
UNIVERSIDAD DE MURCIA

Techniques for the Discovery of
Temporal Patterns

Técnicas para el Descubrimiento de
Patrones Temporales

D. Antonio Gomariz Peñalver
2014

FACULTAD DE INFORMÁTICA

UNIVERSIDAD DE MURCIA

Departamento de Ingenieŕıa de la Información y las
Comunicaciones

UNIVERSITEIT ANTWERPEN

Departement Wiskunde - Informatica

Ph.D. Thesis

Techniques for the Discovery of
Temporal Patterns

Author

Antonio Gomariz Peñalver

Advisors

Roque Maŕın Morales

Manuel Campos Mart́ınez

Bart Goethals

December 2013

Techniques for the Discovery of Temporal Patterns
Tı́tulo en español: Técnicas para el Descubrimiento de Patrones Temporales
Nederlandse titel: Technieken voor de Ontdekking van Temporele Patronen

The research in this thesis was completely financed by a PhD grant from the Seneca Foundation
(Regional Agency for Science and Technology of the Region de Murcia).

UNIVERSIDAD DE MURCIA

Departamento de Ingenieŕıa de la Información y las
Comunicaciones

UNIVERSITEIT ANTWERPEN

Departement Wiskunde - Informatica

Tesis Doctoral

Técnicas para el Descubrimiento de
Patrones Temporales

Autor

Antonio Gomariz Peñalver

Directores

Roque Maŕın Morales

Manuel Campos Mart́ınez

Bart Goethals

Diciembre 2013

Técnicas para el Descubrimiento de Patrones Temporales
English title: Techniques for the Discovery of Temporal Patterns
Nederlandse titel: Technieken voor de Ontdekking van Temporele Patronen

Este trabajo debe agradecerse a la financiación otorgada por la Fundación Séneca (Agencia de Ciencia
y Tecnoloǵıa de la Región de Murcia) a través de una beca FPI que ha permitido, al autor, la dedicación
exclusiva a la investigación.

Agradecimientos.
Acknowledgements

Si echo la vista atrás, sobre este tiempo que he dedicado a la realización de la tesis,
una extraña mezcla de sentimientos y sensaciones vienen a mi mente. Por encima de
haber pasado por momentos magńıficos o por algunos otros en los que he tenido ganas
de enviarlo todo a “tomar viento fresco”, lo que puedo afirmar, sin lugar a dudas, es que
he sido ayudado por personas extraordinarias. Todas ellas me han animado y empujado
a completar este trabajo.

Entre todas estas personas, me gustaŕıa empezar agradeciendo la labor de mis dos
directores de tesis de la Universidad de Murcia, Roque Maŕın y Manuel Campos. A Roque
tengo que agradecerle todas las molestias que se ha tomado, a lo largo de estos cuatro
años, en mostrarme el mundo de la investigación. A Manolo, directamente, tengo que
darle las gracias por todo: por trabajar conmigo, codo con codo, durante todo este tiempo;
por saber gestionar mis estados de ánimo consiguiendo que afrontara algo positivamente
cuando me venćıa el desánimo; por siempre ofrecerme una buena alternativa cuando algo
empezaba a complicarse; y por involucrarte tanto en mi trabajo diario. Has sido un
enorme apoyo y te aseguro que te estaré por siempre agradecido.

Muchas gracias, también, a José Tomás Palma por darme la oportunidad, junto a
Roque, de iniciarme en el mundo de la investigación. Muchas gracias, igualmente, a Pepe
Juárez por todo su apoyo tanto en mis inicios en el laboratorio como en el plano personal.

No puedo olvidarme tampoco de aquellas personas con las que he tenido el placer
de compartir tant́ısimas horas: mis compañeros de Laboratorio. Gracias a aquellos que
siguen estando: Morales y su sigilo; Eduardo, a pesar de que siga maldiciendo sus malos
chistes; y Latifa, aportando al laboratorio un componente exótico. Gracias, con la misma
intensidad, a aquellos compañeros que estuvieron: la pareja Tamara y Miki, el enigmático
José Salort, el jovenzuelo Rubio y, particularmente, mi querida amiga Bea.

Mención aparte merece mi amiga Ana, la pequeña rubita de la tercera planta, compañera
de fatigas en todo momento. Es dif́ıcil imaginarme esta tesis sin ti, desde su inicio hasta su
final, compartiendo todo tipo de ilusiones, dudas, quejas y lamentos. Te puedo asegurar
que es a ti a quien corresponde el mejor recuerdo de todo este tiempo.

Dank u wel! Bart Goethals, my third advisor, since you make me possible starting a
fantastic collaboration with the University of Antwerp, leading to a Joint PhD. Thank you
very much for your support in the (almost) eight months that I spent with you and for
making my stay easier.

Thanks a lot to the whole ADReM group, composed of great people with whom I have
shared a really good time. Without wanting to forget anybody, I thank Floris, Nikolaj,

Michael, Jilles, Koen Smets, “New” Koen, Álvaro, the sleepy Cheng, the smiling Sandy
and the young and charming Tayena.

In a separate paragraph, three people deserve a special mention: Boris, Emin and
Jeremy. Thanks Boris, for all your help in managing my bureaucracy and for all the good
moments that we spent watching the “Reds”. I still remember some rewarding conversa-
tions that we had during my stays or this last summer in Almeŕıa. Thanks Emin, for all
your help and support in the Lab, and, especially, all the good moments and conversa-
tions that we shared tasting beers after working or during some weekends. Thanks Jeremy
for the great time that we had several nights while we talked about very different topics
while you practised your (Colombian) Spanish. All of you are the kind of people that you
remember and keep as friends for the whole life.

Gracias, también, al señor jefe Randalf, por ser siempre una via de escape a mis sofocos
mientras degustabamos un buen café. Muchas gracias, especialmente, por tu ayuda en la
maquetación de la tesis, y aśı poder aliviar algo mis agujereados bolsillos.

Gracias, much́ısimas gracias, a mis padres, José y Virtudes, por lo pesados que han sido
y su insistencia en que me formara. Ellos son los principales responsables de que hoy pueda
estar agradeciéndoos a todos vuestra ayuda en la realización de esta tesis doctoral. Mamá,
Papá. . . vosotros, desgraciadamente, no tuvisteis la oportunidad de estudiar cuando erais
jóvenes, pero, en algunos aspectos, podŕıais dar lecciones de vida a much́ısima gente.

Gracias a Virtu, mi querida hermana, por su constante apoyo y por creer, ella más
que yo, que esto lo acabaŕıa terminando algún d́ıa.

Finalmente, y como se espera, la persona más importante de todas: Laura, la chica
de mi vida. Muchas gracias por tu apoyo, cariño y entrega. Gracias por aguantar todos
mis altibajos, cambios de humor, y todo tipo de tonteŕıas. Siempre has sido mi mayor
creyente, animándome e iluminándome cuando las cosas las véıa muy negras. Gracias
también, por acompañarme y sacrificar tanto tiempo libre estos últimos años, cosa que
espero poder devolverte con creces en no mucho tiempo.

¡Gracias!

Thanks!

Abstract

One of the problems that information technologies have had to confront in recent years
is the analysis of the huge amount of data that originates during the daily activities of
organisations or people. This analysis may consist of searching for models or patterns
that will assist in understanding the data or behaviour of these organisations or people.
One essential component in this kind of knowledge is the temporal dimension. When time
is included in the patterns, they provide much more information but also become more
complex.

Sequence Data Mining (SDM) is an area in the field of Knowledge Discovery whose
aim is to extract sets of frequent patterns that occur, ordered in time, in a database. SDM
techniques have been used in a wide array of application domains, such as the discovery of
motifs in DNA sequences, the analysis of customer purchase sequences, web click streams,
and so forth.

The patterns obtained in these domains depend on the nature of the data under
analysis and the purpose of the analysis. On the one hand, there are simple patterns that
only contain point events ordered in time. For example, a pattern can model the behavior
of a person who, during the night, wakes up, drinks water, goes to the bathroom, and
then goes back to bed again. On the other hand, much more complex patterns include
interval events with temporal distances between them. For example, a person sleeps for
3 hours, then spends 3 minutes in the kitchen and, after watching TV for 40 minutes,
goes back to sleep for 2 more hours. There is a wide range of patterns between these two
extremes.

This thesis presents a number of contributions to the SDM field. Firstly, we propose
a clear categorisation of patterns and algorithms within SDM. We principally study three
different dimensions: the representation of the patterns, their expressiveness and the
search strategy used to mine patterns. In this categorisation we have found certain gaps
in the state-of-the-art algorithms. Secondly, in order to complete those gaps that have not
yet been explored, we provide five new algorithms that use different representations and
strategies. Finally, we discuss the convenience of using a particular algorithm depending
on the properties of the database and the patterns that we are interested in finding.

Resumen en español

Uno de los problemas a los que las tecnoloǵıas de la información han tenido que en-
frentarse en los últimos años es el análisis de una enorme cantidad de datos originada en
las actividades cotidianas de organizaciones o personas. Este análisis puede consistir en la
búsqueda tanto de modelos como patrones que ayuden en la comprensión de los datos o el
comportamiento de estas organizaciones o personas. Una componente esencial asociada
a este tipo de conocimiento es la dimensión temporal, que cuando es tenida en cuenta en
los patrones, no sólo proporciona mucha más información, sino también los convierte en
más complejos.

La mineŕıa de datos de secuencias (SDM) es un área en el campo de la detección de
conocimiento en bases de datos (KDD) cuyo objetivo es extraer los conjuntos de patrones
frecuentes que se encuentran, ordenados en el tiempo, en una base de datos. Algunas
técnicas de SDM han sido empleadas en una amplia variedad de dominios de aplicación,
tales como el descubrimiento de patrones en secuencias de ADN, el análisis de secuencias
de compras de clientes, número de clics en una web, etcétera.

Los patrones que se obtienen en estos dominios dependen de la naturaleza de los
datos que son objeto de análisis y del propósito de dicho análisis. Por un lado, hay
patrones sencillos que sólo contienen eventos que denotan puntos ordenados en el tiempo.
Por ejemplo, un patrón puede modelar el comportamiento de una persona que, durante la
noche, se despierta, toma agua, va al baño, y luego regresa a la cama. Por otra parte, otros
patrones mucho más complejos incluyen eventos que denotan intervalos con distancias
temporales entre ellos. Por ejemplo, una persona duerme durante 3 horas, seguidamente
pasa 3 minutos en la cocina y, después de ver la televisión durante 40 minutos, vuelve
a dormir durante 2 horas más. Entre estos dos extremos existe una amplia gama de
diferentes patrones.

Esta tesis supone distintas aportaciones al campo de la SDM. En primer lugar, pro-
ponemos una clasificación clara de los patrones y algoritmos dentro de la SDM. Hacemos
un estudio claramente diferenciado en tres distintas dimensiones: representación de los
patrones, su expresividad y la estrategia de búsqueda utilizada para la extracción de
patrones frecuentes. En esta clasificación hemos encontrado algunas lagunas en los al-
goritmos existentes en el estado del arte. En segundo lugar, con el fin de completar las
lagunas que aún no han sido exploradas, ofrecemos cinco nuevos algoritmos que utilizan
diferentes representaciones y estrategias. Finalmente, discutimos la conveniencia de uti-
lizar un algoritmo determinado en función de las propiedades de la base de datos y los
patrones que son objeto de nuestro interés.

Nederlandse samenvatting

Een van de problemen die de informatietechnologie de afgelopen jaren moest confronteren
is de analyse van de enorme hoeveelheid data die ontstaat tijdens de dagelijkse activiteiten
van organisaties of mensen. Deze analyse kan bestaan uit het zoeken naar modellen of
patronen die helpen bij het begrijpen van de gegevens of het gedrag van deze organisaties
of personen. Een essentieel onderdeel van dit soort kennis is de tijdsdimensie. Wanneer
de tijd wordt opgenomen in de patronen, bieden ze veel meer informatie, maar ze worden
ook complexer.

Sequence Data Mining (SDM) is een gebied van Knowledge Discovery waarvan het
doel is om verzamelingen van frequente patronen die zich, in een bepaalde volgorde, in
een database voordoen te vinden. SDM technieken worden gebruikt in een breed scala
van toepassingsgebieden, zoals de ontdekking van motieven in DNA sequenties, de analyse
van klantenaankoop sequenties, web click streams, enzovoort.

De patronen gevonden in deze gebieden zijn afhankelijk van de type van de gegevens
die geanalyseerd en het doel van de analyse. Aan de ene kant zijn er eenvoudige patro-
nen die alleen gebeurtenissen geordend in de tijd bevatten. Bijvoorbeeld, een patroon
kan het gedrag van een persoon die, tijdens de nacht, wakker wordt, water drinkt, naar
de badkamer gaat, en dan weer terug naar bed gaat, modelleren. Anderzijds, veel com-
plexer patronen kunnen gebeurtenissen met temporele afstanden daartussen beschrijven.
Bijvoorbeeld, een persoon slaapt 3 uur lang, verblijft dan 3 minuten in de keuken, en, na
40 minuten lang TV te kijken, gaat terug nog 2 uur lang slapen. Er bestaat een breed
scala aan patronen tussen deze twee uitersten.

Dit proefschrift presenteert een aantal bijdragen aan het SDM veld. Ten eerste beschri-
jven we een duidelijke indeling van patronen en algoritmes binnen SDM. We bestuderen
voornamelijk drie verschillende dimensies: de representatie van de patronen, hun expres-
siviteit, en de zoekstrategie gebruikt om de patronen te mijnen. In deze indeling hebben
we bepaalde hiaten gevonden in de state-of-the-art algoritmen. Ten tweede, om deze
hiaten, die nog niet zijn onderzocht, in te vullen, bieden we vijf nieuwe algoritmen die
verschillende representaties en strategieën gebruiken. Tenslotte bespreken we het gemak
van het gebruik van de voorgestelde algoritmen, afhankelijk van de eigenschappen van de
database en de patronen die we willen vinden.

Contents

1 Introduction 1
1.1 Context and motivation . 1
1.2 Temporal Data Mining . 2
1.3 Objective and sub-objectives . 5
1.4 Structure of the thesis . 7

2 State of the Art 11
2.1 Introduction . 11
2.2 Preliminaries and general notation . 14
2.3 Time Point data . 17

2.3.1 Algorithms for mining qualitative patterns 18
2.3.2 Algorithms for mining quantitative patterns 26
2.3.3 Comparatives . 28
2.3.4 Reduction of patterns . 30

2.4 Time Interval data . 33
2.4.1 Allen’s algebra and pattern representation 35
2.4.2 Algorithms for qualitative interval patterns 38
2.4.3 Algorithms for quantitative interval patterns 44
2.4.4 Comparatives . 45
2.4.5 Reduction of patterns . 45

2.5 Conclusions . 46

3 PaGAPIS and FaSPIP: Two New Fast Algorithms for Mining Points
and Intervals Qualitative Patterns 47
3.1 Additional definitions for problem setting 47
3.2 PaGAPIS. New algorithm for points and intervals based on Pattern-Growth

strategy . 50
3.3 FaSPIP. New algorithm for point and intervals based on Vertical Database

format . 55
3.4 Experimental results . 58
3.5 Discussion. Comparing both algorithms . 62
3.6 Conclusions . 67

4 PaGAPIMS and FaSPIMP: Two New Fast Algorithms for Mining Points
and Intervals Quantitative patterns 69
4.1 Additional definition and description for problem setting 70

i

4.2 PaGAPIMS. New algorithm for points and intervals based on Pattern-
Growth format . 71

4.3 FaSPIMP algorithm. New algorithm for point and intervals based on Ver-
tical Database format . 75

4.4 Optimizations . 79

4.5 Experimental results . 82

4.6 Discussion. Comparing both algorithms . 87

4.7 Conclusions . 91

5 BreadthPIS and DepthPIS: Two New Fast Algorithms for Mining Points
and Intervals Qualitative Patterns 93

5.1 Additional definition and description for problem setting 93

5.2 BreadthPIS: an algorithm for mining point and intervals temporal events
based on breadth-first search . 95

5.3 DepthPIS: an algorithm for mining point and intervals temporal events
based on depth-first search . 102

5.4 Mining points and intervals . 107

5.5 Experimental results . 110

5.6 Discussion. Comparing both algorithms . 115

5.7 Conclusions . 119

6 BreadthPIMS and DepthPIMS: Two New Fast Algorithms for Mining
Points and Intervals Quantitative Patterns 121

6.1 Additional definition and description for problem setting 121

6.2 BreadthPIMS: an algorithm for mining point and intervals temporal events
based on breadth-first search . 123

6.3 DepthPIMS: an algorithm for mining point and intervals temporal events
based on depth-first search . 131

6.4 Mining points and intervals . 137

6.5 Optimizations . 137

6.6 Experimental results . 138

6.7 Discussion. Comparing both algorithms . 140

6.8 Conclusions . 140

7 ClaSP: An Efficient Algorithm for Mining Frequent Closed Sequences 143

7.1 Introduction . 143

7.2 Problem setting . 144

7.3 Related work . 145

7.4 ClaSP: algorithm and implementation . 147

7.5 Performance study . 152

7.6 Conclusions . 154

8 Experimental results 155

8.1 Comparatives of qualitative algorithms . 155

8.2 Comparatives of quantitative algorithms 160

ii

9 Discussion 165
9.1 Intra-comparisons. FaSPIP vs PaGAPIS. Breadth vs DepthPIS 165

9.1.1 FaSPIP vs PaGAPIS . 165
9.1.2 BreadthPIS vs DepthPIS . 168

9.2 Inter-comparisons. Boundary points vs triangular matrices representation . 171
9.3 Problems in the mining of quantitative patterns 175
9.4 Search strategies: depth-first vs breadth-first vs mix (equivalence classes) . 177
9.5 Mining of frequent closed patterns with Vertical Database Format strategy. 177

10 Conclusions 179
10.1 Conclusions . 179
10.2 Contributions . 181
10.3 Future work . 183

iii

iv

List of Tables

1.1 Classification of the different types of patterns. 6
1.2 Classification of the different algorithms already developed for SDM. 7
1.3 Classification of the different point-based algorithms for closed patterns

already developed for SDM. 8

2.1 Parameters for IBM Quest data generator. 29
2.2 Short names for interval Allen’s relations. 33
2.3 Triangular Matrix structure. 38

3.1 Example database converted to boundary point sequences. 49
3.2 Parameters for our synthetic database generator. 59

4.1 Examples of the effect of removing the infrequent events from the database
shown in Figure 4.5. In the upper figure every boundary point is maintained
since all of them are frequent while in the bottom figure only the item ⟨b, 5⟩
as that item is the only frequent. 81

5.1 Triangular matrix for example sequence. 94
5.2 Transition table for all the different intervals relations. 98
5.3 Transition table for all the different intervals relations. 110
5.4 Number of relations on average when we know the first or the second ar-

gument of the transition function. 118

6.1 Triangular matrix for example sequence. 122

7.1 A sample sequence database. 145
7.2 Parameters for IBM Quest data generator. 146

9.1 Average number of relations when we know the first (top table) or the
second (bottom table) argument of the transition function. 170

10.1 Classification of the different algorithms already developed for SDM with
our proposed algorithms in bold. 182

10.2 Classification of the different point-based algorithms for closed patterns
already developed for SDM with our proposed algorithm in bold. 182

v

List of Figures

1.1 Topics considered in the Chapters (and in their algorithms) of this Thesis. 10

2.1 Example of sequential database. 15

2.2 Example of a point-based sequential database. 17

2.3 Lattice of the example database. 19

2.4 IdLists for the frequent items in the example database. 22

2.5 Division of example into four equivalence classes. 23

2.6 Division of example into four equivalence classes. Besides, the equivalence
class [D] is also divided into three equivalence classes. 24

2.7 Pseudo projections in PrefixSpan for the example database. 27

2.8 Scalability of the algorithms when the number of items increases. 29

2.9 Scalability of the algorithms when we vary the C value. 30

2.10 Pruning methods of CloSpan. 32

2.11 Allen’s algebra relations. 34

2.12 Example of an Interval-based sequential database. 34

2.13 Conversion from Allen’s intervals to boundary point sequence. 36

2.14 Hierarchical representation. 37

2.15 Nested representation. 37

2.16 Boundary points representation. 38

2.17 SIPO representation. 39

2.18 An Apriori-like algorithm with interval data. 40

3.1 Conversion from Allen’s intervals to boundary point sequence. 48

3.2 Frequent sequence set of example database. 50

3.3 Examples of several projection derived from projected databases. 54

3.4 New structure for the IdLists used in the new way of count the support in
order to find proper boundary sequences. 58

3.5 Examples of several extensions of different boundary sequences. 58

3.6 Varying support for datasets s1000 psl5 msl8 ptl10–20 mtl12–25 ppl10 mpl12
n50–100. 60

3.7 Varying support for datasets s1000 psl20 msl30 ptl2–5–10 mtl3–6–12 ppl
10 mpl12 n50–100. 61

3.8 Varying support for datasets s1000 psl40 msl50 ptl5–10–20 mtl6–12–25 ppl10–
15–22 mpl12–18–25 n50–100–500–1000. 62

3.9 Varying support for datasets s10000 psl40 msl50 ptl10–20 mtl12–25 ppl10
mpl12 n500–1000. 63

vii

3.10 Varying support for a same configuration of datasets where we change the
number of items (100, 200, 500 and 1000). 63

3.11 Varying support for a same configuration of datasets where we change the
number of items per itemset (10, 20 and 40). 64

3.12 Projected database for the brief example with the standard PrefixSpan
algorithm. 65

3.13 SPADE IdList for the brief example. 66
3.14 Projected database for the brief example with PaGAPIS algorithm. 67

4.1 Frequent sequence set of example database. 71
4.2 Examples of several projection derived from projected databases. 76
4.3 New structure for the IdLists used in the new way of count the support in

order to find proper boundary sequences. 79
4.4 Examples of several extensions of different boundary sequences. 80
4.5 Small Interval database for showing the effect of the first optimization. . . 81
4.6 Frequent 2-patterns needed by FaSPIMP in order to a proper execution. . 82
4.7 Varying support for datasets s1000 psl5 msl8 ptl20 mtl25 ppl10 mpl12

n50–100. 83
4.8 Varying support for datasets s1000 psl20 msl30 ptl5–10 mtl6–12 ppl10 mpl12

n50–100. 83
4.9 Varying support for datasets s1000 psl40 msl50 ptl5–10–20 mtl6–12–25 ppl

10–15–22 mpl12–18–25 n50–100–500–1000. 84
4.10 Varying support for datasets s10000 psl40 msl50 ptl10–20 mtl12–25 ppl10

mpl12 n500–1000. 85
4.11 Varying support for a same configuration of datasets where we change the

number of items (50, 100 and 200). 86
4.12 Varying support for a same configuration of datasets where we change the

number of items per itemset (20, 40 and 80). 86
4.13 Comparison between FaSPIMP and Prefix FaSPIMP. 87
4.14 Projected database for the brief example with the standard PrefixSpan

algorithm. 88
4.15 SPADE IdList for the brief example. 89
4.16 Projected database for the brief example with PaGAPIMS algorithm. . . . 91

5.1 Allen’s algebra relations. 94
5.2 Frequent sequence set of example database. 95
5.3 IdList for the pattern in the example database. 96
5.4 Generation of a candidate from two frequent patterns. 99
5.5 Process of choosing the smallest candidate relation set for BreadthPIS. . . 100
5.6 Example of merging of two IdLists (ppost = C1 and ppre = C2). 102
5.7 Example of a failed case in the calculation of an entry of the new IdList. . 103
5.8 Example of a successful case in the calculation of an entry of the new IdList.104
5.9 Example of merging of two IdLists. Final result. 105
5.10 Example of merging of two TriMax. 106
5.11 Process of choosing the smallest candidate relation set for DepthPIS. . . . 108
5.12 Conversion of a TriMax with an inverse relations. 111

viii

5.13 Example of merging of two IdLists. 112
5.14 Varying support for datasets where the number the candidates is very closed

for both algorithms BreadthPIS and DepthPIS. s1000 psl20–40 msl30–50
ptl10–20 mtl12–25 ppl10 mpl12 n500–1000. 113

5.15 Candidate number for BreadthPIS and DepthPIS in plots 5.14A and 5.14C. 113
5.16 Varying support for datasets where the number the candidates generated

is less for BreadthPIS than for DepthPIS. s1000 psl20 msl30 ptl2–5–10
mtl3–6–12 ppl10 mpl12 n50–100. 114

5.17 Varying support for datasets where the number the candidates generated is
less for BreadthPIS than for DepthPIS. s1000 psl10 msl12 ptl10–20 mtl12–
25 ppl8 mpl10 n50–100. 115

5.18 Candidate number for BreadthPIS and DepthPIS in plots of Figure 5.17. . 116
5.19 Ratio between the number of candidates generated by DepthPIS and the

number of candidates generated by BreadthPIS for plots 5.16D and 5.17D. 116
5.20 Study of candidate generation for BreadthPIS. 117
5.21 Study of candidate generation for DepthPIS. 118
5.22 Division of the different equivalence class in independent problems. 120

6.1 Frequent sequence set of example database. 122
6.2 IdList for the pattern in the example database. 123
6.3 Generation of a candidate from two frequent patterns. 126
6.4 Transition table for all the different intervals relations. 126
6.5 Process of choosing the smallest candidate relation set for BreadthPIMS. . 127
6.6 Example of merging of two IdLists (ppost = C1 and ppre = C2). 129
6.7 Example of a successful case in the calculation of an entry of the new IdList.130
6.8 Example of a failed case in the calculation of an entry of the new IdList. . 130
6.9 Example of merging of two IdLists. Final result. 131
6.10 Example of merging of two TriMax. 134
6.11 Process of choosing the smallest candidate relation set for DepthPIMS. . . 135
6.12 Transition table for all the different intervals relations. 136
6.13 Conversion of a TriMax with an inverse relations. 136
6.14 Example of merging of two IdLists. 137
6.15 Varying support for datasets s1000 psl20 msl25 ptl20 mtl25 ppl8 mpl10

n100–500. 138
6.16 Varying support for datasets s1000 psl40 msl50 ptl20 mtl25 ppl8 mpl10

n100–500. 139
6.17 Varying support for datasets s1000 psl40 msl50 ptl10 mtl12 ppl15 mpl18

n500–1000. 139
6.18 Varying support for datasets s10000 psl40 msl50 ptl10–20 mtl12–25 ppl10

mpl12 n500–1000. 140

7.1 Behaviour of SPADE and PrefixSpan when density changes (in the number
of items). 147

7.2 Behaviour of SPADE and PrefixSpan when the number of itemsets changes. 148
7.3 Whole lexicographic sequence tree for our thorough example. 150
7.4 Whole lexicographic sequence tree after processing ClaSP algorithm. 150

ix

7.5 Varying support for dataset D5C10T5N5S6I4(-seq.npats 2000 -lit.npats
5000). 152

7.6 Varying support for dataset D0.5C20T10N2.5S6I4(-seq.npats 2000 -lit.npats
5000). 153

7.7 Varying support for dataset Gazelle click stream. 154

8.1 Varying support for datasets s1000 psl20 msl30 ptl2–5–10 mtl3–6–12 ppl10
mpl12 n50–100. 156

8.2 Varying support for datasets s10000 psl40 msl50 ptl10–20 mtl12–25 ppl10
mpl12 n500–1000. 157

8.3 Varying support for a same configuration of datasets where we change the
number of items (100, 200, 500 and 1000). 158

8.4 Varying support for a same configuration of datasets where we change the
number of items per itemset (10, 20 and 40). 159

8.5 Varying support for datasets s10000 psl40 msl50 ptl10 mtl12 ppl15 mpl18
n500–1000. 160

8.6 Varying support for datasets s10000 psl40 msl50 ptl10–20 mtl12–25 ppl10
mpl12 n500–1000. 161

8.7 Varying support for a same configuration of datasets where we change the
number of items (50, 200 and 500). 162

8.8 Varying support for a same configuration of datasets where we change the
number of items per itemset (40, 80 and 160). 163

9.1 Projected database for the brief example with the standard PrefixSpan
algorithm. 166

9.2 SPADE IdList for the brief example. 167
9.3 Projected database for the brief example with the PaGAPIS algorithm. . . 168
9.4 Study of candidate generation. 169
9.5 Division of the different equivalence class in independent problems. 171
9.6 Comparison between the different IdList implementation for boundary point

representation and TriMax algorithms. 174
9.7 Example database for showing the problems that appear with quantitative

pattern mining. 176
9.8 Frequent qualitative and quantitative patterns for the example database

shown in Figure 9.7. 176

x

Chapter 1

Introduction

1.1 Context and motivation

This thesis has been developed in the context of AI-SENIOR research project. The
main goal of this project is to establish the behavioural patterns of subjects who are
continuously monitored. More specifically, these subjects, are elderly people, many of
whom may suffer from diseases that determine their quality of life. The project is focused
on three groups of elderly people and the development and validation of results. These
three groups consist of: (1) a population of people who have some form of Cardiovascular
Disease, (2) another of people suffering from some form of Chronic Pulmonary Diseases,
and (3) one formed of elderly people who, although they do not suffer from any of these
diseases, live alone and require the monitoring of their daily activities in order to recognise
situations that occur on a daily basis.

All three of these groups are at some risk, owing either to their living alone or to
their diseases, and assistance is necessary to improve their quality of life. What is more,
all the groups represent a large proportion of the older population, and the cost of as-
sisting this population is recognised as being a particularly important problem for public
administration.

Sensory devices were therefore installed in every home, consisting of various sensors,
depending on the group studied, which were both wearable and non-invasive. There are
several types of sensors, some of which are binary such as those that detect presence,
others of which are numerical such as those that detect temperature, and others of which
are multi-variable, such as those that detect activity (which provides an acceleration in
each axis). Some are high frequency (the people in the first two scenarios), while others
have very low frequencies (those more generally found in the third scenario). Some of
these sensors additionally provide a fixed frequency time series, while others only provide
a signal when activity is detected. In this context, the amount of time that a person
remains in a room may have different meanings. We think it is therefore necessary to
model both simple events and interval events.

One of the subobjectives of the project is to apply a knowledge discovery task that
will allow us to do the following: i) determine the level of monitoring that a person must
have in his/her home; ii) tune the alarm system as accurately as possible. We believe that
sequential patterns are very useful in these tasks as regards modelling user behaviour. It is

1

necessary to define these patterns at different levels of complexity in order to obtain a more
detailed view when necessary. It is thus possible to begin by obtaining simple patterns
such as a person who, during the night, wakes up, drinks water, goes to the bathroom, and
then goes back to bed again. On the other hand, much more complex patterns include
interval events with temporal distances between them, and other complex patterns can
also be defined such as the fact that, a person sleep for 3 hours, then spends 3 minutes in
the kitchen and, after watching TV for 40 minutes, goes back to sleep for 2 more hours.
There is a wide range of patterns between these two extremes.

The objective of this Thesis, is to propose a general framework that is capable of deal-
ing with databases from ambient intelligence, in addition to finding interesting algorithms
that may be of great value as regards this problem.

1.2 Temporal Data Mining

One of the problems that information technologies have had to confront in recent years
is the analysis of the huge amount of data that originates during the daily activities of
organisations or people. The general process during which this analysis is carried out
is called Knowledge Discovery in Database (KDD), which is defined as “the nontrivial
extraction of implicit, previously unknown, and potentially useful information from data”
[Piatetsky-Shapiro and Frawley, 1991]. This process is required to obtain useful and
valuable information for organisations or people. For example, it permits us to analyse
a medical problem and extract information that may be relevant for a decision making
process in order to: study manifestations and signs during the course of a disease, analyse
the causes of mortality of a group of patients with a particular problem, etc.

The essential step in KDD is the Data Mining (DM) phase, which incorporates very
different techniques from the fields of machine learning, statistics, decision-making sys-
tems and artificial intelligence in general, along with other ideas from computing and
information management systems. DM consists of applying data analysis and discovery
algorithms that produce a particular enumeration of structures over the data [Fayyad
et al., 1996], in which these structures can be patterns or models [Mannila, 2002]. DM
is used in several tasks such as classification, clustering, prediction or the discovery of
interesting patterns (e.g. hidden patterns, trends or other relations present in the data).

In most of the techniques proposed in DM literature, data analysis is carried out
without taking into account the temporal component of the data. Nevertheless, there are
fields of application in which the data to be analysed have temporal interdependencies and
the order between them is fundamental to the analysis. Temporal Data Mining (TDM) has
emerged as an important branch of DM and can be defined as the activity of searching
for interesting associations or patterns in large sets of temporal data accumulated for
other purposes [Bettini et al., 1996]. TDM is capable of mining activity, and of inferring
associations of contextual and temporal proximity, some of which may also indicate a
cause-effect association. This important kind of knowledge can be overlooked when the
temporal component is ignored or treated as a simple numeric attribute [Roddick and
Spiliopoulou, 2002].

Within TDM, there is an important task called Temporal Pattern Mining (TPM)
which searches for the different kinds of patterns that can be obtained in at least a mini-

2

mum number of entries, called support, from a temporal database. These patterns may be
very different depending on the context being studied and the type of information being
sought. The two main approaches in this area are called Itemset Data Mining (IDM) and
Sequence Data Mining (SDM). While IDM represents the temporal concept of synchronic-
ity and extracts a set of itemsets or transactions (items which occur simultaneously) from
input databases (composed of itemsets), SDM represents the temporal concept of order
and uses a sequence input database, in which each sequence is a list of itemsets. While
IDM is the simplest case, SDM [Agrawal and Srikant, 1995] is much more complex. In
SDM, the space search is bigger than in the IDM case, since in addition to searching
for frequent itemsets, it is also necessary to consider the temporal relation between these
itemsets. The research into SDM has generated several algorithms which are applied in
different applications, such as discovering of motifs in DNA sequences, the analysis of
customer purchase sequences and Web click streams, and so on.

The TPM problem can be analysed from different perspectives: pattern representation
and expressiveness. With regard to the representation of a pattern, two main decisions
are typically made: whether to consider the events as points or as intervals. In the first
case, for a same event, each appearance is considered as a time point. For instance, if
we are working with a granularity of hours in a hospital environment and we consider an
event that denotes whether a particular patient has a fever (fever present = true), we
can consider that we have points of that event every hour at which the fever is present.

Unfortunately, this kind of simple abstraction is not always sufficient to express all
of the events. In many real world scenarios such as medical, multimedia, meteorology
or finance domains, the events tend to persist for periods of time rather than occurring
instantaneously, and the data are usually sequences of events with both a beginning and
an end time. Each interval event therefore has an associated duration as regards the
time at which this pattern is activated. To continue with the previous example, with
an interval representation we consider an appearance of the event during the whole time
period in which that event is activated, i.e. if, for example, we detect fever in a patient
for five consecutive hours, we consider those five hours to be a single appearance of the
pattern fever present.

With regard to the expressiveness of the event relations in the patterns, there are
several options, but most algorithms are usually focused on qualitative or quantitative
relations. Qualitative relations only represent the order relation that appears between
two events. For instance, if we consider two event points A and B that appear at times
1 and 2, respectively, there will be the relation “before” between them, and, similarly, if
these two points appear at time 1 and 100, the relation between A and B will be exactly
the same, and it will not be possible to distinguish any nuances in it. On the other
hand, when it is necessary to express the exact relation, then a numeric distance is also
included in the temporal relation. For instance, if we were to consider the same example
as before, we would discover two different relations: one appearing before, with a time
unit of temporal distance (A before[1] B), and a second one appearing before, with 99
time units of difference (A before[99] B).

Most of the efforts made to date have determined the use of a type of representa-
tion and expressiveness to mine an input database under such constraints. Most works
therefore differentiate between point-based or interval-based databases, considering either

3

qualitative or quantitative relations. Unfortunately, there are some environments in which
the use of mixed cases would be very convenient. For instance, it would be possible to
cite some examples in which certain attributes should be recorded as intervals, while oth-
ers could occasionally occur, as points. In these cases, it is necessary to simultaneously
include points and intervals, both in the database and in the patterns that we find. For
example, in the case of a medical database there may be diagnosis and treatment events,
in which a diagnosis is established at one moment, but a treatment has a duration.

In SDM this has traditionally been considered as a point representation with quali-
tative relation as a data model. This point-based representation generates patterns with
three different temporal relations (before, equals and after. Nevertheless, if an interval
based representation is used, all the common problems in SDM are particularly complex.
While in the point case we only use the point relations to express the temporal order
within a pattern, in the time interval representation there are different ways in which
to relate intervals, such as Allen’s interval algebra [Allen, 1983] or Freksa’s semi-interval
relations [Freksa, 1992] representation framework. While the point algebra only uses
three different relations [Vilain, 1982], Allen’s interval algebra has thirteen relations that
configure a very expressive and complete language. This language makes the pattern rep-
resentation and the tasks related to temporal reasoning much more complicated. These
relations are actually crucial bottlenecks when we are interested in developing an efficient
and effective algorithm with which to mine complex patterns, since these relations may
lead to the generation of a much larger number of candidate sequences than when only
points are considered. To avoid all the drawbacks resulting from interval relations, several
pattern representations which provide the key features have been proposed: compactness,
legibility and non-ambiguity.

All of the qualitative representations can be converted into quantitative representations
in order to show the temporal distance between the different events, signifying that the
relations become more complicated and their processing is more costly. This leads to a
greater pattern explosion since, for a given support, when we consider this quantitative
relation we find less occurrences of more patterns with only qualitative relations. It is
therefore necessary to emphasise the scalability of the algorithms used to mine these
patterns. This scalability will be reflected in the search strategies, pattern representation,
the candidate generation, the support counting and the pruning methods.

Several works have been carried out for SDM, among which three main search strate-
gies can be clearly identified: 1) Apriori-Style [Srikant and Agrawal, 1996], 2) Vertical
Database Format [Zaki, 2001] and 3) Pattern Growth [Pei et al., 2004] strategies. While
Apriori-based algorithms consist of executing a continuous loop which carries out a can-
didate generation followed by a support checking phase for each generated candidate, the
Vertical Database Format and Pattern growth strategies are more direct methods which,
in general, obtain better results as regards time execution and memory consumption.

Most of the sequential pattern mining algorithms developed to date have been de-
signed for the specific database configurations present in a number of real datasets; for
example datasets with short sequences, with a limited number of events, with sequences
in which the events are not repeated, etc. In general, when these conditions change,
the performance of these algorithms decreases dramatically. Even when the algorithms
can complete their executions, the number of frequent patterns that are usually found is

4

extremely large, and there are a lot of non-meaningful patterns.
One interesting approach used in IDM in order to solve the aforementioned problem

consists of searching for patterns with concrete properties such as closed itemsets [Pasquier
et al., 1999]. Searching for closed itemsets provides two benefits at the same time: a
reduction in the number of candidates, and the obtaining of a more compact output while
maintaining the maximum amount of information. Since mining closed sequences is quite
similar to mining closed itemsets, a closed pattern mining strategy can also be used in
SDM.

In this thesis we propose to make a comprehensive study and comparison of all the al-
ternatives previously set out. We also propose several algorithms, all of which are capable
of working under different representation, expressiveness and database configurations.

1.3 Objective and sub-objectives

The main goal of this thesis is to define a general framework for Sequential Data Mining
(SDM) methods, strategies, data structures, and expressiveness of patterns, and to develop
new algorithms at all the possible levels of SDM. In order to achieve this goal, we have
defined the following objectives:

• We show, through a survey of the state-of-the-art, the problems resulting from SDM
and we make an in-depth comparison between all the strategies applied to SDM.

• We have structured and organised the knowledge about SDM with regard to the fol-
lowing dimensions: pattern representation, pattern expressiveness and search strate-
gies. This organisation is summarised in Tables 1.1, 1.2 and 1.3, which are a guide
to the objectives of this thesis shown below.

• We show and compare all of the problems derived from the different levels of the
pattern representation (points, intervals and points and intervals).

• We visualise and contrast the issues associated with the different levels of expres-
siveness (qualitative and quantitative patterns). For both representation and ex-
pressiveness we bridge some of the gaps found in Table 1.1. We specifically deal
with the patterns highlighted in the first, second, fourth and fifth rows.

• We define four new algorithms that are capable of mining point-based, interval-
based and point and interval-based databases. Each algorithm implements a con-
crete strategy and can find both qualitative and quantitative relations. The names of
these algorithms are PaGAPIS, FaSPIP, BreadthPIS and DepthPIS for qualitative
patterns, and PaGAPIMS, FaSPIMP, BreadthPIMS and DepthPIMS for quantita-
tive patterns. We additionally study the pruning methods that can be applied, and
the convenience of using them. These algorithms are used to bridge some of the
gaps in Table 1.2, thus making new combinations possible in terms of representation,
expressiveness and data representation, which have not yet been covered. Note that
while PaGAPIS and PaGAPIMS are based on the Pattern Growth strategy, the
remaining algorithms that we propose are based on the Vertical Database Format

5

strategy. We implement algorithms from both strategies in order to make a fair
comparison between only the strategies, in a comprehensive manner.

• We discuss the convenience of using each search strategy for pattern representation
and expressiveness in a given input database. We also analyse which strategy is most
suitable for application when dealing with specific features in the input database.
Concretely, we study the convenience of using the different algorithms proposed in
this thesis, making a broad comparison.

• We propose a new algorithm with which to manage pattern explosion problems by
means of mining Closed sequences and to bridge some of the gaps in Table 1.3. This
new algorithm is the first to be based on the Vertical Database Format strategy
which, by means of several pruning methods, avoids the generation of non-Closed
sequences.

To date, and to the best our knowledge, no previous work has addressed a comprehen-
sive framework for sequential pattern mining by considering an incremental complexity
of the patterns applied to a single domain. There are several works with algorithms that
address a single problem with a single type of target patterns, showing its advantages
over other approaches to the problem addressed. We wish to point out that the databases
with which we have experience, cover the entire spectrum of possibilities with patterns.

In order to facilitate the reading of this thesis we now provide two tables which show the
dimensions analysed with the aforementioned objectives. Table 1.1 depicts two groups:
the point-based patterns, which appear in the first three rows; and the interval-based
patterns in the last three rows. Each group can have two kinds of relations: qualitative
and quantitative. There are also two kinds of quantitative patterns: those with exact
temporal distances and those in which the distance is bounded by a range from a lower
to an upper value.

Type of pattern Representation
Point-based qualitative A < B

Exact point-based quantitative A < [5]B
Bounded point-based quantitative A < [5, 7]B

Interval-based qualitative
A o B,
A < C,
B o C

Exact Interval-based quantitative
A[4] o[2] B[7],
A[4] < [3]C[8],
B[7] o[2] C[8]

Bounded Interval-based quantitative
A[4, 6] o[2, 4] B[7, 10],
A[4, 6] < [1, 3]C[8, 12],
B[7, 10] o[2, 5] C[8, 12]

Table 1.1: Classification of the different types of patterns.

Table 1.2 shows a classification of the different algorithms developed for SDM to
date (details of these algorithms will be provided in the state-of-the-art section). In

6

this table, the dimensions are the kind of input database (point, intervals or point and
interval databases), the expressiveness (qualitative or quantitative relations), and the
mining strategy chosen (Apriori-style, Vertical Database Format and Pattern Growth).
As will be observed, there are still some gaps that need further study. Besides, Table
1.3 shows the point-based algorithms for mining closed sequences already developed in
SDM. As can be seen, there is not any algorithm that follows a Vertical Database Format
strategy.

Database Representation Distances Strategies

Apriori
Pattern
Growth

Vertical
Database
Format

P
oi
n
ts

qualitative

Apriori-All,
GSP,
PSP,
TSET

FreeSpan,
PrefixSpan,
Memisp

SPADE,
SPAM,
Prism

quantitative
I-Apriori,
Yoshida

MisTA,
QprefixSpan,
i-PrefixSpan

In
te
rv
al
s P
oi
n
ts

quantitative QTPrefixSpan

qualitative T-PrefixSpan

In
te
rv
al
s

quantitative QTempIntMiner QTiPrefixSpan

qualitative
IEMiner,
Karmalego

Armada H-DFS

P
oi
n
ts

an
d

In
te
rv
al
s

P
oi
n
ts

quantitative ASTPminer

qualitative HTPM
CTMiner,
CEMiner

In
te
rv
al
s quantitative

qualitative

Table 1.2: Classification of the different algorithms already developed for SDM.

1.4 Structure of the thesis

The remainder of the work is organised as it follows:

7

Apriori Pattern Growth Vertical Database Format

CloSpan,
Bide

Table 1.3: Classification of the different point-based algorithms for closed patterns already
developed for SDM.

Chapter 2 introduces a survey concerning previous work carried out in SDM and the
issues that we are dealing with. Concretely, we provide details about Sequence Data
Mining, its structure and its problems, and how each of the strategies used in SDM
(Apriori-style, Vertical Database Format and Pattern Growth) works. We also explain
and compare the most relevant algorithms for each strategy in both point and interval
cases. We additionally show the pattern explosion problem associated with SDM, and we
explain the principal algorithms for closed patterns.

Chapter 3 describes two new algorithms called PaGAPIS and FaSPIP, both of which
are capable of finding qualitative patterns from point and intervals databases. While
PaGAPIS is based on the Pattern Growth strategy, FaSPIP is based on the Vertical
Database Format strategy. Their quantitative versions, called PaGAPIMS and FaSPIMP,
are then described in Chapter 4. In both the qualitative and the quantitative cases,
the algorithms use a representation based on boundary points, i.e., each input sequence
with points and intervals is translated into another sequence with only points. These
algorithms are inspired by the original point-based algorithms and deal with intervals by
means of only their boundary points. Finally, we compare the convenience, advantages
and drawbacks of using the different strategies to mine point and interval patterns.

In Chapter 5 we describe two new algorithms called BreadthPIS and DepthPIS, which
are also capable of finding qualitative patterns in points and intervals databases. As be-
fore, in Chapter 6 we define their quantitative versions. Both algorithms belong to the
Vertical Database Format strategy. These algorithms use Triangular Matrix Representa-
tion (TriMax) in order to represent both qualitative and quantitative point and interval
patterns. The algorithms use a temporal reasoning method in order to obtain the mini-
mum number of candidates, and only the frequent patterns are selected from among them.
Although both algorithms use the same pattern representation and the same method to
count the support, they are based on different search methods, candidate generation and
pruning methods. As before, we conclude by comparing the convenience, advantages and
drawbacks of the algorithms in both the qualitative and the quantitative cases.

In Chapter 7 we introduce the ClaSP algorithm, the first Vertical Database Format
Algorithm for Closed Sequences. Furthermore, we show that, for some database configu-
rations, the execution of a Vertical Database algorithm is more convenient than any other
strategy. We also show that in the database configurations considered, ClaSP clearly
outperforms other state-of-the-art algorithms.

Chapter 8 shows an overall comparison of the four algorithms developed to mine
both qualitative and quantitative patterns in databases with points and intervals. These
comparisons allow us to show what advantages there are between using one or another

8

representation, and the domain of Vertical Database Format strategy over the Pattern
Growth strategy when mining point and interval databases.

Chapter 9 provides a general discussion on the key points of the algorithms previously
described. Firstly, we show the advantages and drawbacks, in terms of execution time and
memory consumption, that are encountered when working with points, intervals or points
and intervals; and also when using qualitative or quantitative relations. We also check
the benefits as regards the different pattern representations used in the algorithms, and
the problems associated with each particular algorithm. We then analyse which search
strategy is the most adequate for the different problems as regards resolving depth-first
search (DFS), breadth-first search (BFS) or a mixture of the two. Finally, we discuss
which candidate generation strategy is the best in general terms: that used in Apriori-
based, in Vertical Database Format or in Pattern-Growth algorithms.

Finally, this thesis concludes in Chapter 10, which shows our conclusions. We highlight
the contributions that we have made, and then raise some open questions that could be
relevant as possible future works.

In order to help understand the different algorithms developed in this Thesis, Fig-
ure 1.1 shows the main characteristics taken into account in each Chapter and in each
algorithm. These characteristics are:

• The algorithm deals with qualitative patterns.

• The algorithm deals with quantitative patterns.

• The algorithm mines time point data.

• The algorithm mines time interval data.

• The algorithm finds the final set of closed patterns.

• The algorithm uses a Triangular Matrix to represent the relations between the dif-
ferent events.

• The algorithm uses a sequence of boundary points to represent a pattern.

• The algorithm follows the Vertical Database Format strategy.

• The algorithm follows the Pattern Growth strategy.

• The algorithm uses a depth-first search method.

• The algorithm uses a breadth-first search method.

• The algorithm uses a mixture of both depth-first and breadth-first searches.

9

Figure 1.1: Topics considered in the Chapters (and in their algorithms) of this Thesis.

10

Chapter 2

State of the Art

In this Chapter, we provide a survey in SDM strategies as well as an explanation of
the main algorithms and improvements with respect to the pattern representation for
the mining of both qualitative and quantitative patterns. After the general introduction
to SDM, we begin by defining the main concepts and notations in Section 2.2. Section
2.3 provides a wide overview of strategies, algorithms, improvements and comparatives
between the different algorithms for qualitative and quantitative patterns that are com-
monly used with point based databases. Then, Section 2.4 makes the same overview as
in the previous Section, but with a time interval representation. Finally, in Section 2.5,
we establish our major conclusions regarding the state of the art in TPM.

2.1 Introduction

One of the problems that information technologies have been facing the last years is the
analysis of the huge amount of data originated in the daily activity of organizations.
The general process in which this analysis is carried out is called Knowledge Discovery
in Database (KDD) and is defined as “the nontrivial extraction of implicit, previously
unknown, and potentially useful information from data” [Piatetsky-Shapiro and Frawley,
1991]. This process is required to obtain useful and valuable information for the organi-
zation. For example, we can analyse a medical problem and extract information that can
be relevant for a decision making process: studying manifestations and signs in the course
of a disease, analyzing the causes of mortality of a group of patients with a particular
problem, etc.

The essential step in KDD is the Data Mining (DM) phase, which incorporates very
different techniques from the fields of machine learning, statistics, decision-making systems
and artificial intelligence in general, as well as other ideas from computing and information
management systems. DM consists of applying data analysis and discovery algorithms
that produce a particular enumeration of structures over the data [Fayyad et al., 1996]
where these structures can be patterns or models [Mannila, 2002]. DM is used in several
tasks such as classification, clustering, prediction or discovery of interesting patterns (e.g.
hidden patterns, trends or other relations present in the data).

In most of the techniques proposed in the DM literature, data analysis is carried out
without taking into account the temporal component of the data. Nevertheless, there

11

exist fields of application where the data to be analysed have temporal interdependencies,
being the order between them fundamental to the analysis. Temporal Data Mining (TDM)
emerges as an important branch of DM and it can be defined as the activity of looking
for interesting correlations or patterns in large sets of temporal data accumulated for
other purposes [Bettini et al., 1996]. TDM has the capability of mining activity, inferring
associations of contextual and temporal proximity, some of which may also indicate a
cause-effect association. This important kind of knowledge can be overlooked when the
temporal component is ignored or treated as a simple numeric attribute [Roddick and
Spiliopoulou, 2002].

Inside of TDM, there is an important task called Temporal Pattern Mining (TPM)
which searches for the different kind of patterns that can be obtained from a temporal
database. These patterns can be very different depending on the context we are studying
and the type of information that we are looking for. In this way, in [Moerchen, 2010]
three different aspects are differentiated within a pattern:

Temporal Data Models. How is the temporal data representation? Mainly, we deal
with time point representation or time interval representation.

Temporal Concepts. What semantic we want to express in each pattern? Normally
this semantic is related to order or concurrency (or closeness) relation.

Temporal Operators. How are the data compared and combined by the different algo-
rithms in the TPM task? For instance, an event A can be before another event B
and close to another event C.

Regarding the temporal concepts and operators, there are mainly three different ap-
proaches which deal with different kind of patterns (in order of complexity):

Itemset Data Mining (IDM). In this approach [Agrawal et al., 1993] a list of transac-
tions is considered as input database, where each transaction denotes an occurrence
time and is composed by several items that occur at the same time. Therefore, this
approach finds patterns with a temporal concept of synchronicity, i.e. the frequent
sets of items which occur together at the same time in a minimum of database
entries.

Sequence Data Mining (SDM). In this approach [Agrawal and Srikant, 1995] the key
point is the use of temporal order. The input database is a list of sequences where
each sequence can have several transactions (as in IDM). The patterns found are
subsequences which appear in the database a minimum number of times.

Discovery of Frequent Episodes (DFE). In this case, the input database is a long
and single sequence of different items occurring in an increasing temporal order
[Mannila et al., 1997]. The searched patterns in this approach correspond to partial
orders where both the temporal order and concurrency concepts are shown.

While IDM is the simplest case, SDM [Agrawal and Srikant, 1995] and DFE [Mannila
et al., 1997] are much more complex. In particular, SDM has a bigger space search than

12

IDM since there are more operators and possibilities to create patterns, and hence, the
basic operations of subsequence checking can easily take longer.

SDM has been widely studied [Agrawal and Srikant, 1995; Srikant and Agrawal, 1996;
Zaki, 2001; Han et al., 2000; Pei et al., 2004; Ayres et al., 2002], with a number of
algorithms and applications, such as the discovery of motifs in DNA sequences, analysis
of customer purchase sequences, web click streams, and so forth.

The task of discovering the set of all frequent sequences in large databases is challenging
as the search space is extremely large. Different strategies have been proposed so far,
among which Vertical Database Format [Zaki, 2001] and Pattern Growth [Pei et al.,
2004] strategies are the most popular ones. These strategies show good performances in
databases containing short frequent sequences or when the sequences are very common in
the database.

Most of the algorithms have been designed to find qualitative patterns, being mainly
focused on the order between the points in patterns but regardless of the distance between
them. However, in some contexts we need to know the distance between the different
occurrences, being this distance either the exact temporal distance or a range of distances
within a lowest and upper bounds. This kind of patterns is known as quantitative patterns
and they make the task of mining frequent patterns different. In this case, the concept of
frequent pattern is changed, leading us to a different amount of frequent patterns for the
same supports as in in the qualitative case. The strategies for mining frequent quantitative
patterns are exactly the same that in the qualitative version, but all the strategies need
to bear in mind the issues typically found in the mining of quantitative patterns.

According to these different aspects in a pattern, the majority of the efforts in SDM
so far have considered a point representation as data model. In this representation,
patterns can have three different time operators to associate points (before, equals and
after relations). It is possible to include also temporal distances if we are interested
in quantitative patterns. Considering every pattern as a concatenation of points leads
us to the discovery of very simple patterns, reduced to an ordered sequence of events.
Unfortunately, sometimes this abstraction is not enough to express the complexity of
temporal relationships between different events. In many real world scenarios such as
medical, multimedia, meteorology or finance domains, their events tend to persist for
periods of time instead of having an instantaneous occurrence, and the data is usually a
sequence of events with both beginning and end time. For instance, in the medical field,
a simple ordered sequence of events for a myocardial infarction could be something as
“chest pain → increasing of cardiac enzymes” [Chen et al., 2011], while if we consider
the duration of such events, we could find “chest pain contains increasing of cardiac
enzymes”. Therefore, the correlation between the symptoms and the diseases, or the
influences between different diseases and others can be studied. For the latter example,
we would rather use an interval-based representation than a point-based one, and for that
representation, all the common problems in SDM are particularly relevant.

In the time interval representation there are different ways to relate intervals each
other, where the most known ones are the Allen’s interval algebra [Allen, 1983], the
Freksa’s semi-interval relations [Freksa, 1992], Roddick’s Midpoint interval relations [Rod-
dick and Mooney, 2005] and the Time Series Knowledge Representation [Mörchen, 2006],
being the former the most widely used representation framework. We can perceive that

13

time point-based data are a special case of the time interval-based data, where both begin-
ning and end points occur at the same time (for each interval) and the relations between
these points become simpler (before, equals and after). Therefore, while with points there
are only three different relations [Vilain, 1982], in the Allen’s interval algebra there are
thirteen relations that configure a very expressive language, and make much more com-
plicated the pattern representation and the tasks related to temporal reasoning. These
complex relations are actually crucial bottlenecks when we are interested in developing
an efficient and effective algorithm for mining complex patterns, since these relations may
lead to generate a larger number of candidate sequences than when we execute the same
example with a point based representation. To avoid those drawbacks, several pattern
representations have been proposed [Kam and Fu, 2000; Höppner, 2001; Wu and Chen,
2007; Patel et al., 2008]. These representations provide the key features: to be compact,
legible and non-ambiguous.

Furthermore, in several contexts, a more detailed representation is needed to show the
exacted temporal distances between the different types of considered interval events or the
duration of the intervals themselves, being necessary a more explicit representation. For
example, in [Palma et al., 2006] a real clinical case is described for an acute myocardial
infarction and the time distances between the different interval events become crucial.

2.2 Preliminaries and general notation

Let consider an item as a pair of a label and a duration i = ⟨e, d⟩, where i denotes the
occurrence of an event e that is extended over the time with a duration d. This duration
d has the value 0 if the item i denotes a point whereas, if an interval is represented, the
duration value is greater than 0, d > 0. For an item, we define a boundary beginning
point as the temporal point where the item starts, and we define a boundary end point
as the temporal point where that item ends. We assume an item as anything that can
occur in the context which we are dealing with, i.e. customer purchases in a shop, medical
parameters that are monitored by physicians in a hospital, access to websites by an user,
etc.

Let I be a set of items. A set I = {i1, i2, . . . , ik} ⊆ I is called an itemset or k-itemset if
it contains k-items. For simplicity, from now on we denote an itemset I as a concatenation
of items between brackets. For instance, the itemset I1 = (abcd) is a 4-itemsets composed
of items a, b, c and d. Without loss of generality, we can establish an order between
the events of every itemset I. We say that, for an itemset, an item is less than another
item if the first one is less than the second one in a lexicographic order. More formally:
(im = ⟨em, dm⟩ < in = ⟨en, dn⟩) ⇔ (em <lex en).

Let us define a transaction as a duple (t, I), being t the timestamp when the itemset
I ∈ I occurs. We call |T | the number of items in the itemset of T . Besides, we say
that a transaction Tm is less than a transaction Tn if its itemset time tm is less than the
itemset time tn of Tn: ∀Tm, Tn ∈ s, Tm = ⟨tm, Im⟩, Tn = ⟨tn, In⟩, (Tm < Tn) ⇔ (tm < tn).
Therefore, for a transaction T = (tk, Ik), each item ik that is included in Ik starts at tk
time and it is extended so long as its duration d denotes, ending at time tk + d.

We will use the concept of transaction in our algorithms. In addition, when we need
to refer to the itemset of the transaction, we directly write it as a transaction in order to

14

enhance readability. Therefore, in some occasions, we will use between transactions some
operations that are defined for itemsets in transactions, such as the set membership. For
instance, if we have transactions T1 = ⟨t1, I1⟩ and T2 = ⟨t2, I2⟩, and we want to mean that
I1 ⊆ I2, we also use the expression T1 ⊆ T2, denoting exactly the same.

A sequence s is an ordered set s = {T1, T2, . . . , Tn}, where each Tk, ∀k : 1 ≤ k ≤ n,
is a transaction. All the transactions in a sequence are sorted in an increasing temporal
order: ∀Tm, Tn ∈ s, Tm = ⟨tm, Im⟩, Tn = ⟨tn, In⟩, (Tm < Tn) ⇔ (tm < tn).

If we are not interested in the timestamp associated with each transaction, such as
it occurs in the mining of qualitative patterns, we can simply define a sequence by an
ordered set of Itemsets s = {I1, I2, . . . , In}. With this alternative definition each itemset
Ij is supposed to appear one or more time units later than Ii, ∀i < j. Thus, we can
still use this definition to extract patterns whose items are ordered by time. In practice,
we use both definitions based in transactions or itemsets, depending on whether we want
to include the timestamp associated with the transaction or not, i.e. if we deal with
quantitative or qualitative patterns, respectively.

We denote the size of a sequence |s| as the number of transactions (i.e. itemsets) in
that sequence. We define the length of a sequence (l(s) =

∑n
k=1 |Ik|) as the number of

items in it, and every sequence with k items is called a k-sequence. For instance, the
sequence α = ⟨(⟨a, 2⟩⟨b, 3⟩)(⟨b, 2⟩⟨c, 5⟩)⟩ is a 4-sequence with a size of 2 itemsets.

In the rest of the work, we use the terms pattern and sequence interchangeably.
An input sequence is is a tuple is = ⟨id, s⟩ with id ∈ N and s is a sequence as we

previously commented. We call id the identifier of the input sequence.
A sequence database D is a collection of input sequences D = ⟨s1s2 . . . sn⟩, ordered

by the identifier of the contained sequences. In Figure 2.1 we can see an input database
composed of four sequences and, for instance, the first sequence contains three intervals
(A, B and C) and a point (D).

Figure 2.1: Example of sequential database.

For instance, an input sequence can be a patient (sequence) in a clinical database. Each
patient has a limited number of observations (different items appearing in the database),

15

where several observations occurs at the same time, as a medical visit (i.e. itemset).
Besides, these observations sets (medical visits) are repeated during the visits of the same
patient (number of itemsets per sequence).

Definition 2.2.1. Let ii and ij be two events in the sequence α. We say α is a subsequence
of another sequence β (or β is a supersequence of the sequence α), denoted as α ⪯ β,
if there exists a bijective function f which preserves the order and maps events in α to
events in β, in such a way that 1) ∀i ∈ α, ∀f(i) ∈ β, i ⊆ f(i) and 2) the relation between
two events ii, ij ∈ α is maintained by f(ii), f(ij) ∈ β. We can also say that if α =
⟨Ta1Ta2 . . . Tan⟩ and β = ⟨Tb1Tb2 . . . Tbm⟩, there exist integers 1 ≤ j1 < j2 < . . . < jn ≤ m
such that Ta1 ⊆ Tbj1

, Ta2 ⊆ Tbj2
, . . . , Tan ⊆ Tbjn

.

Let us define the concept of temporal distance that we will need to work with quan-
titative patterns. Given two transactions Tj = (tj, Ij) and Tk = (tk, Ik), we call temporal
distance and denote as “R[tjk]” to the difference of time between the beginning point of
an item ik appearing in Tk minus the ending point of an item ij appearing in Tj. Note
that, since ij appears in Tj, its ending point occurs at time tj + ij.d, denoting with ij.d
the duration of ij. Regarding ik, as it appears in Tk, its beginning point occurs at time tk,
having a tjk = tk− (tj+ ij.d) that is associated with a relation. Therefore, we can see that
the end points of elements of Ij have different distances with respect to the elements of
Ik, being all of them depending on the duration of Ij items. In addition to this definition,
we also consider as temporal distances the item durations and we also have them into
account in our algorithms.

Definition 2.2.2. The support (or frequency) of a sequence α, denoted as σ(α,D), is the
total number of sequences in the input database D that contain α. A pattern or sequence
is called frequent if it occurs at least a number of times specified by a given user specified
threshold min sup, called the minimum support. We define FS as the whole collection
of frequent sequences. The problem of frequent sequence mining is now to find FS in a
given input database, for a given minimum support threshold.

Given two sequences α = ⟨T1T2 . . . Tn⟩ and β = ⟨T ′
1T

′
2 . . . T

′
m⟩ with m < n, we say that

β is a prefix with respect to α if ∀1 ≤ i < m, Ti = T ′
i and T ′

m ⪯ Tm, the events in T ′
m

are the first ones in Tm. We can also call m-prefix to β since is a prefix with a length of
m events. In the prior definition, the sequence ⟨(Tm − T ′

m) Tm+1...Tn⟩ is called the suffix
of α with regards to prefix β.

For instance, the sequence α = ⟨(⟨a, 2⟩) < (⟨a, 3⟩⟨b, 4⟩⟨c, 5⟩) < (⟨a, 2⟩⟨c, 3⟩) < (⟨b, 3⟩)
< (⟨c, 5⟩⟨f, 0⟩)⟩, has the suffix γ = ⟨(∗⟨c, 3⟩) < (⟨b, 3⟩) < (⟨c, 5⟩⟨f, 0⟩)⟩ with regards to
the prefix β = (⟨a, 2⟩) < (⟨a, 3⟩⟨b, 4⟩⟨c, 5⟩) < (⟨a, 2⟩), where the ∗ symbol in γ means that
the first itemset in α was not completed by the prefix β.

Definition 2.2.3. A frequent sequence s ∈ FS is called closed if there not exists another
frequent supersequence s′ ∈ FS with the same support as it. The whole set of frequent
closed sequences is denoted by FCS.

Definition 2.2.4. A frequent sequence s ∈ FS is called maximal if there not exists
another frequent supersequence of it. The whole set of frequent maximal sequences is
denoted by FMS.

16

According to definitions 2.2.3 and 2.2.4, in SDM (as in IDM) we can deduce that FS,
FCS and FMS are related between them: FMS ⊆ FCS ⊆ FS.

2.3 Time Point data

As we previously said, when we work in SDMwith patterns where the temporal data model
corresponds to time points, the concept of temporal order can be described by means of the
qualitative relations Rp = {before, equals, after} (usually denoted as Rp = {<,=, >})
defined by Vilain [Vilain, 1982]. According to the previous Section and due to the fact
that each item has a duration, in the point-based case every item has a duration of zero
time units. From later on, for the point data case, we use the terms point and event
interchangeable. Furthermore, since the “after” operator is the inverse of the “before”
relation, if we always consider a relation from the point which occurs the first, we do not
need to use the “after” relation. For instance, if we have A > B we will say instead
B < A. So, with these two relations we can define patterns or sequences. Two patterns
α and β are exactly equal if their points are exactly the same and the have exactly the
same relations in the same positions, i.e. α ⪯ β and β ⪯ α.

In Figure 2.2 we can see an example of a point-based sequential database, taken from
[Zaki, 2001], which is composed of four sequences that will be used for introducing the
algorithms in this Section.

Figure 2.2: Example of a point-based sequential database.

In addition to the previous explanations for point based patterns, when we are inter-
ested in quantitative patterns we have to express the temporal distance somehow. Thus,
we still use the same two relations < and =, but now we add a temporal distance between
square brackets, having {< [t],=} as the two relations used in quantitative patterns. The
t value denotes any possible time units value, derived from the input database. Note that

17

the equals relation does not need a temporal distance associated with it since the equality
relation has an implicit distance of 0 time units between the two events that relates. With
this new definition of relations, two relations are equal if they express the same relation
and share the same temporal distance. Therefore, we say that two point based patterns
are equal if and only if all their items, their relations, and their distances are exactly the
same. For instance, pattern α = A < [2]B is different from the pattern β = A < [3]B
since although both patterns share the same relation (<), they have different temporal
distances.

2.3.1 Algorithms for mining qualitative patterns

The SDM started to be studied in 1995 [Agrawal and Srikant, 1995] and since then we
can see that is a challenging task. As it is shown in [Zaki, 2001], on the set of all
sequences on the items (or events with duration zero) we can define a hyper-lattice with
the subsequence relation ⪯. In that hyper-lattice the join operation is the set of minimal
common supersequences, while the meet operation corresponds to the set of maximal
common subsequences. Unlike in the IDM task [Goethals, 2003], where the search space
is the power set of items, in SDM the search space is potentially infinite since we can
compose infinite long sequences by means of the relation before. Fortunately, in all
practical cases we can establish an upper-bound by the expression 2k−1nk, where n is the
number of different items and k is the length of the longest sequence in the input database
[Zaki, 2001]. Therefore the complexity is O(nk).

Since we are only interested in the frequent sequences, in the expression above the
n value can be referred only to the frequent items, while k is the length of the longest
frequent subsequence contained by a min sup of sequences in the in the input database.
In fact, we can represent the set of all frequent sequences in a meet-semilattice, closed with
the meet operation, i.e., if α and β are frequent sequences, then the maximal common
subsequence is also frequent. Note that it is not the case of supersequences, hence we say
that it is a meet-semilattice [Zaki, 2001]. In Figure 2.3 we can see the lattice induced by
the frequent sequences of database from Figure 2.2.

From the above mentioned meet-semilattice, the closure with the meet operation leads
to the main property introduced by Agrawal and Srikant [Agrawal and Srikant, 1995]
called monotonicity property:

Proposition 1. All subsequences of a frequent sequence s are also frequent. Besides, the
support of every subsequence is greater or equal than the support of s.

Proof. Let α be a subsequence of the frequent sequence s such that α ⪯ s. If s is a
frequent sequence and D is the input database then σ(s,D) ≥ min sup. Since α is
subsequence of s, the support of α is at least the same as s, since α appears wherever s
appears, and then α is also frequent. Besides, s can appear in any other input sequences,
hence σ(α,D) ≥ σ(s,D) ≥ min sup.

Corollary 1. All supersequences of an infrequent sequence s are also infrequent. Besides,
the support of every supersequence is less or equal than the support of s.

Proof. Let α be a frequent supersequence of the infrequent sequence s such that s ⪯ α. If
α is a frequent sequence, since proposition 1 all its subsequences are frequent. Concretely,

18

Figure 2.3: Lattice of the example database.

if s is a subsequence of α, s should be frequent, but s is not frequent and we have a
contradiction. Therefore, all of the supersequences of s are infrequent and hence, their
supports are less or equal than min sup.

The above property is the basis for the different strategies. Using this property, we
can create candidate sequences as supersequences from frequent sequences, and somehow
to determine if those new candidate sequences are frequent. There exist several ways
to achieve this and most of them make a new candidate k-sequence from two frequent
(k − 1)-sequences.

So far, three different strategies have been mainly developed to obtain the whole set
of frequent sequences (FS). We enumerate and describe them in a briefly way, and in
the following Subsections we describe them thoroughly.

Apriori-like [Agrawal and Srikant, 1995]. This strategy is based on a breadth-first
search (BFS) for exploiting the monotonicity property. The algorithms consist of
a continuous loop that does 1) a candidate generation followed by 2) a support
checking phase for each generated candidate. We highlight especially the GSP
algorithm [Srikant and Agrawal, 1996].

Vertical format database [Zaki, 2001]. This second strategy was created by Zaki and
is composed by algorithms that keep in memory only the information required to
calculate the support in a sequence by using a database in vertical format. The first
and most representative algorithm that belongs to this strategy is SPADE [Zaki,

19

2001]. In this algorithm, both breadth-first and depth-first search (DFS) can be
used.

Pattern growth approach [Han et al., 2000]. This last strategy was introduced by
Han et al. and it is consist of algorithms that obtain the whole FS without making
a candidate generation phase. They use a DFS and a technique called “database
projection” based on a divide and conquer strategy to achieve the final results. The
most representative algorithm in this group is PrefixSpan [Pei et al., 2004].

Apriori-like

This strategy was directly inherited from IDM [Agrawal et al., 1993], and concretely,
the algorithms AprioriAll and Apriori-Some were the first algorithms to face the SDM
problem [Agrawal and Srikant, 1995]. The same authors published in 1996 an improved
algorithm called GSP (Generally Sequential Patterns) [Srikant and Agrawal, 1996], which
also searched for patterns with other extra constraints as temporal windows and minimum
and maximum gaps.

In this survey, we choose the GSP algorithm to summarize the phases executed by the
Apriori strategy. GSP, as every Apriori-based algorithm, carries out a BFS. The algorithm
starts obtaining the frequent 1-sequences (F1) while it reads the input database. From F1,
the candidate 2-sequences (C2) are created by combining 1-sequences. Then, the algorithm
counts the support of each candidate 2-sequence, and removes every infrequent candidate
sequence. These steps are recursively repeated until there are no more candidates or none
of the is frequent.

In more detail, for a k-step the two main phases in GSP are:

1. Candidate generation. This phase is mainly based on the monotonicity property
and consists of two steps:

(a) Generation of the set of candidate k-sequences. Given a set of frequent (k-1)-
sequences Fk−1, the next candidate level Ck is obtained by joining elements in
Fk−1. Two sequences α1 and α2 in Fk−1 will generate a new element in Ck if
dropping the first item iα1 in α1 and the last item iα2 in α2, the remaining
parts α′

1 and α′
2 are exactly the same sequence (α′

1 ⪯ α′
2 and α′

2 ⪯ α′
1).

(b) Pruning phase. After obtaining Ck, the algorithm executes a pruning step to
try to reduce the number of elements of Ck. Considering the monotonicity
property, for each frequent element β in Ck all its k − 1 (k − 1)-subsequence
must also be frequent. Therefore, if we can find a (k − 1)-subsequence which
is not in Fk−1 then it can be safely removed because it cannot be frequent.

2. Counting the candidate support. Once Ck has been generated, we need to check
what patterns are really frequent. To this end, GSP goes through the entire input
database. So, for each sequence s in the database GSP checks what candidates are
subsequences of s and increases the candidate counter. In the end, we keep in Ck
only the frequent elements and prune the infrequent ones, or in short, we get Fk.

20

After GSP, other several Apriori-based algorithms [Masseglia et al., 1998; Antunes
and Oliveira, 2004; Guil et al., 2004] were proposed to speed up the execution time.
Most of them tried to get a smaller Ck in the candidate generation phase, or, especially, to
accelerate the counting of the support by means of tree structures or making the database
scan in a different way. Despite of these improvements, Apriori-based algorithms have
several inherent drawbacks that are independent of any optimization techniques:

• It performs multiple scans of the database. An Apriori-based algorithm has to repeat
both candidate generation and counting of the support steps exactly k times, where
k is the length of the biggest frequent sequence. So, if the algorithm works with a
low support or deals with databases where, on average, the sequences have a lot of
different transactions, that k number will be higher.

• It needs to do a BFS. To find the smallest Ck and to avoid repeating database scans,
the algorithm needs to keep in the memory the whole k-level of candidates. With
some databases it is not possible to keep in the memory the whole Ck.

• It generates many useless candidates. Even though the algorithm executes a pruning
step in the candidate generation phase, the pruned Ck contains a lot of sequences
which will not be frequent. Therefore, their generation is time-consuming (when the
supports are calculated) and, at the end, they are removed from Ck to Fk. Ideally,
the algorithm should only generate the candidates which will be frequent.

Vertical Database Format

This strategy emerged with the SPADE algorithm [Zaki, 2001] by M. Zaki. The main idea
in this new strategy had been previously introduced by the Eclat algorithm [Zaki, 2000a]
for IDM. In order to overcome the main drawbacks in the Apriori-based algorithms, Zaki
proposed a strategy that uses a vertical input database, that could be executed both with
a DFS and BFS, and that was capable of obtaining the whole FS without making several
scans of the input database. Besides, the algorithm can partition the search space in
different pieces and solve them separately. This algorithm was the seed for the Vertical
Database Format strategy, and after it, some other algorithms were proposed [Leleu et al.,
2003; Gouda and Hassaan, 2011; Ayres et al., 2002; Gouda et al., 2010].

Since that all of algorithms for this strategy have a similar behaviour, we focus in the
SPADE algorithm. SPADE uses an input database with a vertical format, where each
item is associated with the sequences and transactions where it appears (see Figure 2.4).
From these items with that vertical format, SPADE creates supersequences, all of them
also with vertical format. This new format has several advantages. On the one hand, it
makes possible to easily count the support of each sequence, and on the other hand, it
allows an efficient way to create a common supersequence from two candidate frequent
sequences.

If we go deeper into the main points in SPADE we can highlight:

Decomposition of the original lattice. Zaki defined an equivalence relation between
sequences based on the idea of the above mentioned meet-semilattice (see Section

21

Figure 2.4: IdLists for the frequent items in the example database.

2.2). These equivalence relations are based on sequence prefixes, so that, two se-
quences α and β belong to the same equivalence class [γ] if and only if γ is a prefix
of α and γ is also a prefix of β. With this definition, each equivalence class defines
a sub-lattice that can be processed independently, and hence, if SPADE works with
huge databases, it can partition the original search space into smaller pieces. Ac-
cording to the example, in Figure 2.5 we can see a decomposition of the original
lattice in four smaller sub-lattices (induced by the equivalence classes [A], [B], [C]
and [D]). In Figure 2.6 the last equivalence class [D] is also partitioned into three
equivalence classes ([(D)(A)], [(D)(B)] and [(D)(F)]).

IdLists. Each pattern p is associated with a list (called IdList and denoted by L(p))
where each entry is composed of a pair (Sid, T id). The IdList contains all the input
sequence (Sid) and transaction (Tid) identifiers where p appears. By means of L(p),
the most important tasks in the algorithm can be easily performed:

1. Candidate generation. Also based in the monotonicity property, if two frequent
k-sequences α and β share the same (k − 1)-prefix γ (therefore they belong to
the equivalence class [γ]), they generate candidate (k+1)-sequences by means
of temporal joins in their IdLists. SPADE distinguishes between two types of
temporal joins:

(a) Itemset extension. It corresponds to the temporal join between two fre-
quent k-sequences α = (⟨p⟩ii) and β = (⟨p⟩ij) in [p], where ⟨p⟩ is a k-
sequence and ii, ij are items in I, with ii ̸= ij, such that it generates a
candidate which is the result of adding the last item in β, (ij), to the
last transaction of α. The resulting IdList L((⟨p⟩iiij)) is composed by the
common entries in L((⟨p⟩ii)) and L((⟨p⟩ij)).

(b) Sequence extension. It occurs when two patterns α = (⟨p⟩(ii)) and β =
(⟨p⟩(ij)) (α, β ∈ [p]) generate a pattern γ = ⟨p⟩(ii)(ij) that is the result
of including the last item of β (ij) in a new transaction after those trans-
actions in α. The resulting IdList L(⟨p⟩(ii)(ij)) consists of, for each Sid,
the entries in β whose Tid is higher than any of those in α.

Zaki describes three different possibilities to generate candidate (k+1)-sequences
from two frequent k-sequence:

22

Figure 2.5: Division of example into four equivalence classes.

• Join of itemset extension with itemset extension: they generate another
candidate itemset extension, e.g. (AB) and (AC) generate the candidate
(ABC).

• Join of itemset extension with sequence extension (or vice versa): they
generate a candidate sequence extension, e.g. (D)(BF) and (D)(B)(A)
generate the candidate (D)(BF)(A).

• Join of sequence extension with sequence extension: if both sequences
are just the same, the result is another sequence extension, e.g. (F)(A)
with itself produces the candidate (F)(A)(A). Otherwise both frequent k-
sequences produce two sequence extension and one itemset extension, e.g.
(D)(A) and (D)(B) generate the candidate sequence extensions (D)(A)(B)
and (D)(B)(A) and the itemset extension (D)(AB).

2. Support counting. For each L(p), its associated support is the count of different
Sid values contained in it (see Figure 2.4).

Besides we can also do a pruning step to remove those candidates that contain
infrequent subsequences to avoid temporal joins in candidate sequences potentially
infrequent.

Different search strategies. Since the support counting can be done by means of
IdLists and the original lattice can be divided into sub-lattices, it is possible to

23

Figure 2.6: Division of example into four equivalence classes. Besides, the equivalence
class [D] is also divided into three equivalence classes.

use both a BFS and DFS. The advantage of BFS over DFS is that it has more in-
formation available for pruning. On the other hand DFS requires less main-memory
than BFS. While BFS needs to keep all of the equivalence classes in two consec-
utive levels, DFS needs to keep only the intermediate IdLists for two consecutive
equivalence classes.

In [Zaki, 2001], Zaki recommends to run SPADE with DFS and without pruning. The
main motivation is due to the simplicity of the temporal joins in the IdList, and because
searching for an infrequent sequence in the (k−1)-subsequences in the pruning step takes
longer than doing the temporal join directly.

Since most of the time of the algorithm is spent in temporal joins, several algorithms
were proposed to speed up the temporal join operations. Among them, D-SPADE [Gouda
and Hassaan, 2011], SPAM [Ayres et al., 2002] and Prism [Gouda et al., 2010], are the
most important ones. Without going into detail with any of them, we summarize how
these algorithms improve SPADE:

1. D-SPADE [Gouda and Hassaan, 2011]: is an algorithm especially useful with dense
databases. Since SPADE IdLists have the time occurrence for every sequence and
in a dense database every item appears in almost all transactions of each sequence,
the IdList representation is highly inadequate since it takes a lot of memory. There-
fore, in this kind of database it is better if we register the no occurrence time for

24

a sequence. In this way, the IdList representation is much smaller since the no
occurrences are no frequent.

2. SPAM [Ayres et al., 2002]: this algorithm proposes a new IdList representation to
speed up the temporal joins. To achieve this, the authors represent IdLists by means
of bitmaps and the temporal joins operations are reduced to basic logic operations.
The main drawback for this approach is that it requires more memory than SPADE
to allow very fast temporal join operations.

3. Prism [Gouda et al., 2010]: this algorithm also tries to speed up the temporal joins
by means of basic operations. In this case, they propose an innovative “primal block
encoding” by using the first n prime numbers to represent the IdLists and doing
the greatest common divisor operations successive times (whose results are kept in
a lookup table). Unlike SPAM, Prism takes much less memory than SPADE and
its execution is even faster.

The Vertical Database Format algorithms obtain a low execution time and good mem-
ory allocation. The only drawback that remains in each different implementation of this
strategy is the candidate generation. While the counting of support is done quickly, they
generate a large number of candidates that are finally discarded. With huge databases
this candidate generation can be time-consuming.

Pattern Growth

In 2002 Han et al. published the first version of the PrefixSpan algorithm [Pei et al.,
2004]. This algorithm was an evolution of FreeSpan [Han et al., 2000], which came from
the idea of the FP-Growth algorithm [Han and Pei, 2000] in IDM. This strategy is based
on dividing the database into pieces according to prefixes. Thus, applying the divide and
conquer principle, they avoid generating candidates and the algorithm finds the frequent
sequences directly in the successive prefix-based partitions (also known as projections) of
the database.

In this survey we summarize how this strategy works through PrefixSpan algorithm
that consists of three steps:

1. To find the frequent items or 1-sequences in the original database D.

2. To divide the search space into different projected databases according to the number
of frequent items. Each partitionDα is the projection of the original databaseD with
the prefix α, being each projection the suffix in sequence s ∈ D that is associated
with the prefix α.

3. Recursively with a DFS, the algorithm finds the whole set of frequent items in Dα.
For each frequent item i in a projected database Dα, another projected database
Dβ is obtained, being the new prefix β the concatenation between the previous one
α and the frequent item i, β = α · i.

The best point for the Pattern-growth strategy is that it obtains the whole set of
frequent sequences without generating candidates. Furthermore, with a depth-first search

25

and due to the fact that the projected databases keep shrinking, PrefixSpan has a low
use of memory. However, since the major cost is the construction of projected databases,
when databases have a high number of transactions by sequence the same item can be
projected many times in the same sequence. This phenomena leads to a great number of
projections, and therefore a big memory allocation, and a slower execution. In order to
avoid this drawback, in the creation of database projections, instead of making physical
projection in the memory, the authors proposed to use pointers to refer to the sequence
projections. These projections are referred as pseudo-projections. Therefore, a projected
database is a set of pointers to sequences and each pointer refers to an item of a sequence,
denoting the offset of it in the corresponding projected sequence. In Figure 2.7 we can
see an example of pseudo-projections for several projected database.

The main advantage for this strategy is the efficient management of the memory
when it works with pseudo-projections. Another advantage is that this strategy is a
good starting point for finding other possible patterns with special properties, as we
will see later. After PrefixSpan, other algorithms such as MEMISP [Lin and Lee, 2005]
or LAPIN [Yang et al., 2007] were proposed. While the first tried to make optimized
pseudo-projections, the second algorithm used specific characteristics of the sequential
databases to obtain a better runtime.

2.3.2 Algorithms for mining quantitative patterns

All the issues discussed in the previous subsection remain when we are interested in mining
quantitative patterns. Unfortunately, since there can potentially be infinite relations
as a quantitative relation has a temporal distance associated, and the domain of that
distance is infinite. This fact makes both the hyperlattice and the meet-semilattice far
more complex since we have many more relations. Fortunately, in practice the temporal
distance associated with relations is bounded by the structure of the database and the
longest distance between the first and the last transaction in a sequence.

However, all the main definitions and properties present in qualitative pattern mining
also appear in quantitative mining. Therefore, the same strategies can be applied to
this mining, but the subsequence checking and the candidate generation steps have to be
modified. Furthermore, the mining of the frequent 2-patterns become now crucial in some
strategies since we need to know all the different temporal distances that can extend the
different frequent patterns in order to get largest frequent supersequences.

In regards to algorithms for mining quantitative patterns, there only a few that con-
sider them. These algorithms extend sequential patterns to capture durations between
elements in the sequences. Besides, most of them are based on Pattern Growth strat-
egy and little effort has been made in developing algorithms based on Vertical Database
Format strategy.

In this Subsection we give a brief summary of some of the previous works for mining
quantitative point based patterns. These algorithms are:

[Yoshida et al., 2000]. Yoshida et al. propose a notion of temporal sequential called
delta pattern, and integrate sequences with temporal constraints in the form of

bounding intervals. Delta Patterns have the form A
[ti,tj]−−−→ B, denoting a sequential

pattern A → B that frequently occurs in the data set with transition times from A

26

Figure 2.7: Pseudo projections in PrefixSpan for the example database.

to B that are contained in [ti, tj],∀i ≤ j. All Delta patterns are found by means of
an Apriori-like algorithm that makes a clustering step in every k level.

I-Apriori and I-PrefixSpan [Chen et al., 2003]. These algorithms are both the nat-

27

ural extensions from the native algorithms Apriori and PrefixSpan. Now, both al-
gorithms change their ways of generating candidates. The problem of this work is
that both algorithms do not process the temporal distances and give to the user the
responsibility of providing those temporal distances.

MisTA [Giannotti et al., 2006]. The authors propose to extend the sequence mining
paradigm to linear temporally-annotated sequences by making an annotation of a
duration t, in each transition A → B of every sequence. The resulting patterns

are found through a clustering step and are denoted by A
t−→ B. They use the

Pattern Growth strategy, and the algorithm uses a threshold in order to know if two
sequences are closed enough in temporal distance when they execute a subsequence
checking operation. In every projection made by the algorithm, a density based
clustering is executed in order to get the proper temporal distances.

QPrefixSpan[Nakagaito et al., 2009]. Nakagaito et al. proposed an algorithm de-
rived from the qualitative interval algorithm PrefixSpan, based on Pattern Growth
Strategy. The main contribution is that, in every extension of a pattern, it exe-
cutes a density-based numerical clustering in order to know the range of time in the
quantitative relations. However, this is an important overhead that emphasizes the
problems that normally appear in Pattern Growth algorithms.

As we can see, all the highlighted algorithms suffers from additional problems to those
that typically appears in the different strategies, which lead us to more complex algorithms
and slower executions.

2.3.3 Comparatives

When we compare the different strategies, in general terms, we can say both Vertical
Database Format and Pattern Growth strategies outperform Apriori strategy. This is
mainly due to the drawbacks appearing in that strategy, especially its necessity of making
several database scans.

The time execution of both strategies varies depending on the properties of the database
where the algorithms are applied. Pattern Growth shows good performance and scales
well in memory, especially with sparse databases or when databases mainly consist of
small itemsets, whereas when we deal with large dense databases that have large item-
sets, the performance of Vertical Database Format algorithms is better. In order to show
this last statement, we define the different properties that a sequential database can have
and that influence the algorithms execution. These different properties are: The number
of different items that exist in the whole database (N), the number of items per item-
set (T), the number of itemsets per sequence (C), and the number of sequences in the
database (D). We can see the correspondences between abbreviations and meanings at
the Table 2.1. We define the database density as the quotient δ = T

N
. The higher δ value

the more dense is the database.
We have used the well-known data generator provided by IBM to run SPADE, a Ver-

tical Database Format algorithm, and PrefixSpan, a Pattern Growth one, with different
configurations. In Figures 2.8 and 2.9 we can observe the behaviour of both SPADE and

28

Abbr. Meaning
D Number of sequences (in 000s)
C Average itemset in a sequence
T Average items in an itemset
N Number of different items (in 000s)
S Average itemsets in maximal sequences
I Average items in maximal sequences

Table 2.1: Parameters for IBM Quest data generator.

PrefixSpan when we vary the density and the number of itemsets. In Figure 2.8 we show
the running time of the algorithms with a different number of items (100, 500, 1000 and
2500 items) with a constant T = 20 value. Since for a database, the density grows either if
the numerator increases or the denominator decreases, the Figures have been obtained by
just varying the denominator. Besides, Figure 2.9 depicts the behaviour of the algorithms
when the number of itemsets changes between values of C ∈ {10, 20, 40, 80} while we keep
the density constant (δ = 20

2500
). We can see that PrefixSpan shows good results when

both density and the number of itemsets are low, but when a database is denser and C
parameter grows, we notice how SPADE outperforms PrefixSpan.

Figure 2.8: Scalability of the algorithms when the number of items increases.

The performed tests show that Vertical Database Format strategy behaves better for
general purposes. However, if we deal with sparse database with short itemsets, we can
use Pattern Growth algorithms instead.

The breadth-first search method of Apriori-like algorithms implies the necessity of
keeping on memory the whole candidate level, and this makes Apriori-like algorithms
the worst election, regarding the memory consumption. If instead, we consider Vertical

29

Figure 2.9: Scalability of the algorithms when we vary the C value.

Database Format algorithms executed in a depth-first way, the behaviour is much better
but the algorithm still needs to keep on memory all the information associated with
IdLists. However, Pattern Growth algorithms do not need to generate candidates (with
the pseudo-projection optimization) and they do not need to maintain on memory any
kind of information about patterns, what produces the better results in terms of memory
consumption.

2.3.4 Reduction of patterns

A typical problem in SDM algorithms is that when the support is decreased the number of
frequent patterns increases sharply. Especially when we work with big databases and with
very low supports, this problem becomes extremely limiting. This phenomena is known as
the pattern explosion problem and leads us to two main problems: problems with memory
and a long time generating too many meaningless patterns. Regarding the first problem,
when the algorithm is executed with a very low support the runtime is longer and much
more memory is needed, and even sometimes it is impossible to complete the algorithm
execution due to the memory overflow. Besides, in regards to the second problem, even
when we can obtain results from the database with very low supports, it is too difficult
to make sense of these frequent patterns. Furthermore, there exist too many meaningless
and redundant patterns.

30

In order to solve these problems, several approaches have been considered. On the one
hand, a possibility is to search for patterns with some constraints. For instance, in some
contexts if an itemset appears too close or too far from another itemset, the resulting
pattern may not make sense. To avoid the search for these patterns some algorithms, like
GSP [Srikant and Agrawal, 1996] or SPADE (CSPADE) [Zaki, 2000b], allow the option
of establishing a minimum and maximum gap in the patterns. Since there are more
constraints, the algorithms generate shorter patterns and usually less patterns.

On the other hand, another approach consists of searching for patterns with additional
properties. In IDM several approaches have been studied [Bayardo and Agrawal, 1999;
Pasquier et al., 1999; Calders and Goethals, 2007; Boulicaut and Jeudy, 2001], being the
closed and maximal patterns the most widely used (see definitions 2.2.3 and 2.2.4). The
search for this kind of patterns has two benefits at the same time: a reduction of the
number of candidates, and a more compact output.

In IDM several algorithms like CHARM [Zaki and Hsiao, 2002], CLOSET [Pei et al.,
2000], DCI [Lucchese et al., 2004] have been proposed to find the closed itemsets, while
other algorithms like GenMax [Gouda and Zaki, 2005] find the whole set of maximal
itemsets. Despite the fact that FMS is smaller than both FCS and FS (as we saw in
Section 2.2), some information about the support is lost when it is used instead of them.
Nevertheless, FCS does keep that information and still represents the same patterns as
FS without the redundant ones.

Unfortunately, in SDM the problem of finding the closed set of patterns is more com-
plicated since an item can appear from few to many times in the same sequence depending
on the number of transactions. While in [Pasquier et al., 1999] the author defined a Ga-
lois connection that allows to identify the unique closed pattern that summarizes a set of
non-closed patterns, in the sequence domain this property is not accomplished, and Casas
Garriga redefined it in [Casas-Garriga, 2005]. Nevertheless some algorithms capable of
finding FCS have been developed, and even some techniques are proposed to summarize
in a better way the sequences in FCS by means of partial orders of closed sequences. We
summarize all these approaches in the next Subsection.

Algorithms

There are two approaches for obtaining FCS: 1) to modify the algorithms in order to
obtain only closed sequences, and 2) by means of a post-processing of the FS generated
by any algorithm. If we try to adapt directly the CHARM [Zaki and Hsiao, 2002] or
some another algorithm from IDM, we can see that many problems arise because of
having multiple transactions per sequence. Although a post-processing phase from the FS
(obtained by any algorithm) is possible, it would be very interesting to avoid generating
many redundant patterns while the algorithm is executed. Han et al. proposed some
algorithms [Yan et al., 2003; Wang et al., 2007; Tzvetkov et al., 2005] to find FCS among
which we briefly describe CloSpan [Yan et al., 2003] and Bide [Wang et al., 2007], both
based on the Pattern Growth strategy.

CloSpan [Yan et al., 2003]. It is based on combining the ideas of closed sequence and
projected database: if two different prefixes α and β (with α ≺ β) produce the
same projected database Dα = Dβ then both prefixes have the same support, and

31

hence, α is not a closed sequence and it can be safely pruned. The algorithm
uses an enumeration tree structure and when a non-closed sequence is found, the
algorithm, instead of generating that branch in the tree, links the subsequence with
its supersequence. The algorithm considers two different situations: 1) backward
subpattern pruning and 2) backward superpattern pruning, showed in Figure 2.10.
The first pruning occurs when the algorithm finds a subpattern with the same
projected database as a superpattern previously generated, while the second pruning
is the opposite case, and it takes place when the algorithm finds a super-pattern of a
frequent sequence previously found. Since it is very inefficient to save the projected
database, the algorithm has a hash function indexed by the size of the projected
database and when two sequences α and β have the same size value and either α ⪯ β
or β ⪯ α some of backward pruning methods is applied.

Figure 2.10: Pruning methods of CloSpan.

Bide [Wang et al., 2007]. The main idea of Bide is to avoid maintaining the set of
sequences already mined. Most algorithms (both in IDM and SDM) have to keep
in memory the sequences already found to be able to decide whether a new se-
quence is closed. Bide proposed three steps: 1) forward-extension event checking,
2) backward-extension event checking and 3) backscan pruning. While the first two
steps are responsible for ensuring that the final set returned by the algorithm is only
composed of closed sequences, the third one prunes the search space, so as to avoid
mining many prefixes identified as non-closed.

Besides CloSpan and Bide, another algorithm called TSP has also been proposed
[Tzvetkov et al., 2005]. This algorithm introduces another different way to mine closed
patterns: instead of providing a minimum support, they provide a minimum number
of closed sequences with a minimal length, the algorithm tries to search for the closed
sequences that satisfy these constraints.

Casas-Garriga [Casas-Garriga, 2005] proposed a new way to consider the Galois con-
nection in SDM and she defined a post-processing step to form partial orders with closed
sequences obtained by an algorithm like CloSpan or Bide. These partial orders join sev-
eral closed sequences, providing a more reduced output with more meaningful patterns.
Casas-Garriga proposes three steps to obtain these partial orders :

1. To mine closed sequential patterns (e.g. by means of CloSpan or Bide).

2. To mine maximal conjunctive groups of non-redundant sequential patterns that are
observed in the same transactions.

3. To convert every group to a partial order, where each closed sequential pattern
detected in the first step is a path in the partial order.

32

To sum up, the approach of finding closed sequences is the most used in SDM to
reduce FS but even this does not solve the problem of having a lot of similar patterns
that are difficult to interpret by an expert. To improve this output closed partial order
can be created, but, so far, there only exists the Casas-Garriga post-processing approach,
which can have some limitations when it faces big outputs.

2.4 Time Interval data

The main motivation for introducing this kind of representations was due to the necessity
of representing the persistence of an event over a period of time. As we said in Section
2.1, there exist several representation capable of expressing relations between intervals.
The first representation was introduced by Allen [Allen, 1983]. Even though Allen’s
algebra was originally invented for studying temporal reasoning tasks, such as deriving
time intervals associated with temporal facts or the consistency checking, it has also been
widely used in temporal data mining.

As we could see in 2.2 Section, among the different approaches for representing interval
relations, Allen’s intervals algebra is the most widely studied and accepted one. The de-
fined thirteen relations RI = {before, meets, overlaps, starts, during, equals, finishes,
contains, started by, finished by, overlapped by, met by, after} such that given a pair of
intervals there exists only one possible interval relation between them. Figure 2.11 shows
the thirteen Allen’s relations. From now on we refer to each interval relation by means of
its short name as shown in Table 2.2.

Interval relation name short name
before <
meets m

overlaps o
starts s
during d
equals =

finishes f
contains c
started by s−1

finished by f−1

overlapped by o−1

met by m−1

after a

Table 2.2: Short names for interval Allen’s relations.

An interval can be described by means of two points: the temporal point when the
interval starts (beginning point) and the point when the interval finishes (end point).
These two points must be in a distance longer than 0 time units, since in a database with
interval data, each interval has a duration greater than zero. In the same way, we can

33

define the relations between intervals through point relations, and hence we can establish
a correspondence with the Allen’s relations, as it is shown in Figure 2.11.

Figure 2.11: Allen’s algebra relations.

Figure 2.12: Example of an Interval-based sequential database.

Some years later, Freksa [Freksa, 1992] proposed his semi-interval’s relations. Based on
disjunction of Allen’s relations, Freksa defined eleven relations considering only a concrete
point of the interval, either the beginning or the end.

Reich et al. [Reich, 1994] extended Allen’s algebra to also include points. While
Vilain [Vilain, 1982] had proposed the same issue, adding thirteen new relations, some
years before, Reich only needed to add five new relations to consider each possible relation
between points and intervals. Recently, Roddick [Roddick and Mooney, 2005] proposed
to consider midpoints in Allen’s relations in order to get more expressive patterns. With
this change the thirteen original relations become forty nine relations.

Finally, Moerchen [Mörchen, 2006] introduced the TSKR representation, considering
only the coincidences of different intervals and simplifying the representation.

Although we can establish relationships between a point and an interval as Meiri
proposed in [Meiri, 1996] (note that a point is an interval where both beginning and end
points occur at the same time), most algorithms are interested in mining only intervals.
As an example, Figure 2.12 shows an interval database composed of four sequences.

Regarding quantitative representation, the standard point representation shows the
temporal distance that exists between an event and the following one. This representation
can be also used for quantitative interval representation taking into account the distance
between the interval boundary points (either the distances of a point interval respect to

34

another point of a different interval or the distance between the boundary points in a
same interval). Of course, a combined point and interval representation is also possible
because we do not distinguish between normal points or boundary points.

Since we will use Allen’s relations, when we are interested in mining quantitative in-
terval patterns we need to take into account the temporal distance in the Allen’s relations.
Figure 2.13 shows the Allen’s relations with the temporal distances associated with them,
when it is needed. We modify every relation such that we add the temporal distance
between the temporal occurrence of the first interval end point with respect to the second
interval beginning point. Besides the temporal distance, we need to consider the interval
duration in order to express the different quantitative patterns. Note that, in the quanti-
tative relations of Figure 2.13 we add the temporal distances just in some relations that
need them. Thus, {<, o, c} relations need that temporal distance since we need two know
the concrete distance that there exists between the intervals immersed in those relations,
whereas {m, s, f−1,=} do not need such temporal distance because we can exactly order
the intervals that are related. For instance, if b[2] < [5] a[3] we know that b occurs five
time units before a whereas if b[2] s a[3] we know that the beginning of both a and b occur
at the same time since that is exactly what starts relation expresses.

When we use quantitative relations instead of qualitative ones, we find a number of
quantitative patterns represented by the same qualitative pattern. For example, in the
database shown in Figure 2.1, we can see that the qualitative pattern s = ⟨(b)⟩ is frequent
since it occurs at the sequences (1,2,3 and 4); however, if we are interested in quantitative
sequences, we find two sequences s1 = ⟨(b[2])⟩ and s2 = ⟨(b[3])⟩, appearing s1 at sequences
2 and 4, whereas s2 occurs at sequence 1 and 3.

2.4.1 Allen’s algebra and pattern representation

When using Allen’s relations for data mining, it is usual to consider only the subset
of direct relations and the equals relation, RIreduced = {<,m, o, s, f−1, c,=}, ignoring the
inverse relations>,m−1, o−1, s−1, f, d. For example, if an eventA is overlapped by another
event B, (A o−1 B), we can instead say that B overlaps A, (B o A). While with point
data we could establish an order in the “point sequence”, with interval data this is not so
simple because each interval has to be related with all of the rest of intervals, otherwise
some ambiguity can exist. For instance, in the point approach we could infer that if A
before B and B before C, then A before C (A < B < C); while if in the interval approach
we have that A overlaps B and B overlaps C, (A o B o C), several relations can occur
between A and C, as it is shown in Figure 2.14.

Just with the current representation we could start to deduce qualitative or quanti-
tative patterns by means of Allen’s relations, depending on which we are interested. For
instance, in the second sequence of the shown database, s2 = ⟨(1, ⟨a, 2⟩)(4, ⟨b, 2⟩⟨f, 3⟩)
(8, ⟨g, 0⟩)⟩ we can observe the Allen qualitative relations a < b, a < f , a < g, b s f , b < g
and f < g; or the quantitative relations a[2] < [1] b[2], a[2] < [1] f [3], a[2] < [5] g[0],
b[2] s f [3], b[2] < [2] g[0] and f [3] < [1] g[0]. From those relations, we could start to
create longer patterns and, step by step, to obtain the whole pattern set. But, in order to
have a simpler and more readable representation, we change this representation for other
equivalent ones that make us easy the task of mining frequent patterns.

Another difficulty compared to the point based representation is the high cost of

35

Figure 2.13: Conversion from Allen’s intervals to boundary point sequence.

checking whether a sequence is a subsequence of another one. In order to overcome this
problem some authors have proposed several representations of the relations that facilitate
this operation:

1. Hierarchical patterns [Kam and Fu, 2000]. In this approach the authors make
a representation similar to the point-based data approach, i.e. they establish a
sequence of intervals instead of relating each interval with all of the others explicitly.
They combine two intervals with a temporal relation to build a new interval. This
resulting interval is also combined with another single interval and so on. At last,
there is a long interval composed of a combination of intervals. The problem is that
this representation is ambiguous since different patterns are represented with the
same hierarchical pattern. In Figure 2.14 we show how these patterns are built and
some of the problems that this representation can have.

2. Nested representation with counters [Patel et al., 2008]. The Patel et al.’s
proposal consists of making only a simple sequence by linking an interval with those
that occur after it. Actually, it is the same representation as the above mentioned
Hierarchical patterns, and, in order to avoid the ambiguity, now five counters are
used to show the number of contains, finished by, meets, overlaps and starts relations
that there exist in the pattern. Figure 2.15 shows an example. Now, to represent
k intervals we need these k intervals and 5 counters between each pair of intervals,

36

Figure 2.14: Hierarchical representation.

that is, 5(k− 1) counters. The main problem here is that this representation is not
very readable.

Figure 2.15: Nested representation.

3. Triangular matrix representation [Höppner, 2001]. Hoeppner proposed a ma-
trix to represent every relation between all intervals as shown on the top picture of
Table 2.3. An interval A placed in a row i has an interval relation with an event B
placed in the column j; we call RAB to that relation. Since, in the matrix, an event
has an equals relation with itself and two events A and B have two relations between
them, the direct relation from A to B and the direct relation from B to A (being
the latter the inverse of the former relation), we can avoid the use of the relations
highlighted in dark in the upper table of Table 2.3. Therefore, for k intervals there
are k(k−1)

2
relations in the triangular matrix such as shown in the bottom table in

Table 2.3. We call simplified matrix to this approach, and it is a good option to
represent the pattern with all its relations in a compact and non-ambiguous way.

4. Sequence of interval boundaries [Wu and Chen, 2007]. Wu and Chen represent
each interval with their boundary points, i.e. beginning point (A+) and end point
(A−). So, a pattern with k intervals is represented by a sequence of 2k boundary
points related between them with 2k − 1 point relations. Here, instead of having a
pattern composed of intervals with Allen’s relations, a pattern is built with points

37

A B C D E
A RAA RAB RAC RAD RAE

B R−1
AB RBB RBC RBD RBE

C R−1
AC R−1

BC RCC RCD RCE

D R−1
AD R−1

BD R−1
CD RDD RDE

E R−1
AE R−1

BE R−1
CE R−1

DE REE

B C D E
A RAB RAC RAD RAE

B RBC RBD RBE

C RCD RCE

D RDE

Table 2.3: Triangular Matrix structure.

and their relations. This kind of patterns has the constraint that a pattern with an
incomplete interval is not correct. Thus, all the intervals have to be properly trans-
lated. This representation is more compact than the triangular matrix approach
and it is also non-ambiguous. Figure 2.16 shows an example of this representation
for a sequence of four interval events.

Figure 2.16: Boundary points representation.

5. SIPO patterns (Semi Intervals Partial order) [Mörchen and Fradkin, 2010].
Moerchen and Fradkin proposed this representation as a sequence of interval bound-
aries without any constraint. Therefore, in these patterns, the intervals can be in-
complete, appearing only its beginning or the end point. With this approach we
can build patterns that represent partial orders with less constraints that in other
approaches. Figure 2.17 shows both an example of Semi-interval pattern and a
posterior partial order inferred from three Semi Interval patterns.

2.4.2 Algorithms for qualitative interval patterns

All the issues discussed in the point data algorithms (see Subsection 2.3.1) are still present
when we want to mine interval patterns. But now, for this case, both the hyperlattice

38

Figure 2.17: SIPO representation.

and the meet-semilattice are quite more complex since now we have seven direct relations
({<,m, o, s, f−1, c,=}) instead of two direct relations ({<,=}). Anyway, all the same
strategies can be applied to interval mining. However, only a few algorithms have been
develop for mining interval temporal data, and they have to deal with two main difficulties
originated by the complexity of the patterns: a higher amount of candidate patterns and
a more complex subsequence checking process.

For instance, Figure 2.18 shows an outline about how an Apriori-based algorithm for
the interval database of our example could work. In that figure we consider a min support
of 2 and we do not take into account the pattern representation used by the algorithm
since the main goal here is to focus on the complexity for the algorithm in a general way.
Note the high number of candidate sequences generated. For the set of 2-candidates C2
any relation is possible between two intervals, e.g. if A and B belong to the set of frequent
intervals L1 we have thirteen candidates, A < B, A m B, A o B, A c B, A s B, A f B,
A = B, B < A, B m A, B o A, B s A, B f A, B c A. Proceeding in the same way, 201
candidate 2-sequences are identified, and then the algorithm checks their support to get
only the frequent ones. Once we have the set of frequent 2-sequences L2 we can combine
candidates in a similar way as GSP does. The problem in this step is that with two
frequent 2-sequences it is possible to create several candidates. For example, from the
frequent 2-sequences A o B and B o C we can create the sequence A o B o C but, since
the Allen’s algebra establish relations between all the intervals, we do not know what is
the relation between intervals A and C. The simplest approach is to assume any relation
between A and C and later discard those infrequent ones.

In [Campos et al., 2007] the authors proposed a better solution and this consists of
applying temporal reasoning to generate only those candidate whose relation is temporally
consistent. With this assumption, from A o B and B o C there exist only three different
possibilities: A o B o C ∧A o C, A o B o C ∧A m C and A o B o C ∧A b C. Using this
option, only 25 candidate 3-sequences are found. Afterwards the algorithm executes a
pruning step and checks the support of all the candidates of C3, and it repeats the Apriori
process until the end. Note that an efficient pattern representation becomes crucial for
the support counting and for the pruning step. On the one hand, the operations have

39

to be fast enough to be worthwhile doing temporal reasoning rather than generating all
possible combinations of candidates. On the other hand, in the support counting and in
the pruning steps, we continuously do the subsequence checking and this operation must
be as fast as possible, or otherwise the algorithm becomes very slow and the pruning
phase it is not worthwhile.

Figure 2.18: An Apriori-like algorithm with interval data.

Some algorithms have been proposed to face to SDM with interval data [Kam and
Fu, 2000; Höppner, 2001; Papapetrou et al., 2005; Winarko and Roddick, 2007; Campos
et al., 2007; Wu and Chen, 2007; Patel et al., 2008; Moskovitch and Shahar, 2009; Wu and
Chen, 2009; Chen, 2010; Chen et al., 2011]. In this survey we want to highlight the more
interesting among all of them and we classify them into one of the different strategies
mentioned above in Section 2.3. We will overview the Apriori-based algorithms [Cam-
pos et al., 2007] and IEMiner [Patel et al., 2008], the H-DFS [Papapetrou et al., 2005],
Karmalego [Moskovitch and Shahar, 2009] and HTPM [Wu and Chen, 2009] algorithms
based on the Vertical Database Format, and Armada [Winarko and Roddick, 2007], TPre-
fixSpan [Wu and Chen, 2007], CTMiner [Chen, 2010] and CEMiner [Chen et al., 2011]
algorithms which follow the Pattern Growth strategy. Among these algorithms, those
based on Pattern Growth strategy [Chen, 2010; Chen et al., 2011] seem to obtain better
results.

40

A common characteristic in all the algorithms is that the use of more expressive
patterns and a larger number of relations than in the standard point based sequential
algorithms converts the scalability into a key issue. This scalability will be reflected in
the search strategies, pattern representation, the candidate generation, the counting of
support and the pruning methods used in the algorithms.

Apriori-like algorithm

Campos et al. [Campos et al., 2007] proposed an Apriori-like approach based on a Triangu-
lar Matrix representation (see Section 2.4.1). The main points exposed in the algorithms
are:

• They mine constraint networks using temporal relations.

• The method used like pruning consist of making a consistency checking.

The main advantage of this algorithm is the good expressiveness for their patterns and
its pruning power. However, since the pruning method is quite inefficient, the algorithm
becomes quite slow.

The IEMiner [Patel et al., 2008] algorithm proposed by Patel et al. introduced the
nested representation with counters previously mentioned (see Section 2.4.1) that allows
them to speed up the subsequence checking operation, improving the pruning and support
counting phases. The main contributions of the algorithm are:

• In the candidate generation they define the concept of dominant interval, i.e. the
interval whose end occurs in the latest time. The algorithm combines a frequent
k − 1-sequence α with a frequent 2-sequence β to build a candidate k-sequence γ,
where the first interval in β has to be the dominant interval in α. What is more,
they maintain the set of frequent 2-pattern up-to-date, i.e. when they create the
candidate k-sequences Ck+1 the 2-pattern chosen must occur in at least k−1 frequent
k-patterns.

• In the support counting phase, the algorithm reads every input sequence only once
and maintains a list of possible candidates that can be covered. To that end, the
algorithm uses two lists:

1. One list to control active intervals. An interval is active if it is not ended in
the specific time considered by the support checking. An active interval can
have any relation with a new interval except for the “before” relation.

2. Another list to control passive intervals. An interval is passive if it is already
ended in the specific time considered by the support checking. A passive in-
terval can only have a “before” relation with the newer intervals found.

The main advantage of this algorithm is that it has a good pruning power, while as
drawbacks the algorithm has the typical problems of Apriori-based methods, where the
most limiting one is the necessity of reading several times the original database to count
the support of every Ck.

41

Vertical Database Format

Papapetrou et al. [Papapetrou et al., 2005] proposed three algorithms based on the
Vertical Database Format strategy that were essentially the same except for the way they
explore the space search. The authors made BFS, DFS and Hybrid searches (called H-
DFS), being H-DFS the fastest one. This search consists of exploring the first two levels
in a BFS and from there the algorithm continues with a DFS.

H-DFS uses the same representation as IEMiner and it only considers five Allen’s rela-
tion (they do not take into account the starts and finished by relations). The algorithm
also uses an enumeration tree in order to factorize the patterns discovered. Two main
changes are done with respect to SPADE:

• In the candidate generation the algorithm joins a frequent k − 1-sequence with
a frequent interval (1-sequence). Besides, the algorithm does not use temporal
reasoning. Therefore all of possible combinations are developed, creating a very big
candidate set Ck. In order to reduce this big Ck, a pruning step is executed, checking
if there exists any non-frequent k − 1-subsequence in other branches previously
generated.

• The IdLists now have to include information about intervals. So, for each IdList,
besides the sequence and transaction identifiers (note that the Tid is the start time
for the interval), they add the end time for the interval so as to check whether each
possible temporal relation is present.

Later in 2009, Moskovitch et al. proposed the Karmalego algorithm [Moskovitch and
Shahar, 2009]. The main idea of this algorithm is almost the same as in H-DFS algorithm,
but Moskovitch takes the idea of [Campos et al., 2007] and adds temporal reasoning to the
candidate generation phase in order to reduce the candidate sets. Karmalego works very
similar to H-DFS: it uses an enumeration tree and the same type of IdLists, it generates
the first two levels of frequent patterns with BFS and from there it goes on with DFS.
The main changes in Karmalego with respect to H-DFS are:

1. It uses eight Allen’s relations (they also use the started by relation, besides the seven
relations direct relations).

2. It uses a triangular matrix to represent the patterns (see Triangular matrix repre-
sentation in Section 2.4.1).

3. It generates k-candidates from a frequent (k− 1)-pattern and a frequent 1-pattern.
The algorithm works in a depth-first search way and its main contribution is that
they use the transitivity of temporal relations proposed by Freksa [Freksa, 1992] to
obtain the suitable candidates They use temporal reasoning to generate the lowest
possible number of candidates.

The advantages and drawbacks in this strategy are just the same as in the point data
case, but it this case the candidate generation and temporal join operations are more
complex. However, the algorithm generates a huge amount of candidates and it does not

42

use any prune method to reduce the number of candidates, leading the algorithm to have
a quite slow counting of support phase.

Finally, HTPM [Wu and Chen, 2009] was developed for mining hybrid temporal pat-
terns from event sequences, which contain both point-based and interval-based events.
The main points of this algorithm are:

• The algorithm mines both points and intervals at the same time.

• Despite most of the Vertical Database Format algorithms are executed in a DFS
way, HTPM executes a BFS in order to implement a pruning method

• Both steps, candidate generation and counting of support, are merged in a same
method in the algorithm.

As an overall assessment of the algorithm, although it does not scan several times the
database, the breath-first search way that the algorithm executes can lead it to memory
overflow.

Pattern Growth like algorithms

TPrefixSpan[Wu and Chen, 2007], Armada[Winarko and Roddick, 2007], CTMiner [Chen,
2010] and CEMiner [Chen et al., 2011] are the four most interesting algorithms for tem-
poral interval data which belong to the Pattern Growth strategy. While TPrefixSpan,
CTMiner and CEMiner are based on the PrefixSpan [Pei et al., 2004] algorithm, Armada
is based on the Memisp algorithm [Lin and Lee, 2005]. We summarize the main changes
added to these interval algorithms with respect to a normal algorithm that follow the
Pattern Growth strategy:

Armada [Winarko and Roddick, 2007]. This algorithm uses a triangular matrix to
represent patterns. Armada maintains the occurrence time of the sequence of inter-
vals for the prefix used in each pseudo-projection (called index set in Memisp [Lin
and Lee, 2005]). After that, the algorithm searches for the frequent intervals in the
projected database, taking into account the relation of each new interval with every
component in the prefix.

TPrefixSpan [Wu and Chen, 2007]. This algorithm uses a sequence of interval bound-
ary points as pattern representation (see Subsection 2.4.1). The definitions of prefix,
suffix and database projection are more complex than in the original algorithm. The
main overhead takes place when the algorithm finds a frequent interval within a pro-
jected database and there is not only one single combination between the prefix for
the projected database and the frequent item just found.

CTMiner [Chen, 2010]. This algorithm for mining temporal patterns is described by
a representation based in the interval coincidences inspired in the TSKR represen-
tation. The algorithm uses some pruning methods to reduce the search space and
mines the different interval coincidences and it composes the different frequent pat-
terns. CTMiner is also capable of mining both point and interval events through a
single algorithm.

43

CEMiner [Chen et al., 2011]. This algorithm, capable of mining both points and in-
tervals, also uses a sequence of interval boundary points as pattern representation
and translates every interval to points. Then, it mines the frequent patterns directly
in points, discarding those pairs of points that do not belong to the same interval.
Actually, CEMiner simulates a Bide algorithm, thus the outcome corresponds to
the closed frequent patterns.

The drawbacks of these algorithms are the same as in the point data case, but the
algorithms for the interval approach are more complex due to the overhead added by the
number of Allen’s relations.

2.4.3 Algorithms for quantitative interval patterns

As in the point data case, all the issues discussed in qualitative interval algorithms re-
main when we mine quantitative interval patterns. As before, since there can potentially
be infinite relations as a quantitative relation has a temporal distance associated, and
the domain of that distance is infinite. Therefore, both the hyperlattice and the meet-
semilattice are far more complex because we have many more relations. Fortunately, in
practice the temporal distance associated with relations is bounded by the structure of
the database and the longest distance between the interval appearing in the first and the
last transactions in a sequence.

Since the problem of mining the frequent quantitative interval mining is quite similar to
the qualitative version, the same strategies can be applied. However, both the subsequence
checking and the candidate generation steps have to be modified. Furthermore, the mining
of the frequent patterns of length 2 become now crucial in some strategies since we need to
know all the different temporal distances that can extend the different frequent patterns
in order to get largest frequent supersequences.

Regarding to the different algorithms that have been developed for mining quantita-
tive interval patterns, only few works have been done. In particular, we highlight four
algorithms:

1. In QTempIntMiner [Guyet and Quiniou, 2008], the authors, from an Apriori
algorithm, use a density based clustering in order to find the quantitative patterns.
At every k level, the use a very expensive density based clustering that makes the
algorithm time-consuming.

2. In QTiPrefixSpan [Guyet and Quiniou, 2011], the same authors make a similar al-
gorithm but this time based on a Pattern Growth algorithm, concretely PrefixSpan.
As before, the use a very expensive density based clustering makes the algorithm
quite slower.

3. In QTPrefixSpan [Nakagaito et al., 2009], the authors propose an algorithm de-
rived from the qualitative interval algorithm TPrefixSpan, based on Pattern Growth
Strategy. QTPrefixSpan is capable of discovering quantitative patterns and its main
contribution is that, in every extension of a pattern, it executes a density-based nu-
merical clustering in order to know the range of time in the quantitative relations.

44

As before, this derived in an overhead in the original TPrefixSpan, and therefore
the algorithm is very slow.

4. Regarding the discovery of temporal relations, a better work was done in ASTP-
miner algorithm [Álvarez et al., 2013], where the authors define an Apriori algo-
rithm to search for quantitative patterns through a clustering technique to obtain
patterns of length 2. Then frequent patterns of length k are combined to build
candidate patterns of length k+1, and all the later candidates are generated from
the frequent 2-patterns. However, the algorithm is based in Apriori strategy and
has to make several database scans in order to count the support.

2.4.4 Comparatives

Regarding the experiments which compare the algorithms for temporal interval data, there
are not a lot of comparative studies. Anyway, the behaviours described in Subsection
2.3.3 are still maintained, but now there is an important overhead in each of the different
Algorithms.

In CEMiner work, this algorithm is compared to T-PrefixSpan, H-DFS, IEMiner and
CTMiner, obtaining better execution times than all of them. However, while several efforts
have been made implementing tuned algorithms in Pattern Growth strategy, little effort
has been made in developing algorithms based on Vertical Database Format Strategy for
mining interval patterns.

Summarizing, the behaviour of these algorithms must be similar to the correspondent
algorithms in Section 2.3 but these algorithms can be more or less overloaded depending
on the pattern representation and on the candidate generation.

2.4.5 Reduction of patterns

The reduction of interval patterns has not been widely studied so far. In principle, the
concepts of maximal and closed patterns could also be applied. The CEMiner algorithm
[Chen et al., 2011] depicted above, is based on Bide algorithm [Wang et al., 2007] and
it searches the closed patterns set. Besides this, Mörchen et al. [Mörchen and Fradkin,
2010] proposed the creation of intervals and semi-intervals partial orders based on the
idea of their previous work of Time Series Knowledge Representation (TSKR) [Mörchen,
2006]. The process can discover both points and intervals and is divided in three steps:

1. The authors translate the original database into boundary points (as in TPrefixS-
pan).

2. They extract the closed patterns (temporal points data) using either CloSpan [Yan
et al., 2003] or Bide [Wang et al., 2007]. They are interested in extracting those
frequent patterns composed by points, semi-intervals or intervals (the rest of algo-
rithms find only complete intervals). Even though they use that algorithm, they do
not explain in detail how the algorithm works, and they simply use it as a tool to
obtain results.

45

3. Finally, since all the closed patterns are composed by points (boundary points),
they apply the process proposed by Casas-Garriga [Casas-Garriga, 2005] to obtain
partial orders with closed sequences. The result is a set of partial orders composed
by boundary points, such that each partial order can have only points, semi-intervals
or intervals.

In the experiment sections of [Mörchen and Fradkin, 2010] the authors also obtain the
closed set of interval patterns applying a brute force algorithm and they do a study about
what patterns are more meaningful. According to the authors, in the studied databases,
the partial order representation with semi-intervals is more meaningful than the closed
interval patterns.

2.5 Conclusions

In this survey, we have presented a deep analysis of the different kind of algorithms,
for both qualitative and quantitative patterns, developed so far to discover the frequent
sequences in SDM.

To the best of our knowledge, there not exist any previous work that addressed a
strategy comparison depending on the database properties such as we have done in this
survey.

We have shown, in terms of comparison of the different strategies, that Vertical
Database Format is the fastest approach. However, for databases where, on average,
there are few transactions per sequence, the Pattern Growth strategy can be better.

Furthermore, we have shown the problems that emerge when we deal with quantitative
patterns. Besides, we have described the additional changes that we have to do in the
strategies in order to properly find quantitative patterns.

In the same way, we have also seen the problems that carry an algorithm implemen-
tation for interval mining. We have also exposed the typical problems that appear when
we search for these patterns and we have explained that the pruning step, normally used
in the Apriori-based and Vertical Database Format algorithms, gains much importance
in this case.

Finally, we have also seen the problem of the pattern explosion, and we have shown
some known solutions in the state-of-the-art to solve that problem in both the point and
interval cases.

46

Chapter 3

PaGAPIS and FaSPIP: Two New
Fast Algorithms for Mining Points
and Intervals Qualitative Patterns

In Chapter 2 we saw that Vertical Database Format algorithms show a better behaviour
when they deal with dense databases with long itemsets. Since most of the algorithms
for mining qualitative patterns with points and intervals events are based on PrefixSpan
algorithm, and its behaviour is derived from it, that idea motivates us design for an
algorithm based on the Vertical Database Format strategy.

To this end, we describe here the algorithms PaGAPIS and FaSPIP to address the
mining of qualitative patterns with both point and interval events. Both algorithms use a
boundary point representation. For these algorithms all the definitions given in Chapter 2
are used. However, each algorithm needs to add some specific definitions or descriptions.

The chapter is organized as follows. In Section 3.1 we define this representation used
for sequences and the basic operation between items. Sections 3.2 and 3.3 describe the
new algorithm for points and intervals based on Pattern Growth strategy and Vertical
Database Format strategy, respectively. An experimental and performance study is pre-
sented in Section 3.4, while a wide discussion about the behavioural differences of the
algorithms is given in Section 3.5. Finally, we provide our conclusions in Section 3.6.

3.1 Additional definitions for problem setting

Given an input sequence α = ⟨(t1, I1), (t2, I2), . . . , (tm, Im)⟩, where the itemsets may
contain both points and intervals, we are going to transform it into a sequence whose
itemsets only contain points. That is, an interval will be represented by its beginning
and end point. If a transaction contains an interval e with duration d and occurs at
time x, T = ⟨(t = x, e)⟩, we introduce in the new sequence two transactions, T ′ = ⟨(t =
x, e+), (t = x+d, e−)⟩; if a transaction contains a point e at time x, we introduce the same
transaction in the new sequence. This new sequence will also be ordered by time. Besides,
if an interval label appears more than once within a boundary sequence, we attach an
occurrence number to distinguish its multiple occurrences. For instance, the sequence
β = ⟨(t = 1, ⟨A, 3⟩)(t = 2, ⟨B, 3⟩)(t = 3, ⟨C, 5⟩)(t = 6, ⟨D, 0⟩)(t = 10, ⟨A, 2⟩⟨B, 3⟩)⟩,

47

with A,B and C being intervals and D being a point, is identified with the boundary
sequence βe = ⟨(t = 1, A1

+)(t = 2, B1
+)(t = 3, C+)(t = 4, A1

−)(t = 5, B1
−)(t = 6, D)(t =

8, C−)(t = 10, A2
+B2

+)(t = 12, A2
−)(t = 13, B2

−)⟩. Since a boundary point is an item
with a duration of zero and we use its event identifier instead, hereinafter, we will use
event and item interchangeably. What is more, when we refer to any sequence as a
frequent sequence instead of a concrete sequence in a database, we can ignore the itemset
time information since we are only interested in the qualitative relations “<” and “=”
that there exist between all the boundary point in the sequence. Thus, if the previous
sequence were a frequent pattern found in the database, we would denote it as βe =
⟨(A1

+)(B1
+)(C+) (A1

−)(B1
−)(D)(C−)(A2

+B2
+)(A2

−)(B2
−)⟩. Henceforth, unless we need

to make an explicit reference to a boundary input sequence, we will refer to all the
sequences without temporal information as their itemsets.

Boundary point representation has several benefits, being the simplification of interval
relations the most important one. The conversion from the Allen’s thirteen relations into
their corresponding boundary point representation is depicted in Figure 3.1. By means of
this boundary point representation, we obtain a good representation that is: 1) scalable,
since we only need a maximum of 2k points for describing k-items; 2) non-ambiguous,
since relations appearing in a boundary point sequence correspond to only one interval
relation, as we saw in Section 2; and 3) simple, since an interval sequence needs thirteen
Allen’s relations and a boundary point sequence only need the standard point relations
{<,=, >}.

Figure 3.1: Conversion from Allen’s intervals to boundary point sequence.

48

Given a sequence database, we can transform every original sequence to their equiv-
alents boundary sequences. For example, in Table 3.1, we show our database example
transformed into its four corresponding boundary sequences. From now on, we suppose
that every temporal database is given in its boundary point representation.

Boundary Sequence database
SID \ tid 1 2 3 4 5 6 7 8 9 10 11 12

1 (a+) (b+) (c+) (a−) (b−) (d) (c−)
2 (a+) (a−) (b+f+) (b−) (f−) (g)
3 (a+) (b+) (c+) (a−) (b−) (d) (c−) (f+g) (f−)
4 (a+) (b+) (a−) (b−) (d) (f−) (g)

Table 3.1: Example database converted to boundary point sequences.

Considering this representation, the implementation of the subsequence checking, se-
quence extensions or the operation with prefix and suffix for sequences of boundary points
is straightforward. We say that the boundary point sequence α is a subsequence of an-
other boundary point sequence β (or β is a supersequence of the α), denoted as α ⪯ β,
if there exists a bijective function f which preserves the order and maps the bound-
ary points in α to boundary points in β, in such a way that 1) ∀ei ∈ α, ∀f(ei) ∈
β, ei ⊆ f(ei) and 2) if ei < ej ⇒ f(ei) < f(ej), ∀ei, ej ∈ α,∀f(ei), f(ej) ∈ β. We
can also say that for sequences α = ⟨Iα1Iα2 . . . Iαn⟩ and β = ⟨Iβ1Iβ2 . . . Iβm⟩, there ex-
ist integers 1 ≤ j1 < j2 < . . . < jn ≤ m such that Iα1 ⊆ Iβj1

, Iα2 ⊆ Iβj2
, . . . , Iαn ⊆

Iβjn
. Besides, every subsequence α must have a correspondence between all the bound-

ary points in β, and for those boundary points chosen in β that represent the begin-
ning and the end points of a same interval event (ei

+ and ei
−), the appearance of

any other boundary point that represent the same interval event ei between them is
not allowed. For instance, the boundary point sequence α = ⟨(a+)(b+)(c)(a−)(b−)⟩ is
a subsequence of β = ⟨(a+)(d1+)(b+)(d1−)(c1)(a−)(d2+)(c2)(d2−)(b−)⟩ but not of γ =
⟨(a+)(b1+)(b1−)(c)(a−)(b2+)(b2−)⟩ because the event b1 is closed before c.

Let α = ⟨Iα1Iα2 . . . Iαn⟩ and β = ⟨Iβ1Iβ2 . . . Iβm⟩ be two sequences with m < n. We say
that β is a prefix with respect to α if ∀i, 1 ≤ i < m, Iαi

= Iβi
and Iβm ⪯ Iαm , where the

events in Iβm are the first ones in Iαm . Besides, the sequence ⟨(Iαm − Iβm)Iαm+1 . . . Iαn⟩ is
called the suffix of α with regards to prefix β.

We define some operations in order to extend a sequence with an item, creating a new
sequence. We will need these operations in the candidate generation of our algorithms.
Let α = ⟨I1I2 . . . In⟩ be a sequence and let bi ∈ {e+i , e−i , ei} be a point. We define the
S-extension α′ being I ′n = In ∪ bi. That is, the point bi is added to In. For instance, given
the sequence α = ⟨(a)(b)⟩ and a point c ∈ I, the sequence β = ⟨(a)(b)(c)⟩ is a S-extension
and γ = ⟨(a)(bc)⟩ is an I-extension. In order to sort two extension sequences, given two
sequences β and γ such that both are S-extensions (or I-extensions) of a common prefix
α, with items ei and ej respectively, we say that β precedes γ, β < γ, if ei <lex ej in a
lexicographic order. If, on the contrary, one of them is a S-extension and the other one is
an I-extension, the S-extension always precedes the I-extension.

Definition 3.1.1. We say that a sequence s has a left-open interval if there is at
least one beginning boundary point e+ in s which does not have its corresponding end

49

boundary point after it. If s contains only the end boundary points of an interval, without
a corresponding beginning boundary point before it, we say that s has a right-open
interval. For example, in sequence s1 = ⟨(a+)(b+)(a−)⟩ b, is a left-open interval and
sequence s2 = ⟨(a+)(b+)(a−)(c+)⟩ has two left-open intervals (intervals b and c), while
s3 = ⟨(a+)(b−)(a−)⟩ has a right-open interval (interval b) and s3 = ⟨(b+)(a−)⟩ has both
a left-open and right-open intervals (being b the left-open interval and a the right-open
one). If a sequence s has an open interval (either left-open or right-open), we call it
improper sequence and, conversely, if all of the intervals are not open, we say that s is
a proper sequence.

In Figure 3.2, we show the final frequent set composed of proper sequences when we
mine the example database with a minimum support of 2. We can see that there are
different types of frequent sequences: those composed of both simple points and intervals
(boundary points), for instance the 5-sequence ⟨(b+)(c+)(b−) (d)(c−)⟩; those formed only
by intervals (boundary points), like the 4-sequence ⟨(a+)(b+)(a−)(b−)⟩; and those with
only points, i.e. the 2-sequence ⟨(d)(g)⟩. In total, the final frequent sequence set has 33
frequent boundary point sequences, being two 7-sequences the largest ones.

Figure 3.2: Frequent sequence set of example database.

Note that all the databases considered for the algorithms introduced in this chapter,
PaGAPIS and FaSPIP, have previously been translated into databases with boundary
point sequences.

3.2 PaGAPIS. New algorithm for points and inter-

vals based on Pattern-Growth strategy

In this Section, we formulate and explain every step of our PaGAPIS algorithm. The
algorithm consists in a continuous loop where for every frequent point: 1) that point is
taken as a prefix, and a database projection is done with respect to it, and 2) a recursive
call is done in order to find the pattern set derived from that prefix. Algorithm 1 shows the
loop corresponding to the first step of the algorithm, while Algorithm 2 shows the following
steps in a more detailed way. As we can see, this algorithm follows the same structure
as PrefixSpan, in nature, but with some changes to be able to deal with our patterns. In

50

our case, we need to add a new method to check the correspondence between boundary
points, i.e. 1) we have to be sure that an end point that we choose in the algorithm has a
corresponding left-open interval whose beginning point was previously chosen; and 2) we
cannot insert right-open intervals in a pattern. In Algorithm 1, a projected database is
obtained (line 4) for every frequent item ei and the method PaGAPISLoop is called (Line
5). This last method searches, for each projection, the corresponding frequent patterns
that belong to the branch of the search space that starts with ei.

The method PaGAPISLoop is shown in Algorithm 2. In the first place (Lines 1-5),
the frequent pattern set is initialized to just the pattern p, which is given as a parameter,
only if p has all its intervals properly completed. Line 6 finds the set of frequent points A
that can be found in the projected database Dp. If A is not empty, for every point e in A
(line 8) we get its corresponding projected database (line 10) and we execute a recursive
call to method PaGAPISLoop (line 11), being its output saved (line 12). Finally, in Line
15, the method finishes returning the frequent pattern set found in the corresponding
branch.

Algorithm 1 PaGAPIS

1: F1 = {frequent 1-sequences}
2: FS = ∅
3: for all i ∈ F1 do
4: Di = ProjectDatabase(i, D)
5: Fi=PaGAPISLoop(i,Di)
6: FS = FS ∪ Fi

7: end for
Ensure: The final frequent pattern set FS

Algorithm 3 shows how the frequent points are found in each PaGAPISLoop execution.
As in the original PrefixSpan algorithm, in a Dp we are interested in those points that
occur at the same time as the last point of p and are greater than this last point in a
lexicographic order, or in those points that appear after the last point of p (lines 2-4).
Unfortunately, that works fine with point events but not with intervals. Furthermore,
when we work with intervals, if the prefix p contains some left-open intervals ei

+, we
could take into account a point (either simple point or boundary point) that appears
after the time where we should find the expected ei

− of those open intervals. Besides, we
could also include a right-open interval. Both aspects are considered in Lines 5-6, that
is, these lines avoid the generation of improper intervals. Finally, the final frequent point
set is returned in line 8. Therefore, there can be two types of points: 1) those that occur
after pattern p, and 2) those that appear as an extension of the last itemset of the pattern
p. For instance, if the pattern p = ⟨(a+)(b+)⟩ has the point c+ after it, and the point d+

takes place at the same time as b+, the two points c+ and ∗d+ are two candidates to be
returned in the final point set.

Finally, Algorithm 4 shows how to do a database projection. The method is essentially
the same as in the original PrefixSpan algorithm, but now, we avoid the generation of
projections that start in a point that appears after an expected end point corresponding
to an open interval. If we would consider those projections that start after an expected
end point, all of the points that, lately, were found by the Algorithm FindFrequentItems

51

Algorithm 2 PaGAPISLoop(p,Dp)

Require: the current frequent pattern p = (I1, I2, . . . , In), the p-projected database Dp

1: if (in p it appears any interval, and each interval is complete, appearing both e+ and
e−) then

2: Fp = {p}
3: else
4: Fp = ∅
5: end if
6: A = FindFrequentEvents(p,Dp)
7: if (A ̸= ∅) then
8: for all valid e ∈ A do
9: p′ = p ∪ {e}
10: Dp′ = ProjectDatabase(α,Dp)
11: Fp′=PaGAPISLoop(p′,Dp′)
12: Fp = Fp ∪ Fp′

13: end for
14: end if
15: return Fp

Ensure: The frequent pattern set Fp

would have been discarded since they would not accomplish the conditions in lines 5-6 of
Algorithm 3. Therefore, we can save some time if we prune these wrong projections.

Algorithm 3 FindFrequentItems(p,Dp)

Require: the current frequent pattern p = (I1, I2, . . . , In), the p-projected database Dp

1: A = ∅
2: scan Dp once, find every frequent event e such that
3: (a) p can be extended by e to p′ = (I1, I2, . . . , In ∪ {e})
4: (b) p can be extended by e to p′ = (I1, I2, . . . , In, {e})
5: AND e appears before, or at the same time but is lexicographically less, than all the

expected end points of the open intervals in p
6: AND if e is an end point e−, there exists an open interval e+ in p
7: add every α to A
8: return A

Ensure: The frequent items set A found after p in Dp

In order to know if a point appears before, at the same time or after an expected
end point, we need to add some extra information to the data structures. In our case,
for every projected sequence, we maintain a queue with events sorted by end time. In
this way, when project in a sequence and we take a beginning point of an open interval,
we add its corresponding end time to the queue. If the queue already had other values,
we would put the new value in its correct position. When then, we project a sequence
s = ⟨I1I2 . . . In⟩ with an event e that occurs at time t, we find several possibilities:

1. t occurs before the first value of the queue: The point cannot be an end point since

52

Algorithm 4 ProjectDatabase(α,Dp)

Require: the current frequent boundary point α, the p-projected database Dp

1: D′
p = ∅

2: for all Sp ∈ Dp do
3: S ′

p = ∅
4: for all projection sp ∈ Sp do
5: for all appearance of α in sp that appears before than any expected end point

that corresponds to an open interval in sp do
6: s′p = the subsequence that begins after item α
7: S ′

p = S ′
p ∪ s′p

8: end for
9: end for
10: add S ′

p to D′
p

11: end for
12: return D′

p

Ensure: The p’ projected database D′
p

the first expected end point appears just at the time signalled by the first value of
the queue. If e is a beginning point e+ we add its corresponding end point time to
the queue.

2. t occurs exactly at the same time as the first value of the queue: If e is a beginning
point, and e is less, in a lexicographic order, than the corresponding event label
denoted by the first value of the queue, then its corresponding expected end point
time is stored in the queue. Otherwise, if e is greater than the event denoted by the
first value of the queue, then e is discarded. If, on the contrary, e is an end point, e
has to be just the corresponding end point that completes the open interval whose
end time is the first value of the queue.

3. t occurs after the first value of the queue: e is always discarded since if we allow it,
we would build improper patterns.

In Figure 3.3 we show six examples of different projections from several projected-
databases (derived from the original database in Figure 3.1). In each row we see three
tables. The one on the left is the database projection with a prefix (shown in the header
of the table). In that table, we see the sequences (in the first projection of the example)
with their events, the time of occurrence and the queue for each one. In the table in
the middle, we show the frequent boundary items that appear before the first expected
item, which is the first element of the queue (shown on the right part of the projected
database). Besides, if any frequent boundary item, added to the pattern corresponding to
the projected database, makes an improper sequence, we discard it. The discarded items
are shown in the Figure by means of strike-through items. Finally, on the rightmost part,
we show a new database projection derived from the previous database projection and a
frequent item among those elements of the set previously depicted. Thus, in the Figure,
we see how the algorithm works when different boundary points are found. For instance,
in rows 1 and 2, we show what the algorithm does when we add a new boundary point

53

corresponding to the beginning of an interval. In these situations, the queues grow with
new expected elements. Rows 3 and 4 show the converse situation, when we extend a
pattern of a projected database with a boundary point corresponding to the end of an
interval. In these other cases, we check that these are the expected points in both queues,
and we remove them from the queue. Finally, rows 5 and 6 show the behaviour when the
algorithm deals with simple points. In these cases, the queues are not modified.

Figure 3.3: Examples of several projection derived from projected databases.

54

3.3 FaSPIP. New algorithm for point and intervals

based on Vertical Database format

In this Section, we change from the Pattern Growth strategy to the Vertical-Database
Format strategy and introduce and explain every step of our FaSPIP algorithm. Algorithm
5 shows the pseudocode corresponding to the main lines of the algorithm. Firstly, FaSPIP
keeps every frequent 1-sequence (Line 1), and secondly, for every frequent 1-sequence,
the method DFS-Explore explores recursively the corresponding subtree in a depth-first
search. The union of every resulting set FS i corresponding to each frequent 1-sequence,
besides the simple points that appear in F1, provide the final frequent pattern set FS
composed of the proper boundary sequences that have at least min sup appearances.

Algorithm 5 FaSPIP

1: F1 = {frequent 1-sequences}
2: FS = all the simple points in 1-sequences
3: for all i ∈ F1 do
4: Fie = {frequent 1-sequences greater than i}
5: FS i=DFS-Explore(i,F1,Fie)
6: FS = FS ∪ FS i

7: end for
Ensure: The final frequent pattern set FS

The method DFS-Explore, in Algorithm 6, executes recursively both the candidate
generation (by means of I-extensions and S-extensions, explained in Section 3.1) and the
support checking, returning a part of FS relative to the pattern p taken as parameter.
The method takes as parameters two sets with the candidate items to do S-extensions
and I-extensions respectively (XS and XI sets). The same process is done twice in the
algorithm, executed for XS in Lines 3-17 and for XI in Lines 18-32. Firstly, in line 5,
the correspondent extension is checked in order to know whether the new p′ extension is
already bad formed or not (this method is explained later). Second, the algorithm checks
the frequency of p′ extension (lines 6-8). If the extension p′ is frequent, we include it in
a Cs set (line 9) composed by the valid frequent patterns, and if all the intervals of p′

are completed, we add p′ to the final set of patterns, Ls, (corresponding to the extension
of pattern p, in line 11). Next, in line 17, the method ExploreChildren (Algorithm 7) is
called, and there, DFS-Explore is executed for each new frequent S-extension. Lines 18-32
perform the same steps but with I-extensions. Finally, in line 33, the complete frequent
pattern set (with a prefix p) is returned.

There are two main different changes added in FaSPIP with respect to SPADE: 1)
the step to check if the subtree of a pattern can be skipped (lines 5 and 20 of Algorithm
6), and 2) the prune method that removes the non-valid occurrences of the patterns that
appear in the IdList associated with a pattern p′ (lines 8 and 23 of Algorithm 6).

The method IsAPossiblePattern prunes the improper extensions p′ of a pattern p.
There are two different cases to allow the prune: 1) if the last item of p′ corresponds to
a beginning interval boundary point with the same interval identifier of a previous open
interval within the pattern p; and 2) if the last item of p′ corresponds to an end interval

55

Algorithm 6 DFS-Explore(p, Xs, XI)

Require: the current frequent pattern p = (I1, I2, . . . , In), set of items for S-extension XS , set of items for I-extension XI

1: XS temp = ∅, XI temp = ∅
2: Fb = ∅,Cs = ∅,Ci = ∅, Ls = ∅, Li = ∅
3: for all e ∈ XS do
4: p′ = (I1, I2, . . . , In, {e})
5: if isAPossiblePattern(p′) then
6: if (p′ is frequent) then
7: XS temp = XS temp ∪ {i}
8: if (p′ appears at least min sup times without exceeding any expected end point corresponding to a beginning

point that appears in p′ that does not have its end point in p′) then
9: Cs = Cs ∪ {p′}
10: if (all of intervals appearing in p′ are completed) then
11: Ls = Ls ∪ {p′}
12: end if
13: end if
14: end if
15: end if
16: end for
17: Fb = Fb ∪ Ls ∪ ExploreChildren(Cs,XS temp,XS temp)
18: for all e ∈ XI do
19: p′ = (I1, I2, . . . , In ∪ {i})
20: if isAPossiblePattern(p′) then
21: if (p′ is frequent) then
22: XItemp = XI temp ∪ {i}
23: if (p′ appears at least min sup times without exceeding any expected end point corresponding to a beginning

point that appears in p′ that does not have its end point in p′) then
24: Ci = Ci ∪ {p′}
25: if (all of intervals appearing in p′ are completed) then
26: Li = Li ∪ {p′}
27: end if
28: end if
29: end if
30: end if
31: end for
32: Fb = Fb ∪ Li ∪ ExploreChildren(Ci,XS temp,XItemp)
33: return Fb

Ensure: The frequent pattern set Fb of this node and its children

Algorithm 7 ExploreChildren(P, Xs, Xi)

Require: The pattern set P which contains all the patterns whose children are going to be explored, the set of valid items
Xs that generates the P set by means of S-extensions, the set of valid items Xi that generates the P set by means of
I-extensions

1: Fs = ∅
2: for all p ∈ P do
3: I = All of elements in Xi greater than the last item ei in p
4: Fs = Fs ∪ DFS-Explore(p,Xs,I)
5: end for
6: return Fs

Ensure: The frequent pattern set Fs for all of the patterns’ children

boundary point with the same interval identifier of a previous completed interval within
the pattern p. For instance, the pattern p1 = ⟨(a+)(a+)⟩ corresponds to the first case
above since there exist two beginning points for interval a without having an end point
of a between them; and the pattern p2 = ⟨(a+)(b−)⟩ corresponds to the second case since
the end point b− appears and p2 does not have any beginning point b+ before it.

In the step to prune those patterns whose support is under the given threshold, we
need to consider some issues. We know that by means of an usual counting of support
step (lines 6 and 21), all the frequent points that take place after (for S-extensions), or at
the same time as the last item in a pattern p (for I-extensions), are considered as possible
future extensions and used as XS and XI sets. The problem that we find with this counting

56

is that, for some occurrences in the database, we are counting some items that occur after
some expected items that can be a left-open interval in the current pattern. Thus, we need
a new phase where those non-valid occurrences are not taken into account for the actual
support counting. In order to add this new control step, we use a queue associated with
the IdList of every pattern (we will detail the implementation of the IdLists later). Let us
remember that these IdLists are the temporal structure that keep the Vertical Database
Format representation, and they are also used to represent the pattern occurrences in the
database and, besides, by means of the join operation between two different IdList we can
simultaneously extend a pattern and count its support.

Finally, the last pruning method is implemented by means of the information already
kept in the IdLists. In our case, we include all the necessary fields to keep a trace of what
intervals are open and their temporal information (in order to check if the sequences are
proper). The structure of the IdList is shown in Figure 3.4, where the different fields are:

1. Sid corresponds to the sequence identifier in the database.

2. Itemset timestamp is the temporal occurrence of the last itemset in the sequence.

3. Item position refers to the relative position of the last item in the last itemset of
the sequence.

4. Queue is a sorted list that contains the time for the expected end points that refer
to all the open intervals in the sequence. Each time position in the queue is a pair
with the timestamp of the itemset and the item position in that itemset.

Regarding the join operation, as in SPADE, there are two kinds of join: the first
one finds the occurrences of the second IdList that are after the first pattern; while the
second one finds the occurrences in both first and second IdLists that occur at the same
time. In our algorithm, the first join operation corresponds with S-extensions (XS) and
the second one is identified with I-extensions (XI). In our case, besides checking both
temporal relations, < and =, from the first pattern (sequence) with respect the second
pattern (item), we need to check whether the pair (itemset timestamp, position item)
occurs before the first element in the queue of the checked sequence. For instance, in
Figure 3.5, in the first block we can see the I-extension of the sequence ⟨(b+)⟩ with the
item f+. They occur at the same time only in the second database sequence, occurring
⟨(b+)⟩ in (4, 1) and f+ in (4, 2). Since (4, 2) is less than the first element in the queue
for the second sequence ((4, 2) < (6, 1)), we can make the I-extension to obtain the
new sequence ⟨(b+f+)⟩. If, conversely, we make the S-extension for the same previous
sequence and item, ⟨(b+)⟩ and f+, we see that there is no sequence where the condition
of finding f+ before the first element of the queue is accomplished (neither in the third
sequence ((10, 1) < (5, 1)) nor in the fourth sequence ((9, 1) < (4, 1))), and, therefore,
the resulting S-extension cannot be done. In Figure 3.5 the examples already shown in
Section 3.2 are considered, and, as before, several situations are introduced. Thus, rows
1 and 2 show the different IdList when we extend a boundary sequence with a boundary
point corresponding to an interval beginning point; rows 3 and 4 show the extension of a
boundary sequence with a boundary point corresponding to an interval end point of an
open interval that was started in the previous boundary sequence; and, finally, rows 5 and
6 show the IdList when a boundary sequence is extended with a simple boundary point.

57

Figure 3.4: New structure for the IdLists used in the new way of count the support in
order to find proper boundary sequences.

Figure 3.5: Examples of several extensions of different boundary sequences.

3.4 Experimental results

A synthetic database generator with which to create datasets has been used in all the
comparisons in order to control the experimental parameters. Several parameters have
been set in this generator, whose abbreviations are shown in Table 3.2. Firstly, the
generator generates the number of patterns previously set (with an average pattern length,

58

all of which are totally consistent) and these patterns are then introduced to appear with
a frequency of at least min sup in the sequence database, min sup being a previously
established parameter. Finally all the sequences are completed in order to be adjusted to
the initial configuration settings. Let us redefine the quotient of density of the database
in function of these new parameters. Let us redefine the quotient of density (shown
in Section 2.3) in function of these new parameters. Now, such density is the quotient
between the average transaction length (ptl) and the number of different items that appear
in the database (n), average density is now defined as δ = ptl

n
, whereas maximum density

is δ = mtl
n
. We will consider this quotient in all our experiments, for comparing the

performance of the two algorithms: PaGAPIS and FaSPIP.

Abbr. Meaning
s Number of sequences
psl Average number of transactions in a sequence
msl Maximum number of transactions in a sequence
ptl Average items per transaction
mtl Maximum number of items per transaction
ppl Average length for the created frequent patterns
mpl Maximum length for the created frequent patterns
n Number of different items in the whole database

sup Minimum support (minimal number of sequence appearances)

Table 3.2: Parameters for our synthetic database generator.

All the experiments were carried using 4-cores of 2.4GHZ Intel Xeon, running the
Linux Ubuntu 12.10 Desktop edition. All the algorithms are implemented in Java 7 SE
with a Java Virtual Machine of 12GB of main memory.

In Figure 3.6 we show the behaviour for moderated density values. In the 3.6A plot
we can see the running time for the both algorithms PaGAPIS and FaSPIP when we mine
a dataset with a density of 0.2 and with very few transactions per sequence (ptl). We can
see that, for low support, PaGAPIS outperforms FaSPIP with no much difference. Also
plots 3.6B and 3.6C show the behaviour for both algorithms when we increase a little
the transaction average length parameter (ptl). Both plots show the behaviour with two
settings for the number of different items (n) in the database (for values of 50 and 100).
3.6B plot shows a similar execution time for low supports when we have 50 items for the
database. However, if we have a larger number of items, 100 in the given plot, we can
see that FaSPIP is slower than PaGAPIS, especially for low supports, even though the
density decreases. For all the three plots, the time executions are low and if we increase
the n value, PaGAPIS improves its behaviour with respect to FaSPIP.

In Figure 3.7, we can see what happens when we increase the number of transactions
per sequence and decrease the transaction average length. In summary, we can say that
we have similar results to those obtained in Figure 3.6 even though we deal with sparser
database (since the parameter ptl is less than previous Figure). In the 3.7A plot the
execution times are very similar because the transaction average length has been reduce
to 2 items per transaction and the drawbacks of PaGAPIS do not arise as important
factor. Plots 3.7B and 3.7C depict the behaviour of both algorithms when we increase
the transaction average length to 5 items. In that case, FaSPIP clearly outperforms
PaGAPIS either when we consider 50 or 100 different items for the dataset. Besides,

59

Figure 3.6: Varying support for datasets s1000 psl5 msl8 ptl10–20 mtl12–25 ppl10
mpl12 n50–100.

we can see that the PaGAPIS behaviour for n=100 is different from that shown in plot
Figure 3.6C. This phenomenon is mainly due to the fact of having a bigger number of
transactions per sequence, what exposes the drawbacks of PaGAPIS. The 3.7D plot on
the bottom right hand side shows that the difference between FaSPIP and PaGAPIS is
even bigger when we increase more the transaction average length (10 items), considering
100 different items for the whole database. In this plot, the drawbacks of Pattern Growth
strategy are present, but now, their relevance is higher than in plots on left hand side. In
general, in this Figure, the main differences in time between the two algorithms appear
before, with higher supports, unlike we showed in Figure 3.6.

In Figure 3.8 we can see the behaviour when we deal with larger sequences (40 trans-
actions on average), with different transaction average length (5, 10 and 20) and big
changes in the number of different items (50, 100, 500 and 1000), having sparser density
values compared to those given in Figures 3.6 and 3.7. In plots 3.8A and 3.8B, FaSPIP
clearly outperforms PaGAPIS. Of course, that difference is smaller for the sparser case
(100 items). Plots 3.8C and 3.8D show the result with a dataset where the patterns in-
serted are quite longer than the cases above and there are 500 and 1000 different items,
respectively. Therefore, we have dealt with sparser databases and the time execution has
increased (770 and 701 seconds, respectively), and even in this case, due to the other set-
ting parameters, FaSPIP still outperforms PaGAPIS. In addition, we can see a hard and
sudden increase in the time execution in both plots, appearing at supports 0.45-0.43 in
plot 3.8C and supports 0.38-0.32 in plot 3.8D. This is due to a big increase in the number
of patterns for that support. Finally, plot 3.8E shows a sparse database (500 different
items) with medium-high transaction length (20 items on average). In this case, we see

60

Figure 3.7: Varying support for datasets s1000 psl20 msl30 ptl2–5–10 mtl3–6–12 ppl 10
mpl12 n50–100.

that the differences between the two algorithms appear before, at higher supports, due to
a greater length in the patterns. Again, the lower the support the bigger the difference
is, being always FaSPIP faster than PaGAPIS. Even though these differences increase
before, the plot shows a similar behaviour to those shown in plots 3.8C and 3.8D.

Figure 3.9 show what happens with both algorithms in larger databases (10000 se-
quences) and with high values of different items (n = 500 and 1000). Plots 3.9A and
3.9B have medium sequence length (20 transactions on average), medium-high transac-
tion length (30 items on average) and medium pattern length (10 items on average) and
500 and 1000 different items for the database. The dataset that correspond to the plots
3.9C and 3.9D have larger sequences (40 transactions on average) and smaller transactions
(10 items on average). In all the plots, the domain of FaSPIP over PaGAPIS is evident.
We can see that, having a configuration similar to that shown in Figure 3.7, we also have a
similar behaviour. Besides, as we commented on previous Figure 3.8, all these plots show
sudden change in their behaviour, having a big increase at concrete supports (support
0.7-0.69 in plot 3.9A, supports 0.67-0.65 in plot 3.9B, supports 0.59-0.57 in plot 3.9C and
supports 0.67-0.65 in plot 3.9D), and, as before, this is also due to the big increment in
the number of patterns that implies a higher processing time.

As we did in Section 2.3, we finally show the behaviour when we change those crucial
parameters that especially affect to the algorithms execution. As before, we show the
executions when we progressively change the “transactions per sequence” parameter, and
one of those parameters that affect to the density, the number of items in this case. In
Figure 3.10 we see what happens when we have a database with moderated parameters
(1000 sequences, 20 transaction per sequence on average, and 12 items per transaction,

61

Figure 3.8: Varying support for datasets s1000 psl40 msl50 ptl5–10–20 mtl6–12–25
ppl10– 15–22 mpl12–18–25 n50–100–500–1000.

being the length of the patterns of the database of 12 items on average) and we vary the
number of different items (100 in plot 3.10A, 200 in plot 3.10B, 500 in plot 3.10C and
1000 in plot 3.10D). As before, the denser database, the better FaSPIP execution is and,
the sparser database, the better PaGAPIS execution is. In the same way, Figure 3.11
shows the behaviour when we consider 100 different items per database, and we vary the
“transactions per sequence” parameter (10 in plot 3.11A, 20 in plot 3.11B and 40 in plot
3.11C). Now, there is also a similar behaviour to that obtained in Section 2.3, when we
worked with point-based database. However, now is so much difficult for PaGAPIS to
obtain good results than for the point-based case due to the nature of the algorithm when
we mine interval items. These new problems are widely explained in the next Section
3.5, comparing the benefits and drawbacks for the both new algorithms PaGAPIS and
FaSPIP.

3.5 Discussion. Comparing both algorithms

In this Section we discuss the main advantages of FaSPIP with regard to PaGAPIS. In the
first place, let us recall the main differences between the original versions of the Vertical
Database Format and Pattern Growth algorithms on which FaSPIP and PaGAPIS are
respectively based. We shall later show the behaviour of these algorithms once all the

62

Figure 3.9: Varying support for datasets s10000 psl40 msl50 ptl10–20 mtl12–25 ppl10
mpl12 n500–1000.

Figure 3.10: Varying support for a same configuration of datasets where we change the
number of items (100, 200, 500 and 1000).

63

Figure 3.11: Varying support for a same configuration of datasets where we change the
number of items per itemset (10, 20 and 40).

necessary information with which to simultaneously manage points and intervals and the
pruning methods has been included, in order to verify that all the patterns contain proper
intervals.

In some algorithms such as PrefixSpan, one of the situations overlooked is the presence
of several appearances of the same item or event type in a sequence. On the one hand,
in PrefixSpan it is necessary to make all the projections of an item that appears several
times in a sequence in order to guarantee that all the I-extensions associated with that
item will be discovered. If, conversely, it was not necessary to find the I-extensions, or if
there were only one item per itemset, or only one appearance of each item per sequence
existed, there would be sufficient information with a single projection. On the other hand,
in Vertical Database Format algorithms, such as SPADE, it is not necessary to take into
account the problem of PrefixSpan, and all the S-extension and I-extensions explore the
whole search space. It could thus be said that the latter is less influenced by the database
structure.

Clearly, this fact has an important impact in the efficiency of both algorithms for
some database configuration. For example, let us view the behaviour of both Pre-
fixSpan and SPADE in the case of the database composed of the single sequence s =
⟨(a)1(ab)2(abc)3(abcd)4 (abcde)5(abcdef)6⟩ and a min sup = 1. In this case, there are six
itemsets, occurring between times 1 and 6. If we consider sequence ⟨(a)⟩, the six different
projections associated with this sequence are shown in Figure 3.12. Note that if only

64

the first projection is considered in our example, then items ∗b, ∗c, ∗d, ∗e and ∗f will
not be considered to be frequent items, and in order to count these items it is necessary
to take into account the first itemset of every subsequent projection. PrefixSpan must
necessarily scan all the projections but, in the case of those projections after the first one,
PrefixSpan must take into account only the first itemset and can ignore the remaining
itemsets. Figure 3.12 highlights all the itemsets that can be ignored by PrefixSpan.

Figure 3.12: Projected database for the brief example with the standard PrefixSpan
algorithm.

With regard to SPADE, and using the same example as above, this algorithm builds
the associated IdLists (shown in Figure 3.13) without any special consideration. This
point is one of the great advantages of the Vertical Database Format strategy over the
Pattern Growth strategy for certain database configurations.

With regard to FaSPIP and PaGAPIS, the above characteristics also define the prin-
cipal behaviour of both algorithms. However, as was shown in Sections 3.2 and 3.3, both
algorithms have new changes with respect to the original SPADE and PrefixSpan algo-
rithms in order to guarantee that all the boundary sequences are well-formed. Concretely,

65

Figure 3.13: SPADE IdList for the brief example.

even when FaSPIP uses two new pruning mechanisms, the principal behaviour remains.
However, the PaGAPIS algorithm has other new drawbacks, and while in the simple ver-
sion of the original PrefixSpan it is possible to avoid exploring the part highlighted in
Figure 3.12, since these relations are already taken into account in the first projection
(relation before), PaGAPIS needs to explore them in case the event can be repeated in
a sequence. When we discover intervals, it is not now possible to ignore that highlighted
part because this would signify overlooking certain temporal relations, such as “meets”,
“overlaps”, “contains”, “starts”, “is finished by” or “equals”.

For instance, let us suppose that the database is formed only of the sequence ⟨(a+)(a−)
(a+)(b+)(c+)(b−)(c−)(a−)⟩ and min supp = 1. If we project this using the 1-sequence
(a+), in Figure 3.14 we can find the two projections associated with (a+). If this example
were to be processed, as in the PrefixSpan algorithm, we would take into account all
the itemsets in the first projection and only the first itemset in the second projection.
We would not therefore find the patterns ⟨(a+)(b+)(b−)(a−)⟩, ⟨(a+)(c+)(c−)(a−)⟩ and
⟨(a+)(b+)(c+)(b−)(c−)(a−)⟩, since in the first projection the elements are discarded after

66

the itemset at time t = 2, which is precisely the moment at which the interval a has
finished. In order to find the complete set of frequent boundary sequences, it is thus
necessary to carry out a complete analysis of every itemset of every projection. This
necessity is a new drawback for PaGAPIS as regards the original PrefixSpan that has to
be introduced in order to mine proper intervals.

Figure 3.14: Projected database for the brief example with PaGAPIS algorithm.

Finally, after running the experiment in Section 3.5 we can say that, in general, FaSPIP
is quite faster than PaGAPIS. The algorithms show similar results when we deal with
sparse datasets with few itemsets per sequence but, nevertheless, the results are very
favourable to FaSPIP when we address dense databases with several itemsets per sequence.

3.6 Conclusions

In this Chapter we have introduced two algorithms that deal with these issues for mining
qualitative interval patterns. Our main contributions are as follow:

• We simplify the processing of relations among intervals by getting all the information
of all boundary points in a sequence. The main advantage of this representation,
compared with the representations commonly used, is that the relations among
boundary points are reduced to before, equals and after instead of using the thirteen
Allen’s relations. We refer to this pattern representation as sequence of interval
boundaries, and it expresses a pattern or sequence without any ambiguity, avoiding
the common problems that occur in various existing representations. Thus, only

67

by means of points we can express the relations among both the intervals and/or
points that can appear in a pattern.

• We describe in detail the algorithm PaGAPIS (PatternGrowthAlgorithm forPoint
and Interval Sequences), an implementation based on Pattern Growth strategy,
that uses a boundary point representation and is capable of finding the whole set
of frequent patterns containing relations between points, intervals or points and
intervals. A similar algorithm has been used in works [Mörchen and Fradkin, 2010;
Chen et al., 2011]. Besides, we show the main changes that we have to add to
original algorithm to enable the discovery of patterns with proper intervals.

• We introduce a novel algorithm, called FaSPIP, which stands for Fast Strategy for
Points and Intervals Patterns, capable of discovering the same final set of frequent
patterns as PaGAPIS does. FaSPIP is based on the Vertical Database Strategy and,
to the best of our knowledge, it is the first algorithm for points and intervals that
it is based on that strategy. Besides, FaSPIP uses efficient methods to avoid the
generation of useless candidates and to check the frequency of the candidates.

• We use in both FaSPIP and PaGAPIS algorithms a novel candidate generation
based on boundary points instead of intervals. Besides, we describe in detail the
different pruning mechanisms that we use to discard those sequences that are not
correct.

• We make an exhaustive comparison between PaGAPIS and FaSPIP. We show that
FaSPIP is more efficient and scalable and outperforms PaGAPIS in the most of the
test performed.

• In general terms, the drawbacks that normally appear in Pattern Growth algorithms
are highlighted in PaGAPIS even with a higher intensity. Furthermore, a pruning
mechanism, as it is used in FaSPIP, is very convenient in order to reduce the search
tree. Therefore, the previous two reasons coupled with a faster execution time
of FaSPIP with respect to PaGAPIS, lead us to conclude that Vertical Database
Format strategy is more appropriate for mining qualitative interval databases.

68

Chapter 4

PaGAPIMS and FaSPIMP: Two
New Fast Algorithms for Mining
Points and Intervals Quantitative
patterns

In Chapter 2 we saw that Vertical Database Format algorithms show a better behaviour
than Pattern Growth algorithms when they deal with dense databases with long itemsets.
That reason motivates us to compare both strategies when we implement two efficient al-
gorithms capable of finding frequent quantitative patterns with both points and intervals
and to check if the domain of Vertical Database Format strategy still remains. There-
fore, here we extend the algorithms exposed in Chapter 3 to mine quantitative patterns
composed of both points and intervals. We call to these new algorithms PaGAPIMS and
FaSPIMP and they follow the Pattern Growth and Vertical Database Format strategies,
respectively. We maintain the boundary point representation but the expressiveness is
increased by using quantitative relations.

In this work we define the quantitative relations as a quantification over the standard
qualitative relations. We assume that the quantitative relations domain is discrete since all
the temporal distances in the database are finite. For example, if we consider a database
of behaviour of people, a customer goes shopping from one day to another concrete day
or a patient is admitted a certain day in a hospital and he is discharged another certain
day. Anyway, if we had a continuous domain we would have to discretize that domain
before starting the mining process.

This Chapter is organized as follows. We include in Section 3.1 some definitions in
order to take into account the temporal distances between boundary points. Sections 4.2
and 4.3 describe the new algorithms for points and intervals based on Pattern Growth
strategy and Vertical Database Format strategy, respectively. In Section 4.4 we propose
some optimizations in order to improve the performance of the algorithms. An exper-
imental and performance study is presented in Section 4.5, while as a wide discussion
about the behavioural differences of the algorithms is given in Section 4.6. Finally, we
provide our conclusions in Section 4.7.

69

4.1 Additional definition and description for problem

setting

Here we extend some previous definitions to include the temporal distances.

We call item-pair to the pair (t, i) that is associated with transaction T , where t is the
T itemset time, and i is an item that appears in the itemset I.

In order to properly express the temporal distances in boundary point sequences that
we need in quantitative patterns, we maintain the transaction time in our notations and
we convert the absolute time to relative time with respect to the first itemset. This
can simply achieved if we subtract to all the time itemset the value of the first itemset
time. Thus, if we have a sequence like β = ⟨(t = 1, A1

+)(t = 2, B1
+)(t = 3, C+)(t =

4, A1
−)(t = 5, B1

−)(t = 6, D)(t = 8, C−)(t = 10, A2
+B2

+)(t = 12, A2
−)(t = 13, B2

−)⟩, we
would convert it as β = ⟨(t = 0, A1

+)(t = 1, B1
+)(t = 2, C+) (t = 3, A1

−)(t = 4, B1
−)(t =

5, D)(t = 7, C−)(t = 9, A2
+B2

+)(t = 11, A2
−)(t = 12, B2

−)⟩.
With this representation above, note that the temporal distances between events are

implicit. Therefore, if we want to know what distance exists between two events or items,
we have to derive it from the times associated with their respective itemsets. Besides,
as their relative transaction times are present in the boundary point representation, two
sequences completely equal in items and with the same itemset structure will be different
if their itemset time are not the same. For instance s1 = ⟨(t = 0, A+)(t = 1, B+)(t =
2, A−)(t = 3, B−)⟩ is different from the sequence s2 = ⟨(t = 0, A+)(t = 8, B+)(t =
13, A−)(t = 16, B−)⟩. Note also that, since we use boundary points, the above definition
of item-pair as a duple (t, i) now becomes (t, e) because all the boundary points have a
duration of zero.

Consequently, considering this representation, the implementation of the subsequence
checking, sequence extensions or the operation with prefix and suffix of sequence now has
to change, but it is still straightforward. We say that the boundary point sequence α
is a subsequence of another boundary point sequence β (or β is a supersequence of the
α), denoted as α ⪯ β, if there exists a bijective function f that preserves the temporal
distance and maps the boundary points in α to boundary points in β, in such a way
that 1) ∀ei ∈ α, ∀f(ei) ∈ β, ei ⊆ f(ei) and 2) if ei < [t]ej ⇒ f(ei) < [t]f(ej), ∀ei, ej ∈
α, ∀f(ei), f(ej) ∈ β. Note that all the temporal distances between events in α must also
hold in sequence β.

Regarding the prefix and suffix concepts, both definitions given in Section 3.1 are still
valid but bearing in mind the new subsequence checking operation. Besides, we change
the I-extension and S-extension definitions. In those concepts, while the first one occurs
when an extension is done in the same last itemset of a sequence, S-extension add that
new item in a new itemset. Nevertheless, in the quantitative approach both extensions
are the same since we extend by distances, and the same meaning has extending by a
distance of 0 or any other greater distance.

Therefore, we define an operation in order to extend a sequence with an item. We will
need these operations in the candidate generation of our algorithms. Let α = ⟨T1T2 . . . Tn⟩
be a sequence and let bi ∈ {e+i , e−i , ei} be a point. We call extension α′ to the super-
sequence of α, extended with a new transaction containing a single point ei that has a
temporal distance te respect to the last transaction Tn, α

′ = ⟨T1T2 . . . TnTn+1⟩, Tn+1 =

70

(t, bi), where t is the associated time with Tn plus the temporal distance te that separates
Tn+1 from Tn. If the temporal distance that separates the last transaction of α is exactly
0, we add the item to the last transaction Tn of α. For instance, given the sequence α =
⟨(t = 0, a)(t = 5, b)⟩ and a point c ∈ I, the sequence β = ⟨(t = 0, a)(t = 5, b)(t = 7, c)⟩ is
an extension of time 2 and γ = ⟨(t = 0, a)(t = 5, bc)⟩ is extension of time 0.

In Figure 4.1, we show the final frequent set composed of proper sequences when
we mine the example database with a minimum support of 2. We can see that there
are different types of frequent sequences: those composed of both simple points and
intervals (boundary points), for instance the 5-sequence ⟨(t = 0, a+)(t = 1, b+)(t = 3, a−)
(t = 4, b−)(t = 5, d)⟩; those formed by only intervals (boundary points), like the 4-
sequence ⟨(t = 0, a+)(t = 1, b+)(t = 3, a−)(t = 4, b−)⟩; and those with only points, i.e. the
1-sequence ⟨(t = 0, d)⟩. In total, the final frequent sequence set has 12 frequent boundary
point sequences, being a 5-sequence the largest one.

Figure 4.1: Frequent sequence set of example database.

4.2 PaGAPIMS. New algorithm for points and inter-

vals based on Pattern-Growth format

In this Section, we formulate and explain every step of our PaGAPIMS algorithm. The
algorithm consists in a continuous loop where for every frequent point: 1) that point is
taken as a prefix, and a database projection is done with respect to it, and 2) a recursive
call is done in order to find the pattern set derived from that prefix. Algorithm 8 shows
the loop corresponding to the first step of the algorithm, while Algorithm 9 shows the
following steps in a more detailed way. As we can see, this algorithm follows the same
structure as PrefixSpan, in nature, but with some changes to be able to deal with our
patterns. In our case, we need to add a new method to check the correspondence between
boundary points, i.e. 1) we have to check that the point that we want to add occurs
with exactly the temporal distance that we expect to find, 2) we have to be sure that an
end point that we choose in the algorithm has a corresponding left-open interval whose
beginning point was previously chosen; and 3) we cannot insert right-open intervals in
a pattern. In Algorithm 8, a projected database is obtained (line 4) for every frequent
item ei and the method PaGAPIMSLoop is called (Line 5). This last method searches,

71

for each projection, the corresponding frequent patterns that belong to the branch of the
search space that start with ei.

The method PaGAPIMSLoop is shown in Algorithm 9. In first the place (Lines 1-
5), the frequent pattern set is initialized to just the pattern p, which is considered as
parameter, only if p has all its intervals properly completed. Line 6 finds the set of
frequent item-pairs A that can be found in the projected database Dp. If A is not
empty, for every item-point (te, e) in A (Line 8), we get their corresponding projected
database (Line 14) and we execute a recursive call to the method PaGAPIMSLoop (Line
15), saving its returning frequent pattern set (Line 16). Finally, in Line 18, the method
finishes returning the frequent pattern set found in the corresponding branch.

Algorithm 8 PaGAPIMS

1: F1 = {frequent 1-sequences, being all of them as (0, e)}
2: FS = ∅
3: for all i ∈ F1 do
4: Di = ProjectDatabase(i=(0, e), D)
5: Fi=PaGAPIMSLoop(i,Di)
6: FS = FS ∪ Fi

7: end for
Ensure: The final frequent pattern set FS

Algorithm 10 shows how the frequent item-pairs are found in the PaGAPIMSLoop.
As in the original PrefixSpan algorithm, in a Dp we are interested in those points that
occurs at a temporal distance of zero (those that appear at the same time as the last
point of p) and are greater than the last item in a lexicographic order, or in those points
that are at a distance greater than zero (they appear in transactions after the last point
of p) (lines 2-4). Unfortunately, that works fine with point events but not with intervals.
Furthermore, when we work with intervals, if our prefix p contains some left-open intervals
ei

+, for a specific projected sequence, if we would act as in the point case, we could take
into account a point (either simple point or boundary point) that appears after the time
where we found the expected ei

− that matches with those beginning points in p without
their corresponding ei

−. Besides, we could also include a right-open interval. Lines 5-
6 avoid the generation of improper intervals and, finally, the final frequent item-pair
set is returned in line 8. Therefore, there can be item-pairs with a time value of zero
(those that appear as an extension of the last itemset of the pattern p), or with time
values greater than zero (those that occur after pattern p). For instance, if the pattern
p = ⟨(0, a+)(2, b+)⟩ has the point c+ appearing at a distance of 5 after it, and the point d+

occurs at the same time as b+, the two item-pairs (5, c+) and (0, d+) are two candidates
to be returned.

Finally, Algorithm 11 shows how to do a database projection. The method is essen-
tially the same as in the original PrefixSpan algorithm, but now, we avoid the generation
of projections that start in a point that appears after an expected end point corresponding
to an open interval. If we would consider those projections that start after an expected end
point, all of the item-pairs that, lately, were found by the Algorithm FindFrequentItems
would have been discarded since they would not accomplish the conditions in lines 5-6
of Algorithm 10. Therefore, we can save some time if we prune these wrong projections.

72

Algorithm 9 PaGAPIMSLoop(p,Dp)

Require: the current frequent pattern p = (T1, T2, . . . , Tn), the p-projected database Dp

1: if (in p it appears any interval, and each interval is complete, appearing both e+ and
e−) then

2: Fp = {p}
3: else
4: Fp = ∅
5: end if
6: A = FindFrequentEvents(p,Dp)
7: if (A ̸= ∅) then
8: for all valid item-pair α = (te, e) ∈ A do
9: if te = 0 then {e is added in the last transaction of p}
10: p′ = (T1, T2, . . . , T

′
n = Tn ∪ e)

11: else {e is added in a new transaction Tn+1 that has a distance of te with respect
to Tn}

12: p′ = (T1, T2, . . . , Tn, Tn+1 = (tTn + te, e))
13: end if
14: Dp′ = ProjectDatabase(α = (te, e),Dp)
15: Fp′=PaGAPIMSLoop(p′,Dp′)
16: Fp = Fp ∪ Fp′

17: end for
18: end if
19: return Fp

Ensure: The frequent pattern set Fp

Besides, since we are searching for quantitative sequences, we are only interested in those
points that have a distance of te with respect the beginning of the projected sequence,
being the te value the temporal distance associated with the item-pair that we have as
parameter.

Algorithm 10 FindFrequentItems(p,Dp)

Require: the current frequent pattern p = (T1, T2, . . . , Tn), the p-projected database Dp

1: A = ∅
2: scan Dp once, find every frequent event e such that
3: (a) p can be extended, at a distance of zero, by e to p′ = (T1, T2, . . . , Tn ∪ {e})
4: (b) p can be extended, at a distance te > 0, by e to p′ = (T1, T2, . . . , Tn, {(tTn + te, e)})
5: AND e appears before, or at the same time but is lexicographically less, than all the

expected end points of the open intervals in p
6: AND if e is an end point e−, there exists an open interval e+ in p
7: add every α to A
8: return A

Ensure: The frequent items set A found after p in Dp

In order to know if a point appears before, at the same time or after an expected
end point, we need to add some information to the data structures. In our case, for

73

Algorithm 11 ProjectDatabase(α,Dp)

Require: the current frequent item-pair α = (te, e), the p-projected database Dp

1: D′
p = ∅

2: for all Sp ∈ Dp do
3: S ′

p = ∅
4: for all projection sp ∈ Sp do
5: for all appearance of e in sp that appears before than any expected end point

that corresponds to an open interval in sp, and it appears with a distance of te
with respect to the beginning of the projected sequence sp do

6: s′p = the subsequence that begins after item α
7: S ′

p = S ′
p ∪ s′p

8: end for
9: end for
10: add S ′

p to D′
p

11: end for
12: return D′

p

Ensure: The p’ projected database D′
p

every projected sequence, we maintain a queue with events sorted by end time. In this
way, when we make a projection in a sequence and we take a beginning point of an open
interval, we add its corresponding end time to the queue according to the time value. If
previously the queue already had other values, we would put the new value in its correct
position. When then, we make a projection of a sequence s = ⟨T1T2 . . . Tn⟩ with an event
e that occurs at time t, we find several possibilities:

1. t occurs before the first value of the queue: The point cannot be an end point since
the first expected end point appears just at the time signalled by the first value of
the queue. If e is a beginning point e+ we add its corresponding end point time to
the queue.

2. t occurs exactly at the same time as the first value of the queue: If e is a beginning
point, e and e is less in a lexicographic order than the corresponding event label
denoted by the first value of the queue, then its corresponding expected end point
time is stored in the queue. Otherwise, if e is greater than the event denoted by the
first value of the queue, then e is discarded. If, on the contrary, e is an end point, e
has to be just the corresponding end point that completes the open interval whose
end time is the first value of the queue.

3. t occurs after the first value of the queue: e is always discarded since if we had
allowed it, we would have built improper patterns.

In Figure 4.2 we show six examples of different projections from several projected-
databases (derived from the original database in Figure 2.13). In each row we see three
tables. The one on the left is the database projection with a prefix (shown in the header
of the table). In that table, we see the sequences (in the first projection of the example)
with their events, the time of occurrence and the queue for each one. In the table in the

74

middle, we show the frequent boundary items-pairs that appear before the first expected
item, which is the first element of the queue (shown on the right part of the projected
database). Besides, if any frequent boundary item, added to the pattern corresponding
to the projected database, makes an improper sequence, we discard it. The discarded
items are shown by means of strike-through items. Finally, on the rightmost part, we
show a new database projection derived from the previous database projection and a
frequent item among those elements of the set previously depicted. Thus, in the Figure,
we see how the algorithm works when different boundary points are found. For instance,
in rows 1 and 2, we show what the algorithm does when we add a new boundary point
corresponding to the beginning of an interval. In these rows, the queues grow with new
expected elements. Rows 3 and 4 show the converse situation, when we extend a pattern
of a projected database with a boundary point corresponding to the end of an interval.
In these other cases, we check that these are the expected points in both queues, and
we remove them from the queue. Finally, rows 5 and 6 show the behaviour when the
algorithm deals with simple points. In these cases, the queues are not modified.

4.3 FaSPIMP algorithm. New algorithm for point

and intervals based on Vertical Database format

In this Section, we change from the Pattern Growth strategy to the Vertical-Database
Format strategy and introduce and explain every step of FaSPIMP algorithm. Algo-
rithm 12 shows the pseudocode corresponding to the main lines of the algorithm. Firstly,
FaSPIMP keeps every frequent 1-sequence (line 1) and gets all the possible item-pairs re-
lated to each frequent 1-sequence by means of the method getNeighbours ; and secondly, for
every frequent 1-sequence, the method DFS-Explore explores recursively the correspond-
ing subtree in a depth-first search. The union of every resulting set FS i corresponding to
each frequent 1-sequence, besides the simple points that appear in F1, provide the final
frequent pattern set FS composed of the proper boundary sequences that have at least
min sup appearances.

Algorithm getNeighbours is responsible for finding all the possible item-pairs for the
different items in the original database that have any temporal distance with respect to
each frequent 1-sequence. The algorithm finds all the possible candidates in the different
sequences by measuring the temporal distance to the frequent 1-sequence that we consider.

The method DFS-Explore, in Algorithm 14, executes recursively both the candidate
generation (by means of extensions, explained in Section 4.1) and the support checking,
returning a part of FS relative to the pattern p taken as parameter. The method takes
as parameters a set with the candidate items to do extensions (X set), and is executed
in lines 3-20. Firstly, in line 9, the correspondent extension is checked in order to know
whether the new p′ extension is already bad formed or not (this method is explained
later). Second, the algorithm checks the frequency of p′ extension (lines 10-12). If the
extension p′ is frequent, we include it in a C set (line 13) composed by the valid frequent
patterns, and if all the intervals of p′ are completed, we add p′ to the final set of patterns,
L, (corresponding to the extension of pattern p, in line 15). Next, in line 21, the method
ExploreChildren (Algorithm 15) is called, and there, DFS-Explore is executed for each

75

Figure 4.2: Examples of several projection derived from projected databases.

new frequent extension. Finally, in line 22, the complete frequent pattern set (with a
prefix p) is returned.

There are two main different changes added in FaSPIMP with respect to SPADE: 1)
the step to check if the subtree of a pattern can be skipped (line 9 of Algorithm 14), and
2) the prune method that removes the non-valid occurrences of the patterns that appear
in the IdList associated with a pattern p′ (line 12 of Algorithm 14).

The method IsAPossiblePattern prunes the improper extensions p′ of a pattern p.
There are two different cases that allow the prune: 1) if the last item of p′ corresponds to
a beginning interval boundary point with the same interval identifier of a previous open
interval within the pattern p; and 2) if the last item of p′ corresponds to an end interval
boundary point with the same interval identifier of a previous completed interval within
the pattern p. For instance, the pattern p1 = ⟨(0, a+)(12, a+)⟩ corresponds to the first

76

Algorithm 12 FaSPIMP

1: F1 = {frequent 1-sequences}
2: FS = ∅
3: FN = getNeighbours(F1,F2)
4: for all pi = (0, e) ∈ F1 do
5: if pi is a simple point then
6: FS = FS ∪ pi
7: end if
8: FN i= the ith-element of FN
9: FS i=DFS-Explore(pi,FN i)
10: FS = FS ∪ FS i

11: end for
Ensure: The final frequent pattern set FS

Algorithm 13 getNeighbours(F1)

Require: The frequent 1-sequence set F1

1: FN=∅
2: for all pi = (0, e1) ∈ F1 do
3: N1= all the items that have a temporal distance with respect to pi
4: FN=FN ∪N1

5: end for
6: return FN

Ensure: The final set of event sets FN that have different distances with respect the
each frequent 1-sequence

Algorithm 14 DFS-Explore(p, X)

Require: the current frequent pattern p = (T1, T2, . . . , Tn), set of item-pairs for extension X
1: Xtemp = ∅
2: Fb = ∅,C = ∅, L = ∅
3: for all (te, e) ∈ X do
4: if te = 0 then {e is added in the last transaction of p}
5: p′ = (T1, T2, . . . , T ′

n = Tn ∪ e)
6: else {e is added in a new transaction Tn+1 that has a distance of te with respect to Tn}
7: p′ = (T1, T2, . . . , Tn, Tn+1 = (tTn + te, e))
8: end if
9: if isAPossiblePattern(p′) then
10: if (p′ is frequent) then
11: Xtemp = Xtemp ∪ {(te, e)}
12: if (p′ appears at least min sup times without exceeding any expected end point corresponding to a beginning

points, that appears in p′ that does not have its end point in p′) then
13: C = C ∪ {p′}
14: if (all of intervals appearing in p′ are completed) then
15: L = L ∪ {p′}
16: end if
17: end if
18: end if
19: end if
20: end for
21: Fb = Fb ∪ L ∪ ExploreChildren(C,Xtemp)
22: return Fb

Ensure: The frequent pattern set Fb of this node and its children

77

Algorithm 15 ExploreChildren(P, X)

Require: The pattern set P which contains all the patterns whose children are going to be explored, the set of valid
item-pairs X that generates the P set by means of extensions

1: Fs = ∅
2: for all p ∈ P do
3: Fs = Fs ∪ DFS-Explore(p,X)
4: end for
5: return Fs

Ensure: The frequent pattern set Fs for all of the patterns’ children

case above since there exist two beginning point for interval a without having an end
point of a between them; and the pattern p2 = ⟨(0, a+)(5, b−)⟩ corresponds to the second
case since the end point b− appears and p2 does not have any beginning point b+ before
it.

In the step to prune those patterns whose support is under the given threshold, we
need to consider some issues. We know that by means of an usual counting of support step
(line 10), all the frequent points that take place in a temporal distance with respect to the
last event of p, are considered as possible future extensions. The problem that we have
with this counting is that, for some occurrences in the database, we are counting some
items that occur after some expected items that can be a left-open interval in the current
pattern. Thus, we need a new phase where those non-valid occurrences are not taken into
account for the actual support counting. In order to add this new control step, we use a
queue associated with the IdList of every pattern (we will detail the implementation of
the IdLists later).

Finally, the last pruning method is implemented by means of the information already
kept in the IdLists. These IdLists are the temporal structure that keep the Vertical
Database Format representation, and they are also used to represent the pattern occur-
rences in the database and, besides, by means of the join operation between two different
IdLists we can simultaneously extend a pattern and count its support. In our case, we
include all the necessary fields to keep a trace of what intervals are open and their tem-
poral information (in order to check if the sequences are proper). The structure of the
IdList is shown in Figure 4.3, where the different fields are:

1. Sid corresponds to the sequence identifier in the database.

2. Itemset timestamp is the actual temporal occurrence of the last itemset in the
sequence whose information is shown in the IdList.

3. Item position refers to the relative position of the last item in the last itemset.

4. Queue is a sorted list that contains the time for the expected end points that refer
to all the open intervals that are in the sequence. Each time position in the queue
is a pair with the timestamp of the itemset and the item position in that itemset.

Regarding the join operation, unlike in SPADE, there is only a kind of join that finds
the occurrences of the second IdList (that belongs to an item-pair) which are in a concrete
distance with respect to the first pattern. In our case, besides checking that the temporal
distance is respected, we need to check whether the pair (transaction timestamp, position
item) occurs before the first element in the queue of the checked sequence. For instance,

78

in Figure 4.4, in the first block we can see the extension of the sequence ⟨(t = 0, a+)⟩ with
the item-pair (1, b+). The temporal distance between them is 1, only in the sequences
1, 3 and 4, occurring ⟨(a+)⟩ in (1, 1) and b+ in (2, 1) in the three sequences. Since
(2, 1) is less than the first element in the queue for sequences 1, 3 and 4 ((2, 1) < (4, 1),
(2, 1) < (4, 1) and (2, 1) < (3, 1), respectively), we can make the extension to obtain the
new sequence ⟨(0, a+)(1, b+)⟩. Notice that, in the second sequence, the temporal distance
between sequence ⟨(t = 0, a+)⟩ and item b+ is 3 and is different from the expected distance
of 1. In another example, if we want to make an extension for the same previous sequence
⟨(a+)⟩ with the item-pair (3, b+), we can see that there is no sequence where the condition
of occurring before the first element of the queue is accomplished (the second sequence
((4, 1) > (3, 1))). Therefore, the resulting extension has a support of 0.

In Figure 4.4 the examples already shown in Section 4.2 are considered, and, as before,
several situations are introduced. Thus, rows 1 and 2 show the different IdList when we
extend a boundary sequence with a boundary item corresponding to an interval beginning
point; rows 3 and 4 show the extension of a boundary sequence with a boundary point
corresponding to an interval end point of an open interval that was started in the previous
boundary sequence; and, finally, rows 5 and 6 show the IdList when a boundary sequence
is extended with a simple boundary point.

Figure 4.3: New structure for the IdLists used in the new way of count the support in
order to find proper boundary sequences.

4.4 Optimizations

In this section we expose some optimizations in order to improve both PaGAPIMS and
FaSPIMP algorithms. The first of these optimizations refers to simplify the original
database from which we obtain the frequent quantitative patterns whereas the second
optimization is only related to FaSPIMP and its generation of frequent 2-patterns.

Regarding the first optimization, in both algorithms we mine all the events using
a representation of boundary points and we use some pruning methods to assure the
correspondence between the beginning and end of intervals, such as we mentioned in the
previous sections. In the algorithms, we firstly remove all those infrequent boundary
points that appear in the initial database size is reduced. However, since we are mining
quantitative patterns and we are interested in the duration of the items we can firstly
remove those infrequent ⟨event, duration⟩ pairs from the initial database and to start
in that moment the mining of that reduced database. For instance, in Figure 4.5 we
see a database composed of two sequences from which we want to extract the frequent
quantitative patterns. The upper table of Table 4.1 shows the result of the translation to
boundary points of the database shown in Figure 4.5. We can see that all the boundary

79

Figure 4.4: Examples of several extensions of different boundary sequences.

points are considered frequent and we would directly execute the algorithms on it. On
the contrary, if before translating to boundary points we remove the infrequent items
(⟨event, duration⟩ pairs) we can see that the original database is highly reduced to only
two boundary points per sequence, such as is shown in the bottom table of Table 4.1. This
optimization can be done in both PaGAPIMS and FaSPIMP and it greatly improves the
execution of both algorithms, particularly with big databases, since there normally exist
a lot of infrequent items (⟨event, duration⟩ pairs) that can be removed. Note that, as we
said before, the support considered is lower than in the qualitative case.

As for the generation of the frequent 2-patterns let us see the behaviour of both
algorithms. While PaGAPIMS calculates the temporal distances of the frequent boundary
points in each database projection, FaSPIMP needs to find all the possible temporal
distances that can exists in a previous step before starting the execution. This calculation,
in FaSPIMP, is exactly done in the step when the frequent 2-patterns are built. For this

80

Figure 4.5: Small Interval database for showing the effect of the first optimization.

Boundary Sequence database
SID/tid 1 3 5 6 7 8 10 11 14

1 (b+) (c+) (b−) (c−) (a+) (a−)
2 (a+) (a−) (b+) (c+) (b−) (c−)

Boundary Sequence database
SID/tid 1 5 6 10

1 (b+) (b−)
2 (b+) (b−)

Table 4.1: Examples of the effect of removing the infrequent events from the database
shown in Figure 4.5. In the upper figure every boundary point is maintained since all of
them are frequent while in the bottom figure only the item ⟨b, 5⟩ as that item is the only
frequent.

step, we necessarily have to make a complete scan of the database and to find all the
possible 2-patterns, selecting only the frequent ones. Furthermore, these frequent 2-
patterns do not have to be proper since we need the distances between all the possible
frequent combinations of events. Thus, if we are executing FaSPIMP on the example
database shown in Figure 2.1, after removing the infrequent items (⟨event, duration⟩
pairs) we mine all the possible frequent 2-length that can be found with the different
combinations of boundary points. Figure 4.6 shows all the frequent 2-patterns extracted
over the example database.

Some problems are associated with the mining of the frequent 2-patterns. These
problems normally arise with big databases, from low supports, and because we take into
account all the possible combinations of patterns, without discarding those non-proper
ones. What is more, if we have very different temporal distances between two boundary
points we need to count them as different 2-patterns. Therefore, sometimes the algorithm
cannot complete the search for frequent 2-pattern if the support is very low.

In order to fix this important problem we propose to make a change in the search
of frequent 2-patterns. This change consists of executing this level as a Pattern Growth
algorithm, making partitions for each group of 2-patterns that are created from a frequent
boundary point. Later, we continue executing FaSPIMP as usual, having all the item pairs
that we need for its execution. Through this search method for frequent 2-patterns, the

81

Figure 4.6: Frequent 2-patterns needed by FaSPIMP in order to a proper execution.

algorithm do not suffers from the prior problems and we can execute FaSPIMP in almost
any database, as long as the frequent 2-pattern set fits in main memory. For now on, we
will refer to this algorithm, FaSPIMP with a Pattern Growth algorithm for mining the
frequent 2-pattern set, as Prefix FaSPIMP .

4.5 Experimental results

The setting of the experiments is the same to the explained in Section 3.4.
All the experiments, except for the last one (Figure 4.13), we use for FaSPIMP the

version that uses a Pattern Growth method for mining the set of frequent 2-patterns (See
Section 4.4). Besides, all the items considered in all the databases can extend from a
duration of 1 to 10 units of time.

In Figure 4.7 we show the behaviour for moderated density values (n= {50, 100}).
In the 4.7A plot we can see the running time for the both algorithms PaGAPIMS and
FaSPIMP when we mine a dataset with a density of 0.2 and with very few transactions
per sequence (ptl=5). We can observe that the time execution is very similar for both
algorithms for this configuration. Plot 4.7B shows the behaviour for both algorithms
when we consider a denser database (δ = 0.4) by reducing the number of different items
(n=50). We can see that FaSPIMP is slower than PaGAPIMS, despite having a denser
database. This phenomenon occurs due to the time spent by FaSPIMP in the mining of
the set of frequent 2-patterns.

In Figure 4.8, we can see what happens when we increase the number of transactions
per sequence and decrease the transaction average length for different number of items
(n=50,100). In summary, we can say that we obtain similar results to those in Figure 4.7
even though we deal with sparser database (parameter ptl is lower). Both plots 4.8A and
4.8B have the same behaviour: the execution times of PaGAPIMS and FaSPIMP are very
similar, however, for low supports, FaSPIMP shows worse results than PaGAPIMS. As in
plot 4.7B, the sudden cost in time spent by FaSPIMP is because of the number of frequent
2-patterns sharply grows. Furthermore, in both plots, the number of frequent patterns
has a great change for the last support values (in 0.06-0.04 in 4.8A and in 0.04-0.02 in
4.8B).

In Figure 4.9 we can see the behaviour when we deal with larger sequences (40 trans-

82

Figure 4.7: Varying support for datasets s1000 psl5 msl8 ptl20 mtl25 ppl10 mpl12
n50–100.

Figure 4.8: Varying support for datasets s1000 psl20 msl30 ptl5–10 mtl6–12 ppl10
mpl12 n50–100.

actions on average), with different transaction average length (5, 10 and 20) and big
changes in the number of different items (50, 100, 500 and 1000), having sparser den-
sity values compared to those given in Figures 4.7 and 4.8. In plots 4.9A and 4.9B,
PaGAPIMS outperforms FaSPIMP. Plots 4.9C and 4.9D show the results with a dataset
where the patterns inserted are quite longer than the cases above and there are 1000 and
500 different items, respectively. Therefore, we have dealt with sparser databases and
the time execution has increased (720 and 547 seconds, respectively). For plot 4.9C, now
FaSPIMP outperforms PaGAPIMS, having a wide difference in execution time for low
supports. Plot 4.9D shows a better result for PaGAPIMS in the lowest supports whereas
plot 4.9E, with a sparse database (500 different items) with medium-high transaction
length (20 items on average), shows a better behaviour of FaSPIMP against PaGAPIMS.
In general terms we see two kinds of results: 1) PaGAPIMS is better than FaSPIMP
because of sparse databases with short transaction per sequence and/or a costly mining
of frequent 2-patterns for FaSPIMP, and 2) FaSPIMP shows a better time execution than
PaGAPIMS in denser databases when the mining of frequent 2-patterns is not very costly
and the typical drawbacks of PaGAPIMS are particularly remarkable. In addition, we
can see a hard and sudden change in plots 4.9B and 4.9C for supports 0.04-0.2 in plot
4.9B and 0.08-0.04 in plot 4.9C.

83

Figure 4.9: Varying support for datasets s1000 psl40 msl50 ptl5–10–20 mtl6–12–25 ppl
10–15–22 mpl12–18–25 n50–100–500–1000.

Figure 4.10 shows what it happens with both algorithms when we deal with larger
databases (10000 sequences) and with high values of different items (n = 500 and 1000).
Plots 4.10A and 4.10B have medium sequence length (20 transactions on average), medium-
high transaction length (20 items on average) and medium pattern length (10 items on
average) and 500 and 1000 different items for the database. The dataset that correspond
to the plots 4.10C and 4.10D have larger sequences (40 transactions on average) and
smaller transactions (10 items on average). In all the plots, FaSPIMP has a little domain
over PaGAPIMS, drawing a similar curve in all the cases. We can see that, having a
configuration similar to that shown in Figure 4.8, we have a similar behaviour, but now,
with a faster execution of FaSPIMP since its advantages are remarkable over PaGAPIMS.
Besides, as we commented on previous Figure 4.9, all these plots show a sudden change
in their behaviour, having a big increase at concrete supports (support 0.08-0.06 in plot
4.10A, supports 0.04-0.02 in plot 4.10B, supports 0.08-0.04 in plot 4.10C and supports
0.12-0.08 in plot 4.10D), and, as before, this is also due to the big increment in the number
of patterns when we mine the dataset with those supports.

As we did in Section 2.3, we finally show the behaviour when we change those crucial
parameters that especially affect to the algorithms execution. As before, we show the
executions when we progressively change the “transactions per sequence” parameter, and
one of those parameters that affect to the density, the number of items in our case. In
Figure 4.11 we see what happens when we have a database with moderated parameters
(1000 sequences, 20 transaction per sequence on average, and 12 items per transaction,

84

Figure 4.10: Varying support for datasets s10000 psl40 msl50 ptl10–20 mtl12–25 ppl10
mpl12 n500–1000.

being the length of the patterns of the database of 12 items on average) and we vary the
number of different items (50 in plot 4.11A, 100 in plot 4.11B and 200 in plot 4.11C). In
general, there is not a clear domain of any algorithm. Since a Vertical Database Format
algorithm normally is faster than a Pattern Growth strategy in dense databases, we think
that for these examples the drawbacks derived from the spent time in the mining of the
set of frequent 2-patterns implies a longer execution time. In fact, plots 4.11A and 4.11B
show a big change from FaSPIMP to PaGAPIMS and this should be related with that
issue. In the same way, Figure 4.12 shows the behaviour considering 100 different items
per database, and different “transactions per sequence” (10 in plot 4.12A, 20 in plot 4.12B
and 40 in plot 4.12C). Now, there is also a similar behaviour to that obtained in Section
2.3, when we worked with point-based database and qualitative relations. However, now
is much more difficult for PaGAPIMS to obtain good results than for the point-based case
due to the introduction of interval items. These new problems are widely explained in
the next Section 4.6, comparing the benefits and drawbacks for the both new algorithms
PaGAPIMS and FaSPIMP.

Finally, we show different plots comparing two different FaSPIMP versions: 1) that
one that considers a brute force search algorithm for the mining of the frequent 2-patterns,
and 2) that one that executes a Pattern Growth algorithm for the search of the frequent
2-patterns. Figure 4.13 shows three plots where both algorithms are compared. We refer
as FaSPIMP to the first version and Prefix FaSPIMP to the second one. Two cases are
shown in the figure. The first case occurs in plots 4.13A and 4.13B and shows that the
version with a Pattern Growth search is faster than the other one. This is because the
standard search count all the possible 2-patterns first, and afterward it discards those

85

Figure 4.11: Varying support for a same configuration of datasets where we change the
number of items (50, 100 and 200).

Figure 4.12: Varying support for a same configuration of datasets where we change the
number of items per itemset (20, 40 and 80).

infrequent whereas the version with a Pattern Growth does this in an incremental way.
The second case is the most important one and it is shown in plot 4.13C. In this case

86

we have a longer database with longer sequences (psl = 80) and the standard method
cannot be completed. That is precisely what occurs for supports 0.08 and 0.06, where
only the version with Pattern Growth search can finish. Note that, when we increase the
number of transactions per sequence (parameter psl), the execution time is higher and
the algorithms have more problems to reach low supports.

Figure 4.13: Comparison between FaSPIMP and Prefix FaSPIMP.

In general, we can see that all the executions achieve lower supports that for the
qualitative algorithms and, in some points, they suddenly increase. This is because of the
pattern explosion phenomenon that is explained in the next section.

4.6 Discussion. Comparing both algorithms

In this Section we discuss the main advantages of FaSPIMP with regard to PaGAPIMS. In
the first place, let us recall the main differences between the original versions of the Vertical
Database Format and Pattern Growth algorithms on which FaSPIMP and PaGAPIMS are
respectively based. Later, we will show the behaviour of these algorithms when we mine
quantitative patterns, and, especially once all the necessary information with which to
simultaneously manage points and intervals and the pruning methods has been included,
in order to verify that all the patterns contain proper quantitative intervals. Finally we
explain some drawbacks that are inherent to the problem of mining quantitative patterns.

One of the situations overlooked in some algorithms such as PrefixSpan, is the presence
of several appearances of the same item or event type in a sequence. On the one hand,
in PrefixSpan it is necessary to make all the projections of an item that appears several
times in a sequence in order to guarantee that all the I-extensions associated with that

87

item will be discovered. If, conversely, it was not necessary to find the I-extensions, or if
there were only one item per itemset, or only one appearance of each item per sequence
existed, there would be sufficient information with a single projection. On the other hand,
in Vertical Database Format algorithms, such as SPADE, it is not necessary to take into
account the problem of PrefixSpan, and all the S-extension and I-extensions explore the
whole search space. It could thus be said that the latter is less influenced by the database
structure.

Clearly, this fact has an important impact in the efficiency of both algorithms, de-
pending on the original database. For example, let us view the behaviour of both
PrefixSpan and SPADE in the case of the database composed of the single sequence
s = ⟨(1, a)(12, ab)(30, abc) (47, abcd)(53, abcde)(69, abcdef)⟩ and a min sup = 1. In this
case, there are six itemsets, occurring between times 1 and 69. If we consider sequence
⟨(a)⟩, the six different projections associated with this sequence are shown in Figure 4.14.
Note that if the first projection is considered in our example, then items b, c, d, e and
f that has a distance of zero with respect to ⟨(a)⟩ will not be considered to be frequent
items, and in order to count these items it is necessary to take into account the first
itemset of every subsequent projection. Figure 4.14 highlights all the itemsets that can
be ignored by PrefixSpan.

Figure 4.14: Projected database for the brief example with the standard PrefixSpan
algorithm.

With regard to SPADE, and using the same example as above, this algorithm builds
the associated IdLists (shown in Figure 4.15) without any special consideration. This
point is one of the great advantages of the Vertical Database Format strategy over the

88

Pattern Growth strategy for certain database configurations.

Figure 4.15: SPADE IdList for the brief example.

In regards to the quantitative version of SPADE and PrefixSpan, the above character-
istics also define the main behaviour of both algorithms. Concretely, whereas for SPADE
we have to be sure that the itemset time information that appear in IdLists has exactly
the temporal distance indicated by the item-pair that we are using to do the extension,
PrefixSpan cannot avoid the exploration of the shadowed part shown in Figure 4.15. In
the original PrefixSpan, used to mine point-based patterns, we can avoid the exploration
of the shadowed part in Figure 4.14, since those relations are already taken into account
in the first projection (relation before). Now, for a quantitative version of PrefixSpan, it
is not possible to ignore that shadowed part because we would not find all the item-pairs
needed. For instance, regarding the Figure 4.14, if we use PrefixSpan in the usual way, we
will ignore some item-pairs like (18, a) (found in the second projection) or (17, a) (found
in the third projection).

With regard to FaSPIMP and PaGAPIMS, as we saw in Sections 4.2 and 4.3, both
algorithms have new changes with respect to the original SPADE and PrefixSpan algo-

89

rithms in order to guarantee that all the boundary sequences are well-formed. Concretely,
even when FaSPIMP uses two new pruning mechanisms, the principal behaviour remains.
Besides, in PaGAPIMS, the exploration of the shadowed part for all the projections of a
projected sequence is still mandatory. Now, besides the above explanation, PaGAPIMS
has other new drawbacks since we could overlook some interval relation like meets, over-
laps, contains, starts, finished by or equals.

For instance, let us consider the database formed only of the sequence ⟨(1, a+)(2, a−)
(3, a+)(4, b+)(5, c+)(6, b−)(7, c−)(8, a−)⟩ and min sup = 1. If we project it by the 1-
sequence (0, a+), in Figure 4.16 we can find the two projections associated with the
(0, a+). There, if we process it as in the original PrefixSpan algorithm, we will take
into account all the eight itemsets in the first projection and only the first itemset in the
second projection. Therefore, we would not find the patterns ⟨(0, a+)(1, b+)(2, b−)(3, a−)⟩,
⟨(0, a+)(1, c+)(2, c−)(3, a−)⟩ and ⟨(0, a+)(1, b+)(2, c+) (3, b−)(4, c−)(5, a−)⟩, since in the
first projection we discard the elements after the itemset at time t = 2, that is precisely
the moment when the interval a is finished. Thus, in order to find the complete set
of frequent boundary sequences, we need to completely analyse every itemset of every
projection, being this necessity a new drawback for PaGAPIMS in regards to original
PrefixSpan.

Furthermore, as we saw in Section 4.3, FaSPIMP needs to mine the set of frequent
2-patterns and a good way to do it is through a Pattern Growth method. This last
fact makes FaSPIMP slower than a normal Vertical Database Format algorithm and, for
supports where the algorithms mostly find frequent 1-patterns and 2-patterns, PaGAPIMS
is clearly better than FaSPIMP. Even though both of them can execute a Pattern Growth
Strategy up to 2-patterns, PaGAPIMS discards the improper interval and FaSPIMP does
not do that at first in order to catch all the temporal distances. However, after mining
level 2, FaSPIMP normally starts to be faster than PaGAPIMS since the nature of Vertical
Database Format algorithms is faster than Pattern Growth algorithm in dense databases
with several transactions per sequence.

Finally, we discuss about the drawbacks that appear in every algorithm for mining
quantitative patterns. One drawback is the sharp change in the execution time curve
which normally appears when we run any algorithm for quantitative patterns. This phe-
nomenon belongs to the nature of the quantitative search. In this case, there are a lot of
occurrences of patterns whose items share the event identifiers but have different dura-
tions, and with a lot of relations with different temporal distances between them. Thus, it
typically occurs that, for high and moderated supports, the number of frequent patterns
is quite low, whereas for very low supports, the number of patterns sharply increases.
Another drawback appears in Vertical Database Format strategy, fact that directly af-
fects to FaSPIMP algorithm. For this strategy, since we need all the different temporal
distances of the relations in order to create larger candidates and we ignore the distances
that there appear in the original database, a second scan of the database is needed for
a proper execution of the algorithms. As we previously explained in Section 4.4, that
search can have several problems when we execute a brute force mining for the frequent
2-patterns, and a good alternative is to use a Pattern Growth algorithm just to find the
set of frequent 2-patterns. Anyway, even though we execute this last method, the search
of frequent 2-patterns take a longer time than if we could already have the temporal dis-

90

Figure 4.16: Projected database for the brief example with PaGAPIMS algorithm.

tances between relations and directly create candidates of length 2 and, thus, this search
means a time overhead in Vertical Database Format algorithms for quantitative patterns.

4.7 Conclusions

In this Chapter we have introduced two algorithms that deal with these issues for mining
quantitative interval patterns. Our main contributions are as follow:

• We simplify the processing of relations among quantitative intervals by getting all
the information of all quantitative boundary points in a sequence. The main advan-
tage of this representation, compared with the representations commonly used, is
that the relations among quantitative boundary points are reduced to before, equals
and after, followed by a temporal distance, instead of using directly quantitative
Allen’s relations. We refer to this pattern representation as sequence of quantitative
interval boundaries, and it expresses a pattern or sequence without any ambigu-
ity. Thus, only by means of points and their distances we can express the relations
among both the intervals and/or points that can appear in a pattern.

• We describe in detail the algorithm PaGAPIMS (Pattern Growth Algorithm for
Point and IntervalMetric Sequences), an implementation based on Pattern Growth
strategy, that uses the same pattern representation and capable of finding the whole
set of frequent quantitative patterns containing relations between points, intervals
or points and intervals. A similar algorithm has been used in works [Mörchen and

91

Fradkin, 2010; Chen et al., 2011] but without quantitative relations. Besides, we
show the main changes that we have to add to original algorithm to enable the
discovery of patterns with proper intervals.

• We introduce a novel algorithm, called FaSPIMP, which stands for Fast Strategy
for Points and Intervals Metric Patterns, capable of discovering the same set of
frequent quantitative patterns found by PaGAPIMS. FaSPIMP is based on the
Vertical Database Strategy and, to the best of our knowledge, it is the first algorithm
for quantitative point relations between points and intervals that it is based on that
strategy. Besides, FaSPIMP uses efficient methods to avoid the generation of useless
candidates and to check the frequency of the candidates.

• We use, in both FaSPIMP and PaGAPIMS algorithms, a novel candidate generation
based on boundary points instead of quantitative intervals. Besides, we describe in
detail the different pruning mechanisms that we use to discard those sequences that
are not correct.

• Regarding the drawbacks of the algorithms, in general terms, the drawbacks that
normally appear in Pattern Growth algorithms are also present in PaGAPIMS
even with a higher intensity. Furthermore, a pruning mechanism, as it is used
in FaSPIMP, is very convenient in order to reduce the search tree. Besides, when
we face the problem of mining quantitative patterns a boundary representation ini-
tially finds some problems since we only remove the infrequent event without taking
into account the duration associated with them. What is more, when a Vertical
Database Format algorithm is used, a problem emerges because we need to store all
the possible temporal distances associated with relations that appear between any
two points. In this Chapter we introduce two valid optimizations that can effectively
solve the two previous problems.

• We make an exhaustive comparison between PaGAPIMS and FaSPIMP. We show
that there not exist a remarkable difference between both execution but we rec-
ommend the use of FaSPIMP when large patterns can be found and the algorithm
spends a lot of time generating candidates with a length bigger than 2.

• Finally, all the performed tests do not offer a clear advantage for any algorithm,
nevertheless, when we mine databases where a large number of patterns with length
bigger than 2 is found, the advantages of FaSPIMP can be seen more clearly. There-
fore, this reason lead us to conclude that Vertical Database Format strategy is more
appropriate for mining quantitative interval databases.

92

Chapter 5

BreadthPIS and DepthPIS: Two
New Fast Algorithms for Mining
Points and Intervals Qualitative
Patterns

In this Chapter we introduce two algorithms, BreadthPIS and DepthPIS, being both of
them based on Vertical Database Format strategy. In these two algorithms we use another
data representation called Triangular Matrix representation. One of the key aspects of
these algorithms is that the generation of candidates is based on temporal reasoning.

This Chapter is organized as follows. In Section 5.1 we add some aspects related to
the representation used for the sequences and the basic operation between items. Section
5.2 describes the new breath-first search algorithm BreadthPIS, whereas in Section 5.3
we describe algorithm DepthPIS. An experimental and performance study is shown in
Section 5.5, while a wide discussion about the behavioural differences of the algorithms
is given in Section 5.6. Finally, we provide our conclusions in Section 5.7.

5.1 Additional definition and description for problem

setting

Let us now define the method through which we convert a sequence database in another
based on Triangular Matrix representation. Let α = ⟨(t1, I1), (t2, I2), . . . , (tm, Im)⟩ be a
sequence where the itemsets may contain both points and intervals. In an iterative way, we
can convert α into another representation with explicit qualitative relations between the
events. So, for the first itemset, for the first item, we check the relation with all the rest of
items appearing in both, the same itemset and in later itemsets, inferring those relations
as is shown on the right hand side in Figure 5.1. Thus, we have (l(α) − 1) relations,
that are exactly the relations between the first item and all the rest of α. Afterwards, we
repeat the same process for the second item, obtaining (l(α)− 2) relations (between the
second item and all the rest appearing forward). If we continue, we will end with the item
im,n−1 and im,n and the only relation that appears between them. We represent that in a

93

triangular matrix, where both the rows and columns are the events, and the cells contain
the relation between them (Rij is the relation between the i event and the j event). From
now on, we refer to this triangular matrix with the name of TriMax.

Figure 5.1: Allen’s algebra relations.

So, the relations of a triangular matrix can refer to relations between points, interval
or points and intervals.

Let us see an example of the given process above. Let α = ⟨(t = 1, ⟨A, 3⟩)(t =
2, ⟨B, 3⟩)(t = 3, ⟨C, 6⟩)(t = 6, ⟨D, 0⟩)⟩ be a sequence, such as shown in the first sequence
of the example database shown in Figure 2.1. The associated triangular matrix with this
sequence is shown in Table 5.1.

B C D
A o o <
B o <
C c

Table 5.1: Triangular matrix for example sequence.

Triangular matrix representation has several benefits, being the ability to infer re-
lations from other relations the most important one (see Section 2.4). By means of
this triangular matrix representation, we obtain a good representation that is: 1) non-
ambiguous, since all the relations between all the events are shown in the half-matrix and
2) simple, since a complex sequence can be easily read and all the relations are explicit.

Considering this representation, the implementation of the subsequence checking or
the operation with prefix and suffix of sequence is straightforward. We say that the
sequence α is a subsequence of another sequence β (or β is a supersequence of the α),
denoted as α ⪯ β, if there exists a bijective function f that preserves the order and maps
the items in α to items in β, in such a way that 1) ∀i ∈ α, ∀f(i) ∈ β, i ⊆ f(i) and
2) if ∀i, j ∈ α, ∀f(i), f(j) ∈ β, i has a relation Rij with j, i Rij j, then that relation
is maintained by f(i) and f(j) i Rij j ⇒ f(i) Rij f(j). If we analyse this in terms of
triangular matrices, we have to check 1) if the events of α are included in the events of
β and 2) the relations of the triangular matrix between the events of α are the same
as those that appear in their corresponding events in the triangular matrix of sequence
β. For instance, the sequence α = ⟨(t = 1, ⟨A, 3⟩)(t = 2, ⟨B, 3⟩)(t = 3, ⟨C, 0⟩)⟩ is a
subsequence of β = ⟨(t = 1, ⟨A, 3⟩)(t = 2, ⟨B, 3⟩)(t = 3, ⟨C, 0⟩)(t = 7, ⟨D, 5⟩)⟩ but not of

94

γ = ⟨(t = 1, ⟨A, 2⟩)(t = 2, ⟨B, 3⟩)(t = 3, ⟨C, 0⟩)⟩, since the relation between A and C in α
is contains whereas in β is meets.

We say that two sequences α and β are related by an equivalence relation if they share
a common k-prefix. In that case with [P] we denote the equivalence class where α and β
belong to, being P the k-prefix that relates both α and β. In addition, we call members of
[P] to the set of patterns that are in the same equivalence class [P]. If the prefix P of an
equivalence class [P] has a length of k events, l(P) = k, we say that [P] is a k-equivalence
class. We say that a pattern p always belongs to the equivalence class [P].

Definition 5.1.1. We call transition function to the function f : R×R → 2R, being R
the set composed of the thirteen Allen’s relations and 2R its power set.

Through this transition function we can infer a set of relations from two given single
Allen relations. In later Sections, we will define by enumeration the different transition
functions that we will use.

In Figure 5.2, we show the final frequent sequence set when we mine the example
database under a minimum support of 2. Even though we do not make any distinction
between the different patterns, there are different types of frequent sequences: those
composed of both simple points and intervals, for instance all the 4-sequences where all
the patterns have event points d or g; those formed by only intervals, like all of the patterns
that do not have the events d or g in them; and those with only points, composed of those
sequences with only the event points d, g or d and g. In total, the final frequent sequence
set has 33 frequent sequences.

Figure 5.2: Frequent sequence set of example database.

5.2 BreadthPIS: an algorithm for mining point and

intervals temporal events based on breadth-first

search

In this Section, we formulate and explain every step of our BreadthPIS algorithm. Before
starting with the description of main methods, we have to give some keynotes relatives
to BreadthPIS algorithm. Since we represent a pattern with a TriMax, and each pattern

95

has a number of appearances in the database, stored in an IdList, whenever we refer to a
pattern p, we refer to the couple ⟨TriMax, IdList⟩ (both of p). Besides, we will denote
the terms p.TriMax and p.IdList to refer to these parts of a pattern p.

The above mentioned IdList is a data structure where we store, for each sequence, a
list with all the appearances of a concrete pattern in that sequence. Each appearance is a
list of events (point or intervals) and it also includes its timestamp for the beginning and
its end when it is an interval. In Figure 5.3, we see the IdList of the example database
for the pattern given in Table 5.1.

Figure 5.3: IdList for the pattern in the example database.

The BreadthPIS algorithm, shown in Algorithm 16, consists in a main continuous
loop that executes a breadth-first search. As first steps, all the frequent 1-patterns and
2-patterns have to be found (we try all the possible direct relations between frequent
1-patterns to obtain the frequent 2-patterns). The mentioned loop is composed of two
steps: 1) All the possible (k+1)-superpatterns are generated from the current frequent
(k)-patterns, and 2) we select only the frequent patterns among all the possible generated
candidates. If this frequent (k + 1)-pattern set is not empty, we repeat the loop again
in order to find longer frequent patterns. Finally, the algorithm ends returning the final
frequent pattern set. The steps of candidate generation and counting of support both are
shown in Algorithms 17 and 19 respectively.

Algorithm 17 shows the candidate generation algorithm. We base this method on that
introduced in GSP algorithm [Srikant and Agrawal, 1996]. The main idea is merging two
k-patterns p1 and p2 where the (k−1)-suffix of p1 is equal to the (k−1)-prefix of p2. When
we find two patterns that accomplish this condition, we can create a new (k+ 1)-pattern
built by concatenating to p1 the last event of p2. In order to find the patterns that fulfil
those conditions, Lines 4-9 create two hash table, one for prefixes and other for suffixes,
where we link each pattern to all the patterns to which they are related. Then, in Lines
10-20 we iterate all the entries in the prefix table and, an entry is merged with a pattern
in the suffix Table if they are equal. Finally, we return all the generated candidates in

96

Algorithm 16 BreadthPIS(IsPruneActivated)

1: F1 = {frequent items}
2: F = F1

3: F2 =getFrequent2Sequences(F1)
4: Fk = F2

5: while Fk ̸= ∅ do
6: F = F ∪ Fk

7: Ck =GenerateCandidates(Fk,IsPruneActivated)
8: Fk =CountingOfSupport(Ck)
9: end while
10: return F
Ensure: The frequent pattern set F

Line 21.

Algorithm 17 GenerateCandidates(Fk,IsPruneActivated)

Require: the (k-1) frequent pattern set Fk, a boolean indicating if the pruning method
has to be executed IsPruneActivated

1: Hpre = ∅ { Hash table with duples ⟨pre, preSet⟩, being pre a pattern and preSet set
of patterns }

2: Hpost = ∅ { Hash table with duples ⟨post, postSet⟩, being post a pattern and postSet
set of patterns }

3: Ck
4: for all p ∈ Fk do
5: ppre = (k − 1) prefix of p
6: ppost = (k − 1) suffix of p
7: insert p to the associated set of Hpre(ppre)
8: insert p to the associated set of Hpost(ppost)
9: end for
10: for all ⟨pre, preSet⟩ ∈ Hpre do
11: S =the associated set postSet of Hpost(pre)
12: if S ̸= ∅ then
13: for all ppre ∈ preSet do
14: for all ppost ∈ S do
15: MS =MergePatterns(ppost,ppre,IsPruneActivated)
16: Ck = Ck ∪MS
17: end for
18: end for
19: end if
20: end for
21: return Ck
Ensure: The frequent pattern set F

The method MergePatterns, shown in Algorithm 18, introduces the main changes
added by this algorithm with respect to the original point-based ones. These changes are

97

those derived from the use of intervals relations and also from the check of frequency.
The method receives two patterns ppost and ppre as parameters, and a flag value that
indicates if a pruning method has to be executed as soon as we create new candidates.
The parameters ppost and ppre are k-sequences with a common (k-1)-subsequence (suffix of
ppost and prefix of ppre) and, therefore, their associated TriMax share some cells as shown
in Figure 5.4. We can see that the new candidate is formed by adding the last element
and the last column of ppre to ppost.

Once we have merged both TriMax, we still have to infer the relation between the
first event of ppost and the last of ppre (highlighted by an ellipsis in Figure 5.4). We have
considered two options:

• to consider the Allen’s thirteen relations in that cell and, thus, having thirteen
different candidates whose frequency will have to be checked later.

• to infer the relations that connect the event E1 and the event Ek+1 by means of all
the possible paths Ej, ∀1 < j < k + 1, which relate them through an intermediate
event. That is, using the “path consistency” as defined by Allen [Allen, 1983].
Such inference is defined by a transition function (see Definition 5.1.1) that returns
a set of Allen’s relations for a given pair of relations and that set contains the
different candidates that can be derived from ppost and ppre. In Table 5.2 we show
the definition of the transition function fBFS(Rr, Rc) that we use in BreadthPIS
algorithm. In such table, the seven relations appearing in the rows correspond to
the first argument Rr of fBFS, whereas the same seven relations in the columns are
those corresponding to the second argument Rc. Summarizing, fBFS has 49 different
combinations from its two arguments, being the smallest resulting sets composed of
only one relation and the largest ones of five relations.

< m o f−1 c = s
< < < < < < < <
m < < < < < m m
o < < {<,m, o} {<,m, o} {<,m, o, f−1, c} o o

f−1 < m o f−1 c f−1 o
c {<,m, o, f−1, c} {o, f−1, c} {o, f−1, c} c c c {o, f−1, c}
= < m o f−1 c = s
s < < {o,m,<} {o,m,<} {<,m, o, f−1, c} s s

Table 5.2: Transition table for all the different intervals relations.

In this algorithm we take the second alternative given above and we use the transition
function defined in Table 5.2 to generate the different candidates. The Algorithm 18,
MergePatterns, obtains the inference associated with the TriMax of ppost and ppre, set of
relations RS (Line 1). Notice that, in order to infer the new relation, we need to know
what relation exists in the paths from E1 to Ek+1 through all intermediate events Ej.
The relations RE1,Ej

between the events E1 and Ej and REj ,Ek+1
between Ej and Ek+1

are the arguments Rr and Rc of the transition function fBFS. In order to simplify our
algorithm, we search for that Ej that generates the minimum number of different relations.

98

Figure 5.4: Generation of a candidate from two frequent patterns.

In Figure 5.5 we show that method for an example. Since we have to find the possible
relations that exist between the event A (E1) and the event E (Ek+1), all the three events
B, C and D are a possible intermediate event (Ej). So, at first, we start with the B
event, and as RAB = “c” and RBE = “ < ”, we have fBFS(RAB, RBE) = {<,m, o, f−1, c}
as resulting set. Then, we continue exploring the paths to see if less candidates are
generated. We see that using C, we find fBFS(RAC , RCE) = {<,m, o} and if we use
D, we find fBFS(RAD, RDE) = {<}. In this moment we can stop the search without
analysing more paths since fBFS(RAD, RDE) only contains a single relation, and therefore
the candidate set cannot be reduced. In the same way, if we were lucky and in our first
choice of Ej we had a result with a single relation, we would not need to continue with
the process since we cannot find a set with less relations. Conversely, it can occur that we
do not find any result with a single relation and, in that case, our result is the smallest
set that we could find.

Once we infer the smallest relation set RS, for each relation of RS, we repeat the
same process: we create its new TriMax as we previously saw in Figure 5.4 (Line 3 in
Algorithm 18); we check if the candidate can be pruned (Line 6), whenever the parameter
IsPruneActivated is true; and, finally, if the candidate is not pruned, we obtain the IdList
associated with the 1-pattern form by the last event e of ppre pattern (Line 9), and we
create the IdList corresponding to the new candidate from the IdLists of ppost and e (Lines
10 and 11). The algorithm ends returning all the candidates derived from ppost and ppre
in Line 15.

We would like to go into detail about the call to the method CreateIdList (Line 10)

99

Figure 5.5: Process of choosing the smallest candidate relation set for BreadthPIS.

and explain how a new IdList is created from the IdList of ppost and ppre. To obtain such
IdList, we check that all the appearances of the last event of ppre are present in the IdList
of the new candidate previously generated (from ppost and ppre). Note that we have to
check necessarily the relations of all the appearances because if we only check the inferred
relation, some of the previous events could not be related with the new event with the
relation that we expect. Figure 5.6 shows the steps for merging two IdList of two patterns.
The new IdList contains the IdList of C1 reduced to those sequences that also contain one
of the new relations inferred in Algorithm MergePatterns with respect the event E. In
Figures 5.7 and 5.8 we show the calculation for the entries of the new IdList. In particular,
we expose two different cases: one where the new IdList entry is empty and one where
the IdList entry is not empty. Figure 5.7 shows the new empty IdList entry found when
we try to merge the first C1 entry (⟨< 1, 10 >,< 3, 15 >,< 12, 40 >,< 20, 25 >⟩) and the
first E1 entry (⟨< 30, 35 >⟩) of the first sequence. As we said, the interval that represents

100

Algorithm 18 MergePatterns(ppre,ppost,IsPruneActivated)

Require: The two pattern to merge ppost and ppre, a boolean indicating if the pruning
method has to be executed IsPruneActivated

1: RS = TemporalReasoning(ppost.TriMax,ppre.TriMax)
2: for all r ∈ RS do
3: t = CreateTriMax(ppost.T riMax,ppre.T riMax,r)
4: pruned = false
5: if IsPruneActivated then
6: pruned = CheckPrune(t)
7: end if
8: if not pruned then
9: e = LastEventOf(ppre)
10: NewIdList =CreateIdList(ppost.IdList,e.IdList,ppost.T riMax,t)
11: c = pattern ⟨t, NewIdList⟩
12: Ck = Ck ∪ {c}
13: end if
14: end for
15: return Ck
Ensure: The frequent pattern set F

E has to accomplish all the relations denoted by the last column of the new candidate
TriMax. We do that in decreasing order, starting from the last relation of the column
Rk,k+1 up to the first relation of the column R1,k+1. In our example we start checking if the
last but one event of the new TriMax D has a “ < ” relation with E, i.e. for the current
entry, we check that the interval associated with D (⟨< 20, 25 >⟩) before E (⟨< 30, 35 >⟩)
exists. Then, we continue doing the same process with the previous relation of the last
column, which contains a “o′′ relation between C and E. Unfortunately, we check that
the interval associated with C in the current entry ⟨< 12, 40 >⟩ has not a “o′′ relation
with E (⟨< 30, 35 >⟩), leading us to abort the check of that new possible entry.

Conversely, Figure 5.8 shows a successful case that makes a perfect matching between
the first entry of C1 IdList and the second entry of E IdList, both also associated with
the first sequence. In this case, we have D (⟨< 20, 25 >⟩) “ < ′′ E (⟨< 37, 42 >⟩), C
(⟨< 12, 40 >⟩) “o′′ E (⟨< 37, 42 >⟩), B (⟨< 3, 15 >⟩) “ < ′′ E (⟨< 37, 42 >⟩), and A
(⟨< 1, 10 >⟩) “ < ′′ E (⟨< 37, 42 >⟩), and thus all the relations in the last column of the
new TriMax are accomplished. After processing the rest of entries, we finally have the
resulting IdList, shown in Figure 5.9, where besides the second entry of E for the first
sequence a new entry appears for the third sequence.

Finally, Algorithm 19 selects only those generated candidates whose support is at least
min sup. This method is very simple since the creation of the IdList have been already
done through the method GenerateCandidates.

101

Figure 5.6: Example of merging of two IdLists (ppost = C1 and ppre = C2).

Algorithm 19 CountingOfSupport(Ck)

Require: the k-candidate set Ck Fk = ∅
1: for all ck ∈ Ck do
2: if ck.support() > min sup then
3: Fk = Fk ∪ ck
4: end if
5: end for
6: return Fk

Ensure: The frequent pattern set F

5.3 DepthPIS: an algorithm for mining point and

intervals temporal events based on depth-first

search

Let us now describe our DepthPIS algorithm. As in Algorithm BreadthPIS (Section 5.3),
the structure of the patterns uses a TriMax and an IdList. One of the key points of this

102

Figure 5.7: Example of a failed case in the calculation of an entry of the new IdList.

algorithms is the use of the concept of equivalence class given at the end of Section 5.1.

DepthPIS, shown in Algorithm 20, consists in a depth-first search that explores all
the equivalence classes derived from all the frequent 1-patterns. In order to make the
algorithms more efficient, frequent 1-patterns and 2-pattern have been previously found
and all the frequent 2-patterns are inserted in the equivalence classes given by their 1-
prefixes (Lines 9-11). Then, all the equivalence classes are explored and the algorithm
ends returning the final set of frequent patterns F .

Algorithm 21 shows the method EnumerateFrequentSequences, which is based on
the method introduced in SPADE algorithm [Zaki, 2001]. The main idea consists of
merging two k-equivalence classes [Xy] and [Xz], being both belonging to the k-class
[X], and having both the same common (k)-prefix X. In order to merge the patterns,
we go over each member of the k-equivalence class [X] (k + 1-superpatterns of X) and
merge it with all the k+1-patterns that are after it in [X] (Lines 2-4). Then, the method
GenerateCandidates is called and we obtain a set of superpatterns candidates for both
Xy and Xz patterns. In this point, for each candidate, we have to create its IdList
(Line 7), and the new equivalence class [c] (Line 8), as well as check its support (Line
9). When we find a frequent candidate, we can add it to the final frequent pattern set
(that corresponds to the equivalence class [X]) and, depending on its k-prefix, we insert
it into the equivalence class ([Xy] or [Xz]). Finally, the Algorithm 21 ends returning the
frequent pattern set of the equivalence class [X].

The method GenerateCandidates, shown in Algorithm 22, introduces the main changes
added by this algorithm with respect to the original point-based Vertical Database Format
ones. As the Algorithm previously shown in Section 5.5 does, the method receives two
equivalence classes [Xy] and [Xz] as parameters and infers the candidates. Let see how
a new candidate is inferred from [Xy] and [Xz] (schema shown in Figure 5.10). Since
both [Xy] and [Xz] belong to the equivalence class [X], their patterns have a common

103

Figure 5.8: Example of a successful case in the calculation of an entry of the new IdList.

(k − 1)-prefix, and, therefore, their associated TriMax share several cells. Concretely,
Xy and Xz share all the relations except their last row, both highlighted and joined by
arrows in Figure 5.10. Thus, a new candidate is formed by adding the last column of the
TriMax of Xz to the TriMax of Xy. In this point, as in Section 5.5, we see that we still
need to infer the relation between the last event of Xy and Xz. Using a new transition
function fDFS(Rr, Rc), defined by the transition Table (5.3). This new transition function
is different to that one used in BreadthPIS algorithm, and it has been explicitly created
for this DepthPIS algorithm. The arguments of this function are the relation that connect
an event Ej, ∀1 ≤ j < k + 1, to the last but one event Ek and the relation that connects
the same event Ej to the last event Ek+1. In this case Ek = y, Ek+1 = z, and Ej takes
as values all the events in X. In that table the seven direct relations that we use as rows
correspond to the argument Rr, whereas the columns correspond to the second argument
Rc. As in BreadthPIS algorithm, we also have 49 different resulting sets with a minimum

104

Figure 5.9: Example of merging of two IdLists. Final result.

cardinality of one and a maximum of thirteen. In Figure 5.11 we can see the process in
DepthPIS for the TriMax given. In that example, a set of five relations is the minimum
cardinality found.

Algorithm 22, GenerateCandidates, infers the TriMax of [Xy] and [Xz], obtaining a
set of relations RS (Line 1). Then, for each relation of RS, we repeat the same process of
creating its new TriMax as we previously saw in Figure 5.4 (Lines 7 and 9). The algorithm
ends returning all the candidates derived from Xy and Xz in Line 14. The aim of lines
5-7 is exactly the same as line 9. The motivation of this lines comes from the existence
of inverse relations in some resulting relation sets from the transition table (Table 5.3).

For instance, the thirteen relations are possible when two before relations are given as
parameters. In order to avoid the use of inverse relations (>, d, si, oi, mi and f) we have
to swap the order of the events as shown in Figure 5.12.

Algorithm CreateIdList is exactly the same as that used in BreadthPIS algorithm (see
Section 5.2). Figure 5.13 shows the final result of merging two IdList for the two patterns
given.

105

Algorithm 20 DepthPIS()

1: F1 = {frequent items}
2: for all X ∈ F1 do
3: add X to equivalence class [X]
4: EC = EC ∪ [X]
5: end for
6: F = F1

7: F2 =getFrequent2Sequences(F1)
8: for all Y ∈ F2 do
9: add Y to equivalence class [Y]
10: p = 1-prefix of Y
11: add Y to equivalence class [p]
12: end for
13: F = F ∪ F2

14: for all [X] ∈ EC do
15: Fk =EnumerateFrequentSequences([X])
16: F = F ∪ Fk

17: end for
18: return F
Ensure: The frequent pattern set F

Figure 5.10: Example of merging of two TriMax.

106

Algorithm 21 EnumerateFrequentSequences([X])

Require: the current equivalence class [X] on which we search for the frequent patterns
in a DFS way

1: Fk = ∅
2: components =members of [X] extended with only one more event than X
3: for all [Xy] ∈ components do
4: for all [Xz] ∈ components that appear after [Xy] do
5: Ck =GenerateCandidates([Xy],[Xz])
6: for all c ∈ Ck do
7: newIdList = CreateIdList(c,[Xy],[Xz])
8: Create a new pattern c with newIdList, and insert c in the equivalence class

[c]
9: if c.support() ≥ min sup then
10: Fk = Fk ∪ {c}
11: if the pattern Xy is a prefix of c then
12: add [c] to [Xy]
13: else
14: add [c] to [Xz]
15: end if
16: end if
17: end for
18: end for
19: if we have just found any frequent pattern then
20: Fk = Fk∪ EnumerateFrequentSequences([Xy])
21: end if
22: end for
23: return Fk

Ensure: The frequent pattern set Fk

5.4 Mining points and intervals

In the description of the previous two algorithms we have given a transition table for each
one. This transition table is an enumeration for all the possible arguments that we can
have in their corresponding transition function but it has been only defined for interval
items. In those tables, we suppose two qualitative interval relations as arguments, finding
another qualitative interval argument as result. Since in the calculation made by the
transition function we have three different items ii, ij and ik (being ii and ij related by
Rr; and ij and ik by Rc), and those items can be either a point or an interval, we have
23 = 8 different combinations.

In order to deal with all the combinations we have two alternatives: 1) to use an only
transition table and taking into account if we are referring to a point or an interval; or 2)
to use eight transition tables (seven additional tables to that proposed in Section 5.2 or
Section 5.3) and to deal directly there with the whole range of possibilities.

Regarding the first alternative, we need to redefine the translation into points for
those relations that are not in the relations between point and intervals, or interval and

107

Figure 5.11: Process of choosing the smallest candidate relation set for DepthPIS.

points, which Meiri proposed [Meiri, 1996]. These two relations that not exist in the
Meiri’s relations are {m, o}. If we redefine those relations, we can simply use the table
previously defined and whenever we take into account point, intervals or both, we create
the candidates with the relation set given by the transition function.

108

Algorithm 22 GenerateCandidates([Xy],[Xy])

Require: The two equivalence classes that, from their patterns, we use for finding the
different possible candidates.

1: RS = TemporalReasoning([Xy].TriMax,[Xz].TriMax)
2: Ck = ∅
3: if RS ≠ ∅ then
4: for all r ∈ RS do
5: if IsAnInverseRelation(r) then
6: ri =getDirectRelation(r)
7: c =createTriMaxWithInverseRelations(Xy.TriMax,Xz.TriMax,ri)
8: else
9: c =createTriMax(Xy.TriMax,Xz.TriMax,r)
10: end if
11: Ck = c
12: end for
13: end if
14: return Ck

Ensure: The candidate set Ck derived from [Xy] and [Xz]

Nevertheless, this first alternative carries two problems. Firstly we have to make more
complicated to check whether a relation is maintained and, secondly, we have to deal with
a lot of candidates that will be infrequent when we deal with points. For instance, if we
are using the transition function given in DepthPIS algorithm and we have three points
A, B and C such that A < B and B < C, our transition function give us a candidate
set of thirteen relations, whereas only two different relations are possible between points
and, therefore, we will surely have 11 infrequent candidates.

In regards to the second alternative, we define seven additional transition tables to
complete the different combinations between three items, ii, ij and ik, which are immersed
when we create candidates. The seven tables are built from those define in BreadthPIS
and DepthPIS and the creation method of each table is the following:

1. If the two first items are points, we remove all the rows different from relations <
and =. If, on the contrary, they are a point followed by an interval, we remove all
the rows different from relations < and s. If we have an interval followed by a point,
we remove all the rows that do not correspond to the relations <, c and f−1.

2. If the second and third items are points, we remove all the columns different from
relations < and =. If, on the contrary, they are a point followed by an interval,
we remove all the columns different from relations < and s. If we have an interval
followed by a point, we remove all the columns that do not correspond to the
relations <, c and f−1.

3. Finally, we remove from the relation sets those relations that are not associated
with the relation from the first item to the third one. Thus, if the first and third
items are points we remove from each relation set all the relations different from <
and =. If, on the contrary, they are a point and an interval, we remove from each

109

< m o f−1 c = s
< {<

,m, o,
f−1, c, s,

=,
si, d, f,
oi,mi,>

}

{d, f, oi,
mi,>}

{d, f, oi,
mi,>}

> > > {d, f, oi,
mi,>}

m {<
,m, o,
f−1, c}

{s,=, si} {d, f, oi} mi > mi {d, f, oi}

o {c, f−1, o,
m,<}

{c, f−1, o} {o, f−1, c,
si,=, s,
d, f, oi}

{c, si, oi} {c, si, oi,
mi,>}

oi {d, f, oi}

f−1 < m {o, s, d} {f−1,=, f} {c, si, oi,
mi,>}

f d

c < < {<
,m, o,
s, d}

{<
,m, o,
s, d}

{<
,m, o,
f−1, c, s,

=,
si, d, f,
oi,mi,>

}

d d

= < m o f−1 c = s
s {<

,m, o,
f−1, c}

{o, f−1, c} {o, f−1, c} c c si {s,=, si}

Table 5.3: Transition table for all the different intervals relations.

relation sets all the relations apart from relations < and s. If we have that the first
item is an interval and the second one is a point, we remove all the columns that
do not correspond to the relations <, c and f−1.

In our algorithms, BreadthPIS and DepthPIS, we use this second alternative and, when
we generate all these tables first, we only look for the relation sets in the corresponding
table depending on the type of the events. Therefore, thanks to this last alternative we
can easily manage the candidate generation of both points and interval events.

5.5 Experimental results

The setting of the experiments is the same to the explained in Section 3.4.

In all the comparative studies made we find two different situations: 1) executions
where both algorithms find a similar number of candidates and 2) executions where the

110

Figure 5.12: Conversion of a TriMax with an inverse relations.

number of candidates found by BreadthPIS is clearly less than the amount generated by
DepthPIS.

As for the first situation, Figure 5.14 show plots where the running times for Breadth-
PIS and DepthPIS are very similar. Figure 5.14 shows what happens with both algorithms
when we deal with large databases (10000 sequences). Plots 5.14A and 5.14B have medium
sequence length (20 transactions on average), medium-high transaction length (20 items
on average), medium pattern length (10 items on average), and 500 and 1000 different
items for the database. The datasets that correspond to the plots 5.14C and 5.14D have
larger sequences (40 transactions on average) and smaller transactions (10 items on aver-
age). In both rows of plots, the same phenomenon is repeated, having a little domain of
DepthPIS over BreadthPIS for the denser database (n = 500), and very similar execution
when we use a greater n value. The same phenomenon occurs in plots 5.14C and 5.14D,
and even, in 5.14D plot, BreadthPIS cannot get the final low supports due to its memory
overflow.

111

Figure 5.13: Example of merging of two IdLists.

All in all, Figure 5.14 refer to execution where the candidates generated for both tran-
sition functions fBFS and fDFS are very similar in results. Figure 5.15 shows the number
of candidates generates for plots 5.14A and 5.14C (plots 5.15B and 5.15C, respectively).
We can see that the shapes are consistent with execution time. In addition, we see that
the rough increments that we have in some plots (for instance the remarkable change in
supports 0.64-0.6 in plot 5.14A or 0.5-0.48 in plot 5.14C are corresponded by the same
increment in the number of candidates in their respective plots of Figure 5.15.

As far as the second situation is concerned, where the number of candidates created by
DepthPIS exceeds by far the number created by BreadthPIS, Figures 5.16 and 5.17 show
different comparatives. In this case, the running time taken by DepthPIS is much longer
than the time used by BreadthPIS. In Figure 5.16, we can see the execution time when
we have a moderated number of transactions per sequence (psl=20) with low transaction
average length (ptl from 2 up to 10). We see similar curves for both BreadthPIS and
DepthPIS, but BreadthPIS always outperforms DepthPIS. In the 5.16A plot the execution
time of BreadthPIS is faster than DepthPIS with a factor of 2. With fewer items per
transaction, Plots 5.16B and 5.16C, BreadthPIS still outperforms DepthPIS but, for low
supports (after 0.43 in 5.16B plot and after 0.11 in 5.16C plot) we can see that BreadthPIS
have problems and even cannot complete the execution because of memory overflow. The
5.16D plot shows that the difference between DepthPIS and BreadthPIS is increased when

112

Figure 5.14: Varying support for datasets where the number the candidates is
very closed for both algorithms BreadthPIS and DepthPIS. s1000 psl20–40 msl30–50
ptl10–20 mtl12–25 ppl10 mpl12 n500–1000.

Figure 5.15: Candidate number for BreadthPIS and DepthPIS in plots 5.14A and 5.14C.

we change the transaction average length (10 items), considering 100 different items for
the whole database. As before, BreadthPIS cannot reach the lowest support and even,
in the last time point it exists an anomaly due to the memory overflow problems. All
the databases exposed by Figure 5.16 specially have patterns with “<” relations since
the distances between different transactions are quite long and, as we will see in the next
Section, fBFS is much more efficient than fDFS for some particular inferences.

113

Figure 5.16: Varying support for datasets where the number the candidates generated is
less for BreadthPIS than for DepthPIS. s1000 psl20 msl30 ptl2–5–10 mtl3–6–12 ppl10
mpl12 n50–100.

Figure 5.17 includes several plots where its databases have transactions very close in
time and, therefore, for medium and low supports, very different Allen’s relations are
present in their patterns. The previous situation still remains: BreadthPIS outperforms
DepthPIS and, for low supports, DepthPIS can be executed and BreadthPIS either does
not finish or obtains an extremely high time non-correlated with the number of candidates
generated. These experiments use databases with 1000 sequences that have moderated
values as sequence and transaction lengths (psl=10 ptl=10 and 20), with an average of 8
events for pattern and a number of different events of 50 and 100 (n). In particular, plots
5.17A and 5.17B have 10 events as transaction length whereas plots 5.17C and 5.17D have
20 events on average. Conversely plots 5.17A and 5.17C deal with a number of different
events of 50, while 5.17B and 5.17D have a number of 100. In general, all the experiments
show the same behaviour except for plot 5.17D. In that plot, we can see that the difference
between BreadthPIS and DepthPIS curves is wider than those that appear in plots 5.17A,
5.17B and 5.17C. This phenomenon is due to the larger number of candidates created in
that concrete database with respect to the other ones, as it can be seen in Figure 5.18,
where all the candidates generated in the plots of Figure 5.17 are shown.

To sum up, in this second situation BreadthPIS is always faster than DepthPIS but
cannot get all the results for low supports due to memory overflow problems. So, we will
need to establish a trade-off to decide what is better in the database that we want to
mine: speed versus lower support results. As we expose above, the problems related to

114

Figure 5.17: Varying support for datasets where the number the candidates gen-
erated is less for BreadthPIS than for DepthPIS. s1000 psl10 msl12 ptl10–20 mtl12–
25 ppl8 mpl10 n50–100.

BreadthPIS come from its breadth-first search, whereas the difference in the time execu-
tion comes from the number of candidates that each algorithm generates. So as to show
this latter phenomenon, Figure 5.19 shows a ratio that comes from dividing the number of
DepthPIS candidates generated by the number of BreadthPIS candidates for experiments
5.16D (plot 5.19A) and 5.17D (plot 5.19B). We can see that the number of candidates
of DepthPIS is always a factor bigger than the number of candidates of BreadthPIS and,
therefore, this provokes the difference between the running times associated with their
corresponding algorithms. Besides, in general terms, the ratio usually grows at first but
it is reduced when we get lower support. This is due to the different candidate generation
strategies.

5.6 Discussion. Comparing both algorithms

In this Section we discuss what are the main advantages of DepthPIS with regard to
BreadthPIS. Firstly, we expose the main differences between the associated transition
tables of both algorithms. Secondly we compare the method of search of both algorithms,
breadth-first search for BreadthPIS and depth-first search for DepthPIS. Finally we show
an important advantage that have the DepthPIS algorithm that is the possibility of re-
solving portions of search tree independently and in a parallel way.

115

Figure 5.18: Candidate number for BreadthPIS and DepthPIS in plots of Figure 5.17.

Figure 5.19: Ratio between the number of candidates generated by DepthPIS and the
number of candidates generated by BreadthPIS for plots 5.16D and 5.17D.

In Sections 5.2 and 5.3 we saw the corresponding transition tables (Table 5.2 and Table
5.3, respectively), associated with the transition functions of BreadthPIS and DepthPIS,
fBFS and fDFS. If both tables are viewed, it will be noted that, in general, the sets in
fDFS have a higher cardinality than those in fBFS .

This is owing to the nature of the candidate generation method. If we have three events
A, B and C and we know RAB and RBC , BreadthPIS obtains the possible relations RAC

by means of fBFS . Conversely, in DepthPIS we know the relations RAB and RAC , and
fDFS obtains all the RBC relations that can exist. This means of inferring candidates
and how the sequences are arranged are the keys to understand the difference between

116

their transition functions. We shall explain the functioning of both methods by means
of Figures 5.20 and 5.21. Figure 5.20 shows the candidate generation for the BreadthPIS
algorithm. It will be observed that, from the three events (A, B and C), the number of
relations formed by candidate generation is bounded since the beginning of A occurs at
the same time or before the beginning of C. On the contrary, Figure 5.21 shows that
when DepthPIS algorithm infers the relation RBC , any relation is possible between events
B and C.

Figure 5.20: Study of candidate generation for BreadthPIS.

An analysis of all the set of relations resulting from both transition functions fBFS
and fDFS leads to certain ideas. For example, if we add all the possible relations obtained
for the 49 combinations of the transition function we obtain 75 relations for fBFS and 143
for Table fDFS . These values provide an average cardinality of 1.53 relations for fBFS
and 2.91 for fDFS . These two numbers allow us to see that, on average, the number of
candidates generated by DepthPIS is twice as large as the number of candidates produced
by BreadthPIS. Moreover, if we study the average cardinality of the set of relations
when we know one of the two relation arguments Rr or Rc of the transition functions
fBFS(Rr, Rc) and fDFS(Rr, Rc), the result provides some interesting information. The
top of Table 5.4 shows these average values when we know the first argument Rr, while
the bottom part shows the average when we know the second argument Rc. On the one
hand, in the first table it will be noted that except for the equal relation, fDFS obtains
bigger sets than fBFS , and there are remarkable differences between relations <, o and c,
in which there is a factor from almost two up to more than four from fDFS with regard to
fBFS . On the other hand, the second table also shows significant differences between the
number of relations provided by fDFS with regard to fBFS (except for the equal relation).
In particular, the most significant differences appear in relations <, o, c and s, which have

117

Figure 5.21: Study of candidate generation for DepthPIS.

a factor from almost two up to almost three relations.

BreadthPIS DepthPIS
< 1 < 4.43
m 1 m 2.43
o 2.14 o 4.14

f−1 1 f−1 2.14
c 2.43 c 3.86
= 1 = 1
s 2.14 s 2.43

< m o f−1 c = s
BreadthPIS 1.57 1.28 1.86 1.57 2.14 1 1.28

< m o f−1 c = s
DepthPIS 4.43 2.43 4.14 2.14 3.86 1 2.43

Table 5.4: Number of relations on average when we know the first or the second argument
of the transition function.

Note that “m”, “s”, “f−1” and “ = ” are the least frequent relations that usually
appear in patterns because the events that fulfil these relations need to have at least an

118

equal relation between their boundary points. The main difference provided by fDFS with
regard to fBFS therefore implies that the candidate generation of BreadthPIS is quite a
lot more efficient than that provided by DepthPIS, since the minor differences in their
averages are in the least frequent relations. What is more, the large sets of relations
provided by fDFS lead to the generation of several candidates in DepthPIS that will not
eventually be frequent.

Another relevant difference between both algorithms is the search method used. As
stated previously, BreadthPIS follows a breadth-first search strategy whereas DepthPIS
carries out a depth-first search. The main problem caused by a breadth-first search is
the need to maintain all the frequent patterns discovered in each level in the memory in
order to be able to generate the set of candidate patterns. Although a breadth-first search
normally makes the use of a pruning method possible, as was pointed in the methods of
BreadthPIS in Section 5.2, with the tests that were executed it was not worth the effort
of enabling such a prune. This is mainly because it is possible to quickly compute the
support of a pattern. Instead, DepthPIS does not need to maintain all the k-patterns
discovered in the memory, since it only needs the members of an equivalence class that
are extended by only one event.

Finally, thanks to the way in which DepthPIS is executed and owing to its depth-first
search, it is possible to split the search for frequent patterns up into different separate
parts. To do this it is necessary to explore each equivalence class independently and
maintain the set of frequent patterns associated with it. It is eventually only necessary to
join all the intermediate sets of frequent patterns in the final frequent pattern set. This
therefore makes it possible to parallelize the search of all the different classes in order
to obtain faster results. Figure 5.22 shows a graphical schema of the separation of the
different equivalence classes for the example database. In the figure, each equivalence
class surrounds all the patterns that are contained in it.

5.7 Conclusions

In this Chapter we have introduced two algorithms that deal with these issues for mining
interval patterns. Our main contributions of this Chapter are as follow:

• We simplify the processing of complex relations among intervals by getting all the
information in a triangular matrix of relations. The main advantage of this represen-
tation is that the thirteen Allen’s relations are perfectly summarized in a straightfor-
ward structure. We refer to this pattern representation as TriMax, and it expresses
a pattern or sequence without any ambiguity, avoiding the common problems that
occur in various existing representations. Thus, only by means of a structure we
can express the relations among both the intervals and/or points that can appear
in a pattern.

• We introduce a novel algorithm, called BreadthPIS, which stands for Breadth-first
search algorithm for Point and Interval Sequences, capable of discovering the whole
set of frequent patterns containing relations between points, intervals or points and
intervals. BreadthPIS is based on the Vertical Database Format Strategy and, by

119

Figure 5.22: Division of the different equivalence class in independent problems.

means of temporal reasoning principles, it uses efficient methods to generate only
the right candidates that can be derived from shorter patterns.

• We describe in detail the algorithm DepthPIS (Depth-first search algorithm for
Point and Interval Sequences), an implementation also based on Vertical Database
Format strategy, that uses the same pattern representation and is capable of finding
the same final pattern set as BreadthPIS. The main differences of this algorithm with
respect to the previous one are: 1) the temporal reasoning used, i.e. the transition
functions to infer new relations and generate candidates are different; and 2) the
search method: while BreadthPIS executes a breadth-first search, DepthPIS uses a
depth-first search.

• We do an exhaustive comparison between BreadthPIS and DepthPIS, analysing
the advantages and drawbacks that come from the execution of their searches. We
show that, in general, BreadthPIS is more efficient and scalable and outperforms
DepthPIS in most of the performed test since the transition function of BreadthPIS
give a more reduced candidate set and is the most optimized. However, DepthPIS
reach lower support since does not suffer from the problems of memory overflow
associated with BreadthPIS and its breadth-first search candidate generations and
its use is more convenient when we face big databases.

120

Chapter 6

BreadthPIMS and DepthPIMS: Two
New Fast Algorithms for Mining
Points and Intervals Quantitative
Patterns

In this Chapter we extend the algorithms and data structures exposed in Chapter 5
to develop two new algorithms BreadthPIMS and DepthPIMS, which are able to mine
quantitative patterns composed of both points and intervals. All the definitions given
in Section 5 are also valid for these new quantitative algorithm versions but we have to
add some changes in order to take into account the temporal distances between items.
Besides, as we did in Chapter 4, the time is assumed to have a discrete domain.

This Chapter is organized as follows. All the new definitions with respect to Chapter 5
are introduced in Section 5.1. Section 6.2 describes the new breath-first search Algorithm
BreadthPIMS, whereas in Section 6.3 Algorithm DepthPIMS is described. In Section 6.4
we give all the changes that we have to include in both algorithms in order to mine both
points and interval events while in Section 6.5 we propose some optimizations in order to
improve the performance of the algorithms. An experimental and performance study is
shown in Section 6.6, while as a wide discussion about the behavioural differences of the
algorithms is given in Section 6.7. Finally, we provide our conclusions in Section 6.8.

6.1 Additional definition and description for problem

setting

Unlike with the previous Chapter, where we were interested in the qualitative relations
between items but not in their durations, when we deal with quantitative relations we
need both the relation between items, and the items themselves, and we do keep the
duration of events in the triangular matrix. Therefore, for quantitative patterns, all
the TriMax have events with the associated duration with them. As an example, let
α = ⟨(t = 1, ⟨A, 3⟩)(t = 2, ⟨B, 3⟩)(t = 3, ⟨C, 6⟩)(t = 6, ⟨D, 0⟩)⟩ be a sequence, such as
shown in the first sequence of the example database shown in Figure 2.1. The associated

121

triangular matrix with this sequence is shown in Table 6.1.

B[3] C[6] D[0]
A[3] o[−2] o[−1] < [2]
B[3] o[−2] < [1]
C[6] c[−3]

Table 6.1: Triangular matrix for example sequence.

In the same way, we have to redefine the concept of subsequence checking and, now,
we have to consider both the durations of events and the temporal distances associated
with relations in order to make a proper checking. For instance, the sequence α =
⟨(t = 1, ⟨A, 3⟩)(t = 2, ⟨B, 3⟩)(t = 3, ⟨C, 0⟩)⟩ is a subsequence of β = ⟨(t = 1, ⟨A, 3⟩)(t =
2, ⟨B, 3⟩)(t = 3, ⟨C, 0⟩)(t = 7, ⟨D, 5⟩)⟩ but not of γ = ⟨(t = 1, ⟨A, 3⟩)(t = 2, ⟨B, 4⟩)(t =
3, ⟨C, 0⟩)⟩, since the event B has a duration of 3 time units in α whereas in β that duration
is 4 time units.

Accordingly to the change of the subsequence checking operations, all the definitions
such as prefix or equivalence class are changed to accomplish those operations. Further-
more, the transition function now refers to quantitative Allen’s relations (see Section 2.4)
instead of qualitative ones. Those transition function will be defined by BreadthPIMS
and DepthPIMS in their respective sections (Section 6.2 and Section 6.3).

Finally, in Figure 6.1, we show the final frequent sequence set when we mine the
example database with the quantitative version of TriMax, with a minimum support of
2. Nevertheless, we will talk about items in the patterns, regardless if they are points
or intervals. So, different types of sequences are distinguished: those composed of both
simple points and intervals, for instance the 3-sequence where the pattern have the event
points d; those formed by only intervals, like the first 2-pattern that do not have the
events d or g in them; and those with only points, composed of those sequences with only
the event points d, g. In total, the final frequent sequence set has 12 frequent sequences.

Figure 6.1: Frequent sequence set of example database.

122

6.2 BreadthPIMS: an algorithm for mining point and

intervals temporal events based on breadth-first

search

In this Section, we formulate and explain every step of our BreadthPIMS algorithm.
Before starting with the description of main methods, we have to give some keynotes
relatives to BreadthPIMS algorithm. Since we represent a pattern with a TriMax, and
each pattern has a number of appearances in the database, stored in an IdList, whenever
we refer to a pattern p, we refer to the couple ⟨TriMax, IdList⟩ (both of p). Besides, we
will denote p.TriMax and p.IdList to refer to these parts of pattern p.

The above mentioned IdList is a data structure where we store, for each sequence, a
list with all the appearances of a concrete pattern in that sequence. Each appearance is a
list of events (point or intervals) and it also includes its timestamp for the beginning and
its end when it is an interval. In Figure 6.2, we see the IdList of the example database
for the pattern given in Table 6.1.

Figure 6.2: IdList for the pattern in the example database.

The BreadthPIMS algorithm, shown in Algorithm 23, consists in a main continuous
loop that executes a breadth-first search. As first steps, all the frequent 1-patterns and
2-patterns have to be found (we try all the possible direct relations between frequent
1-patterns to obtain the frequent 2-patterns). The mentioned loop is composed of two
steps: 1) All the possible (k+1)-superpatterns are generated from the current frequent
(k)-patterns, and 2) we select only the frequent patterns among all the possible generated
candidates. If this frequent (k + 1)-pattern set is not empty, we repeat the loop again
in order to find longer frequent patterns. Finally, the algorithm ends returning the final
frequent pattern set. The steps of candidate generation and counting of support both are
shown in Algorithms 24 and 26 respectively.

Algorithm 24 shows the candidate generation algorithm. We base this method on that
introduced in GSP algorithm [Srikant and Agrawal, 1996]. The main idea is merging two

123

Algorithm 23 BreadthPIMS(IsPruneActivated)

1: F1 = {frequent items}
2: F = F1

3: F2 =getFrequent2Sequences(F1)
4: Fk = F2

5: while Fk ̸= ∅ do
6: F = F ∪ Fk

7: Ck =GenerateCandidates(Fk,IsPruneActivated)
8: Fk =CountingOfSupport(Ck)
9: end while
10: return F
Ensure: The frequent pattern set F

k-patterns p1 and p2 where the (k−1)-suffix of p1 is equal to the (k−1)-prefix of p2. When
we find two patterns that accomplish this condition, we can create a new (k+ 1)-pattern
built by concatenating to p1 the last event of p2. In order to find the patterns that fulfil
those conditions, Lines 4-9 create two hash table, one for prefixes and other for suffixes,
where we link each pattern to all the patterns to which they are related. Then, in Lines
10-20 we iterate all the entries in the prefix table and, an entry is merged with a pattern in
the suffix table if they are equal (Line 15). Finally, we return all the generated candidates
in Line 21.

The method MergePatterns, shown in Algorithm 25, introduces the main changes
added by this algorithm with respect to the original point-based ones. These changes are
those derived from the use of intervals relations and also from the check of frequency. The
method receives two patterns ppost and ppre as parameters, and a flag value that indicates
if a pruning method has to be executed as soon as we create candidates. The parameters
ppost and ppre are k-sequences with a common (k-1)-subsequence (suffix of ppost and prefix
of ppre) and, therefore, their associated TriMax share some cells as shown in Figure 6.3.
We can see that the new candidate is formed by adding the last element and the last
column of ppre to ppost.

Once we have merged both TriMax, we still have to infer the relation between the
first event of ppost and the last of ppre (highlighted by an ellipsis in Figure 6.3). We have
considered two options:

• to consider the Allen’s thirteen relations in that cell and, thus, having thirteen
different candidates whose frequency will have to be checked later.

• to infer the relations that connect the event E1 and the event Ek+1 by means of all
the possible paths Ej, ∀1 < j < k + 1, which relate them through an intermediate
event. That is, using the “path consistency” as defined by Allen [Allen, 1983]. Such
inference is defined by a transition function (Definition 5.1.1 applied to quantitative
relations) that returns a set of Allen’s relations for a given pair of relations. That
set contains the different candidates that can be derived from ppost and ppre. In
Table 6.4 we show the definition of the transition function fBFS(Rr, Rc) that we use
in BreadthPIMS algorithm. In such table, the seven relations appearing in the rows

124

Algorithm 24 GenerateCandidates(Fk,IsPruneActivated)

Require: the (k-1) frequent pattern set Fk, a boolean indicating if the pruning method
has to be executed IsPruneActivated

1: Hpre = ∅ {Hash table with duples ⟨pre, preList⟩, being pre a pattern and preSet set
of patterns}

2: Hpost = ∅ {Hash table with duples ⟨post, postList⟩, being post a pattern and postSet
set of patterns}

3: Ck
4: for all p ∈ Fk do
5: ppre = (k − 1) prefix of p
6: ppost = (k − 1) suffix of p
7: insert p to the associated set of Hpre(ppre)
8: insert p to the associated set of Hpost(ppost)
9: end for
10: for all ⟨pre, preSet⟩ ∈ Hpre do
11: S =the associated set postSet of Hpost(pre)
12: if S ̸= ∅ then
13: for all ppre ∈ preSet do
14: for all ppost ∈ S do
15: MS =MergePatterns(ppost,ppre,IsPruneActivated)
16: Ck = Ck ∪MS
17: end for
18: end for
19: end if
20: end for
21: return Ck
Ensure: The frequent pattern set F

correspond to the first argument Rr of fBFS, whereas the same seven relations in the
columns are those corresponding to the second argument Rc. Summarizing, fBFS

has 49 different combinations from its two arguments, being the smallest resulting
sets composed of only one relation and the largest ones of five relations.

In this algorithm we take the second alternative given above and we use the transition
function defined in Table 6.4 to generate the different candidates. The Algorithm 25,
MergePatterns, obtains the inference associated with the TriMax of ppost and ppre, set
of relations RS (Line 1). Notice that, in order to infer the new relation we need to
know what relation exists in the paths from E1 to Ek+1 through all intermediate events
Ej. The relations RE1,Ej

between the events E1 and Ej and REj ,Ek+1
between Ej and

Ek+1 are the arguments Rr and Rc of the transition function fBFS. In order to simplify
our algorithm, we search for that Ej that generates the minimum number of different
relations. In Figure 6.5 we show that method for an example. Since we have to find
the possible relations that exist between the event A[9] (E1) and the event E[6] (Ek+1),
all the three events B[4], C[9] and D[2] are a possible intermediate event (Ej). So, at
first, we start with the B[4] event, and as RAB = “c[−7]” and RBE = “ < [9]”, we

125

Figure 6.3: Generation of a candidate from two frequent patterns.

Figure 6.4: Transition table for all the different intervals relations.

have fBFS(RAB, RBE) = {< [6],m, o[6], f−1, c[6]} as resulting set. Then, we continue
exploring the paths to see if less candidates are generated. We see that using C[9], we
find fBFS(RAC , RCE) = {< [6],m, o[6]} and if we use D[2], we find fBFS(RAD, RDE) =
{< [6]}. In this moment we can stop the search without analysing more paths since
fBFS(RAD, RDE) only contains a single relation, and therefore the candidate set cannot
be reduced. In the same way, if we were lucky and in our first choice of Ej we had a result
with a single relation, we would not need to continue with the process since we cannot

126

find a set with less relations. Conversely, it can occur that we would not find any result
with a single relation and, in that case, our result is the smallest set that we could find.

Figure 6.5: Process of choosing the smallest candidate relation set for BreadthPIMS.

We would like to go into detail about the call to the method CreateIdList (Line 10)
and explain how a new IdList is created from the IdList of ppost and ppre. To obtain such
IdList, we check that all the appearances of the last event of ppre are present in the IdList
of the new candidate previously generated (from ppost and ppre). Note that we have to
check necessarily the relations of all the appearances because if we only check the inferred
relation, some of the previous events could not be related with the new event with the
relation that we expect. Figure 6.6 shows the steps for merging two IdList of two patterns.

The new IdList contains the IdList of C1 reduced to those sequences that also contain
one of the new relations inferred in Algorithm MergePatterns with respect the event E. In
Figures 6.7 and 6.8 we show the calculation for the entries of the new IdList. In particular,

127

Algorithm 25 MergePatterns(ppre,ppost,IsPruneActivated)

Require: The two pattern to merge ppost and ppre, a boolean indicating if the pruning
method has to be executed IsPruneActivated

1: RS = TemporalReasoning(ppost.TriMax,ppre.TriMax)
2: for all r ∈ RS do
3: t = CreateTriMax(ppost.T riMax,ppre.T riMax,r)
4: pruned = false
5: if IsPruneActivated then
6: pruned = CheckPrune(t)
7: end if
8: if not pruned then
9: e = LastEventOf(ppre)
10: NewIdList =CreateIdList(ppost.IdList,e.IdList,ppost.T riMax,t)
11: c = pattern ⟨t, NewIdList⟩
12: Ck = Ck ∪ {c}
13: end if
14: end for
15: return Ck
Ensure: The frequent pattern set F

we expose two different cases: one where the new IdList entry is not empty and one where
the IdList entry is empty. Figure 6.7 shows a case where there is a perfect matching
between the first entry of C1 IdList (⟨< 1, 10 >,< 3, 15 >,< 12, 27 >,< 20, 25 >⟩) and
the first entry of E IdList(⟨< 26, 32 >⟩), both also associated with the first sequence. As
we said, the interval that represents E[6] has to accomplish all the relations denoted by the
last column of the new candidate TriMax. We do that in decreasing order, starting from
the last relation of the column Rk,k+1 up to the first relation of the column R1,k+1. In our
example we start checking if the last but one event of the new TriMax D[5] (⟨< 20, 25 >⟩)
has a “ < [1]” relation with E[6] (⟨< 26, 32 >⟩). Then, we continue doing the same
process with the previous relation of the last column, which contains a “o[1]” relation
with C[15] (⟨< 12, 27 >⟩) and with E[6]. We keep doing the same process with the rest
of elements of the column having B[12] (⟨< 3, 15 >⟩) a relation of “ < [11]” with E[6],
and A[9] (⟨< 1, 10 >⟩) has a “ < [16]” relation with E[6], and thus all the relations in the
last column of the new TriMax are accomplished.

Conversely, Figure 6.8 shows the new empty IdList entry found when we try to merge
the first C1 entry and the second E1 entry (⟨< 36, 42 >⟩) of the first sequence. In this
other example we start checking if the last but one event of the new TriMax D[5](⟨<
20, 25 >⟩) has a “ < [1]” relation with E[6], i.e. for the current entry, we check that the
interval associated with D[5] before, with a temporal distance of 1, to E (⟨< 36, 42 >⟩)
exists. Unfortunately, we check that the interval associated with D[5] in the current entry
⟨< 20, 25 >⟩ has a “ < [11]” relation with E (⟨< 36, 42 >⟩) instead of “ < [1]”, leading
us to abort the check of that new possible entry. After processing the rest of entries, we
finally have the resulting IdList, shown in Figure 6.9, where besides the second entry of
E for the first sequence a new entry appears for the third sequence.

Finally, Algorithm 26 selects only those generated candidates whose support is at least

128

Figure 6.6: Example of merging of two IdLists (ppost = C1 and ppre = C2).

min sup. This method is very simple since the creation of the IdList have been already
done through the method MergePatterns.

Algorithm 26 CountingOfSupport(Ck)

Require: the k-candidate set Ck Fk = ∅
1: for all ck ∈ Ck do
2: if ck.support() > min sup then
3: Fk = Fk ∪ ck
4: end if
5: end for
6: return Fk

Ensure: The frequent pattern set F

129

Figure 6.7: Example of a successful case in the calculation of an entry of the new IdList.

Figure 6.8: Example of a failed case in the calculation of an entry of the new IdList.

130

Figure 6.9: Example of merging of two IdLists. Final result.

6.3 DepthPIMS: an algorithm for mining point and

intervals temporal events based on depth-first

search

Let us now describe our DepthPIMS algorithm. As in Algorithm BreadthPIMS (Section
6.3), the structure of the patterns uses a TriMax and an IdList. One of the key points of
this algorithms is the use of the concept of equivalence class given at the end of Section
6.1.

DepthPIMS, shown in Algorithm 27, consists in a depth-first search that explores all
the equivalence classes derived from all the frequent 1-patterns. In order to make the
algorithms more efficient, frequent 1-patterns and 2-pattern have been previously found
and all the frequent 2-patterns are inserted in the equivalence classes given by their 1-
prefixes (Lines 9-11). Then, all the equivalence classes are explored and the algorithm
ends returning the final set of frequent patterns F .

Algorithm 28 shows the method EnumerateFrequentSequences, which is based on
the method introduced in SPADE algorithm [Zaki, 2001]. The main idea consists of
merging two k-equivalence classes [Xy] and [Xz], being both belonging to the k-class
[X], and having both the same common (k)-prefix X. In order to merge the patterns,

131

Algorithm 27 DepthPIMS()

1: F1 = {frequent items}
2: for all X ∈ F1 do
3: add X to equivalence class [X]
4: EC = EC ∪ [X]
5: end for
6: F = F1

7: F2 =getFrequent2Sequences(F1)
8: for all Y ∈ F2 do
9: add Y to equivalence class [Y]
10: p = 1-prefix of Y
11: add Y to equivalence class [p]
12: end for
13: F = F ∪ F2

14: for all [X] ∈ EC do
15: Fk =EnumerateFrequentSequences([X])
16: F = F ∪ Fk

17: end for
18: return F
Ensure: The frequent pattern set F

we go over each member of the k-equivalence class [X] (k + 1-superpatterns of X) and
merge it with all the k+1-patterns that are after it in [X] (Lines 2-4). Then, the method
GenerateCandidates is called and we obtain a set of superpatterns candidates for both
Xy and Xz patterns. In this point, for each candidate, we have to create its IdList
(Line 7), and the new equivalence class [c] (Line 8), as well as check its support (Line
9). When we find a frequent candidate, we can add it to the final frequent pattern set
(that corresponds to the equivalence class [X]) and, depending on its k-prefix, we insert
it into the equivalence class ([Xy] or [Xz]). Finally, the Algorithm 28 ends returning the
frequent pattern set of the equivalence class [X].

The method GenerateCandidates, shown in Algorithm 29, introduces the main changes
added by this algorithm with respect to the original point-based Vertical Database Format
ones. As the Algorithm previously shown in Section 6.2 does, the method receives two
equivalence classes [Xy] and [Xz] as parameters and infers the candidates. Let see how
a new candidate is inferred from [Xy] and [Xz] (schema shown in Figure 6.10). Since
both [Xy] and [Xz] belong to the equivalence class [X], their patterns have a common
(k − 1)-prefix, and, therefore, their associated TriMax share several cells. Concretely,
Xy and Xz share all the relations except their last row, both highlighted and joined by
arrows in Figure 6.10. Thus, a new candidate is formed by adding the last column of
the TriMax of Xz to the TriMax of Xy. In this point, as in Section 6.2, we see that we
still need to infer the relation between the last event of Xy and Xz using a new transition
function fDFS(Rr, Rc), defined by the transition table (6.12). This new transition function
is different to that one used in BreadthPIMS algorithm, and it has been explicitly created
for this DepthPIMS algorithm. The arguments of this function are the relation that
connect an event Ej, ∀1 ≤ j < k + 1, to the last but one event Ek and the relation that

132

Algorithm 28 EnumerateFrequentSequences([X])

Require: the current equivalence class [X] on which we search for the frequent patterns
in a DFS way

1: Fk = ∅
2: components =members of [X] extended with only one more event than X
3: for all [Xy] ∈ components do
4: for all [Xz] ∈ components that appear after [Xy] do
5: Ck =GenerateCandidates([Xy],[Xz])
6: for all c ∈ Ck do
7: newIdList = CreateIdList(c,[Xy],[Xz])
8: Create a new pattern c with newIdList, and insert c in the equivalence class

[c]
9: if c.support() ≥ min sup then
10: Fk = Fk ∪ {c}
11: if the pattern Xy is a prefix of c then
12: add [c] to [Xy]
13: else
14: add [c] to [Xz]
15: end if
16: end if
17: end for
18: end for
19: if we have just found any frequent pattern then
20: Fk = Fk∪ EnumerateFrequentSequences([Xy])
21: end if
22: end for
23: return Fk

Ensure: The frequent pattern set Fk

connects the same event Ej to the last event Ek+1. In this case Ek = y, Ek+1 = z, and
Ej takes as values all the events in X. In that table the seven direct relations that we use
as rows correspond to the argument Rr, whereas the columns correspond to the second
argument Rc. As in BreadthPIMS algorithm, we also have 49 different resulting sets, with
a minimum cardinality of one and a maximum of thirteen. In Figure 6.11 we can see the
process in DepthPIMS for the TriMax given. In that example, a set of five relations is
the minimum cardinality found.

Algorithm 29, GenerateCandidates, infers the TriMax of [Xy] and [Xz], obtaining a
set of relations RS (Line 1). Then, for each relation of RS, we repeat the same process of
creating its new TriMax as we previously saw in Figure 6.3 (Lines 7 and 9). The algorithm
ends returning all the candidates derived from Xy and Xz in Line 14. The aim of Lines
5-7 is exactly the same as Line 9. The motivation of this lines comes from the existence
of inverse relations in some resulting relation sets from the transition table (Table 6.12).

For instance, the thirteen relations are possible when two before relations are given as
parameters. In order to avoid the use of inverse relations (>, d, si, oi, mi and f) we have
to swap the order of the events as shown in Figure 6.13.

133

Figure 6.10: Example of merging of two TriMax.

Algorithm 29 GenerateCandidates([Xy],[Xy])

Require: The two equivalence classes that, from their patterns, we use for finding the
different possible candidates.

1: RS = TemporalReasoning([Xy].TriMax,[Xz].TriMax)
2: Ck = ∅
3: if RS ̸= ∅ then
4: for all r ∈ RS do
5: if IsAnInverseRelation(r) then
6: ri =getDirectRelation(r)
7: c =createTriMaxWithInverseRelations(Xy.TriMax,Xz.TriMax,ri)
8: else
9: c =createTriMax(Xy.TriMax,Xz.TriMax,r)
10: end if
11: Ck = c
12: end for
13: end if
14: return Ck

Ensure: The candidate set Ck derived from [Xy] and [Xz]

The algorithm CreateIdList is exactly the same as that used in BreadthPIMS algorithm
(see Section 6.2). Figure 6.14 shows the final result of merging two IdList for the two

134

Figure 6.11: Process of choosing the smallest candidate relation set for DepthPIMS.

patterns given.

135

Figure 6.12: Transition table for all the different intervals relations.

Figure 6.13: Conversion of a TriMax with an inverse relations.

136

Figure 6.14: Example of merging of two IdLists.

6.4 Mining points and intervals

For these two algorithms we do exactly the same that we did in Section 5.4. However,
in this case, the eight transition tables include both relations and the temporal distances
associated with them, such as we showed in the transition tables exposed in Section 6.2
and 6.3.

6.5 Optimizations

As we did in Section 4.4, two optimizations are made in order to improve the execution
of both BreadthPIMS and DepthPIMS algorithms. Both optimizations are the same: 1)
a simplification of the original database from which we obtain the frequent quantitative
patterns; and 2) the generation of frequent 2-patterns by a Pattern Growth method. We
refer to that section for a better understanding of both optimizations bearing in mind
that now we deal with a different representation. This representation eases the first
optimization since the durations are directly associated with items and with boundary
points the durations were considered like temporal distances between points.

137

6.6 Experimental results

As in previous chapters, we use the setting of the experiments is the same to the explained
in Section 3.4. Besides, the considered versions for the algorithms are those that mines
the set of frequent 2-patterns through a Pattern Growth method since is more efficient
than a brute force search (see Section 6.5 for more details). Furthermore, all the items
considered in all the databases can extend from a duration of 1 to 10 units of time.

In all the comparative studies made we find that both algorithms have the same
behaviour: executions where both algorithms find a similar number of candidates and,
thus, a similar time execution where, in some occasions, BreadthPIMS cannot complete
its execution due to its Breadth-first search.

Figure 6.15 shows plots where the execution times for BreadthPIMS and DepthPIMS
are almost equal for medium datasets (1000 sequences) with medium sequence length (20
transactions on average), medium-high transaction length (20 items on average), medium
pattern length (8 items on average), and 100 and 500 different items for the database.
In both plots we can see that BreadthPIMS cannot finish its execution for the lowest
supports (0.02 in plot 6.15A and 0.08 in plot 6.15B).

Figure 6.15: Varying support for datasets s1000 psl20 msl25 ptl20 mtl25 ppl8 mpl10
n100–500.

Figure 6.16 shows two plots for databases with bigger sequence length (40 transactions
on average) keeping all the rest of properties as in Figure 6.15. Now, we see that the
behaviour of both plots are very similar to those appearing in Figure 6.15. However, the
time which Figure 6.16 achieve for the same supports, is four times bigger than that showed
in Figure 6.15 because its number of itemsets per sequence is increased (psl= 20 in Figure
6.15 and psl= 40 in Figure 6.16). As before, for the lowest supports BreadthPIMS cannot
complete its execution due to its Breadth-first search method for generating candidates.

In Figure 6.17 we see two plots for databases with a less transaction length (10 items
on average) than those appearing in 6.16, and the patterns that are set in the databases
are longer than before (15 items on average). We study two cases, one with a sparser
database (n = 1000) in plot 6.17A, and a denser database (n = 500) in plot 6.17B. As
in the previous cases, both curves are very similar, however, we see a little domain of
BreadthPIMS over DepthPIMS for the lowest domains. Furthermore, since the databases
are not very big (1000 sequences) and the transaction length are moderated (10 items
on average), the execution time reach time values not very high (161 and 101 seconds

138

Figure 6.16: Varying support for datasets s1000 psl40 msl50 ptl20 mtl25 ppl8 mpl10
n100–500.

respectively).

Figure 6.17: Varying support for datasets s1000 psl40 msl50 ptl10 mtl12 ppl15 mpl18
n500–1000.

Finally, 6.18 shows four plots for bigger databases, with 10000 sequences each one. The
plots show different sequence lengths (20 transactions on average for plots 6.18A and 6.18B
and 40 transactions on average for plots 6.18C and 6.18D), different transaction length
(20 items on average for plots 6.18A and 6.18B and 10 items on average for plots 6.18C
and 6.18D) and different number of different items (1000 items in plots 6.18A and 6.18C
and 500 items in plots 6.18B and 6.18D). All the plots show almost equivalent behaviours
for both BreadthPIMS and DepthPIMS and, for plots 6.18C and 6.18D, BreadthPIMS
cannot finish due to its BFS candidate generation.

In general, we can see very similar behaviour for both BreadthPIMS and DepthPIMS
algorithms and all the executions get lower supports that for the qualitative algorithms
and, in some points, they suddenly increase. This is because of the pattern explosion
phenomenon that is explained in the next section.

139

Figure 6.18: Varying support for datasets s10000 psl40 msl50 ptl10–20 mtl12–25 ppl10
mpl12 n500–1000.

6.7 Discussion. Comparing both algorithms

All the issues addressed in Section 5.6 are also valid for this discussion but now applied
in quantitative algorithms.

Firstly, the generation of candidates of BreadthPIMS is better than that used in
DepthPIMS since its transition table produces less candidates. However, in the performed
tests we do not observe a significant difference between both algorithm executions when
we mine databases with different databases properties. Nevertheless, what is important
is that BreadthPIMS cannot complete its execution for low supports due to its breadth-
first search method, whereas DepthPIMS can successfully finish since it uses a depth-first
search method. For further details we refer to Section 5.6.

In the same way, the drawbacks about mining quantitative patterns that we dealt in
Section 4.5 also occur for BreadthPIMS and DepthPIMS. Besides, since both algorithms
are based on Vertical Database Format, both of them need to have the frequent 2-patterns
and if we execute a brute force method we can find a lot of problems because there exist
a lot of patterns. A solution to this issue is to apply a Pattern Growth method to mine
the frequent 2-patterns (see Section 4.5 for more details).

6.8 Conclusions

In this Chapter we have introduced two algorithms that deal with these issues for mining
quantitative interval patterns. Our main contributions of this Chapter are as follow:

• We extend the triangular matrix representation to include also quantitative infor-

140

mation. The main advantage of this representation is that the thirteen quantitative
version of Allen’s relations are perfectly summarized in a straightforward structure.
Note that not all the relations need quantitative information.

• We introduce a novel algorithm, called BreadthPIMS, which stands for Breadth-
first search algorithm for Point and Interval Metric Sequences, capable of discov-
ering the whole set of frequent quantitative patterns containing relations between
points, intervals or points and intervals. BreadthPIMS is based on the Vertical
Database Format Strategy and, by means of temporal reasoning principles, it uses
efficient methods to generate only the right candidates that can be derived from
shorter quantitative patterns.

• We describe in detail the algorithm DepthPIMS(Depth-first search algorithm for
Point and Interval Metric Sequences), an implementation also based on Vertical
Database Format Strategy, that uses the same pattern representation and capable
of finding the same final quantitative pattern set as BreadthPIMS. The main dif-
ferences of this algorithm with respect to the previous one are: 1) the temporal
reasoning used, i.e. the relations taken into account to infer new relations are differ-
ent in both algorithms; and 2) the search method is also different in both algorithms:
while BreadthPIMS executes a breadth-first search, DepthPIMS uses a depth-first
search. To the best of our knowledge, these algorithms are the first one based on
Vertical Database Format strategy for mining quantitative patterns.

• We show the problem that Vertical Database Algorithms face since the have to find
all the possible temporal distances that appear in the frequent 2-patterns and we
give a valid solution so as to obtain a good execution of these kind of algorithms.

• We do an exhaustive comparison between BreadthPIMS and DepthPIMS, analysing
the advantages and drawbacks that comes from the execution of their searches. Al-
though both transition functions are efficient, the transition function of BreadthPIS
give a more reduced candidate set and is the most optimized. Anyway, we show
that, in general, there not exist a significant difference between both algorithms
but, nevertheless, DepthPIMS reach lower support since it does not suffer from the
problems of memory overflow associated with a breadth-first search. That reason
lead us to choose DepthPIMS as a better general algorithm.

141

Chapter 7

ClaSP: An Efficient Algorithm for
Mining Frequent Closed Sequences

Finally, we introduce an algorithm for mining closed patterns with point-based events.
Since this chapter has been already published in the proceedings on Pacific-Asia Confer-
ence on Knowledge Discovery and Data Mining, we introduce this Chapter as the paper
appeared there.

7.1 Introduction

Sequence Data Mining (SDM) is a well-extended field of research in Temporal Data Mining
that consist of looking for a set of patterns frequently enough occurring across time among
a large number of objects in a given input database. The threshold to decide if a pattern
is meaningful is called minimum support. SDM has been widely studied [Srikant and
Agrawal, 1996; Zaki, 2001; Han et al., 2000; Pei et al., 2004; Ayres et al., 2002], with
broad applications, such as the discovery of motifs in DNA sequences, analysis of customer
purchase sequences, web click streams, and so forth.

The task of discovering the set of all frequent sequences in large databases is challenging
as the search space is extremely large. Different strategies have been proposed so far,
among which SPADE, exploiting a Vertical Database Format [Zaki, 2001], and PrefixSpan,
based on projected Pattern Growth [Pei et al., 2004] are the most popular ones. These
strategies show good performances in databases containing short frequent sequences or
when the support threshold is not very low. Unfortunately, when long sequences are
mined, or when a very low support threshold is used, the performance of such algorithms
decreases dramatically and the number of frequent patterns increases sharply, resulting
in too many meaningless and redundant patterns. Even worse, sometimes it is impossible
to complete the algorithm execution due to a memory overflow.

One of the most interesting proposals to solve both problems are so called closed
sequences [Yan et al., 2003], based on the same notion for regular frequent closed itemsets,
as introduced by Pasquier et al. [Pasquier et al., 1999]. A frequent sequence is said to
be closed, if there no exists a supersequence with the same support in the database. The
final collection of closed sequences provides a much more simplified output, still keeping
all the information about the frequency of each of the sequences. Some algorithms have

143

been developed to find the complete set of closed sequences, where most of them are based
on the Pattern Growth strategy [Yan et al., 2003; Wang et al., 2007].

In this Chapter, we propose a new algorithm, called ClaSP (Closed Sequential Patterns
algorithm) which exploits several efficient search space pruning methods. Depending
on the properties of the database, we argue about the desirability of using the Vertical
Database Format as compared to Pattern Growth techniques. We also show the suitability
of the Vertical Database Format in obtaining the frequent closed sequence set, and how,
with some database configurations, a standard Vertical Database Format algorithm can
already be faster than Pattern Growth algorithms for closed sequences, by only adding a
simple post-processing step. Experiments on both synthetic and real datasets show that
ClaSP generates the same complete closed sequences as CloSpan [Yan et al., 2003] but
has much better performance Figures.

The remaining of the Chapter is organized as follows. Section 7.2 introduces the
preliminary concepts of frequent closed sequential pattern mining and the notation used
in the Chapter. In Section 7.3, we present the most relevant related work. In Section
7.4, the pruning methods and ClaSP algorithm are presented. The performance study is
presented in Section 7.5 and, finally, we state our conclusions in Section 7.6.

7.2 Problem setting

Let I be a set of items. A set X = {e1, e2, . . . , ek} ⊆ I is called an itemset or k-itemsets if
it contains k items. For simplicity, from now on we denote an itemset I as a concatenation
of items between brackets. So, I1 = (ab) and I2 = (bc) are both two 2-itemsets. Also,
without loss of generality, we assume the items in every itemset are represented in a
lexicographic order.

A sequence s is a tuple s = ⟨I1I2 . . . In⟩ with Ii ∈ I, and ∀i : 1 ≤ i ≤ n. We denote
the size of a sequence |s| as the number of itemsets in that sequence. We denote the
length of a sequence (l =

∑n
i=1 |Ii|) as the number of items in it, and every sequence with

k items is called a k-sequence. For instance, the sequence α = ⟨(ab)(bc)⟩ is a 4-sequence
with a size of 2 itemsets.

We say α = ⟨Ia1Ia2 . . . Ian⟩ is a subsequence of another sequence β = ⟨Ib1Ib2 . . . Ibm⟩
(or β is a supersequence of α), denoted as α ⪯ β, if there exist integers 1 ≤ j1 < j2 <
. . . < jn ≤ m such that Ia1 ⊆ Ibj1 , Ia2 ⊆ Ibj2 , . . . , Ian ⊆ Ibjn . For instance, ⟨(b)(c)⟩ is a
subsequence of ⟨(ab)(bc)⟩, since (b) ⊆ (ab) and (c) ⊆ (bc) and the order in the itemsets is
preserved. Furthermore, the sequence ⟨(b)(c)⟩ is not a subsequence of ⟨(abc)⟩.

In the rest of the work, we use the terms pattern and sequence interchangeably.
An input sequence is is a tuple is = ⟨id, s⟩ with id ∈ N and s is a sequence. We call

id the identifier of the input sequence. We say that an input sequence is contains another
sequence α, if α ⪯ s.

A sequence databaseD is collection of input sequencesD = ⟨s1s2 . . . sn⟩, incrementally
ordered by the identifier of the contained sequences. In Table 7.1 we show a sample input
database D with four input sequences.

Definition 7.2.1. The support (or frequency) of a sequence, denoted as σ(α,D), is the
total number of input sequences in the input database D that contain α. A pattern or

144

Sequence Id. Sequence
1 ⟨(a)(ab)(bc)⟩
2 ⟨(a)(abc)⟩
3 ⟨(d)(a)(ab)(bc)⟩
4 ⟨(d)(ad)⟩

Table 7.1: A sample sequence database.

sequence is called frequent if it occurs at least a given user specified threshold min sup,
called the minimum support. FS is the whole collection of frequent sequences. The
problem of frequent sequence mining is now to find FS in a given input database, for a
given minimum support threshold.

Given a sequence α = ⟨I1I2 . . . In⟩ and an item ei, we define the s-extension α′ as
the super-sequence of α, extending it with a new itemset containing a single item ei,
α′ = ⟨I1I2 . . . InIn+1⟩, In+1 = (ei). We define the i-extension of α if the last itemset I ′n of
α′ = ⟨I1I2 . . . I ′n⟩ satisfies (I ′n = In ∪ ei). That is, the item ei is added to In. For instance,
given the sequence α = ⟨(a)(b)⟩ and an item c ∈ I, the sequence β = ⟨(a)(b)(c)⟩ is an
s-extension and γ = ⟨(a)(bc)⟩ is an i-extension.

Given two sequences β and γ such that both are s-extensions (or i-extensions) of a
common prefix α, with items ei and ej respectively, we say β precedes γ, β < γ, if
ei <lex ej in a lexicographic order. If, on the contrary, one of them is an s-extension and
the other one is i-extension, the s-extension always precedes the i-extension.

Definition 7.2.2. If a frequent sequence α does not have another supersequence with
the same support, we say that α is a closed sequence. Otherwise, if a frequent sequence
β has a super-sequence γ with exactly the same support, we say that β is a non-closed
sequence and γ absorbs β. The whole set of frequent closed sequences is denoted by FCS.
More formally, α ∈ FCS if ∀β ∈ FS, α ⪯ β, σ(α,D) ̸= σ(β,D). The problem of closed
sequence mining is now to find FCS in a given input database, for a given minimum
support threshold.

Clearly, the collection of frequent closed sequences is smaller than the collection of all
frequent sequences.

Example 1. In our sample database, shown in Table 7.1, for a support min sup = 2, we
find |FCS| = 5 frequent closed sequences, FCS = {⟨(a)⟩, ⟨(d)(a)⟩, ⟨(a)(ab)⟩, ⟨(a)(bc)⟩,
⟨(a)(ab)(bc)⟩}, while the corresponding FS has 27 frequent sequences.

7.3 Related work

Looking for frequent sequences in sequence databases was first proposed by Agrawal
and Srikant [Agrawal and Srikant, 1995; Srikant and Agrawal, 1996]. Their algorithms
(Apriori-based) consist of executing a continuous loop of a candidate generation phase
followed by a support checking phase. Two main drawbacks appear in those algorithms:

145

1) they need to do several scans of the database to check the support of the candidates;
and 2) a breath-first search is needed for the candidate generation, leading to high memory
consumption.

Later, two other strategies were proposed: 1) depth-first search based on a Vertical
Database Format [Zaki, 2001] and 2) projected Pattern Growth [Han et al., 2000; Pei
et al., 2004]. The Vertical Database Format strategy was created by Zaki in the SPADE
algorithm [Zaki, 2001] which is capable of obtaining the frequent sequences without mak-
ing several scans of the input database. His algorithm allows the decomposing of the
original search tree in independent problems that can be solved in parallel in a depth-first
search (DFS), thus enabling the processing of big databases.

The Pattern growth strategy was introduced by Han et al. [Han et al., 2000] and it
consists in algorithms that obtain the whole frequent sequence set by mean of techniques
based on the so called projected Pattern Growth. The most representative algorithm in
this strategy is PrefixSpan [Pei et al., 2004]. PrefixSpan defines a projected database as
the set of suffixes with respect to a given prefix sequence. After projecting by a sequence,
new frequent items are identified. This process is applied in a recursive manner by means
of DFS, identifying the new frequent sequences as the concatenation of the prefix sequence
with the frequent items that are found.

PrefixSpan shows good performance and scales well in memory, especially with sparse
databases or when databases mainly consist of small itemsets. However, when we deal
with large dense databases that have large itemsets, the performance of PrefixSpan is
worse than that of SPADE. In order to show this issue, we have conducted several tests.
In a sequential database, several important properties have an influence on the algorithms
execution, some of which are shown in Table 7.2.

Abbr. Meaning
D Number of sequences (in 000s)
C Average itemset in a sequence
T Average items in a itemset
N Number of different items (in 000s)
S Average itemsets in maximal sequences
I Average items in maximal sequences

Table 7.2: Parameters for IBM Quest data generator.

We define the database density as the quotient δ = T
N
. We have used the well-known

data generator provided by IBM to run SPADE and PrefixSpan with different configura-
tions. In Figures 7.1 and 7.2 we can observe the behaviour of both SPADE and PrefixSpan
when we vary the density and the number of itemsets. In Figure 7.1 we show the run-
ning time of the algorithms with a different number of items (N ∈ {100, 500, 1000, 2500}
items) with a constant T = 20 value. Since for a database, the density grows either if
the numerator increases or the denominator decreases, the Figures have been obtained
just varying the denominator. Besides, Figure 7.2 depicts the behaviour of the algorithms
when the number of itemsets is changed between values of C ∈ {10, 20, 40, 80} while we
keep the density constant (δ = 20

2500
). The higher δ the more dense the database. We can

146

see that PrefixSpan shows good results when both density and the number of itemsets
are low, but when a database is denser and parameter C grows, we notice how SPADE
outperforms PrefixSpan.

Figure 7.1: Behaviour of SPADE and PrefixSpan when density changes (in the number
of items).

For mining closed sequences, there exist two approaches: 1) run any algorithm for
mining all frequent sequences and execute a post-processing step to filter out the set
of closed sequences, or 2) obtain the set of closed sequences by gradually discarding
the non-closed ones. Some algorithms have been developed to find the complete set of
closed sequences. The most important algorithms developed so far, are CloSpan [Yan
et al., 2003] and Bide [Wang et al., 2007], both derived from PrefixSpan. While CloSpan
uses a prefix tree to store the sequences and uses two methods to prune non-frequent
sequences, Bide executes some checking steps in the original database that allows it to
avoid maintaining the sequence tree in memory. However, to the best of our knowledge,
there exist no algorithms for closed sequence mining based on the Vertical Database
Format as is presented here.

7.4 ClaSP: algorithm and implementation

In this Section, we formulate and explain every step of our ClaSP algorithm. ClaSP has
two main phases: The first one generates a subset of FS (and superset of FCS) called
Frequent Closed Candidates (FCC), that is kept in main memory; and the second step
executes a post-pruning phase to eliminate from FCC all non-closed sequences to finally
obtain exactly FCS.

147

Figure 7.2: Behaviour of SPADE and PrefixSpan when the number of itemsets changes.

Algorithm 30 ClaSP

1: F1 = {frequent 1-sequences}
2: FCC = ∅, FCS = ∅
3: for all i ∈ F1 do
4: Fie = {frequent 1-sequences greater than i}
5: FCCi=DFS-PRUNING(i,F1,Fie)
6: FCC = FCC ∪ FCCi

7: end for
8: FCS = N-ClosedStep(FCC)
Ensure: The final closed frequent pattern set FCS

Algorithm 30, ClaSP, shows the pseudocode corresponding to the two main steps. It
first finds every frequent 1-sequence, and after that, for all of frequent 1-sequences, the
method DFS-Pruning is called recursively to explore the corresponding subtree (by doing
a depth-first search). FCC is obtained when this process is done for all of the frequent 1-
sequences and, finally, the algorithm ends removing the non-closed sequences that appear
in FCC.

Algorithm 31, DFS-Pruning, executes recursively both the candidate generation (by
means of i-extensions and s-extensions) and the support checking, returning a part of FCC
relative to the pattern p taken as parameter. The method takes as parameters two sets
with the candidate items to do s-extensions and i-extensions respectively (Sn and In sets).
The algorithm first checks if the current pattern p can be discarded, by using the method
checkAvoidable (this algorithm is explained later in algorithm 34). Lines 4-9 perform

148

all the s-extensions for the pattern p and keep in Stemp the items which make frequent
extensions. In line 10, the method ExpChildren (algorithm 33) is called, and there, DFS-
Pruning is executed for each new frequent s-extensions. Lines 11-16 and 17 perform the
same steps, with i-extensions. Finally, in line 19, the complete frequent patterns set (with
a prefix p) is returned.

To store the patterns in memory, we use a lexicographic sequence tree. The elements
in the tree are sorted by a lexicographic order according to extension comparisons (see
Section 7.2). In Figure 7.3 we show the associated sequence tree for FS in our example
and we denote an s-extension with a line, and an i-extension with a dotted line. This tree
is traversed by algorithms 30, 31 and 33, using a depth-first traversal.

Algorithm 31 DFS-Pruning(p, Sn, In)
Require: Current frequent pattern p = (s1, s2, . . . , sn), set of items for s-extension Sn, set of items for i-extension In
1: Stemp = ∅, Itemp = ∅
2: Fi = ∅, Ps = ∅, Pi = ∅
3: if (not checkAvoidable(p, I(Dp))) then
4: for all i ∈ Sn do
5: if (p′ = (s1, s2, . . . , sn, {i}) is frequent) then
6: Stemp = Stemp ∪ {i}
7: Ps = Ps ∪ {p′}
8: end if
9: end for
10: Fi = Fi ∪ Ps ∪ ExpChildren(Ps,Stemp,Stemp)
11: for all i ∈ In do
12: if (p′ = (s1, s2, . . . , sn ∪ {i}) is frequent) then
13: Itemp = Itemp ∪ {i}
14: Pi = Pi ∪ {p′}
15: end if
16: end for
17: Fi = Fi ∪ Pi ∪ ExpChildren(Ps,Stemp,Itemp)
18: end if
19: return Fi

Ensure: Frequent pattern set Fi of this node and its children

There are two main different changes added in ClaSP with respect to SPADE: (1) the
step to check if the subtree of a pattern can be skipped (line 3 of algorithm 31), and (2)
the step where the remaining non-closed patterns are eliminated (line 6 of algorithm 30).

To prune the space search, ClaSP used the method CheckAvoidable that is inspired on
the pruning methods used in CloSpan. This method tries to find those patterns p = ⟨α ej⟩
and p′ = ⟨α ei ej⟩, such that, all of the appearances of p are in those of p′, i.e., if every
time we find a sequence α followed by an item ej, there exists an item ei between them,
then we can safely avoid the exploration of the subtree associated to the pattern p. In
order to find this kind of patterns, we define two numbers: 1) l(s, p), is the size of all the
suffixes with respect to p in sequence s, and 2) I(Dp) =

∑n
i=1 l(si, p), the total number

of remaining items with respect to p for the database D, i.e. the addition of all of l(s, p)
for every sequence in the database. Using I(D) and the subsequence checking operation,
in algorithm 34, ClaSP checks the equivalence between the I(D) values for two patterns:
Given two sequences, s and s′, such that s ⪯ s′, if I(Ds) = I(Ds′), we can deduce that
the support for all of their descendants is just the same.

In algorithm 34, the pruning phase is implemented by two methods: 1) Backward
sub-pattern checking and 2) Backward super-pattern checking. The first one (lines 8-10)
occurs when we find a pattern which is a subsequence of a pattern previously found with
the same I(D) value. In that case, we can avoid exploring this new branch in the tree for

149

Algorithm 32 N-ClosedStep(FCC)
Require: A frequent closed candidates set FCC
1: FCS = ∅
2: A hash table H is created
3: for all p ∈ FCC do
4: Add a new entry ⟨T (Dp), p⟩ in H
5: end for
6: for all entry e ∈ H do
7: for all pi ∈ e do
8: for all pj ∈ e, j > i do
9: if (pi.support() = pj .support()) then
10: if (pi ⪯ pj) then
11: Remove pi from e
12: else
13: if (pj ⪯ pi) then
14: Remove pj from e
15: end if
16: end if
17: end if
18: end for
19: end for
20: FCe= all patterns p ∈ e
21: FCS = FCS ∪ FCe

22: end for
23: return FCS
Ensure: The final closed frequent pattern set FCS

Algorithm 33 ExpChildren(P, Ss, Si)

Require: The pattern set P which contains all the patterns whose children are going to be explore, the set of valid items
Ss which generate the P set by means of s-extensions, the set of valid items Si which generate the P set by means of
i-extensions

1: Fs = ∅
2: for all p ∈ P do
3: I = Elements in Si greater than the last item ei in p
4: Fs = Fs ∪ DFS-Pruning(p,Ss,I)
5: end for
6: return Fs

Ensure: Frequent pattern set Fs for all of the patterns’ children

Figure 7.3: Whole lexicographic se-
quence tree for our thorough example.

Figure 7.4: Whole lexicographic se-
quence tree after processing ClaSP al-
gorithm.

this new pattern. The second method (lines 12-16 and 20-24) is the opposite situation and
it occurs when we find a pattern that is a super-sequence of another pattern previously
found with the same I(D) value. In this case we can transplant the descendants of the
previous pattern to the node of this new pattern.

In Figure 7.4 we show the ClaSP search tree w.r.t. our example without all pruned
nodes. In our implementation, to store the relevant branches, we define a hash function

150

Algorithm 34 CheckAvoidable(p, k)

Require: a frequent pattern p, its hash-key k, hash table H
1: Mk = Entries in the hash table with key k
2: if (Mk = ∅) then
3: Insert a new entry ⟨k,p⟩ in H
4: else
5: for all pair m ∈ Mk do
6: p′ = m.value()
7: if (p.support()=p′.support()) then
8: //Backward sub-pattern
9: if (p ⪯ p′) then
10: p has the same descendants as p′, so p points to p′ descendants
11: return true
12: else
13: //Backward super-pattern
14: if (p′ ⪯ p) then
15: p has the same descendants as p′, so p points to p′ descendants
16: Remove the current entry ⟨k, p′⟩ from H
17: end if
18: end if
19: end if
20: end for
21: //Backward super-pattern executed?
22: if (Pruning method 2 has been accomplished) then
23: Add a new entry ⟨k, p⟩ in H
24: return true
25: end if
26: end if
27: //k does not exist in the hash table or it does exist but the present patterns are not related with p
28: Add a new entry ⟨k, p⟩ in H
29: return false
Ensure: It answers if the generation of p can be avoided

with I(D) value as key and the pattern (i.e. the node in the tree for that pattern) as value
(⟨I(Dp), p⟩). We use a global hash table and, when we find a sequence p, if the backward
sub-pattern condition is accomplished, we do not put the pair ⟨I(Dp), p⟩, whereas, if the
backward super-pattern condition is true, we replace all the previous pairs ⟨I(Dp′), p

′⟩
(s.t. p′ ⪯ p) with the new one ⟨I(Dp), p⟩. If instead we do not find any pattern with the
same I(D) value of the pattern p, or those patterns with the same value are not related
with p by means of the subsequence operation, we put the pair ⟨I(Dp), p⟩ to the global
hash table (line 28). Note that when one of the two pruning conditions is true, we also
need to check if the support for s and s′ is the same since two I(Dp) and I(Dp′) values
can be equal but they do not necessarily have the same support.

We also need to consider all of the I(D)s for every appearance in a sequence. For
instance, in our example shown in Table 7.1, regarding the three first sequences, if we
consider just the first I(Ds) for the first appearance, if we have the pattern ⟨(a)(b)⟩ in our
example, we deduce that I(D⟨(a)(ab)⟩) = I(D⟨(a)(b)⟩) (both with value I(D) = 5), so we can
avoid generating the descendants of ⟨(a)(b)⟩ because they are the same as in ⟨(a)(ab)⟩.
However, we can check that ⟨(a)(bc)⟩ is frequent (with support 3), whereas ⟨(a)(abc)⟩ is
not (support 1). This forces us to count in I(Ds), all the number of items after every
appearance.

Finally, regarding the non-closed pattern elimination (algorithm 32), the process con-
sists of using a hash function with the support of a pattern as key and the pattern itself
as value. If two patterns have the same support we check if one contains the other, and if
this condition is satisfied, we remove the shorter pattern. Since the support value as key

151

provoke a high number of collisions in the hash table (implemented with closed address-
ing), we use a T (Dp) =

∑n
i=1 id(si) value, defined as the sum of all sequence ids where a

pattern p appears. However, as the equivalence of T (Dp) does not imply the equivalence
of support, after checking that two patterns have the same T (Dp) value, those patterns
have to have the same support to remove one of them.

7.5 Performance study

We exhaustively experimented on both synthetic and real world datasets. To generate the
synthetic data, we have used the IBM data generator mentioned above (see Section 7.3).
In all our experiments we compare the performance of three algorithms: CloSpan, ClaSP
and SPADE. For the last algorithm we add the same non-closed candidate elimination
phase which is used in ClaSP to obtain FCS.

All experiments are done on a 4-cores of 2.4GHZ Intel Xeon, running Linux Ubuntu
10.04 Server edition. All the three algorithms are implemented in Java 6 SE with a Java
Virtual Machine of 16GB of main memory.

Figure 7.5 shows the number of patterns and performance for the dataset D5C10T5N5
S6I4 (-rept 1 -seq.npats 2000 -lit.npats 5000). Figure 7.5(a) shows the number of frequent
patterns, the patterns processed by ClaSP, and the number of closed patterns. We can
see how there is approximately an order of difference between these numbers, i.e. for
every 100 frequent patterns we process around 10 patterns by ClaSP, and approximately
only 1 of these 10 patterns is closed. Figure 7.5(b) shows the running time. ClaSP
clearly outperforms both SPADE and Clospan. For very low support (below 0.013), we
have problems with the execution of SPADE due to the space in memory taken for the
algorithm.

Figure 7.5: Varying support for dataset D5C10T5N5S6I4(-seq.npats 2000 -lit.npats 5000).

Figure 7.6 shows a dataset with larger parameters of C, T and a lower N. This database
is denser than the database above and in Figure 7.6(a) we can observe that the difference
between frequent patterns and processed patterns is not so big. Therefore, the pruning

152

method checkAvoidable is not so effective and ClaSP and CloSpan are closer to the normal
behaviour of SPADE and PrefixSpan, as is shown in Figure 7.6(b). The results show that
both ClaSP and SPADE are much faster than Clospan.

Figure 7.6: Varying support for dataset D0.5C20T10N2.5S6I4(-seq.npats 2000 -lit.npats
5000).

Finally we test our algorithm with the gazelle dataset. This dataset comes from
click-stream data from gazelle.com, which no longer exists. The dataset was once used
in KDDCup-2000 competition and, basically, it includes a set of page views (each page
contains a specific product information) in a legwear and legcare website. Each session
contains page views done by a customer over a short period. Product pages viewed in
one session are considered as an itemset, and different sessions for one user is considered
as a sequence. The database contains 1423 different products and assortments which are
viewed by 29369 different users. There are 29369 sequences, 35722 sessions (itemsets),
and 87546 page views (items). The average number of sessions in a sequence is around
1. The average number of pageviews in a session is 2. The largest session contains 342
views, the longest sequence has 140 sessions, and the largest sequence contains 651 page
views. Figure 7.7 shows the runtime with several support (from 0.03% to 0.015%). We
compare the runtime behaviour for both ClaSP and CloSpan and we can see how ClaSP
outperforms CloSpan.

All the experiments show that ClaSP outperforms CloSpan, even if databases are
sparse. This is because of, in very sparse databases, a high number of patterns are found
only with extremely low support. Therefore, the lower the support is, the more patterns
are found and the more items are chosen to create patterns. In this point, CloSpan,
as PrefixSpan, is penalized since the algorithm has to projects several times the same
item in the same sequence, having a worse time with respect to ClaSP. Besides, in those
algorithms where SPADE is better than PrefixSpan, ClaSP is also faster than CloSpan.

153

Figure 7.7: Varying support for dataset Gazelle click stream.

7.6 Conclusions

In this Chapter, we study the principles for mining closed frequent sequential patterns and
we compare the two main existing strategies to find frequent patterns. We show the ben-
efits of using the Vertical Database Format strategy against Pattern Growth algorithms,
especially when facing dense datasets. Then, we introduced a new algorithm called ClaSP
to mine frequent closed sequences. This algorithm is inspired on the SPADE algorithm
using a Vertical Database Format strategy and uses a heuristic to prune non-closed se-
quences inspired by the CloSpan algorithm. To the best of our knowledge, this is the
first work based on the Vertical Database Format strategy to solve the closed sequential
pattern mining problem. In all our tests ClaSP outperforms CloSpan, and even, with
certain datasets configuration, SPADE also outperforms CloSpan when the non-closed
elimination phase is executed after it.

154

Chapter 8

Experimental results

In the previous chapters we have analised the algorithms individually. This Chapter
presents some comparisons between all the algorithms developed to mine patterns with
points and intervals. In Section 8.1, we compare the four algorithms: PaGAPIS, FaSPIP,
BreadthPIS and DepthPIS, whose purpose it is to mine qualitative patterns, while in
Section 8.2, the same comparisons are made for the quantitative algorithm versions: Pa-
GAPIMS, FaSPIMP, BreadthPIMS and DepthPIMS.

For these experiments we have used the same setting explained in Section 3.4.

8.1 Comparatives of qualitative algorithms

Figure 8.1 shows what happens when there are an intermedium number of transactions
per sequence (20 itemsets on average), an average low transaction length (from 2 to 10
items on average) and a number of different items varying between the values of 50 and
100. In summary, it can be stated that the three algorithms that implement a Vertical
Database Format strategy (FaSPIP, BreadthPIS and DepthPIS) obtain better results than
that which is based on the Pattern Growth strategy (PaGAPIS). However, there are some
differences depending on the plots.

Plot 8.1A shows the case of a database with very short itemsets and in which the
execution times are quite low (the maximum value that can be seen in the plot is of 100
seconds). BreadthPIS obtains the best result followed by DepthPIS, which is affected
by a larger number of infrequent candidates with regard to BreadthPIS. FaSPIP starts
with good behaviour but worsens for low supports, being surpassed by PaGAPIS which,
although it initially obtains the worst times is, eventually better than FaSPIP.

Plot 8.1B shows the execution of the four algorithms in the same database but con-
sidering a slightly larger itemset size (an average of 5 items). For this plot, the best two
algorithms are BreadthPIS and FaSPIP. However, BreadthPIS cannot attain the lowest
support owing to its breadth-first search. With regard to the two other algorithms, Depth-
PIS takes longer for high support but after support 0.49 PaGAPIS has a worse execution.
As before, DepthPIS takes longer than BreadthPIS because its candidate generation is
not so efficient.

Plot 8.1C depicts the results with a sparser database (n=100), and all the algorithms
behave in a similar manner. In this case, BreadthPIS is the fastest, but is closely followed

155

by FaSPIP. However, BreadthPIS cannot be executed with support lower than 0.11 since
it has memory overflow problems. Moreover, for the lowest support value (0.09) the
executions of FaSPIP and DepthPIS converge and take a similar time, and PaGAPIS is
clearly the slowest.

Finally Plot 8.1D increments the number of items per itemsets (10 items), and the
algorithms have higher executions times and do not attain such low supports as in the
previous cases. Again the behaviour is maintained and, for this plot, FaSPIP is the fastest,
followed by BreadthPIS which cannot be executed after support 0.63. Furthermore, with
regard to DepthPIS and PaGAPIS, both take longer than the other two algorithms,
and three different stages can be observed: up to support 0.71 DepthPIS is faster than
PaGAPIS; from 0.69 to 0.59 PaGAPIS obtains a better execution time than DepthPIS;
and, finally, from 0.59 to the end DepthPIS obtains better execution times. This behaviour
in DepthPIS results from the high number of candidates created by its transition function.
In general, in this Figure, FaSPIP and BreadthPIS quickly obtain better times than
DepthPIS and PaGAPIS, and PaGAPIS has the slowest execution of all.

Figure 8.1 shows, in general, that when the number of items per itemsets (ptl) is
increased, and thus the density, the algorithms find more patterns at higher supports. We
can see that execution time is increased from plot 8.1A to plot 8.1D.

Figure 8.1: Varying support for datasets s1000 psl20 msl30 ptl2–5–10 mtl3–6–12 ppl10
mpl12 n50–100.

Figure 8.2 shows what happens to the algorithms in the case of larger databases
(10000 sequences) with high values of different items (n = 500 and 1000). Plots 8.2A
and 8.2B have a medium sequence length (an average of 20 transactions), a medium-high
transaction length (an average of 30 items) and a medium pattern length (an average of
10 items), and 500 and 1000 different items for the database. The datasets corresponding

156

to plots 8.2C and 8.2D have larger sequences (an average of 40 transactions) and smaller
transactions (an average of 10 items). All the plots show the same time window (from 0
to 1200 seconds) and it is possible to observe the superiority of all the algorithms based on
the Vertical Database Format (FaSPIP, BreadthPIS and DepthPIS) over the algorithm
based on the Pattern Growth strategy (PaGAPIS), which are significantly different in
terms of execution times in all cases. The behaviour shown by BreadthPIS and DepthPIS
is very similar, since the candidates generated by their transition functions are very close.
With regard to the behaviour of FaSPIP, it will be observed that it is slightly faster for
the denser plots (Plots 8.2A and 8.2C) and slower in the sparser cases (Plots 8.2B and
8.2D). This effect, which also occurs in PaGAPIS, is owing to the fact that in the case
of the latter databases, the candidates generated by FaSPIP are largely increased from
supports 0.44-0.42, in Plot 8.2B, and 0.36-0.32 in 8.2D. This is related to the nature of
its representation (boundary points), in which more candidate boundary points are taken
into account, and more time is necessary for checking if those candidate are valid.

Figure 8.2: Varying support for datasets s10000 psl40 msl50 ptl10–20 mtl12–25 ppl10
mpl12 n500–1000.

As occurred in Section 2.3, we now show the behaviour when those crucial properties
that normally affect the algorithms’ execution are changed. We show the executions when
we progressively change one of the parameters that affect the density - the number of items
- and also when we change the “transactions per sequence” parameter. Figure 8.3 shows
what happens when we have a database with moderated parameters (1000 sequences, an
average of 20 transaction per sequence, and 12 items per transaction, the length of the
patterns in the database being 12 items on average) and we vary the number of different
items (100, 200, 500 and 1000 in plots 8.3A, 8.3B, 8.3C and 8.3D). Note that in the four
plots the execution time stay in the same units, but the support achieved decreases in
each one.

It will be noted that there are two groups in all the plots. On the one hand, both

157

PaGAPIS and FaSPIP appear and, as in Section 2.3, the denser the database, the better
the FaSPIP execution, while the sparser the database, the better the PaGAPIS execu-
tion. On the other hand, the executions times for BreadthPIS and DepthPIS are almost
identical, and both consequently find a similar number of candidates in their executions,
both being faster than PaGAPIS and FaSPIP. Furthermore, in view of the results it will
be noted that BreadthPIS and DepthPIS are not so affected by the change of the n value.
This difference in the behaviour of the algorithms is therefore owing to the inner represen-
tation, and those algorithms that implement a boundary point representation have worse
results.

Figure 8.3: Varying support for a same configuration of datasets where we change the
number of items (100, 200, 500 and 1000).

Figure 8.4 similarly shows the behaviour with the same database, but when considering
100 different items per database and varying the “transactions per sequence” value (40,
80 and 160 for plots 8.4A, 8.4B and 8.4C). Note that in this case the executions time and
support achieved are very different. All the algorithms based on the Vertical Database
Format strategy now have very different results to those obtained in Figure 8.3.

Plot 8.4A depicts the results when the database has less transactions per sequence
(psl=10), and BreadthPIS is the fastest algorithm followed by PaGAPIS, which is this
time faster than FaSPIP, since the Pattern Growth strategy deals better with databases
with few transactions per sequence. Lastly, DepthPIS is the slowest since it is greatly
affected by the large number of candidates created by its transition function. This wide
difference that there is between BreadthPIS and DepthPIS execution times is because
BreadthPIS generates much fewer candidates through its transition function. Secondly,
in Plot 8.4B, the fastest algorithms are FaSPIP and BreadthPIS, which behave in a similar
manner. However, BreadthPIS cannot complete all the support values after support 0.26.

158

DepthPIS and PaGAPIS are far slower than the other two algorithms, PaGAPIS being the
slowest despite having better execution times than DepthPIS from 0.38 to 0.26 supports
values. In this Plot it is possible to observe that PaGAPIS starts to be affected by a
larger number of transactions per sequence (psl=20) and that DepthPIS still creates a lot
of infrequent candidates.

Finally, Plot 8.4C, shows a database with an average of 40 transactions per sequence.
Here it will be noted that FaSPIP is the fastest algorithm by far. After FaSPIP is
BreadthPIS, closely followed by PaGAPIS for the lowest supports. Lastly, DepthPIS
has the highest execution time, despite being under the PaGAPIS curve before the 0.83
support value. However, now it is much more difficult for PaGAPIS to obtain good re-
sults than in the point-based case owing to the nature of the algorithm when the interval
items are mined. These new problems are explained in greater detail in the following Sec-
tion, which compares the benefits and drawbacks of both new algorithms, PaGAPIS and
FaSPIP. This Figure shows that, as the number of transactions per sequences is increased,
there is a sharp deterioration in the execution of both BreadthPIS and DepthPIS. This
problem is owing to the Triangular Matrix Representation, as will be discussed in Chapter
9.

Figure 8.4: Varying support for a same configuration of datasets where we change the
number of items per itemset (10, 20 and 40).

159

8.2 Comparatives of quantitative algorithms

This Section considers those versions that mine the set of frequent 2-patterns for the
FaSPIMP, BreadthPIMS and DepthPIMS algorithms using a Pattern Growth method,
since this is more efficient than a brute force search (see Section 4.4 and Section 6.5
for more details). What is more, all the optimisations proposed in those sections are
considered in all the algorithms, and all the items considered in all the databases can
extend from a duration of 1 to 10 time units.

Figure 8.5 shows the behaviour when dealing with databases with 1000 large sequences
(an average of 40 transactions), with an average of 10 items per transactione (ptl = 10)
and with different values in the number of items (500 and 1000). In both plots 8.5A
and 8.5B, the algorithms based on the Vertical Database Format strategy (FaSPIMP,
BreadthPIMS and DepthPIMS) are faster than that based on the Pattern Growth strategy
(PaGAPIMS). The overall behaviour is maintained in both plots: BreadthPIMS and
DepthPIMS are the fastest, both having a similar execution time, and therefore a similar
number of candidates created by their transition function. PaGAPIMS is the slowest by
far with regard to the other three algorithms. In Plot 8.5B, FaSPIMP is slower than
PaGAPIMS up to support 0.12. This is due to the huge number of 2-patterns that
the algorithm processes. Later, after support 0.12, FaSPIP starts to improve, since the
advantages of the Vertical Database Format as opposed to the Pattern Growth algorithms
have a greater presence in these supports.

Figure 8.5: Varying support for datasets s10000 psl40 msl50 ptl10 mtl12 ppl15 mpl18
n500–1000.

Figure 8.6 shows the behaviour when dealing with larger databases (10000 sequences)
and with high different values of items (n = 500 and 1000). Plots 8.6A and 8.6B have
a medium sequence length (an average of 20 transactions), a medium transaction length
(an average of 20 items) and a medium pattern length (an average of 10 items). The
datasets corresponding to plots 8.6C and 8.6D have larger sequences (an average of 40
transactions) and smaller transactions (an average of 10 items). The two sparser databases
are those related to Plots 8.6A and 8.6C whereas the denser ones are shown in Plots 8.6B
and 8.6D. For all the plots, BreadthPIMS and DepthPIMS have the fastest executions,
followed by FaSPIMP and PaGAPIMS. Nevertheless, it will be noted that in the two

160

sparser databases (Plots 8.6A and 8.6B), the FaSPIMP curve is very close to those of
BreadthPIMS and DepthPIMS up to the lowest supports. This problem originates from
the fact that more time is spent mining the huge number of frequent 2-patterns and from
an increase in the number of frequent patterns. Please recall that FaSPIMP must know
all the possible distances that can exist between all the frequent boundary points, whereas
BreadthPIMS and DepthPIMS deal with the interval items as a whole, and only spend
time finding the temporal distances associated with the temporal relations and not to the
size of the intervals.

Figure 8.6: Varying support for datasets s10000 psl40 msl50 ptl10–20 mtl12–25 ppl10
mpl12 n500–1000.

Finally, as occurred in the previous Section, we show the behaviour when we change
those properties that particularly affect the algorithms’ execution. As before, we show
the behaviour when we progressively change one of the parameters that affect the density,
the number of items in our case, and also what occurs when we change the “transactions
per sequence” parameter. Figure 8.7 shows what happens when we have a database with
moderated parameters (1000 sequences, an average of 20 transaction per sequence, and
12 items per transaction, the length of the patterns in the database being an average of
12 items) and we vary the number of different items (50, 100 and 200 in plots 8.7A, 8.7B
and 8.7C). All the plots show that BreadthPIMS and DepthPIMS are clearly superior to
the other two algorithms (FaSPIMP and PaGAPIMS). The curves of BreadthPIMS and
DepthPIMS are almost equal, signifying that they deal with more or less the same number
of candidates. However, the behaviour of PaGAPIMS and FaSPIMP changes between the
different plots. As stated in the previous section, boundary point representation is that
least able to deal with the change of density in the databases.

Figure 8.8 similarly shows the behaviour with a similar database, but when considering

161

Figure 8.7: Varying support for a same configuration of datasets where we change the
number of items (50, 200 and 500).

100 different items per database and varying the “transactions per sequence” value (40,
80 and 160 in plots 8.8A, 8.8B and 8.8C, respectively). As in Figure 8.7, all the plots show
that both BreadthPIMS and DepthPIMS are the fastest, with an almost identical execu-
tion time. As before, the behaviour of PaGAPIMS and FaSPIMP changes throughout the
different databases. In Plot 8.8A FaSPIMP, has a good execution but there is suddenly
a great increase in its execution for support 0.04. It will be noted that this change also
occurs with PaGAPIMS, but to a lesser extent. This great change is mainly owing to the
boundary point representation and it is particularly severe in FaSPIMP because of the
step in which the frequent 2-patterns are mined. Nevertheless, in Plot 8.8B FaSPIMP’s
behaviour is quite a lot better than that of PaGAPIMS, whereas in Plot 8.8C both ex-
ecution times are very similar and much higher than the BreadthPIMS and DepthPIMS
execution times.

In general terms, it will be observed that, when dealing with quantitative patterns, it
is easy to attain the lower supports than in the qualitative case because of the difficulty
of finding a pattern with identical temporal distances and item durations. Furthermore,
when we mine quantitative patterns, we very often find low execution times that suddenly
change to very high times. This phenomenon is owing to the explosion of quantitative
patterns, which will be extensively studied in Chapter 9.

162

Figure 8.8: Varying support for a same configuration of datasets where we change the
number of items per itemset (40, 80 and 160).

163

Chapter 9

Discussion

This Chapter provides a general discussion on the advantages and drawbacks of the var-
ious alternatives for the design of an algorithm for SDM. We first show the benefits and
disadvantages of FaSPIP and PaGAPIS when compared to BreadthPIS and DepthPIS.
Then we discuss the convenience of using the boundary point representation, used in Pa-
GAPIS and FaSPIP (and PaGAPIMS and FaSPIMP), or the triangular matrix (Trimax),
as it is used in BreadthPIS and DepthPIS (and their quantitative versions BreadthPIMS
and DepthPIS). We subsequently show an in-depth exploration regarding the difference in
the nature of the algorithms that discover qualitative patterns and quantitative patterns,
explaining the main problems that commonly appear. We next show the advantages and
drawbacks of the different search methods and provide some criteria as to their use in an
efficient algorithm. Finally, we discuss the advantages of using a Vertical Database Format
algorithm in order to find the closed frequent set, as occurs with a ClaSP algorithm.

9.1 Intra-comparisons. FaSPIP vs PaGAPIS. Bread-

th vs DepthPIS

9.1.1 FaSPIP vs PaGAPIS

In this Subsection we discuss the main advantages of FaSPIP with regard to PaGAPIS. In
the first place, let us recall the main differences between the original versions of the Vertical
Database Format and Pattern Growth algorithms on which FaSPIP and PaGAPIS are
respectively based. We shall later show the behaviour of these algorithms once all the
necessary information with which to simultaneously manage points and intervals and the
pruning methods has been included, in order to verify that all the patterns contain proper
intervals.

As explained in Chapter 3, one of the situations overlooked in some algorithms such
as PrefixSpan, is the presence of several appearances of the same item or event type in a
sequence. On the one hand, in PrefixSpan it is necessary to make all the projections of an
item that appears several times in a sequence in order to guarantee that all the I-extensions
associated with that item will be discovered. If, conversely, it was not necessary to find
the I-extensions, or if there were only one item per itemset, or only one appearance of each
item per sequence existed, there would be sufficient information with a single projection.

165

On the other hand, in Vertical Database Format algorithms it is not necessary to take
into account the problem of PrefixSpan, and all the S-extension and I-extensions explore
the whole search space. It could thus be said that the latter is less influenced by the
database structure.

For example, let us view the behaviour of both PrefixSpan and SPADE in the case of
the database composed of the single sequence s = ⟨(a)1(ab)2(abc)3(abcd)4(abcde)5(abcdef)6⟩
and a min supp = 1. In this case, there are six itemsets, occurring between times 1 and
6. If we consider sequence ⟨(a)⟩, the six different projections associated with this sequence
are shown in Figure 9.1. Note that if only the first projection is considered in our exam-
ple, then items ∗b, ∗c, ∗d, ∗e and ∗f will not be considered to be frequent items, and in
order to count these items it is necessary to take into account the first itemset of every
subsequent projection. PrefixSpan must necessarily scan all the projections but, in the
case of those projections after the first one, PrefixSpan must take into account only the
first itemset and can ignore the remaining itemsets. Figure 9.1 highlights all the itemsets
that can be ignored by PrefixSpan.

Figure 9.1: Projected database for the brief example with the standard PrefixSpan algo-
rithm.

With regard to SPADE, and using the same example as above, this algorithm builds
the associated IdLists (shown in Figure 9.2) without any special consideration. This point
is one of the great advantages of the Vertical Database Format strategy over the Pattern

166

Growth strategy for certain database configurations.

Figure 9.2: SPADE IdList for the brief example.

With regard to FaSPIP and PaGAPIS, the above characteristics also define the princi-
pal behaviour of both algorithms. However, as was shown in Chapter 3, both algorithms
have new changes with respect to the original SPADE and PrefixSpan algorithms in order
to guarantee that all the boundary sequences are well-formed. Concretely, even when
FaSPIP uses two new pruning mechanisms, the principal behaviour remains. However,
the PaGAPIS algorithm has other new drawbacks, and while in the simple version of
the original PrefixSpan it is possible to avoid exploring the part highlighted in Figure
9.1, since these relations are already taken into account in the first projection (relation
before), PaGAPIS needs to explore them in case the event can be repeated in a sequence.
When we discover intervals, it is not now possible to ignore that highlighted part because
this would signify overlooking certain temporal relations, such as “meets”, “overlaps”,
“contains”, “starts”, “is finished by” or “equals”.

For instance, let us suppose that the database is formed only of the sequence ⟨(a+)(a−)
(a+)(b+)(c+)(b−)(c−)(a−)⟩ and min supp = 1. If we project this using the 1-sequence
(a+), in Figure 9.3 we can find the two projections associated with (a+). If this example
were to be processed, as in the PrefixSpan algorithm, we would take into account all
the itemsets in the first projection and only the first itemset in the second projection.
We would not therefore find the patterns ⟨(a+)(b+)(b−)(a−)⟩, ⟨(a+)(c+)(c−)(a−)⟩ and
⟨(a+)(b+)(c+)(b−)(c−)(a−)⟩, since in the first projection the elements are discarded after
the itemset at time t = 2, which is precisely the moment at which the interval a has

167

finished. In order to find the complete set of frequent boundary sequences, it is thus
necessary to carry out a complete analysis of every itemset of every projection. This
necessity is a new drawback for PaGAPIS as regards the original PrefixSpan that has to
be introduced in order to mine proper intervals.

Figure 9.3: Projected database for the brief example with the PaGAPIS algorithm.

All the characteristics mentioned here are also present in their quantitative versions,
the FaSPIMP and PaGAPIMS algorithms (for further details see Section 4.6).

9.1.2 BreadthPIS vs DepthPIS

In this Subsection we discuss the main advantages of DepthPIS with regard to BreadthPIS.
Please recall that both algorithms use temporal reasoning to infer the temporal relations
in the patterns. They differ in the structure of the transition function and the search
method use. We shall now compare these two points.

In Sections 5.2 and 5.3 we saw the corresponding transition tables (Table 5.2 and Table
5.3, respectively), associated with the transition functions of BreadthPIS and DepthPIS,
fBFS and fDFS . If both tables are viewed, it will be noted that, in general, the sets in
fDFS have a higher cardinality than those in fBFS .

This is owing to the nature of the candidate generation method. If we have three events
A, B and C and we know RAB and RBC , BreadthPIS obtains the possible relations RAC

by means of fBFS . Conversely, in DepthPIS we know the relations RAB and RAC , and
fDFS obtains all the RBC relations that can exist. This means of inferring candidates
and how the sequences are arranged are the keys to understand the difference between
their transition functions. We shall explain the functioning of both methods by means of
Figures 9.4a and 9.4b. Figure 9.4a shows the candidate generation for the BreadthPIS
algorithm. It will be observed that, from the three events (A, B and C), the number of
relations formed by candidate generation is bounded since the beginning of A occurs at
the same time or before the beginning of C. On the contrary, Figure 9.4b shows that

168

when DepthPIS algorithm infers the relation RBC , any relation is possible between events
B and C.

(a) Study of candidate generation for BreadthPIS.

(b) Study of candidate generation for DepthPIS.

Figure 9.4: Study of candidate generation.

An analysis of all the set of relations resulting from both transition functions fBFS
and fDFS leads to certain ideas. For example, if we add all the possible relations obtained
for the 49 combinations of the transition function we obtain 75 relations for fBFS and 143
for Table fDFS . These values provide an average cardinality of 1.53 relations for fBFS
and 2.91 for fDFS . These two numbers allow us to see that, on average, the number of
candidates generated by DepthPIS is twice as large as the number of candidates produced

169

by BreadthPIS. Moreover, if we study the average cardinality of the set of relations
when we know one of the two relation arguments Rr or Rc of the transition functions
fBFS(Rr, Rc) and fDFS(Rr, Rc), the result provides some interesting information. The
top of Table 9.1 shows these average values when we know the first argument Rr, while
the bottom part shows the average when we know the second argument Rc. On the one
hand, in the first table it will be noted that except for the equal relation, fDFS obtains
bigger sets than fBFS , and there are remarkable differences between relations <, o and c,
in which there is a factor from almost two up to more than four from fDFS with regard to
fBFS . On the other hand, the second table also shows significant differences between the
number of relations provided by fDFS with regard to fBFS (except for the equal relation).
In particular, the most significant differences appear in relations <, o, c and s, which have
a factor from almost two up to almost three relations.

BreadthPIS DepthPIS
< 1 < 4.43
m 1 m 2.43
o 2.14 o 4.14

f−1 1 f−1 2.14
c 2.43 c 3.86
= 1 = 1
s 2.14 s 2.43

< m o f−1 c = s
BreadthPIS 1.57 1.28 1.86 1.57 2.14 1 1.28

< m o f−1 c = s
DepthPIS 4.43 2.43 4.14 2.14 3.86 1 2.43

Table 9.1: Average number of relations when we know the first (top table) or the second
(bottom table) argument of the transition function.

Note that “m”, “s”, “f−1” and “ = ” are the least frequent relations that usually
appear in patterns because the events that fulfil these relations need to have at least an
equal relation between their boundary points. The main difference provided by fDFS with
regard to fBFS therefore implies that the candidate generation of BreadthPIS is quite a
lot more efficient than that provided by DepthPIS, since the minor differences in their
averages are in the least frequent relations. What is more, the large sets of relations
provided by fDFS lead to the generation of several candidates in DepthPIS that will not
eventually be frequent.

Another relevant difference between both algorithms is the search method used. As
stated previously, BreadthPIS follows a breadth-first search strategy whereas DepthPIS
carries out a depth-first search. The main problem caused by a breadth-first search is
the need to maintain all the frequent patterns discovered in each level in the memory in
order to be able to generate the set of candidate patterns. Although a breadth-first search
normally makes the use of a pruning method possible, as was pointed in the methods of
BreadthPIS in Section 5.2, with the tests that were executed it was not worth the effort
of enabling such a prune. This is mainly because it is possible to quickly compute the

170

support of a pattern. Instead, DepthPIS does not need to maintain all the k-patterns
discovered in the memory, since it only needs the members of an equivalence class that
are extended by only one event.

Finally, thanks to the way in which DepthPIS is executed and owing to its depth-first
search, it is possible to split the search for frequent patterns up into different separate
parts. To do this it is necessary to explore each equivalence class independently and
maintain the set of frequent patterns associated with it. It is eventually only necessary to
join all the intermediate sets of frequent patterns in the final frequent pattern set. This
therefore makes it possible to parallelize the search of all the different classes in order
to obtain faster results. Figure 9.5 shows a graphical schema of the separation of the
different equivalence classes for the example database. In the figure, each equivalence
class surrounds all the patterns that are contained in it.

Figure 9.5: Division of the different equivalence class in independent problems.

9.2 Inter-comparisons. Boundary points vs triangu-

lar matrices representation

In the PaGAPIS and FaSPIP algorithms (and in those of PaGAPIMS and FaSPIMP) we
have used a representation of patterns based on boundary points, while in BreadthPIS
and DepthPIS (and BreadthPIMS and DepthPIMS) we have used a Triangular Matrix
representation. These two representations are compared in this subsection.

On the one hand, we have identified the following advantages as regards boundary
points:

171

• It is a more compact representation than any other, since we can code a sequence of
k intervals with 2k boundary points, and thus only need 2k−1 relations between the
boundary points to obtain a non-ambiguous representation. Moreover, the relations
between points are only “<” and “=”. All the other attempts that have been
developed to date, usually have a more complicated structure and, concretely, when
we represent an interval sequence with a TriMax, we need k(k−1)

2
relations.

• It is a very simple, intuitive and readable representation since it is possible to see all
the boundary points for intervals and the temporal order between them at a glance.

• This representation makes it possible to use the standard point-based algorithms
directly for SDM.

On the other hand, we have identified the following drawbacks:

• Although direct point-based algorithms can be used, they have to be adapted in
order to mine proper intervals. This adaptation is not always very simple and it
has a high cost in terms of constraint checking. More specifically, it is necessary to
add some new methods to check whether an end boundary point is ending an open
interval properly. This new method makes the PaGAPIS and FaSPIP (and hence
PaGAPIMS and FaSPIMP) algorithms slower.

With regard to the TriMax representation, we have identified the following benefits:

• Since we use k(k−1)
2

relations between the k intervals, it is very easy to extract a
general view of the global placement and relations for all the intervals.

• As we have all the explicit relations between the intervals, we have a very powerful
tool with which to create a temporal reasoning from two triangular matrices that
correspond to two patterns with a common subpattern. This enables a very suitable
candidate to be generated from the k-patterns, rather than extending each pattern
with a new 1-pattern.

• Since an item is considered as a whole, we can include its duration in it. This is
particularly interesting when dealing with algorithms for the mining of quantitative
patterns as we avoid several calculations.

Conversely, we have found the following drawbacks:

• The representation is expensive as regards space, since we need k(k−1)
2

relations to
represent a pattern of k intervals.

• Since all the relations are maintained, it is also necessary to maintain all the ap-
pearances of every interval rather than registering only the last one (as occurred
in the original point-based algorithm). This provokes some redundancy when the
same pattern is found several times in the same sequences, and the scalability of
the algorithm is thus affected.

172

Most of the algorithms in SDM normally have two phases: candidate generation and
support counting. With regard to the candidate generation, algorithms based on boundary
points progressively create new candidates by simply adding points. Therefore, apart from
the normal structures associated with their basic algorithms, they need a second structure
to be able to check the correctness of the candidates. This signifies that whenever a
pattern with an interval that is badly formed appears it is necessary to rule it out in
order to maintain only those patterns that have a correct structure. It is also necessary
to carry out an initial counting of the appearances of the chosen candidate in order to
create the correct candidate extension set for future candidates. Of course, this process
has a cost in execution time, whereas in the algorithms that we have developed on the
basis of TriMax representation, the candidate generation phase hardly has any cost. In
this second alternative, since we consider an event as a whole and we do not make any
distinction between point and intervals, all the possible candidates are created directly
from the corresponding transition function with an insignificant cost in terms of execution
time.

Additionally, when we focus on the Vertical Database Format algorithms, we also find
some differences between FaSPIP (and FaSPIMP) and both BreadthPIS and DepthPIS
(and their quantitative versions BreadthPIMS and DepthPIMS). While the former algo-
rithm needs to have a queue to make certain that an occurrence of the candidate pattern
that is considered will be found, the TriMax structure makes it possible to carry out a join
operation without any additional structure. However, a noticeable advantage that FaSPIP
(and FaSPIMP) has in comparison to BreadthPIS or DepthPIS (and their quantitative
versions BreadthPIMS and DepthPIMS), is that, while FaSPIP only has to maintain the
occurrence of the last event of the patterns in its IdList, i.e., the last boundary point,
BreadthPIS and DepthPIS need to maintain all the occurrences of all the events that
appear in the patterns. This difference is owing to the fact that in FaSPIP the join op-
eration, through a queue, checks whether a concrete pattern appears in a sequence, and
only two temporal relations, before and equals, are involved. Furthermore, it is possible
to retain the occurrence of all the elements of the patterns with only the last element,
whereas BreadthPIS and DepthPIS need to maintain each appearance of all the events
of a pattern because we are working with thirteen interval relations and it is necessary to
check whether the relation that a new event has with the remaining events that appear
before in the pattern is that which was expected. This issue leads us to have, on aver-
age, more entries in the IdList and, therefore, a slower IdList computation. Figure 9.6
shows one difference between both ways of representing the IdList. The Figure depicts
the representation of the pattern A < B for only one sequence with the boundary points
and TriMax representation. It will be observed that in the boundary point case, four
entries are needed to code all the appearances of the pattern in the sequence, all of these
being appearances of the timestamps where the end point of B occurs. However, in the
case of BreadthPIS and DepthPIS nine entries are needed to code the same appearances.
This is owing to the need to maintain all the occurrences of both events A and B. To
sum up, in FaSPIP we have only the last event, and several entries are summarised by
an appearance, whereas BreadthPIS and DepthPIS need to create all the different entries
because all the event appearances are indicated in the IdList. This last effect may be an
important problem when working with dense databases with large itemsets in which the

173

same relation can be found between several itemsets.

In general terms, we can say that when we confront qualitative databases, a boundary
representation is more appropriated and, in particular, FaSPIP shows a better behaviour
than PaGAPIS, having a faster execution time.

Figure 9.6: Comparison between the different IdList implementation for boundary point
representation and TriMax algorithms.

With regard to the memory consumption, the representation of both patterns and
the IdList is more costly for BreadthPIS and DepthPIS than for FaSPIP and PaGAPIS
since a TriMax representation and an IdList for the two former algorithms necessitate
the storage of more information. However, when the DepthPIS algorithm is used, this
difference is insignificant since it uses a depth-first search, and it is not therefore necessary
to maintain the patterns previously found in the memory.

Finally, the DepthPIS algorithm enables a parallelization of the mining task since it
is possible to resolve several equivalence classes independently, as is shown in Subsection
9.1.2. This possibility is particularly useful when working with large databases that cannot
fit in the memory, and which can thus be split into different pieces.

174

9.3 Problems in the mining of quantitative patterns

All the points previously discussed for qualitative mining are still valid in the quantitative
approach. Nevertheless, when searching for quantitative patterns there are additional
problems that must be taken into account. These problems are intrinsic to the nature of
the task of mining quantitative patterns and cannot be avoided by any algorithm. We
particularly highlight two main problems: 1) the difficulty of finding pattern occurrences
since both items with durations and relations with temporal distances must be exactly
equal; and 2) the explosion of quantitative patterns that appear when we mine with a
very low support.

With regard to the first problem, as stated in Chapter 8, this occurs because in qual-
itative pattern mining the focus is solely on items and relations, and the item durations
and the temporal distances associated with relations are ignored, whereas when we mine
quantitative patterns we are interested in everything. This signifies that if it is neces-
sary to search for pattern occurrences with high support in which events, item durations,
relations and their associated temporal distances must be equal, then this task becomes
much more complex.

Furthermore, the aforementioned reason is also linked to the second problem. Since it
is very hard to find several occurrences for a pattern, in most cases this occurrence number
is less than the min sup value, and it is not therefore possible to find a high number of
patterns. However, as very low supports are attained, a large amount of quantitative
patterns, which were previously infrequent, become frequent.

Let us see an example in which both problems can be observed. Figure 9.7 shows
an input database with three sequences, and three items: A, B and C. What is more,
the same item changes its duration in every sequence and the transaction times vary
throughout the different sequences. The first problem appears if, for example, we consider
a min sup value of 3 sequences, i.e., the patterns that appear in 100% of sequences. In
this case we find 7 qualitative patterns, whereas there is no quantitative pattern. If we
continue with the same example database from Figure 9.7, we can observe the explosion of
quantitative patterns if we consider a min sup value of 1 sequence, i.e., the patterns that
appear in 33% of sequences. All the frequent patterns, both qualitative and quantitative,
can be seen in Figure 9.8. We can therefore verify that for the qualitative approach
there are still 7 frequent patterns, whereas for the quantitative approach there are now
21 frequent patterns.

Finally, we have yet to comment on two more problems associated with the quantita-
tive approach that are dependent of the algorithm implementation. These two problems
are linked to the boundary point representation and the Vertical Database Format.

With regard to boundary point representation, the problem that emerges is related
to the item durations and, since in this representation we only take points into account,
a temporal distance between two points can be associated with either an item duration
or with a temporal distance. This forces us to always check the different distances in
their join operation that is related to their IdList, regardless of whether it is a temporal
distance or an item duration. On the contrary, when we use a pattern representation that
considers an item duration as a part of the item, we do not need any special operation to
check the equality of item durations. Therefore, in our four algorithms for the mining of
quantitative patterns in point and interval databases, those that use a Triangular Matrix

175

Figure 9.7: Example database for showing the problems that appear with quantitative
pattern mining.

Figure 9.8: Frequent qualitative and quantitative patterns for the example database shown
in Figure 9.7.

representation have a great advantage over those that use a boundary point representation.
With regard to Vertical Database Format algorithms, since these algorithms build

candidates from frequent patterns, it is necessary to obtain all the temporal distances
that are associated with the relations during the early stages of the algorithms. It is

176

therefore necessary to extract all the frequent 2-patterns in order to obtain all the temporal
distances, and larger patterns are then built from all the possible temporal relations. This
problem is also associated with the Apriori-like strategy, since it also creates candidates.
It does not, however, appear with the Pattern Growth strategy since its algorithms obtain
both the item and the relation with the temporal distance when they scan each database
projection. In order to alleviate this last problem, we have, in Chapters 4 and 6 proposed
the execution of a Pattern Growth algorithm to find the frequent quantitative 2-patterns,
and this set of patterns is then used to build larger patterns like a Vertical Database
Format algorithm usually does.

After describing these two problems which are dependent on the algorithms’ imple-
mentation, note that FaSPIMP has both drawbacks as it is a Vertical Database Format
algorithm and it is based on a boundary point representation.

9.4 Search strategies: depth-first vs breadth-first vs

mix (equivalence classes)

In this Subsection we analyse the conveniences and inconveniences of using the different
search strategies. In normal terms, a breadth-first search is associated with an Apriori-
style strategy, and sometimes with the Vertical Database Format strategy, whereas a
depth-first search is associated with a Pattern Growth strategy and also with a Vertical
Database Format. A third alternative that is also possible is to use a mixture between
depth and breadth search. The breadth-first search is used in BreadthPIS (and Breadth-
PIMS), the depth-first search is used in PaGAPIS and FaSPIP (and PaGAPIMS and
FaSPIMP), and a mixture is used in DepthPIS (and DepthPIMS).

It is possible to state that, in general, a breadth-first search works better in the
candidate generation since all the patterns that have the same length are stored in the
memory and the temporal reasoning is effective. Conversely, the problem that arises is
that, for large databases, we cannot store all the patterns in the same level, signifying
that the BFS algorithms cannot always achieve the low supports that a DFS algorithm
can. On the other hand, a depth-first search has a more limited candidate generation
since we do not have sufficient information to be able to carry out an effective prune as in
BFS, but we obtain very efficient algorithms. Finally, a combined search is a very good
option, such as that used in DepthPIS (and DepthPIMS). This search consists of BFS but
only in the equivalence class that is being processed at a particular moment, signifying
that it is very efficient in terms of memory management.

9.5 Mining of frequent closed patterns with Vertical

Database Format strategy.

To date, the algorithms that have most frequently been used to find closed patterns have
been based on the Pattern Growth strategy and, more specifically, on the PrefixSpan
algorithm [Pei et al., 2004]. In this work we have proposed the mining of the frequent
closed set with Vertical Database Format strategy algorithms. Our motivation originates

177

from the convenience of these latter kinds of algorithms when we have certain database
configurations: dense database with large itemsets (see Chapter 7 for more details).

The important drawback of the Pattern Growth strategy, which is pointed out in
Section 9.1.1, is that it also affects those algorithms which are used to mine closed pat-
terns. It is therefore at this point that an important gap is observed into which we can
introduce algorithms based on the Vertical Database Format strategy, thus avoiding the
typical drawbacks of the Pattern Growth algorithms mentioned above, and profiting from
the pruning methods. ClaSP therefore improves the results of the SPADE or SPAM al-
gorithms, avoiding the generation of several parts of its search tree and providing a new
possibility in closed mining algorithms.

178

Chapter 10

Conclusions

Finally, in this Chapter we conclude by showing our conclusions, the contributions that
we have provided, and some ideas that may be developed in future work.

10.1 Conclusions

In this Thesis we have defined a general framework for SDM. This general framework has
been used to address various algorithms that are capable of mining patterns with differ-
ent types of representation (points, intervals or points and intervals) and expressiveness
(qualitative or quantitative patterns).

We have also introduced a Survey in which we have shown all the strategies that are
typically used to mine patters. This Survey has enabled us to organise all the previous
works in this field, which has subsequently helped us to define the basis and the formalities
for the SDM task.

We have studied this problem from several viewpoints. In the first place, we have
carried out a study in order to discover which strategy, of those most frequently used
(Vertical Database Format and Pattern Growth), is most appropriate for application in
the mining of different levels of representation and expressiveness. In the second place,
we have compared two different pattern representations, one based on boundary points
and the other on Triangular Matrices in order to see which has the best benefits for our
purposes.

In order to conduct this study, we have firstly developed a synthetic databases gener-
ator. Through this generator we have been able to establish the most desired parameters,
such as number of different items, items per itemset, itemsets per sequences, number of
sequences, pattern length or support, which have allowed us to make different experiments
in details. We did not use real datasets, such as those cited in [Mörchen and Fradkin,
2010], since the algorithms’ behaviour in these databases must also be analised in terms
of the former parameters.

To this end, we have developed four algorithms with which to mine patterns with
points and intervals or both at the same time. These algorithms are also capable of
discovering qualitative and quantitative patterns. The algorithms for qualitative mining
are called PaGAPIS, FaSPIP, BreadthPIS and DepthPIS, the first of which is based on the
Pattern Growth strategy and the other three of which are based on the Vertical Database

179

Format Strategy. Their quantitative versions are PaGAPIMS, FaSPIMP, BreadthPIMS
and DepthPIMS. Both PaGAPIS and FaSPIP (and therefore PaGAPIMS and FaSPIMP)
implement a boundary point representation, whereas the representation of BreadthPIS
and DepthPIS (and BreadthPIMS and Depth-PIMS) is based on Triangular Matrices.
To the best of our knowledge, FaSPIP is the first Vertical Database Format algorithm
to implement a boundary point representation, and DepthPIS is the first algorithm for
the mining of intervals to be based on equivalence classes. Moreover, to date no works
have applied a Vertical Database Format strategy to the mining of quantitative patterns,
such as occurs in this thesis by means of FaSPIMP, BreadthPIMS and DepthPIMS. All
of these algorithms bridge some of the gaps that were present in the state-of-the-art, as
can be seen in Table 10.1, thus extending it and allowing us to solve these problems in an
efficient manner.

We have performed a comprehensive set of tests in which the various properties that are
associated with the database configurations were varied. The tests performed show that,
in most cases, the Vertical Database Format strategy is the most appropriate as regards
mining point and interval databases, particularly when dealing with dense databases with
several Itemsets per sequence. A database is dense when the number of items per itemsets
is close to the number of different items that there exist in the database. This situation
has never been faced in previous comparatives or algorithms.

We have additionally discussed all the advantages and drawbacks of using a bound-
ary point or a Triangular Matrix representation, the former being the best choice for
qualitative patterns and the latter being the most appropriate for quantitative mining.
Therefore, in general terms, the fastest algorithms that we have found are FaSPIP for
qualitative patterns and BreadthPIMS and DepthPIMS for quantitative patterns.

We have also studied the difficulties of mining quantitative patterns and shown the
intrinsic problems found. Moreover, we have explained the additional problems that arise
if a boundary point representation or a Vertical Database Format algorithm are used.
We have also provided a good solution in order to alleviate the disadvantage of mining
the length 2 frequent quantitative patterns associated with Vertical Database Format
algorithms. This study has allowed us to understand why FaSPIMP does not achieve good
results for the tests concerning the mining of quantitative patterns and why BreadthPIMS
and DepthPIMS are the best algorithms for use in discovering quantitative patterns.

We have used, through BreadthPIS and DepthPIS (and their quantitative versions
BreadthPIMS and DepthPIMS), temporal reasoning in order to generate candidates.
This temporal reasoning is highly efficient since only the candidates that are needed
are generated in a quickly manner. Two different reasonings have been proposed, one for
BreadthPIS and another one for DepthPIS, being the temporal reasoning of BreadthPIS
the most optimized one since, on average, it generates a more reduced candidate set. To
the best of our knowledge, few works in SDM have faced detailed temporal reasoning such
as we have done in BreadthPIS and DepthPIS.

With regard to the search method used, we have studied which is best for mining point
and interval databases. Although a breadth-first search method (used in BreadthPIS and
BreadthPIMS) enables a pruning method to be used, along with enabling the design of a
very effective transition table with which to generate candidates, this search method leads
to memory overflow problems when confronted with large databases. The use of a Depth-

180

first search method (used in DepthPIS and DepthPIMS) is therefore more suitable since
it does not have that problem, although its temporal reasoning, and thus its candidate
generation step, is not so effective as in BreadthPIS (and BreadthPIMS). What is more,
the pruning methods that were added to BreadthPIS showed that there is no gain. Thus,
in general, it is preferable to use FaSPIP for qualitative patterns and DepthPIMS for
quantitative patterns, rather than BreadthPIS or BreadthPIMS.

Finally, we have studied the principles used to mine closed frequent sequential patterns,
and we have also applied a Vertical Database Format algorithm to the mining of frequent
closed patterns with points. The ClaSP algorithm uses a heuristic mechanism to prune
non-closed patterns, and was inspired by the CloSpan algorithm. To the best of our
knowledge, this is the first work based on the Vertical Database Format strategy to solve
the proposed problem and it bridge some of the gaps that were present in the state-of-the-
art, as can be seen in Table 10.2. In all our tests, ClaSP outperforms the state-of-the-art
algorithms. We conclude that the Vertical Database Format strategy is highly suitable
for the discovery of closed patterns.

10.2 Contributions

This Thesis makes the following contributions:

1. We have provided a comprehensive definition of Sequential Data mining, showing
the different types of patterns that may be relevant for SDM.

2. We have provided a clear organisation of all the different interval pattern repre-
sentations, the search methods typically used and the different strategies that have
been introduced for Sequential Data Mining with this organisation. We reveal some
open issues in SDM that need further work.

3. We have bridged some of these gaps by developing four algorithms for the mining
of qualitative and quantitative patterns in point and interval databases. Each algo-
rithm is capable of finding the first four types of pattern shown in Table 1.1 with
a single implementation, and they work in any type of database, formed of either
points, intervals or points with intervals.

4. We have developed an algorithm with which to mine qualitative closed point-based
patterns based on the Vertical Database Format strategy. We have measured the
impact of the pruning method in the reduction of both the output and the execution
time.

5. We have provided a synthetic sequential database generator that is capable of cre-
ating databases with very different configurations. We have used these databases
to evaluate our algorithm and to guide the discussions about the dimensions of the
SDM problem.

6. We have already submitted our work related to Chapter 7. That work was published
in the proceedings on Pacific-Asia Conference on Knowledge Discovery and Data
Mining, held in Gold Coast, Australia in 2013.

181

Database Representation Distances Strategies

Apriori
Pattern
Growth

Vertical
Database
Format

P
oi
n
ts

qualitative

Apriori-All,
GSP,
PSP,
TSET

FreeSpan,
PrefixSpan,
Memisp

SPADE,
SPAM,
Prism

quantitative
I-Apriori,
Yoshida

MisTA,
QprefixSpan,
i-PrefixSpan

In
te
rv
al
s P
oi
n
ts

quantitative QTPrefixSpan

qualitative T-PrefixSpan

In
te
rv
al
s

quantitative QTempIntMiner QTiPrefixSpan

qualitative
IEMiner,
Karmalego

Armada H-DFS

P
oi
n
ts

an
d

In
te
rv
al
s

P
oi
n
ts

quantitative ASTPminer PaGAPIMS FaSPIMP

qualitative HTPM
CTMiner,
CEMiner,
PaGAPIS

FaSPIP

In
te
rv
al
s quantitative BreadthPIMS DepthPIMS

qualitative BreadthPIS DepthPIS

Table 10.1: Classification of the different algorithms already developed for SDM with our
proposed algorithms in bold.

Apriori Pattern Growth Vertical Database Format

CloSpan,
Bide

ClaSP

Table 10.2: Classification of the different point-based algorithms for closed patterns al-
ready developed for SDM with our proposed algorithm in bold.

182

10.3 Future work

With regard to possible future lines in our work, our intentions are the following:

• In the field of Vertical Database Format algorithms, we shall attempt to find a
better representation with which to implement the IdLists of Vertical Database
Format algorithms in order to spend less time on the join operations. We shall
also seek some possible pruning methods that are sufficiently efficient to reduce the
number of candidates generated.

• We shall address the use of an epsilon value in order to facilitate the mining of the
final set of frequent patterns. A huge amount of patterns are traditionally almost
the same, and only differ in a few time units which convert them into different
patterns. The use of an epsilon value in this point would alleviate this problem.

• Since, whenever we execute an algorithm with low support values, we tend to find a
huge number of patterns, we would like to develop an efficient post-processing step
in order to search for those interesting patterns that can summarise the others.

• We intend to deal with databases in continuous domains by using quantitative min-
ing. We shall tackle the discretization of such domains in order to carry out an
efficient and effective quantitative mining.

• We shall study the creation of various post-processing steps in order to obtain useful
patterns useful for classifications. Various clustering methods from this approach
could be studied.

• We shall address the fifth type of patterns that appears in Table 1.1. These pat-
terns include both the item durations and the temporal distances associated with
relations which are expressed with ranges bounded by a lower bound and an upper
bound. This kind of patterns could be very useful in several domains and need very
complicated algorithm implementations if they are to be executed correctly.

• With regard to the field of closed sequential patterns, we shall study the possibility of
implementing a Vertical Database Format algorithm in the mining of closed patterns
composed of both point and interval events.

183

Bibliography

Agrawal, R., Imielinski, T., and Swami, A. N. (1993). Mining Association Rules between
Sets of Items in Large Databases. In Proceedings of the 1993 ACM SIGMOD Interna-
tional Conference on Management of Data, volume 22, pages 207–216, New York, NY,
USA. ACM.

Agrawal, R. and Srikant, R. (1995). Mining Sequential Patterns. In Proceedings of the
Eleventh International Conference on Data Engineering, ICDE ’95, pages 3–14, Wash-
ington, DC, USA. IEEE Computer Society.

Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Communications
of the ACM, 26(11):832–843.

Álvarez, M. R., Félix, P., and Cariñena, P. (2013). Discovering metric temporal constraint
networks on temporal databases. Artif. Intell. Med., 58(3):139–154.

Antunes, C. and Oliveira, A. (2004). Sequential pattern mining algorithms: Trade-offs
between speed and memory. In 2nd Workshop on Mining Graphs, Trees and Seq.

Ayres, J., Flannick, J., Gehrke, J., and Yiu, T. (2002). Sequential pattern mining using
a bitmap representation. In Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 429–435. ACM.

Bayardo, R. J. and Agrawal, R. (1999). Mining the Most Interesting Rules. In Fayyad,
U. M., Chaudhuri, S., and Madigan, D., editors, Proceedings of the Fifth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 145–154,
San Diego, CA, USA. ACM.

Bettini, C., Wang, X. S., and Jajodia, S. (1996). Testing complex temporal relationships
involving multiple granularities and its application to data mining (extended abstract).
In PODS ’96: Proceedings of the fifteenth ACM SIGACT-SIGMOD-SIGART sympo-
sium on Principles of database systems, pages 68–78, New York, NY, USA. ACM.

Boulicaut, J. and Jeudy, B. (2001). Mining free itemsets under constraints. In Database
Engineering & Applications, 2001 International Symposium on., number July, pages
322–329. IEEE.

Calders, T. and Goethals, B. (2007). Non-derivable itemset mining. Data Mining and
Knowledge Discovery, 14(1):171–206.

185

Campos, M., Palma, J., and Marin, R. (2007). Temporal Data Mining with Temporal
Constraints. In Proceedings of the 11th conference on Artificial Intelligence in Medicine,
AIME’07, pages 67–76. Springer-Verlag.

Casas-Garriga, G. (2005). Summarizing sequential data with closed partial orders. In
Proceedings of SDM 2005, pages 380–391, California, USA.

Chen, J. (2010). An UpDown Directed Acyclic Graph Approach for Sequential Pattern
Mining. IEEE Transactions on Knowledge and Data Engineering, 22:913–928.

Chen, Y., Chiang, M., and Ko, M. (2003). Discovering time-interval sequential patterns
in sequence databases. Expert Systems with Applications, 25(3):343–354.

Chen, Y., Peng, W., and Lee, S. (2011). CEMiner – An Efficient Algorithm for Mining
Closed Patterns from Time Interval-Based Data. In Proceedings of the 2011 IEEE 11th
International Conference on Data Mining, ICDM ’11, pages 121–130, Washington, DC,
USA. IEEE Computer Society.

Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996). From data mining to knowledge
discovery in databases. AI Magazine, 17:37–54.

Freksa, C. (1992). Temporal reasoning based on semi-intervals. Artificial Intelligence,
54(1-2):199–227.

Giannotti, F., Nanni, M., Pedreschi, D., and Pinelli, F. (2006). Mining sequences with
temporal annotations. In Proceedings of the 2006 ACM symposium on Applied comput-
ing, SAC ’06, pages 593–597, New York, NY, USA. ACM.

Goethals, B. (2003). Survey on Frequent Pattern Mining. Manuscript.

Gouda, K. and Hassaan, M. (2011). Mining Sequential Patterns in Dense Databases.
Journal of Database Management, 3(1):179–194.

Gouda, K., Hassaan, M., and Zaki, M. (2010). Prism: An effective approach for frequent
sequence mining via prime-block encoding. Journal of Computer and System Sciences,
76(1):88–102.

Gouda, K. and Zaki, M. (2005). Genmax: An efficient algorithm for mining maximal
frequent itemsets. Data Mining and Knowledge Discovery, 11(3):223–242.

Guil, F., Bosch, A., and Marin, R. (2004). TSET: An algorithm for mining frequent
temporal patterns. In Proceedings of the First Int. Workshop on Knowledge Discovery
in Data Streams, in conjunction with ECML/PKDD 2004, ECML/PKDD’04, pages
65–74, Pisa, Italy. Springer-Verlag.

Guyet, T. and Quiniou, R. (2008). Mining Temporal Patterns with Quantitative Intervals.
In Proceedings of the 2008 IEEE International Conference on Data Mining Workshops,
ICDM ’08 Workshop, pages 218–227, Washington, DC, USA. IEEE Computer Society.

Guyet, T. and Quiniou, R. (2011). Extracting Temporal Patterns from Interval-Based
Sequences. In IJCAI, pages 1306–1311, Barcelona, Catalonia, Spain. IJCAI/AAAI.

186

Han, J. and Pei, J. (2000). Mining frequent patterns without candidate generation. ACM
SIGMOD Record, pages 1–20.

Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U., and Hsu, M. (2000). FreeSpan:
frequent pattern-projected sequential pattern mining. In Proceedings of the sixth ACM
SIGKDD international conference on Knowledge discovery and data mining, KDD ’00,
pages 355–359, New York, NY, USA. ACM.

Höppner, F. (2001). Discovery of Temporal Patterns. Learning Rules about the Qual-
itative Behaviour of Time Series. In Proceedings of the 5th European Conference on
Principles of Data Mining and Knowledge Discovery, PKDD ’01, pages 192–203, Lon-
don, UK. Springer-Verlag.

Kam, P. and Fu, A. (2000). Discovering Temporal Patterns for Interval-Based Events. In
Proceedings of the Second International Conference on Data Warehousing and Knowl-
edge Discovery, DaWaK 2000, pages 317–326, London, UK. Springer-Verlag.

Leleu, M., Rigotti, C., Boulicaut, J., and Euvrard, G. (2003). Go-spade: Mining se-
quential patterns over datasets with consecutive repetitions. In Proceedings of the 3rd
international conference on Machine learning and data mining in pattern recognition,
MLDM’03, pages 293–306, Berlin, Heidelberg. Springer-Verlag.

Lin, M. and Lee, S. (2005). Fast discovery of sequential patterns through memory indexing
and database partitioning. Journal of information science and engineering, 21(1):109–
128.

Lucchese, C., Orlando, S., and Perego, R. (2004). DCI Closed: A Fast and Memory
Efficient Algorithm to Mine Frequent Closed Itemsets. In FIMI ’04, Proceedings of the
IEEE ICDM Workshop on Frequent Itemset Mining Implementations, Brighton, UK,
November 1, 2004, volume 126 of CEUR Workshop Proceedings. CEUR-WS.org.

Mannila, H. (2002). Local and Global Methods in Data Mining: Basic Techniques and
Open Problems. In ICALP ’02: Proceedings of the 29th International Colloquium on
Automata, Languages and Programming, pages 57–68, London, UK. Springer-Verlag.

Mannila, H., Toivonen, H., and Inkeri Verkamo, A. (1997). Discovery of frequent episodes
in event sequences. Data Mining and Knowledge Discovery, 1(3):259–289.

Masseglia, F., Cathala, F., and Poncelet, P. (1998). The PSP Approach for Mining
Sequential Patterns. In Proceedings of the Second European Symposium on Principles
of Data Mining and Knowledge Discovery, PKDD ’98, pages 176–184, London, UK,
UK. Springer-Verlag.

Meiri, I. (1996). Combining qualitative and quantitative constraints in temporal reason-
ing. Artificial Intelligence, 87(1–2):343–385.

Moerchen, F. (2010). Temporal pattern mining in symbolic time point and time interval
data. In Proceedings of the 16th ACM SIGKDD international conference on Knowledge
discovery and data mining, KDD ’10, pages 2:1–2:1, New York, NY, USA. ACM.

187

Mörchen, F. (2006). Time series knowledge mining. PhD thesis, University of Marburg.

Mörchen, F. and Fradkin, D. (2010). Robust mining of time intervals with semi-interval
partial order patterns. In Proceedings of the 10th SIAM International Conference on
Data Mining, pages 315–326. SIAM.

Moskovitch, R. and Shahar, Y. (2009). Karmalego: Fast Time Intervals Mining. Technical
report, Technical Report 23, ISE-TECHREP Ben Gurion University.

Nakagaito, F., Ozaki, T., and Ohkawa, T. (2009). Discovery of Quantitative Sequential
Patterns from Event Sequences. In Proceedings of the 2009 IEEE International Con-
ference on Data Mining Workshops, ICDMW ’09, pages 31–36, Washington, DC, USA.
IEEE Computer Society.

Palma, J., Juarez, J., Campos, M., and Marin, R. (2006). Fuzzy theory approach for tem-
poral model-based diagnosis: An application to medical domains. Artificial Intelligence
in Medicine, 38(2):197–218.

Papapetrou, P., Kollios, G., Sclaroff, S., and Gunopulos, D. (2005). Discovering Frequent
Arrangements of Temporal Intervals. In Proceedings of the Fifth IEEE International
Conference on Data Mining, ICDM ’05, pages 354–361, Washington, DC, USA. IEEE
Computer Society.

Pasquier, N., Bastide, Y., Taouil, R., and Lakhal, L. (1999). Discovering frequent closed
itemsets for association rules. In ICDT’99: Proceedings of the 7th International Con-
ference on Database Theory, pages 398–416. Springer.

Patel, D., Hsu, W., and Lee, M. L. (2008). Mining relationships among interval-based
events for classification. In Proceedings of the 2008 ACM SIGMOD international con-
ference on Management of data, SIGMOD ’08, pages 393–404, New York, NY, USA.
ACM.

Pei, J., Han, J., and Mao, R. (2000). CLOSET: An Efficient Algorithm for Mining
Frequent Closed Itemsets. In Proceedings of ACM SIGMOD Workshop on Research
Issues in Data Mining and Knowledge Discovery, pages 21–30.

Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., and Hsu,
M. (2004). Mining sequential patterns by pattern-growth: the PrefixSpan approach.
IEEE Transactions on Knowledge and Data Engineering, 16(11):1424–1440.

Piatetsky-Shapiro, G. and Frawley, W. J., editors (1991). Knowledge Discovery in
Databases, volume 13. AAAI/MIT Press.

Reich, A. J. (1994). Intervals, Points, and Branching Time. In Proceedings of the TIME-94
International Workshop on Temporal Reasoning.

Roddick, J. and Mooney, C. (2005). Linear Temporal Sequences and Their Interpretation
Using Midpoint Relationships. IEEE Transactions on Knowledge and Data Engineer-
ing, 17:133–135.

188

Roddick, J. and Spiliopoulou, M. (2002). A Survey of Temporal Knowledge Discovery
Paradigms and Methods. IEEE Transactions on Knowledge and Data Engineering,
14(4):750–767.

Srikant, R. and Agrawal, R. (1996). Mining Sequential Patterns: Generalizations and
Performance Improvements. In Proceedings of the 5th International Conference on
Extending Database Technology: Advances in Database Technology, EDBT ’96, pages
3–17, London, UK. Springer-Verlag.

Tzvetkov, P., Yan, X., and Han, J. (2005). TSP: Mining top-k closed sequential patterns.
Knowledge and Information Systems, 7(4):438–457.

Vilain, M. (1982). A system for reasoning about time. In Proceedings of AAAI, volume 82,
pages 197–201.

Wang, J., Han, J., and Li, C. (2007). Frequent closed sequence mining without candidate
maintenance. Knowledge and Data Engineering, IEEE Transactions on, 19(8):1042–
1056.

Winarko, E. and Roddick, J. (2007). ARMADA-An algorithm for discovering richer
relative temporal association rules from interval-based data. Data & Knowledge Engi-
neering, 63(1):76–90.

Wu, S. and Chen, Y. (2007). Mining non-ambiguous temporal patterns for interval-based
events. Knowledge and Data Engineering, IEEE, 19(6):742–758.

Wu, S. and Chen, Y. (2009). Discovering hybrid temporal patterns from sequences con-
sisting of point- and interval-based events. Data Knowl. Eng., 68(11):1309–1330.

Yan, X., Han, J., and Afshar, R. (2003). CloSpan: Mining closed sequential patterns
in large datasets. In Proceedings of SIAM International Conference on Data Mining,
pages 166–177.

Yang, Z., Wang, Y., and Kitsuregawa, M. (2007). LAPIN: effective sequential pattern
mining algorithms by last position induction for dense databases. In Proceedings of
the 12th international conference on Database systems for advanced applications, DAS-
FAA’07, pages 1020–1023, Berlin, Heidelberg. Springer-Verlag.

Yoshida, M., Iizuka, T., S., H., and Ishiguro, M. (2000). Mining sequential patterns
including time intervals. In Proceedings of SPIE, volume 4057, pages 213–220.

Zaki, M. (2000a). Scalable algorithms for association mining. IEEE Transactions on
Knowledge and Data Engineering, 12(3):372–390.

Zaki, M. (2001). SPADE: An efficient algorithm for mining frequent sequences. Machine
Learning, 42(1):31–60.

Zaki, M. J. (2000b). Sequence mining in categorical domains: incorporating constraints.
In Proceedings of the 9th International Conference on Information and Knowledge Man-
agement, CIKM ’00, pages 422–429, New York, NY, USA. ACM.

189

Zaki, M. J. and Hsiao, C. (2002). CHARM: An Efficient Algorithm for Closed Itemset
Mining. In Proceedings of the Second SIAM International Conference on Data Mining,
Arlington, VA, USA, April 11-13, 2002. SIAM.

190

UNIVERSIDAD DE MURCIA

Departamento de Ingenieŕıa de la Información y las
Comunicaciones

Resumen Extendido de Tesis Doctoral

Técnicas para el Descubrimiento de
Patrones Temporales

Autor

Antonio Gomariz Peñalver

Directores

Roque Maŕın Morales

Manuel Campos Mart́ınez

Bart Goethals

Diciembre 2013

1. Introducción

1.1. Contexto y Motivación

Esta tesis se ha desarrollado dentro del contexto del proyecto de investigación de AI-
SENIOR. Dicho proyecto, se marca como objetivo principal el establecimiento de pautas
de comportamiento de sujetos que están continuamente monitorizados, los cuales se co-
rresponden con personas de edad avanzada, padeciendo, muchos de ellos, enfermedades
que determinan su calidad de vida. AI-SENIOR se centra en tres diferentes grupos de per-
sonas de edad avanzada, aśı como en el desarrollo y la validación de los resultados. Estos
tres grupos están compuestos por: 1) poblaciones de personas que tienen algún tipo de
enfermedad cardiovascular, 2) personas que padecen algún tipo de enfermedad pulmonar
crónica, y 3) un último grupo formado por personas que pertenecen a la tercera edad y
que, a pesar de que no sufren ningún tipo de enfermedad, viven completamente solos y
requieren de la supervisión diaria de sus actividades con el fin de reconocer las diferentes
situaciones que se producen en ellas.

Los tres grupos de personas, descritos anteriormente, presentan ciertos riesgos, ya
sea debido a sus vidas en soledad o a las enfermedades que padecen, de forma que es
necesaria una asistencia para mejorar su calidad de vida. A esto se añade que todos estos
grupos representan una amplia proporción de la población, y el coste de proporcionar una
asistencia a ésta es un problema particularmente importante para las administraciones
públicas.

De este modo, un equipo de dispositivos fue instalado en cada domicilio, estando cada
uno de dichos equipos integrado por varios sensores, dependiendo del grupo al que se
aplicara. Este equipo de sensorización es heterogéneo, tanto desde el punto de vista del
tipo de sensor, como de la salida proporcionada. En primer lugar, los sensores pod́ıan
ser bien “wearables”, o bien no invasivos. Además, la información dada por estos sensores
puede ser de varios tipos: binaria, tales como aquellos que detectan la presencia; numérica,
tales como aquellos que detectan la temperatura; y otros de los cuales son multi-variables,
tales como aquellos que detectan la actividad (que proporciona una aceleración en cada
eje). Adicionalmente, algunos de esos sensores fueron configurados con alta frecuencia
(los que corresponden a los dos primeros grupos), mientras que otros teńıan frecuencias
más bajas (los que pertenecen al tercer grupo de estudio). Una última caracteŕıstica que
diferencia a los sensores es el modo de activación, habiendo sensores que proporcionaban
una serie temporal con una frecuencia fija, mientras que otros sólo proporcionaban una
señal cuando una actividad era detectada.

Al encontrar tanta diversidad, es necesario crear un marco donde se integren estas
fuentes de datos y que permite representar toda la información, y darle una interpreta-
ción adecuada. Por ejemplo, la cantidad de tiempo que una persona permanece en una
habitación puede tener diferentes significados, y por lo tanto se hace necesario considerar
los eventos como intervalos.

Uno de los sub-objetivos del proyecto corresponde a realizar una tarea de descubri-
miento de conocimiento que nos permitirá: (i) determinar el nivel de supervisión que una
persona debe tener en su domicilio, (ii) ajustar el sistema de alarmas con la máxima
precisión posible. Nosotros creemos que los “patrones secuenciales” son una herramienta
muy útil en la tarea de modelar el comportamiento de los usuarios. Es por ello que ne-

1

cesitamos definir estos patrones en los diferentes niveles de complejidad para aśı obtener
una visión más detallada siempre que se necesite. Consecuentemente, podemos comen-
zar mediante la obtención de patrones simples, tal y como cuando una persona, durante
la noche, se levanta, bebe agua, va al baño, para acabar volviendo a la cama; o por el
contrario, considerar patrones mucho más complejos que incluyan eventos intervalos con
distancias temporales entre ellos, como por ejemplo, una persona duerme durante 3 horas,
después pasa 3 minutos en la cocina y, después de ver la televisión durante 40 minutos,
regresa a dormir 2 horas más. Hay una amplia variedad de patrones entre los anteriores
dos extremos.

El objetivo de esta tesis es proponer un marco general que sea capaz de hacer frente
a las distintas bases de datos que podamos encontrar dentro del campo de la inteligencia
ambiental, además de encontrar algoritmos interesantes que puedan ser de gran valor
cuando nos enfrentamos a estos problemas.

1.2. Temporal Data Mining

Uno de los problemas que recientemente ha emergido asociado con las tecnoloǵıas
de la información es analizar la enorme cantidad de datos que se origina durante las
actividades que ocurren diariamente en las organizaciones. El proceso general a través
del cual se lleva a cabo este análisis se llama “descubrimiento del conocimiento en bases
de datos” (KDD por sus siglas en inglés), y se define como ”la extracción no trivial de
información impĺıcita, previamente desconocida, y potencialmente útil que proviene de
los datos”[Piatetsky-Shapiro and Frawley, 1991]. Dicho proceso se necesita para obtener
información útil y valiosa para las organizaciones, y nos permite, por ejemplo, analizar
un problema médico y extraer la información que puede ser relevante para un proceso de
toma de decisiones, tal y como: estudiar manifestaciones y śıntomas durante el curso de
una enfermedad, analizar las causas de mortalidad de un grupo de pacientes que tienen
un problema concreto, etc.

El paso esencial es KDD es la denominada fase de Mineŕıa de Datos (MD), que incor-
pora técnicas muy diferentes provenientes de los campos de aprendizaje computacional,
estad́ıstica, sistemas de ayuda a la decisión y la inteligencia artificial en general, junto con
otras ideas procedentes de la computación y de los sistemas de gestión de la información.
La MD consiste en aplicar análisis de datos y algoritmos de descubrimiento que producen
una enumeración particular de estructuras sobre los datos [Fayyad et al., 1996], pudiendo
ser estas estructuras patrones o modelos [Mannila, 2002]. La MD se utiliza en distintas
tareas, tales como la clasificación, clustering, predicción o el descubrimiento de patrones
interesantes (ej: patrones ocultos, tendencias u otras relaciones presentes en los datos).

En la mayor parte de las técnicas propuestas en la literatura asociada con la MD, el
análisis de datos se lleva a cabo sin tener en cuenta la componente temporal de los datos.
Sin embargo, existen campos de aplicación en los que los datos que se analizan tienen
interdependencias temporales. En otras palabras, el orden entre ellos es fundamental para
el análisis. La Mineŕıa de Datos Temporal (MDT) se ha convertido en una importan-
te rama de la MD y puede ser definida como la búsqueda de asociaciones interesantes
o patrones en grandes conjuntos de datos temporales acumulados para otros propósitos
[Bettini et al., 1996]. La MDT puede descubrir actividades, inferir asociaciones de proxi-
midad contextual y temporal, algunas de las cuales también puede indicar una relación

2

causa-efecto. Esta importante clase de conocimiento se puede pasar por alto cuando la
componente temporal es ignorada o tratada como un simple atributo numérico [Roddick
and Spiliopoulou, 2002].

Dentro de TDM, existe una tarea importante que se llama Mineŕıa de Patrones Tem-
porales (MPT) que busca los patrones que aparecen en al menos un número mı́nimo de
entradas, llamado soporte, a partir de una base de datos temporal. Estos patrones pue-
den ser muy diferentes dependiendo del contexto de estudio y el tipo de información que
se busca. Existen dos enfoques principales dentro de esta área, y se denominan mineŕıa
de itemsets (IDM) y mineŕıa de datos secuenciales (SDM). Mientras IDM representa el
concepto temporal de la sincronicidad y extrae un conjunto de itemsets o transacciones
(́ıtems que ocurren simultáneamente) desde las bases de datos de entrada (formada por
itemsets). En cambio, SDM representa el concepto temporal de orden y utiliza una ba-
se de datos de entrada formada por secuencias, en la que cada secuencia es una lista de
itemsets. Mientras IDM es el caso más simple, SDM [Agrawal and Srikant, 1995] es mucho
más complejo, teniendo un espacio de búsqueda mucho más grande que en IDM, ya que
además de la búsqueda de los itemsets frecuentes, también es necesario tener en cuenta la
relación temporal entre estos itemsets. La investigación en SDM ha generado varios algo-
ritmos que pueden ser utilizados en diferentes aplicaciones, tales como el descubrimiento
de motivos en secuencias de ADN, el análisis de secuencias de compras de clientes, etc.

La MPT puede ser analizada desde diferentes perspectivas: representación de patrones
y expresividad de los patrones. Con respecto a la representación de los patrones se parte de
considerar los eventos como puntos o como intervalos. En el primer caso, para un mismo
evento, cada aparición se considera como un punto temporal. Por ejemplo, si estamos
trabajando con una granularidad de horas en el contexto de un hospital y consideramos
un evento que denota si un determinado paciente tiene fiebre, podemos considerar que
tenemos puntos de ese evento cada hora en la que la fiebre está presente.

Desafortunadamente, este tipo de abstracción tan simple no siempre es suficiente para
expresar cada uno de los eventos al completo. En muchos casos del mundo real, tales
como contextos médicos, multimedia, meteorológicos o financieros, los eventos tienden a
persistir durante un periodo de tiempo en vez de ocurrir en un instante puntual. En este
caso, los datos generalmente son secuencias de eventos que tienen un instante comienzo
y un instante final. Por tanto, cada evento intervalo tiene una duración asociada durante
la cual éste está activado en un patrón. Continuando con el ejemplo anterior, con una
representación de intervalos, la aparición de un evento es considerada durante todo el
peŕıodo de tiempo en el que tal evento está activado, es decir, si, por ejemplo, se detecta
fiebre en un paciente durante cinco horas consecutivas, consideramos las cinco horas como
una sola aparición de fiebre en el patrón.

En lo que se refiere a la expresividad de las relaciones que existen entre los eventos
de los patrones, existen varias opciones, pero la mayoŕıa de los algoritmos se centran
generalmente en relaciones cualitativas o relaciones cuantitativas. Una relación cualitativa
sólo representa la relación de orden que aparece entre dos eventos. Por ejemplo, si tenemos
en cuenta dos eventos puntuales A y B que aparecen los tiempos 1 y 2, respectivamente,
existe un relación “before” entre ellos, y de igual manera, si A y B, por el contrario,
aparecen en tiempos 1 y 100, la relación entre ellos será exactamente la misma (A before
B), siendo imposible hacer ninguna distinción entre ambos patrones. Por otro lado, cuando

3

necesitamos expresar la relación exacta que existe entre dos eventos entonces incluimos
una distancia temporal además de la relación temporal. Por ejemplo, considerando el
mismo ejemplo de antes, descubrimos dos patrones diferentes: uno en el que A aparece
antes que B, con una unidad de tiempo de distancia temporal (A before[1] B), y un
segundo en el que A aparece antes que B, con 99 unidades de tiempo de diferencia (A
before[99] B).

La mayoŕıa de los esfuerzos realizados hasta la fecha han determinado el uso de un
tipo de representación y expresividad para extraer una base de datos de entrada bajo
tales restricciones. Por tanto, la mayoŕıa de los trabajos se diferencian entre las bases de
datos basadas en puntos o las basadas en intervalos, teniendo en cuenta bien relaciones
cualitativas o relaciones cuantitativas. No obstante, hay algunos entornos en los que el
uso de casos mixtos seŕıa bastante conveniente. Por ejemplo, podŕıan citarse algunos ca-
sos en los que ciertos atributos deben ser registrados como intervalos, mientras que otros
podŕıan ocurrir ocasionalmente como puntos. En estos casos es necesario considerar al
mismo tiempo puntos e intervalos, tanto en la base de datos como en los patrones que en-
contramos. Por ejemplo, en el caso de una base de datos médica puede haber diagnósticos
y tratamientos de eventos en los que un diagnóstico se establece en un momento, pero un
tratamiento tiene una duración continuada en el tiempo.

En SDM tradicionalmente se han considerado representaciones de puntos, teniendo
relaciones cualitativas como modelo de datos. Esta representación basada en puntos gene-
ra patrones con tres diferentes relaciones temporales (“before” , “equals” y “after”). Sin
embargo, si se utiliza una representación basada en intervalos, aumenta la complejidad de
todos los aspectos comunes en SDM. Por ejemplo, mientras que en las representaciones
de puntos sólo se utilizan las relaciones entre los mismos, para expresar el orden tempo-
ral dentro de un patrón, en las representaciones de intervalos temporales hay diferentes
maneras con las que relacionar tales intervalos, como es el Álgebra de Allen [Allen, 1983]
o las relaciones entre semi-intervalos de Freksa [Freksa, 1992]. De entre estas representa-
ciones, la más habitual es el Álgebra de Allen, el cual tiene trece relaciones cualitativas
que configuran un lenguaje muy completo y expresivo. La representación de patrones y
las tareas que se relacionan con el razonamiento temporal se hacen mucho más compli-
cadas en esta álgebra de intervalos que en la de puntos. Estas relaciones entre eventos
de un patrón son importantes cuellos de botella que aparecen cuando nos interesamos en
el desarrollo de un algoritmo eficiente con el que extraer patrones complejos, ya que es-
tas relaciones pueden dar lugar a la generación de un número mucho mayor de secuencias
candidatas que cuando tan sólo consideramos puntos. Para evitar todos los inconvenientes
que resultan de las relaciones de intervalos, varias representaciones de patrones han sido
propuestas, las cuales proporcionan las caracteŕısticas de compactibilidad, la legibilidad
y la no-ambigüedad .

Todas las representaciones cualitativas pueden ser convertidas en representaciones
cuantitativas mostrando la distancia temporal entre los diferentes eventos, lo que sig-
nifica que las relaciones se hacen más complicadas y su tratamiento es más costoso. Esto
conduce a una mayor explosión de patrones ya que, para un soporte dado, cuando tenemos
en cuenta esta relación cuantitativa nos encontramos con menos apariciones de un mayor
número de patrones que cuándo sólo consideramos relaciones cualitativas. Por lo tanto, es
necesario hacer hincapié en la escalabilidad de los algoritmos utilizados para extraer tales

4

patrones. Esta escalabilidad se reflejará en las estrategias de búsqueda, la representación
de los patrones, la generación de candidatos, el conteo de soporte y los métodos de poda.

Varios trabajos se han llevado a cabo para SDM, entre los cuales tres principales
estrategias de búsqueda pueden ser claramente identificadas: 1) estrategia Apriori [Srikant
and Agrawal, 1996], 2) estrategia basada en bases de datos en formato vertical [Zaki,
2001], y 3) estrategia basada en crecimiento de patrones [Pei et al., 2004]. Mientras los
algoritmos Apriori consisten en la ejecución de un bucle que lleva a cabo una generación
candidatos seguida por una fase de chequeo de frecuencia para cada candidato generado,
las estrategias basadas en bases de datos en formato vertical y de crecimiento de patrones
son métodos más directos que, en general, obtienen mejores resultados en lo que respecta
tiempo de ejecución y consumo de memoria.

La mayoŕıa de los algoritmos para mineŕıa de patrones secuenciales desarrollados hasta
la fecha han sido diseñados para configuraciones de bases de datos espećıficas presentes
en una serie de bases de datos reales, por ejemplo, bases de datos que tienen secuencias
cortas, o con un número limitado de eventos, o con secuencias en las que no se da repetición
de eventos, etc. En general, cuando estas condiciones cambian, el rendimiento de estos
algoritmos disminuye drásticamente. Incluso, hay casos donde los algoritmos consiguen
completar sus ejecuciones, pero el número de patrones frecuentes que se encuentran es tan
grande que aparecen una gran cantidad de patrones que no aportan ninguna información
significativa.

Un enfoque interesante utilizado en IDM, con el fin de resolver el problema mencionado
en el párrafo anterior, consiste en buscar patrones que tienen ciertas propiedades concre-
tas, tales como conjuntos de patrones “Closed” [Pasquier et al., 1999]. Buscar itemsets
Closed nos proporciona dos beneficios al mismo tiempo: una reducción en el número de
candidatos, y la obtención de una salida más compacta mientras se mantiene la máxima
cantidad de información proporcionada por la ejecución del algoritmo. Dado que buscar
secuencias Closed es parecido a buscar itemsets Closed, una estrategia de descubrimiento
de patrones Closed también puede ser usada en SDM.

Esta tesis propone la realización de un amplio estudio y una amplia comparación de
todas las alternativas anteriormente mencionadas. Además, también se proponen varios
algoritmos, todos los cuales son capaces de trabajar bajo diferentes tipos de representación,
expresividad y configuración de la base de datos.

1.3. Objetivo y sub-objetivos

El objetivo principal de esta tesis es definir un marco general para métodos de mi-
neŕıa de datos secuencial (SDM), estrategias, estructuras de datos, y expresividad de los
patrones, y para desarrollar nuevos algoritmos en todos los niveles posibles de SDM. Para
lograr este objetivo, hemos definido los siguientes sub-objetivos:

Mostramos, a través un caṕıtulo del estado del arte, los problemas derivados de
SDM, haciendo una comparación en profundidad entre todas las estrategias que se
aplican a SDM.

Hemos estructurado y organizado el conocimiento acerca de SDM a través de las
siguientes dimensiones: representación de patrones, expresividad de los patrones y

5

estrategias de búsqueda. Las Tablas 1, 2 y 3, son una gúıa para los objetivos de esta
tesis que se muestran a continuación.

Mostramos y comparamos todos los problemas derivados de los diferentes niveles de
la representación de patrones (puntos, intervalos y puntos e intervalos).

Visualizamos y contrastamos las cuestiones relacionadas con los diferentes niveles
de expresividad (patrones cualitativos y patrones cuantitativos). Tanto para la re-
presentación como para la expresividad completamos algunas de las lagunas que no
hab́ıan sido tratadas y que se muestran en la Tabla 1. Concretamente, nos centramos
en los patrones mostrados en la primera, segunda, cuarta y quinta fila.

Definimos cuatro nuevos algoritmos que son capaces de extraer patrones de bases
de datos basadas en puntos, intervalos y puntos e intervalos. Cada algoritmo im-
plementa una estrategia concreta y puede encontrar tanto relaciones cualitativas
como relaciones cuantitativas. Los nombres de estos algoritmos son PaGAPIS, FaS-
PIP, BreadthPIS y DepthPIS para patrones cualitativos, y PaGAPIMS, FaSPIMP,
BreadthPIMS y DepthPIMS para patrones cuantitativos. Además, estudiamos los
métodos de poda que pueden ser aplicados, y la conveniencia de su uso. Estos al-
goritmos se utilizan para cubrir algunas de las lagunas que aparecen en la Tabla 2.
Esto es posible gracias a que creamos nuevas combinaciones en términos de repre-
sentación, expresividad y la representación de datos, que aún no han sido cubiertos.
Téngase en cuenta que mientras que PaGAPIS y PaGAPIMS se basan en la estra-
tegia basada en crecimiento de patrones, el resto de algoritmos que proponemos se
basan en la estrategia basada en bases de datos en formato vertical. El motivo de
hacer implementaciones de ambas estrategias es para hacer una comparación justa
entre las estrategias, de manera integral.

Se discute la conveniencia de utilizar cada estrategia de búsqueda para una represen-
tación y expresividad sobre una base de datos de entrada dada. También analizamos
qué estrategia es la más adecuada para su aplicación cuando tratamos con carac-
teŕısticas espećıficas en la base de datos de entrada. Concretamente, estudiamos la
conveniencia de utilizar los diferentes algoritmos propuestos en esta tesis, haciendo
una amplia comparación.

Se propone un nuevo algoritmo con el que gestionar los problemas de explosión de
patrones por medio de la mineŕıa de secuencias Closed y completar algunas de las
lagunas que aparecen en la Tabla 3. Este nuevo algoritmo es el primero basado en
la estrategia bases de datos en formato vertical que, por medio de varios métodos
de poda, evita la generación de secuencias no cerradas.

Actualmente no tenemos constancia de que algún trabajo haya abordado un marco
global para la mineŕıa patrones secuenciales, considerando una complejidad progresiva de
los patrones aplicados a un solo dominio. Existen distintos trabajos que utilizan algorit-
mos que se ocupan de un único problema para un único tipo de patrones objetivo, que
muestran sus ventajas sobre otros enfoques al susodicho problema objetivo abordado. Nos
gustaŕıa señalar que las bases de datos con las que nosotros experimentamos, cubren todo
el espectro de posibilidades de patrones que nosotros necesitamos.

6

Con el fin de facilitar la lectura de esta tesis aportamos dos tablas que muestran las
dimensiones analizadas con los objetivos previamente mencionados. La Tabla 1 muestra
dos grupos: los patrones basados en puntos, que aparecen en las tres primeras filas, y
los patrones basados en intervalos, en las tres últimas filas. Cada grupo puede tener dos
tipos de relaciones: cualitativa o cuantitativa. Aśı mismo, existen dos tipos de patrones
cuantitativos: aquellos con distancias temporales exactas y aquellos en los que la distancia
está limitada por un rango que va desde una cota inferior, hasta una cota superior.

Tipo de patrones Representación
Cualitativos basados en puntos A < B

Cuantitativos exactos basados en puntos A < [5]B
Cuantitativos con rangos basados en puntos A < [5, 7]B

Cualitativos basados en intervalos
A o B,
A < C,
B o C

Cuantitativos exactos basados en intervalos
A[4] o[2] B[7],
A[4] < [3]C[8],
B[7] o[2] C[8]

Cuantiativos con rangos basados en intervalos
A[4, 6] o[2, 4] B[7, 10],
A[4, 6] < [1, 3]C[8, 12],
B[7, 10] o[2, 5] C[8, 12]

Cuadro 1: Clasificación de los diferentes tipos de patrones.

La Tabla 2 muestra una clasificación de los diferentes algoritmos desarrollados para
SDM hasta la fecha (los detalles de estos algoritmos se proporcionan en la sección del
estado del arte). En esta tabla, las dimensiones son el tipo de base de datos de entra-
da (bases de datos basadas en puntos, intervalos o puntos e intervalos), la expresividad
(relaciones cualitativas o cuantitativas), y la estrategia de la mineŕıa elegida (Apriori,
basada en bases de datos en formato vertical y basada en crecimiento de patrones). Como
se puede observar, todav́ıa hay algunas lagunas que requieren más estudio. Además, la
Tabla 3 muestra los algoritmos de mineŕıa de patrones Closed, basados en eventos punto,
que existen en SDM. Como podemos observar, no hay ningún algoritmo que siga una
estrategia basada en bases de datos en formato vertical.

2. Conclusiones

En este caṕıtulo terminamos este trabajo mostrando nuestras conclusiones, aporta-
ciones que brindamos, aśı como algunas ideas que pueden ser desarrolladas en trabajos
futuros.

2.1. Conclusiones

En esta tesis hemos definido un marco general para la mineŕıa de datos secuencial
(SDM). Este marco general se ha utilizado para tratar diversos algoritmos que son capaces

7

Base de Datos Representación Distancias Estrategias

Apriori
Crecimiento
de Patrones

Bases de
datos
en

formato
Vertical

P
u
n
to
s Cualitativos

Apriori-All,
GSP,
PSP,
TSET

FreeSpan,
PrefixSpan,
Memisp

SPADE,
SPAM,
Prism

Cuantitativos
I-Apriori,
Yoshida

MisTA,
QprefixSpan,
i-PrefixSpan

In
te
rv
al
os P
u
n
to
s

Cuantitativos QTPrefixSpan

Cualitativos T-PrefixSpan

In
te
rv
al
os

Cuantitativos QTempIntMiner QTiPrefixSpan

Cualitativos
IEMiner,
Karmalego

Armada H-DFS

P
u
n
to
s
e

In
te
rv
al
os

P
u
n
to
s

Cuantitativos ASTPminer

Cualitativos HTPM
CTMiner,
CEMiner

In
te
rv
al
os Cuantitativos

Cualitativos

Cuadro 2: Clasificación de los diferentes algoritmos ya existentes para SDM.

Apriori
Crecimiento de

Patrones
Bases de datos en
formato Vertical

CloSpan,
Bide

Cuadro 3: Clasificación de los diferentes algoritmos para extraer patrones Closed con
eventos punto, ya existentes en SDM.

8

de extraer patrones con diferentes tipos de representación (puntos, intervalos o puntos e
intervalos) y expresividad (patrones cualitativos o cuantitativos).

Además hemos presentado un estado del arte en el que hemos mostrado todas las
estrategias que se utilizan normalmente en la mineŕıa de patrones. Este estado del arte
permite organizar todos los trabajos previos en este campo, lo que ha contribuido a definir
la base y las formalidades para la SDM.

Hemos estudiado el problema de la SDM desde varios puntos de vista. En primer
lugar, se ha llevado a cabo un estudio con el fin de descubrir qué tipo de estrategia, de
aquellas que se utilizan con más frecuencia (basadas en bases de datos en formato vertical
o en crecimiento de patrones), es la más apropiada para ser usada en la extracción de los
diferentes niveles de representación y expresividad. En segundo lugar, hemos comparado
dos representaciones de patrones, una basada en “extremos de intervalos” y otra basada
en matrices triangulares, con el objetivo de estudiar cuál de ellas nos aporta un mayor
beneficio.

Para llevar a cabo este estudio, hemos desarrollado un generador de bases de datos
sintéticas. A través de este generador hemos podido establecer los parámetros más influ-
yentes, tal y como son el número de diferentes ı́tems, el número de ı́tems por itemset,
el número de itemsets por secuencia, el número de secuencias, la longitud patrón o el
soporte, que nos han permitido conducir diferentes experimentos con los más minucio-
sos detalles. No hemos usado bases de datos reales, como por ejemplo las indicadas en
[Mörchen and Fradkin, 2010], ya que el comportamiento de los algoritmos en estas bases
de datos también está definido por los parámetros antes mencionados y, necesariamente,
estas bases de datos también deben ser analizadas en función de tales parámetros.

Con este fin, hemos desarrollado cuatro algoritmos con los que extraer patrones con
puntos, intervalos o ambos a la vez, que también son capaces de descubrir patrones cuali-
tativos y cuantitativos. Los algoritmos que extraen patrones cualitativos se llaman PaGA-
PIS, FaSPIP, BreadthPIS y DepthPIS. El primero de ellos se basa en la estrategia basada
en crecimiento de patrones, mientras que los otros tres se basan en la estrategia basada
en bases de datos en formato vertical. En lo que se refiere a las versiones cuantitativas
de dichos algoritmos, éstos se denominan PaGAPIMS, FaSPIMP, BreadthPIMS y Depth-
PIMS. Tanto PaGAPIS y FaSPIP (y por lo tanto PaGAPIMS y FaSPIMP) implementan
una representación de “extremos de intervalos”, mientras que la representación que im-
plementan BreadthPIS y DepthPIS (y BreadthPIMS y DepthPIMS) se basa en matrices
triangulares.

Hasta donde sabemos, FaSPIP es el primer algoritmo que implementa una estrategia
basada en bases de datos en formato vertical con una representación “extremos de inter-
valos”, mientras que DepthPIS es el primer algoritmo realizado para extraer tanto puntos
como intervalos que se utiliza clases de equivalencia en la búsqueda de patrones. Por otra
parte, hasta la fecha no existe ningún trabajo que haya aplicado una estrategia basada
en bases de datos en formato vertical para la extracción de patrones cuantitativos, tal y
como se presenta en esta tesis, por medio de los algoritmos FaSPIMP, BreadthPIMS y
DepthPIMS. Todos estos algoritmos completan algunas de las lagunas que fueron descu-
biertos en el estado del arte, tal y como puede verse en la Tabla 4, lo que nos permite
extender y resolver estos problemas de una manera eficiente.

Hemos llevado a cabo una amplia serie de pruebas en las que se han variado las

9

distintas propiedades que se asocian con las configuraciones de bases de datos. Las pruebas
realizadas muestran que, en la mayoŕıa de los casos, la estrategia basada en bases de
datos en formato vertical es la más adecuada para buscar en bases de datos de puntos e
intervalos, especialmente cuando tratamos con bases de datos densas con varios itemsets
por secuencia. Una base de datos es considerada como densa cuando el tamaño promedio
de los itemsets se acerca al número de diferentes ı́tems que hay en toda la base de datos.
Esta situación nunca antes ha sido estudiada en algoritmos o comparativas anteriores.

Adicionalmente, hemos contrastado todas las ventajas e inconvenientes que encon-
tramos al utilizar una representación basada en “extremos de intervalos” o basada en
matrices triangulares, encontrando que la primera representación es la mejor opción para
extraer patrones cualitativos mientras que la segunda es la más adecuada para la extraer
patrones cuantitativos. En definitiva y en términos generales, concluimos que FaSPIP es
el algoritmo más rápido para extraer patrones cualitativos, mientras que los algoritmos
BreadthPIMS y DepthPIMS son los más eficientes para extraer patrones cuantitativos.

Del mismo modo, hemos estudiado las dificultades y problemas intŕınsecos que encon-
tramos al extraer patrones cuantitativos, aśı como cuando utilizamos una representación
de “extremos de intervalos” o cuando el algoritmo sigue una estrategia basada en bases de
datos en formato vertical. Además, hemos proporcionado una buena solución para paliar
el inconveniente que surge al extraer los patrones cuantitativos frecuentes de longitud 2
que ocurre en algoritmos que siguen una estrategia basada en bases de datos en formato
vertical. Gracias a este estudio comprendemos por qué FaSPIMP no logra tan buenos
resultados cuando extrae patrones cuantitativos y por qué BreadthPIMS y DepthPIMS
muestran los mejores comportamientos, demostrando ser los mejores algoritmos para la
extracción de patrones cuantitativos.

Un aspecto novedoso, es que hemos usado, a través de BreadthPIS y DepthPIS (y
sus versiones cuantitativas BreadthPIMS y DepthPIMS), razonamiento temporal para
generar candidatos. El uso de este razonamiento temporal es altamente eficiente ya que
solamente son generados, de una forma rápida, aquellos candidatos que se necesitan. He-
mos propuesto dos diferentes razonamientos, uno para BreadthPIS y otro para DepthPIS,
siendo el razonamiento de BreadthPIS el más optimizado porque, en general, genera un
conjunto de candidatos más reducido. Hasta donde sabemos, pocos trabajos en SDM han
confrontado el uso de razonamiento temporal tan detallado como nosotros hemos realizado
en BreadthPIS y DepthPIS.

En lo que se refiere a los métodos de búsqueda utilizados, hemos estudiado cuál es
el mejor cuando extraemos patrones de bases de datos con puntos e intervalos. Los al-
goritmos que ejecutan un método de búsqueda en anchura (utilizado en BreadthPIS y
BreadthPIMS) pueden ejecutar un método de poda y diseñar una tabla de transición
muy eficaz con la que generar candidatos. Sin embargo, la exploración en anchura con-
duce a problemas de desbordamiento de memoria cuando tratan con enormes bases de
datos. Por otra parte, si usamos un método de búsqueda en profundidad (utilizado en
DepthPIS y DepthPIMS), encontramos que éste es más adecuado al no contar con ese
problema, aunque el razonamiento temporal que se deriva de él, y por lo tanto la fase de
generación de candidatos, no es tan eficaz como lo es en BreadthPIS (y BreadthPIMS).
Es interesante ver que, los métodos de poda que fueron añadidos a BreadthPIS demostra-
ron que no aportaban ninguna ganancia al tiempo de ejecución. Por lo tanto, en general,

10

es preferible utilizar FaSPIP para los patrones cualitativos y DepthPIMS para patrones
cuantitativos, en lugar de BreadthPIS o BreadthPIMS.

Finalmente, hemos estudiado los principios utilizados para extraer patrones secuen-
ciales frecuentes Closed, y también hemos diseñado un algoritmo que sigue una estrategia
basada en bases de datos en formato vertical capaz de extraer los patrones frecuentes
Closed con eventos punto. El algoritmo, llamado ClaSP, utiliza métodos heuŕısticos pa-
ra podar los patrones que no son Closed, y ha sido inspirado por el algoritmo CloSpan.
Hasta donde sabemos, este es el primer trabajo que sigue una estrategia basada en bases
de datos en formato vertical que se ha utilizado para resolver el problema propuesto y
completa una laguna que exist́ıa en el estado del arte, tal y como puede verse en la Tabla
5. En todas las pruebas realizadas, ClaSP supera los algoritmos de estado del arte, y
llegamos a la conclusión de que la estrategia basada en bases de datos en formato vertical
es altamente adecuada para el descubrimiento de patrones Closed.

2.2. Aportaciones

Esta tesis hace las siguientes aportaciones:

1. Hemos proporcionado un amplio marco de definiciones de la mineŕıa de datos se-
cuencial, que muestra los diferentes tipos de patrones que pueden ser relevantes para
la SDM.

2. Ofrecemos una clara organización de las diferentes representaciones de patrones con
intervalos, de los métodos de búsqueda que normalmente se utilizan y de las dife-
rentes estrategias que han sido utilizadas para la SDM. También revelamos algunas
cuestiones abiertas en SDM que deben ser afrontadas.

3. Hemos completado algunas de estas lagunas mediante el desarrollo de cuatro algo-
ritmos capaces de extraer patrones cualitativos y cuantitativos en bases de datos
con eventos puntos e intervalos. Cada algoritmo es capaz de encontrar los primeros
cuatro tipos de patrón que son mostrados en la Tabla 1 con una sola implemen-
tación, y que funciona en cualquier tipo de base de datos, ya sean integradas por
puntos, intervalos o puntos e intervalos.

4. Hemos desarrollado un algoritmo a través del cual extraer patrones frecuentes cua-
litativos Closed, integrados únicamente por puntos, que sigue una estrategia basada
en bases de datos en formato vertical. Hemos medido el impacto del método de poda
en la reducción de tanto el resultado final como del tiempo de ejecución.

5. Hemos proporcionado un generador sintético de base de datos secuenciales que es
capaz de crear bases de datos con configuraciones muy diferentes. Hemos utilizado
estas bases de datos para evaluar nuestros algoritmos y para guiar las discusiones
sobre las dimensiones del problema de la SDM.

6. Hemos publicado el trabajo relativo al Caṕıtulo 7 en un congreso internacional.
Dicho trabajo ha sido publicado en las actas del congreso Pacific-Asia Conference
on Knowledge Discovery and Data Mining, celebrado en Gold Coast, Australia en
2013.

11

Base de Datos Representación Distancias Estrategias

Apriori
Crecimiento
de Patrones

Bases de
datos
en

formato
Vertical

P
u
n
to
s Cualitativos

Apriori-All,
GSP,
PSP,
TSET

FreeSpan,
PrefixSpan,
Memisp

SPADE,
SPAM,
Prism

Cuantitativos
I-Apriori,
Yoshida

MisTA,
QprefixSpan,
i-PrefixSpan

In
te
rv
al
os P
u
n
to
s

Cuantitativos QTPrefixSpan

Cualitativos T-PrefixSpan

In
te
rv
al
os

Cuantitativos QTempIntMiner QTiPrefixSpan

Cualitativos
IEMiner,
Karmalego

Armada H-DFS

P
u
n
to
s
e

In
te
rv
al
os

P
u
n
to
s

Cuantitativos ASTPminer PaGAPIMS FaSPIMP

Cualitativos HTPM
CTMiner,
CEMiner,
PaGAPIS

FaSPIP

In
te
rv
al
os Cuantitativos BreadthPIMS DepthPIMS

Cualitativos BreadthPIS DepthPIS

Cuadro 4: Clasificación de los diferentes algoritmos, ya existentes para SDM, con los
algoritmos desarrollados en esta Tesis señalados en negrita.

Apriori
Crecimiento de

Patrones
Bases de datos en
formato Vertical

CloSpan,
Bide

ClaSP

Cuadro 5: Clasificación de los diferentes algoritmos para extraer patrones Closed con
eventos punto, ya existentes en SDM, con el algoritmo desarrollado en esta Tesis señalado
en negrita.

12

2.3. Trabajo Futuro

Con respecto a las posibles ĺıneas futuras de nuestro trabajo, nuestras intenciones son
las siguientes:

En el campo de los algoritmos que implementan una estrategia basada en bases de
datos en formato vertical, vamos a tratar de encontrar una mejor representación con
la que implementar las IdLists con el fin de mejorar la eficiencia en las operaciones de
intersección. También nos proponemos buscar algunos posibles métodos de poda que
sean lo suficientemente eficientes para reducir el número de candidatos generados.

Trataremos el uso de un valor umbral épsilon para facilitar la extracción de los
patrones frecuentes. Hay una gran cantidad de patrones que son casi iguales, y sólo
se diferencian en unas pocas unidades de tiempo que los convierten en diferentes
patrones. El uso de un valor umbral épsilon podŕıa aliviar este problema.

Dado que, cada vez que se ejecuta un algoritmo con bajos valores de soporte, ten-
demos a encontrar un gran número de patrones, nos gustaŕıa desarrollar un post-
procesado eficiente con el fin de buscar patrones interesantes que puedan resumir
muchos otros.

Tenemos la intención de hacer frente a las bases de datos de dominios continuos
mediante el uso de la mineŕıa de patrones cuantitativos. Para ello, nos planteamos
hacer una discretización de estos dominios con el fin de llevar a cabo una extracción
cuantitativa eficiente y eficaz.

Vamos a estudiar la creación de varias etapas de post-procesamiento con el fin de
obtener una clasificación de patrones. Varios métodos de agrupamiento pueden ser
estudiados desde este enfoque.

Trataremos el quinto tipo de patrones que aparece en la Tabla 1. Estos patrones
incluyen tanto las duraciones de los ı́tems como las distancias temporales asociadas
con las relaciones, las cuales son expresadas a través de un rango con una cota
inferior y una cota superior. Este tipo de patrones podŕıa ser muy útil en diversos
dominios y necesitan de implementaciones de algoritmos muy complejas para que
puedan ser ejecutados correctamente y eficientemente.

En lo que respecta al ámbito de los patrones secuenciales Closed, vamos a estudiar
la posibilidad de implementar un algoritmo que siga una estrategia basada en bases
de datos con formato vertical y que extraiga patrones Closed compuestos tanto por
eventos punto y eventos intervalo.

Referencias

Agrawal, R. and Srikant, R. (1995). Mining Sequential Patterns. In Proceedings of the
Eleventh International Conference on Data Engineering, ICDE ’95, pages 3–14, Wa-
shington, DC, USA. IEEE Computer Society.

13

Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Communications
of the ACM, 26(11):832–843.

Bettini, C., Wang, X. S., and Jajodia, S. (1996). Testing complex temporal relationships
involving multiple granularities and its application to data mining (extended abstract).
In PODS ’96: Proceedings of the fifteenth ACM SIGACT-SIGMOD-SIGART sympo-
sium on Principles of database systems, pages 68–78, New York, NY, USA. ACM.

Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996). From data mining to knowledge
discovery in databases. AI Magazine, 17:37–54.

Freksa, C. (1992). Temporal reasoning based on semi-intervals. Artificial Intelligence,
54(1-2):199–227.

Mannila, H. (2002). Local and Global Methods in Data Mining: Basic Techniques and
Open Problems. In ICALP ’02: Proceedings of the 29th International Colloquium on
Automata, Languages and Programming, pages 57–68, London, UK. Springer-Verlag.

Mörchen, F. and Fradkin, D. (2010). Robust mining of time intervals with semi-interval
partial order patterns. In Proceedings of the 10th SIAM International Conference on
Data Mining, pages 315–326. SIAM.

Pasquier, N., Bastide, Y., Taouil, R., and Lakhal, L. (1999). Discovering frequent clo-
sed itemsets for association rules. In ICDT’99: Proceedings of the 7th International
Conference on Database Theory, pages 398–416. Springer.

Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., and Hsu, M.
(2004). Mining sequential patterns by pattern-growth: the PrefixSpan approach. IEEE
Transactions on Knowledge and Data Engineering, 16(11):1424–1440.

Piatetsky-Shapiro, G. and Frawley, W. J., editors (1991). Knowledge Discovery in Data-
bases, volume 13. AAAI/MIT Press.

Roddick, J. and Spiliopoulou, M. (2002). A Survey of Temporal Knowledge Discovery
Paradigms and Methods. IEEE Transactions on Knowledge and Data Engineering,
14(4):750–767.

Srikant, R. and Agrawal, R. (1996). Mining Sequential Patterns: Generalizations and
Performance Improvements. In Proceedings of the 5th International Conference on
Extending Database Technology: Advances in Database Technology, EDBT ’96, pages
3–17, London, UK. Springer-Verlag.

Zaki, M. (2001). SPADE: An efficient algorithm for mining frequent sequences. Machine
Learning, 42(1):31–60.

14

