
UNIVERSIDAD DE MURCIA

Providing Federated Access and SSO to Internet
Services by means of Kerberos and AAA Infrastructures

Proporcionando Acceso Federado y SSO a Servicios
de Internet mediante Kerberos e Infraestructuras AAA

D. Alejandro Pérez Méndez
2014

FACULTAD DE INFORMÁTICA

Universidad de Murcia
Facultad de Informática

PROPORCIONANDO ACCESO FEDERADO Y SSO

A SERVICIOS DE INTERNET MEDIANTE

KERBEROS E INFRAESTRUCTURAS AAA

Tesis Doctoral

Presentada por:
Alejandro Pérez Méndez

Supervisada por:
Dr. Gabriel López Millán

Dr. Rafael Maŕın López

Murcia, Septiembre de 2014

D. Juan Antonio Sánchez Laguna, Profesor Titular de Universidad del Área de Ciencia
de la Computación e Inteligencia Artificial y presidente de la Comisión Académica del
Programa de doctorado en Informática,

INFORMA:

Que vista la solicitud de autorización de presentación de tesis doctoral de D.
Alejandro Pérez Méndez, titulada “PROPORCIONANDO ACCESO FEDERADO Y SSO
A SERVICIOS DE INTERNET MEDIANTE KERBEROS E INFRAESTRUCTURAS
AAA”, realizada bajo la inmediata dirección y supervisión de D. Gabriel López Millán
y D. Rafael Maŕın López, y evaluado el expediente completo, la Comisión Académica
del Programa de Doctorado, de conformidad con lo establecido en el art́ıculo 21 del
“Reglamento por el que se regulan las enseñanzas oficiales de doctorado de la Universidad
de Murcia”, resolvió la autorización de presentación de la tesis doctoral.

En Murcia, a de Septiembre de 2014

D. Gabriel López Millán, Profesor Titular del Área de Ingenieŕıa Telemática en el
Departamento de Ingenieŕıa de la Información y las Comunicaciones de la Universidad de
Murcia, AUTORIZA:

La presentación de la Tesis Doctoral titulada “PROPORCIONANDO ACCESO
FEDERADO Y SSO A SERVICIOS DE INTERNET MEDIANTE KERBEROS E
INFRAESTRUCTURAS AAA”, realizada por D. Alejandro Pérez Méndez, bajo mi
inmediata dirección y supervisión, y que presenta para la obtención del grado de Doctor
por la Universidad de Murcia con mención Internacional.

En Murcia, a de Julio de 2014

D. Gabriel López Millán

D. Rafael Maŕın López, Profesor Contratado Doctor del Área de Ingenieŕıa Telemática
en el Departamento de Ingenieŕıa de la Información y las Comunicaciones de la Universidad
de Murcia, AUTORIZA:

La presentación de la Tesis Doctoral titulada “PROPORCIONANDO ACCESO
FEDERADO Y SSO A SERVICIOS DE INTERNET MEDIANTE KERBEROS E
INFRAESTRUCTURAS AAA”, realizada por D. Alejandro Pérez Méndez, bajo mi
inmediata dirección y supervisión, y que presenta para la obtención del grado de Doctor
por la Universidad de Murcia con mención Internacional.

En Murcia, a de Julio de 2014

D. Rafael Maŕın López

Resumen

Desde los oŕıgenes de Internet, el control de acceso a los servicios de aplicación

(compartición de ficheros, correo electrónico, etc.) ha sido una de las principales

preocupaciones para los proveedores de servicio. Generalmente, éstos quieren permitir el

acceso sólo a aquellos usuarios que se hayan registrado previamente (p.ej. banca online), o a

aquellos que cumplan un conjunto de condiciones espećıfico (p.ej. ser parte del personal de

una universidad para acceder a un repositorio de publicaciones de investigación). También

quieren mantener un registro de quién accedió y cuándo (p.ej. por motivos de facturación).

El esquema de control de acceso más desplegado desde el comienzo de Internet hasta

ahora se da cuando el propio servicio implementa toda la funcionalidad requerida. Sin

embargo, este escenario presenta varios inconvenientes: en primer lugar, los usuarios tienen

unas credenciales y atributos diferentes para cada servicio de aplicación; en segundo lugar,

los servicios tienen que implementar toda la lógica de control de acceso por śı mismos. Para

suavizar estos problemas, los proveedores de servicio suelen centralizar el almacenamiento

de credenciales e información de identidad en una base de datos compartida. Un ejemplo

t́ıpico se da en un campus universitario, donde las mismas credenciales y atributos se

comparten entre los diferentes servicios.

El siguiente paso en este camino hacia la simplificación consiste en la delegación de

(parte de) la funcionalidad de control de acceso en una entidad centralizada, generalmente

llamada Proveedor de Identidad (en inglés Identity Provider - IdP). De esta forma, los

usuarios son en realidad autenticados por el IdP, mientras que los servicios de aplicación

reciben el resultado de ese proceso, junto con información de identidad (p.ej. atributos de

usuario) para tomar una decisión de autorización. Otra ventaja de desplegar un IdP es la

posibilidad de proporcionar Single Sign-On (SSO), es decir, entregar al usuario algún tipo

de información temporal (p.ej. token, cookie, etc.) que se pueda usar para simplificar los

siguientes procesos de autenticación para el acceso a otros servicios del proveedor. Algunos

ejemplos de tecnoloǵıas que permiten el uso de un IdP son SAML, Kerberos, OpenID u

OAuth. Google Accounts constituye un claro ejemplo de despliegue de un IdP.

Además, el auge de las telecomunicaciones, y las nuevas necesidades que han surgido con

ix

él, ha propiciado el establecimiento de acuerdos de negocios entre diferentes proveedores

de servicio: las llamadas federaciones de identidad. Estas federaciones definen y regulan

cómo se relacionan los servicios de aplicación y los IdPs de diferentes organizaciones para

permitir a los usuarios de un proveedor de servicios acceder a cualquiera de los servicios

proporcionados por otro proveedor perteneciente a la federación. Cada una de estas

federaciones define qué protocolos y tecnoloǵıas se usan para cumplir con este propósito,

aśı como los tipos de servicios de aplicación que se soportan en la misma. En concreto,

hay dos tipos de federaciones de identidad completamente asentadas: federaciones de

identidad basadas en Web y federaciones de identidad basadas en infraestructuras AAA

(Authentication, Authorization, and Accounting). Las primeras se centran en proporcionar

un acceso federado a aplicaciones Web, usando tecnoloǵıas como OAuth, OpenID o SAML.

Las segundas se utilizan hoy en d́ıa principalmente para controlar el servicio de acceso a

la red, usando tecnoloǵıas como RADIUS o Diameter.

Esto ha dado lugar a escenarios donde las organizaciones pueden tener desplegadas dos

federaciones diferentes: una basada en AAA y otra basada en Web. Pero esto genera una

pregunta: ¿qué ocurre con otros tipos de servicio? En los últimos años ha obtenido un

interés y una notoriedad significativa un tipo de escenario que intenta dar una solución de

federación a servicios que no disponen de un soporte adecuado para ninguno de los tipos

de federaciones de identidad descritos anteriormente, como la transferencia de ficheros,

el acceso al terminal remoto o la gestión del Cloud. Este escenario se ha denominado

federación de identidad más allá del Web.

Desafortunadamente se han definido pocas soluciones para este tipo de federación.

Concretamente, hasta donde el autor ha podido conocer, sólo dos de ellas pueden

considerarse como tales: Kerberos y Moonshot. Esta tesis analiza estas dos soluciones y las

evalúa en función de una serie de requisitos que hemos definido como deseables para este

tipo de federación. Sin embargo, ninguna de estas soluciones cumple todos estos requisitos.

Por un lado, el soporte de federación de Kerberos (llamado cross-realm) presenta diversos

problemas documentados, como la escalabidad del modelo de confianza. Además, requiere

establecer una infraestructura de federación adicional a las ya existentes (es decir, basadas

en Web y en AAA). Más aún, Kerberos carece de una gestión de autorización que pueda

considerarse completa. Por otro lado, Moonshot no proporciona soporte de SSO completo

y requiere la adaptación de todos los servicios de aplicación para su funcionamiento.

Esta tesis pretende diseñar soluciones para crear federaciones de identidad más allá

del Web, evitando los problemas que presentan las anteriores propuestas. En concreto,

este documento se centra en el análisis, diseño e implementación de soluciones para

la interconexión de Kerberos con federaciones AAA. Kerberos posee grandes cualidades

para el control de acceso dentro de una misma organización (p.ej. es seguro, ligero

computacionalmente, soporta SSO, etc.). Además, Kerberos está ampliamente desplegado

y está soportado por la mayoŕıa de servicios de aplicación actuales. Sin embargo, como

se ha mencionado anteriormente, presenta algunos puntos débiles en cuanto a soporte de

federación o de autorización. Por otro lado, las federaciones AAA se han usado durante

años para proporcionar acceso a la red, con gran éxito y presencia. La integración de estas

tecnoloǵıas ofrece una solución que supera al modo de operación cross-realm de Kerberos,

usando una alternativa de federación con una aceptación mucho mayor. De esta forma, los

beneficios de ambas tecnoloǵıas se combinan para proporcionar una mejor experiencia de

usuario, un despliegue simplificado (no hace falta modificar los servicios de aplicación) y

una mejor explotación de recursos, tanto a nivel de cómputo como de uso de la red.

Además de la autenticación federada, esta tesis se centra en el análisis y diseño de

mecanismos para incorporar una solución de autorización avanzada en Kerberos. Mientras

que Kerberos no define un proceso de autorización preciso, SAML se ha usado con gran

éxito y amplio despliegue en federaciones basadas en Web. En particular, entre las ventajas

de SAML cabe destacar su gran aceptación por la comunidad, su gran flexibilidad para

representar datos de autorización o la disponibilidad de herramientas software para su

generación y procesado.

Para lograr la integración de estas tecnoloǵıas, el objetivo general de esta tesis puede

expresarse como:

Analizar, diseñar y validar soluciones que permitan a los usuarios obtener

credenciales Kerberos para un proveedor de servicios espećıfico, como resultado

de un proceso de autenticación realizado a través de una federación AAA y de

un proceso de autorización basado en el intercambio de sentencias SAML con

la organización origen.

Este objetivo se ha abordado de tres formas diferentes, dependiendo del escenario

de uso. En primer lugar, se puede extender el mecanismo de autenticación estándar de

Kerberos para incorporar soporte para infraestructuras AAA. Una segunda aproximación

consiste en realizar la autenticación federada usando un protocolo externo a Kerberos,

con soporte nativo para infraestructuras AAA, y generar credenciales Kerberos a partir

del mismo. Finalmente, una tercera estrategia consiste en aprovechar el proceso de

autenticación federada que se realiza para el acceso a la red (p.ej. eduroam). Como

este proceso ha involucrado a la federación AAA, podŕıa usarse para generar credenciales

Kerberos en la organización a la que el usuario se ha conectado a la red. Este documento

analiza, diseña y propone una solución para cada una de estas alternativas, a las que se ha

denominado FedKERB, PanaKERB y EduKERB respectivamente.

FedKERB proporciona una arquitectura que integra las infraestructuras Kerberos y

AAA mediante la definición un nuevo mecanismo de pre-autenticación para Kerberos

basado en tecnoloǵıas como GSS-API y EAP. De esta forma, Kerberos hace uso de

la infraestructura AAA para realizar una autenticación federada, generando nuevas

credenciales para el usuario en base al material criptográfico derivado de la autenticación

EAP. Además, la arquitectura incluye la posibilidad de realizar una autorización avanzada

tras el proceso de autenticación, mediante el transporte de una sentencia SAML con

información de identidad del usuario, desde el IdP de la organización origen hasta la

infraestructura Kerberos del proveedor de servicios. FedKERB proporciona una solución

genérica que satisface todos los requisitos deseados para una federación de identidad más

allá del Web, incluyendo soporte directo de SSO dentro de los ĺımites del proveedor de

servicios (es decir, intra-dominio). Todo esto hace que FedKERB sea adaptable a la

mayoŕıa de los escenarios más allá del Web previstos. Sin embargo, aunque FedKERB

no requiere modificar los servicios de aplicación, śı requiere la modificación del proceso

de pre-autenticación Kerberos. Aunque esto sólo implica actualizar una única entidad (el

KDC), este requisito podŕıa no ser aceptable para algunos proveedores de servicio o en

ciertos escenarios, donde la infraestructura Kerberos desplegada deba permanecer intacta.

PanaKERB define una alternativa a FedKERB que no requiere la modificación

del mecanismo de pre-autenticación de Kerberos. Para conseguir este objetivo, esta

contribución define una arquitectura que usa un protocolo externo a Kerberos (out-of-band)

con soporte nativo para infraestructuras AAA (en este caso, PANA) para realizar la

autenticación federada del usuario. Este proceso out-of-band resulta en la obtención

de nuevas credenciales Kerberos, generadas del material criptográfico derivado de la

autenticación EAP. La fortaleza de PanaKERB reside en su simplicidad, ya que no

requiere la modificación de ningún componente ya desplegado del proveedor. Sin embargo,

tiene la desventaja de introducir un protocolo adicional (PANA) y una nueva entidad

(PANA Authentication Agent - PAA) en la arquitectura. No obstante, esperamos que esta

simplicidad haga que su adopción y despliegue sea más fácil que en el caso de FedKERB,

resultando una solución más adecuada para aquellas organizaciones que ya tienen una

infraestructura Kerberos desplegada y que son reticentes a modificarla para incorporar

los cambios requeridos por FedKERB. Además, PanaKERB también permite el uso del

modelo de autorización avanzada definido para FedKERB.

Finalmente, EduKERB proporciona una arquitectura cross-layer que integra Kerberos

con la autenticación basada en AAA realizada durante el acceso a la red. Esto se consigue

definiendo un nuevo mecanismo de pre-autenticación para Kerberos que utiliza el resultado

de una ejecución EAP exitosa. Dado que estos dos procesos de autenticación (acceso a

la red y Kerberos) ocurren en diferentes capas del modelo OSI (capa de enlace y capa

de aplicación), recibe el nombre de SSO cross-layer. EduKERB reduce el número de

autenticaciones federadas basadas en AAA que son necesarias para acceder a los servicios

de aplicación, mejorando la eficiencia y optimizando la utilización de recursos. Otro de

los aspectos relevantes de EduKERB, cuando se compara con FedKERB y PanaKERB,

es su ámbito de aplicación. Mientras que éstas últimas tienen una aplicabilidad genérica,

EduKERB se ha diseñado para aprovechar el proceso de acceso a la red espećıficamente

diseñado para la infraestructura RADIUS de eduroam. Sin embargo, puede implantarse

en otros escenarios basados en RADIUS si se desea. EduKERB requiere un mayor número

de modificaciones en las infraestructuras existentes que las anteriores propuestas. Sin

embargo, estas modificaciones permiten reducir el número de autenticaciones EAP y la

sobrecarga asociada en términos de mensajes de red y tiempo de ejecución. EduKERB

también permite el uso del modelo de autorización avanzada definido para FedKERB y

PanaKERB.

Además de la definición de estas contribuciones, esta tesis también proporciona un

análisis funcional y de rendimiento de las mismas. El análisis consiste en la definición

de un modelo de rendimiento (describiendo las diferentes operaciones con un impacto en

el tiempo de ejecución de cada propuesta), la implementación de tres prototipos para

demostrar su viabilidad y la medición de su rendimiento real, basado en la ejecución de

estos prototipos. De este análisis se han extráıdo dos conclusiones principales. En primer

lugar, se demuestra que las tres propuestas descritas en esta tesis presentan tiempos de

ejecución similares a los que se dan durante el acceso a la red (que sirve como referencia

dado que es el uso más extendido de las infraestructuras AAA). Además, dado que han

sido implementadas y ejecutadas en un entorno real, su viabilidad queda demostrada más

allá del punto de vista teórico. Finalmente, se confirma que el rendimiento de las tres

propuestas es muy similar, por lo que la decisión de usar una u otra dependerá de los

requisitos de cada escenario de despliegue.

Para finalizar, esta tesis discute las ĺıneas de investigación para trabajo futuro más

interesantes que han surgido durante su realización, y que pueden proporcionar avances en

el área de la misma. Estas ĺıneas se pueden catalogar en función de su plazo estimado de

realización. En concreto, el trabajo futuro a corto plazo incluye trabajar activamente en el

despliegue de tecnoloǵıas de federación de identidad más allá del Web en entornos reales ;

y el análisis, diseño e implementación de una solución que permita el uso de HTTP como

un protocolo out-of-band para Kerberos, en lugar de PANA. Para el medio plazo, las ĺıneas

de investigación propuestas son el análisis y diseño de soluciones para extender los ĺımites

de aplicabilidad del SSO, desde el modelo actual intra-organizacional hacia un modelo de

SSO inter-organizacional ; y el análisis y diseño de mecanismos para el establecimiento y

la gestión dinámica de federaciones AAA, donde las relaciones de confianza se establezcan

de una forma automatizada entre los miembros de la federación. A largo plazo, esta tesis

propone el análisis, diseño e implementación de estrategias para integrar el concepto de

IDaaS (Identity as a Service) con las tecnoloǵıas de federación de identidad más allá del

Web discutidas en la misma, como una manera de simplificar su despliegue y extender su

uso.

Agradecimientos

Me gustaŕıa dedicar esta página para agradecer a toda la gente que, de una u otra forma,

ha ayudado y contribuido a que esta tesis sea una realidad.

En primer lugar, a mi mujer Isabel. Gracias por todo tu cariño, apoyo, comprensión y

paciencia. Gracias por hacerme feliz todos los d́ıas. Sin ti, nada de esto tendŕıa sentido.

A mis padres, que desde niño me han proporcionado todo lo necesario para recibir una

buena educación y formación.

A Gabi y Rafa, directores de esta tesis, pero también compañeros y amigos, que con

sus sabios consejos e incansable trabajo han sabido guiar a buen término este proyecto

que comenzó hace cuatro años. Gracias por invertir tantas horas en mı́, investigando,

proponiendo ideas, revisando art́ıculos y corrigiendo caṕıtulos. Pero también gracias por

las conversaciones de pasillo, las bromas y risas, por las charlas de fútbol... Si una tesis es

el resultado de un trabajo de equipo, yo he tenido la ventaja de jugar con los mejores. Y no

me olvido de Fernando, miembro de este grupo durante muchos años y amigo y compañero

incansable en art́ıculos, reuniones e implementaciones. Gracias por tu compañerismo y tu

ayuda desinteresada.

También quiero dar las gracias a Antonio, que me introdujo en el mundo de la

investigación, abriéndome las puertas a uno de los grupos de investigación más importantes

de la Universidad de Murcia. Gracias por haber hecho lo posible (y a veces lo imposible)

por proporcionarme a mı́ y a otros tantos un puesto laboral donde poder crecer como

investigadores, pero también como personas.

A todos los que han sido durante todos estos años mis compañeros de trabajo en la

Facultad de Informática. Los que llevan conmigo desde que empezamos la carrera y con los

que he compartido tantas cosas, Pedro J., Juan Antonio, y Pedro M. Los que han trabajado

conmigo en los diversos proyectos en los que he estado, Manolo Bernal, Fernando Bernal y

Elena. A todos los profesores que se han convertido en compañeros, en especial a Gregorio

y Diego. A mis compañeros de Dibulibu y de la T3, por crear un entorno de trabajo

inmejorable, donde se trabaja y se disfruta a partes iguales. Y a Manolo Sánchez, que ya

no está con nosotros, pero del que aprend́ı mucho, tanto a nivel personal como profesional.

Finalmente, a Rhys Smith, por haberme acogido durante mi estancia en la Universidad

de Cardiff, y haberme guiado y apoyado en el trabajo que realicé alĺı.

xv

University of Murcia
Faculty of Computer Science

PROVIDING FEDERATED ACCESS AND SSO

TO INTERNET SERVICES BY MEANS OF

KERBEROS AND AAA INFRASTRUCTURES

PhD Thesis

Author:
Alejandro Pérez Méndez

Thesis Advisors:
Dr. Gabriel López Millán

Dr. Rafael Maŕın López

Murcia, September 2014

Abstract

From the beginning of the Internet, access control to application services (file sharing,

electronic mail, etc.) has been one of the main concerns for service providers. Typically,

they might want to make an application service available only to users that where enrolled

in a previous process (e.g. online banking), or to those who fulfil a specific set of conditions

(e.g access to research publications for university staff). They also might want to keep a

record of who accessed to them, and when (e.g. for billing purposes).

The most deployed scheme for access control during the early days of the Internet,

and still nowadays, takes place when each individual application service implements all the

required functionality. However, this has a number of drawbacks: end users have a different

set of credentials and attributes for each application service, and application services need

to implement the whole access control logic. To alleviate these problems, service providers

typically centralise the storage of credentials and authorization information into a shared

database. A typical example would be a campus where the same credentials and attributes

are shared amongst the different application services.

A step forward in this simplification path is the outsourcing of (part of) the access

control functionality, from the application services to a centralised entity, typically called

Identity Provider (IdP). In this way, end users are actually authenticated by the same

IdP, while application services receive the outcome of that process, along with identity

information (e.g. end users attributes) to make an authorization decision. Another

advantage of deploying an IdP is the possibility of providing Single Sign-On (SSO). That

is, providing some sort of temporary information (e.g. token) that can be used to simplify

subsequent authentication processes for accessing to other provider’s services. Examples

of technologies that allow the use of an IdP include SAML, Kerberos, OpenID, or OAuth.

Google Accounts constitutes a clear example of IdP.

Furthermore, the growth of telecommunications, and the new needs that have arose

with it, have promoted the establishment of business agreements between different service

providers, the so-called identity federations. They define and regulate how application

services and IdPs interact to allow end users from one service provider to access any of

xix

the application services provided by another service provider within the federation. Each

federation defines which protocols and technologies are used to fulfil these requirements,

and which kind of application services are supported. In particular, there are two types

of well-established identity federations: Web-based identity federation and Authentication

Authorization and Accounting (AAA)-based identity federation. The former focuses on

providing federated access to web-based application services, using technologies such as

OAuth, OpenID, or SAML; whereas the latter is nowadays mostly used to control the

network access service, using technologies such as RADIUS or Diameter.

This has resulted into scenarios where organizations may have deployed two different

federations: one based on AAA and the other to provide access to web-based services.

But this raises a question: What about other types of services? In recent years, a kind

of scenario that aims to provide a federation solution for application services that lack of

proper support for any of the types of federations described above, such as file transfer,

terminal access, or Cloud, has attracted substantial notoriety and interest. This scenario

has been called Identity federation beyond the web.

Unfortunately, only a few solutions for this kind of federation have been defined. In

particular, to the best of author’s knowledge, only two of them can be considered: Kerberos

and Moonshot. This thesis analyses these two solutions, and assesses them against a

number of requirements that we have defined as desirable for this kind of federation.

However, none of these solutions addresses all the requirements. On the one hand,

Kerberos federation support (called cross-realm) has several documented issues, such as

the scalability of the trust model. Besides, it requires the establishment of an additional

federation infrastructure, in addition to those that already exist (i.e. AAA-based and

web-based). Besides, it lacks of a complete authorization management. On the other

hand, Moonshot lacks of support for complete SSO, and requires the adaptation of all the

application services to work.

This thesis aims to design solutions for the Identity federation beyond the web problem

that address these requirements, overcoming the aforementioned proposals’ issues. In

particular, this document focuses on the analysis, design and implementation of ways

to interconnect Kerberos with AAA-based federations. Kerberos possesses great features

for intra-domain access control (e.g. secure, lightweight, integrated SSO, etc.). Besides,

Kerberos is widely deployed and supported by most of current application services.

However, as already commented, it has some weak points when it comes to federation

or authorization support. On the other side, AAA-based federations have been used for

decades to provide federated access to the network access service, with great success and

presence. The integration of these two technologies offers an approach that supersedes

the Kerberos cross-realm operation with a more widely adopted federation technology. In

this way, the benefits from both technologies are summed up, resulting into a better user

experience, simplified deployment (no need to modify application services), and a better

exploitation of resources (either, computational and network usage).

Besides federated authentication, this thesis focuses on the analysis and design of

means to incorporate advanced authorization processing capabilities into Kerberos. While

Kerberos does not define a way to perform fine-grained authorization, SAML has been used

with great success and wide deployment for web-based identity federations. In particular,

SAML advantages include its great acceptance by the community, its great flexibility to

represent authorization data, or the availability of multiple tools for its generation and

processing.

To achieve the integration of these technologies, the general objective of this thesis can

be expressed as:

To analyse, design, and validate solutions that enable end users to bootstrap

Kerberos credentials for a specific service provider, as the result of an

authentication process conducted through the AAA-based federation, and an

authorization process based on the exchange of SAML statements with the home

organization.

This objective has been approached in three different ways, depending on the target

scenario. First, the standard Kerberos authentication mechanism can be extended in order

to incorporate support for the use of AAA infrastructures. A second approach would be

performing the federated authentication using a protocol, independent from Kerberos, with

native support for AAA infrastructures, and bootstrap the Kerberos credentials from its

result. Finally, a third alternative takes advantage of the federated authentication process

performed to provide access to the network service (e.g. eduroam). As this process already

involves the AAA federation, it could be used to bootstrap Kerberos credentials on the

same service provider where the end user is attached to the network. This dissertation

analyses, designs, and proposes a solution for each one of these bootstrapping approaches,

named FedKERB, PanaKERB, and EduKERB, respectively.

FedKERB provides an architecture that integrates the Kerberos and AAA

infrastructures by defining a new pre-authentication mechanism for Kerberos based

on technologies such as GSS-API and EAP. In this way, Kerberos makes use of

the AAA infrastructure to perform a federated authentication, and bootstraps new

credentials for the end user based on the cryptographic material derived from the

EAP authentication. Besides, the architecture includes the possibility of performing

advanced authorization after the authentication process, based on the transport of a

SAML assertion containing identity information from the home organization’s IdP to the

service provider’s Kerberos infrastructure. FedKERB provides a generic solution that

accommodates all the requirements desired for an identity federation beyond web solution,

including straightforward support for SSO within the boundaries of the service provider (i.e.

intra-organization). All of this makes FedKERB adaptable to most of the foreseen identity

federation beyond web scenarios. However, although FedKERB does not require application

services to be modified, it does require the modification of the Kerberos pre-authentication

process. While this would only imply updating a single entity (i.e. the KDC), this

requirement might not be acceptable for some service providers and scenarios, where the

deployed Kerberos infrastructure must be left intact.

PanaKERB defines an alternative to FedKERB that does not require any modification

to the existing Kerberos pre-authentication mechanism. To achieve this objective, this

contribution defines an architecture that uses an out-of-band protocol with native support

for AAA infrastructures (in this case, PANA), to perform the federated authentication

of the end user. This out-of-band process results into the bootstrapping of new

Kerberos credentials, generated from the cryptographic material derived from the EAP

authentication. The strength of PanaKERB resides on its simplicity, since it does not

require the modification of any of the components already deployed on the service provider.

However, it comes at the expense of introducing an additional protocol (i.e. PANA) and an

entity (i.e. PANA Authentication Agent - PAA) into the architecture. We expect that this

simplicity makes its adoption and deployment easier than for FedKERB, making of it a

more suitable solution for those organizations that already have a Kerberos infrastructure

deployed, and that are reticent to modify it to incorporate any of the changes required

by FedKERB. Additionally, PanaKERB also allows the use of the advanced authorization

model defined for FedKERB.

Finally, EduKERB provides a cross-layer architecture that integrates Kerberos with

the AAA-based authentication performed during the access to the network service. This

is achieved by defining a new Kerberos pre-authentication mechanism based on the results

of a successful EAP execution. As these two authentication processes happen at different

layers of the Open Systems Interconnection (OSI) model (i.e. link and application layers),

this is called cross-layer SSO. EduKERB reduces the number of federated AAA-based

authentication processes required to access application services, improving efficiency and

optimizing the resource utilisation. Another of the relevant aspects of EduKERB, when

compared to FedKERB and PanaKERB, is its applicability scope. Whereas the latter

have a generic applicability, EduKERB has been designed to take advantage of the

specific network access authentication process defined for the GÉANT AAA federation,

that is, the eduroam’s RADIUS infrastructure. Nevertheless, it can be deployed in other

scenarios based on RADIUS if desired. EduKERB requires more modifications to the

existing infrastructures than FedKERB and PanaKERB. However, these modifications

allow reducing the number of EAP authentications and the related overload in terms of

network messages and computational time. EduKERB also allows the use of the advanced

authorization model defined for FedKERB and PanaKERB.

In addition to defining these contributions, this thesis also provides a performance

and functional analysis of them. This analysis consists of the definition of a performance

model (describing the different time-consuming operations performed on each proposal)

the implementation of three prototypes to demonstrate their functional viability and

feasibility, and the measurement of their actual performance, based on the execution of

these prototypes. Two major conclusions are extracted from the results of this analysis. On

the one hand, it is demonstrated that the three proposals described in this thesis present

similar execution times to the ones required for the network access service (which is used

as a reference since it is the most extended use of AAA infrastructures). Moreover, as

they have been implemented and executed in a real environment, their feasibility is also

demonstrated beyond a theoretical stand point. Finally, it is confirmed that the three

proposals perform very similarly, so the decision of using one or another will be based on

the requirements of the deployment scenario.

Finally, this thesis discusses some interesting research topics that have been found

worth being explored as future work during its realization, and that can provide further

improvements in this thesis’ area. These topics can be catalogued according to their

expected addressing term, from those to be done in a short-term, to those envisioned in

the long-term. Specifically, the proposed short-term topics include actively working on the

deployment of identity federation beyond the web technologies in real environments ; and the

analysis, design and implementation of a solution enabling the use of HTTP as out-of-band

protocol for Kerberos, instead of PANA. In the medium-term, the proposed topics are

the analysis and design of solutions to extend the boundaries of the applicability of SSO

from the current intra-organization SSO model to an inter-organization SSO one; and

the analysis and design of dynamic establishment and management mechanisms for AAA

federations, where trust relationships can be established in an automated fashion between

members. In the long-term, this thesis proposes the analysis, design, and implementation

of approaches for integrating the IDaaS concept with the identity federations beyond the

web technologies that it discusses, as a way to simplify their deployment and spread their

usage.

Acknowledgements

I would like to spend this page to thank those people that, one way or another, have helped

and contributed to make this thesis a reality.

On the first place, to my wife Isabel. Thanks for all your love, support, sympathy, and

patience. Thanks for making me so happy everyday. Without you, nothing of this would

have made any sense.

To my parents that, since I was a child, have provided me with everything I needed to

receive a good education and academic training.

To Gabi and Rafa, thesis advisors, but also colleges and friends, that with their wise

advises and restless work have taken this project in the right direction. Thanks for investing

so many hours in me, researching, proposing ideas, and reviewing papers and chapters. But

also thanks for all the chats in the halls, the jokes and laughters, the football conversations...

If a thesis is the result of a team work, I have had the advantage of playing with the best

players. And I do not forget Fernando, member of this group for many years, and an

indefatigable partner and friend in papers, meetings, and implementations. Thank you for

your comradeship and generous help.

I would also like to thank Antonio, who introduced me into the researching world,

opening the doors of one of the most prominent research groups of the University of Murcia.

Thanks for having done the possible (and sometimes the impossible) for providing me and

others with a job where we could grow as researchers, but also as persons.

To all those from the Faculty of Computer Science who have been my colleagues for

all these years. Those who have been to my side since we started the degree, and that

have shared so many things with me: Pedro J. Juan Antonio, and Pedro M. Those who

have worked with me in the different projects I have been involved in: Manolo Bernal,

Fernando Bernal and Elena. All the professors that have become colleagues, specially

Gregorio and Diego. To my workmates from the Dibulibu and T3 rooms, for creating

such a remarkable workplace, where work and joy are mixed in equal proportions. And to

Manolo Sánchez, who is no longer amongst us, but who taught me so much, both personally

and professionally.

Finally, to Rhys Smith, for having hosted me during my stay at the University of

Cardiff, and having guided and supported me in the work I performed there.

xxv

Contents

List of Figures xxxi

List of Tables xxxiii

1 Introduction 1
1.1 Contextualization . 1

1.1.1 Access control functionality . 2
1.1.2 Per-application access control . 3
1.1.3 Centralising access control functionality: The IdP 3
1.1.4 Interconnecting organizations: Identity federations 4

1.2 Motivation and problem statement: Identity federations beyond the web . 6
1.3 Objective of this thesis . 11

1.3.1 Specific objectives . 12
1.4 Contributions . 13
1.5 Thesis structure . 14
1.6 Related publications . 15

2 Background and State of the Art 19
2.1 Access control to the network service . 19

2.1.1 AAA protocols . 20
2.1.2 EAP . 26
2.1.3 Lower layer protocols . 28

2.2 Access control to web applications . 32
2.2.1 HTTP authentication . 33
2.2.2 Web forms based authentication . 34
2.2.3 Federated operation . 34

2.3 Access control to generic applications . 40
2.3.1 Kerberos . 40
2.3.2 GSS-API . 42
2.3.3 SASL . 43

2.4 Solutions for AAA-based federated authentication and authorization 44
2.4.1 eduroam . 44
2.4.2 DAMe . 46

xxvii

CONTENTS

2.4.3 Moonshot/ABFAB . 47
2.5 Conclusions . 50

3 FedKERB: Integrating Kerberos with AAA and advanced authorization
infrastructures 53
3.1 Introduction . 53
3.2 Proposed architecture . 57
3.3 EAP-based pre-authentication . 60
3.4 General operation . 62

3.4.1 TGT acquisition (KRB AS REQ/REP exchange) 63
3.4.2 ST acquisition (KRB TGS REQ/REP exchange) 67

3.5 Discussion . 70
3.5.1 Federated user name in Kerberos 70
3.5.2 Kerberos cross-realm vs Kerberos with AAA integration 71
3.5.3 KDC state management . 71
3.5.4 Transport of authorization information in RADIUS 72

3.6 Security analysis . 74
3.7 Conclusions . 75

4 PanaKERB: Out-of-band federated authentication for Kerberos based on
PANA 77
4.1 Introduction . 77
4.2 Proposed Architecture . 79

4.2.1 Preliminary considerations . 79
4.2.2 Components . 81

4.3 General operation . 83
4.3.1 Phase 1: PANA authentication . 83
4.3.2 Phase 2: Kerberos enforcement . 85
4.3.3 Phase 3: Kerberos authentication 87
4.3.4 Phase 4: Obtaining service tickets and accessing the service 88

4.4 Security considerations . 88
4.4.1 Key distribution after authentication 89
4.4.2 Kerberos Password derivation . 89
4.4.3 Authenticated and Authorized enforcement in the KDC 90
4.4.4 Filtering the access to the PANA server 90

4.5 Conclusions . 91

5 EduKERB: A cross-layer SSO solution for federating access to
application services in the eduroam/DAMe network 93
5.1 Introduction . 93
5.2 Objectives and requirements . 95
5.3 Proposed architecture . 97
5.4 General operation . 100

xxviii

CONTENTS

5.4.1 Notation . 100
5.4.2 Phase 1: Access to the network: authentication, distribution of the

eduToken and keying material . 102
5.4.3 Phase 2: Kerberos pre-authentication and TGT acquisition 104
5.4.4 Phase 3: ST acquisition and access to the application service 108

5.5 Security Analysis . 109
5.5.1 End User Authentication . 109
5.5.2 Distribution of the eduToken . 110
5.5.3 Key derivation and distribution . 111
5.5.4 Pseudonymity . 112
5.5.5 Formal verification . 113

5.6 Conclusions . 116

6 Performance evaluation and functional validation 117
6.1 Introduction . 117
6.2 Performance model . 118
6.3 Prototypes description . 123
6.4 Performance measurements . 126

6.4.1 Testbed description . 126
6.4.2 Execution of the tests . 128
6.4.3 Analysis of results . 131

6.5 Considerations on the use of an already existing AAA federation 134
6.6 Conclusions . 134

7 Conclusions and future work 137
7.1 Summary and main contributions . 137
7.2 Future work . 141

7.2.1 Deployment of the solutions in real scenarios 142
7.2.2 Use of HTTP instead of PANA as out-of-band protocol 143
7.2.3 Inter-organization SSO . 143
7.2.4 Dynamic AAA-based federations 144
7.2.5 IDaaS . 145

Bibliography 147

A List of Acronyms 165

B Example SAML assertion for the authorization model 169

C Formal description of EduKERB 171
C.1 Functions . 171
C.2 Exchanges’ detailed description . 173

C.2.1 Network authentication, distribution of the eduToken and keying
material . 173

xxix

CONTENTS

C.2.2 Kerberos pre-authentication and TGT acquisition 175
C.2.3 Authorization and ST acquisition 176

D HLPSL specification of EduKERB 177
D.1 Network authentication (phase 1) - Simplified version 177
D.2 Kerberos authentication, autorization & services access (phases 2, 3, and 4)

- Simplified version . 183

xxx

List of Figures

1.1 Generic identity federation. 5
1.2 Example scenario for the identity federation beyond the web problem. . . . 7

2.1 Hierarchical AAA scheme. 21
2.2 EAP Framework Model . 27
2.3 Kerberos standard signalling. 41
2.4 Kerberos cross-realm signalling. 42
2.5 eduroam infrastructure. 45
2.6 DAMe architecture overview. 46
2.7 Moonshot’s architecture. 48
2.8 ABFAB operation. 50

3.1 FedKERB architecture. 58
3.2 Different layers at which the EU and KDC operate. 63
3.3 Kerberos KRB AS REQ/REP exchange: TGT acquisition. 64
3.4 Encapsulation of GSS-EAP tokens in Kerberos messages. 64
3.5 Kerberos KRB TGS REQ/REP exchange: ST acquisition. 68

4.1 PanaKERB architecture. 81
4.2 Phase 1: PANA authentication. 84
4.3 Phase 2: Kerberos enforcement. 86
4.4 Phase 3: Kerberos authentication. 87

5.1 EduKERB architecture. 98
5.2 Phase 1: Access to the network: authentication, distribution of the

eduToken and keying material. 103
5.3 Phase 2: Kerberos pre-authentication and TGT acquisition. 105
5.4 Encapsulation of PA-EDUTOKEN as a FAST factor. 106
5.5 Phase 3: ST acquisition and access to the application service. 108

6.1 Components deployment. 127
6.2 Extended eduroam’s RADIUS hierarchy. 128
6.3 Time graphs for the prototypes. 133

xxxi

LIST OF FIGURES

xxxii

List of Tables

2.1 Common Diameter Commands. 25

4.1 Roles played by the components on the different protocols. 82

5.1 Notation to describe the exchanges. 101
5.2 Security goals. 114
5.3 Phase 1 analysis results. 114
5.4 Phase 2, 3 and 4 analysis results. 115

6.1 Distribution of variables for the different proposals. 123
6.2 Software used for the prototypes. 125
6.3 Time measurements for the prototypes. 130

7.1 Summary of contributions and features. 139

xxxiii

LIST OF TABLES

xxxiv

Chapter 1

Introduction

This first chapter gives a brief contextualization of the history and evolution of the access

control systems in the area of application services, outlining the gaps, drawbacks and

shortcomings that have motivated the work of this thesis. After that, it describes the

specific problem statement of this thesis, including a general scenario where current access

control systems cannot provide a satisfactory solution. Then, the main objectives of the

thesis, as well as its main contributions, are described. Finally, the chapter details the

structure of this document, and lists the publications that have resulted from the performed

research.

1.1 Contextualization

From the beginning of the Internet, access control to application services (e.g. file

sharing [1], electronic mail [2], etc.) has been one of the main concerns for system

administrators. In general, when an organization (i.e. service provider) offers a specific set

of services to a group of end users, one of its main concerns is assuring that the service will

be provided only to those who are entitled to. For instance, there are some application

services that are public, free of charge, and that can be used in an anonymous way (e.g.

access to a weather web page). However, there are other application services requiring

some degree of control over who is granted to access them, and under what conditions (e.g.

access to a medical record database).

Service providers may have different motivations to perform access control to their

services. For instance, an application service may only be available to those end users that

have been previously enrolled and have a valid account. This is probably the most common

reason to enforce access control. The enrolment of the end user is typically the consequence

1

1. Introduction

of the establishment of a contractual relationship between that end user and the service

provider. For example, this would be the case of on-line banking, social networks, and

email providers.

Another motivation to desire access control is allowing the access to the service to only

those end users who fulfil a specific set of conditions. A good example of this requirement

would be the access to criminal history records, which should be granted only to law

enforcement officers. Or the access to certain research publications, which is granted only

to staff of some universities and research centres.

Furthermore, service providers may want to keep a record of who accessed the

application service, and when. The motivations for having such a registry are several,

ranging from the mere generation of accounting and statistical data, to being able to take

countermeasures in case of misuse of the service, or to bill the end user for the use of the

service. An example would be a Voice over IP (VoIP) service [3], where the end user is

billed for the amount of time she is connected.

1.1.1 Access control functionality

Typically, access control to network application services consists of three different

processes that match the aforementioned motivations: authentication, authorization, and

accounting [4].

Authentication is the process by which a service provider verifies the identity of the end

user who is trying to access the service. Typically, the service provider requires the end user

to provide an identifier (e.g. a username), and challenges her to demonstrate the knowledge

or the possession of one or more pieces of information associated to that specific identifier.

In particular, these pieces of information (also called factors) can be a combination of the

following types: something the user knows (e.g. a password or a pass-phrase), something

the end user has (e.g. a smart card or mobile phone), or something the end user is (e.g. a

fingerprint or an iris pattern).

Authorization is the process by which a service provider determines whether the end

user should be granted to access the requested service. Typically, this process is split

into two different sub-processes: the gathering of authorization information (e.g. end user

attributes, environment variables, etc.), and the taking of the authorization decision (e.g.

based on access control policies [5]).

Accounting is the process by which a service provider monitors the consumption of the

resource performed by the end user along the lifespan of an authorized session. It is mainly

used for billing purposes (e.g. duration of a video call, video streaming, etc.).

2

1.1 Contextualization

1.1.2 Per-application access control

The most deployed scheme for access control during the early days of the Internet, and

still nowadays, takes place when each individual application service implements the whole

access control functionality. That is, the application service directly verifies the factors

provided by the end user, and makes the authorization decision based on the information

stored in some internal database (e.g. files, SQL database, etc.). However, this scenario

has a number of drawbacks for both, end users and service providers. On the one hand,

end users need to maintain different set of credentials and attributes for each application

service they access. This makes really difficult to remember which password needs to be

introduced for a particular application service, or to maintain the coherence of the identity

information across different application services whenever there is a relevant change. For

instance, whenever the end user wants to change her postal address, it may require to

manually update several dozens of accounts. On the other hand, application services need

to implement the whole access control logic, and to maintain a database with the set of

credentials and attributes for each possible user they have.

To alleviate these problems, service providers typically centralise the storage of

credentials and authorization information into a shared database. In this way, end users

only need to have an account per service provider, instead of per-application service. For

instance, this happens in a typical campus scenario (e.g. the University of Murcia), where

the same credentials and attributes are shared amongst all the application services (e.g.

email, e-learning, Intranet...).

1.1.3 Centralising access control functionality: The IdP

A step forward in this simplification path is the outsourcing of (part of) the access control

functionality from the individual application services to a centralised entity, typically called

Identity Provider (IdP) [6]. This entity, deployed on the service provider, shares trust

relationships with all the application services deployed on its domain. In this way, end

users are actually authenticated by the same IdP, while application services receive the

outcome of this authentication process, along with enough identity information (e.g. end

users attributes) to allow them to make an authorization decision. Moreover, in some

deployments the authorization decision sub-process can be performed by an independent

entity called Policy Decision Point (PDP) [5], which manages the set of access control

policies. Examples of protocols and technologies that allow the centralisation of the access

control functionality are SAML [6], Kerberos [7], OpenID [8], OAuth [9], RADIUS [10], or

3

1. Introduction

Diameter [11].

Another advantage of deploying an IdP is the possibility of providing Single Sign-On

(SSO) [12]. As the authentication process for any of the application services deployed on

the service provider’s domain is always performed with the same IdP, the end user can be

provided with some sort of temporary information (e.g. token, short-term credential, etc.)

to simplify subsequent authentication processes to any of these application services. In this

way, the end user needs to introduce her credentials (e.g. username and password) only

during the first access. However, IdP technologies do not always support SSO. For example,

SAML implements this feature based on HTTP cookies [13], while Kerberos defines the

concept of tickets [7]. On the contrary, RADIUS and Diameter lack support of SSO.

Google Accounts [14] constitutes a clear example of IdP, where end users have a unique

account to be used for all of the Google’s services, and the access control logic is centralised

on a single server (i.e http://accounts.google.com/).

At this point, service providers have simplified their identity management, but they are

still forming identity silos. That is, identity information is both stored and used exclusively

in a per service provider basis. Although to a lesser degree, such deployments still have the

problems described above: end users need to manage several accounts for different service

providers, and every service provider needs to deploy an IdP.

1.1.4 Interconnecting organizations: Identity federations

The impressive growth of telecommunications has promoted the establishment of business

agreements between different service providers, the so-called identity federations (hereafter

federations) [15], in order to increase the revenues of the deployed services. Indeed, such

federations allow a service provider’s end user to access to the services offered by any of

the affiliated service providers within the federation. An identity federation defines and

regulates the relationships between the different service providers, establishing how their

application services and IdPs can interact to allow end users within the federation to access

any of the provided application services.

To better understand how this federated access is possible, let us consider the following

example, depicted in Figure 1.1. Let us assume the student Alice is enrolled in the IdP of

an organization: University A (Univ-A). As a consequence of a enrolment process, that IdP

securely provides her with an identifier (e.g. alice@univ-a.edu) and an associated credential

(e.g. a password). From Alice’s point of view, Univ-A is her home organization.

Besides, Univ-A belongs to an identity federation, named edufed. This federation

consists of a group of organizations offering a set of application services to authenticated

4

1.1 Contextualization

and authorized end users within the federation. From Alice’s point of view, these

organizations act as service providers. Then, let us assume that she wishes to access to an

application service deployed at University B (Univ-B), also belonging to edufed. Typically,

the process (see Figure 1.1) begins with Alice requesting access to the application service

(1). Univ-B is not able to authenticate Alice by itself, as it does not have any registered

information about her. However, by means of Alice’s identifier, Univ-B knows that she

belongs to Univ-A (2). Therefore, it redirects the authentication process towards Univ-A’s

IdP (3), that verifies Alice’s password. Assuming Alice is authenticated (4), Univ-A may

provide additional authorization information to Univ-B (5), so that the latter can perform

the authorization process, and customize the access to the application service (6), based on

some policy rules. If the authentication and authorization processes conclude with success,

the application service fulfils the Alice’s request (7).

Univ-B Univ-A

Alice

1. Access to the service request

2. I do not know

Alice, but I know

someone who does

7. Access to the service granted

6. According to the received

information, Alice is authorized

to access the service

Application

service

4. Authenticate Alice

by some means.

IdP

edufed

5. Authn/authz info about Alice

3. Request authn/authz info about Alice

Figure 1.1: Generic identity federation.

This brief example summarizes how general identity federations work. However, each

federation defines which protocols and technologies are used to fulfil these requirements. In

particular, each federation needs to specify, among other things, how the service provider

discovers the end user’s home organization (e.g. based on the end user identifier), how

the authentication information is redirected to the home organization’s IdP (e.g. via web

redirections), which authentication mechanism is used between the end user and the IdP

(e.g. username and password), and how the authorization information is represented and

transported between organizations (e.g. SAML).

Another important aspect of each federation is the kind of application services that

are supported. In particular, two types of well-established identity federation follow

this general model: Web-based identity federation and Authentication Authorization and

5

1. Introduction

Accounting (AAA)-based identity federation. The former, as suggested by the name, focuses

on providing federated access to web-based application services. For instance, several

companies (Google [16], Amazon [17], Flickr [18], Microsoft [19], etc.) already support

web-based federations by deploying technologies such as OAuth, OpenID, or SAML. On the

other side, AAA is a generic access control framework which was conceived to support any

type of application service in federated environments [20]. However, nowadays it is mostly

used to control the network access service, that is, the connection to a communication

network (e.g. 802.11 [21]). To support this type of federation, each organization deploys

the so-called AAA server, interconnected with the AAA servers of the rest of member

organizations, forming an AAA infrastructure. Authentication is typically performed by

the use of the Extensible Authentication Protocol (EAP) [22], which allows the use of

a extensible set of authentication mechanisms. AAA infrastructures are used by many

organizations to provide federated access to the network service. For instance, roaming in

cellular networks is managed through the use of such infrastructures [23]. Another example

is eduroam (education roaming) [24], an AAA infrastructure providing Wi-Fi roaming to

the members of the federation, which is composed of hundreds of international research and

education organizations. Moreover, there are companies doing roaming federations based

on AAA, such as IPass [25], Mach [26], and Syniverse [27]. These business federations

integrate most of the world-wide WiFi, resulting into hundreds of millions of potential end

users.

1.2 Motivation and problem statement: Identity

federations beyond the web

The aforementioned situation has resulted into scenarios where organizations may have

deployed two different federations, one based on AAA to provide federated access to

the network access service; and the other one, based on web technologies, to provide

access to web-based services. An example of such deployments can be found at many

universities around the world, where the access to the network is managed by means of

eduroam [24], while the access to the web applications is managed by other federations,

such as the Servicio de Identidad de RedIRIS (SIR) [28]. But this raises a question: What

about other types of service? In recent years several beyond the web scenarios, and the

federated access to them, have attracted substantial notoriety and interest. Without doubt

Cloud [29] and Grid [30] services are revolutionizing the way that organizations operate

their Information and Communications Technologies (ICT) infrastructures, out-sourcing

6

1.2 Motivation and problem statement: Identity federations beyond the web

to external service providers in an attempt to minimize management and operation costs,

or to obtain computational powers or storage capacities that are otherwise unattainable.

Other commonly used beyond the web services include electronic mail, remote file access,

terminal access, or instant messaging. Besides, although some specific implementations

of these services provide some level of support for AAA-based authentication, they are

not standardized and, more importantly, lack of proper federation support that allow the

secure exchange of credentials between the end user and the IdP at the home organization.

That is, they are more intended for local deployments within a particular service provider.

For these reasons, they cannot be included in any of the types of federations described

before. Some additional example scenarios are mentioned in [31].

Therefore, this raises the necessity of another type of federation, which have been called

Identity federation beyond the web [32], and that provides support to these application

services. Note that the term beyond the web includes both, non web-based and web-based

application services.

Service Provider

(Univ-B)

Home organization

(Univ-A)

Alice

RADIUS server RADIUS

server

RADIUS

802.11

Web server

SSH

HTTP

Access point

RADIUS

AAA

federation

SAML

IdP
SAML IdP

SAML

Web

federation

SAML

?

Grid/Cloud

Figure 1.2: Example scenario for the identity federation beyond the web problem.

Figure 1.2 depicts a realistic scenario of this problematic. It is based on the example

described in Figure 1.1. Let us imagine that Univ-B has three services available: a network

access service, a Grid/Cloud service, and a web application. SP-B and Univ-A are members

of an AAA-based federation, currently used to provide access to the network. In particular,

the federation uses RADIUS as the AAA protocol. To take part of the federation, each

organization has deployed a RADIUS server. Besides, both providers also belong to a

web-based federation, used to provide access to web-based services. This federation is based

on the SAML protocol. To take part of this federation, each one of them has deployed a

7

1. Introduction

SAML IdP, and adapted their web applications to support this protocol. Hence, they have

two types of federations deployed, one for the network access service, and the other one for

web-based services. In fact, as said before, this scenario is common amongst universities

and research centres around the world [24,33].

Given this scenario, SP-B decides to enable Alice to access the Grid/Cloud service, by

means of the SSH [34] protocol. However, as the SSH protocol does not support integration

with any of the deployed federations, SP-B would need to create a (temporary) account

for Alice, manually checking whether she accomplishes with the required authorization

requirements. For instance, SP-B would need to create a new account for Alice (e.g.

alice-univ-a@sp-b.org), and to communicate the password to Alice by some means (e.g.

email). This is usually a tedious procedure for both, end users and administrators, that

makes roaming of users and accessibility to the application services difficult, as it requires

manual configuration. Besides, this breaks the notion of federation, since these processes

should be performed in an automatic and seamless way.

Therefore, in this scenario, it would be extremely beneficial if end users could perform

a federated access to the Grid/Cloud service or, in general, to any application service

deployed in Univ-B.

In particular, taking into account the functional and security features already supported

by the web-based and AAA-based technologies, a solution for identity federations beyond

the web should ideally provide a combination of the best from them, considering fulfilling

the following requirements:

(R1) Authentication at the home organization. Regardless of the type of application

service, an end user’s initial authentication must be performed with the IdP from

her home organization. This implies that the end user never reveals long-term

authentication credentials to service providers.

(R2) Fine-grained authorization at the service provider. After a successful authentication,

the end user’s IdP provides the application service with identity information (e.g.

role, group, entitlement, language, age, etc.) about the end user. An application

service may take an access control decision based on that information. A generic

solution must support different kinds of authorization data to support a potentially

diverse range of applications services.

(R3) Data transport security. The exchange of sensitive information such as credentials

or identity information must be protected to assure its authenticity, integrity, and

8

1.2 Motivation and problem statement: Identity federations beyond the web

confidentiality. That is, they must only be accessible by the intended recipient, but

no one else.

(R4) Single Sign-On. SSO avoids the recurrent execution of potentially lengthy

authentication procedures with the IdP each time the end user accesses an application

service within the federation. The initial authentication is performed with the IdP,

which may be located in a different organization than the service provider (see

R1). This process yields further tokens that can be used to request access to other

application services without necessarily requiring another authentication with the

IdP in the home organization.

(R5) Reuse of existing infrastructures and standards. Re-using infrastructures and

standards eases the deployment of a solution, since most of the components would

have been already implemented and tested. Examples of standards typically re-used

by federation solutions are AAA, PKI [35], TLS [36], or SAML. Besides, the fewer

elements a solution requires to modify, the easier its deployment will be.

(R6) Identity privacy. Sometimes, end users want to access an application service without

revealing their real identity. This can be achieved by the use of anonymous or

pseudonymous identifiers. A generic solution should allow the use of these kind

of identifiers, depending on the required level of privacy requested by the end user

and offered by the service provider.

Unfortunately, only a few solutions for identity federations beyond the web have been

defined. In this context, to the best of author’s knowledge, one can consider Kerberos [7]

and Moonshot [37].

Kerberos is a well-known standard protocol which is becoming one of the most widely

deployed technologies for authentication and key distribution in application services. It

provides a secure three-party protocol based on shared secret cryptography. Kerberos

provides some features that makes of it a perfect candidate for services beyond the web.

In particular, it stands out for the wide range of supported application services; its

efficiency (based on symmetric cryptography); and its support for SSO (based on the

distribution of tickets). Furthermore, Kerberos p a federated access operation mode called

cross-realm [38]. This operation mode allows a client from an organization to obtain a ticket

to access to an application service deployed on a different organization. However, whereas

many service providers do use Kerberos to manage their own subscribers, they do not

widely deploy Kerberos cross-realm infrastructures. In addition to some recognized issues

9

1. Introduction

for the deployment of Kerberos cross-realm infrastructures [38], the main reason is that it

would require the deployment of a parallel federation infrastructure (besides those already

established for the access to web application services and the network access service).

Maintaining different federation infrastructures requires a significantly high administrative

effort (e.g. duplicate end user database, modification of firewall rules to allow Kerberos

from outside, redundant establishment of trust relationships), as well as new failure points.

This strongly goes against requirement R5. As such, the author has no knowledge of

any currently deployed cross-realm infrastructure. Besides, Kerberos lacks of a complete

authorization management that allows performing fine-grained access control in federated

environments, precluding the addressing of R2. Due to these reasons, Kerberos cross-realm

cannot be considered as a realistic solution for the stated problem.

On the other hand, Janet [39], the GÉANT community, and the TERENA EMC2

task-force1 recently promoted the creation of a project called Moonshot [37], with the aim

to specify a federated authentication and authorization architecture that, using the already

existing AAA infrastructures for the network access service (i.e. eduroam), enables access

control to most Internet application services. The ultimate objective is to enable end

users to access application services using a AAA-based federation. To solve this problem,

Moonshot defines a new mechanism for the Generic Security Service Application Program

Interface (GSS-API) [40], which allows application services to authenticate the end user

through an AAA infrastructure, and to retrieve authorization information from the home

organization. As a consequence of the work in Moonshot, a new working group has been

formed in the Internet Engineering Task Force (IETF) standardization organism [41], with

the purpose of developing and standardizing the technologies required for implementing

the designed identity federation architecture. This working group is called Application

Bridging for Federated Access Beyond Web (ABFAB) [32]. Although Moonshot offers a

valid solution for the stated problem, it does not provide an optimal solution. In fact, the

weak points of Moonshot are the lack of support for SSO, not addressing requirement R4 ;

and the requirement to adapt all the individual servers to include support for their newly

defined GSS-API mechanism (against requirement R5). Section 2.4.3 provides further

technical details about Moonshot.

1http://www.terena.org/activities/tf-emc2/

10

1.3 Objective of this thesis

1.3 Objective of this thesis

Although current state of the art approaches provide valid solutions for the identity

federations beyond the web problem, they present some gaps (especially related to R2,

R4, and R5) that leave an open door for further research and improvements. Therefore,

the main aim of this thesis is to design solutions for this problem that do not suffer from

the issues of the aforementioned proposals, addressing all the requirements stated before.

As already commented, Kerberos provides great features for intra-domain access control

(e.g. secure, lightweight, integrated SSO, etc.). Besides, Kerberos is supported by most

of current application services. But it has some weak points related to federation or

authorization support. On the other side, AAA-based federations have been used for

decades to provide federated access to the network access service, with great success and

presence. The integration of these two technologies offers an approach that supersedes the

Kerberos cross-realm operation with a more widely adopted federation technology, allowing

end users within the federation to authenticate without being previously enrolled on the

Kerberos user database. In this way, the benefits from both technologies are summed up,

resulting into a better user experience (e.g. SSO), simplified deployment (no need to modify

application services), and a better exploitation of resources (either, computational and

network usage). Therefore, this thesis focuses on the analysis, design and implementation

of solutions to interconnect Kerberos with AAA-based federations.

Besides, this thesis also analyses and designs means of incorporating advanced

authorization processing capabilities into Kerberos. While it does not define a way to

perform fine-grained authorization, SAML has been used with great success for web-based

identity federations. In particular, SAML advantages include its great acceptance by the

community, its great flexibility to represent authorization data, the availability of multiple

libraries and tools for its generation and processing.

To achieve the integration of these technologies, and fulfil the stated requirements, the

general objective of this thesis can be expressed as:

To analyse, design, and validate solutions that enable end users to bootstrap

Kerberos credentials for a specific service provider, as the result of an

authentication process conducted through the AAA-based federation, and an

authorization process based on the exchange of SAML statements with the home

organization.

This objective has been approached in three different ways, depending on the

specific characteristics of the target scenario and the involved organizations. A

11

1. Introduction

straightforward approach applicable for most cases would be extending the standard

Kerberos authentication mechanism, in order to incorporate support for the use of AAA

infrastructures. However, some organizations might have Kerberos infrastructures already

deployed, and might be reticent to modify them. For those cases, another approach

would try to maximize the addressing of R5 (minimizing the impact on the existing

infrastructures), by performing the federated authentication using a protocol, independent

from Kerberos, with native support for using AAA infrastructures. At the end of the

authentication, new dynamically credentials would be enforced in the end user and the

KDC. A third alternative takes advantage of the federated authentication process already

performed in certain deployments to provide access to the network service (e.g. eduroam).

As this process already involves the AAA federation, it could be used to bootstrap Kerberos

credentials on the same service provider where the end user is attached to the network.

Each one of these alternatives has resulted into the analysis and design of a solution during

the realisation of this PhD.

Although the scope of this thesis is to provide solutions that are valid for any current

or future AAA-based federation, it is worth noting that the motivational context for what

the work of this thesis was originally conceived is the eduroam RADIUS infrastructure [24],

and the access to the application services deployed within the GÉANT community [42].

This might be important to understand some of the design decisions and protocol choices

made throughout this document. Section 6.5 provides some considerations about the usage

of the eduroam’s infrastructure for this purpose.

1.3.1 Specific objectives

According to the different approaches to perform the bootstrapping of Kerberos credentials

enumerated above, the general objective of this thesis can be split into five more specific

objectives:

(O1) To design a solution allowing the bootstrapping of Kerberos credentials on the service

provider by enabling the Kerberos infrastructure to make a direct use of the AAA

infrastructure to perform a federated authentication.

(O2) To design a solution enabling the bootstrapping of Kerberos credentials on the service

provider as a result of a federated AAA-based authentication process performed

by means of an independent protocol (out-of-band) with native support for AAA

infrastructures, avoiding the modification of neither the elements of the Kerberos

infrastructure, nor the application services.

12

1.4 Contributions

(O3) To design a solution enabling the bootstrapping of Kerberos credentials as a result of

the federated AAA-based authentication performed during the access to the network

service, providing a cross-layer federated authentication for Kerberos that integrates

the access to the network service with the access to upper-layer application services.

(O4) To design an authorization model enabling the Kerberos infrastructure on the

service provider to be fed with end user identity information coming from the home

organization after authentication, and to use it to make fine-grained access control

decisions.

(O5) To validate the designed solutions by means of analytical models and prototype

implementations, evaluating their functionality, security, feasibility and performance.

1.4 Contributions

In order to accomplish the objectives described in Section 1.3, this thesis provides three

different contributions, named FedKERB, PanaKERB, and EduKERB.

• FedKERB. This contribution, described in Chapter 3, defines a solution integrating

the Kerberos and AAA infrastructures by defining a new pre-authentication

mechanism based on EAP for Kerberos. In this way, Kerberos makes use of the

AAA infrastructure to perform a federated authentication, and bootstraps new

credentials for the end user based on the cryptographic material derived from the

EAP authentication. This addresses objective O1.

Besides, the architecture includes the possibility of performing advanced

authorization after the authentication process, based on the transport of identity

information from the home organization’s IdP to the Kerberos infrastructure in

the service provider. When the end user tries to access to a particular application

service, the Kerberos infrastructure can use this information to make an authorization

decision. This addresses objective O4.

• PanaKERB. This contribution, described in Chapter 4, arises from the motivation

of defining an optimized alternative to FedKERB, in order to avoid the modification

of the existing Kerberos authentication mechanisms. For that, this contribution

defines an architecture that uses an independent protocol (i.e. out-of-band) with

native support for AAA infrastructures, to perform the federated authentication

of the end user. This out-of-band process results into the bootstrapping of new

13

1. Introduction

Kerberos credentials, generated from the cryptographic material derived from the

EAP authentication. This addresses objective O2 of this thesis. This contribution

also justifies the selection of Protocol for Carrying Authentication for Network Access

(PANA) [43] as out-of-band protocol, over other alternatives.

Additionally, PanaKERB also allows the use of the advanced authorization model

defined for FedKERB.

• EduKERB. This contribution, described in Chapter 5, defines a solution enabling

a cross-layer authentication for Kerberos, based on the federated authentication

process already performed to access the network service. In particular, EduKERB

takes advantage of the network access authentication process defined for eduroam to

bootstrap Kerberos credentials. This reduces the number of federated AAA-based

authentication processes required to access application services, improving efficiency

and optimizing the resource utilisation. This addresses objective O3 of this thesis.

EduKERB also allows the use of the advanced authorization model defined for

FedKERB and PanaKERB.

Besides, each contribution has been validated in terms of security, functionality and

performance, addressing O5. The security validation can be found on each contribution’s

chapter, while the functionality and performance validation is described in Chapter 6.

Each one of these contributions has its own requirements, objectives, advantages and

disadvantages, making them more appropriate for a set of specific scenarios than the others.

Chapter 3, 4, and 5 will analyse these aspects with great detail.

1.5 Thesis structure

The rest of this document is organized as follows:

Chapter 2 provides a brief description of the most relevant technologies related to

access control for different kind of services, and how their use can be applied in federated

environments. Specifically, this chapter focuses on the access control to the network, web

applications, and generic application services. Finally, this chapter introduces related state

of the art proposals that deal with federated authentication and authorization solutions

for application services.

Chapter 3 describes in detail the first of the contributions of this thesis: FedKERB. The

chapter starts motivating the problem and describing the proposed architecture. After that,

it enumerates the design possibilities to define an EAP-based Kerberos pre-authentication

14

1.6 Related publications

mechanism, and details the interaction between the elements of the architecture to

accomplish the required functionality. Finally, it discusses some aspects of the proposal

that require attention, and provides a security analysis of the contribution.

Chapter 4 specifies PanaKERB, the second of the contributions of this thesis. This

chapter starts with the motivation of the problem, and continues with the definition of the

architecture, describing the involved elements, and the operational workflow. Finally, the

chapter discusses some security considerations that have special relevance.

Chapter 5 details EduKERB, the third contribution of this thesis. Similarly to the

previous chapters, it starts with the motivation of the problem. Then, it describes the

architecture and the general operation of the proposal in detail. Finally it provides a

thorough security analysis.

Chapter 6 provides a performance evaluation and functional validation of the

contributions described in the previous chapters, in order to demonstrate their feasibility

beyond their theoretical standpoint. This chapter provides a high level performance model

describing the main time-consuming tasks that are required to complete the execution of

each one of the proposals, describes the prototypes developed for this thesis, and provides

an empirical performance analysis based on the results obtained from their execution.

Finally, Chapter 7 presents the conclusion of this work, and discusses the future work.

1.6 Related publications

The research work carried out in this thesis has led to the publication of different works

at conferences, research journals, and IETF drafts. The most relevant contributions are

presented, in chronological order.

Indexed Journals (JCR)

• R. Maŕın-López, F. Pereñ́ıguez, G. López, and A. Pérez-Méndez. Providing

EAP-based Kerberos pre-authentication and advanced authorization for

network federations. Elsevier Computer Standard & Interfaces, 33(5):494-504,

2011. Listed in Q2 (28/104) of the JCR 2011, area of Computer Science, Software

Engineering.

This paper presents an analysis of the motivation for integrating Kerberos and AAA

infrastructures, and provides a fist approach to the architecture of the FedKERB

proposal.

15

1. Introduction

• A. Pérez-Méndez, F. Pereñ́ıguez-Garćıa, R. Maŕın-López, and G. López-Millán. A

cross-layer SSO solution for federating access to kerberized services in

the eduroam/DAMe network. Springer International Journal of Information

Security, 11(6):365–388, 2012. Listed in Q4 (105/132) of the JCR 2012, area of

Computer Science, Information Systems.

This paper proposes a cross-layer SSO solution for kerberized services deployed in

the eduroam federation, providing an extensive security analysis. It constitutes the

main contribution to the EduKERB proposal.

• A. Pérez-Méndez, F. Pereñ́ıguez-Garćıa, R. Maŕın-López, and G. López-Millán.

Out-of-band federated authentication for Kerberos based on PANA.

Elsevier Computer Communications, 36(14):1527 – 1538, 2013. Listed in Q2 (50/135)

of the JCR 2013, area of Computer Science, Information Systems.

This paper provides a solution for federated authentication for Kerberos based on

PANA. It constitutes the main contribution to PanaKERB.

• A. Pérez-Méndez, F. Pereñ́ıguez-Garćıa, R. Maŕın-López, G. López-Millán,

and J. Howlett. Identity Federations Beyond the Web: A survey,

Communications Surveys & Tutorials, IEEE, vol.PP, no.99, pp.1,1. doi:

10.1109/COMST.2014.2323430, 2014. Listed in the Q1 (3/135) of the JCR 2013,

area of Computer Science, Information Systems.

This paper provides a survey of identity federations beyond the web. In particular, it

focuses on Moonshot and FedKERB, as they are the only two that are being discussed

on the standardization bodies.

Conferences

• A. Pérez, F. Pereñ́ıguez, R. Maŕın-López, G. López. Federando Autenticación y

Autorización en Servicios Kerberos mediante GSS-API y EAP. In JITEL

2011.

This conference provides an evolved version of the architecture of the FedKERB

proposal.

• A. Pérez Méndez, F. Pereñ́ıguez Garćıa, R. Maŕın López, G. López Millán.

Federación de servicios kerberizados en eduroam. In RECSI 2012.

This conference discusses the problem of federating the access to application services

in the eduroam network, and provides a summary of the EduKERB proposal.

16

1.6 Related publications

• A. Pérez, Fernando Pereñ́ıguez, R. Maŕın-López, G. López y D.R. López. Mejora

del Protocolo RADIUS para Soportar la Fragmentación de Datos de

Autorización. In JITEL 2013.

This conference paper provides a general description of the extension to the RADIUS

protocol to support the fragmentation of packets with a length over 4096 octets.

Standardization groups

• A. Pérez-Méndez, R. Marin-Lopez, F. Pereñ́ıguez-Garcia, and G. Lopez-Millán.

GSS-API pre-authentication for Kerberos. IETF Internet Draft,

draft-perez-krb-wg-gss-preauth-02, Sep 2012.

The GSS-API pre-authentication mechanism required by the FedKERB proposal was

detailed in this draft and presented to the IETF Kerberos WG.

• A. Pérez-Méndez, R. Maŕın-López, F. Pereñ́ıguez-Garćıa, and G. López-Millán.

GSS-EAP pre-authentication for Kerberos. IETF Internet Draft,

draft-perez-abfab-eap-gss-preauth-01, Mar 2012.

The FedKERB operation was described in this draft and presented to the IETF

ABFAB WG as an alternative to the direct authentication with the application service

using GSS-EAP.

• A. Pérez, J. Howlett, Options for ABFAB-based

Kerberos pre-authentication. IETF Internet Draft,

draft-perez-abfab-kerberos-preauth-options-01, March 2012.

This draft, presented to the IETF Kerberos WG, discusses two design alternatives to

provide EAP-based Kerberos pre-authentication: one based on the direct transport

of EAP packets, and the other based on GSS-EAP.

• A. Pérez-Méndez, R. Maŕın-López, F. Pereñ́ıguez-Garćıa, G. López-Millán, A.

DeKok, and D. López. Support of fragmentation of RADIUS packets. IETF

Internet Draft (in WGLC), draft-perez-radext-radius-fragmentation-07, July 2014.

This draft describes in detail a proposal for supporting the fragmentation of RADIUS

packets, allowing the transport of large amounts of authorization data (over 4096

octets). This document was presented to the IETF RADEXT WG, and accepted

as working item. Moreover, it is currently in Last Call status, and will likely be

promoted as experimental RFC within the next months.

17

1. Introduction

18

Chapter 2

Background and State of the Art

The research work described in this thesis document is built upon standard technologies

and protocols. Therefore, knowing them and understanding how they work is of paramount

importance to understand the following chapters of this document. This chapter provides

a brief description of the most relevant technologies related to the access control problem

for different kinds of services, and how their use can be applied to federated environments.

Specifically, Section 2.1 focuses on the access control to the network service, while

Section 2.2 provides background on access control to web applications, and Section 2.3

describes other technologies that are able to provide these security services to generic

application services. Finally, Section 2.4 introduces related state of the art proposals that

deal with federated authentication and authorization to application services.

2.1 Access control to the network service

This first section describes the technologies that typically take part of the access control

to the network service. Namely, these technologies are AAA infrastructures, used to

allow the exchange of authentication, authorization and accounting information between

the home organization and the service provider ; EAP [22], which is used to perform

authentication between the end user and the home organization; and lower layer protocols,

which transport EAP packets between the end user and the service provider.

19

2. Background and State of the Art

2.1.1 AAA protocols

The protection of the network service has been under great consideration by the

standardization bodies. Indeed, several working groups (WG), such as the NASREQ WG1

and the AAA WG2, were created within the IETF with the purpose of analysing the

security of the systems that control access to this and other services. These systems are

typically known as AAA infrastructures, where AAA is the acronym for the three pillar

processes that take part on the access control functionality: Authentication, Authorization,

and Accounting :

• Authentication. This process verifies whether the end user is who she claims to

be, usually after the validation of a credential (e.g. password, digital certificate or

biometric information).

• Authorization. This process determines whether the end user has permission to access

the requested resource (in this case, the network), based on the available information

about her, like the role in the organization, date and time to perform the access, kind

of available subscription, etc.

• Accounting. This process monitors the consumption of the resource performed by

the end user along the lifespan of an authorized session. It is mainly used for billing

purposes.

Although AAA infrastructures are widely deployed for network service, they were

conceived to support any type of application service in federated environments [20].

The IETF defined the generic AAA architecture in [44], describing the components

that must take part of the AAA infrastructure, as well as the possible ways of interactions

between them to carry out the access control functionality under different scenarios.

This generic architecture is composed by the following entities:

• End user. The person or network equipment willing to access the network resource.

• Home organization. Organization where the end user has a subscription. It deploys

the home AAA server, which is able to verify end user’s credentials, hence asserting

end user’s identity.

1http://datatracker.ietf.org/wg/nasreq/
2http://datatracker.ietf.org/wg/aaa/

20

2.1 Access control to the network service

• Service provider. Organization where the network resource is actually being offered.

It deploys the service provider’s AAA server and the specific equipment for the

services it offers. The service provider’s AAA server communicates with the home

AAA server to exchange AAA information.

• Specific equipment. It communicates with the service provider’s AAA server in order

to authenticate the end user and to obtain an authorization decision when access

to a resource is requested. An example of specific equipment would be a Wi-Fi

(802.11 [21]) Access Point (AP).

If the service provider and the home organization are not collocated, it is required that

both belong to the same AAA-based federation, or that they have some kind of Service Level

Agreement (SLA) [45] established, in order to allow the secure exchange of authentication

and authorization information. They may also exchange accounting information to bill the

end user for the use of the resource.

AAA-based federations are usually built following a hierarchical pattern, in such a way

that every member of the federation does not need to know the IP address of the rest of

members, but only those from its immediate father and children in the hierarchical tree

(also known as AAA proxies). This scheme simplifies deployment and establishment of

security associations, improving its scalability. Figure 2.1 shows an example of hierarchical

organization. The thicker lines represent the path followed by the AAA messages exchanged

between AAA server112 and AAA server132.

AAA server1

AAA server11 AAA server12 AAA server13

AAA server111 AAA server112 AAA server131 AAA server132

Figure 2.1: Hierarchical AAA scheme.

Having this in mind, a typical AAA protocol exchange would be as follows: an end

user tries to access the network service using a Wi-Fi AP (specific equipment), providing

21

2. Background and State of the Art

some information about herself (e.g. user name identifier). As the AP has no means

to verify the identity of the end user, it sends a new AAA request to its local AAA

server (service provider’s AAA server) to ask for an authentication and authorization

decision. In turn, if the end user does not belong to the service provider, the AAA

request is forwarded to the corresponding home AAA server, which generates a AAA

response. Several request/response exchanges may be required to successfully authenticate

and authorize the end user. After that, if the process was successfully completed, the end

user is granted with access to the network, and the Wi-Fi AP may generate accounting

records that are sent to the home organization for billing purposes.

The AAA specification does not impose any particular authentication mechanism to be

used, it just provides a transport for the information. Therefore, AAA can potentially be

adapted to use any authentication mechanism. However, for each one of them, it would

be required to define how authentication data is exchanged between the AAA servers. For

this reason, EAP has become into the most popular authentication mechanism for AAA

protocols, as it provides a middle layer between the authentication method itself and the

AAA protocol. This allows using a wide range of authentication methods without requiring

the modification of the AAA protocol. Besides, it adapts perfectly to the federated nature

of AAA infrastructures.

Following subsections describe the two most relevant AAA protocols nowadays:

RADIUS and Diameter. The former is the most broadly deployed and used, due to its

longer existence and simplicity. The later appeared to solve the issues that RADIUS

had, such as lack of confidentiality, datagram oriented transport and limited attribute and

message size. However, the natural opposition to change already deployed and working

systems, and its higher complexity compared to RADIUS, have limited its success for

several scenarios. Both protocols support performing authentication by means of EAP.

RADIUS

RADIUS [10] is a protocol for carrying authentication, authorization, and accounting

information between a Network Access Server (NAS), which controls access to network

resources, and an Authentication Server (AS) which has information about the end user.

The NAS and AS functionalities can be mapped to the specific equipment and home AAA

server from the generic AAA architecture described above, respectively.

RADIUS is a client-server protocol, where the NAS plays the role of the client,

requesting the authentication and authorization of end users trying to connect, and the

AS acts as the server processing those requests. The authentication and authorization

22

2.1 Access control to the network service

processes are performed simultaneously, while accounting is optionally carried out in a

later stage.

The protocol consists of the exchange of the so-called RADIUS packets, where

information is conveyed in form of RADIUS attributes. There are four types of packets

used for authentication/authorization:

• Access-Request. It is generated by the NAS, and typically contains information about

the end user trying to access the service. Upon reception, the AS generates a reply

using one among the following three packet types.

• Access-Accept. It is used to provide the NAS with a successful result of an

authentication/authorization process. It may provide additional configuration

information to be enforced in the NAS in order to adjust the service parameters.

• Access-Reject. It is used to provide the NAS with a failed

authentication/authorization process. It may contain information about the

reason of the failure, in order to allow the NAS to inform the end user.

• Access-Challenge. It is used to request additional information from the NAS, in case

the one received so far is not enough to complete the authentication/authorization

process. The Identifier field of the RADIUS header and the State attribute are

used to tie together all the Access-Request/Access-Challenge packets belonging to

the same conversation.

Besides, [46] defines other two packet types used to transport accounting information:

the Accounting-Request packet, sent from the NAS to a RADIUS accounting server; and

the Accounting-Response, sent from the RADIUS accounting server to the NAS.

The transport of RADIUS packets is performed over UDP (port 1812 for

authentication/authorization and 1813 for accounting). The NAS may retransmit an

Access-Request packet if no proper reply arrives within a reasonable time frame, as the

packet is considered lost.

The NAS can directly send Access-Request packets to the AS if the IP address of

the latter is known. However, if it is unknown, the packets can be sent instead to an

intermediary server (called RADIUS proxy) that either delivers the packet itself or knows

how to route them to its destination via other proxy. The use of proxies allows to create

hierarchical structures of RADIUS servers, as described above in Figure 2.1.

RADIUS security is based on pre-established shared secrets between RADIUS servers.

These secrets are used to encrypt the transmitted user passwords, and to provide integrity

23

2. Background and State of the Art

protection and authentication of packets [10,47]. However, this security scheme has several

drawbacks and vulnerabilities:

• Shared secrets between RADIUS servers are statically configured, making the

addition of new members to the federation more difficult, thus limiting its scalability.

• When RADIUS proxies are used, there is not a shared secret between the NAS and

the AS server. Instead, security is applied hop-by-hop, meaning that every proxy

must be trusted as they have access to private information (e.g. user passwords or

network keys).

• As RADIUS does not provide confidentiality (except for user passwords), an

eavesdropper could examine the content of other RADIUS attributes that may

contain sensitive information (e.g. delivery of EAP keying material [47]).

An additional problem of RADIUS is the limitation imposed to the length of attributes

and packets. While attributes are restricted to a maximum of 256 bytes, packets can not

exceed 4096 bytes. Both limits suppose a drawback that has been tried to be solved from

the IETF in several occasions [47–49], although they are proposals for specific use cases and

they do not provide a generic solution. Currently, the RADEXT WG [50] is working on a

packet fragmentation proposal [51] to allow the exchange of large amounts of authorization

information between RADIUS entities.

To overcome the enumerated security flaws, TLS has been proposed as an optional

transport for the RADIUS protocol [52], in order to provide stronger security protection

to packets, establishing a direct security association between the NAS and the AS.

Nevertheless, a completely new AAA protocol called Diameter has been designed within

the IETF, to solve these security issues and to improve the protocol design to adapt it to

new requirements.

Diameter

Diameter [11] arises to overcome the problems and deficiencies that RADIUS has. This

issues make RADIUS hardly usable for some of the new scenarios that have been appearing

with the pass of the time, and that have higher requirements in terms of transport

capabilities and security. Diameter uses a connection-oriented transport protocol (TCP

or SCTP [53] on port 3868), since the reduced overhead of using connectionless protocols

is no longer an important aspect with nowadays equipments. It also allows longer packets

and attributes than RADIUS, providing natural support for the exchange of large amounts

24

2.1 Access control to the network service

of data. Finally, it also incorporates stronger security mechanisms, such as TLS [36],

DTLS/SCTP [54], or IPsec [55] by default. While TLS and DTLS support is mandatory,

supporting IPsec is optional. Nevertheless, using one of them for securing the exchange of

messages is mandatory.

The protocol consists of the exchange of messages between the Diameter client and

the Diameter server, which are used for carrying AAA information between them. The

Diameter client and server functionalities can be mapped to the specific equipment and the

home AAA server from the generic AAA architecture described above, respectively.

Instead of defining different message types, Diameter uses the concept of command

to specify the expected behaviour upon reception. Each command consists of a request

and its corresponding answer. Table 2.1 provides a brief summary of the main Diameter

commands defined in the base protocol specification.

Table 2.1: Common Diameter Commands.

Command Abbreviation Description

Capabilities-Exchange-
Request /Answer

CER/CEA Discovery of a peer’s identity and its
capabilities.

Disconnect-Peer-Request
/Answer

DPR/DPA To inform the sender’s intention to
shut down the connection.

Re-Auth-Request /Answer RAR/RAA Sent to an access device (NAS) to
solicit user re-authentication.

Session-Termination-Request
/Answer

STR/STA Sent to the server to inform the
provision of a service to a user

Accounting-Request /Answer ACR/ACA To exchange accounting information
between Diameter client and server.

The Diameter base protocol specification defines a minimal set of elements to allow the

exchange of AAA information between the parties. Specifically, it provides the definition

of the format for messages and Attribute Value Pairs (AVPs) transporting the information.

It also defines a basic collection of messages, commands and attribute types, which allow

performing accounting tasks. However, it does not provide authentication or authorization

support for any particular application service. This support has to be provided by means

of the so-called Diameter applications. Diameter applications define the commands and

AVPs that are used for a particular application or protocol. New commands and AVPs

can be defined within the context of an application, although re-utilisation of the existing

ones when possible is highly recommended.

There exist several Diameter applications already defined for the most typical kind

25

2. Background and State of the Art

of services, like the Network Access Server Requirements Application (NASREQ [56]),

which satisfies typical network access services requirements and provides a mean for

interacting with legacy (RADIUS) systems, or the Diameter Extensible Authentication

Protocol Application (Diameter-EAP [57]), which defines how to transport EAP packets

from a NAS to a EAP server. A Diameter client or server is referred to as Diameter X

Client/Server when fully they support application “X” (e.g. Diameter EAP Client).

2.1.2 EAP

As mentioned in Chapter 1 and in previous subsections, the Extensible Authentication

Protocol (EAP) [22] is a protocol designed to perform authentication by means of a

extensible set of mechanisms and technologies, through the so-called EAP methods. As

depicted in Figure 2.2, three different entities might be involved in an EAP authentication

process: the EAP peer, the EAP authenticator and the EAP server. The EAP peer is

the subject of the authentication, the EAP authenticator is the entity interested in the

outcome of the authentication process, and the EAP server is the entity that knows how

to authenticate the EAP peer. The EAP server can be either co-located with the EAP

authenticator (standalone configuration), or with a backend AAA server (pass-through

configuration) [22]. In the latter case, the EAP authenticator does not take part on the

authentication process, and simply acts as a mere intermediary between EAP peer and

EAP server.

Since EAP is the most used authentication mechanism in AAA protocols, its entities can

be mapped in a one-to-one relation with those from the AAA architecture. In particular,

the EAP peer functionality usually lies on the end user, while the EAP authenticator one

is performed by the specific equipment (pass-through configuration), and the EAP server

is implemented by the home AAA server.

An EAP conversation consists of several request/response packets exchanged between

the EAP peer and the EAP server, through the EAP authenticator. In order to convey

packets between the EAP peer and the EAP authenticator, an EAP lower-layer protocol

is required. Section 2.1.3 provides more details about lower layer protocols. In the

pass-through configuration, the help of an auxiliary AAA protocol is required to transport

packets between the EAP authenticator and the EAP server. The specifications that

define how EAP is transported in RADIUS and Diameter can be found in [47] and [57]

respectively. Section 2.1.1 describes AAA infrastructures and protocols.

The EAP authenticator usually starts the authentication process by requesting the

EAP peer’s identity through an EAP Request/Id packet. The EAP peer answers with an

26

2.1 Access control to the network service

EAP Response/Id containing its identity. With this information, the EAP authenticator

determines the EAP server that will handle the authentication and forwards the packet to

it through the AAA infrastructure. Upon the reception of this packet, the EAP server

selects the authentication method to be performed. The method execution typically

involves several EAP Request/Response exchanges between the peer and server. Finally,

the outcome of the process is indicated with either an EAP-Success or an EAP-Failure

packet.

Figure 2.2: EAP Framework Model

There are a wide variety of standard EAP methods, each one showing different security

properties. One of the most simple ones is the EAP-MD5 [22] method, where the EAP

peer must return an MD5 digest computed over a challenge received from the EAP server

and its own password. This method is susceptible to man-in-the-middle and dictionary

attacks [58], and does not provide mutual authentication. A more secure approach is

provided by the EAP-TLS [59] method, where a TLS security association is established

between EAP peer and EAP server. This method provides mutual authentication, and

avoids the man-in-the-middle situation. However, the EAP peer must be configured with

an X.509 [35] certificate for authentication, something that is usually a hassle. Finally,

the tunnelled methods such as EAP-TTLS [60] or PEAP [61], establish a TLS channel

between the EAP peer and EAP server. This channel is then used to encapsulate a

simpler authentication method such as CHAP, PAP or MD5 digests, where the end user’s

identifier and password are transmitted. Other relevant EAP methods are EAP-AKA [62],

EAP-SIM [63], and EAP-IKEv2 [64]

After a successful authentication, some EAP methods are able to generate keying

material. According to the EAP Key Management Framework [65] two keys are exported:

the Master Session Key (MSK) and the Extended Master Session Key (EMSK). While the

MSK is typically provided to the authenticator to establish a security association with the

peer (e.g. layer2 security in Wi-Fi networks), the EMSK must be kept in secret between

27

2. Background and State of the Art

the EAP peer and EAP server. In particular, the EMSK has been proposed [66] to derive

further keys, called Usage-Specific Root Keys (USRK), which can be used for different

purposes (e.g. to provide security to specific applications).

As nothing precludes the EAP server and EAP authenticator to belong to different

organizations, EAP is intrinsically prepared to operate in federated environments. In this

way, an end user belonging to a particular organization (home organization) can use EAP

to be authenticated to access the network in a different organization (service provider).

For this operation it is required that both organizations establish a trust relationship which

allows the usage of a AAA protocol to transport the EAP packets. This is further described

in section 2.1.1. A successful example of network federation based on EAP is eduroam [24].

Besides the access control to the network service, the usage of EAP to perform

authentication for other services and scenarios is under consideration in the IETF [67].

2.1.3 Lower layer protocols

As explained in Section 2.1.2, the EAP peer and authenticator require of a protocol to

transport the EAP packets between them, in order to complete a successful authentication

(e.g. wireless links). These protocols are denoted as lower layers, and the requirements

they have to fulfil, as well as their expected behaviour, are described in section 3 of [22].

There exist a variety of lower layer protocols, as several network access technologies

have adopted EAP as their authentication protocol. Besides, some network layer protocols

have opted to include EAP support in order to provide extensible authentication methods.

This subsection focuses on those technologies and protocols that have a bigger relevance,

either because they are widely used, or due to their importance in the context of this work.

802.1X

The 802.1X specification [68] is an access control model for IEEE 802 Local Area Networks

(LAN). It is based on the use of EAP to allow different authentication methods. It defines

three components: the supplicant willing to access the network, the authenticator providing

the service, and the authentication server, which authenticates the supplicant. These

entities play the role of EAP peer, authenticator and server respectively.

The access control mechanism is performed in terms of ports. A port represents the

association between the supplicant and the authenticator. When it is open, the supplicant

can only communicate with the authenticator to perform the EAP authentication, nothing

else. Once the authentication process has been completed, the port state is changed to

closed meaning the access to the network is granted. The main problem of this access

28

2.1 Access control to the network service

control model is that the cryptographic material derived from the EAP authentication is

not used to establish a security association between the supplicant and the authenticator.

This is something that forthcoming protocols, such as 802.11 [21] and its 4-way handshake,

imposed for improved security.

In addition to this access control model, the 802.1X specification also defines the EAP

over LAN (EAPOL) protocol. This lower layer protocol determines how EAP packets are

encapsulated into IEEE 802.11 frames, and how they are exchanged between the supplicant

and the authenticator.

802.11

The 802.11 specification [21] defines a set of standards for IEEE Wireless LAN. One of

the aspects covered by this specification is the access control to the network, for which

originally two models were proposed. The Open System Authentication model imposes no

authentication. Using this model, any station able to associate with the AP is automatically

granted to access the network. On the contrary, the model based on the Wired Equivalent

Privacy (WEP) protocol requires the station and the AP to know a pre-shared secret.

However, WEP encryption has been proven to be insecure [69], motivating the creation of

the 802.11i standard [70], which tries to overcome the aforementioned security issues.

As a result of the work on 802.11i, the Wi-Fi Protected Access (WPA) was released in

2003. WPA is an interim specification on a preliminary version of the 802.11i draft. In

2004, the final version of 802.11i (denoted as WPA2) was released. While WPA uses the

RC4 [71] encryption algorithm, WPA2 uses the stronger AES [72].

802.11i defines an authentication process divided into three phases:

1. IEEE 802.11 association phase. During this phase the station discovers the

capabilities offered by the AP and associates with it.

2. IEEE 802.11 authentication phase. This phase allows to make use of two different

methods, one based on pre-shared keys and the other based on 802.1X specification.

If the latter is used, EAP is executed between the station (acting as EAP peer) and

the AP (acting as EAP authenticator). The EAP server can be either collocated with

the AP or be deployed as a separated AAA server (i.e. RADIUS or Diameter). A

Pairwise Master Key (PMK) is derived from either the pre-shared key or the MSK

exported by the EAP method.

3. IEEE 802.11 security association phase. This phase consists of the execution of the

4-way handshake protocol, using the PMK derived from the previous phase. As a

29

2. Background and State of the Art

result, a Pairwise Transient Key (PTK) and a Group Transient Key (GTK) are

derived to protect traffic between the station and the AP. Besides, the port in the

AP is set to closed state.

802.16

The 802.16 specification [73] is a set of standards authored by the IEEE focused on wireless

broadband provisioning in metropolitan areas. It is also known as WiMAX, a commercial

name given by the WiMAX Forum industry alliance.

On its first version, 802.16 was intended for fixed scenarios where a Subscriber Station

(SS) does not move from one Base Station (BS) to another. The 802.16e [74] specification

arises to overcome this limitation and to improve the access control mechanism for either,

fixed and mobile scenarios. In this sense, the PKMv2 (Privacy and Key Management)

protocol was defined to provide mutual authentication and secure key distribution between

the SS and BS. Authentication can be performed by means of public key encryption (i.e.

RSA) or by means of EAP. In the latter case, the SS plays the role of EAP peer while

the BS acts as the EAP authenticator. Depending on the specific configuration, the EAP

server can be located either in the BS or in a dedicated AAA server.

Similarly to 802.11, after a successful authentication a PMK is derived from the MSK

by the SS and the BS. Afterwards, they perform a 3-way handshake process to generate a

TEK (Traffic Encryption Key) used to protect network traffic in the wireless link.

802.21a

The IEEE 802.21 [75] standard specification aims to enable a seamless movement between

heterogeneous networks using different technologies (also known as Media Independent

Handover - MIH). The network service is provided by each provider through the so-called

Point of Attachment (PoAs). Hence, access control to the network would be determined

by the underlying technology of each one of these PoAs (e.g. 802.11, 802.16...). Besides,

network providers deploy some Point of Service (PoS) elements, which support remote

events and command services to aid in the handover process.

To allow this media independent handover (MIH) each network element implements the

following services, which provide information relevant to the handover: Media Independent

Event Service (MIES), that provides information about changes in link characteristics or

quality; Media Independent Command Service (MICS), that allows upper-layers to control

and manage link-layer behaviour; and Media Independent Information Service (MIIS), that

30

2.1 Access control to the network service

manages information about the network topology, discovering available neighbour access

networks and PoAs.

There are several task groups within the IEEE aiming to define extensions to 802.21.

Specifically, IEEE 802.21a is defining mechanisms to protect the MIH message exchanges

performed between the MN and the PoSs. In particular, the solution described in [76]

proposes the use of EAP to perform the MN authentication prior accessing the PoS services,

and to make use of the exported keying material to derive further keys to protect the

subsequent MIH messages.

IKEv2

The Internet Key Exchange (IKE) protocol was designed in order to automate the IPsec [55]

security association establishment. Its first version was defined in three IETF RFCs

(2407, 2408, and 2409). However, this version suffered of some limitations and complexity,

motivating the proposal of a second version. The result was the IKEv2 [77] protocol.

The IKEv2 protocol is executed between two parties: the initiator and the responder.

The initiator starts the IKEv2 protocol, whereas the responder acts as server during

the negotiation. The protocol is composed of a well defined set of four main

exchanges (request-response), namely: IKE SA INIT, IKE AUTH, CREATE CHILD SA

and INFORMATIONAL. Though the IKEv2 protocol uses a non reliable transport protocol

(UDP), the concept of exchange allows to ensure reliability, as there is an expected and

well defined response for each request.

The IKE SA INIT exchange establishes a security association (SA) at IKE level, named

the IKE SA (IKE SA), between the participant entities. This IKE SA will protect all the

following IKE exchanges. Once the IKE SA is established, an IKE AUTH exchange is

performed in order to authenticate the parties and create the first IPsec SA (CHILD SA)

between them.

In addition to the authentication methods already supported by IKE (i.e. pre-shared

key and public key cryptography), IKEv2 adds support for using EAP. The transport of

the EAP packets is performed through several IKE AUTH exchanges between the initiator

(playing the EAP peer role) and the responder (acting as EAP authenticator). The keying

material exported by the EAP method (if any) is used in the key derivation process defined

by IKEv2 to generate the IPsec security association keys.

Differently from the previously described network access technologies, which operate

at link layer (L2), IKEv2 operates at application layer (L5). This aspect allows the EAP

peer and the EAP authenticator to be deployed in different physical networks, even using

31

2. Background and State of the Art

different network access technologies.

PANA

The Protocol for carrying Authentication for Network Access (PANA) [43] is a lower

layer protocol designed to transport EAP packets between an EAP peer and an EAP

authenticator over IP networks. Specifically, it operates on top of UDP, making PANA

independent from the underlying network access technology.

The PANA network access control model considers a PANA Client (PaC) which

requests access to the network service offered by an Enforcement Point (EP), such as

an AP or a router. The EP is controlled by a PANA Authentication Agent (PAA),

responsible for authenticating and authorizing PaCs which are requesting access to the

network service. Through AAA protocols, the PAA communicates with the Authentication

Server (AS), an entity which is in charge of verifying the credentials provided by a PaC.

The AS functionality is typically implemented by a AAA server. If the AS correctly verifies

the credentials, it sends authorization parameters (cryptographic material, network access

lifetime, etc.) to the PAA which, in turn, transfers some configuration information to the

EP by using either an Application Program Interface (API) or a Configuration Network

Protocol (CNP) such as SNMP [78]. According to this operation, the PaC, PAA and AS

implement the EAP peer, EAP authenticator and EAP server functionalities, respectively.

The PANA operation is developed along four different phases. In first place,

the authentication and authorization phase is initiated by the PaC through a

PANA-Client-Initiation message sent to the PAA. In this phase, the PaC and the PAA

exchange several PANA-Auth-Request/Answer (PAR/PAN) messages in order to negotiate

some parameters such as the integrity algorithms used to protect PANA messages. They

also exchange PANA messages transporting EAP, which are forwarded to the AAA server

to perform the authentication. At the end of this phase two security associations are

established: on the one hand, a PANA security association (PANA SA) is established

between the PaC and PAA in order to integrity protect PANA messages; on the other, a

PaC-EP SA is generated by performing a security association protocol between the PaC

and an EP to protect data traffic.

2.2 Access control to web applications

Nowadays, the World Wide Web (WWW) [79] represents a special case of application

service, due to its growth and wide extended use. Hence, it is worth of being discussed in

32

2.2 Access control to web applications

a separated section from other application services.

Along the years, the WWW has became widely used, due to its versatility and

user-friendly operation. It serves as a platform where the so-called web applications offer

end users a wide variety of services, ranging from the basic newspaper publication to the

most complex social network.

The following subsections describe different access control mechanisms used to perform

authentication and authorization in web applications, from the basic HTTP authentication

to more advanced federated authentication and authorization mechanisms.

2.2.1 HTTP authentication

Originally, the HTTP protocol [80] provided the Basic Access Authentication scheme,

intended to provide a basic access control to web applications. This scheme defines a means

by which a web server can request the end user’s user agent (e.g. web browser) to provide

valid user credentials, before granting access to a protected resource. The web server checks

whether the provided credentials match with the ones stored in some database (e.g. local

file), and authorizes access to the requested resource in such a case. However, this scheme

is not considered secure since the credentials are provided in clear-text, requiring the use

of a secure transport (e.g. TLS channel).

To overcome the more serious flaws of the Basic Access Authentication, the IETF

defined the Digest Access Authentication [81]. In this scheme the credentials are never sent

in clear-text over the network. Instead, the web server provides a challenge (i.e. a nonce

value) to the user agent, which replies with the result of a hash function (typically MD5)

computed over the username, the password, the given nonce, the HTTP method, and the

requested URI. Although the password is not sent in clear-text, this mechanism does not

provide a great security as it does not allow mutual authentication and it is vulnerable to

man-in-the-middle attacks. Therefore, a secure transport such as TLS would be required

as well.

Using any of these mechanisms, the web server is responsible of the authentication

procedure (i.e. assure end user identity), though any relevant identity information about

the end user must be managed by each particular web application associated to the end

user’s identifier.

33

2. Background and State of the Art

2.2.2 Web forms based authentication

In opposition to the HTTP authentication, where access control is performed at the HTTP

protocol level, a different alternative consists in leveraging authentication to each individual

web application. For doing that, the web application prompts unauthenticated users with

a web form where they must provide their credentials. The web application processes

the received credentials and matches them with some application-specific database. If

the authentication succeeds, the user is provided with a session identifier, which must be

presented by the user agent on every subsequent request made to the web application. The

lifetime of this session is limited, hence after a configured amount of time, the end user will

be required to authenticate again. The session identifier can be stored by the user agent

into a persistent cookie. This allows re-using the session identifier in future accesses to the

same web application within the session lifetime.

This authentication mechanism provides the web application with a finer control over

the authentication/authorization process, as it simplifies other processes such as logout,

or password update, which are now controlled by the web application and not by the web

server.

It is recommended to combine this method with the use of TLS in order to protect the

transmission of the html form, and to avoid man-in-the-middle attacks.

2.2.3 Federated operation

Web applications may decide to take part of a federation (Section 1.1) in order to decouple

access to the resource from the end user authentication process. In this case, the latter is

delegated into a third party entity called Identity Provider (IdP). This IdP is in charge of

managing end user’s credentials and identity information. This federated access allows: a)

web applications to not worry about how the authentication is performed (e.g. plain

login/password, digest-based authentication, public key cryptography, smart cards or

biometry), and focus on the content delivery; b) end users to use a single identity through

multiple web applications; c) end users to be able to access to those federated applications

after performing a single authentication process, benefiting from SSO, and considerably

improving the user experience.

Such a federated scenario requires that both, web applications and IdPs, agree

on common technologies to represent and exchange authentication and authorization

information. There are several standards aiming to provide a solution for some of these

federation aspects. Although they are intended to solve different scenarios, and they use

34

2.2 Access control to web applications

different mechanisms, they all can be summarized under the following generic operation

scheme:

1. The end user accesses a specific web application.

2. At some moment, the web application requires additional identity information about

the end user (e.g. authentication token or a specific set of identity attributes) that

must be provided by the end user’s IdP.

3. The web application redirects the end user agent (e.g. using HTTP redirections [80]

or HTTP GET/POST) to the IdP. This HTTP request include which web application

is making the request, and what information is being requested.

4. The IdP authenticates the end user making use of one of the mechanisms described

above, and prompts her for consent to disclose the requested information to the web

application.

5. If the end user agrees, the IdP redirects the user agent back to the web application,

including one or more statements with the information required by the web

application.

The following subsections provide a brief description of the most relevant technologies

supporting web federation, describing their target use cases and the functionality provided.

SAML

The Security Assertion Markup Language (SAML) [6] is a XML-based security specification

defined by the OASIS Security Services Technical Committe [82]. It is intended to, on the

one hand, provide a means to represent authentication and authorization statements; and

on the other hand, to define how this information is generated, exchanged, and processed

by the different involved parties.

SAML defines Assertions as the security statement format. Each Assertion usually

includes the issuer’s identity (Issuer), the subject’s identity (Subject), and the set of

conditions under which the statement is valid (e.g. validity period or recipient identity).

Besides, different kind of information is included in the assertion depending on the type(s)

of statement to encode. Authentication statements assert that the included Subject was

previously authenticated by an authority in a particular context, and they are mainly

used in SAML-based SSO scenarios [12]. Attribute statements assert that the Subject is

associated to the supplied attributes. Attributes can define a role, a group membership

35

2. Background and State of the Art

or relevant information for each entity. Finally, Authorization Decision statements3 assert

whether an entity can gain access to a specified resource based on some evidence, usually

another statement.

The SAML specification also defines the concept of Protocol. A Protocol describes how

SAML elements (e.g. Assertions) are packaged into SAML request and SAML response

messages, and the processing rules associated to their generation and processing. Usually

SAML Protocols follow a request/response scheme, and are used to retrieve a specific kind

of statement. For example, the Authentication Query, Attribute Query, and Authorization

Decision Query protocols are used to request their homonyms statements.

In order to define how a SAML protocol message is transported from one party to

another, the SAML specification defines the concept of Binding [83]. The most relevant

bindings defined for SAMLv2 are SAML SOAP, Reverse SOAP (PAOS), HTTP Redirect

(GET), HTTP POST, HTTP Artifact, and SAML URI.

Finally, SAML defines several profiles [84] as a set of rules describing how assertions,

protocols and bindings are combined to fulfil the requirements of a specific scenario. One

of the most important SAML profiles is the Web Browser SSO Profile, describing how an

end user gets authenticated with a service provider by means of the Authentication Request

Protocol, the HTTP GET/POST bindings, and the use of the Authentication statement.

Using the XML signature and the XML encryption specifications [85], a SAML message

can be signed or encrypted by its issuer. This provides a means for authentication, integrity,

and confidentiality for SAML messages, avoiding eavesdropping and tampering. This

security model is based on public key encryption, therefore the assertion consumer requires

to have access to the issuers public key to validate the signature. This can be achieved by

several means, like manual configuration of trusted public keys on each peer, its automatic

distribution along with the signed message, or the use of a Public Key Infrastructure (PKI).

SAML-based federations are built around the concept of metadata [86]. Using a specific

SAML profile requires that involved parties agree on a set of parameters, like identifiers

or supported bindings. Besides, they need to know some details about the other entities,

such as their certificates, their public keys, or the endpoints or URIs where users should

be directed to perform a specific action. This meta-information is represented in an

standardised way using the SAML Metadata specification [86]. In a similar way to public

keys, each member of the federation needs to have access to other members’ metadata in

order to be able to communicate with them. This can be achieved by manually establishing

the metadata on each entity of the federation. Alternatively, metadata information can be

3Since SAMLv2, the authorization decision feature (statement and query) has been frozen; if more
functionality is desired, it is recommended that XACML be used.

36

2.2 Access control to web applications

made available online to the members of the federation through a trusted and well-known

server, typically called Metadata Server (MDS).

There are several identity federation solutions based on SAML, such as Shibboleth [87],

SimpleSAMLphp [88], or Microsoft Info Card [89]. In [90], readers can find an extensive

survey of SAML-based identity federation solutions.

XACML

The eXtensible Access Control Markup Language (XACML) [5] is the OASIS proposal for

a standard access control language and protocol. It is based on XML, and it includes two

different specifications: the first one is an access control policy language, which defines the

set of subjects that can perform particular actions on a set of resources; the second one is

a format to encode access control requests and responses. The standard also describes an

extensible architecture that can be adapted to different scenarios and policy types. In this

sense, two important elements must be highlighted: the Policy Enforcement Point (PEP)

which controls the access to the resource and enforces the decision taken; and the Policy

Decision Point (PDP), which evaluates policies and takes a decision based on the available

information.

OpenID

OpenID [8] is an open source standard for SSO authentication and data management in

web applications. End users register with an OpenID IdP of their choice, where they

establish their credentials (i.e password) and a set of identity attributes. Each end user is

identified unequivocally by a URL or XRI [91] assigned by the IdP. The functionality of

this identifier is twofold. On the one hand, it allows the OpenID provider to distinguish

between the different registered users. On the other, it makes possible for service providers

to resolve the location of the IdP.

In this way, end users do not need to remember traditional authentication credentials

such as username and password for every service provider. Instead, when they try to access

a web application, they are redirected to their IdP to be authenticated. Besides, they are

prompted to indicate the data (attributes) they want to share with the web application.

After being authenticated, the end user is redirected back to the web application, including

the resulting information (i.e. authentication outcome and attributes).

Communication between web applications and OpenID IdPs is based on HTTP

GET/POST methods, where HTTP tags are used to represent the information. The use

of SSL/TLS is strongly adviced to avoid impersonation attacks.

37

2. Background and State of the Art

Unlike SAML, OpenID IdP’s are not intended to provide highly reliable and trusted

identity information about the end user. There are mere convenient intermediaries that

simplify end user’s interaction with web applications, avoiding the recurrent introduction

of the same information. Therefore, the service provider does not need to have any kind

of pre-established trust relationship with the end user’s IdP, making its deployment much

simpler and scalable than SAML-based federations. Even more, OpenID allows any end

user to set up her own IdP. This allows the end user to be in control of her personal data.

WS-*

A web service is a special kind of web application intended to support machine-to-machine

interaction over the network. A web service exposes a set of operations that can be

executed by remote parties, and the interface to these operations is described using

the machine-processable WSDL [92] format. The messages to convey requests and their

associated responses are encoded using SOAP [93], and transported over HTTP.

The generic term WS-* refers to a collection of standard specifications for web

services, part of them released by OASIS. Among other aspects, this collection includes

specifications on how authentication, security, trust and federation must be managed by

web services. Some of the more relevant specifications are: WS-security [94], an extension

to SOAP that aims to provide security to web services, defining how to sign and encrypt

SOAP messages, and how to attach security tokens that assert sender’s identity (e.g.

SAML assertions, Kerberos tickets, X.509 certificates and username/password credentials);

WS-Trust [95], which deal with aspects such as key management and trust bootstrapping;

WS-Federation [96], which specifies how web services take part on an identity federation;

and WS-SecurityPolicy [97], which specifies how to define security policies on these

environments.

OAuth

The OAuth Authorization Framework [9] is an open standard for authorization that allows

end users to share limited access to their protected resources with third-party applications.

OAuth is based on the JWT [98] notation, and it is designed to work over HTTP, but

other protocols could be possible.

The typical authorization process consists of a set of three request/response exchanges.

In the first one, the Client (third-party application) requests an Authorization Grant from

the Resource Owner (end user) to access a specific protected resource controlled by a

Resource Server (service provider). This request can be performed either directly, or

38

2.2 Access control to web applications

through the Authorization Server (identity provider). The second exchange involves the

Client presenting the requested grant to the Authorization Server, in order to obtain a

specific Access Token for the protected resource. Finally, in the third exchange, the Client

requests access to the protected resource by presenting the Access Token. In this model,

the Authorization Server and the Resource Server can be either collocated or separated in

different entities.

The key point in OAuth is to allow Clients to access Resource Owner’s data by means of

an authentication process carried out between the Resource Owner and the Authorization

Server. A typical example scenario is when Alice (Resource Owner) authorizes a Facebook

Game (Client) to automatically post her highest score in her Facebook Wall (Resource

Server) with her Facebook registered account (Authorization Server).

Though the focus is not the authentication of the end user, the first step of OAuth

is similar to the generic federated flow described at the beginning of Section 2.2.3, where

the Client would be the web application that needs some authorization information (in

this case, an Authorization Grant), the Resource Owner would be the end user, and the

Authorization Server would match with the IdP.

OpenID connect

The OAuth standard does not provide a means for the Client (web application) to

get authentication and authorization information about the Resource Owner (end user).

OpenID connect [99] is a suite of specifications that aims to provide such an identity

management layer on the top of OAuth. It provides many of the OpenID features, but

with a simpler API.

OpenID connect defines a new type of OAuth token, named ID Token, that contains

authentication information. Furthermore, this token can also be used later to request

additional authorization information from a special end point called UserInfo, which

manages end user’s identity information. Access to the UserInfo is performed by following

the standard OAuth protocol, where the Client uses the ID Token as a the authorization

grant. Answers provided by the UserInfo end point can include three different types of

claims: normal, aggregated (from other sources but provided by the OpenID Provider) and

distributed (references are provided in order that the Client can retrieve them).

39

2. Background and State of the Art

2.3 Access control to generic applications

Previous sections have described the most relevant technologies used to control the access

to the network service and to web applications. However, those technologies are designed

to work within their own silos, not being interoperable and not being directly applicable

to other kind of applications, such as remote access to terminal (SSH [34]), file transfer

(NFS [100]), email (SMTP [101], IMAP [102]), etc.

This section provides an overview of some technologies that enable access control

to generic applications, providing them with a unified interface to perform end user

authentication and to obtain security services.

2.3.1 Kerberos

Kerberos [7] is a secure three-party protocol for authentication and key management based

on shared secret key cryptography. The protocol provides a SSO platform through the

so-called tickets. A ticket is a piece of encrypted and integrity protected information that

allows an end user to be authenticated without requiring her to provide further credentials.

Kerberos messages are exchanged between three types of entities: a Client that

represents an end user willing to access a specific service, an Application Server (AppS)

providing the specific application service, and a Key Distribution Center (KDC) in charge

of authenticating clients and distributing tickets within a specific realm (organization).

The KDC is integrated by two servers, typically deployed on the same physical entity:

the Authentication Server (AS) and the Ticket Granting Server (TGS). While the former

is responsible for authenticating the Client, the latter is in charge of issuing tickets to

access Application Servers. Kerberos assumes that both the Client and the AppS have a

pre-established trust relationship with the AS and TGS, respectively. In particular, the

trust relationship between AS and the Client is defined by a shared secret named reply key,

which is usually derived from the Client’s password.

Figure 2.3 shows a typical Kerberos exchange. The execution starts when the Client,

usually at log-on time, requests a Ticket Granting Ticket (TGT) from the AS through

a KRB AS REQ/REP exchange (1). The TGT is a special service-independent ticket

used for requesting other tickets. The AS generates a TGS session key that is included in

the TGT to make it available to the TGS. The KRB AS REP message contains the TGT,

other information useful to the user (e.g. ticket lifetime), and a copy of the TGS session key

protected with the reply key. Therefore, only the legitimate Client will be able to decrypt

the key. In addition to this, Kerberos implements a feature called pre-authentication that

40

2.3 Access control to generic applications

Client AS TGS

KRB_AS_REQ

KDC

AppS

KRB_TGS_REP (TGT)

KRB_TGS_REQ (TGT)

KRB_TGS_REP (ST)

KRB_AP_REQ (ST)

KRB_AP_REP

1

2

3

REALM

Figure 2.3: Kerberos standard signalling.

allows the KDC to authenticate the Client before providing the TGT. This feature consist

in the exchange of pre-authentication data (padata) elements between the Client and the

KDC. These elements are transported within the padata field of the KRB AS REQ/REP

messages, and within the e-data field of the KRB ERROR message. The specific format

and semantic of these padata elements depend on the pre-authentication mechanism being

used. The IETF has standardized an extensible architecture to facilitate the design of new

pre-authentication mechanisms for Kerberos [103].

Once the Client owns the TGT, it can request a Service Ticket (ST) from the TGS

for accessing the specific AppS (2) it desires. With this purpose, the Client sends a

KRB TGS REQ protected with a checksum computed with the TGS session key. When

the TGS validates the TGT, it generates a service session key that is included in both

the ST and the KRB TGS REP message. Finally, similarly to the TGS exchange, the

Client authenticates itself to the service (3) by sending the ST to the application server in

a KRB AP REQ message. Optionally, a KRB AP REP message can be used if the Client

needs to authenticate the AppS. The acquired ST is valid for further accesses to the same

service (within a validity period). If the Client desires to access a different ApPS, a new

ST needs to be issued by means of the same TGT obtained at log-on time. Hence, the end

user is able to access any AppS during the session period without further re-authentication

processes. A more detailed description of this flow can be found in [7].

In addition to this, Kerberos supports a federated operation mode called cross-realm.

Founded on the establishment of trust relationships between TGS/KDCs of different

realms, the Client follows the path from the home to the visited realm by obtaining the

41

2. Background and State of the Art

so-called cross-realm TGTs. The process finalizes when the Client contacts the KDC in the

visited realm and obtains a valid ST for the target service. Figure 2.4 depicts this process,

where the Client is originally registered in REALM1’s KDC. As observed, the cross-realm

solution requires all the intermediate organizations to deploy a Kerberos infrastructure,

even when they are not interested in providing Kerberos-based services themselves.

Client AS1 TGS1

KRB_AS_REQ

KDC

AppS

KRB_TGS_REP (TGT1)

KRB_TGS_REQ (TGT1)

KRB_TGS_REP (TGT2)

KRB_AP_REQ (ST)

KRB_AP_REP

TGS2

REALM 1 REALM 2

TGSn

REALM n

KRB_TGS_REQ (TGT2)

KRB_TGS_REP (TGTn)

KRB_TGS_REQ (TGTn)

KRB_TGS_REP (ST)

Figure 2.4: Kerberos cross-realm signalling.

2.3.2 GSS-API

The Generic Security Service Application Program Interface (GSS-API) [40] is a generic

framework defined within the KITTEN WG [104] that provides application with security

services such as authentication, integrity and confidentiality. Distributed application

services that need to protect their communications can employ the different security

services offered by the GSS-API and remain independent from any particular security

mechanism. Nowadays a large number of Internet protocols, such as SSH [34], NFS [100],

and several non-IETF applications, such as Microsoft SQL server [105], support GSS-API

as a means for obtaining security services. The most extended GSS-API mechanism is

based on the Kerberos protocol [106], although other mechanisms, such as the one based

on EAP [107], have also been proposed.

GSS-API allows a GSS-API Initiator, usually the end user, to establish a security

context with a GSS-API Acceptor, usually the application service. The negotiation of

42

2.3 Access control to generic applications

the context starts when the initiator invokes the GSS Init sec context() function, which

returns a token to be passed to the acceptor (using the application protocol), and indicates

a pending status (GSS S CONTINUE NEEDED) to complete the context establishment.

The acceptor receives the token and passes it to the GSS Accept sec context() function.

Assuming a single round-trip authentication mechanism, the function indicates a

GSS S COMPLETE status and returns a token to be sent back to the initiator. Finally,

the initiator invokes again the GSS Init sec context() function (passing the received token),

which also returns a GSS S COMPLETE status, indicating the successful establishment of

the security context. If the authentication mechanism requires more than one round-trip

to be completed, the acceptor and the initiator obtain a GSS S CONTINUE NEEDED

status, and the process is repeated until GSS S COMPLETE status is obtained.

Once the security context has been established, the GSS-API offers two different

mechanisms to protect application messages sent by either, the initiator or the acceptor: on

the one hand, with the GSS GetMIC /GSS VerifyMIC calls, messages are authenticated

and integrity protected; on the other, by using the GSS Wrap/GSS Unwrap functions,

confidentiality is also provided. The cryptographic material used to protect these messages

is derived from the keying material resulting from the underlining mechanism (e.g.

Kerberos).

2.3.3 SASL

The Simple Authentication and Security Layer (SASL) [108] is a framework defined

within the KITTEN WG, intended to provide authentication and data security services in

connection-oriented protocols via replaceable mechanisms. The framework incorporates

interfaces with both protocols and mechanisms, in such a way that new mechanisms

can be used with old protocols, and new protocols can reuse existing mechanisms, as

long as these protocols include support for SASL. In this sense, a large number of

protocols, such as IMAP, SMTP, XMPP [109], and LDAP [110] support the SASL

framework. Regarding SASL mechanisms, there are a number of them based on different

authentication technologies, such as DIGEST-MD5 [111] or CRAM-MD5 [112], though the

GS2 Mechanism Family [108] is specially relevant for the purpose of this thesis, since it

allows the use of GSS-API mechanisms within SASL, hence extending the applicability of

GSS-API mechanisms also to those protocols supporting the SASL framework.

SASL defines two main participants: the Client and the Server. The Client is the

one trying to get authenticated to access a service (i.e. the end user), while the Server

is the entity that provides the service and, hence, the one that wants to verify Client’s

43

2. Background and State of the Art

identity. This authentication process is called Authentication Exchange, and its outcome is

the establishment of a security layer between them, which provides security services such

as confidentiality and integrity protection.

A typical SASL Authentication Exchange starts when the Client requests authentication

via a specific mechanism. After that, a sequence of one or more pairs of server-challenges

and client-responses are exchanged. The purpose of these exchanges may include the

authentication of the Client to the Server, the authentication of the Server to the Client,

the transmission of authorization information or the negotiation of a security layer. At

the conclusion of the Authentication Exchange, the Server sends a message indicating the

outcome of the exchange to the Client.

2.4 Solutions for AAA-based federated

authentication and authorization

This section describes three of the most relevant solutions that aim to provide a federated

authentication and authorization based on AAA infrastructures. These solutions are based

on the background technologies described in the previous subsections of this chapter. In

particular, Section 2.4.1 introduces eduroam, a network access federation for the research

and education community. Section 2.4.2 describes the DAMe project, which builds upon

the eduroam infrastructure to add federated authorization capabilities to the network.

Finally, Section 2.4.3 describes the Moonshot project, a proposal that aims to provide an

access control interface to applications for a federated authentication and authorization,

based on AAA infrastructures and GSS-API.

2.4.1 eduroam

eduroam (Educational Roaming) [24] is a proposal of the Trans-European Research and

Education Networking Association (TERENA) [113], now funded by the GÉANT GN3

project. It provides a secure and inter-institutional roaming network access federation for

the international research and education community. Its purpose is to allow staff belonging

to participating institutions4 to obtain Wi-Fi Internet connectivity when visiting other

institutions. Authentication is actually carried out at the end user’s home institution

using the institution’s specific authentication method and credentials. It is present in

hundreds of institutions of different countries around the world [114]

4In eduroam, the term institution is used to denote an organization.

44

2.4 Solutions for AAA-based federated authentication and authorization

The federation substrate in eduroam is based on an AAA architecture interconnecting

the participating institutions. In particular, eduroam is built upon a hierarchical

infrastructure of RADIUS servers, where the root is managed by TERENA, and a second

level is provided by the different National Research and Educational Network (NREN)

of each participant country. Each institution willing to participate in eduroam needs to

connect a RADIUS server to the one located on its corresponding NREN, and be assigned

with a sub-realm. Moreover, it is possible to define further levels in this hierarchy, in

the cases where an institution decides to include an additional partition of its users.

For example, the realm diic.um.es indicates the sub-realm diic within the organization

University of Murcia (um), connected to RedIris, the Spanish NREN (es). Figure 2.5

illustrates a simplified version of this hierarchy.

Institutional RADIUS

Institutional RADIUS

NREN RADIUS

Eduroam

RADIUS

NREN RADIUS

Figure 2.5: eduroam infrastructure.

eduroam optionally supports the use of dynamic RADIUS routing, where institutions

can announce the location of their RADIUS servers over DNS, in such a way that other

institutions can look up and contact them directly without the need of any intermediate

RADIUS infrastructure. However, this routing model is only supported over RADIUS/TLS

(RadSec).

User authentication is carried out by the EAP protocol. Each organization is free

to set up the EAP method of its choice, as long as this method provides effective

protection against eavesdropping for critical user data (such as passwords). In particular,

the most commonly used authentication mechanisms are tunnelled EAP methods such as

EAP-TTLS [60] or PEAP [61], although EAP-TLS [59] can also be used. EAP packets

are transported from the EU to the visited institution’s access point (AP) using the

45

2. Background and State of the Art

802.11 technology, while the RADIUS infrastructure is responsible to deliver them to the

corresponding home institution.

2.4.2 DAMe

Since the current eduroam infrastructure only supports end user authentication and very

basic authorization procedures, the DAMe (Deploying Authorization Mechanisms for

federated services in eduroam architecture) [115] project was initiated with the intention of

improving the federated network access scenario of eduroam. In particular, it specifies a

mechanism to support a more fine-grained authorization level, based on an authentication

token (eduToken) obtained from the home institution (IdP) during the network access

authentication. This eduToken, described in [115], can be used by the visited institution

(service provider) to request additional end user’s attributes to take an authorization

decision. DAMe extensions to eduroam mainly rely on the SAML and XACML standards

to represent statements and policy information, respectively.

Moreover, the eduToken was also proposed as a possible enabler to perform

authentication and authorization for web applications within the visited institution,

although this approach was not much further investigated nor standardized.

Figure 2.6: DAMe architecture overview.

Figure 2.6 describes the general DAMe architecture. As it can be observed, an end user

from a Home Institution (HI) is requesting network access through an access point (AP)

located in a Visited Institution (VI). Initially, according to the basic eduroam functionality,

the end user engages in an EAP authentication (1) with the HI through the VI, where EAP

messages are transported between both institutions by using the RADIUS infrastructure

46

2.4 Solutions for AAA-based federated authentication and authorization

deployed in eduroam. Once the end user is successfully authenticated, the home RADIUS

server contacts the Identity Provider (IdP) in order to get a SAML authentication

statement (2). Among other information, this statement contains a transient pseudonym

which will serve to refer the authenticated end user in future communications with the

IdP when, for example, retrieving her associated attributes. This statement is called

eduToken, and its specific format and characteristics are described in [115]. The eduToken

is directly delivered to the end user (3) through a secure communication channel, typically

implemented by a TLS channel established during the execution of tunnelled EAP methods,

such as PEAP or EAP-TTLS. These methods usually require of a Public Key Infrastructure

(PKI) to establish trust between the end user and the EAP server, as the end user needs

to verify the HI’s X.509 certificate. In the eduroam environment, this is achieved by means

of eduPKI [116]. Finally, the pseudonym is sent to the visited RADIUS server (4) within

the final Access-Accept RADIUS message.

On the one hand, the pseudonym is used for performing the authorization of the end

user during the network access. More precisely, the received pseudonym is used by the

visited RADIUS server for obtaining relevant attributes (5) from the IdP, in order to

decide whether the end user is granted access to the network. The obtained attributes

are provided to the Policy Decision Point (PDP), located in the visited institution, which

checks the local policies and takes a decision (6). On the other hand, the eduToken was also

intended to be used for implementing a cross-layer SSO mechanism to access web resources

available within the federation (7), although as mentioned before, this functionality was

not much further investigated nor standardized.

2.4.3 Moonshot/ABFAB

The Moonshot project [37] is a proposal that aims to specify a federated authentication

and authorization architecture that enables access control to most application services.

The main contribution of this project, and cornerstone of its architecture, is the GSS-API

Mechanism for the Extensible Authentication Protocol (GSS-EAP) mechanism [107]. This

allows providing application services with a common access control layer (GSS-API), while

the authentication is based on EAP and the AAA infrastructure, which have intrinsic

capabilities for a federated operation. Moreover, Moonshot’s architecture also describes

how additional identity information can be retrieved from the end user’s IdP, and provided

to the application service in order to allow further authorization.

Moonshot appears under the umbrella of Janet and the TERENA EMC2 task-force.

As an outcome of this project, a new working group has been formed in the Internet

47

2. Background and State of the Art

Engineering Task Force (IETF) standardization organism, with the purpose of developing

and standardizing the technologies required for implementing the identity federation

architecture designed in Moonshot. This working group is called Application Bridging

for Federated Access Beyond Web (ABFAB). The proposed architecture is based on the

use of commonly used security mechanisms, though some extensions to them are required

to fulfil the desired functionality. Namely, the ABFAB architecture is mainly based on

EAP, RADIUS, GSS-API, SASL and SAML specifications.

The main elements that take part in the ABFAB architecture are the Client (i.e. end

user), the Relaying Party (RP) (i.e. application service) and the Identity Provider (IdP).

Between them, three interfaces are defined to convey the required interactions to provide

the federated access control. Figure 2.7 depicts these entities and relationships.

Identity Provider

(IdP)

Relaying Party

(RP)

Client

Application

F
e
d
e
ra
ti
o
n

Authentication

Figure 2.7: Moonshot’s architecture.

The authentication interface is intended to provide mutual authentication between the

Client and the IdP. This interface is implemented using EAP, where the RP acts as the

EAP authenticator (pass-though mode), serving as intermediary of the conversation. It

also provides the means of confirming RP identity through the EAP channel binding

feature [117], which allows the EAP peer (Client) and EAP server (IdP) to verify they are

dealing with the same EAP authenticator (RP). This feature prevents man-in-the-middle

attacks.

The federation interface provides the federation substrate, that is, the means for the

establishment of the trust relationship between the RP and the IdP. It also provides a

channel allowing the RP to obtain Client’s identity information from the IdP, and to convey

authentication packets from the Client to the IdP and vice-versa. It is implemented using

AAA protocols (e.g. RADIUS). Conversely, SAML is used to represent the authorization

information provided by the IdP (e.g. authentication/attribute statements).

48

2.4 Solutions for AAA-based federated authentication and authorization

The application interface provides the following main functionalities: a) executes

the application protocol requested by the Client, b) performs mutual authentication

between Client and RP, and c) provides the security services required by the application

protocol after authentication (e.g. confidentiality or integrity protection). While the first

functionality is out of the scope of ABFAB, the other two are accomplished by the use of

the GSS-API. The Client acts as the GSS Initiator, while the RP acts as the GSS Acceptor.

As the Client authentication with the IdP is performed by means of EAP, the GSS

mechanism used between the Client and the RP must act as an EAP lower layer, conveying

the transport of EAP packets from the Client to the RP and vice-versa. Since there

were not GSS-API mechanism providing that functionality, ABFAB defined the GSS-EAP

mechanism. The GSS-EAP specification describes how EAP can be used to establish a

GSS context between the Client and the RP, and how the keying material exported by the

EAP method is used to provide confidentiality and integrity protection to the application

protocol after authentication. The use of the GSS-EAP mechanism is limited to those EAP

methods that satisfy a number of requirements. Namely, they must provide dictionary

attack resistance (e.g. tunnelled methods within TLS), they must support key derivation

and mutual authentication, and they must provide channel binding. Example of suitable

EAP methods are EAP-TTLS or PEAP.

Moreover, the GSS-EAP mechanism allows the RP to obtain authorization attributes

from the IdP. In particular, this information is presented to the RP through the GSS-API

name attributes feature [118], associated to the Client’s name. Specifically, ABFAB has

defined a set of name attributes for the GSS-EAP mechanism [119], intended to represent

RADIUS attributes and SAML Attributes and Assertions.

The procedure that a Client must perform to gain access to a service provided by a

RP is depicted in Figure 2.8. In the first place, a GSS-EAP authentication starts over the

application protocol. The Client provides her identifier (in the form of a NAI [120]) to the

RP within an EAP response packet, transported within a GSS-API token (1). Based on

the realm part of the NAI, the RP determines the IdP that will handle the authentication

and forwards the EAP response using the AAA infrastructure (2). The RP also includes

its identity in the message. The IdP starts a new EAP method with the Client. The EAP

packets generated by the execution of the method are transported back and forth to the

Client using the RP as EAP pass-through authenticator (3). As part of the EAP protocol,

the Client sends channel bindings in order to verify the identity of the RP. After the

authentication process, Client and IdP have mutually authenticated and derived the MSK

and EMSK keys (4). The IdP checks its policies to determine whether the Client and the

RP are authorized to perform the requested action, and which authorization information

49

2. Background and State of the Art

RPClient IdP

1. NAI transmitted to RP

2. Access request with NAI

4. MSK derived 4. MSK derived

5. Local policy

check

6. MSK and authz data

7. Local policy check

and authorization

8. Service provision

3. EAP method

Figure 2.8: ABFAB operation.

will be provided to the RP (5). The IdP provides the RP with the MSK and optionally with

a collection of AAA and SAML attributes (6). The RP processes the received information

against its local policies to take an authorization decision (7). The RP provides the service

to the Client (8). The MSK may be used to protect the application protocol messages.

The ABFAB architecture assumes updates to the existing entities in order to accomplish

the required functionality. Namely, it requires the modification of the application services

(RPs), as they will need to include support for the GSS-EAP mechanism and to be

able to understand the newly defined RADIUS and SAML GSS naming attributes for

authorization. The Client also needs to be updated to support the GSS-EAP mechanism.

Finally, the IdP needs to be updated to generate (or retrieve from a third party) the

required SAML assertions and attributes, and to support their transport on top of the

AAA protocol.

2.5 Conclusions

This chapter has described the access control technologies with the highest relevance for

this thesis, detailing how they work, the kind of services they intend to protect, and

how they operate in federated environments. Moreover, this chapter also introduced

some state-of-the-art proposals that, grounded on these access control technologies, aim to

provide some level of federated authentication and authorization to services based on the

50

2.5 Conclusions

AAA infrastructures. Namely, these proposals are eduroam, which provides a world-wide

production environment for federated access to the network service; DAMe which extends

eduroam architecture to provide finer-grained authorization capabilities, and which also

provides a preliminary proposal for a cross-layer SSO solution to access web applications;

and Moonshot/ABFAB, which provides an access control interface for application services

that includes federated authentication and authorization using GSS-API and EAP.

Although these state-of-the-art solutions are completely valid for the purposes they

were defined to, none of them completely addresses the objectives described for this thesis

in Section 1.3. Hence, this document defines new proposals and architectures that, using

these technologies, provide a better solution to the stated problem. The following chapters

of this dissertation will provide details of the of these new proposals, and will analyse

further research works directly related with each one of them.

51

2. Background and State of the Art

52

Chapter 3

FedKERB: Integrating Kerberos

with AAA and advanced

authorization infrastructures

3.1 Introduction

As described in Chapter 1 and 2, nowadays Kerberos is becoming one of the most widely

deployed standards for authentication and key distribution in application services [121].

Indeed, most operating systems, and different network applications such as SSH, NFS, or

XMPP, already support, or even require Kerberos to perform the access control process.

One of its stronger points is its SSO capability. However, whereas many service providers

use this protocol to control the access of their own subscribers, they do not usually

deploy Kerberos-based federations (cross-realm) to handle subscribers coming from other

organizations.

We have also seen that Authentication, Authorization and Accounting (AAA)

infrastructures have gained popularity for the access control to the network service.

In this context, the Extensible Authentication Protocol (EAP) has become the most

used authentication protocol, as it provides flexible authentication and easy integration

with underlying AAA infrastructures. Due to its success, organizations have formed

federations (AAA-based federations), to allow subscribers to access the network from

other’s organizations. One example is eduroam, described in Section 2.4.1.

The reasons behind not using Kerberos cross-realm are mainly grounded on

some recognized issues in the deployment of Kerberos cross-realm. But more

importantly, establishing a cross-realm infrastructure would imply the deployment and

53

3. FedKERB: Integrating Kerberos with AAA and advanced authorization
infrastructures

interconnection of the so-called Key Distribution Center (KDCs), in charge of distributing

Kerberos credentials, in all organizations comprising the federation. As mentioned in

Chapter 1.2, maintaining different federation infrastructures requires a significantly higher

administrative effort. Moreover, Kerberos lacks of a complete authorization management

that allows performing fine grain access control in federated environments.

In this scenario, it would be extremely beneficial for an organization to have a single

federation infrastructure for all the offered services, regardless they are the network service

itself, or any application service deployed on the application layer. Starting from this

motivation, this chapter focuses on defining an architecture that provides a viable solution

to this problem. In particular, this chapter tries to address the following objectives,

extracted from Section 1.3:

O1 To design a solution allowing the bootstrapping of Kerberos credentials on the service

provider by enabling the Kerberos infrastructure to make a direct use of the AAA

infrastructure to perform a federated authentication.

O4 To design an authorization model enabling the Kerberos infrastructure on the

service provider to be fed with end user identity information coming from the home

organization after authentication, and to use it to make fine-grained access control

decisions.

These objectives can be broken down into the following sub-objectives:

• To design a general architecture for the proposed scenario based on Kerberos and

AAA infrastructures.

• To define the integration between AAA and Kerberos infrastructures to provide a

federated authentication and authorization process which also provides support for

SSO.

• To define how to integrate fine-grained authorization management in the proposed

solution.

• To define a generic and extensible architecture useful in different scenarios and

contexts.

• To avoid the modification of the existing standards.

54

3.1 Introduction

The integration of Kerberos and AAA infrastructures has motivated an incipient effort

in standardization bodies. One of the most earlier works in this area can be found in [122],

where authors propose that the KDC located in the service provider distributes a TGT

to the end user (client) after a successful EAP authentication for the network service.

However, this solution does not follow the Kerberos specification. It assumes an initial

network access process that replaces the KRB AS REQ/KRB AS REP exchange. As

a result of the network access authentication, the client is provided with a TGT. This

contradicts Kerberos specification, where it is stated that the TGT is provided to the

client as a result of a KRB AS REQ/KRB AS REP exchange.

Some other works have focused on the definition of a pre-authentication framework

that favours the integration of different authentication methods for Kerberos. Following

this approach, authors in [123] propose to include an initial phase to the Kerberos protocol

where the client authenticates to a new entity called pre-authentication server, in order to

obtain an authentication ticket. This ticket must then be included in the pre-authentication

data field of the KRB AS REQ message sent to the KDC, where it is validated. However,

this proposal requires to extend the Kerberos protocol in order to support a new type of

exchange, and the deployment of new entities (pre-authentication servers).

Another solution with the same objective that avoids these drawbacks can be found

in [103]. This document specifies a generic standard framework to guide the definition of

pre-authentication mechanisms. This framework also includes the definition of a common

set of generic functions that may be used by these mechanisms, such as a protected

channel established between the end user and the KDC, that can be used to exchange

pre-authentication data. That is, designers of pre-authentication mechanisms can rely

on the facilities provided by this secure channel, such as binding of request and response

messages, confidentiality or freshness. However, none of the pre-authentication mechanisms

defined so far provide integration with AAA infrastructures. This chapter will define such

a pre-authentication mechanism as part of the proposed solution.

Regarding authorization, Kerberos defines the authorization-data field in TGTs and

STs. This field provides a transparent transport of authorization data from the AS to

the TGS, and from the TGS to the application service. It is composed of one or more

authorization-data-elements (ADE), each one consisting on an identifier of the type of

the transported information, followed by the specific representation of that authorization

information. However, there is no consolidated standard defining how this authorization

information must be encoded or processed. Microsoft defined the Privilege Attribute

Certificate (PAC) [124], as its proprietary form of representing user privilege information

for the Active Directory [125]. Conversely, the Kerberos WG [126] started defining another

55

3. FedKERB: Integrating Kerberos with AAA and advanced authorization
infrastructures

structure called Principal Authorization Data (PAD) [127], with a similar purpose but

different format. However, both structures are intended to be used in Kerberos-only

infrastructures, where the home authorization information is generated by a KDC in the

home organization.

In order to be used in a wider range of scenarios and deployments, a more general

purpose representation would be desirable. In this sense, one of the most relevant and

widely deployed technologies is SAML. It has gained popularity between organizations

thanks to solutions such as Shibboleth [87] or OASIS Web Services Security (WSS) [94].

As described in Chapter 2, SAML is mainly used in web environments, but nothing

precludes its use in other types of applications, as it does not impose any specific

binding. The integration of SAML and Kerberos is still an open issue [128], and it is

under study in different standardization bodies like IETF and OASIS. Two models of

integration have been outlined: Kerberos-in-SAML and SAML-in-Kerberos. Regarding the

former, [129] describes how to define a new SAML SubjectConfirmation method for the

AuthnStatement element when the end user has been authenticated by means of Kerberos,

and [130] describes how to encapsulate Kerberos messages (such as KRB AP REQ) inside

AttributeStatement elements. Finally, [131] proposes a new version of the SAMLv2

Web SSO profile where the end user authentication is performed through Kerberos

credentials. However, those proposals are typically oriented to web services. Regarding

SAML-in-Kerberos, to the best of author’s knowledge, no solution has been provided yet.

There are other proposals of integrating AAA infrastructures in the access control to

applications that do not make use of Kerberos. The most relevant one is the Moonshot

project [37], described in chapter 2.4.3. While Moonshot provides a valid solution for the

federated access control to application services based on the AAA infrastructure, it requires

to modify these servers to support both, the GSS-EAP mechanism, and the processing

of SAML assertions. Moreover, unlike Kerberos, Moonshot does not provide a full SSO

solution, requiring to perform a complete EAP authentication for every different application

service being accessed.

As existing proposals in the literature do not provide a full coverage of the objectives

enumerated above, this chapter proposes an unified architecture, called FedKERB, aiming

to fill the gaps. Indeed, this architecture integrates AAA-based federations (such

as eduroam) with the access control to application services carried out by Kerberos.

Specifically, this chapter provides a design of a novel Kerberos pre-authentication

mechanism, based on EAP, which allows end users from any organization in the federation

to leverage the AAA infrastructure to perform authentication with the service provider’s

KDC. As a consequence, this proposal removes the need of deploying a parallel Kerberos

56

3.2 Proposed architecture

cross-realm infrastructure in the federation. Moreover, although Kerberos does not specify

how authorization is performed, it does provide some elements to transport authorization

information as opaque data. This chapter uses these elements to incorporate fine-grained

authorization into the defined architecture, by means of the integration with the well-known

SAML standard.

This chapter is structured as follows. Section 3.2 presents the proposed

architecture. Section 3.3 discusses the two possible alternatives to implement EAP-based

pre-authentication. Section 3.4 details how a federated end user obtains a Service Ticket

for an application service in the service provider’s domain. This section is divided

into two parts: subSection 3.4.1 describes how to perform the KRB AS REQ/REP

exchange, including EAP-based pre-authentication; while subSection 3.4.2 describes how

the TGS REQ exchange is carried out, including fine-grained authorization. Section 3.5

discusses some considerations that must be taken into account for the deployment of the

proposed solution. Section 3.6 provides a security analysis of the proposal. Finally,

Section 3.7 presents some conclusions and summarizes the standardization actions that

have resulted from the work on this chapter.

3.2 Proposed architecture

In order to define the architecture, let us assume two different organizations (service

provider and home organization), belonging to the same AAA-based federation. In this

scenario, an end user, subscriber of the home organization, wants to gain access to an

application service deployed in the service provider.

The architecture has the following requirements:

• As members of the federation, both organizations deploy AAA servers that allow

them to exchange authentication, authorization and accounting information.

• The service provider deploys a Kerberos KDC to distribute service tickets to access

the application services deployed on the organization.

• The application service uses Kerberos for performing access control.

• The end user makes use of EAP to perform authentication with the home

organization’s AAA server, using the KDC as EAP authenticator.

• The home organization deploys a SAML IdP to distribute authorization information

(e.g. authentication and attribute statements) to the KDC.

57

3. FedKERB: Integrating Kerberos with AAA and advanced authorization
infrastructures

• The service provider deploys a Policy Decision Point (PDP), in order to manage

access control policies, and to assist the KDC to take authorization decisions.

• The federation may deploy a Metadata Service (MDS), to make information about

the services available within the federation (e.g. URL and public keys of application

services, IdPs or KDCs) available to the members.

Although the text and examples in this chapter assume that the service provider and

the home organization are different, nothing precludes the use of the mechanism described

in this chapter in scenarios where they are, in fact, the same organization.

KDC

SP-AAA

PDP

AppS

H-AAA

IdP

Service Provider

AAA/EAP

SAML/XACML

AAA/EAP

SAML

SAML

EU

KERBEROS

KERBEROS/

GSS-API/

EAP

HTTP

AAA

proxies

Federation

MDS

AAA/EAP

Home Organization

Figure 3.1: FedKERB architecture.

Based on the requirements described above, the resulting architecture is composed by

the following components, depicted in Figure 3.1:

• End User (EU). This component is interested in accessing to a particular application

service that uses Kerberos as the access control mechanism. To obtain the required

Service Ticket (ST), it first interacts with the service provider’s KDC. It uses EAP

as the pre-authentication mechanism, where EAP packets are exchanged with the

home AAA server using the KDC as intermediary (EAP authenticator).

58

3.2 Proposed architecture

• Application Service (AppS). It is the component providing the specific application

service the EU wants to access to (e.g. SSH, FTP, NFS, SMTP, etc.). Access control

to the AppS is based on the use of Kerberos STs. If the EU presents a valid ST, she

is assumed to be authenticated and authorized to access the service.

• Key Distribution Center (KDC). The KDC is the main component of the proposed

architecture. It is deployed by the service provider to handle access control to its

application services. During Kerberos pre-authentication, the KDC plays the role of

an EAP authenticator, forwarding EAP request/response packets between the EU

and the home AAA server. Moreover, the KDC may perform an authorization process

before providing the end user with the requested ST. For that, it acts as a Policy

Enforcement Point (PEP), contacting the IdP to retrieve EU’s identity information,

and querying the Policy Decision Point (PDP) to obtain an authorization decision.

• Service provider’s AAA server (SP-AAA). This is the component that interconnects

the service provider to the AAA federation. It is contacted by the KDC to transport

the EAP packets from the EU to the home AAA server, and vice-versa. The transport

is made through the AAA proxies that integrate the federation.

• Home organization’s AAA server (H-AAA). It is the component responsible for

authenticating the end user, acting as EAP server. Besides, it also contacts the

IdP to obtain identity information about the end user and send it to the KDC.

• Identity Provider (IdP). To be compliant with current widely deployed technologies

based on SAML such as Shibboleth or Liberty Alliance [132], the proposed

architecture assumes the home organization is running an IdP. The IdP receives

SAML authentication requests from the H-AAA, and may also receive attribute

queries from the KDC. This component may be collocated with the H-AAA.

• Policy Decision Point (PDP). It is the component that manages the set of access

control policies in the service provider. It may receive authorization decision queries

from the KDC, which acts as Policy Enforcement Point (PEP). These queries are

matched against existing polices to take an authorization decision.

• MetaData Service (MDS). When authorization processes are carried out in federated

scenarios, the MDS is a special service (Section 2.2.3 where organizations may publish

information (e.g URL, public key...) about the services willing to be provided within

the federation (e.g. application services, IdPs, KDC...). In particular, the IdP

59

3. FedKERB: Integrating Kerberos with AAA and advanced authorization
infrastructures

location is published in the MDS. Usually, MDS location is pre-configured inside

federation members and it is managed at a federation level. The deployment of this

entity is optional.

The architecture depicted in Figure 3.1 describes the interfaces required to successfully

interconnect the KDC with the AAA server and the IdP in the home organization. Through

these interfaces, the KDC is able to obtain enough information about the end user to take

a complete access control decision. In particular, a Kerberos pre-authentication process

between the end user and the KDC is carried out using EAP as the authentication protocol.

In that process, the KDC acts as the EAP authenticator, while the end user and the home

AAA server act as the EAP peer and the EAP server respectively. Therefore, since the

KDC is directly connected to the AAA-based federation, there is no need to deploy a

Kerberos cross-realm infrastructure in the federation. This is an important deployment

advantage, as it will be analysed in Section 3.5.2.

More specifically, by means of a single EAP authentication process, it is possible to

bootstrap the required security association between the end user and the KDC to obtain the

TGT. With it, the end user can request additional service tickets (STs) to access application

services within the service provider without performing any further EAP authentication

process (within a specific session lifetime). The distribution and use of these tickets are

the core of the SSO operation provided by Kerberos. Thus, the end user does not need to

maintain several credentials for different application services, but only a valid credential

to perform a successful EAP authentication with its home organization through the AAA

infrastructure.

In addition to this federated authentication process, the architecture described in this

chapter is conceived to allow service providers to manage end user attributes, and to take

access control decisions by interfacing with existing authorization infrastructures. In those

cases, all the authorization management responsibilities lie on the KDC, being completely

transparent to application services that remain unmodified.

3.3 EAP-based pre-authentication

In order to address the goal of integrating Kerberos pre-authentication with EAP

authentication, this thesis has analysed two different models:

• Kerberos/EAP model: EAP packets are transported directly on the

pre-authentication field of the Kerberos messages exchanged between the EU

and the KDC.

60

3.3 EAP-based pre-authentication

• Kerneros/GSS-API/EAP model: EAP packets are encapsulated in GSS-API tokens,

and then transported on the pre-authentication field of the Kerberos messages

exchanged between the EU and the KDC.

A thorough comparative of these two models can be found in one of our published

papers [133], where they have been analysed and described in high detail. The remaining

of this subsection summarizes part of this comparative, and provides the rationale behind

the selection of the preferred model for this chapter’s architecture.

In terms of functionality both solutions are equivalent. The main differences between

them appear in the internal interfaces. The main advantage of the Kerberos/EAP model is

its simplicity, since Kerberos is able to directly interface with the EAP stack, acting as EAP

lower-layer, without the need of any additional level of abstraction. Moreover, the interface

between EAP and any EAP lower-layer is already defined in [134], which really eases

implementation tasks. With respect to Kerberos/GSS-API/EAP model, implementation

can be more complex since it must be carried out in two levels: first, the use of GSS-API

for pre-authentication must be introduced in a Kerberos implementation; second, the

integration of EAP in GSS-API also needs to be implemented.

However, the main advantage of the second model is that by using it, Kerberos can

potentially use any available GSS-API authentication mechanism, and it is therefore not

restricted to just EAP. In this manner, other authentication and key management protocols

could potentially be used without changing the Kerberos elements.

Furthermore, the ABFAB WG has already completed the definition of the GSS-EAP

mechanism (as described in Section 2.4.3, while Moonshot maintains an updated an

robust open source implementation of that mechanism. These two conditions greatly

simplify the specification and implementation of the Kerberos/GSS-API/EAP model,

which now consists of the definition of a Kerberos pre-authentication mechanism based

on the GSS-API, and then use the GSS-EAP mechanism. Thus, the specification of such a

pre-authentication mechanism is sensibly simpler than the definition of one directly based

on EAP, as this way the KDC is abstracted from the complexities of implementing an EAP

authenticator (e.g. managing sequence numbers, handling channel bindings or securely

deriving cryptographic material).

Therefore, based on these conditions, the second model has been the one selected to be

used for this proposal, due to its:

• Easier implementation

• Abstract the KDC from the EAP details.

61

3. FedKERB: Integrating Kerberos with AAA and advanced authorization
infrastructures

• Extensibility to support other GSS-based mechanism for pre-authentication.

This second model, defined in this thesis, has been described in great detail in an IETF

draft [135], and proposed for standardization within the Kerberos WG. Furthermore, during

the stay associated to this thesis, it has also been implemented as a MIT Kerberos [136]

pre-authentication plug-in, and made publicly available as open-source code [137].

3.4 General operation

Once the architecture has been presented, this section explains in detail how its components

interact to achieve the goal of federated authentication and authorization. We can

distinguish two main phases.

1. TGT acquisition (KRB AS REQ/REP exchange). The EU performs Kerberos

pre-authentication with the KDC (AS server), based on the GSS-API and the

GSS-EAP mechanism. As a result, she obtains a TGT which also contains some

SAML authorization information coming from her home organization’s IdP.

2. ST acquisition (KRB TGS REQ/REP exchange). The end user asks the KDC (TGS

server) for a ST to access a specific AppS deployed in the service provider. She

includes the TGT in the request. The KDC analyses the authorization information

within the TGT, (optionally) queries the IdP to obtain further end user’s identity

information, and (optionally) queries the PDP to obtain an authorization decision,

based on a pre-established set of policies. If the decision is to grant the access to the

AppS, the EU is provided with the requested ST.

With the ST, the EU can eventually access the AppS by means of a KRB AP REQ/REP

exchange. Usually, this exchange is carried out by means of the GSS-KRB mechanism [106],

widely used nowadays. If the EU presents a valid ST to the AppS, she is assumed to be

correctly authenticated and authorized to access the service. Therefore, the AppS does

not need to be modified as the federated access control is entirely performed by the KDC.

Following subsections provide in-detail description of these two steps. Due to the

quantity of protocols we have used in this proposal, and for sake of clarity, this description

will provide details only for those fields/messages/attributes that represent a change when

compared to their respective standard usage.

62

3.4 General operation

KERBEROS

GSS-EAP

EAP

KERBEROS

GSS-EAP

EAP

KRB_AS_REQ/REP

GSS tokens

EAP packets

GSS acceptor token GSS initiator token GSS initiator token GSS acceptor token

EAP-Req EAP-Resp EAP-Resp EAP-Req

EU KDC

Figure 3.2: Different layers at which the EU and KDC operate.

3.4.1 TGT acquisition (KRB AS REQ/REP exchange)

As explained in Section 2.3.2, application protocols can use the GSS-API to obtain

security services such as authentication, integrity protection or confidentiality. Having

this in mind, this chapter defines how Kerberos itself can make use of the GSS-API to

pre-authenticate the EU. That is, we define a new pre-authentication method based on the

use of the GSS-API, where the messages of the KRB AS REQ/REP exchange will contain

a GSS-API token. Hence, by using this mechanism, the EU and the KDC can use any

of the authentication mechanisms available through the GSS-API. In particular, one of

the mechanisms under study is based on EAP [107], where a GSS-API token carries an

EAP packet along with some control information. Figure 3.2 depicts the different layers

at which the EU and KDC operate.

The remainder of this subsection provides a detailed description of the steps required

to successfully accomplish the Kerberos pre-authentication process, and the provision of

the TGT from the KDC to the EU. Figure 3.3 details this exchange of messages:

1. The EU starts the process by calling to the GSS Init sec context function. This

function returns a GSS token that must be sent to the KDC. In particular, as

the GSS-EAP mechanism is in use, the obtained token encodes an empty value

indicating the start of the EAP authentication. In addition to the GSS token, the

GSS Init sec context function also returns a GSS S CONTINUE NEEDED status

value, indicating that more data is required from the KDC to complete the

authentication. Then, the GSS token is encoded in a new type of padata, defined by

this thesis, called PA-GSS. This padata is included into the KRB AS REQ message

63

3. FedKERB: Integrating Kerberos with AAA and advanced authorization
infrastructures

EU KDC SP-AAA H-AAA IdP

1. KRB_AS_REQ

(PA-GSS(GSS-TOK()))

2. KRB_ERROR

(PA-GSS(GSS-TOK(EAP-Req/Identity)))

3. KRB_AS_REQ

(PA-GSS(GSS-TOK(EAP-Resp/Identity))) 4. AAA Request

(EAP-Resp/Identity) 4. AAA Request

(EAP-Resp/Identity)

5. AAA Response

(EAP-Req/X)5. AAA Response

(EAP-Req/X)
6. KRB_ERROR

(PA-GSS(GSS-TOK(EAP-Req/X)))

7. Repeat the process echanging EAP-Req and EAP-Resp until EU is authenticated 8. SAML AuthnRequest

(EU)

9. SAML Response

(Assertion)10. AAA Access-Accept

(EAP-Succ, MSK, Assertion)10. AAA Access-Accept

(EAP-Succ, MSK, Assertion)
11. KRB_AS_REP

(PA-GSS(GSS-TOK(EAP-Succ)),

TGT[Assertion], enc-part)

Service Provider Home Organization

Figure 3.3: Kerberos KRB AS REQ/REP exchange: TGT acquisition.

...

pvno msg-type padata kdc-options

cname sname from till

rtype nonce etype ...

KRB_AS_REQ

PA-GSS ...

GSS-TOK state

EAP packet

(a) KRB AS REQ message.

...

...

pvno msg-type stime

susec error-code crealm cname

realm sname e-text e-data

KRB_ERROR

PA-GSS ...

GSS-TOK state

EAP packet

(b) KRB ERROR message.

Figure 3.4: Encapsulation of GSS-EAP tokens in Kerberos messages.

sent to the KDC. Figure 3.4a details how this encapsulation is performed.

64

3.4 General operation

2. When the KDC receives the message, it invokes the GSS Accept sec context function,

using the received GSS token as input data. As a result, the KDC obtains a GSS token

to be sent to the EU. In this case, the token contains an EAP-Req/Identity packet.

The KDC also obtains a GSS S CONTINUE NEEDED status value, indicating the

authentication requires more interactions to be completed. Therefore, the GSS token

is encoded in a PA-GSS padata, and included into the e-data field of a KRB ERROR

message. Figure 3.4b details how this encapsulation is performed. The error code

of this message is KDC ERR MORE PREAUTH DATA REQUIRED, as indicated

in [103] for multi-roundtrip pre-authentication mechanisms.

3. The EU calls the GSS Init sec context using the GSS token received within

the PA-GSS padata. As a result, the EU obtains a return value of

GSS S CONTINUE NEEDED, and a new GSS token containing the corresponding

EAP-Resp/Identity packet. This EAP packet encodes the EU’s identity (e.g.

alice@home.org, or anonymous@home.org if a tunnelled EAP method is used).

Similarly to the previous step, this GSS token is sent to the KDC in a KRB AS REQ

message.

4. When the KDC invokes the GSS Accept sec context function to process the received

GSS token, the GSS-EAP mechanism forwards the EAP packet within the token to

the H-AAA, using the SP-AAA as intermediary, and the AAA protocol as transport.

Note that the KDC is not aware of that process, and it just keeps waiting for the

resulting GSS token and return value.

5. The H-AAA answers the request with a new AAA response including the first EAP

packet of the EAP-method selected for the end user (EAP-Req/X).

6. When this message reaches the KDC (which was waiting until the execution of

GSS Accept sec context was completed), the GSS-EAP layer encapsulates it into a

GSS token and provides it to the Kerberos layer. Then, the token is sent to the EU

in a KRB ERROR, in a similar way than in the previous interactions.

7. From this moment, EU and KDC engage in a series of KRB AS REQ/KRB ERROR

exchanges that continue until the H-AAA considers the EAP method is finished.

8. Once the EAP method reports the EU has been successfully authenticated (i.e.

EAP-Success), the H-AAA requests a SAML assertion from the IdP. This request

is performed by means of a SAML AuthnRequest message, where the Subject element

65

3. FedKERB: Integrating Kerberos with AAA and advanced authorization
infrastructures

represents the identity of the EU. Appendix B provides an example of such an

assertion.

9. As a response to this message, the IdP generates an assertion containing a SAML

AuthnStatement, which points out that the EU has been successfully authenticated,

and provides a transient pseudonym in the Subject element, as introduced in SAML

(Section 2.2.3. This pseudonym can be used later during the KRB TGS REQ/REP

exchange (Section 3.4.2) to retrieve further identity information about the EU (i.e.

authorization attributes). It is worth noting that the SAML standard allow an

assertion to also include attribute statements. This would allow omitting some of the

steps described for the KRB TGS REQ/REP exchange. The main problem of this

approach is that, at this point, the IdP cannot discriminate what attributes should

be returned, as the target AppS is still unknown to the H-AAA server and to the

KDC.

The provided assertion is valid only for a limited period of time (defined by the IdP),

after which the EU would be required to repeat the authentication process to obtain

a new assertion. Some discussion about the trust relationships required for these

exchanges, and the different alternatives for this protected channel can be found in

Section 3.6.

10. When the H-AAA receives the assertion, it sends the AAA Access-Accept message

to the KDC. This message contains the EAP-Success packet for the EU, the MSK

derived by the EAP method, and the SAML assertion received from the IdP. While

the transport of the first two elements is part of the standard AAA protocols (e.g.

EAP-Message, MPPE-Recv-Key, and MPPE-Send-Key attributes [138] in RADIUS),

a new RADIUS attribute has been defined to transport the SAML assertion to the

KDC [139]. Section 3.7 provides more details about this aspect.

11. When the KDC receives the Access-Accept message, the GSS Accept sec context call

(that was stalled waiting for a response) returns the EAP-Success within a GSS token,

as well as a status value of GSS S COMPLETED, indicating that the authentication

has been completed.

At this point, the KDC can use the GSS-API naming extensions [118, 119]

calls to obtain the SAML assertion received from the H-AAA

(urn:ietf:params:gss:federated-saml-assertion). As the authorization process

will be performed during the KRB TGS REQ/REP exchange, the assertion is

66

3.4 General operation

included in the TGT that will be sent to the EU. In particular, the assertion is

included into the authorization-data field of the TGT. For that purpose, this thesis

has defined a new authorization-data element, called gss-authorization-data, that

contains the authorization data obtained through the GSS naming extensions. As

the TGT is encrypted and integrity protected with the TGS key, it provides a secure

transport for the SAML assertion, as it will not be possible to eavesdrop or tamper

it by any entity other than the KDC.

Once the TGT has been generated, the KDC sends the KRB AS REP message to

the EU, containing the obtained GSS token (transporting the EAP-Success packet)

within a PA-GSS element. However, as the EU and the KDC do not share any

previous shared secret (e.g. user password), they first need to agree on a fresh reply

key, used to protect the enc-part of the KRB AS REP message. The enc-part of the

message contains the session keys the EU needs to know to make use of the TGT in

following interactions. The cryptographic material exported by the EAP method (i.e.

MSK) is the perfect candidate to be used as root key to derive the reply key. Although

the MSK is not directly available to the Kerberos layer, it is internally used by the

GSS-EAP layer as a source of entropy for the GSS Pseudo random function [107].

Hence, both the EU and the KDC can use that function to derive a common reply

key.

12. Similarly, when the EU receives the packet, it processes the GSS token and obtains

a GSS S COMPLETED status value. Then, it uses the GSS Pseudo random call to

derive the reply key, and then decrypt the received information.

After a successful authentication, the EU ends up with a TGT in possession. This TGT

contains, in addition to the standard Kerberos information, some authorization information

obtained from the EU’s IdP. The following section focuses on the authorization tasks

required during the issue of STs.

3.4.2 ST acquisition (KRB TGS REQ/REP exchange)

Once the EU has the TGT, she can use it to request one or more STs to access the different

application services deployed by the service provider, following the standard Kerberos

procedure (i.e. KRB TGS REQ/REP exchange). This section describes how standard

authorization technologies can be integrated with this process, in a way that the KDC is

provided with a rich set of identity information about the EU to determine whether she

should be granted to access the requested application services.

67

3. FedKERB: Integrating Kerberos with AAA and advanced authorization
infrastructures

In particular, this authorization process is defined by means of the SAML assertion

contained in the TGT. We also also propose the use of XACML, which provides a standard

policy language (used to define access control policies), and a well-defined authorization

framework, to let the KDC to query a PDP to obtain an authorization decision.

The authorization management workflow is depicted in Figure 3.5, and explained in

high detail in the following:

EU KDC PDP IdP

1. KRB_TGS_REQ

(AppS, TGT[Assertion]) 2. MDS Query

(Subject)

Service Provider
Home

organization

MDS

Federation

3. MDS Response

(IdP)

4. SAML AttributeQuery

(Subject, AppS)

5. SAML Response

(Attributes)

6. Authz Decision Query

(EU, Attributes, AppS)

7. Authz Decision Res

(decision, obligations)8. KRB_TGS_REP

(ST)

Figure 3.5: Kerberos KRB TGS REQ/REP exchange: ST acquisition.

1. The EU starts the Kerberos KRB TGS REQ/REP exchange by sending a

KRB TGS REQ message to the KDC. This message includes the identifier of the

AppS the EU wants to access to, and the TGT obtained as a result of the Kerberos

KRB AS REQ/REP exchange.

2. The KDC verifies the TGT and extracts the SAML assertion contained within it.

If the identity information contained within the assertion (e.g. end user attributes)

is enough to take and authorization decision for the specified AppS, the process

continues as explained for step 6. On the contrary, if the KDC requires additional

information, it will request it from the EU’s IdP. In order to discover IdP’s location

(e.g. URL), the KDC may consult the MDS. In such a case, the KDC sends a MDS

Query message to the MDS, indicating the assertion’s Subject element, used as EU’s

68

3.4 General operation

identifier. This step may be omitted for intra-domain or small federated scenarios,

where this information may be pre-configured on every member.

3. The MDS replies to this request providing the IdP’s location.

4. Once the KDC has discovered the location of the IdP, it sends a new SAML

AttributeQuery message. This message contains the Subject element from the

assertion, in order to identify the EU. It also includes the information of the AppS

the EU wants to access. Optionally, it could also include information about the set

of required attributes (e.g. role, entitlement, subscription type, etc.). As commented

before, typically SAML messages are digitally signed by both peers, and transported

over a secure channel (e.g. HTTPS/SOAP), hence confidentiality is assured.

5. After receiving the request, the IdP check whether the requested attributes can

be provided to the requesting AppS, according to some attribute release policies

established either at an organizational level or personalized by each EU. Authors

of [140] propose the use of XACML to manage these policies. After that, the IdP

issues one or more AttributeStatement to the KDC, containing the subset of attributes

that are releasable, according to those policies.

6. Finally, the KDC, acting like a PEP, issues a SAML/XACML AuthzDecisionQuery

to the PDP controlling the XACML access control policies for the service provider.

These policies describe the circumstances under which access to the AppS will be

granted. For example, access to a specific service at one university may be granted

only to those EUs presenting an attribute called professor/lecturer, indicating they

are part of the teaching staff of any of the universities affiliated to the federation.

The KDC provides the PDP with the obtained EU’s attributes, the AppS identifier,

and the required action (typically access).

7. After checking the policies, the PDP issues a SAML/XACML

AuthzDecisionStatement, where a PERMIT/DENY answer is given. The PDP

may also include some Obligations to adjust the service provisioning to the EU.

8. If PDP permits the access, the KDC creates the ST and delivers it to the EU.

With the ST, the EU can eventually access the service by means of a standard

KRB AP REQ/REP exchange with the AppS. Usually, this exchange is carried out by

means of the GSS-KRB mechanism. If the EU presents a valid ST, she is assumed

as correctly authenticated and authorized to access the provided AppS. Therefore, the

69

3. FedKERB: Integrating Kerberos with AAA and advanced authorization
infrastructures

deployed application services do not need to be modified as the federated access control is

entirely performed by the KDC.

An alternative way to perform the authorization process would be delegating it to

the application services. In such a case, the assertion received in the TGT would not be

processed by the KDC, but inserted in the authorization-data field of the ST. IdP discovery,

end user attributes retrieval, and authorization decision requests would then be performed

by the AppS instead. Note that in this case, application services would need to be modified

to perform all this processing.

3.5 Discussion

Previous section has described the proposal’s operation in detail. After that, this chapter

continues with the discussion of some important aspects that must be taken into account

when deploying the proposal.

3.5.1 Federated user name in Kerberos

This chapter’s proposal implies that the EU’s name and password will not be present in the

KDC’s database during pre-authentication. This would typically result into the generation

of an error of type KDC ERR C PRINCIPAL UNKNOWN. To avoid this situation, this

chapter proposes the definition of a special identifier to be used in the cname field of

the KRB AS REQ message. When the KDC receives a request with such a client name

(Section 3.4.1), it will avoid checking the local end users’ database, and will completely

rely on the client information (i.e. client name and reply key) provided by GSS-API

pre-authentication mechanism (e.g. alice@home.org).

In particular, Kerberos allows the definition of principal names that have special

meanings [141]. These identifiers are called Well-Known Kerberos Principal Names,

and consist of two components separated by the “/” symbol: the “WELLKNOWN”

keyword identifying it as a well-know name, followed by a specific keyword identifying

its particular meaning. For example, [142] defines the “WELLKNOWN/ANONYMOUS”

name to identify an anonymous user. In this line, this chapter proposes the

“WELLKNOWN/FEDERATED” principal name to be used as cname whenever the EU

tries to access to a KDC out of her home domain.

70

3.5 Discussion

3.5.2 Kerberos cross-realm vs Kerberos with AAA integration

For situations where the EU requests access to AppS not located in her home organization,

Kerberos already defines the cross-realm operation (Section 2.3.1). According to the

standard Kerberos specification, summarized in Section 2.3.1, the EU needs to interact

with all the KDCs that take part of the path from her home organization to the service

provider.

In contrast, this chapter proposes a new approach, where the EU only needs to

interact with a single KDC: the service provider’s KDC. More specifically, the Kerberos

pre-authentication process (executed against the service provider’s KDC) is performed

through an underlying AAA infrastructure, which could imply one or more organizations

in federated environments. As it can be observed, this solution avoids intermediate

organizations to deploy KDCs to assist the process.

This is specially relevant on organizations where an AAA infrastructure is already

deployed, typically for controlling the access to the network service. For them, deploying

an additional cross-realm infrastructure may imply high administrative efforts (e.g. manage

more firewall rules or having redundant user databases), as well as the introduction of new

points of failure on the organization.

3.5.3 KDC state management

As described in [103], KDCs are stateless due to there is no requirement that an EU

will choose the same KDC for the second (and following) requests in a typical Kerberos

conversation (for example those described in Section 3.4.1. Moreover, even if the same

KDC is selected, the KDC process is allowed to be stopped and started again between

EU’s requests, losing any state that it could possibly have. This is inconvenient for any

multi-roundtrip pre-authentication mechanism, such as the one described in this chapter,

which will usually require the maintenance of some context to bind the whole conversation.

The Kerberos pre-authentication framework (Section 2.3.1) points out that such a context

must be exported and delivered to the EU instead, which must treat it as an opaque piece

of data, and include it in the next request sent to the next KDC. Upon reception, the KDC

will reconstruct the context, and thus, be able to process the request.

In particular, exporting a context is pretty simple from a GSS-API standpoint, as

there is a call for that specific purpose, GSS Export sec context, which provides a binary

representation of the context, abstracting the KDC from the complexities of the exporting

process. Although current GSS-API specification precludes the exportation of security

71

3. FedKERB: Integrating Kerberos with AAA and advanced authorization
infrastructures

contexts until they have been completely established, the GSS-EAP mechanism omits

this restriction and allows it before establishment. Indeed, it is expected that any future

multi-roundtrip GSS mechanism will allow it too, forcing the GSS-API specification to be

updated accordingly.

There are some security implications associated to the context transfer. On the one

hand, the context may contain sensitive information that should not be accessible to anyone

except for the KDC. This can be easily solved by encrypting the context token using a key

that all the KDCs in an organization share: the TGS key, typically used to encrypt the

TGT. On the other hand, even when encrypted, an attacker may try to replay the context

from one conversation to another, in an attempt of either gaining access to the resource or

just provoking a Denial of Service (DoS) attack [143]. This is mostly avoided by including

a timestamp into the context, reducing its usability to a limited period of time.

Therefore, the PA-GSS padata defined in Section 3.4.1 must include, in addition to

the GSS-API token, a state element that contains the exported GSS-API context along

with the timestamp of the moment of generation. In particular, the following is the ASN.1

description of the PA-GSS element, including all the required elements:

PA-GSS ::= SEQUENCE {

sec-ctx-token [0] OCTET STRING, -- contains GSS-TOKEN

state [1] EncryptedData OPTIONAL -- contains PA-GSS-STATE

}

PA-GSS-STATE ::= SEQUENCE {

timestamp [0] KerberosTime,

exported-sec-ctx-token [1] OCTET STRING

}

3.5.4 Transport of authorization information in RADIUS

So far this chapter has assumed a generic AAA transport for the proposed architecture.

However, there is a major limitation when RADIUS is used as the AAA protocol. In

particular, RADIUS limits the packet size to a maximum of 4096 bytes (Section 2.1.1).

Although this has been sufficient for many scenarios and applications along the years, the

transport of amounts of data over that limit, required for some scenarios, is not possible.

In particular, the proposal described in this chapter requires the AAA infrastructure to

transport a SAML assertion from the H-AAA to the KDC (Section 3.4.1). As this assertion

may exceed the 4096 bytes limit, a solution is required when RADIUS is used.

72

3.5 Discussion

Although a trivial answer to this problem would be to use Diameter instead, which uses

TCP as its transport and, therefore, does not suffer from the aforementioned limitation,

there are scenarios where switching from RADIUS to Diameter is not a viable solution.

This is specially relevant for large federations. Many organizations have specific hardware

implementing the RADIUS protocol (e.g. routers). As switching to Diameter requires to

upgrade the whole AAA infrastructure (all the intermediary proxies need to be upgraded

as well), it would imply a significant economic effort that not every organization in the

federation will be willing to assume. Specially when the capability of sending/receive large

AAA packets may be restricted to a small subset of the federation members. A clear

example of such a RADIUS-based federation would be eduroam.

The IETF have tried to find out some solutions to overcome this issue. However, they

do not fully cover the requirements of the scenario described in this chapter. For example,

RFC 6158 [48] recommends the use of references instead of values, similar to the Hash and

URL mechanism defined for IKEv2, or the Filter-Id attribute of RADIUS. However, the

use of references rather than values is not applicable when the nature of the data to be

sent is highly dynamic, such as happens with SAML statements (each SAML assertion has

its own ID and timestamps).

Under this scenario, the RADEXT WG was requested to include this problem within its

charter topics, as it was considered as an important issue of current RADIUS specification.

Moreover, as part of the work of this thesis, a new draft [51] was submitted to that

WG with a preliminary proposal for a fragmentation mechanism for RADIUS. This

mechanism allows splitting a single RADIUS packet into smaller pieces of data called

chunks. Each chunk is a RADIUS packet on its own and, thus, they follow all the rules

and restrictions applicable to them. These chunks are sent from the sender to the receptor

following the standard RADIUS exchanges. Once all the chunks have been received by

the receptor, the original packet is reconstructed and processed as a whole. As one of its

objectives, this fragmentation mechanism works through unmodified RADIUS proxies,

allowing two updated peers to exchange large RADIUS packets through any existing

RADIUS infrastructure.

This draft has evolved through several versions, and it was adopted as WG document

on August 27th, 2013. Although this fragmentation mechanism has been designed as a

consequence of the requirements of this thesis, it is not an essential part of the thesis.

Hence, the reader is instead referred to the draft text available in [51].

In addition to the specification, we developed an open source proof of concept

73

3. FedKERB: Integrating Kerberos with AAA and advanced authorization
infrastructures

implementation1 [144], based on the FreeRADIUS code [145].

The RADEXT WG has recently adopted another proposal [146], based on the use

of TCP and the removal of the artificial 4096 limit. Although this proposal is simpler

than ours, it does require the modification of all the proxies of any existing RADIUS

federation to support it, suffering from almost the same drawbacks than switching to

Diameter. Therefore, both proposals target scenarios are different. While our proposal

focuses on already deployed RADIUS infrastructures, this one focuses on to-be deployed

infrastructures. That is the reason why the RADEXT WG opted for adopting both of

them.

3.6 Security analysis

The use of EAP for Kerberos pre-authentication has also some implications in terms of

security, specially regarding to the key management and distribution. In fact, the security

analysis described in [147] for AAA key management, and the one described in [65] for

EAP are applicable here. Indeed, the MSK exported by the H-AAA must be transmitted

to the KDC, which is acting as EAP authenticator. Potentially, intermediate AAA proxies

placed between the KDC and the H-AAA server can observe the distributed MSK that

will be used to derive the Kerberos reply key. This kind of behaviour might affect to the

security of this key.

However, the trust model in such federated environments assumes that intermediate

AAA proxies can be considered as trusted entities, and therefore MSK can be safely

distributed to the KDC through the AAA infrastructure. As [147] explains, some

key wrapping techniques can be applied to provide confidentiality, integrity and replay

protection to the distributed key material between each pair of AAA entities (e.g. AAA

proxies).

Besides, this work assumes there is a transitive trust relationship for authentication

between the involved organizations thanks to the deployed AAA infrastructure, as

described in Section 3.2. This trust is usually based on pre-shared keys or on PKI

architectures. Either way, they need to be pre-configured on the AAA entities within

the federation.

Regarding the authorization process, it is generally assumed the use of a direct

trust relationship, allowing the protection of SAML messages between organizations (see

Figure 3.5, step (4)). Usually PKI architectures are used to deploy this trust [148],

1Funded by Telefonica I+D

74

3.7 Conclusions

and public key certificates and private keys are implemented in services and identity

providers, which allow the establishment of secure channels and protecting messages (it is

worth noting that end users still make use of login/password credentials). Following this

approach, IdPs and KDCs should be fed with this cryptographic material.

Nevertheless, a different approach could be followed to avoid the deployment of an

additional infrastructure (e.g. PKI). The transitive trust relationship defined by the

deployed AAA infrastructure could be leveraged to convey and perform the attribute

recovery process in a protected manner (SAML AttributeQuery/Response exchanges).

That is, the AAA protocol could serve as a transport for the SAML protocol between the

KDC and the IdP, where confidentiality, integrity protection and authenticity is provided by

the trust relationships established within the AAA-based federation, and the mechanisms

provisioned by the used AAA protocol. Moreover, as being investigated by Moonshot, a

new key management entity called Trust Router [149] can be used to dynamically bootstrap

a direct trust relationship between the service provider’s AAA server and the home AAA

server. This would allow the dynamic building of AAA-based federations.

Although using this last approach would be plausible, it was discarded for this proposal

as currently deployed IdPs such as Shibboleth do not support receiving attribute queries

through AAA protocols. Besides, the Trust Router is still on early stages of specification

and cannot be considered stable. Hence, this approach is left as a possible future work

(Section 7.2.4).

3.7 Conclusions

This chapter has analysed several well-known standard protocols and technologies which

are used to authenticate and authorize end users when accessing to application services in

identity federations. In particular, Kerberos is being widely used for authentication and

key distribution in application services within a single organization. However, Kerberos

cross-realm infrastructures are not widely deployed for federated environments. Conversely,

organizations are usually interconnected by means of AAA infrastructures to control access

to the network service. This separation of technologies (service access vs. network access)

makes enormously difficult that end users subscribed to one organization can access by

using Kerberos to the application services provided by other organization within the

federation.

The proposed architecture offers important benefits to both, service providers and

end users. The formers are benefited of a federated authentication process that,

75

3. FedKERB: Integrating Kerberos with AAA and advanced authorization
infrastructures

without modifying the deployed application services, allows them to increase the potential

number of users and, thus, the business opportunities. Besides, thanks to the advanced

authorization, they have a more precise control over who can access the application services,

and under which conditions. The end users are benefited as well from the federated

authentication process, as they do not need to remember dozens of different credentials

for different service providers. Moreover, thanks to the use of Kerberos, they are also able

to access different application services within the same service provider by means of the

SSO mechanism, that is, without incurring in repeated authentication processes with their

home organization.

Finally, this chapter has analysed and discussed the most important deployment

and security aspects, as well as the standardization status of the different technologies

involved in the architecture. The functional and performance analysis has been delayed to

Chapter 6, for a comparison with the rest of contributions of this thesis.

It is worth noting that all the components required by this chapter are either

consolidated standards or being considered for their standardization. In particular,

the ABFAB WG has standardised the GSS-EAP specification [107, 119], as well as a

RADIUS transport for SAML [139]. As a result of the work in this chapter, a GSS-EAP

pre-authentication mechanism for Kerberos [150] has been defined. Besides, a GSS-API

pre-authentication mechanism [135] has been proposed within the Kerberos WG [126].

Finally, the RADIUS fragmentation mechanism [51] is also being under discussion within

the RADEXT WG [50].

Although FedKERB provides a solid solution to provide federated access to a wide range

of different application services, it still presents some aspects that could be improved for

specific scenarios. For instance, although application services do not need to be modified,

this proposal does require the modification of the KDC element to support the GSS-API

pre-authentication. In some scenarios modifying the deployed Kerberos infrastructure

may not be a viable solution. Besides, when the end user performs a network access

control process to access the network, using the same AAA infrastructure (as it happens in

eduroam), the authentication with the KDC implies an additional (and redundant) EAP

authentication that may be avoided by some kind of cross-layer communication. Chapters 4

and 5 propose alternative architectures dealing with these two scenarios, respectively.

76

Chapter 4

PanaKERB: Out-of-band federated

authentication for Kerberos based on

PANA

4.1 Introduction

The previous chapter of this thesis has proposed FedKERB, a unified architecture which

is able to bring the benefits of identity federations to any kind of application service,

even to those that were not designed to support a federated operation (e.g. SSH or

NFS). This is achieved by the integration of Kerberos and AAA infrastructures, in a

way that the resulting architecture benefits from the advantages they have separately.

However, although reduced to a minimum, this integration has required some extensions

and modifications to the existing Kerberos implementations, in order to support the

definition of a new pre-authentication process based on the use of the GSS-API and, more

specifically, of the GSS-EAP mechanism. This implies that the KDCs deployed at service

providers, as well as Kerberos client at end users, need to be updated accordingly.

However, some service providers may be reluctant to inflict changes on their network

equipment and software. For those providers, this aforementioned requirement may

preclude the adoption of the FedKERB proposal, therefore leaving them with no possibility

of joining the identity federation. Moreover, even those service providers that would agree

to introduce the required changes in a long-term plan, may still have a preference for a

interim and less-intrusive way to provide federated access to their services, for instance, to

evaluate the actual interest of their users on such a service.

For these reasons, this chapter proposes an alternative architecture to allow the

77

4. PanaKERB: Out-of-band federated authentication for Kerberos based on
PANA

integration of Kerberos and AAA infrastructures without the modification of the existing

elements. In particular, this chapter tries to address the following objective, extracted

from Section 1.3:

O2 To design a solution enabling the bootstrapping of Kerberos credentials on the service

provider as a result of a federated AAA-based authentication process performed

by means of an independent protocol (out-of-band) with native support for AAA

infrastructures, avoiding the modification of neither the elements of the Kerberos

infrastructure, nor the application services.

This objective can be broken down into the following sub-objectives:

• To design an architecture for federated access to application services by means of an

out-of-band Kerberos authentication processes.

• To reduce the architecture complexity by reusing standards as much as possible,

minimizing the impact on current technologies.

This chapter presents a novel solution, called PanaKERB, following a different strategy

to solve the aforementioned problems: it defines an authentication mechanism parallel

and independent of Kerberos (out-of-band mechanism) that authenticates and authorizes

the end user against the EAP/AAA-based federation. The out-of-band authentication

process is completely transparent to the Kerberos infrastructure (i.e. KDC) deployed

by the service provider. That is, the KDC is not aware of the authentication process.

As a result of a successful authentication, a new state is enforced in the KDC. This

state allows authenticating the end user, and establishing a security association with

her. With this security association, the end user obtains a Kerberos credential to access

the application service, following the standard Kerberos operation. To convey the EAP

authentication information between the end user and the service provider, the Protocol for

Carrying Authentication for Network Access (PANA) is used as the out-of-band protocol

(Section 2.1.3). The main reason for using PANA are described in Section 4.2.1: a) it

is a consolidated standard for the purpose of authenticating end users using an AAA

infrastructure, and then enforcing a state on a Enforcement Point [43]; and b) it provides

a lightweight mode of operation when compared to other protocols [151].

Hence, this solution addresses the above-mentioned drawbacks of FedKERB: first,

applications services that currently support Kerberos do not need to be modified; second,

neither Kerberos protocol nor existing implementations need to be modified. The simplicity

78

4.2 Proposed Architecture

of this approach will make its adoption and deployment easier, and it is especially

interesting to organizations that have kerberized application services already deployed.

In addition to the proposal described in this chapter, there exist other alternatives that

also try to make use of an out-of-band mechanism to perform an EAP/AAA authentication

in order to bootstrap a Kerberos security association afterwards. The most relevant

solution applying this strategy can be found in the Bootstrapping Kerberos [122] proposal.

This work proposes to provide the end user with a TGT valid for the service provider’s

domain after a successful network access control process based on EAP and PANA. In other

words, instead of using the standard KRB AS REQ/REP exchange, the TGT is directly

distributed to the end user along with the EAP-Success message. However, this procedure

not only violates the Kerberos specification (which states that TGTs must be provided to

the client through a KRB AS REQ/REP exchange), but also requires the AS functionality

to be integrated within the AAA server at the home organization. Moreover, this work

also inflicts changes in the EAP Key Management Framework (EAP KMF) [65], since the

MSK is directly inserted in the TGT. Hence, the Bootstrapping Kerberos solution is not

suitable for the problem statement of this thesis.

This chapter is structured as follows. Section 4.2 describes the different entities that

take part of the proposed architecture. Section 4.3 explains how these entities interact

to achieve the objective of granting access to federated users. Section 4.4 discusses the

security considerations of this proposal. Section 4.5 outlines some conclusions.

4.2 Proposed Architecture

This section presents the proposed out-of-band federated authentication mechanism for

Kerberos, pointing out some initial considerations that have to be taken into account. It

also describes the architecture components.

4.2.1 Preliminary considerations

This chapter proposes an architecture with the following requirements:

• As members of the federation, both organizations deploy AAA servers that allow

them to exchange authentication, authorization and accounting (AAA) information.

• The service provider deploys a Kerberos KDC to distribute service tickets to access

the application services deployed on the organization.

79

4. PanaKERB: Out-of-band federated authentication for Kerberos based on
PANA

• The application service uses Kerberos as the means for performing access control.

• The service provider deploys a PANA Authentication Agent (PAA) to enable the

out-of-band authentication for Kerberos.

• The end user makes use of EAP to perform authentication with the home

organization’s AAA server, using the PAA as EAP authenticator.

In our architecture, PANA protocol is used as a glue layer between these two

infrastructures, allowing federated end users to carry out an authentication process based

on the EAP/AAA federation, resulting in the bootstrapping of the required Kerberos

credentials in the service provider. In particular, a Kerberos credential (i.e. principal

name and password) will be derived from the PaC-EP Master Key (PEMK) after the

PANA authentication, and enforced in the KDC afterwards. For this enforcement, the

PAA will use the KADM [7] interface defined by the Kerberos standard for that purpose.

One key question to answer is why PANA. In general, a protocol which is able to

operate as EAP lower-layer between the EAP peer (end user’s device) and the EAP

authenticator through multiple IP hops is needed. This is required to solve the proposed

scenario since, in the most typical situation, the end user will not be physically connected

to the service provider’s network. As discussed in [152] and [151], IKEv2 and PANA are

valid candidate technologies. However, as it is also concluded in these references, PANA

provides a lighter operation since it only involves an HMAC [153] operation for providing

packet authenticity. In contrast IKEv2 always requires asymmetric cryptography and,

in general, encryption for providing confidentiality and authenticity. Indeed, regardless

of cryptographic operations performed by the EAP method itself, IKEv2 requires the

execution of an additional Diffie-Hellman key exchange [154], which is computationally

more expensive than the symmetric cryptography operations required to establish the

PANA Security Association (PANA SA). Moreover, the standard IKEv2 does not allow

exporting key material after a successful authentication for other purpose different than

establishing an IPsec tunnel. Thus, the password generation and posterior transference

are not possible using IKEv2.

It also worth noting that PANA was initially designed for transporting EAP during

network access service. The main motivation is that EAP was originally conceived to

perform the authentication for network access service. However, EAP applicability has

been recently updated and its usage has been extended for authenticating end users for

application services (Section 2.1.2. In consequence, PANA can be potentially used for

80

4.2 Proposed Architecture

application services since it is merely a transport of EAP. In fact, PANA is being used in

environments where an application service bootstrapping is required, as described in [151].

Finally, the service provider is required only to deploy a new component: the PAA.

This component will be the bridge between the PANA authentication process and the

KDC in the service provider, so that the KDC will be configured with the required end

user information to allow access to the local application services.

KDC

SP-AAA

AppS

PAA

AAA

proxies
H-AAA

Service Provider Federation Home Organization

AAA/EAP

AAA/EAP

EU

KERBEROS

KERBEROS

CNP/API

PANA/EAP

AAA/EAP

Figure 4.1: PanaKERB architecture.

4.2.2 Components

Taking into account these considerations, Figure 4.1 depicts the proposed architecture. As

observed, it is composed of several components that communicate among themselves using

different technologies:

• End user (EU). She is interested on accessing an application service (also called

kerberized service) provided by the service provider. She makes use of her credentials

from her home organization to authenticate through the PAA by means of EAP

(Section 4.3.1). After that, she makes use of standard Kerberos in order to access

the service, contacting with the KDC to obtain the required tickets. Thus, the end

user acts as a PANA Client (PaC) first, and as a Kerberos client afterwards. In the

use case of Section 1.2, this component corresponds to Alice’s device.

81

4. PanaKERB: Out-of-band federated authentication for Kerberos based on
PANA

Component EAP PANA Kerberos AAA
EU Peer PaC Client -
SP-AAA - - - Proxy
H-AAA Server AS - Server
PAA Authenticator PAA - Client
KDC - EP KDC -
AppS - - AppS -

Table 4.1: Roles played by the components on the different protocols.

• Service provider’s AAA server (SP-AAA). This is the element that joins the service

provider to the AAA federation. It is contacted by the PAA to transport the EAP

packets from the EU to the AAA server in home organization, and vice-versa. The

transport is performed through the AAA proxies that integrate the federation.

• Home AAA server (H-AAA). This is the entity which is able to verify the EU’s

credentials, acting as the EAP server. When the authentication ends successfully, a

shared secret with the EU (the MSK) is derived and delivered to the PAA through

the AAA transport (Section 4.3.1).

• PANA Authentication Agent (PAA). This is the element that communicates the

Kerberos infrastructure with the AAA federation in the service provider. On the one

hand, it authenticates the EU by means of EAP and the AAA infrastructure. On the

other, once the user is successfully authenticated, it enforces a new principal name

and password into the KDC’s user database.

• KDC. It is the central entity of the Kerberos infrastructure, and its main

responsibility is to authenticate EUs and provide them with tickets to access services.

In this proposal, the KDC also acts as a PANA Enforcement Point (EP).

• Application Service (AppS). This element provides a valuable service to EUs. Access

control is managed by Kerberos, so the service will be provided only to those

presenting a valid ST. From the application service’s point of view, there will be no

difference between EUs from the service provider and EUs from other organizations.

Table 4.1 summarises the different roles played by the components of the architecture

for each one of the protocols involved in the proposed solution. For the sake of simplicity,

hereafter only the names on the top-left column will be used to refer to these components.

82

4.3 General operation

4.3 General operation

The process is structured in four different phases, which are explained in detail below:

• Phase 1: PANA authentication.

• Phase 2: Kerberos enforcement.

• Phase 3: Kerberos authentication.

• Phase 4: Obtaining service tickets and accessing the service.

4.3.1 Phase 1: PANA authentication

In this phase the EU is authenticated by the PAA, by using PANA and EAP. Through the

EAP/AAA federation, the H-AAA is the entity which actually verifies the EU’s credentials,

asserting she has been successfully authenticated. The EU is assumed to have network

connectivity before performing this phase.

The process starts when the EU wants to access an application service available on

a service provider, which belongs to the same AAA federation as her home organization.

Nevertheless, the EU needs to know whether the AppS supports Kerberos as its means of

authentication. How the EU knows this fact may vary from one deployment to another.

For example, the EU may know it beforehand based on federation agreements. Or the

specific application protocol may announce the supported authentication mechanisms (e.g.

GSS-API, Kerberos, SASL...). Nevertheless, this discovery mechanism is out of the scope of

this work, and this chapter will assume the EU already knows that Kerberos is supported.

Regardless the EU already has a valid ST for that specific AppS, or if she has a

valid TGT for that organization, she proceeds with the standard Kerberos procedure,

as described in Section 4.3.4). However, if the EU has no Kerberos credentials, she starts

the authentication with the PAA, using the credentials she already has from her home

organization. The PANA authentication process may be automatically triggered when no

suitable TGT is available. Figure 4.2 depicts this authentication process.

The first step of this phase is aimed to establish the PANA SA. The process starts

negotiating a pseudo-random function (PRF) and an integrity algorithm (1, 2 and 3). They

will be used to derive keys and to protect PANA messages respectively. After that, the

PAA starts the EAP authentication by sending a PANA-Auth-Request message containing

an EAP-Request/Identity packet and a nonce value (to avoid replay attacks)(4). The

EU replies to this request by sending a PANA-Auth-Answer message with another nonce

83

4. PanaKERB: Out-of-band federated authentication for Kerberos based on
PANA

Service Provider Home Organization

1. PANA-Client-Initiation

2. PANA-Auth-Request

(PRF, Integrity-algorithm)

3. PANA-Auth-Answer

(PRF, Integrity-algorithm)

4. PANA-Auth-Request

(nonce, EAP-Req/Id)

5. PANA-Auth-Answer

(nonce, EAP-Res/Id) 6. AAA Request

(EAP-Res/Id) 6. AAA Request

(EAP-Res/Id)

7. AAA Response

(EAP-Req/X)7. AAA Response

(EAP-Req/X)8. PANA-Auth-Request

(EAP-Req/X)

10. AAA Access-Accept

(EAP-Succ, MSK)10. AAA Access-Accept

(EAP-Succ, MSK)11. PANA-Auth-Request

(EAP-Succ, Key-Id, AUTH)

12. PANA-Auth-Answer

(Key-Id, AUTH)

EU PAA SP-AAA H-AAA

9. Repeat the process echanging EAP-Req and EAP-Res until EU is authenticated

Figure 4.2: Phase 1: PANA authentication.

value and with an EAP-Response/Identity packet (5). The EAP-Response/Identity packet

transports the end user’s identifier (e.g. alice@home.org).

During the PANA authentication process, the EAP packets received by the PAA from

the EU are forwarded to the H-AAA through the AAA infrastructure (6). Similarly, the

EAP packets coming from the H-AAA are forwarded to the EU (7 and 8). Depending on

the EAP method being used, the authentication process may require several round tips.

Hence, this forwarding process is repeated until the EAP authentication finishes (9). For

instance, the EAP-MD5 method requires two round-trips to be completed (one to propose

a challenge, and the other for generating and verifying the hash), while other more complex

84

4.3 General operation

methods such as EAP-TLS may require several round-trips to complete.

Once the authentication process has successfully finished, the H-AAA includes the

generated MSK in the final AAA Access-Accept message (10). This information is

transported through the AAA infrastructure to the PAA, which ends the establishment

of the PANA session and the creation of the PANA SA with the EU by the exchange

of the Key-Id and AUTH AVPs (12 and 13). These AVPs are used to derive the

PANA AUTH KEY [43] and the PEMK [155].

At this point, the EU has been authenticated by the PAA by means of the EAP/AAA

federation, and some cryptographic material has been derived from this authentication (i.e.

MSK). This PANA SA has been established between EU and PAA.

4.3.2 Phase 2: Kerberos enforcement

Right after executing phase 1, the PAA contacts with the KDC to enforce the access control

state associated with the authenticated EU. More specifically, the PAA interacts with the

KADM server in the KDC through the KADM interface. This server allows external entities

to manage the KDC’s database. Although the Kerberos specification does not define

how this database should be, the Kerberos Information Model defined in [156] provides a

common model to represent all this information, specifying the cornerstone elements that

must take part on every KDC database (i.e. principals, keysets, keys and policies). It

also describes their attributes and how they are interrelated. This KADM interface, which

serves to manage this information model, can be implemented using several protocols, such

as LDAP [110], SOAP or NETCONF [157]. As its specific implementation will depend on

the particularities of each deployment, its selection is out of the scope of this thesis.

Without any loss of generality, we assume that the KADM server offers two methods to

the PAA. On the one hand, the KADM create principal call allows the creation of a new

Kerberos principal, indicating the principal name, the password, and a lifetime after which

all the tickets issued to the EU must expire. On the other hand, the KADM delete principal

call allows the deletion of a principal from the database, using the principal name as

identifier. The arguments of these calls are mappable to the principalName, keyValue and

principalNotUsedAfter attributes defined in [156] respectively.

The process of the Kerberos enforcement is depicted in Figure 4.3. First, the PAA makes

use of the received MSK to derive a PEMK, following the indications given in [155]. The

PEMK is a 64 byte-length binary key that will be used to derive the temporary principal

name and password. For that, it needs to be adapted to the specific requirements of the

KADM interface before it can be enforced. As most Kerberos implementations expect

85

4. PanaKERB: Out-of-band federated authentication for Kerberos based on
PANA

Service Provider

2. KADM_create_principal

(principal_name, password, lifetime)

3. PANA session

expires

4. KADM_delete_principal

(principal_name)

1. MSK PEMK

(principal_name, password)

PAA KDC

Figure 4.3: Phase 2: Kerberos enforcement.

human end users to introduce textual principal names and passwords instead of binary

ones, KADM interfaces are typically prepared to receive variable-length text strings for

those parameters. The password will then internally converted into the required key using

the string-to-key function [7]. Hence, we propose to transform the PEMK into a textual

representation by means of base64 encoding [158]. The resulting string will be 88 bytes

length. The first 16 bytes will be used as principal name, whereas the last 72 bytes will be

used as the textual password.

pemk = generate pemk rfc5807(msk)

pemk64 = base64 encode(pemk)

principal name = substring(pemk64, 0, 15)

password = substring(pemk64, 16, 87)

Once the PAA has derived the EU’s principal name and password (1), it can enforce

the access control state into the KDC (2). This state includes the principal name

and the password generated for the EU, and the lifetime of the new state. The

principal name will be concatenated with the realm of the home organization. This

will be useful for accounting purposes (e.g. know where the EU comes from). For

instance, considering a home organization called homeorg.com and a service provider

called remoteorg.com, an example of principal name created by the PAA into the

KDC’s database would be MTIzNDU2Nzg5MDEy@homeorg.com@REMOTE.ORG, where

MTIzNDU2Nzg5MDEy@homeorg.com would be the principal name, and REMOTE.ORG

would be the Kerberos realm corresponding to remoteorg.com. The lifetime will be

established based on the PANA session lifetime.

86

4.3 General operation

When the PANA session expires (3), the PAA must take care of deleting the state

associated to the EU from the KDC as part of the PANA termination phase. This action

is also performed through the KADM interface (4).

4.3.3 Phase 3: Kerberos authentication

After the PANA authentication and enforcement processes, the EU can access any

application service by following the normal procedure of the Kerberos protocol. Therefore,

the first step of this operation is to obtain a TGT from the KDC, by means of a

KRB AS REQ/REP exchange. This TGT will be used later to obtain STs for the different

application services offered within the service provider. Note that if the EU might start

Phase 3 before Phase 2 is completed. In such a case, the KDC will complain about not

having such a end user on its database. The EU should then wait a small amount of time

(e.g. 500 ms.) and retry again. Figure 4.4 represents the Kerberos authentication phase,

showing the most relevant information transmitted between entities.

Service Provider

2. KRB_AS_REQ

(principal_name, realm)

3. KRB_AS_REP

(enc-part, TGT)

EU KDC

1. MSK PEMK

(principal_name, password)

Figure 4.4: Phase 3: Kerberos authentication.

In order to authenticate with the KDC, the EU needs to make use of the same principal

name and password that were enforced in the KDC. Therefore, she follows the same key

derivation process as performed by the PAA in phase 2, obtaining the PEMK from the

MSK, and then transforming it into a textual principal name and password (1) by applying

a base64 encoding. With this principal name and password the EU is able to perform the

standard KRB AS REQ/REP exchange with the KDC, sending a KRB AS REQ message

(2) and receiving a KRB AS REP message containing a enc-part and a TGT (3).

87

4. PanaKERB: Out-of-band federated authentication for Kerberos based on
PANA

Therefore, the KDC and the EU are provided with enough information to perform a

standard Kerberos authentication as a result of the PANA authentication, without the

need to modify any of these two entities.

4.3.4 Phase 4: Obtaining service tickets and accessing the service

This phase is entirely based on the standard Kerberos operation described in Section 2.3.1

for accessing an application service and, consequently, nothing needs to be modified in any

of the involved entities (i.e. the KDC or the EU). Once the EU has obtained the TGT in

the previous Phase 3, she can request an ST to access the desired application service by

following two different steps: a KRB TGS REQ/REP exchange and a KRB AP REQ/REP

exchange.

As a result, the EU can access an application service deployed in a service provider, by

just using the credentials she shares with her home organization. As per described in this

chapter, this proposal does not provides support for advanced authorization. In fact, an end

user is considered authorized to access an application service as long as she is successfully

authenticated. This is so because including additional authorization capabilities to the

KDC would inevitably require to modify existing deployments, which would break with

one of the objective of this out-of-band proposal: not modifying existing infrastructures.

However, if this requirement were relaxed, as some organizations may not oppose

to introduce minor modifications, this proposal could be easily extended to support the

authorization model described in the previous chapter (Section 3.4.2, with just a few minor

modifications. In particular, the SAML assertion associated to the EU would be received by

the PAA through the AAA infrastructure after the EAP authentication process. Therefore,

to make it available to the KDC, the PAA would need to include the assertion into the

data enforced into the KDC. This should not result into any inconvenient, as most KADM

implementations allow the enforcement of opaque generic data, in addition to the basic

elements of the information model described above.

Once the AS retrieves authenticates the EU, it retrieves the assertion from the database

and introduces it into the TGT, as described in Chapter 3. From this point, the

authorization process goes on as specified in Section 3.4.2.

4.4 Security considerations

As stated, this proposal aims to provide a complete solution that is able to adapt to a wide

variety of scenarios, and that requires the minimal changes to the existing deployments and

88

4.4 Security considerations

implementations. Therefore, neither PANA, Kerberos, EAP nor AAA standard protocols

have to be modified. Their specifications and their security properties remain unchanged,

by keeping their weaknesses and strengths intact. This section summarizes some of these

important security considerations which impact on our solution. Moreover, it discusses the

main security aspects that arise from the combination of these technologies.

4.4.1 Key distribution after authentication

The distribution of key material is a critical security point, as unauthorized access by third

parties may lead to impersonation attacks. Two different key distribution processes take

place for the distribution of the MSK and EU’s password.

In the first one, the MSK is transmitted from the H-AAA to the PAA as a result of

a successful authentication process. In the federation, both entities may be connected

through one or more intermediate AAA proxy servers placed on a domain on the path

between the service provider and the home organization. Therefore, the same analysis as

the one done for FedKERB in Section 3.6 is applicable here. That is, AAA proxies should

be considered as trusted entities, and some key wrapping techniques can be applied to

provide confidentiality, integrity and authenticity to this distribution.

The second one takes place when the Kerberos password derived from the MSK is

transmitted from the PAA to the KDC via the KADM interface. As stated in [156], the

password must not be transported in clear over the network. This aspect is covered with

further details in Section 4.4.3.

4.4.2 Kerberos Password derivation

This chapter defines that the password between a federated EU and the KDC in the service

provider is bootstrapped from the keying material resulting from the EAP authentication.

The generation process of this password consists of the derivation of a key from the MSK

named PEMK (Section 2.1.3) following the rules defined in the standard [155]. Then, this

key is converted to its base64 notation to obtain a textual representation.

Besides the already commented benefits in terms of scalability, usability and simple

deployment, the use of dynamically generated keys (transformed into passwords) for

Kerberos provides a robust protection against off-line dictionary attacks [7, 103], when

compared to standard Kerberos, where fixed textual passwords are used to authenticate

EUs. Even if an attacker were able to recover the reply-key from a Kerberos conversation,

that key would only allow decrypting that specific conversation, but will not jeopardise any

89

4. PanaKERB: Out-of-band federated authentication for Kerberos based on
PANA

future or past Kerberos interaction. Besides, if the dynamic Kerberos principal already

expired, the attacker will also be unable to generate new tickets to impersonate the EU.

It is worth noting that this dynamic password generation is only possible when a

key-generating EAP method (e.g. EAP-TLS [59], EAP-TTLS [60]...) is selected. The

use of EAP key generating methods is a requirement not only demanded by this chapter,

but also recommended by existing standards [147,159].

Once the key material has been bootstrapped between EU and the KDC, this solution

not differ from the standard Kerberos operation in a single-realm scenario. Therefore, it

does not preclude the usage of any of the security enhancements defined for Kerberos such

as pre-authentication or FAST tunnelling [103].

4.4.3 Authenticated and Authorized enforcement in the KDC

Another relevant aspect is the access control to the KADM interface. That is, it must be

ensured that only authenticated and authorized entities (i.e. the PAA) can enforce new

principals in the users database. Moreover, it must also be ensured that they can only be

modified by their rightful owner. Special care must be taken with those objects that are

critical for the proper functionality of the whole Kerberos infrastructure, like the principal

and keys shared between the AS and TGS servers. Therefore, KADM implementations

are strongly encouraged to provide the means of performing access control (e.g. based

on pre-shared keys or certificates). For example, the successful establishment of the

TLS security channel between the PAA and the KADM can provide the required level

of authentication and authorization. This does not preclude the use of other access control

models, such as IPsec, or any secure Remote Procedure Call (RPC) mechanism offered by

the Operating System (e.g. UNIX sockets), specially when the PAA and the KDC are

collocated in the same machine.

4.4.4 Filtering the access to the PANA server

Since PANA operates over multiple IP hops, the EU may contact with the PAA in the

service provider without being physically connected to the service provider’s network.

In general, this is an advantage since it allows the EU to access application services

from any point of a network (not only from the service provider). This implies that

the service provider may need to open port 716/UDP in firewalls, in order to allow

PANA authentication coming from external users. Under certain circumstances it may

be reluctant to enable this filtering policy, especially to avoid security attacks (e.g. DoS).

90

4.5 Conclusions

In such a case, the service provider may only allow the access to the PAA when the EU

has actually roamed to its network.

This situation would also be possible with the KDC and the Kerberos protocol. Service

provider firewalls might reject traffic to port 88/UDP, avoiding EUs to contact the KDC

from outside their network. However, this would have a minor impact then the filtering of

PANA traffic, since IAKERB [160] could be used to tunnel Kerberos traffic from the EU

to the KDC through the AppS, overcoming the issue.

4.5 Conclusions

This chapter describes how an out-of-band protocol can be used to integrate Kerberos

and AAA infrastructures in an organization, allowing EUs belonging to any member

organization of the EAP/AAA federation to access the available application services in

a seamless way, without requiring the introduction of any change to either the AAA or the

Kerberos infrastructures. Hence, since there is no need to modify the Kerberos standard,

the deployment of our proposal can be performed in a more straightforward way, by just

including the new required entities (i.e. the PAA) in the involved organizations.

In this scenario, EU authentication is carried out by means of PANA and EAP. At

the end of a successful authentication, the freshly generated Kerberos credentials (i.e.

principal name and password) are bootstrapped and enforced in the KDC database, and

distributed to the EU. Using the standard Kerberos protocol, the EU is then able to use

those credentials to obtain Kerberos tickets from the KDC and to access the kerberized

services offered. The SSO-based access among services located in the service provider is

ensured by the standard behaviour of Kerberos.

Finally, this proposal can be extended to support the authorization model described

in Chapter 3, with minor modifications (the SAML assertion introduced into the KDC

during Phase 2: PANA enforcement, and included into the TGT during Phase 3:Kerberos

authentication). This would allow the KDC to have a better control of the access to their

services. However, it has the disadvantage of requiring some modifications to the KDC in

order to include SAML processing capabilities.

91

4. PanaKERB: Out-of-band federated authentication for Kerberos based on
PANA

92

Chapter 5

EduKERB: A cross-layer SSO

solution for federating access to

application services in the

eduroam/DAMe network

5.1 Introduction

The proposals described in Chapter 3 and 4 assume the end user is already connected

to the network, being therefore able to interact with the entities deployed within the

service provider (KDC, PAA, AppS, etc.). Under this assumption, the two previous

proposals provide means by which, after the execution of an EAP exchange, the end user is

authenticated by the KDC. Moreover, the KDC may also have access to a SAML assertion

containing authentication and authorization information about the end user, which can be

used to retrieve additional identity information in form of attributes (e.g. nationality, age,

role, etc.).

However, in some scenarios, the end user is not granted to access the network by

default. Instead, she is required to perform an access control process before attaching to

the network. This process can be also carried out in a federated way, allowing an end user,

roaming from her home organization, to obtain network access to any other organization

(visited organization) in the federation. The most successful example of federated network

is eduroam, briefly described in Section 2.4.1.

In this scenario, a roaming end user would need to complete two different EAP

authentications: one to be granted to access the network service (i.e. eduroam), and

93

5. EduKERB: A cross-layer SSO solution for federating access to application
services in the eduroam/DAMe network

the other to complete the federated authentication with the KDC (when using any of

the proposals described in the previous chapters). This is also true for other initiatives

for federated access to applications, such as Moonshot, where this second authentication

would be performed directly with each application service, instead of with the KDC.

However, sometimes the visited organization also acts as the service provider. That

is, it provides the network access service and the application service. Hence, in these

cases, two EAP authentications would be performed as part of the separated access control

processes (authentication and authorization) to access these services. As their purpose

is to authenticate the same end user with the same organization, the latter one may be

considered as redundant. Therefore, it would be desirable to have a mechanism that allows

the end user to take advantage of the initial network authentication to enable the access

to any other application service deployed in the service provider, without the need of any

additional and expensive (in terms of time and network resources) authentication process.

Such a mechanism is called in this thesis as cross-layer SSO.

Starting from this motivation, this chapter focuses on defining an architecture that

provides a viable solution to this issue. In particular, this chapter aims to address the

following objective, extracted from Section 1.3:

O3 To design a solution enabling the bootstrapping of Kerberos credentials as a result of

the federated AAA-based authentication performed during the access to the network

service, providing a cross-layer federated authentication for Kerberos that integrates

the access to the network service with the access to upper-layer application services.

This objective can be broken down into several sub-objectives, described in Section 5.2.

The usage of the network authentication process as a means to bootstrap or distribute

authentication tokens to the end user, with the purpose of accessing to upper-layer

applications, is not new. It has been approached several times in the literature. For

example, [122] defines a mechanism to provide the end user with a TGT valid for the

service provider’s domain after a successful network access control process based on EAP.

However, this procedure not only violates the Kerberos specification (which states that

TGTs must be provided to the client through a KRB AS REQ/REP exchange), but

also requires the AS functionality to be integrated within the AAA server at the home

organization. Moreover, this work also inflicts changes in the EAP Key Management

Framework (EAP KMF) [65], since the MSK is directly inserted in the TGT. Within the

ABFAB WG some effort was started in this direction [161], but it was finally abandoned

as it did not provide any concrete proposal. Finally, DAMe (Section 2.4.2), which aims to

94

5.2 Objectives and requirements

provide advanced authorization services to eduroam, also proposes the distribution of an

authentication token to the end user, allowing her to request access to application services

afterwards, thus achieving a cross-layer SSO solution. However, this mechanism was not

standardized and it was defined only for web-applications as a proof of concept.

The chapter proposes an alternative solution that avoids the aforementioned drawbacks,

called EduKERB. This solution is specific for the eduroam RADIUS infrastructure,

although it does not preclude its utilisation in other scenarios if so is desired by the

involved parties. EduKERB is based on the combined use of Kerberos and DAMe to

allow organizations to federate their application services by just activating the support of

Kerberos on their applications, without requiring further changes to them. In particular,

this proposal takes advantage of the authentication token distributed by DAMe to

bootstrap a security association between the end user and the KDC in the visited

organization. Using it, the end user is able to obtain Kerberos tickets to access to the

services deployed on that organization. Finally, authorization support can optionally be

enabled following the model described in Chapter 3, being transparent to the application

services.

The rest of this chapter is structured as follows. Section 5.2 describes the sub-objectives

and architectural requirements of the solution. Section 5.3 presents the proposed

architecture. Section 5.4 describes how the defined entities interact with each other to

accomplish the required functionality. Section 5.5 provides a security analysis of the

proposed solution. Finally, Section 5.6 extracts some conclusions.

5.2 Objectives and requirements

To accomplish the high level objectives of this chapter, we propose that service providers

within eduroam deploy Kerberos for controlling the access to their services. By using

a token obtained after a successful network access authentication (eduToken), the end

user can obtain a valid TGT from the KDC. Although the eduToken is originally defined

in [115], for the purpose of this Chapter we have re-defined it to adapt it to the SAMLv2

notation, resulting into an assertion with the same format and contents as the one used

in Chapters 3 and 4, and exemplified in Appendix B. Afterwards, by making use of the

standard Kerberos SSO operation, the end user can make use of this TGT to obtain STs

to access the existing services within the service provider. Furthermore, the solution will

also enable end user authorization when accessing to application services. More precisely,

the solution described in this chapter aims to accomplish the following sub-objectives:

95

5. EduKERB: A cross-layer SSO solution for federating access to application
services in the eduroam/DAMe network

• Definition of a federated access to the different services available at the eduroam

organizations, regardless they are web-based or not.

• Provision of access control to application services based on Kerberos. The

solution will support a federated access by using existing and fully operative AAA

infrastructures (as it happens in eduroam).

• Provision of a cross-layer SSO to end users. The solution will take advantage of the

SSO capabilities offered by Kerberos, which allows a user to access several application

services through a single authentication with the KDC. Furthermore, the Kerberos

authentication is bound with the authentication performed during the access to the

eduroam service.

• Definition of an authorization process during application service access, based on

the infrastructure already deployed for DAMe. Thus, the final decision on whether

the end user will be granted to access to a specific application service (i.e. she is

provided with a ST) will be determined not only by her identifier, but also by her

set of attributes which are accessible in the service provider. Hence, the decision can

be taken based on fine-grained information.

To accomplish the aforementioned objectives, the design of the architecture has taken

into consideration the following general requirements:

• The solution should favour an easy deployment and integration with the existing or

already defined components. This implies the re-utilisation of the entities already

described in the eduroam/DAMe architecture (e.g. identity and policy management

entities), minimizing the number of new elements and protocols. In particular, the

modifications proposed in this solution will only affect to the home and service

providers.

• The solution should be as much transparent as possible to the end user. That is, the

end user should not be aware of the details of the process, which will not differ much

from the operation performed by the end user during network access authentication.

After that, the access to the services should be performed without requiring the end

user to provide further long-term credentials to her home organization for verification

(i.e. application of SSO mechanism).

• The application services that are deployed in the service provider will not require

any update of existing software. Their only requirement will be to support a

96

5.3 Proposed architecture

Kerberos-based authentication such as GSS-API Kerberos V5 or Kerberos V5 SASL.

We believe this is a reasonable assumption taking into account that, nowadays, many

application services already support these mechanisms.

Besides these general requirements, security has a paramount importance in the design

of an architecture. The following general security requirements have also guided the

definition of the architecture:

• Authentication of end users with the service provider’s KDC, in such a way that the

KDC can know that the end user trying to obtain a ticket is who she claims to be, and

not anyone else. The authentication is performed by means of a combined use of the

eduToken, and the cryptographic material resulting from the EAP process performed

during the network access. The KDC does not need to have any pre-established state

or information about the roaming end user.

• Protected distribution of sensitive information. As part of the proposal, sensitive

information will be securely distributed between parties (e.g. identity information

and keying material). This process is susceptible to a variety of attacks, ranging

from eavesdropping to tampering [162]. Therefore, it will be performed through

protected channels, providing confidentiality, integrity protection, authenticity and

replay protection.

• Secure derivation of the cryptographic material used to protect the sensitive

information. In this proposal, many of the keys are derived from a common root key

resulting from the network authentication. It is thus required that the cryptographic

strength of the derivation process avoids the compromise of any of these keys degrades

the security of the other keys (derived or root), as described in [66].

• Protection of the end user’s identifiers through pseudonymity. Only the entities in

the home organization will know the real end user’s identifier. Entities in the service

provider will instead be provided with pseudonyms, so that the solution provides a

basic privacy protection.

5.3 Proposed architecture

Most of the components required for the proposed architecture are already present in

eduroam, though some of them will include additional functionality to accomplish the

97

5. EduKERB: A cross-layer SSO solution for federating access to application
services in the eduroam/DAMe network

objective of this proposal. In the following, an enumeration of these components and a

brief description of their functionality are presented. Figure 5.1 shows the components of

the architecture and the protocols that allow communication between each pair of entities.

KDC

SP-AAA

PDPAppS

H-AAA

IdP

Service Provider

RADIUS/EAP

SAML/XACML

RADIUS/EAP

SAML

SAMLEU

KERBEROS

KERBEROS/

SAML

RADIUS

proxies

eduroam federation

RADIUS/EAP

Home Organization

AP RADIUS/EAP802.11/EAP

Figure 5.1: EduKERB architecture.

• End user (EU). This component represents an end user that first authenticates to

access the network service provided by the service provider using eduroam/DAMe

and, after that, desires to access a application service deployed on that service

provider. To do so, the end user makes use of the eduToken received during network

authentication, along with a key derived from the EAP authentication with her home

RADIUS server. With this information, the end user can access the KDC to obtain

a TGT. By following the standard Kerberos operation, the end user can use this

TGT to request additional STs as she wants to access the different services under

the control of the service provider.

• Home organization’s RADIUS server (H-AAA). This component is already present

in the eduroam architecture. It integrates the EAP Server functionality. Besides,

it also communicates with the IdP to obtain the eduToken related with the end

user. For this proposal, this component is also required to generate a special key

derived from the EMSK, named Domain-Specific Root Key (DSRK) [66], to honour

key distribution requests coming from the service provider’s RADIUS server after a

successful authentication of the end user.

• Identity Provider (IdP). This component, defined in the DAMe architecture, is

responsible for providing the eduToken to the H-AAA after a successful network

98

5.3 Proposed architecture

access authentication. The IdP uses SAML to build the eduToken. It plays the same

rol as in FedKERB (Chapter 3) and PanaKERB (Chapter 4).

• Service provider’s RADIUS server (SP-AAA). It is a component already deployed in

the eduroam architecture. During the network access process, it receives EAP packets

from the Access Point (AP) using RADIUS. Based on the end user’s identifier, it is

able to forward the EAP packets to the H-AAA. With the DSRK, the SP-AAA

can derive a so-called Domain-Specific Usage-Specific Root Keys (DSUSRKs) for the

KDC. This key will be used as a shared secret between the EU and the KDC. The

analysis of this derivation is discussed in Section 5.5.3. Note that the MSK cannot

be used for this purpose, as it is derived exclusively to be used between the EU and

the AP.

• Access Point (AP). This component is present on eduroam, and it acts as the point

of attachment to the service provider’s network.

• KDC. Once the end user gains network connectivity at the service provider and

wants to access an application service, it has to contact with the KDC. The

end user authentication with the KDC is performed by means of a new Kerberos

pre-authentication mechanism, which uses the eduToken that the end user obtained

during network access and retrieves the specific DSUSRK from the SP-AAA. Thanks

to the DSUSRK, the KDC can derive the reply key (used to protect the KRB AS REP

message). Additionally, by using the information in the edutoken, the KDC can use

the authorization model described for FedKERB in Section 3.4.2.

• Policy Decision Point (PDP). It manages the access control policy set of the service

provider. Its functionality is identical to the one already described in Chapter 3.

• Application service (AppS). It provides the specific application service requested by

the end user (e.g. SSH, web service, etc.). Its functionality is identical to the one

already described in Chapter 3.

These components interact among them to accomplish the functionality defined in this

chapter. The next section provides a detailed description of the operation, as well as the

details of the information exchanged during the process.

99

5. EduKERB: A cross-layer SSO solution for federating access to application
services in the eduroam/DAMe network

5.4 General operation

This section describes the general operation of the solution when an EU, which roams to

a service provider and remains there during a period of time, desires to access an AppS

located on that organization. The whole process consists of three main phases:

• Phase 1. Access to the network: authentication, eduToken distribution and keying

material.

• Phase 2. Kerberos pre-authentication and TGT acquisition.

• Phase 3. ST acquisition and access to the application service.

All these phases must be performed before being able to access an application service.

However, once the end user has obtained the TGT (phase 2), thanks to the SSO capabilities

provided by Kerberos, only phase 3 needs to be performed for each access to other

application services deployed in the same service provider. This reduces the interactions

required between the end user and the infrastructure in order to perform the service access

control. Indeed, the only phase where the end user has to provide her long-term credentials

is during network access authentication (phase 1), which is performed once per service

provider and network access session.

5.4.1 Notation

This section describes the flow of information that happens between the components

when performing each one of the steps listed above. The diagrams show a simplified

representation of the information that would actually be transmitted “on the wire”,

depicting only the most relevant one. For a more complete and formal description of

the exchange the reader might refer to the Appendix C.

The notation provided in Table 5.1 is used in the next subsections to describe the

information exchanges that are required between the involved parties. This contribution

requires a more detailed notation than the previous ones, since it is more complex from a

security standpoint, as it involves the exchange of several keys and sensitive information

between different layers and components.

100

5.4 General operation

Table 5.1: Notation to describe the exchanges.

Notation Description

E End user.
A Access Point.
S SP’s RADIUS server.
H Home RADIUS server.
I Identity Provider.
K Key Distribution Center.
P Policy Decision Point.
{data}key data is encrypted using symmetric key key.
[data]key data is authenticated and integrity protected using symmetric key key.
{data}E data is encrypted using E’s public key.
{data}E−1 data is signed using E’s private key.
radius XY RADIUS pre-shared key established between entities X and Y .
mac XY Pre-shared key established between entities X and Y to generate

Message-Authentication-Code RADIUS attributes [163] used to authenticate
RADIUS packets.

keymat XY Pre-shared key established between entities X and Y to encrypt
Keying-Material RADIUS attributes [163] used to encrypt keying material.

tunnel key Key established between the end user and the H-AAA as result of the
tunnelled EAP authentication.

key KDC Pre-shared key established between the AS and the TGS within the KDC.
ts Time-stamp.

101

5. EduKERB: A cross-layer SSO solution for federating access to application
services in the eduroam/DAMe network

5.4.2 Phase 1: Access to the network: authentication,

distribution of the eduToken and keying material

Before accessing any federated application service, the end user must be authenticated at

network layer by the service provider, with the support of the eduroam AAA infrastructure.

The process is depicted in Figure 5.2. The authentication is performed by means of

802.11 and EAP (more specifically, using a tunnelled EAP method), and involves the

existence of a federation of RADIUS servers that allow EAP packets to be transferred

from the wireless AP (Access Point) in the service provider to the H-AAA, and vice-versa.

In this way, the end user authenticates herself by means of the EAP credentials shared

with her home organization. RADIUS packets are integrity protected hop-by-hop, using

shared keys (named radius XY in Figure 5.2) established between each pair of RADIUS

servers in the path from the AP to the H-AAA. To provide privacy, the end user sets

anonymous@home (where home is the home organization’s domain name) as the identity

for the EAP authentication (2), while her real identifier is sent in the inner protected

tunnel constituted during the execution of the tunnelled EAP method. At the end of the

authentication process, both the H-AAA and the end user derive two keys: MSK and

EMSK. The MSK is sent by the H-AAA to the AP through the RADIUS transport as

usual (13 and 14). This key is used by the AP and EU to protect data traffic, as described

in Section 2.1.3.

Additionally, DAMe extends this network authentication process by introducing

authorization management of the end user, as described in Section 2.4.2. More specifically,

after a successful network access authentication, and before sending the RADIUS

Access-Accept message, the H-AAA contacts the IdP of the home organization to obtain the

eduToken associated to the end user (9). To do so, the H-AAA sends a SAML AuthnRequest

message to the IdP, indicating the real identifier of the end user. As a response, the H-AAA

obtains a SAML Assertion (called eduToken [115]), whose Subject field is a pseudonym, as

a means for identification while protecting end user’s privacy (10). The H-AAA forwards

this eduToken to the end user (11), within the protected TLS tunnel established during the

execution of the EAP method. Additionally, the H-AAA sends the value of the pseudonym

to the SP-AAA (13), which may use it to retrieve identity information about the end user in

future interactions (e.g. network access authorization). Section 5.5.2 analyses the security

of the distribution of the eduToken.

Everything explained to this point has already been defined by eduroam and DAMe.

Our proposal starts from here, and extends the eduroam/DAMe exchanges to allow the

SP-AAA to request and receive a DSRK for the service provider. With this DSRK, the

102

5.4 General operation

2. EAP-Rep/Id

(anonymous@home) 3. Access-Request

[(anonymous@home,

EAP Rep)]radius_AS

4. Access-Request

[[(anonymous@home, EAP Rep,

DSRK Req)]mac_SH]radius_SH

5. Access-Challenge

[(anonymous@home, EAP Req)]radius_SH

6. Access-Challenge

[(anonymous@home,

EAP Req)]radius_AS

7. EAP Req

9. SAML AuthnRequest

{{(user@home)}H
-1
}I

10. SAML AuthnResponse

{{(eduToken(pseudonym))}I
-1
}H

13. Access-Accept

[[(EMSKName, pseudonym, EAP-Success,

MSK, {DSRK}keymat_SH)]mac_SH]radius_SH

14. Access-Accept

[(EMSKName, pseudonym,

EAP-Success, MSK]radius_AS

11. {eduToken}tunnel_key

15. EAP-Success

Service Provider Home Organization

Eduroam Federation

12. EMSK

DSRK EMSKName

1. EAP-Req/Id

EU (E) AP (A) SP-AAA (S) H-AAA (H) IdP (I)

8. Repeat the process echanging EAP-Req and EAP-Res until EU is authenticated

Figure 5.2: Phase 1: Access to the network: authentication, distribution of the eduToken
and keying material.

SP-AAA derives and delivers a DSUSRK for the KDC upon request. This key is used by

the KDC to derive a fresh Kerberos reply key for the EU.

The DSRK distribution is initiated by the SP-AAA by including a set of additional

RADIUS attributes in every Access-Request message sent to the H-AAA (4). The inclusion

of these attributes allow soliciting the distribution of keying material derived from the keys

generated during a previous EAP authentication process. When the H-AAA successfully

authenticates the end user, in addition to the derivation of the MSK and EMSK, two

operations are performed. On the one hand, a name associated to the EMSK is generated

(referred to as EMSKName). On the other hand, a DSRK for the service provider is

derived from the EMSK (12). Note that the key hierarchy is expressed with arrows going

from the root key to the derived key.

The DSRK is sent to the SP-AAA in the Access-Accept packet, using the attributes

described in [163]. The keys used to protect these packets are keymat XY (confidentiality)

103

5. EduKERB: A cross-layer SSO solution for federating access to application
services in the eduroam/DAMe network

and mac XY (integrity and authenticity) (13). Conversely, the SP-AAA is informed about

the EMSKName by using the standard User-Name [10] RADIUS attribute (13). The

SP-AAA stores this DSRK associated to the value of the EMSKName.

At the end of the process, the end user has been authenticated to access the network;

she has obtained an eduToken in a protected way (through the TLS channel established

by tunnelled EAP method), and she has derived a DSRK (from its EMSK), which also

shares with the SP-AAA. Additionally, the SP-AAA has obtained an EMSKName and a

DSRK key associated to the end user. The eduToken must be stored by the end user in a

secure way (e.g. within an encrypted and integrity protected file) in the end user’s device,

since it is a sensitive piece of information that may be used to impersonate the end user if

revealed to unauthorized parties.

5.4.3 Phase 2: Kerberos pre-authentication and TGT acquisition

The objective of this phase is to perform a pre-authentication process between the EU

and the KDC to obtain a TGT. This process is based on the use of the eduToken and the

DSRK distributed to the EU and the SP-AAA, respectively, during phase 1.

As studied in Chapter 3, to accomplish this objective, Kerberos allows the exchange

of pre-authentication data (padata) as a way to extend the authentication process.

Moreover, as already described in Chapter 3, [103] defines a pre-authentication framework

which specifies how new pre-authentication mechanisms should be defined, indicating the

most important security and functional requirements to be satisfied. Additionally, [103]

also defines the Flexible Authentication Secure Tunnelling (FAST) pre-authentication

mechanism, as a tool to establish a protected channel between the end user and the

KDC for pre-authentication. The pre-authentication data elements carried within FAST

are called FAST factors. Hence, our proposal defines a new FAST factor, called

PA-EDUTOKEN, which transports the eduToken and the EMSKName from the end user

to the KDC, providing the required security properties (Section 5.5.2). Furthermore, the

PA-EDUTOKEN contains a timestamp which is integrity protected with the reply key.

After the network access, the end user learns the Kerberos realm where the service

belongs to and the location of its respective KDC (e.g. through DNS [7] or DHCP [164]).

With this information she can start the process of pre-authentication with the KDC (see

Figure 5.3). According to FAST operation, the end user needs to obtain an armor TGT

before starting the exchange of pre-authentication data with the KDC. This armor TGT

contains a so-called armor key that constitutes a shared secret between the end user and

the KDC used to build the protected FAST tunnel to encapsulate the rest of Kerberos

104

5.4 General operation

10. Access-Accept

[[(EMSKName,

{DSUSRK}keymat_KS)]mac_KS]radius_KS

5. KRB_AS_REQ

(WELLKNOWN:FEDERATED,

PA-FX-FAST-REQ({armor TGT}key_KDC,

{PA-EDUTOKEN(eduToken(pseudonym),

EMSKName, [ts]reply_key), AS_REQ}armor_key))

8. Access-Request

[[(EMSKName,

DSUSRK Req)]mac_KS]radius_KS

12. KRB_AS_REP

(pseudonym, {PA-FX-FAST-REP}armor_key,

{TGT(eduToken(pseudonym))}key_KDC,

{enc-part}reply_key)

1. KRB_AS_REQ

(WELLKNOWN:ANONYMOUS)

2. KRB_AS_REP

({armor TGT}key_KDC, {enc-part}pkinit_reply_key)

Service Provider

7. eduToken

validation

4. armor TGT

armor key

6.armor TGT

armor key

9. DSRK

DSUSRK

11. DSUSRK

reply key

3. EMSK

EMSKName DSRK

DSUSRK

reply key

EU (E) KDC (K) SP-AAA (S)

Figure 5.3: Phase 2: Kerberos pre-authentication and TGT acquisition.

exchanges. To obtain this armor TGT, the end user can perform an anonymous PKINIT

process [165] with the KDC (1 and 2), where the end user does not authenticate with the

KDC, but the KDC is authenticated by means of certificates distributed by eduPKI [116],

already deployed in eduroam/DAMe. To validate the KDC’s certificate, the end user makes

use of the CA’s certificate, which is pre-configured amongst all the members of the eduroam

federation for this purpose.

Once the armor TGT is obtained, the end user derives the DSRK for the service

provider using the EMSK produced during the EAP network access authentication as the

root key. It also derives the EMSKName and, from the DSRK, it derives a DSUSRK for the

specific KDC. Finally, the end user derives the reply key from the DSUSRK, completing the

105

5. EduKERB: A cross-layer SSO solution for federating access to application
services in the eduroam/DAMe network

key hierarchy for this proposal (3). The key derivation process is described in Section 5.5.3.

With this information the end user generates a KRB AS REQ message, including the

PA-EDUTOKEN. This whole message is encrypted with the armor key and encapsulated

within a PA-FX-FAST-REQUEST padata, as described in [103]. This padata is then

included into a KRB AS REQ message, and sent to the KDC (5). This encapsulation is

depicted in Figure 5.4. In addition to the field padata, the figure shows other fields of the

Kerberos messages, such as pvno, or msg-type. They are shown with the purpose of placing

padata in context. These are not further explained in this chapter as they are no relevant

for this proposal. More information about the complete Kerberos message format can be

found in [7].

Time stamp

pvno msg-type padata kdc-options

cname sname from till

rtype nonce etype ...

Outer KRB_AS_REQ

PA-FX-FAST-REQUEST

pvno msg-type padata kdc-options

cname sname from till

rtype nonce etype ...

... PA-EDUTOKEN ...

eduToken EMSKName

Inner KRB_AS_REQ

Figure 5.4: Encapsulation of PA-EDUTOKEN as a FAST factor.

It is important to note that standard Kerberos specifies that the KDC must generate

an error if the Kerberos client identifier specified in the KRB AS REQ message is

not found in the local database of the KDC. Since one of the objectives of this

proposal is indeed to allow access to federated users not pre-registered in the KDC, the

WELLKNOWN/FEDERATED end user’s identifier defined in Chapter 3, Section 3.5.1 is

also used here. Therefore, the KDC is notified that the EU is not in the local database, and

106

5.4 General operation

that the pre-authentication mechanism will be in charge of verifying the actual identity

and deriving a reply key.

When the KDC receives the FAST request (5), it makes use of the armor key to decrypt

the content of the PA-FX-FAST-REQUEST padata, recovering the KRB AS REQ message

and the PA-EDUTOKEN. The KDC validates the signature and syntax of the eduToken,

and performs other verifications, such as whether the Issuer is trusted or, the token validity

period, etc.

In the next step, the KDC retrieves a DSUSRK from the SP-AAA. Similarly to

the DSRK key distribution in phase 1, the DSUSRK distribution is carried out by

using the guidelines defined in [163] for the delivery of key material. More precisely,

the KDC sends an Access-Request message to the SP-AAA to request the distribution

of the DSUSRK. This message contains the Keying-Material, MAC-Randomizer, and

Message-Authentication-Code attributes, defined in [163]. Additionally, the RADIUS

User-Name attribute is set to the value of the EMSKName obtained from the

PA-EDUTOKEN, which allows to identify the end user (step 8). After that, the

SP-AAA processes the Access-Request message and derives a DSUSRK for the KDC,

using the DSRK associated to the EMSKName. The DSUSRK is sent to the KDC in an

Access-Accept message by using the RADIUS attributes defined in [163]. Then, this key

is used by the KDC to derive the reply key necessary to verify the timestamp included

into the PA-EDUTOKEN and to protect the information contained in the KRB AS REP

message.

Finally, the KDC includes the received eduToken within the generated TGT, with

the purpose of receiving it again during the KRB TGS exchange to perform authorization

functions. A new authorization-data element needs to be defined to represent the eduToken.

In this way, the KDC will be able to perform authorization decisions before issuing any ST.

The KRB AS REP message is sent to the end user as the final step of the authentication

exchange (12). It is worth mentioning that the end user’s identifier specified in both the

KRB AS REP and the TGT, is set to the value of the pseudonym extracted from the

eduToken (Section 5.5.4).

After this step, the end user can request individual STs for the different application

services offered by the service provider.

107

5. EduKERB: A cross-layer SSO solution for federating access to application
services in the eduroam/DAMe network

5.4.4 Phase 3: ST acquisition and access to the application

service

Once the end user has received the TGT from the AS, she can request a ST for the

specific AppS she wants to access to, by executing a standard KRB TGS exchange with

the TGS. Prior to the issue of the ST, the TGS performs an authorization process using

the information contained in the eduToken (SAML Assertion) transported on the TGT.

This process is identical to the authorization process described in Chapter 3, Section 3.4.2.

The following Figure 5.5 extends the one provided in Chapter 3 (Figure 3.4.2), by

including details on how the transmission of data is protected. Note that, in this case, the

MDS is not present for sake of simplicity. Hence, the KDC is assumed to be able to locate

the IdP based on the information present in the eduToken.

EU (E) KDC (K) PDP (P) IdP (I)

1. KRB_TGS_REQ

(AppS, {TGT(eduToken))}key_KDC)

Service Provider
Home

organization

2. SAML AttributeQuery

{{(AppS, pseudonym)}K
-1
}I

3. SAML Response

{{(attributes)}I
-1
}K

4. Authz Decision Query

{{(AppS, attributes)}K
-1
}P

5. Authz Decision Rep

{{(decision, obligations)}P
-1
}K8. KRB_TGS_REP

(ST)

Figure 5.5: Phase 3: ST acquisition and access to the application service.

In particular, the TGT in the KRB TGS REQ message (1) is protected by means of

the key KDC, which is only know to the KDC. The SAML AttributeQuery (2) is signed

by the KDC using the private key K−1, and encrypted for the IdP using the public key I.

Conversely, the subsequent SAML Response (3) is signed by the IdP using the private key

I−1, and encrypted for the KDC using the public key K. A similar process is followed for

the SAML/XACML Authorization Decision Query/Response, between the KDC and the

PDP

After the EU receives a valid ST, she performs standard KRB AP REQ/REP exchange

108

5.5 Security Analysis

with the target AppS to access the service (Section 2.3.1).

5.5 Security Analysis

This section describes how the security requirements indicated in Section 5.2 have been

achieved by the current proposal.

5.5.1 End User Authentication

Network Access Authentication

In order to achieve a cross-layer SSO solution, this proposal uses the initial network access

authentication based on EAP, to distribute an eduToken, and key material afterwards, to

securely enable access to application services in a SSO-fashion using Kerberos. That is,

without performing lengthy additional EAP authentications. Thus, security of this solution

stems from this initial step.

In eduroam, two EAP methods are mandatory to deploy for network access

authentication: PEAP and EAP-TTLS. Both methods establish a TLS channel between

the end user and the H-AAA providing confidentiality, integrity and anti-replay protection.

The authenticity of the server is assured thanks to the existing PKI. The inner

authentication method is used by the end user to demonstrate the knowledge of the

long-term credential associated to the claimed identity. Nevertheless, as described in [166],

EAP-TTLS may present some security problems. For example, it does not establish any

cryptographic binding between the EAP-TTLS and the inner EAP method, which may lead

to a man-in-the-middle attack [167]. This attack is possible since there is no way to link

that the same entity that performed the outer EAP method (EAP-TTLS) also performed

the inner one. Moreover, PEAP is also vulnerable when the inner EAP method does not

generate keying material. With this condition, the attacker can execute the tunnelled

method with the EAP server, as it only requires server-side authentication. Once the EAP

server starts the execution of the inner non-key generating cryptographic method (e.g.

based on passwords), the attacker forwards the EAP packets to a valid end user. This end

user would think the EAP server is requesting the execution of the inner method without

the TLS tunnel, and will probably accept the conversation, replying to the presented

challenge using her long-term credentials. The attacker would introduce this reply into the

TLS tunnel, making the H-AAA think it is indeed the legitimate end user. This type of

attack can be mitigated by prohibiting the use of these non-key generating methods (e.g.

109

5. EduKERB: A cross-layer SSO solution for federating access to application
services in the eduroam/DAMe network

CHAP, PAP, MD5...) out of the TLS tunnel established by EAP-TTLS and PEAP, but it

requires that the EU’s supplicant software supports configuring this.

Moreover, after a successful authentication with the selected EAP method, an EMSK

is exported. This key is assumed to have strong cryptographic properties in terms of

pseudo-randomness and key separation (otherwise these EAP methods should be simply

discarded to protect any network). Moreover, this EMSK is never exported out the end

user (EAP peer) or the H-AAA (EAP server). Due to this, the EMSK is used as root key

for the key hierarchy that our solution requires. Section 5.5.3 analyses the security of this

key derivation process.

Application Service Access Authentication

With the eduToken and the reply key, the KDC can prove the end user was already

authenticated during network access authentication and is authorized to obtain a TGT

from the KDC. Indeed, the end user demonstrates the knowledge of the reply key, derived

from the EMSK resulting from the EAP authentication which, in turn, involves the

end user’s long-term credentials. To prove this knowledge to the KDC, the end user

includes a time-stamp in the pre-authentication data PA-EDUTOKEN, which is integrity

protected with the reply-key. The PA-EDUTOKEN, which also contains the eduToken is,

in turn, securely transported within FAST tunnel. The establishment of FAST provides

confidentiality, integrity protection and authenticity of the KDC. In particular, since the

armor key used to build the tunnel is based on the armor TGT obtained after an anonymous

PKINIT process, the end user can authenticate the KDC by means of the PKI (i.e.

eduPKI).

Once the end user obtains the TGT, she can request service tickets (STs) for accessing

different services following the standard way of operation in Kerberos (Section 2.3.1). Thus,

under security standpoint, the security of standard Kerberos remains unaltered during this

process.

5.5.2 Distribution of the eduToken

The eduToken may contain sensitive authorization information that should not be disclosed

to, or modified by, unauthorized parties (e.g. identifiers, expiration dates, attributes, etc.).

Hence, its transport must provide confidentiality, integrity and authenticity, as one of the

security requirements of the architecture is to protect the distribution sensitive information

(Section 5.2).

110

5.5 Security Analysis

The eduToken is distributed in three different moments. First, it is sent from the

H-AAA to the end user during the initial network authentication, whose security properties

have been discussed in 5.5.1. The security requirements of the transport are satisfied by

the tunnelled EAP method, where the eduToken is delivered to the end user within the

protected TLS tunnel established during the execution of the EAP method. Second, it is

delivered from the end user to the KDC during the Kerberos pre-authentication. In this

step, FAST is used to establish a secure channel providing integrity and confidentiality

for the transport of the PA-EDUTOKEN (see 5.4.3), so providing the required security

properties. Finally, the KDC includes the eduToken within the TGT provided to the end

user, which is protected with confidentiality, authenticity and integrity with the TGS key,

as defined in the standard Kerberos.

5.5.3 Key derivation and distribution

As visiting end users belong to a different organization, they are not expected to be

registered into the KDC’s database of the service provider. Thus, the reply key to be used to

encrypt the enc-part of the KRB AS REP message must be dynamically generated for each

visiting user during the Kerberos pre-authentication. This requirement has been addressed

by deriving the reply key from a dynamically generated shared key between the end user

and the KDC: the DSUSRK. The DSUSRK is derived, following a key hierarchy, from the

EMSK, which is generated after a successful authentication by some EAP methods (e.g.

PEAP). The EMSK is assumed secure in terms of pseudo-randomness and key separation.

For the key derivation, the general key derivation framework in [66] has been followed,

which uses a Key Derivation Function (KDF) as follows:

derivedkey = KDF(root key, key label, optional data, length).

This derivation includes a root key, a key label, optional data and output length. By default,

this KDF is taken from the Pseudo Random Function+ (PRF+) key expansion defined in

IKEv2, being HMAC-SHA-256 [168] the default PRF. According to the security analysis

in [169], this kind of PRF-based key derivation procedure ensures that the key strength of

the derived key is at least as good of the root key used to derive it. Hence, the requirement

of secure key derivation is accomplished (Section 5.2)

Moreover, using a dynamically generated DSUSRK as root key for the derivation of the

reply key, and limiting the TGT lifetime to the validity of the received eduToken, the impact

of dictionary attacks is minimized in comparison with standard Kerberos, where the reply

key is derived there directly from a long-term password. The reason is threefold. First,

111

5. EduKERB: A cross-layer SSO solution for federating access to application
services in the eduroam/DAMe network

because the dynamically generated one is derived from a binary blob, and thus unlikely to

be on a dictionary of most common used words of any language. Second, because even if

an attacker is able to reveal the reply key using a pure brute force attack (i.e. all binary

combinations), it will be very unlikely do it before the key expires and, therefore, it will

not be able to obtain tickets for its own benefit. And third, because decrypting the key

will not allow the attacker to have access to a small portion of all end-users conversations.

Besides, the derived keys DSRK and DSUSRK must be transported to the SP-AAA

and to the KDC, respectively, by authenticated and authorized parties, assuring integrity

and confidentiality of the keys. This is addressed following the distribution schema

described in [170], and using the attributes Keying-Material, MAC-Randomizer, and

Message-Authentication-Code, defined in [163]. Indeed, using these attributes, information

is protected hop-by-hop by the use of pre-established shared keys between RADIUS servers.

Integrity, authenticity, and encryption are assured by the use of the keys named as mac XY

and keymat XY, defined in 5.1.

It is worth noting that, though these security properties are provided hop-by-hop (so

that any RADIUS server in the path between the home and service providers would be

able to access those keys), the RADIUS servers that conform the federation are considered

trusted entities that will treat the information with the required security considerations.

5.5.4 Pseudonymity

Identifiers are required in most of the exchanges performed in this proposal to recognize

the principal interacting with the entities. As the protection of the end user’s identifier is

one of the security requirements of the architecture (Section 5.2), the entities in the service

provider are provided with pseudonyms while the real end user identifier is only known by

the trusted entities in the home organization.

For the EAP authentication, the use of a tunnelled EAP method such as PEAP allows

hiding the end user’s NAI to the intermediate RADIUS servers between the end user and

the H-AAA. Indeed, the real end user’s identifier is transmitted in the inner EAP method

protected within a TLS tunnel. At the end of the EAP authentication, the EMSKName

derived from the EMSK is used as pseudonym in the RADIUS User-Name attribute. This

value identifies the end user for the key derivation and distribution process.

Besides, the eduToken provided by the IdP also contains a pseudonym. This pseudonym

is used by the KDC to retrieve further end user’s attributes from the home IdP, and also

as the user identifier in the generated tickets.

The co-existence of these two pseudonyms is required as they are generated by two

112

5.5 Security Analysis

different entities, the H-AAA and the IdP, and have different purposes (identifying the end

user for keying material distribution and identifying the end user for attribute retrieval,

respectively).

5.5.5 Formal verification

Due to the complexity of the solution in terms of the exchange of keys and sensitive

information across layers and components, we have performed a formal verification of

the EduKERB proposal. In order to formally verify the accomplishment of the security

properties described in subsections 5.5.1 to 5.5.4, a security analysis tool has been used.

In general, this kind of tool performs an automatic search of security flaws in network

protocols, by simulating the behaviour of honest entities along with the existence of

malicious agents, which try to break the security properties of the system. Hence, they

are useful to validate the phases integrating the proposed solution, and which are defined

in Section 5.4.

In particular, the AVISPA tool v1.1 [171] has been chosen. This tool has been

extensively and successfully used in the literature (e.g. [172, 173]), specially to verify

standard protocols. AVISPA allows verifying the satisfaction of a set of security

goals for protocols defined by means of the High Level Protocol Specification Language

(HLPSL) [174]. This language is based on the definition of a set of roles, which are played

by agents. For each role, the initial knowledge is provided, and the expected behaviour is

specified by using finite state machines. Input is represented as a received message, while

output is considered a sent message. AVISPA defines a special agent called intruder, which

tries to perform different attacks. This intruder follows the Dolev-Yao model [175], where

the attacker can inject, overhear and intercept messages between two entities, although it

is unable to break the underlying cryptographic operations. Although AVISPA potentially

allows other type of models (not implemented yet), Dolev-Yao is one of the most general

and powerful ones [176,177].

Instead of starting the HLPSL specification of this proposal from scratch, it has been

preferred to use the library of protocol specifications provided by AVISPA as starting

point. It is assumed that these protocol specifications are well modelled and strongly

reviewed by the AVISPA community, so they can be taken a solid base to include

the extensions proposed in this work. Namely, two existing specifications have been

used: EAP TTLS CHAP.hlpsl1 to model the phase 1 (defined in Section 5.4.2), and

1http://www.avispa-project.org/library/EAP TTLS CHAP.html

113

5. EduKERB: A cross-layer SSO solution for federating access to application
services in the eduroam/DAMe network

Goal Description Related subsection

authentication on np SP-AAA authenticates the EU 5.5.1
authentication on ns EU authenticates the SP-AAA 5.5.1
authentication on t0 KDC (AS) authenticates the EU 5.5.1
authentication on t1 KDC (TGS) authenticates the EU 5.5.1
authentication on t2a AppS authenticates the EU 5.5.1
authentication on n1 EU authenticates the KDC (AS) 5.5.1
authentication on n2 EU authenticates the KDC (TGS) 5.5.1
authentication on t2b EU authenticates the AppS 5.5.1
secrecy of edutoken Secrecy of the eduToken 5.5.2, 5.5.4
secrecy of sec clientK Secrecy of the TLS key for EU encryption 5.5.3
secrecy of sec serverK Secrecy of the TLS key for AppS encryption 5.5.3
secrecy of sec emsk Secrecy of the EMSK 5.5.3
secrecy of sec dsrk Secrecy of the DSRK 5.5.3
secrecy of sec dsusrk Secrecy of the DSUSRK 5.5.3
secrecy of sec reply key Secrecy of the Kerberos reply key 5.5.3
secrecy of sec Karmor Secrecy of the Kerberos armor key 5.5.3
secrecy of sec a Kcg, sec t Kcg, sec c Kcg Secrecy of the TGS session key 5.5.3
secrecy of sec t Kcs, sec s Kcs, sec c Kcs Secrecy of the service session key 5.5.3
secrecy of sec uname Secrecy of the user name for EAP authentication 5.5.4
secrecy of sec Emskname Secrecy of the EMSKName 5.5.4

Table 5.2: Security goals.

Combination OFMC Cl-Atse

Single session SAFE SAFE
Two sessions SAFE SAFE*
Two sessions (intruder=EU) SAFE SAFE
Two sessions (intruder=AP) SAFE SAFE

Table 5.3: Phase 1 analysis results.

Kerberos-preauth.hlpsl2 to model phases 2, 3 and 4 (which are defined in sections 5.4.3,

5.4.4 and 5.4.4, respectively). The complete HLPSL specification for this proposal can be

found in Appendix D.

AVISPA allows the verification of two kind of security goals: secrecy and authentication.

A secrecy goal indicates that a specific piece of information must not be accessible for any

agent other than those explicitly enumerated. An authentication goal indicates that a

specific agent (e.g. Agent1) must be authenticated against another agent (e.g. Agent2),

based on the specified information. Table 5.2 indicates the specific security goals that have

been defined in the HLPSL specification of this proposal (see Appendix D to verify the

security requirements described in previous Sections 5.5.1 to 5.5.4).

AVISPA provides four model checkers to validate the HLPSL specification: OFMC,

2http://www.avispa-project.org/library/Kerb-preauth.html

114

5.5 Security Analysis

Combination OFMC Cl-Atse

Single session SAFE SAFE
Two sessions SAFE SAFE*
Two sessions (intruder=EU) SAFE SAFE
Two sessions (intruder=AppS) SAFE SAFE*

Table 5.4: Phase 2, 3 and 4 analysis results.

Cl-Atse, SATMC and TA4SP. According to [171], the Cl-Atse model checker has shown

better properties. Nevertheless, EduKERB’s specification has been checked using all of

them, in order to provide a complete security analysis. However, checkers SATMC and

TA4SP were not applicable. For phase 1, the SATMC checker resulted into memory

exhaustion (it required more than 3 Gigabytes), while the TA4SP was unable to process

the protocol, due to a limitation of this checker. For phases 2, 3 and 4, both the SATMC

and TA4SP checkers were unable to handle the exponential function, required for the

Diffie-Hellman exchange. Hence, only checkers OFMC and Cl-Atse were used to verify the

proposal.

For each one of these checkers, four combinations of sessions were executed: one single

session of the protocol, two parallel sessions of the protocol, a session of the protocol

running in parallel with another session where the intruder is the end user, and a session

of the protocol running in parallel with a session where the intruder is the Access Point

(AP) or the application service (AppS). The motivation for the execution of two parallel

sessions is to let AVISPA simulating replay attacks, using information from one session

into the other. It is assumed that the RADIUS servers in both organizations, the KDC,

the IdP and the PDP are trusted entities and the intruder cannot supplant any of them.

While Table 5.3 shows the obtained results for the analysis of phase 1, Table 5.4 shows the

results for the analysis of phases 2, 3 and 4.

The OFMC checker returned SAFE (no attacks were found) for every combination of

sessions. The same happened with the Cl-Atse checker, but under some considerations.

Specifically, the results marked with an (*) indicates that the analysis did not ended in

a reasonable amount of time (in this case, less than 48h), due to the complexity of the

specification, that contains many different roles and transitions. For these cases, simplified

models were created and analysed instead, where the IdP and the PDP agents (and their

transitions) were removed. These simplified models are still valid, as the changes do not

affect to any of the authentication security goals, or any of the secrecy goals involving

115

5. EduKERB: A cross-layer SSO solution for federating access to application
services in the eduroam/DAMe network

keying material. Specifically, for phase 1, the generation of the edutoken is performed by

the RADIUS server. For phase 3, the authorization phase is just omitted. With these

changes, the simulation ended in a reasonable amount of time, indicating a SAFE result.

5.6 Conclusions

The proposals described in Chapters 3 and 4 assume the end user is already connected to

the network. However, in some scenarios, the end user is not granted to access the network

by default. Instead, she may be required to perform an access control process before

attaching to the network. Moreover, this network access process can also be carried out in

a federated way, using EAP and AAA to transport authentication information between the

end user, the visited organization (and service provider), and the home organization. The

most successful example of federated network is eduroam, briefly described in Section 2.4.1.

This chapter describes how the world-wide spread eduroam network can be extended

to provide end users with SSO access to federated services beyond the web, as a result

of a successful network access authentication. DAMe contribution provides authorization

and token distribution to organizations willing to offer added value network access service

to roaming users. By integrating Kerberos into this infrastructure, end users can, after

performing the network access authentication, make use of the obtained token and the

derived cryptographic material (i.e. EMSK) to perform a Kerberos pre-authentication

process before obtaining a TGT. Hence, the network federation evolves into a cross-layer

service federation, ranging from the network access to any kind of application services

(SSH, FTP, SMTP, XMPP, Cloud, etc.). Besides, the distribution of the token to the

KDC provides our solution with enhanced authorization capabilities to decide whether the

visiting end user should be granted to obtain a specific service ticket (ST) or not.

This chapter has described in high detail the architecture of this proposal, and

provided a thorough description of the exchanges that are required to achieve the required

functionality. Moreover, this chapter also provided a complete security analysis of the

proposal, which includes its validation using a reputed security tool: AVISPA.

116

Chapter 6

Performance evaluation and

functional validation

6.1 Introduction

Chapters from 3 to 5 have presented three different proposals to provide SSO access

to kerberized applications in AAA-based federations, each one of them solving different

deployment requirements. In addition to a clear motivation for using Kerberos and AAA,

these chapters have provided design of the architectures, detailed messages and information

flows, and security analysis. However, the performance and functional validation of these

proposals stands so far just on theoretical premises. What about the practical perspective?

How complicated is their implementation? Are they reasonable in terms of how much time

they need to complete an authentication and authorization process? Therefore, there is a

necessity of validating these proposals in terms of both, performance and functionality.

In particular, it is important to determine whether any of these proposals requires a

reasonable quantity of time and resources to be executed (efficiency). A valid solution that

requires too much time to complete will exasperate end users, that will use instead a faster

alternative. Besides, this time is a direct consequence of either computational time and

transmission time (network overhead cost), both of them worth of being reduced for sake

of resource optimization.

Furthermore, although a proper design is the cornerstone of any good solution,

a reference implementation provides further confidence on its validity in terms of

functionality (effectiveness). Besides, trying to implement a solution is one of the best

ways to find flaws or inconsistencies on its specification, as can be seen in [178]. As one

of the IETF slogans praises: “We believe in rough consensus and running code” [179].

117

6. Performance evaluation and functional validation

Therefore, due to the importance of having an implementation, it has been implemented

a prototype for each one of the proposals explained in this thesis, with the purpose of

demonstrate their functional feasibility.

Hence, this chapter focuses on the performance evaluation and the functional validation

of the different architectures proposed on the previous chapters, in order to demonstrate

their feasibility beyond their theoretical standpoint. First, a high level performance

model is provided. This model describes, with a reduced number of variables, the main

time-consuming tasks required to complete the execution of each one of the proposals,

estimating their magnitude. The main goal of this model is to demonstrate that the three

proposals are similar in terms of performance, and that the differences that might exist

between them should not be an important decision element when it comes to select one of

them over the other. Second, the prototypes developed for this thesis are described. These

prototypes provide a functional validation of the three proposals described in this thesis.

Third, an empirical performance analysis is provided, based on the results obtained from

the execution of the developed prototypes. These results have the purpose of confirming

the accuracy of the model, showing overall execution and computational times for each one

of the phases of the proposals.

6.2 Performance model

The total time (TT) required by an end user to authenticate with her H-AAA, obtain

a valid TGT in the service provider domain, retrieve a ST for the application service,

and then access the service, can be broken down into a set of nine individual variables,

representing the time spent on each one of the main performed tasks. Given that the three

proposals of this thesis are based on similar technologies, these variables are shared by all

of them. The following equation is a generic representation of the total time valid for the

three proposals, and represents the general (and simple) performance model:

TT = TEAP + TLOW + TDER + TAUTHZ1 + TENF + TAS + TTGS + TAUTHZ2 + TAP (6.1)

The following list enumerates these variables, explaining what they represent, and

showing the difference that might exist between their value on each one of the proposals:

• TEAP represents the time associated with the EAP authentication. It includes the

computational time of the EAP peer, authenticator and server for both, the EAP

tunnelled and inner methods. It also includes the network transmission times of

118

6.2 Performance model

the multiple round-trips required to complete the execution of the EAP method.

Finally, it includes the time associated with the derivation of the MSK and EMSK.

The value of this variable will highly depend on the selected EAP method to be

executed. As all the proposals use an EAP-tunnelled method (i.e. EAP-TTLS or

PEAP), this variable is expected to be the one with the highest value of the model, as

it will require the execution of different cryptographic operations, and a considerable

number of round-trips to establish the TLS channel (due to the fragmentation of the

TLS exchanges performed by these mechanisms). This variable will be similar for

the three proposals.

• TLOW represents the time associated with the EAP lower-layer functionality. It

includes the encapsulation of the EAP packets into protocol specific structures, as

well as its protection (if any). This time is repeated for each EAP exchange performed

between the EU and the EAP authenticator (i.e KDC, AP, or PAA). It is expected

to have a medium impact, as it should be a matter of copying data and performing

light cryptographic operations for each round-trip. It is different for each one of the

proposals. In particular:

– TLOWFedKERB
. FedKERB uses Kerberos as EAP lower-layer, although some of

the EAP lower-layer responsibilities lie on the GSS-EAP mechanism. Due to

the inherent stateless nature of the KDC, any state associated with the EAP

authentication must be exported from the KDC, encrypted using symmetric

cryptography, and sent to the EU (Section 3.5.3. They are re-sent from the

EU to the KDC, decrypted and imported. This process is repeated for every

EAP round-trip, as explained in [135]. This state import/export and the

corresponding encryption requires an increased amount of time when compared

to stateful protocols.

– TLOWPanaKERB
. PanaKERB uses PANA as EAP lower-layer. Although PANA

also makes use of symmetric cryptography to protect the protocol messages, the

PANA protocol is stateful, meaning there is no need to export and import the

state constantly. Therefore, the overload introduced by PANA is expected to

be lower than the one from Kerberos.

– TLOWEduKERB
. EduKERB uses 802.11 as EAP lower-layer for network access.

It is lighter than Kerberos and PANA, as it operates at link layer and does not

introduce any kind of encryption during the EAP negotiation.

119

6. Performance evaluation and functional validation

Thus, the following relationship can be established between them:

TLOWFedKERB
> TLOWPanaKERB

> TLOWEduKERB
(6.2)

• TDER represents the time associated with performing the key derivation process

required to generate the reply key for Kerberos, starting from the MSK/EMSK

keys derived after the EAP authentication. This presents slight differences between

proposals. Nevertheless, it is expected to have a low impact as it is executed only

once, and the key derivation process typically consists of one or more hash operations.

– TDERFedKERB
. FedKERB derives the reply key directly from the MSK, that

has already been distributed to the KDC as part of the EAP authentication.

– TDERPanaKERB
. PanaKERB derives the reply key from a password, which

is derived from the MSK, distributed to the PAA as part of the EAP

authentication. This derivation process involves an additional step than the

one for FedKERB.

– TDEREduKERB
. EduKERB derives the reply key from the DSUSRK. This key

is derived from the DSRK, which is in turn derived from the EMSK. Besides, it

requires some specific round-trips for key distribution. Therefore, this variable

is expected to be significantly higher on this proposal than on the previous ones.

The following relationship between them is established:

TDEREduKERB
> TDERPanaKERB

> TDERFedKERB
(6.3)

• TAUTHZ1 represents the time associated with the generation and distribution of the

SAML assertion. This variable is expected to have a high impact on the total time, as

it will typically require to establish a TLS channel between the H-AAA and the IdP,

and the use of asymmetric cryptography to sign the SAML assertion. This variable

will take the same value for all the proposals.

• TENF represents the time associated with the distribution and installation of the

reply key on the KDC. This process requires a very different amount of time on each

one of the proposals.

– TENFFedKERB
. FedKERB does not have a proper enforcement phase, as the key

is derived directly on the KDC. This process would consist of just a memory

120

6.2 Performance model

copy process, making this time negligible (i.e. < 1ms) in the overall time of this

proposal.

– TENFPanaKERB
. PanaKERB enforces the reply key from the PAA to the KDC.

This enforcement is based on the KADM interface, and will be highly dependent

on how this interface is implemented (e.g. use of security channels such as IPsec

or TLS). For this thesis it is assumed the collocation of the PAA and the KDC,

requiring no security channel for this interface.

– TENFEduKERB
EduKERB enforces the reply key from the SP-AAA to the KDC.

This enforcement is based on a single RADIUS exchange (request and response),

using the RADIUS attributes described in chapter 5.

From the descriptions above it is concluded that:

TENFEduKERB
> TENFPanaKERB

> TENFFedKERB
(6.4)

• TAS represents the time associated with the Kerberos AS exchange. It includes the

creation and processing of the KRB AS REQ and KRB AS REP messages, and the

generation of the TGT. This time presents sensible differences between proposals:

– TASFedKERB
. FedKERB does not introduce any particular addition to the

standard Kerberos AS exchange (note that all the GSS-EAP processing will

be assumed by the TEAP and TLOW variables). Therefore, this time is expected

to be low, since Kerberos security is based on symmetric cryptography [180].

– TASPanaKERB
. PanaKERB does not introduce any particular addition to the

standard Kerberos exchange at all. Therefore, this time is expected to be low

for the same reasons as TASFedKERB
.

– TASEduKERB
. EduKERB requires to perform an anonymous PKINIT exchange,

and then the usage of FAST as a way of protecting the transmission of the

eduToken. The former is based on asymmetric cryptography and requires a

non-negligible amount of time to complete. The later is based on symmetric

cryptography, but still requires more processing than the standard AS exchange

used by the other two proposals.

Thus, the following relationship is established between them:

TASEduKERB
> TASFedKERB

≈ TASPanaKERB
(6.5)

121

6. Performance evaluation and functional validation

• TTGS. Represents the time associated with the Kerberos TGS exchange. It includes

the creation and processing of the KRB TGS REQ and KRB TGS REP messages,

the processing of the TGT and the generation of the ST. This time is again expected

to be low, for the same reasons as TAS. This variable will take the same value for all

the proposals.

• TAUTHZ2. Represents the time associated with the authorization performed by the

KDC, based on the SAML assertion contained in the TGT. This time is expected

to have a high impact, as it will typically include the verification of the assertion,

the optional query to the MDS, the attribute query to the IdP, the verification of

the received attribute statements, and the query to the PDP, including all the policy

matching process. This variable will take the same value for all the proposals, as this

process is identical for all of them.

• TAP . Represents the time associated with the Kerberos AP exchange. It includes

the creation and processing of the KRB AP REQ and KRB AP REP messages, and

the processing of the ST. This variable is expected to be low [180], and identical for

the three proposals.

From the previous descriptions and equations, it is concluded that the variable with

the highest impact on the overall execution time (TT) is TEAP , as it requires multiple

round-trips and several cryptographic operations. On the second place we can find TAUTHZ1

and TAUTHZ2. These two variables require the use of asymmetric cryptography and complex

XML processing (generation and validation of the SAML assertion). The rest of variables

have almost a low cost when compared to these three variables. The following equation

summarizes the impact that each variable has on the overall execution time:

TEAP > TAUTHZ1 ≈ TAUTHZ2 >> (TLOW + TDER + TENF + TAS + TTGS + TAP) (6.6)

As it can be observed, the variables with the highest impact (i.e. TEAP , TAUTHZ1, and

TAUTHZ2), and therefore expending most of the execution time, are almost identical for

all three proposals. The main differences are presented in variables with a low or medium

impact (e.g. TLOW). This makes us assume the three proposal will perform very similarly.

Although these variables appear on all the proposals, they occur at different phases of

the process for each one of them. Table 6.1 shows how these times are distributed along

their different phases. The processing associated to the variable TDER is sometimes split

across different phases. In those cases, the variable is denoted as T ∗DER. In particular, in

122

6.3 Prototypes description

PanaKERB, TDER is partly performed in phase 2, where the PAA derives the password

from the MSK and the KDC derives the reply-key from it; and partly in phase 3, where

the EU derives the reply-key following the same process. In EduKERB, TDER is performed

partly in phase 1, where the H-AAA derives the DSRK from the EMSK; and partly on

phase 2, where the SP-AAA derives the DSUSRK from the DSRK, the KDC derives the

reply-key from it, and the EU derives both following the same process.

Table 6.1: Distribution of variables for the different proposals.

Phase Time
(1) Kerberos preauth. TEAP + TLOW + TDER + TENF + TAS + TAUTHZ1

(2.a) TGS exchange TTGS + TAUTHZ2

(2.b) AP exchange TAP

(a) Distribution of variables for the FedKERB proposal.

Phase Time
(1) PANA auth. TEAP + TLOW + TAUTHZ1

(2) KRB enforc. T ∗DER + TENF

(3) Kerberos auth. T ∗DER + TAS

(4.a) TGS exchange TTGS + TAUTHZ2

(4.b) AP exchange TAP

(b) Distribution of variables for the PanaKERB proposal.

Phase Time
(1) Network auth. TEAP + TLOW + T ∗DER + TAUTHZ1

(2) Kerberos preauth. TAS + T ∗DER + TENF

(3.a) TGS exchange TTGS + TAUTHZ2

(3.b) AP exchange TAP

(c) Distribution of variables for the EduKERB proposal.

6.3 Prototypes description

In order to validate the three proposals described in this thesis, to demonstrate their

feasibility and efficiency, and to contrast the model described in Section 6.2 with data

from an actual implementation, a prototype for each one of them has been developed. All

these prototypes share the same ultimate objective: to bootstrap a Kerberos TGT from

the KDC of a service provider, and then use it to access to an out-of-the-box SSH server

(example application service) deployed on the same service provider. Each prototype use

a different approach that will be more adequate to a specific scenario, as described in

123

6. Performance evaluation and functional validation

Chapters 3, 4, and 5.

It is important to comment that these prototypes implement only the authentication

steps. The authorization ones have not been implemented for this thesis, since the three

proposals share a common authorization model, which was already implemented and

evaluated during the development of the EduKERB proposal and, thus, there are previous

references of its performance [181]. These values are provided in Subsection 6.4.2.

To implement the different components of these architectures, we have used existing

open-source software. These solutions provide most of the required functionality, avoiding

the need for implementing the whole system from scratch. Tables 6.2a, 6.2b and 6.2c

contain the list of the software used for each prototype, as well as their specific versions.

These tables also include a column indicating whether the open source implementations

have required additional modifications to their source code to accomplish the required

functionality or not.

As it can be observed from the tables, none of the solutions have required the

modification of the application services. This is a common sub-objective of the three

contributions: avoid the modification of already deployed and working application services,

since it may suppose a high inconvenient for many service providers, therefore limiting its

appeal, and making its adoption more difficult.

Regarding the rest of components, FedKERB has only required the modification of

the EU and the KDC. More specifically, these two components have been modified

to implement the Kerberos GSS-API pre-authentication mechanism, as described in

chapter 3.4.1. The implementation of this mechanism has been brought beyond the limits

of just a prototype. Indeed, it has been performed in collaboration with the Cardiff

University [185], under the supervision of Dr. Rhys Smith, and has been published as a MIT

Kerberos pre-authentication plugin [137], following all the coding styles and documentation

guidelines required by MIT.

PanaKERB is the one contribution which inflicts less modifications, requiring only small

changes to the openpana source code. The implementations of the rest of components have

been used in their out-of-the-box form. Indeed, only small parts of the PAA and EU need

to be adapted. More specifically, the PAA has been modified to enforce the bootstrapped

Kerberos credentials (i.e. username and password) after the EU authentication, while the

EU was modified to make use of these Kerberos credentials in order to be authenticated

by the KDC.

Finally, the EduKERB proposal has required the modification of several components.

Most of these modifications have been slight additions that have just required a few lines

of code. The wpa supplicant [184] software has been modified to 1) receive the edutoken

124

6.3 Prototypes description

Component Software Version Modified

EU MIT Kerberos [136] 1.10.2 Yes
Moonshot [37] - No

SP-AAA FreeRadius [145] 2.1.10 No
H-AAA FreeRadius 2.1.10 No
KDC MIT Kerberos 1.10.2 Yes
AppS OpenSSH [182] 5.8 No

(a) Software used in the FedKERB prototype.

Component Software Version Modified

EU MIT Kerberos 1.10.2 No
openpana [183] 0.1 Yes

SP-AAA FreeRadius 2.1.10 No
H-AAA FreeRadius 2.1.10 No
PAA openpana 0.1 Yes
KDC MIT Kerberos 1.10.2 No
AppS OpenSSH 5.8 No

(b) Software used for the PanaKERB prototype.

Component Software Version Modified

EU MIT Kerberos 1.10.2 Yes
wpa supplicant [184] 0.7.3 Yes

SP-AAA FreeRadius 2.1.10 Yes
H-AAA FreeRadius 2.1.10 Yes
KDC MIT Kerberos 1.10.2 Yes
AppS OpenSSH 5.8 No

(c) Software used for the EduKERB prototype.

Table 6.2: Software used for the prototypes.

from the H-AAA; and 2) to export the edutoken and the MSK to two different files,

in order to make them available to the kinit program later on. The EU has also been

modified to implement the Kerberos pre-authentication mechanism that uses those values,

as described in Chapter 5. The H-AAA (FreeRadius) has been modified to provide the

edutoken to the EU, and to provide the EMSKName and the DSRK to the SP-AAA. The

SP-AAA (FreeRadius) has been modified to request the DSRK from the H-AAA and to

provide the DSUSRK to the KDC. Finally, the KDC has been modified to implement the

125

6. Performance evaluation and functional validation

Kerberos pre-authentication mechanism based on the edutoken and the EMSK, including

the request of the DSUSRK to the SP-AAA.

In terms of functionality, all these three prototypes have been very successful, as they

all have accomplished with the require functionality. They have behaved as expected

and provided the foreseen results with no major complications. Hence, from a functional

perspective, the architectures proposed in previous chapters have been validated.

6.4 Performance measurements

After having modelled the performance from an analytical perspective, this chapter

provides an empirical analysis based on the results obtained from the execution of the

prototypes. These tests have the purpose of confirming the accuracy of the model, showing

overall execution and computational times for each one of the phases of the proposals.

To carry out this performance analysis, the tests and time measurements needed to be

performed under equal conditions, and following a common procedure. For that reason, a

testbed that represents the architectures described in sections 3.2, 4.2, and 5.3 has been

set up. This testbed allows staging a federated scenario, replicating the conditions of a

real production environment.

6.4.1 Testbed description

The testbed components are distributed in two different locations, representing two

different members of the federation: University of Murcia1 and Janet2. More precisely,

the University of Murcia plays the role of service provider, while Janet acts as the home

organization. Figure 6.1 depicts the deployment of the different machines and components

that take part of the testbed.

In particular, the deployment at the University of Murcia comprises three virtual

machines (VMs), a laptop, and an AP. The VMs are deployed at three different hosts

from the GAIA experimentation infrastructure [186]. The computational wing of this

infrastructure is based on the XEN [187] virtualization software running on top of 22

different machines, each provisioned with a dual-core AMD Opteron(tm) Processor 246 at

2 GHz, and 2 GiB of RAM. Each VM is assigned with 128 MB of RAM, and has Debian

Squeeze [188] installed as operating system. The laptop is equipped with a dual-core

Intel(R) Core(TM) i3-3227U at 1.9 GHz, with 4 GiB of RAM. It has Arch Linux [188]

1www.um.es
2www.ja.net. UK National Research and Education Network (NREN).

126

6.4 Performance measurements

University of Murcia

GÉANT network

Janet

Laptop VM1 VM2 VM3 VM4

EU
MIT Kerberos
Moonshot
OpenSSH
OpenPANA

wpa_supplicant

KDC
MIT Kerberos

Moonshot

PAA
OpenPANA

AppS
OpenSSH

SP-AAA
FreeRADIUS

H-AAA
FreeRADIUS

Wireless LAN

LAN

AP

AP

Figure 6.1: Components deployment.

installed as operating system. The interconnection between these VMs, the laptop and the

AP is performed through a 100 Mbps LAN. There is also a 54 Mbps wireless connection

between the laptop and the AP.

On the other hand, the deployment at Janet comprises one virtual machine, at one

host. Its computational wing is also based on the XEN virtualization software running on

top of a machine provisioned with a quad-core AMD Opteron(tm) Processor 6176 at 2.3

GHz. The VM is assigned with 2GiB of RAM, and has Debian Squeeze [188] installed as

operating system.

The communication between both organizations is performed through GÉANT, which

provides a high-speed pan-European connection.

The results extracted from this testbed can be considered equivalent in every sense to

those from a real deployment. The reason is twofold. On the one hand, computational times

are representative, as of being virtualized does not differ much from what it is being done

in several organizations, where many services in production are deployed within virtual

machines (e.g. cloud computing). On the other hand, as this testbed involves two different

locations, transmission times are also representative, as there are several intermediate hops

and hundreds of kilometres between them.

As the three proposals are composed by almost the same components, a common

deployment can be used for them. In particular, each component of the architectures

was deployed into an individual VM. One exception was the PAA (Section 4.2), which

was collocated with the KDC in the same VM as, in this prototype, the KADM interface

consists of a local interprocess communication between these two components.

127

6. Performance evaluation and functional validation

To make this testbed even more realistic, the H-AAA and the SP-AAA components

are directly connected to the actual eduroam RADIUS infrastructure. Section 6.5 provides

some considerations on this aspect. With this connection, RADIUS packets from one

organization to the other follow the same path as they would do in a production

environment, with an additional level for these subdomains. The RADIUS realms for these

two components were configured as ms-perf.dev.ja.net (H-AAA), and moonshot.inf.um.es

(SP-AAA). A few testing user accounts have been created on H-AAA to perform the tests

(e.g. alex@ms-perf.dev.ja.net).

Figure 6.2 depicts the hierarchy of eduroam’s RADIUS servers interconnecting both

components.

moonshot.inf.um.es ms-perf.dev.ja.net

radius.um.es orps1.dev.ja.net

roaming0.ja.netradius.rediris.es

Top-level servers

Figure 6.2: Extended eduroam’s RADIUS hierarchy.

6.4.2 Execution of the tests

Using the testbed described above, around 500 executions were executed for each one of

the three proposals under evaluation. These executions aimed to obtain an estimation of

the time required to perform a complete federated access to an application service. That

is, the time elapsed since the EU tries to access a particular application service deployed in

a service provider, without having any kind of pre-shared state with it, until she is actually

provisioned with the requested service. This time has been decoupled into:

• Computational time. It measures the total time (represented as a 95% confidence

interval) spent by every component on the computations associated with a particular

phase of each proposal. In particular, the computational time imputable to a

128

6.4 Performance measurements

component is calculated as the sum of the time elapsed since a message is received

by that component until a subsequent message is sent to another component. For

the EU component, this time also includes the time elapsed from the start of the

phase until the first message is sent, and the time elapsed since the last message is

received until the end of the phase. The computational time is measured from the

output generated by the Wireshark [189] network protocol analyser, running locally

on each of the components. There is no need to synchronise clocks among the different

components, as the computational time is measured on each VM as a difference of

local timestamps.

• Execution time. It measures the total time (represented as a 95% confidence interval)

required by the EU component to complete a particular phase of one of the proposals.

It includes the computational time spent by all the involved components, as well as

the network transmission times. The execution time has been measured based on the

timestamps from the Wireshark’s log output generated by the EU component.

In order to make these three proposals comparable, a similar EAP method was selected

for all the scenarios. In particular, EAP-TTLS was selected, executing EAP-MD5 as

the inner method. EAP-TTLS was selected because 1) it is a key generating method,

as required for all the proposals; 2) it is a widely used EAP method in federations (e.g.

eduroam). However, for the EduKERB prototype PEAP has been used instead. The reason

is merely operational, as the existing code for DAMe is based on PEAP. Nevertheless,

both are very similar in terms of performance. Although PEAP requires one additional

round-trip to complete, it does not have a great impact on the overall execution time.

Furthermore, all the executions were performed during the same time frame in order to

assure a similar usage level of the eduroam infrastructure.

It is also important to mention (due to its repercussion on the total time) that all

the RSA keys used in these simulations are 2048-bits long, while all the Diffie-Hellman

operations have been performed with a 1024 bit modulus.

Table 6.3 collects the results obtained from the execution of the tests. As observed,

for each phase of each proposal, we indicate the total execution time (including network

time), as well as the different computational time spent by each individual component.

These values are represented as 95% confidence intervals, denoted by mean ± offset. The

KRB TGS and KRB AP exchanges have been measured only once, and their values used

for all the proposals, as they are completely identical for all of them. Figure 6.3 shows

a graphical representation for each proposal comparing the computational time for each

phase, and another one with a summary comparing the total times for each proposal.

129

6. Performance evaluation and functional validation

Table 6.3: Time measurements for the prototypes.

Computational time Execution time
Phase EU KDC AppS RAAA HAAA Total (incl. network)
(1) Kerberos preauth. 21.56 15.34 — 4.53 9.71 51,14 1255.78

±0.13 ±0.92 — ±0.01 ±0.07 ±1.13 ±12.83
(2a) TGS exchange 2.87 0.77 — — — 3,64 4.18

±0.02 ±0.01 — — — ±0.03 ±0.02
(2b) AP exchange 1.92 — 2.05 — — 3.97 4.44

±0.01 — ±0.03 — — ±0.04 ±0.03
Whole process 26.35 16.11 2.05 4.53 9.71 58,75 1264.40

±0.16 ±0.93 ±0.03 ±0.01 ±0.07 ±1.20 ±12.88

(a) Time measurements for the FedKERB prototype (in milliseconds).

Computational time Execution time
Phase EU KDC PAA AppS RAAA HAAA Total (incl. network)
(1) PANA auth. 13.03 — 5.95 — 5.65 9.66 34.29 1396.81

±0.13 — ±0.02 — ±0.06 ±0.03 ±0.24 ±32.07
(2) KRB enforc. — 18.56 1.12 — — — 19.68 20.60

— ±0.26 ±0.02 — — — ±0.28 ±0.24
(3) Kerberos auth. 20.21 0.69 — — — — 20.90 22.03

±0.11 ±0.00 — — — — ±0.11 ±0.12
(4a) TGS exchange 2.87 0.77 — — — — 3.64 4.18

±0.02 ±0.01 — — — — ±0.03 ±0.02
(4b) AP exchange 1.92 — — 2.05 — — 3.97 4.44

±0.01 — — ±0.03 — — ±0.04 ±0.03
Whole process 38.03 20.02 7.07 2.05 5.65 9.66 82.48 1448.06

±0.27 ±0.27 ±0.04 ±0.03 ±0.06 ±0.03 ±0.70 ±32.48

(b) Time measurements for the PanaKERB prototype (in milliseconds).

Computational time Execution time
Phase EU KDC AppS RAAA HAAA Total (incl. network)
(1) Network auth. 3.01 — — 7.22 11.19 21.42 1425.84

±0.01 — — ±0.02 ±0.06 ±0.09 ±2.70
(2) Kerberos preauth. 10.83 42.66 — — — 53.49 54.02

±0.49 ±0.55 — — — ±1.04 ±1.14
(3a) TGS exchange 2.87 0.77 — — — 3.64 4.18

±0.02 ±0.01 — — — ±0.03 ±0.02
(3b) AP exchange 1.92 — 2.05 — — 3.97 4.44

±0.01 — ±0.03 — — ±0.04 ±0.03
Whole process 18,63 43.43 2.05 7.22 11.19 82.52 1488.48

±0.53 ±0.56 ±0.03 ±0.02 ±0.06 ±1.20 ±3.89

(c) Time measurements for the EduKERB prototype (in milliseconds).

Although not implemented for these prototypes, its is worth mentioning how much time

authorization would require. According to the performance model described in 6.2, this

functionality is expected to have a high impact. Indeed, the measurements taken in [181]

show that TAUTHZ1 may require up to 1000 ms., while TAUTHZ2 would require up to 650

ms. to complete. Note that the execution environment of those tests were significantly less

powerful than the one used for this thesis. In any case, both of these times would require

several hundreds of milliseconds to complete.

130

6.4 Performance measurements

6.4.3 Analysis of results

This section analyses the empirical results obtained from the execution of the tests

described in Section 6.4.2. The aim of this analysis is to validate the performance model

described in Section 6.2. However, while the model is expressed in terms of variables, there

is no practical way to measure the time associated to each one of these variables during the

execution of the tests. Instead, the measurements have been performed in terms of phases,

where each proposal has a different number of phases, with different purposes. Hence, the

methodology followed for this analysis consists of inferring the magnitude of the variables

of the model using the values in Table 6.3 and the distribution of the variables along the

different phases described in Table 6.1.

• TEAP . In terms of the time required to complete the whole authentication and the

access to the application service (see Whole process row, Execution times column), all

the proposals devote similar times (between 1264 and 1488 ms.). As expected, most of

the time is spent during the EAP authentication (included in phase 1 of all proposals).

This large time is mostly due to the network transmission time, as the computational

time of phase 1 is not higher than 52 ms. for any proposal. It can also be noted how

these transmission times fluctuate compared to the stability of the computational

times. This fluctuation is a direct consequence of using a real production network

such as eduroam. For example, even though phase 1 of PanaKERB requires less

computational time than phase 1 of FedKERB (34 ms. vs. 51 ms. respectively),

the reality is that, during the tests, PanaKERB found a more unreliable network,

resulting into higher overall execution times (1396 vs. 1255 respectively). In the case

of EduKERB (1425 ms.), the increment is a consequence of using PEAP instead of

TTLS, which requires an additional round-trip.

• TLOW . The computational times confirm that TLOW differences are indeed as

foreseen in the analytical model. The PAA (EAP authenticator in PanaKERB)

requires significantly less computational time (≈3 times lower) than the KDC (EAP

authenticator in FedKERB) to perform the forwarding of the EAP packets between

the EU and the RAAA. This comes from the stateless behaviour of the KDC, as

explained in the analytical model, which generates an overload in both computational

time and amount of data transmitted in the network. This difference is also noticeable

on the clients. As expected, the EduKERB client requires less time (between 4 and

7 times) than the rest of the proposals. The difference between the PanaKERB

and FedKERB clients can also be imputable to the stateless nature of the Kerberos

131

6. Performance evaluation and functional validation

protocol. This makes the EU try to find the best available KDC on each iteration

of the process, including the parsing of a list of available KDCs, and their name

resolution.

• TENF & TDER. Phase 1 of FedKERB includes more computation (i.e. TENF

and TDER) than phase 1 of PanaKERB or EduKERB, contributing to its increased

computational time (51 ms. vs. 34 ms. and 21 ms., respectively). Conversely,

PanaKERB and FedKERB require these enforcement and derivation tasks to be

performed in additional phases. On the one hand, PanaKERB spends ≈12 ms.

executing the string-to-key function [190], which derives a binary key from the

textual password, as part of its TDER (phases 2 and 3). The bottleneck problem

with the string-to-key function situation was already detected in [180]. This call

is not performed by neither the FedKERB nor the EduKERB proposals, as the

binary key is derived directly from the MSK. This situation would be mitigated if

the implementation of the KADM interface was optimized in such a manner that

the use of binary keys is allowed instead of textual ones. In this way, the call

to the string-to-key function would be avoided, so speeding up these phases and,

consequently making the overall process faster.

On the other side, EduKERB spends a considerable amount of computational time

on its phase 2 (53 ms.), specially on the KDC (42 ms.), as par of its TENF . The main

reason for this is that it is not an optimised implementation. Indeed, to create the

RADIUS Access-Request packet and to process the response, the prototype makes

use of an external program (radclient). This option was taken for convenience, as the

resulting code is much simpler. However, this requires the creation of a new process,

spending ≈ 30ms. This situation would be mitigated if a RADIUS library were used

from the prototype instead of using an external program.

• TAS. Finally, as described in the model, EduKERB is expected to present high values

for TAS due to the use of FAST. This is shown on the computational times of the

EU and the KDC of phase 2 (10 ms. and 42 ms. respectively), that would have been

lower otherwise.

Therefore, the empirical results obtained after the execution of the three prototypes

confirm that the three proposals perform similarly, confirming the validity of the model

presented in Section 6.2. Besides, the times required to perform their functionality seem

quite reasonable, as they do not incur in any substantial overhead when compared to the

actual time required by the eduroam EAP authentication (which, in this scenario, coincides

132

6.4 Performance measurements

(a) FedKERB. (b) PanaKERB.

(c) EduKERB. (d) Comparative.

Figure 6.3: Time graphs for the prototypes.

with the time of EduKERB’s phase 1). It is worth noting that the EU will only require

this amount of time during the first access to an application service, in order to bootstrap

a security association with the service provider’s KDC. Thanks to the Kerberos SSO

capabilities, subsequent accesses to application services deployed on that service provider

within the session lifetime will be based on the standard Kerberos operation (i.e. TGS and

AP exchanges requiring only ≈ 4.8 ms.).

133

6. Performance evaluation and functional validation

6.5 Considerations on the use of an already existing

AAA federation

One important consideration that must be taken into account before starting to deploy

any of the proposed contributions of this thesis (or any other identity federation beyond

the web proposal) over an existing AAA federation, is whether that federation will

administratively allow its utilization for that purpose. While from a technical standpoint,

these contributions should work over any existing AAA federation (including the eduroam’s

RADIUS infrastructure), that does not necessarily mean that this kind of traffic will be

allowed from an administrative point of view. For instance, eduroam is an AAA-based

federation which purpose is the provision of the network access service. Therefore, its

usage for any other purpose is not explicitly allowed and, of course, not supported.

That is something we found out after our tests over the eduroam infrastructure

(Section 6.4.1). In particular, we realized that certain RADIUS attributes (i.e.

GSS-Acceptor-Service-Name [107]) were being sent from the AppS to the H-AAA, but they

never arrived to their destination. The reason was that the eduroam’s top level RADIUS

proxies were transcoding that specific attribute code (i.e. 164) into a different one. They

did this because that attribute code was illegally allocated by Ascend in the past, and thus

they considered its usage as illegal. However, that attribute has been recently allocated

by the IANA to RFC 7055 (GSS-EAP). When we asked them to disable that “outdated”

transcoding, the request was kindly rejected based on the fact that our traffic was out of

the scope of the eduroam’s purpose and, hence, unsupported.

This transcoding did not affect the execution of the tests, since at the time they were

performed, RFC 7055 had not been published yet, and a vendor specific attribute was

being used instead for the GSS-Acceptor-Service-Name attribute. Once the document

was published, and the GSS-EAP implementation was updated accordingly, the issue was

revealed.

6.6 Conclusions

Having a tangible demonstration of a particular proposal is an excellent way to prove its

feasibility. Community has shown its interest on having running code, something that

can be tested. Therefore, three prototypes have been developed for the three proposals

of this thesis, based on existing open-source solutions of the protocols that take part

of the designed architectures. These prototypes implement the functionality described

134

6.6 Conclusions

in Chapters 3, 4, and 5. That is, they provide different means to allow an end user

retrieving a valid TGT from a KDC, where the eduroam RADIUS infrastructure is used

to convey authentication and authorization information from/to the home organization

to/from the service provider. This chapter has provided several implementation details of

these prototypes, indicating how they have been developed and the open-source solutions

they are based on.

Afterwards, this chapter has performed an extensive performance analysis of the

proposals. Firstly, from an analytical point of view, breaking down the time required

to execute each proposal into a set of variables comprising the most relevant operations

that are performed. Secondly, from an empirical point of view, deploying the

developed prototypes into a real production environment (i.e. connected to the eduroam

infrastructure), to measure the actual overall execution times required to complete the

federated authentication process.

Finally, this chapter has analysed the empirical results obtained from the prototypes,

comparing them with the specified model.

The results form this performance analysis have confirmed that the three proposals

described in this thesis can be executed in a reasonable amount of time. That is, they

present similar execution times to the ones required for the network access service (which

is used as a reference since it is the most extended use of AAA infrastructures). Moreover,

as they have been implemented and executed in a real environment, their feasibility has

also been demonstrated. In this sense, it must be noted that that, even though FedKERB

has shown the bests results, the different is not significant enough to use it as a selection

criteria. Instead, that decision should be merely based on operational premises, such as

which one fits better with the actual requirements of the target scenario, or which one has

a minor impact on the existing infrastructure. For instance, if an organization does not

want to deploy any additional protocol, FedKERB would most probably be the best choice.

However, if no modifications to the KDC are desired, PanaKERB would be the surest bet.

Finally, if one organization wants to leverage network access to provide application service

SSO, EduKERB should be the selected option.

135

6. Performance evaluation and functional validation

136

Chapter 7

Conclusions and future work

This chapter provides a summary of the thesis, its main contributions and conclusions, and

discusses the envisaged future work.

7.1 Summary and main contributions

The problem of controlling the access to network service applications is a topic that has

been gaining interest as the Internet has become more popular and pervasive. A result

of this increasing interest has been the research and design of new and more powerful

access control architectures that allow, on the one hand, enforcing access control policies

with a high level of detail and, on the other hand, increasing the usability and reduce the

complexity of the processes to be performed by end users. In this sense, access control

architectures have evolved from the more archaic approaches based on static access lists,

to the most modern identity federations, which allow end users to access a wide range of

application services deployed by different service providers. In particular, each federation

comprises a number of service providers, which establish trust relationships with their

respective identity providers, agreeing on a set of technologies and protocols to exchange

authentication and authorization information.

As analysed in the PhD work, nowadays there are two types of well-established

identity federations: Web-based identity federations and Authentication Authorization and

Accounting (AAA)-based identity federations. On the one hand, the former focuses on

providing federated access to web-based services. Several companies, such as Google,

Amazon or Flickr, already support it. On the other hand, AAA is a generic framework

which is nowadays used to control the network access service. The roaming in cellular

networks, companies such as IPass, Mach, and Syniverse, as well as the eduroam network

137

7. Conclusions and future work

are good examples of such AAA-based federations.

In this context, one of the more interesting challenges in current identity management

research has been to define how federated access can be provided to other types of

application services not supporting the integration neither with AAA-based nor web-based

federations, such as file transfer, terminal access, etc. This type of federation is known as

Identity federation beyond the web. This thesis has analysed the current state of the art on

this type of federation and, in particular, it has focused on Kerberos and Moonshot, as the

only two currently existing approaches to support this kind of federation. For them, this

thesis has pointed out the different functionality and deployability gaps that they have,

when compared to the more deployed and consolidated identity federations (i.e. web-based

and AAA-based). Specifically, Kerberos requires the deployment of a complete independent

federation for its cross-realm operation, and it lacks of fine-grained authorization support.

On the other side, Moonshot lacks of support for SSO, and requirements the modification

of every application service.

Keeping these gaps in mind, this thesis has aimed to design solutions for Identity

federations beyond the web that do not suffer from them. In particular, after having

analysed the most important current access control technologies, this thesis has concluded

that, although Kerberos possesses great features for intra-domain access control (e.g.

secure, lightweight, integrated SSO, etc.), and it is supported by most of current application

services, it has some weak points related to federation and authorization support. In

particular, the standard federated operation for Kerberos (i.e. cross-realm) has several

issues, and it is not widely deployed. Besides, Kerberos authorization capabilities are very

limited and not suitable for federated environments. Conversely, AAA-based federations

have been used for decades to provide federated access to the network access service

with great success and presence, due to their robustness and reliability. Therefore, the

integration of these two technologies (i.e. Kerberos and AAA) offers an approach that

supersedes the Kerberos cross-realm operation with a more widely adopted federation

technology (i.e. AAA), allowing end users within the federation to authenticate without

being previously registered on the Kerberos user database.

Hence, this thesis has looked for approaches that enable the interconnection of

Kerberos with AAA infrastructures to provide federated authentication. Moreover, its has

incorporated SAML processing capabilities to Kerberos to provide federated authorization.

Specifically, this work has analysed, designed and validated three different approaches

to perform this interconnection, each one solving different deployment requirements.

Moreover, its has also designed a common authorization model that can be applied to all

of them. These three approaches have been called FedKERB, PanaKERB, and EduKERB,

138

7.1 Summary and main contributions

and they constitute the main contributions of this work. Each one has its advantages

and disadvantages, making them more suitable for a specific set of scenarios than others.

Table 7.1 summarises the main features of each contribution, focusing on their main

aspects.

Table 7.1: Summary of contributions and features.

Feature FedKERB PanaKERB EduKERB

Applicability
scenarios

Any AAA federation Any AAA federation
Eduroam RADIUS
infrastructure

Standards used
Kerberos, AAA, EAP,
SAML, GSS-API

Kerberos, AAA, EAP,
SAML, PANA

Kerberos, AAA, EAP,
SAML, 802.11

Federated
AAA-based
authentication

Yes Yes Yes

Advanced
authorization

Yes Yes Yes

SSO
Yes
(intra-organization)

Yes
(intra-organization)

Yes (cross-layer
intra-organization)

EAP lower-layer Kerberos PANA 802.11

Modifies AppS No No No

Modifies Kerberos Yes No (*) Yes

Modifies EAP
methods

No No Yes

Modifies AAA No (*) No (*) Yes

(*) Only when advanced authorization is not used.

FedKERB provides an architecture that integrates the Kerberos and AAA

infrastructures by defining a new pre-authentication mechanism for Kerberos based on

GSS-API and EAP. Besides, the architecture includes the possibility of performing

advanced authorization after the authentication process, based on the transport of a

SAML assertion containing identity information from the home organization’s IdP to the

service provider’s Kerberos infrastructure. FedKERB provides a generic solution that

accommodates all the requirements defined in Section 1.2 for an identity federation beyond

web solution, including immediate support for SSO within the boundaries of the service

provider (i.e. intra-organization). All of this makes FedKERB adaptable to most of the

foreseen identity federation beyond web scenarios [31]. However, although FedKERB does

not require application services to be modified, it does require the modification of the

Kerberos pre-authentication process. While this would only imply to modify a single

entity (i.e. the KDC), this requirement might still not be acceptable for some service

providers and scenarios, where the deployed Kerberos infrastructure should be left intact.

Moreover, if advanced authorization is implemented, the AAA infrastructure also requires

slight modifications to obtain or generate the SAML statement and be transported to the

139

7. Conclusions and future work

KDC.

PanaKERB defines an optimized alternative to FedKERB that does not require any

modification to the existing Kerberos pre-authentication mechanisms. For achieving this

objective, this contribution defines an architecture that uses an out-of-band protocol with

native support for AAA infrastructures (in this case, PANA), to perform the federated

authentication of the end user. As FedKERB, PanaKERB addresses the requirements

defined in Section 1.2, and also provides intra-organization SSO. Therefore, PanaKERB

would be applicable to the same scenarios as FedKERB does. The strength of PanaKERB

resides on its simplicity, since it requires no modifications to the Kerberos protocol.

However, this simplicity comes at the expense of introducing an additional protocol

(i.e. PANA) and an entity (i.e. PAA) into the architecture. It is expected that this

simplicity will make its adoption and deployment easier than for FedKERB, making of it a

more suitable solution for those organizations that already have a Kerberos infrastructure

deployed, and are reticent to modify it to incorporate any of the changes required by

FedKERB. Additionally, PanaKERB also allows the use of the advanced authorization

model defined for FedKERB. It is important to note that, in such a case, the Kerberos

infrastructure would also need modifications, in order to provide the KDC with SAML

processing capabilities.

Finally, EduKERB provides an architecture that integrates the Kerberos and AAA

infrastructures by defining a new pre-authentication mechanism for Kerberos based on

the results obtained after a successful federated authentication to the network service.

As these two authentication processes happen at different layers of the Open Systems

Interconnection model (OSI) [191] model (i.e. link and application layers), it has been called

cross-layer SSO. EduKERB reduces the number of federated AAA-based authentication

processes required to access application services, improving efficiency and optimizing the

resource utilisation. Another relevant aspect of EduKERB when compared to FedKERB

and PanaKERB is its applicability. Whereas FedKERB and PanaKERB have a generic

applicability, EduKERB has been designed to take advantage of the specific network access

authentication process defined for the eduroam’s RADIUS infrastructure. Nevertheless,

that does not preclude its utilisation in other scenarios if so is desired by the involved

parties, and they commit to implement the required architecture. EduKERB is the

contribution that requires more modifications to the existing infrastructures. In particular,

it requires the modification of the Kerberos pre-authentication process, the EAP method

(to transport the edutoken to the end user), and the AAA infrastructure (to implement

the key distribution defined in [66]). Nevertheless, these modifications allow reducing the

number of EAP authentications and the related overload in terms of network messages and

140

7.2 Future work

computational time. EduKERB also allows the use of the advanced authorization model

defined for FedKERB and PanaKERB.

This thesis has also provided a performance and functional analysis of these three

contributions, presented on Chapter 6. Specifically, this analysis has consisted on the

development of a performance model, describing the different time-consuming operations

performed on each proposal, the implementation of three prototypes to demonstrate their

functional viability and feasibility, and the actual measurement of their performance based

on these prototypes. Two major conclusions have been extracted from the results of this

validation. On the one hand, it is demonstrated that the three proposals described in this

thesis present similar execution times to the ones required for the network access service

(which is used as a reference since it is the most extended use of AAA infrastructures).

Moreover, as they have been implemented and executed in a real environment, their

feasibility has also been demonstrated beyond a theoretical stand point. Finally, it has

been confirmed that the three proposals perform in a very similar way. In fact, even

though FedKERB has shown the bests results, the difference is not significant enough to

use it as a selection criteria. Instead, that decision should be merely based on operational

premises, such as which one fits better with the actual requirements of the target scenario,

or which one has a minor impact on the existing infrastructure, if so is a requirement.

Finally, in order to highlight the increasing interest that identity federations beyond the

web are receiving nowadays, it is important to mention that there is a current movement

within the GÉANT community, and in particular within GN3Plus project [192], promoting

the deployment of pilots of the Moonshot technology. This technology is being evaluated

as an alternative to integrate existing and future application services within the GÉANT

community. Whenever Moonshot support becomes more widespread, the contributions

proposed in this thesis will be more likely to be deployed. These and other future aspects

are dealt in the following section.

7.2 Future work

As commented throughout this work, this thesis provides several proposals for the identity

federations beyond the web problem, enabling federated access and SSO to application

services by means of Kerberos and AAA infrastructures. Without undermining its

applicability or validity, during the realisation of this thesis some interesting research

topics have been found worth being explored as future work, in order to provide further

improvements in this area.

141

7. Conclusions and future work

The following subsections provide a brief introduction on these topics, along with some

preliminary ideas on how they could be addressed. They have been ordered according to

their expected addressing term, from those to be done in a short-term to those envisioned

in the long-term.

7.2.1 Deployment of the solutions in real scenarios

One of the more immediate questions one might ask after reading this thesis is: when are

these solutions envisioned to be deployed in real scenarios? As commented above, there is

an evident interest within the GÉANT community on the identity federation beyond the

web area. Indeed, the GN3 and GN3Plus projects have put a lot of effort designing, testing,

and deploying Moonshot. Moreover, the upcoming GN4 project, scoped within the H2020

programme [193], will aim to move Moonshot from the current status of technology solution,

to a more ambitious status of service. That is, focusing on infrastructure deployment at

NRENs/federations, to be able to offer Moonshot as a solution for non-web use cases under

the eduGAIN brand.

Whenever Moonshot support becomes more widespread, the contributions proposed in

this thesis will be more likely to be deployed. In particular, FedKERB will be the one

more directly benefited, since it makes a direct use of the GSS-EAP mechanism to perform

federated authentication with the Kerberos infrastructure. The rest of the contributions

will be benefited as well, since the home AAA servers will be adapted to distribute SAML

assertions to the service providers.

One interesting aspect has come up when working on the current Moonshot pilots

within the GÉANT scope. The existing RADIUS infrastructure for eduroam is so far

quite focused on the access to the network (Section 6.5). That is, many organizations

and National Research and Educational Network (NRENs) implement filtering rules on

their RADIUS proxies forbidding any RADIUS attribute that is not specifically listed to

be passed-through. This is particularly relevant, as Moonshot/ABFAB defines some new

RADIUS attributes that need to be conveyed from the service provider to the IdP, and

vice-versa. When these attributes are not able to reach their destination, the federated

authentication might fail due to the lack of information. For solving this issue two

approaches can be followed: a) evolve the eduroam’s RADIUS infrastructure to a more

generic federation, allowing a larger number of attributes; or b) use an alternative and

specific AAA-based federation, such as the one based on the Trust Router [149] technology

(Section 7.2.4), also being currently tested in the GÉANT context. So far, this second

alternative is gaining ground to the first one, as it does not requires to modify existing

142

7.2 Future work

running RADIUS proxies and federation agreements.

Hence, an interesting short-term future work line would consist of actively working

on the deployment of identity federation beyond the web technologies, such as the ones

presented on this PhD work, or Moonshot, in real environments (either using the eduroam’s

infrastructure or a different one). This will help assessing the viability of those technologies,

as well as discovering new gaps needing to be solved.

Although most application services support either GSS-API or SASL, some of them still

do not do it. Hence, another short-term future work line related with real deployments

is providing GSS-API support to those application services. This will extend the number

of application services that support either Moonshot or Kerberos, as required for any of

the proposals of this thesis. An example of this is the work being currently carried out

in the Cloud-ABFAB Federation Services in eduroam (CLASSe) project [194], where the

integration between OpenStack [195], a consolidated cloud server solution, and GSS-API

is being defined [196]. In particular, the GSS-EAP mechanism is being tested, although

using the GSS-KRB mechanism would be straightforward.

7.2.2 Use of HTTP instead of PANA as out-of-band protocol

PanaKERB proposal defines the use of PANA as its out-of-band authentication protocol.

This decision is supported by its lightweight operation, as well as its ability to easily export

the keying material derived from the EAP authentication. However, as described in Section

4.4.4, it requires configuring the firewalls of the organizations to allow PANA traffic. This

might be seen as a drawback for some organizations that do not want to modify their

network configuration rules. Even more, this is likely to happen whichever the out-of-band

protocol is, unless that protocol is already allowed by most of the deployed firewalls. One

of this widely-accepted protocols is HTTP.

Hence, a short-term future work line would analyse, design and implement of a solution

to enable the use of HTTP as out-of-band protocol for Kerberos, instead of PANA.

A promising alternative might include the use of the HTTP Negotiate Authentication

Scheme [197] in combination with the GSS-EAP mechanism.

7.2.3 Inter-organization SSO

Another topic that has been foreseen as an interesting medium-term future work is the

improvement of the SSO support, in order to allow inter-organization (i.e. service provider

to service provider) SSO.

143

7. Conclusions and future work

The proposals described in this work assume the deployment of a different KDC on

each service provider. This means that the tickets obtained as a result of the bootstrapping

process will enable the end user to benefit from SSO only within the boundaries of that

specific provider. If the end user wants to access to an application service deployed on a

different service provider, she needs to perform a new bootstrapping process with the KDC

of that provider.

Hence, one interesting research topic would be analysing and designing solutions to

extend these SSO boundaries out of a single organization. This would allow the end user

to access to any of the application services provided within the federation by means of

SSO. The main benefit would be twofold. On the one hand, reducing the amount of data

exchanged between the service provider and the home organization. This information often

needs to travel through a high number of intermediary proxies, resulting into a waste of both

time and network bandwidth. On the other hand, a non-SSO authentication process often

implies the use of asymmetric cryptographic, such as digital signature or Diffie-Hellman

operations. This might have a noticeable impact on low-power devices, such as mobile

phones, tablets, or sensors.

A possible approach for providing inter-organization SSO could be deploying the KDC

at the home organization, instead of at the service provider. This KDC would provide the

end user with some sort of generic ST that any application service within the federation can

process. Another approach would be extending the GSS-EAP mechanism to incorporate

support for the EAP Re-authentication Protocol (ERP) [198]. ERP defines extensions to

EAP and the EAP keying hierarchy to allow re-authentication between the peer (end user)

and an re-authentication server (e.g. local AAA server) in a single round-trip. In this

way, the end user would be able to perform an ERP bootstrapping process with the KDC,

instead of a full-blown EAP authentication, reducing the cost of the process to its minimal.

In particular, this inter-organization SSO topic is being currently investigated as part

of CLASSe, were the University of Murcia is involved. Since that project is focused on the

access to Cloud services, this concept is called Cloud-to-cloud SSO.

7.2.4 Dynamic AAA-based federations

Typically, trust relationships in AAA-federations have a static nature. Administrators

establish pre-shared secrets between AAA servers, building a hierarchical structure (see

chapter 2). That is, each node needs to be configured with the key (or the certificate)

of each one of the next hops in the infrastructure. However, this structure limits the

flexibility and scalability of AAA federations. For instance, if one of these AAA servers

144

7.2 Future work

fails, the federation might become fractured, and some of the organizations would not be

reachable by others. Besides, becoming a member of the federation always requires of

manual configuration, which is usually a laborious task.

Hence, another interesting medium-term research topic would be the analysis and design

of dynamic establishment and management mechanisms for AAA federations, where trust

relationships can be established in an automated fashion between members. For this

purpose, current IP routing algorithms, such as Border Gateway Protocol (BGP) [199],

could be used with the required adaptations.

In this line, the Moonshot project has started working on the Trust Router [149]

concept, which provides a novel approach to establishing trust relationships between

entities, which may significantly improve the flexibility, robustness and scalability of the

federation. In particular, the Trust Router aims to distribute information about trust

relationships across the members of a federation, by using protocols with many similarities

to existing routing protocols. The distribution of this information allows a sending entity

to discover the IP address of the recipient one, and the dynamic establishment of shared

secrets between them, thus avoiding any requirement for technologies such as PKI. That is,

the Trust Router releases AAA protocols from the routing functionality by establishing a

point-to-point trust relationships between the AAA client and server. Then, the transport

of AAA information is performed without the need of any intermediary AAA proxy. This

avoids the requirement of trusting each single proxy server within the AAA infrastructure,

as discussed in the security analysis of each contribution (i.e. sections 3.6, 4.4, and 5.5).

The Trust Router is currently in an early stage of specification in the IETF, and

more precisely within the ABFAB WG. Besides, the Moonshot project is working on

an implementation, which is so far functional, but still in a prototype state. This

implementation is being piloted under the umbrella of the GN3Plus project, where the

University of Murcia is a partner. The intention of this pilot is to assess its viability as a

long-term alternative to the eduroam’s RADIUS infrastructure.

The use of this dynamic AAA-based federations would help spreading the identity

federations beyond the web technologies that are supported by AAA protocols, as it eases

its management and usability. This would include Moonshot as well as the contributions

that have been described in this thesis.

7.2.5 IDaaS

With the proliferation of cloud services, there has been an increasing interest in a new

concept and trend in identity management, known as Identity-as-a-Service (IDaaS) [200].

145

7. Conclusions and future work

This concept can be summarized as the outsourcing of identity management, such as

authentication, provisioning, and attribute services from an organization to a cloud

provider. Among the different services that this new type of service provider may offer we

find: registration, identity verification, authentication, attribute-based authorization, SSO,

federation, monitoring, roles and entitlement management, provisioning, and reporting.

There are two common models for IDaaS. On the one hand, Cloud IDaaS, where

the IDaaS provider manages the whole identity service infrastructure and provides these

services in a Software-as-a-Service (SaaS) fashion. In this case, there is no need for any kind

of software, footprint or backend integration with the organization’s IT infrastructure. This

may fit better in small and medium organizations willing to avoid, as much as possible, the

burden associated with the management of identities in their domain. On the other hand,

co-sourced IDaaS is a variant where the IDaaS provider interacts directly with the backend

IT infrastructure (directories, repositories, databases, etc.) managed and operated by the

organization. This may fit better in medium to large organizations that do not want to

lose control over its identity data.

The most important benefit of IDaaS [201, 202] is that it allows organizations to relay

in experts the management and operations related with the usually complex identity

management administration. Thus, it eases the life of the organizations by reducing the

workload related with identity access management. Conversely, the most relevant drawback

is that the organization is outsourcing critical functions and information to a third party.

This may create certain level of reluctance in the usage of the IDaaS services.

Hence, a long-term future work line would consist of analysing, designing, and

implementing approaches for integrating the IDaaS concept with the identity federations

beyond the web technologies discussed in this thesis, as a way to simplify their deployment,

and spread their usage.

146

Bibliography

[1] J. Postel and J. Reynolds. File Transfer Protocol (FTP). IETF RFC 959, Oct

1985.

[2] B. Thomas. On the Problem of Signature Authentication for Network Mail.

IETF RFC 644, July 1974.

[3] B. Goode. Voice over Internet protocol (VoIP). Proceedings of the IEEE,

90(9):1495–1517, Sep 2002.

[4] R. Sandhu and P. Samarati. Authentication, Access Control, and Audit. ACM

Comput. Surv., 28(1):241–243, March 1996.

[5] T. Moses (Ed.). eXtensible Access Control Markup Language (XACML)

Version 2.0. OASIS, February 2005.

[6] S. Cantor, J. Kemp, R. Philpott, and E. Maler (Eds.). Assertions and Protocols

for the OASIS Security Assertion Markup Language (SAML) v2.0. OASIS,

March 2005.

[7] C. Neuman, T. Yu, S. Hartman, and K. Raeburn. The Kerberos Network

Authentication Service (V5). IETF RFC 4120, July 2005.

[8] OpenID Web Site. Available from: http://openid.net/. Accessed 7 July

2014.

[9] E. Hammer-Lahav, D. Recordon, and D. Hardt. The OAuth 2.0 Authorization

Protocol. IETF RFC 6749, October 2012.

[10] C. Rigney, S. Willens, A. Rubens, and W. Simpson. Remote Authentication Dial

In User Service (RADIUS). IETF RFC 2865, June 2000.

147

http://openid.net/

BIBLIOGRAPHY

[11] P. Calhoun and J. Loughney. Diameter Base Protocol. IETF RFC 6733, October

2012.

[12] C. Shaer. Single sign-on. Network Security, 1995(8):11–15, 1995.

[13] A. Barth. HTTP State Management Mechanism. IETF RFC 6265, April 2011.

[14] Google Accounts. Available from: https://accounts.google.com.

Accessed 7 July 2014.

[15] J. Torres, M. Nogueira, and G. Pujolle. A Survey on Identity Management for

the Future Network. Communications Surveys Tutorials, IEEE, 15(2):787–802,

February 2013.

[16] SAML Single Sign-On (SSO) Service for Google Apps. Available

from: https://developers.google.com/google-apps/sso/saml_

reference_implementation. Accessed 7 July 2014.

[17] Amazon Help: About Single Sign On. Available from: http://www.

amazon.com/gp/help/customer/display.html?nodeId=201221890.

Accessed 7 July 2014.

[18] Sign up for Flickr with your Google Account!

Available from: http://blog.flickr.net/en/2010/10/28/

sign-up-for-flickr-with-your-google-account. Accessed 7 July

2014.

[19] Single Sign-on Services for Microsoft Enterprise Application Integration

Solutions. Available from: http://download.microsoft.com/download/

C/6/5/C65FF9FD-0ED7-47F6-91AB-000E6265EA5B/Enterprise_SSO_

Whitepaper.doc. Accessed 7 July 2014.

[20] Authentication Authorisation Accounting Architecture Research Group.

Available from: http://irtf.org/concluded/aaaarch. Accessed 7 July

2014.

[21] IEEE 802.11 Std., Telecommunications and Information Exchange

between Systems – Local and Metropolitan Area Network – Specific

Requirements – Part 11: Wireless LAN Medium Access Control (MAC)

and Physical Layer (PHY) Specifications. IEEE Standards, June 2007.

148

https://accounts.google.com
https://developers.google.com/google-apps/sso/saml_reference_implementation
https://developers.google.com/google-apps/sso/saml_reference_implementation
http://www.amazon.com/gp/help/customer/display.html?nodeId=201221890
http://www.amazon.com/gp/help/customer/display.html?nodeId=201221890
http://blog.flickr.net/en/2010/10/28/sign-up-for-flickr-with-your-google-account
http://blog.flickr.net/en/2010/10/28/sign-up-for-flickr-with-your-google-account
http://download.microsoft.com/download/C/6/5/C65FF9FD-0ED7-47F6-91AB-000E6265EA5B/Enterprise_SSO_Whitepaper.doc
http://download.microsoft.com/download/C/6/5/C65FF9FD-0ED7-47F6-91AB-000E6265EA5B/Enterprise_SSO_Whitepaper.doc
http://download.microsoft.com/download/C/6/5/C65FF9FD-0ED7-47F6-91AB-000E6265EA5B/Enterprise_SSO_Whitepaper.doc
http://irtf.org/concluded/aaaarch

BIBLIOGRAPHY

[22] B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, and H. Levkowetz. Extensible

Authentication Protocol (EAP). IETF RFC 3748, June 2004.

[23] Cx and Dx interfaces based on the Diameter protocol; Protocol details.

3GPP TS 29.229 v12.0.0, 3rd Generation Partnership Project, June 2013.

[24] K. Wierenga and others. DJ5.1.4: Inter-NREN Roaming

Architecture.Description and Development Items. Project Deliverable,

September 2006.

[25] iPass - Netserver configuration. Available from: http://help.ipass.com/

doku.php?id=netserver_configuration. Accessed 7 July 2014.

[26] Mach - Uniquely Integrated Plus Portfolio. Available from: http://www.

starhomemach.com/roaming/. Accessed 7 July 2014.

[27] Syniverse - Global Interstandard Roaming Solution. Available

from: http://www.syniverse.com/products-services/product/

global-interstandard-roaming-solution-uniroam. Accessed 7 July

2014.

[28] SIR - The RedIRIS Identity Service . Available from: http://www.

rediris.es/sir/index.html.en. Accessed 7 July 2014.

[29] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, G- Lee, D.

Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A View of Cloud Computing.

Commun. ACM, 53(4):50–58, April 2010.

[30] F. Berman, G. Fox, and A. JG. Hey. Grid computing: making the global

infrastructure a reality, volume 2. John Wiley and sons, 2003.

[31] R. Smith. Application Bridging for Federated Access Beyond web (ABFAB)

Use Cases. IETF Internet Draft, draft-ietf-abfab-usecases-05, September 2012.

[32] Application Bridging for Federated Access Beyond web (abfab) IETF

Working Group. Available from: http://datatracker.ietf.org/wg/

abfab/charter/. Accessed 7 July 2014.

[33] J. Howlett, V. Nordh, and W. Singer. Deliverable DS3.1.1: eduGAIN service

definition and policy (Initial Draft). Project Deliverable, May 2010.

149

http://help.ipass.com/doku.php?id=netserver_configuration
http://help.ipass.com/doku.php?id=netserver_configuration
http://www.starhomemach.com/roaming/
http://www.starhomemach.com/roaming/
http://www.syniverse.com/products-services/product/global-interstandard-roaming-solution-uniroam
http://www.syniverse.com/products-services/product/global-interstandard-roaming-solution-uniroam
http://www.rediris.es/sir/index.html.en
http://www.rediris.es/sir/index.html.en
http://datatracker.ietf.org/wg/abfab/charter/
http://datatracker.ietf.org/wg/abfab/charter/

BIBLIOGRAPHY

[34] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Protocol Architecture.

IETF RFC 4251, January 2006.

[35] Public-Key Infrastructure (X.509). Available from: http://www.ietf.

org/html.charters/pkix-charter.html. Accessed 7 July 2014.

[36] T. Dierks and C. Allen. The TLS Protocol Version 1.0. IETF RFC 2246, January

1999.

[37] J. Howlett and S. Hartman. Project Moonshot. Avalabile from: https://

community.ja.net/groups/moonshot. Accessed 7 July 2014.

[38] S. Sakane, K. Kamada, S. Zrelli, and M. Ishiyama. Problem Statement on the

Cross-Realm Operation of Kerberos. IETF RFC 5868, May 2010.

[39] Janet home page. Available from: https://www.ja.net/. Accessed 7 July

2014.

[40] J. Linn. Generic Security Service Application Program Interface Version

2. IETF RFC 2743, January 2000.

[41] The Internet Engineering Task Force (IETF). Available from: http://www.

ietf.org/. Accessed 7 July 2014.

[42] GEANT Project . Available from: http://www.geant.net/pages/home.

aspx. Accessed 7 July 2014.

[43] D. Forsberg, Y. Ohba, B. Patil, H. Tschofenig, and A. Yegin. Protocol for

Carrying Authentication for Network Access (PANA). IETF RFC 5191,

May 2008.

[44] C. de Laat, G. Gross, L. Gommans, J. Vollbrecht, and D. Spence. Generic AAA

Architecture. IETF RFC 2903, August 2000.

[45] D. Verma. Service Level Agreement in IP Networks. In Proceedings of

IEEE, volume 92, pages 1382–1388, September 2004.

[46] C. Rigney. RADIUS Accounting. IETF RFC 2866, June 2000.

[47] B. Aboba and P. Calhoun. RADIUS support for EAP. IETF RFC 3579, June

2003.

150

http://www.ietf.org/html.charters/pkix-charter.html
http://www.ietf.org/html.charters/pkix-charter.html
https://community.ja.net/groups/moonshot
https://community.ja.net/groups/moonshot
https://www.ja.net/
http://www.ietf.org/
http://www.ietf.org/
http://www.geant.net/pages/home.aspx
http://www.geant.net/pages/home.aspx

BIBLIOGRAPHY

[48] A. DeKok and G. Weber. RADIUS Design Guidelines. IETF RFC 6158, March

2011.

[49] A. DeKok. Remote Authentication Dial-In User Service (RADIUS)

Protocol Extensions. IETF RFC 6929, April 2013.

[50] RADIUS EXTensions (RADEXT) IETF Working Group. Available from:

http://datatracker.ietf.org/wg/radext/charter/. Accessed 7 July

2014.

[51] A. Perez-Mendez, R. Marin-Lopez, F. Pereniguez-Garcia, G. Lopez-Millan, A.

DeKok, and D. Lopez. Support of fragmentation of RADIUS packets. IETF

Internet Draft, draft-perez-radext-radius-fragmentation-07, July 2014.

[52] S. Winter, M. McCauley, S. Venaas, and K. Wierenga. Transport Layer Security

(TLS) Encryption for RADIUS. IETF RFC 6614, May 2012.

[53] R. Stewart. Stream Control Transmission Protocol. IETF RFC 4960,

September 2007.

[54] M. Tuexen, R. Seggelmann, and E. Rescorla. Datagram Transport Layer

Security (DTLS) for Stream Control Transmission Protocol (SCTP). IETF

RFC 6083, January 2011.

[55] S. Kent and K. Seo. Security Architecture for the Internet Protocol. IETF

RFC 4301, December 2005.

[56] P. Calhoun, G. Zorn, D. Spence, and D. Mitton. Diameter Network Access

Server Application. IETF RFC 4005, August 2005.

[57] P. Eronen, T. Hiller, and G. Zorn. Diameter Extensible Authentication

Protocol (EAP) Application. IETF RFC 4072, August 2005.

[58] Il-Gon Kim and Jin-Young Choi. Formal verification of PAP and EAP-MD5

protocols in wireless networks: FDR model checking. In Advanced

Information Networking and Applications, 2004. AINA 2004. 18th International

Conference on, volume 2, pages 264–269 Vol.2, March 2004.

[59] D. Simon, B. Aboba, and R. Hurst. The EAP-TLS Authentication Protocol.

IETF RFC 5216, March 2008.

151

http://datatracker.ietf.org/wg/radext/charter/

BIBLIOGRAPHY

[60] P. Funk and S. Blake-Wilson. EAP Tunneled TLS Authentication Protocol

(EAP-TTLS). IETF Internet Draft, draft-ietf-pppext-eap-ttls-05, July 2004.

[61] A. Palekar, D. Simon, J. Salowey, H. Zhou, G. Zorn, and S. Josefsson.

Protected EAP Protocol (PEAP) Version 2. IETF Internet Draft,

draft-josefsson-pppext-eap-10, October 2004.

[62] J. Arkko and H. Haverinen. Extensible Authentication Protocol Method for

3rd Generation Authentication and Key Agreement (EAP-AKA). IETF

RFC 4187, Jan. 2006.

[63] H. Haverinen and J. Salowey. Extensible Authentication Protocol Method for

Global System for Mobile Communications (GSM) Subscriber Identity

Modules (EAP-SIM). IETF RFC 4186, January 2006.

[64] H. Tschofenig, D. Kroeselberg, A. Pashalidis, Y. Ohba, and F. Bersani. The

Extensible Authentication Protocol-Internet Key Exchange Protocol

version 2 (EAP-IKEv2) Method. IETF RFC 5106, February 2008.

[65] B. Aboba, D. Simon, and P. Eronen. Extensible Authentication Protocol Key

Management Framework. IETF RFC 5247, August 2008.

[66] J. Salowey, L. Dondeti, V. Narayanan, and M. Nakhjiri (2008). Specification

for the Derivation of Root Keys from an Extended Master Session Key

(EMSK). IETF RFC 5295, August 2008.

[67] S. Winter and J. Salowey. Update to the EAP Applicability Statement. IETF

Internet Draft, draft-winter-abfab-eapapplicability-02, October 2011.

[68] IEEE 802.1X Std., Standards for Local and Metropolitan Area Networks:

Port based Network Access Control. IEEE Standards, 2004.

[69] W. A. Arbaugh, N. Shankar, and Y. Wan. Your 802.11 Wireless Network has

No Clothes. IEEE Wireless Communications, vol. 9(1):pp. 44–51, November 2006.

[70] IEEE 802.11i Std., Wireless LAN Medium Access Control (MAC) and

Physical Layer (PHY) Specifications: Specification for Enhanced Security.

IEEE Standards, July 2005.

[71] Bruce Schneier. Applied cryptography: protocols, algorithms, and source

code in C. john wiley & sons, 2007.

152

BIBLIOGRAPHY

[72] J. Katoen. NIST FIPS PUB 197, Advanced Encryption Standard (AES).

Available from: http://csrc.nist.gov/publications/fips/fips197/

fips-197.pdf. Accessed 7 July 2014, November 2001.

[73] IEEE 802.16: Broadband Wireless Metropolitan Area Networks (MANs).

IEEE Standard, 2012.

[74] IEEE 802.16e Standard: Air Interface for Fixed and Mobile Broandband

Wireless Access System. IEEE Standard, February 2006.

[75] IEEE 802.21: Draft IEEE Standard for Local and Metropolitan Area

Networks: Media Independent Handover Services. IEEE Standard, 2008.

[76] IEEE 802.21a. Local and Metropolitan Area Networks: Media

Independent Handover Services - Amendment for Security Extensions to

Media Independent Handover Services and Protocol. IEEE Standard, 2012.

[77] C. Kauffman. Internet Key Exchange (IKEv2) Protocol. IETF RFC 4306,

December 2005.

[78] W. Stallings. SNMPv3: A security enhancement for SNMP. Communications Surveys

Tutorials, IEEE, 1(1):2–17, January 1998.

[79] Tim Berners-Lee and Mark Fischetti. Weaving the Web: The Original

Design and Ultimate Destiny of the World Wide Web by Its Inventor.

HarperInformation, 2000.

[80] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T.

Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. IETF RFC 2616,

June 1999.

[81] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and L.

Stewart. HTTP Authentication: Basic and Digest Access Authentication.

IETF RFC 2617, June 1999.

[82] OASIS Security Services Technical Committe. Available from:

https://www.oasis-open.org/committees/tc_home.php?wg_

abbrev=security. Accessed 7 July 2014.

153

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security

BIBLIOGRAPHY

[83] S. Cantor, F. Hirsch, J. Kemp, R. Philpott, and E. Maler (Eds.). Bindings for the

OASIS Security Assertion Markup Language (SAML) V2.0. OASIS, March

2005.

[84] J. Hughes, S. Cantor, J. Hodges, F. Hirsch, P. Mishra, R. Philpott, and E. Maler

(Eds.). Profiles for the OASIS Security Assertion Markup Language

(SAML) V2.0. OASIS, March 2005.

[85] XML Security Working Group. Available from: http://www.w3.org/2008/

xmlsec/. Accessed 7 July 2014.

[86] S. Cantor, J. Moreh, R. Philpott, and E. Maler (Eds.). Metadata for the OASIS

Security Assertion Markup Language (SAML) v2.0. OASIS, March 2005.

[87] Internet2 - Shiboleth. Available from: http://shibboleth.internet2.

edu. Accessed 7 July 2014.

[88] SimpleSAMLphp. Available from: simplesamlphp.org. Accessed 7 July 2014.

[89] Windows CardSpace. Available from: http://www.microsoft.com/

windows/products/winfamily/cardspace. Accessed 7 July 2014.

[90] D.J. Lutz and B. Stiller. A Survey of Payment Approaches for Identity

Federations in Focus of the SAML Technology. Communications Surveys

Tutorials, IEEE, 15(4):1979–1999, 2013.

[91] D. Reed and D. McAlpin (Eds.). Extensible Resource Identifier (XRI) Syntax

V2.0. OASIS, November 2005.

[92] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services

Description Language (WSDL) 1.1. Available from: http://www.w3.org/

TR/wsdl. Accessed 7 July 2014, March 2001.

[93] M. Gudgin, M. Hadley, N. Mendelsohn, and J. Moreau. SOAP Version 1.2 Part

1: Messaging Framework (Second Edition). Available from: http://www.

w3.org/TR/soap12-part1/. Accessed 7 July 2014, April 2007.

[94] K. Lawrence, C. Kaler, and A. Nadalin. Web Services Security:

SOAP Message Security 1.1 (WS-Security 2004). Available

from: http://docs.oasis-open.org/wss/v1.1/wss-v1.

154

http://www.w3.org/2008/xmlsec/
http://www.w3.org/2008/xmlsec/
http://shibboleth.internet2.edu
http://shibboleth.internet2.edu
simplesamlphp.org
http://www.microsoft.com/windows/products/winfamily/cardspace
http://www.microsoft.com/windows/products/winfamily/cardspace
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-errata-os-SOAPMessageSecurity.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-errata-os-SOAPMessageSecurity.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-errata-os-SOAPMessageSecurity.pdf

BIBLIOGRAPHY

1-spec-errata-os-SOAPMessageSecurity.pdf. Accessed 7 July 2014,

November 2006.

[95] A. Nadalin et at. WS-Trust 1.4. Available from: http://docs.

oasis-open.org/ws-sx/ws-trust/v1.4/errata01/os/ws-trust-1.

4-errata01-os-complete.pdf. Accessed 7 July 2014, April 2012.

[96] M. Goodner and A. Nadalin. WS-Federation 1.2. Available from: http://

docs.oasis-open.org/wsfed/federation/v1.2/ws-federation.pdf.

Accessed 7 July 2014, May 2009.

[97] A. Nadalin et al. WS-SecurityPolicy 1.3. Available from: http://docs.

oasis-open.org/ws-sx/ws-securitypolicy/v1.3/errata01/os/

ws-securitypolicy-1.3-errata01-os-complete.pdf. Accessed 7 July

2014, April 2012.

[98] M. Jones, D. Balfanz, J. Bradley, Y. Goland, J. Panzer, N. Sakimura,

and P. Tarjan. JSON Web Token (JWT). IETF Internet Draft,

draft-ietf-oauth-json-web-token-25, July 2014.

[99] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and C. Mortimore. OpenID

Connect Basic Client Profile 1.0 - draft 24. Available from: http://

openid.net/specs/openid-connect-basic-1_0.html. Accessed 7 July

2014, March 2013.

[100] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler, and D.

Noveck. Network File System (NFS) version 4 Protocol. IETF RFC 3530,

April 2003.

[101] J. Klensin. Simple Mail Transfer Protocol. IETF RFC 5321, October 2008.

[102] M. Crispin. INTERNET MESSAGE ACCESS PROTOCOL - VERSION

4rev1. IETF RFC 3501, March 2003.

[103] S. Hartman and L. Zhu. A Generalized Framework for Kerberos

Pre-Authentication. IETF RFC 6113, April 2011.

[104] Common Authentication Technology Next Generation (kitten) IETF

Working Group. Available from: http://datatracker.ietf.org/wg/

kitten/charter/. Accessed 7 July 2014.

155

http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-errata-os-SOAPMessageSecurity.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-errata-os-SOAPMessageSecurity.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-errata-os-SOAPMessageSecurity.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/errata01/os/ws-trust-1.4-errata01-os-complete.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/errata01/os/ws-trust-1.4-errata01-os-complete.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/errata01/os/ws-trust-1.4-errata01-os-complete.pdf
http://docs.oasis-open.org/wsfed/federation/v1.2/ws-federation.pdf
http://docs.oasis-open.org/wsfed/federation/v1.2/ws-federation.pdf
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/errata01/os/ws-securitypolicy-1.3-errata01-os-complete.pdf
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/errata01/os/ws-securitypolicy-1.3-errata01-os-complete.pdf
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/errata01/os/ws-securitypolicy-1.3-errata01-os-complete.pdf
http://openid.net/specs/openid-connect-basic-1_0.html
http://openid.net/specs/openid-connect-basic-1_0.html
http://datatracker.ietf.org/wg/kitten/charter/
http://datatracker.ietf.org/wg/kitten/charter/

BIBLIOGRAPHY

[105] SQL Server Protocols. Available from: http://msdn.microsoft.com/

en-us/library/ee210043(v=sql.105).aspx. Accessed 7 July 2014.

[106] L. Zhu, K. Jaganathan, and S. Hartman. The Kerberos Version 5 Generic

Security Service Application Program Interface (GSS-API) Mechanism:

Version 2. IETF RFC 4121, July 2005.

[107] S. Hartman and J. Howlett. A GSS-API Mechanism for the Extensible

Authentication Protocol. IETF RFC 7055, August 2012.

[108] S. Josefsson and N. Williams. Using Generic Security Service Application

Program Interface (GSS-API) Mechanisms in Simple Authentication and

Security Layer (SASL): The GS2 Mechanism Family. IETF RFC 5801, July

2010.

[109] P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP):

Core. IETF RFC 3920, October 2004.

[110] K. Zeilenga. Lightweight Directory Access Protocol (LDAP): Technical

Specification Road MapAn Information Model for Kerberos Version 5.

IETF RFC 4510, June 2006.

[111] P. Leach, C. Newman, and A. Melnikov. Using Digest Authentication as a

SASL Mechanism. IETF RFC 6331, May 2000.

[112] L. Nerenberg. The CRAM-MD5 SASL Mechanism. IETF Internet Draft,

draft-ietf-sasl-crammd5-10, July 2008.

[113] Trans-European Research and Education Networking Association.

Available from: http://www.terena.org/. Accessed 7 July 2014.

[114] eduroam: instant wireless access for visitors and Princeton travelers.

Available from: http://www.princeton.edu/oit/news/archive/?id=

8799. Accessed 7 July 2014.

[115] M. Sánchez, G. López, O. Cánovas, and A.F. Gómez-Skarmeta. Performance

analysis of a cross-layer SSO mechanism for a roaming infrastructure.

J. Netw. Comput. Appl., 32:808–823, July 2009.

[116] eduPKI. Available from: http://www.edupki.org. Accessed 7 July 2014.

156

http://msdn.microsoft.com/en-us/library/ee210043(v=sql.105).aspx
http://msdn.microsoft.com/en-us/library/ee210043(v=sql.105).aspx
http://www.terena.org/
http://www.princeton.edu/oit/news/archive/?id=8799
http://www.princeton.edu/oit/news/archive/?id=8799
http://www.edupki.org

BIBLIOGRAPHY

[117] S. Hartman, T. Clancy, and K. Hoeper. Channel Binding Support for EAP

Methods. IETF RFC 6677, July 2012.

[118] N. Williams, L. Johansson, S. Hartman, and S. Josefsson. Generic

Security Service Application Programming Interface (GSS-API) Naming

Extensions. IETF RFC 6680, August 2012.

[119] S. Hartman and J. Howlett. Name Attributes for the GSS-API Extensible

Authentication Protocol (EAP) Mechanism. IETF RFC 7056, December 2013.

[120] B. Aboba, M. Beadles, J. Arkko, and P. Eronen. The Network Access Identifier.

IETF RFC 4282, December 2005.

[121] The MIT Kerberos Consortium. Available from: http://www.kerberos.

org. Accessed 7 July 2014.

[122] H. Tschofenig. Bootstrapping Kerberos. IETF Internet Draft,

draft-tschofenig-pana-bootstrap-kerberos-00, July 2004.

[123] P.L. Hellwell, T.W. van der Horst, and K.E. Seamons. Extensible

Pre-Authentication in Kerberos. In Proc. of the Twenty-Third Annual

Conference on Computer Security Applications, 2007, Miami Beach, FL,

December 2007.

[124] Microsoft MS-PAC: Privilege Attribute Certificate Data Structure

(v20100711).

[125] Introduction to Active Directory. Available from: http://technet.

microsoft.com/en-us/library/cc758535(v=ws.10).aspx. Accessed 7

July 2014.

[126] Kerberos WG. Available from: http://www.ietf.org/html.charters/

krb-wg-charter.html. Accessed 7 July 2014.

[127] S. Sorce, T. Yu, and T. Hardjono. A Generalized PAC for Kerberos V5. IETF

Internet Draft, draft-ietf-krb-wg-general-pac-01, Oct 2011.

[128] J. Hodges, J. Howlett, L. Johansson, and RL. Morgan. Towards Kerberizing Web

Identity and Services. Kerberos consortium, December 2008.

157

http://www.kerberos.org
http://www.kerberos.org
http://technet.microsoft.com/en-us/library/cc758535(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/cc758535(v=ws.10).aspx
http://www.ietf.org/html.charters/krb-wg-charter.html
http://www.ietf.org/html.charters/krb-wg-charter.html

BIBLIOGRAPHY

[129] J. Howlett and T. Hardjono. SAML V2.0 Kerberos Subject Confirmation

Method Version 1.0. Committee Draft 01, December 2009.

[130] J. Howlett and T. Hardjono. SAML V2.0 Kerberos Attribute Profile Version

1.0. Committee Draft 01, December 2009.

[131] N. Klingenstein, T. Scavo, J. Howlett, and T. Hardjono. SAML V2.0 Kerberos

Web Browser SSO Profile Version 1.0. October 2009.

[132] J. Hodges and T. Wason (Eds.). Liberty Architecture Overview. Version 1.1.

January 2003.

[133] R. Maŕın-López, F. Pereñ́ıguez, G. López, and A. Pérez-Méndez. Providing

EAP-based Kerberos pre-authentication and advanced authorization for

network federations. Computer Standards & Interfaces, 33(5):494–504, 2011.

[134] J. Vollbrecht, P. Eronen, N. Petroni, and Y. Ohba. State Machines for Extensible

Authentication Protocol (EAP) Peer and Authenticator. IETF RFC 4137,

August 2005.

[135] A. Pérez-Méndez, R. Marin-Lopez, F. Pereniguez-Garcia, and G. Lopez-Millan.

GSS-API pre-authentication for Kerberos. IETF Internet Draft,

draft-perez-krb-wg-gss-preauth-02, September 2012.

[136] MIT Kerberos. Available from: http://web.mit.edu/kerberos/. Accessed

7 July 2014.

[137] GSS preauth plugin. Available from: https://github.com/

alejandro-perez/krb5.git. Accessed 7 July 2014.

[138] G. Zorn. Microsoft Vendor-specific RADIUS Attributes. IETF RFC 2548,

March 1999.

[139] J. Howlett and S. Hartman. A RADIUS Attribute, Binding, Profiles, Name

Identifier Format, and Confirmation Methods for SAML. IETF Internet

Draft, draft-ietf-abfab-aaa-saml-09, February 2014.

[140] W. Hommel. Using XACML for Privacy Control in SAML-Based Identity

Federations. In Jana Dittmann, Stefan Katzenbeisser, and Andreas Uhl,

editors, Communications and Multimedia Security, volume 3677 of Lecture Notes

in Computer Science, pages 160–169. Springer Berlin Heidelberg, 2005.

158

http://web.mit.edu/kerberos/
https://github.com/alejandro-perez/krb5.git
https://github.com/alejandro-perez/krb5.git

BIBLIOGRAPHY

[141] L. Zhu. Additional Kerberos Naming Constraints. IETF RFC 6111, February

2011.

[142] L. Zhu, P. Leach, and S. Hartman. Anonymity Support for Kerberos. IETF

RFC 6112, April 2011.

[143] G.C. Kessler and D.E. Levine. DENIAL-OF-SERVICE ATTACKS. Computer

Security Handbook, Set, 18:27, 2012.

[144] RADIUS fragmentation Proof of Concept implementation. Available

from: https://libra.inf.um.es/˜alex/freeradius-server-2.1.

12-fragmentation-support.tar.gz. Accessed 7 July 2014.

[145] FreeRadius. Available from: http://www.freeradius.org. Accessed 7 July

2014.

[146] S. Hartman. Larger Packets for RADIUS over TCP. IETF Internet Draft,

draft-ietf-radext-bigger-packets-01, July 2014.

[147] R. Housley and B. Aboba. Guidance for Authentication, Authorization, and

Accounting (AAA) Key Management. IETF RFC 4962, July 2007.

[148] D.R. Lopez et al. Deliverable DJ5.2.2,2: GÉANT2 Authorisation and

Authentication Infrastructure (AAI) Architecture - second edition. Project

Deliverable, April 2007.

[149] M. Wasserman and S. Hartman. Application Bridging for Federation

Beyond the Web (ABFAB) Trust Router Protocol. IETF Internet Draft,

draft-mrw-abfab-trust-router-02, February 2014.

[150] A. Pérez-Méndez, R. Maŕın-López, F. Pereniguez-Garcia, and G. Lopez-Millan.

GSS-EAP pre-authentication for Kerberos. IETF Internet Draft,

draft-perez-abfab-eap-gss-preauth-01, March 2012.

[151] R. Marin-Lopez, F. Pereniguez-Garcia, Y. Ohba, and A.F. Skarmeta. Network

access security for the internet: protocol for carrying authentication for

network access. IEEE Communications Magazine, vol. 50(3):pp. 84–92, March

2012.

159

https://libra.inf.um.es/~alex/freeradius-server-2.1.12-fragmentation-support.tar.gz
https://libra.inf.um.es/~alex/freeradius-server-2.1.12-fragmentation-support.tar.gz
http://www.freeradius.org

BIBLIOGRAPHY

[152] G. Giaretta, R. Lopez, Y. Ohba, S. Thomson, and H. Tschofenig. Usage Scenarios

and Requirements for Multi-hop EAP Lower Layer. IETF Internet Draft,

draft-ohba-multihop-eap-00, February 2005.

[153] H. Krawczyk and M. Bellare. HMAC: Keyed-Hashing for Message

Authentication. IETF RFC 2104, February 1997.

[154] W. Diffie and M.E. Hellman. New directions in cryptography. Information

Theory, IEEE Transactions on, 22(6):644–654, Nov 1976.

[155] Y. Ohba and A. Yegin. Definition of Master Key between PANA Client and

Enforcement Point. IETF RFC 5807, March 2010.

[156] L. Johansson. An Information Model for Kerberos Version 5. IETF RFC

6880, March 2013.

[157] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman. Network

Configuration Protocol (NETCONF). IETF RFC 6241, June 2011.

[158] S. Josefsson. The Base16, Base32, and Base 64 Data Encodings. IETF RFC

4648, October 2006.

[159] D. Stanley, B. Aboba, and J. Walker. Extensible Authentication Protocol

(EAP) Method Requirements for Wireless LANs. IETF RFC 4017, March

2005.

[160] J. Schaad, L. Zhu, and J. Altman. Initial and Pass Through Authentication

Using Kerberos V5 and the GSS-API (IAKERB). IETF Internet Draft,

draft-ietf-kitten-iakerb-01, February 2014.

[161] Y. Wei. Federated Cross-Layer Access. IETF Internet Draft,

draft-wei-abfab-fcla-02, March 2012.

[162] William Stallings. Network and internetwork security: principles and

practice, volume 1. Prentice Hall Upper Saddle River, NJ, 1995.

[163] G. Zorn, T. Zhang, J. Walker, and J. Salowey. Cisco Vendor-Specific RADIUS

Attributes for the Delivery of Keying Material. April 2011.

[164] S. Sakane and M. Ishiyama. Kerberos Options for DHCPv6. IETF Internet

Draft, draft-sakane-dhc-dhcpv6-kdc-option-10, November 2010.

160

BIBLIOGRAPHY

[165] L. Zhu and B.Tung. Public Key Cryptography for Initial Authentication in

Kerberos (PKINIT). IETF RFC 4556, June 2006.

[166] K. Hoeper and L. Chen. Recommendation for EAP Methods Used in Wireless

Network Access Authentication. Standard document, September 2009.

[167] Y. Desmedt. Man-in-the-Middle Attack. In HenkC.A. van Tilborg and Sushil Jajodia,

editors, Encyclopedia of Cryptography and Security, pages 759–759. Springer US,

2011.

[168] J. Katoen. NIST FIPS 180-2, Secure Hash Standard. With Change Notice 1

dated Feb. 2004, August 2002.

[169] M. Abdalla and M. Bellare. Increasing the Lifetime of a Key: A Comparative

Analysis of the Security of Re-keying Techniques. In Proceedings of the 6th

International Conference on the Theory and Application of Cryptology

and Information Security: Advances in Cryptology, ASIACRYPT ’00, pages

546–559, London, UK, 2000. Springer-Verlag.

[170] K. Hoeper, M. Nakhjiri, and Y. Ohba. Distribution of EAP-Based Keys for

Handover and Re-Authentication. IETF RFC 5749, March 2010.

[171] Automated Validation of Internet Security Protocols and Applications

(AVISPA). Available from: http://www.avispa-project.org/. Accessed 7

July 2014.

[172] A. Armando, R. Carbone, L. Compagna, J. Cuellar, and L. Tobarra. Formal

analysis of SAML 2.0 web browser single sign-on: breaking the

SAML-based single sign-on for google apps. In FMSE ’08: Proceedings

of the 6th ACM workshop on Formal methods in security engineering,

pages 1–10, New York, NY, USA, 2008.

[173] A. Ruiz-Mart́ınez, C.I. Maŕın-López, L. Baño-López, and A.F. Gómez-Skarmeta. A

New Fair Non-repudiation Protocol for Secure Negotiation and Contract

Signing. Journal of Universal Computer Science, 15(3):555–584, 2009.

[174] Deliverable D2.1: The High Level Protocol Specication Language. AVISPA

IST-2001-39252 Deliverable, August 2003.

[175] D. Dolev and A. Yao. On the security of public key protocols. IEEE

Transactions on Information Theory, vol. 29(2):pp. 198–208, March 1983.

161

http://www.avispa-project.org/

BIBLIOGRAPHY

[176] L. Vigan. Automated Security Protocol Analysis With the AVISPA Tool.

Elsevier Electric Notes in Theoretical Computer Science, 155:61–86, 2006.

[177] I. Cervesato. The Dolev-Yao Intruder is the Most Powerful Attacker. In

Proc. of the Sixteenth Annual Symposium on Logic in Computer Science

LICS’01, pages 16–19. IEEE Computer Society Press. Short, 2001.

[178] A. Perez Mendez, P.J. Fernandez Ruiz, R. Marin Lopez, G. Martinez Perez, A.F.

Gomez Skarmeta, and K. Taniuchi. OpenIKEv2: Design and Implementation

of an IKEv2 Solution. IEICE - Trans. Inf. Syst., E91-D(5):1319–1329, May 2008.

[179] The TAO of IETF: A Novice’s Guide to the Internet Engineering Task

Force. Available from: https://www.ietf.org/tao.html. Accessed 7 July

2014.

[180] F. Pereniguez, R. Marin-Lopez, G. Kambourakis, S. Gritzalis, and A.F. Gomez.

PrivaKERB: A user privacy framework for Kerberos. Elsevier Computers &

Security, 30(6-7):446–463, 2011.

[181] A. Pérez-Méndez, F. Pereñ́ıguez-Garćıa, R. Maŕın-López, and G. López-Millán. A

cross-layer SSO solution for federating access to kerberized services in

the eduroam/DAMe network. International Journal of Information Security,

11(6):365–388, 2012.

[182] OpenSSH. Available from: http://www.openssh.com. Accessed 7 July 2014.

[183] OpenPANA. Available from: https://sourceforge.net/projects/

openpana/. Accessed 7 July 2014.

[184] WPA Supplicant. Available from: http://hostap.epitest.fi/wpa_

supplicant/. Accessed 7 July 2014.

[185] Cardiff University. Available from: http://www.cardiff.ac.uk/. Accessed

7 July 2014.

[186] P. Martinez-Julia, A.J. Jara, and A.F. Skarmeta. GAIA Extended Research

Infrastructure: Sensing, Connecting, and Processing the Real World. In

Proceedings of the TridentCom 2012, pages 3–4. Springer, 2012.

[187] XEN project. Available from: http://www.xen.org/. Accessed 7 July 2014.

162

https://www.ietf.org/tao.html
http://www.openssh.com
https://sourceforge.net/projects/openpana/
https://sourceforge.net/projects/openpana/
http://hostap.epitest.fi/wpa_supplicant/
http://hostap.epitest.fi/wpa_supplicant/
http://www.cardiff.ac.uk/
http://www.xen.org/

BIBLIOGRAPHY

[188] Debian. Available from: http://www.debian.org/. Accessed 7 July 2014.

[189] Wireshark. Available from: http://www.wireshark.org. Accessed 7 July

2014.

[190] K. Raeburn. Encryption and Checksum Specifications for Kerberos 5. IETF

RFC 3961, February 2005.

[191] H. Zimmermann. OSI Reference Model–The ISO Model of Architecture

for Open Systems Interconnection. Communications, IEEE Transactions on,

28(4):425–432, April 1980.

[192] GN3plus Open Call. Available from: http://geant3.archive.geant.

net/opencalls/overview/Documents/Open%20Call%20detailed%

20text%20FINAL.pdf. Accessed 7 July 2014.

[193] Horizon 2020 European Research and Innovation programme. Available

from: http://ec.europa.eu/programmes/horizon2020/. Accessed 7 July

2014.

[194] Cloud-ABFAB Federation Services in eduroam. Available from: http://

www.um.es/CLASSe. Accessed 7 July 2014.

[195] OpenStack Open Source Cloud Computing Software. Available from:

https://www.openstack.org/. Accessed 7 July 2014.

[196] A Federated Keystone Identity Server. Available from: http://sec.cs.

kent.ac.uk/demos/keystone.html. Accessed 7 July 2014.

[197] K. Jaganathan and L. Zhu. SPNEGO-based Kerberos and NTLM HTTP

Authentication in Microsoft Windows. IETF RFC 4559, June 2006.

[198] Z. Cao, B. He, Y. Shi, Q. Wu, and G. Zorn. EAP Extensions for EAP

Re-authentication Protocol (ERP). IETF RFC 6696, July 2012.

[199] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-4). IETF

RFC 4271, January 2006.

[200] F. Villavicencio. Defining Identity as a Service. Available

from: http://blog.identropy.com/IAM-blog/bid/29162/

Defining-Identity-as-a-Service. Accessed 7 July 2014.

163

http://www.debian.org/
http://www.wireshark.org
http://geant3.archive.geant.net/opencalls/overview/Documents/Open%20Call%20detailed%20text%20FINAL.pdf
http://geant3.archive.geant.net/opencalls/overview/Documents/Open%20Call%20detailed%20text%20FINAL.pdf
http://geant3.archive.geant.net/opencalls/overview/Documents/Open%20Call%20detailed%20text%20FINAL.pdf
http://ec.europa.eu/programmes/horizon2020/
http://www.um.es/CLASSe
http://www.um.es/CLASSe
https://www.openstack.org/
http://sec.cs.kent.ac.uk/demos/keystone.html
http://sec.cs.kent.ac.uk/demos/keystone.html
http://blog.identropy.com/IAM-blog/bid/29162/Defining-Identity-as-a-Service
http://blog.identropy.com/IAM-blog/bid/29162/Defining-Identity-as-a-Service

BIBLIOGRAPHY

[201] S. Deuby. Outsourcing Your Identity with IDaaS. Available

from: http://windowsitpro.com/identity-management/

outsourcing-your-identity-idaas. Accessed 7 July 2014.

[202] C. Bedell. Understanding IDaaS: The benefits and risks of Identity as a

Service. Available from: http://goo.gl/QAyS7i. Accessed 7 July 2014.

164

http://windowsitpro.com/identity-management/outsourcing-your-identity-idaas
http://windowsitpro.com/identity-management/outsourcing-your-identity-idaas
http://goo.gl/QAyS7i

Appendix A

List of Acronyms

AAA Authentication, Authorization and Accounting

ABFAB Application Bridging for Federated Access Beyond web

ADE Authorization data elements

AP Access Point

API Application Programming Interface

AppS Application Server

AS Authentication Server

AVP Attribute Value Pair

BGP Border Gateway Protocol

BS Base Station

CLASSe Cloud-ABFAB Federation Services in eduroam

CNP Configuration Network Protocol

DAMe Deploying Authorization Mechanisms for federated services in eduroam.

DoS Denial of Service

DSRK Domain Specific Root Key

DSUSRK Domain Specific and Usage Specific Root Key

EAP Extensible Authentication Protocol

EAPOL EAP over LAN

EMSK Extended Master Session Key

EP Enforcement Point

ERP EAP Re-authentication Protocol

FAST Flexible Authentication Secure Tunnelling

GSS-API Generic Security Service Application Program Interface

GSS-EAP A GSS-API Mechanism for EAP

165

A. List of Acronyms

GSS-KRB Kerberos GSS-API Mechanism

GTK Group Transient Key

H-AAA Home organization’s AAA server

HI Home Institution

HLPSL High Level Protocol Specification Language

HTTP Hypertext Transfer Protocol

ICT Information and Communications Technologies

IdP Identity provider

IDaaS Identity-as-a-Service

IETF Internet Engineering Task Force

EU End User

IKE Internet Key Exchange

IMAP Internet Message Access Protocol

KDC Key Distribution Center

KDF Key Derivation Function

KMF Key Management Framework

LAN Local Area Network

MDS Metadata Service

MICS Media Independent Command Service

MIES Media Independent Event Service

MIH Media Independent Handover

MIIS Media Independent Information Service

MSK Master Session Key

NAI Network Address Identifier

NAS Network Access Server

NASREQ Network Access Server Requirements Application

NREN National Research and Educational Network

OSI Open Systems Interconnection model

PAA PANA Authentication Agent

PaC PANA Client

PAC Privilege Attribute Certificate

PAD Principal Authorization Data

PAN PANA-Auth-Answer

PANA Protocol for Carrying Authentication for Network Access

PAR PANA-Auth-Request

166

PDP Policy Decision Point

PEP Policy Enforcement Point

PEMK PaC-EP Master Key

PKI Public Key Infrastructure

PKINIT Public Key Cryptography for Initial Authentication in Kerberos

PMK Pairwise Master Key

PoA Point of Attachment

PoS Point of Service

PRF Pseudo Random Function

PTK Pairwise Transient Key

RFC Request for Comments

RP Relaying Party

RPC Remote Procedure Call

SA Security Association

SAML Security Assertion Markup Language

SASL Simple Authentication and Security Layer

SLA Service Level Agreement

SP Service Provider

SP-AAA Service provider’s AAA server

SS Subscriber Station

SSH Secure SHell

SSO Single Sign-On

ST Service Ticket

TEK Traffic Encryption Key

TERENA Trans-European Research and Education Networking Association

TGS Ticket Granting Server

TGT Ticket Granting Ticket

USRK Usage Specific Root Key

VI Visited Institution

VM Virtual Machine

VoIP Voice over IP

WEP Wired Equivalent Privacy

WG Working Group

WLAN Wireless LAN

WPA Wi-Fi Protected Access

167

A. List of Acronyms

WWW World Wide Web

XACML Extensible Access Control Markup Language

168

Appendix B

Example SAML assertion for the

authorization model

This authorization model described in this document requires the generation and delivery

of a SAMLv2 assertion from the home organization to the service provider right after the

EAP authentication has been completed (Section 3.4.1). This SAML assertion contains a

SAML AuthnStatement, which points out that the EU has been successfully authenticated,

and provides a transient pseudonym in the Subject element. It may optionally contain some

end user attributes, as discussed in Section 3.4.1, step 9.

This appendix provides an example of such an assertion, generated by the University

of Murcia, for one of its end users. The assigned pseudonym is pseudonym12345@um.es.

The assertion contains a single attribute called studentcard (not standardized), specifying

she is a student.

<saml:Assertion xmlns:saml=’urn:oasis:names:tc:SAML:2.0:assertion’

IssueInstant=’2014-07-17T18:45:10.738Z’

ID=’_3c39bc0fe7b13769cab2f6f45eba801b1245264310738’

Version=’2.0’>

<saml:Issuer Format=’urn:oasis:names:tc:SAML:2.0:nameid-format:entity’>

https://www.um.es

</saml:Issuer>

<saml:Subject>

<saml:NameID Format=’urn:oasis:names:tc:SAML:1.1:nameid-format:transient’>

pseudonym12345@um.es

</saml:NameID>

</saml:Subject>

<saml:Conditions NotBefore=’2014-07-17T18:45:10.738Z’

NotOnOrAfter=’2014-07-17T18:50:10.738Z’>

</saml:Conditions>

169

B. Example SAML assertion for the authorization model

<saml:AuthnStatement AuthnInstant=’2014-07-17T18:45:10.738Z’>

<saml:AuthnContext>

<saml:AuthnContextClassRef>

urn:oasis:names:tc:SAML:2.0:ac:classes:unspecified

</saml:AuthnContextClassRef>

</saml:AuthnContext>

</saml:AuthnStatement>

<saml:AttributeStatement>

<saml:Attribute NameFormat=’urn:oasis:names:tc:SAML:2.0:attrname-format:uri’

Name=’studentcard’>

<saml:AttributeValue>

Student

</saml:AttributeValue>

</saml:Attribute>

</saml:AttributeStatement>

</saml:Assertion>

170

Appendix C

Formal description of EduKERB

This appendix provides a detailed description of the message exchanges carried out in the

different phases of this proposal, as well as of the processing that is performed by the

participating entities. The notation is the same as described in Section 5.4.1.

C.1 Functions

The following list provides a brief description of the functions used in the description of

the processing that is performed in the entities after the reception of a message.

check eduToken(x). Verifies the eduToken “x”. Checks validity of the signature, adequacy of the authentication context, etc.

compute DH(x, y)(x). Obtains the shared secret resulting from a Diffie-Hellman key exchange, where “x” and “y” represent the

exchangeable parts of the key pairs.

derive dsrk(x, y). Derives a DSRK for the domain “y” from the EMSK indicated in “x”. RFC 5295.

derive dsusrk(x, y). Derives a DSUSRK for the application “y” from the DSRK indicated in “x”. RFC 5295.

derive emsk name(x). Derives the EMSKName from the EMSK indicated in “x”, following RFC 5295.

derive reply key(x). Derives the reply key from the DSUSRK “x”, following the guidelines of RFC 5295.

DiffieHellman(). Generates a new Diffie-Hellman key pair.

EAP Identity Response(x). Generates a new EAP Identity Response packet, using “x” as user’s NAI.

EAP Request(x, y). Generates a new EAP Request. “x” is the previously received EAP response. “y” is the EAP method being

used.

EAP Response(x). Generates a new EAP Response. “x” is the received EAP request.

EAP Success(). Generates a new EAP Success packet.

171

C. Formal description of EduKERB

generate armor key(x). Generates the armor key, using the information contained in “x”. “x” can be an enc-part or an armor

TGT.

generate eduToken(x). Generates a new eduToken related with the end user identifier by “x”.

generate reply key from DH(x). Generates the reply key from a Diffie Hellman shared secret “x”, as described in RFC 4556,

section 3.2.3.1

get attributes(x, y). Obtains the collection of attributes of the end user identified by “x” that are suitable to be provided to the

entity “y”.

get dsrk by emsk name(x). Obtains the DSRK associated to the EMSKName “x”.

get emsk(). Returns the EMSK generated by the EAP method.

get IDP(x). Obtains the IdP to be used for the end user identified by “x”.

get keying material key(x). Obtains the shared secret between the caller and the entity “x” used to generate the Keying-Material

RADIUS attribute, as specified in RFC 6218.

get local radius server(x). Obtains the address of the local RADIUS server of the entity “x”.

get mac key(x). Obtains the shared secret between the caller and the entity “x” used to generate the

Message-Authentication-Code RADIUS attribute, as specified in RFC 6218.

get msk(). Returns the MSK generated by the EAP method.

get next radius server(x). Obtains the next hop in the path where a RADIUS packet must be forwarded. “x” is the user’s NAI.

get tunnel key(). Returns the tunnelled EAP method’s tunnel key.

get pseudonym(x). Obtains the pseudonym included in the eduToken “x”.

get radius key(x). Obtains the RADIUS key used to protect the communications between the caller and the entity “x”.

get service key(x). Obtains the shared key between the KDC and the service identified by “x”.

get timestamp(). Obtains a timestamp corresponding to the current time.

get username from EAP method(). Returns the NAI of the authenticated end user. If the EAP method is tunnelled, returns

the user’s NAI of the inner method.

KeyingMaterial(x). Generates a new Keying-Material RADIUS attribute (RFC 6218). “x” indicates the kind of attribute:

• request dsrk → Request DSRK

• request usrk → Request USRK/DSUSRK

• dsrk → Transport DSRK

• usrk → Transport USRK/DSUSRK

MAC-Randomizer(). Generates a new MAC-Randomizer RADIUS Attribute (RFC 6218).

Message-Authentication-Code(x). Generates a new Message-Authentication-Code attribute (as described in RFC 6218). “x” is

the shared key used to generate the code.

SessionKey(). Generates a new Kerberos session key.

172

C.2 Exchanges’ detailed description

store dsrk(x, y). Stores the association between the EMSKName “x” and the DSRK “y”.

take authz decision(x, y). Takes an authorization decision based on the available policies for an user with the attributes “y”

wanting to access a service identified by “x”.

verify timestamp(x). Verifies that the timestamp “x” is not too old.

C.2 Exchanges’ detailed description

This section describes the message exchanges of the proposal. Specifically, the following

exchanges are detailed:

• Network authentication, distribution of the eduToken and keying material.

• Kerberos pre-authentication and TGT acquisition.

• Authorization and ST acquisition.

C.2.1 Network authentication, distribution of the eduToken and

keying material

1. System ⇒ AP: Start

(a) eap req = EAP Identity Request()

2. AP ⇒ EU: eap req

(a) eap res = EAP Identity Response(anonymous@home)

3. EU ⇒ AP: eap res

(a) VR = get local radius server(AP)

(b) key ap vr = get radius key(VR)

4. AP ⇒ VR: [Access-Request(anonymous@home, eap res)]key ap vr

(a) key ap vr = get radius key(VR)

(b) HR = get next radius server(anonymous@home)

(c) key vr hr = get radius key(HR)

(d) mackey vr hr = get mac key(HR)

(e) keying material = KeyingMaterial(request dsrk)

(f) randomizer = MAC-Randomizer()

(g) mac = Message-Authentication-Code(mackey vr hr)

5. VR ⇒ HR: [[Access-Request(anonymous@home, eap res, keying material, randomizer,mac)]mackey vr hr]key vr vr

(a) key vr hr = get radius key(HR)

173

C. Formal description of EduKERB

(b) mackey vr hr = get mac key(VR)

(c) eap req = EAP Request(eap rea, PEAP)

6. HR ⇒ VR: [Access-Challenge(anonymous@home, eap req)]key vr hr

7. VR ⇒ AP: [Access-Challenge(anonymous@home, eap req)]key ap vr

8. AP ⇒ EU: eap req

(a) eap res = EAP Response(eap req)

9. Repetition of the process from step 1 to 7. After several iterations, HR finalizes the authentication of the end user (after

step 3).

10. VR ⇒ HR: [[Access-Request(anonymous@home, eap res, keying material, randomizer,mac)]mackey vr hr]key vr hr

(a) username = get username from EAP method()

(b) IDP = get IDP(username)

11. HR ⇒ IDP: {{AuthnRequest(username)}HR−1}IDP

(a) eduToken = generate eduToken(username)

12. IDP ⇒ HR: {{SAML Response(eduToken)}IDP−1}HR

(a) tk = get tunnel key()

(b) msk = get msk()

(c) emsk = get emsk()

(d) emsk name = get emsk name(emsk)

(e) dsrk = derive dsrk(emsk, VR)

(f) keymat key vr hr = get keying material key(VR)

(g) keying material = KeyingMaterial(dsrk)

(h) randomizer = Randomizer()

(i) mac = Message-Authentication-Code(mackey vr hr)

(j) eap succ = EAP Success()

(k) pseudonym = get pseudonym(eduToken)

13. HR ⇒ EU: {eduToken}tk

14. HR⇒ VR: [[Access-Accept(emsk name, eap succ, pseudonym, msk, {keying material(dsrk)}keymat key vr hr, randomizer,

mac)]mackey vr hr]key vr hr

(a) store dsrk(emsk name, dsrk)

15. VR ⇒ AP: [Access-Accept(emsk name, eap succ, pseudonym, msk)]key ap vr

16. AP ⇒ EU: eap succ

(a) msk = get msk()

(b) emsk = get emsk()

174

C.2 Exchanges’ detailed description

C.2.2 Kerberos pre-authentication and TGT acquisition

1. System ⇒ EU: Start

(a) dh eu = DiffieHellman()

2. EU ⇒ KDC: AS REQ(WELLKNOW:ANONYMOUS, PA PK AS REP(dh eu))

(a) dh kdc = DiffieHellman()

(b) dh shared secret = compute DH(dh eu, dh kdc)

(c) pkinit reply key = generate reply key from DH(dh shared secret)

3. KDC ⇒ EU: AS REP(WELLKNOW:ANONYMOUS, PA PK AS REP(dh kdc, {signed data}KDC−1),

{armor TGT}key as tgs, {enc part}pkinit reply key)

(a) armor key = generate armor key(enc part)

(b) emsk name = derive emsk name(emsk)

(c) dsrk = derive dsrk(emsk, VR)

(d) dsusrk = derive dsusrk(dsrk, KDC)

(e) reply key = derive reply key(dsusrk)

(f) ts = get timestamp()

4. EU ⇒ KDC: AS REQ(WELLKNOWN:FEDERATED,

PA FX FAST REQUEST({armor TGT}key as tgs, {enc fast req(PA EDUTOKEN(eduToken, emsk name, [ts]reply key),

req body)}armor key))

(a) armor key = generate armor key(armor TGT)

(b) check eduToken(eduToken)

(c) VR = get local radius server(KDC)

(d) key kdc vr= get radius key(VR)

(e) mackey kdc vr = get mac key(VR)

(f) keying material = Keying-Material(request usrk)

(g) randomizer = MAC-Randomizer()

(h) mac = Message-Authentication-Code(mackey kdc vr)

5. KDC ⇒ VR: [Access-Request(emsk name, keying material, randomizer, mac)]mackey kdc vr]key kdc vr

(a) dsrk = get dsrk by emsk name(emsk name)

(b) dsusrk = derive dsusrk(dsrk, KDC)

(c) keymat key kdc vr = get keying material key(KDC)

(d) mackey kdc vr = get mac key(KDC)

(e) keying-material = Keying-Material(dsusrk)

(f) randomizer = MAC-Randomizer()

(g) mac = Message-Authentication-Code(mackey kdc vr)

(h) key kdc vr = get radius key(KDC)

6. VR ⇒ KDC: [[Access-Accept(emsk name, {keying material(dsusrk)}keymat key kdc vr, randomizer,

mac)]mackey kdc vr]key kdc vr

175

C. Formal description of EduKERB

(a) reply key = derive reply key(dsusrk)

(b) verify timestamp(ts)

(c) pseudonym = get pseudonym(eduToken)

(d) session key = SessionKey()

7. KDC ⇒ EU: AS REP(pseudonym, PA FX FAST RESPONSE({enc fast rep}armor key), {TGT(eduToken,

session key)}key as tgs, {enc-part(session-key)}reply key)

C.2.3 Authorization and ST acquisition

1. EU ⇒ KDC: TGS REQ(service, {TGT(eduToken, session key)}key as tgs, {authenticator}session key)

(a) IDP = get IDP(pseudonym)

(b) pseudonym = get pseudonym(eduToken)

2. 2. KDC ⇒ IDP: {{AttributeQuery(pseudonym, service)}KDC−1}IDP

(a) attributes = get attributes(pseudonym, KDC)

3. IDP ⇒ KDC: {{SAML Response(attributes)}IDP−1}KDC

4. KDC ⇒ PDP: {{Authorization Decision Query(service, attributes)}KDC−1}PDP

(a) decision = take authz decision(service, attributes)

5. PDP ⇒ KDC: {{Authorization Decision Response(decision, obligations)PDP−1}KDC

(a) service session key = SessionKey()

(b) service key = get service key(service)

6. KDC ⇒ EU: TGS REP(pseudonym, {ST(service session key)}service key , {enc-part(service session key)}session key)

176

Appendix D

HLPSL specification of EduKERB

This appendix provides the HLPSL specification of EduKERB that has been used for the

validation of the proposal.

D.1 Network authentication (phase 1) - Simplified

version

role peer(P, A, S, D : agent,

Kca, Kidp : public_key,

H : hash_func,

PRF : hash_func,

CHAP_PRF : hash_func,

Tranc : hash_func,

KeyGen : hash_func,

SND, RCV : channel (dy))

played_by P def=

local

UserId : text, % should not reveal user

Version : text, % version of TLS protocol, presently v1.0

SeID : text, % session id

Np : text, % nonce from client

Ns : text, % nonce from server

CipherSuite : text, % TLS ciphersuites supplied by the peer

Cipher : text, % TLS ciphersuite selected by server

Ks : public_key, % from server

Shd : text, % server-hello-done

Ccs : text, % change-cipher-spec

PMS : text, % pre-master-secret

MS : hash(text.text.text), % master-secret

Finished : hash(hash(text.text.text).agent.agent.text.text.text),

ClientK : hash(agent.text.text.hash(text.text.text)), % client session key for encryption

ServerK : hash(agent.text.text.hash(text.text.text)), % server session key for encryption

Txt : text, % string init. with "ttls challenge"

UName : text, % NAI of client e.g. andy@realm

177

D. HLPSL specification of EduKERB

ChapRs : text, % CHAP response

Edutoken : text, % UMU: Edutoken

Msk : hash(hash(text.text.text)), % hash(MS)

Emsk : hash(hash(hash(text.text.text))), % hash(MSK)

Emskname : hash(hash(hash(hash(text.text.text)))), % hash(EMSK)

Dsrk : hash(hash(hash(hash(text.text.text))).agent), % hash(EMSK.agent)

State : nat

const

request_id : text,

respond_id : text,

start_ttls : text,

success : text,

sec_clientK,

sec_serverK,

sec_uname,

np, ns : protocol_id

init State := 0

transition

0. State = 0

/\ RCV(request_id)

=|>

State’ := 1

/\ UserId’:= new()

/\ SND(respond_id.UserId’)

1. State = 1

/\ RCV(start_ttls)

=|>

State’ := 2

/\ Np’ := new()

/\ CipherSuite’ := new()

/\ SeID’ := new()

/\ Version’ := new()

/\ SND(Version’.SeID’.Np’.CipherSuite’) % client_hello

/\ witness(P,S,np,Np’)

2. State = 2

/\ RCV(Version.SeID’.Ns’.Cipher’. % server_hello

{S.Ks’}_inv(Kca). % server_certificate

Shd’) % server_hello_done

=|>

State’ := 3

/\ PMS’ := new()

/\ Ccs’ := new()

/\ MS’ := PRF(PMS’.Np.Ns’) % master secret

/\ Finished’ := H(MS’.P.S.Np.Cipher’.SeID)

/\ ClientK’ := KeyGen(P.Np.Ns’.MS’)

/\ ServerK’ := KeyGen(S.Np.Ns’.MS’)

/\ SND({PMS’}_Ks’. % client_key_exchange

Ccs’. % client_change_cipher_spec

{Finished’}_ClientK’) % finished

178

D.1 Network authentication (phase 1) - Simplified version

/\ secret(ClientK’,sec_clientK,{P,S})

/\ secret(ServerK’,sec_serverK,{P,S})

3. State = 3

/\ RCV(Ccs.{Finished}_ServerK)

=|>

State’ := 4

/\ Txt’ := new()

/\ ChapRs’ := new()

/\ UName’ := new()

/\ SND({UName’.

Tranc(CHAP_PRF(MS.Txt’.Np.Ns).1.16).

Tranc(CHAP_PRF(MS.Txt’.Np.Ns).17.17).

ChapRs’

}_ClientK)

/\ secret(UName’,sec_uname,{P,S})

/\ request(P,S,ns,Ns)

4. State = 4

/\ RCV(success)

=|>

State’ := 5

/\ Msk’ := KeyGen(MS) % Derive the three keys, and Emskname

/\ Emsk’ := KeyGen(Msk’)

/\ Emskname’ := KeyGen(Emsk’)

/\ Dsrk’ := KeyGen(Emsk’.A)

5. State = 5

/\ RCV({Edutoken’}_ServerK)

=|>

State’ := 6

end role

%%

role auth (P, A, S : agent,

Kas : symmetric_key, % to protect Keying-Material

SND, RCV : channel(dy))

played_by A def=

local

Emskname : hash(hash(hash(hash(text.text.text)))), % hash(EMSK)

Dsrk : hash(hash(hash(hash(text.text.text))).agent), % hash(EMSK.agent)

UserId : text,

State : nat

const

respond_id : text,

dsrk_req : text,

success : text

init State := 1

transition

1. State = 1

/\ RCV(respond_id.UserId’)

=|>

179

D. HLPSL specification of EduKERB

State’ := 2

/\ SND(respond_id.dsrk_req.UserId’) % Visited RADIUS server requests DSRK

2. State = 2

/\ RCV(Emskname’.success.{Dsrk’}_Kas) % Visited RADIUS server receivs EMSKName and DSRK

=|>

State’:= 3

/\ SND(success)

end role

%%

role server (P, A, S : agent,

Ks, Kca, Kidp : public_key,

Kas : symmetric_key,

H : hash_func,

PRF : hash_func,

CHAP_PRF : hash_func,

Tranc : hash_func,

KeyGen : hash_func,

SND, RCV : channel (dy))

played_by S def=

local

UserId : text, % should not reveal user

Version : text, % version of TLS protocol, presently v1.0

SeID : text, % session id

Np : text, % nonce from client

Ns : text, % nonce from server

CipherSuite : text, % TLS ciphersuites supplied by the peer

Cipher : text, % TLS ciphersuite selected by server

Shd : text, % server-hello-done

Ccs : text, % change-cipher-spec

PMS : text, % pre-master-secret

MS : hash(text.text.text), % master-secret

Finished : hash(hash(text.text.text).agent.agent.text.text.text),

ClientK : hash(agent.text.text.hash(text.text.text)), % client session key for encryption

ServerK : hash(agent.text.text.hash(text.text.text)), % server session key for encryption

Txt : text, % string init. with "ttls challenge"

UName : text, % NAI of client e.g. andy@realm

ChapRs : text, % CHAP response

Edutoken : text, % Edutoken

Msk : hash(hash(text.text.text)), % hash(MS)

Emsk : hash(hash(hash(text.text.text))), % hash(MSK)

Emskname : hash(hash(hash(hash(text.text.text)))), % hash(EMSK)

Dsrk : hash(hash(hash(hash(text.text.text))).agent), % hash(EMSK.agent)

State : nat

const

request_id : text,

respond_id : text,

dsrk_req : text,

start_ttls : text,

success : text,

np, ns : protocol_id,

sec_emsk, sec_dsrk : protocol_id

180

D.1 Network authentication (phase 1) - Simplified version

init State := 0

transition

0. State = 0

/\ RCV(start)

=|>

State’ := 1

/\ SND(request_id)

1. State = 1

/\ RCV(respond_id.dsrk_req.UserId’)

=|>

State’ := 2

/\ SND(start_ttls)

2. State = 2

/\ RCV(Version’.SeID’.Np’.CipherSuite’) % client_hello

=|>

State’ := 3

/\ Ns’ := new()

/\ Shd’ := new()

/\ Cipher’ := new()

/\ SND(Version’.SeID’.Ns’.Cipher’. % server_hello

{S.Ks}_inv(Kca). % server_certificate

Shd’) % server_hello_done

/\ witness(S,P,ns,Ns’)

3. State = 3

/\ RCV({PMS’}_Ks. % client_key_exchange

Ccs’. % client_change_cipher_spec

{Finished’}_ClientK’) % finished

/\ MS’ = PRF(PMS’.Np.Ns) % master secret

/\ Finished’ = H(MS’.P.S.Np.Cipher’.SeID)

/\ ClientK’ = KeyGen(P.Np.Ns.MS’)

=|>

State’ := 4

/\ ServerK’ := KeyGen(S.Np.Ns.MS’)

/\ SND(Ccs’. % server_change_cipher_spec

{Finished’}_ServerK’) % finished

4. State = 4

/\ RCV({UName’.

Tranc(CHAP_PRF(MS.Txt’.Np.Ns).1.16).

Tranc(CHAP_PRF(MS.Txt’.Np.Ns).17.17).

ChapRs’

}_ClientK)

=|>

State’:= 5

/\ Edutoken’ := new() % Edutoken generation simulation

/\ Msk’ := KeyGen(MS)

/\ Emsk’ := KeyGen(Msk’)

/\ Dsrk’ := KeyGen(Emsk’.A)

/\ Emskname’ := H(Emsk’)

/\ SND({Edutoken’}_ServerK) % Edutoken (to the EU)

181

D. HLPSL specification of EduKERB

/\ SND(Emskname’.success.{Dsrk’}_Kas) % Success + EMSKName + DSRK (to the visited RADIUS)

/\ secret(Emsk’,sec_emsk,{P,S})

/\ secret(Dsrk’,sec_dsrk,{P,S,A})

/\ request(S,P,np,Np)

/\ secret(Edutoken’,sec_edutoken,{S,P})

end role

%%

role session(P, A, S, D : agent,

Ks, Kca, Kidp : public_key,

Kas : symmetric_key,

H : hash_func,

PRF : hash_func,

CHAP_PRF : hash_func,

Tranc : hash_func,

KeyGen : hash_func)

def=

local

SNDP, RCVP, SNDA, RCVA, SNDS, RCVS, SNDI, RCVI : channel (dy)

composition

peer(P,A,S,D,Kca,Kidp,H,PRF,CHAP_PRF,Tranc,KeyGen,SNDP,RCVP)

/\ auth(P,A,S,Kas,SNDA,RCVA)

/\ server(P,A,S,Ks,Kca,Kidp,Kas,H,PRF,CHAP_PRF,Tranc,KeyGen,SNDS,RCVS)

end role

%%

role environment() def=

const p, a, s, idp : agent,

ks, kca, kidp : public_key,

kas, kis : symmetric_key, % KeyingMaterial Key

h, prf, chapprf : hash_func,

tranc, keygen : hash_func

intruder_knowledge = {p, a, s, idp, ks, kca, kidp,

h, prf, chapprf, tranc, keygen,

kca, kis

}

composition

session(p,a,s,idp,ks,kca,kidp,kas,h,prf,chapprf,tranc,keygen)

% /\ session(p,a,s,idp,ks,kca,kidp,kas,h,prf,chapprf,tranc,keygen)

% /\ session(i,a,s,idp,ks,kca,kidp,kas,h,prf,chapprf,tranc,keygen)

% /\ session(p,i,s,idp,ks,kca,kidp,kis,h,prf,chapprf,tranc,keygen)

end role

%%

goal

secrecy_of sec_clientK, sec_serverK, sec_uname, sec_dsrk, sec_emsk, sec_edutoken

%Peer authenticates Server on ns

authentication_on ns

%Server authenticates Peer on np

authentication_on np

end goal

%%

environment()

182

D.2 Kerberos authentication, autorization & services access (phases 2, 3, and
4) - Simplified version

D.2 Kerberos authentication, autorization & services

access (phases 2, 3, and 4) - Simplified version

role authenticationServer(

A,C,G,R : agent,

Kag,Kar : symmetric_key,

Ka : public_key,

Keygen : hash_func,

DHG :text,

SND, RCV : channel(dy),

L : text set)

played_by A

def=

local State : nat,

N1 : text,

U : agent,

T0 : text,

Kcg : symmetric_key,

T1start : text,

T1expire : text,

Padata : text.{agent.text}_symmetric_key.text,

Emskname : text, % EMSKName

Dsusrk : hash(symmetric_key),

Replykey : hash(hash(symmetric_key)),

Edutoken : text,

DHB : text,

KE : message,

Karmor : hash(message)

const

dsusrk_req: text,

sec_a_Kcg : protocol_id

init State := 10

transition

10. State = 10 /\ RCV(KE’)

=|>

State’:= 11 /\ DHB’ := new()

/\ Karmor’ := Keygen(exp(KE’, DHB’))

/\ SND({exp(DHG, DHB’)}_inv(Ka))

11. State = 11 /\ RCV({U’.G.N1’.Padata’}_Karmor)

=|>

State’:= 12 /\ SND(A.{dsusrk_req}_Kar)

12. State = 12 /\ RCV(R.{Dsusrk’}_Kar)

% Check if padata is encrypted with Replykey

/\ Padata = Emskname’.{C.T0’}_Keygen(Dsusrk’).Edutoken’

/\ not(in(T0’,L))

=|>

State’:= 13 /\ Kcg’ := new()

/\ Replykey’ := Keygen(Dsusrk’)

183

D. HLPSL specification of EduKERB

/\ T1start’ := new()

/\ T1expire’ := new()

/\ SND(U.

{U.C.G.Kcg’.T1start’.T1expire’.Edutoken’}_Kag. % TGT

{G.Kcg’.T1start’.T1expire’.N1}_Replykey’) % enc-part

/\ L’ := cons(T0’,L)

/\ witness(A,C,n1,Kcg’.N1)

/\ request(A,C,t0,T0’)

/\ secret(Kcg’,sec_a_Kcg,{A,C,G})

end role

%%%

role ticketGrantingServer (

G,S,C,A : agent,

Kag,Kgs : symmetric_key,

Kidp,Kg,Kpdp : public_key,

SND,RCV : channel(dy),

L : text set)

played_by G

def=

local State : nat,

N2 : text,

U : agent,

Kcg : symmetric_key,

Kcs : symmetric_key,

T1start,T1expire : text,

T2start, T2expire : text,

T1 : text,

Edutoken : text,

Decision : text,

Attributes: text

const

attribute_req : text,

decision_req : text,

sec_t_Kcg, sec_t_Kcs : protocol_id

init State := 21

transition

1. State = 21 /\ RCV(S.N2’.

{U’.C.G.Kcg’.T1start’.T1expire’.Edutoken’}_Kag.

{C.T1’}_Kcg’)

/\ not(in(T1’,L))

=|>

State’:= 22

/\ Kcs’ := new()

/\ T2start’ := new()

/\ T2expire’ := new()

/\ SND(U’.

{U’.C.S.Kcs’.T2start’.T2expire’}_Kgs.

{S.Kcs’.T2start’.T2expire’.N2’}_Kcg’)

/\ L’ := cons(T1’,L)

/\ request(G,C,t1,T1’)

/\ secret(Kcg’,sec_t_Kcg,{A,C,G})

184

D.2 Kerberos authentication, autorization & services access (phases 2, 3, and
4) - Simplified version

/\ witness(G,C,n2,Kcs’.N2’)

/\ secret(Kcs’,sec_t_Kcs,{G,C,S})

end role

%%%

role server(S,C,G : agent,

Kgs : symmetric_key,

SND, RCV : channel(dy),

L : text set)

played_by S

def=

local State : nat,

U : agent,

Kcs : symmetric_key,

T2expire : text,

T2start : text,

T2 : text

const sec_s_Kcs : protocol_id

init State := 31

transition

1. State = 31 /\ RCV({U’.C.S.Kcs’.T2start’.T2expire’}_Kgs.

{C.T2’}_Kcs’)

/\ not(in(T2’,L)) =|>

State’:= 32 /\ SND({T2’}_Kcs’)

/\ L’ := cons(T2’,L)

/\ request(S,C,t2a,T2’)

/\ witness(S,C,t2b,T2’)

/\ secret(Kcs’,sec_s_Kcs,{G,C,S})

end role

%%%

role client(C,G,S,A,R : agent,

U : agent,

Dsrk : symmetric_key,

Ka : public_key,

Keygen : hash_func,

Edutoken : text,

DHG : text,

SND,RCV : channel(dy))

played_by C

def=

local State : nat,

Kcs : symmetric_key,

T1expire : text,

T2expire : text,

T1start : text,

T2start : text,

Kcg : symmetric_key,

Tcg,Tcs : {agent.agent.agent.symmetric_key.text.text}_symmetric_key,

T0,T1,T2 : text,

N1,N2 : text,

Padata : text.{agent.text}_symmetric_key.text,

Emskname : text, % EMSKName

185

D. HLPSL specification of EduKERB

Dsusrk : hash(symmetric_key),

Replykey : hash(hash(symmetric_key)),

DHA : text,

KE : message,

Karmor : hash(message)

const sec_c_Kcg, sec_c_Kcs, sec_Emskname, sec_Dsusrk, sec_Replykey,

sec_Karmor, sec_Edutoken : protocol_id

init State := 0

transition

0. State = 0 /\ RCV(start) =|>

State’ := 1 /\ DHA’ := new()

/\ SND(exp(DHG, DHA’)) % Send DH exchange

1. State = 1 /\ RCV({KE’}_inv(Ka)) =|>

State’:= 2 /\ Karmor’ := Keygen(exp(KE’,DHA))

/\ N1’ := new()

/\ T0’ := new()

/\ Emskname’ := new()

/\ Dsusrk’ := Keygen(Dsrk)

/\ Replykey’ := Keygen(Dsusrk’)

/\ Padata’ := Emskname’.{C.T0’}_Replykey’.Edutoken

/\ SND({U.G.N1’.Padata’}_Karmor’) % Karmor == FAST

/\ witness(C,A,t0,T0’)

/\ secret(Emskname’, sec_Emskname, {C,A,R})

/\ secret(Dsusrk’, sec_Dsusrk, {C,A,R})

/\ secret(Replykey’, sec_Replykey, {C,A})

/\ secret(Karmor, sec_Karmor, {C,A})

/\ secret(Edutoken, sec_Edutoken, {C,A})

2. State = 2 /\ RCV(U.Tcg’.{G.Kcg’.T1start’.T1expire’.N1}_Replykey) =|>

State’:= 3 /\ N2’ := new()

/\ T1’ := new()

/\ SND(S.N2’.Tcg’.{C.T1’}_Kcg’)

/\ witness(C,G,t1,T1’)

/\ request(C,A,n1,Kcg’.N1)

/\ secret(Kcg’,sec_c_Kcg,{A,C,G})

3. State = 3 /\ RCV(U.Tcs’.{S.Kcs’.T2start’.T2expire’.N2}_Kcg) =|>

State’:= 4 /\ T2’ := new()

/\ SND(Tcs’.{C.T2’}_Kcs’)

/\ witness(C,S,t2a,T2’)

/\ request(C,G,n2,Kcs’.N2)

/\ secret(Kcs’,sec_c_Kcs,{G,C,S})

4. State = 4 /\ RCV({T2}_Kcs) =|>

State’:= 5

/\ request(C,S,t2b,T2)

end role

%%%

role radius(A,R : agent,

186

D.2 Kerberos authentication, autorization & services access (phases 2, 3, and
4) - Simplified version

Kar : symmetric_key,

Dsrk : symmetric_key,

Keygen : hash_func,

SND,RCV : channel(dy))

played_by R

def=

local State : nat,

Emskname : text, % EMSKName

Dsusrk : hash(symmetric_key)

const

dsusrk_req: text,

sec_c_Kcg, sec_c_Kcs : protocol_id

init State := 1

transition

1. State = 1 /\ RCV(A.{dsusrk_req}_Kar) =|>

State’:= 2 /\ Dsusrk’ := Keygen(Dsrk)

/\ SND(R.{Dsusrk’}_Kar)

end role

%%%

role session(A,G,C,S,R,D,P : agent,

U : agent,

Kgs,Kag,Kar,Dsrk : symmetric_key,

Ka,Kidp,Kg,Kpdp : public_key,

LS,LG,LA : text set,

Keygen : hash_func,

Edutoken, Dhg : text)

def=

local

SendC,ReceiveC : channel (dy),

SendS,ReceiveS : channel (dy),

SendG,ReceiveG : channel (dy),

SendA,ReceiveA : channel (dy),

SendR,ReceiveR : channel (dy),

SendD,ReceiveD : channel (dy),

SendP,ReceiveP : channel (dy)

composition

client(C,G,S,A,R,U,Dsrk,Ka,Keygen,Edutoken,Dhg,SendC,ReceiveC)

/\ server(S,C,G,Kgs,SendS,ReceiveS,LS)

/\ ticketGrantingServer(G,S,C,A,Kag,Kgs,Kidp,Kg,Kpdp,SendG,ReceiveG,LG)

/\ authenticationServer(A,C,G,R,Kag,Kar,Ka,Keygen,Dhg,SendA,ReceiveA,LA)

/\ radius(A,R,Kar,Dsrk,Keygen,SendR,ReceiveR)

end role

%%%

role environment() def=

local

LS, LG, LA : text set

const a,g,c,s,r,d,p : agent,

kgi,kgs,kag,kar,dsrk : symmetric_key,

u3,u1,u2 : agent,

187

D. HLPSL specification of EduKERB

keygen : hash_func,

ka,kidp, kg, kpdp : public_key,

t0,t1,t2a,t2b,n1,n2 : protocol_id,

edutoken, dhg : text

init LS := {} /\ LG := {} /\ LA := {}

intruder_knowledge = {a,g,c,s,r,u1,u2,keygen,u3,kgi,LA,kidp,kpdp,kg,dhg,ka}

composition

% normal session

session(a,g,c,s,r,d,p,u1,kgs,kag,kar,dsrk,ka,kidp,kg,kpdp,LS,LG,LA,keygen,edutoken,dhg)

% normal session

% /\ session(a,g,c,s,r,d,p,u1,kgs,kag,kar,dsrk,ka,kidp,kg,kpdp,LS,LG,LA,keygen,edutoken,dhg)

% i is Client

% /\ session(a,g,i,s,r,d,p,u2,kgs,kag,kar,dsrk,ka,kidp,kg,kpdp,LS,LG,LA,keygen,edutoken,dhg)

% i is Server

% /\ session(a,g,c,i,r,d,p,u3,kgi,kag,kar,dsrk,ka,kidp,kg,kpdp,LS,LG,LA,keygen,edutoken,dhg)

end role

%%%

goal

secrecy_of sec_a_Kcg,

sec_t_Kcg, sec_t_Kcs,

sec_s_Kcs,

sec_c_Kcg, sec_c_Kcs, % addresses G10

sec_Emskname, sec_Dsusrk, sec_Replykey, sec_Karmor, sec_Edutoken

%Client authenticates AuthenticationServer on n1

authentication_on n1 % addresses G1, G3, G7, and G8

%Client authenticates TicketGrantingServer on n2

authentication_on n2 % addresses G1, G3, G7, and G8

%Client authenticates Server on t2b

authentication_on t2b % addresses G1, G2, and G3

%Server authenticates Client on t2a

authentication_on t2a % addresses G1, G2, and G3

%TicketGrantingServer authenticates Client on t1

authentication_on t1 % addresses G1, G2, and G3

%AuthenticationServer authenticates Client on t0

authentication_on t0 % addresses G1, G2, and G3

end goal

%%%

environment()

188

	Portada
	Autorización Comisión Académica
	Aprobación Director Tesis
	Resumen
	Agradecimientos
	Title Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Contextualization
	Access control functionality
	Per-application access control
	Centralising access control functionality: The IdP
	Interconnecting organizations: Identity federations

	Motivation and problem statement: Identity federations beyond the web
	Objective of this thesis
	Specific objectives

	Contributions
	Thesis structure
	Related publications

	Background and State of the Art
	Access control to the network service
	AAA protocols
	EAP
	Lower layer protocols

	Access control to web applications
	HTTP authentication
	Web forms based authentication
	Federated operation

	Access control to generic applications
	Kerberos
	GSS-API
	SASL

	Solutions for AAA-based federated authentication and authorization
	eduroam
	DAMe
	Moonshot/ABFAB

	Conclusions

	FedKERB: Integrating Kerberos with AAA and advanced authorization infrastructures
	Introduction
	Proposed architecture
	EAP-based pre-authentication
	General operation
	TGT acquisition (KRB_AS_REQ/REP exchange)
	ST acquisition (KRB_TGS_REQ/REP exchange)

	Discussion
	Federated user name in Kerberos
	Kerberos cross-realm vs Kerberos with AAA integration
	KDC state management
	Transport of authorization information in RADIUS

	Security analysis
	Conclusions

	PanaKERB: Out-of-band federated authentication for Kerberos based on PANA
	Introduction
	Proposed Architecture
	Preliminary considerations
	Components

	General operation
	Phase 1: PANA authentication
	Phase 2: Kerberos enforcement
	Phase 3: Kerberos authentication
	Phase 4: Obtaining service tickets and accessing the service

	Security considerations
	Key distribution after authentication
	Kerberos Password derivation
	Authenticated and Authorized enforcement in the KDC
	Filtering the access to the PANA server

	Conclusions

	EduKERB: A cross-layer SSO solution for federating access to application services in the eduroam/DAMe network
	Introduction
	Objectives and requirements
	Proposed architecture
	General operation
	Notation
	Phase 1: Access to the network: authentication, distribution of the eduToken and keying material
	Phase 2: Kerberos pre-authentication and TGT acquisition
	Phase 3: ST acquisition and access to the application service

	Security Analysis
	End User Authentication
	Distribution of the eduToken
	Key derivation and distribution
	Pseudonymity
	Formal verification

	Conclusions

	Performance evaluation and functional validation
	Introduction
	Performance model
	Prototypes description
	Performance measurements
	Testbed description
	Execution of the tests
	Analysis of results

	Considerations on the use of an already existing AAA federation
	Conclusions

	Conclusions and future work
	Summary and main contributions
	Future work
	Deployment of the solutions in real scenarios
	Use of HTTP instead of PANA as out-of-band protocol
	Inter-organization SSO
	Dynamic AAA-based federations
	IDaaS

	Bibliography
	List of Acronyms
	Example SAML assertion for the authorization model
	Formal description of EduKERB
	Functions
	Exchanges' detailed description
	Network authentication, distribution of the eduToken and keying material
	Kerberos pre-authentication and TGT acquisition
	Authorization and ST acquisition

	HLPSL specification of EduKERB
	Network authentication (phase 1) - Simplified version
	Kerberos authentication, autorization & services access (phases 2, 3, and 4) - Simplified version

