

UNIVERSIDAD DE MURCIA
FACULTAD DE INFORMÁTICA

Enhancing Software Quality and

Quality of Experience through User Interfaces

“Mejora de la Calidad del Software y de la

Experiencia del Usuario a través

de las Interfaces Humano-Máquina”

D. Pedro Luis Mateo Navarro

OMNQ=

A mis padres y a mis dos hermanos.

Por ser un ejemplo continuo,

por ser un apoyo constante,

por tanto que agradecer,

por nada que reprochar.

Resumen de la Tesis

1 Introducción

Conseguir la «Calidad en el Software» es un objetivo muy amplio que abarca varias

disciplinas, desde aquellas centradas en la evaluación de los aspectos mas técnicos del

software, hasta aquellas encargadas de analizar ciertos aspectos psicológicos de los seres

humanos. La calidad en una aplicación o un sistema puede lograrse de varias maneras, como

por ejemplo comprobando que se cumplen los requisitos funcionales previamente descritos,

validando la salida de un software, analizando la calidad percibida por los usuarios, etc.

El objetivo de esta tesis es mejorar la calidad del software centrándose principalmente en

el análisis de las interfaces de usuario y en la evaluación de la interacción entre los

usuarios y el sistema.

Esta interacción entre los usuarios y el sistema ha cambiado rotundamente en los

últimos tiempos. No hace muchos años, la interacción de las personas con los ordenadores

estaba restringida sobre todo a entornos de escritorio (principalmente para informarse o

divertirse) o para realizar tareas en el trabajo, en entornos educacionales o en el ámbito

doméstico. En estos sistemas, un ratón y un teclado eran suVcientes para comunicarse con

el software, el cual se comunicaba con nosotros utilizando la pantalla y unos altavoces.

Este tipo de interacción se realiza a través de la interfaz gráVca de usuario (Graphical User

Interface, GUI), la cual es la única modalidad mediante la cual el usuario puede comunicarse

con el sistema.

Hoy en día, sin embargo, estamos interactuando continuamente con los llamados “dispos-

itivos inteligentes”. Estos dispositivos nos proporcionan acceso a toda la información, nos

proporcionan una conectividad completa con otras personas, y además cuentan con una

iii

Resumen de la Tesis

alta capacidad de procesamiento. Están en nuestros bolsillos, en nuestras manos, e incluso

colocados en nuestras cabezas como si de unas simples gafas se tratara. Estos dispositivos

suelen proporcionar diferentes modos de interacción mediante el uso de diferentes modal-

idades sensoriales, y nos permiten comunicarnos con ellos, e.g., tocando la pantalla con

nuestros dedos, usando nuestra voz, o simplemente agitándolos o girándolos con nuestras

manos. Este tipo de interacción se denomina multimodal y realiza a través de diferentes

interfaces (e.g., la pantalla, el micrófono de entrada, el sensor de acelerómetro, etc.)

2 Objetivos, Metodología y Resultados de esta Tesis
Doctoral

Como comentábamos más arriba, esta tesis doctoral se centra en el análisis de las interfaces

de usuario y la evaluación de la interacción entre los usuarios y el sistema. Para llevar a

cabo este análisis, esta tesis plantea dos enfoques diferentes.

Por una parte evaluamos la calidad de los diferentes componentes del proceso de interac-

ción por separado (i.e., la entrada proporcionada por los usuarios y la salida ofrecida por

el sistema). La principal ventaja de este enfoque es que las herramientas y los métodos uti-

lizados pueden centrar todo su potencial en conseguir la calidad de uno de los componentes

de la interacción, y como consecuencia se consigue mejorar la calidad del software.

Por otra parte evaluamos la calidad de la interacción como un todo, como un Wujo único

de acciones desde el usuario hacia el sistema y viceversa. La principal ventaja de los métodos

que siguen este enfoque es que se centran en conseguir la calidad de todo el proceso, y

no de las partes que lo componen. Así podemos mantener la “totalidad” del proceso de

interacción, lo que nos permite analizar las relaciones causa-efecto que se producen entre

las acciones del usuario y las acciones del sistema.

Al hilo de estos dos enfoques, esta tesis doctoral plantea cuatro grandes objetivos de

investigación. Estos objetivos se dividen en dos bloques dependiendo de si los componentes

del proceso de interacción se analizan de forma separada (Bloque 1) o si por el contrario se

analizan como un todo (Bloque 2). De acuerdo con estos cuatro objetivos de investigación,

la espina dorsal de esta tesis se estructura en cuatro grandes capítulos, i.e., Capítulos 3,

4, 5 y 6 en este documento. Cada uno de estos capítulos describe todas aquellas activi-

dades de investigación llevadas a cabo para intentar conseguir estos cuatro objetivos, así

iv

2 Objetivos, Metodología y Resultados de esta Tesis Doctoral

como el diseño y la implementación de los métodos y herramientas resultantes de dicha

investigación.

Empezando con el Bloque 1, el Objetivo G1.1 trata de encontrar un framework de

pruebas que permita el desarrollo de herramientas destinadas a validar la respuesta de un

software. Este framework debe permitir la automatización de aquellas pruebas GUI que

normalmente son realizadas a mano por los expertos (e.g., llevar a cabo una serie repetitiva

de acciones sobre un conjunto de botones), así como permitir la simulación de las acciones

de un operador humano con el objetivo de proporcionar un proceso de pruebas real, Vable y

robusto. También es un objetivo facilitar la integración de estas herramientas en desarrollos

de diferentes tipos.

Para conseguir este objetivo, esta tesis doctoral propone un framework de pruebas llamado

OHT (Open HMI Tester, Probador de Interfaces Adaptable). Este framework presenta una

arquitectura abierta y adaptable con el objetivo de soportar el desarrollo de diferentes

herramientas de pruebas GUI, así como para ser adaptado a diferentes entornos de ejecución.

OHT proporciona varios módulos que pueden ser fácilmente extendidos y/o adaptados para

trabajar en diferentes entornos de pruebas (e.g., para probar aplicaciones basadas en una

plataforma GUI diferente). Esta herramienta se basa en el enfoque captura/reproducción,

a partir del cual se pueden automatizar diferentes procesos de pruebas GUI basados en la

introspección, en la captura de las acciones de un operador humano, y/o en la ejecución de

acciones dentro de la aplicación testada.

Tras diseñar una solución destinada a la validación de la salida del software, el Objetivo

G1.2 se centra en buscar una alternativa ligera y de fácil integración para validar las entradas

proporcionadas por los usuarios dentro de una GUI. Las entradas de los usuarios tienen que

ser válidas y deben ajustarse a unos requisitos concretos. Estos requisitos deberían poder

ser escritos en diferentes lenguajes de especiVcación dependiendo de las necesidades de

cada proyecto. Además, el proceso de veriVcación debería de ser un proceso interactivo que

facilite el trabajo de los desarrolladores y los expertos durante el desarrollo del software, así

como la interacción de los usuarios durante su uso.

De acuerdo a estos requisitos, esta tesis propone S-DAVER (Script-based DAta VERiV-

cation, VeriVcación de Datos Basada en Scripts), un framework de veriVcación en tiempo

real que permite comprobar la validez de los datos de entrada al mismo tiempo que el

usuario utiliza la aplicación. Esta herramienta proporciona un proceso interactivo en el que

los usuarios son notiVcados sobre los errores cometidos de forma instantánea. Todos los

v

Resumen de la Tesis

procesos de veriVcación están encapsulados en una capa independiente, la cual una vez

integrada en la aplicación, establece una relación de conVanza entre la GUI y la lógica de

negocio. S-DAVER proporciona un entorno de veriVcación que se integra en los procesos de

desarrollo, pruebas y uso del software.

En el Bloque 2 se analiza el proceso de interacción como un todo. Para ello, el Objetivo

G2.1 intenta encontrar una forma de describir la interacción multimodal entre el usuario

y el sistema, con la Vnalidad principal de permitir su instrumentación y evaluación. Esta

descripción tiene que ser genérica, y debe permitir la comparación entre diferentes registros

de interacción independientemente del contexto en el que fueron obtenidos. También se

debería conservar la naturaleza dinámica del proceso de interacción.

Con este objetivo, esta tesis doctoral presenta PALADIN (Practice-oriented Analysis

and Description of Multimodal Interaction, Enfoque Práctico para el Análisis y Descripción

de la Interacción Multimodal). PALADIN es un modelo runtime que engloba una serie de

parámetros destinados a describir qué ocurre en el proceso de interacción en entornos

multimodales. Estos parámetros son anotados paso a paso con el Vn de proporcionar una

descripción dinámica de la interacción, manteniendo así el carácter de diálogo entre usuario

y sistema. Como resultado, las instancias de PALADIN proporcionan un criterio común con

el que describir, analizar, evaluar y comparar la interacción en diferentes sistemas, ya sean

multimodales o unimodales. Estas instancias también son válidas para evaluar la usabilidad

de dichos sistemas.

Basado en la idea de PALADIN, el Objetivo G2.2 plantea ir más allá y proporcionar

un framework que permita la evaluación de las experiencias de los usuarios en entornos

móviles. Por una parte debe proporcionarse una forma genérica de describir el contexto

que rodea a los usuarios y al sistema, así como su evolución en el tiempo. Por otra parte es

necesario capturar las impresiones y otros juicios subjetivos de los usuarios sobre el proceso

de interacción. Este framework debe proporcionar un método común con el que evaluar la

usabilidad de sistemas y aplicaciones móviles, así como la calidad de la experiencia (QoE)

de los usuarios.

Conforme a estos requerimientos, esta tesis presentaCARIM (Context-Aware and Ratings

Interaction Model,Modelo de Interacción, Contexto y Valoraciones de los Usuarios). CARIM

es un modelo runtime que describe la interacción usuario-sistema, el contexto en el que

ésta se produce, y las valoraciones de los usuarios sobre la calidad de dicha interacción. Al

igual que PALADIN, CARIM se basa en un conjunto de parámetros. Éstos se organizan en

vi

3 Conclusiones

una estructura común con el objetivo de proporcionar un método uniforme para describir,

analizar, evaluar y comparar las experiencias de los usuarios independientemente del

sistema que estén utilizando, el contexto que les rodea, o las diferentes modalidades que

estén utilizando. Además, la naturaleza dinámica de CARIM permite a las aplicaciones

tomar decisiones basadas en el contexto o la QoE actual con el objetivo de adaptarse, y así

proporcionar una mejor experiencia a los usuarios.

3 Conclusiones

Con el Vn de intentar lograr los objetivos de investigación que se proponen en esta tesis

doctoral, el trabajo presentado en este documento engloba diferentes formas de obtener la

calidad de un software, centrándose principalmente en el análisis de la interacción entre

los usuarios y el sistema. Este trabajo representa también un paso adelante en la deVnición

de métodos más genéricos, abiertos y adaptables para el análisis y la evaluación de la

interacción usuario-sistema, de los elementos que la componen, y del contexto en el que

ésta se produce.

Durante esta tesis se han analizado diferentes enfoques y propuestas en los campos

de Desarrollo y Pruebas Software, así como de Análisis y Evaluación de la Interacción

Usuario-Sistema, con el Vn de identiVcar los principales problemas a la hora de conseguir la

calidad de un software.

Esta tarea es un proceso complicado y costoso en tiempo y en recursos técnicos y humanos.

El uso de herramientas para automatizar los procesos de pruebas software es muy común y

suele presentar resultados satisfactorios. Sin embargo, el desarrollo e integración de este

tipo de herramientas en entornos reales es una carrera complicada y llena de obstáculos.

En esta tesis se ha tenido especial cuidado con el diseño de las diferentes herramientas,

proponiendo siempre arquitecturas adaptables con el Vn de ampliar el rango de escenarios

sobre los que éstas puedan ser aplicadas.

El proceso de pruebas sobre interfaces de usuario puede decirse que es aún más complejo

que sobre otros componentes del software. Esto se debe principalmente a las características

particulares de dichas interfaces, las cuales requieren de herramientas especiales para llevar

a cabo estos procesos.

Como se comenta más arriba, el usuario y el sistema pueden comunicarse mediante

el uso de diferentes modalidades sensoriales. El entorno de pruebas se vuelve por tanto

vii

Resumen de la Tesis

más complejo debido a la aparición de elementos adicionales tales como los sistemas de

interfaces gráVcas, los reconocedores y sintetizadores de voz, el uso de dispositivos externos

para reconocer las acciones físicas del usuario, etc. En esta tesis se han considerado los

componentes de la interacción y sus elementos (i.e., contenido de la entrada y salida) inde-

pendientemente de las modalidades o plataformas de interfaz utilizadas para su generación,

transmisión y recepción. En el caso de interfaces multimodales, se ha trabajado en buscar

equivalencias entre las distintas modalidades y así tratarlas al mismo nivel de abstracción.

La evaluación de las interfaces de usuario normalmente implica llevar a cabo el análisis

de un proceso en tiempo real durante el cual los usuarios intercambian información con el

sistema en un contexto determinado. Los procesos de análisis y pruebas deben ser diseñados

e implementados para conseguir la mayor eVciencia posible. Este aspecto es crítico, ya

que la ejecución de estos procesos no debe afectar la interacción de los usuarios ni el

rendimiento del sistema durante la fase de pruebas. La eVciencia de estos procesos ha sido

un aspecto clave y una de las principales preocupaciones a la hora de diseñar e implementar

las herramientas propuestas en esta tesis.

Cuando evaluamos interfaces de usuario nos encontramos con otros problemas como los

que describimos a continuación. Uno de ellos es decidir que partes de las interfaces serán

evaluadas, así como decidir qué datos serán incluidos en el proceso de análisis. Esta etapa es

crítica si se quiere proporcionar un proceso de pruebas y análisis eVcientes. Otro problema

es el bajo nivel de estandarización que existe entre las metodologías utilizadas para análisis

y pruebas sobre interfaces gráVcas. Finalmente comentar que las interfaces de usuario son

elementos software que tienden a cambiar frecuentemente durante el proceso de desarrollo

debido, principalmente, a su adaptación a las necesidades de los usuarios. Esta naturaleza

cambiante diVculta la creación y mantenimiento del conjunto de pruebas.

4 Resultados

Como resultado de esta tesis doctoral, y como prueba de concepto de este trabajo de investi-

gación, en este documento se presenta el diseño e implementación de cuatro herramientas

software: OHT, S-DAVER, PALADIN y CARIM. Estas herramientas han sido publicadas

abiertamente como una contribución a la Comunidad Open-Source. Éstas pueden ser descar-

gadas para ser usadas con aplicaciones reales, ser adaptadas a nuevos entornos de ejecución

o mejoradas en futuras actividades de investigación y desarrollo.

viii

4 Resultados

Con el Vn de mostrar la validez de los métodos propuestos en esta tesis, estas herramientas

han sido integradas o bien en los procesos internos de empresas del sector de Desarrollo

Software, o bien en experimentos con usuarios realizados en entornos reales o de laboratorio.

De forma adicional, estas herramientas han sido publicadas en plataformas digitales de

ámbito internacional tales como Sourceforge, Google Code y GitHub. El objetivo es mostrar

al resto de la Comunidad Open-Source los resultados de este trabajo de investigación, así

como permitir su uso de forma abierta y altruista.

ix

Contents

Resumen de la Tesis iii

1 Introducción . iii

2 Objetivos, Metodología y Resultados de esta Tesis Doctoral iv

3 Conclusiones . vii

4 Resultados . viii

1 Introduction 1

1.1 Motivation . 2

1.1.1 Human-Computer Interaction . 2

1.1.2 Software Testing . 4

1.1.3 Data VeriVcation . 7

1.1.4 Software Usability . 8

1.1.5 Quality of Experience . 10

1.2 Enhancing Software Quality . 11

1.2.1 Block 1: Achieving Quality in Interaction Components Separately . 12

1.2.2 Block 2: Achieving Quality of User-System Interaction as a Whole . 14

1.3 Goals of this PhD Thesis . 17

1.4 Publications Related to this PhD Thesis . 19

1.5 Software Contributions of this PhD Thesis 22

1.5.1 OHT: Open HMI Tester . 23

1.5.2 S-DAVER: Script-based Data VeriVcation 24

1.5.3 PALADIN: Practice-oriented Analysis and Description of Multi-

modal Interaction . 24

1.5.4 CARIM: Context-Aware and Ratings Interaction Metamodel 25

1.6 Summary of Research Goals, Publications, and Software Contributions . . 25

xi

Contents

1.7 Context of this PhD Thesis . 26

1.8 Structure of this PhD Thesis . 27

2 Related Work 29

2.1 Group 1: Approaches Assuring Quality of a Particular Interaction Component 30

2.1.1 Validation of Software Output . 30

2.1.1.1 Methods Using a Complete Model of the GUI 31

2.1.1.2 Methods Using a Partial Model of the GUI 32

2.1.1.3 Methods Based on GUI Interaction 32

2.1.2 Validation of User Input . 33

2.1.2.1 Data VeriVcation Using Formal Logic 34

2.1.2.2 Data VeriVcation Using Formal Property Monitors 35

2.1.2.3 Data VeriVcation in GUIs and in the Web 36

2.2 Group 2: Approaches Describing and Analyzing the User-System Interac-

tion Process as a Whole . 37

2.2.1 Analysis of User-System Interaction 37

2.2.1.1 Analysis for the Development of Multimodal Systems . . 37

2.2.1.2 Evaluation of Multimodal Interaction 41

2.2.1.3 Evaluation of User Experiences 44

2.2.2 Analysis of Subjective Data of Users 45

2.2.2.1 User Ratings Collection 45

2.2.2.2 Users Mood and Attitude Measurement 47

2.2.3 Analysis of Interaction Context . 49

2.2.3.1 Interaction Context Factors Analysis 49

2.2.3.2 Interaction Context Modeling 50

3 Evaluating Quality of System Output 53

3.1 Introduction and Motivation . 54

3.2 GUI Testing Requirements . 55

3.3 Preliminary Considerations for the Design of a GUI Testing Architecture . 57

3.3.1 Architecture Actors . 57

3.3.2 Organization of the Test Cases . 57

3.3.3 Interaction and Control Events . 58

xii

Contents

3.4 The OHT Architecture Design . 58

3.4.1 The HMI Tester Module Architecture 60

3.4.2 The Preload Module Architecture 61

3.4.3 The Event Capture Process . 63

3.4.4 The Event Playback Process . 64

3.5 The OHT Implementation . 65

3.5.1 Implementation of Generic and Final Functionality 66

3.5.1.1 Generic Data Model . 66

3.5.1.2 Generic Recording and Playback Processes 66

3.5.2 Implementation of SpeciVc and Adaptable Functionality 67

3.5.2.1 Using the DataModelAdapter 68

3.5.2.2 The Preloading Process 68

3.5.2.3 Adapting the GUI Event Recording and Playback Processes 69

3.5.3 Technical Details About the OHT Implementation 70

3.6 Discussion . 71

3.6.1 Architecture . 73

3.6.2 The Test Case Generation Process 73

3.6.3 Validation of Software Response 74

3.6.4 Tolerance to ModiVcations, Robustness, and Scalability 75

3.6.5 Performance Analysis . 76

3.7 Conclusions . 77

4 Evaluating Quality of Users Input 79

4.1 Introduction and Motivation . 80

4.2 Practical Analysis of Common GUI Data VeriVcation Approaches 82

4.3 Monitoring GUI Data at Runtime . 83

4.4 VeriVcation Rules . 86

4.4.1 Rule DeVnition . 86

4.4.2 Using the Rules to Apply Correction 87

4.4.3 Rule Arrangement . 87

4.4.4 Rule Management . 88

4.4.4.1 Loading the Rules . 88

4.4.4.2 Evolution of the Rules and the GUI 89

xiii

Contents

4.4.5 Correctness and Consistency of the Rules 90

4.5 The VeriVcation Feedback . 91

4.6 S-DAVER Architecture Design . 92

4.6.1 Architecture Details . 92

4.6.2 Architecture Adaptation . 94

4.7 S-DAVER Implementation and Integration Considerations 95

4.8 Practical Use Cases . 98

4.8.1 Integration, ConVguration, and Deployment of S-DAVER 99

4.8.2 DeVning the Rules in Qt Bitcoin Trader 100

4.8.3 DeVning the Rules in Transmission 103

4.8.4 Development and VeriVcation Experience with S-DAVER 106

4.9 Performance Analysis of S-DAVER . 106

4.10 Discussion . 108

4.10.1 A Lightweight Data VeriVcation Approach 108

4.10.2 The S-DAVER Open-Source Implementation 110

4.10.3 S-DAVER Compared with Other VeriVcation Approaches 111

4.11 Conclusions . 114

5 Modeling and Evaluating Quality of Multimodal User-System Interaction 115

5.1 Introduction and Motivation . 116

5.2 A Model-based Framework to Evaluate Multimodal Interaction 118

5.2.1 ClassiVcation of Dialog Models by Level of Abstraction 119

5.2.2 The Dialog Structure . 120

5.2.3 Using Parameters to Describe Multimodal Interaction 121

5.2.3.1 Adaptation of Base Parameters 121

5.2.3.2 DeVning newModality andMeta-communication Param-

eters . 122

5.2.3.3 DeVning new Parameters for GUI and Gesture Interaction 123

5.2.3.4 ClassiVcation of the Multimodal Interaction Parameters . 124

5.3 Design of PALADIN . 125

5.4 Implementation, Integration, and Usage of PALADIN 129

5.5 Application Use Cases . 131

5.5.1 Assessment of PALADIN as an Evaluation Tool 132

xiv

Contents

5.5.1.1 Participants and Material 134

5.5.1.2 Procedure . 136

5.5.1.3 Data Analysis . 137

5.5.2 Usage of PALADIN in a User Study 140

5.5.2.1 Participants and Material 140

5.5.2.2 Procedure . 144

5.5.2.3 Results . 145

5.6 Discussion . 145

5.6.1 Research Questions . 146

5.6.2 Practical Application of PALADIN 147

5.6.3 Completeness of PALADIN According to Evaluation Guidelines . . 148

5.6.4 Limitations in Automatic Logging of Interactions Parameters . . . 151

5.7 Conclusions . 151

5.8 Parameters Used in PALADIN . 152

6 Modeling and Evaluating Mobile Quality of Experience 163

6.1 Introduction and Motivation . 164

6.2 Context- and QoE-aware Interaction Analysis 166

6.2.1 Incorporating Context Information and User Ratings into Interac-

tion Analysis . 166

6.2.2 Arranging the Parameters for the Analysis of Mobile Experiences . 168

6.2.3 Using CARIM for QoE Assessment 169

6.3 Context Parameters . 169

6.3.1 Quantifying the Surrounding Context 170

6.3.2 Arranging Context Parameters into CARIM 173

6.4 User Perceived Quality Parameters . 173

6.4.1 Measuring the Attractiveness of Interaction 173

6.4.2 Measuring Users Emotional State and Attitude toward Technology

Use . 174

6.4.3 Arranging User Parameters into CARIM 177

6.5 CARIM Model Design . 177

6.5.1 The Base Design: PALADIN . 177

6.5.2 The New Proposed Design: CARIM 178

xv

Contents

6.6 CARIM Model Implementation . 181

6.7 Experiment . 183

6.7.1 Participants and Material . 183

6.7.2 Procedure . 184

6.7.3 Results . 185

6.7.3.1 Comparing the Two Interaction Designs for UMU Lander 185

6.7.3.2 Validating the User Behavior Hypotheses 186

6.8 Discussion . 187

6.8.1 Modeling Mobile Interaction and QoE 188

6.8.2 CARIM Implementation and Experimental Validation 190

6.8.3 CARIM Compared with Other Representative Approaches 191

6.9 Conclusions . 192

7 Conclusions and Further Work 195

7.1 Conclusions of this PhD Thesis . 196

7.1.1 Driving Forces of this PhD Thesis 196

7.1.2 Work and Research in User-System Interaction Assessment 197

7.1.3 Goals Achieved in this PhD Thesis 200

7.2 Future Lines of Work . 202

Bibliography 205

A List of Acronyms 231

xvi

List of Figures

1.1 Main software contributions roadmap of this PhD thesis. 22

3.1 HMI Tester and Preload Module architecture. 59

3.2 HMI Tester module detailed architecture. 61

3.3 Preload Module detailed architecture. 63

3.4 Diagram of the event capture process. 64

3.5 Diagram of the event playback process. 65

3.6 Generic Data Model Hierarchy. 66

3.7 Control Signaling Events Hierarchy. 67

3.8 Generic GUI events hierarchy used in the OHT architecture. 70

3.9 Open HMI Tester for Linux+Qt at work. 72

4.1 Overall behavior of the proposed V&V scenario. 84

4.2 Wrong GUI input data veriVcation example. 85

4.3 Example of the Vle structure proposed to arrange the rule Vles. 88

4.4 UML diagram of the S-DAVER architecture. 93

4.5 Module adaptations and interaction during the S-DAVER veriVcation process. 94

4.6 S-DAVER working within Qt Bitcoin Trader. 102

4.7 Some of the rules validating the TorrentPropertiesDialog in Transmission. 104

4.8 One of the rules validating the PreferencesDialog in Transmission (short

version). 105

5.1 Interaction system and user turn in detail. 120

5.2 Arrangement of interaction parameters within PALADIN. Design illustrated

as Ecore model diagram. 127

5.3 Overview of the PALADIN instantiation process and its context. 130

5.4 Restaurant Search App running on Android. See Table 5.3 for translations. 135

xvii

List of Figures

5.5 Graphical reports of several interaction records corresponding to the ex-

periment using ReSA. Created with the multimodal interaction analysis

tool. 138

5.6 Runtime decider messages. (a) Using speech, you can directly select an

input. (b) The speech recognition does not work correctly. Please check the

microphone settings. 141

5.7 Screenshots of the apps used in the second experiment: ReSA 2.0 (a), Trolly

(b) and Vanilla Music Player (c). See Table 5.5 for translations. 142

6.1 Overview of the parameters and metrics included in CARIM. 167

6.2 Resulting faces scale to measure users mood: (0) very sad, (1) sad, (2) normal,

(3) happy and (4) very happy. 176

6.3 Design of the proposed model (CARIM). 180

6.4 Typical execution scenario for creating CARIM instances. 182

xviii

List of Tables

1.1 Main issues found in current state-of-the-art approaches analyzed in Block 1. 13

1.2 Main issues found in the approaches proposed in Block 1, which motivate

further research in Block 2. 14

1.3 Main issues found in current state-of-the-art approaches analyzed in Block 2. 15

1.4 Summary of research goals, publications, and open-source software contri-

butions in this PhD thesis. 26

4.1 ConVguration options supported by the VerificationContext object. . . . 97

4.2 Test setup and performance results using Ubuntu 12.04, Intel Quad-core

2.83 GHz, 4GB RAM. 107

4.3 Comparison between S-DAVER and some of the most relevant implementa-

tions described in Section 2.1.2. 113

5.1 Information about the four Android apps used in the two experiments. . . 132

5.2 Parameters recorded in the two experiments, grouped by parameter type. . 133

5.3 Translations of speech and GUI commands used in ReSA. 136

5.4 Parameters visualized in the analysis tool captures. 139

5.5 Translations and meanings of German sentences in Figure 5.7 corresponding

to ReSA 2.0 (a), Trolly (b) and Vanilla Music Player (c) respectively. 143

5.6 Comparison of diUerent approaches for multimodal interaction by sup-

ported guidelines. 150

5.7 Index of parameters ordered alphabetically (leading % and # are ignored)

and the tables containing those. The * refers to [168]. 153

5.8 Glossary of abbreviations used in Table 5.9 up to Table 5.12. 153

5.9 Dialog and communication-related interaction parameters. 157

5.10 Modality-related interaction parameters. 159

5.11 Meta-communication-related interaction parameters. 160

xix

List of Tables

5.12 Keyboard- and mouse-input-related interaction parameters. 161

6.1 Parameters used to describe the mobile context in CARIM. 172

6.2 Items included in the AttrakDiU mini version. 175

6.3 Items used to measure users attitudes toward technology. Rating: Strongly

Disagree, Disagree, Undecided, Agree and Strongly Agree. 176

6.4 QoE mean of users for the two proposed interaction designs. 185

6.5 Correlation (Person’s r) between social and mobility context parameters

and interaction parameters, N = 60, p-2tailed. 187

6.6 Correlation (Person’s r) between social and mobility context parameters

and determined QoE values, N = 60, p-2tailed. 187

6.7 Comparison of diUerent approaches evaluating user-system interaction. . . 191

xx

1
Introduction

This chapter introduces the background needed to better under-
stand the aim of this PhD thesis.

After giving a short introduction to the research areas motivat-
ing the realization of this thesis, the problems tackled in this
research work are posed and then analyzed to be overcome.
Resulting from this analysis, a set of goals to achieve in this
research work are described.

This chapter also provides a brief introduction to the scientiVc
publications and the software contributions resulting from this
PhD thesis. The scientiVc, academic and enterprise context in
which this PhD thesis was carried out is described next. Finally,
the structure of this document is presented.

1

1 Introduction

1.1 Motivation

1.1.1 Human-Computer Interaction

The focus of this PhD thesis is on the Veld of Human–computer Interaction (HCI). HCI

is often regarded as the intersection of computer science, behavioral sciences, design and

several other Velds of study. The term HCI was originally introduced by Card, Moran, and

Newell in the early eighties. They deVned HCI as:

“
a process with the character of a conversational dialog in which the user —

someone who wants to accomplish some task with the aid of the computer—

provides encoded information (i.e., input) to the computer, which responds

back with information and data.

Card, Moran, and Newell [36] ”
Almost a decade later, in 1992, the Association for Computing Machinery (ACM) provided

a more formal deVnition of HCI in the “Curricula for Human-Computer Interaction”. It was

deVned as:

“
a discipline concerned with the design, evaluation and implementation of in-

teractive computing systems for human use and with the study of major phe-

nomena surrounding them.

Association for Computing Machinery [3] ”
There have been many deVnitions of HCI made during the last 30 years. However, more

recent ones are closer to the approach provided by ACM, as they see HCI more as a discipline,

i.e., the process of analyzing user-system interaction, than as the interaction process in

itself. For example, the reader can Vnd several deVnitions of HCI like the following:

“
the study of how people interact with computers and to what extent computers

are or are not developed for successful interaction with human beings

Tony Manninen [130] ”
2

1.1 Motivation

“
the study of a process in which the human input is the data output by the

computer and vice versa

Dix et al. [56] ”
“

the study of interaction between people (users) and computers

Lampathaki et al. [116] ”
Based in the deVnitions above, we can establish HCI in the context of this PhD as

the study of a conversational process (i.e., the interaction) in which two main subjects

participate:

• the user (i.e., the human), who motivated by a task to accomplish, provides input

data to the computer and expects an appropriate response;

• the system (i.e., the computer), which from the input provided by the user, elaborates

output data that is provided as response to the user petition.

Additionally, the environment in which these two subjects are interacting to each other

can be considered as well as an element of the interaction process:

• the context, which refers to those phenomena surrounding the two aforementioned

subjects that may aUect their behavior and response during the interaction process.

It can be concluded that HCI is a discipline based on the analysis of the three afore-

mentioned elements taking part in the interaction process. First, the analysis of the user is

essential in the design of any system in which one or more user interfaces are involved.

However, there exists a need for agreement in the way user-centered design is applied into

systems in order to assure the quality and usability of developments [77].

User interaction involves exchanging not only explicit content, but also implicit infor-

mation about his/her aUective state. AUective Computing makes use of such information

to enhance interaction, and covers the areas of emotion recognition, interpretation, man-

agement, and generation of emotions [33]. Nevertheless, the automatic recognition and

management of user emotions is out of the scope of this PhD thesis.

3

1 Introduction

Second, the analysis of the system response is crucial as well, as it is directly related

not only with the built-in quality of the system, but also with the quality perceived by the

Vnal user. Software testing is used to help assuring both the correctness and robustness of a

software or service. However, it often represents a tedious and complex task that should be

automatically aided to improve its eXciency and eUectiveness [131]. Usability and Quality

of Experience measures are used to assess, from the users point of view, the quality of a

software and the interaction with it.

Third, the analysis of the context surrounding the user and the system. It is gaining

importance in HCI, specially due to the proliferation of the use of mobile devices. The

importance of contextual information has been recognized by research works from many

diUerent disciplines, including personalization systems, ubiquitous and mobile computing,

etc. [4] Context information is currently being used to enrich applications of a very diUerent

nature, like desktop, mobile, and online applications. [20]

1.1.2 Software Testing

HCI can be considered as a particular discipline within Software Testing. Software Testing,

in its broader sense, aims at validating and verifying that an application or a system works

as expected in the given scenario it is intended to work, and that itmeets the requirements

that guided its design and development. The IEEE (Institute of Electrical and Electronics

Engineers) and ANSI (American National Standards Institute) standards deVned software

testing as

“
the process of analyzing a software item to detect the diUerence between ex-

isting and required conditions (i.e., bugs) and to evaluate the features of the

software items

ANSI/IEEE [92] ”
“

the process of operating a system or component under speciVed conditions,

observing or recording the results, and making an evaluation of some aspect

of the system or component

IEEE [93] ”
4

1.1 Motivation

Testing is essential in software development, representing a very important concern

before the software can be put in production. However, implementing and integrating

software testing processes into a software is diXcult to tackle. One reason is the vast array

of programming languages, operating systems and hardware platforms, as well as their

constant evolution [170]. This hinders the integration of testing tools into developments of

a diUerent nature (e.g., using diUerent GUI platforms).

Furthermore, testing processes involve tedious tasks usually expensive in time and hu-

man resources, which sometimes depend on subjective judgments of experts. Automation

has tried to mitigate this problem for decades. However, the participation of the human,

even using automatic tools, is in most cases still required when creating test cases and

validating the results.

Approaches for testing software can be classiVed in diUerent ways depending on the

manner the functionality of applications is evaluated. For example, we can talk about static

testing for processes involving veriVcation tasks like reviews, walkthroughs, or inspections,

while dynamic testing involves the execution of a given set of code-based test cases within

the software.

We can mention also the Box approach that divides software testing methods into white-

box and black-box testing:

• White-box testing is aimed at testing the internal functionality of a software. The

tester needs programming skills as well as to know how the system works internally

in order to design an appropriate set of test cases. For each test case the tester chooses

the inputs and determines the expected outputs. White-box testing is usually done at

the software unit level.

• Black-box testing, instead, is aimed at testing the functionality of a software without

any knowledge of its internal implementation. In most cases low programming

knowledge is required for the tester, who has mainly to be aware of what the

software is supposed to do. The tester veriVes that, for a given input, the software

behaves as expected according to the application requirements. SpeciVcation-based

testing may be necessary to assure correct functionality, but it is insuXcient to guard

against complex or high-risk situations.

• Gray-box testing combines the two approaches mentioned above. While it is re-

quired to know the internal working of a software for designing the test cases, the

5

1 Introduction

tester executes the tests at a black-box level.

User interfaces is a Veld in which testing is specially critical before a software can

be accepted by the Vnal user. There are many diUerent types of user interfaces (e.g.,

haptic, based on speech or gestures, etc.) However, most common ones are the Graphical

User Interfaces (GUI). A GUI can constitute as much as 60 percent of the code of an

application [153]. Given their importance, testing a GUI for correctness is essential to

enhance the safety of the entire system, robustness, and usability [156]. This should lead

us to conclude that advanced GUI testing tools are present in most developments today.

However, this is not true in most cases.

Testing the behavior of GUIs is less frequent than testing the application core. Testers

regularly apply good testing practices such as unit testing and regression testing, but their

scope is often limited to the parts without GUI [40]. Moreover, due to the special character-

istics of a GUI, techniques developed to test the core functionality of a software cannot be

directly applied to GUI testing [158]. Beyond the aforementioned problems, automating

GUI testing involves several additional pitfalls such as treating with the diUerences between

the big amount and variety of windowing platforms, selecting the coverage criteria (i.e.,

select what to test), generating the test cases, providing a method tolerant to changes in the

GUI design, or implementing an eXcient veriVcation process.

Current methods, tools, and technologies for GUI testing can be classiVed into four

diUerent approaches depending on how the test cases are generated.

Full-model-based approaches build a complete model of the GUI. This model, which

includes all the interface widgets1 and their properties, is analyzed in order to explore all

the possible paths on an automated test case generation process (e.g., [104, 159, 231]).

Partial-model-based approaches build a smaller model corresponding only to the part of

the GUI to be tested, reducing the number of generated test cases. To build and annotate the

model, these techniques usually employ modeling languages such as UML (e.g., [164, 215]).

Capture/replay tools generate test cases directly using the information in the target

GUI instead of building any model. These tools normally record user interaction events

into test scripts (i.e., the test cases) which are replayed later for validation [122]. This

1A GUI widget (also called “GUI control” or “GUI component”) represents each of the elements com-
pounding a graphical user interface. A widget may provide an interaction point for the direct manipulation of
a given kind of data (e.g., a button, a text box), may only display information (e.g., a label), or may be hidden
(e.g., a window panel arranging other widgets).

6

1.1 Motivation

allow developers to implement a lightweight testing process involving only those elements,

actions and properties of the GUI that are interesting for the tests [204].

Finally, in direct test generation the testers use programming or script languages to

directly apply values into the GUI widgets (e.g., by using internal methods of the GUI) and

then check the GUI output (e.g., by observation) to verify whether the requirements are

met or not (e.g., [40, 230]).

One of the goals of this PhD thesis is to ease the process of deVning a set of test cases to

check the functionality of a GUI, as well as to ease the process of validating the GUI output.

A capture/replay approach is used to simulate the behavior of the tester (i.e., the human)

during the testing process. It is proposed as an open framework to facilitate its integration

into developments that could be of a diUerent nature.

1.1.3 Data VeriVcation

Another particular discipline within Software Testing are the data veriVcation and validation

processes (V&V). VeriVcation of input and output data in user interfaces helps developers

build quality into the software throughout its life cycle [95]. It is considered essential to

prevent software malfunction, provide robustness, and improve interaction quality in user

interfaces.

Runtime VeriVcation (RV) is a special case of V&V in which the execution of a program

is monitored to determine if it satisVes correctness properties [191]. The data is veriVed

within the runtime context as soon as it is produced instead of using a static representation of

it [26]. It means that the requirements are checked at runtime against the actual execution

of the program. RV provides a rigorous mean to state complex requirements, typically

referring to temporal behaviors [160]. It also provides a rigorous means to implement error

detection during development, e.g., by combining it with test case generation [13] or with

steering of programs [108].

Data veriVcation is specially essential in GUIs. These user interfaces are composed of

widgets that hold data. Such data are error prone, and errors may cause unexpected results

or even application crashes. However, building advanced veriVcation processes into a GUI

in real-time is not straightforward. Applying traditional RV approaches into a project may

be troublesome, as described now.

7

1 Introduction

RV often involves the integration of complex procedures that formally specify the

acceptable runtime behavior [46]. This formalization may impose an overhead in some

particular scenarios in which, for example, only a set of data constraints have to be

veriVed. Using RV commonly implies the usage of formal languages or speciVc logic. These

languages may discourage its usage by developers, and may also present limitations in their

expressiveness when writing complete speciVcations [119]. Building a formal speciVcation

may also be troublesome in those stages of the development in which the design or the

behavior of the application changes frequently (e.g., early on in the development cycle).

Also, aspect-oriented programming (AOP) [106] is commonly used by RV approaches

to separate the veriVcation code from the business logic (e.g., [17, 28, 97]). These languages

provide an eUective mechanism to keep the application code cleaner and enhance encapsula-

tion. However, they lack a dynamic nature. Most of AOP languages need to be recompiled

each time the rules are slightly changed. Therefore, tasks like Vne-tuning the rules dynami-

cally during testing are inconceivable. This is a feature particularly important in industrial

developments, in which compilation and deployment stages are specially time consuming.

AOP languages also present other disadvantages, like code bloating and maintainability

problems further described in [23].

It is also among the goals of this PhD thesis to Vnd a lightweight and dynamic veriVcation

approach for GUI data. An approach in which the developers should be able to choose an

appropriate veriVcation language according to the project needs and dimensions, but in

which key features of RV like high eXciency and encapsulation of veriVcation rules should

remain. With this aim, it is proposed an aspect-oriented approach in which the veriVcation

process, which uses rules written using scripting languages and that may be changed at

runtime, is completely removed from the application main code.

1.1.4 Software Usability

Usability can be seen as a measure of how easy to use an object is, and how easy it is to

learn how to use that object. By object we mean anything a human interacts with, like a

software application, a website, a handheld device, a machine, a process, etc. In a more

formal attempt to describe usability, the ISO norm 9241-11 deVned it as

8

1.1 Motivation

“
the extent to which a product can be used by speciVed users to achieve speciVed

goals with eUectiveness, eXciency and satisfaction in a speciVed context of use

Nigel Bevan - ISO 9241-11 [24] ”
Among the main goals of HCI we can Vnd achieving high usability for computer-based

systems. In the Software Engineering Veld, usability testing is aimed at assuring software

eUectiveness and eXciency, as well as quality of human-computer interaction and user

satisfaction. For this reason, usability appears as a highly relevant attribute not only in

customer-perceived software quality, but also for project managers, for whom it represents

a major decision factor.

Usability assessment is a complex process. Like software testing, it is often expensive in

terms of time and human resources. It however presents a higher dependency on experts,

mainly because usability evaluation is often based on their subjective judgments. Highly

specialized personnel is needed to assure usability guidelines and to design an adequate set

of usability tests. Sometimes it is also necessary to instruct end-users to obtain signiVcant

feedback.

Evaluating usability also entails additional problems like the ones described below. A

common one is that diUerent representations are used to describe user-system interaction

in diUerent scenarios. This hinders the analysis and comparison of interaction extracted

from diUerent systems (e.g., when evaluating the usability of an application that can run in

diUerent handheld platforms). This requires an additional eUort to Vnd the correspondence

between data extracted from diUerent execution scenarios.

It is also usual to read about methods based on static parameters or average metrics to

describe user interaction. The interaction process is dynamic by nature, therefore static ap-

proaches restrict the opportunities for the dynamic analysis of interaction, e.g., analyzing

interaction data to detect why the user presented a uncommon behavior at a speciVc part of

the test. A dynamic approach would better Vt approaches based on “live” instrumentation

of users, and would support the runtime analysis of human-computer interaction.

Another problem related to usability evaluation appears when systems use two or

more modalities to provide or receive data (e.g., current smartphones using GUI, speech

and motion modalities). Multimodal interfaces try to combine several types of sensory

modalities to augment input and output capabilities of current systems such as smartphones,

9

1 Introduction

smart-homes, in-vehicle infotainment, etc. DiUerent modalities are frequently analyzed

separately or at diUerent levels of abstraction, e.g., when diUerent tools are used to analyze

speech and GUI modalities. As result, data collected using a speciVc modality is not

considered seamlessly with the rest of modalities, thus user-system interaction is not

treated as a single and homogeneous Wow of actions, as it is happening in reality.

According to the aforementioned problems, it is also a goal of this PhD thesis to propose

a generic and dynamic way to represent human-computer interaction with multimodal

systems, and thus provide experts with a uniform basis to assess usability of such systems.

For this purpose, this work proposes structuring evaluation metrics into a runtime model in

order to dynamically describe user-system interaction in multimodal environments.

1.1.5 Quality of Experience

Usability is directly related to Quality of Experience (QoE). The ISO 9241-210 norm hints

that “usability criteria can be used to assess aspects of user experience” [55]. Unfortunately,

the standard does not clarify the relation between usability and QoE, although it is clear

that they are overlapping concepts. While usability includes more pragmatic aspects, QoE

focuses more on users feelings stemming both from pragmatic and hedonic aspects of the

system. Actually, QoE is a subjective measure of users experiences with a service. It

focuses on those aspects that users directly perceive as quality parameters and that Vnally

decide the acceptability of a service.

Unlike quality of service (QoS), that refers to technical and objective system performance

metrics, QoE rivets on the true feelings of end users from their perspective when they

carry out an activity [41, 165, 169, 227]. It encompasses users behavioral, cognitive, and

psychological states along with the context in which the services are provided to them.

This is particularly relevant in mobile environments, where applications can be used in

diUerent scenarios and social contexts [165].

The surrounding context plays a critical role when analyzing QoE with mobile prod-

ucts [112]. By context information we mean any data used to characterize the situation of

an entity (i.e., person, place, or object). Taking such data under consideration for the appli-

cation process is commonly known as context-awareness, and is widely recognized as a

core function for the development of modern ubiquitous and mobile systems [21]. Context-

aware systems extract, interpret, and use context information to adapt their functionality

10

1.2 Enhancing Software Quality

to the current context of use [31].

However, evaluating QoE in mobile environments is not straightforward. Several of the

problems the reader can Vnd in this area are similar to those present in usability analysis.

However, as QoE analysis has to deal with context and subjective data, new problems arise.

Working with context data is not straightforward mainly due to the low standardization

of technologies used in context-aware systems [88]. The design of a QoE evaluation method

has to deal with the variety, diversity, and big amount of context data, and decide which

parts of this data are useful to describe the surrounding context eXciently. A similar

problem appears when selecting useful parameters to capture subjective data from users in

order to rate their experiences [165].

Ickin et al. described in [91] another problem that represents a challenge for designers

and researchers studying user experiences with new mobile applications. There are not

robust methodologies that combine quantitative methods to evaluate QoS and performance

with qualitative methods for usability evaluation. Therefore, how to integrate a qualitative

method to evaluate QoE into an interaction analysis method is still a problem to solve.

It is also a goal of this PhD thesis to provide uniVed criteria to analyze and compare

QoE in mobile environments. For this purpose, it specially focuses on providing a common

description of the surrounding context. A set of data to describe subjective ratings for user

experiences is provided as well. These descriptions are then incorporated into an interaction

analysis method to allow the analysis of QoE in dynamic environments.

1.2 Enhancing Software Quality

Current state of the art in Software Testing and HCI Velds shows that the quality of

a software can be achieved in diUerent ways. This PhD thesis focuses mainly on user

interfaces, which represent the software component where interaction between humans

and machines occurs. This research work explores the Veld of improving software quality

through the analysis of the interaction between the user and the system in real-time.

This thesis is based on the fact that user-system interaction can be analyzed from two

diUerent perspectives:

(a) Interaction can be decomposed into its main elements (i.e., input, output, and con-

text). Thus, the quality of the diUerent components of interaction can be analyzed

11

1 Introduction

and improved separately, with the aim of enhancing the Vnal quality of the entire

software.

(b) Interaction can also be seen as a whole, as a continuous Wow of actions from the user

to the system and vice versa. Therefore, the interaction between the user and the

system, as well as its context, can be analyzed and evaluated as a whole in order to

enhance the quality of a software.

Section 1.1 described diUerent pitfalls and problems to which developers and Veld experts

have to face when trying to enhance the quality of a software. This section identiVes some

relevant issues and describes how this PhD thesis tackles them. Such issues are divided into

two blocks according to the two approaches described above.

1.2.1 Block 1: Achieving Quality in Interaction Components
Separately

As described above, Perspective (a) stands for analyzing the diUerent components of user-

system interaction separately to assure their quality and, as a consequence, improve the

quality of the whole software. This approach is aimed at focusing analysis and testing

processes on a particular aspect of the interaction (i.e., user input, or software output),

and thus increasing the eUectiveness of the applied methods.

Section 2.1 analyzes state-of-the-art approaches related to this perspective. From this

analysis we can identify several deVciencies, pitfalls, and problems that should be con-

sidered in order to provide eUective testing and validation mechanisms in the future. These

are identiVed in Table 1.1.

Research in the Block 1 of this PhD thesis attempts to ease the development of software

testing and data veriVcation tools trying to overcome the issues indicated in Table 1.1.

The scope of this block is limited to those tools dedicated speciVcally to graphical user

interfaces (GUI).

This part of this research work focuses on providing adaptable and open frameworks

for developing tools aimed at automating testing and validation processes eXciently. By

adaptable we mean to be suitable to diUerent execution scenarios, i.e., to be agnostic to

elements like the operating system or the GUI platform in use. By open we mean to be

easily extensible with new functionality.

12

1.2 Enhancing Software Quality

Problem description

Diversity in the development environment: operating systems, programming
languages, GUI platforms, etc.

Integration of testing tools into new and ongoing developments with diUerent and
varied features.

Testing tasks are often expensive in terms of time and human resources. They
present also a high dependency on the manual intervention of experts.

Implementation of eXcient testing processes that, even if performed at runtime,
do not interfere with the natural usage of the application.

Graphical user interfaces have special features that need dedicated testing tools.

Tolerance to changes in the implementation. These changes are specially frequent
in the development of user interfaces.

Table 1.1 Main issues found in current state-of-the-art approaches analyzed in Block 1.

At the same time, the incorporation of such tools into ongoing and future developments

should be straightforward. Code intrusiveness should be minimal as well to reduce the

impact of integrating these tools, as well as to widen the range of potential applications to

be tested.

In an attempt to overcome these issues, the research activities conducted in this part of

the PhD thesis resulted in the design of two diUerent frameworks, OHT and S-DAVER, to

analyze the validity of system response, and user input data, respectively:

• OHT (Open HMI Tester). Presented in Chapter 3, it describes a framework to

validate system response. User interaction is recorded to generate test-cases, which

are executed later in an automatic process (by simulating the user action) to ease the

evaluation of the results provided by the system.

• S-DAVER (Script-based Data VeriVcation framework). Presented in Chapter 4, it

describes a veriVcation framework aimed at guaranteeing the validity of the user

input. It uses script languages to deVne veriVcation rules in separate Vles. Rules are

executed transparently at runtime.

The separate analysis of interaction components allow developers and testers to focus

their eUorts when validating user input or system output. They provide a rigorous means to

check the validity of data provided by users as well as to assure that the system response

conforms to the expected behavior. However, by separating interaction components we

13

1 Introduction

omit some features of user-system interaction that might be helpful to widen the scope of

our analysis, e.g., to assess the quality of software from a user-centered perspective (see

Table 1.2).

If the analysis process is focused only on one component of interaction, the method itself

has only a partial view of the interaction process, thus loosing its totality. In this way,

the connections between the participants, as well as the connections with the means for

interaction and the environment, remain out of analysis.

Analyzing interaction components separately also lacks the conversational nature of

user-system interaction described by Card et al. in [36]. It implies that those cause-eUect

relationships triggered by an action of the system or the user, which are very helpful for

the analysis of the interaction process, are ignored.

Finally, using the approaches included in Block 1 to analyze user-system interaction in

environments in which several modalities are used (e.g., screen touch, speech, gestures,

motion, etc.) might not be the best choice. Analyzing data provided with diUerent modalities,

which may be even used concurrently, would not be straightforward.

Problem description

Have a partial view of the interaction process instead of basing the analysis on
information about all the stakeholders.

Ignore the conversational nature (i.e., the cause-eUect relationships between system
and user actions) of user-system interaction.

Implement analysis of user interfaces using several modalities.

Table 1.2 Main issues found in the approaches proposed in Block 1, which motivate
further research in Block 2.

1.2.2 Block 2: Achieving Quality of User-System Interaction as a
Whole

As mentioned above, Perspective (b) stands for analyzing the whole interaction between

the user and the system instead of separating its components. This approach is aimed at

keeping the totality of the interaction process during the analysis and evaluation stages.

Working in this new perspective was also motivated by the limitations of the Vrst results of

this PhD thesis (see Table 1.2) which led us to research new methods to analyze interaction

as a whole, from a conversational approach and supporting diUerent sensory modalities.

14

1.2 Enhancing Software Quality

Section 2.2 analyzes current research approaches under this perspective, which are aimed

at describing the interaction process for the development or the assessment of user interfaces.

As in Block 1, this analysis helped us to identify several issues to be addressed in order

to provide a proper mechanism to support the analysis and evaluation of the interaction

process. These issues are identiVed in Table 1.3.

Problem description

Variety, diversity, and big amount of interaction and context data. Decide what
data is useful to describe the interaction process eXciently.

Low standardization of methodologies used to describe the interaction process and
its context. Comparison of interaction extracted from diUerent systems.

The use of static approaches hinders the dynamic analysis of interaction.

DiUerent modalities are often analyzed separately or at diUerent levels of abstrac-
tion. Multimodal interaction is not represented as a single and homogeneous Wow
of actions.

Need of robust methodologies combining quantitative methods to evaluate perfor-
mance with qualitative methods for usability evaluation.

Finding parameters to capture subjective data from users with the aim of rating
their interaction experiences.

Table 1.3 Main issues found in current state-of-the-art approaches analyzed in Block 2.

The approaches proposed in Block 2 of this PhD thesis aim at providing a representation

of interaction trying to overcome the problems described in Table 1.3. While approaches in

Block 1 focus on a particular interaction component, these approaches focus on describing

the whole interaction process between the user and the system in a speciVc context.

Interaction is described stepwise, as a dialog between two parties to enable further action-

reaction analysis. The analysis of the users and their characteristics gains in importance in

this second approach.

First, our eUorts are mainly focused on modeling the user and the system actions as

a conversation (i.e., as a dialog between these two parties). The main goal is providing

a uniform representation of human-computer interaction that enables the analysis and

comparison of interaction in diUerent execution scenarios. The Vrst result in this area is the

design of PALADIN:

• PALADIN (Practice-oriented Analysis and Description of Multimodal Interac-

tion). Presented in Chapter 5, it describes a metamodel aimed at modeling the dialog

15

1 Introduction

between the system and the user in multimodal environments. It uses a stepwise de-

scription of the interaction (i.e., by keeping its order in time) to preserve the dynamic

nature of a conversation. It also supports diUerent modalities for providing input and

output data.

Nowadays mobile interaction is gaining in importance due to the proliferation of

the use of mobile devices. Users and their handheld devices are continuously moving in

several simultaneous fuzzy contexts [88]. Therefore, the surrounding context represents an

element that has to be incorporated into those methods aimed at supporting the evaluation

of the mobile usability of a system.

Moreover, while quantitative data is used to determine whether and when usability

speciVcations are met, qualitative data is used to collect users impressions to identify

usability problems, their causes, and potential redesign solutions [80]. Interaction analysis

methods should also include qualitative data extracted from users in order to further

evaluate their experiences.

PALADIN mainly focuses on quantitative data to describe the interaction process. There-

fore, at this point our research is aimed at incorporating the context factors into the

analysis of user-system interaction, as posed in the ACM deVnition of HCI [3]. Furthermore,

qualitative and subjective data have to be incorporated into such a method to analyze the

quality perceived by users.

The main goal of this part of the PhD thesis is to analyze the user experiences when

using a software, as well as those phenomena surrounding the interaction process that

may inWuence not only the quality and usability of a software, but also the quality of the

experiences of the users with a software. This research resulted in the design of CARIM as

an extension to PALADIN:

• CARIM (Context-Aware and Ratings Interaction Metamodel). Based on the de-

sign of PALADIN, CARIM is a metamodel aimed at describing the interaction be-

tween the user and the system in mobile environments as well as its context (e.g.,

physical environment, social context, etc.). It also includes users ratings and other

factors used to describe their experiences. CARIM is presented in Chapter 6.

16

1.3 Goals of this PhD Thesis

1.3 Goals of this PhD Thesis

Once introduced the research areas that motivate the realization of this PhD thesis, and

once identiVed some of the major problems with which developers, testers, and Veld experts

have to deal when trying to enhance the quality of software and interaction, this section

deVnes a set of goals to achieve in this research work.

We deVne the main goal of this PhD thesis as the improvement of current techniques for

software testing and user-system interaction analysis. Then, as a result of this work, we

intend to provide the HCI and Software Testing Community with more eUective, robust,

adaptable, lightweight, and easy-to-integrate tools for improving the quality of software

products, as well as the experiences of users with the software.

Nevertheless, this goal is too abstract and ambitious, and thus a set of more speciVc

goals organized according to the two research blocks mentioned above in Section 1.2 are

described in the following.

The goals to be achieved regarding research in Block 1 in order to provide a mean to

assure quality of system response and user input are:

• G1.1 Provide a framework to support the development of tools aimed at validating

the response of a GUI.

– Allow the automation of those complex and time-consuming tasks that com-

prise GUI testing processes and which are often performed manually.

– Allow the simulation of the actions of a human tester with the aim of testing

software functionality in a real, reliable, and robust scenario.

– Allow the testing tools developed within this framework to be integrated into

diUerent execution scenarios (i.e., diUerent operating systems or windowing

platforms).

– Allow the testing tools developed within this framework to be easily integrated

into existing, ongoing, and new developments.

• G1.2 Provide a framework to integrate data veriVcation processes into GUI devel-

opments to guarantee that the user input conforms to the data requirements.

– Allow developers to choose an appropriate veriVcation language according

to the project needs, its resources, and its dimensions.

17

1 Introduction

– Provide a lightweight and easy-to-integrate veriVcation process to be incor-

porated into developments of diUerent sizes.

– Provide a dynamic veriVcation process to support and help developers, testers,

and users during the whole life-cycle of the software.

The goals to be achieved regarding research in Block 2 with the aim of providing a

mean to assure quality of user-system interaction are:

• G2.1 Provide a framework to support the instrumentation and assessment of mul-

timodal user-system interaction.

– Provide a generic description of interaction regardless of the execution sce-

nario (i.e., device, platform, operating system, application, modalities used to

provide input/output data, etc.)

– Capture the dynamic nature of the interaction process to support its analysis

in a stepwise manner.

– Allow the comparison between diUerent interaction records regardless of

the execution scenario in which they were previously obtained.

– Use data that can be collected by using current devices capabilities to ease

its integration into real scenarios.

• G2.2 Provide a framework to support the analysis and evaluation of the whole

user experience in mobile scenarios.

– Provide a generic and reusable deVnition of the context of interaction suit-

able for diUerent mobile and non-mobile scenarios. The evolution over time of

the contextual factors should be also considered.

– Provide a set ofmetrics to capture the users experienceswhen using a system,

regardless of the interaction scenario.

– Allow the assessment of systems usability and QoE based on the combination

of quantitative interaction/context data and qualitative/subjective data ex-

tracted from users.

18

1.4 Publications Related to this PhD Thesis

1.4 Publications Related to this PhD Thesis

The research conducted during this PhD thesis has been published—or is under revision—on

several peer-reviewed, national and international journals and conferences. This section

summarizes all the scientiVc publications directly related to this work. Most of these

publications have been the result of the work under the Cátedra SAES-UMU2 to attend

SAES3 needs, and also result of the work in other parallel lines of research. Moreover,

other publications resulted from our fruitful collaboration with the Telekom Innovation

Laboratories4 (Berlin, Germany).

JCR Journals

P1 [147] Pedro Luis Mateo Navarro, Gregorio Martínez Pérez, Diego Sevilla Ruiz.OpenHMI-

Tester: An Open and Cross-Platform Architecture for GUI Testing and CertiVcation,

International Journal of Computer Systems Science and Engineering (IJCSSE), Special Is-

sue on Open Source CertiVcation, June 2010.

https://www.researchgate.net/publication/256296748

P2 [142] Pedro Luis Mateo Navarro, Gregorio Martínez Pérez, Diego Sevilla Ruiz. A

Context-aware Interaction Model for the Analysis of Users QoE in Mobile Environ-

ments, International Journal of Human-Computer Interaction (IJHC), Taylor & Francis, in

press, May 2014.

JCR Journals Under Review

P3 Pedro Luis Mateo Navarro, Diego Sevilla Ruiz, Gregorio Martínez Pérez. A Lightweight

Framework for Dynamic GUI Data VeriVcation Based on Scripts, Submitted for publi-

cation, May 2014.

2The Cátedra SAES-UMU initiative was signed by SAES and the University of Murcia (http://www.um.es)
to work on research leaning toward the improvement of industrial and military developments. http://www.
catedrasaes.org

3SAES (Sociedad Anónima de Electrónica Submarina) is the only Spanish company specialized in
submarine electronics and acoustics. http://www.electronica-submarina.com

4Telekom Innovation Laboratories (T-Labs) is the the central research and development institute of
Deutsche Telekom. http://www.laboratories.telekom.com/

19

https://www.researchgate.net/publication/256296748
http://www.um.es
http://www.catedrasaes.org
http://www.catedrasaes.org
http://www.electronica-submarina.com
http://www.laboratories.telekom.com/

1 Introduction

P4 Pedro Luis Mateo Navarro, Stefan Hillmann, Sebastian Möller, Diego Sevilla Ruiz,

Gregorio Martínez Pérez. Run-time Model Based Framework for Automatic Evaluation

of Multimodal Interfaces, Submitted for publication, April 2014.

Other Journals

P5 [143] Pedro Luis Mateo Navarro, Gregorio Martínez Pérez, Diego Sevilla Ruiz. Apli-

cación de Open HMI Tester como framework open-source para herramientas de prue-

bas de software (Using Open HMI Tester as an Open-source Framework for the Develop-

ment of Testing Tools), Revista Española de Innovación, Calidad e Ingeniería del Software

(REICIS), volume 5, number 4, December 2009.

http://www.ati.es/IMG/pdf/MateoVol5Num4-2.pdf

P6 [146] Pedro Luis Mateo Navarro, Diego Sevilla Ruiz, Gregorio Martínez Pérez. A Pro-

posal for Automatic Testing of GUIs based on Annotated Use Cases, Advances in Soft-

ware Engineering journal, Special Issue on Software Test Automation, vol. 2010, Article ID

671284, 8 pages, 2010.

http://downloads.hindawi.com/journals/ase/2010/671284.pdf

International Conferences and Workshops

P7 [144] Pedro Luis Mateo Navarro, Diego Sevilla Ruiz, Gregorio Martínez Pérez. Au-

tomated GUI Testing Validation guided by Annotated Use Cases, MOTES 09 - Model-

based Testing Workshop, Lübeck, Germany, September 2009.

http://subs.emis.de/LNI/Proceedings/Proceedings154/gi-proc-154-252.pdf

P8 [141] Pedro Luis Mateo Navarro, Diego Sevilla Ruiz, Gregorio Martínez Pérez. Towards

Software Quality and User Satisfaction through User Interfaces, Fourth IEEE Interna-

tional Conference on Software Testing, 2011. Berlin, Germany, March 2011

http://origin-www.computer.org/csdl/proceedings/icst/2011/4342/00/4342a415.pdf

P9 [137] Pedro Mateo, Stefan Schmidt.Model-based Measurement of Human-Computer

Interaction in Mobile Multimodal Environments, aMMI (Assessing Multimodal Inter-

action), 7th Nordic Conference on Human-Computer Interaction (NordiCHI). Copenhagen,

20

http://www.ati.es/IMG/pdf/MateoVol5Num4-2.pdf
http://downloads.hindawi.com/journals/ase/2010/671284.pdf
http://subs.emis.de/LNI/Proceedings/Proceedings154/gi-proc-154-252.pdf
http://origin-www.computer.org/csdl/proceedings/icst/2011/4342/00/4342a415.pdf

1.4 Publications Related to this PhD Thesis

Denmark, October 2012.

http://www.prometei.de/Vleadmin/ammi-nordichi2012/04ammi12_mateo_hillmann.pdf

P10 [149] Pedro Luis Mateo Navarro, Diego Sevilla Ruiz, Gregorio Martínez Pérez. A

Context-aware Model for the Analysis of User Interaction and QoE in Mobile En-

vironments, CENTRIC 2012, The Fifth International Conference on Advances in Human-

oriented and Personalized Mechanisms, Technologies, and Services. Lisbon, Portugal, Novem-

ber 2012.

http://www.thinkmind.org/download.php?articleid=centric_2012_5_20_30061

P11 [150] Pedro Luis Mateo Navarro, Diego Sevilla Ruiz, Gregorio Martínez Pérez. A

Context-aware Model for QoE Analysis in Mobile Environments, XIV International

Congress on Human-Computer Interaction. Madrid, Spain, September 2013.

https://www.researchgate.net/publication/256296818

National Conferences and Workshops

P12 [145] Pedro Luis Mateo Navarro, Gregorio Martínez Pérez, Diego Sevilla Ruiz. Open

HMI Tester: un Framework Open-source para Herramientas de Pruebas de Software

(Open HMI Tester: an Open-source Framework for Software Testing), PRIS 2009 - IV Taller

sobre Pruebas en Ingenieria del Software, Jornadas de Ingenieria del Software y Bases de

Datos (JISBD 2009), San Sebastian, Spain, September 2009.

https://www.researchgate.net/publication/262357212

P13 [148] Pedro Luis Mateo Navarro, Gregorio Martínez Pérez, Diego Sevilla Ruiz. Veri-

Vcación de Datos en la GUI como un Aspecto Separado de las Aplicaciones (Verifying

GUI Data as a Separate Aspect), PRIS 2010 - V Taller sobre Pruebas en Ingenieria del Soft-

ware, Jornadas de Ingenieria del Software y Bases de Datos (JISBD 2010), Valencia, Spain,

September 2010.

https://www.researchgate.net/publication/256296667

21

http://www.prometei.de/fileadmin/ammi-nordichi2012/04ammi12_mateo_hillmann.pdf
http://www.thinkmind.org/download.php?articleid=centric_2012_5_20_30061
https://www.researchgate.net/publication/256296818
https://www.researchgate.net/publication/262357212
https://www.researchgate.net/publication/256296667

1 Introduction

1.5 Software Contributions of this PhD Thesis

The research activities conducted in this PhD work, aimed at achieving the goals described

above in Section 1.3, resulted in a set of software resources as proof of concept for the

proposed designs. These results are summarized in Figure 1.1 and further described below.

This section brieWy describes those contributions that represent the backbone of this PhD

thesis (i.e., Open HMI Tester (OHT), S-DAVER, PALADIN and CARIM) which are further

described along this document. There are also other contributions developed as proof of

concept of parallel research works. These ones are described in the corresponding chapter

along this PhD thesis.

As depicted in Figure 1.1, the main software contributions of this work are classiVed

according to the interaction component they address (either system output, user input,

or the whole interaction process), to the testing discipline used (i.e., software testing and

validation, or usability and QoE evaluation), and whether the method is mainly oriented to

analyze/evaluate the system, or the user.

Figure 1.1 Main software contributions roadmap of this PhD thesis.

As said above, these software contributions were used to show the validity of the

designs and solutions proposed along this PhD thesis. DiUerent software prototypes or Vnal

22

1.5 Software Contributions of this PhD Thesis

applications were designed, developed, and integrated into real scenarios as proof of concept.

Those contributions oriented to assure software quality (i.e., OHT, and S-DAVER) were

integrated into the internal processes of a software development company (see Section 1.7)

and extensively used to test and validate their software components. On the other hand,

those contributions oriented to analyze user interaction (i.e., PALADIN and CARIM) were

tested with users in experiments conducted both in laboratory and in real environments.

Furthermore, in order to enrich the validation process, all methods and tools developed

during this PhD thesis were provided as a contribution to the open-source community

by using popular means of distribution like Sourceforge5, Google Code6 and GitHub7. This

way, community members can use our results and then provide us with valuable feedback

to enhance our current and future work.

1.5.1 OHT: Open HMI Tester

(S1) Open HMI Tester [133, 151] is a human-machine interface (HMI) testing architecture.

Its design is aimed at supporting major event-based windowing systems, thus providing

generality besides some other features such as scalability and tolerance to modiVcations in

the HMI design process. This GUI testing tool follows a capture/replay approach, which

represents one of the most used techniques in current windowing systems. OHT performs a

non-intrusive hooking into the target application in order to capture generated events from

the application and post new events to it.

The OHT implementation was released as an open-source contribution. The source

code is distributed into a packaged Vle that can be built for diUerent operating systems.

Implemented in standard C++, the OHT architecture allows adapting the implementation

of a few modules to Vt both the windowing system and the operating system in use. A

Vnal version of the OHT to test Qt4-based [174] applications in Linux systems was also

implemented.

Info and download: http://www.catedrasaes.org/wiki/OHT

5http://sourceforge.net/
6http://code.google.com/
7https://github.com/

23

http://www.catedrasaes.org/wiki/OHT
http://sourceforge.net/
http://code.google.com/
https://github.com/

1 Introduction

1.5.2 S-DAVER: Script-based Data VeriVcation

(S2) S-DAVER [140, 152] is a framework for implementing separate input/output data

veriVcation within user interfaces. Following an aspect-oriented approach, it fully decouples

the veriVcation logic (i.e., rule speciVcation and veriVcation code) from the business logic.

Requirements are translated into rules written using interpreted languages, and are included

in separate Vles. Requirements can change dynamically at runtime without recompilation,

enabling live Vne-tuning of the rules. Visual feedback is used to assist developers during

testing as well as to improve users experience during execution. S-DAVER can be adapted

to Vt diUerent veriVcation languages and windowing platforms.

The implementation of S-DAVER has been released as an open-source contribution to

the community. The source code is distributed into a packaged Vle that can be built for

diUerent operating systems. Implemented in standard C++, the framework can be modiVed

by developers that need to adapt it to their developments. S-DAVER is also distributed as

RPM and DEB packages to ease its installation within diUerent Linux distributions. Two

Vnal versions of S-DAVER for Qt4-based Linux applications were developed using two

diUerent veriVcation languages: one using Lua [94] and other using Chaiscript [100].

Info and download: http://www.catedrasaes.org/wiki/GuiVeriVcation

1.5.3 PALADIN: Practice-oriented Analysis and Description of
Multimodal Interaction

(S3) PALADIN [138, 139] is a metamodel aimed at describing multimodal interaction in a

uniform and dynamic way. Its design arranges a set of parameters to quantify multimodal

interaction generalizing the existing diUerences between modalities. Moreover, interaction

is described stepwise, preserving the dynamic nature of the dialog process. As result,

PALADIN provides a common notation to describe user-system interaction in diUerent

multimodal scenarios, which can be used to assess and compare the quality of interaction

in diUerent systems.

The implementation of PALADIN is based on the Eclipse Modeling Framework (EMF) [207],

which provides a metamodeling methodology, automatic code generation, syntactical vali-

dation, and model transformation functionalities. The EMF description of the metamodel

was used to automatically generate its source-code in Java. PALADIN was released along

with the Android HCI Extractor, a tool to track user-system interaction in Android [105],

24

http://www.catedrasaes.org/wiki/GuiVerification

1.6 Summary of Research Goals, Publications, and Software Contributions

and an instantiation framework. PALADIN as well as all the tools around it are open-source,

so they can be downloaded and modiVed without restrictions.

Info and download: http://www.catedrasaes.org/wiki/MIM

1.5.4 CARIM: Context-Aware and Ratings Interaction Metamodel

(S4) CARIM [135, 136] is a metamodel aimed at modeling the users quality of experience

(QoE) in mobile environments. It establishes a set of parameters to dynamically describe the

interaction between the user and the system as well as the context in which it is performed.

Parameters describing the perceived quality of users, their attitude toward technology

use, and their mood are included as well. CARIM provides a uniform representation of

interaction in mobile scenarios, allowing the analysis of interaction to determine QoE of

users as well as the comparison between diUerent interaction records. Its runtime nature

brings new possibilities for the dynamic analysis of interaction, enabling also to make

decisions in real-time to adapt the system to provide a better experience to users.

The CARIM metamodel was also implemented with EMF. This design was later used

to automatically generate the Java source code to be integrated into those applications in

which new CARIM instances are created. To collect interaction and context parameters

we developed the AHE11, an improved version of the Android HCI Extractor. We also

developed the Generic Quest Library (GQL8) for Android to automatically collect data from

users by using questionnaires. CARIM, as well as all the tools around it, are open-source, so

they can be downloaded and modiVed without restrictions.

Info and download: http://www.catedrasaes.org/wiki/Carim

1.6 Summary of Research Goals, Publications, and
Software Contributions

Table 1.4 summarizes the research goals, publications, and open-source software contri-

butions described in the sections above. The table is structured based on the two research

blocks and the four main research Velds in which this PhD thesis is divided.

25

http://www.catedrasaes.org/wiki/MIM
http://www.catedrasaes.org/wiki/Carim

1 Introduction

Research

Block

Main research

Veld

Goals

achieved
Publications

Software

contributions

Block 1
Software testing G1.1

P1 [147]
P5 [143]
P6 [146]
P7 [144]
P12 [145]

S1 [133, 151]

Data veriVcation G1.2
P13 [148]

P3
S2 [140, 152]

Block 2
Usability evaluation G2.1

P9 [137]
P4

S3 [138, 139]

Mobile QoE

evaluation
G2.2

P2 [142]
P10 [149]
P11 [150]

S4 [135, 136]

Table 1.4 Summary of research goals, publications, and open-source software contribu-
tions in this PhD thesis.

1.7 Context of this PhD Thesis

This PhD Thesis has been carried out under the umbrella of the Cátedra SAES-UMU,

a private initiative created by the company SAES (Sociedad Anónima de Electrónica

Submarina) and the University of Murcia8 and aimed at improving the development

processes of the company, paying special attention to increasing the Vnal quality of their

software products. This research work has also been accomplished thanks to a six-month

stay in the Telekom Innovation Laboratories in Berlin, Germany.

The Cátedra SAES-UMU9 is also interested on developing and using open-source tools

to validate the developments of SAES, as well as to provide the open-source community

with most of its research results. This commitment with free and open-source tools clearly

marked the character of the software solutions developed within this PhD thesis. All

methods and tools resulting from our research were provided as an altruistic contribution

to the open-source community.

SAES10 is the only Spanish company specialized in submarine electronics and acoustics. It

8http://www.um.es
9http://www.catedrasaes.org
10http://www.electronica-submarina.com

26

http://www.um.es
http://www.catedrasaes.org
http://www.electronica-submarina.com

1.8 Structure of this PhD Thesis

is worldwide leader in the ASW segment, and is currently involved in the new deployment

of programs of submarines and surface vessels, as well as in the modernization of MPA

for Spanish Navy and foreign navies. The needs and problems proposed by a software

development company like SAES motivated this research work to Vnd new and realistic

methods aimed at improving the eXciency and eUectiveness of software testing. Working

near such a company provides us with real constraints —specially technological ones—

when researching, designing, and developing new solutions.

The Telekom Innovation Laboratories11 (also called T-Labs) was established in 2004

as the central research and development institute of Deutsche Telekom. The aim of the

research activities conducted in T-Labs is to develop innovative products and solutions

while working in close cooperation with science and industry, as well as promoting the

integration of the resulting innovations in the Deutsche Telekom Group. The user-centered

approach of this research company, mainly focused on enhancing the usability of systems

by analyzing the user-system interaction process, clearly inWuenced the research activities

conducted during this PhD thesis.

1.8 Structure of this PhD Thesis

This PhD thesis is structured into seven main chapters corresponding to an introductory

part, the description of the current state of the art, the four main contributions that represent

the backbone of this research work and that were brieWy introduced in Section 1.5, and a

Vnal chapter including the conclusions and the description of the main lines of future work.

Chapter 1 describes the context of this PhD thesis and some background information

for the reader to understand the main problems tackled in this research work. All the

contributions resulted from this PhD thesis, as well as the scientiVc publications directly

related to this dissertation, are also described in this chapter.

Chapter 2 introduces the background needed for the better understanding of this PhD

thesis. This chapter describes some of the most relevant approaches related to the research

activity conducted in this dissertation. These approaches present some deVciencies and

open research questions that are addressed in the following chapters.

Chapter 3 studies the current problems of Software Testing when trying to assure the

quality, reliability, and robustness of a software component in an speciVc scenario of use.

11http://www.laboratories.telekom.com

27

http://www.laboratories.telekom.com

1 Introduction

This chapter emphasizes the problem of graphical user interfaces (GUI) where testing is

critical before the software can be accepted by the Vnal user and put in execution mode.

The design and development of an open testing architecture called Open HMI Tester is

described as well.

Chapter 4 addresses the problem of data veriVcation, specially input data introduced by

the users in GUIs. The pitfalls related to the integration of advanced veriVcation processes

into diUerent scenarios are discussed, and some solutions aimed at reducing the complexity

of this process are proposed. This chapter also describes the design and implementation of

S-DAVER, a framework to ease the implementation of data veriVcation in user interfaces.

Chapter 5 tackles the problem of describing the interaction between the user and the

system in such a way that provides the experts with a basis for the implementation

of usability evaluation processes. The most relevant problems of describing multimodal

interaction preserving its dynamic nature and considering modalities at the same level

are tackled as well. This chapter describes the design of PALADIN, a parameter-based

metamodel aimed at describing multimodal interaction in a uniform and dynamic way.

Chapter 6 brings the problem described in Chapter 5 beyond Wat environments. It

presents a new approach that considers the changes of the surrounding context, as well

as the user impressions during the interaction process, with the aim of evaluating users

quality of experience (QoE) in mobile environments. This chapter presents the design of

CARIM, a metamodel that provides uniVed criteria for the analysis of interaction and the

inference of QoE in mobile scenarios.

Finally, Chapter 7 includes the conclusions of this PhD thesis, and describes the lines of

future research looming on the horizon.

28

2
Related Work

This chapter introduces the background that contextualizes the
work in this PhD dissertation. It includes a summary of some
of the most relevant approaches related to the research activity
conducted in this thesis. The readers may beneVt from famil-
iarizing themselves with the described approaches and their
contribution to the software development community and the
HCI community.

Related works are structured into two main groups according to
the two research blocks in which this PhD thesis is divided (see
Section 1.2). Approaches in Group 1 (Section 2.1) are intended
to assure the quality of interaction components individually.
Approaches in Group 2 (Section 2.2) are intended to describe
and analyze the interaction process as a whole, including also
the environment and subjective information of users.

The approaches described in this chapter present some deVcien-
cies and unaddressed questions that should be tackled. Several
of these problems and open research questions are identiVed,
described, and addressed in the following chapters of this PhD
dissertation.

29

2 Related Work

2.1 Group 1: Approaches Assuring Quality of a
Particular Interaction Component

The approaches described in this group are intended to assure the quality of a particular

component of the interaction process individually. Subsection 2.1.1 describes methods, tools

and technologies implementing GUI testing processes aimed at validating software output.

Subsection 2.1.2 describes several approaches aimed at checking the validity of the input

data provided by software users.

2.1.1 Validation of Software Output

Testing is commonly used to assure the quality, reliability, and robustness of GUI-based

systems. DiUerent test cases are generated and then executed to validate the system output

in the given context the application is intended to work. The GUI testing approaches

analyzed in this section can be classiVed in three types, depending on how the test cases

are generated:

• Approach 1. (Subsection 2.1.1.1) Tools that build a complete GUI Model including all

the graphical components (GUI widgets) and their properties. This model is traversed

in an automated test case generation process to explore all the possible interaction

paths and generate test cases to test them.

• Approach 2. (Subsection 2.1.1.2) Tools that build a smaller model corresponding to

the part of the GUI to be tested. As a result, the number of generated test cases is

reduced. These tools often use modeling languages such as UML [177] to deVne and

annotate the model in order to guide the test case generation process.

• Approach 3. (Subsection 2.1.1.3) Methods in which test cases are created by the

testers by using script languages, or by recording the user-system interaction data

into test scripts. The test cases are replayed later to check the validity of software

output, e.g., by implementing observation-based testing [122]. These techniques allow

developers to perform a lightweight testing process taking into account only the

elements, actions, and properties of the GUI to be tested [204].

30

2.1 Group 1: Approaches Assuring Quality of a Particular Interaction Component

2.1.1.1 Methods Using a Complete Model of the GUI

Memon et al. described in [155] a process named GUI Ripping. In this process, all the

windows of the GUI are traversed to analyze all of its widgets and events. Then, a model is

automatically built to describe a GUI Forest (i.e., a tree composed of all the GUI widgets)

and an Event-Flow Graph (EFG) (i.e., a graph describing all the GUI events). The model is

veriVed, Vxed and completed manually by the developers.

Memon et al. described in [157, 228] the memon03dart framework, which is based on the

process described above. memon03dart uses the GUI model to explore all the possible test

cases, from which the developers select those ones identiVed as meaningful. Then, an oracle

generator is used to create the expected output. A test oracle [229] is a mechanism which

generates outputs that a product should have for determining, after a comparison process,

whether the product has passed or failed a test. Finally, the test cases are automatically

executed and their output compared to the results expected by the oracle.

White et al. described in [223, 224] a similar technique using a GUI model based on

reduced FSM (Vnite-state machine). The authors introduced the concept of responsibility

to denote a desired or expected activity in the GUI, and deVned a Complete Interaction

Sequence (CIS) as a sequence of GUI objects and actions that will raise an identiVed

responsibility. The model is used to automatically generate the test cases, which are then

executed to Vnd “defects” (i.e., serious departures from the speciVed behavior) and “surprises”

(i.e., user-recognized departures from the expected behavior, but not explicitly indicated in

the speciVcations of the GUI).

The tools belonging to this approach focus part of their eUorts on building a model of

the GUI from which the test cases are generated automatically. Creating and maintaining

these models is a very expensive process [154], and specially dangerous if the models

are completed and validated manually. A GUI is often composed of a complex hierarchy

of widgets and properties, many of which are irrelevant for the developers (e.g., window

containers or base panels). Therefore, the result of the auto-generation process might include

a vast amount of useless/senseless test cases.

This leads to other problems such as scalability or low tolerance to modiVcations. For

example, adding a new element to the GUI (e.g. a new widget or event) would have two

worrying side eUects. First, the number of generated test cases grow exponentially at the

same time new elements are added. Second, updating the GUI model would involve the

31

2 Related Work

manual veriVcation and completion of the change in the model, as well as the regeneration

of all aUected test cases. As a result, even a minimal change in the GUI appearance might

cause a lot of errors during the validation process if the test cases or the oracle outputs

remain obsolete [153].

2.1.1.2 Methods Using a Partial Model of the GUI

Vieira et al. described in [215] a method in which UML use cases and activity diagrams are

used to respectively describe which functionality should be tested and how to test it. The

UML model is enriched by improving the accuracy of the activity diagrams (i.e., decreasing

the level of abstraction) and by making annotations using custom UML stereotypes to

represent additional test requirements. Finally, the test cases are automatically generated

from the enriched UML model.

The scalability of this approach is better than the oUered by the methods described above,

as the process is now focused only on a section of the model. Even though, it might result

in a very large number of test cases. The reVnement of the diagrams helps also to reduce

the Vnal number of generated test cases. However, as happens with the tools belonging to

the Vrst approach, the main limitations of this approach are again that the developers have

to spend so much eUort building, reVning and annotating the model and the low tolerance

to modiVcations.

2.1.1.3 Methods Based on GUI Interaction

Steven et al. presented [204], a tool for capturing and replaying Java program executions.

This tool uses an unobtrusive capture process to record the interactions (i.e., GUI, Vle,

and console inputs) between a Java program and the environment. The captured inputs

are replayed with exactly the same input sequence observed during the recording stage.

steven00jrapture interacts with the underlying operating system or windowing platform

to build a System Interaction Sequence (SIS). A SIS includes the sequence of inputs to the

program together with other information necessary for the future replay.

Caswell et al. described jfcUnit [38], a framework to create automated tests for Java

Swing GUIs based on the JUnit testing framework [90]. It provides automatic capture of

test cases, which are recorded into XML-based script Vles. The scripts can be edited or

created manually as well. Then, the test cases are automatically executed into a GUI. jfcUnit

32

2.1 Group 1: Approaches Assuring Quality of a Particular Interaction Component

provides a mean to locate Swing objects on the screen and to interact with them by using a

set of functions.

Chang et al. presented in [40] a new approach for GUI testing based on computer vision.

The test cases are generated manually by the testers, who include action statements in a test

script to interact with the GUI and to verify whether the desired response is obtained. The

authors use Sikuli Script [230], that provides a library of functions to automate user inputs

such as mouse clicks and keystrokes. These functions take screenshots of the GUI widgets as

arguments. Then, during script execution, it is automatically checked if the visual outcome

matches the expected one. This approach improves the readability of test cases and provides

platform independence. However, it is unable to detect unexpected visual feedback and to

test internal functionality of the GUI.

El Ariss et al. presented in [61] a method for Java GUIs combining a model based

testing approach with a capture and replay approach. First, the testers model the behavior

of the application using its functional speciVcations. Then, they use capture and replay

functionality to automatically record and execute the test cases. For this they use jfcUnit.

Finally, the model is used to improve the coverage criteria of the capture/replay process,

and therefore ensure that all the GUI widgets are exercised fully.

The tools belonging to this approach present a better scalability because the test case

generation process is guided by the tester. Furthermore, the developers do not need to build

or maintain any model of the target application. However, using a human-guided method

may result in problems with the testing coverage, as some GUI functionality might remain

out of the testing process. The maintenance of test scripts may be expensive if the GUI

design changes frequently.

2.1.2 Validation of User Input

The validation of user input is essential to provide integrity and robustness into an ap-

plication during execution. Runtime VeriVcation (RV) approaches are characterized by

monitoring the current execution of a program to determine if it satisVes correctness prop-

erties. They verify the application behavior or the input data within the runtime context.

This section analyzes the most relevant works related to RV and the veriVcation of user

input data, organizing them into the three following approaches:

33

2 Related Work

• Approach 1. (Subsection 2.1.2.1) Approaches using formal logic for the veriVcation

process. These logic are often created for a speciVc veriVcation purpose.

• Approach 2. (Subsection 2.1.2.2) Approaches using property monitors that are usually

integrated into the application code directly (e.g., by using metadata annotations) or

by using aspect-oriented programming technologies (AOP).

• Approach 3. (Subsection 2.1.2.3) Approaches aimed at verifying GUI properties and

input data in web-based user interfaces.

2.1.2.1 Data VeriVcation Using Formal Logic

Barringer et al. [17] presented a small and general monitoring framework based on EAGLE.

EAGLE is a general logic for reasoning about data which supports a mixture of future-

and past-time operators. The monitoring process is performed state-by-state, i.e., without

storing the execution trace. The validation rules can be parametrized with formulae or data.

However, the interpretation scheme was complex and diXcult to implement eXciently [18].

More recently, Barringer et al. introduced two rule-based systems for on-line and oU-line

trace analysis. RuleR [18] is a conditional rule-based system that uses single-shot rules. It

uses a step-by-step basis to check a Vnite trace of observations against the rules at runtime.

Developers can use RuleR along with a wide range of temporal logic and other formalisms.

It uses AspectJ [47] to hook the veriVcation code to the application code. LogScope [16]

is a derivation of RuleR for monitoring logs oYine. It is based on a higher-level pattern

language and a lower-level RuleR-like automation language. Developers have to write

mostly patterns. Then, the patterns are internally translated to automata to provide the

process with extra expressive power. LogScope works oYine and standalone.

Kim et al. described MaCS [107] to check the execution of a target program and to

perform runtime correction of system behavior. The requirements are deVned as a set of

constraints speciVed in a language with formal semantics, and linked to events that denote

when a requirement has to be checked. Then, this speciVcation is used to generate a Vlter,

an event recognizer and a runtime checker. MaCS uses the Vlter and the event recognizer

to keep track of changes. The runtime checker determines if the current execution history

satisVes the requirement speciVcation. If not, the information collected during the process

is used to steer the application back to a safe state.

34

2.1 Group 1: Approaches Assuring Quality of a Particular Interaction Component

Zee et al. described in [232] a runtime checking process incorporated into the Jahob

veriVcation system described by Kuncak [115]. The process combines static and runtime

checking. It uses an inference engine that automatically computes a loop invariant to prove

that there are no errors during the execution. The speciVcations are based on the Jahob

language, allowing developers to use formulae in higher-order logic. The developers directly

write the requirements speciVcation in the source code.

2.1.2.2 Data VeriVcation Using Formal Property Monitors

Chen et al. described MOP [160], a speciVcation language to deVne safety properties.

The speciVcations are converted then into property monitors, which are integrated as

separated aspects into an application by using AOP. MOP is an event-based language,

where an event is a state snapshot extracted from the running program. JavaMOP [97] is an

implementation of MOP that generates AspectJ code for monitoring. When the speciVcation

is violated the corresponding handlers are called. These handlers are Java code snippets

implementing logging routines, runtime recovery, etc. JavaMOP allows multiple diUering

logical formalism.

Bodden described in [25] a lightweight tool to implement veriVcation into Java appli-

cations. It uses next-time free linear-time temporal logic (LTL) formulas that are directly

speciVed into the source code as metadata annotations. Later, this author presented J-

LO [26], a tool using AspectJ pointcuts to specify the assertions written in LTL. These

solutions do not require an enhancement of the Java language. However, they imply a high

intrusiveness in the application code, specially the solution using metadata annotations.

More recently, Bodden presented MOPBox [27], a Java library to deVne parametric runtime

monitors through a set of API calls. The events are bound to the monitors by using AspectJ

aspects, or by using other notiVcation sources like, e.g., an application interface. When the

monitors reach an error state, this error is notiVed through a call-back interface.

Falcone et al. presented a uniVed view of runtime monitors both for properties mon-

itoring and enforcement [63]. The enforcement monitors halt the underlying program if

the execution sequence deviates from the desired behavior. They are based on the Security

Automata (Schneider [198]) and the Edit Automata (Ligatti et al. [123]). The former was

presented as the Vrst runtime mechanism for enforcing properties. The latter is able to

insert new actions by replacing the current input when safety properties are violated.

35

2 Related Work

2.1.2.3 Data VeriVcation in GUIs and in the Web

RAVEN [65], described by Feigenbaum and Squillace, is one of the few veriVcation ap-

proaches specially oriented to GUIs. However, it is aimed at verifying design properties. It

works like a property inspector and uses validation rules written in a XML-based language.

The rules are associated with particular Java types. Then, they are checked against the GUI

widgets in design time (i.e., oYine). The rules can also contain code from script languages

like, e.g., Jython [188]. RAVEN is implemented in Java, and provides the Architecture

interface to extend some aspects of the validation process.

Data veriVcation also represents a very important concern in web technologies. For

example, ASP.NET [110] uses validators. The validators are visual controls (a control is

an input element, e.g., a button or a text Veld) that check a speciVc validity condition of

another control. It uses Vve types of validators whose code is inserted along with the code

that describes the forms. The process can be also supported by script methods that are

executed on the server. The validators can provide immediate feedback, allowing users to

correct bad input dynamically.

HTML5 [1] uses annotations (i.e., pieces of HTML code) inside the form speciVcation

to check basic properties of the user input before the form is submitted. It provides style

annotations and script code bindings to visually enhance the feedback to users and thus

providing a more dynamic veriVcation process. It also provides a constraint validation API

to statically validate more advanced constraints, e.g., value ranges, pattern matching.

A diUerent solution for web applications was described by Hallé et al. in [79]. BeepBeep is

a Java-based runtime monitor that uses a Vlter in the server to intercept incoming messages.

Data in the messages is validated according to an interface contract written in a separate

text Vle. Invalid messages are blocked. It uses an extended Linear Temporal Logic called

LTL-FO+ speciVcally designed to address web application interface contracts. Therefore,

the requirements can only be deVned using this logic and the checking process is limited by

the functionality it provides. It allows to enable and disable the rules at runtime according

to the veriVcation needs.

36

2.2 Group 2: Approaches Describing and Analyzing the User-System Interaction Process as aWhole

2.2 Group 2: Approaches Describing and Analyzing the
User-System Interaction Process as a Whole

The approaches included in this group are intended to describe and analyze the interaction

process as a whole, including also the environment and some user characteristics. Subsec-

tion 2.2.1 summarizes some of the most relevant works aimed at describing and analyzing

multimodal interaction. Subsection 2.2.2 describes approaches aimed at collecting subjective

and cognitive data from the users. Finally, Subsection 2.2.3 includes the description of some

relevant approaches analyzing and modeling the context of applications.

2.2.1 Analysis of User-System Interaction

The interaction between the user and the system has been described, modeled or analyzed

in the literature for very diUerent purposes. It includes the development of multimodal

interfaces, as well as the evaluation of the quality of interaction and the usability of systems.

This section summarizes some of the most relevant works related to the description and

analysis of multimodal interaction. The analyzed approaches are organized into three

diUerent groups according tho their main purpose:

• Multimodal development. (Subsection 2.2.1.1) This subsection includes a survey

about notations and languages aimed at supporting design and development processes

of multimodal interfaces.

• Interaction analysis. (Subsection 2.2.1.2) This subsection describes diUerent ap-

proaches located in the Velds of evaluation of multimodal interfaces and interaction

analysis. Works in this subsection show diUerent ways to assess interaction within a

unimodal or multimodal system.

• User experience analysis. (Subsection 2.2.1.3) This subsection includes the descrip-

tion of several approaches modeling interaction with the aim of evaluating the users

behavior and analyzing their experiences with the software.

2.2.1.1 Analysis for the Development of Multimodal Systems

Model-based approaches are very present in Human-Computer Interaction (HCI) and have

evolved in order to suit the design and development of new user interfaces. Paternò et al.

distinguished in [184] between four diUerent generations:

37

2 Related Work

- (G1) Approaches focused basically on deriving abstractions for graphical user inter-

faces (e.g., UIDE [68]).

- (G2) Approaches focused on expressing the high-level semantics of the interaction,

e.g., by using task models (e.g., ADEPT [98] and GTA [212]).

- (G3) Approaches focused on dealing with diUerent characteristics and input/output

modalities of interactive platforms to facilitate the development of multiple versions,

e.g., for mobile applications. In this subsection we mainly focus on approaches of this

generation.

- (G4) Approaches dealing with ubiquitous environments in which applications, dis-

tributed everywhere, exploit a variety of sensors and interaction modalities (e.g., [44]

and [213]).

Descriptions based on markup languages

Many approaches focused their eUorts on Vnding a common notation to describe the

diUerent aspects of interaction for the development of multimodal systems. Some of them

presented new notations based on markup languages, as the ones described in the following.

The Multimodal Utterance Representation Markup Language (MURML) [113] represents

multimodal utterances as a composition of speech output augmented with gestures, and

tries to deVne the correspondence between these two modalities. MURML combines the

representation of cross-modal relationships within hierarchically structured utterances with

the description of gestural behaviors.

Another example is the Multimodal Interaction Markup Language (MIML) [12] aimed

at describing semantic interaction for diUerent platforms. This language provides a three-

layered description of multimodal interaction systems focusing on the tasks related to the

user, the system and the data models, the interaction (i.e., input and output) in diUerent

modalities, and the devices in use in the target scenario.

The Device-Independent MultiModal Markup Language (D3ML) [72] is an example

oriented to web-based applications. This domain-speciVc language is used to describe

web-based user interfaces regardless of input and output modalities. Such descriptions

allow the system to dynamically adapt the user interface depending on the current input

and output capabilities. D3ML does a remarkable eUort in aggregating all meta-information

that is relevant for rendering content on arbitrary devices and/or modalities.

38

2.2 Group 2: Approaches Describing and Analyzing the User-System Interaction Process as aWhole

The eXtensible Markup language for MultiModal interaction with Virtual Reality worlds

(XMMVR) [176] integrates voice interaction in 3D worlds, allowing users to manage objects

by using speech dialogs. This language does not provide a common “vision” of diUerent

modalities, but it is a hybrid markup language embedding VoiceXML [179] for vocal

interaction and VRML [37] to describe 3D scenes and actors.

The Extensible Multimodal Annotation markup language (EMMA) [99] represents a set of

W3C recommendations within the Multimodal Interaction Framework [118]. It describes an

XML markup language for annotating the interpretation of user input in diUerent modalities.

EMMA is focused on annotating single inputs from users, also combining information from

multiple modes. Inputs are structured along with their interpretations.

Descriptions based on interaction models

Other approaches used models instead of markup languages to describe the diUerent

aspects of multimodal interaction, and thus ease the development of multi-device user

interfaces.

Palanque and Schyn presented in [183] the ICO (Interactive Cooperative Objects) nota-

tion.

The authors presented a formal description technique that provides a formal and precise

way for describing, analysing and reasoning about multimodal interactive systems. It uses

concepts from the object-oriented approach to describe the structural aspects of a system. It

also uses high-level Petri nets to formally describe the behaviour of the system, and thus

allow its formal analysis and reasoning about the model. ICO allows also to model and

verify the fusion mechanisms for input in multimodal systems. ICO models are executable,

providing simulation capabilities already before an application is fully implemented.

Vanacken et al. described NiMMiT (Notation for Multimodal Interaction Techniques) [214],

a graphical notation for modeling multimodal interaction techniques in 3D environments.

It is a state- and event-driven notation that allow designers to describe the application by

using high-level diagrams. Interactions are described as state diagrams, which use events

that can be generated by diUerent types of devices. Multimodality is accomplished using

combinations of events from diUerent families. NiMMiT allows the creation of abstract

representations of interaction that can be easily adapted according to the multimodal

interaction scenario.

39

2 Related Work

Manca and Paternò described in [129] a XML-based logical language modeling multi-

modal interaction. It was mainly aimed at supporting the development of graphical-vocal

user interfaces. It uses components, which are Vrst deVned using an abstract level. The

components are deVned by using an authoring environment, in which designers can work

through logical descriptions of the user interface and choose the most suitable combination

of modalities. These components are then translated into more speciVc ones depending on

the modalities used and the CARE properties of the target system.

This language is based on MARIA (Model-based lAnguage foR Interactive Applications)

presented by Paternò et al. in [184]. This language enables designers to create more speciVc

user interface languages according to the CAMELEON Reference Framework. These new

languages take into account the target GUI platform and the interaction modalities used

in the target system. At design time, the language is used to create user interface-related

annotations and thus provide hints for its development. Then, at runtime, the language is

exploited to support dynamic generation of user interfaces. MARIA can be used independent

from used modalities or concrete GUI platform implementations.

CAMELEON was described by Balme et al. in [15]. It describes a reference framework

for classifying interfaces supporting multiple targets or multiple contexts of use. This

framework is structured into four levels of abstraction: description of the tasks and concepts,

the abstract user interface (AUI), the concrete user interface (CUI) and the Vnal user

interface (FUI). These four levels are identiVed and organised independently with respect

to the context in which the FUI is used. CAMELEON covers both the design and runtime

phases, structures the development life cycle and provides a uniVed understanding of

context-sensitive interfaces. Context is deVned by the authors as a triple <user, platform,

environment>.

Another approach aimed at modeling multimodal interaction is Damask, proposed by

Lin and Landay in [124]. Damask enables designers to sketch and generate multidevice

user interfaces. Designers have to deVne patterns and layers to indicate high-level concepts

of their design. Then, Damask uses them and a set of pre-built UI fragments to generate

designs for several devices, which have to be Vnally reVned by the designers.

Meskens et al. presented a similar solution in [161] called Gummy. This tool works

as a multiplatform UI builder that, by adapting and combining features of existing user

interfaces of an application, can generate an initial design for a new platform trying to keep

all user interfaces consistent.

40

2.2 Group 2: Approaches Describing and Analyzing the User-System Interaction Process as aWhole

2.2.1.2 Evaluation of Multimodal Interaction

This subsection describes evaluation approaches for Speech Dialog Systems (SDS) and

Multimodal Dialog Systems (MMDS). These approaches can be classiVed into four diUerent

groups according to the nature of the metrics used for the evaluation process:

1. Parameters quantifying user-system interaction

2. Parameters describing user eXciency and task success

3. Parameters measuring modality eXciency

4. Metrics based on the observation of user behavior

Evaluation based on interaction parameters

Fraser proposed in [70] a common set of metrics to measure the performance of SDS

based on the EAGLES (Expert Advisory Group on Language Engineering Standards) rec-

ommendations [120]. The author deVned key aspects of the system, the test conditions

and the test results. His aim was to arrive at criteria which could facilitate comparison

across systems, describing also what to evaluate and report, and how to do it. Dybkjær

et al. discussed some problems related to such metrics in [58]. One of them argues that

the methodology can be diXcult to follow and may not Vt equally well into projects with

diUerent contexts.

Möller provided in [167] an overview of interaction parameters which have been used

to evaluate SDS in the past 20 years. The author presented a characterization of these

parameters including the interaction aspect each one addresses, as well as the measurement

methods required to determine them. This work included also an overall description of the

parameter extraction process and the level these parameters are instrumented during the

dialog. Furthermore, it is standardized in ITU-T Suppl. 24 to P-Series Rec. [166].

Parameters to evaluate SDS have also been used as a basis to deVne new metrics to

evaluate MMDS. Möller and Kühnel et al. recommended in [114, 168] a set of parameters

to describe user interaction with multimodal dialog systems. These parameters are aimed

at quantifying the interaction Wow, the behavior of the system and the user as well as the

performance of input and output devices. This approach was not only aimed at transferring

some spoken dialog parameters to a multimodal context, but the authors also proposed

new parameters inherent to multimodal interaction. The authors presented an experiment

41

2 Related Work

within a multimodal smart-home system, in which such parameters were used to evaluate

user interaction.

Evaluation based on eXciency and success parameters

Other approaches focused on assessing usability in a more predictive way, basing on

parameters describing user eXciency and task success. This is the case of PARADISE

[217], a framework to compare diUerent spoken dialog strategies in a SDS. This framework

considers user satisfaction as a measure of system usability, which is objectively predicted

by measuring task success and dialog costs. Task success is measured using attribute value

matrices (AVM), which describe the aim of a dialog. Dialog costs are calculated using cost

functions. Then, the relevance of these values for the system performance is weighted via

multiple linear regression.

PROMISE [22] extended PARADISE for the evaluation and comparison of task-oriented

MMDS. The authors described a new way to deVne system performance. They split the

performance function of PARADISE into two parts, reducing the formula to normalized

cost functions Vrst. Then, the authors deVned an alternative way to calculate task success.

The result was a new formula to evaluate multimodal systems performance, since diUerent

AVMs with diUerent weights can be computed.

Perakakis et al. also used SDS eXciency parameters to assess interaction in MMDS [185,

186]. The authors described two new objective metrics (i.e., eXciency and synergy) to

identify usability problems and to measure the added value from eXciently combining

multiple input modalities. Their results demonstrated how multimodal systems should

adapt in order to maximize modalities synergy and to improve usability and eXciency of

multimodal interfaces.

Evaluation of modality eXciency

Other approaches focused on deVning new parameters to determine the most suitable

combination of modalities and thus maximize system quality. For instance, the CASE

(Concurrent, Alternate, Synergistic and Exclusive) properties [173] describe a classiVcation

space that describes the properties of both input and output interfaces of a multimodal

system. This classiVcation is based on the concurrency of data processing and the fusion of

input/output data.

This work was extended to the CARE (Complementarity, Assignment, Redundancy, and

Equivalence) properties [50] to assess aspects of multimodal interaction, specially for user

42

2.2 Group 2: Approaches Describing and Analyzing the User-System Interaction Process as aWhole

input. Complementarity, assignment, redundancy and equivalence are the properties used

to denote the availability of interaction techniques in a multimodal user interface, as well

as to predict usability during the design of a system.

Lemmelä et al. described in [121] a 5-step iterative process for identifying issues aUecting

the usefulness of interaction methods and modalities in diUerent contexts. This process was

mainly focused on evaluating applications using tactile and auditory cues. It provides a

description of those parameters aUecting the suitability of a particular modality in a speciVc

context. The process uses these parameters to select the best option for each case.

Evaluation based on the observation of user behavior

Many approaches based the assessment of usability of MMDS on the observation of user

behavior. For example,Balbo et al. described in [14] an approach to record user interaction

data aimed at detecting concrete user behavior patterns, e.g. direction shift, action repetition

or action cancellation. The discovered patterns were used to analyze deviations from a data

Wow-oriented task model in order to identify potential usability problems.

Damianos et al. presented in [52] a methodology for evaluating multimodal groupware

systems. The authors use the Multi-modal Logger described in [19] to record user behavior.

These records are then combined with human observations and user feedback to detect

usability glitches in systems under development.

Strum et al. used the MATIS (Multimodal Access to Transaction and Information Ser-

vices) system [205] to explore ways to maximize usability by combining speech and GUI

interaction. The authors automatically logged user interactions to measure usability at

diUerent levels (i.e., unimodal and multimodal) and described to what extent users notice

and use the extra interaction facilities that are available in MMDS.

Martin and Kipp described in [132] Tycoon, a theoretical framework to study the multi-

modal behavior of recorded human subjects. Tycoon speciVes four diUerent types of coop-

eration between modalities: equivalence, specialization, complementarity and redundancy.

It oUers a coding scheme and analysis metrics aimed at analysing, e.g., how redundant the

behavior of a user is, how much the user relies on speciVc modalities, the diUerent switches

between modalities, etc.

Serrano et al. described in [201] a component-based approach for developing and evaluat-

ing multimodal interfaces in mobile phones. This approach captures usage data in realistic

situations and later implements in-Veld evaluations. Data is captured at diUerent levels of

43

2 Related Work

abstraction, i.e., device, interaction, composition and task. The process supports continuous

user evaluation in an iterative development process.

2.2.1.3 Evaluation of User Experiences

Some approaches model the interaction between the user and the system with the aim

of evaluating the users behavior and analyzing the quality of their experiences with the

software.

One example is the CUE-Model, presented by Mahlke and Thüring in [127]. This model

integrates data concerning user interaction, the user experience and overall judgments of

system quality. UX is divided into three components: perception of instrumental qualities

(e.g., controllability, learnability) and non-instrumental qualities (e.g., visual aesthetics),

and emotional reactions caused by these perceptions (e.g., subjective feelings). The authors

also conducted an study from which concluded that both quality aspects (i.e., usability and

aesthetics) signiVcantly inWuence emotional reactions.

Schulze and Krömker described in [199] a conceptual framework to provide a uniform

basis for UX measurement. Their goal was to analyze UX inWuencing factors (i.e., human

and system aspects, emotions, a spatiotemporal dimension and motivation) and to obtain

indicators for product optimization. The authors designed an evaluation method by using

techniques to collect qualitative (via observation and open questions in interviews) and

quantitative user data (via Likert scales and Semantic DiUerentials).

Ali et al. described in [7] a conceptual framework to measure software quality in mobile

learning contexts. This framework is based on the ISO/IEC metrics (e.g., scalability, service

quality, etc.). The evaluation process combines structural factors, the dimensions of learning

context, and design issues aimed at addressing the learning objectives of the users or the

platform. The authors remarked the need of using metrics related to the context of use and

quality in use.

Other approaches do not use any model and are based on the direct observation of the

user. This is the case of OneClick, a framework presented by Chen et al. in [42] that aims

at capturing the users perceptions when using network applications. The authors used a

simple method in which users are asked to click a button whenever they feel dissatisVed

with the quality of the application in use. By quality of the application the authors meant

all the QoE dimensions that aUect users satisfaction (e.g., poor voice quality, screen freezing,

44

2.2 Group 2: Approaches Describing and Analyzing the User-System Interaction Process as aWhole

etc.) The method was really intuitive, time-aware, and had an application-independent

nature.

2.2.2 Analysis of Subjective Data of Users

The analysis of subjective opinions and impressions of the users is essential to evaluate

the quality of the experiences (QoE) of these users with a software or a system. It is also

necessary the analysis of some other features like users mood or their attitudes. Several of

the most relevant works aimed at collecting subjective and cognitive data from the users

are summarized in the following. The diUerent approaches are divided into two groups

according to the nature of analyzed data:

• Analysis of user ratings. (Subsection 2.2.2.1) This part describes several approaches

aimed at collecting the user perceived quality of a software, as well as at measuring

the user experiences with the software. It is also described some approaches discussing

the appropriateness of such methods for the evaluation of multimodal systems.

• Analysis of users state and attitudes. (Subsection 2.2.2.2) This part introduces Vrst

an approach describing the inWuence of users mood and attitude toward technology

use on the Vnal user-perceived quality. Then it is summarized several approaches

aimed at analyzing and measuring these two inWuencing factors.

2.2.2.1 User Ratings Collection

Questionnaires represent an eUective mean for extracting subjective information from users.

One example is AttrakDiU [83] presented by Hassenzahl et al. This questionnaire aims

at measuring the attractiveness of interactive products. Based on the Hassenzahl’s model

of UX, it uses 28 pairs of opposite adjectives to evaluate attractive (e.g., ugly–beautiful),

hedonic (e.g., cheap–premium) and pragmatic (e.g., unpredictable–predictable) attributes of

a product. There exists a lighter ten-item version called AttrakDiU mini [84].

SUS (System Usability Scale) [30], presented by Brooke, is a simple ten-item attitude

scale (Vve positives, Vve negatives) giving a global view of subjective assessments of the

usability of a product. It presents statements such as “I thought the system was easy to use”,

which are evaluated by using a Vve-point Likert scale. It has been used for both research

and industrial evaluations.

45

2 Related Work

Kirakowski and Corbett described SUMI (Software Usability Measurement Inventory) [109],

a Vfty-item questionnaire aimed at measuring user satisfaction and assessing user perceived

software quality. It provides measures of global satisfaction, as well as of Vve more speciVc

usability areas, including eUectiveness, eXciency, helpfulness, control, and learnability. It

contains questions such as “Using this software is frustrating” that are rated using the agree,

undecided and disagree values.

SASSI (Subjective Assessment of Speech System Interfaces), described by Hone and

Graham in [87], is a questionnaire aimed at providing reliable measure of users subjective

experiences with speech recognition systems. It is composed of Vfty attitude statements.

Each statement is rated according to a seven point scale from strongly agree to strongly

disagree.

Wechsung and Naumann compared in [220] the aforementioned questionnaires, plus

a self-constructed one, in order to investigate to which extent these methods for the

evaluation of unimodal systems are appropriate for the evaluation of multimodal systems.

The results showed that, in general, questionnaires designed for unimodal systems are

not applicable for the evaluation of usability in multimodal systems, since they seem to

measure diUerent constructs. Nevertheless, AttrakDiU showed the most concordance when

evaluating unimodal and multimodal systems. It was mainly due to its rating scale, that is

applicable to all systems, and to the use of pairs of bipolar adjectives, which are not linked

to special functions of a system.

In [172] the authors did a similar comparison to study the correlation between objective

data (i.e., log Vles) and subjective data (i.e., questionnaires) in multimodal interaction

environments. The contradictory Vndings showed again that, in general, questionnaires

designed for unimodal interfaces should not be used as the only data source when evaluating

multimodal systems. AttrakDiU presented again the best correlation results. Thus the

authors concluded that this questionnaire provides a proper basis to implement a reliable,

valid, and more speciVc questionnaire for multimodal interfaces.

In [219] Wechsung et al. conducted two new studies to investigate the relationship

between user subjective ratings of multimodal systems and user subjective ratings of

its single modalities. In this case the authors used the AttrakDiU questionnaire basing

on previous successful results. They argued that it is the only questionnaire, among the

analyzed in their previous work, yielding valid and reliable results for the evaluation of

multimodal systems.

46

2.2 Group 2: Approaches Describing and Analyzing the User-System Interaction Process as aWhole

In order not to overwhelm the user during test sessions, Wechsung et al. used in a

subsequent work [221] the “mini” version of AttrakDiU to collect retrospective quality

judgments of the interaction with the system. This shorter version is more suitable for

repeated assessments during a test session.

Other authors use self-constructed questionnaires to evaluate users perceived quality

and particular aspects of interaction according to the goals of the study. One example is

the work of Callejas and López-Cózar [34], who presented a report including empirical

results extracted from the evaluation of interactions with UAH (Universidad Al Habla) [32],

a SDS providing spoken access to academic information. They studied how quantitative

aspects of interaction (i.e., objective measures) aUect the quality judgments of users (i.e.,

subjective measures). Interaction parameters were used to measure system performance

and the dialog course. Moreover, the authors used a self-constructed questionnaire to allow

users to express their opinions about diUerent interaction aspects. The questionnaire is

composed of eleven questions about previous expertise, interaction issues, and perceived

performance. The questions are rated by using 5-item, custom scales.

The authors also used self-constructed questionnaires with the aim of evaluating diUerent

dialog management strategies in UAH [35]. The subjective measures provided by the

questionnaires, along with other quantitative measures, were used to assess the quality of

the strategies learned, and thus to select the optimal ones.

2.2.2.2 Users Mood and Attitude Measurement

In [221] Wechsung et al. analyzed the inWuence that attributes like users personality, attitude,

mood and cognitive abilities have in interaction quality perception. The authors showed

that, while cognitive abilities and personality traits do not inWuence quality perceptions

and interaction behavior, attitude towards technology does. They also showed that a

positive mood is linked to positive quality judgments. As conclusion, they highlighted the

importance of these two attributes when analyzing evaluative judgments of users.

In order to measure users mood, the authors used an adapted version of the seven faces

scale described in [9]. Faces scales have been largely used in the literature to measure

human satisfaction, mood or even pain. Its eUectiveness measuring users emotions has

been showed in many works. For example, Wong and Baker deVned his own face scale to

measure pain of patients in [226]. Agarwal and Meyer used a face scale in [5] to collect

emotional response data during a usability study, and then explore the diUerences between

47

2 Related Work

responses of users. In [78] Gulur et al. used a face scale to evaluate pain and mood of young

patients.

Others methods use larger and more complex evaluation scales. This is the case of SAM

(Self-Assessment Manikin) [117] developed by Lang. This method uses three scales to

measure pleasure, arousal and dominance. Each scale is composed of Vve graphic characters

representing emotions. During the study, the user places an “x” over any of the Vve Vgures

in each scale or between them, resulting in a nine-point rating scale for each dimension.

SAM has been largely used during years to measure emotions of users. For example, Mahlke

and Thüring used SAM in [127] to measure the quality and intensity of emotional reactions

of users. Minge used SAM as well in [163] to analyze the dynamics of UX, i.e., the changes

in user experiences over time.

Other works aimed at measuring users attitude towards the use of information and

communication technology. Ray et al. analyzed in [189] the attitude of men and women by

using an inventory aimed at identifying attitudes associated with gender issues reWected

in the literature. The inventory was composed of nine statements. The user had to select

the level of agreement with each statement in a Vve-point scale that ranges from Strongly

Agree (5) to Strongly Disagree (1).

Ogertschnig and Van der Heijden presented in [175] an study to measure attitudes

towards using mobile information services. As a tool for conducting the experiment the

authors proposed a new, short-form version of an attitude scale containing two subscales:

hedonic and utilitarian value. Each subscale is composed of Vve items, each one evaluated

using a Vve-point scale ranged from “Not at all” to “Extremely”.

Hassad conducted in [81] an exploratory study to examine the attitude of instructors

toward technology integration for teaching. The author described a preliminary scale

for measuring attitude toward technology integration. This scale, called ATTIS (Attitude

Toward Technology Integration Scale), is composed of an homogeneous cluster of six

attitude items which are rated by using a Vve-point scale. Each of these items represents a

diUerent facet of attitude. The results showed that this scale returns acceptable levels of

internal reliability (consistency) and validity.

48

2.2 Group 2: Approaches Describing and Analyzing the User-System Interaction Process as aWhole

2.2.3 Analysis of Interaction Context

Understanding the surrounding context is essential for the evaluation of the user experience

with a product. This is particularly true in mobile environments, where applications are

dynamically used in diUerent scenarios and social contexts. This section describes diUerent

approaches aimed at analyzing and/or modeling the context of use of applications. The

summarized works are divided into two diUerent subsections according to their main

purpose:

• Analysis of context factors. (Subsection 2.2.3.1) This part describes approaches

aimed at analyzing and discussing those contextual factors inWuencing the experience

of users with a software.

• Interaction context models. (Subsection 2.2.3.2) This part includes the description

of several approaches aimed at deVning and structuring data related to the mobile

context within a model.

2.2.3.1 Interaction Context Factors Analysis

Zhang and Adipat proposed in [233] a generic framework to guide the selection of research

methodologies and attributes for testing usability in mobile environments. The authors also

identiVed a set of challenging features of mobile interaction including the changing context,

multimodality, connectivity issues, screen and display limitations, restrictive data entry

methods and a limited processing capability and power.

Coursaris and Kim presented in [49] a review of 45 empirical mobile usability studies

analyzing the interaction context. As a result, the authors described a framework of

contextual usability including inWuencing factors (i.e., user, activity, environment, and

product), the usability dimensions to be measured and a list of consequences being impacted

by usability.

Wigelius and Väätäjä analyzed in [225] those contextual factors aUecting the experience

of mobile workers. The authors described a context divided into Vve dimensions: social,

spatial, temporal, infrastructural and task. Their Vndings emphasized the inWuence of social

and infrastructural factors in the Vnal worker experience.

Korhonen et al. presented in [112] a detailed context categorization structured into eight

categories: physical context, user, social context, location and time, device, connectivity,

task and service. They studied also how contextual factors inWuence the UX of personal

49

2 Related Work

mobile products. The authors also introduced the concept of triggering context referring to

those contextual factors that signiVcantly aUect the users experience, and the concept of

core experience to denote the most meaningful experience for a user in an episode of usage.

Wac et al. analyzed in [216] the QoE of users in diUerent daily life situations. The authors

identiVed six main factors inWuencing user ratings: user location and current time, user

previous experience, alternative devices availability, appropriateness of the application

for mobile devices, social context and attitude towards using mobile devices. The authors

used the Context Sensing Software (CSS) to automatically collect context parameters that

inWuence users QoE in Android devices, especially for highly interactive applications.

Ickin et al. analyzed in [91] the experiences of diUerent users using mobile applications,

as well as the external factors inWuencing these experiences. The authors used a blend of

quantitative and qualitative interaction data. To extract the data they used the CSS for

Android to collect quantitative interaction values, and the Experience Sampling Method

(ESM) to collect qualitative and subjective data from users.

2.2.3.2 Interaction Context Modeling

Henricksen et al. described in [86] a model of the context in pervasive computing environ-

ments. This model deVnition is structured around three main entities: people, communica-

tion devices and communication channels. The model provides a set of properties for each

entity (e.g., the id of a communication channel) which are linked to the entities by means

of static (i.e., Vxed) and dynamic (i.e., changing) associations.

Ryan and Gonsalves modeled in [194] the context on mobile usability. They considered

the interaction between the user and the device, as well as the physical environment and

the runtime software environment. The authors emphasized the importance of device

and software environment parameters in the model, mainly due to the inWuence of the

application performance over the Vnal user performance.

Thurnher et al. proposed in [210] a context framework to evaluate mobile usability

through the observation of user behavior. The authors described a model composed of

parameters derived from the Vve human senses, even including taste and smell. The values

are gathered by using environment sensors, thus avoiding additional distraction of subjects

caused by observers. This method provides a diUerent approach to evaluate mobile usability

from sensed data. The authors discuss about its potential for explaining phenomena that

could not be explained by traditional in-situ methods.

50

2.2 Group 2: Approaches Describing and Analyzing the User-System Interaction Process as aWhole

Chepegin and Campbell presented the NEXOF-RA [43], a model describing the context-

of-use of a user interacting with a particular system. The model is an aggregation of

the following three entities: user, platform and environment. The state of each entity is

described using a set of properties (e.g., position, age, CPU speed) that are obtained from

diUerent context providers. A sub-model is used to describe the platform entity, in which

the interaction is performed. It is represented as an aggregation of diUerent components

(e.g., device, web browser, network, camera).

Jaroucheh et al. described in [96] a 5-layer architecture to model contextual situations, as

well as an algorithm to track and identify such situations. The architecture uses information

from the user behavior and the context events to recognize contextual situations. Such

situations are described as a set of diUerent states considering the context history. The

authors used linear temporal logic (LTL) to check alignment between the observed situation

and the expected one.

In an attempt to categorize approaches like the described above in this subsection,

Bolchini et al. described in [29] a set of features to characterize context models. The authors

also described a 5-type classiVcation according to their main use. For this purpose, diUerent

context-aware approaches were analyzed focusing on the problem of data tailoring. The

authors also presented a framework to choose among the available models, or to deVne the

requirements of a new context model instead.

51

3
Evaluating Quality of System Output

System output is a main component of the human-computer
interaction process. Testing is essential to validate the system
response and thus assuring the quality of the output provided to
the user. This is specially true in graphical user interfaces (GUI),
the mean by which the output is provided to the users in most
applications nowadays.

Applying GUI testing into a project is not straightforward. It
is time consuming and often involves activities that are imple-
mented manually by specialized personnel. The integration of
GUI testing tools is also troublesome, mainly due to the use of
diUerent execution contexts (e.g., diUerent GUI platforms).

This chapter presents OpenHMI-Tester (OHT), a new application
framework for the development of GUI testing tools. Its open
design is aimed at supporting major event-based GUI platforms.
Its implementation is cross-platform. Furthermore, it can be
easily integrated into ongoing and existing applications due to
it being not code-intrusive. As a result, the OHT provides an
adaptable, extensible, scalable, and robust basis to support the
automation of GUI testing processes.

53

3 Evaluating Quality of System Output

3.1 Introduction and Motivation

Testing is used to assure the quality of the system output as well as the reliability and

robustness of a software in the given context in which it is intended to work. This is

specially true in the case of graphical user interfaces (GUI), where the testing stage is

critical before the software is accepted by the Vnal user and put in execution. These days

GUIs are present in most of developments, and can constitute as much as 60 percent of the

code of an application [153]. Therefore, integrating GUI testing in current developments is

essential to achieve quality.

Nevertheless, the integration of advanced GUI testing tools in most of developments is

not a fact nowadays. It is known that testers are used to apply good testing practices such

as unit testing to check the functionality of their applications, but their scope is frequently

limited to the parts without GUI [40]. Moreover, techniques developed to test the core

functionality of a software can not be directly applied to test the information and the

features of a GUI [158].

Many authors claim against current approaches for GUI testing and highlight a special

need for more eXcient approaches [6]. GUI testing is often time-consuming, as well as

expensive in terms of human resources because it usually depends on highly specialized

personnel [182]. Many of the available methods for automated testing are incomplete or

involve activities that, in most of cases, have to be implemented manually [154].

Due to the iterative process of GUI development, manually designing and maintaining

the tests requires too much eUort [6]. A simple change like rearranging the GUI widgets

may involve, for example, to modify all the test scripts [40]. GUI testing methods should be

more robust and provide a better tolerance to modiVcations.

Moreover, integrating current GUI testing approaches into a development is not straight-

forward. Normally, applications do not allow the intrusiveness of testing tools into their

source code. Thus, such tools should provide a non-invasive mechanism to test a GUI.

Applying GUI testing is also troublesome due to the diUerent execution contexts for which

applications are created. E.g., the developers can choose from a wide range of available

GUI platforms. If a GUI testing tool is aimed at testing interfaces from a speciVc platform,

then it can not be used into a project with a diUerent GUI system. GUI testing architectures

should be open to features like this.

54

3.2 GUI Testing Requirements

Additionally, related to the problems described above, we would like to pose the following

research questions:

Q1: Can a GUI testing method and its processes be agnostic to a core concept

such as the GUI platform?

Q2: Can a GUI testing method simulate the interaction of a human tester in

order to enhance the tolerance to modiVcations in the GUI while executing a

test case?

To attempt to solve the aforementioned problems and to give an answer to the research

questions, Section 3.4 describes the design of OpenHMI-Tester (OHT), a new application

framework for the development of GUI testing tools. Before this, some testing requirements

and previous design considerations are described in Sections 3.2 and 3.3, respectively.

The OHT provides a basis to automate testing processes based on runtime GUI instro-

spection and behavior observation (e.g., functional and regression testing, GUI convergence

checking). A capture/replay approach [178, 192] is used to extract GUI properties and

user behavior to create test cases at runtime. Then, the test cases are executed in the real

application to validate the software response. It enables the implementation of a scalable

testing process.

The OHT is not code-intrusive because it implements a transparent application hooking

thanks to the use of DLL injection. It provides also high tolerance to modiVcations in the

GUI design during development, as the human interaction is simulated “from the deep”

during test case playback. Moreover, the OHT provides an open and adaptable design aimed

at supporting major event-based GUI platforms.

A cross-platform version of the OHT framework was implemented and provided as

a contribution to the open-source community. The details of this implementation are

described in Section 3.5. Finally, the proposed solution is discussed in Section 3.6 and some

conclusions are provided next in Section 3.7.

3.2 GUI Testing Requirements

Before discussing the details of the OHT architecture design, the requirements that provide

the driving philosophy behind this design are introduced. These requirements have been ex-

55

3 Evaluating Quality of System Output

tracted from our experience in collaborating with SAES [202], a military software company

specialized in medium and large GUI-based developments.

The OHT is aimed at providing a fully functional capture and replay framework to

implement GUI testing. According to the problems described above, the main requirement

is to provide an open design in terms of the operating system, the windowing platform, the

capture/replay functionality and the representation of the test cases. The OHT should be

also easily integrated into new and existing developments.

Cross-platform. To provide a cross-platform architecture is mostly an implementation

concern, which is later discussed in Section 3.5. However, it is a design concern to propose

a Wexible and adaptable architecture to allow the use of potentially any windowing system

(e.g., Qt [174], GTK+ [208]). Thus, the proposed architecture should be agnostic to this

feature, at least, when implementing its core functionality.

Functionality. The basic functionality of a capture and replay tool should be provided.

These processes should be open enough to be enriched with new functionality if needed

(e.g., to implement automatic validation of the software response during test case playback).

The replay process should work into a real execution of the application and “from the deep”,

i.e., reproducing as faithfully as possible the interaction of a real human with the tested

application. This process should be also robust and tolerant to changes in the GUI and

missing objects, as well as to window moving and resizing actions during playback.

Additionally, the OHT architecture should be open to the implementation of new and

advanced testing features like, e.g., property picking to allow the tester to check the

properties of a selected object, screenshots to support visual validation, etc.

Test cases representation. The OHT architecture should enable the integration of dif-

ferent test case representations. The developers should be allowed to use their own method

to encode the test cases (e.g., based on a markup or script-based language). Regardless of

the representation in use, the framework should provide generic storing and retrieving

functionality during the capture and replay processes, respectively. The developers should

also be enabled to add new events or actions to extend the functionality of the test cases

(e.g., pauses, breakpoints, messages, etc.)

Integration. It is also required that the OHT has to be integrated into new, ongoing

and already existing developments. Therefore, the proposed framework should provide a

transparent, automatic and not code-intrusive application hooking to the tested application.

56

3.3 Preliminary Considerations for the Design of a GUI Testing Architecture

3.3 Preliminary Considerations for the Design of a GUI
Testing Architecture

This section includes some preliminary considerations to the design of the OHT architecture.

Concretely, it discusses who are going to be the main participants in the GUI testing process,

how the generated test cases have to be structured, and what kinds of data and information

will be generated and exchanged in such a GUI testing architecture.

3.3.1 Architecture Actors

In order to avoid confusion for the reader, in this work we distinguish between two diUerent

roles or actors within the GUI testing process.

On the one hand we have the Vgure of the tester. This actor represents the human that

interacts with the GUI testing tool to test the target application. He/she uses this tool to

create and organize the test cases, and later to execute them against a real execution of the

application to test.

On the other hand we have the Vgure of the developer. This actor is responsible for

adapting the GUI testing tool to a speciVc testing environment in the case that some of its

features change (i.e., operating system, GUI platform and data model). This actor needs to

have a detailed knowledge of the GUI testing architecture for its adaptation.

3.3.2 Organization of the Test Cases

Many of the testing approaches analyzed in this research work (see Section 2.1.1) used test

suites to arrange a set of test cases related to the same target application (e.g., CppUnit [64]

or jUnit [90]). A test suite will include, therefore, all the information needed during the

test case playback process. Encapsulating the whole description of a set of test cases into a

single object simpliVes the internal testing processes in a testing architecture, as well as the

communication between its internal modules.

A test suite can be structured into three levels, as described in the following:

• Test Suite: it includes a set of test cases referring to the same application and, usually,

with a common testing goal. This element may also include some meta information

and a reference to the tested application.

57

3 Evaluating Quality of System Output

• Test Case: this element describes a set of ordered test items to be systematically

executed into the target application. It may also include meta data such as a test case

description, its purpose, etc.

• Test Item: it is the smallest element in the description of a test case. Each test

item includes the information of a single action that can be executed in the target

application.

3.3.3 Interaction and Control Events

In a GUI testing architecture there are several modules sending information to each other

to notify, e.g., GUI actions, control signals, etc. For this purpose, the architecture can use

“events” as a mechanism to encapsulate and exchange information in a generic and uniform

manner.

Each event may include information from a diUerent nature. This nature can be deter-

mined by using a type and a subtype values of the event object. The events in a GUI testing

architecture can be classiVed in four groups according to their main purpose:

• GUI Events: contain information related to GUI actions (e.g., layout changes, mouse

clicks, keystrokes). These events normally are related to a single GUI widget.

• Non-GUI Events: these events contain other relevant information about the interac-

tion with the target application (e.g., timer events).

• Meta Events: custom events deVned by the developer to implement actions that are

not natively supported by the windowing platform (e.g., pop-up messages, a pause

during test playback, to play an alert sound).

• Control Events: these events are also deVned by the developer to implement control

signaling between the internal modules of the GUI testing architecture (e.g. the

“playback process start” event).

3.4 The OHT Architecture Design

The OHT architecture is structured into two main software elements, each one with a

diUerent purpose. On the one hand the HMI Tester (HT), that is aimed at controlling the

record (capture) and playback (replay) processes. This element also manages the creation

58

3.4 The OHT Architecture Design

and maintenance of the test suites. On the other hand the Preload Module (PM), the

software element that is “injected” into the tested application with the aim of capturing user

interaction data as well as executing new actions into the GUI. Both modules communicate

with each other.

The OHT architecture can be also divided into Vnal and adaptable modules. Final modules

are those implementing generic functionality (e.g., the module implementing the record

logic). These modules (depicted using non-colored boxes in Figure 3.1) represent most of the

proposed architecture and their functionality never change. Otherwise, adaptable modules

are those whose functionality can be adapted to support new testing features such us the

operating system or the GUI platform (e.g., to include a speciVc GUI actions Vlter). These

modules are represented by colored boxes in Figure 3.1.

Figure 3.1 HMI Tester and Preload Module architecture.

As the reader can see in Figure 3.1, the capture/replay process involves the communication

between the HT, the PM and the application to be tested (i.e., the target application). The

HT and the PM can communicate directly, e.g., by using a mechanism like sockets. During

the capture process, the PM sends to the HT those events generated by the user interaction

with the target application that were captured by the event Vlters. During replay, the HM

sends events to the PM for their execution into the target application.

59

3 Evaluating Quality of System Output

However, how is it performed the communication between the PM and the target

application? How can two independent software elements be connected to each other in a

non-intrusive manner? The answer is by using library preloading.

The library preloading method [89, 171] enables the inclusion of new functionality

into a “closed” application by preloading a dynamic library. For this purpose, the PM is

implemented as a dynamic library including, among others, the functionality needed to

perform the preloading action. Then, before the HT launches the target application for a

capture or replay process, it Vrst enables the preload option of the operating system and

sets the PM as the library to preload. As a result, when the target application is launched,

the PM is automatically loaded and deployed into the target application.

3.4.1 The HMI Tester Module Architecture

The HMI Tester (HT) is the software element used by the tester during the testing stage. It

provides a graphical user interface to allow the tester to control the recording (capture) and

playback (replay) processes. This element has two main duties. First, it is responsible for

controlling the recording and playback of test cases. It also provides a mean to manage the

lifecycle of a test suite, including its creation, adding new test cases, Vll the test cases with

the information received from the PM, etc.

As shown in Figure 3.2, the HT is composed of a set of modules including the functionality

necessary to manage the recording and playback processes. It also includes a module aimed

at controlling the preloading process, which depends on the operating system in use.

Additionally, another adaptable module lets the developers adding to the architecture

their preferred representation of a test suite, including load and save functionality. The

most signiVcant modules of this part of the OHT architecture are further described in the

following.

DataModelAdapter. It is used to integrate a custom representation of the test suite into

the OHT architecture. The developers can implement their own DataModelAdapter to pro-

vide the DataModelManager with the functionality to manage such a new representation.

PlaybackControl. This module is used to manage the test case playback process. It uses

the ExecutionThread to send GUI events to the PM and, when necessary, including control

signaling events to remotely guide the playback.

60

3.4 The OHT Architecture Design

HMI TESTER

PRELOAD MODULE

TESTED APPLICATION

depending on the data modeldepending on the OS

comm

data-model
adapter

user interface

preloading
action

EVENT DATA

overall process
controller

GUI
controller

data-model
manager

execution
thread

playback
control

recording
control

test item
manager

Figure 3.2 HMI Tester module detailed architecture.

RecordingControl. This module is used to manage the test case recording process. It

sends control signaling events to the PM to control the process. It also receives from the PM

the events captured during interaction, and stores them in the current test case.

PreloadingAction. This module is intended to control the preloading process both during

test recording and playback. First, it enables the preload option in the operating system

and establishes the PM as the library to preload. Then, it launches the target application.

Comm. This module encapsulates all the functionality related to communications. It is

used in the HT to send new events to the PM during test case playback, and to receive event

data from the PM during the test case recording process.

3.4.2 The Preload Module Architecture

The Preload Module (PM) is the software element that is hooked up to the target application

to capture GUI events as well a to execute GUI actions received from the HT. Figure 3.3

depicts the architecture of the PM. It is distributed similarly than in the HT: some modules

implement Vnal and generic behavior (i.e., communication to the HT and main logic)

61

3 Evaluating Quality of System Output

and other modules may be adapted, if necessary, depending on the GUI platform or the

operating system. The modules implementing generic behavior are described next.

Logic. Its main task is the initialization process, during which the Comm, EventConsumer

and EventExecutor modules are created and deployed into the target application. After

initialization, the PM is hooked up into the target application.

Comm. This module works similarly as described above in the HT architecture. During

recording it is used to send the captured events data to the HT. During playback it receives

from the HT the events to be executed. In both processes, this module properly delivers

control events to the Logic and the rest of the events to the recording or playback modules.

Regarding the requisite of designing an open architecture, some of the modules of the

PM may be adapted to Vt a diUerent operating system or a diUerent windowing platform.

These modules are described in the following.

PreloadingControl. This module is responsible for detecting the application launching

and, once it occurs, call the initialization method included in the Logic module. Since this

module might use non-cross-platform methods, it is probably that it has to be extended

depending on the operating system.

EventConsumer. It captures the events generated as per user interaction with the target

application. This module properly manages the data included in these events, which is sent

to the HT later on. This module is also responsible for installing the event Vlters for the

capture process.

EventExecutor. This module executes the GUI events received from the HT. Each time a

new event is received, it extracts relevant data from the event and either posts a native event

to the target GUI, or it executes an equivalent action to perform the requested behavior

(e.g., posting a mouse-click event vs. executing a method implementing a click on a GUI

widget).

At this point we can give an answer to research question Q1. The OHT architecture

uses Vnal modules to include all the generic functionality of the testing process (e.g., tester

interface, management of recording and playback processes, synchronization of the PM and

the HT). Then, adaptable modules are used in the “boundaries” of the architecture to add

the functionality depending on speciVc technologies (i.e., GUI platform or operating system)

or speciVc format (i.e., the test suite representation). As a result, much of the framework

functionality is reused regardless of the speciVc execution context in use.

62

3.4 The OHT Architecture Design

HMI TESTER

PRELOAD MODULE

TESTED APPLICATION

depending on the OSdepending on the GUI

comm

preloading
control

logic

EVENT DATA

GUI EVENTS

event consumer

event manager

event executor

event handler

Figure 3.3 Preload Module detailed architecture.

3.4.3 The Event Capture Process

The event capture is the process by which the HT gets the events generated by the target

application during the user interaction. In order to provide a non-invasive process, the HT

uses the PM, which is preloaded and deployed into the target GUI to record the events

when a test case is being recorded. The event capture process can be summarized in the

following steps:

1. Event generation: while the tester interacts with the GUI of the target application

(e.g., clicking a button, pressing a key) several GUI and non-GUI events are generated.

The data included in these events has to be captured and sent to the HT.

2. Event capture and Control signaling: the PM gets the events generated in step 1,

extracts their relevant data and encapsulates it on new test items. Then, the test items

are sent to the HT. During this stage, control signaling is used to notify the HT about

the target application state (e.g., the application was closed).

3. Event handling: the HT get the test items sent by the PM. In the case it is a control

event, an action will be executed according to the notiVcation. Otherwise, the test

item will be stored in the current test case.

63

3 Evaluating Quality of System Output

4. Event storing and Control events handling: control events are properly handled

(e.g., when it is notiVed that the target application was closed, the current test case is

Vnished and stored into the current test suite). GUI events are stored into the current

test case respecting its order of arrival.

Figure 3.4 Diagram of the event capture process.

3.4.4 The Event Playback Process

The event playback is the process by which the HT sends the events stored into a test case

to the PM for their execution. Control events are also sent in order to manage the process.

When the PM receives new events, it will post them into the event system target application.

These events describe the actions to be performed over the tested GUI. The event playback

process is divided into the following steps:

1. Event dispatching and Control signaling: the test items (i.e., the events) stored in

the current test case are sent to the PM. Control events are also sent to notify about

the process state (e.g., the test case playback has Vnished) or about other actions to

be taken (e.g., close the target application).

2. Event pre-handling: when a new event is received in the PM, its type value is used

to decide whether the event is a GUI event, and therefore it has to be posted to the

64

3.5 The OHT Implementation

target application, or it is a control event, and thus it has to be handled by the PM

Logic module.

3. Event posting and Control events handling: the PM executes the received event

(which represents an action in the GUI) either by posting the corresponding native

event into the target GUI event system, or by executing an equivalent action (e.g. call

the click method of a GUI button).

4. Event handling: the GUI events posted by the PM (or indirectly posted due to the

execution of the equivalent action) arrive to the GUI event system and are executed.

Figure 3.5 Diagram of the event playback process.

3.5 The OHT Implementation

As stated above, the OHT architecture is composed of several modules implementing

generic and Vnal functionality, and other modules that may be adapted to Vt the OHT to

diUerent testing environments. This section describes Vrst the implementation details of

the generic functionality. Then, it is described how the proposed architecture should be

adapted to a given windowing platform or operating system by adapting some modules.

Finally, the implementation details of a fully-functional OHT-based capture and replay tool

for the Qt GUI platform and Linux systems is described.

65

3 Evaluating Quality of System Output

3.5.1 Implementation of Generic and Final Functionality

3.5.1.1 Generic Data Model

As described in Subsection 3.3.2, the OHT architecture uses test suites to arrange a set of

test cases related to a target application. Such test suites are described by a generic data

model, depicted in Figure 3.6. A test suite is linked to a single binary application and is

composed of a set of test cases. Each test case represents a set of ordered test items (i.e.,

events) to be executed into the target application.

Figure 3.6 Generic Data Model Hierarchy.

Such a model design is Wexible and generic enough to represent a set of test cases for any

GUI platform. The TestItem object may be extended by both generic and speciVc modules

to carry those data needed during the GUI testing process (e.g., control signals, user action

events, etc.) The DataModelAdapter module will be responsible for translating a generic

test suite object (and its internal objects) to a speciVc representation according to the project

needs, as described in Subsection 3.5.2.1.

3.5.1.2 Generic Recording and Playback Processes

First of all, the OHT architecture needs a way to synchronize the interaction between the HT

and the PM during the recording and playback processes. For this purpose, it is proposed the

use of a control events hierarchy that is based on the TestItem object deVned on the generic

data model described above. A partial view of this event hierarchy is depicted in Figure 3.7.

All the control signaling events are deVned as derived of a generic ControlTestItem.

66

3.5 The OHT Implementation

Figure 3.7 Control Signaling Events Hierarchy.

During the recording process, the GUI events produced during the user interaction with

the tested application are captured by the PM and stored by the HT. The HT uses the control

events to signal, for example, the start of the recording process, a pause, or to notify that

the process has to Vnish immediately. The PM uses control events to notify about the state

of the application (e.g., the application crashed).

During the playback process, the HT sends to the PM sequences of events (which were

captured in a previous recording process) for their execution in the target application. These

events are injected into the application as if a real human tester would be using it. Again,

the HT uses control events to control the recording process (e.g., to notify that it is going

to start sending new test items). The PM executes the events described by each of the

test items, and then answers with a CTI_EventExecuted control event to synchronize the

process in both sides.

3.5.2 Implementation of SpeciVc and Adaptable Functionality

As stated above, a few modules of the OHT architecture may be adapted to suit the speciVc

features of diUerent testing environments. The adaptation encompasses implementing just

the speciVc behavior required to interact with that particular environment. By leveraging

the common architecture, the adaptation modules allow the OHT architecture to be Wexible

enough to support a wide range of existing operating systems and windowing platforms, as

well as diUerent test suite representations.

How these modules are adapted and plugged into the OHT architecture with this purpose

is described in the following. Additionally, it is provided a detailed description of the

67

3 Evaluating Quality of System Output

particular adaptations used to create a Vnal version of the Open HMI Tester for Linux

systems and Qt-based applications. More details related to this implementation are described

next in Subsection 3.5.3.

3.5.2.1 Using the DataModelAdapter

One of the requisites of the OHT architecture was to allow the developers to use their

own representation of the test cases (see Section 3.2). In accordance with this purpose

the OHT provides the DataModelAdapter, a module that serves as a bridge between the

generic description of test suites that is used internally in the OHT (described in Subsec-

tion 3.5.1.1) and the custom representation used by the developers. This adapter allows the

DataModelManager to manage the information in the test suites in a uniform and generic

way.

The developers have to provide in this module the functionality to translate all the data

within a test suite in their custom format into a test suite in the generic format, and vice

versa. In this manner, diUerent representations of a test suite (e.g., stored in a local script

Vle, in a XML Vle in a remote web server, or even using a URL) can be seamlessly integrated

and properly managed into the OHT architecture.

For the Vnal version of the Open HMI Tester described in Subsection 3.5.3, XML Vles

were used to describe the test suites. With this aim, two methods had to be implemented

in the new class XMLDataModelAdapter. The method file2testSuite() is used to create a

generic test suite object from a given Vle path. It uses a DOM Parser to read the XML Vles

describing the test suites. The method testSuite2file() creates a XML Vle from a generic

test suite object. It uses XML visitors to extract the data from the test suite objects and

return the corresponding XML string.

3.5.2.2 The Preloading Process

One of the main features of the OHT architecture is using library preloading to transparently

hook the Preload Module (PM) into the binary application to be tested. This process is

divided into two stages:

1. The preload option has to be enabled in the operating system. The HT has to indicate

that the library in which the PM is encapsulated has to be loaded along with the

target application.

68

3.5 The OHT Implementation

2. The start of the target application has to be detected anyhow by the PM to start

deploying the capture and replay services.

During the Vrst stage, the PreloadingActionModule in the HT is in charge of conVguring

the preload action. This functionality depends on the operating system. Since the Vnal OHT

implementation provided as proof of concept is intended to run in Linux systems, then it

was used the LD_PRELOAD environment variable for this purpose. This variable can be used

in most UNIX systems to modify the normal behavior of the dynamic linker.

During the second stage, the PreloadingControlModule in the PM has to detect the target

application start. For this purpose, the provided implementation includes in this module an

overridden version of the method. This method is called during application startup in X11

based systems. The PM uses this method to start its deployment into the target application.

3.5.2.3 Adapting the GUI Event Recording and Playback Processes

First of all, we need to represent the GUI events that are sent between the HT and the PM

during the event capture and playback processes. Since most of event-based GUI platforms

like Qt [174], GTK+ [208] or JavaFX [111] arrange GUI events by using a hierarchy, a

similar but simpler and more generic event hierarchy was created to be internally used

within the OHT architecture.

The OHT uses the generic GUI events hierarchy depicted (partially) in Figure 3.8. This

event hierarchy is based on the TestItem object included in the generic data model described

in Subsection 3.5.1.1, and it is structured into three levels. Level 0 represents the base of

the hierarchy. Level 1 includes diUerent event sources in a GUI-based application. Level 2

includes all the diUerent events that may be capture/executed in a GUI.

During the recording process, the native GUI events are captured by the EventConsumer

module in the PM, and then translated into events of the generic hierarchy. The capture

of native events has to be implemented depending on the windowing platform in use. For

example, developers can install event Vlters in platforms like Qt and GTK+, or they can use

event listeners in platforms like JavaFX. For the Vnal implementation of the OHT, that is

intended to test Qt-based applications, an event Vlter is installed into the main GUI events

loop during the preloading process.

During the playback process, the HT sends generic GUI events to the PM, which executes

them by means of the EventExecutormodule. This module Vrst translates the generic events

69

3 Evaluating Quality of System Output

Figure 3.8 Generic GUI events hierarchy used in the OHT architecture.

into native ones, and then post them into the GUI events system. Again, to get access to

the native GUI events the process have to be implemented depending on the windowing

platform in use. In the Vnal implementation of the OHT the native events are created using

the data included into the generic ones. Then they are directly posted to the main Qt event

loop. Some functionality is directly simulated over the target application instead of posting

the native events to provide a better testing experience (e.g., to simulate mouse movement).

At this point we can give an answer to research question Q2. As described above, the

OHT architecture is intended to inject GUI interaction events directly into the main event

loop of the target application. It uses the adaptable modules to create native interaction

events and post them into the native event system, in the same manner the use of mouse

and keyboard devices is managed in most of event-based GUI platforms. As a result, the

playback process simulates the interaction of a real human, improving the tolerance to

changes in the GUI (e.g., resize or rearrange the GUI widgets) as further described in

Subsection 3.6.4.

3.5.3 Technical Details About the OHT Implementation

A Vnal implementation of the Open HMI Tester was created as proof of concept for the

approach proposed in this chapter. As described above in Subsection 3.5.2, this Vnal version

of the OHT is intended to work in Linux operating systems and with applications based

on the Qt4 [174] windowing platform. XML is used to store the test suites into text Vles.

70

3.6 Discussion

Standard C++ was used along with the Qt system to provide a cross-platform tool that can

be used in Linux, Windows and OS systems.

This version of the OHT is ready to use and to be incorporated into production. It

is provided as a contribution to the open-source community and can be downloaded

from [133]. It allows the testers to record test cases from the interaction with Qt-based

applications. It includes the functionality of mouse and keyboard (e.g mouse click and

double click, mouse wheel, key presses) as well as some window functionality such as close

events.

The test cases are arranged into test suites, which are stored into XML Vles to be executed

later. The tester can load a test suite Vle and choose among all the available test cases for

the selected target application. The GUI events included into the test cases are executed as

if a real human tester would be using the mouse and the keyboard. This is the reason why

the OHT is tolerant to changes in the GUI design, to missing objects as well as to window

moving and resizing actions during playback.

Figure 3.9 depicts how the Vnal implementation of the OHT works with a calendar

application extracted from [211]. (1) Depicts the OHT in record mode. Before recording a

new test case, the tester has to provide a name to identify it in the current test suite. (2)

During recording, the actions of the tester are recorded into the test case. The tester can

also move and resize the windows participating in the test. (3) Depicts the OHT in ready

mode. In this state, the tester can create a new test suite, add a new test case to an existing

test suite, or select a previously recorded test case for its playback as shown in the Vgure. (4)

Depicts the OHT in playback mode. The selected test case is executed automatically until it

is Vnished or the tester (or an application crash) halts the process.

3.6 Discussion

The Open HMI Tester (OHT) provides a framework to develop GUI testing tools based on

runtime GUI introspection. It uses a capture and replay approach to generate test cases

directly from user interaction and without building any model of the application. There are

some examples in the literature using this approach. However, the OHT provides a cross-

platform and open architecture that can be adapted to work in diUerent operating systems

or with diUerent GUI platforms. Moreover, its functionality can be easily extended to

71

3 Evaluating Quality of System Output

(1) The OHT before recording a test case.

(2) The OHT during recording.

(3) Selecting a test case for replay.

(4) The OHT performing the actions previously recorded.

Figure 3.9 Open HMI Tester for Linux+Qt at work.

72

3.6 Discussion

implement many diUerent GUI testing functionality. The main contributions and limitations

of the approach proposed in this chapter are discussed in the following.

3.6.1 Architecture

The OHT architecture describes a framework to automatically generate and execute test

cases in GUI-based applications. The developers do not need to build or maintain any model

of the target application. The test cases are automatically generated while tester interaction

with the GUI application to be tested. They are then stored into a test suite for the later

implementation of functional and regression testing.

The OHT is intended to serve as a basis for the development of GUI testing tools. It is

fully portable since it is written using standard C++ and its deVnition is not linked to any

operating system or GUI platform. The OHT is open-source. The developers can easily

extend its implementation to support new windowing platforms, as well as to customize

the testing process according to their needs (e.g., to capture only a subset of GUI events, to

test performance by executing test cases repeatedly). As a result, the OHT architecture can

be used regardless of the GUI platform or operating system used in the target application,

as posed in research question Q1.

3.6.2 The Test Case Generation Process

Many related approaches implement automated test generation by searching all possible test

cases in a model of the whole GUI [104, 155, 157, 223, 224, 228, 231] or a part of it [164, 215].

The OHT uses a capture and replay approach instead, in which the test case generation

process is guided by the tester. It is the tester who, during the test case recording process,

decides what widgets and actions are relevant for testing, thus determining the coverage

criteria.

Such a process allows the tester to focus their eUorts only on the relevant parts of the

GUI, avoiding to build and maintain a whole and heavy model of it. In most cases this leads

to a smaller set of generated test cases. This set may also grow incrementally in parallel

with the development, thus reducing the number of modiVed test cases due to a change in

the GUI design or functionality.

However, using a human-guided method may result in an incomplete testing process

due to missing test cases. Some GUI functionality may remain out of the testing process.

73

3 Evaluating Quality of System Output

Therefore, it might represent a risk that the whole responsibility of creating a complete test

suite falls on the testers.

Moreover, some authors argue that the maintenance of capture/replay tests is expensive

due to the GUI is constantly changing during the development [75]. The OHT tries to

mitigate this problem by simulating the human actions directly in the core of the GUI

system. Other authors argue that capture/replay methods postpone testing to the end of

the development process when the GUI is already functional [182]. The OHT improves

tolerance to changes in the GUI design (see Subsection 3.6.4), which reduces the number of

obsolete test cases due to GUI design modiVcations.

3.6.3 Validation of Software Response

Some testing approaches use test oracles to validate the application output. Oracles include

a reference to the results expected after the playback of a test case. Atif Memon introduced

in [153] the usage of test oracles in GUI testing. He proposed using test oracles to validate the

GUI step by step instead of validating the results once the test case playback has Vnished,

because the Vnal output may be correct but intermediate outputs might be incorrect.

However, building test oracles for all the conditions to be validated in a GUI at runtime

may result in a time-consuming and expensive process in terms of human resources.

The OHT architecture allows testers to use replay functionality to validate the application

output by performing observation-based testing [122]. Visual veriVcation can be used during

test case playback to implement functional and regression testing. GUI convergence can be

also checked. This might also represent a tedious process for testers. It might be dangerous

as well if the whole validation process rests on the ability of human testers. To attempt to

solve these problems, a semi-automated alternative for validating GUI output based on the

idea described in [146] is proposed.

Thanks to the open nature of the OHT architecture, the test case playback process can be

easily extended with further functionality to automatically check GUI properties at runtime.

The events set used internally in the OHT can be extended with new meta-events called

veriVcation points to describe the expected state of some GUI properties at a speciVc time.

Such meta-events, which could be integrated into the test cases, e.g., by using an external

editor, are then checked during playback. As a result, the observation process performed by

74

3.6 Discussion

the testers is now supported by automatic checking of GUI properties. This represents a

main concern for future work (see Section 3.7).

Regardless of how the application output is validated, the OHT architecture enables the

implementation of the testing process directly over the target application at runtime. This

allows testers to perform a more accurate and faithful testing process than if an intermediate

model is used instead. Using a running instance of the target application to create and

execute the test cases allows to test those “hidden” options conVgured within the application

code or in the GUI design speciVcation, which are only available at execution time.

3.6.4 Tolerance to ModiVcations, Robustness, and Scalability

During the test case generation process, new elements might be added to the GUI design.

The tester can deal with this problem by creating a new test case involving the new GUI

widgets, or by editing an existing test case to add the new actions to be executed. When

GUI elements are removed, the tester can replace the out-dated test cases by new ones. The

out-dated test cases may also be edited to remove the obsolete actions.

However, the testers might not take any of the proposed solutions. In this case, in

order to avoid malfunction in the target application, the playback process in the OHT

architecture foresees the missing GUI elements and do not perform the corresponding

actions. This feature provides the OHT with high tolerance to changes in the design of the

target application.

It is also necessary to provide tolerance to those actions of the tester or system features

that may make the playback scenario diUerent to the recording scenario (e.g., resizing the

window of the application being tested, using a diUerent screen resolution). In order to try

to mitigate the side eUects of these “external” actions, the OHT architecture follows the

following two rules.

On the one hand, during recording, it is stored only essential data of the interaction

process (e.g., the button in which to perform a click). Thus, other aspects of the GUI or

the user interaction can be diUerent during playback (e.g., the current position and size of

the button). On the other hand, during playback, the user actions are replayed by posting

events deep in the GUI (i.e., in the main event loop). This allows the OHT to simulate the

interaction of a real mouse and keyboard devices as posed in research question Q2.

75

3 Evaluating Quality of System Output

The OHT architecture is also designed for robustness. The whole lifecycle of a test case

(i.e., record, storage, load and playback) is implemented within the architecture. Human

intervention is reduced to the actions performed by the tester while recording a test case.

The fact that the developers or testers do not have to build, verify or complete a GUI model

increases robustness as well. However, many times in this chapter it has been mentioned

that the test cases are open to be edited or added with new events or meta-events by using

external tools. This might represent a source of inconsistencies and errors in the test cases.

To avoid putting the robustness of the OHT at risk, the editing methods should be safe and

trustworthy.

Scalability is another of the strengths of this architecture. During development, a GUI

may be added with new elements, even with new sections or windows. To face GUI changes,

the tester can (a) add new test cases, (b) replace out-dated test cases by new ones, or (c)

update obsolete test cases by edition. In the worst case scenario, the number of test cases in

a test suite will grow linearly with the GUI size. In other approaches in which test cases are

automatically generated from a model, the number of test cases grows exponentially when

new elements are added to the GUI. As conclusion, the testers will be responsible for the

Vnal amount of test cases in a test suite.

3.6.5 Performance Analysis

In order to evaluate the OHT architecture, the implementation described in Subsection 3.5.3

was used with some of the Qt-based desktop applications available at [211]. A set of

applications including a GUI with many of the basic widgets (e.g., buttons, line edits, check

boxes) as well as other more complex ones (e.g. calendar widgets) were selected for testing.

In general, the evaluation of the proposed architecture presented promising results. The

OHT was able to capture the interaction in the binary applications used in the experiment,

creating as a result one test suite for each application. The test cases were executed later

simulating the previously recorded keyboard and mouse events with accuracy. There were

some problems when simulating some advanced actions performed by the tester, which

are described at the end of this section. Since no models nor representations of the GUI are

used, then the overhead introduced by additional test case or oracle generation processes

was nonexistent.

76

3.7 Conclusions

The recording process implies capturing the native GUI events, their transformation

to the internal test item format, sending them to the HMI Tester and store the items into

the current test case. During this process, no symptoms of time delay were observed. The

response of the target application was as usual. Note that the process is carried out between

one action of the tester and the next one, thus the observed delay is negligible.

The playback process implies reading the events from a test case, send them to the

Preload Module, translate the events to the native format and Vnally execute them. The

process was executed Wuently, specially thanks to the idle time introduced between every

two GUI events to faithfully simulate the interaction of a real user. Note that the set of

events captured during recording (i.e., mouse, keyboard and some window events) do not

even represent, in most of cases, the third of the events generated in a GUI.

Nonetheless, the performance of the OHT might be compromised if it is not used an

eXcient implementation of event capture and playback processes. The developers should

provide eXcient event Vltering during capture process to avoid bottlenecks. It is essential

discarding dispensable events such as timing or other non-GUI events. They should also

provide a faithful replay process. With faithful we do not mean to replay executions with

the highest Vdelity, specially considering that capturing the features of the whole execution

environment during recording is inconceivable. In most of cases, a small set of GUI events

is enough to simulate testers actions faithfully and eXciently.

Regarding the Vdelity of the playback process, some aspects of the simulation of the

human tester are still unsupported. It is mainly due to the low maturity of the OHT

architecture implementation. As mentioned above, there are some advanced interactions

like drag and drop, as well as some advanced GUI elements like widget tables and modal

windows that, in order to be supported, need further implementation in both the capture

and execution modules. The future implementation of such features should not comprise

the current eXciency of the testing process.

3.7 Conclusions

The GUI represents the mean by which the users interact with the application in most

of cases nowadays. It is also the mean used by testers to check if the design and the

functionality of an application are the expected.

77

3 Evaluating Quality of System Output

Testing the GUI is essential before the Vnal user accepts a software. Nevertheless, the

testing stage requires important time and human resources. GUI testing requires also special

tools for the automation of its processes. There is a lack of such a tools, specially in the

open-source community. Moreover, this stage is particularly troublesome in the industry,

where GUIs tend to be larger and more complex, and the execution environment often

changes for every diUerent project.

The OHT architecture presented in this chapter tries to mitigate these problems. It pro-

vides a cross platform, adaptable, and extensible framework that supports the automation of

many diUerent testing processes based on GUI introspection, the capture of user interaction,

and the execution of actions in the tested application. It enables the implementation of

robust testing processes that simulate the tester actions from the core of the GUI system,

which also increases the tolerance to changes in the GUI design.

Its design has been driven by the requirements found in GUI-based industrial develop-

ments, and its implementation has been successfully integrated into some of them. The OHT

is provided as an open-source and ready-to-use framework. It can be directly used within

Qt-based applications and can be easily adapted to work in diUerent testing environments.

78

4
Evaluating Quality of Users Input

Chapter 3 presents a solution to improve the quality of system
output. Besides system output, users input is the other main
component of human-computer interaction. Validating the input
data provided by the users is essential to assure the quality of
an application, enhance its robustness, and prevent malfunction.

Runtime VeriVcation (RV) provides essential mechanisms to
implement data veriVcation. However, RV often entails complex
and formal processes that might be inadequate in scenarios in
which only invariants or simple safety properties are veriVed.
This is particularly frequent when verifying users data in GUIs.

This chapter describes S-DAVER, a lightweight framework to im-
plement separate data veriVcation that can be easily integrated
into a GUI. It decouples the whole veriVcation logic from the
business logic, and includes the veriVcation rules in separate
Vles. The rules are written in interpreted languages and can
be changed at runtime without recompilation. Visual feedback
is used to assist developers during testing, and to improve the
experience of users during execution.

79

4 Evaluating Quality of Users Input

4.1 Introduction and Motivation

Software veriVcation and validation processes (V&V) are essential to provide integrity

and robustness into an application. Runtime VeriVcation (RV) is a special case of V&V

in which the execution of a program is monitored to determine if it satisVes correctness

properties [191]. The data is veriVed within the runtime context as soon as it is produced

instead of using a static representation of it [26].

GUIs are a particular case in veriVcation. A GUI is an aggregation of widgets that hold

data introduced by users. These data have to meet a set of constraints and content guidelines

in order to avoid unexpected results or application crashes. Applying V&V processes into

a GUI is, therefore, essential to verify the data constraints in real-time. However, the

properties to be veriVed in a GUI are usually simpler than in other scenarios in which RV is

commonly applied (e.g., a security password in the welcome screen vs. race conditions in a

multithreaded application).

Applying RV into a project often involves the usage of complex languages and formal

logic. These languages may present limitations in their expressiveness when writing com-

plete speciVcations [119]. RV may also involve the formal speciVcation of the acceptable

runtime behavior of the application to be veriVed [46]. This process may impose too much

overhead in a development, and is specially troublesome in those stages of the development

in which the application design and behavior change frequently.

Moreover, many RV approaches use aspect-oriented programming (AOP) languages

(e.g., [17, 28, 97]), which present disadvantages like code bloating and maintainability

problems [23]. AOP languages lack a dynamic nature as well, as most of them need to be

recompiled each time the rules are slightly changed.

For the reasons described above, applying RV into a GUI to verify users input data

might not result in an eXcient solution in terms of functionality, time, and development

eUort. It should be found, therefore, a more eUective way to verify data in such scenarios

instead of integrating advanced, formal, and thus more complex RV processes. Furthermore,

the developers should be free to choose an appropriate speciVcation language for data

veriVcation according to the project needs and its dimensions.

The main goal of the research in this chapter is to reduce the overhead introduced

by common RV approaches into GUI data veriVcation scenarios. It focuses on Vnding a

lighter, more dynamic, and easier-to-integrate method. This new method will be based on

80

4.1 Introduction and Motivation

fundamental pillars of RV such as runtime operation, time eXciency, and encapsulation of

the veriVcation code. However, the fact that formalisms are not used in order to provide a

more lightweight and eUective method might comprise the correctness and completeness of

the veriVcation process.

It is also a goal in this chapter to improve the experience of developers and users while

using a veriVcation method. We would like to provide a dynamic veriVcation process as

well as to explore a uniVed way to provide interactive feedback to them.

Additionally, related to the problems and challenges described above, we would like to

pose the following research questions:

Q1: Can the veriVcation logic code and the veriVcation rules be completely

pulled out of the business logic avoiding AOP languages?

Q2: Can the veriVcation rules be changed at runtime avoiding the recompilation

of the whole software to provide a dynamic veriVcation process?

Aiming to solve the aforementioned problems and to give an answer to these research

questions, Section 4.2 presents a new approach for lightweight runtime data veriVcation

in GUIs. It describes a veriVcation layer located between the GUI and the business logic,

which uses rules written in scripting languages. The main features of this approach are

described in Sections 4.3, 4.4 and 4.5

As a result of this research, the design of a new veriVcation framework named S-DAVER

(Script-based DAta VERiVcation) is presented in Section 4.6. Some considerations about its

implementation and its integration into developments are described next in Section 4.7.

Section 4.8 describes a practical use case in which the implementation of S-DAVER was

integrated into two FOSS (Free and Open-Source Software) applications. Section 4.9 includes

an analysis of the performance of the proposed tool.

Finally, Section 4.10 discusses the main innovations of the proposed approach as well

as its limitations. This section also compares S-DAVER to other related works previously

described in Section 2.1.2. Section 4.11 draws the conclusions of this chapter.

81

4 Evaluating Quality of Users Input

4.2 Practical Analysis of Common GUI Data VeriVcation
Approaches

In our previous experience working with GUI-based applications, as well as collaborating

with some software development companies as, e.g., SAES [202], two prevalent approaches

to verify input data in GUIs were observed:

• Approach 1. The veriVcation rules are tangled inside the business-logic code, nor-

mally within the widget-event handler methods (e.g., onClick() method). This ap-

proach considerably reduces the quality of the logic code. Moreover, recovering

from a data violation is time-consuming. When invalid input is detected, the event

handling process is aborted and the user has to be notiVed about the violation. Then,

the user restarts the process by editing the Veld again.

• Approach 2. The rules are included into the GUI speciVcation (e.g., max and min

value limits of an integer spinbox widget). As an advantage, input values are veriVed

before they are brought to the business logic, thus the event handling process is not

started in case of data violation. However, the veriVcation code is now scattered

across the GUI speciVcation, which pollutes the graphical design of the application.

These two approaches might not represent the best way to proceed in most scenarios

with data veriVcation into a GUI. They include the veriVcation rules all over the source-

code, even into the GUI speciVcation, instead of having a separate place to store them

properly. There exists not a common point in which the data is veriVed and from which

data violations are notiVed to the user. Moreover, feedback to users is nonexistent, or at

best, it is hardcoded along with the veriVcation code.

To improve these limitations and to improve the Vnal quality of the source code, the

development and the whole veriVcation experience, a veriVcation method should include at

least the three following features:

1. A runtime monitor that automatically and transparently checks the rules against

the current GUI execution as response to the changes made by the user during

the application use. The monitoring eUort will be executed in conjunction with

the underlying GUI system to minimize the veriVcation overhead. Integrating this

monitor into a development should be straightforward.

82

4.3 Monitoring GUI Data at Runtime

2. A clear and organized set of veriVcation rules completely decoupled from the GUI

and business logic. The developers should be free to choose the language to deVne

the veriVcation rules. Runtime changes in the veriVcation rules should be allowed.

3. A feedback system in which all veriVcation operations are registered and data

violations are uniformly and interactively notiVed to developers and users.

The results of our research eUorts, which aimed at giving an answer to these three main

concerns, are described in the following.

4.3 Monitoring GUI Data at Runtime

A runtime monitor represents the core component of the veriVcation process. This element

is in charge of loading the veriVcation rules, detecting changes in the GUI data and looking

for the corresponding rules, checking them against the current execution of the program

and, Vnally, providing the user with the appropriate feedback.

The runtime monitor supports the veriVcation process almost in its entirety. Therefore, it

has to be designed to incur in minimal overhead with respect to the overall performance of

the GUI as well as of the whole application. To reduce this overhead, the proposed approach

takes advantage of the idle time between the actions composing the interaction process

between the user and the system in a GUI. The user performs a set of actions manually

(e.g., mouse clicks, keystrokes) to which the system automatically responses with output

(e.g., a sound, visual information). This idle time between the user actions is used for the

veriVcation process to check the rules, thus reducing the perceived overhead.

For this purpose, the runtime monitor is included as a lightweight veriVcation layer

located between the GUI and the business logic. The layer can intercept the events generated

because of the user actions to detect changes in the GUI data. These events are analyzed

and can be truncated in case of data violation. The veriVcation process, that is depicted

in Figure 4.1, involves three steps (GUI changes detection, rule Vnding and checking, and

decision) that are further described below.

Step (1). The veriVcation layer analyzes GUI events generated as per user interaction to

determine if any change occurred in GUI data (e.g., the user introduced a new value into a

widget). An event Vlter is used to detect these changes as well as additional information like

the interacted element and the action performed on it. The Vlter provides the lightweight

83

4 Evaluating Quality of Users Input

layer with independence from the rest of the application because it is used to transparently

keep a watch on the GUI events Wow. As a result, each change in the widgets data triggers

a checking process.

Figure 4.1 Overall behavior of the proposed V&V scenario.

Step (2). The veriVcation layer looks for those rules involving the GUI data that were

modiVed in Step 1. Once found, the rules are checked against the current state of the GUI

(i.e., the current values of the data within the widgets) to ensure that the change fulVlls the

requirements. The interpreted code in the rules is directly executed by the layer using the

data into the GUI widgets, therefore without involving any code of the business logic.

Step (3). Finally, the layer makes a decision depending on the results obtained from

the checking process. If all of the veriVcation rules were met, the event generated by the

user action continues towards the business logic to be handled. Otherwise, the layer may

truncate the event if conVgured to do so (see stop events in Subsection 4.7) and uses GUI

Intervention to provide the user with dynamic feedback (see Subsection 4.5).

The approach is dynamic by deVnition: the veriVcation rules are checked at runtime

while the user is interacting with the GUI, similarly as how an invariant is checked in

the Design By Contract approach [162]. Single-state checks are made to verify a set of

safety properties (i.e., the data within the widgets) and thus to ensure that the GUI is in

a consistent state. The data in the widgets is assumed as the state of the application at a

speciVc time, and its correctness implies that the user behavior in the GUI is correct as well.

Figure 4.2 depicts an example showing how the lightweight framework works:

84

4.3 Monitoring GUI Data at Runtime

1. The user writes 25 within BuUer Size, which only supports integer values lower or

equal to 20. A FocusLost event is generated just when the user leaves the widget. This

event is intercepted by the veriVcation layer.

2. Once the event is intercepted, the veriVcation rules corresponding to the interacted

widget are selected and then...

3. ...checked against the current execution of the GUI.

4. Finally, a new entry including the veriVcation results is added into the log Vles. GUI

intervention is used to decorate the widget with a red background color to indicate

a non-allowed change. The data within the widget is changed to a default value to

restore the GUI to a consistent state.

Figure 4.2 Wrong GUI input data veriVcation example.

At this point we can give an answer to research question Q1 posed at the beginning of

this chapter. The veriVcation layer is a single, lightweight, autonomous and independent

object encapsulating all the veriVcation logic code. It is “connected” to the application

by intercepting and altering the GUI events Wow. All the information for the veriVcation

process is extracted from these events. Then, AOP languages and other similar techniques

are not needed. The veriVcation rules are included in a separate location from which they

are loaded (see Subsection 4.4). As a result, the veriVcation logic is completely pulled out of

the application business logic.

85

4 Evaluating Quality of Users Input

4.4 VeriVcation Rules

The veriVcation rules represent the requirements for input data. The requirements are usu-

ally speciVed in the Software Requirements SpeciVcation (SRS) to describe the constraints

to be met by the data into the GUI widgets. They specify the properties to be checked as

well as the expected values.

4.4.1 Rule DeVnition

The rules may involve data from one or more GUI widgets. They may also include guard

conditions or complex operations like database queries and calls to external functions, e.g.:

1 if (checkBoxStarted.isSelected)

2 var MAX_SPEED = getValue("max_speed")

3 return spinBoxSpeed.value >= 0 && spinBoxSpeed.value < MAX_SPEED

Any rule speciVcation should be allowed, provided that it is deVned as a function

returning a boolean value and regardless of how much code was executed to reach this

result.

This approach proposes using interpreted and general purpose languages to deVne the

veriVcation rules. Interpreted languages are those in which the code is executed at runtime

by an interpreter instead of being compiled Vrst and then executed. Such languages are

Wexible and provide a high expressiveness to deVne potentially any rule. Furthermore, they

allow the creation of lighter and more readable rule speciVcations. However, the main

reason of choosing interpreted languages is that pieces of interpreted code are loaded and

executed at runtime. They can be modiVed, added or removed during execution without

recompiling and relaunching the application.

There are many of interpreted languages that can be chosen depending on developers

needs. For example, restriction languages as OCL [218] provide a more precise and formal

checking process, while scripting languages as Ruby [67] or JavaScript [187] provide more

Wexibility. In the following the reader can see an example of rules written in diUerent

general-purpose languages and notations such as OCL, Octave [59] and Lua [94]:

1 −− a rule in OCL # a rule in GNU Octave

2 context Ui function result = simpleRule(speed)

3 inv: spinBoxSpeed−>value >= 0 result = (speed >=0 & speed <100);

4 inv: spinBoxSpeed−>value < 100 endfunction

86

4.4 VeriVcation Rules

1 −− a rule in Lua

2 function simpleRule ()

3 return spinBoxSpeed:value () >= 0 && spinBoxSpeed:value () < 100

4 end

4.4.2 Using the Rules to Apply Correction

Scripting languages also allow developers to include correction actions within the rules

deVnition. This process, called Runtime Enforcement by some authors, is an extension of

RV aiming to circumvent property violations [63]. In this manner the rules are not only

used to check whether the GUI data meets the requirements, but they can be used also to

correct the invalid data into the widgets.

Correction actions are used to bring the GUI to a consistent state before the input data

reaches the business logic, as showed above in Figure 4.2 (step 4). The scope of the correction

actions is limited to the GUI data. Thus these actions can not be used to modify the business

logic or any application behavior out of the GUI. The following rule shows an example of

GUI data correction. It always evaluates to true because, after its execution, spinBoxSpeed

has always a valid value:

1 if (spinBoxSpeed.value > 100)

2 spinBoxSpeed.value = 100

3 return true

4.4.3 Rule Arrangement

The rules should be stored in such a way as to avoid a lack of structure in the requirements.

For this purpose, it is proposed using a set of separate Vles arranged using a well-structured

Vle tree that matches the structure of the GUI. Figure 4.3 depicts an example of how the rule

Vles are organized for a GUI composed of one main dialog (MainWindow) and two nested

dialogs (SaveDialog and FileDialog). Each folder represents a dialog composing the GUI.

A folder will contain zero, one or more rule Vles including the requirements related to the

corresponding dialog. A folder can also contain subfolders, which represent nested dialogs.

Using this arrangement the rules are deVned following the logical structure of the target

GUI. It eases rule search in future debugging and maintenance processes. Furthermore, it

87

4 Evaluating Quality of Users Input

provides an implicit namespace to uniquely identify all the widgets compounding a GUI.

For instance, in the example depicted in Figure 4.3, the save_rules.lua Vle could include a

rule involving widgets from the current dialog SaveDialog (no namespace required) and

from the parent dialog MainWindow:

1 fileName.value == MainWindow :: projectName.value

MainWindow

SaveDialog

FileDialog

text_rules.lua
numbers_rules.lua

save_rules.lua

filename_rules.lua
filerights_rules.lua

(main window
rules)

(subdialog
rules)

Figure 4.3 Example of the Vle structure proposed to arrange the rule Vles.

As a result, the code of the veriVcation rules is completely detached from the application

source code. Using a set of separate rule Vles helps developers to protect the source code

against changes in the GUI data requirements. Thereby, changes in the requirements will

aUect only the corresponding rule Vles. Moreover, using interpreted languages allow us to

make changes in the veriVcation rules and reload their speciVcation at runtime without

recompiling the application source code. Changes will take eUect immediately. Furthermore,

existing rules can be completely removed at runtime, and new ones can be added on the Wy

as well. This answers research question Q2.

4.4.4 Rule Management

This subsection describes some considerations about the lightweight management of the

veriVcation rules. It is described how the rules are loaded into the target application, as well

as how the veriVcation layer handles their evolution during the application execution.

4.4.4.1 Loading the Rules

In order to provide an eXcient veriVcation process during the application execution, the

rules are loaded and linked to the corresponding GUI widgets in application start. The

88

4.4 VeriVcation Rules

loading process is divided into the following three stages:

1. The directory/ies containing the speciVcation is traversed to extract all the rules in

the veriVcation Vles.

2. In parallel, the dialogs composing the GUI are traversed as well to register the widgets

into the veriVcation layer.

3. After 1 and 2, GUI widgets are linked to the veriVcation rules to denote what

veriVcation rules have to be checked when the data within a speciVc widget is

changed.

The matching process between the rules and the widgets follows one simple rule: a

widget is linked to only the rules in which its data appears. Therefore, when the data into

a widget is changed, only the rules involving this widget are checked. This approach is

scalable, as only a small group of rules are checked at a time. The performance of this

process would be easily enhanced if the rules are checked only when the value of the

interacted widget actually changes. It implies to keep up the current state of all the GUI

widgets, which might comprise the scalability of the veriVcation system.

4.4.4.2 Evolution of the Rules and the GUI

As said above, the veriVcation rules are written using interpreted languages and included

into external text Vles. This allows developers to change the rules speciVcation at runtime.

The rules code can be Vne-tuned while the application is running without recompiling the

software and relaunching it. New veriVcation rules can be also dynamically attached/de-

tached to the veriVcation engine if a new dialog or window is added/removed to the GUI

(e.g., when changing from the basic to a premium version of an application).

This feature is specially useful in testing stages. Take, for example, an industrial de-

velopment including a GUI-based control panel. During the testing stage, the developers

are checking if the constraints related to input data in the GUI are fulVlled. Suddenly, a

mistake is found in the limits used by one rule verifying an integer spinbox widget. The

rule is changed on-the-Wy by modifying the rule code on the corresponding text Vle. The

developers can see the eUect of the introduced change immediately.

As the reader can see, the process is dynamic and direct. After a change, developers do

not have to waste time recompiling or deploying the software. The reader can note that this

process may take even several hours in complex industrial developments. Furthermore, the

89

4 Evaluating Quality of Users Input

application source code as well as the veriVcation layer remain intact while the veriVcation

rules are changed or Vne-tuned.

4.4.5 Correctness and Consistency of the Rules

The proposed approach uses scripting languages for the deVnition of the veriVcation rules.

These languages provide the developers with a high Wexibility to deVne the rules and enable

their modiVcation on the Wy. However, the semantics of scripting languages are normally

more vague than formal languages. Furthermore, these languages usually do not include

built-in mechanisms to check the correctness and consistency of their code. This may lead

to correctness and consistency problems in the rules code.

The correctness of the rules is checked during the loading process. Rules including

syntactic mistakes or unrecognized elements (e.g., an unrecognized external function or a

nonexistent widget) are not included into the veriVcation engine. This ensures that all the

rules verify existing properties, thus they are safely checked even after a modiVcation of

the rules speciVcation or the GUI.

However, checking the internal consistency of the rules is not straightforward, specially

if the scripting language selected for the rules speciVcation lacks a formal deVnition. In this

situation, even to Vnd an inconsistency like the existing between the two following rules

(see constraints for value 0) would be fairly complicated:

1 1: spinbox_speed.value >= 0

2 2: spinbox_speed.value > 0 && spinbox_speed.value <= 100

Since the proposed approach ignores a priori the language used for the rules speciVcation,

then a method to check their internal consistency can not be provided. Therefore, developers

should use an external tool or mechanism to carry out this task.

For example, they can use a framework for Constraint Logic Programming (CLP) like

cKanren [8] or [11]. The veriVcation rules are translated into a CLP speciVcation. Each

widget value is treated like a variable to be checked. As a result, inconsistencies in the

rules can be found for each variable. Using CLP would be a valid solution. However, this

contradicts the lightweight approach proposed in this chapter because creating a CLP

speciVcation from the veriVcation rules is not straightforward. Finding an eUective way to

implement the process described above is one of the main goals as future work.

90

4.5 The VeriVcation Feedback

Moreover, in order to improve the robustness of the veriVcation framework, the rules are

checked as a set. As described above, when the data within a widget is modiVed, the rules

linked to this widget are checked all together to determine the state of the widget. All the

rules are checked to make a Vnal decision and evaluate to true or false. If only one rule of

the set fails, the widget remains in invalid state. In the example above, using the value 0

into the widget spinbox_speed would result in data violation because of rule 2.

This provides a means to avoid states in which the GUI (and the entire application) may

remain unusable due to an inconsistency in the veriVcation rules. Furthermore, it provides

also a way for the developers to “visually” check potential rules inconsistencies. The fact

that a widget never reaches a valid state is a symptom of an inconsistency between rules.

The possibility of changing the rules speciVcation at runtime might also be a source

of correctness and consistency problems. Aiming to overcome this, each time a change

is found into a Vle in the rules speciVcation, all the existing rules linked to this Vle are

removed from the veriVcation engine and then reloaded following the preventive actions

described above.

Finally, as said above, the rules are able to include correction actions in their code. These

actions are directly applied to the GUI data in case of rule violation in order to bring the

GUI to a consistent state. However, this feature might lead to consistency problems in

the GUI if corrections are not applied consciously and carefully. The potential side eUects

produced by the correction actions implemented within the rules can not be known before

its execution. Thus, these are responsibility of the developers and their code.

4.5 The VeriVcation Feedback

As stated above, one of the main goals of this chapter is Vnding a dynamic and uniform

way to provide the developers and users with all the relevant information generated during

the veriVcation process. This process should be completely automatic and transparent to

developers. Therefore, we used the output data generated within the veriVcation layer to

automatically provide feedback through two diUerent mechanisms: log streams and GUI

Intervention.

On the one hand, an independent log stream exclusively related to the veriVcation

process is proposed. This log stream includes information related to the user interaction,

the checking process results, incidences during the veriVcation process, etc. The developers

91

4 Evaluating Quality of Users Input

can conVgure whether the log output is redirected to one or several text Vles, to other text

stream or both (see an example in Section 4.8). Having all this information in a speciVc

place (e.g., in separate logging Vles) eases debugging and auditing processes.

On the other hand it is proposed using GUI interventions, a more dynamic and attractive

way to provide feedback about the veriVcation process. The veriVcation results are used to

make visual changes in the GUI. The users are provided with “live” feedback superimposed

directly over the interface with which they are interacting. Examples of these visual changes

are, for example, highlighting invalid Velds in red or showing unfulVlled rules in a Woating

box (e.g., see Figure 4.6).

GUI interventions notify the users about the checking results in real-time, helping them

to notice input errors just in the moment the data are being introduced. It improves users

experience while using the software as well as their eXciency. Using such interventions

establishes a uniform way to provide dynamic feedback to users. Furthermore, the use of

hardcoded painting routines along the business logic code is avoided.

4.6 S-DAVER Architecture Design

According to the lightweight veriVcation approach described above, this section describes

the architecture design of the S-DAVER framework. How some of its modules can be

adapted to Vt S-DAVER to a speciVc execution and veriVcation environment (EVE) is

described next.

4.6.1 Architecture Details

The proposed architecture is depicted as a UML diagram in Figure 4.4. As the reader

can see, the S-DAVER architecture is composed of a set of modules revolving around the

VerificationEngine. This central element works as the runtime monitor, analyzing the

changes in the GUI data and checking the rules against them. On its left the reader can

Vnd those modules used to set up the veriVcation process, load the rules speciVcation and

register the GUI elements to be validated into the engine. On its right the reader can see

those modules in charge of bringing to light the veriVcation results.

Figure 4.5 depicts how the diUerent modules in Figure 4.4 collaborate to each other to

implement the whole veriVcation process at runtime. In this Vgure the reader can clearly

92

4.6 S-DAVER Architecture Design

Figure 4.4 UML diagram of the S-DAVER architecture.

diUerentiate between two main processes. Steps 1 and 2 correspond to the veriVcation layer

initialization process. Steps 3 and 4 correspond to the runtime veriVcation process.

In the Vrst step the ElementAbstractor creates an abstract representation of the GUI

widgets to be validated. The full name of a widget (i.e., including its namespace within

the GUI) is used as its unique identiVer during the whole veriVcation process. Then, the

ElementRegistrar uses the unique identiVers to provide the VerificationEngine with a

link to the widgets to be validated, in order to make them accessible during the veriVcation

process.

In parallel, the RuleManager loads the veriVcation rules from the speciVcation directory.

Then, once the unique widget identiVers are calculated and the rules are loaded, the

RuleLinker performs a matching process between these two elements to link each rule

to the data it validates (Figure 4.5, Step 2). The matching process is further described

in Subsection 4.4.4.1. The resulting pairs are given to the VerificationEngine. All the

information related to the rules and the widgets is kept updated at runtime to support

changes in the rules as well as in the data sources.

Once the target application has been launched and the veriVcation process conVgured,

the runtime veriVcation process starts. During user interaction, the EventAbstractor uses a

Vlter to capture the GUI events. These events are checked whether they are in the list of

events which trigger a checking process. If so, a new veriVcation step 1 starts (Figure 4.5,

1A veriVcation step is each one of the checking processes composing the whole veriVcation process, and
in which one or more veriVcation rules are checked.

93

4 Evaluating Quality of Users Input

Figure 4.5 Module adaptations and interaction during the S-DAVER veriVcation process.

step 3). The relevant information within the event (i.e., event type and destination widget) is

sent to the VerificationEngine, which checks all the rules linked to the interacted widget

against the current data it holds.

As a result, a VerificationResult object is built. It includes information related to the

trigger event, the interacted widget, the rules that were fulVlled and those that were not.

This object is given to the LogManager and to the GUIInterventor (Figure 4.5, step 4). The

LogManager manages the log streams. The veriVcation result is added to the logs according

to the log conVguration provided by the developers (see an example in Section 4.8). The

GUIInterventor performs the GUI intervention process according to the checking results,

e.g., turning into a red color the widgets involved in a rule violation.

4.6.2 Architecture Adaptation

As said above, some of the modules of the architecture can be adapted if the developers

need to integrate S-DAVER into a diUerent EVE. Figure 4.5 depicts those modules that

should be adapted in case the developers want to change the GUI platform (Case A) or

the veriVcation language (Case B). These modules provide interface methods than can be

implemented for this purpose.

94

4.7 S-DAVER Implementation and Integration Considerations

Case A involves the modules that work directly on the GUI, i.e., ElementAbstractor,

EventAbstractor and GUIInterventor. These modules have to be extended according to the

GUI system in use, e.g., Qt [174], GTK+ [208]. Case B involves those modules depending on

the veriVcation language: RuleManager and VerificationEngine. They have to be extended

according to the language in use, e.g., Lua [94], Ruby [67]. The ElementRegistrar depends

on both the GUI and the veriVcation language because it provides the VerificationEngine

with access to the properties of the GUI widgets. Therefore, it has to be extended in the two

cases described above.

Note that the core functionality of the framework is common to any EVE. Furthermore,

the RuleLinker and LogManager modules are generic as well, thus they do not have to be

adapted ever. As result, approximately 75% of the framework code is independent of the

GUI system and the veriVcation language.

The complexity of the framework adaptations directly depends on what is new in the

target EVE, and which are the veriVcation needs. Take, for example, a new development

in which the GUI system changes. The developers are extending the ElementRegistrar to

provide the VerificationEngine with access to the properties of the new GUI widgets. If,

for example, the widgets do not have to be modiVed during veriVcation (i.e., correction

actions are not needed) only “getter” methods should be linked. If, for example, the rules

will only verify the data within the widgets and not other properties such us their size,

if they are enabled or not, etc., the adaptation is easily implemented by using a generic

“getValue” method for each widget type.

4.7 S-DAVER Implementation and Integration
Considerations

The S-DAVER framework was implemented and released as a contribution to the open-

source community. It can be downloaded from [152]. The source code is distributed into a

packaged Vle that can be built for diUerent operating systems. It can be easily modiVed by

developers that need to adapt the S-DAVER framework to their developments.

This version of the framework was implemented according to the execution and veriVca-

tion environment (EVE) described in the following. Standard C++ was used to implement

the veriVcation layer mainly due its performance for real-time systems. The Qt4 toolkit [174]

was selected as the GUI system due to its cross-platform nature. Finally, Lua [94] was chosen

95

4 Evaluating Quality of Users Input

as the veriVcation language. Lua is a scripting language widely used in the video game

industry and in many commercial applications. Luabind [2] is used to create the bindings

between Lua and C++. This version of S-DAVER was successfully compiled and executed

in many diUerent Linux distributions, including Ubuntu, Fedora and CentOS.

Section 4.6 described an open and adaptable design of S-DAVER, which can potentially

be integrated into any development. The proposed design is agnostic to concepts such as

the veriVcation language, the GUI system and the event sources. Therefore, developers

are free to adapt the original implementation of S-DAVER in order to Vt the EVE of the

development in which it has to be deployed.

As a proof of concept, a second version of S-DAVER was implemented using the ChaiS-

cript [100] language. ChaiScript is an open-source BSD licensed scripting engine that can be

easily embedded in C++ applications. In this new implementation (also available at [152])

only the modules including functionality related to the rules (load, register and execution)

were adapted. The rest of the code was completely reused.

Beyond providing an open framework design and implementation of S-DAVER, this

work was concerned with providing a lightweight integration and development process. By

lightweight we mean a low code-intrusive method that is integrated into a development

by using a few lines of code. Code intrusiveness means to have any veriVcation code into

the application code. By lightweight we also mean a transparent process to let developers

to focus only on deVning the rules. Finally, a lightweight framework should be integrated

very early in the development, even when no code has already been written and no GUI

design is available.

Based on these requirements, an integration process divided into the following three

stages is proposed:

1. Adaptation to the environment (optional): The implementation of S-DAVER is

adapted to Vt the EVE of the development as described at the end of Section 4.6. In

most cases, just two or three modules have to be adjusted to meet EVE changes (e.g.,

to use a diUerent veriVcation language). The rest of the implementation is reused.

2. ConVguration: S-DAVER is easily conVgured by using a VerificationContext

object. This object (further explained below) encapsulates all the conVguration options

for the veriVcation process. The developers will create the VerificationContext

object Vrst, which has to be given to the VerificationEngine before deploying.

96

4.7 S-DAVER Implementation and Integration Considerations

3. Deployment:During deployment, the veriVcation layer uses the VerificationContext

object to automatically conVgure itself. Then, it loads the rules and starts the run-

time monitor. The whole process is performed by calling the init() method of the

VerificationEngine object.

The VerificationContext object includes all the data needed to execute the veriVcation

process, e.g., rule Vles directories, the format of the log entries, etc. Table 4.1 shows all

the options that can be conVgured using the current implementation of this object. The

VerificationContext object can be instantiated from a conVguration Vle or can be directly

created in the source code (see example in Section 4.8).

ConVguration option EUect

addRuleSource Adds a new directory or Vle to the rules sources

removeRuleSource Removes a Vle or directory from the rules sources

Denotes events triggering a new veriVcation step:

triggerStopEvents - Stop events are truncated in case of rule violation

triggerWatchEvents - Watch events are never truncated, just notiVed

updateRuleTime Selects how often the rules are checked for updates

logFormat Sets the output log format

addLogOutputFile Sets an output Vle for the log stream

addLogOutputStream Sets an output stream for the log stream

interventionOnError Selects the GUI intervention option for error cases

interventionOnSuccess Selects the GUI intervention action for success cases

interventionOnErrorColor Selects a color for GUI decoration for error cases

interventionOnSuccessColor Selects a color for GUI decoration for success cases

Table 4.1 ConVguration options supported by the VerificationContext object.

It is worth saying that, besides other options, the developers use this object to conVgure

the Stop andWatch events. Both events trigger a veriVcation process, but only Stop events

will not be handled in case the checked rules are not fulVlled. This helps developers

to protect the business logic against wrong data. Moreover, GUI intervention are easily

conVgured to perform the desired behavior both when a checking process is successful or

not. Not conVgured options will always considered to have default values.

97

4 Evaluating Quality of Users Input

Once the VerificationContext object is created, it is just a matter of creating the

VerificationEngine object, provide it with the conVguration object and call the init()

method. Then, the veriVcation layer will be initialized and the veriVcation service will

start working. During initialization the rules are loaded, the elements to be validated are

registered and the event Vlter is installed to start monitoring the user interaction within the

GUI. A real example of the whole conVguration and deployment process is described in

Section 4.8.

As a result, providing the veriVcation layer with the conVguration data, as well as

switching among diUerent conVgurations, is really easy by using the VerificationContext

object. A couple of lines of code are enough to integrate and deploy S-DAVER into a

development. The rest of the process (loading the rules, monitoring the GUI data and

performing the veriVcation processes) is addressed transparently and automatically. This

reduces code intrusiveness to the minimum. Regarding the adaptation of the framework

modules, the reader can see that the eUort is greater the Vrst time the framework is

integrated into a new and unsupported EVE. However, this development eUort is reused

and amortized in future developments.

4.8 Practical Use Cases

To show the validity of the lightweight approach proposed in this chapter, the implementa-

tion of S-DAVER was integrated into two Qt-based FOSS applications. On the one hand we

used Qt Bitcoin Trader2, a popular open-source trading software that helps users to open and

cancel Bitcoin orders very fast. On the other hand we used Transmission3, a cross-platform

open source BitTorrent client included by default into many Linux distributions, including

Ubuntu.

This section Vrst describes how S-DAVER is deployed into a development. Then, it is

explained how and where the veriVcation rules have to be deVned using as example the two

applications mentioned above. As a result of the implementation of these practical scenarios,

Section 4.8.4 includes some considerations about the enhancements provided by S-DAVER

during the development, testing and usage stages. Finally, the overall performance of this

solution is evaluated in Section 4.9.
2Qt Bitcoin Trader: http://sourceforge.net/projects/bitcointrader
3Transmission: http://www.transmissionbt.com

98

http://sourceforge.net/projects/bitcointrader
http://www.transmissionbt.com

4.8 Practical Use Cases

4.8.1 Integration, ConVguration, and Deployment of S-DAVER

As said in Section 4.7, the conVguration of S-DAVER is based on the VerificationContext

object. This object is indispensable for the creation of the VerificationEngine. Once these

two objects are created and the rules source is provided, it is just a matter of calling the

init() method to initialize the layer and start the veriVcation service. The following code

includes the four lines needed to implement this process into any Qt/C++ application. The

veriVcation layer has to be deployed on application initialization.

1 // create the verification context

2 VerificationContextPtr vc(new VerificationContext ());

3 // add rule files or directory / set update time

4 vc−>addRuleSource("rules/").updateRuleTime (10);

5

6 // (add extra configuration here)

7

8 // create and launch the verification framework

9 QtLua_VerificationLayer * vl = new QtLua_VerificationLayer(vc);

10 vl−>init();

Additionally, the developers can set other options to conVgure the veriVcation process

to their liking. The next code snippet shows an example. Stop and Watch events are

conVgured to set when the rules are going to be veriVed and if some GUI events have to be

truncated (lines 2-3). The log output format and the output streams are conVgured to have

all the veriVcation information at a known place (lines 6-7). Finally, GUI interventions are

conVgured to perform the desired behavior when a checking process is successful and when

it is not (lines 10-12). Not conVgured options are always considered to have default values.

1 // configure trigger events

2 vc−>triggerStopEvents(csu::vvl:: framework :: VVL_EVENT_MOUSECLICK)

3 .triggerWatchEvents(csu::vvl:: framework :: VVL_EVENT_FOCUSOUT);

4

5 // configure log stream

6 vc−>addLogOutputStream(std::cout).addLogOutputFile("/tmp/verification.log")

7 .logFormat("[%tm] %wi at %en: %vr :: %fn");

8

9 // configure GUI intervention actions

10 vc−>interventionOnError(VVL_GUI_HIGHLIGHT_ERROR

11 | VVL_GUI_HIGHLIGHT_RELATED | VVL_GUI_SHOW_ERROR_RULES)

99

4 Evaluating Quality of Users Input

12 .interventionOnSuccess(VVL_GUI_CLEAR);

4.8.2 DeVning the Rules in Qt Bitcoin Trader

Qt Bitcoin Trader is an open source application developed in pure Qt. It helps users to

open and cancel Bitcoin orders very fast with diUerent traders and includes real-time data

monitoring. This example focuses on the veriVcation of the initial dialog. When the user

enters to this application, he/she faces to the dialog depicted in Figure 4.6. The application

requires the user to introduce an API key and secret, which is protected by a password

using AES 256 encryption. All the data in this dialog must conform to a speciVc set of

constraints, some of them involving more than one widget. All these constraints, which are

directly implemented in the dialog code, have to be met before continuing by clicking the

OK button.

Once deployed S-DAVER, the rules deVned within the rules directory will be automati-

cally incorporated into the veriVcation engine. A new Vle passwords.lua was created in the

directory QtBitcoinTrader_Lastest/rules/NewPasswordDialog. Since we are verifying an

independent dialog that is shown at application start, the NewPasswordDialog folder is

included in the Vrst level into the rules directory. This Vle includes all the Lua rules used to

verify the data in the widgets. For example, the following rule checks that the OK button

needs not empty key and secret values:

1 rule linesNotEmpty

2 involves = @okButton:isEnabled ()

3 return @restSignLine:text() ~= "" and @restKeyLine:text() ~= ""

4 and (@restSignLine:isVisible () and @restSignLine:text() ~= ""

5 or not @restSignLine:isVisible ())

6 end rule

The rules may be more complex. The following rule is used to verify the format of the

proVle name Veld. This name has to be composed by using any lowercase or uppercase

letter, any digit and any character from a speciVc set:

1 rule profileNameFormat

2 involves = @okButton:isEnabled ()

3 allowed_profchars = {’(’,’)’,’+’,’,’,’−’,’.’,’;’,’=’,’@’,’[’,’]’,’^’,’_’

,’‘’,’{’,’}’,’~’,’ ’}

4 for char in string.gmatch(@profileNameEdit:text(),".") do

100

4.8 Practical Use Cases

5 local found = false;

6 if string.match(char ,’%l’) or string.match(char ,’%u’)

7 or string.match(char ,’%d’) then found = true end

8 for k,v in pairs(allowed_profchars) do

9 if char == v then found = true end

10 end

11 if not found then return false end

12 end

13 return true

14 end rule

The results of integrating S-DAVER into Qt Bitcoin Trader are shown in Figure 4.6. This

Vgure depicts the interaction sequence performed by the user to Vll the dialog in (a). (b)

depicts an error because Secret is empty. (c) depicts an error because ConVrm is not equal

to Password. (d) shows how new feedback information is interactively shown when the

user places the mouse pointer over the wrong widget. All the widgets involved in the error

are highlighted and the violated rule is shown in a Woating blue box.

Methods like isValidPassword()) or checkToEnableButton() included in the original

application code have disappeared. After integrating S-DAVER the code is cleaner. For

example, the following method will be called only if all the rules involving the OK button

evaluate to true. Now, its code is free of data checks and painting routines:

1 // old code

2 void NewPasswordDialog :: okPressed (){

3 if(isValidPassword ())

4 accept ();

5 else{

6 QMessageBox :: warning(this ,"Qt Bitcoin Trader",

7 julyTranslator.translateLabel("TR00100","Your password must be at

least 8 characters and (...) special characters."));

8 ui.confirmLabel−>setStyleSheet("color: red;");

9 }

10 }

11

12 // new code

13 void NewPasswordDialog :: okPressed () {

14 accept ();

15 }

101

4 Evaluating Quality of Users Input

a) Initial password dialog in Qt Bitcoin Trader

b) Highlighting an error involving the data of a widget

c) Highlighting an error involving the data in two widgets

d) Showing veriVcation feedback interactively on mouse hover

Figure 4.6 S-DAVER working within Qt Bitcoin Trader.102

4.8 Practical Use Cases

As a result, the Qt Bitcoin Trader application has now a uniform, more dynamic, more

interactive and prettier feedback system. The original application code in this GUI dialog

was reduced 37.8% (from 145 to 91 eUective lines of code) resulting in lighter and cleaner

methods.

4.8.3 DeVning the Rules in Transmission

Transmission is an open source volunteer-based project. It was developed using standard

C++ and Qt in order to provide a cross-platform solution. Transmission presents a simple

GUI design that only requires few data from the users. Most of these data are included in

the Preferences section, from which the user can conVgure the torrent sharing process and

other features. Data constraints are, in general, simpler than those in the password dialog

of Qt Bitcoin Trader.

However, Transmission is not a good example of GUI design. Most of the GUI dialogs

(except the main one) are hardcoded and created at runtime. Data constraints associated

to the input widgets are included in the source code in the same place in which the GUI

is deVned (please, remember Approach 2 described at the beginning of Section 4.2). This

results in small pieces of veriVcation code scattered in the whole application code, thus

reducing the quality of the code and hindering development and debugging processes.

To mitigate this problem, S-DAVER was deployed into Transmission with the aim of

bringing all the data constraints to a common place out of the application code, and thus

try to lighten the original code. Due to the source code of Transmission is huge, and that

S-DAVER works seamlessly with the application code, new rules were deVned only for the

two dialogs described in the following.

One of these dialogs is the TorrentPropertiesDialog, depicted in Figure 4.7. This dialog

can be shown for each of the torrents that are being shared to other users. It is composed of

several tabs showing information about the torrent. The last tab (the one showed in the

Vgure) includes several options to customize the download/upload process for a speciVc

torrent. The following example shows how the rules are deVned in S-DAVER with and

without correction.

Figure 4.7 shows two of the rules deVned in the Vle options.lua included in the directory

transmission-2.82/rules/MainWindow/TorrentPropertiesDialog. In the top of the Vgure

the reader can see how the download_speed rule is used to bring the GUI to a consistent

103

4 Evaluating Quality of Users Input

state after an error. If the user sets a value lower than 1 for the value sb_download_limit,

the rule directly applies correction and evaluates to true. This value never reaches a wrong

state. Otherwise, the rule min_peers at the bottom of the Vgure does not apply correction

actions. Instead, the rule checks the value sb_max_peers and, in case of an error, it evaluates

to false and the error is interactively shown over the aUected widget. This value reaches a

wrong state, therefore it has to be Vxed by the user manually.

1 rule download_speed

2 if @sb_download_limit:value () < 1 then

3 @sb_download_limit:setValue (1)

4 end

5 [...]

6 return true

7 end rule

1 rule min_peers

2 return @sb_max_peers:value () >= 1

3 end rule

Figure 4.7 Some of the rules validating the TorrentPropertiesDialog in Transmission.

Another dialog veriVed with S-DAVER is the PreferencesDialog depicted in Figure 4.8.

This dialog is composed of a set of tabs in which the users can conVgure the torrent

download/upload process, their privacy settings, etc. Here the reader can see another of

the common veriVcation mistakes in the implementation of Transmission. The content of

104

4.8 Practical Use Cases

the text Velds that are Vlled manually by the user is not veriVed until the data reaches

the business logic (Approach 1 described at the beginning of Section 4.2). Furthermore,

Transmission does not provide any feedback in the case the user introduces wrong data.

Figure 4.8 depicts the Remote tab in the the PreferencesDialog. It includes the rpc_whitelist

Veld, in which a set of valid IP addresses is expected. Originally, Transmission allowed

to introduce any text in this Veld. Invalid or incomplete IP addresses, numbers, words,

etc. were accepted without showing any warning at all. To face this problem, a new rule

named whitelist was deVned in the Vle remote.lua, that is included in the directory

transmission-2.82/rules/MainWindow/PreferencesDialog. Now, the user is interactively

notiVed if the input text does not match the regular expression included in the rule deVni-

tion. Wrong data will not reach the business logic. Please, note that the rule in Figure 4.8 is

a shortened version of the original one. Here, digits higher than 255 are allowed.

1 rule whitelist

2 if not @rpc_whitelist_check:isChecked () then

3 return true

4 else return @rpc_whitelist:text() ==

5 string.match(@rpc_whitelist:text(),

6 "[%s*(%d+%.%d+%.%d+%.%d+)%s*]+")
7 end

8 end rule

Figure 4.8 One of the rules validating the PreferencesDialog in Transmission (short
version).

105

4 Evaluating Quality of Users Input

The three rules showed above are only some examples of the whole set of rules used to

verify the data in TorrentPropertiesDialog and PreferencesDialog. The results in code

reduction were not as good as with Qt Bitcoin Trader. In the best case, the code was reduced

approximately 10%. However, the main beneVts of applying S-DAVER into Transmission are

to have a separate set of veriVcation rules and to have a new interactive feedback system.

4.8.4 Development and VeriVcation Experience with S-DAVER

The lightweight approach proposed in this chapter was concerned, from the very beginning,

for improving the work of developers and the interaction of users with the application.

Developers do not have to worry about the validity of input data while coding. The

veriVcation layer ensures that the data reaching the business logic is safe. Thus, the source

code implements only the business logic functionality avoiding any veriVcation statement.

As a result, development is easier and code is cleaner.

Developers also beneVt from changing the rules speciVcation at runtime. Software

testing becomes a more dynamic task, allowing developers to see the changes just when

they are incorporated into the rule Vles. Feedback is also improved by using dynamic

GUI interventions. Interactive help as shown in Figures 4.6, 4.7 and 4.8 provides extra

information in real time. This allows developers to Vnd errors in the requirements easily

and Vx them immediately.

The interactive feedback improves also users experience while using the software. Users

can see immediately whether input errors are present, enabling a successful and more

eXcient interaction with the Vnal application. This feedback can be used also to provide

users with additional information, e.g., to suggest them the expected input format.

4.9 Performance Analysis of S-DAVER

Intensive tests were conducted to evaluate the performance of S-DAVER. Four diUerent

test conVgurations were created by combining diUerent veriVcation languages (Lua and

Chaiscript) and the use or not of GUI intervention actions. The tests were run over a

Qt-based GUI including 25 widgets guarded by rules. Each test comprised about 100 user

interactions involving a veriVcation step (VS), of which 70% evaluated to false. The veriV-

cation steps where triggered by the FocusOut and MouseRelease events, which represent

106

4.9 Performance Analysis of S-DAVER

Test setup

Avg. number of VS / test 100

Avg. number of rules / VS 2.33

Avg. number of widgets / VS 7.5

% VS failed 70%

Avg. time / VS

(inc. GUI intervention)

Avg. time / VS

(exc. GUI interv.)

Avg. time / VS

(inc. 70% GUI interv.)

Qt+Lua 1.62 ms 0.32 ms 1.23 ms

Qt+Chaiscript 3.11 ms 1.40 ms 2.59 ms

Table 4.2 Test setup and performance results using Ubuntu 12.04, Intel Quad-core
2.83 GHz, 4GB RAM.

approximately 15% of scene events.4 Additionally, two log outputs (the standard output and

a Vle stream) were enabled during the test.

The time measured for each VS involved looking for the rules, checking them against

the current data in the GUI and sending the results to the log streams. If GUI intervention

was enabled, the time for highlighting the wrong widget is added, as well as the time

for creating the decorations and the blue rule-box shown when mouse over. Out of the

approximately 100 VSs performed for each test, 1/3 involved 3 rules and up to 5 widgets,

1/3 involved 1 rule and between 5 and 10 widgets, and 1/3 involved 3 rules and 10+ widgets.

Table 4.2 summarizes the results obtained from the tests. The reader can see that the

diUerence between the time spent by the Lua and the ChaiScript engines is very remarkable.

This shows that the performance of the veriVcation language interpreter represents a key

aspect when choosing a veriVcation language for a project. Enabling GUI intervention has

also a remarkable impact on the overall performance. This time overload might be reduced

by using optimized painting routines.

Resulting from this analysis, 3 factors directly related to the performance of S-DAVER

are identiVed: the number of widgets to verify, the average number of rules linked to a

widget and the number of GUI interventions. The higher these values are, the higher is the

average time spent for each VS. However, the proposed approach uses the time between one

action and the next one during user interaction to perform the whole veriVcation process.

As a result, the user perceived overload is negligible.

4Scene Events are a subset of the GUI events set. This kind of events is directly related to user input
methods like, e.g., mouse clicks, key presses, focus changes, etc.

107

4 Evaluating Quality of Users Input

4.10 Discussion

This chapter describes a lightweight veriVcation framework specially oriented to GUI data.

This kind of methods specially aimed at verifying user input data at runtime are not very

common, as previously analyzed in Section 2.1.2. This work describes also the implementa-

tion of the S-DAVER framework and an usage example as proof of concept. An open-source

implementation ready to be used is provided to developers. This implementation can be

adapted to be used in many diUerent veriVcation scenarios. The main contributions and

limitations of the approach proposed in this chapter are discussed in the following.

4.10.1 A Lightweight Data VeriVcation Approach

S-DAVER describes a lightweight veriVcation framework aimed at assuring the validity

of user input data in GUIs. Its design is based on fundamental pillars of RV. GUI data is

intended to be dynamically veriVed during user-system interaction, just at the moment and

within the temporal context in which they are generated. However, there exist important

diUerences with usual RV approaches, specially related to the use of formalisms to specify

the rules. Furthermore, while RV is usually aimed at verifying the application behavior, the

proposed approach is aimed at verifying user data correctness.

The two research question posed in Section 4.1 have been answered throughout the

chapter. Regarding question Q1, the proposed solution completely detaches the veriVcation

concern from the business logic. All the veriVcation functionality (inc. the enhanced

feedback system) is encapsulated into an object. This object is deployed into a development

by using a couple of lines of code and works transparently while the user interacts with

the application. As result, a non-invasive veriVcation method is provided. The veriVcation

logic is treated as a separate aspect clearly away from the application low-level behaviors.

This improves encapsulation and reduces the application code, enhances its readability and

eases the development process.

Furthermore, the veriVcation rules are deVned into a well-structured and independent set

of rule Vles. They are automatically loaded by the veriVcation framework. This improves

modularity and encapsulation. Related rules are deVned into the same Vle, and rules

corresponding to diUerent GUI panels are organized into diUerent folders. AOP languages

are not used, therefore the rules are not weaved into the application code. Instead, they

are completely detached from the application to avoid code bloating problems and to ease

108

4.10 Discussion

software maintenance [23]. The rules can now be coded from the very beginning, even

before any application code has been written. It allows the early detection of errors in the

requirements and the GUI, thus improving the application design [85].

The veriVcation rules are checked as an invariant. Single-state checks are made to verify

the set of safety properties composing the GUI state in order to ensure its consistency

during execution. This approach is practical and eases tool implementation. However, it

might reduce the expressiveness of the veriVcation logic. At a speciVc time, only current

values of properties are available to be veriVed. Therefore, checks related to the execution

sequence as well as those based on previous values of data (i.e., the history) can not be

implemented.

In response to research question Q2, general purpose and interpreted languages are

used to write the veriVcation rules. Unlike AOP languages, interpreted languages are not

compiled along with the application code, but they are loaded and executed at runtime.

This allows developers to change the rules code at runtime. These changes are immediately

visible in the GUI because the veriVcation framework automatically reloads the changed

rules during application execution. This feature runs on the Wy without recompiling the

code nor relaunching the application. As a result, software testing becomes a more Wexible,

dynamic and thus more eXcient task. It is worth noting that none of the approaches

analyzed in Section 2.1.2 support this feature.

There are many of interpreted languages from which developers can choose the most

suitable for veriVcation. These languages are powerful and provide a high expressiveness

and Wexibility. They also allow to implement correction actions within the rules to bring

the GUI to a consistent state. Developers feel comfortable with the use of programming

languages to deVne assertions [119].

However, this Wexibility and freedom provided by interpreted languages can bounce back

against us during the veriVcation process. Scripting languages do not usually provide formal

mechanisms to allow developers to check the correctness and consistency of the rules code.

As said in Subsection 4.4.5, developers should use an external method (e.g., constraint logic

programming) if they want to ensure the consistency of the rules set. S-DAVER can not

provide a mechanism for this purpose because it ignores, a priori, the language selected for

veriVcation. However, in order to mitigate this problem, its veriVcation engine includes a

set of built-in mechanisms to provide robustness when the rules are incorrect or incoherent.

109

4 Evaluating Quality of Users Input

Using the code in the rules to implement correction actions directly on the GUI data

might also be dangerous. Despite it represents a powerful feature to bring the GUI to a

consistent state after a rule violation, and despite the scope of correction is limited to the

GUI, the actions implemented by developers may introduce inconsistencies in the GUI

data. Again, the responsibility of a safe implementation goes to the developer. Besides the

rules themselves, there exists not a method to guarantee that correction actions fulVll the

requirements.

The lack of a method to check the correctness and consistency of the veriVcation rules

represents the main limitation of S-DAVER compared to most of Runtime VeriVcation

approaches. Attempting to solve this problem is one of our major concerns and the main

priority as future work.

4.10.2 The S-DAVER Open-Source Implementation

An open-source implementation of S-DAVER is provided. This implementation can be

downloaded from a public repository, an is ready to be integrated and used into Qt-based

applications. The current implementation can be adapted by developers to be used in many

diUerent veriVcation scenarios involving a diUerent veriVcation language, even a diUerent

GUI platform.

The S-DAVER implementation was successfully integrated into two FOSS applications

as proof of concept. Resulting from this experiment, these two applications now have a

separate set of rules to verify the input data instead of having the rules scattered in the

application code. They also provide interactive feedback to users, which was a feature not

present in the original versions. The original application code was reduced as well, reaching

reduction rates up to 40%. The more restrictive and complex the input data constraints

are, the higher is the number of removed lines of code. The performance of S-DAVER was

tested presenting promising results. However, a more exhaustive analysis of its performance

should be conducted in the future.

The provided implementation is fairly mature, but it presents some limitations that

deserve to be described. First, the VerificationEngine treats rules as isolated functions.

References from one rule to another can not be done, and external variables can not be

used. This restricts the expressiveness of the selected language. Moreover, using a naming

convention to deVne the rules would be also desirable. For example, automatically bind

110

4.10 Discussion

a speciVc GUI event over a speciVc GUI widget to a rule with a name based on that

<widget,event> pair. This interesting feature will be considered for future work. Finally,

GUI Interventionmodules are restricted by the own limitations of the functionality provided

by the GUI system. Developers should choose carefully according to their needs. These

limitations may reduce the eUectiveness of the current version of S-DAVER. However, Vx

them is just a matter of implementation.

4.10.3 S-DAVER Compared with Other VeriVcation Approaches

Compared to the veriVcation approaches analyzed in Section 2.1.2, the main innovations

provided by the approach proposed in this chapter are described in the following:

1. It describes a real lightweight data veriVcation method. It does not require to formally

describe the requirements or the expected behavior.

2. The requirements are directly translated into independent pieces of code. They are

included in separate Vles that can be modiVed while the application is running.

3. The developers are free to choose between a wide range of interpreted languages to

deVne the veriVcation rules.

4. The framework is easy to integrate and use into a development, and works transpar-

ently to the developers.

5. The framework is concerned with the Vnal experience of developers and users.

Dynamic and visual feedback is used to interactively show information about the

veriVcation process during testing and execution stages.

Table 4.3 summarizes a brief comparison between S-DAVER and some of the most

relevant implementations of the approaches described in Section 2.1.2. One example is

RAVEN, which from the analyzed approaches, is the only one specially oriented to GUI.

Unlike S-DAVER, its implementation is closed to the Java GUI platform. It uses a XML-

based language to deVne the rules, which reduces considerably the expressiveness of the

speciVcation. E.g., deVning rules in which a value is computed by using some data in the

GUI would not be straightforward.

RuleR and LogScope use an application state against which the rules are checked. The

idea underlying S-DAVER is rather similar, as the current execution of the GUI is considered

as the application state. However, these methods consider the trace of execution (i.e., data

111

4 Evaluating Quality of Users Input

history) while S-DAVER does not. RuleR and LogScope use formal logic to specify the

rules. Our framework proposes a less formal approach to gain Wexibility when deVning

and maintaining the rules. However, it looses consistency in the speciVcation. During

veriVcation, RuleR checks all the rules whose antecedents evaluate to true at a speciVc time.

S-DAVER checks only the rules involving properties changed due to the user interaction.

LogScope has a diUerent nature. It works oYine and standalone because it is aimed at

analyzing behavior logs.

MaCS and the approach proposed by Zee et al. deVne the requirements by using languages

specially designed for such veriVcation processes. This implies that the expressiveness of

these veriVcation methods is reduced to the functionality provided by these languages. In

contrast, S-DAVER is open to use general purpose languages to provide developers with

more Wexibility and higher expressiveness to deVne the requirements. A relevant limitation

of the approach proposed by Zee et al. is that developers write the requirements directly in

the source code, which makes this solution totally code-intrusive.

The MOP-based solutions and J-LO use the MOP language and a LTL logic, respectively,

to deVne the veriVcation rules. In contrast to S-DAVER, they provide a formal deVnition of

the requirements. However, these solutions use AOP code (i.e., AspectJ) into the application

code to bind the rules to the properties to be checked. It implies a high intrusiveness in the

target application, which has to be always recompiled when any rule is changed.

ASP.NET and HTML5 include tools for verifying data in web-based user interfaces.

The main diUerence between these approaches and S-DAVER is that their veriVcation

code is tangled and scattered across the GUI speciVcation. This reduces the readability

and encapsulation of the rules dramatically. Moreover, these solutions do not support

rules involving more than one GUI element. The set of properties that can be validated

is also highly restricted by the simple APIs these solutions provide. ASP.NET mitigates

this problem by allowing the execution of script code at the server. In S-DAVER, the

limitations in the expressiveness of the rules will be imposed by the capabilities of the

chosen veriVcation language.

BeepBeep describes a Vlter in the server to intercept incoming messages from a web

application. The data in the messages is validated according to an interface contract that, as

in S-DAVER, it is written in a separate text Vle. Invalid messages are blocked. The main

diUerence with the proposed approach is that it uses an extended LTL logic to address

the interface contracts. The requirements can be only deVned using this logic and the

112

4.10 Discussion

G
U
I

or
ie
nt
ed

Fo
rm

al

la
ng

ua
ge
s

Sc
ri
pt

la
ng

ua
ge
s

A
d-
ho

c

la
ng

ua
ge
s

A
O
P

la
ng

ua
ge
s

C
od

e

in
tr
us
iv
e

C
or
re
ct
io
n

ac
ti
on

s

D
yn

am
ic

fe
ed
ba
ck

S-
D
A
V
ER

�
?

�
�

�
�

�
�

R
A
V
EN

[6
5]

�
�

�
�

�
�

�
�

R
ul
eR

[1
8]

�
�

�
�

�
�

�
�

Lo
gS
co
pe

[1
6]

�
�

�
�

�
?

�
�

M
aC

S
[1
07
]

�
�

�
�

�
?

�
�

Z
ee

et
al
.[
23
2]

�
�

�
�

�
�

�
�

Ja
va
M
O
P
[9
7]

�
�

�
�

�
�

�
�

J-
LO

[2
6]

�
�

�
�

�
�

�
�

M
O
PB

ox
[2
7]

�
�

�
�

�
�

�
�

A
SP
.N
ET

[1
10
]

�
�

�
�

�
�

�
�

H
TM

L5
[1
]

�
�

�
�

�
�

�
�

B
ee
pB

ee
p
[7
9]

�
�

�
�

�
�

�
�

�
ye
s
�

pa
rt
ia
lly

�
no

?
un

kn
ow

n

Ta
bl
e
4.
3

C
om

pa
ri
so
n
be
tw

ee
n
S-
D
A
V
ER

an
d
so
m
e
of

th
e
m
os
tr
el
ev
an
ti
m
pl
em

en
ta
tio

ns
de
sc
ri
be
d
in

Se
ct
io
n
2.
1.
2.

113

4 Evaluating Quality of Users Input

checking process is limited by the functionality it provides. As S-DAVER, BeepBeep is easily

bootstrapped by adding a couple of lines in the header of the web-application main page.

4.11 Conclusions

Integrating the usually complex and formal processes of Runtime VeriVcation may not

result in a proVtable and eUective solution in some scenarios like, e.g., when validating input

data in GUIs. The approach proposed in this chapter describes a lightweight veriVcation

solution intended for users input. It is easily integrated into a development thanks to its

high encapsulation and low code intrusiveness.

AOP languages are not used to link the rules to the application. Formalizations of the

requirements or the expected behavior are not created. Instead, the rules are directly written

using scripting languages and transparently integrated into the application. The script code

of the rules is included in separate Vles, which are arranged within a Vle tree according to

the internal structure of the GUI. The rules can be changed at runtime during application

testing. GUI interventions are used to provide visual and interactive feedback aimed at

enhancing the eXciency and the veriVcation experience of developers and users.

As a result of this research, a fully functional framework named S-DAVER has been

designed and implemented. This implementation was integrated into two real FOSS applica-

tions resulting in a reduction of the original source code, as well as in a better organization

and management of the veriVcation rules. S-DAVER makes data veriVcation an integral

part of the development, testing, and execution processes. All the veriVcation processes

are encapsulated in a layer that, once integrated into an application, establishes a trust

relationship between the GUI and the business logic.

114

5
Modeling and Evaluating Quality of Multimodal

User-System Interaction

Chapters 3 and 4 deal with the quality of interaction compo-
nents separately. However, to achieve the quality of the whole
interaction process, its components (i.e., user input and system
output) should be analyzed together, including the cause-eUect
relationships between inputs and outputs over time.

This chapter extends our research to the study of diUerent sen-
sory modalities to provide data. Multimodal interfaces are ex-
pected to improve input and output capabilities of increasingly
sophisticated applications. Several approaches are aimed at for-
mally describing the multimodal interaction process to evaluate
usability and quality of such systems. However, they rarely treat
interaction as a single Wow of actions, preserving its dynamic
nature, and considering modalities at the same level.

This chapter presents PALADIN, a model describing multimodal
interaction. It arranges a set of parameters to quantify interac-
tion as a whole, minimizing the existing diUerences between
modalities. It uses a stepwise description to preserve the dy-
namic nature of the conversation. PALADIN deVnes a common
notation to describe interaction in diUerent unimodal and multi-
modal scenarios, providing a framework to assess and compare
the usability of systems.

115

5 Modeling and Evaluating Quality of Multimodal User-System Interaction

5.1 Introduction and Motivation

Today’s applications are more sophisticated and demand richer and more advanced interac-

tion between users and systems. In this context, multimodal approaches combine several

types of sensory modalities to provide communication with a higher bandwidth [45] and

Wexibility [180], as well as to improve interaction robustness due to disambiguation [181]

and to oUer a better interaction experience [222].

In order to improve the usability and users satisfaction in multimodal systems, inter-

actions need to be carefully analyzed and formally described. Current state-of-the-art

approaches (analyzed previously in Section 2.2.1) are able to describe and/or analyze multi-

modal human-computer interaction in diUerent scenarios. Nevertheless, we found some

common limitations that should be overcome to properly assess multimodal interaction.

First, diUerent modalities are often analyzed separately or at diUerent levels of abstraction,

e.g., when speech and GUI are instrumented using diUerent tools and thus quantiVed

separately. Data collected using a speciVc modality is not considered seamlessly with the

rest of modalities. An equivalent method is not used when quantifying interaction in

diUerent modalities. As a result, multimodal interaction is not treated as a homogeneous

Wow of actions, as it is happening in reality. This makes diXcult to assess multimodal

interaction as a whole or to compare diUerent modality combinations to each other.

Second, it is also a problem that current methods use diUerent representations to describe

interaction in diUerent multimodal scenarios. In this context, in which there exists an

evident lack of standardization, comparing interaction extracted from diUerent systems

(e.g., the same application running in diUerent handheld platforms) is troublesome and it

implies a higher eUort during the analysis process.

Third, methods based on static parameters or average metrics do not capture the dynamic

nature of the dialog process. These approaches do not allow the analysis of information

that changes over time, e.g., when monitoring user and system activity or when analyzing

the interface response in real time. Otherwise, dynamic approaches ease “live” interaction

instrumentation and support its analysis at runtime.

According to these problems, and in the context of interaction analysis and usability

evaluation in multimodal environments, the following research questions are formulated:

Q1: How can diUerent modalities be analyzed at the same level of abstraction

when assessing multimodal interaction?

116

5.1 Introduction and Motivation

Q2: How can interactions observed in diUerent multimodal scenarios be com-

pared to each other?

Q3: How can multimodal interaction be represented to allow its analysis from

a dynamic perspective?

To answer these questions, this chapter aims at providing a generic and dynamic way

to represent multimodal human-computer interaction (MMI) in diverse scenarios. As a

result, build a uniform method to analyze and evaluate usability of diUerent interactive

multimodal systems. The main contributions of this chapter are described next.

(a) DeVnition of MMI parameters (Section 5.2). A new parameter set quantifying multi-

modal interaction has been deVned based on previous work [114, 168]. Furthermore, an

existing turn-based approach was extended to provide a higher temporal resolution when

analyzing interaction. They provide a more abstract description of interaction compared to

previous works, expanding the range of possibilities for its analysis.

(b) Design of a MMI model (Section 5.3). The design of a new model named PALADIN

(Practice-oriented Analysis and Description of Multimodal Interaction) is described. It

structures the parameters deVned in (a) into a runtime model to describe multimodal

interaction dynamically. Instances of this model are valid to support analysis, comparison,

transformation, adaptation, and decision processes. Its design provides also a common

format to describe interaction in diUerent multimodal scenarios.

(c) Implementation (Section 5.4). An implementation of PALADIN is provided along with

a framework to ease its integration into multimodal developments. It is also described how

these tools are integrated into real multimodal and unimodal applications to conduct user

studies and to assess multimodal interaction.

As a result of this research, the PALADIN model and the tools developed around it

provide a framework ready to implement instrumentation and assessment of interaction in

multimodal environments. The scope is reduced to GUI (a.k.a., visual), speech, and gesture

modalities.

The rest of this chapter is structured as follows. Section 5.5 describes two experiments

with users and real applications in which PALADIN have been integrated. A discussion

of the proposed solution is provided in Section 5.6. Section 5.7 includes some conclusions.

Additionally, Section 5.8 describes all the parameters that are modiVed or newly introduced

in PALADIN compared to [168].

117

5 Modeling and Evaluating Quality of Multimodal User-System Interaction

5.2 A Model-based Framework to Evaluate Multimodal
Interaction

Once analyzed approaches in Section 2.2.1, we found very interesting challenges to be

overcome.

We Vrst analyzed diUerent approaches which, despite being intended for the development

of multimodal interfaces, they present interesting features for our evaluation work. In

general, those methods using markup languages tend to lack structure, while those methods

using models often lack a dynamic nature or are not descriptive enough to implement

evaluation processes. Furthermore, development methods tend to focus more on the system,

usually ignoring the “user side” of interaction.

Unlike such approaches, PALADIN tries to provide a more structured and more precise

description of multimodal interaction to support its quantiVcation by instrumentation.

Moreover, PALADIN aims at describing interaction as a single information stream, treating

diUerent modalities at the same level of abstraction (e.g., considering a screen touch and a

gesture as two generic input information elements, regardless of the modalities used).

Section 2.2.1 analyzed evaluation approaches as well. Many of them use parameters to

evaluate interaction. Several of the parameters proposed by these approaches are reused in

PALADIN. However, most of them need to be adapted in order to improve their generality

and to enable a dynamic description of interaction, a lack in these approaches. Other

evaluation approaches are based on the observation of the user. Unlike these approaches,

PALADIN is not intended for recording the user actions, but for supporting the description

and quantiVcation of multimodal interaction.

PALADIN structures parameters into a runtime model. Using a model instead of a

markup language or a log Vle provides important advantages:

• the information is better structured and organized. The dependencies between data

located in diUerent sections of the model (i.e., reference and containment relation-

ships) are explicit.

• the runtime nature of models like PALADIN (i.e., information is described in a

stepwise manner) provides an implicit relationship between data and time, enabling

the dynamic analysis and processing of data.

118

5.2 A Model-based Framework to Evaluate Multimodal Interaction

• a model is based on a metamodel, which provides a uniform structure for the model

instances, as well as metadata about the information they can hold. This provides a

proper basis for the automatic processing and management of the information.

• frameworks like EMF provide an ecosystem of standard tools that provide au-

tomatic functionality for data processing, code generation, model transformation,

statistical processes, etc. (read Chapter 2 in [203]).

PALADIN tries to Vll the gap between systematic models for system development and the

available great quantity of parameters and metrics to measure user-system interaction. Thus,

a model describing the course of dialog between the user and the system in a multimodal

environment is presented. Its aim is to provide a basis for the analysis of interaction and the

evaluation of usability of multimodal dialog systems (MMDS). According to the approaches

described above, PALADIN can be classiVed as an evaluation method, based on a model

structure, that follows a quantitative approach to describe the multimodal interaction

process.

In this section we describe the parameters on which PALADIN is based. Starting with

a short introduction on levels of information exchange, we ground the model on a turn

concept, which chronologically structures the process of information exchange between user

and system. The parameters used to semantically describe the interaction and quantifying

it are described afterward.

5.2.1 ClassiVcation of Dialog Models by Level of Abstraction

A classiVcation suitable for modeling spoken dialog systems using acoustic-, word- and

intention-level was introduced in [195]. With respect to the context of multimodal systems,

we modiVed this classiVcation in order to make it more abstract and suitable for each

modality. Thus, it is proposed to use signal-, element- and concept-level for the classiVcation.

Each level describes a particular abstraction of the information transfer between user

and system. The transfer is modeled with physical signals like sonar waves (speech) or light

(GUI) at signal-level. The element-level is an abstraction of the signal-level. Here, a model

uses elements (cp. Section 5.2.3) of the user interface or their actions for the description

of the transfer. A still stronger generalization is the concept-level, which does not diUer

for any modality. User and system exchange just semantics units. One possible form are

119

5 Modeling and Evaluating Quality of Multimodal User-System Interaction

attribute value pairs as used in PARADISE [217] or by Schatzmann and Young in their

hidden agenda model [196].

5.2.2 The Dialog Structure

PALADIN structures a dialog as a sequence of alternate system and user turns. It is assumed

that system and user turn do not overlap each other. Therefore, a turn represents the basic

unit in which a dialog can be decomposed. Previous works (e.g., [168, 186]) proposed such

a structure to model interactions with spoken dialog systems (SDS).

In order to describe the human-machine interaction in more detail, the system turn and

user turn were redeVned according to the new dimension of multimodal interaction. We

propose dividing the user and the system turn each into three stages as showed in Figure 5.1.

system turn

user turn
ends

system
feedback

starts

info
presentation

starts

system turn
ends

user turn
ends

user starts
exploring

user starts
transferring

action

user turn

delay feedback presentation delay exploring transferring

Figure 5.1 Interaction system and user turn in detail.

• In system turn, during delay the system does nothing from the users point of view.

While feedback the system sends a signal to the user to indicate that the last input

of the user is being processed, e.g., showing a clock symbol in the screen or playing

a sound. Finally, in presentation the system response is provided to the user, e.g., a

talking head using speech and gestures to show the available options.

• In user turn, delay ends when the user starts perceiving the information provided

by the system. During exploring the user analyzes this information, e.g., scrolling in

a GUI. While transferring the user supplies information to the system. That could

be entering data in some Velds followed by the usage of a send button in GUI, or

uttering a sentence in speech.

This new deVnition of turn provides a uniform and symmetric perspective of user and

system turns. It also separates elements carrying process information or feedback, both for

120

5.2 A Model-based Framework to Evaluate Multimodal Interaction

users and the system. Moreover, considering an exploring stage between the delay and the

transferring action of the user helps us to distinguish between the time during which the

user has no response, and the time he/she is taking the information in.

5.2.3 Using Parameters to Describe Multimodal Interaction

Parameter-based approaches have been successfully used to quantify and evaluate inter-

action in SDS for more than 20 years [114]. Related work [22, 58, 114, 168] showed a high

correlation in SDS and MMDS in terms of how the interaction between the user and the

system is performed. Therefore, most of those parameters used to evaluate SDS can be

directly transferred —by adapting their deVnition— to a MMDS context.

In this situation, we decided to use a parameter-based approach to quantify user and

system interaction in multimodal environments. The validity of these approaches for

evaluating MMDS have been showed in previous works like [58].

The parameters described by Kühnel and Möller in [114, 168] are the basis for the

work presented in this chapter. These authors described a Vrst approximation of MMDS

parameters based on those used to evaluate SDS [166, 167]. However, these parameters are

too close to SDS evaluation, which hinders the assessment of multimodal systems that do

not include speech modality, as well as the implementation of more abstract analysis of

multimodal interaction. Therefore, a transformation of the base parameters was needed in

order to describe multimodal interaction as a whole and regardless of the modalities used.

5.2.3.1 Adaptation of Base Parameters

The base parameters were included in PALADIN after some abstraction and specialization

actions described in the following.

On the one hand the abstraction process, in which parameters related to the information

exchange and the communication process between the user and the system were provided

with a more generic deVnition. E.g., “words” were transformed into “information elements”.

Such elements do not belong to a speciVc modality, but they can represent a word, a gesture,

a widget in a GUI, an eye movement, or other elements carrying information.

A particular case of abstraction is the concept of “noise”. This parameter was adapted

from its speech-based deVnition to denote potentially disturbing elements in any modality

(e.g., advertisements in GUI, noisy sounds in speech modality or people moving in the

121

5 Modeling and Evaluating Quality of Multimodal User-System Interaction

background of the scene in gesture modality). This parameter allows us to compute the

percentage of information that is not relevant to reach the main goal of the dialog. It should

be assumed that noise has to be annotated manually by an expert, since automatic detection

of disturbing elements is an unsolved problem.

On the other hand the specialization process. First, the deVnition of those parameters

related to speciVc features of speech interaction was left as is. Additionally, new speciVc pa-

rameters for GUI and gesture interaction (described later in this section) were incorporated.

SpeciVc parameters are used in two cases: when a particular aspect of interaction has to

be annotated (e.g., it was an speech recognition error) or when additional information is

needed to enhance generic parameters (e.g., to know how many words in “elements” are

“unrecognized words”).

After the transformation of the base parameters, and according to the new turn structure

described above, the following parameters (which are further described in Table 5.9)1 were

added to PALADIN:

Dialog and communication: system feedback duration (SFDu), system action duration

(SAD), user response delay (URD), user exploring delay (UED), user exploring duration

(UEDu), user action duration (UAD), concepts per system turn (CPST), feedback per

system turn (FPST), noise per system turn (NPST), concepts per user turn (CPUT),

feedback per user turn (FPUT) and noise per user turn (NPUT)

5.2.3.2 DeVning new Modality and Meta-communication Parameters

New parameters were deVned to extend the information related to the diUerent modalities

used during multimodal interaction. At each of the turns described above, the user or the

system uses one or several modalities to provide input or output data, respectively. Modality

changes are performed, e.g., to improve the eXciency of the communication, due to a

changing environmental context, etc.

New parameters were deVned in order to annotate from which to which modality a

change is performed. The origin —the user or the system— and the reason for that change

were considered as well. Unfortunately it is not possible to automatically annotate the

1 Tables 5.9, 5.10, 5.11 and 5.12 describe diUerent interaction parameters including the modalities for which
they can be applied (Mod.), the interaction level at which they are collected (Int. Lev.) and the measurement
method (Meas. meth.) Table 5.8 further describes these abbreviations and their values.

122

5.2 A Model-based Framework to Evaluate Multimodal Interaction

reason for changing the modality (specially for the user), which might be asked to the user

after interaction, e.g., in an interview.

With these parameters we can fully describe modality changes including all relevant data

for analysis. E.g., it is possible to describe that the system switched the output modality from

speech to GUI due to an environmental change. These parameters (described in Table 5.10)1

summarize our contribution to better describe modalities usage in MMDS interaction:

Modality parameters: systemmodality change direction (SMCD), output modality change

reason (OMCR), user modality change direction (UMCD), input modality change rea-

son (IMCR), modality type (MT)

Additionally, new meta-information about the multimodal communication process was

added to improve the analysis of dialog success and fail cases. These new parameters allow

experts to better diUerentiate between dialog cancellation, that implies no task success,

and dialog restart, in which user might reach task success. The cases in which a barge-in

attempt is successful or not are also considered separately.

Furthermore, recognition errors are now considered also for GUI (e.g., input data that

does not keep the expected format) and gesture (e.g., unrecognized gestures) modalities.

The following parameters (described in Table 5.11)1 were added to the model in order to

include the scenarios described above:

Meta-communication: number of user cancel attempts (#cancel), number of user restart

attempts (#restart), successful user barge-in rate (SuBR), number of data input valida-

tion rejections (#DIV rejection)

5.2.3.3 DeVning new Parameters for GUI and Gesture Interaction

SpeciVc features of GUI interaction were incorporated into the new parameter set as well.

These parameters describe navigation and text input in GUI modality in terms of time,

device usage, screen content and further speciVc properties. Their open deVnition supports

potentially any input device of this type like, e.g., mouses, keyboards, touch-screens or eye

tracking systems.

These parameters also distinguish between exploring and transferring actions. Exploring

ones are used to explore and analyze the content provided by the system, e.g., scrolling

down a web page. Transferring actions are used to provide the system with input data, e.g.,

a date is inserted. The validity of the data provided by the user, which has to conform to a

123

5 Modeling and Evaluating Quality of Multimodal User-System Interaction

set of allowed actions, the input format [54] or other restrictions, has also been considered.

The following parameters (further described in Table 5.12)1 were added to the model to

describe peculiarities of GUI input:

Input: keyboard usage percentage (KUP), mouse usage percentage (MUP), mouse move-

ment length (MML), mouse move frequency (MMF), number of exploring actions

(#EAC), exploring actions rate (EAR), number of transferring actions (#TAC), trans-

ferring actions rate (TAR)

SpeciVc parameters for gesture interaction were not added to the PALADIN model.

Therefore, gesture interaction is annotated within the model by using the generic parameters

intended for describing the dialog and communication content. As stated in Section 5.7, to

analyze gesture input and output in-depth and deVne a new set of parameters to describe

the peculiarities of this modality is a priority in a short-term.

5.2.3.4 ClassiVcation of the Multimodal Interaction Parameters

The resulting parameters were classiVed following the classiVcation in [166], which was

extended by a new category: Modality-related parameters. The parameters number of

system output modality changes (#SMC), number of user output modality changes (#UMC),

relative modality eXciency (RME) and multimodal synergy (MS), originally belonging to

dialog- and communication-related parameters in [168], were moved into it.

Finally, PALADIN parameters are structured as follows:

• Dialog and Communication related parameters (Table 5.9 and [168])

• Meta-communication related parameters (Table 5.11 and [168])

• Cooperativity-related parameters ([168])

• Task-related parameters ([168])

• Input-related parameters (Table 5.12 and [168])

• Output-related parameters ([168])

• Modality-related parameters (Table 5.10 and [168])

Section 5.8 describes all parameters modiVed or newly introduced in PALADIN compared

to [168]. Table 5.7 gives an overview of all parameters used in PALADIN, including

references to their deVnitions.

124

5.3 Design of PALADIN

At this point, research question Q1, formulated at the beginning of this chapter, can be

answered. Multimodal communication content is described using generic parameters. Such

parameters are used to quantify interaction seamlessly, as a uniform and homogeneous

Wow of information between the user and the system, and regardless the modality in

use. Furthermore, interaction meta-data is collected at a communication-level, not at a

modality-level.

As a result, inputs and outputs in diUerent modalities are considered at the same level

of abstraction. PALADIN uses information elements as the generic unit to quantify the

communication between the user and the system instead of counting screen touches,

window objects, spoken words or performed gestures, which are elements of a particular

modality. Implications of this research question are further discussed in Section 5.6.

5.3 Design of PALADIN

The proposed design contains all data necessary to compute the parameters described above.

This data set is subject to two conditions. First, it should be as small as possible in order to

ease the extraction and computing processes. Therefore, the selected set of data includes

only those required for automatically computing the aforementioned parameters. At the

same time, we tried to maximize the number of data that can be automatically collected,

and thus minimize those that have to be annotated by hand.

Data to be collected can be classiVed into Vve groups.

1. Time metrics, necessary to compute the duration of each stage in user and system

turns (e.g., feedback stage duration).

2. Communication content, to describe the type of the information elements ex-

changed between the user and the system. Such data give us a very rough indication

of how the interaction takes place (e.g., number of noise elements).

3. Input and Output metrics, to describe the peculiarities of each modality and to

provide added value to the communication content data (e.g., speech parsing result

or number of navigation actions).

4. Meta-data about the dialog process, aimed at quantifying the number of system and

user turns which relate to a speciVc interaction problem (e.g., cancel-turn or speech

recognition error).

125

5 Modeling and Evaluating Quality of Multimodal User-System Interaction

5. Modality data, to describe the diUerent modalities used during the communication

process and to annotate features of each modality change (e.g., input modality type or

reason for the modality change). The parameter modality type allows the annotation

of fusion and/or Vssion of modalities used in system or user turn.

To inherit the dynamic nature of a dialog, the design of PALADIN is centered around

the “turn” concept. Since a dialog can be described as a sequence of alternate system and

user turns (see deVnition of turn in Subsection 5.2.3), the metrics described in the previous

list are collected for each single turn. As a result, instances of this model are a stepwise

representation of the interaction process between the user and the system in a dialog.

Once the interaction process has Vnished, the data recorded at each interaction step (i.e., a

consecutive pair of system and user turns) is used to compute global or average metrics, or

in other words, the interaction parameters addressed in Section 5.2.3.

The reader should be aware that system and user turns are not discrete. Even some of

their stages might not be present in speciVc situations. For example, the delay stage in a

system turn may be imperceptible to the user, or there may be no feedback stage at all. In

another case, it might be impossible to distinguish between the end of the delay stage and

the start of the exploring stage during user turn if the exploring action involves actions

such as reading, which can only be assessed through observation or eye-tracking.

As depicted in Figure 5.2, the basic structure of the model is represented by an aggrega-

tion of turns composing a dialog. While dialog holds data related to the whole process (e.g.,

task success information), each turn holds data corresponding to the interaction process at

a concrete step of the dialog. A turn is composed of data related to stage timing and com-

munication content common to the system and the user (e.g., number of feedback elements,

duration of the action stage). Moreover, a turn is extended with further information (i.e.,

meta-communication and input/output data) depending on whether it is a system turn or a

user turn.

Meta-communication data is partly common to the user and the system, e.g., informa-

tion about help and correction turns. However, most of it refers only to user problems (e.g.,

cancel or restart turns, barge-ins attempts2) or to system problems (e.g., speech or gesture

recognition errors, invalid input data errors). Annotating meta-data by turn provides a link

2A barge-in attempt occurs when the user intentionally addresses the system while the system is still
speaking, displaying the information of a GUI, performing a gesture or sending information using another
modality.

126

5.3 Design of PALADIN

Figure 5.2 Arrangement of interaction parameters within PALADIN. Design illustrated
as Ecore model diagram.

127

5 Modeling and Evaluating Quality of Multimodal User-System Interaction

between an error, the time at which it happened, and the interaction conditions up to that

moment.

Input data is only included into the user turn. It holds information related to the pe-

culiarities of input in the diUerent modalities used during the dialog. Our current model

supports speech (e.g., automatic speech recognition metrics), GUI (e.g., usage of pointing

and text devices) and gesture inputs (e.g., automatic gesture recognition metrics). Output

data is the equivalent for system turns. It includes information about output peculiarities

(e.g., correctness of system speech answers).

This part of the model provides a new level of abstraction to analyze input and output in

a more detailed perspective than the provided by the turn object. Considering input and

output separately provides higher Wexibility to describe and analyze the diUerent modality

combinations used in a multimodal system.

Cooperativity data is considered only in system turns, and describes the contextual

appropriateness of the information provided by the system (i.e., the response). This data is

annotated by experts, who judge whether a system response is appropriate in its immediate

dialog context. An adapted version of the Grice’s maxims for cooperativity [76] is used to

determine such parameters.

Finally, modality data is also described by turn, indicating which modality or combi-

nation of them is used at each time, as well as some properties of such modalities (e.g.,

appropriateness or lags between output of diUerent modalities). This object of the model

implicitly provides information about modality changes, e.g., the turn in which a change

happened and from which to which modality it was performed. Moreover, recording

modality-related data in a stepwise manner allows experts to evaluate the performance and

usability of diUerent modality combinations depending on the current dialog conditions.

As the reader can see in Figure 5.2, all objects in the model are grouped around the turn

object, allowing them to inherit its dynamic character. This object acts as a link between

data belonging to diUerent sections of the model. Thus, data from diUerent sources can be

easily combined, increasing the expressiveness of the model. This feature eases the detection

of errors and allow experts to easily draw complex conclusions; e.g., “the number of speech

recognition errors increases when the number of inserted concepts is above average” or

“60% of such errors imply a modality change”.

Extending the model is easy as well mainly due to the turn-centered design. In most

of cases, it is just a matter of adding new attributes to an existing object of the model, or

128

5.4 Implementation, Integration, and Usage of PALADIN

creating a new one. Anyway, signiVcant changes would be made at the edges of the model,

minimising the impact on its main structure.

The features of the proposed design give us an answer to question Q2. All the metrics

described above are well structured within a model representation. Using this “common

representation” to describe interaction in diUerent multimodal —and unimodal— scenarios

provides a basis to easily compare diUerent interaction records (i.e., the model instances).

All model instances have the same format and structure regardless of the way the data were

collected and put into them.

Moreover, Q3 is also answered at this point. The turn-based design of PALADIN provides

a stepwise description of multimodal interaction. Data are quantiVed and annotated into

the model in diUerent turns, at speciVc points in time during the interaction process. This

creates a relationship between data and time, providing experts with a basis to implement

dynamic analysis of interaction.

In addition, this model design enhances the solution proposed above for question Q1,

since two diUerent levels of abstraction (i.e., a generic level and a more speciVc one, both

annotated in Figure 5.2) are now used to describe the communication content.

5.4 Implementation, Integration, and Usage of PALADIN

PALADIN was implemented according to the design described above in Section 5.3. Its

implementation is provided as an open-source contribution to the HCI community, and

can be downloaded from [139]. The implementation of PALADIN was done within the

Eclipse Modeling Framework (EMF), which provides automatic code generation, syntactical

validation and model transformation functionality. Chapter 2 in [203] gives a compact

introduction of the concepts behind and usage of EMF.

The data model of PALADIN was initially deVned in an XML Schema DeVnition (XSD)

by following the appropriate W3C recommendations [128, 209]. Then, the schema deVnition

along with EMF were used to automatically generate the Java code for our model. Automatic

code generation is available for several programming languages, e.g., Java, .NET framework,

etc.

PALADIN is a metamodel intended to be used within an interaction evaluation envi-

ronment. In order to ease its integration into research and production systems, a helping

framework was developed. It is called Instantiation Framework (IF), its implementation

129

5 Modeling and Evaluating Quality of Multimodal User-System Interaction

is open-source and can be downloaded from [139] as well. The IF is aimed at serving as

a bridge between the interaction source (e.g., a Vlter extracting live interaction from an

application, an application simulating user-system interaction, an interaction log) and the

PALADIN instances. It eases the creation of model instances in real-time and helps to

manage their life-cycle.

The IF works as an independent element during the interaction instrumentation process.

It needs to be notiVed about actions of the user and the system during interaction (e.g., the

user made a click, the system provided a feedback message). The IF uses the information

provided by the interaction source to create and update the current instance of PALADIN.

The permanently updated model instance can be accessed during the interaction for runtime

analysis, or once the interaction is Vnished to implement oU-line analysis.

The current implementation of PALADIN and the IF can be easily integrated in the

source code of a Java application. In [139] it is carefully described how PALADIN can

be used with or without the IF, and how these tools are integrated into an application to

implement multimodal interaction analysis. The IF provides a facade3 from which it is

easily notiVed by an external tool instrumenting interaction. This facade class includes

a set of methods describing diUerent actions of the system and the user (e.g., touch(),

overallWords(), newGuiFeedback()) and meta-actions that can occur during multimodal

interaction (e.g., incorrectlyParsedUtterance(), interactionStarts()).

PALADIN
instances

1. Interaction tracking 2. Model instantiation 3. Interaction analysis

INSTANTIATION
FRAMEWORK

HCI
EXTRACTOR

INTERACTION
ANALYZER

DECIDER

PALADIN
implementation

Figure 5.3 Overview of the PALADIN instantiation process and its context.

Figure 5.3 depicts a typical instantiation scenario for PALADIN, which is similar to those

described in Section 5.5. This scenario can be divided into three stages:

3A facade is an object that provides a simpliVed interface to a larger body of code, such as a class library
or a software framework.

130

5.5 Application Use Cases

1. Interaction tracking: in this stage the user-system interaction is tracked to capture

the parameters necessary to describe it. Interaction events may be captured from real

application usage in real-time (see the Android HCI Extractor in Section 5.5) or from

other scenarios in which interaction is simulated (e.g., MeMo [62]). Interaction can

be also extracted from logs, or anyhow artiVcial produced.

2. Creation of model instances: the IF is notiVed with the interaction events through

its facade. This information is used to create live PALADIN instances.

3. Interaction analysis: the data stored in the model instances is used oU-line to

implement data analysis, comparison or transformation processes. Such instances

can be also accessed through the IF at runtime if we are making live decisions for

application adaptation.

In [139] it is also described how PALADIN and the IF can be extended and customized

to implement additional features of multimodal interaction. As the reader can see in these

tutorials, integrating the IF into a project to create live instances of PALADIN is really easy

and does not require more than ten lines of code. However, adapting these tools to support

new analysis features (e.g., to support a new modality) requires a higher development eUort

and more knowledge about the model and the instantiation architecture.

5.5 Application Use Cases

This section shows how PALADIN can be integrated in diUerent scenarios in which user-

system interaction is analyzed to improve usability of systems. PALADIN was integrated

into four diUerent Android applications (summarized in Table 5.1) in the frame of two ex-

periments in order to instrument selected parameters of user-system interaction (described

in Table 5.2). Beside an app’s use case, the availability of its source code was a criteria for

the choice.

Experiment 1 (described in Subsection 5.5.1) tries to show that PALADIN can be used to

faithfully describe multimodal interaction, and thus provides a basis for its analysis and

comparison as well as to make decisions. It also shows some preliminary conclusions drawn

from the analysis of the resulting PALADIN instances. This experiment runs a restaurant

search app (ReSA) into an smartphone. The app was developed at the institute of one of the

131

5 Modeling and Evaluating Quality of Multimodal User-System Interaction

ReSA ReSA 2.0 Trolly
Vanilla

Music Player

Usage searching restaurants searching restaurants shopping list searching
and playing
music

Developer Stefan SchaUer Xin Guang Gong Ben Cald-
well

Adrian
Ulrich

License proprietary proprietary GPL v3 [74] GPL v3

Version 1.0 2.0 1.4 0.9.10

Source code — — http://code.
google.com/
p/trolly

https://
github.com/
adrian-bl/
vanilla

Table 5.1 Information about the four Android apps used in the two experiments.

authors for research on modality selection in multimodal systems. Exclusive usage of touch

or speech are supported for input, as well as GUI for output are supported in ReSA.

Experiment 2 (described in Subsection 5.5.2) tries to show that PALADIN can be used

to conduct a real study with users. Gong and Engelbrecht used PALADIN to analyze

the inWuence of speciVc system and user characteristics on the quality of users-judgment

prediction models [73]. This experiment integrates PALADIN into the tablet applications

ReSA 2.0, Trolly and Vanilla Music Player. ReSA 2.0 bases on ReSA and is also an internal

development. Trolly and Vanilla Music Player are full functional open source apps and

available for free at Google play (the oXcial marketplace for Android apps). It was not the

goal of the experiment to examine multimodal interaction, but the inWuence of an app’s

complexity on users’ judgements. For that reason, each app had GUI as output modality

and touch for input. The speech functionality of ReSA was not used in this experiment.

Nevertheless, this experiment proofs the usage of PALADIN in everyday apps, that are

developed without any intention to be used in a usability evaluation study.

5.5.1 Assessment of PALADIN as an Evaluation Tool

This section describes an experimental set-up and procedure based on the use of the ReSA

application. This Android application is used by the participants to search for a restaurant

132

http://code.google.com/p/trolly
http://code.google.com/p/trolly
http://code.google.com/p/trolly
https://github.com/adrian-bl/vanilla
https://github.com/adrian-bl/vanilla
https://github.com/adrian-bl/vanilla
https://github.com/adrian-bl/vanilla

5.5 Application Use Cases

Experiment 1 Experiment 2

Type Parameter GUI Speech GUI

Dialog and Communication

EPST � � �

EPUT � � �

SAD � � �

SFD � � �

SFDu � � �

UAD � � �

UFD � � �

UFDu � � �

Modality parameters
IMCR � � �

UMCD � � �

Input
#EAC � � �

#TAC � � �

Speech-input CER � � �

Modality parameters MT � � �

Meta-communication #ASR rejections � � �

� yes � no

Table 5.2 Parameters recorded in the two experiments, grouped by parameter type.

133

5 Modeling and Evaluating Quality of Multimodal User-System Interaction

according to the indicated preferences. This experiment is used to prove the validity of

PALADIN for evaluating the usability of multimodal systems. It is also described some

initial results obtained from the analysis of the interaction data extracted in this experiment.

5.5.1.1 Participants and Material

Fifteen native German speakers (average age 29.5 years, SD = 4.6 years, 5 women, 10

men) participated in the study. All participants were students or research colleagues of

various disciplines, mainly engineering. None of them had any former experience with the

used application. The “Restaurant Search App” in version 1.0 (ReSA) was already used in

former experiments on modality selection and perceived mental eUort. We used it for our

evaluation study, because the complete source code was available for us and the application

oUers touch and speech input to the user. Table 5.1 gives further information about the app.

All users interacted with ReSA installed on an Android-based smartphone (HTC Desire,

Android 2.2, 1GHz, 512MB RAM). The available input modalities were speech (Wizard-of-Oz

setting) and touch (via the smartphone’s touch-screen). GUI was the only output modality

used during the interaction. Users were able to use any of the available input modalities

to interact with the application, but not both in the same turn. Modality changes were

automatically recognized, thus the user had not to explicitly activate speech recognition,

e.g., by pressing a push-to-talk button. In case the user input was not recognized, a feedback

message indicating the error was presented to the user, and the application returned —if

not there— to the main screen (Figure 5.4, a).

ReSA was originally developed for studying users’ behavior in input modality selection

in dependency on recognition errors by the system. The possibility to control the system

error rate is essential for such studies. For that reason, ReSA does not actually use an

implemented automatic speech recognition (ASR) but a Wizard-of-Oz approach (e.g., as

described in [71]) for speech input processing). The ASR as well as the natural language

understanding were substituted by a trained assistant (i.e., the wizard) in our setting. He/she

performed speech interaction steps by means of a specially-designed Java application, which

was deployed on a notebook connected to the mobile device via wireless LAN. During the

experiment wizard and participant stayed in separated rooms. Not until the participant had

fulVlled all tasks, he/she was informed about the wizard.

Wizard-of-Oz approaches have been successfully integrated in testing scenarios involving

speech and other input modalities, e.g., in [114, 197, 200]. Our wizard application included

134

5.5 Application Use Cases

(a) (b)

Figure 5.4 Restaurant Search App running on Android. See Table 5.3 for translations.

all the options and commands the user could say, as well as functionality to simulate speech

recognition errors. The ASR simulation rejected a user utterance with a probability of 10 %,

independently from the actual form and content of the utterance. The participants assumed

that ASR worked with an open microphone, since he/she could talk to the system at any

time, without pressing a button.

ReSA was added with the Android HCI Extractor4. This prototype tool —implemented

within this work— is able to automatically extract and quantify the interaction between the

user and the system in multimodal Android environments.

As depicted in Figure 5.4 (a), ReSA presents four restaurant search criteria in the main

screen (i.e., a city, a food category, a desired time and the number of persons) that have to

be answered by the user. When one of these options is selected, ReSA shows a set of screens

(Figure 5.4, b) including a list with some of the available values. As ReSA uses German as

default language, Table 5.3 shows the translation into English of the main speech commands

used during interaction.

The user can use touch or speech to select any of the options. The user can show more

values touching the arrows on the bottom left and right, or by saying next or previous

if he/she is using speech input. The items are ordered alphabetically or numerically. An

option can be selected by touching the corresponding button on the screen, or by saying

the written text label, even if the option is not being displayed.

In this manner we can deVne in ReSA tasks with a diUerent diXculty level. E.g., if the

requested value is showed in the Vrst screen (diXculty 1) the user can select it directly by

4An open-source implementation of the Android HCI Extractor can be downloaded from the PALADIN
website [139]. More information related to this tool and its integration with the model and the framework
described above can be found in this page as well.

135

5 Modeling and Evaluating Quality of Multimodal User-System Interaction

German (speech) English (speech)

Weiter Next

Zurück Previous

Restaurant suchen Search Restaurant

Neue Suche New Search

Beenden Quit

German (GUI) English (GUI)

bitte auswählen please select

Kategorie category

Personen persons

Restaurant suchen search restaurant

Stadt city

Table 5.3 Translations of speech and GUI commands used in ReSA.

using speech or touch. However, if the value to be selected is showed in the third screen

(diXculty 3) the user may proceed as follows: either he/she uses touch to navigate until

the third screen and then selects the value, or he/she uses speech and utters the value

directly without navigation. The tasks in ReSA range from diXculty 1 (easiest) to diXculty

5 (hardest).

This application design represents a beneVt of speech input: the higher the number

of interaction steps (i.e., screens) to reach a concrete option is, the greater the beneVt of

using the speech modality. Once all the options are provided, the user can select search for

restaurant to send the request to the server and reach the last screen. The last screen allows

the user to make a new search with New Search or Vnish the process with Quit.

5.5.1.2 Procedure

A single experiment took approximately 15-20 minutes. At Vrst demographic data (i.e., age

and gender) was gathered using a questionnaire. After that, the system was explained and

the usage of touch and speech was demonstrated.

Each participant performed three training trails: touch usage only, speech usage only

and multimodal using mixed modality. The real test comprised 6 trials. The tasks were

presented in written form (e.g., "Please look for a Sushi restaurant in Berlin at 8 pm for 12

persons"). DiXculty of such tasks was systematically varied between 1 and 6 interaction

steps for touch input and always 1 for speech input (if no speech errors are simulated). A

trial was Vnished if all speciVed information was collected correctly and the request was

sent to the server.

As a result of a complete test we obtained, for each participant, 3 PALADIN instances

—described within XML-based Vles— corresponding to the testing trails, 6 instances corre-

136

5.5 Application Use Cases

sponding to the real test, and a set of audio records about the speech input provided by the

user during the trails.

5.5.1.3 Data Analysis

In order to show the validity of PALADIN for multimodal interaction assessment, this

subsection describes the implementation of diUerent analysis processes based on the ex-

periment described above. Examples of interaction analysis, task comparison and runtime

decision are described in the following.

As a Vrst step, a prototype analysis tool was implemented to provide experts with

abstract representations of multimodal dialogs. This tool uses PALADIN instances to draw

the “interaction stream” in a dialog. These streams, like the depicted in Figure 5.5, allow

to implement quick analysis and comparison. Table 5.4 summarizes the set of parameters

depicted in the charts.

Each chart (i.e., stream) describes orderly, and for each turn, the amount of information

elements provided by the system (left bar, grey colour) and the user (right bar, dark grey

colour). The left bar also indicates in a light grey color those elements corresponding to

system feedback. The modality used to provide user input is indicated at the top of these

bars. Mean values are denoted by dashed lines. User response and action times are also

represented by using Bézier curves along the interaction stream. In the charts depicted in

Figure 5.5 the diUerence between delay, feedback and action times is negligible because the

interface was single-action (i.e., the user only performs one action per turn) and does not

require exploration.

At this point we encourage the reader to take a look at the streams in Figure 5.5, from

which we can draw some quick conclusions. For example, we can analyze the eUect of

speech recognition (ASR) errors in user interaction. The chart in Figure 5.5 (a) depicts a

high-diXculty task (i.e., diXculty 5). The reader can know it because, when using GUI

modality, the user needs Vve turns to select the required value for a speciVc restaurant

search criteria.

The Vgure shows the participant using a combination of speech and touch modalities to

do the task. When an ASR error occurred in turn 2 (see the error annotation and the system

feedback informing about the error in turn 3) the user decided to use only touch modality to

accomplish that step of the task, which is represented in the Vgure by the Vve low bars after

the ASR error. Then, the user shifted back to speech modality. The scenario depicted in this

137

5 Modeling and Evaluating Quality of Multimodal User-System Interaction

(a)

(b)

Figure 5.5 Graphical reports of several interaction records corresponding to the experi-
ment using ReSA. Created with the multimodal interaction analysis tool.

138

5.5 Application Use Cases

Abbreviation Parameters

#turns, #system turns, #user turns Number of turns in a dialog.

EPST, EPST Elements per system turn; Average number of EPST in
a dialog.

FPST Feedback elements per system turn.

EPUT, EPUT Elements per user turn; Average number of EPUT in a
dialog.

UFD, UED, UAD User feedback delay, exploration duration and action
duration.

UTD, UTD User turn duration; Average UTD.

#ASR rejections Number of automatic speech recognition (ASR) errors
in a dialog.

#UMC, #UMC:X-Y Number and type of user input modality changes.

Table 5.4 Parameters visualized in the analysis tool captures.

chart was very common during the experiments, which shows an example of the impact

of ASR errors in users behavior. In many cases the users shifted from speech modality to

GUI modality to select a value when a speech recognition error occurred, instead of trying

again by using speech.

As said above, the stream representations are useful to easily compare diUerent interaction

records to each other. Figure 5.5 (b) compares two diUerent tests performed by the same

user. Both streams depict two tasks of the same diXculty level (i.e., the user needs to select

a value by navigating through the same number of screens). In the upper stream only GUI

modality was used; meanwhile, in the lower one, only speech was used. Just taking a look

to the charts we can make the following conclusions related to the eXciency of users when

using ReSA.

First, the reader can see that, when using GUI input modality, the user needs at least as

many turns as the task diXculty-level (4 in this case) to reach the requested value. However,

using speech input the user needs only one turn to utter the value, always in case no ASR

errors occur. Average user times per turn are higher using speech (3587 ms for GUI vs.

5822 ms for speech). However, we can conVrm that in this application speech helps users to

accomplish hard tasks more eXciently, because less turns are needed to select a value.

139

5 Modeling and Evaluating Quality of Multimodal User-System Interaction

Second, after comparing both interaction streams we can conclude that the chosen

layout for the user interface (which was designed conscientiously to test users eXciency)

is ineXcient for GUI interaction. This problem would be easily overcome by using a

single-screen scroll-based interface, as in ReSA 2.0.

Besides data analysis and comparison, using a runtime model to describe multimodal

interaction brings other possibilities for taking advantage of live data. One example is

making runtime decisions based on the interaction data stored into a running instance of

PALADIN (e.g., for interface adaptation). This feature was implemented in ReSA, which

was augmented with a decider that, according to current state of user interaction, provided

hints to improve users’ eXciency in two diUerent scenarios:

Decision scenario 1. The user is using touch, but using speech would be signiVcantly

more eXcient (i.e., in high-diXculty task dialogs). In this case, the decider displays a

message suggesting the usage of speech modality if the user is in a high-diXculty

task (see Figure 5.6, a).

Decision scenario 2. Two or more ASR errors occur in the same dialog. In this case, the

decider displays a message suggesting the user to adjust microphone settings to

improve speech-input quality (see Figure 5.6, b).

5.5.2 Usage of PALADIN in a User Study

PALADIN was also used in a study [73] about user judgements on smartphone/tablet

apps. The goal of the study was the analysis of the inWuence of speciVc system and user

characteristics on the quality of prediction of user judgements from interaction parameters.

Participants interact with three diUerent apps on an Android based tablet, using the

modalities touch and GUI. PALADIN was used to record the course of interaction for a

subsequent analysis. The interaction parameters were used to analyze the relation between

interaction characteristics and user judgements.

5.5.2.1 Participants and Material

The participants were divided into two groups by their age. The participants in the group of

younger adults —7 women and 9 men, most are students of TU-Berlin— were from 17 to 27

years old (mean = 21.9, SD = 3.7). Furthermore, the participants in the group of elder adults

140

5.5 Application Use Cases

(a) (b)

Figure 5.6 Runtime decider messages. (a) Using speech, you can directly select an input.
(b) The speech recognition does not work correctly. Please check the micro-
phone settings.

—9 women and 6 men— were in an age from 59 to 84 years (mean = 70.1, SD = 7.5). All 31

participants were native German speakers or had very good German language skills.

The used platform was a Google Nexus 7 tablet computer. Its display has a size of 7

inches (diagonal) and a resolution of 1280 x 800 pixel. The system’s language as well as the

layout of the virtual keyboard was German and the font size was left on standard setting.

Solely the icons of the three used apps were shown on the home screen of the tablet.

A short description about the functionality of the three apps is given in the following.

Moreover, Table 5.1 gives an overview about author, license, used version and availableness

of each app.

The selection of the apps was carried out on the basis of 4 criteria. First of all, it was

necessary to have access to the source code, in order to integrate PALADIN in an app. The

other criteria were related to the experimental set-up. All three apps had to diUer in the

complexity of the interaction. Furthermore, each app had to allow task driven interaction

and particularly gaming was not in the focus of the study. Finally, the app should reWect a

functionality known by the participant from everyday life.

ReSA 2.0 bases upon ReSA with a pleasing design (compared to ReSA) and an improved

141

5 Modeling and Evaluating Quality of Multimodal User-System Interaction

(a)

(b)

(c)

Figure 5.7 Screenshots of the apps used in the second experiment: ReSA 2.0 (a), Trolly (b)
and Vanilla Music Player (c). See Table 5.5 for translations.142

5.5 Application Use Cases

German English translations

Bitte wählen Sie eine Stadt aus Please, select a city

Bitte wählen Sie eine Kategorie aus Please, select a category

Um wieviel Uhr wollen Sie kommen? What time do you want to come?

Wie viele Personen werden kommen? How many persons will come?

2 Flaschen Cola 2 bottles of coke

2 L fettarme Milch 2 litre skimmed milk

3 Bananen 3 bananas

Brot bread

einen Eintrag hinzufügen add an item

Einkaufszettel shopping list

Hinzufügen add

Alben albums

App beenden close app

Einstellungen settings

Interpreten artists

Reset Programm reset program

Sortiere nach sort by

Titel title

Wiedergabelisten playlists

Table 5.5 Translations and meanings of German sentences in Figure 5.7 corresponding to
ReSA 2.0 (a), Trolly (b) and Vanilla Music Player (c) respectively.

criteria selection. Here we use drop-down lists for selection of search values, instead of

additional screens, in order to have a very easily usable app. Figure 5.4 and Figure 5.7 (a)

allow a a comparison of both interfaces. The functionalities of both app version are equal,

they diUer only in the way of selecting search criteria. ReSA 2.0 is the simplest of the three

apps in this study, because the user just has to select values from four drop-down lists and

to press a button Vnally (start the search).

Trolly provides a simple shopping list app. The user can add, edit or delete items on

the list or mark it as done (e.g., after buying it). All items are contained in a list, which is

displayed on the screen. An entry in the options menu allows deletion of all items in the

143

5 Modeling and Evaluating Quality of Multimodal User-System Interaction

list. Figure 5.7 (b) shows a screenshot of Trolly with 4 items (green font) in the list. Trolly is

also a simple to use app. However, it allows to enter and edit data, which makes this app

more complex than ReSA 2.0.

Vanilla Music Player is an app for managing, searching and playing music. The user

can search, group and order his music by title of the song, album, artist, or music genre.

Furthermore, one can create, edit and delete playlists. Having multiple views and dialogs

and a complex underlying data model (artists, albums and titles), Vanilla Music Player is

the most complex app among the three described apps. A screenshot of the app is shown in

Figure 5.7 (c).

5.5.2.2 Procedure

After describing the general experimental set-up and the groups of participants in the

previous section, this section brieWy describes the procedure for every participant.

At the beginning, the participant Vlled out questionnaires about demographic informa-

tion, as well as technical experience and aXnity. This was followed by an introduction

into the usage of the tablet device, just in case the participant had no experience with such

devices. The introduction mainly explained the usage of the touch screen and the virtual

keyboard. Right after the introduction into the device, the participant fulVlled 4 tasks with

ReSA 2.0 and Trolly and another 3 with Vanilla Music Player. Examples of the tasks are:

ReSA 2.0: Please search and make a reservation at a Chinese restaurant in “Bremen” for

3 people at “12:00”.

Trolly: Please change the “2 l Milch” item to “2 l fettarme Milch” , add “2 Flaschen Cola”

and “2kg Äpfel” to the shopping list.

Vanilla Music Player:

1. Please search the album “Mensch” from the interpret “Grönemeyer”.

2. How many titles does this album contain?

3. Please start playing “Der Weg”.

The order of apps was randomized per user, but not the order of the tasks, since they

partially build up on each other (e.g., items were added to the shopping list and then

edited). After each task (altogether 11 times) the participant answered an “AttrakDiU mini”

questionnaire [53], among others. Detailed information on the procedure, especially about

the other questionnaires to be answered, are given in [73].

144

5.6 Discussion

5.5.2.3 Results

In the following we show what interaction parameters could be automatically logged and

computed through the usage of PALADIN. Additionally, the main Vnding of the study is

reported without to got lost in the details that are not in the focus of our article.

Each participant fulVlled eleven tasks (the execution of one task is called an interaction

in the remaining paragraphs of this section). The logged interactions (Table 5.2 shows the

logged parameters) were represented in persisted PALADIN instances, from which it was

easy to compute the following parameters ([73, Table 1, p. 201]) for each interaction:

• average values of user turn duration, system turn duration user feedback delay,

system feedback delay, user action duration, system action duration, number of

system concepts, user text elements, system elements, user elements

• maximum values of system feedback delay, user feedback delay, user elements

• number of transferring interactions, interaction duration, of interaction steps

The listed parameters were used to compute the following Vve interaction characteristics

for the each task and participant: interaction eXciency (e.g., dialog duration), cognitive

eUorts (e.g., user feedback delay), executing eUorts, application complexity (e.g., number of

system elements) and input eXciency (e.g., action stage duration). Gong and Engelbrecht

used the term “interaction parameters” instead of “interaction characteristics”, but we used

the latter here, in order to distinguish between our model and theirs. They computed the

correlation between the participant’s judgements (on AttrakDiU mini after each task) and

the computed interaction characteristics. It could be shown that such correlations exist for

80.6 % of the participants.

5.6 Discussion

This section discusses whether PALADIN is able to answer the research questions posed in

this chapter as well as its practical application in real evaluation scenarios. Furthermore,

PALADIN is evaluated and compared to other approaches according to the guidelines

proposed in [57]. The main limitations when instrumenting user-system interaction are

analyzed in the last subsection.

145

5 Modeling and Evaluating Quality of Multimodal User-System Interaction

5.6.1 Research Questions

This article posed three research questions according to some problems found in current

state-of-the-art. These questions have been answered throughout the chapter. The results

are summarized and discussed in the following.

Q1 asked for the possibility to evaluate diUerent modalities at the same level. For this

purpose, PALADIN uses two diUerent levels of abstraction (i.e., generic and speciVc)

to describe multimodal interaction, which helps to maximize the number of common

interaction parameters.

Generic parameters are suitable for diUerent modalities, so they are used to describe

multimodal interaction regardless of the modality in use. Interaction is described seamless,

i.e., communication content and meta-data are described as a whole without diUerentiating

between diUerent communication “threads”, each one using a diUerent modality. As a result,

PALADIN puts all diUerent modalities at the same level and describes communication as a

single stream of information between the user and the system.

Additionally, more speciVc parameters were added to describe input and output peculiar-

ities of each modality. As shown in Section 5.2.3, these particular parameters are used to

provide additional information when more than a generic description of the communication

content is needed for the analysis of interaction.

Q2 posed to Vnd a way to compare diUerent interaction records. PALADIN uses the

same metrics to quantify interaction in diUerent scenarios and structures them within a

common representation. This provides experts with uniVed criteria to describe multimodal

interaction. As a result, diUerent interaction processes are recorded into similar model

instances (i.e., same format and structure) that can be compared to each other regardless of

the execution context in which they were recorded, the system features and the modalities

in use.

Nevertheless, to take advantage of this feature it is necessary to use the same criteria when

instrumenting the interaction parameters for diUerent modalities. Finding equivalences

between the information exchange process in speech, GUI and gesture modalities was an

important part of our work. We used our Vndings to deVne a uniVed and balanced criteria

to record interaction parameters (see Section 5.5).

Q3 asked for a way to analyze multimodal interaction from a dynamic perspective. For

this, the PALADIN design was based on a turn-based nature, which come to be suXcient

146

5.6 Discussion

to dynamically represent multimodal interaction. System and user turns are considered to

be alternate and without overlapping each other (i.e., the model assumes that the user and

the system are not providing information at the same time). Several modalities can be used

alternatively or in parallel by the system or the user during their turn.

PALADIN instances describe, step by step, the amount of information exchanged be-

tween the system and the user as well as the meta-data about the exchange process. As a

consequence of this, a relationship between the collected data and time is created. Based

on this model, user and system interaction can be easily instrumented at runtime. It also

provides the experts with new opportunities for the dynamic analysis of interaction, and

enables the implementation of runtime processes like decision or monitoring. OU-line

analysis can be implemented as well, since cumulative values can be easily computed from

the model instances.

5.6.2 Practical Application of PALADIN

To provide a representation of multimodal interaction that enables the implementation of

analysis, comparison and decision processes was another main goal of our research work

in this chapter. Section 5.5 shows that the model instances created in the frame of our

experiments are valid to implement such processes.

A graphical analysis tool was used to create abstract representations from data stored in

PALADIN instances. Such representations (remember Figure 5.5) are charts representing the

“interaction stream” of a dialog, which are used to implement agile analysis and comparison

processes. We showed with our Vrst user study that reliable conclusions can be easily made

just by taking a look to the interaction charts. However, for a deeper analysis in which a

higher number of parameters are involved, more than such a tool is needed.

Decisions based on model instances were implemented as well. ReSA 1.0 (see Subsec-

tion 5.5.1.1) was provided with a decision module, which was aimed at making suggestions

to the user when low eXciency in the input method was detected. With this decision

module it was shown that the data stored in PALADIN instances can be easily retrieved

and then computed in runtime to make new decisions. This provides a common base for

those systems that adapt themselves to improve their usability at runtime.

The experiments described in Section 5.5 showed that PALADIN (as well as the Android

HCI Extractor and the Integration Framework) can be easily integrated and successfully

147

5 Modeling and Evaluating Quality of Multimodal User-System Interaction

used in typical apps for daily use. This is mainly thanks to the open and generic approach

used for its design and implementation. Furthermore, the work in this chapter aimed

at “standardizing” the description of multimodal interaction, which enables PALADIN

instances to be used for further analysis in diUerent studies and/or by third-party tools.

PALADIN is designed to be used separate or as a complement to other techniques such as

questionnaires or structured interviews, in order to increase the productivity in user studies.

However, PALADIN is not aimed to completely substitute them in the whole usability

engineering life cycle.

5.6.3 Completeness of PALADIN According to Evaluation
Guidelines

Dumas et al. introduced in [57] a set of nine guidelines for languages dedicated at multi-

modal interaction. This nine guidelines “are to be seen as a ‘checklist’ of potential features

a given multimodal interaction description language can provide. By no means should

every language follow all of them. Guidelines should be used as design tools, or as language

analysis criterias [sic].” [57, p. 4].

The guidelines from G1 to G8 are used to evaluate PALADIN, as well as to compare it

to a set of representative languages and data models describing multimodal interaction.

The 9th guideline G* (“Find the right balance between usability and expressiveness”) is

not considered in our work because we were not able to analyze the usability of all named

languages and models. In the following we explain whether and why PALADIN fulVls these

eight guidelines.

G1 As discussed above for Q1, the proposed model uses two diUerent levels of abstraction

to separate speciVc details of each modality from the generic description of multimodal

interaction, and thus ease analysis.

G2 Based on these two levels of abstraction, the human-machine dialog is modeled as a

sequence of alternative system and user turns. Mention here that the proposed approach

considers only one user interacting with the system at a time.

G3 The model contains modality related parameters to describe kind and reason of a

modality change, i.e., SMCD, OMCR, UMCD and IMCR. Reasoning modality changes could

be helpful in understanding context adaption.

148

5.6 Discussion

G4 Modality fusion parameters are also included in the proposed design. DiUerent

combinations of the available modalities are supported by the model, as well as special

parameters to describe their synchronicity. The parameter modality type (MT) (described

in Table 5.10) is used to annotate how diUerent modalities were used according to CARE.

The MT parameter allows to annotate the usage of fusion and/or Vssion. Thus, in case of

fusion the modalities are marked as used complementary (MT-CO). Otherwise, in case of

Vssion the exclusively processed modality is marked as assigned (MT-AS).

G5 The CARE properties [50] are used to denote the availability of interaction techniques,

and also to predict usability of multimodal input and output. Beside the modality type

(see also G4) and number of asynchronous events (# AE), the user and system interaction

duration —divided into delay, feedback and action stages— is annotated by turn to link

actions with the moment in which they are performed.

G6 Interaction and recognition errors have also a place in the model. Meta-communication

data is used to describe communication errors, and they are annotated by turn to link such

errors to the communication context in which they occurred. However, this is not the case

for system events.

G7 An event description is not included into the model because the aim of the proposed

design is not to describe the “How” of the interaction (e.g., by modeling use cases), but to

describe the “What” (i.e., by quantifying system and user actions).

G8 For each system and user turn output and input content are relatively quantiVed.

Such quantiVcation process is performed by modality; then, a generic description of com-

munication content is built from the values obtained at each modality. Moreover, such

parameters are collected on a turn level, which creates a relationship between diUerent data

annotated in the same interaction step.

Table 5.6 shows these guidelines confronted with the approach proposed in this chapter.

The table also compares PALADIN to some representative approaches previously analyzed

in Section 2.2.1. They were selected due to the following reasons. ITU-T Suppl. 25 to P-Series

Rec. [168] are part of the basis for the parameters used in PALADIN, thus we consider

important to know the improvements achieved with the proposed model. EMMA [99, 118]

represents a language in which data from diUerent modalities are combined to make up the

user input. Much of the work in PALADIN aims at providing a seamless representation of

multimodal input as well. Since we see interesting to compare PALADIN to other approaches

using models of a diUerent nature, it is also compared to two model-based approaches for

149

5 Modeling and Evaluating Quality of Multimodal User-System Interaction

Guideline PALADIN ITU-T EMMA ICO SOMBDE

G1: Uses diUerent abstraction levels � � � � �

G2: Human-machine dialog is modeled � � � � �

G3: Adaptability to context and user � � � � �

G4: Modality fusion support � � � � �

G5: Over time synchronicity support � � � � �

G6: Error and recognition mistakes support � � � � �

G7: Events description and management � � � � �

G8: Input and output representation � � � � �

� yes � partially � no.

Table 5.6 Comparison of diUerent approaches for multimodal interaction by supported
guidelines.

the development of multimodal interfaces. On the one hand the ICO notation [183], that

uses formal models to describe multimodal interaction. On the other hand the solution

proposed by [129] that we call SOMBDE, and that models components of an interface using

two levels of abstraction.

At Vrst sight, the reader can see in Table 5.6 that Paladin signiVcantly complies more

Dumas guidelines than approaches like ITU-T, EMMA or SOMBDE. The main reason is

the time-based dialog approach for interaction quantiVcation that is used in PALADIN.

Modality meta-information (i.e., fusion, changes and description over time) is more com-

prehensive than in the ITU-T parameter-based approach. Like in SOMBDE, PALADIN

provides two levels of abstraction to evaluate interaction, using the more speciVc one for

the particularities of each modality. This is a lack in approaches like EMMA and ICO.

Plasticity (i.e., adaptability to context and user) is better in PALADIN than in other ap-

proaches, however it is still a problem. User and context information —which is essential to

analyze interaction in mobile contexts— might be incorporated to enrich analysis processes.

Not describing how the multimodal system works could be considered another shortcoming

of the proposed design. It is easier to Vnd in model-based development approaches (ICO

and SOMBDE) than in evaluation approaches like PALADIN or ITU-T. Despite modeling

the behavior of user and system was not a goal of this chapter, we consider that including

additional data about this aspect might be helpful to detect design and operation errors.

150

5.7 Conclusions

5.6.4 Limitations in Automatic Logging of Interactions Parameters

The design of PALADIN was accompanied with instrumentation tools mainly aimed at

providing automatic logging of interaction parameters. However, certainly not all of these

parameters can be computed automatically. In the following we identify and analyze three

of the main limitations when annotating interaction parameters automatically, which imply

that some PALADIN parameters need the presence of an expert to be annotated.

First, some parameters are in principle not automatically determinable. Because of

their nature, some parameters can not be determined by a computer, but they have to

be annotated manually by a human (e.g., the number of concepts a real user wanted to

utter in speech modality). There are also parameters whose determination depend on a

subjective/qualitative judgement of the user (e.g., reason of changing the modality in use)

or the knowledge of the expert conducting the evaluation (e.g., openness of a prompt). A

method to identify some reasons for users’ behavior during an interaction with a computer

system (i.e., a smart home system) is presented in [197]. Schmidt et al. used in-depth

interviews supported by video feedback.

Furthermore, when collecting and analyzing interaction data, experts should be aware

that system and user turns are not discrete; even some of their stages might not be present

in speciVc situations. For example, the delay stage in a system turn may be imperceptible to

the user, or there may be no feedback stage at all or during user turn. It might be impossible

to distinguish between the end of the delay stage and the start of the exploring stage, if

the exploring action involves actions such as reading, which can only be assessed through

observation or eye-tracking.

Finally, the interaction instrumentation and annotation process depends also on the

concrete implementation of the application in which PALADIN is used. Not all runtime

environments oUer the possibility to collect all of the parameters programmatically, e.g., to

precisely count the number of visible elements in a GUI.

5.7 Conclusions

Current approaches for multimodal interaction analysis do not facilitate the implementation

of stepwise and seamless evaluation. Most common problems are the lack of a dynamic

151

5 Modeling and Evaluating Quality of Multimodal User-System Interaction

nature and that diUerent modalities are treated at diUerent levels of abstraction. In this con-

text, this chapter proposes PALADIN, a model aimed at describing multimodal interaction

beyond such problems.

The proposed model design is based on a set of parameters to quantify the interaction

between the user and the system. These parameters are annotated in a stepwise manner to

preserve the dynamic nature of the dialog process. Generic parameters are used to describe

the dialog content as a single interaction Wow. SpeciVc parameters are used to annotate

peculiarities of GUI and speech modalities. The current version of PALADIN annotates

gestures by using only generic parameters. In a short term we would like to analyze gesture

inputs and outputs in depth, and thus provide speciVc parameters for this modality as well.

As a result, instances of PALADIN can be used as a uniform basis to describe and

analyze interaction in diUerent multimodal scenarios, as well as to evaluate the usability

of such systems. To the best of our knowledge, PALADIN is the Vrst approach structuring

multimodal interaction parameters into a runtime model design with this purpose.

The implementation of PALADIN along with the integration framework are provided

as a contribution to the open-source community. This makes up a framework to evaluate

interaction in multimodal systems ready to be incorporated into developments. As proof of

concept, this evaluation framework has been incorporated into real applications to conduct

two diUerent experiments with users. One experiment was aimed at showing its validity

for the implementation of analysis, comparison, and real-time decision processes. The other

experiment used PALADIN to conduct a users study aimed at determining several system

and user characteristics, and their relation to user judgments.

5.8 Parameters Used in PALADIN

The tables in this section give an overview about all parameters which are modiVed or

newly introduce in PALADIN compared to ITU-T Suppl. 25 to P-Series Rec. [168]. Table 5.7

provides an index containing each parameters (by its abbreviation) and the table or reference

describing it. Table 5.8 explains the abbreviations which are used in the subsequent tables.

152

5.8 Parameters Used in PALADIN

Parameter Table

#AE *

AN:. . . *

%AN:. . . *

#ASR rejection 5.11

#barge in 5.11

CA *

CA:. . . *

%CA:. . . *

#cancel 5.11

CE *

CER *

CPST 5.9

CPUT 5.9

DARPAme *

DARPAs *

DD *

#DIV rejection 5.11

#EAC 5.12

EAR 5.12

EPST *

EPUT *

Parameter Table

FPST 5.9

FPUT 5.9

#GR rejection *

#help request *

IMA:. . . *

%IMA:. . . *

IMCR 5.10

IR *

κ *

KUP 5.12

LT *

MMF 5.12

MML 5.12

MS *

MT 5.10

MUP 5.12

NES *

NPST 5.9

NPUT 5.9

OMA:. . . *

%OMA:. . . *

Parameter Table

OMCR 5.10

PA:. . . *

%PA:. . . *

QD *

#restart 5.11

RME *

SA *

SAD 5.9

SCR *

#SCT *

SER *

SFD *

SFDu 5.9

#SMC *

SMCD 5.10

SRD *

STD *

SuBR 5.11

#system error *

#system help *

#system questions *

Parameter Table

#system turns *

TAC 5.12

TAR 5.12

#time-out *

TS *

#turns *

UA *

UAD 5.9

UCR *

#UCT *

UEDu 5.9

UFD 5.9

#UMC *

UMCD 5.10

URD 5.9

#user questions *

#user turns *

UTD *

WA *

WER *

WES *

Table 5.7 Index of parameters ordered alphabetically (leading % and # are ignored) and
the tables containing those. The * refers to [168].

Abbreviation Full name Values

Abbr. Abbreviation Explained in the tables

Mod. Modalities S – Speech, V – Visual, G – Gesture

Int. lev. Interaction level D – Dialog, SoD – Set of dialogs, T – Turn, U –
Utterance,W – Word

Meas. meth. Measurement method E – Expert, I – Instrumentally

Table 5.8 Glossary of abbreviations used in Table 5.9 up to Table 5.12.

153

5 Modeling and Evaluating Quality of Multimodal User-System Interaction

Parameter Int. Meas.

Abbr. Name Description Mod. lev. meth.

SFDu system feed-
back duration

Duration of system feedback in, in [ms].
Examples:
Speech: Time from the beginning of the
feedback utterance until the beginning
the action utterance.
GUI: Time from the beginning of the
feedback to the beginning of information
presentation.
Gesture: Time from the beginning of
the feedback gesture performance to the
beginning of the action gesture perfor-
mance.

S,V,G T I

SAD system action
duration

Duration of system action, in [ms]. Ex-
amples:
Speech: Time the system needs to utter
the concrete system answer.
GUI: Time the system needs to load/-
draw the entire GUI.
Gesture: Time the system needs to per-
form the gestures representing the con-
crete system answer.

S,V,G T I

URD user response
delay

Delay of user response, from the end of
system output to the moment the user
starts doing data transferring actions, in
[ms]. Examples:
Speech: The user starts the action when
the user utterance starts.
GUI: The user starts the action when
he/she starts providing information to the
system.
Gesture: The user starts his/her action

when the gesture starts being performed.

S,V,G T I,E

154

5.8 Parameters Used in PALADIN

UFD user feedback
delay

Delay of user feedback, from the end of
system input until the user starts provid-
ing feedback or doing exploring actions,
in [ms]. Examples:
Speech: User feedback starts just when
the user starts saying a feedback utter-
ance.
GUI: User feedback starts just when the
user starts exploring the GUI.
Gesture: User feedback starts just when
the user performs a feedback gesture.

S,V,G T I,E

UEDu user explor-
ing duration

Duration of user feedback/exploring
stage, from the user starts doing feedback-
/exploration actions until he/she starts
providing the system with data, in [ms].
Examples:
Speech: Time from the beginning of the
feedback utterance until the beginning of
the action utterance.
GUI: Time during which the user scrolls
the screen content to the moment he/she
clicks an item in the screen.
Gesture: Time from the beginning of
the feedback gesture performance to the
beginning of the action gesture perfor-
mance.

S,V,G T I

UAD user action
duration

Duration of user action, from the user
starts providing the system with new in-
formation until Vnal data submission. Ex-
amples:
Speech: Action duration corresponds to
the user utterance duration.
GUI: Action duration corresponds to the
time the user is manipulating the graphi-
cal elements of a GUI to provide the sys-
tem with new information.
Gesture: Action duration corresponds
to the time the user needs to perform the
gesture.

S,V,G T I

155

5 Modeling and Evaluating Quality of Multimodal User-System Interaction

CPST concepts per
system turn

Average number of semantic units (each
represented by an Attribute Value Pair)
per system turn, in a dialog.

S,V,G T I,E

FPST feedback per
system turn

Number of feedback elements per system
turn in a dialog. Feedback refers to the
information that one party taking part
in a dialog sends to the other party to
inform about the state of the process. It
allows dialog partners to seek and pro-
vide evidence about the success of their
interaction. Examples:
Speech: An utterance saying that the
process was done successfully.
GUI: A conVrmation window reporting
an error.
Gesture: A embodied agent performs an

“OK” gesture to inform that the user input
was properly understood.

S,V,G T I,E

NPST noise per sys-
tem turn

Number of “disturbing” elements per sys-
tem turn in a dialog. Noise refers to those
data which are irrelevant, meaningless,
or disturbing, and are not needed to reach
the goal of the dialog: advertisements,
music played in background, etc. Pleas-
ant information are not considered as
noise, since they are part of the communi-
cation between two or more parties. Ex-
amples:
Speech: Music played in background

while the system is uttering.
GUI: Advertisement banners inside the
content of a web page.
Gestures: A embodied agent points to
an external advertisement at the begin-
ning of its gesture.

S,V,G T I,E

CPUT concepts per
user turn

Number of semantic units (each repre-
sented by an Attribute Value Pair) in a
user turn.

S,V,G T E

156

5.8 Parameters Used in PALADIN

FPUT feedback per
user turn

Number of feedback elements provided
by the user to the system. User feedback
refers to the information that the user
sends to the system to inform about the
state of the interaction or to denote that
he/she is analyzing the information pro-
vided by the system and elaborating a
response. Examples:
Speech: The user utters “Hmmm” while
elaborating his/her response.
GUI: The user is scrolling down and up
the content of a web page to read the text.
Gestures: The user is showing that
he/she is thinking about the system ques-
tion by using his/her face expression.

S,V,G T E

NPUT noise per user
turn

Number of “disturbing” elements pro-
vided by the user to the system. Noise
represents data which may disturb the
recognition process performed by the sys-
tem. Examples:
Speech: OU-talk, e.g., the user reads/re-
peats aloud information provided by the
system.
Gestures: Movements by the user which
are interpreted as gestures, but just being
spontaneous actions, e.g., scratching.

S,G T E

Table 5.9 Dialog and communication-related interaction parameters.

157

5 Modeling and Evaluating Quality of Multimodal User-System Interaction

Parameter Int. Meas.

Abbr. Name Description Mod. lev. meth.

MT modality
type

This parameter describes the type of the
modality according to the CARE proper-
ties described in [50]. These properties
represent a simple way of characterizing
aspects of multimodal interaction consid-
ering the interaction techniques available
in a multimodal user interface. In that
way, the CARE properties characterize
four types of relationships between the
modalities used to achieve a goal or to
reach a concrete state:
UM: Unimodal (not part of CARE).
EQ: Equivalent, it is suXcient to use any
one of the available modalities.
AS: Assigned, the user has no choice, be-
cause only one modality can be used.
RE: Redundant, the available modalities
are equivalent and all of them are used
within a user or system turn.
CO: Complementary, all available
modalities must be used in a complemen-
tary within a user or system turn.

S,V,G T I,E

SMCD system
modality
change
direction

Label of system modality task direction,
depending on the modalities the system
has switched between. The label is gener-
ated from the pattern SCMD:X-Y. X and
Y are substituted by S (Speech), V(Visual)
or G (Gesture) according to the respective
modality. X represent the used modality
before the change, and Y after the change.

S,V,G T I

158

5.8 Parameters Used in PALADIN

OMCR output
modality
change
reason

Label of the reason for the output modal-
ity change.
OMCR:ERR: Due to a recognition error.
OMCR:ENV: Due to an environment
change.
OMCR:APP: Due to low modality appro-
priateness.
OMCR:UDE: Due to user’s decision.
OMCR:SDE: Due to system’s decision.
OMCR:IAD: Due to interface adapta-
tion.

S,V,G T I,E

UMCD user modality
change direc-
tion

Label of user modality task direction, de-
pending on the modalities the user has
switched between. The label is generated
from the pattern UCMD:X-Y. X and Y are
substituted by S (Speech), V(Visual) or
G (Gesture) according to the respective
modality. X represent the used modality
before the change, and Y after the change.

S,V,G T I

IMCR input modal-
ity change
reason

Label of the reason for the input modality
change.
IMCR:ERR: Due to a recognition error.
IMCR:ENV: Due to an environment
change.
IMCR:APP: Due to low modality appro-
priateness.
IMCR:UDE: Due to user’s decision.
IMCR:SDE: Due to system’s decision.
IMCR:IAD: Due to interface adaptation.

S,V,G T E

Table 5.10 Modality-related interaction parameters.

159

5 Modeling and Evaluating Quality of Multimodal User-System Interaction

Parameter Int. Meas.

Abbr. Name Description Mod. lev. meth.

#DIV re-
jection

number of
data input
validation
rejections

Overall number of DIV rejections in a
dialog. A DIV (Data Input Validation) re-
jection is deVned as a system feedback
indicating that the data provided by the
user was not “understandable” for the
system. Examples:
GUI: The user enters characters into a
numeric Veld.

V T I

SuBR successful
user barge-in
rate

The percentage of these barge-in at-
tempts in which the user obtained a pos-
itive result: The system stops its action
and processes the user’s input.

S,V,G T E

#cancel number of
users cancel
attempts

The parameter has NOT the mean-
ing of #cancel in [168] (please see
also #restart in this table). Our us-
age of #cancel is the following:
Overall number of user cancel attempts
in a set of dialogs. A user turn is
classiVed as a cancel attempt, if the
user gives up the dialog and does not
accomplish the task.

S,V,G D E

#restart number of
user restart
attempts

The meaning of #restart is equal to #can-
cel in [168].

S,V,G T E

Table 5.11 Meta-communication-related interaction parameters.

160

5.8 Parameters Used in PALADIN

Parameter Int. Meas.

Abbr. Name Description Mod. lev. meth.

KUP keyboard us-
age percent-
age

Average percentage/rate of keyboard us-
age during the user turn duration. Key-
board usage is measured in terms of ele-
ments introduced by the user, e.g., words,
special keystrokes. See also EPUT in Ta-
ble 5.9.

V T I

MUP mouse usage
percentage

Average percentage of mouse usage dur-
ing the user turn duration. Mouse us-
age is measured in terms of elements in-
troduced by the user, e.g., clicks, mouse
wheel performance, mouse movements.
See also EPUT in Table 5.9.

V T I

MML mouse move-
ment length

Average length of the mouse movements
performed in a user turn in pixels[px],
per dialog.

V T I

MMF mouse move
frequency

Average number of mouse movements
performed in a turn, per dialog.

V T I

#EAC,
EAR

number of
exploring
actions,
exploring
actions rate

Overall number (#EAC) or percentage
(EAR) of exploring actions made by the
user in a dialog. This parameter is mea-
sured in terms of “exploring” actions per-
formed by the user, e.g., mouse wheel,
down-key press, etc.

V D I

#TAC,
TAR

number of
transferring
actions,
transferring
actions rate

Overall number (#TAC) or percentage
(TAR) of transferring actions made by the
user in a dialog. This parameter is mea-
sured in terms of “information transfer-
ring” actions performed by the user, e.g.,
mouse click, alphanumeric keystrokes,
etc.

V D I

Table 5.12 Keyboard- and mouse-input-related interaction parameters.

161

6
Modeling and Evaluating Mobile Quality of

Experience

Quality of Experience (QoE) is a subjective measure of users
experiences with a service that encompasses users behavioral,
cognitive, and psychological states. The analysis of the sur-
rounding context is critical in the evaluation of QoE in mobile
environments, in which users and their handheld devices are
continuously moving in several simultaneous fuzzy contexts.

The approach in Chapter 5 is mostly targeting the quality of the
multimodal dialog. In order to achieve the quality of the whole
interaction experience, this chapter describes CARIM, a model
arranging parameters to describe the interaction between the
user and the system, the context in which it is performed, the
usability perceived by the users, and their mood and attitude
toward technology use.

CARIM supports the stepwise analysis of mobile interaction
to determine and compare the QoE of users using a system
or a software. Applications can also make use of its runtime
nature to make context- and QoE-based decisions in real-time to
adapt themselves, and thus provide a better experience to users.
CARIM provides uniVed criteria for the inference and analysis
of QoE in mobile scenarios.

163

6 Modeling and Evaluating Mobile Quality of Experience

6.1 Introduction and Motivation

Quality of Experience (QoE) is a subjective measure of users experiences with a service. It

rivets on the true feelings of end users from their perspective when they do an activity [169,

227, 41, 165] and encompasses users behavioral, cognitive, and psychological states, along

with the context in which the services are provided to them. The context is particularly

relevant in mobile environments, where applications are used in diUerent, more dynamic,

and social scenarios [165].

Mobile interaction involves users and their handheld devices continuously moving in

several simultaneous fuzzy contexts. This dynamic environment, which has become more

complex in the last few years [88], sets special requirements for the quality assessment of

mobile applications. A close relationship between interaction, its context, and QoE can be

found in these scenarios. The lack of a uniform approach for modeling mobile interaction

in a speciVc context is evident [29].

The context plays a critical role in the users experience (UX) with mobile products [112].

Moreover, context-awareness is a core function in modern ubiquitous and mobile sys-

tems [21] in which the surrounding information is analyzed at runtime to adapt the

functionality of applications [31] and thus providing natural and intelligent interaction to

users [125]. By context information we mean any data used to characterize the situation

of an entity (i.e., person, place, or object) and that is considered relevant for user-system

interaction analysis.

A challenge for designers and researchers studying mobile applications is that no robust

methodologies combining qualitative methods for usability assessment and quantitative

methods evaluating performance do exist [91]. This is why this work proposes incorporating

context information and user ratings into a user-system interaction assessment method.

However, integrating all these data into such a process is not straightforward.

There exists a low standardization of technologies used in context-aware systems [88].

A common and extensible representation of the mobile context is needed to ease such

analysis processes. Another problem is to treat the variety and diversity of interaction and

context data, as well as to decide what parameters are useful to measure QoE in mobile

contexts [165]. A well balanced set of parameters not aimed at modeling “the entire world”

has to be chosen to describe the whole mobile interaction process.

164

6.1 Introduction and Motivation

We consider essential that mobile interaction data and user ratings are collected by using

current devices capabilities. How these data are integrated into an interaction analysis

method is also a problem to solve [91]. This method should enable the assessment of QoE

from the perspectives of the user-system interaction, its surrounding context, and the quality

perception of the users. It should also support the implementation of analysis and decision

processes, as well as to allow the cooperation between diUerent analysis applications.

According to the aforementioned problems, the following research questions are posed:

Q1: How can context data and user perceived quality information be properly

incorporated into interaction analysis processes?

Q2: How can QoE be analyzed from the perspectives of users interaction, users

subjective data, and the interaction context?

Q3: How can interaction experiences recorded for diUerent users, or for diUer-

ent systems or contexts, be compared to each other?

In a Vrst step towards answering these questions and to overcome some of the limitations

present in previous works, a new approach to analyze mobile interaction is described in

Section 6.2. This approach proposes a runtime model arranging interaction parameters,

which is augmented with information about the surrounding context (Section 6.3) and with

parameters describing the users perception of interaction quality (Section 6.4).

The result of the research in this chapter is the design of a new model named CARIM

(Context-Aware and Ratings Interaction Model), presented in Section 6.5. Some considera-

tions about its implementation are described next in Section 6.6. Instances of the CARIM

model provide a basis to determine and compare QoE, allowing experts to identify those

aspects contributing to the user having a good or bad impression of the system [222]. These

instances provide also a basis to make runtime adaptation decisions into an application

with the aim of providing a better interaction experience to users.

Section 6.7 describes an experiment with real users carried out as proof of concept

for this approach. It compares two diUerent interaction designs and validates some user

behavior hypotheses. After that, the proposed solution is discussed and compared to other

representative analysis approaches in Section 6.8. Section 6.9 includes some conclusions.

165

6 Modeling and Evaluating Mobile Quality of Experience

6.2 Context- and QoE-aware Interaction Analysis

This approach tries to give an answer to the three research questions posed above. For this

purpose, the design of a model describing user-system interaction, context data and user

ratings is proposed. All these data are structured into a common representation to be the

basis for the implementation of QoE analysis and inference processes.

6.2.1 Incorporating Context Information and User Ratings into
Interaction Analysis

The proposed design is based on PALADIN [137, 139], a model resulted from a joint eUort

between the Cátedra SAES [39] and the Telekom Innovation Laboratories [206]. This model

was described in detail in Chapter 5.

PALADIN describes interaction dynamically, step by step, and was created to support

usability assessment in multimodal systems. Multimodal systems combine several types of

sensory modalities for interaction, allowing users to use the most adequate combination

in their speciVc situation, mood, and capability [126]. PALADIN uses general parameters

to describe multimodal interaction as a whole, regardless the modalities used. It includes

also speciVc parameters to describe the peculiarities of interaction in speech, GUI, and

gesture modalities. As a result, the same metrics are used to describe interaction in diUerent

contexts, allowing its analysis and comparison.

However, one problem with PALADIN is that it mainly includes quantitative data related

to user-system interaction. Despite interaction parameters are a good indicator of the

quality of the evaluated interaction, they do not necessarily provide reliable information

about user satisfaction [126]. Therefore, subjective opinions of users are needed to imple-

ment a qualitative assessment of interaction [34]. Moreover, PALADIN does not include

information about the context of interaction, that is necessary to evaluate mobile scenarios.

Therefore, it was extended in two ways.

On the one hand, the base model was added with new parameters to describe the

interaction context in mobile scenarios. These context parameters are further described

in Section 6.3. On the other hand, new parameters were incorporated into the model

to measure the quality perceived by users of the product under test. These subjective

parameters are described in detail in Section 6.4.

166

6.2 Context- and QoE-aware Interaction Analysis

Figure 6.1 depicts an overview of the metrics included in the design of CARIM compared

to the base model PALADIN. As a result, an instance of the resulting model includes live

context information related to the interaction, providing also a link to the user ratings. This

tries to give an answer to research question Q1.

Figure 6.1 Overview of the parameters and metrics included in CARIM.

The resulting model is based on a set of parameters divided into three main categories:

• Human-computer interaction parameters, used to quantify the interaction between

the user and the system (e.g., quantity of information provided by the system, average

reaction time of the user).

• Context parameters, aimed at describing the changing context of interaction in

mobile scenarios (e.g., screen size, user location, user current mobility).

• User rating parameters, used to measure the perceived quality and the experiences

of the users with the system under test (e.g., simplicity of the system, motivating

aspects of the product).

167

6 Modeling and Evaluating Mobile Quality of Experience

6.2.2 Arranging the Parameters for the Analysis of Mobile
Experiences

All the parameters in CARIM are thoroughly arranged to ease further analysis, as well

as to help applications and experts to understand why such a certain level of QoE was

inferred from the perspectives of interaction, its context and the user state. The model not

only provides a link between interaction data and time, but new links between interaction

and, e.g., the current user location and social context, the device features or event the user

impressions, are created.

Therefore, once QoE is determined for a speciVc interaction occurrence (i.e., a model

instance) the results can be analyzed and interpreted in terms of what the user did and

how he/she did it, in which contextual conditions, and his/her mood and attitudes in that

speciVc moment. This tries to provide an answer for research question Q2.

The great majority of the aforementioned parameters are intended to be collected au-

tomatically, e.g., by using tools like the Android HCI Extractor (see Section 6.6). Even

some of those parameters based on subjective judgments of the user might be extracted

automatically by using, e.g., questionnaires. However, technology limitations will force

experts to annotate some parameters manually in exceptional cases.

Some of these parameters are runtime and have to be collected many times during

interaction, e.g., the quantity of user input at a speciVc time. Others are not, and are

collected only once, e.g., screen resolution. This feature is specially relevant to decide the

allocation of the parameters within the model design.

Automatically collected or not, either runtime or static, a uniform set of metrics are used

to quantify the interaction between the user and the system in diUerent execution contexts.

Furthermore, these metrics are structured into a common representation in the CARIM

design. As a result, all the interaction instances will have the same structure, providing

experts and tools with uniVed criteria to describe the mobile interaction process.

DiUerent interaction records can be analyzed and easily compared to each other regard-

less of the system/application under test, the current interaction context, even the modalities

used to provide input and output data. E.g., to detect why QoE worsens when using an

application in a diUerent scenario. This tries to give an answer to research question Q3.

168

6.3 Context Parameters

6.2.3 Using CARIM for QoE Assessment

Instances of CARIM describe user-system mobile interaction using three dimensions:

interaction, context, and user ratings. Data are thoroughly arranged and connected to each

other providing a robust and accessible basis to implement QoE analysis. QoE inference

is the Vrst application of the model that comes to mind. QoE of a user within a speciVc

mobile context can be systematically determined by using the data included into a CARIM

instance, e.g., by using Bayesian networks [165].

Moreover, the runtime nature of the model enables QoE inference in real-time. If the

resulting QoE value is not the expected at a speciVc time, the interaction and context history

can be analyzed to make a decision and improve the user experience during application

execution, e.g., by adjusting microphone settings or changing screen brightness.

From a practical point of view, we consider essential the easy incorporation of CARIM

into current mobile devices like tablets, smartphones, etc. The design proposed in this

chapter advocates the use of data that can be collected by using current devices capabilities,

e.g., the screen to collect touch interaction metrics, GPS to get position, etc. As a result,

advanced and expensive sensors are not required to Vll the model instances, easing the use

of such a model in current applications. It also eases the implementation of context- and

QoE-aware methods in real applications, and not only for laboratory environments [88].

6.3 Context Parameters

Understanding the context is essential for evaluating the experience of users using mobile

products and services. By context we mean any information that can be used to characterize

the situation of a user or a system. More speciVcally, in this work we refer to those external

factors inWuencing users activity and quality perception while using a mobile application

or service [210]. This section aims at describing what parameters will be used to describe

the mobile context within CARIM.

Before deVning the parameters to describe the surrounding context, we need to choose

the “subject” of the model (Bolchini et al., [29]). The context may be described from the

user point of view, i.e., as it is perceived by the person using the application or service. An

alternative would be assuming the application point of view and consider the user itself as

part of the context. Using a point of view or another aUects the Vnal set of parameters to be

169

6 Modeling and Evaluating Mobile Quality of Experience

included in the model design. Since in this work the key is analyzing what the user does

and in which conditions he/she does it, then the subject of the model will be the user.

6.3.1 Quantifying the Surrounding Context

Section 2.2.3 summarizes related literature. It was analyzed in order to Vnd out those

contextual factors aUecting the experience of users in mobile environments. Many diUerent

parameters were selected from related work. During the selection process we gave priority

to those parameters specially aimed at describing mobile communication and dynamic

interaction environments. Parameters out of the scope of this work were rejected.

Moreover, new parameters where incorporated in order to overcome some limitations

found in the analyzed approaches, e.g., to provide an abstract deVnition of mobility level or

to classify most common sizes of current devices screens.

The resulting set of parameters is organized into six categories (i.e., Physical context, User,

Social context, Location and time, Device and Connectivity) based on the eight proposed by

Korhonen et al. in [112]. Task and Service categories were out of the scope of this work.

The main reason is that we want to provide a generic description of the mobile context

regardless of the task the user is currently engaged in and of the speciVc online service

he/she is using. These six context dimensions are further described below.

1. Physical context: describes surrounding attributes that a user can sense, e.g., lighting,

temperature, noise level, weather conditions, etc.

2. User: describes peculiarities of the person using the device and the application or

service, e.g., gender and age, or her previous experience with the device and/or

application to test.

3. Social context: describes the social aspects of the user context that may aUect user

experience. Particularly, in this work we focus on whether the user is alone or accom-

panied by some people during the test, as well as in which social arena the user is

(e.g., workplace, leisure).

It is known that the presence and reactions of external persons —in direct con-

tact with the user or not— aUects both the usage and user experience of mobile

applications [225].

It is known that the presence and reactions of external persons —in direct contact with the

user or not— aUects both the usage and user experience of mobile applications [225].

170

6.3 Context Parameters

4. Location and time: describes the position of the user while interacting the system

(e.g., the user is at home) as well as a time stamp for it. This category is also

augmented with information about the mobility level of the user, i.e., if the user is

sitting, standing, walking, driving, etc.

From Roto [193] and Korhonen [112] we learned that time and location does not directly

aUect the user experience. However, these parameters aUect other attributes, and these

attributes then aUect user experience (e.g., the location itself does not aUect the user

experience, but the artifacts and people over there).

5. Device: describes the peculiarities of the device in use. A device is described in terms

of type and shape, screen features, internal values like volume level and brightness,

and CPU and memory performance.

Information related to the available modalities or the input and output methods is avoided,

because it is implicit into the human-computer interaction section of the model inherited

from PALADIN (see Subsection 6.5.1).

6. Connectivity: describes the features of the communication between the device and

online services. This communication is described in terms of type of connection

(i.e., cellular, wireless LAN or Bluetooth) as well as its performance (i.e., coverage,

sent/received data throughput, etc.)

This category is mainly based on the aforementioned user perceived quality of service (QoS).

QoS is critical to the users QoE, especially for highly interactive mobile applications [91].

Table 6.1 summarizes all the context parameters to be incorporated into the design of

CARIM, as well as the values they can hold during the annotation process. The parameters

are also tagged according to whether they have a dynamic (D), mainly dynamic (MD),

mainly static (MS) or static (S) nature. After some experiments, we consider that this set of

parameters is enough to describe the context surrounding the users when doing an activity

or using a service from their mobile devices. Nevertheless, new parameters can be added or

removed whenever required (e.g., to add a new category or to enhance an existing one).

To provide an adequate level of abstraction for the context parameters to Vnd a balance

between precision and amount of data was a major concern in this work. To give an example

we can analyze the attribute social company (Table 6.1, Social context). The number of

persons accompanying the user could have been considered as an integer value. However,

an enumeration is used instead in order to characterize only three diUerent company

171

6 Modeling and Evaluating Mobile Quality of Experience
C
ontext

D
im

ension
A
ttributes

N
ature

V
alues

Physicalcontext

tem
perature

M
S

integer
(ºC

)

w
eather

M
S

clear,cloudy,w
indy,rainy,snow

y

noise
M
S

percentage
(%
)

light
M
S

percentage
(%
)

U
ser

age
S

integer

gender
S

m
ale,fem

ale,other

education
level

S
high

school,professional,college,notapplicable

previous
experience

S
none,low

,m
edium

,high,expert

Socialcontext
socialcom

pany
M
S

alone,w
ith

a
person,w

ith
a
group

socialarena
M
S

dom
estic,w

ork,educational,leisure

Location/tim
e

location
M
S

hom
e,oX

ce/school,street,other
indoor,other

outdoor

geographicallocation
M
D

coordinate

m
obility

level
M
S

sitting,standing,w
alking,sporting,driving,other

currenttim
e

D
tim

e
value

D
evice

device
type

S
laptop,tablet,sm

artphone,m
m
player,other

screen
size

S
sm

all≤
A
<

m
edium

<
B

≤
large

(A
=4",B

=10)"

screen
resolution

S
sm

all≤
A
<

m
edium

<
B

≤
large

(A
=480x800,B

=1280x800)

screen
orientation

M
S

landscape,portrait

screen
brightness

level
M
S

percentage
(%
)

volum
e
level

M
S

percentage
(%
)

m
em

ory
usage

D
percentage

(%
)

C
PU

usage
D

percentage
(%
)

C
onnectivity

w
ireless

access
type

M
S

m
obile,w

iV,bluetooth,no
access

access
pointnam

e
M
S

string

signalstrength
M
D

percentage
(%
)

received
data

throughput
M
S

integer
(K
B
/s)

sentdata
throughput

M
S

integer
(K
B
/s)

R
ound

Trip
Tim

e
(R
T
T)

M
S

integer
(m

s)

Server
R
esponse

Tim
e
(SR

T)
M
S

integer
(m

s)

Table
6.1

Param
eters

used
to

describe
the

m
obile

contextin
C
A
R
IM

.

172

6.4 User Perceived Quality Parameters

scenarios, i.e., alone, with a person or with a group. In such a way precision is lower —the

speciVc number of persons is unknown— but the task of quantifying and analyzing this

information is simpler due to more abstract values are used.

6.3.2 Arranging Context Parameters into CARIM

Context parameters have properties that aUect how and when the data have to be collected,

and that directly guide the Vnal design of the model described in Section 6.5. Their dynamic

or static nature is one of these properties. As the reader can see in Table 6.1, there are not

more than seven from twenty-nine parameters we can claim they will not change during

an experiment. Static context parameters like those related to hardware will not change, so

they have to be annotated only once. However, dynamic parameters that change over time

(e.g., screen orientation, noise level) have to be collected many times.

6.4 User Perceived Quality Parameters

User perceived quality has also to be incorporated into the proposed model design. Perceived

quality can be measured by collecting user ratings when using the application or service

under test. As deVned in [91], user ratings are QoE purely subjective, episodic assessments

provided on the basis of the given perception of the speciVc episode of application use.

Relying on this deVnition, a set of parameters collecting user impressions and feelings

(i.e., QoE assessments) will be used after or at any moment during the interaction process.

These parameters will denote the perceived attractiveness of the product and the experience

of using it. Moreover, some other parameters are used to describe the current state of the

user when the evaluation process is performed.

6.4.1 Measuring the Attractiveness of Interaction

There are many alternatives to measure the attractiveness of a product and the quality of

interaction. Section 2.2.2 described an study conducted by Wechsung and Naumann [172,

220] in which some diUerent questionnaires with this purpose (i.e., AttrakDiU, SUS, SUMI

and SASSI) were compared to each other. One conclusion we can extract from their work is

that AttrakDiU was the only questionnaire —among the analyzed ones— providing a proper

basis to implement a reliable and valid evaluation method for interaction experience in

173

6 Modeling and Evaluating Mobile Quality of Experience

multimodal contexts. This was conVrmed by further works like [219] and [221]. This is the

main reason why AttrakDiU was selected to be included in CARIM.

AttrakDiU [83] allows us to collect user ratings about interaction, or as said by its authors,

to measure the attractiveness of interactive products. It is also suitable for evaluating user

perceived quality in multimodal interfaces, as said above. This questionnaire is based on

the Hassenzahl model of user experience, which poses that the attributes of a product

can be divided in pragmatic and hedonic attributes. While pragmatic attributes refer to

those aspects related to usefulness and usability of the system, the hedonic quality aspect

addresses human needs for novelty or change and social status induced, e.g., by visual

design, novel interaction techniques, etc. [82]

AttrakDiU uses 28 pairs of opposite adjectives to evaluate the following product dimen-

sions:

• Pragmatic Quality (PQ): describes the usability of the product.

• Hedonic quality in Stimulation (HQ-S): describes how stimulating the product is.

• Hedonic quality in Identity (HQ-I): describes to what extent the product allows the

user to identify with it.

• Attractiveness (ATT): provides a global value of the product quality perception.

Users (or potential users) use the AttrakDiU questionnaire to indicate their perception of

the product quality once interaction is Vnished or during the session. However, providing

ratings for 28 items, each time it is needed, might result in a bore and tiresome task. This is

why CARIM incorporates a short ten-item version of the AttrakDiU questionnaire, already

used and proven in, e.g., [84, 221].

Table 6.2 shows this brief version of the AttrakDiU questionnaire, which is composed of

four pragmatic and four hedonic items, as well as two attractiveness attributes to rate the

goodness (“bad–good”) and beauty (“ugly–beautiful”) of the product. Each of these items is

rated using a 7-point Likert-type scale. The composite score ranges from 0 (minimum) to 60

(maximum quality perceived by the user).

6.4.2 Measuring Users Emotional State and Attitude toward
Technology Use

QoE is individual to a given user, and largely depends on aspects like his/her personality

and current state (Raake in [66]). Related work showed that there exist several factors

174

6.4 User Perceived Quality Parameters

Pragmatic Quality (PQ) Hedonic Quality (HQ) Attractiveness (ATT)

impractical – practical tacky – stylish ugly – beautiful

unpredictable – predictable cheap – premium bad – good

confusing – clearly structured dull – captivating

complicated – simple unimaginative – creative

Table 6.2 Items included in the AttrakDiU mini version.

inWuencing quality perception. Factors like cognitive skills, mood, attitudes, and personality

traits may inWuence ratings of the user.

As the readers can see in [10, 102, 221], users mood and attitude toward technology use

are considered the two most inWuencing factors for perceived quality. On the one hand,

good mood is considered to make recall of positive experiences. On the other hand, people

holding better attitudes are more positive in the evaluation of aesthetics, pleasure and

usability. Consequently a positive mood and positive attitude should result in better ratings.

Therefore, to understand user perceived quality in deep, a measure of these two inWuencing

factors should be incorporated into the proposed model.

In order to measure users mood we decided to use a faces scale. A faces scale is a method

that uses a set of face pictures representing from an unhappy and frowning face to a

smiling happy face. During testing the users are asked to pick the face that best represents

their feelings. This method have been largely used in the literature to measure customer

satisfaction, mood or even pain. Its eUectiveness measuring users emotions has been showed

in many works, e.g., [5, 78, 221, 226].

In this work it is proposed the use of an adapted version of the six faces scale described

in [226]. First, since positive mood results in better ratings, then we decided to reverse the

original scale. Now the scale starts from bad mood (the lowest rate) and ends with good

mood (the highest rate). Furthermore, in order to simplify the process, only Vve faces were

used. In this manner the neutral face represents the “center” of a well-balanced scale, along

with two negative faces at left and two positive faces at right. This results in the scale

depicted in Figure 6.2, which provides a simple mean for users to represent their current

mood during tests. The score ranges from 0 (very sad) to 4 (very happy).

Moreover, in order to measure users attitude toward technology it is proposed an adapted

version of the ATTIS (Attitude Toward Technology Integration Scale) scale described by

Hassad in [81]. The author proposed a six-item scale to measure attitude of instructors

175

6 Modeling and Evaluating Mobile Quality of Experience

Figure 6.2 Resulting faces scale to measure users mood: (0) very sad, (1) sad, (2) normal,
(3) happy and (4) very happy.

toward technology integration for teaching. However, in order to evaluate users attitude in

a broader context, this scale was adapted as follows.

All items were rewritten using a more open description to get a more generic technology

acceptance scale. Item 3 in the initial scale was removed because of its strong connection

to the teaching context. Furthermore, now all the descriptions are “positive”. This means

that no reverse-coded items are used as in the original scale. As a result, higher values

represent always more favorable levels of attitudinal predisposition toward technology use

and integration.

This resulted in the scale described in Table 6.3. The new scale is composed of Vve

items, each one representing a diUerent facet of attitude toward technology: (1) perceived

usefulness, (2) perceived pleasantness, (3) integration of technology, (4) self-eXcacy and

intentionality, and (5) perceived comfort. Each of these items is rated using a 5-point Likert-

type scale. The composite score ranges from 0 (minimum) to 20 (maximum predisposition

toward computer use and integration).

Statement Rating

1. Using technology makes me more productive ©
2. Using technology makes my daily life more pleasant ©
3. Integrating technology into my daily life is not diXcult for me ©
4. I am not hesitant to use computers without assistance / help of an expert ©
5. I am comfortable using computer applications for work and daily tasks ©

Table 6.3 Items used to measure users attitudes toward technology. Rating: Strongly
Disagree, Disagree, Undecided, Agree and Strongly Agree.

176

6.5 CARIM Model Design

6.4.3 Arranging User Parameters into CARIM

As stated in Section 6.3 for context parameters, it is necessary to decide how and when user

ratings should be collected before starting with the design of the model in Section 6.5. As

mentioned above, by rating we mean an episodic assessment based on the given perception

of the speciVc episode of application use [91]. Thus, user ratings should be collected when

the expert considers that the “episode of application use” has concluded (e.g., at the end of a

single test or after a whole experiment).

However, this decision may not be so trivial for users mood and attitude parameters.

On the one hand, users mood might be measured only once during the experiment if it

is merely necessary for analyzing mood inWuence on user ratings. However, user mood

might be measured many times in case the expert wants to analyze its evolution during the

experiment, as done by Korhonen et al. in [112].

On the other hand, it seems more than evident that users attitude toward technology

has to be measured only once during an experiment. However, doing it before or after user

interaction, might change the quality ratings provided by the users. As conclusion, when to

collect users mood and attitude parameters directly depends on the aim of the analysis the

expert is conducting.

6.5 CARIM Model Design

This section describes the proposed design for CARIM and its implementation. This section

is structured into three blocks: (a) the main features of the base model, (b) the new proposed

design and (c) some considerations about its implementation.

6.5.1 The Base Design: PALADIN

As said above, this work is based on PALADIN [137]. This multimodal interaction model

was previously described in Chapter 5, and brieWy summarized in this subsection.

PALADIN represents interaction data by turn, providing a dynamic description of mul-

timodal interaction. It holds parameters related to the communication content, metacom-

munication, I/O information and modality description. Its design is centered around the

concepts of turn and dialog, in which “a dialog consists of a sequence of turns produced

alternatively by each party” (Möller, [167]) taking part in the interaction process.

177

6 Modeling and Evaluating Mobile Quality of Experience

The set of parameters in PALADIN is partially based on the work of Möller and Kühnel

in [114, 168]. Some existing parameters were adapted and new ones deVned in order to

quantify multimodal interaction in a more abstract level than previous work. Moreover, new

parameters were deVned to describe the peculiarities of interaction in speech, visual-GUI

and gesture modalities; e.g., number of user exploring actions, percentage of use of text

and pointing devices. This Vnally resulted into a set of parameters arranged into seven

categories:

1. Dialog and Communication (e.g., user turn duration)

2. Modality (e.g., modality used in a turn)

3. Meta-communication (e.g., speech recognition errors)

4. Cooperativity (e.g., appropriateness of system output)

5. Task (e.g., task success)

6. Input (e.g., number of words in a user utterance)

7. Output (e.g., number of elements shown at the screen)

PALADIN provides three main beneVts to practitioners and researchers evaluating the

usability of human-machine interfaces:

• Describing multimodal interaction using generic/abstract parameters. DiUerent

modalities are put at the same level, thus they are analyzed using the same metrics.

More speciVc parameters are used to describe particular details of a speciVc modality.

• Having the same metrics to describe interaction in diUerent contexts, which are

structured within a common representation. It allows developers and designers to

easily compare among diUerent interaction records.

• A turn-based “step by step” description of multimodal interaction. It creates a relation-

ship between collected data and time, providing evaluators with new opportunities

for the dynamic analysis of interaction.

6.5.2 The New Proposed Design: CARIM

Before describing the design of the CARIM model, it is worth classifying the proposed

model from a context point-of-view. For this purpose, it is used the classiVcation proposed

by Bolchini et al. in [29].

178

6.5 CARIM Model Design

CARIM results in a model type “C. Context as a matter of user activity”. It is mainly

focused on what the user is doing, thus the user is the subject of the model. The model

design assumes a single user performing a main task by using a single mobile device. Not

specially formal, the context deVnition describes in which conditions the user is doing the

task. The context history is an important issue. Time and space are relevant because they

provide information about the user current and past activity. Finally, automatic learning

(when available) can be applied to guess user activity from sensor readings.

CARIM is aimed at providing a basis to evaluate QoE in mobile environments. As said

above in Subsection 6.5.1, PALADIN quantiVes only user-system interaction, which is not

enough to assess QoE. Therefore, CARIM extends its design in two ways.

On the one hand, the parameters resulting from research in Section 6.3 were added to

the initial model design to describe the interaction context in mobile scenarios.

The context is a dynamic and evolutionary entity in the model. As stated in Section 6.3

(and summarized in Table 6.1) only few of the context parameters do not change along

an experiment with users (i.e., mainly User parameters and some ones related to Device).

Therefore, these dynamic parameters have to be annotated by turn. Otherwise, static

parameters have to be collected only once during an experiment. For this reason User

parameters are separated from the dynamic context group to be annotated only once.

On the other hand, the parameters resulting from research in Section 6.4 were also

incorporated into the model design in order to measure how attractive and user-friendly

the product under test is. As stated above, CARIM considers the following subjective

data of users: user ratings, user attitude toward technology and user mood (the latter are

inWuencing factors of the former).

Attitude toward technology is considered as a non-variable attribute of users in a short

term. Therefore, assuming that the attitude questionnaire will be answered only once during

the whole experiment, this information need to be annotated only once.

UsersMoodmight be measured many times during an experiment to analyze its evolution

during interaction. Capturing mood evolution was done in several of the works mentioned

in Section 2.2.2, thus the model should be Wexible enough to allow this.

We have a similar problem with user ratings. It was stated above that user ratings have

to be collected when the expert considers that the episode of application use has concluded.

As the idea of “episode of application use” may vary from one expert to another, the model

design should be open to allow diUerent interpretations of this concept.

179

6 Modeling and Evaluating Mobile Quality of Experience

Figure 6.3 Design of the proposed model (CARIM).

Figure 6.3 depicts the proposed design for CARIM. As the reader can see, the design

inherited from PALADIN is represented using a light grey color, while new parts of the

CARIM model are represented using a black color. CARIM is structured around the concept

of Trial instead of Dialog. Based on the deVnition of dialog provided by Möller in [167] (see

above), a Trial can be deVned as “either one or a set of dialogs belonging to an experimental

attempt, which is aimed at a speciVc experience measurement goal”.

As said above, the subject of the model is the user, then a Trial is considered to be

performed by a single person. As depicted in Figure 6.3, static context data related to the

User is annotated at trial level. This means that it is collected only once for the set of dialogs

composing the trial. Next to user data the reader can Vnd Attitude, that is annotated only

once as well.

User ratings and Mood are a diUerent case. As these values can be annotated either

one or several times depending on the experimental study, the model design provides

an aggregation of them at trial level. This decision provides more Wexibility, but lacks a

chronological link between these data and a Dialog. This design issue is further discussed

in Section 6.8.

Context information is collected at turn level, i.e., it is annotated stepwise in the model

180

6.6 CARIM Model Implementation

during user interaction. This supports the concept of changing and evolving context pro-

posed by Jaroucheh et al. in [96], as well as the need to consider the context information

available in the diUerent domains the user visits. The reader can see in Figure 6.3 that

all the context parameters described in Section 6.3, except those related to the user, are

annotated by turn. As a result, the model provides a link between time, the user interaction

description, and other context information like the user location, the social company, the

device CPU load in that moment, etc.

6.6 CARIM Model Implementation

For the implementation we transferred the data model of CARIM into a design in the Eclipse

Modeling Framework [203] (EMF), which provides model transformation and automatic

code generation functionality. The widely used EMF allows the deVnition of comprehensible,

Wexible, and extensible models, as well as the syntactically validation of concrete model

instances. Tools like EMF help to make the modeling process more eUective, and provide

indispensable functionality to validate and extend the model [103]. The design of the model

will be used to automatically generate the Java source code, which shall be integrated into

the applications in which CARIM model instances have to be created.

In order to collect interaction and context parameters to Vll the model instances we

propose using the AHE11 [135]. This interaction extraction tool is based on the original An-

droid HCI Extractor [134]. It is open-source and is aimed at collecting diUerent interaction

and context data automatically, as far as the device capabilities allow it.

The AHE11 can be easily used to create CARIM model instances at runtime in Android

platforms. Such instances are valid to represent many diUerent interaction scenarios, from

the usage of an application during a couple of minutes to the usage of a device during hours.

The AHE11 currently runs in Android devices with API 11 (Honeycomb 3.0.x) or higher.

Android was chosen because of its open character and because it can run in many diUerent

mobile and non-mobile platforms, e.g., smartphones, tablets, netbooks, smart-tv, etc.

To implement questionnaires we also developed the Generic Questionnaire Library

(GQL8) for Android. This open-source tool (available at [135]) automatically generates and

displays questionnaires from a very simple JSON [51] speciVcation. GQL8 was used to

automatically collect user ratings at the end of each test trial. I was used also to collect

some context parameters that can not be collected automatically (e.g., social company) as

181

6 Modeling and Evaluating Mobile Quality of Experience

well as to collect users mood and attitude values. The GQL8 currently runs in Android

devices with API 8 (Froyo 2.2.x) or higher.

Data collected with AHE11 and GQL8 can be directly put into a new model instance.

However, it might be complicated to accomplish this task manually. In order to ease the

integration of CARIM into research and production systems, a helping framework called

Instantiation Framework (IF) was developed. This element uses the information provided

by the data sources to automatically create and Vll the CARIM instances (see Figure 6.4).

The IF is aimed at managing the entire life-cycle of such instances. It provides an API to

be notiVed with interaction data (e.g. the user touches the screen, new ratings are available).

These data are then used to create and update the current CARIM instance. The IF provides

access to such instance during interaction for runtime analysis, or once the interaction

is Vnished for oU-line analysis. The open-source implementation of this framework is

available at [135].

Figure 6.4 Typical execution scenario for creating CARIM instances.

Figure 6.4 depicts a typical instantiation scenario for CARIM, similar to the described

later in Section 6.7. This scenario is divided into three stages:

1. Data collection. Necessary data about interaction, context and the user are collected.

These data may be captured from real application usage in real-time (e.g., by using

the AHE11 and GQL8), from interaction logs or anyhow artiVcially produced (e.g.,

user simulation).

2. Creation of model instances. The Instantiation Framework is notiVed with the

interaction data, from which it creates live CARIM instances.

182

6.7 Experiment

3. Inference and analysis of QoE. The data stored within CARIM instances is used

to determine QoE of user. The instances can be checked at runtime to make live

decisions for application adaptation.

6.7 Experiment

This section describes an experiment in which users interacted with two diUerent interaction

designs for a game named UMU Lander. CARIM, along with the tools described above in

Section 6.6, were used to implement the evaluation process. The purpose of this experiment

is not to present a formal users study, but to give an illustration of results obtained with the

CARIM model, as well as to show its validity to calculate, analyze and compare QoE.

This experiment compares two interaction designs for the same application. The compar-

ison is based on the QoE value achieved by the users with each version. The experiment is

also aimed at investigating if some context factors can explain diUerences in users interac-

tion and in their QoE. More concretely we studied the inWuence of social context and users

mobility on user behavior and quality perception.

For this purpose, we selected three hypotheses that attempt to be validated using the data

extracted during the experiment. To select them, we Vrst encouraged our research group

members to suggest scenarios in which the context factors may inWuence or change the

way the users interact with their mobile devices. Then, all of the members voted for those

three scenarios they considered it exists a higher inWuence of context in interaction. As a

result of this analysis we posed the following three hypotheses:

(H1) Users play longer in least time-restrictive environments (e.g., at home)

than in most restrictive ones (e.g., at work).

(H2) Users provide input with more arousal (i.e., using shorter and more

frequent interactions) when there are people around them.

(H3) The QoE level for users is aUected by the social context and their mobility

situation while they are playing the game.

6.7.1 Participants and Material

30 Spanish- and English-speaking individuals (16 male, 14 female) between the age of

18 and 58 (m=29.9, sd=8.96) took part in the study. The two versions of the game were

183

6 Modeling and Evaluating Mobile Quality of Experience

available in Google Play for installation. The participants were recruited using an open call

for participation sent to our colleagues and contacts through email, Twitter and Linked-in.

Other participants were directly encouraged by us to take part in the experiment using our

own mobile devices.

The tested application was UMU Lander, a game based in the original Lunar Lander

example provided by the Android SDK1, which was extended to work with touch and

motion modalities. The aim of this game is landing a lunar vehicle on the Moon surface.

UMU Lander is presented in two versions. Version #1 (from now lander_acc) uses the

accelerometer to change the lander heading, while speed is increased by touching the

screen. In version #2 (from now lander_butt) both steering and acceleration are controlled

by using three buttons at the bottom of the screen. Therefore, touch (GUI) and motion are

used as input modalities, while the output is always given via GUI modality.

6.7.2 Procedure

The users were encouraged to play the two versions of the lander game. For each version,

the experiment was composed of three stages:

1. The user is brieWy asked for some information about the surrounding context. These

questions are used to get those data that can not be automatically extracted using the

AHE11 during interaction (e.g., social company, mobility level).

2. Once answered, the user interacts with the application. There is no restrictions in

this stage, so the user is free to play the game as many times as he/she wants.

3. Finally, the user is asked about his/her current mood. Then the attitude and AttrakDiU

Mini questionnaires are displayed to be answered.

The UMU Lander was augmented with the AHE11 to extract interaction and context

data and with the GQL8 for the questionnaires. As the reader can see, the whole experiment

is encapsulated within the application. All data necessary for the experiment are collected

interactively, either through the use of GQL8 questionnaires or by using the AHE11 to

automatically extract interaction. The resulting Vles (i.e., the CARIM instances) were sent

to a server located in our dependencies in the University of Murcia (Spain). The anonymity

and privacy of the participants was guaranteed throughout the whole experiment.

1http://developer.android.com/sdk

184

http://developer.android.com/sdk

6.7 Experiment

6.7.3 Results

The experiment resulted in a set of CARIM model instances. These instances describe

user-system interaction, its surrounding context and user-related data (i.e., some demo-

graphic information, attitude toward technology, and mood and perceived quality after the

experiment). These instances were used later to determine the QoE of each participant and

implement its analysis under diUerent context situations.

6.7.3.1 Comparing the Two Interaction Designs for UMU Lander

The Vrst result comes from comparing the QoE of users for the two proposed interaction

designs. The QoE value was calculated for each CARIM instance by adding up the values of

the ten AttrakDiU-Mini questions previously asked to the participants (see Table 6.2). Then,

the resulting value was converted to a Vnal value between 0 and 1. As a result, each quality

dimension measured by the questionnaire is represented in the Vnal value of QoE according

to the number of attributes of each dimension (i.e., PQ=40%, HQ=40% and ATT=20%). Then,

the average values of QoE for each interaction design were calculated and included in

Table 6.4. As we supposed before conducting the experiment, results showed that users

have a better experience using the accelerometer in lander_acc instead using the buttons.

However, the diUerence with lander_butt was pretty small.

Version QoE mean QoE+mood+attitude mean

lander_acc (m=.469, sd=.206, N=30) (m=.440, sd=.191, N=30)

lander_butt (m=.428, sd=.239, N=30) (m=.386, sd=.213, N=30)

Table 6.4 QoE mean of users for the two proposed interaction designs.

Then, the Vnal QoE values for each user were adjusted by using the attitude toward

technology use and mood values. First of all, the correlation of these inWuencing factors

with the calculated QoE was analyzed to determine the relation between these values.

We used Pearson correlation coeXcient, as it is suitable for scale variables whose values

represent ordered categories with meaningful metrics, thus distance comparisons between

the values are appropriate [34].

We obtained (Pearson’s r=.28, N=60, p=.02) for attitude toward technology use and (r=.49,

N=60, p=.00) for mood. Then, based on these correlations, the QoE value was adjusted

185

6 Modeling and Evaluating Mobile Quality of Experience

by using a constant factor f (for this case we used f=-.3) to limit the signiVcance of the

inWuencing factors. We used a negative factor because the adjustment should be inverse,

i.e., for a higher mood or attitude level the Vnal QoE value should be reduced, and vice

versa.

As the reader can see in Table 6.4 the adjusted QoE values are smaller than original ones

(very often mood and attitude values were positive). The diUerence between the QoE of

users with the two diUerent versions is slightly increased in favor of lander_acc. Then, as

showed by the original and the adjusted QoE values, it can be concluded that users prefer

the interaction design used in lander_acc.

6.7.3.2 Validating the User Behavior Hypotheses

Once compared the two interaction designs for the UMU Lander game, we analyzed the

data in the CARIM instances to attempt to validate the hypotheses posed above.

For (H1), in a Vrst step, we provided numeric values to the social arena variable arranged

in increasing order of how limited in terms of time they are. It resulted in 0-domestic,

1-leisure, 2-educational and 3-work. Then, we used the measures assessing social arena and

correlated them with the total time spent by the user during the game. As the reader can

see in Table 6.5, these two parameters showed a positive Pearson’s correlation. Contrary to

our expectations, users tended to spend more time in more time-restrictive environments.

For (H2) we also assigned numeric values to the social company variable arranged in

increasing order of number of people around the user. It resulted in 0-alone, 1-with a

person and 2-with a group. The measures assessing social company were correlated with

the number of input elements (i.e., motion and touch events) provided by the user during a

game. In line with our assumptions, we observed a positive correlation showing that the

higher is the number of people around the user in the interaction context, the higher is the

arousal with which the user interacts with the application (see Table 6.5).

Finally, for (H3) we again provided numeric values to arrange the values of mobility level

in increasing order of activity. It resulted in 0-sitting, 1-standing, 2-walking, 3-sporting and

4-driving. Then we tried to Vnd any correlation between the calculated QoE and adjusted-

QoE values with the measures assessing the mobility level of the user. We also tried to

Vnd correlations between the two social context parameters used for H1 and H2 and the

calculated QoE values. The results (see Table 6.6) showed that only the mobility level of

the user presents a signiVcant correlation with the quality of experience perceived by the

186

6.8 Discussion

Total time
Game time

(average)

Input elements

per game

Social company (r=.23, p=.15) (r=.36, p=.02) (r=.33, p=.01)

Social arena (r=.43, p=.01) (r=.31, p=.05) (r=.23, p=.07)

Mobility level (r=-.05, p=.72) (r=-.02, p=.93) (r=-.04, p=.82)

Table 6.5 Correlation (Person’s r) between social and mobility context parameters and
interaction parameters, N = 60, p-2tailed.

user. Since all the users who made the experiment were sitting or standing, in general they

tended to have better experiences doing the second way.

QoE
QoE + mood

+ attitude

Social company (r=.11, p=.38) (r=.10, p=.42)

Social arena (r=-.04, p=.81) (r=-.08, p=.62)

Mobility level (r=.46, p=.02) (r=.41, p=.03)

Table 6.6 Correlation (Person’s r) between social and mobility context parameters and
determined QoE values, N = 60, p-2tailed.

6.8 Discussion

This chapter describes a runtime model intended for serving as a basis for the implementa-

tion of QoE inference, analysis and comparison processes. The main contribution of this

work to the UX research Veld can be summarized as follows:

1. The analysis of related literature to select a valid set of context and quality parameters

to analyze QoE in mobile applications.

2. The design of a model aimed at uniformly representing user-system interaction

within real mobile contexts. For this purpose, it arranges parameters related to the

interaction, the surrounding context and the perceived quality of users.

3. An open-source model implementation ready to be used with real applications and

users in their natural daily environments, as posed in [216].

187

6 Modeling and Evaluating Mobile Quality of Experience

6.8.1 Modeling Mobile Interaction and QoE

Three research questions regarding the limitations found in current state-of-the-art were

posed in Section 6.1. These questions —that have been answered throughout this chapter—

as well as other open questions commented above are further discussed in the following.

To answer question Q1, a runtime model to analyze multimodal user-system interaction

(i.e., PALADIN) was selected as the basis for this work. PALADIN describes interaction

in a stepwise manner, thus it Vtted perfectly the dynamic nature of the changing context

of mobile scenarios. Therefore, the base model enabled the incorporation of surrounding

context parameters by turn, which allows to provide a step-by-step description of the

interaction context in the new proposed design. PALADIN provides a static-data section as

well. This section was perfect for allocating user perceived quality parameters, as well as

other parameters describing several inWuencing factors of interaction quality.

Instances of the proposed model (i.e., CARIM) describe therefore mobile interaction by

using three dimensions: the interaction between the user and the system, its context and the

user ratings. As a result, as posed in research question Q2, QoE determined for a speciVc

interaction instance can be analyzed and interpreted using these three dimensions. Data

are thoroughly arranged and connected to each other to help applications and experts to

understand why such a certain level of QoE was inferred.

On the one hand, we have context data directly linked to interaction data. It allows

experts to analyze the eUect of context changes in user interaction (e.g., how user behavior

changes when a new person appears in the social context). Henricksen et al. posed in [86]

two main limitations related to context data.

First of all they talked about the gap between collected data and the level of information

that is useful to applications. This problem is solved at runtime within the AHE11, where

collected data are immediately processed to Vt CARIM constraints. They also argued that

there are many cases in which context information may be incorrect, inconsistent or

incomplete. The proposed model does not provide any constraint between context attributes

and other related data to avoid meaningless combinations. This problem is intended to be

solved as future work.

On the other hand, a relationship between interaction and context data and time is

created as well thanks to the runtime nature of the model. Related work includes many

references to the link between data and time. For example, Forlizzi and Battarbee described

188

6.8 Discussion

that user experiences are a constant stream of interaction sequences that change user

behavior and emotions [69]. Jaroucheh in [96] and Ickin et al. in [91] argued that context

information history has to be considered when modeling the situations, as the current

state cannot be understood in isolation from the previous states. CARIM emphasizes the

importance of time by describing the whole “course” of the dialog, thus enabling the analysis

of interaction and context evolution. The mobile interaction process can be assessed either

in real-time (i.e., by taking the collected data history until a speciVc time) or at the end of

the process (i.e., by taking the whole dialog information).

Finally, the CARIM design provides enough Wexibility for storing user data (i.e., ratings

and inWuencing factors) and link them to interaction data. For example, a single user-data

record can be stored related to the whole trial or, conversely, a diUerent record can be

stored for each dialog composing the experiment. More than one ratings and mood records

can be stored for the same trial, even for the same dialog, if it is the goal of the study to

analyze their evolution. However, providing this Wexibility in the design causes a lack of a

“chronological link” between user data and time. It is not clear in the model design when

the user data was collected. It is also unclear how many times these data was collected.

Therefore, this relationship between user data and time should be clearly showed in the

experiment brieVng.

Another limitation is related to the extraction of subjective and cognitive data. It is not

straightforward to automatically extract information related to the cognitive domains of the

user. Thus, these data have to be asked to the user [88]. Methods like the aforementioned

ESM [48] or SAM [117] help experts to ask users and discover things like their mood, or

whether they liked the location of the keys on the smartphone screen. However, for this

work an automatic method was created to interactively ask subjective and cognitive data to

the user during the experiment (see Section 6.7). This avoided the manual implementation

of questionnaires and interviews with users. As a consequence, the presence of experts was

not needed during the execution of the experiment.

Research question Q3 concerns the lack in user experience research of a common vo-

cabulary for describing and comparing user experiences. This problem was previously

posed by Korhonen et al. in [112]. CARIM try to solve this by structuring data into a

common representation that can be used to analyze interaction and QoE in systems of a

very diUerent nature. The same metrics and format are used to quantify the interaction

between the user and the system regardless of the device and application under testing, the

189

6 Modeling and Evaluating Mobile Quality of Experience

current interaction context, and even the modalities used to provide input and output data.

As a result, diUerent interaction records can be analyzed and compared to each other. This

provides experts with uniVed criteria to describe multimodal interaction and its context in

diUerent execution scenarios.

6.8.2 CARIM Implementation and Experimental Validation

Section 6.6 described the implementation work resulting from this research. Unlike many

other approaches, we provide a real open-source implementation of CARIM ready to be

incorporated into current Java-based developments. This implementation can be easily

extended with new parameters in the same manner PALADIN was extended to become the

model proposed in this chapter. Furthermore, the open implementation of an interaction

instrumentation tool and a library to implement automatic questionnaires are also available

and ready to be used in Android devices.

The implementation of CARIM was tested in a real experimental setup described in

Section 6.7. The experiment was used as proof of concept for implementing the assessment

processes for which CARIM was initially designed. Instances of the CARIM model were

used to faithfully represent the multimodal interaction process between diUerent users and

two designs of the same application.

Subjective and cognitive data allocated in the model instances allowed us to determine

the QoE of the users performing the experiment. The calculated QoE values were used

to compare the two diUerent interaction designs for the same application. Moreover, the

thorough arrangement of data in the model allowed us to easily Vnd correlations between

these QoE values, the users behavior and some context features. As a result, it was showed

that even a small set of users can be useful to draw important UX conclusions by using

CARIM instances.

No special sensors were needed during the experiment. All parameters in CARIM were

automatically extracted, either by using the AHE11 instrumentation tool or through the

use of interactive questionnaires with GQL8. The users were not distracted by the use of

unusual devices that they do not normally carry with them. As Thurnher et al. argued

in [210], additional ports and interfaces as well as the intrusiveness of sensors might impair

the usability study by disturbing and distracting the user during the test. Therefore, the

190

6.8 Discussion

Feature CARIM PALADIN
CUE

Model

Schulze

and Krömker

1. QuantiVes user-system interaction � � � �

2. Follows a runtime approach � � � �

3. Provides data correction mechanism � � � �

4. Is interaction-context-aware � � � �

5. Considers context evolution � � � �

6. Considers product quality dimensions � � � �

7. Considers users state and attitudes � � � �

8. Considers users state evolution � � � �

9. Measures user experiences � � � �

10. Allows user experiences comparison � � � �

11. Provides ready-to-use method � � ? ?

� yes � partially � no ? unknown

Table 6.7 Comparison of diUerent approaches evaluating user-system interaction.

proposed method enhances QoE testing by avoiding additional distraction of subjects

caused by observers or additional devices.

6.8.3 CARIM Compared with Other Representative Approaches

The features of CARIM were compared to other existing approaches aimed at evaluating

user-system interaction. The aim of this comparison is to highlight the main innovations

introduced by the proposed design, as well as its main deVciencies. The following three

approaches were selected for the comparison for the reasons described next. PALADIN [137],

because it proposes an interaction representation model, and because it is the model in

which CARIM is based on. CUE-model [127], because it proposes a model of user experience

concerning the relation between interaction characteristics, emotional reactions and the

perceived usability and system aesthetics quality. And the framework presented by Schulze

and Krömker [199], because as CARIM, it combines qualitative and quantitative data

extracted from the users to analyze their experiences.

The reader can see the results of this comparison summarized in Table 6.7. First, as

discussed above, CARIM enhances the PALADIN model by supporting the measurement

191

6 Modeling and Evaluating Mobile Quality of Experience

of mobile user experiences. For this purpose, the perspectives of the interaction context,

the quality perception, and the mood and attitudes of the users are incorporated into the

interaction analysis process.

CUE and the framework presented by Schulze and Krömker (from now S&K) do not

quantify user-system interaction beyond some task completion measures included in CUE.

Actually, this feature might be considered out of the scope of these methods. Moreover,

it is surprising that such a fairly recent user-experience analysis methods do not take

into account the inWuence of the context surrounding the user, specially because of the

increasing importance of mobile interaction in the last few years.

It could be said that the main limitation of CARIM with respect to CUE and S&K is the

lack of a deeper analysis of the cognitive state of the users. CUE studies the subjective

feelings and emotional reactions of the users in detail. S&K thoroughly analyzes the users

competencies and motivations, as well as their emotions. Meanwhile, CARIM only considers

the current mood of users and their attitude toward technology use.

Finally, it is worth saying that none of the methods compared above (inc. CARIM)

provides a data correction mechanism. This is an interesting feature that should be imple-

mented in order to avoid inconsistencies in the description of interaction, which may lead

to erroneous interpretation of user experiences.

6.9 Conclusions

This chapter presents CARIM, a runtime model aimed at describing the interaction between

the user and the system, its context, and the perceived quality of users. The model includes

a set of parameters to quantify multimodal mobile interaction and its surrounding context,

as well as subjective data collected from the user. CARIM arranges all these data into a

common and dynamic structure. Instances of this model keep the same format regardless of

the system, the context, the users, and the modalities under test.

As a result, CARIM provides uniVed criteria for the inference and analysis of QoE in

mobile scenarios. The model instances can be used to determine QoE of users. DiUerent

instances can also be easily compared to each other. Moreover, their runtime nature

allows applications to make context-based and QoE-based decisions in real-time to adapt

themselves, and thus provide a better experience to users.

192

6.9 Conclusions

An extensible implementation of the CARIM model and its instantiation framework

has been provided as a contribution to the open-source community. This implementation

is ready to be used with real application users in their natural daily environments, as

suggested in [216]. This implementation was incorporated into a study with users and

two diUerent mobile applications as proof of concept. CARIM was successfully used to

assess user-system interaction and to measure and compare the QoE of users in mobile

environments.

193

7
Conclusions and Further Work

This chapter draws some conclusions about the research activi-
ties conducted in this PhD thesis, and describes future lines of
research work.

Section 7.1 includes some conclusions about how the main
problems found in current approaches of Software Testing and
Human-Computer Interaction Analysis have been addressed in
this PhD thesis. It summarizes also the four main research goals
outlined in this thesis as well as the solutions designed in an
attempt to achieve them.

Section 7.2 describes new lines of work that arise from our
research in this PhD thesis, and that could be addressed in a
near future.

195

7 Conclusions and Further Work

7.1 Conclusions of this PhD Thesis

This section starts with an overview of the main concepts behind this PhD thesis. Then,

some conclusions about the problems tackled in this research work are drawn. Finally, the

four main goals outlined in this thesis are summarized, as well as the solutions proposed of

achieving them.

7.1.1 Driving Forces of this PhD Thesis

Software Quality is a very broad concept. It encompasses many disciplines, from those

assessing technical features of the software, to those analyzing psychological aspects of

the human beings. As commented at the beginning of this PhD thesis, the quality of a

software can be achieved in many diUerent ways (e.g., checking the functional requirements,

validating the software output, evaluating users perceived quality, etc.) This work tries to

narrow this problem by focusing on the assessment of user interfaces through the analysis

of the interaction between the user and the system.

User-system interaction has changed dramatically in the last few years. Not so many

years ago, people’s interaction with computers was restricted to desktop systems, mainly

for leisure or to accomplish tasks in domestic, work, or academic environments. Systems

in which a keyboard and a mouse enabled us to communicate with the software, and that

showed us results through a conventional screen and speakers.

Nowadays, we continuously interact with the so-called “smart” devices. These devices

provide full access to information, full connectivity to other people, and powerful processing

capabilities. They are in our pockets, our hands, or even put on our heads in the form of

wearable glasses. These devices usually oUer us diUerent ways of interaction by means

of diUerent sensory modalities, and allow us to communicate to them, e.g., touching the

screen with our Vngers, using our voice, or simply shaking or Wipping the device.

In this changing and challenging environment, this PhD thesis addresses two diUerent

approaches to achieve quality of a software through the analysis of user-system interac-

tion. On the one hand, the quality of the diUerent components of interaction (i.e., input,

output, and context) can be achieved separately. The main advantage of this approach is that

tools and methods can focus their eUorts on achieving the quality of a single component of

interaction, and, as a consequence, the quality of the entire software is enhanced.

196

7.1 Conclusions of this PhD Thesis

On the other hand, interaction can be assessed as a whole, as a single Wow of actions

from the user to the system and vice versa. In this approach the main advantage is that

methods try to achieve the quality of the “whole thing” and not of the parts compounding

it. This approach keeps the totality of the interaction process and enables the analysis of

those cause-eUect relationships between the actions of the user and the system.

7.1.2 Work and Research in User-System Interaction Assessment

Current approaches in Software Development and Testing, and HCI Analysis and Assess-

ment have been analyzed during this PhD thesis to identify the main problems when

achieving software quality. This analysis was specially focused on these approaches ana-

lyzing the actions of the user and the system, as well as the interaction process between

these two parties. The identiVed problems, as well as the main contributions of this research

work attempting to solve them, are summarized in this section.

Achieving the quality of a system or a software is still a cumbersome and expensive

process in terms of time and human resources. Furthermore, developing testing tools and

integrating them into real world, complex scenarios may result in a troublesome task. This

causes testing to be hardcoded or implemented manually in many cases. Automation has

been used by many of the analyzed approaches to reduce the eUort and costs of achieving

quality of an application. However, automating the actions of experts (specially those

depending on subjective judgments) is sometimes not straightforward. This PhD thesis

provides diUerent frameworks to support the automation and encapsulation of testing and

analysis processes, as well as to ease their integration into developments.

Nevertheless, analyzing and testing user interfaces could be even more complex than

testing other components of a software. User interfaces have very distinctive features

that hinder these processes, and that often prevent the tools used to test the rest of the

application to be used to test the interface. These pitfalls and how they were tackled in this

PhD thesis are discussed in the following.

When testing user interfaces the execution environment becomes more complex. Ad-

ditional elements like the GUI platform, the voice recognition system, and other mechanisms

used to support interaction by using diUerent modalities have to be considered. This causes

that tools and methods designed to be used into a speciVc testing environment can not be

reused in others. Therefore, tool adaptation is an aspect that should be taken into account

197

7 Conclusions and Further Work

when creating such methods. This PhD thesis has focused on providing open designs, which

allow the proposed frameworks to be easily extended or adapted to be integrated into

testing scenarios of a diUerent nature.

There exists also low standardization of the methodologies used to describe users

and system actions, specially in those approaches focused on HCI assessment. Some of

the analyzed research works agree on this. Many of current approaches use their own

representation of interaction intended for solving a speciVc problem (e.g., to analyze

interaction with a particular device). However, these speciVc representations are often hard

to reuse when facing problems of a diUerent type (e.g., if we are analyzing interaction with

a diUerent device). Designing more generic and extensible solutions might help experts to

apply these techniques into scenarios of a diUerent nature (e.g., using the same method to

analyze and compare an application running on diUerent platforms or by using diUerent

modalities). This PhD thesis is specially concerned with providing generic designs and

representations in order to widen the range of scenarios in which these can be applied.

Moreover, deciding which parts of a user interface will be evaluated, as well as what

data will be included in our analysis, is not straightforward. Many authors call this stage

coverage criteria, and it represents a main concern for developers and testers if they want

to provide eXcient testing or analysis processes. Using methods and tools to assist testers

in this decision is helpful to simplify and narrow these processes, and thus ensure their

eUectiveness. Hence, the solutions proposed in this thesis try to lead experts towards those

values, from all the available data, essential to solve the problem. These solutions have been

designed to be extended when needed.

Another problem when assessing user interfaces is that it often involves the analysis

of a dynamic process in which the users and the system are exchanging information

within a changing context. Time represents an essential element of the interaction process.

Therefore, it has to be properly “captured” by testing methods to enable the dynamic

analysis of interaction. This research work is aware of the importance of time, thus all the

proposed solutions are based on the dynamic and stepwise analysis of the actions of the

users and the system.

User interfaces are often tested with real people. This means that testing and analysis

processes run while potential users are using the software, which represents a critical

feature. The implementation of eXcient real-time testing processes is essential in order

not to aUect the users interaction and the system performance during this stage, and thus

198

7.1 Conclusions of this PhD Thesis

guaranteeing the validity of the results and conclusions extracted from the experiments.

The eXciency of such processes has been another important concern in this PhD thesis. The

provided tools are designed either to run in parallel with the tested application exploiting

the system architecture, or using the idle time between diUerent actions of the user.

Interaction with a user interface may also involve diUerent sensory modalities to allow

disambiguation of input and to provide complex communications with a higher bandwidth.

In the literature the reader can Vnd many approaches describing multimodal interaction by

separating the analysis of the diUerent modalities. However, multimodal communication is

a continuous process in reality. It can be seen as a single stream of actions and information

exchanged between two or more parties, regardless of the type or number of modalities used

during the process. Part of this PhD thesis focused on providing a uniform, generic, and

dynamic description of multimodal interaction. To do that we have identiVed the existing

equivalences between diUerent modalities and harmonizing diUerent types of data to deVne

multimodal interaction as a seamless communication process. Putting diUerent modalities

at the same level of abstraction enables experts to analyze multimodal interaction as a

whole, and not as an aggregation of inputs and outputs of a diUerent nature.

Finally, The design of user interfaces is prone to be changed more frequently than the

design of other components of a software. This is mainly because interfaces are being

continuously adapted to changing users needs during their development, as well as due

to the implementation of new functionalities that need to be supported. Testing processes

are really sensitive to changes, specially if the tests or experiments conducted before

these changes are reused in future testing or analysis processes, e.g., when implementing

regression testing. This requires a high robustness of testing methods, as well as a high

tolerance to changes in the design of the user interfaces. This PhD thesis was specially

concerned with this problem. The provided tools that work directly on the user interfaces

are often based on their internal functionality (e.g., data events or internal organization of

interface components) instead of using values corresponding to their external appearance

or behavior (e.g., the arrangement of elements in a GUI or the speciVc content of a system

utterance).

199

7 Conclusions and Further Work

7.1.3 Goals Achieved in this PhD Thesis

The four main research goals of this PhD thesis were posed in Section 1.3 and structured

into two blocks depending on whether the interaction components are analyzed separately

(Block 1) or the interaction process is assessed as a whole (Block 2). According to these

goals, the backbone of this research work has been structured into four main chapters, i.e.,

Chapters 3, 4, 5, and 6. Each of these chapters describes the research activities aimed at

achieving one of these goals, including also the design and implementation of the resulting

methods and tools.

G1.1 suggested to Vnd a framework to support the development of testing tools aimed

at validating the software response; to support the automation of GUI testing processes

that are often performed manually; as well as to allow the simulation of a human tester

to implement testing in a real, reliable, and robust scenario. Ease the integration of these

tools into applications of a diUerent nature was a goal as well. This PhD thesis proposed

the OHT framework to achieve this goal.

The OHT (Open HMI Tester) framework provides an open and adaptable architecture

for the development of GUI testing tools. It uses a capture/replay approach that can support

the automation of diUerent testing processes based on GUI introspection, the capture of

user interaction, and/or the execution of actions into the tested application. Moreover, some

of the modules in OHT can be easily adapted to work in diUerent testing environments

(e.g., to test applications based on a diUerent GUI platform).

After designing a solution to validate software output,G1.2 aimed at Vnding a lightweight

and easy-to-integrate solution for implementing input data veriVcation processes into GUI

developments. The user input must be valid and conform to the data requirements, which

should be written using a veriVcation language chosen by the developers. This solution

should be interactive to ease the work of developers, testers, and users during the whole life-

cycle of a software. According to these requirements, this PhD thesis proposed S-DAVER.

S-DAVER (Script-based DAta VERiVcation) is a lightweight veriVcation framework that

validates input data while the user is interacting with the software. It provides an interactive

process in which developers can change the rules at runtime while testing the application,

and users are dynamically notiVed about data errors while using it. All the veriVcation

processes are encapsulated in a separate layer that, once integrated into an application,

200

7.1 Conclusions of this PhD Thesis

establishes a trust relationship between the GUI and the business logic. S-DAVER makes

data veriVcation an integral part of the development, testing, and execution processes.

Aiming at analyzing interaction as a whole, G2.1 suggested to Vnd a generic description

of multimodal interaction to support its instrumentation and assessment. This description

had to capture the dynamic nature of the interaction between the user and the system.

Furthermore, the comparison between diUerent interaction records should be allowed,

regardless of the execution context from which they were previously recorded. This PhD

tried to fulVll these requirements with PALADIN.

PALADIN (Practice-oriented Analysis and Description of Multimodal Interaction) is a

runtime model arranging a set of parameters which are used to quantify the interaction

between the user and the system in multimodal systems. These parameters are annotated

in each interaction step in order to preserve the dynamic nature of the dialog process. As a

result, the model instances of PALADIN are used as an uniVed criteria to analyze, evaluate,

and compare interaction extracted from diUerent unimodal and multimodal systems. These

instances are used to evaluate usability of such systems.

Based on the idea behind PALADIN, G2.2 aimed at providing a framework to support

the assessment of user experiences in mobile scenarios. Such a framework had to include

a generic and dynamic description of the surrounding context of interaction, as well as a

set of metrics to capture users impressions about interaction. As a result, this framework

should provide uniVed criteria for the assessment of systems usability and QoE in diUerent

mobile and non-mobile scenarios. With this purpose, this PhD thesis presented CARIM.

CARIM (Context-Aware and Ratings Interaction Model) is a runtime model describing

the interaction between the user and the system, its context, and the perceived quality

of users. It arranges a set of parameters into a common structure in order to provide a

uniform method to describe, assess, and compare interaction experiences regardless of the

system, the context, the users, and the modalities under test. Moreover, the runtime nature

of CARIM allows applications to make context-based and QoE-based decisions in real-time

to adapt themselves and thus provide a better experience to users.

As a result of this PhD thesis, and as proof of concept for our research work, four main

software elements have been provided as a contribution to the open-source community.

To show the validity of the proposed methods, these software have been either integrated

into the internal processes of a software development company or tested with users in

experiments conducted both in laboratory and real environments (see Section 1.5 for further

201

7 Conclusions and Further Work

information). Furthermore, popular means of distribution like Sourceforge, Google Code,

and GitHub were used to show our results and to allow the open-source community

members use them and provide us with valuable feedback to enhance our work.

In order to meet the goals proposed in this PhD thesis, the work presented in this

dissertation encompasses diUerent ways of achieving software quality, focusing mainly on

the analysis of users-system interaction. This work represents also a further step toward the

deVnition of more generic, open, and adaptable methods for the analysis and assessment

of human-computer interaction, its elements, and its surrounding context. Those methods

presented as result of our research are ready to be used with real world applications, adapted

to new execution environments, or extended in further research activities to be improved,

as stated in the next section.

7.2 Future Lines of Work

This section describes new lines of work arising during the development of this PhD

thesis. These open lines should be addressed in future research on Software Testing and

Human-Computer Interaction.

One concern would be Vnding new alternatives to automate the visual validation

process performed by testers when checking the validity of software output. This process

is still wearisome, and increases the dependency on experts during software testing stages.

A solution could be providing a way to visually specify what are the expected results, and

then use this speciVcation to automatically compare the results obtained during testing to

the expected ones (e.g., by comparing the graphical output of the system, like in [40]). Such

a method should be seamlessly integrated into current testing processes.

New methods to ensure the correctness and consistency of speciVcations should be

also explored. This feature can be applied to two particular problems tackled in this thesis.

On the one hand, ensuring the correctness and consistency of the rules used in S-DAVER.

The rules are written using scripting languages. These languages provide high Wexibility

when deVning and maintaining the rules, but often lack a method to check their internal

consistency. On the other hand, check the correctness, consistency, and completeness of the

models of interaction and its context (i.e., PALADIN and CARIM). Constraints between

interaction and context data should be provided to avoid meaningless combinations.

202

7.2 Future Lines of Work

Migrating the solutions proposed in Block 1 from an only-GUI to a multimodal inter-

action context would be another idea to be developed. Multimodal systems also need for

support in validating their inputs and outputs, which have the peculiarity of being provided

using diUerent sensory modalities. The work and the knowledge acquired in Block 2 could

be used to treat diUerent inputs and outputs in a uniform way for its automatic validation,

and thus achieve quality in such systems.

To enhance the design of the proposed interaction models is also among our goals.

New parameters may be added to Vx potential errors as well as to meet new emerging needs,

specially those related to the instrumentation of new sensory modalities. A particular

case is the analysis of gesture input and output in depth. In recent years, gestures are

becoming even more popular as input modality, specially thanks to the advances in TV and

video games Velds (e.g., LG SmartTv Motion Recognition System, Nintendo Wii, Microsoft

Xbox Kinect). Peculiarities of this modality should be integrated into the methods proposed

in this work.

The models could also be enhanced with the incorporation of additional aspects or

dimensions of the interaction process. One example is the description of the task the user

is engaged in. This might help experts to identify interaction problems and link them to

particular stages of the experiment being conducted. Another example is the incorporation

of user emotions. Using aUective computing to identify emotions in real-time would help

us to associate the user state to concrete behaviors or responses.

New Velds in which to exploit the full potential of the interaction models proposed in this

thesis should be explored. One example is model transformation and code generation,

that are being extensively used in current software engineering. This would allow us to

easily create new perspectives of the data collected during the interaction process (e.g., user

proVles based on QoE, statistical summaries, context/behavior evolution models, etc.) These

processes can be implemented, e.g., by using the ATL Transformation Language [101] or

the Acceleo Model-to-Text Language [60], which are part of EMF.

Another Veld to be explored are decision systems based on live data. The instances of

the interaction models presented in this work can be accessed and analyzed at runtime

while they are being created. This provides a basis for applications to easily make live

decisions according to current and past interaction, context, or subjective information.

Thanks to the runtime nature of the proposed models, another Veld to be explored

could be continuous authentication of users. Many works have shown examples of using

203

7 Conclusions and Further Work

mouse and keyboards metrics to authenticate users during interaction (e.g., [190, 234]).

Our intention is using interaction and context data included in the model instances to

Vnd behavior patterns with which attempting to identify users. Users security and privacy

problem should be also posed and discussed.

Finally, it is worth highlighting a Veld in which there is still much work to be done:

analysis and assessment of interaction in multi-person, concurrent interfaces and their

peculiarities. These particular interfaces are used in scenarios in which multiple users are

interacting with the system concurrently, e.g., in a smart home or in tabletop devices. The

interaction models proposed in this work, as well as the turn-based approach in which

they are based, are intended for the assessment of interaction between the system and a

single user. These model designs should be reconsidered and checked whether they Vt the

concurrent interaction of users in multi-person scenarios.

204

Bibliography

[1] HTML5 - Up and Running: Dive Into the Future of Web Development. O’Reilly, 2010.

[2] Rasterbard Software. Luabind - Bindings between C++ and Lua. http://www.

rasterbar.com/products/luabind.html, 2014. [Online; accessed May. 2014].

[3] ACM SIGCHI. Curricula for Human-Computer Interaction. http://www.acm.org/

sigchi/cdg/index.html, http://www.acm.org/sigchi/cdg/cdg2.html, 1992.

[4] Gediminas Adomavicius, Bamshad Mobasher, Francesco Ricci, and Alexander

Tuzhilin. Context-Aware Recommender Systems. AI Magazine, 32(3):67–80, 2011.

[5] Anshu Agarwal and Andrew Meyer. Beyond usability: evaluating emotional response

as an integral part of the user experience. In CHI ’09 Extended Abstracts on Human

Factors in Computing Systems, CHI EA ’09, pages 2919–2930, New York, NY, USA,

2009. ACM.

[6] Pekka Aho, Nadja Menz, Tomi Räty, and Ina Schieferdecker. Automated Java GUI

Modeling for Model-Based Testing Purposes. In ITNG, pages 268–273. IEEE Computer

Society, 2011.

[7] Abdalha Ali, Abdelkader Ouda, and Luiz Fernando Capretz. A conceptual framework

for measuring the quality aspects of mobile learning. Bulletin of the IEEE Technical

Committee on Learning Technology, 14(4):31, 2012.

205

http://www.rasterbar.com/products/luabind.html
http://www.rasterbar.com/products/luabind.html
http://www.acm.org/sigchi/cdg/index.html
http://www.acm.org/sigchi/cdg/index.html
http://www.acm.org/sigchi/cdg/cdg2.html

Bibliography

[8] Claire E Alvis, Jeremiah J Willcock, Kyle M Carter, William E Byrd, and Daniel P

Friedman. cKanren: miniKanren with Constraints. 2011.

[9] Frank M. Andrews and Stephen Bassett Withey. Social indicators of well-being.

Plenum Press, New York, NY [u.a.], 1976.

[10] Antonella De Angeli, Jan Hartmann, and Alistair G. SutcliUe. The EUect of Brand

on the Evaluation of Websites. In Tom Gross, Jan Gulliksen, Paula Kotzé, Lars

Oestreicher, Philippe A. Palanque, Raquel Oliveira Prates, and Marco Winckler,

editors, INTERACT (2), volume 5727 of Lecture Notes in Computer Science, pages

638–651. Springer, 2009.

[11] Emanuele De Angelis, Fabio Fioravanti, Alberto Pettorossi, and Maurizio Proietti.

VeriVcation of Imperative Programs by Constraint Logic Program Transformation.

In Anindya Banerjee, Olivier Danvy, Kyung-Goo Doh, and John HatcliU, editors,

Festschrift for Dave Schmidt, volume 129 of EPTCS, pages 186–210, 2013.

[12] Masahiro Araki, Akiko Kouzawa, and Kenji Tachibana. Proposal of a multimodal

interaction description language for various interactive agents. Trans. Inf. Syst.,

E88-D(11):2469–2476, 2005.

[13] Cyrille Artho, Doron Drusinksy, Allen Goldberg, Klaus Havelund, Mike Lowry,

Corina Pasareanu, Grigore Rosu, and Willem Visser. Experiments with test case

generation and runtime analysis. In Proceedings of the abstract state machines 10th

international conference on Advances in theory and practice, ASM’03, pages 87–108,

Berlin, Heidelberg, 2003. Springer-Verlag.

[14] Sandrine Balbo, Joëlle Coutaz, and Daniel Salber. Towards automatic evaluation

of multimodal user interfaces. In Proceedings of the 1st international conference on

intelligent user interfaces, IUI ’93, pages 201–208, New York, NY, USA, 1993. ACM.

[15] Lionel Balme, Alexandre Demeure, Nicolas Barralon, Joëlle Coutaz, and Gaëlle

Calvary. Cameleon-rt: A software architecture reference model for distributed,

migratable, and plastic user interfaces. In Panos Markopoulos, Berry Eggen, Emile

H. L. Aarts, and James L. Crowley, editors, EUSAI, volume 3295 of Lecture Notes in

Computer Science, pages 291–302. Springer, 2004.

206

Bibliography

[16] H. Barringer, A. Groce, K. Havelund, and M. Smith. Formal analysis of log Vles.

AIAA Journal of Aerospace Computing, Information and Communications, 2010.

[17] Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen. Rule-Based

Runtime VeriVcation. In Bernhard SteUen and Giorgio Levi, editors, VMCAI, volume

2937 of Lecture Notes in Computer Science, pages 44–57. Springer, 2004.

[18] Howard Barringer, David E. Rydeheard, and Klaus Havelund. Rule Systems for

Run-time Monitoring: from Eagle to RuleR. J. Log. Comput., 20(3):675–706, 2010.

[19] Samuel Bayer, Laurie E. Damianos, Robyn Kozierok, and James Mokwa. The MITRE

multi-modal logger: Its use in evaluation of collaborative systems. ACM Comput.

Surv., 31(2es), 1999.

[20] Aaron Beach, Mike Gartrell, Xinyu Xing, Richard Han, Qin Lv, Shivakant Mishra,

and Karim Seada. Fusing mobile, sensor, and social data to fully enable context-aware

computing. In Angela Dalton and Roy Want, editors, HotMobile, pages 60–65. ACM,

2010.

[21] Paolo Bellavista, Antonio Corradi, Mario Fanelli, and Luca Foschini. A survey of

context data distribution for mobile ubiquitous systems. ACM Comput. Surv., 44(4):24,

2012.

[22] Nicole Beringer, Ute Kartal, Katerina Louka, Florian Schiel, and U. Türk. PROMISE

– A procedure for multimodal interactive system evaluation. In Proc. Multimodal

Resour. Multimodal Syst. Eval. Workshop (LREC 2002), pages 77–80, 2002.

[23] Isela Macia Bertran, Alessandro Garcia, and Arndt von Staa. An exploratory study of

code smells in evolving aspect-oriented systems. In Paulo Borba and Shigeru Chiba,

editors, AOSD, pages 203–214. ACM, 2011.

[24] N. Bevan. ISO 9241-11 Ergonomic Requirements for OXce Work With VDTs. 1994.

[25] Eric Bodden. A lightweight LTL runtime veriVcation tool for java. In John M.

Vlissides and Douglas C. Schmidt, editors, OOPSLA Companion, pages 306–307.

ACM, 2004.

207

Bibliography

[26] Eric Bodden. J-LO-A tool for runtime-checking temporal assertions. In AOSD’08:

Proceedings of the 7th international conference on Aspect-oriented software devel-

opment, pages 36–47. ACM, 2008.

[27] Eric Bodden. MOPBox: A Library Approach to Runtime VeriVcation - (Tool Demon-

stration). In Sarfraz Khurshid and Koushik Sen, editors, RV, volume 7186 of Lecture

Notes in Computer Science, pages 365–369. Springer, 2011.

[28] Eric Bodden, Laurie J. Hendren, Patrick Lam, Ondrej Lhoták, and Nomair A. Naeem.

Collaborative Runtime VeriVcation with Tracematches. volume 20, pages 707–723,

2010.

[29] Cristiana Bolchini, Carlo A. Curino, Elisa Quintarelli, Fabio A. Schreiber, and Letizia

Tanca. A data-oriented survey of context models. volume 36, pages 19–26, New York,

NY, USA, December 2007. ACM.

[30] John Brooke. SUS: A quick and dirty usability scale. 1996.

[31] Hee Byun and Keith Cheverst. Utilizing Context History To Provide Dynamic

Adaptations. Applied ArtiVcial Intelligence, 18(6):533–548, 2004.

[32] Zoraida Callejas and Ramón López-Cózar. Implementing modular dialogue sys-

tems: A case of study. In Final Workshop and ITRW on Applied Spoken Language

Interaction in Distributed Environments (ASIDE 2005), Aalborg, Denmark, 2005.

[33] Zoraida Callejas and Ramón López-Cózar. InWuence of contextual information in

emotion annotation for spoken dialogue systems. Speech Communication, 50(5):416–

433, 2008.

[34] Zoraida Callejas and Ramón López-Cózar. Relations between de-facto criteria in

the evaluation of a spoken dialogue system. Speech Communication, 50(8-9):646–665,

2008.

[35] Zoraida Callejas and Ramón López-Cózar. Optimization of Dialog Strategies using

Automatic Dialog Simulation and Statistical Dialog Management Techniques. In

INTERSPEECH. ISCA, 2012.

208

Bibliography

[36] S.K. Card, T.P. Moran, and A. Newell. The psychology of human-computer interac-

tion. CRC, 1983.

[37] Rikk Carey and Gavin Bell. The Annotated VRML 2.0 Reference Manual. Addison-

Wesley Professional, 1997.

[38] Matt Caswell, Vijay Aravamudhan, and Kevin Wilson. Introduction to jfcUnit.

Retrieved August, 4, 2004.

[39] Cátedra SAES Laboratories, University of Murcia, Spain. http://www.catedrasaes.org.

[Online; accessed Jan. 2014].

[40] Tsung-Hsiang Chang, Tom Yeh, and Robert C. Miller. GUI Testing Using Computer

Vision. In Elizabeth D. Mynatt, Don Schoner, Geraldine Fitzpatrick, Scott E. Hudson,

W. Keith Edwards, and Tom Rodden, editors, CHI, pages 1535–1544. ACM, 2010.

[41] Kuan-Ta Chen, Chi-Jui Chang, Chen-Chi Wu, Yu-Chun Chang, and Chin-Laung Lei.

Quadrant of euphoria: a crowdsourcing platform for qoe assessment. IEEE Network,

24(2):28–35, 2010.

[42] Kuan-Ta Chen, Cheng-Chun Tu, and Wei-Cheng Xiao. Oneclick: A framework for

measuring network quality of experience. In INFOCOM, pages 702–710. IEEE, 2009.

[43] Vadim I. Chepegin and Stuart Campbell. NEXOF RA: A Reference Architecture for

the NESSI Open Service Framework. IBIS, 8:53–56, 2009.

[44] Tanzeem Choudhury, Gaetano Borriello, Sunny Consolvo, Dirk Haehnel, Beverly Har-

rison, Bruce Hemingway, JeUrey Hightower, Predrag Klasnja, Karl Koscher, Anthony

LaMarca, James A. Landay, Louis LeGrand, Jonathan Lester, Ali Rahimi, Adam Rea,

and Danny Wyatt. The Mobile Sensing Platform: An Embedded Activity Recognition

System. IEEE Pervasive Computing, 7(2):32–41, 2008.

[45] Philip R. Cohen and David R. McGee. Tangible multimodal interfaces for safety-

critical applications. Commun. ACM, 47(1):41–46, 2004.

[46] Christian Colombo. Runtime VeriVcation and Compensations. PhD thesis, PhD

thesis, Dept. of Computer Science, University of Malta, 2012.

209

http://www.catedrasaes.org

Bibliography

[47] Adrian M. Colyer and Andy Clement. Aspect-oriented programming with AspectJ.

IBM Systems Journal, 44(2):301–308, 2005.

[48] Sunny Consolvo and Miriam Walker. Using the experience sampling method to

evaluate ubicomp applications. IEEE Pervasive Computing, 2(2):24–31, 2003.

[49] Constantinos K. Coursaris and Dan Kim. A Qualitative Review of Empirical Mobile

Usability Studies. In Guillermo Rodríguez-Abitia and Ignacio Ania B., editors, AMCIS,

page 352. Association for Information Systems, 2006.

[50] Joëlle Coutaz, Laurence Nigay, Daniel Salber, Ann Blandford, Jon May, and Richard M.

Young. Four easy pieces for assessing the usability of multimodal interaction: The

CARE properties. In S. A. Arnesen and D. Gilmore, editors, Proc INTERACT’95 Conf.,

pages 115–120. Chapman & Hall Publ., 1995.

[51] Douglas Crockford. RFC4627: JavaScript Object Notation, 2006.

[52] Laurie E. Damianos, Jill Drury, Tari Fanderclai, Lynette Hirschman, JeU Kurtz, and

Beatrice Oshika. Evaluating multi-party multimodal systems. In Proc. 2nd Int. Conf.

Lang. Resour. Eval., volume 3, pages 1361–1368. MIT Media Laboratory, 2000.

[53] Sarah Diefenbach and Marc Hassenzahl. Handbuch zur Fun-ni Toolbox. manual, Folk-

wang Universität der Künste, 2011. Retrieved at 16.10.2013 from http://fun-ni.org/wp-

content/uploads/Diefenbach+Hassenzahl_2010_HandbuchFun-niToolbox.pdf.

[54] Ergonomics of human-system interaction - Part 110: Dialogue principles (ISO 9241-

110:2006), 2006.

[55] ISO DIS. 9241-210: 2010. ergonomics of human system interaction-part 210: Human-

centred design for interactive systems. International Standardization Organization

(ISO). Switzerland, 2009.

[56] Alan Dix, Janet Finlay, Gregory D. Abowd, and Russell Beale. Human Computer

Interaction. Pearson, Harlow, England, 3 edition, 2003.

[57] Bruno Dumas, Denis Lalanne, and Rolf Ingold. Description languages for multimodal

interaction: a set of guidelines and its illustration with SMUIML. J. Multimodal User

Interfaces, 3:237–247, 2010.

210

Bibliography

[58] Laila Dybkjær, Niels Ole Bernsen, and Wolfgang Minker. Evaluation and usability of

multimodal spoken language dialogue systems. Speech Commun., 43:33 – 54, 2004.

[59] J.W. Eaton. GNU Octave: a high-level interactive language for numerical computa-

tions. Network Theory Limited, 1997.

[60] Eclipse. Acceleo, 2012.

[61] Omar el Ariss, Dianxiang Xu, Santosh Dandey, Bradley Vender, Philip E. McClean,

and Brian M. Slator. A Systematic Capture and Replay Strategy for Testing Complex

GUI Based Java Applications. In Shahram LatiV, editor, ITNG, pages 1038–1043. IEEE

Computer Society, 2010.

[62] Klaus-Peter Engelbrecht, Michael Kruppa, Sebastian Möller, and Michael Quade.

MeMo Workbench for semi-automated usability testing. In Proc. .Interspeech 2008

incor. SST 2008, pages 1662–1665, Brisbane, Australia, 2008. International Symposium

on Computer Architecture.

[63] Yliès Falcone, Jean-Claude Fernandez, and Laurent Mounier. Runtime VeriVcation

of Safety-Progress Properties. In Saddek Bensalem and Doron Peled, editors, RV,

volume 5779 of Lecture Notes in Computer Science, pages 40–59. Springer, 2009.

[64] Michael Feathers and B Lepilleur. Cppunit cookbook, 2002.

[65] Barry Feigenbaum and Michael Squillace. Accessibility validation with RAVEN.

In WoSQ ’06: Proceedings of the 2006 international workshop on Software quality,

pages 27–32, New York, NY, USA, 2006. ACM.

[66] Markus Fiedler, Sebastian Möller, and Peter Reichl. Quality of Experience: From

User Perception to Instrumental Metrics (Dagstuhl Seminar 12181). Dagstuhl Reports,

2(5):1–25, 2012.

[67] Michael Fitzgerald. Learning Ruby - the language that powers rails. O’Reilly, 2007.

[68] James D. Foley and Piyawadee Noi Sukaviriya. History, Results, and Bibliography of

the User Interface Design Environment (UIDE), an Early Model-based System for

User Interface Design and Implementation. In Fabio Paternò, editor, DSV-IS, pages

3–14. Springer, 1994.

211

Bibliography

[69] Jodi Forlizzi and Katja Battarbee. Understanding experience in interactive systems.

In David Benyon, Paul Moody, Dan Gruen, and Irene McAra-McWilliam, editors,

Conference on Designing Interactive Systems, pages 261–268. ACM, 2004.

[70] Norman M. Fraser. Spoken dialogue system evaluation: A Vrst framework for

reporting results. In EUROSPEECH-1997, pages 1907–1910, 1997.

[71] Norman M. Fraser and G.Nigel Gilbert. Simulating speech systems. Comput. Speech

Lang., 5(1):81–99, 1991.

[72] SteUen Göbel, Falk Hartmann, Kay Kadner, and Christoph Pohl. A Device-

Independent Multimodal Mark-up Language. In Christian Hochberger and Rüdiger

Liskowsky, editors, INFORMATIK 2006. Informatik für Menschen, volume 94 of LNI,

pages 170–177. Gesellschaft für Informatik, 2006.

[73] Xin Guang Gong and Klaus-Peter Engelbrecht. The inWuence of user characteristics

on the quality of judgment prediction models for tablet applications. In 10. Berliner

Werkstatt, pages 198–204, October 2013.

[74] Gnu general public license.

[75] Mark Grechanik, Qing Xie, and Chen Fu. Maintaining and evolving GUI-directed

test scripts. In ICSE, pages 408–418. IEEE, 2009.

[76] H. Paul Grice. Logic and conversation. Syntax Semantics, 3:41–58, 1975.

[77] J. Gulliksen, B. Göransson, I. Boivie, J. Persson, S. Blomkvist, and Å. Cajander. Key

Principles for User-Centered Design. Springer, Dordrecht, Niederlande, 2005.

[78] P. Gulur, S.W. Rodi, T.A. Washington, J.P. Cravero, G.J. Fanciullo, G.J. McHugo, and

J.C. Baird. Computer Face Scale for measuring pediatric pain and mood. The Journal

of Pain, 10(2):173–179, 2009.

[79] Sylvain Hallé, TevVk Bultan, Graham Hughes, Muath Alkhalaf, and Roger Villemaire.

Runtime VeriVcation of Web Service Interface Contracts. volume 43, pages 59–66,

2010.

212

Bibliography

[80] H. Rex Hartson, José C. Castillo, John T. Kelso, and Wayne C. Neale. Remote

Evaluation: The Network as an Extension of the Usability Laboratory. In Bonnie A.

Nardi, Gerrit C. van der Veer, and Michael J. Tauber, editors, CHI, pages 228–235.

ACM, 1996.

[81] R.A. Hassad. Faculty attitude toward technology-assisted instruction for introductory

statistics in the context of educational reform. In IASE 2012. Technology in Statistics

Education: Virtualities and Realities, Cebu City, The Philippines, 2012.

[82] Marc Hassenzahl. The EUect of Perceived Hedonic Quality on Product Appealingness.

International Journal of Human-Computer Interaction, 13(4):481–499, 2001.

[83] Marc Hassenzahl, Michael Burmester, and Franz Koller. AttrakdiU: Ein fragebogen zur

messung wahrgenommener hedonischer und pragmatischer qualität. (a questionnaire

for measuring perceived hedonic and pragmatic quality). In Gerd Szwillus and Jürgen

Ziegler, editors, Mensch & Computer, pages 187–196. Teubner, 2003.

[84] Marc Hassenzahl and Andrew Monk. The Inference of Perceived Usability From

Beauty. International Journal of Human-Computer Interaction, 25(3):235–260, 2010.

[85] Jane HuUman Hayes and JeU OUutt. Input validation analysis and testing. Empirical

Software Engineering, 11(4):493–522, 2006.

[86] Karen Henricksen, Jadwiga Indulska, and Andry Rakotonirainy. Modeling Context

Information in Pervasive Computing Systems. In Friedemann Mattern and Mah-

moud Naghshineh, editors, Pervasive Computing, volume 2414 of Lecture Notes in

Computer Science, pages 79–117. Springer Berlin / Heidelberg, 2002. 10.1007/3-540-

45866-2_14.

[87] Kate S. Hone and Robert Graham. Towards a tool for the Subjective Assessment of

Speech System Interfaces (SASSI). Natural Language Engineering, 6(3&4):287–303,

2000.

[88] Jong-yi Hong, Eui-ho Suh, and Sung-Jin Kim. Context-aware systems: A literature

review and classiVcation. Expert Systems with Applications, 36(4):8509–8522, 2009.

213

Bibliography

[89] Shi-Jinn Horng, Ming-Yang Su, and Ja-Ga Tsai. A Dynamic Backdoor Detection

System Based on Dynamic Link Libraries. International Journal of Business and

Systems Research, 2(3):244–257, 2008.

[90] T. Husted and V. Massol. JUnit in Action. Manning Publications, 2004.

[91] Selim Ickin, Katarzyna Wac, Markus Fiedler, Lucjan Janowski, Jin-Hyuk Hong, and

Anind K. Dey. Factors inWuencing quality of experience of commonly used mobile

applications. IEEE Communications Magazine, 50(4):48–56, 2012.

[92] IEEE. IEEE Standard Glossary of Software Engineering Terminology. IEEE Std

610.12-1990, December 1990.

[93] IEEE. IEEE-STD-610 ANSI/IEEE Std 610.12-1990. IEEE Standard Glossary of Software

Engineering Terminology. IEEE, February 1991.

[94] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes. Lua 5.1

Reference Manual. Lua.org, 2006.

[95] Institute of Electrical and Electronics Engineers. IEEE 1012-2004 - IEEE Standard for

Software VeriVcation and Validation. pages 0–110. IEEE, IEEE, June 2005. Revision

of IEEE Std 1012-1998.

[96] Zakwan Jaroucheh, Xiaodong Liu, and Sally Smith. Recognize contextual situation

in pervasive environments using process mining techniques. J. Ambient Intelligence

and Humanized Computing, 2(1):53–69, 2011.

[97] Dongyun Jin, Patrick O’Neil Meredith, Choonghwan Lee, and Grigore Rosu. Java-

MOP: EXcient parametric runtime monitoring framework. In Martin Glinz, Gail C.

Murphy, and Mauro Pezzè, editors, ICSE, pages 1427–1430. IEEE, 2012.

[98] Peter Johnson, Stephanie Wilson, Panos Markopoulos, and James Pycock. ADEPT:

Advanced Design Environment for Prototyping with Task Models. In Stacey Ash-

lund, Kevin Mullet, Austin Henderson, Erik Hollnagel, and Ted N. White, editors,

INTERCHI, page 56. ACM, 1993.

214

Bibliography

[99] Michael Johnston. EMMA: Extensible MultiModal Annotation markup language.

W3C recommendation, W3C, February 2009. http://www.w3.org/TR/2009/REC-

emma-20090210/.

[100] Jonathan Turner and Jason Turner. ChaiScript: Easy to use scripting for C++. http:

//www.chaiscript.com/, 2012. [Online; accessed May. 2014].

[101] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. ATL: A model

transformation tool. Science of Computer Programming, 72(1-2):31–39, June 2008.

[102] D. Kahneman, E. Diener, and N. Schwarz. Well-being: The foundations of hedonic

psychology. Russell Sage Foundation Publications, 2003.

[103] J. Wolfgang Kaltz, Jürgen Ziegler, and SteUen Lohmann. Context-aware Web Engi-

neering: Modeling and Applications. Revue d’Intelligence ArtiVcielle, 19(3):439–458,

2005.

[104] Marcel R. Karam, Sergiu M. Dascalu, and Rami H. Hazimé. Challenges and Oppor-

tunities for Improving Code-Based Testing of Graphical User Interfaces. Journal of

Computational Methods in Sciences and Engineering, 6(5-6):379–388, 2006.

[105] Orlando Karam and Richard Halstead-Nussloch. Introducton to Android develop-

ment. J. Comput. Sci. Coll., 28(2):224–224, December 2012.

[106] Gregor Kiczales and Erik Hilsdale. Aspect-oriented programming. In ESEC / SIGSOFT

FSE, page 313, 2001.

[107] Moonjoo Kim, Insup Lee, Usa Sammapun, Jangwoo Shin, and Oleg Sokolsky. Moni-

toring, Checking, and Steering of Real-Time Systems. Electr. Notes Theor. Comput.

Sci., 70(4):95–111, 2002.

[108] Moonjoo Kim, Mahesh Viswanathan, Sampath Kannan, Insup Lee, and Oleg Sokolsky.

Java-MaC: A Run-Time Assurance Approach for Java Programs. Formal Methods in

System Design, 24(2):129–155, 2004.

[109] J. Kirakowski and M. Corbett. SUMI: The software usability measurement inventory.

British journal of educational technology, 24(3):210–212, 1993.

215

http://www.chaiscript.com/
http://www.chaiscript.com/

Bibliography

[110] Michael A. Kittel and GeoUrey T. LeBlond. ASP.NET cookbook - the ultimate

ASP.NET code sourcebook: covers ASP.NET 1.1. O’Reilly, 2004.

[111] Dierk König. JavaFX (Second edition). Java Magazin, (2):32–38, 2012.

[112] Hannu Korhonen, Juha Arrasvuori, and Kaisa Väänänen-Vainio-Mattila. Analysing

user experience of personal mobile products through contextual factors. In Marios C.

Angelides, Lambros Lambrinos, Michael Rohs, and Enrico Rukzio, editors, MUM,

page 11. ACM, 2010.

[113] Alfred Kranstedt, Stefan Kopp, and Ipke Wachsmuth. MURML: A multimodal utter-

ance representation markup language for conversational agents. In Proc. AAMAS02

Workshop Embodied Conversat. Agents - let’s specify and evaluate them, 2002.

[114] Christine Kühnel, Benjamin Weiss, and Sebastian Möller. Parameters Describing

Multimodal Interaction - DeVnitions and Three Usage Scenarios. In Takao Kobayashi,

Keikichi Hirose, and Satoshi Nakamura, editors, Proceedings of the 11th Annual

Conference of the ISCA (Interspeech 2010), pages 2014–2017, Makuhari, Japan, 2010.

ISCA.

[115] Viktor Kuncak. Modular Data Structure VeriVcation. PhD thesis, 2007.

[116] Fenareti Lampathaki, Yannis Charalabidis, Spyros Passas, David Osimo, Melanie

Bicking, Maria Wimmer, and Dimitris Askounis. DeVning a Taxonomy for Research

Areas on ICT for Governance and Policy Modelling. In Maria Wimmer, Jean-Loup

Chappelet, Marijn Janssen, and Hans Jochen Scholl, editors, EGOV, volume 6228 of

Lecture Notes in Computer Science, pages 61–72. Springer, 2010.

[117] P Lang. The cognitive Psychophysiology of emotion: anxiety and the anxiety disor-

ders. 1985.

[118] James A. Larson, David Raggett, and T. V. Raman. W3C multimodal interaction

framework. W3C note, W3C, May 2003. http://www.w3.org/TR/2003/NOTE-mmi-

framework-20030506/.

216

Bibliography

[119] Gary T. Leavens, Yoonsik Cheon, Curtis Clifton, Clyde Ruby, and David R. Cok.

How the design of JML accommodates both runtime assertion checking and formal

veriVcation. Sci. Comput. Program., 55(1-3):185–208, 2005.

[120] GeoUrey Leech and Andrew Wilson. EAGLES. recommendations for the morphosyn-

tactic annotation of corpora. http://www.ilc.cnr.it/EAGLES96/annotate/annotate.

html, 1996.

[121] Saija Lemmelä, Akos Vetek, Kaj Mäkelä, and Dari TrendaVlov. Designing and evalu-

ating multimodal interaction for mobile contexts. In Vassilios Digalakis, Alexandros

Potamianos, Matthew Turk, Roberto Pieraccini, and Yuri Ivanov, editors, Proc. 10th

Int. Conf. Multimodal Interfaces, pages 265–272, New York, NY, USA, 2008. ACM.

[122] David Leon, Andy Podgurski, and Lee J. White. Multivariate visualization in

observation-based testing. In Carlo Ghezzi, Mehdi Jazayeri, and Alexander L. Wolf,

editors, ICSE, pages 116–125. ACM, 2000.

[123] Jay Ligatti, Lujo Bauer, and David Walker. Enforcing Non-safety Security Policies

with Program Monitors. In Sabrina De Capitani di Vimercati, Paul F. Syverson,

and Dieter Gollmann, editors, ESORICS, volume 3679 of Lecture Notes in Computer

Science, pages 355–373. Springer, 2005.

[124] James Lin and James A. Landay. Employing patterns and layers for early-stage design

and prototyping of cross-device user interfaces. In Mary Czerwinski, Arnold M. Lund,

and Desney S. Tan, editors, CHI, pages 1313–1322. ACM, 2008.

[125] Ramón López-Cózar and Zoraida Callejas. Multimodal dialogue for ambient intel-

ligence and smart environments. In Handbook of ambient intelligence and smart

environments, pages 559–579. Springer, 2010.

[126] Ramón López-Cózar Delgado and Masahiro Araki. Spoken, Multilingual and Mul-

timodal Dialogue Systems: Development and Assessment. Wiley, Chichester, UK,

2005.

[127] Sascha Mahlke and Manfred Thüring. Studying antecedents of emotional experiences

in interactive contexts. In Computer Human Interaction, pages 915–918, 2007.

217

http://www.ilc.cnr.it/EAGLES96/annotate/annotate.html
http://www.ilc.cnr.it/EAGLES96/annotate/annotate.html

Bibliography

[128] Ashok Malhotra and Paul V. Biron. XML Schema Part 2: Datatypes Second Edi-

tion. W3C recommendation, W3C, October 2004. http://www.w3.org/TR/2004/REC-

xmlschema-2-20041028/.

[129] Marco Manca and Fabio Paternó. Supporting multimodality in service-oriented

model-based development environments. In Regina Bernhaupt, Peter Forbrig, Jan

Gulliksen, and Marta Lárusdóttir, editors, HCSE, volume 6409 of LNCS, pages 135–148.

Springer, 2010.

[130] Tony Manninen. Rich interaction in the context of networked virtual environments—

Experiences gained from the multi-player games Domain. In People and Computers

XV—Interaction without Frontiers, pages 383–398. Springer, 2001.

[131] EvanMartin, Suranjana Basu, and Tao Xie. Automated Testing and Response Analysis

of Web Services. In ICWS, pages 647–654. IEEE Computer Society, 2007.

[132] Jean-Claude Martin and Michael Kipp. Annotating and Measuring Multimodal Be-

haviour - Tycoon Metrics in the Anvil Tool. In LREC. European Language Resources

Association, 2002.

[133] Pedro Luis Mateo Navarro. The Open HMI Tester. http://www.catedrasaes.org/wiki/

OHT, 2011. [Online; accessed Jan. 2014].

[134] Pedro Luis Mateo Navarro. Android HCI Extractor. http://code.google.com/p/

android-hci-extractor, 2012. [Online; accessed Jan. 2014].

[135] Pedro Luis Mateo Navarro. CARIM: A Context-aware Ratings Interaction Model for

QoE analysis. http://www.catedrasaes.org/wiki/Carim, 2014. [Online; accessed Jan.

2014].

[136] Pedro Luis Mateo Navarro. CARIM metamodel implementation. https://github.com/

pedromateo/carim, 2014. [Online; accessed Jan. 2014].

[137] Pedro Luis Mateo Navarro and Stefan Hillmann. Model-based Measurement of

Human-Computer Interaction in Mobile Multimodal Environments. In Proceedings

of the 7th Nordic Conference on Human-Computer Interaction NordiCHI 2012. ACM,

2012.

218

http://www.catedrasaes.org/wiki/OHT
http://www.catedrasaes.org/wiki/OHT
http://code.google.com/p/android-hci-extractor
http://code.google.com/p/android-hci-extractor
http://www.catedrasaes.org/wiki/Carim
https://github.com/pedromateo/carim
https://github.com/pedromateo/carim

Bibliography

[138] Pedro Luis Mateo Navarro and Stefan Hillmann. PALADIN metamodel implementa-

tion. https://github.com/pedromateo/paladin, 2012. [Online; accessed Jan. 2014].

[139] Pedro Luis Mateo Navarro and Stefan Hillmann. PALADIN: a Run-time Model for

Automatic Evaluation of Multimodal Interfaces. http://www.catedrasaes.org/wiki/

MIM, 2013. [Online; accessed Jan. 2014].

[140] Pedro Luis Mateo Navarro and Francisco J. López. S-DAVER: Script-based Data

VeriVcation Framework. http://www.catedrasaes.org/wiki/GuiVeriVcation, 2014.

[Online; accessed Jan. 2014].

[141] Pedro Luis Mateo Navarro, Gregorio Martínez Pérez, and Diego Sevilla Ruiz. Towards

Software Quality and User Satisfaction through User Interfaces. In ICST, pages 415–

418. IEEE Computer Society, 2011.

[142] Pedro Luis Mateo Navarro, Gregorio Martínez Pérez, and Diego Sevilla Ruiz. A

Context-aware Interaction Model for the Analysis of Users QoE in Mobile Environ-

ments. International Journal of Human-Computer Interaction, Taylor & Francis, in

press., 2014.

[143] Pedro Luis Mateo Navarro, Diego Sevilla Ruiz, and Gregorio Martínez Pérez. Apli-

cación de Open HMI Tester como framework open-source para herramientas de

pruebas de software. REICIS: Revista Española de Innovación, Calidad e Ingeniería

del Software, 5(4), December 2009.

[144] Pedro Luis Mateo Navarro, Diego Sevilla Ruiz, and Gregorio Martínez Pérez. Auto-

mated GUI Testing Validation Guided by Annotated Use Cases. In Stefan Fischer,

Erik Maehle, and Rüdiger Reischuk, editors, GI Jahrestagung, volume 154 of LNI,

pages 2796–2804. GI, 2009.

[145] Pedro Luis Mateo Navarro, Diego Sevilla Ruiz, and Gregorio Martínez Pérez. Open

HMI Tester: un Framework Open-source para Herramientas de Pruebas de Software.

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos,

3(4), 2009.

219

https://github.com/pedromateo/paladin
http://www.catedrasaes.org/wiki/MIM
http://www.catedrasaes.org/wiki/MIM
http://www.catedrasaes.org/wiki/GuiVerification

Bibliography

[146] Pedro Luis Mateo Navarro, Diego Sevilla Ruiz, and Gregorio Martínez Pérez. A

Proposal for Automatic Testing of GUIs Based on Annotated Use Cases. Adv.

Software Engineering, Special Issue on Software Test Automation, 2010.

[147] Pedro Luis Mateo Navarro, Diego Sevilla Ruiz, and Gregorio Martínez Pérez. Open

HMI Tester: An Open and Cross-Platform Architecture for GUI Testing and CertiVca-

tion. International Journal of Computer Systems Science and Engineering (IJCSSE),

Special Issue on Open Source CertiVcation, 25(4):283–296, July 2010.

[148] Pedro Luis Mateo Navarro, Diego Sevilla Ruiz, and Gregorio Martínez Pérez. VeriV-

cación de Datos en la GUI como un Aspecto Separado de las Aplicaciones. Actas de

los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, 2010.

[149] Pedro Luis Mateo Navarro, Diego Sevilla Ruiz, and Gregorio Martínez Pérez. A

Context-aware Model for the Analysis of User Interaction and QoE in Mobile En-

vironments. In CENTRIC 2012, The Fifth International Conference on Advances in

Human-oriented and Personalized Mechanisms, Technologies, and Services. Lisbon,

Portugal, pages 124–127, 2012.

[150] Pedro Luis Mateo Navarro, Diego Sevilla Ruiz, and Gregorio Martínez Pérez. A

Context-aware Model for QoE Analysis in Mobile Environments. In XIV Interna-

tional Congress on Human-Computer Interaction, Madrid (Spain), 2013.

[151] Mateo Navarro, Pedro Luis. OpenHMI-Tester Prototype. http://sourceforge.net/

projects/openhmitester, 2009. [Online; accessed Jan. 2014].

[152] Mateo Navarro, Pedro Luis and López, Francisco J. S-DAVER: Script-based Data

VeriVcation for Qt GUIs. http://www.catedrasaes.org/wiki/GuiVeriVcation, 2014.

[Online; accessed Jan. 2014].

[153] Atif Memon. GUI Testing: Pitfalls and Process. IEEE Computer, 35(8):87–88, 2002.

[154] Atif Memon. An event-Wow model of GUI-based applications for testing. Software

Testing VeriVcation and Reliability, 17(3):137–157, 2007.

220

http://sourceforge.net/projects/openhmitester
http://sourceforge.net/projects/openhmitester
http://www.catedrasaes.org/wiki/GuiVerification

Bibliography

[155] Atif Memon, Ishan Banerjee, and Adithya Nagarajan. GUI Ripping: Reverse Engi-

neering of Graphical User Interfaces for Testing. In Arie van Deursen, Eleni Stroulia,

and Margaret-Anne D. Storey, editors,WCRE, pages 260–269. IEEE Computer Society,

2003.

[156] Atif M. Memon. A Comprehensive Framework for Testing Graphical User Interfaces.

PhD thesis, Department of Computer Science, University of Maryland, 2001.

[157] Atif M. Memon, Ishan Banerjee, Nada Hashmi, and Adithya Nagarajan. DART: A

Framework for Regression Testing "Nightly/daily Builds" of GUI Applications. In

ICSM, pages 410–419. IEEE Computer Society, 2003.

[158] Atif M. Memon, Mary Lou SoUa, and Martha E. Pollack. Coverage criteria for GUI

testing. In ESEC / SIGSOFT FSE, pages 256–267, 2001.

[159] Atif M. Memon and Qing Xie. Studying the fault-detection eUectiveness of GUI test

cases for rapidly evolving software. IEEE Trans. Software Eng, 31(10):884–896, 2005.

[160] Patrick O’Neil Meredith, Dongyun Jin, Dennis GriXth, Feng Chen, and Grigore

Roşu. An Overview of the MOP Runtime VeriVcation Framework. volume 14, pages

249–289. Springer, 2012. http://dx.doi.org/10.1007/s10009-011-0198-6.

[161] Jan Meskens, Jo Vermeulen, Kris Luyten, and Karin Coninx. Gummy for multi-

platform user interface designs: shape multiply Vx use me. In Proceedings of the

working conference on Advanced visual interfaces, AVI ’08, pages 233–240, New York,

NY, USA, 2008. ACM.

[162] Bertrand Meyer. Applying design by contract. IEEE Computer, 25:40–51, 1992.

[163] M. Minge. Dynamics of user experience. In Positionspapier im Workshop" Research

Goals and Strategies for Studying User Experience and Emotion", NordiCHI, Lund,

Schweden, 2008.

[164] Chen Mingsong, Qiu Xiaokang, and Li Xuandong. Automatic test case generation

for UML activity diagrams JAVA. In AST ’06: Proceedings of the 2006 international

workshop on Automation of software test, pages 2–8, New York, NY, USA, 2006.

ACM.

221

Bibliography

[165] Karan Mitra, Arkady B. Zaslavsky, and Christer Ahlund. A probabilistic context-

aware approach for quality of experience measurement in pervasive systems. In

William C. Chu, W. Eric Wong, Mathew J. Palakal, and Chih-Cheng Hung, editors,

SAC, pages 419–424. ACM, 2011.

[166] Sebastian Möller. Parameters describing the interaction with spoken dialogue systems,

October 2005. Based on ITU-T Contr. COM 12-17 (2009).

[167] Sebastian Möller. Quality of Telephone-Based Spoken Dialogue Systems. Springer,

New York, United States, 2005.

[168] Sebastian Möller. Parameters Describing the Interaction with Multimodal Dialogue

Systems. ITU-T Recommendation Supplement 25 to P-Series Rec., International

Telecommunication Union, Geneva, Switzerland, January 2011.

[169] Sebastian Möller, Klaus-Peter Engelbrecht, Christine Kühnel, Ina Wechsung, and

Benjamin Weiss. A Taxonomy of Quality of Service and Quality of Experience

of Multimodal Human-Machine Interaction. In First International Workshop on

Quality of Multimedia Experience (QoMEX’09), pages 7–12, July 2009.

[170] Glenford J. Myers, Corey Sandler, and Tom Badgett. The art of software testing. John

Wiley & Sons, Hoboken, N.J., 2012.

[171] Ravikanth Nasika and Partha Dasgupta. Transparent Migration of Distributed

Communicating Processes. In 13th ISCA International Conference on Parallel and

Distributed Computing Systems (PDCS), Las Vegas, Nevada, USA, November 2000.

[172] A.B. Naumann and I. Wechsung. Developing usability methods for multimodal

systems: The use of subjective and objective measures. In International Workshop on

Meaningful Measures: Valid Useful User Experience Measurement (VUUM), page 8.

Citeseer, 2008.

[173] Laurence Nigay and Joëlle Coutaz. A design space for multimodal systems: Concur-

rent processing and data fusion. In Stacey Ashlund, Kevin Mullet, Austin Henderson,

Erik Hollnagel, and Ted N. White, editors, Proc. INTERACT ’93 and CHI ’93 conf.

Human factors in comput. syst., pages 172–178, New York, NY, USA, 1993. ACM.

222

Bibliography

[174] Nokia Corporation. Qt : cross-platform application and UI framework, 2012.

[175] M. Ogertschnig and H. van der Heijden. A short-form measure of attitude towards

using a mobile information service. In Proceedings of the 17th Bled Electronic Com-

merce Conference, Bled, 2004.

[176] Héctor Olmedo-Rodríguez, David Escudero-Mancebo, and Valentín Cardeñoso Payo.

Evaluation proposal of a framework for the integration of multimodal interaction in

3D worlds. In Proc. 13th Int. Conf. Human-Comput. Interact. Part II: Novel Interact.

Methods Techniques, pages 84–92, Berlin, Heidelberg, 2009. Springer-Verlag.

[177] OMG. UniVed Modeling Language: Superstructure, version 2.1.1. Object Modeling

Group, February 2007.

[178] Alessandro Orso and Bryan Kennedy. Selective capture and replay of program

executions. ACM SIGSOFT Software Engineering Notes, 30(4):1–7, 2005.

[179] Matt Oshry, Paolo Baggia, Kenneth Rehor, Milan Young, Rahul Akolkar, Xu Yang, Jim

Barnett, Rafah Hosn, RJ Auburn, Jerry Carter, Scott McGlashan, Michael Bodell, and

Daniel C. Burnett. Voice extensible markup language (VoiceXML) 3.0. W3C working

draft, W3C, December 2009. http://www.w3.org/TR/2009/WD-voicexml30-20091203/.

[180] Sharon Oviatt. Ten myths of multimodal interaction. Commun. ACM, 42:74–81,

November 1999.

[181] Sharon Oviatt. Advances in robust multimodal interface design. IEEE Comput.

Graph. Appl., 23:62–68, September 2003.

[182] Ana C. R. Paiva, João C. P. Faria, and Raul F. A. M. Vidal. Towards the Integration

of Visual and Formal Models for GUI Testing. Electr. Notes Theor. Comput. Sci.,

190(2):99–111, 2007.

[183] Philippe A. Palanque and Amelie Schyn. A model-based approach for engineering

multimodal interactive systems. In Matthias Rauterberg, Marino Menozzi, and Janet

Wesson, editors, INTERACT’03, pages 543–550. IOS Press, 2003.

223

Bibliography

[184] Fabio Paternò, Carmen Santoro, and Lucio D. Spano. MARIA: A universal, declarative,

multiple abstraction-level language for service-oriented applications in ubiquitous

environments. ACM Trans. Comput.-Hum. Interact., 16(4):1–30, Nov 2009.

[185] Manolis Perakakis and Alexandros Potamianos. The eUect of input mode on in-

activity and interaction times of multimodal systems. In Dominic W. Massaro,

Kazuya Takeda, Deb Roy, and Alexandros Potamianos, editors, Proc. 9th Int. Conf.

Multimodal Interfaces (ICMI 2007), pages 102–109. ACM, 2007.

[186] Manolis Perakakis and Alexandros Potamianos. Multimodal system evaluation

using modality eVciency and synergy metrics. In Proc. 10th Int. Conf. Multimodal

Interfaces ((ICMI’08), pages 9–16. ACM, October 2008.

[187] Shelley Powers. JavaScript Cookbook - Programming the Web. O’Reilly, 2010.

[188] Python Software Foundation. The Jython Project. http://www.jython.org/, 2014.

[Online; accessed May. 2014].

[189] C.M. Ray, C. Sormunen, and T.M. Harris. Men’s and women’s attitudes toward

computer technology: A comparison. OXce Systems Research Journal, 17:1–8, 1999.

[190] Revett Kenneth, Jahankhani Hamid, Magalhães SérgioTenreiro, and Santos Hen-

riqueM.D. A Survey of User Authentication Based on Mouse Dynamics, volume 12

of Communications in Computer and Information Science, pages 210–219. Springer

Berlin Heidelberg, 2008.

[191] Martin Rinard. From Runtime VeriVcation to Runtime Intervention and Adaptation.

In Shaz Qadeer and Serdar Tasiran, editors, Runtime VeriVcation, volume 7687 of

Lecture Notes in Computer Science, pages 276–276. Springer Berlin Heidelberg, 2013.

[192] Michiel Ronsse and Koenraad De Bosschere. RecPlay: A Fully Integrated Practical

Record/Replay System. ACM Transactions on Computer Systems, 17(2):133–152, 1999.

[193] V. Roto. Web browsing on mobile phones-characteristics of user experience. Helsinki

University of Technology, 2006.

224

http://www.jython.org/

Bibliography

[194] C. Ryan and A. Gonsalves. The eUect of context and application type on mobile

usability: an empirical study. In Proceedings of the Twenty-eighth Australasian

conference on Computer Science-Volume 38, page 115–124, 2005.

[195] Jost Schatzmann, Kallirroi Georgila, and Steve Young. Quantitative evaluation of user

simulation techniques for spokendialogue systems. In Laila Dybkjær and Wolfgang

Minker, editors, Proc. 6th SIGdial Workshop Discourse Dialogue, pages 45–54. Special

Interest Group on Discourse and Dialogue (SIGdial), Associtation for Computational

Linguistics (ACL), 2005.

[196] Jost Schatzmann and Steve Young. The hidden agenda user simulation model. IEEE

Trans. Audio Speech Lang. Process., 17(4):733–747, 2009.

[197] Stefan Schmidt, Klaus-Peter Engelbrecht, Matthias Schulz, Martin Meister, Julian

Stubbe, Mandy Töppel, and Sebastian Möller. IdentiVcation of interactivity sequences

in interactions with spoken dialog systems. In Proc 3rd Int. Workshop Percept. Qual.

Syst., pages 109–114. Chair of Communication Acoustics TU Dresden, 2010.

[198] Fred B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst. Secur., 3(1):30–

50, 2000.

[199] Katrin Schulze and Heidi Krömker. A framework to measure user experience of

interactive online products. In Proceedings of the 7th International Conference on

Methods and Techniques in Behavioral Research, page 14. ACM, 2010.

[200] Marcos Serrano and Laurence Nigay. AWizard of Oz Component-Based Approach for

Rapidly Prototyping and Testing Input Multimodal Interfaces. Journal on Multimodal

User Interfaces, 3(3):215–225, 2010.

[201] Marcos Serrano, Laurence Nigay, Rachel Demumieux, Jérôme Descos, and Patrick

Losquin. Multimodal interaction on mobile phones: Development and evaluation

using ACICARE. In Marko Nieminen and Mika Röykkee, editors, MobileHCI ’06:

Proc. 8th Conf. Human-comput. interact. mob. devices serv., pages 129–136, New

York, NY, USA, 2006. ACM.

[202] Sociedad Anónima de Electrónica Submarina. http://www.electronica-submarina.

com. [Online; accessed Jun. 2014].

225

http://www.electronica-submarina.com
http://www.electronica-submarina.com

Bibliography

[203] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Merks Ed. EMF. Eclipse

Modeling Framwork Second Edition. Addison-Wesley, Upper Saddle River, NJ, 2

edition, 2009.

[204] John Steven, Pravir Chandra, Bob Fleck, and Andy Podgurski. jrapture: A capture/re-

play tool for observation-based testing. In ISSTA, pages 158–167, 2000.

[205] Janienke Sturm, Ilse Bakx, Bert Cranen, Jacques Terken, and Fusi Wang. Usability

evaluation of a dutch multimodal system for train timetable information. In Man-

ual Gonzales Rodriguez and Carmen Suarez Araujo, editors, Proc. LREC 2002. 3rd

Int. Conf. Lang. Resour. Eval., pages 255–261, 2002.

[206] Telekom Innovation Laboratories, Berlin, Germany. http://www.laboratories.telekom.

com/. [Online; accessed May. 2014].

[207] The Eclipse Foundation. Eclipse modeling framework.

http://www.eclipse.org/emf/, 2007.

[208] The GTK+ Team. The GIMP Toolkit (GTK), version 2.x. http://www.gtk.org, 2012.

[Online; accessed Jan. 2014].

[209] Henry S. Thompson, Murray Maloney, David Beech, and Noah Mendelsohn. XML

schema part 1: Structures second edition. W3C recommendation, W3C, October 2004.

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/.

[210] B. Thurnher, T. Grill, K. Hummel, and R. Weigl. Exploiting context-awareness for

usability evaluation in mobile HCI. Proceedings of Usability Day IV. Pabst Science

Publisher, 9:109–113, 2006.

[211] Trolltech Inc. Trolltech Qt 4.x Demo Applications. http://doc.trolltech.com/4.0/, 2012.

[Online; accessed Jan. 2014].

[212] Gerrit C. Van Der Veer, Bert F. Lenting, and Bas A. J. Bergevoet. GTA: Groupware

Task Analysis - Modeling Complexity. Acta Psychologica, 91:297–322, 1996.

[213] Tim van Kasteren, Gwenn Englebienne, and Ben J. A. Kröse. An activity monitoring

system for elderly care using generative and discriminative models. Personal and

Ubiquitous Computing, 14(6):489–498, 2010.

226

http://www.laboratories.telekom.com/
http://www.laboratories.telekom.com/
http://www.gtk.org
http://doc.trolltech.com/4.0/

Bibliography

[214] Davy Vanacken, Joan De Boeck, Chris Raymaekers, and Karin Coninx. NIMMIT: A

notation for modeling multimodal interaction techniques. In José Braz, Joaquim A.

Jorge, Miguel Dias, and Adérito Marcos, editors, GRAPP, pages 224–231. INSTICC -

Institute for Systems and Technologies of Information, Control and Communication,

2006.

[215] Marlon Vieira, Johanne Leduc, Bill Hasling, Rajesh Subramanyan, and Juergen

Kazmeier. Automation of GUI Testing Using a Model-driven Approach. In Hong

Zhu, Joseph R. Horgan, Shing-Chi Cheung, and J. Jenny Li, editors, AST, pages 9–14.

ACM, 2006.

[216] Katarzyna Wac, Selim Ickin, Jin H. Hong, Lucjan Janowski, Markus Fiedler, and

Anind K. Dey. Studying the experience of mobile applications used in diUerent

contexts of daily life. In Proceedings of the Vrst ACM SIGCOMM workshop on

Measurements up the stack, W-MUST ’11, pages 7–12, New York, NY, USA, August

2011. ACM.

[217] Marilyn Walker, Diane Litman, Candace Kamm, and Alicia Abella. PARADISE: A

framework for evaluating spoken dialogue agents. In Proc. 35th Annu. Meet. Assoc.

Comput. Linguist., pages 262–270. ACL 97, July 1997.

[218] Jos Warmer and Anneke Kleppe. The Object Constraint Language: Precise Modeling

with UML. Addison-Wesley, Reading, MA, 1999.

[219] Ina Wechsung, Klaus-Peter Engelbrecht, Anja B. Naumann, Stefan SchaUer, Julia

Seebode, Florian Metze, and Sebastian Möller. Predicting the quality of multimodal

systems based on judgments of single modalities. In INTERSPEECH, pages 1827–1830.

ISCA, 2009.

[220] Ina Wechsung and Anja Naumann. Evaluation methods for multimodal systems:

A comparison of standardized usability questionnaires. In Elisabeth André, Laila

Dybkjaer, Wolfgang Minker, Heiko Neumann, Roberto Pieraccini, and Michael We-

ber, editors, PIT, volume 5078 of Lecture Notes in Computer Science, pages 276–284.

Springer, 2008.

227

Bibliography

[221] Ina Wechsung, Matthias Schulz, Klaus-Peter Engelbrecht, Julia Niemann, and Se-

bastian Möller. All users are (not) equal - the inWuence of user characteristics on

perceived quality, modality choice and performance. In Ramón López-Cózar and

Tetsunori Kobayashi, editors, Proceedings of the Paralinguistic Information and its

Integration in Spoken Dialogue Systems Workshop, pages 175–186. Springer New

York, 2011.

[222] Benjamin Weiss, Sebastian Möller, Ina Wechsung, and Christine Kühnel. Quality of

experiencing multi-modal interaction. In Spoken Dialogue Systems Technology and

Design, pages 213–230. Springer, 2011.

[223] Lee White and Husain Almezen. Generating Test Cases for GUI Responsibilities

Using Complete Interaction Sequences. IEEE Transactions on SMC Associate Editors,

pages 110–123, 2000.

[224] Lee White, Husain Almezen, and Nasser Alzeidi. User-Based Testing of GUI Se-

quences and Their Interactions. IEEE | 12th International Symposium on Software

Reliability Engineering (ISSRE’01), pages 54–65, 2001.

[225] Heli Wigelius and Heli Väätäjä. Dimensions of context aUecting user experience in

mobile work. In Tom Gross, Jan Gulliksen, Paula Kotzé, Lars Oestreicher, Philippe A.

Palanque, Raquel Oliveira Prates, and Marco Winckler, editors, INTERACT (2), vol-

ume 5727 of Lecture Notes in Computer Science, pages 604–617. Springer, 2009.

[226] D. Wong and C. Baker. Pain in children: comparison of assessment scales. IJI, 50:7,

1988.

[227] Wanmin Wu, Md. Ahsan AreVn, Raoul Rivas, Klara Nahrstedt, Renata M. Sheppard,

and Zhenyu Yang. Quality of experience in distributed interactive multimedia

environments: toward a theoretical framework. In Wen Gao, Yong Rui, Alan Hanjalic,

Changsheng Xu, Eckehard G. Steinbach, Abdulmotaleb El-Saddik, and Michelle X.

Zhou, editors, ACM Multimedia, pages 481–490. ACM, 2009.

[228] Qing Xie and Atif M. Memon. Studing the Fault-Detection EUectiveness of GUI Test

Cases for Rapidly Envolving Software. IEEE Computer Society, 2005.

228

Bibliography

[229] Qing Xie and Atif M. Memon. Designing and comparing automated test oracles for

GUI-based software applications. ACM Trans. Softw. Eng. Methodol., 16(1), 2007.

[230] Tom Yeh, Tsung-Hsiang Chang, and Robert C. Miller. Sikuli: using GUI screenshots

for search and automation. In Andrew D. Wilson and François Guimbretière, editors,

UIST, pages 183–192. ACM, 2009.

[231] Xun Yuan and Atif M. Memon. Using GUI Run-Time State as Feedback to Generate

Test Cases. In ICSE, pages 396–405. IEEE Computer Society, 2007.

[232] Karen Zee, Viktor Kuncak, Michael Taylor, and Martin C. Rinard. Runtime Checking

for Program VeriVcation. In Oleg Sokolsky and Serdar Tasiran, editors, RV, volume

4839 of Lecture Notes in Computer Science, pages 202–213. Springer, 2007.

[233] D. Zhang and B. Adipat. Challenges, methodologies, and issues in the usability test-

ing of mobile applications. International Journal of Human-Computer Interaction,

18(3):293–308, 2005.

[234] Yu Zhong, Yunbin Deng, and Anil K Jain. Keystroke dynamics for user authentication.

In CVPR Workshops, pages 117–123. IEEE, 2012.

229

A
List of Acronyms

AHE Android HCI Extractor

ANSI American National Standards Institute

AOP Aspect-oriented Programming

API Application Programming Interface

App Application

ASR Automatic Speech Recognition

ASW Anti-submarine Warfare

ATT Attractiveness

AVM Attribute Malue Matrix

BSD Berkeley Software Distribution

CARIM Context-Aware and Ratings Interaction Model

CLP Constraint Logic Programming

DEB Debian Software Package

DLL Dynamic Link Library

DOM Document Object Model

EMF Eclipse Modeling Framework

EVE Execution and VeriVcation Environment

FOSS Free and Open-Source Software

GNU GNU’s Not Unix

231

A List of Acronyms

GPL GNU General Public License

GPS Global Positioning System

GQL Generic Questionnaire Library

GTK GNU Image Manipulation Program Toolkit

GUI Graphical User Interface

HCI Human-Computer Interaction

HMI Human-Machine Interface

HQ Hedonic quality

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

ISO International Organization for Standardization

ITU International Telecommunication Union

ITU-T ITU Telecommunication Standardization Sector

LAN Local Area Network

LGPL GNU Lesser General Public License

LTL Linear-time Temporal Logic

MMDS Multimodal Dialog Systems

MMI Multimodal Human-Computer Interaction

MPA Maritime Patrol Aircraft

OCL Object Constraint Language

OHT Open HMI Tester

PALADIN Practice-oriented Analysis and Description of Multimodal Interaction

PhD Philosophiae Doctor (Doctor of Philosophy)

PQ Pragmatic Quality

QoE Quality of Experience

QoS Quality of Service

RPM Red Hat Package Manager

RV Runtime VeriVcation

232

S-DAVER Script-based Data VeriVcation

SAES Sociedad Anónima de Electrónica Submarina

SD Standard Deviation

SDK Software Development Kit

SDS Spoken Dialog Systems

SRS Software Requirements SpeciVcation

UML UniVed Modeling Language

UMU University of Murcia

UX User Experience

VS VeriVcation Step

VV Validation and VeriVcation

WoZ Wizard-of-Oz

XML Extensible Markup Language

XSD XML Schema DeVnition

233

