bridge: (i) tools
may export exchanged data to models or not, (ii) tools can offer several forms to
allow access to its data; and (iii) the integration can be unidirectional or bidirec-
tional. In our case, Objectiver provides support to export/import its models to
Ecore models, but DB-Main does not offer such support; DB-Main provides three
interoperability forms (API, XML and grammar format); and the integration is
bidirectional. Therefore, we have explored several implementation strategies for
creating injectors and extractors for DB-Main data, as well as the use of QVT Re-
lational to write bidirectional transformations. Some of the main lessons learned
in building the Objectiver/DB-Main are the following:

• Automation provided by MDE tools can significantly reduce the implemen-
tation effort compared to using GPLs (e.g. Java) and a metamodelling API
(e.g. EMF) to build the bridge from scratch. The choice of MDE tool de-
pends on the available data formats, and the criteria introduced in Section 8.3
for injectors and extractors.

• API2MoL and DSL workbenches provide a high level of automation, since
they can automatically generate injectors and extractors. However, API2MoL
is discontinued and lacks adequate documentation.

• When XML is used, it is worth remarking that the strategies using SAX/-
DOM or JAXB can be bidirectional although completely manual, whereas
the use of the EMF parser/serialiser only requires writing one or two M2M
transformations (depending on the bidirectional supporting) only in case of
the metamodel generated by EMF was not valid as pivot metamodel.

• DSL workbenches and EMF’s XML injector/extractor are mature tools which
are easy to use and learn. Injectors and extractors generated by DSL work-
benches that requires the pivot metamodel as input are directly usable, while
an additional M2M transformation is normally required for EMF.

• Whenever a grammar format is used to export/import exchanged data, DSL
workbench would be the preferable solution if the grammar is not too compli-
cated. In our case, these tools could not be used because the LUN grammar
is large and complex.

190



• Considering the use of QVT, the implementation of a bidirectional mapping
is more complicated than a unidirectional one. Owing to the fact that map-
ping declarations must be applied in two ways, some restrictions have to be
considered (e.g. the right side of an assignment can not contain complex
runtime expression because it is also the left side of the assignment when the
transformation is applied in the opposite way). As writing imperative code is
commonly needed, the possibility of defining helper functions in Medini QVT
is very useful. The tool allow the combination of imperative code and OCL-
style declarative code. Medini QVT provides a lot of useful functionality but
the debug support should be improved.

191





(Suggested by Juan Manuel)

”The road is hard and you are soon tired. As
you struggle up a rocky mountain path, a man
and a woman ride past on a horse, deep in con-
versation. As they gallop on, the dust makes
you splutter, but they are out of sight before
you can react. Eventually you reach the top of
the hill, and, for the first time in your life, can
look down into the valley beyond. It is fertile
and inviting.”

from Bloodfeud of Altheus, John Butterfield,
David Honigmann and Philip Parker 9

Conclusions

The evolution of legacy systems is a problem that companies must currently
address in order to maintain the value of their information systems. Modernisation
processes should be applied not only to legacy application migration but also to
quality software improvement. Data-intensive information systems are composed
of applications, which basically implement the business logic and the GUI, and
data which are defined by database schemas. With regard to the data layer of
legacy data-intensive systems, wrong design choices or technological limitations
may involve quality improvements during the modernisation process. For instance,
it would not be possible to implement foreign keys owing to the limitations of the
database engine, as in our case study OSCAR. Databases may also need of an
appropriate normalisation level in order to ensure the absence of data redundancies
and inconsistencies. The objective of this thesis has been to provide a model-
driven data reengineering approach that addresses the improvement of the schema
quality in the context of the evolution of a legacy information system. As part of
the objectives of the thesis we have provided a migration tool in order to define

193



and enact migration processes along with a model-driven interoperability solution
with which to integrate data engineering tools into a MDE reengineering approach.

This last chapter will present the conclusions and contributions of the thesis.
We shall also outline the future research lines and we shall finalise by presenting
the main publications derived from the works contained in this thesis along with
other publications, projects and research stays. Below we shall begin to discuss
the results attained for each goal and present the fulfillment of the requirements
pointed out in Chapter 4.

9.1 Discussion

In Chapter 1 we introduced the four main goals of this thesis: (G1) the implemen-
tation of a data reengineering process by using MDE techniques; (G2) employing
different strategies in order to elicit foreign keys for the restructuring stage of the
process; (G3) building a tool that is able to automate the development of model-
driven reengineering processes and (G4) tackling the MDE-base tool interoper-
ability through the building of a bidirectional bridge. The solution architecture
we devised for each goal was presented in Chapter 4, and we shall now start by
first tackling the general requirements identified in Section 4.1. We shall then
discuss to what extent the specific requirements of each goal are accomplished. A
table will then be used in order to summarise how all the requirements have been
fulfilled in which the first column identifies the requirement; the second column
points out the solution that achieves the fulfillment; the third column indicates
the degree of fulfillment (low, medium and high); and the last column includes
other considerations about the fulfillment.

We shall first remind the reader of the general requirements defined for the
approach presented as a result of this thesis, which are described in Section 4.1:
(R1) Productivity, (R2) Automation, (R3) Modularity, Extensibility and Reusabil-
ity, (R4) Evolvability, (R5) Consistency and (R6) Technology Independence.

We have profited from the benefits provided by MDE in order to meet the
R1, R2, R3, R4, R5 and R6 requirements. In general, metamodelling and model
transformations are useful techniques that provide several benefits during the im-
plementation of a solution.

194



Productivity (requirement R1) is one of the main reasons for applying model-
driven techniques rather than a traditional solution. As we noted in the assessment
of our data reengineering approach (Chapter 6), productivity is the main factor
that encourages the use of MDE [5]. The savings in effort made when applying
MDE during the building of a migration process tool were similarly quantified in
Chapter 7 and compared to a traditional solution. Metamodels and model trans-
formations enable the building of generative architectures with which to represent,
transform and automatically generate data and software artefacts. Migration tools
that support the definition and enactment of reengineering process is another of
the contributions included in our proposal that allows productivity to be improved.

Model transformation allows the developer to automate tedious and repetitive
tasks (requirement R2), that usually have to be applied several times in a reengi-
neering process. For example, in a migration scenario, the same reengineering
process has to be applied to a large number of legacy applications, which means
that a traditional manual approach results in high-cost software solutions.

Metamodels and model transformation chains enable modularity of solutions
and can be easily reused (requirement R3) in another different solution to that
for which they were created. In order to reuse a chain, the inputs and outputs
of this transformation chain must be connected to another solution by injecting/-
transforming them in accordance with the proper formats required by the other
solution. A modular and reusable architecture facilitates extensibility because a
new functionality can be developed and added to a model-driven solution by tak-
ing into account the metamodels that act as inputs and outputs of modules or
process stages.

Using MDE in order to build software could improve the capabilities of the in-
tegration between the software and database subsystems, i.e. the synchronisation
between programs and data could be facilitated through coupled model transfor-
mations. A transformation chain could therefore allow the consistency between
database and data access code to be maintained: changes in data should trigger
changes in data access code and vice versa. Database evolution could therefore
guarantee the right evolution of programs (requirement R4). Model techniques
used in our solution promotes evolvability by means of traces models along with
model transformations with which to propagate database changes. Our proposal

195



has not yet implemented either the generation of trace models or the correspond-
ing model transformations with which to map the tracing data. However, the
data reengineering solution proposed has considered the consistency (requirement
R5) between data and the ORM definitions because changes resulted from the re-
structuring stage are propagated to the data definitions (DDL scripts) and ORM
definitions (JPA access code).

Finally, some previous fulfillments in requirements provide technology indepen-
dence (requirement R6). Our process was designed to take a database repre-
sentation at a high level (Data model and Defect model) and regenerate a new
one after providing data quality, without considering source or target database
technologies. Model injectors and artefact generators have to deal with problems
concerning specific or their own formats and technologies.

Table 9.1 shows a summary of the general requirements of the approach pre-
sented and the considerations to bear in mind.

Req. Solution Fulfillment Other considerations
R1 Metamodels, model transformations, tooling High None
R2 Model transformation chain High None
R3 Metamodels and model transformation chain High None
R4 Trace models and model transformation chain None Not implemented yet
R5 Model Transformations Medium Only for JPA definitions
R6 High level models High Inject./gener. technology-specific

Table 9.1: Fulfilment of the general requirements

9.1.1 G1. Data Reengineering Process

The requirements defined for the goal G1, that is the data reengineering process,
are the following: (R7) Representing a database at a high abstraction level, (R8)
Providing the migration stakehorlders with manual support in order to manage the
schema conversion and (R9) Variability in the artefacts generated.

The models have been useful to explicitly represent the database information
that is discovered in the reverse engineering stage (requirement R7), which is de-
scribed at a high abstraction level by means of metamodels that we have created
as, for instance, a Defect model or a Functional Dependency model. Several im-
plicit constructors or semantic concepts are discovered and modelled from database
records and schema; these models are used in the restructuring stage during which

196



the data quality improvements are applied. We have taken advantage of models
and metamodels as formalisms that provide a uniform representation of any kind
of information.

The database administrators’ and developers’ knowledge must be taken into
account when deciding what implicit FKs should be defined (requirement R8). As
discussed at the end of Chapter 5, the results achieved by each separate analysis
are not conclusive. Even the manual combination of the results does not ensure
that every implicit constraint is well proposed or all implicit constraints have been
discovered. In order to improve the reliability of the foreign key elicitation process,
we have therefore provided a wizard to assist the migration developers in the task
that consisting of confirming or rejecting the implicit foreign key discovered after
applying our approach. It is worth noting that some implicit FKs could not be
discovered by our approach

Our data reengineering process has considered the generation of several kinds of
artefacts (requirement R9), such as scripts with which to regenerate the database
and data access code for an ORM technology (e.g. JPA) and data access code
implemented on a ORM technology (JPA). Moreover, other generators can easily
be integrated into our solution, as noted in Section 6.7.5. Table 9.5 provides a
summary of the discussion concerning the requirements of the G1 goal by using
the three criteria established.

Req. Solution Fulfillment Other considerations
R7 Data and Defect models Medium None
R8 Wizard to confirm FKs Medium Only for FKs proposed
R9 Different generators provided High Extensible architecture

Table 9.2: Fulfilment of the requirements of goal G1

9.1.2 G2. Strategies of FK Discovering

We shall now remind the reader of the requirements defined for the second high
goal G2, that is the strategies of FK which discover: (R10) Use of multiple sources
for the analysis, (R11) Use of different techniques for the analysis and (R12)
Combining results from the different analysis.

The elicitation of foreign keys is achieved by harvesting knowledge from different
sources (requirement R10), such as data stored in databases, schemas that define

197



the structure of data and database access code in applications. Several sources
allowed us to apply different strategies. On some occasions, these provided simul-
taneous results which proved to be trustworthy, while on others they provided
complementary results with which to elicit new constraints. However, some alter-
native sources have not been addressed, such as reports or screen layouts.

The data and schema analysis have been implemented (requirement R11) by
using two strategies: (i) injecting data into models and applying model transfor-
mations, and (ii) directly accessing the database by performing algorithms written
in PL-SQL. We experimented with both implementations and this allowed us to
provide an assessment of each one.

As noted in Chapter 5, we have manually combined the results attained by using
each kind of analysis (requirement R12). In that chapter we discussed the inap-
propriateness of only analysing one source of the legacy application, owing to the
fact that the different sources of information have different levels of reliability and
there is no perfect source of information that would be sufficient in the foreign key
elicitation. Therefore, the triangulation of the results obtained from the different
analyses would therefore appear to be promising. Table 9.3 shows a summary of
the fulfillments of the previous requirements.

Requirement Solution Fulfillment Other considerations
R10 Data, schema and code High Reports or Screens not considered
R11 DAS-M and DAS-D High Assessment provided
R12 Triangulation of results High Manual step

Table 9.3: Fulfilment of the requirements of goal G2

9.1.3 G3. Migration Tool

We shall first remind the reader of the requirements defined for the goal G3, that is
the migration tool: (R13) Supporting the process definition, (R14) Ability to define
migration processes in abstract and concrete form, (R15) Supporting the process
enactment, (R16) Integration with existing development environments, (R17) Tasks
should define the dependencies among them, and (R18) Support for task assignment.

It is worth noting that legacy applications are usually composed of thousands
of artefacts that should be migrated to the new platform. A migration tool should
automate how a reengineering process is applied to each of the software artefacts

198



in the legacy system. The tool presented in this thesis is capable of taking the
legacy resources and applying the right process for each one, according to the type
of legacy resource and the subprocess in the migration process which is in charge
of transforming this kind of artefact.

As part of this thesis, we have developed a tool in order to support the definition
and enactment of model-driven software processes. We have, more specifically,
focused on the domain of migration processes, characterised by the need to be
applied to a large amount of artefacts comprising the legacy application. This
scenario requires a specific solution that supports the definition (requirement R13)
and enactment (requirement R14) of these processes. Our tool offers a SPEM-like
software process language whose objective is to define model-driven migration
processes, but could be applicable to any kind of process. The migration processes
defined with this language (i.e. abstract migration models) are instantiated in the
concrete migration models which include all the information needed (e.g. tools
and database scripts) to be enacted .

We have created an process interpreter that takes as input the concrete models
and enacts the process (requirement R15) by providing automated and manual
tasks on a Trac system as tickets. The automated tasks are executed from Trac by
using ANT scripts and the manual tasks are supported by Mylyn tasks which can
be integrated into a development environment as Eclipse, thus providing the task
with contextual information to the task (requirement R16). The Trac system is
also able to establish dependencies among tasks (requirement R17), which means
that a task can be enacted (i.e. executed by ANT or unblocked in Mylyn) only if
all the preceding tasks in its dependency have already been completed. Finally, the
task assignment (requirement R18) is provided by Mylyn and its Eclipse plugin.

The accomplishment of the requirements is summarised in Table 9.4.

Requirement Solution Fulfillment Other considerations
R13 SPEM-like process language High None
R14 Abstract and concrete processes High None
R15 ANT scripts and Mylyn tasks High None
R16 Mylyn plugin in Eclipse High None
R17 Trac ticket dependencies High None
R18 Mylyn plugin in Eclipse High None

Table 9.4: Fulfilment of the requirements of goal G3

199



9.1.4 G4. Tool Interoperability

Finally, we shall remind the reader of the requirements defined for goal G4, the
tool Interoperability: (R19) Bidirectionality, and (R20) Dealing with different sce-
narios.

We first experimented with a model-driven bridge with the objective of integrat-
ing the ConExp tool into our reengineering process with the purpose of obtaining
functional dependencies. We then built a bridge in order to integrate the DB-Main
tool into MDE solutions (requirement R20). This bridge was tested by the case
study. Finally we tackled how DB-Main could interoperate with other tools, in
particular Objectiver, by means of a bidirectional bridge (requirement R19). The
building of these bridges enabled us to experiment with different strategies so as
to implement the syntax mapping (i.e. injectors and extractors). We were addi-
tionally able to investigate the capabilities of QVT Relational as regards creating
bidirectional semantic mappings in the case of the DB-Main/Objective bridge.

Requirement Solution Fulfillment Other considerations
R19 Injectors/Extractors and QVT transformation High None
R20 DB-Main/modelsware and Objectiver/DB-Main High None

Table 9.5: Fulfilment of the requirements of goal G4

9.2 Contributions

The contributions of this thesis are described below. They will be categorised
according to the goals identified in Section 1.2.

9.2.1 G1. Data Reengineering Process

As noted in [18], one of the challenges of database engineering (e.g. data reengi-
neering) is ”how to integrate transformational database engineering into emerging
MDE frameworks”. This work contributes to this endeavour by evaluating the
extent to which MDE techniques can confront data reengineering challenges. To
the best of our knowledge, this work is one of the first contributions to provide
an assessment of the use of MDE in data reengineering. We have addressed the

200



problem of discovering and removing defects in database schemas in a database mi-
gration scenario. In particular, we have considered two defects as proof of concept:
undeclared foreign keys and disabled constraints. We have defined an MDE-based
approach for this setting which has been implemented as a reengineering process in
which the three aforementioned stages are realised as model transformation chains.
This approach is showcased by means of an information system that is widely used
in the healthcare industry in Canada: OSCAR (Open Source Clinical Application
Resource) [111]. We have contrasted our work with the tasks usually performed in
traditional approaches and have identified some benefits and drawbacks of apply-
ing MDE techniques in data reengineering, which could enable us to assess to what
extent they could be applicable to other problems in this area. The contribution
is therefore twofold: the model-driven reengineering approach described and the
assessment presented.

9.2.2 G2. Strategies of FK Discovering

The data reengineering process (schema conversion) provided in this work has been
showcased by the OSCAR system. In contrast to many other research works that
start by proposing a new or improved solution to the data reengineering problem,
followed by a validation with problem case studies (often handpicked to make a
point), we start by studying the actual problem in the context of a real-world,
large-scale legacy system in the healthcare industry. As a result of our analysis,
we find that many of the assumptions commonly made in DB reengineering meth-
ods and tools do not readily apply in practice. Based on our problem analysis we
devise a process with which to reengineer legacy information systems as regards
establishing referential integrity constraints and combining existing reengineering
methods. In summary, our results suggest that the process of reengineering legacy
information systems with regard to establishing referential integrity constraints
may be considerably more complex than is commonly assumed. It must be under-
stood as an incremental detection process.

201



9.2.3 G3. Migration Tool

Owing to the lack of software environments for model-driven reengineering pro-
cesses, we have built a tool, named Models4Migration in order to partly automate
the migration effort. This tool is based on an MDE approach that is implemented
around three main design choices: i) models are used to define migration pro-
cesses between pairs of specific technologies, ii) these process models are enacted
through a model transformation chain that generates the automated and manual
tasks to be performed, and iii) the automated tasks are directly executed and the
manual tasks are generated as Trac 1 tickets which are integrated as tasks into
the Mylyn tool 2. In [134] is stated that ”It is desirable to define software pro-
cesses with sufficient precision so that many of the routine enactment tasks can
be automated”, and the tool proposed has explored how MDE techniques can be
useful to automate enactment tasks in software development processes, particu-
larly in migration processes. For instance, creating tickets is a tedious and time
consuming task performed by team leaders, so the automated generation of tickets
is one of the benefits of our tool. We have chosen Trac and Mylyn as they are
open-source tools commonly used by software companies, but tools with a similar
functionality could be used in our approach. The model-driven strategy applied
allows us to obtain a technology-independent approach, as the tool is configured
by means of models that represent both the migration processes and the behaviour
to be performed in order to enact them. These models are encapsulated whitin
cartridges that are plugged into the tool.

The tool proposed therefore makes three contributions. Firstly, to the best our
knowledge, Models4Migration is the first proposal to enact process models by ex-
ecuting automated tasks (e.g. model transformations) and generate programming
manual tasks which are integrated into a task management tool (i.e. Mylyn). Note
that our approach goes beyond the definition of software processes provided by

1http://trac.edgewall.org
2http://www.eclipse.org/mylyn

202



tools such as EPF 3, the management of processes realised with Microsoft Project 4

or the enactment implemented for some existing process modelling languages [91].
However, a migration process also involves financial and technical constraints, re-
source planning and risk management among other activities, which are not whitin
of the scope of this work. Secondly, our work is one of the first experiences to show
how an MDE approach can be used to build a tool supporting software develop-
ment processes from the definition of software processes to the management of
the tasks to be performed by managers and developers. Thirdly, we present a
solution to support migration processes that have been implemented with MDE
technologies.

9.2.4 G4. Tool Interoperability

In order to ease the integration of external tools, such as DB-Main or Concept
Explorer, into the data reengineering process we have devised a model-based ar-
chitecture that aims at bridging the gap between tools. Each tool or process
usually provides its data by using different formats and software artefacts (APIs,
files or other specific resources). For instance, DB-Main offers only a data access-
ing API along with two different files in two different formats (one XML file and
one project file). The MDE techniques have proved to be useful as regards easing
and extending the interoperability capabilities of DB-Main. By implementing the
adequate artefacts of which the architecture of a bridge is composed, data could
be exchanged from/to DB-Main. We take advantage of the existence of three dif-
ferent means to access DB-Main in order to implement several alternatives so as to
extract or inject data from DB-Main. Through this case study, we therefore con-
tribute to analysing and discussing how MDE can address several interoperability
scenarios.

3http://www.eclipse.org/epf
4https://products.office.com/en-us/project (accessed on 11-20-2014)

203



9.3 Future work

We have arranged the future work into several categories according to the goals
defined in Chapter 1.

9.3.1 G1. Data Reengineering Process

Future work could focus on two directions: improving the reengineering process
applied and detecting more defects. On the one hand, some issues to be considered
are: (i) tackling the data and program conversions in the approach proposed by
creating the coupled transformations needed in order to synchronise the evolution
of data and code; (ii) this data conversion could involve the integration of ETL
tools into an MDE solution; (iii) the current foreign key detection could be im-
proved by applying a dynamic code analysis which would avoid the limitation of
having the SELECT fragments ordered, in addition to providing a more trustwor-
thy strategy; (iv) support for constraints implemented as triggers, signifying that
old data could be kept in the new database (rather than being excluded by using
a residual schema) although they do not satisfy new constraints. With regard to
the program conversion, it is worth noting that new problems would arise when
adding the constraints detected. For instance, it would be necessary to check a
proper order in which to delete those sentences that affect the tables involved in
a new foreign key. On the other hand, the experience gained in our work could be
used to tackle the development of a framework with which to improve the quality
of database schemas. For this, we would have to bear in mind the conceptual
framework proposed in [78] and the defect taxonomy presented in [79]. Finally,
NoSQL systems have emerged as an alternative to relational systems for the man-
agement of huge collections of complex data in modern applications that require
high scalability [135]. New data reengineering scenarios, such as migration from
relational systems to NoSQL systems or NoSQL reverse engineering, are therefore
appearing. MDE can be applied in these scenarios as is shown in [136], in which
a model-driven approach is used to infer the schema of NoSQL databases.

204



9.3.2 G2. Strategies of FK Discovering

We anticipate several directions for future work in the context of RIC reengineer-
ing. First, we intend to further investigate the OSCAR case study, and to involve
the developers in the establishment of an, albeit partial, ground truth. Second, we
plan to consider other sources of information for the identification and ranking of
RIC candidates. We are particularly thinking of integrating historical information.
For instance, let us assume that the historic analysis reveals that the same devel-
oper has created both tables involved in a RIC candidate, this could be seen as
an additional confirmation argument. In contrast, if a RIC candidate involves two
very recently created tables, the names of which do not appear in the Hibernate
file nor in the JPA annotations, this could be considered as a rejection argument.
Last but not least, we intend to devise a tool-supported methodology with which
to assist developers to incrementally implement RIC candidates identified in a
legacy software system.

9.3.3 G3. Migration Tool

Future work includes, among other things:

• The extension of our architecture in order to support any kind of soft-
ware process rather than only model-driven migration processes. At this
moment, our process definition language is aimed at model-driven tasks
but the Migration model could be extended with new MigrationTaskUse,
MigrationToolUse and MigrationWorkProductUse. It would also be neces-
sary to extend the enactment by adding new task generators for ANT and/or
Mylyn.

• The support for complex dependencies between tasks. For example, the task
dependency mechanism now implemented considers only whether a task is
blocked (completed) or unblocked (uncompleted). However, we do not check
whether all the expected artefacts were generated after the execution of a
task.

• The integration of external tools (e.g. word processors) for the realisation of
manual tasks.

205



• Implementing a traceability mechanism to keep track of the source elements
(defined in the Abstract Migration model) in the Task model used to gen-
erate the automated and manual tasks. When migrated data are not the
expected data or they have failures, the traces of the transformation chain
could be crucial in order to identify failures in the tasks executed or simply
bad decisions made during the definition of the migration process.

9.3.4 G4. Tool Interoperability

Future work could focus on two main directions: creating new injectors and ex-
tractors along with creating bidirectional semantic mappings. At this moment,
a review on existing injection and extraction techniques would be very useful, as
would an evaluation of the existing tools for the most widely used formats. With
regard to bidirectional mappings, the capabilities of QVT Relational should be
investigated thoroughly.

On the other hand, the existence of guidelines on building MDI bridges could
help to developers address this issue. Moreover, more case studies are needed in
order to illustrate the advantages and drawbacks of using MDE to integrate tools.

9.4 Publications related to the thesis

9.4.1 Journals with an impact factor

• Francisco Javier Bermúdez Ruiz, Jesús García Molina, Óscar Díaz García A
model-driven reengineering approach for the schema conversion. Journal of
Information Systems (under review).

• Francisco Javier Bermúdez Ruiz, Óscar Sánchez Ramón, Jesús García Molina
A model-driven tool to support the definition and enactment of migration
processes. Journal of Software and Systems (under review).

9.4.2 International conferences and workshops

• Loup Meurice, Francisco Javier Bermúdez Ruiz, Jens H. Weber, Anthony
Cleve, Establishing referential integrity in legacy information systems - Re-

206



ality bites!. In the proceedings of the 30th International Conference on Soft-
ware Maintenance and Evolution (ICSME’14), Victoria (Canada), 2014.

• Francisco Javier Bermúdez Ruiz, Jesús García Molina, Óscar Díaz García,
Data Integration between Objectiver and DB-Main: A case study of a model-
driven interoperability bridge. Submitted to the 4th International Confer-
ence on Model-Driven Engineering and Software Development (MODEL-
SWARD’16), Rome (Italy), 2016 (author notification is November, 26th)

• Francisco Javier Bermúdez Ruiz, Óscar Sánchez Ramón, Jesús García Molina,
Definition of processes for MDE-based migrations. In the proceedings of the
3rd International Workshop on Process-Based Approaches for Model-Driven
Engineering (PMDE’13), Montepellier (France), 2013.

• Jens H. Weber, Anthony Cleve, Loup Meurice, Francisco Javier Bermúdez
Ruiz, Managing Technical Debt in Database Schemas of Critical Software. In
the proceedings of the 4th International Workshop on Managing Technical
Debt (MTD’14), Victoria (Canada), 2014.

9.4.3 National conferences

• Francisco Javier Bermúdez Ruiz, Jesús García Molina, Un framework para la
modernización de datos relacionales dirigida por modelos. In proceedings of
the XVII Jornadas de Ingeniería del Software y Bases de Datos (JISBD’12),
Almería (Spain), 2012.

• Óscar Sánchez Ramón, Francisco Javier Bermúdez Ruiz, Jesús García Molina,
Experiencias de Modernización de Software con DSDM. In Proceedings of the
XVIII Jornadas de Ingeniería del Software y Bases de Datos (JISBD’13),
Madrid (Spain), 2013.

• Francisco Javier Bermúdez Ruiz, Jesús García Molina, Óscar Díaz García
DB-Main/Models: Un caso de estudio sobre la interoperabilidad de her-
ramientas basada en MDE. In Proceedings of the XIX Jornadas de Ingeniería
del Software y Bases de Datos (JISBD’14), Cádiz (Spain), 2012.

207



9.5 Projects that are related to this thesis

• “MOMO: Un Entorno de Modernización de Software Dirigida por
Modelos en Escenarios de Migración de Plataformas (Ref. 08797/PI/08)”.
Granted by the Fundación Séneca (Regional plan of Science and Technology
2007-2010). From 2009-01-01 until 2010-12-31. In this project we designed
the first approach for inferring the layout of the Oracle Forms windows.

• “Impulso de la Investigación en Tecnologías del Desarrollo de Soft-
ware (Un Entorno para el Desarrollo y Modernización Basado en
Modelos: Forms-ADF) (Ref. CARM 129/2009)”. Granted by the
Consejería de Universidades, Empresas e Investigación. From 2009-06-04
until 2010-12-31. The goal of this project was the definition of a software
environment for the migration of Oracle Forms applications to ADF. We
used the results obtained in the previous project in order to implement the
layout inference engine.

• “GUIZMO: Un framework para la modernización basada en mod-
elos de interfaces de usuario”. Granted by the Fundación Séneca (Re-
search Projects Funds). From 2011-01-01 until 2014-12-31. In this project
we tackled the development of a model-driven framework for analysing the
code of event handlers in order to separate the concerns that are tangled.
Moreover, during this project we created a tooling to assist the automatic
generation of web interfaces from wireframes.

9.6 Research stays

• Research Stay in the Université of Namur (Belgium), during 3 months,
in the Precise research group. We were working in applying our approach
to a real case study as the OSCAR system and we also collaborated in a
work about combining several techniques for the foreign key elicitation that
resulted in [108]. We also were working in integrating the DB-Main data
engineering tool in our approach by defining an MDI bridge.

208



9.7 Transfer of technology

• “Herramienta orientada a la migración basada en modelos”. Granted
by the Ministerio de Industria, Turismo y Comercio. CDTI project granted
to the Sinergia IT (Deusto Group) software company. From 2010-01-01 un-
til 2011-12-31. This project was aimed at the creation of a tooling to assist
the automatic migration of Oracle Forms applications to a Java platform.
Our research group collaborated with the Sinergia IT company to accomplish
research tasks in the context of this project.

209





References

[1] Andrea De Lucia, Rita Francese, Giuseppe Scanniello, and Genoveffa Tor-
tora. Developing legacy system migration methods and tools for technology
transfer. Softw. Pract. Exper., 38(13):1333–1364, November 2008.

[2] Robert C. Seacord, Daniel Plakosh, and Grace A. Lewis. Modernizing Legacy
Systems: Software Technologies, Engineering Process and Business Prac-
tices. Addison-Wesley Longman Publishing Co., Inc., 2003.

[3] Kathi Hogshead Davis and Peter H. Aiken. Data reverse engineering: A
historical survey. In Proceedings of the Seventh Working Conference on
Reverse Engineering (WCRE’2000), page 70, Washington, DC, USA, 2000.
IEEE Computer Society. ISBN 0-7695-0881-2.

[4] Anthony Cleve, Tom Mens, and Jean-Luc Hainaut. Data-intensive system
evolution. IEEE Computer, 43(8):110–112, 2010.

[5] Bran Selic. What will it take? a view on adoption of model-based methods
in practice. Software & Systems Modeling, 11(4):513–526, 2012.

[6] Jon Whittle, John Hutchinson, and Mark Rouncefield. The state of practice
in model-driven engineering. IEEE Software, 31(3):79–85, 2014.

[7] OMG. MDA Guide Version 1.0.1. Object Management Group (OMG).
http://www.omg.org/mda, 2003.

[8] Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling. Wiley,
2008.

[9] Óscar Sánchez Ramón, Jesús Sánchez Cuadrado, and Jesús García Molina.
Model-driven reverse engineering of legacy graphical user interfaces. Autom.
Softw. Eng., 21(2):147–186, 2014.

[10] Jose-Norberto Mazón and Juan Trujillo. A model driven modernization
approach for automatically deriving multidimensional models in data ware-
houses. volume 4801 of Lecture Notes in Computer Science, pages 56–71.
Springer, 2007.

211



[11] Javier Cánovas and Jesús Molina. An architecture-driven modernization
tool for calculating metrics. IEEE Softw., 27(4):37–43, July 2010. ISSN
0740-7459.

[12] F. Fleurey et al. Model-driven engineering for software migration in a large
industrial context. In Gregor Engels, Bill Opdyke, Douglas C. Schmidt, and
Frank Weil, editors, Proceedings of the MoDELS’07, volume 4735 of LNCS,
pages 482–497. Springer, 2007.

[13] Thijs Reus, Hans Geers, and Arie van Deursen. Harvesting software sys-
tems for mda-based reengineering. In Proceedings of the Second European
conference on Model Driven Architecture: foundations and Applications,
ECMDA-FA’06, pages 213–225, Berlin, Heidelberg, 2006. Springer-Verlag.

[14] William M. Ulrich and Philip Newcomb. Information Systems Transfor-
mation: Architecture-Driven Modernization Case Studies. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 2010. ISBN 0123749131,
9780123749130.

[15] Ricardo Pérez-Castillo, Ignacio García Rodríguez de Guzmán, Mario Piat-
tini, and Christof Ebert. Reengineering technologies. IEEE Software, 28(6):
13–17, 2011.

[16] OMG. Architecture-Driven Modernization. http://adm.omg.org/.

[17] B. Wu, D. Lawless, J. Bisbal, J. Grimson, V. Wad, D. O’Sullivan, and
R. Richardson. Legacy System Migration: A Legacy Data Migration En-
gine. In Ed. Czechoslovak Computer Experts, editor, Proceedings of the
17th International Database Conference (DATASEM’1997), pages 129–138,
1997.

[18] Jean-Luc Hainaut. Transformation-based database engineering. In Laura C.
Rivero, Jorge Horacio Doorn, and Viviana E. Ferraggine, editors, Encyclope-
dia of Database Technologies and Applications, pages 707–713. Idea Group,
2005.

[19] J. Bezivin. On the unification power of models. Software and System Mod-
eling (SoSym), 4(2):171–188, 2006.

[20] Jean Bézivin, Hugo Brunelière, Jordi Cabot, Guillaume Doux, Frédéric
Jouault, and Jean-Sébastien Sottet. Model Driven Tool Interoperability in
Practice. In Proceedings of the 3rd Workshop on Model-Driven Tool & Pro-
cess Integration (co-located with ECMFA 2010), pages 62–72, June 2010.

212



[21] M. R. Blaha and W. J. Premerlani. Observed idiosyncracies of relational
database designs. In Proceedings of the Second Working Conference on Re-
verse Engineering (WCRE’1995), page 116, Washington, DC, USA, 1995.
IEEE Computer Society. ISBN 0-8186-7111-4.

[22] Robert Balzer. Tolerating inconsistency. In Proceedings of the 13th Interna-
tional Conference on Software Engineering, ICSE ’91, pages 158–165. IEEE
Computer Society Press, 1991. ISBN 0-89791-391-4.

[23] L. Osterweil. Software processes are software too. In Proceedings of the
9th international conference on Software Engineering, ICSE ’87, pages 2–13.
IEEE Computer Society Press, 1987. ISBN 0-89791-216-0.

[24] Volker Gruhn. Process-centered software engineering environments, a brief
history and future challenges. Ann. Software Eng., 14(1-4):363–382, 2002.

[25] OMG. Software & Systems Process Engineering Metamodel Specification
(SPEM). Technical report, ”OMG”, April 2008. URL http://www.omg.
org/spec/SPEM/2.0.

[26] Reda Bendraou, Marie-Pierre Gervais, and Xavier Blanc. Uml4spm: A
uml2.0 based metamodel for software process modelling. In Model Driven
Engineering Languages and Systems, volume 3713, pages 17–38. Springer
Berlin Heidelberg, 2005.

[27] Reda Bendraou, Benoît Combemale, Xavier Crégut, and Marie-Pierre Ger-
vais. Definition of an executable spem 2.0. In APSEC, pages 390–397, 2007.

[28] Ralf Ellner, Samir Al-Hilank, Johannes Drexler, Martin Jung, Detlef Kips,
and Michael Philippsen. espem: a spem extension. In Modelling Foundations
and Applications, volume 6138, pages 116–131. Springer Berlin Heidelberg,
2010.

[29] Henrik Steudel, Regina Hebig, and Holger Giese. A build server for model-
driven engineering. In Proceedings of the 6th International Workshop on
Multi-Paradigm Modeling, MPM ’12, pages 67–72. ACM, 2012.

[30] DB-MAIN. The DB-MAIN official website. http://www.db-main.be, 2011.

[31] Serhiy Yevtushenko. System of data analysis concept explorer. In Proceedings
of the 7th National Conference on Artifical Intelligence KII-2000, pages 127–
134. Proceedings of the 7th National Conference on Artifical Intelligence
KII-2000, 2000.

213

http://www.omg.org/spec/SPEM/2.0
http://www.omg.org/spec/SPEM/2.0


[32] Viorica Varga and Katalin Tünde Jánosi Rancz. A software tool to transform
relational databases in order to mine functional dependencies in it using
formal concept analysis. In Proceedings of the Sixth International Conference
on Concept Lattices and Their Applications, pages 1–9, 2008.

[33] Anne Geraci. IEEE Standard Computer Dictionary: Compilation of IEEE
Standard Computer Glossaries. IEEE Press, Piscataway, NJ, USA, 1991.
ISBN 1559370793.

[34] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Soft-
ware Engineering in Practice. Synthesis Lectures on Software Engineering.
Morgan & Claypool Publishers, 2012.

[35] Jean Henrard, Jean-Marc Hick, Philippe Thiran, and Jean-Luc Hainaut.
Strategies for data reengineering. In Arie van Deursen and Elizabeth Burd,
editors, WCRE, pages 211–220. IEEE Computer Society, 2002. ISBN 0-7695-
1799-4.

[36] Sinergia Tecnológica (Oesia group) and Modelum (University of Murcia).
Herramienta orientada a la migración basada en modelos. CDTI project,
Ministry of Industry, Turism and Comerce. 2010-2011.

[37] Ken Peffers, Tuure Tuunanen, Marcus Rothenberger, and Samir Chatterjee.
A design science research methodology for information systems research. J.
Manage. Inf. Syst., 24(3):45–77, December 2007.

[38] Vijay K. Vaishnavi and William Kuechler, Jr. Design Science Research
Methods and Patterns: Innovating Information and Communication Tech-
nology. Auerbach Publications, Boston, MA, USA, 1st edition, 2007. ISBN
1420059327, 9781420059328.

[39] OMG. Query/View/Transformation 1.1. http://www.omg.org/spec/QVT/,
2011.

[40] Ramez Elmasri and Shamkant Navathe. Fundamentals of Database Sys-
tems. Addison-Wesley Publishing Company, USA, 6th edition, 2010. ISBN
0136086209, 9780136086208.

[41] Elliot J. Chikofsky and James H. Cross. Reverse engineering and design
recovery: A taxonomy. IEEE Software, 7(1):13–17, 1990.

[42] Rick Kazman, Steven G. Woods, and S. Jeromy Carrière. Requirements
for integrating software architecture and reengineering models: Corum ii. In
Proceedings of the Working Conference on Reverse Engineering (WCRE’98),
WCRE ’98, pages 154–. IEEE Computer Society, 1998.

214



[43] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. Emf:
Eclipse modeling framework 2.0, 2009.

[44] OMG. OMG Meta Object Facility (MOF) Core Specification, Version 2.4.1,
June 2013. URL http://www.omg.org/spec/MOF/2.4.1.

[45] Krzysztof Czarnecki and Simon Helsen. Feature-based survey of model trans-
formation approaches. IBM Systems Journal, 45(3):621–646, 2006. ISSN
0740-7459.

[46] Hugo Bruneliere, Jordi Cabot, Frédéric Jouault, and Frédéric Madiot.
Modisco: a generic and extensible framework for model driven reverse en-
gineering. In Charles Pecheur, Jamie Andrews, and Elisabetta Di Nitto,
editors, ASE, pages 173–174. ACM, 2010.

[47] Javier Luis Cánovas Izquierdo and Jesús García Molina. Extracting models
from source code in software modernization. Software and System Modeling,
13(2):713–734, 2014.

[48] Javier Luis Cánovas Izquierdo, Oscar Diaz, Gorka Puente, and Jesus Gar-
cia Molina. Schemol: Un lenguaje especifico del dominio para extraer mode-
los de bases de datos relacionales. In Póster en las XI Jornadas de Ingeniería
del Software y Bases de Datos, 2011.

[49] Markus Voelter. DSL Engineering - Designing, Implementing and Using
Domain-Specific Languages. dslbook.org, 2013.

[50] Ian Thomas and Brian A. Nejmeh. Definitions of tool integration for envi-
ronments. IEEE Software, 9(2):29–35, 1992.

[51] Hugo Bruneliere et al. Towards model driven tool interoperability: Bridg-
ing eclipse and microsoft modeling tools. In Thomas Kühne, Bran Selic,
Marie-Pierre Gervais, and François Terrier, editors, EC-MFA, volume 6138
of LNCS, pages 32–47. Springer, 2010. ISBN 978-3-642-13594-1.

[52] Perdita Stevens. A simple game-theoretic approach to checkonly qvt rela-
tions. Software and System Modeling, 12(1):175–199, 2013.

[53] Dimitris Kolovos, Richard Paige, and Fiona Polack. The epsilon transfor-
mation language. In Proceedings of the First International Conference on
Theory and Practice of Model Transformations, ICMT 2008, pages 46–60,
Berlin, Heidelberg, 2008. Springer-Verlag.

215

http://www.omg.org/spec/MOF/2.4.1


[54] J.-L. Hainaut, M. Chandelon, C. Tonneau, and M. Joris. Contribution to a
theory of database reverse engineering. In Proceedings of the IEEE Working
Conf. on Reverse Engineering, pages 161–170, Baltimore, May 1993. IEEE
Computer Society Press.

[55] Oreste Signore, Mario Loffredo, Mauro Gregori, and Marco Cima. Recon-
struction of er schema from database applications: a cognitive approach. In
Proceedings of the 13th International Conference on the Entity-Relationship
Approach (ER’1994), pages 387–402. Springer-Verlag, 1994. ISBN 3-540-
58786-1.

[56] Jean-Marc Petit, Farouk Toumani, and Jacques Kouloumdjian. Relational
database reverse engineering: A method based on query analysis. Int. J.
Cooperative Inf. Syst., 4(2-3):287–316, 1995.

[57] Jens H. Jahnke, Wilhelm Schäfer, and Albert Zündorf. Generic fuzzy reason-
ing nets as a basis for reverse engineering relational database applications.
In Proceedings of the 6th European SOFTWARE ENGINEERING Confer-
ence Held Jointly with the 5th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ESEC ’97/FSE-5, pages 193–210.
Springer-Verlag New York, Inc., 1997. ISBN 3-540-63531-9.

[58] Hongji Yang and William C. Chu. Acquisition of entity relationship models
for maintenance-dealing with data intensive programs in a transformation
system. J. Inf. Sci. Eng., 15(2):173–198, 1999.

[59] Stéphane Lopes, Jean-Marc Petit, and Farouk Toumani. Discovery of ”inter-
esting” data dependencies from a workload of sql statements. In Proceedings
of the 3rd European Conference on Principles of Data Mining and Knowl-
edge Discovery (PKDD’1999), pages 430–435. Springer-Verlag, 1999. ISBN
3-540-66490-4.

[60] Jianhua Shao, Xingkun Liu, G. Fu, Suzanne M. Embury, and W. A. Gray.
Querying data-intensive programs for data design. In Proceedings of the
13th International Conference on Advanced Information Systems Engineer-
ing (CAiSE’2001), pages 203–218. Springer-Verlag, 2001. ISBN 3-540-42215-
3.

[61] Anthony Cleve, Jean Henrard, and Jean-Luc Hainaut. Data reverse engi-
neering using system dependency graphs. In Proceedings of the 13th Working
Conference on Reverse Engineering (WCRE’2006), pages 157–166, Washing-
ton, DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-2719-1.

216



[62] Manar H. Alalfi, James R. Cordy, and Thomas R. Dean. SQL2XMI: Re-
verse engineering of UML-ER diagrams from relational database schemas.
In Ahmed E. Hassan, Andy Zaidman, and Massimiliano Di Penta, editors,
Proceedings of the 15th Working Conference on Reverse Engineering (WCRE
2008), pages 187–191, 2008.

[63] Anthony Cleve, Jean-Roch Meurisse, and Jean-Luc Hainaut. Database se-
mantics recovery through analysis of dynamic SQL statements. Journal on
Data Semantics, 15:130–157, 2011.

[64] Anthony Cleve, Nesrine Noughi, and Jean-Luc Hainaut. Dynamic program
analysis for database reverse engineering. In Ralf Lämmel, João Saraiva,
and Joost Visser, editors, Generative and Transformational Techniques in
Software Engineering, Lecture Notes in Computer Science. Springer, 2012.
to appear.

[65] V. M. Markowitz and J. A. Makowsky. Identifying extended entity-
relationship object structures in relational schemas. IEEE Trans. Softw.
Eng., 16(8):777–790, 1990. ISSN 0098-5589.

[66] William J. Premerlani and Michael R. Blaha. An approach for reverse en-
gineering of relational databases. Commun. ACM, 37(5):42–ff., 1994. ISSN
0001-0782.

[67] Roger H. L. Chiang, Terence M. Barron, and Veda C. Storey. Reverse engi-
neering of relational databases: extraction of an eer model from a relational
database. Data Knowl. Eng., 12(2):107–142, 1994. ISSN 0169-023X.

[68] Stéphane Lopes, Jean-Marc Petit, and Farouk Toumani. Discovering inter-
esting inclusion dependencies: application to logical database tuning. Inf.
Syst., 27(1):1–19, 2002. ISSN 0306-4379.

[69] Hong Yao and Howard J. Hamilton. Mining functional dependencies from
data. Data Min. Knowl. Discov., 16(2):197–219, 2008. ISSN 1384-5810.

[70] Nattapon Pannurat, Nittaya Kerdprasop, and Kittisak Kerdprasop.
Database reverse engineering based on association rule mining. CoRR,
abs/1004.3272, 2010.

[71] Joobin Choobineh, Michael V. Mannino, and Veronica P. Tseng. A form-
based approach for database analysis and design. Communications of the
ACM, Vol. 35, N2:108–120, 1992.

217



[72] James F. Terwilliger, Lois M. L. Delcambre, and Judith Logan. The user
interface is the conceptual model. In Proceedings of 25th International Conf.
on Conceptual Modeling (ER’2006), volume 4215 of Lecture Notes in Com-
puter Science, pages 424–436. Springer, 2006.

[73] Ravi Ramdoyal, Anthony Cleve, and Jean-Luc Hainaut. Reverse engineering
user interfaces for interactive database conceptual analysis. In Proceedings
of the 22nd International Conference on Advanced Information Systems En-
gineering (CAiSE’2010), volume 6051 of Lecture Notes in Computer Science.
Springer, 2010.

[74] Jean-Marc Petit, Jacques Kouloumdjian, Jean-Francois Boulicaut, and
Farouk Toumani. Using queries to improve database reverse engineering. In
Proceedings of the 13th International Conference on the Entity-Relationship
Approach (ER’1994), pages 369–386. Springer-Verlag, 1994. ISBN 3-540-
58786-1.

[75] Giuseppe Antonio Di Lucca, Anna Rita Fasolino, and Ugo de Carlini. Recov-
ering class diagrams from data-intensive legacy systems. In Proceedings of the
16th IEEE International Conference on Software Maintenance (ICSM’2000),
page 52. IEEE Computer Society, 2000. ISBN 0-7695-0753-0.

[76] Jean Henrard. Program Understanding in Database Reverse Engineering.
PhD thesis, University of Namur, 2003.

[77] OMG. Knowledge Discovery Meta-Model (KDM) v1.0.
http://www.omg.org/spec/KDM/1.0/, 2008.

[78] Jonathan Lemaitre and Jean-Luc Hainaut. Transformation-based framework
for the evaluation and improvement of database schemas. In Proceedings
of the 22Nd International Conference on Advanced Information Systems
Engineering, CAiSE’10, pages 317–331. Springer-Verlag, 2010.

[79] Jonathan Lemaitre and Jean-Luc Hainaut. Quality evaluation and improve-
ment framework for database schemas - using defect taxonomies. In Har-
alambos Mouratidis and Colette Rolland, editors, CAiSE, volume 6741 of
Lecture Notes in Computer Science, pages 536–550. Springer, 2011.

[80] Ricardo Pérez-Castillo, Ignacio García Rodríguez de Guzmán, Danilo
Caivano, and Mario Piattini. Database schema elicitation to modernize re-
lational databases. In ICEIS (1), pages 126–132. SciTePress, 2012. ISBN
978-989-8565-10-5.

218



[81] Raghavendra Reddy Yeddula, Prasenjit Das, and Sreedhar Reddy. A model-
driven approach to enterprise data migration. In Advanced Information Sys-
tems Engineering - 27th International Conference, CAiSE 2015, Stockholm,
Sweden, June 8-12, 2015, Proceedings, pages 230–243, 2015.

[82] J-L Hainaut, Vincent Englebert, Jean Henrard, J-M Hick, and Didier
Roland. Database evolution: the db-main approach. In Entity-Relationship
Approach—ER’94 Business Modelling and Re-Engineering, pages 112–131.
Springer, 1994.

[83] Macario Polo, Ignacio García-Rodríguez, and Mario Piattini. An mda-based
approach for database re-engineering. J. Softw. Maint. Evol., 19(6):383–417,
November 2007.

[84] D.H. Akehurst, B. Bordbar, P.J. Rodgers, and N.T.G. Dalgliesh. Automatic
Normalisation via Metamodelling. In ASE 2002 Workshop on Declarative
Meta Programming to Support Software Development, September 2002.

[85] Ricardo Perez-Castillo, Ignacio Garcia-Rodriguez de Guzman, Mario Piat-
tini, and Christof Ebert. Reengineering technologies. IEEE Software, 28(6):
13–17, 2011. ISSN 0740-7459. doi: http://doi.ieeecomputersociety.org/10.
1109/MS.2011.145.

[86] OMG. Business Process Model and Notation (BPMN). Object Management
Group, formal/2011-01-03, 2011. URL http://www.omg.org/spec/BPMN/
2.0.

[87] Reda Bendraou, Jean-Marc Jezéquél, and Franck Fleurey. Achieving process
modeling and execution through the combination of aspect and model-driven
engineering approaches. Journal of Software: Evolution and Process, 24(7):
765–781, 2012.

[88] Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel. Weaving ex-
ecutability into object-oriented meta-languages. In Proceedings of the 8th
international conference on Model Driven Engineering Languages and Sys-
tems, MoDELS’05, pages 264–278. Springer-Verlag, 2005.

[89] M. Kloppmann, D. Koenig, F. Leymann, G. Pfau, A. Rickayzen,
C. von Riegen, P. Schmidt, and I. Trickovic. WS-BPEL Exten-
sion for People: BPEL4People. IBM Corporation, http://www-
128.ibm.com/developerworks/webservices/library/specification/ws-
bpel4people/, 2005.

219

http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0


[90] OMG. Semantics Of A Foundational Subset For Executable UML Models
(FUML), Version 1.0, February 2011. URL http://www.omg.org/spec/
FUML/1.0/.

[91] Ralf Ellner, Samir Al-Hilank, Martin Jung, Detlef Kips, and Michael
Philippsen. An integrated tool chain for software process modeling and
execution. In Modelling Foundations and Applications, Lecture Notes in
Computer Science, pages 116–131. Springer Berlin Heidelberg, 2012.

[92] TC OASIS. Web Services Business Process Execution Language Version 2.0,
April 2007.

[93] Erwan Breton and Jean Bézivin. Model driven process engineering. In
COMPSAC, pages 225–, 2001.

[94] Cesar Gonzalez-Perez and Brian Henderson-Sellers. Metamodelling for Soft-
ware Engineering. Wiley, 2008.

[95] Steven Kelly, Kalle Lyytinen, and Matti Rossi. Metaedit+: A fully con-
figurable multi-user and multi-tool case and came environment. In CAiSE,
pages 1–21, 1996.

[96] Mario Cervera, Manoli Albert, Victoria Torres, and Vicente Pelechano. A
methodological framework and software infrastructure for the construction
of software production methods. In Jürgen Münch, Ye Yang, and Wilhelm
Schäfer, editors, New Modeling Concepts for Today’s Software Processes,
volume 6195 of Lecture Notes in Computer Science, pages 112–125. Springer
Berlin / Heidelberg, 2010. ISBN 978-3-642-14346-5.

[97] Vicente Pelechano. Automating the development of information systems
with the MOSKitt open source tool. In Colette Rolland, Jaelson Castro,
and Oscar Pastor, editors, RCIS, pages 1–3. IEEE, 2012. ISBN 978-1-4577-
1938-7.

[98] Leonardo Mariani and Fabrizio Pastore. Mash: tool integration made easy.
Softw. Pract. Exper., 43(4):419–433, 2013.

[99] M. N. Wicks and R. G. Dewar. A new research agenda for tool integration.
Journal of Systems and Software, 80(9):1569–1585, 2007.

[100] I Kurtev, J Bézivin, and M Aksit. Technological spaces: An initial appraisal.
In CoopIS, DOA’2002 Federated Conferences, Industrial track, 2002.

220

http://www.omg.org/spec/FUML/1.0/
http://www.omg.org/spec/FUML/1.0/


[101] Javier Luis Cánovas Izquierdo, Frédéric Jouault, Jordi Cabot, and Jesús
García Molina. Api2mol: Automating the building of bridges between apis
and model-driven engineering. Information and Software Technology, 54(3):
257–273, 2012.

[102] Marcos Didonet Del Fabro, Jean Bézivin, and Patrick Valduriez. Model-
driven tool interoperability: An application in bug tracking. In Robert
Meersman and Zahir Tari, editors, OTM Conferences (1), volume 4275 of
LNCS, pages 863–881. Springer, 2006. ISBN 3-540-48287-3.

[103] Yu Sun, Zekai Demirezen, Frédéric Jouault, Robert Tairas, and Jeff Gray. A
model engineering approach to tool interoperability. In Software Language
Engineering SLE, Toulouse, France, September 29-30, 2008, pages 178–187.

[104] C. Amelunxen, F. Klar, A. Konigs, T. Rotschke, and A. Schurr. Metamodel-
based tool integration with moflon. In Software Engineering, 2008. ICSE ’08.
ACM/IEEE 30th International Conference on, pages 807–810, May 2008.

[105] Ø’scar Sánchez, Fernando Molina, Jesús García-Molina, and Ambrosio Toval.
Modelsec: A generative architecture for model-driven security. J.UCS, 15
(15):2957, 2009.

[106] Fernando Wanderley and João Araújo. Generating goal-oriented models
from creative requirements using model driven engineering. In International
Workshop on MoDRE, Rio de Janeiro, Brasil, July 15, 2013, pages 1–9.

[107] J.-H. Jahnke and J. P. Wadsack. Varlet: Human-centered tool support
for database reengineering. In Proceedings of Workshop on Software-
Reengineering (WCRE’1999), May 1999.

[108] Loup Meurice, Fco Javier Bermudez Ruiz, Jens H. Weber, and Anthony
Cleve. Establishing referential integrity in legacy information systems - re-
ality bites! In ICSME’14, pages 461–465, 2014.

[109] Jean-Luc Hainaut, Jean Henrard, Jean-Marc Hick, Didier Roland, and Vin-
cent Englebert. The nature of data reverse engineering. In Proceedings of
the 2000 Data Reverse Engineering Workshop (DRE’2000), 2000, pages –.
Zurich Univ. Publish., 2000.

[110] Jesús Sánchez Cuadrado and Jesús García Molina. Building domain-specific
languages for model-driven development. IEEE Softw., 24(5):48–55, 2007.

[111] Jennifer Ruttan. The Architecture of Open Source Applications, Volume II:
Structure, Scale, and a Few More Fearless Hacks, chapter 16: OSCAR. June
2012.

221



[112] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser.
Stratego/XT 0.17. A language and toolset for program transformation. Sci-
ence of Computer Programming, 72(1-2):52–70, June 2008. Special issue on
experimental software and toolkits.

[113] Jean Henrard, Vincent Englebert, Jan-Marc Hick, Didier Roland, and Jean-
Luc Hainaut. Program understanding in databases reverse engineering. In
Proceedings of the 9th International Conference on Database and Expert
Systems Applications, DEXA ’98, pages 70–79. Springer-Verlag, 1998. ISBN
3-540-64950-6.

[114] Eclipse. Cdo model repository. http://www.eclipse.org/cdo/, April 2013.
URL http://www.eclipse.org/cdo/.

[115] Javier Espinazo-Pagán, Jesús Sánchez Cuadrado, and Jesús García Molina.
Morsa: A scalable approach for persisting and accessing large models. In
Jon Whittle, Tony Clark, and Thomas Kühne, editors, MoDELS, volume
6981 of Lecture Notes in Computer Science, pages 77–92. Springer, 2011.

[116] Markus Volter. Md* best practices. Journal of Object Technology, 8(6):
79–102, 2009.

[117] Jesús Sánchez Cuadrado, Javier Cánovas, and Jesús García Molina. Ap-
plying model-driven engineering in small software enterprises. Science of
Computer Programming, 2013.

[118] Eclipse-Project. Xtext user guide. http://eclipse.org/Xtext, April 2008.
URL http://eclipse.org/Xtext.

[119] M. A. Jeusfeld and U. A. Johnen. An executable meta model for re-
engineering of database schemas. In Proceedings of Conference on the Entity-
Relationship Approach, pages 533–547, Manchester, December 1994.

[120] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. Atl: A
model transformation tool. Sci. Comput. Program., 72(1-2):31–39, June
2008.

[121] DimitriosS. Kolovos, RichardF. Paige, and FionaA.C. Polack. The epsilon
transformation language. In Antonio Vallecillo, Jeff Gray, and Alfonso
Pierantonio, editors, Theory and Practice of Model Transformations, vol-
ume 5063 of Lecture Notes in Computer Science, pages 46–60. Springer Berlin
Heidelberg, 2008. doi: 10.1007/978-3-540-69927-9_4.

222

http://www.eclipse.org/cdo/
http://eclipse.org/Xtext


[122] Jesús García-Molina Jesus Sánchez Cuadrado, Javier Cánovas. Comparison
Between Internal and External DSLs via RubyTL and Gra2MoL. IGI Global,
2012.

[123] José Ramón Hoyos, Jesús García Molina, and Juan A. Botía. A domain-
specific language for context modeling in context-aware systems. Journal of
Systems and Software, 86(11):2890–2905, 2013.

[124] Ira D. Baxter, Christopher W. Pidgeon, and Michael Mehlich. Dms: Pro-
gram transformations for practical scalable software evolution. In ICSE,
pages 625–634. IEEE Computer Society, 2004.

[125] Jon Whittle, John Hutchinson, and Mark Rouncefield. The state of practice
in model-driven engineering. IEEE Software, 31(3):79–85, 2014.

[126] Jon Whittle, John Hutchinson, Mark Rouncefield, Håkan Burden, and Rog-
ardt Heldal. Industrial adoption of model-driven engineering: Are the tools
really the problem? In Model-Driven Engineering Languages and Systems -
16th International Conference, MODELS 2013, Miami, FL, USA, September
29 - October 4, 2013. Proceedings, pages 1–17, 2013.

[127] Milan Milanović, Dragan Gašević, Adrian Giurca, Gerd Wagner, and Vladan
Devedžić. Bridging concrete and abstract syntaxes in model-driven engi-
neering: a case of rule languages. Softw. Pract. Exper., 39(16):1313–1346,
November 2009.

[128] Mik Kersten and Gail C. Murphy. Using task context to improve program-
mer productivity. In Proceedings of the 14th ACM SIGSOFT international
symposium on Foundations of software engineering, pages 1–11. ACM, 2006.

[129] Jesús Sánchez Cuadrado, Jesús García Molina, and Marcos Menárguez.
RubyTL: A practical, extensible transformation language. In 2nd European
Conference on Model-Driven Architecture, volume 4066 of LNCS, pages 158–
172. Springer, 2006.

[130] Martin Fowler. Domain Specific Languages. Addison-Wesley Professional,
1st edition, 2010. ISBN 0321712943, 9780321712943.

[131] Markus Völter. MD*/DSL best practices (version 2.0).
http://voelter.de/data/pub/DSLBestPractices-2011Update.pdf, April
.

[132] Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal-directed
requirements acquisition. Science of computer programming, 20(1-2):3–50,
1993.

223



[133] Axel van Lamsweerde. Requirements engineering in the year 00: a research
perspective. In International Conference on Software Engineering, pages
5–19, 2000.

[134] Peter Feiler and Watts Humphrey. Software process development and en-
actment: Concepts and definitions. Technical report, Software Engineering
Institute, Carnegie Mellon University, 1992.

[135] Pramod J. Sadalage and Martin Fowler. NoSQL Distilled. Addison-Wesley,
2012.

[136] Diego Sevilla, Severino Morales, and Jesus Garcia Molina. Inferring versioned
schemas from nosql databases and its applications. In Proc. International
Conference on Conceptual Modeling ER, pages –, 2015.

224



Colophon

More than five years of work are now reduced in only
250 pages where I have tried to show the research effort I
carried out, sometimes better than others, along with my

teaching obligations and a family life. There have been lots of hours
addressing new research lines, writing communications and tackling
endless reviews. And finally, the hard work provides the expected
results and I would asseverate that, by somehow, I distill a research
maturity in my professional profile.
Once, somebody told me that in reaching the PhD degree, a re-
searcher should become an expert on a research field, and contribute
with his work to the growth of the knowledge of the area. I just hope
that my work had reached this achievement and, even though by an
infinitesimal piece of knowledge, my contributions had accomplished
the appropriate expectations for a PhD.

225


	Primera hoja
	Francisco J. Bermúdez
	Introduction
	Motivation
	Problem statement
	Research Methodology
	Outline

	Background
	Database concepts: Referential Integrity Constraints and Normalisation
	Characterising Data Reengineging
	Basis of Model-Driven Engineering
	Basis of Model-Driven Interoperability
	Modelling and enactment of migration processes
	Software Process Languages


	State of the art
	Foreign Key Discovering Techniques
	Model-driven Data Reengineering
	Migration Process Tool
	SPEM extensions
	BPMN language
	Using MDE in Software Process Engineering

	Tool Interoperability

	Overview
	Requirements
	A Model-based Data Reengineering Process
	Reverse engineering
	Restructuring
	Forward engineering

	Strategies for the Foreign Key Discovering
	A Tool to Define and Enact Model-based Migration Processes
	Process definition
	Process instantiation
	Process enactment
	Technology-Independence

	A Tool Interoperability Architecture
	A Case Study: the OSCAR system

	Strategies of Defect Discovering
	Schema Analysis
	Data Analysis
	Static SQL Analysis
	Hibernate Analysis
	JPA Analysis
	Results
	Raw data
	Acceptance criteria
	Rejected and Unlikely candidates
	Final results

	Discussion and Limitations of the manual approach

	Data Model-Driven Reengineering Process
	Introduction
	Running Example
	Reverse Engineering Stage: Obtaining the Defect Model
	Defect Metamodel
	Data Model Injection. DDL and DML metamodels
	Data Analysis
	Strategy
	Implementation
	Example

	Code Analysis
	Strategy
	Implementation

	Comparison of Strategies

	Restructuring Stage: Applying Defect Correction and Normalisation
	Defect correction
	Normalisation
	Schema normalisation

	Forward Engineering Stage: Generating Restructured Database
	Applying our approach to the real-world case study
	Assessment of the approach
	Reverse engineering
	Data restructuring
	Forward engineering
	Gain in productivity
	Benefits and drawbacks

	Conclusions

	Migration Tool
	Introduction
	Running Example
	Process Definition: A DSL for migration processes
	The Migration Metamodel
	Application of MigrationDSL to the running example

	Process Instantiation
	Instantiation of Concrete Migration models
	Inventory metamodel
	MigrationGuides
	Concrete Migration model for the running example

	Process Enactment
	Process Interpretation model
	Trac customisation
	Mylyn integration
	Enactment of the running example

	Use of the Models4Migration tool
	Creation of Migration Cartridges
	Enactment of Migration Cartridges

	Applying our tool to the real-world case study
	Context of the case study
	Evaluation of the approach

	Lessons learned
	Conclusions

	Tool Interoperability
	The tools
	Pivot Metamodels
	Syntactic Mapping
	Strategies to implement the injection
	Strategies to implement the extraction
	Assessment of the strategies

	Semantic Mapping
	Applying the bridge
	Conclusions

	Conclusions
	Discussion
	G1. Data Reengineering Process
	G2. Strategies of FK Discovering
	G3. Migration Tool
	G4. Tool Interoperability

	Contributions
	G1. Data Reengineering Process
	G2. Strategies of FK Discovering
	G3. Migration Tool
	G4. Tool Interoperability

	Future work
	G1. Data Reengineering Process
	G2. Strategies of FK Discovering
	G3. Migration Tool
	G4. Tool Interoperability

	Publications related to the thesis
	Journals with an impact factor
	International conferences and workshops
	National conferences

	Projects that are related to this thesis
	Research stays
	Transfer of technology

	References


