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Resumen

Esta tesis aborda los sistemas mds conocidos de la mecénica clésica de forma unifi-
cada; consideramos para ello una familia polinémica de hamiltonianos homogéneos
de cuarto grado como modelo bésico. Nuestro objetivo principal es desarrollar un
marco de trabajo comun para el estudio de perturbaciones, dicha tarea se realiza
desde un punto de vista geométrico. Para llevar a cabo nuestro proyecto, hemos
estructurado esta memoria en tres partes: preliminares, el marco de trabajo para el
tratamiento unificado y, por dltimo, las aplicaciones.

Parte 1. Preliminares en Mecénica Cldsica y Geometria: En esta primera parte reco-
gemos algunas herramientas que serdn usadas a lo largo de nuestro estudio. En el
primer capitulo fijamos la notacién y se presentan algunos resultados bésicos que
pueden ser encontrados en [Abraham and Marsden, 1985, Marsden and Ratiu, 1999,
Meyer et al., 2009]. En el segundo estudiamos el Sistema Extendido de Euler (SEE),
como un problema de valor inicial paramétrico. Las distintas elecciones de pardmetros
en dichos sistemas nos conducen a diferentes estructuras Lie-Poisson, todas ellas
admiten una generalizacion dentro de una estructura Poisson de seis dimensiones.
La descripcion de la estratificacion simpléctica inducida por estas estructuras Lie-
Poisson viene determinada por el uso de las integrales primeras, en el caso de sis-
temas SEE, estas vienen dadas por cilindros hiperbdlicos y elipticos, aunque otras
cudadricas pueden ser también usadas. A lo largo de este capitulo llevamos a cabo un
estudio cualitativo de las soluciones generales del sistema, donde las doce funciones
elipticas de Jacobi se muestran de manera unificada como dichas soluciones. Este
enfoque permite derivar las principales propiedades de las funciones elipticas. En
concreto, las conocidas relaciones cuadréticas entre funciones elipticas y la transfor-
macién de Jacobi para el médulo eliptico se obtienen de nuestro anélisis.

Parte II. Reduccion de tipo Hopf de un modelo cuértico : En el tercer capitulo estudi-
amos una generalizacion de la fibracion de Hopf clasica. El uso de dicha fibracion en
los problemas de la mecénica clédsica no es novedoso, ver [Cushman and Bates, 1997]
y las referencias alli incluidas. La generalizacion de la que hacemos uso en esta tesis
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se lleva a cabo por medio de un incremento de la dimension de las variedades in-
volucradas, otras generalizaciones alternativas han sido analizadas en la literatura
[Gluck et al., 1986]; en la nuestra seguiremos la misma metodologia que en la fi-
bracién de Hopf clasica, pero el cuerpo complejo serd reemplazado por cuaternios.
En el cuarto capitulo usamos los componentes de la representacion cuaterniénica de
la aplicacion de Hopf para proponer una familia de Hamiltonianos multiparamétrica
en T*R*; estos Hamiltoinanos vienen dados por un polinomio cuartico homogéneo
con seis pardmetros, definiendo una familia integrable de sistemas Hamiltonianos
[Ferrer and Crespo, 2015]. La caracteristica clave de este modelo es su estructura
Hamiltoniana-Poisson anidada, la cual aparece reflejada como dos sistemas de Euler
extendidos cuando nos pasamos a las ecuaciones reducidas [Ortega and Ratiu, 2004].
Este hecho es completamente explotado en el proceso de integracion, donde encon-
tramos dos 1-DOF subsistemas y una cuadratura que liga a ambos. La solucién
genérica es cuasi-periddica y viene expresada por medio de funciones elipticas de
Jacobi basadas en dos periodos que en general son distintos. Para una eleccion
apropiada de los parametros y considerando una regularizacion de la variable inde-
pendiente, cuando sea necesario, algunos modelos destacados de la mecénica clasica
tales como el sistema de Kepler, el flujo geodésico, el oscilador isotrépico de cuatro
dimensiones y el sélido rigido libre aparecen como casos particulares. EI andlisis
del modelo cudrtico se lleva a cabo a través de una doble reduccién. Por un lado,
el sistema es geométricamente reducido y aunque no se proporcionan nuevos teore-
mas en teoria de reduccion ni estudiamos la accién de nuevos grupos en los prob-
lemas de la mecénica, este modelo es un ejemplo detallado de reduccién singular
[Ortega and Ratiu, 2004], en la cual la correspondiente reconstruccidén es también
proporcionada. Por otro lado, la reduccidn simpléctica llevada a cabo a través del
uso de nuevas coordenadas canonicas es analizada. En concreto, usando variables
de Andoyer Proyectivas [Ferrer, 2010], que generalizan los dngulos de Andoyer al
caso de cuatro dimensiones, dos simetrias del modelo cudrtico aparecen como mo-
mentos conjugados de dos dngulos. Por lo tanto, estas variables representan la re-
duccidn toroidal asociada a la doble simetria del sistema paramétrico. En concreto,
se muestra la relacion entre la reduccion geométrica y simpléctica y se proporciona
la formulacion explicita para todos los cambios de variables que son usados.

Parte III. Aplicaciones a la dindmica Roto-Orbital: Esta parte estd dedicada al estudio
de la dindmica de actitud y el movimiento orbital de modelos que aproximan un aster-
oide o un satélite con una triaxialidad genérica, bajo los efectos de una perturbacién
gravitacional. Este problema, denominado problema completo de los dos cuerpos, es
un sistema dindmico Hamiltoniano no integrable, que todavia queda lejos de ser re-
suelto y requiere el uso de teorias de perturbaciones para su andlisis. Dentro del con-
texto de Poincaré [Poincaré, 1899] y el refinamiento de Arnold [Arnold et al., 1993]
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pagina 185 en la aplicacion de teoria KAM, una teoria de perturbacion deberia ser de-
sarrollada a partir un orden cero integrable y no degenerado. Tradicionalmente, este
papel ha sido encarnado por el sélido rigido libre y el sistema de kepler, los cuales
son degenerados (superintegrable [Fasso, 2005]). Nosotros exploraremos otros can-
didatos para el orden cero, los intermediarios (see [Deprit, 1981] and the references
therein).

La idea de los intermediarios consiste en definir un sistema integrable simplificado
del problema en cuestion, donde el trabajo de Hill en el movimiento de la luna
[Wilson, 2010] es, quizas, el mejor ejemplo conocido. En el quinto capitulo recor-
damos el concepto de intermediario, presentamos cinco modelos y establecemos una
metodologia comun para su estudio. Es en este contexto donde el marco desarrollado
para el modelo polindmico cudrtico es completamente explotado. El sistema simpli-
ficado incluye parte del potencial donde el acoplamiento roto-orbital esta presente.
Esto es, el potencial perturbado se separa en la siguiente forma, P = Py + Py y el
nuevo orden cero estd dado por

Ho =To +Tr + Py, )

de tal manera, que el sistema definido por H, es integrable. Los capitulos seis y si-
ete aprovechan el marco de trabajo desarrollado en el estudio de dos intermediarios
definidos en el capitulo anterior. Se asume que estos intermediarios tienen orbitas
circulares y elipticas respectivamente. Algunos resultados parciales ya han sido envi-
ados para su publicacion [Ferrer et al., 2014, Molero et al., 2014], en ocasiones nos
referimos a este material para méas detalle.

En el capitulo seis estudiamos equilibrios relativos y bifurcaciones del intermedi-
ario circular. Este modelo de intermediario define un flujo Poisson sobre espacio
multiparamétrico: tres parametros fisicos (momentos principales de inercia) y tres
parametros especiales, llamados: el médulo del vector momento angular (1), su ter-
cera componente (wg) y la expresion del movimiento orbital medio (n). En el caso
de un cuerpo de rotacion lenta, identificamos condiciones bajo las cuales aparecen
bifurcaciones de las trayectorias inestables cldsicas, siendo dichos escenarios de gran
interés en relacion a la estabilizacion y control. Nuestro estudio esta basado en el
uso de los invariantes definiendo el espacio reducido S? x S? y la aplicacion energia-
momento. En este estudio aparecen curvas de bifurcaciones a lo largo de las cuales el
sistema se muestra degenerado, dichas curvas estdn asociadas con el cambio de esta-
bilidad de los equilibrios cldsicos en el segundo espacio reducido (sistema de Euler).
Por otro lado, también se pone de manifiesto y se estudia en detalle el papel jugado
por la triaxialidad del cuerpo.

En el ultimo capitulo la perturbacin contiene al radio y como consecuencia las orbitas
obtenidas serdn de tipo roseta. Este modelo se asocia a dos tipos de aplicaciones,
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asteroides y satélites, es decir, en nuestra ultima aplicacion consideramos Orbitas
elipticas en general; también analizamos las condiciones para que este modelo admita
circulares. Este escenario no lleva a considerar érbitas medias en vez de bajas como
ocurria en el capitulo anterior. Un ejemplo conocido son las drbitas tipo Molniya,
que son candidatas a usar este tipo de intermediario como orden cero en el desarrollo
de una teora de perturbacion. El objetivo de este estudio es encontrar un modelo
suficientemente simplificado para ser considerado un orden cero, pero que incorpore
parte del efecto perturbativo gravitatorio.

Conclusion

En esta tesis se aborda una generalizacion del sistema clasico de Euler, la solucion
general conecta con las doce funciones elipticas de Jacobi. Usando esta generaliza-
cion y la fibracion tipo Hopf cuaternidnica, se define y estudia en detalle una familia
polindmica paramétrica de Hamiltonianos. Sobre dicha familia se llevan a cabo re-
ducciones de tipo geométrico y simpléctico y se muestra que algunos modelos de la
mecanica clésica estan incluidos para ciertas elecciones de los pardmetros. En este
sentido, la familia propuesta proporciona un marco de trabajo comun para abordar
estos modelos clasicos.

En las aplicaciones nos centramos en la modelizacién de problemas roto-orbitales.
El modelo completo requiere el desarrollo de teorias perturbativas para obtener solu-
ciones aproximadas. En este trabajo consideramos algunos candidatos para el orden
cero; en la literatura se les conoce como los intermediarios y en las aplicaciones se
estudian dos de ellos. En particular, presentamos un detallado andlisis para el caso
en el que el satélite presenta rotacion lenta. En este escenario se presentan tipos muy
distintos de dindmicas. Para cada mision concreta, el valor de los modelos dependera
de las comparaciones con experimentos numeéricos.

Para el caso de radio no constante aparecen un buen nimero de técnicas de la mecédnica
clasica a investigar. En este sentido, el capitulo siete es un primer paso que requiere
mds investigaciéon. Como ejemplo valga la comparaciéon de nuestro enfoque con la
eliminacion de la paralaje como punto de partida. Un segundo aspecto es la pro-
duccidn de las correspondientes variables de dngulo-accion para los distintos inter-
mediarios. Algunos trabajos parciales ya han sido realizados en este sentido, por
ejemplo las variables dngulo-accién en cuatro dimensiones de tipo Delaunay. Es-
tas variables presentan una alternativa al esquema de las teords perturbativas basadas
en las normalizaciones con restricciones; esta es una de nuestras lineas actuales de
investigacion.
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Introduction

This thesis addresses some of the very well known systems in classical mechanics
in a uniform manner, considering a homogeneous quartic Hamiltonian as the basic
model. Our main target is to develop a common framework to deal with perturbations.
Furthermore, we carry out this task from a geometric point of view. As such, the
structure of this memoir comprises three parts; preliminaries, the unifying framework
and the applications.

Fart 1. Preliminaries on Classical Mechanics and Geometry: In the first part of this
memoir we gather some tools that will be used along our study. The first Chapter
sets notation and presents some basic results that can be found in several basic refer-
ences [Abraham and Marsden, 1985, Marsden and Ratiu, 1999, Meyer et al., 2009].
In the second Chapter we study the extended Euler systems (EES) as an initial value
problem with parameters. Particular realizations of EES lead to several Lie-Poisson
structures. We consider a six dimensional Poisson structure that fits all of them to-
gether. The symplectic stratification of this Lie-Poisson structure uses the first in-
tegrals which are elliptic and hyperbolic cylinders, although other quadrics may be
used as well. A qualitative study of the solutions is carried out and the twelve Ja-
cobi elliptic functions are shown in a unified way as the solutions of the EES. As
a consequence of this setting, the Jacobi’s transformation for the elliptic modulus is
obtained.

Part 1I. Hopf Reduction on a Quartic Polynomial Model: In the third Chapter we
study a four dimensional generalization of the classical Hopf fibration, which is per-
formed by means of an increase of the manifold’s dimension [Gluck et al., 1986].
The application of that fibration in the context of some problems of classical mechan-
ics is not new, see [Cushman and Bates, 1997] and the references therein. We follow
the same methodology as in the classical Hopf fibration, but instead of complex num-
bers the generalization of the classic Hopf map is defined in terms of quaternions.
The fourth Chapter uses the components of the quaternionic Hopf map to propose
a parametric Hamiltonian function in T*R* which is an homogeneous quartic poly-
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Introduction

nomial with six parameters, defining an integrable family of Hamiltonian systems
[Ferrer and Crespo, 2015]. The key feature of the model is its nested Hamiltonian-
Poisson structure, which appears as two extended Euler systems in the reduced equa-
tions [Ortega and Ratiu, 2004]. This is fully exploited in the process of integration,
where we find two 1-DOF subsystems and a quadrature involving both of them. The
generic solution is quasi-periodic, expressed by means of Jacobi elliptic functions
and integrals, based on two periods. For suitable choices of the parameters, adding
an appropriate regularization when needed, some remarkable classical models such
as the Kepler, geodesic flow, 4-D isotropic oscillator and free rigid body systems
appear as particular cases. The analysis of the quartic model is performed through
a twofold reduction. On the one hand, the system is geometrically reduced and,
although we do not provide new theorems in reduction theory or study interesting
new groups in mechanics, this model is a detailed example of singular reduction
[Ortega and Ratiu, 2004], in which the corresponding Poisson reconstruction is also
provided. On the other hand, symplectic reduction by picking new canonical coordi-
nates is examined. More precisely, using Projective Andoyer variables [Ferrer, 2010]
that generalize the Andoyer angles to the four dimensional case, the two symmetries
of the quartic model show up in the conjugate momenta of the angles. Thus, this
variables perform the toral reduction associated to the double symmetry of the para-
metric system. Moreover, we show the relation between the geometric reduction and
the reduction carried out by the Projective Andoyer variables. We provide detailed
and explicit formulae for all the changes of variables that are used and therefore we
set up the system for the further study of perturbations.

Part I1I. Applications to Roto-Orbital Dynamics: This part is devoted to the study of
the attitude dynamics and the orbital motion of models approximating a generic triax-
ial spacecraft under gravity-gradient torque perturbation. The full problem is a non-
integrable Hamiltonian dynamical system, which still remains far from being sorted
out and requires the use of perturbation theories for its analysis. Within the context
of Poincaré [Poincaré, 1899] and the refinement of Arnold [Arnold et al., 1993] page
185 in the application of KAM theory, a perturbation theory should be developed
upon an integrable and non-degenerate zero order. Traditionally, this role is embod-
ied by the free rigid body and the Kepler system, but here, rather than the classical
ones, which are degenerated (superintegrable [Fasso, 2005]), we also study another
candidate for the zero order, the intermediaries (see [Deprit, 1981] and the references
therein). The idea of the intermediary is to define a simplified integrable system of
the problem at stake, where the work of Hill on the Moon motion [Wilson, 2010] is,
perhaps, the best known example. In the fifth Chapter we recall the concept of inter-
mediary, present five of them and we set a common methodology. For this purpose,
the framework developed for the quartic polynomial model is fully exploited. The
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simplified system includes part of the full potential where the roto-orbital coupling is
present. That is, the perturbing potential is split P = Py + P; and the new zero order
is given by

in such a way, that the system defined by H, is integrable. Sixth and seventh Chap-
ters take advantage of the previous framework considering two intermediary models
defined in the previous chapter. Those intermediaries are assumed to be in circular
and elliptic orbits respectively. Partial results have been already sent for possible
publication [Ferrer et al., 2014, Molero et al., 2014] and we refer to those preprints
for more details.

We study relative equilibria and bifurcations of the circular intermediary in chapter
six. This intermediary model defines a Poisson flow over a large parameter space:
three physical parameters (principal moments of inertia) and three distinguished pa-
rameters, namely: the modulus of the angular momentum vector (M), its third com-
ponent in a space rotating frame (wy), and the orbital mean motion (n), which are
integrals of the model. In the case of slow rotational motion we identify conditions
under which different bifurcations of the classical unstable trajectories occur, being
those scenarios of great interest in relation to stabilization and control purposes. Our
study is based on the use of the invariants defining the S3, x S%, reduced space and
the associated energy-momentum mapping. We find bifurcation curves along which
the system shows degeneracy, connected with the change of stability of the classical
unstable equilibria of the second reduced space (Euler system). The role played by
the triaxiality is also shown.

The final chapter examines a body moving in a rosette-like orbit. More precisely we
are thinking about two types of applications, namely to artificial satellites or asteroids
around a planet. In other words, we consider perturbed elliptic orbits in general;
we also investigate conditions for which this model admits the circular ones. This
scenario leads to medium orbits rather than to the low type of orbits studied in the
preceding chapter. A very well-known example of these are the Molniya orbits, which
are candidates to use the elliptic gravity-gradient as a zero order in the context of
perturbation theory. The intention of this study is to analyze a model simply enough
to be considered as an alternative zero order, but incorporating partially the effects of
the gravity torque perturbation.
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Conclusions

The main conclusion of this Memoire may be summarized as follows. A generalized
study of the classical Euler system is presented, connecting its solutions with the
twelve Jacobi elliptic functions. Using that and the quaternionic Hopf fibration a
quartic homogeneous polynomial parametric family is proposed and studied in detail.
Geometric and symplectic reductions are performed in the family. It is shown that, for
suitable choices of parameters, several classical mechanical systems arise as family
realizations and we provide a common framework to study them.

In the application we focus on modeling problems in the roto-orbital dynamics. The
full model is a non-integrable problem which requires the development of perturba-
tion theories in order to obtain approximate solutions. Several candidates for the zero
order term, on which the whole theory relies, are considered in this context. They
are known as intermediaries in the literature and we explore two of them. We an-
alyze the role played by the integrals and the relation with the physical parameters
involved. In particular, we present a fairly complete analysis of the case when the
satellite has slow rotation, which presents several rather different types of dynamics.
For each mission, the relative value of each model will finally depend on numerical
experiments.

When the radius is not constant, there is a number of techniques of classical me-
chanics to be considered and the last chapter is just a preliminary step to do more
research. As an example we mention the comparison of our approach with the elimi-
nation of the parallax as the starting point. A second aspect could be the production
of the corresponding action-angle variables for the different intermediaries, partial
work has been done. In particular, results have been obtained where 4-D Delaunay
action-angle variables are produced. They represent an alternative for perturbation
theories to the scheme of the constraint normalization proposed by others; this is one
of our present lines of research.
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Chapter 1

Poisson and Symplectic Geometry

Along this preliminary chapter a minimal theoretical frame is given, with this aim,
some basic concepts, facts and notation is set. Emphasis is laid upon the concept
of reduction, which is exploited in the second part of this memoir. The proofs
of the following well known results are referred to [Abraham and Marsden, 1985,
Arnold and Givental, 1973, Berndt, 2001, Marsden and Ratiu, 1999], they provide the
reader with plenty of details.

Later on, in the applications, we focus on examples coming from the classical ce-
lestial mechanics. Those systems are usually expressed in Hamiltonian formulation.
Next we recall the classic definition of a Hamiltonian system, which afterwards is
revisited under the more general theory of symplectic and Poisson manifolds.

Definition 1.1 (Hamiltonian system). A system of ordinary first order differential
equations on the open set £ C R?" is said to be a Hamiltonian system if may be
expressed in the following way

dg; _ OM(q,p)
dt 8]?1

1.1
dpi:_w i=1.--.n b
dt aqz ) ) Y Y

where H(q, p) is a differentiable real valued function called the Hamiltonian function,
E is the phase space and n are the degrees of freedom. This system may also be
defined as follows

Xnl(q,p) = JdH(q,p), (1.2)

where X4, is the Hamiltonian vector field, J is the symplectic matrix

0, Ip
J_<—In On>’

1



1.1. Geometric Hamiltonian formulation

0,, and I,, are the n X n zero and identity matrices respectively.

1.1 Geometric Hamiltonian formulation

Very often the phase space of a mechanical system lies on a symplectic or Poisson
manifold, for example, for the case of the free rigid body we have 7*SO(3). Thus, the
Hamiltonian formulation in terms of the definition (1.1) is not applicable. Therefore,
the concept of Hamiltonian system needs to be extended to those kind of manifold.
We define the fundamental objects to study dynamics on manifolds and focus on the
particular type of symplectic manifolds.

We start by recalling some basic concepts in differential geometry. For a complete
treatment see [Abraham and Marsden, 1985, Abraham et al., 1988, Hirsch, 1994]. A
differentiable or smooth manifold M is the generalization of a surface in R3. It may
be conceived as an union of pieces of R" which fix together in a nice way, that is
to say, the manifold is an object without borders and the union of those pieces is
smooth.

Definition 1.2 (Manifold). A differentiable manifold or smooth manifold of dimen-
sion n is a set M and a family of bijective mappings x,, : U, — x,(U) C M of open
sets U, C R" into M such that

(i) Up zp(Up) = M.

(ii) For any pair p, q with x,(U,) N x4(Uy) # 0, the sets x,* (U,) and x;*(U,) are
open sets in R"™ and the mappings :1:;1 oz, and Yo z, are differentiable.

(iii) The family {(U,, z,)} is maximal relative to the conditions (i) and (i1).

The pair (U,,x,) is called a chart, parametrization or system of coordinates of M
at p, x,(U,) is a coordinate neighborhood. A family {(U,, z,,)} satisfying conditions
(i) and (i1) is said to be an atlas. When the condition (iit) of maximality is added,
we say that this family {(U,, x,,)} is a differentiable structure on M.

Two charts (Up,x,) and (U, x,) are called compatible when the transformation
: -1 '—1 : : 1
functions x* o x; and x,; " o x, are differentiable on ;" (x,(U,) N x,(U))) and

z,  (2,(Up) N, (U})) respectively.

In R", given two k-dimensional surfaces, not necessarily with the same dimension,
there exists the concept of a differentiable map between them. Next we recall the
corresponding concept in the general case of differentiable manifolds.

2



Chapter 1. Poisson and Symplectic Geometry

Definition 1.3. A mapping f : M — N between manifolds is said to be C* if for
each x € M and one (equivalently: any) chart (V,,y,) on N with f(p) € V, there
is a chart (U, x,) on M with p € U, f(U,) C V, and yg o f oz, is C*. We will
denote by C¥(M, N) the space of all C*-mappings from M to N.

A CF-mapping f : M — N is called a C*-diffeomorphism if f~' : N — M exists and
is also C*. Two manifolds are called diffeomorphic if there exists a diffeomorphism
between them. This is the basic equivalence relation of differential topology. From
differential topology, see [Hirsch, 1994], we know that if there is a C'-diffeomorphism
between M and N, then there is also a C*°-diffeomorphism.

Definition 1.4 (Immersions and Submersions). Let M™ and N™ be two smooth man-
ifolds of dimension m and n respectively. A differentiable mapping f : M — N
is said to be a submersion if df, : T,M — T, N is surjective for all p € M. If
dfy : T,M — Ty N is injective for all p € M, then [ is said to be an immer-
sion. If, in addition, f is a homeomorphism onto its image f(M) C N endowed with
the induced topology, we say that f is an embedding. If M C N and the inclusion
t: M — N is an embedding, we say that M is a submanifold of N.

Definition 1.5 (Fibered Manifolds and Sections). A triple (M, p, N), wherep : M —
N is a surjective submersion, is called a fibered manifold. The manifold M is called
the total space and N is called the base. A fibered manifold admits local sections: For
each © € M there is an open neighborhood U of p(x) in N and a smooth mapping
s:U — M withpos=Idyand s(p(z)) = x.

A dynamical system, also called a flow, is a description of how a state develops into
another state over the course of time. Technically, it is a smooth action of R or Z on
another object (usually a manifold). The system is called a continuous dynamical sys-
tem if R acts, and a discrete dynamical system when Z acts.. Flows and vector fields
are closely related, a dynamical system is defined by means of a vector fields.

Definition 1.6 (Vector Fields and Dynamical Systems). A vector field X on a mani-
fold M is a smooth section of the tangent bundle; so X : M — T M is smooth and
a0 X = Idys. A local vector field is a smooth section which is defined on an open
subset only. We denote the set of all vector fields by X(M). With pointwise addition
and scalar multiplication X (M) becomes a vector space.

Let M be a manifold and X € X(M). A dynamical system is given by the flow I}

3



1.1. Geometric Hamiltonian formulation

uniquely determined by the differential equation

d
%Ft(m) = X (F;(m)). (1.3)

Let ¢(t) : M — M, wheret € A C R, be a solution of (1.3). It gives rise to an
action of A on the manifold M

Wi Ax M — M.

The parametrized curve ,,(t) := ©(t,m), where t € R and m € M is fixed, is
the orbit through m, and the oriented but unparameterized curve v,,(t) is called an
trajectory. When A = R it is said that the flow is complete and the family {¢(¢) };cr
determines a group of diffeomorphisms of M. An equilibrium point (rest point, crit-
ical point, stationary point) is am € M such that X (F;(m)) = 0. It gives rise to an
equilibrium solution or just an equilibrium, that is ¢,(m) = m. A periodic orbit of
period T is a solution defined as follows

VYipr(m) = P(m), VT eR. (1.4)

1.1.1 Symplectic manifolds. Hamilton equations

Locally, a manifold may be thought of as a real vector space R™ and usually, this
vector space has some additional structure. If this additional structure is a scalar
product, we are lead to a Riemannian manifold; if this additional structure is a sym-
plectic form, we obtain a symplectic manifold. The material for this part is taken
form [Abraham et al., 1988, Berndt, 2001, Marsden and Ratiu, 1999].

The generalization of the Euclidean spaces to manifolds is endowed with the concept
of differential forms. These objects are the key to obtain the basic operations of vector
calculus, div, grad and curl and the integral theorems of Green, Gauss and Stokes in
arbitrary manifolds.

Definition 1.7 (Tensor). A (r, s)-tensor A on the manifold M is a C*° (M )-multilineal
map

A:X"(M)? x X(M)" — C*(M). (1.5)
The set of all (r, s)-tensors is denoted by R.,(M). When r = 0 we say that A is a
covariant tensor of order s. For the case s = 0, A is said to be a contravariant vector
of order r. A multilinear map is said to be skew-symmetric (or alternating) when it
changes sign whenever two of its arguments are interchanged.

4



Chapter 1. Poisson and Symplectic Geometry

Some remarkable examples are the following:

The map F : X*(M) x X(M) — C*(M),(6,X) — E(0,X) givenby E(0,X) =
0(X)isa(1,1)-tensor.

A vector field X € X(M) may be considered as a (1,0)-tensor by means of the

following map
X:X"(M)— C®(M), 0 — X(0) =0(X).

Definition 1.8 (Differential k-Form). A differential k-Form on a manifold M is a
skew-symmetric covariant tensor of order k.

Let f be a C*°(M) function, the differential df is a (0, 1)-tensor or a 1-form given
by
df : X(M) — C>*(M), X — df(X),

the function f itself may be considered as a (0, 0)-tensor or a O-form.

Given X € X(M) and w a k+1-form we define i xw as the k-form given by
in(Xl, AN 7Xk) = W(X, Xl, PN ,Xk)

We call 7 xw the inner product of X and w.

Definition 1.9 (Differential Symplectic Form). A symplectic form is a non-degenerate
skew-symmetric bilinear form. The non-degeneracy means that for all v € V' such
that v # 0, there exists w € V such that w(v, w) # 0.

Definition 1.10 (Pull-Back and Push-Forward). Let f : M — N be a C* map
between manifolds and let o be a k-form on N. Define the pull-back f*« of a by f
to be the k-form on M given by

fra: XM = C®(M), (vr,...,05) = fFra(vr, ... ) = aldf(v1), ..., df (vg)).

If f is a diffeomorphism, the push-forward f, is defined by f. = (f~1)*.

The pull-back or push-forward operations f* and f, when applied to a O-form, i.e. a
function g, are reduced to the composition operation. More precisely, if g € C*°(N),
then f*g = go fand if g € C*°(M) we have that f.g = f o g.

Definition 1.11 (Symplectic Manifold). The pair (M, w) is called a symplectic man-
ifold, where M is a smooth manifold of dimension n and w is a symplectic form.



1.1. Geometric Hamiltonian formulation

The nondegeneracy of a differential 2-form w means that the corresponding homo-
morphism between the tangent bundle and its cotangent bundle

W TM — T*M

which associates to each vector X the covector —ixw, is an isomorphism. Observe
that the restriction to each p € M makes the tangent space 7,,M become a sym-
plectic vector space, which is even dimensional. Therefore, M is always an even
dimensional manifold.

A remarkable example of a symplectic manifold is the case of the cotangent bundle.
Let () be a n-dimensional smooth manifold and 7*() the cotangent bundle associ-
ated, with cotangent coordinate chart given by (g1, ..., ¢u, 1, --., Pn). Thus the 2-form
defined as follows is a symplectic form

w:qui/\dpi:dq/\dp,

i=1

and (7@, w) is a symplectic manifold.

Definition 1.12 (Hamiltonian dynamical system). Let (M, w) be a symplectic mani-
fold and H : M — R a C* function. The triad (M,w, H) is a Hamiltonian dynamical
system. Note that the nondegeneracy of the symplectic form w associates naturally to
each Hamiltonian system a vector field Xy, defined by w(X4,Y) = dH(Y"), which is
called the Hamiltonian vector field and H is the Hamiltonian function.

Next we are lead to the definition of a symplectomorphism, which is indispensable to
study the equivalence between symplectic structures.

Definition 1.13 (Symplectomorphism). A symplectomorphism, canonical map or
symplectic transformation between the symplectic manifolds (M, w;) and (Ms, w>)
is a C*° mapping F : My, — M, such that

*
F Wy = Wq.

Remark 1.1. Since a symplectomorphism is volume preserving, its Jacobian deter-
minant is equal to one, thus by the inverse function theorem F' is a diffeomorphism.

The classification of symplectic manifolds up to symplectomorphisms is solved lo-
cally. The Darboux Theorem states that the dimension is the only local invariant.
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It also shows that the definitions 1.1 and 1.12 are equivalent in the open domain
U.

Theorem 1.1 (Darboux’s). To every point (q, p) of a 2n-dimensional symplectic man-
ifold (M,w), there correspond an open neighborhood U of (q,p) and a smooth map
F : U — R*" satisfying

F*wy = w|y,

where wy is the standard symplectic form on R*".

An equivalent formulation of the Darboux’s Theorem reads as follows. For every
(q,p) € M there is a chart (U, ), with ¢»(m) = (z,y) € R*", m € U, such that

¥(q,p) = 0.and
wly = dz A dy.

The above chart (U, ) is called canonical coordinates. By using these coordinates,
the integral curves associated to the Hamiltonian vector field Xy, given in defini-
tion 1.12, are determined by the classic Hamilton equations, see definition 1.1.

1.1.2 Poisson manifolds. Hamilton equations

A Poisson manifold is a smooth manifold with a Poisson bracket defined on its
function space, which appears as a natural generalization of symplectic manifolds.
They are endowed with the minimum features inherited from the symplectic man-
ifold to define a Hamiltonian system. In this section we gather some basic facts
and concepts taken from [Abraham and Marsden, 1985, Marsden and Ratiu, 1999,
Meyer et al., 2009].

Definition 1.14. A Poisson bracket (or Poisson structure) on a manifold M is a
bilinear operation { , } on F(M) = C*°(M) such that:

(i) 1t is skew-symmetric, {F, G} = —{G, F'}
(ii) The Jacobi identity holds {F,{G, H}} + {G, {F, H}} + {H, {F, G}} =0

(iii) {, } is a derivation in each factor, that is, Leibniz rule is satisfied in each factor

(FG, H}Y={F, H}YG + F{G, H}, YV F,G,H € F(M).

A manifold M endowed with a Poisson bracket is called a Poisson manifold.



1.1. Geometric Hamiltonian formulation

It can be shown that a symplectic manifold (M, w) is a Poisson manifold. The Poisson
bracket in M is defined by the symplectic form in the following way

(F, G} =w(Xr, X&) = Xc|F] Y F, GeF(M).

Note that in canonical coordinates, the Poisson bracket obtaines the traditional form

OF 0G  0GOF
{ha6) = Z(’?q iopi dqiopt

Definition 1.15. If (M, {, }) is a Poisson manifold, due to the derivation property of
the Poisson bracket, the value of the bracket {F,G} at z € M depends on F only
through dF (z), idem for G. Thus, there exists a contravariant antisymmetric 2-tensor

W:T"M xT*M — R : (dF,dG) — {F,G}.

A symplectic form is a covariant antisymmetric two tensor which is nondegenerate.
The tensor W is called a cosymplectic or Poisson structure. In local coordinates
(w1, , @), W is determined by its matrix elements W;; = {x;, x; }, and the bracket
becomes

oF 86‘
hG}= Z@xl 8@

Definition 1.16 (Poisson morphisms). Let (M, {-, -}»s) and (N, {-, -})n be two Pois-
son manifolds. Amap f : M — N is called a Poisson morphism or Poisson map if it
preserves the Poisson bracket,

{f7g, f*hym = {9, h}n, Vg, h € CZ(N).

A Lie algebra is a vector space V' with a bilinear form satisfying properties (i) and (ii)
from definition 1.14. Thus F (M) endowed with a Poisson bracket is a Lie algebra,
which is called a Poisson algebra.

Next we extend the notion of a Hamiltonian vector field from the symplectic to Pois-
son context and we establish the equations of motion. By fixing one of the factors in
the Poisson bracket, we obtain the following linear application

adp : F(M) — F(M) : G — {F, G},
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because of the (ii) property of definition 1.14. This application is a derivation called
the adjoint representation of (M ). By means of the identification between vector
fields on M and derivations there is a unique element X € T'M such that

XF = CLdF,

this vector field is called the Hamiltonian vector field of /. Let ¢; be the flow of
X, then the variation of any function F' € F (M) along the flow ¢; is given by

d

E(FO%) ={F, Hyopy={Foy, H},

which are the equations in Poisson bracket form often written as [ = {F, H}. There-
fore, H o o, = H and F' € F(M) is constant along the integral curves of X if and
only if {F, H} = 0. The triplet (M, {,}, H) is called a Poisson dynamical sys-
tem.

Definition 1.17. A function C € F(M) such that {C, F} = 0 forall F € F(M)
is said to be a Casimir function of the Poisson structure. The space of Casimir
functions is going to be denoted by C(M) and they form the center of the Poisson
algebra.

Remark 1.2. The unit element of the algebra (F(M), { , }) is always a Casimir.
If all the constant functions in the algebra (F (M), { , }) are Casimirs, we say that
such an algebra is a non degenerate algebra.

Remark 1.3. Every Casimir C' is constant along the flow of all Hamiltonian vector
fields, that is, Xc = 0.

It happens that a symplectic manifold induces a Poisson structure, through the sym-
plectic form, thus any Hamiltonian system is provided with a natural Poisson struc-
ture. The following proposition analyses the process in the inverse direction.

Proposition 1.2. A Poisson manifold M is symplectic if and only if the Poisson struc-
ture matrix is invertible.

Symplectic stratification theorem. The following statement shows that every Pois-
son manifolds is a union of symplectic manifolds, each of which is a Poisson sub-
manifold called symplectic leaf.



1.2. On Lie Groups, Lie Algebras and Actions

Definition 1.18. Let M be a Poisson manifold. Two points py, ps € M are equivalent
if they can be connected by a trajectory of a locally Hamiltonian vector field. The
corresponding equivalence class is called a symplectic leaf.

Thus a finite dimensional Poisson manifold M can be obtained as a disjoint union of
its symplectic leaves. Each leaf is a symplectically immersed Poisson submanifold,
and the induced Poisson structure on the leaf is symplectic. The dimension of the
leaf through m € M equals the rank of the Poisson structure at m.

Casimir functions are constant on every symplectic leaf of the Poisson manifold M,
which may be obtained as the level set of C. Notice that, even if all the Casimir
functions are constant, the Poisson structure can still be degenerate.

1.2 On Lie Groups, Lie Algebras and Actions

Lie group theory is a wide field in the contemporary mathematics. Here only a few
facts and concepts are presented. Further details are found in several references. A
detailed treatment of this subject is given in [Arnold, 1989, Marsden and Ratiu, 1999,
Weyl, 1939]. For a very practical approach see [Shapukow, 1989], where a complete
collection of exercises with solutions can be found.

1.2.1 Lie groups and Lie algebras

Definition 1.19. A Lie group is a group that is also differentiable manifold G, and
for which the following operations, as a group, are smooth

GxG— G, (91,92) = 9192,
G—G,g— gil.

In what follows we assume the same notation than in [Marsden and Ratiu, 1999]. Let
L, and R, be denote left and right translation maps, which are given by

Ly: G— G,h+ gh, and R}, : G — G, g — gh.

10



Chapter 1. Poisson and Symplectic Geometry

Definition 1.20. A Lie algebra is a vector space V together with a bilinear skew-
symmetric operation | , | : V- x V. — V, which satisfies the Jacobi identity

Huv U] ’w] + HU,U)] ’U’] + Hw7 u] ’U] = 0.

The operation | , | is often called the Lie or Poisson bracket.

Every Lie group has associated a Lie algebra. It consists of a vectorial space V =
T.G together with a bracket operation. In order to obtain this bracket on 7. G we first
introduce the left invariant vectors on G. A vector field X is said to be left invariant
when, for every g € G we have that L; X = X or equivalently when the following
equality holds for every h € G

T,L,X (h) = X(gh).

The commutative diagram holds

G G
Xl lx
76— TG

then, we denote the set of left invariant vector fields on G by X.(G). Note that if
geGand X, Y € X.(G), then

Ly[X,Y]=[L;X, L}Y] = [X,Y],

so [X,Y] € X.(G) and X (G) is a Lie subalgebra of X(G). This is the key to induce
a structure of Lie algebra on 7,GG. By mean of the isomorphism between the vectorial
spaces X (G) and T.G through the aplication

TeGZ — %L(G)
& — Xelg) = TeLy(€)

we may define the brackets in 7.G as [£, n] = [X¢, Y;] (e). Note that by construction
we have that

[Xfa Y;z] = X[énﬂ'

Definition 1.21. The above construction provides a structure of Lie algebra on T,G,
then (T.G, |, |) is called the Lie algebra of G and is denoted by g.

11
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Summarizing it up, we have for each { € g an invariant vector field associated X¢,
and by mean of the integral curves of X we obtain a one parameter subgroup in G,
itis

E—=Xe—[ve: R—= G,
where ¢ is the unique integral curve through e € G, then {7¢(t) }+cr is a one param-
eter subgroup.

Definition 1.22. The exponential map exp : § — G is defined by

exp(§) = 7(1).
Note that exp(s€) = ve(s).
Definition 1.23. Let M and N be manifolds and let G be a Lie group that acts on

M by ®, and on N by ¥,. A smoothmap f : M — N is called equivariant with
respect to these actions if for all g € G,

f o q)g = \Ijg o f7
that is, the diagram commutes.
M—1 N
B, j\l/g
M—1 N

Among the groups that most commonly appear acting on manifolds in classical me-
chanics, we found the matrix groups, also called the classical groups. Here we intro-
duce these groups and calculate their Lie algebras associated.

GL(n,R) The general linear group is the group of all invertible, n x n real matrices.
The Lie algebra associated is g = gl(n, R), the space of all n x n real matrices.

GL*(n,R) The nxn real matrices with positive determinant, isomorphic to GL™ (n, R)
and double covered by G L(n, R). The Lie algebra associated is g = gl (n, R),
the space of al square, n x n and real matrices.

SL(n,R) The special linear group, real group of matrices with determinant one. Let
us study the Lie algebra associated. Let us consider X € SL(n,R), then X =
exp(x) for some = € gl(n,R). The condition that X € SL(n,R) is equivalent
to detX = det exp(z) = 1. By finding a basis in which z is upper-triangular,

12



Chapter 1. Poisson and Symplectic Geometry

it can be proved that det exp(x) = exp(tr(x)), therefore exp(z) € SL(n,R) if
and only if ¢7(z) = 0. Thus, we have that s[(n, R) is given by

sl = {x € gl(n, K)|tr(z) = 0}.

O(n,R) The orthogonal group, is the group of real orthogonal matrices, i.e. X X' =
Id,. This is the symmetry group of the sphere (n = 3) or hypersphere. For
the Lie algebra we consider the defining property, then X, X* commute. Writ-
ing X = exp(z), X' = exp(a’), we see that x, ' also commute, and thus
exp(z) € O(n) implies exp(z) exp(z!) = exp(z + 2') = 1, so x + z* = 0;
conversely, if z + ' = 0, then z, ' commute, so we can reverse the argument
to get exp(x) € O(n,R). Thus, in this case the theorem also holds, with

o = {z|z +2' =0},

the space of skew-symmetric matrices.

SO(n,R) The special orthogonal group, is the group or real orthogonal matrices
with determinant one. SO(2) is isomorphic to the circle group, SO(3) is the
rotation group of the sphere. For the Lie algebra In this case, we should add to
the condition X X* = 1 (which gives = + z* = 0) also the condition det(X) =
1, which gives tr(z) = 0. However, this last condition is unnecessary, because
x + x' = 0 implies that all diagonal entries of x are zero. So both O(n) and
SO(n) correspond to the same space of matrices

0 =s0={z|z+2" =0}

This might seem confusing until one realizes that SO(n) is exactly the con-
nected component of identity in O(n). Thus, the neighborhood of 1 in O(n)
coincides with the neighborhood of 1 in SO(n).

U(n,R), SU(n,R) Group of unitary matrices and special unitary group, unitary
matrices with determinant 1. A similar argument shows that expz € U(n) <
r+ z* =0, (where 2* = Z') and expz € SU(n) & z+2* =0, tr(x) = 0.
Note that in this case, x + x* does not imply that x has zeros on the diagonal:
it only implies that the diagonal entries are purely imaginary. Thus, tr(z) = 0
does not follow automatically from = 4+ x* = 0, so in this case the tangent
spaces for U(n), SU(n) are different.

Sp(2n,R) Symplectic group; real symplectic matrices. Similar argument shows
that exp(z) € Sp(2n,K) < = + JztJ~' = 0; thus, in this case the theorem
also holds.

13



1.2. On Lie Groups, Lie Algebras and Actions

1.2.2 Actions of Lie groups

Definition 1.24. Let M be a manifold and let G be a Lie group. A left action of a Lie
group G on M is a smooth mapping ® : G x M — M such that:

(i) P(e,z)=xforallz e M

(ii) ®(g,P(h,x)) = ®(gh,x) forall g, h € G and x € M.

in a analogous way can be defined a right action.

Important examples of group action are the following actions of GG on itself:
e L, : G— G, hw gh, the left action map.
e Ry : G— G, g+ hg™', the right action map.

e Ad, : G — G, h+ ghg™', the adjoint action.

Remark 1.4. Left and right actions commute and Ady = LyR ;1.

Since the adjoint action preserves the identity element e € G, it also defines an action
of GG on the space TG, which is also named the adjoint action. Abusing the notation,
this action is denoted by

0Adgp—c (&) '

Ad, : T.G — T,G, £
dg

Then, Ad, denotes the adjoint action of G, but the context is what determines where
G is acting. Considering the dual aplication Ad; : T;G — T;G we obtain an
action over the cotangent space at e € G, it is called the co-adjoint action.

For each element m € M the orbit of m under the action of ® is defined as the
set

O = {®4(m)| g € G},

the tangent space of O,, is given by T.¢,,(g). There are also two important con-

cepts to define, the isotropy group and the invariant group of an action. Given
meM
G = {9 € Gl (m) = m},

is the isotropy group relative to m. The invariant group of an action is the kernel of
the action, that is, the intersection of all the isotropy groups

G'= () Gn=1{g€G|Dy(m)=m, Vm € M}.

meM

14



Chapter 1. Poisson and Symplectic Geometry

The geometric reduction is reviewed in the following section. It is performed by
moving to the quotient space of orbits through the momentum map, which in order to
provide a reduction has to be equivariant. In general M /G is just a topologic space.
To assure that the quotient space is a manifold we have to impose some conditions to
the action.

Definition 1.25. With the above notation, an action is said to be:

1. Proper if the mapping ® : G x M — M x M defined by (g, ) =
(z,P(g,x)), is proper; i. e., ® is continuous and the anti-image of a compact
set is compact.

2. Transitive if there is only one orbit or, equivalently, if for every x, y € M there
isa g € G such that g - x = 1. One easily sees that left and right actions are
transitive.

3. Effective or faithful, if ®, = idy implies g = e, that is, g — P, is one to one.

4. Free if it has no fixed points, that is, ®,(x) = = implies g = e. Note that an
action is free iff G, = {e}, for all x € M and every free action is faithful.

Theorem 1.3. If O is free and proper; then the orbital space M /G is a manifold and
7w M — M/G is a smooth submersion.

Definition 1.26. Let ® : G x M — M be an action. For £ € g, the map ®¢ :
Rt x M — M defined by

O (t, x) = P(exp L&, x)

is an R-action on M. In other words, ®exp ¢ © M — M is a flow on M. The
corresponding vector field on M given by

d
Em(z) = Eh:o@exp ()

is called the infinitesimal generator of the action corresponding to .

Remark 1.5. The infinitesimal generator of the action corresponding to & corre-
sponds with the differentiate of the action ® with respect to g at the identity in the
direction .
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1.3. Reduction Theory

1.3 Reduction Theory

The word reduction is used in a wide sense. However, it is always related with a
simplification of the system at hand in terms of a decrease in the number of variables
needed. Next, we explore two different approaches. There are many books where this
material can be found, some basic references are the following [Abraham and Marsden, 1985,
Arnold, 1989, Marsden and Ratiu, 1999].

1.3.1 Conserved quantities and Momentum maps. Noether theo-
rem

Symmetries associated to Hamiltonian system are exhibited by means of Lie groups
actions and they lead to the construction of momentum mapping, or equivalently,
conserved quantities. They are the ingredients to perform reductions on the original
system.

Definition 1.27. Let M be a Poisson manifold, G a Lie group and ® : G x M — M
a smooth left action of G on M. We say the action is canonical or Poisson if

OHF, H} = {Q)F, D H}.
If M is symplectic with symplectic form w, then the action is canonical iff Pw = w.

The elements ¢ € g of the Lie algebra g associated to the Lie group GG determine
flows @y, ¢ and vector fields £, on the manifold M. Then one may wonder if the
vector fields &), are globally Hamiltonian. From now on we assume that there is a
global Hamiltonian J (&) € F (M) for &y, that is

Xie) = &um- (1.6)

Unicity of J(&) is often a problem for M a Poisson manifold. In other words, if both
J1(€) and J,(&) satisfy (1.6), then

Xn©-ne =0,

therefore, J;(£) — J2(&) is a Casimir on M. For M symplectic and connected, J(§),
when exists, is determined up to a constant.

16



Chapter 1. Poisson and Symplectic Geometry

Definition 1.28. An action ® is a Hamiltonian G-action if for all £ € g, the infinites-
imal generator associated X¢ is a Hamiltonian vector field. That is, for all § € g
there exists a differentiable function J(§) : M — R such that

Xy = Em-

Therefore, any Hamiltonian action is associated with several functions (the Hamilto-
nians), which generate the same vector fields as the action does from the elements of
the Lie algebra.

Definition 1.29. Let ® be a Hamiltonian G-action on M , then the map J : M — g*
defined by

Je(2) = J(§)(2),

forall¢ € gand z € M is called a momentum mapping of the action. The momentm
mapping is Ad* equivariant if J(®4(m)) = Ad;_, J(m).

The following result shows why momentum mappings are so relevant. It happens
that they are conserved quantities along the flow of the system. Since the above
development can be generalized to Poisson manifolds, the Noether’s theorem is pre-
sented in the most general possible context, that is to say, in the context of a Poisson
manifold.

Theorem 1.4 (Noether’s Theorem. Poisson version). If the Lie Group G with Lie
algebra g acts on the Poisson manifold M and admits a momentum mapping J, and
if H € F(M) is g-invariant, that is, py [H] = 0 for all § € g, then J is a constant of
the motion for H.

Remark 1.6. If the Lie algebra action comes from a canonical left group action P,
then the invariance hypothesis on H is implied.

Next, we are concerned with the reduction theorems on symplectic and Poisson man-
ifolds. They allow us to make use of symmetries in the form of group actions and
momentum maps, in order to change our former system into a simpler one, the re-
duced system.

1.3.2 Geometric reduction

17



1.3. Reduction Theory

Theorem 1.5 (Classical regular reduction theorem). Let (M, w, G) be a Hamiltonian
G-space with Ad*-equivariant momentum mapping J :— g*. Let u € g* be a
regular value of J and let the isotropy subgroup G, for the coadjoint action on g* act
freely and properly on J~*(11). Then M,, = J~'(u) /G, has a unique symplectic form
w,, making (M,,,w,,) into a symplectic manifold.

This theorem also known as the Marsden-Weinstein-Meyer theorem, establishes when
an action leads to a reduced space, which is also a symplectic manifold. The follow-
ing one relates the Hamiltonian of the reduced and the original spaces, that is to say,
the reduced Hamiltonian flow is induced by the full Hamiltonian flow in M.

Theorem 1.6. Under the hypotheses of Theorem 1.5 and assuming that H : M — R
is preserved under the action of the group G, there is a function H,, : M,, — R such
that H,,om = H, where m denotes the quotient map from ®~*(u) to M,,. Furthermore,
if f(t,m) denotes the flow of H in (M,w) and f,(t,[m]) the flow of H,, in (M,,w,,)
we have 7o f(t,m) = f.(t,[m]) for every m € ®~*(p).

Finally the reduction theorem for the case of Poisson manifolds reads as follows

Theorem 1.7. Consider a Lie group GG acting canonically on a Poisson manifold M
by ®. Suppose the action is free and proper. Then M /G is a manifold and w : M —
M /G is a submersion. Moreover there exists a unique Poisson structure on M /G
such that 7 is a Poisson map. If H is a G-invariant Hamiltonian on M, there is a
function Hg on M /G such that H = Hg o m. Moreover w transforms Xy on M to
X, on M/G.

1.3.3 Constructive geometric reduction

An equivalent construction of the reduced space can be achieved through invariants.
This approach is called the constructive geometric reduction.

Theorem 1.8 (Hilbert). The algebra of polynomials over C of degree d in n variables
which are invariant under G L(n,C), acting by substitution of variables, is finitely
generated.

Theorem 1.9 (Weyl). The algebra of invariants is finitely generated for any repre-
sentation of a compact Lie group or a complex semi-simple Lie group.
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Chapter 1. Poisson and Symplectic Geometry

Corollary 1.10. Consider a compact Lie group G acting linearly on R™. Then there
exist finitely many polynomials p1, pa, . . ., pi, € R[x],, where z € R" and R [z], de-
note the space of G-invariant real polynomials in n variables, which generate R [z]
as an R algebra. These generators can be chosen to be homogeneous of degree
greater than zero. We call py, ps, . .., pi, a Hilbert basis for R [z] .

Theorem 1.11 (Schwarz, 1975). Consider a compact Lie group G acting linearly on
R". Let p1,p2,...,pr € Rlz], be a Hilbert basis for R[], and let p : R* —
R*; 2 — (p1, p2,- -+, pr). Then p* : C°(R* R) — C®(R",R)q is surjective, with
p* the pull-back of p.

Theorem 1.12 (Poenaru, 1976). The map p is proper, that is, inverse images of com-
pact subsets are compact, and it separates the orbits of G. Moreover the following
diagram commutes, with p a homomorphism

R* " p(R")

N

R"/G

Figure 1.1: Constructive geometric reduction diagram.

This theorem states that we can take p(R™) as a model for the orbit space and provides
a method to reduce Poisson manifolds. Consider a Poisson bracket on R" and a Lie
group G acting canonically on it. If we consider on R¥ the Poisson structure induced
by p by taking as structure matrix W;; = {p;, p;}, then (R*,{, }yv) is also a Poisson
manifold and p is a Poisson map. We have a Poisson reduction if we restrict the
bracket on R” to p(R").

1.3.4 Symplectic reduction

In sections (1.3.2) and (1.3.3) it is shown how to take advantage of the conserved
quantities associated with symmetries. Now symmetries are used in a different way.
The associated integrals are used to design a new set of symplectic variables in which
the system is expressed in a simplified way. This technique is the oldest one, in fact
it is as old as the Principia of Newton, where the symplectic change of variables
moving the origin to the center of mass performs a reduction in the system.
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1.3. Reduction Theory

This technique is profusely used in the field of astronomy. For example, in the study
of the free rigid body, astronomers pick a set of variables that relies on the invariance
of the perpendicular plane to the angular momentum. Those variables were named
the Serret-Andoyer variables by Deprit. Therefore, the system in these new variables
incorporates integrals that lead to cyclic variables.

The applicability of symplectic reduction hinges in the existence of any physical
knowledge of the system that relates partially the old and new variables, usually
it gives rise to a configuration space transformation that should be extended to a
transformation in the phase space. Later on, this approach will be fully exploited
to get a reduction of the degrees of freedom. The change of variables is given by
means of a symplectomorphism, thus we study the generating functions (not only for
configuration transformations), which are the key to obtain a full transformation of
the phase space.

Let Q = Q(q,p), P = P(q,p) be a change of variables defined in a ball in R*". It is
a symplectic transformation if and only if

dg Ndp =dQ N dP.

This condition may be rewritten as d(qdp — QQ dP) = 0, that is to say o1 = qdp —
@ dP is exact. Proceeding in analogous way, the symplectic character is equivalent
to 0q, 03 Or 04 to be exact, where

o1 =pdg—QdP, oy=qdp+ PdQ, (17)
o3 =qdp—PdQ, o,=pdg+ QdP.
Thus, assuming that there exist four functions 57, Ss, S3 and Sy satisfying that their
differentials are equal to o, 09, 03 and o4 respectively, and identifying terms, one
can write
_ 95,

o (p,P), Q=——=(p,P).

q

If the Hessian of S; is nonsingular, then the above equation is solvable for P as
P(q,p) and for p as p(@Q, P). Thus, proceeding with all the functions in a similar
manner we have the following result.

Theorem 1.13. The following equalities define a local symplectic change of vari-
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Chapter 1. Poisson and Symplectic Geometry

ables:
_ 95, _ 95 %5, . .
q= a—p(]% P), Q= _8_P(p’ P) when apoP is no singular,
2
— %—%(p, Q), P= g—i;(p, (Q)) when ;522 is no singular; s
2 .
p= %—%(qa Q), P= —%(q, Q) when 88(]522 is no singular,
_ 954 _ 05 0*Sy . .
p= 8_q(p’ Q), Q= _8_P<q’ P) when 3q0P is no singular.

The functions S; ¢ = 1,2, 3,4 are called generating functions. We will make special
use of the Mathieu Transformations in the case that we are given a point transfor-
mation ) = f(q), with 0 f /0q invertible, then the transformation can be extended to
a symplectic transformation by defining Sy(q, P) = f(¢)" P and

p— g—gwa Q=g

The extension of a point transformation leads us to the concept of cotangent lift,
extracted from [Marsden and Ratiu, 1999].

Definition 1.30. Given two manifolds M and N with coordinates (q,p) and (Q, P)
respectively and a diffeomorphism f : M — N, the cotangent lift of f is a symplec-
tomorphism T* f : T*N — T*M, which is defined by

(T" f(ag), v) = {aq, (T f - v)),

where ag € TN, v € TM and Q = f(q).

1.4 Stability in Hamiltonian Dynamical Systems

Some basics on theory of the stability related to equilibrium points in Hamilto-
nian systems are presented. These notes are organized following several references
[Marsden, 1992, Ortega, 1998, Ortega, 2014]. We start by recalling some basic termi-
nology about stability to fix notation, next we specialize it in the case of Hamiltonian
systems.
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1.4. Stability in Hamiltonian Dynamical Systems

1.4.1 Basics on stability

Definition 1.31. Let X € X(M), let m € M be an equilibrium of (M, X)) and let y
be a periodic orbit such that m € ~y. Then

(i) m is stable or nonlinearly stable or Lyapunov stable, if for any open neighbor-
hood U of m in M, there is an open neighborhood V' of m such that if F} is the
flow associated to X, then Fy(z) € U, for any z € V and for all t > 0. This
definition of stability is also known as positively stable or negatively stable if
the final condition turns to t < 0 and the word stable is applied when a point
is both positively and negatively stable.

» »

(ii) m is unstable if it is not stable. (The adjectives "positively”, “negatively” can
be also used with "unstable”.)

(iii) m is asymptotically stable if there is a neighborhood V' of m such that F,(V') C
Fi(V)whent > s andlim;_, o, F;(V) = {m}.

(iv) ~y is orbitally stable, or m is a stable periodic point, if for any open neighbor-
hood U of v in M, there is an open neighborhood V' of m such that Fy(z) € U,
forany z € V and for all t > 0.

It is worth remarking that, since the flow given by F} : M — M defines a parametric
family of symplectic maps in M, Hamiltonian systems can not present asymptotically
stable points. Thus, the Liouville’s theorem establishes that F} preserves volume, but
flows having asymptotically stable points “loose” volume near that point. This can
also be shown by the Hamiltonian eigenvalues theorem.

Although there are many definitions for the stability of an equilibrium, one of the
most popular is stability in the Lyapunov sense. Intuitively this kind of stability
means that solutions starting close enough to the equilibrium point do not go away
from it. Next we give a classic sufficient, but not necessary, condition which guaran-
tees stability.

Theorem 1.14 (Lagrange). Let (M, w, H) a Hamiltonian dynamical system, and m €
M an equilibrium of Xy,. Suppose that d*H(m) is definite; that is, for all v € T,, M,
v#£0

d*H(m)(v,v) = 0.

Then, m is stable.

Some of the tools to establish stability of the above types hinge on the eigenvalues
of the linearized system. Hence, in our application the study of stability points starts
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with an analysis of the linearized system. In this regard, we define the linearization
at the equilibrium m of the general system (1.3) given by X € X(M) as

X'(m) : TpyM — T M, (1.9)
where q
X'(m)-v:i=—| (T,F(m)-v), veT,M.
dt l+=0

We say that the equilibrium m is linearly stable if X'(m) is stable and we say that it is
spectrally stable if all the eigenvalues of X'(m), called characteristic exponents, have
non-positive real parts. Linear and spectral stability coincide iff the Jordan blocks are
all one dimensional.

Asymptotic <= Nonlinear <= Linear < Spectral

1.10
stability = stability = stability = stability ( )

Also a classic theorem from Lyapunov ensures that spectral stability with strictly
negative real parts in the eigenvalues implies asymptotic stability. In (1.10) we collect
the stability relations types.

1.4.2 Hamiltonian linear systems and linearizations

In the particular case of a Hamiltonian dynamical system (M, w, H) the linearization
is done as follows. Let Xy be a Hamiltonian vector field on (M, w, H) which exhibits
an equilibrium at m, that is, d H(m) = 0.

e The linearization X'(m) : T, M — T,,M of Xy atm is a linear Hamiltonian
vector field on (7, M, w,,) with quadratic Hamiltonian function

Qv) == %dQH(m)(v,v), veT,. (1.11)

e Let dim(T,,M) = 2n. If we use Darboux coordinates in (7, M, w,,), the lin-
earization X ;(m) is an element of the Lie algebra sp(2n, R) of the symplectic
group Sp(2n,R), that is, it satisfies

X (m)"' T+ JXp(m) =0,

where
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For the Hamiltonian case there are some restriction in the spectra of the linearized
system. It is characterized in the Hamiltonian eigenvalues theorem, that we give after
the following necessary definition.

Definition 1.32. A polynomial p(y) = a,y" +an,_1y" ' +---+ag is even if p(—y) =
p(y), which implies that ay, = 0 for every odd k. If yo is a root of an even polynomial,
then so is —yo. That is, the zeros of a real, even polynomial are symmetric about the
real and imaginary axes.

Definition 1.33. A matrix A € gl(2n) is called Hamiltonian or infinitesimally sym-
plectic if
ATJ+JA=0.

Theorem 1.15 (Hamiltonian Eigenvalues Theorem). The characteristic polynomial
of a real Hamiltonian matrix is an even polynomial. Thus, if \ is an eigenvalue of a
Hamiltonian matrix, then so are —\, A and —\.

Corollary 1.16. If A € C is an eigenvalue of the linearization Xy;(m) € sp(2n, R)
of multipicity k, then so are —\, A\ and —\. If 0 is an eigenvalue it has necessarily
even multiplicity.

Note that asymptotic instability can be concluded out of the spectral instability and
that Lyapunov stability is only possible in the purely elliptic case, that is, when all
the eigenvalues are in the imaginary axis.

Energy-Casimir method

The Energy-Casimir method is a generalization of the classical Lagrange-Dirichlet
method. Let (M, {.,.}, H) be a Poisson system, given m € M an equilibrium of the
Hamiltonian vector field Xy, it proceeds in the following tree steps.

(i) Find a set of conserved quantities C1,...,C, € C®(M) (C" are typically a
Casimir function plus other conserved quantities) such that the first variation
vanishes

dH+Ci+---+Cy)(m)=0.

(i1) Calculate the second variation

d2<H + 01 + 4 Cn)(m)|w><w
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(ii1) If the second variation is definite for W defined by
W =ker(dCy(m)n...NdC,(m)),

then, m is stable. If W = {0}, m is always stable. W is called the stability
space.

The definiteness character of a matrix and the properties of those kind of matrices is
studied in [Johnson, 1970]

1.5 On the Constrained Flows

In this section we review some results concerning to constrained Hamiltonian sys-
tems. The proofs of the results presented here are in the paper of van der Meer
and Cushman [van der Meer and Cushman, 1986], where the ideas about constrained
systems were first introduced.

Suppose we are given a Hamiltonian system (#, M, w) of dimension 2m and we
want to study the flow when it is restricted to a certain 2n-submanifold N, where
n < m. It is also supposed that we have C1, ..., Cy € C°°(M) smooth functions,
where m —n = k, such that N = {m € M|Ci(m) = --- = Coy(m) = 0} and
the differentials DC', ..., DC5;, are independent on N, that is, N is a smoothly em-
bedded submanifold of M. In [Cushman and Bates, 1997], N is called the constraint
manifold with constraint functions C, ..., Cy,. Furthermore suppose that the ma-
trix C' = (¢;;) = ({C;, C;}) is non singular at every point of N, then N is called a
cosymplectic submanifold of M.

Theorem 1.17. If N is a cosymplectic submanifold of a symplectic manifold (M, w),
then w)y is a symplectic form on N.

Proof. See details in [Cushman and Bates, 1997]. L]

Let X4 be the Hamiltonian field on M generated by the Hamiltonian H, thus the
restricted field X3 |N does not belong in general to the tangent bundle of N. It is
a desirable feature of the original Hamiltonian. Next we give a characterization of
when it does happen.

Lemma 1.1. The following statements are equivalent:

1. X4 is tangent to N at each point of N.

2. N is an invariant manifold of X.
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1.5. On the Constrained Flows

3. exp Ly (Z) C Z, where T is the ideal of C*°(M) generated by C4, ..., Cay,
4. {,H,CZ}“V:OfOI’Z: 1, ,2/{5
5. XH|N:XHOI’IN.

In practice, when we have a cosymplectic submanifold N of M and X is tangent to
N, we are lucky of work out any computation of the constrained system in the am-
bient space, because X |N is a Hamiltonian field on NV with associated Hamiltonian
H‘N and WN = W|N-

For the case in which X4 is no longer tangent to N the above setting is complete
spoiled. The strategy is to construct a function H* featuring that H*|N = H|N, Xy
is tangent to N and X4+ |N = Xy, . By this procedure we are constructing a vector
field in M, X4+, whose restriction to /N is the projection of X4 on the tangent space
of N, by mean of this setting, we will be able to compute in the ambient space as
before.

Lemma 1.2. Let C~! = (cV) be the inverse of the matrix C and let H* : M — R
defined as follows

W =H+ Y ({HC}+F)Cy, (1.12)
i,
where F; belong to the ideal I generated by C\, ..., Cop. Thus H*|N = H|N, Xy is
tangent to N and Xy+|N = Xqy|n.

Note that in concrete applications it is often necessary to use the freedom in the choice
of F; to simplify H*.

For any two functions F, G € C*(M) we can compute the Poisson bracket { F'|N, G| N}V
on N by mean of the “ * ” procedure in the following way

{FIN,GIN}Y = {F",G"}IN,

so that, the Poisson bracket on N can be computed in terms of the Poisson bracket
on M.
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Chapter 2
The Extended Euler System

In this chapter we put forward the study of the family of differential equations, which
will be of interest in the study of the quartic parametric polynomial model presented
in Chapter 4

@ = H2H3, % = a2 Hlﬂg, % = as H1H2, (21)
ds ds ds

The results obtained here has been sent for publication, see [Crespo and Ferrer, 2014b].
Let the initial values of the above equations be I19, TT3 and I1, where a; are arbitrary
real parameters. A simple computation shows that this system is endowed with the
following integrals

hi = aoll; — aslly,  hy = a3lls — 1103,  hs = ai115 — aollf,  (2.2)

those integrals are three hyperbolic cylinders (HC) when the parameters a;, a; and
as has the same sign; otherwise, we have two elliptic cylinders (EC) and a hyperbolic
one.

Note that in those systems there is always the possibility of taking one of the a; equal
to one by rescaling the independent variable, but thinking on the applications we will
maintain all the parameters.

It is well known that, Euler equations are a dynamical system fitting (2.1), i.e., the
reduced system associated to the motion of a rigid body with a fixed point in the
absence of external forces. Then, the variables II; are the three components of the
angular momentum. The parameters a; (1 < i < 3) depend on the principal moments
of inertia of the body and they satisfy that the sum a; 4+ a2 + a3 = 0. The approach of
this Chapter is to release the system (2.1) from any physical background and consider
it as an initial value problem.
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2.1. Deformation of the Extended Euler System Poisson Structure.

Moreover, the powerful presence of the rigid body problem has constrained the study
of the system (2.1) to bounded solutions, while the dynamic corresponding with sys-
tem (2.1) also provides unbounded ones. In the work of [Holm and Marsden, 1991]
and [Iwai and Tarama, 2010] the authors gave the exhaustive list of Lie-Poisson struc-
tures associated to the family (2.1). Here, we consider a six-dimensional Poisson
structure that fits all of them together. That Poisson structure is not of Lie-Poisson
type.

In the literature there are several studies of this generalization. For instance, in
[Iwai and Tarama, 2010], the extended free rigid body is analyzed in classical and
quantum mechanics, while in [Holm and Marsden, 1991], [Puta, 1993], [Puta, 1997]
or [Puta and Casu, 1999], the authors are concerned with the inclusion of one, two
or even three rotors that turn up as quadratic controls. Also, we could mention a
proposal for a regularization of the flow in [Molero, 2013].

We follow and extend the approach of Meyer in [Meyer, 2001], where he introduces
the basic Jacobi elliptic functions as the solutions of a particular differential system of
the family (2.1). As such, the twelve Jacobi elliptic functions are shown in a unified
way as the family of solutions for the (EES). In addition, some important properties
of the Jacobi elliptic functions, see [Lawden, 1989, Whittaker and Watson, 1940], are
obtained easily in Section 2.5

2.1 Deformation of the Extended Euler System Pois-
son Structure.

The family of differential equations given in (2.1) may be rendered as a Hamiltonian
family when a suitable Poisson structure is defined in C>°(IR?). For this purpose, we
recall the Nambu [Nambu, 1973, Holm, 2008b] type bracket on C*° (]R“)
{,}e: C®(R?) x C°(R?) — C>®(R?) (2.3)
(F,G) — {F,G}. = —Vc - (VF x VG),
where ¢ € C?(R3). Thus, (C*(R?),{, }¢) is a Lie-Poisson manifold and c(II) is a
Casimir. We will restrict the Casimir function to be in the following fashion,

1
c(Il) = (eI} + o113 + c5115), (2.4)

under this assumption, the Nambu bracket defined above provides a linear Poisson
structure given by means of the following relations

{Hb HQ}C = c3 13, {H3> Hl}c = cp Iy, {H2> Hg}c = ¢ II;. (2.5)
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Chapter 2. The Extended Euler System

where 11;, 2 = 1,2, 3 are the coordinate functions. Therefore, according to the signs
of (c1, ¢, c3), the Poisson structures defined by the above bracket corresponds, up to
a canonical map, to any of the ones given next

50%(3) (+,++), (= ——)

50*(271) ( 1 ) (+?_7_>

50%(2) x R? (+,4+,0), (—,—,0)

s50*(1,1) x R? (+,—,0) 2.6)
T ( ) ’O) (—,0,0)

R3* ( , 70)

where b is the Heisenberg group.

Following [Weinstein, 1983], it is shown that the Poisson manifolds (C*°(R?), {, }¢)
fit together in a larger Poisson manifold, which is not of a Lie-Poisson type. In other
words, the inclusion of (C*°(R?), {, }¢) in R = {(I1y, [, 113, ¢y, ¢, c3) /115, ¢; € R}
with the following Poisson structure is a canonical map

{Hi7 H]} = EijkaHk7 {sz Cj} = 0, {CZ', Cj} = O, 1= ]_, 2, 3 (27)

The leaves of the symplectic stratification are given by the Casimir functions %(cla:QJr
coy® + c32?), 1, ¢y and c3. Therefore, by means of the identification R® = R? x R3,
the symplectic leaves may be rendered as the product of the two-dimensional quadric
c(II) C R3 times a single point (cy, ¢o, c3) C R3.

Proposition 2.1. Let us consider the functions given by

hi—hs 1
o) = == = (@llf - (o + )} + aollf), 28)
—_h 1 .
h(Il) = 2 _ —< W @ Hf).
2 (al + ag) 2 ai; + as ai + as

Thus system (2.1) may be expressed in Hamiltonian form as
IT;(IT) = {IL;, h}(IT), 2.9)

together with the initial conditions T1(0) = (T1, 113, T13). This system will be named
as the Extended Euler system (EES).

Proof. The direct computation of the Poisson bracket {II;, h}.(IT) leads us to the
differential equations defining system (2.1). ]
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2.1. Deformation of the Extended Euler System Poisson Structure.

Notice that Holm and Marsden shown in [Holm and Marsden, 1991] that any linear
combination

K=ac+bh, N=cc+dh, ad —cb =1, (2.10)
may replace c and h in Proposition 2.1. That is to say
IT;(TT) = {I1;, h}o(TT) = {IL;, N} (I1). (2.11)

Moreover, by a rescaling of the independent variable in system (2.1) if it is needed,
we can replace the condition ad — ¢b = 1 in (2.10) by ad — ¢b # 0. Therefore, we
are allowed to carry out our study using the original integrals given in (2.2), which
provides a simply presentation of the general analytic solutions given in Section 2.4.
Moreover, although two of them are enough since the following relation holds

alhl + a2h2 + CL3h3 = 0, (212)

we will show that the third one also play a key role in the analytic solutions formulas,
detecting heteroclinic orbits and equilibria.

Under the assumption K = h;, ¢ = 1,2,3 in (2.11), the symplectic stratification is
not given by an arbitrary quadric in R?, but for elliptic (EC) and hyperbolic (HC)
cylinders, see Figure 2.1.

(a) Evolution of h;. (b) Evolution of hs. (¢) Evolution of hg.

Figure 2.1: Symplectic stratification:  Symplectic leaves associated to K = h; 2.1(a),
K = hy 2.1(b) and K = hg 2.1(c), where ay € {1,0.2,0.08,0,—0.5,—1} for h; and h3 and
az € {1,0.2,0.08,0, 0.5, —1} for hs.

Observe that the Poisson structure has an influence in geometry of the solutions, since
the choice of the Casimir corresponding with s0*(3) or s0*(2) x R? leads to bounded
trajectories.
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Chapter 2. The Extended Euler System

2.2 Basic Features of the Extended System.

Equilibria. For the general case when ay, as, a3 # 0, the three coordinate axes
correspond to equilibria points. Those points are arranged in pairs, each one corre-
sponds with the zero values of each of the integrals. In other words those equilibria
(11, I, I13) are given by

hl =0: (:i:\/ |h2/(l3|,0,0>; hg =0: (O,i\/ |h3/a1|,0); h3 =0: (070,:l:\/ |h1/a2|)

(2.13)
For the case in which one of the parameter a; is equal to zero, the equilibria are the
following

CL1:O$ (:i: ]hg/a3|,0,0);a2:(): (O,:i: |h3/a1\,0); 03203 (0,0,:l: \hl/azl)
(2.14)
together with

a; =0: (0,29, 23); as =0: (29,0, 29); as=0: (29,29,0). (2.15)

Our family depends on two sets of values, the initial conditions and the parameters,
as we have seen in Section 2.1; the integrals depend on both. In this Section we
will present the geometry of the solutions. They are defined by the intersection of
the integral surfaces. The germinal paper of this approach comes from Holm and
Marsden [Holm and Marsden, 1991]. Also Meyer in [Meyer, 2001] expresses that
the solutions of a differential system of the Jacobi type are given as the intersection
of the cylinders defined by the integrals (2.2). We take benefit of both papers.

Following Meyer we give a simple characterization of the bounded and unbounded
solutions of system (2.1). Firstly we define the concept of standard system in order
to avoid repetition.

Definition 2.1 (Standard form of the extended Euler system). By interchanging vari-
ables and or equations and by choosing a suitable orientation of the independent
variable, if it is needed, system (2.1) may be arranged in such a way that the param-
eter ay is strictly positive, ag is positive or zero, and a; € R. Then we say that it is in
standard form.

Proposition 2.2. Given initial conditions such that hy # 0, hy # 0 and hy # 0, the
solutions of the standard system are equal to each of the connected component of the
intersection of the integrals. For the case a; < 0 we obtain periodic and bounded
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2.3. Geometric Description of the Solutions

solutions, and as > 0 leads to the non-bounded ones. If any of the parameters
vanishes, we have the following cases; a; = 0 and a;a;, > 0 leads to unbounded
solutions, while a; = 0, a;a, < 0 to the bounded ones. The case in which two
parameters vanish corresponds to straight trajectories.

Proof. We study the case ;7 = 2 and ¢« = 1, k = 3, different combinations are
analogous. Along this proof we denote the intersection hy N h3 by C. For ay < 0, the
integral surfaces give place to the intersection of a pair of EC, therefore C is made up
of two closed symmetric curves and the corresponding solutions are bounded. When
ay; > 0, the intersection C is given by a pair of HC, so that C is built up of four
symmetric curves. All those curves are free of equilibria points, see (2.13). It is
also satisfied that any solution starting at a connected component of C remains in that
component for all s in the domain of the solution. Thus, by mean of the continuation
theorem for differential equations [Hale, 1969], pp. 16-17, we obtain that solutions
starting in a connected component of C must traverse all of it. Therefore, solutions
corresponding to a; > 0 are unbounded and for ay < 0, keeping in mind that system
(2.1) does not dependent on the independent variable, we have that solutions are
periodic.

For a; = 0 we have that h; and hg are two planes, and solutions are given by their
intersection with hy. Therefore we obtain an hyperbola for a; # 0. Analogously,
as; = 0 and a3 # 0 lead to elliptic solutions. [

2.3 Geometric Description of the Solutions

Along this section we distinguish the effects that changes in the parameters of system
(2.1) has on the solutions, as well as the influence of the initial conditions.

2.3.1 Parameters dependency

In [Holm and Marsden, 1991], the authors show how to control the stability prop-
erties of an equilibria, by using a3 as a control parameter. We extend the analysis
of the parameters evolution given in [Holm and Marsden, 1991] by also studying the
variation of as. Thus, we show how the change in the sign of those parameters has
to do with the stability, and also how it determines whether the solutions orbits are
bounded or not.
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Chapter 2. The Extended Euler System

195}

m, m,

-2 -2

(a) az = 1.05. () az = 1. () az = 0.75.

[15Y

) 5% m,

(d) az = 0. (e) ag = —1. (f) azg = —6.

Figure 2.2: The Holm and Marsden stability evolution: For a3 > 0 the integral surfaces h; and
ho correspond to an EC and HC, see figures 2.2(a) and 2.2(c). In 2.2(b) hy become a pair of planes
that intersects with h; along heteroclinic orbits and a pair of unstable equilibria in the IT5 axis. In
2.2(d) az = 0, thus h; and ho are completely flat. Therefore, we incorporate h3 to show the trajectory
solution as by N ho N hs. For ag < 0 the stability of the equilibria in the axis II; and Il interchange
their roles.

Secondly, two of the parameters are fixed and have the same sign, in this case the sign
of the third one characterizes whether the solutions are bounded or not see Figure 2.3.

(a) as < 0. (b) as = 0. (c) ag > 0.

Figure 2.3: Global bifurcation from bounded to unbounded trajectories: Intersection of ho and
hs as as € R varies. For as < 0, in 2.3(a), we obtain bounded solutions. As the value of a, tends
to zero the EC associated to h3 becomes more and more eccentric, till it breaks for as = 0 into two
planes perpendicular to Il axis, see 2.3(b). For ag > 0 we obtain a pair of HC that intersect along
unbounded orbits.
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2.3. Geometric Description of the Solutions

2.3.2 Initial conditions dependency

When we fix the parameters, initial conditions play a role in the final solutions. The
trajectories are organized in connected components which borders are given by the
heteroclinic orbits. Those orbits are characterized by h; = 0, while the positive
and negative values leads to different connected components. Those situations are
illustrated in Fig. 2.4 and Fig. 2.5.

(b) hy = 0. (c) ha > 0.

Figure 2.4: Bounded case: The negative and positive values for hs correspond to surfaces plotted
in figures 2.4(a) and 2.4(c) respectively, ho = 0 is represented by 2.4(b), this value lead us to a pair of
unstable equilibria points and four heteroclinic orbits.

Notice that in Fig. 2.5, in order to get a clearer figure, we only plot one of the two
sheets of the (HC) corresponding to the integrals. Therefore, the heteroclinic orbits
and the equilibria shown there have twins that are not plotted.

(b) he = 0.

Figure 2.5: Unbounded case: Figures 2.5(a) and 2.5(c) correspond to the positive and negative
values of ho respectively. In 2.5(b), it is we obtain four heteroclinic orbits and an equilibria.
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Chapter 2. The Extended Euler System

In Fig. 2.6 we fix the value of one of the integrals and plot the intersection for the
variation of the remaining one. It is shown how the orbits are organized in connected
components determined by the heteroclinic orbits plotted in red color.

(a) Bounded resume. (b) Unbounded resume

Figure 2.6: Resume of bounded and unbounded orbits.. For the sake of clarity, in Fig 2.6(b),
only one of the sheets of the hyperboloids is plotted.

2.4 Qualitative Characterization of the Solutions. The
Canonical Form.

Along this section we focus on the qualitative behavior of system (2.1). Symmetries
relative to the family of differential systems are investigated and the period of the
solutions is calculated.

In what follows, in order to avoid repetition and without loss of generality, we assume
that system (2.1) is always presented in standard form.

2.4.1 Intrinsic symmetries to the system

The set of initial conditions may be reduced to the first octant by considering the three
axial symmetries that the system is endowed with. This property is given in Propo-
sition 2.3 following an analogous result of Meyer in [Meyer, 2001], see Proposition
2.3.
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2.4. Qualitative Characterization of the Solutions. The Canonical Form.

Proposition 2.3. If (I1;(s), II5(s), II3(s)) is a solution of the initial value problem
given by (2.1), then so are the following ones

(Hl(—S), —HQ(—S), Hg(—S)), ( — Hl(S), —HQ(S), Hg(S)),

(= M (=s), My(—s), I3(—s)), (T (s), Hz( ) H3( )),
(TTy(—s), IMy(—s), —I3(—s)), (—1Ii(s), 1 (s)).

Proof. It is a straightforward computation to check that those triads also satisfy the
original system. [

From now on we assume the initial conditions to be in the first octant, that is, H(f,
I19 and TI9 always be positive numbers or one of them zero. Any other arrangement
could be obtained by applying the above proposition.

initial condition I1(sy) = (111, Hg, HO) Then, 11} = 0 and TI9TI}, # 0 implies T1;(s)

Corollary 2.4. Let II(s) = (II, 2(s),113(s)) be a solution of system (2.1) with
is an odd function and 11,(s) and 11;(s) are even functions for s k: # 1.

Proof. Let (I1;(s), I5(s), I5(s) ) be the solution of system (2.1) satisfying I1;(0) = 0
and let us assume ¢ = 1, for ¢+ = 2, 3 the proof is analogus. By Proposition 2.3 we
have that ( —II;(—s), IIo(—s), II3(—s)) is also a solution for system (2.1) and it also
satifies the same initial condition, therefore by the uniqueness theorem for ODE we
obtain that

IIi(s) = =Ii(=s), IIa(s) =1Ila(=s), TMs(s) =s(—s),
that is, I1; (s) is an odd function and II,(s) and II3(s) are even functions. O
Note that if we change the initial condition from sy = 0 to any arbitrary sq, the odd
and even symmetry on zero are translated to a symmetry about sg.

The following proposition shows a remarkable feature of the solutions. That is, the
ratios of the solutions are also the solutions of a extended Euler system. The following
theorem reflects the definition of the twelve elliptic functions as a natural feature of
the family.

Theorem 2.5. Let 11;(s), (1 < i < 3) be a solution of the system (2.1). Then, the
following ratios

2(s) = AL Zi(s) = 0.0 2(s) = H;(s)’ i.j, ke {1,2,3}. (2.16)
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Chapter 2. The Extended Euler System

in their domain of existence, are the solution of the system given by

dz? o dz » dz? .

| E _ = _j.0 k _ - i .0
—% = Qg 23 2 —= = Qi 2 2 —2 = Qi 2 2 2.17)
ds k ~k> ds J k ~k> ds k ~k>

with associated coefficients and integrals

i, = oijphi, Qi = oghy,  agy = —ag, (2.18)
Hy, = oypai,  Hjy = ojiray,  Hy = —hg,
where o, correspond to the signature of the permutation given by (1,2,3) — (1,7, k),

and the values of hy, he and hs are determined by mean of the initial conditions of

(2.1).

Proof. Using system (2.1) by a straight computation we check that (2.16) satisfy
equations (2.17). O]

Proposition 2.5 shows that every system (2.1) is associated to the following three
systems (given in rows), which solutions are the ratios given in (2.16):

0 _ 3,2 2 _ 3.0 3 _ 2,0

2= —ay 2727, i =-—hsziz, = hoziz. (2.19)

0 _ 3,1 1 3.0 23 _ 1.0

Zy = —Qg %5 25,  Ey = h3z5zy, 25 =—hy 2 2, (2.20)
and

0 _ 1,2 1 _ 2,0 2 _ 1.0

Z9 = —a3 2325, 23 =—ho 2523, 25 = hy 2523, (2.21)

and the integrals associated to systems (2.31), (2.32) and (2.33) are given respectively
by

Hl = as, H2 = —a, H3 = _h37
Hy = —ay, Hy = —hy, H3y = a3, (2.22)
Hy = —hy, Hy = ay, H3 = —as.

Therefore, Proposition 2.5 relates every unbounded system with a bounded one in the
following sense.
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2.4. Qualitative Characterization of the Solutions. The Canonical Form.

Corollary 2.6. Let us consider a extended Euler system in the standard form, with
as, as # 0, h; # 04 = 1,2,3. Thus only one of the associated systems given in
(2.19), (2.20) and (2.21) give rise to bounded solutions . More precisely, if h;h; > 0
the bounded system associated is given by the ratios

2(s) = . 2i(s) = A(s) = =L (2.23)

Proof. Condition h;h; > 0 together with a; > 0 and the expression of the integrals
(2.2) ensure that I1;(s) # 0 in its domain of existence.

Notice also that if /; and h; has the same sign, then o;;h; and 0j;.h; has not. There-
fore, the associated system to z}(s), zi(s) and z7(s), see (2.17), has its three param-
eters with different signs, such a system corresponds to the bounded type. 0

2.4.2 Periodic solutions. Computing the period

Corollary 2.6 allows us to study the unbounded system through the bounded ones, in
other words, we can restrict ourselves to the study of bounded system and relate any
unbounded with its correspondent bounded one by means of the new functions given
in (2.23). Following Meyer [Meyer, 2001], we study the periodicity for the bounded
case. Therefore, periodicity of the bounded solutions will imply the same for the
unbounded systems.

Lemma 2.1. Let us consider an extended Euler system in standard form, such that

as < 0 and let
ks h ha
—(\/}—,0,\/‘—) \/ag w/‘ 0), (2.24)

o h3 hl hg /’ O
B D) az as !’
if ho > 0 and
h h h h
\/) = 0\/\ D, B=0 22D @29
aq aq
/ h l1h
3 1 - 07 ‘@’ @ )7
CL2 aj ay

for hy < 0. Thus we claim that T1(so) = (119,119, T13) = A, T(s;) = B, (s9) = C
and 11(s3) = D, for certain sy, $1, S2, $3 € R.
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Proof. A straightforward computation shows that A, B, C' and D belong to the inte-
gral surfaces given in (2.2). O]

The following proposition shows that s; = so + P, so = 59 + 2P and s3 = so + 3P,
for certain P € R.

Proposition 2.7. Let us consider the extended Euler system expressed in standard
Sform with ay < 0 and hihohs # 0. Thus, its solutions are periodic functions and

satisfy

ifhy <0 ifho >0:
(P +s)= IL(P—s), (P +s)=-IL(P=s),  (226)
HQ(P + S) HQ( ) Hg(P—F S) = HQ(P — S),
Hg(P + S) = —Hg(P ) Hg(P+ S) = Hg(P - S).

Furthermore, 115(s) and 115(s) are 4P periodic and 11,(s) is 2P periodic if hy < 0.
The case hy > 0 implies 11, (s) and I1,(s) are 4P periodic and 115(s) is 2P periodic.
Finally P may be calculated as the integral given by

/Vlmd'z /Wmm 2.27)

— 22)(1 — Q2,22) _ L2\ (1 — 02,2
22)(1 —Q3,2%) 22)(1 — Qf 322)

for ho < 0 and hy > 0 respectively. Where
aihi
ajh;

07, = € (0,1). (2.28)

Proof. We assume hy > 0, the remaining case, ho < 0, is completely analogous. By
Proposition 2.2, we can assure that the solution is built up of three periodic functions
with rational ratios between their periods.

Let P be the increment of the independent variable needed to go from A to B,
thus since the system is autonomous and proposition (2.3), we have that (Hl(P +
s),Ia(P+s),—I3(P +s)) and (II; (P — s), IIo(P — s),II3(P — s)) are both solu-
tions of system (2.1) with initial conditions B, therefore (2.26) follows.

The period of each function is obtained taking into account that I1(sy) = A. Thus, by
assuming without lost of generality that s = 0 and keeping in mind Corollary 2.4,
we have that II, is an odd function and II;, II, are even, therefore

Iy (s + P) = Ty (—s + P) = I (s — P), (2.29)

[y(s+ P) =1y(—s+ P) = —1ly(s — P),

[3(s + P) = ll3(—s + P) = —Il3(s — P),
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2.5. Connecting with the Jacobi Elliptic Functions

thus, IT; (s + 2P) = IIy(s), IIo(s + 4P) = Tl5(s) and TI3(s + 4P) = TI3(s).

The value of P is finally obtained taking into account the property that characterizes
it, Hi<80) = A and Hl(P) = B, thus

M) 1)

as

P:H;(

thus, taking into account that the integrals verify Ay < 0 and A3 > 0 when ay < 0

I, = a I, 115 = —+/|hy b \/(1 — (,/\ag/hl}my) (1 — (,/\al/hg\mp)

and the change of variable z = y/|a3/h1|Il,, we obtain

h
/ Vas/hs| iz,
\/1—22 )(1—02,22)

where )
ayig
0 = |
13 a/:))hg Y
finally, taking into account relation (2.12) and that a; < 0 is easy to see that |a1h| <
lashs|, therefore 215 € (0,1) O

2.5 Connecting with the Jacobi Elliptic Functions

For historical reasons, the motion of the simple pendulum in particular, there is a
system which has received special attention. More precisely the system where the
parameters are given by a; = 1, as = —1 and a3 = —k?, where k € (0,1), it
corresponds with the Jacobi elliptic functions when suited initial conditions are taken
into account, that is

iSn(s k) = cn(s, k) dn(s, k),

ds
%Cn(& k) = —sn(s, k) dn(s, k), (2.30)
%dn(s, k) = —k?sn(s, k) en(s, k),

where sn(0, k) = 0, cn(0, k) = 1 and dn(0, k) = 1. By identifying II; (s) = sn(s, k),
IIy(s) = cn(s, k), Hs(s) = dn(s, k) and Q37 = k and applying systematically
Proposition 2.5 we obtain the following associated system to (2.30)

0 3.2 2 3.0 3 2.0
Z1 = =272, A=z, & =—22%. (2.31)
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0 _ 3.1 21 3.0 3 7.2 1.0
2o =25 25, Ey =252y, 25 =K"2529, (2.32)
and
0 _ 1.2 1.2 1 2.0 2 2 1.0

which solutions are given by the twelve Jacobi elliptic functions defined as usual in
the Glaisher notation

1 cn(s, k) dn(s, k)
0 _ - 2 — = D= = ’
= ns(s, k) = sn(s, k) 1 sl k) = sn(s. k) Bols, ) = sn(s, k)
1 sn(s, k) dn(s, k)
0_ — e = > = = ’
2 = ne(s, k) = en(s,k) 2 scls, k) = en(s, k) 2 dels, k) = cn(s, k)
1 sn(s, k) cn(s, k)
0_ — e = 3= =
23 = nd(s, k) = dn(s,k) sd(s, k) = dn(s.k) cdle, k) = dn(s, k)
(2.34)

As a final remark note that the integrals hq, hy and h3 associated to the system (2.30)
with initial conditions sn(0, k) = 0, cn(0, k) = 1 and dn(0, k) = 1 correspond to the
fundamental elliptic relations, see Byrd and Friedman [Byrd and Friedman, 1971],
page 20. Namely

—hy = k% =dn® — k*cn?, hy=1=dn’+k?n? hs=1=sn’>+cn? (2.35)

where k2 =1 — k2.

2.5.1 Analytic solutions of the extended Euler system

We concern about the explicit formulas giving the solution of system (2.1). They
are presented distinguishing between bounded and unbounded solutions. The reader
should keep in mind that the system is expressed in standard form and taking into
account Proposition 2.3, we restrict, without loss of generality, to initial conditions
in the first octant.

Theorem 2.8 (Bounded analytic solutions). The solutions of the bounded extended
Euler system expressed in standard form, with initial conditions

h
Hl(So) = H[l] = a—ia H2(SO) = Hg =0, H3(30) = Hg = s

h

Y
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2.5. Connecting with the Jacobi Elliptic Functions

may be expressed equivalently in the following two forms

h
(s + so) @/ cn(p s, ks1), ILi(s+sp) =4/ a_3 dn(us s, k13),(2.36)
2
hy
(s 4+ so) —lsn(py s, k31), Ha(s+sg) =— - sn(ps s, k13),
3

h llh
- dn(py s, k3p), Tl3(s+ sp) = - cn(ps s, ki3).
Qa2 a2

where the elliptic modulus is given by

S+Sg

j

a;h;
ajh;

; (2.37)

1] —

and k31 € (0,1) iff aghe > 0, for the case ashy < 0 we have that k3 € (0,1).
Proof. By simply substitution of the explicit formulas (2.36) in (2.1), it is shown that
they satisfy the equations of the extended Euler system.

Taking into account that a;hy < 0, azhs > 0 and relation (2.12), we have that
]{531 S (O, 1) iff ashy > 0 and ]{713 < (O, 1) iff ashy < 0. ]

Corollary 2.9 (Jacobi’s Real Transformation). Let k € R — {0} and k = k™'. The
following relations hold

sn(s, k) = vksn(s,k), cn(s,k)=dn(s,x), dn(s,k)=cn(s,k).

Proof. Taking into account that the expressions given in (2.36) are both solutions for
system (2.1), the corollary is a direct consequence of Theorem 2.8 and the uniqueness
theorem of differential equations. [

Corollary 2.10. Let k > 0, the following relations hold
sn(s—P,—k) =cn(ks,u), cn(s—P,—k)= —sn(ks,pu), dn(s—P,—k)=p dn(ks,pu),

(2.38)
sn(s+P, k) = —cd(s, k), cn(s+Pk)=FKsd(s,k), dn(s+P,—k)=Kknd(s,k),
(2.39)
and
sn(s, —k) = p'sd(k s, u), cn(s,—k)=cd(ks,pn), dn(s,—k)=nd(ks,p),
(2.40)
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/ k.2
n = m, ,u': V1+k52. (241)

Proof. sn(s, —k), cn(s,—k) and dn(s, —k) are defined as the solutions of the ex-
tended Euler system

where

sn(s, k) = en(s, k) dn(s, k),

cn(s, k) = —sn(s, k) dn(s, k),

dn(s, k) = k2sn(s, k) en(s, k),
with initial conditions sn(0, —k) = 0, cn(0, —k) = 1 and dn(0, —k) = 1. Thus, using
Lemma 2.1 we have that sn(—P, —k) = 1, ecn(—P,—k) = 0 and dn(—P, —k) =

Therefore, direct application of the analytic solution given in Theorem 2.8 leads to
(2.38). The same argument applied to system

nd(s, k) = k2cd(s, k) sd(s, k),
cd(s, k) = —k2sd(s, k) nd(s, k),
sd(s, k) = cd(s, k) nd(s, k),
gives (2.38). Finally (2.40) follows from the combination of (2.38) and (2.39). ]

Lemma 2.2. Let us consider a extended Euler system in standard form, such that
as > 0 and h; # 0 for i = 1,2,3. The initial conditions in the first octant are
characterized as follows

Ih /h
hg < O, h3 >0 (Hl(So), HQ(S[)) Hg Sg 3 2 A1(2 42)
hg h1
hg < O, hl >0 (Hl(SO), H2<80 H3 80 A2(2 43)
hg h1
hl < 0, hg >0< (Hl (So), HQ(SO H3 S(] a A3(244)
3

on account of relation (2.12), the above cases cover all the possible combinations of
integrals’ signs.

Proof. For the unbounded case, according to the definition of the integrals (2.2), there
is one and only one point in the intersection h; N hy M hg which one of the coordinates
vanishes at any s € R. The above cases are deduced by simply substitution of
(I1; (s0), II5(s0), II5(sp)) in the integrals. O
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Theorem 2.11 (Unbounded analytic solutions). The solutions of the unbounded ex-
tended Euler system expressed in standard form, with initial conditions I1(s¢) = A;,
i € {1,2,3}, see Lemma 2.2, are given by the following expression

h
IL(s + s0) = 4 f sc(fuy s, kij), (2.45)
j

h
II;(s + so) = ’a—k nc(p; s, kij),

h-
(s + s0) = \/ ﬁ de(p; s, kij),

where the subindex i, j, k € {1,2,3} are chosen according to the following criteria

(sg) = A1, by >0=i=1,j=2 k=3, (2.46)
M(so) = A1,y <0=>i=1,j=3 k=2
M(sg) = Ag,hy >0=>i=2,j=3k=1,
M(sg) = Ap,hy <0=i=2j=1k=3
(sg) = As,h3 >0=i=3,j=1 k=2,
M(sg) = Ag, hy <0=i=3,j=2k=1.

Proof. Taking into account relation (2.2) and the choice of 7, j and k given by the
formulas (2.46) we have that the elliptic modulus £;; € (0, 1). Thus, a straightforward
substitution of (2.45) in (2.1) shows that the system is verified. ]
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Part 11

Hopf Reduction on a Quartic
Polynomial Model
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Chapter 3

The Quaternionic Hopf Fibration

Along this chapter we intend to present the needed elements for the definition of
the parametric polynomial model that we present in Chapter 4. First, in order to
fix notation, a detailed tour on the field of quaternions is given. Then, a key object
in this work is introduced, the quaternionic Hopf fibration. It is a generalization of
the classic Hopf fibration, that supplies the ingredients to define the named model,
induces its Poisson reduction and gives the geometry of the reduced space in which
the reduced model lives.

3.1 Quaternions and Rotations

Quaternion are the generalization of the complex number to a hyper-complex kind.
In fact we can consider the field of the real numbers as the hyper-complex of rank 1
and the complex field the hyper-complex of rank 2. However, it turns out that any set
of hyper-complex numbers having rank greater than 2 fails to be a field.

As a group, the unit quaternions have the same algebra as the three dimensional ro-
tations so it is reasonable to assume that they can somehow be used to rotate vectors.
In fact the quaternions primary application is the quaternion rotation operator, which
plays an important role in classical mechanics.

3.1.1 The field of quaternions

In 1843 William Rowan Hamilton [Hamilton, 1844] invented the hyper-complex num-
bers of rank 4, which he gave the name quaternion, it is a division ring H (or,
by abuse of language, a non-commutative field), which elements are denoted by
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3.1. Quaternions and Rotations

q = (q1,9) € H, and may be regarded as a real part ¢; plus the imaginary vec-
tor part ¢ = (go,q3,q4) € R®. Quaternions having zero scalar part are called pure
quaternions and in the following will be regarded both as a vector in R? and as a
quaternion. Therefore there is a bijective identification between R? and the pure
quaternions.

The quaternions, together with the operations of addition (4) by components and
scalar multiplication (), may be identified with R* as a vector space. Quaternion
multiplication (o) will provide H with a division ring structure, due to the non-
commutative feature of this operation.

It is customary to use the notation {1, 4, j, k} for a basis in (H, +, -), that is, 1 =
(1,0,0,0), 7 = (0,1,0,0), 5 = (0,0,1,0) and & = (0,0,0, 1), thus elements in H
may be expressed as follows

H={q=q¢-1+¢ -i+qg-j+aqu-k ¢, p, g, g <R},

quaternionic multiplication is performed in the usual manner, like polynomial multi-
plication, taking the following relations into account

ol ¢ | J | k
1(1) ¢ |7 |k
tle| =1 k | —g
Jlgl—k|—-1] 1
klk| 7 |—1]—-1

Note that the relations given in the table for the multiplication may be deduced di-
rectly from the ones that Hamilton gave initially, namely > = j? = k% = ijk =
—1.

Also we can think of {1,4,j,k} as the four roots of unity. An alternative way of
defining the quaternionic product making use of the “dot” and “cross” product in R?
is given by

qoQ=(1Q1—q¢-Q, nQ + Qg + ¢ x Q). (3.1

For the sake of a cleaner notation, we will drop the symbols (-) and (o), they will be
used just in case of possible confusion. Note also that ”dot” is used to denote two
different products, we distinguish them by the context.

Definition (3.1) is, of course, directly deduced from the relations given above and

48



Chapter 3. The Quaternionic Hopf Fibration

may be written explicitly in term of coordinates as follows

qQ = Q1 — (Q2 + Q3 + ¢1Q4) (3.2)
Q2 + Q1 + 3Qs — quQ3) i
H1Qs — Q4 + 3Q1 + 1Q2) j
H@1Q4 + Q3 — @3Q2 + ¢1Q1) F,

or written in matrix notation as
qQ = M. (q)Q = q¢'Mr(Q), (3.3)

where q and Q are regarded as column vectors and the matrices M, (q) and Mz(Q)
are built in the following manner,

21 —R9 —R3 —Z4 1 Z9 z3 Z4
Z9 21 —2Z4 z3 —Z9 21 —2R4 z3
My,(z) = Mg(z) = ;
<3 24 21 T2 —Zz3 24 1 T2
24 —Z3 <2 <1 —Z4 —Z3 &%) <1
3.4)

note that the subindex L and R in the matrices above stand for left and right respec-
tively, in reference to the fact that M (z) is the matrix form for the quaternion located
on the left in (3.3) and Mpy(z) refers to the one located on the right.

In addition, every quaternion q = (q1,q) has a conjugate q = (q1, —q), that is, the

El nur_nbers are fixed by the conjugation and ¢ = —i¢, j = —j, kK = —k. Note that
qQ = Qq.
The usual hermitian inner product is defined in H as

(0,Q) = qQ, (3.5)

such a inner product is extended in a natural way to H?, the vectorial space made of
column vectors (q,Q)”, where q,Q € H

((q,Q), (p.P)) = qQ + pP. (3.6)
Note that the hermitian inner product may also be defined by
(4.Q) = qQ. (3.7)

Another important concept is the norm, it is denoted by ||q||, sometimes called the
length of q, is the scalar defined by

lall = vVaq = v {q,q),
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3.1. Quaternions and Rotations

notice that this definition is the same as that for the length of a vector in R*, or equiv-
alently the Euclidean norm. In the following section we will deal with quaternions
satisfying ||q|| = 1, such a quaternion is named the unit or normalized quaternion.
The set of unit quaternions will be noted by S?.

Finally we give the expression for the inverse, for every q # 0 there exists another
quaternion q~*, which will be noted as the inverse and is given by

L q
lqll?

q

3.1.2 Quaternions as rotations

Our target here is to show the well known relation between the unit quaternions and
rotations in the three dimensional space. On the contrary to what one may think, it is
not the usual multiplication which gives the named relation, but the triple multiplica-
tion operator that will be defined next.

Let us introduce some notation for the group of rotations. Every rotation maps an or-
thonormal basis of R3 to another orthonormal basis. Like any linear transformation
of finite-dimensional vector spaces, a rotation can always be represented by a matrix.
Let R be a given rotation. With respect to the standard basis {ey, e, 3} of R3 the
columns of R are given by (Re;j, Res, Res). Since the standard basis is orthonor-
mal, the columns of R form another orthonormal basis, that is to say RTR = Ids.
Matrices for which this property holds are called orthogonal matrices. The group of
all 3 x 3 orthogonal matrices is denoted O(3), and consists of all proper and improper
rotations.

In addition to preserving length, proper rotations must also preserve orientation. A
matrix will preserve or reverse orientation according to whether the determinant of
the matrix is positive or negative. For an orthogonal matrix R, note that det(R?) =
det(R~1) implies (det(R))2 = 1 so that det(R) = £1. The subgroup of orthog-
onal matrices with determinant 41 is called the special orthogonal group, denoted

SO(3).

Thus every rotation can be represented uniquely by an orthogonal matrix with unit
determinant. Moreover, since composition of rotations corresponds to matrix mul-
tiplication, the rotation group is isomorphic to the special orthogonal group SO(3).
From now on, we denote by SO(3) both the rotation group and the special orthogonal

group.
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Chapter 3. The Quaternionic Hopf Fibration

Every rotation in the space is determined by a unitary vector « and an angle o.. There-
fore, it is natural to expect that we should codify that vector and the angle with a
quaternion, then, by means of some kind of operator acting on the pure imaginary
quaternions, to obtain the original rotation.

Consider the rotation R(«, i) of angle « around the axis determined by the unitary
vector «. Thus, the following theorem states the correspondence between SO(3) and
the unit quaternions.

Theorem 3.1. Given a rotation R(«, @) in SO(3) determined by a unitary vector i
and an angle a, let q be the following unitary quaternion

q= (cosg,ﬁsing) € S3, (3.8)
2 2
and the operator L, defined as
Ly R — R} ¥ — qiq, (3.9)
thus the following properties are satisfied:
1. Forany ¥ € R?, L, (%) € R®.
2. Lgq is a linear application.

3. L is a rotation of angle o around the axis determined by the unitary vector U

4. The associated matrix to Lg is given by

G+ -G -4 20— aq) 2(¢q2qs + 143)
Mpq = 20 +qqu) G-G+G -4 2(¢39 — @)

2(q2qs — q143) 20+ en)  G-6 -G +a
(3.10)

Proof. See Kuipers [Kuipers, 1999], pages 124 to 134. ]

Note that in order to provide a coherent definition in (3.9), it is crucial to use the
equivalence between R? and pure imaginary quaternions.

The operator L4 defined in Theorem 3.1 induces a mapping between the unit quater-
nions denoted by S? and the group of rotations SO(3), which is given by

R:S* — SO(3), ¢ — R(q) = M, (3.11)

51



3.1. Quaternions and Rotations

Corollary 3.2. The map R defined above is a surjective two to one map. Equivalently,
SO(3) is doubly covered by S®.

Proof. This result is obtained taking into account that Lq and L_q are equal, that is, q
and —q determine the same rotation. [

Corollary 3.3. S? and SO(3) are groups with the quaternion and matrix multiplica-
tion respectively and R satisfies that

R(gr) = R(q)R(r). (3.12)
In other words, the map R is a group homomorphism.

Proof. After some computations and taking into account that R(¢) = M, the equal-
ity (3.12) is obtained. [

As the groups S? and SO(3) are also Lie groups, it is possible to establish a relation
between their corresponding Lie algebras. All those relations are summarized up in
the figure 3.1.

0 —Uus U9
U= (ul,uQ,u;g) ————————————————— - w= us 0 —
—U9 Ul 0
i R3 A s0(3) |
i €TPs? €TPSO(3) i
i S? R SO(3) ; N
expgs(u) expso(s) (1)
I I
(cosm sinMi) —q T TTTTTTTTTTTTTTTTTTTs = R(q)(z) = qzq
27 2 |u

Figure 3.1: Double covering of SO(3) by S? and the Lie algebras associated.

Note that the wedge map A is a isomorphism between the Lie-algebras associated.
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3.2 Hopf Fibrations

In this section we start recalling the classical Hopf fibration and then we focus in a
quaternionic generalization, which plays a key role in our study. Furthermore, it is
well known that the Hopf fibration and its generalizations have many implications,
some purely attractive, others deeper, see [Urbantke, 2003]. There are many ways in
which the Hopf fibration may be generalizated, see for example [Gluck et al., 1986].
The unit sphere in complex coordinate space C"*! fibers naturally over the complex
projective space CP" with circles as fibers, and there are also real, quaternionic, and
octonionic versions of these fibrations. In particular, the Hopf fibration belongs to a
family of fiber bundles in which the total space, base space, and fiber space are all
spheres.

3.2.1 The classical Hopf fibration

The Hopf fibration, named after Heinz Hopf who studied it in 1931 [Hopf, 1931], it
is an influential early example of a fiber bundle, the Hopf application maps each S!
circle in the hypersphere S to a point in S?. Thus the hypersphere S* is made up of
S! fibers, one for each point on S2. The Hopf fibration, like any fiber bundle, has the
important property that it is locally a product space. However it is not a trivial fiber
bundle, i.e., S? is not globally a product of S? and S!.

In the classical Hopf fibration the ambient space is the real vector space R*. The
identification between R* and C? allows to consider the complex vectorial space C?
as the ambient space, together with the usual hermitian inner product. Let z € C?
and w € C?, where z = (21, 22), w = (wy, ws) and 2y, 29, w1, wo € C, then

(z,w) = Zw = Zywy + Zawy,

thus S® can be shown as a subset in C? given by S* = {z € C? | )z, z(= 1}, and
defining a equivalence relation on S? by z ~ w iff w = Az, A € S! we get that

S*/ ~ = P(C?) = CP".

Therefore, by means of the stereographic projection CP! — S?, the classic Hopf
fibration IT : S* — S? is built in a constructive process that we describe next by
mean of the commutative diagram 3.2.1. where II is the stereographic projection,
P, is the application from C? — {0} to S*(r) that match each semi-ray through the
origin with the corresponding element of module equal to r, P, from S*(r) into CP!
identify each point in the sphere to its corresponding class of equivalence, Pﬁ 93 18
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3.2. Hopf Fibrations

A: C2—{0} CxRxR—{0}
- 1 1
z=(21,22) L - (Z122, 5 (Jz1)* = |22[%), B (lz1]? + [22/%))
P,
i P’
o 3 1,2,3
E (21,22) S°(r) Fo
P.
' Cpt 1 S?(p) '
1
[(21, ZQ)} ......................................... N (2122, Z (‘Zl‘Q — |z2|2))

2] 2

Figure 3.2: Hopf application and Hopf classic fibration diagram.

the elimination of the fourth component factor p and A is the Hopf application. The
Hopf fibration F* from S3(r) to S?(p) is given by composing IT and P., also it can
be obtained by means of the restriction of A, the Hopf application, to S3(r) and
composing it with P/, ;.

Notice that IT : CP* — S?(p) is based on the classic stereographic projection from
S?(p) — N onto the real plane, but in this case the north pole is covered by the infinite
point [(1,0)].

Moving to cartesian coordinates, and taking into account the natural relation between
C={r—yi/xz,y € R} and R? = {(x,y)/ x,y € R} givenby x + yi — (z,y), we
lead to:

A(Ql? g2, Qla Q?) = 2(("-}1 (Q7 Q)v UJZ(Qa Q)7 wd(qv Q)? W4(q, Q))

where
1
w1 = @1Q2 — Q1 W3 = §(Q%+Q§—Q%—Qg),

1
we = @1 Q1 + 2Q, Wy = 5(9% +4¢;+ Q7+ Q3).

Proposition 3.4. The following relations between the w.s hold

Clqr, g2, Q1,Q2) = wW? +ws +ws —wi =0 (3.13)
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Notice that the image of C* — {0} by the Hopf application is given by the algebraic
manifold defined in 3.13 by C, it is a 3-dimensional cone with vertex in the coordinate
origin.

Theorem 3.5. The Hopf fibration FP? satisfy the following properties
1. F?is a proper submersion.
2. For each w € S*(p), the fiber FP~'(w) is a circumference S'(r).
3. S3(r) is a principal bundle over the base space S*(p) together with the struc-

tural group S*.

Proof. The first claim is derived from the fact that Dim(S?*(r)) > Dim(S?*(p)) and
the differential DF? : T,,S3(r) — S?(p) is a surjective map between tangent spaces,
1. e., /7 is a proper submersion.

In the second claim, we know from the definition of the Hopf fibration that F? =
P_ oI, see figure 3.2.1. As the stereographic projection II is a diffeomorphism, we
have that the pre-image on any point in S(7) is a single class of equivalence in CP*
I (w) = [(z1, 22)], and the pre-image by P. is given by

P.([(21,22)]) = {(a,0)/Ma,b) = (21,22), A € S', |a| + |b] = r} = S'(r),

thus F?~!(w) = S'(r) for each w € S*(p).

Finally the third claim is derived from 1 and 2. O]

3.2.2 The quaternionic Hopf fibration

Our aim in this section is to introduce a 4-D generalization of the classical Hopf
fibration by mean of a increasing on the manifold’s dimension. Next we are going to
follow the same methodology than in the classic Hopf fibration 77 : S*(r) — S?(p),
but instead of the complex numbers use quaternions H. From now on, we will use
the subindex p to distinguish between the classic and generalized Hopf fibration,
application, etc, but, every time it does not mean any confusion, we will drop the
mentioned subindex for the shake of a cleaner notation.

The classic Hopf application A, could be extended from the complex plane C? to the
quaternionic plane H? together with the inner product

<(q? Q), (p,P)> =qp + Qpa
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where (q,Q), (p,P) € H?. Here we define the extension of the classical Hopf appli-
cation to H?, given by Ay : H? = R® — R% = H x R x R — {0}, see the following
scheme.

Ay : H? — {0} HeRAR - {0}
(@.Q) (aQ. 5 (a - Q). 5 (lal* + Q)
'PH?p
\
p
W(QVQ) S™(p) Py
Fu
Py
II
, CPP s s%(p)
(. Q)] -2 (4Q.(q" - QP
g (4Q.(a” - Q)

Figure 3.3: Generalized Hopf application and fibration.

Moving to Euclidean coordinates q = (q1, g2, g3, q4), after the natural equivalence
H = R, the Hopf application is given by

1 _ 1 _

Ax(0,Q) = ((4Q),5(ad - QQ), ;(aa +QQ)) (3.14)

= (Wl(q,Q),UJQ(q,Q),wg(q,Q),W4<q,Q),W5(q7Q),W6(q,Q)),
where

wi(q, Q) = ¢1Q1 + Q2 + ¢3Q3 + 1 Qu,

wa(q, Q) = ¢1Q2 — ©Q1 — @3Q4 + uQs,

w3(q, Q) = ¢1Q3 — @3Q1 + ©2Q4 — q4Q2,

wi(q, Q) = ¢1Q1 — Q1 — Q3 + 3Q2,
1 1

w5(€,Q) = (¢! + a5 + 3 + i — Q1 — Q3 — Q5 — Q) = S (llal* — Q)
1 1

wo(9,Q) = 507 + a3 + 05+ a1 + QF + Qo + Q5+ Q1) = 5(llall” +lIQI),

(3.15)
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and (qQ) is the Hermitic product defined in (3.5). A different choice is possible,
that is, the Hermitic product may also be defined by (q, Q) = qQ. This alternative
commutes wy, w3 and wy into wr, wg and wy respectively

wr(q, Q) = Q1 — (1Q2 + Q3 — 13Qu,
ws(q, Q) = ¢3Q1 — (1Q3 — Q2 + ©2Qu, (3.16)
wo(q, Q) = ¢3Q2 — 2Q3 + Q1 — (1 Q4.

The following identities relating the functions defined above holds
AM? = w2 4+ Wi + Wi = Wi — Wi — W} = Wi +ws + ws, (3.17)

where is defined by

1
M =5 VIldlQll - (4. Q). (3.18)

It is easy to check that assuming ¢z = ¢4 = ()3 = Q4 = 0, we get the classic Hopf
application. Note also that the components of the Hopf map, w;, 2 = 1...,6, satisfy
the following relation

Cw1, wa, w3, Wy, Ws, We) = Wi + ws + ws +wj +wi —wg =0, wg >0, (3.19)

that is, they are restricted to a cone in R® given by C. Note that C is also used in
Proposition 3.4, we distinguish both of them by the context in which they are used.
By eliminating the vertex C* = C — {0}, it can be proven that Ag (H?) = C*. Now if
we restrict Ay to the 7-dimensional sphere of radius p

S™(p) ={(q,Q) e R® | ¢ + 45 + ¢5 + ¢i + QT + Q3 + Q3 + QF = p* = 2we}
we obtain the generalized Hopf fibration
Fiu(q,Q): S'(p) — S*(p)

(qa Q) ~ L(W1,WQ,W3,W4,W5)

VWe

where S*(p) is the 4-dimensional sphere of radius p.

(3.20)

Theorem 3.6. The Hopf application F satisfies the following properties
1. F is a proper submersion.
2. For each w € S*(p), the fiber F~'(w) is a 3-sphere S3(p).
3. S" is a principal bundle over the base space S* together with the structural

group S°.

Proof. Is the same reasoning followed in the proof of the analogous theorem given
for the classical Hopf fibration. ]
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Chapter 4
The Quartic Polynomial Model

A parametric family of Hamiltonian functions in T*R* is proposed and examined,
related to the components of the quaternionic Hopf mapping. This family is a ho-
mogeneous quartic polynomial with six parameters, defining an integrable family of
non-natural Hamiltonian systems. Additionally, a detailed study will reveal that it is
an integrable system in the Liouville sense. The key feature of the model is its nested
Hamiltonian-Poisson structure, which appears as two extended Euler systems in the
reduced equations. This is fully exploited in the process of integration, where we
find two 1-DOF subsystems and a quadrature involving both of them. The solution is
quasi-periodic, expressed by means of Jacobi elliptic functions and integrals, based
on two periods. Some remarkable classical models such as the Kepler, geodesic flow,
isotropic oscillator and free rigid body systems are obtained as constrained flows for
particular choices of the parameters and using a suitable set of variables. In this re-
gard, we set a framework to study, in a unified way, these classical integrable models
in mechanics. This idea goes back to the work of [Ferrer, 2010] and the references
therein.

Let us refer now to the motivation of this model. Along the last century the connec-
tion between different classical models has been studied in detail; the reader will find
in Cushman and Bates [Cushman and Bates, 1997] a panorama about this, although
its echo even reaches until today [Saha, 2009, Waldvogel, 2006, Waldvogel, 2008].
More precisely we refer to the geodesic, Kepler and isotropic oscillator systems. Ei-
ther by the KS [Kustaanheimo and Stiefel, 1965] or the stereographic transformation
[Moser, 1970] the 3 dimensional Kepler system is brought into systems on submani-
folds of R*. Moreover the rigid body dynamics admits two representations, either by
the SO(3) group materialized by Euler angles or by means of unit quaternions based
on Euler parameters, which may be considered also a submanifold in R*. Thus, one
may expect that a system including all those classical ones should be defined as a
4-DOF system. Our main goal is to develop a generic scheme in order to deal with
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perturbation theories based on it.

For an earlier version of this study we refer to [Ferrer and Crespo, 2015]. Later on,
we address two applications focused in the roto-translatory problem. Let us define
this family as follows

Definition 4.1 (The quartic model). We consider the parametric family F, : T*R* —
R of quartic Hamiltonians systems defined by

Fa(q,0) = a1 (1 Q1 + @2Q2 + ¢3Q3 + q1Qu)?
+ a2 (1Q2 — @1 — q3Q4 + Q4Q3)2
+ a3 ((1Q3 — @3Q1 + Q4 — Q4Q2>2
)

+ a4 (1Q1 — Q1 — ©2Q3 + ¢3Q2 2 4.1)

+ as (lgl” = 12]%)°

1

2
1

+ as3 (lgl” + 121P)*,

where the vector of parameters a = (ay, . .., ag) € RS

This family of Hamiltonians (4.1), together with the standard symplectic form w =
dq A dQ, determines a symplectic flow on T*R* = R®

OF, . R,

1“2 T

4.2)

Due to the symmetries we will show that the Hamiltonian system (4.2) is integrable.
Extending the work done by van der Meer et al. [van der Meer et al., 2014], we make
use of the SO(3) reduction as an essential part of this study. In fact, the system is
separable and so, we take advantage of this feature by means of a generalization of
the symplectic Andoyer variables.

4.1 Hopf-Poisson Reduction of R°. The Regular and
Singular Cases

In this part we are concerned with the components of the quaternionic Hopf mapping
(see 3.15). In this light, it is shown that this components are considered as functions
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on C*(IR®), so as they span several Lie algebras, which commute between them. That
is to say, the following proposition holds

Proposition 4.1. In T*R* = R® with the standard Poisson bracket {, }, the following
sets of functions' wrgg = {wr, ws, Wy}, Wiss = {w1, ws, we} and wazy = {wa, w3, wy}
commute between each other and span a Lie algebras in C*(R®) isomorphic to
50(3), sl(2,R) and s0(3) respectively. Therefore, Qd7z9 = Qo34 = SO(3) and Q56 =
SL(2,R), where g9, Q934 and 156 denote the groups generated by the flows of the
corresponding functions. Moreover, the function M given in (3.18) is the centralizer
of Q7gg, 2234 and Q1 56.

Proof. Straightforward computations show that, {w;,w;} = {w;,w} = {w;,wi} =
Oforany i =2,3,4,j =1,5,6 and k = 2, 3, 4. Furthermore {w;,w,} = €;;,2wy, for
i,j7,k € {2,3,4} and for i, j, k € {7,8,9}, thus, Q759 = Qo34 = SO(3).

The computation of the Poisson bracket for wy, ws, wg yields {wy,ws} = —2wg,
{wi,ws} = —2ws, {ws,ws} = 2wy , that is, those functions span a Lie algebra
isomorphic to su(1, 1) = sl(2,R) and Q5 = SL(2, R).

Finally, a direct computation is just needed to show that { M, F'} = 0 for any F in
789, (2234 OF (2156 and consequently M is the centralizer. O

Coming back to the family defined in (4.1), we have that it is made up of the com-
ponents of the quaternionic Hopf fibration given in (3.15). That is to say, it may be
expressed in the more compact way

2 2 2 2 2 2
Fo = aqwy + aows + asws 4+ aswy + asws + agwg. 4.3)

It suggests that those Hamiltonian systems could be reduced to the six dimensional
space given by the omegas. Furthermore, all those Hamiltonian systems are endowed
with the following integrals and symmetry.

Corollary 4.2. The functions wr, ws, we, M given in (3.16) and (3.18) respectively
and Fi56, Fo34 defined as
Fise = alw% + CL5W§ + aﬁwg (4.4)
Fozs = Qows + azw; + aywj, '
are integrals of the system defined by F,. Moreover, w7, wg and wg give rise to a
SO(3) symmetry.

I'The reader should note that in [Ferrer and Crespo, 2015] wrgg are referred as {G1,G3,G3}. Here
for a more compact notation we have found convenient to denote them by {wr, ws, wg } respectively.
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Proof. It is a direct consequence of Proposition 4.1. 0

Proposition 4.1 implies that wq, ws, w3, wy, ws and wg are invariants for the $27g9-
action and are generators for the space of {2;59-invariant polynomials. Consequently
the orbit map for the {2;59-action is given by W, which is equivalent to the real rep-
resentation of the Hopf map given in (3.14)

W :TR* - M CR": (q,Q) — (w1, ws, ws, wy, ws, We).

Relation (3.19) implies that the orbit space W (T*R*) is five dimensional, or equiva-
lently we have that M = T*R*/Qg9.

On the other hand, {2759 induces a free and proper Hamiltonian action with Ad-
equivariant moment-map .J

J:T'R* — 50(3)": (q,Q) = (wr,ws,wy).

Then the moment-map J and the orbit map W form a dual pair.

Following [van der Meer et al., 2014], we claim that the reduced phase spaces for
the (27g9-action are given as the co-adjoint orbits for the action of SO(3) on s0(3) x
s[(2, R), but also they are determined by the s0(3) Casimir 4M?(q, Q) = Qs0(q, Q) =
w2 + w? + w?. Therefore the reduced phase spaces are W (€27g5(w)), i.e. the subset of
RS determined by

2 2 2 _ A2
wy +ws +w; =w=4M",

Wit wi—wi=w=4M>.

Thus, if w # 0, the reduced phase space M is the four dimensional product of a two-
sphere and a two-sheeted hyperboloid. If w = 0 we have a critical two dimensional
reduced phase space which is a cone times a point. It is, w = 0 induces a singular
reduction in the sense of [Ortega and Ratiu, 2004].

The expression of the reduced system is given by studying the variation of s, the
independent variable, in the components w;, © = 1,...,6. The new Hamiltonian in
the reduced variables is given by (6.5) and system (4.2) becomes the reduced system
given by mean of the following computations

w! = {Wv]:a} = ({Wi,wj})GXGV]:m

computing the brackets, the Poisson structure associated to the system is obtained, it
is given by Table 4.1
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M=0
M=0.1
M=1

w1, W5, We

@x
Wx
-

w2, W3, Wy

©

Figure 4.1: The reduced space. The value of M € RT U {0} determines the geometry of the
components. For M = 0 we obtain a cone times one single point. The positive values of M give a
two sheeted hyperboloid and a sphere which radius is M. The variables w1, ws, wg are restricted to
the upper sheet of the hyperboloid since wg > 0.

The Poisson structure matrix (4.1) shows that the system is separable in the sets of
variables wy, ws, wg and wo, w3, wy. The equations of motion for the separate systems
are given then in a very familiar way, that is

wp =
wg =

those systems

{wy, Fu} = a1ws w,
ws = {ws, Fo} = 5wy ws,
{we, Fu} = apwy ws,

Wa
w3
Wy

{w%"ra}

= UoW3 Wy,
{ws, Fu} = azwo wy,
{wy, Fo} = Gqws ws,

4.5)

are studied in Chapter 2, where the authors investigate the classical
Euler equations with arbitrary coefficients a;, a; and ay, it is the so called extended

’ {,} ‘ W2 W3 Wy Wi Ws We ‘
W2 0 - 2(,04 2(,4)3 0 0 0
W3 24 0 — 2wy 0 0 0
Wa | —2w3  2w9 0 0 0 0
w1 0 0 0 0 —2wsg —2ws
Ws 0 0 0 2w 0 2w
We 0 0 0 2ws  —2wy 0

Table 4.1: Poisson structure (w;).
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Euler system (EES). The Jacobi elliptic functions are characterized as the general
solution of the (EES) and explicit formulas of the analytic solutions are also provided.
Later on, we make use of those formulas in the integration of the above systems. The
coefficients a; are obtained from the original a;, 7 = 1, ..., 6 by the relations

a; = —4(as +ag), as=4(a1 +ag), ag=4(a; — as),

B B ~ (4.6)
a9 = —4<(13 — CL4), ag = 4(&2 — CL4), ay = —4(6L2 — ag),
each subsystem is endowed with the following set of quadratic integrals
hl = dg,wg — C_ZG(,U?), hg = ang — d4w§,
h5 = 6_116(,(}% — c‘zlwg, h3 = C_L4W§ - C_lQWi, (47)
h6 = dlwg - (_15(,0%, h4 = (_IQW§ - (_13(,037

they correspond to elliptic cylinders (EC) or hyperbolic cylinders (HC) depending
on the signs of the coefficients. In Chapter 2, the authors found more convenient to
consider those integrals. Notice that the classical one given by the angular momentum
is not an integral when the sum of the parameters a; does not vanish.

From the definition of the new coefficients, see (4.6), it is clear that the following
relations hold
ELQ+6_13+C_E4:0, d1+&5—&620, (48)

thus system wswsw, can be regarded as a classical Euler system of the free rigid body,
but system w;wswg does not satisfies the condition on the parameters, that is, for this
system a; + as + ag # 0 in general.

This new context for the Euler equations, where the condition on the parameters
a; + a; + a # 0 is eliminated, makes that the classical integrals for this system are
not valid any more.

4.1.1 Geometric description of the solutions in the reduced space
The geometry of the solutions is studied, they are obtained as the intersection between
the reduced space manifold M and the Hamiltonian given by F,,.

Although the reduced space is a four dimensional manifold, we will be able to visu-
alize the intersections because of the separation of variables w, ws, wg and wo, ws,
Wyq.

As it is shown above, each triad of variables corresponds with an extended general-
ized Euler system, thus, solution trajectories are given as the intersection of two pairs
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of quadrics. In addition, it is shown in Chapter 2 that solutions of the subsystem wy,
ws, wg traverse all the intersection of the surfaces given by

2 2 2 2 2 2 2

the same happens to solutions associated to subsystem ws, w3, wy, they are given by
the intersection of

4M? = Wi + w3 + Wi, Fozs = Qpws + azws + auwj. (4.10)
Following the same approach than in Chapter 2 in the geometric study of the trajecto-

ries, we replace (4.9) and (4.10) by the (EC) and (HC) given in (4.7). Those integrals
are related by the following linear combinations

hy = 4(Fis6 + a1 4M2), hs = 4(Fis6 + as 4M2),
for subsystem 156 and
]7,2 = —4(?234 — Q9 4]\/[2), h4 = —4(?234 — Q4 4M2),

for 234. The coefficients a; defined in (4.6), together with the value of Fi54 and Fa34,
determines the trajectory of the solutions. A summary of the possible scenarios is
given next

Table 4.2: Subsystem 156 summary.

aj | as | ag Fise Trajectory summary, hy N hj

+ | + | + Fis6 € R Unbounded curve resulting of
the intersection (HC) -(HC).

+ |+ | - Impossible combination ac-
cording to relation (4.8).

+ | - | + | Fis¢ > —a,4M? | Bounded curve resulting of
the intersection (EC)-(HC).

+ | - | - | Fis¢ < —a54M? | Bounded curve resulting of
the intersection (HC)-(EC).

Note that some cases still remain uncovered, that is, we have included here half of the
possible cases. Those cases with the opposite combination of signs are completely
analogous. They can be derived from the above just by interchanging the independent
variable s by —s in the corresponding subsystem.

Finally, we include a view of the bounded and unbounded trajectories. In Fig 4.2 it
is shown the intersections of the reduced space with several level surfaces given by
the Hamiltonians Fi5¢ and Fos34.

65



4.1. Hopf-Poisson Reduction of R®. The Regular and Singular Cases

Table 4.3: Subsystem 234 summary.

Qs | as | Gy Foza Trajectory summary, ho N
hy

+ |+ | + Fozs €R Impossible  combination
according to relation (4.8).
+ | + | - Fozq < ag 4M? Bounded curve resulting
of the intersection (EC)-
(HC).

+ | - | + | axd4M? < Fysy < ag4M? | Bounded curve resulting
of the intersection (EC)-
(EC).

+ | - | - Fogy < ag AM? Bounded curve resulting
of the intersection (EC)-
(HC).

(a)0<a1<a5<a6. (b)0<a4<a3<a2.

(c)a1<0<a5<a6. (d)a4<0<a3<a2.

Figure 4.2: Trajectories in the reduced space. Red color is used for homoclinic orbits and equi-
libria in the intersection. Green and blue correspond correspond to trajectories that belong to different
connected components of the reduced space. Those components are determined by the homoclinic
orbits.
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4.1.2 On the integration of the reduced subsystems

Integration of the reduced systems (4.5) is readily obtained from Chapter 2, where
the case of bounded and unbounded solutions are considered separately. Thinking in
physical application we only consider bounded solutions. Therefore we obtain the
following formulas for the solutions

h h
w1 =/ |=2|en(u s, key), wy = 1/ | = |en(pg s, ko),
as as
_ |l i _ | i 4.11)
Ws - Sn(m S, 61)7 w3 - Sﬂ(ﬂz S, 42)7
a1 a2
h h
we = 4/ |— dn(p s, ke1), wy =4/ |= dn(us s, kaa),
as a3
where
a;h; —
k’ij = El y o Mg =y |aihi|~
a;h;

For the case in which the elliptic modulus £;; is not in the interval (0, 1) we have also
the alternative formulas

h h
wi = /| = |dn(ug s, k1), Wy = ’,—4‘dn(u4 s, ka4),
as as
hl h2
Wy = — sn(,u6 S, ]ﬁ@), W3y = ‘_— sn(u4 S, k’24>, (412)
Qe ayq
h h
W = _—1 CH(MG S, k16)7 Wwyq = _—2 CH(M4 S, k24)-
as as

To ensure that k;; € (0,1), we have to use formulas (6.37) if ashs > 0 and formulas
(4.12) if ashs < 0. The case ashs = 0 leads to unbounded solutions.

4.1.3 Poisson reconstruction

Complementing the previous approach, making use of the quadratic functions w;
(3.15) defined above, the canonical equations (4.2) may also be regarded in the fol-
lowing matrix form
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G aiwi QAoWo asws gy A 0 0 0 q1
Go —Qows  A1Ww1 Quws  —a3ws 0 A 0 0 Qo
qs —a3w3 —a4Ws AW aowr 0 0 A 0 q3
6?4 _, —Quwy  A3W3  —GWs  A1W1 0 0 0 A q4
Q1 —A* 0 0 0 —a1w1  QoWws asws Qg Q1
Q2 0 —A® 0 0 —Gaw2 —QlW1 Q4Wq  —a3W3 Qo
Qg 0 0 —A* 0 —Q3Ww3 —Quwg —a1wWi (W2 Q3
Q4 0 0 0 —A* —aqws  a3w3 < —asws —aiwi Q4
(4.13)
where
A = —asws + agwe, A" = asws + agws

therefore, (T*R?, F,,w) is a homogeneous cubic polynomial system. As we show
below, associated with this system we have the reduced system defined on SO(3) X
SL(2,R)

Wi = Qg W W, i,j,k € Per{1,5,6} and ¢,j,k € Per{2,3,4}, a;; €R.
(4.14)

Then, we may approach our problem (4.2) considering an alternative system of dif-

ferential equations defined by (4.13) and (4.14) in the space of the variables

q1,492, 43, 44, W1, W5, We, W2, W3, W4.

Indeed, note that from the relations defining w;, (i = 1,...,4) we may write
1
Q1 = W(Wﬂh + wWags + wsqs + waqa),
1
Q2 = W(_M% + w1qe + waqs — wW3qs),
ql (4.15)
Qs = W(—w:&% — WaGa + w1qs + waqa),
1

Q4 = W(—M% + w3qa — waqs + w1qy),

where |q] is the modulus of the configuration variables, that is, [¢|*> = 37, ¢2. Note
also that (4.15) may be expressed in a more compact way by considering the quater-
nionic notation, thus we obtain

1

Q:_Q*wu
lq|?
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where w = (w1, ws, w3, wy).

Then, replacing in the system of equations (4.13) we may give the system the follow-
ing form

‘ * * * *
q1 a; Wi aq Wo s W3 Ay Wy q1
S * * * *
42 —Qy W2 ay Wi ayWwqg —Ag5W3 q2
“l =2 X ) ; X (4.16)
qs —A3W3 —Qy Wy ay Wi aq Wo qs
S * * * *
q4 —Aay Wy Qs W3 —0g W2 a1 W1 qa
with
A —as5Ws + AgWs .
Q=+ =y —os LA (4.17)

|q/? |q|?

In short, the alternative system is given by (4.16) and (4.14). Several studies suggest
that, in contrast to the first impression due to the large dimension of the system, this
formulation could be more efficient from the numerical point of view. In this sense
note that apart from the Hamiltonian function, as we will see later, the system has the
constraints defined by the integrals

4M? = W2 — Wi — WP = w3 + wh + Wi, (4.18)

and .
A= 5(@1@4 — Q1 + ©Q3 — 13Q2), (4.19)

which will be relevant when implementing and controlling the numerical integra-
tion method used. Moreover, for some specific models, like the rigid body, we
have the constraint of the configuration manifold S* (see for instance Fukushima
[Fukushima, 2008]). In this chapter we focus on the analytic and qualitative aspects
of the model.

4.2 Variables that Perform Reductions

In this section two different sets of symplectic variables are considered. Our target
is to incorporate integrals of system (4.1) among the new variables in order to per-
form the reduction on the system. It is well known in astrodynamic that the Euler
and Andoyer variables carry out this task for classical problem as Kepler and the
rigid body. Thus, we extend those variables to the four dimensional case by means
of the Projective Euler and Projective Andoyer variables, which were first defined in
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[Ferrer, 2010], see also the references therein to track earlier versions of these vari-
ables.

Although the Projective Andoyer variables perform a 2-DOF reduction in the system,
we first consider the Projective Euler variables. From this effort we obtain some gain,
since in Projective Euler variables, it is shown that the free rigid body Hamiltonian
belongs to the family F,.

Before we start to develop our plan, we have to make a stop and reconsider our
methodology in this section. Although, it has been said that we are going to define
new variables to reduce our system and we have related it to the Kepler and free rigid
body problems, it is necessary to consider the following transformations just by what
the are, that is, symplectic maps from 7*R*, that do not depend of the problem in
which they will be applied later on.

4.2.1 Projective Euler variables. 1-DOF reduction

To start defining the Projective Euler variables, we first consider a map on the configu-
ration space R*. After that, this map is extended canonically to the phase space T*R*
giving a symplectic transformation. Let us fix some notation and conventions.

The Euler angles are one way of endowing SO(3) with coordinates. It hinges in
the fact that any rotation in R? is the result of the composition of three basic rota-
tions. Now we recall the expression of the basic rotation matrices R3(«) and Ry (5),
that are used in the Euler chart of SO(3). Note that, regarding to the Euler angles,
there is not an agreement in the literature. In what follows we follow [Arnold, 1989,
Goldstein et al., 2002], which are different from [Whittaker, 1937].

cosa —sina 0 1 0 0
Rs(a) = | sina cosa 0 [, Ri(f)=| 0 cosfp —sinf |. (4.20)
0 0 1 0 sinf cosf

Then we consider two reference frames in R? given by two orthonormal basis B% =
{X$, X5, X3} and BE = {XE XF XE}, which relative position in space is given
by Fig. 4.3. Let (z,y, z) and (2", y", 2""") the coordinates with respect to the basis B°
and BY respectively. Thinking in the applications, we express the “new” coordinates
in terms of the ”old” ones, that is to say

"

1 Ti2 T3 X
11
Y = | 71 T2 T23 Y (4.21)
n
31 T32 T33 z
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where the rotation matrix R = (7i;)ije(1,23) = R3(—)R1(—0)R3(—¢), that sends
B to B, is given by

coscosp —cosfsinysing  cosfsiniy cos¢ + cosysing  sinfsiny
R=| —cosfcosysing —sinycos¢ cosbcosycosp —sinysing sinf cosy
sin # sin ¢ —sin 6 cos ¢ cos 6

Figure 4.3: Euler angles. The rotation transforming the reference system {X,Y,Z} into
{X",Y’, Z'} is decomposed in three basic rotations, which angles are ¢, 6 and .

A minimal atlas for R™ x SO(3). Euler charts

Along this section we follow [Grafarend and Kuhnel, 2011], where they give a com-
plete minimal atlas for SO(3). This work refines the claim of [Cushman and Bates, 1997],
page 402, where it is said that at least three chart are needed to cover SO(3) and they
prove that the minimum number of charts needed is four. We are also investigating

is there is a minimal atlas made of four charts for the case of the Andoyer angles. In
this light, we give minimal atlas in terms of the Euler angles for R™ x SO(3).

Proposition 4.3. The following set of maps constitute a minimal atlas for R* x SO(3)
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denoted by A s0(3)

7Del : Ul - R4 — R* x SO<3)a (p7 ¢>97¢) - (F(p)7 ( R3<_¢)Rl<_9)R3(_¢))>
Pes: Uy CRY— R x SOG), (5.0,0,4) > (Flp), ( Rs(~9)Ri(~0)Rs(~0)).
P€3 : U3 C R4 o R+ X SO<3)7 <p7 ¢797¢) — (F(p>7 (Q R3(_¢)R1(_0)R3(_
Pey: Uy C R* — R* x SO<3)a (p7 ¢7971/}) - (F(p)7 (Q R3(_¢)R1(_0)R3(_
(4.22)
with their domains being the following open sets in R*
U =Us=R" x (0,27) x (0,7) x (0,27),
(4.23)
Uy=U; =R x (—m,7) x (0,7) X (—7,7),
and
1 -1 2 2
Q= 3 2 -1 2], (4.24)
2 2 -1
Proof. Analogous to the proof given by [Grafarend and Kuhnel, 2011] for the case
of SO(3). O

Every basic rotation matrix may be represented by mean of a unitary pure quaternion.
Following Kuipers’ [Kuipers, 1999] notation we have

3(0) ~ qrp = (cos(¢) + ksin(¢)) = (cos(¢), 0, 0,sin(¢))
Ry(0) ~ qip = (cos(#) + isin(#)) = (cos(#),sin(d),0,0)

R3(¢) ~ qrp = (cos(y) + ksin(y)) = (cos(v), 0, O,sm(¢))7
O~ w=(0,v/1/3,/1/3,/1/3),
therefore, the unit quaternion quos = Gk 40 Gko = (Qios Lo Lovesr Qo) 18 the

quaternion associated to the whole rotation and scaling by F'(p) we obtain an atlas in
terms of the Euler angles for H — {0} (or S if F((p) = +1)

oy

(4.25)

PEL Vi CRY — H—{0}, (p,0,0,¢)— q,
PEy: Vo CR* — H — {0}, (p,,0,¢) — q,
PE3: Vs CR' — H— {0}, (p,¢,0,¢) = w-q,
PE4: Vi CRY — H - {0}, (p,¢,0,%) = w-q,

(4.26)
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where their domains are given by the following open sets in R*

Vi=Vs=R—{0} x (0,2m) x (0,7) x (0,27),

Vo=V, =R —{0} x (—m,m) x (0,7) x (—m,7), (4.27)

and q = (q1, ¢2, g3, ¢4) may be considered as a quaternion as well as a vector in R*
with coordinates

0= FO) oo, m=F) gD,
= Sin(g> cos(“20), w=Flp) cos<§> (225,

This change of variables in R* is dubbed as Projective Euler variables, since ¢, § and
1 are the well known Euler angles representing a triad of basic rotations 3-1-3. In the
following theorem we state the relation between the atlas given above.

Definition 4.2. We define the map L, as the extension of the corresponding rotation
operator L, : R3 — R3, defined in Theorem 3.1, that is

L, H— {0} — R* x SO(3)

¢ — (lglLgo).

(4.29)

From now on we use the convention H — {0} = H*.

Theorem 4.4. We have that the following statements hold

(i) The following diagram is commutative fori = 1,2,3,4

L
R — {0} @ H* — R* x SO(3)

73% /776i
Ui

(ii) By choosing F(p) = 1 and F(p) = —1 in Ag, we obtain that

Ass = {(PET,Wh), (PES, W), (PES, Ws), (PES, Wy),  (4.30)
(Pgl_v Wl)v (7782_, WQ)? (,ngv W3>7 (7)5;, W4)}7

is an atlas for S®, where PEF = PE;, PE; = —PE; and W; = U;N({1} xR3).
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(iii) By fixing F'(p) = 1 in Arxso(s), we obtain that
‘ASO(3) = {<,P€Ir7 Ul)a (,P62+7 U2)7 (Pe?{, U1)> (Pef{, U2)} (431)

is a minimal atlas for SO(3), where Pej = Pe,.

Proof. It is a consequence of (4.25,4.26) and Definition 4.2. L]

Extended atlas in the cotangent bundle

The following result says that the diagram given in the above theorem may be lifted
to the cotangent bundles of the manifolds involved. Moreover, the lifted maps give
rise to symplectic maps.

Theorem 4.5. Consider the cotangent lift to the respective cotangent bundles of the
applications given in Theorem 4.4. Thus the corresponding diagram is commutative
and the maps involved are symplectic.

\ L, o
TR~ H x H T*(R* x SO(3))
m %
T*U;

Proof. Tt follows from the fact that a diffeomorphism between manifolds may be
lifted to their corresponding cotangent bundles, see Definition 1.30. [

In what follows we denote the lifted maps T*PE;, T*Pe; and T*Pe; by PE;, Pe;
and Pe;, since by the context one can easily distinguish the applications between the
configuration and the phase spaces.

We plan to use the Projective Euler variables to express the model given in Defini-
tion 4.1. Thus, we provide to the reader with plenty of details related to this trans-
formation. To be more precise, we focus on the canonical character of PE;. Coming
back to (4.28), the expression of the momenta is readily obtained as a Mathieu trans-
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Chapter 4. The Quartic Polynomial Model

formation, which satisfies > Q; dg; = Pdp + © df + ¥ dip + ® d¢, thus

P = ];ég)) (1Q1 + ©2Q2 + ¢3Q3 + ©uQ4),
o = Q2+ 6Q3)(% +¢i) — (@G + 6@ (4@ + )

Y

2/(} + ) (@3 + ¢3)
P = %(Q1Q4 — Q1 + Q3 — ¢3Q2),

U= %<QIQ4 — Q1 — Q3 + ¢3Q2),

(4.32)

The whole transformation takes place in T* R*, hence our transformation P& » should
be extended also to the momenta. Taking into account that the new momenta P, O,
® and Y are linear in the old ones, we have that the complete transformation given

by

ng : (pa Qb,e,’l/),P,‘I’,@,@) — <QI7q27QS7q47Q17Q27Q37Q4>7

is obtained just by expressing (4.32) in matrix form and solving for ()1, )2, ()3 and

4. Name
Q4. Namely
1 0 in ¢ S+ i g
@ = s cosg cos L P S @) - P
F'(p) 2 2 F(p)cos 3 F(p) cos
L in? cos2=Y sin 23+ cos 25¥ sin 0
= sln — cos P— V)4 — 2 " g
“ F'(p) 2 2 F(p) cos? ( ) F(p) cos?
L n?sn®=Y sin ¢3¢ sin 2% sin ¢
— S111 — SInN P (1) o \IJ + ST 2 @7
“ F'(p) 2 2 F(p) Sing ( ) F(p) Cosg
1 .Y+ cos &L sin 2X¥ sin 6
- 9 P 2 PP ——2 0O
Q4 F(p) cos 5 sin — F(p) sin ! (@ + V) ot &

(4.33)

Also we give here the inverse transformation PEL" : (g1, g2, q3, 1) — (p, 9,0, %),

by using (4.32) and the following relations
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4.2. Variables that Perform Reductions

F(p)=\/CJ?+CJ%+q§+ﬁ,

o G244 + 193 . 4192 — 4394
sin¢ = 2 2N 2 2’ 05 ¢ = 2 2N 2 2’

V@ +a3) E+ad) V@ +a3) @+ ad) i
N e AT Wy (39
sinf = 5 5 5 5 cosf = 5 5 5 5

qi + a5 + a3 + q; qi +q5 + g5+ q;

) 42494 — 4193 q192 + 394
smw = COS’QZ) =

VE+E)(E+a) V@E+R)(E+a)

Remark 4.1. Note that w9 = 2P and wy, = —2V. In other words, the system defined
by (4.1), when expressed in Projective Euler variables, reveal one of the conjugate
momenta as an integral.

Proposition 4.6. For F(p) = p, the family of Hamiltonians F, expressed in Projec-
tive Euler variables takes the form

‘F(p>9> ¢7 77P7®76>‘P):G1P2p2

2_p2 9 P2 2V P cosh + W2\
+%(’ __(@+ cosf + )),

2 P2 sin? 6

PP 2 [, D220 D cosh+ U2\’

+ ag +—2 © + ) ,
2 p sin” 6

® — Wcos ?
+ 4as (ﬁ sin ) + @cosw) ,
sin 6

® — Wcosh ?
+ 4as ($ cosY — Qsinw) ,
S

inf
+ 4&4 ng
(4.35)
and for the case of wr, wg and wg we have

B ® cos (0)sin(¢) W sin (o)
wro= 2 ( sin (0) T (0) — O cos(9) )’

B U cos (0)cos (¢p) W cos (o) .
ws = =2 sin (6) 0 + € sin(9)), (4.36)
Wg = —2@,

76



Chapter 4. The Quartic Polynomial Model

Proof. By using the above transformations formulae and after some algebraic and
trigonometric manipulations, we obtain the following expression for the components
of the family F, that reads as follows

_ PF(@)
W = ’ )
F'(p)
F?(p)F?*(p) — P? 2 y, PP—2Ud cosh + P?
w5 - ,2 - 2 @ + <2 Y
F"(p) E2(p) sin” ¢
F?(p)F?*(p) — P? 2 , PP —2Ud cosh + ¥?
N IR E RN sin” 0 ’
& T cos (4.37)
wy = 2 <_—COS sin ) + @cosz/z) ,
sin
wy = —2 (w cos ) — Qsin@/z) ,
sin 0
Wyg = 2\11,
thus, by simply substitution we obtain (4.35) and (4.36). L]

Although Projective Euler variables do perform a 1-DOF reduction, they are not our
choice. In order to integrate the system, we can simplify the problem furthermore
because we know it is endowed with more integrals, see Proposition 4.1.

4.2.2 Projective Andoyer variables. 2-DOF reduction

In this section we go further in the reduction process changing to the Projective An-
doyer variables (p, A, 1, ), which are a generalization to four dimensions of the An-
doyer variables. Precise details can be found in [Andoyer, 1923] and [Deprit, 1967].
As in the case of the Euler angles A, iz and v represent angles and p is a scaling. The
geometric relations of those three angles with the Euler ones (¢, 0,1)) is illustrated
in Fig. 4.4 and Fig. 4.5 and hinges on the existence of the Andoyer vector d that we
define below. After that, the symplectic character of the new variables is obtained
in a similar way as in [Heard, 2006]. Those variables provide us with the 2-DOF
reduction by incorporating two of the integrals among the variables, which renders
two cyclic variables.
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4.2. Variables that Perform Reductions

On the geometry of the Projective Andoyer variables

Usually, the construction of the Andoyer and Euler variables is related to the study of
the free rigid body. Maybe for that reason, it is customary in the literature [Deprit, 1967,
Heard, 2006, Ferrer and Molero, 2014a], to define the Andoyer variables using the
angular momentum vector. Here we modify slightly this approach and construct the
Andoyer variables hinging on the Andoyer vector a, this is the mathematical abstrac-
tion of the physic magnitude angular momentum vector, which emphasises that there
is no need to deal with a rigid body to construct the Andoyer variables.

Figure 4.4: Geometric relations between the two triads of angles (¢, 6, ) and (A, i1, 7). Andoyer
angles rely on the intermediate plane determined by the Andoyer vector represented by a. The labels
II; Iz and IT 4 correspond to the xy-planes given by the spatial, Euler and Andoyer reference systems
respectively. The angles «, /3 and -y are given by ¢ — v, ¢ — A and p respectively.

Fig. 4.4 shows three reference systems; the spatial 5° = {si, $3, s3}, the Euler BF =
{€1, €, €3} and the Andoyer one B4 = {l:, lz, d}. Nothing left to be said for 5° and
BE, just recall that both are orthonormal basis of R3. Then we define the vectors
belonging to B starting with the key object of the Andoyer angles, the Andoyer
vector d. Going back to the Euler angles we consider the basis of R? given by the
vectors B = {s3, sé, €3}, where

o= 22 (4.38)

53 x &3

78



Chapter 4. The Quartic Polynomial Model

Then, the Andoyer vector is given as follows
a = ®s3 + Ose + de;. (4.39)

In other words, vector @ coordinates are the old momenta associated to the Euler
angles in the basis B, see Fig. 4.5. This vector is precisely the angular momentum
of the free rigid body, see [Gurfil et al., 2007, Heard, 2006], but it is defined with no
mention to it.

Figure 4.5: Andoyer angles rely on the intermediate plane determined by the vector G. For the
family F,, this vector is given by (wr, ws, wg), which provides an orthogonal plane through the origin
that relates the Euler angles to the new Andoyer angles.

The expressions for the nodes, as they are used to be referred in astronomy and as-
trodynamics, [ and [, are given below. Note that the modulus of those vectors are
also given, they are obtained taking into account that |$3| = |é3] = 1 and the angles

between (3:3\,6) = [ and (6:3\,6) = J, then

l;sinl = $3 X ﬁ

, ¢ (4.40)
lesinJ = — X €3

]

where we denote by I, J € (0, 7) the angles between the planes I1g-I14 and I14-I1g
respectively, see Fig. 4.5.
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4.2. Variables that Perform Reductions

Note also that other definitions for the nodes l: and l; are possible. Alternative choices
lead to sign differences in the objects involved, see for instance [Ferrer and Molero, 2014a].

At this point the new Andoyer angles are determined by specifying their sines and
cosines.

sin A = |51 x L], cosA=|si- L],
sing = [|lo x é1], cosp=|éi -1, (4.41)
sinv = |[l, x|, cosv=|l L]

That is, A is the angle measured from s7 to l:, 1 the angle from ZZ to lz and v from lz
to €1. We follow obtaining more information relating the old momenta with the new
variables, which is derived just from basic vectorial calculus,

o
O =a-s;=|ad|lsz3||cos(a,ss) = cosI = Tal

a

U (4.42)
U =a-ée;3=|al|es] cos(a,es) = cosJ = TaT

a

Finally we reach an important relation between © and ||@||. Let us consider the plane
ITg in Fig. 4.5 and the reference system given by

L, ezxse
Bi={se,v=-———— wW=¢
1 { 3 ||€_é Xs—é||7 3}7

ol

then, since sé, €3 x sé € Ilg, the pair of vectors B, = {sé, '} give also a reference

™ .
5~ W=v)

P

o se

Figure 4.6: Intersection of plane 1 with the imaginary sphere of Fig. 4.5. The point of view of the
observer is from the vector €3, which projection is the point O.
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system in I, see Fig. 4.6. Note that the orthogonal projection of @ in I is ||@|| (€3 x

—

l.) and therefore the following relation hold
©=a-se=|al|sinJ(é xl.-se),
after some computation the last factor becomes
sin J (€3 x I, - §¢) = — sinJcos(g — (¢ —v)) =sin Jsin(v — )

thus we have that

O = ||d]| sin J sin(v — ). (4.43)

4.2.3 Symplectic Character of the Projective Andoyer Transfor-
mation

In Section 4.2.2 we have derived the relations between the Euler and Andoyer an-
gles, that is we focused in the configuration space although the moments were also
involved in the formulas. Nevertheless, the transformation from Projective Euler
variables to Projective Andoyer takes place in T*R*, that is

7D"4E‘ . (p7¢797¢7p7q)7®7\1/> % (p?A7/’L7V7P7AJM7N)7

in the case of the Andoyer map it is no longer obtained as a canonical extension of
the configuration space. Rather than this, we follow [Heard, 2006] and the Projective
Andoyer varibles are derived by specifying the momenta and evaluating a generating
function which produces a symplectic transformation. Namely, the momenta are
given by

P=P A=® N=U, M=]d|. (4.44)

Taking into account the definition of the Andoyer vector (4.39), we have that the new
momenta M is related with the Euler variables as follows

® — WUcosh
sin 6

M= \/@2+\p2+( ), (4.45)
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4.2. Variables that Perform Reductions

and using (4.43) we have the inverse relations

P="P
D= A,
U= N,
© = M sin Jsin(v — ) (4.46)

A — Ncosf
sin 6

:i\/MQ—JW—( )?

= j:\/[]\/[200829— 2NAcosf + N2 + A2 — M?] /sin? 6.

Let us abbreviate the Euler angles by e = (p, ¢, 6,1), the momenta conjugate to the
Euler angles by E = (P, ®, 0, V), the Andoyer momenta by a = (p, A, 4, /), and the
conjugate coordinates by A = (P, A, M, N). Since the transformation from (e, E)
to (a, A) is to be symplectic the differential forms e dE and a dA can differ only by
a closed form. According to Theorem 1.13, this introduces the generating function
S(e, A), that satisfies

Ede + adA = dS(e, A), (4.47)

and provides the generating equations

E:a—s(e,A) azg—i(

e e,A). (4.48)

By using the first equation of (4.48) we obtain the generating function itself

S(e, A) = /Ede

_ / P(a,A)dp + ®(a, A)do + O(a, A)dd + U(a, A)di

0
=Pp+Ap+ Ny +/ \/[M200829 —2NAcosf + N2+ A2 — M?2] /sin? 0 d
o
(4.49)
where ) is the larger root of the polynomial M? cos? # —2N A cos 0+ N? + A% — M?,
then, keeping in mind that ||@|| = M and the expressions for the cosines of / and .J
given in (4.42) we obtain that the above polynomial can be rewritten as follows

cos?h — 2cosTcosJcos@ +cos®> I +cos®>J —1=0
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which larger root is 6y = I + J. Once we have obtain S we can use the second
differential equation in (4.48) to obtain a = (p, A, i, V):

oS
= —(e, A
p=gpleA)=r
oS
= —(e A
)\ aA(e7 )
_QH_/G A — N cosf df
00 sin® 0y/[M2cos? — 2N A cosf + N2 + A2 — M2] /sin® §
_¢+/9 cos I — cos J cosf db
bo sinQ\/sinQQ—i—Qcos]cochosQ —cos?2 [ — cos? J
—qb—i—arcsin(COSJ_COSICOSH)—E
B sin I sin 2’
oS
- 4.50
i aM(e,A) (4.50)
B o sin 0 df
60 \/sin2 6 + 2 cos I cos J cos§ — cos? I — cos? .J
_ aresin (COS Jcosl — COSG) T
B sin I sin J 2’
oS
= —(e, A
v= (e A)
_¢+/9 cos [ cosf — cos J df
0o sin 9\/51112 0+ 2cos I cosJcosh — cos? [ — cos?.J

4 T oresin (cos[ — cochosH)
N 2 sin I sin 0
The whole change of variables may be summarized in a more compact way by using

! 2 ’ 2 ’ ! 2 ’ 2 ' '

Thus, in the domain (p, A, i, v) € R x (0, 27) x (0, 27) x (0, 27), those new variables
are related to the Euler angles by mean of the following trigonometric relations

p: p’ P = P’

cos 0 = cicp + 51 .89 cos 2, U =N,

sin(y — v) = b, ® = A, (4.52)
sin 6
i 21 2 _9 9

sin(g — A) = s, @:M\/l—cl“z e
sin 6 sinZ 0
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4.2. Variables that Perform Reductions

The final expressions for the integrals and the family components in the Projective
Andoyer variables are given as follows

wy =2V M? — N?sinv, wr =2V M? — A?sin \,
w3z = —2vVM? — N2 cosv, wg = 2V M? — A% cos A,

Wy = 2N, W9 = —2\.
PF(p)
= (4.53)
1, P> 4M?
Ws Q(F (P)_ F’Q(p) - FQ(p))’

P2 . 4M2)
F2(p)  F2(p)””

We = %(FQ(P) +

Therefore, the family of Hamiltonians yields

Folp,—, —,v; P,— M, N) = Fis6 + Fazs (4.54)
with
PF(p)\2
Fise(p, — = = P =, M, )_a1<F’(<p))> 2 2
) F’];(p) - iji\(fp))z
2 2
300 gy )
Fosa(—, —, —,v;—, — M,N) = 4((ay sin® v + a3 cos® v)(M? — N?) + a4 N?).

(4.55)

From Cartesian to Andoyer variables

The relation of the Projective Andoyer variables with the Cartesian variables is also
provided. In this case we proceed in a similar way as in the preceding section, but
now for the Andoyer variables we have the composition of five rotations instead
of the three corresponding to the Euler angles. That is to say, the new variables
are given by the components of the corresponding associated quaternion g, j,rn =
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Qv Gi,7 Qk,u Gi,1 Qi x> multiplied times p. The explicit change is given by the canonical
mapping

PAC : (CIh 42,43, 44, Qh QQ) Q37 Q4) — (p7 Aa W, vV, P7 A7 M7 N)?
the configuration space is transformed as follows

A p+v A—p+v

q1 = F(p) cic cos 5 — F(p) 182 cos 5 : (4.56)
q2 = F(p) ca81 cos % + F(p) c182 cos W’
g3 = F(p) cas1sin Ampov + F(p) c1528in Wa
q1 = F(p) c1casin W — F(p) s158in ¥7

The momenta are found taking into account relations (4.52) and imposing the condi-
tion Y Q;dg; = Pdp+ Ad\+ M du+ N dv

P = i((;))) ((1@Q1 + Q2 + ¢3Q3 + uQy), 4.57)
A= %(_QIQ4 + Q4Q1 — q2Q3 —+ Q3Q2),

M = VPO — (0, QP

N = %(CI1Q4 — Q1 — Q3 + ¢3Q2).

In other words, Projective Andoyer variables incorporate two integrals among the
new momenta, M and wyg = 2® = 2A, thus the 2-DOF symplectic reduction is
carried out.

The whole transformation (4.56), in terms of the Projective Andoyer variables, is
not completed until the momenta (); for : = 1,2, 3,4 are found. They are readily
obtained by taking into account relations (4.15) and (4.53). Note also that (4.15) may
be expressed in a more compact way by considering the quaternionic notation, thus
we obtain

F?(p)

() q*w, (4.58)

Q

where w = (w1, wa, W3, wy).
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4.3. Projective Andoyer Variables and the M-Orbit Map

Finally we also give the complete inverse transformation

PAEI : (Q1>CI27€]3,(]4,Q17Q2>Q37Q4) — (P»Aa/la v, PaAa M7 N)

by the combination of (4.57) and the following expressions for the Andoyer angles
and p

p= \/q%+q§+qg?+qz, (4.59)
. B+aG— 4G —a . q3qa(wr +ws) — quga(wr — ws)

cos it = , sinpu = 5

202 c1281 89 p>M cqs5

—Wws . w7
COS\ = ———, Sin A\ = ——,

VWi + w? VWi + w?

—Wws3 . Wa

COSV = ——— siny =

2 2’ 2 2’
\V wy + w3 Vwy + ws

As a final remark, we refer to the singularities of the Andoyer angles and therefore
also for the Projective Andoyer angles. More precisely, for the particular case in
which the invariant angular momentum is parallel to the ss-axis (the third axis of the
spatial frame) or parallel to bs-axis (the third axis of the body frame), those variables
are not defined. Equivalently, singularities arise when I = 0, [ = 7, J = 0 and
J = m because the node lines vanish. One alternative set of variables, can be found
in Sidorenko [Sidorenko, 2014]

4.3 Projective Andoyer Variables and the M/-Orbit Map

The quadratic functions w;, ¢ = 1, ...,9 describe the reduced space for the )/ -action.
More precisely, Proposition 4.1 implies that wy, ws, w3, Wy, Ws, W, W7, wWg and wg are
invariants for the M-action and are generators for the space of M-invariant polyno-
mials. Consequently the orbit map for the M-action, which is an S'-action, is given
by

W T*R4 - M C Rg : (q7 Q) - ((Ul,LLJQ,W3,W4,W5,WG,W7,W8,CU9>-

Relation (3.19) implies that the orbit space W (T*R*) = M is six dimensional, or
equivalently we have that M = T*R*/M.

On the other hand, M induces a free and proper Hamiltonian action with Ad-equivariant
moment-map .J
J:T'R* - R: (q,Q) — M.
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Then the moment-map J and the orbit map W form a dual pair.

The Projective Andoyer variables provide the M -reduced space M with coordinates.

Note that the M -reduced space is described with nine “coordinates” and

three restric-

tions given by the relation (3.17). Therefore, the reduced space is a Poisson manifold
(M, {.,.}) foliated by six dimensional symplectic manifolds. Where the Poisson

structure matrix is given by

0 2wg —2wg 0 0 0 0 0
- 2&)9 0 2&]7 0 0 0 0 0
2w8 - 2&)7 0 0 0 0 0 0
0 0 0 0 2wy 2wz 0 0
P = 0 0 0 2wy O 2wy 0 0
0 0 0 2wg  —2wp 0 0 0
0 0 0 0 0 0 0 —2ws
0 0 0 0 0 0 2ws O
0 0 0 0 0 0 2(,U5 —2(4)1

and Casimirs

2 2

2,2 2 2., 2, 2 2
Cr=w;+wsgtwy, Cr=w;+wstwy, OC3=ws—ws—uwi.

Momentum  AJ_action Orbit

map RS map

| (qh a2, q3, 44, Q1, Q2, Q3, Q4)

PAc M
(M)
((wh wg,wo), (w2, w3, ws), (w1, ws, wﬁ))
(p»Aaﬁ"aV’PaAﬁMaN) (A,A) (V,N) (p,P)
|
RS Fy
(va’Vava’N)

Figure 4.7: Andoyer coordinates and the M -reduced space.

This reduced space is closely related to the Andoyer chart coordinates.

0
0
0
0
0
0
—2(,05
2&)1
0
(4.60)
4.61)
Let us con-

sider the diagram given in Fig. 4.7. Tl and II, are the usual projections from R® to

RS and R? respectively, the symplectic map P.Ac, and also its inverse,

are given in
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Section 4.2.3. Thus, we focus on F;, this map is defined, depending in the parameter
M as follows

Fr: D C (RS, w) — S2 x §2 x ¢ < (R, {, }), (4.62)

the domain is given by D = {(p, \,v, P,A,N) € RS/ p > 0, \,v € (0,27), |N| <
M, |A] < M} and w is the standard symplectic form. On the other hand S3; =
S2, — {(0,0,4+M)} (denoting S?%, the sphere of radius M), C** is the upper sheet of
the hyperboloid defined by Cs = w2 — w? — w? = M? minus the point (0,0, M) and
the map is given by

Fu(p, N\ v, PA,N) = (Fy, F3p F By Fop FSy Frp FSOES), (4.63)

where
PF
Fl = /AP —Resiny,  Fl = LE0),
F'(p)
1 P? 4AM?
F2, = -2/ M2 — A2 cos \ F8 — Z(F2%(p) — _
M COS A, M 2( (p) F/Q(p) FQ(p))a
1 P? 4AM?
Fyp=—2A FO = —(F2 C (4.64)
M ) M 2( (p)+F,2(p) +F2(,0>)

Fy, =2V M? — N2sinv,
Fp = —2VM? — N2cosv,
F$, = 2N,

The following proposition allows us to claim that Projective Andoyer variables give
coordinates to the M -reduced space.

Proposition 4.7. The map F); is endowed with the following features:
(i) Fyr is a diffeomorphism from D to its image in S%; x S3% x C%,

i) S3, x S, x C? corresponds to the level manifold of the Casimirs C; = Cy =
Cs = M?, in other words M is foliated by the symplectic leaves

St xS3, x C?P =07 (M)NCyH (M) N CyH (M),
iii) I\ satisfies that
it Fagtop = Fildfog}, Vfg€ CF(M)
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where {., .},p is the Poisson structure induced by the symplectic form wp on
the open manifold D. Thus, is F; a Poisson map.

Proof. (i) After some computations it is shown that the rank of the Jacobian matrix
of F': M is equal to six.

(ii) Is a direct consequence of the fact that C';, C5 and C5 are Casimirs of the
Poisson structure.

(ii1)) Again after some rather long computations with the Poisson brackets, one
checks that

{F3:Gy, F3iGiYop = Fi{Gi, Gy,
{F]T/[Wz'a F]ij}w\D = FJT/I{wiv wj}? (4.65)
{Fywi, F]T/[Gj}w\D = 0= Fy{w:, G},

thus, it follows for all f, g in C*°(M).

4.4 Integration in Projective Andoyer Variables

In this section we prove the integrability of the family of Hamiltonians systems given
by (4.1), and also provide the analytic solution formulas.

4.4.1 Integrability of the system

Up to now we did not say anything about a remarkable feature of the system, that
is, it is an integrable system in the Liouville sense. The reason why we wait till this
moment is that Projective Andoyer variables are the appropriate frame to perform
this task.

Definition 4.3. Let (M, w) be a 2n-dimensional symplectic manifold. The Hamilto-
nian ‘H is said to be completely integrable if there exists n — 1 independent functions
fi,--+, fn_1 (independent in the sense that the differentials d,, f,...,dy,f.—1 are
linearly independent at almost every point m € M) that are first integrals of H and
that pairwise Poisson commute, i.e. {H, f;} = 0and {f;, f;} = 0.
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Theorem 4.8. The family of Hamiltonian systems given by (4.1) is endowed with the
following first integrals in involution

Foza, Fise, M2, wo. (4.66)

Therefore, this family of Hamiltonians defines a set of completely integrable systems
in the sense of Liouville.

Proof. The involution condition of the integrals is obtained from the computation of
the brackets, for this task we are going to use the Projective Andoyer expression of
the functions involved. Thus we have that {wq, M?} = {wog, Fis6} = {wq, Fozs} =
{M?, Fis¢} = {M?, Fozs} = {Fis6, Faza}, trivially vanish since those functions
does not depend on whole set of new variables, in others words, we have that
F234(U, N, M),

f156(p7P7M)7 M27 w9:_2A

The independence condition of dFas4, dF 56, dM? and dwg is checked out now.

dq
a-F.156 O O O a‘F.156 O a-F.156 O dQQ
156 a]:234 a]:234 Q3
D Foss 000 =5 01 = 0 dq,
DM? v dQ,
Dusy 0 00 0 0 0 2M 0 40,
0 00 0 0 0 OF 2 dQs

(4.67)

we focus on the last four columns, then the rank of A is four, except for the values
that satisfy

OF 156 OF 234 O0F 234
oP T OM ’ 0 ov '’
the above conditions defines four 7-dimensional manifolds on the phase space T*R*.
So the rank of A is four in a set of full Lebesgue measure. U

In another work, currently in progress (see [Crespo and Ferrer, 2014a]), we study the
energy-momentum mapping

EM : T*R* - A c R%; EM(q,Q) = (Fis6, Fise, M?, W)
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Chapter 4. The Quartic Polynomial Model

4.4.2 Analytic integration. Case F'(p) = p

In what follows we assume F'(p) = p unless the contrary is said. Although Theorem
4.8 ensures that the systems given by F, are integrable, Cartesian variables lead to a
partial system of differential equations, see (4.2), which is not easy to handle at all.
The symplectic change of variables performed above turned the Hamiltonian F, into
a 2-DOF system and the expression of the differential equations are given by

N ) 4M?
p= Z((a6 + as)p® — a, (P? + 7 )P, (4.68)

16M*  P%24M? B B
P + Pr p*) — (ag + as)PQ)Pa

U= 2N(d2 + ay sin® V),
N = Gy (M? — N?)sin2v,

N
I

1
gLl

i = M (4(ag — as + 2az) — %(4%2 + P?) 4 2a, cos’ v),
M =0,
A=0,
A=0,

i. e., we have two different 1-DOF system in the variables (p, P) and (v, N), and a
quadrature that gives ;. Even now when the system has reduced its complexity, it
is not painless to tackle it. Therefore, in order to solve the system, we use the fact
that the system is explicitly solved for the wy,..., wg In Section4.1, thus, by finding
the inverse relations of those giving in (4.53), system (6.4) is solved in terms of the
omegas

w1

=/ P=—— 4.69
1Y Ws +w67 m7 ( )

—Ww3 . (%) Wy
CcoSV = —— siny = ——, N =—,

Vi +w?’ Vi +w?’ 2

n = (aG — a5 + 20/4)MS — C_LlMll — QELQMIQ,

_ 2 2 2 _ 2 4 2 2 _ 2 2 2
2M = \/wﬁ—w5—w1 = \/w2 +wstwp= \/w7 + wg§ + wg,

Cos)\:_—ws sin)\:L A:_—m
where ) ) \
L(s) = %(4]\{ +P2)dr:/ o5 g (4.70)
o P° P 0 W+ Ws
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4.4. Integration in Projective Andoyer Variables

and

s s w2
I(s) = / cos’ v dr = / > dr. 4.71)
0 0

w; + w3

Computing /; and /,

Note that the integrand of /; does not present singularities, since the denominator
we + ws = ||q||?>. The expressions giving I; and I, depend on the final expression
of the w; = = 2,3,5,6, which are obtained from the integration formulas given in
Chapter 2. Here we only consider the bounded case. Furthermore, we assume initial
conditions and parameters such that the solutions for the reduced system are given

by
he 6 hy
Wy = ‘G—JCH(M 57k61)7 Ws = 0156 e Sn(lh 877%’1)7 W = ’a—s‘dn(m 87k61)7

a1
4.72)
. hy o 4 . o
Wo = — CH(,U2 S, ]f42)7 W3 = 0234 — SH(,U2 S, ]f42)7 Wy = ’_—‘dn(l@ S, k?42)7
as a2 as
4.73)

with 0156 — 09234 — 1.

Next we give the quadratures /; and I, under the above assumptions, any other ar-
rangement could be carried out analogously. Thus, assuming that all the coefficients
and parameters do not vanish, and by substitution of (4.72) and (4.73) in (4.70) and

(4.71) we get
he
1/ - dn (g7, ke1) — \/‘ sn(py 7, k1)
5 h dr, 4.74)
0 dn(ul r, kﬁl) a Sn(,ul r, k61)
\/ V 1a,
and

hy
‘ sn ([LQ?" k‘42)
/ V dr, (4.75)
sn?(pa r, kyo) + 4/ | = |dn (o 7, ky2)

a2 as

and after some algebraic computations and the rescaling ;7 = z in the independent
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Chapter 4. The Quartic Polynomial Model

variable, the above integrals may be expressed in standard form as follows

1 ps 1
I = — dr B&F, 431.01 to 436.01 4.76
1(8) H1 /0 1— Oé%SI’lQ(?", k@l) " © ( )

p1s 2(r k
N ﬁ/ sn2(7‘,2 61) dr B&F, 431.02 to 436.02
p o 1 —adsn2(r, kei)

Y1 /,uls dn(r, kGl) SIl(’f‘, k?@l)
- 2.2 dr,
H1 Jo 1— ()élSIl (7", ]{361)
where (@ ao)h (@ i)l -
9 as + ag)ng 9 as — Gg)Ng 9 Q5Ng
= = = . 4.77
al C_Llhl ) /61 C_llh/l 71 C_Llh/l ( )

With respect to the third integral of the expression above, the change cn(r, k1) = =
reduces it to a quadrature which can be expressed by elementary functions. It has to
be distinguished three cases depending on the value of the parameter «;. The second
quadrature /5 is given by

1 #25 sn?(r, kyp)
I = ’ d B&F, 431.02 to 436.02 478
2(3) Bz /0 1 — agsn?(r, kya) " ? (*78)

/dghg 2 BQ!@Q -1
2 (_13h4 2 ﬁg ( )

4.5 Invariant Manifolds and Constrained Flows

Given a Hamiltonian system on a manifold M and imposing the restriction to N, a sub-
manifold of M obtained through several constraints, does not lead to a Hamiltonian
system on NV in general. In this section, we concern about what happens if we restrict
system (4.1) to the sphere the manifolds S® and M = 0. That is, we wonder whether
the Hamiltonian formulation of the problem still maintains after assuming some alge-
braic restrictions. The ideas about constrained Hamiltonian systems were first intro-
duced by J.C. van der Meer and R. Cushman in [van der Meer and Cushman, 1986],
from which we extract a resume in Section 1.5.

4.5.1 Spherical solutions

In this section we will prove that the constrained flow of system (4.1) to the tangent
bundle of the sphere of radius p, TS} = {(¢,p) € R*/{(q,q) = p, (¢,p) = 0} defines

93



4.5. Invariant Manifolds and Constrained Flows

a Hamiltonian flow, which Hamiltonian function is given by the restriction of (4.1) to
T Sf;. It will be of crucial importance in our searching of the free rigid body system
as a subsystem of the family defined by (4.1).

Theorem 4.9. TS% is an invariant manifold of the system defined by the family F,.

Proof. For the proof of this statement we use the Lemma 1.1. Consider the smooth
functions ¢; (¢, p) = (q,q) —pand c2(q, p) = (g, p), they are the constrains that define
TSi. It is a straightforward computation to show that {F,,¢;} = 0 fori = 1, 2, thus
TSi is an invariant manifold of Xz, .

]

Theorem 4.10. The Hamiltonian system (TS3,w|T83,]:a‘ng) lives in the ambient
Hamiltonian system (T*R*, w, F,), with w the standard symplectic 2-form, and wirs?
the symplectic form on T'S® given by the restriction of w.

Proof. By theorem 4.9 we know that 7'S? is an invariant manifold under the flow of
the system defined by F,. Thus we consider the ambient space (T*R*,w, F,), with
w the standard 2-form, together with the smooth functions ¢;(q,p) = (¢,q) — 1 and
c2(q,p) = {(q, p), for the function given by

C:TR* — R?: (q,p) — (c1,c2),

the value (0,0) is a regular one, then T'S® = ¢71(0,0) is a smooth submanifold of
T*R*, called the constrained manifold defined by the constrained functions c;, cs.
Moreover, T'S? is a cosymplectic submanifold, that is, the matrix ({c;, ¢;}(¢, p)) of
Poisson brackets is invertible for every (¢,p) € T'S®. Hence wrss is a symplectic
form on T'S?. O

Next we give a brief discussion of the solutions living in the manifold TS%. Imposing
the condition p constant on system (6.4), we obtain a nonlinear system of two equa-
tions corresponding to p and P. Thus, excluding p = 0, that leads to the equilibria at
the origin, we obtain the following expressions for p and P.

1. Case P = 0: The equation corresponding to p vanishes and P provides the
value of p, that is

p=lq(s)| = \/ Ny = {*/—“6 T e (4.80)

as + ag a5—2a1—a6
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for those values of the parameters that implies —%— > 0. When a5 + ag = 0,

as+ag
we are led to

p=/2M. 4.81)

Under the assumption that P = 0, |Q(s)| may also be calculated. Namely,
P = 0 implies that w; = pP = (q(s),Q(s)) = 0, thus q(s) and Q(s) are
always perpendicular, that is to say (q(s), Q(s)) € T*S®. Furthermore, |Q(s)|
is obtained by using M

2M = /|a(s)]?1Q(s)]* — {a(s). Q(s))* = la(s)[1Q(s)],

as + ag &5-2&1-@6
s)| = =/ 4.82
Q)| = /2 - 482

2. Case P # 0: In this case p € RT and the value of P is given by

—a M2 4+ (e + de) ot
P:\/ LM+ (@ ¥ ag)p” (4.83)
ap

thus

but we only obtain solutions if ag = 0 or as = 0. Therefore, keeping in mind
relation (4.8), we obtain that

—, (4.84)

4.5.2 Orbits on the surface M/ =0

M is defined by means of (3.17), solutions having M = 0 are special, they are usually
excluded in the study of several systems included in the family. For example, when
we deal with the rigid body system, M/ = 0 means that the total angular momentum
vanishes. Thus we study separately the manifold M = 0 following the preceding
methodology. In what follows, we denote M = 0 by M,

Theorem 4.11. M, is an invariant manifold of the system defined by the family F,.

Proof. Following the proof given for Theorem 4.9 and taking into account Proposi-
tion 4.1 we readily obtain that {F,, M} =0 O
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Theorem 4.12. The Hamiltonian system (M, was,, Fa|m,) lives in the ambient Hamil-
tonian system (T*R*, w, F,), with w the standard symplectic 2-form, and Wi, the
symplectic form on M, given by the restriction of w.

Proof. Analogous to proof of Theorem 4.10 [

Let us now study the constrained flow on Mj. The solution vector (q(s), Q(s)) € R®
may be split into the position and momenta vectors, it gives rise to a pair of vectors
q(s) € R, Q(s) € R%, which, under the assumption M = 0, are collinear considered
as vectors in R*. Therefore, M = 0 implies that we are looking for solutions in the
following fashion

q(s) = a(s)uy, Q(s) = B(s)uy, (4.85)

where ug € R is a unitary vector. Note that the reciprocal is also true, it is, any
solution expressed in the above form satisfies M = 0.

Functions a(s) and 5(s) have already been calculated, since they are related to the so-
lutions of the reduced system (4.5). To be precise, the following relations hold

a(s) = Vwe(s) +ws(s) = p(s), B(s) =Vws(s) —ws(s) = P(s). (4.86)

According to the expressions obtained in (4.86) for o and 3, we claim that solutions
in the manifold M = 0 are bounded if and only if the coefficients a,, a5 and ag are not
all with the same sign. This statement follows from the formulas given in Chapter 2
applied to the reduced subsystem 156, which also give the explicit expression of the
functions a(s) and S3(s).

On top of this and recalling that w5 and wg depend exclusively on the parameters
ai, as, ag and the modulus of the initial conditions q, = «(0) and Q, = /5(0), see
Chapter 2. We have that solutions in the manifold M/ = 0 are independent of the
chosen direction ug.

4.6 Distinguished Systems

Systems defined by JF, correspond to an integrable family of systems. At first sight, it
may not generate a great expectancy, but the real value of this family is that it encap-
sulates several classical models, namely the free rigid body, the harmonic oscillator,
the Kepler system and the geodesic flow are the most remarkable ones.

96



Chapter 4. The Quartic Polynomial Model

4.6.1 The free rigid body

The usual formulation of the free rigid body (FRB), takes place with phase space
T*S0O(3), together with an atlas expressed in Euler or Andoyer angles. Neverthe-
less, this is not the only possibility, the quaternionic formulation in 7'S® has gained
popularity for the case of numeric integrations, because this formulation has not sin-
gularities, that is, there is no “gimbal lock™ for the quaternionic formulation. We
show that both formulations are included in our model.

Quaternionic formulation of the free rigid body

Here a formulation of (4.2) in terms of quaternions is carried out. The motivation
for this is well known, in attitude dynamics it has some advantages versus the Euler
angles, (see [Altmann, 1986] Ch. 12., or [Kuipers, 1999] Ch. 8). Quaternions are
easier and more efficient to compute and also they are free of the ambiguity associated
to the Euler angles.

Recall that under the natural identification of the quaternions with R* and regarding
q and Q as elements in H, we have that qQ = (w1, we, w3, wy). Taking into account
the matrix form of the quaternionic product through the matrices given in (3.4), it
will not be very difficult to express (4.1) in terms of quaternions. First note that the
system may be split up as follows

Fa(q,Q) = T,%**(q,Q) + V. °(q,Q), (4.87)

where T1?34(q, Q) and V*%(q, Q) are given by

T¢11234(q7 Q) = a1 (1Q1 + Q2 + 3Q3 + ¢4 Q4)”
+as (1Q2 — Q1 — @3Q4 + Q4Q3)2 (4.88)
+ a3 (1Q3 + Q4 — 3Q1 — 1 Q2)? .
+ as (1Q4 — Q3 + 3Q2 — @11,
and
56 1 o 1 212 1 9 1 242
VI(@.Q) = as( lal” — SIQIM? + a(s lal’ + £IQIP. (489

then we obtain a “kinetic” and “potential” part. From the fact that

1234 2 2 2 2 A
T,%°(q,Q) = a1wi + aswjy + asws + agw; and (wy, wa, w3, wy) = qQ
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and taking into account the matrix expression of the quaternionic product, we can
reformulate the F, family into the quaternion fashion as follows

T,*(q,Q) :==Q" M*(q)Q = q" M*(Q)q (4.90)

. 1 1 1 1
V:%(q,Q) = as(3 lall* - §||Q||2)2 + as(; lal* + §||Q||2)27 (4.91)

in (4.90) q and Q are regarded as four dimensional vectors and matrices M*(q) and
M*(Q) are defined through M (z) given in (3.4)

M*(q) = Mp(q) AML(q)", M*(Q) = M, (Q)AML(Q)",

where
ap 0 0 O
B 0 aa 0 O
A= 0 0 a3 O
0 0 0 ay

But this is not enough to define a Hamiltonian system over H?, we need a symplectic
form wy2. Then, taking into account the identification H? ~ R8 ~ T*R*, any given
two elements Q;, Q, € H? may be considered both as elements in H? and 7*R*.
Thus, we can define wyz as follows

WH?2 (Qla @2) = w(@la @2) (4.92)

where w is the standard symplcetic form in T*R*. Therefore, the canonical equations
for the system defined by (H?, wy2, F,(q, Q)) are given by

q _ vQTC}234 4 VQ‘/;?G?
Q —_ _vqTal234 o qua56’

which in matrix notation reads as follows

q = 2M(q)AM(q)"Q + VoV,", (4.93)
Q=—-2M,(QAML(Q)"q — VgV’

The equation (4.93) represent a more compact expression that the ones given in
(4.13). Matrix expression may also be written in the following way

(&)= ("5 ) (&),
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where w, = (ajwy, aswe, agws, aswy), Idy is the identity matrix of dimension four
and A, A* are defined as in (4.13).

Note that restricting to the case a; = ag = 0, terms of the “potential” part vanish, thus
we obtain that our canonical equations are expressed as the quaternionic equations for
the free rigid body given in [Betsch and Siebert, 2009]

q = 2M,(q) AM,(q)"Q, (4.94)

Q=—-2M,(Q)AM(Q)q.

Then, restriction of system (H?, w2, F.(q, Q)) to T'S?, which is given by

4
TS} = {(q,Q) € H*/|lqll = p, > Qi =0}, (4.95)

1,j=1

leads us to the desired system. That is, (TSi, WH2|TS3 Fa(q,Q)) together with as =
ag = 0 1s the free rigid body system.

The rigid body in 7*50(3)

First we concentrate in searching the phase space. In this second formulation of the
rigid body in T*SO(3) and by means of the identification between H and R*, we
will consider the set S? both as a set in R*, the unit sphere, and as a set in H, the
unit quaternions, therefore we may also consider 7T'S? as a set in H? and R® ~ T*R*.
Moreover, by means of the equivalence between w and wyz2, given in (4.92), we can
identify the symplectic spaces (T'S?, wyrss) and (T'S?, wyzjrss).

Lemma 4.1. SO(3) is diffeomorphic to RP®.

Proof. We claim that every transformation from SO(3)) is a rotation about some
axis through some angle. Indeed, let A € SO(3). It suffices to show that A has a
unit eigenvalue, then A is a rotation about the respective eigenspace. Consider the
eigenproblem: det(A — Al3) = 0. This cubic equation has a real root that must be
+1. If itis 1 we are done. If it is -1 then A preserves the plane, perpendicular to the
eigendirection, and is a reflection in this plane, then the third eigenvalue of A equals
to 1. We may consider only rotations through the angles from O to 7, the direction
of the rotation gives the axis an orientation (by the left-hand rule). Encode such a
rotation by the vector whose direction is that of the axis and whose magnitude is the
angle of rotation. We obtain a ball of radius 7, but the points on its boundary should
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be identified with the antipodal point, the rotations through 7 and —7 coincide. The
result is the real projective space. 0

The rotation group is double covered by the unit quaternions, see Section 3.1.2, where
the explicit two to one correspondence between quaternions and the group of rota-
tions SO(3) is shown. Thus, using the fact that SO(3) is diffeomorphic to the real
projective three space RP?, or equivalently, to the space formed by identifying an-
tipodal points on S?, we move from T'S? to T*SO(3) by a Z, action. That is to say,
the following proposition holds

Proposition 4.13. Let us consider the Zs-action 1) given by
VYl xS — S (i,q) — V(i,q) = (—1)'q, i€ Zy. (4.96)

Then the manifold T*SO(3) is obtained as the orbit space of the cotangent lifted
action of ¥ on TS? ~ T*S3.

Proof. 1 is a free proper action, that sends the point q into -q and the reduce space is
given by S? /1) = RP?. Therefore, the reduced space obtained from 7'S* (keeping in
mind that 7'S® ~ T*S?), by the corresponding cotangent lifted action ® is 7*SO(3).

O

Proposition 4.14. A particular choice of the parameters of the family F, given by
a; = a; = ag = 0 and as, as, ay > 0 leads us to the Hamiltonian of the free rigid
body.

Proof. Let us set the parameters of the family as

Qs > az > Qy, as + as > GZ—ZLE}, a; =as = ag = 0, 4.97)
leads to
F(,0,¢, ,.,0,0,0) = 4day (%smw+ 9608@/})2, (4.98)
+ dag <%§OSHCOS¢— @sinw>2,

+ 4@4 \112.

which is the Hamiltonian of the free rigid body, see [Marsden and Ratiu, 1999] page
496, where the principal moments of inertia of the rigid body are given by I;, I and
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I3 are identified in the above formula with the inverse of the parameters S8as, 8as and

8a,, namely
1 1 1
L=— 1IL=— = —. 4.99
1 80,2 y 42 8@3 y 43 8&4 ( )
Note that (4.97) ensures the needed relation for the principal moments of inertia given
by
L< <3y, L+1>1Is.

Corollary 4.15. The free rigid body system with phase space T*SO(3) is obtained as
a constrained and reduced flow for a suitable choice of the parameters in the family
of Hamiltonian systems defined by (4.1).

Proof. By imposing the quadratic condition (q, Q) = 0 we obtain the constrained
subsystem (7' Si, wyTS3, F.(q,Q)), see Theorem 4.10. Therefore, this result follows
from Proposition 4.13, Proposition 4.14 and the fact that the Hamiltonians F, are
invariant under the action W. [

A treatment of this model in the context of a hyperkahler manifold deserve to be
explored in future works, see [Gaeta and Rodriguez, 2014], where quaternionic inte-
grable systems are investigated.

4.6.2 Recovering the harmonic oscillator

As has been announced some classical models are included among the flow of the
family F,. The harmonic oscillator is one of them and this model is easily identified
by choosing the parameters

L =09 = A3 = Ay = A5 = Qg = GF, (4.100)

under this assumptions, and taking into account relation (3.19), the Hamiltonian writ-
ten in Projective Andoyer variables becomes into

a 2

AM
Fo = ar (Wi +ws +wi +wi +wi +wi) = 2arwi = 5 <p2—|—P2+ 2

)2 4.101)

thus, after the change of the independent variable given by r = 2ar (p*>+ P>+ 4%2)3
and the symplectic transformation (p, u, P, M) — (p, 0, P,%), where u = 20 and
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2M = X, the equations of the system associated are

(4.102)

1 ¥2
with associated Hamiltonian 3 <p2 + P? + —2>
p
This system was tackled by Deprit in [Deprit, 1991], it corresponds to the harmonic
oscillator. Next we are going to check out our integration with the Hamiltonian pro-
vided in [Deprit, 1991].

The integration of system (4.102) is already done, since the variables are expressed in
terms of the omegas. Therefore, solving system 156 given in (4.5) under the assump-
tion (4.100), we can construct the solutions for (4.102) using the formulas (4.69).
Namely, the omegas are given by

wy = Acos(2r), ws= Asin(2r), ws = constant, (4.103)
where A = \/w? + w? = wi — 4M?. Thus, the solution of system (4.102) is given
by

A 2 )y
p(r) = Asin(2r) + ws, P(r) = Acos(2r) M(r)=2=(4.104)
p(r) 2
2
w(r) =20(r) = % arctan <2w—]\64 (tan (r) + A)) —2r,

after some algebraic and trigonometric manipulations, this solution may be expressed
in the more familiar way

(a® — b?) sin(2¢)

2p(e) ’
5
2

p*(e) = a’sin®(e) + b? cos?(e), P(e) = (4.105)

wu(r) = 2—;{6 arctan (;—]\(j[ (tan (1) + A)> —2r, M(r)=

where a® = (A + wg), b* = (A —we) and 2 = § + 2r.

That is to say, the solution describes an ellipse of semimajor axis ¢ and semiminor
axis b, see Deprit [Deprit, 1991], where the same expressions for p and P are ob-
tained. However, note that we provide explicit formulas for p(r).
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4.6.3 Geodesic flow on the sphere

There are several Hamiltonians that give the geodesic flow when restricted to the
cotangent bundle of the sphere. For example, one of them is obtained from the family

F, by mean of the values a; = a3 = a4 = 0 and —a; = —a5 = ag = 5 Namely, it
is obtained

Fula.Q) = 5 lall? QI ~ (g, Q). (4.106)

Hamiltonian (4.106) was used by Moser in [Moser, 1970, Moser and Zehnder, 2005]
to show how the Kepler system is included in the geodesic flow on the sphere up to
a regularization of the independent variable. Next we compare the solution obtained
from our system with the one given by Moser, which is given by

¢(3):( qo cos s + Qo sin s )

—qosins + QQy cos s

for initial conditions (¢(0), Q(0)) = (qo, Qo). On the other hand, using Projective
Andoyer variables, the expression of the Hamiltonian becomes very simple

’Hg(p,)\,u,u;P,A,M,N): 2M27

from the expression of the Hamiltonian above, we can see that p, \, v, P, A, M, N
are all integrals of the system and y is a linear function of the time

,M(?") = Mo + 2M27”,

the geometric interpretation of the Andoyer variables gives a precise description of
the situation, p is the module of the particle and v, p, A are angles, two of them give
the position of the fixed plane of motion and the other one describes how the particle
rotates around the origin of the named plane.

Therefore, the system in Andoyer variables is trivially integrated as kind of “polar
coordinates” with constant radius p and argument p. It is, the particle moves on

. . . T
circles with constant angular velocity and frequency equal to ek

The Andoyer expression of the solutions is readily related to the corresponding Carte-
sian expression by means of (4.56) and (4.57). Namely,

s = pu(T) = po + 2M*7,
g = p(a cosa,b cosf,bsinf, asina),
Qo =p (A cosa, B cos 3, B sin 3, A sina),
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where
a =cicy — 8152, b= 15+ 281,
A = C1Cy + S189, B = C1S2 — €981,

A+v A—vU

«

4.6.4 The Kepler system

The Kepler system is not obtained directly from our model. It is connected with two
of the systems included in the quartic family, that is, the geodesic flow and the har-
monic oscillator. The links arises from the regularization of the collision orbits. This
issue goes back to [Levi-Civita, 1920], [Moser, 1970] and [Ligon and Schaaf, 1976]
in one hand and the KS transformation [Kustaanheimo and Stiefel, 1965] on the other
hand. The regularization of the collision orbits through the method of Moser has
one disadvantage, the negative energy level must be fixed before the Kepler flow is
transformed into the geodesic flow by the stereographic projection. An alternative
giving a fully symplectic map between the negative energy part of the phase space
of the Kepler Hamiltonian into the punctured cotangent bundle of S™ was proposed
by Ligon and Schaaf in [Ligon and Schaaf, 1976]. A simplified treatment was given
by Cushman and Duistermaat in [Cushman and Duistermaat, 1997] and even more
by Heckman and de Laat in [Heckman and Laat, 2012]. Unfortunately, we did not
success in the application of the Ligon-Schaaf map to the treatment of the perturbed
case and we have used the Kustaanheimo-Stiefel transformation. Then, the usage of
the Ligon-Schaaf transformation under perturbations is left for future works.

In our model, initial conditions leading to collision orbits are restricted to be in the
manifold M = 0, see Section(4.5.2). The KS-transformation has the advantage that
there is no need to a special treatment for the collision orbits. Nevertheless, in the
approach given here, using the Projective Andoyer variables, the constraint of the
“bilinear relation” is no longer needed. Next, we give the explicit formulas defining
the Kustaanheimo-Stiefel transformation, a geometric interpretation of this map in
terms of quaternions given by Saha [Saha, 2009] is also provided.

The KS-connection between Kepler and the oscillator. A geometric insight

The Kustaanheimo-Stiefel transform goes from R? to R*, but we reinterpret real vec-
tors in terms of quaternions. More precisely, a point in R? is identified as pure imag-
inary quaternion

q = zi+yj + zk.
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The KS-transform of q is the quaternion Q = Q)1 + Q21 + ()3j + sk satisfying

q = QkQ. (4.107)

By quaternionic multiplication rules it is easy to verify that this equation has infinitely
many solutions given by

Q = (cos ¢, —siny k)Q’ (4.108)

where
_rityj+ Zk
NOY AR

Note that the expression (4.107) amounts to a rotation of angle w about a unit vector
n combined with scalar multiplication, that is

Q! Z=z+ /22 +y2 + 22 (4.109)

1 1
Q = [[Qll(cos jw + cos swm),  [nf| =1 (4.110)

Everything so far is already in the classic literature related to the KS-transform. The
new result in the paper of Saha [Saha, 2009] is that he provides a visualization of Q,
including its non-uniqueness.

Comparing (4.107) and Theorem 3.1, it is evident that Q is a rotator that takes the 2z
axis to q, see Fig 4.6.4. To visualize Q, let us rewrite q as

q = r(sin 6 cos ¢i + sin 0 sin ¢j + cos OK) (4.111)

where 7,0, ¢ are the usual polar coordinates. Rewriting Q' in the solution (4.108)
and simplifying, we have

1 1 1
Q' = ﬁ(sin§9c0s¢i+sin§9sin¢j+cos§9k) (4.112)

In other words, the zenith distance of Q” is halfway along the great circle from k to q.
From (4.110) we see the rotation angle w = 7. Now let us apply the transformation

(4.108) with ) = g to Q! . This gives

1 1 1
Q" = \/r (cos §9i + sin §Gsin¢j + sin §Hcos¢k), (4.113)

in this case, rendering Q’’ as the rotator given by (4.110), the implied rotation is by
6, about an axis perpendicular to both k and q. In general, we can write

Q =cos QSQI — sin ¢QH, (4.114)

105
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Figure 4.8: Q is a rotator that takes the z axis to q. The non unicity character of this rotator is
showed in the figure. Namely, Q is any point located in the blue maximal circunference.

which is to say, Q could be anywhere on the great circle joining Q” and Q”’.

Let us extend the above configuration space transformation to a canonical one in the
phase space. For this purpose we give the relation between the respective conjugate
momenta

P =p.id+pj+pk—P=F+PF i+ Fj+ Pk,
where the old and new conjugate momenta are related as follows
QkP
202

This transformation leads to the following well known result:

P=-2kQp, p= 4.115)

Theorem 4.16. The system defined by (4.1), provided a suitable set of parameters a;
and properly regularized, is related to the 3-D Kepler system.

Proof. Let the 3-D Kepler system given in Cartesian variables
gMs

. (4.116)
la

1 2
Hic = 5[l -
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Chapter 4. The Quartic Polynomial Model

Then, applying the KS-transformation we obtain a 4-D harmonic oscillator. The
correspondence (||ql], ||pll) — (/|Q]|, ||P||) maps T*R? into the manifold in 7*R*
given by the “bilinear relation” ¢q; Q4 — q1Q1 + ¢2Q3 — q3Q2 = 0.

L _ PP gM.
smllQ* QI
where h > 0, G is the gravitational constant and M, m are the masses of the primary

and secondary bodies respectively. After a change of independent variable according
to Poincar technique, H, = ¢(||Q||)(* + ) and g(||Q||) = [|Q||* we obtain

— _h, (4.117)

1
H = o IIPIF +AlQI° - GMo, 4.118)
m

by means of the rescaling Q; = 1/v/8mh Q), P; = v/8mh P, we finally obtain
H = w(|[P* +[|Q*) - G Mo, (4.119)

where w = /(h/8m). This Hamiltonian is related to the one given in (4.1) F, with
the parameters a; = - - - = ag = w. That is, the following equality holds

.Fa IWH2+QM®

Therefore, both Hamiltonians define the same flow up to the following independent
change of variable applied to the system associated to F,

t= L(IPIP + Qs

]

Kepler system, Geodesic flow and the Harmonic Oscillator connection through
the Projective Andoyer variables

In the preceding section we recalled the classical approach that shows how the 3-D
Kepler system is introduced in the 4-D oscillator together with the “’bilinear relation”.
Our approach is the opposite, we will show that the 3-D Kepler system is found by
constraining a possible realization of the quartic family, the 4-D harmonic oscillator,
to each lever of energy. A similar approach is presented in [Cushman and Bates, 1997],
the geodesic flow on R* is constrained to the 3-sphere, then after a regularization it is
connected to the Delaunay flow, which leads to the Kepler system through the Ligon-
Schaaf map, we also set a parallel construction to that one hinging in an alternative
proposal for the family (4.1).
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Theorem 4.17. In Projective Andoyer variables, the system defined by (4.1) and
a; = a # 0 fori = 1,...6, properly regularized, includes the Keplerian system for
any value of the integral N = q1 Q4 — q1Q1 + ¢2Q3 — q3Qa.

Proof. The harmonic oscillator is obtained from (4.1) after an independent variable
rescaling and by setting a; = a # 0 forz = 1,...6. That is

Fa(q,Q) = a(||q||* + [|QI1*)*. (4.120)

Then, let us consider the function g(q, Q) = 1/(8a(||q||* + |Q|*)||q||*) and the
change of independent variable given by ¢t = g(q, Q) s. As a result, the above Hamil-
tonian takes the form K,(q, Q) = g(q, Q)(F, — h) in the manifold IC, = 0, i.e.

_lQl> = vh/a 1
K.(q,Q) = SR (4.121)

At first saw, this Hamiltonian does not seem to be very familiar, but when expressed
in Projective Andoyer variables with F'(p) = ,/p, it becomes into the form

1 M? h
ICa(IOa)‘a,u?VrP?AanN):§(P2+?_;)7 (4.122)

in the manifold K, = —1/8, where h = \/h/(4a). This Hamiltonian corresponds
to the Kepler system in 3-D given in polar-nodal canonical variables extended to
four dimensions. Indeed, let us consider the following canonical transformation of
Mathieu type: Xdx + Ydy + Zdz + Ndv = Pdp + Ad\ + Mdu + Ndv, which is
not a canonical extension.

(p7)\7/’L7V7P7A7M7N> % (x7y7Z7V7X7Y7Z7N)7
given by

x = p(cos pcos A — sin usin Acos [),
y = p(cos psin A + sin pcos Acos I),

2z = psin psin [,

M
X = P(cos pcos A — sin pusin A cos I) + —(cos psin A + sin g cos Acos ),
p

M
Y = P(cos psin A + sin g cos Acos ) + — (sin pusin A + cos prcos Acos I),
p

M
Z =(P——)sinpusin[I.
P
(4.123)
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Chapter 4. The Quartic Polynomial Model

where cos [ = A/M Then, the Hamiltonian (4.122) in the variables (z,y, z,v, X, Y, Z, N)
takes the form of the Cartesian 3-D Keplerian system

1
Kalw,y, 0. X,Y, Z,N) = 5| X|* - T (4.124)

BN

where || X|| = (X,Y,2), ||z|]| = (x,y,2). Moreover, (v, N) are integrals that take
any value. ]
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Chapter 5

On The Roto-Orbital Problem.
Intermediaries

The application we are interested in is the roto-orbital dynamics of the satellite and
asteroid within the full two-body problem (F2BP) [ Vereshchagin et al., 2010], which
continues to be one of the most challenging problems of Astrodynamics, see for in-
stance [Scheeres, 2012]. In those kind of problems two types of dynamic are identi-
fied, i.e., the orbital and the rotational motions. Usually, both dynamics are analyzed
separately by identifying them with perturbed Kepler and free rigid body (FRB) sys-
tems respectively.

In our study we consider a particular case of the F2BP, which is the result of several
simplification due to physical assumptions. Nevertheless, these restrictions are not
sufficient enough and we have to deal with non-integrable systems. Therefore, the
analysis of such systems is performed with a perturbation theory scheme in mind,
where the Hamiltonian H, which defines the system, is split in two parts; the zero
order H, (integrable) plus a perturbation H;

H=Ho+ Hi.

These systems may be tackled in several different ways. On one hand we have the
numerical methods approach, on which we do not deepen in this work. On the
other hand, reduction by means of normalization may be implemented in Poisson
or symplectic formalisms. This method relies on two pillars: the existence of invari-
ants and the use of Lie-Deprit transformation [Deprit, 1969, Meyer et al., 2009], but
also the possible combination of both. The first technique is based on the existence
of invariants associated to the symmetries of the system, and is carried out using
Grobner bases, see [Egea, 2007]. The Lie-Deprit transformation needs the homolog-
ical equation to be solved in the context of constrained and non-constrained systems.
In [Crespo et al., 2009], we initiate the comparison between the reduction of a sys-
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tem having exact symmetries by means of Grobner bases and the parallel procedure
through Lie-Deprit transformations. In the perturbation theory scheme we focus on
the choice of the zero order H,. Nevertheless, the quartic family set a framework in
which the classification of the possible normal forms should be investigated, this is
in fact one of our current research lines. We point out that several works has been
made in this sense and we consider a valuable input to extend to the quartic four
dimensional case the construction and classification of normal forms of quadratic
polynomial, [Palacian and Yanguas, 2000a, Palacidn and Yanguas, 2000b].

Traditionally, the role of the zero order, in which the perturbation theory hinges,
is embodied by the free rigid body and the Kepler system. Within the context of
Poincaré [Poincaré, 1899] and the later refinement given by Arnold in KAM theory,
see [Arnold et al., 1993] page 185, a perturbation theory should be developed upon an
integrable and non-degenerate zero order. In our study, instead of the classical zero
orders, which are degenerated (superintegrable [Fasso, 2005]), we also study another
candidates, the intermediaries (see [Deprit, 1981] and the references therein). The
idea of the intermediary is to define a simplified integrable system of the problem at
stake, by adding some terms coming from the perturbation and use it as the new zero
order.

Although we do not have any specific problem in mind, we will study two restricted
models in the subsequent applications, Chapter 6 and Chapter 7. More specifically,
we suggest that these intermediaries should be tested as a zero order in the cases
when we are modeling a satellite in a low or a medium orbit around the Earth (or any
other principal body).

5.1 Roto-Orbital Problem as a Double Quartic Real-
ization

In this Part we study the dynamics associated to a system made of two rigid bodies B;
and By with masses m; and msy, which are under mutual gravitational attraction and
the effects of their corresponding rotational motions. Moreover, this problem leads
to a high dimensional and non-integrable dynamical system, which energy may be
expressed in the following fashion

H="To+Tr+P, (5.1)

where we denote by T, Tr the orbital and rotational kinetic energies and P is the
perturbing potential containing the coupling between the orbital and rotational mo-
tions. In our study we always assume that one of the two bodies, named secondary,
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has a negligible mass when compared with the primary. In this case, the expression
of the full perturbing potential P as well as the way in which it is split lies in the
particular problem to be studied. In the applications, we focus in systems with the
following physical assumptions:

1. We assume that the dimensions of the rigid body are small when compared with
the distance between the two bodies and that the primary object generating the
gravitational field is considered to be a sphere, which allow us to truncate the
perturbing potential to the MacCullagh’s term [MacCullagh, 1840].

2. The non-sphericity of the secondary rigid body may or not affect its orbital
motion about the distant body. Therefore, it is assumed to be Keplerian for the
satellite case and rosette-like orbits for the case of the asteroid.

3. The orbital plane is chosen as the inertial reference frame.

Therefore, we are left with a system in which the main body is assumed to be at
rest and generates a central force field. That is to say, by means of the physical
assumptions we obtain a new system consisting in a rotating rigid body, which orbits
in a central force field. As a result, the perturbing potential P, may be rewritten as
follows

gMs

r

P=— +V, (5.2)

where G = 6.67384 x 107" m?/s? kg is the universal gravitational constant, r de-

notes the distant between the center of masss of the bodies and M. = m; + ms and

V' is given by

g Mg
2r3

where {A, B,C} are the three principal moments of inertia with A < B < C,

and

V=_

(A+ B+C—3D), (5.3)

D=Avyi+By+Cny (5.4)

is the moment of inertia of the rigid body with respect to an axis in the direction of
the line joining its center of mass with the perturber, of direction cosines 1, 2, and
~s. Therefore, (5.1) is given by

H=To+Tr+P

gMg

—To+Th— 22 +V (5.5)

=Hxg +Hr+ V.

Where we have that Hyx = Tp — GM/r is the Hamiltonian of Kepler system,
‘Hr = Tg is the FRB system and V' is given in (5.3).
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5.1.1 Phase space and Hamiltonian formulation

A rigid body is a system of point masses, constrained by holonomic relations ex-
pressed by the fact that the distance between points is constant. The most general
movement of a rigid body can be described as the composition of the translation of
the center of mass of the body and the rotation about an axis through the named
center of mass. This motion decomposition is described by mean of three reference
systems. Namely, the material, spatial and body coordinates, which correspond with
three possible observers. When we make measurements from the origin of an inertial
reference system and we see the body translating and rotating, we obtain material
coordinates. If we translate with the center of mass of the body we have spatial coor-
dinates and finally, if we set our reference system in such a way that the orthonormal
basis vectors point in the same direction than the principal directions of inertia, we
are led to the body or convected coordinates.

The evolution with time ¢ of any point in the rigid body may be the result of a trans-
lation of vector v(t) and a rotation R(t). That is, if z,,, = (21, 2, x3) represents the
material coordinates and X}, = (X7, X5, X3) the body or convected coordinates, we
have that

- ()5 1) (F)-(). oo

where M (t) € SE(3). As a result, the study of the motion of a rigid body is equiv-
alent to the study of M (¢) and consequently the configuration space and the phase
space are given by SE(3) and T*SFE(3) respectively. The special Euclidean group
SE(3), as a set, is the Cartesian product of R* x SO(3), which acts by rotations and
translations on R3, z — Rx + v, where R € SO(3) and v € R3. This action may
be represented by the multiplication from the left of 4 x 4 block matrices given in
(5.6).

Now we give coordinates to the phase space 7S E(3), we use polar-nodal variables
referred to the material frame for the orbital part, see Appendix A, and Andoyer vari-
ables referred to the spatial frame for the rotational part. In Fig 5.1.1 we also provide
a geometric view of the relation between both sets of variables. Thus, generically we
obtain the expression of the Hamiltonian H = Hx + Hg + V as follows

1 =2 M
M —(RM—)—Q =,

" om r? r
1 (sin’v  cos?v 1 5.7
_ MQ_NZ _NQ

Hir 2<A+ B)( TR

V=V
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Figure 5.1: In this figure we collect the geometrical interpretation of the angles involved in the
rotational and orbital frames, when polar-nodal and Andoyer variables are used for the orbital and
rotational motions respectively.

We recall that the Kepler system is regularized, using the KS-transformation (KS) or
the Ligon-Schaaf map (LS), by an increase in the involved dimension. As such, the
usual itinerary start with the Kepler system with coordinates in 7*R3. On the one
hand and by means of the KS, this system is related to the 4-D isotropic oscillator, to-
gether with the restriction given by the bilinear relation. On the other hand, using the
LS map, the Kepler system is related to the geodesic flow in the sphere S?. Observe
that, in both cases, we obtain the regularization as the restriction of a flow in T*R*
to a 3-D submanifold, for that reason our approach in this Chapter is to consider the
Kepler system and the free rigid body as subsystems of a flow in T*R*. Moreover,
we study the roto-orbital problem as a perturbed double realization of the polynomial
family given in (4.1).

5.1.2 Double Projective Andoyer chart

The variables that we have choose in the previous section has some advantages in
our system representation, since they express the Hamiltonian system associated as
a one degree of freedom systems. Observe that the variables used in both systems
has a different geometric meaning. Nevertheless, in the previous Chapter we gen-
eralized the Andoyer angles to the Projective Andoyer variables by adding a radius,
as well as the polar-nodal variables by adding an angle. Let us also recall that we
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provided a polynomial family of integrable systems and we identified the Kepler and
the FRB systems as constrained flows for particular choices among the polynomial
family. These facts set a common framework to study the rotational and orbital dy-
namics. Therefore, we propose to study the roto-orbital problem in T*RR®, together
with suitable constrains, instead of 7*SF(3), using the following double Projective
Andoyer chart

(G,A) = (pKv)\KhuKaVKvaa)\RMU/R>I/R7PK7AK7MK7NK7PR7AR7MR>NR>7

where (a,A) = (ak,ar, Ax, Ar). The explicit relation between the polar-nodal-
Andoyer chart in 7*SE(3) and the double Projective Andoyer chart in 7*R® read as
follows

PK =T, )\K:w, ,uK:ﬁ, VK PK:R, AK:Q7 MK:E, NK
PR, AR =X, WR=W, VR=1V, Pp, Ar=A, Mr=M, Np=N.
(5.8)
Finally, in the double Projective Andoyer chart we have that the Hamiltonian (5.5)
becomes

1 M? G
H a 7*7A =) — 3 P2+_K>__7
(o, - Ax. 2 ( Bk PK
1 (sin’vgp  cos’vp 1 (5.9)
_ LAp) == M?2 — N3 —N?
%R( y ARy — R) 9 ( A B ) ( R R) + 20 R

V= V(CLK, aR, AK7 AR)

The canonical differential system associated to the Hamiltonian (5.9) in the double
Projective Andoyer chart is determined, up to the potential V', by the following dif-
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ferential equations in T*R®

' =P +8_V 0 —8_‘/
PK K 8PK7 PR aPR7
. M? oV : oV
Pp="XK_— Pr=—,
STk Opx BT opr
. oV . oV
S =2 Ap= oL
K aAK’ R aARv
. oV . oV
Ag=— 2% A
K aAK7 R a)\RJ
5.10
. Mg oV Sy SiIl2VR+COSQVR N oV (>.10)
[22:¢ p%( 8MK7 HUR = A B aMRv
. oV . oV
My = — Mp = ——
K a/LK’ R 8/1}27
oV 1 sin’vgp  cos?ug oV
KON VR R(C A B >+8NR’
. oV  (A=B) .. ... oV
N =— 2V Np= L5 02— N2y gin2up — o
K=" oug v =g Mr = Ne)sin2ve = 5o

Remark 5.1. Observe that Hyx and Hpr are both considered as a realization of
the polynomial family given in (4.1). Namely, let the Hamiltonians Fr(qp, Qr)
and Fi(qx, Q) be the polynomial family realizations giving the FRB, see Corol-
lary 4.15, and the 4-D harmonic oscillator, which is connected to the Kepler system
through Theorem 4.17. Therefore, the system given by Hy + Hr lives in a submani-
fold in T*R8 determined by the constraints

NK = O, PR =0.

PR = P, (5.11)

Duplication of the Projective Andoyer chart allows us to take advance of the M-
reduction performed in 7*R* by means of the change of variables generated by the
Poisson map F,, see 4.62. We duplicate here this map, that is, we consider the map
FEE given by

FEE T RS — (S2, x S2, x CH)F x ($2, x $%, x CH)E
(5.12)

R R

K K K R
(aKa ar, A, AR) ~ (G123, Wasg, Wise, Glags Wasss W156)
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where

F CLK7AK> FM(G/K7AK) FM(aKuAK))7
W789 F]%/[ CLR>AR7> FM(a’RaARa) FM<aR7AR)>7

(Fa(
(Fa(
wysy = (Fiflax, Ak), Farlax, Ak), Far(ax, Ak)),
(Far(
(£
(£ (

W789

9 A (5.13)
FM aRaAR) M(aRaAR) FM(CLR,AR)),

Fy(ak, Ak), Fy(ak, Ak ), Fy(ak, Ak)),
Fi(ag, AR), Fy(ar, ARr), FS,(ar, AR)),

W234

u1156

01156

The double map F{¥ is also Poisson and performs, through the change of variables
it defines, a My Mp-reduction in T*R8. The reduced phase space is the product of
the rotational and orbital M -reduced phase spaces.

The MacCullagh Term in Projective Andoyer coordinates

At this point, we complete this section by looking for the expression of the potential
V in (5.5), which is given by Mac Cullagh term. It will allows us to give the ex-
plicit expressions of the differential system of equations (5.10), but also is required
to generate the different ways in which V' is split. Details are not needed for our pur-
poses, the reader interested may found further explanation in [Cid and Ferrer, 1997],
Chapter 7.

By replacing Eq. (5.4) in Eq. (5.3) and taking into account that the direction cosines
satisfies the quadratic relation 77 + 72 + 73 = 1, we get

gMg

V=—
2p%

(C-B)1-33) - (B-A1-3D]. (14

The expression of the direction cosines is obtained from the relation matching the
spatial frame and the body frame. Following [Vallejo, 1995, Kinoshita, 1972] we
have that

90! 1
Y2 | =RpoRkg | 0 |, (5.15)
V3 0

where

Rp = Rs(vr) Ra(J) Rs(pur) Bi(I) Rs(Ar), Rk = Rs(Ak) Ri(€) Rs(px)
(5.16)
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and
cosl = ﬁ cosJ = Nr COS € = A—K
Mg’ Mg’ Mg
If the orbital plane is chosen as the inertial reference frame, then the orbital reference
frame is related to the body frame by the following composition of rotations:

(5.17)

M 1
V3 0

where the new variable introduced ¢ is given by

¢ = Ap — K. (5.19)

Later on we will come back to ¢, this variable plays an important role when we deal
with the circular intermediaries, since the assumption of a circular orbit introduces
the time in the Hamiltonian through ¢.

Then, by replacing v, and 3 as given by Eq. (5.18) in the disturbing potential (5.14),
after some calculations we get that,

GMp 3

V=55 |20-B-AVi+ (B- AW, (5.20)

Next, using Andoyer variables, we explicitly give the expression of V' for the case
in which the orbital plane is chosen as the inertial reference frame. This potential is
made of Vj, the “axisymmetric part”, which is independent of v, is given by

‘/1 = (4 — 653) (2 — 35% + 38% 02,070)
—128JCJS] [(1 — C]) 0_271,0 -+ 20[ 00’1,0 — (1 + C[) 02’1,0] (521)
+382J [(1 — 01)2 0_2’2,0 + 28% 00’270 + (1 + 61)2 02’270] ,

and the “triaxiality part” V5, which carries the vz contribution to the perturbation,
reads as follows

Vo = 65955 (Cop 2+ Cap2) —4(1 —3c)s% Cooa
+(14¢s)?[(1 —c1)*C 992+ 257 Coaa+ (14 ¢1)* Caa]
+(1—cy)?[(1 —¢1)*Cgp o+ 257 Coo—a+ (14 ¢1)? Cop o]
+dsrsy(L4+c¢5)[(1 =) Cogro+2c1 Cora— (1 +¢r) Con o)

_4S[SJ (1 — CJ) [(1 — C]) 0_271,_2 + 2C] CO’L_Q - (1 + C[) 0271,_2] .
(5.22)
Note that C; ; , = cos(i¢ + jpugr + kvg) and the notation has been abbreviated by
writing c; = cos [, s; =sinl, c; = cosJ, and s; = sin J.
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5.2 Intermediaries Approach. Gravity-Gradient Type

Yet, the difficulties associated with the equations (5.10) lead to perturbation theories,
since it defines a non integrable system. Therefore, the Hamiltonian H is split in two
part as follows

H:H0+H1, (523)

where H, denotes the zero order and H; is considered as the perturbation. In this
light, the classical way to proceed is by choosing the zero order being the sum of the
Kepler and FRB systems

Hy=Hg + Hg.

Nevertheless, following Poincaré [Poincaré, 1899] other choices for the zero order
are possible. In other words, the Hamiltonian may be split to develop a perturbation
theory in such a way that the zero order H, is integrable

Arnold, in the context of KAM theory [Arnold et al., 1993], added the condition of
non-degenerancy to the zero order. Here we change the zero order by making V' =
Vb + V1 and adding V; to the classic zero order

Ho = Hi + Hr + Vo. (5.25)

In our applications we check alternative choices for H,. The suitability of them de-
pends on the scope of the study, ranging from autonomous navigation algorithms and
control strategies to long-term dynamics surveys. The requirements for those per-
turbative schemes may be quite different as well, being critical the choice made for
the zero order model on which the rest of the perturbation process hinges. However,
the searching for a better zero order has given place to the concept of intermedi-
ary, that we define later on, it is a classic in both astronomy and astrodynamics (see
[Deprit, 1981]).

The basic idea of the intermediaries consists in defining a simplified integrable and
non degenerate system of the problem at stake, where the work of Hill on the Moon
motion [Wilson, 2010] is, perhaps, the best known example. In our applications we
focus on the roto-orbital dynamics of a triaxial rigid body under gravity-gradient
torque. The simplified system includes part of the full potential where the roto-orbital
coupling is present and the new zero order is given by (5.25) satisfying that the sys-
tem defined by H, is integrable. Thus, we obtain some advantages versus the use of
the Kepler and free rigid body models. On the one hand, it allows to identify special
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solutions that could become nominal trajectories in designed missions whereas it alle-
viates usual heavy computations when the perturbation approach is built. On the other
hand, it can be used to build a perturbation theory, in the sense that the new unper-
turbed part avoids the degenerate character inherent to the classical superintegrable
models (Kepler or free rigid body systems in astrodynamics). In other words, a first
order perturbed solution based on the intermediaries might be accurate enough for
tracking purposes. In astrodynamics, when dealing with orbital dynamics applied to
artificial satellites, some lines of research on intermediaries arose during the seventies
by Garfinkel, Aksnes, Cid, Sterne, etc. (see Deprit’s review [Deprit, 1981] for further
details), whose benefits are now seen in areas such as the relative motion in formation
flights [Lara and Gurfil, 2012]. Nevertheless, less work has been done when dealing
with attitude dynamics, where the proposal of intermediaries is more recent (see Ar-
ribas [Arribas, 1989] and Ferrandiz and Sansaturio[Ferrandiz and Sansaturio, 1989])
and, to our knowledge, no systematic study has been done on them.

5.2.1 A New Set of Intermediaries

By observation of the MacCullagh potential Ferrer and Molero identify, when An-
doyer variables are used, five new intermediaries in [Ferrer and Molero, 2014b]. For
the benefit of the reader, we have listed all of them here keeping the original notation,
and we have classified them in three categories. Indeed, while the Hamiltonian 7,
and H, , relate to the generic triaxial case, the other pair H, and #,, fit the almost
symmetric bodies, and for both pairs we assume the satellite to be in a circular orbit.
Finally, with respect to the first intermediary listed, H,, it is the only integrable case
giving orbits different from the circular one.

o Elliptic type intermediary: 7{,. This intermediary seems to be the only integrable
case giving a good approximation when the satellite moves in an elliptic orbit, it is
defined by the following Hamiltonian function

H,=Hxg +Hr+ Wy

where the perturbing potential 1/ is a function of the radial distance and two of the
rotational momenta. More precisely we have

GMo A% Ak
%;w:—(B+A—2C)<1—3— 1-3-5% . (5.26)
Api M, M

For the particular case in which the orbital plane is chosen as the inertial reference
frame we have the following simplified version

GM,
4pi

A2
(B+ A-20) (1 — 3@) : (5.27)

Vo=V, =
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For details on the dynamics of this system see Chapter 7.

In many applications we may assume the orbit to be circular, hence the radius is
constant 7 = a. As a consequence we simplify the previous expressions introducing
n, the mean orbital motion, and we write

GM, = n*a. (5.28)

Then we will drop from the Hamiltonian the Keplerian term and we will not consider
the equations of the system related to the orbital part.

e Circular generic triaxial intermediaries: 7, and H, 4. Assuming a circular
orbit for the satellite and the orbital plane chosen as the inertial reference frame, we
consider the second and third intermediaries defined by the following Hamiltonian
functions

H, = Hr + Vi, =, vr, ®, Mg, Ng), (5.29)

where the potential V, is a function of the variable v and three rotational momenta.
From now on, and also in the following intermediaries defined, we drop the subindex
r since there is no possibility of confusion and for the sake of a clearer notation.

n2

Vo=—1; [(2C — B — A)(2 — 3s%)(2 — 3s7) — 3(B — A)(1 — 3¢})s5 cos 2145.30)
and

HV:¢:HR+VV,¢<¢7_7V7®7M7N) (531)

where the potential V, 4 is now a function of the variables v and ¢ together with the
three rotational momenta. We will see below in Section 5.3.1 that ® = A. More
precisely

n2

Ve = Y {(20 — B — A)[(2 — 357 + 357 cos 2¢) — 357] — g(B — A)s? cos 2v
(5.32)

Note that, with respect to V,,, the perturbation V), , does not include the secular term
18(2C — B — A)s*s?% coming from the axisymmetric part of the potential, which is
one of the most important differences between these two intermediaries.

In [Ferrer et al., 2014], some preliminary numerical comparisons with the full prob-
lem shown that V,, 4 behaves worse than V,,. Then, we devote Chapter 6 to study
V..

On the other hand, considering quasi-symmetric bodies, as an alternative to the classi-
cal expression of the rotational kinetic energy, since the time of Andoyer the function
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‘H r used to be rearranged as follows

—l l i 2 ar2 i 2_1 l_i 2 A2
HR_4<A+B)<M N +55N 4<A B)(M N?) cos 2v, (5.33)

including the last term as part of the perturbation.

With this in mind, we may consider again a reordering of the gravity-gradient pertur-
bation (5.20) leading to two intermediaries for quasi-symmetric bodies:

¢ Quasi-symmetric intermediaries: ., and H . In this case we also assume a cir-
cular orbit for the satellite and the orbital plane chosen as the inertial reference frame,
then the two last intermediaries are the systems defined by the following Hamiltonian
functions

1/1 1 1
o = 1(G+5) 00N+ o (534)
2
—%(20 — B— A)[(4 — 652) (2 — 352 + 35 cos 26)].
1/1 1 1
"o = (Z + E) (M? = N*) 4 55N (5.35)
2
_%(20 — B — A)[(2 - 35%)(2 — 353) — 12s5¢c551¢r cOS ju + 35257 cos 2.

From the numerical and analytical study worked out in [Ferrer et al., 2014], that com-
pares the above Hamiltonians with the full gravity-gradient torque, we conclude that
they enjoy some benefits: (i) the dynamics of the new models is undoubtedly closer
to that given by the full problem. (ii) All models allow to study the coupling be-
tween the orbital mean motion and the rotational variables. (iii) All the proposed
triaxial models are built without involving p-terms, hence the modulus of the angular
momentum vector is still an integral, which leads to a S%, x S2, reduced space. (iv)
Despite that the triaxial models maintain the magnitude of the angular momentum, its
characteristic vector and plane are generically not fixed in the space rotating frame,
hence we are breaking the degeneracy of the torque free motion and therefore taking
a more realistic model to address perturbation strategies.

Note that in [Ferrer et al., 2014] those intermediaries are labeled as Intermediary 1,
Intermediary 2, Intermediary 3, Intermediary 4 and Intermediary 5 corresponding
with the same order given here.
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5.3 Methodology

In this section we gather, from a theoretical point of view, some of the common
techniques applied to the study of the intermediaries in the following chapters.

5.3.1 Transformations in the extended phase space

The extended phase space is commonly used when we have a non autonomous Hamil-
tonian system. The new phase space increases dimension by two and lead to an au-
tonomous Hamiltonian, see [Lanczos, 1970]. In this section we develop a modified
construction to handle the non autonomous issue, but also the Poincaré time regular-
izations.

Consider a Hamiltonian system (M, w, H(q, p)), where M is a 2n-dimensional mani-
fold and ¢ = (q¢1, . - ., ¢, ). Usually, the extended phase space is associated to the case
in which H is a non autonomous Hamiltonian, but we do not impose any assump-
tion on the system at stake. Following [Lanczos, 1970], the extended phase space is
obtained by letting the time ¢ become one of the mechanical variables. Instead of
considering the position ¢; coordinates, we consider the position coordinates and the
time ¢ as variables given as functions of some unspecified parameter 7. Hence, we
obtain a new Hamiltonian system (M’ ', K(Q, P)), where M’ = M x R?,

Q= (0 qus1) = (¢;t), P =(p,pnt1) = (p,—H),

and w' = w+ (dQ,+1 NdP, ). For the special choice of the new Hamiltonian
]C:f(q17"'7QTL7p17""pTL)(Pn+1_’_7{)7 (536)

where f(CIh <5 Gny Py - - 7pn> = f(Qla ce 7Qn7pl7 ) Pn) = f(Q7p) is a StriCtly
positive and continuously differentiable function in the domain of H. If the original

system was autonomous, we have not obtain any gain. But if it was not, the new
system is now autonomous. Next we show the relation between the old system and
the extended one.

The canonical equations associated to the new autonomous system are given by

. oH df(q,
G = SR+ (P + )T
(5.37)
S O0H df(q,p)
P, = —@f(Q>P) — (Py1 + H)TQ;C’
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fork=1,...,n,and

Qni1 = fa,p),
: OH (5.38)
Pn+1 _aQn-i-lf((Lp),

the next to last equation implies that dt = f(q, p) dr, for the particular case in which
f(q,p) =171 =t —toand the last one gives the law according to which the negative
of the total energy, that is F,,;1, changes with the time. This equation is now included
in the parametric set of equations as an independent equation, since P, is one of
the independent variables.

Poincaré time transformation

A remarkable result is obtained when we restrict to the manifold I = 0 and the
Hamiltonian H is autonomous. In this case system (5.43) becomes

- oK OH
(5.39)
. oK OH
P = a3~ - — ) an
fork=1,...,n,and
a = flgp)dr,
) OH. , (5.40)
Pn - ) )
+1 aQan (¢:p)

which corresponds to the well known Poincaré time transformation of a Hamilto-
nian system. That is, a regularization in the independent variable ¢ given by dt =
f(q, p) dr, that transform the Hamiltonian defining the system H — f(q, p)H.

Avoiding the time in the circular intermediaries

Due to the consideration of a circular orbit in the triaxial and quasi-symmetric in-
termediaries given in Section 5.2.1 and taking into account the system of canonical
differential equations (5.10), the polar coordinate of the orbital motion is given by
pr = lio + nt, where n = Mg/ p%{. Thus, px introduces the time in the Hamilto-
nian function through ¢, see (5.19), and the system is not autonomous any more, since
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the Hamiltonian is expressed in the variables H(pg, Ar, (g, Vr, Pr, Ar, Mg, Ng;t).
Let us consider the following identification in the above generalized construction of
the extended phase space

Qr=p, Q=X Qz=p Qi=v, @Q5=t,

(5.41)
Pl:P, Pz:A, PSZM, P4:N’ P5:T:_H7

again we have drop the subindex ; and let the function given in (5.36) constant
f(q,p) = 1. Thus, the Hamiltonian given in (5.36) becomes

K(Q17Q27Q37Q47Q5aP17P2ap3ap4p5):K(py)\v,uay7t7P7A7M7N7T>:T—i_%a

then, K is autonomous and the associated system (5.42) expressed in the variables
(5.41) is given by

'_a_fH )\_8_7-[ | — _8H U= 3_7-[ i =1
P=ap T on T o - N’ o
: oH oH : oH - oH : OH
P=—gp A= M=%, Y=o, T

(5.42)
Let us consider the following linear symplectic change of variables in the extended
phase space

o=\N—nt

V=t

b= A (5.43)
U=nA+T,

then,
K(p, ¢, ¢, p,v, P,®, ¥, M,N) =¥ — n® + H(p, ¢, -, p, v, P, ®, _, M, N),
which gives place to a separable system
b=t W=, (5.44)
and the remaining variables are given by the new zero order Hamiltonian

K(p,é,p,v, P, ® M,N) = —n® + H. (5.45)

Some authors avoid the time by moving to a rotating frame at the same rotation rate
as the orbital motion see [San-Juan J.F., 2012, Ferrer et al., 2014], the new term —n®
is named as the Coriolis term.
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5.3.2 Poisson Reduction of the Intermediaries

All the proposed triaxial models are built without involving p-terms, hence the mod-
ulus of the angular momentum vector M is still an integral, which leads to a S3, x
S3, x C? reduced space, where S3, is the sphere with radius M and C? is the upper
sheet of the hyperboloid defined by the Casimir C5 = w2 — w? — w? = M?, see
Section 4.3. Further on, we focus in the intermediaries of the elliptic and triaxial

types.

In this section we suggest a generic treatment for Hamiltonian systems having the
M-symmetry. Let (T*R*, w, H) be a Hamiltonian dynamical system, where w is the
standard symplectic form and the Hamiltonian function will usually be expressed in
Projective Andoyer variables (p, A, ui, v, P, A, M, N'). In addition, let us assume that
‘H is a M -invariant Hamiltonian. Thus, the variable ;. is not in the Projective Andoyer
expression of the Hamiltonian, that is, H = H(p, A, _, v, P, A, M, N), and the system
may be reduced using the M -invariance of the Hamiltonian to the six dimensional
space given by S3, x §2, x C**.

The canonical equations associated with H(p, A, _, v, P, A, M, N) are given by

O _om o ,_ o
P=ap ) VE YT ON
: oH oH : oH - oH (>.46)
P=—%p "= M=759,70 V="%

This system can be reduced by fixing M. The reconstruction depends on the follow-

ing quadrature

B " OH
o OM

to the 3-DOF Hamiltonian dynamical system (T*R3, w, H ), where we also use w to

denote the standard symplectic form and the Hamiltonian depends on the six variables
(p, \,v, P, A, N) and a parameter M, thatis H,; = H(p, \, ,v, P, A, N; M).

1(t) ds,

Under certain circumstances, one may need to avoid Andoyer variables. For instance,
a high complexity of the canonical system expressed in these variables or the well
known fact that Andoyer variables are not defined for the particular case in which
the invariant angular momentum is parallel to the s3-axis (the third axis of the spatial
frame) or parallel to bs-axis (the third axis of the body frame). In other words, those
variables are not defined for / = 0, ] = 7, J = 0 and J = 7 because the node
lines vanish. Therefore, we propose now a new set of Poisson variables rather than
symplectic

(p, )\, v, P,A,N) — (Gl,GQ,Gg,Ml,MQ,Mg,Wl,WQ,W3),
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we explore this possibility in the following chapters. Henceforth, we have found
convenient for the sake of more compact formulas, the following rescaling in the
Poisson variables of the reduced space

1 1 1
M, = - My = —— My = —
1 2“2, 2 2003, 3 2w4,
1 1 1
G = §w7, Gy = 5 w8, G = §W9 (5.47)
1 1 1
W1=§W1, W2:§w5, W3—§W6

This change is also made in order to be in consonance with the related literature,
where it is common to use the notation M = (M, My, M3) and G = (G1, G2, G3) to
designate the angular momentum vector referred to the body and the spatial frames
respectively, see for instance [Gurfil et al., 2007]. The new expression of the Poisson
matrix in these variables is given by

0 Gy -Gy O 0 0 0 0 0

—-G; 0 G 0 0 0 0 0 0

G, —-G; 0 0 0 0 0 0 0
0 0 0 0 M; —My, 0O 0 0

P = 0 0 0 —M; 0 M, 0 0 0 (5.48)

0 0 0 My, —-M, 0 0 0 0
0 0 0 0 0 0 0 W5 =W,
0 0 0 0 0 0 Ws; 0 Wi
0 0 0 0 0 0o W, =W, 0

and Casimirs

Ci=Gi+G5+ G35, Co=M+M;+M;, Cs5=W:-W;—W.
(5.49)

The Poisson map F); given in (4.63) connects the symplectic (p, A, v, P, A, N) and
Poisson variables (G4, Gy, Gz, M1, My, M3, W1, Wy, W3). Ttis expressed in the rescaled
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variables as follows

Fi, = VM2 —A2sin)\, F =N,

B = VI —Ncos,  Fl = L)

F'(p)’
p? AM?
Fy = A, Fy = F*(p) — - : (5.50)
u u =0 = Fagy ~ )
p? AM?

Fiy=VM?— N2sinv, Fy,=F(p)+ 7)) + 7 ol

Fy, = vVM? — N2cosv,

Let us consider the change of variables given by Fj;. The system of canonical dif-
ferential equations generated by H is expressed in the new variables by taking into
account the Poisson structure matrix given in (5.48), that is

<G17G27G37M17M27M37W17W27W3) = PV(G,M,W)Ha

where (G, M, W) = (Gl, GQ, G3, Ml, Mg, Mg, Wl, WQ, Wg) This system of differ-
ential equations is endowed with the integrals C', C5 and C'5 defined in (5.49).

Remark 5.2. Note that for the circular intermediaries the Hamiltonian time depen-
dency is avoided by the canonical transformation in the extended phase space given
in Section 5.3.1. Thus, the variables (\, \) must be replaced by the pair (¢, ®) in all
the formulas concerning these circular intermediaries.

Remark 5.3. Particular cases of interest, are when F(p) = p and F(p) = \/p. More
specifically we obtain

Fy, =VM? — AN2sin\, Fj;=+vVM?— N2sinv, FJ, =pP,

4M>
FY =+vVM?—Acos\, Fy;=vVM?2— N2cosv, Fy =p*—P?— —,
p
4M>
FJi\Z:A’ F]?/[:N’ F]?4:p2+P2+ 0?2
(5.51)
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for F(p) = pand

P
Fi, =vVM? — A2sin\, Fj; =+vVM?— N2sinv, F}, P

27
2 5 8 o AM?
Fiy=VvM?—Acos), Fy,=vVM?—N2?cosv, Fy =p—4Pp— ,
2
Fy, = A, FY, =N, FY, =p+4P%p+ ,
(5.52)
for F(p) = \/p.
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Chapter 6

A Circular Intermediary

In this application model we assume the secondary body moving in a circular orbit.
Although it is a very strong assumption, we found that many artificial satellites have
quasi-circular orbits. That is, we can always assume that the orbit is circular when the
satellite is in a low orbit. In that case, real examples have shown that the gravitational
effect is the most important one to take into account. Precisely, in Fig. 6 we can see
the Envisat, an artificial satellite located in a quasi-circular orbit at a height of 640
km above the earth. In this example, given the ordered list of perturbation effects, the
gravity gradient perturbation is in the first position, with a magnitude around 10~* vs
10~° of the second perturbation.

Figure 6.1: Envisat, a satellite at a low orbit out of control. Further details in [Virgili et al., 2014].

In practical terms, for the situation described above, the very low eccentricity of
the orbit allows to use models with the assumption of a circular orbit. This is the
very same context in which the circular intermediaries should be investigated as an
alternative zero order for the perturbation theories. However, prior to the study of
perturbation, the candidate to be the new zero order has to be analyzed in detail. As
such, this chapter is devoted to that purpose.
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In particular, we further explain the previous terminology: Low Earth Orbit (LEO.
180 — 2000 km): Most scientific satellites and many weather satellites are in a low
Earth orbit. Satellites in this category have near-circular orbits with eccentricity val-
ues e ~ (0.1. Medium Earth Orbit (MEO. 2000 — 35.780 km): There are two notable
types of MEO: the semi-synchronous orbit is a near-circular orbit 26.560 kilome-
ters from the center of the Earth, and the Molniya orbit, which is highly eccentric,
e € (0.5,0.7) and it was invented by the Russians, works well for observing high
latitudes. Since a MEO is higher than a LEO, the satellite has a larger communica-
tion foot print on the Earth’s surface so fewer satellites are needed to cover the whole
Earth. GPS satellites use a MEO semi-synchronous orbit. High Earth Orbit (HEO.
> 35.780 km): When a satellite reaches exactly 42.164 kilometers from the center
of the Earth (about 36.000 kilometers from Earths surface), its orbit matches Earths
rotation. This special high Earth orbit is called geosynchronous.

6.1 The v-Gravity Gradient Intermediary and the Re-
duced Space

In this chapter we study one of the two circular intermediaries defined in Section 5.2.1.
Namely, we focus on the intermediary defined by means of the following Hamilto-
nian

H, =Hkx +V,(.,_,v,®,M,N)

where V), is given in (5.30), and after some calculations the expression for the poten-
tial is given by

2

V, = —%(2—3sin2 N{(2C —B—A) —3sin® J[(C— A)— (B— A) cos* v]}. (6.1)
This intermediary is analyzed in [Molero et al., 2014], where numerical comparisons
show that this one is the closer choice to the full model. Furthermore, a partial com-
munication focusing on the geometric aspects was given in [Crespo et al., 2014]. In
what follows, we use the term v-gravity gradient intermediary to refer to the Hamil-
tonian H, as well as to the Hamiltonian dynamical system that it gives place. The
expression for H, in Andoyer variables is given by

2

1 (sin?v  cos?v N o N
H, = 5( A + B )(M —N)+%—n<b (6.2)

2 2 2
+n?A [(g — sin? I) (g — sin® J) + f3 (§ — sin? I) sin? J cos 21/}
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where we have used the notations introduced by Kinoshita and Andoyer

b-4 0, A:—3(2C—B—A)<o, (6.3)

h=5c_p=a" 16

and the system of differential equations that it gives rise is

p=0, P=0,

. 3(13712 2 2
gb:—n—i—m(3(A—B)cos?ysj+(2C—A—B) (1-3c%)),
P =0,

A B SM [(
+(B — A) (—6cic5 + 3¢} + ¢5) cos(2v)]

s 02 2 3 2
ﬂ:M<sm (V)+Cos (V))+ n 62 4 2+ ) (A+ B —20)

M =0,
v=N (é - SmA(V) - COSB(”)> + ;’7\4 [e; (1—3¢2) (2C — A~ B)
+(A — B)cos(2v))],
N = AA_BB (M? — N?) sin(v) cos(v) + w (1—3¢7) (1= c5) sin(2v).

(6.4)

The reader should appreciate how the Andoyer variables incorporate two integrals
among the conjugate momenta leading us to a 1-DOF separable system. Thus, it
is easy to see that it is still integrable. Although the system enjoys of the named
features, one may find rather complicated the integration of the subsystem (v, V).
Another drawback is given by the singularities of the variables. For that reason we
change to the Poisson variables suggested in Section 5.3.2.

6.1.1 7, as a perturbed quartic realization

By means of the rescaling given in (5.47), the family of Hamiltonians defined in (4.1)
is expressed in the following fashion

Fop i= a1 M} 4 agM3 + azsMZ + BiWE + B W3 + BsW2. (6.5)

where o; = 2a; and §; = 2a;.3 for i = 1,2,3. We recall that for the particular
value of the parameters 5, = 2 = 3 = 0 and a1 = 1/(2A), as = 1/(2B) and

135



6.1. The v-Gravity Gradient Intermediary and the Reduced Space

asz = 1/(2C'), we obtain the Hamiltonian of the free rigid body. Then, let us add a
perturbation Py, such that the Hamiltonian is given as follows:

F = Fo(My, My, Ms) + Po(My, My, M3; Gs), (6.6)
where Lo ME M
— - =, 72 , 73

B(J\41,J\42,1\4:»,)—2 ( yEy C). (6.7)

We choose the perturbation added to the quartic realization above Py(M;, Ma, M3; G3)
as given by

P():—’TLG3
n’ G3 3 2 2 2
5 1_3W W(AM1+BM2+CM3)—(A+B+C) :

Note that this Hamiltonian is (W, Wy, W3)-invariant. Therefore, the flow of the
Hamiltonian F is restricted to be in the reduced space given by M, = S2, x S%,.
Next, we connect the Hamiltonian 7, with /. This connection is obtained through
the following modification of the map £, given in (5.52)

Fy:Dc (RYw) — S%x S%c (R {, 1)), (6.9)
where S35 = 52, — {(0,0,+M)} and the map is given by
F&z\/ﬂsiny, F@:msingb,
FZ@:\/MCOSV, F&:\/MCOSQ (6.10)
F3 =N, FS = o,

(6.8)

Another remark is that we have abuse of notation by using the same symbol F),
for the adapted Poisson map. The domain now is given by D = {(v,¢, N, ®) €
R*/ |N| < M,|®| < M} and w is the standard symplectic form. In other sense, { , }
is the Poisson bracket on R® with structure matrix

0 My —M, 0 0 0

~Ms 0 M, 0 0 0

| M M0 0 0 0
P=1"09 0o 0 0 G -G 6.11)

0 0 0 -Gy 0 G

0 0 0 Gy -G 0

and Casimirs

Cy= M4+ M} 4+ M2 =M?* Cy,=G?+Gi+G2=M. (6.12)
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Proposition 6.1. The map F); is endowed with the following features:
i) Fyr is a diffeomorphism from D to S3; x S2%,

ii) S2; x S%, corresponds to the level manifold of the Casimirs C; = Cy = M?,
in other words
S x Sy = CyH (M) N Cy (M),

iii) F)y satisfies that
{FJT/Ifu F]t[g}w|D = {f, 9}
where {., .},p is the Poisson structure induced by the symplectic form wp on
the open manifold D. Thus, is Fi; a Poisson map.

Proof. Analogous to the proof of Proposition 4.7. ]

After we carry out this change of variables, the Hamiltonian #,, : S x S* — R given
in (6.2) takes the form

F = Hl/ = 7-[1/(]\417 M2>M37Gl7G27G3; Aa B,O, n)

N2V Y n? G2
_§<F+§+F —nGg—g(A+B+C> 1_3W ,

(6.13)

where

1 1 , 3A (1 3G§>

- at"ne\ e

e (1)

B* B 4M? M?
1 1 5 3C 3G3
— == 1——=.
oo e ( M2
After substitution of A*, B* and C* in (6.13), and some easy computations we obtain
the equality / = H, in the Poisson variables.

6.2 General Flow of the Reduced System

Henceforth, we focus in the study of the principal features of this intermediary. We
compute the equilibria of the system and give and analysis of the linear stability and
bifurcations. Several scenarios arises for different kinds of triaxiality, we focus on
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one of the possibilities, precisely 75. For this case, explicit integration formulas are
provided in terms of Jacobi elliptic functions, the remaining cases can be studied
analogously.

Taking into account the Poisson structure of the reduced space, the canonical equa-
tions are readily obtained by means of the following computations

6

: oM,

=1

where x = (x1,z9,...,76) = (M1, My, M3, Gy, Go,G3) and the Poisson’s bracket
are the elements of the Poisson structure matrix P given in (6.11) {z;, z;} = P;.
Therefore, the system reads as follows

M, = ay My Ms, (6.15)
My = ay My Ms, (6.16)
M = asM; M, (6.17)
G = —AgGs, (6.18)
Gy = AGGy, (6.19)
Gy =0, (6.20)

where a1 (M, G3), as(M, G3), as(M, G3) and Ag(M, G3) are given by the following
expressions

_B-C,_ ,3BC G2
C—A_ ,3AC G2
A—B._  ,3AB G2
as = W[l YVE (1— 3@)]7 (6.23)
and
A(M) = 4]\724{4M4+3G3n[3(AM12(t)+BMg(t)+CM§(t))—M2(A+B+C)]}.

(6.24)

Let us analyze the structure of this system. At first sight of the equations (6.15)-
(6.20), it seems that the system is separable in two subsystems. On one side, equa-
tions for My, M, and M3 constitute an Euler-type system. On the other side, for G,
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Chapter 6. A Circular Intermediary

GG, and (G5 we have a non-autonomous Hamiltonian system, which Hamiltonian is
given by

1
H(Gh, G, Gs) = 5 AcM)(GF + G3). (6.25)

Nevertheless there is a coupling between both subsystems, since G5 appear in the
coefficients a1, as and a3 and Ag(M) depends on the M, for i = 1,2, 3. Therefore,
in order to solve it, we propose the following strategy; once the subsystem in the
M, is solved in terms of elliptic functions for each fixed value of (G5, the system in
(; may also be solved, after the substitution of the M; in Ax(M). Explicit solutions
following this plan are given in Theorem 6.2 and Corollary 6.3. In this chapter we are

B/C

L,: B=(A+C)/2 = T1: B<(A+C)/2 |

Ly B=C T, B>(A+C)/2
L4: B=C-

— A/C
1

Wi - - P -

NI |-

Figure 6.2: Triaxiality regions: The regions and lines on this figure are derived from the study of
the relative equilibria in section 6.3. That is to say, the relative equilibria changes as we move from
one triaxiality region to another.

going to identify the relative equilibria of the system. In order to fulfil this objective,
we collect the way in which we have organized our study in Fig 6.2 and Fig 6.3 . Let
us explain how to interpret them.

It is well known that the principal moments of inertia are not arbitrary. Thus, we
denote the domain for real solids by D, which is defined as follows

D={AB,CeRY;A<B<C,A+B>C}, (6.26)

among the valid terns in the domain D we distinguish the oblate symmetric bodies
given by L; = {(A,B,C) € D : A = B}, the prolate symmetric bodies L3 =
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6.2. General Flow of the Reduced System

{(A,B,C) € D : B = (Y}, and the flat bodies L4. Finally we consider the generic
triaxial cases 7} = {(A,B,C) € D :2B < A+ C}, T, ={(A,B,C) € D : 2B >
A+ C'} and the special one Ly = {(A, B,C) € D : 2B = A+ C}, see Fig 6.2. The

Figure 6.3: Momentum mapping related to the physical parameters: This figure presents the
relation among the two fundamental planes of physical parameters (moments of inertia) and the dy-
namical parameters (integrals) of the problem.

reason why we distinguish several “types of triaxiality” is because of the key role that
the parameters A, B and C' play in the study of the relative equilibria. Section 6.3
shows that there are several curves in the integral plane M-G3 leading to parametric
families of relative equilibria. Those curves depend precisely upon the triaxiality
types given above giving rise to different scenarios, see Fig 6.3. In other words, we
have already said that relative equilibria occurs along certain curves in the M-Gjy
plane, then Fig 6.3 match each type of triaxiality with a cualitative representation of
the named curves. In what follows we focus on region 75.

In Fig. 6.4 we portrait the general flow for the region 75 of the system given by
(6.15)—(6.20). Next, Theorem 6.2 and Corollary 6.3 give the analytic formulas for
the general case. In order to alleviate the expressions involved, we have introduced
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G=M
G3’
G
Gs G?)
G M
7\\\\\\ R —
¢l R,
~ - R3
G3'
G3”’
G=-M

Figure 6.4: Generic flows on the reduced space S? x S?, over the plane of integrals in region
T5: Note that the pattern is always the same. Nevertheless, the projection of the flow in the M -sphere
(left) changes the stability as (M, G3) passes through the regions Ry, Ry, R3 and Ry. In the G-
sphere (right), the flow take place along a parallel at G5 constant, the specific character of this motion
depends on Ag(M). The parabolas G, G4 and G4’ correspond to families of relative equilibria and

as (M, G3) passes through them, the flow in the G-sphere moves counterclockwise or clockwise.

the following notation; ho, hy and hg are integrals of the subsystem (6.15)—(6.17)
given by

2 2 2 2 2 2
hl = a2M3 — (1,3M2, hg = (Ing — a1M3, h3 = G1M2 — ang,

- oy =/ |aihl.

‘Cljhj

(6.27)
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6.2. General Flow of the Reduced System

and
a
0i5(t) = —— [E(am(p;(t — to)[kij)|kij) — (g — bpa)t + o] ,
0 (t) = <M12 T A h1>5 + SChal] sin(2us s),
2&2&3 4 as0a3 U3 (6 28)
5(t):<M2+a3_alh>S+MSin(2fg) .
2 2 2&1@3 ! 4&3&1 M3 H3 ’
- + a9 .
— (a2 a; — a2 ) a1 9
d3(t) ( i+ Sy hs)s + y—. sin(24 ),
where
2 2
a:gG—?’"E, _ 3Can (30 = M*(A+ B+ C)) +n,
4M? 402 (6.29)
_ (A-O)C-B)(B-A4) '
== Vil , F:AMf(to)—i-CMg(to),

Besides of the above notation introduced, for the case 715, we also consider four re-
gions Ry, Ry, R3 and R, on the plane M G3-plane. These regions already appear in
Fig. 6.4 and now we define them more precisely. For that purpose, let us consider the
coefficients in the equations (6.15)—(6.17)

CL1(M, G?);A)Ba C) n)) a?(Ma G3;A7 37 07 77,)7 a’3(Ma G3a A7 Ba 07 TL)

considered as real parametric functions defined in the M (G5-plane. Then we de-
fine the curves Gg) for i = 1,2, 3 as the geometric places in the M (G3-plane where
a;(M,Gs; A, B,C,n) = 0 respectively,. The explicit formulas for each G:(f) are given
later on in (6.41), (6.41) and (6.41), also the curves themselves appear in Fig. 6.4, by
shape they have we usually refer to them as the petals. Now we resume our first task
and define R; as follows

(i) R; is the region in the M G3-plane inside of the closed curve Ggg).
(i1) R, is the region in the M G5-plane between Ggg) and G:(f).
(iii) Rj is the region in the M G5-plane between GgQ) and Gél).
(iv) Ry is the region in the M G'3-plane outside of Ggl).

Theorem 6.2 (Global flow). Let s = (t — tq). Thus, analytic solutions to the system
(6.15)—(6.20) depend on the regions R; and read as follows
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eAnalytic solutions in 7y

M

M

Ms

where ashy > 0 = [i

Case: ashs > 0

hs
a2

| &

(3]

ha

a2

cn(py s, ks1), My

(—M1 S, k’31), My =

dn(py s, ksy),

=3,J

eAnalytic solutions in Ry

M

M;

Ms

where a1hy < 0= [i

Case: a1h; < 0

|&

as

|&

(3]

|=

a1

sn(—pio s, ksz), My =

cn(pia s, ksz), Mo

d”(,uz S, k32)>

=3,J

e Analytic solutions in Rj

My

M>

Ms

where azhy < 0= [i =

Case: ashs <0

|&

a3

| =

a3

ho

a1

CI’L( 1S, k‘gl

dn (/~L18 k?21

(,ul S, k’21

2,7

Ms =

1] and ashy < 0= [i =

Ms =

2], and a1hy >0=[i =

1] and aghs > 0= [i =

Case: ashs < 0

— dn(,u3 S, ]{?13),

— |sn(—p3 8, k13),

—len(ps s, kis),

Case: a1h; > 0

h
=2 sn(—pus s, ko3z),

dn(,u3 S, k23)7

cn(pis s, kag),

Case: ashs >0
h2
CL3

hl

M2 S, k12 7

cn M33 k12 7

\/ h—sn (12 8, k12),

G = sin(04(t)),
Go = cos(0;;(t)),

G3 - G37
(6.30)

G = cos(6;;(t)),
GQ = Sin((?ij (t)),

G3 = G37
(6.31)

G4 = sin(d;;(t)),

G2 - GQ,

G5 = cos(0;(t)),

(6.32)
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e Analytic solutions in R4

Case: azhs > 0 Case: ashy < 0
h3 h3 1
My =[] ~len(pa s, ka),  My=\[|~dn(us s kis), Gy = sin(9;(t)),
9 2
hs ha
M,y = ar sn(—py s, ks1), My = PR sn(—pi3 s, ki3), Gy = COS(5ij(t>)>
1 3
hy hy
Ms = P dn(p s,ks1), Mz = P cn(ps s, kis), Gy = Gy,
9 2

(6.33)
where ashy > 0= [i =3,j =1] and ashy <0=[i=1,j = 3]

Proof. From Theorem 2.8 we readily obtain the expressions for M; 1 = 1,2, 3. Then,
we look for a compact expression of AMZ(t) + BMZ(t) + C' M3 (t), which appear
in Ag(M), in order to integrate the GG, G2, i3 subsystem. Since the flow of the
subsystem M/; is Eulerian, multiplication in succession (6.15), (6.16) and (6.17) by
AM,, BM, and C' M5 and addition, after some calculations leads us to

AM2(t) + BM2(t) + CM2(t) = Ssn®(uz s, kns) + I, (6.34)

Thus, replacing (6.34) in (6.24), a simple quadrature leads to the formulas given for
G1 and GQ.

O]

Corollary 6.3 (Flow along the petals). Let s = (t — t). Thus, analytic solutions to
the system (6.15)—(6.20) depend on the regions R; and read as follows

eAnalytic solutions in Ggl)

h
My =M, M= ‘—1 sin(—uzs), Ms=4/|—

as a2

G1 == Sin(él(t», G2 == COS(&l(t))7 Gg == Gg,

cos(uzs), 6 3y

e Analytic solutions in G§2)

ho

as a9

Gl = COS((SQ(t)), G2 = Sin<(52(t)), G3 = Gg,

M, = sin(—puss), My= My, Ms= coscn(pg s),

(6.36)
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e Analytic solutions in G§3)

I h h
M, = ‘—3 cos(py 8) My = ‘—3
a9 a1

G1 = sin(d3(1)), Go = cos(d3(1)), G5 = Gs,

sin(—puy 8), Mz = Ms, 6.37)

Proof. Analogous to Theorem 6.2. ]

6.3 Searching for S'-Relative Equilibria

The search or relative equilibria corresponding with the first reduced space is ar-
ranged in two categories, isolated and parametric families of relative equilibria. The
isolated equilibria are sextuples that, when projected on the G-sphere gives the north
and south pole and when they are projected in the M -sphere lead to the classical
equilibria of the free rigid body. The case of the parametric families of equilibria
presents a more complex panorama, we deal with two families principal direction
equilibria and quasi-Euler equilibria. The first one does not introduce changes in the
M -sphere from the isolated case, but in the G-sphere a circumference of equilibria
appears given rise the product of both projection to a family of sextuples. For the
quasi-Euler equilibria the G-sphere remain the same that in the principal direction
equilibria, but equilibria different from the classical picture of the rigid body system
come into sight.

6.3.1 Isolated relative equilibria

The relative equilibria described in this section do not depend on the values of the
physical parameters A, B and C, neither in the value of n, but occur for |G3| = M.
Those equilibria are dubbed as permanent, since they exist for every value of M.
There are twelve of them and they correspond with the principal directions in the
M -space and the north and south poles in the G-space. That is to say, each relative
equilibria is a sextuple, which is made up of three coordinates coming from the M-
sphere and three coming from the G-sphere, see Fig. 6.5.

In order to identify along the text the permanent relative equilibria and their respective
energy values, the following notation has been introduced in Table 6.3.1 where the
value of the energies is given by

2 n2 M2 77,2

M
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6.3. Searching for S'-Relative Equilibria

M-sphere G- phere

Figure 6.5: Permanent equilibria: The sextuples of those equilibria are obtained as a combination
of a pair of tridimensional points in the M -sphere times the G-sphere

Permanent equilibria notation

Equilibria Energy
E:(iMOOOOM) he

= (0,£M,0,0,0, M) hgo

= (0,0,£M,0,0, M) hgs
E4—(:|:MOOOO —-M) hga
= (
= (

0,+M,0,0,0,—M)  hgs
0,0,£M,0,0,—M)  hgg

Table 6.1: Note that each E; corresponds with two relative equilibria with the aim of alleviate the
notation, since each of those pairs F; are always manipulated together and have the same energy level.

M2 2 M2 2
M2 2 M2 2

Theorem 6.4 (Permanent equilibria.). The set of sextuples given in Table 6.3.1 cor-
respond to equilibria of the system defined by the equations (6.15)—(6.20). The value
of the energy associated to each equilibria is given also in Table 6.3.1.

Proof. By simple substitution on the system made of (6.15)—(6.20) of the sextuples
given in Table 6.3.1, it follows that they are equilibria. The values h}, h2 and h3 are

obtained by the evaluation of the equilibria in the Hamiltonian. 0

To summarize, we gather together all the permanent equilibria of a generic body in
the following Table 6.2.
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Permanent equilibria

Region M Equilibria Energy
(0, 400) Ey hgr
D (0, +00) Ey hio
D (0, +00) Es his
D (0, +00) E, hpa
D (0, 4+00) Es hgs
D (0, +00) FEs hie

Table 6.2: Permanent equilibria for a general body.

6.3.2 Two parametric families of relative equilibria

The relative equilibria that we study in this section do depend on the value of n, M
and (3, as well as on the value of the physical parameters A, B and C. The de-
pendency on the principal moments of inertia determines the regions that we give in
Fig. 6.3, see Remark 6.1 for a complete explanation. There is also one remarkable
difference with the permanent equilibria studied before, now the bifurcation phenom-
ena takes place and the relative equilibria are no longer a finite set of sextuples, but a
non discrete parametric family of points in the M G-space.

Our strategy to obtain those equilibria is given next. Once the triaxiality type is fixed,
we look for special values of M and (G5 that provide zeros in the coefficients of the
system of differential equations (6.15)—(6.20). In this regard, we distinguish between
zeros in the subsystem (6.18,6.19) giving place to the principal direction equilib-
ria and zeros in the subsystem (6.15,6.16,6.17), that lead to the equilibria named as
quasi-Euler equilibria.

Principal direction equilibria

Let us start with the principal direction equilibria. Proceeding in the same way than
before we introduce some notation in Table 6.3.2

In Fig 6.6 we illustrate the equilibria £7, Eg and Ey. The coordinates from the
above Table 6.3.2 corresponding with the G-space (G1, G2, GY), (G1, Go, GY%) and
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Principal direction equilibria notation

Equilibria Energy
E; = (£M,0,0,Gq, Gy, GY) hg7
Eg = (0,£M,0,Gy, Gy, GY) hEs
Eq = (0,0,£M,Gq, Gy, GY) hgo

Table 6.3: Note that each E; corresponds with two families of relative equilibria with the aim of
alleviating the notation.

M-sphere : G-sphere

Figure 6.6: Principal direction equilibria: The sextuples of those equilibria are obtained by the
product of a point in any of the principal directions in the M -sphere times a point in the parallel located
in the G-sphere

(G, Gq, GY') are given as follows
3
G24+G2=M?>-G2 Me(O,M), M= I”]QA—B—C\,

3
G24+G2=M>-GP*, Mec(OM), M = In|QB—A—C|, (6.38)
Gl+G=M"-G5%, Mec(OM"), M"= %(QC—A—B),

and
4M? AM? 4M?

G = By o—24) T amarc—2B) O T 3n(At B-20)
(6.39)

where the last coordinates are parabolas along the M (G5-plane satisfy
Gy >0, G5 <0, Gy <.

The coefficient A;(M) given in (6.24) vanishes along them. Therefore, those curves
gives place to relative equilibria. The values of the energy at these points are given
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by
M*(B+C+2A) n?
hE7_2A(2A—B—C)+§(2A_B_C)’
M?*(A+C+2B) n?
= —(2B-A- 6.40
his QB(2B—A—C)+8( @) .
M2(A+ B+2 2
by = MATBH2C) 0700 gy

Remark 6.1. Note that along the line Lo, see Fig 6.2, the denominators of G and
hgs in (6.39) and (6.40) are not defined. Thus the signs of G and hgs depend on the
region 17 and Ts. Those features may also be observed in Fig 6.3, where we gave in
advance a qualitative scheme of the curves in which principal direction equilibria and
quasi-Euler equilibria take place. Note also that formulas (6.38) show how principal
direction equilibria are only valid for a finite domain of M.

Theorem 6.5 (Principal direction equilibria). The set of sextuples given in Table 6.3.2
correspond to equilibria of the system defined by the equations (6.15)—(6.20). The
value of the energy associated to each equilibria is given also in Table 6.3.1.

Proof. We consider the case of F; = (£M,0,0,Gy, Gy, GY), the other ones are
analogous. Taking into account that the particular value of G5 = G together with
M, = £M, My = M3 = 0 imply a; = 0 and Ag(M) = 0, we have that this
set of equilibria follows by simple substitution on the system made of (6.15)—(6.20).
The values hgr, hgs and hpg are obtained by the evaluation of the equilibria in the
Hamiltonian (6.13).

[]

Principal direction equilibria

Region M Equilibria  Energy
D (0, M") Er hgr
D (0, M") Eg hEs
D (0, M) Eqg hgg

Table 6.4: Principal direction equilibria for T5.
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Quasi-Euler equilibria

Up to now, all the equilibria may be identified with the classical ones coming from
the free rigid body, since they are organized in pairs along the principal directions of
the M -sphere, see Table 6.2 and Table 6.4. The next family of relative equilibria are
located along circumferences in the G-space, but we detect a different behavior in the
M -sphere, since four equilibria emerge from the principal directions

This new set of relative equilibria is obtained by looking for particular values of G,
namely G3 = G’gl), Gz = G:(f) and G5 = G:())S) that make ¢y = 0, a3 = 0and az =0
respectively in equations (6.15), (6.16) or (6.17), together with the especial values in
the M-space, M; =0, M; = M](l) and M, = Mk(f) that imply Ag(M) = 0. All those
values for the coordinates of the sextuples are given in (6.41), (6.43) and (6.45).

Those relative equilibria have been named as quasi-Euler equilibria and they are
structured in three groups, each one is located in the intersections between the coordi-
nate planes M;-M; and the M -sphere together with the circle in the G-space given by
(G5 constant. Relative equilibria in the M;-M, plane are illustrated in Fig. 6.7, the re-
maining groups of equilibria in M;-M; plane and M;5- M, plane are analogous.

M—here : G-sphere

Figure 6.7: Equilibria in the M;-M, plane: The sextuples of those equilibria are obtained by the
product of a point in the parallel located in the G-sphere times any of the four points in the equator of
the M -sphere.

At this point we introduce all the notation needed for this section. First we give all
the relative equilibria families dubbed as quasi-Euler equilibria in Table 6.6 and then
the detail of the components of the sextuples in (6.41), (6.43) and (6.45).

Notation for the expressions related with the equilibria in the M,-M;3 coordinate
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Quasi-Euler equilibria

Equilibria

Energy

By = (0, £M" M Gy, Gy, =G g
Ei = (0 iMé“,iMél LG, G, MY
Es = (M 1 ,0 iM:)EQ,Gl,Gz, G )) hgio

iMf” MY 0,G,Ge, GY) hipu

Eis =

(0,
(
Elg—(i @ 0, +MP Gy, Gy, —GP)  hps
= (
(=M

@ 2MP 0,Gy, G, =G hps

Table 6.5: Quasi-Euler equilibria.

plane

2 2
(1):M\/3B0n —4M
G In2BC

M221 + M??l = MQ,

Msy =M

1

M _ 1\/3BCn2(2B —A-C)?
2

and energies

(~A+2B+20)

hipto = 6CB
(—A+2B+2C)  ,
= M? —
hEll 6CB

(2B— A—C)? +4BC’

3G (—2B + A+ C) — 4AM>
InGy(C — B)

Y

! (2C—B—A)2+4BC’

(6.41)
G(l) 4M4 — 3M2TLBC
—G(l) 1 4M4 — 3M2TLBC '
° 18G3nBC

Notation for the expressions related with the equilibria in the M;-Mj; coordinate
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plane

)

e _ u \/3ACn — AM? Moy — M 3nGY (—24 + B+ C) — 4M?
n?AC InGP(C — A)

M, + Mz, = M?,

M _ L [3ACR?(2A - B - C)? @ _ L [3ACn*2C — B - A)?
2 (2A — B — C)2 +4AC" 2 (2C — B — A)2 +4AC"
(6.43)
and energies

hsts — (—B+2A+ 20) G(g) AM* — 3M?*nAC

6 AC 18G3nAC 7
6.44
e - (FBF24420) o n g AM! - 3MnAC (0:4%)

T 6AC 2" 18G3nAC

Notation for the expressions related with the equilibria in the M;-M> coordinate
plane

3ABn? — AM? 3nGY) (=24 + B+ C) — 4M?
Ggg) = M\/ 2 ) M23 - M 3 ( (3) ) )
In?AB InGY (B — A)
M123 + M223 = M27

M(l) _ 1\/3ABn2(QB — A - C)Q M(2) _ 1\/3ABTL2<2A— B— 0)2
2

(2B —C — A)2 + 4AB’ 3 (2A— B —C)2 +4AB’
(6.45)
and energies
(— C’—|—2B+2A) 4M4—3M2nAB
hpia = —G :
6 AB 18G3snAB (6.46)
—C+2B+2A 4M* — 3M*nAB '
heis = (FC+2B+ )M2——Gé3)+ -

6 AB 2 18GsnAB

Results of Theorems 6.6, 6.7 and 6.8 are summarized in Table 6.6
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Quasi-Euler equilibria in the M;-M; planes

Region M Equilibria Energy
T (0, M)y Ero = (0, =M, £ MY Gy, Gy, -G hiio
T (M, M) Ero = (0, =M, MY Gy, Go, =GP hiio
Ly (0, M) Ero = (0, =M, MY Gy, G, =GP hio
T (0, MMy By = (0, :I:MQD,iM?fl),Gl,Gg,G ) hen
Ip (0, M) Elg_(i @0, +MP Gy, Gy, —GP) g
In (0, MMy (iMl(2,O +MP Gy, Ga, G hps
Ly (0, M) = (=M =M 0,61, Gy, GP) hpia
T (MY, MP) E14_(i G M, 0,Gy, G, G hpi
T, (0, M) By = (M 2MP.0,Gy, Go, G hps
T, (0, My Ers = (&MP 2MP.0,G1, Go, =GP hiis

Table 6.6: Quasi-Euler equilibria: Equilibria along the coordinate planes in the M -sphere and a
circumference in the G-sphere.

Theorem 6.6 (Quasi-Euler equilibria in the Msy-Mj3 plane). The sextuples given by
E\q and E11 with associated energies hgiy and hgy, are relative equilibria if any of
the following cases occur

T1> G3 = _Gi(’;l)> M e (OaMgl))a
T1> GS = Gi(’;l)a M e (OaMf))a
(1) 1) (2) (6.47)
T,, G3= G M e (M7, M),
L27 G3 = Gi(%l)a M e (O>M§2))7
For the extremums, M = Mgl) and M = ./\/l(2), we have
MY =M, MY =0 ana M =0, MY = M. (6.48)

Proof. After some algebraic manipulations one can verify that G3 = G’él) and G3 =
—Gél) imply a; = 0 in the equation (6.15) and that M; = 0, My = £My and
M3 = +Mj3, imply A (M) = 0 in equations (6.18) and (6.19). The conditions (6.47)
for the existence of equilibria comes from the definition of Gél), which involves a
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square root with positive radicand when conditions (6.47) are verified. Finally, (6.52)
is obtained by simple substitution of M = Mgl) and M = M?).

]

Theorem 6.7 (Quasi-Euler equilibria in the M;-Mj3 plane). The sextuples given by
E15 and E13 with associated energies hg1o and hgy3 are relative equilibria if any of
the following cases occur

G3 = _Gé2)7 M e (Ongl))7

Gy= GY, Me (M), 9
For the extremums, M = MS) and M = Mg), we have
MP =M, MP =0 and M =0, M = M. (6.50)
Proof. Analogous to proof of Theorem 6.6
0

Theorem 6.8 (Quasi-Euler equilibria in the M;-M; plane). The sextuples given by
E1 and Ey1 with associated energies hgi4 and hy5 are relative equilibria if any of
the following cases occur

T, Gy=-GY, Me MV, MP),
T27 G3 = Gi(’)3)7 M e (O7Mi(’>1))7 (6 51)
T27 G3 = _Gi(is)v M < (O7M§2))7 '
L27 G3 = Gf(s3)7 M € (07Mg2))7
For the extremums, M = Mé” and M = M§f), we have
MO =M MP =0 anda MP =0, M = M. (6.52)
Proof. Analogous to the proof of Theorem 6.6.
O]
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6.4 Linear Stability and Bifurcation of the S'-Relative
Equilibria

Among the local bifurcations from an equilibrium in Hamiltonian systems with pa-
rameters, there are two well known scenarios:

(i.1) steady-state (splitting case) bifurcation when at the equilibrium the linearized
vector field has a zero eigenvalue of multiplicity two. After the multiplicity the
eigenvalues move into the reals.

(1.2) steady-state (passing case) bifurcation when at the equilibrium the linearized
vector field has a zero eigenvalue of multiplicity two. After the multiplicity the
eigenvalues continue moving in the imaginary axis.

(11.1) 1-1 resonance (splitting case) when the linearization has a pair of purely imag-
inary eigenvalues of multiplicity two. After the multiplicity they move into the
complex domain.

(i1.2) 1-1 resonance (passing case) when the linearization has a pair of purely imag-
inary eigenvalues of multiplicity two. After the multiplicity all remain pure
imaginary.

These bifurcations have received different names in the literature. Details about the
features of each of them may be found in several publications (see for instance van
der Meer [van der Meer, 1985], Dellnitz et al. [Dellnitz et al., 1992] and Bouno et
al. [Buono et al., 2005] and references therein). Note that although the previous list
suggests that both scenarios are separate, we show below that it is not the case, see
Fig. 6.8.

In our model, within the 75 triaxiality region, we identify several of them. In that
respect it is worth to point out that, in agreement with the generic result of Galin
[Galin, 1982], our system satisfies the required condition in order to be at the passing
scenario: to have at least three parameters.

In this section we obtain the linear stability of a representative set of each S*-relative
equilibria given in the previous section. The calculations for the rest of sextuples are
left to the reader. We have structured this section in three cases according with the
zero eigenvalue multiplicity. Permanent equilibria with multiplicity two, principal
direction equilibria with multiplicity four and the degenerate last case, the quasi-
Euler equilibria where the eigenvalues are all zero.
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Figure 6.8: Evolution with M of the positive imaginary part of the eigenvalues A4 and \g for
three different mean motions n = {0.07,0.06,0.05} (rad/min) corresponding respectively with each
one of the rows. Note that the first row only shows the location of the selected moments of inertia
over the parameter plane. (a) Evolution for values {4, B,C} = {0.06,0.35,0.39} (kg - km?). (b)
Evolution for values {4, B, C} = {0.2,0.35,0.39} (kg - km?). (c) Evolution for values {A, B, C'} =
{0.295,0.35,0.39} (kg - km?). A deeper insight of one of these graphs is given in Fig. 6.9.

6.4.1 Permanent equilibria

In order to show the linear stability of the permanent equilibria, we start with the
study in detail of the stability of the sextuple: (M,0,0,0,0, M) given in Tab. 6.2.
To do this, we first obtain the Jacobian of the differential equations (6.15)-(6.20) for
the corresponding sextuple and then compute their eigenvalues. Note that the two
integrals of this system imply the existence of two eigenvalues \; o = 0; the other
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four of them are given by

€6.53)

NV \/ (B — A)(C — A)(2M? + 3ABn2)(2M?2 + 3ACn?)
ST ToAM BC '

.n
Mo = Fi 2 [AM = 30(C + B — 24)] (6.54)

whose evolution with M is given in Fig. 6.8. In this figure we show how different
scenarios arise as we vary the principal moments of inertia along the region 75. More
precisely, we can see that columns 6.8(a) and 6.8(b) give place to steady-state bi-
furcations, while in column 6.8(c) the 1-1 resonance (passing case) also occurs. In
this regard, we have illustrated in Fig 6.9 the behavior of the eigenvalues in the case
6.8(c), it shows that the apparently separated scenarios of the steady-state and 1-1
resonance bifurcations that we have listed at the beginning of this section may also
appear together.

6.4.2 Principal direction equilibria

We study now the linear stability of the sextuple: (0,0, M, G, Go, GY') given in
Tab. 6.4. Following the same procedure we have again \; » = 0 together with

Aos =0 (6.55)

1
+
AC(2C — B — A)WABM

)‘5,6 =

x/(C' — A)AM?2(A2 + 2AB + (B — 20)2) — 3ACn2(2C — B — A46%6)

x+/(C — B)[3BCn2(2C — B — A)2 — 4M?2((A + B)? — 4AC + 4C?)]

From these expressions it is easy to see that {\3,} € C, but {\;4} can be real or
complex depending on the parameters and can also be zero if

2 BACHA (20 — B— A)? ,  3BCn2(2C — B — A)?
T 42+ 24B+ (B—20)7 T 4(A+ B)2 - 4AC + 407

(6.57)

The evolution with M of these eigenvalues is shown in Fig. 6.10, where we have a
zero eigenvalue of multiplicity four and two more eigenvalues, A5 g, that give place
to a steady-state (splitting case) bifurcation.
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Figure 6.9: Example of the evolution with M of the eigenvalues corresponding to Fig. 6.8(c) shown
by means of their variations over the complex plane. The different intervals of M are labeled with a
number. The labels “Int;” indicate values of M where the eigenvalues come together. The label “Bif.”
indicates the value M = M’ where the north pole of the G—sphere bifurcates in a circumference of
equilibria.

o< M<MP

M= M

MP <M< MP

M=MP?

— @ Re

M>MmP

Figure 6.10: Evolution with M of the eigenvalues A3 and \4. It corresponds to a double steady-state

splitting bifurcation.
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6.4.3 Bifurcations: From the border to the crossing of the parabo-
las with the petals

This section is about the explanation of how equilibria and bifurcations are distributed
along the parabolas and petals given in (6.39), (6.41), (6.43) and (6.45). For this
purpose Fig 6.11 is crucial and encapsulates all the information related to equilibria
and bifurcation for the region 75. In the elaboration of this figure we have change our
methodology in the following sense. Up to now sextuples of equilibria are projected
in the M-sphere and the GG-sphere, thus they are represented in a product of two
spheres. Nevertheless, in this figure we have omitted most of the (G-spheres just to
alleviate the amount of information contained. Note also that there is one more abuse
in the construction of Fig 6.11, with the aim of provide a clearer presentation, the
radius of the spheres are scaled to be the same, i. e., those radius do not change in the
figure with M.

All the points collected in Fig 6.11(a) correspond with bifurcations. For Af, Aj
and A’ we observe how the isolated equilibria £y, E5 and Ejg bifurcate into the
families of equilibria /7, Eg and Ey. In particular we have studied in Section 6.4.1
the eigenvalues of Ey obtaining from expressions (6.53), that {3 4; A5 6} € C, except
for the value in which A5 g cancels out

M:M’:%(C+B—2A)

which correspond exactly with the bifurcation from Ejg to Ey at A{) in Fig 6.11(a)

Analogously, we have obtained in Section 6.4.2 that A5 ¢ vanish for certain values of
M given in (6.57). They correspond to the bifurcation points identified in Fig 6.11(a)
by A7 and A}, where Ey and Ej bifurcate in £y,. This phenomena and the evolu-

tions from £y to Ej and finally to Es along an arc in the petal Gél) is illustrated
in Fig 6.11(b), where we also give a detailed picture of what happen in GéZ) and
Gy,

6.5 Second Reduction: T?-Relative Equilibria

A second reduction can be performed by using the integral GG3. The relative equilibria
of the second reduced space correspond with orbits contained in a 2-dimensional
torus.
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(a) M G3-Bifurcation plane.

Gél) =141/// =A1”

L j Eg Iq ’ E10 e . } Eg
G:(f) .A2’” (.) OAzl

[ h ’ Eg \,: .\ ) E12 ' ’) E13 ‘e f) E7
G .Ai” o A

(¢ ) Es o, 4 E5 (L -,} By ) E;

(b) Itineraries detail.
Figure 6.11: Bifurcation lines and detailed tours along them showing the relation between the

families of relative equilibria. In Fig 6.11(a) we have used continuous lines in Ggl), G:(f) and Gg?’) to

distinguish the zones where quasi-Euler equilibria occur. Note that the spheres have been scaled to the
same radius.

Recalling the Poisson structure of the first reduced space given in (4.60), it is clear
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that the second reduce space S*(M) = {(M;, My, M3)/ M} + M3 + M3 = M?} is
endowed with the following Poisson structure

{My, My} = —M;, {My, M3} =M,, {Ms, My} = M, (6.58)

which provides the associated Poisson algebra (C°°(S*(M)), {, }) with the structure
of 50(3). Thus, the equations of the second reduced system are obtained by mean of
the following computations

(M17 M27 M3) = ({M’L7 Mj}>3X3VHS7

which lead to the system

M, = ay MyM;, (6.59)
My = ay M, Ms, (6.60)
My = azM, M, , (6.61)

where a1, a; and ag are given by (6.21), (6.22) and (6.23). Next we study the relative
equilibria of the above system of differential equations, we follow a similar method-
ology to the one applied in the first reduced space, distinguishing between permanent
equilibria and quasi-Euler equilibria.

Theorem 6.9 (Permanent equilibria). The following triads are relative equilibria of
the second reduced system

{El7 - (Zl:MJ 07 0)7 EIS - (07 :tMJ 0)7 E19 - (07 07 iM)}? (662)

Proof. By simple substitution on the system made of (6.59), (6.60) and (6.61) of the
sextuples given in (6.62), it follows that they are equilibria.

]

The energy associated to each equilibria is readily obtained using the Hamiltonian
Hj, they are given by

(—A+2B+2C), , n 4M* — 3M*nBC
[ w2 a
BL7 6CB Tt T ReaBe
(—B+24+42C) . n_. 4M*—3M2nAC
N et 6.63
B18 6OA 9%t —Rgmac 09
(-C+2B+24A) , n 4M* — 3M*nBA
- w2t
B19 GAB T2t T RGaBA
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Theorem 6.10 (Quasi-Euler equilibria). Consider the following set of triads

Eay = {(0, My, £M;), M3+ M; =m?},
By = {(£M1,0,£M;), M} + M; =m?}, (6.64)
Eoy = {(£My, £M,,0), M?Z+ M2 =m?},

Then, if G5 = iG:(f), we have that the sextuples F1g,; and E1g9; are made of relative
equilibria fori = 1,2, 3.

Proof. After some algebraic manipulations one can verify that G3 = iGél) imply
a; = 0 in the equation (6.59), thus the set L5 is a circumference full of equilibria
and by simple substitution we obtain that F;; is also a pair of equilibria. Analogously
for G35 = G§2) or G3 = _ng) and Fs; or Ey, respectively. l

Analogously we have for the energies

(-A+2B+2C). , n 4M* — 3M*nBC
[ M24
20 6CB toGt —RaaBe
(-B+24+2C) , n AM* — 3M2nAC
— M2l 6.65
a1 6CA oGt T gGaac (6.65)
(-C+2B+2A). , n 4M* — 3M*nBA
Py = M24
22 6 AB T3 G + 18GsnBA

In Fig.6.12 we describe the flow and the equilibria on the second reduced space. On
the right, the spheres show how the unstable point switches its position as we move
in the M G3-plane. On the left, we can see how the equilibria becomes degenerate,
along the curve Gél) we get a maximal circumference on the M, M3 coordinate plane
of equilibria. The same occurs for Géz) in the M; M3 coordinate plane and for Gég) in
the M, M, coordinate plane.

6.6 Stability of the T>-Relative Equilibria

In this section we study the stability of the T?-relative equilibria. We start by checking
the stability of the so called permanent equilibria following the 3-step energy-Casimir
method (see [Marsden and Ratiu, 1999]).

We recall that the differential system given by (6.15)-(6.20) is Hamiltonian in the
Poisson structure of S? defined in (6.58), the Hamiltonian function is . In addition,
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Figure 6.12: MG;3;-momentum-momentum plane: Equilibria and general flow on the second
reduced space.

we have that f(M,y) is a Casimir, where My, = M7+ MZ+ M7 and f is any smooth
function f : R — R. More precisely, let us consider

1 3An* (M? - 3G3?) )
fA(l'>—— ﬁ‘i‘ M4 l’—i-(l'—l),
1 3Bn*(M?*-3G3? )
fe(z) = — 55 T WL r+ (v —1)7,
1 3Cn*(M?*-3G3?) )
fo(r) = — %“_ WL r+ (x—1)7,

then, we define the energy-Casimir functions

Cra(My, My, M3) = Fo(My, Ma, M3, Gv, G2, G3) + fa(Myr),
Crp(My, My, Ms) = Fo(My, Ms, Ms, Gy, G, Gs) + fs(Mu), (6.66)
Cro(My, My, Ms) = Fo(My, My, Ms, G1,Ga, Gs) + fo(My),
a straightforward computation shows that the derivative of Cy4, Cyp and Cy¢ evalu-
ated at (11, 0,0), (0, £, 0) and (0, 0, £M ) respectively equal to zero. Let us now
investigate the definiteness of the second derivatives at the equilibria
—8M?% 0 0
D*Ciy = 0 Asp 0 (6.67)
0 0 Aac
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where

and

where

and

where

and

)

Y

1 1  3Bn?(M?-3G3%) 3A4n*(M? —3G3?)
Agp=—5——~+ -
B A AMA AMA
1 1  3Cn?(M?-3G3%) 3A4n? (M?—3G3?)
Ayje=-—5+ —
c A AMA AM?
Apa 0 0
D*Cyp = 0 —-8M%* 0
0 0 Apc
1 1 34n?(M?-3G3*) 3Bn?(M?-3G3?
Apy=—— 5+ —
A B AMA AMA
1 1 3Cn*(M?-3G3%) 3Bn?(M?—3G3%)
Apo=—=—5+ -
C B AMA AMA
Aca 0 0
D*Cie=| 0 Acp 0
0 0 —8M?
1 1  3A4n? (M*-3G3%) 3Cn*(M?*-3G3?)
Acp=—— 5+ -
A C AMA AMA
1 1 3Bn*(M?*-3G3%) 3Cn?(M?—3G3?)
Acg=—5 -5+ -
B C AM? AM?

Thus, taking into account that

Ay <0, Auc <0 & (M,G5) ¢ R2 = (£M,0,0) is Liapunov stable,

Y

(6.68)

(6.69)

Aap <0, Axc <0 & (M,G3) ¢ R1U R4 = (0,4£M,0) is Liapunov stable,

Aap <0, Axc <0 & (M,G3) ¢ R3 = (0,0,£M) is Liapunov stable,

(6.70)

where the regions R; in the M-G5 plane, see Fig. 6.12, are limited by the curves
ALY, G and G, see (6.41), (6.43) and (6.45). Combining this study with the
computation of the eigenvalues of the linearized system we characterize the stability
of the system in Tab. .6.7
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Equilibria M Stability
(:I:M, 0, O) Rl, Rg, R4 stable
Ry unstable
(0,£M,0) Rs, Ry stable
Ry, Ry unstable
(0, 0, ZiZM) Rl, RQ, R4 stable
Rs unstable

Table 6.7: Stability in the second reduced space.
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Chapter 7

On Elliptic Type Intermediaries

In the model that we consider in this chapter, we examine a body moving in a rosette-
like orbit. More precisely we are thinking in two type of application, namely to
artificial satellites or asteroids around a planet. In other words, we consider perturbed
elliptic orbits in general; we also investigate conditions for which this model admits
the circular ones. This scenario leads to medium orbits rather than to the low type of
orbits studied in the preceding chapter. A very well-known example of these are the
Molniya orbits, see Fig 7.1, which are candidates to use the elliptic gravity-gradient
as a zero order in the context of perturbation theory.

'
%

G
Wty

Ly

-

Figure 7.1: NEO Asteroid: An illustration of a hypothetical near earth orbit asteroid.
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7.1. The r-Gravity Gradient Intermediary

7.1 The r-Gravity Gradient Intermediary

Let us consider the elliptic intermediary defined in Section 5.2.1. This is the only
intermediary with non-constant radius we have found and it is given by the following
Hamiltonian function

H’I‘ :HK+HR+M‘(pK7MK7AK7MR7AR)

where the perturbing potential V,. is a function of the radial distance and two of the
rotational and orbital momenta. Along this chapter, we will use the double Projective
Andoyer chart. The Hamiltonian function is given by

M;%) G,
PK2 PK

Sll’l V COS 14
(Z52+ 257) 0n - )+ 5o

)

1
Hi (PIQ( +

“2m
71
2
GMg A3 A3
V(pK,MK,AK,MR,AR> 8,0:;( (QC—B—A) (1—3m> (1_3W 5
(7.1)

The tern (T*RS w,H,) is a Hamiltonian dynamical system. The following propo
characterizes two of the main features of the system. Moreover, the V. encapsulates
the coupling that the system contains.

Proposition 7.1. The functions Hr and Ho = Hyx + V. are conserved quantities
along the flow of H.,.

Proof. By computing {H,, Hr} = {H., H}.} = {Hgr,H});} = 0 the claim is ob-
tained. O]

Proposition 7.2. The Hamiltonians Hgr and Ho define two integrable 1-DOF sys-
tems.

Proof. The claim is readily obtained by expressing these Hamiltonians in the double
Projective Andoyer chart. [

This model has been already considered in the literature [Ferrer and Lara, 2012a].
They simplify the model carrying out the elimination of the parallax as a first step
and after that they build up the associated action-angle variables. The content of
this Chapter may be seen as a complement of this work. We proceed studying the
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system without the elimination of the parallax presenting the analytical solutions of
it including the circular case. Moreover, that is the main aspect, we recover the
model in four dimension together with a constraint. Note that our model include
what in literature has been named dubbed as critical inclination. In order to simplify
the formulas we decided to consider only the equatorial case. The full analysis of the
Hamiltonian system defined by (7.1) is in progress and will be published elsewhere
[Crespo et al., 2015].

7.1.1 On the existence of constant radius. Equatorial orbits case

In this section we analyze if this elliptic intermediary also admits initial conditions
for which the eccentricity of the orbit becomes equal to zero. Henceforth, we as-
sume initial conditions such that (1 — 3A% /M%) = 1. Thus, the Hamiltonian (7.2)
becomes

1 M? M
HK——(PI% K)—g =y

- 2m

PK2 PK
1 [sin’v  cos?v 1
= — M2 — N2 —N? 7.2
HR 2( A + B )( R R)+2C R ( )
GM; A%
Vi(pi, M M) = 20— B—A)(1-32E)
(PK R R) 8p§(< )( MI%

Then, the differential equations for the variables (py, Pk ) read as follows

px = Px/m,

. M, M? 3G M A2 7.3

PK=—92®+ 1§,+g4@(2C—A—B)(1—3—’§), (7.3)
Pk m Py 8Pk My

looking for circular orbits is equivalent to impose px = 0 and Py = 0. Thus, we get
that the following relations hold

M? 3G M, A2
Pr =0, —GMopa + —Eprc + g 2(2C-A-B)(1-3-£1) =0, 74
m 8 My,

the radius pg is readily obtained by solving the above quadratic equation

1 oMz ML 3 A%
m—glm#w—wwm“‘”) ) 0
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Note that not all the solutions given above are valid values of the radius. Namely,
only positive real roots bigger than the Earth radius are allowed and also it must be
satisfied that —1 < cos I = Ag/Mp < 1. That is to say

|ARr| < Mg, PR+ > PKt (7.6)

where pr; = 6.371 Km is the Earth radius. Furthermore, we are going to show that
only one of the roots in (7.5) is valid. That is, the "’positive” root given by

1] mz ML 3 AZ,

provides the radius of a circular orbit just by imposing M2 > GMum pg;, since the
conditions (7.6) are satisfied. The remaining root in (7.5) is

[ a2 M: 3 A2
== o 12020 —A-B)(1-3-R
P 2[gM@m \/gMgm2+2(C 38z ) |

which is not a possible value for a radius since it does not satisfies px_ > pgy. Let
us check this claim in two steps. For the case o > 0, where

3 AZ

we have that px— < 0 and the second condition in (7.6) is not satisfied. On the other
hand, when o < 0 we proceed assuming that px > pg;. Thus, it is clear that
Mi
QM@m

> PKt,

and considering the Taylor expansion of first order of the function

M? M#
K K__ 4

f(fl?): Q’Mem_ gMémQ >

together with the Lagrange remainder we obtain the following limit to the value of

PK—
M? M} —o 1
0< K _ K <—+ —Fs K1
GMzm \/ GM2Zm? Tasg T 8(a? + a)3/? <

where a = M2 /GMym.
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7.2 Analytic Integration

The system of canonical differential equations associated with the Hamiltonian de-
fined by (7.2) reads as follows

px = Prc/m, pr =0,
. M M2 .
PK = - g 2® + 3 K ) PR = 07
Pk P
3G M, AR
20-A—-B)(1-3—=
T sk ( )( Mg )"
, : 3GM
A =0, Ar = ———5—=Ar(2C — A— B),
' - 4M1%pr
AK:0> AR:Oa
. Mg . sinvp  cos’ug
— = =M
HEK p%(7 MR R( A + B
3GMy o
+4M3p3 A% (2C — A—- B),
MK:O, MR:07
1 sin?vg  cosug
Lo e — Np [ — — —
) . A—B
Ng =0, NR:(QAB)(MIQ% N7) sin 2vp.

(7.8)

Remark 7.1 (On special types of trajectories. Critical Inclination). Without entering
in this Chapter in what might be the concept of critical inclination in roto-orbital
dynamics, we would like to point out that there are particular values of the integrals
of our model, that we identify as what other authors have named by critical inclina-
tion, see for example [Chernousko, 1963, Lara et al., 2010]. By simply observation
one can realize that there are two critical inclinations of the plane defined by the
rotational angular momentum. More precisely, we recall that the angle between the
rotational angular momentum vector and S5 the third vector in the spatial frame was
named by I, see Fig. 4.4, we also have that cos I = A /Mg, see (4.42). Thus, for the
particular values of I making cos I = ++/1/3, we have that V,.(px, Mg, Ar) = 0,
which implies that the orbital variables behave as the pure Kepler system, while the
perturbation persists in the rotational part, see equations (7.8).
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This set of differential equations determine a strategy in order to solve them. There
are three trivial subsystems (Mg, Ax), (Vk, Nk ) and (pr, Pr). Besides that, the sys-
tem is endowed with three more integrals Mg, Ag and Mg and it is almost separable
in the following way. By simply observation one can identify five “almost” separate
subsystems, namely (px, Px),(ptrc, Mk ), (Ar, Ar), (tr, M) and (vg, Ng). There-
fore, if we solve first systems (vg, Ng) and (px, Pk ), we are just three cuadratures
far from the solution by injecting px (t) in Az, fix and fig.

Others authors follow an alternative treatment for intermediaries having a cubic per-
turbing term, which is based on the elimination of the parallax, rather than the lin-
earizing change of the independent variable. This technique goes back to Deprit
[Deprit, 1981], and recently has been successfully used to simplify the Hamiltonian
associated to roto-translatory problems, see for example [Ferrer and Lara, 2012b,
Gurfil and Lara, 2014].

e Subsystem (pk, Px): These integration is performed by following the approach
given in [Ferrdndiz, 1986], where a linearizing transformation procedure of the in-
dependent variable is found to solve perturbed Keplerian motions. Without lost of
generality, in order to study the subsystem (pg, Pk ), we consider the partial Hamil-
tonian H = Hx+V,(px, Ar, Mg), rather than the Hamiltonian given in (7.2). It may

1
be splitas H = §P[2( + V (r), where V(r) is the effective potential given by

1 M2 GM, GM A2
Vipg) = -—8 — 72 220 -B-A)(1-32L). (79
Then, we fix the total energy value h and a new independent variable s is introduced
by means of the differential relation

dt = g(px)ds, (7.10)

g(px ) being strictly positive and continuously differentiable along trajectories. The
equation for the radial variable, pg, in the new independent variable is replaced
by
d2pK 8
G2 = gy 97 (pi) (h = V(px))] (7.11)
Therefore, the new time s leads to a linear equation for r iff there exists constants ¢y,
¢y and c3 such that

1
9 (px)(h—=V(pK)) = 5610%1( + copx + cs. (7.12)

Since we have that h — V(pg) = 1/2P%, all the orbits are confined to the region
defined by V(px) < h. The equality holds for the values of r satisfying the cubic
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equation
2

hpiJrupi—%pKde:O, (7.13)
where d = GM,/8(2C — B—A) (1 - 3%) Thus, we are interested in the positive
domain of the polynomial defining the above equation. We start studying the case
of the critical inclination cos? [ = A%/M?% = 1/3, which eliminates the perturba-
tion and lead to the unperturbed Keplerian motion. Under this assumption, condition
(7.12) holds for g(px) = px (Sundman’s transformation), and the roots of the equa-
tion (7.13) become

2 2 2 2

0 1 H H S 2 H M S
:0 = — [ PR _ - -
Pe =0 Px="op T\ o PR o T\ e Ty

Then, pk- and p?% are positive real numbers if ;> > 2|h|©? and they have astrody-
namics sense for the case in which pj;, p% > 7. Then, for the particular values

_o2
¢ = 2h') Co = W, C3 = 9 ) (714)
and assuming elliptic motion, A < 0, we obtain the well known solution
pr = a(l —ecos E),
o 0
ds a(l —ecosE)’ (7.15)
dv
h—!
ds ’
where a = —cy/c1, 1 —€® = 2cic3/c2 and E = /—c; is the eccentric anomaly. Note

that the differential equation corresponding to df/ds is equivalent to the law of areas
when expressed in terms of the old independent variable ¢.

Finally we focus in the elliptic-type motion, that is the case in which px € (pk, p%),
where pl- and p? are two positive real roots of (7.13) bigger than r; and satisfying
that V(p}) = V(p%) = h and V/dpx # 0 at p} and p%. Then, the linearizing
function is given by

9(px) = pi*(pxc + )72, (7.16)
where
@2
h="2, — = ——acy,
2 I (7.17)
,u202+oz,§1 d = —acs.
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Thus, the solution for the radial distance in the new time variable s, has the form
pr = a(l —ecos E), (7.18)
where £ = sv/—2h, 2a = r; + ro and a?(1 — €2) = ryry.

e Subsystem (1, M ): The differential equation corresponding to pix reads as fol-
lows

dux OH —0%2 Mgk —Mg
it AS — = (7.19)

By substitution of (7.18) in (7.19) and fixing the time origin such as, for s = 0,
pr = p% = a(l —e) and px = 0, we have

o Mgds Mg ff ds
1K 0 pr(pKx + @) a®> Jo \/(1—ecosE)(1+aja—ecosE)
(7.20)
by means of the change o variable x = cos £’ we obtain
-M dz
—— / . (7.21)
a®  Jeose /(1 4+ aja—ex)(l—ex)(l—z)(z+1)
The roots of the polynomial under the square root are ;1 = (a + «)/(ea), xy =

1/e,y = 1, 2 = —1. By using formula (253.00) from [Byrd and Friedman, 1971],
and taking into account that x; > y > z and assuming «/a < 0. The case o/a > 0 is
similar. We obtain the following expression for the quadrature (7.29)

—M 4 2
[k (s) = a2K \/(a — _665)(1 . e)p(% k), (7.22)
where
2 20e . B ~ [(1+e)(1 —cosE) 5
k “ata—cite) smgo—sn(u,k)—\/ 21— ccosE) (7.23)

e Subsystem (vg, Ngr): These equations does not contain any perturbed term. Thus
the integration formulas for the pure free rigid body in Andoyer variables given by
Molero [Molero, 2013] are valid

Ng(t) = Rdn(st, k),

in v () = cn(st, k) sy sn(st, k)
5 V1—nsn?(st, k)’ a(t \/1—nsn2 st k)’

(7.24)
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where,
L (B=A)EhC—M?)  ,  (C—B)(M - 2h4)
(C' — B)(MZ? — 2hA)’ ABC ’
o CO = 24) o4 (7.25)
ST o-A "TAC-BY

o Subsystem (Ar, Ar): Once we have the expression for the radius, the quadrature
giving A\ may be calculated. For this task we use the alternative independent variable
s. Thus the differential equation corresponding to Ag reads as follows

dAr OH —pi? A, — Ay
as 9 K)aAR VoK +apic pry/pi(px + )
where 5GM
_— @ N J—
Ay=— P AR(2C — A - B). (7.27)

By substitution of (7.18) in (7.26) and fixing the time origin such as, for s = 0,
pr = p% = a(l —e) and Ag = 0, we have

A /S —A)\dS
R:
0 pPry Pr(pK + Q) (7.28)
—A)\ /S ds '
a*> Jo (1—ecosE)\/(1—ecosE)(1+aja—ecosE)

by means of the change o variable x = cos £/ we obtain
A)\ 1 dx
AR - —2 .
@ Jeose (1 —ex)y/(1+a/a—ex)(l—ex)(l—z)(z+1)

(7.29)

The roots of the polynomial under the square root are z; = (a + «)/(ea), xs =
1/e, y = 1, z = —1. By using formula (253.39) from [Byrd and Friedman, 1971],
and taking into account that x; > y > z and assuming «/a < 0. The case a/a > 0 is
similar. We obtain the following expression for the quadrature (7.29)

A)\ 1—e /u 2 9
Ap = — 1 — ajsn®u)du 7.30
g V1—e2+a(l+e)/a o ( 2sm) 739
where,
2ae 2e , (14+e€)(1—cosE)
32— 2 _ — sn(u, k) =
(a+a—eca)(l+e) QT MY sn(u, k) \/ 2(1 —ecos E)
(7.31)
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Finally, from [Byrd and Friedman, 1971] formula 331.0, we get the expression for
AR

Ax(1—e)
Ar(s) = a2\/1—e2+a(l+e)/a 7.32)
(a+a—ea)(l+e) '

a(l —e)

where the functions F'(p, k) and E(¢p, k) are the normal elliptic integrals of the first
and second kind respectively.

e Subsystem (g, Mg): Considering the differential equation corresponding to jir in
the system (7.8) we are lead to the following quadratures

pa(t) = L(t) + L), (7.33)
where . G
B 3G M, 9 4
Li(t) = /4M§p§(()A (2C — A — B)dt, (7.34)
and . L )
sin“vrp  cos®vgp
L(t :/ M ( + )dt, (7.35)
2(t) o P A B

Proceeding with /;(t) in the same way than in the subsystem (Agr, Ag), we change
the independent variable ¢ to s and we obtain the following quadrature where

s —-A,d
L(s) = / L (7.36)
0 PK

Vrr(pr + @)

with
3GM

I 4 MS
Therefore, taking into account the expression for Ag given in (7.28), [;(s) is obtained

replacing Ay by A, in (7.32). Then, we focus in the second quadrature I5(s). After
some easy computations we have

A

A%(2C — A - B). (7.37)

o t
L(t) = Mg [% + AA—BB/O cos® vp(t) dt] : (7.38)

and recalling the formula (7.24) I, turns to

t (A=B)(C—A) [* sn%(st k)
Z+ A?2(C — B) /0 1 —nsn?(st, k

L(t) = My [ ) dt] . (7.39)
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Finally, using formula (337.01) from [Byrd and Friedman, 1971], we get that

Lt) = My | L+ A=BIC—A

A n?A2(C — B) (H(%HQak) — F(yp, k)) ) (7.40)

where sin ¢ = sn(u, k) and I1(p, n? k), F(p, k) are the normal elliptic integrals of
the third and second kind respectively.

7.3 Connecting with the Quartic Model

From now on, we make use of the “almost separability” feature of the system (7.1)
and we study the orbital and rotational subsystems separately. In this Section, we
connect the intermediary with the family given in (4.1) in two stages. In oder words,
the particular “separable coupled” structure of system (7.8) allows us to split the
Hamiltonian (7.1) in two parts

A2
1 M2 M B (1 - 3%)
HO—HKJFV;—Q_(p[z(JF QK)_Q ° 3MR 7
m Pk PK Pk (7.41)
1 (sinvp  cos’vg 9 9 1,
HR—§< A B )(MR_NR)+%NR>
where M
B=2"2(2C - B - A). (7.42)

8
The orbital part Ho = Hx + V. contains the perturbing potential and the pure ro-
tational part Hpy is the Hamiltonian of the free rigid body in Andoyer angles, see
[Molero, 2013]. Nevertheless, for the case of the orbital part, the quartic Hamiltonian
will be replaced by its square root following the approach of Moser in [Moser, 1970].

Proposition 7.3. The subsystems defined by Ho and Hg, provided a suitable set of
parameters a;, properly regularized, are related to a constrained flow of a perturbed
double copy of the family of Hamiltonians (4.1).

Proof. Let us consider the square root of the following quartic realization with pa-
rameters a; = -+ = a; = 0 and ag = 1/4m?. Thus, H, = \/F, = ws and let us
perturb this Hamiltonian by means of

4dam

1
Hy = — (wllg]]* + |Q[* + Tl

5 ) = he, (7.43)
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where « is a small parameter depending on the physical parameters and the rotational

integrals
(-3
o=p 1_3_). (7.44)
Mg

The connection between the harmonic oscillator and the Kepler system is made
through a regularization of the independent variable. The same applies for this per-
turbed case, namely we have the following change of independent variable
1
t = ———=ds,
4m|qf?

it leads us to the following Hamiltonian X = 1/(4m||q||*)(H. — h.,) for each fixed
energy level K = (0. Next, we rewrite this Hamiltonian in Projective Andoyer vari-
ables with F'(p) = \/p

(7.45)

1 M? h/4
e (e [dm | o @ (7.46)
2m p? P P 8m
Therefore, by choosing the energy level of the oscillator as
hy, = 4mG M (7.47)

and redefining the Hamiltonian /C we obtain that the Hamiltonian of the 4-D per-
turbed isotropic oscillator is given by

- 1 M? h,, /4
/C:—(PM—)—MJFE:HO, (7.48)
2m p? p 1%
in the manifold K = —i. This Hamiltonian, when constrained to N = 0, leads to

m
the Kepler system given by the orbital part in (7.41).

Therefore, for my/f,/4 = GM and §/(8m) = B (1 — 3A%/M3) we obtain that
K = Ho defined in (7.41). In addition, taking into account that K =Ho = ho, we
obtain that

w = —8mhp >0 (7.49)

where the energy level A is assumed to be negative. In other words, we only consider
closed Keplerian orbital.

For the rotational part we have a free rigid body (FRB). Thus, by using the Projective
Andoyer variables and choosing the parameters

1 1 1
8—A7 CL3:8—B, a4:@.
we readily obtain the Hamiltonian H . This given quartic family realization, together
with the restrictions ||q|| = ¢ and (||q||, ||Q]|) = 0, leads to the (FRB) system, see
Section 4.6.1. [

(7.50)

a1:a5:a6:0, a9 =
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7.4 Analysis of the T?-Relative Equilibria

Rather than in the circular intermediary case, the triaxiality does not play a role in the
discussion of this model. As a consequence, the analysis of the relative equilibria be-
comes simpler. From the expression of the system of differential equations (7.8) it is
clear that there is not absolute equilibria of the system. More precisely, the equations
corresponding with fix and ji do not vanish. Then, we focus in the My Mpg-reduced
system, which removes the angles 115 and py; and we look for T2-relative equilibria.
For this purpose, we proceed to express the Hamiltonian H,. in the My Mp-reduced
space given by (S%, x S2, x C?)K x (S32, x S%, x C*)"*, where a generic point will
be represented in the following fashion

p=(G% MR WE GK MR WK, (7.51)
and

GK:(vaGé(?G?)v MK:(MIK’M2K>MZ{()7 WK:(WlKvavwfiK)v
G = (G?,Gf,G?), M" = (MIR’M2R’M?F)’ W = (Wf%?WQR’W?)
(7.52)

are the rescaling of the w; for: = 1,...,9 given in (5.47). These variables satisfies
the following relations that define the reduced space

2 2 2 2 2 2 2 2 2
Gi7+ Gy + Gy = M+ My + Mg = W5t = Wy — W = M

2 2 2 2 2 2 2 2 2
GI" + G + G = M + M3" + M5 = W& — Wy — W = M.
(7.53)

Finally, we obtain the following expression for the Hamiltonian H,,

H, = Ho(GR, WK; 8) + HR(MR;t)

R2
mf (1—3%> 1 MER MBS ME

— 1 K _1 K R - 1 2 3
(o W (= D gy G )
(7.54)

Observe that in the above reduced Hamiltonian we have carried out a partial regu-
larization, i. e., the orbital part and the rotational part are not expressed in the same
independent variable. In this light, the system of differential equations in the reduced
space is obtained after some computations and taking into account that the derivative
corresponding with d/dt is denoted by a dot and the derivative corresponding with
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d/ds is denoted by a tilde. Thus, the differential equations read as follows

Gt —125 crar yr = B Cymyr gir g
/2 bl BC ) )
Mg? (W™ + W5’
G = 120 crel, =S Anrap =0
/2 J AC J
Mg? (Ws" + W, ")’
. . A_B .
Gyt =0, M?ZWMf%Mf, W5t =0,
2am
GE =MK' =0, WK =(0-wWFK-Q1+w)WEK+ ,
d i =00 = (1 +w) WK+ WE

2aam
GE = MK =0, WK=wF[1+w- ,
’ ’ ’ ! (W + Wiy’

20m
GE =K =0, WwWK=wFK[|1-w+ ,
’ ’ ’ ! (W + Wiy’
(7.55)

where we recall that « = 3 (1 — 30{22 / MI%) This system is made up of six “almost

separable” subsystems. By simply observation of the equations we see that there are
three trivial subsystems and the remaining three ones are separated except for the fact
that they share some integrals. The strategy to solve this system is to integrate first the
equations corresponding to the subsystems (MPE, MFE ME) and (WE, WE WE).
Then, we obtain M and WX as functions valuated in ¢ and s respectively. Finally,
taking into account the relation s = s(t), the subsystem is integrated by injecting
WK (s(t)) and WX (s(t)) in the equations G’ and G§".

The particular way in which this system is expressed shows how the perturbation
acts. On one hand, the rotational part (G, GI GE) represents the body coordinates
of the total angular momentum, which are no longer fixed. Instead, they move in
circumferences with center in the GgR—axis. On the other hand, in the orbital part
the angular momentum remain unchanging over time. However, the perturbation
affects now to the shape of the orbit, which is related to the variables WlK , W5K and
WK,

Next we study the equilibria for the three non-trivial subsystems given above in
(7.55), which correspond to (G, GE, GI), (ME, ME, ME) and (W, WE WEK).
These partial analysis are summarized up in Theorem 7.4, where we distinguish be-

tween isolated equilibria and a one-parameter family of equilibria. The proof is a
consequence of the subsequent partial studies of the preceding subsystems.
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Theorem 7.4 (Relative equilibria.). The set of 18-tuples given in Table 7.4 corre-
sponds to equilibria of the system defined by the equations (7.55).

Isolated Equilibria
Ey, = (0,0, £Mpg, £Mz, 0,0, WE GE ME 0, (WEY (WEY)
Ey = (0,0,+Mg, 0, £ Mz, 0, WE GE MK 0, (WEY (WE))
F3 = (0,0,+Mg, 0,0, £+ Mg, WE GE ME 0, (WEY (WE))

One-Parametric Families of Equilibria
E, = (GE GE 0, £Mp, 0,0, WE GE MK 0, (WEY (WEY)
Es = (GE,GE 0,0, £Mz, 0, WE GE MK 0, (WEY (WE)Y)
E¢ = (GE,GI.0,0,0, =Mz, WE GE MK 0, (WE), (WE))

Table 7.1: We have used the notation given in (7.51) and (7.57) for W&, GX, M¥ and
(WEY (WE)) respectively. Note that E;, for i = 1,2,3 denote sets of four isolated equilibria
and E;, for i = 4,5, 6 denote one-parametric families of equilibria.

e Subsystem (W[ WX WXK): The evolution of p* and P¥ in Projective An-
doyer variables is related to this subsystem. In this sense, since (G, GI GX) and
(M, MJF, ME) are constant, the orbital motion is encapsulated in the reduced sys-
tem given by the reduced variables (WX, WX WX). The unperturbed case o = 0,
leads to the pure Kepler system, to which we devote special attention. After that, we
explore the way in which this remarkable case is perturbed.

The existence of equilibria in this subsystem is related to the circular orbits and is
characterized by the conditions W[ = 0 and W[ " = 0, see (7.55). Taking into
account these conditions and the defining relation among the variables of the reduced
space, we lead to the following cubic equation characterizing the equilibria

4aW33+M—?(W32— Mg? (Bw+1)a W, a*m M (w+ 1)
m

w w dwm

= 0. (7.56)

Generally, the roots of the cubic equation will be denoted by (W)’ and the equilibria
of the subsystem are given by

(0, (W3, (W4)") (7.57)
where (WE)Y? + (WEKY? = M2.
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When « > 0 the rule of Descartes, see [Mignotte, 1992] page 197, shows that the
cubic equation has only one positive root. For a < 0, the same argument shows that
there is one negative root and two complex or two positive real roots. However, fur-
ther analysis should be done to clarify the negative case. Furthermore, the existence
of bifurcations depends on the multiplicity of the roots of the cubic equation, it leads
to the study of the zeros of the discriminant given by

4096 w?am (—27w o®m? + Mg) (—4 a?m? +w Mg + w2M16<)2 . (7.58)

This task, together with the study of the characterization of real roots in the case o <
0, will be tackled in [Crespo et al., 2015], which is already in progress. Therefore, in
what follows, we focus in the cases & = 0 and o« > 0.

* Case o = 0. The Kepler like system: Given a triaxial body, the critical inclination
cosI = Ar/Mpr = +1/1/3 makes o = 0 and the cubic perturbation vanishes. Thus,
the orbital part of the system becomes Keplerian with Hamiltonian

2
N = 1 (P}; + MK) _ Mo _ (7.59)
2m PK2 PK
Observe that the physical parameters G, M., and m are fixed all along and recalling
the connection of the Kepler and the oscillator systems given in Proposition 7.3, we
also have that the energy ho should be fixed in order to proceed with the regulariza-

tion that leads us to the reduced Hamiltonian of the oscillator

Hey = (w+ DOWE + (w— 1)WE = h,,. (7.60)

Therefore, the energy of the oscillator is fixed by the gravitational constant and the
masses of the bodies involved h,, = 4GM m and the frequency is related to the
Keplerian energy w = —8mhg. As a consequence, h,, is fixed for each problem and
it does not make sense to study the intersection of the reduced space with the level
sets of the oscillator. Instead, variation on the Keplerian energy are related to changes
in the frequency w. In Fig. 7.2 we show the corresponding reduced orbits for several
Kepler energy levels, i.e. the influence of the parameter w. In this figure it is shown
that there is always a tangent contact between the upper sheet of the hyperboloid and
the Hamiltonian surface. Moreover, these contacts presents three possibilities; the
case h,,/2 = M3 implies that the tangent contact occurs at WX = 0, for h,, /2 >
M2 and h,/2 < M2 we have the contact at W < 0 and W > 0 respectively.
Those tangencies are related to equilibria of the system (W[, Wi W) and their
localization are obtained by means of the cubic (7.56). For the case o = 0 it becomes
the quadratic equation with its corresponding roots

M (w+1)? _
4w N

M 1
0, = Wgzim. (7.61)

My W3 —
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(&) Mg > hy/2 (f) Mk > hy, /2. Projectionon W; =0

Figure 7.2: Evolution of the solution curves with the value of the parameter w. Details for the cases
Mg < hy/2, Mg = hy, /2 and Mg > h,, /2. Observe that all the Hamiltonians are given by a bundle
of planes through the line (W1, —h, /2, hy,/2).
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Therefore we have two equilibria in this case, they correspond to the tangential in-
tersection of the Hamiltonian plane with the sheets of the hyperboloid defined by the
relation among the reduced variables. Nevertheless, the negative root is excluded
since our problem has the restriction W3 > Mj. Observe that the positive root is
guaranteed to satisfy this condition since (w + 1)/(2y/w) > 1 for all w > 0.

x Case o > 0. Perturbed Kepler motion: For this case we have only one positive
root of the equation (7.56) and then only one equilibria, which is characterized by
the tangential intersection of the reduced orbital Hamiltonian given below and the
hyperbolic reduced space

M g
wl
[0k}

(@ w<1 b w=1 ©) w>1
dw<1,W; =0 @uw=1W, =0 MHw>1W, =0

Figure 7.3: The role of the orbital energy in the shape of the reduced orbits. The red straight line
corresponds to the level set of H,, for « = 0. For a > 0 this straight line breaks into the curve plotted
in blue color, which approximates asymptotically to the line wg = —ws.

GR?
(W3 + W)
We illustrate the way in which the Hamiltonian intersects with the hyperboloid in
Fig. 7.4

Ho = (w+ DHWE + (v — )W + (7.62)
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e Subsystem (G, GE, GI): From the way in which equations are given, equilibria
are obtained by simply observation. Thus, we have that the equator G = (0 is a
circumference of equilibria and also the poles (0,0, £M), see Fig. 7.4

Figure 7.4: Gr-equilibria: One-parametric family of equilibria in the intersection with G = 0
and two isolated equilibria located in the poles. Red color is used to denote the set of equilibria.

e Subsystem (Mt M1 MI): The coordinates M} for i = 1,2, 3 correspond with
the rotational angular momentum in the spatial frame. This subsystem corresponds
to the reduced unperturbed free rigid body. Therefore, the equilibria are given by the
terns (£M,0,0), (0, £M,0) and (0,0, £M), see Fig. 7.5.

Figure 7.5: Mg-equilibria: The equilibria in the Mg subsystem correspond to the classical picture
of the rigid body. Therefore, in the triaxial case, we only have isolated equilibria in the intersections

of the coordinate axes and the sphere.
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Appendix A

The Two Body Problem

In this Appendix we present the unperturbed two body system and its reduction by
the polar coordinates to the Kepler system. Our aim is just to provide some notation
and refresh basic facts. Further details may be found in any book of astrodynamics
or celestial mechanics, see for example [Abad, 2012].

A.1 Formulation of the 2-Body Problem

Applying Newton’s second law and law of gravity in an inertial system of reference
Ry = {01, j, k} we obtain

Gmima(q2 — q1)

Fy=miqi =p1 = TP
(A1)
P i = o — gmims(q1 — ¢2)
2 =Ma(qs = P2 = qu — q2|]3

where ¢; € R3 for i = 0, 1 are the position vectors of the punctual masses m; referred
to Ry, p; € R? are the associated momenta and G = 6.67384 x 1071t m?/s? kg is
the universal gravitational constant. On the other hand, taking into account that by
simply definition of the momenta p; = m;¢;, we obtain a system of twelve ordinary
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first-order differential equations given by

. y4i
Q=—
my
. b2
qa = —
mo
. gmima(q1 — ¢2) (A2)
b1 =— 3
g1 — q||
. Gmuma(qe — q1)
P2 = — 3
g1 — gl

Those equations can be rendered as a Hamiltonian system (7*R® — {0}, w, Ho) by
considering (q1, g2, p1,p2) € T*R® — {0}, with the standard symplectic form w =
dq N dp and the Hamiltonian function

H2 Gmymy

[p1 D2
Ho = 2l P2l
° 2my 2my lgr — 2|

I

(A.3)
this system is coupled and nonlinear, luckily it is provided with several integrals.

Proposition A.1 (The Classical Integrals). The total linear momentum, the total an-
gular momentum and the energy Ho are integrals of the system (T*R%—{0},w, Ho).
Moreover; the center of mass moves with uniform rectilinear motion.

Proof. Let L = p; + p, the total linear momentum, the fact that it is an integral
can easily be derived from (A.1), which shows that L =0. Then, the total linear
momentum is constant and the center of mass of the system defined by C' = mq; +
mape moves with uniform rectilinear motion, that is C'(t) = Lt + Cy, where L =
(I1,15,13) and Cy = (¢4, 2, c3) are constant depending on the initial conditions of the
system. On the other hand, let the total angular momentum A = ¢; X p; + g2 X po.
Then

dA . ) . )
%:ChXp1+CI1><P1+QQ><p2+Q2><P2

. ) . . mim X — mim X —

ZQ1Xm1CJ1+CJ2XmQCJ2+g 12 1 (qi Q1)+g 112 42 (q; ¢2)

g1 — gzl g2 — a1
O X X
:0+O+gm1m2fh SCI2 gmims qo 3Q1
HQ1 - C]QH HCIQ - C]lH
=0.

(A.4)
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[]

As a result, we have that the three components of L, Cy and A plus the energy Ho
are the classical 10 integrals of the 2-body problem. Next we use them to reduce the
system.

A.1.1 First reduction. Jacobi coordinates

Modern techniques of reduction take advance of the invariance of the system under
the group of translations. The action of this group has an associated momentum map.
Thus a geometric reduction in the sense of Marsden-Weinstein-Meyer may be per-
formed, see for example [Abraham and Marsden, 1985, Holm, 2008a, Singer, 2001].
An alternative approach to carry out the reduction is by means of a change of vari-
ables, which incorporates the conserved quantities among the variables. As a first
step in the reduction process, the Jacobi coordinates incorporates the integrals corre-
sponding with L and C through the following transformation

T:(T'R°% w) — (T"R% w), (q,p) = (Q, P),

where (¢,p) = (q1, ¢2,p1,p2) and (Q, P) = (Q1, Q2, Py, P») are given by

m1q1 + Mago

Q1=q — @, Q2 = )
mi + Mo
(A.S)
Mopy — M
Plzua Py =p1+ p2
my + me
Proposition A.2. The above linear map is a symplectic transformation.
Proof. A straightforward computation shows that
p1dqy + p2dge = PrdQy + PadQs.
[
The expression of the Hamiltonian in the Jacobi coordinates is
1 1 1 Qm1m2
Ho==|(—+—)PP+P| - Z——". (A.6)
R CTr T R TN
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and the new system of differential equations becomes into the form

mims

QlZ—Pla Q2:P27
mi + mao
A7
po_ 2GmimaeQy P o_§ A7)
1 — 71 A (12 2 — Y,
Q113

thatis, a 3 DOF system for ; and P, given by (T*R?*—{0}, w, Ho). Since the system
is separated and trivially integrated for the variables (), and P, In what follows we
focus on the variables (; and P, and drop the subindices. Then, we express Ho in
the more compact form

[~ GMs
Ho = - ; (A.8)
2m |G
myma . . .
where m = ———— and GM, = Gmymsy. Then the differential system is finally
my + Mo
written as
Q= mP,
. 9gM (A.9)
P = _g—;a Qa
1R

This system is named as the Kepler system, it may be interpreted as an approximation
of the 2-body problem when one body is assumed to be much more massive than the
other, therefore fixed in the origin. Note that at this point we have not already take
advance of all the integrals provided in Proposition A.1, that this system may also be
reduced by means of the axial symmetry of the total angular momentum A. That is
to say, as before, A = () x P angular momentum is constant.

Proposition A.3 (Classical integral). The angular momentum A = Q X P is a con-
served quantity of the system (T*R> — {0}, w, Ho).

Proof. Analogous to the proof of Proposition A.1.

A.1.2 Second reduction. Polar-Nodal variables

Again a reduction process can be carried out by taking into account that the rotation
action of the group SO(3) of rotations of three-space acts on T*R3 — {0}. This is a
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Hamiltonian action and has a momentum map associated. Nevertheless, following the
same approach than in the first reduction, further simplification of the system is done
by choosing suitable coordinates. The second reduction is performed by using polar-
nodal variables [Deprit, 1981]. Then we recall to the reader the geometry associated
to those variables, see Fig. A.1.

S3

Figure A.1: Space S and nodal N frames and the angles relating them.

Polar-nodal coordinates are very well known in celestial mechanics, they have been
used in the first of the twenty century by Hill and Whittaker, and also they have been
exploited in the artificial satellite theory along the sixties. Since they are based in
the existence of the node, that is, the intersection of the invariant plane of movement
with one of the coordinate planes, three charts are needed. Each chart corresponds
to the case in which the node is obtained as the intersection with the plane s;s,,
5183 Or So83. As it is shown in Fig. A.1, here we give the detailed derivation of the
polar-nodal variables referred to the plane s; — ss.

The configuration space in the first reduced space is R* — {0}, where we consider a
spatial reference system given by {6; s1, S2, $3}. The invariance of the total angular
momentum A = () x P define an invariable plane called the orbital plane. We
exclude here the case of rectilinear orbits, that is, we restric to the region of the phase
space where A # 6 then we can define n as follows

A=Zn, A>0, |n|=1,

the new vector n is normal and also perpendicular to the invariant plane of motion,
which inclination € respect to the s; so-plane (the equatorial plane) is given by

s3-n=cose, 0<e<m.

As the line of the ascending node is defined as the interception of the orbital plane and
the horizontal plane s,s5 and therefore it has to be perpendicular to both the angular
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momentum and the s3 axis, we have that ,calling / the vector identifying the position
of the ascending node
53 X n = [sine,

where
s3 X A=1=(Q1F3 — Q3P1,QaP3 — Q3P,0),
the longitude of the ascending node is the angle defined by

[ = coswsy + sinwso,

w € (0,27) is therefore found by:

B I Q1P — Q3P
COSW = §1 - —— = :
Il \/(@QiPs — Q3P1)% + (QoPs — Q3 P2)?
. Q23 — Q3P
sinw = ||sy X

WH - V( Q1P — Q3P)? + (Q2P3 — Q3 Py)*

We define also the latitude argument, ¥ € (0, 27), by means of the vectors u, which
is a unitary vector pointing in the direction of P and [ and the relation between
them

u=I[cost—n x [sin?.

Finally the relation between the Cartesian and polar-nodal variables reads as fol-
lows

Q= ru,

= (A.10)
P=Ru+ —n xu.
r
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