
UNIVERSIDAD DE MURCIA

FACULTAD DE INFORMÁTICA

Model-Driven Modernisation of
Legacy Graphical User Interfaces

Modernización Dirigida por Modelos
de Interfaces Gráficas de Usuario

D. Óscar Sánchez Ramón

2014

Model-DrivenModernisation of
LegacyGraphical User Interfaces

A dissertation presented by
Óscar Sánchez Ramón
and supervised by

J. GarcíaMolina & J. Sánchez Cuadrado

In partial fulėllment of the requirements
for the degree of Doctor of Philosophy
in the subject of Computer Science

University of Murcia
October Ǌǈǉǌ

Modernización Dirigida por Modelos
de Interfaces Gráėcas de Usuario

RĹňŊŁĹł ĹŎŉĹłĸĽĸŃ ĸĹ ŀĵ ŉĹňĽň
Motivación
Actualmente numerosas empresas abordan la migración de los sistemas heredados (legacy sys-
tems)quedisponen, conel ėndeadaptarlos anuevas tecnologíasde soěwarequeofrecenmejores
características (por ejemplo,mayor facilidaddemantenimientoomejor experienciadeusuario).
Las interfaces gráėcas de usuario (Graphical User Interfaces, GUIs) constituyen un elemento im-
portante en dichas migraciones, dado que son el medio que los usuarios utilizan para interac-
cionar con el sistema. Además, la aparición en los últimos años de una gran variedad de dispos-
itivos capaces de ejecutar aplicaciones (tabletas, teléfonos y televisiones inteligentes, etc.) ha
repercutido en que el diseño de las interfaces de usuario se convierta en un reto mayor.

Un ejemplo típico de sistemas heredados son las aplicaciones creadas con entornos ĆD
(RapidApplicationDevelopment), tales comoOracleFormsyMicrosoěVisualBasic, quegozaron
de gran aceptación en los noventa. Nuestro trabajo se centrará en este tipo de aplicaciones, a
las que nos referiremos como aplicacionesĆD. Éstas ofrecían un paradigma de programación
centrado en la GUI que permitía la creación de ventanas en un tiempo reducido. Sin embargo,
las aplicacionesĆDposeían dos características fundamentales que reĚejan prácticas desacon-
sejadas en ingeniería del soěware. La primera característica es que la posición de los controles
(tales como cajas de texto o etiquetas) estaba expresada con coordenadas. Esto constituye una
mala práctica porque el cambio de posición de un control puede implicar la modiėcación de la
posición de otros. Además, las interfaces expresadas con coordenadas sólo están optimizadas
para una resolución y tamaño de ventana determinados (no se adaptan al tamaño de éstas), por
lo que no se muestran adecuadamente cuando redimensionamos las ventanas o cuando se eje-
cuta la aplicación en dispositivos con pantallas de diferentes dimensiones. Por el contrario, en
la actualidad se usan gestores de layout (layout managers) como FlowLayout o BorderLayout en
Java Swing, que permiten adaptar el contenido a las dimensiones de la ventana.

La segunda característica consiste en que el código de losmanejadores de eventos de la inter-
faz frecuentementemezcla diferentes aspectos, desde aspectos arquitecturales como la lógica de
negocio o la presentación, hasta aspectos funcionales como la validación de los formularios o el

i

Ěujo de navegación entre las vistas de la aplicación. En la actualidad habitualmente se utilizan
frameworks de desarrollo que fomentan la separación de aspectos porque facilitan en granme-
dida el mantenimiento y la extensibilidad de las aplicaciones, en contraste con las aplicaciones
ĆD que eran más difíciles de mantener.

En relación con la primera característica y su tratamiento en una migración, existen diversi-
dad de trabajos que versan sobre ingeniería inversa de GUIs [ǉ] [Ǌ], sin embargo en muchos
de ellos la migración de las ventanas se limita a detectar controles y traducir dichos controles al
toolkit de la tecnología destino. Especial relevancia tienen los trabajos [ǋ] [ǌ] y [Ǎ], que presen-
tan tres enfoques que prestan atención al layout de las vistas (ventanas, páginas web, etc.) y que
extraen un modelo que representa dicho layout. La desventaja fundamental de estos enfoques
es que obtienen una única representación del layout (por ejemplo, usando el GridBagLayout
de Java Swing), con lo cual, la generación de interfaces utilizando otros tipos de layout (por
ejemplo, las capas Ěotantes de CSS) no es una labor directa.

Con respecto a la segunda característica, podemos encontrar varios trabajos centrados en el
análisis de código de la GUI [ǎ] [Ǐ] [ǐ]. La gran mayoría se centra en extraer las transiciones
que se producen entre las distintas vistas de la aplicación, que normalmente se representan con
algún tipo demáquina de estados, con el objetivo de utilizar esta información para en el ámbito
de la comprensión de programas (program comprehension) o para realizar pruebas unitarias.

Objetivo
Nuestro objetivo consiste en facilitar la migración de aplicaciones ĆD a través de la creación
de un framework de migración de GUIs de sistemas ĆD heredados. El framework está desti-
nado fundamentalmente a inferir el layout de la aplicación original y separar los aspectos que se
encuentran entremezclados en los manejadores de eventos.

El análisis de varias aplicaciones creadas con entornos ĆD y el estudio del trabajo rela-
cionado condujeron a la extracción de una serie de requisitos que orientó el diseño de la solu-
ción, y que son los siguientes:

(Rǉ) Extracción explícita de información. Es necesario obtener una representación explícita de
alto nivel la información de la interfaz de usuario.

(RǊ) Modularidad. Es deseable fragmentar el proceso de reingeniería en etapas más sencillas
para favorecer su mantenimiento.

(Rǋ) Automatización. El proceso debe ser automatizado en la medida de lo posible.

ii

(Rǌ) Independencia del y origen y el destino. Debe ser posible extender el proceso y su reuti-
lización con distintas tecnologías de origen/destino con un esfuerzo relativamente re-
ducido.

(RǍ) Asemejar la estructura visual y lógica. La estructura lógica de las vistas, esto es, cómo es-
tán contenidos unos controles en otros, debe coincidir con la estructura que un usuario
percibe al observar la vista.

(Rǎ) Representación de alto nivel. El layout de la vista debe expresarse con construcciones de
alto nivel, como por ejemplo los gestores de layout de Java Swing, que controlan la dis-
posición espacial de componentes en una ventana.

(RǏ) Tolerancia a controles desalineados. La solución debe manejar la situación en que los con-
troles se encuentren levemente desalineados.

(Rǐ) Soluciones alternativas. Un mismo layout puede lograrse con varias combinaciones dis-
tintas de gestores de layout, y sería deseable que los desarrolladores pudieran conocer
esas alternativas.

(RǑ) layout conėgurable. El conjunto de gestores de layout a utilizar debe ser parametrizable.

(Rǉǈ) Abstracción de código. El código se debe abstraer para facilitar su análisis. Dado que el
código de losmanejadores de eventos responde a una serie de patrones recurrentes, sería
interesante detectar esos patrones para abstraer el código.

(Rǉǉ) Categorización de código. Es necesario que sea posible identiėcar los distintos aspectos
arquitecturales del código de la aplicación, esto es, el código de la lógica de negocio, de
los controladores y de la interfaz de usuario.

(RǉǊ) Identiėcación de las interacciones y Ěujos de navegación. La solución deber permitir además
identiėcar otros aspectos, como las interacciones que existen entre los controles (por
ejemplo, que almarcaruna casilla de veriėcación sepermita editar undeterminadocampo
de texto) o el Ěujo de navegación entre las distintas vistas de la aplicación.

iii

Desarrollo de la arquitectura del framework
Nuestro framework ha sido construido aplicando la Ingeniería del Soěware Dirigida por Mod-
elos (Model-Driven Engineering, MDE) que se caracteriza por utilizar modelos a varios niveles
de abstracción para representar diversos aspectos del sistema, con el ėn de obtener una autom-
atización en el proceso de desarrollo. En nuestro caso, MDE aporta a nuestra solución dos
principales beneėcios : la representación de aspectos del sistema heredado mediante mode-
los y metamodelos, y la automatización del proceso y modularidad de la solución por medio
de cadenas de transformaciones que incluyen transformaciones modelo-a-modelo, modelo-a-
código y código-a-modelos.

La arquitectura de modelos que hemos diseñado incluye dos modelos que independizan la
solución de la tecnología origen (el modelo GUI normalizado y el modelo de comportamiento
ĆD), y una serie demodelos de interfaz de usuario concreta (CUI, ConcreteUser Interface) que
aportan independencia de la tecnología destino. Hemos deėnido varios modelos de CUI, de
modo que cada uno de ellos trata un aspecto diferente (aquí no nos referimos a aspectos arqui-
tecturales), con lo que se fomenta la separación de aspectos. Losmodelos CUI implementados
son:

• Modelo de estructura: muestra la estructura lógica de las vistas, esto es, muestra las partes
distinguibles de las vistas y los controles que contienen.

• Modelo de layout: representa la disposición espacial de los controles que contiene la vista
en términos de gestores de layout.

• Modelo de separación de aspectos: expresa el código de los manejadores de eventos me-
diante patrones de código y etiqueta dicho código con el aspecto arquitectural al que
corresponde (lógica de negocio, GUI, o controlador).

• Modelo de interacciones: expresa las dependencias entre los controles de la interfaz, así
como el Ěujo de navegación que existe en las diferentes vistas de la aplicación.

Inferencia del layout
La inferencia del layout de las vistas consta de tres fases: i) extracción de regiones, ii) repre-
sentación de relaciones espaciales relativas, y iii) descubrimiento del layout de alto nivel. Se
han desarrollado dos versiones del proceso de inferencia del layout. En la primera versión se

iv

abordaron las tres fases mencionadas, siendo la última de ellas implementada mediante una
aproximación heurística. En la segunda versión se sustituyó el algoritmo de la tercera fase por
un algoritmo exploratorio, más soėsticado que en la primera versión, lo que conllevó también
a realizar modiėcaciones en la segunda fase.

En las aplicacionesĆDpuedenexistir controles simples (nocontenedores, como losbotones)
queno se encuentren contenidos en controles contenedores (por ejemplo, paneles), sino que se
encuentren solapados con estos. El proceso de extracción de regiones (primera fase de la infer-
encia del layout) en primer lugar hace explícita esta relación de contención entre los controles.
Para lograr esto, se crea una región para cada control, y para aquellos controles que visualmente
tienen borde y contienen a otros controles simples, se añaden las regiones de estos últimos a la
región del control que los contiene visualmente. En segundo lugar, la extracción de regiones
evita que existan controles simples al mismo nivel que controles contenedores. Para ello, crea
regiones nuevas que contienen las regiones de aquellos controles no contenedores que están al
mismo nivel que controles contenedores. Al ėnal de este proceso se tiene la vista organizada en
un árbol de regiones, donde la estructura lógica concuerda con la estructura visual.

La segunda fase de la estrategia de inferencia del layout es la representación de relaciones
espaciales relativas a partir de la información de las regiones. En esencia trata de expresar las
relaciones entre controles contiguos por medio de un grafo de posiciones relativas, donde los
vértices son los controles y las aristas son las relaciones espaciales. La implementación de este
grafo ha variado entre la primera y la segunda versión del proceso. En la primera versión se
representa explícitamente la posición entre dos controles mediante las relaciones arriba, abajo,
izquierda, derecha, y una distancia signiėcativa entre los controles se representa por medio de
vértices especiales denominados huecos. En la segunda versión se optó por representar la posi-
ción entre dos controles por medio de dos intervalos Allen [Ǒ], uno para el eje X y otro para el
eje Y, y la distancia entre los nodos se mide en niveles discretos que se calculan dinámicamente
aplicando técnicas de agrupamiento (clustering).

La tercera fase obtiene el diseño expresado por medio de una composición de gestores de
layout. En la primera versión se implementó un algorítmico heurístico basado en el encaje de
patrones. Se deėnió un patrón para cada tipo de gestor de layout, así como una función de
idoneidad que, aplicada a un conjunto de nodos del grafo de posiciones relativas, devuelve el
porcentaje de nodos encajados en el patrón. El modo de funcionamiento es el siguiente: para
cada grafo de posiciones relativas que proviene de una región contenedora se aplican las fun-
ciones de idoneidad de todos los gestores de layout, y se aplica el patrón asociado a aquella

v

función que obtiene un valor más alto. Este algoritmo tiene un inconveniente de especial rel-
evancia: no permite detectar patrones anidados, con lo cual, las vistas que tienen un diseño
complejo en muchas ocasiones no serán reconocidas correctamente.

La segunda versión del descubrimiento de alto nivel utiliza un algoritmo exploratorio que
se basa en el encaje de patrones y la reescritura del grafo de posiciones relativas. Cada gestor
de layout tiene un patrón asociado. El algoritmo en primer lugar genera todas las secuencias
de gestores de layout posibles, e intenta llegar a una solución aplicando cada secuencia. Para
cada secuencia, se aplican los patrones sobre el grafo en el orden indicado por ésta, de modo
que cuando un patrón encaja en un subgrafo, éste se reemplaza por un único nodo. Se continúa
aplicando el proceso de encaje de patrones y reescritura del grafo hasta que queda un único
nodo, lo que denota que hemos alcanzado una solución. Si sucede que tras un número ade-
cuado iteraciones no se han producido cambios en el grafo, entonces se detiene la búsqueda
pues no es posible hallar una solución con esa secuencia. Cada solución obtenida es evaluada
por una función de idoneidad que nos indica cómo de buena es la solución hallada. Al ėnal del
proceso se tiene un modelo que indica una serie de posibles layouts para cada contenedor de la
vista, y también nos indica cuál es el mejor layout de acuerdo con la función de idoneidad. El
conjunto de gestores de layout utilizados en la solución es conėgurable, con lo que es posible
limitar o extender el mismo según las características de la tecnología destino.

Desarrollo del enfoque de análisis demanejadores de eventos

Hemos desarrollado una solución para separar los aspectos que se encuentran mezclados en
los manejadores de eventos. Concretamente abordamos la separación de los aspectos arqui-
tecturales de la aplicación (lógica de negocio, controlador e interfaz de usuario), así como la
extracción de las interacciones que existen entre los controles y entre las vistas de la GUI.

Para alcanzar este objetivo realizamos una fase de abstracción del código previa a la sepa-
ración de aspectos. La abstracción consiste en representar el código fuente de los manejadores
de eventos en términos de primitivas que expresan patrones de código comunes en las apli-
caciones ĆD. Por ejemplo, Oracle Forms utiliza el lenguaje PL/SQL para implementar los
manejadores de eventos, y en este lenguaje se puede hacer uso de cursores para el acceso a base
de datos. Nosotros simpliėcamos dichas instrucciones de apertura y lectura del cursor explíc-
ito con una primitiva que indique una lectura de base de datos. Algunas de las primitivas que
hemos deėnido son: lectura de base de datos, escritura en un control o invocación a una fun-
ción de lógica de negocio. El código expresado de este modo es más sencillo de analizar que el

vi

código fuente.

El código representado pormedio de primitivas es entonces analizado para separar los aspec-
tos arquitecturales, obteniéndose el modelo de separación de aspectos. Para tal ėn, las primi-
tivas se dividen en bloques básicos [ǉǈ] que se estructuran formando un grafo de control de
Ěujo. Cada bloque básico a su vez se divide en fragmentos, que son conjuntos de instrucciones
relacionadas que pertenecen al mismo aspecto (lógica de negocio, controlador o GUI), y que
por tanto deben sermigradas conjuntamente. Los fragmentos se obtienen analizando el tipo de
las primitivas y las variables de entrada y salida que poseen. Gracias a que las primitivas guardan
referencias al código original, es posible utilizar el grafo de Ěujo de fragmentos para clasiėcar el
código original y guiar la migración a una arquitectura de capas.

Las primitivas también se utilizan en la identiėcación de interacciones entre los controles y
entre las vistas. Se analiza recursivamente el Ěujo de control de las primitivas para extraer: i)
los controles que generan los eventos, ii) las condiciones en las cuáles se disparan los eventos,
iii) los controles en los que se produce un efecto, y iv) el efecto producido sobre éstos. Por
ejemplo, seleccionar una opción determinada de una lista desplegable puede producir que se
habilite un formulario que antes no se mostraba. Con esta información se construye un grafo
multi-nivel donde los vértices son los controles y las vistas, y las aristas son las interacciones en-
tre ellos. El grafo esmulti-nivel porque un vértice que represente una vista contendrá a su vez el
grafo formado por los controles que forman parte de ella. Este grafo puede ser de utilidad para
documentar el sistema, generar artefactos que describan el Ěujo de navegación entre las vistas,
o detectar llamadas asíncronas en un entorno web con Ajax.

Evaluación

Las dos versiones de la solución de inferencia del layout han sido evaluadas. En la primera ver-
sión se realizó mediante un caso de estudio de migración de dos aplicaciones Oracle Forms a
Java. El proceso de evaluación básicamente consistió en generar automáticamente el código
Java y analizar manualmente las ventanas obtenidas. Particularmente se midió el porcentaje de
partes distinguibles que habían sido colocadas correctamente, así como el porcentaje de con-
troles situados en el lugar correcto. En el posicionamiento de partes se obtuvo una tasa de éxito
del Ǒǎƻ y ǑǏƻ en cada una de las aplicaciones, y el porcentaje de controles correctos fue de ǐǏƻ
y ǑǍƻ en cada una. El caso de estudio reveló varias limitaciones de la primera versión del en-
foque, siendo particularmente destacable la incapacidad para detectar layouts complejos (que
no pueden ser expresados con un único gestor de layout).

vii

La segunda versión se diseñó para paliar las limitaciones de la primera versión. En este caso,
la aproximación se testeó en un escenario diferente a lamigración, concretamente la generación
de una nueva interfazweb a partir de esbozos (wireěames) creados con alguna herramienta para
tal efecto. La evaluación se llevó a cabo con profesionales de las TICs que siguieron el siguiente
proceso: leer una breve documentación de la aplicación propuesta, realizar los esbozos de la
GUI, generar automáticamente el código, analizar los resultados y rellenar un cuestionario. El
ǐǍƻ de los participantes indicaron que las vistas se habían generado totalmente o en gran me-
dida comoellos esperaban, el ǎǍƻestaban totalmente oparcialmente de acuerdo enque las ven-
tanas generadas podían usarse en aplicaciones reales, y el Ǒǈƻ estuvieron de acuerdo en que la
herramienta es útil. Las características de nuestra solución que incidieron negativamente en el
resultado fueron dos: i) la conėguración de los parámetros del algoritmo, que en algunos casos
era vital para obtener el resultado adecuado, y ii) la función de idoneidad, que obtenía buenas
soluciones en cuanto al número de gestores de layout empleados, pero no siempre obtenía la
mejor solución desde el punto de vista visual.

Para comparar la segunda versión con la primera se evaluó el nuevo algoritmo con una de
las aplicaciones del caso de estudio de Oracle Forms, obteniéndose un ǑǑƻ de acierto en la
organización de las partes y un ǑǏƻ en el posicionamiento de controles. El hecho de aplicar el
enfoque de inferencia del layout en dos escenarios diferentes nos sirve para demostrar que la
solución es aplicable en cualquier caso en que se disponga de una interfaz donde los controles
se posicionan con coordenadas.

La evaluación de la separación de aspectos estructurales de los manejadores de eventos se
llevó a cabo con un caso de estudio de migración de una aplicación Oracle Forms a una ar-
quitectura cliente-servidor de Ǌ capas, donde la capa de presentación se implementaba en el
navegador, y la lógica de negocio permanecía en el servidor y se exhibía al cliente mediante un
servicio REST. Este caso de estudio nos permitió evaluar también el enfoque de abstracción
de código, en el que el Ǒǎƻ del código fue encajado en alguno de los patrones deėnidos, y se
obtuvo una tasa de código correctamente transformado en primitivas del ǐǋƻ. La tasa de error
del ǉǏƻ fue ocasionada por ciertos elementos del código PL/SQL que no se tratan en la im-
plementación actual, como las excepciones, y otras funciones especíėcas de Oracle Forms que
no se traducen correctamente. Con respecto a la separación de aspectos, se obtuvo un ǐǎƻ de
código correctamente clasiėcado, lo que demuestra que ésta es altamente dependiente del éxito
del proceso de abstracción del código.

viii

Conclusiones
La arquitectura MDE que hemos desarrollado nos ha permitido solventar los requisitos Rǉ,
RǊ, Rǋ y Rǌ. Concretamente la representación explícita de la información (Rǉ) se ha logrado
por medio de metamodelos, la modularidad (RǊ) y la automatización (Rǋ) se han conseguido
mediante cadenas de transformaciones, y la independencia del origen y el destino (Rǌ) se ha
obtenido gracias a los metamodelos diseñados para tal efecto.

El requisito de asemejar la estructura lógica y visual (RǍ) se cubre mediante el modelo de
regiones. La representación de alto nivel (Rǎ) se logra mediante el modelo de layout. La tol-
erancia a controles desalineados (RǏ), las soluciones alternativas (Rǐ) y el requisito de diseño
conėgurable (RǑ) se ha conseguido implementandoun algoritmode inferencia parametrizable.
Cabe destacar que no se han encontrado trabajos que planteen una solución a los requisitos Rǐ
y RǑ, dado que los trabajos existentes presentan algoritmos ad-hoc para generar layouts com-
puestos por un gestor de layout [ǋ] [ǌ] [Ǎ].

La abstracción de código (requisito Rǉǈ) se ha logrado mediante el modelo de primitivas
de comportamiento abstracto, la categorización de código (Rǉǉ) se ha conseguido a través del
grafo de Ěujo de fragmentos de código (modelos de separación de aspectos), y el requisito de
identiėcación de interacciones y Ěujos de navegación ha sido obtenido por el modelo de inter-
acciones. No hemos hallado ningún trabajo relacionado que utilice una representación similar
para abstraer código. Con respecto al requisito Rǉǉ, los trabajos existentes separan la aplicación
en capas [ǉǉ], pero requieren asistencia del desarrollador,mientras que ennuestra solución este
proceso ha sido automatizado.

Contribuciones
Las contribuciones de esta tesis son fundamentalmente tres. La primera es una arquitectura
de modelos que puede ser utilizada para migrar aplicaciones ĆD. Esta arquitectura posee
una serie de características (reusabilidad, extensibilidad, mantenibilidad) muy útiles para la
migración. Además, como parte de esa arquitectura destacamos el diseño del modelo CUI,
que favorece la separación de aspectos en el desarrollo de una GUI . La segunda aportación es
la estrategia de inferencia del layout, de la cual se proponen dos versiones. El enfoque prop-
uesto permite inferir diversas opciones de layout en base a un conjunto de gestores de layout
parametrizable, y que puede ser utilizado no solo en un escenario de migración sino también
de ingeniería directa, como la generación de código a partir de wireframes de laGUI. La tercera
contribución es la solución de análisis de código de los manejadores de eventos para separar

ix

los diferentes aspectos que se encuentran mezclados en el código, tanto arquitecturales como
otros tales como las interacciones entre los controles de la vista.

x

Agradecimientos

MŊķļĵň ŋĹķĹň ļĹ ňŃͶĵĸŃ ķŃł ĹňŉĹ ŁŃŁĹłŉŃ. Siempremehe preguntado cómo
me sentiría en este instante, que signiėca el ėnal de una etapa para mí. Son varios
años de trabajo, mucho esfuerzo condensado en un documento, y mucha gente

que de una manera u otra me ha apoyado y me ha ayudado a seguir adelante.

Quiero empezar dedicando unas palabras de agradecimiento a mis padres Juan y Soledad,
que siempre han velado porque me centrara en los estudios y nunca me faltase de nada. Gra-
cias también a mis hermanos Juan Miguel y Marisol que siempre me han apoyado y me han
demostrado que están ahí, y a Laura, Dani, Álvaro y Héctor, que endulzan nuestra familia con
su inocencia y alegría.

Jesús García Molina y Jesús Sánchez Cuadrado, mis directores de tesis y amigos, han sido
piezas clave para superar con éxito esta odisea. JesúsGarcíame acogió en su grupo allá en Ǌǈǈǎ,
y me enseñó que los modelos no solo desėlan por las pasarelas. Años más tarde, Jesús Sánchez
aceptó unirse al carro de las interfaces de usuario y se unió a Jesús García para guiarme por el
tortuoso e inciertomundo de la investigación. ¡La de veces que habrémaldecidoRubyTL!... (y
que posteriormente he alabado). A ambos les debo mi formación, y les agradezco el esfuerzo y
tiempo que han invertido en mí.

En mi camino de investigación se han cruzado muchos compañeros que han dejado huella.
Empecé trabajando en el grupo de investigación desarrollando wrappers de código con Javier
Cánovas, que se sentaba en la mesa contigua, y tantas veces me ha escuchado y soportado. En
aquel momento integraban también el laboratorio Jesús Sánchez, Fernando Molina, Francisco
Javier Lucas, Joaquín Lasheras, Miguel Ángel Martínez, y posteriormente llegaron Espinazo,
Javier Bermúdez, Jesús Perera y Juanma. Me vienen a la memoria el descubrimiento del Musi-
covery, el secuestro del peluche, la escena del electricista, la escala Cuadrado, las JISBD en Gi-

xi

jón... Gracias a todos por los buenos ratos que pasamos, en los que me enseñásteis otra forma
de ’investigar’.

De mi estancia en Bélgica en ǊǈǉǊ guardo gratos recuerdos. Pese a vivir la primavera más
nubladaquehabía visto enmi vida,mis compañeros de laboratorioFrançoisBeauvens y Jérémie
Melchior, que se pasaban los lunes discutiendo delMadrid y el Barça, me hacíanmás llevaderas
las frías mañanas de Louvain-La-Neuve. Allí conocí también a Vivian, Ugo, Diana, Cinthya,
Diogo, Sophie, Nesrine, Mathieu, Edu y otros tantos que me han demostrado que tengo ami-
gos distribuidos por el mundo. Quiero hacer una mención distinguida a mi supervisor en Bél-
gica, Jean Vanderdonckt, que sin conocerme prácticamente de nada me otorgó la posibilidad
de realizar la estancia.

No quiero olvidarme tampoco de mis amigos Edu, Anabel, Pablo, Laura, Daniel, Carras, la
peña La Jarra, los monitores del campamento, y de los últimos visitantes del laboratorio, Saad,
Manal y Soėa. Ellos han sufrido mis inquietudes y preocupaciones, y han sido de un modo u
otro, testigos de mis logros y mis fallos durante el transcurso del doctorado.

A todas y cada una de las personas citadas, gracias.

xii

Model-DrivenModernisation of
Legacy Graphical User Interfaces

AĶňŉŇĵķŉ

Businesses are more and more modernising the legacy systems they developed with Rapid
Application Development (ĆD) environments, so that they can beneėt from new platforms
and technologies. As a part of these systems, Graphical User Interfaces (GUIs) pose an im-
portant concern, since they are what users actually see and manipulate. When facing the mod-
ernisation of GUIs of applications developed with ĆD environments, developers must deal
with two non-trivial issues. ĉe ėrst issue is that the GUI layout is implicitly provided by the
position of the GUI elements (i.e. coordinates). However, taking advantage of current features
of GUI technologies oěen requires an explicit, high-level layout model. ĉe second issue is
that developers must deal with event handling code that typically mixes concerns such as GUI
and business logic. In addition, tackling a manual migration of the GUI of a legacy system, i.e.,
re-programming the GUI, is time-consuming and costly for businesses.

ĉis thesis is intended to address these issues by means of an MDE architecture that auto-
mates the migration of the GUI of applications created with ĆD environments. To deal with
the ėrst issue we propose an approach to discover the layout that is implicit in widget coordi-
nates. ĉe underlying idea is to move from a coordinate-based positioning system to a repre-
sentation based on relative positions among widgets, and then use this representation to infer
the layout in terms of layout managers. Two versions of this approach have been developed: a
greedy solution and a more sophisticated solution based on an exploratory algorithm. To deal
with the second issue we have devised a reverse engineering approach to analyse event han-
dlers of ĆD-based applications. In our solution, event handling code is transformed into an
intermediate representation that captures the high-level behaviour of the code. From this rep-
resentation, separation of concerns is facilitated. Particularly it has allowed us to achieve the
separation of architectural concerns from the original code, and the identiėcation of interac-
tions among widgets. All the generated models in the reverse engineering process have been
integrated into a Concrete User Interface (CUI) model that represents the different aspects
that are embraced by a GUI.

xiii

ĉe two layout inference proposals and the event handler analysis have been tested with real
applications that were developed in Oracle Forms. ĉe exploratory version of the layout infer-
ence approach was in addition tested with wireframes, which poses a different context in which
the layout inference problem is also useful.

xiv

[...] You push at the boundary for a few years.
Until one day, the boundary gives way.

And, that dent you’ve made is called a Ph.D.

Of course, the world looks different to you now:

So, don’t forget the bigger picture.

Keep pushing.¹

¹hĨp://maĨ.might.net/articles/phd-school-in-pictures/

xvi

Contents

ǉ INTRODUCTION ǉ
ǉ.ǉ Motivation . ǋ
ǉ.Ǌ Problem statement . ǎ
ǉ.ǋ Development . Ǐ
ǉ.ǌ Outline . Ǒ

Ǌ BACKGROUND ǉǉ
Ǌ.ǉ Soěware modernisation . ǉǉ
Ǌ.Ǌ Graphical User Interfaces (GUI) . ǉǋ

Ǌ.Ǌ.ǉ Visual GUI features . ǉǎ
Ǌ.Ǌ.Ǌ Legacy GUI features . ǉǐ
Ǌ.Ǌ.ǋ Use scenarios of GUI reverse engineering Ǌǋ

Ǌ.ǋ Model Driven Engineering (MDE) . Ǌǌ
Ǌ.ǋ.ǉ Metamodelling . Ǌǌ
Ǌ.ǋ.Ǌ Domain-Speciėc Languages (DSLs) ǊǍ
Ǌ.ǋ.ǋ Model transformations . ǊǍ
Ǌ.ǋ.ǌ Model-Driven Modernisation (MDM) ǊǏ

ǋ STATE OF THE ART ǋǉ
ǋ.ǉ Analysis of layout recognition approaches ǋǉ

ǋ.ǉ.ǉ LuĨeroth . ǋǊ
ǋ.ǉ.Ǌ Rivero et al. ǋǌ
ǋ.ǉ.ǋ Sinha and Karim . ǋǎ
ǋ.ǉ.ǌ Other approaches . ǋǐ

xvii

ǋ.ǉ.Ǎ Discussion . ǋǑ
ǋ.Ǌ Analysis of behaviour extraction approaches ǌǊ

ǋ.Ǌ.ǉ Memon (GUIRipping) . ǌǊ
ǋ.Ǌ.Ǌ Heckel et al. ǌǌ
ǋ.Ǌ.ǋ Morgado et al. (ReGUI) . ǌǍ
ǋ.Ǌ.ǌ Other approaches . ǌǎ
ǋ.Ǌ.Ǎ Discussion . ǌǑ

ǋ.ǋ GUI representation approaches . ǍǊ
ǋ.ǋ.ǉ Knowledge Discovery Metamodel (KDM) ǍǊ
ǋ.ǋ.Ǌ Interaction Flow Modeling Language (IFML) Ǎǎ
ǋ.ǋ.ǋ Cameleon framework . Ǎǐ
ǋ.ǋ.ǌ User Interface Description Languages (UIDLs) ǎǉ

ǋ.ǋ.ǌ.ǉ UsiXML . ǎǉ
ǋ.ǋ.ǌ.Ǌ Maria . ǎǋ
ǋ.ǋ.ǌ.ǋ XAML . ǎǌ

ǋ.ǋ.Ǎ Discussion . ǎǌ

ǌ OVERVIEW ǎǏ
ǌ.ǉ Goal . ǎǏ
ǌ.Ǌ Architecture of the solution . Ǐǉ

ǌ.Ǌ.ǉ ĉe Concrete User Interface model Ǐǉ
ǌ.Ǌ.Ǌ Overview of the migration architecture Ǐǋ
ǌ.Ǌ.ǋ Requirement implementation . ǏǍ

Ǎ LAYOUT INFERENCE: GREEDY APPROACH ǏǏ
Ǎ.ǉ MDE architecture for layout inference . Ǐǐ
Ǎ.Ǌ Reverse engineering metamodels . ǏǑ
Ǎ.ǋ Challenges in layout reverse engineering . ǐǋ
Ǎ.ǌ Detecting regions and containers . ǐǌ
Ǎ.Ǎ Uncovering relative positions . ǐǐ
Ǎ.ǎ High-level layout . ǑǏ
Ǎ.Ǐ Detailed example . ǉǈǉ

Ǎ.Ǐ.ǉ Injection of Forms models . ǉǈǊ

xviii

Ǎ.Ǐ.Ǌ Mapping Oracle Forms to ĆD models ǉǈǋ
Ǎ.Ǐ.ǋ Identiėcation of the regions . ǉǈǌ
Ǎ.Ǐ.ǌ Recovering the low-level layout . ǉǈǍ
Ǎ.Ǐ.Ǎ Recovery of the high level layout . ǉǈǐ
Ǎ.Ǐ.ǎ Generation of Java Swing code . ǉǉǈ

Ǎ.ǐ Case study: from Oracle Forms to Java . ǉǉǉ
Ǎ.ǐ.ǉ Methodology . ǉǉǉ
Ǎ.ǐ.Ǌ Evaluation results . ǉǉǋ
Ǎ.ǐ.ǋ Limitations of the approach . ǉǉǍ

Ǎ.Ǒ Implementation . ǉǉǑ
Ǎ.Ǒ.ǉ Injection . ǉǉǑ
Ǎ.Ǒ.Ǌ Mapping Oracle Forms to Normalised models ǉǊǉ
Ǎ.Ǒ.ǋ Reverse engineering . ǉǊǋ
Ǎ.Ǒ.ǌ Forward engineering . ǉǊǋ

Ǎ.ǉǈ Conclusions . ǉǊǌ

ǎ LAYOUT INFERENCE REVISITED: EXPLOĆTORY APPROACH ǉǊǏ
ǎ.ǉ MDE architecture for layout inference (revisited) ǉǊǐ
ǎ.Ǌ Reverse engineering metamodels . ǉǋǈ

ǎ.Ǌ.ǉ Structure metamodel . ǉǋǉ
ǎ.Ǌ.Ǌ Layout metamodel . ǉǋǊ

ǎ.ǋ Changing the positioning system . ǉǋǌ
ǎ.ǋ.ǉ Creating the view graph . ǉǋǌ
ǎ.ǋ.Ǌ Representing widget relative positions ǉǋǎ
ǎ.ǋ.ǋ Representing widget distances . ǉǋǐ
ǎ.ǋ.ǌ Tile model example . ǉǌǉ

ǎ.ǌ Infering a high-level layout . ǉǌǊ
ǎ.ǌ.ǉ ĉe layout paĨerns . ǉǌǋ
ǎ.ǌ.Ǌ Layout inference algorithm . ǉǌǎ
ǎ.ǌ.ǋ Layout inference example . ǉǍǋ
ǎ.ǌ.ǌ Performance evaluation . ǉǍǎ

ǎ.Ǎ Case study: from Wireframes to Ěuid web interfaces ǉǍǑ
ǎ.Ǎ.ǉ Context of the case study . ǉǍǑ

xix

ǎ.Ǎ.Ǌ Evaluation of the approach . ǉǎǈ
ǎ.Ǎ.Ǌ.ǉ Methodology . ǉǎǈ
ǎ.Ǎ.Ǌ.Ǌ Quantitative results . ǉǎǉ
ǎ.Ǎ.Ǌ.ǋ User assessment . ǉǎǋ
ǎ.Ǎ.Ǌ.ǌ Approach limitations . ǉǎǍ

ǎ.ǎ Implementation . ǉǎǑ
ǎ.ǎ.ǉ Mapping WireframeSketcher to Normalised models ǉǏǈ
ǎ.ǎ.Ǌ Mapping Normalised models to Structure models ǉǏǉ
ǎ.ǎ.ǋ Generation of the web interface . ǉǏǉ
ǎ.ǎ.ǌ ĉe tool . ǉǏǋ

ǎ.Ǐ Comparison of the greedy and exploratory approaches ǉǏǋ
ǎ.ǐ Conclusions . ǉǏǏ

Ǐ EVENT HANDLER ANALYSIS ǉǏǑ
Ǐ.ǉ Architecture for analysing events . ǉǐǉ
Ǐ.Ǌ Running example . ǉǐǊ
Ǐ.ǋ Representing event handling code . ǉǐǌ

Ǐ.ǋ.ǉ Metamodel description . ǉǐǍ
Ǐ.ǋ.Ǌ Deriving a ĆDBehaviour model ǉǐǎ
Ǐ.ǋ.ǋ Example . ǉǐǑ

Ǐ.ǌ Separating concerns . ǉǑǈ
Ǐ.ǌ.ǉ Metamodel description . ǉǑǉ
Ǐ.ǌ.Ǌ Fragment identiėcation . ǉǑǊ

Ǐ.ǌ.Ǌ.ǉ Creating a control Ěow graph of fragments ǉǑǊ
Ǐ.ǌ.Ǌ.Ǌ Giving a descriptive name to the fragments ǉǑǍ
Ǐ.ǌ.Ǌ.ǋ SeĨing dependencies among fragments ǉǑǏ

Ǐ.Ǎ Generating layered code . ǉǑǏ
Ǐ.ǎ Capturing dependencies among the GUI elements ǉǑǑ

Ǐ.ǎ.ǉ Metamodel description . Ǌǈǉ
Ǐ.ǎ.Ǌ From ĆDBehaviour to the Interaction model Ǌǈǉ
Ǐ.ǎ.ǋ Example . Ǌǈǌ

Ǐ.Ǐ Evaluation of the approach . ǊǈǍ
Ǐ.Ǐ.ǉ Evaluation of the code abstraction Ǌǈǎ

xx

Ǐ.Ǐ.Ǌ Evaluation of the separation of concerns ǊǈǏ
Ǐ.ǐ Conclusions . ǊǈǏ

ǐ CONCLUSIONS Ǌǉǉ
ǐ.ǉ Discussion . ǊǉǊ

ǐ.ǉ.ǉ Goal ǉ: Architecture for migrating legacy GUIs ǊǉǊ
ǐ.ǉ.Ǌ Goal Ǌ: Analysis of GUI deėnitions for migration Ǌǉǌ
ǐ.ǉ.ǋ Goal ǋ: Analysis of the code of event handlers for migration Ǌǉǎ

ǐ.Ǌ Contributions . Ǌǉǐ
ǐ.Ǌ.ǉ First contribution: MDE-based migration architecture Ǌǉǐ
ǐ.Ǌ.Ǌ Second contribution: Layout inference approach Ǌǉǐ
ǐ.Ǌ.ǋ ĉird contribution: Event handler analysis approach ǊǉǑ

ǐ.ǋ Future work . ǊǊǈ
ǐ.ǋ.ǉ CUI metamodel . ǊǊǈ
ǐ.ǋ.Ǌ Region identiėcation . ǊǊǉ
ǐ.ǋ.ǋ High-level layout inference . ǊǊǊ
ǐ.ǋ.ǌ Event handler code abstraction . ǊǊǋ
ǐ.ǋ.Ǎ Identiėcation of widget dependencies ǊǊǌ

ǐ.ǌ Publications related to the thesis . ǊǊǌ
ǐ.ǌ.ǉ Journals with impact factor . ǊǊǌ
ǐ.ǌ.Ǌ Renowned international conferences ǊǊǍ
ǐ.ǌ.ǋ Other journals . ǊǊǍ
ǐ.ǌ.ǌ Other international and national conferences and workshops ǊǊǍ

ǐ.Ǎ Other publications in the MDE area . ǊǊǎ
ǐ.Ǎ.ǉ Journals with impact factor . ǊǊǎ
ǐ.Ǎ.Ǌ International conferences and workshops ǊǊǏ

ǐ.ǎ Projects that are related to this thesis . ǊǊǏ
ǐ.Ǐ Contracts supporting this thesis . ǊǊǐ
ǐ.ǐ Research stays . ǊǊǐ
ǐ.Ǒ Transfer of technology . ǊǊǑ

REFERENCES Ǌǌǈ

xxi

xxii

Listing of ėgures

ǉ.ǉ Tag cloud of the blended elements in with a legacy GUI. Ǎ

Ǌ.ǉ ĉe Horseshoe model . ǉǋ
Ǌ.Ǌ Example view for entering personal information. Widgets are placed with ex-

plicit coordinates. ǉǍ
Ǌ.ǋ An excerpt of the GUI tree for the window in Figure Ǌ.Ǌ. ǉǍ
Ǌ.ǌ Login window created with WireframeSketcher. ǉǏ
Ǌ.Ǎ (a) Fragment of the original GUI tree. (b) ĉe expected GUI tree. Ǌǈ
Ǌ.ǎ A calendar component emulated by a grid of buĨons. Ǌǈ
Ǌ.Ǐ Example of mixing of concerns in an Oracle Forms application ǊǊ
Ǌ.ǐ Fragment of aDelphi Ǎ event handler that checks if a task is active before delet-

ing it. ǊǊ
Ǌ.Ǒ MDE applied to reengineering . ǊǏ

ǋ.ǉ Schema of the Rivero et al. approach . ǋǍ
ǋ.Ǌ Sinha and Karim approach . ǋǎ
ǋ.ǋ Approach of Heckel et al. ǌǌ
ǋ.ǌ Approach of Morgado et al. (ReGUI) . ǌǍ
ǋ.Ǎ KDM layers and packages . Ǎǋ
ǋ.ǎ KDM metamodel. UI package (UIResources) Ǎǌ
ǋ.Ǐ KDM metamodel. UI package (UIRelations) ǍǍ
ǋ.ǐ KDM metamodel. UI package (UIActions) Ǎǎ
ǋ.Ǒ Example of user interface (leě) and corresponding IFML model (right) . . . ǍǏ
ǋ.ǉǈ Cameleon framework . Ǎǐ

xxiii

ǋ.ǉǉ Abstraction, reiėcation and translation in the Cameleon framework ǎǈ
ǋ.ǉǊ UsiXML models conforming to Cameleon ǎǊ

ǌ.ǉ Concrete User Interface models in our solution ǏǊ
ǌ.Ǌ Architecture of the solution (GUIǊMO framework) Ǐǋ

Ǎ.ǉ Part of the architecture explained in this chapter. Ǐǐ
Ǎ.Ǌ Model-based architecture used to migrate legacy GUIs. ǏǑ
Ǎ.ǋ Excerpt of the Normalised metamodel. ǐǈ
Ǎ.ǌ Simpliėed CUI metamodel. ǐǊ
Ǎ.Ǎ Example view for entering personal information. (Same window as Figure Ǌ.Ǌ). ǐǋ
Ǎ.ǎ Region metamodel. ǐǍ
Ǎ.Ǐ Leě: example window for the region detection. Right: the logical structure of

the widgets. ǐǎ
Ǎ.ǐ Structure of the regions aěer step Ǌ for the example in Figure Ǎ.Ǐ. ǐǎ
Ǎ.Ǒ Case A. Leě: example window with a base region Rȕ. Right: a new extra re-

gion RȖ created to contain CloseWindowBuĪon. ǐǑ
Ǎ.ǉǈ Case B. Leě: example window with a base region Rȕ and an extra region RȖ.

Right: the base region Rȕ is augmented to include SearchBuĪon completely
and the extra region RȖ is diminished. ǐǑ

Ǎ.ǉǉ Case C. Leě: example window with a base region Rȕ and an extra region RȖ.
Right: a new extra region Rȗ is created to containNextBuĪon, and the region
RȖ is diminished. ǐǑ

Ǎ.ǉǊ Tile metamodel. Ǒǈ
Ǎ.ǉǋ Adjacency example . Ǒǉ
Ǎ.ǉǌ Horizontal intersection value example . Ǒǉ
Ǎ.ǉǍ Example window . ǉǈǊ
Ǎ.ǉǎ Excerpt of the ĆD Model for the example window in Figure Ǎ.ǉǍ ǉǈǌ
Ǎ.ǉǏ Some regions identiėed for the example window in Figure Ǎ.ǉǍ. ǉǈǍ
Ǎ.ǉǐ Excerpt of the Region Model for the example window in Figure Ǎ.ǉǍ. ǉǈǎ
Ǎ.ǉǑ Representation of the tiles in the upper part of the window ǉǈǎ
Ǎ.Ǌǈ Excerpt of the Tile Model for the example window in Figure Ǎ.ǉǍ. ǉǈǏ
Ǎ.Ǌǉ Representation of the tiles in the lower part of the window ǉǈǏ
Ǎ.ǊǊ Properties of the lower-leě tile of buĨons ǉǈǐ

xxiv

Ǎ.Ǌǋ Excerpt of the CUI Model for the example window split into two parts ǉǈǑ
Ǎ.Ǌǌ ĉe example window shown in Figure Ǎ.ǉǍ migrated to Java Swing ǉǉǈ
Ǎ.ǊǍ ScaĨer plot that represents the accuracy of part detection for the case study A. ǉǉǍ
Ǎ.Ǌǎ ScaĨer plot that represents the accuracy of part detection for the case study B. ǉǉǎ
Ǎ.ǊǏ ScaĨer plot that represents the accuracy ofwidget placement for the case studyA. ǉǉǎ
Ǎ.Ǌǐ ScaĨer plot that represents the accuracy ofwidget placement for the case studyB. ǉǉǏ
Ǎ.ǊǑ Missing part identiėcation problem . ǉǉǐ
Ǎ.ǋǈ Non-regular layout detection problem . ǉǉǐ
Ǎ.ǋǉ Model-based architecture used to migrate legacy GUIs. ǉǉǑ
Ǎ.ǋǊ Excerpt of the Oracle Forms metamodel. ǉǊǈ

ǎ.ǉ Model-based architecture used to migrate legacy GUIs. ǉǊǐ
ǎ.Ǌ Steps to explicitly infer the layout information. ǉǊǑ
ǎ.ǋ Relation between the CUI and the Structure and Layout metamodels. ǉǋǈ
ǎ.ǌ Structure metamodel. ǉǋǉ
ǎ.Ǎ Layout metamodel. ǉǋǋ
ǎ.ǎ Tile metamodel (new version) . ǉǋǍ
ǎ.Ǐ Allen intervals . ǉǋǏ
ǎ.ǐ Allen interval example for a pair of widgets ǉǋǐ
ǎ.Ǒ Problem when seĨing ėxed limits for the closeness levels. ǉǋǐ
ǎ.ǉǈ Closeness assignment example. (a)Widgets and distances between them. (b)

Result graph. ǉǋǑ
ǎ.ǉǉ Login window created with WireframeSketcher. ǉǌǉ
ǎ.ǉǊ Graph representation of the login window example. ǉǌǊ
ǎ.ǉǋ PaĨern matching example on four widgets ǉǌǋ
ǎ.ǉǌ Border layout supported paĨerns. ǉǌǍ
ǎ.ǉǍ Examples of widgets that do not match any paĨern ǉǌǍ
ǎ.ǉǎ Example of non-valid match for the Vertical Flow Layout paĨern. ǉǌǑ
ǎ.ǉǏ Example of match split for the Vertical Flow Layout paĨern. ǉǌǑ
ǎ.ǉǐ Inference example. Permutation {HFlow, VFlow, Form} applied to the graph

in Figure ǎ.ǉǊ. ǉǍǍ
ǎ.ǉǑ Inference example. Permutation {VFlow, HFlow, Form} applied to the graph

in Figure ǎ.ǉǊ. ǉǍǎ

xxv

ǎ.Ǌǈ Alignment columns for the Login window. ǉǍǎ
ǎ.Ǌǉ Execution time for widgets in a single container. ǉǍǏ
ǎ.ǊǊ Execution time forwidgets arranged in containers (a container every Ǌǈwidgets). ǉǍǐ
ǎ.Ǌǋ Are the generated views as I expected? . ǉǎǋ
ǎ.Ǌǌ Are the margins, gaps and alignment correct? ǉǎǌ
ǎ.ǊǍ When resizing the windows, are the widgets resized appropriately? ǉǎǌ
ǎ.Ǌǎ Could the generated windows be used in a real application? ǉǎǌ
ǎ.ǊǏ Is the layout inference tool useful? . ǉǎǍ
ǎ.Ǌǐ Example of the closeness problem. ǉǎǎ
ǎ.ǊǑ Example window. ǉǎǏ
ǎ.ǋǈ Example horizontal-vertical Ěow. ǉǎǐ
ǎ.ǋǉ Example horizontal-vertical Ěow resized. ǉǎǐ
ǎ.ǋǊ Example vertical-horizontal Ěow. ǉǎǐ
ǎ.ǋǋ Example vertical-horizontal Ěow resized. ǉǎǑ
ǎ.ǋǌ Parts of the MDE architecture related to the Wireframes to ZK case study. . . ǉǎǑ
ǎ.ǋǍ Excerpt of the WireframeSketcher metamodel. ǉǏǈ
ǎ.ǋǎ ĉe login window generated in ZK. ǉǏǊ
ǎ.ǋǏ Layout inference parameters. ǉǏǌ
ǎ.ǋǐ Example of an Oracle Forms window. ǉǏǎ
ǎ.ǋǑ Generated window by the ėrst approach for the Oracle Forms window. ǉǏǎ
ǎ.ǌǈ Generated window by the second approach for the Oracle Forms window. . . ǉǏǎ

Ǐ.ǉ Part of the GUIZMO architecture explained in this chapter ǉǐǈ
Ǐ.Ǌ Model-based architecture for reengineering ĆD-based applications. Solid

lines mean transformations and dashed lines are model dependencies. ǉǐǉ
Ǐ.ǋ Grants example . ǉǐǋ
Ǐ.ǌ PL/SQL trigger for the checkbox change event ǉǐǌ
Ǐ.Ǎ Excerpt of the ĆDBehaviour metamodel. ǉǐǍ
Ǐ.ǎ PL/SQL to ĆDBehaviour mappings . ǉǐǐ
Ǐ.Ǐ ĆDBehaviour example for the checkbox event ǉǑǈ
Ǐ.ǐ Excerpt of the EventConcerns metamodel ǉǑǉ
Ǐ.Ǒ EventConcerns model derived from the model in Figure Ǐ.Ǐ. Labels A, B, C,

D are used to show the primitives that originate the basic blocks. ǉǑǋ

xxvi

Ǐ.ǉǈ Fragment identiėcation example . ǉǑǌ
Ǐ.ǉǉ Horseshoe model applied to the separation of concerns ǉǑǐ
Ǐ.ǉǊ Interaction metamodel . ǊǈǊ
Ǐ.ǉǋ Interaction model for the event handlers of the window shown in Figure Ǐ.ǋ . ǊǈǍ

xxvii

xxviii

List of Tables

Ǌ.ǉ GUI features of three different ĆD environments ǉǐ

ǋ.ǉ Summary of layout inference approaches . ǌǈ
ǋ.Ǌ Summaryof thebehaviour extractionapproaches (PC stands forProgramCom-

prehension) . Ǎǈ

ǌ.ǉ Relationships between the requirements and the discussion of the state of the
art. Ǐǈ

ǌ.Ǌ Requirements that cover bad practices in ĆD environments. Ǐǈ
ǌ.ǋ Implementation of the requirements . ǏǍ

Ǎ.ǉ Evaluation results for the case study A. ǉǉǋ
Ǎ.Ǌ Evaluation results for the case study B. ǉǉǋ
Ǎ.ǋ Forms to Normalised mappings. ǉǊǊ
Ǎ.ǌ Classiėcation of the approach of this chapter ǉǊǎ

ǎ.ǉ Evaluation results. ǉǎǉ
ǎ.Ǌ Evaluation results for the case study A. ǉǏǌ
ǎ.ǋ Classiėcation of the approach of this chapter ǉǏǐ

Ǐ.ǉ ĆD primitives . ǉǐǎ
Ǐ.Ǌ ĆDBehaviour evaluation . Ǌǈǎ
Ǐ.ǋ EventConcerns evaluation . ǊǈǏ
Ǐ.ǌ Classiėcation of the approach of this chapter ǊǈǑ

ǐ.ǉ Fulėlment of the requirements of goal Gǉ Ǌǉǌ

xxix

ǐ.Ǌ Fulėlment of the requirements of goal GǊ Ǌǉǎ
ǐ.ǋ Fulėlment of the requirements of goal Gǋ ǊǉǏ

xxx

(Suggested by Daniel Medina)

Straight ahead of him, nobody can go very far...

Antoine de Saint-Exupéry,ĉe LiĨle Prince

1
Introduction

Graphical User Interfaces (GUIs) represent a crucial part of soěware systems as they are what
users actually see andmanipulate to interact with them. ĉerefore, the design and implementa-
tion ofGUIs is an issue thatmust not be neglected and developers typically devote a great effort
to build application GUIs. Lately there has been a signiėcant growth of types of devices that
can run applications (smartphones, tablets, televisions, and so forth), each one having different
screen sizes, resolutions and even interaction modalities (e.g., tactile screens). GUI technolo-
gies have also evolved to offer new possibilities that improve the user experience, particularly in
theweb seĨingwith the emergenceofHTMLǍandAjax (Asynchronous JavaScriptAndXML).
ĉis variety of devices and sophistication in technologies has brought that GUI design is now
more challenging than ever. In fact, companies spend large amounts of money of their budget
creating interfaces thatmust be functional, appealing and, at the same time, usable, because they
are aware that this is key to succeed in their business. ĉe challenge of creating quality GUIs
does not only concern to the development of new applications, but is also faced at present by
companies that are migrating their legacy applications to modern technologies as they offer a
beĨer user experience.

ǉ

Soěware modernisation refers to understanding and evolving existing soěware assets to main-
tain their business value. A legacy system is modernised when maintenance is not enough to
achieve the desired improvements (e.g., new capabilities or greater maintainability) and that
system must be extensively changed. Soěware migration is a form of modernisation that in-
volves moving an application, as a whole or a part of it, from the platform on which is currently
operating to a target platform that provides beĨer features. A migration can be done in a dis-
ciplined way by applying a soěware reengineering process that consists of three stages: reverse
engineering the legacy system to obtain a representation of the system at a higher abstraction
level, restructuring these representations according to the new architecture, and ėnally creat-
ing code of the new system from the restructured information [ǉǊ] [ǉǋ]. Reverse engineering
techniques are therefore essential to understand and obtain representations at a high level of
abstraction when a reengineering process is applied.

GUI migration has been typically regarded as a straightforward research topic, in which the
only concern is to establish mappings between widgets of the source and target technologies.
However, dealingwith current technologies anddevices requires a thorough analysis of the user
interface so that it can be suitably reengineered. ĉis analysis affects both the structural and be-
havioural aspects of a GUI, and sophisticated reverse engineering algorithmsmust be designed
to cope with it.

ModelDrivenSoěwareEngineering (MDSEor simplyMDE)has emerged as a newareaof soě-
ware engineering that emphasizes the systematic use ofmodels in the soěware lifecycle in order
to improve its productivity and soěware quality aspects such as maintainability and interoper-
ability. MDE techniques, e.g. metamodeling and model transformations, allow tackling the
complexity of soěware by raising its abstraction and automation levels [ǉǌ]. ĉese techniques
are useful not only for developing new soěware applications [ǉǍ] [ǉǎ] but also for reengineer-
ing legacy systems [ǉǏ] [ǉǐ] and dynamically conėguring running systems [ǉǑ]. In the latest
years, MDE techniques have been applied to a variety of modernisation scenarios, especially
in the migration of applications [Ǌǈ] [Ǌǉ] and some MDE tools have been created [ǊǊ] [Ǌǋ]
[Ǌǌ]. A notable effort is the Architecture-DrivenModernization (ADM) initiative [ǉǏ], which
was launched in Ǌǈǈǋ and is targeted at offering a set of standard metamodels for represent-
ing information that is frequently implicated in modernisation. Although MDE is increasingly
gaining acceptance in the soěware community [ǊǍ], “the adoption of this approach has been
surprisingly slow” [Ǌǎ] and there is still a need for successful experiences of using MDE in real
projects.

Ǌ

ĉe purpose of this thesis is to bring together the ėelds of Reengineering, Reverse Engineer-
ing, Model Driven Engineering and Graphical User Interfaces (GUIs) in order to encompass
them all and create a solution for migrating GUIs of legacy systems tomodern frameworks and
technologies. In particular, we have designed and implemented a solution for migrating appli-
cations created with Rapid Application Development (ĆD) environments, but the proposed
approach is applicable to other legacy systems sharing the same requirements we have consid-
ered for ĆD-based applications.
ĉe rest of this chapter is organised as follows: ėrst, the motivation of the work is presented;
then, the goals of this thesis are outlined; aěerwards, the development of the solution is ex-
plained and the main contributions of the thesis are enumerated; ėnally, the contents of the
rest of this manuscript are summarised.

ǉ.ǉ MŃŉĽŋĵŉĽŃł

Most information systems dating from the Ǒǈ’s were built using ĆD environments. ĉe ĆD
paradigm appeared in the early Ǒǈ’s as a response to the non-agile development processes that
existed [ǊǏ], andanumberof IntegratedDevelopmentEnvironments (IDEs) supporting fourth
generation languages (ǌGLs) for theĆDparadigm also appeared. Oracle Forms, Visual Basic
or Delphi are well-known examples of ĆD environments. ĉese IDEs provided a program-
ming paradigm centered on the application GUI, allowing developers to create initial proto-
types rapidly and reducing development time by facilitating GUI design and coupling data ac-
cess to graphical components. However, the gaining of productivity is achieved at the expense
of reducing the soěware quality. Next, we discuss two features of applications that have been
created with a ĆD environment (hereinaěer referred as ĆD applications), which negatively
affect the soěware quality: the use of coordinates and the tangling of concerns.
In ĆD environments, the position of widgets was expressed in terms of abolute or relative
coordinates (normally pixels), so the windows created with themwere optimised just for a cer-
tain size. Nonetheless, this is a bad practice since the interfaces are difficult to maintain. Let us
consider a GUI deėned by coordinates and a change consisting of adding a new widget. ĉat
change may lead developers to shiě the coordinates of other widgets.
Furthermore, designing user interfaces for a ėxed resolution and screen format is no longer ad-
missible. With thepopularisationof smartphones and tablets, therehasbeena explosive growth
of devices that can run graphical applications (either natively or by means of a web browser).

ǋ

ĉerefore, applications can be executed on a variety of devices with different features such as
screen size, computing capacity or modality (e.g. tactile or voice) that produce different user
experiences. Developers have now to meet the challenge of implementing GUIs that can be
accessed via different devices with different screen features. As a result, in the last few years,
Ěexible interfaces (non-ėxed layouts) have gained in popularity due to the fact that designing
different interfaces for the same application but targeted at different devices is impractical. Lay-
out managers came up in the late nineties to overcome the weaknesses of coordinated-based
GUIs by offering a mechanism to locate widgets in such a way that they are adapted to their
container elements.

On the other hand, in ĆD environments, event handlers (which were sometimes included in
the same ėle as the GUI deėnition) usually contained code belonging to several aspects of the
application. For example, an event handler could accomplish the validation of a form and if
it succeeds, then perform some calculations by applying some business rules and ėnally write
the calculated data in a database by itself. ĉis tangling of aspects is nowadays considered as a
bad practice since it has a negative impact on soěwaremaintenance and reuse. Moreover,ĆD
developers oěen implemented event handlers whichwere aĨached towidgets that accessed the
database andat the same timemanipulated theGUI.ĉismakesmigrationdifficult, inparticular
to web platforms, since database code cannot be executed in the client side.

ĆDenvironments have been used to develop a great number of desktop applications as part of
information systems, many of them being still in production. However, the evolution of these
applications is hindered in the long term because of the two aforementioned issues: ėxedGUIs
(non-adaptableGUIs) and tangling of aspects in theGUI code. ĉis hasmotivated a large num-
ber of businesses to manually migrate their ĆD legacy systems to new platforms (typically
Web platforms), which beĨer meet their needs of extensibility, maintainability or distribution,
among others. Another reason for this migration is that some vendors are increasingly ceasing
support in favour of other platforms.

As pointed out in [ǉǉ],migrating a legacy business application to a new technology necessitates
tackling three main aspects: data access, business logic and graphical user interface (GUI). Be-
sides, migration would be facilitated by tools that help to discover architectural concerns that
are only implicit (and mixed together) in the source code, such as database access, navigation
Ěow, validation or exception handling. Figure ǉ.ǉ showsmany of the aspects that are tangled in
a legacy GUI.

ǌ

Figure ǉ.ǉ: Tag cloud of the blended elements in with a legacy GUI.

To our knowledge, just a few works have dealt with the migration of ĆD-based legacy sys-
tems [Ǌǐ, ǊǑ], and they regard GUI migration as a straightforward task which is addressed by
mappingGUI components between the source and target views. However, dealingwith current
technologies and devices requires a thorough analysis of the user interface so that it can be suit-
ably reengineered. Notably, there are two main types of artefacts involved in a GUI migration:
GUI deėnitions and event handlers. We will refer throughout this document toGUI deėnition
as the soěware artefact or set of them that describe the widgets that compose the view, their lo-
cation and their graphical properties, which are normally generated by a GUI builder. Reverse
engineering the layout of the user interface (i.e. obtaining an explicit model from the spatial re-
lationships among widgets) is crucial tomigrate the GUI of aĆDapplication tomodernGUI
toolkits. However, works about migration of ĆD applications reveal that layout inference is
oěen neglected. In fact, just a few works have reported a restructuring of coordinate-based
GUIs to views where the layout is managed by the toolkit [ǋ] [ǌ] [Ǎ]. In contrast, there is a va-
riety of works coping with static or dynamic analysis of event handlers in order to obtain a state
machine or a similar representation of the Ěow of windows and events, which is mostly used
for testing or program comprehension purposes [Ǐ] [ǐ] [ǋǈ] [ǋǉ]. Nevertheless, we have not
found reverse engineering literature dealing with the comprehension and automatedmigration
of event handlers in the context of ĆD applications.

Ǎ

ǉ.Ǌ PŇŃĶŀĹŁ ňŉĵŉĹŁĹłŉ

ĉe hypothesis we intend to demonstrate in this thesis is the following: We claim that the mi-
gration of a legacy GUI should consider the recognition of the graphical structures that compose the
layout of the original application, and should also separate the concerns that are blended into event
handlers. ĉen, it is possible to develop algorithms and techniques to uncover the GUI layout and dis-
entangle the application concerns. Furthermore, we believe that MDE is a paradigm that facilitates
the achievement of this goal since it has some features, namely metamodelling and model transforma-
tions, which ease the development of an automated solution. When we will refer to legacy systems
throughout the thesis, we will speciėcally refer to the applications created mostly during the
Ǒǈ’s with the aid ofĆDenvironments and Fourth Generation Languages (ǌGLs), such as Or-
acle Forms ǎ,Delphi Ǎ, orVisual Basic ǎ. ĉe legacy system term embracesmuchmore platforms
than ĆD environments, however we will restrict the term to such context, for which we have
analysed and tested some applications. Nevertheless, our proposal may be used in other sce-
narios, for instance, the layout inference process can be applied to the generation of ėnal GUIs
from mockups as we will see in Chapter ǎ.
ĉree high-level goals are derived from the previous statement, namely:

(Gǉǋ) Design anMDEarchitecture formigrating legacyGUIs. We need to create a solution
to tackle the migration of legacy systems to modern technologies, which will be seĨled
on MDE because it provides the foundations to explicitly represent the information ex-
tracted (bymeansofmodels), and to automate the generationof thesemodels (bymeans
of model transformation chains). ĉere will bemodels that represent the information of
every GUI aspect considered, like the layout. All these models will be described by a
metamodel, and the mappings between two related models will be deėned by a model
transformation. ĉe construction of a full-Ěedged MDE solution will involve the use of
several MDE tools such as model injectors (for transforming text into models), model
transformation languages (to deėnemappings betweenmodels) and template languages
(to generate code from models).

(Gǉǌ) Separate and make explicit the information of GUI deėnitions. It is important to
separate and make explicit the information contained in the GUI deėnitions (the def-
inition of the views). Speciėcally, separate the logical structure of the views, the style
and the layout. In a legacy application the layout is implicitly expressed in coordinates.

ǎ

Representing that layout by means of high-level elements such as layout managers is a
particularly challenging problem that must be addressed to achieve a good-quality mi-
gration. ĉen, data structures (metamodels) for representing GUIs and layout inference
algorithms must be part of the solution.

(GǉǍ) Separate and make explicit the information of event handlers. As noted above, the
code of the event handlers usually tangles several concerns, ranging from view manipu-
lation (e.g., enabling/disabling form ėelds), navigation to other views, form validation,
and so on. It would be desirable to uncouple them all to promote the evolution of the
system. To this aim, considering the distinctive nature of ĆD applications may lead to
beĨer results that addressing the problem from a general point of view. ĉen, perform-
ing some kind of preprocessing of the code of the event handlers before dealing with
the separation of concerns will be helpful, for example, obtaining a representation that
summarises the meaning of snippets of code and extracts the variables of each type.

ǉ.ǋ DĹŋĹŀŃńŁĹłŉ

In the late nineties many companies began to migrate their Oracle Forms applications to mod-
ern platforms like JavaEE or .NET. ĉe ModelUM group started in ǊǈǈǑ a research project to
investigate to what extent an MDE-based solution could automate such migrations [ǋǊ]. ĉis
pilot project was carried out in collaboration with the Sinergia IT soěware company, and the
main aim was to develop a framework for automating the migration of the GUI and the data
access layers. Some research problems related to the GUI migration arose at the early stages of
the project, which seĨled the objectives of this thesis.

In the ėrst place we performed a literature review to know the state of the art about reverse en-
gineering and reengineering of the GUI of legacy systems. We inspected applications in Oracle
Forms ǎ, Delphi Ǎ and Visual Basic ǎ to know the features that typify the ĆD environments,
and we also analysed several User InterfaceDescription Languages (UIDL) andConcrete User
Interface (CUI) models, with the intention of using a technology-independent representation
of the GUI. ĉese languages and models represented the layout in a simple way, and they were
not focused on separation of concerns, so we ėnally decided to create our own CUI represen-
tation and we deėned a ėrst version of our architecture.

ĉe inspection of views of differentĆDapplications revealed that widgets were always placed

Ǐ

by means of coordinates expressed in pixels or other ėxed units, whereas in modern technolo-
gies the use of ėxed measures is not recommended but some sort of layout managing system
is advised. ĉen we developed a reverse engineering approach to deal with the inference of
the layout, which was presented in the ASE conference [ǋǋ]. An extension of this contribu-
tion, which described the approach in detail and the validation accomplished, was published in
the ASE journal [ǋǌ]. Before developing the approach, we did a literature review for searching
works that performed some sort of layout inference from coordinates and we only found one
relevant approach [ǋ] that was not easily extended to different layout managing systems. Our
solution was tested with two real case studies with positive results.

ĉenwemoved to the analysis of event handlers. Since the analysis of code is a totally different
area, we performed a new literature review and we learned the foundations from the existing
approaches. We realised of the speciėc features of the event handlers of ĆD applications and
we decided to proėt from them by identifying code constructions that were frequently found.
We develop a program comprehension approach to disentangle the different concerns that are
mixed in the code of the event handlers. ĉe cornerstone of that approach was a model repre-
senting the behaviour of the code in an abstract way so the later reverse engineering tasks were
facilitated. ĉe work resulted in contributions in the WCRE [ǋǍ], JISBD [ǋǎ] and UIDL [ǋǏ]
conferences.

In ǊǈǉǊ the PhD candidate did a Ǒ-month research stay in Louvain-La-Neuve (Belgium), in the
LILab group, which is a renowned team in Human-Computer Interaction (HCI) led by Jean
Vanderdonckt. During the stay, a tool for analysing web pages intoUsiXML [ǋǐ] speciėcations
was developed, and we cooperated in a work presented in the RCIS’ǉǋ conference [ǋǑ]. ĉis
work made us reconsider the layout inference solution to implement some improvements.

Back to ModelUM, we started to work on the idea of applying our layout inference solution to
generateGUIs fromwireframes. ĉenwe considered the approach developedduring the stay in
Belgium toovercome someof the limitations detected in the ėrst version of our layout inference
algorithm. ĉerefore, the last period of the research was devoted to design and implement a
new version of the layout inference approach anddevelop a tool to automatically generateGUIs
from wireframes. ĉe new version of the approach was tested with a real wireframing tool, and
an article that described our work was submiĨed to the IST journal [ǌǈ], which is under review
at present.

ǐ

ǉ.ǌ OŊŉŀĽłĹ

ĉe structure of the rest of this document is as follows:

• Chapter Ǌ introduces the background needed for a beĨer understanding of this thesis. It
comprises basic concepts of soěwaremodernisation, the features of legacyGUIs, scenar-
ios in which extracting information of the GUI is useful, and the principles of the MDE
paradigm.

• Chapter ǋ analyses the state of the art in three areas, namely layout inference, code anal-
ysis of event handlers, and MDE approaches for reengineering GUIs. For the ėrst two
areas, some dimensions will be deėned to compare the works and a discussion in each
areawill present the lacks andweaknesses of up-to-date approaches for reverse engineer-
ing legacy GUIs.

• Chapter ǌ outlines our proposal formigrating legacyGUIs. It describes the overall chal-
lenges we have found when addressing the problem, and we identify the requirements
that we believe that a proper solution should have. We will also present the general ar-
chitecture of the solution, which includes models specially designed to deal with each
concern, and we will foresee how do we cope with each one of the elicited requirements
in the solution.

• Chapter Ǎ explains the ėrst approach we devised to tackle the layout inference of legacy
GUIs. We will expound the data structures and algorithms involved in the solution. Fi-
nally we will present the validation of the approach through a case study of the migra-
tion of Oracle Forms applications to the Java platform. Besides the evaluation of the
approach, the case study has served to disclose the limitations of the current solution
and draw conclusions.

• Chapter ǎ expounds a second version of the layout inference algorithm. ĉe chapter
starts stating the reasons that motivated a new version and shows the changes that have
beenaccomplished in the solution to incorporate thenewrequirements. ĉemainchange
affects the high-level layout inference algorithm, which is now an exploratory algorithm
based on graph rewriting and paĨernmatching, which will be explained in depth. A new
case study about reengineering of wireframes will be introduced, which will be used to

Ǒ

test the new approach. We also include a brief evaluation to compare both approaches
in the context of the migration of legacy GUIs, concretely Oracle Forms windows.

• Chapter Ǐ focuses on the part of the reengineering architecture that is devoted to the
analysis of event handlers. We will present the metamodel (i.e., data structure) we have
built to represent the code in a concisemanner, and thepaĨern recognition algorithmde-
signed to extract that representation. We put into practice this metamodel in two cases:
the separation of the code in layers (business logic, the controller and the GUI code),
and the identiėcation of the interactions among widgets and among views. ĉe separa-
tion in layers will be also tested with a case study to migrate Oracle Form event handlers
to an Ajax application.

• Chapter ǐ concludes this thesis by analysing the level of achievement of the goals we
presented inChapter ǉ and the requirements enumerated inChapter ǌ. Our solutions are
contrasted with the related work and a discussion about the beneėts and disadvantages
with regard to those works is included, which leads to the future work proposal. Finally,
the results of this thesis in terms of publications and projects are enumerated.

ǉǈ

(Suggested by Javier Cánovas)

ĉe world is full of obvious things which nobody by
any chance ever observes.

Mark Haddon,ĉe Curious Incident of
the Dog in the Night-Time

2
Background

ĉis chapter introduces the background needed for a beĨer understanding of this thesis, which
consists of: the basic concepts in the area of Soěware Modernisation, some common notions
aboutGUIs, the particular features of theGUI of legacy systems, GUImodernisation scenarios
in which an inference process is useful, and the foundations ofModel Driven Engineering such
as metamodelling and model transformations, and their applicability to soěware modernisa-
tion.

Ǌ.ǉ SŃĺŉŌĵŇĹ ŁŃĸĹŇłĽňĵŉĽŃł

Modernisation is a formof soěware evolution of legacy systemswhich involves deeper andmore
extensive changes thanmaintenance, but in which the system still has some business value that
is preserved [ǌǉ]. A modernisation process is applied when the desired properties of a legacy
system cannot be achieved by means of maintenance. Two kinds of modernisation are dis-
tinguished: white-box and black-box. In the former the internal details of the system must be
understood and some signiėcant changes in the system structure are required (e.g. code re-

ǉǉ

structuring). In the laĨer, the analysis of legacy systems is based on their input and output,
e.g., a wrapper is a commonly used technique to achieve black-box modernisation. Migration
is a kind of modernisation in which an entire source application or a part of it is moved to a
different technology, for instance a source code translation or a database engine change.

Reengineening is also a form of modernisation that applies soěware engineering practices to an
existing system to meet new requirements [ǌǉ]. Tilley and Smith [ǉǊ] deėne reengineering as
“the systematic transformation of an existing system into a new form to realise quality improvements
in operation, system capability, functionality, performance, or evolvability at a lower cost, schedule,
or risk to the customer”. A reengineering process can be applied in three stages [ǉǋ]. Firstly,
a reverse engineering stage analyses the existing system and extracts knowledge which is repre-
sented at different abstraction levels. A second stage restructures these abstract representations
in order to establish a mapping between the existing system and the target system. Finally, a
forward engineering stage is applied to obtain the artefacts of the new system from the output of
the restructuring stage. As the horseshoemodel [ǌǊ] illustrates (see Figure Ǌ.ǉ), the reverse en-
gineering process can be applied in several steps which form a transformation chain. ĉat chain
is intended to increase the level of abstraction of the extracted knowledge so it achieves an ar-
chitectural representation of the system. ĉen restructuring and forward engineering can be
applied at different abstraction levels for any of the obtained representations to derive artefacts
of the new system.

Reverse engineering is an essential activity in a reengineering process which is based on code
anddata comprehension techniques. Chikofsky andCross [ǉǋ] deėne reverse engineering as “the
process of analyzing a subject system to i) identify the system’s components and their interrelation-
ships, and ii) create representations of the system in another form or at a higher level of abstraction”.
Reverse engineering techniques are commonly classiėed in twomajor groups [ǌǋ]: static anal-
ysis is based on the inspection of the application artefacts (normally source code), and dynamic
analysis examines the state of a running application. Each type of technique has its limitations:
with static analysis it is difficult to have good coverage of highly dynamic applications, while
dynamic analysis faces problems with guaranteeing that generatedmodels fully capture the be-
havior of the system. A third technique is hybrid analysis, which joins both static and dynamic
analysis to take the best of each procedure.

ĉere are numerous forms of reengineering [ǌǉ]. A platform migration typically combines sev-
eral of these forms, for instance, source code transformation, programmodularisation, and data

ǉǊ

Figure Ǌ.ǉ: ĉe Horseshoe model

reengineering can be involved in a ĆD-to-Java platform migration. Revamping is connected
with themodernisationof user interfaces, inwhichonly theuser interface is changed to improve
some aspects like usability. ĉese days, with increasingly high interest in the Internet, the most
popular form of revamping is adding a web interface to legacy systems. In the past a very com-
mon practice was replacing a text interface with a graphical user interface. One of the methods
for this kind of revamping was screen scraping, that is, a black-box method, in which an applica-
tion (usually an existing component) is ’redirected’ from a console screen into a graphical frame
of web interface [ǌǉ]. ĉis method is relatively cheap and results of a modernisation are well
visible. Nevertheless the UI is just a wrapper on the old system which remains unchanged, so
adding new functionalities or further maintenance is still very difficult, because system exten-
sibility has not been improved. When these improvements are needed, a white-blox approach
should be applied to move the GUI legacy code to the target platform, for instance, when an
Oracle Forms application is converted into a Java Server Faces (JSF) one.

Ǌ.Ǌ GŇĵńļĽķĵŀ UňĹŇ IłŉĹŇĺĵķĹň (GUI)

AUser Interface (UI) is the part of a soěware/hardware system that is designed to interact with
users. A Graphical User Interface (GUI) is a UI that takes advantage of computer graphics to
facilitate the interactionwith users. Before the popularisation of touch devices such interaction
has been typically performed by means of a cursor on the screen that is controlled by a mouse,
which lets theuser select graphical elements suchasmenu itemsorbuĨons. User interfaceshave
a static component which is related to the presentation of the information (i.e., the structure,
the layout, the usability, the accessibility or the aesthetics), and a dynamic part that is associated

ǉǋ

with the behaviourwhen the user interacts with it (i.e. the events that are triggered and perform
actions and/or changes in the interface).

AGUI toolkit (orwidget toolkit) is a library that supports buildingGUIs for a particular program-
ming language and sometimes is tied to a framework or operating system. For instance, Gtk+
for desktop applications in C/C++ under Windows/Linux/Mac, or the Java Android SDK for
mobile applications in Android. Each toolkit provides different features for the static and dy-
namic aspects of the GUI.

We will use the term view to refer to the graphics displayed on device screens. Common exam-
ples of views are windows in desktop applications, web pages in web applications, and views in
mobile applications. ĉe elements displayed in views are widgets, controls or visual components
(e.g., buĨons or combo boxes). ĉe term widget will be used plenty of times throughout this
document. ĉere are different kinds of widgets, and every widget is characterised by a type, a
set of graphical properties such as background colour or font type, and status properties such
as visibility (if the widget is visible) or editability (if the widget can be edited). In general, wid-
get types are commonly classiėed according to their purpose: entering data (e.g., text ėelds),
showing information (e.g., data grids) or interacting with the system (e.g., buĨons). ĉere are
also widgets (like panels) that are used to structure views, in such a way that buĨons or text
ėelds are contained in panels (similarly to a Composite paĨern). In this sense, views are con-
tainers too and they are actually the topmost components in the aggregation hierarchy of the
GUI elements, which is sometimes referred asGUI tree. Figure Ǌ.Ǌ shows an example view for
recording user data which containsNameLabel,NameBox, PaymentFrame and some other wid-
gets, and PaymentFrame is in turn the container of CardLabel, CardCombo, DiscountLabel, and
DiscountCheck. A part of the GUI tree of this view is shown in Figure Ǌ.ǋ.

ĉe layout of a graphical user interface is the spatial distribution of the elements in the views of
the application. ĉere are GUI toolkits that deėne explicit components for laying out content
(e.g., the hbox and vbox in ZK [ǌǌ]), while in other cases the layout is deėned by properties
(e.g., Ěoat in CSS [ǌǍ]) or assigning predeėned layout types to certain groups of widgets (e.g.,
Java AWT [ǌǎ] layouts). ĉe laĨer are commonly known as layout managers. ĉey are soěware
components that automatically lay out the widgets on a view based on relative relations and
restrictions that are inherent to the layout type and partly speciėed by the programmer.

In every modern GUI technology, the GUI behaviour is implemented by an event-driven ap-

ǉǌ

R3

R2

R1

Figure Ǌ.Ǌ: Example view for entering personal information. Widgets are placed with explicit
coordinates.

RecordWindow: Canvas

CardLabel: Label
CardCombo: ComboBox
DiscountLabel: Label
DiscountCheck: CheckBox

PaymentFrame: Frame

. . .

Figure Ǌ.ǋ: An excerpt of the GUI tree for the window in Figure Ǌ.Ǌ.

ǉǍ

proach. Each widget is able to trigger some types of events under certain conditions. For in-
stance, typical types of events for a buĨon are click (the buĨon has been pushed) and hover (the
cursor is over the buĨon), and common types of events available for text boxes are change (the
content of the text ėeld has been modiėed) and focus (the text ėeld has been selected and is
ready for writing). Different types of widgets can trigger the same event types, but not all the
types of events are available for all the types of widgets. For example, buĨons and text ėelds can
trigger the hover event, but the change event makes no sense for buĨons. Note that the set of
events supported by widgets is not standard, but each GUI toolkit may implement a different
one. Widgets can be aĨached actions that are implemented by programming code (i.e., event
handlers) that are executed every time a certain event happens on the widget. ĉese actions
can provide some application functionality, modify the aspect of the current view, or change
the view, among others. In short, an event is featured by three elements: i) a widget, ii) an event
type, and iii) an event handler that deals with it.

Ǌ.Ǌ.ǉ VĽňŊĵŀ GUI ĺĹĵŉŊŇĹň

Widgets are not randomly distributed on the screen but they form some sort of design (layout)
that deeply affects the readability and usability of the GUI. ĉe layout is probably the most
complex element of the visual part of a GUI, as it cannot be deėned by a single value or a list
of values, but it is the result of applying several features on different widgets or groups of them.
We have identiėed several features that characterise the layout. Next we comment on them.

• Visual structure.

It is related to the human perception about the widget arrangement, and is a key feature
to allow adapting the content of a view to different text or screen sizes. Knowing the vi-
sual structure requires analysing the positions of all the elements in the view to recognise
the ’shapes’ they form and how they are visually grouped. A horizontal Ěowof widgets or
a grid of elements are examples of visual structures. Note that different layout arrange-
ments may produce similar visual structures that can be equally valid for the same view.

For example, in the login view shown in Figure ǎ.ǉǉ, nameLabel and nameField form a
line, passwordLabel and passwordField form a second line, and the ok and cancel buĨons
form a third line. Another layout possibility would be to put nameLabel and passwordLa-
bel in one column, and the rest of widgets in another column.

ǉǎ

Figure Ǌ.ǌ: Login window created with WireframeSketcher.

Sometimes there are widgets that are surrounded by a rectangle because they are related
to the same topic, or there are groups of widgets that are visually distant to other groups.
In these cases, the groups should be identiėed and handled as a unit if compared to the
rest of elements.

• Sizing

ĉesize of thewidgets is another feature thatmust be considered. Sizes can be expressed
in absolute units like pixels, or in relative units, for example in percentages regarding
the container element. It is advisable to always use relative units so the measures are
independent of the concrete screen of the device.

• Spacing

ĉe spacing between the widgets in the view is also relevant. We must distinguish be-
tween the gaps and the margins. We call gaps to the spacing between the single widgets
(e.g. the separation between a label and a text ėeld). Margins are the distances between
the single widgets and their container. Note that gaps and margins are either horizon-
tal or vertical, depending on the axis in which they are observed. Like sizes, gaps and
margins can be expressed in absolute or relative units, though the laĨer are preferred.

• Alignment

ĉealignment is either horizontal or vertical, and it is deėned for awidgetwith respect to
otherwidgets, or deėned for awidget regarding its container. For instance, in Figure ǎ.ǉǉ
the widgets nameField, passwordField and cancel are aligned to the right with regard to
each other.

ǉǏ

Looking at these three widgets carefully we can see that they are not perfectly aligned,
though it seems that the intention is that they are aligned. ĉerefore, when dealing with
the layout, itwouldbe interesting to accept somedegreeofmisalignment, i.e., the analysis
of the positions of the elements must be Ěexible. In addition, in cases it may happen that
the area taken by awidget slightly overlaps otherwidgets, and it is neccessary to deal with
some small overlapping.

Ǌ.Ǌ.Ǌ LĹĻĵķŏ GUI ĺĹĵŉŊŇĹň

ĉe GUI of a legacy system commonly has some features that are not present in modern GUI
technologies. Someof themarediscouragedpractices in soěware engineering that areno longer
implemented. We have studied the GUI deėnition and code of three different ĆD environ-
ments, namely Oracle Forms ǎ, Visual Basic ǎ and Delphi Ǎ. Next table summarises the main
features of the studied environments.

Oracle Forms ǎ Microsoě Visual BorlandDelphi Ǎ
Basic ǎ

Year ǉǑǑǎ ǉǑǑǐ ǉǑǑǑ
Implicit layout Yes Yes Yes
Proprietary units Yes (points) Yes (twips) No (pixels)
Clustering elements Canvases, Frames, Frames only Panels, GroupBoxes,

(containers) Rectangles, ... RadioGroups...
Container overlapping Yes Not compulsory Not compulsory

Widget set Ǌǈ standard Ǌǈ standard, ǋǌ standard,
+ǋǈ complex controls +Ǎǈ complex controls

Widget-database links Yes Yes (ADO) Yes (ADO)
Table widget Multirecord text-ėelds ADODC TDBGrid

Code mixes aspects Yes Yes Yes
GUI deėnition format binary property=value property=value
Event handler format PL/SQL triggers Visual Basic subroutines, Delphi methods

(binary) mixed with GUI deėnition

Table Ǌ.ǉ: GUI features of three different ĆD environments

Based on the mentioned table, we list some features that can be frequently found in GUI deė-
nitions that have been built with ĆD environments:

• Implicit layout. ĉe position of widgets is stated by means of a pair of coordinates that
are relative to themain window or another container, and rarely, relative to another wid-

ǉǐ

get (e.g., a label to its text box). ĉe size (width and height) of a widget is also given
explicitly by the ĆD environment. ĉis means that, for example, when a window is re-
sized the widgets are not resized or rearranged accordingly. As it can be seen, the three
studied ĆD environments have an implicit layout. In cases, these technologies do not
use standardunits like pixels or centimetres, but proprietary units. For example, inVisual
Basic ǎ the default measurement unit is the twip, which is ǉ/Ǌǈ of a typographical point
(ǉ/ǉǌǌǈ of an inch). Twips are screen-independent units, they were created to avoid
the disadvantages of ėxed units like pixels, but they are no commonly found in modern
IDEs.

• Clustering elements. ĉere are special widgets which are intended to group and/or
highlight semantically-related widgets. In particular, we distinguish between elements
that arrange a window in parts (in some legacy environments they can also be reused be-
tween windows), and elements that are used to highlight a set of widgets in close prox-
imity, frequently by means of a border.

• Overlapping. Widgets are oěen loosely contained in their container, that is, they are
overlapped with the container instead of having explicit containment relationships. A
container could also be overlapped with another container. ĉis means that a container
may not have any children widget in the GUI tree, although there may be some wid-
gets that would (visually) be expected to be contained. In Visual Basic ǎ and Delphi Ǎ,
containers and widgets may be overlapped, but in Oracle Forms ǎ this overlapping is
unavoidable. For example, in relation to the view in Figure Ǌ.Ǌ, Figure Ǌ.Ǎ(a) shows a
fragment of the original GUI tree created by aĆDenvironment likeOracle Forms, and
Figure Ǌ.Ǎ(b) shows the expected GUI tree. In that view it can be seen that Payment-
Frame surrounds CardLabel, CardCombo, DiscountLabel and DiscountCheck (the check-
box next to DiscountLabel), but these widgets are only visually contained in the frame,
that is, their parent element in themodel is not PaymentFrame, but ratherRecordWindow
(see Figure Ǌ.Ǎ(a)). We could expect that the GUI tree would be like Figure Ǌ.Ǎ(b).

• Widget set. ĆD environments as well as modern frameworks share a common set of
standard widgets, such as text boxes, buĨons, combo boxes, tables, and so forth. How-
ever, some environments like Delphi Ǎ include technology-dependant widgets that may
not have an equivalent in other environments. Developers sometimes wanted to use

ǉǑ

RecordWindow: Canvas

CardLabel: Label

CardCombo: ComboBox

DiscountLabel: Label

DiscountCheck: CheckBox
PaymentFrame: Frame
. . .

RecordWindow: Canvas

CardLabel: Label

CardCombo: ComboBox

DiscountLabel: Label

DiscountCheck: CheckBox

PaymentFrame: Frame

. . .a) b)

Figure Ǌ.Ǎ: (a) Fragment of the original GUI tree. (b) ĉe expected GUI tree.

complex widgets that were not available in the GUI technology in which they were pro-
gramming and they did a bit of a trick by emulating those complex widgets by means
of a composition of the available widgets. For example, a calendar (which is nowadays
a common component) was typically emulated in Oracle Forms by means of a grid of
buĨons (see Figure Ǌ.ǎ). Another example is a table with a scrollbar, in which the parts
of the scrollbar were emulated by buĨons.

Figure Ǌ.ǎ: A calendar component emulated by a grid of buĨons.

• Widget-database links. Sometimeswidgets are tied to table columns in database tables.
In Oracle Forms, Visual Basic and Delphi, the property sheets of widgets include some
properties to indicate that information. Particularly, in Visual Basic and Delphi, widgets
contain datasource and data ėeld properties. ĉe former is conėgured by means of an
ADO control that indicates the connection string and the data table, and the laĨer is the
columnname in the database table. Oracle Forms does not useADO, but there are rather
similar properties to indicate the database connection.

ĉe code of event handlers in legacy systems also has some characteristics that are not typically
found in modern applications. Next we list some of them.

Ǌǈ

• Tanglingofconcerns. Codemanaging theGUI ismixedwithbusiness logic anddatabase
access. ĉere is no clear separation among the different concerns of the application.
For example, the event handler shown in Figure Ǌ.Ǐb takes the value of ABE_IMPP, di-
vides it by the euro exchange value obtained from the database, and places the result in
ABE_IMPE. As it can be seen, the database access and the GUI are tightly tied.

• Simple behaviour. It does not perform complex algorithms or calculations. Event han-
dlers are hardly ever complex, which is caused by the fact that complex functionality is
typically implemented in separate functions or stored procedures that are called by the
handlers.

• Restricted looping. Loops are only used to iterate over database tables. ĉis is a conse-
quence of the previous point, since algorithms used to solve problems are programmed
in procedures. Loops are only foundwhen using collections or using sentences to iterate
over database rows.

• Conditional paths. Several levels of nested conditional statements are common, where
conditions check values from theGUIor the database. Actions such as updating theGUI
or modifying the database are normally performed in the most inner blocks.

• Idiom-based programming. Applications usually repeat a series of idioms. Some of
them are speciėc of each ĆD environment, while others are conventions dependant
on the company. Querying a value from the database and placing it in a text ėeld aěer
some kind of modiėcation is a recurrent paĨern carried out in event handlers of legacy
applications, as it is done in the example code of Figure Ǌ.Ǐb. Another example is shown
in Figure Ǌ.ǐ, and excerpt of an event handler in Delphi Ǎ. ĉe code checks whether a
task is active before deleting it, and if the task is active, then aborts the deletionoperation.
Checking if a value exists in a database before performing an operation is also a common
paĨern.

• Similar programming abstractions. Although each legacy environment has its own
programming language to write event handling code, most of them provide similar con-
structs. As itwas seen inFigureǊ.Ǐb, inOracleFormsǎ simpledatabase access canbeper-
formed with implicit PL/SQL cursors, and in Delphi Ǎ it can be accomplished through
a TADOQuery object.

Ǌǉ

(a) Example window fragment

(b) POST_CHANGE Event handler associated with ABE_AYU_INSE (PL/SQL)

Figure Ǌ.Ǐ: Example of mixing of concerns in an Oracle Forms application

Figure Ǌ.ǐ: Fragment of a Delphi Ǎ event handler that checks if a task is active before deleting
it.

ǊǊ

Ǌ.Ǌ.ǋ UňĹ ňķĹłĵŇĽŃň Ńĺ GUI ŇĹŋĹŇňĹ ĹłĻĽłĹĹŇĽłĻ

Inferring information of the GUI such as the layout or the aspects involved in code, and repre-
senting it explicitly, is useful in a variety of cases. Next, we brieĚy comment on several scenarios
in which GUI reverse engineering activity would enable GUI reengineering and other types of
activities to be performed:

• Revamping. As we have already mentioned, this is the case in which the business logic
of the legacy system is reused, and only the views are changed. Frequently, this scenario
involves wrapping[ǌǏ] the legacy code in order to be able to access from the code of the
newGUI technology. A few changes are performed on event handlers just to adapt them
to the new views. A particular case of revamping is the layout-preserving migration, which
takes place when amigration project have a requirement which speciėes that the original
GUI layoutmust be preserved in the target application due to users are averse to change.

• GUI testing. ĉere are different strategies to accomplish GUI testing. An strategy is to
generate amock applicationwith the viewsoriginal applicationwhich tracksuser input in
order to generate test cases [ǌǐ]. Another strategy consists of symbollically executing the
code to generate test inputs [ǎ]. Other works instrument event handler code to record
user interactions which are later analysed [ǌǑ].

• GUI adaption. Migrating to a new GUI technology requires taking advantage of the
target technology’s features (e.g. usability standards, high-level layoutmodels ofmodern
GUI toolkits, etc.). Deep changes in views and event handlers are usually required in this
scenario. A particular case of this category would be the migration to technologies with
constraints related to the screen size, such as mobile devices.

• Quality improvement. Perfective maintenance tasks may be required to improve the
systemquality, such as the detection of usability issues, non-visible widget removal, GUI
resizing and beautiėcation [ǋ], separation of concerns [ǉǉ], code refactoring [Ǎǈ] or
death code removal.

• Forward engineering. Forward engineering approaches to develop new systems can
also beneėt from GUI reverse engineering. In soěware development methodologies,
GUI designs are validated in the early stages of development with amockup (Figure ǎ.ǉǉ
shows a plain mockup), which is a GUI representation that is created before the ėnal

Ǌǋ

product so stakeholders can check it. ĉe same approach used in reverse engineering
an existing system can be applied to the development of a new one just by taking mock-
ups as source artefacts. ĉen, ėnal GUIs for different platforms or technologies can be
generated from the GUI representations.

Ǌ.ǋ MŃĸĹŀ DŇĽŋĹł EłĻĽłĹĹŇĽłĻ (MDE)

Model-Driven SoĜware Engineering (MDSE or simply MDE) is an emerging area of Soěware En-
gineering which addresses the systematic use of models to improve the soěware productivity.
Models can be used in the different stages of the soěware lifecycle to raise the abstraction level
and automate development tasks. ĉere exist several MDE paradigms such as Model Driven
Architecture (MDA) [ǉǍ] or Domain-Speciėc Development [ǉǎ] [Ǎǉ] which share the same
four basic principles [ǍǊ]: (i)models are used to represent aspects of a soěware system at some
abstraction level; (ii) they are expressed using DSLs (a.k.a. modelling languages) (iii) that are
built by applying metamodelling techniques and (iv) model transformations provide automa-
tion in the soěware development process.

Ǌ.ǋ.ǉ MĹŉĵŁŃĸĹŀŀĽłĻ

A metamodel is a model that describes the concepts and relationships of a certain domain. A
metamodel is commonly deėned by means of an object-oriented conceptual model expressed
in a metamodelling language such as Ecore [Ǎǋ] or MOF [Ǎǌ]. A metamodelling language is
in turn described by a model calledmeta-metamodel, therefore, a metamodel is an instance of a
meta-metamodel and a model is an instance of a metamodel.

Metamodelling languages generallyprovide fourmainconstructs to expressmetamodels: classes
(normally referred as metaclasses) for representing domain concepts, aĨributes for represent-
ing properties of a domain concept, association relationships (e.g., aggregations and references)
between pairs of classes to represent connections between domain concepts, and inheritance
between childmetaclasses and their parentmetaclasses for representing specialisation between
domain concepts. In the following chapters we will use metamodels to describe the data struc-
tures involved in the proposed solution.

Ǌǌ

Ǌ.ǋ.Ǌ DŃŁĵĽł-SńĹķĽĺĽķ LĵłĻŊĵĻĹň (DSLň)

In contrast to General Purpose Languages (GPLs),Domain-Speciėc Languages (DSLs) are lan-
guages that are deėned to solve problems in a speciėc domain. In the MDE context, the DSL
and modelling language terms are commonly used to refer to the languages used to build mod-
els, which are usually created by applying metamodelling, that is, the language allows creating
models whose structure is determined by a metamodel.
ADSL consists of three basic elements: abstract syntax, concrete syntax and semantics. ĉe ab-
stract syntax describes the set of language concepts and their relationships, along with the rules
to combine them. Metamodelling provides a good foundation for this component, and it is the
most widespread formalism in MDE but other formalisms have also been used over the years,
such as grammars for programming languages and DTD/XML schemas for XML documents.
ĉe concrete syntaxdeėnes the notation of theDSL,which can be textual or graphical (or a com-
bination of both). ĉe semantics deėnes the behavior of the DSL; there are several approaches
for deėning it [ǍǍ], but it is typically provided by building a translator (i.e., a compiler) to an-
other language that already has a well-deėned semantics (e.g., a programming language) or an
interpreter.
An example of graphical DSL for creating quick designs of GUIs are mockup tools (e.g., Bal-
samiq [Ǎǎ]), as they conformtoa formalism(metamodels orDTD/XMLSchema inmost cases),
they have a graphical notation (widgets) and they have the semantics of the GUI toolkits for
which the GUI code can be generated.
DSLs have been used since the early years of programming, however,MDEhas substantially in-
creased the interest in them. Most MDE solutions involve the deėnition of one or more DSLs
in order for users to create themodels that are required. WhenMDE is applied in reengineering
legacy systems, concrete syntaxes are not needed for the metamodels that represent the infor-
mation gathered in that process if such information is not intended to be understood by users.
Actually, in our case we have not deėned a concrete syntax for any of the metamodels we will
present, but models (i.e. instances of metamodels) have been directly manipulated by model
transformations, which we introduce next.

Ǌ.ǋ.ǋ MŃĸĹŀ ŉŇĵłňĺŃŇŁĵŉĽŃłň

Model transformations allow automating the conversion of models between different levels of
abstraction. An MDE solution usually consists of a model transformation chain that generates

ǊǍ

thedesired soěware artefacts fromthe sourcemodels. ĉreekindsofmodel transformations are
commonly used: model-to-model (MǊM), model-to-text (MǊT) and text-to-model (TǊM).

MȖM transformations generate a target model from a source model by establishing mappings
between the elements deėned in their metamodels. One or more models can be the input and
output of a MǊM transformation. MǊM transformations are used in a transformation chain as
intermediate stages that reduce the semantic gapbetween the source and target representations.

ĉe complexity of model transformationsmainly depends on the abstraction level of themeta-
models to which the models conform. ĉe most frequently used MǊM transformation lan-
guages (e.g.,QVT [ǍǏ],ATL [Ǎǐ], ETL [ǍǑ]) have a hybrid nature sinceMǊM transformations
can be very complex to be expressed only by using declarative constructs [ǎǈ]. ĉese languages
allow transformations to be imperatively implemented by using different techniques: i) imper-
ative constructs can be used in declarative rules (e.g, ATL and ETL), ii) a declarative language
is combined with an imperative one (e.g., QVT Relations and QVT operational), or iii) the
language is designed as a DSL embedded into a general purpose language (e.g., RubyTL [ǎǉ]
into Ruby). Using model transformations to solve reverse engineering problems is an example
of scenario where a high degree of processing of information is required and the complexity of
transformations can become very high. A survey on model transformation languages can be
found in [ǎǊ].

MȖT transformations generate textual information (e.g. source code) from an input model.
MǊT transformations produce the target artefacts at the last stage of the chain. MOFȖText [ǎǋ]
and XPand [ǎǌ] are some of the most widely used MǊT model transformation languages.

Finally,TȖM transformations (also called injectors) are used to extractmodels of the source arte-
facts of an existing system, and are mainly used in soěware modernisation to obtain the initial
model to be reverse engineered. Hence, they are less frequently used than MǊM and MǊT.
Among the tools for extracting models from code we remark MoDisco [Ǌǋ] that implements
parsers (called discoverers) for Java and other languages, the XML injector of the Eclipse Model-
ing Framework (EMF) [Ǎǋ] that obtains Ecoremodels fromXML schemas, andGraȖMoL [ǊǊ],
which is a textualDSLespecially designed todeėneTǊMtransformationswhen the source arte-
fact consists of text that conforms to a grammar, by establishing mappings between that source
grammar and a target metamodel.

Ǌǎ

Ǌ.ǋ.ǌ MŃĸĹŀ-DŇĽŋĹł MŃĸĹŇłĽňĵŉĽŃł (MDM)

MDE is increasingly gaining acceptance,mainly because of it is being successfully used in build-
ing new soěware systems (forward engineering) [ǌǏ] [ǎǍ]. ButMDE techniques, such asmeta-
modelling and model transformations, are also useful to evolve existing systems, as they can
help to reduce the soěware maintenance and modernisation costs by automating many basic
activities in soěware evolution processes. In this seĨing,Model-DrivenModernisation (MDM)¹
has emerged as anMDEapproach to be applied in the soěwaremodernisation scenario. Several
experiencesof applyingMDMhavebeen recentlypublished [ǎǎ] [ǎǏ] [Ǌǈ],whichhave showed
howMDE techniques facilitate the obtainment of representations that have an abstraction level
higher than source code, and how modernisation tasks can be automated, e.g., providing met-
rics to analyse the impact of the changes or automatically generating soěware artefacts of the
evolved system.

Figure Ǌ.Ǒ: MDE applied to reengineering

In theMDMcontext, reengineering is accomplishedby applyingmodel transformations in each
of three stages of the process (see Figure Ǌ.Ǒ). Reverse engineering gets models from the source
artefacts which are not just a model representation of the code, but they provide a higher ab-
straction level. Frequently, this step is tackled by a TǊM transformation that gets a low-level

¹Model-Driven Reengineering (MDR) is an approach related to MDM that advocates the use of models in
reengineering.

ǊǏ

representation of the code (and is therefore dependent on the type of source artefact), followed
by one or more MǊM transformations that get more abstract representations. A crucial aspect
is the deėnition of themetamodels that are appropriate to represent the knowledge collected in
each step of the transformation chain. Model-Driven Reverse Engineering (MDRE) [ǎǐ] [ǎǑ] is a
common term referred to the use ofMDE in the reverse engineering stage. In the restructuring
stage themodels are transformed into other ones that conform to some aspects of the target ar-
chitecture, which is accomplished by one or more MǊM transformations. Finally, the forward
engineering stage takes the models obtained in the restructuring stage and generates artefacts of
the new system, which can be performed by a MǊT transformation. If there is a wide seman-
tic gap between the models obtained aěer the restructuring stage and the target code, a MǊM
transformation chain ėnished by a MǊT transformation is frequently advised.

To increase the interest in applying MDE to modernise legacy systems, OMG launched the
Architecture DrivenModernisation (ADM) initiative in Ǌǈǈǋ [ǉǏ], whose objective is to develop
a set of standardmetamodels for common tasks in soěwaremodernisation in order to facilitate
the interoperability among tools. Several modernisation scenarios in which ADMmetamodels
have prove to bring beneėts are described in [ǉǐ] [Ǐǈ].

Among these metamodels, Knowledge Discovery Metamodel (KDM) [Ǐǉ] plays a main role due
to it is targeted at representing application code at different abstraction levels, from GPL state-
ments to business rules. It is, therefore, an arguably large metamodel structured in four layers,
namely Iněastructure, Program elements, Resource, and Abstractions. ĉe Abstract Syntax Tree
Metamodel (ASTM) is a metamodel that complements KDM and is devised to represent code
in the Abstract Syntax Tree (AST) form. In [ǎǎ] a detailed explanation on how to use KDM
and ASTM to model PL/SQL code can be found, as well as a case study for gathering soě-
ware metrics is presented. Other ADM metamodels are SoĜware Metrics Metamodel (SMM)
for representing metrics, and Automated Function Point (AFP) for automating the extraction of
function points. Up to the present time, the impact of the ADM standards has been very lim-
ited, mainly due to the complexity of KDM [ǎǎ] and few works that illustrate real case studies
have been published.

In [Ǌǌ] someMDMtools thathavebeen recentlydevelopedarepresented, amongwhichMoDisco
has received greater aĨention. MoDisco[Ǌǋ] is an extensible open sourceMDRE framework to
developmodel-driven tools to support use-cases of existing soěwaremodernisation. MoDisco
aims at supporting the description, understanding and transformation of existing sofware by
providing four elements: i) metamodel implementations like relational database, KDM and

Ǌǐ

JavaSEmetamodels, ii) discoverers to automaticaly injectmodels of these systems such as a dis-
coverer from Java code toKDMmodels, iii) generic tools to understand and transform complex
models created out of existing systems, and iv) use cases illustrating howMoDisco can support
modernisation processes.

ǊǑ

ǋǈ

(Suggested by Jesús García Molina)

We ourselves feel that what we are doing is just a drop
in the ocean. But the ocean would be less because of that
missing drop.

Mother Teresa of CalcuĨa

3
State of the art

Our work tackles the problem of reverse engineering the GUI of legacy systems, concretely
two aspects, namely layout and behaviour. To cope with it we have used MDE techniques.
Consequently, the analysis of the state of the art has been classiėed in three sections: layout
recognition approaches, behaviour extraction approaches, andMDE approaches for represent-
ing GUIs.

ǋ.ǉ AłĵŀŏňĽň Ńĺ ŀĵŏŃŊŉ ŇĹķŃĻłĽŉĽŃł ĵńńŇŃĵķļĹň

In this section we will present some works related to GUI layout inference. ĉree works are of
special relevance for our work, which are [ǋ] [ǌ] [Ǎ], since they deal with the extraction of a
layout expressed in coordinates and they deserve a section each one to analyse them in detail.
Other works related to reverse engineering layout and structure of GUIs will be summarised in
a single section, as they are not as close to the topic as the former ones.

We have identiėed a set of dimensions which are useful to classify layout inference approaches.
ĉe three aforementioned works will be categorised according to the following dimensions:

ǋǉ

ǉ. Source/target independence: whether the proposed approach is generic, i.e. it is inde-
pendent of the source and target technology.

Ǌ. Tested source technology: the technology or type of tool which was originally used
to create the GUI deėnitions in the case studies of the approach. For example, a ĆD
environment such as Oracle Forms, or a wireframing tool like Balsamiq.

ǋ. Tested target technology: the platform and toolkit in which the ėnal GUI is created in
the case studies of the approach. For instance, the ZKweb framework, or the Java Swing
toolkit for desktop applications.

ǌ. Reverse engineered information: the kind of information that is extracted in the GUI
reverse engineered process. Different approaches may describe a user interface by using
different types of information, for example, the sizes of the widgets or how the widgets
are contained in other widgets (containment hierarchy).

Ǎ. Layoutmodel: the data structure devised to explicitly represent all the information that
has been extracted from the original GUI. A layout model based on combining horizon-
tal and vertical elements (HVLayout) is one simple example. ĉis representation is a
cornerstone in the approach since any forward engineering approach to generate a ėnal
GUI will use this representation.

ǎ. Algorithm type: the algorithmic strategy involved in the discovery of the layout, such as
backtracking or heuristics, and/or the theoretical basis to solve the problem, e.g. linear
programming.

Ǐ. Implementation technology: the technological basis used to implement the approach,
for instance, an MDE-based approach.

ǐ. Automation degree: wether the approach is totally automated or mostly automated
with user intervention in many cases (semi-automated).

Next we analyse the three approaches that are closely related to ours.

ǋ.ǉ.ǉ LŊŔĹŇŃŉļ

LuĨeroth [ǋ] claims thatmostGUIs are speciėed in the form of source code, which hard-codes
information relating to the layout of graphical controls. He points out that hard-coded GUIs

ǋǊ

lack in dynamic layout as the position and size of the elements are expressed in pixels, and that
this representation is very low-level and makes GUIs hard to maintain. He suggests a reverse
engineering approach that is able to recover ahigher-level layout representation called theAuck-
land Layout Model (ALM).
ĉe author argues that GUIs using pixel units have many disadvantages. GUIs can be executed
in different devices with different resolutions, and even the visible part of the GUI is modiėed
when the window is resized. He claims that, in those cases, pixel-based GUIs do not guarantee
a correct display. Moreover, when the content of a widget changes, the size of the widget has
to be manually re-deėned, and when some widgets are added or removed, it is likely that other
widgets have to be manually modiėed. All these adjustments do not automatically happen in a
pixel-based GUI.
ĉe ALM is a mathematical model that captures the invariants of a GUI by using linear pro-
gramming. An invariant is a condition to be satisėed, e.g., the width of a widget must be less
than the width of the panel it contains it. ĉose invariants are used as constraints in an opti-
misation process that results in the calculation of an adapted layout whenever circumstances
change (e.g., the dimension of the window is altered). ALM offers different layers of abstrac-
tion on top of bare linear programming (which is very low-level) thatmake it possible to specify
the invariants of typical GUIs more conveniently.
ALM allows developers to deėne linear constraints in terms of tabstops and areas:

ǉ. A tabstop represents a position in the coordinate system of a GUI. All positions and sizes
in a layout are deėned symbolically using tabstops as variables. Tabstops form a grid in
which all the controls are aligned.

Ǌ. An area is a rectangular portion of space deėned by the tabstops of the upper-leě cor-
ner and the lower-right corner, the control that occupies the space, and the preferred,
minimum and maximum sizes of the space.

Heuristics are applied for choosing the preferred, maximum and minimum size of the area de-
pending on the control. For example, buĨons do not normally change their size when they
are resized, whereas text areas commonly take the extra space of the window. Two types of
constraints can be speciėed: hard constraints and soě constraints. Hard constraints have to be
always satisėed, and soě constraints may not be satisėed fully if circumstances do not permit
so.

ǋǋ

ĉe input of the reverse engineering process is a hard-coded GUI, and the output is a set of
areas containing the children controls and a set of linear constraints (equations/inequations
with the tabstops as variables). From the point of view of the developer, a layout manager is
provided, that resolves the linear constraints and adapts the layout accordingly. ĉere is an
implementation of the layout manager for Cƺ, so developers can use this layout manager to lay
out containers such as Form elements.
ĉe reverse engineering algorithm uses some criteria to beautify the recovered layout, namely:

ǉ. Controls can be slightly misplaced when creating the GUI. ĉe algorithm can correct
these misplacements by introducing some additional constraints.

Ǌ. Margins are standardised. Distances between controls or between controls and borders
are adjusted so they are similar.

ǋ. Sizes are standardised. For example,make the controls in the samecolumnhave the same
height.

ǌ. Keep rows/columns of similar controls in a certain proportion of other rows/columns.

Ǎ. Use real world units such as centimetres to make GUIs be rendered consistently on dif-
ferent screen resolutions.

ǋ.ǉ.Ǌ RĽŋĹŇŃ Ĺŉ ĵŀ.

In [ǌ] authors state that mockups have become a very popular artefact to capture GUI require-
ments in agile methods, but most development approaches use them informally without pro-
vidingways to reuse them in development processes. ĉey bet on taking advantage ofmockups
during soěware development to automate the creation of GUIs, and they propose a model-
driven approach for importing mockups and transforming them into a technology-dependant
model that can be used to generate code for web technologies.
ĉey have set their approach in the context of aWebTDDprocess though they claim that it can
also be used with RUP-based processes or Extreme Programming. ĉe approach can be seen
in Figure ǋ.ǉ. For each mockup tool, a parser needs to be created (step ǉ). ĉen, the controls
are rearranged as explained below (step Ǌ) and the Abstract Mockup model is obtained (step
ǋ), which helps to abstract mockups in a tool-independent way. ĉis model can be used to

ǋǌ

derive UI class stubs or models implemented with a concrete technology. For each concrete
technology of interest, a code generator must be constructed (step ǌ).

Figure ǋ.ǉ: Schema of the Rivero et al. approach (extracted from [ǌ]).

Unlike common UI frameworks, mockup tools do not generally provide ways of deėning UI
control composition, but all the controls are at the same level (controls are not contained in
other controls). ĉe Abstract Mockup metamodel takes this issue into account in order to
derive complete UI speciėcations for concrete technologies. ĉe mockup parsers scan the
UI speciėcations looking for controls and storing their properties (e.g., position or size), and
they also detect clusters of controls, so each cluster represents a set of components in a unique
graphic space (e.g., a page, a window or another grouping concept). ĉen, the Processing en-
gine creates a hierarchy of controls as follows: if a control is graphically contained in another
one and the ėrst one is a composite control (i.e., a panel), the second one is added as a child of
the ėrst one.
Because of themyriad of different web technologies, an absolute positioning scheme is not suf-
ėcient to model a UI in a platform-independent way. To avoid this problem, the Processing
engine arranges components in a platform-independent layout. Particularly a GridBag layout
similar to the Java Swing layout manager of the same name has been implemented. ĉis layout
manager arranges components in the same way it is done in HTML tables and it was selected
because authors consider that it is richer andmore Ěexible than others. ĉe algorithm to obtain
a GridBag layout starts by placing all the components in a single cell, and iteratively divides it
so creating a grid of cells. In every iteration, a new column or row is created, and the algorithm
stops when every cell is occupied by at most one widget. ĉere may be widgets that take more
than one cell, e.g. a text ėeld t that occupies the space of two cells (t.colspan = Ʀ).
Since their approach can be used in iterative processes in agile methodologies, UI evolution is

ǋǍ

an important concern. Between two iterations, existing UI controls can be possibly modiėed,
which could entail a problem if the automatically generated UI component identiėers change
from the previous iteration. ĉe solution proposed is to indirectly referenceUI components by
means of an identiėer translation function (reference translator), which maps logical identiėers
of UI components to real identiėers assigned by the code generator. ĉerefore, every time it
is required to access to a control, the reference translator is used. ĉen, that problem can be
solved by correcting the real identiėers in the reference translator between iterations.
ĉe proposed architecture is extensible, given that a developer can take the framework and ex-
tend it. In order to add a new mockup tool, a parser that returns a collection of control clusters
must be implemented. With the aim of adding a new target UI technology a code generator
must be implemented. ĉe framework provides some helper classes (e.g. indentation for code
generators) and uses object oriented paĨerns such as the abstract factory or visitor paĨern to
make extension easy.
As a proof of concept, authors have tested the approach with different mockup tools (Pencil,
GUI Design Studio and Balsamiq) and target web technologies (YUI and Ext JS).

ǋ.ǉ.ǋ SĽłļĵ ĵłĸ KĵŇĽŁ

A recent work by N. Sinha and R. Karim [Ǎ] proposes a model-based approach to compile
mockups to Ěexible web interfaces. ĉe authors refer to Ěexible layout as a layout that is Ěuid
(when the window is resized the content scales accordingly) and elastic (the content resizes on
changes in font sizes).
Twophases are deėned in the process of obtaining high-qualitywebpages frommockup editors
(see Figure ǋ.Ǌ). ĉe ėrst phase is to infer the right page layout, i.e. the vertical/horizontal Ěow
of content that preserves the relative sizes and alignment of individual elements. ĉe second
phase is to encode the inferred layout in a HTML page faithfully.

Figure ǋ.Ǌ: Sinha and Karim approach (extracted from [Ǎ]).

A mockup is deėned as a collection of rectangular objects (boxes), each box having its visual
properties (e.g., size or colour). Given that anativewebapplication is laidoutwithHTML/CSS

ǋǎ

boxes, the authors propose a box-based layout. ĉey suggest two box-based layouts: grid layout
(a unique grid with n × m cells) and HVBox layout (hierarchy of horizontal/vertical boxes),
and they claim that HVBox layout is preferred since grids result in ėne-grained layouts which
have additional overhead. ĉey made the decision of inferring HVBox layout from mockups.

In order to infer the box hierarchy their approach employs a combinatorial search, which is
inspired on the explore-fail-learn paradigm used in constraint solving problems. ĉe algorithm
starts with the single boxes and applies a boĨom-up approach to merge pairs of boxes until a
solution is reached. When a pair of merging boxes intersect other boxes, the conėguration is
discarded since it will not reach a valid solution. Aěer obtaining the layout tree, nodes that have
children of the same type (vertical or horizontal) are compacted.

HVBox layout is not natively supported in HTML/CSS, therefore, the boxes must be encoded
to create the desired layout. ĉey have a set of modular rules to encode the layout in HTM-
L/CSS such as rules to pre-compute the offset and height/width of an element relative to its
parent(enclosing) box, rules to compute the size andmargin in percentages of the width of the
parent (height is leě unconstrained), or rules to mark HTML tags to be Ěoat.

ĉe authors mention the following four additional implementation considerations:

• Rounding: prevent that rounding errors during margin and size calculations cause that a
child content overĚows its parent.

• User guidance: the mockup may be ambigous and not fully capture the designer intent.
ĉere may bemultiple valid merge choice sequences and therefore multiple feasible lay-
outs. Consequently the algorithm may not obtain the desired layout. ĉe tool allows
users to guide the algorithm by indicating which boxes can bemerged or not in a conėg-
uration ėle.

• Browser incompatibilities: the pages may not be displayed correctly in browsers that do
not implement CSS Ǌ.ǉ completely.

• Overlapping boxes: the framework discards overlapping boxes before inferring layout.

ĉe approach has been tested with amockup builder calledMaqeĨa for a set of web pages con-
structed by the authors which follow common design paĨerns extracted from the web. ĉey
have also veriėed its correctness in someup-to-datewebbrowsers. Tests resulted inhigh-quality

ǋǏ

replicas of the original mockups in most cases. Sometimes undesired boxes were merged to-
gether and user guidance was required, and in other cases ėne-grained tweaks were required to
ėx the layout.

ǋ.ǉ.ǌ OŉļĹŇ ĵńńŇŃĵķļĹň

In this sectionwewill show some other works that do not strictly deal with layout inference but
they are somewhat related to the topic.

A well-known example of GUI builder with code generation facilities for the NetBeans IDE is
Matisse [ǏǊ]. It is a full-Ěedged design tool that supports the user in the GUI design and which
generates code that perfectly ėts the design. ĉe generated code is based on the GroupLayout,
a layout manager which was intentionally introduced to work with IDEs. ĉe tool automati-
cally generates code for Java Swing, particularly based on the GroupLayout, and is tied to the
NetBeans IDE.

An approachwithwhich tomigrateWindows applications toVisual Basic .NETcan be found in
[ǉ]. Its aim is to replicate the GUI’s look & feel by means of mapping runtime objects to .NET
objects, so explicit layout recovery is not tackled.

In [Ǐǋ], the authors propose a pixel-based approach based on real-time interpretation of the
GUI to identify the hierarchical model of complex widgets. ĉis information is then used to
modify an existing GUI (e.g. to translate the text of the widgets) with independence of the
interface implementation.

VAQUISTA[Ǐǌ] is a toolwhich performs the reverse engineering ofweb pages intoXIML[ǏǍ]
models according to Ěexible heuristics, and requires user interaction during the reverse engi-
neering process. In this case, the source are web pages wriĨen in HTML ǌ which were laid out
with tables, and the toolmaps each table cell to a target element, so the table layout is replicated.

In [Ǐǎ] an approach for extracting the web content structure based on the visual representation
is proposed, which simulates how users understand web layout structure based on their visual
perception. ĉe approach is tightly based on the nature of the HTML code and cannot be
applied to coordinated-based interfaces.

Someother relatedworks propose the reengineering ofweb pages, particularly to adapt them to
mobile devices. ĉe following two works fall into this area. In [ǏǏ] an approach with which to
structureweb pages in a two level hierarchy is presented, in such away that if a user selects a part
of thewebpage, this partwill be displayedwith the screen size like a zoom-in. In [Ǐǐ], a solution

ǋǐ

for generating dynamic web migratory interfaces is explained. ĉe authors rely on the analysis
of HTML tags in order to split the original web pages in regions that are transformed into web
pages with hyperlinks between them. It is worth noting that UI reengineering approaches for
web pages work on DOM trees, which are tree-based representations of the HTML code, in
which the GUI structure is already explicitly expressed by means of HTML tags.

ǋ.ǉ.Ǎ DĽňķŊňňĽŃł

Wehavepresented severalworks related to reverse engineeringofGUIs, andwehave focusedon
three of them that deal with layout inference, which are summarised in Table ǋ.Ǌ. Next we will
contrast these approaches and we will indicate desirable features of a layout inference solution.
In two of the proposals (Rivero et al., Sinha and Karim) the source technology is a mockup
and the target technology is a web technology, whereas in LuĨeroth the source technology is
a GUI programmed with object oriented code and the target is a desktop toolkit. Two of the
approaches (LuĨeroth and Rivero et al.) are general, i.e., they can be used with any pair of
source/target technologies, and the work of Sinha and Karim is tightly tied to the web target
platform. It is clear that a generic solution (not tied to source/target technologies) is desirable.
Since hard-coded GUIs and mockups have implicit layouts expressed in pixel coordinates, the
same approach could be used for both cases.
With regard to the extracted information, we can see that all these approaches collect some
common data (sizes, margins) but they recreate the layout based on different information: Lut-
teroth uses constraints; Rivero et al. identify the widgets in each grid; and Sinha and Karim
extract HTML boxes. We believe that a good layout inference approach should extract all the
information we presented in Chapter Ǌ.Ǌ.ǉ explicitly. Granted, some information can be used
in place of other one to obtain a similar visual appearance. For example, LuĨeroth extracts
information about constraints and margins, but it does not get explicit information about the
alignment between widgets, so one widget below another one both having the same leě mar-
gin may look aligned though the layout manager does not explicitly know that they are aligned.
Having explicit information about alignment and other features of the source GUI can ease the
forward engineering step and led to beĨer adapted layouts.
In Sinha and Karim and Rivero et al., the layout model that is the result of the reverse engineer-
ing process is a concrete layoutmanagermodel that can be found in numerousGUI frameworks
(particularly GridBagLayout and HVFlow) . In contrast, LuĨeroth obtains a model with in-

ǋǑ

A
pproach

LuĨeroth
R
ivero

etal.
Sinhaand

K
arim

Source/targetindependence
YesȞ

Yes
N
o
(targetm

ustbew
eb)

Tested
source

technology
H
ard-coded

G
U
Is(C

ƺ)
M
ockups(Penciland

others)
M
ockups(M

aqeĨa)
Tested

targettechnology
D
esktop

toolkit
W
eb

(YU
I,ExtJS)

W
eb

(H
T
M
L/C

SS)
Inform

ation
extracted

Positions,m
argins,sizes

C
ontainm

enthierarchy,layoutstructure
Boxes,m

argins,sizes
Layoutm

odel
A
LM

(constraintm
odel)

G
ridBagLayout

H
V
Flow

A
lgorithm

type
Linearprogram

m
ing,heuristics

H
euristics

Exploratory
Im

plem
entation

technology
Program

m
ing

language
M
odel-based

approach
M
odularrules

A
utom

ation
degree

Autom
ated

Autom
ated

Autom
ated

Tableǋ.ǉ:Sum
m

aryoflayoutinferenceapproaches

ȞR
equiresim

plem
enting

the
layoutm

anagerin
every

targettechnology

ǌǈ

formation about widget constraints. Given that nowadays most GUI frameworks offer layout
managers, representing the design of the GUI in terms of layout managers will make the for-
ward engineering stepmuchmore easier than using othermodels such as the ALMmodel. ĉe
proof of concept of LuĨeroth generates a CƺGUI, which involved the creation of a layoutman-
ager in Cƺ to deal with the linear constraints, so in case of using his solution with another target
technology, programming the layout manager would be required. ĉis is likely to be a more
complex solution thanmapping a predeėned layout manager (e.g., GridBagLayout in Rivero et
al.) to the set of layout managers of the target technology.
ĉe representationused todeėne theGUI structure (the layoutmodel) has a great impact in the
forward engineering step of the process. It must be Ěexible enough to represent any design, but
at the same time it must be close to the well-known existing layout managers in order to make
the mapping to other GUI toolkit easy. ĉe works of Sinha and Karim and Rivero et al. rely on
single concrete layoutmanagers so thewhole reverse engineering process is aimed at generating
a design using a certain layout. However, when designing a GUI (either programming or with
visual builders) developers do not normally use a single layout manager but a composition of
them. Due to this reason, we believe that the layout model should contemplate a set of generic
layout managers in such a way that a layout is deėned by using the layout managers that are
more suitable for the concrete GUI. Moreover, it would also be desirable that the set of layout
managers used in the layout model is parameterised. ĉe rationale is to avoid emulating them
or implementing new layout managers if they are not available in the target technology.
ĉere is a variety of algorithmic techniques that can be used in the inference approach (linear
programming and heuristics in LuĨeroth, heuristics in Rivero et al. and an exploratory algo-
rithm in Sinha and Karim), and any of them can be equally valid. ĉe implementation technol-
ogy may have some importance in the overall solution. Rivero et al. proposes a model-based
approach to implement the solution, whereas the others use imperative or object-oriented pro-
gramming. We think that amodel-based approach endows the implementation with additional
beneėts to implementinggood-quality solutionsover classical programming. For instance, trans-
formation chains offer a straightforward solution to obtain source/target independence. MDE
also brings other beneėts such as automation, thanks to the model transformations.
In short, we believe that a good layout inference solution should:

• be source/target independent

• provide explicit information for every layout feature

ǌǉ

• use a layout model made up of a variety of layout managers to facilitate the layout deėni-
tion, which can be selected by developers

• be implemented using a paradigm (e.g., MDE) that provides architectural beneėts such
as extensibility.

ǋ.Ǌ AłĵŀŏňĽň Ńĺ ĶĹļĵŋĽŃŊŇ ĹŎŉŇĵķŉĽŃł ĵńńŇŃĵķļĹň

In this section we comment on some works which perform some kind of reverse engineering
of the GUI behaviour. We will emphasise three of them that we consideredmore interesting to
accomplish the separationof concerns in legacyGUIs, though in thediscussionwewill take into
account the nine works that are mentioned throughout this section, as they can be compared
by using the same criteria. Works presenting solutions for code analysis that are not focused
on the GUI but other concerns (e.g., business rules) such as [ǏǑ] and [ǐǈ], which present C++
static analysis solutions to generate UML models, have been excluded from this discussion.
We will classify each work according to the following four criteria:

ǉ. Source artefacts: the source artefacts that are the input of the analysis process (includ-
ing programming languages and UI toolkits used). For example, Gtk C++ ėles.

Ǌ. Extracted information: the output of the analysis. For instance, a state machinemodel
representing the Ěow of events.

ǋ. Goal: thepurpose forwhich the information extractedby the analysis is going tobeused.

ǌ. Analysis type: It can be static (the source code is analysed statically), dynamic (it anal-
yses information that is collectedwhen executing the code in someway), or hybrid (uses
both static and dynamic analysis).

ǋ.Ǌ.ǉ MĹŁŃł (GUIRĽńńĽłĻ)

In [Ǐ] an approach called GUIRipping to reverse engineer a runtime GUI into three models is
described, namelyGUI forest, an event-Ěow model and an integration tree¹. ĉese models, which

¹ĉe author later refers to all the aforementioned models as an event-Ěow model

ǌǊ

wewill explain next, are intended to be used to automatically generate test cases. ĉe approach
has been implemented in a tool calledGUIRipper.
ĉe GUI forest is a representation that indicates for each window which other windows are
opened if performing an event in the former. Two windows are distinguised: modal windows
andmodeless windows. ĉe former once invoked monopolise the GUI interaction, whereas the
laĨer do not restrict the user focus.
ĉe author deėnes a component as a modal window together with the modeless windows that
have been directly or indirectly invoked from the former. In an event-Ěow graph for a speciėc
component (a modal dialog), the vertices represents all the events in the component. ĉe out-
going directed edges from a vertice represent which vertices can be reached from that vertex
(i.e., which events can be performed immediately aěer the event associated with that vertex).
ĉe types of events identiėed are ėve:

• Restricted-focus events: open modal windows.

• Unrestricted-focus events: open modeless windows.

• Termination events: close modal windows.

• Menu-open events: open menus.

• System-interaction events: interact with the underlying soěware to perform some action.

ĉe integration tree is constructed to show the invocation relationships among components
(modal dialogs) in a GUI. It is obtained by integrating the information of the GUI forest and
the event-Ěow model. ĉis decomposition of the GUI makes the testing process intuitive for
the test designer because he can focus on a speciėc part of the GUI.
GUIRipper ėrstly obtains the GUI forest by performing a depth-ėrst traversal of the hierarchi-
cal structure of the GUI. ĉe runtime GUI is analysed (e.g., using the Windows API in case
of a Windows application) to get the top-level windows, the executable widgets (widgets that
invoke other GUI windows), and the windows that are opened by performing events on ex-
ecutable widgets. During the traversal of the GUI, the event type is also determined by using
low-level calls. Aěer the automating ripping process has ėnished,manual inspection is required
since some information cannot be extracted by the GUIRipper.
ĉe event-Ěowmodel can be used in the deėnition of event-space exploration strategies for auto-
mated model-based testing, particularly: i) goal-directed search for model checking, ii) graph-

ǌǋ

exploration for test-case generation, iii) operator execution for test-oracle creation. ĉe author
delves into these strategies for several scenarios in [ǐǉ].

ǋ.Ǌ.Ǌ HĹķĿĹŀ Ĺŉ ĵŀ.

In [ǉǉ] a methodology to deal with the evolution of legacy systems to three-tier architectures
and Service Oriented Architectures (SOA) is proposed. ĉis methodology is based on the
Horseshoe Model introduced in Section Ǌ and consists of three steps, namely reverse engi-
neering, redesign, and forward engineering, preceded by a preparatory step of code annotation,
which can be seen in Figure ǋ.ǋ.

Figure ǋ.ǋ: Approach of Heckel et al. (extracted from [ǉǉ]).

ĉe source code elements (packages, classes, methods, or code fragments) are annotated by
code categories (step ǉ) with respect to their architectural function in the target system, e.g.,
like GUI, application logic or data. Annotations aremanually wriĨen by developers in the orig-
inal source code in the form of comments, and they are propagated through the code by cate-
gorisation rules deėned at the level of abstract syntax trees, so it is not needed for developers to
annotate all the source code elements.
From the annotated source code, a graph model is created (step Ǌ), whose level of detail de-
pends on the annotation. ĉegraphmodel is a reducedAbstract SyntaxTree (AST) representa-
tionwhere the nodes are packages, classes, methods, parameters and variables, and additionally
CodeBlocks to represent groups of statements, and the edges represent the order of the nodes.
Moreover, there is an node type to represent the categories of a code element. ĉen, all the
contiguous statements that are annotated in the same way are grouped in the same CodeBlock
node, and associated a category. ĉis step is a straightforward translation of the relevant part

ǌǌ

of the code into its graph-based representation. ĉe relation between the original (annotated)
source code and the graph model (relation Rȕ) is kept to support traceability.
During the redesign phase (step ǋ) the source graph model is restructured to reĚect the asso-
ciation between code fragments and target architectural elements. Code categories guide the
automation of the transformation process. ĉis transformation is speciėed by graph transfor-
mation rules aimed at performing code refactoring. ĉe relation with the original source code
is kept (relation RȖ) in order to support the code generation.
ĉe target code is either generated from the target graphmodel and the original source code or
obtained through the use of refactorings at the code level (step ǌ). ĉe result of this step is the
annotated code of the new system wriĨen in the target language.

ǋ.Ǌ.ǋ MŃŇĻĵĸŃ Ĺŉ ĵŀ. (RĹGUI)

ĉis work [ǐ] presents a dynamic reverse engineering approach and a tool (ReGUI) aimed at
diminishing the effort of producing visual and formal representations of theGUI,which enables
veriėcation of properties or can serve as the input of Model-Based GUI Testing techniques.

Figure ǋ.ǌ: Approach of Morgado et al. (ReGUI) (extracted from [ǐ]).

ĉe approach, which is depicted in Figure ǋ.ǌ, has two main components: the analyser and the
abstractor. ĉe analyser component uses UI Automation, the accessibility framework for the
Microsoě Windows operating systems supporting Windows Presentation Foundation. With
this framework, the runtime instances of a Windows application can be explored. During the

ǌǍ

exploration process, every menu option is navigated to extract its initial state (i.e., enabled or
disabled), and eachmenuoption is triggered to verifywhatwindows are openedbecause of that
interaction and also see if the state of any element has changed.
ĉe analyser extracts some information about the GUI elements and their interactions. Partic-
ularly, the analyser distinguises twoGUI elements: Windows, which can bemodal ormodeless,
and Controls, which can be menu items or other controls. ĉe interactions between the GUI
elements can be of ėve different types: Open, a window is opened; Close, a window is closed;
Expansion, new controls become accessible (e.g., the expansion of a menu); Update, one or
more properties of one or more GUI elements are updated; Skip, nothing happens.
ĉe abstractor component generates different views on the extracted information, which are:

• ReGUI tree: represents the different aspects of the structure of the GUI (e.g., the con-
tainment hierarchy of a menu).

• Navigation graph: stores information about which user actions must be performed in
order to open the different windows of the application.

• Window graph: is a subset of the information represented in the navigation graph that
describes the windows that may be opened in the application.

• Disabled graph: its purpose is to show which nodes are accessible but disabled at the
beginning of the execution.

• Dependency graph: A dependency between two elementsmeans that interactingwith the
former modiėes the value of a property in the laĨer. ĉis representation shows all the
dependencies among controls.

Apart from these viewswhich can be used to inspect theGUI, an Specƺmodel and an Symbolic
Model Veriėcation (SMV) model can be generated. Specƺ is a formal speciėcation language
that can be used as input to Spec Explorer [ǐǊ], an automatic model-based testing tool for test
generation. An SMVmodel can be used in combination ofmodel checking techniques to verify
properties, which is useful, for example, in usability analysis.

ǋ.Ǌ.ǌ OŉļĹŇ ĵńńŇŃĵķļĹň

We will summarise other works that analyse UI behaviour and are less relevant to the purpose
of separating concerns. First we will comment on two static analysis approaches [Ǌ] [ǋǈ], and

ǌǎ

then we will oversee four dynamic analysis approaches [ǐǋ] [ǌǑ] [ǎ] [ǋǉ].

In [Ǌ] a static analysis for GUIs is presented, which extracts information about the GUI out of
the source code. It is targeted at applicationswriĨen in programming languages such asC/C++
using GUI libraries such as GTK [ǐǌ] or Qt [ǐǍ]. ĉe goal is to extract, from the source code,
the widget hierarchies forming the windows together with the widget aĨributes and event han-
dlers. GUI detection is accomplished to determine which types, variables, functions and ėles
are relevant to the GUI. ĉen ISSA (Interprocedural Static Single Assignment) form is used to
detect the widget hierarchy, and also determine the widget aĨributes and event handlers. Aěer
detecting the GUI and obtaining the widget hierarchy, a window graph is created. In this graph
nodes are given by windows and indicate that an event raised in the ėrst window can create or
show the second window. Edges are labelled hence with events or sets of events. In order to
create the outgoing edges for the nodes, the algorithm inspects all the event handlers for the
events issued by members of the hierarchy of widgets of the window. An event handler gives
rise to an edge if the handler itself or some function directly or transitively called by it creates or
shows a window, and if no window is created or shown along the control-Ěow path in between.

ĉe work presented in [ǋǈ] proposes an approach to obtain state machines of the transitions
between windows based on source code wriĨen in Java. ĉe approach is implemented by three
tools: FileParser, which parses a particular code ėle,ASTAnalyser that slices the Abstract Syntax
Tree (AST) obtained by FileParser, and Graph which generates metadata ėles with the state
machines. ĉe approach uses Strategic Programming and Program Slicing to isolate the parts
of the code which are related to the GUI, in order to make the approach easily retargetable
to different programming languages and GUI toolkits. ĉe state machine representation they
propose is a graph where states represent windows and transitions include: i) the internal state
of the window (it is useful for example to detect windows complexity), ii) the user action that
triggers the event, and iii) the condition that must be hold for the transition to occur.

Stroulia et al. [ǐǋ] propose a method for migrating Text-based User Interfaces (TUIs) in the
context of the CelLEST project. ĉese TUIs are part of legacy distributed systems in which
there are terminals that interact with a mainframe by means of a communication protocol. Its
novelty lies in that itmodels the systemdynamicbehavior basedon traces of theuser interaction
with the system, instead of focusing on the system code structure. ĉe reverse engineering
phase is based on the analysis of the dynamic traces generated by real user interaction. In order
to obtain traces, they propose using an emulator that provides users with a text-based interface
thatmimics the original hardware terminals used to access the host system, onwhich the legacy

ǌǏ

application resides, by implementing the protocol of communication between the host and the
emulator user interface. ĉe emulator is instrumented so that it also records the interaction
between the legacy application and its users. A trace recorded by this emulator consists of a
sequence of snapshots of the screens forwarded by the legacy application to the user’s terminal.
Between every two snapshots, the user keystrokes are recorded. ĉe result is amodel of theTUI
behaviour represented as a directed state-transition graph. ĉe graph nodes correspond to the
distinct interface screens, which are identiėed by clustering all the screen snapshots, contained
in the recorded trace according to their visual similarity. Each edge of the graph corresponds to
an action that can be taken, i.e., a command that can be executed when the source-screen node
is visible to the user and leads to the destination-screen node.

A GUI test generation approach based on symbolic execution is presented in [ǎ]. ĉe GUI
testing framework (named Barad) generates values for data widgets and enables a systematic
approach that uniformly addresses the data-Ěow as well as the event-Ěow for white-box test-
ing of a GUI application. ĉe approach is applied to Java event handlers. Firstly, the event
handler bytecode is instrumented, i.e. it is modiėed to execute a custom code aěer every sen-
tence. During the instrumentation, they generate an inline version (with branching statements
removed) of the program with primitives, strings, and conditional instructions replaced with
the corresponding symbolic values. ĉen, the code is symbolically executed. Basically, sym-
bolic executionuses symbolic values insteadof actual data, and represents the values of program
variables as symbolic expressions. ĉe symbolic execution is performed by applying a chrono-
logical backtracking that visites all the branches of the program. For a branch to be explored,
the set of constraints of the states must be satisėed. When an entire branch has been executed,
the test case for that branch is generated, and the program state (the set of values of the vari-
ables) is restored. Aěer test cases have been generated, some heuristics to reduce the test suite
are applied. ĉe resulting suite maximises the code coverage while minimising the number of
tests needed to systematically check the GUI.

In [ǌǑ] the authors present a reverse engineering approach for abstractingFinite StateMachines
representing the client-side behaviour offered by Rich Internet Applications (RIAs). ĉe re-
verse engineering process consists of two activities: extraction and abstraction. During the ex-
traction activity, the user interacts with the RIA in a controlled environment and the sequences
of events are registered. ĉe abstraction activity is composed of three tasks: RIA Transition
Graphbuilding,Clustering, andConcept assignment. ĉeėrst taskbuilds theTransitionGraph
from the traces stored in the extraction activity. ĉis graph models the Ěow of RIA views that

ǌǐ

weregenerated. ĉesecond task analyses theTransitionGraphandclusters thenodes andedges
that are equivalent. ĉeFinite StateMachinemodels the event listeners that are associatedwith
DOM elements of a web page, which can be: user events listeners, time event listeners (due to
the occurrence of timeout conditions) and HĈP response event listeners (due to receptions
of responses to some HĈP request). It also models the transitions between web pages and
the events that caused those transitions. ĉese events can be associated to web page requests
(traditional HĈP requests) or XmlHĨpRequests (asynchronous Ajax requests).
Mesbah et al. [ǋǉ] describe a technique for crawlingAjax-based applications through automatic
dynamic analysis of user interface state changes in web browsers. ĉe analysis process infers
a state machine that models the navigational paths within an Ajax application, which can be
used in program comprehension, analysis and testing. ĉe analysis works in the following way.
Firstly, theController traverses theweb page to ėnd clickable elements, which are elements that
have event listeners and can cause a state transition. For each element, the crawler instructs the
Robot to ėll in the form ėelds and ėre events on the elements in the browser. When the events
are triggered in the clickable elements, changes in theDOM tree are produced. ĉen theDOM
Analyzer compares the current DOM tree and the previous one by using some heuristics. If a
state change is detected, a new state is created and added to the state machine. If a similar state
is recognised, that state is used for adding a new edge (no new state is created). ĉe algorithm
uses backtracking to recursively traverse all the code branches until all the code is executed.
When applying backtracking, the DOM tree has to be set to a previous state. ĉis is achieved
by using the browser history if the Ajax application has support for it, or reproducing the event
sequence from the initial state in contrary case.

ǋ.Ǌ.Ǎ DĽňķŊňňĽŃł

We have reviewed some of the most relevant approaches up to date about reverse engineering
and reengineering of UI behaviour. Now we will make some reĚections about these works.
First of all, we see that the majority of the works (ǎ out of Ǒ) coincide in representing the be-
haviour by means of some sort of state machine (transition graph) where the states represent
views and the transitions represent the events that trigger the changes. ĉe granularity of the
states and events represented differs between the different works. For instance, in [ǐǋ] events
represent transitions between complete views, so the state machine is used as a model of the
navigation among them. In contrast, in [ǋǉ] events represent changes in parts of a view, as it

ǌǑ

A
pproach

Source
artefacts

Extracted
inform

ation
G
oal

A
nalysistype

M
em

on
etal.

R
untim

e
G
U
I(Java/W

indow
s)

Transition
graph

Testing
D
ynam

ic
H
eckeletal.

A
nnotated

code
(Java)

A
ST-likegraph

w
ith

codecategories
M
igrateto

ǋ-tiers
Static

M
orgado

etal.
R
untim

e
G
U
I(W

indow
s)

Interaction
m
odel

PC
,verif.properties

D
ynam

ic
Staiger

G
T
K
/Q

tcode
(C

/C
++)

W
idgethierarchy,transition

graph
M
aintenance

Static
Silvaetal.

Javacode
Transition

graph
PC

.,testing
Static

Strouliaetal.
T
U
Iruntim

e
traces

Transition
graph

M
igration

to
the

w
eb

D
ynam

ic
G
anov

etal.
Javabytecode

Sym
bolictree,testsuite

Testgeneration
D
ynam

ic
A
m
alėtano

etal.
Instrum

ented
R
IA

Transition
graph

M
aintenance,testing

D
ynam

ic
M
esbah

etal.
A
jaxw

eb
applications

Transition
graph

PC
,analysis,testing

D
ynam

ic

Tableǋ.Ǌ:Sum
m

aryofthebehaviourextraction
approaches(PC

standsforProgram
Com

prehension)

Ǎǈ

happens in Ajax applications, which has a much smaller granularity level than in the previous
work. In [ǐ] severalmodels that focus on speciėc behaviour are even created, such as amodel to
knowwhich elements that are disabled at the beginning are accesible aěer a sequence of events.
ĉerefore, depending on the purpose of the reverse engineering or reengineering, different in-
formation represented in the form of a state machine may be useful.

With regard to the goal of the reverse engineering, most of the works are aimed at perform test-
ing or program comprehension (Ǐ out of Ǒ), and a few works (Ǌ out of Ǒ) are targeted at gener-
ating a new system. In [ǉǉ] the separation of legacy applications in layers in order to generate
web applications is proposed, and the idea of abstracting the source code in amodel that guides
the generation of the new system is introduced. It is worth remarking that different from the
rest of theworks, it addresses a separation of concerns, particularly from the point of view of the
architecture of the application (business logic, UI, data access). In that work, the reverse engi-
neering is assisted by the developer, that must tag the code parts so the tool knows which layer
the code belongs to. ĉis procedure is useful, but developersmust spend time in inspecting the
whole code by hand.

Most approaches (ǎ out of Ǒ) are based on dynamic analysis while the rest apply a static one.
ĉis is due to it is easier to determinewhich views are displayed fromother viewswith dynamic
analysis. In general, static and dynamic analysis provide us with different kinds of information:
static analysis can access to all the code (which can be executed or not) so the information of
all the possible states of the application is available, whereas dynamic analysis can obtain data
about every state that is reached by execution. Moreover, when no source code is available, dy-
namic analysis is the only option. An scenario in which static analysis is not enough to obtain
proper information is the reverse engineering of Ajax applications [ǋǉ], and in that case, also
dynamic analysis is required. On the other hand, static analysis can access to all the code, which
is necessary to accomplish a faithful migration of the code. In addition, static analysis is faster
and easier to perform than dynamic analysis that implies executing the code and maybe rede-
ploying the application or running the source runtime platform (e.g., theOracle Forms runtime
environment).

To sum up the aforementioned approaches, we reckon that an the extraction of the behaviour
of the GUI aimed at migration should:

• separate thedifferent concerns that are tangled in the codeof eventhandlers, butdifferent
from [ǉǉ], marking code by hand should be avoided.

Ǎǉ

• represent the transtition between views and dependencies between widgets bymeans of
a state-machine-like representation, as there is a wide consensus about that.

• static analysis is desirable if source code is available, given that we need the whole infor-
mation about the GUI and the runtime information is not enough.

ǋ.ǋ GUI ŇĹńŇĹňĹłŉĵŉĽŃł ĵńńŇŃĵķļĹň

ĉis section is devoted to describe well-knownmetamodels (KDM, IFML) andUser Interface
Description Languages (UIDLs) that can be used to represent user interfaces. We will also
introduce theCameleon framework, though it is neither ametamodel nor aUIDL, it establishes
different abstraction levels that are desirable formodelling user interfaces and it is used bymany
UIDLs. Since these approaches are rather heterogeneous, we are not going to classify them as
we did in the previous sections, but we will restrict ourselves to describe them and put some
examples.

ǋ.ǋ.ǉ KłŃŌŀĹĸĻĹ DĽňķŃŋĹŇŏ MĹŉĵŁŃĸĹŀ (KDM)

Section Ǌ.ǋ.ǌ introducedKDMas the core element of theADMinitiative. KDMis ametamodel
aimed at representing soěware systems at different levels of abstraction which range from pro-
gram elements to business rules. KDM is intended to facilitate the interoperability between
soěware modernisation tools, as a common representation for soěware artefacts.

It is a very large metamodel that is composed of twelve packages organised in four layers: In-
ěastructure,Program elements,Runtime resources andAbstractions (see Figure ǋ.Ǎ). Each package
deėnes a set of metamodel elements whose purpose is to represent a certain independent facet
of knowledge related to existing soěware systems. ĉepackages deėned in the speciėcation are:

• Core and Kdm: deėne common elements that constitute the infrastructure for other
packages.

• Source: enumerates the artefacts of the existing soěware system and deėnes themecha-
nism of traceability links between the KDM elements and their original representation.

ǍǊ

Figure ǋ.Ǎ: KDM layers and packages (extracted from [Ǐǉ]).

• Code. It is focused on representing common program elements supported by various
programming languages, such as data types, data items, classes, procedures, macros, pro-
totypes, and templates, and several basic structural relationships between them.

• Action: Alongwith theCodepackage, it represents the implementation level assets of the
existing soěware system. ĉis package is focused on behaviour descriptions and control
and data-Ěow relationships determined by them.

• Platform: deėnes a set of elements whose purpose is to represent the runtime operating
environments of existing soěware systems.

• UI: represents facets of information related to user interfaces, including their composi-
tion, their sequence of operations, and their relationships to the existing soěware sys-
tems.

• Event: it speciėes the high-level behaviour of applications, in particular event-driven
state transitions.

• Data: it is used to describe the organisation of data in the existing soěware system.

• Structure: it is aimed at representing architectural components of existing soěware sys-
tems, such as subsystems, layers, packages, etc. and deėne traceability of these elements
to other KDM facts for the same system.

Ǎǋ

• Conceptual: it provides constructs for creating a conceptual model during the analysis
phase of knowledge discovery from existing code.

• Build: represents the facts involved in the build process of the given soěware system
(including but not limited to the engineering transformations of the “source code” to
“executables”).

From the point of view of the migration of graphical user interfaces, four of these packages can
be useful: the Code, Action,UI and Event packages. ĉe Code and Action packages can be used
together to represent programming code with independence of the speciėc programming lan-
guage. ĉe UI package was conceived to represent the elements and behaviour of the GUIs.
Next we will deep into the UI package to analyse its usefulness. Figures ǋ.ǎ, ǋ.Ǐ and ǋ.ǐ com-
pose the UI package. As there are a lot of dependencies among several the packages, we will
only brieĚy comment on those metaclasses that are relevant for us.

Figure ǋ.ǎ: KDM metamodel. UI package (UIResources)(extracted from [Ǐǉ]).

Figureǋ.ǎ shows theUIResources that canbedeėned: Screens,Reports,UIFields,UIEvents. Screens
are units of display in an application, such as windows or web pages, and Reports are printed
units of display, like a printed report. UIField is a generic element to represent any ėeld in a
Screen or Report, such as a text ėeld or a combo box. UIEvents can be declared and ’be’ asso-
ciated with a UIAction; a UIAction can have associated zero or more events (e.g., a UIAction

Ǎǌ

called ’navigate’ can be triggered by many UIEvents such as ’click’ or ’select’). Note that UI re-
sources can contain otherUIResources (e.g., a Screen can containsUIFields that in turn contain
UIEvents).

Figure ǋ.Ǐ: KDM metamodel. UI package (UIRelations)(extracted from [Ǐǉ]).

In Figure ǋ.Ǐ there are two generic relationships,UILayout andUIFlow. UILayout indicates the
layout of aUIResource, andUIFlow allows deėning the Ěow of Screens (without indicating the
event that originated it).
ĉediagramofFigure ǋ.ǐdeėnes several relationships between aUIResource andActionElement.
ĉe laĨer is deėned in the Actions package and refer to a block of code. ĉese relationships
represent the effect of a block of code in the UIResources: Displays allows a UIResource to be
shown, ReadsUI takes the value of a UIField, WritesUI puts a value in a UIField, DisplaysImage
shows an image, andManagesUI represents other accesses to theUIResources.
As it can be seen, theUI package can be used to represent the logical structure of views, the spa-
tial relationships among the UI elements (layout), and the events associated with them. How-
ever, the speciėcation just offers a few generic concepts for them. For example, related to the
logical structure it deėnes Screen as a container and UIField as a generic widget, and related to
the layout of the elements it deėnes a generic layout (UILayout).
Finally, theEvent package, is not aimedat expressing the event Ěowof theGUI(which is actually
addressed in the UI package), but is aimed at describing the behaviour of the entire system as a
state machine. It could be used somehow to express the behaviour of the UI, though it was not

ǍǍ

Figure ǋ.ǐ: KDM metamodel. UI package (UIActions) (extracted from [Ǐǉ]).

conceived to that goal.

ǋ.ǋ.Ǌ IłŉĹŇĵķŉĽŃł FŀŃŌ MŃĸĹŀĽłĻ LĵłĻŊĵĻĹ (IFML)

ĉe Interaction FlowModeling Language (IFML)[ǐǎ] has been recently adopted (March, Ǌǈǉǋ)
as an OMG speciėcation for building visual models of user interactions and front-end behav-
ior in soěware systems. As indicated in [ǐǏ], IFML can be seen as the consolidation of the
WebModelling Language (WebML) [ǐǐ] deėned and patented about ǉǍ years ago as a concep-
tual model for data-intensive web applications. In fact, WebRatio, which has been supporting
WebML over the years, is now adopting IFML as official notation.
ĉe objective of IFML is to provide system architects, soěware engineers, and soěware devel-
opers with tools for the deėnition of Interaction Flow Models that describe the principal di-
mensions of an application front-end: the view part of the application, made of containers and
view components; the objects that embody the state of the application and the business logic
actions that can be executed; the binding of view components to data objects and events; the
control logic that determines the sequence of actions to be executed aěer an event occurrence;
and the distribution of control, data and business logic at the different tiers of the architecture.
An IFMLdiagramconsists of oneormore top-level viewcontainers. Eachviewcontainer canbe
internally structured in a hierarchy of sub-containers. ĉe child view containers nestedwithin a
parent view container can be displayed simultaneously or inmutual exclusion. A view container

Ǎǎ

can contain view components, which denote the publication of content or interface elements
for data entry (e.g., input forms). A view component can have input and output parameters. A
viewcontainer anda viewcomponent canbe associatedwith events, todenote that they support
the user’s interaction. Events are rendered as interactors, which depend on the speciėc platform
and therefore are notmodeled in IFMLbut produced by the PIM to PSM transformation rules.
ĉe effect of an event is represented by an interaction Ěow connection, which connects the
event to the view container or component affected by the event. ĉe interaction Ěow expresses
a change of state of the user interface: the occurrence of the event causes a transition of state
that produces a change in the user interface. An event can also cause the triggering of an action,
which is executed prior to updating the state of the user interface. An input-output dependency
between view elements (view containers and view components) or between view elements and
actions is denotedbyparameter bindings associatedwith navigation Ěows (interaction Ěows for
navigating between view elements).

Figure ǋ.Ǒ: Example of user interface (leě) and corresponding IFML model (right) (Ex-
tracted from [ǐǎ]).

ĉe leě part of Figure ǋ.Ǒ shows two states of the same view, and the right part represents the
IFML diagram. In the example there is one top-level container (Albums&Artists) that com-
prises three view containers: one with a list of artists and of their albums, one with the details
of an artist, and one with the details of an album. ĉe laĨer two view containers are mutually
exclusive, so if a user selects an artist, the details of that artist are displayed, or if the user selects

ǍǏ

an album, the details of the album are displayed.

ǋ.ǋ.ǋ CĵŁĹŀĹŃł ĺŇĵŁĹŌŃŇĿ

ĉeCameleon framework [ǐǑ] is amodel-based approach devised to cover the design, mainte-
nance and evolution of amulti-target user interface. ĉis framework does not describe concrete
metamodels but recommends an architecture of models and the way it can be used to deal with
forward engineering and reengineering of user interfaces. ĉe overall architecture is shown in
Figure ǋ.ǉǈ (arrows indicate which models originate other ones). ĉree types of models are
differentiated: ontological, archetypal and observed.

Figure ǋ.ǉǈ: Cameleon framework (extracted from [ǐǑ]).

• ĉe ontological models (leě side of the ėgure) are metamodels of the concepts (and
their relationships) involved in amulti-targetUI.ĉesemodels are instantiated into archety-
pal and/or observed models, which depend on the domain and the interactive system
being developed.

Ǎǐ

• Archetypalmodels are declarative models that serve as input to the design of a particu-
lar interactive system. ĉey are instances of the ontological models for a speciėc target.

• Observed models are executable models that support the adaptation process at run-
time. ĉey have been omiĨed in Figure ǋ.ǉǈ because they are out of the scope of our
work and will not be explained.

ĉe types of ontological models are:

• DomainModels: cover the domain concepts and users tasks. Domain concepts denote
the entities that users manipulate in their tasks. Tasks refer to the activities users under-
take in order to reach their goals with the system.

• Context of use Models: describe the context of use in terms of the user, the platform
and the environment.

• Adaptation Models specify the reaction to adopt when the context of use changes. It
includes information about the new UI to switch to, and the particular transition UI to
be used during the adaptation process.

ĉe ontological models are independent of any domain and interactive systems, and deėne key
dimensions for a given retargeting. On the contrary, archetypal models are instances of the on-
tologicalmodels in a speciėc context (a speciėc domain, platform, etc.). ĉe information of the
archetypalmodels is used to express aUI at four levels of abstraction, from the task speciėcation
to the running interface:

• Task and Concepts level. It corresponds to the Computational-Independent Model
(CIM) inMDA [ǉǍ] and considers: (a) the logical activities (tasks) that need to be per-
formed in order to reach the user goals and (b) the domain objectsmanipulated by these
tasks. Oěen tasks are represented hierarchically along with indications of the temporal
relations among them and their associated aĨributes. ĉis level uses the information of
the Concepts, Tasks and User models.

• Abstract User Interface (AUI). Corresponding to the Platform-Independent Model
(PIM) in MDA, is an expression of the UI in terms of interaction spaces (or presentation
units), independently of which interactors are available and even independently of the

ǍǑ

modality of interaction (graphical, vocal, haptic, etc.). An interaction space is a grouping
unit that supports the execution of a set of logically connected tasks.

• ConcreteUser Interface (CUI). It corresponds to the Platform-SpeciėcModel (PSM)
inMDA. It is an expression of the UI in terms ofConcrete interactors, that depend on the
type of platform and media available and has a number of aĨributes that deėne more
concretely how it should be perceived by the user. Concrete interactors are, in fact, an
abstraction of actual UI components generally included in toolkits. ĉeCUImodel uses
the information of the Platform and Environment models.

• FinalUser Interface (FUI). It is related to the code level inMDA and consists of source
code, in anyprogramming languageormark-up language (e.g. Java,HTMLǍ,VoiceXML,
X+V, ...). It can then be interpreted or compiled. A given piece of codewill not always be
rendered on the samemanner depending on the soěware environment (virtualmachine,
browser, etc.). For this reason, Cameleon considers two sublevels of the FUI: the source
code and the running interface.

Figure ǋ.ǉǉ: Abstraction, reiėcation and translation in the Cameleon framework (extracted
from [ǐǑ]).

When using Cameleon in a development, three different paths can be followed, namely reiė-
cation, abstraction and translation, which are depicted by downward, upward and bidirectional
arrows in Figure ǋ.ǉǉ. Reiėcation is the transformation of a description (or of a set of descrip-
tions) into another one that has a less abstract than the former. Abstraction is the transforma-
tion of a description into another one whose semantic content and scope are higher than the

ǎǈ

content and scope of the initial description content (i.e., is more abstract). In the context of
reverse engineering, abstraction is the elicitation of descriptions that aremore abstract than the
artefacts that serve as input to this process. Finally, a translation shiěs the interface from one
type of platform to another, or more generally, from one context to another (e.g., a legacy UI
migration).

ǋ.ǋ.ǌ UňĹŇ IłŉĹŇĺĵķĹ DĹňķŇĽńŉĽŃł LĵłĻŊĵĻĹň (UIDLň)

UIDLs are DSLs for deėning user interfaces. In the following subsections we present three of
themostwidespreadUIDLs: UsiXML[ǋǐ],Maria [Ǒǈ] andXAML[Ǒǉ]. Someother examples
of UIDLs are: User Interface Markup Language (UIML) [ǑǊ], eXtensible Interface Markup
Language (XIML) [ǏǍ], eXtensible Interaction Scenario Language (XISL) [Ǒǋ] andXMLUser
Interface Language (XUL) [Ǒǌ].

ǋ.ǋ.ǌ.ǉ UňĽXML

User Interface eXtensible Markup Language (UsiXML) is a DSL used in Human-Computer In-
teraction (HCI) and Soěware Engineering (SE) in order to describe any user interface of any
interactive application independently of any implementation technology. ĉe language is able
to represent user interfaces which vary on the context of use (in which the user is carrying out
her interactive task), the device or the computing platform (on which the user is working), the
language (used by the user), the organisation (to which the user belongs), the user proėle or
the interaction modalities (e.g., graphical, vocal, tactile or haptics).
UsiXML has following features which are interesting in GUI migrations:

• Model-driven: it is deėnedaccording to theprinciplesofMDE.Metamodels are expressed
in MOF and OWL Ǌ.ǈ Full [ǑǍ].

• Multi-level of abstraction: it is compliantwith the four levels of abstractionof theCameleon
framework (as it is shown in Figure ǋ.ǉǊ). It provides a metamodel for Abstract User In-
terfaces, and a metamodel for Concrete User Interfaces which can be used for different
modalities (graphical, vocal, haptic, etc.). ĉe Task level is based on Concur Task Trees
(CĈ) [Ǒǎ] and the domain is expressed with UML class and object diagrams [ǑǏ].

• Complete lifecycle support: it providesmeans for conceptualmodeling of task, domain ab-
stract user interface, concreteuser interface, andcontexts of use asdeėned in theCameleon

ǎǉ

framework. In addition, it covers transformation, mapping, adaptation, and interactor
modeling, so all the paths of reengineering (reverse engineering, restructuring, and for-
ward engineering) can be tackled by means of the UsiXML metamodels and tools.

Figure ǋ.ǉǊ: UsiXML models conforming to Cameleon (extracted from [ǋǐ]).

Figure ǋ.ǉǊ shows an example of the four levels of the Cameleon framework in UsiXML. In the
boĨom part of the ėgure we see an HTML form with a text ėeld and two buĨons to perform
a search. ĉese controls are represented in the CUI level with independence of the concrete
technology (HTML). ĉe AUI level abstracts the elements of the CUI model so they are in-
dependent of the modality (GUI controlled by keyboard and mouse). Finally, the Task level
captures the sequence of tasks to perform a search, this is, write some keywords in the text ėeld
and then click on the one of the two buĨons.
ĉere is a varietyof tools supportingUsiXMLfor creating themodels (IdealXML,KnowiXML),
obtaining UsiXML models from code (ReversiXML) or other representations (SketchiXML,
VisiXML,TransformiXML, etc.) or generatingnewsystems(FormiXML,GraėXML,FlashiXML,
etc.).

ǎǊ

ǋ.ǋ.ǌ.Ǌ MĵŇĽĵ

MARIA, Model-based lAnguage foR Interactive Applications [Ǒǈ] is a universal, declarative, mul-
tiple abstraction-level, XML-based language for modelling interactive applications in ubiqui-
tous environments. ĉe language inherits the modular approach of its predecessor, TERESA
XML [Ǒǐ], with one language for the abstract description and then a number of platform-
dependent languages that reėne the abstract one depending on the interaction resources con-
sidered.
Some features of the language that are relevant for our purposes are:

• Model-driven: the language has been described by means of MOF metamodels.

• Multi-level of abstraction: MARIA conforms to the Cameleon framework and deėnes
metamodels for the four abstraction levels: deėnes an Abstract description metamodel,
a few Concrete description metamodels for the desktop, mobile, vocal and multimodal
platforms, and relies on CĈ for the Task level.

• Events at abstract and concrete levels: an event model has been introduced at different
abstract/concrete levels of abstractions. ĉe introduction of an event model allows for
specifying how the user interface responds to events triggered by the user.

• ExtendedDialogModel. ĉedialogmodel contains constructs for specifying the dynamic
behaviour of a presentation, specifying what events can be triggered at a given time. ĉe
dialog expressions are connected using CĈ operators in order to deėne their temporal
relationships.

• Continuous update of ėelds. It is possible to specify that a givenėeld should be periodically
updated invoking an external function (i.e., it supports Ajax scripts). ĉis can be deėned
at the abstract level and detailed at the concrete level.

• Dynamic Set of User Interface Elements. ĉe language contains constructs for specifying
partial presentation updates (dynamically changing the content of entire groupings) and
the possibility to specify a conditional navigation between presentations. ĉis is useful
for supporting Ajax techniques.

ĉe Maria language is supported by the Maria tool.

ǎǋ

ǋ.ǋ.ǌ.ǋ XAML

Extensible ApplicationMarkup Language (XAML) is amarkup language developed byMicrosoě
for declarative programming of user interfaces in the .NET framework. XAML is used ex-
tensively in .NET Framework ǋ.ǈ and.NET Framework ǌ.ǈ technologies, particularly in the
Windows Presentation Foundation (WPF) [ǑǑ], Silverlight, Windows WorkĚow Foundation
(WF),Windows RuntimeXAMLFramework andWindows Store apps. InWPF, XAML forms
auser interfacemarkup language todeėneUI elements, data binding, events, andother features.
In WF contexts, XAML is used to describe potentially long-running declarative logic, such as
those created by process modeling tools and rules systems.
ĉe scope of this language ismore ambitious than that ofmost user interfacemarkup languages,
since program logic and styles are also embedded in the XAML document. Functionally, it
can be seen as a combination of XUL, SVG, CSS, and JavaScript into a single XML schema.
XAML directly represents the instantiation of objects in a speciėc set of backing types deėned
in assemblies (.NET libraries). ĉis is unlikemost othermarkup languages, which are typically
an interpreted language without such a direct tie to a backing type system.
XAML is supported by theMicrosoě environments such as Visual Studio and can also be used
to generate desktop applications, Silverlight applications, Windows Phone apps and Windows
Store apps among others.

ǋ.ǋ.Ǎ DĽňķŊňňĽŃł

We have presented the different approaches we analysed for representing GUIs. We found
though different disadvantages that led us to eventually discard them and deėne our ownmeta-
models. Next we enumerate the reasons for this decision.
KDM is a complexmetamodel which can be used tomodel an entire soěware system. ĉeCode
and Action packages, which are the most extensive of KDM, can be used to represent program-
ming code in a generic fashion. However, given thatKDM intends to be language-independent,
some of its packages are too generic to be useful as-is, and need to be extended in some way.
For instance, we could see that the UI package does not offer a widget or layout classiėcation,
so if distinguishing the different widget types or layouts is needed, extending KDM is required.
KDM itself offers an extension mechanism, but as mentioned in [ǎǎ] it is poor in practice and
using itmeans losing the interoperability among tools, which is one of the presumed beneėts of
KDM. Moreover, using such a large metamodel like KDM involves a lot of unnecessary com-

ǎǌ

plexity which most of the times does not pay off (e.g., model transformations become far more
complex than using a simple metamodel). On the other hand, representing event handlers is
awkward in KDM, because it is possible to deėne which events are triggered by each widget,
but we cannot specify the code that is executed in each case.
With respect to IFML, it allows expressing the events and the effect they produce in the GUI,
and it can be considered tomodel the behaviour of the GUI in a technology-independent fash-
ion. Since it has recently appeared, it was not considered in our solution.
Regarding the UIDLs, UsiXML and Maria are technology-independent languages which have
been designed to cope with multi-modal UIs in ubiquitous environments. A forte of UsiXML
is that it has several graphical DSLs supporting the creation of the different models, and an
interesting feature of Maria is that it includes elements to deal with Ajax applications. Both
offer a wide widget hierarchy, but the layout representation is somewhat limited. For instance,
UsiXMLǊ.ǈ just offers a genericTableLayout (similar toHTML tables) to represent layout. For
this reason, theseUIDLs are not suitable to be used in the reverse engineering stage as interme-
diate representations to manipulate the data. On the contrary, both, UsiXML and MariaXML
could be used to represent a generic GUI at a CUI level (i.e., the technology-independent level,
which is the abstraction level in which our reverse engineering proposal is enclosed). On the
otherhand,XAML is aUIDLwhich is devised toworkwithWindows frameworks, and includes
information that is dependent of those frameworks. Moreover, it has a complex speciėcation
due to it mixes different kinds of information, and in fact some people are critical of this design,
as many standards (Javascript, CSS, etc.) exist for doing these things. For all these reasons,
XAML is not suitable for representing generic GUIs.

ǎǍ

ǎǎ

(Suggested by Jérémie Melchior)

Fall in love with the problem, don’t fall in
love with the solution.

Paul Graham

4
Overview

So far we have set the context of this thesis. In the introductory chapter we motivated and
stated the problem that is tackled. ĉere we introduced two main issues to be addressed when
migrating ĆD applications to modern platforms: coordinate-based layouts and tangling of
concerns. ĉese two issues were explained in more detail in Section Ǌ.Ǌ.Ǌ, where we discussed
the main features of legacy ĆD applications that were summarised in Table Ǌ.ǉ.
Nowwe will clearly deėne the requirements that we expect in our solution, and we will outline
the generic architecture of the solution. ĉis chapter serves as a brief guide of the entire work
and summarises the solution that we will describe in detail in the following chapters.

ǌ.ǉ GŃĵŀ

Ourmain goal is to develop a migration framework for GUIs of legacy systems built with ĆD
environments, in order tomigrate them tomodern platforms and/or differentGUI frameworks
in such a way that the implementation of the new system follows common best practices. As
stated in Section ǉ.Ǌ, to reach this objective we have identiėed three high level goals: to de-
ėne an architecture (goal Gȕ) for the framework to be developed, which should separate and

ǎǏ

make explicit the different aspects involved in the GUI of ĆD applications, and that should
deal with the layout and event handlers (goals GȖ and Gȗ). ĉis implies addressing the two
aforementioned issues: coordinate-based layouts and tangling of concerns. We propose to ap-
ply static analysis on the GUI-related artefacts of the source legacy systems in order to extract
relevant information for implementing the migrations. Particularly, we intend to analyse the
view deėnitions in order to extract a layout deėnition, and analyse the code of event handlers
to obtain an abstract representation that let us to achieve separation of concerns and get other
useful information such as the navigation Ěow. Granted, a requisite to apply our solution is that
source code is available.
FromtheexaminationofGUIsofĆDapplications expounded inSectionǊ.Ǌ.Ǌ and the studyof
the state of the art presented inChapter ǋwe have elicited a set of requirements for our solution,
which can be organised in three groups: general requirements, requirements speciėc to the
layout inference, and requirements of the analysis of event handlers. Hence, our solution is
driven by the following general requirements:

(Rǉ) Explicit GUI information. A high-level representation of the GUImust be discovered,
i.e., metadata concerning the GUI. ĉe metadata should be of interest for migrating the
GUI to different platforms and GUI frameworks. It must be possible to analyse and au-
tomatically transform this metadata.

(RǊ) Modularity. Owing to the wide semantic gap between ĆD environments and current
technologies, it would be desirable to split the reengineering process into simpler stages
to make it maintainable. In addition, a solution split in decoupled stages would facili-
tate extension (for instance, to add new processing stages) and reusability in different
projects.

(Rǋ) Automation. We are interested in automating it as much as possible so that it can be
easily applied to a large number of applicationswithminimumeffort. Ideally, the process
would end up in a generation task that would produce artefacts that could be seamlessly
integrated in the new system.

(Rǌ) Source and target independence. ĉe reengineering process should be easy to reuse
with different technologies (source independence). Furthermore, it must be extensible,
so that new target platforms can be added without changing the reverse engineering and
restructuring stages (target independence).

ǎǐ

With respect to the coordinate-based layout issue, we expect to fulėll the following require-
ments:

(RǍ) Matching between the visual and logical structure. ĉe logical structure of the views
(the GUI tree, i.e., the nesting of the widgets) must mirror the visual structure that users
perceive when they see those views.

(Rǎ) High-level layout representation. ĉe layout of the viewsmust be represented in terms
of high-level structures that ensure a proper visualisation in different screen sizes and
resolutions, such as the well-known layout managers that are used at present in a myriad
of GUI frameworks.

(RǏ) Misalignment tolerance. ĉesolutionproposedmust take into account that somegraph-
ical editors (e.g., ĆD editors) do not include alignment guidelines and therefore some
minor misalignments can occur if developers are not careful. ĉen, the solution must
allow certain degree of imprecision when recognising widget location.

(Rǐ) Alternative solutions. It would be useful that the layout inference solution could out-
put different ranked alternatives in order to know which options are beĨer according to
some criteria. ĉen, if the solutionmarked as ’best’ does not produce the desired results,
developers could inspect the other options and choose a different alternative.

(RǑ) Conėgurable layout set. Developers should be able to choose which layout managers
can be used for laying out views. ĉis can be useful if some layout types are not available
in the target toolkit or if using certain types can result in awkward or unexpected design.

Regarding the issue of tangling of concerns, we intend to endowour solutionwith the following
features:

(Rǉǈ) Code abstraction. Code should be abstracted so it is possible to understand what it
does (how it works). ĉis abstraction consists of moving the code representation (’how
to do it’) to the intention of the code (’what it does’). For example, opening a database
cursor is a recurrent paĨern in PL/SQL, which typically requires several instructions.
From the reverse engineering and restructuring point of view it is useful to know that
these statements just perform a database access. Raising the abstraction level in this way
facilitates later processing.

ǎǑ

(Rǉǉ) Code categorisation. Related to the previous requirement, the solution must provide
automated categorisation of pieces of code, so separation of concerns in the source sys-
tem can be enabled. In this way, it should be possible to differentiate between statements
related to the GUI, the control or to business logic in order to structure the new system
in multiple tiers (n-tier architecture). In [ǉǉ] this is regarded as an important activity
to disentangle spagueĨi code. Furthermore, sub-concerns of the GUI such as validation
rules should be also detectable.

(RǉǊ) Explicit interaction and navigation Ěows. ĉe solution must be able to explicitly rep-
resent the interactions that exist between widgets and the transitions that may occur be-
tween views. For example, this is useful for migrating to many modern frameworks that
provide a means to declaratively express the navigation Ěow (e.g., Java Server Faces).

ĉese requirements cover the ones that we extracted in the discussion of the state of the art
for layout recognition approaches and behaviour extraction approaches, as it can be seen in
Table ǌ.ǉ.

Source/target independence Rǌ
Provide explicit information Rǉ
Layout model with a variety of layout managers Rǎ, RǑ
Use of implementation paradigm with architectural beneėts RǊ, Rǋ, Rǌ
Separate tangled concerns Rǉǉ
Represent transitions and dependencies with State Machine RǉǊ

Table ǌ.ǉ: Relationships between the requirements and the discussion of the state of the art.

In Table ǌ.Ǌ we also show how these requirements try to address some of the bad practices that
are present in the applications created with ĆD environments.

Implicit layout Rǉ, Rǎ
Overlapping RǍ
Widget-database links Rǉǉ

Table ǌ.Ǌ: Requirements that cover bad practices in ĆD environments.

Ǐǈ

ǌ.Ǌ AŇķļĽŉĹķŉŊŇĹ Ńĺ ŉļĹ ňŃŀŊŉĽŃł

In this section we will present the architecture of the framework we have devised for migrat-
ing legacy GUIs, which will deal with the aforementioned requirements, and which is called
GUIZMO (GUI to MOdels). ĉe MDE paradigm presented in Section Ǌ.ǋ provides mecha-
nisms (mainly metamodels and transformations) and beneėts which ėt the architectural re-
quirementsRȕ, RȖ, Rȗ and RȘ. ĉerefore, we decided to implement our solutionwith anMDE-
based architecture because it is suitable to cover these requirements.
ĉe summary of this section is as follows. Firstly we present theConcreteUser Interface (CUI)
model that we use to represent GUIs. Secondly, we will show how the CUImodel is integrated
in the context of themigrationof legacyGUIs bymeans of theMDE-based architecture. Finally,
we will indicate how the requirements we have listed are fulėlled by GUIZMO.

ǌ.Ǌ.ǉ TļĹ CŃłķŇĹŉĹ UňĹŇ IłŉĹŇĺĵķĹ ŁŃĸĹŀ

According to the Cameleon reference framework introduced in Section ǋ.ǋ.ǋ, a CUI model is a
technology-independant representation of a GUI that can be seen as an abstraction of the Final
User Interface (FUI). Actually, we have not devised a single CUI model, but a series of models
arranged in a star. As it can be seen in Figure ǌ.ǉ, the CUImodel has a base model representing
the structure of a GUI and different models connected to it that represent aspects of that GUI
that are interesting to cope with in a migration. In this thesis we have dealt with three aspects:
layout, event concerns and interactions. Validation and style are other aspects that should be
considered in a good-quality migration, but they have not been addressed in this thesis. Next
we will outline all of these models.
ĉeStructuremodel is thepivot of theCUImodel. It describes the logical structureof views, that
is, the hierarchy of widgets that compose the views. ĉis hierarchy must be aligned with what
the user sees in the screen. Moreover, it must include support for internationalisation (iǉǐn)
and has to be backed up by a Resource model (omiĨed in the ėgures) that contains the paths to
the actual resources (images, icons, language ėles, etc.). ĉe rest of the models reference the
widgets deėned in this one.
ĉe spatial arrangement of the GUI is represented by the Layout model. ĉe layout is made up
with a composition of high-level layout components, such as layoutmanagers (e.g., Flow layout
or Grid layout). ĉe composition should ensure that the view will be displayed properly under

Ǐǉ

Figure ǌ.ǉ: Concrete User Interface models in our solution

different screen sizes and resolutions, and when the views are resized.

ĉeStylemodeldeėnes the lookand feel of the views, that is, backgroundand foregroundcolours,
font types and sizes, border types and so forth. With this model, styles (groups of visual prop-
erties) would be deėned, and inherited from other styles in order to promote reuse (somewhat
similar to CSS philosophy).

ĉecodeof the eventhandlers is represented in theEventConcernsmodel in a language-independent
fashion. ĉis model presents an abstraction of the code where groups of sentences of the origi-
nal code thatmatch some paĨern are replaced by application primitives that express the seman-
tics of the code. Moreover, the code fragments are tagged with the concern (view, controller,
business logic) they are related to, and they are also structured in a control-Ěow graph.

ĉe information of the Interaction model is twofold: it speciėes the dependencies among views,
and also the dependencies among the widgets contained in these views. It represents the nav-
igation Ěows of the application by means of a Finite State Machine in which the states are the
different views of the application and the transitions are the events that let them happen. For
each view, the dependencies among widgets are represented through a dependency graph, in
which dependencies are expressed with an event-condition-action schema (similar to transi-
tions between views). For example, selecting a speciėc checkbox triggers an event that enables

ǏǊ

Legacy GUI
definition

<HTML>
<HEAD>
 <SCRIPT>
 </SCRIPT
</HEAD>
<BODY>
</BODY>
 </HTML>

Source GUI
tree model

Event handler
AST model

Normalised GUI
tree model

RADBehaviour
model

Region and
Tile models

Trace model CUI model

T2M

T2M

M2M

M2M

M2M

M2M

M2M

Target technology
model

New GUI

<HTML>
<HEAD>
 <SCRIPT>
 </SCRIPT
</HEAD>
<BODY>
</BODY>
 </HTML>

M2M M2M

Figure ǌ.Ǌ: Architecture of the solution (GUIǊMO framework)

a certain text ėeld.

ĉe validation rules of the data introduced in forms are represented in the Validation model. It
also considers the notiėcation of the validation errors to the user. For instance, rules such as
two password ėelds must match or that a text ėeld must have a valid e-mail format would be
speciėed.

ǌ.Ǌ.Ǌ OŋĹŇŋĽĹŌ Ńĺ ŉļĹ ŁĽĻŇĵŉĽŃł ĵŇķļĽŉĹķŉŊŇĹ

Figure ǌ.Ǌ presents the general MDE-based architecture of the solution we propose for migrat-
ing GUIs of legacy systems. Arrows indicate amodel transformation that is applied (the type is
also indicated: TǊM,MǊM, orMǊT), and dashed lines represent dependencies betweenmod-
els. ĉe architecture has been simpliėed, as some speciėc models and dependencies have been
omited, to ease the comprehension of the global idea.

ĉe input of the process is the set of artefacts that describe the GUI in a speciėc technology. In
someĆDenvironments such asOracle Forms ǎi theGUI deėnition and the code of the event
handlers are included in the same ėles, whereas in others such as Delphi Ǎ they are separated in
different ėles. From the source artefacts two types of models are injected: the Source GUI tree
and the Event handler AST. ĉe Source GUI tree model represents the logical structure of the

Ǐǋ

view, that is, how the widgets are organised in the view and their visual properties, including
the position in coordinates. ĉe Event handler AST model is the Abstract Syntax Tree (AST)
representation of the code of the event handlers, which depends on the programming language.

Some legacy tools have some peculiarities when representing the GUI tree that are not found
in current GUI frameworks. For example, in Oracle Forms there is not a component for rep-
resenting a grid of data. Instead, some of the components such as text ėelds or buĨons have
an aĨribute that indicates whether the component will be repeated several times. Another pe-
culiarity is that positions are not expressed in pixels by default, but in proprietary measures, so
a conversion to pixels or other standard unit is required. With the aim to avoid these features
that are too speciėc, the SourceGUI treemodel is transformed into aNormalisedGUI treemodel
thatmakes uniform the input of later reverse engineering algorithms so they can be reusedwith
independence of the legacy technology.

Legacy management applications were frequently used to display data in forms that are backed
up by a relational database. In this kind of applications, many actions were recurrent, such as
displaying a data table aěer selecting a row in another data table (master-detail paĨern). ĉe
ĆDBehaviour model is an abstraction of the source code that captures the behaviour of event
handlers in terms of simple primitives which are common in ĆD environments, such as read
data from a database or write some data in the GUI controls. Even though it is not its primary
purpose, this model also serves us to make the rest of the analysis independent of the language
in which the event handlers were wriĨen.

It is important to note that the TǊM to create the Source GUI tree model, the TǊM that injects
the Event handler AST model, the MǊM to derive the Normalised GUI tree model, and the
MǊM to create theĆDBehaviourmodel, must be implemented for every new source technol-
ogy, but the rest of the process is reused.

ĉe Normalised GUI tree model is the basis on which we apply some reverse engineering al-
gorithms to obtain the Structure model, the Layout model and the Style model, which are the
’visible’ parts of the CUI (what users see in the screen). ĉe transformation of the Normalised
GUI treemodel into theCUI is not performed in a single step but in several stepswhich are sup-
ported by some intermediatemodels (Region and Tile models) that wewill present later. On the
other hand, theĆDBehaviourmodel is used to derive the part of the CUI that is related to the
interaction (Interaction model) and the behaviour of the interface (EventConcerns model).

It usually happens thatwhen raising the abstraction level, an amount of details that appear in the
source artefacts aremissedbecause they are too speciėc of the source technology. However, this

Ǐǌ

information that is intentionally lost in the abstraction process may be useful when generating
the Final User Interface, for example to know what is the source of the generated elements in
case there were bugs or unexpected results. In these cases, a traceability mechanism can be
used to ensure that all the information is available when generating the Final User Interface.
ĉe Trace model serve us for this purpose by linking the Structure model with the Source GUI
Tree model and the EventConcerns model with the Event Handler AST model.
Once all the models conforming to the CUI and Trace metamodels have been generated, a
model transformation can be applied to move the GUI information expressed in the CUI to
a particular technology or a different UIDL, and from that model, generate the Final User In-
terface of the new system. In the following chapters we will focus on the different parts of the
architecture presented in ǌ.Ǌ, andwewill describe all themetamodels and transformations that
are implied in the process.

ǌ.Ǌ.ǋ RĹŅŊĽŇĹŁĹłŉ ĽŁńŀĹŁĹłŉĵŉĽŃł

Table ǌ.ǋ summarises how the requirements elicited in Section ǌ.ǉ are fulėlled in theGUIZMO
arquitecture.

Rǉ: Explicit GUI information Metamodels
RǊ: Modularity Model transformation chain
Rǋ: Automation Model transformation chain
Rǌ: Source independence Normalised GUI tree model,

ĆDBehaviour model
Rǌ: Target independence CUI model
RǍ: Logical/visual structurematching Structure model
Rǎ: High-level layout representation Layout model
RǏ: Misalignment tolerance Layout inference algorithm
Rǐ: Alternative solutions Layout inference algorithm
RǑ: Conėgurable layout set Layout inference algorithm
Rǉǈ: Code abstraction ĆDBehaviour model
Rǉǉ: Code categorisation EventConcerns model
RǉǊ: Explicit interaction and navigation Interaction model

Table ǌ.ǋ: Implementation of the requirements

Using MDE endowes the solution with some beneėts. ĉe use of metamodels serve us to ex-
plicitly represent themetadata that havebeengathered from the source system(Rȕ). ĉemodel
transformation chain splits the wholemigration process in smaller steps, then promotingmod-

ǏǍ

ularity (RȖ). Moreover, the transformation chain is executed automatically, which fulėls re-
quirement Rȗ. In the transformation chain we introduced the Normalised GUI Tree andĆD-
Behaviour models that makes the approach independent of the source ĆD technology, and
the CUI model that makes it independent of the target technology (RȘ).
Matching the logical andvisual structures is supportedby theRegionmodel andėnally achieved
in the Structure model (Rș). ĉe Layout model is used to represent the layout of the GUI
by means of high-level constructions (RȚ). Our reverse engineering algorithms are designed
to deal with certain misalignment tolerance (Rț) and output alternative layout compositions
(RȜ). Moreover, they are conėgurable so the layout sets (i.e., the different types of layouts) to
use can be speciėed (Rȝ), aswell as someother parameters such as the comparisonmargin used
to obtain misalignment tolerance.
ĉe solution raises the abstraction level of the source code by means of the ĆDBehaviour
model (RȕȔ). ĉen, that model is used to categorise the code according to the tier to which
it belongs (Rȕȕ). Other useful information such as the interaction and navigation Ěows are
extracted from the ĆDBehaviour model and represented in the Interaction model (RȕȖ).

Ǐǎ

(Suggested by Pablo Gómez)

Design is not just what it looks like and feels
like. Design is how it works.

Steve Jobs

5
Layout inference: greedy approach

Layout is the sizing, spacing, and placement of content within a window, which is a key aspect
in GUI design, as explained in Section Ǌ.Ǌ. In this chapter, we explore the concerns involved in
discovering layout relationships among user interface elements. We focus on GUIs built with
legacy IDEs, particularly ĆD environments, in which the layout is implicitly represented by
means of the explicit position of widgets. ĉe solution we propose can be reused with anyGUI
that matches the features ofĆDenvironments related to the implicit layout, and in fact, in the
next chapter we will apply the same schema to the wireframing tools.

Figure Ǎ.ǉ shows the whole architecture of the reengineering approach proposed in this thesis,
which was described in Section ǌ.Ǌ.Ǌ. In this chapter we will focus on the parts of the reengi-
neering process used to obtain the Structure and Layout models (highlighted in black), which
are the main static components of the CUImodel, and we will see how to use them to generate
a new GUI.

Basically, the layout inference process obtains an explicit Layout model in three stages: region
identiėcation, positioning system change, and high-level structure detection. Several meta-

ǏǏ

Legacy GUI
definition

<HTML>
<HEAD>
 <SCRIPT>
 </SCRIPT
</HEAD>
<BODY>
</BODY>
 </HTML>

Source GUI
tree model

Event handler
AST model

Normalised GUI
tree model

RADBehaviour
model

Region and
Tile models

Trace model CUI model

T2M

T2M

M2M

M2M

M2M

M2M

M2M

Target technology
model

New GUI

<HTML>
<HEAD>
 <SCRIPT>
 </SCRIPT
</HEAD>
<BODY>
</BODY>
 </HTML>

M2M M2M

Validation model

Structure model

Interaction modelLayout model

Style model

EventConcerns model

Figure Ǎ.ǉ: Part of the architecture explained in this chapter.

models and algorithms have been deėned to implement this process, whichwill be explained in
detail in this chapter. We will put this process in the context of Oracle Forms ǎ, which is a con-
crete ĆD environment, and we will evaluate the algorithms by reverse engineering two real
legacy applications, built by two different companies, and consisting of ǍǏ and ǉǈǏ windows of
different types, respectively.

Ǎ.ǉ MDE ĵŇķļĽŉĹķŉŊŇĹ ĺŃŇ ŀĵŏŃŊŉ ĽłĺĹŇĹłķĹ

Figure Ǎ.Ǌ represents the transformation chain that we have devised to deal with the reengi-
neering of ĆD GUIs. Note that this ėgure depicts the same elements that are highlighted in
Figure Ǎ.ǉ in addition to the Region and Tile models which were represented in one box in
the former diagram. ĉe steps involved in the reverse engineering part (layout inference pro-
cess) have been highlighted. Boxes stand for models and solid arrows depictMǊM transforma-
tions, and dashed arrowsmeanmodel dependencies (i.e., a model refers to elements of another
model).

ĉe actual input of the layout inference process is theNormalisedGUITreemodel. ĉismodel
conforms to the so calledNormalisedGUITreemetamodelwhich generalises concepts that are
common toGUIs built with legacy tools. It is a kind of normalisationmodel that is intended to
make the rest of the reverse engineering process independent of the source technology. On the
basis of that model, we apply an algorithm to identify distinguisable parts in the views of the
legacyGUI, thus obtaining theRegionmodel. ĉeTilemodel, which is obtained from the anal-
ysis of the Normalised model and the Region model, is a representation of the GUI views that

Ǐǐ

Source
technology

model

Normalised
GUI tree
model

Target
code

Target
technology

model

Region
model

Tile
model

CUI
model

Legacy
artefact

Figure Ǎ.Ǌ: Model-based architecture used to migrate legacy GUIs.

includes a positioning system of the widgets based on relative positions among them. ĉe Tile
and Normalised models are the input of the transformation that generates the CUI model and
the Trace model (omiĨed in Figure Ǎ.Ǌ). ĉe laĨer simply keeps links between the CUImodel
and the Source GUI Treemodel, and can be obtained by traversing themodels bymeans of the
backward references. Although in our case studies we have not made use of the Trace model,
it can be useful in the later restructuring or forward engineering phases, for example, if we per-
formed some modiėcations in the CUI model and the whole transformation chain needed to
be re-run without overwriting the changes (GUI evolution) [ǌ]. It is worth remarking that this
architecture integrates the Structure and the Layout model in the same soěware artefact (the
CUI model).

Ǎ.Ǌ RĹŋĹŇňĹ ĹłĻĽłĹĹŇĽłĻ ŁĹŉĵŁŃĸĹŀň

In this section we describe the Normalised GUI Tree metamodel (from now on, Normalised
metamodel) and CUI metamodels that were presented in the previous section. Contrary to
Source andTarget Technologymodels, Normalised andCUImodels are independent of a con-
crete technology.

NŃŇŁĵŀĽňĹĸ GUI TŇĹĹ ŁĹŉĵŁŃĸĹŀ

ĉe commonalities of the GUIs built with ĆD environments are described by means of this
metamodel. It is a generic representation which allows the GUI of source ĆD applications to
be expressed in terms of features which are typically provided by ĆD environments, such as

ǏǑ

widgets positioned with coordinates (which form an implicit layout) and a hierarchy of com-
mon widgets.
In essence, the Normalised metamodel represents a GUI deėnition as follows. ĉere are two
types of Widgets: Containers (e.g., PlainPanels) that nest other Widgets, and SingleWidgets(e.g.,
TextBoxes), that cannot contain other Widgets. A View represents the area of the screen that
displays thepart of theGUI that auser sees at a particularmoment, such as adesktop application
window. BothViews andContainers can nestWidgets, and the complete hierarchical structure of
a View formed by Containers and SingleWidgets is calledGUI tree. From here on, the term View
will be used to refer to the metaclass and the term viewwill be used as a general concept.

Container

Widget
x: integer
y: integer
width: integer
height: integer

SingleWidget

0..n
 children

View Panel TextBox DataGridWidgetGroup Custom

TabbedPanelPlainPanel

Figure Ǎ.ǋ: Excerpt of the Normalised metamodel.

ĉe design of theNormalisedmetamodel has been driven by the identiėcation of common fea-
tures of legacy-tool-based GUIs that were listed in Section Ǌ.Ǌ.Ǌ. An excerpt of the metamodel
is shown in Figure Ǎ.ǋ. ĉese features and their representation in the metamodel are outlined
as follows:

• Implicit layout. ĉe position ofWidgets is stated by means of coordinates that are rela-
tive to the main window or another container. In the metamodel this is conveyed by the
Widget metaclass which has x and y aĨributes (a coordinate), and an explicit width and
height.

• Clustering elements. ĉere are special widgets which are intended to group and/or

ǐǈ

highlight semantically-related widgets. ĉese widgets are represented as subtypes of
Container in the metamodel. We distinguish between Panels that are elements that ar-
range a window in parts (in some legacy environments they can also be reused between
windows), andWidgetGroups that are used to highlight a set of widgets in close proxim-
ity, frequently by means of a border.

• Overlapping. Widgets are oěen loosely contained in their container, that is, they are
overlapped with the container instead of having explicit containment relationships. A
container could also be overlapped with another container. ĉis means that a Container
may not have any widget in the children reference, although there may be some widgets
that would (visually) be expected to be contained.

• Standardwidgets. Legacy environments share a common set of standard widgets, such
as text boxes, buĨons, combo boxes, tables, and so forth. ĉey are represented in the
metamodel with metaclasses inheriting from SingleWidget.

• Technology-dependent widgets. Source technology-dependent widgets (e.g. an Ac-
tiveXcontrol) cannotbe represented in theNormalisedmetamodel (which is technology-
independent), and cannot therefore be part of the subsequent reverse engineering. We
propose two alternatives to deal with this issue: i) themetamodel provides a special wid-
get (Custom), that allows the reverse engineering process to deal with them, and devel-
opers are in charge of giving them a proper meaning in a later reengineering stage, ii)
some speciėc widgets can be emulated by one or more standard widgets from the meta-
model. For instance, an Oracle Forms multirecord is a group of single widgets (e.g. text
boxes) arranged in a tabular form, which can be mapped into aDataGrid. ĉis mapping
is typically carried out in the normalisation stage (i.e., the transformation of a Source
Technology model into a Normalised model).

As stated previously, aNormalisedmodel is derived fromaSourceTechnologymodel bymeans
of a MǊM transformation. Given that the Normalised metamodel does not establish tight re-
strictions regarding the arrangement of widgets, deėning this MǊM transformation in order
to translate Source Technology metamodel concepts into Normalised metamodel concepts is
normally straightforward.

ǐǉ

CUI ŁĹŉĵŁŃĸĹŀ

Inour solution,CUImodels conformto themetamodel shown inFigureǍ.ǌ, inwhich the layout
is explicitly modelled with compositions of high-level concepts which are present in most GUI
frameworks, such as Ěows of elements, grids, and so forth. It is worth noting that the Structure
model and the Layout model have been merged in a single CUI model.

AbstractView

ViewExternalViewRef

AbstractPanel

PanelPanelRef

PlainPanelTabbedPanel ArrangedPanel

1

1

 0..n

1..n 1..n

GraphicalStyle

 1

 1

Layout

Widget

FlowLayout StackLayout BorderLayout

LayoutConnection
 1..n

PanelConnection WidgetConnectionInnerConnection 1

 1
1

 0..n
 1

 1

GridLayout

0..n

Figure Ǎ.ǌ: Simpliėed CUI metamodel.

Views are composed of AbstractPanels (i.e. Panels and PanelRef s), which are reusable parts of
theGUI, in such a way that a panel could be used in several views. Panels can contain subpanels
or widgets. Views and panels have a graphical style (that deėnes the font type and background
colour, for example) and a layout that describes how the subpanels orwidgets are arranged. ĉe
layout is expressed in terms of hierarchies of high-level arrangements (e.g. FlowLayout, Stack-
Layout, etc.), and has connections (LayoutConnection) that indicate which subpanels (Panel-
Connection) or widgets (WidgetConnection) are arranged according to it. InnerConnections do
not refer to any panel or widget and are used to create a layout tree structure. AWidgetConnec-
tion can be related to otherWidgetConnections, which is used to express dependencies between
widgets (e.g. associate a text ėeld and a label).

It is worth noting that the metamodel supports the separation between three concepts: the
panel as a reusable part of a view, its graphical style and the layout of the subpanels or widgets
that it contains. ĉis metamodel also covers some other aspects of a GUI, such as support for
internationalisation.

ǐǊ

R3

R2

R1

Figure Ǎ.Ǎ: Example view for entering personal information. (Same window as Figure Ǌ.Ǌ).

Ǎ.ǋ CļĵŀŀĹłĻĹň Ľł ŀĵŏŃŊŉ ŇĹŋĹŇňĹ ĹłĻĽłĹĹŇĽłĻ

As we indicated in Section Ǌ.Ǌ.Ǌ, inĆDapplications the layout is implicitly deėned by the po-
sition of the elements, which are expressed in terms of coordinates. Our aim is to capture the
visual arrangement of the elements in such a way that both replicating the layout and redesign-
ing it for a different technology is easy. Transforming an implicit, coordinate-based layout (rep-
resented by themetamodel in Figure Ǎ.ǋ) into an explicit, high-level layout (represented by the
metamodel in Figure Ǎ.ǌ) poses the following challenges.

(Lǉ) Region identiėcation. A view can be seen as a composition of parts or regions (perhaps
implicit) which provides the widgets of the view with a structure. Reverse engineering
the structure of a view by identifying regions is necessary for layout redesign. In the
example of Figure Ǎ.Ǎ we canmake out three regions in the window. RegionRȖ contains
the widgets that are surrounded by the PaymentFrame frame, region Rȕ is composed of
the widgets above the frame, and region Rȗ includes the widgets below the frame (note
that Rȕ and Rȗ are implicit).

(LǊ) Explicit containment. As explained in Section Ǌ.Ǌ.Ǌ, in some cases elements are not
actually contained in a container, but are overlapped. Matching the containment hierar-
chy and the visual structure of the layout greatly simpliėes the reverse engineering and
restructuring algorithms, and it is thus necessary to establish explicit containment rela-
tionships.

ǐǋ

(Lǋ) Widget structure recognition. While region identiėcation aims to recognize those
parts of which the view is structured, widget structure recognition is focused on how
widgets that are spatially-close to each other are arranged. For example, the widgets in-
side the PaymentFrame form a line. Widgets are oěen not perfectly aligned, so heuristics
are needed. To continue with the example, NameLabel, NameBox, SurnameLabel and
SurnameBox could form a line, but it is not clear whether MailBuĪon would be consid-
ered as a component of this line.

(Lǌ) Coordinate abstraction. As alreadymentioned, a coordinate-based positioning system
is not desirable, and thus an alternative means to represent relationships between ele-
ments is needed. For example, it would be desirable to know that NameLabel is above
AddressLabel and on the leě ofNameBox.

(LǍ) Alignment and spacing detection. ĉe widget structure is tunned by means of the
alignment and spacing (gaps andmargins) assigned to thewidgets. With the termholewe
will refer to an area of a remarkable size that does not contain widgets but is surrounded
by them, i.e., a gap of a considerable size. In the example view, there is a hole between
DelBuĪon and ExitBuĪon. It is necessary to capture the alignment, gaps and margins if a
similar layout is to be reproduced in a different technology.

Challenges Lȕ and LȖ are related to the fulėlment of the requirement Rȕ (matching the visual
and logical structure), and challenges Lȗ, LȘ and Lș are related to the requirement RȖ (high-
level layout representation). ĉe following sections show the algorithms that deal with these
issues.

Ǎ.ǌ DĹŉĹķŉĽłĻ ŇĹĻĽŃłň ĵłĸ ķŃłŉĵĽłĹŇň

ĉis stage is intended to tackle issues Lǉ and LǊ commented on above (namely, region identi-
ėcation and explicit containment). Here, a Region model is automatically derived from a Nor-
malised model.
A Region model is a model that annotates a Normalised model in order to make visual contain-
ment relationships between widgets explicit. A Region model represents a tree of regions that
conforms to themetamodel shown in Figure Ǎ.ǎ. It has a uniquemetaclass calledRegion, which
has the two pairs of coordinates that deėne a rectangular area, and the children reference to the

ǐǌ

Region
xMin: integer
xMax: integer
yMin: integer
yMax: integer

0..n
children

«from Normalised»
Widgetassociated

1

Figure Ǎ.ǎ: Region metamodel.

sub-regions contained in it. Note that Region elements are annotations for the Widgets of a
Normalised model. Region models have three main features: i) eachWidget is associated with
a Region deėned by two pairs of coordinates, ii) Containers and SingleWidgets must not exist
at the same level (i.e. a region that annotates a Container cannot be a sibling of a region that
annotates a SingleWidget), and iii) overlapped regions are not permiĨed.

SingleWidgets are prevented from being at the same level as Containers as a means to structure
theGUI in a uniformmanner, so that views are divided into partswhich are disjointed and com-
plementary. Each view therefore contains several separate regions (which can in turn contain
more regions or widgets), and each widget belongs to a unique region. ĉe goal of this design
decision is twofold. On the one hand, we believe that conceptually a UI is composed of related
parts like a puzzle in such a way that there are no widgets outside of a part. On the other hand,
it makes the structure of the UI uniform and simpliėes the later algorithms.

A precondition of the algorithmused to create the regions is that the border of aContainermust
never cross the border of another Container. Our framework has a previous phase that checks
whether frame border overlapping occurs. If this occurs, then the reverse engineering process
is stopped and amessage is shown to the developper so he can ėx the GUImanually (although,
in our experience this situation rarely arises).

In the algorithm we distinguish between three types of regions: widget regions, base regions and
extra regions. A widget region is a region associated with a widget. ĉe term base region is used
to refer to a region that is associated with a container. Extra regions are artiėcial regions which
are created to contain widgets that are not included in a base region. Note that base regions and
extra regionswill contain subregions, unlikewidget regions. We will explain the region detection
algorithm with the ad-hoc example window in Figure Ǎ.Ǐ. ĉe algorithm used to create the

ǐǍ

Algorithm ǉRegion creation algorithm.
ǉ: for all view do
Ǌ: rƤ ← createRegion(view)
ǋ: for all w ∈ getWidgets(view) do ◃Gets contained widgets
ǌ: rƥ ← createRegion(w)
Ǎ: addChild(rƤ, rƥ)
ǎ: end for
Ǐ:
ǐ: for all rƥ, rƦ ∈ children(rƤ) do
Ǒ: if rƥ ̸= rƦ ∧ contains(rƥ, rƦ) then
ǉǈ: if @rƧ ̸= rƦ ̸= rƤ.(contains(rƧ, rƦ))∨

∀rƧ ̸= rƦ ̸= rƤ.(contains(rƧ, rƦ)→ contains(rƧ, rƥ)) then
ǉǉ: addChild(rƥ, rƦ)
ǉǊ: end if
ǉǋ: end if
ǉǌ: end for
ǉǍ:
ǉǎ: createExtraRegions(rƤ)
ǉǏ: end for

RegionExample:

SearchFrame:
KeywordLabel:
KeywordBox:

SearchButton:

NextButton:

CloseWindowButton:

Frame
Label

TextBox

Button

Button

Button

Canvas

Figure Ǎ.Ǐ: Leě: example window for the region detection. Right: the logical structure of the
widgets.

RegionExample

SearchFrame

KeywordLabel
KeywordBox

SearchButton

NextButton

CloseWindowButton

Figure Ǎ.ǐ: Structure of the regions aěer step Ǌ for the example in Figure Ǎ.Ǐ.

ǐǎ

Region model (Algorithm ǉ) is summarised in the following steps:

ǉ. Create a region for every Widget (lines Ǌ to ǎ). rƤ is a base region associated with the
window, which is the root of the region tree. rƥ is a (widget or base) region associated
with w, which can be a single widget or a container. add(rƤ, rƥ) means that rƥ is set as a
child of rƤ. ĉe area of a new region is derived from the (x, y) coordinates, the width and
the height of theWidget. For example, in Figure Ǎ.Ǐ, a base region is created for each one
of the containers (the RegionExample window and SearchFrame), and a widget region
is created for each single widget (KeywordLabel, KeywordBox, SearchBuĪon,NextBuĪon,
CloseWindowBuĪon).

Ǌ. Create a tree structure by nesting the regions according to the visual containment rela-
tionships (lines ǐ to ǉǌ). ĉe expression contains(rƥ, rƦ) is true if the coordinates of rƦ are
inside the rectangle deėned by the coordinates of rƥ. For each pair of regions, rƥ and rƦ, we
make rƦ a child of rƥ if rƥ contains rƦ and one of the following conditions is true: i) there is
not a different region rƧ containing rƦ (rƦ is a direct child of rƥ), ii) there is another region
rƧ containing rƦ but it also contains rƥ (rƦ is a direct child of rƥ which in turn is a direct
child of rƧ). ĉe evolution of the example window aěer this step can be seen in Figure
Ǎ.ǐ: SearchFrame now contains KeywordLabel and KeywordBox. At the end of this step,
there can be widget regions which are siblings of base regions in the Region model. Fol-
lowing with the example we can see that SearchBuĪon, NextBuĪon CloseWindowBuĪon
are siblings of SearchFrame.

ǋ. Create extra regions to prevent SingleWidgets from being at the same level (siblings) as
the Containers. ĉe algorithm iterates once over every widget region that is a sibling of
either a base region or an extra region (at the beginning there are only base regions). For
each widget region we have three possible cases:

• Case A: the widget is not partly contained in any existing base or extra region (i.e.
the widget does not cross the bounds of any base or extra region), so a new extra
region is therefore created for the widget region. ĉe new region takes the maxi-
mum area available without interfering with the other regions. Following with the
example, we assume that we have already dealt with KeywordLabel and Keyword-
Box, and now is the turn of CloseWindowBuĪon. As this widget is not contained

ǐǏ

in the unique base region Rȕ (see leě part of Figure Ǎ.Ǒ), a new extra region RȖ is
created for it (right part of Figure Ǎ.Ǒ).

• Case B: the widget region is partly contained in a base region. In this case the size
of that base region is increased to enable it to cover the area occupied by thewidget
region, and the widget is added to it. Augmenting the size of the base region may
cause that the base region overlaps some extra regions, and the overlapped extra
regions are therefore shrunk to avoid the overlapping. Continuing with the exam-
ple, let us make the algorithm iterate over SearchBuĪon which is partly contained
in the region Rȕ associated with SearchFrame (leě part of Figure Ǎ.ǉǈ), so we aug-
ment the base region to fully contain SearchBuĪon (right part of Figure Ǎ.ǉǈ). ĉis
implies that the region RȖ is shrunk. If a widget is partly contained in more than
one sibling base region, then the widget is included in only one base region, and in
this case the widget is shrunk to ėt into that base region. We have not found this
case yet in practice.

• Case C: the widget is partly contained in an extra region. It is necessary to reduce
the extra region that partly contains the widget so that the widget no longer enters
its area anymore. In addition, a new extra region to contain the widget is created.
Going back to the example (see Figure Ǎ.ǉǉ), the algorithm iterates overNextBut-
ton. As the widget crosses the bounds of the extra region RȖ, this region is resized
to exclude the widget. Hence, a new extra region Rȗ is created to contain the new
widget without interfering with any of the already created regions.

ĉe cases are evaluated in the following order: case B, case C, case A. Note that in the
examplewehave iterated over thewidgets in away that it facilitates the explanation of the
cases, though other orders are also possible. ĉe different orders will end up in regions
that may differ in their coordinates but that group the widgets in the same way.

Ǎ.Ǎ UłķŃŋĹŇĽłĻ ŇĹŀĵŉĽŋĹ ńŃňĽŉĽŃłň

ĉe objective of this second stage is to make the layout independent of the coordinate-based
system. ĉis deals with issues Lǋ, Lǌ and LǍ mentioned previously (namely, widget structure

ǐǐ

R1 R1

R2

Figure Ǎ.Ǒ: Case A. Leě: example window with a base region Rȕ. Right: a new extra region
RȖ created to contain CloseWindowBuĪon.

R1

R1

R2 R2

Figure Ǎ.ǉǈ: Case B. Leě: example window with a base region Rȕ and an extra region RȖ.
Right: the base region Rȕ is augmented to include SearchBuĪon completely and the extra re-
gion RȖ is diminished.

R1 R1

R2 R2 R3

Figure Ǎ.ǉǉ: Case C. Leě: example window with a base region Rȕ and an extra region RȖ.
Right: a new extra region Rȗ is created to containNextBuĪon, and the region RȖ is dimin-
ished.

ǐǑ

Tile
x: int
y: int
width: int
height: int
hSize: float
vSize: float
vAlignment: VAlignment
hAlignment: HAlignment

CoarseGrainedTile FineGrainedTile ItemTile

0..n
up

0..n
down

0..n
left

0..n
right

PanelTile TabbedPanelTile LineTile ColumnTile SingleTilePairTile

HoleTile

0..n
children

0..n
children

2

«enumeration»
VAlignment

TOP
MIDDLE
BOTTOM

«enumeration»
HAlignment

LEFT
CENTER
RIGHT«from Normalised»

Widget 0..1
associated

Figure Ǎ.ǉǊ: Tile metamodel.

recognition, coordinate abstraction, and alignment and spacing detection). ĉe input of this
stage is a Region model, and a Tile model is automatically generated.

Tile models are mainly focused on representing how widgets and containers are arranged, in
terms of relative positions among them. We deėne a tile as a part of a view with spatial relation-
ships with other neighbouring parts. For example, a certain tile could have another tile above it
and a different tile below. ĉis positioning system is useful for the later identiėcation of high-
level layout paĨerns, as will be shown in Section Ǎ.ǎ. Tile models also reėne Regionmodels by
identifying sub-structures inside regions, such as groups of widgets that form a line.

ĉe Tile metamodel is shown in Figure Ǎ.ǉǊ. ĉe main concept is that of Tile. Every Tile is
associated with the Widget from which it originated, if one exists (i.e. some tiles originated
from extra regions). Such references to the Normalisedmodel are propagated from the Region
model. ĉere are four zero-to-many relationships between tiles, which are used to relate the
tiles spatially, namely right, leĜ, up, down. We use hSize and vSize to measure the percentage of
the width and height that is taken up by that tile in the viewwith regard to the width and height
of the container tile. Tiles also include information about the area they take up by means of x,
y, width, height. A tile can also be aligned with regard to its container tile, and hAlignment and
vAlignment are used for this purpose. We distinguish four kinds of tiles:

• Coarse-grained tiles: these tiles arrange a view in parts which can be visually distin-
guished. Each tile represents a block of related widgets which are in the same area and

Ǒǈ

are likely to contain widgets to perform system actions (e.g., the boĨom buĨons in Fig-
ure Ǎ.Ǎ), or data concerning a topic such as “payment details”. All base and extra regions
are mapped to this kind of tile. For instance, in Figure Ǎ.Ǎ the regions Rȕ, RȖ, and Rȗ are
mapped to PanelTiles.

• Fine-grained tiles: these tiles arrange a set of widgets that are spatially close and have a
certain spatial structure, such as a horizontal line (LineTile) or a vertical column (Colum-
nTile). Fine-grained tiles are aggregated inside coarse-grained tiles. To continuewith the
example,NameLabel,NameBox, SurnameLabel and SurnameBox are all mapped together
to a LineTile.

• Item tiles: they are associated with single widgets (SingleTile) and pairs (PairTile) of re-
latedwidgets such as a text box (e.g. NameBox) and its associated label (e.g. NameLabel).
Item tiles are contained in Fine-grained tiles.

• Hole tiles: these tiles represent a portion of the view of notable size which has no wid-
gets, such as the space betweenDelBuĪon and ExitBuĪon in Figure Ǎ.Ǎ.

T1

T2

T3

T4

T5

Figure Ǎ.ǉǋ: Adjacency example

A
B

1/2 C1/3

Figure Ǎ.ǉǌ: Horizontal intersection value example

Next, we establish some of the concepts which allow spatial relationships between tiles to be
detected. Figure Ǎ.ǉǋ is used to illustrate these concepts. All the following concepts are deėned
over tiles, but since we have the (X,Y) coordinates, the width and height of both regions and
tiles, the concepts are applicable to regions too.

Ǒǉ

We will deėne adjacency as a criterion with which to decide whether two tiles of the same kind
are spatially related (for example, that a coarse-grained tile Tǉ is on the leě of another coarse-
grained tile TǊ). Our deėnition of adjacency is based on the concept of sharing. A pair of tiles
is vertically sharing if the intersection of the projections of both tiles on the X axis is not empty,
i.e. the x-range of both tiles is overlapped. Likewise, a pair of tiles is horizontally sharing if the
intersection of the projections of both tiles on the Y axis is not empty, i.e. the y-range of both
tiles is overlapped. As is observed in Figure Ǎ.ǉǋ, TȖ and Tȗ are vertically sharing, and TǊ and
Tǌ are also vertically sharing, but Tǋ and Tǌ are not.

ĉe introduced deėnitions of sharing are too strict because they consider that overlapped pro-
jections always reĚect horizontal lines or vertical columns. For instance, in Figure Ǎ.ǉǌA,B and
Cmay (or may not) form a line, because they are not perfectly aligned. ĉis can be addressed
bymodifying the sharing deėnition to bemore tolerant, and we introduce the intersection value
with this aim. We deėne the vertical intersection value as the percentage of width that a pair of
tiles have in common. It is calculated as the intersection of the x-ranges of the pair of tiles di-
vided by the minimum width of both tiles. Similarly we deėne the horizontal intersection value
between a pair of tiles as the percentage of height that a pair of tiles have in common, which is
calculated as the intersection of the y-ranges of the pair of tiles divided by the minimum height
of both tiles. Figure Ǎ.ǉǌ shows how this function is applied. ĉe percentage of the height
that tile A has in common with tile B regarding tile A is ǈ.Ǎ, while the value is ǈ.ǋǋ as regards
tile B. ĉe result is therefore the maximum value, that is ǈ.Ǎ. Note that a pair of tiles that are
horizontally sharing always have a positive horizontal intersection value (similarly with the ver-
tically sharing). ĉe sharing can be redeėned (for horizontal sharing as well as vertical sharing)
as follows: a pair of tiles are sharing if the intersection value is greater than a threshold which
represents the tolerance level, currently set to ǈ.Ǎ.

Based on the concept of sharing, we can now deėne adjacency. A tile tƥ is vertically adjacent to
another tile tƦ if and only if both tiles are vertically sharing and there is no tile tƧ between tƥ
and tƦ. Likewise, a tile tƥ is horizontally adjacent to another tile tƦ if and only if both tiles are
horizontally sharing and there is no tile tƧ between tƥ and tƦ. ĉere is a precondition that the
tiles tƥ and tƦ must not be overlapped (in our case this is enforced by the Normalised model).
To continue with the example in Figure Ǎ.ǉǋ, we can see thatTȖ andTȗ are vertically adjacent,
and Tȕ and TȘ are horizontally adjacent, among others.

ĉe up, down, leĜ, right relationships of the tiles are deėned based on the adjacency as follows.
For a tile tƥ it is true that tƥ.right = {tƦ} and tƦ.left = {tƥ} if tƥ and tƦ are horizontally adjacent

ǑǊ

and tƦ is to the right of tƥ. ĉe down, leĜ, right relationships are deėned in a similar way. Note
that when one type of relationship is established for a tile, the opposite type is also set. In the
example shown in Figure Ǎ.ǉǋ, we have the following relationships for Tǉ, TǊ and Tǌ:

Tƥ.right = {TƦ,TƧ,Tƨ}

TƦ.left = {Tƥ};TƦ.right = {TƩ};TƦ.down = {TƧ,Tƨ}

Tƨ.up = {TƦ};Tƨ.right = {TƩ};Tƨ.left = {Tƥ}

As can be seen,TƦ.down = {TƧ,Tƨ}. However, there is a blank space betweenTǊ andTǌ that
is not captured with the concept of adjacency. ĉus, there is some layout information that is
lost due to blank spaces being ignored.

In order to tackle this issue, the ėrst step is to set a criterion with which to decide whether two
vertically/horizontally adjacent tiles are not sufficiently close, but there is a signiėcant blank
space between them. We deėne that a pair of widgets is horizontally close if the percentage of
the horizontal distance between the pair, with regard to the container width is smaller than a
particular value. A pair of widgets is vertically close if the percentage of the vertical distance
between the pair, with regard to the container height is smaller than a particular value. It is
currently set at Ǌǈƻ. In the example shown in Figure Ǎ.ǉǋ, when using this criterion we have
that TȖ and Tȗ are adjacent and close, whereas TȖ and TȘ are adjacent but not close.

When a blank space is detected, two complementary approaches are used to represent it. ĉe
ėrst one is to specify that some tiles are aligned with regard to the container tile. To continue
with the example, Tȕ, TȖ and Tȗ are aligned on the leě, Tș is aligned on the right, and TȘ
is aligned in the boĨom-center. ĉere can be several adjacent tiles with the same alignment,
which does not mean that all these tiles have to be aĨached to the bounds of the container.
For instance, Tȕ and TȖ are both aligned to the leě but actually TȖ is on the right of Tȕ. ĉe
alignment solutionhas the disadvantage that theremaybeblank spaces that are not represented.

ĉe second approach is to include HoleTiles which represent blank spaces in the layout, thus
signifying that an arbitrary distance between tiles must be maintained. ĉese kind of tiles have
dimensions that are speciėed as a proportion between the empty space and the width or height
of the container. Since they are not exclusive solutions, both have been implemented in order to
facilitate the obtaining of an accurate high-level layout in the CUI model. ĉe hAlignment and

Ǒǋ

vAlignment aĨributes were introduced for the ėrst alternative and theHoleTilemetaclass for the
second one.

Next, the algorithm that takes a Region model and generates a Tile model is presented. Some
auxiliary functions are not explained, but their names denote what they do. ĉe algorithm is
organised in four phases: i) creating the tiles, ii) establishing up, down, leĜ, right relationships
between tiles, iii) seĨing the spatial alignment of the tiles with regard to the container tiles, and
iv) creating hole tiles to represent blank spaces. Each phase will be explained separately.

PļĵňĹ ǉ. ĉe ėrst phase (see Algorithm Ǌ) generates tiles based on regions. ĉe algorithm
traverses the Regionmodel recursively from the root region. It has two parameters: i) the con-
tainer region (base or extra region) to be traversed, and ii) the parent tile which will contain
the created tiles. For each container region (the parameter) to which the procedureCreateTiles
is applied, it creates a coarse-grained tile (line Ǎ), and for each widget region that is a child of
the parameter region, it creates an item tile (lines ǉǈ to ǉǋ).

Fine-grained tiles are generated for the content of container regions which include widget re-
gions (lines Ǐ to ǉǍ). ĉis is done by using a clustering algorithm that is applied to the con-
tainer region in order to identify structures of widget regions (line Ǌǌ). ĉe clustering algo-
rithm makes a ėrst aĨempt to group widgets in horizontal lines or columns (horizontal lines
have priority over columns) based on the vertical/horizontal sharing. As it has already been
said, a pair of regions are sharing if their intersection value is higher than a threshold (set by
default at ǈ.Ǎ), and will therefore be classiėed in the same group. In cases it happens that some
widget regions have such a big height that they are horizontally close to widget regions inmore
than one line, that is, they can belong to different lines of widgets (e.g. tile Tȕ in Figure Ǎ.ǉǋ).
Similarly, somewidget regionsmay be so wide that they are vertically close to widget regions in
more than one column. In order to avoid this, we create new groups for those regions that are
classiėed in more than one group (lines Ǌǎ–ǋǉ). Finally, we check that adjacent regions inside
the groups are vertically/horizontally close, and if this is not the case, then the group is split
(lines ǋǊ–ǋǎ).

PļĵňĹ Ǌ. ĉe second phase of the tile creation algorithm establishes the up, down, leĜ, right
relationships between adjacent tiles. For each ordered pair of tiles (tƥ, tƦ) which are children
of the same coarse or ėne-grained tile, tƥ.up ← tƦ and tƦ.down ← tƥ if: i) they are vertically

Ǒǌ

Algorithm ǊTile creation algorithm. Phase ǉ: Mapping and clustering.

ǉ: root← getRootRegion()
Ǌ: createTiles(root, ∅)
ǋ:
ǌ: procedure ķŇĹĵŉĹTĽŀĹň(region, parentTile)
Ǎ: coarseTile← createCoarseGrainedTile(region)
ǎ: if containsWidgetRegions(region) then ◃ All children are widget regions
Ǐ: groups← clusterWidgets(region)
ǐ: for all group ∈ groups do
Ǒ: fineTile← createFineGrainedTile(group)
ǉǈ: for all itemRegion ∈ group do
ǉǉ: itemTile← createItemTile(itemRegion)
ǉǊ: add(fineTile, itemTile)
ǉǋ: end for
ǉǌ: add(coarseTile, fineTile)
ǉǍ: end for
ǉǎ: else ◃ All children are container regions
ǉǏ: for all childRegion ∈ children(region) do
ǉǐ: createTiles(childRegion, coarseTile)
ǉǑ: end for
Ǌǈ: end if
Ǌǉ: addChild(parentTile, coarseTile)
ǊǊ: end procedure
Ǌǋ:
Ǌǌ: function ķŀŊňŉĹŇWĽĸĻĹŉň(region) ◃Clustering algorithm
ǊǍ: G← detectGroups(children(region)) ◃Uses horizontal/vertical sharing
Ǌǎ: for allGƥ,GƦ ∈ G.(Gƥ ∩ GƦ ̸= ∅) do
ǊǏ: Gnew ← Gƥ ∩ GƦ

Ǌǐ: remove(Gƥ,Gnew)
ǊǑ: remove(GƦ,Gnew)
ǋǈ: add(G,Gnew)
ǋǉ: end for
ǋǊ: for allGƥ ∈ G do
ǋǋ: if ∃rƥ, rƦ ∈ Gƥ.(areAdjacent(rƥ, rƦ) ∧ notClose(rƥ, rƦ)) then

◃Uses horizontally/vertically close
ǋǌ: splitGroup(Gƥ)
ǋǍ: end if
ǋǎ: end for
ǋǏ: returnG
ǋǐ: end function

ǑǍ

adjacent, ii) they are vertically close and iii) tƦ is above tƥ. ĉe leĜ, right sets are obtained in the
same manner.

Algorithm ǋTile creation algorithm. Phase ǋ: Alignment.
ǉ: for all tƤ ∈ Tcoarse ∪ Tfine do ◃ tƤ is a coarse-grained or ėne-grained tile
Ǌ: HAlignedSeq = {}
ǋ: OrderedTiles← topologicalSort(children(tƤ))

◃Topological sort from up to down and leě to right
ǌ: for all tƥ ∈ OrderedTiles do
Ǎ: /* For simplicity we are only considering the horizontal alignment */
ǎ: add(HAlignedSeq, tƥ)
Ǐ: if tƥ.right = {} then
ǐ: xMinPercent← first(HAlignedSeq).x/tƤ.width
Ǒ: xMaxPercent←

(last(HAlignedSeq).x+ last(HAlignedSeq).width)/tƤ.width
ǉǈ: if xMinPercent ≤ Lower_threshold then
ǉǉ: for all tƦ ∈ HAlignedSeq do tƦ.hAlignment← LEFT
ǉǊ: else if xMaxPercent ≥ Upper_Threshold then
ǉǋ: for all tƦ ∈ HAlignedSeq do tƦ.hAlignment← RIGHT
ǉǌ: else
ǉǍ: for all tƦ ∈ HAlignedSeq do tƦ.hAlignment← CENTER
ǉǎ: end if
ǉǏ: HAlignedSeq = {}
ǉǐ: end if
ǉǑ: end for
Ǌǈ: end for

PļĵňĹ ǋ. ĉe third phase (see Algorithm ǋ) is in charge of aligning tiles with regard to their
container tile. ĉe idea behind this algorithm is based on the following two principles: i) if a
tile is very close to the boundaries of its container tile, then the tile is aligned with regard to
them, and ii) if several tiles are next to each other, then all of them have the same alignment.
For instance, let us assume that in Figure Ǎ.ǉǋ the tiles Tȕ, TȖ, TȘ and Tș are very close to the
boundaries of the container tile. ĉerefore Tȕ is aligned to the leě because it is close to the leě
boundary, and TȖ and Tȗ are aligned to the leě because they are on the right of Tȕ which is
aligned to the leě.
In the algorithm the tiles are iterated in a topological order (lines ǌ–ǉǑ), which is computed

Ǒǎ

from the directed graph that results from taking into account only the right and down relations
of the tiles. We add each tile to the current alignment group (line ǎ) and when there are no
more adjacent close tiles on the right (line Ǐ), then we assign an alignment type to each one of
the tiles in the group (lines ǐ to ǉǐ). If the most-leě tile of the group (the ėrst tile) is close to
the leě boundary, the alignment is LEFT (line ǉǉ). If the most-right tile of the group (the last
tile) is close to the right boundary, the alignment is RIGHT (line ǉǋ). If none of the previous
cases is applicable, then the alignment is set to CENTER.

PļĵňĹ ǌ. ĉe last phase of the algorithm identiėes signiėcant blank spaces in the view, and
creates hole tiles for them. For each pair of tiles that are children of a coarse or ėne-grained
tile, if the tiles are adjacent and are not close, then we create a hole tile. ĉis new hole tile is
placed between tƥ, tƦ and the up, down, leĜ, right relationships of both tiles are modiėed. ĉese
properties are also initialised for the hole tile according to its relative positioning regarding the
tƥ and tƦ tiles. Finally the new hole tile is added to the parent tile.

Ǎ.ǎ HĽĻļ-ŀĹŋĹŀ ŀĵŏŃŊŉ

At this stage, information about the relationships among elements of the GUI has been gath-
ered. However, it is convenient to take a further step forward in the way in which the layout
is represented in the Tile model to make it more similar to the layout managers provided by
modern GUI frameworks. To this end, the CUI metamodel introduced in section Ǎ.Ǌ deėnes
explicit high-level layouts such as grids (GridLayout) or stacks of elements (StackLayout). For
example, if we had a sequence of tiles sorted vertically (each tile below another one), we would
explicitly “mark” those tiles as forming a stack layout. ĉe layout types which we use are in-
cluded in commonGUI frameworks such as Java Swing, as well as in diagram editors and other
domains [ǉǈǈ, ǉǈǉ].
CUI models are generated from Normalised models by using the information provided by the
Tile model, in the form of annotations. ĉe algorithm that creates CUImodels fromTile mod-
els is split into three phases:

ǉ. Create the structure tree. ĉe widgets in the Normalised model are mapped to CUI wid-
gets, and the tree structure of the widgets of the CUI model is created according to the
containment relationships detected in the Region identiėcation stage. With this aim, the

ǑǏ

tilemodel is traversed in a recursivemanner, and the following actions are performed ac-
cording to the tile type: if the tile is a coarse-grained tile, it creates a Panel, adds it to its
container View or Panel, and continues with the tile children; if the tile is a ėne-grained
tile, it simply navigates its children; if it is a single tile, it creates a widget for it and adds
it to the container Panel.

Ǌ. Create the layout tree. In order to get the high-level layout tree, the Tilemodel is traversed
recursively. For each coarse-grained tile we apply several ėtness functions on its children
and the layout type whose ėtness function returns the greatest value is selected. ĉe ėt-
ness functions return a number between ǈ andǉ that represents the estimated percentage
of tiles that ėt the layout out of the tiles in the group. A new layout of the selected type is
created by applying a heuristic associatedwith the layout type. In the case of ėne-grained
tiles, LineTiles are directly mapped to FlowLayouts, and ColumnTiles are directly mapped
to StackLayouts.

ǋ. Link both trees. It links theGUI and layout trees, by selecting the layout for each container
and the container of each child connection of each layout.

ĉe tree structure of the layout tree in step Ǌ is achieved by means of the LayoutConnections.
Each new layout that is created is nested in the parent LayoutConnection. Depending on the
type of children tiles, different LayoutConnections will be created: PanelConnection if the child
is a coarse-grained tile (it is associated with a Panel in the step ǋ), InnerConnection if the child
is a ėne-grained tile, andWidgetConnection if the child is a item tile (it will be associated with a
Widget in the step ǋ). ĉen, the same process is applied for each children coarse or ėne-grained
tile with the LayoutConnection as a parameter.
As can be noticed from step Ǌ, we have a set of layout types and each of them has an associated
heuristic and a ėtness function. ĉe heuristics select a starting tile and navigates its leĜ, right,
up, down references in an aĨempt to discover whether related tiles form a high-level layout. In
general, several alternative layouts can be found to obtain a similar GUI from a visualisation
point of view. In order to decide which layout best ėts a group of tiles, the ėtness functions
are calculated for the group, and the layout heuristic whose ėtness function is maximum is ap-
plied. It may happen that two or more functions return the highest values. In this case, the best
layout is selected according to the following priority criterion: FlowLayout, StackLayout, Grid-
Layout, BorderLayout, VHLayout,HVLayout. Next we will detail each type of layout, as well as
the heuristics and ėtness functions.

Ǒǐ

FŀŃŌLĵŏŃŊŉ ĵłĸ SŉĵķĿLĵŏŃŊŉ

A FlowLayout is a set of tiles arranged in a row (horizontal line). Similarly, a StackLayout is a
set of tiles arranged in a column (vertical line). ĉe tiles are contiguous, i.e. there cannot be a
big separation between a pair of tiles. If the layout deėnes some kind of alignment (horizonta-
lAlignment and verticalAlignment), all the widgets to which the layout is applied are aligned in
that way.
ĉe heuristic for the FlowLayout takes the top-leě tile and navigates the tiles to the right until
there are no more tiles. When there are several tiles to the right of a tile, only the uppermost
tile is selected. For the StackLayout, the heuristic starts with the top-leě tile and navigates to
the boĨom until there are no more tiles. When there are several tiles below a tile, only the
leěmost is selected. As it has already been said, these heuristics are only applied to the content
of coarse-grained tiles, since ėne-grained tiles are directly mapped.
ĉe ėtness function for the FlowLayout obtains the percentage of tiles that can be navigated
from leě to right (starting with the most top-leě tile). ĉe ėtness function for the StackLayout
obtains the percentage of tiles that can be navigated from top to boĨom (starting with themost
top-leě tile). In these functionsHoleTiles are considered to be tiles that have not been navigated
and then they reduce the ėtness value.
Let us focus on theFigure Ǎ.Ǎ to showsome layout examples. WecanėndaFlowLayout in the re-
gionRȖ composed ofCardLabel,CardCombo,DiscountLabel andDiscountCheck. A StackLayout
is formed by the three regionsRȕ, RȖ, Rȗ. In the region Rȗwe could see a non-perfect match of
the FlowLayout heuristic. Assuming that AddBuĪon andDelBuĪon form a ėne-grained tile and
ExitBuĪon forms another ėne-grained tile, the ėtness function would return ǈ.ǎǎ. ĉis value is
caused by the hole that exists between both tiles (Ǌ ėne-grained tiles / Ǌ ėne-grained tiles + ǉ
hole).

GŇĽĸLĵŏŃŊŉ

ĉis is a set of tiles arranged in a grid of n rows×m columns. ĉe number of rows and columns
may be different, but all the rows (and columns) must have the same number of tiles.
In this case the heuristic starts with the top-leě tile and navigates the group of tiles from leě to
right and from top to boĨom in a tabular way.
ĉe ėtness function returns the percentage of tiles that can bematched by a rectangular grid. It
starts with the top-leě tile and counts the number of tiles of the biggest grid possible. HoleTiles

ǑǑ

are not counted (they reduce the ėtness value).
When some tiles ėt aFlowLayout orStackLayout, then they alsoėt aGridLayout. For this reason,
FlowLayout and StackLayout have a higher priority thanGridLayout. ĉere are noGridLayouts
in the example introduced in Figure Ǎ.Ǎ.

BŃŇĸĹŇLĵŏŃŊŉ

ĉis layout divides the container into ėve parts: leě, right, top, boĨomand center. ĉeheuristic
selects at most one tile for each one of the ėve given parts as follows. A tile t will be: in the
top part if t.vAlignment = TOP, in the leě part if t.hAlignment = LEFT, in the center part if
t.hAlignment = CENTER, in the right part if t.hAlignment = RIGHT, and in the boĨom part
if t.vAlignment = BOTTOM. In addition, for a tile to match a part it must keep some relations
with the rest of the tiles (e.g. the leě tile must be below the top tile, on the leě of the center tile,
and above the boĨom tile).
ĉe ėtness function evaluates the tiles that can ėt any of the ėve areas predeėned by a Border-
Layout. If there is more than one tile that can ėt one part, these ”excess” tiles are penalised.
In contrast to other layouts, a HoleTile is not penalised but permiĨed. Note that because the
FlowLayout and StackLayout have a higher priority, a BorderLayout with emtpy parts (i.e. Ho-
leTiles) that matches FlowLayout or StackLayout will be never selected. For instance, in Figure
Ǎ.Ǎ, the regions Rȕ, RȖ and Rȗ could be considered as a BorderLayout with top, center and bot-
tom parts, but they are detected as a StackLayout.
In Figure Ǎ.Ǎ, we can ėnd an example of BorderLayout in the region Rȗ. In that region, the
widgets AddBuĪon and DelBuĪon are grouped in a ėne-grained tile and ExitBuĪon is another
ėne-grained tile. ĉus,AddBuĪon andDelBuĪon are the leě part andExitBuĪon is the right part
of the BorderLayout (there are only two parts). In this case the ėtness function associated with
the BorderLayout returns ǉ (i.e. the maximum value), so we can see that the hole has not been
penalised.

HVLĵŏŃŊŉ ĵłĸ VHLĵŏŃŊŉ

An HVLayout is a FlowLayout composed of StackLayouts. A VHLayout is a StackLayout com-
posed of FlowLayouts. An HVLayout can have a different number of elements in each column
while in aGridLayout all the columnsmust have the same number of rows. SimilarlyVHLayout
is not restricted to have the same number of elements in the lines (rows) as in aGridLayout.

ǉǈǈ

ĉe HVLayout heuristic obtains the group of tiles that have no upper tiles. From the top-leě
tile it navigates the tiles from the top to the boĨom until there are no more tiles below, and it
thus obtains the ėrst column. ĉe tile from the upper tiles that is next to the top-leě tile is then
selected and navigated to the boĨomuntil it obtains a second columnwhich will be to the right
of the ėrst column. ĉis process is repeated while new columns on the right of existing ones
can be found. ĉe heuristic penalises HoleTiles. ĉe heuristic for VHLayout is similar to the
HVLayout heuristic but in this case it searches for rows until there are no more rows below the
previous one.
VHLayout and HVLayout are more general than the others and may ėt in most cases, in fact
VHLayout is the most common layout found in legacy applications. On the other hand they
are less speciėc and do not capture the visual design as well as other layouts such asGridLayout
and BorderLayout. Because of this, GridLayout and BorderLayout have a higher priority than
VHLayout andHVLayout, but a lower priority than FlowLayout and StackLayout since the laĨer
are more speciėc.
In the example window in Figure Ǎ.Ǎ, we can see aVHLayout in region Rȕ, where there are two
lines of widgets.

UłĿłŃŌł

If the maximum value returned by all the ėtness functions is below a certain threshold (it has
been set to ǈ.ǎǍ, which means that equals or more than ǎǍƻ of the elements in the group must
ėt the layout), then an UnknownLayout is created, which is a special layout that indicates that
the layout of the group must be determined by the developer.

Ǎ.Ǐ DĹŉĵĽŀĹĸ ĹŎĵŁńŀĹ

ĉis section illustrates our GUI reengineering approach by applying it to an example in detail.
A typical window from the case study presented in Section Ǎ.ǐ has been selected and translated
into English. ĉis shown in Figure Ǎ.ǉǍ, and will be used throughout this section to guide the
explanation.
ĉe window is used to manage grant calls. ĉe upper part of the window contains some ad-
ministrative information about the call, such as the title, the identiėer and the type. ĉere is
also a buĨon to refresh the data and a buĨon to send the call data to an administrator by e-mail.

ǉǈǉ

Figure Ǎ.ǉǍ: Example window

ĉe middle of the window contains a tabbed panel, which provides more information about
the calls. ĉeĉird Parties tab contains general call information such as the resolution date, the
date of the publication and later corrections, or where it is published. ĉeĉird Party Convener
frame speciėes which companies are involved in the call and the type of participation. ĉere is
also a functionalitywithwhich to search for companies bymeans of buĨons. ĉeWebSpreading
frame contains information related to the on-line publication of the call. ĉe lower part of the
window contains several buĨons which are used to add, delete or update the data, in addition
to other functions such as quit the application.

Each step of the migration chain will be described in the following sections.

Ǎ.Ǐ.ǉ IłľĹķŉĽŃł Ńĺ FŃŇŁň ŁŃĸĹŀň

ĉe ėrst step consists of obtaining models of the user interface from the source system. Oracle
provides a toolwithwhich to export FMBėles toXMLėles and this tool has beenused toobtain
a deėnition of the application GUI in XML ėles. As explained in Section Ǎ.Ǒ.ǉ EMF was used
to automatically obtainmodels thatmirror the information contained in theOracle Forms ėles.

ǉǈǊ

Ǎ.Ǐ.Ǌ MĵńńĽłĻ OŇĵķŀĹ FŃŇŁň ŉŃ ĆD ŁŃĸĹŀň

ĉe model obtained in the previous step is mapped to a ĆD model, thus enabling the reverse
engineering algorithms to be applied (as explained in Section Ǎ.Ǒ.Ǌ). ĉe ĆD model gener-
ated is basically amodel which contains panels andwidgets that havemostly the same structure
as the canvases and widgets in the Forms model. Two problems arise when aĨempting to nor-
malise the example window to ourĆD representation, which were explained in Section Ǎ.Ǒ.Ǌ:
the position of prompts (labels) and how to migrate the multi-record that appears inside the
ĉird Party Convener frame.
For the ėrst problem, we have an auxiliary module that calculates the relative coordinates of
the labels based on: i) certain aĨributes of the prompt such as alignment, aĨachment edge,
aĨachment offset, alignment offset, ii) certain aĨributes of the font such as: font name, font
size, font spacing, and iii) the height and width of the text displayed.
With regard to the second problem, in Oracle Forms several instances (multi-record) of the
same widget type can occur, while in current GUI technologies is usually represented with a
table widget. ĉis is the case of the two text ėelds that appear inside the ĉird Party Convener
frame. ĉe issue here is to decide, appart from the two text ėelds and their associated labels,
which widget must belong to the table. It seems clear that the buĨon above the PARTICIPA-
TION_TEXTBOX is related to the table, but this is not so clear for the two buĨons that are
on the frame line. ĉis problem has been solved by grouping all the widgets that belong to the
samedatablock in the same table, since these datablocks containmulti-recordwidgets. Another
option, would be to consider the percentage of the widget surface that is visually contained in
a frame that includes multi-record widgets. ĉus, if Ǎǈ per cent or more of the area of a widget
is contained in a frame, it will be included in that frame. ĉis could be used to arrange widgets
that overlap one or more frames, although the laĨer is not a common case. In order to generate
the coordinates and size of the new table in the ĆD model, the related buĨons are ignored
since they can be scaĨered in the window (not neccesarily next to the multi-record), and only
the area occupied by the multi-records is considered.
Figure Ǎ.ǉǎ shows an excerpt of the resultingĆDmodel, which shows how the widgets in the
ĉirdPartyConvener framehave been transformed. As canbe seen, the prompts associatedwith
the text ėelds are the titles of the columns, and the widgets are the types of the columns. Since
buĨons do not have an associated prompt (i.e., there is no label next to a buĨon), there is no
header for the buĨon columns. It is worth noting that theNAME_GRID table is not contained

ǉǈǋ

Figure Ǎ.ǉǎ: Excerpt of the ĆD Model for the example window in Figure Ǎ.ǉǍ

in theTHIRD_PARTIES_FĆME but that they are siblings, despite the fact that a parent-child
relationship exists between them.

Ǎ.Ǐ.ǋ IĸĹłŉĽĺĽķĵŉĽŃł Ńĺ ŉļĹ ŇĹĻĽŃłň

Using the ĆD model as a starting point, we apply the MǊM transformation that implements
our algorithm in order to identify regions. ĉemain regions identiėed are shown in Figure Ǎ.ǉǏ
(note that we have removed the buĨons from the ĉird Party Convener frame since now they
are assumed to belong to the table called NAME_GRID). ĉe CALLS_WINDOW_SUB_ȕ
andCALLS_WINDOW_SUB regions are created in order to prevent widgets such asTITLE_-
TEXTBOX from being at the same level of the tabbed panel. For the two new groups of wid-
gets, the area that is enclosed by the regions is limited by the bounds of the tabbed panel and
the bounds of the window itself. ĉe transformation also creates a region based on the two
frames that appear in the ĉird Parties tab. Some widgets are inside the ĉird Parties tab and
are not contained in any of the frames, and a new region is therefore created in order to avoid
this situation, as occurred previously. In all cases, the widgets aremodeled as regions inside the
corresponding container region.
ĉis phase of the reverse engineering process not only identiėes regions, but also corrects the
containment of the regions so that they match the visual aspect. ĉe regions are nested as they
are visually displayed, as can be seen in the tree view of the Regionmodel in Figure Ǎ.ǉǐ, which

ǉǈǌ

Figure Ǎ.ǉǏ: Some regions identiėed for the example window in Figure Ǎ.ǉǍ.

has been obtained using the EMF tree editor (this editor reĚects the containment relation-
ships that exists between the elements in the model). It is also possible to appreciate that the
NAME_GRID region is not a sibling of THIRD_PARTIES_FĆME, but is nested into it.
Note that in the region model, all the elements are placed by means of coordinates. If the co-
ordinate systems between Figure Ǎ.ǉǎ and Figure Ǎ.ǉǐ are compared, a slight difference will be
noted. In the ĆD Model the area occupied by a widget is represented by the X and Y coor-
dinates of the upper-leě corner and the width and height, whereas in the Region Model the
same area is deėned by the X and Y coordinates of the upper-leě corner and the coordinates of
the lower-right corner. Although both are equivalent, the second means to represent the area
allows the number of operations in the algorithms to be reduced.

Ǎ.Ǐ.ǌ RĹķŃŋĹŇĽłĻ ŉļĹ ŀŃŌ-ŀĹŋĹŀ ŀĵŏŃŊŉ

In this phase of the process, further reėnement of the regions is performed and the coordinate-
based positioning system is replaced with spatial relationships among the elements (i.e., tiles),
bearing in mind that there may be parts without widgets (previously referred to as holes).

ǉǈǍ

Figure Ǎ.ǉǐ: Excerpt of the Region Model for the example window in Figure Ǎ.ǉǍ.

ID_LABEL ID_TEXTBOX ENTITY_LABEL ENTITY_TEXTBOX CALL_TYPE1_COMBOBOXCALL_TYPE1_LABEL UPDATE_BUTTON

TITLE_LABEL TITLE_TEXTBOX MAIL_BUTTON

Figure Ǎ.ǉǑ: Representation of the tiles in the upper part of the window

We shall now analyse theCALLS_WINDOW_SUB_ȕ region in Figure Ǎ.ǉǏ which is located at
the top of the window. Our algorithm generates a PanelTile based on this region, and it infers
that the region is composedof a sequenceof twohorizontal lines (LineTiles). ĉe tiles identiėed
are shown in Figure Ǎ.ǉǑ. ĉe rectangle drawn with a black doĨed-line represents a PanelTile,
the twodrawnwithpurple dashed-lines representLineTiles and theboxes drawnwithblue solid-
lines are SingleTiles.
ĉe orange connectors (with a thick or thin line) between the boxes represent relationships.
For example, the horizontal connector between ID_LABEL and ID_TEXTBOX signiėes that
the ėrst one is on the leě of the second one and the second one is on the right of the ėrst one.
In addition, thick connectors mean the widgets are close together. More particularly, every
widget and its associated label are close together, andwehave thereforedepicted this association
with thick orange connectors, which in the Tile model representation will be encapsulated in
a LabelledTile. Figure Ǎ.Ǌǈ shows an excerpt of the Tile model which shows how the tiles are
nested.
Two details in this example are notable. ĉe ėrst is that there is a certain distance between
ENTITY_TEXTBOX and CALL_TYPEȕ_LABEL but they still belong to the same line. ĉis
is a consequence of the default conėguration of the approach, since if there is not a relatively

ǉǈǎ

Figure Ǎ.Ǌǈ: Excerpt of the Tile Model for the example window in Figure Ǎ.ǉǍ.

ENTER_BUTTON EXEC_BUTTON CANCEL_BUTTON SAVE_BUTTON PREV_BUTTON NEXT_BUTTON DEL_BUTTON ADD_BUTTON EXIT_BUTTON

Figure Ǎ.Ǌǉ: Representation of the tiles in the lower part of the window

wide gapbetween two consecutivewidgets (which is set to ǌǈpixels for the applications created
with Oracle Forms), they are included in the same line. In our case the desired result was to
keep just once single line in order to ensure that the default conėguration was suitable, but the
framework conėguration ėles could have been tuned if another different partitioning had been
required.
ĉe second detail is that theMAIL_BUĈON could have been separated from the second line
since it could still be part of the ėrst line, but given that the horizontal intersection with the
second line is complete, and the horizontal intersection with the ėrst line is only partial, it is
included in the second line.
We shall now shiě the focus to the lower part of the window, to the CALLS_WINDOW_SUB
region in Figure Ǎ.ǉǏ. ĉe representation of the tiles identiėed for this region is depicted in
Figure Ǎ.Ǌǉ.
In this case, it can be observed that there is a great distance between the two groups of widgets,
and our approach has detected a hole between the tiles of buĨons (depicted as a green rectan-
gle). It is also worth noting that the ėrst tile is aligned to the leě and the second tile is aligned

ǉǈǏ

Figure Ǎ.ǊǊ: Properties of the lower-leě tile of buĨons

to the right.
Figure Ǎ.ǊǊ includes a fragment of the property sheet of the lower-leě group of buĨons (EN-
TER_BUĈON_LINE tile). It is worth highlighting some aĨributes: the hSize and vSize at-
tributes that represents the percentage of space taken up by a widget, leĜ, right, up, down that
maintain the relationships among the tiles, and the horizontalAlignment and verticalAlignment.

Ǎ.Ǐ.Ǎ RĹķŃŋĹŇŏ Ńĺ ŉļĹ ļĽĻļ ŀĹŋĹŀ ŀĵŏŃŊŉ

Figure Ǎ.Ǌǋ shows a fragment of the resultant CUI model which has been split into two parts.
ĉe leě part speciėes the structure of the window and the right part details the layout of the
window. It is worth noting that the order of the model elements in the leě part is arbitrary
whereas in the right part the order is part of the layout information. As can be seen, the over-
all layout of the window is a StackLayout since the three main regions in the window are ar-
ranged in a vertical sequence. ĉis is the layout selected since the StackLayout ėtness function
for the set of tiles {CALLS_WINDOW_SUB_ȕ, TABS,CALLS_WINDOW_SUB} (which can
be seen in Figure Ǎ.Ǌǈ) returns ǉ, given that all the tiles are visited if we start from the upper tile
(CALLS_WINDOW_SUB_ȕ) and we navigate them from top to boĨom. It is also worth not-
ing that the StackLayout has a higher priority than other layouts (such as VHLayout), and this
is why it has been selected.
In the upper part (CALLS_WINDOW_SUB_ȕ) we also have a StackLayout composed of two
horizontal Ěows (FlowLayout). ĉe two horizontal Ěows are composed of single widgets (Wid-
getConnection) and pairs composed of a label and its associated widget (RelatedWidgetConnec-

ǉǈǐ

Figure Ǎ.Ǌǋ: Excerpt of the CUI Model for the example window split into two parts

tion). ĉe layout for themiddle part of thewindow (THIRD_PARTIES_TAB), which has been
omiĨed to make the model more readable, is very similar to the previous one, i.e. it is a Stack-
Layout in which each region is a StackLayout of FlowLayout.

ĉe lower part of the window (CALLS_WINDOW_SUB) is composed of a tile of buĨons
aligned to the leě, an empty tile in the middle and another tile of buĨons aligned to the right.
As occurs in all the cases, the ėtness functions are calculated for the set of tiles and the heuristic
with the highest ėtness value and highest priority is selected. In this case the layout selected is
BorderLayout since the function returns ǉ and none of the ėtness functions with higher priority
return such a high value.

ĉe connection elements in the CUImodel (such as InnerConnection orWidgetConnection) are
used to maintain information about the alignment and the amount of space occupied by a por-
tion of theGUI (for example, a layout or a concretewidget). For each InnerConnection the align-
ment of the nested layout with regard to the container layout is maintained, and in addition to
the percentage of vertical and horizontal space that is occupied by that layout. ĉe values that
are shown in Figure Ǎ.Ǌǋ next to the InnerConnections actually represent the horizontal space,
i.e. the hSize aĨribute. ĉis information is useful in order to generate precise layouts.

In some cases some widgets are not aligned by their container but are aligned to other widgets.
For example, in Figure Ǎ.ǉǍ, OFFICIAL_TEXTBOX and INFO_TEXTBOX are both aligned
with regard to the leě edge of the boxes. ĉis issue is not addressed in the current version of the

ǉǈǑ

Figure Ǎ.Ǌǌ: ĉe example window shown in Figure Ǎ.ǉǍ migrated to Java Swing

framework.

Ǎ.Ǐ.ǎ GĹłĹŇĵŉĽŃł Ńĺ Jĵŋĵ SŌĽłĻ ķŃĸĹ

Once the structure and layout of the window in the CUI model have been captured it is possi-
ble to take advantage of this information in order to automate some restructuring and forward
engineering tasks. In particular, the example window in Figure Ǎ.ǉǍ has been migrated to Java
Swing. ĉe new Java Swing window is shown in Figure Ǎ.Ǌǌ.

ǉǉǈ

Ǎ.ǐ CĵňĹ ňŉŊĸŏ: ĺŇŃŁOŇĵķŀĹ FŃŇŁň ŉŃ Jĵŋĵ

In order to evaluate our approach and demonstrate its applicability we have applied our pro-
totype to the GUI of two real applications in two different domains created by two different
companies.
ĉe case study A is a business management application which is intended to be used tomanage
the research projects and grants that are assigned to the research groups of a Spanish university.
It is composed of ǉǈǏ windows, which indicates a medium-high complexity. ĉe application
was developed by different developers of the same company and the conventions concerning
the style of the formswere not particularly strict, signifying that there is a variety of form styles.
ĉecase studyB is abusinessmanagement application targetedatbeingusedbyadepartmentof
the Regional Government to deal with budgets, income sources, expenses, investment projects
and human resources. ĉe application consisting of ǍǏ windows has a medium complexity.
ĉough this application was also programmed by different people, the windows follow a more
strict style (imposed by the company) than in the case study A.
Both applications were developed in Oracle Forms ǎ and both applications needed to be mi-
grated to the Java platform.

Ǎ.ǐ.ǉ MĹŉļŃĸŃŀŃĻŏ

When recovering the visual appearance of a window, it frequently occurs that different layouts
applied to the samewidgets could result in a windowwith a similar visual appearance. ĉe eval-
uation of our approach cannot therefore be accomplished by simply comparing the layout pro-
duced by our tool with an expected layout visually. Instead, the following steps are performed
for each window:

ǉ. ĉe original window is manually analysed by a member of our team (different to the
developer of the tool) in such a way that certain data concerning the following criteria
are registered:

• Windowparts. Identify theparts of thewindowand register the relationships among
them. A part is deėned as a group of widgets that form a distinguished area of the
window. A part is a set of close widgets which:

– is visually highlighted bymeans, for example, of a surrounding frame or is en-
closed in a coloured rectangle.

ǉǉǉ

– is distant to other groups of widgets.

– has other parts around it to which the widgets do not belong.

Note that in our approach, parts are normally representedwith coarse-grained tiles,
although this is irrelevant to the person in charge of performing the evaluation.

• Relationships among widgets. ĉe structure of the widgets within each part is iden-
tiėed: the position of every widget regarding the others and the part, and the align-
ment which exists among them and with regard to the part.

ĉe rationale for identifying parts is to have a layout-independent notion of the coarse-
grained structure of the windows, while the relationships among the widgets are related
to the ėne-grained structure of the window.

Ǌ. ĉecomplete reverse engineering transformation chain is executed for the givenwindow
to obtain a CUImodel. ĉis CUImodel is used to execute an additional generation step
in order to obtain a Java Swing GUI, which uses the layout discovered.

ǋ. ĉe GUI generated is now assessed by the same person and using the same criteria as in
stepǉ, and is comparedwith thedata gathered from theoriginalwindow. ĉeCUImodel
is also analysed in order to avoid that mistakes in the Java Swing generator couldmislead
the evaluation, since in some cases the generated GUI had layout mistakes because of
bugs in the Swing template. Twomainmetrics are obtained in the evaluation process for
each window:

• Parts laid out OK. For a part to be correct, it must contain the same widgets and it
must be located in the same place as the original window.

• Widgets laid out OK.ĉe widgets within each part are analysed, by counting which
widgets are located in the right place with regard to the container part and other
widgets, also taking into account their alignment.

ĉecriteria used to assess both theoriginal and the generatedwindows are obviously subjective.
In order to reduce the inconsistencies between the results, the evaluation of all thewindows has
been performed by the same person. ǉǍƻ of the windows (with a range of complexity) were
also evaluated by a second member of our team to check whether his evaluation matches to a
great extent with the one carried out by themain evaluator. ĉis aims at ensuring that themain
evaluator has not introduced a strong systematic bias.

ǉǉǊ

Ǎ.ǐ.Ǌ EŋĵŀŊĵŉĽŃł ŇĹňŊŀŉň

ĉe results of the evaluation of the two case studies are summarised in Table Ǎ.ǉ and Table Ǎ.Ǌ.
Inorder to show the scalability of our approachwehave classiėed thewindowsused in the evalu-
ation into three groups, according to the number ofwidgets involved. As can be observed, there
are a large number of small windows in both cases (ǎǋ.ǍǍƻ for the case study A and ǎǎ.ǎǏƻ for
the case study B) which are used as dialogs, for example, to perform searches based on certain
criteria. Almost Ǌǈƻ of the windows in the case study A are large (an average of ǐǎ widget-
s/window), and commonly use tabbed panels to arrange the widgets (an average of ǌ.Ǌǌ can-
vases/window). In contrast, the case study B contains more medium-size windows (Ǌǐ.ǈǏƻ)
and a few large windows (Ǎ.Ǌǎƻ).

Large (>ǎǈ) Medium (Ǌǈ - ǎǈ) Small (<Ǌǈ) Total
Total amount of windows Ǌǉ ǉǐ ǎǐ ǉǈǏ
Windows of each type (out of the total) ǉǑ.ǎǋƻ ǉǎ.ǐǊƻ ǎǋ.ǍǍƻ ǉǈǈƻ
Total canvases ǐǑ ǉǑ ǎǑ ǉǏǏ
Canvas/window average ǌ.Ǌǌ ǉ.ǈǎ ǉ.ǈǉ ǉ.ǎǍ
Widgets/window average ǐǎ.ǈǈ ǋǎ.ǌǋ ǐ.ǉǈ Ǌǐ.ǉǍ
Parts/window average ǉǈ.ǉǐ ǋ.ǉǌ ǉ.Ǐǈ ǋ.ǎǉ
Parts laid out OK ǐǋ.Ǌǌƻ Ǒǐ.ǈǎƻ ǉǈǈ.ǈǈƻ Ǒǎ.ǋǐƻ
Widgets laid out OK ǐǏ.ǉǌƻ ǐǍ.ǎǉƻ ǐǐ.ǉǈƻ ǐǏ.Ǎǈƻ

Table Ǎ.ǉ: Evaluation results for the case study A.

Large (>ǎǈ) Medium (Ǌǈ - ǎǈ) Small (<Ǌǈ) Total
Total amount of windows ǋ ǉǎ ǋǐ ǍǏ
Windows of each type (out of the total) Ǎ.Ǌǎƻ Ǌǐ.ǈǏƻ ǎǎ.ǎǏƻ ǉǈǈƻ
Total canvases ǎ Ǌǌ ǋǐ ǎǐ
Canvas/window average Ǌ.ǈǈ ǉ.Ǎǈ ǉ.ǈǈ ǉ.ǉǑ
Widgets/window average ǎǍ.ǋǋ ǋǏ.ǋǉ Ǐ.ǈǋ ǉǐ.ǎǈ
Parts/window average Ǎ.ǈǈ ǌ.ǋǉ Ǌ.ǌǊ ǋ.ǈǑ
Parts laid out OK ǐǑ.ǈǈƻ Ǒǌ.ǏǍƻ ǉǈǈ.ǈǈƻ ǑǏ.ǑǍƻ
Widgets laid out OK ǑǍ.ǐǏƻ ǐǑ.Ǒǐƻ ǑǏ.ǐǈƻ ǑǍ.Ǎǉƻ

Table Ǎ.Ǌ: Evaluation results for the case study B.

Figures Ǎ.ǊǍ and Ǎ.Ǌǎ show the dispersion of the success rate (as a percentage) of our approach
when identifying parts for both case studies, and Figures Ǎ.ǊǏ and Ǎ.Ǌǐ represent the disper-
sion of the success rate when placing widgets. ĉe plots also include a regression curve which

ǉǉǋ

expresses the tendency of the percentages when the number of elements increases. Various
conclusions can be drawn from these results.

In general, the accuracy of the coarse-grained layout detection (parts) is ǉǈǈƻ when there are
few widgets and it drops when the number of widgets increases. In the case study A there are
a few outliers (below an accuracy of ǌǈƻ) that correspond to a special kind of layout that we
have not considered (this will be commented on in the description of the non-regular layout
detection inSectionǍ.ǐ.ǋ). In the case studyBwehave ahigh success rate (almost Ǒǐƻ)because
the windows are beĨer structured and the visible parts are normally surrounded by borders
(frames). ĉe errors in this case aremainly due to frameswhich have been emulated by forming
a rectangle with four single graphical lines. ĉis feature is not supported at present, which leads
to unidentiėed regions. In both case studies, the recognition of parts is higher than ǐǈƻ in the
majority of occasions, which could be considered as an acceptable rate.

With regard to the ėne-grained layout detection (widgets laid out properly), in the case study
A there are several windows whose accuracy is below ǐǈƻ, particularly those with less than Ǌǈ
widgets. We have observed that they normally correspond to dialog windows, in which the de-
velopers placemanywidgets very close together in order tomake themost of the available space
in the dialog. We have also observed that, in the case study application, buĨons are sometimes
situated in a particular place simply because there is some free space there. In these cases, a
small refactoring of the generated layout will lead to a cleaner GUI. In the case study B we can
see thatmost of thewindows have a certain error rate that stems from the fact that somewidgets
aremissing because they are not well-recognised in the current implementation (it is a problem
of detecting the widgets to generate the Normalised model). In some of the windows, mainly
in themedium-size windows, we have also a slightly higher error rate since the layouts obtained
do not properly reĚect the holes detected (the unidentiėed holes problem will be explained in
Section Ǎ.ǐ.ǋ).

ĉe plots show that there is not a considerable variation in the success rate neither for detecting
regionsnor for placingwidgets in thewindowwhen thenumberofwidgets increases, so it seems
that our approach is scalable for reasonably largeGUIs (in the case studyA it has been applied to
windows with ǉǎǈ widgets per window). ĉe rationale behind this result is that large GUIs are
typically arranged in parts, either using explicitmarkup elements (e.g., frames) or using implicit
separators such as blank spaces.

Comparing both case studies, the best results are obtained in the case study B, mainly because
the windows follow amore strict style than in the case study A.ĉe success rate of the layout of

ǉǉǌ

Figure Ǎ.ǊǍ: ScaĨer plot that represents the accuracy of part detection for the case study A.

the parts in case study B is higher (ǎƻ beĨer for large windows) mainly because the parts are
surrounded by frames. In general, our approach works beĨer when explicit markup elements
are used. ĉe improvement of the widget layout in the case study B (ǐƻ beĨer for large win-
dows) is because the widgets are not scaĨered but conform to more or less common layouts.
Considering both measures together, we can claim that our approach has an acceptable accu-
racy rate. It is important to note that in any case, the CUI model obtained aěer the discovery
process can be edited either to ėx errors or to refactor the GUI.

Ǎ.ǐ.ǋ LĽŁĽŉĵŉĽŃłň Ńĺ ŉļĹ ĵńńŇŃĵķļ

ĉis evaluation has allowed us to identify a set of limitations that are not currently dealt with
by our approach, and which may lead to inaccuracies in the layout recovery process.

Missing parts identiėcation. Parts that are not explicitly limited by frames, panels or the
boundaries of the window itself are not identiėed as regions or coarse-grained tiles. For
example, in Figure Ǎ.ǊǑ it is possible to visually identify two parts in the window because

ǉǉǍ

Figure Ǎ.Ǌǎ: ScaĨer plot that represents the accuracy of part detection for the case study B.

Figure Ǎ.ǊǏ: ScaĨer plot that represents the accuracy of widget placement for the case study
A.

ǉǉǎ

Figure Ǎ.Ǌǐ: ScaĨer plot that represents the accuracy of widget placement for the case study
B.

of the distance between the elements. ĉe ėrst is the upper part which is composed of
the labels and text boxes, and the second is the lower part which is composed of buĨons.
In this case, our algorithm will create just one coarse-grained tile, made up of three line
tiles. However, this inaccuracy does not always make the ėnal layout incorrect, since the
content of the region could be laid out correctly, as is the case of the example.

Non-regular layout detection. It sometimes occurs that there are widget arrangements that
do not have a regular structure, and they cannot therefore be easily represented with a
layout system. For example, thewindow inFigure Ǎ.ǋǈ shows a layout that is not properly
detected. ĉere are two main problems: (ǉ) our algorithms identify only one part, so
they are not able to split the window into one part for the input and the buĨons, and
another part for the checkboxes, and (Ǌ) “Option Ǎ”is not aligned with any column. In
this case, an algorithm that is focused on small groups of widgets and creates a composite
layout might aĨain beĨer results.

Widget alignmentwithotherwidgets. Our approach uses aTilemodel to arrange structures
of widgets in terms of tiles that can be nested and it is possible to specify that the tiles
inside a tile are aligned to the leě, right, top or boĨom. Nevertheless, in some cases we

ǉǉǏ

Figure Ǎ.ǊǑ: Missing part identiėcation problem

Figure Ǎ.ǋǈ: Non-regular layout detection problem

have found that widgets are alignedwith regard to other widgets (rather thanwith regard
to their parent container). In order to implement this feature which was not considered
in the design of the solution, it is necessary to align the tiles with regard to their sibling
tiles. In our evaluation, this situation occurred in a small percentage of windows, but in
some cases the current implementation generated a good layout because the sibling tiles
that are aligned are both aligned with regard to the same parent tile.

Unidentiėed holes. Hole recognition is addressed in the algorithm that generates the Tile
model, and depends on the parameters that specify theminimum distance between tiles
(seen as a percentage of the width/height occupied by the tile with regard to its parent).
If the parameters are set in such a way that a small distance is captured as a hole, there
will be a lot of holes and the high-level layout algorithm (that generates the CUI) will
not know how to deal with them. We therefore prefer to set the parameters in such a way
that only notable holes are captured. ĉis implies that some holes are not identiėed, but
this hardly ever occurs.

On the whole we can state that our approach has an accuracy of Ǒǎƻwhen laying out parts and
an accuracy of ǐǏƻ for widgets inside the parts. Simple layouts ėt the arrangement of the wid-
gets inmost cases, especially the stack of Ěows layout. However, the problemsmentioned above

ǉǉǐ

should be tackled if higher success rates are to be considered. ĉese issues will be addressed in
future work.

Ǎ.Ǒ IŁńŀĹŁĹłŉĵŉĽŃł

ĉis section brieĚy presents the tools involved in and some of the implementation details of
our GUI reengineering framework (see highlighted parts in Figure Ǎ.ǋǉ), focusing particularly
on Oracle Forms as the legacy technology, and Java Swing as the target technology.

Source
technology

model

Normalised
GUI tree
model

Target
code

Target
technology

model

Region
model

Tile
model

CUI
model

Legacy
artefact

Figure Ǎ.ǋǉ: Model-based architecture used to migrate legacy GUIs.

ĉe framework has been implemented on top of the Eclipse platform, and is based on the
EclipseModeling Framework (EMF) [Ǎǋ]. ĉemetamodelling language that has been selected
to represent the models and metamodels is Ecore. ĉe workĚow of the reengineering process
is deėned andmanaged by a task management tool called Rake [ǉǈǊ], a sort of Make for Ruby.

Ǎ.Ǒ.ǉ IłľĹķŉĽŃł

Let us ėrst consider the injection step (from legacy artefacts to Source Technology models)
shown in Figure Ǎ.ǋǉ. An injector is required for every legacy technology for which we want to
migrate applications. It is worth noting that this step is particularly dependent on the source
artefact format and the export facilities of the legacy environment. Some environments such
as Delphi and Visual Basic use plain text ėles to store the GUI speciėcation. Oracle Forms,
however, uses a binary format (FMB ėles), but there is an export facility that generates XML
ėles conforming to an XML schema which is available in the Oracle Developer Suite.

ǉǉǑ

Window

Item

xPosition: int
yPosition: int
visible: boolean
type: ItemType
itemsDisplayed: int
prompt: String
promptAttachment: AttachmentType
attachmentOffset: int
promptAlignment: AlignmentType
alignmentOffset: int

FormModule

Canvas

type: CanvasType
visible: boolean

1

0..n
0..n

TabPage

DataBlock

itemsDisplayed: int

0..n

0..n

0..n

0..1

0..1

«enumeration»
AttachmentType

BEGINNING
END
TOP
BOTTOM

«enumeration»
ItemType

TEXTELEMENT
BUTTON
CHECKBOX
...

Graphics

type: GraphicsType
visible: boolean

0..n
0..n

«enumeration»
GrahicsType

TEXT
FRAME
IMAGE
...

«enumeration»
CanvasType

CONTENT
SEPARATOR
...

«enumeration»
AlignmentType

BEGINNING
CENTER
END

Figure Ǎ.ǋǊ: Excerpt of the Oracle Forms metamodel.

In our case, we have built an injector forOracle Forms on the basis of the aforementionedXML
schema. ĉis has been done by using EMF which, given an XML schema, automatically gener-
ates a metamodel and the injector that takes XML ėles and creates models conforming to this
metamodel. ĉeOracle Formsmetamodel automatically derived byEMFmirrors the structure
of the XML schema provided by Oracle, as is shown in Figure Ǎ.ǋǊ.

ĉe following points summarise the structure of this metamodel.

• A form (FormModule) in Oracle Forms is a set ofWindowswith its related business logic
expressed in PL/SQL triggers. ĉe code is extracted from the XML ėles in a separate
process, which is not within the scope of this paper.

• AWindow can show one or severalCanvases, which are the panels on which the widgets
are displayed. ĉere is a special type of Canvas called SEPAĆTOR which can contain
TabPages.

• A Canvas is a surface that is used to display Graphics and Items. Graphics are graphic
decorators such as ėxed text (TEXT), or graphical frames (FĆME). Items are widgets
such as buĨons or text ėelds, which are distinguished by the type property. Contrary to
what might be expected, Canvases contain Graphics but not Items. Items are contained
inDataBlocks and they are associated to zero or oneCanvases. An Itemwill be displayed

ǉǊǈ

if it is associated with aCanvas, itswidth and height are greater than zero, and it has visible
set to true.

• A DataBlock is a logical group of widgets that are oěen associated with columns of the
same table in the database.

• ĉecoordinatesof Items andGraphics are relative to theCanvas thatdisplays them,whereas
Canvases are located with absolute coordinates. In the metamodel there are no explicit
relationships to specify whether a graphical frame contains other widgets or graphical
frames, or whether two canvases are overlapped.

• Moreover, the itemsDisplayed property of Item indicates the number of instances of the
same kind of widget that are shown. ĉis feature is referred to asmulti-record items, and
can be regarded as a form of data grid.

• It is possible to specify a prompt for an Item, i.e. a text that is associated with the Item.
ĉe coordinates of the prompt elements are deėned with regard to the associated Item.
ĉe prompt can therefore be on the leě (promptAĪachment=BEGINNING), on the right
(promptAĪachment=END), above (promptAĪachment=TOP), or below (promptAĪach-
ment=BOĈOM) the Item, and it can also be aligned to the leě (promptAlignment= BE-
GINNING), in the middle (promptAlignment=CENTER) or to the right (promptAlign-
ment=END) of the Item.

Ǎ.Ǒ.Ǌ MĵńńĽłĻ OŇĵķŀĹ FŃŇŁň ŉŃ NŃŇŁĵŀĽňĹĸ ŁŃĸĹŀň

Once the source artefacts related to the GUI have been injected into a model, the laĨer must
be transformed into a Normalised model that represents the same GUI but is independent of
the source technology (step from Source Technology models to Normalised models in Figure
Ǎ.Ǌ). ĉe Normalised model can be considered as a normalised form of the source artefacts.
ĉe Forms to Normalised transformation is, in general, fairly straightforward, since there is a
directmapping between the source technologymetamodel elements and theNormalisedmeta-
model elements. ĉis mapping is summarised in Table Ǎ.ǋ.
However, Oracle Forms has some speciėc features which are not found in other legacy applica-
tions such as Delphi or Visual Basic. We shall now discuss two speciėc features that hinder the
Forms-to-Normalised transformation, which are prompts and multi-record items.

ǉǊǉ

Forms Normalised
Window View

Canvas (type=CONTENT) PlainPanel
Canvas (type=SEPAĆTOR) TabbedPanel

TabPage PlainPanel
Graphics (type=TEXT) Label
Graphics (type=FĆME) WidgetGroup

Item (type=TEXTELEMENT) TextBox
Item (type=BUĈON) BuĨon

Item (prompt) Label
Item (itemsDisplayed >ǉ) DataGrid

Table Ǎ.ǋ: Forms to Normalised mappings.

In some legacy environments, there is a kind of widget that is frequently called Label which
is a piece of static text that can be placed anywhere in a window. In contrast, Oracle Forms
includes a similar widget, but it also offers another possibility, which is to use a Prompt element
which is associated with a widget. ĉe location of the Prompt can be expressed with regard to
different reference points, which always refer to the associated widget. Speciėcally, the Prompt
can be above, below, on the leě or on the right of the widget and aligned to the beginning,
the middle, or the end of the widget, which results in twelve possibilities. In order to calculate
its coordinates it is necessary to obtain the width or height of the text of the Prompt, which is
not easy since it depends on both the font type and the font size. Moreover, Forms by default
does not express coordinates in pixels, but in proprietary measures. ĉis implies that Prompt
coordinates can contain a small error owing to thewidth/height calculation and the conversion
between measures. In our case, we did not ėnd a coordinate error greater than ǐ pixels.

Another speciėc feature is multi-record widgets, that is, a widget that is replicated a number of
times. For example, let us assume a window that must show some aspects of people’s personal
data. In this case, it will be necessary to have some text ėelds to display the name, surname and
other data, and one multi-record text ėeld could therefore be used for the name, another for
the surname and so on. In current GUI technology we use data tables for this purpose. Since
multi-record widgets can be scaĨered on the canvas and show different kinds of information,
there is the challenge of deciding when certain multi-record widgets must be in the same table
(i.e., each multi-record widget is a column of the table). ĉe criterion used to group widgets in
tables is the following: we group multi-record widgets that are closer than a ėxed value where

ǉǊǊ

no non-multi-record widget exists between them. Moreover, when buĨons that belong to the
same datablock as multi-record widgets exist, they are also included in the table. Since this is a
heuristic to group widgets in tables, developers might need to modify the Normalised models
in order to correctly rearrange widgets in tables.
Finally, the transformation from the source technology to Normalised performs some clean up
tasks. In particular, it marks the elements that are not visible and checks that widgets do not
overlap. A GUI frequently includes non-visible widgets which are intended to store values that
are used in transactions, so they never appear in the interface. ĉe elements that are not visible
are marked in the Normalised model, so the layout algorithms ignore them. Overlapped wid-
gets are sometimes found in applications. Developers can use overlapping to show different
information with different widgets that are displayed and hidden by means of programming.
Since this is not a good practice and widget overlapping hinders layout detection algorithms,
overlapping is detected, and developers must ėx this to ensure that the rest of the process con-
tinues properly.

Ǎ.Ǒ.ǋ RĹŋĹŇňĹ ĹłĻĽłĹĹŇĽłĻ

With regard to the reverse engineering stage of Figure Ǎ.Ǌ, the algorithms presented in Sections
Ǎ.ǌ, Ǎ.Ǎ, Ǎ.ǎ have been implemented as a chain of MǊM transformations. To this end we have
chosen the RubyTL [ǎǉ] language. RubyTL is a rule-basedMǊM transformation language em-
bedded inRubywhich is integrated in theAGE environment [ǉǈǋ]. It provides powerful query
facilities, in addition to a modularity mechanism, called phasing, that has facilitated the imple-
mentation and modularisation of the solution [ǉǈǌ].

Ǎ.Ǒ.ǌ FŃŇŌĵŇĸ ĹłĻĽłĹĹŇĽłĻ

Restructuring and forward engineering tasks aremadepossiblewith theCUImodel obtained in
the reverse engineering step. As part of our prototype we have implemented a generator from
CUI models to Java Swing, using the Textplate code-generation language integrated into the
AGE environment.
ĉe transformation is relatively straightforward, since the CUI model represents the layout in-
formation explicitly. ĉis also allows the original legacy GUI to be recreated using features that
are only available in the target technology. For instance, the proportion of the space that is oc-
cupied by a widget or layout is used to generate resizable windows that preserve the original

ǉǊǋ

proportions. When a window is resized, its content (i.e. the widgets) must be resized accord-
ingly. However we do not wish to resize all the widgets, but only those widgets that can contain
or display more information if they are resized. ĉerefore, some widgets will be resized while
others will maintain a ėxed size. Widgets such as JLabels and JBuĪons will have a ėxed size,
which will be their preferred size. Widgets such as JTextField or JTable will have a variable size,
which will depend on the size of the window.
It is interesting to note that further advantage can be taken of the information expressed explic-
itly in the CUI in order to generate a GUI in the most suitable manner for a target technology.
For example, in ourCUI it is possible to represent some relationships amongwidgets (think, for
example, of a widget and its associated label) by means of the association betweenWidgetCon-
nections in the CUImetamodel presented in Figure Ǎ.ǌ. ĉis information can be used to deėne
gaps between pairs of widgets, and the gap between related widgets can bemade narrower than
the gap between unrelated widgets.

Ǎ.ǉǈ CŃłķŀŊňĽŃłň

In this chapter we have presented a ėrst approach to recover the implicit layout of the GUIs
of ĆD applications, whose layout is implicitly represented by widget positioning. ĉe work
has been focused on legacy applications created with ĆD environments, though it could be
easily adapted to other environments sharing the same features. Actually, the layout inference
approach can be applied to non-legacy environments, for example to generate ėnal GUIs from
views created with wireframing tools, as we will show in the next chapter. As a result, a frame-
work for migrating GUIs implemented with legacy environments has been built. ĉis frame-
work has been evaluated with two real-world Oracle Forms applications by migrating a sum of
ǉǎǌ windows to Java Swing.
ĉe results evidence that the solution devised can be used to infer the layout of the applications
to a great extent. However, the algorithms fail to accurately detect the layout when the window
is not arranged in parts (surrounded by a border) or the widgets are placed in such a way that
their structure cannot be easily described by a common layout. In these cases, manual tuning of
the CUImodel would be required. Fortunately, the windows ofĆD applications oěen follow
some style paĨerns that contribute to make the GUImore comprehensible and usable, and for
this reason our approach succeeds in most of the cases, as it has been shown.
Although theNon-regular layout detection problemmay not be crucial forĆDapplications be-

ǉǊǌ

cause simpler layout paĨerns are commonly found, it is considerably important to deal with
layout inference of views in general. For example, a view like Figure Ǎ.ǋǈ is fairly common in
current desktop applications, but our approach fails to detect the layout because it does not
exactly ėt any of the predeėned layout types. However, that layout could be described by a
composition of FlowLayout and StackLayout. ĉerefore, in order to widen the scope of our ap-
proach, the layout inference algoritm should be able to recognise layout paĨerns that are nested
in other paĨerns (layout composition).
ĉe proposed architecture satisėes some of the requirements stated in Section ǌ.ǉ. Firstly, ex-
plicit information about the layout of the graphical elements in the user interface is condensed
inCUImodels (requirementRȕ), thus allowing automatic restructuring and forward engineer-
ing processes and tools to be applied to these models.
Secondly, resolving the layout abstraction by means of a transformation chain allows the prob-
lem solution (algorithms) to be split into smaller modules (transformations) which can be de-
veloped and evolved independently (requirement RȖ), since the metamodels act like the con-
tracts of themodules. ĉe transformations can be chained and executed sequentially to achieve
automation, signifying that the most complex part of the process (the generation of the CUI
models from the Normalised models) is performed automatically (requirement Rȗ). It can be
observed that the application of the MDE principles results in a more maintainable solution.
ĉirdly, aswehave aNormalisedmodel as an input of the reverse engineeringprocess and aCUI
model as an output, we achieve source and target platform independence (requirement RȘ).
ĉus, only the corresponding injector plus the transformation to deriveNormalisedmodels are
required to support a new legacy technology. Note that the reverse engineering algorithms can
be applied independently of the source and target technologies. Reusability and extensibility
are thus also promoted in our approach.
Fourthly, matching the visual and logical structure (requirement Rș) has been achieved by ad-
dressing challenges Lȕ and LȖ. ĉe model transformation from the Normalised to the Region
model is in charge of dealing with these challenges.
Fiěhly, theCUImodel contains the high-level layout representation that fulėls the requirement
RȚ. With the purpose of geĨing this representation, the positions of the widgets have been
turned into spatial relations among them (challenge LȘ), information about spacing and align-
ment has been gathered in relative units (challenge Lș) and the structure that widgets form has
been recognised and abstracted in high-level layout types (challenge Lȗ).
Lastly, misalignment tolerance (requirement Rț) is achieved by means of the sharing concept,

ǉǊǍ

that introduces a tolerance margin to let the comparison of tiles be Ěexible. ĉe current imple-
mentation does not cover the generation of different alternative solutions (requirement RȜ)
and the inference algorithm has not been designed to support a conėgurable layout set (re-
quirement Rȝ).
Some similarities between our work and the works ([ǋ] [ǌ] [Ǎ]) about layout inference that
were presented in Section ǋ.ǉ can be found. Concretely, like in [Ǎ] we created a model-based
architecture to make the approach independent of any source and target technology (require-
ment RȘ), and we both dealt with the problem of matching the visual and logical structure of
the views (requirement Rș). In [ǋ], the author detected the problem of small misalignment,
which has been taken into account in our solution too (requirement Rț). Similar to them, our
approach needs to be manually tweaked in many cases, particularly when the heuristics fail in
detecting a complex layout, which makes the approach semi-automated.
On the other hand, all these three relatedworks are designed to represent the layout with only a
speciėc layout type. ĉe [ǋ] and [Ǎ] approaches generate code for a ėxed layout manager, and
in [ǌ], user can select the target layout manager, but different layout managers cannot be used
at the same time. Different from them, our approach deals not with a single layout manager,
but a set of them. However, in our approach we do not cover the Rȝ requirement since as it is
possible to indicate a subset of layout managers to use from the layout set available. In the next
table we classify our solution as we did with the state of the art.

Tested source technology Oracle Forms
Tested target technology Java Swing
Source/target independence Yes
Information extracted layout composition, alignment, margins, holes, sizes
Layoutmodel Layout metamodel
Algorithm type Heuristics
Implementation technology MDE
Automation degree Automated

Table Ǎ.ǌ: Classiėcation of the approach of this chapter

ǉǊǎ

(Suggested by Jesús Sánchez)

It is only with the heart that one can see rightly; what is
essential is invisible to the eye.

Antoine de Saint-Exupéry,ĉe LiĨle Prince

6
Layout inference revisited: exploratory approach

In the previous chapter we tackled the layout inference of GUIs of legacy systems, particularly
ĆD-based applications. Although the results of the evaluation were satisfactory for these ap-
plications, the approach has some limitations, which were discussed in Section Ǎ.ǉǈ. ĉe main
drawback was that the heuristics cannot be composed and they are too simple to ėt any layout.
Moreover, it lacks of some features that would be desirable in a general solution for layout infer-
ence and which were introduced in Section ǌ.ǉ, such as offering alternative solutions (require-
ment RȜ) and conėguration of the layout set (requirement Rȝ). To overcome these limitations
we have devised a new version of the layout inference algorithm that replaces the last part of
the layout inference process (the high-level structure detection based on heuristics) by a more
complex algorithm that would be able to recognise the layout of any static view.

ĉe CUI and Tile metamodels were also modiėed in order to improve the approach. ĉe CUI
model was split into two separate models (Structure and Layout models) in order to promote
the separation of concerns and ease the evolution of each concern. Although the original Tile
representation could have been reused, some changes were performed on the Tile metamodel
in order to represent gaps in amore useful way and to facilitate themanipulation of Tilemodels

ǉǊǏ

to the high-level layout inference algorithm.

Consequently, in this chapter we will show the changes we have made in the architecture in-
troduced in the previous chapter (Figure Ǎ.Ǌ) to acommodate the new requirements, and we
will explain the data structures (metamodels) and the algorithm we have devised to cope with
layout detection. Wewill ėnish with the case study for evaluating the approach and the conclu-
sions drawn from the experience.

We will demonstrate that the layout inference process that we proposed for legacy applications
can also be used in other scenarios such as the generation of the ėnalGUI of a new systembased
onwireframes. To bemore precise, our layout inference solution can nowbe reusedwith in any
scenario in which we have ėles deėning views in terms of coordinates.

ǎ.ǉ MDE ĵŇķļĽŉĹķŉŊŇĹ ĺŃŇ ŀĵŏŃŊŉ ĽłĺĹŇĹłķĹ (ŇĹŋĽňĽŉĹĸ)

In the ėrst approach to infer the layout of GUIs, the CUI metamodel integrated the Structure
and Layout metamodels introduced in Section ǌ.Ǌ.ǉ. When designing the second approach,
we realised that a separation of the different aspects of the GUI would favour the evolution of
thesemetamodels. As a result, the schema depicted in Figure Ǎ.Ǌ wasmodiėed and turned into
Figure ǎ.ǉ. We have followed the same notation as in the previous chapter and the elements
involved in the layout inference part have been highlighted.

Source
technology

model

Normalised
GUI tree
model

Target
code

Target
technology

model

Region
model

Tile
model

Layout
model

Legacy
artefact

Structure
model

Figure ǎ.ǉ: Model-based architecture used to migrate legacy GUIs.

ǉǊǐ

Basically, the separation between the Structure and Layout models entails that the Structure
model is derived from the Region model and the Normalised model (these models were de-
scribed in the previous chapter). ĉe Trace model, which has been omiĨed in Figure ǎ.ǉ for
clarity reasons, is also generated at the same time that the Structure model. ĉe Layout model
now contains references to the Structuremodel, and in fact, the traces stored in theTracemodel
are queried in order to establish those links between theLayoutmodel and the Structuremodel.

Represent element
relative positions

Represent element
distances

Change positioning system

Create view graph

Discover composite
layout

Extract space and
size information

Infer high-level layout

Discover alignment

Figure ǎ.Ǌ: Steps to explicitly infer the layout information.

ĉe layout inference process, which generates a Layoutmodel from a Structuremodel, consists
of two main stages that are composed of three steps each one, which have been depicted in
Figure ǎ.Ǌ. ĉe ėrst stage changes the positioning system from coordinates to relative positions
between the elements. It corresponds to the uncovering of relative positions of the ėrst version,
which was explained in Section Ǎ.Ǎ, and it keeps the basics of Tile models, though in the new
version some information has been represented in a different fashion, notably relative positions
are describedwithAllen intervals. ĉeoutcomeof the ėrst stage is a graph representation of the
view with relative positions (i.e., a Tile model). ĉe second stage takes that graph and applies

ǉǊǑ

a paĨern matching algorithm that reduces the graph in every iteration (the matched nodes are
replaced by a single node). When all the nodes will be matched then we will have obtained
a tree of layout managers (the Layout model that was presented in Figure ǎ.Ǎ). ĉis second
stage corresponds to the high-level layout inference of the ėrst version, which was explained
in Section Ǎ.ǎ, being this new version more sophisticated than the former version. ĉese two
stageswill be detailed in Sections ǎ.ǋ and ǎ.ǌ, aěer describing the input and outputmetamodels
of that process.

ǎ.Ǌ RĹŋĹŇňĹ ĹłĻĽłĹĹŇĽłĻ ŁĹŉĵŁŃĸĹŀň

Next we will present the Structure and Layout metamodels, which determine respectively the
input and output of the reverse engineering process. In Figure ǎ.ǋwe have demarcated the parts
of the CUI metamodel described in SectionǍ.Ǌ that correspond to the Structure and Layout
metamodels presented in this chapter. A Structure model is the input to generate a Tile model,
and the output is a Layout model which is connected to the original Structure model. We will
also explain how a Structure model is generated from the Normalised and Regionmodels. ĉe
Structure and Layout metamodels are not just the result of spliĨing the CUI metamodel into
two metamodels, but they have been redesigned to beĨer meet the essentials of these meta-
models.

Figure ǎ.ǋ: Relation between the CUI and the Structure and Layout metamodels.

ǉǋǈ

ǎ.Ǌ.ǉ SŉŇŊķŉŊŇĹ ŁĹŉĵŁŃĸĹŀ

ĉeStructuremetamodel has beendevised to clearly represent the logical hierarchical structure
of the views (the GUI tree) in a technology-independent fashion. A signiėcant excerpt of the
Structuremetamodel can be seen in Figure ǎ.ǌ. AĨributes and role names can be easily guessed
by the reader so they have been omiĨed in the metamodel to make it clearer.

Container

GraphicalElement

ImageText

GraphicalResource

Widget

SingleWidget

TextBox Button CheckBoxOutputText

Menu ToolbarLinkable

0..n

1
0..1

1 1

TextTranslation 0..n

AbstractView

ExternalViewRef View1

AbstractPanel

PanelPanelRef 1

TabbedPanel PlainPanel ArrangedPanel

Figure ǎ.ǌ: Structure metamodel.

According to ourmetamodel, a GUI is composed of a set ofViews, such asmobile phone views,
desktopwindows or web pages. Views are composed ofWidgets. A Panel is a specialWidget that
represents a visually distinguished part of the view. For example, a set of widgets surrounded by
a border form a PlainPanel. It can be seen that Views and Panels are Containers and thatWidget
and Container inherit fromGraphicalElement.
ĉree types ofWidgets are supported: SingleWidget,Menu andToolbar (the elements that com-
pose the two laĨer have been omited). ĉere are many kinds of SingleWidgets, such as TextBox,
BuĪon or CheckBox each one having different features. For example TextBox has a Text, But-
ton has a GraphicalResource (the graphics that are displayed on a buĨon), and an OutputText
can be Linkable (i.e., it is a hyperlink). For Text resources, internationalisation and localisa-

ǉǋǉ

tion information (TextTranslation) can be provided. ĉere are some constraints imposed on
this metamodel, namely: i) Menus and Toolbars are restricted to be associated with Views, ii)
TabbedPanels, ArrangedPanels can only contain Panels, iii) PlainPanels must only contain Sin-
gleWidgets, and iv) Views cannot nest Panels and SingleWidgets at the same level (this contraint
has been propagated from the Region model).

ǎ.Ǌ.Ǌ LĵŏŃŊŉ ŁĹŉĵŁŃĸĹŀ

ĉe Layout metamodel deėnes the design of the views, that is, how the widgets are spatially
arranged in the views. ĉisdesign is expressed in termsof high-level constructions (particularly,
layoutmanagers) similar to Java Swing layoutmanagers, which is a beĨer representation system
than others such as coordinates or positioning based on boxes (such as HTML). ĉe Layout
model can be used to derive a good quality GUI. ĉis model conforms to the metamodel that
can be seen in Figure ǎ.Ǎ.
In this metamodel, LayoutElements can be ElementNodes or Layouts. An ElementNode repre-
sents a Widget (either Container or SingleWidget) that is managed by a Layout. Actually, the
refNode reference indirectly connects an ElementNode with the associatedWidget in the Struc-
ture model.
Layouts are arranged hierarchically, so the layout of an element can be a composition of layouts.
ĉe set of predeėned layouts currently supported is: FlowLayout, BorderLayout, GridLayout,
FormLayout and CustomLayout. A FlowLayout is a horizontal Ěow or a vertical Ěow depending
on the type aĨribute. ABorderLayout is a layout that places the content in ėve areas: top, boĪom,
leĜ, right, center. Not all the ėve areas of the BorderLayout have to be occupied. A GridLayout
arranges the elements in a grid of numRows × numCols cells of equal size (only the numCols
aĨribute is stored). A FormLayout is a more complex layout that is applied to rows of elements
where some of the elements are vertically alignedmore or less in the sameway. ĉis layout con-
tains (rows reference) a list of vertical FlowLayouts. In addition, it deėnes someAlignedColumns
in such a way that every element must belong to just one AlignedColumn. ĉere are three ref-
erences from AlignedColumn to ElementNode: lnodes represents the elements aligned to the leě
bound of the column, rnodes is the same for the right bound and nodes include all the elements
contained in the column (aligned or not). CustomLayout is used in case the GUI layout cannot
be composed by a composition of the predeėned layouts.
A Layout also includes some other aĨributes that are useful to tune the design determined by

ǉǋǊ

«from Structure Model»
Widget

LayoutInfoTreeNode

FlowLayout
type: DirectionType

BorderLayout GridLayout
numCols: int

ElementNode

Layout
hAlignment: HAlignmentType
vAlignment: VAlignmentType
hSize: float
vSize: float
fitness: int

alternatives
 1..n

«enum»
DirectionType

HORIZONTAL
VERTICAL

element
1

parent 1

children
0..n

 refNode
 0..1

referredBy
1..n

parent
 1

children
 0..n

«enum»
HAlignmentType

NONE
LEFT
CENTER
RIGHT

«enum»
VAlignmentType

NONE
TOP
MIDDLE
BOTTOM

FormLayout CustomLayout

Gap
type: DirectionType

Margin
type: MarginType

Separation
value: float

«enum»
MarginType

LEFT
RIGHT
TOP
BOTTOM

0..n

Layout

0..1
top

0..1
bottom

0..1
left

0..1
right

0..1
center

AlignedColumn
lgap: float
rgap: float

0..n

0..1

0..nlnodes

0..1

0..nrnodes
0..1

0..nnodes

LayoutElement

Layout

rows 0..n

Figure ǎ.Ǎ: Layout metamodel.

the predeėned set of layouts. ĉe hAlignment and vAlignment aĨributes are used to indicate how
a layout is horizontally and vertically aligned. We have two different cases: i) when the Layout
is associated with a Container, the alignment is relative to that Container; ii) when the Layout
is part of a more complex layout (it is nested in another Layout), then the alignment is relative
to the enclosing Layout. We refer to a Layout that is part of a complex Layout as intermediate
layout.

ĉe hSize and vSize aĨributes are the percentages of the horizontal and vertical space (respec-
tively) taken by the element, with regard to the Container. Adjacent elements are commonly
separated by horizontal or vertical Gaps (empty space), and Margins represent the distance of
a layout to the bounds of the Container. It is worth remarking that Margins are only applica-

ǉǋǋ

ble to the Layouts associated with a Container, not to the children Layouts of these ones. For
both, Gaps andMargins, the distances are measured with percentages of horizontal or vertical
distances with regard to the Container.
EachWidget of the Structure model is reproduced in the Layout model by a LayoutInfoTreeN-
ode which contains the reference to it (element reference). ĉere may be different visual struc-
ture compositions that can result in a similar layout perceived by users. ĉerefore, there may
be different layout alternatives to lay out the sameContainer, whichmeans that every LayoutIn-
foTreeNode that is associated to aContainerwill have a set of possible layouts (alternatives). Each
Layout contains a reference (refNode) to the LayoutInfoTreeNode to which the layout is applied,
except for intermediate layouts that are not linked to anyWidget.
Each Layout includes the ėtness aĨribute that serves to compare the alternatives among them
and knowwhich ones are beĨer than others. ĉe ėtness aĨribute takes a value between ǈ and ǉ.
ĉe closest to ǉ, the beĨer a solution is. Fitness values aremeant to be used to compare different
alternatives for the sameContainer, and should not be used to compare differentContainer since
these values are arbitrary.

ǎ.ǋ CļĵłĻĽłĻ ŉļĹ ńŃňĽŉĽŃłĽłĻ ňŏňŉĹŁ

As an intermediate step in the transition from absolute coordinates to a layout representation
using layout managers, we use a representation of the GUI using a relative positioning system
based on the spatial relations among the widgets, i.e., theTile metamodel. ĉis representation is
the basis for the layout inference algorithm. We have performed some changes in the original
Tile metamodel presented in Section ǎ.ǋ.ǉ with the aim of adapting the data structure to the
new layout inference algorithm, and to improve the representation of the distances between
the elements.

ĉe creation of the Tile metamodel (step ǉ) will be presented in Section ǎ.ǋ.ǉ, the relative po-
sitioning (step Ǌ) will be explained in Section ǎ.ǋ.Ǌ, and Section ǎ.ǋ.ǋ will delve into the repre-
sentation of the distance between elements (step ǋ).

ǎ.ǋ.ǉ CŇĹĵŉĽłĻ ŉļĹ ŋĽĹŌ ĻŇĵńļ

ĉe means we propose to represent a view is a nested, aĨributed, relational acyclic directed
graph, that is, a digraph without cycles where the nodes can be digraphs and the nodes as well

ǉǋǌ

as the edges have aĨributes. ĉe data structure that deėnes these graphs is the metamodel pre-
sented in Figure ǎ.ǎ. ĉis representation is focused on making positions between elements
explicit, which is very useful to detect layout paĨerns.

TileNode
name: String
xMinPos: int
yMinPos: int
xMaxPos: int
yMaxPos: int

Relation
name: String
xInterval: AllenIntervalType
yInterval: AllenIntervalType
closeness: int

1
source

0..n
outgoing

1
target

0..n
incoming

1 0..n
relations

0..n
children

«from Structure Model»
Widget 1

widget

«enum»
AllenIntervalType

BEFORE AFTER
MEETS MET_BY
STARTS STARTED_BY
FINISHED FINISHED_BY
DURING CONTAINS
OVERLAPS OVERLAPPED_BY
EQUAL

WidgetNode LayoutNode
type: LayoutType

«enum»
LayoutType

HFLOW VFLOW
BORDER GRID
FORM CUSTOM

1

Figure ǎ.ǎ: Tile metamodel (new version)

ĉe model contains two main classes, TileNode and Relation. A TileNode represents a rectan-
gular area of a view that contains a widget or a group of widgets. As can be seen, TileNodes
contain information about the coordinates of the area they take. Although our inference algo-
rithm is applied to the Tile model as a graph, coordinates are still required for calculating some
aĨributes such as margins of a widget with respect to the container.
A WidgetNode is a TileNode that represents the area of a widget (either SingleWidget or Con-
tainer) and contains the reference to that Widget in the Structure model. A LayoutNode is a
TileNode that represents the area of a group of widgets that are laid out by using a certain layout
type. As we will see later, at the beginning of the layout inference process we have a graph that
only contains WidgetNodes and at the end of the process (aěer applying rewriting) we have a
graph composed of WidgetNodes and LayoutNodes. From now on, we will indistinctly refer to
TileNodes as tiles or nodes.
Relation represents a spatial relation between two TileNodes (source and target) by means of
three aĨributes. ĉe ėrst aĨribute is the Allen interval for the X-axis (xInterval), the second
aĨribute is the Allen interval for the Y-axis (yInterval) and the third parameter is the closeness
level between a pair of connected TileNodes (closeness).
ĉe Allen intervals [Ǒ] can be used to express the spatial relations for a pair of segments in one
dimension. ĉey provide us with two interesting pieces of information. Firstly, they serve us
to represent the relative positioning of nodes (e.g. if a node is on the right or below another
node). Secondly, they also capture the alignment of one node with respect to another one.

ǉǋǍ

Allen intervals will be explained in detail in Section ǎ.ǋ.Ǌ.
To represent distances between widgets we do not use absolute distances measured in pixels,
but we calculate the so called closeness level, which is a means to classify widget distances in
groups. ĉe distances that belong to the same group are more or less similar. ĉis will be used
by our algoritms to prioritise close widgets over farther widgets. Please note that in the Layout
model one aĨribute is enough to represent this feature (closeness), because we do not allow
widget overlapping, and thus it measures the distance in only one axis according to the Allen
intervals. We will discuss more about the meaning of the closeness levels in Section ǎ.ǋ.ǋ.
ĉe Tile model is created as follows. AWidgetNode is created for eachWidget of the Structure
model. WidgetNodes keep a reference to theWidget from which they are created, and a copy of
the coordinates of the element. ĉe containment hierarchy of the Structure model is therefore
replicated when creating the Tile model. For instance, if there is a Viewwhich aggregates three
children Panels in the Structuremodel, then therewill be aWidgetNode containing three children
WidgetNodes in the Tilemodel. For each pair of adjacentWidgetNodes, aRelation is created. Let
us recall a deėnition of the previous chapter: A tile tƥ is adjacent to another tile tƦ if and only if
i) the projection on the X-axis or Y-axis of both tiles is overlapped and ii) there not exists a tile
tƧ between tƥ and tƦ. For each Relation created, the Allen intervals for the X (xInterval) and Y
(yInterval) axis are calculated, and the a closeness level (closeness aĨribute) is assigned to it.

ǎ.ǋ.Ǌ RĹńŇĹňĹłŉĽłĻ ŌĽĸĻĹŉ ŇĹŀĵŉĽŋĹ ńŃňĽŉĽŃłň

In this sectionwe explain how theAllen interval algebra [Ǒ] has beenused to express the relative
positions between the widgets and how they are obtained.
Figure ǎ.Ǐ shows all the intervals and their meaning. For example, if AMEETS B it means that
the segment A is before the segment B and the end of A ’touches’ the beginning of B (i.e., there
is no blank space between them). Note that all the intervals (except for EQUALS) have an
opossite interval, e.g., if A MEETS B it implies that B MET_BY A. In order to represent the
spatial relations of ǊD objects we need two intervals, one interval for the projection of the node
on the X-axis and another one for the projection of the node on the Y-axis.
Note that Relations in Tile models are directed, i.e., they distinguish between the source the
target node of the Relation. Given that the Allen intervals are deėned on ordered pairs of seg-
ments, the pair (source, target) indicates how to interpret the intervals. For instance, let r(tƥ, tƦ)
be a relation betweenTileNodes tƥ and tƦ and r.xInterval = Beforemeans that tƥ is before tƦ with

ǉǋǎ

Allen interval Meaning Opposite

BEFORE AFTER

MEETS MET_BY

STARTS STARTED_BY

DURING CONTAINS

FINISHES FINISHED_BY

OVERLAPS OVERLAPPED_BY

EQUALS -

Figure ǎ.Ǐ: Allen intervals

regard to the projections on the X-axis. ĉe pairs of TileNodes in a Relation are ordered in the
following way: the target TileNode is always on the right or below the source TileNode. As it
was already said, TileNodes are arranged in a hierarchy so a TileNode can contain some other
TileNodes and Relations.

Each Relation has then two Allen intervals: An Allen interval for the X axis (xInterval) that is
based on the comparison between the y-coordinates of both TileNodes, and an Allen interval
for the Y axis (yInterval) that is based on the comparison of the x-coordinates. As already in-
dicated, one Allen interval allows representing relative positions between pairs of segments (ǉ
dimension). ĉen,with twoAllen intervals it is possible to represent the relative position of two
widgets (represented as boxes) in a bidimensional space. ĉe comparisons of the positions to
calculate the Allen intervals are carried out with some marginm that is parameterised, so for a
pair of widgets wƥ and wƦ, wƥ.x = wƦ.x if wƥ.x ∈ (wƦ.x− m,wƦ.x+ m). By default the margin
of the comparisons has been set to ǉǈ pixels. It allows avoiding the negative effect of misalign-
ment, which results in some Ěexibility when placing widgets onto the canvas for creating quick
GUIs.

Figure ǎ.ǐ shows the Allen intervals for the Relation between the passwordField and cancel tiles
extracted from the view example in Figure ǎ.ǉǉ. Given that the projection of passwordField in
the Y-axis precedes the projection of cancel, then the yInterval is Before. Regarding the X-axis,
the projection of cancel exceeds the end of passwordField in ǉǈ pixels. If wewere strict (the com-
parison margin would be set in ǈ pixels), the Allen interval that describes the relative position

ǉǋǏ

passwordField

10 px

cancel

xInterval = Finishes

yInterval = B
efore

0

Figure ǎ.ǐ: Allen interval example for a pair of widgets

of both projections would be Overlaps. However, as far as we have set the comparison margin
to ǉǈ pixels, the excess is not signiėcant, so both projections can be considered as they end at
the same point. ĉerefore, in this case xInterval is Finishes.

ǎ.ǋ.ǋ RĹńŇĹňĹłŉĽłĻ ŌĽĸĻĹŉ ĸĽňŉĵłķĹň

ĉis is the step ǋ in Figure ǎ.Ǌ. ĉe closeness levels provideRelationswithmeaningful distances.
ĉe levels are obtained by taking the distance measured in pixels and mapping it to a ėnite set
of values (levels, like ǉ for very close, Ǌ for close and so on).

passwordField

ok cancel

15 px 21 px

Figure ǎ.Ǒ: Problem when seĨing ėxed limits for the closeness levels.

A simple way to classify distances in levels is to set ėxed ranges. For instance, Figure ǎ.Ǒ shows a
portion of a viewwith threewidgets (extracted fromFigure ǎ.ǉǉ). If we establish that a distance
between ǉ and Ǌǈ pixels is mapped to a Very_Close level, and a distance between Ǌǉ and ǌǈ
pixels is mapped to Close, then we would have that the closeness level between passwordField
and ok (Very_Close) would be different to the closeness level between passwordField and cancel
(Close). Since the diference of distances between passwordField-ok and passwordField-cancel is
not signiėcantly different when a user sees the view, then they should be tagged with similar

ǉǋǐ

levels.
As it can be deduced from the example, the classiėcation of the distances should not be accom-
plished using tight limits (absolute distances) but variable limits that depend on the data set.
In this sense, a group of nodes that aremore or less at the same distance should always be in the
same group, and the closeness level deėnes a partitioning of the nodes in groups according to
the distance.
Inorder to address this shortcomingwe apply a clustering algorithm,whichperforms adynamic
partition of the set of distances in the view. ĉe partitioning of the distances is then used to
classify the relations. Algorithm ǌ details this process. We will use the simple example shown
in Figure ǎ.ǉǈ(a) during the explanation of the algorithm, which shows four widgets, a, b, c, d
and the horizontal distances between them.

(b)

(a)ba c d10px 14px 44px

a b c dB,E,1 B,E,1 B,E,2

Figure ǎ.ǉǈ: Closeness assignment example. (a) Widgets and distances between them. (b)
Result graph.

Firstly the algorithm gets all the distances (vertical and horizontal) of the relations and creates
a single cluster with these distances (lines Ǌ to Ǎ). In this case, BestPartition = {{ƥƤ, ƥƨ, ƨƨ}}.
We use the population standard deviation (σ) of the distances to measure whether the cluster
is homogeneous enough, i.e. the distances in the cluster can be considered similar (to a certain
degree). If the standard deviation of the initial cluster is greater than the maximum closeness
cluster deviation (maxDev, which by default is ǉǍ), then we have to split the cluster (line Ǐ). In
the example, σ = ƥƩ.ƥƫ > maxDev, so we have to split the distances in clusters.
In order to perform the clustering of distances, we have selected the k-means algorithm [ǉǈǍ]
(line ǉǊ), with the euclidean distance as similarity function. Given that k-means is a divisive
algorithm, the number of clustersmust be passed as a parameter. However, we do not know the
number of clusters a priori. ĉerefore, we apply the k-means algorithm several times (lines Ǒ to
Ǌǈ), increasing the number of clusters in each iteration (line ǉǈ) until the stop condition. ĉis
condition is that the standard deviation of every cluster is less thanmaxDev (line ǉǏ).

ǉǋǑ

Algorithm ǌCloseness assignment algorithm
ǉ: procedure AňňĽĻłCŀŃňĹłĹňň(Relations,maxDev)
Ǌ: AllDistances← getAllDistances(Relations)
ǋ: nClusters← ƥ
ǌ: Cluster← AllDistances
Ǎ: BestPartition← {Cluster}
ǎ:
Ǐ: if σCluster > maxDev then
ǐ: partitionOK← false
Ǒ: while ¬partitionOK do
ǉǈ: nClusters← nClusters+ ƥ
ǉǉ: for i← ƥ,Num_Iterations do
ǉǊ: Clusters← kMeans(AllDistances, nClusters)
ǉǋ: if isBestPartition(Clusters,BestPartition,

SumOfSquaredErrors()) then
ǉǌ: BestPartition← Clusters
ǉǍ: end if
ǉǎ: end for
ǉǏ: if ∀C ∈ BestPartition, σC ≤ maxDev then
ǉǐ: partitionOK← true
ǉǑ: end if
Ǌǈ: end while
Ǌǉ: end if
ǊǊ:
Ǌǋ: SortedPartition← sort(BestPartition)
Ǌǌ: closeness← ƥ
ǊǍ: PartitionMap← {}
Ǌǎ: for all Cluster ∈ SortedPartition do
ǊǏ: range← getRange(Cluster)
Ǌǐ: PartitionMap[range]← closeness
ǊǑ: closeness← closeness+ ƥ
ǋǈ: end for
ǋǉ:
ǋǊ: for all relation ∈ Relations do
ǋǋ: d← getDistance(relation)
ǋǌ: relation.closeness← PartitionMap[d]
ǋǍ: end for
ǋǎ: end procedure

ǉǌǈ

Because k-means is a heuristic algorithm, it is very fast, but it could fall into a local maximum.
In order to get a beĨer clustering, the algorithm is executedmultiple times (lines ǉǉ to ǉǎ) with
different random starting conditions. By default the number of iterations,Num_Iterations vari-
able, is Ǌǈ, and we keep the best solution according to the intra-cluster homogeneity criterion,
which is the sumof the squared errors (line ǉǋ). Followingwith the example, the k-means algo-
rithm is applied with nClusters = Ʀ and the output is: BestPartition = {{ƥƤ, ƥƨ}, {ƨƨ}}, and
we have that σ{ƥƤ,ƥƨ} = Ʀ < maxDev ∧ σ{ƨƨ} = Ƥ < maxDev, so the clustering loop stops.
Aěer obtaining the clusters, we sort the clusters andwe assign a numerical tag to each one (lines
Ǌǋ toǋǈ). ĉe lesser the values (distances)of the cluster, the lesser thenumerical valueof the tag
(the lower distance group is taggedwith ȕ). For each cluster, we set aminimumand amaximum
value in pixels (lines ǊǏ). In the example, PartitionMap maps each range to a closeness level:
(−∞, ƥƨ] = ƥ and [ƥƩ,+∞) = Ʀ.
When all this process has been accomplished, we iterate over theRelations and for each one and
we usePartitionMap to knowwhich closeness levelmust be assigned to theRelation by compar-
ing the distance with the ranges. Figure ǎ.ǉǈ(b), shows the Tile model fragment of the widgets
in Figure ǎ.ǉǈ(a), being the closeness level the numeric parameter of the edges (Relations).

ǎ.ǋ.ǌ TĽŀĹ ŁŃĸĹŀ ĹŎĵŁńŀĹ

ĉe graph in Figure ǎ.ǉǊ is the Tile model derived from the example window shown in Fig-
ure ǎ.ǉǉ. Tiles (nodes) have been represented with ellipses that include the name of the widget
and relations (edges) have been represented with arrows with three aĨributes: the Allen in-
terval for the X axis (xAllenInterval), the Allen interval for the Y axis (yAllenInterval), and the
closenessLevel. ĉe coordinates and dimension of the nodes have been omiĨed.

Figure ǎ.ǉǉ: Login window created with WireframeSketcher.

ǉǌǉ

passwordLabel passwordField

nameLabel nameField

ok cancel

B, E, 1

B, E, 1

B, E, 1

E, B, 1 E, B, 1

C, B, 1 FB, B, 1

Figure ǎ.ǉǊ: Graph representation of the login window example. B=BEFORE, E=EQUALS,
C=CONTAINS, FB=FINISHED_BY

Since all the distances between the nodes are more or less similar, the clustering algorithm
groups all the distances in just one cluster. ĉis unique group is assigned the closeness level
ǉ. As we mentioned in Section ǎ.ǋ.Ǌ, the comparisons of the positions take into account some
margin. ĉis is the reason why the xAllenInterval of the relation between nameField and pass-
wordField is EQUALS though the projection of the coordinates in the X axis for both widgets is
not exactly the same.

ǎ.ǌ IłĺĹŇĽłĻ ĵ ļĽĻļ-ŀĹŋĹŀ ŀĵŏŃŊŉ

ĉe Tile model is the basis to apply the layout inference algorithm we have devised (steps ǌ, Ǎ
and ǎ in Figure ǎ.Ǌ are encompassed by this algorithm). It is a backtracking algorithm based on
graph rewriting. ĉe main idea consists of matching a predeėned set of layout paĨerns against
the graph (the Tile model) until all the nodes have been matched and replaced by the corre-
sponding layout node, so rewriting ėnishes when there is only one node leě (the root layout).
ĉe layout paĨerns are applied in all the possible orders, so obtaining several solutions that are
evaluated in order to see how good or bad the solution is.

ĉe algorithmgenerates all the possible permutations of the layout paĨerns and checks for each
sequence if we can meet a solution by applying the layout paĨerns in the order speciėed by
the sequence. Every time there is a paĨern match, all the matched nodes are replaced just by
one node, and the paĨern matching continues with the resultant reduced graph. A solution
sequence is a composition of layouts that covers all the nodes of the graph, this is, when only

ǉǌǊ

one node remains. Each different solution that is found is assessed by a ėtness function. ĉe
best solution will be the solution with the highest ėtness value.

(a) (b)

W1 W2

W3 W4

H

H

V

W1 W2

W3 W4

(c) (d)

H VV

W1 W2

W3 W4

G

W1 W2

W3 W4

Figure ǎ.ǉǋ: PaĨern matching example on four widgets

In order to show the logic behind the algorithm with a simple example, let us suppose we have
four widgets Wƥ,WƦ,WƧ,Wƨ that are spatially distributed as it is shown in Figure ǎ.ǉǋ(a).
ĉere are several possibilities to arrange these widgets depending on the order in which the
layout paĨerns are applied. If we start looking for horizontal Ěows of elements, we ėnd two
matches: Wȕ-WȖ and Wȗ-WȘ. ĉen, a vertical Ěow composed of the two previous matches
can be applied (see Figure ǎ.ǉǋ(b)). If we had started looking for vertical sequences, the pairs
Wȕ-Wȗ andWȖ-WȘwould havematched, and then these twomatcheswouldmake a horizontal
matching (see Figure ǎ.ǉǋ(c)). Finally, if we had looked for a grid paĨern of Ʀ× Ʀ elements, all
the nodes would have ėt in just one match (see Figure ǎ.ǉǋ(d)).
ĉis approach has the advantage of offering a list of alternative solutions, which could be in-
teresting to know different implementation options and choose the desired layout. Before ex-
plaining the algorithm in deep in Section ǎ.ǌ.Ǌ, the following section describes the predeėned
set of layout paĨerns that can be used in the algorithm.

ǎ.ǌ.ǉ TļĹ ŀĵŏŃŊŉ ńĵŔĹŇłň

In this section we describe the layout paĨerns used to detect the predeėned layout types that
were introduced in Section ǎ.Ǌ.Ǌ.

ǉǌǋ

• (Horizontal /Vertical)FlowLayout: selects a sequence of nodes that are connected by
only one outgoing edge with the xInterval / yInterval equals to BEFORE orMEETS.

• BorderLayout: looks for subgraphs that match the ėve areas of a star topology: top,
boĨom, leě, right, center. Not all the ėve areas have to be identiėed. ĉe currently sup-
ported paĨerns for the BorderLayout can be seen in Figure ǎ.ǉǌ. In order to detect the
areas, not only the edges of the graph are taken into account, but also the relative dis-
tances to the container. For the top, boĪom, leĜ and right areas, it must not be a distance
lower than a certain value (ǉǍƻ by default) from the container bounds. When detecting
a BorderLayout with only the top-boĨom areas or leě-right areas, the relative distance
between the areas must be greater than a value (Ǌǈƻ by default) regarding the container
bounds.

• GridLayout: searches recursively for subgraphs connected among them so they form a
rectangular grid topology of n×m nodes. Firstly it aĨemps tomatch a Ʀ× Ʀ square (the
smallest allowed grid). ĉen it tries to expand the rectangle by recursively matching the
nodes to the right and below the square. In the end the match is the biggest rectangular
grid that it is possible to match from the Ʀ × Ʀ square. ĉere is a constraint that the
nodes inside the grid cannot contain edges whose target node is outside the grid, only
the border nodes of the grid are allowed to have connections to the nodes outside the
grid. Additionally, for aGridLayout to bematched the closeness level of all the edges has
to be the same.

• FormLayout: it is a paĨern devised to arrange SingleWidgets, notContainers. ĉe paĨern
ėrstly detects a vertical FlowLayout composed of a list of (more than one) horizontal
FlowLayouts. Secondly, it has to be checked that at least two of the elements are verti-
cally aligned. ĉe widgets shown in the example of Figure ǎ.ǉǉ match the FormLayout.
ĉis paĨern searches for alignment marks, which are imaginary vertical lines to which
some of the widgets are aligned. In the example, we have an alignment mark between
passwordLabel and nameField, and another one on the right border of the cancel buĨon.
ĉese alignment marks are used later to deėne the bounds of the AlignedColumns (see
Layout model in Figure ǎ.Ǎ). For example, nameLabel and passwordLabelwould form an
AlignedColumn, and the rest of widgets would form another one. Not all thewidget types
are allowed in aFormLayout, but onlywidgets typically found in a form (e.g.,ComboBoxes

ǉǌǌ

and CheckBoxes are allowed, but not ImageContainers).

Figure ǎ.ǉǌ: Border layout supported paĨerns.

ĉere is another layout deėned in the metamodel, the CustomLayout. As we indicated in Sec-
tion ǎ.Ǌ.Ǌ, this is not actually a layout, but it means that no combination of the selected layout
paĨerns can be applied to the original graph to reach a solution. For example, the distribution
of widgets shown in Figure ǎ.ǉǍ(a) and ǎ.ǉǍ(b) does not ėt any combination of the aforemen-
tioned layout paĨerns, so aCustomLayout will be generated in these cases. When aCustomLay-
out is obtained, developers are responsible for programming the layout by hand.

W1

W2

W3

W4

W1

W2

(a) (b)

Figure ǎ.ǉǍ: Examples of widgets that do not match any paĨern

It can be seen that some paĨerns are more likely to be used when arranging containers, such
as the BorderLayout, whereas other layouts such as the FormLayout are devised to work with
single widgets. FlowLayout (vertical or horizontal) is the most general layout and can be used
for both, containers and single widgets. GridLayouts can also work for both cases.

ĉe paĨerns have not been deėned by means of a graph grammar but they are hardcoded be-
cause some paĨerns (such as the Grid paĨern) cannot be expressed by a context-free graph
grammar, and therefore they cannot be easily managed by graph transformation tools.

ǉǌǍ

ǎ.ǌ.Ǌ LĵŏŃŊŉ ĽłĺĹŇĹłķĹ ĵŀĻŃŇĽŉļŁ

In this section we present the algorithm to discover the structure of the layout (step ǌ in Fig-
ure ǎ.Ǌ) in termsof the layoutmanagers deėned in theprevious subsectionbymeansof paĨerns.
ĉealgorithmgenerates an instanceof theLayoutmodel depicted inFigure ǎ.Ǎ. InSectionǎ.ǌ.ǋ
a complete example describing a step-by-step execution of the algorithm is given.
ĉe layout inference is presented in Algorithm Ǎ (function InferLayout). ĉe function is exe-
cuted for everyWidgetNode associated with a Container. It receives three inputs: aWidgetNode
which is associated with a Container (cNode), the set of identiėers of the predeėned layouts
to use (layoutSet) and the number of closeness levels that appear in the relations of the graph
(nCLevels). It is important to remark that aWidgetNode associated with a Container represents
a graph, and contains theWidgetNodes included in that Container.

GŀŃĶĵŀ ĽłĽŉĽĵŀĽňĵŉĽŃł (ŀĽłĹň Ǌ ŉŃ ǌ)

ĉe solutions set stores the different alternative graphs that steam from the rewriting process,
and represents the possible visual structures of the container associated with cNode. ĉe solSe-
quences set is used to store the sequences of layout paĨerns that have been applied to obtain
each solution stored in solutions. Each layout type is given an integer identiėer, so that a se-
quence of applied paĨerns is just represented as a sequence of integers. ĉus, the rationale of
the solSequences set is to allow fast comparison of solutions, instead of comparing the solution
graphs (graph isomorphism problem).
generatePermutations() in line ǌ generates all the n! possible permutations for the layout identi-
ėers, being n the number of predeėned layouts used.

IŉĹŇĵŉĹ ŃŋĹŇ ŉļĹ ńĹŇŁŊŉĵŉĽŃłň (ŀĽłĹň ǎ ŉŃ ǉǉ)

ĉe algorithm iterates over all the permutations (line ǎ) searching for solutions, so there will
be at most n! solutions for a graph (in practice there will be only a few solutions).
Some initialisations are carried out between lines Ǐ and ǉǉ. currentSolSeq is used to store the
current solution sequence, and is initialised to an empty sequence. Since the algorithm needs
to modify the graph represented by cNode, that graph is deeply cloned in each iteration (i.e.,
for each permutation), so the algorithm works on that copy. ĉe graph will be reduced each
time that there is a paĨernmatch on a subgraph, that is, each subgraph that matches the paĨern

ǉǌǎ

Algorithm Ǎ Layout inference algorithm
ǉ: function IłĺĹŇLĵŏŃŊŉ(cNode, LayoutSet, nCLevels): Solutions
Ǌ: Solutions← {}
ǋ: SolSequences← {}
ǌ: Permutations← generatePermutations(LayoutSet)
Ǎ:
ǎ: for all permutation ∈ Permutations do
Ǐ: CurrentSolSeq← {}
ǐ: graph← copyGraph(cNode)
Ǒ: closenessLimit← ƥ
ǉǈ: remainingNodes← graph.order
ǉǉ: loops← Ƥ
ǉǊ:
ǉǋ: while remainingNodes > ƥ∧

loops < LayoutSet.size ∗ nCLevels do
ǉǌ: pattern← getNextLayoutPattern(permutation)
ǉǍ: Matches← match(graph, pattern, closenessLimit)
ǉǎ:
ǉǏ: if ¬isEmpty(Matches) then
ǉǐ: for allmatch ∈ Matches do
ǉǑ: mergeNodes(graph,match, pattern)
Ǌǈ: end for
Ǌǉ: add(currentSolSeq, pattern)
ǊǊ: resetSequence(permutation)
Ǌǋ: loops← (closenessLevel− ƥ) ∗ LayoutSet.size
Ǌǌ: remainingNodes← graph.order
ǊǍ: else
Ǌǎ: loops← loops+ ƥ
ǊǏ: if loops mod LayoutSet.size = Ƥ then

closenessLimit← closenessLimit+ ƥ
Ǌǐ: end if
ǊǑ: end if
ǋǈ: end while
ǋǉ:
ǋǊ: if remainingNodes > ƥ then return ’No solution’
ǋǋ: else
ǋǌ: if ¬contains(SolSequences, currentSolSeq) then
ǋǍ: layout← createLayout(graph)
ǋǎ: if ¬contains(Solutions, layout) then
ǋǏ: layout.fitness← fitness(layout)
ǋǐ: add(SolSequences, currentSolSeq)
ǋǑ: add(Solutions, layout)
ǌǈ: end if
ǌǉ: end if
ǌǊ: end if
ǌǋ:
ǌǌ: end for
ǌǍ: end function

ǉǌǏ

is replaced by a layout node that contains the subgraph. ĉe closenessLimit is initially set to the
lowest level. remainingNodes is assigned the number of nodes of the graph (i.e. the graph order).
loops indicates the number of loopswithout applying anypaĨern to the graph, i.e. loopswithout
changes.

MĵŉķļĽłĻ ńĵŔĹŇłň (ŀĽłĹň ǉǋ ŉŃ ǉǍ)

ĉe loop in line ǉǋ is in charge of applying paĨern matchings on the current graph in order
to look for solutions. ĉere are two conditions that must be satisėed to continue iterating.
ĉe ėrst condition is that remainingNodes is greater than one. We have already said that the
paĨern matching engine progressively reduces the size of the graph, until the whole graph is
transformed in a single layout node. ĉerefore, if remainingNodes is one it means that we have
found a solution. Otherwise, not all the nodes have been matched and a solution has not been
reached so far. ĉe second condition keeps the loop running while there are pairs of (paĨern,
closenessLevel) that have not been tried (the number of loops without changes is equals to the
number of predeėned layouts used multiplied by the number of closeness levels used). ĉis is
themaximumnumber of iterations that are required to perform a paĨernmatch. Consequently,
it is a stop condition to avoid a inėnite loop when no solution can be reached.

Given a permutation of layout types (layoutSet), getNextLayoutPaĪern() (line ǉǌ) iterates over
the permutation and returns the next layout type, in such a way that when there are no more
layout types leě it restarts the cycle from the beginning. ĉe invocation of the paĪern matching
engine is represented by the functionmatch() (line ǉǍ).

ĉe paĨern matching engine iterates over the graph nodes looking for matches of a given pat-
tern. ĉe paĨern is matched against the graph starting from every node (because the starting
node of a match cannot be determined beforehand). ĉat leads to match subgraphs that are
contained in other matches. In that case in which there are nested matches, we keep the largest
one (that nests the other submatches). Single-node matches are discarded.

ĉe closenessLimit is included in the paĨernmatching engine call so only the edges with a close-
ness level equals or less than the limit can match a paĨern (the rest of edges are ignored). Note
that it makes a partition of the graph in connected components, so each connected component
is a subgraph of the original graph where all the edges have a closeness level equals or less than
the limit.

ǉǌǐ

a3

a1

a2

b

(b)

E,B,1

B,E,2

S,B,1
F,B,2

a3

a1

a2

b

(a)

Figure ǎ.ǉǎ: Example of non-valid match for the Vertical Flow Layout paĨern.

a1 b1

b2

c1

c2

(b)

a1 b1

a2 b2

c1

c2

(a)

B,E,1

a2
E,B,1 E,B,1

B,E,1

O,B,1 OB,B,1

E,B,1

Figure ǎ.ǉǏ: Example of match split for the Vertical Flow Layout paĨern.

Not all thematches performed by thematching engine are valid. ĉere are two constraints that
must be ensured: i) the area delimited by the matched nodes does not enter the area occupied
by other node outside thematch, and ii) there are no nodes that are shared by differentmatches.
Toexplain theėrst constraint, let us consider the graph inFigureǎ.ǉǎ(b) that corresponds to the
layout of widgets represented in Figure ǎ.ǉǎ(a). In this example, if the matching engine tries to
match a vertical columnofnodes (Vertical FlowLayout), itwouldperform the followingmatch:
Mƥ = {aƥ, aƦ, aƧ}. ĉe edges eƥ(aƥ, b) and eƦ(b, aƧ) are tagged with level Ǌ, which is a higher
closeness level than the edges eƧ(aƥ, aƦ) and eƨ(aƦ, aƧ) (level ǉ), and this leads to the paĨern
matching engine to ignore the edges eƥ(aƥ, b) and eƦ(b, aƧ), and thus b could not be matched
anymore. As it can be seen, the rectangular area composed by the nodes of the match would
enter the area taken by b. In order to avoid the conĚict, the match is discarded.

ĉe second constraint ensures that we get disjoint matches. When we have nodes that are
shared by two or more matches, we convert the shared nodes in a new match, and we remove

ǉǌǑ

these nodes from the rest of matches, so obtaining two or more new matches. For instance,
if we match a vertical column of nodes (Vertical Flow Layout) against the graph presented
in Figure ǎ.ǉǏ(b) that reĚects the layout of Figure ǎ.ǉǏ(a), then we will have two matches:
Mƥ = {aƥ, aƦ, cƥ, cƦ} and MƦ = {bƥ, bƦ, cƥ, cƦ}. However, {cƥ, cƦ} are conĚicting nodes since
they are shared by both matches. ĉerefore, we split the twomatches in three matches, namely
M′

ƥ = {aƥ, aƦ}, M′
Ʀ = {bƥ, bƦ} and M′

Ƨ = {cƥ, cƦ}. When we split some matches, we have to
check that every submatch still ėts the layout paĨern, otherwise it is discarded.

MĵŉķļĹň ĺŃŊłĸ ķĵňĹ (ŀĽłĹň ǉǏ ŉŃ ǊǊ)

If there are matches for a paĨern on the current graph (line ǉǏ), then the nodes of the match
are merged into one node. ĉemergeNodes() (line ǉǑ) works as follows:

• A new node of type LayoutNode is created, which will represent the joining of thematch.
ĉe new node is marked with the layout type (type aĨribute) that has been applied.

• All the matched nodes are removed from the original graph and included in the new
node as children. ĉe coordinates of the new node represent the area that contains all its
children.

• All the edges between a pair ofmatched nodes (which are now children of the newnode)
are kept.

• All the edges from a non-matched node that starts or ends in a matched node now refer
to the new node.

• If there are more than two edges between the new node and other non-matched node,
the edges are replaced by a new edge. ĉe Allen intervals are recalculated. ĉe closeness
level is the minimum level of the replaced edges.

Aěer the reduction of the graph, the layout paĨern applied is registered in the current solution
sequence (line Ǌǉ).
ĉe permutation is reset (line ǊǊ) so the next layout to try will be the ėrst one of the permuta-
tion again. ĉis is needed tomatch the same paĨern again over the rewriĨen graph. Hence, the
loop variable is updated so that the iteration starts over the current closeness level.

ǉǍǈ

NŃ ŁĵŉķļĹň ĺŃŊłĸ ķĵňĹ (ŀĽłĹň ǊǍ ŉŃ ǋǈ)

If there are no layout paĨern matches, the number of iterations without changes is increased
(line Ǌǎ). ĉe condition in line ǊǏ expresses that every k iterations without changes, being k
the number of layout types used, the current closeness level limit (closenessLimit) is increased
in one level. ĉis will lead to that in the next iterations the layout paĨerns will be less strict
about the distances between the elements. ĉe remainingNodes variable is updated (line Ǌǌ)
with the order of the graph, considering that it is the number of TileNodeswithout parent.

CļĹķĿĽłĻ ňŃŀŊŉĽŃłň (ŀĽłĹň ǋǊ ŉŃ ǌǊ)

If the inner loop (lines ǉǋ to ǋǈ) ėnishes and the number of remaining nodes is greater than
one (line ǋǊ), then there is no solution. Otherwise, a solution has been found. If the solution
found is different from all the solutions stored up to that point (line ǋǌ), then we may have a
new solution. However, we cannot be sure whether the solution is new or not because two dif-
ferent solution sequences (made of layout paĨern identiėers)may lead to the same graphwhen
they contain common paĨerns in different orders. In this case, the corresponding layout tree is
created (createLayout() function in line ǋǍ), and the layout trees are compared. In this way, only
new solutions are stored (line ǋǑ). Please note that in a great number of cases the same solution
sequence is reached by different permutations, so the solSequences set is an optimisation for fast
comparison, which is useful to avoid many tree comparisons.

CŇĹĵŉĽłĻ ŉļĹ łĹŌ ŀĵŏŃŊŉ (ŀĽłĹ ǋǍ)

ĉe createLayout() function creates the layout structure for a graph that reĚects the hierarchical
structureof the layout that is going tobe created. Tomake the explanation clearerwe sometimes
say ’Widgets’ or ’Container’ when we actually refer to ’the LayoutElement associated with that
Widget or Container’.
For some of the layouts deėned in the Layoutmodel, speciėc aĨributes must be initialised. For
instance, for a BorderLayout the nodes that correspond to the predeėned areas (top, boĨom,
leě, right, center) are set by analysing the incoming and outcoming relations of that node. A
FormLayout also has its own aĨributes. ĉe nodes that compose a FormLayout are analysed to
identify the vertical alignmentmarks, which aredistances in theX-axis that coincide (with some
margin of tolerance) with the leě or right bound of at least two nodes. Amark is represented as
percentageof the relativedistance to the leěboundof theContainer. When the alignmentmarks

ǉǍǉ

have been detected, the nodes can be classiėed in the AlignedColumns deėned by contiguous
alignment marks.
For each Layout, the spacing and sizing properties are set (step Ǎ in Figure ǎ.Ǌ). hSize and vSize
are the horizontal and vertical percentages of space occupied by theWidgets compared to their
Container. Gaps (either horizontal or vertical) are created for each pair of adjacent Widgets.
Margins are calculated for theLayouts (intermediate layouts or not) that are children of aLayout
associated with a Container.
ĉe createLayout() function also represents the alignment in an explicit manner (step ǎ in Fig-
ure ǎ.Ǌ). hAlignment and vAlignment represent the horizontal and vertical alignment regarding
the area of the enclosing layout, i.e. the minimum area which is large enough to contain all the
widgets of the parent layout. For Layouts or ElementNodes nested in a horizontal FlowLayout,
only vAlignment is set (the horizontal position is controlled by the layout manager) except in
the case that there is a horizontal FlowLayout inside another one, then hAlignment is also set.
Similarly, for Layouts or ElementNodes nested in a vertical FlowLayout, only hAlignment is set
but in the case of a vertical FlowLayout nested in another one. ĉe value to decide if the bound
of an element (top, boĨom, leě or right) is aligned is ǉǍƻ by default. For example, if we have a
HorizontalFlowLayout associated with a container whose width is ǉǈǈ pixels, and it contains an
ElementNode associated to a label with coordinates (ƥƤ, ƦƤ), then hAlignment = LEFT for the
ElementNode because ƥƤ/ƥƤƤ < Ƥ.ƥƩ.

AňňĹňňĽłĻ ŉļĹ łĹŌ ŀĵŏŃŊŉ (ŀĽłĹ ǋǏ)

Every new solution is assessed by a ėtness function (line ǋǏ) and assigned a ėtness value. ĉe
meaning of our ėtness function is that a higher value (close to one) denotes a beĨer solution
that a lower value (close to zero). ĉe ėtness value is calculated with the following formula:

fitness =
n∑n

i=ƥ wi ∗ (dmax − di + ƥ)

Where n is the total number of layouts in the solution represented by the layout tree, wi is the
weight of the i-th layout, dmax is the depth of the layout tree and di is the depth of the i-th layout.
ĉe weight of a layout is obtained as follows:

• For each FlowLayout or FormLayout we add Ǌ, but in the case of a FlowLayout nested in
a FormLayout which is ignored (because it is part of the FormLayout and should not be
counted twice).

ǉǍǊ

• For eachGridLayout or BorderLayout we add ǉ.

ĉe ėtness function gives a beĨer score tomore speciėc layouts (border and grid) over the Ěow
and form layouts which are more general. It is also remarkable that deeper layouts get a worse
ėtness value than shallow layouts, becauseweprefer balanced layout trees (wider and less deep).

ǎ.ǌ.ǋ LĵŏŃŊŉ ĽłĺĹŇĹłķĹ ĹŎĵŁńŀĹ

Nowwe shall show an example on how the layout inference algorithm works based on the Tile
model (i.e., graph) depicted in Figure ǎ.ǉǊ. For the sake of simplicity, we will only use the fol-
lowing subset of the predeėned layouts: horizontal Ěow layout, vertical Ěow layout and form
layout, but the procedure would be applied in the samemanner with more layout types. In this
example there is only one closeness level, which means that all the distances between widgets
are considered as similar. ĉe algorithm will generate over Ƨ! = ƪ permutations of the layouts,
which are shown next (HFlowmeans horizontal Ěow layout, VFlowmeans vertical Ěow layout,
and Formmeans form layout).

..
Iteration ƺǉ: HFlow, VFlow, Form

PaĨern to try HFlow
Matches found ǉ: {nameLabel, nameField}

Ǌ: {passwordLabel, passwordField}
ǋ: {ok, cancel}

Reduced graph (see step ȕ in Figure Ț.ȕȜ)
Graph order ǋ nodes

Restart layout sequence
Layout to try HFlow
Matches found None
Layout to try VFlow
Matches found ǉ: {name_merged, password_merged,

ok_cancel_merged}
Reduced graph (see step Ȗ in Figure Ț.ȕȜ)
Graph order ǉ node

New solution found: solƥ = {HFlow,VFlow}
Fitness = ƨ

ƥƤ

((ǉ + ǋ) / (ǉ VFlow * Ǌ * Ǌ + ǋ HFlow * Ǌ * ǉ))
Solutions solǉ

ǉǍǋ

..
Iteration ƺǊ: HFlow, Form, VFlow

Similar to Iteration ƺǉ (no match for the Form paĨern
Solution found: solƦ = solƥ→ DiscardsolƦ

..
Iteration ƺǋ: VFlow, HFlow, Form

PaĨern to try VFlow
Matches found ǉ: {nameLabel, passwordLabel},

Ǌ: {nameField, passwordField}
Reduced graph (see step ȕ in Figure Ț.ȕȝ)
Graph order ǌ nodes

Restart layout sequence
Layout to try VFlow
Matches found None
Layout to try HFlow
Matches found ǉ: {name_pass_label_merged,

name_pass_ėeld_merged},
Ǌ: {ok, cancel}

Reduced graph (see step Ȗ in Figure Ț.ȕȝ)
Graph order Ǌ nodes

Restart layout sequence

..
Iteration ƺǋ (Continuation)

PaĨern to try VFlow
Matches found ǉ: {name_pass_merged,

ok_cancel_merged}
New solution found: solƧ = {VFlow,HFlow,VFlow}

Fitness = Ʃ
ƥƬ

((ǉ+Ǌ+Ǌ)/(ǉ VFlow * Ǌ * ǋ + Ǌ HFlow * Ǌ * Ǌ + Ǌ VFlow * Ǌ * ǉ))
Solutions solǉ, solǋ

..
Iteration ƺǌ: VFlow, Form, HFlow

Similar to Iteration ƺǋ (no match for the Form paĨern)
Solution found: solƨ = solƧ→ Discardsolƨ

ǉǍǌ

..
Iteration ƺǍ: Form, HFlow, VFlow

PaĨern to try Form
Matches found ǉ: {nameLabel, nameField, passwordLabel, passwordField, ok, cancel}
Graph order ǉ node

New solution found: solƩ = {Form}
Fitness = ƥ

Ʀ

(ǉ / (ǉ Form * Ǌ))
Solutions solǉ, solǋ, solǍ

..
Iteration ƺǎ: Form, VFlow, HFlow

Identical to Iteration ƺǍ
Solution found: solƪ = solƩ→ Discardsolƪ

passwordLabel passwordField

nameLabel nameField

ok cancel

B, E, 1

B, E, 1

B, E, 1

E, B, 1 E, B, 1

C, B, 1 FB, B, 1

name
_merged

E, B, 1

FB, B, 1

password
_merged

ok_cancel
_merged

H Flow V Flow
all

_merged

Figure ǎ.ǉǐ: Inference example. Permutation {HFlow, VFlow, Form} applied to the graph in
Figure ǎ.ǉǊ.

ĉe algorithm returns the solution set: {solƥ, solƧ, solƩ}. ĉe best solution is solș because it has
the highest ėtness value.
ĉere are some remarkable details about the layouts created. We will comment on the best
solution. It is a FormLayout with two AlignedColumns (columns cȕ and cȖ in Figure ǎ.Ǌǈ). ĉe
ėrst AlignedColumn contains nameLabel and passwordLabel aligned to both leě and right (i.e.,
justiėed). ĉe secondAlignedColumn includes nameField and passwordField that aligned to both
leě and right, and ok and cancel that are aligned to the right.
ĉe FormLayout has hAlignment=CENTER and vAlignment=CENTER because the group of
widgets laid out are centered in their container (the window). ĉe last Vertical FlowLayout

ǉǍǍ

passwordLabel passwordField

nameLabel nameField

ok cancel

B, E, 1

B, E, 1

B, E, 1

E, B, 1 E, B, 1

C, B, 1 FB, B, 1

V Flow name_pass_
label_merged

ok cancel

B, E, 1

B, E, 1

C, B, 1 FB, B, 1

name_pass_
field_merged

H Flow

FB, B, 1

name_pass
_merged

ok_cancel
_merged

V Flow
all

_merged

Figure ǎ.ǉǑ: Inference example. Permutation {VFlow, HFlow, Form} applied to the graph in
Figure ǎ.ǉǊ.

Figure ǎ.Ǌǈ: Alignment columns for the Login window.

inside the FormLayout (i.e., the ok and cancel widgets) has vAlignment=RIGHT, because both
widgets as a whole are aligned to the right part of the area delimited by FormLayout (i.e., the
area of all the widgets inside the window).

ǎ.ǌ.ǌ PĹŇĺŃŇŁĵłķĹ ĹŋĵŀŊĵŉĽŃł

In this section we will show the results of the performance analysis of the layout inference al-
gorithm that we have carried out. We have generated several views containing an increasing

ǉǍǎ

number of widgets. ĉe widgets of a view are arranged in groups, and each group conforms to
a layout type supported by our algorithm. ĉe groups are randomly placed but close to other
groups (so there are not signiėcant distances between widgets), with the additional constraint
that a group cannot overlap another one. ĉen, we havemeasured the execution time of the in-
ference algorithm. Aěwerwards, the same process is repeated but this time the same views are
arranged in several containers, to emulate the common scenario when developers designGUIs.
Besides, the analysis has been carried out for three to ėve layout types to show the impact of the
number of layout types.

Figure ǎ.Ǌǉ shows the execution (in seconds) in the case that there are no containers in the
view (the view itself is the only container) and all the widgets are close. ĉis is the worst case as
the algorithm has to deal with a single graph with all the widgets. Figure ǎ.ǊǊ shows the result
when the view is split in containers, with each container consisting of up to Ǌǈ widgets. ĉis is
an average case of the algorithm. ĉe tests have been run in an Intel Core iǍ with ǌGB ĆM.

Figure ǎ.Ǌǉ: Execution time for widgets in a single container.

Comparing both charts we can see that the layout inference applied to a view split in containers
(Figure ǎ.ǊǊ) obtains signiėcative beĨer results than using no containers at all (Figure ǎ.Ǌǉ).
When a view is split in containers and the number of widgets is augmented, the execution time
is linearly increased. On the other hand, when a view is not split in containers the execution

ǉǍǏ

Figure ǎ.ǊǊ: Execution time for widgets arranged in containers (a container every Ǌǈ wid-
gets).

time increases in a polynomial or even exponential way. It comes as no suprise since the paĨern
matching is applied on smaller graphs with only one container that contains a large graph. For
example, if applying the algorithm to a view of ǉǈǈ nodes arranged in Ǎ containers of Ǌǈ nodes
each one, then the algorithm analyses Ǎ graphs of Ǌǈ nodes each one, and one graph with Ǎ
nodes (i.e., the graph that relates the Ǎ containers among each other). Note that in the vast
majority of cases, views are arranged in containers, so the chart displayed in Figure ǎ.ǊǊ ismore
realistic than Figure ǎ.Ǌǉ.

As it can be seen in both graphs, applying the inference algorithmwithmore layout types seems
to have an exponential impact on the execution time, which is logical since the algorithm iter-
ates as oěen as the number of permutations (n!) of n layout types. For three layout types, we
usedHFlow, VFlow and Form layouts, for four layout types we used the same three layouts and
either Grid or Border layout (different tests with each one), and for ėve layout types we used
HFlow, VFlow, Form, Grid and Border layouts. We decide to include the Form layout in all
cases because its paĨern matching is the most complex one, whereas for the other layout types
the complexity is more or less similar.

ĉe results show that the actual execution time of the inference algorithm is reasonably accept-
able (beyond its algorithmic complexity). For interactive applications that require on-the-Ěy
layout inference, using the algorithm with more than Ǎ layout types may be a liĨle slow (Ǎ lay-

ǉǍǐ

out types and ǉǈǈ widgets takes Ǌ,Ǐǐ seconds in the worst case and ǈ,ǌǎ seconds in the average
case). However, for non-interactive applications such as GUI migration, that works on batch
mode, the algorithm is practical as it obtains an admissible execution timewith evenmore than
ėve layout types.
ĉe current implementation of the algorithmhas liĨle optimisations, so in the future we expect
a substantial drop in the execution time when some optimisations are done (e.g., pruning the
search tree by detecting already visited sequences).

ǎ.Ǎ CĵňĹ ňŉŊĸŏ: ĺŇŃŁWĽŇĹĺŇĵŁĹň ŉŃ ĺŀŊĽĸŌĹĶ ĽłŉĹŇĺĵķĹň

ĉis section presents a case study that has been carried out to put into practice the layout infer-
ence approach of the previous section. ĉe goal of the case study is to automatically generate
ėnal GUI code from wireframes created with the WireframeSketcher [ǉǈǎ] tool (it could have
been equally applied to sketching and mockup-tools without loss of generality). ĉe transfor-
mation of a wireframe into a ėnal user interface requires layout inference in order to generate
the source code for a particular platform and GUI toolkit. ĉe actual implementation used in
this case study is presented in Section ǎ.ǎ.

ǎ.Ǎ.ǉ CŃłŉĹŎŉ Ńĺ ŉļĹ ķĵňĹ ňŉŊĸŏ

Designing GUIs is a crucial and complex task in soěware application development, which in-
volves dealingwith aspects such as functionality, accessibility and usability. An iterative process
is normally applied in GUI design, in which several representations of the GUI at a different
detail level are built, so users and developers can experiment and discuss about the structure
and behaviour of theGUI. Frequently three representations are used: sketches, wireframes and
mockups. Sketches are rapid, freehand drawings that show an initial design idea on the inter-
face. Wireframes reĚect how the contents are distributed in the screen (i.e., the layout of the
widgets that represent the content). Mockups reėne wireframes by adding details like colours
or images.
Wireframing tools commonly provide speciėc editors for creating wireframes and mockups.
ĉere are also tools that can automatically generate ėnal GUI code from wireframes or mock-
ups. For example, Reify [ǉǈǏ] is a tool that generates web interfaces from wireframes created
with the Balsamiq [Ǎǎ]wireframing tool. However, wireframe generation tools have signiėcant
limitations at present, as they are limited to certain types of layouts [ǌ], they are only applicable

ǉǍǑ

on certain platforms such as web interfaces with CSS [Ǎ], or they are still in an immature state
(like Reify).
Wireframes do not have an explicit notion of layout, but widgets are dragged from a paleĨe
and placed into a particular position (which is sometimes almost arbitrary) on a canvas. Wire-
frames therefore only provide a coordinate-based layout. ĉe transformation of wireframes into
ėnal GUIs in modern platforms with explicit layout facilities poses the challenge of uncover-
ing the implicit structure of the GUI in order to obtain an explicit representation of the layout.
Although we have only used wireframes in the case study, the approach is also applicable to
mockups.
On the other hand, in Ǌǈǉǈ Ethan MarcoĨe coined the term Responsive Web Design [ǉǈǐ] to
a design philosophy aimed at craěing sites to provide an optimal viewing experience. ĉree
basic principlesmake up this philosophy: i) deėne Ěuid grids, ii) deėne Ěexible images, and iii)
use CSS ǋ media queries to change the style depending on the screen dimension. Since then,
responsive interfaces have become popular, as well as Ěuid layouts (not necessarily grids).
In the case study, adaptive web interfaces (interfaces with a Ěuid layout) were generated by us-
ing ZK [ǌǌ]. We did not addressed a full-Ěedged responsive UI design because that implies
the use of algorithms to rearrange the content. As our Layoutmodel explicitly captures explicit
information about the layout, this rearrangement is possible. ĉus, this case study can be con-
sidered as a ėrst step towards generating responsive web interfaces.

ǎ.Ǎ.Ǌ EŋĵŀŊĵŉĽŃł Ńĺ ŉļĹ ĵńńŇŃĵķļ

We have conducted an experiment with users to validate our approach. Ǌǈ people working
on the IT sector (with different roles such as web developer or soěware analyst) have been
prompted to design a series of wireframes and then apply our layout inference tool to generate
the source code of the ėnal GUI.

ǎ.Ǎ.Ǌ.ǉ MĹŉļŃĸŃŀŃĻŏ

ĉe methodology we have used is the following. Firstly, each person was provided with an
explanatory document that he or she should read carefully. ĉe document explains the utility
of wireframes, gives some instructions on how to use both thewireframing tool we have chosen
(WireframeSketcher) and our layout inference tool, and explains the task to accomplish. Aěer
reading the document, each participant should accomplish the design of Ǎ screens for an on-

ǉǎǈ

line bookstore application. ĉese Ǎ screens intend to be typical views of a web application that
involves common design paĨerns such as master-detail or registration form. Particularly, these
are the Ǎ screens we demanded (the name of the view is indicated before the colon):

• best: it displays information about the best-sellers.

• cart: a shopping-cart view that shows the current state of the cart.

• detail: it shows detailed information about a selected book.

• search: allows searching for some criteria and see the results of the query.

• user: it lets users create a new user account.

When the user ėnished the screens, he or she was encouraged to apply our tool to generate
the code of the ėnal GUI and execute it to see how the view looks like. Participants must not
modify the default values for the tool parameters (see Figure ǎ.ǋǏ) in the ėrst execution, but
can be altered if the result was not what the user expected at ėrst.
Fromthewireframesdesignedby theusersweassess the approach in twoways. Firstly, eachuser
was requested to ėll in a questionnaire about the experience, where the user could indicate how
good the generated viewwas and they could express whether the generated layoutmatched the
idea he or she had inmind. ĉis was intented to know how useful is the tool from the developer
point of view. Secondly, we demanded the participants to submit the wireframes they created,
in order to perform a quantitative analysis of the result of the layout inference.

ǎ.Ǎ.Ǌ.Ǌ QŊĵłŉĽŉĵŉĽŋĹ ŇĹňŊŀŉň

Screen best cart detail search user TOTAL
Visual resemblance Ǒǎ.Ǌƻ ǑǏ.Ǌƻ ǑǏ.Ǌƻ ǑǑ.ǉƻ ǑǍ.ǎƻ ǑǏ.ǌƻ
Parameter changes ǋǈ.ǈƻ ǋǋ.ǋƻ ǋǈ.ǈƻ Ǌǎ.Ǐƻ ǋǎ.Ǐƻ ǋǉ.ǋƻ
Average of layouts (best solution) Ǎ.ǈ ǌ.Ǌ ǌ.Ǒ ǋ.ǌ Ǌ.ǌ ǌ.ǈ
Average of alternatives per view Ǌ.ǎ ǌ.ǉ ǋ.ǋ ǋ.ǉ ǌ.Ǌ ǋ.ǌ
Layout resizing ǏǏ.ǐƻ ǐǌ.Ǒƻ ǏǍ.ǎƻ Ǒǈ.Ǎƻ Ǒǋ.ǌƻ ǐǌ.ǌƻ

Table ǎ.ǉ: Evaluation results.

ǉǎǉ

Table ǎ.ǉ shows the results of the evaluation (classiėed by view). Visual resemblance measures
how good the generated GUI resembles the original wireframe (i.e., the accurary of the gener-
ated GUI). We count the number of generated widgets located in the same place as the corre-
sponding widget in the original view. Our tool intentionally compares widgets with some de-
gree of Ěexibility, so minor misalignments are allowed, and widgets that are clearly misplaced
or misaligned with regard to the original view are counted as errors. In global, there is a high
degree of accuracy (ǑǏƻ) of the generated windows, and there is no signiėcative difference be-
tween the different types of views. ĉis high accuracy is partly because if, in the ėrst try, the
GUI does not ressemble the original wireframe we change the algorithm parameters in order
to improve the result, as it is explained below.

Parameter changes expresses the percentage of views designedby the users that required changes
in the default values of the parameters to get a reasonable good GUI (high visual resemblance).
As it can be seen, inmany cases (ǋǉƻof the views) parameters needed to be tuned and there are
not remarkable differences between thedifferent types of views. From the end-user perspective,
this means that he or she would get a good enough GUI without tuning the algorithm in the
Ǐǈƻ of the cases. In the next subsection we will explain a current limitation of the approach
related to the maximum closeness cluster deviation parameter.

ĉe average of layouts of the best solution counts the number of layout managers used in the
best solution (i.e., the solution which the highest ėtness value). On average a composition of
ǌ layout managers are required to completely deėne the layout of the views. A low average of
layouts indicates that the best solution does not use unnecessary layouts but just the required
layouts (i.e., it is efficient in most cases).

ĉe average of alternatives per view represents the number of different layout compositions that
are offered for each view on average. In our case we have an average of ǋ.ǌ alternatives per view.

ĉe last row of the table (layout resizing) indicates whether the ėnal GUI generated for the best
solution is resized appropriatelywhen tested. ĉere aredifferent alternative solutions for a given
view that at ėrst glance may seem equally valid, but they look completely different when the
view is resized. A good layout solution arranges the widgets in such a way that, when they are
resized, they seem alright.

We have an ǐǌ,ǌƻ of success rate related to view resizing, which means that there are around
ǉǍƻ of views for which the ėtness function fails (i.e., it does not always select the best option
for resizing). We have a slightly higher success rate for the search and user types of views, be-
cause for these views most people used more or less standard form-like designs which ėt our

ǉǎǊ

FormLayout insteadof using complex combinations of other layout types. Usingmore complex
ėtness functions that not only take into account the number of layouts involved could result in
improvements in the best, cart and detail types of views. Wewill deep into the limitations of the
current ėtness function in the next subsection.

ǎ.Ǎ.Ǌ.ǋ UňĹŇ ĵňňĹňňŁĹłŉ

Users ėlled in a questionnaire that includedėve questions that summarise their experience. ĉe
questions were: ’Are the generated views as I expected?’, ’Are the margins, gaps and alignment
correct?’, ’When resizing the windows, are the widgets resized appropriately?’, ’Could the gen-
erated windows be used in a real application?’, and ’Is the layout inference tool useful?’. ĉey
were graded by using a Ǎ-point Likert scale, and the results for the questions are shown in Fig-
ures ǎ.Ǌǋ to ǎ.ǊǏ respectively.

.. ǈƻ. ǈƻ.
ǉǍƻ

.
Ǎǈƻ

.

ǋǍƻ

..

Strongly disagree

..

Disagree

.. Neither agree nor disagree..
Agree

..

Strongly Agree

Figure ǎ.Ǌǋ: Are the generated views as I expected?

ĉe vastmajority of the users (ǐǍƻ) agree or totally agree that at ėrst sight, the generated views
resemble the original ones (see Figure ǎ.Ǌǌ). ĉis results are in line with the assessment that we
tackled bymanually inspecting themodels and views, but we could have expected a higher rate
in this question. ĉe reason because users did not give a beĨer mark to this question is due to
almost none of the users (only ǉǈƻ of them) changed the default parameters, so the algorithm
did not always showed a very good result. If users had tuned the parameters, beĨer score would
have probably been achieved.

ǉǎǋ

.. ǈƻ. Ǎƻ.

ǊǍƻ

.ǌǍƻ .

ǊǍƻ

..

Strongly disagree

..

Disagree

..
Neither agree nor disagree

..
Agree

..

Strongly Agree

Figure ǎ.Ǌǌ: Are the margins, gaps and alignment correct?

ĉe results of ’Are themargins, gaps and alignment correct?’ (Figure ǎ.Ǌǌ) have a certain degree
of similitude with the results obtained in the previous question, since that views that are more
or less similar to the original ones must have correct margins, gaps, and alignment.

.. Ǎƻ.

ǉǈƻ

.

ǊǍƻ

.
ǋǍƻ

.

ǊǍƻ

..

Strongly disagree

..

Disagree

..
Neither agree nor disagree

.. Agree..

Strongly Agree

Figure ǎ.ǊǍ: When resizing the windows, are the widgets resized appropriately?

With respect to resizing, ǎǈƻ of the users think (agree or totally agree) that the resizing be-
haviour is more or less suitable (see Figure ǎ.ǊǍ). As we indicated, the resizing behaviour is not
always suitable, which is partly related to the weakness of the ėtness function, which we will
explain in detail in the next subsection. ĉe difference between the score of the quantitative
evaluation (ǐǌƻ of success) and the score given by users is mainly due to the fact that users did
not tune the parameters, so they found weird resizing in many cases.

.. Ǎƻ.
Ǎƻ

.

ǊǍƻ

.
ǌǈƻ

.

ǊǍƻ

..

Strongly disagree

..

Disagree

..
Neither agree nor disagree

.. Agree..

Strongly Agree

Figure ǎ.Ǌǎ: Could the generated windows be used in a real application?

ǉǎǌ

With regard to the question ’Could the generated windows be used in a real application?’ ǎǍƻ
of the users agree, but others have some reservations, mainly due to that resizing fails in some
cases and users have to tune parameters that they do not feel that are easy to change.

.. ǈƻ. ǈƻ.
ǉǈƻ

.
ǌǈƻ

.

Ǎǈƻ

..

Strongly disagree

..

Disagree

..
Neither agree nor disagree

.. Agree..

Strongly Agree

Figure ǎ.ǊǏ: Is the layout inference tool useful?

Ǎǈƻ of the users ėnd the tool extremely useful, and ǌǈƻ think that the approach is useful (Fig-
ure ǎ.ǊǏ). Despite the current limitations of the approach, developers think that the tool is
useful because they can reuse wireframes and save time when implementing the GUI of the
application.

ǎ.Ǎ.Ǌ.ǌ AńńŇŃĵķļ ŀĽŁĽŉĵŉĽŃłň

ĉe current implementation of the approach has two limitations at present. ĉe ėrst limitation
is related to the maximum closeness cluster deviation parameter, and the second limitation is
the implementation of the ėtness function.

WĽĸĻĹŉ ĸĽňŉĵłķĹ ķŀŊňŉĹŇĽłĻ. As we have already said, the maximum cluster deviation
parameter represents the maximum standard deviation of a group of distances that is admissi-
ble for them so they all can be considered similar. ĉis parameter is not only used to perform
Ěexible comparisons, but also drives the paĨern matching phase by indicating what relations
among the elements can be matched.
For example, in the fragment of the Detail view in Figure ǎ.Ǌǐ there are two clearly different
areas in the view, the form on the leě and the right part composed of the Cover image and the
Enlarge buĨon, thus there should be a layout for each part, and a layout that ’glues’ both parts.
ĉe designer that created the view leě some empty space in themiddle of the view on purpose,
so both parts can be distinguished. Given that the ’close’ or ’far’ concepts are subjective (they
depend on the human perception), we need themaximum closeness deviation parameter to be
able to decide which widgets are close or far.

ǉǎǍ

But sometimes, the closeness level between a pair ofwidgetsmay confuse the inference process.
In the example of Figure ǎ.Ǌǐ, the relation between the Description label and the Author label
will have a closeness level higher (i.e., they are signiėcantly distant) than the Description label
and theDescription text area, and higher than theDescription text area and the Author text area.
While this is strictly correct, the inference process should consider these relations as equally
close because they are part of a form and the user that created the viewmeant it to be one form,
not two separatedparts. In such cases, themaximumcloseness deviationparametermay require
being carefully tuned in order to get a good result.

Figure ǎ.Ǌǐ: Example of the closeness problem.

FĽŉłĹňň ĺŊłķŉĽŃł ĽŁńŀĹŁĹłŉĵŉĽŃł. Figure ǎ.ǊǑ shows a simpliėed Best view. Let us as-
sume that we only want to use the (vertical/horizontal) FlowLayout. ĉis view can be laid out
in two different ways (two layout alternatives), which are:

• Alternative ȕ: a horizontal FlowLayout composed of ǌ vertical FlowLayouts (with ǋ wid-
gets each one).

• Alternative Ȗ: a vertical FlowLayout composed of ǋ horizontal FlowLayouts (with ǌ wid-
gets each one).

ǉǎǎ

Figure ǎ.ǋǈ shows the generated view for the ėrst alternative, and Figure ǎ.ǋǉ shows that view
aěer resizing. In the same manner, Figure ǎ.ǋǊ shows the second alternative, and Figure ǎ.ǋǋ
shows the resized view. It can be seen that the alternative ǉ generates nice views since the aspect
ratio of widgets and distances are kept, but on the contrary, alternative Ǌ leads to unaesthetical
views when they are resized. ĉese differences in the appearance of the GUI are due to the way
that the information about the layout is expressed in each alternative. In the ėrst alternative,
we can specify that each widget is centered with regard to its column, but in the second way,
we have no direct means to specify the relative distances between the widgets in each row. We
can see that there are beĨer alternatives than others (particularly, alternative ǉ is beĨer than
alternative Ǌ).

Figure ǎ.ǊǑ: Example window.

ĉerefore, we need to develop more complex ėtness functions that not only take into account
efficient layout compositions (in the sense of reducing the number of layouts nested) but also
aesthetic criteria. Particularly, considering the homogeneity of the content of the layouts in
combination with the current ėtness function could lead to beĨer results.

ǉǎǏ

Figure ǎ.ǋǈ: Example horizontal-vertical Ěow.

Figure ǎ.ǋǉ: Example horizontal-vertical Ěow resized.

Figure ǎ.ǋǊ: Example vertical-horizontal Ěow.

ǉǎǐ

Figure ǎ.ǋǋ: Example vertical-horizontal Ěow resized.

Source
technology

model

Normalised
GUI tree
model

Target
code

Target
technology

model

Region
model

Tile
model

Layout
model

Legacy
artefact

Structure
model

Figure ǎ.ǋǌ: Parts of the MDE architecture related to the Wireframes to ZK case study.

ǎ.ǎ IŁńŀĹŁĹłŉĵŉĽŃł

We have implemented a tool that supports the case study and includes an implementation of
the proposed algorithm. ĉe tool provides all the necessary elements to transform a wireframe
created with WireframeSketcher to a Ěuid user interface with the ZK framework. It has been
implemented in Java using the EclipseModeling Framework (EMF) [Ǎǋ], using Ecore to deėne
the metamodels. MǊM and MǊT transformations have been programmed in Java using the
Dynamic EMF API.

Next we will show a few details about the implementation of the tool. Given that the main part

ǉǎǑ

has been thoroughly explained in the previous sections, we will brieĚy comment on the parts
of the approach that are dependant of the case study and which can be used as a guide for im-
plementing other scenarios. Concretely, these parts are (see highlighted parts in Figure ǎ.ǋǌ):
the obtainment of Normalised models from the models provided by WireframeSketcher, and
the generation of web interfaces with ZK from the Layout and Structure models. We will also
outline the transformation to get Structuremodels. Finally, we will brieĚy present the interface
of the tool.

ǎ.ǎ.ǉ MĵńńĽłĻ WĽŇĹĺŇĵŁĹSĿĹŉķļĹŇ ŉŃ NŃŇŁĵŀĽňĹĸ ŁŃĸĹŀň

WireframeSketcher [ǉǈǎ] is a tool to create wireframes andmockups for desktop, web andmo-
bile applications, which can be run on the Eclipse platform. WireframeSketcher generateswire-
frames as models conforming to a metamodel that is provided with the tool, which is partially
shown in Figure ǎ.ǋǍ. If we used a differentwireframing tool that does not representwireframes
as models, implementing an ad-hoc injector or using injection tools such as GraǊMoL [ǊǊ] or
MoDisco [Ǌǋ] would be required.

WidgetContainer
Widget

x: int
y: int
width: int
height: int
text: booleanScreen

name: string

Window
closeButton: boolean
minimizeButton: boolean
maximizeButton: boolean

Panel TextField Button Checkbox

«enum»
State

NORMAL
DISABLED
SELECTED
FOCUSED

StateSupport
state: State

VerticalScrollbarSupport
verticalScrollbar: boolean

ColorBackgroundSupport
background: ColorDataType

BooleanSelectionSupport
selected: boolean

0..n

Figure ǎ.ǋǍ: Excerpt of the WireframeSketcher metamodel.

ĉemetamodel is relatively simple. Screens are the canvases where users design the views of the
new applications. ĉere are different types of Widgets, every type of Widget having a different
set of properties (depending on the Support metaclass that they inherit, e.g., aTextField has the

ǉǏǈ

State andColorBackground aĨributes). It is worth remarking two details. Firstly, all the widgets
are placed with absolute coordinates. Secondly, neitherWindows nor Panels areWidgetContain-
ers, so the Widgets in the Screen will be overlapped. ĉese two features were also found in the
ĆD applications. ĉerefore, the solution that we make for wireframes can be reused for ĆD
applications and vice-versa.
To make the rest of the layout inference process independent of the source wireframing tool
artefacts the source WireframeSketcher models are transformed into Normalised models. ĉe
model transformation basically maps the WireframeSketcher widgets to generic widgets (for
most of them there is a ǉ-to-ǉmapping), which is a straightforward task. Additionally, the trans-
formation performs two actions: reduces the area of a label to the area that is actually occupied
by the text of the label, and checks that it does not exist two widgets (SingleWidgets, such as
combo boxes or text ėelds) that are visually overlapped. If there are overlapping widgets, the
process stops and the user is notiėed about the conĚict so he or she can manually solve it and
continue the process.

ǎ.ǎ.Ǌ MĵńńĽłĻ NŃŇŁĵŀĽňĹĸ ŁŃĸĹŀň ŉŃ SŉŇŊķŉŊŇĹ ŁŃĸĹŀň

ĉe MǊM transformation that obtains the Structure model from the Normalised and Region
models is relatively simple, and works as follows. ĉe region hierarchy is navigated and repli-
cated in the Structure model by means of Panels. ĉe leaves of the hierarchy are the SingleWid-
gets that are mapped to the SingleWidgets in the Structure model. Toolbars and menus, which
are not explicitly represented in the Region model because they belong to the View regions,
are generated aěer them. For the SingleWidgets containing text or images, the corresponding
GraphicalResource is created and linked to it. For each Container and SingleWidget, the graph-
ical aĨributes that are common to most of the current GUI toolkits are mapped. Normally,
only a few aĨributes are leě outside this mapping, because are too speciėc or not related to the
presentation layer; for example, the property that links a widget with a column in a database
table.

ǎ.ǎ.ǋ GĹłĹŇĵŉĽŃł Ńĺ ŉļĹ ŌĹĶ ĽłŉĹŇĺĵķĹ

ĉe Layout model is the result of the layout inference process, and makes GUI restructuring
and code generation possible. In the case study we have transformed the Structure and Layout
models into a ZK model to generate ZK views.

ǉǏǉ

ZK is a UI framework to build web and mobile applications, which implements the Model-
View-Controller (MVC) and Model-View-ViewModel (MVVM) design paĨerns. ZK views
run on application servers that are compliant with the Java Servlet and Java Server Pages speci-
ėcations, like Apache Tomcat [ǉǈǑ]. ĉeModel andController parts of the ZK application are
wriĨen in Java, whereas views are created using Java or by means of a readable XML-formaĨed
language called ZUML (ZK User Interface Markup Language). ZUML allows creating Ěuid
layouts by using different layout managers and the hĚex/vĚex aĨributes that indicate the ratio
of the total width/height that the element should take.
We have mapped the layouts deėned in the Layout model to the ZK layouts. For example, the
BorderLayout is mapped to a BorderLayout in ZK, and the FormLayout is transformed into a
TableLayout. ĉe hSize and vSize aĨributes of the Layout model are used to calculate the hĚex
and vĚex aĨributes. hAlignment and vAlignment in our Layout model express the alignment,
which in ZK is handled with the pack and align aĨributes inside boxes. Margins and gaps can
be speciėed in ZK views by means of the CSS model box (margin and padding). Figure ǎ.ǋǎ
shows the ZK view generated for the original wireframe created with WireframeSketcher (Fig-
ure ǎ.ǉǉ).

Figure ǎ.ǋǎ: ĉe login window generated in ZK.

In our case study we decided to generate code for a concrete UI framework. However, devel-
opers can take advantage of the CUI model (i.e. the Structure and the Layout model) in other
manners. For instance, the CUI model could be mapped into another User Interface Descrip-

ǉǏǊ

tion Language (UIDL) such asUsiXML [ǋǐ] (this can be considered as restructuring) in order
to take advantage of the existing tools, for example, their code generators for mobile applica-
tions.

ǎ.ǎ.ǌ TļĹ ŉŃŃŀ

ĉe tool consists of a plugin for the Eclipse IDE that is integrated withWireěameSketcher tool
(which is also an Eclipse plugin). ĉe plugin offers two facilities:

• Generate theStructure andLayoutmodels fromthewireframes createdwithWireframeS-
ketcher (.screen ėles).

• Generate ZK code (ZUML web pages) from the Structure and Layout model ėles. In
the future the tool will offer the possibility to generate code for different toolkits.

ĉe execution of the layout inference module depends on several parameters that can be seen
in Figure ǎ.ǋǏ:

• ĉe layout types to use in the layout inference algorithm.

• ĉe maximum allowed standard deviation of the distances in every cluster. It affect how
the distances are clustered to obtain the closeness levels.

• ĉe horizontal/vertical alignmentmargin, which is expressed as a percentage of the con-
tainer widget. It has a result in the alignment comparisons. For example, for a widget to
be considered as aligned to the right, the percentage of the distance between the right
bound of the widget and the container must be equals or less than that value.

• ĉe comparison margin in pixels is used to give some Ěexibility when performing com-
parisons between widgets (e.g. when detecting if two adjacent widgets are aligned to the
leě).

ǎ.Ǐ CŃŁńĵŇĽňŃł Ńĺ ŉļĹ ĻŇĹĹĸŏ ĵłĸ ĹŎńŀŃŇĵŉŃŇŏ ĵńńŇŃĵķļĹň

We have compared the two layout inference strategies by means of applying the second algo-
rithm to ǋǈ of the ǉǈǏOracle Forms windows that compose the application of the case study A

ǉǏǋ

Figure ǎ.ǋǏ: Layout inference parameters.

explained in Section Ǎ.ǐ.Ǌ. Concretely we have chosen ǎ of large complexity, Ǎ ofmedium com-
plexity and ǉǑ of small complexity, so the ratio of windows in the original application are kept.
We opted for the case study A because it got worse results than case study B. Table ǎ.Ǌ shows
the percentages of regions and widgets that have been correctly placed in both approaches (vȕ
and vȖ are used to denote the versions ǉ and Ǌ of the algorithm respectively).

Large (>ǎǈ) Medium (Ǌǈ - ǎǈ) Small (<Ǌǈ) Total
Windows of each type (out of the total) ǉǑ.ǎǋƻ ǉǎ.ǐǊƻ ǎǋ.ǍǍƻ ǉǈǈƻ
Parts laid out OK (vǉ) ǐǋ.Ǌǌƻ Ǒǐ.ǈǎƻ ǉǈǈ.ǈǈƻ Ǒǎ.ǋǐƻ
Parts laid out OK (vǊ) ǑǍ.Ǌǌƻ ǉǈǈ.ǈǈƻ ǉǈǈ.ǈǈƻ ǑǑ.ǈǏƻ
Widgets laid out OK (vǉ) ǐǏ.ǉǌƻ ǐǍ.ǎǉƻ ǐǐ.ǉǈƻ ǐǏ.Ǎǈƻ
Widgets laid out OK (vǊ) Ǒǉ.ǊǍƻ Ǒǌ.ǉǊƻ Ǒǐ.ǈǈƻ ǑǏ.ǊǑƻ

Table ǎ.Ǌ: Evaluation results for the case study A.

In relation to the layout of the parts, there has been a signiėcant improvement for large win-
dows (ǉǊƻ), while in the case of medium windows the ǉǈǈƻ have been laid out ok (Ǒǐƻ with
the ėrst version). We used in the second approach the same algorithm for region detection as
we used in the ėrst approach, so the regions detected for the windows are the same. However,

ǉǏǌ

the layout among distinguished parts has been ameliorated. As we already mentioned, it de-
pends not only on the region detection but also the layout recognition inside regions, so the
improvement is due to the laĨer. ĉe small failure rate is caused by some bugs and limitations
of the implementation. Particularly, the current implementation does not allow the text of the
frames be replaced by widgets such as checkboxes, which spoils the region detection.

ĉe percentages of widgets laid out in the second version have also improved considerably:
ǌ.ǉǉƻ for large windows, ǐ.Ǎǉƻ for medium-size windows and ǉǈƻ for small windows. In the
ėrst version, many simple (small complexity) windows were not perfectly replicated because
the widgets could only be aligned with regard to the container region (widget alignment prob-
lem), and gaps where not explicitly indicated (unidentiėed holes problem). In the second ver-
sion, widgets can be aligned with respect to the containing layout and gaps are explicitly ex-
pressed. Moreover, the FormLayout considers horizontal alignment with also helps to indicate
a suitable alignment, so widgets match to a great extent the appearance of the original window.

Regarding the widgets laid out in medium and large windows, in the ėrst version the layout
managers deėned could not be composed so complex layouts could not be properly captured
(non-regular layout detection problem). Additionally, developers used to make full use of the
empty space in large windows, which led to even crammed and weird layouts which were awk-
wardly recognised by our ėrst approach. Due to the second approach allows layout nesting and
explores different combinations of elements, it is able to recognise more complex layouts that
in the ėrst approach. However, the improvement is not so high as it could be expected. ĉe
reason behind this fact is that, in many cases, the alternative solution that is chosen as the best
alternative does not get a perfect layout (ėtness function problem).

For instance, Figure ǎ.ǋǐ shows a window in the Oracle Forms designer (not in runtime), Fig-
ure ǎ.ǋǑ depicts the window that has been generated by the ėrst approach from the former, and
Figure ǎ.ǌǈ shows the window generated by the second approach. ĉe layout of Figure ǎ.ǌǈ
has been made up of FormLayout and FlowLayouts. In this case the buĨons on the right have
matched a vertical Ěow layout, which is the best option according to the ėtness function though
it is not, as it leads tomisalignmentwith regard to thewidgets on their leě. On theother hand, in
Figure ǎ.ǋǑ the buĨons are placed side by side (in rows) because the whole window has been
matched as a VHLayout (a stack of horizontal Ěow layouts). Hence, the heuristic search has
failed to detect the right layout and the VHLayout has beenmatched, which do not completely
ėts the layout but it has the highest ėtness value.

ǉǏǍ

Figure ǎ.ǋǐ: Example of an Oracle Forms window.

Figure ǎ.ǋǑ: Generated window by the ėrst approach for the Oracle Forms window.

Figure ǎ.ǌǈ: Generated window by the second approach for the Oracle Forms window.

ǉǏǎ

In view of the results of the comparison of both approaches, we claim that the exploratory ap-
proach is beĨer than the greedy approach. ĉe laĨer obtained good results with ĆD applica-
tions due to the type of windows that are found in these applications. However, the exploratory
approachworks beĨer inĆDapplications aswell as in other context because of the deep analy-
sis of the relations to return a layout composition, as we had hypothesised before implementing
the exploratory approach.

ǎ.ǐ CŃłķŀŊňĽŃłň

In this chapter we have presented an algorithm and a data structure (the Tile metamodel) to
reverse engineer GUIs with a coordinate-based layout in order to transform them into a repre-
sentation based on layout managers, which can be used to generate a ėnal GUI based on good
practices. ĉe solution proposed is alignedwith the reengineering architecture proposed in the
previous chapter. ĉe algorithm calculates several alternative layout compositions, and also es-
timates which one is the best option. Moreover, it allows placing widgets with some degree of
misalignment and allows selecting the set of layout managers which will be used in composing
the layout. ĉe layout inference algorithmproposed here ismore sophisticated than the former
and it achieves beĨer results when considering views in general (not only views gathered from
legacy systems).
We have also presented a case study to infer the layout of GUIs created with a wireframing tool
to generate Ěuid web interfaces, which is supported by a tool integrated in the Eclipse IDE.
ĉe case study revealed that the current approach is somewhat limited in some cases by the
maximum deviation parameter used in distance clustering, and that the ėtness function needs
to take into account aesthetic criteria such as homogeneity in order to get solutions that are
beĨer adapted to different screen dimensions. As a whole, results drawn from the evaluation
show that our approach is able to perform a good layout inference in most cases (ǑǏƻ of the
views are accurately reproduced, ǐǌƻ of the views are appropriately resized) and Ǐǈƻ users are
satisėed with the tool results.
Given that the architecture of the solution in this chapter is essentially the same as the one in the
previous chapter, requirements Rȕ to RȚ enumerated in Section ǌ.ǉ are fulėlled. More speciė-
cally, requirements Rȕ to RȘ are the consequence of designing a suitableMDE architecture, Rș
is achievedbymeansof theRegionmodel, andRȚ is coveredby theLayoutmodel that expresses
the layout as a composition of layout managers.

ǉǏǏ

ĉefunctions that compare the relative positionof tiles include a parameter that speciėes amar-
gin to be considered, so the comparisons are Ěexible, thus achieving themisalignment tolerance
(requirement Rț). ĉe inference algorithm explores the different combinations of a layout set,
and stores all the solutions that it ėnds, hence it is capable of offering all the solutions found for
a given layout set, then covering the requirements alternative solutions (RȜ) and conėgurable
layout set (Rȝ).
Contrasting our solutionwith the relatedworks, we claim that up to datewe have not found any
work that addresses requirements RȜ and Rȝ, but the layout inference algorithms are strictly
designed to work with a unique layout type. Like our appproach, the ALM model [ǋ] is able
to detect misalignment by means of specifying additional constraints. ĉe differences that we
contrasted in the former chapter between our ėrst approach and the related works is still valid
in this new approach. In the next table we classify our solution as we did with the state of the
art.

Source/target independence Yes
Tested source technology Wireframes (WireframeSketcher)
Tested target technology Web (ZK)
Information extracted layout composition, alignment, margins, gaps, sizes
Layoutmodel FlowLayout, BorderLayout, GridLayout, FormLayout
Algorithm type Backtracking
Implementation technology MDE
Automation degree Automated

Table ǎ.ǋ: Classiėcation of the approach of this chapter

ǉǏǐ

(Suggested byMarisol Sánchez)

If I have a thousand ideas and only one turns
out to be good, I am satisėed.

Alfred Nobel

7
Event handler analysis

Migrating legacy code posesmany challenges, such as the ones introduced in Section ǉ.ǉ for the
case of ĆD applications. Notably, disentangling the code of the GUI, control, and business
logic layers so that the new system has a beĨer separation of concerns, is an important issue.
Besides,migrationwouldbe facilitatedby tools that help todiscover non-architectural concerns
that are only implicit (and mixed together) in the source code, such as validation, navigation
Ěow or exception handling.

In this chapter we describe the reverse engineering approachwe propose for analysing the code
of event handlers of ĆD applications in order to be able to separate the concerns that are en-
tangled. In Figure Ǐ.ǉ we can see the part of the GUIZMO architecture we are going to explain
in this chapter, as well as the models of the CUI that are involved.

Wehave deėned aĆDenvironment-independentmetamodel to represent the original code in
amore abstract form, which is based on a set of primitive operations intended to describe com-
mon behaviour of ĆD-based code. We will refer to this representation as the ĆDBehaviour
metamodel. We have identiėed a set of programming idioms for Oracle Forms, and we have

ǉǏǑ

Legacy GUI
definition

<HTML>
<HEAD>
 <SCRIPT>
 </SCRIPT
</HEAD>
<BODY>
</BODY>
 </HTML>

Source GUI
tree model

Event handler
AST model

Normalised GUI
tree model

RADBehaviour
model

Region and
Tile models

Trace model CUI model

T2M

T2M

M2M

M2M

M2M

M2M

M2M

Target technology
model

New GUI

<HTML>
<HEAD>
 <SCRIPT>
 </SCRIPT
</HEAD>
<BODY>
</BODY>
 </HTML>

M2M M2M

Validation model

Structure model

Interaction modelLayout model

Style model

EventConcerns model

Figure Ǐ.ǉ: Part of the GUIZMO architecture explained in this chapter

implemented an MǊM transformation that matches these idioms against Event handler AST
model and represents the coincidences in the form of primitives in a ĆDBehaviour model.
ĉis model can be used to achieve the mentioned separation of architectural concerns (GUI,
business logic and control), which is materialised in the EventConcernsmodel. We have built a
prototype implementation to test this approach. It has been validated with a case study based
on a real application wriĨen in Oracle Forms, which has been migrated to a client-server web
application.

Futhermore,wehave alsousedĆDBehaviourmodels as abasis to identifydependencies among
widgets in a view and among different views. We have deėned a state-machine-like metamodel
to represent these dependencies. ĉis information can be useful, for instance, in a scenario of
a migration of a legacy system to the web platform, to generate Ajax code that only refreshes
the part of the view that is affected. It can also be used for documentation purposes and for
declaratively deėning the navigation Ěow and exception handling in some frameworks (e.g.,
Struts [ǉǉǈ] or JSF [ǉǉǉ]).

Consequently, this chapter pursues the goal of separating and making explicit the information
of event handlers (Gȗ), and covers the following requirements: code abstraction (RȕȔ), code
categorisation (Rȕȕ) and explicit interaction and navigation Ěows (RȕȖ). ĉe subsequent sec-
tion will present the concrete architecture we have devised to deal with event handlers and in
the next sections we will explain the different parts of this architecture.

ǉǐǈ

Figure Ǐ.Ǌ: Model-based architecture for reengineering ĆD-based applications. Solid lines
mean transformations and dashed lines are model dependencies.

Ǐ.ǉ AŇķļĽŉĹķŉŊŇĹ ĺŃŇ ĵłĵŀŏňĽłĻ ĹŋĹłŉň

Our model-based architecture is shown in Figure Ǐ.Ǌ, exempliėed for Oracle Forms as source
ĆD technology and HTML/Javascript as client-side target platform. Anyway, the approach
could be applied to a different ĆD technology or target platform likewise. It is based on
the Horseshoe model explained in Section Ǌ.ǉ (rotate Ǒǈ◦ to the leě Figure Ǐ.Ǌ to see it more
clearly), which provides a conceptual framework for the different stages involved in reengineer-
ing.
ĉe ėrst step of the approach is the injection of models from the source code of event handlers,
in this case PL/SQL code. Given that there is available a grammar and the corresponding Ab-
stract Syntax Tree (AST) metamodel for the PL/SQL language, we selected GraǊMoL (intro-
duced in Section Ǌ.ǋ.ǋ) to accomplish this injection step by writing a TǊM transformation that
implements themapping between PL/SQL grammar elements and ASTmetamodel elements.
As a result of applying GraǊMoL, an AST model representing the code of the application trig-
gers (event handlers) is obtained. If we wanted to tackle a different ĆD environment (e.g.
Borland Delphi Ǎ), we should write the corresponding injector (e.g., a GraǊMoL transforma-
tion if a grammar and an AST metamodel are available).
ĉe reverse engineering step starts by transforming the AST model of the event handlers into
an intermediatemodel, namedĆDBehaviour. ĉismodel captures the behaviour of the source

ǉǐǉ

code in terms of simple primitives which are common inĆDenvironments, such as read data
from a database or write some data in the GUI controls. It is worth noting that the ĆDBe-
haviour representation is a ĆD environment-independent abstraction of the source code. A
different model transformation is needed for eachĆD technology (e.g. Oracle Forms or Bor-
land Delphi) in order to generate theĆDBehaviour.
From this model, further reverse engineering can be performed to extract implicit information
from the source system. EventConcerns is a model derived from ĆDBehaviour, which repre-
sents the source code with a kind of control Ěow graphmade up of code fragments. A code ěag-
ment is a sequence of primitives related to the same category (UI, control, business logic). ĉis
is useful to achieve the separation of concerns in the target application. ĉe Interaction model
is another model obtained fromĆDBehaviour and its goal is twofold: i) deėne the navigation
Ěowbetween applicationwindows and ii) showhow the events produced in the elements of the
GUI (e.g. windows or widgets) affect other elements. ĉis model makes explicit information
that is hidden in the source code.
It is important to note that the intermediate models (ĆDBehaviour, EventConcerns and Inter-
action) contain cross-references to the model from which they have been derived, in order to
trace back the original codewhenperforming forward engineering. In addition, they keep some
cross-references to the Structure model (e.g., to point to the widgets accessed by the code).
Based on the presentedmodels, restructuring and forward engineering of the original system to
adifferent architecture are possible. In our case, wehave experimented regenerating the original
application into anAJAX-basedweb architecture, withHTML/Javascript in the client-side and
Java/JPA in the server-side, but other target platforms are possible.
All the MǊM transformations in the architecture have been implemented with the RubyTL
transformation language [ǎǉ], and code generation has been performed with the facilities of
the AGE environment [ǉǈǋ].
ĉe next section introduce the example that will be used through the chapter to support the
explanations.

Ǐ.Ǌ RŊłłĽłĻ ĹŎĵŁńŀĹ

ĉe running example is based on theOracle Forms application for managing public grants that
we used in Section Ǎ.ǐ and that we will use as a case study in this chapter. For illustrative pur-
poses we have simpliėed and translated into English one of the windows (Figure Ǐ.ǋ) from the

ǉǐǊ

Figure Ǐ.ǋ: Grants example

original application.

In the upper part of the window there are several widgets to display general information about
the grant, and a tabbed panel is shown below, where can be seen some information about the
activities for which the grant is conceived, in addition to the periods when the grant must take
place.

We will focus the example on a simpliėed event handler associated to the only checkbox in
the window (named ACT_MODALITIES). ĉis checkbox is used to indicate if an activity can
have severalmodalities. When the checkbox is not checked, theModalities tabmust bedisabled,
but this can only be done if there are not periods for that activity stored in the database. ĉe
behaviour of the checkbox is deėned in an event handler implemented as a PL/SQL trigger and
can be seen in Figure Ǐ.ǌ.

ĉe triggerworks as follows. ĉe code that is nested in the IF statement is executed if the check-
box ACT_MODALITIES is checked. It is worth noting that the ’Y’ value is not a predeėned
value but is speciėed in the checkbox properties. To check if there are periods for the current
activity, a SQL query is used to store the number of periods in the periods variable. If there are
periods, a pop-up with a message is displayed. Otherwise the tab page is enabled.

ǉǐǋ

IF :ACT_MODALITIES = 'Y' THEN
 SELECT COUNT(*) INTO periods FROM CallPeriods
 WHERE activity = :ACT_CODE;
 IF periods != 0 THEN
 Show_alert('ModalitiesAlert');
 :ACT_MODALITIES := 'N';
 ELSE
 SET_TAB_PAGE_PROPERTY('TABS.MODALITIES',
 ENABLED, PROPERTY_TRUE);
 END IF;
END IF;

Figure Ǐ.ǌ: PL/SQL trigger for the checkbox change event

Ǐ.ǋ RĹńŇĹňĹłŉĽłĻ ĹŋĹłŉ ļĵłĸŀĽłĻ ķŃĸĹ

Code analysis is required when event handler migration is needed, which is a tough task. ĆD
environments are based on different programming languages, so if we intended to restructure
several ĆD legacy systems to generate new systems, we would have to deal with the source
language in all the development phases of the new system.

A solution for this would be to have an intermediate representation that allowed restructuring
and forward engineering phases to be independent of the source language. Moreover, program-
ming languages sometimes perform the same taks differently. For example, Oracle Forms uses
PL/SQL cursors to retrieve data from database, whereas in Borland Delphi these data are ob-
tained by means of data sources. ĉerefore, an intermediate language would also be useful to
normalise the actions that are done in programming languages.

Hence, we have deėned a representation aimed at expressing event handlers in a more abstract
form than just the AST model of the program. It acts as technology-independent pivot model,
which allows transformations to ignore technology-speciėc details in the following steps of the
reengineering process. It consists of primitive operations (referred as primitives from now on)
that intend to represent a wide range of code wriĨen in event handlers.

In the following section we will ėrst describe theĆDBehaviour representation for event han-
dling code. Next, we will explain how to obtainĆDBehaviourmodels from the PL/SQL AST
models. Finally, we will show aĆDBehaviour model derived from the example introduced in
Section Ǐ.Ǌ.

ǉǐǌ

EventRoot EventGroup

EventCode

RADPrimitiveRADVariable RADExpression

LocalVar

GlobalVar UIVar

PredefinedVar
WriteToUI

ModifyUI

ManipulateData

ReadFromDB

OpenView

ShowMessage

SelectionFlow

HasData

Equals IsChecked

AndOr

0..1

1..n

 1..n

0..n 0..n 0..n

Case 0..n

RADReadable

0..1
output

0..n
input

ActionExpression

VariableRef

 expr
 0..2

RADExpression RADVariable
1

Not

0..n
primitives

event: EventType
«from Normalised»

Widget

0..1
source

«enum»
EventType

CLICK
VALUE_CHANGED
MOUSE_OVER
...

primitives

Figure Ǐ.Ǎ: Excerpt of the ĆDBehaviour metamodel.

Ǐ.ǋ.ǉ MĹŉĵŁŃĸĹŀ ĸĹňķŇĽńŉĽŃł

ĉeĆDBehaviourmetamodel is presented in Figure Ǐ.Ǎ. Its main concept is EventCode, which
is an abstract representation for the code of an event handler. EventCodes include information
about the type of event and a reference to thewidget that originated the event (it is also possible
that an event occurs before the window is displayed and therefore has no widget associated).
EventCodes are grouped intoEventGroups which represent the event handlers that are related to
the same application window.

ĉebehaviour of everyEventCode is expressed in terms of a sequence ofĆDPrimitives. AĆD-
Primitive aĨempts to replace a statement or a set of statements of the original code, deėning
what they were intended for. ĉe primitives we have identiėed are listed in Table Ǐ.ǉ. ĉe input
of a ĆDPrimitive can be another ĆDPrimitive or a variable, so primitives can be composed.
ĉe optional output must be a variable.

ĉere are several types of variables. UIVar is a variable that represents the value contained in a
widget. LocalVar is a user-deėned temporary variable that is just visible in the EventCode scope.
GlobalVar is a user-deėned variable that is visible in all the event handlers throughout the ap-
plication execution. PredeėnedVar represents any technology-dependant variable that keeps

ǉǐǍ

Table Ǐ.ǉ: ĆD primitives

Primitive Meaning

ReadFromUI Reads a value from a widget
WriteToUI Modiėes a widget value
WriteToVar Writes a value in a global or local variable

ReadFromDB Reads some values from a database
WriteToDB Writes some values to a database
ModifyUI Modiėes a widget graphical aĨribute

ManipulateData Performs an operation on a primitive datatype
SelectionFlow Selects an execution Ěow based on some conditions
ExecuteBL Executes a (user-deėned or stored) procedure
OpenView Opens a speciėed window

ShowMessage Opens a modal window (Pop-up)
Leave Aborts event handler execution

the application status. ĉe root element of the metamodel is EventRoot, which contains all the
EventGroups andĆDVariables.
Some ĆDPrimitives, such as SelectionFlow, need to specify conditions on their application.
ĉese conditions are expressed in terms of a simple expression language, whose base class is
ĆDExpression. ĉere are two types of expressions, typical expressions such asOr,And,Equals,
and more complex expressions such asHasData that checks if aĆDVariable has a value.

Ǐ.ǋ.Ǌ DĹŇĽŋĽłĻ ĵ ĆDBĹļĵŋĽŃŊŇ ŁŃĸĹŀ

AĆDBehaviour model is obtained through aMǊM transformation that takes an ASTmodel of
the event handlers of a ĆD application as input. ĉe transformation matches code paĨerns
and generates a ĆDBehaviour model that summarises the behaviour of the original code. As
explained above, event handling code is usually repetitive, and there are some idioms that fre-
quently appear. Conceptually, we have identiėed three types of idioms in ĆD applications.

• Programming language idioms. ĉey are facilities provided by the underlying ĆD
programming language toperformrecurrent and/or specialized tasks. For instance, PL/SQL
allows special versions of SQLDML statements (e.g., SELECT) to be used within regu-
lar imperative code, while Delphi uses data sources conėgured with queries.

• Community idioms. ĉey refer to sequences of statements that are widely accepted by

ǉǐǎ

the corresponding community as a good way of doing a particular task. For instance,
obtaining and traversing a database cursor. ĉese idioms are typically found in technical
documentation.

• Business-dependant idioms. ĉese are idioms that are originated from the company
conventions and practices. Available knowledge about the way of work in business can
be expressed with paĨerns that could highly improve the reverse engineering process.

It is possible that several idiomsmatch the same code snippet, so a priority criterion is followed
to decide which of them must be selected. Business-dependant idioms have the highest prior-
ity, followed by the community idioms, while programming language idioms have the lowest
priority. Note that some of the idioms can be composed of other idioms, and in this case the
same priority criterion is followed.
ĉe transformation to derive aĆDBehaviour modelmust be implemented speciėcally for each
different ĆD environment. At present we have a MǊM transformation that supports Oracle
Forms PL/SQL. We have separated transformation modules to deal with each type of idiom
independently, so that they can be extended or replaced seamlessly. ĉis is particularly useful
in the case of business-dependant idioms, that may need to be adapted for a speciėc company.
Figure Ǐ.ǎ shows some mappings between PL/SQL idioms andĆDBehaviour primitives (ex-
pressedwith a textual notation only for illustrative purposes). Wehave followed this nomencla-
ture: x and y are variables (LocalVar or UIVar), sȕ and sȖ are strings, pȕ and pȖ are predeėned
properties, vȕ and vȖ are speciėc values for these properties, cȕ and cȖ are table columns of a
table t, c is a PL/SQL explicit cursor, and dȕ and dȖ are Forms datablocks (a logical group of
widgets linked to the database). ĉemeaning of each construct can be easily deduced from the
notation.
MappingsMȕ toMȘ are programming language idioms, PL/SQL idioms in this case. If a variable
name starts with “:” (mappingMȕ), then it refers to a widget value and it must be mapped to a
WriteToUI primitive, otherwise it would bemapped to aWriteToVar. MappingsMȖ andMȗ are
library functions to show a message box and to change tab page respectively. It is worth noting
that the translationofMȗ consists of creating aModifyUI action that refers to the corresponding
CUI model, which was obtained in a previous transformation.
On the other hand, mappingsMș andMȚ are community idioms as they are recommendations
typically followed by PL/SQL programmers, in this case to ėll a master/detail relationship and

ǉǐǏ

SELECT c1 INTO x
FROM t
WHERE c2 = y;

WriteToVar(output=x,
 input=ReadFromDB(input=y,
 table=t,
 col=c1,
 cond=c2=y)

:x := <function>; WriteToUI(output=x,
 input=<function>)

Show_alert(s1); ShowMessage(message=s2)
(s2 is a message associated with the s1 alert)

Set_tab_page_property(x,p1,v1); ModifyUI(input=x,
 property=p2,
 value=v2);
(p1, v1 are mapped to p2, v2)

IF <cond> THEN
 x := Find_relation(s1);
 Query_master_details(x, d2);
END IF;
(The trigger is in datablock d1,
which is different from datablock d2)

{
WriteToUI(output=y,
 input=ReadFromDB(<dbdata>))
}1..n
(y is a widget of the d2 datablock,
<dbdata> is obtained from datablock d1
and the properties of the relation s1)

OPEN c;
FETCH c INTO x;
IF (c%FOUND) THEN
 <statements>
END IF;
CLOSE c;

SelectionFlow
 Case(condition=HasValue(
 ReadFromDB(<dbdata>)))
 <primitives>
(<dbdata> is obtained from the cursor declaration)

PL/SQL idioms RAD Behaviour mappings

M1

M2

M3

M4

M5

M6

M7 x := Name_in (
 :SYSTEM.TRIGGER_ITEM ||
 '_Value'
)

WriteToVar(output=x,
 input=ReadFromUI(input=y))
(y is a widget whose name is the name of the
widget associated to the trigger plus '_Value')

Figure Ǐ.ǎ: PL/SQL to ĆDBehaviour mappings

to manipulate a database cursor respectively. ĉese idioms have a coarser-grained granularity
than the previous ones.

ǉǐǐ

Mapping Mț is a business-dependant idiom to write generic event handlers, which is based on
Oracle Forms reĚective facilities tomanipulate theGUI.ĉe :SYSTEM.TRIGGER_ITEM spe-
cial variable contains the name of the widget that is the source of the event that has lead the
event handler (trigger in PL/SQL terminology) to be executed. ĉe Name_in function takes
a widget name as a parameter and returns its value. ĉerefore, MǏ is mapped to a WriteToVar
whose input is the value of a widget whose name is the same as the one triggering the event plus
“_Value”. In this way, using naming conventions(for example having a widget X and a related
widgetX_Value) it is possible to write generic event handlers that can be executed for different
widgets. Translating this idiom requires embedding the convention into a speciėc transfor-
mation. Besides, the outcome of the transformation is not a single reference to a widget, but
it computes every possible widget that could be read (looking for widgets in the CUI model
that match the paĨern). ĉis uncovers widget relationships that were implicitly speciėed in the
source code.

Finally, some idioms and statements cannot be translated without additional information, be-
cause Oracle Forms allows the developer to declaratively specify some behaviour by means
of property sheets, i.e., without writing code. For example, there is a function named exe-
cute_query() that executes a database query deėned for the current data block, and ėlls in all
the widgets that are related to this data block and are linked to database columns. ĉerefore,
our model transformation also takes as input this information (gathered from a Oracle Forms
model, not shown in the architecture diagram due to space reasons) in order to deal with this
kind of functionality.

Ǐ.ǋ.ǋ EŎĵŁńŀĹ

ĉe fragment shown in Figure Ǐ.Ǐ is theĆDBehaviour representation of the PL/SQL code for
the checkbox change event that was introduced in Figure Ǐ.ǌ. ĉe same textual notation as in
Figure Ǐ.ǎ is used.

ĉe outmost IF statement, whose condition is that the checkbox is checked, has been replaced
for a SelectionFlow. We must remark that the ĆDBehaviour model captures explicitly the Is-
Checked condition, while in the original code this condition is not clearly expressed since the
checked value (’Y’ in our case) is not predeėned, but deėned by the programmer in the check-
box property sheet.

ĉe Select statement that counts the number of periods has been replaced with a WriteToVar,

ǉǐǑ

SelectionFlow
 Case(condition=IsChecked(UIVar(name=ACT_MODALITIES)))
 WriteToVar(output=LocalVar(name=periods),
 input=ReadFromDB(input=UIVar(name=ACT_CODE)
 table=CallPeriods,
 isCount=true))
 SelectionFlow
 Case(condition=HasData(LocalVar(name=periods))
 ShowMessage(msg="...")
 WriteToUI(output=UIVar(name=ACT_MODALITIES),
 input=Literal(value=true))
 Case
 ModifyUI(input=TABS.MODALITIES,
 property=enabled, value=true)

Figure Ǐ.Ǐ: ĆDBehaviour example for the checkbox event

composed of a read from the database (ReadFromDB). ĉe inner IF statement becomes a Se-
lectionFlow which has two cases. ĉe ėrst case shows a message to the user if there are some
periods leě (ShowMessage is enclosed in a WriteToVar since a pop-up could allow the user to
perform some actions) and sets the checkbox as checked. ĉe second case modiėes a prede-
ėned property (enabled) from the widget TABS.MODALITIES.

Ǐ.ǌ SĹńĵŇĵŉĽłĻ ķŃłķĹŇłň

As already explained, dealing with the migration of applications wriĨen with a ĆD environ-
ment requires disentangling GUI, control and business logic. ĉerefore, our aim is to automat-
ically categorise fragments of code where statements of each fragment are related to the same
concern.

In order to achieve this goal, we have deėned a metamodel (named EventConcerns) that rep-
resents fragments and their categories. It is obtained from a ĆDBehaviour model through a
model transformation. ĉis transformation is facilitated by the fact that we are not dealing di-
rectly with source code, for two main reasons: i) as the source code is represented with a few
primitives we just need to check the type of the primitive and sometimes the variables that it
uses, so limiting the number of cases that must be handled, ii) given that every primitive repre-
sents its input and output explicitly, establishing variable dependencies between primitives can
be easily done. Next we will introduce the EventConcerns representation.

ǉǑǈ

Fragment
EventHandler

UIFragment CtrlFragment BLFragment

«from RADBehaviour»
EventCode

«from RADBehaviour»
RADPrimitive

entry
1

ref 1

1..n
actions

1..n

«from RADBehaviour»
RADExpression

0..1
condition

EntryNode

FlowNode

ExitNode BasicBlock
name: String

exit
1

FlowEdge1 source 0..n
1 target 0..n

«from RADBehaviour»
RADVariable

inputVars 0..n0..n
outputVars 0..n0..n

0..n
0..n

 dependencies 1..n
primitivesfragments

Figure Ǐ.ǐ: Excerpt of the EventConcerns metamodel

Ǐ.ǌ.ǉ MĹŉĵŁŃĸĹŀ ĸĹňķŇĽńŉĽŃł

In this representation each event handler is represented as a kind of control Ěow graph, where
the nodes are basic blocks [ǉǈ] and the edges are execution Ěows. Interestingly, basic blocks
are composed of fragments, where a fragment is deėned as a sequence of primitives classiėed
in the same category. We have considered three categories: user interface, control and business
logic.
ĉe EventConcerns metamodel is shown in Figure Ǐ.ǐ and deėnes control Ěow graphs that are
composed of nodes (FlowNodes) connected by edges (FlowEdges). ĉe types of nodes in the
graph are: BasicBlocks, EntryNode that is a unique node that refers to the ėrst basic block and
ExitNode that is a unique node that represents the end of the execution Ěow. A basic block is
composed of code fragments that can be of three types:

• UIFragments contain primitives that read some data from the interface, or perform a
change in the GUI (e.g. show a pop-up, change the value of a text ėeld or change the
background colour of the widget that has got the focus).

• BLFragments represent code that performs some kind of calculation or information pro-
cessing (which is commonly done by calling a function that implements the required
functionality), or is code related to data persistence.

• ControlFragments are used to represent those primitives that are neither user interface
nor business logic related and affect the status of the application. For example, set a user
identiėer in a global variable that is used throughout the user session.

ǉǑǉ

It is worth noting that Fragments keep references toĆDBehaviour primitives (i.e., instances of
the ĆDPrimitive metaclass). Also, for each basic block we keep the set of input variables (in-
putVars) and output variables (outputVars), which are obtained by joining the input and output
(respectively) of the single primitives. ĉis will be useful to identify variable dependencies
among the fragments.

Moreover, each code fragment is given a signiėcant name that is inferred from the statements
of the block due to it can be useful later, for example to generate methods from the fragments.

ĉe nodes of the graph are linked by means of edges (FlowEdges) that allow us to navigate
through the graph. When there are alternative paths from a node, each edge has a condition as-
sociated. We have another relationship for code fragments named dependencies, which is based
on the idea that a fragment can depend on previous fragments. Particularly, when a fragment fȕ
assigns a value to a variable that is read in another fragment fȖ that can be reached from fȕ, then
fȖ depends on fȕ.
Figure Ǐ.Ǒ shows a graphical rendering of the EventConcerns model derived from the ĆDBe-
haviour model shown in Figure Ǐ.Ǐ. In the example there are four basic blocks represented as
roundedboxeswith two compartments: a upper compartment that shows the descriptive name
given to the block and a lower compartment that includes the sequence of fragments for that
block. Fragments are represented with roundes boxes that indicate the type of fragment and a
descriptive name.

Ǐ.ǌ.Ǌ FŇĵĻŁĹłŉ ĽĸĹłŉĽĺĽķĵŉĽŃł

Nextweexplainhowcanweuse theĆDBehaviour representation toobtainEventConcernsmod-
els. We have split the transformation in several phases that are described next.

Ǐ.ǌ.Ǌ.ǉ CŇĹĵŉĽłĻ ĵ ķŃłŉŇŃŀ ĺŀŃŌ ĻŇĵńļ Ńĺ ĺŇĵĻŁĹłŉň

Algorithm ǎ describes how to create a control Ěow of fragments for the primitives of an Event-
Code. It is based on the basic block partitioning algorithm that can be found in [ǉǈ]. According
to that algorithm, a basic block (BB) is a sequence of instructions which are executed from
the ėrst one to the last one without performing jumps. ĉe ėrst instruction of a basic block is
called leader. Our algorithm has been split in two functions, namely identifyBB() and identi-
fyFragments(), which we explain next.

ǉǑǊ

Figure Ǐ.Ǒ: EventConcerns model derived from the model in Figure Ǐ.Ǐ. Labels A, B, C, D are
used to show the primitives that originate the basic blocks.

Lines ǉ to ǌ create an empty set of basic blocks, to which the entry node and the exit node are
added. ĉen the identifyBB() function that identiėes the basic blocks is called. ĉis function
receives the sequence of primitives for which basic blocks are going to be separated, and the set
of basic blocks identiėed so far.

identifyBB() iterates over the primitives. If the primitive p is a leader (lines ǐ to ǉǋ), then the
primitives that compose the basic block are selected (line Ǒ) as it is explained in [ǉǈ] and a new
basic block (bb) is created (line ǉǈ). ĉis basic block is then connectedwith someof the already
visited ones according to the control Ěow (line ǉǉ) . ĉen, the fragments of the basic block are
identiėed (line ǉǊ) and the block is added to the set of basic blocks BBSet. If the primitive p

ǉǑǋ

WriteToVar(output=LocalVar(name=X),
 input=ReadFromUI(input=UIVar(U))
WriteToVar(output=LocalVar(name=Y),
 input=ReadFromUI(input=UIVar(V))
WriteToUI(output=UIVar(W),
 input=LocalVar(name=X))

(p1)

(p2)

(p3)

Figure Ǐ.ǉǈ: Fragment identiėcation example

is a SelectionFlow (lines ǉǍ to ǉǑ), then foreach case of the SelectionFlow we apply identifyBB()
recursively (line ǉǏ). Note that it would bemore efficient to create the edges of the control Ěow
graphwhile distinguishing the types of primitives, butwe have described the algorithm thisway
to make it easier to understand.

As we have said, for each basic block we apply identifyFragments() to separate the code. ĉis
function iterates over theprimitives. If there areno fragments, it creates a fragment that contains
p (lines Ǌǎ to Ǌǐ). If there are fragments, ėndFiĪingFragment() tries to ėnd an existing fragment
that ėts p (line ǋǈ). ĉis function works as follows: i) it searches for a ėĪing fragment whose
primitives have the same category as p; ii) if p has input variables, then at least one of these
variables must be the output of the ėĪing fragment, or if p has an output variable, then this
variable must be in the input of the ėĪing fragment; iii) the search starts from the fragment of
the primitive that precedes p in order to get the closest fragment that ėts. ĉe category of a
primitive is determined by its type and input variables. For example, aWriteToVar whose input
is a UIVar will belong to the UI, but if we hadWriteToVar whose input is a ReadFromDB, then
the primitive will be tagged as a BL concern.

Let us show a simple example of how the identifyFragments() function works. In Figure Ǐ.ǉǈ
there are three primitives, pƥ, pƦ and pƧ. Assume that pƥ belongs to fragment fƥ and pƦ belongs to
fragment fƦ, so:

fƥ.input = {U}; fƥ.output = {X}

fƦ.input = {V}; fƦ.output = {Y}

In this seĨing the ėndFiĪingFragment() function would assign pƧ to fragment fƥ because the in-
put of pƧ is contained in the output of fƥ, and neither the input nor the output of pƧ appears in

ǉǑǌ

the input or output of fƦ.
If there exists a ėĪing fragment (lines ǋǉ to ǋǋ), then p is added to it, and the output variable of
p is added to the output of ėĪing. If p does not ėt any fragment (lines ǋǌ to ǋǎ), a new fragment
f is created and p is added to it. ĉe type of the new fragment f (UIFragment, BLFragment,
CtrlFragment) will be the type of the primitive. ĉe output variable of p is added to the output
of f, and f is inserted in the current BasicBlock according to the creation order.
Figure Ǐ.Ǒ shows the control Ěowgraph that has been built based on the primitives of Figure Ǐ.Ǐ.
Note that blockC includes twoUIFragmentsdue to there are no variable dependencies between
the ShowMessage and the WriteToUI. Our algorithm is not optimum in the sense that it can
generate several fragments for UI primitives that refer to the same widget. Anyway, it is not a
real problem since contiguous fragments of the same type can be treated as if they belonged to
the same fragment when generating code.

Ǐ.ǌ.Ǌ.Ǌ GĽŋĽłĻ ĵ ĸĹňķŇĽńŉĽŋĹ łĵŁĹ ŉŃ ŉļĹ ĺŇĵĻŁĹłŉň

ĉis is an important step that is accomplished in the identifyBB() function of Algorithm ǎ, and
which will be useful to generate code. Particularly, the name of the BLFragments can be used to
generate the name of the business logic methods. Moreover, giving a meaningful name to the
fragments allows capturing the semantics of a fragment code, which is useful as documentation
of the original system. However, it is not always possible to infer a useful description for the
fragment. ĉe solution we propose to assign names to the fragments is based on heuristics.
Next we describe four heuristics we have devised.
Inmany cases,BLFragments perform some operations on the database aěer reading the value of
some widgets. In these cases, we give a name to the fragment by looking at the database access
primitives and ignoring the rest of them. For example, the ReadFromDB primitive that appears
in Figure Ǐ.Ǐ comes from the SELECT statement in Figure Ǐ.ǌ, and the name generated from
this primitive is getNumCallPeriods, as can be seen in the BLFragment of block B in Figure Ǐ.Ǒ
(note the inėxNum that indicates that the operation returns a number). When we have that a
BLFragment invokes a function or procedure, we take the ėrst invocation as a name.
AUIFragment oěen refers to just one primitive, so in that casesweobtain the namebased on the
primitive. For example, a fragment with aWriteToUI primitive is named withWriteToX where
X is the widget that is being wriĨen, for example the second UIFragment in block C is called
WriteToActModalities.

ǉǑǍ

Algorithm ǎAlgorithm for identiėcating of basic blocks (BB) and fragments.

ǉ: BBSet← {}
Ǌ: add(BBSet, createEntryNode())
ǋ: add(BBSet, createExitNode())
ǌ: identifyBB(Primitives,BBSet) ◃ Primitives of an EventCode
Ǎ:
ǎ: function ĽĸĹłŉĽĺŏBB(Primitives,BBSet)
Ǐ: for all p ∈ Primitives do
ǐ: if isLeader(p, Primitives) then
Ǒ: BBPrimitives = getBBPrimitives(Primitives, p)
ǉǈ: bb← createBB(BBPrimitives)
ǉǉ: createEdges(bb,BBSet)
ǉǊ: identifyFragments(bb)
ǉǋ: add(BBSet, bb) ◃ BBSet is modiėed in every use
ǉǌ: end if
ǉǍ: if p.type = SelectionFlow then
ǉǎ: for all c ∈ p.Cases do
ǉǏ: identifyBB(c.Primitives,BBSet)
ǉǐ: end for
ǉǑ: end if
Ǌǈ: end for
Ǌǉ: end function
ǊǊ:
Ǌǋ: function ĽĸĹłŉĽĺŏFŇĵĻŁĹłŉň(bb)
Ǌǌ: bb.Fragments = {}
ǊǍ: for all p ∈ bb.Primitives do
Ǌǎ: if isEmpty(bb.Fragments) then
ǊǏ: f← createFragment(p)
Ǌǐ: add(bb.Fragments, f)
ǊǑ: else
ǋǈ: fitting← findFittingFragment(bb.Fragments, p)
ǋǉ: if ∃fitting then
ǋǊ: add(fitting.Actions, p)
ǋǋ: add(fitting.OutputVars, p.Output)
ǋǌ: else
ǋǍ: f← createFragment(p)
ǋǎ: add(bb.Fragments, f)
ǋǏ: end if
ǋǐ: end if
ǋǑ: end for
ǌǈ: end function

ǉǑǎ

ĉe name of a BasicBlock that starts with a SelectionFlow is the name of the condition of the
Case, taking into account previous primitives that are referred by this condition. For example,
in block A the condition of the SelectionFlow is an IsChecked expression that does not depend
on previous primitives (actually the SelectionFlow is the ėrst primitive), so the inferred name for
the block is IsCheckedActModalities.
ĉe name of a BasicBlock which is the ėrst block in a branch uses the branch condition and
previous primitives that are referred to this condition. For example, the name of the block C
is CallPeriodsFound, which is derived from the condition and theWriteToVar that precedes the
SelectionFlow.

Ǐ.ǌ.Ǌ.ǋ SĹŔĽłĻ ĸĹńĹłĸĹłķĽĹň ĵŁŃłĻ ĺŇĵĻŁĹłŉň

Code fragments oěen depend on some values that where calculated or retrieved in other frag-
ments which were executed before, so it is interesting to explicitly capture these relationships.
To know the dependencies, wemust identify the set of input and output variables for each frag-
ment, which is easily done by using input and output aĨributes of the primitives. ĉen we set
the dependencies according to this criterion: A fragment fȕ depends on another fragment fȖ if
the input set for fȕ includes some variables from output set of the fragment fȖ.

Ǐ.Ǎ GĹłĹŇĵŉĽłĻ ŀĵŏĹŇĹĸ ķŃĸĹ

In this section we will outline the last part of the architecture proposed in Figure Ǐ.Ǌ, that is,
how a EventConcerns model can be used to generate a part of the new system.
Separating the different concerns of the legacy system allows us to migrate the application to
a new platform and technology, especially to some web technologies where the separation be-
tween UI and business logic is imposed.
We have built a chain ofMǊMandMǊT transformations thatmigrates PL/SQL event handlers
to a heavy-client, two tier architecture, where the GUI is deėned with HTML/Javascript/j-
Query which invokes a REST service made up of business logic fragments. We have deėned
several metamodels to represent the target architecture, which comprise the several technolo-
gies involved: HTML and jQuery (Javascript) for the client side and Java for the server side.
ĉe MǊM transformation takes the AST model of the PL/SQL code and the EventConcerns
model as input and outputs one or more models representing the target artefacts. ĉis trans-

ǉǑǏ

Figure Ǐ.ǉǉ: Horseshoe model applied to the separation of concerns

formation is performed between snippets of PL/SQL to either Javascript or Java. In order to
decide which parts of the PL/SQLmust be transformed to Javascript (UI), the EventConcerns
model is queried. In fact, this transformation is explicitly parameterised [ǉǉǊ] by the Event-
Concerns model, as it is represented in Figure Ǐ.ǉǉ. It is the laĨer which actually drives the
transformation in the sense that it is used by the transformation rules to disentangle the original
code by changing and relocating the content of a fragment according to its category. ĉe cross-
references between a fragment and theĆDBehaviour model, and between it and the PL/SQL
ASTmodel are essential to achieve this effect, as they allow navigating from the EventConcerns
to the PL/SQL model.
Listings Ǐ.ǉ and Ǐ.Ǌ show the translation of the original code of the running example (Fig-
ure Ǐ.ǌ). ĉere are three important issues about the translation which are worth mentioning,
namely:

• First of all, it is possible to some extent generate idiomatic code because the ĆDBe-
haviourmodel contains certain semantic information. For instance, lineǊ checkswhether
a checkbox is checked or not in idiomatic jQuery.

• Secondly, the generatedUI code in Javascript has the same shape as the original PL/SQL
code, except business logic fragments, which are translated to a remote AJAX call. In
Javascript a callback is executedwhen the result is available, so every fragment (UI orBL)
which depends on the transformed logic fragment is put within such a callback (lines Ǐ-
ǉǌ). Currently, we only support synchronous calls, but we intend to develop another
transformation which will be able to perform asynchronous calls based on the depen-
dencies among fragments.

ǉǑǐ

• Finally, each business logic fragment is mapped to a Java method which connects to the
database andperforms the required logic. ĉe input parameters of thismethodare theUI
variables that the fragment depends on, and the returning value is a JSON object made
up of the variables (UI or local) used by other fragments that depend on this fragment.

ǉ var periods;
Ǌ if ($(’#act_modalities’).is(’ :checked’)) {
ǋ $.ajax({
ǌ url : ”getNumCallPeriods/” + $(’#act_code’).val(),
Ǎ dataType: ”json”,
ǎ async : false ,
Ǐ success : function(result) {
ǐ periods = result.periods
Ǒ if (periods !== 0) {

ǉǈ alert (’No␣periods’);
ǉǉ $(’#act_modalities’).attr(’checked’, true);
ǉǊ } else {
ǉǋ $(’#act_modalities’).tabs(’enabled’, 1);
ǉǌ }
ǉǍ }
ǉǎ });
ǉǏ }

Listing Ǐ.ǉ: Event handling code rewriĨen in Javascript

ǉ @Produces(”application/json”)
Ǌ public class Service extends BaseResource {
ǋ private static EntityManager em = ...;
ǌ

Ǎ @GET @Path(”grants/getNumCallPeriods/{act_code}”)
ǎ public Representation getNumCallPeriods(
Ǐ @PathParam(”act_code”) String code) {
ǐ Query q = em.createQuery(”SELECT␣COUNT(*)␣FROM␣CallPeriods␣WHERE␣activity␣=␣:ACT_CODE

”);
Ǒ q.setParameter(”ACT_CODE”, code);

ǉǈ return new JSONObject().put(”periods”, q.getSingleResult());
ǉǉ }
ǉǊ }

Listing Ǐ.Ǌ: Entangled business logic moved to REST service

Ǐ.ǎ CĵńŉŊŇĽłĻ ĸĹńĹłĸĹłķĽĹň ĵŁŃłĻ ŉļĹGUI ĹŀĹŁĹłŉň

ĆDBehaviour contains implicit information about the dependencies that exist between the el-
ements in the window, for example, which windows can be reached directly from certain win-

ǉǑǑ

dow, or which widgets are affected by a change in the value of another widget. An Interaction
model is a model derived from ĆDBehaviour that captures these kinds of interactions explic-
itly. It can be considered as a view of a ĆDBehaviour model, since they gather a subset of the
information from the laĨer one and arranges it in such a way that is useful to perform some
tasks of forward engineering and program comprehension. We distinguish two main uses for
this model.

ĉe ėrst use is to exploit it as high level documentation, such as interaction diagrams. ĉe in-
formation is presented in a readable way so it can be utilised as a guideline to lead a manual
migration process. It could support a semi-automatic process in which event handler skeletons
can be automatically generated, and some hints can be included as comments to ease the mi-
gration.

ĉe second use consists of taking advantage of the representation to generate GUI-related arte-
facts. In particular we have identiėed three possible artefacts. ĉe ėrst possibility is to generate
navigation Ěow ėles. ĉis is, since the Interaction model makes explicit the navigation Ěow be-
tween application windows that is hidden inĆDBehaviour models, it can be used to generate
the page navigation conėguration ėles for web applications such as Struts or Java Server Faces.
ĉe error pages (exception handling) can be also speciėed.

ĉe second possibility in which the model is useful is for generating web interfaces without
refreshing the whole page. Widget updates that do not require data (e.g., enabling a panel aěer
checking a checkbox) can be performed with Javascript, and widgets demanding data from the
server can be updated using Ajax. ĉis task could be done with the ĆDBehaviour, but since
in the Interaction model the events are expressed much clearer and simpler than in the source
code, it is much easier to identify what type of implementation (server-side, Javascript, Ajax) is
suitable for an event handler.

ĉe third possibility is related to the widget interactions. A code generator for the event han-
dlers could be derived from ĆDBehaviour. ĉis generator would create one event handler
for each one in the original code and every handler would modify the properties or ėll in all
the widgets that would be affected. However, a beĨer design would be to have that every wid-
get is in charge of updating itself, instead of other widgets can modify it. ĉis would promote
that widget functionality and dependencies are separated, what leads to a beĨer maintenance,
especially when complex widgets (e.g. tree views) are involved. In ĆDBehaviour dependen-
cies between widgets are not clearly identiėed, whereas the Interaction model is focused on
this aspect. ĉus, a Interaction model directly shows which widgets are publishers of events

Ǌǈǈ

and which widgets are subscribers of event, so implement either the Observer or the Message
Broker paĨerns is eased.

Note that the Interaction model makes some data more accesible than ĆDBehaviour, and can
ease generating code for some frameworks. Both, Interaction and ĆDBehaviour can be used
together to design the new system, given that each model is focused on different aspects of the
source system.

Ǐ.ǎ.ǉ MĹŉĵŁŃĸĹŀ ĸĹňķŇĽńŉĽŃł

ĉe Interaction metamodel is shown in Figure Ǐ.ǉǊ. Basically the metamodel represents a graph
where eachnode canhave a nested subgraph. ĉere are two types of nodes: GUIFragmentNodes
which represent windows or composable parts of windows (such as portlets), andWidgetNodes
for representing widgets.

Every Interaction is related to the source node that originated the interaction, and the target
nodes that are affected by the Interaction. An Interaction is produced when a certain event is
triggered (trigger aĨribute) and some guard conditions (condition aĨribute) are fulėlled (all the
conditions must be fulėlled as if there were join with And). In this case, some actions are per-
formed on the target nodes. Note that the conditions are references to some conditions in the
ĆDBehaviour model which originated the Interaction model, and the actions to be performed
when an Interaction occurs are also deėned in theĆDBehaviour model.
ĉese nodes can be connected through two types of Interactionswhich differ in the type of tar-
get. One type is for Interactions that cause a change in the window. An example of this type can
be found when a user presses a buĨon and this produces that the current window is closed and
a different window is displayed. ĉis is the interaction that has targets of typeOuterTarget. ĉe
second type of Interactions is for expressing that a change in one widget has an effect in another
widget. For example, a user introduces its name in a text widget and automatically another text
widget is ėlled with a user identiėcation number. InnerTarget is the type of the targets of these
Interactions.

Ǐ.ǎ.Ǌ FŇŃŁ ĆDBĹļĵŋĽŃŊŇ ŉŃ ŉļĹ IłŉĹŇĵķŉĽŃł ŁŃĸĹŀ

In this section wewill outline theMǊM transformation that takes theĆDBehaviour model and
gets an Interaction model. We will explain how we get the GUINodes and the Interactions by

Ǌǈǉ

InteractionRoot

GUINode

GUIFragmentNode

Interaction
trigger: TriggerType

WidgetNode

InnerTarget
action: InnerActionType

OuterTarget
action: OuterActionType

InteractionTarget

«from Structure»
SingleWidget

«from Structure»
GraphicalView

0..n
«from RADBehaviour»

RADAction

«from RADBehaviour»
RADExpression

«enum»
OuterActionType

DISPLAY
HIDE

«enum»
InnerActionType

PUT_DATA
CLEAR_DATA
ENABLE
DISABLE
CHANGE_UI_PROPERTY

11

 1..n

1
source

0..n condition

«enum»
TriggerType

ACTIVATE
CHANGE_DATA
EVENT
SYSTEM

0..n

0..n

1..n

targets

0..n

Figure Ǐ.ǉǊ: Interaction metamodel

means of Algorithm Ǐ.

Lines Ǌ to Ǌǐ createGUINodes for widgets that are involved in event handlers (i.e., EventCodes).
Concretely, nodes are created for thewidgetswhich are the sourceof anEventCode (lines ǋ toǑ),
and nodes are created for the widgets that appear in the primitives of an EventCode (lines ǉǉ to
ǊǊ). If the widget is a View, then a GUIFragmentNode is instantiated. Otherwise aWidgetNode
is built. Aěer creating all the nodes, WidgetNodes are nested in the corresponding GUIFrag-
mentNodes (lines Ǌǌ to ǊǏ).

Lines ǋǈ to ǌǐ are intended to create links (Interactions) between nodes. An effect primitive is a
type of primitive that may produce a change in a view, this is, OpenView, ShowMessage, Write-
ToUI and ModifyUI. An effect block is a basic block that contains at least one effect primitive.
For each EventCode, the effect blocks are retrieved and iterated (line ǋǉ). Note that the effect
primitives of an effect block are all executed in a block under the same conditions, i.e., either all
of them or none of them are executed. ĉen, for each effect block, an interaction will be cre-
ated, whose sourcewidget will be the source of the event handler (line ǋǋ) and conditionswill be
a join (with the And operator) of all the conditions that wrap the basic block from the begin-
ning of the event code (line ǋǍ). For example, in the primitive code of Figure Ǐ.Ǐ, the wrapping
conditions of the ShowMessage primitive are IsChecked andHasData.

For each effect primitive in an effect block (line ǋǎ), an InteractionTarget is created according to
the type of primitive: if it is aOpenView or a ShowMessage primitive, anOuterTarget is created,

ǊǈǊ

Algorithm ǏAlgorithm to generate the Interaction model.

ǉ: NodeSet← {}
Ǌ: for all e ∈ getAll(EventCode) do
ǋ: if ¬created(e.source) then
ǌ: if e.source.type = View then
Ǎ: NodeSet← createGUIFragmentNode(e.source)
ǎ: else if e.source.type = SingleWidget then
Ǐ: NodeSet← createWidgetNode(e.source)
ǐ: end if
Ǒ: end if
ǉǈ:
ǉǉ: for all p ∈ e.Primitives do
ǉǊ: Widgets← getWidgets(p.input) ∪ getWidgets(p.output)
ǉǋ: for all w ∈ Widgets do
ǉǌ: if ¬created(w) then
ǉǍ: if w.type = View then
ǉǎ: NodeSet← createGUIFragmentNode(w)
ǉǏ: else if w.type = SingleWidget then
ǉǐ: NodeSet← createWidgetNode(w)
ǉǑ: end if
Ǌǈ: end if
Ǌǉ: end for
ǊǊ: end for
Ǌǋ:
Ǌǌ: for all n ∈ NodeSet.(n.type = WidgetNode) do
ǊǍ: container← findContainer(n)
Ǌǎ: add(n, container)
ǊǏ: end for
Ǌǐ: end for
ǊǑ:
ǋǈ: for all e ∈ getAll(EventCode) do
ǋǉ: for all block ∈ getEffectBlocks(e) do
ǋǊ: i← createInteraction()
ǋǋ: i.source← e.source
ǋǌ: i.trigger← mapEvent(e.event)
ǋǍ: i.Conditions← getConditions(block)
ǋǎ: for all p ∈ getEffectPrimitives(block) do
ǋǏ: if p.type = OpenView ∨ p.type = ShowMessage then
ǋǐ: t← createOuterTarget()
ǋǑ: else if p.type = WriteToUI ∨ p.type = ModifyUI then
ǌǈ: t← createInnerTarget()
ǌǉ: end if
ǌǊ: t.target← getTarget(p)
ǌǋ: t.action← mapAction(p)
ǌǌ: t.Primitives← findDependencies(p)
ǌǍ: i.target← t
ǌǎ: end for
ǌǏ: end for
ǌǐ: end for

Ǌǈǋ

which represents a change in the Ěow of views; if the primitive is a WriteToUI or a ModifyUI
then an OuterTarget is created, which represents a modiėcation in the current view. ĉe ėnd-
Dependencies function in line ǌǌ gets all the primitives that are placed before the given primitive
and affects the result of this primitive. For example, if we apply ėndDependencies(p) and there
is aWriteToVar primitive prior to p that writes a value in a variable X that is used in p, then the
WriteToVar is added to the result. Finally, the target is added to the Interaction (line ǌǍ)

Ǐ.ǎ.ǋ EŎĵŁńŀĹ

In Figure Ǐ.ǉǋ we show an Interaction model for the event handlers associated to the window
presented in Figure Ǐ.ǋ. ĉe graphical notation which we have used is the following. Rounded-
boxes with two compartments represent application windows, for example GĆNT_CALLS-
_WINDOW orMAIL_WINDOW. Rounded-boxes without compartments represent widgets,
for exampleCALL_CODEorACT_MODALITIES. Arrows represent interactionswith the fol-
lowing notation: event [condition] / actions. For example, from CALL_CODE there is an inter-
action to PERIOD_START and PERIOD_END. In this case the event is Change (is a prede-
ėned event), the condition isHasData(CON_CODE), and it has two actions: displays a value
in PERIOD_START and displays a value in PERIOD_END. In some cases an interaction is per-
formed when a window is displayed, so in these cases the arrow starts in the window, such as
the arrows that start inGĆNT_CALLS_WINDOW and ends inMODALITIES.

In the upper-right part of the diagram we can see two interactions whose source is the check-
box ACT_MODALITIES and are related to ĆDBehaviour example shown in Ǐ.Ǐ. Each inter-
action is related to a Case of the nested SelectionFlow. From the ėrst Case, an interaction with
two targets has been generated. One target is generated from theWriteToUI primitive, aims at
theMODALITIESwidget and is tagged with the PutData action. ĉe other target is generated
from the ShowMessage primitive, aims at the POP-UP generic widget and is taggedwith theDis-
play action. Note that both targets belong to the same interaction, so they have in common the
event that produces the interaction (a Change of data in a widget our case), and the guard con-
dition that has been obtained from the join of the conditions of the SelectionFlows in which the
effect primitives are nested. ĉe second interaction also takes place when there is a change in the
value of the ACT_MODALITIESwidget (and the condition guard is fulėlled), and produces a
ChangeUIProperty inMODALITIES, which is the unique target of this interaction.

Ǌǈǌ

Figure Ǐ.ǉǋ: Interaction model for the event handlers of the window shown in Figure Ǐ.ǋ

Ǐ.Ǐ EŋĵŀŊĵŉĽŃł Ńĺ ŉļĹ ĵńńŇŃĵķļ

In order to assess the utility of our approach we have performed a case study reusing theOracle
Forms application for managing research projects that was introduced in Section Ǎ.ǐ. Around
ǉǉ,ǈǈǈ lines of code (LOC) were evaluated (comments are not counted), what indicates a
medium-high complexity.

We have executed the complete reverse engineering process for the application and we have
manually inspected the models in order to count the LOC¹ correctly matched and classiėed.
For the ĆDBehaviour model, we count the LOC that have been successfully matched, com-
paring the idioms matched with the expected ones. For the EventConcerns model we count the
LOCs that have been classiėed in each category, in order to assess the amount of code that our
approach is able to relocate. ĉe extraction of interactions has been tested with only a few win-
dows so it cannot be considered a reliable evaluation but a proof of concept, and therefore it
will not be commented in this section. Despite that, the evaluation of the code abstraction give
us an idea of the correctness of the extraction of interactions since it strongly depends on how
good theĆDBehaviour model represents the semantics of the source code, and therefore it is

¹Tokens like begin or end, and variable declarations are not counted.

ǊǈǍ

Table Ǐ.Ǌ: ĆDBehaviour evaluation

LOC of idioms matched / total LOC ǑǍ.ǎǍƻ
LOCmapped OK / total LOC ǐǋ.ǈǌƻ

LOC of matched programming idioms / total LOC ǋǎ.ǎǏƻ
LOC of matched community idioms / total LOC Ǎǎ.ǌǍƻ
LOC of matched business idioms / total LOC ǎ.ǐǐƻ

expected that the correctness of both models will be rather similar.

Ǐ.Ǐ.ǉ EŋĵŀŊĵŉĽŃł Ńĺ ŉļĹ ķŃĸĹ ĵĶňŉŇĵķŉĽŃł

ĉe results of the assessment of the code abstraction algorithm are shown in Table Ǐ.Ǌ. LOC of
idioms matched is the percentage of LOCs out of the total that have been matched with some
idiom. However, not all LOCs that are matched are mapped properly, so LOCmapped OK is a
measure of the amount of code whose behaviour has been captured right.

As canbe seen, almost all LOCsmatch some idiom. ĉis is a consequenceofhavingėne-grained
idioms (programming language idioms) that match almost everything that coarse-grained id-
ioms (community and business idioms) cannot. ĉis avoids the need for writing idioms for
every built-in function, and it offers a migration option when some coarse-grained idioms have
not been identiėed. For example, there is a built-in function that copies a value to a given vari-
able if the current value of the variable isNULL. Sincewedonot have a speciėcmapping for this
function, it is automatically transformed into a ExecuteBL, which is a wrong mapping. When
there are statements that are not matched, they are notiėed to the user.

As canbe seen, almost ǉǏƻofLOCaremismatched. In our case, themajority of the fails are due
to the fact that we do not deal with PL/SQL exceptions, and because of some speciėc Forms
functions that are not mapped properly. We can conclude that the set of primitives identiėed
inĆDBehaviour is enough to capture the basic behaviour of the application.

ĉe second part of Table Ǐ.Ǌ shows the percentage of each type of idiom that has beenmatched
out of total of correct matches. ĉis reinforces the idea thatĆDapplications are programmed
based on a set of more or less ėxed idioms that are used throughout the code given that approx-
imately ǎǋƻ of the code are coarse-grained idioms (i.e., community and business idioms).

Ǌǈǎ

Table Ǐ.ǋ: EventConcerns evaluation

LOC classiėed OK ǐǎ.ǉǈƻ

LOC classiėed as BL ǉǍ.ǐǏƻ
LOC classiėed as Ctrl ǌ.ǐǈƻ
LOC classiėed as UI ǏǑ.ǋǋƻ

Ǐ.Ǐ.Ǌ EŋĵŀŊĵŉĽŃł Ńĺ ŉļĹ ňĹńĵŇĵŉĽŃł Ńĺ ķŃłķĹŇłň

Table Ǐ.ǋ shows the amount of LOCs that has been classiėed in each category (user interface,
control and business logic). LOC classiėed OK shows the number of LOCs out of the total
that have been categorised properly. Interestingly, the success percentage in this case (ǐǎ.ǉǈ)ƻ
is slightly higher than the percentage of code well mapped when obtaining the ĆDBehaviour
(ǐǋ.ǈǌƻ, LOC mapped OK in Table Ǐ.Ǌ). ĉis is due to the fact that some original statements
are mapped to wrong primitives, but by chance they belong to the right category, so they are
classiėed correctly. However, thismay lead to generate awrong piece of target code (i.e., around
ǋƻ of the generated code is wrong). We are looking into ways of detecting this corner case.
It can be seen that a certain amount of the code (Ǌǈ.ǎǏƻ) should be relocated to achieve separa-
tion of concerns, what shows thatĆD applications are tightly coupled, and that our approach
facilitates identifying fragments related to each concern and automatically relocating them.
With regard to code classiėed as UI (ǏǑ.ǋǋƻ), it is translated in a straightforward manner to
the new application. However, we have estimated that around ǉǐƻ out of UI code is in charge
of performing interactions among widgets or performing a change in the navigation Ěow of the
application, and could be moved to a different module if we intended to decouple the interac-
tions amongwidgets. Based on theĆDBehaviour representation it is possible to identify those
widgets interacting with other GUI elements, so enabling further separation of concerns.

Ǐ.ǐ CŃłķŀŊňĽŃłň

In this chapter an approach to reverse engineer event handlers of applications developed with
ĆD environments has been presented. ĉe aim is to separate the different concerns that are
tangled in the event handlers of those applications, that is, the Gȗ goal that was presented in
Section ǉ.Ǌ. As a result of the reverse engineering process we have obtained two kinds of mod-
els: the EventConcerns model and the Interactions model. ĉe former is used to separate the

ǊǈǏ

architectural concerns (e.g., MVC layers) of an application and then improve the quality of the
code in the new system. ĉe laĨer serves to separate the navigation Ěow andwidget interaction
concerns, and concretely can be used to: generate navigation Ěow descriptions (e.g., for JSF),
detect asynchronous updates if the application is migrated to the web platform, or for graphi-
cally documentating the source system.

With the aim of geĨing the EventConcerns and Interactionmodels, source code had to be anal-
ysed. However, analysing code of a programming language is a tough task, since there are a lot
of different ways to perform the same effect. For example, changing the order of independent
statements or introducing local variables to store temporary results of functions or database
queries are twoways ofmodifying the source codewhile preserving its semantics. Usually stan-
dalone statements are meaningless, but they are part of more complex structures that have a
concrete purpose (which developers use to indicate with code comments). ĉerefore using a
simpler representation (ĆDBehaviour) that makes explicit the intention of portions of code
greatly eases the manipulation of code and simpliėes the anlysis. Given the speciėc nature of
event handlers ofĆDapplications that usually perform the same tasks in amore or less similar
fashion, paĨernmatching is able to detect complex code structure (idioms) inmost of the code
(Ǒǎƻ), with a success rate of ǐǋƻ.

ĉe ĆDBehaviour representation greatly facilitated the achievement of the EventConcerns
and Interaction models since it was much simpler to analyse that the AST tree of the PL/SQL
language. We assessed the separation of architectural concerns with a migration of the Oracle
Forms application that we used in previous chapters to the web platform with Ajax, obtaining
a ǐǎƻ of accuracy. A lesson learned in the case study was that when accomplishing a migra-
tion, raising the abstraction level of the code may be useful, but the AST representation of the
source code is still required in many cases, as the abstract representation supresses details that
are needed to perform a complete migration of the source code. Hence, traces to the source
artefacts must be kept to perform this.

In relation to the requirements of Section ǌ.ǉ, requirement RȕȔ can be tackled by means of
the ĆDBehaviour model, requirement Rȕȕ is covered by the EventConcerns model and RȕȖ
is achieved by the Interaction model. We have not found related work that deals with event
handlers with an abstraction of the code such as our ĆDBehaviour model. We believe that
some kind of preprocessing such as our ĆDBehaviour is needed to shorten the gap between
the code and its semantics. Regarding to the separation of code concerns, in [ǉǉ] authors ad-
dressed this separation bymarking code by hand. Different to them, our approach is fully auto-

Ǌǈǐ

mated and extracts the category of code snippets by applying paĨern matching, as we stated in
requirement Rȗ (automation). ĉe Interaction model was inspired in many works about GUI
analysis that extracted some kind of state machine from the code [Ǐ] [ǐ] [ǋǉ]. Our Interaction
model is somewhat similar to theOrchestrationmodel presented in [ǉǉǋ]² and themain differ-
ence with our work is that we intend to be generic and therefore we do not include information
about grouping widgets in Ajax pages.
Table Ǐ.ǌ shows the classiėcationof ourwork aswedidwith theworks in the state of the art. ĉe
type of code analysis that we have applied is static analysis, given that the source PL/SQL code
could be extracted from the binary artefacts. However,ĆDenvironments have the possibility
of using reĚection (e.g., theName_in() function in Oracle Forms), which some developers use
to create code that can be copied and pasted in different event handlers, so dynamic analysis
would be required to fully analyse reĚective calls. Nevertheless, to our experience static anal-
ysis was enough to extract most of the behaviour of the legacy application, but there may be
applications which use reĚection in such a way that is not possible to analyse statically. In those
cases a hybrid analysis would be the best option.

Source artefacts Legacy code (PL/SQL)
Information extracted EventConcerns and Interaction models
Goal Migration, quality improvement, documentation
Analysis type Static

Table Ǐ.ǌ: Classiėcation of the approach of this chapter

²ĉis work was excluded from the state of the art since it is not a reverse engineering approach.

ǊǈǑ

Ǌǉǈ

(Suggested by FernandoMolina)

If you can meet with Triumph and Disaster and
treat those two imposters just the same.

Rudyard Kipling

8
Conclusions

User interfaces are an important part of soěware systems. Nowadays users do not only expect
from an application that some functionality is available, but many other qualities. For example,
in e-commerce applications it is vital for the user interface to be appealing to aĨract people’s at-
tention and encourage them to purchase, and at the same timemaking it accessible from differ-
ent devices (e.g., smartphones) without diminishing the user experience. Modern GUI frame-
works technologies, for example the combination of web frameworks such as jQuery [ǉǉǌ]
and JSF [ǉǉǉ], support programmers in the challenging task of implementingGUIs by offering
powerful graphical options and including some code facilities to improve the maintainability
and extensibility of the application. However, a great deal of applications that were created in
the past do not take advantage of the new GUI technologies that enhance interaction and sys-
tem quality, which pushes companies to address their migration. ĉis thesis has been aimed
at providing a model-driven reverse engineering approach that supports the migration of ĆD
applications to modern platforms and technologies.

ĉis chapter ėnalises thismanuscript. Some conclusions and reĚections will be distilled, future
work will be outlined and the results in terms of publications, contracts, projects and research

Ǌǉǉ

stays will be succintly presented. Next, we will show a discussion about the level of achieve-
ment of the goals of Chapter ǉ, the fulėlment of requirements in Chapter ǌ and the originality
regarding the related work.

ǐ.ǉ DĽňķŊňňĽŃł

In the introductory chapter we indicated three goals: create anMDE architecture for migrating
legacy GUIs (Gȕ), separate and make explicit the information of GUI deėnitions (GȖ) and
event handlers (Gȗ). ĉe solution architecture we devised was presented in Chapter ǌ. In the
next subsection we will discuss about how these goals have been achieved and we will put into
relation with other works.

ǐ.ǉ.ǉ GŃĵŀ ǉ: AŇķļĽŉĹķŉŊŇĹ ĺŃŇ ŁĽĻŇĵŉĽłĻ ŀĹĻĵķŏ GUIň

We have proėted from the beneėts provided by MDE to meet the Rȕ, RȖ, Rȗ, and RȘ require-
ments. Models have been useful to explicitly represent the information that is discovered in the
reverse engineering stage (requirement Rȕ), which are described by the many metamodels we
have created, like the Structuremetamodel, the Layoutmetamodel and so forth. All themodels
that formourCUI explicitly represent information of different aspects of theGUI.MDEbrings
an additional beneėt, which is that models can be serialised using the XMI standard [ǉǉǍ], so
this information is available for different projects or for third-party entities that want to proėt
from it. For instance, our CUI models can be transformed into an existing UIDL description
and then be used by code generators, documentation or GUI testing tools which are available
for that UIDL.
An MDE architecture (i.e., a model transformation chain) signiėcantly promotes modularity
(RȖ requirement), what implies simplicity, reusability and extensibility, since the input andout-
put models of each stage can be used as extension points. For instance, we can reuse the part of
the architecture that obtains the Structuremodel in a solution to distribute a legacyGUI among
several devices. In this seĨing, the Structuremodel would be the extension point that would be
used to integrate our approach into an existing solution, wich would have a limited impact on
the laĨer.
Automation (requirement Rȗ) is achieved thanks to the chains of model transformations. In
our solution the target artefacts are automatically generated. However, there are three cases in
which developers need to modify either the input or the output. ĉe ėrst case happens when

ǊǉǊ

the execution stops due to the preconditions of the source artefacts are not fulėlled. For exam-
ple, if there are widgets that are highly overlapped (slight overlappings are supported), then the
program stops and a developer has to modify the input and execute the transformation again.
In the second case the target artefact is generated, but it lacks of elements that have been omit-
ted because the tool does not know how to deal with some elements. ĉis is the case when a
unusual widget is used or a fragment of code is not recognised. ĉese Ěaws can be repaired by
completing the metamodels and creating exhaustive paĨern catalogs which cover not only the
common cases but all the possibilities. ĉe third case also consists of a successful execution,
but the result is not what user expected, for example, the layout generated is not the best op-
tion according to the developer, so he or she has to tune the algorithm parameters or directly
modify some models (the Layout model) and launch again the last part of the transformation
chain. We conclude that requirement Rȗ is mostly fulėlled, but not completely.

ĉe architecture was designed to provide independence of the source technology by means of
the Normalised and ĆDBehaviour models, and target independence by means of the CUI
model (requirementRȘ). In fact, we have proved the source independence by reusing the same
layout inference approach for twodifferent sources, which areOracle Formswindows andwire-
frames created with WireframeSketcher. Note that both of them have a rather different nature,
since Oracle Forms windows belong to a legacy application and are encoded in XML format,
while WireframeSketcher wireframes are created during the analysis stage of development and
are actually Ecore models. Likewise, the target independence has been proved by generating
code for Java Swing which is a Java desktop toolkit and ZKwhich is a web toolkit. Nonetheless,
the information of the CUI model is not enough to migrate event handlers to new platforms,
since complete information of the Event Handler AST model is needed to generate the Target
Technologymodel. It is worth remarking that the Event concernsmodel or theĆDBehaviour
model are guides that can lead the generation of the target code, but they lack of information
about the code that is tied to the source technology and therefore has not been represented in
neither the ĆDBehaviour model nor the Event concerns model.

Given that we claim that our solution is source and target independent, it is worth commenting
on the amount of effort needed to change the source or target technology in our architecture.
Replacing the source technology entails programming the transformation to the Normalised
model and transformation to theĆDBehaviour (where the idiomsarehard-coded). ĉe trans-
formationof the sourcemodels into theNormalisedmodels is usually relatively straightforward.
On the other hand, we believe that there is a trade-off between automation and accuracy of the

Ǌǉǋ

ĆDBehaviour model. ĉat is, if we transform the source code models into KDM, then we
can automate the paĨern matching process for any language so reducing the effort of develop-
ers, but as far as paĨerns are somehow dependent on the source language, language-speciėc
paĨerns could not be matched, thus obtaining more general primitives in the ĆDBehaviour
model (there is a loss of semantics). On the other hand, replacing the target technology implies
transforming the CUI model into a Target Technology model. whose complexity depends on
the features of the target technology. Although the CUI model contains a lot of explicit and
useful information, the transformation may be complicated due to technology quirks, so com-
plexity is inversely proportional to the experience of the developer in the target technology.
ĉere are other works that take advantage of the MDE beneėts, like explicit information [Ǒǈ],
modularity and automation [Ǌǉ], and independence from source or target technologies [ǌ],
and our model-driven architecture takes proėt from all these features at the same time. Al-
though there are approaches that gather information about a speciėc aspect of the GUI (e.g.,
interactions in [ǉǉǋ]), we have not found any proposal that deėnes a CUImodel that identiėes
the different aspects and integrates them into one model with a modular approach, with each
model representing a GUI dimension that is linked to a base model (the Structure model).
Table ǐ.ǉ summarises the requirements of goal Gǉ and the limitations that reduce their fulėl-
ment.

Requirement Solution Fulėlment Limitation
Rǉ: Explicit GUI information Metamodels Total None
RǊ: Modularity Model transformation chain Total None
Rǋ: Automation Model transformation chain High Fitness function
Rǌ: Source independence Normalised GUI tree model Total None

ĆDBehaviour model
Rǌ: Target independence CUI model Total None

Table ǐ.ǉ: Fulėlment of the requirements of goal Gǉ

ǐ.ǉ.Ǌ GŃĵŀ Ǌ: AłĵŀŏňĽň Ńĺ GUI ĸĹĺĽłĽŉĽŃłň ĺŃŇ ŁĽĻŇĵŉĽŃł

Requirements Rș, RȚ, Rț, RȜ and Rȝ are related to this second goal. ĉe Region model identi-
ėes regions in views and let us achieve the matching of the visual and logical structure of views
(requirement Rș). Explicit containment is perfectly addressed and region identiėcation is cor-
rectly solved when the regions are surrounded with borders, but when there are groups of wid-
gets that are spatially separated (without borders), distinct regions are not created. Neverthe-

Ǌǉǌ

less, the layout inference algorithm is not affected by the ’imperfect’ region detection as it is able
to differentiate regions by itself thanks to the closeness level mechanism.

Several approaches in the literature have dealt with the segmentation of web pages in order
to migrate them to a mobile web interface [ǏǏ] [Ǐǐ]. Many of these works are based on the
VIPS [Ǐǎ] page segmentation algorithm, which is an algorithm that performs a partition of
the web page based on the type of HTML tags. When the web page has been segmentated,
these works propose different visualisation alternatives in the mobile device: display relevant
segments of the web page, show an snapshot of the interface so the user can select a part that
is then zoomed-in, among others. We have not found any approach that explicitly presents a
solution for matching the visual structure from a legacy GUI. Our approach is the equivalent
to VIPS but with coordenate-based GUIs, and can be therefore used in the migration of legacy
GUIs to mobile interfaces. Another use is the distribution of the GUI in different devices.

Regarding the high-level layout (requirement RȚ), the quality of the resulting layout is affected
by the parameters of the algorithm and the implementation of the ėtness function, thoughwith
the default conėguration, the result is acceptable in most cases. As we clearly stated when ex-
plaining the Widget distance clustering problem in Chapter ǎ, the automated assignment of
the closeness level is tricky and sometimes closeness levels may confuse the paĨern matching
algorithm. ĉe effects of the ėtness function are mainly visible when testing the Ěexibility of
the layout (e.g., resizing a generated view and verifying). In some cases the best ėtness value
entails a ėnal GUI that is not resized as a developer could expect (Fitness function implemen-
tation problem).

ĉe misalignment tolerance (requirement Rț) is fulėlled by including a margin when compar-
ing coordinates to create tiles. A more or less similar approach was proposed in [ǋ] to give
Ěexibility to coordinate constraints. When there are widgets that are too close, the margin is
automatically cut down to prevent it from spoiling the inference. Given that the same margins
are applied to all the distances, sometimes it may happen that a high misalignment tolerance
changes the position or the alignment of other elements. As a result, slightly misaligned wid-
gets can be corrected with small margins, but large margins rarely work well.

ĉe layout inference algorithm outputs all the possible layout compositions it has been able to
create (requirementRȜ). If the algorithm selects a layout composition that is not desired by the
developer, he or she can inspect themodel andmark the layout that he or she prefers. ĉen, the
last part of the transformation chain can be executed to generate the code with that choice.

ĉe types of layouts to match against views is totally conėgurable (requirement Rȝ). Further-

ǊǉǍ

more, new layout types can be incorporated. ĉe design of the tool allows the extension with
new types easily, To add a new layout type, it is neccessary to implement a class that matches
the layout paĨern on the layout graph, implement a class that creates the layout type instances
in the Layout model, and maybe, extend the ėtness function.
As far as we know, there are noworks that detect a composite layout based on a conėgurable set
of layout types. ĉe existing approaches such as [ǌ] and [Ǎ] deėne algorithms that are tightly
tied to speciėc types of layouts. ĉere is neither an approach that outputs several ranked alter-
native solutions.
Table ǐ.Ǌ summarises the requirements and limitations for goal GǊ.

Requirement Solution Fulėlment Limitation
RǍ: Logical/visual structure matching Structure model High Non-surrounded parts
Rǎ: High-level layout representation Layout model Medium/High Parameters and ėtness function
RǏ: Misalignment tolerance Layout inference algorithm High Small misalignments
Rǐ: Alternative solutions Layout inference algorithm Total None
RǑ: Conėgurable layout set Layout inference algorithm Total None

Table ǐ.Ǌ: Fulėlment of the requirements of goal GǊ

ǐ.ǉ.ǋ GŃĵŀ ǋ: AłĵŀŏňĽň Ńĺ ŉļĹ ķŃĸĹ Ńĺ ĹŋĹłŉ ļĵłĸŀĹŇň ĺŃŇ ŁĽĻŇĵŉĽŃł

ĉesolution that has been implemented for event handler analysis fulėls requirementsRȕȔ,Rȕȕ
andRȕȖ. ĉeĆDBehaviourmodel is useful because it explicitly represents simple information
about sentences or groups of sentences in the code of event handlers. ĉe key of this model
is the ability of the devised primitives to represent the relations between the elements in the
code of ĆD applications (widgets, database ėelds, code functions, local variables, etc.) in a
simple fashion. A reverse engineering task that for example needs to detect where the values
of widgets are set, will ėnd the ĆDBehaviour model much easier to analyse than the Event
Handler AST model. A problem of the paĨern matching approach is that the source code can
contain statements that offer some behaviour that cannot be locally translated to primitives but
if affects the entire application. For example, in Oracle Forms there is a function to know the
status of a form, which is automatically managed by the environment. Emulating that status
entails a large amount of code in all the views to handle it. Moreover, in some environments it
is possible todeclaratively specify some functionality. For instance, inOracleForms adeveloper
can declare that views contain a ’go forward’ and ’go back’ buĨons to see the next and previous
bulks of results of a data table respectively. Technology-dependant functions may be tricky

Ǌǉǎ

to abstract and sometimes they can only be transformed into function calls, which is not very
useful as it does not add any semantics about that code. Fortunately, our approach is in most
cases successful since event handler code frequently repeats the identiėed paĨerns which have
a deėnite behaviour that generally is not tied to the source technology.

In relation to code categorisation and representation of the interactions and navigation (re-
quirements Rȕȕ and RȕȖ), the algorithms basically analyse the type of primitives in the ĆD-
Behaviour model as well as their inputs and outputs, which makes our solution heavily depen-
dant the primitives. Hence, the separation of architectural concerns and the identiėcation of
interactions are performed alright as far as the source code is correctly represented in the form
of primitives. On the whole, most of the code analysed was successfully separated in concerns,
and the widget and view dependencies were found.

In the state of the art we listedmany approaches that analyse event handler code. Most of them
obtain some kind of state machine that is used for soěware testing or program comprehension.
Our contribution in this sense is that we integrate a state machine that represents the naviga-
tion Ěow of views with a state machine for each view that expresses dependencies among their
widgets. ĉere are also approaches that propose semi-automated solutions for separating the
code in layers [ǉǉ] whereas our proposal is fully automated. On the other hand, as far as we
know, there is no intermediate representation particularly designed for event handlers. ĉat
representation has demonstrated being helpful as it greatly facilitated other reverse engineering
tasks (concern separation, interaction identiėcation) related to the analysis of event handlers
of ĆD applications. Table ǐ.ǋ sums up the requirements and limitations of the Gǋ goal.

Requirement Solution Fulėlment Limitation
Rǉǈ: Code abstraction ĆDBehaviour model Medium-High Technology-dependant statements
Rǉǉ: Code categorisation Event concerns model High Depends on the

ĆDBehaviour model
RǉǊ: Explicit interaction Interaction model High Depends on the
and navigation ĆDBehaviour model

Table ǐ.ǋ: Fulėlment of the requirements of goal Gǋ

ǊǉǏ

ǐ.Ǌ CŃłŉŇĽĶŊŉĽŃłň

ǐ.Ǌ.ǉ FĽŇňŉ ķŃłŉŇĽĶŊŉĽŃł: MDE-ĶĵňĹĸ ŁĽĻŇĵŉĽŃł ĵŇķļĽŉĹķŉŊŇĹ

In the course of our thesis we have made several contributions. Firstly, we have designed and
implemented an MDE architecture to perform migrations of ĆD GUIs. ĉe design has been
focused on separating the different aspects of a GUI and reducing the complexity of the prob-
lems by spliĨing them in smaller subproblems that are chained, which promotesmodularity. As
a part of that architecture, we have deėned two metamodels that make the input of the process
independent of the source legacy technology (the Normalised metamodel for the GUI deėni-
tion and the ĆDBehaviour metamodel for the code of event handlers), and a set of related
metamodels (Structure, Layout, EventConcerns, Interactions) that represent each one of the
GUI aspects and provides independence of the target technology.
ĉe main publication we have produced regarding this topic is the following (the publications
mentioned in the other two contributions also deal with this topic).

• Óscar Sánchez Ramón, Jesús Sánchez Cuadrado, Jesús García Molina, Architecture for
Reverse EngineeringGraphicalUser Interfaces of Legacy Systems. In proceedings of the Soě-
ware Support for User Interface Description Language (UIDL’ǉǉ), in conjunction with
the ǉǋth IFIP TCǉǋ Conference onHuman-Computer Interaction (Interact Ǌǈǉǉ), Lis-
bon (Portugal), Ǌǈǉǉ.

ǐ.Ǌ.Ǌ SĹķŃłĸ ķŃłŉŇĽĶŊŉĽŃł: LĵŏŃŊŉ ĽłĺĹŇĹłķĹ ĵńńŇŃĵķļ

Secondly, we have proposed a set of data structures (i.e., the Tile and Layout metamodels) and
algorithms (i.e., model transformations) to reverse engineering a GUI deėnition in which the
layout is expressed in coordinates to a layout described by a composition of a set of layoutman-
agers. ĉe solution includes the identiėcation of the visual parts of views (supported by the Re-
gion model) with the aim of generating a representation that matches the visual perception of
the user, which is materialised in the Structure model. Actually we have proposed two versions
of the approach: a greedy version which uses heuristics to detect the layout, and an exploratory
version that uses a backtracking algorithm to identify possible solutions. Tools for supporting
each versionof the layout inferenceweredeveloped.¹ ĉeėrst toolmigratesOracleFormsGUIs

¹ĉe tools can be downloaded from http://modelum.es/trac/guizmo

Ǌǉǐ

http://modelum.es/trac/guizmo

to Java Swing, and the second tool transforms wireframes created with WireframeSketcher to
web interfaces in ZK.
ĉe most important publications we have produced regarding this topic are:

• Óscar Sánchez Ramón, Jesús Sánchez Cuadrado, Jesús García Molina, Model-driven re-
verse engineering of legacy graphical user interfaces. Journal of Automated Soěware Engi-
neering, April Ǌǈǉǌ, Volume Ǌǉ, Issue Ǌ, pages ǉǌǏ-ǉǐǎ.
Impact factor: ǉ.ǌǈǈ (Ǌǐ/ǉǈǍ, Ǌnd quartile in JCR/Computer Science/Soěware
Engineering)

• Óscar Sánchez Ramón, Jesús Sánchez Cuadrado, Jesús García Molina, Model-driven re-
verse engineering of legacy graphical user interfaces. In theproceedingsof theǊǍth IEEE/ACM
InternationalConference onAutomatedSoěwareEngineering (ASE’ǉǈ), Antwerp (Bel-
gium), Ǌǈǉǈ.
Acceptance rate: ǋǌƻ

• Óscar Sánchez Ramón, Jesús Sánchez Cuadrado, Jesús García Molina, Jean Vanderdon-
ckt A layout inference algorithm for graphical user interfaces. Information and Soěware
Technology. Under review.
Impact factor: ǉ.ǍǊǊ(Ǌǋ/ǉǈǍ, ǉstquartile in JCR/ComputerScience/SoěwareEn-
gineering)

• Óscar Sánchez Ramón, Jean Vanderdonckt, Jesús García Molina, Re-Engineering Graph-
ical User Interfaces ěom their Resource Files with UsiResourcer. In proceedigns of the Ǐth
International Conference on Research Challenges in Information Science (RCIS’ǉǋ),
Paris (France), Ǌǈǉǋ.
Acceptance rate: Ǌǎƻ

ǐ.Ǌ.ǋ TļĽŇĸ ķŃłŉŇĽĶŊŉĽŃł: EŋĹłŉ ļĵłĸŀĹŇ ĵłĵŀŏňĽň ĵńńŇŃĵķļ

ĉirdly, we have described a set of data structures and algorithms to reverse engineer the code
of event handlers in order to separate the many concerns that are involved in this kind of code.
We have devised the ĆDBehaviour metamodel that takes advantage of the features of ĆD
environments and represents fragments of code by primitives that express the semantics behind
the code. ĉis representation is the basis of other static code analysis, which we have applied

ǊǉǑ

to develop two tasks. ĉe ėrst one is to separate the code in three basic layers (business logic,
controller and GUI) that are common in nowadays frameworks. ĉe second one is to identify
the interactions that exist among widgets (e.g., enable a text ėeld when a checkbox is selected)
and also the changes in the navigation Ěow (e.g., when a user press certain buĨon then another
view is displayed). We have also developed a tool that puts the approach into practice. It takes
event handlers wriĨen in PL/SQL and generates code for a web application in which the GUI
and control are targeted to a web client (javascript code) and the business logic is executed in
the server side (Java code).

ĉe publications we have produced regarding this topic are:

• Óscar Sánchez Ramón, Jesús Sánchez Cuadrado, Jesús García Molina, Reverse Engineer-
ing of Event Handlers of ĆD-Based Applications. In proceedings of the ǉǐth Working
Conference on Reverse Engineering (WCRE’ǉǉ), Limerick (Ireland), Ǌǈǉǉ.
Acceptance rate: Ǌǎƻ

ǐ.ǋ FŊŉŊŇĹŌŃŇĿ

We have arranged the future work into several categories according to the part of the architec-
ture that it is affected.

ǐ.ǋ.ǉ CUI ŁĹŉĵŁŃĸĹŀ

ĉere are several metamodels that were conceived to take part in the CUImetamodel, but have
not been implemented at present. Particularly the Style metamodel and the Validation meta-
model. ĉe Style metamodel is intended to deėne all the information about the appearance
of the widgets: colours, fonts, sizes, etc. Styles (groups of graphical aĨributes) could be struc-
tured hierarchically, hence some styles would inherit from others (similar to CSS), and every
widget would be assigned one or more styles. When analysing the widgets of a view, one style
would be created for the ėrst widget, and everywidget that had different values for the graphical
aĨributes would lead to a division of the already created styles. When all the widgets would be
analysed, the process would output a style tree and the style nodes would be assigned to wid-
gets. A challenge of this approach would be to maximise the styles and to avoid having a large
number of styles with only one or two aĨributes.

ǊǊǈ

ĉe Validation metamodel would let developers specify all the information about form valida-
tion, such as validation rules, widgets associated with those rules and the error messages for
each failed rule. Validation in legacy systemsmay be speciėed in the GUI deėnition, or deėned
in event handlers. In the laĨer case, matching portions of code that perform validation and as-
signing them a predeėned category (e.g., checking that an e-mail has the proper format) may
be a challenging task.

ĉe Interaction and Structuremetamodels we have deėned in the previous chapters can also be
extended to support new aspects. ĉe Interactionmetamodel could include information about
error handling, which can be seen as a particular case of navigation Ěow in which the transition
to the error view is triggered by an internal event (raised by certain system conditions). ĉe
Structure metamodel can be extended to represent complex widgets that are compositions of
single widgets. ĉe reason that motivates this design decision is that some legacy systems usu-
ally lack of certain widgets that are common at present in GUI toolkits, for instance, calendars.
ĉen, developers used to make up complex widgets based on combinations of simple widgets,
e.g., a calendar can be implemented as a grid of buĨons (a buĨon for each day of the month).
ĉe model transformation that generates the Structure model can be enriched to detect those
complex widget, so the target technology transformation would avoidmigrating each widget in
an isolatedmanner, which is beĨer practice as there are availablemappings for them inmodern
toolkits.

IFML,which is gaining in acceptance, can be used in place of ourCUImodels. IFML lets us de-
ėne view components, view containers, events, interaction between components and between
user and components, and the referenced data at the different tiers of the architecture. It also
promotes separation of aspects, so it can particularly replace the Structure and Interactionmod-
els, and to some extent, the Validation and EventConcerns models. ĉe integration could be
done by seĨing IFML as the central model, and then make the Layout and Style models refer-
ence the IFML model. If this change would be accomplished in the CUI model, most of the
current reverse engineered information such as the Region and ĆDBehaviour models would
be still valid.

ǐ.ǋ.Ǌ RĹĻĽŃł ĽĸĹłŉĽĺĽķĵŉĽŃł

Sometimes there are groups of widgets that are spatially distant from other groups and are
clearly perceived as regions. However, these regions will not be detected if they are not sur-

ǊǊǉ

rounded by a border, according to Algorithm ǉ. ĉen, an improvement of the region detection
algorithm would be to consider such regions. It can be accomplished with the information of
the tiles. Since the distance between tiles is expressed with closeness levels, we could group all
the tiles with the same closeness levelCƥ and look for the groups of tiles that are separated from
the rest by means of a closeness level CƦ being CƦ > Cƥ.

Region identiėcation can have many uses. In the context of a distributed GUI, each region
could be launched in a different device. Another use would be the identiėcation of GUI clones,
i.e., portions of views that are duplicated, so developers could apply refactoring to improve the
maintenance of the application.

ǐ.ǋ.ǋ HĽĻļ-ŀĹŋĹŀ ŀĵŏŃŊŉ ĽłĺĹŇĹłķĹ

ĉere are several features that can be upgraded to get beĨer results. Firstly, the ėtness function
can include metrics about human perception so the layouts are assessed more accurately. For
instance, it would be interesting to know if a group of widgets is perceived as a horizontal block,
vertical block or square block. ĉis metrics should let us choose a beĨer layout composition
that is properly adapted to different screen sizes.

ĉe widget distance clustering problem can be sometimes confusing for the layout inference
algorithm. A possibility would be to handle some ’far’ distances as ’short’ when the involved
widgets take part in a form. ĉis is not trivial because we have to identify which widgets belong
to a form previously.

Insomuch as the layout inference algorithm is basically a graph paĨern matching problem, we
could use paĨern matching tools such as GrGen [ǉǉǎ] or Viatra [ǉǉǏ]. ĉese tools surpass
our paĨern matching engine in two aspects: i) paĨern matching is more efficient than our ap-
proach which has not been optimised, and ii) paĨerns can be declaratively speciėed, which is
easier than hard-code them in Java classes. At the beginning we aĨempted to use GrGen, but
some layout paĨerns like the GridLayout paĨern were difficult to deėne with this tool then we
quiĨed. Now we could deep into this area to ėnd a way to represent layout paĨerns so we can
take advantage of these paĨern matching tools.

ĉe algorithm has some parameters (maximum cluster deviation, comparison margin, etc.)
that must tunned in many cases. It would be desirable an automated optimisation of those pa-
rameters. Since we do not know how good or bad is a conėguration of the parameters a statis-
tical approach could be developed to automatically tune the parameters based on the distances

ǊǊǊ

among the tiles.

ĆDapplications does not only allow to access to database information from the code of event
handlers, but they commonly offer the possibility of linking widgets to database ėelds by set-
ting some properties of widgets. Generating the code to decouple these widgets from database
would be required if we intended to address a full-Ěedgedmigration of the GUI, although from
the point of view of research it does not pose a real challenge.

Since the outbreak of different devices (laptops, tablets, etc.) having access to the Internet,
responsive web design has strongly gained in followers. Generating responsive designs is a po-
tential use of our layout inference solution. In order to generate responsive designs, common
style rules about proportions and heuristics should be applied to generate the CSS ǋ rules for
different screen sizes. Another option would be to generate code based on an existing frontend
framework that offers support for responsive designs, like Bootstrap [ǉǉǐ].

ǐ.ǋ.ǌ EŋĹłŉ ļĵłĸŀĹŇ ķŃĸĹ ĵĶňŉŇĵķŉĽŃł

In the current solution, code paĨerns of event handlers are hard-coded in the transformation.
A beĨer approach would be to have several repositories of paĨerns, and use a DSL for deėning
new paĨerns that are added to any of them. ĉere would be different types of repositories:
programming-language idioms, community idioms and business-dependant idioms, so the ėrst
and second ones could be reused among applications, even they could be shared with third
parties.

Case studies for differentĆD applications are needed to strongly prove that repetitive idioms
can be found in otherĆDenvironments likeDelphi Ǎ (though the current idioms are based on
the analysis of aplications in differentĆDenvironments). ĉese case studies would also serve
to demonstrate that these idioms can be captured with the ĆDBehaviour primitives we have
deėned, and that these primitives are enough to represent the behaviour of any ĆD applica-
tion. Furthermore, the evaluation of the case studies should be more complete and systematic
like the ones we accomplished for the layout inference approaches.

ĉe algorithm that generates the fragments is not optimum regarding the number of fragments.
In its current state, it may generate fragments of the same type that have not variables in com-
mon, and which can be safely placed in the same fragment.

On the other hand, we believe that we can take advantage of theĆDBehaviourmodel inmany
ways beyond the separation of concerns, for instance, it can be used to accomplish code refac-

ǊǊǋ

toring tasks such as death code cleaning. Considering it as a concise representation of the se-
mantics that lie on the code, it could be used in clone detection. As a ėrst approach, we could
look for fragments in the model that are repeated throughout the event handlers and then use
a deeper analysis to check if they are actually clones.

ǐ.ǋ.Ǎ IĸĹłŉĽĺĽķĵŉĽŃł Ńĺ ŌĽĸĻĹŉ ĸĹńĹłĸĹłķĽĹň

ĉe algorithm that identiėes widget dependencies and generates the Interaction model should
be assessed in a real case study to prove that it can capture all the interactions that take place
in the GUI based on theĆDBehaviourmodel. ĉe identiėcation of widget dependencies can
be particularly useful to turn legacy applications into Rich Internet Applications (RIA). Two
ways to proceed are posible: use the dependency model to identify widgets that can be asyn-
chronously updated via Ajax and then replicate the look and feel and navigation Ěow of the
original application, or use the dependency model to restructure the views according to devel-
opment paĨerns, for example to convert it into a single-page application (this would require a
restructuring of many of the CUI models such as the Structure and Layout models).

ǐ.ǌ PŊĶŀĽķĵŉĽŃłň ŇĹŀĵŉĹĸ ŉŃ ŉļĹ ŉļĹňĽň

ǐ.ǌ.ǉ JŃŊŇłĵŀň ŌĽŉļ ĽŁńĵķŉ ĺĵķŉŃŇ

• Óscar Sánchez Ramón, Jesús Sánchez Cuadrado, Jesús García Molina, Model-driven re-
verse engineering of legacy graphical user interfaces. Journal of Automated Soěware Engi-
neering, April Ǌǈǉǌ, Volume Ǌǉ, Issue Ǌ, pages ǉǌǏ-ǉǐǎ.
Impact factor: ǉ.ǌǈǈ (Ǌǐ/ǉǈǍ, Ǌnd quartile in JCR/Computer Science/Soěware
Engineering)

• Óscar Sánchez Ramón, Jesús Sánchez Cuadrado, Jesús García Molina, Jean Vanderdon-
ckt A layout inference algorithm for graphical user interfaces. Information and Soěware
Technology. Under review.
Impact factor: ǉ.ǍǊǊ(Ǌǋ/ǉǈǍ, ǉstquartile in JCR/ComputerScience/SoěwareEn-
gineering)

ǊǊǌ

ǐ.ǌ.Ǌ RĹłŃŌłĹĸ ĽłŉĹŇłĵŉĽŃłĵŀ ķŃłĺĹŇĹłķĹň

• Óscar Sánchez Ramón, Jesús Sánchez Cuadrado, Jesús García Molina, Model-driven re-
verse engineering of legacy graphical user interfaces. In theproceedingsof theǊǍth IEEE/ACM
InternationalConference onAutomatedSoěwareEngineering (ASE’ǉǈ), Antwerp (Bel-
gium), Ǌǈǉǈ.
Acceptance rate: ǋǌƻ

• Óscar Sánchez Ramón, Jesús Sánchez Cuadrado, Jesús García Molina, Reverse Engineer-
ing of Event Handlers of ĆD-Based Applications. In proceedings of the ǉǐth Working
Conference on Reverse Engineering (WCRE’ǉǉ), Limerick (Ireland), Ǌǈǉǉ.
Acceptance rate: Ǌǎƻ

• Óscar Sánchez Ramón, Jean Vanderdonckt, Jesús García Molina, Re-Engineering Graph-
ical User Interfaces ěom their Resource Files with UsiResourcer. In proceedigns of the Ǐth
International Conference on Research Challenges in Information Science (RCIS’ǉǋ),
Paris (France), Ǌǈǉǋ.
Acceptance rate: Ǌǎƻ

ǐ.ǌ.ǋ OŉļĹŇ ľŃŊŇłĵŀň

• Óscar Sánchez Ramón, Jesús Sánchez Cuadrado, Jesús García Molina, Jean Vanderdon-
ckt Generación de Interfaces de Usuario a partir de Wireěames. Novática, Revista de la
Asociación de Técnicos en Informática (Spain), Nov-Dec Ǌǈǉǋ, N◦ǊǊǎ, pages Ǌǌ-ǊǑ.

ǐ.ǌ.ǌ OŉļĹŇ ĽłŉĹŇłĵŉĽŃłĵŀ ĵłĸ łĵŉĽŃłĵŀ ķŃłĺĹŇĹłķĹň ĵłĸ ŌŃŇĿňļŃńň

• Óscar Sánchez Ramón, Jesús Sánchez Cuadrado, Jesús García Molina, Ingeniería inversa
de eventos GUI en aplicaciones ĆD mediante MDD. In proceedings of the VII Taller de
Desarrollo de Soěware Dirigido por Modelos (DSDM’ǉǈ), Valencia (Spain), Ǌǈǉǈ.

• Óscar Sánchez Ramón, Jesús Sánchez Cuadrado, Jesús García Molina, Architecture for
Reverse EngineeringGraphicalUser Interfaces of Legacy Systems. In proceedings of the Soě-
ware Support for User Interface Description Language (UIDL’ǉǉ), in conjunction with
the ǉǋth IFIP TCǉǋConference onHuman-Computer Interaction (Interact Ǌǈǉǉ), Lis-
bon (Portugal), Ǌǈǉǉ.

ǊǊǍ

• Óscar Sánchez Ramón, Jesús Sánchez Cuadrado, Jesús García Molina, Jean Vanderdon-
ckt, GUI Layout Inference based on Wireěames. In proceedings of the Interacción’ǉǋ,
Madrid (Spain), Ǌǈǉǋ.

• Óscar Sánchez Ramón, Francisco Javier Bermúdez Ruiz, Jesús García Molina, Experien-
cias de Modernización de SoĜware con DSDM. In proceedings of the XVIII Jornadas de
Ingeniería del Soěware y Bases de Datos (JISBD’ǉǋ), Madrid (Spain), Ǌǈǉǋ.

ǐ.Ǎ OŉļĹŇ ńŊĶŀĽķĵŉĽŃłň Ľł ŉļĹMDE ĵŇĹĵ

Along these years we have mainly worked in the migration of GUIs, but we have applied MDE
in other soěware development areas and the results obtained have been disseminated in inter-
national journals and conferences. Particularly, we have publicated two works (WOSIS’ǈǑ and
JUCS) about security requirement engineering, in the context of a collaboration with the GIS
group of theUniversity ofMurcia, and twoworks (PMDE’ǉǋ and SPE) related to business pro-
cess modelling and enactment, which stem from the development of a migration tool in which
our GUI migration solutions were integrated. Next we sum up all these publications.

ǐ.Ǎ.ǉ JŃŊŇłĵŀň ŌĽŉļ ĽŁńĵķŉ ĺĵķŉŃŇ

• Óscar Sánchez Ramón, Fernando Molina Molina, Jesús J. García Molina, Ambrosio To-
val ÁlvarezAGenerative Architecture forModel-Driven Security. Journal ofUniversalCom-
puter Science, ǊǈǈǑ, volume ǉǍ, issue ǉǍ, pages ǊǑǍǏ-ǊǑǐǈ.
Impact factor: ǈ.ǏǎǊ (Ǎǌ/ǉǈǈ, ǋrd quartile in JCR/Computer Science/ĉeory and
Methods)

• Francisco Javier Bermúdez Ruiz, Óscar Sánchez Ramón, Jesús García Molina, A model-
driven tool to support the deėnition and enactment of migration processes. Soěware Practice
and Experience. Under review.
Impact factor: ǉ.ǈǈǐ (Ǎǉ/ǉǈǍ, Ǌnd quartile in JCR/Computer Science/Soěware
Engineering)

ǊǊǎ

ǐ.Ǎ.Ǌ IłŉĹŇłĵŉĽŃłĵŀ ķŃłĺĹŇĹłķĹň ĵłĸ ŌŃŇĿňļŃńň

• Óscar Sánchez, Fernando Molina, Jesús García Molina, Ambrosio Toval, A model driven
approach for generating code ěom security requirements. In proceedings of the Ǐth Interna-
tional Workshop on Security in Information Systems (WOSIS’ǈǑ), Milan, ǊǈǈǑ.

• Francisco Javier Bermúdez Ruiz, Óscar Sánchez Ramón, Jesús GarcíaMolina,Deėnition
of processes for MDE-based migrations. In proceedings of the ǋrd Workshop on Process-
basedapproaches forModel-DrivenEngineering (PMDE’ǉǋ),Montpellier (France), Ǌǈǉǋ.

ǐ.ǎ PŇŃľĹķŉň ŉļĵŉ ĵŇĹ ŇĹŀĵŉĹĸ ŉŃ ŉļĽň ŉļĹňĽň

• “MOMO:UnEntorno deModernización de SoěwareDirigida porModelos enEs-
cenarios de Migración de Plataformas (Ref. ǈǐǏǑǏ/PI/ǈǐ)”. Granted by the Fun-
daciónSéneca (Regional planof Science andTechnology ǊǈǈǏ-Ǌǈǉǈ). FromǊǈǈǑ-ǈǉ-ǈǉ
until Ǌǈǉǈ-ǉǊ-ǋǉ. In this project we designed the ėrst approach for inferring the layout
of the Oracle Forms windows.

• “Impulso de la Investigación en Tecnologías del Desarrollo de Soěware (Un En-
torno para el Desarrollo yModernización Basado enModelos: Forms-ADF) (Ref.
CARM ǉǊǑ/ǊǈǈǑ)”. Granted by the Consejería de Universidades, Empresas e Investi-
gación. From ǊǈǈǑ-ǈǎ-ǈǌ until Ǌǈǉǈ-ǉǊ-ǋǉ. ĉe goal of this project was the deėnition of
a soěware environment for themigration ofOracle Forms applications to ADF.We used
the results obtained in the previous project in order to implement the layout inference
engine.

• “GUIZMO:Un frameworkpara lamodernizaciónbasada enmodelos de interfaces
de usuario”. Granted by the Fundación Séneca (Research Projects Funds). From Ǌǈǉǉ-
ǈǉ-ǈǉ until Ǌǈǉǌ-ǉǊ-ǋǉ. In this project we tackled the development of a model-driven
framework for analysing the code of event handlers in order to separate the concerns that
are tangled. Moreover, during this project we created a tooling to assist the automatic
generation of web interfaces from wireframes.

ǊǊǏ

ǐ.Ǐ CŃłŉŇĵķŉň ňŊńńŃŇŉĽłĻ ŉļĽň ŉļĹňĽň

• “AutomatizacióndelDesarrollo de Soěware conArquitecturasGenerativas (Auto-
GSA)”. Granted by theTechnologicalCenter of theTICs (CENTIC). FromǊǈǈǑ-ǈǌ-ǊǑ
until Ǌǈǉǈ-ǈǉ-ǉǍ.

• “Impulso de la Investigación en Tecnologías del Desarrollo de Soěware (Un En-
torno para el Desarrollo yModernización Basado enModelos: Forms-ADF) (Ref.
CARM ǉǊǑ/ǊǈǈǑ)”. Granted by the Consejería de Universidades, Empresas e Investi-
gación. From ǊǈǈǑ-ǈǏ-ǉǋ until Ǌǈǉǈ-ǉǊ-ǋǉ.

• “GUIZMO: Un Framework para Modernización Basada enModelos de Interfaces
de Usuario”. Granted by the Fundación Séneca of the Region of Murcia. From Ǌǈǉǉ-
ǈǉ-ǈǉ until Ǌǈǉǉ-ǉǊ-ǋǉ.

• “Reverse Engineering of Graphical User Interfaces (in the context of the UsiXML
European Project)”. Granted by the Université Catholique de Louvain. From ǊǈǉǊ-
ǈǉ-ǈǉ until ǊǈǉǊ-ǈǑ-ǋǈ.

• “Construcción de una Plataforma para la Migración de InterfacesĆD”. Granted
by the Consejería de Universidades, Empresas e Investigación. From ǊǈǉǊ-ǉǉ-ǈǎ until
Ǌǈǉǋ-ǉǊ-ǋǉ.

ǐ.ǐ RĹňĹĵŇķļ ňŉĵŏň

• ResearchStay in theUniversitéCatholiquedeLouvain (Belgium), during Ǒmonths,
in the Human-Computer Interaction Laboratory (LiLab). We were working in a Java
tool that reversed engineering web pages (HTML ǌ/Ǎ and CSS Ǌ/ǋ) and generated our
CUI model, which was in turn transformed into a UsiXML CUI from which UsiXML
deėnitions were generated. ĉe work was the seed of the advanced layout inference ap-
proach. During the stay we reviewed and contributed to theCUImodel of UsiXML, and
we also collaborated in a work about reverse engineering of GUIs that resulted in [ǋǑ].

ǊǊǐ

ǐ.Ǒ TŇĵłňĺĹŇ Ńĺ ŉĹķļłŃŀŃĻŏ

• “Herramientaorientadaa lamigraciónbasadaenmodelos”. Granted by theMiniste-
rio de Industria, Turismo y Comercio. CDTI project granted to the Sinergia IT (Deusto
Group) soěware company. From Ǌǈǉǈ-ǈǉ-ǈǉ until Ǌǈǉǉ-ǉǊ-ǋǉ. ĉis project was aimed
at the creation of a tooling to assist the automatic migration of Oracle Forms applica-
tions to a Java platform. Our research group collaborated with the Sinergia company to
accomplish research tasks in the context of this project.

• “Use of the prototype for migrating Oracle Forms applications”. Based on the re-
sults of this thesis, particularly the migration tool from Oracle Forms to Java Swing, the
Open Canarias company developed a prototype of a migration tool from Oracle Forms
to JSF Ǌ.ǈ during the last fewmonths of Ǌǈǉǋ. ĉis company reused as-is the reverse en-
gineering process and toolchain that obtains the CUI model, and extended it to derive
KDMUImodels and then generate JSF code from them. ĉe prototype of the layout in-
ference approach we had created was the cornerstone of a series of case studies of Oracle
Forms application migrations, which resulted in a soěware requirements speciėcation
for a full-Ěedged industrial solution. By the end of Ǌǈǉǌ a pilot project to apply this so-
lution in the context of a major public institution will be carried out, which will let the
company validate and assess the viability of the solution regarding a concrete problem.

ǊǊǑ

Ǌǋǈ

References

[ǉ] John Gerdes, Jr. User interface migration of microsoě windows applications. Journal of
SoĜware Maintenance and Evolution, Ǌǉ(ǋ):ǉǏǉ–ǉǐǏ, ǊǈǈǑ.

[Ǌ] Stefan Staiger. Reverse engineering of graphical user interfaces using static analyses.
In WCRE ’Ȕț: Proceedings of the ȕȘth Working Conference on Reverse Engineering, pages
ǉǐǑ–ǉǑǐ, ǊǈǈǏ.

[ǋ] Christof LuĨeroth. Automated reverse engineering of hard-coded gui layouts. InNinth
Australasian User Interface Conference (AUIC ȖȔȔȜ), volume Ǐǎ, pages ǎǍ–Ǐǋ, Ǌǈǈǐ.

[ǌ] José Matías Rivero, Gustavo Rossi, Julián Grigera, Juan Burella, Esteban Robles Luna,
andSilviaGordillo. Frommockups to user interfacemodels: an extensiblemodel driven
approach. In Proceedings of the ȕȔth international conference on Current trends in web engi-
neering, ICWE’ǉǈ, pages ǉǋ–Ǌǌ, Ǌǈǉǈ.

[Ǎ] Nishant Sinha andRezwanaKarim. Compilingmockups to Ěexible uis. InProceedings of
the ȖȔȕȗ ȝth JointMeeting on Foundations of SoĜware Engineering, ESEC/FSE Ǌǈǉǋ, pages
ǋǉǊ–ǋǊǊ, Ǌǈǉǋ.

[ǎ] Svetoslav R. Ganov, Chip Killmar, Sarfraz Khurshid, and Dewayne E. Perry. Test gen-
eration for graphical user interfaces based on symbolic execution. In Proceedings of the
ȗrd International Workshop on Automation of SoĜware Test, AST ’ǈǐ, pages ǋǋ–ǌǈ, Ǌǈǈǐ.

[Ǐ] Atif M. Memon, Ishan Banerjee, and Adithya Nagarajan. GUI ripping: Reverse engi-
neering of graphical user interfaces for testing. In Proceedings of ĉe ȕȔth Working Con-
ference on Reverse Engineering, November Ǌǈǈǋ.

[ǐ] Inês Coimbra Morgado, Ana CR Paiva, and João Pascoal Faria. Dynamic reverse engi-
neering of graphical user interfaces. International Journal On Advances in SoĜware, Ǎ(ǋ
and ǌ):ǊǊǌ–Ǌǋǎ, ǊǈǉǊ.

[Ǒ] James F. Allen. Maintaining knowledge about temporal intervals. Communications of the
ACM, Ǌǎ(ǉǉ):ǐǋǊ–ǐǌǋ, November ǉǑǐǋ.

Ǌǋǉ

[ǉǈ] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles, techniques, and
tools. Addison-Wesley Longman Publishing Co., Inc., ǉǑǐǎ. ISBN ǈ-Ǌǈǉ-ǉǈǈǐǐ-ǎ.

[ǉǉ] Reiko Heckel, Rui Correia, Carlos M. P. Matos, Mohammad El-Ramly, Georgios Kout-
soukos, and Luis Filipe Andrade. Architectural transformations: From legacy to three-
tier and services. In SoĜware Evolution, pages ǉǋǑ–ǉǏǈ. Ǌǈǈǐ.

[ǉǊ] S. R. Tilley and D. B. Smith. Perspectives on legacy system reengineering. Technical
report, Soěware Engineering Institute, Carnegie Mellon University, ǉǑǑǍ.

[ǉǋ] Elliot J. Chikofsky and James H. Cross. Reverse engineering and design recovery: A
taxonomy. IEEE SoĜware, Ǐ(ǉ):ǉǋ–ǉǏ, ǉǑǑǈ.

[ǉǌ] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven SoĜware Engineer-
ing in Practice. Morgan & Claypool Publishers, ǉst edition, ǊǈǉǊ. ISBN ǉǎǈǐǌǍǐǐǊǊ,
ǑǏǐǉǎǈǐǌǍǐǐǊǈ.

[ǉǍ] Object Management Group (OMG). MDA Guide Version ȕ.Ȕ.ȕ. hĨp://www.omg.org
/mda, Ǌǈǈǋ.

[ǉǎ] Steven Kelly and Juha-Pekka Tolvanen. Domain-Speciėc Modeling: Enabling Full Code
Generation. Wiley, Ǌǈǈǐ. ISBN ǑǏǐ-ǈ-ǌǏǈ-ǈǋǎǎǎ-Ǌ.

[ǉǏ] Object Management Group (OMG). Architecture-Driven Modernization.
hĨp://adm.omg.org/, .

[ǉǐ] William M. Ulrich and Philip Newcomb. Information Systems Transformation:
Architecture-Driven Modernization Case Studies. Morgan Kaufmann Publishers Inc.,
Ǌǈǉǈ. ISBN ǈǉǊǋǏǌǑǉǋǉ, ǑǏǐǈǉǊǋǏǌǑǉǋǈ.

[ǉǑ] Gordon Blair, Nelly Bencomo, and Robert B. France. Models run.time. Computer, ǌǊ
(ǉǈ):ǊǊ–ǊǏ, ǊǈǈǑ.

[Ǌǈ] ĉijs Reus et al. Harvesting soěware systems for mda-based reengineering. In Pro-
ceedings of the Second European conference on Model Driven Architecture: foundations and
Applications, ECMDA-FA’ǈǎ, pages Ǌǉǋ–ǊǊǍ, Ǌǈǈǎ.

[Ǌǉ] F. Fleurey et al. Model-driven engineering for soěware migration in a large industrial
context. In Model Driven Engineering Languages and Systems, ȕȔth International Confer-
ence, MoDELS ȖȔȔț, pages ǌǐǊ–ǌǑǏ, ǊǈǈǏ.

[ǊǊ] Javier Luis Cánovas Izquierdo and Jesús García Molina. A domain speciėc language for
extracting models in soěware modernization. In ECMDA-FA ’Ȕȝ: Proceedings of the șth
European Conference on Model Driven Architecture - Foundations and Applications, pages
ǐǊ–ǑǏ, ǊǈǈǑ.

ǊǋǊ

[Ǌǋ] Hugo Brunelière et al. MoDisco: a generic and extensible framework for model
driven reverse engineering. In Proceedings of the Automated SoĜware Engineering, pages
ǉǏǋ–ǉǏǌ, Ǌǈǉǈ.

[Ǌǌ] Ricardo Pérez-Castillo, Ignacio García Rodríguez de Guzmán, Mario PiaĨini, and
Christof Ebert. Reengineering technologies. IEEE SoĜware, Ǌǐ(ǎ):ǉǋ–ǉǏ, Ǌǈǉǉ.

[ǊǍ] Jon WhiĨle, John Hutchinson, and Mark Rounceėeld. ĉe state of practice in model-
driven engineering. IEEE SoĜware, ǋǉ(ǋ):ǏǑ–ǐǍ, Ǌǈǉǌ.

[Ǌǎ] Bran Selic. What will it take? a view on adoption of model-based methods in practice.
SoĜware and SystemModeling, ǉǉ(ǌ):Ǎǉǋ–ǍǊǎ, October ǊǈǉǊ.

[ǊǏ] James Martin. Rapid application development. Macmillan Publishing Co., Inc., ǉǑǑǉ.

[Ǌǐ] John V. Harrison and Wie Ming Lim. Automated reverse engineering of legacy ǌgl in-
formation system applications using the itoc workbench. In Proceedings of the ȕȔth Con-
ference on Advanced Information Systems Engineering (CAiSE’ȝȜ), pages ǐ–ǉǊ, ǉǑǑǐ.

[ǊǑ] Luis Filipe Andrade, João Gouveia, Miguel Antunes, Mohammad El-Ramly, and Geor-
giosKoutsoukos. FormsǊnet -migrating oracle forms tomicrosoě .net. InGĈSE, pages
Ǌǎǉ–ǊǏǏ, Ǌǈǈǎ.

[ǋǈ] José Campos, João Alexandre Saraiva, Carlos Silva, and J.C. Silva. GUIsurfer: A Reverse
Engineering Framework for User Interface SoĜware, chapter Ǌ, pages ǋǉ–Ǎǌ. InTech, ǊǈǉǊ.

[ǋǉ] Ali Mesbah, Arie van Deursen, and Stefan Lenselink. Crawling ajax-based web applica-
tions through dynamic analysis of user interface state changes. ACMTransactions on the
Web, ǎ(ǉ):ǋ:ǉ–ǋ:ǋǈ, March ǊǈǉǊ.

[ǋǊ] Sinergia tecnológica (oesia group) and modelum (university of murcia). herramienta
orientada a lamigraciónbasada enmodelos. CDTIproject,Ministry of Industry, Turism
and Comerce. Ǌǈǉǈ-Ǌǈǉǉ.

[ǋǋ] Óscar Sánchez Ramón, Jesús Sánchez Cuadrado, and Jesús García Molina. Model-
driven reverse engineering of legacy graphical user interfaces. In Proceedings of the
IEEE/ACM international conference on Automated soĜware engineering, ASE ’ǉǈ, pages
ǉǌǏ–ǉǍǈ, Ǌǈǉǈ.

[ǋǌ] Óscar Sánchez Ramón, Jesús Sánchez Cuadrado, and Jesús García Molina. Model-
driven reverse engineering of legacy graphical user interfaces. Automated SoĜware Engi-
neering, Ǌǉ(Ǌ):ǉǌǏ–ǉǐǎ, Ǌǈǉǌ.

Ǌǋǋ

[ǋǍ] Óscar Sánchez Ramón, Jesús Sánchez Cuadrado, and Jesús García Molina. Reverse en-
gineering of event handlers of rad-based applications. InWorking Conference on Reverse
Engineering (WCRE), pages ǊǑǋ–ǋǈǊ, Ǌǈǉǉ.

[ǋǎ] Óscar Sánchez Ramón, Jesús Sánchez Cuadrado, and Jesús García Molina. Ingeniería
inversa de eventos gui en aplicaciones rad mediante mdd. In VII Taller de Desarrollo de
SoĜware Dirigido por Modelos (DSDMȕȔ), Ǌǈǉǈ.

[ǋǏ] Óscar Sánchez Ramón, Jesús Sánchez Cuadrado, and JesúsGarcíaMolina. Architecture
for reverse engineering graphical user interfaces of legacy systems. In SoĜware Support
for User Interface Description Language (UIDLȕȕ), Ǌǈǉǉ.

[ǋǐ] Quentin Limbourg and Jean Vanderdonckt. Usixml: A user interface description lan-
guage supportingmultiple levels of independence. In ICWEWorkshops, pages ǋǊǍ–ǋǋǐ,
Ǌǈǈǌ.

[ǋǑ] Óscar Sánchez Ramón, Jean Vanderdonckt, and Jesús García Molina. Re-engineering
graphical user interfaces from their resource ėles with usiresourcer. In Seventh IEEE In-
ternational Conference on Research Challenges in Information Science (RCIS), pages ǉ–ǉǊ,
Ǌǈǉǋ.

[ǌǈ] Information and soěware technology. hĨp://www.journals.elsevier.com/information-
and-soěware-technology/.

[ǌǉ] Robert C. Seacord, Daniel Plakosh, and Grace A. Lewis. Modernizing Legacy Systems:
SoĜware Technologies, Engineering Process and Business Practices. Addison-Wesley Long-
man Publishing Co., Inc., Ǌǈǈǋ. ISBN ǈǋǊǉǉǉǐǐǌǏ.

[ǌǊ] Rick Kazman, Steven G. Woods, and S. Jeromy Carrière. Requirements for integrating
soěware architecture and reengineeringmodels: Corum ii. InProceedings of theWorking
Conference on Reverse Engineering (WCRE’ȝȜ), pages ǉǍǌ–ǉǎǋ, ǉǑǑǐ.

[ǌǋ] Gerardo Canfora, Massimiliano Di Penta, and Luigi Cerulo. Achievements and chal-
lenges in soěware reverse engineering. Communications of the ACM, Ǎǌ(ǌ):ǉǌǊ–ǉǍǉ,
April Ǌǈǉǉ.

[ǌǌ] ZK framework. hĨp://www.zkoss.org/.

[ǌǍ] WǋC. Cascading Style Sheets (CSS) Level ǋ. hĨp://www.wǋ.org/TR/CSS/.

[ǌǎ] JavaAbstractWindowToolkit (AWT). hĨp://docs.oracle.com/javase/Ǐ/docs/api/java/
awt/package-summary.html.

Ǌǋǌ

[ǌǏ] Jesús Sánchez Cuadrado, Javier Luis Cánovas Izquierdo, and Jesús García Molina. Ap-
plyingmodel-driven engineering in small soěware enterprises. Science of Computer Pro-
gramming, ǐǑ, Part B(ǈ):ǉǏǎ–ǉǑǐ, Ǌǈǉǌ. Special issue on Success Stories in Model
Driven Engineering.

[ǌǐ] Atif Memon, Ishan Banerjee, and AdithyaNagarajan. Gui ripping: Reverse engineering
of graphical user interfaces for testing. In WCRE ’Ȕȗ: Proceedings of the ȕȔth Working
Conference on Reverse Engineering, pages Ǌǎǈ–ǊǎǑ, Ǌǈǈǋ.

[ǌǑ] DomenicoAmalėtano, AnnaRita Fasolino, andPorėrioTramontana. Reverse engineer-
ing ėnite state machines from rich internet applications. ȖȔȕȗ ȖȔth Working Conference
on Reverse Engineering (WCRE), ǈ:ǎǑ–Ǐǋ, Ǌǈǈǐ.

[Ǎǈ] Refactoring: Improving theDesign of ExistingCode. Addison-WesleyLongmanPublishing
Co., Inc., ǉǑǑǑ. ISBN ǈ-Ǌǈǉ-ǌǐǍǎǏ-Ǌ.

[Ǎǉ] Tony Clark, Andy Evans, Paul Sammut, and James Willans. Applied Metamodelling - A
Foundation for Language Driven Development. Ceteva, second edition, Ǌǈǈǌ.

[ǍǊ] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven SoĜware Engineer-
ing in Practice. Morgan & Claypool Publishers, ǉst edition, ǊǈǉǊ. ISBN ǉǎǈǐǌǍǐǐǊǊ,
ǑǏǐǉǎǈǐǌǍǐǐǊǈ.

[Ǎǋ] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF: Eclipse
Modeling Framework Ȗ.Ȕ. Addison-Wesley Professional, Ǌnd edition, ǊǈǈǑ. ISBN
ǈǋǊǉǋǋǉǐǐǍ.

[Ǎǌ] Object Management Group (OMG). ĉe Meta-Object Facility (MOF).
hĨp://www.omg.org/mof/, .

[ǍǍ] Anneke Kleppe. SoĜware Language Engineering: Creating Domain-Speciėc Languages Us-
ing Metamodels. Addison-Wesley Professional, ǉ edition, Ǌǈǈǐ. ISBN ǈǋǊǉǍǍǋǌǍǌ,
ǑǏǐǈǋǊǉǍǍǋǌǍǌ.

[Ǎǎ] Balsamiq mockups. hĨp://balsamiq.com/products/mockups/.

[ǍǏ] Meta Object Facility (MOF) Ǌ.ǈ Query/View/Transformation (QVT).
hĨp://www.omg.org/spec/QVT/.

[Ǎǐ] AtlanMod Transformation Language (ATL). hĨp://www.eclipse.org/atl/.

[ǍǑ] Epsilon. hĨp://www.eclipse.org/epsilon/.

[ǎǈ] T. gardner and c. griffin and j. koehler and r. hauser. review of omg mof Ǌ.ǈ
query/views/transformations submissions and recommendations towards ėnal stan-
dard. hĨp://www.omg.org/docs/ad/ǈǋ-ǈǐ-ǈǊ.pdf. Ǌǈǈǋ.

ǊǋǍ

[ǎǉ] Jesús SánchezCuadrado, JesúsGarcíaMolina, andMarcosMenárguez. RubyTL:Aprac-
tical, extensible transformation language. In Ȗnd European Conference on Model-Driven
Architecture, volume ǌǈǎǎ of LNCS, pages ǉǍǐ–ǉǏǊ. Springer, Ǌǈǈǎ.

[ǎǊ] K. Czarnecki and S. Helsen. Feature-based survey of model transformation approaches.
IBM Systems Journal, ǌǍ(ǋ):ǎǊǉ–ǎǌǍ, July Ǌǈǈǎ. ISSN ǈǈǉǐ-ǐǎǏǈ.

[ǎǋ] Object Management Group (OMG). MOF Model to Text Transformation Language
(MOFMǊT), ǉ.ǈ. hĨp://www.omg.org/spec/MOFMǊT/ǉ.ǈ/, .

[ǎǌ] Sven Eĕinge and Markus Völter. oAW xText: A framework for textual DSLs. In
Eclipsecon Summit Europe ȖȔȔȚ, Ǌǈǈǎ.

[ǎǍ] John Hutchinson, Jon WhiĨle, and Mark Rounceėeld. Model-driven engineering prac-
tices in industry: Social, organizational and managerial factors that lead to success or
failure. Science of Computer Programming, ǐǑ:ǉǌǌ–ǉǎǉ, Ǌǈǉǌ.

[ǎǎ] Javier Luis Cánovas Izquierdo and J García Molina. An architecture-driven moderniza-
tion tool for calculating metrics. IEEE SoĜware, ǊǏ(ǌ):ǋǏ–ǌǋ, Ǌǈǉǈ.

[ǎǏ] William M. Ulrich and Philip Newcomb. Information Systems Transformation:
Architecture-Driven Modernization Case Studies. Morgan Kaufmann Publishers Inc.,
Ǌǈǉǈ. ISBN ǈǉǊǋǏǌǑǉǋǉ, ǑǏǐǈǉǊǋǏǌǑǉǋǈ.

[ǎǐ] S. Rugaber and K. Stirewalt. Model-driven reverse engineering. IEEE SoĜware, Ǌǉ(ǌ):
ǌǍ–Ǎǋ, July Ǌǈǈǌ.

[ǎǑ] Jean-Marie Favre. Foundations of Model (Driven) (Reverse) Engineering : Models –
Episode I: Stories of ĉe Fidus Papyrus and of ĉe Solarus. In Jean Bezivin and Reiko
Heckel, editors, Language Engineering for Model-Driven SoĜware Development, Dagstuhl
Seminar Proceedings, ǊǈǈǍ.

[Ǐǈ] Object Management Group (OMG). Architecture-Driven Modernization (ADM)
Task Force: Overview, Scenarios & Roadmap. hĨp://www.omg.org/adm/TF-
ǉ_Ulrich_ADM-PTF.pdf, .

[Ǐǉ] OMG. Knowledge Discovery Meta-Model (KDM) vȕ.Ȕ. hĨp://www.omg.org/spec/
KDM/ǉ.ǈ/, Ǌǈǈǐ.

[ǏǊ] Netbeans. Java Swing GUI Builder (Matisse). hĨp://www.netbeans.org/ features/-
java/swing.html.

[Ǐǋ] Morgan Dixon, Daniel Leventhal, and James Fogarty. Content and hierarchy in pixel-
basedmethods for reverse engineering interface structure. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’ǉǉ, pages ǑǎǑ–ǑǏǐ, Ǌǈǉǉ.

Ǌǋǎ

[Ǐǌ] Jean Vanderdonckt, Laurent Bouillon, and Nathalie Souchon. Flexible reverse engi-
neering of web pages with vaquista. In WCRE ’Ȕȕ: Proceedings of the Eighth Working
Conference on Reverse Engineering (WCRE’Ȕȕ), pages Ǌǌǉ–Ǌǌǐ, Ǌǈǈǉ.

[ǏǍ] Angel Puerta and JacobEisenstein. Ximl: a common representation for interaction data.
In IUI ’ȔȖ: Proceedings of the țth international conference on Intelligent user interfaces, pages
Ǌǉǌ–ǊǉǍ, ǊǈǈǊ.

[Ǐǎ] Deng Cai, Shipeng Yu, Ji-Rong Wen, and Wei-Ying Ma. Vips: a vision-based page seg-
mentation algorithm. Technical report, Microsoě Research, Ǌǈǈǋ.

[ǏǏ] Yu Chen, Wei-Ying Ma, and Hong Jiang Zhang. Detecting web page structure for adap-
tive viewing on small form factor devices. InWWW ’Ȕȗ: Proceedings of the ȕȖth interna-
tional conference onWorld Wide Web, pages ǊǊǍ–Ǌǋǋ, Ǌǈǈǋ.

[Ǐǐ] Renata Bandelloni, Giulio Mori, and Fabio Paternò. Dynamic generation of web mi-
gratory interfaces. In MobileHCI ’Ȕș: Proceedings of the țth international conference on
Human computer interaction with mobile devices & services, pages ǐǋ–Ǒǈ, ǊǈǈǍ.

[ǏǑ] P. Tonella and A. Potrich. Reverse engineering of the interaction diagrams from c++
code. In Proceedings of the International Conference on SoĜware Maintenance, ICSM ’ǈǋ,
pages ǉǍǑ–ǉǎǐ, Ǌǈǈǋ.

[ǐǈ] A. SuĨon and J. Maletic. Mappings for accurately reverse engineering uml class models
from c++. In Proceedings of the ȕȖth Working Conference on Reverse Engineering, pages
ǉǏǍ–ǉǐǌ, ǊǈǈǍ.

[ǐǉ] Atif M. Memon. An event-Ěow model of gui-based applications for testing: Research
articles. SoĜware Testing Veriėcation and Reliability, ǉǏ(ǋ):ǉǋǏ–ǉǍǏ, ǊǈǈǏ.

[ǐǊ] Margus Veanes, Colin Campbell, Wolfgang Grieskamp, Wolfram Schulte, Nikolai Till-
mann, and Lev Nachmanson. Formal methods and testing. chapter Model-based Test-
ing of Object-oriented Reactive Systems with Spec Explorer, pages ǋǑ–Ǐǎ. Ǌǈǈǐ.

[ǐǋ] E. Stroulia, M. El-Ramly, P. Iglinski, and P. Sorenson. User interface reverse engineering
in support of interfacemigration to the web. Automated SoĜware Engg., ǉǈ(ǋ):ǊǏǉ–ǋǈǉ,
July Ǌǈǈǋ.

[ǐǌ] ĉe Gimp Toolkit (GTK+). hĨp://www.gtk.org/.

[ǐǍ] Qt project. hĨp://qt-project.org/.

[ǐǎ] Object Management Group (OMG). Interaction Flow Modeling Language(IFML).
hĨp://www.ifml.org/.

ǊǋǏ

[ǐǏ] Brambilla Marco and Stefano BuĨi. Quince años de desarrollo industrial dirigido por
modelos de aplicaciones front-end: desdewebml hastawebratio e ifml.Novática, (ǊǊǐ):
ǋǎ–ǌǌ, Ǌǈǉǌ.

[ǐǐ] WebRatio. Web Modeling Language (WebML). hĨp://www.webml.org/ webml/-
pageǉ.do.

[ǐǑ] Gaelle Calvary, Joelle Coutaz, David ĉevenin, Quentin Limbourg, Laurent Bouillon,
and JeanVanderdonckt. A unifying reference framework formulti-target user interfaces.
Interacting with Computers, ǉǍ(ǋ):ǊǐǑ–ǋǈǐ, June Ǌǈǈǋ.

[Ǒǈ] Fabio Paterno’, Carmen Santoro, and Lucio Davide Spano. Maria: A universal, declar-
ative, multiple abstraction-level language for service-oriented applications in ubiqui-
tous environments. ACMTrans. Comput.-Hum. Interact., ǉǎ(ǌ):ǉǑ:ǉ–ǉǑ:ǋǈ, November
ǊǈǈǑ.

[Ǒǉ] Lori A MacViĨie. XAML in a Nutshell (In a Nutshell (O’Reilly)). O’Reilly Media, Inc.,
Ǌǈǈǎ. ISBN ǈǍǑǎǍǊǎǏǋǋ.

[ǑǊ] Oasis. User Interface Markup Language (UIML). hĨp://docs.oasis-open.org/
uiml/vǌ.ǈ/cdǈǉ/uiml-ǌ.ǈ-cdǈǉ.html.

[Ǒǋ] Kouichi Katsurada, Yusaku Nakamura, Hirobumi Yamada, and Tsuneo NiĨa. XISL: A
Language for Describing Multimodal Interaction Scenarios. In Proceedings of the șth
International Conference on Multimodal Interfaces, ICMI ’ǈǋ, pages Ǌǐǉ–Ǌǐǌ, Ǌǈǈǋ.

[Ǒǌ] Mozilla developer network. xml user interface language (xul).
hĨps://developer.mozilla.org /en-US/docs/Mozilla/Tech/XUL.

[ǑǍ] Wǋc. web ontology language(owl). hĨp://www.wǋ.org/standards/techs/owl.

[Ǒǎ] WǋC. Concur Task Trees (CĈ). hĨp://www.wǋ.org/ǊǈǉǊ/ǈǊ/cĨ/.

[ǑǏ] Object Management Group (OMG). Uniėed Modeling Language(UML).
hĨp://www.omg.org/spec/UML/.

[Ǒǐ] Silvia Berti, Francesco Correani, Fabio Paternò, and Carmen Santoro. ĉe teresa xml
language for the description of interactive systems at multiple abstraction. In Leveles,
ProceedingsWorkshop on Developing User Interfaces with XML: Advances on User Interface
Description Languages, pages ǉǈǋ–ǉǉǈ, Ǌǈǈǌ.

[ǑǑ] Microsoě Developer Network. Windows Presentation Foundation (WPF).
hĨp://msdn.microsoě.com/es-es/library/msǏǍǌǉǋǈƻǊǐv=vs.ǉǉǈƻǊǑ.aspx.

Ǌǋǐ

[ǉǈǈ] Charles Jacobs, Wilmot Li, Evan Schrier, David Bargeron, and David Salesin. Adaptive
grid-based document layout. ACMTrans. Graph., ǊǊ(ǋ):ǐǋǐ–ǐǌǏ, Ǌǈǈǋ.

[ǉǈǉ] Weijiang Li andHiroyuki Kurata. A grid layout algorithm for automatic drawing of bio-
chemical networks. Bioinformatics, Ǌǉ(Ǒ):Ǌǈǋǎ–ǊǈǌǊ, ǊǈǈǍ.

[ǉǈǊ] Rake. hĨp://www.rake.org/.

[ǉǈǋ] Jesús Sánchez Cuadrado and Jesús García Molina. Building domain-speciėc languages
for model-driven development. IEEE SoĜware, Ǌǌ(Ǎ):ǌǐ–ǍǍ, ǊǈǈǏ.

[ǉǈǌ] Jesús Sánchez Cuadrado and Jesús García Molina. Modularization of model transfor-
mations through a phasing mechanism. SoĜware and System Modeling, ǐ(ǋ):ǋǊǍ–ǋǌǍ,
ǊǈǈǑ.

[ǉǈǍ] J. B. MacQueen. Some methods for classiėcation and analysis of multivariate observa-
tions. In Proceedings of the ėĜh Berkeley Symposium on Mathematical Statistics and Prob-
ability, pages Ǌǐǉ–ǊǑǏ, ǉǑǎǏ.

[ǉǈǎ] Wireframesketcher. hĨp://wireframesketcher.com.

[ǉǈǏ] Reify. hĨp://www.smartclient.com/product/reify.jsp.

[ǉǈǐ] E. MarcoĨe. Responsive Web Design. A Book Appart, Ǌǈǉǉ. ISBN ǑǏǐ-ǈ-ǑǐǌǌǌǊǍ-Ǐ-Ǐ.

[ǉǈǑ] Apache Tomcat. hĨp://tomcat.apache.org/.

[ǉǉǈ] Apache struts. hĨp://struts.apache.org/.

[ǉǉǉ] JSR ǋǏǊ: JavaServer Faces (JSF Ǌ.ǋ) Speciėcation. hĨps://jcp.org/ en/jsr/de-
tail?id=ǋǏǊ.

[ǉǉǊ] Jesús Sánchez Cuadrado, Orlando Ávila García, Javier Canovas, and Adolfo Sánchez-
Barbudo Herrera. Parametrización de las transformaciones horizontales en el modelo
de herradura. In Jornadas de Ingeniería del SoĜware y Bases de Datos, ǊǈǉǊ.

[ǉǉǋ] Sandy Pérez, Oscar Díaz, Santiago Meliá, and Jaime Gómez. Facing interaction-rich
rias: ĉe orchestration model. In Proceedings of the ȖȔȔȜ Eighth International Conference
onWeb Engineering, pages Ǌǌ–ǋǏ, Ǌǈǈǐ.

[ǉǉǌ] jQuery. hĨp://jquery.com/.

[ǉǉǍ] Object Management Group (OMG). XML Metadata Interchange(XMI).
hĨp://www.omg.org/spec/XMI/.

[ǉǉǎ] Grgen .net. hĨp://www.grgen.net.

ǊǋǑ

[ǉǉǏ] ViatraǊ (visual automated model transformations) framework. hĨp://eclipse.org /via-
traǊ/.

[ǉǉǐ] Bootstrap. hĨp://getbootstrap.com/.

Ǌǌǈ

Colophon

NŃŌ ŉļĵŉ ĹŋĹŇŏŉļĽłĻ ļĵň ĺĽłĽňļĹĸ,
I look back on these years and
I recall a quote from a ėlm that I

read somewhere:
“Beginnings are scary and endings are usually
sad, but it’s what’s in the middle that counts.”

Ǌǌǉ

	Introduction
	Motivation
	Problem statement
	Development
	Outline

	Background
	Software modernisation
	Graphical User Interfaces (GUI)
	Visual GUI features
	Legacy GUI features
	Use scenarios of GUI reverse engineering

	Model Driven Engineering (MDE)
	Metamodelling
	Domain-Specific Languages (DSLs)
	Model transformations
	Model-Driven Modernisation (MDM)

	State of the art
	Analysis of layout recognition approaches
	Lutteroth
	Rivero et al.
	Sinha and Karim
	Other approaches
	Discussion

	Analysis of behaviour extraction approaches
	Memon (GUIRipping)
	Heckel et al.
	Morgado et al. (ReGUI)
	Other approaches
	Discussion

	GUI representation approaches
	Knowledge Discovery Metamodel (KDM)
	Interaction Flow Modeling Language (IFML)
	Cameleon framework
	User Interface Description Languages (UIDLs)
	UsiXML
	Maria
	XAML

	Discussion

	Overview
	Goal
	Architecture of the solution
	The Concrete User Interface model
	Overview of the migration architecture
	Requirement implementation

	Layout inference: greedy approach
	MDE architecture for layout inference
	Reverse engineering metamodels
	Challenges in layout reverse engineering
	Detecting regions and containers
	Uncovering relative positions
	High-level layout
	Detailed example
	Injection of Forms models
	Mapping Oracle Forms to RAD models
	Identification of the regions
	Recovering the low-level layout
	Recovery of the high level layout
	Generation of Java Swing code

	Case study: from Oracle Forms to Java
	Methodology
	Evaluation results
	Limitations of the approach

	Implementation
	Injection
	Mapping Oracle Forms to Normalised models
	Reverse engineering
	Forward engineering

	Conclusions

	Layout inference revisited: exploratory approach
	MDE architecture for layout inference (revisited)
	Reverse engineering metamodels
	Structure metamodel
	Layout metamodel

	Changing the positioning system
	Creating the view graph
	Representing widget relative positions
	Representing widget distances
	Tile model example

	Infering a high-level layout
	The layout patterns
	Layout inference algorithm
	Layout inference example
	Performance evaluation

	Case study: from Wireframes to fluid web interfaces
	Context of the case study
	Evaluation of the approach
	Methodology
	Quantitative results
	User assessment
	Approach limitations

	Implementation
	Mapping WireframeSketcher to Normalised models
	Mapping Normalised models to Structure models
	Generation of the web interface
	The tool

	Comparison of the greedy and exploratory approaches
	Conclusions

	Event handler analysis
	Architecture for analysing events
	Running example
	Representing event handling code
	Metamodel description
	Deriving a RADBehaviour model
	Example

	Separating concerns
	Metamodel description
	Fragment identification
	Creating a control flow graph of fragments
	Giving a descriptive name to the fragments
	Setting dependencies among fragments

	Generating layered code
	Capturing dependencies among the GUI elements
	Metamodel description
	From RADBehaviour to the Interaction model
	Example

	Evaluation of the approach
	Evaluation of the code abstraction
	Evaluation of the separation of concerns

	Conclusions

	Conclusions
	Discussion
	Goal 1: Architecture for migrating legacy GUIs
	Goal 2: Analysis of GUI definitions for migration
	Goal 3: Analysis of the code of event handlers for migration

	Contributions
	First contribution: MDE-based migration architecture
	Second contribution: Layout inference approach
	Third contribution: Event handler analysis approach

	Future work
	CUI metamodel
	Region identification
	High-level layout inference
	Event handler code abstraction
	Identification of widget dependencies

	Publications related to the thesis
	Journals with impact factor
	Renowned international conferences
	Other journals
	Other international and national conferences and workshops

	Other publications in the MDE area
	Journals with impact factor
	International conferences and workshops

	Projects that are related to this thesis
	Contracts supporting this thesis
	Research stays
	Transfer of technology

	References

