
Summary. In the last few years great progress has been
made in the search for the cellular and molecular
mechanisms of chronic kidney disease and its
progression to end-stage renal failure. The possibility of
remission/regression of chronic nephropathy has become
a reality for some patients on therapy based on renin-
angiotensin system blockade – an example of how a
public health concern can be successfully addressed by
translational medicine. This review describes
experimental and clinical investigations documenting the
advances achieved in the management of chronic kidney
diseases by targeting angiotensin II.
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Introduction

Chronic kidney disease (CKD) is a major cause of
morbidity and mortality. Independently of the primary
insult, progression to end-stage renal disease (ESRD) is
unfortunately the common outcome. The rate of
progression varies among nephropathies and for the
same disease in different individuals; patients whose
CKD inexorably evolves to renal insufficiency are at
high risk of dying from cardiovascular complications
(Dirks et al., 2005; Perico et al., 2005). CKD that
requires renal replacement therapy (RRT) – primarily
kidney transplantation, hemodialysis and peritoneal
dialysis – is on the increase world-wide and the number
of patients estimated to progress toward ESRD may well
exceed two million by the year 2010 (Xue et al., 2001).
Thus, CKD is emerging as a global threat to human

health and represents a major public health challenge for
nephrologists in the 21st century.
Glomerular hypertension, angiotensin II and
proteinuria in the progression of chronic
nephropathy

Over the last two decades research in experimental
models and in humans has focussed on clarifying the
mechanism(s) responsible for renal disease progression
in an attempt to identify therapeutic targets and therefore
to delay or prevent progression to ESRD and the need
for RRT. Intraglomerular hemodynamic changes and
proteinuria are key determinants of this progression. 
Glomerular hypertension and angiotensin II

In the early 1980s Brenner and coworkers
introduced the concept that following nephron loss due
to the original insult, the remnant nephrons undergo
glomerular hypertrophy and rising intraglomerular
capillary pressure that leads to hyperfiltration (Hostetter
et al., 1981; Brenner et al., 1982). This response, initially
compensatory, later becomes maladaptive, contributing
to the impairment of the permselectivity of the
glomerular barrier and consequent development of
proteinuria and progressive glomerulosclerosis (Brenner
et al., 1982).

The theoretical model for the size-selectivity
function of the glomerular capillary wall (GCW), the
heteroporous membrane model, is based on the
assumption that the GCW is perforated by hypothetical
cylindrical pores with a size distribution (Deen et al.,
1985). Small pores dominate in number and serve as the
main pathway for water and small molecules across the
glomerular membrane, but small population of large
pores shows negligible selectivity, even for molecules of
molecular radius 60Å, and these form the so-called
“shunt” pathway through which 1% of filtrate volume
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passes (Deen et al., 1985). Experimental investigation of
glomerular permselectivity defects in passive Heymann
nephritis, a model of membranous glomerulopathy, in
which there is an abnormally high transcapillary
hydraulic pressure difference and massive proteinuria,
has documented an increase in the ratio of large to small
pores, suggesting that proteinuria depends on
recruitment of previously unexposed non-selective pores
that offer an escape pathway permeable to
macromolecules (Yoshioka et al., 1987). 

Glomerular hypertension exposes glomerular cells to
mechanical load that affects their functions, including
differentiation and proliferation, matrix production and
intracellular signal transduction. Mesangial cells respond
to mechanical stretch in vitro by proliferating (Ingram et
al., 1999), whereas podocytes undergo actin cytoskeleton
reorganization (Endlich et al., 2001), hypertrophy
(Petermann et al., 2005), reduced adhesion through alpha
3 beta1 integrin down-regulation (Dessapt et al., 2009),
and apoptosis due to local activation of the angiotensin
system (Durvasula et al., 2004). Increased angiotensin II
(Ang II) production by mechanically stretched podocytes
might in its turn raise intraglomerular capillary pressure
(Yoshioka et al., 1987), thus setting in motion a vicious
circle that perpetuates further damage to the podocyte.
Ang II has also a direct effect on podocyte functions
(Fig. 1). It depolarizes them by opening up chloride
conductance through the angiotensin type 1 receptor

(AT1R) (Gloy et al., 1997). The intracellular calcium
that is increased by Ang II (Nitschke et al., 2000), quite
likely regulates the activation of this ion conductance.
Ang II induces cytoskeletal reorganization and shedding
of the slit diaphragm-associated protein nephrin, the key
regulator of the filtration barrier (Doublier et al., 2003).
Ang II-induced reorganization of F-actin fibers is also
instrumental for the redistribution of zonula occludens-1
(ZO-1), a functionally important molecule of the foot
process that is physically associated with actin in
podocytes, and with other actin-related proteins,
including α-actinin. This results in permselective
dysfunction of podocyte-podocyte contact and increased
albumin permeability (Macconi et al., 2006a). Changes
in both F-actin and ZO-1 patterns are found in glomeruli
of rat isolated perfused kidneys after short infusion of
Ang II, leading to increased protein excretion (Macconi
et al., 2006a). All these findings indicate Ang II’s direct
action in perturbing the glomerular sieving function,
which is independent of hemodynamic changes. Ang II
induces podocyte dysfunction through the AT1R,
partially dependent on Src kinase-phospholipase C
(PLC) activation (Macconi et al., 2006a). 

Another mechanism whereby Ang II causes actin
cytoskeleton reorganization has been recently elucidated.
Persistent renin-angiotensin system (RAS) activation,
such as that in cultured podocytes with stable AT1R
expression exposed to Ang II, results in reactive oxygen
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Fig. 1. Interplay between mechanical
stretch, Ang II, and protein load in renal
disease progression. Glomerular capillary
hypertension mechanically stretches
mesangial cells and podocytes with two
opposite effects: respectively proliferation
and distress/apoptosis. The latter is partly
due to local activation of Ang II, which in
turn raises intraglomerular capil lary
pressure, thus perpetuating podocyte
damage. Activation of Ang II signaling
leads to podocyte dysfunction and
ultimately to loss of permselectivity of the
glomerular barrier. Abnormal filtration of
proteins results in proteinuria.
Accumulation of proteins (protein load) in
the podocytes causes cell de-differentiation
and injury and up-regulation of TGF-ß that
triggers podocyte apoptosis and mesangial
cell activation. Increased extracellular
matrix synthesis by TGF-ß and reduced
degradation by PAI-1 lead to the
accumulation of extracellular matrix which,
together with podocyte loss, contributes to
the development of glomerulosclerosis.
Both Ang II and protein load stimulate
tubular cells to release pro-fibrotic and
inflammatory mediators. The inflammatory
enviroment stimulates renal dendritic cells

to become immunogenic and to take up albumin fragments generated by distressed tubules and process them into antigenic peptides, triggering an
immune response. Abbreviations: Ang II, angiotensin II; ET-1, endothelin-1; MCP-1, monocyte chemoattractant protein-1; PAI-1, plasminogen activator
inhibitor 1; TGF-ß, transforming growth factor-ß. In red, Ang II; green, mechanical stretch; blue, protein load signaling.



species (ROS)-dependent F-actin cytoskeleton
reorganization and acquisition of a migratory phenotype
(Hsu et al., 2008). Activation of small GTPases Rac1
and RhoA and phosphorylation of the ERM
(ezrin/radixin/moesin) proteins gives the intracellular
signaling involved in cortical F-actin ring formation and
down-regulation of α-actinin 4. This protein regulates
the podocyte-matrix interaction and is required for
normal podocyte adhesion (Dandapani et al., 2007).
Mutation or depletion of α-actinin 4 is linked to focal
segmental glomerulosclerosis (Kaplan et al., 2000; Kos
et al., 2003). Intracellular signaling downstream Ang II-
induced Rac1 activation is probably responsible for
podocyte detachment and the development of
glomerulosclerosis in transgenic rats overexpressing
AT1R specifically and exclusively in podocytes
(Hoffmann et al., 2004). 

Ang II also contributes to renal disease progression
through its pro-fibrotic and pro-inflammatory effects by
targeting other resident glomerular cells besides
podocytes and tubules (Fig. 1). It stimulates extracellular
matrix (ECM) synthesis in mesangial cells by inducing
transforming growth factor ß (TGF-ß) (Kagami et al.,
1994); it also triggers plasminogen activator inhibitor-1
(PAI-1) production by mesangial and tubular cells, thus
favouring ECM deposition in the glomerulus and
interstitial space (Wilson et al., 1997; Nakamura et al.,
2000; Fintha et al., 2007) and induces mesangial and
tubular cell hypertrophy (Anderson et al., 1993; Jaimes
et al., 1998; Hannken et al., 1998). 

Ang II concurs in the development of glomerular
inflammation by activating in mesangial and glomerular
endothelial cells nuclear factor-κB (NF-κB)-dependent
genes for the chemokines monocyte chemoattractant
protein-1 (MCP-1) (Ruiz-Ortega et al., 1998) and
RANTES (Wolf et al., 1997) that recruit
monocytes/macrophages within the tuft. In vivo evidence
of Ang II-induced phenotypic changes of glomerular
cells associated with glomerular inflammatory cell
infiltrates (De Craemer et al., 2001), as well as redox
imbalance and increased oxidative stress, upholds the
causal role of Ang II in renal damage (Haugen et al.,
2000).
Protein load

Rather than simply a marker of damage, abnormal
filtration of plasma proteins through the GCW has
intrinsic toxicity on the proximal tubule and
subsequently on the whole kidney. Proximal tubular cells
exposed in vitro to high concentrations of albumin
undergo apoptosis through a mechanism involving
reduced expression of its receptor megalin that binds to
protein kinase B (PKB) at the plasma membrane,
reducing PKB activity and phosphorylation of Bad
protein by PKB (Caruso-Neves et al., 2006). Overload of
plasma proteins (albumin, IgG and transferrin)
stimulates proximal tubular cells to synthesize and
release inflammatory mediators responsible for

macrophage, lymphocyte, and neutrophil recruitment
(MCP-1, RANTES and interleukin 8) and pro-fibrotic
factors such as endothelin-1 (ET-1) and TGF-ß, the most
potent inducer of epithelial-to-mesenchymal transition
(EMT) (see for reviews Abbate et al., 2006; Strutz,
2009) (Fig. 1). Protein kinase C-dependent hydrogen
peroxide production, extracellular signal-regulated
kinases and mitogen-activated protein kinases, as well as
signal transducer and activator of transcription (STAT)
proteins, are intracellular signaling pathways involved in
the NF-κB-dependent activation of chemokines induced
by protein load, mainly albumin (Abbate et al., 2006). In
vivo studies have convincingly documented a causal
association between proteinuria and tubulo-interstitial
disease, correlating with the degree and rate of
progression of renal failure. Activation of chemokine
and ET-1 pathways has been proved by detection of high
mRNA and/or protein levels during interstitial
infiltration of inflammatory and immune cells (Abbate et
al., 2006). Among the latter, CD8+ T cells and dendritic
cells (DC) that accumulate in the renal parenchyma are
hallmarks of proteinuric nephropathies even in the
absence of an immune insult. Recently a link has been
described between the biology of the tubular epithelial
cells and the role of DC (Macconi et al., 2009a), the
main professional antigen-presenting cell population of
the healthy kidney (John and Nelson, 2007). Proteolysis
of excess albumin by proximal tubular cells provides the
substrate to DC for the generation – through a
proteasome-dependent pathway – of antigenic peptides
recognized by CD8+ T cells (Macconi et al., 2009a).
Normally ignored self-proteins can, on renal injury,
generate antigenic peptides, thus triggering an immune
response. 

The gene expression profile of renal proximal
tubules micro-dissected from mouse proteinuric kidneys
has revealed dramatic changes in the expression pattern
compared to normal animals (Nakajima et al., 2002).
Over 1000 genes are upregulated by proteinuria,
including those involved in the albumin metabolism
and/or degradation pathway, as well as in inflammation
and immunity (Nakajima et al., 2002). Similarly, cDNA
microarray of proximal tubular cells from patients with
proteinuric nephropathies showed more than 160
differentially expressed genes including those involved
in signal transduction, cell proliferation and cell cycle
control, differentiation, immune response, and
intracellular transport and metabolism (Rudnicki et al.,
2007). 

Besides the proximal tubular cell, the podocyte is the
cellular target of protein load. In the renal mass ablation
model intraglomerular accumulation of plasma proteins
mainly in podocytes is observed one week after surgery
and precedes myofibroblast transformation of the
surrounding mesangial cells (Abbate et al., 2002).
Morphological changes consist of segmental adhesion of
the capillary tuft to the Bowman’s capsule that develops
into glomerulosclerosis. Protein-overloaded podocytes
undergo de-differentiation and injury, as evidenced by
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loss of synaptopodin expression and increased staining
for desmin, with up-regulation of TGF-ß1 expression
(Fig. 1). This latter is responsible for sclerosing
activation of mesangial cells (Abbate et al., 2002). TGF-
ß1 can have autocrine effects on podocytes, inducing
EMT (Li et al., 2008), reduced adhesion (Dessapt et al.,
2009), and apoptosis (Schiffer et al., 2001; Niranjan et
al., 2008) which lead to podocyte dysfunction and loss
(Fig. 1). 

These findings all uphold the concept that excess
proteins are per se toxic on glomerular and tubular cells
and make their own contribution to renal disease
progression independently of Ang II. This is further
borne out by evidence that targeted deletion of AT1a
does not protect mice from progressive nephropathy of
overload proteinuria (Benigni et al., 2004). 
From retarding renal disease progression to
remission of CKD: renoprotection by RAS blockade

Proteinuria is a reliable biomarker of the severity of
renal disease and predicts the risk of progression.
Changes in proteinuria and in the decline in glomerular
filtration rate (GFR) are closely correlated in diabetic
(Breyer et al., 1996) and non-diabetic renal disease
(Peterson et al., 1995; Ruggenenti et al., 1998b). A study
in a large Caucasian population reported that proteinuria
independently predicted the risk of ESRD and overall
mortality (Tarver-Carr et al., 2000). Mass-screening of
more than 100,000 individuals in Japan found, during a
17-year follow-up, a positive relationship between
baseline proteinuria (dipstick urine analysis) and the risk
of developing ESRD (Iseki et al., 2003). Even a slight
increase in proteinuria was an independent risk factor for
ESRD. Evidence that reducing proteinuria always results
in a better disease outcome further supports its
pathogenic role in the progression of CKD. The
Modification of Diet in Renal Disease study showed that
reduction of proteinuria was associated with a decrease
in the rate of GFR decline, and that protection achieved
by lowering blood pressure depended on the extent of
initial proteinuria (Peterson et al., 1995). 
Angiotensin-converting enzyme inhibitors in non-diabetic
nephropathies

In the Ramipril Efficacy in Nephropathy (REIN)
trial (Core study), patients with non-diabetic proteinuric
chronic nephropathy, after stratification for baseline
proteinuria 1-3 g/day (stratum 1) or ≥ 3 g/day (stratum
2), were randomly assigned to receive the angiotensin-
converting enzyme inhibitor (ACEi) ramipril or placebo,
plus conventional antihypertensive therapy to maintain
diastolic blood pressure at 90 mmHg or less (Gisen
Group, 1997). The effects of both treatments on the
following end points were compared: proteinuria, GFR
decline, and ESRD. The GFR declined faster in patients
with higher urinary protein excretion at baseline (≥ 3
g/day). These were the patients who benefited most from

ACE inhibition. Despite comparable blood pressure
control, ramipril was more renoprotective than placebo
in these patients; it significantly slowed renal function
decline and halved the combined risk of doubling of
serum creatinine or end-stage renal failure – ESRF
(Gisen Group, 1997). Proteinuria significantly decreased
by month 1 in the ramipril-treated patients and remained
lower than baseline throughout the study, whereas it did
not change in the placebo group. In the ramipril group,
the one-month proteinuria reduction was also inversely
correlated with long-term rate of GFR decline (six
months or more after randomization) (Gisen Group,
1997). 

This study provides the first demonstration that the
beneficial effects of ACEi on renal function deterioration
go beyond the anti-hypertensive action. A post-hoc
analysis of the REIN study data indicated that besides
basal proteinuria, residual proteinuria predicts
progression of CKD to ESRF independently of blood
pressure control and treatment randomization
(Ruggenenti et al., 2003). 

Meta-analysis of data from 1860 patients, enrolled in
11 randomized controlled trials (including the REIN
study), comparing the effects of antihypertensive
regimens, including ACEi or not including ACEi, on the
progression of non-diabetic renal disease, confirms and
extends previous findings. A higher level of proteinuria,
either at baseline or during the follow-up, is an
independent risk factor for the progression of non-
diabetic renal disease (Jafar et al., 2001). The greater
renoprotective effects of ACEi in patients with higher
baseline urine protein excretion reflect their greater
antiproteinuric effect in these patients. 

In view of the efficacy of ramipril, the REIN Core
study was prematurely stopped and all patients with
proteinuria (≥ 3 g/day) were put on ramipril therapy
regardless of the original randomization and followed
for two years (REIN follow-up). This study showed that
prolonged ACE inhibition efficiently stopped the
tendency of GFR to decline with time and prevented the
risk of progression to ESRF (Ruggenenti et al., 1998a).
After 36 months of continued ramipril treatment, no
patient progressed to the point of requiring dialysis,
whereas 30% of patients originally randomised to
placebo plus conventional antihypertensive therapy and
switched to ramipril still developed ESRD (Ruggenenti
et al., 1998a).

These data suggest that the earlier the ACEi
treatment starts the greater the effect in protecting from
GFR decline and ESRD. In patients who continued on
ramipril, with at least six GFR determinations, the mean
rate of GFR decline improved with time, parallel with a
significant reduction in proteinuria, and in the cohort
with the longest follow-up (60 months) it reached about
1 mL/min per 1.73 m2 per year, approximating the
physiologic age-related loss of GFR with time in people
with no evidence of renal disease. Analyses of the slopes
in individual patients confirmed stabilization or even an
increase in GFR in some cases (Ruggenenti et al., 1999).
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Thus, remission or even regression of non-diabetic
chronic nephropathy can be achieved in some patients by
prolonged ACEi therapy. 
ACEi in diabetic nephropathies

In a prospective study in a small number of insulin-
dependent diabetic patients long-term antihypertensive
treatment with an ACEi (≥ 6 years) progressively
reduced the rate of GFR decline (Parving et al., 1987). In
another study, at comparable blood pressure, the ACEi
were more effective than a beta blocker in reducing
proteinuria and the rate of decline of kidney function
(Bjorck et al., 1992). In a large randomized controlled
trial in 409 type 1 diabetic patients the ACEi captopril
approximately halved the risk of the combined end-
points of doubling serum creatinine, ESRD or death, as
compared to placebo (Lewis et al., 1993). Some patients
who had nephrotic syndrome (proteinuria ≥ 3.5 g/day),
randomized to ACEi enjoyed long-term remission of the
nephrotic syndrome (proteinuria ≤ 1g/day) and
stabilization of GFR during an eight-year follow-up
(Wilmer et al., 1999).
A multimodal approach in CKD patients

A multimodal approach was formalized in an
intervention protocol, “the Remission Clinic program”
for patients with CKD and heavy proteinuria despite
ACEi therapy (Ruggenenti et al., 2001b). Evaluation of
the rate of GFR decline and incidence of ESRD in a
cohort of 56 patients with nephrotic range proteinuria (>
3 g/day) enrolled in this program showed that over a
median follow-up of four years multidrug treatment
titrated to the urinary protein level slowed GFR decline
and reduced the risk of ESRD 8.5-fold. Normalization of
proteinuria and stabilization of GFR was achieved in 26
patients who would have otherwise been expected to
progress rapidly to ESRD on conventional therapy
titrated to target blood pressure (Ruggenenti et al.,
2008).
How blockade of the RAS provides renoprotection

Experimental models of progressive nephropathies
have provided more information on the mechanisms
through which inhibition of Ang II can achieve
renoprotection. The sieving properties of the glomerular
membrane by Ficoll fractional clearance in a model of
spontaneous glomerular injury and in diabetes indicated
that both ACEi and angiotensin receptor blockers
(ARBs) prevent proteinuria by preserving the size-
selective function of the glomerular capillary (Remuzzi
et al., 1990, 1993). This has also been demonstrated in
human renal diseases such as diabetic, IgA, and
membranous nephropathies (Parving et al., 1988;
Morelli et al., 1990; Remuzzi et al., 1991; Ruggenenti et
al., 2000). Preservation of the permselective properties
of the glomerular capillary reflects the fact that Ang II

blockade prevents the dislocation and/or loss of slit
diaphragm-associated molecules (i.e. ZO-1 and nephrin),
which are essential for maintaining the filtration barrier
(Macconi et al., 2000; Benigni et al., 2001b; Bonnet et
al., 2001; Kelly et al., 2002). Targeting proteinuria by
Ang II blockade provides renoprotection by preventing
glomerulosclerosis, glomerular-tubule disconnection and
atrophy and interstitial inflammation (Remuzzi et al.,
1994; Abbate et al., 1999; Benigni et al., 2001a). 

The podocyte is a therapeutic target of RAS
blockade; preservation of its structural and functional
integrity is instrumental to nephron function. Podocyte
dysfunction plays a key role in proteinuria and
glomerulosclerosis (see for reviews Shankland, 2006;
Wiggins, 2007). Podocyte loss is a causal factor for renal
disease progression in animals (Kim et al., 2001;
Kuhlmann et al., 2004; Wharram et al., 2005; Wiggins et
al., 2005; Macconi et al., 2006b) and humans
(Pagtalunan et al., 1997; Meyer et al., 1999; Steffes et
al., 2001; White et al., 2002; Lemley et al., 2002; Dalla
Vestra et al., 2003). Podocyte detachment from the
glomerular basement membrane and loss into the urine is
a cause of podocytopenia (Vogelmann et al., 2003;
Petermann et al., 2003). Urinary podocytes may be a
useful marker of disease activity in experimental models
(Yu et al., 2005) and in patients with diabetic (Nakamura
et al., 2000b) or IgA nephropathy (Nakamura et al.,
2000c). They have also been suggested as a diagnostic
indicator for differentiating focal segmental
glomerulosclerosis and minimal change nephrotic
syndrome (Nakamura et al., 2000a). Both ACEi and
ARBs prevent podocyte loss in experimental diabetes
(Gross et al., 2003a,b) and podocyturia in human
nephropathies (Nakamura et al., 2000b,c). 

Long-term treatment of MWF rats, uni-
nephrectomized to accelerate renal disease progression,
with ACEi that completely prevents proteinuria, also
prevents ESRF and improves survival (Remuzzi et al.,
1995). Like in animals, long–term remission of
nephrotic-range proteinuria achieved by treatment with
ACEi or ARBs can also reduce the risk of ESRD and all-
cause mortality in patients with type 2 diabetes (Rossing
et al., 2005).
Regression of glomerulosclerosis and glomerular
cell remodeling: information from experimental
models

Studies in animals and in patients with type 1
diabetes with sustained normoglycemia after pancreatic
islet or pancreas transplantation have proved that
regression of glomerulosclerosis is possible (Mauer et
al., 1975; Fioretto et al., 1998). But can drug therapy
reverse glomerular lesions? In experimental models of
progressive nephropathies treatments based on Ang II
blockade started in the early stages of the disease help
prevent renal disease progression (see above). In MWF
rats, a genetic model of progressive nephropathy, ACEi
given when proteinuria is already important still exert
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renoprotection by reducing the urinary protein excretion
rate below baseline and halting the progression of renal
damage (Remuzzi et al., 1999).

Lately scientists’ attention has moved to more
advanced stages of the disease with the purpose of
verifying the efficacy of treatment once glomerular
lesions are already manifest. This mimics therapeutic
intervention in patients who show signs of renal failure
when they come to the physician’s attention. Fogo’s
group was the first to investigate the efficacy of a
delayed treatment with different ACEi dosages on
established glomerular sclerosis in a model of subtotal
nephrectomy (Ikoma et al., 1991). Glomerular sclerosis
was assessed on glomeruli sampled from serially
sectioned kidney specimens at biopsy and at autopsy,
and were ranked on the basis of their severity. In
untreated animals sclerosis advanced during the four
weeks after biopsy in all glomeruli, while low-dose
enalapril attenuated the progression of sclerosis,
preserving the structure of glomeruli with early or no
sclerotic lesions. However, glomeruli with more
advanced sclerosis at biopsy, which tend to progress
further, did not benefit from the treatment. Compared to
the low dose, high-dose ACEi, was equipotent in
controlling both systemic and glomerular hypertension,
but had greater beneficial effects on glomerular structure
(sclerosis being less at autopsy than at biopsy in half the
treated rats). 

The same group extended these observations to other
experimental models. Six months’ treatment of
normotensive aging rats with the ARB, losartan, induced
regression of vascular and glomerular lesions, with a
significant reduction of kidney collagen content.
Proteinuria was also reduced and apoptosis of tubular
and interstitial cells was less than at baseline. AT1R
blockade attenuated TGF-ß1 mRNA and protein
expression and markedly reversed PAI-1 mRNA and
protein expression (Ma et al., 2000). 

Control of extracellular matrix accumulation by
inhibiting PAI-1 or TGF-ß1 has also been proposed as
underlying the therapeutic effect of Ang II blockade
respectively in the 5/6 nephrectomy (Ma et al., 2005) or
nitric oxide (NO) deficiency model (Boffa et al., 2003).
In both studies, regression of glomerulosclerosis was
independent of the ARBs’ effects on the expression of
matrix metalloproteases MMP-2 and MMP-9, which
play a key role in glomerular collagen remodeling. In
rats with 5/6 nephrectomy that achieved regression of
sclerosis in response to treatment, the lower PAI-1
expression was paralleled by restoration of plasmin
activity in the kidney, indicating degradation of
extracellular matrix proteins as a key process to
remodeling of sclerosis. Activation of MMPs observed
in the NO model, probably due to an adaptive response
to kidney fibrosis, additionally contributed to sclerosis
reabsorption in losartan-treated rats (Boffa et al., 2003).

In the 5/6 nephrectomy model, exuberant RAS
activation, due to the high expression of AT1R within
the inflamed renal parenchyma, might hamper complete

renoprotection by ACEi or ARBs at “conventional”
antihypertensive doses (Goncalves et al., 2004). An
extremely high dose of the ARB losartan was therefore
used in an attempt to obtain complete renoprotection.
With a comparable antihypertensive effect, an ultrahigh
dose of losartan did indeed provide maximal protection
by halting renal inflammation and glomerular/interstitial
damage at pre-treatment levels, and promoted the
regression of urinary albumin excretion (Fujihara et al.,
2005).

Ultrahigh-dose ARB candesartan also showed
superior protection against chronic renal inflammation in
spontaneously hypertensive rats, attributed to its
particular antioxidant action unrelated to AT1R blockade
(Chen et al., 2008). The effect of delayed treatment with
ultrahigh-dose losartan compared to a conventional dose
on the extent of moderate or advanced glomerular
lesions was also studied in type 1 diabetic rats
maintained in a state of moderate hyperglycemia by
daily insulin injections for ten months (Teles et al.,
2009). Independently of the dose, losartan induced the
regression of both albuminuria and glomerular injury, as
documented by a reduction of mesangial expansion and
of the severity of sclerotic lesions to below baseline.
However, the percentage of glomeruli with severe
sclerotic lesions associated with synechiae to Bowman’s
capsule was similar to that before treatment, suggesting
incomplete resolution of advanced glomerulosclerosis
(Teles et al., 2009).

Further investigation of the volume of sclerosis and
remodeling of the glomerular structure with treatment is
now possible with three-dimensional reconstruction of
the entire capillary tuft. This technique was instrumental
in demonstrating that in MWF rats with very advanced
nephropathy a high dose of ACEi not only markedly
reduced sclerosis volume in most glomeruli, but also
increased the volume of intact capillaries by up to 40%,
indicating substantial glomerular tuft repair (Remuzzi et
al., 2006). Regression of glomerular lesions was
associated with regression of proteinuria and
stabilization of renal function. Worsening of interstitial
changes was also prevented. 

These findings raised the question whether
glomerular tuft repair is due to restucturing or
regeneration, and which glomerular cell component is
involved (Joles et al., 2006). In subtotally
nephrectomized rats, reversal of glomerulosclerosis by
high-dose ACEi was associated with a reduction in
glomerular volume due to the decreases in mesangial
and endothelial cells per glomerulus and in capillary
number (Adamczak et al., 2003, 2004). These data
suggest that reversal of glomerular lesions involves
restructuring of the glomerular microvasculature. In a
different variant of the remnant kidney model, however,
reabsorption of glomerulosclerosis with ARB treatment
was paralleled by increased complexity and branching of
capillaries, suggesting potential regeneration of
glomerular segments (Fogo, 2005; Scruggs et al., 2005).

In MWF rats, in which loss of podocytes with age
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contributes to disease progression (Macconi et al.,
2006b), regression of glomerular lesions in response to
ACEi was associated with remodeling of glomerular cell
components, resulting in a selective increase in podocyte
number from baseline (Macconi et al., 2009b). Besides
podocyte repopulation, enhanced endothelial cell volume
density and reduced mesangial hyperplasia were
observed in response to treatment (Macconi et al.,
2009b). That the increases in podocytes might be the
driving event for endothelial cell remodeling in response
to ACEi is supported by recent findings that ARB can
restore podocyte potential to promote glomerular
endothelial cell sprouting, proliferation, and migration
through the induction of podocyte-derived angiogenic
factors (Liang et al., 2006). 

The mechanism underlying the increase in podocyte
number per glomerulus induced by ACE inhibition is
still not clear. Repopulation of podocytes in the
glomerular tuft was associated with an increase in the
number of cells positive for both the podocyte-specific
nuclear antigen WT1 and the proliferation marker Ki-67
(Macconi et al., 2009b). Considering that podocytes
have limited ability to proliferate, these positive cells
might derive from podocyte precursors. Ultrastructural
features characteristic of podocytes (i.e. foot processes)
have been documented in some parietal epithelial cells
(PECs) of the Bowman’s capsule (Gibson et al., 1992;
Macconi et al., 2009b). These cells express epitopes of
mature visceral podocytes and retain the ability to divide
(Bariety et al., 2006); “transitional cells” – so called
because of their intermediate phenotype between PECs
and podocytes –, are mainly located in the glomerular
vascular stalk (Appel et al., 2009).

In MWF rats the parietal podocytes as a percentage
of total PECs increased in response to ACE inhibition
(Macconi et al., 2009b). Electron microscopy revealed
continuity between the inner surface of the Bowman’s
capsule and the outer glomerular capillary membrane,
indicating that parietal cells can probably migrate from
Bowman’s capsule to the capillary tuft even in normal
physiological conditions (Macconi et al., 2009b) (Fig.
2). The occasional finding of PECs protruding toward
the tuft suggests that these cells can also migrate to the
tuft through cellular bridges in areas other than the
vascular pole (Macconi et al., 2009b).

Overall, these results suggest that remodeling of the
PECs of the Bowman’s capsule contributes to podocyte
restoration in response to ACE inhibition. This is further
supported by two recent studies showing that PECs do
regenerate podocytes. Monitoring the fate of genetically
tagged PECs and their progeny in juvenile transgenic
mice provided experimental proof that PECs are
recruited onto the glomerular tuft and differentiate into
podocytes (Appel et al., 2009). These findings parallel
the identification in the adult human kidney of a subset
of renal progenitor cells that express the stem cell
markers CD133+CD24+ but no podocyte markers
(podocalixin, PDX-), exhibit self-renewal potential and
high cloning efficiency, and act as bipotent progenitors

for both tubules and podocytes (Sagrinati et al., 2006;
Ronconi et al., 2009). These cells are localized at the
urinary pole of the Bowman’s capsule and are distinct
from a transition population expressing both renal
progenitors and podocyte markers that is present
between the urinary and the vascular poles, and can
differentiate only into podocytes. Injection of
CD133+CD24+PDX- cells into adriamycin-treated
Severe Combined Immunodeficiency (SCID) mice, a
model of progressive nephropathy involving podocyte
depletion, results in these cells being grafted into both
glomerular and tubular structures. In the glomerulus,
progenitor cells acquire podocyte-specific markers,
regenerating podocytes (Ronconi et al., 2009). 

All the above evidence suggests that regression of
the glomerular scarring induced by ACEi implies a
pleiotropic effect not simply based on the control of
extracellular matrix deposition, but also on the
remodeling of resident glomerular cells and very likely
of renal progenitors too (Fig. 3).
Dual RAS blockade and multidrug approach 

Although ACEi and ARB have comparable
beneficial effects on progressive renal diseases in
experimental models, the combination has been tested as
a way to maximize RAS blockade and improve
renoprotection. In MWF rats with overt nephropathy
combined treatment with lisinopril and valsartan
normalized proteinuria, halted progressive glomerulo-
sclerosis, and reversed type III collagen accumulation
and protein casts. Treatment also suppressed
inflammatory cell infiltrates in the renal parenchyma
(Remuzzi et al., 2002). Multidrug intervention based on
dual blockade of RAS with the addition of statins
induced the regression of proteinuria, stabilization of
renal function, and complete renoprotection of
glomerular and tubular morphology in a severe model of
progressive nephropathy resistant to ACEi alone (Zoja et
al., 2002). 

In experimental studies high-dose ACEi and
high/ultrahigh-dose ARB provide greater renoprotection
than conventional doses. On clinical grounds, ultrahigh
doses of the ARB candesartan had a greater
antiproteinuric effect than a standard dose in patients
with CKD and overt proteinuria (Schmieder et al.,
2005). However, whether the antiproteinuric effect
translates into a slower rate of renal and cardiovascular
endpoints was not addressed in that study. Type 2
diabetic patients with hypertension and micro or macro
albuminuria randomized to higher doses of the ARB
valsartan showed a two-fold reduction in urinary
albumin excretion rate as compared with patients given
the doses commonly used for blood pressure control.
Twice as many patients on the highest dose returned to
normal albuminuria (Hollenberg et al., 2007). However,
additional renoprotection in terms of greater reduction of
proteinuria, GFR decline, and rate of doubling serum
creatinine, ESRD or death is not peculiar to high-dose
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Fig. 2. Connection between parietal epithelial cells and visceral podocytes. A. Semithin section of a glomerular tuft. Arrow indicates a parietal epithelial
cell (PEC) connecting Bowman's capsule with the glomerular capillary tuft. B. Representative transmission electron microscopy image of the glomerular
vascular pole showing the connection between a visceral podocyte (white arrow) and a PEC (black arrow). BC, Bowman's capsule; US, urinary space.



ARBs, as it is equally achieved by ACEi up-titrated to
the maximal tolerated dose (Hou et al., 2007).

Combined therapy with ACEi and ARB has been
used in CKD patients to minimize proteinuria and
optimize renoprotection. Except in one study (Agarwal,
2001), dual RAS blockade had a greater antiproteinuric
effect than monotherapy (Kunz et al., 2008; Catapano et
al., 2008). ARB added on top of ACE inhibition over
three years’ follow-up was more effective than ACEi
alone in slowing the progression of renal insufficiency in
hypertensive patients with non-diabetic renal disease,
through reduction of proteinuria (Kanno et al., 2006). A
recent clinical trial, the ONTARGET study (Ongoing
Telmisartan Alone and in Combination with Ramipril
Global Endpoint Trial) in patients with established
atherosclerotic vascular disease or diabetes with end-
organ damage, confirmed the efficacy of combined
therapy in reducing proteinuria more than
monotheraphy. The incidence of ESRD was identical on
dual RAS blockade and ACEi or ARB monotherapy
(Mann et al., 2008) and this lack of any appreciable
additional benefit can be explained on the basis that the
rate of GFR decline in ONTARGET patients was within
the physiologic range of GFR loss found in adults with
aging; this is why the small percentage of those who
progressed to ESRD was similar to that observed in the
general population, or in patients with diabetes or
hypertension, but without proteinuria. Indeed only 4% of
ONTARGET patients had overt proteinuria (Ruggenenti
and Remuzzi, 2009). Mortality and doubling of serum
creatinine were not significantly different with combined
therapy or monotherapies. An adverse side effect more
frequent in patients on combined therapy – not to be

taken for a renal outcome – was the need for acute
hemodialysis to treat transient functional impairment.
This was quite likely due to transient kidney
hypoperfusion (Ruggenenti and Remuzzi, 2009), and
recovered when treatment was withdrawn (Mann et al.,
2008). 

Drugs added on top of dual RAS blockade provide
further renoprotection, as documented in the Remission
Clinic (see above). Experimental data suggest that
multimodal strategy can achieve regression of CKD in
patients who do not respond fully to ACEi therapy. This
is proved by the case of a young girl with nephrotic
proteinuria and systemic lupus who received, in addition
to a sodium and protein-restricted diet, triple therapy
with an ACEi, an ARB, and a statin. This treatment not
only induced remission of proteinuria within six months,
but reduction of proteinuria to < 0.3 g/day and improved
GFR seven years later indicated regression of CKD
(Ruggenenti et al., 2001a). 
Conclusions

Regression of proteinuria and remission/regression
of glomerular lesions can be achieved by treatment
based on RAS blockade in non-diabetic and diabetic
experimental nephropathies. Time of administration is
important, earlier and more prolonged treatment being
more protective. Monotherapy with high or ultra-high
doses of ACEi or an ARB can preserve renal structure
more effectively than a conventional dose, and a
multidrug approach can be useful in case of resistance to
Ang II blockade. Translation of experimental knowledge
into clinical practice has improved the quality of life for
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Fig. 3. The mechanisms
underlying glomerular capillary
restructuring and repair by
renin-angiotensin system
(RAS) blockade. Control of
extracellular matrix deposition
and remodeling of glomerular
cells are the basis for
regression of glomerular
structural injury.



patients with CKD and, in some of them – especially
those with non-diabetic nephropathies – induced
regression. However, despite these positive results,
investigations in animal models show that renoprotection
is not complete, advanced structural injury such as
interstitial inflammation is less prone to regression, and
renal function, although stable, does not improve.
Similarly, not all patients with CKD benefit from
therapy based on RAS blockade. Thus, together with
deeper investigation of the mechanisms regulating
glomerular cell survival and repair on therapy, research
needs to focus on improving knowledge of new
pathways not involving Ang II (see review, Perico et al.,
2008). Help from tools such as proteomics will help
identify new targets and develop novel strategies for
patients who remain at high risk for poor renal and
cardiovascular outcomes. 
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