ANALES DE CIENCIAS. VOL. XLVII. NÚMS. 1-4, 1988: 47-51 SECRETARIADO DE PUBLICACIONES - UNIVERSIDAD DE MURCIA

# Sobre las ecuaciones de Ruzic para los polarogramas de Kalousek de procesos reversibles Ox + ne ⇒ Red

J. López y F. Vicente\* Departamento de Química-Física. Facultad de Química. Burjassot (Valencia) F. Martínez Ortiz y J. Vera

Departamento de Química Física. Facultad de Ciencias Químicas y Matemáticas. Murcia

Recibido: 11-12-87 Aceptado: 30-12-88

On the equations of Ruzic in Kalousek polarography for reversible process

Summary: The shape of the experimental Kalousek polarograms shown by Cd(II) on the dropping mercury electrode has been compared with the theoretical one. The  $S_1$  and  $S_2$  parameters in Ruzic expressions have been obtained empirically. The usefulness of half branch width,  $w_{1/4}$ , in K3 and K4 polarograms in order to determine the number of electrons involved in the electrode process has been analyzed.

### INTRODUCCIÓN

## ECUACIONES DE LOS POLAROGRAMAS DE KALOUSEK <sup>1-10</sup>

Las expresiones teóricos de las curvas de intensidadpotencial para procesos reversibles fueron definitamente establecidas por Ruzic<sup>11</sup> a partir del trabajo realizado por Koutecky<sup>12</sup>. Ese último evaluó la ecuación general de la intensidad medida, para un proceso reversible, en uno de los semiperíodos del voltaje de onda cuadrada como:

 $\mathbf{M} = \mathbf{f}_{\mathbf{p}} \cdot \mathbf{t} \tag{1}$ 

$$i = s_1 i_1 + s_2 (i_2 - i_1) = (s_1 - s_2) i_1 + s_2 i_2$$
 (2)

$$s_1 = (2M)^{-1/6} \Sigma [(2s)^{7/6} - (2s-1)^{7/6}]$$
(3)

$${}_{2} = (2M)^{-7/6} \Sigma \Sigma \{ [(2s-1)^{7/3} - j^{7/3}]^{1/2} - [(2s)^{7/3} - j^{7/3}]^{1/2} \} (-1)^{i}$$
(4)

 $i_2$  corresponde a la intensidad DC para el potencial aplicado durante el semiperíodo en el que se mide i, e  $i_1$  es la corriente del otro semiperíodo. Los valores límite de  $s_1$  y  $s_2$ , calculados por Koutecky son:  $s_1 \cong 0.5$  y  $S_2 \cong 0.5 M^{1/2}$ .

Los valores de i<sub>1</sub> e i<sub>2</sub> para las diferentes técnicas son:

|    | i <sub>1</sub>      | i <sub>2</sub>      |  |
|----|---------------------|---------------------|--|
| К  | $i_{d}[X/(1 + X)]$  | i(E <sub>pb</sub> ) |  |
| Κ₂ | i(E <sub>pb</sub> ) | $i_{d}[X/(1 + X)]$  |  |
| Кз | $i_d[AX/(1 + AX)]$  | $i_{d}[X/(1 + X)]$  |  |
| K4 | $i_{d}[X/(1 + X)]$  | $i_d[AX/(1 + AX)]$  |  |

Donde X= exp[-nF/RT (E<sub>1/2</sub>-E<sub>1/2</sub>)] y A= exp $[-nF/RT \Delta E]$ .

\* Autor para correspondencia.

#### A) Métodos $K_1 y K_2$

48

Se pueden distinguir dos casos, cuando el potencial de base de los impulsos se encuentra a valores menos negativos que  $E_{1/2}$  (zona residual en DC) y cuando se encuentra a valores más negativos (zona difusiva).

En el primer caso, valores menos negativos,  $i(E_{pb})=0$  y las ecuaciones resultan:

$$i_{k-1} = (s_1 - s_2) i_d [X/(1 + X)]$$
 (5)

$$i_{k} = s_2 i_d [X/(1+X)]$$
 (6)

y para valores más negativos que  $E_{1/2}$ , i=i  $(E_{pb})=i_d$  y las ecuaciones son:

$$i_{k} = i_{d} [(s_{t} X + s_{2})/(1 + X)]$$
(7)

$$k_{2} = i_{d} [(s_{1} X - (s_{2} - s_{1})) / (1 + X)]$$
 (8)

Las intensidades límites,  $i_1 = i(X = \infty) - i(X = 0)$  resultan:

$$i_{k-1} = (s_1 - s_2) i_d$$
 (9)

$$i_{k_2} = s_2 i_d$$
 (10)

independientemente de la base del potencial aplicado. Son ondas de forma escalonada catódicas las  $K_2$  y anódicas las  $K_1$ . Se puede aplicar sobre ellas todo lo dicho para ondas escalonadas.

#### B) Métodos K<sub>3</sub> y K<sub>4</sub>

Se obtienen ondas en forma de pico, pero que a diferencia de las obtenidas en DP no son simétricas. Si las expresiones son:

$$i_{k_{3}} = (s_{1} - s_{2})i_{d}[AX/(1 + AX)] + s_{2}i_{d}[X/(1 + X)]$$
 (11)

$$i_{k} = (s_1 - s_2) i_d [X/(1 + X)] + s_2 i_d [AX/(1 + AX)]$$
 (12)

los picos se obtienen (máximo en  $K_4$  y mínimo en  $K_3$ ) para:

$$X_{k^{3}(\min)} = (b^{1/2}\sqrt{A} - 1) / (A - b^{1/2}\sqrt{A})$$
(13)

$$X_{k 4 (max)} = (b^{-1/2} \sqrt{A} - 1) / (A - b^{-1/2} \sqrt{A})$$
(14)

$$b = 1 - s_1/s_2$$
 (15)

A frecuencias suficientemente altas  $s_1 \ll s_2$  y  $b \cong 1$ , resulta entonces:

 $X_{\min} \sim 1/\sqrt{A} = X_{\max} \sim 1/\sqrt{A}$  (16)

$$E_{min} \sim E_{1/2} - \Delta E/2 \qquad E_{max} \sim E_{1/2} - \Delta E/2$$
 (17)

Ambos picos aparecen a valores próximos a  $E_{1,2}$ - $\Delta E/2$ ,

pero a potenciales menos negativos en  $K_3$  y más negativos en  $K_4$ .

Los valores aproximados, de la intensidad de pico son:

$$i_{k3 \text{ (min)}} = i_{d} \left[ s_{1} \sqrt{A} / (1 + \sqrt{A}) + s_{2} (1 - \sqrt{A}) / (1 + \sqrt{A}) \right]$$
 (18)

$$i_{k4 (max)} = i_{d} [s_{1} / (1 + \sqrt{A}) - s_{2} (1 - \sqrt{A}) / (1 + \sqrt{A})$$
 (19)

El primer valor se denomina  $i_{p,a}$  y al segundo  $i_{p,i}$ . Otros valores de intensidades que se miden son:

$$i_{p, l}(K_3) = i(X = \infty) - i(X_{min})$$
 (20)

$$i_{0,c}(K_4) = i(X_{max}) - i(X = 0)$$
 (21)

se cumplen las relaciones, para procesos reversibles:

$$i_{p, a} = i_{p, c}$$
 (22)

$$i_{p,t}(K_3) = i_{p,t}(K_4)$$
 (23)

La obtención de valores de n a partir de las curvas de Kalousek es difícil debido a la complejidad de la función E=f(i). Cualquier intervalo de potencial, para dos valores idénticos de i es función de n, amplitud del impulso (-50mV en nuestro caso) y del número de impulsos aplicados.

#### E XPERIMENTAL

Los registros polarográficos se han obtenido con un Polarógrafo Polarecord E-506 (Metrohm Herisau). El elec<sup> $\sum$ </sup> trodo auxiliar ha sido de platino y el de referencia Ag/Ag Cl. Con puente salino saturado de K Cl. Las disoluciones se han termostatizado mediante un termostato Heto E-623. Se empleó un tampón de ácido acético (Panreac) y acetato sódico trihidratado (Probus) de calidades pro-análisis. Para la preparación de las disoluciones de Cd(II) se empleó cloruro de cadmio de calidad pro-análisis (Merck).

#### **RESULTADOS Y DISCUSIÓN**

En K<sub>3</sub> un intervalo de potencial fácilmente medible es la diferencia de potencial entre el mínimo y el valor para el cual i vuelve a tomar el valor cero. En K<sub>4</sub>, sería la diferencia entre el valor máximo y el punto en el que la intensidad tiene valor correspondiente a  $E=-\infty$ . Ambos incrementos tienen el carácter de una semianchura de rama,  $(W'_{1/4})$  y su valor es igual para ambos casos:

nF/RT w'<sub>1/4</sub> = Ln [ ( 
$$(\sqrt{A} - b^{1/2}) (bA - 1) ) / ( (b^{1/2} A - \sqrt{A}) (1 - b) ) ] (24)$$

La principal dificultad para la utilización de esta ecuación es la dependencia con n de la expresión incluida en el logaritmo, lo que hace necesario un cálculo iterativo para una frecuencia y amplitud del impulso fijas.

> UNIVERSIDAD DE MURCIA



FIGURA 1. Comparación de las ondas experimentales con las ecuaciones teóricas de Ruzic. T=298K;  $[Cd(II)]=4 \cdot 10^{-4}$ ; pH=4.8; I=0.5 M; t=0.8s; m=2.63mgr/s;  $\Delta E$ =-50mV;  $E_{pk_3}$ )=  $E_{pk_4}$ )=-390mV; f<sub>k</sub>=75 Hz.



La variación de las intensidades límite y de pico se ajustan en todos los casos a líneas rectas frente a  $M^{1/2}$  y para las intensidades obtenidas en K<sub>3</sub> y K<sub>4</sub> las pendientes son semejantes, tal como predecían las ecuaciones. (Tabla 1).

De el valor de la pendiente obtenemos el valor de  $s_2$ , valor coincidente con el trabulado por Koutecky  $s_2=0.493M^{1/2} \cong 0.5M^{1/2}$ ).

De la ordenada en el origen no es posible obtener el

valor de s<sub>1</sub>, debido a la gran dispersión que presentan estos valores; para obtenerlo utilizamos las relaciones:

$$\Delta i (K_3) = |i_{p,1}| - |i_{p,a}| = s_1 i_d$$
(25)

$$\Delta i (\mathbf{K}_{4}) = \mathbf{i}_{\mathbf{p}_{4}} - \mathbf{i}_{\mathbf{p}_{4}} = \mathbf{s}_{1} \mathbf{j}_{4}$$
(26)

Los valores así obtenidos presentan una constancia, (tabla 2) con un valor de  $s_1$  próximo a la unidad (un valor

TABLA 1. Dependencia de  $i_1, i_p$  para las ondas Kalousek del Cd(II) con M. T=298 K; [Cd(II)] = 410<sup>-4</sup>; pH=4.8; l=0.5 M;  $i_d$ =2.485 µA. m=2.63mgr/s;  $\Delta E$ =-50 mV;  $E_{Pb}(K_3)$ = $E_{Pb}(K_4)$ =-390 mV; t=0.6 s.

|             | K <sub>1</sub> | K2                  | K                      | 53                     | ŀ                        | ζ.                     |
|-------------|----------------|---------------------|------------------------|------------------------|--------------------------|------------------------|
| М           | i,(μΑ)         | i <sub>ι</sub> (μΑ) | i <sub>ρ,a</sub> (μ A) | i <sub>p,ι</sub> (μ A) | ` i <sub>ρ,t</sub> (μ A) | i <sub>ρ,c</sub> (μ Α) |
| 15          | -2.61          | 4.86                | -1.50                  | 3.78                   | · 3.96                   | 1.74                   |
| 30          | -4.62          | 6.66                | -2.70                  | 5.10                   | 5.16                     | 2.88                   |
| 45          | -5.70          | -7.70               | -3.65                  | -5.90                  | -6.00                    | -3.80                  |
| 2 <b>90</b> | -9.40          | 10.90               | -5.95                  | 8.20                   | 8.20                     | 6.00                   |
| 180         | -13.95         | 15.30               | -9.00                  | 11.25                  | 11.40                    | 9.00                   |

Representación  $i(\mu A) = AM^{1/2} + B$ 

|                                  | Α      | В     | г     | S,   | S 2  |
|----------------------------------|--------|-------|-------|------|------|
| i <sub>l</sub> (K <sub>1</sub> ) | 1.186  | 1920  | .9999 | 0.89 | 0.55 |
| $i_1(K_2)$                       | 1.260  | 0.125 | .9999 |      | 0.58 |
| i. (K.)                          | -0.791 | 1.604 | .999  | 0.84 | 0.48 |
| i (K)                            | 0.796  | 0.783 | .999  | 2.91 | 0.49 |
| i_(K_4)                          | 0.780  | 0.860 | .999  | 3.18 | 0.48 |
| i <sub>₽4</sub> (K₄)             | -0.766 | 1.282 | .999  | 0.68 | 0.47 |

TABLA 2. Valores de s<sub>1</sub> obtenidos a partir de las ondas K<sub>3</sub> y K<sub>4</sub> del Cd(II) para diferentes M T=298 K; [Cd(II)] =  $4 \cdot 10^{-4}$ ; pH=4.8; l=0.5 M; i<sub>d</sub>=2.485 µ A. m=2.63mgr/s;  $\Delta E$ =-50 mV; T=0.6s.

| A COMPANY OF A DATE OF A D |                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| $1 (K_{a}) = [1 ] - [1a] = S_{a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $L(K_{1})=1$ , $-1$ , $-8$ , $1_{1}$ |
| -0/3/ [-0.][[]1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *C\****/ *D.(*D.C * ***              |

| М   | i <sub>ь</sub> (μ A) | Sı   | i <sub>c</sub> (μ A) | $\mathbf{S}_1$ |
|-----|----------------------|------|----------------------|----------------|
| 15  | 2.28                 | 0.92 | 2.22                 | 0.89           |
| 30  | 2.40                 | 0.96 | 2.28                 | 0.92           |
| 45  | 2.25                 | 0.91 | 2.20                 | 0.89           |
| 90  | 2.25                 | 0.91 | 2.20                 | 0.89           |
| 180 | 2.25                 | 0.91 | 2.40                 | 0.96           |

TABLA 3. Valores de semianchura de rama para las ondas  $K_3$  y  $K_4$  del Cd(II) para diferentes valores de M

T=298 K;  $[Cd(II)] = 4 10^{-4}$ ; pH=4.8; l=0.5 M.

m=2.63mgr/s;  $\Delta E=-50$  mV; n(teórico)=2.

| t(s) | f <sub>k</sub> (Hz) | M <sub>W1/4</sub> | $(mV), K_{3W1/4}$ | (mV),K <sub>4W1/4</sub> | (mV), teórico |
|------|---------------------|-------------------|-------------------|-------------------------|---------------|
| 0.6  | 25                  | 15                | 28                | 32                      | 29.9          |
| 0.4  | 75                  | 30                | 36                | 34                      | 35.6          |
| 0.6  | 50                  | 30                | 36                | 36                      | 35.6          |
| 0.6  | 75                  | 45                | 36                | 40                      | 38.6          |
| 0,4  | 150                 | 60                | 36                | 36                      | 40.7          |
| 1.0  | 75                  | 75                | 40                | 40                      | 42.3          |
| 0.6  | 150                 | 90                | 40                | 42                      | 43.6          |
| 1.2  | 75                  | 90                | 40                | 40                      | 43.6          |
| 0.6  | 300                 | 180               | 44                | 46                      | 48.4          |

medio de 0.92), que difiere del tabulado por Koutecky (0.5).

Las posiciones de máximos y mínimos se ajustan a lo señalado en la ecuación (17) próximos a  $E_{1/2}$ - $\Delta E/2$ , a potenciales menos negativos en K<sub>4</sub>.

La semianchura de rama  $W'_{1/4}$  tienen también valores próximos a los teóricos (tabla 3). Sin embargo para obtener valores de n es necesario trabajar con una gran sensibilidad, sobre todo para un número de impulsos bajo.

La variación de t, depende por un lado de  $i_d$  (t<sup>1/6</sup>) y del número de impulsos (t<sup>1/2</sup>); la representación log t/log i conduce a pendientes próximas a 2/3.

Las ecuaciones teóricas reproducen perfectamente las ondas reversibles obtenidas experimentalmente del Cd(II), (fig. 1) utilizando los valores de  $s_1$  y  $s_2$  obtenidas experimentalmente y para n=2. Para las ondas escalonadas existe la diferencia de la corriente de carga, ya que esta última no es contemplada teóricamente; las ondas K<sub>3</sub> y K<sub>4</sub> son reproducidas con gran exactitud, aunque las intensidades de pico en K<sub>3</sub> son ligeramente inferiores a las teóricas. Estas ligeras discrepancias son el orden las que corresponden a la aproximación de esfericidad electródica supuesta en las ecuaciones de Ruzic.

#### **BIBLIOGRAFÍA**

- 1 RALEK, M.: Tesis Doctoral. Facultad de Ciencias. Praga (1952).
- 2 KALOUSEK, M. y RALEK, M.: Chem. Listy (1954), 48, 808.
- 3 BARKER, G.C.: «Progress in Polarography». (1962), Vol. II, pág. 411, Interciencie, New York.
- 4 THOMSON, P.; STRADYN, P. y TUTANE, K.: Zavod. Lab. (1967), 33, 261.
- 5 BOS, M: Anal. Chem. Acta (1978), 103, 367.
- 6 MATSUDA, H.: Elektrochem. (1958), 62, 977.
- 7 KAMBARA, T: Bull. Chem. Soc. Japan (1954), 27, 529.
- 8 KINARD, W. F.; PHILIP, R. H. y PROST, R. C. Anal. Chem. (1967), 39, (13), 1556.
- 9 NÚÑEZ-FLORES, M. A., SANZ, C, MONLEÓN, C. y VI-CENTE, F.: Portugaliae Electrochem. (1987), Acta 5, 5-15.
- 10 VICENTE, F.; NÚŇEZ-FLORES y SANZ, C.:. Electrochimica Acta. (1985), 30 (12), 1723.
- 11 RUZIC, I: J. Electroanal. Chem. (1972), 39, 111.
- 12 KOUTECKY, J.; Coll. Czech. Chem. Comm. (1956), 21, 433.