UNIVERSIDAD DE MURCIA

FACULTAD DE INFORMATICA

Model-Driven Modernisation of
Legacy Graphical User Interfaces

Modernizacion Dirigida por Modelos
de Interfaces Graficas de Usuario

D. Oscar Sanchez Ramén
2014

Model-Driven Modernisation of
Legacy Graphical User Interfaces

A dissertation presented by
Oscar Sinchez Ramon
and supervised by
J. Garcia Molina & J. Sinchez Cuadrado

In partial fulfillment of the requirements
for the degree of Doctor of Philosophy
in the subject of Computer Science

University of Murcia
October 2014

Modernizacion Dirigida por Modelos
de Interfaces Grdficas de Usuario

RESUMEN EXTENDIDO DE LA TESIS

Motivacion

Actualmente numerosas empresas abordan la migracién de los sistemas heredados (legacy sys-
tems) que disponen, con el fin de adaptarlos a nuevas tecnologfas de software que ofrecen mejores
caracteristicas (por ejemplo, mayor facilidad de mantenimiento o mejor experiencia de usuario).
Las interfaces graficas de usuario (Graphical User Interfaces, GUIs) constituyen un elemento im-
portante en dichas migraciones, dado que son el medio que los usuarios utilizan para interac-
cionar con el sistema. Ademds, la aparicién en los ltimos afios de una gran variedad de dispos-
itivos capaces de ejecutar aplicaciones (tabletas, teléfonos y televisiones inteligentes, etc.) ha
repercutido en que el disefo de las interfaces de usuario se convierta en un reto mayor.

Un ejemplo tipico de sistemas heredados son las aplicaciones creadas con entornos RAD
(Rapid Application Development), tales como Oracle Forms y Microsoft Visual Basic, que gozaron
de gran aceptacion en los noventa. Nuestro trabajo se centrard en este tipo de aplicaciones, a
las que nos referiremos como aplicaciones RAD. Estas ofrecian un paradigma de programacién
centrado en la GUI que permitia la creacién de ventanas en un tiempo reducido. Sin embargo,
las aplicaciones RAD poseian dos caracteristicas fundamentales que reflejan précticas desacon-
sejadas en ingenieria del software. La primera caracteristica es que la posicion de los controles
(tales como cajas de texto o etiquetas) estaba expresada con coordenadas. Esto constituye una
mala practica porque el cambio de posicién de un control puede implicar la modificacién de la
posicion de otros. Ademads, las interfaces expresadas con coordenadas sélo estin optimizadas
para una resolucién y tamafio de ventana determinados (no se adaptan al tamafio de éstas), por
lo que no se muestran adecuadamente cuando redimensionamos las ventanas o cuando se eje-
cuta la aplicacion en dispositivos con pantallas de diferentes dimensiones. Por el contrario, en
la actualidad se usan gestores de layout (layout managers) como FlowLayout o BorderLayout en
Java Swing, que permiten adaptar el contenido a las dimensiones de la ventana.

La segunda caracteristica consiste en que el codigo de los manejadores de eventos de la inter-
faz frecuentemente mezcla diferentes aspectos, desde aspectos arquitecturales como lalégica de

negocio o la presentacion, hasta aspectos funcionales como la validacién de los formularios o el

flujo de navegacion entre las vistas de la aplicacién. En la actualidad habitualmente se utilizan
frameworks de desarrollo que fomentan la separacion de aspectos porque facilitan en gran me-
dida el mantenimiento y la extensibilidad de las aplicaciones, en contraste con las aplicaciones
RAD que eran més dificiles de mantener.

En relacién con la primera caracteristica y su tratamiento en una migracion, existen diversi-
dad de trabajos que versan sobre ingenieria inversa de GUIs [1] [2], sin embargo en muchos
de ellos la migracion de las ventanas se limita a detectar controles y traducir dichos controles al
toolkit de la tecnologia destino. Especial relevancia tienenlos trabajos [3] [4] y [5], que presen-
tan tres enfoques que prestan atencién al layout de las vistas (ventanas, paginas web, etc.) y que
extraen un modelo que representa dicho layout. La desventaja fundamental de estos enfoques
es que obtienen una unica representacién del layout (por ejemplo, usando el GridBagLayout
de Java Swing), con lo cual, la generacién de interfaces utilizando otros tipos de layout (por
ejemplo, las capas flotantes de CSS) no es una labor directa.

Con respecto a la segunda caracteristica, podemos encontrar varios trabajos centrados en el
andlisis de codigo de la GUI [6] [7] [8]. La gran mayoria se centra en extraer las transiciones
que se producen entre las distintas vistas de la aplicacion, que normalmente se representan con
algun tipo de maquina de estados, con el objetivo de utilizar esta informacién para en el dmbito

de la comprensién de programas (program comprehension) o para realizar pruebas unitarias.

Objetivo
Nuestro objetivo consiste en facilitar la migracion de aplicaciones RAD a través de la creacién
de un framework de migracion de GUIs de sistemas RAD heredados. El framework estd desti-
nado fundamentalmente a inferir el layout de la aplicacién original y separar los aspectos que se
encuentran entremezclados en los manejadores de eventos.

El andlisis de varias aplicaciones creadas con entornos RAD y el estudio del trabajo rela-
cionado condujeron a la extraccion de una serie de requisitos que orientd el diseno de la solu-

cién, y que son los siguientes:

(R1) Extraccion explicita de informacion. Es necesario obtener una representacion explicita de

alto nivel la informacidn de la interfaz de usuario.

(R2) Modularidad. Es deseable fragmentar el proceso de reingenierfa en etapas mas sencillas

para favorecer su mantenimiento.

(R3) Automatizacién. El proceso debe ser automatizado en la medida de lo posible.

ii

(R4)

(Rs)

(Re)

(R7)

(R8)

(R9)

(R10)

(R11)

(R12)

Independencia del y origen y el destino. Debe ser posible extender el proceso y su reuti-
lizacion con distintas tecnologias de origen/destino con un esfuerzo relativamente re-

ducido.

Asemejar la estructura visual y légica. La estructura légica de las vistas, esto es, cdmo es-
tan contenidos unos controles en otros, debe coincidir con la estructura que un usuario

percibe al observar la vista.

Representacién de alto nivel. El layout de la vista debe expresarse con construcciones de
alto nivel, como por ejemplo los gestores de layout de Java Swing, que controlan la dis-

posicion espacial de componentes en una ventana.

Tolerancia a controles desalineados. La solucién debe manejar la situacién en que los con-

troles se encuentren levemente desalineados.

Soluciones alternativas. Un mismo layout puede lograrse con varias combinaciones dis-
tintas de gestores de layout, y seria deseable que los desarrolladores pudieran conocer

esas alternativas.
layout configurable. El conjunto de gestores de layout a utilizar debe ser parametrizable.

Abstraccién de cédigo. El cédigo se debe abstraer para facilitar su andlisis. Dado que el
c6digo de los manejadores de eventos responde a una serie de patrones recurrentes, seria

interesante detectar esos patrones para abstraer el codigo.

Categorizacién de cédigo. Es necesario que sea posible identificar los distintos aspectos
arquitecturales del codigo de la aplicacion, esto es, el cddigo de la logica de negocio, de

los controladores y de la interfaz de usuario.

Identificacién de las interacciones y flujos de navegacion. La solucion deber permitir ademads
identificar otros aspectos, como las interacciones que existen entre los controles (por
ejemplo, que al marcar una casilla de verificacion se permita editar un determinado campo

de texto) o el flujo de navegacién entre las distintas vistas de la aplicacién.

iii

Desarrollo de la arquitectura del framework

Nuestro framework ha sido construido aplicando la Ingenieria del Software Dirigida por Mod-
elos (Model-Driven Engineering, MDE) que se caracteriza por utilizar modelos a varios niveles
de abstraccion para representar diversos aspectos del sistema, con el fin de obtener una autom-
atizacién en el proceso de desarrollo. En nuestro caso, MDE aporta a nuestra solucién dos
principales beneficios : la representacion de aspectos del sistema heredado mediante mode-
los y metamodelos, y la automatizacién del proceso y modularidad de la solucién por medio
de cadenas de transformaciones que incluyen transformaciones modelo-a-modelo, modelo-a-
codigo y cédigo-a-modelos.

La arquitectura de modelos que hemos disenado incluye dos modelos que independizan la
solucién de la tecnologia origen (el modelo GUI normalizado y el modelo de comportamiento
RAD), y una serie de modelos de interfaz de usuario concreta (CUI, Concrete User Interface) que
aportan independencia de la tecnologia destino. Hemos definido varios modelos de CUI, de
modo que cada uno de ellos trata un aspecto diferente (aqui no nos referimos a aspectos arqui-
tecturales), con lo que se fomenta la separacion de aspectos. Los modelos CUI implementados

son:

« Modelo de estructura: muestra la estructura légica de las vistas, esto es, muestra las partes

distinguibles de las vistas y los controles que contienen.

« Modelo delayout: representa la disposicion espacial de los controles que contiene la vista

en términos de gestores de layout.

« Modelo de separacién de aspectos: expresa el codigo de los manejadores de eventos me-
diante patrones de cdédigo y etiqueta dicho codigo con el aspecto arquitectural al que

corresponde (légica de negocio, GUI, o controlador).

« Modelo de interacciones: expresa las dependencias entre los controles de la interfaz, asi

como el flujo de navegacion que existe en las diferentes vistas de la aplicacion.

Inferencia del layout
La inferencia del layout de las vistas consta de tres fases: i) extraccién de regiones, ii) repre-
sentacion de relaciones espaciales relativas, y iii) descubrimiento del layout de alto nivel. Se

han desarrollado dos versiones del proceso de inferencia del layout. En la primera version se

iv

abordaron las tres fases mencionadas, siendo la ultima de ellas implementada mediante una
aproximacion heuristica. En la segunda version se sustituy6 el algoritmo de la tercera fase por
un algoritmo exploratorio, mas sofisticado que en la primera version, lo que conllevé también
a realizar modificaciones en la segunda fase.

Enlasaplicaciones RAD pueden existir controles simples (no contenedores, como los botones)
que no se encuentren contenidos en controles contenedores (por ejemplo, paneles), sino que se
encuentren solapados con estos. El proceso de extraccién de regiones (primera fase de la infer-
encia del layout) en primer lugar hace explicita esta relacién de contencién entre los controles.
Para lograr esto, se crea una region para cada control, y para aquellos controles que visualmente
tienen borde y contienen a otros controles simples, se afiaden las regiones de estos ultimos a la
region del control que los contiene visualmente. En segundo lugar, la extraccion de regiones
evita que existan controles simples al mismo nivel que controles contenedores. Para ello, crea
regiones nuevas que contienen las regiones de aquellos controles no contenedores que estin al
mismo nivel que controles contenedores. Al final de este proceso se tiene la vista organizada en
un drbol de regiones, donde la estructura légica concuerda con la estructura visual.

La segunda fase de la estrategia de inferencia del layout es la representacion de relaciones
espaciales relativas a partir de la informacién de las regiones. En esencia trata de expresar las
relaciones entre controles contiguos por medio de un grafo de posiciones relativas, donde los
vértices son los controles y las aristas son las relaciones espaciales. La implementacion de este
grafo ha variado entre la primera y la segunda versioén del proceso. En la primera version se
representa explicitamente la posicion entre dos controles mediante las relaciones arriba, abajo,
izquierda, derecha, y una distancia significativa entre los controles se representa por medio de
vértices especiales denominados huecos. En la segunda version se optd por representar la posi-
cién entre dos controles por medio de dos intervalos Allen [9], uno para el eje X y otro para el
eje Y, y la distancia entre los nodos se mide en niveles discretos que se calculan dindmicamente
aplicando técnicas de agrupamiento (clustering).

La tercera fase obtiene el diseno expresado por medio de una composicion de gestores de
layout. En la primera version se implement6 un algoritmico heuristico basado en el encaje de
patrones. Se defini6é un patrén para cada tipo de gestor de layout, asi como una funcién de
idoneidad que, aplicada a un conjunto de nodos del grafo de posiciones relativas, devuelve el
porcentaje de nodos encajados en el patron. El modo de funcionamiento es el siguiente: para
cada grafo de posiciones relativas que proviene de una regién contenedora se aplican las fun-

ciones de idoneidad de todos los gestores de layout, y se aplica el patrén asociado a aquella

funcion que obtiene un valor mds alto. Este algoritmo tiene un inconveniente de especial rel-
evancia: no permite detectar patrones anidados, con lo cual, las vistas que tienen un disefio
complejo en muchas ocasiones no serdn reconocidas correctamente.

La segunda versién del descubrimiento de alto nivel utiliza un algoritmo exploratorio que
se basa en el encaje de patrones y la reescritura del grafo de posiciones relativas. Cada gestor
de layout tiene un patrén asociado. El algoritmo en primer lugar genera todas las secuencias
de gestores de layout posibles, e intenta llegar a una solucion aplicando cada secuencia. Para
cada secuencia, se aplican los patrones sobre el grafo en el orden indicado por ésta, de modo
que cuando un patrén encaja en un subgrafo, éste se reemplaza por un tinico nodo. Se contintia
aplicando el proceso de encaje de patrones y reescritura del grafo hasta que queda un unico
nodo, lo que denota que hemos alcanzado una solucién. Si sucede que tras un numero ade-
cuado iteraciones no se han producido cambios en el grafo, entonces se detiene la bisqueda
pues no es posible hallar una solucién con esa secuencia. Cada solucién obtenida es evaluada
por una funcién de idoneidad que nos indica cémo de buena es la solucion hallada. Al final del
proceso se tiene un modelo que indica una serie de posibles layouts para cada contenedor de la
vista, y también nos indica cudl es el mejor layout de acuerdo con la funcién de idoneidad. El
conjunto de gestores de layout utilizados en la solucién es configurable, con lo que es posible

limitar o extender el mismo segun las caracteristicas de la tecnologia destino.

Desarrollo del enfoque de anilisis de manejadores de eventos
Hemos desarrollado una solucién para separar los aspectos que se encuentran mezclados en
los manejadores de eventos. Concretamente abordamos la separacion de los aspectos arqui-
tecturales de la aplicacién (l6gica de negocio, controlador e interfaz de usuario), asi como la
extraccion de las interacciones que existen entre los controles y entre las vistas de la GUL

Para alcanzar este objetivo realizamos una fase de abstraccion del codigo previa a la sepa-
racion de aspectos. La abstraccion consiste en representar el codigo fuente de los manejadores
de eventos en términos de primitivas que expresan patrones de cédigo comunes en las apli-
caciones RAD. Por ejemplo, Oracle Forms utiliza el lenguaje PL/SQL para implementar los
manejadores de eventos, y en este lenguaje se puede hacer uso de cursores para el acceso a base
de datos. Nosotros simplificamos dichas instrucciones de apertura y lectura del cursor explic-
ito con una primitiva que indique una lectura de base de datos. Algunas de las primitivas que
hemos definido son: lectura de base de datos, escritura en un control o invocacién a una fun-

cién de logica de negocio. El c6digo expresado de este modo es mds sencillo de analizar que el

vi

codigo fuente.

El c6digo representado por medio de primitivas es entonces analizado para separar los aspec-
tos arquitecturales, obteniéndose el modelo de separacion de aspectos. Para tal fin, las primi-
tivas se dividen en bloques bésicos [10] que se estructuran formando un grafo de control de
flujo. Cada bloque bésico a su vez se divide en fragmentos, que son conjuntos de instrucciones
relacionadas que pertenecen al mismo aspecto (16gica de negocio, controlador o GUI), y que
por tanto deben ser migradas conjuntamente. Los fragmentos se obtienen analizando el tipo de
las primitivas y las variables de entrada y salida que poseen. Gracias a que las primitivas guardan
referencias al c6digo original, es posible utilizar el grafo de flujo de fragmentos para clasificar el
codigo original y guiar la migracion a una arquitectura de capas.

Las primitivas también se utilizan en la identificacién de interacciones entre los controles y
entre las vistas. Se analiza recursivamente el flujo de control de las primitivas para extraer: i)
los controles que generan los eventos, ii) las condiciones en las cudles se disparan los eventos,
iii) los controles en los que se produce un efecto, y iv) el efecto producido sobre éstos. Por
ejemplo, seleccionar una opcion determinada de una lista desplegable puede producir que se
habilite un formulario que antes no se mostraba. Con esta informacién se construye un grafo
multi-nivel donde los vértices son los controles y las vistas, y las aristas son las interacciones en-
tre ellos. El grafo es multi-nivel porque un vértice que represente una vista contendrd a su vez el
grafo formado por los controles que forman parte de ella. Este grafo puede ser de utilidad para
documentar el sistema, generar artefactos que describan el flujo de navegacion entre las vistas,

o detectar llamadas asincronas en un entorno web con Ajax.

Evaluaciéon

Las dos versiones de la solucién de inferencia del layout han sido evaluadas. En la primera ver-
sion se realiz6 mediante un caso de estudio de migracién de dos aplicaciones Oracle Forms a
Java. El proceso de evaluacién basicamente consistié en generar automdticamente el codigo
Java y analizar manualmente las ventanas obtenidas. Particularmente se midi6 el porcentaje de
partes distinguibles que habian sido colocadas correctamente, asi como el porcentaje de con-
troles situados en el lugar correcto. En el posicionamiento de partes se obtuvo una tasa de éxito
del 96% y 97% en cada una de las aplicaciones, y el porcentaje de controles correctos fue de 87%
¥ 95% en cada una. El caso de estudio reveld varias limitaciones de la primera versién del en-
foque, siendo particularmente destacable la incapacidad para detectar layouts complejos (que

no pueden ser expresados con un tnico gestor de layout).

vii

La segunda version se disen6 para paliar las limitaciones de la primera version. En este caso,
la aproximacion se teste6 en un escenario diferente a la migracion, concretamente la generacién
de una nueva interfaz web a partir de esbozos (wireframes) creados con alguna herramienta para
tal efecto. La evaluacion se llevé a cabo con profesionales de las TICs que siguieron el siguiente
proceso: leer una breve documentacion de la aplicacion propuesta, realizar los esbozos de la
GUI, generar automdticamente el c6digo, analizar los resultados y rellenar un cuestionario. El
85% de los participantes indicaron que las vistas se habian generado totalmente o en gran me-
dida como ellos esperaban, el 65% estaban totalmente o parcialmente de acuerdo en que las ven-
tanas generadas podian usarse en aplicaciones reales, y el 90% estuvieron de acuerdo en que la
herramienta es util. Las caracteristicas de nuestra solucion que incidieron negativamente en el
resultado fueron dos: i) la configuracién de los parametros del algoritmo, que en algunos casos
era vital para obtener el resultado adecuado, y ii) la funcién de idoneidad, que obtenia buenas
soluciones en cuanto al nimero de gestores de layout empleados, pero no siempre obtenia la

mejor solucién desde el punto de vista visual.

Para comparar la segunda version con la primera se evalué el nuevo algoritmo con una de
las aplicaciones del caso de estudio de Oracle Forms, obteniéndose un 99% de acierto en la
organizacion de las partes y un 97% en el posicionamiento de controles. El hecho de aplicar el
enfoque de inferencia del layout en dos escenarios diferentes nos sirve para demostrar que la
solucién es aplicable en cualquier caso en que se disponga de una interfaz donde los controles

se posicionan con coordenadas.

La evaluacion de la separacion de aspectos estructurales de los manejadores de eventos se
llev a cabo con un caso de estudio de migracion de una aplicacién Oracle Forms a una ar-
quitectura cliente-servidor de 2 capas, donde la capa de presentacion se implementaba en el
navegador, y la l6gica de negocio permanecia en el servidor y se exhibia al cliente mediante un
servicio REST. Este caso de estudio nos permiti6 evaluar también el enfoque de abstraccién
de cddigo, en el que el 96% del codigo fue encajado en alguno de los patrones definidos, y se
obtuvo una tasa de cddigo correctamente transformado en primitivas del 83%. La tasa de error
del 17% fue ocasionada por ciertos elementos del cé6digo PL/SQL que no se tratan en la im-
plementacion actual, como las excepciones, y otras funciones especificas de Oracle Forms que
no se traducen correctamente. Con respecto a la separacion de aspectos, se obtuvo un 86% de
codigo correctamente clasificado, lo que demuestra que ésta es altamente dependiente del éxito

del proceso de abstraccion del codigo.

viii

Conclusiones

La arquitectura MDE que hemos desarrollado nos ha permitido solventar los requisitos Ri,
R2, R3 y R4. Concretamente la representacién explicita de la informacién (R1) se ha logrado
por medio de metamodelos, la modularidad (R2) y la automatizacién (R3) se han conseguido
mediante cadenas de transformaciones, y la independencia del origen y el destino (R4) se ha
obtenido gracias a los metamodelos disenados para tal efecto.

El requisito de asemejar la estructura légica y visual (Rs) se cubre mediante el modelo de
regiones. La representacion de alto nivel (R6) se logra mediante el modelo de layout. La tol-
erancia a controles desalineados (R7), las soluciones alternativas (R8) y el requisito de disefio
configurable (Ro) se ha conseguido implementando un algoritmo de inferencia parametrizable.
Cabe destacar que no se han encontrado trabajos que planteen una solucién a los requisitos R8
y Ro, dado que los trabajos existentes presentan algoritmos ad-hoc para generar layouts com-
puestos por un gestor de layout [3] [4] [5].

La abstraccién de cédigo (requisito R10) se ha logrado mediante el modelo de primitivas
de comportamiento abstracto, la categorizacién de cédigo (R11) se ha conseguido a través del
grafo de flujo de fragmentos de cédigo (modelos de separacién de aspectos), y el requisito de
identificacion de interacciones y flujos de navegacion ha sido obtenido por el modelo de inter-
acciones. No hemos hallado ningtn trabajo relacionado que utilice una representacién similar
para abstraer cédigo. Conrespecto al requisito R11, los trabajos existentes separan la aplicacién
en capas [11], pero requieren asistencia del desarrollador, mientras que en nuestra solucién este

proceso ha sido automatizado.

Contribuciones

Las contribuciones de esta tesis son fundamentalmente tres. La primera es una arquitectura
de modelos que puede ser utilizada para migrar aplicaciones RAD. Esta arquitectura posee
una serie de caracteristicas (reusabilidad, extensibilidad, mantenibilidad) muy utiles para la
migraciéon. Ademds, como parte de esa arquitectura destacamos el disefio del modelo CUI,
que favorece la separacion de aspectos en el desarrollo de una GUI . La segunda aportacion es
la estrategia de inferencia del layout, de la cual se proponen dos versiones. El enfoque prop-
uesto permite inferir diversas opciones de layout en base a un conjunto de gestores de layout
parametrizable, y que puede ser utilizado no solo en un escenario de migracion sino también
de ingenieria directa, como la generacién de c6digo a partir de wireframes de la GUI. La tercera

contribucién es la solucién de andlisis de codigo de los manejadores de eventos para separar

ix

los diferentes aspectos que se encuentran mezclados en el c6digo, tanto arquitecturales como

otros tales como las interacciones entre los controles de la vista.

Agradecimientos

UCHAS VECES HE SONADO CON ESTE MOMENTO. Siempre me he preguntado cémo
me sentiria en este instante, que signiﬁca el final de una etapa para mi. Son varios
anos de trabajo, mucho esfuerzo condensado en un documento, y mucha gente

que de una manera u otra me ha apoyado y me ha ayudado a seguir adelante.

Quiero empezar dedicando unas palabras de agradecimiento a mis padres Juan y Soledad,
que siempre han velado porque me centrara en los estudios y nunca me faltase de nada. Gra-
cias también a mis hermanos Juan Miguel y Marisol que siempre me han apoyado y me han
demostrado que estén ahi, y a Laura, Dani, Alvaro y Héctor, que endulzan nuestra familia con
su inocencia y alegria.

Jestis Garcia Molina y Jesus Sinchez Cuadrado, mis directores de tesis y amigos, han sido
piezas clave para superar con éxito esta odisea. Jesus Garcia me acogio en su grupo alld en 2006,
y me ensend que los modelos no solo desfilan por las pasarelas. Anos mas tarde, Jests Sinchez
acepto unirse al carro de las interfaces de usuario y se uni6 a Jests Garcia para guiarme por el
tortuoso e incierto mundo de la investigacion. jLa de veces que habré maldecido RubyTLl!... (y
que posteriormente he alabado). A ambos les debo mi formacién, y les agradezco el esfuerzo y
tiempo que han invertido en mi.

En mi camino de investigacion se han cruzado muchos compaiieros que han dejado huella.
Empecé trabajando en el grupo de investigacion desarrollando wrappers de cédigo con Javier
Cénovas, que se sentaba en la mesa contigua, y tantas veces me ha escuchado y soportado. En
aquel momento integraban también el laboratorio Jests Sinchez, Fernando Molina, Francisco
Javier Lucas, Joaquin Lasheras, Miguel Angel Martinez, y posteriormente llegaron Espinazo,
Javier Bermudez, Jests Perera y Juanma. Me vienen a la memoria el descubrimiento del Musi-

covery, el secuestro del peluche, la escena del electricista, la escala Cuadrado, las JISBD en Gi-

xi

jon... Gracias a todos por los buenos ratos que pasamos, en los que me ensefdsteis otra forma
de’investigar’.

De mi estancia en Bélgica en 2012 guardo gratos recuerdos. Pese a vivir la primavera mds
nublada que habia visto en mi vida, mis comparfieros de laboratorio Frangois Beauvens y Jérémie
Melchior, que se pasaban los lunes discutiendo del Madrid y el Barga, me hacian més llevaderas
las frias mananas de Louvain-La-Neuve. Alli conoci también a Vivian, Ugo, Diana, Cinthya,
Diogo, Sophie, Nesrine, Mathieu, Edu y otros tantos que me han demostrado que tengo ami-
gos distribuidos por el mundo. Quiero hacer una mencién distinguida a mi supervisor en Bél-
gica, Jean Vanderdonckt, que sin conocerme pricticamente de nada me otorgé la posibilidad
de realizar la estancia.

No quiero olvidarme tampoco de mis amigos Edu, Anabel, Pablo, Laura, Daniel, Carras, la
pena La Jarra, los monitores del campamento, y de los ultimos visitantes del laboratorio, Saad,
Manal y Sofia. Ellos han sufrido mis inquietudes y preocupaciones, y han sido de un modo u

otro, testigos de mis logros y mis fallos durante el transcurso del doctorado.

A todas y cada una de las personas citadas, gracias.

xii

Model-Driven Modernisation of
Legacy Graphical User Interfaces

ABSTRACT

Businesses are more and more modernising the legacy systems they developed with Rapid
Application Development (RAD) environments, so that they can benefit from new platforms
and technologies. As a part of these systems, Graphical User Interfaces (GUIs) pose an im-
portant concern, since they are what users actually see and manipulate. When facing the mod-
ernisation of GUIs of applications developed with RAD environments, developers must deal
with two non-trivial issues. The first issue is that the GUI layout is implicitly provided by the
position of the GUI elements (i.e. coordinates). However, taking advantage of current features
of GUI technologies often requires an explicit, high-level layout model. The second issue is
that developers must deal with event handling code that typically mixes concerns such as GUI
and business logic. In addition, tackling a manual migration of the GUI of a legacy system, i.e.,
re-programming the GUI, is time-consuming and costly for businesses.

This thesis is intended to address these issues by means of an MDE architecture that auto-
mates the migration of the GUI of applications created with RAD environments. To deal with
the first issue we propose an approach to discover the layout that is implicit in widget coordi-
nates. The underlying idea is to move from a coordinate-based positioning system to a repre-
sentation based on relative positions among widgets, and then use this representation to infer
the layout in terms of layout managers. Two versions of this approach have been developed: a
greedy solution and a more sophisticated solution based on an exploratory algorithm. To deal
with the second issue we have devised a reverse engineering approach to analyse event han-
dlers of RAD-based applications. In our solution, event handling code is transformed into an
intermediate representation that captures the high-level behaviour of the code. From this rep-
resentation, separation of concerns is facilitated. Particularly it has allowed us to achieve the
separation of architectural concerns from the original code, and the identification of interac-
tions among widgets. All the generated models in the reverse engineering process have been
integrated into a Concrete User Interface (CUI) model that represents the different aspects
that are embraced by a GUL

xiii

The two layout inference proposals and the event handler analysis have been tested with real
applications that were developed in Oracle Forms. The exploratory version of the layout infer-
ence approach was in addition tested with wireframes, which poses a different context in which

the layout inference problem is also useful.

Xiv

[...] You push at the boundary for a few years.
Until one day, the boundary gives way.
And, that dent you've made is called a Ph.D.

Of course, the world looks different to you now:

So, don’t forget the bigger picture.

Keep pushing.'

Thttp://matt.might.net/articles/phd-school-in-pictures/

Contents

INTRODUCTION

1.1 Motivation L e
1.2 Problemstatement
1.3 Development L

1.4 Outline

BACKGROUND

2.1 Software modernisation

2.2 Graphical User Interfaces (GUI)
2.2.1 Visual GUIfeatures,
2.2.2 LegacyGUIfeatures
2.2.3 Use scenarios of GUl reverse engineering

2.3 Model Driven Engineering (MDE)o viii ..
2.3.1 Metamodelling Lo o oo
2.3.2 Domain-Specific Languages (DSLs)
2.3.3 Modeltransformations
2.3.4 Model-Driven Modernisation (MDM)

STATE OF THE ART

3.1 Analysis of layout recognition approaches L.
3.1.1 Lutteroth
3.1.2 Riveroetal.
3.1.3 SinhaandKarim
3.1.4 Otherapproaches

-

NI | AN W

11
11
13
16
18
23
24
24
25
25
27

3.1.5 Discussion 39

3.2 Analysis of behaviour extraction approaches 42
321 Memon (GUIRipping) oo vt viii 42

3.2.2 Heckeletal. 44

3.2.3 Morgadoetal. (ReGUIL) 45

3.2.4 Otherapproaches 46

3.2.5 Discussion e e e e e e e 49

3.3 GUIrepresentationapproaches 52
3.3.1 Knowledge Discovery Metamodel (KDM) 52

3.3.2 Interaction Flow Modeling Language (IFML) 56

3.3.3 Cameleonframework 58

3.3.4 User Interface Description Languages (UIDLs) 61
3.3.4.1 UsiXML e e e 61

3.3.4.2 Maria e e 63

3.3.4.3 XAML e e e e 64

3.3.5 Discussion e e e 64

4 OVERVIEW 67
4.1 Goal e 67
4.2 Architecture ofthesolution, . 71
4.2.1 The Concrete User Interfacemodel 71

4.2.2 Overview of the migration architecture 73

4.2.3 Requirementimplementation 75

5 LAYOUT INFERENCE: GREEDY APPROACH 77
5.1 MDE architecture for layoutinference 78
5.2 Reverse engineeringmetamodels 0 0L 79
5.3 Challenges in layout reverse engineering 83
5.4 Detectingregionsand containers L. 84
5.5 Uncovering relative positions L Lo oo 88
5.6 High-levellayout 97
5.7 Detailedexample Lo 101
5.7.1 Injectionof Formsmodels 102

xviii

s.7.2 Mapping Oracle FormstoRADmodels
5.7.3 Identificationof theregions
5.7.4 Recovering the low-levellayout
5.7.5 Recovery of the highlevellayout.
5.7.6 Generation of JavaSwingcode Lo Lo
5.8 Casestudy: from Oracle FormstoJava
5.8.1 Methodology o ..
5.8.2 Evaluationresults,
5.8.3 Limitationsoftheapproach
5.9 Implementation. Lo
5.9.1 Injection
5.9.2 Mapping Oracle Forms to Normalised models
5.9.3 Reverseengineering
5.9.4 Forward engineering

s.00 Conclusions e e e

LAYOUT INFERENCE REVISITED: EXPLORATORY APPROACH

6.1 MDE architecture for layout inference (revisited)

6.2 Reverse engineeringmetamodels Lo 0oL
6.2.1 Structuremetamodel Lo L oL
6.2.2 Layoutmetamodel oo oL

6.3 Changing the positioningsystem
6.3.1 Creatingtheviewgraph
6.3.2 Representing widget relative positions
6.3.3 Representingwidgetdistances
6.3.4 Tilemodelexample

6.4 Inferingahigh-levellayout
6.4.1 Thelayoutpatterns
6.4.2 Layoutinferencealgorithm
6.4.3 Layoutinferenceexample
6.4.4 Performanceevaluation

6.5 Case study: from Wireframes to fluid web interfaces

6.5s.1 Contextofthecasestudy

Xix

7

6.5.2 Evaluationoftheapproach. 160

6.5.2.1 Methodology 160

6.5.2.2 Quantitativeresults L. 161

6.5.2.3 Userassessment v i 163

6.5.2.4 Approachlimitations 165

6.6 Implementation. 169
6.6.1 Mapping WireframeSketcher to Normalised models 170

6.6.2 Mapping Normalised models to Structuremodels 171

6.6.3 Generationofthewebinterface 171

6.6.4 Thetool e 173

6.7 Comparison of the greedy and exploratory approaches 173
6.8 Conclusions i e e e e 177
EVENT HANDLER ANALYSIS 179
7.1 Architecture for analysingevents L 181
7.2 Runningexample Lo Lo o 182
7.3 Representing event handlingcode 184
7.3.1 Metamodel description Lo oL 185

7.3.2 Derivinga RADBehaviourmodel 186

733 Exampleo o 189

7.4 Separating CONCEINS« v v v v v v ittt et e et 190
7.4.1 Metamodel description o Lo 191

7.4.2 Fragmentidentification 192
7.4.2.1 Creating a control flow graph of fragments 192

7.4.2.2 Giving a descriptive name to the fragments 195

7.4.2.3 Setting dependencies among fragments 197

7.5 Generatinglayeredcode o oo Lo 197
7.6 Capturing dependencies among the GUIlelements 199
7.6.1 Metamodel description oL oL 201

7.6.2 From RADBehaviour to the Interactionmodel 201

7.63 Example o 204

7.7 Evaluationoftheapproach 20§
7.7.1 Evaluation of the code abstraction 206

7.7.2 Evaluation of the separationof concerns 207

7.8 Conclusions e e e 207
8 CONCLUSIONS 211
8.1 Discussion e e e 212
8.1.1 Goal 1: Architecture for migratinglegacy GUIs 212

8.1.2 Goal 2: Analysis of GUI definitions for migration 214

8.1.3 Goal 3: Analysis of the code of event handlers for migration 216

8.2 Contributions e 218
8.2.1 First contribution: MDE-based migration architecture 218

8.2.2 Second contribution: Layout inference approach 218

8.2.3 Third contribution: Event handler analysis approach 219

83 Futurework 220
83.1 CUImetamodel 220

8.3.2 Regionidentification. 0 oL 221

8.3.3 High-levellayoutinference. 222

8.3.4 Eventhandler codeabstraction 223

8.3.5 Identification of widget dependencies 224

8.4 Publicationsrelatedtothethesis 224
8.4.1 Journalswithimpactfactor 224

8.4.2 Renowned international conferences 22§

8.4.3 Otherjournals 22§

8.4.4 Other international and national conferences and workshops 225§

8.5 Other publicationsinthe MDEarea 226
8.5.1 Journalswithimpactfactor 226

8.5.2 International conferences and workshops 227

8.6 Projectsthatarerelated tothisthesis 227
8.7 Contracts supporting thisthesis 228
88 Researchstays. 228
8.9 Transferoftechnology 229
REFERENCES 240

xxi

xxii

1.1

2.3
2.4
2.5
2.6
2.7
2.8

2.9

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Listing of figures

Tag cloud of the blended elements in withalegacy GUL

The Horseshoemodel
Example view for entering personal information. Widgets are placed with ex-

plicitcoordinates. L
An excerpt of the GUI tree for the windowin Figure2.2..
Login window created with WireframeSketcher.
(a) Fragment of the original GUI tree. (b) The expected GUI tree.
A calendar component emulated by a grid of buttons.
Example of mixing of concerns in an Oracle Forms application
Fragment of a Delphi 5 event handler that checks if a task is active before delet-

ingit. e
MDE applied toreengineering oL

Schema of the Riveroetal. approach
Sinhaand Karimapproach
Approachof Heckeletal.,
Approach of Morgadoetal. (ReGUI)
KDMlayersandpackages
KDM metamodel. Ul package (UIResources)o oo
KDM metamodel. Ul package (UIRelations)
KDM metamodel. Ul package (UIActions)
Example of user interface (left) and corresponding IFML model (right)

3.10 Cameleonframework

15
17

3.11 Abstraction, reification and translation in the Cameleon framework

3.12 UsiXML models conforming to Cameleon

4.1 Concrete User Interface modelsinoursolution

4.2 Architecture of the solution (GUI2MO framework)

5.1 Part of the architecture explained in this chapter.
5.2 Model-based architecture used to migratelegacy GUIs.
5.3 Excerpt of the Normalised metamodel.
5.4 Simplified CUImetamodel..

5.5 Example view for entering personal information. (Same window as Figure 2.2).

5.6 Regionmetamodel. o o L L L
5.7 Left: example window for the region detection. Right: the logical structure of
thewidgets.
5.8 Structure of the regions after step 2 for the example in Figure 5.7.
5.9 Case A. Left: example window with a base region R1. Right: a new extra re-
gion Rz created to contain CloseWindowButton.
s.10 Case B. Left: example window with a base region R1 and an extra region Ra.
Right: the base region R1 is augmented to include SearchButton completely
and the extraregion R2 is diminished.
s.11 Case C. Left: example window with a base region R1 and an extra region Ra2.
Right: a new extra region R3 is created to contain NextButton, and the region
Rzisdiminished.
s.12 Tilemetamodel.
5.13 Adjacencyexample L. Lo
5.14 Horizontal intersection valueexample
s.15 Examplewindow Lo Lo
5.16 Excerpt of the RAD Model for the example window in Figure 5.15
5.17 Some regions identified for the example window in Figure s.15.
5.18 Excerpt of the Region Model for the example window in Figure 5.15.
5.19 Representation of the tiles in the upper part of the window
s.20 Excerpt of the Tile Model for the example window in Figure 5.15.
5.21 Representation of the tiles in the lower part of the window

s.22 Properties of the lower-left tile of buttons

XXiv

86
86

89

89

5.23
524
5.2§
5.26
527
5.28
529
5-30
531
5-32

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

6.10

6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18

6.19

Excerpt of the CUI Model for the example window split into two parts 109
The example window shown in Figure 5.15 migrated to Java Swing 110

Scatter plot that represents the accuracy of part detection for the case study A. 115

Scatter plot that represents the accuracy of part detection for the case studyB. 116
Scatter plot that represents the accuracy of widget placement for the case study A. 116
Scatter plot that represents the accuracy of widget placement for the case study B. 117
Missing part identification problem L0 L. 118
Non-regular layout detectionproblem 118
Model-based architecture used to migrate legacy GUIs. 119
Excerpt of the Oracle Forms metamodel. 120
Model-based architecture used to migratelegacy GUIs. 128
Steps to explicitly infer the layout information. 129
Relation between the CUI and the Structure and Layout metamodels. 130
Structuremetamodel. L L 131
Layoutmetamodel. Lo o 133
Tile metamodel (newversion) 135
Allenintervals 137
Allen interval example forapairofwidgets 138
Problem when setting fixed limits for the closenesslevels. 138
Closeness assignment example. (a) Widgets and distances between them. (b)

Resultgraph. 139
Login window created with WireframeSketcher. 141
Graph representation of the login window example. 142
Pattern matching example on fourwidgets 143
Border layout supported patterns. 145
Examples of widgets that do not match anypattern 145
Example of non-valid match for the Vertical Flow Layout pattern. 149
Example of match split for the Vertical Flow Layout pattern. 149

Inference example. Permutation {HFlow, VFlow, Form} applied to the graph
inFigure6.12. L e 155§
Inference example. Permutation {VFlow, HFlow, Form} applied to the graph

inFigure6.12. L e 156

6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38
6.39
6.40

7.1
7.2

7-3
7.4
7-5
7.6
77
7.8
7-9

Execution time for widgets in a single container. 157

Execution time for widgets arranged in containers (a container every 20 widgets). 158

Are the generated viewsasIexpected? oL 163
Are the margins, gaps and alignment correct? 164
When resizing the windows, are the widgets resized appropriately? 164
Could the generated windows be used in a real application? 164
Is the layout inference tooluseful? 165
Example of the closeness problem. 166
Examplewindow. L L Lo 167
Example horizontal-verticalflow. 168
Example horizontal-vertical flowresized. 168
Example vertical-horizontalflow. 168
Example vertical-horizontal flowresized. 169
Parts of the MDE architecture related to the Wireframes to ZK case study. . . 169
Excerpt of the WireframeSketcher metamodel. 170
The login window generatedinZK. 172
Layout inference parameters. 174
Example of an Oracle Formswindow. 176
Generated window by the first approach for the Oracle Forms window. 176
Generated window by the second approach for the Oracle Forms window. . . 176
Part of the GUIZMO architecture explained in this chapter 180
Model-based architecture for reengineering RAD-based applications. Solid

lines mean transformations and dashed lines are model dependencies. 181
Grantsexample Lo 183
PL/SQL trigger for the checkbox changeevent 184
Excerpt of the RADBehaviour metamodel. 185
PL/SQL to RADBehaviour mappings 188
RADBehaviour example for the checkboxevent 190
Excerpt of the EventConcerns metamodel 191

EventConcerns model derived from the model in Figure 7.7. Labels A, B, C,

D are used to show the primitives that originate the basic blocks. 193

Xxvi

7.10 Fragmentidentificationexample 0 L 194

7.11 Horseshoe model applied to the separation of concerns 198
7.12 Interactionmetamodel 202
7.13 Interaction model for the event handlers of the window shown in Figure 7.3 . 205

xxvii

xxviii

3.1
3.2

4.2
4.3

5.1
5.2
5.3
5-4

6.1
6.2
6.3

7.1
7.2
7-3
74

List of Tables

GUI features of three different RAD environments 18

Summary of layout inference approaches oL 40
Summary of the behaviour extraction approaches (PC stands for Program Com-

prehension) ... 50

Relationships between the requirements and the discussion of the state of the

P 70
Requirements that cover bad practices in RAD environments. 70
Implementation of the requirements 75
Evaluation results for the case study A. 113
Evaluation results for the casestudyB. 113
Forms to Normalised mappings. 122
Classification of the approach of thischapter 126
Evaluationresults. o 161
Evaluation results for the casestudy A. 174
Classification of the approach of this chapter 178
RAD primitives e 186
RADBehaviourevaluation 206
EventConcernsevaluation o v v it 207
Classification of the approach of this chapter 209
Fulfilment of the requirements of goal G 214

XXix

8.2
8.3

Fulfilment of the requirements of goal G2

Fulfilment of the requirements of goal G3

Straight ahead of him, nobody can go very far...

Antoine de Saint-Exupéry, The Little Prince
(Suggested by Daniel Medina)

Introduction

Graphical User Interfaces (GUISs) represent a crucial part of software systems as they are what
users actually see and manipulate to interact with them. Therefore, the design and implementa-
tion of GUIs is an issue that must not be neglected and developers typically devote a great effort
to build application GUIs. Lately there has been a significant growth of types of devices that
can run applications (smartphones, tablets, televisions, and so forth), each one having different
screen sizes, resolutions and even interaction modalities (e.g., tactile screens). GUI technolo-
gies have also evolved to offer new possibilities that improve the user experience, particularly in
the web setting with the emergence of HTML3 and Ajax (Asynchronous JavaScript And XML).
This variety of devices and sophistication in technologies has brought that GUI design is now
more challenging than ever. In fact, companies spend large amounts of money of their budget
creating interfaces that must be functional, appealing and, at the same time, usable, because they
are aware that this is key to succeed in their business. The challenge of creating quality GUIs
does not only concern to the development of new applications, but is also faced at present by
companies that are migrating their legacy applications to modern technologies as they offer a

better user experience.

Software modernisation refers to understanding and evolving existing software assets to main-
tain their business value. A legacy system is modernised when maintenance is not enough to
achieve the desired improvements (e.g., new capabilities or greater maintainability) and that
system must be extensively changed. Software migration is a form of modernisation that in-
volves moving an application, as a whole or a part of it, from the platform on which is currently
operating to a target platform that provides better features. A migration can be done in a dis-
ciplined way by applying a software reengineering process that consists of three stages: reverse
engineering the legacy system to obtain a representation of the system at a higher abstraction
level, restructuring these representations according to the new architecture, and finally creat-
ing code of the new system from the restructured information [12] [13]. Reverse engineering
techniques are therefore essential to understand and obtain representations at a high level of

abstraction when a reengineering process is applied.

GUI migration has been typically regarded as a straightforward research topic, in which the
only concern is to establish mappings between widgets of the source and target technologies.
However, dealing with current technologies and devices requires a thorough analysis of the user
interface so that it can be suitably reengineered. This analysis affects both the structural and be-
havioural aspects of a GUI, and sophisticated reverse engineering algorithms must be designed

to cope with it.

Model Driven Software Engineering (MDSE or simply MDE) has emerged as a new area of soft-
ware engineering that emphasizes the systematic use of models in the software lifecycle in order
to improve its productivity and software quality aspects such as maintainability and interoper-
ability. MDE techniques, e.g. metamodeling and model transformations, allow tackling the
complexity of software by raising its abstraction and automation levels [14]. These techniques
are useful not only for developing new software applications [15] [16] but also for reengineer-
ing legacy systems [17] [18] and dynamically configuring running systems [19]. In the latest
years, MDE techniques have been applied to a variety of modernisation scenarios, especially
in the migration of applications [20] [21] and some MDE tools have been created [22] [23]
[24]. A notable effort is the Architecture-Driven Modernization (ADM) initiative [17], which
was launched in 2003 and is targeted at offering a set of standard metamodels for represent-
ing information that is frequently implicated in modernisation. Although MDE is increasingly
gaining acceptance in the software community [25], “the adoption of this approach has been
surprisingly slow” [26] and there is still a need for successful experiences of using MDE in real

projects.

The purpose of this thesis is to bring together the fields of Reengineering, Reverse Engineer-
ing, Model Driven Engineering and Graphical User Interfaces (GUISs) in order to encompass
them all and create a solution for migrating GUIs of legacy systems to modern frameworks and
technologies. In particular, we have designed and implemented a solution for migrating appli-
cations created with Rapid Application Development (RAD) environments, but the proposed
approach is applicable to other legacy systems sharing the same requirements we have consid-
ered for RAD-based applications.

The rest of this chapter is organised as follows: first, the motivation of the work is presented;
then, the goals of this thesis are outlined; afterwards, the development of the solution is ex-
plained and the main contributions of the thesis are enumerated; finally, the contents of the

rest of this manuscript are summarised.

1.1 MOTIVATION

Most information systems dating from the 9o’s were built using RAD environments. The RAD
paradigm appeared in the early 9o’s as a response to the non-agile development processes that
existed [27], and a number of Integrated Development Environments (IDEs) supporting fourth
generation languages (4GLs) for the RAD paradigm also appeared. Oracle Forms, Visual Basic
or Delphi are well-known examples of RAD environments. These IDEs provided a program-
ming paradigm centered on the application GUI, allowing developers to create initial proto-
types rapidly and reducing development time by facilitating GUI design and coupling data ac-
cess to graphical components. However, the gaining of productivity is achieved at the expense
of reducing the software quality. Next, we discuss two features of applications that have been
created with a RAD environment (hereinafter referred as RAD applications), which negatively
affect the software quality: the use of coordinates and the tangling of concerns.

In RAD environments, the position of widgets was expressed in terms of abolute or relative
coordinates (normally pixels), so the windows created with them were optimised just for a cer-
tain size. Nonetheless, this is a bad practice since the interfaces are difficult to maintain. Let us
consider a GUI defined by coordinates and a change consisting of adding a new widget. That
change may lead developers to shift the coordinates of other widgets.

Furthermore, designing user interfaces for a fixed resolution and screen format is no longer ad-
missible. With the popularisation of smartphones and tablets, there has been a explosive growth

of devices that can run graphical applications (either natively or by means of a web browser).

Therefore, applications can be executed on a variety of devices with different features such as
screen size, computing capacity or modality (e.g. tactile or voice) that produce different user
experiences. Developers have now to meet the challenge of implementing GUISs that can be
accessed via different devices with different screen features. As a result, in the last few years,
flexible interfaces (non-fixed layouts) have gained in popularity due to the fact that designing
different interfaces for the same application but targeted at different devices is impractical. Lay-
out managers came up in the late nineties to overcome the weaknesses of coordinated-based
GUIs by offering a mechanism to locate widgets in such a way that they are adapted to their

container elements.

On the other hand, in RAD environments, event handlers (which were sometimes included in
the same file as the GUI definition) usually contained code belonging to several aspects of the
application. For example, an event handler could accomplish the validation of a form and if
it succeeds, then perform some calculations by applying some business rules and finally write
the calculated data in a database by itself. This tangling of aspects is nowadays considered as a
bad practice since it has a negative impact on software maintenance and reuse. Moreover, RAD
developers often implemented event handlers which were attached to widgets that accessed the
database and at the same time manipulated the GUI. This makes migration difficult, in particular

to web platforms, since database code cannot be executed in the client side.

RAD environments have been used to develop a great number of desktop applications as part of
information systems, many of them being still in production. However, the evolution of these
applications is hindered in the long term because of the two aforementioned issues: fixed GUIs
(non-adaptable GUISs) and tangling of aspects in the GUI code. This has motivated a large num-
ber of businesses to manually migrate their RAD legacy systems to new platforms (typically
Web platforms), which better meet their needs of extensibility, maintainability or distribution,
among others. Another reason for this migration is that some vendors are increasingly ceasing

support in favour of other platforms.

Aspointed outin [11], migrating a legacy business application to a new technology necessitates
tackling three main aspects: data access, business logic and graphical user interface (GUI). Be-
sides, migration would be facilitated by tools that help to discover architectural concerns that
are only implicit (and mixed together) in the source code, such as database access, navigation
flow, validation or exception handling. Figure 1.1 shows many of the aspects that are tangled in

alegacy GUL

i Layout Validation
Widgets .
BusinessLogic EventHandling

ErrorHandling Style
I I118ninteractions
NavigationFlow

Structure DBAccess

Figure 1.1: Tag cloud of the blended elements in with a legacy GUL

To our knowledge, just a few works have dealt with the migration of RAD-based legacy sys-
tems [28, 29], and they regard GUI migration as a straightforward task which is addressed by
mapping GUI components between the source and target views. However, dealing with current
technologies and devices requires a thorough analysis of the user interface so that it can be suit-
ably reengineered. Notably, there are two main types of artefacts involved in a GUI migration:
GUI definitions and event handlers. We will refer throughout this document to GUI definition
as the software artefact or set of them that describe the widgets that compose the view, their lo-
cation and their graphical properties, which are normally generated by a GUI builder. Reverse
engineering the layout of the user interface (i.e. obtaining an explicit model from the spatial re-
lationships among widgets) is crucial to migrate the GUI of a RAD application to modern GUI
toolkits. However, works about migration of RAD applications reveal that layout inference is
often neglected. In fact, just a few works have reported a restructuring of coordinate-based
GUIS to views where the layout is managed by the toolkit [3] [4] [5]. In contrast, there is a va-
riety of works coping with static or dynamic analysis of event handlers in order to obtain a state
machine or a similar representation of the flow of windows and events, which is mostly used
for testing or program comprehension purposes [7] [8] [30] [31]. Nevertheless, we have not
found reverse engineering literature dealing with the comprehension and automated migration

of event handlers in the context of RAD applications.

1.2 PROBLEM STATEMENT

The hypothesis we intend to demonstrate in this thesis is the following: We claim that the mi-
gration of a legacy GUI should consider the recognition of the graphical structures that compose the
layout of the original application, and should also separate the concerns that are blended into event
handlers. Then, it is possible to develop algorithms and techniques to uncover the GUI layout and dis-
entangle the application concerns. Furthermore, we believe that MDE is a paradigm that facilitates
the achievement of this goal since it has some features, namely metamodelling and model transforma-
tions, which ease the development of an automated solution. When we will refer to legacy systems
throughout the thesis, we will specifically refer to the applications created mostly during the
90’s with the aid of RAD environments and Fourth Generation Languages (4GLs), such as Or-
acle Forms 6, Delphi s, or Visual Basic 6. The legacy system term embraces much more platforms
than RAD environments, however we will restrict the term to such context, for which we have
analysed and tested some applications. Nevertheless, our proposal may be used in other sce-
narios, for instance, the layout inference process can be applied to the generation of final GUIs
from mockups as we will see in Chapter 6.

Three high-level goals are derived from the previous statement, namely:

(G13) Design an MDE architecture for migrating legacy GUIs. We need to create a solution
to tackle the migration of legacy systems to modern technologies, which will be settled
on MDE because it provides the foundations to explicitly represent the information ex-
tracted (by means of models), and to automate the generation of these models (by means
of model transformation chains). There will be models that represent the information of
every GUI aspect considered, like the layout. All these models will be described by a
metamodel, and the mappings between two related models will be defined by a model
transformation. The construction of a full-fledged MDE solution will involve the use of
several MDE tools such as model injectors (for transforming text into models), model
transformation languages (to define mappings between models) and template languages

(to generate code from models).

(G14) Separate and make explicit the information of GUI definitions. It is important to
separate and make explicit the information contained in the GUI definitions (the def-
inition of the views). Specifically, separate the logical structure of the views, the style

and the layout. In a legacy application the layout is implicitly expressed in coordinates.

Representing that layout by means of high-level elements such as layout managers is a
particularly challenging problem that must be addressed to achieve a good-quality mi-
gration. Then, data structures (metamodels) for representing GUIs and layout inference

algorithms must be part of the solution.

(G1s) Separate and make explicit the information of event handlers. As noted above, the
code of the event handlers usually tangles several concerns, ranging from view manipu-
lation (e.g., enabling/disabling form fields), navigation to other views, form validation,
and so on. It would be desirable to uncouple them all to promote the evolution of the
system. To this aim, considering the distinctive nature of RAD applications may lead to
better results that addressing the problem from a general point of view. Then, perform-
ing some kind of preprocessing of the code of the event handlers before dealing with
the separation of concerns will be helpful, for example, obtaining a representation that

summarises the meaning of snippets of code and extracts the variables of each type.

1.3 DEVELOPMENT

In the late nineties many companies began to migrate their Oracle Forms applications to mod-
ern platforms like JavaEE or .NET. The ModelUM group started in 2009 a research project to
investigate to what extent an MDE-based solution could automate such migrations [32]. This
pilot project was carried out in collaboration with the Sinergia IT software company, and the
main aim was to develop a framework for automating the migration of the GUI and the data
access layers. Some research problems related to the GUI migration arose at the early stages of
the project, which settled the objectives of this thesis.

In the first place we performed a literature review to know the state of the art about reverse en-
gineering and reengineering of the GUI of legacy systems. We inspected applications in Oracle
Forms 6, Delphi 5 and Visual Basic 6 to know the features that typify the RAD environments,
and we also analysed several User Interface Description Languages (UIDL) and Concrete User
Interface (CUI) models, with the intention of using a technology-independent representation
of the GUI These languages and models represented the layout in a simple way, and they were
not focused on separation of concerns, so we finally decided to create our own CUI represen-
tation and we defined a first version of our architecture.

The inspection of views of different RAD applications revealed that widgets were always placed

by means of coordinates expressed in pixels or other fixed units, whereas in modern technolo-
gies the use of fixed measures is not reccommended but some sort of layout managing system
is advised. Then we developed a reverse engineering approach to deal with the inference of
the layout, which was presented in the ASE conference [33]. An extension of this contribu-
tion, which described the approach in detail and the validation accomplished, was published in
the ASE journal [34]. Before developing the approach, we did a literature review for searching
works that performed some sort of layout inference from coordinates and we only found one
relevant approach [3] that was not easily extended to different layout managing systems. Our

solution was tested with two real case studies with positive results.

Then we moved to the analysis of event handlers. Since the analysis of code is a totally different
area, we performed a new literature review and we learned the foundations from the existing
approaches. We realised of the specific features of the event handlers of RAD applications and
we decided to profit from them by identifying code constructions that were frequently found.
We develop a program comprehension approach to disentangle the different concerns that are
mixed in the code of the event handlers. The cornerstone of that approach was a model repre-
senting the behaviour of the code in an abstract way so the later reverse engineering tasks were
facilitated. The work resulted in contributions in the WCRE [35], JISBD [36] and UIDL [37]

conferences.

In 2012 the PhD candidate did a 9-month research stay in Louvain-La-Neuve (Belgium), in the
LILab group, which is a renowned team in Human-Computer Interaction (HCI) led by Jean
Vanderdonckt. During the stay, a tool for analysing web pages into UsiXML [38] specifications
was developed, and we cooperated in a work presented in the RCIS’13 conference [39]. This

work made us reconsider the layout inference solution to implement some improvements.

Back to ModelUM, we started to work on the idea of applying our layout inference solution to
generate GUIs from wireframes. Then we considered the approach developed during the stay in
Belgium to overcome some of the limitations detected in the first version of our layout inference
algorithm. Therefore, the last period of the research was devoted to design and implement a
new version of the layout inference approach and develop a tool to automatically generate GUIs
from wireframes. The new version of the approach was tested with a real wireframing tool, and
an article that described our work was submitted to the IST journal [40], which is under review

at present.

1.4 OUTLINE

The structure of the rest of this document is as follows:

« Chapter 2 introduces the background needed for a better understanding of this thesis. It
comprises basic concepts of software modernisation, the features oflegacy GUISs, scenar-
ios in which extracting information of the GUI is useful, and the principles of the MDE
paradigm.

« Chapter 3 analyses the state of the art in three areas, namely layout inference, code anal-
ysis of event handlers, and MDE approaches for reengineering GUIs. For the first two
areas, some dimensions will be defined to compare the works and a discussion in each
area will present the lacks and weaknesses of up-to-date approaches for reverse engineer-

inglegacy GUIs.

« Chapter 4 outlines our proposal for migrating legacy GUIs. It describes the overall chal-
lenges we have found when addressing the problem, and we identify the requirements
that we believe that a proper solution should have. We will also present the general ar-
chitecture of the solution, which includes models specially designed to deal with each
concern, and we will foresee how do we cope with each one of the elicited requirements

in the solution.

« Chapter s explains the first approach we devised to tackle the layout inference of legacy
GUIs. We will expound the data structures and algorithms involved in the solution. Fi-
nally we will present the validation of the approach through a case study of the migra-
tion of Oracle Forms applications to the Java platform. Besides the evaluation of the
approach, the case study has served to disclose the limitations of the current solution

and draw conclusions.

« Chapter 6 expounds a second version of the layout inference algorithm. The chapter
starts stating the reasons that motivated a new version and shows the changes that have
been accomplished in the solution to incorporate the new requirements. The main change
affects the high-level layout inference algorithm, which is now an exploratory algorithm
based on graph rewriting and pattern matching, which will be explained in depth. A new

case study about reengineering of wireframes will be introduced, which will be used to

test the new approach. We also include a brief evaluation to compare both approaches

in the context of the migration of legacy GUISs, concretely Oracle Forms windows.

Chapter 7 focuses on the part of the reengineering architecture that is devoted to the
analysis of event handlers. We will present the metamodel (i.e., data structure) we have
built to represent the code in a concise manner, and the pattern recognition algorithm de-
signed to extract that representation. We put into practice this metamodel in two cases:
the separation of the code in layers (business logic, the controller and the GUI code),
and the identification of the interactions among widgets and among views. The separa-
tion in layers will be also tested with a case study to migrate Oracle Form event handlers

to an Ajax application.

Chapter 8 concludes this thesis by analysing the level of achievement of the goals we
presented in Chapter 1 and the requirements enumerated in Chapter 4. Our solutions are
contrasted with the related work and a discussion about the benefits and disadvantages
with regard to those works is included, which leads to the future work proposal. Finally,

the results of this thesis in terms of publications and projects are enumerated.

10

The world is full of obvious things which nobody by

any chance ever observes.

Mark Haddon, The Curious Incident of
the Dog in the Night-Time
(Suggested by Javier Cénovas)

Background

This chapter introduces the background needed for a better understanding of this thesis, which
consists of: the basic concepts in the area of Software Modernisation, some common notions
about GUISs, the particular features of the GUI of legacy systems, GUI modernisation scenarios
in which an inference process is useful, and the foundations of Model Driven Engineering such
as metamodelling and model transformations, and their applicability to software modernisa-

tion.

2.1 SOFTWARE MODERNISATION

Modernisation is a form of software evolution of legacy systems which involves deeper and more
extensive changes than maintenance, but in which the system still has some business value that
is preserved [41]. A modernisation process is applied when the desired properties of a legacy
system cannot be achieved by means of maintenance. Two kinds of modernisation are dis-
tinguished: white-box and black-box. In the former the internal details of the system must be

understood and some significant changes in the system structure are required (e.g. code re-

11

structuring). In the latter, the analysis of legacy systems is based on their input and output,
e.g., a wrapper is a commonly used technique to achieve black-box modernisation. Migration
is a kind of modernisation in which an entire source application or a part of it is moved to a

different technology, for instance a source code translation or a database engine change.

Reengineening is also a form of modernisation that applies software engineering practices to an
existing system to meet new requirements [41]. Tilley and Smith [12] define reengineering as
“the systematic transformation of an existing system into a new form to realise quality improvements
in operation, system capability, functionality, performance, or evolvability at a lower cost, schedule,
or risk to the customer”. A reengineering process can be applied in three stages [13]. Firstly,
a reverse engineering stage analyses the existing system and extracts knowledge which is repre-
sented at different abstraction levels. A second stage restructures these abstract representations
in order to establish a mapping between the existing system and the target system. Finally, a
forward engineering stage is applied to obtain the artefacts of the new system from the output of
the restructuring stage. As the horseshoe model [42] illustrates (see Figure 2.1), the reverse en-
gineering process can be applied in several steps which form a transformation chain. That chain
is intended to increase the level of abstraction of the extracted knowledge so it achieves an ar-
chitectural representation of the system. Then restructuring and forward engineering can be
applied at different abstraction levels for any of the obtained representations to derive artefacts

of the new system.

Reverse engineering is an essential activity in a reengineering process which is based on code
and data comprehension techniques. Chikofsky and Cross [13] define reverse engineering as “the
process of analyzing a subject system to i) identify the system’s components and their interrelation-
ships, and ii) create representations of the system in another form or at a higher level of abstraction”.
Reverse engineering techniques are commonly classified in two major groups [43]: static anal-
ysis is based on the inspection of the application artefacts (normally source code), and dynamic
analysis examines the state of a running application. Each type of technique has its limitations:
with static analysis it is difficult to have good coverage of highly dynamic applications, while
dynamic analysis faces problems with guaranteeing that generated models fully capture the be-
havior of the system. A third technique is hybrid analysis, which joins both static and dynamic

analysis to take the best of each procedure.

There are numerous forms of reengineering [41]. A platform migration typically combines sev-

eral of these forms, for instance, source code transformation, program modularisation, and data

12

Restructuring

>
A Architecture Architecture
Representation /\ Representation
>
Reverse Intermediate Intermediate | Forward
Engineering| Representation Representation |Engineering
>
Legacy Target
Source Source

Figure 2.1: The Horseshoe model

reengineering can be involved in a RAD-to-Java platform migration. Revamping is connected
with the modernisation of user interfaces, in which only the user interface is changed to improve
some aspects like usability. These days, with increasingly high interest in the Internet, the most
popular form of revamping is adding a web interface to legacy systems. In the past a very com-
mon practice was replacing a text interface with a graphical user interface. One of the methods
for this kind of revamping was screen scraping, that is, a black-box method, in which an applica-
tion (usually an existing component) is ‘redirected’ from a console screen into a graphical frame
of web interface [41]. This method is relatively cheap and results of a modernisation are well
visible. Nevertheless the Ul is just a wrapper on the old system which remains unchanged, so
adding new functionalities or further maintenance is still very difficult, because system exten-
sibility has not been improved. When these improvements are needed, a white-blox approach
should be applied to move the GUI legacy code to the target platform, for instance, when an

Oracle Forms application is converted into a Java Server Faces (JSF) one.

2.2 GRAPHICAL USER INTERFACES (GUI)

A User Interface (UI) is the part of a software/hardware system that is designed to interact with
users. A Graphical User Interface (GUL) is a Ul that takes advantage of computer graphics to
facilitate the interaction with users. Before the popularisation of touch devices such interaction
has been typically performed by means of a cursor on the screen that is controlled by a mouse,
which lets the user select graphical elements such as menu items or buttons. User interfaces have
a static component which is related to the presentation of the information (i.e., the structure,

the layout, the usability, the accessibility or the aesthetics), and a dynamic part that is associated

13

with the behaviour when the user interacts with it (i.e. the events that are triggered and perform

actions and/or changes in the interface).

A GUTI toolkit (or widget toolkit) is a library that supports building GUISs for a particular program-
ming language and sometimes is tied to a framework or operating system. For instance, Gtk+
for desktop applications in C/C++ under Windows/Linux/Mac, or the Java Android SDK for
mobile applications in Android. Each toolkit provides different features for the static and dy-
namic aspects of the GUL

We will use the term view to refer to the graphics displayed on device screens. Common exam-
ples of views are windows in desktop applications, web pages in web applications, and views in
mobile applications. The elements displayed in views are widgets, controls or visual components
(e.g., buttons or combo boxes). The term widget will be used plenty of times throughout this
document. There are different kinds of widgets, and every widget is characterised by a type, a
set of graphical properties such as background colour or font type, and status properties such
as visibility (if the widget is visible) or editability (if the widget can be edited). In general, wid-
get types are commonly classified according to their purpose: entering data (e.g, text fields),
showing information (e.g., data grids) or interacting with the system (e.g., buttons). There are
also widgets (like panels) that are used to structure views, in such a way that buttons or text
fields are contained in panels (similarly to a Composite pattern). In this sense, views are con-
tainers too and they are actually the topmost components in the aggregation hierarchy of the
GUI elements, which is sometimes referred as GUI tree. Figure 2.2 shows an example view for
recording user data which contains NameLabel, NameBox, PaymentFrame and some other wid-
gets, and PaymentFrame is in turn the container of CardLabel, CardCombo, DiscountLabel, and

DiscountCheck. A part of the GUI tree of this view is shown in Figure 2.3.

The layout of a graphical user interface is the spatial distribution of the elements in the views of
the application. There are GUI toolkits that define explicit components for laying out content
(e.g., the hbox and vbox in ZK [44]), while in other cases the layout is defined by properties
(e.g., float in CSS [45]) or assigning predefined layout types to certain groups of widgets (e.g.,
Java AWT [46] layouts). The latter are commonly known as layout managers. They are software
components that automatically lay out the widgets on a view based on relative relations and

restrictions that are inherent to the layout type and partly specified by the programmer.

In every modern GUI technology, the GUI behaviour is implemented by an event-driven ap-

14

RecordWindow

Marmel abel :NameBox] Surnamel abel |SurnameBo><

R1 .
AddressLabel | AddressBox MailButton

PaymentFrame

R2 CardLabel |CardCombo v DiscountLabel [v]

R3 [AddButton] [DelButton]

Figure 2.2: Example view for entering personal information. Widgets are placed with explicit

coordinates.

RecordWindow: Canvas

PaymentFrame: Frame
CardLabel: Label
CardCombo: ComboBox
DiscountLabel: Label
DiscountCheck: CheckBox

Figure 2.3: An excerpt of the GUI tree for the window in Figure 2.2.

15

proach. Each widget is able to trigger some types of events under certain conditions. For in-
stance, typical types of events for a button are click (the button has been pushed) and hover (the
cursor is over the button), and common types of events available for text boxes are change (the
content of the text field has been modified) and focus (the text field has been selected and is
ready for writing). Different types of widgets can trigger the same event types, but not all the
types of events are available for all the types of widgets. For example, buttons and text fields can
trigger the hover event, but the change event makes no sense for buttons. Note that the set of
events supported by widgets is not standard, but each GUI toolkit may implement a different
one. Widgets can be attached actions that are implemented by programming code (i.e., event
handlers) that are executed every time a certain event happens on the widget. These actions
can provide some application functionality, modify the aspect of the current view, or change
the view, among others. In short, an event is featured by three elements: i) a widget, ii) an event

type, and iii) an event handler that deals with it.

2.2.1 VISUAL GUI FEATURES

Widgets are not randomly distributed on the screen but they form some sort of design (layout)
that deeply affects the readability and usability of the GUI. The layout is probably the most
complex element of the visual part of a GUI, as it cannot be defined by a single value or a list
of values, but it is the result of applying several features on different widgets or groups of them.

We have identified several features that characterise the layout. Next we comment on them.

« Visual structure.

It is related to the human perception about the widget arrangement, and is a key feature
to allow adapting the content of a view to different text or screen sizes. Knowing the vi-
sual structure requires analysing the positions of all the elements in the view to recognise
the shapes’ they form and how they are visually grouped. A horizontal flow of widgets or
a grid of elements are examples of visual structures. Note that different layout arrange-

ments may produce similar visual structures that can be equally valid for the same view.

For example, in the login view shown in Figure 6.11, nameLabel and nameField form a
line, passwordLabel and passwordField form a second line, and the ok and cancel buttons
form a third line. Another layout possibility would be to put nameLabel and passwordLa-

bel in one column, and the rest of widgets in another column.

16

Login X

namelabel nameField

passwordLabel passwordField

cancel

Figure 2.4: Login window created with WireframeSketcher.

Sometimes there are widgets that are surrounded by a rectangle because they are related
to the same topic, or there are groups of widgets that are visually distant to other groups.
In these cases, the groups should be identified and handled as a unit if compared to the

rest of elements.

Sizing

The size of the widgets is another feature that must be considered. Sizes can be expressed
in absolute units like pixels, or in relative units, for example in percentages regarding

the container element. It is advisable to always use relative units so the measures are

independent of the concrete screen of the device.

Spacing

The spacing between the widgets in the view is also relevant. We must distinguish be-
tween the gaps and the margins. We call gaps to the spacing between the single widgets
(e.g. the separation between a label and a text field). Margins are the distances between
the single widgets and their container. Note that gaps and margins are either horizon-
tal or vertical, depending on the axis in which they are observed. Like sizes, gaps and

margins can be expressed in absolute or relative units, though the latter are preferred.

Alignment

The alignment is either horizontal or vertical, and it is defined for a widget with respect to
other widgets, or defined for a widget regarding its container. For instance, in Figure 6.11
the widgets nameField, passwordField and cancel are aligned to the right with regard to

each other.

17

Looking at these three widgets carefully we can see that they are not perfectly aligned,
though it seems that the intention is that they are aligned. Therefore, when dealing with
the layout, it would be interesting to accept some degree of misalignment, i.e., the analysis
of the positions of the elements must be flexible. In addition, in cases it may happen that
the area taken by a widget slightly overlaps other widgets, and it is neccessary to deal with

some small overlapping.

2.2.2 LEGACY GUI FEATURES

The GUI of a legacy system commonly has some features that are not present in modern GUI
technologies. Some of them are discouraged practices in software engineering that are no longer
implemented. We have studied the GUI definition and code of three different RAD environ-

ments, namely Oracle Forms 6, Visual Basic 6 and Delphi 5. Next table summarises the main

features of the studied environments.

Oracle Forms 6 Microsoft Visual Borland Delphi s
Basic 6
Year 1996 1998 1999
Implicit layout Yes Yes Yes
Proprietary units Yes (points) Yes (twips) No (pixels)
Clustering elements Canvases, Frames, Frames only Panels, GroupBoxes,
(containers) Rectangles, ... RadioGroups...
Container overlapping Yes Not compulsory Not compulsory
Widget set 20 standard 20 standard, 34 standard,
+30 complex controls +50 complex controls
Widget-database links Yes Yes (ADO) Yes (ADO)
Table widget Multirecord text-fields ADODC TDBGrid
Code mixes aspects Yes Yes Yes
GUI definition format binary property=value property=value
Event handler format PL/SQL triggers Visual Basic subroutines, Delphi methods
(binary) mixed with GUI definition

Table 2.1: GUI features of three different RAD environments

Based on the mentioned table, we list some features that can be frequently found in GUI defi-

nitions that have been built with RAD environments:

« Implicit layout. The position of widgets is stated by means of a pair of coordinates that

are relative to the main window or another container, and rarely, relative to another wid-

18

get (e.g., a label to its text box). The size (width and height) of a widget is also given
explicitly by the RAD environment. This means that, for example, when a window is re-
sized the widgets are not resized or rearranged accordingly. As it can be seen, the three
studied RAD environments have an implicit layout. In cases, these technologies do not
use standard units like pixels or centimetres, but proprietary units. For example, in Visual
Basic 6 the default measurement unit is the twip, which is 1/20 of a typographical point
(1/1440 of an inch). Twips are screen-independent units, they were created to avoid
the disadvantages of fixed units like pixels, but they are no commonly found in modern
IDEs.

Clustering elements. There are special widgets which are intended to group and/or
highlight semantically-related widgets. In particular, we distinguish between elements
that arrange a window in parts (in some legacy environments they can also be reused be-
tween windows), and elements that are used to highlight a set of widgets in close prox-

imity, frequently by means of a border.

Overlapping. Widgets are often loosely contained in their container, that is, they are
overlapped with the container instead of having explicit containment relationships. A
container could also be overlapped with another container. This means that a container
may not have any children widget in the GUI tree, although there may be some wid-
gets that would (visually) be expected to be contained. In Visual Basic 6 and Delphi s,
containers and widgets may be overlapped, but in Oracle Forms 6 this overlapping is
unavoidable. For example, in relation to the view in Figure 2.2, Figure 2.5(a) shows a
fragment of the original GUI tree created by a RAD environment like Oracle Forms, and
Figure 2.5(b) shows the expected GUI tree. In that view it can be seen that Payment-
Frame surrounds CardLabel, CardCombo, DiscountLabel and DiscountCheck (the check-
box next to DiscountLabel), but these widgets are only visually contained in the frame,
that is, their parent element in the model is not PaymentFrame, but rather RecordWindow

(see Figure 2.5(a)). We could expect that the GUI tree would be like Figure 2.5(b).

Widget set. RAD environments as well as modern frameworks share a common set of
standard widgets, such as text boxes, buttons, combo boxes, tables, and so forth. How-
ever, some environments like Delphi 5 include technology-dependant widgets that may

not have an equivalent in other environments. Developers sometimes wanted to use

19

RecordWindow: Canvas RecordWindow: Canvas

CardLabel: Label PaymentFrame: Frame
CardCombo: ComboBox CardLabel: Label

DiscountlLabel: Label CardCombo: ComboBox
DiscountCheck: CheckBox DiscountLabel: Label

a) PaymentFrame: Frame b) DiscountCheck: CheckBox

Figure 2.5: (a) Fragment of the original GUI tree. (b) The expected GUI tree.

complex widgets that were not available in the GUI technology in which they were pro-
gramming and they did a bit of a trick by emulating those complex widgets by means
of a composition of the available widgets. For example, a calendar (which is nowadays
a common component) was typically emulated in Oracle Forms by means of a grid of
buttons (see Figure 2.6). Another example is a table with a scrollbar, in which the parts

of the scrollbar were emulated by buttons.

Calendar

]

L2 s Lt

Jl1al20] 21

Figure 2.6: A calendar component emulated by a grid of buttons.

» Widget-database links. Sometimes widgets are tied to table columns in database tables.
In Oracle Forms, Visual Basic and Delphi, the property sheets of widgets include some
properties to indicate that information. Particularly, in Visual Basic and Delphi, widgets
contain datasource and data field properties. The former is configured by means of an
ADO control that indicates the connection string and the data table, and the latter is the
column name in the database table. Oracle Forms does not use ADO, but there are rather

similar properties to indicate the database connection.

The code of event handlers in legacy systems also has some characteristics that are not typically

found in modern applications. Next we list some of them.

20

Tangling of concerns. Code managing the GUIis mixed with businesslogic and database
access. There is no clear separation among the different concerns of the application.
For example, the event handler shown in Figure 2.7b takes the value of ABE IMPP, di-
vides it by the euro exchange value obtained from the database, and places the result in

ABE_IMPE. As it can be seen, the database access and the GUI are tightly tied.

Simple behaviour. It does not perform complex algorithms or calculations. Event han-
dlers are hardly ever complex, which is caused by the fact that complex functionality is

typically implemented in separate functions or stored procedures that are called by the
handlers.

Restricted looping. Loops are only used to iterate over database tables. This is a conse-
quence of the previous point, since algorithms used to solve problems are programmed
in procedures. Loops are only found when using collections or using sentences to iterate

over database rows.

Conditional paths. Several levels of nested conditional statements are common, where
conditions check values from the GUI or the database. Actions such as updating the GUI

or modifying the database are normally performed in the most inner blocks.

Idiom-based programming. Applications usually repeat a series of idioms. Some of
them are specific of each RAD environment, while others are conventions dependant
on the company. Querying a value from the database and placing it in a text field after
some kind of modification is a recurrent pattern carried out in event handlers of legacy
applications, as it is done in the example code of Figure 2.7b. Another example is shown
in Figure 2.8, and excerpt of an event handler in Delphi 5. The code checks whether a
taskis active before deletingit, and if the task is active, then aborts the deletion operation.
Checking if a value exists in a database before performing an operation is also a common

pattern.

Similar programming abstractions. Although each legacy environment has its own
programming language to write event handling code, most of them provide similar con-
structs. Asit was seen in Figure 2.7b, in Oracle Forms 6 simple database access can be per-
formed with implicit PL/SQL cursors, and in Delphi 5 it can be accomplished through
a TADOQuery object.

21

Financial azziztance [euros) |.-'3-.EIE_.&*1‘LI_INSE
b anthly amount | ABE_IMPP | ABE_IMPE

(a) Example window fragment

"B Editor PL/SOL mE<]

Ol | ¥ O | % 4 | Mombre: | POST-CHANGE -
Tipa: | Disparador v| objete: [OTG_BECAS o |[ABE_AYU_INSE |

-— Caleulation of the sxchange in euros =

SELECT :ABE_INPP/CURRENCY EXCHANGE
INTO :ABE_IMPE
FROM CURRENCY

WMHEERE CTURREMNCY NLME = 'Euro':
- -
el | f

Modificado Mo Compilado |

(b) POST CHANGE Event handler associated with ABE_AYU INSE (PL/SQL)

Figure 2.7: Example of mixing of concerns in an Oracle Forms application

& Z:\untFrmFsTask. pas

it sT ask
-y TFmFsTarea
+- [Wariables/Constants procedure TFrmFsTask.delete (Sender: TCbhiject): A
+- [Uses var
=1, =2:string:;
gl, g2 : TADOQuery:
bhegin
ImCds. InitTransaction;
try
gl = TADOOmery.create (nil);
gl.Connection := dwData. ADOC;
try
31 := 'SELECT * FROM TA3SEKE3 WHERE IDTAZEK = ' + task.Text +
! AND ACTIVE = 1' :
gl.30L. Text = s51:;
ogl.Open:
if not gl.IsEmpty then
begin
TM=g.Info (' The task mwust not be active'):
Exit:
end ; s
£ 2
460: 51 Modified Insert

Figure 2.8: Fragment of a Delphi 5 event handler that checks if a task is active before deleting
it.

22

2.2.3 USE SCENARIOS OF GUI REVERSE ENGINEERING

Inferring information of the GUI such as the layout or the aspects involved in code, and repre-
senting it explicitly, is useful in a variety of cases. Next, we briefly comment on several scenarios
in which GUI reverse engineering activity would enable GUI reengineering and other types of

activities to be performed:

« Revamping. As we have already mentioned, this is the case in which the business logic
of the legacy system is reused, and only the views are changed. Frequently, this scenario
involves wrapping[47] the legacy code in order to be able to access from the code of the
new GUI technology. A few changes are performed on event handlers just to adapt them
to the new views. A particular case of revamping is the layout-preserving migration, which
takes place when a migration project have a requirement which specifies that the original

GUI layout must be preserved in the target application due to users are averse to change.

+ GUI testing. There are different strategies to accomplish GUI testing. An strategy is to
generate amock application with the views original application which tracks user input in
order to generate test cases [48]. Another strategy consists of symbollically executing the
code to generate test inputs [6]. Other works instrument event handler code to record

user interactions which are later analysed [49].

« GUI adaption. Migrating to a new GUI technology requires taking advantage of the
target technology’s features (e.g. usability standards, high-level layout models of modern
GUTI toolkits, etc.). Deep changes in views and event handlers are usually required in this
scenario. A particular case of this category would be the migration to technologies with

constraints related to the screen size, such as mobile devices.

+ Quality improvement. Perfective maintenance tasks may be required to improve the
system quality, such as the detection of usability issues, non-visible widget removal, GUI
resizing and beautification [3], separation of concerns [11], code refactoring [s0] or

death code removal.

« Forward engineering. Forward engineering approaches to develop new systems can
also benefit from GUI reverse engineering. In software development methodologies,
GUI designs are validated in the early stages of development with a mockup (Figure 6.11

shows a plain mockup), which is a GUI representation that is created before the final

23

product so stakeholders can check it. The same approach used in reverse engineering
an existing system can be applied to the development of a new one just by taking mock-
ups as source artefacts. Then, final GUIs for different platforms or technologies can be

generated from the GUI representations.

2.3 MODEL DRIVEN ENGINEERING (MDE)

Model-Driven Software Engineering (MDSE or simply MDE) is an emerging area of Software En-
gineering which addresses the systematic use of models to improve the software productivity.
Models can be used in the different stages of the software lifecycle to raise the abstraction level
and automate development tasks. There exist several MDE paradigms such as Model Driven
Architecture (MDA) [15] or Domain-Specific Development [16] [s1] which share the same
four basic principles [52]: (i) models are used to represent aspects of a software system at some
abstraction level; (ii) they are expressed using DSLs (a.k.a. modelling languages) (iii) that are
built by applying metamodelling techniques and (iv) model transformations provide automa-

tion in the software development process.

2.3.1 METAMODELLING

A metamodel is a model that describes the concepts and relationships of a certain domain. A
metamodel is commonly defined by means of an object-oriented conceptual model expressed
in a metamodelling language such as Ecore [53] or MOF [54]. A metamodelling language is
in turn described by a model called meta-metamodel, therefore, a metamodel is an instance of a

meta-metamodel and a model is an instance of a metamodel.

Metamodellinglanguages generally provide four main constructs to express metamodels: classes
(normally referred as metaclasses) for representing domain concepts, attributes for represent-
ing properties of a domain concept, association relationships (e.g., aggregations and references)
between pairs of classes to represent connections between domain concepts, and inheritance
between child metaclasses and their parent metaclasses for representing specialisation between
domain concepts. In the following chapters we will use metamodels to describe the data struc-

tures involved in the proposed solution.

24

2.3.2 DOMAIN-SPECIFIC LANGUAGES (DSLS)

In contrast to General Purpose Languages (GPLs), Domain-Specific Languages (DSLs) are lan-
guages that are defined to solve problems in a specific domain. In the MDE context, the DSL
and modelling language terms are commonly used to refer to the languages used to build mod-
els, which are usually created by applying metamodelling, that is, the language allows creating
models whose structure is determined by a metamodel.

A DSL consists of three basic elements: abstract syntax, concrete syntax and semantics. The ab-
stract syntax describes the set of language concepts and their relationships, along with the rules
to combine them. Metamodelling provides a good foundation for this component, and it is the
most widespread formalism in MDE but other formalisms have also been used over the years,
such as grammars for programming languages and DTD/XML schemas for XML documents.
The concrete syntax defines the notation of the DSL, which can be textual or graphical (ora com-
bination of both). The semantics defines the behavior of the DSL; there are several approaches
for defining it [55], but it is typically provided by building a translator (i.e., a compiler) to an-
other language that already has a well-defined semantics (e.g., a programming language) or an
interpreter.

An example of graphical DSL for creating quick designs of GUIs are mockup tools (e.g., Bal-
samiq [56]),as they conform to a formalism (metamodels or DTD/XMLSchema in most cases),
they have a graphical notation (widgets) and they have the semantics of the GUI toolkits for
which the GUI code can be generated.

DSLs have been used since the early years of programming, however, MDE has substantially in-
creased the interest in them. Most MDE solutions involve the definition of one or more DSLs
in order for users to create the models that are required. When MDE is applied in reengineering
legacy systems, concrete syntaxes are not needed for the metamodels that represent the infor-
mation gathered in that process if such information is not intended to be understood by users.
Actually, in our case we have not defined a concrete syntax for any of the metamodels we will
present, but models (i.e. instances of metamodels) have been directly manipulated by model

transformations, which we introduce next.

2.3.3 MODEL TRANSFORMATIONS

Model transformations allow automating the conversion of models between different levels of

abstraction. An MDE solution usually consists of a model transformation chain that generates

25

the desired software artefacts from the source models. Three kinds of model transformations are

commonly used: model-to-model (M2M), model-to-text (M2T) and text-to-model (T2M).

M:2M transformations generate a target model from a source model by establishing mappings
between the elements defined in their metamodels. One or more models can be the input and
output of a M2M transformation. M2M transformations are used in a transformation chain as

intermediate stages that reduce the semantic gap between the source and target representations.

The complexity of model transformations mainly depends on the abstraction level of the meta-
models to which the models conform. The most frequently used M2M transformation lan-
guages (e.g., QVT [57], ATL [58], ETL [59]) have a hybrid nature since M2M transformations
can be very complex to be expressed only by using declarative constructs [60]. These languages
allow transformations to be imperatively implemented by using different techniques: i) imper-
ative constructs can be used in declarative rules (e.g, ATL and ETL), ii) a declarative language
is combined with an imperative one (e.g., QVT Relations and QVT operational), or iii) the
language is designed as a DSL embedded into a general purpose language (e.g., RubyTL [61]
into Ruby). Using model transformations to solve reverse engineering problems is an example
of scenario where a high degree of processing of information is required and the complexity of
transformations can become very high. A survey on model transformation languages can be

found in [62].

Mo2T transformations generate textual information (e.g. source code) from an input model.
M2T transformations produce the target artefacts at the last stage of the chain. MOF2Text [63]

and XPand [64] are some of the most widely used M2T model transformation languages.

Finally, T2M transformations (also called injectors) are used to extract models of the source arte-
facts of an existing system, and are mainly used in software modernisation to obtain the initial
model to be reverse engineered. Hence, they are less frequently used than MaM and MaT.
Among the tools for extracting models from code we remark MoDisco [23] that implements
parsers (called discoverers) for Java and other languages, the XML injector of the Eclipse Model-
ing Framework (EMF) [53] that obtains Ecore models from XML schemas, and GrazMoL [22],
which is a textual DSL especially designed to define T2M transformations when the source arte-
fact consists of text that conforms to a grammar, by establishing mappings between that source

grammar and a target metamodel.

26

2.3.4 MODEL-DRIVEN MODERNISATION (MDM)

MDE is increasingly gaining acceptance, mainly because of it is being successfully used in build-
ing new software systems (forward engineering) [47] [65]. But MDE techniques, such as meta-
modelling and model transformations, are also useful to evolve existing systems, as they can
help to reduce the software maintenance and modernisation costs by automating many basic
activities in software evolution processes. In this setting, Model-Driven Modernisation (MDM)"
has emerged as an MDE approach to be applied in the software modernisation scenario. Several
experiences of applying MDM have been recently published [66] [67] [20], which have showed
how MDE techniques facilitate the obtainment of representations that have an abstraction level
higher than source code, and how modernisation tasks can be automated, e.g., providing met-
rics to analyse the impact of the changes or automatically generating software artefacts of the

evolved system.

Restructuring

A MM~ >
(®)] m
§= o
3 :
£ M2m M2M > | MM S
c D
o @
g =
o M2M > ¥V o
[0) 5
14 A @
T2M e

Figure 2.9: MDE applied to reengineering

In the MDM context, reengineering is accomplished by applying model transformations in each
of three stages of the process (see Figure 2.9). Reverse engineering gets models from the source
artefacts which are not just a model representation of the code, but they provide a higher ab-

straction level. Frequently, this step is tackled by a T2M transformation that gets a low-level

'Model-Driven Reengineering (MDR) is an approach related to MDM that advocates the use of models in
reengineering.

27

representation of the code (and is therefore dependent on the type of source artefact), followed
by one or more M2M transformations that get more abstract representations. A crucial aspect
is the definition of the metamodels that are appropriate to represent the knowledge collected in
each step of the transformation chain. Model-Driven Reverse Engineering (MDRE) [68] [69] isa
common term referred to the use of MDE in the reverse engineering stage. In the restructuring
stage the models are transformed into other ones that conform to some aspects of the target ar-
chitecture, which is accomplished by one or more M2M transformations. Finally, the forward
engineering stage takes the models obtained in the restructuring stage and generates artefacts of
the new system, which can be performed by a M2T transformation. If there is a wide seman-
tic gap between the models obtained after the restructuring stage and the target code, a M2M
transformation chain finished by a M2 T transformation is frequently advised.

To increase the interest in applying MDE to modernise legacy systems, OMG launched the
Architecture Driven Modernisation (ADM) initiative in 2003 [17], whose objective is to develop
a set of standard metamodels for common tasks in software modernisation in order to facilitate
the interoperability among tools. Several modernisation scenarios in which ADM metamodels
have prove to bring benefits are described in [18] [70].

Among these metamodels, Knowledge Discovery Metamodel (KDM) [71] plays a main role due
to it is targeted at representing application code at different abstraction levels, from GPL state-
ments to business rules. It is, therefore, an arguably large metamodel structured in four layers,
namely Infrastructure, Program elements, Resource, and Abstractions. The Abstract Syntax Tree
Metamodel (ASTM) is a metamodel that complements KDM and is devised to represent code
in the Abstract Syntax Tree (AST) form. In [66] a detailed explanation on how to use KDM
and ASTM to model PL/SQL code can be found, as well as a case study for gathering soft-
ware metrics is presented. Other ADM metamodels are Software Metrics Metamodel (SMM)
for representing metrics, and Automated Function Point (AFP) for automating the extraction of
function points. Up to the present time, the impact of the ADM standards has been very lim-
ited, mainly due to the complexity of KDM [66] and few works that illustrate real case studies
have been published.

In [24] some MDM tools that have been recently developed are presented, among which MoDisco
has received greater attention. MoDisco[23] is an extensible open source MDRE framework to
develop model-driven tools to support use-cases of existing software modernisation. MoDisco
aims at supporting the description, understanding and transformation of existing sofware by

providing four elements: i) metamodel implementations like relational database, KDM and

28

JavaSE metamodels, ii) discoverers to automaticaly inject models of these systems such as a dis-
coverer from Java code to KDM models, iii) generic tools to understand and transform complex

models created out of existing systems, and iv) use cases illustrating how MoDisco can support
modernisation processes.

29

30

We ourselves feel that what we are doing is just a drop
in the ocean. But the ocean would be less because of that
missing drop.

Mother Teresa of Calcutta

(Suggested by Jestis Garcia Molina)

State of the art

Our work tackles the problem of reverse engineering the GUI of legacy systems, concretely
two aspects, namely layout and behaviour. To cope with it we have used MDE techniques.
Consequently, the analysis of the state of the art has been classified in three sections: layout
recognition approaches, behaviour extraction approaches, and MDE approaches for represent-

ing GUIs.

3.1 ANALYSIS OF LAYOUT RECOGNITION APPROACHES

In this section we will present some works related to GUI layout inference. Three works are of
special relevance for our work, which are [3] [4] [5], since they deal with the extraction of a
layout expressed in coordinates and they deserve a section each one to analyse them in detail.
Other works related to reverse engineering layout and structure of GUIs will be summarised in
a single section, as they are not as close to the topic as the former ones.

We have identified a set of dimensions which are useful to classify layout inference approaches.

The three aforementioned works will be categorised according to the following dimensions:

31

. Source/target independence: whether the proposed approach is generic, i.e. itis inde-

pendent of the source and target technology.

Tested source technology: the technology or type of tool which was originally used
to create the GUI definitions in the case studies of the approach. For example, a RAD

environment such as Oracle Forms, or a wireframing tool like Balsamiq.

Tested target technology: the platform and toolkit in which the final GUI is created in
the case studies of the approach. For instance, the ZK web framework, or the Java Swing

toolkit for desktop applications.

Reverse engineered information: the kind of information that is extracted in the GUI
reverse engineered process. Different approaches may describe a user interface by using
different types of information, for example, the sizes of the widgets or how the widgets

are contained in other widgets (containment hierarchy).

. Layout model: the data structure devised to explicitly represent all the information that

has been extracted from the original GUI A layout model based on combining horizon-
tal and vertical elements (HVLayout) is one simple example. This representation is a
cornerstone in the approach since any forward engineering approach to generate a final

GUI will use this representation.

Algorithm type: the algorithmic strategy involved in the discovery of the layout, such as
backtracking or heuristics, and/or the theoretical basis to solve the problem, e.g. linear

programming.

Implementation technology: the technological basis used to implement the approach,

for instance, an MDE-based approach.

Automation degree: wether the approach is totally automated or mostly automated

with user intervention in many cases (semi-automated).

Next we analyse the three approaches that are closely related to ours.

3.1.1

LuTtreroTH

Lutteroth [3] claims that most GUIs are specified in the form of source code, which hard-codes

information relating to the layout of graphical controls. He points out that hard-coded GUIs

32

lack in dynamic layout as the position and size of the elements are expressed in pixels, and that
this representation is very low-level and makes GUISs hard to maintain. He suggests a reverse
engineering approach that s able to recover a higher-level layout representation called the Auck-
land Layout Model (ALM).

The author argues that GUISs using pixel units have many disadvantages. GUIs can be executed
in different devices with different resolutions, and even the visible part of the GUI is modified
when the window is resized. He claims that, in those cases, pixel-based GUIs do not guarantee
a correct display. Moreover, when the content of a widget changes, the size of the widget has
to be manually re-defined, and when some widgets are added or removed, it is likely that other
widgets have to be manually modified. All these adjustments do not automatically happenin a
pixel-based GUIL

The ALM is a mathematical model that captures the invariants of a GUI by using linear pro-
gramming. An invariant is a condition to be satisfied, e.g., the width of a widget must be less
than the width of the panel it contains it. Those invariants are used as constraints in an opti-
misation process that results in the calculation of an adapted layout whenever circumstances
change (e.g., the dimension of the window is altered). ALM offers different layers of abstrac-
tion on top of bare linear programming (which is very low-level) that make it possible to specify
the invariants of typical GUIs more conveniently.

ALM allows developers to define linear constraints in terms of tabstops and areas:

1. A tabstop represents a position in the coordinate system of a GUI. All positions and sizes
in a layout are defined symbolically using tabstops as variables. Tabstops form a grid in

which all the controls are aligned.

2. An area is a rectangular portion of space defined by the tabstops of the upper-left cor-
ner and the lower-right corner, the control that occupies the space, and the preferred,

minimum and maximum sizes of the space.

Heuristics are applied for choosing the preferred, maximum and minimum size of the area de-
pending on the control. For example, buttons do not normally change their size when they
are resized, whereas text areas commonly take the extra space of the window. Two types of
constraints can be specified: hard constraints and soft constraints. Hard constraints have to be
always satisfied, and soft constraints may not be satisfied fully if circumstances do not permit

SO.

33

The input of the reverse engineering process is a hard-coded GUI, and the output is a set of
areas containing the children controls and a set of linear constraints (equations/inequations
with the tabstops as variables). From the point of view of the developer, a layout manager is
provided, that resolves the linear constraints and adapts the layout accordingly. There is an
implementation of the layout manager for C#, so developers can use this layout manager to lay
out containers such as Form elements.

The reverse engineering algorithm uses some criteria to beautify the recovered layout, namely:

1. Controls can be slightly misplaced when creating the GUI. The algorithm can correct

these misplacements by introducing some additional constraints.

2. Margins are standardised. Distances between controls or between controls and borders

are adjusted so they are similar.

3. Sizesare standardised. For example, make the controls in the same column have the same

height.
4. Keep rows/columns of similar controls in a certain proportion of other rows/columns.

5. Use real world units such as centimetres to make GUIs be rendered consistently on dif-

ferent screen resolutions.

3.1.2 RIVERO ET AL.

In [4] authors state that mockups have become a very popular artefact to capture GUI require-
ments in agile methods, but most development approaches use them informally without pro-
viding ways to reuse them in development processes. They bet on taking advantage of mockups
during software development to automate the creation of GUIs, and they propose a model-
driven approach for importing mockups and transforming them into a technology-dependant
model that can be used to generate code for web technologies.

They have set their approach in the context of a WebTDD process though they claim that it can
also be used with RUP-based processes or Extreme Programming. The approach can be seen
in Figure 3.1. For each mockup tool, a parser needs to be created (step 1). Then, the controls
are rearranged as explained below (step 2) and the Abstract Mockup model is obtained (step

3), which helps to abstract mockups in a tool-independent way. This model can be used to

34

derive Ul class stubs or models implemented with a concrete technology. For each concrete

technology of interest, a code generator must be constructed (step 4).

I, e =, Abstract Lo
ocku —
s fzr = mockup Generator for)
= model technology2 e
tool1 9y oo
Mockup file constructed e
with tool1 Processing hN >
engine
3 Mockup %l Generator for
parser for technology1
tool2
Mockup file constructed \
with tool2

Figure 3.1: Schema of the Rivero et al. approach (extracted from [4]).

Unlike common UI frameworks, mockup tools do not generally provide ways of defining UI
control composition, but all the controls are at the same level (controls are not contained in
other controls). The Abstract Mockup metamodel takes this issue into account in order to
derive complete UI specifications for concrete technologies. The mockup parsers scan the
UI specifications looking for controls and storing their properties (e.g., position or size), and
they also detect clusters of controls, so each cluster represents a set of components in a unique
graphic space (e.g., a page, a window or another grouping concept). Then, the Processing en-
gine creates a hierarchy of controls as follows: if a control is graphically contained in another
one and the first one is a composite control (i.e., a panel), the second one is added as a child of
the first one.

Because of the myriad of different web technologies, an absolute positioning scheme is not suf-
ficient to model a Ul in a platform-independent way. To avoid this problem, the Processing
engine arranges components in a platform-independent layout. Particularly a GridBag layout
similar to the Java Swing layout manager of the same name has been implemented. This layout
manager arranges components in the same way it is done in HTML tables and it was selected
because authors consider that it is richer and more flexible than others. The algorithm to obtain
a GridBag layout starts by placing all the components in a single cell, and iteratively divides it
so creating a grid of cells. In every iteration, a new column or row is created, and the algorithm
stops when every cell is occupied by at most one widget. There may be widgets that take more
than one cell, e.g. a text field that occupies the space of two cells (t.colspan = 2).

Since their approach can be used in iterative processes in agile methodologies, UI evolution is

3S

an important concern. Between two iterations, existing UI controls can be possibly modified,
which could entail a problem if the automatically generated UI component identifiers change
from the previous iteration. The solution proposed is to indirectly reference Ul components by
means of an identifier translation function (reference translator), which maps logical identifiers
of UI components to real identifiers assigned by the code generator. Therefore, every time it
is required to access to a control, the reference translator is used. Then, that problem can be
solved by correcting the real identifiers in the reference translator between iterations.

The proposed architecture is extensible, given that a developer can take the framework and ex-
tend it. In order to add a new mockup tool, a parser that returns a collection of control clusters
must be implemented. With the aim of adding a new target UI technology a code generator
must be implemented. The framework provides some helper classes (e.g. indentation for code
generators) and uses object oriented patterns such as the abstract factory or visitor pattern to
make extension easy.

As a proof of concept, authors have tested the approach with different mockup tools (Pencil,
GUI Design Studio and Balsamiq) and target web technologies (YUI and Ext JS).

3.1.3 SINHA AND KARIM

A recent work by N. Sinha and R. Karim [5] proposes a model-based approach to compile
mockups to flexible web interfaces. The authors refer to flexible layout as a layout that is fluid
(when the window is resized the content scales accordingly) and elastic (the content resizes on
changes in font sizes).

Two phases are defined in the process of obtaining high-quality web pages from mockup editors
(see Figure 3.2). The first phase is to infer the right page layout, i.e. the vertical/horizontal flow
of content that preserves the relative sizes and alignment of individual elements. The second

phase is to encode the inferred layout in a HTML page faithfully.

Mockup M | Infer Layout L Encode L into Flexible
- o Tels HTML/CSS
of M HTML/CSS i /
Tiew

Figure 3.2: Sinha and Karim approach (extracted from [5]).

A mockup is defined as a collection of rectangular objects (boxes), each box having its visual

properties (e.g., size or colour). Given that a native web application is laid out with HTML/CSS

36

boxes, the authors propose a box-based layout. They suggest two box-based layouts: grid layout
(a unique grid with n X m cells) and HVBox layout (hierarchy of horizontal/vertical boxes),
and they claim that HVBox layout is preferred since grids result in fine-grained layouts which
have additional overhead. They made the decision of inferring HVBox layout from mockups.
In order to infer the box hierarchy their approach employs a combinatorial search, which is
inspired on the explore-fail-learn paradigm used in constraint solving problems. The algorithm
starts with the single boxes and applies a bottom-up approach to merge pairs of boxes until a
solution is reached. When a pair of merging boxes intersect other boxes, the configuration is
discarded since it will not reach a valid solution. After obtaining the layout tree, nodes that have
children of the same type (vertical or horizontal) are compacted.

HVBox layout is not natively supported in HTML/CSS, therefore, the boxes must be encoded
to create the desired layout. They have a set of modular rules to encode the layout in HTM-
L/CSS such as rules to pre-compute the offset and height/width of an element relative to its
parent(enclosing) box, rules to compute the size and margin in percentages of the width of the
parent (height is left unconstrained), or rules to mark HTML tags to be float.

The authors mention the following four additional implementation considerations:

« Rounding: prevent that rounding errors during margin and size calculations cause that a

child content overflows its parent.

o User guidance: the mockup may be ambigous and not fully capture the designer intent.
There may be multiple valid merge choice sequences and therefore multiple feasible lay-
outs. Consequently the algorithm may not obtain the desired layout. The tool allows
users to guide the algorithm by indicating which boxes can be merged or not in a config-

uration file.

« Browser incompatibilities: the pages may not be displayed correctly in browsers that do

not implement CSS 2.1 completely.
« Overlapping boxes: the framework discards overlapping boxes before inferring layout.

The approach has been tested with a mockup builder called Magetta for a set of web pages con-
structed by the authors which follow common design patterns extracted from the web. They

have also verified its correctness in some up-to-date web browsers. Tests resulted in high-quality

37

replicas of the original mockups in most cases. Sometimes undesired boxes were merged to-
gether and user guidance was required, and in other cases fine-grained tweaks were required to

fix the layout.

3.1.4 OTHER APPROACHES

In this section we will show some other works that do not strictly deal with layout inference but
they are somewhat related to the topic.

A well-known example of GUI builder with code generation facilities for the NetBeans IDE is
Matisse [72]. It is a full-fledged design tool that supports the user in the GUI design and which
generates code that perfectly fits the design. The generated code is based on the GroupLayout,
a layout manager which was intentionally introduced to work with IDEs. The tool automati-
cally generates code for Java Swing, particularly based on the GroupLayout, and is tied to the
NetBeans IDE.

An approach with which to migrate Windows applications to Visual Basic .NET can be found in
[1]. Its aim is to replicate the GUI's look & feel by means of mapping runtime objects to NET
objects, so explicit layout recovery is not tackled.

In [73], the authors propose a pixel-based approach based on real-time interpretation of the
GUI to identify the hierarchical model of complex widgets. This information is then used to
modify an existing GUI (e.g. to translate the text of the widgets) with independence of the
interface implementation.

VAQUISTA [74] is a tool which performs the reverse engineering of web pages into XIML [75]
models according to flexible heuristics, and requires user interaction during the reverse engi-
neering process. In this case, the source are web pages written in HTML 4 which were laid out
with tables, and the tool maps each table cell to a target element, so the table layout is replicated.
In [76] an approach for extracting the web content structure based on the visual representation
is proposed, which simulates how users understand web layout structure based on their visual
perception. The approach is tightly based on the nature of the HTML code and cannot be
applied to coordinated-based interfaces.

Some other related works propose the reengineering of web pages, particularly to adapt them to
mobile devices. The following two works fall into this area. In [77] an approach with which to
structure web pages in a two level hierarchy is presented, in such a way that if a user selects a part

of the web page, this part will be displayed with the screen size like azoom-in. In [78], a solution

38

for generating dynamic web migratory interfaces is explained. The authors rely on the analysis
of HTML tags in order to split the original web pages in regions that are transformed into web
pages with hyperlinks between them. It is worth noting that Ul reengineering approaches for
web pages work on DOM trees, which are tree-based representations of the HTML code, in
which the GUI structure is already explicitly expressed by means of HTML tags.

3.1.5 DISCUSSION

We have presented several works related to reverse engineering of GUIs, and we have focused on
three of them that deal with layout inference, which are summarised in Table 3.2. Next we will
contrast these approaches and we will indicate desirable features of a layout inference solution.
In two of the proposals (Rivero et al., Sinha and Karim) the source technology is a mockup
and the target technology is a web technology, whereas in Lutteroth the source technology is
a GUI programmed with object oriented code and the target is a desktop toolkit. Two of the
approaches (Lutteroth and Rivero et al.) are general, i.e., they can be used with any pair of
source/target technologies, and the work of Sinha and Karim is tightly tied to the web target
platform. It is clear that a generic solution (not tied to source/target technologies) is desirable.
Since hard-coded GUIs and mockups have implicit layouts expressed in pixel coordinates, the
same approach could be used for both cases.

With regard to the extracted information, we can see that all these approaches collect some
common data (sizes, margins) but they recreate the layout based on different information: Lut-
teroth uses constraints; Rivero et al. identify the widgets in each grid; and Sinha and Karim
extract HTML boxes. We believe that a good layout inference approach should extract all the
information we presented in Chapter 2.2.1 explicitly. Granted, some information can be used
in place of other one to obtain a similar visual appearance. For example, Lutteroth extracts
information about constraints and margins, but it does not get explicit information about the
alignment between widgets, so one widget below another one both having the same left mar-
gin may look aligned though the layout manager does not explicitly know that they are aligned.
Having explicit information about alignment and other features of the source GUI can ease the
forward engineering step and led to better adapted layouts.

In Sinha and Karim and Rivero et al., the layout model that is the result of the reverse engineer-
ing process is a concrete layout manager model that can be found in numerous GUI frameworks

(particularly GridBagLayout and HVFlow) . In contrast, Lutteroth obtains a model with in-

39

Approach Lutteroth Rivero et al. Sinha and Karim
Source/targetindependence Yes ¢ Yes No (target must be web)
Tested source technology Hard-coded GUIs (C#) Mockups (Pencil and others) Mockups (Magetta)
Tested target technology Desktop toolkit Web (YU, Ext]S) Web (HTML/CSS)
Information extracted Positions, margins, sizes Containment hierarchy, layout structure ~ Boxes, margins, sizes
Layout model ALM (constraint model) GridBagLayout HVFlow

Algorithm type Linear programming, heuristics =~ Heuristics Exploratory
Implementation technology = Programming language Model-based approach Modular rules
Automation degree Automated Automated Automated

Table 3.1: Summary of layout inference approaches

aRequires implementing the layout manager in every target technology

40

formation about widget constraints. Given that nowadays most GUI frameworks offer layout
managers, representing the design of the GUI in terms of layout managers will make the for-
ward engineering step much more easier than using other models such as the ALM model. The
proof of concept of Lutteroth generates a C# GUI, which involved the creation of a layout man-
ager in C# to deal with the linear constraints, so in case of using his solution with another target
technology, programming the layout manager would be required. This is likely to be a more
complex solution than mapping a predefined layout manager (e.g., GridBagLayout in Rivero et
al.) to the set of layout managers of the target technology.

The representation used to define the GUI structure (the layout model) has a greatimpact in the
forward engineering step of the process. It must be flexible enough to represent any design, but
at the same time it must be close to the well-known existing layout managers in order to make
the mapping to other GUI toolkit easy. The works of Sinha and Karim and Rivero et al. rely on
single concrete layout managers so the whole reverse engineering process is aimed at generating
a design using a certain layout. However, when designing a GUI (either programming or with
visual builders) developers do not normally use a single layout manager but a composition of
them. Due to this reason, we believe that the layout model should contemplate a set of generic
layout managers in such a way that a layout is defined by using the layout managers that are
more suitable for the concrete GUIL Moreover, it would also be desirable that the set of layout
managers used in the layout model is parameterised. The rationale is to avoid emulating them
or implementing new layout managers if they are not available in the target technology.

There is a variety of algorithmic techniques that can be used in the inference approach (linear
programming and heuristics in Lutteroth, heuristics in Rivero et al. and an exploratory algo-
rithm in Sinha and Karim), and any of them can be equally valid. The implementation technol-
ogy may have some importance in the overall solution. Rivero et al. proposes a model-based
approach to implement the solution, whereas the others use imperative or object-oriented pro-
gramming. We think that a model-based approach endows the implementation with additional
benefits to implementing good-quality solutions over classical programming. Forinstance, trans-
formation chains offer a straightforward solution to obtain source/target independence. MDE
also brings other benefits such as automation, thanks to the model transformations.

In short, we believe that a good layout inference solution should:

« be source/target independent

« provide explicit information for every layout feature

41

« use alayout model made up of a variety of layout managers to facilitate the layout defini-

tion, which can be selected by developers

« be implemented using a paradigm (e.g., MDE) that provides architectural benefits such

as extensibility.

3.2 ANALYSIS OF BEHAVIOUR EXTRACTION APPROACHES

In this section we comment on some works which perform some kind of reverse engineering
of the GUI behaviour. We will emphasise three of them that we considered more interesting to
accomplish the separation of concerns inlegacy GUISs, though in the discussion we will take into
account the nine works that are mentioned throughout this section, as they can be compared
by using the same criteria. Works presenting solutions for code analysis that are not focused
on the GUI but other concerns (e.g., business rules) such as [79] and [80], which present C++
static analysis solutions to generate UML models, have been excluded from this discussion.

We will classify each work according to the following four criteria:

1. Source artefacts: the source artefacts that are the input of the analysis process (includ-

ing programming languages and UI toolkits used). For example, Gtk C++ files.

2. Extracted information: the output of the analysis. For instance, a state machine model

representing the flow of events.
3. Goal: the purpose for which the information extracted by the analysis is going to be used.

4. Analysis type: It can be static (the source code is analysed statically), dynamic (it anal-
yses information that is collected when executing the code in some way), or hybrid (uses

both static and dynamic analysis).

3.2.1 MEMON (GUIRIPPING)

In [7] an approach called GUIRipping to reverse engineer a runtime GUI into three models is

described, namely GUI forest, an event-flow model and an integration tree'. These models, which

""The author later refers to all the aforementioned models as an event-flow model

42

we will explain next, are intended to be used to automatically generate test cases. The approach
has been implemented in a tool called GUIRipper.

The GUI forest is a representation that indicates for each window which other windows are
opened if performing an event in the former. Two windows are distinguised: modal windows
and modeless windows. The former once invoked monopolise the GUI interaction, whereas the
latter do not restrict the user focus.

The author defines a component as a modal window together with the modeless windows that
have been directly or indirectly invoked from the former. In an event-flow graph for a specific
component (a modal dialog), the vertices represents all the events in the component. The out-
going directed edges from a vertice represent which vertices can be reached from that vertex
(i.e., which events can be performed immediately after the event associated with that vertex).

The types of events identified are five:

« Restricted-focus events: open modal windows.

Unrestricted-focus events: open modeless windows.

o Termination events: close modal windows.

« Menu-open events: open menus.

« System-interaction events: interact with the underlying software to perform some action.

The integration tree is constructed to show the invocation relationships among components
(modal dialogs) in a GUL It is obtained by integrating the information of the GUI forest and
the event-flow model. This decomposition of the GUI makes the testing process intuitive for
the test designer because he can focus on a specific part of the GUL

GUIRipper firstly obtains the GUI forest by performing a depth-first traversal of the hierarchi-
cal structure of the GUL The runtime GUI is analysed (e.g., using the Windows API in case
of a Windows application) to get the top-level windows, the executable widgets (widgets that
invoke other GUI windows), and the windows that are opened by performing events on ex-
ecutable widgets. During the traversal of the GUI, the event type is also determined by using
low-level calls. After the automating ripping process has finished, manual inspection is required
since some information cannot be extracted by the GUIRipper.

The event-flow model can be used in the definition of event-space exploration strategies for auto-

mated model-based testing, particularly: i) goal-directed search for model checking, ii) graph-

43

exploration for test-case generation, iii) operator execution for test-oracle creation. The author

delves into these strategies for several scenarios in [81].

3.2.2 HECKEL ET AL.

In [11] a methodology to deal with the evolution of legacy systems to three-tier architectures
and Service Oriented Architectures (SOA) is proposed. This methodology is based on the
Horseshoe Model introduced in Section 2 and consists of three steps, namely reverse engi-
neering, redesign, and forward engineering, preceded by a preparatory step of code annotation,

which can be seen in Figure 3.3.

Metamodel . _ Target

Constraints

¥
S~. <<conforms-to>>

-
:<<in5tantiates>> PO

]

1

I =

Code Annotation a Sog"ced | i> . Taggetd |
Reverse Engineering raph Mode raph Mode

Redesign
Forward Enginnering

\I> Annotated \I> Annotated
Source Code Source Code Target Code

Figure 3.3: Approach of Heckel et al. (extracted from [11]).

B W=

The source code elements (packages, classes, methods, or code fragments) are annotated by
code categories (step 1) with respect to their architectural function in the target system, e.g,,
like GUI, application logic or data. Annotations are manually written by developers in the orig-
inal source code in the form of comments, and they are propagated through the code by cate-
gorisation rules defined at the level of abstract syntax trees, so it is not needed for developers to
annotate all the source code elements.

From the annotated source code, a graph model is created (step 2), whose level of detail de-
pends on the annotation. The graph modelis a reduced Abstract Syntax Tree (AST) representa-
tion where the nodes are packages, classes, methods, parameters and variables, and additionally
CodeBlocks to represent groups of statements, and the edges represent the order of the nodes.
Moreover, there is an node type to represent the categories of a code element. Then, all the
contiguous statements that are annotated in the same way are grouped in the same CodeBlock

node, and associated a category. This step is a straightforward translation of the relevant part

44

of the code into its graph-based representation. The relation between the original (annotated)
source code and the graph model (relation R1) is kept to support traceability.

During the redesign phase (step 3) the source graph model is restructured to reflect the asso-
ciation between code fragments and target architectural elements. Code categories guide the
automation of the transformation process. This transformation is specified by graph transfor-
mation rules aimed at performing code refactoring. The relation with the original source code
is kept (relation R2) in order to support the code generation.

The target code is either generated from the target graph model and the original source code or
obtained through the use of refactorings at the code level (step 4). The result of this step is the

annotated code of the new system written in the target language.

3.2.3 MORGADO ET AL. (REGUI)

This work [8] presents a dynamic reverse engineering approach and a tool (ReGUI) aimed at
diminishing the effort of producing visual and formal representations of the GUI, which enables

verification of properties or can serve as the input of Model-Based GUI Testing techniques.

Internal
Representation

%l Abstractor |

Spec# Model Visual Model
Generator SMV Model Generator
Generator

| Spec # I SMV | GraphML I

Figure 3.4: Approach of Morgado et al. (ReGUI) (extracted from [8]).

The approach, which is depicted in Figure 3.4, has two main components: the analyser and the
abstractor. The analyser component uses UI Automation, the accessibility framework for the
Microsoft Windows operating systems supporting Windows Presentation Foundation. With

this framework, the runtime instances of a Windows application can be explored. During the

45

exploration process, every menu option is navigated to extract its initial state (i.e., enabled or
disabled), and each menu option is triggered to verify what windows are opened because of that
interaction and also see if the state of any element has changed.

The analyser extracts some information about the GUI elements and their interactions. Partic-
ularly, the analyser distinguises two GUI elements: Windows, which can be modal or modeless,
and Controls, which can be menu items or other controls. The interactions between the GUI
elements can be of five different types: Open, a window is opened; Close, a window is closed;
Expansion, new controls become accessible (e.g., the expansion of a menu); Update, one or
more properties of one or more GUI elements are updated; Skip, nothing happens.

The abstractor component generates different views on the extracted information, which are:

« ReGUI tree: represents the different aspects of the structure of the GUI (e.g., the con-

tainment hierarchy of a menu).

« Navigation graph: stores information about which user actions must be performed in

order to open the different windows of the application.

« Window graph: is a subset of the information represented in the navigation graph that

describes the windows that may be opened in the application.

o Disabled graph: its purpose is to show which nodes are accessible but disabled at the

beginning of the execution.

« Dependency graph: A dependency between two elements means that interacting with the
former modifies the value of a property in the latter. This representation shows all the

dependencies among controls.

Apart from these views which can be used to inspect the GUI, an Spec# model and an Symbolic
Model Verification (SMV) model can be generated. Spec# is a formal specification language
that can be used as input to Spec Explorer [82], an automatic model-based testing tool for test
generation. An SMV model can be used in combination of model checking techniques to verify

properties, which is useful, for example, in usability analysis.

3.2.4 OTHER APPROACHES

We will summarise other works that analyse Ul behaviour and are less relevant to the purpose

of separating concerns. First we will comment on two static analysis approaches [2] [30], and

46

then we will oversee four dynamic analysis approaches [83] [49] [6] [31].

In [2] a static analysis for GUIs is presented, which extracts information about the GUI out of
the source code. Itis targeted at applications written in programming languages such as C/C++
using GUI libraries such as GTK [84] or Qt [85]. The goal is to extract, from the source code,
the widget hierarchies forming the windows together with the widget attributes and event han-
dlers. GUI detection is accomplished to determine which types, variables, functions and files
are relevant to the GUL Then ISSA (Interprocedural Static Single Assignment) form is used to
detect the widget hierarchy, and also determine the widget attributes and event handlers. After
detecting the GUI and obtaining the widget hierarchy, a window graph is created. In this graph
nodes are given by windows and indicate that an event raised in the first window can create or
show the second window. Edges are labelled hence with events or sets of events. In order to
create the outgoing edges for the nodes, the algorithm inspects all the event handlers for the
events issued by members of the hierarchy of widgets of the window. An event handler gives
rise to an edge if the handler itself or some function directly or transitively called by it creates or
shows a window, and if no window is created or shown along the control-flow path in between.
The work presented in [30] proposes an approach to obtain state machines of the transitions
between windows based on source code written in Java. The approach is implemented by three
tools: FileParser, which parses a particular code file, ASTAnalyser that slices the Abstract Syntax
Tree (AST) obtained by FileParser, and Graph which generates metadata files with the state
machines. The approach uses Strategic Programming and Program Slicing to isolate the parts
of the code which are related to the GUI, in order to make the approach easily retargetable
to different programming languages and GUI toolkits. The state machine representation they
propose is a graph where states represent windows and transitions include: i) the internal state
of the window (it is useful for example to detect windows complexity), ii) the user action that
triggers the event, and iii) the condition that must be hold for the transition to occur.

Stroulia et al. [83] propose a method for migrating Text-based User Interfaces (TUIs) in the
context of the CelLEST project. These TUIs are part of legacy distributed systems in which
there are terminals that interact with a mainframe by means of a communication protocol. Its
novelty lies in that it models the system dynamic behavior based on traces of the user interaction
with the system, instead of focusing on the system code structure. The reverse engineering
phase is based on the analysis of the dynamic traces generated by real user interaction. In order
to obtain traces, they propose using an emulator that provides users with a text-based interface

that mimics the original hardware terminals used to access the host system, on which the legacy

47

application resides, by implementing the protocol of communication between the host and the
emulator user interface. The emulator is instrumented so that it also records the interaction
between the legacy application and its users. A trace recorded by this emulator consists of a
sequence of snapshots of the screens forwarded by the legacy application to the user’s terminal.
Between every two snapshots, the user keystrokes are recorded. The resultis a model of the TUI
behaviour represented as a directed state-transition graph. The graph nodes correspond to the
distinct interface screens, which are identified by clustering all the screen snapshots, contained
in the recorded trace according to their visual similarity. Each edge of the graph corresponds to
an action that can be taken, i.e., a command that can be executed when the source-screen node

is visible to the user and leads to the destination-screen node.

A GUI test generation approach based on symbolic execution is presented in [6]. The GUI
testing framework (named Barad) generates values for data widgets and enables a systematic
approach that uniformly addresses the data-flow as well as the event-flow for white-box test-
ing of a GUI application. The approach is applied to Java event handlers. Firstly, the event
handler bytecode is instrumented, i.e. it is modified to execute a custom code after every sen-
tence. During the instrumentation, they generate an inline version (with branching statements
removed) of the program with primitives, strings, and conditional instructions replaced with
the corresponding symbolic values. Then, the code is symbolically executed. Basically, sym-
bolic execution uses symbolic values instead of actual data, and represents the values of program
variables as symbolic expressions. The symbolic execution is performed by applying a chrono-
logical backtracking that visites all the branches of the program. For a branch to be explored,
the set of constraints of the states must be satisfied. When an entire branch has been executed,
the test case for that branch is generated, and the program state (the set of values of the vari-
ables) is restored. After test cases have been generated, some heuristics to reduce the test suite
are applied. The resulting suite maximises the code coverage while minimising the number of
tests needed to systematically check the GUI.

In [49] the authors present a reverse engineering approach for abstracting Finite State Machines
representing the client-side behaviour offered by Rich Internet Applications (RIAs). The re-
verse engineering process consists of two activities: extraction and abstraction. During the ex-
traction activity, the user interacts with the RIA in a controlled environment and the sequences
of events are registered. The abstraction activity is composed of three tasks: RIA Transition
Graph building, Clustering, and Concept assignment. The first task builds the Transition Graph

from the traces stored in the extraction activity. This graph models the flow of RIA views that

48

were generated. The second task analyses the Transition Graph and clusters the nodes and edges
that are equivalent. The Finite State Machine models the event listeners that are associated with
DOM elements of a web page, which can be: user events listeners, time event listeners (due to
the occurrence of timeout conditions) and HTTP response event listeners (due to receptions
of responses to some HTTP request). It also models the transitions between web pages and
the events that caused those transitions. These events can be associated to web page requests
(traditional HITP requests) or XmlHttpRequests (asynchronous Ajax requests).

Mesbah etal. [31] describe a technique for crawling Ajax-based applications through automatic
dynamic analysis of user interface state changes in web browsers. The analysis process infers
a state machine that models the navigational paths within an Ajax application, which can be
used in program comprehension, analysis and testing. The analysis works in the following way.
Firstly, the Controller traverses the web page to find clickable elements, which are elements that
have event listeners and can cause a state transition. For each element, the crawler instructs the
Robot to fill in the form fields and fire events on the elements in the browser. When the events
are triggered in the clickable elements, changes in the DOM tree are produced. Then the DOM
Analyzer compares the current DOM tree and the previous one by using some heuristics. If a
state change is detected, a new state is created and added to the state machine. If a similar state
is recognised, that state is used for adding a new edge (no new state is created). The algorithm
uses backtracking to recursively traverse all the code branches until all the code is executed.
When applying backtracking, the DOM tree has to be set to a previous state. This is achieved
by using the browser history if the Ajax application has support for it, or reproducing the event

sequence from the initial state in contrary case.

3.2.5 DIscussioN

We have reviewed some of the most relevant approaches up to date about reverse engineering
and reengineering of UI behaviour. Now we will make some reflections about these works.

First of all, we see that the majority of the works (6 out of 9) coincide in representing the be-
haviour by means of some sort of state machine (transition graph) where the states represent
views and the transitions represent the events that trigger the changes. The granularity of the
states and events represented differs between the different works. For instance, in [83] events
represent transitions between complete views, so the state machine is used as a model of the

navigation among them. In contrast, in [31] events represent changes in parts of a view, as it

49

Approach Source artefacts Extracted information Goal Analysis type
Memon et al. Runtime GUI (Java/Windows) Transition graph Testing Dynamic
Heckel et al. Annotated code (Java) AST-like graph with code categories ~ Migrate to 3-tiers Static
Morgado etal. Runtime GUI (Windows) Interaction model PC, verif. properties ~ Dynamic
Staiger GTK/Qt code (C/C++) ‘Widget hierarchy, transition graph Maintenance Static

Silva et al. Java code Transition graph PC,, testing Static
Stroulia et al. TUI runtime traces Transition graph Migration to the web Dynamic
Ganov et al. Java bytecode Symbolic tree, test suite Test generation Dynamic
Amalfitano etal. Instrumented RIA Transition graph Maintenance, testing Dynamic
Mesbah et al. Ajax web applications Transition graph PC, analysis, testing ~ Dynamic

Table 3.2: Summary of the behaviour extraction approaches (PC stands for Program Comprehension)

S0

happens in Ajax applications, which has a much smaller granularity level than in the previous
work. In [8] several models that focus on specific behaviour are even created, such asa model to
know which elements that are disabled at the beginning are accesible after a sequence of events.
Therefore, depending on the purpose of the reverse engineering or reengineering, different in-
formation represented in the form of a state machine may be useful.

With regard to the goal of the reverse engineering, most of the works are aimed at perform test-
ing or program comprehension (7 out of 9), and a few works (2 out of 9) are targeted at gener-
ating a new system. In [11] the separation of legacy applications in layers in order to generate
web applications is proposed, and the idea of abstracting the source code in a model that guides
the generation of the new system is introduced. It is worth remarking that different from the
rest of the works, it addresses a separation of concerns, particularly from the point of view of the
architecture of the application (business logic, U, data access). In that work, the reverse engi-
neering is assisted by the developer, that must tag the code parts so the tool knows which layer
the code belongs to. This procedure is useful, but developers must spend time in inspecting the
whole code by hand.

Most approaches (6 out of 9) are based on dynamic analysis while the rest apply a static one.
This is due to it is easier to determine which views are displayed from other views with dynamic
analysis. In general, static and dynamic analysis provide us with different kinds of information:
static analysis can access to all the code (which can be executed or not) so the information of
all the possible states of the application is available, whereas dynamic analysis can obtain data
about every state that is reached by execution. Moreover, when no source code is available, dy-
namic analysis is the only option. An scenario in which static analysis is not enough to obtain
proper information is the reverse engineering of Ajax applications [31], and in that case, also
dynamic analysis is required. On the other hand, static analysis can access to all the code, which
is necessary to accomplish a faithful migration of the code. In addition, static analysis is faster
and easier to perform than dynamic analysis that implies executing the code and maybe rede-
ploying the application or running the source runtime platform (e.g., the Oracle Forms runtime
environment).

To sum up the aforementioned approaches, we reckon that an the extraction of the behaviour

of the GUI aimed at migration should:

« separate the different concerns that are tangled in the code of event handlers, but different

from [11], marking code by hand should be avoided.

S1

« represent the transtition between views and dependencies between widgets by means of

a state-machine-like representation, as there is a wide consensus about that.

« static analysis is desirable if source code is available, given that we need the whole infor-

mation about the GUI and the runtime information is not enough.

3.3 GUI REPRESENTATION APPROACHES

This section is devoted to describe well-known metamodels (KDM, IFML) and User Interface
Description Languages (UIDLs) that can be used to represent user interfaces. We will also
introduce the Cameleon framework, though it is neither a metamodel nor a UIDL, it establishes
different abstraction levels that are desirable for modelling user interfaces and it is used by many
UIDLs. Since these approaches are rather heterogeneous, we are not going to classify them as
we did in the previous sections, but we will restrict ourselves to describe them and put some

examples.

3.3.1 KNOWLEDGE D1SCOVERY METAMODEL (KDM)

Section 2.3.4 introduced KDM as the core element of the ADM initiative. KDM is a metamodel
aimed at representing software systems at different levels of abstraction which range from pro-
gram elements to business rules. KDM is intended to facilitate the interoperability between
software modernisation tools, as a common representation for software artefacts.

It is a very large metamodel that is composed of twelve packages organised in four layers: In-
frastructure, Program elements, Runtime resources and Abstractions (see Figure 3.5). Each package
defines a set of metamodel elements whose purpose is to represent a certain independent facet

ofknowledge related to existing software systems. The packages defined in the specification are:

o Core and Kdm: define common elements that constitute the infrastructure for other

packages.

« Source: enumerates the artefacts of the existing software system and defines the mecha-

nism of traceability links between the KDM elements and their original representation.

52

Abstractions fayer // Conceptual N /
N

/
S

Figure 3.5: KDM layers and packages (extracted from [71]).

Code. It is focused on representing common program elements supported by various
programming languages, such as data types, data items, classes, procedures, macros, pro-

totypes, and templates, and several basic structural relationships between them.

Action: Along with the Code package, it represents the implementation level assets of the
existing software system. This package is focused on behaviour descriptions and control

and data-flow relationships determined by them.

Platform: defines a set of elements whose purpose is to represent the runtime operating

environments of existing software systems.

UI represents facets of information related to user interfaces, including their composi-
tion, their sequence of operations, and their relationships to the existing software sys-

tems.

Event: it specifies the high-level behaviour of applications, in particular event-driven

state transitions.
Data: it is used to describe the organisation of data in the existing software system.

Structure: it is aimed at representing architectural components of existing software sys-
tems, such as subsystems, layers, packages, etc. and define traceability of these elements

to other KDM facts for the same system.

S3

« Conceptual: it provides constructs for creating a conceptual model during the analysis

phase of knowledge discovery from existing code.

o Build: represents the facts involved in the build process of the given software system
(including but not limited to the engineering transformations of the “source code” to

“executables”).

From the point of view of the migration of graphical user interfaces, four of these packages can
be useful: the Code, Action, UI and Event packages. The Code and Action packages can be used
together to represent programming code with independence of the specific programming lan-
guage. The UI package was conceived to represent the elements and behaviour of the GUIs.
Next we will deep into the UI package to analyse its usefulness. Figures 3.6, 3.7 and 3.8 com-
pose the UI package. As there are a lot of dependencies among several the packages, we will

only briefly comment on those metaclasses that are relevant for us.

+UIElement
{subsets ownedE lement}
-.| AbstractUIElement
| 0 .
| /\ P
01 i
L UlResource UlAction
il kind String’i
_ — 0.1
+owner AR
{subsets ownet} | +owner
|| {subsets owner}
UDisplay ‘I
UlField
/] N UIEvent
/ A “kind : String =
/N 9o
- ° +UElement
Screen
Fiepon {subsets ownedElement}

Figure 3.6: KDM metamodel. Ul package (UIResources) (extracted from [71]).

Figure 3.6 shows the UIResources that can be defined: Screens, Reports, UlFields, UIEvents. Screens
are units of display in an application, such as windows or web pages, and Reports are printed
units of display, like a printed report. UlField is a generic element to represent any field in a
Screen or Report, such as a text field or a combo box. UlEvents can be declared and "be’ asso-

ciated with a UlAction; a UIAction can have associated zero or more events (e.g., a UlAction

54

called 'navigate’ can be triggered by many UIEvents such as ‘click’ or select”). Note that Ul re-

sources can contain other UlIResources (e.g., a Screen can contains UlFields that in turn contain
UlEvents).

AbstractUIRelationship

o+
ot UFlow |
UlLayout 0.
— S +from
(0. ||‘ {redefines frgm}
II W1
1 II‘ 1 AbstractU IEle ment
UlResource | 1 \ —
— e +o
+lo +from {redefines to}
{redefines ta} {redefines from}

Figure 3.7: KDM metamodel. UI package (UIRelations)(extracted from [71]).

In Figure 3.7 there are two generic relationships, UILayout and UIFlow. UILayout indicates the
layout of a UIResource, and UIFlow allows defining the flow of Screens (without indicating the
event that originated it).

The diagram of Figure 3.8 defines several relationships between a UIResource and ActionElement.
The latter is defined in the Actions package and refer to a block of code. These relationships
represent the effect of a block of code in the UIResources: Displays allows a UIResource to be
shown, ReadsUI takes the value of a UIField, WritesUI puts a value in a UlField, DisplaysImage
shows an image, and ManagesUI represents other accesses to the UIResources.

Asit can be seen, the UI package can be used to represent the logical structure of views, the spa-
tial relationships among the Ul elements (layout), and the events associated with them. How-
ever, the specification just offers a few generic concepts for them. For example, related to the
logical structure it defines Screen as a container and UlField as a generic widget, and related to
the layout of the elements it defines a generic layout (UILayout).
Finally, the Event package, is not aimed at expressing the event flow of the GUI (which is actually
addressed in the UI package), but is aimed at describing the behaviour of the entire system as a

state machine. It could be used somehow to express the behaviour of the UI, though it was not

SS

AbstractActionRelationship
(from action)

AbstractU IRelalionship
[|
: - ' LT

ManagesU| |——
=
o L

Displays ['.T\.

+to
{redefines to} | UIResource
S —

+o
{redefines to}

inés to}

| +lo

'\l‘/ 1(redehnes to}

Image
(from source)

WritesUlI

0.*

m} +from
redefines f
1

1

+from
{redefines from}

+from TN £
{redefines from} | ActionElement
(from action)
@kind : String

Figure 3.8: KDM metamodel. Ul package (UIActions) (extracted from [71]).
conceived to that goal.

3.3.2 INTERACTION FLOW MODELING LANGUAGE (IFML)

The Interaction Flow Modeling Language (IFML)[86] has been recently adopted (March, 2013)
as an OMG specification for building visual models of user interactions and front-end behav-
ior in software systems. As indicated in [87], IFML can be seen as the consolidation of the
Web Modelling Language (WebML) [88] defined and patented about 15 years ago as a concep-
tual model for data-intensive web applications. In fact, WebRatio, which has been supporting
WebML over the years, is now adopting IFML as official notation.

The objective of IFML is to provide system architects, software engineers, and software devel-
opers with tools for the definition of Interaction Flow Models that describe the principal di-
mensions of an application front-end: the view part of the application, made of containers and
view components; the objects that embody the state of the application and the business logic
actions that can be executed; the binding of view components to data objects and events; the
control logic that determines the sequence of actions to be executed after an event occurrence;
and the distribution of control, data and business logic at the different tiers of the architecture.
AnIFML diagram consists of one or more top-level view containers. Each view container can be
internally structured in a hierarchy of sub-containers. The child view containers nested within a

parent view container can be displayed simultaneously or in mutual exclusion. A view container

56

can contain view components, which denote the publication of content or interface elements
for data entry (e.g., input forms). A view component can have input and output parameters. A
view container and a view component can be associated with events, to denote that they support
the user’s interaction. Events are rendered as interactors, which depend on the specific platform
and therefore are not modeled in IFML but produced by the PIM to PSM transformation rules.
The effect of an event is represented by an interaction flow connection, which connects the
event to the view container or component affected by the event. The interaction flow expresses
a change of state of the user interface: the occurrence of the event causes a transition of state
that produces a change in the user interface. An event can also cause the triggering of an action,
which is executed prior to updating the state of the user interface. An input-output dependency
between view elements (view containers and view components) or between view elements and
actions is denoted by parameter bindings associated with navigation flows (interaction flows for

navigating between view elements).

Albums&Artists
Artist «ParamBindingGroups
Andrea Bocelli — - And -5€|£¢EdArDST-)AnAmst
irst Name: ndrea 1
- Last Name Bocelli Albums8Artists !
- Romanza Photo: I)
Celine Dion >< | [XOR] Album or Artist
- M the way AlbumsBArtists | Artist
- Let's talk [| .
- |
Aftlstu.:t\bum . Artist Details
Albums&Artists
A o Album
ndrea Bocelli)
Title All the Way Aoum
- il Year: 1939
- Remanza Cover.
Celine Dion >< ——F Album Details
- Al the way «ParamBindingGroup
_Lets tak /Seectadhlbum > hoiu
——

Figure 3.9: Example of user interface (left) and corresponding IFML model (right) (Ex-
tracted from [86]).

The left part of Figure 3.9 shows two states of the same view, and the right part represents the
IFML diagram. In the example there is one top-level container (Albums&Artists) that com-
prises three view containers: one with a list of artists and of their albums, one with the details
of an artist, and one with the details of an album. The latter two view containers are mutually

exclusive, so if a user selects an artist, the details of that artist are displayed, or if the user selects

57

an album, the details of the album are displayed.

3.3.3 CAMELEON FRAMEWORK

The Cameleon framework [89] is a model-based approach devised to cover the design, mainte-
nance and evolution of a multi-target user interface. This framework does not describe concrete
metamodels but recommends an architecture of models and the way it can be used to deal with
forward engineering and reengineering of user interfaces. The overall architecture is shown in
Figure 3.10 (arrows indicate which models originate other ones). Three types of models are

differentiated: ontological, archetypal and observed.

Archetypal models

\ 4
7 C Ontological models f Config 1 Concepts and

" Domain Concepts Task Model - ‘;_IE
1) Ds) €
Concepts
Tasks (D2)
Abstract «——
e interface ﬁﬁi‘h
" Context of use | Ser (DO} —
(D3)

L= Platform

Ml

Platform (D4) Concrete |¢——

nvironment interface [ﬁz
nvironmen (D5) (D10) N Y

[

 Adaptation Evolution
Adaptation
i (D6) S Final UI for |«
Transition E Config 1 :)%E
(L

Figure 3.10: Cameleon framework (extracted from [89]).

« The ontological models (left side of the figure) are metamodels of the concepts (and
their relationships) involved in a multi-target UL These models are instantiated into archety-
pal and/or observed models, which depend on the domain and the interactive system

being developed.

58

« Archetypal models are declarative models that serve as input to the design of a particu-

lar interactive system. They are instances of the ontological models for a specific target.

« Observed models are executable models that support the adaptation process at run-
time. They have been omitted in Figure 3.10 because they are out of the scope of our

work and will not be explained.
The types of ontological models are:

« Domain Models: cover the domain concepts and users tasks. Domain concepts denote
the entities that users manipulate in their tasks. Tasks refer to the activities users under-

take in order to reach their goals with the system.

«+ Context of use Models: describe the context of use in terms of the user, the platform

and the environment.

« Adaptation Models specify the reaction to adopt when the context of use changes. It
includes information about the new UI to switch to, and the particular transition UI to

be used during the adaptation process.

The ontological models are independent of any domain and interactive systems, and define key
dimensions for a given retargeting. On the contrary, archetypal models are instances of the on-
tological models in a specific context (a specific domain, platform, etc.). The information of the
archetypal modelsis used to express a Ul at four levels of abstraction, from the task specification

to the running interface:

« Task and Concepts level. It corresponds to the Computational-Independent Model
(CIM) in MDA [15] and considers: (a) the logical activities (tasks) that need to be per-
formed in order to reach the user goals and (b) the domain objects manipulated by these
tasks. Often tasks are represented hierarchically along with indications of the temporal
relations among them and their associated attributes. This level uses the information of

the Concepts, Tasks and User models.

« Abstract User Interface (AUI). Corresponding to the Platform-Independent Model
(PIM) in MDA, is an expression of the Ul in terms of inferaction spaces (or presentation

units), independently of which interactors are available and even independently of the

59

modality of interaction (graphical, vocal, haptic, etc.). An interaction space is a grouping

unit that supports the execution of a set of logically connected tasks.

Concrete User Interface (CUI). It corresponds to the Platform-Specific Model (PSM)
in MDA. It is an expression of the Ul in terms of Concrete interactors, that depend on the
type of platform and media available and has a number of attributes that define more
concretely how it should be perceived by the user. Concrete interactors are, in fact, an
abstraction of actual UI components generally included in toolkits. The CUI model uses

the information of the Platform and Environment models.

Final User Interface (FUI). It is related to the code level in MDA and consists of source
code, in any programming language or mark-up language (e.g. Java, HTMLs, VoiceXML,
X+V,...). It can then be interpreted or compiled. A given piece of code will not always be
rendered on the same manner depending on the software environment (virtual machine,
browser, etc.). For this reason, Cameleon considers two sublevels of the FUI: the source

code and the running interface.

g Conlext of use A\ /7 Context ofuse B T\

Task & Concepls (€ M Task & Concepls
| ;y 7

Abstract Ul (AUI) Abstract Ul (AUl
|] T

Gonerele UL {CU) [€ P Concrete Ul (CUD)
| i °

Final Ul (FUI) < Final U1 (FUIT)
- AN %
A
i Reification ' Abstraction ("9’ Translation

Figure 3.11: Abstraction, reification and translation in the Cameleon framework (extracted
from [89]).

When using Cameleon in a development, three different paths can be followed, namely reifi-

cation, abstraction and translation, which are depicted by downward, upward and bidirectional

arrows in Figure 3.11. Reification is the transformation of a description (or of a set of descrip-

tions) into another one that has a less abstract than the former. Abstraction is the transforma-

tion of a description into another one whose semantic content and scope are higher than the

60

content and scope of the initial description content (i.e., is more abstract). In the context of
reverse engineering, abstraction is the elicitation of descriptions that are more abstract than the
artefacts that serve as input to this process. Finally, a translation shifts the interface from one
type of platform to another, or more generally, from one context to another (e.g., a legacy UI

migration) .

3.3.4 USER INTERFACE DESCRIPTION LANGUAGES (UIDLS)

UIDLSs are DSLs for defining user interfaces. In the following subsections we present three of
the most widespread UIDLs: UsiXML [38], Maria [90] and XAML [91]. Some other examples
of UIDLs are: User Interface Markup Language (UIML) [92], eXtensible Interface Markup
Language (XIML) [75], eXtensible Interaction Scenario Language (XISL) [93] and XML User
Interface Language (XUL) [94].

3.3.4.1 UsiIXML

User Interface eXtensible Markup Language (UsiXML) is a DSL used in Human-Computer In-
teraction (HCI) and Software Engineering (SE) in order to describe any user interface of any
interactive application independently of any implementation technology. The language is able
to represent user interfaces which vary on the context of use (in which the user is carrying out
her interactive task), the device or the computing platform (on which the user is working), the
language (used by the user), the organisation (to which the user belongs), the user profile or
the interaction modalities (e.g., graphical, vocal, tactile or haptics).

UsiXML has following features which are interesting in GUI migrations:

« Model-driven: itis defined according to the principles of MDE. Metamodels are expressed
in MOF and OWL 2.0 Full [95].

o Multi-level of abstraction: itis compliant with the fourlevels of abstraction of the Cameleon
framework (as it is shown in Figure 3.12). It provides a metamodel for Abstract User In-
terfaces, and a metamodel for Concrete User Interfaces which can be used for different
modalities (graphical, vocal, haptic, etc.). The Task level is based on Concur Task Trees
(CTT) [96] and the domain is expressed with UML class and object diagrams [97].

« Complete lifecycle support: it provides means for conceptual modeling of task, domain ab-

stractuser interface, concrete user interface, and contexts of use as defined in the Cameleon

61

framework. In addition, it covers transformation, mapping, adaptation, and interactor
modeling, so all the paths of reengineering (reverse engineering, restructuring, and for-

ward engineering) can be tackled by means of the UsiXML metamodels and tools.

B |; T
Enlerlf'morns Launch Gooale Search LauncnSn;claISearcn TBSk & COHGeptS

—p Abstract Ul

va

1 1
‘ w,..-i"]di"" ‘ —» Concrete Ul

te::ﬂnput button mgmn + +

| i
| ,
| Google Search |[I'm Feeling Lué | |! F |na| Ul /

Figure 3.12: UsiXML models conforming to Cameleon (extracted from [38]).

input command command

Figure 3.12 shows an example of the four levels of the Cameleon framework in UsiXML. In the
bottom part of the figure we see an HTML form with a text field and two buttons to perform
a search. These controls are represented in the CUI level with independence of the concrete
technology (HTML). The AUI level abstracts the elements of the CUI model so they are in-
dependent of the modality (GUI controlled by keyboard and mouse). Finally, the Task level
captures the sequence of tasks to perform a search, this is, write some keywords in the text field
and then click on the one of the two buttons.

There is a variety of tools supporting UsiXML for creating the models (Ideal XML, KnowiXML),
obtaining UsiXML models from code (ReversiXML) or other representations (SketchiXML,
VisiXML, TransformiXML, etc.) or generating new systems (FormiXML, GrafiXML, FlashiXML,
etc.).

62

3.3.4.2 MARIA

MARIA, Model-based 1Anguage foR Interactive Applications [90] is a universal, declarative, mul-
tiple abstraction-level, XML-based language for modelling interactive applications in ubiqui-
tous environments. The language inherits the modular approach of its predecessor, TERESA
XML [98], with one language for the abstract description and then a number of platform-
dependent languages that refine the abstract one depending on the interaction resources con-

sidered.

Some features of the language that are relevant for our purposes are:
« Model-driven: the language has been described by means of MOF metamodels.

o Multi-level of abstraction: MARIA conforms to the Cameleon framework and defines
metamodels for the four abstraction levels: defines an Abstract description metamodel,
a few Concrete description metamodels for the desktop, mobile, vocal and multimodal

platforms, and relies on CTT for the Task level.

« Events at abstract and concrete levels: an event model has been introduced at different
abstract/concrete levels of abstractions. The introduction of an event model allows for

specifying how the user interface responds to events triggered by the user.

« Extended Dialog Model. The dialog model contains constructs for specifying the dynamic
behaviour of a presentation, specifying what events can be triggered at a given time. The
dialog expressions are connected using CTT operators in order to define their temporal

relationships.

« Continuous update of fields. It is possible to specify that a given field should be periodically
updated invoking an external function (i.e., it supports Ajax scripts). This can be defined

at the abstract level and detailed at the concrete level.

« Dynamic Set of User Interface Elements. The language contains constructs for specifying
partial presentation updates (dynamically changing the content of entire groupings) and
the possibility to specify a conditional navigation between presentations. This is useful

for supporting Ajax techniques.
The Maria language is supported by the Maria tool.

63

3.3.4.3 XAML

Extensible Application Markup Language (XAML) is a markup language developed by Microsoft
for declarative programming of user interfaces in the .NET framework. XAML is used ex-
tensively in .NET Framework 3.0 and. NET Framework 4.0 technologies, particularly in the
Windows Presentation Foundation (WPF) [99], Silverlight, Windows Workflow Foundation
(WF), Windows Runtime XAML Framework and Windows Store apps. In WPF, XAML forms
auser interface markup language to define Ul elements, data binding, events, and other features.
In WF contexts, XAML is used to describe potentially long-running declarative logic, such as
those created by process modeling tools and rules systems.

The scope of this language is more ambitious than that of most user interface markup languages,
since program logic and styles are also embedded in the XAML document. Functionally, it
can be seen as a combination of XUL, SVG, CSS, and JavaScript into a single XML schema.
XAML directly represents the instantiation of objects in a specific set of backing types defined
in assemblies (.NET libraries). This is unlike most other markup languages, which are typically
an interpreted language without such a direct tie to a backing type system.

XAML is supported by the Microsoft environments such as Visual Studio and can also be used
to generate desktop applications, Silverlight applications, Windows Phone apps and Windows

Store apps among others.

3.3.5 DISCcuUsSION

We have presented the different approaches we analysed for representing GUIs. We found
though different disadvantages that led us to eventually discard them and define our own meta-
models. Next we enumerate the reasons for this decision.

KDM is a complex metamodel which can be used to model an entire software system. The Code
and Action packages, which are the most extensive of KDM, can be used to represent program-
ming code in a generic fashion. However, given that KDM intends to be language-independent,
some of its packages are too generic to be useful as-is, and need to be extended in some way.
For instance, we could see that the UI package does not offer a widget or layout classification,
so if distinguishing the different widget types or layouts is needed, extending KDM is required.
KDM itself offers an extension mechanism, but as mentioned in [66] it is poor in practice and
using it means losing the interoperability among tools, which is one of the presumed benefits of

KDM. Moreover, using such a large metamodel like KDM involves a lot of unnecessary com-

64

plexity which most of the times does not pay off (e.g., model transformations become far more
complex than using a simple metamodel). On the other hand, representing event handlers is
awkward in KDM, because it is possible to define which events are triggered by each widget,
but we cannot specify the code that is executed in each case.

With respect to IFML, it allows expressing the events and the effect they produce in the GUI,
and it can be considered to model the behaviour of the GUI in a technology-independent fash-
ion. Since it has recently appeared, it was not considered in our solution.

Regarding the UIDLs, UsiXML and Maria are technology-independent languages which have
been designed to cope with multi-modal Uls in ubiquitous environments. A forte of UsiXML
is that it has several graphical DSLs supporting the creation of the different models, and an
interesting feature of Maria is that it includes elements to deal with Ajax applications. Both
offer a wide widget hierarchy, but the layout representation is somewhat limited. For instance,
UsiXML 2.0 just offers a generic TableLayout (similar to HTML tables) to represent layout. For
this reason, these UIDLs are not suitable to be used in the reverse engineering stage as interme-
diate representations to manipulate the data. On the contrary, both, UsiXML and MariaXML
could be used to represent a generic GUI at a CUI level (i.e., the technology-independent level,
which is the abstraction level in which our reverse engineering proposal is enclosed). On the
otherhand, XAML is a UIDL which is devised to work with Windows frameworks, and includes
information that is dependent of those frameworks. Moreover, it has a complex specification
due to it mixes different kinds of information, and in fact some people are critical of this design,
as many standards (Javascript, CSS, etc.) exist for doing these things. For all these reasons,

XAML is not suitable for representing generic GUIs.

65

66

Fall in love with the problem, don’t fall in

love with the solution.

Paul Graham
(Suggested by Jérémie Melchior)

Overview

So far we have set the context of this thesis. In the introductory chapter we motivated and
stated the problem that is tackled. There we introduced two main issues to be addressed when
migrating RAD applications to modern platforms: coordinate-based layouts and tangling of
concerns. These two issues were explained in more detail in Section 2.2.2, where we discussed
the main features of legacy RAD applications that were summarised in Table 2.1.

Now we will clearly define the requirements that we expect in our solution, and we will outline
the generic architecture of the solution. This chapter serves as a brief guide of the entire work

and summarises the solution that we will describe in detail in the following chapters.

4.1 GOAL

Our main goal is to develop a migration framework for GUISs of legacy systems built with RAD
environments, in order to migrate them to modern platforms and/or different GUI frameworks
in such a way that the implementation of the new system follows common best practices. As
stated in Section 1.2, to reach this objective we have identified three high level goals: to de-

fine an architecture (goal G1) for the framework to be developed, which should separate and

67

make explicit the different aspects involved in the GUI of RAD applications, and that should
deal with the layout and event handlers (goals G2 and G3). This implies addressing the two
aforementioned issues: coordinate-based layouts and tangling of concerns. We propose to ap-
ply static analysis on the GUI-related artefacts of the source legacy systems in order to extract
relevant information for implementing the migrations. Particularly, we intend to analyse the
view definitions in order to extract a layout definition, and analyse the code of event handlers
to obtain an abstract representation that let us to achieve separation of concerns and get other
useful information such as the navigation flow. Granted, a requisite to apply our solution is that
source code is available.

From the examination of GUIs of RAD applications expounded in Section 2.2.2 and the study of
the state of the art presented in Chapter 3 we have elicited a set of requirements for our solution,
which can be organised in three groups: general requirements, requirements specific to the
layout inference, and requirements of the analysis of event handlers. Hence, our solution is

driven by the following general requirements:

(R1) Explicit GUI information. A high-level representation of the GUI must be discovered,
i.e,, metadata concerning the GUI The metadata should be of interest for migrating the
GUI to different platforms and GUI frameworks. It must be possible to analyse and au-

tomatically transform this metadata.

(R2) Modularity. Owing to the wide semantic gap between RAD environments and current
technologies, it would be desirable to split the reengineering process into simpler stages
to make it maintainable. In addition, a solution split in decoupled stages would facili-
tate extension (for instance, to add new processing stages) and reusability in different

projects.

(R3) Automation. We are interested in automating it as much as possible so that it can be
easily applied to alarge number of applications with minimum effort. Ideally, the process
would end up in a generation task that would produce artefacts that could be seamlessly

integrated in the new system.

(R4) Source and target independence. The reengineering process should be easy to reuse
with different technologies (source independence). Furthermore, it must be extensible,
so that new target platforms can be added without changing the reverse engineering and

restructuring stages (target independence).

68

With respect to the coordinate-based layout issue, we expect to fulfill the following require-

ments:

(Rs) Matching between the visual and logical structure. The logical structure of the views
(the GUI tree, i.e., the nesting of the widgets) must mirror the visual structure that users

perceive when they see those views.

(R6) High-levellayout representation. The layout of the views must be represented in terms
of high-level structures that ensure a proper visualisation in different screen sizes and
resolutions, such as the well-known layout managers that are used at present in a myriad
of GUI frameworks.

(R7) Misalignmenttolerance. The solution proposed must take into account that some graph-
ical editors (e.g., RAD editors) do not include alignment guidelines and therefore some
minor misalignments can occur if developers are not careful. Then, the solution must

allow certain degree of imprecision when recognising widget location.

(R8) Alternative solutions. It would be useful that the layout inference solution could out-
put different ranked alternatives in order to know which options are better according to
some criteria. Then, if the solution marked as "best’ does not produce the desired results,

developers could inspect the other options and choose a different alternative.

(Rg) Configurable layout set. Developers should be able to choose which layout managers
can be used for laying out views. This can be useful if some layout types are not available

in the target toolkit or if using certain types can result in awkward or unexpected design.

Regarding the issue of tangling of concerns, we intend to endow our solution with the following

features:

(R10) Code abstraction. Code should be abstracted so it is possible to understand what it
does (how it works). This abstraction consists of moving the code representation ("how
to do it’) to the intention of the code ("what it does’). For example, opening a database
cursor is a recurrent pattern in PL/SQL, which typically requires several instructions.
From the reverse engineering and restructuring point of view it is useful to know that
these statements just perform a database access. Raising the abstraction level in this way

facilitates later processing.

69

(R11) Code categorisation. Related to the previous requirement, the solution must provide
automated categorisation of pieces of code, so separation of concerns in the source sys-
tem can be enabled. In this way, it should be possible to differentiate between statements
related to the GUI, the control or to business logic in order to structure the new system
in multiple tiers (n-tier architecture). In [11] this is regarded as an important activity
to disentangle spaguetti code. Furthermore, sub-concerns of the GUI such as validation

rules should be also detectable.

(R12) Explicit interaction and navigation flows. The solution must be able to explicitly rep-
resent the interactions that exist between widgets and the transitions that may occur be-
tween views. For example, this is useful for migrating to many modern frameworks that

provide a means to declaratively express the navigation flow (e.g., Java Server Faces).

These requirements cover the ones that we extracted in the discussion of the state of the art
for layout recognition approaches and behaviour extraction approaches, as it can be seen in
Table 4.1.

Source/target independence R4
Provide explicit information R1
Layout model with a variety of layout managers R6,R9

Use of implementation paradigm with architectural benefits | R2,R3, R4

Separate tangled concerns Ri1

Represent transitions and dependencies with State Machine | Ri2

Table 4.1: Relationships between the requirements and the discussion of the state of the art.

In Table 4.2 we also show how these requirements try to address some of the bad practices that

are present in the applications created with RAD environments.

Implicit layout Ri1,R6
Overlapping Rs
Widget-database links | Ri1

Table 4.2: Requirements that cover bad practices in RAD environments.

70

4.2 ARCHITECTURE OF THE SOLUTION

In this section we will present the architecture of the framework we have devised for migrat-
ing legacy GUISs, which will deal with the aforementioned requirements, and which is called
GUIZMO (GUI to MOdels). The MDE paradigm presented in Section 2.3 provides mecha-
nisms (mainly metamodels and transformations) and benefits which fit the architectural re-
quirements R1, R2, R3 and R4. Therefore, we decided to implement our solution with an MDE-
based architecture because it is suitable to cover these requirements.

The summary of this section is as follows. Firstly we present the Concrete User Interface (CUI)
model that we use to represent GUIs. Secondly, we will show how the CUI model is integrated
in the context of the migration of legacy GUIs by means of the MDE-based architecture. Finally,
we will indicate how the requirements we have listed are fulfilled by GUIZMO.

4.2.1 THE CONCRETE USER INTERFACE MODEL

According to the Cameleon reference framework introduced in Section 3.3.3, a CUI model is a
technology-independant representation of a GUI that can be seen as an abstraction of the Final
User Interface (FUI). Actually, we have not devised a single CUI model, but a series of models
arranged in a star. As it can be seen in Figure 4.1, the CUI model has a base model representing
the structure of a GUI and different models connected to it that represent aspects of that GUI
that are interesting to cope with in a migration. In this thesis we have dealt with three aspects:
layout, event concerns and interactions. Validation and style are other aspects that should be
considered in a good-quality migration, but they have not been addressed in this thesis. Next
we will outline all of these models.

The Structure modelis the pivot of the CUI model. It describes the logical structure of views, that
is, the hierarchy of widgets that compose the views. This hierarchy must be aligned with what
the user sees in the screen. Moreover, it must include support for internationalisation (i18n)
and has to be backed up by a Resource model (omitted in the figures) that contains the paths to
the actual resources (images, icons, language files, etc.). The rest of the models reference the
widgets defined in this one.

The spatial arrangement of the GUI is represented by the Layout model. The layout is made up
with a composition of high-level layout components, such as layout managers (e.g., Flow layout

or Grid layout). The composition should ensure that the view will be displayed properly under

71

==y

EventConcerns model
(]

. . &=

N . o
Layout model N Py Interaction model

) %EI
L
L)
L

Structure model

P S
s .
L4
T =T
®
Style model Validation model

Figure 4.1: Concrete User Interface models in our solution

different screen sizes and resolutions, and when the views are resized.

The Style model defines the look and feel of the views, that is, background and foreground colours,
font types and sizes, border types and so forth. With this model, styles (groups of visual prop-
erties) would be defined, and inherited from other styles in order to promote reuse (somewhat
similar to CSS philosophy).

The code of the event handlers is represented in the EventConcerns model in alanguage-independent
fashion. This model presents an abstraction of the code where groups of sentences of the origi-
nal code that match some pattern are replaced by application primitives that express the seman-
tics of the code. Moreover, the code fragments are tagged with the concern (view, controller,
business logic) they are related to, and they are also structured in a control-flow graph.

The information of the Interaction model is twofold: it specifies the dependencies among views,
and also the dependencies among the widgets contained in these views. It represents the nav-
igation flows of the application by means of a Finite State Machine in which the states are the
different views of the application and the transitions are the events that let them happen. For
each view, the dependencies among widgets are represented through a dependency graph, in
which dependencies are expressed with an event-condition-action schema (similar to transi-

tions between views). For example, selecting a specific checkbox triggers an event that enables

72

M2M M2M
@ Source GUI Normalised GUI Region and
tree model tree model Tile models 2,
< v
L ey e
Legacy GUI
definition }@ Trace model CUI model
? MS)
T | =G5 |5 ot
Event handler M2M RADBehaviour
AST model model
M2M M2M
New GUI Target technology
model

Figure 4.2: Architecture of the solution (GUI2MO framework)

a certain text field.

The validation rules of the data introduced in forms are represented in the Validation model. It
also considers the notification of the validation errors to the user. For instance, rules such as
two password fields must match or that a text field must have a valid e-mail format would be

specified.

4.2.2 OVERVIEW OF THE MIGRATION ARCHITECTURE

Figure 4.2 presents the general MDE-based architecture of the solution we propose for migrat-
ing GUIs of legacy systems. Arrows indicate a model transformation that is applied (the type is
also indicated: T2M, M2M, or M2T), and dashed lines represent dependencies between mod-
els. The architecture has been simplified, as some specific models and dependencies have been
omited, to ease the comprehension of the global idea.

The input of the process is the set of artefacts that describe the GUI in a specific technology. In
some RAD environments such as Oracle Forms 6i the GUI definition and the code of the event
handlers are included in the same files, whereas in others such as Delphi 5 they are separated in
different files. From the source artefacts two types of models are injected: the Source GUI tree

and the Event handler AST. The Source GUI tree model represents the logical structure of the

73

view, that is, how the widgets are organised in the view and their visual properties, including
the position in coordinates. The Event handler AST model is the Abstract Syntax Tree (AST)
representation of the code of the event handlers, which depends on the programming language.
Some legacy tools have some peculiarities when representing the GUI tree that are not found
in current GUI frameworks. For example, in Oracle Forms there is not a component for rep-
resenting a grid of data. Instead, some of the components such as text fields or buttons have
an attribute that indicates whether the component will be repeated several times. Another pe-
culiarity is that positions are not expressed in pixels by default, but in proprietary measures, so
a conversion to pixels or other standard unit is required. With the aim to avoid these features
that are too specific, the Source GUI tree model is transformed into a Normalised GUI tree model
that makes uniform the input of later reverse engineering algorithms so they can be reused with
independence of the legacy technology.

Legacy management applications were frequently used to display data in forms that are backed
up by a relational database. In this kind of applications, many actions were recurrent, such as
displaying a data table after selecting a row in another data table (master-detail pattern). The
RADBehaviour model is an abstraction of the source code that captures the behaviour of event
handlers in terms of simple primitives which are common in RAD environments, such as read
data from a database or write some data in the GUI controls. Even though it is not its primary
purpose, this model also serves us to make the rest of the analysis independent of the language
in which the event handlers were written.

It is important to note that the T2M to create the Source GUI tree model, the T2M that injects
the Event handler AST model, the M2M to derive the Normalised GUI tree model, and the
M2M to create the RADBehaviour model, must be implemented for every new source technol-
ogy, but the rest of the process is reused.

The Normalised GUI tree model is the basis on which we apply some reverse engineering al-
gorithms to obtain the Structure model, the Layout model and the Style model, which are the
visible’ parts of the CUI (what users see in the screen). The transformation of the Normalised
GUI tree model into the CUl is not performed in a single step but in several steps which are sup-
ported by some intermediate models (Region and Tile models) that we will present later. On the
other hand, the RADBehaviour model is used to derive the part of the CUI that is related to the
interaction (Interaction model) and the behaviour of the interface (EventConcerns model).

It usually happens that when raising the abstraction level, an amount of details that appear in the

source artefacts are missed because they are too specific of the source technology. However, this

74

information that is intentionally lost in the abstraction process may be useful when generating
the Final User Interface, for example to know what is the source of the generated elements in
case there were bugs or unexpected results. In these cases, a traceability mechanism can be
used to ensure that all the information is available when generating the Final User Interface.
The Trace model serve us for this purpose by linking the Structure model with the Source GUI
Tree model and the EventConcerns model with the Event Handler AST model.

Once all the models conforming to the CUI and Trace metamodels have been generated, a
model transformation can be applied to move the GUI information expressed in the CUI to
a particular technology or a different UIDL, and from that model, generate the Final User In-
terface of the new system. In the following chapters we will focus on the different parts of the
architecture presented in 4.2, and we will describe all the metamodels and transformations that

are implied in the process.

4.2.3 REQUIREMENT IMPLEMENTATION

Table 4.3 summarises how the requirements elicited in Section 4.1 are fulfilled in the GUIZMO

arquitecture.
R1: Explicit GUI information Metamodels
R2: Modularity Model transformation chain
R3: Automation Model transformation chain
R4: Source independence Normalised GUI tree model,

RADBehaviour model

R4: Target independence CUI'model
Rs: Logical/visual structure matching Structure model
Ré6: High-level layout representation Layout model
R7: Misalignment tolerance Layout inference algorithm
R8: Alternative solutions Layout inference algorithm

Ro:

Configurable layout set

Layout inference algorithm

RADBehaviour model
EventConcerns model

Ri1o: Code abstraction
Ri1: Code categorisation
Ri2: Explicit interaction and navigation | Interaction model

Table 4.3: Implementation of the requirements

Using MDE endowes the solution with some benefits. The use of metamodels serve us to ex-
plicitly represent the metadata that have been gathered from the source system (R1). The model

transformation chain splits the whole migration process in smaller steps, then promoting mod-

75

ularity (Rz). Moreover, the transformation chain is executed automatically, which fulfils re-
quirement R3. In the transformation chain we introduced the Normalised GUI Tree and RAD-
Behaviour models that makes the approach independent of the source RAD technology, and
the CUI model that makes it independent of the target technology (R4).

Matching thelogical and visual structures is supported by the Region model and finally achieved
in the Structure model (Rs). The Layout model is used to represent the layout of the GUI
by means of high-level constructions (R6). Our reverse engineering algorithms are designed
to deal with certain misalignment tolerance (R7) and output alternative layout compositions
(R8). Moreover, they are configurable so the layout sets (i.e., the different types of layouts) to
use can be specified (Rg), as well as some other parameters such as the comparison margin used
to obtain misalignment tolerance.

The solution raises the abstraction level of the source code by means of the RADBehaviour
model (R10). Then, that model is used to categorise the code according to the tier to which
it belongs (R11). Other useful information such as the interaction and navigation flows are

extracted from the RADBehaviour model and represented in the Interaction model (R12).

76

Design is not just what it looks like and feels

like. Design is how it works.

Steve Jobs
(Suggested by Pablo Gémez)

Layout inference: greedy approach

Layout is the sizing, spacing, and placement of content within a window, which is a key aspect
in GUI design, as explained in Section 2.2. In this chapter, we explore the concerns involved in
discovering layout relationships among user interface elements. We focus on GUIs built with
legacy IDEs, particularly RAD environments, in which the layout is implicitly represented by
means of the explicit position of widgets. The solution we propose can be reused with any GUI
that matches the features of RAD environments related to the implicit layout, and in fact, in the

next chapter we will apply the same schema to the wireframing tools.

Figure 5.1 shows the whole architecture of the reengineering approach proposed in this thesis,
which was described in Section 4.2.2. In this chapter we will focus on the parts of the reengi-
neering process used to obtain the Structure and Layout models (highlighted in black), which
are the main static components of the CUI model, and we will see how to use them to generate

anew GUI

Basically, the layout inference process obtains an explicit Layout model in three stages: region

identification, positioning system change, and high-level structure detection. Several meta-

77

fe
JA Source GUI Normalised GUI Region and (‘E
SOU tree model tree model Tile models %2,

D g

Legacy GUI
definition

Trace model CUI model .
Layoutmodel

=)

Structure model

N
©r %EI ©r

M2M M2M
New GUI Target technology
model

Figure s5.1: Part of the architecture explained in this chapter.

models and algorithms have been defined to implement this process, which will be explained in
detail in this chapter. We will put this process in the context of Oracle Forms 6, which is a con-
crete RAD environment, and we will evaluate the algorithms by reverse engineering two real
legacy applications, built by two different companies, and consisting of 57 and 107 windows of

different types, respectively.

5.1 MDE ARCHITECTURE FOR LAYOUT INFERENCE

Figure 5.2 represents the transformation chain that we have devised to deal with the reengi-
neering of RAD GUIs. Note that this figure depicts the same elements that are highlighted in
Figure 5.1 in addition to the Region and Tile models which were represented in one box in
the former diagram. The steps involved in the reverse engineering part (layout inference pro-
cess) have been highlighted. Boxes stand for models and solid arrows depict M2M transforma-
tions, and dashed arrows mean model dependencies (i.e., a model refers to elements of another
model).

The actual input of the layout inference process is the Normalised GUI Tree model. This model
conforms to the so called Normalised GUI Tree metamodel which generalises concepts that are
common to GUISs built with legacy tools. It is a kind of normalisation model that is intended to
make the rest of the reverse engineering process independent of the source technology. On the
basis of that model, we apply an algorithm to identify distinguisable parts in the views of the
legacy GUI, thus obtaining the Region model. The Tile model, which is obtained from the anal-

ysis of the Normalised model and the Region model, is a representation of the GUI views that

78

Tile
JUPPEEL AR model

Target
code
A

Legacy
artefact

Ccul
model

Region
model

Source

Target
technology
model

Normalised
GUI tree
model

technology >
model

Figure 5.2: Model-based architecture used to migrate legacy GUIs.

includes a positioning system of the widgets based on relative positions among them. The Tile
and Normalised models are the input of the transformation that generates the CUI model and
the Trace model (omitted in Figure 5.2). The latter simply keeps links between the CUI model
and the Source GUI Tree model, and can be obtained by traversing the models by means of the
backward references. Although in our case studies we have not made use of the Trace model,
it can be useful in the later restructuring or forward engineering phases, for example, if we per-
formed some modifications in the CUI model and the whole transformation chain needed to
be re-run without overwriting the changes (GUI evolution) [4]. It is worth remarking that this
architecture integrates the Structure and the Layout model in the same software artefact (the
CUI model).

5.2 REVERSE ENGINEERING METAMODELS

In this section we describe the Normalised GUI Tree metamodel (from now on, Normalised
metamodel) and CUI metamodels that were presented in the previous section. Contrary to
Source and Target Technology models, Normalised and CUI models are independent of a con-

crete technology.

NorMALISED GUI TREE METAMODEL

The commonalities of the GUIs built with RAD environments are described by means of this
metamodel. It is a generic representation which allows the GUI of source RAD applications to

be expressed in terms of features which are typically provided by RAD environments, such as

79

widgets positioned with coordinates (which form an implicit layout) and a hierarchy of com-
mon widgets.

In essence, the Normalised metamodel represents a GUI definition as follows. There are two
types of Widgets: Containers (e.g., PlainPanels) that nest other Widgets, and SingleWidgets(e.g.,
TextBoxes), that cannot contain other Widgets. A View represents the area of the screen that
displays the part of the GUI that a user sees at a particular moment, such as a desktop application
window. Both Views and Containers can nest Widgets, and the complete hierarchical structure of
a View formed by Containers and SingleWidgets is called GUI tree. From here on, the term View

will be used to refer to the metaclass and the term view will be used as a general concept.

Widget
o.n | % integer

— y: integer
width: integer
height: integer

/VV\

Container SingleWidget

/V%V\ P NN

View Panel | |WidgetGroup| | TextBox| |DataGrid| | Custom

AN

PlainPanel | | TabbedPanel

children

Figure 5.3: Excerpt of the Normalised metamodel.

The design of the Normalised metamodel has been driven by the identification of common fea-
tures of legacy-tool-based GUIs that were listed in Section 2.2.2. An excerpt of the metamodel
is shown in Figure 5.3. These features and their representation in the metamodel are outlined

as follows:

« Implicit layout. The position of Widgets is stated by means of coordinates that are rela-
tive to the main window or another container. In the metamodel this is conveyed by the
Widget metaclass which has x and y attributes (a coordinate), and an explicit width and

height.

+ Clustering elements. There are special widgets which are intended to group and/or

8o

highlight semantically-related widgets. These widgets are represented as subtypes of
Container in the metamodel. We distinguish between Panels that are elements that ar-
range a window in parts (in some legacy environments they can also be reused between
windows), and WidgetGroups that are used to highlight a set of widgets in close proxim-
ity, frequently by means of a border.

Overlapping. Widgets are often loosely contained in their container, that is, they are
overlapped with the container instead of having explicit containment relationships. A
container could also be overlapped with another container. This means that a Container
may not have any widget in the children reference, although there may be some widgets

that would (visually) be expected to be contained.

Standard widgets. Legacy environments share a common set of standard widgets, such
as text boxes, buttons, combo boxes, tables, and so forth. They are represented in the

metamodel with metaclasses inheriting from SingleWidget.

Technology-dependent widgets. Source technology-dependent widgets (e.g. an Ac-

tiveX control) cannot be represented in the Normalised metamodel (which is technology

independent), and cannot therefore be part of the subsequent reverse engineering. We
propose two alternatives to deal with this issue: i) the metamodel provides a special wid-
get (Custom), that allows the reverse engineering process to deal with them, and devel-
opers are in charge of giving them a proper meaning in a later reengineering stage, ii)
some specific widgets can be emulated by one or more standard widgets from the meta-
model. For instance, an Oracle Forms multirecord is a group of single widgets (e.g. text
boxes) arranged in a tabular form, which can be mapped into a DataGrid. This mapping
is typically carried out in the normalisation stage (i.e., the transformation of a Source

Technology model into a Normalised model).

As stated previously, a Normalised model is derived from a Source Technology model by means

of a M2M transformation. Given that the Normalised metamodel does not establish tight re-

strictions regarding the arrangement of widgets, defining this M2M transformation in order

to translate Source Technology metamodel concepts into Normalised metamodel concepts is

normally straightforward.

81

CUI METAMODEL

In our solution, CUI models conform to the metamodel shown in Figure §.4, in which the layout
is explicitly modelled with compositions of high-level concepts which are present in most GUI
frameworks, such as flows of elements, grids, and so forth. It is worth noting that the Structure

model and the Layout model have been merged in a single CUI model.

[FlowLayout| [StackLayout| | GridLayout]| [BorderLayout|
[I I |

/\
I | | on
PanelConnection| |InnerConnection| |WidgetConnection|:|“
TabbegPans PIamPaneI | IArrangedPanell [Widget J<
|O..n

Figure 5.4: Simplified CUI metamodel.

Views are composed of AbstractPanels (i.e. Panels and PanelRefs), which are reusable parts of
the GUI, in such a way that a panel could be used in several views. Panels can contain subpanels
or widgets. Views and panels have a graphical style (that defines the font type and background
colour, for example) and a layout that describes how the subpanels or widgets are arranged. The
layout is expressed in terms of hierarchies of high-level arrangements (e.g. FlowLayout, Stack-
Layout, etc.), and has connections (LayoutConnection) that indicate which subpanels (Panel-
Connection) or widgets (WidgetConnection) are arranged according to it. InnerConnections do
not refer to any panel or widget and are used to create a layout tree structure. A WidgetConnec-
tion can be related to other WidgetConnections, which is used to express dependencies between

widgets (e.g. associate a text field and a label).

It is worth noting that the metamodel supports the separation between three concepts: the
panel as a reusable part of a view, its graphical style and the layout of the subpanels or widgets
that it contains. This metamodel also covers some other aspects of a GUI, such as support for

internationalisation.

82

RecordWindow

MNamelLabel |NameBox | Surmamelabel | SurnameBox

R1 .
AddressLabel | AddressBox MailButton

PaymentFrame

R2||' cardLabel |CardCombo v | DiscountLabel ¥

R3 [AddButton] [DelButton

Figure 5.5: Example view for entering personal information. (Same window as Figure 2.2).

5.3 CHALLENGES IN LAYOUT REVERSE ENGINEERING

Aswe indicated in Section 2.2.2, in RAD applications the layout is implicitly defined by the po-
sition of the elements, which are expressed in terms of coordinates. Our aim is to capture the
visual arrangement of the elements in such a way that both replicating the layout and redesign-
ing it for a different technology is easy. Transforming an implicit, coordinate-based layout (rep-
resented by the metamodel in Figure 5.3) into an explicit, high-level layout (represented by the

metamodel in Figure 5.4) poses the following challenges.

(L1) Regionidentification. A view canbe seen as a composition of parts or regions (perhaps
implicit) which provides the widgets of the view with a structure. Reverse engineering
the structure of a view by identifying regions is necessary for layout redesign. In the
example of Figure 5.5 we can make out three regions in the window. Region R2 contains
the widgets that are surrounded by the PaymentFrame frame, region R1 is composed of
the widgets above the frame, and region R3 includes the widgets below the frame (note

that R1 and R3 are implicit).

(L2) Explicit containment. As explained in Section 2.2.2, in some cases elements are not
actually contained in a container, but are overlapped. Matching the containment hierar-
chy and the visual structure of the layout greatly simplifies the reverse engineering and
restructuring algorithms, and it is thus necessary to establish explicit containment rela-

tionships.

83

(L3) Widget structure recognition. While region identification aims to recognize those
parts of which the view is structured, widget structure recognition is focused on how
widgets that are spatially-close to each other are arranged. For example, the widgets in-
side the PaymentFrame form a line. Widgets are often not perfectly aligned, so heuristics
are needed. To continue with the example, NameLabel, NameBox, SurnameLabel and
SurnameBox could form a line, but it is not clear whether MailButton would be consid-

ered as a component of this line.

(L4) Coordinate abstraction. As already mentioned, a coordinate-based positioning system
is not desirable, and thus an alternative means to represent relationships between ele-
ments is needed. For example, it would be desirable to know that NameLabel is above

AddressLabel and on the left of NameBox.

(Ls) Alignment and spacing detection. The widget structure is tunned by means of the
alignment and spacing (gaps and margins) assigned to the widgets. With the term hole we
will refer to an area of a remarkable size that does not contain widgets but is surrounded
by them, i.e., a gap of a considerable size. In the example view, there is a hole between
DelButton and ExitButton. It is necessary to capture the alignment, gaps and margins if a

similar layout is to be reproduced in a different technology.

Challenges L1 and Lz are related to the fulfilment of the requirement R1 (matching the visual
and logical structure), and challenges L3, L4 and Ls are related to the requirement R2 (high-
level layout representation). The following sections show the algorithms that deal with these

issues.

5.4 DETECTING REGIONS AND CONTAINERS

This stage is intended to tackle issues L1 and L2 commented on above (namely, region identi-
fication and explicit containment). Here, a Region model is automatically derived from a Nor-
malised model.

A Region model is a model that annotates a Normalised model in order to make visual contain-
ment relationships between widgets explicit. A Region model represents a tree of regions that
conforms to the metamodel shown in Figure 5.6. It has a unique metaclass called Region, which

has the two pairs of coordinates that define a rectangular area, and the children reference to the

84

0..n

children

Region
——@ xMin: integer 1 <J«from Normalised»
xMax: integer associated Widget
yMin: integer
yMax: integer

Figure 5.6: Region metamodel.

sub-regions contained in it. Note that Region elements are annotations for the Widgets of a
Normalised model. Region models have three main features: i) each Widget is associated with
a Region defined by two pairs of coordinates, ii) Containers and SingleWidgets must not exist
at the same level (i.e. a region that annotates a Container cannot be a sibling of a region that

annotates a SingleWidget), and iii) overlapped regions are not permitted.

SingleWidgets are prevented from being at the same level as Containers as a means to structure
the GUIin a uniform manner, so that views are divided into parts which are disjointed and com-
plementary. Each view therefore contains several separate regions (which can in turn contain
more regions or widgets), and each widget belongs to a unique region. The goal of this design
decision is twofold. On the one hand, we believe that conceptually a Ul is composed of related
parts like a puzzle in such a way that there are no widgets outside of a part. On the other hand,

it makes the structure of the UI uniform and simplifies the later algorithms.

A precondition of the algorithm used to create the regions is that the border of a Container must
never cross the border of another Container. Our framework has a previous phase that checks
whether frame border overlapping occurs. If this occurs, then the reverse engineering process
is stopped and a message is shown to the developper so he can fix the GUI manually (although,

in our experience this situation rarely arises).

In the algorithm we distinguish between three types of regions: widget regions, base regions and
extra regions. A widget region is a region associated with a widget. The term base region is used
to refer to a region that is associated with a container. Extra regions are artificial regions which
are created to contain widgets that are not included in a base region. Note that base regions and
extra regions will contain subregions, unlike widget regions. We will explain the region detection

algorithm with the ad-hoc example window in Figure 5.7. The algorithm used to create the

85

Algorithm 1 Region creation algorithm.

1: for all view do
ro < createRegion(view)

if r, # r, A contains(r,, r,) then

if Pr, # r, # ro.(contains(ry, 1,)) V
Vr, # r, # ro.(contains(r,, r,) — contains(r,,r,)) then

2:
3: forall w € getWidgets(view) do
4: r, <— createRegion(w)
5: addChild(r,, r,)
6: end for
7:
8: forallr,, r, € children(r,) do
9:
10:
11: addChild(r,, r,)
12: end if
13: end if
14 end for
15:
16: createExtraRegions(r,)
17: end for

> Gets contained widgets

Region creation example

SearchFrame

KeywordLabel

KeywordBox

SearchButton

CloseWWwindowButton

RegionExample: Canvas
SearchFrame: Frame
KeywordLabel: Label
KeywordBox: TextBox
SearchButton: Button
NextButton: Button
CloseWindowButton: Button

Figure 5.7: Left: example window for the region detection. Right: the logical structure of the

widgets.

RegionExample
SearchFrame
KeywordLabel
KeywordBox
SearchButton
NextButton
CloseWindowButton

Figure 5.8: Structure of the regions after step 2 for the example in Figure 5.7.

86

Region model (Algorithm 1) is summarised in the following steps:

1. Create a region for every Widget (lines 2 to 6). r, is a base region associated with the
window, which is the root of the region tree. r, is a (widget or base) region associated
with w, which can be a single widget or a container. add(r,, r,) means that r, is set as a
child of r,,. The area of a new region is derived from the (x, y) coordinates, the width and
the height of the Widget. For example, in Figure 5.7, a base region is created for each one
of the containers (the RegionExample window and SearchFrame), and a widget region
is created for each single widget (KeywordLabel, KeywordBox, SearchButton, NextButton,
CloseWindowButton).

2. Create a tree structure by nesting the regions according to the visual containment rela-
tionships (lines 8 to 14). The expression contains(r,, r,) is true if the coordinates of r, are
inside the rectangle defined by the coordinates of r,. For each pair of regions, r, and r,, we
make 7, a child of r, if 7, contains 7, and one of the following conditions is true: i) there is
not a different region r, containing r, (r, is a direct child of r,), ii) there is another region
r, containing r, but it also contains r, (r, is a direct child of r, which in turn is a direct
child of r,). The evolution of the example window after this step can be seen in Figure
5.8: SearchFrame now contains KeywordLabel and KeywordBox. At the end of this step,
there can be widget regions which are siblings of base regions in the Region model. Fol-
lowing with the example we can see that SearchButton, NextButton CloseWindowButton

are siblings of SearchFrame.

3. Create extra regions to prevent SingleWidgets from being at the same level (siblings) as
the Containers. The algorithm iterates once over every widget region that is a sibling of
either a base region or an extra region (at the beginning there are only base regions). For

each widget region we have three possible cases:

« Case A: the widget is not partly contained in any existing base or extra region (i.e.
the widget does not cross the bounds of any base or extra region), so a new extra
region is therefore created for the widget region. The new region takes the maxi-
mum area available without interfering with the other regions. Following with the
example, we assume that we have already dealt with KeywordLabel and Keyword-

Box, and now is the turn of CloseWindowButton. As this widget is not contained

87

in the unique base region R1 (see left part of Figure 5.9) , anew extra region Rz is

created for it (right part of Figure 5.9).

« Case B: the widget region is partly contained in a base region. In this case the size
of that base region is increased to enable it to cover the area occupied by the widget
region, and the widget is added to it. Augmenting the size of the base region may
cause that the base region overlaps some extra regions, and the overlapped extra
regions are therefore shrunk to avoid the overlapping. Continuing with the exam-
ple, let us make the algorithm iterate over SearchButton which is partly contained
in the region R1 associated with SearchFrame (left part of Figure 5.10), so we aug-
ment the base region to fully contain SearchButton (right part of Figure 5.10). This
implies that the region Rz is shrunk. If a widget is partly contained in more than
one sibling base region, then the widget is included in only one base region, and in
this case the widget is shrunk to fit into that base region. We have not found this

case yet in practice.

« Case C: the widget is partly contained in an extra region. It is necessary to reduce
the extra region that partly contains the widget so that the widget no longer enters
its area anymore. In addition, a new extra region to contain the widget is created.
Going back to the example (see Figure 5.11), the algorithm iterates over NextBut-
ton. As the widget crosses the bounds of the extra region Rz, this region is resized
to exclude the widget. Hence, a new extra region R3 is created to contain the new

widget without interfering with any of the already created regions.

The cases are evaluated in the following order: case B, case C, case A. Note that in the
example we have iterated over the widgets in a way that it facilitates the explanation of the
cases, though other orders are also possible. The different orders will end up in regions

that may differ in their coordinates but that group the widgets in the same way.

S.5 UNCOVERING RELATIVE POSITIONS

The objective of this second stage is to make the layout independent of the coordinate-based

system. This deals with issues L3, L4 and Ls mentioned previously (namely, widget structure

88

Region creation example

SearchFrame

KeywordLabel | KeywordBox

Region creation example

SearchFrame

KeywordLabel | KeywordBox

R1 — R1
SearchButton SearchButton
—
ClosewindowBUtton ClosewindowBLtton
R2

Figure 5.9: Case A. Left: example window with a base region R1. Right: a new extra region
R2 created to contain CloseWindowButton.

Region creation example

Region creation example

SearchFrame SearchFrame
KeywordLabel | KeywordBox KeywordLabel | Key dBo
R1 —_— —
SearchButton R1 SearchButton ‘
e
ClosewindowBLitton ClosewindowBLtton
R2 R2

Figure 5.10: Case B. Left: example window with a base region R1 and an extra region R2.
Right: the base region R1 is augmented to include SearchButton completely and the extra re-
gion R2 is diminished.

Region creation example Region creation example

SearchFrame SearchFrame

KeywordLabel | Ke KeywordLabel | KeywordBox

R1 SearchButton ‘ R1 SearchButton ‘
—

ClosewindowBLitton
R2 R2 R3

Figure s.11: Case C. Left: example window with a base region R1 and an extra region R2.
Right: a new extra region R3 is created to contain NextButton, and the region Rz is dimin-

ished.

89

1 [.
Tile «enumeration»
left > up HAlignment
x: in
. LEFT
«from Normalised»|_ associated | Width: _",“ RIGHT
Widget 0.1 hellght. int
. hSize: float «enumeration»
children | \size: float VAlignment
0..n | vAlignment: VAlignment TOP
hAlignment: HAlignment MIDDLE
right [down BOTTOM
0..n ﬁk 0..n

[I
CoarseGrainedTilel |FineGrainedTile

Cl

hildren ' '
or itemTile|] | HoleTile|

[|
| PanelTile| [TabbedPanelTile] | LineTile] [ColumnTile| |PairTi|e|07|3inqleTi|e|

Figure 5.12: Tile metamodel.

recognition, coordinate abstraction, and alignment and spacing detection). The input of this
stage is a Region model, and a Tile model is automatically generated.

Tile models are mainly focused on representing how widgets and containers are arranged, in
terms of relative positions among them. We define a tile as a part of a view with spatial relation-
ships with other neighbouring parts. For example, a certain tile could have another tile above it
and a different tile below. This positioning system is useful for the later identification of high-
level layout patterns, as will be shown in Section 5.6. Tile models also refine Region models by
identifying sub-structures inside regions, such as groups of widgets that form a line.

The Tile metamodel is shown in Figure 5.12. The main concept is that of Tile. Every Tile is
associated with the Widget from which it originated, if one exists (i.e. some tiles originated
from extra regions). Such references to the Normalised model are propagated from the Region
model. There are four zero-to-many relationships between tiles, which are used to relate the
tiles spatially, namely right, left, up, down. We use hSize and vSize to measure the percentage of
the width and height that is taken up by that tile in the view with regard to the width and height
of the container tile. Tiles also include information about the area they take up by means of x,
¥, width, height. A tile can also be aligned with regard to its container tile, and hAlignment and
vAlignment are used for this purpose. We distinguish four kinds of tiles:

« Coarse-grained tiles: these tiles arrange a view in parts which can be visually distin-

guished. Each tile represents a block of related widgets which are in the same area and

90

are likely to contain widgets to perform system actions (e.g., the bottom buttons in Fig-
ure 5.5), or data concerning a topic such as “payment details”. All base and extra regions
are mapped to this kind of tile. For instance, in Figure 5.5 the regions R1, Rz, and R3 are
mapped to PanelTiles.

Fine-grained tiles: these tiles arrange a set of widgets that are spatially close and have a
certain spatial structure, such as a horizontal line (LineTile) or a vertical column (Colum-
nTile). Fine-grained tiles are aggregated inside coarse-grained tiles. To continue with the
example, NameLabel, NameBox, SurnameLabel and SurnameBox are all mapped together

to a LineTile.

Item tiles: they are associated with single widgets (SingleTile) and pairs (PairTile) of re-
lated widgets such as a text box (e.g. NameBox) and its associated label (e.g. NameLabel).

Item tiles are contained in Fine-grained tiles.

Hole tiles: these tiles represent a portion of the view of notable size which has no wid-

gets, such as the space between DelButton and ExitButton in Figure s.5.

T1 — T3 T5

...................... T4

Figure 5.13: Adjacency example

1/2[....A......._.”___B _____ 11/3 C

Figure 5.14: Horizontal intersection value example

Next, we establish some of the concepts which allow spatial relationships between tiles to be

detected. Figure 5.13 is used to illustrate these concepts. All the following concepts are defined

over tiles, but since we have the (X,Y) coordinates, the width and height of both regions and

tiles, the concepts are applicable to regions too.

91

We will define adjacency as a criterion with which to decide whether two tiles of the same kind
are spatially related (for example, that a coarse-grained tile T1 is on the left of another coarse-
grained tile T2). Our definition of adjacency is based on the concept of sharing. A pair of tiles
is vertically sharing if the intersection of the projections of both tiles on the X axis is not empty,
i.e. the x-range of both tiles is overlapped. Likewise, a pair of tiles is horizontally sharing if the
intersection of the projections of both tiles on the Y axis is not empty, i.e. the y-range of both
tiles is overlapped. As is observed in Figure 5.13, T2 and T3 are vertically sharing, and T2 and
T4 are also vertically sharing, but T3 and T4 are not.

The introduced definitions of sharing are too strict because they consider that overlapped pro-
jections always reflect horizontal lines or vertical columns. For instance, in Figure .14 A, Band
C may (or may not) form a line, because they are not perfectly aligned. This can be addressed
by modifying the sharing definition to be more tolerant, and we introduce the intersection value
with this aim. We define the vertical intersection value as the percentage of width that a pair of
tiles have in common. It is calculated as the intersection of the x-ranges of the pair of tiles di-
vided by the minimum width of both tiles. Similarly we define the horizontal intersection value
between a pair of tiles as the percentage of height that a pair of tiles have in common, which is
calculated as the intersection of the y-ranges of the pair of tiles divided by the minimum height
of both tiles. Figure 5.14 shows how this function is applied. The percentage of the height
that tile A has in common with tile B regarding tile A is 0.5, while the value is 0.33 as regards
tile B. The result is therefore the maximum value, that is 0.5. Note that a pair of tiles that are
horizontally sharing always have a positive horizontal intersection value (similarly with the ver-
tically sharing). The sharing can be redefined (for horizontal sharing as well as vertical sharing)
as follows: a pair of tiles are sharing if the intersection value is greater than a threshold which
represents the tolerance level, currently set to o.s.

Based on the concept of sharing, we can now define adjacency. A tile t, is vertically adjacent to
another tile ¢, if and only if both tiles are vertically sharing and there is no tile f, between t,
and t,. Likewise, a tile t, is horizontally adjacent to another tile ¢, if and only if both tiles are
horizontally sharing and there is no tile f, between ¢, and t,. There is a precondition that the
tiles ¢, and t, must not be overlapped (in our case this is enforced by the Normalised model).
To continue with the example in Figure 5.13, we can see that T2 and T'3 are vertically adjacent,
and T1 and T4 are horizontally adjacent, among others.

The up, down, left, right relationships of the tiles are defined based on the adjacency as follows.
For atile t, it is true that t,.right = {t,} and t,.left = {t,} ift, and t, are horizontally adjacent

02

and t, is to the right of t,. The down, left, right relationships are defined in a similar way. Note
that when one type of relationship is established for a tile, the opposite type is also set. In the

example shown in Figure 5.13, we have the following relationships for T'1, T2 and T4:

Tr.right = {T2, T3, T4}
Ta.left = {T1}; Ta.right = {Ts}; T2.down = {T3, T4}
T4.up = {T2}; Tq.right = {Ts}; Ta.left = {T1}

As canbe seen, T2.down = {T3, T4}. However, there is a blank space between T2 and T4 that
is not captured with the concept of adjacency. Thus, there is some layout information that is

lost due to blank spaces being ignored.

In order to tackle this issue, the first step is to set a criterion with which to decide whether two
vertically/horizontally adjacent tiles are not sufficiently close, but there is a significant blank
space between them. We define that a pair of widgets is horizontally close if the percentage of
the horizontal distance between the pair, with regard to the container width is smaller than a
particular value. A pair of widgets is vertically close if the percentage of the vertical distance
between the pair, with regard to the container height is smaller than a particular value. It is
currently set at 20%. In the example shown in Figure 5.13, when using this criterion we have

that T2 and T3 are adjacent and close, whereas T2 and T4 are adjacent but not close.

When a blank space is detected, two complementary approaches are used to represent it. The
first one is to specify that some tiles are aligned with regard to the container tile. To continue
with the example, T1, T2 and T3 are aligned on the left, T's is aligned on the right, and T4
is aligned in the bottom-center. There can be several adjacent tiles with the same alignment,
which does not mean that all these tiles have to be attached to the bounds of the container.
For instance, T1 and T2 are both aligned to the left but actually T2 is on the right of T1. The

alignment solution has the disadvantage that there may be blank spaces that are not represented.

The second approach is to include HoleTiles which represent blank spaces in the layout, thus
signifying that an arbitrary distance between tiles must be maintained. These kind of tiles have
dimensions that are specified as a proportion between the empty space and the width or height
of the container. Since they are not exclusive solutions, both have been implemented in order to

facilitate the obtaining of an accurate high-level layout in the CUI model. The hAlignment and

93

vAlignment attributes were introduced for the first alternative and the HoleTile metaclass for the
second one.

Next, the algorithm that takes a Region model and generates a Tile model is presented. Some
auxiliary functions are not explained, but their names denote what they do. The algorithm is
organised in four phases: i) creating the tiles, i) establishing up, down, left, right relationships
between tiles, iii) setting the spatial alignment of the tiles with regard to the container tiles, and

iv) creating hole tiles to represent blank spaces. Each phase will be explained separately.

PHASE 1. The first phase (see Algorithm 2) generates tiles based on regions. The algorithm
traverses the Region model recursively from the root region. It has two parameters: i) the con-
tainer region (base or extra region) to be traversed, and ii) the parent tile which will contain
the created tiles. For each container region (the parameter) to which the procedure CreateTiles
is applied, it creates a coarse-grained tile (line), and for each widget region that is a child of
the parameter region, it creates an item tile (lines 10 to 13).

Fine-grained tiles are generated for the content of container regions which include widget re-
gions (lines 7 to 15). This is done by using a clustering algorithm that is applied to the con-
tainer region in order to identify structures of widget regions (line 24). The clustering algo-
rithm makes a first attempt to group widgets in horizontal lines or columns (horizontal lines
have priority over columns) based on the vertical/horizontal sharing. As it has already been
said, a pair of regions are sharing if their intersection value is higher than a threshold (set by
default at 0.5), and will therefore be classified in the same group. In cases it happens that some
widget regions have such a big height that they are horizontally close to widget regions in more
than one line, that is, they can belong to different lines of widgets (e.g. tile T1 in Figure 5.13).
Similarly, some widget regions may be so wide that they are vertically close to widget regions in
more than one column. In order to avoid this, we create new groups for those regions that are
classified in more than one group (lines 26-31). Finally, we check that adjacent regions inside
the groups are vertically/horizontally close, and if this is not the case, then the group is split

(lines 32—36).

PHASE 2. The second phase of the tile creation algorithm establishes the up, down, left, right
relationships between adjacent tiles. For each ordered pair of tiles (t,,t,) which are children

of the same coarse or fine-grained tile, t,.up <— t, and t,.down <« ¢t if: i) they are vertically

94

Algorithm 2 Tile creation algorithm. Phase 1: Mapping and clustering.

1: root <— getRootRegion|()
2: createTiles(root, ()

3:
4: procedure CREATETILES(region, parentTile)
5 coarseTile < createCoarseGrainedTile(region)
6: if containsWidgetRegions(region) then > All children are widget regions
7: groups <— clusterWidgets(region)
8: for all group € groups do
9: fineTile < createFineGrainedTile(group)
10: for all itemRegion € group do
11: itemTile <— createltemTile(itemRegion)
12: add(fineTile, itemTile)
13: end for
14: add(coarseTile, fineTile)
15: end for
16: else > All children are container regions
17: for all childRegion € children(region) do
18: createTiles(childRegion, coarseTile)
19: end for
20: end if

21: addChild(parentTile, coarseTile)
22: end procedure

23:
24: function CLUSTERWIDGETS (region) > Clustering algorithm
25: G < detectGroups(children(region)) > Uses horizontal /vertical sharing
26: forall G,, G, € G.(G,NG, # () do
27: Guew < G, NG,
28: remove(Gl, Gmw)
29: remove(G,, Gpew)
30: add(G, Gnew)
31: end for
32: forall G, € Gdo
33: if Ir,, r, € G,.(areAdjacent(r,,r,) A notClose(r,, r,)) then
> Uses horizontally/vertically close
340 splitGroup(G,)
35: end if
36: end for
37: return G

38: end function

9S

adjacent, ii) they are vertically close and iii) ¢, is above t,. The left, right sets are obtained in the

Same manner.

Algorithm 3 Tile creation algorithm. Phase 3: Alignment.

1: forallt, € Tioarse U Tine do > £, is a coarse-grained or fine-grained tile
2: HAlignedSeq = {}
3: OrderedTiles <— topologicalSort(children(t,))

> Topological sort from up to down and left to right
forall t, € OrderedTiles do

4:
5: /* For simplicity we are only considering the horizontal alignment */
6: add(HAlignedSeq, t,)

7: if t,.right = {} then
8: xMinPercent <— first(HAlignedSeq).x/t,.width
9: xMaxPercent <
(last(HAlignedSeq).x + last(HAlignedSeq) .width) /t,.width

10: if xMinPercent < Lower _threshold then

11: forall t, € HAlignedSeq do t,.hAlignment <— LEFT

12 else if xMaxPercent > Upper Threshold then

13: forall t, € HAlignedSeq do t,.hAlignment <— RIGHT

14: else

15: forall t, € HAlignedSeq do t, .hAlignment <— CENTER

16 end if

17: HAlignedSeq = {}

18: end if

19: end for

20: end for

PHASE 3. The third phase (see Algorithm 3) is in charge of aligning tiles with regard to their
container tile. The idea behind this algorithm is based on the following two principles: i) if a
tile is very close to the boundaries of its container tile, then the tile is aligned with regard to
them, and ii) if several tiles are next to each other, then all of them have the same alignment.
For instance, let us assume that in Figure 5.13 the tiles T1, T2, T4 and T’ are very close to the
boundaries of the container tile. Therefore T'1 is aligned to the left because it is close to the left
boundary, and T2 and T3 are aligned to the left because they are on the right of Tz which is
aligned to the left.

In the algorithm the tiles are iterated in a topological order (lines 4-19), which is computed

96

from the directed graph that results from taking into account only the right and down relations
of the tiles. We add each tile to the current alignment group (line 6) and when there are no
more adjacent close tiles on the right (line 7), then we assign an alignment type to each one of
the tiles in the group (lines 8 to 18). If the most-left tile of the group (the first tile) is close to
the left boundary, the alignment is LEFT (line 11). If the most-right tile of the group (the last
tile) is close to the right boundary, the alignment is RIGHT (line 13). If none of the previous
cases is applicable, then the alignment is set to CENTER.

PHASE 4. The last phase of the algorithm identifies significant blank spaces in the view, and
creates hole tiles for them. For each pair of tiles that are children of a coarse or fine-grained
tile, if the tiles are adjacent and are not close, then we create a hole tile. This new hole tile is
placed between t,, t, and the up, down, left, right relationships of both tiles are modified. These
properties are also initialised for the hole tile according to its relative positioning regarding the

t, and t, tiles. Finally the new hole tile is added to the parent tile.

5.6 HIGH-LEVEL LAYOUT

At this stage, information about the relationships among elements of the GUI has been gath-
ered. However, it is convenient to take a further step forward in the way in which the layout
is represented in the Tile model to make it more similar to the layout managers provided by
modern GUI frameworks. To this end, the CUI metamodel introduced in section 5.2 defines
explicit high-level layouts such as grids (GridLayout) or stacks of elements (StackLayout). For
example, if we had a sequence of tiles sorted vertically (each tile below another one), we would
explicitly “mark” those tiles as forming a stack layout. The layout types which we use are in-
cluded in common GUI frameworks such as Java Swing, as well as in diagram editors and other
domains [100, 101].

CUI models are generated from Normalised models by using the information provided by the
Tile model, in the form of annotations. The algorithm that creates CUI models from Tile mod-

els is split into three phases:

1. Create the structure tree. The widgets in the Normalised model are mapped to CUI wid-
gets, and the tree structure of the widgets of the CUI model is created according to the

containment relationships detected in the Region identification stage. With this aim, the

97

tile model is traversed in a recursive manner, and the following actions are performed ac-
cording to the tile type: if the tile is a coarse-grained tile, it creates a Panel, adds it to its
container View or Panel, and continues with the tile children; if the tile is a fine-grained
tile, it simply navigates its children; if it is a single tile, it creates a widget for it and adds

it to the container Panel.

2. Create the layout tree. In order to get the high-level layout tree, the Tile model is traversed
recursively. For each coarse-grained tile we apply several fitness functions on its children
and the layout type whose fitness function returns the greatest value is selected. The fit-
ness functions return a number between o and 1 that represents the estimated percentage
of tiles that fit the layout out of the tiles in the group. A new layout of the selected type is
created by applying a heuristic associated with the layout type. In the case of fine-grained
tiles, LineTiles are directly mapped to FlowLayouts, and ColumnTiles are directly mapped
to StackLayouts.

3. Link both trees. It links the GUI and layout trees, by selecting the layout for each container

and the container of each child connection of each layout.

The tree structure of the layout tree in step 2 is achieved by means of the LayoutConnections.
Each new layout that is created is nested in the parent LayoutConnection. Depending on the
type of children tiles, different LayoutConnections will be created: PanelConnection if the child
is a coarse-grained tile (it is associated with a Panel in the step 3), InnerConnection if the child
is a fine-grained tile, and WidgetConnection if the child is a item tile (it will be associated with a
Widget in the step 3). Then, the same process is applied for each children coarse or fine-grained
tile with the LayoutConnection as a parameter.

As can be noticed from step 2, we have a set of layout types and each of them has an associated
heuristic and a fitness function. The heuristics select a starting tile and navigates its left, right,
up, down references in an attempt to discover whether related tiles form a high-level layout. In
general, several alternative layouts can be found to obtain a similar GUI from a visualisation
point of view. In order to decide which layout best fits a group of tiles, the fitness functions
are calculated for the group, and the layout heuristic whose fitness function is maximum is ap-
plied. It may happen that two or more functions return the highest values. In this case, the best
layout is selected according to the following priority criterion: FlowLayout, StackLayout, Grid-
Layout, BorderLayout, VHLayout, HVLayout. Next we will detail each type of layout, as well as

the heuristics and fitness functions.

98

FrowLAYouT AND StAckLAYOUT

A FlowLayout is a set of tiles arranged in a row (horizontal line). Similarly, a StackLayout is a
set of tiles arranged in a column (vertical line). The tiles are contiguous, i.e. there cannot be a
big separation between a pair of tiles. If the layout defines some kind of alignment (horizonta-
|Alignment and vertical Alignment), all the widgets to which the layout is applied are aligned in
that way.

The heuristic for the FlowLayout takes the top-left tile and navigates the tiles to the right until
there are no more tiles. When there are several tiles to the right of a tile, only the uppermost
tile is selected. For the StackLayout, the heuristic starts with the top-left tile and navigates to
the bottom until there are no more tiles. When there are several tiles below a tile, only the
leftmost is selected. As it has already been said, these heuristics are only applied to the content
of coarse-grained tiles, since fine-grained tiles are directly mapped.

The fitness function for the FlowLayout obtains the percentage of tiles that can be navigated
from left to right (starting with the most top-left tile). The fitness function for the StackLayout
obtains the percentage of tiles that can be navigated from top to bottom (starting with the most
top-left tile). In these functions HoleTiles are considered to be tiles that have not been navigated
and then they reduce the fitness value.

Letus focus on the Figure s.5 to show some layout examples. We can find a FlowLayout in the re-
gion R2 composed of CardLabel, CardCombo, DiscountLabel and DiscountCheck. A StackLayout
is formed by the three regions R1, R2, R3. In the region R3 we could see a non-perfect match of
the FlowLayout heuristic. Assuming that AddButton and DelButton form a fine-grained tile and
ExitButton forms another fine-grained tile, the fitness function would return 0.66. This value is

caused by the hole that exists between both tiles (2 fine-grained tiles / 2 fine-grained tiles + 1
hole).

GripLAYOUT

This is a set of tiles arranged in a grid of n rows X m columns. The number of rows and columns
may be different, but all the rows (and columns) must have the same number of tiles.

In this case the heuristic starts with the top-left tile and navigates the group of tiles from left to
right and from top to bottom in a tabular way.

The fitness function returns the percentage of tiles that can be matched by a rectangular grid. It

starts with the top-left tile and counts the number of tiles of the biggest grid possible. HoleTiles

99

are not counted (they reduce the fitness value).
When some tiles fita FlowLayout or StackLayout, then they also fita GridLayout. For this reason,
FlowLayout and StackLayout have a higher priority than GridLayout. There are no GridLayouts

in the example introduced in Figure s.5.

BorpERLAYOUT

Thislayout divides the container into five parts: left, right, top, bottom and center. The heuristic
selects at most one tile for each one of the five given parts as follows. A tile t will be: in the
top part if t.vAlignment = TOP, in the left part if t. hAlignment = LEFT, in the center part if
t.hAlignment = CENTER, in the right part if t. hAlignment = RIGHT, and in the bottom part
if t.vAlignment = BOTTOM. In addition, for a tile to match a part it must keep some relations
with the rest of the tiles (e.g. the left tile must be below the top tile, on the left of the center tile,
and above the bottom tile).

The fitness function evaluates the tiles that can fit any of the five areas predefined by a Border-
Layout. If there is more than one tile that can fit one part, these "excess” tiles are penalised.
In contrast to other layouts, a HoleTile is not penalised but permitted. Note that because the
FlowLayout and StackLayout have a higher priority, a BorderLayout with emtpy parts (i.e. Ho-
leTiles) that matches FlowLayout or StackLayout will be never selected. For instance, in Figure
5.5, the regions R1, R2 and R3 could be considered as a BorderLayout with top, center and bot-
tom parts, but they are detected as a StackLayout.

In Figure 5.5, we can find an example of BorderLayout in the region R3. In that region, the
widgets AddButton and DelButton are grouped in a fine-grained tile and ExitButton is another
fine-grained tile. Thus, AddButton and DelButton are the left part and ExitButton is the right part
of the BorderLayout (there are only two parts). In this case the fitness function associated with
the BorderLayout returns 1 (i.e. the maximum value), so we can see that the hole has not been

penalised.

HVLAvyout aAND VHLAYOUT

An HVLayout is a FlowLayout composed of StackLayouts. A VHLayout is a StackLayout com-
posed of FlowLayouts. An HVLayout can have a different number of elements in each column
while in a GridLayout all the columns must have the same number of rows. Similarly VHLayout

is not restricted to have the same number of elements in the lines (rows) as in a GridLayout.

100

The HVLayout heuristic obtains the group of tiles that have no upper tiles. From the top-left
tile it navigates the tiles from the top to the bottom until there are no more tiles below, and it
thus obtains the first column. The tile from the upper tiles that is next to the top-left tile is then
selected and navigated to the bottom until it obtains a second column which will be to the right
of the first column. This process is repeated while new columns on the right of existing ones
can be found. The heuristic penalises HoleTiles. The heuristic for VHLayout is similar to the
HVLayout heuristic but in this case it searches for rows until there are no more rows below the
previous one.

VHLayout and HVLayout are more general than the others and may fit in most cases, in fact
VHLayout is the most common layout found in legacy applications. On the other hand they
are less specific and do not capture the visual design as well as other layouts such as GridLayout
and BorderLayout. Because of this, GridLayout and BorderLayout have a higher priority than
VHLayout and HVLayout, but alower priority than FlowLayout and StackLayout since the latter
are more specific.

In the example window in Figure .5, we can see a VHLayout in region R1, where there are two

lines of widgets.

UNKNOWN

If the maximum value returned by all the fitness functions is below a certain threshold (it has
been set to 0.65, which means that equals or more than 65% of the elements in the group must
fit the layout), then an UnknownLayout is created, which is a special layout that indicates that
the layout of the group must be determined by the developer.

5.7 DETAILED EXAMPLE

This section illustrates our GUI reengineering approach by applying it to an example in detail.
A typical window from the case study presented in Section 5.8 has been selected and translated
into English. This shown in Figure 5.15, and will be used throughout this section to guide the
explanation.

The window is used to manage grant calls. The upper part of the window contains some ad-
ministrative information about the call, such as the title, the identifier and the type. There is

also a button to refresh the data and a button to send the call data to an administrator by e-mail.

101

CallIdentifier I_TE Entity Code ENTITY_TEXTEO Call Type |CALL_TYPE1_COmBOl ™| ¢%
Title [TITLE_TEXTEOX @
Third Parties | Activiies | Modaliies |
Resolution Date RESOLUTION . Publication Date FUEILICATIOI\ Correct. Date 15t k:ORRECT1 7 2nd k:ORRECTZ_'I
Doc. Available At DOC_TE}{TEIO}{
Official Publication [2FFICIAL_TEXTBOX &
hore Info 'NFO_TE}{TEIO}{ Count Hours [w
Third Party Convener W @
Mame Patticipation Type @
F\JAME_TEXTEIOX FARTICIPATION_TE}(TEIO}{
wieh Spreading
active Call Type |CALL_TYPE2_COMBOBOX =l

% 8 Y < AR W

Figure 5.15: Example window

The middle of the window contains a tabbed panel, which provides more information about
the calls. The Third Parties tab contains general call information such as the resolution date, the
date of the publication and later corrections, or where it is published. The Third Party Convener
frame specifies which companies are involved in the call and the type of participation. There is
also a functionality with which to search for companies by means of buttons. The Web Spreading
frame contains information related to the on-line publication of the call. The lower part of the
window contains several buttons which are used to add, delete or update the data, in addition

to other functions such as quit the application.

Each step of the migration chain will be described in the following sections.

5.7.1 INJECTION OF FORMS MODELS

The first step consists of obtaining models of the user interface from the source system. Oracle
provides a tool with which to export FMB files to XML files and this tool has been used to obtain
a definition of the application GUI in XML files. As explained in Section 5.9.1 EMF was used

to automatically obtain models that mirror the information contained in the Oracle Forms files.

102

5.7.2 MAPPING ORACLE FormMms To RAD MODELS

The model obtained in the previous step is mapped to a RAD model, thus enabling the reverse
engineering algorithms to be applied (as explained in Section 5.9.2). The RAD model gener-
ated is basically a model which contains panels and widgets that have mostly the same structure
as the canvases and widgets in the Forms model. Two problems arise when attempting to nor-
malise the example window to our RAD representation, which were explained in Section 5.9.2:
the position of prompts (labels) and how to migrate the multi-record that appears inside the
Third Party Convener frame.

For the first problem, we have an auxiliary module that calculates the relative coordinates of
the labels based on: i) certain attributes of the prompt such as alignment, attachment edge,
attachment offset, alignment offset, ii) certain attributes of the font such as: font name, font
size, font spacing, and iii) the height and width of the text displayed.

With regard to the second problem, in Oracle Forms several instances (multi-record) of the
same widget type can occur, while in current GUI technologies is usually represented with a
table widget. This is the case of the two text fields that appear inside the Third Party Convener
frame. The issue here is to decide, appart from the two text fields and their associated labels,
which widget must belong to the table. It seems clear that the button above the PARTICIPA-
TION_TEXTBOX is related to the table, but this is not so clear for the two buttons that are
on the frame line. This problem has been solved by grouping all the widgets that belong to the
same datablock in the same table, since these datablocks contain multi-record widgets. Another
option, would be to consider the percentage of the widget surface that is visually contained in
a frame that includes multi-record widgets. Thus, if 50 per cent or more of the area of a widget
is contained in a frame, it will be included in that frame. This could be used to arrange widgets
that overlap one or more frames, although the latter is not a common case. In order to generate
the coordinates and size of the new table in the RAD model, the related buttons are ignored
since they can be scattered in the window (not neccesarily next to the multi-record), and only
the area occupied by the multi-records is considered.

Figure 5.16 shows an excerpt of the resulting RAD model, which shows how the widgets in the
Third Party Convener frame have been transformed. As can be seen, the prompts associated with
the text fields are the titles of the columns, and the widgets are the types of the columns. Since
buttons do not have an associated prompt (i.e., there is no label next to a button), there is no

header for the button columns. It is worth noting that the NAME _GRID table is not contained

103

! &3 = O || & properties 22 =B

=4 Plain Panel THIRD_PARTIES_TAR L = :=:D =
< Text Third Parties

: Propetty Wallue
= < Data Grid NAME_GRID e —n
< Text NAME_LABEL = =
4 Text PARTICIPATION_LABEL Height =8
B - Marme '= MAME_GRID
@ Text Mum Rows =
<= Text Tag =
& Text Taokip =
<4 Text Box MAME_TEXTBOX Visible = brye
4 Text Box PARTICIPATION TEXTEOR Width = 477
+- 4 Button ADD_THIRD_PARTY_EUTTON Pos = 14
-4 Button SEARCH_THIRD_PARTY BUTTON Y¥Pos =108
-4 Button ADD_PARTICIPATION_BUTTON
- 4 Widget Group THIRD_PARTIES FRAME
-4 Widget Group WEB_SPREADING_FRAME -
< ' > < >

Figure 5.16: Excerpt of the RAD Model for the example window in Figure 5.15

inthe THIRD PARTIES FRAME but that they are siblings, despite the fact that a parent-child

relationship exists between them.

5.7.3 IDENTIFICATION OF THE REGIONS

Using the RAD model as a starting point, we apply the M2M transformation that implements
our algorithm in order to identify regions. The main regions identified are shown in Figure 5.17
(note that we have removed the buttons from the Third Party Convener frame since now they
are assumed to belong to the table called NAME GRID). The CALLS WINDOW _SUB_ 1
and CALLS WINDOW _SUB regions are created in order to prevent widgets such as TITLE -
TEXTBOX from being at the same level of the tabbed panel. For the two new groups of wid-
gets, the area that is enclosed by the regions is limited by the bounds of the tabbed panel and
the bounds of the window itself. The transformation also creates a region based on the two
frames that appear in the Third Parties tab. Some widgets are inside the Third Parties tab and
are not contained in any of the frames, and a new region is therefore created in order to avoid
this situation, as occurred previously. In all cases, the widgets are modeled as regions inside the
corresponding container region.

This phase of the reverse engineering process not only identifies regions, but also corrects the
containment of the regions so that they match the visual aspect. The regions are nested as they

are visually displayed, as can be seen in the tree view of the Region model in Figure 5.18, which

104

CALLS_WINDOW SUB_1

& X
Call Identifier ID_TE Entity Code ENTlTY_TExTBO Cal Type |CALL_TVPE1 _COMBO| 'I g
Tile [TITLE_TEXTBOX @
Thed Parties | Activiies || Modabties | [THIRD_PARTIES_TAB_SUB
Resohdion Dete RESOLUTION Publication Date PUELICATION Cosrect. Dafe 1t [CORRECT1_| 2nd [CORRECT2_1
Doc. Avallable A DOC_TEXTBOX
Officiad Publication OFFICIAL_TEXTBOX @I
More Info IFO_TEXTBOX Count Hours [+
- L THIRD_PARTIES_FRAME B T T
NAME_TEXTEOX PARTICIPATION_TEXTBOX
Active v Call Type | CALL_TYPE2_COMBOBOX ~| —WEB_SPREADING_FRAME
3 B S W <] AR B

CALLS_WINDOW_SUB

Figure 5.17: Some regions identified for the example window in Figure 5.15.

has been obtained using the EMF tree editor (this editor reflects the containment relation-
ships that exists between the elements in the model). It is also possible to appreciate that the
NAME_GRID region is not a sibling of THIRD PARTIES FRAME, but is nested into it.

Note that in the region model, all the elements are placed by means of coordinates. If the co-
ordinate systems between Figure 5.16 and Figure 5.18 are compared, a slight difference will be
noted. In the RAD Model the area occupied by a widget is represented by the X and Y coor-
dinates of the upper-left corner and the width and height, whereas in the Region Model the
same area is defined by the X and Y coordinates of the upper-left corner and the coordinates of
the lower-right corner. Although both are equivalent, the second means to represent the area

allows the number of operations in the algorithms to be reduced.

5.7.4 RECOVERING THE LOW-LEVEL LAYOUT

In this phase of the process, further refinement of the regions is performed and the coordinate-
based positioning system is replaced with spatial relationships among the elements (i.e., tiles),

bearing in mind that there may be parts without widgets (previously referred to as holes).

10§

i by = O | = properties 52 B -~ = 0O

=4 Rectangle CALLS_WINDOW || Property Yalue
=4 Rectangle TABS Associated With '= Data Grid MAME_GRID
=4 Rectangle THIRD_PARTIES_TAB Debug Name '= MNAME_GRID
=4 Rectangle THIRD_PARTIES _FRAME Hint 1= NOME
< Rectangle NAME_GRID XMax Pos 1=490
+- 4 Rectangle WEB_SPREADING_FRAME %Min Pos =14
+- 4 Rectangle THIRD PARTIES TAE SUE ¥Max Pos =155
+ 4 Rectangle ACTIVITIES TAE | YMin Pos =108

+- 4 Rectangle MODALITIES_TAB
+- 4+ Rectangle CALLS_WINDOW_SUE
+- 4+ Rectangle CALLS_WINDOW _SUE_L w

4 4

Figure 5.18: Excerpt of the Region Model for the example window in Figure 5.15.

e e e e e e e e S o S e e e e o s o e e e

Figure 5.19: Representation of the tiles in the upper part of the window

We shall now analyse the CALLS WINDOW_SUB_ 1 region in Figure §.17 which is located at
the top of the window. Our algorithm generates a PanelTile based on this region, and it infers
that the region is composed of a sequence of two horizontal lines (LineTiles). The tiles identified
are shown in Figure 5.19. The rectangle drawn with a black dotted-line represents a PanelTile,
the two drawn with purple dashed-lines represent LineTiles and the boxes drawn with blue solid-
lines are SingleTiles.

The orange connectors (with a thick or thin line) between the boxes represent relationships.
For example, the horizontal connector between ID_LABEL and ID_TEXTBOX signifies that
the first one is on the left of the second one and the second one is on the right of the first one.
In addition, thick connectors mean the widgets are close together. More particularly, every
widget and its associated label are close together, and we have therefore depicted this association
with thick orange connectors, which in the Tile model representation will be encapsulated in
a LabelledTile. Figure s5.20 shows an excerpt of the Tile model which shows how the tiles are
nested.

Two details in this example are notable. The first is that there is a certain distance between
ENTITY TEXTBOX and CALL TYPE: LABEL but they still belong to the same line. This

is a consequence of the default configuration of the approach, since if there is not a relatively

106

=)= Panel Tile CALLS WINDOW
+- 4 Tabbed Panel Tile TAES
= 4 Panel Tile CALLS _WINDOW _SUE
+- 4 Line Tile ENTER_BUTTOM_LINE
+-- 4 Line Tile SAYE_BUTTOM_LIME
4 Hole Tile CALLS_WINDOW _SUB_HOLE_0
=4 Panel Tile CALLS _WINDOW _SUE_1
=4 Line Tile ID_TEXTEO®_TILE_GROUP_LIME
+- 4 Labelled Widget Tile ID_TEXTECY_TILE_GROUP
+- 4 Labelled Widget Tile ENTITY _TEXTBOX_TILE_GROUP
+- 4 Labelled Widget Tile CALL_TYPE1 COMBOBCY_TILE_GROUP
4= Single Tile UPDATE_BUTTON
< Line Tile TITLE_TEXTECH_TILE_GROUP_LIME
= Labelled Widget Tile TITLE_TEXTEBOX_TILE_GROUP
4 Single Tile TITLE_TEXTEOH
4 Single Tile TITLE_LABEL
4= Single Tile MAIL_BUTTOMN

Figure 5.20: Excerpt of the Tile Model for the example window in Figure 5.15.

PR P PO P P PP P PP P PO P e P PSP PP L PSP PP S PSS TS Y PO Y PY LS Y TS PSP PO PSP PR PY PO TS PY PE PP PS PEPE S PY PR Y PE PP PSP

:|[ENTER_BUTTON]—[EXEC_BUTTON}—CANCEL_BUTTON| | [SAVE_BUTTON}[PREV_BUTTON}{NEXT_BUTTON}-DEL_BUTTON}-ADD_BUTTON}EXIT_BUTTON]|!
e o L

Figure 5.21: Representation of the tiles in the lower part of the window

wide gap between two consecutive widgets (which is set to 40 pixels for the applications created
with Oracle Forms), they are included in the same line. In our case the desired result was to
keep just once single line in order to ensure that the default configuration was suitable, but the
framework configuration files could have been tuned if another different partitioning had been
required.

The second detail is that the MAIL BUTTON could have been separated from the second line
since it could still be part of the first line, but given that the horizontal intersection with the
second line is complete, and the horizontal intersection with the first line is only partial, it is
included in the second line.

We shall now shift the focus to the lower part of the window, to the CALLS WINDOW _SUB
region in Figure §.17. The representation of the tiles identified for this region is depicted in
Figure 5.21.

In this case, it can be observed that there is a great distance between the two groups of widgets,
and our approach has detected a hole between the tiles of buttons (depicted as a green rectan-

gle). It is also worth noting that the first tile is aligned to the left and the second tile is aligned

107

= 5 EY-

Property Yalue -
Associaked With =
Association Kind 1= MOME
Dowwn 1=
Horizonkal Alignment = LEFT
HSize: =0.1101
Left 1=
Marne '= EMTER._BUTTOMN_LIME
Right 1= Hole Tile CALLS_WINDOW _SUE_HOLE_0
Up =
Wertical Alignment = MIDDLE
WSize 1=0,5313 w
< >

Figure 5.22: Properties of the lower-left tile of buttons

to the right.

Figure 5.22 includes a fragment of the property sheet of the lower-left group of buttons (EN-
TER_BUTION_LINE tile). It is worth highlighting some attributes: the hSize and vSize at-
tributes that represents the percentage of space taken up by a widget, left, right, up, down that

maintain the relationships among the tiles, and the horizontal Alignment and vertical Alignment.

5.7.5 RECOVERY OF THE HIGH LEVEL LAYOUT

Figure 5.23 shows a fragment of the resultant CUI model which has been split into two parts.
The left part specifies the structure of the window and the right part details the layout of the
window. It is worth noting that the order of the model elements in the left part is arbitrary
whereas in the right part the order is part of the layout information. As can be seen, the over-
all layout of the window is a StackLayout since the three main regions in the window are ar-
ranged in a vertical sequence. This is the layout selected since the StackLayout fitness function
for the set of tiles { CALLS WINDOW _SUB_ 1, TABS, CALLS WINDOW _SUB} (which can
be seen in Figure 5.20) returns 1, given that all the tiles are visited if we start from the upper tile
(CALLS WINDOW_SUB_ 1) and we navigate them from top to bottom. It is also worth not-
ing that the StackLayout has a higher priority than other layouts (such as VHLayout), and this
is why it has been selected.

In the upper part (CALLS WINDOW _SUB_ 1) we also have a StackLayout composed of two
horizontal flows (FlowLayout). The two horizontal flows are composed of single widgets (Wid-

getConnection) and pairs composed of a label and its associated widget (RelatedWidgetConnec-

108

4 4 View CALLS WINDOW 4 <+ Stack Layout CALLS_WINDOW

4 Text TITLE_CALLS 4 < Panel Connection1.0

4 <+ Tabbed Panel TABS —— ————— a4 < Stack Layout CALLS_WINDOW_SUB_1

& Arranged Panel MODALITIES_TAB 4 < Inner Connection 0.8102

- <+ Arranged Panel ACTIVITIES_TAB . < Flow Layout ID_TEXTBOX_TILE_GROUP_LINE

4 Arranged Panel THIRD_PARTIES_TAB 4 < Inner Connection 0.9545
. 4 Plain Panel CALLS WINDOW_SUB 4 < Flow Laycut TITLE_TEXTBOX_TILE_GROUP_LINE
. 4 Plain Panel CALLS_WINDOW_SUB_1 . <~ Related Widget Connection 0.9384

4 Widget Connection 0.0357
4 < Panel Connection 0.9734

. 4 Tabbed Layout TABS
a <4 Panel Connection 1.0
4 < Border Layout CALLS_WINDOW _SUB
4 < Inner Connection 01101
.+ Flow Laycut ENTER_BUTTON_LINE
4 4 Inner Connection 0.2334
. <= Flow Layout SAVE_BUTTON_LINE

Figure 5.23: Excerpt of the CUI Model for the example window split into two parts

tion). The layout for the middle part of the window (THIRD PARTIES TAB), which hasbeen
omitted to make the model more readable, is very similar to the previous one, i.e. it is a Stack-

Layout in which each region is a StackLayout of FlowLayout.

The lower part of the window (CALLS WINDOW _SUB) is composed of a tile of buttons
aligned to the left, an empty tile in the middle and another tile of buttons aligned to the right.
As occurs in all the cases, the fitness functions are calculated for the set of tiles and the heuristic
with the highest fitness value and highest priority is selected. In this case the layout selected is
BorderLayout since the function returns 1 and none of the fitness functions with higher priority

return such a high value.

The connection elements in the CUI model (such as InnerConnection or WidgetConnection) are
used to maintain information about the alignment and the amount of space occupied by a por-
tion of the GUI (for example, a layout or a concrete widget). For each InnerConnection the align-
ment of the nested layout with regard to the container layout is maintained, and in addition to
the percentage of vertical and horizontal space that is occupied by that layout. The values that
are shown in Figure 5.23 next to the InnerConnections actually represent the horizontal space,

i.e. the hSize attribute. This information is useful in order to generate precise layouts.

In some cases some widgets are not aligned by their container but are aligned to other widgets.
For example, in Figure 5.15, OFFICIAL TEXTBOX and INFO_TEXTBOX are both aligned

with regard to the left edge of the boxes. This issue is not addressed in the current version of the

109

Call Identifier |ID_TEXTBOX Entity Code |ENTITY_TEXTBOX Call Type [CALL_TYPE1_COMBOBOX + |

Title | TITLE_TEXTBOX

Third Parties | Activities | Modalities

Resolution Date |RESOLUTION_TEXTBOX Publication Date |PUBLICATION_TEXTBOX Correct. Date 1st |CORRECT1_TEXTBOX 2nd |CORRECT2_TEXTBOX

Doc. Avaiable At |DOC_TEXTBOX

Official Publication |OFFICIAL_TEXTBOX

More Info | INFO_TEXTBOX CountHours []

Third Party Convener

Mame Participation Type

MNAME_TEXTEOX ;‘I‘

Web Spreading

Active] Call Type |CALL_TYPE2_COMBOB... v |

(% (B [

Figure 5.24: The example window shown in Figure §.15 migrated to Java Swing

framework.

5.7.6 (GENERATION OF JAVA SWING CODE

Once the structure and layout of the window in the CUI model have been captured it is possi-
ble to take advantage of this information in order to automate some restructuring and forward
engineering tasks. In particular, the example window in Figure 5.15 has been migrated to Java

Swing. The new Java Swing window is shown in Figure 5.24.

5.8 CASE STUDY: FROM ORACLE FORMS TO JAVA

In order to evaluate our approach and demonstrate its applicability we have applied our pro-
totype to the GUI of two real applications in two different domains created by two different
companies.

The case study A is a business management application which is intended to be used to manage
the research projects and grants that are assigned to the research groups of a Spanish university.
It is composed of 107 windows, which indicates a medium-high complexity. The application
was developed by different developers of the same company and the conventions concerning
the style of the forms were not particularly strict, signifying that there is a variety of form styles.
The case study B is abusiness management application targeted at being used by a department of
the Regional Government to deal with budgets, income sources, expenses, investment projects
and human resources. The application consisting of 57 windows has a medium complexity.
Though this application was also programmed by different people, the windows follow a more
strict style (imposed by the company) than in the case study A.

Both applications were developed in Oracle Forms 6 and both applications needed to be mi-

grated to the Java platform.

5.8.1 METHODOLOGY

When recovering the visual appearance of a window, it frequently occurs that different layouts
applied to the same widgets could result in a window with a similar visual appearance. The eval-
uation of our approach cannot therefore be accomplished by simply comparing the layout pro-
duced by our tool with an expected layout visually. Instead, the following steps are performed

for each window:

1. The original window is manually analysed by a member of our team (different to the
developer of the tool) in such a way that certain data concerning the following criteria

are registered:

« Window parts. Identify the parts of the window and register the relationships among
them. A part is defined as a group of widgets that form a distinguished area of the

window. A part is a set of close widgets which:

— isvisually highlighted by means, for example, of a surrounding frame or is en-

closed in a coloured rectangle.

— is distant to other groups of widgets.

— has other parts around it to which the widgets do not belong.

Note that in our approach, parts are normally represented with coarse-grained tiles,

although this is irrelevant to the person in charge of performing the evaluation.

o Relationships among widgets. The structure of the widgets within each part is iden-
tified: the position of every widget regarding the others and the part, and the align-

ment which exists among them and with regard to the part.

The rationale for identifying parts is to have a layout-independent notion of the coarse-
grained structure of the windows, while the relationships among the widgets are related

to the fine-grained structure of the window.

2. The complete reverse engineering transformation chain is executed for the given window
to obtain a CUI model. This CUI model is used to execute an additional generation step

in order to obtain a Java Swing GUI, which uses the layout discovered.

3. The GUI generated is now assessed by the same person and using the same criteria as in
step 1, and is compared with the data gathered from the original window. The CUI model
is also analysed in order to avoid that mistakes in the Java Swing generator could mislead
the evaluation, since in some cases the generated GUI had layout mistakes because of
bugs in the Swing template. Two main metrics are obtained in the evaluation process for

each window:

« Parts laid out OK. For a part to be correct, it must contain the same widgets and it

must be located in the same place as the original window.

o Widgets laid out OK. The widgets within each part are analysed, by counting which
widgets are located in the right place with regard to the container part and other

widgets, also taking into account their alignment.

The criteria used to assess both the original and the generated windows are obviously subjective.
In order to reduce the inconsistencies between the results, the evaluation of all the windows has
been performed by the same person. 15% of the windows (with a range of complexity) were
also evaluated by a second member of our team to check whether his evaluation matches to a
great extent with the one carried out by the main evaluator. This aims at ensuring that the main

evaluator has not introduced a strong systematic bias.

5.8.2 EVALUATION RESULTS

The results of the evaluation of the two case studies are summarised in Table 5.1 and Table 5.2.
In order to show the scalability of our approach we have classified the windows used in the evalu-
ation into three groups, according to the number of widgets involved. As can be observed, there
are a large number of small windows in both cases (63.55% for the case study A and 66.67% for
the case study B) which are used as dialogs, for example, to perform searches based on certain
criteria. Almost 20% of the windows in the case study A are large (an average of 86 widget-
s/window), and commonly use tabbed panels to arrange the widgets (an average of 4.24 can-

vases/window). In contrast, the case study B contains more medium-size windows (28.07%)

and a few large windows (5.26%).

Large (>60) | Medium (20-60) | Small (<20) Total
Total amount of windows 21 18 68 107
Windows of each type (out of the total) 19.63% 16.82% 63.55% 100%
Total canvases 89 19 69 177
Canvas/window average 4.24 1.06 1.01 1.65
Widgets/window average 86.00 36.43 8.10 28.15
Parts/window average 10.18 3.14 1.70 3.61
Parts laid out OK 83.24% 98.06% 100.00% 96.38%
Widgets laid out OK 87.14% 85.61% 88.10% 87.50%

Table 5.1: Evaluation results for the case study A.

Large (>60) | Medium (20-60) | Small (<20) | Total
Total amount of windows 3 16 38 57
Windows of each type (out of the total) 5.26% 28.07% 66.67% 100%
Total canvases 6 24 38 68
Canvas/window average 2.00 1.50 1.00 1.19
Widgets/window average 65.33 37.31 7.03 18.60
Parts/window average 5.00 4.31 2.42 3.09
Parts laid out OK 89.00% 94.75% 100.00% 97.95%
Widgets laid out OK 95.87% 89.98% 97.80% 95.51%

Table 5.2: Evaluation results for the case study B.

Figures 5.25 and 5.26 show the dispersion of the success rate (as a percentage) of our approach
when identifying parts for both case studies, and Figures 5.27 and 5.28 represent the disper-

sion of the success rate when placing widgets. The plots also include a regression curve which

113

expresses the tendency of the percentages when the number of elements increases. Various
conclusions can be drawn from these results.

In general, the accuracy of the coarse-grained layout detection (parts) is 100% when there are
few widgets and it drops when the number of widgets increases. In the case study A there are
a few outliers (below an accuracy of 40%) that correspond to a special kind of layout that we
have not considered (this will be commented on in the description of the non-regular layout
detection in Section 5.8.3). In the case study B we have a high success rate (almost 98%) because
the windows are better structured and the visible parts are normally surrounded by borders
(frames). The errors in this case are mainly due to frames which have been emulated by forming
arectangle with four single graphical lines. This feature is not supported at present, which leads
to unidentified regions. In both case studies, the recognition of parts is higher than 80% in the
majority of occasions, which could be considered as an acceptable rate.

With regard to the fine-grained layout detection (widgets laid out properly), in the case study
A there are several windows whose accuracy is below 80%, particularly those with less than 20
widgets. We have observed that they normally correspond to dialog windows, in which the de-
velopers place many widgets very close together in order to make the most of the available space
in the dialog. We have also observed that, in the case study application, buttons are sometimes
situated in a particular place simply because there is some free space there. In these cases, a
small refactoring of the generated layout will lead to a cleaner GUL. In the case study B we can
see that most of the windows have a certain error rate that stems from the fact that some widgets
are missing because they are not well-recognised in the current implementation (it is a problem
of detecting the widgets to generate the Normalised model). In some of the windows, mainly
in the medium-size windows, we have also a slightly higher error rate since the layouts obtained
do not properly reflect the holes detected (the unidentified holes problem will be explained in
Section 5.8.3).

The plots show that there is not a considerable variation in the success rate neither for detecting
regions nor for placing widgets in the window when the number of widgets increases, so it seems
that our approach is scalable for reasonably large GUIs (in the case study A it has been applied to
windows with 160 widgets per window). The rationale behind this result is that large GUIs are
typically arranged in parts, either using explicit markup elements (e.g., frames) or using implicit
separators such as blank spaces.

Comparing both case studies, the best results are obtained in the case study B, mainly because

the windows follow a more strict style than in the case study A. The success rate of the layout of

114

100% 1 - o+ & . * 0000. * -
&
. 2

B0% M * o to
"
o *
o F0% .
=
i)
w
E 40% . .

*
20%
U% T T T T T T T 1
0 20 40 B0 80 100 120 140 160

MNumber of widgets

Figure 5.25: Scatter plot that represents the accuracy of part detection for the case study A.

the parts in case study B is higher (6% better for large windows) mainly because the parts are
surrounded by frames. In general, our approach works better when explicit markup elements
are used. The improvement of the widget layout in the case study B (8% better for large win-
dows) is because the widgets are not scattered but conform to more or less common layouts.
Considering both measures together, we can claim that our approach has an acceptable accu-
racy rate. It is important to note that in any case, the CUI model obtained after the discovery

process can be edited either to fix errors or to refactor the GUL

5.8.3 LIMITATIONS OF THE APPROACH

This evaluation has allowed us to identify a set of limitations that are not currently dealt with

by our approach, and which may lead to inaccuracies in the layout recovery process.

Missing parts identification. Parts that are not explicitly limited by frames, panels or the
boundaries of the window itself are not identified as regions or coarse-grained tiles. For

example, in Figure 5.29 it is possible to visually identify two parts in the window because

115§

1[][]% T - b i - -

50%

60%

40%

Parts laid aut OK

20%

0% T T T T T T T
0 10 20 30 40 a0 60 70 80

Mumber of widgets

Figure 5.26: Scatter plot that represents the accuracy of part detection for the case study B.

100% 7 cumm-m——— * * *
80%
s
O
E
< 60%
o *
W *
@ *
§4U% »
20%
U% T T T T T T T 1
0 20 40 B0 80 100 120 140 160

Mumber of widgets

Figure 5.27: Scatter plot that represents the accuracy of widget placement for the case study
A.

116

e PR *
» r _*_'__’—'——"'-
* +* . . ¢ .
80% *
*
¥
<
s 60%
[=]
=
=
w
T 40%
=
=
20%
U% T T T T T T T
0 10 20 30 40 50 60 70 80

Number of widgets

Figure 5.28: Scatter plot that represents the accuracy of widget placement for the case study

B.

of the distance between the elements. The first is the upper part which is composed of
the labels and text boxes, and the second is the lower part which is composed of buttons.
In this case, our algorithm will create just one coarse-grained tile, made up of three line
tiles. However, this inaccuracy does not always make the final layout incorrect, since the

content of the region could be laid out correctly, as is the case of the example.

Non-regular layout detection. It sometimes occurs that there are widget arrangements that

do not have a regular structure, and they cannot therefore be easily represented with a
layout system. For example, the window in Figure 5.30 shows alayout that is not properly
detected. There are two main problems: (1) our algorithms identify only one part, so
they are not able to split the window into one part for the input and the buttons, and
another part for the checkboxes, and (2) “Option 5”is not aligned with any column. In
this case, an algorithm that is focused on small groups of widgets and creates a composite

layout might attain better results.

Widget alignment with other widgets. Our approach uses a Tile model to arrange structures

of widgets in terms of tiles that can be nested and it is possible to specify that the tiles

inside a tile are aligned to the left, right, top or bottom. Nevertheless, in some cases we

117

Fieldl

Field2

| Actionl I | Actionz I | Action3 I

Figure 5.29: Missing part identification problem

Fieldl [[] Optionl [Optierd

[] option3 [] Optiond

| Actionl I | Actionz I
[T] Options

Figure 5.30: Non-regular layout detection problem

have found that widgets are aligned with regard to other widgets (rather than with regard
to their parent container). In order to implement this feature which was not considered
in the design of the solution, it is necessary to align the tiles with regard to their sibling
tiles. In our evaluation, this situation occurred in a small percentage of windows, but in
some cases the current implementation generated a good layout because the sibling tiles

that are aligned are both aligned with regard to the same parent tile.

Unidentified holes. Hole recognition is addressed in the algorithm that generates the Tile
model, and depends on the parameters that specify the minimum distance between tiles
(seen as a percentage of the width/height occupied by the tile with regard to its parent).
If the parameters are set in such a way that a small distance is captured as a hole, there
will be a lot of holes and the high-level layout algorithm (that generates the CUI) will
not know how to deal with them. We therefore prefer to set the parameters in such a way
that only notable holes are captured. This implies that some holes are not identified, but

this hardly ever occurs.

On the whole we can state that our approach has an accuracy of 96% when laying out parts and
an accuracy of 87% for widgets inside the parts. Simple layouts fit the arrangement of the wid-

getsin most cases, especially the stack of flows layout. However, the problems mentioned above

118

should be tackled if higher success rates are to be considered. These issues will be addressed in

future work.

5.9 IMPLEMENTATION

This section briefly presents the tools involved in and some of the implementation details of
our GUI reengineering framework (see highlighted parts in Figure 5.31), focusing particularly
on Oracle Forms as the legacy technology, and Java Swing as the target technology.

Tile
model

Legacy
artefact

Source Normalised Target
technology GUI tree technology
model model model

Figure 5.31: Model-based architecture used to migrate legacy GUIs.

The framework has been implemented on top of the Eclipse platform, and is based on the
Eclipse Modeling Framework (EMF) [53]. The metamodelling language that has been selected
to represent the models and metamodels is Ecore. The workflow of the reengineering process

is defined and managed by a task management tool called Rake [102], a sort of Make for Ruby.

5.9.1 INJECTION

Let us first consider the injection step (from legacy artefacts to Source Technology models)
shown in Figure 5.31. An injector is required for every legacy technology for which we want to
migrate applications. It is worth noting that this step is particularly dependent on the source
artefact format and the export facilities of the legacy environment. Some environments such
as Delphi and Visual Basic use plain text files to store the GUI specification. Oracle Forms,
however, uses a binary format (FMB files), but there is an export facility that generates XML

files conforming to an XML schema which is available in the Oracle Developer Suite.

119

FormModule

0..n 0 o.n «enumeration» «enumeration» «enumeration»
- | =N - CanvasType ltemType GrahicsType
Window |1 Canvas __DataBlock | FooNTENT TEXTELEMENT | | TEXT
type: CanvasTyp¢ itemsDisplayed: int| | SEPARATOR BUTTON FRAME
visible: boolean 7 . CHECKBOX IMAGE

0.n on Item «enumeration» «enumeration»
. 0.n = 0.1 | xPosition: int AttachmentType AlignmentType
Graphics & TabPage [< yPosition: int BEGINNING BEGINNING
type: GraphicsType visible: boolean END CENTER
visible: boolean type: ltemType TOP END
itemsDisplayed: int BOTTOM

prompt: String

promptAttachment: AttachmentType
attachmentOffset: int
promptAlignment: AlignmentType
alignmentOffset: int

Figure 5.32: Excerpt of the Oracle Forms metamodel.

In our case, we have built an injector for Oracle Forms on the basis of the aforementioned XML
schema. This has been done by using EMF which, given an XML schema, automatically gener-
ates a metamodel and the injector that takes XML files and creates models conforming to this
metamodel. The Oracle Forms metamodel automatically derived by EMF mirrors the structure
of the XML schema provided by Oracle, as is shown in Figure 5.32.

The following points summarise the structure of this metamodel.

« A form (FormModule) in Oracle Forms is a set of Windows with its related business logic
expressed in PL/SQL triggers. The code is extracted from the XML files in a separate

process, which is not within the scope of this paper.

« A Window can show one or several Canvases, which are the panels on which the widgets
are displayed. There is a special type of Canvas called SEPARATOR which can contain
TabPages.

« A Canvas is a surface that is used to display Graphics and Items. Graphics are graphic
decorators such as fixed text (TEXT), or graphical frames (FRAME). Items are widgets
such as buttons or text fields, which are distinguished by the type property. Contrary to
what might be expected, Canvases contain Graphics but not Items. Items are contained

in DataBlocks and they are associated to zero or one Canvases. An Item will be displayed

120

if it is associated with a Canvas, its width and height are greater than zero, and it has visible

set to true.

« A DataBlock is a logical group of widgets that are often associated with columns of the

same table in the database.

« The coordinates of Items and Graphics are relative to the Canvas that displays them, whereas
Canvases are located with absolute coordinates. In the metamodel there are no explicit
relationships to specify whether a graphical frame contains other widgets or graphical

frames, or whether two canvases are overlapped.

« Moreover, the itemsDisplayed property of Item indicates the number of instances of the
same kind of widget that are shown. This feature is referred to as multi-record items, and

can be regarded as a form of data grid.

o Itis possible to specify a prompt for an Item, i.e. a text that is associated with the Item.
The coordinates of the prompt elements are defined with regard to the associated Item.
The prompt can therefore be on the left (promptAttachment=BEGINNING), on the right
(promptAttachment=END), above (promptAttachment=TOP), or below (promptAttach-
ment=BOTTOM) the Item, and it can also be aligned to the left (promptAlignment= BE-
GINNING), in the middle (promptAlignment=CENTER) or to the right (promptAlign-
ment=END) of the Item.

5.9.2 MAPPING ORACLE FORMS TO NORMALISED MODELS

Once the source artefacts related to the GUI have been injected into a model, the latter must
be transformed into a Normalised model that represents the same GUI but is independent of
the source technology (step from Source Technology models to Normalised models in Figure
5.2). The Normalised model can be considered as a normalised form of the source artefacts.
The Forms to Normalised transformation is, in general, fairly straightforward, since there is a
direct mapping between the source technology metamodel elements and the Normalised meta-
model elements. This mapping is summarised in Table s.3.

However, Oracle Forms has some specific features which are not found in other legacy applica-
tions such as Delphi or Visual Basic. We shall now discuss two specific features that hinder the

Forms-to-Normalised transformation, which are prompts and multi-record items.

121

Forms Normalised
Window View
Canvas (type=CONTENT) PlainPanel
Canvas (type=SEPARATOR) | TabbedPanel
TabPage PlainPanel
Graphics (type=TEXT) Label
Graphics (type=FRAME) WidgetGroup
Item (type=TEXTELEMENT) TextBox

Item (type=BUTTON) Button
Item (prompt) Label
Item (itemsDisplayed >1) DataGrid

Table 5.3: Forms to Normalised mappings.

In some legacy environments, there is a kind of widget that is frequently called Label which
is a piece of static text that can be placed anywhere in a window. In contrast, Oracle Forms
includes a similar widget, but it also offers another possibility, which is to use a Prompt element
which is associated with a widget. The location of the Prompt can be expressed with regard to
different reference points, which always refer to the associated widget. Specifically, the Prompt
can be above, below, on the left or on the right of the widget and aligned to the beginning,
the middle, or the end of the widget, which results in twelve possibilities. In order to calculate
its coordinates it is necessary to obtain the width or height of the text of the Prompt, which is
not easy since it depends on both the font type and the font size. Moreover, Forms by default
does not express coordinates in pixels, but in proprietary measures. This implies that Prompt
coordinates can contain a small error owing to the width/height calculation and the conversion

between measures. In our case, we did not find a coordinate error greater than 8 pixels.

Another specific feature is multi-record widgets, that is, a widget that is replicated a number of
times. For example, let us assume a window that must show some aspects of people’s personal
data. In this case, it will be necessary to have some text fields to display the name, surname and
other data, and one multi-record text field could therefore be used for the name, another for
the surname and so on. In current GUI technology we use data tables for this purpose. Since
multi-record widgets can be scattered on the canvas and show different kinds of information,
there is the challenge of deciding when certain multi-record widgets must be in the same table
(ie., each multi-record widget is a column of the table). The criterion used to group widgets in

tables is the following: we group multi-record widgets that are closer than a fixed value where

122

no non-multi-record widget exists between them. Moreover, when buttons that belong to the
same datablock as multi-record widgets exist, they are also included in the table. Since this is a
heuristic to group widgets in tables, developers might need to modify the Normalised models
in order to correctly rearrange widgets in tables.

Finally, the transformation from the source technology to Normalised performs some clean up
tasks. In particular, it marks the elements that are not visible and checks that widgets do not
overlap. A GUI frequently includes non-visible widgets which are intended to store values that
are used in transactions, so they never appear in the interface. The elements that are not visible
are marked in the Normalised model, so the layout algorithms ignore them. Overlapped wid-
gets are sometimes found in applications. Developers can use overlapping to show different
information with different widgets that are displayed and hidden by means of programming.
Since this is not a good practice and widget overlapping hinders layout detection algorithms,
overlapping is detected, and developers must fix this to ensure that the rest of the process con-

tinues properly.

5.9.3 REVERSE ENGINEERING

With regard to the reverse engineering stage of Figure §.2, the algorithms presented in Sections
5.4, 5.5, 5.6 have been implemented as a chain of M2M transformations. To this end we have
chosen the RubyTL [61] language. RubyTL is a rule-based M2M transformation language em-
bedded in Ruby which is integrated in the AGE environment [103]. It provides powerful query
facilities, in addition to a modularity mechanism, called phasing, that has facilitated the imple-

mentation and modularisation of the solution [104].

5.9.4 FORWARD ENGINEERING

Restructuring and forward engineering tasks are made possible with the CUI model obtained in
the reverse engineering step. As part of our prototype we have implemented a generator from
CUI models to Java Swing, using the Textplate code-generation language integrated into the
AGE environment.

The transformation is relatively straightforward, since the CUI model represents the layout in-
formation explicitly. This also allows the original legacy GUI to be recreated using features that
are only available in the target technology. For instance, the proportion of the space that is oc-

cupied by a widget or layout is used to generate resizable windows that preserve the original

123

proportions. When a window is resized, its content (i.e. the widgets) must be resized accord-
ingly. However we do not wish to resize all the widgets, but only those widgets that can contain
or display more information if they are resized. Therefore, some widgets will be resized while
others will maintain a fixed size. Widgets such as JLabels and JButtons will have a fixed size,
which will be their preferred size. Widgets such as JTextField or JTable will have a variable size,
which will depend on the size of the window.

It is interesting to note that further advantage can be taken of the information expressed explic-
itly in the CUI in order to generate a GUI in the most suitable manner for a target technology.
For example, in our CUI it is possible to represent some relationships among widgets (think, for
example, of a widget and its associated label) by means of the association between WidgetCon-
nections in the CUI metamodel presented in Figure 5.4. This information can be used to define
gaps between pairs of widgets, and the gap between related widgets can be made narrower than

the gap between unrelated widgets.

5.10 CONCLUSIONS

In this chapter we have presented a first approach to recover the implicit layout of the GUIs
of RAD applications, whose layout is implicitly represented by widget positioning. The work
has been focused on legacy applications created with RAD environments, though it could be
easily adapted to other environments sharing the same features. Actually, the layout inference
approach can be applied to non-legacy environments, for example to generate final GUIs from
views created with wireframing tools, as we will show in the next chapter. As a result, a frame-
work for migrating GUIs implemented with legacy environments has been built. This frame-
work has been evaluated with two real-world Oracle Forms applications by migrating a sum of
164 windows to Java Swing.

The results evidence that the solution devised can be used to infer the layout of the applications
to a great extent. However, the algorithms fail to accurately detect the layout when the window
is not arranged in parts (surrounded by a border) or the widgets are placed in such a way that
their structure cannot be easily described by a common layout. In these cases, manual tuning of
the CUI model would be required. Fortunately, the windows of RAD applications often follow
some style patterns that contribute to make the GUI more comprehensible and usable, and for
this reason our approach succeeds in most of the cases, as it has been shown.

Although the Non-regular layout detection problem may not be crucial for RAD applications be-

124

cause simpler layout patterns are commonly found, it is considerably important to deal with
layout inference of views in general. For example, a view like Figure 5.30 is fairly common in
current desktop applications, but our approach fails to detect the layout because it does not
exactly fit any of the predefined layout types. However, that layout could be described by a
composition of FlowLayout and StackLayout. Therefore, in order to widen the scope of our ap-
proach, the layout inference algoritm should be able to recognise layout patterns that are nested
in other patterns (layout composition).

The proposed architecture satisfies some of the requirements stated in Section 4.1. Firstly, ex-
plicit information about the layout of the graphical elements in the user interface is condensed
in CUI models (requirement R1), thus allowing automatic restructuring and forward engineer-
ing processes and tools to be applied to these models.

Secondly, resolving the layout abstraction by means of a transformation chain allows the prob-
lem solution (algorithms) to be split into smaller modules (transformations) which can be de-
veloped and evolved independently (requirement R2), since the metamodels act like the con-
tracts of the modules. The transformations can be chained and executed sequentially to achieve
automation, signifying that the most complex part of the process (the generation of the CUI
models from the Normalised models) is performed automatically (requirement R3). It can be
observed that the application of the MDE principles results in a more maintainable solution.
Thirdly, as we have a Normalised model as an input of the reverse engineering process and a CUI
model as an output, we achieve source and target platform independence (requirement Rq).
Thus, only the corresponding injector plus the transformation to derive Normalised models are
required to support a new legacy technology. Note that the reverse engineering algorithms can
be applied independently of the source and target technologies. Reusability and extensibility
are thus also promoted in our approach.

Fourthly, matching the visual and logical structure (requirement Rs) has been achieved by ad-
dressing challenges L1 and L2. The model transformation from the Normalised to the Region
model is in charge of dealing with these challenges.

Fifthly, the CUI model contains the high-level layout representation that fulfils the requirement
Ré6. With the purpose of getting this representation, the positions of the widgets have been
turned into spatial relations among them (challenge L4), information about spacing and align-
ment has been gathered in relative units (challenge Ls) and the structure that widgets form has
been recognised and abstracted in high-level layout types (challenge L3).

Lastly, misalignment tolerance (requirement R7) is achieved by means of the sharing concept,

125§

that introduces a tolerance margin to let the comparison of tiles be flexible. The current imple-
mentation does not cover the generation of different alternative solutions (requirement R8)
and the inference algorithm has not been designed to support a configurable layout set (re-
quirement Rg).

Some similarities between our work and the works ([3] [4] [5]) about layout inference that
were presented in Section 3.1 can be found. Concretely, like in [5] we created a model-based
architecture to make the approach independent of any source and target technology (require-
ment R4), and we both dealt with the problem of matching the visual and logical structure of
the views (requirement Rs). In [3], the author detected the problem of small misalignment,
which has been taken into account in our solution too (requirement R7). Similar to them, our
approach needs to be manually tweaked in many cases, particularly when the heuristics fail in
detecting a complex layout, which makes the approach semi-automated.

On the other hand, all these three related works are designed to represent the layout with only a
specific layout type. The [3] and [5] approaches generate code for a fixed layout manager, and
in [4], user can select the target layout manager, but different layout managers cannot be used
at the same time. Different from them, our approach deals not with a single layout manager,
but a set of them. However, in our approach we do not cover the Rg requirement since as it is
possible to indicate a subset of layout managers to use from the layout set available. In the next

table we classify our solution as we did with the state of the art.

Tested source technology Oracle Forms

Tested target technology Java Swing

Source/target independence | Yes

Information extracted layout composition, alignment, margins, holes, sizes
Layout model Layout metamodel

Algorithm type Heuristics

Implementation technology | MDE

Automation degree Automated

Table 5.4: Classification of the approach of this chapter

126

It is only with the heart that one can see rightly; what is
essential is invisible to the eye.

Antoine de Saint-Exupéry, The Little Prince
(Suggested by Jests Sénchez)

Layout inference revisited: exploratory approach

In the previous chapter we tackled the layout inference of GUIs of legacy systems, particularly
RAD-based applications. Although the results of the evaluation were satisfactory for these ap-
plications, the approach has some limitations, which were discussed in Section §.10. The main
drawback was that the heuristics cannot be composed and they are too simple to fit any layout.
Moreover, it lacks of some features that would be desirable in a general solution for layout infer-
ence and which were introduced in Section 4.1, such as offering alternative solutions (require-
ment R8) and configuration of the layout set (requirement Rg). To overcome these limitations
we have devised a new version of the layout inference algorithm that replaces the last part of
the layout inference process (the high-level structure detection based on heuristics) by a more

complex algorithm that would be able to recognise the layout of any static view.

The CUI and Tile metamodels were also modified in order to improve the approach. The CUI
model was split into two separate models (Structure and Layout models) in order to promote
the separation of concerns and ease the evolution of each concern. Although the original Tile
representation could have been reused, some changes were performed on the Tile metamodel

in order to represent gaps in a more useful way and to facilitate the manipulation of Tile models

127

to the high-level layout inference algorithm.

Consequently, in this chapter we will show the changes we have made in the architecture in-
troduced in the previous chapter (Figure 5.2) to acommodate the new requirements, and we
will explain the data structures (metamodels) and the algorithm we have devised to cope with
layout detection. We will finish with the case study for evaluating the approach and the conclu-
sions drawn from the experience.

We will demonstrate that the layout inference process that we proposed for legacy applications
can also be used in other scenarios such as the generation of the final GUI of a new system based
on wireframes. To be more precise, our layout inference solution can now be reused with in any

scenario in which we have files defining views in terms of coordinates.

6.1 MDE ARCHITECTURE FOR LAYOUT INFERENCE (REVISITED)

In the first approach to infer the layout of GUIs, the CUI metamodel integrated the Structure
and Layout metamodels introduced in Section 4.2.1. When designing the second approach,
we realised that a separation of the different aspects of the GUI would favour the evolution of
these metamodels. As a result, the schema depicted in Figure 5.2 was modified and turned into
Figure 6.1. We have followed the same notation as in the previous chapter and the elements

involved in the layout inference part have been highlighted.

Legacy
artefact

Target
code
)

Layout
model

Source Normalised
GUI tree

model

Target
technology
model

technology
model

Structure
model

Figure 6.1: Model-based architecture used to migrate legacy GUIs.

128

Basically, the separation between the Structure and Layout models entails that the Structure
model is derived from the Region model and the Normalised model (these models were de-
scribed in the previous chapter). The Trace model, which has been omitted in Figure 6.1 for
clarity reasons, is also generated at the same time that the Structure model. The Layout model
now contains references to the Structure model, and in fact, the traces stored in the Trace model
are queried in order to establish those links between the Layout model and the Structure model.

Change positioning system

- ——— - - - ———— - —————————————————————

ad S
/ Se Se Se \
l @ C] @
! @3 13 s !
g -’ o |
I I
: Create view graph Represent element Represent element 1
\ relative positions distances ,'
\ 4

S e e e e e e e e e e e e e e e e e e e = e e = = = = = ——

e, e e e e - - - - ———

Discover composite Extract space and Discover alignment
layout size information ;

é
v
¢

— e e e e e e e e e e e = = = = = = = = == ——

Figure 6.2: Steps to explicitly infer the layout information.

The layout inference process, which generates a Layout model from a Structure model, consists
of two main stages that are composed of three steps each one, which have been depicted in
Figure 6.2. The first stage changes the positioning system from coordinates to relative positions
between the elements. It corresponds to the uncovering of relative positions of the first version,
which was explained in Section 5.5, and it keeps the basics of Tile models, though in the new
version some information has been represented in a different fashion, notably relative positions
are described with Allen intervals. The outcome of the first stage is a graph representation of the

view with relative positions (i.e., a Tile model). The second stage takes that graph and applies

129

a pattern matching algorithm that reduces the graph in every iteration (the matched nodes are
replaced by a single node). When all the nodes will be matched then we will have obtained
a tree of layout managers (the Layout model that was presented in Figure 6.5). This second
stage corresponds to the high-level layout inference of the first version, which was explained
in Section §.6, being this new version more sophisticated than the former version. These two
stages will be detailed in Sections 6.3 and 6.4, after describing the input and output metamodels

of that process.

6.2 REVERSE ENGINEERING METAMODELS

Next we will present the Structure and Layout metamodels, which determine respectively the
input and output of the reverse engineering process. In Figure 6.3 we have demarcated the parts
of the CUI metamodel described in Sections.2 that correspond to the Structure and Layout
metamodels presented in this chapter. A Structure model is the input to generate a Tile model,
and the output is a Layout model which is connected to the original Structure model. We will
also explain how a Structure model is generated from the Normalised and Region models. The
Structure and Layout metamodels are not just the result of splitting the CUI metamodel into

two metamodels, but they have been redesigned to better meet the essentials of these meta-

models.
Structure model Layout model
e Al .
i
AbstractView 1 [FlowLayout| [StackLayout| | GridLayout| [BorderLayout] 1
A : I I I I 1

[AbstractPanel J0..n; [GraphicalStyle]
/]

1.n

Figure 6.3: Relation between the CUI and the Structure and Layout metamodels.

130

6.2.1 STRUCTURE METAMODEL

The Structure metamodel has been devised to clearly represent the logical hierarchical structure
of the views (the GUI tree) in a technology-independent fashion. A significant excerpt of the
Structure metamodel can be seen in Figure 6.4. Attributes and role names can be easily guessed

by the reader so they have been omitted in the metamodel to make it clearer.

GraphicalElement
Container [ol Widget
AbstractView Linkable Menu SingleWidget Toolbar
ExternalViewRef 1 View OutputText TextBox Button CheckBox
AbstractPanel
/V V\ 1 1
PanelRef 1 Panel GraphicalResource
0..1 V.
1 -
|TabbedPaneI| | PIainPaneI| |ArrangedPaneI| |TextTransIati0n on Text

Figure 6.4: Structure metamodel.

According to our metamodel, a GUI is composed of a set of Views, such as mobile phone views,
desktop windows or web pages. Views are composed of Widgets. A Panel is a special Widget that
represents a visually distinguished part of the view. For example, a set of widgets surrounded by
aborder form a PlainPanel. It can be seen that Views and Panels are Containers and that Widget
and Container inherit from GraphicalElement.

Three types of Widgets are supported: SingleWidget, Menu and Toolbar (the elements that com-
pose the two latter have been omited). There are many kinds of SingleWidgets, such as TextBox,
Button or CheckBox each one having different features. For example TextBox has a Text, But-
ton has a GraphicalResource (the graphics that are displayed on a button), and an OutputText

can be Linkable (i.e., it is a hyperlink). For Text resources, internationalisation and localisa-

131

tion information (TextTranslation) can be provided. There are some constraints imposed on
this metamodel, namely: i) Menus and Toolbars are restricted to be associated with Views, ii)
TabbedPanels, ArrangedPanels can only contain Panels, iii) PlainPanels must only contain Sin-
gleWidgets, and iv) Views cannot nest Panels and SingleWidgets at the same level (this contraint
has been propagated from the Region model).

6.2.2 LAYOUT METAMODEL

The Layout metamodel defines the design of the views, that is, how the widgets are spatially
arranged in the views. This design is expressed in terms of high-level constructions (particularly,
layout managers) similar to Java Swing layout managers, which is a better representation system
than others such as coordinates or positioning based on boxes (such as HTML). The Layout
model can be used to derive a good quality GUI. This model conforms to the metamodel that
can be seen in Figure 6.5.

In this metamodel, LayoutElements can be ElementNodes or Layouts. An ElementNode repre-
sents a Widget (either Container or SingleWidget) that is managed by a Layout. Actually, the
refNode reference indirectly connects an ElementNode with the associated Widget in the Struc-
ture model.

Layouts are arranged hierarchically, so the layout of an element can be a composition of layouts.
The set of predefined layouts currently supported is: FlowLayout, BorderLayout, GridLayout,
FormLayout and CustomLayout. A FlowLayout is a horizontal flow or a vertical flow depending
on the type attribute. A BorderLayout is alayout that places the content in five areas: top, bottom,
left, right, center. Not all the five areas of the BorderLayout have to be occupied. A GridLayout
arranges the elements in a grid of numRows X numCols cells of equal size (only the numCols
attribute is stored). A FormLayout is a more complex layout that is applied to rows of elements
where some of the elements are vertically aligned more orless in the same way. This layout con-
tains (rows reference) a list of vertical FlowLayouts. In addition, it defines some AlignedColumns
in such a way that every element must belong to just one AlignedColumn. There are three ref-
erences from AlignedColumn to ElementNode: Inodes represents the elements aligned to the left
bound of the column, rnodes is the same for the right bound and nodes include all the elements
contained in the column (aligned or not). CustomLayout is used in case the GUI layout cannot
be composed by a composition of the predefined layouts.

A Layout also includes some other attributes that are useful to tune the design determined by

132

referredBy

«from Structure Model»|_ element 1N children | -ayoutElement
Widget 0..n 4
Layout
arent hAlignment: HAlignmentType
refNode [PAreMt g |\ Alignment: VAlignmentType
children T 0.1 alternativ1es hSize: float
o.n | LayoutlnfoTreeNodeI‘ﬁ vSize: float
h fitness: int
parentT 1
[I I
| BorderLayout | FlowLayout GridLayout | FormLayout| |CustomLayout| | ElementNode
type: DirectionT Cols: int
. ype: DirectionType| [numCoals: in nodes |on Inodes
top hottom|left [right |center Qfn
0..110..1 (0..110..1 rows|o_n modes|o. n
AlignedColumn|0..1
| Layout |
< Igap: float 0..1
rgap: float 0.1
0..n ;
Separation _«enum» ~«enum»
value: float VAlignmentType HAlignmentType
NONE NONE
[] TOP LEFT
Gap Margin MIDDLE CENTER
type: DirectionType type: MarginType BOTTOM RIGHT
«enum» «enumy
DirectionType MarginType
HORIZONTAL LEFT
VERTICAL RIGHT
TOP
BOTTOM

the predefined set of layouts. The hAlignment and vAlignment attributes are used to indicate how
a layout is horizontally and vertically aligned. We have two different cases: i) when the Layout
is associated with a Container, the alignment is relative to that Container; ii) when the Layout
is part of a more complex layout (it is nested in another Layout), then the alignment is relative

to the enclosing Layout. We refer to a Layout that is part of a complex Layout as intermediate

layout.

The hSize and vSize attributes are the percentages of the horizontal and vertical space (respec-
tively) taken by the element, with regard to the Container. Adjacent elements are commonly
separated by horizontal or vertical Gaps (empty space), and Margins represent the distance of

a layout to the bounds of the Container. It is worth remarking that Margins are only applica-

Figure 6.5: Layout metamodel.

133

ble to the Layouts associated with a Container, not to the children Layouts of these ones. For
both, Gaps and Margins, the distances are measured with percentages of horizontal or vertical
distances with regard to the Container.

Each Widget of the Structure model is reproduced in the Layout model by a LayoutInfoTreeN-
ode which contains the reference to it (element reference). There may be different visual struc-
ture compositions that can result in a similar layout perceived by users. Therefore, there may
be different layout alternatives to lay out the same Container, which means that every LayoutIn-
foTreeNode that is associated to a Container will have a set of possible layouts (alternatives). Each
Layout contains a reference (refNode) to the LayoutInfoTreeNode to which the layout is applied,
except for intermediate layouts that are not linked to any Widget.

Each Layout includes the fitness attribute that serves to compare the alternatives among them
and know which ones are better than others. The fitness attribute takes a value between o and 1.
The closest to 1, the better a solution is. Fitness values are meant to be used to compare different
alternatives for the same Container, and should not be used to compare different Container since

these values are arbitrary.

6.3 CHANGING THE POSITIONING SYSTEM

As an intermediate step in the transition from absolute coordinates to a layout representation
using layout managers, we use a representation of the GUI using a relative positioning system
based on the spatial relations among the widgets, i.e., the Tile metamodel. This representation is
the basis for the layout inference algorithm. We have performed some changes in the original
Tile metamodel presented in Section 6.3.1 with the aim of adapting the data structure to the
new layout inference algorithm, and to improve the representation of the distances between
the elements.

The creation of the Tile metamodel (step 1) will be presented in Section 6.3.1, the relative po-
sitioning (step 2) will be explained in Section 6.3.2, and Section 6.3.3 will delve into the repre-

sentation of the distance between elements (step 3).

6.3.1 CREATING THE VIEW GRAPH

The means we propose to represent a view is a nested, attributed, relational acyclic directed

graph, that is, a digraph without cycles where the nodes can be digraphs and the nodes as well

134

as the edges have attributes. The data structure that defines these graphs is the metamodel pre-
sented in Figure 6.6. This representation is focused on making positions between elements

explicit, which is very useful to detect layout patterns.

«enum» TileNode source outgoing Relation
AllenintervalType name: String !) On name: String
BEFORE AFTER xMinPos: int target Incoming | xinterval: AllenintervalType
MEETS MET_BY yMinPos: int 1 . 0..n | yinterval: AllenintervalType
STARTS STARTED_BY xMaxPos: int P relations - | gloseness: int
FINISHED FINISHED_BY yMaxPos: int 1 0.n
DURING ~ CONTAINS children
OVERLAPS OVERLAPPED_BY t 0.n
EQUAL 1 | «enumy
’L‘ LayoutType
HFLOW VFLOW
«from Structure Model» widget WidgetNode LayoutNode BORDER GRID
Widget 1 type: LayoutType FORM CUSTOM

Figure 6.6: Tile metamodel (new version)

The model contains two main classes, TileNode and Relation. A TileNode represents a rectan-
gular area of a view that contains a widget or a group of widgets. As can be seen, TileNodes
contain information about the coordinates of the area they take. Although our inference algo-
rithm is applied to the Tile model as a graph, coordinates are still required for calculating some
attributes such as margins of a widget with respect to the container.

A WidgetNode is a TileNode that represents the area of a widget (either SingleWidget or Con-
tainer) and contains the reference to that Widget in the Structure model. A LayoutNode is a
TileNode that represents the area of a group of widgets that are laid out by using a certain layout
type. As we will see later, at the beginning of the layout inference process we have a graph that
only contains WidgetNodes and at the end of the process (after applying rewriting) we have a
graph composed of WidgetNodes and LayoutNodes. From now on, we will indistinctly refer to
TileNodes as tiles or nodes.

Relation represents a spatial relation between two TileNodes (source and target) by means of
three attributes. The first attribute is the Allen interval for the X-axis (xInterval), the second
attribute is the Allen interval for the Y-axis (yInterval) and the third parameter is the closeness
level between a pair of connected TileNodes (closeness).

The Allen intervals [9] can be used to express the spatial relations for a pair of segments in one
dimension. They provide us with two interesting pieces of information. Firstly, they serve us
to represent the relative positioning of nodes (e.g. if a node is on the right or below another

node). Secondly, they also capture the alignment of one node with respect to another one.

13§

Allen intervals will be explained in detail in Section 6.3.2.

To represent distances between widgets we do not use absolute distances measured in pixels,
but we calculate the so called closeness level, which is a means to classify widget distances in
groups. The distances that belong to the same group are more or less similar. This will be used
by our algoritms to prioritise close widgets over farther widgets. Please note that in the Layout
model one attribute is enough to represent this feature (closeness), because we do not allow
widget overlapping, and thus it measures the distance in only one axis according to the Allen
intervals. We will discuss more about the meaning of the closeness levels in Section 6.3.3.

The Tile model is created as follows. A WidgetNode is created for each Widget of the Structure
model. WidgetNodes keep a reference to the Widget from which they are created, and a copy of
the coordinates of the element. The containment hierarchy of the Structure model is therefore
replicated when creating the Tile model. For instance, if there is a View which aggregates three
children Panels in the Structure model, then there will be a WidgetNode containing three children
WidgetNodes in the Tile model. For each pair of adjacent WidgetNodes, a Relation is created. Let
us recall a definition of the previous chapter: A tile t, is adjacent to another tile t, if and only if
i) the projection on the X-axis or Y-axis of both tiles is overlapped and ii) there not exists a tile
t, between t, and t,. For each Relation created, the Allen intervals for the X (xInterval) and Y

(yInterval) axis are calculated, and the a closeness level (closeness attribute) is assigned to it.

6.3.2 REPRESENTING WIDGET RELATIVE POSITIONS

In this section we explain how the Allen interval algebra [9] has been used to express the relative
positions between the widgets and how they are obtained.

Figure 6.7 shows all the intervals and their meaning. For example, if A MEETS B it means that
the segment A is before the segment B and the end of A "touches’ the beginning of B (i.e., there
is no blank space between them). Note that all the intervals (except for EQUALS) have an
opossite interval, e.g,, if A MEETS B it implies that B MET BY A. In order to represent the
spatial relations of 2D objects we need two intervals, one interval for the projection of the node
on the X-axis and another one for the projection of the node on the Y-axis.

Note that Relations in Tile models are directed, i.e., they distinguish between the source the
target node of the Relation. Given that the Allen intervals are defined on ordered pairs of seg-
ments, the pair (source, target) indicates how to interpret the intervals. For instance, let r(t,, t,)

be a relation between TileNodes t, and t, and r.xInterval = Before means that ¢, is before ¢, with

136

Allen interval Meaning Opposite
BEFORE FF4 NN\ AFTER
MEETS r& AN\ MET_BY
STARTS WIWWN NN\ STARTED_BY
DURING WA\ CONTAINS
FINISHES ANNNS ¢ o FINISHED_BY
OVERLAPS Vo4 o o \NN OVERLAPPED_BY
EQUALS o o o] -

Figure 6.7: Allen intervals

regard to the projections on the X-axis. The pairs of TileNodes in a Relation are ordered in the
following way: the target TileNode is always on the right or below the source TileNode. As it
was already said, TileNodes are arranged in a hierarchy so a TileNode can contain some other

TileNodes and Relations.

Each Relation has then two Allen intervals: An Allen interval for the X axis (xInterval) that is
based on the comparison between the y-coordinates of both TileNodes, and an Allen interval
for the Y axis (yInterval) that is based on the comparison of the x-coordinates. As already in-
dicated, one Allen interval allows representing relative positions between pairs of segments (1
dimension). Then, with two Allen intervals it is possible to represent the relative position of two
widgets (represented as boxes) in a bidimensional space. The comparisons of the positions to
calculate the Allen intervals are carried out with some margin m that is parameterised, so for a
pair of widgets w, and w,, w,.x = w,.xif w,.x € (w,.x — m, w,.x + m). By default the margin
of the comparisons has been set to 10 pixels. It allows avoiding the negative effect of misalign-
ment, which results in some flexibility when placing widgets onto the canvas for creating quick
GUIs.

Figure 6.8 shows the Allen intervals for the Relation between the passwordField and cancel tiles
extracted from the view example in Figure 6.11. Given that the projection of passwordField in
the Y-axis precedes the projection of cancel, then the yInterval is Before. Regarding the X-axis,
the projection of cancel exceeds the end of passwordField in 10 pixels. If we were strict (the com-

parison margin would be set in o pixels), the Allen interval that describes the relative position

137

=ZNEITA

alojeg
@)
Q
>
@)
@ .

xInterval = Finishes

Figure 6.8: Allen interval example for a pair of widgets

of both projections would be Overlaps. However, as far as we have set the comparison margin
to 10 pixels, the excess is not significant, so both projections can be considered as they end at

the same point. Therefore, in this case xInterval is Finishes.

6.3.3 REPRESENTING WIDGET DISTANCES

This is the step 3 in Figure 6.2. The closeness levels provide Relations with meaningful distances.
The levels are obtained by taking the distance measured in pixels and mapping it to a finite set

of values (levels, like 1 for very close, 2 for close and so on).

\ passwordField

15 px 21 px

E:anceﬂ

Figure 6.9: Problem when setting fixed limits for the closeness levels.

A simple way to classify distances in levels is to set fixed ranges. For instance, Figure 6.9 shows a
portion of a view with three widgets (extracted from Figure 6.11). If we establish that a distance
between 1 and 20 pixels is mapped to a Very Close level, and a distance between 21 and 40
pixels is mapped to Close, then we would have that the closeness level between passwordField
and ok (Very_Close) would be different to the closeness level between passwordField and cancel
(Close). Since the diference of distances between passwordField-ok and passwordField-cancel is

not significantly different when a user sees the view, then they should be tagged with similar

138

levels.

As it can be deduced from the example, the classification of the distances should not be accom-
plished using tight limits (absolute distances) but variable limits that depend on the data set.
In this sense, a group of nodes that are more or less at the same distance should always be in the
same group, and the closeness level defines a partitioning of the nodes in groups according to
the distance.

In order to address this shortcoming we apply a clustering algorithm, which performs a dynamic
partition of the set of distances in the view. The partitioning of the distances is then used to
classify the relations. Algorithm 4 details this process. We will use the simple example shown
in Figure 6.10(a) during the explanation of the algorithm, which shows four widgets, a, b, ¢, d

and the horizontal distances between them.

a 10px b & C 44px d (a)

e B,E1 @ B,E,1 G B,E,2 @ (b)

Figure 6.10: Closeness assignment example. (a) Widgets and distances between them. (b)
Result graph.

Firstly the algorithm gets all the distances (vertical and horizontal) of the relations and creates
a single cluster with these distances (lines 2 to). In this case, BestPartition = {{10,14, 44} }.
We use the population standard deviation (o) of the distances to measure whether the cluster
is homogeneous enough, i.e. the distances in the cluster can be considered similar (to a certain
degree). If the standard deviation of the initial cluster is greater than the maximum closeness
cluster deviation (maxDev, which by default is 15), then we have to split the cluster (line 7). In
the example, ¢ = 15.17 > maxDev, so we have to split the distances in clusters.

In order to perform the clustering of distances, we have selected the k-means algorithm [105]
(line 12), with the euclidean distance as similarity function. Given that k-means is a divisive
algorithm, the number of clusters must be passed as a parameter. However, we do not know the
number of clusters a priori. Therefore, we apply the k-means algorithm several times (lines 9 to
20), increasing the number of clusters in each iteration (line 10) until the stop condition. This

condition is that the standard deviation of every cluster is less than maxDev (line 17).

139

Algorithm 4 Closeness assignment algorithm

1: procedure AssiGNCLOSENESS(Relations, maxDev)
2 AllDistances < getAllDistances(Relations)
3 nClusters < 1
4: Cluster < AllDistances
5 BestPartition <— {Cluster}
6
7 if o cluster > maxDev then
8 partitionOK <— false
9 while —partitionOK do
10: nClusters <— nClusters + 1
11: for i < 1, Num_Iterations do
12: Clusters +— kMeans(AllDistances, nClusters)
13: if isBestPartition(Clusters7 BestPartition,
SumOfSquaredErrors()) then
14: BestPartition <— Clusters
15: end if
16: end for
17: if VC € BestPartition, oc < maxDev then
18: partitionOK < true
19: end if
20: end while
21: end if
22:
23: SortedPartition <— sort(BestPartition)
24: closeness <+ 1
25: PartitionMap < {}
26: for all Cluster € SortedPartition do
27: range — getRange(Cluster)
28: PartitionMap|range] < closeness
29: closeness <— closeness + 1
30: end for
31:
32: for all relation € Relations do
33: d < getDistance(relation)
34t relation.closeness <— PartitionMap|d]
35: end for

36: end procedure

140

Because k-means is a heuristic algorithm, it is very fast, but it could fall into a local maximum.
In order to get a better clustering, the algorithm is executed multiple times (lines 11 to 16) with
different random starting conditions. By default the number of iterations, Num_ Iterations vari-
able, is 20, and we keep the best solution according to the intra-cluster homogeneity criterion,
which is the sum of the squared errors (line 13). Following with the example, the k-means algo-
rithm is applied with nClusters = 2 and the output is: BestPartition = {{10,14},{44}}, and
we have that o(,5 ., = 2 < maxDev A\ (,,1 = o < maxDev, so the clustering loop stops.
After obtaining the clusters, we sort the clusters and we assign a numerical tag to each one (lines
23 t0 30). The lesser the values (distances) of the cluster, the lesser the numerical value of the tag
(the lower distance group is tagged with 1). For each cluster, we set a minimum and a maximum
value in pixels (lines 277). In the example, PartitionMap maps each range to a closeness level:
(—00,14] = 1and [15, +00) = 2.

When all this process has been accomplished, we iterate over the Relations and for each one and
we use PartitionMap to know which closeness level must be assigned to the Relation by compar-
ing the distance with the ranges. Figure 6.10(b), shows the Tile model fragment of the widgets

in Figure 6.10(a), being the closeness level the numeric parameter of the edges (Relations).

6.3.4 TILE MODEL EXAMPLE

The graph in Figure 6.12 is the Tile model derived from the example window shown in Fig-
ure 6.11. Tiles (nodes) have been represented with ellipses that include the name of the widget
and relations (edges) have been represented with arrows with three attributes: the Allen in-
terval for the X axis (xAllenInterval), the Allen interval for the Y axis (yAllenInterval), and the

closenessLevel. The coordinates and dimension of the nodes have been omitted.

Login X

namelabel nameField

passwordLabel passwordField

cancel

Figure 6.11: Login window created with WireframeSketcher.

141

E B, 1 E, B, 1
passwordLabel B.E.1 passwordField
, B, 1

Figure 6.12: Graph representation of the login window example. B=BEFORE, E=EQUALS,
C=CONTAINS, FB=FINISHED BY

Since all the distances between the nodes are more or less similar, the clustering algorithm
groups all the distances in just one cluster. This unique group is assigned the closeness level
1. As we mentioned in Section 6.3.2, the comparisons of the positions take into account some
margin. This is the reason why the xAllenInterval of the relation between nameField and pass-
wordField is EQUALS though the projection of the coordinates in the X axis for both widgets is

not exactly the same.

6.4 INFERING A HIGH-LEVEL LAYOUT

The Tile model is the basis to apply the layout inference algorithm we have devised (steps 4, 5
and 6 in Figure 6.2 are encompassed by this algorithm). It is a backtracking algorithm based on
graph rewriting. The main idea consists of matching a predefined set of layout patterns against
the graph (the Tile model) until all the nodes have been matched and replaced by the corre-
sponding layout node, so rewriting finishes when there is only one node left (the root layout).
The layout patterns are applied in all the possible orders, so obtaining several solutions that are
evaluated in order to see how good or bad the solution is.

The algorithm generates all the possible permutations of the layout patterns and checks for each
sequence if we can meet a solution by applying the layout patterns in the order specified by
the sequence. Every time there is a pattern match, all the matched nodes are replaced just by
one node, and the pattern matching continues with the resultant reduced graph. A solution

sequence is a composition of layouts that covers all the nodes of the graph, this is, when only

142

one node remains. Each different solution that is found is assessed by a fitness function. The

best solution will be the solution with the highest fitness value.

W1 W2 W1 H w2
v
w3 W4 w3 H W4
(a) (b)
W1 W2 W1 w2
v H v G
w3 W4 w3 wa

() (d)

Figure 6.13: Pattern matching example on four widgets

In order to show the logic behind the algorithm with a simple example, let us suppose we have
four widgets W1, W2, W3, Wy that are spatially distributed as it is shown in Figure 6.13(a).
There are several possibilities to arrange these widgets depending on the order in which the
layout patterns are applied. If we start looking for horizontal flows of elements, we find two
matches: Wi-W2 and W3-W4. Then, a vertical flow composed of the two previous matches
can be applied (see Figure 6.13(b)). If we had started looking for vertical sequences, the pairs
W1-W3 and W2-W4 would have matched, and then these two matches would make a horizontal
matching (see Figure 6.13(c)). Finally, if we had looked for a grid pattern of 2 X 2 elements, all
the nodes would have fit in just one match (see Figure 6.13(d)).

This approach has the advantage of offering a list of alternative solutions, which could be in-
teresting to know different implementation options and choose the desired layout. Before ex-
plaining the algorithm in deep in Section 6.4.2, the following section describes the predefined

set of layout patterns that can be used in the algorithm.

6.4.1 THE LAYOUT PATTERNS

In this section we describe the layout patterns used to detect the predefined layout types that

were introduced in Section 6.2.2.

143

. (Horizontal / Vertical) FlowLayout: selects a sequence of nodes that are connected by

only one outgoing edge with the xInterval / yInterval equals to BEFORE or MEETS.

« BorderLayout: looks for subgraphs that match the five areas of a star topology: top,
bottom, left, right, center. Not all the five areas have to be identified. The currently sup-
ported patterns for the BorderLayout can be seen in Figure 6.14. In order to detect the
areas, not only the edges of the graph are taken into account, but also the relative dis-
tances to the container. For the top, bottom, left and right areas, it must not be a distance
lower than a certain value (15% by default) from the container bounds. When detecting
a BorderLayout with only the top-bottom areas or left-right areas, the relative distance
between the areas must be greater than a value (20% by default) regarding the container

bounds.

« GridLayout: searches recursively for subgraphs connected among them so they form a
rectangular grid topology of n X m nodes. Firstly it attemps to match a 2 X 2 square (the
smallest allowed grid). Then it tries to expand the rectangle by recursively matching the
nodes to the right and below the square. In the end the match is the biggest rectangular
grid that it is possible to match from the 2 X 2 square. There is a constraint that the
nodes inside the grid cannot contain edges whose target node is outside the grid, only
the border nodes of the grid are allowed to have connections to the nodes outside the
grid. Additionally, for a GridLayout to be matched the closeness level of all the edges has

to be the same.

« FormLayout: it is a pattern devised to arrange SingleWidgets, not Containers. The pattern
firstly detects a vertical FlowLayout composed of a list of (more than one) horizontal
FlowLayouts. Secondly, it has to be checked that at least two of the elements are verti-
cally aligned. The widgets shown in the example of Figure 6.11 match the FormLayout.
This pattern searches for alignment marks, which are imaginary vertical lines to which
some of the widgets are aligned. In the example, we have an alignment mark between
passwordLabel and nameField, and another one on the right border of the cancel button.
These alignment marks are used later to define the bounds of the AlignedColumns (see
Layout model in Figure 6.5). For example, nameLabel and passwordLabel would form an
AlignedColumn, and the rest of widgets would form another one. Not all the widget types

are allowed in a FormLayout, but only widgets typically found in a form (e.g., ComboBoxes

144

and CheckBoxes are allowed, but not ImageContainers).

| i I

Figure 6.14: Border layout supported patterns.

There is another layout defined in the metamodel, the CustomLayout. As we indicated in Sec-
tion 6.2.2, this is not actually a layout, but it means that no combination of the selected layout
patterns can be applied to the original graph to reach a solution. For example, the distribution
of widgets shown in Figure 6.15(a) and 6.15(b) does not fit any combination of the aforemen-
tioned layout patterns, so a CustomLayout will be generated in these cases. When a CustomLay-

out is obtained, developers are responsible for programming the layout by hand.

W1 Wi1
W2

W3

W4 W2

(a) (b)

Figure 6.15: Examples of widgets that do not match any pattern

It can be seen that some patterns are more likely to be used when arranging containers, such
as the BorderLayout, whereas other layouts such as the FormLayout are devised to work with
single widgets. FlowLayout (vertical or horizontal) is the most general layout and can be used
for both, containers and single widgets. GridLayouts can also work for both cases.

The patterns have not been defined by means of a graph grammar but they are hardcoded be-
cause some patterns (such as the Grid pattern) cannot be expressed by a context-free graph

grammar, and therefore they cannot be easily managed by graph transformation tools.

145

6.4.2 LAYOUT INFERENCE ALGORITHM

In this section we present the algorithm to discover the structure of the layout (step 4 in Fig-
ure 6.2) in terms of the layout managers defined in the previous subsection by means of patterns.
The algorithm generates an instance of the Layout model depicted in Figure 6.5. In Section 6.4.3
a complete example describing a step-by-step execution of the algorithm is given.

The layout inference is presented in Algorithm 5 (function InferLayout). The function is exe-
cuted for every WidgetNode associated with a Container. It receives three inputs: a WidgetNode
which is associated with a Container (cNode), the set of identifiers of the predefined layouts
to use (layoutSet) and the number of closeness levels that appear in the relations of the graph
(nCLevels). It is important to remark that a WidgetNode associated with a Container represents

a graph, and contains the WidgetNodes included in that Container.

GLOBAL INITIALISATION (LINES 2 TO 4)

The solutions set stores the different alternative graphs that steam from the rewriting process,
and represents the possible visual structures of the container associated with cNode. The solSe-
quences set is used to store the sequences of layout patterns that have been applied to obtain
each solution stored in solutions. Each layout type is given an integer identifier, so that a se-
quence of applied patterns is just represented as a sequence of integers. Thus, the rationale of
the solSequences set is to allow fast comparison of solutions, instead of comparing the solution
graphs (graph isomorphism problem).

generatePermutations() in line 4 generates all the n! possible permutations for the layout identi-

fiers, being n the number of predefined layouts used.

ITERATE OVER THE PERMUTATIONS (LINES 6 TO 11)

The algorithm iterates over all the permutations (line 6) searching for solutions, so there will
be at most n! solutions for a graph (in practice there will be only a few solutions).

Some initialisations are carried out between lines 7 and 11. currentSolSeq is used to store the
current solution sequence, and is initialised to an empty sequence. Since the algorithm needs
to modify the graph represented by cNode, that graph is deeply cloned in each iteration (i.e.,
for each permutation), so the algorithm works on that copy. The graph will be reduced each
time that there is a pattern match on a subgraph, that is, each subgraph that matches the pattern

146

Algorithm s Layout inference algorithm

1: function INFERLAYOUT(cNode, LayoutSet, nCLevels): Solutions
2: Solutions < {}
3 SolSequences <— {}
4 Permutations <— generatePermutations(LayoutSet)
5
6: for all permutation € Permutations do
7 CurrentSolSeq < {}
8 graph < copyGraph(cNode)
9 closenessLimit < 1
10: remainingNodes <— graph.order
11: loops < o
12
13: while remainingNodes > 1 A
loops < LayoutSet.size * nCLevels do
14: pattern < getNextLayoutPattern(permutation)
15: Matches < match(graph, pattern, closenessLimit)
16:
17: if —isEmpty(Matches) then
18: for all match € Matches do
19: mergeNodes(graph, match, pattern)
20: end for
21: add(currentSolSeq, pattern)
22: resetSequence(permutation)
23: loops <— (closenessLevel — 1) * LayoutSet.size
24: remainingNodes <— graph.order
25: else
26: loops < loops + 1
27: if loops mod LayoutSet.size = o then
closenessLimit < closenessLimit + 1
28: end if
29: end if
30: end while
31:
32: if remainingNodes > 1 then return "No solution’
33: else
34: if —contains(SolSequences, currentSolSeq) then
35: layout < createLayout(graph)
36: if —contains(Solutions, layout) then
37: layout fitness < fitness(layout)
38: add(SolSequences, currentSolSeq)
39: add(Solutions, layout)
40: end if
41: end if
42: end if
43:
44: end for

45: end function

147

is replaced by a layout node that contains the subgraph. The closenessLimit is initially set to the
lowest level. remainingNodes is assigned the number of nodes of the graph (i.e. the graph order).
loops indicates the number ofloops without applying any pattern to the graph, i.e. loops without

changes.

MATCHING PATTERNS (LINES 13 TO 15)

The loop in line 13 is in charge of applying pattern matchings on the current graph in order
to look for solutions. There are two conditions that must be satisfied to continue iterating.
The first condition is that remainingNodes is greater than one. We have already said that the
pattern matching engine progressively reduces the size of the graph, until the whole graph is
transformed in a single layout node. Therefore, if remainingNodes is one it means that we have
found a solution. Otherwise, not all the nodes have been matched and a solution has not been
reached so far. The second condition keeps the loop running while there are pairs of (pattern,
closenessLevel) that have not been tried (the number of loops without changes is equals to the
number of predefined layouts used multiplied by the number of closeness levels used). This is
the maximum number ofiterations that are required to perform a pattern match. Consequently,
it is a stop condition to avoid a infinite loop when no solution can be reached.

Given a permutation of layout types (layoutSet), getNextLayoutPattern() (line 14) iterates over
the permutation and returns the next layout type, in such a way that when there are no more
layout types left it restarts the cycle from the beginning. The invocation of the pattern matching
engine is represented by the function match() (line 15).

The pattern matching engine iterates over the graph nodes looking for matches of a given pat-
tern. The pattern is matched against the graph starting from every node (because the starting
node of a match cannot be determined beforehand). That leads to match subgraphs that are
contained in other matches. In that case in which there are nested matches, we keep the largest
one (that nests the other submatches). Single-node matches are discarded.

The closenessLimit is included in the pattern matching engine call so only the edges with a close-
ness level equals or less than the limit can match a pattern (the rest of edges are ignored). Note
that it makes a partition of the graph in connected components, so each connected component
is a subgraph of the original graph where all the edges have a closeness level equals or less than

the limit.

148

(@) (b)

Figure 6.16: Example of non-valid match for the Vertical Flow Layout pattern.

(@) (b)

Figure 6.17: Example of match split for the Vertical Flow Layout pattern.

Not all the matches performed by the matching engine are valid. There are two constraints that
must be ensured: i) the area delimited by the matched nodes does not enter the area occupied
by other node outside the match, and i) there are no nodes that are shared by different matches.
To explain the first constraint, let us consider the graph in Figure 6.16(b) that corresponds to the
layout of widgets represented in Figure 6.16(a). In this example, if the matching engine tries to
match a vertical column of nodes (Vertical Flow Layout), it would perform the following match:
M, = {a,,a,,a,}. The edges ¢,(a,, b) and e,(b, a,) are tagged with level 2, which is a higher
closeness level than the edges ¢,(a,, a,) and e, (a,, a,) (level 1), and this leads to the pattern
matching engine to ignore the edges e,(a,, b) and ¢, (b, a,), and thus b could not be matched
anymore. As it can be seen, the rectangular area composed by the nodes of the match would
enter the area taken by b. In order to avoid the conflict, the match is discarded.

The second constraint ensures that we get disjoint matches. When we have nodes that are

shared by two or more matches, we convert the shared nodes in a new match, and we remove

149

these nodes from the rest of matches, so obtaining two or more new matches. For instance,
if we match a vertical column of nodes (Vertical Flow Layout) against the graph presented
in Figure 6.17(b) that reflects the layout of Figure 6.17(a), then we will have two matches:
M, = {a,,a,,¢,,¢,} and M, = {b,,b,,c,,c,}. However, {c,,c,} are conflicting nodes since
they are shared by both matches. Therefore, we split the two matches in three matches, namely
M; = {a,;a,}, M, = {b,,b,} and M, = {c,,c,}. When we split some matches, we have to
check that every submatch still fits the layout pattern, otherwise it is discarded.

MATCHES FOUND CASE (LINES 17 TO 22)

If there are matches for a pattern on the current graph (line 17), then the nodes of the match

are merged into one node. The mergeNodes() (line 19) works as follows:

« Anew node of type LayoutNode is created, which will represent the joining of the match.
The new node is marked with the layout type (type attribute) that has been applied.

« All the matched nodes are removed from the original graph and included in the new

node as children. The coordinates of the new node represent the area that contains all its

children.

« Allthe edges between a pair of matched nodes (which are now children of the new node)

are kept.

« All the edges from a non-matched node that starts or ends in a matched node now refer

to the new node.

« If there are more than two edges between the new node and other non-matched node,
the edges are replaced by a new edge. The Allen intervals are recalculated. The closeness

level is the minimum level of the replaced edges.

After the reduction of the graph, the layout pattern applied is registered in the current solution
sequence (line 21).

The permutation is reset (line 22) so the next layout to try will be the first one of the permuta-
tion again. This is needed to match the same pattern again over the rewritten graph. Hence, the

loop variable is updated so that the iteration starts over the current closeness level.

150

NO MATCHES FOUND CASE (LINES 25 TO 30)

If there are no layout pattern matches, the number of iterations without changes is increased
(line 26). The condition in line 27 expresses that every k iterations without changes, being k
the number of layout types used, the current closeness level limit (closenessLimit) is increased
in one level. This will lead to that in the next iterations the layout patterns will be less strict
about the distances between the elements. The remainingNodes variable is updated (line 24)

with the order of the graph, considering that it is the number of TileNodes without parent.

CHECKING SOLUTIONS (LINES 32 TO 42)

If the inner loop (lines 13 to 30) finishes and the number of remaining nodes is greater than
one (line 32), then there is no solution. Otherwise, a solution has been found. If the solution
found is different from all the solutions stored up to that point (line 34), then we may have a
new solution. However, we cannot be sure whether the solution is new or not because two dif-
ferent solution sequences (made of layout pattern identifiers) may lead to the same graph when
they contain common patterns in different orders. In this case, the corresponding layout tree is
created (createLayout() function in line 35), and the layout trees are compared. In this way, only
new solutions are stored (line 39). Please note that in a great number of cases the same solution
sequence is reached by different permutations, so the solSequences set is an optimisation for fast

comparison, which is useful to avoid many tree comparisons.

CREATING THE NEW LAYOUT (LINE 35)

The createLayout() function creates the layout structure for a graph that reflects the hierarchical
structure of the layout that is going to be created. To make the explanation clearer we sometimes
say 'Widgets’ or ’Container’ when we actually refer to the LayoutElement associated with that
Widget or Container’.

For some of the layouts defined in the Layout model, specific attributes must be initialised. For
instance, for a BorderLayout the nodes that correspond to the predefined areas (top, bottom,
left, right, center) are set by analysing the incoming and outcoming relations of that node. A
FormLayout also has its own attributes. The nodes that compose a FormLayout are analysed to
identify the vertical alignment marks, which are distances in the X-axis that coincide (with some
margin of tolerance) with the left or right bound of at least two nodes. A mark is represented as

percentage of the relative distance to the left bound of the Container. When the alignment marks

151

have been detected, the nodes can be classified in the AlignedColumns defined by contiguous
alignment marks.

For each Layout, the spacing and sizing properties are set (step s in Figure 6.2). hSize and vSize
are the horizontal and vertical percentages of space occupied by the Widgets compared to their
Container. Gaps (either horizontal or vertical) are created for each pair of adjacent Widgets.
Margins are calculated for the Layouts (intermediate layouts or not) that are children of a Layout
associated with a Container.

The createLayout()) function also represents the alignment in an explicit manner (step 6 in Fig-
ure 6.2). hAlignment and vAlignment represent the horizontal and vertical alignment regarding
the area of the enclosing layout, i.e. the minimum area which is large enough to contain all the
widgets of the parent layout. For Layouts or ElementNodes nested in a horizontal FlowLayout,
only vAlignment is set (the horizontal position is controlled by the layout manager) except in
the case that there is a horizontal FlowLayout inside another one, then hAlignment is also set.
Similarly, for Layouts or ElementNodes nested in a vertical FlowLayout, only hAlignment is set
but in the case of a vertical FlowLayout nested in another one. The value to decide if the bound
of an element (top, bottom, left or right) is aligned is 15% by default. For example, if we have a
HorizontalFlowLayout associated with a container whose width is 100 pixels, and it contains an
ElementNode associated to a label with coordinates (10, 20), then hAlignment = LEFT for the

ElementNode because 10/100 < 0.15.

ASSESSING THE NEW LAYOUT (LINE 37)

Every new solution is assessed by a fitness function (line 37) and assigned a fitness value. The
meaning of our fitness function is that a higher value (close to one) denotes a better solution

that a lower value (close to zero). The fitness value is calculated with the following formula:

n
2 ima Wi * (g — di £ 1)

Where n is the total number of layouts in the solution represented by the layout tree, w; is the

fitness =

weight of the i-th layout, d ;.. is the depth of the layout tree and d; is the depth of the i-th layout.
The weight of a layout is obtained as follows:

« For each FlowLayout or FormLayout we add 2, but in the case of a FlowLayout nested in
a FormLayout which is ignored (because it is part of the FormLayout and should not be

counted twice).

152

« For each GridLayout or BorderLayout we add 1.

The fitness function gives a better score to more specific layouts (border and grid) over the flow
and form layouts which are more general. It is also remarkable that deeper layouts get a worse

fitness value than shallow layouts, because we prefer balanced layout trees (wider and less deep).

6.4.3 LAYOUT INFERENCE EXAMPLE

Now we shall show an example on how the layout inference algorithm works based on the Tile
model (i.e.,, graph) depicted in Figure 6.12. For the sake of simplicity, we will only use the fol-
lowing subset of the predefined layouts: horizontal flow layout, vertical flow layout and form
layout, but the procedure would be applied in the same manner with more layout types. In this
example there is only one closeness level, which means that all the distances between widgets
are considered as similar. The algorithm will generate over 3! = 6 permutations of the layouts,
which are shown next (HFlow means horizontal flow layout, VFlow means vertical flow layout,

and Form means form layout).

Iteration #1: HFlow, VFlow, Form

Pattern to try HFlow
Matches found | 1: {nameLabel, nameField}
2: {passwordLabel, passwordField}

3: {ok, cancel}

Reduced graph | (see step 1 in Figure 6.18)

Graph order 3 nodes

Restart layout sequence

Layout to try HFlow
Matches found | None

Layout to try VFlow

Matches found | 1: {name_merged, password_merged,

ok_cancel _merged}

Reduced graph | (see step 2 in Figure 6.18)

Graph order 1 node
New solution found: solh = {HFlow, VFlow}
Fitness =
((1+3) /(1 VFlow*2*2+3 HFlow*2*1))

Solutions ‘ sol1
N\

153

Iteration #2: HFlow, Form, VFlow

Similar to Iteration #1 (no match for the Form pattern
Solution found: sol2 = soli — Discardsol2

Iteration #3: VFlow, HFlow, Form

Pattern to try VElow

Matches found | 1: {nameLabel, passwordLabel},
2: {nameField, passwordField}

Reduced graph | (see step 1 in Figure 6.19)

Graph order 4 nodes

Restart layout sequence

Layout to try VFElow

Matches found | None

Layout to try HFlow

Matches found | 1: {name_pass_label _merged,
name_pass_field merged},

2: {ok, cancel}

Reduced graph | (see step 2 in Figure 6.19)

Graph order 2 nodes

Restart layout sequence

Iteration #3 (Continuation)

Pattern to try VFlow

Matches found | 1: {name_pass_merged,

ok_cancel_merged}

New solution found: sol3 = {VFlow, HFlow, VFlow}

Fitness = =
18

((1+2+2)/(1 VFlow* 2* 3 + 2 HFlow * 2 * 2 + 2 VFlow * 2 * 1))

Solutions sol1, sol3
_

Iteration #4: VFlow, Form, HFlow

Similar to Iteration #3 (no match for the Form pattern)
Solution found: sol4 = sol3 — Discardsols

-1

154

Iteration #5: Form, HFlow, VFlow

Pattern to try Form

Matches found | 1: {nameLabel, nameField, passwordLabel, passwordField, ok, cancel}

Graph order 1 node

New solution found: sols = {Form}
Fitness = ~
(1/ (1 Form*2))

L Solutions sol1, sol3, sols

(Iteration #6: Form, VFlow, HFlow
L Identical to Iteration #5

Solution found: sol6 = sols — Discardsol6

N

E,B, 1

) E,B, 1
passwordLabel

name
_merged
, B, E,B, 1
passwordField
1

all

FB, B, 1

, B,
ok_cancel
_merged

Figure 6.18: Inference example. Permutation { HFlow, VFlow, Form} applied to the graph in

H Flow

Figure 6.12.

The algorithm returns the solution set: {sol1, sol3, sols }. The best solution is sol5 because it has
the highest fitness value.

There are some remarkable details about the layouts created. We will comment on the best
solution. It is a FormLayout with two AlignedColumns (columns c1 and c2 in Figure 6.20). The
first AlignedColumn contains nameLabel and passwordLabel aligned to both left and right (i.e.,
justified). The second Aligned Column includes nameField and passwordField that aligned to both
left and right, and ok and cancel that are aligned to the right.

The FormLayout has hAlignment=CENTER and vAlignment=CENTER because the group of

widgets laid out are centered in their container (the window). The last Vertical FlowLayout

15§

E,B, 1
passwordLabel

V Flow

H Flow

all
name_pass V Flow _merged
_merged

FB, B, 1

Figure 6.19: Inference example. Permutation { VFlow, HFlow, Form} applied to the graph in

Figure 6.12.
Login X
1 2
rr.1 o m > m3
:I_ ________ — il S e e S — -
:: namelabel : nameField

I
I
0 : I
;:passwordLabelE passwordField :
: :
I
I

Figure 6.20: Alignment columns for the Login window.

inside the FormLayout (i.e., the ok and cancel widgets) has vAlignment=RIGHT, because both
widgets as a whole are aligned to the right part of the area delimited by FormLayout (i.e., the

area of all the widgets inside the window).

6.4.4 PERFORMANCE EVALUATION

In this section we will show the results of the performance analysis of the layout inference al-

gorithm that we have carried out. We have generated several views containing an increasing

156

number of widgets. The widgets of a view are arranged in groups, and each group conforms to
a layout type supported by our algorithm. The groups are randomly placed but close to other
groups (so there are not significant distances between widgets), with the additional constraint
that a group cannot overlap another one. Then, we have measured the execution time of the in-
ference algorithm. Aftwerwards, the same process is repeated but this time the same views are
arranged in several containers, to emulate the common scenario when developers design GUIs.
Besides, the analysis has been carried out for three to five layout types to show the impact of the
number of layout types.

Figure 6.21 shows the execution (in seconds) in the case that there are no containers in the
view (the view itselfis the only container) and all the widgets are close. This is the worst case as
the algorithm has to deal with a single graph with all the widgets. Figure 6.22 shows the result
when the view is split in containers, with each container consisting of up to 20 widgets. This is

an average case of the algorithm. The tests have been run in an Intel Core is with 4GB RAM.

3,00

--3 layout types /

2,50 +—
4 layout types /
2,00 — =5 layouttypes

0,50 _/

0,00 {5 ? ' T
20 40 60 80 100

T

Number of widgets (all in 1 container)

Figure 6.21: Execution time for widgets in a single container.

Comparing both charts we can see that the layout inference applied to a view split in containers
(Figure 6.22) obtains significative better results than using no containers at all (Figure 6.21).
When a view is split in containers and the number of widgets is augmented, the execution time

is linearly increased. On the other hand, when a view is not split in containers the execution

157

0,50
0,45 4— o

== 3 layout types
0,40 -— 41 tty //
ayou es
0,35 +— Y P
030 L —=5layouttypes /
0,25
0,20 /
0,15 /

Seconds

0,10

0,05 = =
- L =

D,DD T T T T 1
20 40 60 80 100

Number of widgets (a container every 20 widgets)

Figure 6.22: Execution time for widgets arranged in containers (a container every 20 wid-

gets) .

time increases in a polynomial or even exponential way. It comes as no suprise since the pattern
matching is applied on smaller graphs with only one container that contains a large graph. For
example, if applying the algorithm to a view of 100 nodes arranged in 5 containers of 20 nodes
each one, then the algorithm analyses 5 graphs of 20 nodes each one, and one graph with g
nodes (i.e, the graph that relates the 5 containers among each other). Note that in the vast
majority of cases, views are arranged in containers, so the chart displayed in Figure 6.22 is more
realistic than Figure 6.21.

Asit can be seen in both graphs, applying the inference algorithm with more layout types seems
to have an exponential impact on the execution time, which is logical since the algorithm iter-
ates as often as the number of permutations (n!) of n layout types. For three layout types, we
used HFlow, VFlow and Form layouts, for four layout types we used the same three layouts and
either Grid or Border layout (different tests with each one), and for five layout types we used
HFlow, VFlow, Form, Grid and Border layouts. We decide to include the Form layout in all
cases because its pattern matching is the most complex one, whereas for the other layout types
the complexity is more or less similar.

The results show that the actual execution time of the inference algorithm is reasonably accept-
able (beyond its algorithmic complexity). For interactive applications that require on-the-fly

layout inference, using the algorithm with more than s layout types may be a little slow (5 lay-

158

out types and 100 widgets takes 2,78 seconds in the worst case and 0,46 seconds in the average
case). However, for non-interactive applications such as GUI migration, that works on batch
mode, the algorithm is practical as it obtains an admissible execution time with even more than
five layout types.

The current implementation of the algorithm has little optimisations, so in the future we expect
a substantial drop in the execution time when some optimisations are done (e.g., pruning the

search tree by detecting already visited sequences).

6.5 CASE STUDY: FROM WIREFRAMES TO FLUID WEB INTERFACES

This section presents a case study that has been carried out to put into practice the layout infer-
ence approach of the previous section. The goal of the case study is to automatically generate
final GUI code from wireframes created with the WireframeSketcher [106] tool (it could have
been equally applied to sketching and mockup-tools without loss of generality). The transfor-
mation of a wireframe into a final user interface requires layout inference in order to generate
the source code for a particular platform and GUI toolkit. The actual implementation used in

this case study is presented in Section 6.6.

6.5.1 CONTEXT OF THE CASE STUDY

Designing GUISs is a crucial and complex task in software application development, which in-
volves dealing with aspects such as functionality, accessibility and usability. An iterative process
is normally applied in GUI design, in which several representations of the GUI at a different
detail level are built, so users and developers can experiment and discuss about the structure
and behaviour of the GUI Frequently three representations are used: sketches, wireframes and
mockups. Sketches are rapid, freehand drawings that show an initial design idea on the inter-
face. Wireframes reflect how the contents are distributed in the screen (i.e., the layout of the
widgets that represent the content). Mockups refine wireframes by adding details like colours
or images.

Wireframing tools commonly provide specific editors for creating wireframes and mockups.
There are also tools that can automatically generate final GUI code from wireframes or mock-
ups. For example, Reify [107] is a tool that generates web interfaces from wireframes created
with the Balsamiq [56] wireframing tool. However, wireframe generation tools have significant

limitations at present, as they are limited to certain types of layouts [4], they are only applicable

159

on certain platforms such as web interfaces with CSS [], or they are still in an immature state
(like Reify).

Wireframes do not have an explicit notion of layout, but widgets are dragged from a palette
and placed into a particular position (which is sometimes almost arbitrary) on a canvas. Wire-
frames therefore only provide a coordinate-based layout. The transformation of wireframes into
final GUIs in modern platforms with explicit layout facilities poses the challenge of uncover-
ing the implicit structure of the GUI in order to obtain an explicit representation of the layout.
Although we have only used wireframes in the case study, the approach is also applicable to
mockups.

On the other hand, in 2010 Ethan Marcotte coined the term Responsive Web Design [108] to
a design philosophy aimed at crafting sites to provide an optimal viewing experience. Three
basic principles make up this philosophy: i) define fluid grids, ii) define flexible images, and iii)
use CSS 3 media queries to change the style depending on the screen dimension. Since then,
responsive interfaces have become popular, as well as fluid layouts (not necessarily grids).

In the case study, adaptive web interfaces (interfaces with a fluid layout) were generated by us-
ing ZK [44]. We did not addressed a full-fledged responsive UI design because that implies
the use of algorithms to rearrange the content. As our Layout model explicitly captures explicit
information about the layout, this rearrangement is possible. Thus, this case study can be con-

sidered as a first step towards generating responsive web interfaces.

6.5.2 EVALUATION OF THE APPROACH

We have conducted an experiment with users to validate our approach. 20 people working
on the IT sector (with different roles such as web developer or software analyst) have been
prompted to design a series of wireframes and then apply our layout inference tool to generate
the source code of the final GUL.

6.5.2.1 METHODOLOGY

The methodology we have used is the following. Firstly, each person was provided with an
explanatory document that he or she should read carefully. The document explains the utility
of wireframes, gives some instructions on how to use both the wireframing tool we have chosen
(WireframeSketcher) and our layout inference tool, and explains the task to accomplish. After

reading the document, each participant should accomplish the design of 5 screens for an on-

160

line bookstore application. These 5 screens intend to be typical views of a web application that
involves common design patterns such as master-detail or registration form. Particularly, these

are the s screens we demanded (the name of the view is indicated before the colon):

best: it displays information about the best-sellers.

cart: a shopping-cart view that shows the current state of the cart.

o detail: it shows detailed information about a selected book.

« search: allows searching for some criteria and see the results of the query.
o user: it lets users create a new user account.

When the user finished the screens, he or she was encouraged to apply our tool to generate
the code of the final GUI and execute it to see how the view looks like. Participants must not
modify the default values for the tool parameters (see Figure 6.37) in the first execution, but
can be altered if the result was not what the user expected at first.

From the wireframes designed by the users we assess the approach in two ways. Firstly, each user
was requested to fill in a questionnaire about the experience, where the user could indicate how
good the generated view was and they could express whether the generated layout matched the
idea he or she had in mind. This was intented to know how useful is the tool from the developer
point of view. Secondly, we demanded the participants to submit the wireframes they created,

in order to perform a quantitative analysis of the result of the layout inference.

6.5.2.2 QUANTITATIVE RESULTS

Screen best cart | detail | search | user | TOTAL
Visual resemblance 96.2% | 97.2% | 97.2% | 99.1% | 95.6% | 97.4%
Parameter changes 30.0% | 33.3% | 30.0% | 26.7% | 36.7% 31.3%
Average of layouts (best solution) 5.0 4.2 4.9 3.4 2.4 4.0
Average of alternatives per view 2.6 4.1 3.3 3.1 4.2 3.4
Layout resizing 77.8% | 84.9% | 75.6% | 90.5% | 93.4% 84.4%

Table 6.1: Evaluation results.

161

Table 6.1 shows the results of the evaluation (classified by view). Visual resemblance measures
how good the generated GUI resembles the original wireframe (i.e., the accurary of the gener-
ated GUI). We count the number of generated widgets located in the same place as the corre-
sponding widget in the original view. Our tool intentionally compares widgets with some de-
gree of flexibility, so minor misalignments are allowed, and widgets that are clearly misplaced
or misaligned with regard to the original view are counted as errors. In global, there is a high
degree of accuracy (97%) of the generated windows, and there is no significative difference be-
tween the different types of views. This high accuracy is partly because if, in the first try, the
GUI does not ressemble the original wireframe we change the algorithm parameters in order
to improve the result, as it is explained below.

Parameter changes expresses the percentage of views designed by the users that required changes
in the default values of the parameters to get a reasonable good GUI (high visual resemblance).
Asit can be seen, in many cases (3 1% of the views) parameters needed to be tuned and there are
notremarkable differences between the different types of views. From the end-user perspective,
this means that he or she would get a good enough GUI without tuning the algorithm in the
70% of the cases. In the next subsection we will explain a current limitation of the approach
related to the maximum closeness cluster deviation parameter.

The average of layouts of the best solution counts the number of layout managers used in the
best solution (i.e., the solution which the highest fitness value). On average a composition of
4 layout managers are required to completely define the layout of the views. A low average of
layouts indicates that the best solution does not use unnecessary layouts but just the required
layouts (i.e., it is efficient in most cases).

The average of alternatives per view represents the number of different layout compositions that
are offered for each view on average. In our case we have an average of 3.4 alternatives per view.
The last row of the table (layout resizing) indicates whether the final GUI generated for the best
solution is resized appropriately when tested. There are different alternative solutions for a given
view that at first glance may seem equally valid, but they look completely different when the
view is resized. A good layout solution arranges the widgets in such a way that, when they are
resized, they seem alright.

We have an 84,4% of success rate related to view resizing, which means that there are around
15% of views for which the fitness function fails (i.e., it does not always select the best option
for resizing). We have a slightly higher success rate for the search and user types of views, be-

cause for these views most people used more or less standard form-like designs which fit our

162

FormLayout instead of using complex combinations of other layout types. Using more complex
fitness functions that not only take into account the number of layouts involved could result in
improvements in the best, cart and detail types of views. We will deep into the limitations of the

current fitness function in the next subsection.

6.5.2.3 USER ASSESSMENT

Users filled in a questionnaire that included five questions that summarise their experience. The
questions were: ‘Are the generated views as I expected?) Are the margins, gaps and alignment
correct?, "When resizing the windows, are the widgets resized appropriately?’, "Could the gen-
erated windows be used in a real application?) and ’Is the layout inference tool useful?’ They
were graded by using a s-point Likert scale, and the results for the questions are shown in Fig-

ures 6.23 to 6.27 respectively.

7\

[0 Strongly disagree

[Disagree

[0 Neither agree nor disagree
[0 Agree

[Strongly Agree

Figure 6.23: Are the generated views as I expected?

The vast majority of the users (85%) agree or totally agree that at first sight, the generated views
resemble the original ones (see Figure 6.24). This results are in line with the assessment that we
tackled by manually inspecting the models and views, but we could have expected a higher rate
in this question. The reason because users did not give a better mark to this question is due to
almost none of the users (only 10% of them) changed the default parameters, so the algorithm
did not always showed a very good result. If users had tuned the parameters, better score would

have probably been achieved.

163

[Strongly disagree
[Disagree

m [0 Neither agree nor disagree

[0 Agree
I Strongly Agree

Figure 6.24: Are the margins, gaps and alignment correct?

The results of Are the margins, gaps and alignment correct?” (Figure 6.24) have a certain degree
of similitude with the results obtained in the previous question, since that views that are more

or less similar to the original ones must have correct margins, gaps, and alignment.

O Strongly disagree
[Disagree

b

[0 Neither agree nor disagree
O Agree
[Strongly Agree

Figure 6.25: When resizing the windows, are the widgets resized appropriately?

With respect to resizing, 60% of the users think (agree or totally agree) that the resizing be-
haviour is more or less suitable (see Figure 6.25). As we indicated, the resizing behaviour is not
always suitable, which is partly related to the weakness of the fitness function, which we will
explain in detail in the next subsection. The difference between the score of the quantitative
evaluation (84% of success) and the score given by users is mainly due to the fact that users did

not tune the parameters, so they found weird resizing in many cases.

[0 Strongly disagree
[Disagree

S

[0 Neither agree nor disagree

40% D Agree
[Strongly Agree

Figure 6.26: Could the generated windows be used in a real application?

164

With regard to the question ’Could the generated windows be used in a real application?’ 65%
of the users agree, but others have some reservations, mainly due to that resizing fails in some

cases and users have to tune parameters that they do not feel that are easy to change.

40% @

[0 Strongly disagree

[Disagree

[0 Neither agree nor disagree
[Agree

[Strongly Agree

Figure 6.27: Is the layout inference tool useful?

50% of the users find the tool extremely useful, and 40% think that the approach is useful (Fig-
ure 6.27). Despite the current limitations of the approach, developers think that the tool is
useful because they can reuse wireframes and save time when implementing the GUI of the

application.

6.5.2.4 APPROACH LIMITATIONS

The current implementation of the approach has two limitations at present. The first limitation
is related to the maximum closeness cluster deviation parameter, and the second limitation is

the implementation of the fitness function.

WIDGET DISTANCE CLUSTERING. As we have already said, the maximum cluster deviation
parameter represents the maximum standard deviation of a group of distances that is admissi-
ble for them so they all can be considered similar. This parameter is not only used to perform
flexible comparisons, but also drives the pattern matching phase by indicating what relations
among the elements can be matched.

For example, in the fragment of the Detail view in Figure 6.28 there are two clearly different
areas in the view, the form on the left and the right part composed of the Cover image and the
Enlarge button, thus there should be a layout for each part, and a layout that ‘glues’ both parts.
The designer that created the view left some empty space in the middle of the view on purpose,
so both parts can be distinguished. Given that the ‘close’ or 'far’ concepts are subjective (they
depend on the human perception), we need the maximum closeness deviation parameter to be

able to decide which widgets are close or far.

165

But sometimes, the closeness level between a pair of widgets may confuse the inference process.
In the example of Figure 6.28, the relation between the Description label and the Author label
will have a closeness level higher (i.e., they are significantly distant) than the Description label
and the Description text area, and higher than the Description text area and the Author text area.
While this is strictly correct, the inference process should consider these relations as equally
close because they are part of a form and the user that created the view meant it to be one form,
not two separated parts. In such cases, the maximum closeness deviation parameter may require

being carefully tuned in order to get a good result.

Detail P
Title
Logeo
Description
Enlarge
Author
Back to catalog

Figure 6.28: Example of the closeness problem.

FITNESS FUNCTION IMPLEMENTATION. Figure 6.29 shows a simplified Best view. Let us as-
sume that we only want to use the (vertical/horizontal) FlowLayout. This view can be laid out

in two different ways (two layout alternatives), which are:

« Alternative 1: a horizontal FlowLayout composed of 4 vertical FlowLayouts (with 3 wid-

gets each one).

« Alternative 2: avertical FlowLayout composed of 3 horizontal FlowLayouts (with 4 wid-

gets each one).

166

Figure 6.30 shows the generated view for the first alternative, and Figure 6.31 shows that view
after resizing. In the same manner, Figure 6.32 shows the second alternative, and Figure 6.33
shows the resized view. It can be seen that the alternative 1 generates nice views since the aspect
ratio of widgets and distances are kept, but on the contrary, alternative 2 leads to unaesthetical
views when they are resized. These differences in the appearance of the GUI are due to the way
that the information about the layout is expressed in each alternative. In the first alternative,
we can specify that each widget is centered with regard to its column, but in the second way,
we have no direct means to specify the relative distances between the widgets in each row. We
can see that there are better alternatives than others (particularly, alternative 1 is better than

alternative 2).

Best sellers X
Irnage Image Irnage Irage
Paperback Hard-cover Audiobook F-book

Figure 6.29: Example window.

Therefore, we need to develop more complex fitness functions that not only take into account
efficient layout compositions (in the sense of reducing the number of layouts nested) but also
aesthetic criteria. Particularly, considering the homogeneity of the content of the layouts in

combination with the current fitness function could lead to better results.

167

Best sellers —

Paperback Hard cover Audiobook E-book

30 euros 40 euros 15 euros 25 euros

Figure 6.30: Example horizontal-vertical flow.

Best sellers

Paperback Hard cover Audiobook E-book

30 euros 40 euros 15 euros 25 euros

Figure 6.31: Example horizontal-vertical flow resized.

Best sellers —

Paperback Hard-cover Audiobook E-book

30 euros 40 euras 15 euros 25 euras

Figure 6.32: Example vertical-horizontal flow.

168

Bestsellers =

Paperback Hard-cover Audiobook E-book

30 euros 40 euros 15 euros 25 euros

Figure 6.33: Example vertical-horizontal flow resized.

Legacy Target

artefact

Source Normalised Target
technology GUI tree technology
model model model

Structure
model

Figure 6.34: Parts of the MDE architecture related to the Wireframes to ZK case study.

6.6 IMPLEMENTATION

We have implemented a tool that supports the case study and includes an implementation of
the proposed algorithm. The tool provides all the necessary elements to transform a wireframe
created with WireframeSketcher to a fluid user interface with the ZK framework. It has been
implemented in Java using the Eclipse Modeling Framework (EMF) [53], using Ecore to define
the metamodels. M2M and M2T transformations have been programmed in Java using the

Dynamic EMF APL

Next we will show a few details about the implementation of the tool. Given that the main part

169

has been thoroughly explained in the previous sections, we will briefly comment on the parts
of the approach that are dependant of the case study and which can be used as a guide for im-
plementing other scenarios. Concretely, these parts are (see highlighted parts in Figure 6.34):
the obtainment of Normalised models from the models provided by WireframeSketcher, and
the generation of web interfaces with ZK from the Layout and Structure models. We will also
outline the transformation to get Structure models. Finally, we will briefly present the interface

of the tool.

6.6.1 MAPPING WIREFRAMESKETCHER TO NORMALISED MODELS

WireframeSketcher [106] is a tool to create wireframes and mockups for desktop, web and mo-
bile applications, which can be run on the Eclipse platform. WireframeSketcher generates wire-
frames as models conforming to a metamodel that is provided with the tool, which is partially
shown in Figure 6.3 5. If we used a different wireframing tool that does not represent wireframes
as models, implementing an ad-hoc injector or using injection tools such as GrazMoL [22] or

MoDisco [23] would be required.

WidgetContainer " inl{[Vldget «g:;trg ”
0.0 | i int NORMAL
width: int DISABLED
Screen height: int SELECTED
- text: boolean FOCUSED
name: string
Window Panel | | TextField | | Button | | Checkbox
closeButton: boolean
minimizeButton: boolean
maximizeButton: boolean
VerticalScrollbarSupport ColorBackgroundSupport StateSupport BooleanSelectionSupport
verticalScrollbar: boolean background: ColorDataType state: State selected: boolean

Figure 6.35: Excerpt of the WireframeSketcher metamodel.

The metamodel is relatively simple. Screens are the canvases where users design the views of the
new applications. There are different types of Widgets, every type of Widget having a different
set of properties (depending on the Support metaclass that they inherit, e.g., a TextField has the

170

State and ColorBackground attributes). It is worth remarking two details. Firstly, all the widgets
are placed with absolute coordinates. Secondly, neither Windows nor Panels are WidgetContain-
ers, so the Widgets in the Screen will be overlapped. These two features were also found in the
RAD applications. Therefore, the solution that we make for wireframes can be reused for RAD
applications and vice-versa.

To make the rest of the layout inference process independent of the source wireframing tool
artefacts the source WireframeSketcher models are transformed into Normalised models. The
model transformation basically maps the WireframeSketcher widgets to generic widgets (for
most of them there is a 1-to-1 mapping), which is a straightforward task. Additionally, the trans-
formation performs two actions: reduces the area of a label to the area that is actually occupied
by the text of the label, and checks that it does not exist two widgets (SingleWidgets, such as
combo boxes or text fields) that are visually overlapped. If there are overlapping widgets, the
process stops and the user is notified about the conflict so he or she can manually solve it and

continue the process.

6.6.2 MAPPING NORMALISED MODELS TO STRUCTURE MODELS

The M2M transformation that obtains the Structure model from the Normalised and Region
models is relatively simple, and works as follows. The region hierarchy is navigated and repli-
cated in the Structure model by means of Panels. The leaves of the hierarchy are the SingleWid-
gets that are mapped to the SingleWidgets in the Structure model. Toolbars and menus, which
are not explicitly represented in the Region model because they belong to the View regions,
are generated after them. For the SingleWidgets containing text or images, the corresponding
GraphicalResource is created and linked to it. For each Container and SingleWidget, the graph-
ical attributes that are common to most of the current GUI toolkits are mapped. Normally,
only a few attributes are left outside this mapping, because are too specific or not related to the
presentation layer; for example, the property that links a widget with a column in a database

table.

6.6.3 GENERATION OF THE WEB INTERFACE

The Layout model is the result of the layout inference process, and makes GUI restructuring
and code generation possible. In the case study we have transformed the Structure and Layout

models into a ZK model to generate ZK views.

171

ZK is a UI framework to build web and mobile applications, which implements the Model-
View-Controller (MVC) and Model-View-ViewModel (MVVM) design patterns. ZK views
run on application servers that are compliant with the Java Servlet and Java Server Pages speci-
fications, like Apache Tomcat [109]. The Model and Controller parts of the ZK application are
written in Java, whereas views are created using Java or by means of a readable XML-formatted
language called ZUML (ZK User Interface Markup Language). ZUML allows creating fluid
layouts by using different layout managers and the hflex/vflex attributes that indicate the ratio
of the total width/height that the element should take.

We have mapped the layouts defined in the Layout model to the ZK layouts. For example, the
BorderLayout is mapped to a BorderLayout in ZK, and the FormLayout is transformed into a
TableLayout. The hSize and vSize attributes of the Layout model are used to calculate the hflex
and vflex attributes. hAlignment and vAlignment in our Layout model express the alignment,
which in ZK is handled with the pack and align attributes inside boxes. Margins and gaps can
be specified in ZK views by means of the CSS model box (margin and padding). Figure 6.36
shows the ZK view generated for the original wireframe created with WireframeSketcher (Fig-

ure 6.11).

"} Login - WireframeSketcher2ZK "
€ - @ localhost:8080/Test/login.zul B-cw: Pl & & B~ = -

namelLabel nameField

passwordLabel passwordField

Figure 6.36: The login window generated in ZK.

In our case study we decided to generate code for a concrete UI framework. However, devel-
opers can take advantage of the CUI model (i.e. the Structure and the Layout model) in other

manners. For instance, the CUI model could be mapped into another User Interface Descrip-

172

tion Language (UIDL) such as UsiXML [38] (this can be considered as restructuring) in order
to take advantage of the existing tools, for example, their code generators for mobile applica-

tions.

6.6.4 THE TOOL

The tool consists of a plugin for the Eclipse IDE that is integrated with WireframeSketcher tool
(which is also an Eclipse plugin). The plugin offers two facilities:

« Generate the Structure and Layout models from the wireframes created with WireframeS-

ketcher (.screen files).

« Generate ZK code (ZUML web pages) from the Structure and Layout model files. In
the future the tool will offer the possibility to generate code for different toolkits.

The execution of the layout inference module depends on several parameters that can be seen

in Figure 6.37:
« The layout types to use in the layout inference algorithm.

« The maximum allowed standard deviation of the distances in every cluster. It affect how

the distances are clustered to obtain the closeness levels.

« The horizontal/vertical alignment margin, which is expressed as a percentage of the con-
tainer widget. It has a result in the alignment comparisons. For example, for a widget to
be considered as aligned to the right, the percentage of the distance between the right

bound of the widget and the container must be equals or less than that value.

« The comparison margin in pixels is used to give some flexibility when performing com-

parisons between widgets (e.g. when detecting if two adjacent widgets are aligned to the

left).

6.7 COMPARISON OF THE GREEDY AND EXPLORATORY APPROACHES

We have compared the two layout inference strategies by means of applying the second algo-

rithm to 30 of the 107 Oracle Forms windows that compose the application of the case study A

173

B Layout Gu_@@u

Wireframe path ChlLayout Guesseryworkspace\Test\src\detail screen

Model path ChLayout Guesseryworkspace\Test\srcy,
Qutput path Ch\Layout Guesser\workspace\Test\srcy

Layouts to use HFlow ¥ VFlow ¥ Grid] Border ¥ Form

Max closeness cluster deviation 15
Horizontal alignment margin % 15
Vertical alignment margin % 15

Comparison margin px 10

Figure 6.37: Layout inference parameters.

explained in Section §.8.2. Concretely we have chosen 6 of large complexity, s of medium com-
plexity and 19 of small complexity, so the ratio of windows in the original application are kept.
We opted for the case study A because it got worse results than case study B. Table 6.2 shows
the percentages of regions and widgets that have been correctly placed in both approaches (v1

and v2 are used to denote the versions 1 and 2 of the algorithm respectively).

Large (>60) | Medium (20-60) | Small (<20) Total
Windows of each type (out of the total) 19.63% 16.82% 63.55% 100%
Parts laid out OK (v1) 83.24% 98.06% 100.00% 96.38%
Parts laid out OK (v2) 95.24% 100.00% 100.00% 99.07%
Widgets laid out OK (v1) 87.14% 85.61% 88.10% 87.50%
Widgets laid out OK (v2) 91.25% 94.12% 98.00% 97.29%

Table 6.2: Evaluation results for the case study A.

In relation to the layout of the parts, there has been a significant improvement for large win-
dows (12%), while in the case of medium windows the 100% have been laid out ok (98% with
the first version). We used in the second approach the same algorithm for region detection as

we used in the first approach, so the regions detected for the windows are the same. However,

174

the layout among distinguished parts has been ameliorated. As we already mentioned, it de-
pends not only on the region detection but also the layout recognition inside regions, so the
improvement is due to the latter. The small failure rate is caused by some bugs and limitations
of the implementation. Particularly, the current implementation does not allow the text of the

frames be replaced by widgets such as checkboxes, which spoils the region detection.

The percentages of widgets laid out in the second version have also improved considerably:
4.11% for large windows, 8.51% for medium-size windows and 10% for small windows. In the
first version, many simple (small complexity) windows were not perfectly replicated because
the widgets could only be aligned with regard to the container region (widget alignment prob-
lem), and gaps where not explicitly indicated (unidentified holes problem). In the second ver-
sion, widgets can be aligned with respect to the containing layout and gaps are explicitly ex-
pressed. Moreover, the FormLayout considers horizontal alignment with also helps to indicate

a suitable alignment, so widgets match to a great extent the appearance of the original window.

Regarding the widgets laid out in medium and large windows, in the first version the layout
managers defined could not be composed so complex layouts could not be properly captured
(non-regular layout detection problem). Additionally, developers used to make full use of the
empty space in large windows, which led to even crammed and weird layouts which were awk-
wardly recognised by our first approach. Due to the second approach allows layout nesting and
explores different combinations of elements, it is able to recognise more complex layouts that
in the first approach. However, the improvement is not so high as it could be expected. The
reason behind this fact is that, in many cases, the alternative solution that is chosen as the best

alternative does not get a perfect layout (fitness function problem).

For instance, Figure 6.38 shows a window in the Oracle Forms designer (not in runtime), Fig-
ure 6.39 depicts the window that has been generated by the first approach from the former, and
Figure 6.40 shows the window generated by the second approach. The layout of Figure 6.40
has been made up of FormLayout and FlowLayouts. In this case the buttons on the right have
matched a vertical flow layout, which is the best option according to the fitness function though
itis not, asitleads to misalignment with regard to the widgets on their left. On the otherhand, in
Figure 6.39 the buttons are placed side by side (in rows) because the whole window has been
matched as a VHLayout (a stack of horizontal flow layouts). Hence, the heuristic search has
failed to detect the right layout and the VHLayout has been matched, which do not completely
fits the layout but it has the highest fitness value.

17§

Moneda Encabezado

|F'_MDN = | |P_ENCABEZADO

Tipo de Contrato todelo de Conbrato

|TIPOCON | |Mcon =]

Bafiistes ’ES_TEMI I TEMP

CONTRATOS [

[epartamentos/Centros/Institutos Investigadores Principales

DEPERTAMENTOS | |[mwEs [

Terceros

TERCERDS | |
afio [TIPO_ =] ju_sno AN Fin_ano

Figure 6.38: Example of an Oracle Forms window.

Tipo de contrato Modelo de Contrato
[Emety ~] [Emnty =]
LI
Contratos
LI
Departamentos/Centros/Institutos Investigadores Principales
L LI
Terceros
L)
40 [aw] LI

Figure 6.39: Generated window by the first approach for the Oracle Forms window.

Moneda Encabezado

Tipo de contrato Modelo de Contrato
[Empty + | [Empty

Contratos |

DepartamentosCentros/Institutos Investigadores Principales

Terceros

U000 ODUK

Figure 6.40: Generated window by the second approach for the Oracle Forms window.

In view of the results of the comparison of both approaches, we claim that the exploratory ap-
proach is better than the greedy approach. The latter obtained good results with RAD applica-
tions due to the type of windows that are found in these applications. However, the exploratory
approach works better in RAD applications as well as in other context because of the deep analy-
sis of the relations to return a layout composition, as we had hypothesised before implementing

the exploratory approach.

6.8 (CONCLUSIONS

In this chapter we have presented an algorithm and a data structure (the Tile metamodel) to
reverse engineer GUIs with a coordinate-based layout in order to transform them into a repre-
sentation based on layout managers, which can be used to generate a final GUI based on good
practices. The solution proposed is aligned with the reengineering architecture proposed in the
previous chapter. The algorithm calculates several alternative layout compositions, and also es-
timates which one is the best option. Moreover, it allows placing widgets with some degree of
misalignment and allows selecting the set of layout managers which will be used in composing
the layout. The layout inference algorithm proposed here is more sophisticated than the former
and it achieves better results when considering views in general (not only views gathered from
legacy systems).

We have also presented a case study to infer the layout of GUIs created with a wireframing tool
to generate fluid web interfaces, which is supported by a tool integrated in the Eclipse IDE.
The case study revealed that the current approach is somewhat limited in some cases by the
maximum deviation parameter used in distance clustering, and that the fitness function needs
to take into account aesthetic criteria such as homogeneity in order to get solutions that are
better adapted to different screen dimensions. As a whole, results drawn from the evaluation
show that our approach is able to perform a good layout inference in most cases (97% of the
views are accurately reproduced, 84% of the views are appropriately resized) and 70% users are
satisfied with the tool results.

Given that the architecture of the solution in this chapter is essentially the same as the one in the
previous chapter, requirements R1 to R6 enumerated in Section 4.1 are fulfilled. More specifi-
cally, requirements R1 to R4 are the consequence of designing a suitable MDE architecture, Rs
is achieved by means of the Region model, and R6 is covered by the Layout model that expresses

the layout as a composition of layout managers.

177

The functions that compare the relative position of tiles include a parameter that specifies a mar-
gin to be considered, so the comparisons are flexible, thus achieving the misalignment tolerance
(requirement R7). The inference algorithm explores the different combinations of a layout set,
and stores all the solutions that it finds, hence it is capable of offering all the solutions found for
a given layout set, then covering the requirements alternative solutions (R8) and configurable
layout set (R9).

Contrasting our solution with the related works, we claim that up to date we have not found any
work that addresses requirements R8 and Ry, but the layout inference algorithms are strictly
designed to work with a unique layout type. Like our appproach, the ALM model [3] is able
to detect misalignment by means of specifying additional constraints. The differences that we
contrasted in the former chapter between our first approach and the related works is still valid

in this new approach. In the next table we classify our solution as we did with the state of the

art.
Source/target independence | Yes
Tested source technology Wireframes (WireframeSketcher)
Tested target technology Web (ZK)
Information extracted layout composition, alignment, margins, gaps, sizes
Layout model FlowLayout, BorderLayout, GridLayout, FormLayout
Algorithm type Backtracking
Implementation technology | MDE
Automation degree Automated

Table 6.3: Classification of the approach of this chapter

178

If I have a thousand ideas and only one turns

out to be good, I am satisfied.

Alfred Nobel
(Suggested by Marisol Sdnchez)

Event handler analysis

Migrating legacy code poses many challenges, such as the ones introduced in Section 1.1 for the
case of RAD applications. Notably, disentangling the code of the GUI, control, and business
logic layers so that the new system has a better separation of concerns, is an important issue.
Besides, migration would be facilitated by tools that help to discover non-architectural concerns
that are only implicit (and mixed together) in the source code, such as validation, navigation

tlow or exception handling.

In this chapter we describe the reverse engineering approach we propose for analysing the code
of event handlers of RAD applications in order to be able to separate the concerns that are en-
tangled. In Figure 7.1 we can see the part of the GUIZMO architecture we are going to explain
in this chapter, as well as the models of the CUI that are involved.

We have defined a RAD environment-independent metamodel to represent the original code in
amore abstract form, which is based on a set of primitive operations intended to describe com-
mon behaviour of RAD-based code. We will refer to this representation as the RADBehaviour

metamodel. We have identified a set of programming idioms for Oracle Forms, and we have

179

EventConcerns model

L

Legacy GUI ‘/»%

definition 4O CUI model
%

oM

2
2

p
M: Structure model
Event handler RADBehaviour

AST model model

1N
S &
07 M)
M2M

New GUI Target technology
model

Figure 7.1: Part of the GUIZMO architecture explained in this chapter

implemented an M2M transformation that matches these idioms against Event handler AST
model and represents the coincidences in the form of primitives in a RADBehaviour model.
This model can be used to achieve the mentioned separation of architectural concerns (GUI,
business logic and control), which is materialised in the EventConcerns model. We have built a
prototype implementation to test this approach. It has been validated with a case study based
on a real application written in Oracle Forms, which has been migrated to a client-server web

application.

Futhermore, we have also used RADBehaviour models as a basis to identify dependencies among
widgets in a view and among different views. We have defined a state-machine-like metamodel
to represent these dependencies. This information can be useful, for instance, in a scenario of
a migration of a legacy system to the web platform, to generate Ajax code that only refreshes
the part of the view that is affected. It can also be used for documentation purposes and for
declaratively defining the navigation flow and exception handling in some frameworks (e.g,

Struts [110] or JSF [111]).

Consequently, this chapter pursues the goal of separating and making explicit the information
of event handlers (G3), and covers the following requirements: code abstraction (R10), code
categorisation (R11) and explicit interaction and navigation flows (R12). The subsequent sec-
tion will present the concrete architecture we have devised to deal with event handlers and in

the next sections we will explain the different parts of this architecture.

180

G | 7| C g |5 | = Loy [

T2M
Source code PL/SQL AST M2M RADBehaviour ~M2M Interaction
(PL/SQL) model model model
M2M M2M
= [Z5T] = [T
Target code Target technology models EventConcerns model Structure model
(Ajax app) (HTML+CSS+Javascript)

Figure 7.2: Model-based architecture for reengineering RAD-based applications. Solid lines
mean transformations and dashed lines are model dependencies.

7.1 ARCHITECTURE FOR ANALYSING EVENTS

Our model-based architecture is shown in Figure 7.2, exemplified for Oracle Forms as source
RAD technology and HTML/Javascript as client-side target platform. Anyway, the approach
could be applied to a different RAD technology or target platform likewise. It is based on
the Horseshoe model explained in Section 2.1 (rotate 9o° to the left Figure 7.2 to see it more
clearly), which provides a conceptual framework for the different stages involved in reengineer-
ing.

The first step of the approach is the injection of models from the source code of event handlers,
in this case PL/SQL code. Given that there is available a grammar and the corresponding Ab-
stract Syntax Tree (AST) metamodel for the PL/SQL language, we selected Gra2MoL (intro-
duced in Section 2.3.3) to accomplish this injection step by writing a T2M transformation that
implements the mapping between PL/SQL grammar elements and AST metamodel elements.
As aresult of applying GrazMoL, an AST model representing the code of the application trig-
gers (event handlers) is obtained. If we wanted to tackle a different RAD environment (e.g.
Borland Delphi 5), we should write the corresponding injector (e.g., a Graz2MoL transforma-
tion if a grammar and an AST metamodel are available).

The reverse engineering step starts by transforming the AST model of the event handlers into

an intermediate model, named RADBehaviour. This model captures the behaviour of the source

181

code in terms of simple primitives which are common in RAD environments, such as read data
from a database or write some data in the GUI controls. It is worth noting that the RADBe-
haviour representation is a RAD environment-independent abstraction of the source code. A
different model transformation is needed for each RAD technology (e.g. Oracle Forms or Bor-
land Delphi) in order to generate the RADBehaviour.

From this model, further reverse engineering can be performed to extract implicit information
from the source system. EventConcerns is a model derived from RADBehaviour, which repre-
sents the source code with a kind of control flow graph made up of code fragments. A code frag-
ment is a sequence of primitives related to the same category (UL, control, business logic). This
is useful to achieve the separation of concerns in the target application. The Interaction model
is another model obtained from RADBehaviour and its goal is twofold: i) define the navigation
flow between application windows and ii) show how the events produced in the elements of the
GUI (e.g. windows or widgets) affect other elements. This model makes explicit information
that is hidden in the source code.

It is important to note that the intermediate models (RADBehaviour, EventConcerns and Inter-
action) contain cross-references to the model from which they have been derived, in order to
trace back the original code when performing forward engineering. In addition, they keep some
cross-references to the Structure model (e.g., to point to the widgets accessed by the code).
Based on the presented models, restructuring and forward engineering of the original system to
adifferent architecture are possible. In our case, we have experimented regenerating the original
application into an AJAX-based web architecture, with HTML/Javascript in the client-side and
Java/JPA in the server-side, but other target platforms are possible.

All the M2M transformations in the architecture have been implemented with the RubyTL
transformation language [61], and code generation has been performed with the facilities of
the AGE environment [103].

The next section introduce the example that will be used through the chapter to support the

explanations.

7.2 RUNNING EXAMPLE

The running example is based on the Oracle Forms application for managing public grants that
we used in Section 5.8 and that we will use as a case study in this chapter. For illustrative pur-

poses we have simplified and translated into English one of the windows (Figure 7.3) from the

182

Grant calls

Call code call_cope | lssue date call issUE | Call type |calL Tvee [v]

Title | call_TITLE Pl L

Activities | Applicants | Maodalities

Activity code| acT_CODE Title | acT_TITLE

Description | ACT_DESC

Modalities [Application type | act_sppTvpe lvl
Periods (Activity)

Start | PERIOD_START End | PERICD_END [~
1]

PERIOD_START PERICD_EMD [v l

Figure 7.3: Grants example

original application.

In the upper part of the window there are several widgets to display general information about
the grant, and a tabbed panel is shown below, where can be seen some information about the
activities for which the grant is conceived, in addition to the periods when the grant must take

place.

We will focus the example on a simplified event handler associated to the only checkbox in
the window (named ACT MODALITIES). This checkbox is used to indicate if an activity can
have several modalities. When the checkboxis not checked, the Modalities tab must be disabled,
but this can only be done if there are not periods for that activity stored in the database. The
behaviour of the checkbox is defined in an event handler implemented as a PL/SQL trigger and

can be seen in Figure 7.4.

The trigger works as follows. The code that is nested in the IF statement is executed if the check-
box ACT _MODALITIES is checked. It is worth noting that the "Y” value is not a predefined
value but is specified in the checkbox properties. To check if there are periods for the current
activity, a SQL query is used to store the number of periods in the periods variable. If there are

periods, a pop-up with a message is displayed. Otherwise the tab page is enabled.

183

IF :ACT_MODALITIES = "Y' THEN
SELECT COUNT(*) INTO periods FROM CallPeriods
WHERE activity = :ACT_CODE;
IF periods != 0 THEN
Show_alert('ModalitiesAlert');
:ACT_MODALITIES :='N";
ELSE
SET_TAB_PAGE_PROPERTY('TABS.MODALITIES',
ENABLED, PROPERTY_TRUE);
END IF;
END IF;

Figure 7.4: PL/SQL trigger for the checkbox change event

7.3 REPRESENTING EVENT HANDLING CODE

Code analysis is required when event handler migration is needed, which is a tough task. RAD
environments are based on different programming languages, so if we intended to restructure
several RAD legacy systems to generate new systems, we would have to deal with the source

language in all the development phases of the new system.

A solution for this would be to have an intermediate representation that allowed restructuring
and forward engineering phases to be independent of the source language. Moreover, program-
ming languages sometimes perform the same taks differently. For example, Oracle Forms uses
PL/SQL cursors to retrieve data from database, whereas in Borland Delphi these data are ob-
tained by means of data sources. Therefore, an intermediate language would also be useful to

normalise the actions that are done in programming languages.

Hence, we have defined a representation aimed at expressing event handlers in a more abstract
form than just the AST model of the program. It acts as technology-independent pivot model,
which allows transformations to ignore technology-specific details in the following steps of the
reengineering process. It consists of primitive operations (referred as primitives from now on)

that intend to represent a wide range of code written in event handlers.

In the following section we will first describe the RADBehaviour representation for event han-
dling code. Next, we will explain how to obtain RADBehaviour models from the PL/SQL AST
models. Finally, we will show a RADBehaviour model derived from the example introduced in

Section 7.2.

184

EventRoot 1.0 EventGroup «enum»
EventType
1.n o1 CLICK
€ EventCode source~| «from Normalised» VALUE_CHANGED
event: EventType [@——— Widget MOUSE_OVER
RADReadable J< 31
input
A primitives
0fn 0fn | 0.1 1 0.n
[RADVariable |<output 0n| RADPrimitive |
primitives A
—
GibalVar — clonErpressic
riteTo
[PredefinedVar| | LocalVar | ! I
|OpenView| |Manipu|ateData| |HasData| | Not |
1T —1 T —1
|Sh0wMessage| | ReadFromDB| | Equals | | IsChecked|

1
RADEXxpression| 0.1 0..n SelectionFlow RADVariable VariableRef

Figure 7.5: Excerpt of the RADBehaviour metamodel.

7.3.1 METAMODEL DESCRIPTION

The RADBehaviour metamodel is presented in Figure 7.5. Its main concept is EventCode, which
is an abstract representation for the code of an event handler. EventCodes include information
about the type of event and a reference to the widget that originated the event (it is also possible
that an event occurs before the window is displayed and therefore has no widget associated).
EventCodes are grouped into EventGroups which represent the event handlers that are related to

the same application window.

The behaviour of every EventCode is expressed in terms of a sequence of RADPrimitives. A RAD-
Primitive attempts to replace a statement or a set of statements of the original code, defining
what they were intended for. The primitives we have identified are listed in Table 7.1. The input
of a RADPrimitive can be another RADPrimitive or a variable, so primitives can be composed.
The optional output must be a variable.

There are several types of variables. UIVar is a variable that represents the value contained in a
widget. LocalVar is a user-defined temporary variable that is just visible in the EventCode scope.
GlobalVar is a user-defined variable that is visible in all the event handlers throughout the ap-

plication execution. PredefinedVar represents any technology-dependant variable that keeps

185

Table 7.1: RAD primitives

Primitive Meaning
ReadFromUI Reads a value from a widget
WriteToUI Modifies a widget value
WriteToVar Writes a value in a global or local variable
ReadFromDB Reads some values from a database
WriteToDB Writes some values to a database
ModifyUI Modifies a widget graphical attribute
ManipulateData Performs an operation on a primitive datatype

SelectionFlow | Selects an execution flow based on some conditions

ExecuteBL Executes a (user-defined or stored) procedure
OpenView Opens a specified window
ShowMessage Opens a modal window (Pop-up)
Leave Aborts event handler execution

the application status. The root element of the metamodel is EventRoot, which contains all the
EventGroups and RADVariables.

Some RADPrimitives, such as SelectionFlow, need to specify conditions on their application.
These conditions are expressed in terms of a simple expression language, whose base class is
RADExpression. There are two types of expressions, typical expressions such as Or, And, Equals,

and more complex expressions such as HasData that checks if a RADVariable has a value.

7.3.2 DERIVING A RADBEHAVIOUR MODEL

A RADBehaviour model is obtained through a M2M transformation that takes an AST model of
the event handlers of a RAD application as input. The transformation matches code patterns
and generates a RADBehaviour model that summarises the behaviour of the original code. As
explained above, event handling code is usually repetitive, and there are some idioms that fre-

quently appear. Conceptually, we have identified three types of idioms in RAD applications.

« Programming language idioms. They are facilities provided by the underlying RAD

programminglanguage to perform recurrent and/or specialized tasks. Forinstance, PL/SQL

allows special versions of SQL DML statements (e.g., SELECT) to be used within regu-

lar imperative code, while Delphi uses data sources configured with queries.

« Community idioms. They refer to sequences of statements that are widely accepted by

186

the corresponding community as a good way of doing a particular task. For instance,
obtaining and traversing a database cursor. These idioms are typically found in technical

documentation.

« Business-dependant idioms. These are idioms that are originated from the company
conventions and practices. Available knowledge about the way of work in business can

be expressed with patterns that could highly improve the reverse engineering process.

Itis possible that several idioms match the same code snippet, so a priority criterion is followed
to decide which of them must be selected. Business-dependant idioms have the highest prior-
ity, followed by the community idioms, while programming language idioms have the lowest
priority. Note that some of the idioms can be composed of other idioms, and in this case the
same priority criterion is followed.

The transformation to derive a RADBehaviour model must be implemented specifically for each
different RAD environment. At present we have a M2M transformation that supports Oracle
Forms PL/SQL. We have separated transformation modules to deal with each type of idiom
independently, so that they can be extended or replaced seamlessly. This is particularly useful
in the case of business-dependant idioms, that may need to be adapted for a specific company.

Figure 7.6 shows some mappings between PL/SQL idioms and RADBehaviour primitives (ex-
pressed with a textual notation only for illustrative purposes). We have followed this nomencla-
ture: x and y are variables (LocalVar or UIVar), s1 and s2 are strings, p1 and p2 are predefined
properties, v1 and v2 are specific values for these properties, c1 and c2 are table columns of a
table ¢, c is a PL/SQL explicit cursor, and d1 and d2 are Forms datablocks (a logical group of
widgets linked to the database). The meaning of each construct can be easily deduced from the
notation.

Mappings M1 to M4 are programming language idioms, PL/SQL idioms in this case. If a variable

« »

name starts with “:” (mapping M1), then it refers to a widget value and it must be mapped to a
WriteToUI primitive, otherwise it would be mapped to a WriteToVar. Mappings M2 and M3 are
library functions to show a message box and to change tab page respectively. It is worth noting
that the translation of M3 consists of creating a ModifyUlI action that refers to the corresponding
CUI model, which was obtained in a previous transformation.

On the other hand, mappings Ms and M6 are community idioms as they are recommendations

typically followed by PL/SQL programmers, in this case to fill a master/detail relationship and

187

PL/SQL idioms RAD Behaviour mappings

@l :x := <function>: WriteToUl(output=x,
input=<function>)

[M2] Show_alert(s1); ShowMessage(message=s2)
(s2 is a message associated with the s7 alert)

@ Set_tab_page_property(x,p1,v1); ModifyUl(input=x,
property=p2,
value=v2);

(p1, v1 are mapped to p2, v2)

SELECT c1INTO x WriteToVar(output=x,
FROM t input=ReadFromDB(input=y,
WHERE c2 = y; table=t,
col=c1,
cond=c2=y)
@ IF <cond> THEN {
x := Find_relation(s1); WriteToUl(output=y,
Query_master_details(x, d2); input=ReadFromDB(<dbdata>))
END IF; HM.n
(The trigger is in datablock d1, (y is a widget of the d2 datablock,

which is different from datablock d2) <dbdata> is obtained from datablock d1
and the properties of the relation s7)

OPEN c; SelectionFlow
FETCH c INTO x; Case(condition=HasValue(
IF (c%FOUND) THEN ReadFromDB(<dbdata>)))
<statements> <primitives>
END IF; (<dbdata> is obtained from the cursor declaration)
CLOSE c;
x := Name_in (WriteToVar(output=x,
:SYSTEM.TRIGGER_ITEM || input=ReadFromUl(input=y))
' Value' (y is a widget whose name is the name of the
) widget associated to the trigger plus '_Value')

Figure 7.6: PL/SQL to RADBehaviour mappings

to manipulate a database cursor respectively. These idioms have a coarser-grained granularity

than the previous ones.

188

Mapping M7 is a business-dependant idiom to write generic event handlers, which is based on
Oracle Forms reflective facilities to manipulate the GUL The :SYSTEM.TRIGGER _ITEM spe-
cial variable contains the name of the widget that is the source of the event that has lead the
event handler (trigger in PL/SQL terminology) to be executed. The Name_in function takes
a widget name as a parameter and returns its value. Therefore, M7 is mapped to a WriteToVar
whose input is the value of a widget whose name is the same as the one triggering the event plus
“ Value”. In this way, using naming conventions(for example having a widget X and a related
widget X Value) it is possible to write generic event handlers that can be executed for different
widgets. Translating this idiom requires embedding the convention into a specific transfor-
mation. Besides, the outcome of the transformation is not a single reference to a widget, but
it computes every possible widget that could be read (looking for widgets in the CUI model
that match the pattern). This uncovers widget relationships that were implicitly specified in the
source code.

Finally, some idioms and statements cannot be translated without additional information, be-
cause Oracle Forms allows the developer to declaratively specify some behaviour by means
of property sheets, i.e., without writing code. For example, there is a function named exe-
cute_query() that executes a database query defined for the current data block, and fills in all
the widgets that are related to this data block and are linked to database columns. Therefore,
our model transformation also takes as input this information (gathered from a Oracle Forms
model, not shown in the architecture diagram due to space reasons) in order to deal with this

kind of functionality.

7.3.3 EXAMPLE

The fragment shown in Figure 7.7 is the RADBehaviour representation of the PL/SQL code for
the checkbox change event that was introduced in Figure 7.4. The same textual notation as in
Figure 7.6 is used.

The outmost IF statement, whose condition is that the checkbox is checked, has been replaced
for a SelectionFlow. We must remark that the RADBehaviour model captures explicitly the Is-
Checked condition, while in the original code this condition is not clearly expressed since the
checked value ('Y’ in our case) is not predefined, but defined by the programmer in the check-
box property sheet.

The Select statement that counts the number of periods has been replaced with a WriteToVar,

189

SelectionFlow
Case(condition=IsChecked(UIVar(name=ACT_MODALITIES)))
WriteToVar(output=LocalVar(name=periods),
input=ReadFromDB(input=UlVar(name=ACT_CODE)
table=CallPeriods,
isCount=true))
SelectionFlow
Case(condition=HasData(LocalVar(name=periods))
ShowMessage(msg="...")
WriteToUl(output=UIVar(name=ACT_MODALITIES),
input=Literal(value=true))
Case
ModifyUl(input=TABS.MODALITIES,
property=enabled, value=true)

Figure 7.7: RADBehaviour example for the checkbox event

composed of a read from the database (ReadFromDB). The inner IF statement becomes a Se-
lectionFlow which has two cases. The first case shows a message to the user if there are some
periods left (ShowMessage is enclosed in a WriteToVar since a pop-up could allow the user to
perform some actions) and sets the checkbox as checked. The second case modifies a prede-
fined property (enabled) from the widget TABS.MODALITIES.

7.4 SEPARATING CONCERNS

As already explained, dealing with the migration of applications written with a RAD environ-
ment requires disentangling GUI, control and business logic. Therefore, our aim is to automat-
ically categorise fragments of code where statements of each fragment are related to the same
concern.

In order to achieve this goal, we have defined a metamodel (named EventConcerns) that rep-
resents fragments and their categories. It is obtained from a RADBehaviour model through a
model transformation. This transformation is facilitated by the fact that we are not dealing di-
rectly with source code, for two main reasons: i) as the source code is represented with a few
primitives we just need to check the type of the primitive and sometimes the variables that it
uses, so limiting the number of cases that must be handled, ii) given that every primitive repre-
sents its input and output explicitly, establishing variable dependencies between primitives can

be easily done. Next we will introduce the EventConcerns representation.

190

RADExpression

«from RADBehaviour» |F|owN0dei11 tS:rléreie 8:| FlowEdge _0___1; «from RADBehaviour»
EventCode A = condition

ref (1

|EntryNode| |ExitNode| BasicBlock inputVars 0.0 ¢ "R ADBehaviour
name: String 21 outputvars 0..n RADVariable
1.
exit dependencies 1.n
f{agments primitives

1..n~ | «from RADBehaviour»
actions RADPrimitive

Fragment

[I 1
| UIFragment| |CtrIFragment| |BLFragment|

Figure 7.8: Excerpt of the EventConcerns metamodel

7.4.1 METAMODEL DESCRIPTION

In this representation each event handler is represented as a kind of control flow graph, where
the nodes are basic blocks [10] and the edges are execution flows. Interestingly, basic blocks
are composed of fragments, where a fragment is defined as a sequence of primitives classified
in the same category. We have considered three categories: user interface, control and business
logic.

The EventConcerns metamodel is shown in Figure 7.8 and defines control flow graphs that are
composed of nodes (FlowNodes) connected by edges (FlowEdges). The types of nodes in the
graph are: BasicBlocks, EntryNode that is a unique node that refers to the first basic block and
ExitNode that is a unique node that represents the end of the execution flow. A basic block is

composed of code fragments that can be of three types:

« UIFragments contain primitives that read some data from the interface, or perform a
change in the GUI (e.g. show a pop-up, change the value of a text field or change the
background colour of the widget that has got the focus).

« BLFragments represent code that performs some kind of calculation or information pro-
cessing (which is commonly done by calling a function that implements the required

functionality), or is code related to data persistence.

o ControlFragments are used to represent those primitives that are neither user interface
nor business logic related and affect the status of the application. For example, set a user

identifier in a global variable that is used throughout the user session.

191

It is worth noting that Fragments keep references to RADBehaviour primitives (i.e., instances of
the RADPrimitive metaclass). Also, for each basic block we keep the set of input variables (in-
putVars) and output variables (outputVars), which are obtained by joining the input and output
(respectively) of the single primitives. This will be useful to identify variable dependencies
among the fragments.

Moreover, each code fragment is given a significant name that is inferred from the statements
of the block due to it can be useful later, for example to generate methods from the fragments.

The nodes of the graph are linked by means of edges (FlowEdges) that allow us to navigate
through the graph. When there are alternative paths from a node, each edge has a condition as-
sociated. We have another relationship for code fragments named dependencies, which is based
on the idea that a fragment can depend on previous fragments. Particularly, when a fragment f1
assigns a value to a variable that is read in another fragment f2 that can be reached from f1, then
f2 depends on f1.

Figure 7.9 shows a graphical rendering of the EventConcerns model derived from the RADBe-
haviour model shown in Figure 7.7. In the example there are four basic blocks represented as
rounded boxes with two compartments: a upper compartment that shows the descriptive name
given to the block and a lower compartment that includes the sequence of fragments for that
block. Fragments are represented with roundes boxes that indicate the type of fragment and a

descriptive name.

7.4.2 FRAGMENT IDENTIFICATION

Next we explain how can we use the RADBehaviour representation to obtain EventConcerns mod-

els. We have split the transformation in several phases that are described next.

7.4.2.1 CREATING A CONTROL FLOW GRAPH OF FRAGMENTS

Algorithm 6 describes how to create a control flow of fragments for the primitives of an Event-
Code. Itis based on the basic block partitioning algorithm that can be found in [10]. According
to that algorithm, a basic block (BB) is a sequence of instructions which are executed from
the first one to the last one without performing jumps. The first instruction of a basic block is
called leader. Our algorithm has been split in two functions, namely identifyBB() and identi-
fyFragments(), which we explain next.

192

EntryNode

@ BasicBlock N\
IsCheckedActModalities

UIFragment
IsCheckedActModalities
7/
~ Case

(B) BasicBlock
ActModalitiesChecked
WriteToVar

Q BLFragment J SelectionFlow

etNumCallPeriods Case

[SelectionFlow

@ ©

/ \ © ShowMessage
BasicBlock (D) BasicBlock _ CerteToUI
CallPeriodsFound CallPeriodsNotFound ®) ase
ModifyUl

UlFragment UlFragment -
CallPeriodsFoundMsg ModifyEnabled

UlIFragment
WriteToActModalities

(a) (b)

Figure 7.9: EventConcerns model derived from the model in Figure 7.7. Labels A, B, C, D are
used to show the primitives that originate the basic blocks.

Lines 1 to 4 create an empty set of basic blocks, to which the entry node and the exit node are
added. Then the identifyBB() function that identifies the basic blocks is called. This function
receives the sequence of primitives for which basic blocks are going to be separated, and the set

of basic blocks identified so far.

identifyBB() iterates over the primitives. If the primitive p is a leader (lines 8 to 13), then the
primitives that compose the basic block are selected (line 9) as it is explained in [10] and a new
basic block (bb) is created (line 10). This basic block is then connected with some of the already
visited ones according to the control flow (line 11) . Then, the fragments of the basic block are

identified (line 12) and the block is added to the set of basic blocks BBSet. If the primitive p

193

(p1) WriteToVar(output=LocalVar(name=X),
input=ReadFromUl(input=UlVar(U))

(p2) WriteToVar(output=LocalVar(name=Y),
input=ReadFromUl(input=UlVar(V))

(ps) WriteToUl(output=UIVar(W),
input=LocalVar(name=X))

Figure 7.10: Fragment identification example

is a SelectionFlow (lines 15 to 19), then foreach case of the SelectionFlow we apply identifyBB()
recursively (line 17). Note that it would be more efficient to create the edges of the control flow
graph while distinguishing the types of primitives, but we have described the algorithm this way
to make it easier to understand.

As we have said, for each basic block we apply identifyFragments() to separate the code. This
function iterates over the primitives. If there are no fragments, it creates a fragment that contains
p (lines 26 to 28). If there are fragments, findFittingFragment() tries to find an existing fragment
that fits p (line 30). This function works as follows: i) it searches for a fitting fragment whose
primitives have the same category as p; ii) if p has input variables, then at least one of these
variables must be the output of the fitting fragment, or if p has an output variable, then this
variable must be in the input of the fitting fragment; iii) the search starts from the fragment of
the primitive that precedes p in order to get the closest fragment that fits. The category of a
primitive is determined by its type and input variables. For example, a WriteToVar whose input
is a UIVar will belong to the UI, but if we had WriteToVar whose input is a ReadFromDB, then
the primitive will be tagged as a BL concern.

Let us show a simple example of how the identifyFragments() function works. In Figure 7.10
there are three primitives, p , p, and p,. Assume that p, belongs to fragment f, and p, belongs to

fragment f, so:

f,-input = {U}; f, .output = {X}
f,-input = {V};f, .output = {Y}

In this setting the findFittingFragment() function would assign p, to fragment f, because the in-

put of p, is contained in the output of f,, and neither the input nor the output of p, appears in

194

the input or output of f,.

If there exists a fitting fragment (lines 31 to 33), then p is added to it, and the output variable of
pisadded to the output of fitting. If p does not fit any fragment (lines 34 to 36), a new fragment
f is created and p is added to it. The type of the new fragment f (UIFragment, BLFragment,
CtrlFragment) will be the type of the primitive. The output variable of p is added to the output
off, and f is inserted in the current BasicBlock according to the creation order.

Figure 7.9 shows the control flow graph that has been built based on the primitives of Figure 7.7.
Note that block C includes two UIFragments due to there are no variable dependencies between
the ShowMessage and the WriteToUI. Our algorithm is not optimum in the sense that it can
generate several fragments for Ul primitives that refer to the same widget. Anyway, it is not a
real problem since contiguous fragments of the same type can be treated as if they belonged to

the same fragment when generating code.

7.4.2.2 GIVING A DESCRIPTIVE NAME TO THE FRAGMENTS

This is an important step that is accomplished in the identifyBB() function of Algorithm 6, and
which will be useful to generate code. Particularly, the name of the BLFragments can be used to
generate the name of the business logic methods. Moreover, giving a meaningful name to the
fragments allows capturing the semantics of a fragment code, which is useful as documentation
of the original system. However, it is not always possible to infer a useful description for the
fragment. The solution we propose to assign names to the fragments is based on heuristics.
Next we describe four heuristics we have devised.

In many cases, BLFragments perform some operations on the database after reading the value of
some widgets. In these cases, we give a name to the fragment by looking at the database access
primitives and ignoring the rest of them. For example, the ReadFromDB primitive that appears
in Figure 7.7 comes from the SELECT statement in Figure 7.4, and the name generated from
this primitive is getNumCallPeriods, as can be seen in the BLFragment of block B in Figure 7.9
(note the infix Num that indicates that the operation returns a number). When we have that a
BLFragment invokes a function or procedure, we take the first invocation as a name.

A UIFragment often refers to just one primitive, so in that cases we obtain the name based on the
primitive. For example, a fragment with a WriteToUI primitive is named with WriteToX where
X is the widget that is being written, for example the second UIFragment in block C is called
WriteToActModalities.

195

Algorithm 6 Algorithm for identificating of basic blocks (BB) and fragments.

1+ BBSet + {}
add(BBSet, createEntryNode())
add(BBSet, createExitNode())

4

3:
4: identifyBB(Primitives, BBSet) > Primitives of an EventCode
5:
6: function IDENTIFYBB(Primitives, BBSet)
7 forall p € Primitives do
8: if isLeader(p, Primitives) then
9: BBPrimitives = getBBPrimitives(Primitives, p)
10: bb < createBB(BBPrimitives)
11: createEdges(bb, BBSet)
12 identifyFragments(bb)
13: add(BBSet, bb) > BBSet is modified in every use
14: end if
15: if p.type = SelectionFlow then
16: forall c € p.Cases do
17: identifyBB(c.Primitives, BBSet)
18: end for
19: end if
20: end for

21: end function

22:

23: function IDENTIFYFRAGMENTS(bb)
24: bb.Fragments = {}

25: forall p € bb.Primitives do

26: if isEmpty(bb.Fragments) then

27: f < createFragment(p)

28: add(bb.Fragments, f)

29: else

308 fitting <— findFittingFragment(bb.Fragments, p)
31: if Hﬂtting then

32 add(fitting. Actions, p)

33: add(fitting.OutputVars, p.Output)
341 else

35: f < createFragment(p)

36 add(bb.Fragments, f)

37: end if

38: end if

39: end for

40: end function

196

The name of a BasicBlock that starts with a SelectionFlow is the name of the condition of the
Case, taking into account previous primitives that are referred by this condition. For example,
in block A the condition of the SelectionFlow is an IsChecked expression that does not depend
on previous primitives (actually the SelectionFlow is the first primitive), so the inferred name for
the block is IsChecked ActModalities.

The name of a BasicBlock which is the first block in a branch uses the branch condition and
previous primitives that are referred to this condition. For example, the name of the block C
is CallPeriodsFound, which is derived from the condition and the WriteToVar that precedes the

SelectionFlow.

7.4.2.3 SETTING DEPENDENCIES AMONG FRAGMENTS

Code fragments often depend on some values that where calculated or retrieved in other frag-
ments which were executed before, so it is interesting to explicitly capture these relationships.
To know the dependencies, we must identify the set of input and output variables for each frag-
ment, which is easily done by using input and output attributes of the primitives. Then we set
the dependencies according to this criterion: A fragment f1 depends on another fragment f2 if

the input set for f1 includes some variables from output set of the fragment f2.

7.5 (GENERATING LAYERED CODE

In this section we will outline the last part of the architecture proposed in Figure 7.2, that is,
how a EventConcerns model can be used to generate a part of the new system.

Separating the different concerns of the legacy system allows us to migrate the application to
a new platform and technology, especially to some web technologies where the separation be-
tween Ul and business logic is imposed.

We have built a chain of M2M and M2 T transformations that migrates PL/SQL event handlers
to a heavy-client, two tier architecture, where the GUI is defined with HTML/Javascript/j-
Query which invokes a REST service made up of business logic fragments. We have defined
several metamodels to represent the target architecture, which comprise the several technolo-
gies involved: HTML and jQuery (Javascript) for the client side and Java for the server side.
The M2M transformation takes the AST model of the PL/SQL code and the EventConcerns

model as input and outputs one or more models representing the target artefacts. This trans-

197

A

EventConcerns

RADBehaviour

PL/SQL AST P Java + Javascript AST

PL/SQL code \) U Java + Javascript code

Figure 7.11: Horseshoe model applied to the separation of concerns

formation is performed between snippets of PL/SQL to either Javascript or Java. In order to
decide which parts of the PL/SQL must be transformed to Javascript (UI), the EventConcerns
model is queried. In fact, this transformation is explicitly parameterised [112] by the Event-
Concerns model, as it is represented in Figure 7.11. It is the latter which actually drives the
transformation in the sense that it is used by the transformation rules to disentangle the original
code by changing and relocating the content of a fragment according to its category. The cross-
references between a fragment and the RADBehaviour model, and between it and the PL/SQL
AST model are essential to achieve this effect, as they allow navigating from the EventConcerns
to the PL/SQL model.

Listings 7.1 and 7.2 show the translation of the original code of the running example (Fig-
ure 7.4). There are three important issues about the translation which are worth mentioning,

namely:

« First of all, it is possible to some extent generate idiomatic code because the RADBe-
haviour model contains certain semantic information. Forinstance, line 2 checks whether

a checkbox is checked or not in idiomatic jQuery.

« Secondly, the generated UI code in Javascript has the same shape as the original PL/SQL
code, except business logic fragments, which are translated to a remote AJAX call. In
Javascript a callback is executed when the result is available, so every fragment (Ul or BL)
which depends on the transformed logic fragment is put within such a callback (lines 7-
14). Currently, we only support synchronous calls, but we intend to develop another
transformation which will be able to perform asynchronous calls based on the depen-

dencies among fragments.

198

« Finally, each business logic fragment is mapped to a Java method which connects to the
database and performs the requiredlogic. The input parameters of this method are the UI
variables that the fragment depends on, and the returning value is a JSON object made

up of the variables (UI or local) used by other fragments that depend on this fragment.

1 | var periods;

2 | if ($('#act_modalities’).is(":checked’)) {

3 $.ajax({

4 url: "getNumCallPeriods/” + $('#act_code’).val(),
5 dataType: "json",

6 async : false,

7 success : function(result) {

8 periods = result.periods

9 if (periods !==0) {

10 alert (" Noperiods');

11 $(' #act_modalities’).attr('checked’, true);
12 } else {

13 $(' #act_modalities’).tabs('enabled’, 1);

14 }

15 }

16 H:

|}

Listing 7.1: Event handling code rewritten in Javascript

1 | @Produces(”application/json™)
> | public class Service extends BaseResource {
3 private static EntityManager em = ...;

s QGET @Path("grants/getNumCallPeriods/{act_code}")
6 public Representation getNumCallPeriods(

7 @PathParam("act_code") String code) {

8 Query q = em.createQuery("SELECT_COUNT (*)LFROM_CallPeriodsu. WHERE_activity,=,:ACT__CODE
");

9 q.setParameter("ACT_CODE", code);

10 return new JSONObject().put(”periods”, q.getSingleResult());

w3

no |}

Listing 7.2: Entangled business logic moved to REST service

7.6 CAPTURING DEPENDENCIES AMONG THE GUI ELEMENTS

RADBehaviour contains implicit information about the dependencies that exist between the el-

ements in the window, for example, which windows can be reached directly from certain win-

199

dow, or which widgets are affected by a change in the value of another widget. An Interaction
model is a model derived from RADBehaviour that captures these kinds of interactions explic-
itly. It can be considered as a view of a RADBehaviour model, since they gather a subset of the
information from the latter one and arranges it in such a way that is useful to perform some
tasks of forward engineering and program comprehension. We distinguish two main uses for
this model.

The first use is to exploit it as high level documentation, such as interaction diagrams. The in-
formation is presented in a readable way so it can be utilised as a guideline to lead a manual
migration process. It could support a semi-automatic process in which event handler skeletons
can be automatically generated, and some hints can be included as comments to ease the mi-
gration.

The second use consists of taking advantage of the representation to generate GUI-related arte-
facts. In particular we have identified three possible artefacts. The first possibility is to generate
navigation flow files. This is, since the Interaction model makes explicit the navigation flow be-
tween application windows that is hidden in RADBehaviour models, it can be used to generate
the page navigation configuration files for web applications such as Struts or Java Server Faces.
The error pages (exception handling) can be also specified.

The second possibility in which the model is useful is for generating web interfaces without
refreshing the whole page. Widget updates that do not require data (e.g., enabling a panel after
checking a checkbox) can be performed with Javascript, and widgets demanding data from the
server can be updated using Ajax. This task could be done with the RADBehaviour, but since
in the Interaction model the events are expressed much clearer and simpler than in the source
code, it is much easier to identify what type of implementation (server-side, Javascript, Ajax) is
suitable for an event handler.

The third possibility is related to the widget interactions. A code generator for the event han-
dlers could be derived from RADBehaviour. This generator would create one event handler
for each one in the original code and every handler would modify the properties or fill in all
the widgets that would be affected. However, a better design would be to have that every wid-
get is in charge of updating itself, instead of other widgets can modify it. This would promote
that widget functionality and dependencies are separated, what leads to a better maintenance,
especially when complex widgets (e.g. tree views) are involved. In RADBehaviour dependen-
cies between widgets are not clearly identified, whereas the Interaction model is focused on

this aspect. Thus, a Interaction model directly shows which widgets are publishers of events

200

and which widgets are subscribers of event, so implement either the Observer or the Message
Broker patterns is eased.

Note that the Interaction model makes some data more accesible than RADBehaviour, and can
ease generating code for some frameworks. Both, Interaction and RADBehaviour can be used
together to design the new system, given that each model is focused on different aspects of the

source system.

7.6.1 METAMODEL DESCRIPTION

The Interaction metamodel is shown in Figure 7.12. Basically the metamodel represents a graph
where each node can have a nested subgraph. There are two types of nodes: GUIFragmentNodes
which represent windows or composable parts of windows (such as portlets), and WidgetNodes
for representing widgets.

Every Interaction is related to the source node that originated the interaction, and the target
nodes that are affected by the Interaction. An Interaction is produced when a certain event is
triggered (trigger attribute) and some guard conditions (condition attribute) are fulfilled (all the
conditions must be fulfilled as if there were join with And). In this case, some actions are per-
formed on the target nodes. Note that the conditions are references to some conditions in the
RADBehaviour model which originated the Interaction model, and the actions to be performed
when an Interaction occurs are also defined in the RADBehaviour model.

These nodes can be connected through two types of Interactions which differ in the type of tar-
get. One type is for Interactions that cause a change in the window. An example of this type can
be found when a user presses a button and this produces that the current window is closed and
a different window is displayed. This is the interaction that has targets of type OuterTarget. The
second type of Interactions is for expressing that a change in one widget has an effect in another
widget. For example, a user introduces its name in a text widget and automatically another text
widget is filled with a user identification number. InnerTarget is the type of the targets of these

Interactions.

7.6.2 FROM RADBEHAVIOUR TO THE INTERACTION MODEL

In this section we will outline the M2M transformation that takes the RADBehaviour model and

gets an Interaction model. We will explain how we get the GUINodes and the Interactions by

201

«enumy» «enumy» «enum»
InnerActionType OuterActionType TriggerType
PUT_DATA DISPLAY ACTIVATE
CLEAR_DATA HIDE CHANGE_DATA «from RADBehaviour»
ENABLE EVENT RADEXxpression
DISABLE SYSTEM
CHANGE_UI_PROPERTY

0..n| condition

] o] |o.n
source Interaction
A trigger: TriggerType
- 1..n| targets
InteractionRoot 0. [GUIFragmentNod 0| WidgetNode
N B InteractionTarget 1..nE «from RADBehaviour»
1 1 RADAction
«from Structure» «from Structure» []
GraphicalView SingleWidget InnerTarget OuterTarget
action: InnerActionType action: OulterActionType

Figure 7.12: Interaction metamodel

means of Algorithm 7.

Lines 2 to 28 create GUINodes for widgets that are involved in event handlers (i.e., EventCodes).
Concretely, nodes are created for the widgets which are the source of an EventCode (lines 3 to 9),
and nodes are created for the widgets that appear in the primitives of an EventCode (lines 11 to
22). If the widget is a View, then a GUIFragmentNode is instantiated. Otherwise a WidgetNode
is built. After creating all the nodes, WidgetNodes are nested in the corresponding GUIFrag-
mentNodes (lines 24 to 27).

Lines 30 to 48 are intended to create links (Inferactions) between nodes. An effect primitive is a
type of primitive that may produce a change in a view, this is, OpenView, ShowMessage, Write-
ToUI and ModifyUL An effect block is a basic block that contains at least one effect primitive.
For each EventCode, the effect blocks are retrieved and iterated (line 31). Note that the effect
primitives of an effect block are all executed in a block under the same conditions, i.e., either all
of them or none of them are executed. Then, for each effect block, an interaction will be cre-
ated, whose source widget will be the source of the event handler (line 33) and conditions will be
ajoin (with the And operator) of all the conditions that wrap the basic block from the begin-
ning of the event code (line 35). For example, in the primitive code of Figure 7.7, the wrapping
conditions of the ShowMessage primitive are IsChecked and HasData.

For each effect primitive in an effect block (line 36), an InteractionTarget is created according to

the type of primitive: if it is a OpenView or a ShowMessage primitive, an OuterTarget is created,

202

Algorithm 7 Algorithm to generate the Interaction model.

1: NodeSet < {}
2: foralle € getAll(EventCode) do
if —created(e.source) then

3:
4: if e.source.type = View then
5: NodeSet < createGUIFragmentNode(e.source)
6: else if e.source.type = SingleWidget then
7: NodeSet < createWidgetNode(e.source)
8: end if
9: end if
10:
11: forall p € e.Primitives do
12: Widgets <— getWidgets(p.input) U getWidgets(p.output)
13: for all w € Widgets do
14: if —created(w) then
15: if w.type = View then
16: NodeSet < createGUIFragmentNode(w)
17: else if w.type = SingleWidget then
18: NodeSet < createWidgetNode(w)
19: end if
20: end if
21: end for
22: end for
23:
24: forall n € NodeSet.(n.type = WidgetNode) do
25: container <— findContainer(n)
26: add(n, container)
27: end for
28: end for
29:

30: foralle € getAll(EventCode) do
310 for all block € getEffectBlocks(e) do

32: i < createlnteraction)

33: i.source <— e.source

34: i.trigger <— mapEvent(e.event)

35 i.Conditions <— getConditions(block)

36 forall p € getEffectPrimitives(block) do

37: if p.type = OpenView \ p.type = ShowMessage then
38: t <— createOuterTarget()

39: else if p.type = WriteToUI V p.type = ModifyUI then
40: L4 createInnerTarget()

41: end if

42: t.target <— getTarget(p) 203

43: t.action <— mapAction(p)

44 t.Primitives <— findDependencies(p)

45: i.target <— t

46: end for

47 end for

48: end for

which represents a change in the flow of views; if the primitive is a WriteToUI or a ModifyUI
then an OuterTarget is created, which represents a modification in the current view. The find-
Dependencies function in line 44 gets all the primitives that are placed before the given primitive
and affects the result of this primitive. For example, if we apply findDependencies(p) and there
is a WriteToVar primitive prior to p that writes a value in a variable X that is used in p, then the

WriteToVar is added to the result. Finally, the target is added to the Interaction (line 45)

7.6.3 EXAMPLE

In Figure 7.13 we show an Interaction model for the event handlers associated to the window
presented in Figure 7.3. The graphical notation which we have used is the following. Rounded-
boxes with two compartments represent application windows, for example GRANT CALLS-
WINDOW or MAIL WINDOW. Rounded-boxes without compartments represent widgets,
forexample CALL _CODE or ACT MODALITIES. Arrows represent interactions with the fol-
lowing notation: event [condition] / actions. For example, from CALL _CODE there is an inter-
action to PERIOD_START and PERIOD_END. In this case the event is Change (is a prede-
fined event), the condition is HasData(CON _CODE), and it has two actions: displays a value
in PERIOD_START and displays a value in PERIOD _END. In some cases an interaction is per-
formed when a window is displayed, so in these cases the arrow starts in the window, such as

the arrows that start in GRANT CALLS WINDOW and ends in MODALITIES.

In the upper-right part of the diagram we can see two interactions whose source is the check-
box ACT MODALITIES and are related to RADBehaviour example shown in 7.7. Each inter-
action is related to a Case of the nested SelectionFlow. From the first Case, an interaction with
two targets has been generated. One target is generated from the WriteToUI primitive, aims at
the MODALITIES widget and is tagged with the PutData action. The other target is generated
from the ShowMessage primitive, aims at the POP-UP generic widget and is tagged with the Dis-
play action. Note that both targets belong to the same interaction, so they have in common the
event that produces the interaction (a Change of data in a widget our case), and the guard con-
dition that has been obtained from the join of the conditions of the SelectionFlows in which the
effect primitives are nested. The second interaction also takes place when there is a change in the
value of the ACT _MODALITIES widget (and the condition guard is fulfilled), and produces a
ChangeUIProperty in MODALITIES, which is the unique target of this interaction.

204

GRANT_CALLS_WINDOW

MODALITIES

[lsChecked(ACT MODALITIES)]y Enable
L

[IsNotChecked(ACT_MODALITIES)]

ACT_MODALITIES

ChangeflsChecked(ACT_MODALITIES) *
HasData(ReadFromDB(ACT_CODE))]

PERIOD_END

MAIL

Display

ClearData[HasData dFromDB(CON_CODE))] Change [HasData(ACT_CODE) »

DifferentFromValue(RecordStatus, INSERT')]

L] -
Display Display Di:
(i winoow) (POP.UP)

- J

Figure 7.13: Interaction model for the event handlers of the window shown in Figure 7.3

Activate

7.7 EVALUATION OF THE APPROACH

In order to assess the utility of our approach we have performed a case study reusing the Oracle
Forms application for managing research projects that was introduced in Section 5.8. Around
11,000 lines of code (LOC) were evaluated (comments are not counted), what indicates a
medium-high complexity.

We have executed the complete reverse engineering process for the application and we have
manually inspected the models in order to count the LOC" correctly matched and classified.
For the RADBehaviour model, we count the LOC that have been successfully matched, com-
paring the idioms matched with the expected ones. For the EventConcerns model we count the
LOC:s that have been classified in each category, in order to assess the amount of code that our
approach is able to relocate. The extraction of interactions has been tested with only a few win-
dows so it cannot be considered a reliable evaluation but a proof of concept, and therefore it
will not be commented in this section. Despite that, the evaluation of the code abstraction give
us an idea of the correctness of the extraction of interactions since it strongly depends on how

good the RADBehaviour model represents the semantics of the source code, and therefore it is

Tokens like begin or end, and variable declarations are not counted.

205

Table 7.2: RADBehaviour evaluation

LOC of idioms matched / total LOC 95.65%
LOC mapped OK / total LOC 83.04%
LOC of matched programming idioms / total LOC | 36.67%

LOC of matched community idioms / total LOC 56.45%
LOC of matched business idioms / total LOC 6.88%

expected that the correctness of both models will be rather similar.

7.7.1 EVALUATION OF THE CODE ABSTRACTION

The results of the assessment of the code abstraction algorithm are shown in Table 7.2. LOC of
idioms matched is the percentage of LOCs out of the total that have been matched with some
idiom. However, not all LOCs that are matched are mapped properly, so LOC mapped OK is a

measure of the amount of code whose behaviour has been captured right.

Ascanbe seen, almost all LOCs match some idiom. Thisisa consequence of having fine-grained
idioms (programming language idioms) that match almost everything that coarse-grained id-
ioms (community and business idioms) cannot. This avoids the need for writing idioms for
every built-in function, and it offers a migration option when some coarse-grained idioms have
not been identified. For example, there is a built-in function that copies a value to a given vari-
able if the current value of the variable is NULL. Since we do not have a specific mapping for this
function, it is automatically transformed into a ExecuteBL, which is a wrong mapping. When

there are statements that are not matched, they are notified to the user.

As canbe seen, almost 17% of LOC are mismatched. In our case, the majority of the fails are due
to the fact that we do not deal with PL/SQL exceptions, and because of some specific Forms
functions that are not mapped properly. We can conclude that the set of primitives identified

in RADBehaviour is enough to capture the basic behaviour of the application.

The second part of Table 7.2 shows the percentage of each type of idiom that has been matched
out of total of correct matches. This reinforces the idea that RAD applications are programmed
based on a set of more or less fixed idioms that are used throughout the code given that approx-

imately 63% of the code are coarse-grained idioms (i.e., community and business idioms).

206

Table 7.3: EventConcerns evaluation

LOC classified OK 86.10%
LOC classifiedas BL | 15.87%
LOC classified as Ctrl 4.80%
LOC classified as Ul 79.33%

7.7.2 EVALUATION OF THE SEPARATION OF CONCERNS

Table 7.3 shows the amount of LOCs that has been classified in each category (user interface,
control and business logic). LOC classified OK shows the number of LOCs out of the total
that have been categorised properly. Interestingly, the success percentage in this case (86.10)%
is slightly higher than the percentage of code well mapped when obtaining the RADBehaviour
(83.04%, LOC mapped OK in Table 7.2). This is due to the fact that some original statements
are mapped to wrong primitives, but by chance they belong to the right category, so they are
classified correctly. However, this may lead to generate a wrong piece of target code (i.e., around
3% of the generated code is wrong). We are looking into ways of detecting this corner case.

It can be seen that a certain amount of the code (20.67%) should be relocated to achieve separa-
tion of concerns, what shows that RAD applications are tightly coupled, and that our approach
facilitates identifying fragments related to each concern and automatically relocating them.

With regard to code classified as UI (79.33%), it is translated in a straightforward manner to
the new application. However, we have estimated that around 18% out of UI code is in charge
of performing interactions among widgets or performing a change in the navigation flow of the
application, and could be moved to a different module if we intended to decouple the interac-
tions among widgets. Based on the RADBehaviour representation it is possible to identify those

widgets interacting with other GUI elements, so enabling further separation of concerns.

7.8 CONCLUSIONS

In this chapter an approach to reverse engineer event handlers of applications developed with
RAD environments has been presented. The aim is to separate the different concerns that are
tangled in the event handlers of those applications, that is, the G3 goal that was presented in
Section 1.2. As aresult of the reverse engineering process we have obtained two kinds of mod-

els: the EventConcerns model and the Interactions model. The former is used to separate the

207

architectural concerns (e.g., MVC layers) of an application and then improve the quality of the
code in the new system. The latter serves to separate the navigation flow and widget interaction
concerns, and concretely can be used to: generate navigation flow descriptions (e.g., for]SF) ’
detect asynchronous updates if the application is migrated to the web platform, or for graphi-
cally documentating the source system.

With the aim of getting the EventConcerns and Interaction models, source code had to be anal-
ysed. However, analysing code of a programming language is a tough task, since there are a lot
of different ways to perform the same effect. For example, changing the order of independent
statements or introducing local variables to store temporary results of functions or database
queries are two ways of modifying the source code while preserving its semantics. Usually stan-
dalone statements are meaningless, but they are part of more complex structures that have a
concrete purpose (which developers use to indicate with code comments). Therefore using a
simpler representation (RADBehaviour) that makes explicit the intention of portions of code
greatly eases the manipulation of code and simplifies the anlysis. Given the specific nature of
event handlers of RAD applications that usually perform the same tasks in a more or less similar
fashion, pattern matching is able to detect complex code structure (idioms) in most of the code
(96%), with a success rate of 83%.

The RADBehaviour representation greatly facilitated the achievement of the EventConcerns
and Interaction models since it was much simpler to analyse that the AST tree of the PL/SQL
language. We assessed the separation of architectural concerns with a migration of the Oracle
Forms application that we used in previous chapters to the web platform with Ajax, obtaining
a 86% of accuracy. A lesson learned in the case study was that when accomplishing a migra-
tion, raising the abstraction level of the code may be useful, but the AST representation of the
source code is still required in many cases, as the abstract representation supresses details that
are needed to perform a complete migration of the source code. Hence, traces to the source
artefacts must be kept to perform this.

In relation to the requirements of Section 4.1, requirement R10 can be tackled by means of
the RADBehaviour model, requirement R11 is covered by the EventConcerns model and R12
is achieved by the Interaction model. We have not found related work that deals with event
handlers with an abstraction of the code such as our RADBehaviour model. We believe that
some kind of preprocessing such as our RADBehaviour is needed to shorten the gap between
the code and its semantics. Regarding to the separation of code concerns, in [11] authors ad-

dressed this separation by marking code by hand. Different to them, our approach is fully auto-

208

mated and extracts the category of code snippets by applying pattern matching, as we stated in
requirement R3 (automation). The Interaction model was inspired in many works about GUI
analysis that extracted some kind of state machine from the code [7] [8] [31]. Our Interaction
model is somewhat similar to the Orchestration model presented in [113]?and the main differ-
ence with our work is that we intend to be generic and therefore we do not include information
about grouping widgets in Ajax pages.

Table 7.4 shows the classification of our work as we did with the works in the state of the art. The
type of code analysis that we have applied is static analysis, given that the source PL/SQL code
could be extracted from the binary artefacts. However, RAD environments have the possibility
of using reflection (e.g., the Name_in() function in Oracle Forms), which some developers use
to create code that can be copied and pasted in different event handlers, so dynamic analysis
would be required to fully analyse reflective calls. Nevertheless, to our experience static anal-
ysis was enough to extract most of the behaviour of the legacy application, but there may be
applications which use reflection in such a way that is not possible to analyse statically. In those

cases a hybrid analysis would be the best option.

Source artefacts Legacy code (PL/SQL)

Information extracted | EventConcerns and Interaction models

Goal Migration, quality improvement, documentation
Analysis type Static

Table 7.4: Classification of the approach of this chapter

>This work was excluded from the state of the art since it is not a reverse engineering approach.

209

If you can meet with Triumph and Disaster and

treat those two imposters just the same.

Rudyard Kipling
(Suggested by Fernando Molina)

Conclusions

User interfaces are an important part of software systems. Nowadays users do not only expect
from an application that some functionality is available, but many other qualities. For example,
in e-commerce applications it is vital for the user interface to be appealing to attract people’s at-
tention and encourage them to purchase, and at the same time making it accessible from differ-
ent devices (e.g., smartphones) without diminishing the user experience. Modern GUI frame-
works technologies, for example the combination of web frameworks such as jQuery [114]
and JSF [111], support programmers in the challenging task of implementing GUIs by offering
powerful graphical options and including some code facilities to improve the maintainability
and extensibility of the application. However, a great deal of applications that were created in
the past do not take advantage of the new GUI technologies that enhance interaction and sys-
tem quality, which pushes companies to address their migration. This thesis has been aimed
at providing a model-driven reverse engineering approach that supports the migration of RAD

applications to modern platforms and technologies.

This chapter finalises this manuscript. Some conclusions and reflections will be distilled, future

work will be outlined and the results in terms of publications, contracts, projects and research

stays will be succintly presented. Next, we will show a discussion about the level of achieve-
ment of the goals of Chapter 1, the fulfilment of requirements in Chapter 4 and the originality
regarding the related work.

8.1 DISCUSSION

In the introductory chapter we indicated three goals: create an MDE architecture for migrating
legacy GUIs (G1), separate and make explicit the information of GUI definitions (G2) and
event handlers (G3). The solution architecture we devised was presented in Chapter 4. In the
next subsection we will discuss about how these goals have been achieved and we will put into

relation with other works.

8.1.1 GOAL 1: ARCHITECTURE FOR MIGRATING LEGACY GUIs

We have profited from the benefits provided by MDE to meet the R1, R2, R3, and R4 require-
ments. Models have been useful to explicitly represent the information that is discovered in the
reverse engineering stage (requirement R1), which are described by the many metamodels we
have created, like the Structure metamodel, the Layout metamodel and so forth. All the models
that form our CUI explicitly represent information of different aspects of the GUL. MDE brings
an additional benefit, which is that models can be serialised using the XMI standard [115], so
this information is available for different projects or for third-party entities that want to profit
from it. For instance, our CUI models can be transformed into an existing UIDL description
and then be used by code generators, documentation or GUI testing tools which are available
for that UIDL.

An MDE architecture (i.e., a model transformation chain) significantly promotes modularity
(Rz requirement), what implies simplicity, reusability and extensibility, since the input and out-
put models of each stage can be used as extension points. For instance, we can reuse the part of
the architecture that obtains the Structure model in a solution to distribute a legacy GUI among
several devices. In this setting, the Structure model would be the extension point that would be
used to integrate our approach into an existing solution, wich would have a limited impact on
the latter.

Automation (requirement R3) is achieved thanks to the chains of model transformations. In
our solution the target artefacts are automatically generated. However, there are three cases in

which developers need to modify either the input or the output. The first case happens when

the execution stops due to the preconditions of the source artefacts are not fulfilled. For exam-
ple, if there are widgets that are highly overlapped (slight overlappings are supported), then the
program stops and a developer has to modify the input and execute the transformation again.
In the second case the target artefact is generated, but it lacks of elements that have been omit-
ted because the tool does not know how to deal with some elements. This is the case when a
unusual widget is used or a fragment of code is not recognised. These flaws can be repaired by
completing the metamodels and creating exhaustive pattern catalogs which cover not only the
common cases but all the possibilities. The third case also consists of a successful execution,
but the result is not what user expected, for example, the layout generated is not the best op-
tion according to the developer, so he or she has to tune the algorithm parameters or directly
modify some models (the Layout model) and launch again the last part of the transformation

chain. We conclude that requirement R3 is mostly fulfilled, but not completely.

The architecture was designed to provide independence of the source technology by means of
the Normalised and RADBehaviour models, and target independence by means of the CUI
model (requirement Ry). In fact, we have proved the source independence by reusing the same
layout inference approach for two different sources, which are Oracle Forms windows and wire-
frames created with WireframeSketcher. Note that both of them have a rather different nature,
since Oracle Forms windows belong to a legacy application and are encoded in XML format,
while WireframeSketcher wireframes are created during the analysis stage of development and
are actually Ecore models. Likewise, the target independence has been proved by generating
code for Java Swing which is a Java desktop toolkit and ZK which is a web toolkit. Nonetheless,
the information of the CUI model is not enough to migrate event handlers to new platforms,
since complete information of the Event Handler AST model is needed to generate the Target
Technology model. It is worth remarking that the Event concerns model or the RADBehaviour
model are guides that can lead the generation of the target code, but they lack of information
about the code that is tied to the source technology and therefore has not been represented in
neither the RADBehaviour model nor the Event concerns model.

Given that we claim that our solution is source and target independent, it is worth commenting
on the amount of effort needed to change the source or target technology in our architecture.
Replacing the source technology entails programming the transformation to the Normalised
model and transformation to the RADBehaviour (where the idioms are hard-coded). The trans-
formation of the source models into the Normalised models is usually relatively straightforward.

On the other hand, we believe that there is a trade-off between automation and accuracy of the

213

RADBehaviour model. That is, if we transform the source code models into KDM, then we
can automate the pattern matching process for any language so reducing the effort of develop-
ers, but as far as patterns are somehow dependent on the source language, language-specific
patterns could not be matched, thus obtaining more general primitives in the RADBehaviour
model (there is aloss of semantics). On the other hand, replacing the target technology implies
transforming the CUI model into a Target Technology model. whose complexity depends on
the features of the target technology. Although the CUI model contains a lot of explicit and
useful information, the transformation may be complicated due to technology quirks, so com-
plexity is inversely proportional to the experience of the developer in the target technology.

There are other works that take advantage of the MDE benefits, like explicit information [90],
modularity and automation [21], and independence from source or target technologies [4],
and our model-driven architecture takes profit from all these features at the same time. Al-
though there are approaches that gather information about a specific aspect of the GUI (e.g,,
interactions in [113]), we have not found any proposal that defines a CUI model that identifies
the different aspects and integrates them into one model with a modular approach, with each
model representing a GUI dimension that is linked to a base model (the Structure model).

Table 8.1 summarises the requirements of goal G1 and the limitations that reduce their fulfil-

ment.

Requirement Solution Fulfilment | Limitation

Ri1: Explicit GUI information | Metamodels Total None

R2: Modularity Model transformation chain | Total None

R3: Automation Model transformation chain | High Fitness function
R4: Source independence Normalised GUI tree model | Total None

RADBehaviour model
R4: Target independence CUI model Total None

Table 8.1: Fulfilment of the requirements of goal G1

8.1.2 GoOAL 2: ANALYSIS OF GUI DEFINITIONS FOR MIGRATION

Requirements Rs, R6, R7, R8 and Rg are related to this second goal. The Region model identi-
fies regions in views and let us achieve the matching of the visual and logical structure of views
(requirement Rs). Explicit containment is perfectly addressed and region identification is cor-
rectly solved when the regions are surrounded with borders, but when there are groups of wid-

gets that are spatially separated (without borders), distinct regions are not created. Neverthe-

214

less, the layout inference algorithm is not affected by the "imperfect’ region detection as it is able
to differentiate regions by itself thanks to the closeness level mechanism.

Several approaches in the literature have dealt with the segmentation of web pages in order
to migrate them to a mobile web interface [77] [78]. Many of these works are based on the
VIPS [76] page segmentation algorithm, which is an algorithm that performs a partition of
the web page based on the type of HTML tags. When the web page has been segmentated,
these works propose different visualisation alternatives in the mobile device: display relevant
segments of the web page, show an snapshot of the interface so the user can select a part that
is then zoomed-in, among others. We have not found any approach that explicitly presents a
solution for matching the visual structure from a legacy GUIL Our approach is the equivalent
to VIPS but with coordenate-based GUIs, and can be therefore used in the migration of legacy
GUISs to mobile interfaces. Another use is the distribution of the GUI in different devices.
Regarding the high-level layout (requirement R6), the quality of the resulting layout is affected
by the parameters of the algorithm and the implementation of the fitness function, though with
the default configuration, the result is acceptable in most cases. As we clearly stated when ex-
plaining the Widget distance clustering problem in Chapter 6, the automated assignment of
the closeness level is tricky and sometimes closeness levels may confuse the pattern matching
algorithm. The effects of the fitness function are mainly visible when testing the flexibility of
the layout (e.g., resizing a generated view and verifying). In some cases the best fitness value
entails a final GUI that is not resized as a developer could expect (Fitness function implemen-
tation problem).

The misalignment tolerance (requirement R7) is fulfilled by including a margin when compar-
ing coordinates to create tiles. A more or less similar approach was proposed in [3] to give
flexibility to coordinate constraints. When there are widgets that are too close, the margin is
automatically cut down to prevent it from spoiling the inference. Given that the same margins
are applied to all the distances, sometimes it may happen that a high misalignment tolerance
changes the position or the alignment of other elements. As a result, slightly misaligned wid-
gets can be corrected with small margins, but large margins rarely work well.

The layout inference algorithm outputs all the possible layout compositions it has been able to
create (requirement R8). If the algorithm selects a layout composition that is not desired by the
developer, he or she can inspect the model and mark the layout that he or she prefers. Then, the
last part of the transformation chain can be executed to generate the code with that choice.

The types of layouts to match against views is totally configurable (requirement Rg). Further-

215§

more, new layout types can be incorporated. The design of the tool allows the extension with
new types easily, To add a new layout type, it is neccessary to implement a class that matches
the layout pattern on the layout graph, implement a class that creates the layout type instances
in the Layout model, and maybe, extend the fitness function.

As far as we know, there are no works that detect a composite layout based on a configurable set
of layout types. The existing approaches such as [4] and [5] define algorithms that are tightly
tied to specific types of layouts. There is neither an approach that outputs several ranked alter-
native solutions.

Table 8.2 summarises the requirements and limitations for goal G2.

Requirement Solution Fulfilment Limitation

Rs: Logical/visual structure matching | Structure model High Non-surrounded parts

Ré6: High-level layout representation Layout model Medium/High | Parameters and fitness function
R7: Misalignment tolerance Layout inference algorithm | High Small misalignments

R8: Alternative solutions Layout inference algorithm | Total None

Rg: Configurable layout set Layout inference algorithm | Total None

Table 8.2: Fulfilment of the requirements of goal G2

8.1.3 GoAL 3: ANALYSIS OF THE CODE OF EVENT HANDLERS FOR MIGRATION

The solution that has been implemented for event handler analysis fulfils requirements R10, R11
and R12. The RADBehaviour modelis useful because it explicitly represents simple information
about sentences or groups of sentences in the code of event handlers. The key of this model
is the ability of the devised primitives to represent the relations between the elements in the
code of RAD applications (widgets, database fields, code functions, local variables, etc.) in a
simple fashion. A reverse engineering task that for example needs to detect where the values
of widgets are set, will find the RADBehaviour model much easier to analyse than the Event
Handler AST model. A problem of the pattern matching approach is that the source code can
contain statements that offer some behaviour that cannot be locally translated to primitives but
if affects the entire application. For example, in Oracle Forms there is a function to know the
status of a form, which is automatically managed by the environment. Emulating that status
entails a large amount of code in all the views to handle it. Moreover, in some environments it
is possible to declaratively specify some functionality. Forinstance, in Oracle Forms a developer
can declare that views contain a ‘go forward” and ‘go back’ buttons to see the next and previous

bulks of results of a data table respectively. Technology-dependant functions may be tricky

216

to abstract and sometimes they can only be transformed into function calls, which is not very
useful as it does not add any semantics about that code. Fortunately, our approach is in most
cases successful since event handler code frequently repeats the identified patterns which have

a definite behaviour that generally is not tied to the source technology.

In relation to code categorisation and representation of the interactions and navigation (re-
quirements R11 and R12), the algorithms basically analyse the type of primitives in the RAD-
Behaviour model as well as their inputs and outputs, which makes our solution heavily depen-
dant the primitives. Hence, the separation of architectural concerns and the identification of
interactions are performed alright as far as the source code is correctly represented in the form
of primitives. On the whole, most of the code analysed was successfully separated in concerns,

and the widget and view dependencies were found.

In the state of the art we listed many approaches that analyse event handler code. Most of them
obtain some kind of state machine that is used for software testing or program comprehension.
Our contribution in this sense is that we integrate a state machine that represents the naviga-
tion flow of views with a state machine for each view that expresses dependencies among their
widgets. There are also approaches that propose semi-automated solutions for separating the
code in layers [11] whereas our proposal is fully automated. On the other hand, as far as we
know, there is no intermediate representation particularly designed for event handlers. That
representation has demonstrated being helpful as it greatly facilitated other reverse engineering
tasks (concern separation, interaction identification) related to the analysis of event handlers

of RAD applications. Table 8.3 sums up the requirements and limitations of the G3 goal.

Requirement Solution Fulfilment Limitation
Rio: Code abstraction RADBehaviour model | Medium-High | Technology-dependant statements
Ri1: Code categorisation | Event concerns model | High Depends on the
RADBehaviour model
Ri2: Explicit interaction Interaction model High Depends on the
and navigation RADBehaviour model

Table 8.3: Fulfilment of the requirements of goal G3

217

8.2 CONTRIBUTIONS

8.2.1 FIRST CONTRIBUTION: MDE-BASED MIGRATION ARCHITECTURE

In the course of our thesis we have made several contributions. Firstly, we have designed and
implemented an MDE architecture to perform migrations of RAD GUIs. The design has been
focused on separating the different aspects of a GUI and reducing the complexity of the prob-
lems by splitting them in smaller subproblems that are chained, which promotes modularity. As
a part of that architecture, we have defined two metamodels that make the input of the process
independent of the source legacy technology (the Normalised metamodel for the GUI defini-
tion and the RADBehaviour metamodel for the code of event handlers), and a set of related
metamodels (Structure, Layout, EventConcerns, Interactions) that represent each one of the
GUI aspects and provides independence of the target technology.

The main publication we have produced regarding this topic is the following (the publications

mentioned in the other two contributions also deal with this topic).

« Oscar Sanchez Ramon, Jesus Sénchez Cuadrado, Jests Garcia Molina, Architecture for
Reverse Engineering Graphical User Interfaces of Legacy Systems. In proceedings of the Soft-
ware Support for User Interface Description Language (UIDL'11), in conjunction with
the 13th IFIP TC13 Conference on Human-Computer Interaction (Interact 2011), Lis-

bon (Portugal), 2011.

8.2.2 SECOND CONTRIBUTION: LAYOUT INFERENCE APPROACH

Secondly, we have proposed a set of data structures (i.e., the Tile and Layout metamodels) and
algorithms (i.e,, model transformations) to reverse engineering a GUI definition in which the
layout is expressed in coordinates to a layout described by a composition of a set of layout man-
agers. The solution includes the identification of the visual parts of views (supported by the Re-
gion model) with the aim of generating a representation that matches the visual perception of
the user, which is materialised in the Structure model. Actually we have proposed two versions
of the approach: a greedy version which uses heuristics to detect the layout, and an exploratory
version that uses a backtracking algorithm to identify possible solutions. Tools for supporting

each version of the layout inference were developed.' The first tool migrates Oracle Forms GUIs

The tools can be downloaded from http://modelum.es/trac/guizmo

218

http://modelum.es/trac/guizmo

to Java Swing, and the second tool transforms wireframes created with WireframeSketcher to
web interfaces in ZK.

The most important publications we have produced regarding this topic are:

« Oscar Sanchez Ramén, Jestis Sanchez Cuadrado, Jestis Garcia Molina, Model-driven re-
verse engineering of legacy graphical user interfaces. Journal of Automated Software Engi-
neering, April 2014, Volume 21, Issue 2, pages 147-186.

Impact factor: 1.400 (28/10s, 2nd quartile in JCR/Computer Science/Software

Engineering)

« Oscar Sanchez Ramén, Jestis Sanchez Cuadrado, Jestis Garcia Molina, Model-driven re-
verse engineering of legacy graphical user interfaces. In the proceedings of the 2 5thIEEE/ACM
International Conference on Automated Software Engineering (ASE’10), Antwerp (Bel-
gium) ,2010.

Acceptance rate: 34%

« Oscar Sinchez Ramoén, Jests Sénchez Cuadrado, Jestis Garcia Molina, Jean Vanderdon-
ckt A layout inference algorithm for graphical user interfaces. Information and Software
Technology. Under review.

Impactfactor: 1.522 (23/10s, 1st quartile in JCR/Computer Science/Software En-

gineering)

« Oscar Sanchez Ramén, Jean Vanderdonckt, Jestis Garcia Molina, Re-Engineering Graph-
ical User Interfaces from their Resource Files with UsiResourcer. In proceedigns of the 7th
International Conference on Research Challenges in Information Science (RCIS’13),
Paris (France), 2013.

Acceptance rate: 26%

8.2.3 THIRD CONTRIBUTION: EVENT HANDLER ANALYSIS APPROACH

Thirdly, we have described a set of data structures and algorithms to reverse engineer the code
of event handlers in order to separate the many concerns that are involved in this kind of code.
We have devised the RADBehaviour metamodel that takes advantage of the features of RAD
environments and represents fragments of code by primitives that express the semantics behind

the code. This representation is the basis of other static code analysis, which we have applied

219

to develop two tasks. The first one is to separate the code in three basic layers (business logic,
controller and GUI) that are common in nowadays frameworks. The second one is to identify
the interactions that exist among widgets (e.g., enable a text field when a checkbox is selected)
and also the changes in the navigation flow (e.g., when a user press certain button then another
view is displayed). We have also developed a tool that puts the approach into practice. It takes
event handlers written in PL/SQL and generates code for a web application in which the GUI
and control are targeted to a web client (javascript code) and the business logic is executed in
the server side (Java code).

The publications we have produced regarding this topic are:

« Oscar Sanchez Ramén, Jestis Sénchez Cuadrado, Jestis Garcia Molina, Reverse Engineer-
ing of Event Handlers of RAD-Based Applications. In proceedings of the 18th Working
Conference on Reverse Engineering (WCRE’11), Limerick (Ireland), 2011.

Acceptance rate: 26%

8.3 FUTURE WORK

We have arranged the future work into several categories according to the part of the architec-

ture that it is affected.

8.3.1 CUI METAMODEL

There are several metamodels that were conceived to take part in the CUI metamodel, but have
not been implemented at present. Particularly the Style metamodel and the Validation meta-
model. The Style metamodel is intended to define all the information about the appearance
of the widgets: colours, fonts, sizes, etc. Styles (groups of graphical attributes) could be struc-
tured hierarchically, hence some styles would inherit from others (similar to CSS), and every
widget would be assigned one or more styles. When analysing the widgets of a view, one style
would be created for the first widget, and every widget that had different values for the graphical
attributes would lead to a division of the already created styles. When all the widgets would be
analysed, the process would output a style tree and the style nodes would be assigned to wid-
gets. A challenge of this approach would be to maximise the styles and to avoid having a large

number of styles with only one or two attributes.

220

The Validation metamodel would let developers specify all the information about form valida-
tion, such as validation rules, widgets associated with those rules and the error messages for
each failed rule. Validation in legacy systems may be specified in the GUI definition, or defined
in event handlers. In the latter case, matching portions of code that perform validation and as-
signing them a predefined category (e.g., checking that an e-mail has the proper format) may
be a challenging task.

The Interaction and Structure metamodels we have defined in the previous chapters can also be
extended to support new aspects. The Interaction metamodel could include information about
error handling, which can be seen as a particular case of navigation flow in which the transition
to the error view is triggered by an internal event (raised by certain system conditions). The
Structure metamodel can be extended to represent complex widgets that are compositions of
single widgets. The reason that motivates this design decision is that some legacy systems usu-
ally lack of certain widgets that are common at present in GUI toolkits, for instance, calendars.
Then, developers used to make up complex widgets based on combinations of simple widgets,
e.g., a calendar can be implemented as a grid of buttons (a button for each day of the month).
The model transformation that generates the Structure model can be enriched to detect those
complex widget, so the target technology transformation would avoid migrating each widget in
an isolated manner, which is better practice as there are available mappings for them in modern
toolkits.

IFML, which is gaining in acceptance, can be used in place of our CUI' models. IFML lets us de-
fine view components, view containers, events, interaction between components and between
user and components, and the referenced data at the different tiers of the architecture. It also
promotes separation of aspects, so it can particularly replace the Structure and Interaction mod-
els, and to some extent, the Validation and EventConcerns models. The integration could be
done by setting IFML as the central model, and then make the Layout and Style models refer-
ence the IFML model. If this change would be accomplished in the CUI model, most of the

current reverse engineered information such as the Region and RADBehaviour models would

be still valid.

8.3.2 REGION IDENTIFICATION

Sometimes there are groups of widgets that are spatially distant from other groups and are

clearly perceived as regions. However, these regions will not be detected if they are not sur-

221

rounded by a border, according to Algorithm 1. Then, an improvement of the region detection
algorithm would be to consider such regions. It can be accomplished with the information of
the tiles. Since the distance between tiles is expressed with closeness levels, we could group all
the tiles with the same closeness level C, and look for the groups of tiles that are separated from
the rest by means of a closeness level C, being C, > C,.

Region identification can have many uses. In the context of a distributed GUI, each region
could be launched in a different device. Another use would be the identification of GUI clones,
i.e., portions of views that are duplicated, so developers could apply refactoring to improve the

maintenance of the application.

8.3.3 HIGH-LEVEL LAYOUT INFERENCE

There are several features that can be upgraded to get better results. Firstly, the fitness function
can include metrics about human perception so the layouts are assessed more accurately. For
instance, it would be interesting to know if a group of widgets is perceived as a horizontal block,
vertical block or square block. This metrics should let us choose a better layout composition
that is properly adapted to different screen sizes.

The widget distance clustering problem can be sometimes confusing for the layout inference
algorithm. A possibility would be to handle some “far’ distances as short” when the involved
widgets take part in a form. This is not trivial because we have to identify which widgets belong
to a form previously.

Insomuch as the layout inference algorithm is basically a graph pattern matching problem, we
could use pattern matching tools such as GrGen [116] or Viatra [117]. These tools surpass
our pattern matching engine in two aspects: i) pattern matching is more efficient than our ap-
proach which has not been optimised, and ii) patterns can be declaratively specified, which is
easier than hard-code them in Java classes. At the beginning we attempted to use GrGen, but
some layout patterns like the GridLayout pattern were difficult to define with this tool then we
quitted. Now we could deep into this area to find a way to represent layout patterns so we can
take advantage of these pattern matching tools.

The algorithm has some parameters (maximum cluster deviation, comparison margin, etc.)
that must tunned in many cases. It would be desirable an automated optimisation of those pa-
rameters. Since we do not know how good or bad is a configuration of the parameters a statis-

tical approach could be developed to automatically tune the parameters based on the distances

222

among the tiles.

RAD applications does not only allow to access to database information from the code of event
handlers, but they commonly offer the possibility of linking widgets to database fields by set-
ting some properties of widgets. Generating the code to decouple these widgets from database
would be required if we intended to address a full-fledged migration of the GUI, although from
the point of view of research it does not pose a real challenge.

Since the outbreak of different devices (laptops, tablets, etc.) having access to the Internet,
responsive web design has strongly gained in followers. Generating responsive designs is a po-
tential use of our layout inference solution. In order to generate responsive designs, common
style rules about proportions and heuristics should be applied to generate the CSS 3 rules for
different screen sizes. Another option would be to generate code based on an existing frontend

framework that offers support for responsive designs, like Bootstrap [118].

8.3.4 EVENT HANDLER CODE ABSTRACTION

In the current solution, code patterns of event handlers are hard-coded in the transformation.
A better approach would be to have several repositories of patterns, and use a DSL for defining
new patterns that are added to any of them. There would be different types of repositories:
programming-language idioms, community idioms and business-dependant idioms, so the first
and second ones could be reused among applications, even they could be shared with third
parties.

Case studies for different RAD applications are needed to strongly prove that repetitive idioms
can be found in other RAD environments like Delphi s (though the current idioms are based on
the analysis of aplications in different RAD environments). These case studies would also serve
to demonstrate that these idioms can be captured with the RADBehaviour primitives we have
defined, and that these primitives are enough to represent the behaviour of any RAD applica-
tion. Furthermore, the evaluation of the case studies should be more complete and systematic
like the ones we accomplished for the layout inference approaches.

The algorithm that generates the fragments is not optimum regarding the number of fragments.
In its current state, it may generate fragments of the same type that have not variables in com-
mon, and which can be safely placed in the same fragment.

On the other hand, we believe that we can take advantage of the RADBehaviour model in many

ways beyond the separation of concerns, for instance, it can be used to accomplish code refac-

223

toring tasks such as death code cleaning. Considering it as a concise representation of the se-
mantics that lie on the code, it could be used in clone detection. As a first approach, we could
look for fragments in the model that are repeated throughout the event handlers and then use

a deeper analysis to check if they are actually clones.

8.3.5 IDENTIFICATION OF WIDGET DEPENDENCIES

The algorithm that identifies widget dependencies and generates the Interaction model should
be assessed in a real case study to prove that it can capture all the interactions that take place
in the GUI based on the RADBehaviour model. The identification of widget dependencies can
be particularly useful to turn legacy applications into Rich Internet Applications (RIA). Two
ways to proceed are posible: use the dependency model to identify widgets that can be asyn-
chronously updated via Ajax and then replicate the look and feel and navigation flow of the
original application, or use the dependency model to restructure the views according to devel-
opment patterns, for example to convert it into a single-page application (this would require a

restructuring of many of the CUI models such as the Structure and Layout models).

8.4 PUBLICATIONS RELATED TO THE THESIS

8.4.1 JOURNALS WITH IMPACT FACTOR

« Oscar Sinchez Ramoén, Jestis Sanchez Cuadrado, Jesus Garcia Molina, Model-driven re-
verse engineering of legacy graphical user interfaces. Journal of Automated Software Engi-
neering, April 2014, Volume 21, Issue 2, pages 147-186.

Impact factor: 1.400 (28/105, 2nd quartile in JCR/Computer Science/Software

Engineering)

« Oscar Sinchez Ramoén, Jests Sénchez Cuadrado, Jestis Garcia Molina, Jean Vanderdon-
ckt A layout inference algorithm for graphical user interfaces. Information and Software
Technology. Under review.

Impactfactor: 1.522 (23/10s, 1st quartile in JCR/Computer Science/Software En-

gineering)

224

8.4.2 RENOWNED INTERNATIONAL CONFERENCES

« Oscar Sinchez Ramoén, Jestis Sanchez Cuadrado, Jests Garcia Molina, Model-driven re-
verse engineering of legacy graphical user interfaces. In the proceedings of the 2 5thIEEE/ACM
International Conference on Automated Software Engineering (ASE’10), Antwerp (Bel-
gium) ,2010.

Acceptance rate: 34%

« Oscar Sanchez Ramén, Jestis Sénchez Cuadrado, Jestis Garcia Molina, Reverse Engineer-
ing of Event Handlers of RAD-Based Applications. In proceedings of the 18th Working
Conference on Reverse Engineering (WCRE’11), Limerick (Ireland), 2011.

Acceptance rate: 26%

« Oscar Sanchez Ramon, Jean Vanderdonckt, Jestis Garcia Molina, Re-Engineering Graph-
ical User Interfaces from their Resource Files with UsiResourcer. In proceedigns of the 7th
International Conference on Research Challenges in Information Science (RCIS’13),
Paris (France), 2013.

Acceptance rate: 26%

8.4.3 OTHER JOURNALS

« Oscar Sanchez Ramén, Jestis Sénchez Cuadrado, Jestis Garcia Molina, Jean Vanderdon-
ckt Generacién de Interfaces de Usuario a partir de Wireframes. Novdtica, Revista de la

Asociacién de Técnicos en Informitica (Spain) , Nov-Dec 2013, N°226, pages 24-29.

8.4.4 OTHER INTERNATIONAL AND NATIONAL CONFERENCES AND WORKSHOPS

« Oscar Sanchez Ramén, Jests Sanchez Cuadrado, Jests Garcia Molina, Ingenieria inversa
de eventos GUI en aplicaciones RAD mediante MDD. In proceedings of the VII Taller de
Desarrollo de Software Dirigido por Modelos (DSDM’10), Valencia (Spain), 2010.

« Oscar Sanchez Ramon, Jesus Sénchez Cuadrado, Jestis Garcia Molina, Architecture for
Reverse Engineering Graphical User Interfaces of Legacy Systems. In proceedings of the Soft-
ware Support for User Interface Description Language (UIDL'11), in conjunction with
the 13th IFIP TC13 Conference on Human-Computer Interaction (Interact 2011), Lis-
bon (Portugal), 2011.

225§

« Oscar Sanchez Ramén, Jestis Sénchez Cuadrado, Jestis Garcia Molina, Jean Vanderdon-
ckt, GUI Layout Inference based on Wireframes. In proceedings of the Interaccién’13s,
Madrid (Spain), 2013.

« Oscar Sénchez Ramén, Francisco Javier Bermudez Ruiz, Jests Garcia Molina, Experien-
cias de Modernizacion de Software con DSDM. In proceedings of the XVIII Jornadas de
Ingenieria del Software y Bases de Datos (JISBD’13), Madrid (Spain), 2013.

8.5 OTHER PUBLICATIONS IN THE MDE AREA

Along these years we have mainly worked in the migration of GUISs, but we have applied MDE
in other software development areas and the results obtained have been disseminated in inter-
national journals and conferences. Particularly, we have publicated two works (WOSIS 09 and
JUCS) about security requirement engineering, in the context of a collaboration with the GIS
group of the University of Murcia, and two works (PMDE’13 and SPE) related to business pro-
cess modelling and enactment, which stem from the development of a migration tool in which

our GUI migration solutions were integrated. Next we sum up all these publications.

8.5.1 JOURNALS WITH IMPACT FACTOR

« Oscar Sanchez Ramén, Fernando Molina Molina, Jesus J. Garcia Molina, Ambrosio To-
val Alvarez A Generative Architecture for Model-Driven Security. Journal of Universal Com-
puter Science, 2009, volume 15, issue 15, pages 2957-2980.

Impact factor: 0.762 (54/100, 3rd quartile in JCR/Computer Science/Theory and
Methods)

« Francisco Javier Bermtdez Ruiz, Oscar Sinchez Ramoén, Jestis Garcia Molina, A model-
driven tool to support the definition and enactment of migration processes. Software Practice
and Experience. Under review.

Impact factor: 1.008 (51/105, 2nd quartile in JCR/Computer Science/Software

Engineering)

226

8.5.2 INTERNATIONAL CONFERENCES AND WORKSHOPS

8.6

« Oscar Sanchez, Fernando Molina, Jestis Garcia Molina, Ambrosio Toval, A model driven
approach for generating code from security requirements. In proceedings of the 7th Interna-

tional Workshop on Security in Information Systems (WOSIS’09), Milan, 2009.

« Francisco Javier Bermtidez Ruiz, Oscar Sanchez Ramoén, Jests Garcia Molina, Definition
of processes for MDE-based migrations. In proceedings of the 3rd Workshop on Process-
based approaches for Model-Driven Engineering (PMDE’13), Montpellier (France), 2013.

PRO]ECTS THAT ARE RELATED TO THIS THESIS

« “MOMO: Un Entorno de Modernizacion de Software Dirigida por Modelos en Es-
cenarios de Migracion de Plataformas (Ref. 08797/P1/08)”. Granted by the Fun-
dacién Séneca (Regional plan of Science and Technology 2007-2010). From 2009-01-01
until 2010-12-31. In this project we designed the first approach for inferring the layout

of the Oracle Forms windows.

« “Impulso de la Investigacion en Tecnologias del Desarrollo de Software (Un En-
torno para el Desarrollo y Modernizacion Basado en Modelos: Forms-ADF) (Ref.
CARM 129/2009)”. Granted by the Consejerfa de Universidades, Empresas e Investi-
gacion. From 2009-06-04 until 2010-12-3 1. The goal of this project was the definition of
a software environment for the migration of Oracle Forms applications to ADF. We used
the results obtained in the previous project in order to implement the layout inference

engine.

« “GUIZMO: Un framework parala modernizacién basada en modelos de interfaces
de usuario”. Granted by the Fundacién Séneca (Research Projects Funds). From 2011-
o1-o1 until 2014-12-31. In this project we tackled the development of a model-driven
framework for analysing the code of event handlers in order to separate the concerns that
are tangled. Moreover, during this project we created a tooling to assist the automatic

generation of web interfaces from wireframes.

227

8.7

8.8

CONTRACTS SUPPORTING THIS THESIS

“Automatizacién del Desarrollo de Software con Arquitecturas Generativas (Auto-
GSA)”. Granted by the Technological Center of the TICs (CENTIC). From 2009-04-29

until 2010-01-15.

“Impulso de la Investigacién en Tecnologias del Desarrollo de Software (Un En-
torno para el Desarrollo y Modernizacion Basado en Modelos: Forms-ADF) (Ref.
CARM 129/2009)”. Granted by the Consejerfa de Universidades, Empresas e Investi-

gacion. From 2009-07-13 until 2010-12-31.

“GUIZMO: Un Framework para Modernizacion Basada en Modelos de Interfaces
de Usuario”. Granted by the Fundacién Séneca of the Region of Murcia. From 2011-

o1-o1 until 2011-12-31.

“Reverse Engineering of Graphical User Interfaces (in the context of the UsiXML
European Project)”. Granted by the Université Catholique de Louvain. From 2012-

o1-01 until 2012-09-30.

“Construccion de una Plataforma para la Migracién de Interfaces RAD”. Granted
by the Consejeria de Universidades, Empresas e Investigacién. From 2012-11-06 until

2013-12-31.

RESEARCH STAYS

Research Stay in the Université Catholique de Louvain (Belgium), during 9 months,
in the Human-Computer Interaction Laboratory (LiLab). We were working in a Java
tool that reversed engineering web pages (HTML 4/5 and CSS 2/3) and generated our
CUI model, which was in turn transformed into a UsiXML CUI from which UsiXML
definitions were generated. The work was the seed of the advanced layout inference ap-
proach. During the stay we reviewed and contributed to the CUI model of UsiXML, and

we also collaborated in a work about reverse engineering of GUIs that resulted in [39].

228

TRANSFER OF TECHNOLOGY

“Herramienta orientada ala migracién basada en modelos”. Granted by the Ministe-
rio de Industria, Turismo y Comercio. CDTI project granted to the Sinergia IT (Deusto
Group) software company. From 2010-01-01 until 2011-12-31. This project was aimed
at the creation of a tooling to assist the automatic migration of Oracle Forms applica-
tions to a Java platform. Our research group collaborated with the Sinergia company to

accomplish research tasks in the context of this project.

“Use of the prototype for migrating Oracle Forms applications”. Based on the re-
sults of this thesis, particularly the migration tool from Oracle Forms to Java Swing, the
Open Canarias company developed a prototype of a migration tool from Oracle Forms
to JSF 2.0 during the last few months of 2013. This company reused as-is the reverse en-
gineering process and toolchain that obtains the CUI model, and extended it to derive
KDM Ul models and then generate JSF code from them. The prototype of the layout in-
ference approach we had created was the cornerstone of a series of case studies of Oracle
Forms application migrations, which resulted in a software requirements specification
for a full-fledged industrial solution. By the end of 2014 a pilot project to apply this so-
lution in the context of a major public institution will be carried out, which will let the

company validate and assess the viability of the solution regarding a concrete problem.

229

230

[1]

[2]

[3]

(4]

[7]

8]

[9]

References

John Gerdes, Jr. User interface migration of microsoft windows applications. Journal of
Software Maintenance and Evolution, 21(3):171-187, 2009.

Stefan Staiger. Reverse engineering of graphical user interfaces using static analyses.
In WCRE ’07: Proceedings of the 14th Working Conference on Reverse Engineering, pages
189-198, 2007.

Christof Lutteroth. Automated reverse engineering of hard-coded gui layouts. In Ninth
Australasian User Interface Conference (AUIC 2008), volume 76, pages 65—73, 2008.

José Matias Rivero, Gustavo Rossi, Julidn Grigera, Juan Burella, Esteban Robles Luna,
and Silvia Gordillo. From mockups to user interface models: an extensible model driven
approach. In Proceedings of the 10th international conference on Current trends in web engi-
neering, ICWE’10, pages 13—24, 2010.

Nishant Sinha and Rezwana Karim. Compiling mockups to flexible uis. In Proceedings of
the 2013 9th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2013, pages
312-322,2013.

Svetoslav R. Ganov, Chip Killmar, Sarfraz Khurshid, and Dewayne E. Perry. Test gen-
eration for graphical user interfaces based on symbolic execution. In Proceedings of the
3rd International Workshop on Automation of Software Test, AST 08, pages 33—40, 2008.

Atif M. Memon, Ishan Banerjee, and Adithya Nagarajan. GUI ripping: Reverse engi-
neering of graphical user interfaces for testing. In Proceedings of The 10th Working Con-
ference on Reverse Engineering, November 2003.

Inés Coimbra Morgado, Ana CR Paiva, and Joao Pascoal Faria. Dynamic reverse engi-
neering of graphical user interfaces. International Journal On Advances in Software, 5(3
and 4):224-236, 2012.

James F. Allen. Maintaining knowledge about temporal intervals. Communications of the
ACM, 26(11):832—843, November 1983.

231

[10]

[11]

[19]

[20]

[21]

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles, techniques, and
tools. Addison-Wesley Longman Publishing Co., Inc., 1986. ISBN 0-201-10088-6.

Reiko Heckel, Rui Correia, Carlos M. P. Matos, Mohammad El-Ramly, Georgios Kout-
soukos, and Luis Filipe Andrade. Architectural transformations: From legacy to three-
tier and services. In Software Evolution, pages 139—170. 2008.

S. R. Tilley and D. B. Smith. Perspectives on legacy system reengineering. Technical
report, Software Engineering Institute, Carnegie Mellon University, 1995.

Elliot J. Chikofsky and James H. Cross. Reverse engineering and design recovery: A
taxonomy. IEEE Software, 7(1):13-17, 1990.

Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software Engineer-
ing in Practice. Morgan & Claypool Publishers, 1st edition, 2012. ISBN 1608458822,
9781608458820.

Object Management Group (OMG). MDA Guide Version 1.0.1. http://www.omg.org
/mda, 2003.

Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling: Enabling Full Code
Generation. Wiley, 2008. ISBN 978-0-470-03666-2.

Object Management Group (OMG). Architecture-Driven Modernization.
http://adm.omg.org/, .

William M. Ulrich and Philip Newcomb. Information Systems Transformation:
Architecture-Driven Modernization Case Studies. Morgan Kaufmann Publishers Inc.,
2010. ISBN 0123749131, 9780123749130.

Gordon Blair, Nelly Bencomo, and Robert B. France. Models run.time. Computer, 42
(10):22-27, 2009.

Thijs Reus et al. Harvesting software systems for mda-based reengineering. In Pro-
ceedings of the Second European conference on Model Driven Architecture: foundations and
Applications, ECMDA-FA'06, pages 213-225, 2006.

E. Fleurey et al. Model-driven engineering for software migration in a large industrial
context. In Model Driven Engineering Languages and Systems, 10th International Confer-
ence, MoDELS 2007, pages 482—497, 2007.

[22] Javier Luis Canovas Izquierdo and Jestis Garcia Molina. A domain specific language for

extracting models in software modernization. In ECMDA-FA "09: Proceedings of the sth
European Conference on Model Driven Architecture - Foundations and Applications, pages
82-97,2000.

232

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Hugo Bruneliére et al. MoDisco: a generic and extensible framework for model
driven reverse engineering. In Proceedings of the Automated Software Engineering, pages

173—174, 2010.

Ricardo Pérez-Castillo, Ignacio Garcia Rodriguez de Guzmdn, Mario Piattini, and
Christof Ebert. Reengineering technologies. IEEE Software, 28(6):13-17, 2011.

Jon Whittle, John Hutchinson, and Mark Rouncefield. The state of practice in model-
driven engineering. IEEE Software, 31 (3):79-85, 2014.

Bran Selic. What will it take? a view on adoption of model-based methods in practice.
Software and System Modeling, 11(4):513-526, October 2012.

James Martin. Rapid application development. Macmillan Publishing Co., Inc., 1991.

John V. Harrison and Wie Ming Lim. Automated reverse engineering of legacy 4gl in-
formation system applications using the itoc workbench. In Proceedings of the 10th Con-
ference on Advanced Information Systems Engineering (CAiSE’98), pages 8-12, 1998.

Luis Filipe Andrade, Joao Gouveia, Miguel Antunes, Mohammad El-Ramly, and Geor-
gios Koutsoukos. Forms2net - migrating oracle forms to microsoft .net. In GTTSE, pages
261-277, 2006.

José Campos, Joao Alexandre Saraiva, Carlos Silva, and J.C. Silva. GUIsurfer: A Reverse
Engineering Framework for User Interface Software, chapter 2, pages 31-54. InTech, 2012.

Ali Mesbah, Arie van Deursen, and Stefan Lenselink. Crawling ajax-based web applica-
tions through dynamic analysis of user interface state changes. ACM Transactions on the
Web, 6(1):3:1-3:30, March 2012.

Sinergia tecnoldgica (oesia group) and modelum (university of murcia). herramienta
orientada ala migracién basada en modelos. CDTI project, Ministry of Industry, Turism
and Comerce. 2010-2011.

Oscar Sanchez Ramoén, Jestis Sinchez Cuadrado, and Jestis Garcia Molina. Model-
driven reverse engineering of legacy graphical user interfaces. In Proceedings of the
IEEE/ACM international conference on Automated software engineering, ASE "10, pages
147-150, 2010.

Oscar Sanchez Ramoén, Jestis Sinchez Cuadrado, and Jestis Garcia Molina. Model-

driven reverse engineering of legacy graphical user interfaces. Automated Software Engi-
neering, 2.1 (2): 147-186, 2014.

233

[35] Oscar Sanchez Ramon, Jests Sanchez Cuadrado, and Jests Garcia Molina. Reverse en-
gineering of event handlers of rad-based applications. In Working Conference on Reverse
Engineering (WCRE), pages 293—-302, 2011.

[36] Oscar Sanchez Ramén, Jestis Sanchez Cuadrado, and Jests Garcia Molina. Ingenieria
inversa de eventos gui en aplicaciones rad mediante mdd. In VII Taller de Desarrollo de
Software Dirigido por Modelos (DSDM10), 2010.

[37] Oscar Sinchez Ramén, Jests Sanchez Cuadrado, and Jests Garcia Molina. Architecture
for reverse engineering graphical user interfaces of legacy systems. In Software Support
for User Interface Description Language (UIDL11), 2011.

[38] Quentin Limbourg and Jean Vanderdonckt. Usixml: A user interface description lan-
guage supporting multiple levels of independence. In ICWE Workshops, pages 325-338,
2004.

[39] Oscar Sénchez Ramoén, Jean Vanderdonckt, and Jestis Garcia Molina. Re-engineering
graphical user interfaces from their resource files with usiresourcer. In Seventh IEEE In-
ternational Conference on Research Challenges in Information Science (RCIS), pages 1-12,
2013.

[40] Information and software technology. http://wwwjournals.elsevier.com/information-
and-software-technology/.

[41] Robert C. Seacord, Daniel Plakosh, and Grace A. Lewis. Modernizing Legacy Systems:
Software Technologies, Engineering Process and Business Practices. Addison-Wesley Long-
man Publishing Co,, Inc., 2003. ISBN 0321118847.

[42] Rick Kazman, Steven G. Woods, and S. Jeromy Carriére. Requirements for integrating
software architecture and reengineering models: Corum ii. In Proceedings of the Working
Conference on Reverse Engineering (WCRE'98), pages 154—163, 1998.

[43] Gerardo Canfora, Massimiliano Di Penta, and Luigi Cerulo. Achievements and chal-
lenges in software reverse engineering. Communications of the ACM, 54(4):142-151,
April 2011.

[44] ZK framework. http://www.zkoss.org/.

[45] W3C. Cascading Style Sheets (CSS) Level 3. http://www.w3.org/TR/CSS/.

[46] Java Abstract Window Toolkit (AWT). http://docs.oracle.com/javase/7/docs/api/java/
awt/package-summary.html.

234

[47] Jests Sénchez Cuadrado, Javier Luis Cdnovas Izquierdo, and Jestis Garcia Molina. Ap-

plying model-driven engineering in small software enterprises. Science of Computer Pro-
gramming, 89, Part B(0):176-198, 2014. Special issue on Success Stories in Model
Driven Engineering.

Atif Memon, Ishan Banerjee, and Adithya Nagarajan. Gui ripping: Reverse engineering
of graphical user interfaces for testing. In WCRE "03: Proceedings of the 10th Working
Conference on Reverse Engineering, pages 260—269, 2003.

Domenico Amalfitano, Anna Rita Fasolino, and Porfirio Tramontana. Reverse engineer-
ing finite state machines from rich internet applications. 2013 20th Working Conference
on Reverse Engineering (WCRE), 0:69—73, 2008.

Refactoring: Improving the Design of Existing Code. Addison-Wesley Longman Publishing
Co,, Inc., 1999. ISBN 0-201-48567-2.

Tony Clark, Andy Evans, Paul Sammut, and James Willans. Applied Metamodelling - A
Foundation for Language Driven Development. Ceteva, second edition, 2004.

Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software Engineer-
ing in Practice. Morgan & Claypool Publishers, 1st edition, 2012. ISBN 1608458822,
9781608458820.

David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF: Eclipse
Modeling Framework 2.0. Addison-Wesley Professional, 2nd edition, 2009. ISBN
0321331885.

Object Management Group (OMG). The Meta-Object Facility (MOF).
http://www.omg.org/mof/, .

Anneke Kleppe. Software Language Engineering: Creating Domain-Specific Languages Us-
ing Metamodels. Addison-Wesley Professional, 1 edition, 2008. ISBN 0321553454,

9780321553454.

Balsamiq mockups. http://balsamiq.com/products/mockups/.

Meta Object Facility (MOF) 2.0 Query/View/Transformation (QVT).
http://www.omg.org/spec/QVT/.

AtlanMod Transformation Language (ATL). http:// www.eclipse.org/atl/.
Epsilon. http://www.eclipse.org/epsilon/.

T. gardner and c. griffin and j. koehler and r. hauser. review of omg mof 2.0
query/views/transformations submissions and recommendations towards final stan-
dard. http://www.omg.org/docs/ad/03-08-02.pdf. 2003.

238§

[61] Jesus Sanchez Cuadrado, Jestis Garcia Molina, and Marcos Mendrguez. RubyTL: A prac-

[62]

[63]

[64]

tical, extensible transformation language. In 2nd European Conference on Model-Driven
Architecture, volume 4066 of LNCS, pages 158—172. Springer, 2006.

K. Czarnecki and S. Helsen. Feature-based survey of model transformation approaches.
IBM Systems Journal, 45(3):621-645, July 2006. ISSN 0018-8670.

Object Management Group (OMG). MOF Model to Text Transformation Language
(MOFM2T), 1.0. http://www.omg.org/spec/MOFM2T/1.0/,.

Sven Efftinge and Markus Volter. oAW xText: A framework for textual DSLs. In
Eclipsecon Summit Europe 2006, 2006.

[65] John Hutchinson, Jon Whittle, and Mark Rouncefield. Model-driven engineering prac-

tices in industry: Social, organizational and managerial factors that lead to success or
failure. Science of Computer Programming, 89:144-161, 2014.

[66] Javier Luis Cénovas Izquierdo and] Garcia Molina. An architecture-driven moderniza-

[67]

[68]

[69]

tion tool for calculating metrics. IEEE Software, 27(4):37-43, 2010.

William M. Ulrich and Philip Newcomb. Information Systems Transformation:
Architecture-Driven Modernization Case Studies. Morgan Kaufmann Publishers Inc.,
2010. ISBN 0123749131, 9780123749130.

S. Rugaber and K. Stirewalt. Model-driven reverse engineering. IEEE Software, 21(4):
45-53, July 2004.

Jean-Marie Favre. Foundations of Model (Driven) (Reverse) Engineering : Models —
Episode I: Stories of The Fidus Papyrus and of The Solarus. In Jean Bezivin and Reiko
Heckel, editors, Language Engineering for Model-Driven Software Development, Dagstuhl
Seminar Proceedings, 2005.

Object Management Group (OMG). Architecture-Driven Modernization (ADM)
Task Force: Overview, Scenarios & Roadmap. http://www.omg.org/adm/TF-
1_Ulrich ADM-PTEpdf,.

OMG. Knowledge Discovery Meta-Model (KDM) v1.o. http://www.omg.org/spec/
KDM/1.0/, 2008.

Netbeans. Java Swing GUI Builder (Matisse). http://www.netbeans.org/ features/-
java/swing.html.

Morgan Dixon, Daniel Leventhal, and James Fogarty. Content and hierarchy in pixel-
based methods for reverse engineering interface structure. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI 11, pages 969978, 2011.

236

[74]

[75]

[76]

[77]

[80]

[81]

[82]

[83]

Jean Vanderdonckt, Laurent Bouillon, and Nathalie Souchon. Flexible reverse engi-
neering of web pages with vaquista. In WCRE 'o1: Proceedings of the Eighth Working
Conference on Reverse Engineering (WCRE 01), pages 241-248, 2001.

Angel Puerta and Jacob Eisenstein. Ximl: a common representation for interaction data.
InIUI "02: Proceedings of the 7th international conference on Intelligent user interfaces, pages
214-215,2002.

Deng Cai, Shipeng Yu, Ji-Rong Wen, and Wei-Ying Ma. Vips: a vision-based page seg-
mentation algorithm. Technical report, Microsoft Research, 2003.

Yu Chen, Wei-Ying Ma, and Hong Jiang Zhang. Detecting web page structure for adap-
tive viewing on small form factor devices. In WWW ’03: Proceedings of the 12th interna-
tional conference on World Wide Web, pages 225-233, 2003.

Renata Bandelloni, Giulio Mori, and Fabio Paterno. Dynamic generation of web mi-
gratory interfaces. In MobileHCI '0s: Proceedings of the 7th international conference on
Human computer interaction with mobile devices & services, pages 83—90, 200s.

P. Tonella and A. Potrich. Reverse engineering of the interaction diagrams from c++
code. In Proceedings of the International Conference on Software Maintenance, ICSM ’o03,
pages 159168, 2003.

A. Sutton and J. Maletic. Mappings for accurately reverse engineering uml class models
from c++. In Proceedings of the 12th Working Conference on Reverse Engineering, pages
175—184, 2005.

Atif M. Memon. An event-flow model of gui-based applications for testing: Research
articles. Software Testing Verification and Reliability, 17(3):137-157, 2007.

Margus Veanes, Colin Campbell, Wolfgang Grieskamp, Wolfram Schulte, Nikolai Till-
mann, and Lev Nachmanson. Formal methods and testing. chapter Model-based Test-
ing of Object-oriented Reactive Systems with Spec Explorer, pages 39-76. 2008.

E. Stroulia, M. El-Ramly, P. Iglinski, and P. Sorenson. User interface reverse engineering
in support of interface migration to the web. Automated Software Engg,, 10(3):271-301,
July 2003.

The Gimp Toolkit (GTK+). http:// www.gtk.org/.
Qt project. http://qt-project.org/.

Object Management Group (OMG). Interaction Flow Modeling Language(IFML).
http://www.ifml.org/.

237

[87]

[88]

[89]

[90]

[95]
[96]

[97]

Brambilla Marco and Stefano Butti. Quince afios de desarrollo industrial dirigido por
modelos de aplicaciones front-end: desde webml hasta webratio e ifml. Novdtica, (228):

36-44,2014.

WebRatio. Web Modeling Language (WebML). http:/ /www.webml.org/ webml/-
page1.do.

Gaelle Calvary, Joelle Coutaz, David Thevenin, Quentin Limbourg, Laurent Bouillon,
and Jean Vanderdonckt. A unifying reference framework for multi-target user interfaces.
Interacting with Computers, 15 (3):289-308, June 2003.

Fabio Paterno, Carmen Santoro, and Lucio Davide Spano. Maria: A universal, declar-
ative, multiple abstraction-level language for service-oriented applications in ubiqui-
tous environments. ACM Trans. Comput.-Hum. Interact., 16(4): 19:1-19:30, November
2009.

Lori A MacVittie. XAML in a Nutshell (In a Nutshell (O'Reilly)). O’Reilly Media, Inc.,
2006. ISBN 059652673 3.

Oasis. User Interface Markup Language (UIML). http://docs.oasis-open.org/
uiml/v4.0/cdo1/uiml-4.0-cdo1.html.

Kouichi Katsurada, Yusaku Nakamura, Hirobumi Yamada, and Tsuneo Nitta. XISL: A
Language for Describing Multimodal Interaction Scenarios. In Proceedings of the sth
International Conference on Multimodal Interfaces, ICMI 03, pages 281-284, 2003.

Mozilla ~ developer network. xml user interface language (xul).
https://developer.mozilla.org /en-US/docs/Mozilla/Tech/XUL.

W3c. web ontology language (owl). http://www.w3.org/standards/techs/owl.
W3C. Concur Task Trees (CTT). http://www.w3.org/2012/02/ctt/.

Object Management Group (OMG). Unified Modeling Language(UML).
http://www.omg.org/spec/UML/.

Silvia Berti, Francesco Correani, Fabio Paterno, and Carmen Santoro. The teresa xml
language for the description of interactive systems at multiple abstraction. In Leveles,
Proceedings Workshop on Developing User Interfaces with XML: Advances on User Interface
Description Languages, pages 103—110, 2004.

Microsoft Developer Network. Windows Presentation Foundation (WPF).
http://msdn.microsoft.com/es-es/library/ms754130%28v=vs.110%29.aspx.

238

[100]

[101]

[102]

Charles Jacobs, Wilmot Li, Evan Schrier, David Bargeron, and David Salesin. Adaptive
grid-based document layout. ACM Trans. Graph., 22(3):838-847, 2003.

Weijiang Li and Hiroyuki Kurata. A grid layout algorithm for automatic drawing of bio-
chemical networks. Bioinformatics, 21(9):2036-2042, 2005.

Rake. http://www.rake.org/.

[103] Jesus Sénchez Cuadrado and Jestis Garcia Molina. Building domain-specific languages

for model-driven development. IEEE Software, 24(5):48-55, 2007.

[104] Jests Sinchez Cuadrado and Jestis Garcia Molina. Modularization of model transfor-

mations through a phasing mechanism. Software and System Modeling, 8(3):325-34s5,
20009.

[105] J. B. MacQueen. Some methods for classification and analysis of multivariate observa-

106]

10’7]

tions. In Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Prob-
ability, pages 281-297, 1967.

Wireframesketcher. http://wireframesketcher.com.
Reify. http://www.smartclient.com/product/reify,;jsp.

E. Marcotte. Responsive Web Design. A Book Appart, 2011. ISBN 978-0-9844425-7-7.

109] Apache Tomcat. http:// tomcat.apache.org/.

110] Apache struts. http://struts.apache.org/.

[
[
[108]
[
[
[

111] JSR 372: JavaServer Faces (JSF 2.3) Specification. https://jcp.org/ en/jsr/de-

tail?id=372.

[112] Jests Sanchez Cuadrado, Orlando Avila Garcia, Javier Canovas, and Adolfo Sanchez-

[113]

[114]

[115]

[116]

Barbudo Herrera. Parametrizacién de las transformaciones horizontales en el modelo
de herradura. In Jornadas de Ingenieria del Software y Bases de Datos, 2012.

Sandy Pérez, Oscar Diaz, Santiago Melid, and Jaime Gémez. Facing interaction-rich
rias: The orchestration model. In Proceedings of the 2008 Eighth International Conference
on Web Engineering, pages 24—37, 2008.

jQuery. http://jquery.com/.

Object Management Group (OMG). XML Metadata Interchange(XMI).
http://www.omg.org/spec/XMI/.

Grgen .net. http://www.grgen.net.

239

[117] Viatraz (visual automated model transformations) framework. http://eclipse.org /via-
traz/.

[118] Bootstrap. http://getbootstrap.com/.

240

OW THAT EVERYTHING HAS FINISHED,
| \ | I'look back on these years and
I recall a quote from a film that I
read somewhere:

“Beginnings are scary and endings are usually
sad, but it’s what's in the middle that counts.”

241

Colophon

	Introduction
	Motivation
	Problem statement
	Development
	Outline

	Background
	Software modernisation
	Graphical User Interfaces (GUI)
	Visual GUI features
	Legacy GUI features
	Use scenarios of GUI reverse engineering

	Model Driven Engineering (MDE)
	Metamodelling
	Domain-Specific Languages (DSLs)
	Model transformations
	Model-Driven Modernisation (MDM)

	State of the art
	Analysis of layout recognition approaches
	Lutteroth
	Rivero et al.
	Sinha and Karim
	Other approaches
	Discussion

	Analysis of behaviour extraction approaches
	Memon (GUIRipping)
	Heckel et al.
	Morgado et al. (ReGUI)
	Other approaches
	Discussion

	GUI representation approaches
	Knowledge Discovery Metamodel (KDM)
	Interaction Flow Modeling Language (IFML)
	Cameleon framework
	User Interface Description Languages (UIDLs)
	UsiXML
	Maria
	XAML

	Discussion

	Overview
	Goal
	Architecture of the solution
	The Concrete User Interface model
	Overview of the migration architecture
	Requirement implementation

	Layout inference: greedy approach
	MDE architecture for layout inference
	Reverse engineering metamodels
	Challenges in layout reverse engineering
	Detecting regions and containers
	Uncovering relative positions
	High-level layout
	Detailed example
	Injection of Forms models
	Mapping Oracle Forms to RAD models
	Identification of the regions
	Recovering the low-level layout
	Recovery of the high level layout
	Generation of Java Swing code

	Case study: from Oracle Forms to Java
	Methodology
	Evaluation results
	Limitations of the approach

	Implementation
	Injection
	Mapping Oracle Forms to Normalised models
	Reverse engineering
	Forward engineering

	Conclusions

	Layout inference revisited: exploratory approach
	MDE architecture for layout inference (revisited)
	Reverse engineering metamodels
	Structure metamodel
	Layout metamodel

	Changing the positioning system
	Creating the view graph
	Representing widget relative positions
	Representing widget distances
	Tile model example

	Infering a high-level layout
	The layout patterns
	Layout inference algorithm
	Layout inference example
	Performance evaluation

	Case study: from Wireframes to fluid web interfaces
	Context of the case study
	Evaluation of the approach
	Methodology
	Quantitative results
	User assessment
	Approach limitations

	Implementation
	Mapping WireframeSketcher to Normalised models
	Mapping Normalised models to Structure models
	Generation of the web interface
	The tool

	Comparison of the greedy and exploratory approaches
	Conclusions

	Event handler analysis
	Architecture for analysing events
	Running example
	Representing event handling code
	Metamodel description
	Deriving a RADBehaviour model
	Example

	Separating concerns
	Metamodel description
	Fragment identification
	Creating a control flow graph of fragments
	Giving a descriptive name to the fragments
	Setting dependencies among fragments

	Generating layered code
	Capturing dependencies among the GUI elements
	Metamodel description
	From RADBehaviour to the Interaction model
	Example

	Evaluation of the approach
	Evaluation of the code abstraction
	Evaluation of the separation of concerns

	Conclusions

	Conclusions
	Discussion
	Goal 1: Architecture for migrating legacy GUIs
	Goal 2: Analysis of GUI definitions for migration
	Goal 3: Analysis of the code of event handlers for migration

	Contributions
	First contribution: MDE-based migration architecture
	Second contribution: Layout inference approach
	Third contribution: Event handler analysis approach

	Future work
	CUI metamodel
	Region identification
	High-level layout inference
	Event handler code abstraction
	Identification of widget dependencies

	Publications related to the thesis
	Journals with impact factor
	Renowned international conferences
	Other journals
	Other international and national conferences and workshops

	Other publications in the MDE area
	Journals with impact factor
	International conferences and workshops

	Projects that are related to this thesis
	Contracts supporting this thesis
	Research stays
	Transfer of technology

	References

