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Vosotros habéis hecho que mi tiempo alĺı haya merecido la pena. Sin duda, vuestra ayuda

forma parte de esta tesis.

A los revisores que han contribuido con sus comentarios a mejorar las publicacio-
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Chapter 1

Introduction

The Semantic Web [Tim, Lee et al., 2001, Shadbolt et al., 2006] is the extension of

the World Wide Web that enables people to share content beyond the boundaries of

applications and websites1. Semantic Web technologies enable people to create data

stores on the Web, build vocabularies, and write rules for handling data. Semantic Web

technologies have been applied in the modelling of life science leading to the Life Sciences

Semantic Web [Good and Wilkinson, 2006].

Ontologies are considered one of the pillars of the Semantic Web2. Although we

will further explain what an ontology is in section 2, in brief, an ontology is a set of

logical axioms that are designed to account for the intended meaning of a vocabu-

lary [Guarino, 1998]; in other words, it is a representation that captures the catego-

ries of objects in a field of interest and the relationships that those objects have to

each other in such a way that it is possible to recognise category membership. The

Gene Ontology (GO) [Ashburner et al., 2000] is possibly the most prominent exam-

ple of the success of ontologies in bioinformatics. The GO project is a collaborative

e↵ort to address the need for consistent descriptions of gene products across data-

bases. But the GO is not unique. For example, in the medical side, SNOMED CT

[Cornet and de Keizer, 2008] is a clinically validated and semantically rich controlled vo-

cabulary3. One of its aims is to enable consistent, processable representation of clinical

content in electronic health records, and it is already used in more than 50 countries. Alt-

1http://semanticweb.org/
2http://semanticweb.org/wiki/Ontology.html
3http://www.ihtsdo.org/snomed-ct/what-is-snomed-ct

1

http://semanticweb.org/
http://semanticweb.org/wiki/Ontology.html
http://www.ihtsdo.org/snomed-ct/what-is-snomed-ct


2 Chapter 1. Introduction

hough it is originally released as tab-delimited text files that represent the components of

SNOMED CT, these files can be converted into an ontology using an automatic process

[The International Health Terminology Standards Development Organisation, 2015].

The ontology content is represented using three types of components: (1) concepts,

(2) descriptions and (3) relationships. Figure 1.1 shows the general design of an ontology,

using the Gene Ontology as example. Concepts represent “things” in reality and they

are represented as pink boxes in Figure 1.1 like ‘binding’, ‘protease binding’ or

‘protein binding’. Moreover, concepts are represented in a hierarchical manner. Using

hierarchical relationships (isA in the figure) more specific concepts can be defined. For

example, it can be seen that ‘protein binding’ is a type of ‘binding’. IsA stands

for the type of relation that means that a concept is a sub type of another concept, but

many more could exist (see ‘regulates’ in Figure 1.1).

E2F binding to pRB 

…inhibit binding of… 

Concepts Hierarchies Proper&es( Identifiers Descriptions Relationships 

Thing 
GENE ONTOLOGY  

HIERARCHIES 
Concepts are organized 
into top-level hierarchies 

•  biological process 

•  cellular component 

•  molecular function 

binding 

protein binding 

is a  

enzyme binding 

is a  

protease binding 

is a  

ubiquitin-specific protease 
binding 

is a  

Low granularity 

High granularity 

RELATIONSHIPS 

protein binding 

Is a relation connect concepts in a hierarchy 

binding Is(a(

Other types of relations connect concepts in 
different hierarchies 

regulation of 
biosynthetic 

process 

biosynthetic 
process regulates(

GO_005488 

binding Require binding of the 
viral E7… 

Figure 1.1: Gene Ontology design

Often, the first levels of the hierarchy can be used to represent di↵erent subdomains

of knowledge. For example, in Figure 1.1 this is shown as purple boxes. The GO project

has developed three structured knowledge branches that describe the biological proces-

ses, cellular components and molecular functions associated with gene products in a
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species-independent manner4. Knowledge representation languages provide a formalism

based on logical axioms that enables machines to process content of the ontology and

infer that ‘protease binding’ is a type of ‘binding’ despite there being no direct

relation between them. The use of ontologies has several benefits. Those applications

that use ontologies to formalise their domain could take advantage of reasoning proces-

ses. Moreover, each concept has a unique identifier, so applications that describe their

domain using ontology concepts instead of describing it in natural language would avoid

imprecisions, and the semantic interoperability of biological data would be closer.

In the last 15 years, the biomedical research community has increased its e↵ort in

the development of ontologies used to represent biomedical knowledge and there is no

reason to expect this to change in the future [Hoehndorf et al., 2014]. As a consequence

of their success, biomedical ontologies are usually built in community with a high level of

activity. Then an ontology is the result of a collaborative work between di↵erent experts

[Malone and Stevens, 2013]. We point out two profiles of experts:

Domain experts : have further knowledge of the domain to represent, but they might

not have enough ontological background to codify it properly in the ontology.

Ontology developers : their knowledge about the domain is limited. They focus on

formal aspects of the ontology and whether the knowledge within the ontology

properly represents the domain.

The ontology development teams usually have members of those two profiles. In

Figure 1.1 (top right) we can observe a domain expert. This expert interprets the domain

in terms of descriptions, while an ontology developer contextualises such descriptions

according to the concepts and relationships. This thesis aims at contributing to the

enrichment of ontologies built by domain experts, which are rich in the knowledge about

the domain but low in the axiomatisation that make this knowledge up to be processed

by computers.

Moreover, having more and larger ontologies makes the maintenance of ontologies a

di�cult task due to collateral e↵ects of individual changes. The types of changes made

include new concepts, new descriptions, new relationships between concepts, as well as

updates and retirement/deprecation of any of these components. However, the larger

4http://geneontology.org/page/documentation

http://geneontology.org/page/documentation
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and more complex the ontology is, the more di�cult it is to evaluate side e↵ects that

it might have over other ontology components. Also the creation of a new concept and

its contextualization within the ontology can be a problem due to the formalism and

complexity of ontologies, which goes beyond being understood as hierarchies of concepts

easily understood by both profiles.

Let us follow a simplified example to explain such a complexity. In this case, we

use the SNOMED CT domain. A general practitioner (domain expert) is interested in

representing a type of cellulitis that has occurred in a part of the foot; cellulitis is a

common skin infection caused by bacteria5. At first glance, this new concept is a kind of

disorder. So inspecting the disorder hierarchy in SNOMED CT, the domain expert deci-

des to define this new term, named ‘Cellulitis of foot’, as a type of ‘Cellulitis’

and a type of ‘Disorder of foot’. The graphical representation of this relation can be

seen in the upper part of Figure 1.2. However, an ontology developer inspects the term

and decides to add attributes that logically complete the definition linking it with other

concepts representing for example body structures. In the bottom box the formal defi-

nition is shown. In the “Equivalent To” section, some axioms that represent necessary

and su�cient conditions of a concept to remain to the class that represent the disorder

‘Cellulitis of foot’ are defined. The previous example could be harder given the

real size of biomedical ontologies. For example, SNOMED CT (version 2015AA released

in BioPortal on 06/09/2015) has around 316 031 concepts and GO (version released in

BioPortal on 22/09/2015) 43 716, to this numbers the logical relations between these con-

cepts should be added. Another aspect that increases the complexity of the maintenance

of biomedical ontologies is their constant change (e.g. SNOMED CT has been released

twice a year since 20026). Although ontology editors usually provide some guidelines

that help in the construction of ontologies, the development of domain independent met-

hods and tools that contribute to the maintenance and quality assurance in ontologies

is important [Rogers, 2006].

Quality assurance methods are still a challenge to which this thesis wishes

to contribute by exploiting the hidden semantics codified in ontology identifiers.

Quality assurance methods have been applied for di↵erent purposes and onto-

logies [Ceusters et al., 2004, Rogers, 2006, Ceusters, 2006, De Coronado et al., 2009,

5https://www.nlm.nih.gov/medlineplus/ency/article/000855.htm
6http://ihtsdo.org/fileadmin/user_upload/doc/en_us/tig.html?t=rf2_title

https://www.nlm.nih.gov/medlineplus/ency/article/000855.htm
http://ihtsdo.org/fileadmin/user_upload/doc/en_us/tig.html?t=rf2_title
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Figure 1.2: Example of the logical representation of “Cellulitis of foot (disorder)” in
SNOMED CT.

Verspoor et al., 2009, Mikroyannidi et al., 2011, Rector and Iannone, 2012]. The star-

ting point for this work is [Fernandez-Breis et al., 2010], which describes the process of

taking an axiomatically lean ontology and enriching it creating new formal relationships.

A description of the process followed is:

1. Inspect the ontology to find out what needs to be revealed as axioms.

2. Develop patterns of axioms based on natural language definitions of concepts.

3. Identify supporting ontologies or modules that capture entities within the develo-

ped patterns.

4. Apply patterns across the source ontology that transform implicit information co-

dified in natural language in explicit information codified as axioms.

5. Run a reasoner and inspect the resulting ontology.

The method was applied to enrich the GO Molecular Function Ontology. Figure 1.3

shows as example of the pattern “X binding”. This pattern is based on the definition of



6 Chapter 1. Introduction

Figure 1.3: This example shows how to define a patter (top right part) that can be used
to systematically enrich the source ontology (top left part shows a piece of the GO-MF
hierarchy). This pattern, “X binding”, analysis labels that end with the word “binding”.
For this example, there are 39 cases that follow this pattern so 117 logical axioms will
be created (bottom right).

the concept ‘binding’ as the selective, non-covalent, often stoichiometric, interaction of

a molecule with one or more specific sites on another molecule. This description defines

a knowledge pattern, and based on this knowledge pattern the hierarchy of concepts

is manually inspected with the goal of finding a regular structure within the labels

that lets us convert the knowledge pattern into an OPPL pattern7 (see Figure 1.3 top

right). The OPPL pattern creates axioms by dissecting information codified in natural

language; OPPL is an abstract formalism that allows for manipulating ontologies written

in OWL. The exploration of the hierarchy of concepts reveals that the molecule that binds

the binding is codified in natural language in the subtypes of binding. For example,

‘alcohol binding’ is a specific type of ‘binding’ enabled by an ‘alcohol’ molecule,

and this information is not logically codified in the original ontology.

The enrichment performed in [Fernandez-Breis et al., 2010] demonstrated the interest

7http://oppl2.sourceforge.net/

http://oppl2.sourceforge.net/
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and benefits of this kind of enrichment in biomedical ontologies. However, the application

of the process was tedious as the identification of knowledge and axiomatic patterns

was performed manually, so automatic methods would be desirable. If so, an automatic

method that performed the analysis of textual content within ontologies to elucidate

hidden semantics could be systematically applied to other and even new versions of the

same ontology, so that this contributes to the quality assurance of ontologies; this is the

main motivation of this thesis. Such a generic approach would provide new insights into

the engineering of biomedical ontologies and can contribute to guide ontology developers

in the enrichment of biomedical knowledge resources. In this work, biomedical knowledge

resources are ontology repositories like BioPortal, which in September 2015 contained

478 ontologies and controlled vocabularies.

The publications composing the PhD Thesis can be found in section 5 and are now

presented:

Lexical characterization of Bio-Ontologies by the inspection of regularities in labels:

Hundreds of biomedical ontologies have been produced, with many of the signi-

ficant, widely used ones being developed in collaborative e↵orts and following a

set of construction principles, which include using a systematic naming conven-

tion for their labels. Despite their success, many of these ontologies lack of a rich

axiomatisation that would expose the wealth of knowledge in the ontologies to

computational reasoning. Previous work suggests that exploiting the structure of

the labels may contribute to an axiomatic enrichment. Hence, in this work we per-

form a study of the structure of the labels of the ontologies available in BioPortal

to classify them in terms of potential interest for axiomatic enrichment.

Prioritizing lexical patterns to increase axiomatisation in biomedical ontologies:

The aim of this work is to identify which lexical regularities are more promising

for ontology enrichment. For this, we propose metrics for suggesting which lexical

regularities should be the starting point to enrich complex ontologies. Our method

determines the relevance of lexical regularities by measuring its locality in the

ontology, that is, the distance between the classes associated with the regularity,

and the distribution of them in a certain module of the ontology. The methods have

been applied to four significant biomedical ontologies including the Gene Ontology

and SNOMED CT.
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The metrics provide information about the engineering of the ontologies and the

distribution of classes that exhibit lexical regularities. Our method enables the sug-

gestion of links between classes that are not made explicit in the ontology. We

propose a prioritisation of the lexical patterns found in the analysed ontologies.

Developers migth use this information to improve the axiomatisation of their on-

tologies.

Approaching the axiomatic enrichment of the Gene Ontology from a lexical pers-

pective:

The main goal of this work is to extend our method with the cross-products exten-

sion (CPE) metric, which estimates the potential interest of a specific regularity for

reconstructing cross-products. Cross-product extensions of GO have been recently

used by the GO consortium to enrich this ontology. Cross-products are generated

by establishing axioms that relate a given GO class to classes from the GO or other

biomedical ontologies.

The results obtained in this study show that GO class labels are highly regular

in lexical terms, and the exact matches with labels of external ontologies a↵ect

80% of the GO classes. The CPE metric reveals that 31.48% of the classes that

exhibit regularities have fragments that are classes into two external ontologies that

are selected for our experiment, namely, the Cell Ontology [Bard et al., 2005] and

the Chemical Entities of Biological Interest ontology [Degtyarenko et al., 2007].

Moreover, 18.90% are fully decomposable into smaller parts. Our results show

that the CPE metric permits our method to detect GO cross-product extensions

with a mean recall of 62% and a mean precision of 28%. The study is completed

with an analysis of false positives to explain this precision value.

These results support the claim that the lexical approach can contribute to the axio-

matic enrichment of biomedical ontologies and that it can provide new insights into the

engineering of biomedical ontologies. These three publications represent a scientific unit

as all of them contribute to develop the method presented in this thesis.



Chapter 2

State of the art

2.1. Ontologies

Throughtout history, the word “ontology” has been used by many authors from dif-

ferent backgrounds. As a consequence di↵erent interpretations of its meaning can be

found in the literature. In Philosophy, Aristoteles (384- 322 BC) was one of the first in

using ontologies in his attempt “to classify the things in the world, where it is employed

to describe the existence of the beings in the world” [Studer et al., 1998]. After this first

definition, many authors in Philosophy have taken and interpreted this term being onto-

logies a branch of philosophy [Smith, 2009], and ontologies still have an important role

in modern Philosophy1.

In 1991, Neches et al. explained the necessity of enabling sharing and reuse of know-

ledge bodies in a computational form [Neches et al., 1991, Studer et al., 1998] for deve-

loping large and more complex knowledge-based systems [Gonzalez and Dankel, 1993].

According to Neches’s definition, “an ontology defines the basic terms and relations com-

prising the vocabulary of a topic area as well as the rules for combining terms and re-

lations to define extensions to the vocabulary.” This was the first attempt to use of

ontologies in the field of Artificial Intelligence (AI). Neches’s definition resembles Qui-

ne’s ontology philosophical interpretation: what exists is what can be quantified over

[Fernández-Breis, 2003]. Then for AI systems, what “exists” is that which can be repre-

sented.

1http://www.ontology.co/

9

http://www.ontology.co/
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Two years later Gruber, who was a coauthor in [Neches et al., 1991], authored one

of the most referenced definitions of ontology in AI, having received 14 286 citations in

Google Scholar as of September 2015 [Gruber, 1993]:

“An ontology is an explicit specification of a conceptualisation. The term

is borrowed from philosophy, where an ontology is a systematic account of

Existence.”

We highlight three keywords in Gruber’s definition: explicit, specification and con-

ceptualisation. Explicit means clear and exact2. A specification is a detailed description

of how something should be done, made, and so on3. Finally a conceptualisation is the

form of an idea or principle in your mind4. Figure 2.1 shows an extract of Aristotle�s
classification of animals (taken from5). Two ontologies could be di↵erent in the voca-

bulary used (using cat or the spanish word gato, for instance) while sharing the same

conceptualisation.

!
Figure 2.1: Ontology as an explicit specification of a conceptualisation.

However, not all the ontologies that satisfy Gruber�s definition are useful for sharing

or machine consuming. For example, Figure 2.1 shows an ontology because it encodes

knowledge about a domain, but it is far from being codified in a machine-processable

form. In this sense, Borst clarifies Gurber’s definition by replacing the word “explicit”

2http://dictionary.cambridge.org/es/diccionario/ingles/explicit
3http://dictionary.cambridge.org/es/diccionario/ingles/specification
4http://dictionary.cambridge.org/es/diccionario/ingles/conceptualize
5ftp://ftp.ebi.ac.uk/pub/databases/chebi/tutorial/chebi_tutorial_block3.doc

http://dictionary.cambridge.org/es/diccionario/ingles/explicit
http://dictionary.cambridge.org/es/diccionario/ingles/specification
http://dictionary.cambridge.org/es/diccionario/ingles/conceptualize
ftp://ftp.ebi.ac.uk/pub/databases/chebi/tutorial/chebi_tutorial_block3.doc
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by “formal” and adding “shared”: “ontologies are formal specifications of shared concep-

tualisations” [Borst, 1997].

In [Guarino, 1995] a discussion about some formal ontological distinctions is addres-

sed. In [Guarino, 1998], the author went beyond Borst’s clarification by discussing the

use of the word conceptualisation in Gruber�s definition. According to Guarino, a con-

ceptualisation refers to the ordinary mathematical extensional definition. For example,

the extensional definition of mammals would consist on listing all that entities in reality

that remain to that category. For example, in Figure 1.3 an ‘acyl binding’ is a type of

‘binding’ so everything that is in the category of ‘acyl binding’ is also a ‘binding’.

However, ontologies as engineering artifacts use intentional definitions, which gives the

meaning of a category by specifying the necessary and su�cient conditions for belonging

to such a category. While extensional relations reflect a particular state of a↵airs, inten-

sional relations, called conceptual relations are focused on the meaning of these relations.

As a result of this discussion, Guarino defines an ontology as follows [Guarino, 1998]:

“In the philosophical sense, we may refer to an ontology as a particular sys-

tem of categories accounting for a certain vision of the world. As such, this

system does not depend on a particular language: Aristotle�s ontology is al-

ways the same, independently of the language used to describe it. On the other

hand, in its most prevalent use in AI, an ontology refers to an engineering

artifact, constituted by a specific vocabulary used to describe a certain reality,

plus a set of explicit assumptions regarding the intended meaning of the vo-

cabulary words. This set of assumptions has usually the form of a first-order

logical theory, where vocabulary words appear as unary or binary predicate

names, respectively called concepts and relations. In the simplest case, an on-

tology describes a hierarchy of concepts related by subsumption relationships;

in more sophisticated cases, suitable axioms are added in order to express

other relationships between concepts and to constrain their intended interpre-

tation.”

In conclusion, nowadays there is no agreement in how to define ontologies as compu-

tational artifacts. On the one hand, “researchers seem to have been much more interested

in the nature of reasoning rather than in the nature of the real world” [Guarino, 1995].
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As a consequence of this, “the computer science view of ontology is somewhat narro-

wer, where an ontology is the working model of entities and interactions either generi-

cally or in some particular domain of knowledge or practice” [Stevens et al., 2000]. On

the other hand, in a strict philosophical sense, “... ontological engineering aims not for

truth, but rather, merely, for adequacy to whatever is the pertinent application domain”

[Smith, 2003], which were discussed in the origin as the “essential ontological promiscutiy

of AI” [Genesereth and Nilsson, 1987]. Other authors provide a definition based on the

approach they take to build their ontologies. Di↵erent definitions provide di↵erent and

complementary points of view of the same reality. In this thesis we adopt Guarino�s inter-
pretation as it is the one adopted in biomedical knowledge repositories (further explained

in section 2.2).

2.1.1. Ontology components

Regardless of the definition of ontology adopted, knowledge of ontologies is formalised

using di↵erent kinds of elements. Although the ontology languages chosen for codifying

the ontology will allow one to define di↵erent types of elements, in general there are

4 main types that form the core of all ontologies: concepts, individuals, relations and

axioms.

Concepts: a concept represents set of classes, entities or “things” within a do-

main. They provide the abstraction mechanism for grouping resources with similar

characteristics. A concept, used in a broad sense, can be anything about which

something is said, it refers to what is general in reality. Concepts are also called

terms, classes, universals, types or kinds.

Individuals: they are used to represent concrete elements that pertain to a certain

domain, which is described in terms of concepts. They are things that the ontology

describes or potentially could describe. Individuals are also called instances or

particulars.

Some authors claim that “concepts” refer to what is general in reality. Instan-

ces refers to what is particular in reality; entities (including processes) that exist

in space and time and stand to each other in a variety of instance-level relations

[Smith, 2004, Smith et al., 2005]. However, deciding whether something is a concept or
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an instance is di�cult and often depends on the application. For example, ‘Atom’ is

a concept and ‘Potassium’ is an instance of that concept. It could be argued that

‘Potassium’ is a concept representing the di↵erent instances of potassium and its iso-

topes, and so on. This is a well known and open question in knowledge management

research [Stevens et al., 2000].

Relations: they describe interactions between concepts of the domain. Relations

can be expressed directly between individuals, between concepts or both. Relations

can have di↵erent nature and (logical) properties.

Axioms: they model statements that model sentences that are always true so they

are used to constrain values for classes or instances. In this sense the properties of

relations are kinds of axioms.

Let us now explain relations and their properties using the taxonomical re-

lation of hypernymy isA. This relation is used to indicate that a concept

C1 is a subtype of C2, and it has the property inverse with the relation

hyponym. For example, ‘Mitochondrion’ isA ‘Intracellular Organelle’, and

‘Intracellular Organelle’ isA ‘Organelle’. Moreover, another property of the

hypernymy relation is its transitivity. This is to say, if C1 is a type of C2 and C2

is a type of C3, it can be inferred that C1 is a type of C3, so it could be infe-

rred that ‘Mitochondrion’ isA ‘Organelle’. Then, automated reasoning techniques

allow a computer system to draw conclusions from the knowledge represented in a ma-

chine in a interpretable form [Stephan et al., 2007]. Apart from hypernymy-hyponym

relations, another type of taxonomical relations are holonym-meronym, which defi-

ne a possessive hierarchy. For example, ‘Mitochondrion’ partOf ‘Cytoplasm’, and

‘Cytoplasm’ partOf ‘Cell’.

The 4 previous taxonomical relations let ontologies be organised in a hierarchical

manner. All those relations that are not taxonomical are considered associative relations,

which are used to relate concepts across hierarchies. For example, an associative relation

can represent: (1) the function of a concept in ‘Protein’ hasFunction ‘Receptor’,

(2) locative relationships in ‘Chromosome’ hasSubcellularLocation ‘Nucleus’ and

so on. Other types of relations and a further descriptions of its properties can be found in

[Gómez-Pérez, 1999] and [Fernández-Breis, 2003]. Finally, it should be pointed out that
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Component/Author
Gruber,
1993

Guarino,
1995

Gomez,
1999

Stevens,
2000

Smith,
2004

Fernández-Breis,
2003

Lord,
2010

Pesquita,
2012

Others

Class

Term X
Concept X X X - X X
Class X X X X
Universal X X
Type X

Relation
Relation X X X X X X X X
Function X X
Axiom X X X X X

Instances
Instance X X X X X X
Individual X
Particular X X

Table 2.1: Ontology components and terminology used by di↵erent authors

the terminology used to refer to ontologies components can vary from one author to other,

despite the meaning is similar. The previous definitions about ontology components were

built as a study of the work shown in Table 2.1. In such a table we show the terminology

used by di↵erent authors, and group them according to the 4 main ontology components

described before.

2.1.2. Knowledge Representation Languages

In the previous section, we claimed that the ontology components are also influenced

by the knowledge representation language (KRL) chosen. In this section we explain

di↵erent KRLs. According to the definition of Guarino: “... an ontology refers to an

engineering artifact, constituted by a specific vocabulary used to describe a certain reality,

plus a set of explicit assumptions regarding the indented meaning of the of the vocabulary

words. This set of assumptions has usually the form of a first-order logical theory...”.

This definition explicitly references to first-order (predicate) logic (FOL) as the KRL for

representing ontologies as engineering artifacts. However, other KRLs such as semantic

networks and frames had been previously used.

A semantic network is a graph whose nodes represent concepts and whose arcs

represent relations between these concepts. Frame systems and semantic networks

can be identical in their expressiveness but use di↵erent representation. While the

semantic network is that of a graph with concept nodes linked by relation arcs,

the frame draws concepts as boxes, i.e. frames, and relations as slots inside frames

that can be filled by other frames. [Stephan et al., 2007].
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FOL di↵ers from its predecessors in that they are equipped with formal, logic-based

semantics [Baader et al., 2008]. Then, the expressivity of KRLs used in semantic net-

works and frames is lower than FOL. For this reason, FOL is the prevalent and single

most important knowledge representation formalism.

FOL provides a notion of logical consequence and universal truth that can be des-

cribed in terms of model-theoretic semantics. This formalism enables a process called

deduction or inferencing previously mentioned. Using inferencing, computer systems can

base decisions on reasoning about domain knowledge similar to humans. This process is

supported by algorithms for deduction, which are required to be sound and complete.

However, in general, FOL inferencing algorithms are semi-decidable. This means that

given a theory and a query statement, to terminate with positive answer in finite time is

possible whenever the statement is a logical consequence of the theory. On the contrary,

if the statement is not a logical consequences of the theory the termination is not requi-

red, and indeed, termination (with the correct negative answer) cannot be guaranteed

in general [Stephan et al., 2007]. Semi-decidablity is a problem in the representation of

ontologies. Ontologies as engineering artifacts that are used by computers for supporting

users in di↵erent tasks. For this reason, the decidability of the KRL is important as users

hope to have answers to their queries.

Figure 2.2 attempts to give an overview of the most important KRLs for representing

ontologies in the Semantic Web [Stephan et al., 2007]. On the left, KRLs based on FOL

are shown. On the right other languages based on other paradigms are shown. We focus

our attention in KRLs based on FOL. Although FOL is undecidable, there are subsets

of it, called Description Logics (DL), which just contains essential decidable fragments

[Baader, 2003]. Figure 2.2 distinguishes between undecidable and decidable languages

with a horizontal line. KRLs based on DL are considered to have a level of expressivity

that is proper for representing biomedical knowledge.

Expressivity of DL languages

The expressivity of logic is encoded in the labels of starting from the basic logic. In

[Schmidt-Schau and Smolka, 1991] the fist naming scheme for DLs was proposed: star-

ting from a basic DL AL, the addition of a constructors is indicate by appending a

corresponding letter; e.g., ALC is obtained from AL by adding the complement operator
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Figure 2.2: An overview of Semantic Web languages.

(a) [Baader et al., 2008]. The basic logic AL allows: (1) atomic negation, concept inter-

section, universal restrictions and limited existential quantification6. Figure 2.3 shows a

summary of the extensions for the basic DL logic. The expressive power of a language

like OWL is determined by the class (and property) constructors supported, and by the

kinds of axioms that can occur in an ontology [Horrocks et al., 2003].

Figure 2.3: Extensions of the basic DL

6https://en.wikipedia.org/wiki/Description_logic

https://en.wikipedia.org/wiki/Description_logic
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A DL knowledge base is made up of two parts: a terminological part (called the

TBox) and an assertional part (called the ABox), each part consisting of a set of axioms.

On the one hand, the TBox is the scheme and it contains concepts, properties and

restrictions. On the other hand, the ABox contains individuals. In DL the fundamental

modelling concept is the axiom. Axioms are translated to first-order predicate statements

[Baader et al., 2008].

2.1.3. RDF and RDF(S)

RDF (Resource Description Framework) is a web standard that represents data using

triplets. Each triplet is composed by a subject, predicate and object. The predicate

express the nature of the relation and the components are identified though a Unique

Resource Identifier (URI). The RDF scheme (RDFS) is an extension of RDF vocabulary

that includes semantics; users can define classes, organise them by hierarchies, define

relations and set domain and ranges. The RDF(S) language can be seen in the bottom

part of Figure 2.2.

Example: Using RDFS users can declare classes like Country, Person,

Student and Canadian. Using RDFS users can state that Canada and

England are both instances of the class Country.

2.1.4. Web Ontology Language (OWL)

The World Wide Web Consortium (W3C) formed the Web Ontology Working Group,

whose goal was to develop an expressive language suitable for application in the Semantic

Web. The result of this endeavor was the Web Ontology Language (OWL), which became

a W3C recommendation in February 20047.

Predecessors of OWL

One of the first attempts at defining an ontology language for deployment on the Web

was RDF(S). Another attempt was SHOE, which is a frame-based language with an XML

syntax that could be safely embedded in existing HTML documents. SHOE also uses

7http://www.w3.org/TR/owl-features/

http://www.w3.org/TR/owl-features/
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URI reference for names. A new language called DAML-ONT was therefore developed

that extended RDF with language constructors from object-oriented and frame-based

knowledge representation language. However, the lack of formality of RDF and RDFS

specification soon led to arguments about the meaning of language constructs, such as

the domain and range.

Almost in parallel to the development of DAML-ONT, OIL was developed being

the first ontology language that combines elements from DL, frame languages and web

standards such as XML and RDF. It became obvious to both the DAML-ONT and OIL

group that their objectives could best be served by combining their e↵orts, the result

being the merging of DAML-ONT and OIL to produce DAML+OIL. The DL derived

language constructors of OIL were retained in DAML+OIL, but the frame structure was

largely discarded in favour of DL style axioms, which were more easily integrated with

RDF syntax. Given that OWL8 was not the first web-enable ontology language. OWL

had to maintain as much compatibility as possible with other DL based ontology existing

languages, including SHOE, OIL, DAML+OIL, and so on [Horrocks et al., 2003].

OWL expressivity and profiles

OWL defines, in turn, di↵erent profiles with di↵erent expressivities. From less to

more expressivity: OWL-Lite, OWL-DL and OWL-Full9. In Figure 2.2 their relation and

contextualisation in term of expressively and decidability is shown. As it is claimed in

the OWL specification document:

OWL Full and OWL DL support the same set of OWL language constructs. Their

di↵erence lies in the restrictions on the use of some of those features and on the

use of RDF features. OWL Full allows free mixing of OWL with RDF Schema and,

like RDF Schema. It does not enforce a strict separation of classes, properties,

individuals and data values. OWL DL puts constraints on the mixing with RDF

and requires disjointness of classes, properties, individuals and data values. These

constraints make it decidable in contrast with OWL-Full.

OWL Lite is a sublanguage of OWL DL that supports only a subset of the OWL

language constructs. OWL Lite is particularly targeted at tool builders, who want

8http://www.w3.org/TR/owl-ref/
9http://www.w3.org/TR/owl-ref/#Sublanguages

http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/#Sublanguages
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to support OWL, but want to start with a relatively simple basic set of language

features.

Figure 2.4: Graphical representation of the relation between RDF and OWL profiles

After its appearance, OWL has received several updates. In December 2006, OWL

1.110 added features requested by users: additional property and qualified cardinality

constructors, extended datatype support, simple metamodelling, and extended anno-

tations. This update moved OWL from the SHOIN DL that underlies OWL DL

to the SROIQ DL. In December 2012, OWL 211 added new functionality including:

keys; property chains; richer datatypes, data ranges; qualified cardinality restrictions;

asymmetric, reflexive, and disjoint properties; and enhanced annotation capabilities

[Grau et al., 2008]. OWL 2 also defines 3 new profiles where some of the restrictions

applicable to OWL DL have been relaxed. Figure 2.4 shows the relations between OWL

profiles and RDF.

OWL 2 EL is particularly useful in applications employing ontologies that contain

very large numbers of properties and/or classes.

10http://www.w3.org/Submission/owl11-overview/
11http://www.w3.org/TR/owl2-overview/

http://www.w3.org/Submission/owl11-overview/
http://www.w3.org/TR/owl2-overview/
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OWL 2 QL is aimed at applications that use very large volumes of instance data,

and where query answering is the most important reasoning task.

OWL 2 RL is aimed at applications that require scalable reasoning without sacri-

ficing too much expressive power.

OWL constructors and axioms

Tables 2.2 and 2.3 show some constructors available in OWL. Remember that axioms

are the logical foundations of OWL. Every ontology component is represented in OWL

with a constructor or a combination of them. OWL profiles di↵er, therefore, in the

possible constructors to use.

Basic constructors

owl:Class owl:Datatype rdfs:range

owl:DatatypeProperty rdfs:domain rdfs:subClassOf

owl:imports owl:ObjectProperty owl:versionInfo

owl:Ontology rdf:Property rdfs:subPropertyOf

Table 2.2: Basic OWL constructors

More complex constructors

owl:allValuesFrom owl:maxCardinality owl:cardinality

owl:complementOf owl:maxCardinality owl:differentFrom

owl:disjointWith owl:onProperty owl:FunctionalProperty

owl:hasValue owl:someValuesFrom owl:intersectionOf

owl:InverseFunctionalProperty owl:TransitiveProperty owl:inverseOf

owl:minCardinality owl:Restriction owl:SymmetricProperty

owl:unionOf owl:oneOf owl:equivalentClass

Table 2.3: Complex OWL constructors

Example: Using RDFS users can declare classes like Country, Person,

Student and Canadian... Additionally, using OWL Country and Person can

be defined as disjoint classes.

Example: Using RDFS users can state that Canada and England are both ins-

tances of the class Country... Additionally, using OWL Canada and England

can be defined as di↵erent individuals.
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Example of OWL components in OWL

Figure 2.5 shows some examples extracted from12 about the use of OWL constructors

for defining ontology components.

a) 

b) 

c) 

d) 

e) 

f) g) 

Figure 2.5: Example of OWL ontology components using OWL constructors and axioms

Figure 2.5 a) defines an ontology that reuses another ontology through the cons-

tructor owl:imports; remember that one of the principles of ontologies is to be

reusable.

Figure 2.5 b) defines a concept plant and add a comment to this class using the

constructor rdfs:comment.

Figure 2.5 c) uses the constructor rdfs:subClassOf for defining a taxonomical

relation (isA) between tree and plant.

12http://wwwdh.cs.fau.de/IMMD8/Services/textfarm/referate/RDF_und_OWL.pdf

http://wwwdh.cs.fau.de/IMMD8/Services/textfarm/referate/RDF_und_OWL.pdf
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Figure 2.5 d) makes use of the constructor owl:disjointWith between the concepts

animal and plant.

Figure 2.5 e) and f) indicate that the relations eats and eatenby have transitive

properties.

Figure 2.5 g) defines the class carnivore that conceptually represents those ani-

mals that eat animals in this domain.

It should be noted that both Figure 2.1 and 2.5 are ontologies as both fit to Grubers’s

definition, however, just Figure 2.5 fit to Borst’s and Guarino’s definition. For further

details about OWL, we recommend reading the chapter 8 in [Singh and Huhns, 2004].

2.1.5. Reasoning and inferencing

Formal semantics and the availability of e�cient and provable correct reasoning tools

have made the OWL DL dialect of OWL the language of choice for ontology development

in fields as diverse as biology, medicine, geography, inter alia [Golbreich et al., 2007]. For-

mal semantics allows ontologies and information using vocabulary defined by ontologies,

to be shared and exchanged without disputes as to precise meaning. The standardi-

sation of OWL has sparked the development and/or adaption of a number of reaso-

ners, including FacT++ [Tsarkov and Horrocks, 2006], Pellet [Sirin et al., 2007], HermiT

[Shearer et al., 2008] or many others13.

The more expressive a language is, the less decidable it is. Therefore, it depends on

the needs of the system using ontologies to decide which KRL and reasonser to use for

codifying and reasoning their ontologies. For example, due to the size of ontologies like

SNOMED CT less expressive profiles like the EL are gaining popularity because more

expressive profiles make the reasoning process computationally di�cult and take more

time than is desirable. The performance of a reasoner over one ontology will depend both

the size and expressivity of the ontology and reasoner [Dentler et al., 2011].

13http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/

http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/
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2.2. Biomedical knowledge resources

Biomedical knowledge resources encompass many di↵erent types of data that are used

in two disciplines: bioinformatics and clinical informatics.

2.2.1. Bioinformatics

The origin of bioinformatics can be set at the beginning of the 1960s [Hagen, 2000] as

a consequence of the convergence of DNA sequencing, large-scale genome projects, the

internet and supercomputers. In [Luscombe et al., 2001], bioinformatics is defined as:

“Bioinformatics is conceptualizing biology in terms of macromolecules (in the

sense of physical-chemistry) and then applying “informatics” techniques (de-

rived from disciplines such as applied maths, computer science, and statistics)

to understand and organise the information associated with these molecules,

on a large-scale.”

Between 1945 and 1955 Frederic Sanger and his team achieved the sequencing of a

whole protein of insulin, which was codified as a sequence of amino-acids that define

the structure of this protein in the DNA [Sanger, 1959]. Genes are transcribed into

segments of RNA (ribonucleic acid), which are translated into proteins. Both RNA and

proteins are products of the expression of the gene14. Then to sequence a protein is the

first step to link this with: the fragment of DNA that codifies it, its function, other

proteins/genes related, and many other pieces of information with a biological interest.

Sanger’s discovery triggered the appearance of a collection os amino-acids sequences that

were used as sources of data in new research. This collection has grown and it is still

growing exponentially; so its control went soon far from manual human techniques15. In

general, bioinformatics has a three-fold aim [Luscombe et al., 2001]:

1. Organising data in a way that allows researchers to access existing information and

to submit new entries as they are produced.

2. Developing tools and resources that support data analysis.

14http://www.ncbi.nlm.nih.gov/books/NBK5191/def-item/gene-product/
15http://www.ncbi.nlm.nih.gov/genbank/statistics

http://www.ncbi.nlm.nih.gov/books/NBK5191/def-item/gene-product/
http://www.ncbi.nlm.nih.gov/genbank/statistics
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3. Using these tools to analyze the data and interpret the results in a biologically

meaningful manner.

Characteristics of biological information

According to [Stevens and Lord, 2009] biological data are characterised in the follo-

wing ways: (1) large quantity, (2) complexity, (3) volatility, (4) heterogeneity and (5)

distribution. This scene leaves both the curators of bioinformatics resources and their

users with great di�culties. A typical user, as well as a bioinformatics tool builder, is

left trying to deal with the following problems in order to attempt tasks like: knowing

which resources to use in a certain task, understanding the content of the resources and

interpreting results, codifying in a computer the results of a physical experiment, and so

on.

According to [Legaz-Garćıa, 2015], as a result of the codification of the results

in a computer, several reference databases with biological knowledge have arisen:

nucleotide databases (i.e. Gene Bank [Benson et al., 2007], RefSeq [Pruitt, 2004]),

protein databases (i.e. UniProt [Consortium, 2012]), protein structure databa-

ses (i.e. PDB [Berman et al., 2000]), genomes and maps databases (i.e. Ensembl

[Hubbard et al., 2002]) and databases focus on a concrete organism (i.e. Mouse Genome

Database [Bult et al., 2007]). The number of records in such as databases is exponentially

growing due to: (1) experimental data is recorded, and (2) bioinformatics techniques

make use of computer for processing the available biological information. As a result,

computer programs infer new knowledge that, in turn, is recorded in such a database.

The problem is, how to sort such an amount of data with no consensus between humans

and computers?

Gene Ontology and the success of ontologies in bioinformatics

According to their definitions: (1) “...bioinformatics is conceptualising biology in

terms of macromolecules...”, and (2) ontologies are “... specification of a conceptua-

lisation...”. So, in the biology domain ontologies provide a reference, structured and

controlled vocabularies. The most successful ontology is the Gene Ontology taking in-

to account both the number of users and the reach across species and granularities

[Ashburner et al., 2000, Smith et al., 2007]. The GO project started in 1998. The GO
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describes gene products in terms of their associated biological processes, cellular com-

ponents and molecular functions in a species-independent manner. As it was stated in

[Consortium, 2001], the strength of GO approach lies in:

It compiles a comprehensive structured vocabulary of terms describing di↵erent

elements of molecular biology that are shared among life forms.

Its focus on the specifics of the biological vocabularies and on the establishment of

precise, defined logical relationships between the concepts (using a formal KRL).

Its structure permits the implementation of robust query capabilities far beyond

the development of a simple dictionary of terms or keywords (using reasoners).

As it can be seen, these strengths are closely related to the definition of

the GO as a formal ontology. For example, using meronymy relations the GO

models ‘DNA replication’ as part of ‘DNA metabolism’ and as a part of

‘DNA replication and Cell cycle’, which is itself a part of the ‘Cell cycle’. Then

researchers might describe new gene products, which are stored in databases, using re-

ferences to GO concepts through unique IRIs (Internationalised Resource Identifiers).

This process is known as the annotation process.

For example, Figure 2.6 shows a UniProt16 record that contains information about

the insulin human protein. UniProt is a database that contains comprehensive, high

quality and freely accessible protein sequence and functional information. In the bottom

part of this figure we can see annotations that use concepts defined in the GO. The

annotation process can be both automatic and manual, so we see that each protein

has an annotation score associate. Nowadays there are more than 900 000 annotations

using GO terms in UniProt [Consortium, 2015]. Furthermore, more than 5 million GO

annotations are distributed in other 32 databases17.

Thus, the assignment of a uniquely defined GO concepts as an attribute of gene pro-

ducts, which is performed with the annotation process, also allows a subsequent query,

via the defined concept, to recover all gene products known to share that attribute. For

example, it is possible to query all UniProt entries annotated with the molecular fun-

ction represented by the concept ‘protease binding’. Having the GO codified using a

16http://www.ebi.ac.uk/uniprot
17http://geneontology.org/page/current-go-statistics

http://www.ebi.ac.uk/uniprot
http://geneontology.org/page/current-go-statistics
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Figure 2.6: Entry in UniProt of the protein “insulin” for human (http://www.uniprot.
org/uniprot/P01308)

formal KRL enables the development of queries based on such a formalism is possible.

These query systems make use of reasoners that exploit the semantic within GO for ob-

taining the results. Continuing with the example, a query about entries annotated with

the concept binding would retrieve all those entries annotated with it or any of its des-

cendants like ‘protease binding’. Moreover, the enrichment of ‘protease binding’

with the axiom ‘protease’ enables some ( ‘binds’ some ‘protease binding’ )

would query systems to retrieve all the entries annotated with bindings that are enabled

by some ‘protease’. It should be pointed out that this thesis wishes to contribute to

creating richer ontologies, but we have not studied the impact of richer ontologies on an-

notations and query systems. However, the previous examples motivate with a practical

example the benefits of more axiomatic and richer ontologies.

The success of the GO provoked the appearance of other biological ontologies focusing

on di↵erent subdomains of biology, so ontologies were supported by biologies and other

researches in the community. In particular, the Open Biomedical Ontologies (OBO)

Foundry [Smith et al., 2007] is a coordinated initiative, which has contributed to building

http://www.uniprot.org/uniprot/P01308
http://www.uniprot.org/uniprot/P01308
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an orthogonal set of “good” ontologies that cover di↵erent aspects of biology, as well as

to supporting biomedical data integration. The Sequence Ontology [Eilbeck et al., 2005],

Cell Ontology or the ChEBI ontology are just a few examples.

2.2.2. Clinical informatics and ontologies

Clinical Informatics is defined as the application of informatics and information tech-

nology to deliver healthcare services. It is also referred to as applied clinical informatics

and operational informatics18. Semantic Web Technologies have been considered funda-

mental for the achievement of semantic interoperability of clinical data as it was sta-

ted in the report “Semantic Interoperability for Better Health and Safer Healthcare”

[Stroetman et al., 2009] or it is proposed by the Semantic HealthNet19. For example,

SNOMED CT is used for annotating Electronic Health Records (EHR) so that Seman-

tic Web Technologies support the communication between di↵erent systems across the

world [Mart́ınez-Costa, 2011].

2.2.3. Biomedical knowledge resources

As we have commented, the development and use of ontologies is now a mains-

tream activity within biology and medicine. Using ontology search engines like Watson

[D’Aquin and Motta, 2011] or Swoogle [Ding et al., 2004] we can access to thousands of

ontologies from any domain. More recently, the use of search engines is being replaced

by repositories that stores ontologies like TONES Ontology Repository20 or Ontohub

[Mossakowski et al., 2014]. In contrast to others, TONES is a curated repository, so it is

designed to be a central location for ontologies that might be of use to tools developers

for testing purposes.

Digital curation21 is the selection, preservation, maintenance, collection and

archiving of digital assets. Digital curation establishes, maintains and adds

value to repositories of digital data for present and future use. This is often

accomplished by archivists, librarians, scientists, historians, and scholars.

18https://www.amia.org/applications-informatics/clinical-informatics
19http://www.semantichealthnet.eu/
20http://owl.cs.manchester.ac.uk/repository/
21https://en.wikipedia.org/wiki/Digital_curation

https://www.amia.org/applications-informatics/clinical-informatics
http://www.semantichealthnet.eu/
http://owl.cs.manchester.ac.uk/repository/
https://en.wikipedia.org/wiki/Digital_curation
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In particular, we focus our attention in the analysis of biomedical ontology reposi-

tories like BioPortal [Whetzel et al., 2011a], which is managed by the National Center

for Biomedical Ontology (NCBO) with the goal of expediting communication between

researchers and biomedical ontology developers [Musen et al., 2012]. In the time of this

writing it contained more than 450 ontologies (see Figure 2.7).

Figure 2.7: Statistics describing BioPortal ontologies

Although BioPortal is probably one of the most popular biomedical ontology reposito-

ries, others exist like Aber-OWL [Hoehndorf et al., 2015, Slater et al., 2015]. Aber-OWL

includes BioPortal ontologies, but the benefit of using Aber-OWL is that it provides ac-

cess to ontologies that have been processed by reasoners. This avoids users having to dea-

ling with technical problems associated with reasoning processes. Therefore Aber-OWL

takes advantage of the expressivity of each ontology for classifying them or making other

kind of queries over the inferred model.

It should be noted that these repositories could contain ontologies that are controlled

vocabularies or plain taxonomies created by domain experts with low axiomatisation.

Moreover, BioPortal and other biomedical repositories are not curated, so the applica-

tions of quality assurance methods could contribute to increment its quality. For example,

in [Kamdar et al., 2015] reuse and overlapping in BioPortal ontologies is studied.

KRLs and biomedical ontologies

For biomedical ontologies, formal semantics and the availability of e�cient and pro-

bably correct reasoning tools have made the OWL DL dialect of OWL the language

of choice for ontology development. As a consequence, OWL DL is extensively used in
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the life sciences community, where it has rapidly become a de facto standard for onto-

logy development and data interchange. For example, see BioPAX,2 NASA’s SWEET

ontologies and the National Cancer Institute Thesaurus [Grau et al., 2008].

However, OWL DL is not unique. The OBO Foundry community developed in pa-

rallel with the first version of OWL the OBO Flat File Format22, which was revised in

2004 and received a later revision in 2006. In its origins the OBO format made pos-

sible to make a property reflexive and/or (anti-)symmetric and also let to make one

property “transitive over” another. These axioms were not available in the first version

of OWL. For this reason the OBO specification pointed out that OBO is a subset of the

concepts in the OWL 1 DL, with several extensions for meta-data modelling and the

modelling of concepts. However, OWL 1.1 is fully backwards compatible with OWL so

methods for mapping between OBO and OWL and vice-versa have been in development

[Golbreich et al., 2007].

OWL and OBO are the most used KRLs in BioPortal being the distribution in

September 2015: OBO (103), OWL (295), SKOS (1) and UMLS (33). As just 7.8% of

biomedical ontologies use SKOS [Miles et al., 2005] and UMLS [Bodenreider, 2004] we

exclude them from this study. Therefore, we consider as biomedical knowledge resources

to biomedical ontology repositories, and in particular those ontologies that use OBO or

OWL as KRL.

2.3. Ontologies and identifiers in natural language

Concepts are classes in OWL that use the owl:Class constructor for their de-

finition (Figure 2.5 b). Taxonomical relations are set using owl:subClassOf and

owl:EquivalentClass constructors (Figure 2.5 c). The desirable situation is that classes

in OWL are defined by stating properties of concepts and relations between them. In

OWL associative relations between classes (also known as roles or properties) are defined

using the owl:ObjectProperty constructor (Figure 2.5 g).

22http://oboformat.googlecode.com/svn/trunk/doc/GO.format.obo-1_2.html

http://oboformat.googlecode.com/svn/trunk/doc/GO.format.obo-1_2.html
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Identifiers and natural language

So far, we have described ontologies as well as the importance of codifying them

using a formalism that makes them machine friendly. However, humans need to be able to

understand the conceptualisation when they create, read or expand an ontology. Humans

use the natural language for communications so pieces or fragment of it are included in

ontologies for making them human friendly.

In OWL, a named entity refers to a named class, a named individual or a named pro-

perty. Each named entity must have a unique identifier, called an IRI (Internationalized

Resource Identifiers). Ontologies have a base IRI that identifies it across the internet.

For example, the Gene Ontology has an IRI base that unequivocally references to it. Mo-

reover, each class, relation or instance in such ontology would have one IRI that share

the base IRI of the main ontology. In the next line we highlight in blue the IRI base of

the Gene Ontology, and in brown the identifier of one of its classes.

http://purl.obolibrary.org/obo/GO 0005488

An IRI can also address a particular element within an XML document by including

an IRI fragment identifier as part of the IRI. An IRI which includes an IRI fragment

identifier consists of an optional base IRI, followed by a “#” character, followed by the

IRI fragment identifier.

http://purl.org/obo/owl/GO#GO 0005488

In these two examples, they use GO 0005488 as identifier. This identifier is mea-

ningless, which is also called a “semantic-free” identifier. This identifier is meaningless

because the identifier has no direct relationship between the textual description and the

characteristics about the entity being identified.

Although IRIs contribute to the semantic interoperability of data that use ontologies

for modelling a domain, natural language descriptions help domain experts in a better

understanding of the ontology content. For these reason ontology builders use fragments

in natural language as fragments of the IRIs of ontology components.

http://www.co-ode.org/ontologies/galen#Binding
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However, the use of natural language in IRI fragments requires them to fit to the res-

trictions of the syntax. In [Nor Azlinayati Abdul et al., 2010] is presented a survey of the

usage and style of identifiers and labels of named entities in a corpus of OWL ontologies.

They identify 7 lexical encoding styles: (1) CamelCaseStyle, (2) Underscore style, (3)

Hyphenstyle, (4) HybridCamelCase underscore style, (5) HybridCamelCasehyphenstyle,

(6) Hybridhyphen underscore style, and (7) single word. According to this survey, the

CamelCaseStyle is the most widely used for identifiers.

Annotations in OWL

In OWL it is possible to separate the IRI for the entity and the label for that

entity. OWL ontologies and entities can be assigned annotations, which are pieces of

extra-logical information describing the ontology or entity using natural language. For

example, Figure 2.5 shows some comments in natural language for the di↵erent classes:

“plants form a class”, “trees are a type of plants” or “carnivores are exactly those ani-

mals that eat animals”. Annotations in OWL are written using annotation properties:

owl:versionInfo, rdfs:label, rdfs:comment, rdfs:seeAlso, and rdfs:isDefinedBy.

Ontology engineers can also create their own annotation properties; for example, SNO-

MED CT allows three types of labels: fully specified name (FSN), preferred term (PT)

and synonym (S). It should be noted that annotations are extra-logical constructs be-

cause adding or removing them should not a↵ect the set of consequences derivable from

an ontology [Grau et al., 2008].

rdf:comment vs rdf:label

However, although the range of annotations properties is strings, not all of them

must contain natural language descriptions. We focus our attention on two of them:

rdf:comment and rdf:label. They usually contain descriptions in natural language,

although they have di↵erent purposes. On the one hand, comments include whatever

information about the entity for which they are associated. On the other hand, labels

should describe without ambiguity the classes that they represent; labels are usually

nominal phrases that let users understand the contextualisation that the ontology object

represents. Labels are also known as the names for predicates and constants in rules

or logical formulas, and they constitute an ontological vocabulary [Stephan et al., 2007].
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Therefore, labels can be considered as textual identifiers that complement the logical

identifier codified in the URI.

How do ontologies define identifiers?

The survey made in [Nor Azlinayati Abdul et al., 2010] concluded that most ontolo-

gies do not use labels for named entities, but when they do use labels, these labels are

mostly meaningful.

2.3.1. Guidelines for naming identifiers

Common naming conventions also facilitate understanding the meaning of the con-

tent of the ontology. In particular, inconsistencies in naming conventions can impair the

readability and navigability of ontology class hierarchies, and hinder their alignment and

integration [Schober et al., 2009]. In order to achieve a common naming convention, the

OBO Consortium promotes principles as models of good practice23.

Among other principles, they propose the use of naming conventions. They group 16

naming conventions in four global groups: (1) be clear and unambiguous, (2) be univo-

cous, (3) reduce string variance and (4) align typography. Some of these principles were

obtained in [Schober et al., 2009] using a survey carried out to establish which naming

conventions were employed by OBO Foundry ontologies. The application of unified na-

ming conventions will help to harmonise the appearance and increase the robustness of

concepts within ontologies.

Naming conventions also ease the application of computerised lexical analysis and

processing24. For example, the use of systematic naming so that a subclass con-

tains in its definition part of the father should indicate a rdfs:subClassOf relation.

For example, the rdfs:subClassOf relation between the morphologic abnormalities

‘Congenital stenosis’ and ‘Stenosis’ is lexically present too. Both classes follow

a systematic naming so the more specific class contains in its natural language descrip-

tion part of the parent.

23http://www.obofoundry.org/crit.shtml
24http://wiki.obofoundry.org/wiki/index.php/Naming

http://www.obofoundry.org/crit.shtml
http://wiki.obofoundry.org/wiki/index.php/Naming
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2.3.2. Hidden semantics

Machines cannot easily exploit the knowledge expressed only as text, which limits

the usefulness of such ontologies. In [Third, 2012] a distinction between two types of

identifiers is made:

Simple identifier: this is an identifier that consists of a single natural language

word. For example, Congenital or Stenosis.

Complex identifier: this is an identifier that consists of multiple natural language

words. For example, ‘Congenital Stenosis’.

After this, a constructed identifier is defined as a complex identifier where its compo-

nent words (or just its content words) are themselves simple identifiers in the containing

ontology. For example, if an ontology contains identifiers corresponding to ‘Congenital’,

‘Stenosis’ and ‘Congenital Stenosis’ then ‘Congenital Stenosis’ is a construc-

ted identifier. Then, the meaning of a constructed identifier can be defined in an ontology

by axioms in which all, or most of its component or content words occurs as, or in, identi-

fiers. Third uses these ideas to extract a list of the 10 most frequent patterns for defining

axioms using a corpus of 548 OWL ontologies (see Table 2.4).

From the figures of Table 2.4 it can be concluded that ontology developers follow

a systematic naming when they name ontology components. This is best practice that

according to [Power, 2010] the vast majority do. However, biomedical ontologies like GO

were considered to have hidden semantics, which means that some knowledge is expres-

sed as identifiers but not as axioms [Wroe et al., 2003, Egaña Aranguren et al., 2008,

Fernandez-Breis et al., 2010, Mungall et al., 2011]. In the context of Third�s patterns,

hidden semantics might be detected if we find ontology components that follow

the lexical pattern in the identifier (second column in Table 2.4) but do not fo-

llow the axiomatic pattern (third column in Table 2.4). Figure 2.8 shows an exam-

ple of this hidden semantics, which has been found in the version of the Ge-

ne Ontology Molecular Function enriched in [Fernandez-Breis et al., 2010]. The class

‘3X3C chemokine receptor binding’ is a complex identifier as it can be decomposed

in multiple words. Moreover, ‘chemokine receptor binding’ is a complex identifier

too. Then they lexically follow the pattern DCBA CBA in the identifier but the axioma-

tic pattern subClassOf(DCBA, CBA) is not followed.
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Freq. Pattern Example
1430 SubClassOf(AB B) SubClassOf(representation-activity activity)
1179 SubClassOf(ABC BC) SubClassOf(Quantified set builder Set builder)
455 InverseObjectProperties(hasA isAof) InverseObjectProperties(HasInput IsInputOf)
387 SubClassOf(ABCD BCD) SubClassOf(Continental-Statistical-Water-Area Statistical-Water-Area)
348 SubClassOf(ABCD CD) SubClassOf(NonWikipediaWebPage WebPage)
240 SubClassOf(ABC AC) SubClassOf(Process-Resource-Relation Process-Relation)
229 ObjectPropertyRange(hasA A) ObjectPropertyRange(hasAnnotation Annotation)
192 ObjectPropertyRange(hasAB AB) ObjectPropertyRange(hasTrustValue TrustValue)
188 InverseObjectProperties(AB ABof) InverseObjectProperties(situation-place situation-place-of)
179 InverseObjectProperties(Aof hasA) InverseObjectProperties(contentOf hasContent)

Table 2.4: 10 most frequent patterns of defining axioms

Figure 2.8: Hidden semantic in the class “CX3C chemokine receptor binding”.

In [Mungall et al., 2011] is applied another method that elucidates hidden se-

mantics using as a source two di↵erent ontologies. This lets us discover situa-

tions like: the class ‘oocyte differentiation’, from Gene Ontology, is a type of

‘cell differentiation’ that is implicitly referencing in its label to the class oocyte

in the Cell Ontology. This reasoning can be easily done by a human. However, if the
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class ‘ooccyte differentiation’ has no axioms that make explicitly this relation this

knowledge will be out of the scope of the description logic reasoners.

2.3.3. Lexically-suggest logically define

In previous section we related, for the first time, lexical description and axioma-

tic description. Within the biomedical ontology literature, this idea is closely rela-

ted to the idea introduced by Rector and colleagues: “lexically suggest, logically de-

fine” [Rector and Iannone, 2012]. They contributed to the quality assurance of SNO-

MED CT by analysing the axiomatic use of qualifiers like chronic, acute, congeni-

tal and so on. For example, given the classes ‘Congenital (qualifier value)’ and

‘Congenital stenosis (morphologic abnormality)’ there is a lexical suggestion,

because they share the string congenital, so a logical relation between them should exist.

Previously, in [Campbell et al., 1998] the “lexically suggested logical closure” metric was

defined for medical terminology maturity. This metric was based on the evaluation of

relationships that were proposed by lexical processing programs.

2.4. Ontology engineering

Ontology Engineering refers to the set of activities that concern the ontology develop-

ment process, the ontology life cycle, as well as the methodologies, tools and languages

required for building ontologies25.

2.4.1. Methodologies for building ontologies

Since the appearance of ontologies a wide variety of methodologies for buil-

ding ontologies as artifacts software has been proposed. As has been proposed in

[Legaz-Garćıa, 2015], there are roughly 3 ways of building ontologies: (1) manual creation

of ontologies from scratch, (2) collaborative and decentralised building of ontologies, and

(3) reuse of ontologies.

25http://mayor2.dia.fi.upm.es/oeg-upm/index.php/en/researchareas/

2-ontologicalengineering

http://mayor2.dia.fi.upm.es/oeg-upm/index.php/en/researchareas/2-ontologicalengineering
http://mayor2.dia.fi.upm.es/oeg-upm/index.php/en/researchareas/2-ontologicalengineering
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Manual creation of ontologies

Many methodologies has been proposed for building ontologies from scratch

[Lenat and Guha, 1989, Uschold and King, 1995, Gruninger and Fox, 1996,

Fernandez-Lopez et al., 1999]. Although they di↵er in the number of steps, we

can summarise the most important ones:

1. Identify the scope of the ontology [Uschold and King, 1995,

Gruninger and Fox, 1996]. Make question in natural language for determining the

scope, competency question [Gruninger and Fox, 1996].

2. Manual extraction of common implicit knowledge from several sources

[Lenat and Guha, 1989].

3. Capture concepts, relations and term used for building the vocabulary

[Uschold and King, 1995].

4. Codify the ontology [Uschold and King, 1995]. Specify the ontology in a formal

language and define the competency question formally. Specify the axioms and

definitions for the ontology terms formally. Set completeness conditions for the

ontology [Gruninger and Fox, 1996].

5. Use of natural language tools or machine learning for acquiring new knowledge.

First the result of these tools is processed automatically, and in a next step the

process should be completely automatic [Lenat and Guha, 1989].

Moreover, Methontology [Fernandez-Lopez et al., 1999] proposes a life cycle based

on the evolution of prototypes. This methodology permits the building of the ontology

from scratch but also reusing existent ontologies directly or applying re-engineering.

Methontology proposes 3 category levels (1) management activities, (2) development

activities, (3) maintenance activities. Being the development activities those that are

more closely related to the structure and knowledge formalism of the ontology.

Collaborative building of ontologies

Previous methodologies assume that the ontology is developed by a unique expert or

team. However, the success of the biomedical ontologies has developed in the commu-

nity [Malone and Stevens, 2013]. This collaborative e↵ort makes it di�cult to use rigid
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methodologies for building the ontology. In an ontology with hundreds or thousands of

concepts and relations, even a group of domain experts could argue for reaching a shared

contextualisation.

This flexibility is captured in the NeOn methodology [Suárez-Figueroa et al., 2012].

The NeOn Methodology does not prescribe a rigid workflow in contrast to other approa-

ches. The NeOn methodology suggests a variety of pathways or scenarios for developing

ontologies. Figure 2.9 shows these scenarios. The description of each scenario is taken

from [Suárez-Figueroa et al., 2012]:

Figure 2.9: Scenarios for building ontologies and ontology networks

Scenario 1: from specification to implementation. The ontology network is develo-

ped from scratch, that is, without reusing available knowledge resources.

Scenario 2: reusing and re-engineering non-ontological resources. This scenario co-

vers the case where ontology developers need to analyze non-ontological resources
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and decide, according to the requirements the ontology should fulfil which non-

ontological resources can be reused to build the ontology network. The scenario

also covers the task of re-engineering the selected resources into ontologies.

Scenario 3: reusing ontological resources. Here, ontology developers reuse ontolo-

gical resources (ontologies as a whole, ontology modules, and/or ontology state-

ments).

Scenario 4: reusing and re-engineering ontological resources. Here, ontology deve-

lopers both reuse and re-engineer ontological resources.

Scenario 5: reusing and merging ontological resources. This scenario unfolds only

in those cases where several ontological resources in the same domain are selected

for reuse and when ontology developers wish to create a new ontological resource

from two or more ontological resources.

Scenario 6: reusing, merging, and re-engineering ontological resources. This scenario

is similar to Scenario 5; however, here developers decide not to use the set of merged

resources as it is, but to re-engineer it.

Scenario 7: reusing ontology design patterns (ODPs) [Gangemi, 2005]. Ontology

developers access ODPs repositories to reuse them.

Scenario 8: restructuring ontological resources. Ontology developers restructure

(i.e. modularising, pruning, extending, and/or specialising) ontological resources

to be integrated in the ontology network being built.

Scenario 9: localising ontological resources. Ontology developers adapt an onto-

logy to other languages and culture communities, thus producing a multinligual

ontology.

Although these scenarios can be combined in di↵erent and flexible ways, any com-

bination of scenarios should include Scenario 1 because this scenario is made up of the

core activities that have to be performed in any ontology development. The method de-

veloped in this thesis wants to contribute to scenarios 4, 5, 7 and 8, as it will be a way

of assisting domain experts to evaluate concrete problems or pitfalls in their ontologies.
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2.4.2. Ontology enrichment

Scenario 8 in the NeOn methodology proposes a situation where ontologies developers

make changes in ontologies. One of the re-structurations is extending the ontology, which

is related to ontology enrichment techniques, which are so close to ontology learning

techniques.

Ontology enrichment starts from a given ontology and has the aim of generating

additional concepts or axioms using statistical data about the usage of the name

of the concepts of the ontology in a text corpus [Brewster, 2006].

Ontology learning is built upon well-established techniques from a variety of disci-

plines, including natural language processing, machine learning, knowledge acquisi-

tion and ontology engineering. Because the fully automatic acquisition of knowledge

by machines remains in the distant future, the overall process is considered to be

semi-automatic with human intervention [Cimiano et al., 2009].

The analysis of specialised text corpora makes it possible to automatically model

certain domains through the construction of an ontology based on the content of the

document in the corpora. This is achieved using Natural Language Processing (NLP)

algorithms. Usually, ontology enrichment and ontology learning techniques also make

use of NLP algorithms. The NLP requirements of ontology enrichment are also related

to the interpretation of text [Navigli and Velardi, 2004, Friedman et al., 2006].

Natural Language Processing

NLP can be defined as “a theoretically motivated range of computational techniques

for analyzing and representing naturally occurring texts at one or more level of linguistic

analysis for the purpose of achieving human-like language processing for a range of tasks

or applications” [Liddy, 2001]. According to [Ruiz-Mart́ınez, 2011], people extract mea-

ning from text of spoken language on at least seven levels: phonologica, morphological,

syntactic, semantic, discourse and pragmatic. It should be pointed out that not all NLP

systems use every level. Moreover, for each linguistic analysis level, NLP provides a set

of tools in order to analyse the language [Rodŕıguez-Garćıa, 2014].
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Ontology learning approaches [Liu et al., 2013] can be subdivided by extraction tasks:

terms, synonyms, concepts, relations, and axioms. In particular, the acquisition, descrip-

tion and formalisation of semantical relations is an important requirement for increasing

the expressivity of ontologies. While the automatic identification of terms from texts has

been achieved [Uzuner et al., 2010], the extraction of semantical relations between the

concepts is a bottleneck, as it is a large and tedious process that requires domain experts

collaboration; being a process di�cult to automatise. Among the di↵erent NLP techni-

ques for discovering semantic relations from texts, we have focused on pattern-based text

mining techniques. They were used for the first time by Hearst [Hearst, 1992] and have

gained popularity step by step. These kind of techniques assume:

The goal relation exists.

The goal relation is a specific relation.

The goal relation is explicitly expressed in the text.

The goal relation can be detected by analyzing the words or lexical units.

For example, the patterns “X like Y” can be used to find fragments like “Proteins like

Insulin”. Therefore, the process of extraction of semantical relations based on patterns

implies the next steps:

1. Define the goal relation.

2. Discover real patterns that express the goal relation.

3. Find instances of the goal relation in the text using the patterns defined in step 2.

4. Use the patterns to create a new ontology or enrich other previously set.

Lexico-syntactic patterns [Hearst, 1992, Liu et al., 2011a] detect, and the exploita-

tion of compound or multi-word terms may help to identify hierarchical relationships.

Statistical approaches are based on Firth�s notion [Widdowson, 2007]; “a word is cha-

racterised by the company it keeps” so the analysis of co-occurrences of a word play an

important role in the classification of such a word. [Liu et al., 2011b]. The CAMÉLÉON

method [Aussenac-Gilles and Jacques, 2008] lets users to apply NLP techniques over a
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corpus of text and propose the user potential semantical relations taking as reference 71

patterns previous stored and organised as: (a) 19 patterns for definitions, (b) 35 patterns

for hyperonymy, (c) 14 patterns for meronymy, (d) 1 pattern for reformulation, and (e) 2

varia. Then, CAMÉLÉON guides the user in the steps 2, 3 and 4 previously explained,

so that the detection of patterns like “X like Y” is semi-automatised and the user can

refined the initial patterns iterating over the method. Additionally, in the book “Pattern-

based Approaches to Semantic Relation Extraction” [Auger and Barrière, 2008a], several

methods are proposed. All of them follow a similar pattern-based text mining technique

based on the mentioned 7 levels that compose a traditional NLP pipeline. The inclusion

or exclusion of stages depends on the type of semantic relation to capture. The methods

presented in [Auger and Barrière, 2008a] are applied both English and Spanish corpus,

and they search both taxonomical and associative relations.

In the biomedical domain, one of the most active groups is BioNLP26. The goal

of this community is to contribute to solving problems of the biomedical community

that can be solved using NLP techniques. They focus their e↵orts on extracting relations

from the study of biomedical scientific literature [Liu et al., 2012, Bravo et al., 2014]. For

example, Figure 2.10 shows the discovery of an event (bind) and other related elements

from the inspection of a corpus formed by biomedical texts.

!
Figure 2.10: Example of annotations that search events and co-references in biomedi-
cal texts. Source http://bionlp.dbcls.jp/redmine/projects/bionlp-st-ge-2013/

wiki/Wiki

In recent years, the utilisation of Machine Learning techniques [Nasraoui, 2008] in

the relation extraction work seems to improve the results [Fauconnier et al., 2015]. In

[Abney, 2007], a deep analysis of semi-supervised techniques applied in the computational

linguistic scope is presensted.

26http://www.bionlp.org/

http://bionlp.dbcls.jp/redmine/projects/bionlp-st-ge-2013/wiki/Wiki
http://bionlp.dbcls.jp/redmine/projects/bionlp-st-ge-2013/wiki/Wiki
http://www.bionlp.org/
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Ontology enrichment and biomedical ontologies

As we have commented, ontology enrichment and ontology learning techniques have

been used for automating the development and maintenance of biomedical ontologies

[Liu et al., 2011b]. However, they are mainly focused on analysing text that contribu-

tes to creating new ontological elements. For instance, the ODIE project27 uses NLP

techniques to identify and retrieve relevant free text information from clinical document

repositories using ontological terminology, with the goal of improving and enriching on-

tologies. However, our scenario (ontology identifiers) is di↵erent as it is exemplified in

Figure 2.11. Texts contain sentences with verbs, nouns, terms, pronouns and many other

pieces of information (Figure 2.11 left), and ontology identifiers are usually nominal ph-

rases that intend to provide an unambiguous way to name a concept (Figure 2.11 right).

Given their di↵erent natures, the performance of traditional NLP methods for relation

extraction is not the desired one.

Figure 2.11: Di↵erent nature of an extract in natural language from a corpus of biomedical
scientific documents and identifiers in GO MF ontology.

At this point, it should be pointed out that we do not use pattern-based text mining

as we do not execute patterns against ontology labels in order to discover relations or

use texts for discovering new content to include in the ontology. On the contrary, what

27http://bioontology.stanford.edu/ODIE-project

http://bioontology.stanford.edu/ODIE-project
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we do is to process ontology label with the goal of extract patterns that can be used

to identify a relation. However, due to the popularity of pattern-based text mining for

extracting relations, during this thesis we have tried them against a “artificial” document

that contains each label in an ontology as single sentence. However, the performance was

not good enough so we study in this field to methods that use information expressed in

the ontology, which could be used to establish new formal relationships between exis-

ting ontologies, increasing the potential and usefulness of the biomedical applications

that are supported by such ontologies [Golbreich et al., 2013]. In recent years, di↵erent

approaches have been proposed within this research area:

As we have mentioned, [Campbell et al., 1998] defined the “lexically suggested lo-

gical closure” metric for medical terminology maturity. This metric was based on

the evaluation of relationships that were proposed by lexical processing programs.

The Gene Ontology Next Generation project aimed to provide a method for the

migration of biological ontologies to formal languages such as the Web Ontology

Language (OWL) and to explore issues that are related to the maintenance of large

biological ontologies [Wroe et al., 2003, Egaña Aranguren et al., 2008].

The Open Bio-Ontology Language (OBOL) project [Mungall, 2004] generated for-

mal relationships for existing OBO ontologies using reverse engineering. Later,

[Bada and Hunter, 2007] described a frame-based integration of the GO and two

other ontologies for improving the logical axioms between classes of biological con-

cepts.

Additionally, [Fernandez-Breis et al., 2010] proposed a method for the enrichment

of ontologies by defining ontology design patterns [Gangemi and Presutti, 2009]

and their corresponding implementation in the Ontology Pre-Processor Language28.

[Mungall et al., 2011] addressed the normalisation of GO by explicitly stating the

labels of the compositional classes and partitioning them into mutually exclusive

cross-product sets; they used a combination of OBOL [Mungall, 2004] and manual

curation to generate logical axioms, which they called logical definitions, for selected

parts of GO.

28http://oppl2.sourceforge.net/

http://oppl2.sourceforge.net/
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[Pacheco et al., 2009] detected hidden semantics that is named underspecification

in classes from the SNOMED CT without logical axioms; the authors used natural

language processing, which associated each class with a set of equivalence classes

that grouped lexical variants (based on their labels), synonyms and translations.

[Golbreich et al., 2013] represented the Foundational Model of Anatomy ontology

[Rosse and Mejino, 2003] in OWL2, exploiting the naming conventions in its labels

to make explicit some hidden semantics. For example, the pattern “A of B” was

used to enrich the class ‘Lobe of Lung’. In most cases, the name “A of B“ is

a contraction that is formed from “A and B” that omits some logical axiom p

that relates the two entities, A and B. The missing p was recovered from scan-

ning the list of property restrictions that are attached to the class. For example,

regional_part_of is the p for ‘Lobe of Lung’.

2.4.3. Ontology matching

Ontology alignment, or ontology matching, is the process of determining correspon-

dences between concepts. A set of correspondences is also called an alignment. Ontology

matching is a solution to the semantic heterogeneity problem. It finds correspondences

between semantically related entities of ontologies. For example, Figure 2.12 left shows

an alignment between two simple ontologies.

According to [Euzenat and Shvaiko, 2011], the matching operation determines an

alignment A0 for a pair of ontologies O1 and O2 (see Figure 2.12 right). Hence, given

a pair of ontologies, which can be very simple and contain one entity each, the matching

task is finding an alignment between these ontologies (see Figure 2.12 left). There are

some other parameters that can extend the definition of matching, namely: (i) the use

of an input alignment A, which is to be extended; (ii) the matching parameters, for

instance, weights, or thresholds; and (iii) external resources, such as common knowledge

and domain specific thesauri. [Shvaiko and Euzenat, 2013] discuss approaches that come

from semantic web and artificial intelligence as well as from databases.

A Lexical Matcher creates equivalence mappings between classes that have identical

labels or synonyms [Faria et al., 2013b, Faria et al., 2013a]. A Lexical Matcher is one

of the simplest and most e�cient matching algorithms. One type of Lexical Matcher

is the full-name matching algorithm, which is usually a standard first step in ontology
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Figure 2.12: In the left part, two simple ontologies and an alignment. In the right part,
the ontology matching operation. Figures taken from [Euzenat and Shvaiko, 2011].

matching so tools that those tools that use this kind of algorithm are expected to have

a wide applicability [Faria et al., 2014].

The substantial overlap between existing biomedical ontologies [Kocbek et al., 2012,

Kamdar et al., 2015], makes ontology matching essential for integrating their informa-

tion and ensuring interoperability between them [Faria et al., 2014]. There are various

methods for finding these mappings, and they can be classified according to their granula-

rity (entity-level vs. structural-level) or their interpretation of the input data (syntactic,

external, or semantic) [Euzenat and Shvaiko, 2011].

In [Shvaiko and Euzenat, 2013] an analysis of the state of the art and future cha-

llenges in the ontology matching field is carried out. As evaluations of the recent years

indicate, the field of ontology matching has made a measurable improvement, the speed of

which, however, is slowing down. In order to achieve similar or better results in the forth-

coming years, actions have to be taken. We believe this can be done through addressing

specifically promising challenges that we identify as: (i) large-scale matching evaluation,

(ii) e�ciency of matching techniques, (iii) matching with background knowledge, (iv)

matcher selection, combination and tuning, (v) user involvement, (vi) explanation of

matching results, (vii) social and collaborative matching, (viii) alignment management:

infrastructure and support.
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2.4.4. Quality assurance in ontologies

Quality assurance has been addressed in several ways that require the combination of

di↵erent activities at both textual and axiomatic levels. On the axiomatic side, the ma-

nual detection of irregularities like missing restrictions has been addressed in work such as

[Rector et al., 2011, Rector and Iannone, 2012], whereas syntactic and semantic irregu-

larities are detected by RIO [Mikroyannidi et al., 2011]. In addition, tools like OOPS are

able to detect pitfalls in the axiomatisation of ontologies [Poveda-Villalón et al., 2012].

Hence, including methods that pinpoint anomalies would also help ontology developers

to enrich their ontologies.

In the field of quality assurance the use of metrics is common practice in

engineering activities, which also happens in ontology engineering. For exam-

ple, metrics are widely used to evaluate ontology quality, correctness or si-

milarity [Lozano-Tello and Gómez-Pérez, 2004, Tartir et al., 2005, Garćıa et al., 2010,

Pesquita et al., 2009, Duque-Ramos et al., 2011].



Chapter 3

Objectives and methodology

In this chapter we motivate this thesis taking into account the analysis of the state

of the art presented in Chapter 2.

3.1. Motivation

According to [Egaña-Aranguren, 2009], di↵erent aspects of biomedical ontologies

might be desirable: rigour and axiomatic richness. The KRL chosen for representing

an ontology helps to codify biomedical knowledge with rigour. KRLs, in turn, enable the

use of di↵erent levels of axiomatisation. These levels range from the use of simple axioms

like hierarchical relations to the use of more complex axioms. The more expressive the

KR language is, the more complex axioms can be used to codified knowledge.

Often, rigour and axiomatic richness are independent aspects of biomedical ontologies.

To what extent rigour and axiomatic richness are needed is di�cult to measure. On the

one hand, those biomedical ontologies used as simple plain taxonomies or controlled

vocabulary do not need either rigour or complex axiomatisation. However, taxonomies

were considered to be full ontologies [Studer et al., 1998, Gómez-Pérez, 1999]. On the

other hand, those biomedical ontologies used as domain ontologies should be as rigorous

and axiomatically rich as possible.
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3.2. Main research question

Biomedical ontologies are released in public online repositories where both plain taxo-

nomies and domain ontologies are mixed. This makes di�cult both users and ontologies

developers di↵erence between them. Moreover, often the reason for this lack of rigour

and axiomatisation is because biomedical ontology engineering has been more di�cult

for biologists than was expected [Yu, 2006, Ruttenberg et al., 2007], as it is explained in

Figure 1.2 example. Using this as reference, our main research hypothesis is:

The axiomatic richness of biomedical ontologies might be improved by creating

more complex axioms and using information that is codified in the hierarchy

of concepts in a human friendly way but not machine exploitable.

Consequently, this thesis comes up with a methodology that helps domain experts

in the analysis and the enrichment of their ontologies. In the context of rigour and

axiomatisation, we understand ontology enrichment as the capability of increasing the

rigour or axiomatisation of an ontology. This motivation is also in one of the lines stated

in [Stroetman et al., 2009] to achieve semantic interoperability in the medical domain:

“... the selected recommendations address actions focusing on content, tools and processes

in the development of terminologies” , being here terminologies understood as a sort of

controlled vocabulary. The achievement of such semantic interoperability will depend, to

some extent, on the usefulness of available biomedical ontologies. This motivation is also

pushed by the results obtained in [Fernandez-Breis et al., 2010], where the enrichment

of GO-MF was addressed. Our previous concerns triggered the next research question:

Could we develop an automatic method that could transform some of the con-

tent expressed in natural language in an ontology in logical axioms, and being

the method systematically applicable to enrich biomedical knowledge resour-

ces?

In our attempt to come up with an answer to this question this thesis progresses the

topics that we have presented in Chapter 2. In summary, the more complete ontologies

we have, the more interoperable the data will be. This will benefit many projects as data

interoperability is also a key requirement for an e�cient data analysis in translational

medicine, by representing domain knowledge with ontologies [Machado et al., 2015].
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3.3. Objectives

The main goal of this thesis is to analyse biomedical knowledge resources in order

to support domain experts to identify hidden semantics, which can be converted into

explicit formal content; this would contribute to the quality assurance of biomedical

ontologies. To achieve this goal the following tasks and goals are defined:

O1. Development and implementation of a methodology for the automatic charac-

terisation of ontologies using the analysis of natural language associated with its

concepts.

O2. Development and implementation of a methodology for elucidating hidden

semantics that can be used to generate axioms that contribute to the quality

assurance biomedical ontologies.

• O2.1. The methodology should be applicable to both small and large biome-

dical ontologies. This means it should be ready to scale regardless of the size

and expressivity of source ontologies.

• O2.2. The general methodology must be supported by a set of sub-methods

that enable users to drive the study of the ontology from di↵erent semantics

axes (e.g. semantic taxonomic relations, semantic associative relation, align-

ments and so on).

• O2.3. The methodology should contextualise and relate hidden semantics

within the hierarchy and links created though taxonomic and associative re-

lations.

• O2.4. The methodology should contextualise and relate hidden semantics

within the context of other biomedical ontologies, so that this trigger the

orthogonality and re-use principles for building good ontologies.

• O2.5. The methodology should contribute to current methodologies for buil-

ding ontologies like those presented in section 2.4.1.

• O2.6. The methodology should be generic and systematically applicable to

new versions or new biomedical ontologies.
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O3. Development and implementation of an integrated platform that helps users

from a domain expert profile to use it.

• O3.1. The platform should make complex ontological aspects as much trans-

parent as possible.

• O3.2. The use of the platform should avoid final users (domain experts with

a lower technical profile) dealing with technical configuration problems.

O4. Application and validation of the obtained results after applying the metho-

dology to a set of relevant biomedical ontologies.

3.4. Methodology

During the development of this thesis we have iterated over the 4 main steps to be

explained shortly. We have used the output and the lessons learned in step 4 to create

new research hypotheses, refined some of the goals (detailing new sub-objectives), and

in general contributing to the improvement of our base-line method.

1. Study of literature and state of the art:

Semantic Web: study of ontologies as a method for representing reality and in

particular how ontologies are used in life sciences. We focused our attention

in DL languages and its capabilities for reasoning, in particular we focused

in OWL. We study how natural language can be found within ontologies and

how it is related to the expressivity and semantics expressed in the ontology.

Bioinformatics: analysis of the literature for contextualising this thesis in the

field of bioinformatics and how ontologies have contributed to the management

and formalization of the information generated by this field.

Biomedical knowledge repositories: study of di↵erent sources of biomedical

knowledge and how they could be improved by means of axiomatic enrichment

and the benefits for translational medicine. In particular, we studied ontologies

publicly available on the Internet through ontology repositories like BioPortal.

Moreover, we have focused our interest in the study of two relevant ontologies
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in the biomedical domain Gene Ontology and SNOMED CT, which remain

to the biological and medical part in the context of biomedical ontologies.

Ontology enrichment: study of the current methodologies and approaches rela-

ted to ontology enrichment: ontology engineering, natural language processing

techniques, automatic extraction of relations from texts, ontology learning, on-

tology matching and other work related to quality assurance. This study was

focused on methods that use natural language content to generate axioms in

the ontology.

2. Formalisation of the methods proposed in this thesis:

Development of a base-line method for the analysis of regularities in ontology

labels. We formalise the definition of a lexical regularity and where they can

be found within ontologies. As a first attempt of approach, we formalise the

relation between lexical regularity and other elements within the ontology.

We use this formalisation to analyse and to characterise biomedical ontologies

according to their lexical regularities.

We formalise some concepts that let us measure di↵erent aspects using me-

trics. These metrics let users to rank lexical regularities according to di↵erent

criteria. Here we use clustering techniques for classifying ontologies according

to their adequacy to be enriched.

• We develop a process to prioritise lexical regularities taking into account

semantic aspect of the ontologies. In particular we formalise lexical regu-

larities in the context of taxonomical relations.

• We develop a process to formalise the relation between lexical regularities

and content codified in other ontologies based on a state of the art work:

cross-product extensions. This formalisation allowed our method to be

compared to such a piece of work.

3. Development of the OntoEnrich platform, which permits us to run experiments

using the proposed method and contribute to evaluating our research hypotheses.

The methods are implemented as a library so that they can be used and

integrated with other solutions in the state of the art.
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The methods are implemented using visualisation forms that help domain

experts with low technical knowledge in the analysis and interpretation of the

results.

4. Analysis of the obtained result and evaluation:

Due to the lack of gold standards against which to validate our results, we

develop strategies that compare our solution to others that have been proposed

in the state of the art. The analysis of this automatic comparison and a manual

analysis of the results lets us to point out both advantages and downsides of

our method.

We apply our method to di↵erent corpora of biomedical ontologies extracted

from the web. In particular from BioPortal and the OBO Foundry reposito-

ries. Apart from this, we evaluate the method with the Gene Ontology and

SNOMED CT.



Chapter 4

The OntoEnrich framework

This chapter contains a general overview of the OntoEnrich framework, which will be

detailed in the publications shown in chapter 5. Additionally, we reference work published

in peer review international conferences that have contributed to the development of this

thesis. Therefore, the goals of this chapter are:

Present the publications presented as part of this thesis.

Justify these publications as a scientific unit.

Unify some partial results.

4.1. General description of the method

First, it should be noted that strictly speaking, an ontology should not contain any

instance, because it is supposed to be a conceptualisation of the domain. The combi-

nation of an ontology with associated instances is what is known as a knowledge base

[Stevens et al., 2000]. This thesis is focused in the analysis of TBox but not in the ABox,

so we focus our attention in those OWL constructors related with classes.

We used the work carried out in [Fernandez-Breis et al., 2010] as an initial met-

hodological reference for the development of the thesis. Those results obtained in

[Fernandez-Breis et al., 2010] showed that exploiting the hidden semantics within class

labels o↵ered significant benefits. The results were used for detecting patterns from a

GO sub-hierarchy such as the following:
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(1) “X binding”: the selective, non-covalent, often stoichiometric interaction of a

molecule with one or more specific sites on another molecule.

(2) “translation X factor activity”: any molecular function that is involved in the

initiation, activation, perpetuation, repression or termination of polypeptide synt-

hesis at the ribosome.

These patterns inspired the core concept of this work: lexical regularities. The for-

mal definition of lexical regularity can be found at [Quesada-Mart́ınez et al., 2015d], a

simplified definition is:

A lexical regularity is a group of consecutive ordered words that appear in

more than one class of an ontology.

In the previous examples, the lexical regularities are the fixed part of the patterns

(e.g., binding, translation or factor activity). For example, “binding” appears in more

than 1 600 labels in the GO Molecular Function ontology. Another example of a lexical

regularity is the lexical regularity “negative regulation”, which in general stands for the

prevention or reduction of a biological process. This linguistic expression appears in se-

veral biomedical ontologies, but it is not usually represented with logical axioms. The

“negative regulation of transcription” and the “negative regulation of translation” in the

Gene Regulation Ontology or the “negative regulation” in the Phenotypic Quality Onto-

logy are similar examples. In this particular case, the text of the regularity can be aligned

with an owl:ObjectProperty whose label is ‘regulate’. The majority of the activities

described in [Fernandez-Breis et al., 2010] were performed manually, and ontology buil-

ders would require some support and some automation in order to make its application

wider and more e�cient. Based on the results in [Fernandez-Breis et al., 2010], we made

our initial hypothesis that classes exhibiting lexical regularities may encode the meaning

of a domain object, and there should be a relation between this class and other classes

that exhibit that regularity.

During the development of this thesis that initial hypothesis was derived in the crea-

tion of the method shown in Figure 4.1. This figure shows the current stage of the method

that we achieved after several iterations.

According to the state of the art, the method is contextualised in the field of ontology

engineering, and in particular in ontology enrichment. The enrichment will be carried
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Figure 4.1: The OntoEnrich framework

out using information codified in the labels of the ontology not in external documents or

other resources, for this reason this is out of the scope of ontology learning. Through the

analysis of ontology labels we elucidate hidden semantics that let the user to enrich the

ontology from an axiomatic point of view. This enrichment will make explicit knowledge

so that reasoner can take advances of the expressivity o↵er by the knowledge represen-

tation language base on DL in which the ontologies were originally defined. The method

takes an ontology as an input, and during stage 1 ontology labels are processed to build

a graph that is used to calculate the whole set of lexical regularities. This process is

performed according to some input configuration parameters. For example, di↵erent to-

kenisation strategies for the labels can be applied, since the use of blank as split character

until the use of more advance text preprocessing techniques with the support of stage 2.

Moreover, during this first stage lexical regularities are used to calculate some quantita-

tive features. These features are used to lexically characterise the ontology according to

its natural language identifiers generating a report. Some of these features make use of
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ontology matching to complete lexical regularities with content that is already defined

in ontologies, this should promote the re-use of content in the biomedical community.

Apart from this, in stage 3 we propose the use of metrics to study if lexical regularities

can be used for generating new taxonomical or associative relations. For example, seman-

tic similarity methods are also use to contextualise those classes that exhibit a lexical

regularity taking into account the hierarchy already defined by taxonomical relations.

Other alignment algorithms make use of the graph calculated the cross-product exten-

sion metric. For each metric a new configuration can be needed. These metrics enable

their use in filtering methods (stage 4). Finally, those promising lexical regularities could

be transformed into ontology patterns used to enrich the ontology (stage 5). As a result,

the output would be the modified ontology plus a report about its changes. To sum up,

the method proposed in this thesis contributes to scenarios 4, 5, 7 and 8 in the NeOn

methodology for building and managing ontologies. Next, we further explain each stage.

Stage 1: ontology processing and obtaining lexical regularities

The formalisation of the method is presented in [Quesada-Mart́ınez et al., 2015b],

which is in section 5.1 of this document. There notions like delimiter set, tokenise fun-

ction, token, lexical regularity, sub/super regularity, exact/partial match and other con-

cepts toward the lexical analysis of an ontology are proposed. According to the survey

about identifiers in ontologies mentioned in the state of the art, the method accepts

annotations in ontology labels as well as processing the IRI fragments whether it is

desirable.

Although the parameters of the algorithm are described in

[Quesada-Mart́ınez et al., 2015b], we briefly introduce two of them that let us

continue describing the method: coverage threshold and textual alignments.

Coverage threshold : the coverage threshold is the minimum percentage of classes

in which a lexical regularity must appear to be included in the lexical analysis.

Textual alignments: lexical alignments are found between lexical regularities and

other elements within the ontology. The alignments also can be found in external

ontologies so that contributes to the re-use of knowledge.
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The coverage threshold is an input parameter of the algorithm. This plays an impor-

tant role in the method. First, it o↵ers users the possibility of selecting di↵erent levels of

granularity based on the frequency of the lexical regularities. Second, this parameter is

used to optimise the search of the regularities; and this is important with large ontolo-

gies like the Gene Ontology (around 65 000 classes) or SNOMED CT (more than 250 000

classes), being possible in SNOMED CT to have more than one label per class.

As the method must scale with large ontologies, it organises labels using

a graph structure like the one shown in Figure 4.2. The graph shows the

analysis of 4 class labels: (1) ‘positive regulation of isoprenoid’, (2)

‘negative regulation of isoprenoid’, (3) ‘vitamin binding’ and (4)

‘isoprenoid binding’. Their lexical analysis yields a graph of 7 nodes (tokens)

and highlights 4 shared tokens across the 4 labels. The token “regulation” is common

in labels 1 and 2; thus, the corresponding node has two input arrows in the graph.

Similarly, token “of” is shared across labels 1 and 2; thus, the incoming arrow of the

corresponding node in Figure 4.2 has the label ids on the top. The direction of the arrow

depicts the order of the tokens. For example, the “regulation of isoprenoid” regularity

consists of 3 consecutive tokens that are used in labels 1 and 2. Similarly, “binding” is

shared across labels 3 and 4.

Figure 4.2: Graph of the content of 4 labels
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Using this graph we are able to detect simple and complex identifiers like the

one proposed by [Third, 2012]. Moreover, this graph is the central structure around

which the method implements the ontology alignment algorithms or other NLP tech-

niques like lemmatisation or nominalisation. An explanation of this graph is intro-

duced in [Quesada-Mart́ınez et al., 2015b]. However, the complete explanation of this

graph including algorithms and a discussion that justifies its use can be found in

[Quesada-Mart́ınez et al., 2015d]. A complete analysis of the graph complexity can be

found in Appendix A.

Figure 4.3: Visualisation of the list of lexical regularities and some basic features extracted
from the Gene Ontology Molecular Function.

Using the proposed algorithms we are able to detect the whole set of lexical regulari-

ties, according to the coverage threshold. For example, Figure 4.3 shows 10 regularities

obtained from GO MF. The GO MF version used has 8 547 labels, so if we use a co-

verage threshold of 0.1% the number of lexical regularities is 1 208. As it can be seen

in Figure 4.3, in the formalisation of the method some features associated with the le-

xical regularities are defined [Quesada-Mart́ınez et al., 2015b]. In Figure 4.3 a couple of

examples are shown: frequency (column “Num. Labels”) or if the lexical regularity is a

class in the ontology or not (column “Is a class”). This latter aspect is obtained by the
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lexical alignment algorithm. Then, as a result of the application of stage 1, the lexical

characterisation of the ontology can be obtained.

Stage 2: Natural language processing module

Stage 1 makes use of one of the techniques proposed as part of a NLP pipe-

line, concretely tokenisation located in the textual preprocessing stage mentioned in

[Ruiz-Mart́ınez, 2011]. We have decided to include in the method di↵erent levels of to-

kenisation as the domain codified in the ontology could make the performance of the

same method to be di↵erent according to the ontology used as input. The options are:

(1) simple tokenisation based on white characters, (2) tokenisation, lemmatisation and

part-of-speech using the Stanford NLP tokenisation trained with general English text cor-

pora [Manning et al., 2014] and (3) nominalisation of verbs using the Specialist Lexicon

[National, 2015]. Moreover, these NLP strategies are integrated in the graph’s structure

so that both the lexical regularities and alignment algorithms use them as a reference.

Stage 3: Metrics module

The basic features enable the ordination of the list of regularities. For example, higher

frequencies might capture general patterns. Another indicator is to show whether the

regularity corresponds to the name of a class. These and other features can be used

in our approach to prioritise lexical regularities according to di↵erent semantic aspects

that represent di↵erent types of hidden semantics. For example, the systematic naming

captures taxonomical relations and the detection of regularities that are verbs can be

exploited to generate other associative relations. For this reason, we propose to model

di↵erent aspects related with a lexical regularity using a module based on metrics. Metrics

are commonly used in practice in engineering activities, which also happens in ontology

engineering. Moreover, as we commented in the state of the art metrics are widely used

to evaluate ontology quality, correctness or similarity. In the scope of lexical regularities,

the value of a metric depends on a function f(x) = y, where the domain of x is a lexical

regularity and it range is a value where y 2 [m,n]. The interpretation of y will depend

on the the aspect/s measured by f(x).
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Stage 3.1: Modularity and locality metrics

In [Quesada-Mart́ınez et al., 2014] we present a metric that measures the locality

(l(x)) and modularity (m(x, p)) of those classes that exhibit a lexical regularity. The-

se two aspects take into account the semantics codified in the hierarchy of concepts

using taxonomical relations of the type rdfs:subClassOf. Figure 4.4 illustrates the two

examples of the locality metric of regularitites “colnear ulcer” and “posterior” from the

Human Disease Ontology [Schriml et al., 2012].

Figure 4.4 (left) highlights those classes exhibiting the lexical regularity “corneal

ulcer”. In this case, the ontology authors have followed a systematic naming in the

class labeling that contributes to the lexical similarity. The class “colnear ulcer”,

which matches the lexical regularity, is the ancestor of those classes that exhibit

it, so the hierarchical relationships are already explicit. In this case, the locality

measure of “corneal ulcer” is 0.85 (close to 1).

Figure 4.4 (right) highlights those classes exhibiting the lexical regularity “poste-

rior”. In this case, these classes do not appear in the same hierarchy so they do not

codify taxonomical relationships. In this case, the locality measure of “posterior”

is 0.14 (close to 0).

It should be pointed out that the low value of the lexical regularity “posterior” does

not mean that this regularity is meaningless, but that those classes that exhibit it are not

close in the asserted hierarchy defined in the ontology, which is the aspect measured by

the locality function (l(x)). l(x) makes use of semantic similarity measures that combine

edge-based and graph-based approaches [Pesquita et al., 2009].

The locality metric is completed with the modularity metric (m(x, p)). l(x)

quantifies how close two classes that exhibit a given regularity are in the onto-

logy. Hence, m(x, p) may estimate how a regularity is distributed in a particu-

lar context of the ontology, which can be useful to identify modules in the onto-

logy. For example, in the Gene Ontology the lexical regularity “kinase activity” is

exhibited by classes like ‘kinase activity’, ‘regulation of kinase activity’,

‘dolichol kinase activity’, and ‘protein histidine kinase activity’. As we

have explained in the introduction, ontologies often are organised in sub-modules that

are represented by top-levels of the ontology. In the case of the Gene Ontology the
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Figure 4.4: Two examples of the hierarchy of the classes of the Human Disease Ontology.
The highlighted classes are classes with a lexical regularity, “corneal ulcer” left hierarchy
and “posterior” right hierarchy.

first level represents 3 di↵erent aspects with the classes: ‘biological_process’ (BP),

‘cellular_component’ (CC) and ‘molecular_function’ (MF). Let us select these 3

classes as the context for calculating the modularity of the regularity. We select the-

se classes as p. The regularity “kinase activity” appears in classes that are descen-

dants of BP and MF, and corresponds to the full label of a class in MF. And this

can be systematically applied to the whole set of lexical regularities using m(x, p).

Moreover, in BP, it is preceded by another lexical regularity, “regulation of”, as in

‘regulation of kinase activity’. As a consequence, the presence of these lexical

regularities in two classes or more classes in p could help the ontology developer to make

explicit the links between, in this example, the corresponding MF and BP classes.

Stage 3.2: Cross-product extension metrics (CPE)

In [Quesada-Mart́ınez et al., 2015d] we present a metric that measures, following

Third‘s terminology, if lexical regularities capture complex identifiers that can be de-

fined as a composition of other simple identifiers, which are lexically contained in them.

For example, let us to take again the “X binding” pattern from Figure 1.3. “Binding”

is the lexical regularity and it is a class in the hierarchy. However, according to Firth�s
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notion, “a word is characterised by the company it keeps”, the analysis of those words

that enfold the lexical regularity could provide complementary information. For exam-

ple, 20% of the classes that replace X in the binding example are found as classes in the

Chemical Entities of Biological Interest ontology (ChEBI). The cross-product extension

metric cpe(x,O) measures this kind of situation. This metric is based on the ontology

matching operation showed in Figure 2.12 and using a lexical matcher algorithm as

reference. The input of this metric is a lexical regularity. In general, the alignment is

performed between the classes that exhibit a regularity and the whole set of classes

in O (O is an ontology); although as we explain in [Quesada-Mart́ınez et al., 2015d]

the same ontology used to extract the lexical regularities can play the role of O. Mo-

reover, cpe(x,O) measures the percentage of classes with complex identifiers that can

be decomposed into smaller fragments. An example of the decomposition of the class

‘monovalent inorganic cation transmembrane transporter activity’ is shown

in Figure 4.5, being the regularity “transmembrane transporter activity”.
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Figure 4.5: Fragment of an eXtensible Markup Language (XML) file with the alignments
found between the class “monovalent inorganic cation transmembrane transporter acti-
vity” in GO and classes in CheBI.

Moreover, it is worth pointing out how we take advantage of the graph structu-

re explained before for carrying out the alignment. Traditional lexical matcher algo-

rithm searches lexical alignments comparing the identifiers of two labels. In our ca-

se, we compare tokens. For example, Figure 4.6 shows the partial alignment between

the class ‘ammonium ion metabolic process’, which exhibits the regularity “metabo-

lic process”, with classes in CheBI. The extraction of the graph above is the result of
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loading CheBI ontology in a graph. The extraction of the graph below is the result of

loading GO ontology in another graph. The alignment is calculated by aligning parts

of both graphs. In this example, we can see that sometimes overlap can appear as one

complex identifier can be decomposed in more than one combination of classes.

… L1: ammonium ion metabolic process 
L2: metabolic process 

Extract of 
Labels from 

GO: L3: … 

… 

… 

{L1} 

L1: ammonium ion 
L2: ammonium 

L4: … 

Extract of Labels 
from CHEBI: L3: ion 

{L1, L3} 

a"

… 

… 

… 

… 
… 

… 

… 

… 

… 

… 

… 
… 

… 
… 

… 

… … 

R
ep

re
se

nt
at

io
n 

in
 th

e 
gr

ap
h 

of
 th

e 
la

be
ls

 fr
om

 C
H

EB
I 

R
ep

re
se

nt
at

io
n 

in
 th

e 
gr

ap
h 

of
 th

e 
la

be
ls

 fr
om

 G
O

 {L1} 

ammonium 

{L1} 

… 

{L1, L2} 

{L1, L2} 

metabolic ion 

ammonium 

{L2} 

ion 

process  

Figure 4.6: Graphical representation (which represents the labels as graphs of tokens)
of the decomposition of ammonium ion metabolic process using classes from GO and
ChEBI. The graph would be formed by the whole set of labels from each ontology, but
we show only some labels that participate in the decomposition of the class ammonium
ion metabolic process.

Finally, we found a relation between this idea and the GO cross-product extensions

[Mungall et al., 2011]. This is why we use the name cpe for this metric. The GO cross-

product extensions provide logical definitions for GO classes using genus-di↵erentia cons-

tructs of the form “an X is a G that D”. Here, X is the class that we are defining, G

is the genus (more general class), and D is the di↵erentia, a collection of characteristics

that serves to discriminate instances of X from other instances of G. For example, the

class ‘mitochondrial translation’ can be seen as the genus ‘translation’, and the

di↵erentia occurs inside a ‘mitochondrion’. In the context of our lexical regularities

the hypothesis is that they could be capturing the genus of these cross-products, so we

our cpe metric measures in such a situation.
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Stage 4: Filtering

As we have mentioned before, lexical regularities can capture di↵erent types of hid-

den semantics. The coverage threshold implicitly lets the user apply filters based on the

frequency of the lexical regularities. However, other filtering mechanisms would be desira-

ble. On the one hand, we propose to use metrics values for applying filters according to

the aspect defined by the metric. On the other hand, other aspects not interpretable by

metrics should be included. For example, we add filters based on the part-of-speech tag

labels associated with regularities.

Apart from these filters, we have detected certain overlaps as a consequence of the sys-

tematic naming convention in identifiers. These overlaps can be observed in the example

of Figure 4.5. In our method, this situation is formalised through sub/super-regularity re-

lations [Quesada-Mart́ınez et al., 2015b]. For example, “transporter” is a regularity that

is exhibited in 510 classes of GO MF. It has the super-regularity “transporter activity”

(501) and “transporter” (9); this overlap can be observed in Figure 4.5 too. The method

o↵ers filters taking this situation into account [Quesada-mart́ınez et al., 2013].

Stage 5: Relation extraction module

The desirable scenario is to automatise lexical regularities that are a result of stage 4

to automatically create axioms in the original ontology. As we have explained in the state

of the art section, methods focus on the extraction of relation from texts and ontology

learning [Hearst, 1992, Aussenac-Gilles and Jacques, 2008, Auger and Barrière, 2008b]

make use of lexico-syntactic patterns. These patterns are predefined and used for search

instances in text that fit to them. Each pattern has a semantical relation associated,

so if patterns are found in a text the relation is directly created. Lexico-syntactic pat-

terns take into account the part-of-speech analysis that indicates the syntactical ca-

tegory of text content. For example, the identifiers “sphingolipid binding .” and “6-

phosphogluconolactonase activity .” follow the same lexico-syntactic pattern: adjective

(JJ) followed by a noun (NN) and followed by a punctuation symbol (end of the label).

Therefore, the enrichment pattern used for the first expression could be used for the se-

cond too. However, in the context of labels these types of patterns do not reveal the parti-

cular relation to create so they cannot be used to automatise the process. However, the ex-

perience gained with the application of methods like [Aussenac-Gilles and Jacques, 2008]
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suggested that verbs in text codify relations. So analysing lexical regularities that are

verbs could be used, for example, to use that verb as rdfs:objetcProperty. Moreover,

in the particular case of the GO Molecular Function, in patterns like “X binding” is the

word “binding” that codifies the relation using an rdfs:objetcProperty labelled with

binds, so is the nominalisation of the verb “binding” which hides the semantic relation.

So far, our method assists domain experts in the inspection of lexical regularities from

di↵erent axes using metrics, but the automatic creation of the enrichment pattern has

not been automatised, except for those cases like ‘CX3C chemokine receptor binding’

and ‘chemokine receptor binding’ where there is no reason that justifies the absence

of a rdfs:subClassOf relation between them (Figure 2.8). In these cases, the systematic

naming can be exploited to create an OPPL script that makes those classes that exhibit

the super-regularity descendant of the sub-regularity, if the latter corresponds with the

label of a class.

4.2. Results and Applications

This section includes a description of the result presented in the 3 publications that

are part of this thesis. We organise this section as follows: for each experiment we des-

cribe the research hypothesis, the materials used and the results summary and some

conclusions drawn.

4.2.1. Lexical characterisation of biomedical ontologies

Hypothesis:

• H1: the method can be scaled and systematically applied to biomedical on-

tologies. The formalisation of the method as the lexical characterisation of

ontologies contributes to the next sub-hypothesis:

� H1.1. Biomedical ontologies are rich in identifiers.

� H1.2. Biomedical ontologies follow a systematic naming.

� H1.3. Biomedical ontologies are in general plain taxonomies that have a

low axiomatisation.

� H1.4. Biomedical ontologies re-use content from other ontologies.
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� H1.5. The lexical characterisation can help to select those ontologies that

are appropriate to take advantages of methods that helps to elucidate

hidden semantics.

• H2: regularities are shared among ontologies. If a regularity is used to create

an enrichment pattern the patterns could be applied to other ontologies.

Description:

• The method is systematically applied over a corpus of 178 OWL ontologies

from the BioPortal repository.

• We use the characterisation of ontologies based on quantitative metrics for

classifying BioPortal ontologies according to their appropriateness to apply

methods that detect hidden semantics.

Results:

• The formalisation and implementation of the method.

• The lexical characterisation of ontologies, which includes information about:

� Characterisation of Axioms.

� Characterisation of lexical regularities.

� Re-Use of lexical regularities.

� Imported Ontologies.

� Distribution in cluster of the corpus of ontologies.

Conclusions:

• The ratio of identifier/classes is close to 1, which means that the ontology

builders provide a textual definition. We find that 41 ontologies do not define

labels but their identifiers contain text content. The use of labels instead of

codifying the identifier in the URI is gaining popularity, as 65% of ontologies

chose this option. In a previous survey [Nor Azlinayati Abdul et al., 2010] the

majority of ontology developers codified identifiers in the URIs. These results

confirm hypothesis H1.1.
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• Biomedical ontologies are rich in lexical regularities. Using a coverage threshold

of 1%, we obtain 8175 lexical regularities in 118 biomedical ontologies. This is

an indicator that biomedical ontologies use a systematic naming and confirm

H1.2. This also confirms the scalability of the method to the whole repository.

• 75% of the axioms of BioPortal ontologies are annotations properties or

rdfs:subClassOf, which we interpret as showing that most BioPortal onto-

logies are taxonomies and are rich in natural language content. This confirm

hypotheses H1.1 and H1.3.

• The majority of the BioPortal ontologies do not re-use concepts from other

ontologies through imports, so detecting common lexical regularities could

potentially re-use entities. 77.22% of the ontologies do not import any other

ontology. This partially rejects H.1.4. This 77.22% of the ontologies that do

not import ontologies could benefit from our method for finding regularities

that appear in external ontologies. However, 15.60% of the lexical regularities

correspond to full labels of classes in the ontologies; that is, class labels are

complex identifiers including labels from other classes. In addition, 36.44%

of these labels correspond to classes from external ontologies. These results

suggest that the number of links between ontologies is lower than the degree

of potential relation between the content of di↵erent ontologies. Hence, H1.4

can be rejected. The fact that most alignments have been found in external

ontologies, suggests that the re-use of this content for enriching current bio-

medical ontologies is a significant contribution. It should be pointed out that

our approach measures the re-use in terms of explicit imports, which could be

complemented with the study of use of URIs.

• An ontology is potentially suitable for enrichment whether its labels contain

regularities, such regularities are exhibited by many classes in the ontology,

and the regularities have matches with content from external ontologies. The

cluster analysis reveals 3 clusters. Cluster 1 (42 members) and Cluster 3 (33

members) contain ontologies with such properties, so 75% of the BioPortal on-

tologies analysed could benefit from enrichment processes. Cluster 2 contains

24 ontologies. This confirms H1.5.

• We found that 23.49% of the regularities appear in more than one ontology.
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This suggests that the axiomatisation using these regularities as a base to de-

fine an enriching pattern would contribute to their re-use between ontologies.

This confirms H2.

4.2.2. Lexical regularities and taxonomic relations

Hypothesis:

• H1 the locality of the regularities gives information useful for driving the

axiomatic enrichment of the ontology.

Description:

• The method is extended to the locality and modularity metrics. These metrics

use semantic similarly metrics between the set of classes that exhibit a lexical

regularity.

• The lexical analysis and the prioritisation of the lexical regularities is perfor-

med over four biomedical ontologies, which were selected due to their size and

di↵erent content: 1) the Human Disease Ontology; 2) the Chemical Entities of

Biological Interest; 3) the Gene Ontology; and 4) SNOMED CT . We perform

their lexical analysis with di↵erent coverage thresholds and:

� Calculate the locality metric value for all the lexical regularities obtained.

In summary, 0 means that those classes that exhibit a lexical regularity

are far in the hierarchy and 1 the opposite.

� Calculate the modularity metric value using as classes of interest those

that are in the first level of ontology classes. If the value of the metric

counts the number of class of interest that are ancestors of the classes

that exhibit the lexical regularities.

Results:

• The formalisation of the metric module, the locality and modularity metrics.

• Integration of the metric module into our general method.

• Implementation of the metrics.
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Conclusions:

• Locality and modularity contribute to a better understanding of the enginee-

ring of the ontologies and may support domain experts in the prioritising of

the most promising parts of the ontologies for axiomatic enrichment.

� The mean value of the locality measure ranges from 0.20- 0.48, which

means that, on average, lexical regularities are distributed along the hie-

rarchy.

� The mean percentage of classes of interest in which a lexical regularity

appears is 52.79% (1.56) in the ChEBI, 31.62% (2.48) in the DOID,

67.06% (2.0) in the GO, and 28.07% (5.32) in SNOMED CT (the figures

in brackets are the absolute values, for example, lexical regularities from

the GO appear as descendant of 1.56 classes of interest). The absolute

values of the modularisation measure reveal that, on average, those classes

that exhibit a lexical regularity appear in more than one class of interest,

which is a sign of the potential links between the lexical entities of di↵erent

modules. Although the refinement of the classes of interest, for example,

including classes in other levels will provided further details in order to

enrich the ontology.

These results confirm H1, although these metrics require human intervention

for configuring the classes of interest.

4.2.3. GO MF analysis

Hypothesis:

• H1: the initial hypothesis is that lexical regularities by themselves can help the

domain expert to automatically detect those enrichment patterns identified

in [Fernandez-Breis et al., 2010].

• H2: the inspection of sub/super-regularities would contribute to discover more

specific patterns. The lexical regularities can be automatically converted into

OPPL scripts that enrich the ontology.

Description:
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• We applied the method for detecting lexical regularities and characteri-

sing ontologies according to some quantitative features. The method inclu-

des a naive alignment algorithm that uses BioPortal search web services

[Whetzel et al., 2011b], as well as alignments between regularities found in

di↵erent ontologies.

• We applied the method to the same ontology used and enriched using know-

ledge patterns in [Fernandez-Breis et al., 2010].

Results:

• The implementation of the method

• GO MF has 8 547 labels, which contain 36 944 tokens (6 808 unique tokens).

The longest label has 29 tokens. 5 968 lexical regularities have been found using

our tool. The longest pattern contains 22 tokens, the mean length is 2.7280,

and the median is 2. Concerning the number of repetitions of each regularity,

the mean value is 8, and the median is 3. 7.1% of the lexical regularities

correspond to the exact labels of GO MF classes, whereas 38.82% correspond

to exact labels of BioPortal ontology classes.

Conclusions:

• The analysis of the binding taxonomy reveals that “receptor activity”, “codon-

amino-acid activity”, “hormone receptor activity” and “modification guide ac-

tivity” are the most frequent lexical regularities. Most of such patterns were

manually identified in [Fernandez-Breis et al., 2010] by using knowledge pat-

terns. The expert read the knowledge patterns and searched classes in the

ontologies that follow a lexical regularity that capture the knowledge patterns.

However, lexical regularities like “hormone receptor activity” were not consi-

dered in that e↵ort because no specific knowledge pattern was defined for it,

which shows the goodness of having such tooling support and contributes to

confirm H2.

• The enrichment patterns proposed in [Fernandez-Breis et al., 2010] are a sub-

set of the lexical regularities. Although the support of the method helps users



4.2. Results and Applications 71

to elucidate hidden semantics the process for creating patterns to enrich the

ontology still requires manual intervention. H1 can be rejected.

4.2.4. Gene Ontology cross-product extension

Hypothesis:

• H1: the CPE-metric, and in particular the 3 conditions that we propose,

provides information about the degree and type of enrichment that can be

expected by analysing the content surrounding the text that is repeated in

the lexical regularity.

• H2: the classes captured by the lexical regularities can be used to enrich the

ontology, in a similar way as with cross-products.

• H3: the alignment method based on parts of labels provides more information

than using alignments between the whole label.

Description:

• We performed lexical analysis on Gene Ontology for several reasons:

� GO provides a controlled vocabulary for the functional annotation of

gene products. To date, GO classes have been used to produce millions

of annotations. Its enrichment would have an impact on the exploitation

possibilities of the GO.

� Our analysis of BioPortal ontologies revealed the prima facie suitability

of the GO for its enrichment: 100% of the classes have labels, 92% of the

words of the labels are repeated, and 85% of the ontology labels exhibited

67 lexical regularities.

� The GO consortium and other scientists have already identified the need

of increasing the axiomatic richness of GO, and have recently developed

a partially enriched version, the GO cross-product extensions.

• We studied and described the similarities between lexical regularities and

cross-products. We modelled these relations using the CPE-Metric.
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� The CPE-class condition allows for filtering classes that are based on exact

textual alignments. In other words, they are based on an estimation of

the enrichment of the lexical regularities ; for this we include information

from an external ontology and find decompositions of labels using tokens

as the minimal representational unit.

• Design and implementation of a validation strategy based on cross-products,

which let us compare the performance of our method against a reference met-

hod.

� For the comparison, we defined a template that measures the equivalence

between our method and the reference method. Despite the previous work

not being a gold standard, the fact that both methods share the same

objective of the axiomatic enrichment of the GO, their expertise in the

biological domain and the process followed (including manual curation),

makes the reference method relevant for the evaluation of our results. The

use of this template let us discuss our method in terms of the standard

metrics of precision, recall and F1-measure using.

Results:

• Formalisation and implementation of the cpe-metric.

• Integration of the cpe-metric in the general method.

• The label of the classes of the GO are highly regular in lexical terms, and the

exact matches with labels of external ontologies a↵ect 80% of the GO classes.

• The CPE metric reveals that 31.48% of the classes that exhibit regularities

have fragments that are classes into two external ontologies that are selected

for our experiment, namely, the Cell Ontology and the Chemical Entities of

Biological Interest ontology, and 18.90% of them are fully decomposable into

smaller parts.

Conclusions:

• The CPE metric permits our method to detect GO cross-product extensions

with a mean recall of 62% and a mean precision of 28%. This partially con-
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firms H2. However, the overlap is not complete so the study is completed with

an analysis of false positives to explain this precision value.

• CPE-c1 and CPE-c2 provide information about a greater number of general

decompositions than those provided by the reference method and those pro-

posed by the CPE-c3. This information is useful for domain experts but not

for the automation process. This accepts H1. This fact also support H3, ho-

wever as mentioned the information can introduce noise so filtering methods

would be required.

4.3. OntoEnrich tool

All the methods proposed in this thesis have been implemented and are available at:

http://sele.inf.um.es/ontoenrich/

The implementation [Quesada-Mart́ınez et al., 2015c] is an online tool that avoids

domain experts with low technical knowledge dealing with configuration or performance

problems. The platform requires users to be logged in and to manage jobs using a task

schedule. Due to the time use for executing some algorithms that implement the met-

hod, a task system lets users apply di↵erent stages without having to wait in front of the

computer. Figure 4.7 shows screenshots for the “binding” and “forming” lexical regulari-

ties (LRs). This form is focused in a particular regularity but a more general inspection

can be done using a form that contains a table like the one shown in Figure 4.3. The

calculation of metrics can be done systematically for the whole set of regularities. When

the task has finished the metrics values for all the regularities can be dynamically added

as a new column to the table in Figure 4.3.

Coming back to the particular example of Figure 4.7, panel number 3 shows the

information of the LR under inspection. We can navigate through the LRs (see Figure

4.7- 8). In Figure 4.7- 4 the general descriptors of the active LR are shown, and the labels

that exhibit the LR can be explored in Figure 4.7- 5. More complex features of the LR

are analysed independently and they are chosen using Figure 4.7- 6. Panel 5 shows the

labels in which the LR appears. Panel 7 contains information about the super-patterns,

sub-patterns, or alignment of labels, depending on the option selected in Panel 6.

http://sele.inf.um.es/ontoenrich/
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Figure 4.7: Example of the online inspection of lexical regularities
(http://sele.inf.um.es/ontoenrich/files/ekaw2014ontoenrichImg.pdf

Use Case 1 - “binding” (Figure 4.7 left): this LR is quite general, so the

inspection of the super-regularities can be useful. For example, there are 23 classes

that exhibit the super-regularity “ion binding”, which is a class in the ontology;

however, the least common subsumer of these 23 classes is ‘binding’ instead

of ‘ion binding’, which suggests the inspection of the labels that exhibit “ion

binding” for discarding the irregularities in the naming of the labels. Hence, this

analysis could serve to inspect the correlation between the lexical regularities and

relationships between the corresponding classes.

http://sele.inf.um.es/ontoenrich/files/ekaw2014ontoenrichImg.pdf
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Use Case 2 -“forming” (Figure 4.7 right): this LR is recognised as a

verb by the NLP modules. If we align and analyse the labels that exhibit

this LR, the first 6 labels could be generalised as: ‘ligase activity, forming

?x’. Then, if ?y represents classes that follow such a pattern, these clas-

ses can be enriched with the axioms ‘?y subClassOf ‘ligase activity’

and ‘?y subClassOf enables some (forming some ?x)’, whe-

re the LR is created as an object property. However, the align-

ment of labels that exhibit the LR does not obtain a consensus as

‘nucleoside-specific channel forming porin activity’ does not fo-

llow the pattern “Y, forming X”. In the other 2 labels, several elements are

formed, so two axioms with an AND clause might be created.
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Abstract: Hundreds of biomedical ontologies have been produced, with many of the

significant, widely used ones being developed in collaborative e↵orts and following a set

of construction principles, which include using a systematic naming convention for their

labels. Despite their success, many of these ontologies have lacked a foundation of axioms

that would expose the wealth of knowledge in the ontologies to computational reasoning.

Our previous results suggest that exploiting the structure of the labels may contribute to
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an axiomatic enrichment. Hence, in this work we perform a study of the structure of

the labels of the ontologies available in BioPortal to classify them in terms of potential

interest for axiomatic enrichment.
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5.2. Prioritising Lexical Patterns to Increase Axio-

matisation in Biomedical Ontologies
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Abstract:

Introduction: This article is part of the Focus Theme of Methods of Information in

Medicine on “Managing Interoperability and Complexity in Health Systems”.

Objectives: In previous work, we have defined methods for the extraction of lexical

patterns from labels as an initial step towards semi-automatic ontology enrichment met-

hods. Our previous findings revealed that many biomedical ontologies could benefit from

enrichment methods using lexical patterns as a starting point.Here, we aim to identify

which lexical patterns are appropriate for ontology enrichment, driving its analysis by

metrics to prioritised the patterns.

Methods: We propose metrics for suggesting which lexical regularities should be the

starting point to enrich complex ontologies. Our method determines the relevance of a

lexical pattern by measuring its locality in the ontology, that is, the distance between

the classes associated with the pattern, and the distribution of the pattern in a certain

module of the ontology. The methods have been applied to four significant biomedical

ontologies including the Gene Ontology and SNOMED CT.

Results: The metrics provide information about the engineering of the ontologies

and the relevance of the patterns. Our method enables the suggestion of links between

classes that are not made explicit in the ontology. We propose a prioritisation of the

lexical patterns found in the analysed ontologies.
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Conclusions: The locality and distribution of lexical patterns o↵er insights into the

further engineering of the ontology. Developers can use this information to improve the

axiomatisation of their ontologies.
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Abstract:

Objective: The main goal of this work is to measure how lexical regularities in

biomedical ontology labels can be used for the automatic creation of formal relations-

hips between classes, and to evaluate the results of applying our approach to the Gene

Ontology (GO).

Methods: In recent years, we have developed a method for the lexical analysis of

regularities in biomedical ontology labels, and we showed that the labels can present

a high degree of regularity. In this work, we extend our method with a cross-products

extension (CPE) metric, which estimates the potential interest of a specific regularity

for axiomatic enrichment in the lexical analysis, using information on exact matches

in external ontologies. The GO consortium recently enriched the GO by using so-called

cross-product extensions. Cross-products are generated by establishing axioms that relate

a given GO class with classes from the GO or other biomedical ontologies. We apply our

method to the GO and study how its lexical analysis can identify and reconstruct the

cross-products that are defined by the GO consortium.

Results: The label of the classes of the GO are highly regular in lexical terms, and

the exact matches with labels of external ontologies a↵ect 80% of the GO classes. The

CPE metric reveals that 31.48% of the classes that exhibit regularities have fragments
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that are classes into two external ontologies that are selected for our experiment, namely,

the Cell Ontology and the Chemical Entities of Biological Interest ontology, and 18.90%

of them are fully decomposable into smaller parts. Our results show that the CPE metric

permits our method to detect GO cross-product extensions with a mean recall of 62%

and a mean precision of 28%. The study is completed with an analysis of false positives

to explain this precision value.

Conclusions: We think that our results support the claim that our lexical approach

can contribute to the axiomatic enrichment of biomedical ontologies and that it can

provide new insights into the engineering of biomedical ontologies.



Chapter 6

Conclusions and future work

6.1. Contributions

The proposed method enables the inspection of lexical regularities in biomedical on-

tology labels. This analysis helps users to elucidate hidden semantics that can trigger the

development of new logical axioms, which enables applications using biomedical ontolo-

gies to take real advantage of the expressivity capabilities of knowledge representation

languages like OWL DL. The main contributions of this thesis are:

The methodology for analysing ontologies based on lexical regularities in class

labels.

The scalable implementation of the method, due to the following features:

• The graph organisation for labels, which speeds up the process of searching

lexical regularities and used the coverage threshold as a mechanism for opti-

mising and pruning the search.

• The metrics, which prioritise lexical regularities according to di↵erent aspects

related to properties of ontologies like semantic distance, modularity and/or

alignments based on textual similarity.

• The graph structure lets us implement an ontology matching alignment al-

gorithm based on partial alignments instead of the whole label. Optionally,

117
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the graph uses pre-processing techniques for obtaining the tokens like lem-

matisation, pos-tagging or nominalisation. In this case, the alignment takes

advantage of them as well.

The application of the method to a number of biomedical repositories in order to:

• Characterise BioPortal ontologies based on the content codified in their labels

and matches between lexical regularities and other ontologies. We used the

method to create clusters of ontologies according to their adequacy to be used

in enrichment methods.

• Application of the method to the Gene Ontology and study how the lexical

analysis reconstructs the cross-products previously addressed by the Gene

Ontology Consortium. This helps us to validate the method against previous

work where relations were created.

The availability of a web application for performing lexical analysis and exploring

the lexical regularities. The visualisation of the lexical regularities using di↵erent

semantic dimensions that helps domain experts to elucidate and analysis hidden

semantics.

Therefore, our contribution helps to the automatisation of detecting lexical regulari-

ties that trigger the development of knowledge patterns which migth be transformed in

Ontology Design Patterns (ODPs) to enrich the ontology.

6.2. Research questions

Next, we discuss the research hypotheses defined for this thesis, which were introduced

in section 3.2:

The axiomatic richness of biomedical ontologies might be improved by creating more

complex axioms and using information that is codified in the hierarchy of concepts

in a human friendly way but not machine exploitable.

Biomedical ontologies are rich in identifiers. The ratio of identifiers/classes in 178

ontologies from BioPortal is close to 1. Ontology developers follow a systematic
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naming. As a consequence, 8 175 lexical regularities were obtained by our met-

hod with a coverage threshold of 1% in the mentioned corpus. Comparison of

the types of axioms revealed that 75% of axioms were annotations properties or

rdfs:subClassOf, which is an indicator that many of such ontologies are plain

taxonomies or controlled vocabularies. Moreover, we found that 15.60% of the le-

xical regularities correspond to full labels of other classes, and 36.44% of these

matches remain external ontologies suggesting that these lexical matches could

be made machine exploitable by creating links between the classes that exhibit

the lexical regularities and the classes matched. This makes more sense because

77.22% of the ontologies in our corpus do not import other ontologies. These da-

ta support our initial hypothesis that biomedical ontologies can be enriched using

information, which is already codified in a human friendly but not as axioms, so

the application of enrichment methods is valuable. Moreover, our method lets us

classify them according to their adequacy for their enrichment using their lexical

characterisation.

Could we develop an automatic method that transforms some of the content ex-

pressed in natural language in an ontology in logical axioms, and being the method

systematically applicable to enrich biomedical knowledge resources?

The method enables the automatic detection and inspection of lexical regularities

in biomedical ontologies identifiers from di↵erent axes. Moreover, 23.40% of the

lexical regularities appear in more than one ontology. This suggests that the axio-

matisation using them as a base to define the enriching pattern would contribute

to systematic application of the method among di↵erent biomedical ontologies.

The experiment was carried out with 5 large and relevant biomedical ontologies and

has revealed that the classes that exhibit a lexical regularity are distributed along

the hierarchy, according to the locality value, which ranges from 0.2- 0.48, and the

modularity distribution (on average those classes that exhibit a lexical regularity

are descendant of more than one classes of interest). These values, together with

the information about matches, are an indicator of the type of knowledge that is

captured by lexical regularities, and is a sign of the potential links. However, so

far the automatic transformation of lexical regularities into ODPs has not been
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addressed beyond taxonomical relations of the type rdfs:subClassOf. Although

we cannot automatically set the relations, we compare the classes captured by

lexical regularities to those that were used to enrich the Gene Ontology using cross-

products. This is modelled using the cpe-metric obtaining mean recall of 62% and

a mean precision of 28%.

In summary, the method contributes to the automatic and systematic analysis of

biomedical ontologies. However, the experiments using the two metrics presented have

revealed that the hidden semantics behind a lexical regularity can be di↵erent. While

sub/super-regularities that are classes can be used to create a hierarchical relation and

this can be quantified with the locality metrics, lexical regularities that are verbs can

be used to create other types of associative relations. These di↵erences must be taken

into account to automatically transform lexical regularities into patterns that enrich the

ontology, so being able to improve this part becomes part of future work.

6.3. Brief discussion of future work

In this section we include some discussion that extends that of the papers and intro-

duce lines of future work.

We have manually studied patterns used for extracting semantical relations from

texts. Patterns like “X like Y, Z, T” do not match with the content in ontology

labels. However, in a preliminary study we have applied the algorithm for detecting

lexical regularities but using as input the tags of the tokens obtained by pos-tagging

techniques. As it was expected the most frequent patterns were formed by nouns, so

the automatic extraction of the relations is complex. However, we have found some

verbs or nominalisation of verbs. For example, as we have commented in “vitamin

binding”, “binding” is the nominalisation playing the nominalisation of the verb

“to bind” and in this particular case this verb was the used for enriching classes

that exhibit “binding”. However, we should further explore if these cases can be

generalised for creating axioms using the verb as a relation.

The analysis carried out in the Gene Ontology revealed that lexical regula-

rities do not always play the role of genus. For example, in SNOMED CT
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the lexical regularity “congenital stenosis” plays the role of a target class

of an object property that links the class that exhibit the lexical regularity

and the class that matches with the regularity. Moreover, as it is shown in

Figure 6.2, in SNOMED CT the lexical regularity does not follow in all the

cases the same axiomatic pattern; while ‘congenital stenosis of aorta’ is

related to the class ‘Congenital stenosis (morphologic abnormality)’,

the class ‘congenital stenosis of aortic arch’ is related to

‘Stenosis (morphologic abnormality)’.

Figure 6.1: Axiomatic description of two terms that exhibit the lexical regularity “con-
genital stenosis”.

Recently, we have combined the modularity metric with the CPE metric so that

this helps to measure these kinds of situations. The CPE is provided with a new

condition that finds decomposition in the text of a lexical regularity, instead of being

focused on those classes that exhibit the regularity. We use this decomposition as

the input of the modularity metrics, using the decomposed classes as classes of

interest. Moreover, we expand the modularity metric to use, together with the

semantic similarity function, object properties and the inferred model. This can be

used to find classes that exhibit a lexical regularity and contain axiomatic deviations

as it is shown in Figure 6.2. The top left panel of this figure shows the classes of

interest provided by a new CPE-metric-c4. Together with each class of interest

there are two numbers: classes exhibiting LR and logically connected to it (left), or
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not connected (right). For example, 20 classes exhibit “congenital stenosis” and are

linked with ‘congenital stenosis (morphologic abnormality)’, while 22 are

not. In the bottom panels users might further explore these 42 classes: connected

on the right and not connected on the left. On the top right panel, quantitative

values concerning to the modularity metric are shown. The visualisation of the

classes is similar to Protégé ontology editor1, and all the classes that exhibit the

LR are shown according to the original inferred hierarchy. The whole set of lexical

regularities sorted by di↵erent metrics could be explored too, being up to the user

to navigate and explore them in detail.

Figure 6.2: Visualisation of deviations observed in the regularity “congenital stenosis”.

So far, we have applied the method to a module of SNOMED CT and we pointed

out 585 lexical regularities that capture deviations between the lexical regularity

exhibited and axiomatic description. We are currently validating them in collabo-

ration with domain experts in terms of precision and recall. If successfull, we would

1http://protege.stanford.edu/

http://protege.stanford.edu/
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apply this new metric to other BioPortal ontologies.

We think that this new metric would capture redundant and missing relations

in GO like the ones identified in [Mougin, 2015]. It could be also compared to

[Agrawal and Elhanan, 2014], where they propose a lexical method that group

SNOMED CT classes in clusters based on common tokens. They compare the

relations that concepts grouped in the same cluster have, and use it for proposing

missing relations. The study of correspondences between our lexical regularities

and their clusters could be carried out, as well as studying whether their method

for identifying missing restrictions could be used to automatise the creation of

ODPs and their codification in OPPL, being the missing piece in our method for

automatically contributing to the enrichment of biomedical knowledge resources.

We think that our method could be coupled to methods that evaluate the quality

of an ontology. The hypothesis is that a more axiomatic ontology should have

more quality. [Duque-Ramos et al., 2011] present a framework for evaluating the

quality of ontologies based on a software quality evaluation standard. We have had

the opportunity of adapting the OQuaRE framework in the design of a pipeline

that evaluates the evolution of ontologies according to their changes in quality

scores [Quesada-Mart́ınez et al., 2015a]. If we formalise the output of our method

as a new version of the initial ontology the mentioned pipeline could be applied

for evaluating the changes in quality between the initial and the enriched version.

Unfortunately, this has not been addressed yet, so it is proposed as a piece of future

work.

Finally, the creation of a repository of ODPs based on lexical content could help

users to build ontologies using templates, as it has recently been proposed by the

Gene Ontology team with Term Genie [Dietze et al., 2014].
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Chapter 7

Resumen

La Web Semántica [Tim, Lee et al., 2001, Shadbolt et al., 2006] es la extensión de la

World Wide Web que permite a las personas compartir contenido más allá de los ĺımites

de las aplicaciones y las páginas web1. Las tecnoloǵıas de la Web Semántica permiten a

la gente crear almacenes de datos disponibles online, crear vocabularios, y escribir reglas

para la manipulación de datos. Las tecnoloǵıas de la web semántica han sido aplicadas

en el modelado de las ciencias de la vida dando lugar a los que algunos han denominado

usando el término anglosajón Life Sciences Semantic Web [Good and Wilkinson, 2006].

Las ontoloǵıas son consideradas uno de los pilares básicos de la Web Semántica2. En

informática, una ontoloǵıa se define como una especificación formal de una conceptua-

lización compartida. Una ontoloǵıa es un conjunto de axiomas lógicos diseñados con el

objetivo de explicar y justificar el significado de un vocabulario [Borst, 1997]. En otras

palabras, una ontoloǵıa es una representación formal que define categoŕıas de objetos

de un dominio de interés y las condiciones que dichos objetos tienen que cumplir para

pertenecer a cada una de dichas categoŕıas. Hasta el momento, la definición de Guarino

[Guarino, 1998] sobre ontoloǵıa como artefacto software es una de las más aceptadas

[Fernández-Breis, 2003]:

“En el sentido filosófico, podemos referirnos a una ontoloǵıa como un sis-

tema ‘particular de categoŕıas que representa una cierta visión del mundo.

Como tal, este sistema no depende de un lenguaje particular: la ontoloǵıa de

1http://semanticweb.org/
2http://semanticweb.org/wiki/Ontology.html
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Aristóteles es siempre la misma, independientemente del lenguaje usado para

describirla. Por otro lado, en su uso más t́ıpico en IA, una ontoloǵıa es un

artefacto ingenieril constituido por un vocabulario espećıfico para describir

una cierta realidad, más un conjunto de supuestos expĺıcitos concernientes al

significado pretendido de las palabras del vocabulario. Este conjunto de su-

puestos tiene generalmente la forma de teoŕıas lógicas de primer orden, don-

de las palabras del vocabulario aparecen como predicados unarios o binarios,

respectivamente llamados conceptos y relaciones. En el caso más simple, una

ontoloǵıa describe una jerarqúıa de conceptos relacionados por relaciones de

subsunción; en los casos más sofisticados, se añaden axiomas para expresar

otras relaciones entre conceptos y restringir la posible interpretación.”

En esta definición destaca la codificación de las ontoloǵıas como un lenguaje for-

mal (Lenguaje de Representación de Conocimiento) [Stephan et al., 2007]. En concreto,

Guarino propone el uso Lenguajes de Representación de Conocimiento basados en teoŕıas

lógicas de primer orden. Esta formalización permitirá a los ordenadores procesar el con-

tenido modelado con ontoloǵıas y ejecutar algoritmos de razonamiento e inferencia. En

este trabajo analizamos diferentes Lenguajes de Representación de Conocimiento y nos

centramos en OWL. OWL define varios perfiles con diferentes niveles de expresividad lógi-

ca. Cuanto más expresivo es un lenguaje, más complejo será computacionalmente. Las

lógicas de primer orden no son decidibles; estos problemas son solucionados usando un

sub-conjunto de las lógicas de primer orden llamado Lógica Descriptiva [Baader, 2003].

El perfil OWL DL está basada en esta lógica. Su semántica formal y la disponibilidad

de herramientas de razonamiento eficientes han hecho de OWL DL uno de los lenguajes

más usados para representar ontoloǵıas biomédicas; el lenguaje OBO también pero en

sus últimas versiones es posible convertir de OBO a OWL sin perder expresividad.

En los últimos 15 años, la comunidad biomédica ha incrementado sus esfuerzos en

el desarrollo de ontoloǵıas en ciencias de la vida y no hay ningún motivo para esperar

que estos cambien en un futuro [Hoehndorf et al., 2014]. Como consecuencia de su éxito,

las ontoloǵıas biomédicas son construidas en comunidad con un elevado nivel de acti-

vidad. El desarrollo de una ontoloǵıas puede ser por tanto el resultado de un trabajo

colaborativo entre diferente expertos [Malone and Stevens, 2013]. Dos ejemplos repre-

sentativos de ontoloǵıas en el ámbito de la bioinformática y de la informática médi-
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ca son Gene Ontology (GO) [Ashburner et al., 2000] y SNOMED CT respectivamente

[Cornet and de Keizer, 2008].

Una ontoloǵıa está formada por cuatro tipos de componentes: conceptos, instan-

cias, relaciones y axiomas. Un concepto definido en el dominio de Gene Ontology es

‘binding’, que representa la contextualización de la ‘interacción selectiva, no covalente

y con frequencia etequiométrica de una molécula con uno o más sitios espećıficos en

otra molécula”. Otro concepto puede ser un tipo más espećıfico de binding, por ejem-

plo ‘vitamin binding’. Además, esta relación jerárquica se establece por medio de

una relación entre ambos conceptos. Los axiomas son la base lógica de OWL y todo se

representa por medio de axiomas.

El desarrollo por parte de expertos en el dominio de ontoloǵıas puede dar lugar a

artefactos ricos en información del dominio pero con poca axiomatización. En OWL

cualquier entidad debe ser referida por un identificador único denominado IRI. Una

IRI seŕıa http://purl.obolibrary.org/obo/GO_0005488. La última parte de la IRI se

conoce también como identificador (GO 0005488). Los identificadores pueden no tener

ningún significado como en este caso. Por ejemplo, el identificador anterior está asocia-

do con el concepto ‘binding’ y en ontoloǵıas como GALEN el identificador de la IRI

śı tiene significado: http://www.co-ode.org/ontologies/galen#Binding. OWL tam-

bién permite separar las IRIs de los identificadores por medio de anotaciones. En este

trabajo nos centramos en las etiquetas, cuyo objetivo es proporcionar sin ambigüedad

un nombre a un concepto. Existen recomendaciones a la hora de asignar identificador

a los conceptos en una ontoloǵıa [Schober et al., 2009]. Por ejemplo, utilizar un nom-

brado sistemático de manera que los conceptos que son especializaciones contengan

en su identificador el identificador del padre como es el caso de ‘binding’ y su hi-

jo ‘vitamin binding’. [Third, 2012] estudió los identificadores de las ontoloǵıas sobre

un corpus de 548 ontoloǵıas y detectó, por ejemplo, que este tipo de patrones eran

de los más utilizados. Third diferenció entre identificadores simples como ‘binding’

e identificadores complejos como ‘vitamin binding’, que está formado a su vez por

dos identificadores simples. Su estudio reveló que el patrón más utilizado era defi-

nir una relación de especialización como la anterior del tipo subClassOf(AB B) con

1430 ocurrencias; a esta le siguió en segundo lugar subClassOf (ABC BC) entre otras.

Sin embargo, puede haber situaciones donde el patrón se siga en el identificador, pe-

ro no en su representación axiomática. Por ejemplo, Figure 2.8 muestra que una clase

http://purl.obolibrary.org/obo/GO_0005488
http://www.co-ode.org/ontologies/galen#Binding
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etiquetada como ‘CX3C chemokine receptor binding’ no es descendiente de la cla-

se ‘chemokine receptor binding’ y a este tipo de situaciones es lo que llamamos

semántica oculta. La semántica oculta se puede extender más allá de relaciones taxonómi-

cas y podŕıa estar codificando otro tipo de relaciones de asociación.

Trabajos como [Mungall, 2004, Fernandez-Breis et al., 2010, Mungall et al., 2011]

han enriquecido Gene Ontology a partir del análisis de sus etiquetas. Sin embargo, estos

procesos se centraron en una única ontoloǵıa y requirieron la intervención manual de los

usuarios para crear los nuevos axiomas.

La hipótesis y pregunta de investigación iniciales de esta tesis son:

La riqueza axiomática de ontoloǵıas biomédicas podŕıa ser mejorada creando

nuevos axiomas lógicos, usando información que ya está codificada como parte

de las definiciones en lenguaje natural de los conceptos de la ontoloǵıa.

¿Podŕıamos desarrollar un método automático que transforme semántica

oculta en axiomas lógicos, y que sea este método sistemáticamente aplicable

para enriquecer repositorios de ontoloǵıas biomédicas?

7.1. Objetivos

El objetivo general de esta tesis es contribuir al análisis de repositorios de conocimien-

to biomédico ayudando a expertos del dominio a detectar semántica oculta mediante el

uso de un método automático que se pueda aplicar de forma sistemática en las ontoloǵıas

disponibles en repositorios de conocimiento biomédico. Esta metodoloǵıa ayudará a tener

ontoloǵıas más completas que exploten la expresividad de los lenguajes formales en los

que están definidas. Los objetivos de esta tesis con un mayor nivel de granularidad son:

Obj1. Desarrollo e implementación de una metodoloǵıa para la caracterización au-

tomática de ontoloǵıas usando el análisis de los identificadores descritos en lenguaje

natural asociados a sus conceptos.

Obj2. Desarrollo e implementación de una metodoloǵıa que permita descubrir

semántica oculta y que sea transformable en axiomas lógicos contribuyendo al

enriquecimiento de las ontoloǵıas biomédicas.
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Obj3. Desarrollo e implementación de una plataforma integrada que ayude a los

expertos en el domino con pocos conocimientos técnicos o ontológicos.

7.2. Metodoloǵıa

La metodoloǵıa que hemos seguido para el desarrollo de esta tesis doctoral se compone

de los siguiente pasos:

Estudio del estado del arte: web semántica, bioinformática, repositorios de conoci-

miento biomédico, enriquecimiento de ontoloǵıas.

Formalización de los métodos propuestos en esta tesis.

Implementación de la metodoloǵıa y su aplicación con ontoloǵıas biomédicas dis-

ponibles en internet.

Análisis de los resultados obtenidos y validación. Debido a la ausencia de un gold

standard con el cual comparar, se desarrollarán estrategias que establezcan una

correspondencia entre nuestro método y otros métodos analizados en el estado del

arte. El análisis manual de una comparación automática nos permitirá descubrir

fortalezas y debilidades de nuestro método.

7.3. Resultados y conclusiones

La metodoloǵıa para el análisis sistemático de ontoloǵıas a partir del estudio de sus

etiquetas va a ser el principal resultado de esta tesis (see Figure 4.1). La metodoloǵıa

propuesta está formada de los siguientes pasos:

Procesamiento de la ontoloǵıa y obtención de las regularidades léxicas.

Módulo de procesamiento de lenguaje natural.

Módulo basado en métricas.

• Métricas de modularidad y localidad.

• Métrica cross-product extension.
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Filtrado de regularidades léxicas basado en los valores de las métricas.

Creación de patrones de enriquecimiento.

A continuación presentamos los resultados haciendo referencia a los trabajos presen-

tados como compendio de esta tesis doctoral:

Lexical characterization of Bio-Ontologies by the inspection of regularities in labels

Se realiza un estudio de la estructura de las etiquetas en ontoloǵıas disponibles

en BioPortal, haciendo uso de las métricas definidas en la metodoloǵıa y que se

clasifican en términos del interés potencial para su enriquecimiento axiomático.

El ratio identificador/clases está cerca de 1, lo que significa que los creadores de

las ontoloǵıas śı añaden identificadores que describen en lenguaje natural los con-

ceptos representados en el dominio. 65% de las ontoloǵıas usan etiquetas como

identificadores. Esto supone un cambio ya que en trabajos previos la opción más

usada era incluirlos como fragmentos de las IRI.

Las ontoloǵıas biomédicas son ricas en regularidades léxicas. Usando un porcentaje

de cobertura del 1% se obtienen 8175 regularidades en 118 ontoloǵıas biomédi-

cas. Esto es un indicador de que las ontoloǵıas biomédicas utilizan un nombrado

sistemático. El procesamiento con éxito de las 118 ontoloǵıas demuestra la escala-

bilidad del método.

75% de los axiomas en las ontoloǵıas de BioPortal son anotaciones o

rdfs:subClassOf. Esto es un indicador de que las ontoloǵıas biomédicas son en

gran medida vocabularios controlados y taxonomı́as planas por la que la aplicación

de métodos de enriquecimientos contribuiŕıa a incrementar su expresividad.

77.22% de ontoloǵıas en BioPortal no reutilizan conceptos de otras ontoloǵıas. Sin

embargo, 15.60% de las regularices léxicas se corresponden con etiquetas completas

de otras ontoloǵıas en BioPortal, lo que indica que las clases representadas por

este porcentaje podŕıan ser descompuestas y relacionadas con otras a través de

relaciones.

Nuestro método define una ontoloǵıa adecuada para su enriquecimiento como aque-

lla que sus etiquetas contienen regularidades, dichas regularidades son generales y
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afectan a un porcentaje elevado de clases, y además esas regularidades tienen co-

rrespondencias en otras ontoloǵıas externas. Usando esta información, se aplica un

algoritmo de clustering usando como datos de entrada la caracterización léxica de

un conjunto de ontoloǵıas de BioPortal; estas ontoloǵıas son son clasificadas en

tres clusters según su adecuación a ser usadas en procesos de enriquecimiento. De

acuerdo con la clasificación de estos clusters, el 75% de las ontoloǵıas de BioPor-

tal analizadas se podŕıan beneficiar de procesos de enriquecimiento basados en las

regularidades léxicas.

Por último, 23.49% de las regularidades aparecen en más de una ontoloǵıa. Este

valor sugiere que la creación de axiomas basados en estas relaciones podŕıa ser

reutilizada para sistemáticamente repetir el proceso entre ontoloǵıas.

Prioritizing lexical patterns to increase axiomatisation in biomedical ontologies :

En este trabajo proponemos métricas para sugerir qué regularidades léxicas de-

beŕıan ser el punto de partida para definir los patrones de enriquecimiento. Esta

priorización se modela usando métricas. Una métrica es una función que recibe una

regularidad léxica como parámetro y genera un valor entre m y n. En este trabajo

se definen dos métricas:

(1) Métricas basadas en la localización de las clases que exhiben una regularidad

léxica. Para ello se utilizan funciones que miden la distancia semántica entre clases.

Estas funciones tienen en cuenta las relaciones jerárquicas.

(2) Usando distancia semántica se mide la distribución de las regularidades léxicas

respecto a un conjunto de clases especificado como parámetro de entrada.

Estas métricas proporcionan información sobre los principios de ingenieŕıa seguidos

en el desarrollo de las ontoloǵıas y permiten ordenar las regularidades. El método

y estas métricas permiten sugerir relaciones entre clases que no han sido expĺıcita-

mente codificadas en la ontoloǵıa.

Approaching the axiomatic enrichment of the Gene Ontology from a lexical pers-

pective

El objetivo principal de este trabajo es ser capaces de medir cómo las regularida-

des léxicas pueden ser usadas para la creación automática de relaciones formales
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entre clases y evaluar los resultados aplicando nuestro método en Gene Ontology.

La elección de Gene Ontology como caso de uso también se debe a su extendido

uso entre la comunidad biomédica (las clases de Gene Ontology han sido usadas

para producir millones de anotaciones que están disponibles en bases de datos de

anotaciones como [Barrell et al., 2009]. Además, Gene Ontology es rica en regula-

ridades y alineamientos en ontoloǵıas externas. De hecho, fue seleccionada como

miembro de aquellos clusters con ontoloǵıas prometedoras para su enriquecimiento

en el primer trabajo de caracterización léxica de BioPortal .

En este trabajo se incluye en nuestro método una nueva métrica: cross-product

extension (CPE). Esta métrica pretende estimar el potencial interés de una regula-

ridad usando información de matches externos presentes en las clases que exhiben

la regularidad. Por ejemplo, la regularidad “binding” es exhibida por clases como

‘vitamin binding’. Como hemos explicado, ‘vitamin binding’ es un identifi-

cador complejo. Tanto ‘binding’ como ‘vitamin binding’ son clases en GO, y

además siguen un naming respaladado por la relación rdfs:subClassOf que hay

entre ellas. Sin embargo, ¿qué hace diferente al ‘vitamin binding’ de otros des-

cendientes de ‘binding’ como ‘alcohol binding’? Un alineamiento parcial de

las etiquetas de las clases que exhiben una regularidad puede ayudarnos a resolver

este problema. Por ejemplo, tanto ‘vitamin’ como ‘alcohol’ son clases en la on-

toloǵıa Chemical Entities of Biological Interest (ChEBI), y si aplicamos la métrica

CPE obtenemos que un 20% de las clases que exhiben la regularidad “binding”

son totalmente descomponibles en clases de ChEBI más el ‘binding’, por lo que

un enriquecimiento axiomático de dichas clases seŕıa adecuado como se hizo en

[Fernandez-Breis et al., 2010] con el patrón “X binding” (Figura 1.3).

El consorcio de Gene Ontology recientemente ha enriquecido GO usando los lla-

mados productos cruzados. Los productos cruzados usan como base GO y otra

ontoloǵıa externa para crear clases definidas combinado clases de ambas. Nosotros

aplicamos nuestro método y la CPE a Gene Ontology y estudiamos cómo nuestro

análisis léxico identifica y reconstruye los productos cruzados definidos por el con-

sorcio de Gene Ontology. Para ello formalizamos la relación entre las regularidades

léxicas y los productos cruzados. Los productos cruzados se basan en la definición

aristotélica genus-di↵erentia del tipo “un X es un G que D”. Aqúı, X es la clases a
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definir, G es el genus (la clase más general) y D es la di↵erentia. En nuestro ejem-

plo, ‘binding’ seŕıa el genus y ‘vitamin’ o ‘alcohol’ las diferencias. Aunque

nuestro método y el desarrollado por el consorcio de Gene Ontology no son exacta-

mente iguales, ambos tienen un objetivo similar. Nosotros queremos contrastar la

hipótesis de que las regularidades léxicas pueden ser usadas para capturar genus de

forma automática, por ello formalizamos la relación entre los dos y los comparamos

en términos de exhaustividad y precisión.

Como media, la métrica CPE reveló que un 31.48% de las clases que exhiben re-

gularidades léxicas contienen fragmentos que son clases en dos ontoloǵıas externas

Cell Ontology y CheBI, además un 18.90% de estas clases pueden ser totalmente

descompuestas en fragmentos más pequeños que son clases (identificadores com-

plejos).

Nuestros resultados muestran que la métrica CPE permite a nuestro método detec-

tar productos cruzados con una exhaustividad y precisión media del 62% y del 28%

respectivamente. El estudio es completado con un análisis de los falsos positivos

para encontrar una explicación al bajo valor de precisión obtenido.

A continuación se enumeran algunas de las contribuciones de esta tesis:

La metodoloǵıas para analizar ontoloǵıas a partir de las regularidades léxicas en

los identificadores.

Un método escalable debido a:

• La organización de los identificadores como un grafo de tokens. Este grafo

permite acelerar el proceso de búsqueda de las regularidades léxicas y utiliza

parámetros como el porcentaje de cobertura como mecanismo para optimizar

y podar las búsquedas.

• Las métricas que permiten la prioritización de regularidades léxicas usando

como base diferentes aspectos relacionados con propiedades semánticas de las

ontoloǵıas. Por ejemplo, la distancia semántica modularidad o alineamientos

que usan técnicas de semejanza léxica.

• El grafo nos permite implementar un algoritmos de alineamiento entre onto-

loǵıas basado en alineamientos parciales en lugar de la etiqueta completa y

usando técnicas de pre-procesamiento de lenguaje natural.
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La aplicación del método sobre un conjunto de ontoloǵıas biomédicas disponibles

en BioPortal para:

• Caracterizarlas léxicamente usando el contenido en lenguaje natural de sus

identificadores y matches entre las regularidades léxicas y otras ontoloǵıas.

El método permite crear clusters de ontoloǵıas según su adecuación para ser

usadas para su enriquecimiento.

• Aplicación del método sobre Gene Ontology y reconstrucción de los productos

cruzados previamente usados por el GO Consortium para enriquecerlo con el

objetivo de evaluar la metodoloǵıa.

En resumen, el método contribuye al análisis automático y sistemático de ontoloǵıas

biomédicas. El método permite el análisis de las regularidades léxicas desde diferentes

ejes que son seleccionados mediante la aplicación de métricas. Sin embargo, los expe-

rimentos usando estas métricas han revelado que la semántica oculta detrás de una

regularidad léxica puede ser de diferentes tipos. Mientras sub/super-regularidades que

son clases pueden ser usadas para crear relaciones jerárquicas, y esto puede ser cuantifi-

cado con la métrica de localidad, regularidades léxicas que son verbos pueden ser usadas

para crear otros tipos de relaciones. Estas diferencias deben ser consideradas a la hora de

automatizar la transformación de regularidades léxicas en patrones de diseño ontológi-

cos, por lo que su mejora se propone como parte del trabajo futuro. Otras ĺıneas de

trabajo futuro son evaluar como el enriquecimiento axiomático afecta a la calidad de la

ontoloǵıa, aśı como la creación de un repositorio de patrones de conocimiento ontológico

reutilizables basados en las regularidad léxicas.

La inspección de las regularidades léxicas ayuda a expertos en el dominio con pocos

conocimientos semánticos en la creación de axiomas lógicos. Todo los métodos propuestos

en esta tesis han sido implementados y están disponibles en la aplicación web http:

//sele.inf.um.es/ontoenrich. La herramienta permite realizar el análisis léxico de

una ontoloǵıa, navegar por sus regularidades léxicas y aplicar métricas explicadas para

la prioritización y el análisis avanzado de las regularidades.

[Pesquita, 2012] [Lord, 2010]

http://sele.inf.um.es/ontoenrich
http://sele.inf.um.es/ontoenrich
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ALGORITHMS FOR FINDING LEXICAL REGULARIES AND CPE-METRIC 
 

In this appendix we show the algorithms used for creating the graph, searching the lexical 
regularitites, use the graph for seach if a group of tokens has an exact match in an ontology and 
calculate the CPE-Metric. 
!

1.!Load!Ontology!and!build!graph!of!labels!–!(Lines!1919)!and!Search!the!whole!set!
of!LRs!in!an!ontology!–!(Lines!21925)!………………………………………………………! !
2.!Search!an!LR!of!length!L!from!a!Node!–!(algorithm!2):……………………………! !
3.!Using!the!graph!for!search!if!an!string!has!an!exact!match!in!an!ontology…! !
4.!Using!the!graph!for!search!decompositions!……………………………………………! !

a.!Finding!decomposition!Condition!1!………………………………………..……! !
b.!Finding!decomposition!Condition!2!…………………………………………..…! !
c.!Finding!decomposition!Condition!3:!………………………………………….…! !

!
 

1.#Load#Ontology#and#build#graph#of#labels#–#(Lines#1919)#and#Search#the#whole#set#of#LRs#in#an#
ontology#–#(Lines#21925):#
 
Function: SearchWholeSetOfLRs 
Input: 
    (1) ONT: OWL or OBO ontology file  
    (2) CV:  Coverage Threshold 
Output:  
    (1) LRSET:  set with the lexical regularities (LRs) found 

1. Load ONT in memory using a library for manipulating ontologies     
2. FOR each CLASS in ONT           
3.   Extract the LABEL associated with CLASS        
4.   FOR each TOKEN of the LABEL        
5.     Search in the graph the node TOKEN       
6.     IF ( TOKEN not exists in the graph of labels )     
7.       Create NODE with id TOKEN       
8.       ADD NODE in a global HASHTABLE for query tokens in O(1)   
9.     END IF 
10.     IF ( TOKEN is not first token in LABEL )           
11.       Search in the graph the node TOKEN_PREC that precedes TOKEN         
12.       IF( ARROW not existes from TOKEN to TOKEN_PREC )          
13.         Create an ARROW from TOKEN to TOKEN_PREC           
14.     END IF 
15.     Register LABEL in the edge                  
16.     END IF          
17.   END FOR 
18.   MNT = update the maximum number of tokens according to LABEL         
19. END FOR 
20.  
21. FOR each NODE in the graph of labels                   
22.   FOR LR_LENGTH 1 TO MNT-1             
23.     LRSET = LRSET Union SearchLRs(NODE, NULL, LR_LENGTH-1, CV)            
24.   END FOR 
25. END FOR 
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2.#Search#an#LR#of#length#L#from#a#Node#–#(algorithm#2): 
 
 

Function: SearchLRs          
Input: 
    (1) NODE:   node to expand searching lexical regularities 
    (2) ACS:    active class (ACS) set of identifiers 
    (3) LENGTH: the remainder length of the lexical regularity 
    (4) CV:     minimum coverage threshold of the lexical regularities 
Output: 
    (1) LRSET:  set with the lexical regularities (LRs) found 
 

1. IF ( ACS id EMPTY ) RETURN ACS       
2. IF ( |ACS| < CV ) LRSET = {}, RETURN LRSET       
3. IF ( LENGTH is 0 )          
4.   LRSET = ADD LR with ACS as exhibited classes, RETURN LRSET   
5. END IF 
6.  
7. FOR each ARROW departing from NODE       
8.   NEXT_NODE = node where ARROW arrive       
9.   IF ( ACS is NULL )          
10.     ADD all the labels id register in ARROW to ACS     
11.   END IF 
12.  
13.   FOR each ARROW_EXP departing from NODE      
14.     ADD all the labels ids register in ARROW_EXP to ACS_EXP    
15.   END FOR 
16.  
17.   ACS = ACS intersection ACS_EXP        
18.   LRSET = LRSET Union SearchLRs(NEXT_NODE, ACS, LENGTH-1, CV)          
19.   ACS is set as the initial value of the parameter     
20. ENDFOR 
21.  
22. RETURN LRSET 

 

!
!
3.#Using&the&graph&for&search&if&an&string&has&an&exact&match&in&an&ontology&
 
Function: QueryLabelInOntology          
Input: 
    (1) LABEL_STR: string with the label to search in the ontology 
    (2) GraphedOntology: graph with the ontology labels processed 
Output: 
    (1) ONTOLOGYO_CLASS:  return the ontology class that has LabelStr or NULL otherwise 
 

1. TOKENS_LIST = obtain TOKENS from LABEL_STR         
2. FIRST_TOKEN = first token in the TOKENS_LIST        
3. LAST_TOKEN  = last token in TOKEN_LIST        
4.  
5. NODE = search in the graph the node FIRST_TOKEN       
6.  
7. LR = SearchLRs(NODE, ACS, |TOKENS_LIST|-1, CV=1)           

    
8. IF LR is not NULL           
9.   FOR each LR_LABEL that exhibits LR       
10.     LABEL_TOKENS_LIST = obtain TOKENS from LR_LABEL     
11.     IF ( |TOKENS_LIST| == |LABEL_TOKENS_LIST| )       
12.       IF TOKENS_LIST is equal to LABEL_TOKENS_LIST       
13.         RETURN identifier of LR_LABEL        
14.       END IF 
15.     END IF 
16.   END FOR 
17. END IF 
18.  
19. RETURN NULL            
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4.#Using#the#graph#for#search#decompositions 

a)#Finding#decomposition#Condition#1#
 
Function: FindDecomposition_CPEc1          
Input: 
    (1) LABEL_STR:   label to decompose 
    (2) GraphOntologyE: graph with the ontologyE labels processed 
Output: 
    (1) Decompositions: set of tokens that are found in OntologyE as full labels 
 

1. DECOMPOSITIONS_IN_ONTOLOGY_E = create empty set      
2.  
3. FOR each TOKEN of the LABEL_STR       
4.   IF QueryLabelInOntology(TOKEN, GraphOntologyE)     
5.     Add DECOMPOSITIONS_IN_ONTOLOGY_E       
6.   END IF 
7. ENDFOR 
8. RETURN DECOMPOSITIONS_IN_ONTOLOGY_E        

 
 

 

b)#Finding#decomposition#Condition#2#
 
 
Function: FindDecomposition_CPEc2          
Input: 
    (1) LABEL_STR:   label to decompose 
    (2) GraphOntologyE: graph with the ontologyE labels processed 
Output: 
    (1) Decompositions: set of tokens that are found in OntologyE as full labels 
 

1. DECOMPOSITIONS_IN_ONTOLOGY_E = create empty set      
2.  
3. SUB_TOKEN_LISTS = combination of consecutive tokens in LABELS_STR  
4.  
5. FOR each SUB_TOKEN_LIST of the SUB_TOKEN_LISTS     
6.   IF QueryLabelInOntology(SUB_TOKEN_LIST, GraphOntologyE)   
7.     Add DECOMPOSITIONS_IN_ONTOLOGY_E       
8.   END IF 
9. ENDFOR 
10. RETURN DECOMPOSITIONS_IN_ONTOLOGY_E        

 
 

c)&Finding&decomposition&Condition&3:&
 
Function: FindDecomposition_CPEc3          
Input: 
    (1) LABEL_STR:   label to decompose 
    (2) GraphOntologyS: graph with the ontologyS labels processed 
    (3) GraphOntologyE: graph with the ontologyE labels processed 
Output: 
    (1) Decompositions: set of tokens that are found in OntologyE as full labels 
 

1. DECOMPOSITIONS_IN_ONTOLOGY_S = create empty set 
2. DECOMPOSITIONS_IN_ONTOLOGY_E = create empty set 
3.  
4. SUB_TOKEN_LISTS = combination of consecutive tokens in LABELS_STR   
5.  
6. FOR each SUB_TOKEN_LIST of the SUB_TOKEN_LISTS     
7.   IF QueryLabelInOntology(SUB_TOKEN_LIST, GraphOntologyS)    
8.     Add DECOMPOSITIONS_IN_ONTOLOGY_S       
9.     Mark tokens indexes of SUB_TOKEN_LIST as matched    
10.   END IF 
11. END FOR 
12.  
13. FOR each SUB_TOKEN_LIST of the SUB_TOKEN_LISTS     
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14.   IF QueryLabelInOntology(SUB_TOKEN_LIST, GraphOntologyE)    
15.     Add DECOMPOSITIONS_IN_ONTOLOGY_E       
16.     Mark tokens indexes of SUB_TOKEN_LIST as matched     
17.   END IF 
18. ENDFOR 
19.  
20. IF all indexes are marked as matched       
21.   RETURN DECOMPOSITIONS_IN_ONTOLOGY_S       

              and DECOMPOSITIONS_IN_ONTOLOGY_E 
22. END IF 
23.  
24. RETURN NULL 
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t = number of unique tokens tokens  
tl = max number of tokens in labels 
n = length of the regularity 
l = max num. of labels with two consecutive repeated tokens 
c = max. number of classes 
a = max number of arrows that depart from nodes 
 

Description of each variable 
that has influence in the  
execution time 

COMPLEXITY ANALYSIS OF THE ALGORITHMS FOR FINDING  
LEXICAL REGULARIES AND CPE-METRIC 

 
In this appendix we show the algorithms used for doing the experiments. We calculate its 
complexity. Due to the space restriction in the paper, we just included in the paper the algorithm 
for creating the graph. And discuss the benefits of using the graph in terms of Big-O. 

 
1. Load!Ontology!and!build!graph!of!labels!–!(algorithm!1,!Lines!1;19):……………! !
2. !Search!an!LR!of!length!L!from!a!Node!–!(algorithm!2):…………………………………! !
3. Search!the!whole!set!of!LRs!in!an!ontology!–!(algorithm!1,!Lines!21;25):………! !
4. Using!the!graph!for!search!a!class!in!an!ontology:…………………………………………!!
5. Using!the!graph!for!search!decompositions:!………………………………………………...!!

a. Finding!decomposition!Condition!1:!…………………………………………………!!
b. Finding!decomposition!Condition!2:!………………………………………………....!!
c. Finding!decomposition!Condition!3:!…………………………………………………!!

!
Summary'of'the'execution'times:'
'
'
'

'
'
 
Load!Ontology!and!build!graph!of!labels!–!(algorithm!1,!Lines!1;19): 

 

t1+ t2*2O(c)+10 O(c*tl)+O(c) 
  

Search!an!LR!of!length!L!from!a!Node!–!(algorithm!2): 
 

O(n*a2*l)+ 2 O(n*a*l2) + 3 O(n*a) 
 

Search!the!whole!set!of!LRs!in!an!ontology!–!(algorithm!1,!Lines!21;25): 
  

O(t*tl*n*a2)+ 2 O(t*tl*n*a*l2) + O(t*tl*n*a) + O(t*tl) 
 

Using!the!graph!for!search!a!class!in!an!ontology: 
 

O(tl)+5 O(1)+O(n*a2*l)+O(n*a*l2)+O(n*a)+2 O(c*tl)+2 O(c) 
 

Finding!decomposition!Condition!1: 
 

O(1)+O(tl)*((tl)+5 O(1)+O(n*a2*l)+O(n*a*l2)+O(n*a)+2 O(c*tl)+2 O(c))+O(1) 
 

Finding!decomposition!Condition!2: 
 

2 O(1)+(tl3)+5 O(tl2)+O(n*a2*l*tl2)+O(n*a*l2*tl2)+O(n*a*tl2)+2 O(c*tl3)+2 O(c*tl2))+O(tl2) 
 

Finding!decomposition!Condition!3: 
 

O(tl2) 
+ 

(tl3)+5 O(tl2)+O(n*a2*l*tl2)+O(n*a*l2*tl2)+O(n*a*tl2)+2 O(c*tl3)+2 O(c*tl2) 
+ 

(tl3)+5 O(tl2)+O(n*a2*l*tl2)+O(n*a*l2*tl2)+O(n*a*tl2)+2 O(c*tl3)+2 O(c*tl2) 
+ 

O(tl) 
+ 

O(1) 
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Load%Ontology%and%build%graph%of%labels%–%(algorithm%1,%Lines%1:19):%
 
 

1. Load ONT in memory using a library for manipulating ontologies       t1 
This time depend on the library for manipulating the ontology 

2. FOR each CLASS in ONT             O(c) 
“c” is the max. number of classes 

3.   Extract the LABEL associated with CLASS          t2 
  This time depend on the library for manipulating the ontology 

4.   FOR each TOKEN of the LABEL            O(tl) 
  “tl” is the max number of tokens in labels 

5.     Search in the graph the node TOKEN           O(ht-Q-t) 
    Tokens are indexes in a hash-table for faster individual queries  
    Tex depends of the hash-table used. Query time 

6.     IF ( TOKEN not exists in the graph of labels )         O(1) 
      Constant time, allocate memory for the node 

7.       Create NODE with id TOKEN           O(1)  
      Constant time, allocate memory for the node 

8.       ADD NODE in a global HASHTABLE for query tokens in O(1)       O(ht-I-t) 
      Tex depends of the hash-table used. Insertion time 

9.     END IF 
10.     IF ( TOKEN is not first token in LABEL )          O(1) 

      Constant time, check index 
11.       Search in the graph the node TOKEN_PREC that precedes TOKEN        O(ht-Q-t) 

      Tex depends of the hash-table used. Query time 
12.       IF( ARROW not existes from TOKEN to TOKEN_PREC )         O(ht-Q-e) 

      Tex depends of the hash-table used. Query time 
      Arrows are stored in hash-table which is indexed by TOKEN_PREC 

13.         Create an ARROW from TOKEN to TOKEN_PREC          O(1) 
        Constant time, check index 

14.     END IF 
15.     Register LABEL in the edge                 O(ht-I-e) 

    Create edge. Tex depends of the hash-table used. Insertion time      
16.     END IF          
17.   END FOR 
18.   MNT = update the maximum number of tokens according to LABEL        O(1) 

  Constant time, allocate memory for the node          
19. END FOR 

 
 

COMPLEXITY: 
 

 
        t1+O(c)*(  

t2+O(tl)*(  
     O(ht-Q-t)+O(1)+ O(1)+O(ht-I-t)+O(1)+O(ht-Q-t)+O(ht-Q-e)+O(1)+O(ht-I-e) 

 )+O(1)  
  ) 
 

         
        t1+O(c)*(  

t2+O(tl)*(  
                    2 O(ht-Q-t) + 4 O(1) + O(ht-I-t) + O(ht-Q-e) + O(ht-Q-e) + O(ht-I-e) 

 )+O(1)  
  ) 
 

 
Our algorithm is implemented in Java and we used the collections implemented in the SDK 1.6. We 
have found the complexity of the operations commented in next link:  
 

http://www.javaexperience.com/time-complexity-of-collection-classes/  

 
- HashMap time complexity: The elements are placed randomly as per the hashcode. Here the 

assumption is that a good implementation of hashcode has been provided. 
 

o Read/Search any element: O(1)    O(ht-Q-t) O(ht-Q-e)~ O(1) 
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o Update: O(1) 
o Delete: O(1) 
o Add: O(1)      O(ht-I-t) O(ht-I-e)!~ O(1) 

 
 
 
 

 
        t1+O(c)*(  

t2+O(tl)*(  
     2 O(ht-Q-t) + 4 O(1) + O(ht-I-t) + O(ht-Q-e) + O(ht-Q-e) + O(ht-I-e) 

 )+O(1)  
  ) 

 

 
 
 
        t1+O(c)*( t2+O(tl)*(10 O(1))+O(1))            t1+ t2O(c)+10 O(c*tl)+O(c) 
 
 
 

 
     BigO for building the graph* = O(c*tl)) 

tl = max number of tokens in labels 
c  = max. number of classes 

 
 
 

  

*Assuming a well balanced HashMap 
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Search%an%LR%of%length%L%from%a%Node%–%(algorithm%2):%
 
 

1. IF ( ACS id EMPTY ) RETURN ACS      O(1) 
Tex depends of the hash-set used. Empty operation is O(1) 

2. IF ( |ACS| < CV  ) LRSET = { }, RETURN LRSET     O(1) 
Tex depends of the hash-set used. Size operation is O(1) 

3. IF ( LENGTH is 0  )         O(1) 
Constant time, comparation 

4.   LRSET = ADD LR with ACS as exhibited classes, RETURN LRSET  O(1) 
  Constant time, create LR an associate set 

5. END IF 
6.  
7. FOR each ARROW departing from NODE      O(a) 

“a” is the max number of arrows that depart from nodes 
8.   NEXT_NODE = node where ARROW arrive     O(ht-Q-t)   

  Tex depends of the hash-table used. Insertion time  
9.   IF ( ACS is NULL )         O(1) 

  Constant time, comparison 
10.     ADD all the labels id register in ARROW to ACS    O(hs-D-l) 

    “l” is the max num. of labels with two consecutive tokens repeated 
    Tex depends of the hash-set used. Duplication 

11.   END IF 
12.  
13.   FOR each ARROW_EXP departing from NODE     O(a) 

  “a” is the max number of arrows that depart from nodes 
14.     ADD all the labels id register in ARROW_EXP to ACS_EXP   O(hs-D-l) 

    “l” is the max num. of labels with two consecutive tokens repeated 
    Tex depends on the hash-set used. Duplication 

15.   END FOR 
16.  
17.   ACS = ACS intersection ACS_EXP      O(hs-∩-l) 

  Tex depends on the hash-set used. Intersection 
18.   LRSET = LRSET Union SearchLRs(NEXT_NODE, ACS, LENGTH-1, CV)      ¿R+O(hs-∪-l)? 

  Tex depends on the hash-set used. Recursivity + Union 
19.   ACS is set as the initical value of the parameter    O(1) 

  Constant time, assignation 
20. ENDFOR 
21.  
22. RETURN LRSET 

 
 

COMPLEXITY: 
 
This function is recursive so next we calculate the BigO of it. The parameters that reduce de 
function is the third parameters LENGTH.  
 
 
      t(1) = 1  
t(n) 
      t(n)=(O(a)*( O(ht-Q-t)+ O(1)+ O(hs-D-l)+ (O(a)* O(hs-D-l))+ O(hs-∩-l)+ O(hs-∪-l)))*t(n-1)  
 
 

- HashSet time complexity: The elements are distributed randomly in memory using their 
hashcode. Here also the assumption is that good hashcode which generated unique hashcode 
for different objects has been provided. 
 

o Read/Search any element O(1)      
o Update : O(1) 
o Delete : O(1) 
o Add : O(1) 

 
Then: 

o Duplicate: O(hs-D) = O(n)  
n is the size of the set and add operation is O(1) 

o O(hs-∩) = O(n*m)  
“n” is the size of the first set and “m” the size of the second set 

o Union: O(hs-∪) = O(n*m)  
“n” is the size of the first set and “m” the size of the second 

164 APÉNDICE A. COMPLEXITY ANALYSIS OF THE GRAPH



!

 

 
 
Substituting in the t(n) formula: 
 
 

      t(1) = 1  
t(n) 
      t(n)=(O(a)*( O(1)+ O(1)+ O(l)+ (O(a)* O(l))+ O(l2)+ O(l2)))*t(n-1)  

 
 
 

      t(1) = 1  
t(n) 
      t(n)=(O(a)*( 3 O(1) + O(a*l)+ 2 O(l2)))*t(n-1) 
 
 

 
      t(1) = 1  
t(n) 
      t(n)=( 3 O(a) + O(a2*l)+ 2 O(a*l2))*t(n-1) 
 
 
 
t(n) = O(n*a2*l)+ 2 O(n*a*l2) + 3 O(n*a) 
 
 

 
 
BigO to find a regularity of length “n” = O(n*a2*l)+O(n*a*l2)+O(n*a)  
    n = length of the regularity 
    a = máximum number of arrows that depart from nodes 
    l = max num. of labels with two consecutive tokens repeated 
 
 

!  
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Search%the%whole%set%of%LRs%in%an%ontology%–%(algorithm%1,%Lines%21:25):%
 
  

1.  
2.  
3. FOR each NODE in the graph of labels                  O(t) 

  “t” is number of unique tokens tokens 
4.   FOR LR_LENGTH 1 TO MNT-1            O(tl) 

   “tl” is the max number of tokens in labels 
5.     LRSET = LRSET Union SearchLRs(NODE, NULL, LR_LENGTH-1, CV)        ¿Call+O(hs-∪-lr)? 

    Tex depends of the hashset used. Call SearchLRs + Union of LRs 
6.   END FOR 
7. END FOR 

 

 
 

t(n) = O(t)*O(tl)*( O(n*a2)+ 2 O(n*a*l2) + O(n*a) + O(hs-∪-lr)) 
 

 
 

t(n) = O(t)*O(tl)*( O(n*a2)+ 2 O(n*a*l2) + O(n*a) + O(1)) 

 
 
 

t(n) = O(t)*( O(tl*n*a2)+ 2 O(tl*n*a*l2) + O(tl*n*a) + O(tl)) 
 

 
 

t(n) = O(t*tl*n*a2)+ 2 O(t*tl*n*a*l2) + O(t*tl*n*a) + O(t*tl) 

 
 

 
BigO to find a the whole set of lexical regularities =  
    O(l*tl*n*a2)+ 2 O(l*tl*n*a*l2) + O(l*tl*n*a) + O(l*tl) 
 
    t  = number of unique tokens tokens  
    tl = max number of tokens in labels 
    n  = length of the regularity 
    a  = máximum number of arrows that depart from nodes 
    l  = max num. of labels with two consecutive tokens repeated 
 
 

 
 

!  

166 APÉNDICE A. COMPLEXITY ANALYSIS OF THE GRAPH



!

 

Using%the%graph%for%search%a%class%in%an%ontology:%
 
Function: QueryLabelInOntology          
Input: 
    (1) LABEL_STR: string with the label to search in the ontology 
    (2) GraphedOntology: graph with the ontology labels processed 
Output: 
    (1) ONTOLOGYO_CLASS:  return the ontology class that has LabelStr or NULL otherwise 
 

1. TOKENS_LIST = obtain TOKENS from LABEL_STR        O(tl) 
2. FIRST_TOKEN = first token in the TOKENS_LIST       O(1) 
3. LAST_TOKEN  = last token in TOKEN_LIST       O(1) 
4.  
5. NODE = search in the graph the node FIRST_TOKEN      O(ht-Q-t) 
6.  
7. LR = SearchLRs(NODE, ACS, |TOKENS_LIST|-1, CV=1)          O(n*a2*l)+O(n*a*l2) 

   +O(n*a) 
8. IF LR is not NULL          O(1) 
9.   FOR each LR_LABEL that exhibits LR        O(c)  
10.     LABEL_TOKENS_LIST = obtain TOKENS from LR_LABEL      O(tl) 
11.     IF ( |TOKENS_LIST| == |LABEL_TOKENS_LIST| )      O(1) 
12.       IF TOKENS_LIST is equal to LABEL_TOKENS_LIST      O(tl) 
13.         RETURN identifier of LR_LABEL       O(1) 
14.       END IF 
15.     END IF 
16.   END FOR 
17. END IF 
18.  
19. RETURN NULL           O(1) 

 
 

 
 
 
 
    O(tl)+O(1)+O(1)+O(ht-Q-t)+O(1)+O(n*a2*l)+O(n*a*l2)+O(n*a)+O(1)+O(c)*(O(tl)+O(1)+O(tl)+O(1))+O(1) 
 
 
  
 
     O(tl)+O(1)+O(1)+O(ht-Q-t)+O(1)+O(n*a2*l)+O(n*a*l2)+O(n*a)+O(1)+O(c*tl)+O(c)+O(c*tl)+O(c)+O(1) 
 
 
  
 
     O(tl)+5 O(1)+O(n*a2*l)+O(n*a*l2)+O(n*a)+2 O(c*tl)+2 O(c) 
 

tl = max number of tokens in labels 
t  = number of unique tokens tokens tl = max number of tokens in labels 
n  = length of the regularity 
l  = max num. of labels with two consecutive tokens repeated 
c  = max. number of classes 

 

!  
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Using%the%graph%for%search%decompositions: 

Finding%decomposition%Condition%1:%
 
Function: FindDecomposition_CPEc1          
Input: 
    (1) LABEL_STR:   label to decompose 
    (2) GraphOntologyE:   --- 
Output: 
    (1) Decompositions:  set of tokens that are found in OntologyE as full labels 
 

1. DECOMPOSITIONS_IN_ONTOLOGY_E = create empty set     O(1) 
2.  
3. FOR each TOKEN of the LABEL_STR      O(tl) 
4.   IF QueryLabelInOntology(TOKE, GraphOntologyE)    --- 
5.     Add DECOMPOSITIONS_IN_ONTOLOGY_E      O(1) 
6.   END IF 
7. ENDFOR 
8. RETURN DECOMPOSITIONS_IN_ONTOLOGY_E       O(1) 

 
 

 
 
     O(1)+O(tl)*((tl)+5 O(1)+O(n*a2*l)+O(n*a*l2)+O(n*a)+2 O(c*tl)+2 O(c))+O(1) 
 
 
 

 
     (tl2)+5 O(tl)+O(n*a2*l*tl)+O(n*a*l2*tl)+O(n*a*tl)+2 O(c*tl2)+2 O(c*tl)+2 O(1) 
 

tl = max number of tokens in labels 
t = number of unique tokens tokens tl = max number of tokens in labels 
n = length of the regularity 
l = max num. of labels with two consecutive tokens repeated 
c = max. number of classes 

 

Finding%decomposition%Condition%2:%
 
 
Function: FindDecomposition_CPEc2          
Input: 
    (1) LABEL_STR:   label to decompose 
    (2) GraphOntologyE:   --- 
Output: 
    (1) Decompositions:  set of tokens that are found in OntologyE as full labels 
 

1. DECOMPOSITIONS_IN_ONTOLOGY_E = create empty set     O(1) 
2.  
3. SUB_TOKEN_LISTS = combination of consecutive tokens in LABELS_STR  O(tl2) 
4.  
5. FOR each SUB_TOKEN_LIST of the SUB_TOKEN_LISTS    O(tl2) 
6.   IF QueryLabelInOntology(SUB_TOKEN_LIST, GraphOntologyE)   --- 
7.     Add DECOMPOSITIONS_IN_ONTOLOGY_E      O(1) 
8.   END IF 
9. ENDFOR 
10. RETURN DECOMPOSITIONS_IN_ONTOLOGY_E       O(1) 

 
 

 
 
  2 O(1)+(tl3)+5 O(tl2)+O(n*a2*l*tl2)+O(n*a*l2*tl2)+O(n*a*tl2)+2 O(c*tl3)+2 O(c*tl2))+O(tl2) 
 

tl = max number of tokens in labels 
t = number of unique tokens tokens tl = max number of tokens in labels 
n = length of the regularity 
l = max num. of labels with two consecutive tokens repeated 
c = max. number of classes 
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!

 

Finding%decomposition%Condition%3:%
 
Function: FindDecomposition_CPEc3          
Input: 
    (1) LABEL_STR:   label to decompose 
    (2) GraphOntologyS:   --- 
    (3) GraphOntologyE:   --- 
Output: 
    (1) Decompositions:  set of tokens that are found in OntologyE as full labels 
 

1. DECOMPOSITIONS_IN_ONTOLOGY_S = create empty set 
2. DECOMPOSITIONS_IN_ONTOLOGY_E = create empty set 
3.  
4. SUB_TOKEN_LISTS = combination of consecutive tokens in LABELS_STR  O(tl2) 
5.  
6. FOR each SUB_TOKEN_LIST of the SUB_TOKEN_LISTS    O(tl2) 
7.   IF QueryLabelInOntology(SUB_TOKEN_LIST, GraphOntologyS)   --- 
8.     Add DECOMPOSITIONS_IN_ONTOLOGY_S      O(1) 
9.     Mark tokens indexes of SUB_TOKEN_LIST as matched   O(tl) 
10.   END IF 
11. END FOR 
12.  
13. FOR each SUB_TOKEN_LIST of the SUB_TOKEN_LISTS    O(tl2) 
14.   IF QueryLabelInOntology(SUB_TOKEN_LIST, GraphOntologyE)   --- 
15.     Add DECOMPOSITIONS_IN_ONTOLOGY_E      O(1) 
16.     Mark tokens indexes of SUB_TOKEN_LIST as matched    O(tl2) 
17.   END IF 
18. ENDFOR 
19.  
20. IF all indexes are marked as matched      O(tl) 
21.   RETURN DECOMPOSITIONS_IN_ONTOLOGY_S      O(1) 

              and DECOMPOSITIONS_IN_ONTOLOGY_E 
22. END IF 
23.  
24. RETURN NULL 

 
 

 
 
   O(tl2) 
   + 
   (tl3)+5 O(tl2)+O(n*a2*l*tl2)+O(n*a*l2*tl2)+O(n*a*tl2)+2 O(c*tl3)+2 O(c*tl2) 
   + 
   (tl3)+5 O(tl2)+O(n*a2*l*tl2)+O(n*a*l2*tl2)+O(n*a*tl2)+2 O(c*tl3)+2 O(c*tl2) 
   + 
   O(tl) 
   + 
   O(1) 
 

tl = max number of tokens in labels 
t = number of unique tokens tokens tl = max number of tokens in labels 
n = length of the regularity 
l = max num. of labels with two consecutive tokens repeated 
c = max. number of classes 
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