
Summary. The accurate control of cell death is a vital
aspect of development in metazoans and plays crucial
roles in the prevention of disease. Apoptosis is the main
form of regulated cell death in multicellular organisms,
although there are other contributory pathways. During
apoptosis, mammalian cells undergo dramatic changes in
organelle structure ad organisation that define the
apoptotic execution phase. Although the roles of
apoptotic protease machinery (the caspases) in these
rearrangements are quite well understood, the purpose of
organelle disruption during cell death is not yet entirely
appreciated. Indeed, recent evidence implicates caspase
targeting of organellar proteins and subsequent organelle
disruption upstream of apoptotic execution proper,
suggesting the existence of pathways linking organelle
damage to cell death. In this review, we describe the
changes to the endomembrane system that are inherent
during the apoptotic execution phase, and examine the
evidence for endomembrane-mediated pathways towards
apoptotic execution. We also discuss aspects of the
molecular control of autophagy - an important
contributor to a cell’s response to stress, and a membrane
trafficking process whose regulation is linked to the
apoptotic machinery at multiple levels.
Key wods: Apoptosis, Autophagy, Autophagosome, Atg
proteins, Golgi apparatus, Endoplasmic reticulum,
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Introduction

Regulated cell death is an essential process during
development and for tissue homeostasis (Penaloza et al.,
2006). Over recent years several distinct cell death
pathways have been described in studies of cellular and
organelle morphology in isolated cells, some of which
have also been observed in intact tissues; however, their
relative contributions to development, homeostasis and
tissue remodelling remain unclear. Apoptosis is the
primary, regulated cell death mechanism in mammals,
although necrosis - previously considered unregulated
and non-physiological - has recently emerged as a
coordinated process with a molecular basis (Galluzzi and
Kroemer, 2008). In healthy tissues and during pathology
the types of cell death pathways initiated will depend
upon the cell-type, its tissue context and the nature of the
death stimulus - an important consideration when
studying cell death mechanisms. Importantly, distinct
cell death processes can be triggered in parallel
(Lockshin and Zakeri, 2002; Gonzalez-Polo et al., 2005),
so the exact mechanism of cell death is not always easily
defined.

A good example of how classifying cell death purely
on morphological grounds can lead to confusion is cell
death by overstimulation of autophagy - a process that
has commonly become known as autophagic or type II
programmed cell death (Lockshin and Zakeri, 2002).
Autophagy is a catabolic membrane trafficking process
that requires novel membrane biogenesis, membrane
remodelling and vesicular trafficking, and is important in
a number of diseases (Levine and Kroemer, 2008). Its
primary role is to promote cell survival during episodes
of starvation or hypoxia, although in mammalian cells,
there is strong evidence for dramatic upregulation of
autophagy in dying cells; however, it is considered more
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likely that this reflects an attempt to survive, meaning
that the phrase “cell death with autophagy” is a more
accurate description (Kroemer and Levine, 2008).
Importantly, evidence from invertebrates suggests that
autophagy does indeed contribute to cell death in certain
tissues during development (Baehrecke, 2005;
Bergmann, 2007; Hou et al., 2008). Notwithstanding this
confusion, evidence is accumulating to suggest that the
molecular regulatory components of the autophagy
pathway can indeed influence cell death through direct
regulation of apoptosis signalling pathways (Martin and
Baehrecke, 2004; Yousefi et al., 2006; Maiuri et al.,
2007a,b; Hou et al., 2008; Betin and Lane, 2009a,b; Cho
et al., 2009), meaning that it is becoming increasingly
clear that these distinct regulatory pathways cannot be
considered in isolation. 

In this review we discuss the roles of organelles and
membrane trafficking pathways during apoptotic
signalling and execution, and also explore how
organelles of the secretory and endocytic systems
regulate apoptotic commitment through the control of
death receptor trafficking and signalling. Finally we
describe the molecular relationships between the
autophagy and apoptosis pathways, and discuss how
these complex cellular responses to cell stress converge
to dictate the fate of a given cell.
Apoptosis: signalling and execution

Apoptosis is essential during the development of
multicellular organisms (Kuida et al., 1998). It also
eradicates damaged or virally infected cells throughout
the life of an organism in the absence of an
inflammatory response (Savill et al., 2002). It does this
by engaging a series of coordinated changes in cell
structure/behaviour that culminate in the presentation of
surface markers that flag the dying cell for engulfment
by professional or non-professional phagocytes (Savill et
al., 2002). For this to occur, dying cells must retain the
capacity to control the organisation/positioning of
membranes and proteins long enough to bring about
their recognition by phagocytes. Most observers
consider the execution phase of apoptosis - the time
during which gross apoptotic morphological/behaviour
changes are observed and before the cell begins the
process of secondary necrosis - to last for around 1-2
hours (e.g. (Mills et al., 1999; Moss and Lane, 2006)).
Hence, a dying cell has a limited time window during
which it must coordinate both the changes in
morphology that are required for its isolation and the
exposure of novel and/or altered surface moieties that
are needed for efficient recognition and engulfment. 
Apoptotic signalling: basic principles

Apoptosis can be induced by an array of toxic
insults, physiological and non-physiological, which all
converge on the activation of a family of proteases called
caspases (Earnshaw et al., 1999). These enzymes are
present in the cytosol of all viable cells as zymogens

with low intrinsic activity, providing cells with the
capability to rapidly trigger apopotic protease action
without the need for new protein synthesis. Apoptotic
caspases fall into two general classes: the initiator
caspases that are required for initial apoptotic signalling
and the executioner caspases whose roles are to cleave a
variety of important structural and regulatory proteins at
conserved aspartic acid residues to alter their functions
irreversibly (Earnshaw et al., 1999; Taylor et al., 2008).
Members of the Bcl-2 family of pro- and anti-apoptotic
signalling molecules integrate these signals, and their
interactions dictate whether or not a cell enters the
apoptotic execution phase. Importantly, many of these
are known to associate with organelles of the
endomembrane system or with cytoskeletal components
(Betin and Lane, 2007). Of particular importance are the
interactions between Bcl-2 family members and the
mitochondria which harbour an array of apoptotic
signalling molecules whose release via Bcl-2 family
engagement triggers a robust apoptotic response;
although relationships between Bcl-2 family members
and the endoplasmic reticulum (ER) are also significant
particularly with respect to calcium signalling or in cells
subject to oxidative stress (Ferri and Kroemer, 2001). 

Induction of mitochondrial outer membrane
permeabilisation (MOMP) via Bcl-2 family members
causes release of cytochrome c, which, in turn, activates
the initiator caspase-9 by inducing assembly of the
“apoptosome” - a complex consisting of multiple copies
of caspase-9, cytochrome c, dATP and the adaptor
APAF-1. Caspase-9, in turn, activates effector caspases
that cleave target proteins to initiate the apoptotic
execution phase proper. Mitochondria are therefore
central to a cell’s apoptotic response. The other major
mechanism for activating caspases in response to death
stimuli is via cell surface engagement of death receptors
such as those of the TNF family (e.g. Fas
receptor/CD95). Death receptors can activate caspases
directly, or via mitochondrial amplification. As
transmembrane proteins that exert their influence at the
plasma membrane, their trafficking through the secretory
and endocytic systems is a key feature of death receptor
signalling. It has become apparent that both the secretory
and endocytic systems are disrupted as an early
consequence of caspase activation, but it is unclear how
this impacts upon death receptor distribution, trafficking
and signalling.
Apoptotic cell remodelling

The dramatic changes in cell behaviour observed
during the apoptotic execution phase (Fig. 1) are
orchestrated by caspases. In response to targeted protein
cleavage, apoptotic cells begin a process of remodelling
which includes cell retraction, plasma membrane
blebbing and often fragmentation of the cell into
membrane-bound apoptotic bodies (Fig.1). In epithelia
the execution phase also invokes the actions of
neighbouring cells that respond to early changes in the
dying cell (possibly allied to cytoskeletal deregulation
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and changes in lateral tensile resistance) to initiate its
extrusion (Rosenblatt et al., 2001). Extrusion then
follows a regulated sequence of events involving the
redistribution of actin and microtubule cytoskeletons
within neighbouring cells to squeeze the dying cell
(usually apically) via p115 RhoGEF-mediated actin
contractility (Slattum et al., 2009). Fragmentation is also
largely actin/myosin II driven (Mills et al., 1999; Moss
and Lane, 2006), and probably aids cell engulfment
(Moss and Lane, 2006) while also providing carriers for
the dispersal of potent autoimmune factors (Savill et al.,
2002).

Live-cell imaging of cells treated with a variety of
apoptosis inducing factors suggests that surface blebbing
is one of the earliest morphological features of the
execution phase (Lane et al., 2005). Surface blebbing is
a regulated process requiring caspase cleavage and
activation of the Rho effector, ROCK1 and remodelling
of the actin cytoskeleton (Coleman et al., 2001; Sebbagh
et al., 2001). Its exact roles are not understood, but these
may include apoptotic cell recognition, cytoplasmic
mixing and energy depletion. In adherent cells, blebbing
and retraction begin simultaneously, although addition of
myosin II inhibitors (such as blebbistatin) prevents
blebbing but does not block cell retraction, suggesting
that these processes are not mutually dependent (Lane et
al., 2005). Close inspection of adherent cells in isolation
suggests that blebbing is biphasic (Fig. 1): the early
blebbing phase begins concomitant with cell retraction,
is characterised by numerous, small, dynamic blebs and
lasts for around 40 minutes; the second phase is initiated
after a brief pause, and is associated with fewer, large
blebs that decorate the cell surface asymmetrically (Lane
et al., 2005). Importantly, non-adherent cell-lines
demonstrate only a single phase of blebbing, and these
blebs are equivalent to the late blebs in adherent cells on

account of their morphology and timing in relation to
exposure of the plasma membrane inner leaflet lipid,
phosphatidyl serine (PS) (Lane et al., 2005). These
observations suggest that early blebbing is initiated
during cell retraction and is restricted to adherent cell-
types - an important consideration when comparing the
apoptotic phenotype across different cell lineages.
Equally, our observations that the active redistribution of
membranes and organelle fragments into surface blebs
correlates with late blebbing (Lane et al., 2005), suggest
that it is this stage of remodelling that is important for
the final stages of apoptotic cell partitioning and
eventual disposal.
Organelle remodelling during the apoptotic
execution phase

Several early morphological studies and a number of
recent focussed investigations have provided strong
evidence for a global restructuring of cellular organelles
during the apoptotic execution phase (Taylor et al.,
2008). For some organelles, direct links between caspase
cleavage of key structural residents and membrane
remodelling have been proposed (see below), although
in most cases it is unclear why this occurs. One
possibility is that organelle breakdown facilitates the
active enrichment of organelle remnants into apoptotic
surface blebs destined to bud off as apoptotic bodies
(Lane et al., 2005), to aid the process of non-phlogistic
corpse engulfment by accelerating phagocytosis of
potential autoimmune protein moieties (e.g. (White and
Rosen, 2003)). Otherwise, organelle remodelling might
play a more active role in coordinating the exposure of
altered surface moieties at the plasma membrane to flag
the dying cell for phagocytosis. Early electron
micrographs of apoptotic immune cells reveal surface
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Fig. 1. Organelle and cytoskeletal
rearrangements during the apoptotic execution
phase. Cartoon of an epithelial cell undergoing
apoptosis. Cytoskeletal components (Actin:
green; microtubules: red) are depicted to the
top; organelles (ER: orange; Golgi: magenta)
are shown at the bottom, with a combined
image of actin, microtubules and organelles in a
late apoptotic cell shown to the right. Chromatin
is shown in blue.



pits proposed to represent sites of localised fusion of ER
membranes with the plasma membrane (Wyllie et al.,
1980), while much more recent data suggest that
deposition of the ER chaperone calnexin on the plasma
membrane constitutes an important phagocytosis flag
(Ogden et al., 2001; deCathelineau and Henson, 2003).
There are several plausible mechanisms to explain the
deposition of calnexin on the surface of the dying cell
(Fig. 2). ER membranes might fuse with the plasma
membrane, allowing direct transfer of ER-resident
membrane proteins to the plasma membrane. This would
likely require specialised membrane tethering and fusion
factors or the deregulation of factors involved at other
membrane trafficking interfaces, and would also result in
the release of luminal ER proteins into the extracellular
space. Direct fusion of the ER with the plasma
membrane has been observed during phagocytosis,
where the ER has been proposed to provide additional
membrane for the expanding phagophore (Desjardins,
2003). Indeed, the involvement of the luminal ER
chaperone, calreticulin, in the recognition of apoptotic
cells by phagocytes (Ogden et al., 2001), is indicative of
a general pathway for direct delivery of ER proteins to
the plasma membrane - a process that might be enhanced
during apoptosis. There is increasing evidence for
unconventional secretion pathways that bypass the Golgi
and in some cases involve autophagosomes and
endocytic compartments (Nickel and Rabouille, 2009).
Whether these pathways are upregulated or usurped
during apoptosis has not been investigated. 

Calreticulin is deposited at the surface of apoptotic
tumour cells, and this dictates the immunogenicity of the
dying cell (Panaretakis et al., 2008). Mechanistically,
this requires PERK-mediated phosphorylation of the
eukaryotic initiation factor 2α(eIF2α), and involves
partial cleavage of the ER protein BAP31 leading to the
release of calreticulin via the Golgi apparatus (Kepp et
al., 2009; Panaretakis et al., 2009). This is suggestive of
a regulated mechanism of protein redistribution in
apoptotic cells, and is further evidence of how the

execution phase constitutes a coordinated process of
cellular reorganisation, although how this fits with other
data showing a profound block in secretory trafficking in
apoptosis is at present unclear (Lowe et al., 2004). A
possible alternative process leading to the accumulation
of ER proteins at the plasma membrane would be a
failure to remove errant ER proteins that leak to the
plasma membrane as a normal consequence of
anterograde traffic (Fig. 1). There is evidence for the
disruption of endocytosis early during apoptosis
(Cosulich et al., 1997), although whether this would be
sufficient to bring about the accumulation of
mislocalised proteins at the cell surface within the
allotted time is uncertain.

In viable cells, organelle positioning and
morphology depend upon the underlying cytoskeleton
and the actions of molecular motor proteins (e.g. (Lane
and Allan, 1998)). During apoptosis, gross changes in
cellular structure (blebbing, fragmentation) are driven by
the cytoskeleton (Mills et al., 1999; Moss and Lane,
2006), and it is highly likely that the cytoskeleton also
contributes to changes in organelle structure during the
execution phase. The fates of the different cytoskeletal
components differ during apoptosis, though, and their
roles are altered accordingly. Intermediate filaments
(cytokeratins, vimentin, nuclear lamins) are all early
targets for irreversible, caspase-mediated apoptotic
disassembly (Caulin et al., 1997; Byun et al., 2001),
while the actin cytoskeleton is remodelled to control
aspects of cellular retraction, blebbing and fragmentation
(Mills et al., 1999). Microtubules undergo complex
changes in stability/organisation, beginning with their
disassembly early in apoptosis (Bonfoco et al., 1996;
Mills et al., 1998a, 1999; Moss et al., 2006), by a
process that that requires caspases (Gerner et al., 2000;
Adrain et al., 2006), followed by their reformation into
non-centrosomal bundles (Moss et al., 2006; Moss and
Lane, 2006). Filamentous actin is remodelled during the
execution phase from its typical collection of stress
fibres and cross-linked cortical networks to form a
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Fig. 2: Possible mechanisms
for the delivery of calreticulin
and other atypical proteins to
the plasma membrane of an
apoptotic cell. To the left,
generalised membrane
trafficking pathways in a
healthy cell. To the right,
possible outcomes of caspase-
mediated organelle disruption
and deregulated membrane
fusion leading to calreticulin
exposure.



cortical basket whose contraction is required for surface
blebbing and cellular fragmentation (see below; (Mills et
al., 1998b; Moss and Lane, 2006)). 

Several membrane proteins that control the structure,
localisation and function of organelles are targets for
cleavage by caspases. In some cases, the reasons for
cleavage of any given membrane protein are uncertain,
whereas for others there is a direct link between protein
cleavage and changes in organelle structure, distribution
or function (e.g. (Ferri and Kroemer, 2001; Maag et al.,
2003; Hicks and Machamer, 2005)). There is also
evidence for redundancy, with caspase cleavage of
several proteins in the same pathway sometimes evident
(e.g. cleavage of the Golgi membrane tethers giantin
(Lowe et al., 2004), p115 (Chiu et al., 2002) and GM130
(Walker et al., 2004), and of the GM130 Golgi receptor,
GRASP65 (Lane et al., 2002)). Aside from assisting in
wholesale cellular degradation, there is accumulating
evidence for an active role for organelle disruption in
apoptotic signalling (Maag et al., 2003; Hicks and
Machamer, 2005). Organelles, or more accurately the
cytoplasmic faces of organelle membranes can be
considered to act as apoptotic signalling centres (Ferri
and Kroemer, 2001; Maag et al., 2003; Hicks and
Machamer, 2005), so understanding the contributions of
different organelles during apoptotic signal transduction
and their fates during the execution phase remains an
important objective. In this section, we explore the fates
of various organelles during the apoptotic execution
phase, and how caspase action influences organelle
structure and function.
Mitochondrial positioning and dynamics during apoptosis

Most of the known apoptotic signalling pathways
within mammalian cells converge upon mitochondria.
These propagate the apoptotic response through the
release of downstream apoptotic signalling factors.
Mitochondria have also emerged as key players in other
non-apoptotic cell death processes, most notably
necrosis. Meanwhile, their tendency to generate reactive
oxygen species (ROS) as a normal consequence of
respiration means that mitochondria impact upon cellular
homeostasis and can contribute to many different
diseases and accelerate the ageing process (Cuervo,
2008; Tolkovsky, 2009). Fittingly, cells have evolved
mechanisms to monitor, repair and eradicate damaged or
redundant mitochondria to lessen the cumulative effects
of oxidative damage (Tolkovsky, 2009). Mitophagy - the
process of targeted mitochondrial autophagy -
selectively removes damaged mitochondria, and by
reducing the effective mitochondrial mass, impacts upon
the capability of cells to mount a robust apoptotic
response. In healthy cells, continual mitochondrial
remodelling by fusion, fission, mitophagy and new
biogenesis impacts upon cellular homeostasis. Hence,
evidence suggests that the status of the mitochondrial
network has important consequences for the eventual
fate of a cell in response to stresses. Mitochondria lose
their tubulo-reticular distribution during apoptosis,

becoming more fragmented (see (Perfettini et al., 2005)).
Under certain pro-apoptotic stimuli, increased
mitochondrial fission is observed before MOMP, and
this is required for caspase activation and apoptotic
execution (e.g. (Frank et al., 2001)). Correspondingly,
overexpression of mitofusins increases mitochondrial
fusibility and inhibits MOMP (Sugioka et al., 2004).
Hence, the presence of extensive networks of
interconnected mitochondria raises the apoptotic
threshold, while the reverse is true in cells with
fragmented mitochondria. Interestingly, recent data
suggest that mitochondria can exchange content through
transient “kiss-and-run” fusion events - a process that is
important for overall mitochondrial homeostasis (Liu et
al., 2009). Mitochondria use microtubules and their
associated motor proteins for long range movements
(Lane and Allan, 1998) and for productive encounters
(Liu et al., 2009), meaning that disruption of the
mitochondrial network as an early consequence of
caspase action (Moss et al., 2006) might lower the
apoptotic threshold by priming mitochondria for
cytochrome c release. 

In response to caspase action during the execution
phase, mitochondria cluster at the perinuclear region.
Why this takes place is uncertain, although it has been
proposed that this process concentrates ATP generation
in the cell centre or facilitates transfer of pro-apoptotic
factors to the nucleus (Desagher and Martinou, 2000). In
epithelial cells, mitochondria - but not the ER - are
excluded from surface blebs (Lane et al., 2005), so the
observed clustering may be to contain mitochondria
within the body of the apoptotic cell, perhaps to limit the
potential for their release from a ruptured cell corpse.
Inhibition of the plus end-directed microtubule motor,
kinesin via phosphorlyation of its light chains, has been
reported following treatment of cells with tumour
necrosis factor, and this leads to coalescence of
mitochondria at the cell centre (De Vos et al., 1998,
2000). Apoptotic mitochondrial clustering downstream
of caspase activation might be facilitated by the
reorientation of the microtubule network during
apoptosis (Bonfoco et al., 1996; Mills et al., 1998a;
Moss et al., 2006), although this has not been formally
demonstrated.
Remodelling of the ER during apoptosis

The ER is the largest organelle within the cell. It
extends tubules and lamellae throughout the peripheral
cytoplasm, and is the site for synthesis and translocation
of membrane-bound and secreted proteins. It also has
roles in calcium homeostasis and is the principle site for
lipid synthesis. Its dynamic structure is governed by a
variety of proteins including microtubule motors (Lane
and Allan, 1998, 1999; Waterman-Storer and Salmon,
1998; Wozniak et al., 2009), resident microtubule
binding proteins (e.g. CLIMP-63 (Klopfenstein et al.,
2001; Vedrenne et al., 2005)), microtubule tip
attachment complexes (TACs (Waterman-Storer et al.,
1995); now known to comprise STIM1 and EB1
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(Grigoriev et al., 2008)), reticulons (e.g. (Yang and
Strittmatter, 2007)), and fusion factors (Vedrenne and
Hauri, 2006). During the apoptotic execution phase the
ER is dramatically reorganised (Sesso et al., 1999; Lane
et al., 2005). In UV-induced apoptotic keratinocytes the
ER is not well preserved and small ER vesicles are
observed within large apoptotic surface blebs (Casciola-
Rosen and Rosen, 1997), whereas in late anisomycin-
treated apoptotic HeLa cells the tubulo-reticular
arrangement of the ER is reasonably well maintained
(Lane et al., 2005; Betin and Lane, 2007). In these cells,
the ER first breaks up into large vesicles that later
reform into tubules and lamella structures that abut
against the underside of the plasma membrane (Lane et
al., 2005). The molecular pathways underpinning this
extensive reorganisation have not been described,
although we do know that cytoplasmic dynein - the
minus-end directed microtubule motor that contributes to
microtubule-based ER motility (Allan, 1995; Lane and
Allan, 1999; Wozniak et al., 2009) - and its regulator,
dynactin (Allan, 2000), are both inhibited by caspase
cleavage of key subunits (Lane et al., 2001). 
Fragmentation of the Golgi apparatus during apoptosis

The Golgi apparatus receives material from the ER,
which it modifies before dispatching to its final
destination within the cell or as a secreted product. It
comprises a series of stacked membrane cisternae that in
mammalian cells are linked laterally to form a
contiguous juxtanuclear ribbon. During mitosis the
Golgi apparatus is disassembled to facilitate
stoichiometric inheritance by daughter cells (Sesso et al.,
1999; Lowe and Barr, 2007). This is coordinated by
reversible phosphorylation of many important Golgi
proteins (e.g. GM130 (Lowe et al., 2000), GRASP65
(Barr et al., 1997), GRASP55 (Xiang and Wang, 2010)),
and the actions of membrane fission factors (Colanzi et
al., 2007; Lowe and Barr, 2007). In mammalian cells,
accurate Golgi fragmentation/partitioning is required for
mitotic progression (Sutterlin et al., 2002), suggesting
pathways for cells to monitor Golgi integrity during the
cell cycle (Lowe and Barr, 2007). During apoptosis the
Golgi is also disassembled (Sesso et al., 1999); however,
unlike mitosis, this is an irreversible process that is
driven by caspase cleavage of structural Golgi residents
(e.g. GRASP65 (Lane et al., 2002), GM130 (Walker et
al., 2004), giantin (Lowe et al., 2004), syntaxin-5 (Lowe
et al., 2004), p115 (Chiu et al., 2002) and Golgin-160
(Mancini et al., 2000). Apoptotic Golgi fragments do not
retain the characteristic cis-, medial-, trans-membrane
asymmetry that is observed in fragmented mitotic Golgi
clusters (Lane et al., 2002), suggesting a more profound
process of Golgi disassembly, and these fragments are
excluded from surface blebs (Lane et al., 2005). Exactly
why the Golgi is dismantled to such an extent is
uncertain, but one obvious consequence will be a block
in productive membrane trafficking (see next Section).
Whether this event contributes to the exposure of novel
apoptotic surface phagocytosis flags remains untested.

Disruption of membrane trafficking pathways during
apoptosis

The secretory pathway comprises sequential
membrane compartments that regulate the synthesis,
post-translational processing and delivery of soluble and
membrane proteins to their final destinations.
Endocytosis describes the uptake of soluble and plasma
membrane proteins into membrane-bound compartments
within the cell. These may be recycled to the plasma
membrane, returned to the trans-Golgi network (TGN)
or degraded within the lysosome. Maintaining the
correct distribution of lipids and proteins between the
organelles of the secretory and endocytic pathways is
essential for cellular function and this is largely achieved
through the actions of vesicular-tubular transport
intermediates that traffic between compartments, and
factors that control the targeting and fusion of these with
acceptor membranes (e.g. Rabs, tethers and SNAREs).

During apoptosis, both the secretory and endocytic
pathways are profoundly disrupted, both structurally and
functionally (Lowe et al., 2004) (Figs. 1, 2). For
example, the Golgi apparatus is fragmented (Lane et al.,
2002), and this accompanies the loss of the ER-to-Golgi
intermediate compartment determined by solubilisation
of COPI membrane coats (unpublished observations).
Mechanistically, secretory cargo cannot exit the ER
(Lowe et al., 2004), due to caspase cleavage of many
important downstream trafficking factors (including
giantin (Lowe et al., 2004), GRASP65 (Lane et al.,
2002), GM130 (Walker et al., 2004), p115 (Chiu et al.,
2002), syntaxin 5 (Lowe et al., 2004), the intermediate
chain of cytoplasmic dynein (CDIC; (Lane et al., 2001)),
and the p150Glued subunit of the dynein regulatory
complex, dynactin (Lane et al., 2001)). In addition,
endosomal fusion is reduced during apoptosis due to
caspase cleavage of the fusion factor rabaptin-5, leading
to decreased transferrin internalisation in apoptotic
HL60 cells (Cosulich et al., 1997). Hence there is
widespread inhibition of regulated transport between
membrane compartments, although it has been proposed
that cleavage of the Golgi SNARE syntaxin-5 and
removal of its auto-inhibitory domain may increase
membrane fusion during apoptosis (Lowe et al., 2004).
Whether this event leads to non-canonical membrane
fusion (Fig. 2) has not yet been tested, although a
generalised process of membrane intermixing has been
proposed (Ouasti et al., 2007).

One obvious question that arises from these
observations is whether an arrest in membrane traffic
during cell death has any role to play beyond simple
shutdown of productive cellular events. Evidence for a
role for PERK and caspases in the regulated deposition
of calnexin at the cell surface (Kepp et al., 2009;
Panaretakis et al., 2009) strongly suggests that
membrane traffic disruption has mechanistic
consequences, meanwhile studies of upregulated
clathrin-independent endocytosis in response to
exposure to Fas ligand (FasL) (Degli Esposti et al.,
2009) suggests a general shift towards membrane
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internalisation as a prelude to apoptotic induction in this
context (Fig. 2). Further studies are needed to dissect the
roles of membrane trafficking in cell death signalling.
Roles of organelles of the secretory and endocytic
pathways in apoptotic signalling

Whilst it is clear that many organelles of the
secretory and endocytic endomembrane systems are
disrupted during the apoptotic execution phase, there is
accumulating evidence to suggest that many of these
organelles play active roles in engaging apoptotic
pathways upstream of their restructuring. The principal
organelles involved in apoptotic signal transduction are
the mitochondria which harbour many pro- and anti-
apoptotic signalling factors and are triggered to release
these by Bcl-2 family members to potentiate a strong
apoptotic response. The links between mitochondrial
function and cell death are described in detail elsewhere
(Ferri and Kroemer, 2001), and will not be covered here.
The ER monitors and mediates oxidative stress
signalling pathways, and also interacts with some Bcl-2
proteins to determine cellular fate. Less well understood
are the roles of the Golgi apparatus in apoptotic
signalling and the relationships between autophagosomal
and lysosomal compartments and cellular viability.
The ER and apoptosis

In addition to its known associations with
mitochondria, the anti-apoptotic protein Bcl-2 has been
shown to localise to the cytoplasmic face of the ER.
Importantly, evidence suggests that Bcl-2 family
members are important regulators of ER Ca2+
homeostasis. Maintaining the appropriate balance of ER
Ca2+ ([Ca2+]ER) is essential for cellular function, and the
ER can act as a Ca2+ buffer in cells to modulate
downstream cellular responses to Ca2+. Importantly,
Ca2+ efflux from the ER lumen can trigger MOMP,
meaning that the amount or duration of Ca2+ released
during an episode of ER stress can determine the fate of
a stressed cell. Significantly, Bax/Bak double knock-out
mice display reduced resting [Ca2+]ER and can thus
tolerate levels of oxidative stress that would normally
lead to Ca2+-mediated MOMP (Scorrano et al., 2003).
Evidence suggests that Bax/Bak can be antagonised by
Bcl-2 at the ER, such that cells overexpressing Bcl-2
phenocopy the Bax/Bak null lines (Pinton et al., 2000).
This suggests [Ca2+]ER, and therefore the strength of any
cellular response to ER stress is directly controlled by
the relative balance of Bcl-2 and Bax/Bak at the level of
the ER. 

Apoptosis can also be triggered by signalling
pathways at the ER in response to a build up of
misfolded proteins; a process known as the unfolded
protein response (UPR). Inhibitors of glycosylation
(such as tunicamycin) or drugs that block membrane
traffic (such as brefeldin A) induce the UPR (Ferri and
Kroemer, 2001), which either removes the unfolded

proteins via retrograde translocation and proteasome
action, or triggers translocation to the nucleus of ER
mediators of protein translation (e.g. Ire1-b (Iwawaki et
al., 2001)). These increase the transcription of stress
genes such as the transcription factor CHOP/GADD153
which suppresses Bcl-2 and sensitises cells to apoptosis
(McCullough et al., 2001). In addition, it has been
proposed that the UPR can trigger the direct activation
of caspase-12 at the ER to initiate a robust caspase
cascade (Nakagawa et al., 2000). More recently, a role
for the Bax inhibitor, BI-1 in UPR-mediated apoptosis
has been proposed (Lisbona et al., 2009; Madeo and
Kroemer, 2009). It does this by inhibiting IRE1α to
influence cellular stress responses and chaperone
expression (Madeo and Kroemer, 2009), further
evidence for direct interplay between the ER and
apoptosis signalling pathways.
The Golgi apparatus and apoptosis

The Golgi apparatus has been proposed to play a
role in apoptotic signalling in response to abnormal pH
variations, or to disruptions in glycosylation or lipid
metabolism (see (Maag et al., 2003; Hicks and
Machamer, 2005)). One pathway involves the
translocation of the ceremide-derived ganglioside GD3
from the Golgi to mitochondria via vesicular
intermediates and the actin and microtubules networks
(Garcia-Ruiz et al., 2002). At the mitochondrial level,
GD3 triggers MOMP, subsequently inducing an
apoptotic response that can be inhibited by Bcl-2
overexpression (Rippo et al., 2000). 

As discussed in section: Fragmentation of the Golgi
apparatus during apoptosis, the Golgi apparatus is
profoundly disrupted during apoptosis. This is a caspase-
dependent process and fittingly expression of caspase-
resistant mutants of the Golgi caspase targets GRASP65
(Lane et al., 2002), p115 (Chiu et al., 2002) and Golgin-
160 (Mancini et al., 2000) delays Golgi fragmentation.
At first glance, caspase cleavage of these Golgi residents
might be expected to simply advance apoptotic Golgi
fragmentation and cripple membrane traffic; however,
there is evidence for an active role for caspase action at
the Golgi in downstream apoptotic signalling.
Overexpression of caspase-resistant Golgin-160 delays
apoptosis in HeLa cells but only in response to cell
surface death ligands or reagents that increase secretory
pathway stress (Maag et al., 2005). Caspase-2 is
localised to the Golgi and cleaves Golgin-160 (Mancini
et al., 2000), but the mechanisms that couple caspase
cleavage of Golgin-160 and resultant Golgi
fragmentation to the apoptotic signalling pathways
remain obscure. One plausible pathway involves the by-
products of the cleavage of Golgi caspase targets acting
as signalling factors. For example, caspase cleavage
products of p115 (Chiu et al., 2002) and Golgin-160
(Sbodio et al., 2006) accumulate in the nucleus to
propagate apoptotic signalling, but their modes of action
have yet to be resolved.
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Cell surface death receptor trafficking and apoptotic
signalling

The coordinated transport of proteins and lipids
between organelles of the secretory and endocytic
systems is crucial for maintaining organelle identity and
for regulating the location and signalling of many classes
of receptor molecules (Miaczynska et al., 2004; van
Meer and Sprong, 2004; Behnia and Munro, 2005). Of
particular importance are the cell surface receptors of the
tumour necrosis factor family (TNF-R). These can
stimulate cell proliferation or apoptosis upon ligand
binding, via proliferative MAPK and IKB signalling
pathways, or via assembly of the death inducing
signalling complex (DISC: containing activated
receptor; adaptor, e.g. FADD; caspase-8/-10). The events
determining which of these opposing signalling
pathways is triggered are beginning to be understood,
and a central involvement of membrane trafficking has
emerged. In healthy cells, significant populations of
TNF-R molecules are retained in the Golgi region at
steady state (TNF-R1, for example, possesses a C-
terminal TGN localisation signal (Storey et al., 2002)),
and in the case of Fas/CD95, the Golgi/TGN pool can be
rapidly mobilised for delivery to the cell surface to
enhance the cell’s sensitivity to the Fas ligand
(CD178/FasL) (Bennett et al., 1998) (although the
physiological significance of these data has been
challenged (O'Connor and Strasser, 1999)). Recent data
strongly suggest that the internalisation of receptor/
ligand complexes into endocytic compartments is a key
step in effective apoptotic TNF-R signalling (Schutze et
al., 1999; Algeciras-Schimnich et al., 2002; Algeciras-
Schimnich and Peter, 2003; Lee et al., 2006; Feig et al.,
2007): ligand binding to TNF-R members at the cell
surface initially favours proliferation, but subsequent
receptor clustering/capping triggers internalisation of
receptor/ligand complexes into endocytic compartments
where DISC assembly can occur. Hence, our
understanding of TNF-R function will require a
complete appreciation of the transfer of receptors and
receptor/ligand complexes between membrane
compartments of the biosynthetic and endocytic systems.
Importantly, the inherent ability to control the synthesis
and trafficking of TNF-R molecules can be exploited by
cells during tumourigenesis: cancer cells can down-
regulate expression and/or surface presentation of their
own TNF-R to evade immune surveillance (Debatin and
Krammer, 2004), and can also up-regulate expression of
FasL to become toxic to infiltrating immune (the “Fas
counterattack” (O'Connell et al., 1999; Ryan et al.,
2005)); however, the underlying mechanisms remain
obscure.

Mathematical modelling suports the notion that Fas
operates by a thereshod mechanism in which there is a
critical ratio of FasL:Fas receptor that determines
whether a cell undergoes or escapes/avoids apoptosis
(Bentele et al., 2004). The principle behind this is that
sufficient numbers of activated receptor are required to
overcome inhibition of DISC function the anti-apoptotic

protein C-FLIP, allowing for downstream autocatalytic
processing of pro-caspase8. Thus one possible method of
controlling apoptotic signalling is through regulating
death receptor trafficking from an internal store to its site
of action, or vice versa. This is exemplified by treatment
of rat hepatoma cells with bile salts which promote
translocation of Golgi-associated Fas receptor to the
plasma membrane, thus elevating sensitivity to FasL-
mediated apoptosis. In accordance to this, anti-Fas
antibody tratment (which causes Fas receptor clustering
and subsequent internalization) has also been shown as
sufficient to drive translocation of Fas receptor from
intracellular stores to the cell surface (Ungefroren et al..,
2001). In fact, Fas associated phosphatase (Fap-1) has
been implicated by numerous studies t be involved in the
retention of Fas at the Golgi (e.g. (Ungefroren et al.,
2001; Ivanov et al., 2003)). Over-expression of Fap-1
lead to the reduction of surface expressed Fas recpetor
accompanied by an increase in intracellular stores while
depletion of Fap-1 resulted in the opposite (Ivanov et al.,
2003). It is unclear how Fap-1 regulates Fas-mediated
signal transduction, but is thought that via interacting
with the cytoplasmic C-terminus of Fas receptor, it
prevents its trafficing from intracellular stores to the
plasma membrane (Meinhold-Heerlein et al., 2001;
Ungefroren et al., 2001; Ivanov et al., 2003).

The importance of coordinated regulation of Fas
receptor trafficing is highlighed by the fact that impaired
Fap-1 function and/or its overexpression has been
documented in many cancers that are resistance to Fas-
mediated cell death (Lee et al., 1999; Elnemr et al.,
2001; Meinhold-Heerlein et al., 2001; Ungefroren et al.,
2001). Furthermore, mobilization of intracellular stores
to potentiate the death response is not only restricted to
death receptors but is also applicable to death receptor
ligands. For example, in neutrophils TRAIL (TNF-
related apoptosis-inducing ligand) is sequestered in
intracellular secretory vesicles which cna be mobilized
following exposure to pro-inflammatory factors
(Cassatella et al., 2006). Furthermore, TRAIL-induced
apoptosis is regulated by the expression/presence of
“decoy” receptors DcR1 and DcR2 at the cell surface.
These can bind death ligands, but are not capable of
downstream apoptotic signalling due to the absence of
an intact cytoplasmic death domain. Competitition for
ligand binding between “funcional” and “decoy”
receptors at the cell surface modulate TRAIL-mediated
apoptosis (Ashkenazi and Dixit, 1998). Notably,
immunoprecipitation studies reveal that receptor clusters
can contain mixed populations of death receptors and
decoys within the same complex, thereby preventing the
ativation of initiator caspases independent of ligand
binding (Merino et al., 2006). Interestingly, in melanoma
cells (which are largely resistant to TRAIL-induced
apoptosis). DR4 and DR5 are present in the TGN
whereas decoy receptors DcR1 and DcR2 are nuclear
localized (Cassatella et al., 2006). Internalization of DR4
and DR5 within endosomes following TRAIL apoptotic
induction triggers translocation of decoy reeptors from
the nucleus to the cytoplasm and cell surface conferring
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resistance to TRAIL (Cassatella et al., 2006).
Conversely, cells can be sensitized to TRAIL-induced
apoptosis by downregulation of dcR1 and an increase in
TRAIL (Screaton et al., 1997) as seen in CD8+T
lymphocytes following stimulation (Mongkolsapaya et
al., 1988). Together, evidence suggests it is possible that
differential localization of decoy and functional
receptors could allow for co-ordinated trafficking from
distinct intracellular stores in response to survival or
apoptotic signals though direct evidence is lacking. 
Autophagy: regulation, function and crosstalk with
apoptosis

Autophagy is an essential catabolic process with
roles in development, homeostasis and disease. To date,
four forms of autophagy have been described:
macroautophagy, whereby novel double membrane-
bound organelles assemble in the cytoplasm;
microautophagy, which describes delivery of cytoplasm
into the lysosome by membrane invagination;
chaperone-mediated autophagy, in which substrates with
specific targeting motifs are imported directly into the
lysosome; and non-canonical/alternative (Atg5/7-
independent) macroautophagy (Klionsky, 2007; Nishida
et al., 2009; Klionsky and Lane, 2010). For the sake of
brevity, and because it has the greatest relevance to the
current topic, this section will deal solely with
macroautophagy which from herein will be described
simply as “autophagy”.
Molecular regulation of autophagosome biogenesis

Autophagy is coordinated by a family of autophagy
related proteins (Atg proteins) that control all aspects of
autophagosomes biogenesis. ATG genes have been
initially identified and characterised in yeast, while their
mammalian homologues are being actively studied
(Yang and Klionsky, 2010). In yeast, autophagosomes
are assembled at a unique site known as the pre-
autophagosomal structure (PAS), whilst mammalian
cells instead assemble autophagosomes at multiple
peripheral sites where autophagosomal isolation
membranes are established. There are four subsets of
core autophagy proteins that are responsible for
autophagosome biogenesis: the Atg1/ULK complex; the
Vps34 class III phosphatidylinositol 3-kinase complex
(PI3K); parallel ubiquitin-like (Atg12 and Atg8)
conjugation systems; and two trans-membrane proteins,
Atg9 and VMP1 (Yang and Klionsky, 2010). The main
signalling pathway that stimulates autophagy in
mammalian cells is the mTOR (mammalian target of
rapamycin; TORC1) pathway. This regulates the activity
of Atg1, a protein kinase that in yeast exists in complex
with Atg13 and Atg17. Binding of Atg13 to Atg1 and
Atg17 requires Atg13 to be in its dephosphorylated
form, a property that depends indirectly upon TORC1
activity (Yang and Klionsky, 2010). In mammalian cells,
ULK1 and ULK2 are the suspected Atg1 orthologues,
and these form a complex with Atg13 and the

mammalian Atg17 orthologue, FIP200, which recruits
TORC1 depending upon nutrient status (Jung et al.,
2009). This system provides a mechanism to couple
nutrient sensing to the autophagosome biogenesis
system; however, the molecular pathways linking these
processes remain unclear (Orsi et al., 2010; Yang and
Klionsky, 2010).
Membrane trafficking in autophagy

The Vps34 class III PI3K operates downstream of
the Atg1/ULK1 signalling complex to define the site of
autophagosome biogenesis. Its role is to phosphorylate
the 3’ position of the inositol ring of phosphatidyl
inositol (PI) to generate PI(3)P, and this triggers
recruitment of effectors to initiate autophagosome
assembly (Fig. 3). In mammalian cells, it is comprised of
Vps34, Beclin 1 (the mammalian Atg6 homologue), and
Barkor (a mammalian Atg14-like protein) (see (Orsi et
al., 2010) for details). Other potential regulators of the
mammalian Vps34 class III PI3K complex include
UVRAG, Ambra1, Rubicon and Bif-1 (Endophilin B1).
Of these, Bif-1 is an interesting player since it contains a
BAR (Bin/Amphiphysin/Rvs) domain; a feature that has
been implicated in sensing and conferring membrane
curvature (Peter et al., 2004), and one that is needed for
its autophagy roles (Takahashi et al., 2009). This perhaps
provides clues as to how the remodelling of existing
membrane structures might contribute to the generation
of a concave autophagosomal isolation membrane (Fig.
3). Our understanding of the initiation of autophagosome
assembly in mammals has benefitted greatly from
studies of DFCP-1 (double FYVE domain containing
protein-1); a protein that binds to PI(3)P enriched
membranes thereby providing insight into the
appearance and localisation of the proposed mammalian
isolation membrane (Axe et al., 2008). In starved cells,
DFCP-1 forms cup shaped structures called omegasomes
on or adjacent to ER membranes, and these represent the
sites for recruitment of PI(3)P effectors and downstream
autophagy molecules such as Atg5 and LC3 (one
mammalian Atg8 paralogue) (Axe et al., 2008). These
observations strongly implicate the ER as a source of at
least some of the membrane contributing to the nascent
autophagosome. Interestingly, recent tomographic
electron microscopy data support the notion that the
isolation membrane is indeed established in continuity
with the ER (Hayashi-Nishino et al., 2009; Yla-Anttila et
al., 2009), although whether this is true for all forms of
autophagy (e.g. starvation induces vs. mitophagy)
remains to be clarified.

Two complementary pathways involving Atg5-12-
16L and Atg8 are required for expansion and completion
of the isolation membrane to form the characteristic
double-membrane autophagosomal structure (Fig. 3).
For each, a ubiquitin-like modification process is
involved: for the first, Atg12 is covalently linked to Atg5
via the sequential actions of Atg7 (E1-like) and Atg10
(E2-like); for the second, Atg8 is a modifier of the lipid,
phosphatidyl ethanolamine (PE) (here Atg7 is the E1-
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like enzyme while At3 id the E2-like enzyme). To enable
lipidation (PE linkage), Atg8 is first cleaved at its C-
terminus by the C54 endopeptidase Atg4 to reveal a
Glycine residue that is the site for attachment to PE.
Interestingly, Atg4 also acts as the Atg8 delipidation
enzyme (Fig. 3). Regulated Atg8 delipidation is thought
to be particularly important for autophagosome
formation since over expression of wild-type (Tanida et
al., 2004; Betin and Lane, 2009b) or active site mutant
Atg4 (Fujita et al., 2008; Betin and Lane, 2009b;
Hayashi-Nishino et al., 2009) inhibits autophagosome
formation or causes formation of stalled autophagosomal
structures, respectively. The Atg5-Atg12 complex
interacts with Atg16L to form a large multimeric
complex which is somehow required for Atg8
recruitment to the nascent autophagosome. Importantly,
Atg8 proteins are adapters for ubiquitin binding/
sequestering proteins such as p62 and NBR1 (via
conserved LIR domains), allowing misfolded protein
aggregates and other ubiquitylated structures to be
recruited to and sequestered within the expanding

autophagosome membrane (Fig. 3) (Kirkin et al., 2009;
Lamark et al., 2009).

If it is indeed true that the ER acts as the site for the
initiation of autophagosome assembly in mammalian
cells, it might be expected that the ER provides all of the
membrane required to form an autophagosome.
Interestingly, though, studies of the multi-spanning
transmembrane protein Atg9 suggest that the trans-Golgi
network (TGN)/Rab7/9-positive late endosomal
compartment plays an active role in autophagosome
expansion (see (Orsi et al., 2010)). Mammalian Atg9
cycles between juxtanuclear TGN/endosomal
membranes and the sites of autophagosome assembly,
becoming more dispersed upon starvation in an Ulk1-
dependent manner (Young et al., 2006). One possibility
is that in mammalian cells Atg9 cycles between these
membrane compartments to deliver and/or retrieve
factors (possibly including membrane) to/from the site
of autophagosome assembly (Orsi et al., 2010; Yang and
Klionsky, 2010). Also implicated are the mammalian
orthologues of yeast Atg18 and Atg2, the former most
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Fig. 3. Autophagosome biogenesis. Cartoon of the regulatory factors controlling autophagosome assembly. The formation of a sub-domain of the ER
that is enriched in PI(3)P (the omegosome) via the actions of the Beclin 1 PI3K complex sets in motion a series of molecular interactions leading to the
recruitment of the Atg5-12-16 complex and lipidated Atg8 to the nascent autophagosome (hatched box). In this example, ubiquitinylated misfolded
protein aggregates are sequestered by the autophagosome via interactions between Atg8 and p62. The C54 endopeptidase Atg4 controls the lipidation
status of Atg8 via its priming and delipidation activities.



likely represented by the PI(3)P effector, WIPI-1 (WD-
repeat protein interacting with phosphoinositides), and
the latter represented by two presumed orthologues that
await characterisation (see (Longatti and Tooze, 2009)).
Four models for autophagosome formation have been
proposed (Longatti and Tooze, 2009), all of which
require expansion and closure (fusion/hemifusion) of the
autophagosomal membrane. Interestingly, Atg8 has been
implicated in the process of autophagosome closure
(Nakatogawa et al., 2007), suggesting that these proteins
act in the expansion and completion of the nascent
autophagosome (Longatti and Tooze, 2009). Once
formation of the autophagosome is initiated, membrane
trafficking factors allied to the endosomal system
contribute to the maturation, trafficking and eventual
fusion of the autophagosome with the late endosome/
lysosome compartment (e.g. (Razi et al., 2009)). Rabs -
Ras superfamily GTPases involved in many aspects of
membrane trafficking - are implicated at several stages
of autophagosome formation and maturation. Early
endosomal Rab5 is required during autophagosome
biogenesis (Ravikumar et al., 2008), while Rab7 is
required for autophagosomal fusion with the late
endosomal/lysosomal compartments (Gutierrez et al.,
2004; Jager et al., 2004). Interestingly, Rab33 - a Golgi
resident Rab implicated in Golgi-to-ER transport - has
been shown to interact with Atg16L and to facilitate
early stages of autophagosome biogenesis (Itoh et al.,
2008). Clearly, much remains to be resolved about the
processes of autophagosomal biogenesis, maturation and
trafficking, including the fusion factors (SNARE
proteins) required for mammalian autophagy.
Selective mitochondrial autophagy (mitophagy)

Autophagy can be a non-selective process for the
random delivery of cytoplasm into the lysosomal
system; however, work on the p62/NBR1-dependent
clearance of ubiquitinylated protein aggregates (e.g.
(Lamark et al., 2009)) and the removal of damaged
mitochondria (Kim et al., 2007; Tolkovsky, 2009)
demonstrates that autophagy can be selective. Our
understanding of the pathways that control the selective
removal of damaged mitochondria by autophagy
(mitophagy) has greatly improved in recent years.
Mitophagy has emerged as an extremely important
process for the prevention of diseases that result from
the cumulative effects of reactive oxygen species (ROS)
generated by dysfunctional mitochondria (Kim et al.,
2007; Tolkovsky, 2009). In theory, continual removal/
replenishment of aged, damaged or redundant
mitochondria can protect organisms from the effects of
ageing and from diseases such as neurodegeneration and
cancer (Kim et al., 2007; Cuervo, 2008; Tolkovsky,
2009). Yeast genetics was recently used to identify
candidate genes involved in mitophagy. Two groups
identified Atg32 as a gene required for autophagy in
yeast (Kanki et al., 2009; Okamoto et al., 2009);
however, there is no direct homologue in mammalian
cells. Instead, two independent pathways are thought to

be involved in mitophagy in different mammalian cell-
types. Parkin, an ubiquitin E3 ligase linked to
Parkinson’s disease, is a cytosolic factor that is recruited
to uncoupled mitochondria, triggering their selective
elimination (Narendra et al., 2008). Parkin recruitment is
dependent upon the protein kinase PINK1 (Geisler et al.,
2010; Vives-Bauza et al., 2010), and evidence suggests
that one key substrate for its E3 ligase activity is the
voltage-dependent anion channel (VDAC1) (Geisler et
al., 2010). During erythropoiesis, removal of
mitochondria from the nascent reticulocyte is an
essential step for the generation of viable cells
(Mortensen et al., 2010), and a pathway involving the
mitochondrial protein BNIP3/Nix is required (Novak et
al. 2010; Schweers et al., 2007; Sandoval et al., 2008;
Zhang and Ney, 2008, 2009; Schwarten et al., 2009). Nix
binds to the Atg8 orthologue, GABARAP-L1 with
particularly high affinity via its LIR domain, and in
doing so triggers recruitment of the autophagosome
biogenesis machinery to damaged mitochondria (Novak
et al., 2010). How the structure/properties of Nix are
altered to engage this process remains undetermined.
Molecular interplay between autophagy and apoptosis

The first evidence for molecular crosstalk between
autophagy and apoptosis came from studies of the
haploinsufficient tumour suppressor Beclin 1. It has
emerged that Beclin 1 binds to anti-apoptotic Bcl-2 and
Bcl-XL by virtue of its Bcl-2 homology domain 3 (BH3
domain); an interaction that can be disrupted by BH3-
only Bcl-2 family members and BH3 mimetic drugs
(Pattingre et al., 2005; Maiuri et al., 2007a,b). These
observations are highly significant because they suggest
that the Beclin 1/Bcl-2(Bcl-XL) interaction constitutes
an apoptosis/autophagy rheostat: simply put, Bcl-2(Bcl-
XL) inhibits autophagy by sequestering Beclin 1;
meanwhile pro-apoptotic BH3-only proteins have the
capacity to trigger autophagy by competing for Bcl-
2(Bcl-XL) (Maiuri et al., 2007a). This is perhaps one
explanation as to why many pro-apoptotic stimuli
concomitantly trigger autophagy in cultured cell-lines,
and is a plausible reason for the prevalence of
autophagic structures in dying cells. To add to the
complexity, it has recently been demonstrated that
Beclin 1 is itself a caspase target whose cleavage renders
it both incapable of regulating autophagy and pro-
apoptotic (Wirawan, 2010) (Luo and Rubinsztein, 2009;
Djavaheri-Mergny et al. 2010). Intriguingly, proteolysis
of several autophagy proteins has now been reported,
leading to different autophagy and cell death responses.
In flies, several apoptosis genes - including caspase
homologues - are required for developmentally regulated
autophagy (Martin and Baehrecke, 2004; Hou et al.,
2008), suggesting that in flies apoptosis and autophagy
are strongly connected at the molecular level. Atg5
undergoes calpain-mediated cleavage in mammalian
cells treated with staurosporine, a process that inhibits
autophagy while concomitantly releasing a pro-apoptotic
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Atg5 fragment that is reported to interact with Bcl-XL at
the mitochondrial surface to trigger apoptosis (Yousefi et
al., 2006). Cell death mediated by Atg5 fragments may
also involve an interaction with Fas-associated protein
with a death domain (FADD), although in this case the
mode of cell death appears to be upregulation of
autophagy rather than apoptosis (Pyo et al., 2005).
Caspase-3 mediated cleavage of human Atg4D has also
been demonstrated (Betin and Lane, 2009b). Here,
cleavage stimulates Atg4D endopeptidase action by
removal of an autoinhibitory N-terminal domain, and is
proposed to stimulate autophagy (Betin and Lane,
2009a, b). Interestingly, Atg4D is itself cytotoxic, and its
cell death-inducing capabilities are linked to its
recruitment to mitochondria and the presence of a C-
terminal BH3-like domain (Betin and Lane, 2009a,b),
further demonstrating how apoptosis and autophagy
pathways converge.
Concluding remarks

Regulated cell death mechanisms are essential facets
of developing organisms and are vital for tissue
homeostasis. Indeed, many diseases are known to result
from inadequate or inappropriate stimulation of cell
death in tissues. Evidence is emerging that the
involvement of cellular organelles and membrane
trafficking pathways during the major physiological cell
death mechanism, apoptosis, extend beyond simple
bystander roles. Mitochondria are well-established
mediators of apoptosis (and indeed other cell death
mechanisms), whilst the roles of the ER and the Golgi
apparatus in apoptotic signalling are being unravelled.
One membrane trafficking process that impacts directly
upon cell death/survival is autophagy. Once considered a
death mechanism in its own right, it is now becoming
apparent that autophagy contributes to apoptosis
signalling at multiple levels, further demonstrating how
the molecules involved in organelle remodelling and
organelles themselves can dictate the fate of a given cell.
As our appreciation of the roles and fates of cellular
organelles during cell death signalling advances, our
understanding of the control of cell death in health and
disease will improve. With this will emerge novel
strategies to control cell survival/death in the context of
disease.
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