
Summary. In patients with progressive podocyte
diseases, such as focal segmental glomerulosclerosis and
membranous nephropathy, there is enhanced expression
of transforming growth factor (TGF-ß) in podocytes.
Biomechanical strain in these diseases may cause
overexpression of TGF-ß and angiotensin II (Ang II) by
podocytes. Oxidative stress induced by Ang II may
activate the latent TGF-ß. Increased TGF-ß activity by
podocytes may induce not only the thickening of the
glomerular basement membrane (GBM), but also
podocyte apoptosis and/or detachment from the GBM,
initiating the development of glomerulosclerosis.
Furthermore, mesangial matrix expansion frequently
occurs in podocyte diseases in association with the
development of glomerulosclerosis. This review
examines open questions on the pathogenic role of TGF-
ß that links podocyte injury to GBM thickening,
podocyte loss, mesangial matrix expansion and
glomerulosclerosis in podocyte diseases. It also
describes paracrine regulatory mechanisms of podocyte
TGF-ß on mesangial cells leading to increased matrix
synthesis. 
Key words: Angiotensin II, Biomechanical strain,
Glomerular basement membrane thickening, Mesangial
matrix expansion, Oxidative stress, Podocyte apoptosis

Introduction

TGF-ß plays an important role in glomerular disease,
and is mainly involved in extracellular matrix (ECM)
protein synthesis of renal cells. Podocytes are the target
of injury in most glomerular disease. In podocyte
diseases such as focal segmental glomerulosclerosis
(FSGS) (Kim et al., 2003), membranous nephropathy

(Shankland et al., 1996; Kim et al., 1999), Alport renal
disease (Sayers et al., 1999), and Denys-Drash syndrome
(DDS) (Patek et al., 2003), expression of TGF-ß mRNA
and/or protein is increased in podocytes. TGF-ß may
contribute to the thickening of the glomerular basement
membrane (GBM) and abnormal deposition of ECM
therein. Furthermore, enhanced TGF-ß activity may lead
to podocyte apoptosis and/or detachment with
podocytopenia, initiating the development of
glomerulosclerosis (Schiffer et al., 2001; Wolf et al.,
2005; Dessapt et al., 2009; Lee and Song, 2010).
Glomerulosclerosis frequently complicates most renal
diseases, and is characterized by capillary luminal
collapse and accumulation of mesangial matrix. In
progressive podocyte diseases, mesangial matrix
expansion frequently occurs in association with
glomerulosclerosis (Lee and Koh, 1993; Lee and Lim,
1995; Patek et al., 2003). The mechanisms whereby
podocyte TGF-ß contributes to the progression of
podocyte diseases are still poorly understood. 

This review will focus the discussion on the
pathogenic role of TGF-ß that links podocyte injury to
GBM thickening, podocyte loss, mesangial matrix
expansion and glomerulosclerosis in podocyte diseases. 
Progressive podocyte diseases with TGF-ß
overexpression in podocytes 

FSGS

Intrarenal transcription of TGF-ß1 is enhanced in
children with FSGS compared to those with minimal
lesion, suggesting that TGF-ß1 gene transcription is
indicative of progressive renal damage typical of FSGS
(Strehlau et al., 2002). Expression of TGF-ß1 is
increased in patients with primary FSGS, particularly in
podocytes of sclerotic segments (Kim et al., 2003).
Volume density of mesangial matrix is significantly
greater in the FSGS patients than in minimal lesion
cases. In patients with FSGS, the percent
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glomerulosclerosis correlates directly with mesangial
volume per glomerulus (Lee and Lim, 1995). 

In rats with subtotal renal ablation, TGF-ß1 is
upregulated by podocytes in response to enhanced
transcapillary passage of plasma proteins, which
precedes the development of glomerulosclerosis (Abbate
et al., 2002).
Membranous nephropathy

Subepithelial immune deposition promotes injury to
the glomerular filtration barrier, proteinuria, and
eventual renal failure in patients with membranous
nephropathy. Complement membrane attack complex
(C5b-9) plays an important role in the development of
podocyte injury and proteinuria in passive Heymann
nephritis (PHN), an experimental model of human
membranous nephropathy (Couser and Nangaku, 2006).
Upregulation of TGF-ß1, α4(IV) and α1(IV) collagens,
and laminin ß2 mRNAs by podocytes is shown in
patients with membranous nephropathy (Kim et al.,
1999). In addition, there are increased immunogold
densities for polyclonal type IV collagen (in the
distribution of the α1(IV) and α2(IV) collagen chains),
α4(IV) collagen, laminin, and fibronectin in the
subepithelial projections or spikes (Zhang and Lee,
1997). Expression of TGF-ß2 is also markedly increased
in podocytes in experimental membranous nephropathy,
together with upregulation of TGF-ß receptors
(Shankland et al., 1996). 

FSGS lesions are observed in 43% of the
membranous nephropathy patients, in whom the degree
of mesangial expansion and GBM thickening is
significantly greater than the remaining cases without
FSGS (Lee and Koh, 1993). In PHN, mesangial volume
was also significantly elevated, together with GBM
thickening (Remuzzi et al., 1999). 
Diabetic nephropathy

Thickening of the GBM and expansion of the
mesangial matrix are hallmarks of diabetic nephropathy.
Podocytes are injured very early in the course of diabetic
nephropathy. GBM thickening and expansion of the
mesangial matrix occur even within a few years after the
onset of type 1 diabetes (Drummond and Mauer, 2002).
In insulin-dependent diabetes, the collagen α3(IV)
through α5(IV) chains, collagen V, laminin, fibronectin,
and serum proteins contribute to the thickened GBM
(Miner, 1999). 

In diabetic nodular glomerulosclerosis, podocytes
covering the sclerotic segments show increased
expression of TGF-ß1 mRNA and protein (Wahab et al.,
2005). Enhanced expression of glomerular TGF-ß1 is
observed mainly in podocytes of diabetic animals (Baba
et al., 2005; Okada et al., 2006). 
Alport renal disease

Alport syndrome is a primary genetic disease of the

basement membrane. In the kidney, this disorder is
characterized by an absence of collagen α3α4α5(IV) in
the GBM, progressive thickening and multilamination of
the GBM, proteinuria, and renal failure (Kalluri et al.,
1997). Collagen α1/α2(IV), however, is retained
throughout the GBM, together with the deposition of the
laminin chains α1, α2 and ß1 (Kashtan et al., 2001;
Abrahamson et al., 2003). In podocytes of α3(IV)
collagen-knockout mice with Alport renal disease,
mRNA expression of TGF-ß1, α1(IV) and α2(IV)
collagen, fibronectin, and laminin ß1 chain is increased
(Sayers et al., 1999). With disease progression,
mesangial matrix and cells are increased, followed by
the development of glomerulosclerosis (Kim et al., 1995;
Gregory et al., 1996; Mazzucco et al., 2002). 
DDS

Mutations of the Wilms’ tumour suppressor gene,
WT1, induce DDS, characterized by diffuse mesangial
sclerosis. The development of glomerulosclerosis is
preceded by de novo TGF-ß1 expression in DDS
podocytes (Patek et al., 2003). A gene mutation in DDS
podocytes may not be sufficient to cause TGF-ß
overexpression (Jin et al., 1999), but in the presence of a
second injury, such as intraglomerular hypertension,
TGF-ß seems to be overexpressed by podocytes (Patek
et al., 2003). 

Altogether, TGF-ß is overexpressed by podocytes in
progressive podocyte diseases, in which there are
thickening of the GBM, mesangial matrix expansion and
the eventual development of glomerulosclerosis (Table
1).
Induction of TGF-ß by glomerular hypertension or
biomechanical strain in podocyte diseases

In progressive glomerular disease, increased
intraglomerular pressure results in cellular strain and
perpetuates further damage to the podocytes, eventually
leading to glomerulosclerosis (Kriz et al., 1998).
Glomerular hemodynamic adaptive changes, including
hyperfiltration and hyperperfusion, seem to promote
progressive glomerulosclerosis in patients with reduced
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Table 1. Glomerular basement membrane (GBM) thickening and
mesangial matrix expansion in podocyte diseases with TGF-ß
overexpression.

Diseases GBM thickening Mesangial matrix expansion

FSGS ND yes
Membranous nephropathy yes yes 
Diabetic nephropathy yes yes 
Alport syndrome yes yes 
Denys-Drash syndrome ND yes

TGF-ß: transforming growth factor-ß; FSGS: focal segmental
glomerulosclerosis; ND: not determined.



nephron mass and diabetes (Ziyadeh and Wolf, 2008).
The less cross-linked and possibly more elastic physical
properties of the GBM in podocyte diseases may subject
the podocytes to elevated biomechanical strain even
under normal glomerular blood pressure. As the disease
progresses and nephron mass is lost, glomerular
hypertension develops, further exacerbating the
biomechanical strain and the effector functions
influenced by it (Meehan et al., 2009). In the remnant
kidney model of glomerular capillary hypertension,
TGF-ß1 (Abbate et al., 2002) and angiotensin II (Ang II)
type 1 receptor (Durvasula et al., 2004) are upregulated
by podocytes. In cultured podocytes, albumin load or
mechanical strain increases the levels of TGF-ß1 and
Ang II, as well as TGF-ß type I, II and III receptors
(Abbate et al., 2002; Durvasula et al., 2004; Dessapt et
al., 2009). 

Together, an increase in glomerular capillary
pressure may stimulate Ang II and TGF-ß1 expression in
podocytes through mechanical force injury in
progressive podocyte diseases (Fig. 1).
Effects of Ang II on TGF-ß signaling in podocyte
diseases

The renin-angiotensin system (RAS) seems to be
involved in podocyte injury through the induction of
oxidative stress in experimental renal disease (Shibata et
al., 2007; Whaley-Connel et al., 2008) and diabetic
podocytopathy (Ziyadeh and Wolf, 2008). Ang II is a
major active product of the RAS. NADPH oxidase
produces reactive oxygen species (ROS), such as
superoxide and hydrogen peroxide, and is strongly
expressed by podocytes (Tojo et al., 2007). Ang II may
enhance the generation of ROS through the activation of
NADPH oxidases in podocytes. 

In podocyte diseases, expression levels of TGF-ß are
increased in the podocytes (Shankland et al., 1996; Kim
et al., 1999, 2003; Sayers et al., 1999; Patek et al., 2003;
Wahab et al., 2005). The activity of TGF-ß is under strict
control during developmental and pathological
processes. TGF-ß is secreted as latent complexes.
Several activation mechanisms for latent TGF-ß, such as
ROS, proteolysis, some integrins, and thrombospondin-
1, may exist in vivo. Ang II-induced ROS can activate
the latent TGF-ß in injured podocytes (reviewed in Lee
and Song, 2009). Unlike mesangial cells, podocytes do
not overexpress TGF-ß1 in response to Ang II (Chen et
al., 2005). Rather, Ang II stimulates the expression of
the vascular endothelial growth factor (VEGF) (Chen et
al., 2005), which, in turn, increases the expression of
TGF-ß type II receptor and Smad2 phosphorylation
(Chen et al., 2004). Although Ang II does not directly
stimulate the expression of TGF-ß1 in podocytes, Ang
II-induced oxidative stress in podocyte diseases may
activate the latent TGF-ß and, subsequently, the TGF-ß
signaling system in podocytes (Fig. 1). 

Studies in animal models of chronic nephropathies
have documented that RAS inhibitors significantly blunt

the increased renal TGF-ß production. An angiotensin-
converting enzyme (ACE) inhibitor prevents TGF-ß1
overexpression in podocytes and glomerulosclerosis in
rats with reduced renal mass (Abbate et al., 2002). It also
reduces the TGF-ß1, connective tissue growth factor
(CTGF) and ECM protein overexpression in kidney and
glomerulosclerosis in mice with Alport syndrome (Gross
et al., 2003, 2004; Gross and Kashtan, 2009), and limits
mesangial expansion in PHN (Remuzzi et al., 1999).
Combined anti-TGF-ß and ACE inhibition therapy
completely abrogates the glomerulosclerosis of overt
diabetic nephropathy in the rat (Benigni et al., 2003). In
addition, administration of Ang II type 1 (AT1) receptor
blocker to diabetic rats lowers glomerular expression of
TGF-ß1 and VEGF (Vieitez et al., 2008).

Together, oxidative stress induced by Ang II may
activate the latent TGF-ß in podocyte diseases and,
subsequently, the TGF-ß signaling system in podocytes,
eventually leading to glomerulosclerosis.
GBM thickening in relation to TGF-ß in podocyte
diseases 

Collagen type IV is the main component of the
GBM, which includes six genetically distinct isoforms
named α1(IV) to α6(IV). α3-α5(IV) chains originate
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Fig. 1. Hypothetical pathway for glomerular basement membrane
(GBM) thickening, podocyte loss and mesangial matrix expansion via
activation of transforming growth factor-ß (TGF-ß)/Smad signaling in
podocyte diseases. Ang II, angiotensin II; Col, collagen; CTGF,
conntective tissue growth factor; FN, fibronectin; MMP, matrix metallo-
proteinase; ROS, reactive oxygen species; VEGF, vascular endothelial
growth factor.



solely from podocytes in both the developing and mature
glomerulus (Abrahamson et al., 2009). In contrast, the
α1/α2(IV) collagen network seems to originate mainly
from glomerular endothelial cells (Lee et al., 1993) and
is localized predominantly at the endothelial aspect of
human GBM (Zhang and Lee, 1997). Laminin is the
most ample glycoprotein in the GBM. Laminin-11
(α5ß2γ1) continues to be deposited in the GBM whereas
the fetal laminin chains (α1, α2 and ß1) gradually
disappear from the GBM (Miner, 2005). 

In TGF-ß1 transgenic mice, the GBM is significantly
thickened as compared with wild-type animals
(Wogensen et al., 1999; Krag et al., 2007), where
laminin ß2 chains and α4(IV) collagen are
predominantly seen (Chai et al., 2003). In addition,
aberrant deposition of fetal laminin α1, α2 and ß1 chains
and α1/α2(IV) collagen appears in the GBM (Chai et al.,
2003). Similar to the TGF-ß1 transgenic mice, there is
aberrant expression of collagen α1/α2(IV), and laminin
α1, α2 and ß1 in the thickened GBM in cases with
membranous nephropathy and Alport’s syndrome
(Zhang and Lee, 1997; Kashtan et al., 2001; Fischer et
al., 2000; Cosgrove et al., 2000; Abrahamson et al.,
2003). TGF-ß1 increased α3(IV) collagen expression in
cultured mouse podocytes, although it decreased the
levels of α1(IV) and α5(IV) mRNA and/or protein
(Iglesias-de la Cruz et al., 2002). Collectively, GBM
thickening by abnormal deposition of ECM in
podocytopathies could be due to the enhanced TGF-ß1
levels in podocytes. 

A further potential mechanism for GBM destruction
and thickening involves the action of proteolytic
enzymes, such as matrix metalloproteinases (MMPs).
MMP-9 expression is increased in podocytes in
experimental membranous nephropathy (McMillan et
al., 1996). Levels of MMPs are increased in the
glomeruli of Alport mice and kidneys of patients with
Alport syndrome (Zeisberg et al., 2006). The aberrant
collagen α1/α2(IV) network deposited in the GBM
contains fewer interchain crosslinks than wild-type
GBM, and is more susceptible to proteolytic degradation
by endogenously expressed MMPs (Kalluri et al., 1997;
Zeisberg et al., 2006). Blocking the activity of specific
MMPs has been shown to ameliorate the progression of
glomerular pathology (Zeisberg et al., 2006). In cultured
podocytes, TGF-ß1 stimulates the production of MMP-9
(Liu et al., 2005; Li et al., 2008), and many of the MMPs
(MMP-3, -9, -10, and -14) are induced by mechanical
strain (Meehan et al., 2009). Together, increased TGF-ß1
levels in podocytes may induce MMPs, resulting in
proteolytic damage and thickening of the GBM in
progressive podocyte diseases.

GBM thickening in diabetic mice is prevented by
Smad3 deficiency (Wang et al., 2007) or administration
of anti-TGF-ß antibody (Chen et al., 2003). Inhibition of
TGF-ß signaling activity, by injecting a soluble TGF-ß1
type II receptor as a competitive inhibitor, prevents
irregular thickening of the GBM in Alport mice
(Cosgrove et al., 2000). 

In summary, enhanced TGF-ß/Smad signaling in
podocytes seems to play an important role in GBM
thickening by overproduction of abnormal ECM proteins
and by impaired GBM degradation in podocyte diseases
(Fig. 1) (Table 2).
Pathogenic role of TGF-ß in the development of
glomerulosclerosis in podocyte diseases

Podocyte loss in relation to TGF-ß: the l ink to
glomerulosclerosis

In podocyte diseases, enhanced TGF-ß activity in
podocytes may lead to podocyte apoptosis and/or
detachment with podocytopenia (Schiffer et al., 2001;
Wolf et al., 2005; Dessapt et al., 2009; Lee and Song,
2010). C5b-9 can induce apoptosis of podocytes in
membranous nephropathy (Mundel and Shankland,
2002), a process that may involve TGF-ß. Apoptosis is
also observed in the crescentic lesion of DDS kidneys
(Yang et al., 2004), where TGF-ß is overexpressed in
hyperplastic podocytes (Lee and Song, 2010). TGF-ß1
phosphorylates Smad2 in podocytes (Schiffer et al.,
2004; Liu et al., 2005). Activated TGF-ß/Smad signaling
in injured podocytes may increase p15 and p21, resulting
in growth arrest (Lee and Song, 2010). In TGF-ß1
transgenic mice, podocytes undergo apoptosis at an early
stage of glomerulosclerosis with overexpression of
Smad7 (Schiffer et al., 2001). In CD2-associated protein
deficient mice, TGF-ß-induced podocyte apoptosis is an
early pathomechanism developing FSGS (Schiffer et al.,
2004).

Another mechanism of podocyte loss in podocyte
diseases may relate to the detachment of podocytes from
the GBM. Integrins attach cells to ECM. α3ß1 integrin is
an adhesion receptor for laminins and type IV collagen
and is located in the basal plasma membrane of
podocytes (Kreidberg and Symons, 2000).
Downregulation of α3ß1 integrin is observed in the
podocytes of patients with primary FSGS (Chen et al.,
2006) and diabetes (Chen et al., 2000) associated with
podocytopenia. TGF-ß1 suppresses the glomerular
expression of α3 integrin in nephrotic rats (Kagami et
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Table 2. Evidence to support the hypothesis that TGF-ß/Smad signaling
induces GBM thickening.

Disease model Results 1st author

TGF-ß1 transgenic mice Thickening of the GBM Wogensen (1999)
Krag (2007)

Smad3-knockout diabetic mice Prevents GBM thickening Wang (2007)
Anti-TGF-ß treatment in
diabetic mice Prevents GBM thickening Chen (2003)

Soluble TGF-ß type II receptor
treatment in Alport mice Prevents GBM thickening Cosgrove (2000)

TGF-ß: transforming growth factor-ß; GBM: glomerular basement
membrane.



al., 1993). In cultured podocytes, TGF-ß1 and
mechanical stretch significantly reduce the α3ß1 integrin
expression linked to decreased podocyte adhesion and
increased apoptosis (Dessapt et al., 2009). Thus, TGF-ß1
may reduce podocyte adhesion to the GBM via
downregulation of α3ß1 integrin, resulting in podocyte
depletion in podocyte diseases. 

In patients with FSGS and membranous
nephropathy, nephrin mRNA expression by podocytes is
significantly decreased as compared with minimal lesion
cases (Kim et al., 2002). Recent studies have shown that
TGF-ß1 suppresses the slit diaphragm-associated protein
P-cadherin, zonula occludens-1, and nephrin in cultured
podocytes (Li et al., 2008). These observations also
support the notion that more severe and/or longer
podocyte injury induced by TGF-ß may lead to podocyte
detachment from GBM and/or apoptosis in podocyte
diseases (Li et al., 2008; Liu, 2010). 

Podocytes are growth-arrested terminally
differentiated cells, and are incapable of replication
following their loss. Accordingly, any significant
damage to the podocyte must be viewed as a potential
starting point for irreversible glomerular damage (Kriz et
al., 1998; Mundel and Shankland, 2002; Kriz and LeHir,
2005; Wolf et al., 2005; Ziyadeh and Wolf, 2008). After
detachment of podocytes from the GBM with loss of the
entire cell into urinary space, the denuded GBM may
adhere to the Bowman’s capsule with synechiae
formation, initiating the development of FSGS (Kriz et
al., 1998; Kriz and LeHir, 2005). 

In summary, TGF-ß may induce podocyte apoptosis
and detachment from the GBM in podocyte diseases
leading to the development of glomerulosclerosis (Fig.
1).
Mesangial matrix expansion in podocyte diseases via
activation of TGF-ß signaling 

In patients with podocyte diseases, such as FSGS
and membranous nephropathy, mesangial matrix
expansion is frequently observed in association with the
development of glomerulosclerosis (Lee and Koh, 1993;
Lee and Lim, 1995). Podocyte-specific injury in
transgenic mice induced mesangial expansion and
glomerulosclerosis (Matsusaka et al., 2005). Increased
intraglomerular pressure has been linked to podocyte
injury, mesangial cell matrix overproduction, thickening
of the GBM and the eventual development of
glomerulosclerosis (Ziyadeh and Wolf, 2008).
Conditioned medium of albumin-stimulated podocytes,
like TGF-ß1 itself, induced expression of α-smooth
muscle actin, a sclerosing phenotype, in cultured
mesangial cells, an effect blocked by anti-TGF-ß1
(Abbate et al., 2002).

In Smad3-knockout diabetic mice, mesangial matrix
expansion is prevented (Wang et al., 2007), as shown in
the anti-TGF-ß-treated or TGF-ß type II receptor-
deficient diabetic mice (Ziyadeh et al., 2000; Chen et al.,
2003; Kim et al., 2004). Even though mesangial cells

secret TGF-ß in cases with diabetic nephropathy, it is in
latent form, which may be localized to the podocyte
surface to be activated (Lee and Song, 2009).
Collectively, TGF-ß/Smad signaling in podocytes seems
to play a crucial role in mesangial matrix expansion in
podocyte diseases. 
Paracrine effector mechanism of CTGF and VEGF for
TGF-ß to act on mesangial cells 

The podocyte TGF-ß, the active form of which has a
very short half-life in plasma, is unlikely to traverse the
GBM to promote sclerosis in the adjacent mesangium.
Instead, some TGF-ß-induced humoral factors produced
by podocytes seem to have fibrogenic effects on
mesangial cells (Lee and Song, 2009).

CTGF is a major autocrine growth factor induced by
TGF-ß. TGF-ß1 induces CTGF mRNA and protein
expression in podocytes (Ito et al., 2001). Expression of
CTGF mRNA and/or protein in the mesangium and
podocytes is upregulated in human chronic glomerular
disease (Ito et al., 1998; Wahab et al., 2005). It is
increased particularly in the glomeruli of patients with
mesangial matrix expansion (Suzuki et al., 2003).
Furthermore, induction of diabetes in podocyte-specific
CTGF-transgenic mice results in an increased mesangial
CTGF expression with more severe mesangial expansion
than diabetic wild-type mice (Yokoi et al., 2008). 

VEGF is a potent angiogenic molecule and is
detected predominantly in podocytes (Bailey et al.,
1999; Wendt et al., 2003). And yet, glomeruli are not
sites of angiogenesis, possibly because podocytes mainly
express VEGF165b protein, which inhibits VEGF165-
mediated angiogenesis (Cui et al., 2004). VEGF may
play an important role in TGF-ß1-induced glomerular
fibrosis (Chen et al., 2004, 2005). TGF-ß1 stimulates
VEGF expression in podocytes (Iglesias-de la Cruz et
al., 2002). Anti-VEGF attenuates mesangial matrix
expansion in diabetic mice (Flyvbjerg et al., 2002). 

Damage to podocytes in various glomerular diseases
has the potential for releasing large amounts of VEGF
locally (Shulman et al., 1996). In patients with
membranous nephropathy, VEGF expression in
podocytes is either increased (Shulman et al., 1996) or
decreased (Honkanen et al., 2003), or shows no change
(Bailey et al., 1999; Siviridis et al., 2003), while it is
increased in the mesangium (Honkanen et al., 2003).
VEGF and/or VEGF receptor expression is increased in
the glomeruli of diabetic animals, particularly in the
podocytes (Wendt et al., 2003; Sung et al., 2006),
whereas VEGF mRNA-positive cells are reduced in
patients with diabetic nephropathy (Bailey et al., 1999). 

Contrary to the general perception that solutes
cannot move against the flow of glomerular filtration,
about one third of VEGF secreted from podocytes could
reach the capillary lumen and accumulate there
(Katavetin and Katavetin, 2008). Although it is not clear
whether this is also true for CTGF, the experiments
performed by Yokoi et al. (2008) support that possibility. 

111
TGF-ß and progressive podocytopathies



In summary, TGF-ß-induced CTGF and VEGF
secretion by podocytes may act as an effector
mechanism, necessary for mesangial matrix
accumulation in podocyte diseases, culminating in the
development of glomerulosclerosis (Fig. 1). 
Therapeutic strategies to prevent the progression of
podocyte diseases

Inhibitors of RAS

An ACE inhibitor prevents renal or podocyte TGF-
ß1 overexpression and glomerulosclerosis in rats with
reduced renal mass (Abbate et al., 2002) and in Alport
mice (Gross et al., 2003, 2004; Gross and Kashtan,
2009). AT1 receptor blocker also reduces the glomerular
expression of TGF-ß1 in diabetic rats (Vieitez et al.,
2008). Combined ACE inhibition and anti-TGF-ß
therapy completely abrogates glomerulosclerosis in
experimental diabetic nephropathy (Benigni et al.,
2003). The recently discovered ACE2 can form a
vasodilatory compound, angiotensin-(1-7), from Ang II.
Chronic treatment with angiotensin-(1-7) alleviates
NADPH oxidase-mediated oxidative stress and renal
vascular dysfunction in diabetic hypertensive rats
(Benter et al., 2008). Thus, drugs that suppress Ang II
activity may have the potential for impeding the process
of TGF-ß-mediated glomerulosclerosis via a decrease in
NADPH oxidase in podocyte diseases.
TGF-ß signaling antagonists

Inhibitors of TGF-ß/receptor action
Anti-TGF-ß antibody inhibits mesangial matrix

expansion and/or GBM thickening in diabetic mice
(Ziyadeh et al., 2000; Chen et al., 2003). Antisense TGF-
ß oligonucleotides also reduce the expression of renal
matrix components in diabetic mice (Han et al., 2000).
Injecting a soluble TGF-ß1 type II receptor into Alport
mice (Cosgrove et al., 2000) and diabetic rats (Russo et
al., 2007) prevents the thickening of the GBM and renal
cortical fibrosis, respectively. Oral administration of
GW788388, an inhibitor of TGF-ß type I and II receptor
kinases, reduces renal fibrosis in diabetic mice (Petersen
et al., 2008). GBM thickening and mesangial matrix
expansion are also reduced in Smad3-knockout diabetic
mice (Wang et al., 2007). 

TGF-ß is an anti-inflammatory cytokine and
immunosuppressant, and, therefore, complete disruption
of TGF-ß signaling could have serious adverse
consequences (Yaswen et al., 1996). Consequently,
downstream pathways of TGF-ß signaling may provide
possibilities for more specific treatment targets as
described below.

Inhibitors of downstream pathways of TGF-ß
signaling

Overexpression of Smad7, an inhibitory factor in

TGF-ß signaling, reduces renal fibrosis in animals with
subtotal nephrectomy (Hou et al., 2005). 

Bone morphogenic protein (BMP)-7 is a growth
factor of the TGF-ß superfamily that counteracts the
fibrogenic action of TGF-ß (Wang and Hirschberg,
2004; Zeisberg 2006). Maintenance of BMP-7 reduces
podocyte dropout and renal fibrosis in BMP-7 transgenic
mice with diabetic nephropathy (Wang et al., 2006).
BMP-7 may exert its antifibrotic action by inhibiting
fibrogenic Smad signaling (Wang and Hirschberg, 2004;
Hirschberg, 2005) and by inducing the expression of
active MMP-2 (Zeisberg et al., 2003). 

Hepatocyte growth factor (HGF) gene therapy
inhibited mesangial expansion and glomerulosclerosis in
rats with advanced diabetic nephropathy associated with
suppression of renal TGF-ß1 and mesangial CTGF
upregulation (Cruzado et al., 2004). HGF antagonizes
TGF-ß/Smad signaling in diverse types of kidney cells
by blocking the nuclear translocation of activated Smad
(Liu, 2004) and activation of Smad transcriptional
corepressors, TGIF (Dai and Liu, 2004) and SnoN (Yang
et al., 2003). SnoN and Ski are diminished in the fibrotic
kidney, suggesting that the loss of Smad antagonists is
an important mechanism that amplifies the TGF-ß signal
(Yang et al., 2003; Fukasawa et al., 2006).
Conclusions

Mechanical pressure or biomechanical strain in
progressive podocyte diseases may upregulate Ang II
and TGF-ß expression in podocytes. Oxidative stress
induced by Ang II may activate the latent TGF-ß in
podocyte diseases. Enhanced TGF-ß activity by
podocytes may induce GBM thickening by
overproduction of abnormal ECM proteins and by
impaired GBM degradation in podocyte diseases. It may
also lead to podocyte apoptosis and detachment from the
GBM, initiating the development of glomerulosclerosis.
Furthermore, activated TGF-ß/Smad signaling by
podocytes may induce CTGF and VEGF overexpression,
which may act as a paracrine effector mechanism on
mesangial cells to stimulate mesangial matrix synthesis.
Research on the activation of TGF-ß signaling by
podocytes and its downstream effectors, CTGF and
VEGF, will further our comprehension of the cellular
and molecular mechanisms of disease progression in
podocytopathies and provide new therapeutic strategies
for these common glomerular diseases.
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