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Introduction
After mating or artificial insemination, millions of sperm are 

deposited in the female genital tract, of which only a small proportion is 
able to reach the caudal portion of the isthmus (Figure 1A). This sperm 
population encounters a sticky secretion of glycoprotein that modifies 
the sperm surface [1]. Motility decreases in this viscous medium and 
facilitates the sperm adhesion to the epithelium (Figure 1B). Sperm 
remains in the caudal portion of the oviductal isthmus, during the pre 
and peri-ovulatory time, forming the Sperm Reservoir (SR) [2,3]. This 
binding is a reversible process and the oviductal microenvironment 
signals stimulate sequential release of a limited number of sperm from 
the SR to the ampullary-isthmic junction. This ensures fertilization of 
oocytes in a time interval (Figure 1C), even if ovulation occurs over a 
long period of time [4]. However, the mechanisms which sperm are 
released from SR are unknown.

During the passage of sperm through the female genital tract, the 
spermatozoa undergo functional and molecular changes which confer 
ability to fertilize the oocyte (Figure 1). This process is known as sperm 
capacitation [5].

Capacitation is a complex process, which appears to be controlled 
by crosstalk between different pathways [6,7]. The most notable event 
is an increase in protein tyrosine phosphorylation [8,9] although an 
oxidative process also has been shown, including the nitric oxide-
dependent pathway [10,11]. In this sense, some papers have shown that 
NOS (Nitric Oxide Synthase) is present in the oviduct [12-14], oocyte, 
and cumulus and corona cells [15,16] of different species [12,17,18]. 
NOS isoforms are hormonally regulated in the oviduct and expresses 
differently throughout the oestrous cycle. In the oviduct, Nitric Oxide 
(NO) has been shown to regulate contractility [19], ciliary beating of the 
ciliated epithelial cells, the sperm motility or even inducing chemotaxis 
[20]. For .this reason NO also module sperm capacitation although the 
pathway is not known totally.

Functional Changes and Molecular Pathways during 
Sperm Capacitation

During the capacitation process, spermatozoa undergo a series of 
functional changes, which enables them to bind to the extracellular 
matrix of the oocyte and consequently require the acrosome reaction. 
Although the latter is under discussion as recently shown by Jin et al. 
[21] that the acrosome reaction in mouse sperm occurs before binding 
to the zona pellucida. Besides, the pattern of movement of sperm 
flagellum changes allowing penetration of the zona pellucida [22].

Capacitation process implied several changes sequentially. Some of 
these changes are rapid and occur at the moment of ejaculation. Others 
require a longer period of time in the female genital tract (in vivo) or 
in a medium capable of supporting this process (in vitro). All these 
processes (both rapid and slow), appear to be regulated by protein 
kinase A (PKA) and HCO-3, Soluble Adenylate Cyclase (SACY or 
sAC), and Cyclic Adenosine 3’5 ‘Monophosphate (cAMP) participate 
in this process (revised by [23]).

Traditionally, Reactive Oxygen Species (ROS) are considered to be 
injurious by products of cellular metabolism but also fundamentally 
participants in cell signalling and regulation mechanisms [24]. This 
apparent paradox also is true for spermatozoa, which are particularly 
susceptible to ROS-induced damage because their plasma membranes 
contain relatively large amounts of polyunsaturated fatty acids and 
their cytoplasm contains relatively low concentrations of scavenging 
enzymes [25], but require low concentration of ROS to acquire the 
fertilizing ability [6,26]. The essential role of ROS as modulators of 
capacitation is recognized in human [27], bovine [28], and mouse [27], 
and boar spermatozoa [29,30].

Some Authors Consider that Capacitation Occurs in 
Two Steps, Fast and Low [23]
Facts during fast sperm capacitation 

An early event during capacitation is the activation of sperm 
motility. Although sperm stored in the cauda epididymis being 
practically immobile consume oxygen in large proportions. The 
flagellum movement starts immediately after sperm are released from 
the epididymis and contact has been made with seminal plasma. This is 
due to exposure of sperm to the HCO-

3 [31].

Facts during slow sperm capacitation

In contrast to the rapid activation of motility, other processes 
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associated with capacitation require a longer period of time. During 
slow capacitation, sperm acquire the ability to fertilize, which is 
preceded by the preparation of the sperm to undergo the acrosome 
reaction and change the pattern of motility called hyperactivation. 
Components in oviductal fluid such as high weight molecular proteins 
and high density lipoproteins promote cholesterol efflux resulting in 
an increased capacitation and tyrosine Phosphorylation (PY) using the 
cAMP signalling pathway/PKA [32]. Additionally, these slow processes 
also are achievable in vitro by incubation of spermatozoa in defined 
media, which contain a protein source (usually bovine serum albumin 
(BSA)), and different ions, including HCO-

3 and Ca2
+. 

Molecules and Mechanisms Involved in the Process of 
Capacitation

As we mentioned above, bicarbonate, calcium and cholesterol 
acceptor are essential during capacitation process entirely (Figure 
2). These substances induce modifications lipid membrane, loss of 
cholesterol, activation of cAMP/PKA pathway, increase Ca2+ uptake 
and pH (pHi), hyperpolarisation of membrane potential, and PY [33]. 
However, there are other pathways in relation to capacitation as NO/
sGC/cGMP or protein nitrosylation are being studied.

Bicarbonate and sperm capacitation
Several studies have shown that bicarbonate plays a key role in 

sperm capacitation and therefore achieve fertilization under both 
in vivo and in vitro [34-38]. Epididymal spermatozoa are exposed 
to low bicarbonate concentrations (3-4mM). However, when they 
arrive before the capacitation, takes place (oviduct). They are found in 
much higher level (> 20mM) [39]. Movement of HCO3 through the 
membrane has been associated with increased intracellular pH during 
capacitation [40]. Moreover, another likely target for the action of 
bicarbonate on sperm metabolism is the regulation of cAMP [41] by 
stimulation of sAC [23]. This in turn stimulates PKA to phosphorylate 
substrates, thereby allowing PY [42,43]. Furthermore, activation of 

the PKA results in activation of phospholipase D (PLD), which in 
turn stimulates the polymerization of F-actin [44], which is an event 
associated with the process of acrosome reaction.

Bicarbonate and lipid membrane structure: Bicarbonate also 
modifies the lipid structure of the sperm plasma membrane during 
capacitation and it is a reversible phenomenon (Figure 2) [36]. Gadella 
and Harrison [45] showed that influx bicarbonate during capacitation 
produces change in the lipid membrane structure using path sAC/
cAMP/PKA and so is augmented by inhibitors of phosphatases [46]. 
These changes lead to a reordering of membrane phospholipids 
phosphatidylethanolamine, phosphatidylserine, sphingomyelin and 
phosphatidylcholine. Lipid reordering allows relocating the cholesterol 
in the apical part of the sperm head. Apparently, this relocation has 
the function of removal of cholesterol [47]. Albumin, High-Density 
Lipoprotein (HDL), and β-cyclodextrines promote sperm capacitation 
acting as acceptors of cholesterol by removing it from the plasma 
membrane [48]. As a result of this process, decrease ratio of cholesterol/
phospholipid consequently contributes to an increased membrane 
fluidity promoting increase of ion permeability [32,49-51].

Bicarbonate and sterol depletion: Albumin acts in synergy with 
bicarbonate by mediating efflux of sterols from the sperm surface 
[52,53]. Flesch et al. [47] observed that the addition of albumin causes 
cholesterol efflux (Figure 2), but only in bicarbonate-responding 
cells that exhibited virtually no filipin labelling in the sperm head 
area. In the absence of bicarbonate, albumin had no effect on other 
lipid components and no affinity to cholesterol. Bicarbonate also 
induces sperm surface oxysterol formation by activation of signalling 
pathway of the ROS, which can be inhibited or blocked by addition of 
antioxidants as vitamin E or vitamin A [38]. These sterols oxidation 
products (oxysterols), which are more hydrophilic, can be extracted 
using albumin [53] or can facilitate an oxysterol dependent scavenger-
sensitive transport of free sterols to albumin [54].

Bicarbonate and sperm plasma membrane potential: Under 
normal conditions, spermatozoa maintain intracellular ion 
concentration markedly different from extracellular environment 
and these differences provide the resting membrane potential [55]. 

 

Figure 1: Capacitation process. A) After ejaculation, a heterogeneous popu-
lation of sperm reaches the female reproductive tract. B) Only a few sperm 
achieves the oviduct and forms the Sperm Reservoir (SR) in the caudal portion 
of the isthmus. C) During peri-ovulatory time, sperm release from the SR and 
those who complete a correct sperm capacitation are able to contact with the 
oocyte and fertilize it. Different colours indicate distinct types of sperm: dead 
(grey), damaged (red), normal (blue), hyperactivated (green-blue) and suc-
cessfully capacitated (green).

 

Figure 2: Bicarbonate input leads to hyperpolarisation of the membrane po-
tential, AC activation (directly, or indirectly by increasing the pH) and reorder-
ing of the lipids in the membrane which changes the position of cholesterol in 
the apical part. This facilitates their removal using albumin, increasing mem-
brane fluidity and promotes calcium entry. Calcium activates AC, increases the 
protein tyrosine phosphorylation through the cAMP/PKA pathway.
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When spermatozoa are exposed to different environments during 
transport through the male and female genital tracts, they find different 
extracellular ion concentration. For example, the epididymal fluid 
contains high K+, low Na+, and even lower concentrations of HCO3

-. 
After ejaculation, there will be a drastic change in the concentrations 
of these ions in the seminal fluid and finally into the female tract, 
where the concentrations of low potassium and high HCO3

- are present 
[56,57]. As a result of changes in extracellular ion concentrations, there 
will be changes in intracellular concentrations of these ions leaving 
alterations in membrane potential [58,59] which consequently occurs 
in the hyperpolarisation of sperm plasma membrane [60]. It has been 
shown in mouse sperm that changes in membrane potential do not 
occur in BSA or HCO3

- absence [59]. These results suggest that HCO3
- 

present in capacitation media as well as cholesterol efflux may have 
a direct or indirect function of events allowing hyperpolarisation of 
the sperm plasma membrane [55]. Arnoult et al. [61] showed that 
only hyperpolarized sperm populations are capable of undergoing the 
acrosome reaction in presence of solubilised zona pellucida material.

Calcium and sperm capacitation

In 1915, Loeb [62] was the first to demonstrate that Ca2+ is required 
in the extracellular medium for fertilization to occur in invertebrates. 
Of all intracellular signalling mechanisms, perhaps the most studied 
and best characterized one is the mobilization of Ca2

+. This pathway 
involves transitory increase of intracellular calcium concentrations 
produced by multitude intercellular messengers.

One of the most important consequences of cholesterol efflux 
from membranes is a massive influx of extracellular Ca2+, which is 
considered a prerequisite for the acrosome reaction process [63]. This 
Ca2+ influx may be due to changes occurring in the membrane fluidity. 
The intracellular Ca2+ increase in sperm can activate one or more 
enzymatic pathways (Figure 2). For example, the Adenylate Cyclase 
(AC) increases during capacitation in response to Ca2+, this enzyme 
will catalyse the conversion of ATP to cAMP (revised by [48]).

In 1998, Visconti and Kopf [8] suggested a cooperative effect of 
Ca2+ and HCO3

- in modulating sperm capacitation requiring the 
presence of both as well as increase in cAMP levels and the subsequent 
phosphorylation of different proteins. In swine, both Ca2+ and HCO3

- 
appear to be required for capacitation and their roles are synergistic, 
since it has been shown that the HCO3

- will stimulate the entry of 
Ca2+ in this species [64]. However, in mouse spermatozoa, Tateno et 
al. [65] showed that Ca2+ ionophore A23187 can make spermatozoa 
capable of fertilizing in vitro without activation of cAMP-dependent 
phosphorylation pathways in media bicarbonate free.

Ca2+ is important to sperm hyperactivation during capacitation. 
CatSperm 1 and 2 are voltage dependent calcium channels that are 
located in the tail of the sperm. Sperm from mice deficient in these 
calcium channels are infertile and do not exhibit hyperactivation 
during capacitation despite having PY [66].

Another aspect that influences capacitation related to calcium 
is intracellular pH. Sperm not capacitated maintain an acidified 
intracellular pH [67]. This fact acts as a regulator of calcium influx 
[68] preventing capacitation and acrosome reaction. Intracellular pH 
becomes more alkaline during capacitation [69]. Today it is believed 
that increasing intracellular calcium, bicarbonate and the pH during 
sperm capacitation produce sAC activation and consequently cAMP 
[9,51,70,71].

In addition, calmodulin, which is a protein binding Ca2+ 
considered to be an important transducer of calcium signals, appears 
to be diminished during capacitation. This mechanism could be based 
on inhibition of Ca2+-ATPase plasma membrane by increasing cAMP 
levels through PDE1 inhibition (reviewed by [72]).

Tyrosine phosphorylation of sperm proteins

Protein phosphorylation or de-phosphorylation is controlled by 
activity of protein kinases and protein phosphatases, which provide cells 
a “switch” through which they can activate function of various proteins 
[73]. Phosphorylation occurs in serine, threonine, and tyrosine. PY 
is related to capacitation process and sperm hyperactivation in many 
mammal species (human [74], bovine [75], murine [8] or porcine [76]). 
In opposite, it has been shown that protein phosphatases decrease their 
activity during capacitation [73].

Increasing PY during capacitation is regulated by a cAMP-
dependent pathway which involves PKA [77]. cGMP-PKG pathway is 
also involved in this process [78]. In 2002, Visconti et al. [79] described 
the possible mechanisms, which could regulate the PY dependent 
signalling pathway cAMP/PKA: a) the direct or indirect stimulation 
of a tyrosine kinase by PKA, b) the direct or indirect inhibition of a 
tyrosine phosphatase, and c) direct or indirect phosphorylation of 
proteins by PKA on serine or threonine residues to prepare these 
proteins for subsequent phosphorylation on tyrosine residues.

PY is specific for each species. For example, in man PY during 
sperm capacitation requires the presence of BSA, and HCO3

- but no 
calcium [80]. In the case of stallion PY during capacitation requires 
HCO3

- but neither BSA nor calcium [81]. Another factor to consider in 
PY is time. PY in boar sperm occurs close to 1 hour after the addition of 
bicarbonate [82], whereas in bull sperm it occurs 4 hours after addition 
of heparin [75].

Although PY is an important key in capacitation, it is not yet 
entirely clear how the phosphorylation of these proteins is involved in 
sperm-zona recognition, gamete interaction, or exocytosis of acrosomal 
content [83]. The level of PY in human sperm correlates strongly with 
the sperm-zona-binding capacity [84] and alterations in PY have been 
found in subfertile subjects [85] indicating its physiological role in 
fertilization. In pigs ejaculated spermatozoa selected in the oviduct 
adhere to the epithelial cells and suppress PY of sperm proteins. 
This modulation by the oviductal epithelium on PY and, therefore 
capacitation could help synchronize sperm functions to the time of 
ovulation [86].

Nitric oxide (NO) and sperm capacitation

NO, a highly ROS, has been found in several physiological systems 
and regulated manifold functions in male and female reproductive 
systems [87].

NO is a very small lipophilic molecule that can rapidly diffuse 
through biological membrane barriers and acts as an intracellular 
and extracellular biological messenger in a variety of physiological 
processes. NO is synthesized in vivo from L-arginine by the action of 
NOS (Figure 3), an enzyme existing in three isoforms: neuronal NOS 
(nNOS or NOS1), endothelial NOS (eNOS or NOS3), also referred 
to as constitutive NOS, responsible for the continuous basal release 
of NO, and both require calcium/calmodulin for activation [88,89]. 
A third isoform is an inducible calcium-independent form (iNOS or 
NOS2). NOS activity is dependent on substrate availability and the 

http://dx.doi.org/10.4172/2167-0250.1000128


Volume 4 • Issue 1 • 1000128
Andrology
ISSN: 2167-0250 ANO, an open access journal 

Citation: López-Úbeda R, Matás C (2015) An Approach to the Factors Related to Sperm Capacitation Process. Andrology 4: 128. doi: 
10.4172/2167-0250.1000128

Page 4 of 9

co-factors NADPH, Flavin Mononucleotide (FMN), Flavin Adenine 
Dinucleotide (FAD) and tetrahydrobiopterin (BH4). The availability of 
these factors determines the cellular rates of NO synthesis [90].

Different NOS isoforms were detected in mammalian spermatozoa 
such as mouse [91], bull [92], human [93,94] and boar spermatozoa 
[95] activating the biosynthesis of NO. NO was able to affect sperm 
motility [94,96,97], acrosomal reaction [98,99], acts on PY of sperm 
proteins [100,101] and enhancement of sperm-zona pellucida binding 
ability [102].

NO has different functions in the spermatozoa, acting on different 
pathways that result in sequential and parallel processes (Figure 3). The 
main actions of NO are:

A. Activation of soluble guanylate cyclase (sGC)

The most important intracellular signalling role for NO in the 
spermatozoa is its capacity to activate the soluble isoform of Guanylate 
Cyclase (sGC) [103]. Activation of sGC (Figure 4) leads to increase 
in intracellular levels of cGMP, which has been implicated in several 
sperm signalling pathway functions, such as capacitation, acrosome 
reaction, chemotaxis, and sperm–egg interaction [20,27,99,104].

There are at least three targets of cGMP: Cyclic Nucleotide-
Gated (CNG) channels, cGMP-dependent Protein Kinase (PKG) and 
Phosphodiesterase (PDE), involved in several physiological events in 
mammalian spermatozoa. All of these targets result in increased levels 
of intracellular calcium and the phosphorylation of different proteins 
causing sperm hyperactivation and acrosome reaction. Calcium influx 
together with increased protein phosphorylation brings about the 
capacitation response (Figure 4).

A1: Cyclic Nucleotide-Gated Channels (CNG): CNG channels 
have been expressed in mammalian sperm [105] mainly along the 
length of the flagellum [105,106]. They are activated by cGMP and have 
been proposed to mediate the influx of Ca2+ to the cytoplasm during 
capacitation in mammalian spermatozoa controlling sperm motility 
[106]. This signalling pathway involving CNG channel activation using 
cGMP is one of the first events that occurred during capacitation in the 
mouse sperm (Figure 4A1) [78].

A2: cGMP-dependent Protein Kinase (PKG): PGK is a major 
cellular receptor of cGMP and plays important roles in cGMP-

dependent signal transduction pathways. Previous studies have 
identified in mammals two forms of PGK (I and II) [107,108], that 
are encoded by distinct genes and two different isoforms of PGK-I 
(designated Ia and Ib) that are produced by alternative splicing [109]. 
PGK-I seem to play an important role in mediating the acrosome 
reaction [20,99], modulating several sperm motion patterns and sperm 
chemotaxis.

The increase in cGMP in the cytoplasm and the subsequent 
activation of PKG [107,108] results in protein serine/threonine 
phosphorylation (Figure 4A2) [110], which might also indirectly, 
mediate a new calcium entry [78]. This promotes sperm capacitation 
and acrosome reaction [111].

A3: Phosphodiesterase (PDE): Evidence was provided for the 
involvement of PDE in sperm motility and capacitation [112]. cGMP 
and cAMP compete for catalytic sites of PDEs that hydrolyse both 
cyclic nucleotides [113,114]. A rise in intracellular levels of cGMP could 
inhibit cAMP degradation via cyclic nucleotide phosphodiesterase type 
3 [115], which increase intracellular cAMP levels and, consequently, 
cause an activation of PKA [116] and indirectly increase protein (PY) 
(Figure 4A3).

B. Protein tyrosine phosphorylation

NO appears to be involved in PY through different mechanisms, 
acting on two essential pathways for sperm capacitation: on cAMP/
PKA or Extracellular Signal Regulated Kinase (ERK) pathway (Figure 
5). These mechanisms for the control of PY are not mutually exclusive 
neither excluding, both pathways act in parallel [28].

NO can influence the cAMP/PKA pathway by activation of 
sGC (see above) it could also modulate directly sperm Adenylate 
Cyclase Activity (AC). The activation of PKA represents the point 
of convergence for these two pathways. Low concentration of NO 
could stimulate AC with a subsequent increase in cAMP levels [117] 
to increase PY by activation of PKA. However, high concentrations of 
NO can inhibit AC [118]. McVey et al [118] also demonstrated that the 
effects of NO on AC activity are reversible, suggesting S-nitrosylation 
of AC as a possible mechanism of action of the NO (Figure 5).

ERK pathway is a chain of many proteins (Shc, Grb2, Sos, Ras and 
ERK1/2 module, which includes three kinases sequentially activated: 
Raf, MEK, and ERK1/2). NO intervenes in the middle of the pathway, 
modify the Ras structure [119], reacting with cysteine residues [28] 
and inducing its activation. Ras interact with Raf by activating it [119], 
leading to MEK activation. MEK phosphorylates Thr and Tyr are 
residues within the Thr-Glu-Tyr motif, which are located at the active 
site of ERKs 1 and 2 (Figure 5). All this process is necessary for the 
subsequent PY [28] and is involved in the acquisition of sperm motility 
[120].

C. Direct modulation of protein function by S-nitrosylation of 
exposed cysteine residues 

Mature sperm lack the necessary machinery for the transcription 
or protein modification and thereby require post-translational 
modifications to control the activity of proteins. NO participates in 
protein regulation, which acts directly on protein targets (exposed 
cysteine residues) via S-nitrosylation [121,122]. S-nitrosylation 
is a regulated post-translational protein modification (Figure 6), 
analogous to phosphorylation and acetylation [123,124], which 

 

Figure 3: Nitric oxide synthase produces NO from L-arginine and different 
co-factors (NADPH, FMN, FAD and BH4). NO activates three different path-
ways. A) Activation of Soluble Guanylate Cyclase (sGC); B) Protein tyrosine 
phosphorylation and C) Modulation of protein function by S-nitrosylation. This 
figure represents calcium dependent isoforms (nNOS and eNOS); in the case 
of calcium independent isoform (iNOS) the calmodulin is not present.
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involves the covalent incorporation of a NO into thiol groups (-SH), 
to form S-nitrosothiol (S-NO). This modification is selective, reversible 
and stabilizes NO in a uniquely bioactive form. Lefièvre et al. [125] 
described numerous sperm proteins that can be nitrosylated in human 
sperm. Some of the S-nitrosylated proteins are involved in processes 
related to sperm capacitation as energy generation, sperm motility 
[125] or hyperactivation [126,127]. However, how some of nitrosylated 
proteins perform their function remains unknown.

For sperm, hyperactivation is necessary mobilisation of stored Ca2+ 
in the sperm neck/midpiece [127]. The calcium store in the neck of the 
sperm takes place in the Redundant Nuclear Envelope (RNE) [128]. To 
mobilize calcium from these stores is necessary to enable ryanodine 
receptors (RyRs); intracellular calcium release channels involved in 
regulation of cytosolic calcium levels [129]. These proteins contain a 
large number of thiol groups and are thus subject to S-nitrosylation 
by NO [130,131]. S-nitrosylation can potentiate opening of RyR [132-
137], probably by generations of the membrane permeant product 
cys-NO [138]. A NO-induced Ca2+ elevation was accompanied by an 
increase in S-nitrosylation levels of endogenous RyR [139,140] and also 
inhibition of these Ca2+ channels can occur under strongly nitrosylating 
conditions or at high doses of NO (Figure 6) [134,137,140].

Progesterone acts synergistically with NO (by S-nitrosylation) to 
mobilise Ca2+ at the sperm neck/midpiece (by activation of RyRs) [126] 
contributing to the hyperactivation that is vital for penetration of the 
egg vestments.

Summary and Perspective
The sperm from being deposited in the female genital until 

it reaches the place of fecundation undergoes a series of changes 
known classically as capacitation. This process involves modifications 
membrane lipids, loss of cholesterol, activation of cAMP/PKA pathway, 
increase Ca2

+ uptake and pH (pHi), hyperpolarisation of membrane 
potential and tyrosine phosphorylation. Among the most studied 
molecules associated with this process include BSA as cholesterol 
acceptor, bicarbonate as an activator of the cAMP-PKA-tyrosine 
phosphorylation, and calcium as an activator of channels voltage-
dependent and hyperactivity motility process. However, there are 
other pathways in relation to capacitation as NO/sGC/cGMP, which 
have some common steps to cAMP-PKA-tyrosine phosphorylation 
pathways. Another pathway recently described relating to capacitation 
process is the protein nitrosylation. Nevertheless, this new way of 
signalling involves numerous proteins whose functions are yet to be 
determined and that can be important to understand the complex 
process of sperm capacitation.
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Figure 4: Implications of activation of Soluble Guanylate Cyclase (sGC). NO 
activates the sCG, which increases the production of cGMP. The cGMP can 
act on three targets: CNG-channel (A1), cGMP-dependent protein kinase (A2) 
and phosphodiesterase (A3).

 

Figure 5: NO is directly involved in tyrosine phosphorylation: modulating Ad-
enylate Cyclase (AC) activating the cAMP/PKA pathway or modifying RAS 
protein. Ras activates ERK1/2 module, Thr and Tyr residues in the active sites 
of ERK1/2 are phosphorylated allowing subsequent protein tyrosine phos-
phorylation.

 

Figure 6: S-nitrosylation process. NO acts on the thiol groups (-SH) of the 
cysteines in proteins to form S-nitosothiol (S-NO). In the sperm neck/midpiece 
occurs S-nitrosylation in ryanodine receptors (RyRs) allowing the release of 
calcium from the Redundant Nuclear Envelope (RNE), which is required for 
sperm hyperactivation.
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