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Pedro E. López de Teruel Alcolea

Alberto Ruiz Garćıa
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Abstract

Visual reconstruction methods such as Structure from Motion (SfM)
or visual SLAM can be successfully used nowadays in tasks such as au-
tonomous robotic navigation, augmented reality, or 3D scene reconstruction.
Increasing the computational efficiency of these methods has been a persis-
tent interest in the research community. This led to important reductions in
time and energy consumption, and increased the chances of their integration
in smaller or cheaper hardware, such as lightweight robotic platforms, smart-
phones or low-end commodity hardware. An important time-consuming op-
eration in incremental SfM is the bundle adjustment (BA) refinement. A
large number of improvements have been proposed in the literature to speed
up this operation, including structureless BA, where the cost optimized is
not based on the re-projection error, but on multiple view relations such
as the epipolar or trifocal constraints. This way the cost does not involve
the structure parameters, thus improving the computational efficiency of its
optimization.

In this work we propose GEA (Global Epipolar Adjustment), a high-
performance structureless BA correction method based on algebraic epipolar
constraints. Due to the algebraic nature of the GEA cost, it can be optimized
very efficiently, in most cases using a small fraction of the time required by
BA to obtain the optimal configuration. Moreover, despite of this algebraic
nature, under general circumstances the accuracy of the obtained camera
poses is very close to that obtained with classical BA methods. We also
propose a structureless incremental motion estimation procedure which uses
GEA to obtain accurate initializations for the camera poses. This proce-
dure does not require composing feature trackings or the triangulation of
scene landmarks. Instead, it just requires pairwise feature correspondences
detected between the input images with standard image matching methods.
Both the incremental motion estimation method and GEA are designed to be
robust against the unavoidable outliers found by these matching techniques.
The resulting camera poses can be used afterwards to obtain highly accurate
sparse or dense estimations of the scene structure.

We demonstrate the advantages, computational efficiency and prac-
tical applications of the proposed technique on a large number of real recon-
struction problems, with arbitrarily large sizes and near critical configura-
tions, and discuss possible future research lines.





Resumen

La visión por computador es la rama de la informática dedicada al estu-
dio de algoritmos de procesamiento de imagen para su comprensión. Esta
disciplina incluye, entre otros, los métodos utilizados para obtener la estruc-
tura 3D de los objetos que aparecen en una serie de imágenes de entrada
determinadas.

La base matemática de estos métodos es la geometŕıa proyectiva, que
estudia aquellas propiedades geométricas que son invariantes bajo las trans-
formaciones proyectivas. Esta teoŕıa fue utilizada por los pintores del Re-
nacimiento para aumentar el realismo de sus dibujos, de forma que el tamaño
y la disposición de los objetos pintados respetase las reglas de la perspectiva.
Esto incrementó la semejanza de sus obras con el aspecto visual de la escena
real que pretend́ıan representar en ellas. Con la aparición de las computado-
ras la geometŕıa proyectiva comenzó a usarse en el desarrollo de aplicaciones
de renderización 3D, capaces de recrear fielmente en las secuencias de v́ıdeo
o la pantalla del ordenador, el aspecto visual correcto de escenas 3D prege-
neradas.

Más tarde, con el desarrollo de las técnicas de visión artificial se invirtió el
sentido de uso tradicional que se le hab́ıa dado a la geometŕıa proyectiva. En
lugar de obtener la proyección 2D en una imagen de una escena 3D conocida,
los formalismos de la geometŕıa proyectiva se combinaron con métodos de
inferencia estad́ıstica y algoritmos de procesamiento de imagen para obtener
la estructura y localización de los objetos f́ısicos en una escena 3D, a partir de
su apariencia 2D en múltiples imágenes. Este fue el comienzo de la geometŕıa
de múltiples vistas, basada en el estudio de las relaciones proyectivas que
surgen entre múltiples imágenes, capturadas desde distintos puntos de vista
[Hartley and Zisserman, 2003].

Hoy en d́ıa esta teoŕıa matemática se utiliza en una gran variedad de
métodos de reconstrucción visuales. Estos son capaces de obtener infor-
mación sobre las cámaras y la estructura de la escena, a partir de las imágenes
proporcionadas por una gran variedad de dispositivos de v́ıdeo y fuentes de
imagen, tales como: cámaras de v́ıdeo embebidas en plataformas robóticas,
grandes colecciones de fotos no estructuradas, imágenes satelitales, cámaras
digitales manuales, o cámaras web. La mayoŕıa de estos métodos asumen
una escena f́ısica ŕıgida, de forma que se simplifica el problema de la recons-
trucción. Sin embargo, ciertas aplicaciones requieren la reconstrucción de su-
perficies con deformaciones dinámicas, que se pueden obtener utilizando algo-
ritmos de recuperación de formas no ŕıgidas [Salzmann et al., 2008; Perriollat,



Hartley and Bartoli, 2011; Moreno-Noguer and Porta, 2011]. En cualquier
caso, esta tesis se centra sólo en los métodos para la reconstrucción visual de
escenas ŕıgidas, dado su amplio rango de aplicaciones posibles.

Dentro de los métodos de reconstrucción visual existen dos ramas prin-
cipales, o familias de métodos: visual simultaneous location and mapping
(VSLAM), que hacen uso de técnicas de filtrado, y Structure from Motion
(SfM), que hacen uso de técnicas estad́ısticas y de optimización de funciones
de coste. Ambas técnicas proporcionan un balance similar entre el coste del
tiempo computacional requerido para obtener la reconstrucción de la escena,
y la precisión con la que se obtiene. La mayoŕıa de sistemas de reconstrucción
visual actuales utilizan técnicas de SfM incrementales. Estas técnicas sue-
len proporcionar información sobre la odometŕıa y la óptica de la cámara (o
cámaras) utilizada para capturar las imágenes, como un resultado secundario
que en muchas ocasiones tiene una alta utilidad práctica. De esta forma los
sistemas de reconstrucción SfM incrementales se pueden usar no solo en la
estimación de modelos 3D, sino para obtener la localización y movimiento de
la cámara.

El núcleo de la mayoŕıa de los sistemas de reconstrucción SfM incremen-
tales es una técnica conocida como bundle adjustment (BA) [Triggs et al.,
2000]. Esta técnica se usa principalmente para corregir errores en la ini-
cialización de parámetros de cámaras y de la estructura, producidos ha-
bitualmente en las iteraciones del proceso de reconstrucción incremental.
Básicamente, BA consiste en la optimización del error de reproyección corres-
pondiente a los parámetros estimados de las cámaras y la estructura, usando
técnicas de alto rendimiento tales como Levenberg-Marquardt. Usando esta
técnica se previene en la mayoŕıa de los casos la divergencia del proceso in-
cremental respecto de la solución óptima, obteniéndose reconstrucciones lo
más precisas posible.

La optimización del error de reproyección suele tener un importante coste
computacional, en parte debido al gran número de parámetros implicados en
la estructura. Debido a esta limitación, las técnicas de SfM incrementales no
son todav́ıa adecuadas para resolver determinados problemas en la práctica,
tales como reconstrucción de gran escala en hardware de bajo rendimiento,
o la estimación autónoma de odometŕıa visual en dispositivos de bajo coste.
Para conseguir tales fines, es preciso reducir primero los requisitos computa-
cionales de los algoritmos involucrados en la reconstrucción visual, tales como
BA. Esto además reducirá el consumo de enerǵıa y el tiempo requerido para
obtener los modelos 3D y la información de las cámaras con estos métodos.

En ciertas aplicaciones la estructura 3D no es realmente necesaria, y pasa
a convertirse en un mero resultado auxiliar, usado sólo para asegurar una
estimación precisa y robusta de la odometŕıa de la cámara. Además, obtener



reconstrucciones 3D de alta precisión de la escena a partir de estimaciones
precisas de las poses de cámara resulta sencillo y muy eficiente, gracias a
métodos de triangulación [Hartley and Sturm, 1997; Lindstrom, 2010] y de
estimación de modelos 3D densos [Furukawa and Ponce, 2007]. Por estos
motivos, ha surgido un reciente interés en el campo de la visión por com-
putador hacia el desarrollo de métodos sin estructura para la corrección de
movimiento, tales como pose-graph relaxation (PGR) [Strasdat, Montiel and
Davison, 2010a; Strasdat et al., 2011; Lategahn et al., 2012], métodos de fil-
trado delayed-state [Lu and Milios, 1997; Eustice, Pizarro and Singh, 2004;
Eustice, Singh and Ma, 2005; Ila et al., 2007; Ila, Andrade-cetto and Sanfeliu,
2007], o de promediado de desplazamientos [Govindu, 2004; Hartley, Aftab
and Trumpf, 2011]. Estos métodos mejoran las estimaciones de la cámara
mediante la optimización de funciones de error definidas sobre restricciones
de movimiento relativo entre las cámaras. Debido a que estos métodos no in-
volucran a la estructura, el número de grados de libertad del coste optimizado
es mucho menor, respecto de otras técnicas tales como BA.

En general, los métodos PGR se utilizan en aplicaciones de estimación de
odometŕıa visual en tiempo real, como un back-end para corregir los errores
de deriva en presencia de información de cierre de bucle. Estos movimientos
relativos se obtienen en la mayoŕıa de los casos a partir del movimiento de
la cámara estimada, y la estructura 3D calculada por el sistema front-end de
odometŕıa visual. Otros métodos tales como los promedios de movimiento
[Govindu, 2004; Hartley, Aftab and Trumpf, 2011] se utilizan en modelado
3D fuera de ĺınea, para obtener la inicialización de la cámara en conjuntos de
imágenes de tamaño grande, sin la costosa corrección de los parámetros de la
estructura. En este caso, los movimientos relativos se suelen estimar a partir
de la geometŕıa epipolar definida por las correspondencias de caracteŕısticas
detectadas en las imágenes de entrada.

La precisión de estos métodos depende en gran medida de la calidad con
que se estiman los movimientos relativos que se incluirán posteriormente en
el coste. que debe debe ser adecuada para que la optimización del error
proporcione unos resultados aceptables. La obtención de estos movimien-
tos relativos es generalmente un problema no trivial, que en la mayoŕıa de
los casos requiere de la estimación de la estructura, o del uso de métodos
sofisticados para la discriminación de errores de correspondencia de imagen.
Algunos de estos movimientos relativos estimados pueden ser incorrectos, so-
bre todo en problemas de estimación de movimiento de gran escala, y pueden
degradar significativamente la calidad de los resultados obtenidos.

En esta tesis se propone un método de corrección de movimiento sin es-
tructura conocido como global epipolar adjustment (GEA) [Rodŕıguez, López-
de-Teruel and Ruiz, 2011b,a]. Esta técnica consiste en la optimización de



un coste definido sobre múltiples vistas, basado en restricciones algebraicas
epipolares promediadas bajo la norma L2. Debido al carácter algebraico de
este coste, y al no incluir restricciones entre múltiples vistas, GEA sacrifica
una pequeña cantidad en la precisión de la pose de cámaras estimadas, en
comparación con otros métodos de corrección geométrica tales como BA. Por
contra, la optimización GEA requiere un tiempo de cálculo significativamente
menor que la optimización del error de reproyección, incluso la realizada por
implementaciones de BA del estado del arte.

El error epipolar de múltiples vistas optimizado por GEA es más sim-
ple y más regular que el error de reproyección, dado que no involucra los
parámetros de la estructura. Por este motivo, en condiciones generales el
coste epipolar se puede corregir con éxito usando métodos de optimización
numérica más simples que Levenberg-Marquardt, tales como Gauss-Newton.
En ausencia de configuraciones de movimiento cŕıticas, tanto GEA como BA
producen estimaciones de movimiento con una precisión similar.

Las cámaras obtenidas con el método propuesto son lo suficientemente
precisas para obtener estimaciones de alta calidad de la estructura de la
escena. Mientras tanto, este método requiere en la mayoŕıa de los casos
una fracción del coste computacional empleado por SBA para corregir la
odometŕıa de las cámaras. A diferencia de las restricciones de movimiento
relativo, utilizadas por otros métodos de corrección de odometŕıa tales como
PGR, las restricciones epipolares son más fáciles de estimar a partir de las
correspondencias de imagen con una precisión suficiente para obtener resulta-
dos de alta calidad, como se describe en este trabajo. La evaluación de estas
restricciones epipolares precisas es sencilla y menos propensa a errores que la
estimación de los movimientos relativos. Además, GEA puede ser adaptado
y utilizado con éxito tanto en aplicaciones de estimación de odometŕıa visual
en tiempo real, como en aplicaciones de reconstrucción visual fuera de ĺınea.

En el futuro, los métodos de BA sin estructura como GEA pueden con-
vertirse en una herramienta importante para reducir el coste computacional
de las aplicaciones de reconstrucción visual y estimación de odometŕıa. En
esta tesis ofrecemos argumentos sólidos que apoyan esta afirmación, paralela-
mente a una revisión del estado del arte en lo que se refiere a las principales
técnicas de VSLAM y SfM. Por otra parte, ofrecemos detalles computa-
cionales cruciales para programar una implementación GEA eficiente. En
particular, describimos cómo comprimir la información de correspondencias
de imagen en la etapa de preprocesamiento, con el menor coste computa-
cional posible. También proponemos una forma exacta para incrementar el
número de valores nulos en el Hessiano del coste epipolar de múltiples vis-
tas. Esto reduce significativamente el tiempo empleado en la optimización del
coste, sin que suponga un sacrificio importante en la calidad de los resultados



obtenidos. Estas ventajas computacionales, combinadas con las interesantes
propiedades matemáticas del coste propuesto, posicionan GEA como una
alternativa competitiva a BA en una amplia gama de aplicaciones SfM.

En este documento proporcionamos argumentos emṕıricos y teóricos que
explican las propiedades de GEA descritas. Por otra parte, también describi-
mos cómo usar el método de optimización propuesto de forma satisfactoria,
tanto en aplicaciones de estimación odométrica como de reconstrucción vi-
sual, con el fin de mejorar su eficiencia computacional. Entre otros usos,
proponemos el uso de la optimización para acelerar y prevenir la divergencia
de los pasos intermedios de un método de estimación de odometŕıa visual
incremental. Las poses de cámara obtenidas con este método se pueden
usar para estimar reconstrucciones de escena de alta calidad, tanto densas
como basadas en caracteŕısticas de imagen. El método incremental prop-
uesto es más eficiente que los métodos clásicos de SfM incrementales, que
usan BA y estiman los parámetros de estructura en los pasos intermedios de
la estimación de las poses de cámara. Este método puede utilizar métodos
de consenso de muestreo clásicos (por ejemplo RANSAC, o PROSAC) para
obtener geometŕıas epipolares entre parejas de imágenes de entrada. Gra-
cias a una técnica de robustificación de coste, GEA puede hacer frente a las
posibles geometŕıas epipolares incorrectas, que podŕıan haber sobrevivido a
los consensos de muestreo, debido por ejemplo a condiciones de duplicidad
estructural en la escena. Esta robustificación se puede implementar con una
simple modificación en la evaluación paso de Gauss-Newton ecuación. Por
lo tanto, no requiere cambios en el error coste, conservando su simplicidad y
ventajas computacionales.

Proporcionamos los resultados de una larga cantidad de experimentos
que evalúan emṕıricamente la eficiencia y precisión obtenidos con GEA.
Además, estos experimentos contienen configuraciones cercanas a las que
podŕıan degradar su rendimiento. Concretamente, contienen secuencias de
movimiento cŕıticas que pueden perjudicar la precisión de los métodos de
corrección basados en restricciones de pares de vistas como GEA o PGR.
Nuestros experimentos demuestran que GEA es capaz de obtener configura-
ciones de cámaras de manera muy eficiente y precisa, tanto para problemas
de reconstrucción pequeños como para otros arbitrariamente grandes, incluso
en aquellos que contienen configuraciones casi cŕıticas.
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Document notation

Unless stated otherwise, in this document we assume vectors to be column
vectors. We denote them using the bold typeface, whereas their elements
are denoted by the vector name in slanted typeface, with the corresponding
index in subscript:

u = (u1, u2, u3, u4, ..., un)T

We will commonly denote matrices with a capital letter in slanted type-
face. The Moore-Penrose pseudo-inverse of a given matrix A is denoted by
A+. The matrix elements are represented with slanted typeface and lower
case, with the corresponding matrix indexes in subscript. For example:

A =

(
a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

)
The operator [·]× denotes the vector to cross-product matrix conversion.

Given a vector v of size 3:

[v]× =

 0 −v3 v2

v3 0 −v1

−v2 v1 0


This notation can be used to represent the matrix equation equivalent to

the cross product of two vectors v, w of size 3:

v ×w = [v]×w

The notation vA is used to represent a vector containing the elements of
a given matrix A, in row-major order. E.g. given the following matrix:

A =

(
1 2 3

4 5 6

)
The vector vA is:

vA = (1, 2, 3, 4, 5, 6)T
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AR Augmented reality

BA Bundle adjustment
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DLT Direct linear transform

GEA Global epipolar adjustment

IBM Image-based modeling
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Chapter 1

Introduction

1.1 Projective geometry in computer vision

Computer vision is a branch of computer science dedicated to the study of
algorithms for image processing and understanding. This discipline is related,
amongst other things, with methods used to obtain the 3D structure of the
objects appearing in a given set of input images.

The mathematical basis for these methods is projective geometry, which
studies the geometric properties that are invariant under projective trans-
formations. This theory was used by Renaissance painters to enhance the
realism of their drawings by enforcing the rules of perspective in the shape,
size and arrangement of the painted objects. This increased the resemblance
of their drawings with the visual appearance of real scenes, as they would be
perceived by a human observer. Later on, with the appearance of computers
the projective geometry rules were used to develop 3D rendering applica-
tions which faithfully recreate in video sequences, or the computer screen,
the correct visual appearance of pregenerated 3D scenes.

Computer vision researchers reversed the direction of how projective ge-
ometry was used. Instead of simply obtaining 2D projections of a known 3D
scene, the formalisms of projective geometry were combined with statistical
inference methods and image processing algorithms, to obtain the camera
information and the 3D structure of the objects in a scene from their 2D
appearance over multiple images. This was the beginning of multiple view
geometry, which is the study of geometric projective relationships arising
between multiple views [Hartley and Zisserman, 2003].

Nowadays these results are used in a large variety of visual reconstruc-
tion methods, which can estimate the structure and camera pose information
from images provided by many different video devices and image sources,
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Chapter 1. Introduction

Figure 1.1: 3D model of the facades in a street side, obtained on-line from a
moving vehicle with the system described at [Akbarzadeh et al., 2006]. The re-
construction application runs on an on-board computer, equipped with a powerful
Graphical Processing Units (GPU’s), and obtains a simplified 3D model of the
street, consisting on planar surfaces detected at the building facades.

such as: video cameras embedded in moving robotic platforms, large un-
structured photo collections, satellite images, hand-held digital cameras, we-
bcams, surveillance closed-circuit television (CCTV) or stereo rigs. To
succeed, most of these methods simplify the reconstruction problem by as-
suming a rigid physical scene. However, certain applications require the
reconstruction of dynamic surfaces, which can be obtained using non-rigid
shape recovery algorithms [Salzmann et al., 2008; Perriollat, Hartley and
Bartoli, 2011; Moreno-Noguer and Porta, 2011]. Nevertheless, in this thesis
we will focus only on methods for visual reconstruction of rigid scenes.

The practical uses of visual reconstruction methods are numerous. For
example, in Image-based modeling (IBM) applications, we obtain textured
3D models for the objects appearing in a given set of images. Initially they
were oriented mostly to automatic retrieval of 3D textured models of archi-
tectural sites. These 3D models could be obtained from sets of input images
[Debevec, Taylor and Malik, 1996; Dick, Torr and Cipolla, 2004] as well as
from video sequences [Pollefeys et al., 2004; Akbarzadeh et al., 2006; Cornelis
et al., 2008]. On most occasions these applications take advantage of special
features of urban scenes such as the planar-dominant structure of buildings
and streets, to obtain visually compelling 3D scene models, as can be seen
in figure 1.1.

State of the art IBM applications are able to obtain fully detailed 3D
models from general large scale scenes. Using commodity hardware and low-
cost cameras these applications can obtain the shape of an object on the
fly [Pan, Reitmayr and Drummond, 2009; v. d. Hengel et al., 2009]. With
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Figure 1.2: Dense 3D model reconstruction obtained on-line with the system de-
scribed in [Newcombe and Davison, 2010], for a desktop scene. Upper image: dense
3D model for the desktop scene. Lower image: textured version of the model.

high performance hardware, such as cloud computing stations [Furukawa
and Ponce, 2007; Furukawa et al., 2010] or desktop computers equipped with
GPU [Frahm et al., 2010] these applications can obtain accurate textured
3D models under reasonable time constraints, or even in real-time for small
to medium scenes [Newcombe and Davison, 2010; Newcombe, Lovegrove and
Davison, 2011] as can be seen in figure 1.2.

Thanks to massive image sharing and search sites such as Google Images 1,
Flickr 2 or Picasa 3, the Internet has become a comprehensive and increasing
photographic record of the most interesting scenes and sites from around
the world. These on-line services provide thousands of pictures capturing
popular building facades, sculptures, streets, public indoor and city corners,
under varying view points, illumination conditions, and camera models. For
example, Flickr contains thousands of hits for search terms such as ”Trevi
Fountain”, ”Venus de Milo”, ”Trafalgar Square London”, or ”Piazza San

1http://images.google.es/
2http://www.flickr.com/
3http://picasaweb.google.com/
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Marco”. Processing these image databases to obtain detailed reconstructions
for those locations, such as the 3D model shown in figure 1.3, is a remarkable
result of the computer vision research field [Agarwal et al., 2009].

Figure 1.3: A 3D model of the Colosseum in Rome, obtained with the techniques
described in [Furukawa and Ponce, 2007; Furukawa et al., 2010] from an Internet
collection of pictures using open source applications for batch SfM reconstruction.
Top left: one of the pictures used in the reconstruction process. Top right:
sparse reconstruction obtained with the Bundler application [Snavely, 2012]. In
this picture the black square pyramids represent the estimated camera poses for
the input images, while the points in the cloud correspond to the image features
detected on the physical surface of the Colosseum building. Bottom: comparison
of the point-cloud sparse reconstruction (right half) with the final textured 3D
model (left half) obtained using dense reconstruction applications such as PMVS2
[Furukawa and Ponce, 2012].

Structure reconstruction methods will usually provide information about
the location and optics for the camera (or cameras) used to capture the im-
ages, as a highly useful side-effect result. In most applications, obtaining
the camera information can be an objective by itself. For example, struc-
ture estimation methods can be used to tag images with precise geolocation
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Figure 1.4: Navigable image mosaic, generated with with Photosynth [Labs, 2012]
from pictures captured inside an art gallery. Photosynth is an on-line application
based on the Phototourism project for SfM reconstruction [Snavely, Seitz and
Szeliski, 2006]. The application renders on an image mosaic the approximate visual
appearance of the scene, as seen from a given view point. The user can change
this view point using the interface to navigate through the scene in a simulated
virtual presence.

information [Snavely, Seitz and Szeliski, 2006; Irschara et al., 2009]. This
can be useful for certain image browsing and retrieval applications such as
Google Street View4 [Anguelov et al., 2010], Photosynth5 [Snavely, Seitz and
Szeliski, 2006] (shown in figure 1.4) or the early 80’ application Aspen Movie
Map [Lippman, 1980]. These applications can provide to the user a kind of
surrogate traveling experience, with the visual interactive navigation through
the images in the database.

When the input images for the structure estimation procedure is a se-
quence of frames captured on-line with a video camera, these techniques can
estimate the motion performed by the camera during the recording of the
video sequence. This process is known as visual odometry, and can be used
in a highly diverse range of applications. For example, in unmanned navi-
gation applications which can guide robots, or autonomous vehicles such as
cars or aerial drones through previously unknown locations. The structure
reconstruction can be used to map in real-time the unknown scene, and the
objects inside it, while the visual odometry is useful to detect the robot lo-
cation inside this map during the process. This way the robot can transverse
previously unknown scenes, avoiding any physical obstacles, as well as finding
its way back through previously visited locations.

Camera motion tracking techniques can also be used in augmented reality

4http://maps.google.com/streetview/
5http://www.photosynth.com/
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(AR) applications. The input images from the video camera can be enhanced
with virtual 3D objects which appear to move solidarily with the real scene,
by using the camera location information estimated with visual odometry
methods [Klein and Murray, 2007; v. d. Hengel et al., 2009].

1.1.1 Types of scene reconstructions

The reconstruction obtained from the images can be dense or sparse, de-
pending on its detail level. Feature-based maps (or sparse reconstructions)
represent the physical scene structure with a 3D cloud of features from the
scene, corresponding to certain image features detected at the input im-
ages. These features can resemble blobs, corners, lines or other geometrical
shapes easily identifiable at the input images using automatic feature detec-
tion methods [Tuytelaars and Mikolajczyk, 2008]. VSLAM or SfM techniques
usually match these significant features between the input images, and use re-
gression and/or filtering methods to robustly estimate from these matchings
the 3D location of the features in the scene, along with the camera poses.

Meanwhile, dense reconstructions provide a continuous representation of
the 3D surface of the objects in the scene, even in areas of the scene where it is
difficult to detect image features. These methods usually merge information
of every pixel from the input images into data structures such as depth maps,
or 3D meshes with millions of vertices. Hence they usually contain a vast
amount of information from the scene, larger than the information contained
in sparse reconstructions.

Nowadays, real-time applications can obtain dense mappings on the fly,
using high performance hardware such as GPU [Newcombe and Davison,
2010; Newcombe, Lovegrove and Davison, 2011]. Thanks to the populariza-
tion of affordable graphical processing units, these dense systems can be used
on middle to high-end commodity hardware. However, obtaining dense scene
mappings still requires a high computational cost, a condition that makes it
prohibitive for most portable hardware platforms such as low budget com-
modity laptops, smartphones, tablet PC’s, or autonomous robots with small
weight, size and energy consumption profiles. Working with sparse maps
tends to require less computational resources than working with dense ones,
so the former are commonly used in this kind of applications to perform on-
line 3D scene reconstruction and motion estimation [Davison, 2003; Davison
et al., 2007; Klein and Murray, 2007].

Another kind of scene mapping known as topological does not contain
metric information of the scene structure, as feature or dense mappings do.
Instead, topological maps can contain higher level or conceptual information,
such as imprecise 3D structure measurements, overall location of the objects
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in the scene, connectivity between different areas of the scene, and so on.
These topological representations usually describe the scene with graph

structures, derived from theories of human cognitive mapping. Nodes and
links in these graphs can respectively represent scene location and known
transition paths between adjacent locations.

Several probabilistic methods such as Markov localization [Simmons and
Koenig, 1995] or appearance SLAM [Ho and Newman, 2007; Cummins and
Newman, 2007, 2008] have been proposed to estimate these topological rep-
resentations from the input image sequences.

They have the advantage of being less computationally demanding than
metric mapping methods, as in most cases they only estimate visual correla-
tion information between the different views. This kind of methods can be
used to solve problems such as loop closing detection, or place recognition
(also known as the kidnapped robot problem).

However, certain problems such as obstacle avoidance can be difficult to
solve with topological maps. For this reason, applications for visual odometry
and/or structure estimation usually combine topological and metric mapping
to perform an efficient and robust scene reconstruction.

1.1.2 Alternatives for visual reconstruction

Some of the results described in the previous section could also be achieved
with alternative non-visual techniques, based on information obtained from
sensors other than cameras. For example, the device odometry and the
scene map can be obtained using ultrasonic [Crowley, 1989] or sonar sen-
sors [Leonard, Durrant-Whyte and Cox, 1990]. Laser range scanners and
structured-light based depth cameras can be used to obtain clouds of points
from the scene with high precision and detail [Gonzalez, Ollero and Reina,
1994; Lu and Milios, 1997]. Using high performance hardware such as GPU,
these point clouds can be merged into a dense scene reconstruction while
tracking the device location in real-time [Izadi et al., 2011], as can be seen in
figure 1.5. The location problem can be also estimated using sensors such as
GPS, accelerometers or beacon-based navigation networks [Whitcomb et al.,
1999].

Nevertheless, computer vision methods for odometry and scene mapping
offer competitive advantages over non visual solutions. Visual sensors pro-
vide a vast amount of raw information from the scene per time unit, larger
than the information provided by other sensors. Given enough computational
resources and/or efficient processing techniques, visual reconstruction meth-
ods can produce highly accurate and robust results, under a wide variety of
conditions where other sensors can fail.
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Figure 1.5: Real-time dense structure estimation with the open source Point Cloud
Library (PLC) (http://www.pointclouds.org/) and Kinect depth camera. Left:
input RGB. Middle: image of surface normals. Right: depth map.

Structured light depth cameras such as Kinect obtain scene measurements
with too much noise when they operate in outdoor environments. Even at
indoor scenes certain luminance conditions can significantly degrade their
measurement accuracy in practice. Some types of surfaces reflect the struc-
tured light and produce incorrect reconstructions. Furthermore, the struc-
tured light beams from multiple devices operating simultaneously at the same
area may collide, reducing the accuracy of the sensors estimations.

These depth sensors, as well as others such as Light Detection And Rang-
ing (LIDAR) scanners have other important practical limitations. The effec-
tive range distance for LIDAR devices is normally less than 100 meters, while
Kinect operates at an effective distance range between 0.8 and 4.0 meters.
In some applications for LIDAR this range can be smaller.

Structured light devices can be combined with computer vision techniques
to overcome this limitation. For example, Stanley [Thrun et al., 2006] the
self-driving vehicle winner of the DARPA challenge at 2006, used the input
information from an array of LIDAR sensors, along with the input of a com-
mon RGB video camera. The LIDAR system was used to obtain a reliable
reconstruction of the road up to a maximum distance of 25 meters in front of
the vehicle. The video camera and two RADAR sensors provided information
for long-range road perception and detection of large obstacles respectively.
This way the vehicle could progress at a reasonable speed without driving
off-road, or colliding with other vehicles.

As long as there is enough baseline distance between camera centers for
the captured images, visual techniques can obtain a precise depth estimation
for both indoor and outdoor scenes, under a reasonable variety of natural
and artificial luminance conditions. This is true even if the scene objects are
located thousands of meters away from the cameras.

The quality of dense 3D models obtained with pure visual methods can
be comparable to that obtained with these devices [Seitz et al., 2006] and
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does not have these practical limitations.

Devices such as accelerometers produce motion estimations which can
accumulate a large drift error during long tracking sessions. These devices
require the support of an alternative method for pose estimation to obtain
reliable sensor motion estimations in the long run. GPS devices obtain global
positioning coordinates with a measurement error larger than one meter, and
do not work correctly at indoor or underwater locations.

On the other hand, a personal smartphone equipped with a video cam-
era could perform ego-location in indoor scenarios where GPS would not be
available, such as a mall, an airport, a factory or any other large building
[Irschara et al., 2009; Ruiz et al., 2011]. Vehicles for biological and/or arche-
ology study must rely on external resources to triangulate their location, such
as acoustic beacon networks [Whitcomb et al., 1999], or techniques for visual
odometry. In the case of underwater scenes the visual information can be
mixed with the signal from the transponder net, to increase the accuracy of
the measurement, or even be used solely in case the transponder net would
not be available [Eustice, Pizarro and Singh, 2004; Eustice, Singh and Ma,
2005]. GPS information can be used in batch SfM systems to improve the
accuracy of the obtained 3D models [Crandall et al., 2011], but undoubtedly
the visual information is crucial in the structure estimation task.

1.2 Motivation of this thesis

Much research effort has been dedicated to increase the computational ef-
ficiency of techniques for visual odometry and structure estimation. As a
result, these techniques can now obtain large scale 3D models under reason-
able time constraints, using for example high performance hardware such as
GPU or cloud computing. These techniques can also estimate the motion
and scene reconstruction in mobile platforms or portable devices such as
quadcopters, ground vehicles, smart phones or tablet PC’s using distributed
reconstruction pipelines [Wendel et al., 2012], or adapting the reconstruction
techniques to perform local scene structure and motion estimation [Wagner
et al., 2008; Klein and Murray, 2009].

However, due to their computational performance limitations, visual re-
construction techniques are still not adequate to solve certain practical prob-
lems, such as robust large scale and fully autonomous visual odometry and
structure estimation on lightweight devices. In order to do so, we should de-
velop techniques to accelerate the reconstruction software. This would also
reduce the energy consumption, hardware cost and time required by off-line
reconstruction applications for 3D object modeling.

9
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Most visual reconstruction techniques estimate simultaneously the cam-
era location and the scene structure. For example, bundle adjustment (BA)
[Triggs et al., 2000] is a numerical optimization procedure which improves
jointly the estimated camera pose and structure configuration by minimizing
the reprojection cost error. This optimization has important computational
requirements, partly due to the large number of parameters involved. In
certain visual odometry applications the structure is of no interest and is a
mere auxiliary measurement, used only to ensure an accurate and robust mo-
tion estimation. Furthermore, with accurate estimations of the camera poses
we can obtain high quality structure reconstructions using sparse triangula-
tion [Hartley and Sturm, 1997; Lindstrom, 2010] and dense model estimation
methods [Furukawa and Ponce, 2007]. For this reason there has been a recent
growing interest in the development of structureless methods for motion cor-
rection and initialization, as a mean to increase the computation efficiency of
both real-time and off-line visual odometry applications. These methods do
not involve the structure parameters in the optimization, hence they require
much less computational cost to obtain improved motion estimations. Mo-
tionless methods, which correct the structure without involving the camera
parameters [Li, 2010] are another promising approach to reduce the number
of parameters in visual reconstruction problems. However, this research line
is still in an early stage nowadays.

Some of the structureless methods, such as pose-graph relaxation [Stras-
dat, Montiel and Davison, 2010a; Strasdat et al., 2011; Lategahn et al., 2012],
delayed-state filtering methods [Lu and Milios, 1997; Eustice, Pizarro and
Singh, 2004; Eustice, Singh and Ma, 2005; Ila et al., 2007; Ila, Andrade-cetto
and Sanfeliu, 2007], or motion averaging [Govindu, 2004; Hartley, Aftab and
Trumpf, 2011] find the estimations for the camera poses by optimizing a cost
defined on relative motion constraints. The accuracy of these methods de-
pends significantly on the quality of the relative motions used, which must
be adequate in order to produce accurate camera poses with the cost op-
timization. The estimation of these relative motions is usually a nontrivial
problem, which in most cases involves the structure estimation, or highly
discriminative methods for image mismatching rejection.

Pose-graph optimization methods are used in classical on-line visual odom-
etry applications as a back-end to correct drift errors in presence of loop
closing evidence. The pose-graph optimization must use accurate relative
motions to provide corrected camera poses with high quality. These relative
motions are obtained in most cases from the estimated camera motion and
the 3D structure estimated at the front-end visual odometry system.

Other methods such as motion averaging [Govindu, 2004; Hartley, Aftab
and Trumpf, 2011] are used in off-line 3D modeling to obtain the camera ini-
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tialization for large sets of images, without the time consuming correction of
the structure parameters. In this case the relative motions must be estimated
from the epipolar geometry defined by the image feature matching informa-
tion. Some of these relative motions can eventually be incorrectly estimated,
and degrade the averaging results obtained. In large scale motion estimation
problems it is likely that a few relative motions with too much estimation
error will corrupt the results obtained, and produce incorrect camera pose
estimations.

In this thesis we evaluate the advantages of a structureless motion correc-
tion known as global epipolar adjustment (GEA) [Rodŕıguez, López-de-Teruel
and Ruiz, 2011b,a], which is based on algebraic epipolar constraints. This
technique minimizes the least squares of the residuals for the algebraic epipo-
lar cost defined between each view pair in the reconstruction. Compared
with other geometric correction methods such as BA, GEA sacrifices a small
amount of the accuracy in the estimated camera poses obtained, gaining this
way a significant computational efficiency. The multiple view epipolar cost
optimized by GEA is simpler and more regular than the reprojection error,
provided that no structure parameters are involved. For this reason the GEA
cost can be corrected with simpler numerical optimization methods, and ob-
tain similar camera pose error correction results under general circumstances.
The camera estimations obtained are sufficiently accurate to estimate a high
quality scene reconstruction. Meanwhile, this optimization requires in most
cases a fraction of the computational cost required by SBA to correct the
camera poses for a given reconstruction configuration. Unlike other struc-
tureless motion correction methods, the epipolar constraints are easier to
estimate robustly from the image matching information, as we describe in
this work. Furthermore, GEA can be adapted and successfully used in either
real-time or batch SfM applications without important modifications.

We describe how to integrate GEA in visual odometry or reconstruction
applications to enhance their computational efficiency, and provide impor-
tant details which are crucial for that purpose, such as the robustification
of this motion correction technique against the appearance of image feature
mismatchings.

1.3 Structure of this thesis

In chapter 2 we will review the methodology used for visual odometry and
structure computation in computer vision. We will also provide and dis-
cuss the main techniques and references for structureless motion correction
techniques.

11
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In chapter 3 we describe the GEA motion correction method in detail.
We provide theoretical arguments which justify the accuracy and computa-
tional efficiency of the method, as well as several details required to develop
a highly efficient implementation of the optimization. We compare the prac-
tical advantages and disadvantage of the optimization with those offered by
BA, and the structureless correction methods based on relative motion con-
straints. In this chapter we also describe the failure conditions for GEA, such
as critical motion sequences, and ways to prevent them.

Chapter 4 describes how to integrate the epipolar motion correction in an
efficient incremental motion initialization procedure, which can be adapted to
both real-time or batch visual odometry applications. This chapter provides
a description for the data processing pipelines of the most common recon-
struction applications, and show how to adapt them to use GEA, and obtain
the advantages of the structureless correction. The chapter also describes
how to robustify GEA against matching outliers, which is an important issue
for practical reconstruction applications.

Chapter 5 provides the results obtained by an extensive set of tests, per-
formed on a large number of real reconstruction problems to evaluate the per-
formance of the GEA correction. In these tests the accuracy and efficiency
of the method is compared against a state of the art BA implementation.
These tests also evaluate the robustness of the correction against critical
configurations, to show that the conditions for a GEA failure are not usually
met in practice. Finally, the performance of the structureless incremental
motion estimation described in chapter 4 is measured on several real scene
reconstruction problems.

Chapter 6 contains the conclusions of this work. It enumerates the main
contributions, and also offers some proposals for future work.

12
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Chapter 2

Methodology for high
performance visual
reconstruction

This chapter introduces projective and multiple view geometry, along with
the two main methodologies used in computer vision to obtain the structure
and camera information from a set of input images: structure from mo-
tion (SfM) and visual simultaneous localization and mapping (VSLAM). The
chapter provides notions to understand these topics, as well as important
references to the actual state of the art.

2.1 Projective geometry

A given point (x1, x2, ..., xn) in the Rn euclidean space is represented in ho-
mogeneous coordinates by any point in the set {(y1, y2, ..., yn+1)} ∈ Rn+1

which satisfies:

(x1, x2, ..., xn, 1) ∝ (y1, y2, ..., yn+1) (2.1)

This notation offers several advantages over Cartesian coordinates to rep-
resent points in the projective geometry equations. For example, most of the
equations become simpler, and points at the infinity can be represented with
finite coordinates.

The visual appearance for the objects in the 3D space is projected into
a planar region contained in the 3D euclidean space, which is known as the
image plane. In this projection model, the lines connecting 3D points in the
object with their 2D image projections must coincide in a single point, known
as the camera center, which must be located behind the image plane.
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Figure 2.1: An object is projected onto the image plane π using the camera center
C for the central projection model (left). A point X is projected to the point p
in the image plane π ≡ z = 1, using a camera center at the origin of coordinates
for the central projection model (right).

This image projection process preserves the true perspective of the scene,
as it would be perceived by a human observer located at the camera center.

The following is a mathematical formalization of this process. Each 3D
point in the euclidean space X = (x, y, z, 1)T , is projected with the pinhole
camera model into the 2D point p = (px, py, 1)T contained in the image plane
z = 1, which satisfies the following equation:

 1 0 0 0

0 1 0 0

0 0 1 0




x

y

z

1

 ∝
 px

py
1

 (2.2)

In this equation, the camera center is assumed to be at the origin of
coordinates O = (0, 0, 0)T . Figure 2.1 provides a graphical visualization
which explains the projective equation, and illustrates how images are formed
using the pinhole camera or central projection model.

In any real image the coordinates for the image projections will suffer
linear and nonlinear distortions due to the camera optics. Furthermore, the
camera can be located in a point different from the origin of coordinates, or
have an arbitrary orientation.

To obtain the 2D projection of a 3D point into the projective plane under
these conditions, one can simply apply the adequate transformation to the
3D points in the previous formula:

PX ∝ (px, py, 1)T (2.3)

In this expression P is a 3 × 4 matrix known as the projective camera
matrix. This matrix encodes the camera pose, and the linear deformations
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of the camera optics.

The following expression is a usual way to decode these elements from
the camera matrix:

P = KR [I| −C] (2.4)

In this equation K is an upper triangular matrix containing the linear
distortions produced by the camera optics, R is a rotation matrix representing
the camera rotation, and C is a 3D point representing the camera center
location.

This formula does not model nonlinear distortions of the camera optics,
such as the radial distortion. However it can still be used in most reconstruc-
tion problems to model the camera information accurately, without involving
the nonlinear intrinsic camera parameters.

The linear distortions are modeled as follows:

K =

fx s cx
0 fy cy
0 0 1

 (2.5)

The intrinsic parameters contained in this matrix are: horizontal and
vertical focal distances (fx, fy), skew (s), and principal point (cx, cy).

The matrix R must be an element from the Special Orthogonal group
SO(3). This is the way to ensure thatR represents a valid camera orientation.
For that purpose the rotation is usually expressed with a minimal vector
parametrization w containing 3 numerical values.

These values can be mapped to a rotation matrix Rw ∈ SO(3) using
several methods. For example, the three values in w can be interpreted as
Euler angles (φ, θ, ψ). This way, the rotation matrix can be obtained from
the following expression:

Rw = RXRYRZ (2.6)

where RX , RY , and RZ are elements of SO(3) which represent rotations
around the x, y and z axes respectively:
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RX =

 1 0 0

0 cosφ sinφ

0 − sinφ cosφ

 (2.7)

RY =

 cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 (2.8)

RZ =

 cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 (2.9)

The vector w can also be converted to the skew symmetric matrix [w]×,
which is an element of the Lie algebra so(3) associated to the group SO(3).
Each element [w]× ∈ so(3) can be mapped to a rotation matrix in SO(3)
using the following expression, which is known as the Rodrigues formula for
skew-symmetric matrix exponentiation:

Rw = e[w]× = I +
sin (‖w‖)
‖w‖

[w]× +
(1− cos(‖w‖))

‖w‖2
wwT (2.10)

2.2 Filtering methods for Visual SLAM

Visual SLAM techniques combine the method known as Simultaneous Loca-
tion And Mapping (SLAM) [Smith, Self and Cheeseman, 1988, 1986] with
the projective geometry, to develop on-line camera motion and structure es-
timation applications.

SLAM methods were originally designed to be used in the perceptive
loop of the control software of a robot, to perform a robust estimation of the
sensor motion and location.These methods can be applied to a large variety
of sensors, such as LIDAR, sonar sensors, depth cameras, GPS and so on.

SLAM systems use a stochastic map containing information about the
expectancy and uncertainty for the location of the sensor, and in most cases
the location for certain scene references, or landmarks, which are detected in
the sensor signal by the SLAM system.

SLAM methods must define an observation model, which is used to eval-
uate the expected values for each sensor location and landmark observation
from the map state. During a sensor tracking session, with each new observa-
tion the SLAM application updates the stochastic map, using filtering meth-
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ods such as the unscented Kalman filter (UKF) [Julier, Jeffrey and Uhlmann,
2004], or particle filters [Eade and Drummond, 2006] amongst others.

In Visual SLAM applications the sensor is a video camera, which pro-
vides input frames to the SLAM system. The landmarks are image features,
detected on the frames using image feature detection algorithms.

2.2.1 Feature-based mapping

In feature-based mapping applications, the map contains the sensor location
and the 3D locations for the image features from the scene. The observa-
tion model in the filtering process uses projective geometry to measure the
reprojection error between the expected and measured image locations for
each scene feature in the map. With these errors the filter updates the map,
so the discrepancy between measured and expected image feature locations
is reduced, as well as the uncertainty for the estimated camera pose and the
features in the map.

MonoSLAM [Davison, 2003; Davison et al., 2007] was one of the first
feature-based mapping applications to successfully run a real-time camera
motion estimation and feature mapping process on commodity hardware,
using solely visual information from a single camera. In MonoSLAM the
landmarks are detected in the input images using the Shi-Tomasi operator
[Shi and Tomasi, 1994]. With each new observation an EKF filter is used in
this SLAM application to correct the estimations for the camera location and
the 3D scene features in the stochastic map. The information for past camera
poses is marginalized in the map with each update, and the information
gained over time is summarized with a probability distribution.

This SLAM system is highly efficient and robust, and obtains accurate
motion and map estimations. Subsequent proposals for visual SLAM take
advantage of the conditional independence inherent in the parameters for
the SLAM problem to reduce the computational requirements of the EKF
filter. For example, using tree structures to represent landmark estimations
[Montemerlo et al., 2002] or particle filters instead of the EKF filter to merge
sensor information in the map [Eade and Drummond, 2006].

Other proposals exploit the inherent sparsity in the information matrix
of the EKF filter. The map update time with standard EKF grows quadratic
with the number of features in the map. The conditional independence in the
joint distribution of these features produces a natural quasi-sparsity in the
information matrix, where many elements corresponding to weakly correlated
variables will contain negligible values. Sparse Extended Information Filters
(SEIF) [Thrun et al., 2004] use a sparse approximation for the information
matrix, where these elements are set to zero. This way the SEIF filter can
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reduce the quadratic map update time to a constant time, while obtaining a
similar map quality.

Yet another method to reduce the update time is to partition the map into
several manageable submaps [Leonard et al., 1999; Leonard and Newman,
2003; Estrada and Tardós, 2005]. With this approach each submap contains
a fixed maximum number of elements, so the update time for the EKF filter
is upper-bounded. This however reduces the convergence rate to the optimal
configuration of the full set of estimated features [Leonard and Newman,
2003].

2.2.2 Full and delayed-state SLAM

Eventually SLAM applications can detect image feature correspondences be-
tween previously unrelated views during the tracking process. A special kind
of these correspondences are loop closing matchings, which are obtained be-
tween views sufficiently separated in the video sequence when a given area of
the scene is revisited. These correspondences can be useful to correct drift
errors, improving the accuracy of the estimated reconstruction parameters.

Feature-based filtering methods, which are described in the previous sec-
tion, marginalize the information for past camera poses. Correcting drift er-
rors in this kind of maps with loop closing evidence can be difficult [Estrada
and Tardós, 2005; Eade and Drummond, 2008; Williams et al., 2009]. This
can be a practical disadvantage for feature-based mapping filters during long
camera tracking sessions, where the drift error can grow unbounded.

Feature-based filters can make incorrect updates in the map that cannot
be easily undone, such as including in the map information from estimated
camera poses which suffer a significant drift error. In the case of hierarchical
SLAM methods the global map can be updated in presence of loop closing
evidence by adjusting the transformations between submaps in a nonlinear
constrained optimization [Estrada and Tardós, 2005]. Still, the problem of
the reduced local convergence remains.

Full SLAM mapping is an alternative to feature-based filtering, where
the stochastic map includes the trajectory performed by the sensor during
the whole tracking [Thrun, Burgard and Fox, 2001; Dellaert and Kaess, 2006;
Montemerlo and Thrun, 2007; Kaess, Ranganathan and Dellaert, 2008]. This
way the method can include loop closing evidence and correct drift errors
efficiently.

Delayed-state SLAM filtering is a different kind of mapping method which
only includes the parameters of the estimated camera trajectory [Lu and
Milios, 1997; Eustice, Pizarro and Singh, 2004; Eustice, Singh and Ma, 2005;
Ila et al., 2007; Ila, Andrade-cetto and Sanfeliu, 2007]. In feature-based and
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full SLAM the map is updated to reduce the discrepancy between expected
and measured image observations. In most cases this discrepancy is basically
the reprojection error. In the case of delayed-state SLAM the map is updated
to reduce the discrepancy between expected and measured relative camera
motions. Some of these relative motions can be measured directly from the
local visual odometry obtained with feature-based or full SLAM methods.
Other relative motions can be estimated as well from loop closing evidence.

The main advantage of delayed-state SLAM over full SLAM is the reduced
computational cost required to update the map. In full SLAM the number of
feature parameters is commonly an order of magnitude or more larger than
the number of camera parameters. By containing parameters only for the
camera poses, maps for delayed-state filtering are much smaller, and can be
updated with higher efficiency.

Furthermore, the information matrix of delayed-state maps is naturally
sparse, as feature correspondences are marginalized in the relative camera
motions. Null elements in the information matrix correspond to view pairs
not related by point correspondences, and (vice versa) nonzero elements in
the information matrix correspond to view pairs related by point correspon-
dences. This way delayed-state maps can be updated using efficient exact
sparse matrix operations [Eustice, Singh and Ma, 2005].

2.2.3 Keyframe selection and problem reduction

In real-time SLAM applications most of the scene information will usually
be redundant across the different frames of the input video sequence. Views
with close camera poses will contain many observations for the same map
features. Hence their contribution to the SLAM problem is similar.

Using the correspondences between these views in the map correction
increases the update time, as it reduces the sparseness and increases the size
of the information matrix. Furthermore, due to certain linearization choices
assumed in filter methods such as EKF, this also can lead to inconsistent
overestimation of the reconstruction parameters in long-term experiments,
for simple but realistic SLAM scenarios [Julier and Uhlmann, 2001; Bailey
et al., 2006].

Several strategies alleviate the redundancy problem by reducing the num-
ber of variables in the map, and the observations involved in the map updat-
ing.

In the strategy known as keyframe based SLAM, only those frames which
are key to the reconstruction problem are included in the map [Konolige
and Agrawal, 2008]. This way the number of parameters can be drastically
reduced (up to a tenth percent or less from the original, depending on the
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video sequence) while the estimated camera poses and the structure obtained
will still be accurate.

The second strategy is to reduce the number of relative camera motions
used to update the map in delayed-state filter methods [Eustice, Singh and
Ma, 2005]. By doing so, we can control exactly the sparsity level of the
information matrix, and thus the update time cost.

Both strategies can be combined in highly efficient delayed-sparse SLAM
applications which use minimal stochastic maps and still obtain a highly ac-
curate estimation of the camera tracking. The exact information gain for
each element in the map can be evaluated in a closed form, so relative mo-
tions and views which are redundant in the reconstruction can be effectively
identified and excluded from the map update [Ila, Porta and Andrade-Cetto,
2009].

2.2.4 Relation with SfM methods

Filtering methods such as full SLAM are closely related to BA. Assuming an
isotropic Gaussian distribution with fixed known variance for the reprojec-
tion residuals, both the filtering method and the least squares optimization
converge to the same statistical maximum likelihood estimation (MLE) for
the unknown parameters.

2.3 Multiple view geometry

This section discusses multiple view geometry methods used in SfM to esti-
mate the configuration of both the scene structure, and the set of cameras.

The optimal structure and camera configuration can be found by solving
a set of equations. Given the complexity of these equations for nontrivial
problems, the solutions are usually obtained with iterative optimization pro-
cedures, which reduce the least squares cost of the equations.

These cost errors however can have many local minima, hence starting
the optimization from an arbitrary camera pose configuration can produce
convergence to a suboptimal solution. To ensure convergence to the solution
it is convenient to start the optimization from a configuration in the basin
of the global optimal. Obtaining a reconstruction initialization in the basin
of the optimal configuration for these cost errors is usually not trivial.

This section reviews the error costs used in the literature to obtain the
solution for the equations, and also the methods used in SfM to obtain initial
camera and structure configurations in the basin of the optimal configuration
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for these costs. This way using optimization procedures we can converge to
that optimal reconstruction configuration.

Some reconstruction problems are simple enough to be correctly initial-
ized with algebraic linear procedures. For problems with a large number of
views, and a large structure, these solutions might be unreliable and bound
to fail, so more sophisticated iterative initialization methods must be used
to obtain a good initialization.

2.3.1 Bundle adjustment

BA is a reconstruction correction method used in SfM, which optimizes a
cost error defined on the structure and camera parameters to improve their
accuracy. This method was first developed in the photogrammetry research
field [Brown, 1976; Granshaw, 1980; Slama, Theurer and Henriksen, 1980],
and later became the core of most SfM applications.

Given the point features detected in a set of input images, the BA cor-
rection provides the least-squares solution for the following nonlinear system
of equations:

{pij − φ (Pi,Xj) = 0}pij∈P (2.11)

In these equations Pi is the projective matrix corresponding to the i-th
camera. The vector Xj = (x, y, z, 1)T contains the homogeneous represen-
tation of the coordinates for the j-th 3D feature. The set P contains the
feature projections for the 3D points observed at the input images, and pij

is the projection of the j-th 3D feature detected at the i-th view, represented
in homogeneous coordinates. Finally φ is the nonlinear projection function:

φ(Pi,Xj) =

xy
1

 ∝ PiXj (2.12)

These equations can be represented in the following general form:

f(x) = y (2.13)

In this representation x is known as the vector state, which contains the
camera and structure configuration parameters. These are the coordinates
for the 3D points, and the components of the projective matrices. The model
function f maps the vector state to the expected coordinates for the image
projections φ (Pi,Xj), and the target vector y contains the image coordinates
for the projections pij ∈ P .
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In absence of noise, solving these equations we obtain the 3D location of
the features and the projective matrices for the cameras. In practice, due to
the presence of noise the equations might not be satisfied exactly, not even by
the true camera and structure configurations. The least squares solution for
these equations is provided by minimizing the following cost error, defined
by the norm of the residuals for the equations in (2.11):

c(x) = ||f(x)− y||n (2.14)

This cost can be seen as a representation of the quality for a given esti-
mated configuration of the cameras and the structure. The cost c(x) can have
one or several optimal solutions, depending on the choice norm n for equation
(2.14), and the configuration of the reconstruction problem. Different norms
will provide results with very different properties.

Assuming an euclidean norm (n = 2) for the equation residuals, the cost
(2.14) becomes:

CRE =
∑
pij∈P

‖pij − φ(Pi,Xj)‖2
2 (2.15)

This cost is minimized in BA to correct the reconstruction accuracy, using
computationally efficient numerical optimization methods such as Levenberg-
Marquardt (LM) [Levenberg, 1944], or the trust-region based Powell’s dog-leg
[Lourakis and Argyros, 2005, 2009].

From a geometrical point of view, the cost CRE measures the sum of
squared distances between the expected and measured image locations, pro-
vided an estimated reconstruction configuration. Thus the error (2.15) rep-
resents how well the estimated structure and camera poses are related to the
image feature information contained in the input images.

From a statistical point of view, BA is a regression procedure which fits
the model parameters (camera poses and 3D structure configuration) into
input noisy data (the image measurements). The optimal parameter con-
figuration for the error (2.15) has a precise meaning when the measurement
noise for the image features is normally distributed and isotropic. In this
case the solution obtained with BA is the MLE for the structure and the
cameras configuration.

Due to these properties BA is nowadays widely accepted as the gold-
standard method for obtaining an optimal estimation of the camera and
structure parameters from visual correspondence information.

However, the BA correction is highly sensitive to the initial parameter
configuration used in the optimization. Like other costs based on the L2

norm, the reprojection error has many local minima. To reach the optimal
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configuration the Levenberg-Marquardt correction of the reprojection error
requires a sufficiently good starting point, hopefully inside of the basin for
the optimal configuration. Otherwise the optimization can get stuck in a
suboptimal solution.

2.3.2 Two view epipolar correction methods

Any given pair of image point projections p = (px, py, 1)T , q = (qx, qy, 1)T

detected in two different images, and corresponding to the same 3D point in
the scene must satisfy the epipolar constraint:

qTFp = 0 (2.16)

The matrix F of size 3× 3 in this expression, known as the fundamental
matrix, encodes the camera information for the views i and j. Assuming
that the cameras are parametrized as projective camera matrices P1, P2, the
F matrix can be obtained with the following expression:

F = [P2C1]×P2P
+
1 (2.17)

In this expression the vector C1 is the null-vector of P1 (as well as the
camera center for the first view). The operator [·]× denotes the vector to
cross-product matrix conversion:

[v]× =

 0 −v3 v2

v3 0 −v1

−v2 v1 0

 (2.18)

In the calibrated case, the fundamental matrix in the expression (2.16)
becomes an essential matrix E which can be evaluated using the following
expression:

E = R2 [C2 −C1]×R
T
1 (2.19)

where R1 and R2 are respectively the camera orientation matrices for the
first and second camera poses. The vectors C1, C2 are the coordinates for
the first and second camera centers.

Many cost errors based on the epipolar constraint have been proposed for
optimal camera pose estimation in two-view reconstructions. These errors
are usually based on the epipolar geometry. In this section we discuss several
of these costs, which have been used to correct the initial pairwise camera
pose estimations.
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Given the set of pairwise matchingsM = {pk ↔ qk}k=1..n corresponding
image point projections detected in two different images the optimization
of the following geometric cost will provide the MLE for the camera pose
parameters [Vidal et al., 2001], assuming an isotropic measurement noise in
the image feature coordinates:

CGE(M, F ) =
n∑

k=1

‖pk − p̂k‖2 + ‖qk − q̂k‖2 (2.20)

The auxiliary parameters p̂k, q̂k are vectors of size 3 which contain the
estimated image feature coordinates for the k-th matching in M in homo-
geneous coordinates. This cost must be optimized subject to the following
constraints:

q̂T
kF p̂k = 0, ‖F‖ 6= 0, p̂T

k e3 = q̂T
k e3 = 1, (2.21)

where e3 = (0, 0, 1)T . The auxiliary parameters must be initialized and
corrected with the camera parameters during the optimization. This in-
creases the complexity of the optimization procedure, and the time required
to reach the optimal camera pose configuration.

We can convert the constrained optimization problem to an unconstrained
one. The following closed form expression known as the normalized crossed
epipolar cost [Sastry, 1999] can be obtained from the cost error in equation
(2.20) and the constraints in equation (2.21) using Lagrange multipliers [Sas-
try, 1999; Vidal et al., 2001]:

CNCE(M, F ) =
n∑

k=1

(
qT
kF p̂k + q̂T

kFpk

)2

‖[e3]×F p̂k‖2 + ‖q̂T
kF [e3]T×‖2

(2.22)

To accelerate even more the camera parameter estimation we can opti-
mize the following cost error known as the Sampson distance for conic fit-
ting [Bookstein, 1979; Sampson, 1982], instead of optimizing the normalized
crossed cost:

CSam(M, F ) =
n∑

k=1

(
qT
kFpk

)2

pT
kF

TZFpk + qT
kFZF

Tqk

(2.23)

where:

Z = diag(1, 1, 0) =

1 0 0

0 1 0

0 0 0

 (2.24)
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This cost depends only on the camera parameters, and does not involve
auxiliary parameters such as Lagrange multipliers or coordinates for esti-
mated image projections. Hence the optimization of this cost is much more
efficient than the geometric costs, and obtaining the optimal camera param-
eters requires less computation time. The cost can be derived from the first
degree Taylor approximation of the normalized crossed epipolar cost [Zhang
and Shan, 2003]. Hence the solution obtained is a fair approximation, but
not exactly equal to the optimal configuration for the geometric cost.

The Sampson distance can be further simplified into the following alge-
braic epipolar cost:

CAlg(M, F ) =
n∑

k=1

(
qT
kFpk

)2
(2.25)

This is known as the linear algebraic epipolar cost, as the expression is
linear on the elements of the fundamental matrix. The evaluation of this
cost requires less computation time than either the Sampson error or the
geometric epipolar cost. Hence obtaining the optimal configuration requires
even less time than with the other costs.

2.3.3 Camera parametrization singularities

Certain singularities can arise and create problems during the optimization
of the costs described so far, depending on the rotation parametrization used.
The methods described in section 2.1 for minimal parametrization have dis-
continuities and singularities for certain critical rotation configurations. An
example of these configurations is the gimbal lock for the Euler parametriza-
tion.

A solution is to use a non minimal parametrization such as quater-
nions [Hamilton, 1844; Wikipedia, 2012b] to represent the camera orienta-
tion. Quaternions are an extension of complex numbers. Each quaternion q
is defined by one real and three imaginary coordinates:

q = a+ bi + cj + dk (2.26)

The rotation matrix for a given quaternion q can be evaluated with the
following expression:

Rq =
1

‖q‖
Qq (2.27)

where:
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Qq =

a2 + b2 − c2 − d2 2bc− 2ad 2bd+ 2ac

2bc+ 2ad a2 − b2 + c2 − d2 2cd− 2ab

2bd− 2ac 2cd+ 2ab a2 − b2 − c2 + d2

 (2.28)

and

‖q‖ =
√
a2 + b2 + c2 + d2 (2.29)

In practice, the occurrence of a camera configuration such that ‖q‖ = 0
during an optimization procedure is unlikely, as this configuration does not
correspond to a valid quaternion, nor a valid rotation.

Another solution to prevent the gimbal lock in the Euler angles is to
parametrize the rotation as a local perturbation of an existing rotation [Triggs
et al., 2000; Engels, Stewénius and Nistér, 2006]:

R = RwR0 (2.30)

The rotation R0 can be the initial camera orientation for the optimization
process, or any fairly good approximation for the true camera orientation.
During the error optimization, the local perturbation Rw will commonly be
close to the identity, and hence away from problematic configurations.

2.3.4 Algebraic camera initialization methods

Several methods have been proposed to obtain initial camera pose configu-
rations sufficiently close to the optimum, for the optimization of two-view
epipolar costs.

These methods first obtain the fundamental matrix for the camera config-
uration by solving an homogeneous linear system. Each term in the summa-
tory for the algebraic epipolar cost (2.25) can be rewritten with the following
equality:

qTFp = uTvF (2.31)

where vF is a vector of size 9 containing the elements of the matrix F in
row-major order, and u is the following vector obtained with the direct linear
transform (DLT) [Hartley and Zisserman, 2003] from the image coordinates
of the points p and q in the matching:

u = (qxpx, qxpy, qx, qypx, qypy, qy, px, py, 1)T (2.32)
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Stacking the vectors {ui}i=1..|M| for the image matchings inM we obtain
the following measurement matrix of size |M| × 9:

U = (u1,u2, . . . ,u|M|)
T (2.33)

This way, the expression for the algebraic cost error in (2.25) can be
rewritten as follows:

CAlg(M, F ) = ‖UvF‖2
2 = vTFU

TUvF (2.34)

An approximation to the fundamental matrix which minimizes this cost
can be found by solving the following overdetermined homogeneous linear
system:

UvF = 0 (2.35)

In presence of noise, the matrix obtained F ∗ will not be a valid fundamen-
tal matrix, as the solution for the homogeneous equation does not enforce
the singularity constraint (det(F ∗) = 0). The smallest singular value for this
matrix can be truncated to zero using a SVD decomposition.

This provides the singular matrix closest to F ∗ in the Frobenius norm.
Using a simple normalization of the input image feature coordinates, the
singular matrix will also be a close approximation to the real fundamental
matrix which optimizes the algebraic cost [Hartley, 1997].

Once obtained, the fundamental matrix can be factorized into the pro-
jection matrices P1 and P2 containing the camera information for the two
views.

This estimation is up to scale, and it can also suffer other ambiguities
which in most cases can be solved by enforcing a correct cheirality on the
3D points in the reconstructed structure [Longuet-Higgins, 1981; Robert and
Faugeras, 1995] and the position of the plane at infinity [Pollefeys et al.,
1998].

This process is known as the 8-point algorithm for fundamental matrix
estimation [Longuet-Higgins, 1981; Tsai and Huang, 1984; Wolfe et al., 1991;
Zhang, 1998]. More sophisticated closed form methods have been proposed.
For example, the method proposed in [Hartley, 1994b] finds the fundamental
matrix which satisfies the singularity constraint. This way the procedure
does not require the truncation of the smallest singular value. Furthermore,
thanks to the extra constraint, this method can find the fundamental matrix
using only 7 image point correspondences, instead of the 8 points required
by the original procedure.

Several other techniques obtain improved algebraic estimations of the fun-
damental or essential matrix by adding additional constraints. For example,
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some procedures obtain the essential matrix in the calibrated case from a set
of five image correspondences by enforcing the equality of nonzero singular
values in the matrix [Nistér, 2004; Stewénius, Engels and Nistér, 2006; Li
and Hartley, 2006].

For reconstructions containing more than two views, similar algebraic
procedures can be used to estimate the camera information, such as the
trifocal [Torr and Zisserman, 1997] and quadrifocal [Hartley, 1998a] tensors
for three and four views respectively, or the factorization method [Tomasi
and Kanade, 1992; Sturm and Triggs, 1996] for n-view initialization.

These algebraic initialization procedures show important disadvantages
to be used in practice. Most of these procedures are limited to use only
structure features which are visible in all views. This can be an important
limitation in practical reconstruction problems with a large number of views.
Due to occlusions and low feature repeatability, it may result difficult to find
a sufficiently large number of 3D points appearing in every view.

Furthermore, these techniques are not able to deal with significant noise,
or outliers in the input matchings. A small fraction of input mismatchings
can corrupt the results obtained with them. Even if the input matchings are
free from outliers, due to the algebraic linear nature of projective factoriza-
tion methods, they can obtain inaccurate results for certain reconstruction
problems in presence of a significant measurement noise.

Certain factorization methods were developed which can work with miss-
ing data [Hartley and Schaffalitzky, 2003]. However, robustifying these meth-
ods to measurement noise and matching failures is still an open problem.

Methods based on cost error optimization such as Bundle Adjustment
are used in large scale reconstruction problems, as they can handle match-
ing failures and initialization errors easily by using techniques such as cost
robustification.

2.3.5 Structure triangulation

Once the camera information is estimated, the structure parameters can be
triangulated. If the camera pose estimations are sufficiently accurate, they
can be used with the correspondences between image projections to compute
good estimations for the 3D location of the features in the structure.

Triangulation techniques are used to find the 3D location for a point in
the scene, given its projections in two or more views with known camera
poses. If the calibration for the cameras is known, the triangulated points
will be a metric representation of the scene geometry, up to scale.

The most basic and oldest triangulation technique is known as the mid-
point triangulation [Hartley and Sturm, 1997; Kanatani, Sugaya and Niit-
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suma, 2008]. This method estimates the 3D point location as the intersection
of the two projective rays which connect the camera pose center of each view,
with the projections of the 3D point on the respective image planes for the
views. Due to image measurement noise, in practice the two rays will not
usually intersect. For this reason the point triangulation is estimated as the
midpoint of the shortest line segment connecting both rays, i.e. the common
perpendicular line.

This method is restricted to the triangulation of 3D points with only two
image projections. Furthermore, the reconstruction obtained is neither affine
nor projective invariant, since certain properties such as perpendicularity or
mid-point distances are not preserved by these transformations.

Another method for structure point estimation is known as the linear
triangulation (LT) [Hartley, Gupta and Chang, 1992]. This method finds the
3D location for each point by solving a linear system of equations. Given the
2D image projection p on a view for the 3D point, and the camera projection
matrix for that view:

P = (P1P2P3)T (2.36)

where each column vector Pi contains the elements for the i-th row in
the matrix P , we can rewrite the projective equation in (2.3) as the following
pair of homogeneous equations:

(pxP3 −P1)T X = 0 (2.37)

(pyP3 −P2)T X = 0 (2.38)

Stacking the equations corresponding to the projections from two or more
views we obtain an overdetermined homogeneous linear system, which we can
solve for the homogeneous coordinates X = (x, y, z, k)T of the 3D point. This
method is known as the Linear-Eigen triangulation. We can also fix the k co-
ordinate of the 3D point to a constant value, and convert the homogeneous
system into an inhomogeneous one. Finding the 3D point coordinates by
solving this system is known as the linear least squares (Linear-LS) triangu-
lation method.

Both of these linear methods are not projective invariant. The inho-
mogeneous method has an additional disadvantage. The solution point is
assumed to be not on the plane at infinity. In certain circumstances it can
be convenient to estimate points with the homogeneous coordinate set to
zero. Nevertheless, this method is affine invariant, whereas the homogeneous
method is not. If the linear system is solved with an iterative procedure,
the linear triangulation is still not projective-invariant, though experiments
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show that they are quite insensitive to projective transformations [Hartley
and Sturm, 1997].

Finally, nonlinear methods triangulate the point by finding the optimal
solution for a nonlinear equation. The point can be triangulated by min-
imizing the L2 norm of the reprojection error [Hartley and Sturm, 1997;
Lindstrom, 2010], which provides the MLE solution. This method improves
the results obtained by linear triangulation, and it is invariant to projective
deformations. There is a closed form solution for the two-view case, which
requires solving a 6-degree polynomial [Hartley and Sturm, 1997]. For the
multiple view case, LM can be used to correct the reprojection error for the
3D point under the L2, providing a highly accurate point triangulation if a
sufficiently good initial configuration is available.

The Second Order Cone Programming (SOCP) algorithm has been adapted
to triangulate points in the structure by minimizing the uniform norm L∞
[Hartley and Schaffalitzky, 2004]. Like many other SOCP problems, the
L∞ optimization space for the triangulation problem is convex [Hartley and
Schaffalitzky, 2004; Kahl, 2005]. Hence there are no local minima, with the
exception of the optimal configuration, and the optimization does not depend
on the starting configuration to reach the optimal estimations.

However, the solution for the L∞ norm is highly sensitive to outliers. In a
large number of SOCP problems, including the triangulation under uniform
norm, at least one of the outliers is always included in the set of measurements
with the largest residuals for the optimal L∞ configuration [Sim and Hartley,
2006b]. The initial solution provided by the averaging can be improved by
removing these terms, and performing again the correction. After a second
SOCP optimization, the solution obtained will usually be more accurate.
This process can be iteratively repeated to obtain an outlier free solution.

2.4 Structure from Motion

Structure from Motion (SfM) is known as the process which integrates tools
and methods from multiple view geometry, image processing and statistical
regression, to obtain the 3D scene reconstruction and camera information
from a sequence of input images taken with a moving camera on a static
scene.

The basic workflow for a SfM application is the following. First the
application detects image features in the input set of images using image
processing algorithms. Then these features are matched, using feature de-
scriptors, and sample consensus matching procedures. Finally, multiple view
geometry methods such as BA, or pairwise epipolar motion estimation are
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used to obtain the camera information and the structure from these feature
matchings.

The first methods proposed in SfM used the linear algebraic techniques
described in sections 2.3.4 and 2.3.5 to obtain an initial estimation for the
camera configuration and the structure, which is then corrected using BA,
producing the optimal reconstruction configuration.

Due to the limitations of linear methods, this approach only works cor-
rectly for small reconstructions, with a limited number of views and structure
features. More sophisticated SfM iterative methods were later developed to
initialize larger reconstructions, containing hundreds of views and thousands
of features in the structure.

2.4.1 Iterative initialization methods

Examples of iterative reconstruction methods methods are the hierarchi-
cal initialization [Fitzgibbon and Zisserman, 1998; Nistér, 2000] and the
incremental reconstruction [Hartley, 1994a; Pollefeys et al., 1998; Brown
and Lowe, 2005; Snavely, Seitz and Szeliski, 2006; Klein and Murray, 2007;
Snavely, Seitz and Szeliski, 2008a].

These iterative procedures use the algebraic initialization techniques de-
scribed in sections 2.3.4 and 2.3.5 to obtain small partial reconstructions
containing reduced groups of views, along with the 3D features which appear
on these views.

These partial reconstructions are augmented in each iteration with more
views, until no more views or 3D features are left to initialize. At the end
of each iteration, the partial reconstructions are refined with BA to elimi-
nate initialization errors, and ensure the convergence of the procedure to the
optimal reconstruction.

Once the whole set of views and structure features is initialized, a final
global BA provides the optimal solution for the reconstruction problem. The
final configuration for the cameras and the structure can then be corrected
to metric using either ground truth 3D points [Hartley, Gupta and Chang,
1992] or autocalibration methods [Hartley, 1992; Triggs, 1997; Bougnoux,
1998; Pollefeys, Koch and Gool, 1999].

In [Fitzgibbon and Zisserman, 1998] the authors proposed a hierarchical
initialization method, which is able to perform fully automatic robust 3D
scene and camera pose recovery from a sequence of images. The proposed
procedure begins by estimating optimal partial reconstructions for triplets
of views adjacent in the image sequence using the trifocal tensor. These
reconstructions are then merged together and bundelized iteratively, until a
single reconstruction containing all the views and 3D features is left.
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Incremental methods are nowadays the most used procedure for recon-
struction initialization. These methods start with a partial reconstruction
obtained with algebraic initialization methods, which contains a few views,
and the structure features which appear on those views. Then the incre-
mental method adds new cameras and features in the 3D structure on each
iteration.

The new cameras are initialized using the 3D points in the partial struc-
ture with a procedure known as camera resection. The new features are
initialized in each iteration using these new camera poses. A BA optimiza-
tion corrects the partial reconstruction at the end of each iteration to prevent
divergence.

The first practical implementations of iterative initialization algorithms
[Pollefeys et al., 1998] obtained projective reconstructions for the scene, as
the cameras were parametrized with projective matrices.

The correction to metric can fail for certain motions and structure config-
urations. For example, in scenes with dominant planes it might not produce
a valid solution [Sturm, 1997; Kahl and Triggs, 1999]. These scenes are com-
mon in artificial human-made environments with many planar surfaces such
as walls, doors or facades. Some ad-hoc solutions to this problem were pro-
posed, such as using special reconstruction procedures which are robust to
planar structure configurations [Pollefeys, Verbiest and Gool, 2002].

Recent works assume either a calibrated camera scenario [Klein and Mur-
ray, 2007], or certain reasonable constraints on the camera calibration pa-
rameters [Brown and Lowe, 2005; Snavely, Seitz and Szeliski, 2006]. This
way the process is more robust, as many critical configurations (such as the
aforementioned scenes containing dominant planar surfaces) are no longer a
problem to SfM.

Furthermore, the projective-to-metric correction step is no longer neces-
sary, because the reconstruction obtained this way is already metric. Hence
the reconstruction obtained is already a faithful representation of the scene
structure, up to scale ambiguity.

2.4.2 High performance large scale reconstruction tech-
niques

The actual maturity of SfM methods is high. In recent years many advances
have been developed to increase the computational efficiency of BA, which is
typically the main computational time bottleneck in SfM applications. This
way SfM applications can obtain larger reconstructions while requiring less
computational time.
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In hierarchical BA [Shum, Zhang and Ke, 1999; Ni, Steedly and Dellaert,
2007] the reconstruction is divided into overlapping areas of fixed size that
have their own local coordinate system for the camera parametrization. De-
pending on the structure and size of the scene, these methods can be more
efficient and scalable than a global BA correction.

Several techniques can be used to speed up the Levenberg-Marquardt
optimization, such as: Preconditioned Conjugate Gradient (PCG) [Agarwal
et al., 2010; Byrod and Astrom, 2010; Wu et al., 2011], the Schur complement
trick [Engels, Stewénius and Nistér, 2006; Jeong et al., 2011], exploiting the
sparsity of the Hessian matrix corresponding to the reprojection error [Engels,
Stewénius and Nistér, 2006; Lourakis and Argyros, 2009; Konolige, 2010], and
so on.

The speed of the LM optimization can also be increased by reducing
the number of views and 3D features which are updated. In [Steedly and
Essa, 2001a] the authors propose a method to evaluate the contribution of
innovative information for each element in the reconstruction problem. This
way incremental SfM applications can reduce the number of free parameters
in the BA procedure to those essentially affected by new correspondence
evidence.

In [Snavely, Seitz and Szeliski, 2008b] the authors propose to reduce the
reconstruction problem into a skeletal reconstruction problem. This reduces
significantly the number of views and features which must be initialized.

Large reconstruction problems initially required clusters of computers to
be solved, which in some occasions took several hours to obtain the optimal
reconstruction. These procedures were later ported to commodity desktop
computers using GPU hardware [Frahm et al., 2010; Wu et al., 2011].

Thanks to these advances, actual SfM techniques can robustly obtain
precise city-scale reconstructions from unstructured image datasets contain-
ing thousands of pictures [Agarwal et al., 2009; Furukawa et al., 2010], in a
completely automatic manner and requiring reasonable computational times.

2.4.3 Methods for real-time SfM reconstruction

At the time MonoSLAM was released, SfM techniques were unable to perform
real-time camera pose and structure estimation due to the computational
cost of BA. Meanwhile, the quality of the reconstruction obtained with the
filtering method was not significantly different from that obtained using batch
SfM techniques [Strasdat, Montiel and Davison, 2010b; Engels, Stewénius
and Nistér, 2006]. This way MonoSLAM became the first system capable of
performing visual odometry with commodity hardware.

At that time, BA implementations were not efficient enough to be used in
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real-time applications for visual odometry. Even with the optimizations de-
scribed in section 2.4.2, using nowadays BA to correct small reconstructions
with a few hundred cameras on average commodity CPU hardware can still
take more than a hundred milliseconds, which is prohibitive for any real-time
application. The development of real-time SfM applications required explicit
computational efficiency enhancements for the BA correction.

These solutions were developed, and keyframe-based SfM techniques be-
came more suitable to compete with feature-based filtering methods for visual
odometry estimation. The actual state of the art makes SfM techniques more
advantageous than filtering methods to perform real-time camera location
and scene mapping [Strasdat, Montiel and Davison, 2010b, 2012]. Filter-
ing methods seem to be more adequate for tight computational efficiency
budgets, while SfM methods offer a better trade-off between computational
efficiency and reconstruction accuracy.

One of the solutions to reduce the computational requirements of SfM
for real-time applications is to run the BA correction in a separated thread
from the rest of the tasks involved in the visual odometry [Klein and Murray,
2007]. The camera updating, the image feature detection, and the matching
for each input frame is performed on the main processing thread, while in the
background thread the reconstruction is being corrected with BA. This way
the camera pose can be resected using the most recently corrected estimations
for the structure parameters, but the tracking process does not require to wait
until BA finishes the actual correction to use them.

In practice this approach is suitable to obtain reconstructions of up to a
few hundred views and a few thousand structure points, which is enough for
medium size indoor scenes or desktop environments. The parallelization is
not adequate however for exploratory tasks where the number of keyframes
can grow unbounded. In this case the BA correction will eventually fail to
keep up with the map correction as it grows indefinitely. New camera poses
will be resected with uncorrected 3D features, and the reconstruction process
will diverge.

A more scalable solution for real-time reconstruction estimation is to use
a variant of BA known as local bundle adjustment (LBA) [Nistér, Naroditsky
and Bergen, 2004; Mouragnon et al., 2006; Engels, Stewénius and Nistér,
2006; Eudes and Lhuillier, 2009]. In LBA, the LM optimization only adjusts
a small fixed amount of views and 3D points from the reconstruction, while
the rest of camera poses and features are not changed. This way, a large
fraction of the reconstruction parameters and terms in the BA cost error can
be ignored during the LM optimization.

To maximize the ratio between error reduction and computational cost,
the LM in the local optimization should adjust those parameters that might
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change in light of new information [Steedly and Essa, 2001b; Ranganathan,
Kaess and Dellaert, 2007]. That is, LBA should correct the views and 3D
points which are prone to contain the largest reprojection errors.

For this reason, a usual practice in LBA is to bundelize the views and 3D
features most recently included in the map. This is an adequate procedure
to correct build-up errors and prevent divergence, as usually the most recent
views in the reconstruction will contain the larger initialization errors.

To ensure convergence during camera tracking processes, it is usually
sufficient to optimize the parameters for the 10 most recently added views
in the map, and the feature points detected in those views. The camera
parameters for older views, as well as the coordinates for 3D points which
have no observations on those views can be left fixed in the LM optimization.
The local BA correction can be performed this way each time a new keyframe
is added to the map, and still satisfy a real-time constant computation time
using ordinary commodity hardware [Engels, Stewénius and Nistér, 2006].

Real-time SfM applications based on LBA can produce camera pose esti-
mations with significant dead reckoning error, especially in long-term track-
ing sessions. These drift errors become apparent when the camera revisits a
given area of the scene. Under these conditions, the new location estimations
for the features in the structure may not coincide with the location previously
estimated for those features.

A solution to correct these discrepancies while satisfying a constant pro-
cessing time is to use the local correction combined with a relative camera
parametrization, and include loop closing correspondences in the LBA correc-
tion. This approach is known as relative bundle adjustment (RBA) [Holmes
et al., 2009; Sibley et al., 2009, 2010a; Strasdat et al., 2011].

The reconstruction obtained by BA with the relative parametrization is
equivalent to the reconstruction obtained with the regular absolute reference
frame parametrization [Holmes et al., 2009; Sibley et al., 2010b]. The evalua-
tion of the cost error and the Jacobians using the relative parametrization can
be more complex than using a classical single reference frame parametriza-
tion, but the overall computational complexity of each iteration in the RBA
correction is O(n3

v) for the worst case, being nv the number of views, which
matches the complexity of classical BA [Sibley et al., 2009].

The reconstruction obtained with the classical global BA is intended to
be metric, or Euclidean. In contrast, when the relative parametrization is
combined with a local correction, BA is intended to obtain reconstructions
with a topology corresponding to a connected Riemannian manifold, in the
sense that they are locally metric and globally topological.

The local RBA correction can be seen as a continuous submapping ap-
proach, which lacks the shortcomings of classical submapping methods such
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as map overlapping, data duplication, and does not need to merge the submaps
into a global euclidean frame.

The reconstructions obtained with the local RBA will have a high accu-
racy at the local scale, and with the adequate selection of cameras to update,
loop closing gaps will be corrected. However the global configuration of the
structure and camera poses estimated with RBA can contain arbitrarily large
errors. The authors define these Riemannian reconstructions as topometric.

These topometric reconstructions can be useful for certain autonomous
navigation and robotic applications, where a robot must reach a target lo-
cation while avoiding physical obstacles. The local metric accuracy of topo-
metric reconstructions ensures that the robot will know the precise size and
volume of obstacles in the way, while the topological properties ensure that
it will be able to find a valid path to any designated target location. These
results are sufficient for many autonomous navigation applications, which do
not require a single global Euclidean representation, or precise large-range
distance estimation.

2.5 Structureless motion correction methods

Motion correction methods are used in reconstruction applications for several
different purposes, such as drift error reduction in presence of loop closing
evidence, or direct camera pose initialization without structure computation.

Some structureless solutions take advantage of certain scene features to
obtain a direct initialization of the camera poses, without incremental pro-
cedures which must estimate the structure. For example, including camera
pose information derived from vanishing points [Sinha, Steedly and Szeliski,
2010; Crandall et al., 2011] which can be estimated from straight parallel
and perpendicular lines, and are quite common in certain structured artifi-
cial scenarios such as cities.

However in more general reconstruction problems it may be difficult to
find and use these visual cues to obtain a direct motion initialization.

In this section we will review structureless methods for motion estima-
tion for general scene configuration, i.e. which do not rely on special scene
features.

2.5.1 Pose graph optimization

Most visual odometry applications use LBA, which produces a significant
drift error in long camera tracking sessions. Pose graph relaxation (or pose
graph optimization) [Olson, Leonard and Teller, 2006; Grisetti et al., 2007;
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Strasdat, Montiel and Davison, 2010a] methods can be used in these appli-
cations to correct the drift error using loop closing information.

These methods take the estimated camera motion provided by the vi-
sual odometry system, and use the loop closing information to correct drift
errors. This is done by optimizing a measurement cost defined on pairwise
relative camera motion constraints, obtained from two different sources: the
input camera odometry, and visual loop closing information. The following
is a general expression for the cost error usually optimized by pose graph
correction methods:

CPG =
∑
Tij∈T

r(Tij, T̂i, T̂j)
T Λij r(Tij, T̂i, T̂j) (2.39)

In this equation Tij represents a relative motion transformation measured
between the camera poses for the views i and j. The set T contains all the
measured motion transformations available for the pose graph correction.
The terms T̂i, T̂j represent the camera poses estimated for the views i and
j, w.r.t. a global fixed reference coordinate system. The function r obtains
the residual vector for the discrepancy between the measured and estimated
motions. Finally, Λij is the inverse of the covariance matrix for each one of
the residual vectors in the cost.

We can represent the estimated camera motions T̂i, T̂j as elements from
the group of rigid Euclidean transformations SE(3):

T =

(
R t

0 1

)
(2.40)

In this case the residual vector r(Tij, T̂i, T̂j) can be evaluated from the
composition of the measured and estimated motions as follows:

r(Tij, T̂i, T̂j) = logSE(3)(Tij T̂i T̂
−1
j ) (2.41)

This is the approach proposed in [Strasdat, Montiel and Davison, 2010a].
Another way to evaluate the residual function is to measure the distance be-
tween the camera pose parameters directly in the Lie algebra se(3) associated
to SE(3):

r(Tij, T̂i, T̂j) = logSE(3)(Tij T̂i)− logSE(3)(T̂j) (2.42)

This approach is similar to that proposed in [Sünderhauf and Protzel,
2012].

Assuming that the estimation errors for the measured relative camera
poses are Gaussian and independent, the optimization of this cost will obtain
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results equivalent to a delayed-state filtering map adjustment [Lu and Milios,
1997]. The covariance matrices Λij in the cost can be coarsely approximated
[Strasdat et al., 2011]. We can also assume in most cases with adequate
results as well, that the individual measurement parameters are statistically
independent, and their uncertainty magnitudes are equal. In this case the
covariance matrix Λij is exactly the identity [Strasdat, Montiel and Davison,
2010a].

The cost (2.39) can be conceived as a graph where nodes represent poses,
and the links represent measured relative pairwise motion constraints. Hence
the name of pose graph optimization.

Some of the relative constraints in the set T are obtained from the input
odometry estimated by the tracking system. The camera poses provided by
the tracking are used to estimate relative pairwise motions between views:

T̂ij = T̂j T̂
−1
i (2.43)

These odometry constraints will constitute the backbone structure of the
pose graph. This way the input camera poses will satisfy exactly all the
above equations for the initial pose graph.

To correct drift errors, the initial graph is augmented with relative mo-
tions estimated from loop closing evidence. These relative motions can be
obtained from image point matchings, detected between views previously not
related by the real-time SfM camera tracker.

For example, the relative motion can be estimated using the methods de-
scribed in section 2.3.4 from the epipolar geometry for the matchings. How-
ever these methods can be unreliable and produce motion estimations with
significant errors. Furthermore, the estimated motion will have an inherent
scale ambiguity.

The structure estimated by the real-time SfM tracker can be used to
estimate the loop closing motion constraints, by finding the alignment of the
3D points contained in the loop closing views [Strasdat, Montiel and Davison,
2010a]. The optimization of the full pose graph containing odometry and loop
closing constraints will reduce the drift errors in the estimated motion, and
correct loop closing gaps in the reconstruction.

During large camera trackings the drift error can produce significant scale
changes in the estimated structure. The relative motion constraints used
in the pose graph correction impose a fixed baseline distance between the
camera centers, which due to this scale drift can be incorrect.

To deal with this problem, instead of optimizing over rigid euclidean
transformations T (elements of the group SE(3)) the pose averaging can
optimize over elements S of the group of similarity transformations Sim(3)
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[Strasdat, Montiel and Davison, 2010a]:

S =

(
sR t

0 1

)
(2.44)

This relative parametrization introduces the extra parameter s, repre-
senting the scale for each transformation in the cost error of the pose graph
correction.

2.5.2 Motion averaging methods

Motion averaging methods can be used to obtain a direct initialization of
the reconstruction parameters in SfM applications, without computationally
expensive iterative or incremental procedures which must estimate the scene
structure.

With accurate camera pose estimations the structure can be obtained us-
ing the triangulation methods described in section 2.3.5. This initial recon-
struction configuration (averaged camera poses and triangulated structure)
should be a good starting point for the BA optimization.

To obtain valid camera pose estimations these averaging methods min-
imize the residuals for relative motion constraints estimated from pairwise
image feature correspondences, in a similar way to pose graph correction.
However, the relative motions must be measured from the set of pairwise
correspondences detected between the input views.

For example, this can be done solving the epipolar geometry, as described
in section 2.3.4. Again, these methods can eventually provide unreliable
measurements.

Different proposals for the motion averaging use different norms (such
as the mean, median or the uniform norm) in the minimization, thus ob-
taining varying results. Assuming perfect motion estimations, the results
obtained by the averaging are independent of the choice norms, and any of
them should provide the optimal configuration. Each norm, however, has a
different tolerance against outliers and estimation noise, so in presence of in-
accurate relative motions the results obtained with different norms will vary
significantly.

Motion averaging under the L2 norm

In [Govindu, 2001] the author proposes an initialization method to estimate
the camera pose orientation Ri and center Ci for each view, using measured
pairwise relative camera motions.
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The proposed procedure first estimates the pairwise relative camera orien-
tations Rij and translation directions tij from image feature correspondences,
using pairwise camera pose initialization methods such as those described in
section 2.3.4.

Each relative camera orientation Rij estimated between the i-th and j-th
views imposes the following constraint on the relative orientation between
those cameras:

Rij = RjR
T
i (2.45)

Using a quaternion rotation parametrization, each one of these nonlinear
equations can be converted into the following homogeneous linear equation,
where qi and qj are the quaternions corresponding to the absolute rotations
Ri and Rj [Horn, 1987]:

Qqi − qj = 0 (2.46)

The matrix Q in this expression is:

Q =


q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0

 (2.47)

where (q0, q1, q2, q3)T are the quaternion coordinates for the relative ro-
tation Rij. Stacking the linear equations for each relative rotation we can
propose an homogeneous linear system, which can be solved for the quater-
nion parameters corresponding to the absolute camera rotations {Ri}i=1..n.

Once obtained the absolute camera orientations, the translations (or cen-
ter locations) can be obtained as follows. The absolute and relative camera
translations for a view pair should satisfy the following equation:

tij ∝ Cj −RijCi (2.48)

which can be rewritten as the following homogeneous linear equation:

[tij]× (Cj −RijCi) = 0 (2.49)

The linear equations for each relative translation can be stacked once
again to obtain an homogeneous linear system, which can be solved for the
camera centers [Govindu, 2001].

In [Govindu, 2004] the author proposes an iterative correction method
which refines simultaneously the camera orientations and translations under a
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single L2 norm cost. Each measured relative motion Tij provides the following
equation for the correction:

Tij = T̂j T̂
−1
i (2.50)

These equations are mapped to the Lie algebra se(3) with the logarithmic
operator:

logSE(3)(Tij)− logSE(3)(T̂i) + logSE(3)(T̂j) = 0 (2.51)

The optimal solution for the averaging method proposed in this work is
equivalent to the least squares solution for these equations. In each iteration
the averaging method evaluates the motion residuals in SE(3), and then
switches back to the Lie algebra se(3) to reduce them, thus correcting the
corresponding camera poses.

The results obtained by this method and the pose graph optimization
are similar, as both methods obtain the least squares solution for a set of
equations derived from relative pose constraints. In most cases the camera
parametrization adopted by pose graph optimization techniques is the same
one used in this averaging procedure. The only difference is the way in which
both methods evaluate the residuals.

In the averaging method the scale ambiguity is solved by fixing the base-
line distance for each relative motion Tij in each iteration of the averaging
procedure with a good approximation estimated from the linear equations in
(2.49).

Motion averaging under the L∞ norm

The optimization of nontrivial cost errors based on the L2 has several prac-
tical problems to obtain valid camera pose initializations in large reconstruc-
tion problems.

These costs usually have many local minima. Hence minimization meth-
ods are likely to diverge from the optimal solution if the initial configuration
is not close enough to the optimal value. An initial camera pose configura-
tion can be obtained using the algebraic methods described in the previous
section, but it may not be in the basin of the optimal configuration for the
BA correction.

Furthermore, relative motions estimated with common pairwise initial-
ization methods are prone to contain large estimation errors due to a com-
bination of several factors. The initialization of camera poses from pairwise
image correspondences is itself an ill-posed problem. Many pairwise initial-
ization techniques will eventually produce bad relative motion estimations in
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large reconstruction problems. There are several factors which can contribute
to this fact. For example, an insufficient number of feature matchings, the
image measurement noise, or an insufficient baseline distance between the
cameras. Direct averaging of these relative camera translations can produce
incorrect results.

Another source of error in pairwise motion estimations can be due to
the visual appearance similarity of certain areas in a scene. Image matching
techniques could incorrectly associate features detected at different locations
featuring visual resemblance, assuming that they correspond to the same
place. This problem is known as perceptual aliasing.

In practical reconstruction problems the occurrence of these relative mo-
tion outliers grows with the size of the reconstruction problem. For this
reason methods for motion averaging under the L2 norm can fail to provide
accurate or even valid camera pose estimations, especially in large recon-
structions.

To overcome these problems, in [Sim and Hartley, 2006a] the authors
proposed a method to average the relative translations under the uniform
norm, which formulates the translation averaging problem as a SOCP prob-
lem [Hartley and Schaffalitzky, 2004]. This optimization method finds the
translation configuration by minimizing the maximum angle between the
measured relative translations tij, and the corresponding expected relative

translation t̂ij = Ĉi − Ĉj.

Like other SOCP problems, the optimization space in this case is convex.
The correction converges to the optimal configuration without requiring a
good initial camera translation configuration. Furthermore, like other SOCP
problems, an outlier-free solution can be usually obtained by repeating iter-
atively the SOCP correction after dropping terms with the largest residuals.

Motion averaging under the L1 norm

In [Hartley, Aftab and Trumpf, 2011] the authors adapted the Weiszfeld
algorithm [Weiszfeld and Plastria, 2009] to perform rotation averaging under
the geometric median (L1 norm). This improves the tolerance of the method
to outliers, as this algorithm can find in principle the optimal configuration
for the median norm of the residuals, with up to a 50% presence of outliers.

One of the problems of this procedure is that, like costs based on the L2

norm, the median cost has many local minima. Unlike the L∞ norm, a good
initialization is required to reach the optimal configuration in the averaging.
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2.5.3 Structureless BA correction methods

Structure-less BA methods, based on epipolar or trifocal constraints, are an
alternative to optimization methods based on relative motion constraints.
Like relative motion constraints, epipolar and trifocal constraints can be
parametrized to depend only on the camera information, without requiring
structure parameter estimations (as seen in section 2.3.2). Thanks to this
property, motion correction methods based on epipolar or trifocal constraints
can be designed to not depend on the structure parameters [Zhang and Shan,
2003; Steffen, Frahm and Förstner, 2010; Rodŕıguez, López-de-Teruel and
Ruiz, 2011b]. For this reason, the costs optimized by these methods can have
a significantly reduced amount of free parameters compared with the BA
cost. Therefore these costs are smoother functions with less local minima,
and can be optimized with correction methods more computationally efficient
than LM.

The authors in [Vidal et al., 2001] proposed a cost error based on geo-
metric epipolar constraints. Using Lagrange multipliers they derive a closed
form expression of this error which can be optimized to correct the camera
poses of the views in the reconstruction. However, this optimization still
requires the structure, which must be alternatively reestimated after each
camera pose correction using the optimal triangulation procedure proposed
in [Sastry, 1999].

In [Zhang and Shan, 2003] the authors propose a cost error which simulta-
neously uses both epipolar and trifocal constraints, to correct the estimated
camera poses corresponding to the views in a given image sequence. To speed
up the optimization, the cost error is linearized by neglecting the second or-
der elements in the Taylor expansion [Zhang and Shan, 2001] of the geometric
cost. This way each view pair in the reconstruction contributes to the cost
with a term equivalent to the Sampson distance. This cost is parametrized
only with the camera parameters, thus it is significantly faster to optimize
than the original geometric cost for two-view constraints.

Most costs errors based on epipolar and trifocal constraints (such as the
two aforementioned) usually include only terms corresponding to views ad-
jacent in the image sequence. This makes the underlying optimization un-
suitable to correct dead-reckoning errors with loop closing information. A
solution is to include terms in the error cost for every pair and triplet of
views in the reconstruction related by point correspondences. An example
of this approach is [Steffen, Frahm and Förstner, 2010], where the authors
describe another geometrical cost error which includes a trifocal constraint
for each triplet of the views in the reconstruction.

In [Indelman et al., 2012] the authors describe the incremental light bundle
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adjustment (iLBA) optimization, a motion correction method which combines
a cost based on constraints defined on pairs and triplets of views with the
incremental smoothing technique. In this approach not all camera poses are
corrected in the optimization, which includes only those constraints which
are essential for the error correction. This way the iLBA can outperform the
classical BA algorithm in terms of computational complexity, requiring a sig-
nificantly shorter time to obtain the corrected camera poses while achieving
a similar accuracy.

The GEA correction

In [Rodŕıguez, López-de-Teruel and Ruiz, 2011b] we proposed GEA, an effi-
cient motion correction method based on algebraic epipolar constraints. The
GEA cost error includes a constraint between each pair of views which are
related with point correspondences. Hence, GEA can be applied in batch
or real-time SfM applications to correct reconstructions obtained either from
unstructured image data-bases, or long term video sequences with significant
drift errors.

The algebraic constraints do not depend on the structure parameters,
and do not include auxiliary variables. For these reasons, and thanks to
the algebraic reduction of the matching information, the GEA cost can be
optimized very efficiently. Despite the simplicity of this algebraic epipolar
error, with the adequate camera parametrization the error of the camera
poses estimated with GEA will be, under general circumstances very close
to the optimal reprojection error obtained with BA. Meanwhile, thanks to
the structure parameter marginalization and the simplicity of the algebraic
constraints, we can outperform the computational efficiency of state of the
art BA implementations with GEA, even when all the views and epipolar
constraints are included in the optimization. The matching data is reduced
in a precomputation step which saves a significant computation time in each
optimization iteration. The cost error is corrected with an efficient Gauss-
Newton optimization, which can provide a better error reduction speed than
LM, and exploits the sparsity of the second level system in a similar way to
what most state of the art BA implementations do.

Once GEA has obtained the optimal camera pose configuration, we pro-
pose to estimate the structure using the linear triangulation methods de-
scribed in section 2.3.5. For general motion sequences, the difference between
the optimal reprojection error obtained with BA, and the reprojection error
for the GEA cameras with the triangulated structure will be very small, in
most cases marginal. The GEA algorithm can thus be used in practice to
obtain a reconstruction configuration which is at a small correction away
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from the optimal BA configuration, using only a fraction of the computation
time required by BA.

2.6 Closure

In this chapter we have discussed the two main types of techniques used in
reconstruction applications: VSLAM techniques, based on filtering methods,
and SfM based on error optimization methods such as BA. Both filtering and
error optimization methods provide a similar trade-off between the compu-
tational time cost required, and the accuracy of the reconstruction obtained.
Thanks to recent advances, these methods have become practical and power-
ful tools to solve problems such as visual reconstruction and robot navigation
in real-time and off-line applications.

We have introduced structureless motion correction techniques, which can
reduce the computational cost of reconstruction applications in comparison
with other correction methods such as BA. In most cases the structure can be
efficiently computed from these motion estimations. This way structureless
correction methods can be used to reduce the cost of reconstruction appli-
cations without sacrificing a significant accuracy on the motion estimations
obtained, where using other correction methods which involve the structure
parameters would be unpractical due to their computational cost.

Some of these methods require the estimation of relative motions between
view pairs. Depending on the method used to estimate these motions, they
can contain a significant error [Kahl, 2005] which could degrade the results
obtained in the motion correction. Other structureless correction methods
such as GEA improve the estimated motions by optimizing a cost defined
directly on algebraic epipolar constraints. The computational efficiency and
accuracy advantages of this approach are discussed in the following chapters
of this document.
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Chapter 3

Global epipolar adjustment for
motion correction

This chapter provides an in-depth description of the GEA method, along with
implementation details to perform a high performance camera correction, and
a comparison with other correction techniques used in SfM and VSLAM, such
as BA and pose-graph optimization.

3.1 The GEA cost error

We will assume that we have a reconstruction problem with a set of n views,
where each pair of views is related by a set of pairwise point correspondences
Mi,j = {p ↔ q}. The GEA cost error is defined for this reconstruction
problem as follows:

CGEA =
n−1∑
i=1

n∑
j=i

∑
p↔q∈Mi,j

(
qTE†ijp

)2

(3.1)

Matrix E†ij is a normalized version of the essential parametrization for the
views i, j defined in equation (2.16):

E†ij =
1

‖tj − ti‖
Rj [tj − ti]×R

T
i (3.2)

The normalization 1/‖tj−ti‖ is introduced in the expression to make the
evaluated epipolar residuals independent of the motion scale:

1

‖tj − ti‖
Rj [tj − ti]×R

T
i = Rj

[
tj − ti
||tj − ti||

]
×
RT

i (3.3)
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This also prevents the convergence of the cost error optimization to in-
correct configurations for the camera poses, such as ti = tj for i 6= j which
would produce zero epipolar residuals.

Like other algebraic epipolar costs such as the Sampson distance the terms
in the GEA cost error are not explicitly parametrized with the 3D structure.
The only parameters involved are those corresponding to the camera param-
eters.

3.2 Efficient GEA cost error optimization

This section details how to obtain an efficient implementation for the GEA
correction procedure.

3.2.1 Compact algebraic epipolar cost

The computational time required to evaluate the algebraic cost error in equa-
tion (2.34) grows linear with the number of image correspondences |M|. Any
iterative optimization method used to minimize CAlg should evaluate several
times this cost before reaching the optimal camera configuration. In these
evaluations the elements for the vF vector may vary, but the values for the
U matrix remain fixed, as the set of feature correspondences M does not
change during the optimization.

With certain precomputations on the coefficient matrix U the evaluation
time of cost CAlg becomes constant with the number of matchings, and hence
the iterative optimization can be significantly accelerated. One way to do so
is to substitute U in expression (2.34) by an alternative reduced matrix Ũ of
size 9× 9 such that:

UTU = ŨT Ũ (3.4)

This way the new expression for the algebraic cost will be mathematically
equivalent to the original expression:

CAlg(M, F ) = vTFU
TUvF = vTF Ũ

T ŨvF (3.5)

However, the optimization of the new cost will be significantly faster, as
the evaluation time becomes constant.

The reduced matrix Ũ can be precomputed from U using several matrix
decompositions before the minimization of the algebraic cost takes place, and
be reused in each iteration of the optimization:
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• Using the SVD decomposition U = XDV T , the reduced matrix can be
computed as Ũ = DV T :

UTU =
(
V DXT

) (
XDV T

)
= (V D)

(
DV T

)
= ŨT Ũ (3.6)

• The reduced matrix can also be computed from the Cholesky decom-
position of the original matrix UTU = LLT as Ũ = LT :

UTU = LLT = ŨT Ũ (3.7)

• Given the eigendecomposition UTU = QΛQT , the reduced matrix can
also be obtained from the expression Ũ =

√
ΛQT :

UTU = QΛQT = ŨT Ũ (3.8)

• Finally, the QR decomposition U = QR also provides the desired re-
duced matrix as Ũ = R:

UTU =
(
RTQT

)
(QR) = RTR = ŨT Ũ (3.9)

Any of these approaches used to speed up the evaluation of the algebraic
error by precomputing Ũ would certainly accelerate each step of the cost
optimization, but at the expense of evaluating a matrix factorization, which
can be computationally expensive. Moreover, some of these factorization
methods can introduce numerical errors which may become significant in
certain occasions. For example, when U has singular values near or equal
to zero, the reduced matrix estimated with the Cholesky decomposition can
contain large numerical errors.

An alternative method to speed up the algebraic cost optimization is to
use the following substitution in the expression (2.34):

UTU = Ω (3.10)

This way the algebraic epipolar cost CAlg becomes:

CAlg(M, F ) = vTF Ω vF (3.11)

The matrix Ω is a symmetric matrix of size 9× 9 which does not change
during the optimization process. For this reason the evaluation time for this
version of the algebraic cost requires a constant time, just like the algebraic
cost in (3.5).

Obtaining Ω from matrix U does not require a factorization. Still, it
can require arbitrarily large memory storage sizes depending on the way the
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product UTU is evaluated, as the storage size of matrix U depends on the
number of feature correspondences.

An efficient way to estimate Ω from the input matchings M is to accu-
mulate the element values with the following summatory:

Ω =

|M|∑
k=1

uku
T
k (3.12)

In this expression, each uk is the column vector defined in equation (2.32)
obtained from the coordinates of the k-th feature matching. Many of the
values in each term uku

T
k of this summatory are repeated, due to the fact that

the product of several pairwise combinations of different elements from each
vector u will produce the same numerical value. For example, the elements
(1, 9) and (3, 7) in both the matrix uku

T
k and the accumulated matrix Ω will

be equal, given that:
u1u9 = u3u7 = qxpx (3.13)

This is also the case for other pairs of values in these matrices1. This
way each term in the summatory (3.12) will only have 36 different values.
Furthermore, most of the computations required to evaluate terms which are
different in these matrices can be factorized. For example, the element (5, 8)
can be computed by multiplying the element (8, 8) by qy, and the element
(2, 5) can be computed by multiplying the element (5, 8) by qx:

u5u8 = u8u8qy = p2
yqy (3.14)

u2u5 = u5u8qx = qxp
2
yqy (3.15)

1As can be seen in the following expression:

uku
T
k =



qx
2px

2 qx
2pxpy qx

2px qxpx
2qy qxpxqypy qxpxqy qxpx

2 qxpxpy qxpx

qx
2pxpy qx

2py
2 qx

2py qxpxqypy qxpy
2qy qxpyqy qxpxpy qxpy

2 qxpy

qx
2px qx

2py qx
2 qxpxqy qxpyqy qxqy qxpx qxpy qx

qxpx
2qy qxpxqypy qxpxqy qy

2px
2 qy

2pxpy qy
2px qypx

2 qypxpy qypx

qxpxqypy qxpy
2qy qxpyqy qy

2pxpy qy
2py

2 qy
2py qypxpy qypy

2 qypy

qxpxqy qxpyqy qxqy qy
2px qy

2py qy
2 qypx qypy qy

qxpx
2 qxpxpy qxpx qypx

2 qypxpy qypx px
2 pxpy px

qxpxpy qxpy
2 qxpy qypxpy qypy

2 qypy pxpy py
2 py

qxpx qxpy qx qypx qypy qy px py 1


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To speed up the data reduction, we can exploit these redundancies and
accumulate the 36 different values for each term uku

T
k during the summatory

evaluation, instead of computing the 81 elements for the full uku
T
k matrix.

Once accumulated, the 36 unique elements can be arranged into a full Ω
matrix.

The trick of the reduced matrix was originally suggested in [Hartley,
1998b] to speed up not only the pairwise camera pose estimation from the
epipolar geometry constraint, but also several other tasks involving the opti-
mization of an algebraic cost, such as trifocal tensor estimation and camera
resection. It has been applied to obtain a significant speed up in other prob-
lems as well, such as relative motion estimation from point-cloud alignment
[Ros et al., 2013]. The method described in this section, which does not
require the factorization of the UTU matrix, could also be applied to the
resolution of these problems.

The evaluation time for the algebraic costs in equations (3.5) and (3.11)
is similar. However the estimation of the Ω matrix requires a significantly
smaller computation time than the evaluation of the reduced matrix Ũ , and
is also less prone to numerical errors which could degrade the results obtained
with the cost optimization.

The results described in this section can be used to rewrite the expression
(3.1) for the GEA cost error as the more compact expression:

CGEA =
n−1∑
i=1

n∑
j=i

vT
E†ij

ΩijvE†ij
(3.16)

In this new cost the term vE† is a vector of size 9 containing the elements
of the matrix E†.

We can drop from this cost those terms corresponding to view pairs which
are not related by feature correspondences. These terms should provide a
zero contribution to the cost error, as the Ωij matrix must be zero. With this
idea in mind the cost (3.16) can be simplified to our final compact expression
for the GEA cost error:

CGEA =
∑

Ωij∈O

vT
E†ij

ΩijvE†ij
(3.17)

where O is the set of Ωij matrices which were obtained from one or more
image correspondences (|Mi,j| = 0):

O = {Ωij}|Mij |6=0 (3.18)
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3.2.2 First and second order optimization methods

To correct the GEA cost error and improve the quality of the estimated cam-
era parameters, we must use a numerical optimization technique. Formally,
these techniques find the vector x that minimizes a given cost error c(x).
Most of these techniques are iterative methods which start from a first initial
estimation for the vector x, which is updated in each iteration with an in-
crement vector δ, so the cost c(x + δ) is smaller than the original value c(x).
This process finishes when either the norm of δ, or the cost for the actual so-
lution vector are sufficiently small. The algorithm 1 contains a basic scheme
for this kind of numerical methods.

Algorithm 1 General scheme for numerical optimization methods
Input:

x← initial state vector x0.
c← cost function.

Method:

repeat
δ ← increment for the state vector towards the minimum of c(x)
x← x + δ

until optimal not reached

Numerical optimization methods can be used to solve model data fitting
problems such as BA, by minimizing the following cost error derived from
the expression in equation (2.14) under the L2 norm:

c(x) =
1

2
||f(x)− y||22 (3.19)

In the case of BA, the vector x is known as the state vector, and will
contain the values for the camera and structure parameters. The function f
maps the state vector to the expected image coordinates for the 3D features,
provided the camera and structure configuration. The vector y contains the
measured image coordinates for the 3D features. This way the cost evaluated
corresponds to the reprojection error of the points in the reconstruction, and
its optimization reduces the distance between measured and estimated image
projections for the 3D features.

There is a large variety of numerical optimization methods which can be
used to correct this cost error. Some optimization methods such as Powell’s
dog-leg can provide good correction results. However, first and second order
methods are the most widely used ones for residual correction under the L2

norm. Due to its robustness and efficiency, most BA implementations use
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LM to correct the reprojection error, which combines the advantages of both
first and second order optimization methods.

First-order optimization methods such as gradient descent offer a robust
convergence to the optimal configuration, but at the cost of a slow error
reduction speed. These methods are based on the fact that any given function
decreases in the direction of the negative gradient. The gradient of c at the
state vector x can be evaluated with the expression:

∇c = JT (f(x)− y) (3.20)

where J is the Jacobian matrix of the function f evaluated at the point
x. Hence, the increment vector δ in each iteration of a gradient descent
optimization is obtained as follows:

δ = −αJT (f(x)− y) (3.21)

The value α controls the size of the increment in each step. If the initial
state vector x is inside the basin of the optimal configuration of c, and the α
value is sufficiently small, the gradient descent is ensured to reduce the value
c(x) in each optimization step, and eventually reach the optimal configura-
tion. However, the convergence to the optimal configuration can be slow,
specially when the α value is too small. On the other hand, a value too large
will produce large update steps, which can make the gradient descent di-
verge from the optimal configuration. For these reasons the gradient descent
optimization method is rarely used to optimize cost errors in practice.

Second order techniques such as the Newton or Gauss-Newton methods
offer a faster convergence speed. Depending on the nature of the cost error,
these methods can have a quadratic rate of convergence.

The cost c can be approximated in the vicinity of a given point x with
the following second-order Taylor series expansion:

c(x + δ) ' c(x) + δTJT (f(x)− y) + δTHδ (3.22)

In this expression H is the Hessian matrix of the cost c evaluated at the
point x. This approximation will be accurate as long as c has the shape
of a quadratic function near x. If the basin for the optimal of c contains
the state vector x and has a convex shape, the optimal configuration for
the Taylor expansion will be a good approximation for the location of the
optimal configuration for c.

The Newton method uses this fact to evaluate the increment δ in each
optimization step as the vector which optimizes the Taylor expansion in
equation (3.22). This vector can be obtained by solving the following linear
system:
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Hδ = −JT (f(x)− y) (3.23)

The Hessian matrix can be obtained with this expression:

H = JTJ +
n∑

i=1

(f(x)− y)iD
i (3.24)

Where each matrix Di contains the second derivatives of c with respect
to x:

Di
jk = (f(x)− y)i

∂2(f(x)− y)i
∂xj∂xk

(3.25)

The Gauss-Newton method approximates the Hessian matrix with the
following expression:

H ' JTJ (3.26)

which is accurate, as long as the expression f(x)−y for the residual vector
is approximately linear, or sufficiently small near x. This way the equation
(3.23) becomes:

JTJδ = −JT (f(x)− y) (3.27)

The reason why this approximation is more commonly used than the
original Newton step is that the second derivatives of certain costs such
as the BA or GEA cost errors can be difficult to evaluate, and the Gauss-
Newton approximation usually produces an optimization sufficiently fast and
accurate.

However, the correction performed by second order techniques can be too
aggressive in occasions, especially when the second order Taylor polynomial
approximation differs too much from the real cost error. Hence these opti-
mization methods can diverge during the correction of high dimensional and
strongly non quadratic cost functions, such as the BA cost error. For this
reason, most actual state of the art BA implementations use LM, which com-
bines the fast error reduction speed of second order methods and the smooth
convergence properties of first order methods.

LM is basically a Gauss-Newton method modified so that it can behave
like a gradient descent when the quadratic error optimization diverges. In
LM the increment in the state vector is obtained by solving the following
step equation: (

JTJ + λI
)
δ = −JT (f(x)− y) (3.28)
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The damping parameter λ controls the convergence speed of the algo-
rithm. When this value is close to zero, the step equation is equivalent to the
Gauss-Newton one in (3.27). When the λ value is sufficiently high, the term
JTJ has a lesser influence in the solution δ for the LM step equation, and it
becomes similar to a gradient descent step equation with a small α value.

During the LM optimization the λ parameter must be tuned dynamically
to obtain an optimal convergence speed. When the state vector is updated
in each iteration, LM evaluates the cost error. If the cost for the new state
vector decreases, the optimization is converging. Hence we must be closer
to the optimal value, and the λ parameter can be reduced as well, as the
function c will tend to behave more quadratically. If the cost error grows
the state vector x must be restored to the previous configuration, and the λ
parameter should be increased to reduce the update step size in future LM
iterations.

An outline for the LM optimization method is provided in the algorithm
figure 2.

Algorithm 2 Basic Levenberg-Marquardt optimization algorithm.
Input:

x← initial state vector x0.
y← target measurements vector.
f ← vector function for expected measurements.
λ← initial value for the damping parameter.

Method:

repeat
J ← Jacobian matrix for f (x)
δ ← solve from equation:(

JTJ + λI
)
δ = −JT (f(x)− y)

if (‖f (x)− y‖ > ‖f (x + δ)− y‖) then
x← x + δ
decrease λ

else
increase λ

end if
until optimal not reached
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3.2.3 Numerical optimization of the GEA cost

Like other costs such as the reprojection error optimized in BA, the GEA
cost can be efficiently optimized with a second order method. However,
the GEA cost has a smaller amount of local minimal configurations due to
the smaller number of free parameters. Furthermore, the results described
in chapter 5 suggest that the shape of the attraction basin of the optimal
configuration for this cost is in general more similar to a quadratic function.
For these reasons this cost can be successfully optimized using the Gauss-
Newton method, instead of the more complex LM method commonly used
to optimize the reprojection error in BA.

Given a reasonably good initial configuration for the camera poses, the
Gauss-Newton correction of the GEA cost will converge to the optimal con-
figuration, in most cases. Solving the step equation requires a computational
time which, in the worst case, can grow cubic with the number of variables
in the cost error. Therefore, it usually has a critical impact in the computa-
tional requirements of BA, provided the large number of parameters in the
optimization. For this reason, most BA implementations use sparse reso-
lution techniques to solve efficiently the step equation, especially for large
reconstruction problems [Konolige, 2010]. However, some problems can ap-
pear during the optimization depending on the method used to solve the step
equation. For example, in occasions the coefficient matrix for the step equa-
tion can be near singular. This could be the case when using a quaternion
parametrization for the camera orientation in GEA, instead of a minimal
parametrization such as Euler angles or elements from the Lie algebra so(3).
This is also the case when the scale of the reconstruction is not fixed. Un-
der these circumstances the solution to the step equation is not unique, as
a continuum of configurations for the reconstruction parameters will provide
the same global optimal error. The following two subsections discuss how to
solve this problem, and succesfully solve the Gauss-Newton step equation in
GEA using both direct, and iterative solvers.

Solving the step equation with the sparse Cholesky factorization

Many numerical software libraries provide sparse Cholesky factorization meth-
ods [Intel, 2012; Chen et al., 2008; Davis, 2012], which can solve the step
equation in the LM optimization. However, Cholesky solvers can fail when
the step equation is singular. In LM, this is prevented when using a non-
zero value in the damping parameter. In a Gauss-Newton optimization, the
singularity of the coefficient matrix can also be prevented by adding a small
fixed ε value to the diagonal elements of the JTJ matrix in the step equation,

58



3.2. Efficient GEA cost error optimization

which becomes: (
JTJ + εI

)
δ = −JT (f(x)− y) (3.29)

The ε parameter is mathematically equivalent to the λ parameter in LM,
but has a different purpose. It can be set to a fixed value, and never be
changed for the whole optimization. The value should be sufficiently large to
prevent the singularity of the coefficient matrix. At the same time, it should
be sufficiently small so that the optimization process is not damped. This
way, the error reduction speed of the optimization will be optimal.

A general scheme for this modified Gauss-Newton method can be found
in the algorithm 3.

Algorithm 3 Modified Gauss-Newton optimization method.
Input:

x← initial state vector x0.
y← target measurements vector.
f ← vector function for expected measurements.
ε← fixed small value, zero if using PCG.

Method:

repeat
J ← Jacobian matrix for f (x)
δ ← solve from equation:(

JTJ + εI
)
δ = −JT (f(x)− y)

x← x + δ
until optimal not reached

Solving the step equation using iterative sparse solvers

An efficient solution to prevent the problems arising from factorizing singular
coefficient matrices when solving the vector δ for the step equation is to use
iterative sparse solvers[Agarwal et al., 2010; Jeong et al., 2011], instead of
a sparse Cholesky factorization method. Iterative solvers usually obtain the
increment step δ by minimizing the following quadratic cost:

CCG(x) = ‖Ax− b‖2 (3.30)

Where A and b are respectively the coefficient matrix and the right-hand
side vector of the step equation. For example, in the case of a Gauss-Newton
optimization method, the coefficient matrix A and the objective vector b for
the iterative solver are respectively:
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A = JTJ (3.31)

b = −JT (f(x)− y) (3.32)

In the case of LM, the coefficient matrix should be:

A = JTJ + λI (3.33)

In most occasions these iterative solvers are more efficient than direct
solvers. The conjugate gradient (CG)[Shewchuk, 1994] is a well known and
highly efficient modification of the gradient descent algorithm. When used
to solve linear equations, this method is ensured to obtain the optimal con-
figuration in a finite number of iterations which is bounded by the number
of free parameters in the cost error. In fact, the method can converge in
a smaller number of iterations, depending on the numeric condition of the
coefficient matrix A. This value is given by the ratio between the highest
and the smallest eigenvalues in A. The largest this value, the more iterations
will CG need to achieve convergence.

The numeric condition for the step equation in optimization problems
such as BA will usually be high, and the standard CG will converge slowly.
A way to speed up CG is to use a preconditioner for the step equation, which
equalizes the eigenvalues of the coefficient matrix, thus reducing the number
of iterations required by the optimization. This version of CG is known as
the Preconditioned Conjugate Gradient (PCG), and is the preferred method
for the step equation resolution in most state of the art BA implementations
[Agarwal et al., 2010; Byrod and Astrom, 2010; Wu et al., 2011].

Instead of optimizing the cost in (3.30) like CG does, the PCG method
optimizes the following preconditioned cost with equivalent results:

CPCG(x) = ‖M−1Ax−M−1b‖2 (3.34)

The preconditioner M is a matrix such that the condition number of
M−1A is significantly smaller than the condition number of A alone. Different
approximations can be used to obtain a good preconditioner, with varying
equalization results for the eigenvalues of A. The common factor of these
methods is that M is obtained as an approximation of A such that it is
computationally inexpensive to invert.

The simplest method is known as the Jacobi preconditioner. In this
method, the preconditioner contains only the diagonal elements of A:
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M = diag(A) (3.35)

A better conditioner for block-sparse matrices is the so-called block Ja-
cobi preconditioner, where M contains the block diagonal elements of matrix
of A. Depending on the complexity of the cost error, more sophisticated pre-
conditioners can be used, such as the Generalized Subgraph Preconditioner
[Jian, Balcan and Dellaert, 2011].

If an iterative method such as PCG is used to solve the step equation in
the GEA optimization, the ε value in the modified Gauss-Newton procedure
proposed in section 3.2.3 can be set to zero, as the singular condition problem
of the Cholesky decomposition does not apply with PCG. In this case the
modified Gauss-Newton optimization method will be equivalent to the origi-
nal Gauss-Newton method, as the step equation (3.29) becomes numerically
equivalent to the expression in equation (3.27).

3.2.4 Efficient step equation evaluation

Obtaining and solving the step equation are usually the two main compu-
tation time bottlenecks in optimization methods such as Gauss-Newton or
LM. Performing these operations efficiently, especially the equation resolu-
tion, becomes critical to develop efficient BA or GEA implementations.

Most state of the art BA implementations exploit the sparsity of the cost
error to speed up the evaluation of the coefficient matrix, and the right-
hand side vector in the step equation [Engels, Stewénius and Nistér, 2006].
In this section we describe an efficient sparse block-oriented procedure to
evaluate the matrix A = JTJ + εI and the vector b = −JT (f(x)− y) in the
Gauss-Newton step equation provided in the formula (3.29).

To describe this procedure, we will assume a camera parametrization of
d degrees of freedom, and a reconstruction with n views. The matrix A is
configured as a square block matrix containing n2 blocks of size d2. The
vector b is also configured as a block vector containing n subvectors of size
d. We use the notation A[i, j] for the block starting at the (id)-th row and
(jd)-th column in matrix A. In a similar way, the expression b[k] denotes
the subvector of size d which starts at the (kd)-th element of b.

The step equation evaluation starts by initializing the matrix A to εI,
and the vector b to zero. Then, each term in the GEA cost error from
equation (3.17) is used to update a few specific blocks in A and b, as follows.
The procedure evaluates the vector vE†ij

, and its Jacobian matrices Ji and

Jj with respect to the current camera parameter estimations of the i-th
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and j-th views respectively. The off-diagonal block element A[i, j] is set
to JT

i ΩijJj, and the block element A[j, i] is set to the transpose of A[i, j].
The diagonal block elements A[i, i] and A[j, j] are respectively incremented
with the expressions JT

i ΩijJi and JT
j ΩijJj. Finally, the block elements b[i]

and b[j] are respectively with the expressions JT
i ΩijvE†ij

and JT
j ΩijvE†ij

. The

outline of this method can be seen in the algorithm 4.
Notice that the sparsity of A decreases with the number of reduced ma-

trices in O. The number of nonzero blocks in that matrix will be at most
nv + 2|O|, where nv is the number of views in the reconstruction.

Algorithm 4 Efficient step equation evaluation for the GEA cost.
Input:

{ck}k=1..nv
← parameter configurations for the nv camera poses.

O ← set of reduced matrices from equation (3.18)

Output:

A← sparse coefficient matrix, initially set to εI.
b← objective vector, initially set to zero.

Method:

for all Ωij ∈ O do
Ji ← Derivatives for vE†ij

w.r.t. ci

Jj ← Derivatives for vE†ij
w.r.t. cj

r← ΩijvE†ij
A[i, j]← JT

i ΩijJj
A[i, i]← A[i, i] + JT

i ΩijJi
A[j, j]← A[j, j] + JT

j ΩijJj
A[j, i]← A[i, j]T

b[i]← b[i] + JT
i r

b[j]← b[j] + JT
j r

end for

3.2.5 Exact cost error sparsification

Ignoring terms in the GEA cost error reduces the computation time required
to obtain the Gauss-Newton step equation and increases its sparsity. Given
that some of the terms in the cost error can be redundant, we can ignore
them during the optimization and still obtain highly accurate camera poses,
while reducing the optimization time significantly.

This approach is used in the structureless iLBA optimization [Indelman
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et al., 2012; Indelman, Roberts and Dellaert, 2013], where not all the con-
straints are included in the optimization to perform an efficient camera pose
correction. In [Rodŕıguez, López-de-Teruel and Ruiz, 2011a] we also proposed
a simple method to speed up the GEA motion correction during camera mo-
tion tracking, by ignoring those terms in the GEA cost which involve cameras
outside a sliding window centered on the most recently added keyframe, or
do not contribute significantly to loop-closing error correction.

In the present work we propose a simple and efficient method for term
reduction based on feature visibility, which can be used to speed up the GEA
correction in general unstructured reconstruction problems. This method
can be seen as an iterative graph simplification procedure, similar to those
proposed in [Jian, Balcan and Dellaert, 2011; Kushal and Agarwal, 2012]
for PCG preconditioner estimation. We will use this method in chapter 5
to demonstrate that we can ignore a large number of terms in the GEA
correction, without sacrificing error reduction efficiency.

The input of this method is the GEA cost error, presented as a graph
where nodes represent views, and links connect view pairs which are con-
strained by an epipolar constraint in the cost error. After the simplification,
the graph will contain the same amount of views, but a significantly smaller
number of links. The terms in the GEA cost corresponding to the eliminated
links can be considered not essential to the motion correction problem, and be
ignored during the GEA optimization without expecting a significant quality
degradation of the camera poses obtained.

In a similar way to what the authors propose in [Kushal and Agarwal,
2012] this graph simplification procedure uses the number of image matchings
detected between each view pair as an heuristic value for the contribution
of each term in the GEA cost error. Hence the graph simplification can be
performed before the estimation of the reduced matrices Ω, so not only the
GEA error optimization will be faster due to the sparsity increment in the
step equation, but also the data reduction.

Each iteration in the simplification procedure deletes the link in the graph
connecting the view pair with the smallest number of feature matchings.
To preserve the connectivity in the graph, the process will not consider for
elimination those links connecting nodes with a valency of sc edges or less.
Doing so might split the graph, or produce a simplified graph with a low
connectivity. This link deletion process is repeated while there are links in
the graph suitable for deletion, or until a certain fraction of the links sf from
the original graph have already been removed.

Figure 3.1 shows the result obtained with the graph simplification pro-
cedure for the pairwise matchings detected between the first 8 keyframes in
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Figure 3.1: Original graph (left) and simplified graph (right) obtained with the
described procedure for the correspondences detected between the first frames in
the dinosaur dataset. Links are tagged with the number of matchings detected
between each view pair. The simplification reduces the number of links (or terms
in the GEA cost error) from 28 to 18, while keeping at least 3 epipolar constraints
involving each one of the views.

the well known dinosaur sequence2. In this test the sc and sf parameters
were configured with the values 3 and 0.33 respectively. The quality for the
camera poses obtained by optimizing GEA cost errors simplified with this
technique is evaluated in detail in section 5.3.2.

The graph simplification technique described is similar in essence to other
reconstruction simplification methods, such as skeletal graphs [Snavely, Seitz
and Szeliski, 2008b], where the overall size of the problem is reduced to a
fraction of the original one. The technique proposed in this section is much
simpler, but still manages to obtain accurate results, even when the num-
ber of links in the view graph is reduced significantly. In the future more
sophisticated methods for link selection could be used in the graph simpli-
fication procedure, such as the accuracy of the pairwise reconstruction for

2http://www.robots.ox.ac.uk/~vgg/data1.html
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3.3. Comparison with bundle adjustment

each view pair. This way a larger number of links not essential to the motion
estimation problem could be dropped, while obtaining a similar accuracy in
the corrected camera poses. The step equation simplification discussed here
is also related to the exact sparsification method for delayed-state mapping
discussed in section 2.2.3, in the sense that both methods control the exact
sparsity level of the step equation (or the information matrix in the delayed-
state procedure), and hence the time required to solve it (or the time required
for the stochastic map update).

The solutions for the step equation with the simplified cost, and the
original GEA cost should be quite similar. For this reason the Hessian matrix
of the simplified GEA cost could be used as a preconditioner in the PCG
optimization of the full cost, as it is sparser than the Hessian for the original
cost, and therefore requires less computational time to be inverted.

3.3 Comparison with bundle adjustment

Under general circumstances, the quality of the optimal camera poses for the
GEA cost error will be very similar to the quality of the camera poses ob-
tained with the BA optimization, which requires the structure. Meanwhile,
given the same problem and initial starting camera pose and structure con-
figuration, GEA will converge to the optimal camera poses in a fraction of
the time required by BA to reach the optimal reconstruction configuration.

In this section we provide theoretical justifications of these facts, and
study the conditions where GEA can fail either to compete in computation
time with SBA, or to provide accurate results. Later in sections 5.2.1, 5.2.2,
and 5.2.3 we will review the results obtained in several evaluation tests which
compare the performance, convergence speed and computation time for GEA
and BA respectively, to support these facts with practical evidence.

3.3.1 Multiple view vs pairwise constraints

BA is basically a statistical method which estimates the solution for the
equations (2.11) in presence of noise. Each 3D point X contributes with the
least squares sum of residuals of the following constraints into the BA cost:

{pi − φ (Pi,X) = 0}pi∈PX
(3.36)

where PX is the set of image projections detected for the given 3D point.
This set of equations is considered a constraint on multiple views, as the joint
optimization of the least squares residuals for these equations will enforce
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simultaneously the camera poses Pi, as well as the coordinates for the 3D
point itself.

In a similar way, we could define a multiple view set of constraints based
on pairwise epipolar constraints, by combining the geometric epipolar formu-
lations in equations (2.20), (2.21) for different view pairs in a reconstruction.
The optimization of these pairwise constraints would be the geometric equiv-
alent for the algebraic GEA cost optimization. In this procedure, each mul-
tiple view restriction from equation (3.36) in the BA cost could be converted
into the following set of pairwise camera restrictions:

{
‖pi − p̂i‖2 + ‖pj − p̂j‖2 = 0

}
pi,pj∈PX

(3.37)

with the corresponding auxiliary constraints:

p̂T
j Fijp̂i = 0, ‖Fij‖ 6= 0, p̂T

i e3 = p̂T
j e3 = 1 (3.38)

Where Fij is the fundamental matrix parametrization of the camera poses
Pi and Pj, as described in equation (2.17). If we assume a known calibration
for this correction procedure, this fundamental matrix can be substituted by
the essential matrix parametrization from equation (2.19).

Unless certain critical camera motion and structure configurations appear
in the reconstruction problem, the least squares solution for both the multi-
ple view constraints, and the corresponding pairwise epipolar constraints is
equivalent [Heyden and Åström, 1997; Ma et al., 2000].

These critical configurations appear for example, when the centers for the
camera poses are collinear, or coincident. Another critical setup for two-view
constraints which does not affect multiple view constraints is produced when
the 3D points in the structure have a planar configuration. In these circum-
stances the solution obtained from two-view constraints can be incorrect, and
multiple view constraints such as trilinear ones should be used to estimate
the reconstruction parameters.

Critical configurations affect the optimization of geometric and algebraic
costs in a similar way. The critical configurations for the pairwise geometric
constraints in equation (3.37) are the same than for the algebraic restrictions
optimized in the GEA cost error.

However, the critical configuration corresponding to the planar struc-
ture does not affect correction methods which assume a calibrated camera
parametrization, which is the case for the GEA method studied in this work.
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3.3.2 Accurate solutions for the algebraic cost

As discussed in the previous section, in absence of critical configurations the
correction of multiple views using geometric epipolar constraints will provide
camera poses with an accuracy equivalent to those obtained with the BA
correction. In this section we will justify that the correction of the GEA
cost, which is algebraic and not geometric, will provide camera poses with a
similar accuracy.

In a broad sense, the solutions obtained for algebraic costs can differ
significantly from those obtained for geometric costs. Nevertheless, in [Hart-
ley, 1998b] the author demonstrates the remarkable similarity between the
solutions for the algebraic and geometric epipolar costs when the camera
parametrization meets certain conditions. The first condition is that the
fundamental matrix must be singular (det(F ) = 0). The other is that the
skew must be zero. The fundamental and essential matrix parametrization
from equations (2.17), (2.19) and (3.2) used in the epipolar costs described
so far in this document enforce the first condition, as the matrices obtained
are bound to have rank 2. A skew value significantly different from zero in-
dicates certain projective deformations in the image which are rarely found
in practice. Furthermore, it is not practical to assume a nonzero skew in
reconstruction problems [Pollefeys, Koch and Gool, 1999]. For these reasons
assuming a zero skew (s = 0) is usually an adequate decision.

To simplify the reconstruction problem and improve the results obtained
many authors assume additional constraints on the camera parametrization.
Some use a fixed location of the principal point (cx, cy) at the center of
the image. Though the estimation of the focal length can be influenced
significantly by the choice of the principal point [Hartley and Kaucic, 2002]
its exact location can be hard to obtain, and has a smaller influence in
the reconstruction error than other calibration parameters such as the focal
distances, or the skew [Ruiz, López-de-Teruel and Garćıa, 2002].

For true pinhole cameras (which is usually the case) it can be assumed
that both horizontal and vertical focal distances (fx, fy) are equal. Thus the
calibration matrix can be reduced to the following expression, which depends
only on the focal distance:

Kf =

f 0 0.5w

0 f 0.5h

0 0 1

 (3.39)

where w and h are respectively the width and height of the input image.
Nonlinear intrinsic camera parameters such as the radial distortion cannot
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be modeled in linear equations based on projective matrices. Most modern
cameras have a small or negligible radial distortion. In these circumstances
forcing the radial distortion to be zero has a small impact on the quality of
the reconstruction results obtained. In other problems the camera calibration
can be known before the reconstruction estimation.

This proposed camera parametrization has 7 degrees of freedom, (one
for the focal distance, three for the orientation and three for the camera
center. It is used in several SfM works such as [Agarwal et al., 2009], as it
simplifies the computations, prevents critical configurations and provides a
reconstruction up to scale.

The camera parametrization used by the GEA correction (from equa-
tion (2.19)) assumes that the cameras are fully calibrated, thus the camera
parametrization is reduced to a rotation matrix and a translation vector.
This way the GEA algebraic cost meets the two conditions required to ob-
tain accurate motion estimations, which are the singularity of the essential
matrices, and a zero skew. This way, in absence of collinear camera centers
the GEA correction will provide camera poses with an accuracy similar to
those obtained by BA. Later in section 5.2.1 we evaluate the performance
of both BA and GEA in practice, and provide practical evidence to support
these considerations.

3.3.3 Structure of the step equation

The size of the Jacobian matrix in BA is 2nrm, where nr is the number of
image projections in the reconstruction, and m is the number of camera and
structure parameters in the cost error. In practical reconstruction problems
the size of the Jacobian matrix is dominated by the number of terms (or
image projections) in the BA cost error (residuals). The number of structure
parameters also dominates the size of the coefficient matrix in the step equa-
tion, as structure parameters usually outnumber the camera parameters in
one order of magnitude, or more.

Figure 3.2 shows the sparsity structure for the Jacobian and Hessian
matrices in an example reconstruction problem, which contains only three
views and four points in the structure. In this case the BA error has eight
terms, one for each image projection detected for the 3D points on the views.
All 3D points are visible in every view, except for the third and fourth 3D
points which are not visible in the second view, and the two first points,
which are not visible in the third view.
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Figure 3.2: Jacobian (left) and Hessian (right) matrix sparsity structure for the
reprojection error in an example reconstruction problem. The reprojection error is
parametrized with the camera projection matrices {Pi}i=1..3 and the coordinates
{Xj}j=1..3 for the views and 3D points respectively. Grey elements in the figures
correspond to nonzero elements in the matrices. Each row corresponds to the
partial derivatives of one of the terms in the summatory of the reprojection error,
with respect to the camera and structure parameters.

The reduced camera system and the GEA cost Hessian

A common trick to speed up the BA correction is to reduce the LM step
equation into an equivalent linear equation defined only on the increments
for the camera parameters. This alternative equation system, known as the
camera system, is smaller and can hence be solved with a significantly reduced
computational cost.

To obtain it we can organize the terms in the original equation (3.28) into
the following block-structure expression:(

HCC HCS

HT
CS HSS

)(
δC
δS

)
=

(
bC

bS

)
(3.40)

where δS and δC represent respectively the increments for the structure
and camera parameters from the state vector, separated in two different
vectors.

As can be seen in figure 3.2 the terms HCC and HSS in the Hessian matrix
are block diagonal sparse matrices which contain the second grade derivatives
of the cost, with respect to the camera and the structure parameters respec-
tively. The term HCS is also a block-sparse matrix which contains the crossed
derivatives for the structure and camera parameters.

Using the Schur complement we can clear out the structure increments
from equation (3.40), obtaining a linear system which depends only on the
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increments for the camera parameters [Engels, Stewénius and Nistér, 2006;
Jeong et al., 2011]:(

HCC −HT
SC H

−1
SS HSC

)
δC = bC −HT

SC H
−1
SS bS (3.41)

We can solve this equation, known as the reduced camera system [Triggs
et al., 2000], instead of the original one in equation (3.40) to find the camera
increments δC . Then, the structure increments δS can be found with the
following expression:

δS = H−1
SS bS −H−1

SS HSC δC (3.42)

The Schur complement trick offers important computational efficiency
advantages. The computation of the reduced camera system only requires a
few matrix operations, and the inversion of matrix HSS. This matrix is block
diagonal and thus easy to invert with a computational cost of O(nt), being nt

the number of 3D points in the structure. The reduced camera system is sig-
nificantly smaller than the original step equation, provided that the number
of camera parameters is usually one or several orders of magnitude smaller
than the number of structure parameters in most reconstruction problems.
Hence the resolution of (3.41) requires much less computation time than the
resolution of the original step equation in (3.23). For these reasons the Schur
complement trick is used in most BA implementations, to obtain the best
computation time in the optimization [Triggs et al., 2000; Engels, Stewénius
and Nistér, 2006; Konolige, 2010; Agarwal et al., 2010; Jeong et al., 2011].

Figure 3.3 shows the sparsity structure of the reduced camera system ob-
tained with the Schur complement for the example reconstruction problem
proposed at the beginning of this section. The blocks in the reduced camera
matrix corresponding to the partial derivatives for the views 2 and 3 contain
zero values, because no 3D point in the structure of the reconstruction prob-
lem has measurements simultaneously for the two views. Hence, these views
are not related by pairwise matching information.

Given a reconstruction problem, the reduced camera system in BA will
have the same size and sparsity structure than the Hessian matrix of the GEA
cost error, as view pairs unrelated by point correspondences will produce null
blocks in the Hessian matrix for the GEA correction, or the reduced camera
matrix in BA.

3.3.4 Convergence speed comparison

As discussed in section 3.2.3 GEA can perform the error optimization using
Gauss-Newton, instead of LM which is used in most cases to correct the
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Figure 3.3: Sparsity structure of the reduced camera matrix for the sample recon-
struction problem. This matrix is significantly smaller and has a more compact
structure than the Hessian matrix in figure 3.2.

reprojection error in BA. The Gauss-Newton optimization of the GEA cost
will commonly require less iterations to reach the optimal configuration than
the LM correction in BA, as the former is not damped and will not diverge
in usual conditions.

The initial value for the λ parameter in LM has a significant influence
on the computation time required by the optimization to obtain the optimal
configuration. When the λ parameter is too small the LM correction can di-
verge. In this case BA must restore the changes performed during the last LM
iteration, and increase the damping parameter. This way, the computation
time invested in this iteration is lost, as the optimization will not progress
towards the optimal configuration. When the damping parameter is large,
the error reduction produced in each iteration will be smaller. Hence LM
will take a larger number of iterations to obtain the optimal configuration.

In chapter 5 we provide experimental results obtained on a large number
of reconstruction problems which demonstrate these facts.

3.3.5 Step time cost comparison

Depending on the reconstruction problem configuration, and the method
used to solve the step equation, the time required by the GEA correction
can be a fraction of the time required by BA. In this section we will evaluate
the time cost of each iteration of Gauss-Newton in the GEA correction when
used in a reconstruction application, and compare it with the time cost for
each LM iteration in BA. For this purpose we can identify the following steps
in the optimization algorithm:

1. Data reduction. This includes the computation of the reduced ma-
trices Ω from each set of correspondences detected between a view pair.
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2. Gauss-Newton iteration. The optimization will usually require two
or more Gauss-Newton iterations, to ensure convergence to the opti-
mal GEA cost error configuration. Each iteration must evaluate the
corresponding step equation, and solve it.

3. Structure reevaluation. To obtain a corrected full reconstruction,
the points in the structure must be reevaluated after the GEA opti-
mization. This step uses a triangulation method to estimate the 3D
coordinates for these points with the corrected cameras.

We will assume a general reconstruction problem containing nv views, nt

points and np projections. The data reduction step will require O(np) to eval-
uate the Ω matrices with the method proposed in section 3.2.1. As the input
feature matchings will not change during the camera pose correction, the
data reduction can be precomputed before the Gauss-Newton optimization
and be reused in each iteration, saving a significant amount of computation
time.

In BA, the computational cost for the evaluation of the reduced camera
system grows linear O(np) with the number of projections, which can take
any value between zero and nt × nv. Hence the time complexity of the
step equation evaluation in BA is O(ntnv) for the worst case. In the GEA
correction, this time will grow linear with the number of view pairs related to
point correspondences in the reconstruction |O|, which is bounded by O(n2

v).
The method for step equation evaluation in the GEA correction described in
section 3.2.4 is very efficient, as it directly obtains each block in the Hessian
matrix by multiplying the reduced matrices Ω by the derivatives for the
camera poses. This way, GEA does not need to reduce the step equation
with the Schur complement, as the step equation already depends on the
camera parameters only.

As discussed in section 3.3.3, the size and sparsity pattern of the reduced
camera system in BA, and the step equation in the GEA correction are
exactly the same. Hence, if the SBA implementation uses the Schur com-
plement to speed up the optimization, the time required to solve the step
equation in BA and GEA will be similar. The solving time for either GEA,
or BA using the Schur trick, grows cubic with the number of views O(n3

v)
in the worst case. This time can be reduced dramatically by exploiting the
sparsity on the coefficient matrix [Konolige, 2010], and using iterative solvers
such as PCG [Agarwal et al., 2010].

The time for the structure reevaluation in GEA will vary, depending on
the trackings length, and the method used to triangulate the 3D points. For
certain reconstruction problems, we could assume that the average tracking
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length np/nt will be constant during the reconstruction process. This way
the time for each triangulation becomes also constant, if we also assume a
fixed choice of the triangulation method. This approximation is valid for a
large range of reconstruction problems, such as real-time motion estimation in
exploratory tasks. Under these circumstances, the time cost for the structure
reevaluation step will grow linear O(nt) with the number of points in the
structure.

When an iterative solver such as PCG is used to solve the step equation
in BA, its evaluation and the structure parameters updating can become the
main bottlenecks in the LM step. BA must evaluate the Schur complement of
the step equation to obtain the reduced camera system, and also update the
structure parameters once the camera parameter increments are found. As
can be seen in equation (3.42), the time for the structure updating in the BA
correction when it uses the Schur complement has a growth of O(n2

tnv+ntn
2
v)

w.r.t. the number of structure parameters nt and views nv, in the worst case.
Respectively, in large reconstructions the structure reevaluation performed

by GEA can become the main bottleneck. Nevertheless, most reconstruction
applications will not require to re-estimate the whole set of structure points
after the camera pose correction. For example, iterative SfM applications
will only require the reevaluation of certain 3D points which are required to
resect new camera poses. These 3D points can be a fraction of the whole set
of points in large reconstruction problems. Moreover, the reconstruction ap-
plication can be designed to estimate the camera poses without requiring the
reevaluation of 3D points in the structure, as discussed in the next chapter.

3.4 Epipolar constraints vs relative motion

constraints

GEA is similar to motion correction procedures based on relative motion
constraints, such as pose-graph optimization or motion averaging procedures,
in the sense that the camera poses are corrected by enforcing pairwise camera
constraints. In the case of GEA, each one of these constraints represents the
epipolar geometry defined between a pair of views.

This section compares the corrections based on epipolar and motion con-
straints under different theoretical and practical perspectives.

3.4.1 Scale uncertainty and critical motions

Motion constraints impose a privileged scale in the baseline between the view
pair. Hence, relative motion correction methods require special techniques
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to deal with the scale uncertainty, such as including additional parameters
in the cost error which represent the estimated scale [Strasdat, Montiel and
Davison, 2010a], or using special correction procedures which adjust it dy-
namically [Govindu, 2004].

This is not a problem in GEA, as epipolar constraints do not impose a
privileged baseline distance between the view pair. Hence GEA does not need
to introduce extra variables or adapt the cost correction method to allow the
scale freedom for each view pair. The basic formulation for the multiple
view epipolar error described in section 3.1 is sufficient to obtain an accurate
optimization, even in presence of significant scale drift or uncertainty.

It is this scale freedom required by relative motion correction, and im-
posed by the epipolar constraints geometry which can raise problems with
critical motion sequences during the cost error optimization. The previ-
ous section discussed how certain linear camera motion configurations can
degrade the accuracy of the GEA optimization. Motion averaging and pose
graph correction methods also suffer from this problem, when the true camera
centers are aligned and the scale for the relative motions is not fixed during
the correction. In this case, all the relative camera translations will point
towards the same direction, and any possible camera configuration contain-
ing the correct camera orientations, and an arbitrary aligned configuration
of the camera centers will satisfy the pairwise relative motion constraints
[Kaucic, Dano and Hartley, 2001]. Like epipolar constraints, pairwise mo-
tion constraints do not encode enough information to solve the relative scale
ambiguity in this case. A graphical representation of this problem can be
seen in figure 3.4.

To prevent this problem several authors use multiple view constraints,
such as the trifocal tensor [Sim and Hartley, 2006a; Indelman et al., 2012].
This can complicate the optimization procedure and increase the computa-
tional cost. As we will discuss in section 5.3.3, the GEA correction is highly
robust against near critical motions anyway. Its accuracy will not degrade
significantly as long as the true camera poses are not strictly aligned. A
small deviation of the camera motion from the linear trajectory will produce
epipolar constraints with enough information to reduce the problems due to
the critical configuration, so the pairwise constraint correction can obtain
accurate motion estimations.

The problems of critical motion sequences can also be prevented by pre-
ceding the reconstruction process by a careful planning of the image acquisi-
tion procedure. For example, if the camera is expected to move eventually in
a straight line, the reconstruction system could use a stereo camera pair to
obtain images with non co-aligned camera pose centers. This can also sim-
plify the feature matching, and increase the robustness of the reconstruction
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results obtained.

Figure 3.4: Graphical examples of how three relative motion directions D1, D2
and D3 can constrain the camera centers A, B and C. In the left configuration the
motions are not parallel. There is only one possible solution for the camera centers
configuration, up to similarity transformation. In the right image the directions
are equal. Any arrangement of the centers on a line parallel to the motion satisfies
the constraints.

3.4.2 Usage in practical reconstruction applications

Classical SfM applications use sample consensus search procedures such as
RANSAC, PROSAC, or similar, to estimate valid epipolar models between
the view pairs in the reconstruction problem. These procedures provide a
set of feature matchings supporting a common epipolar geometry between
each view pair. While the GEA correction can work directly on these sets of
feature correspondences, motion averaging methods work on relative motions
which must be estimated from these matchings. These relative motions are
hence an indirect measurement for the true input data for the reconstruction
problem, which is the epipolar geometry of the camera poses defined by the
matchings.

The accuracy of the results obtained with motion averaging methods is
highly sensitive to the precision of the estimated pairwise relative motions.
In most cases these relative motions are obtained using classical lineal or
geometric methods as those described in sections 2.3.2 and 2.3.4 [Govindu,
2004]. However, these methods introduce to some extent a certain amount of
error in the estimated motions, which can be so large under certain circum-
stances that the averaging will produce incorrect results. More sophisticated
methods for motion estimation can be used to estimate better relative mo-
tions, and prevent the failure in most occasions [Martinec and Pajdla, 2007].
Certain averaging methods use norms such as L1 or L∞ as well to provide
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an increased level of robustness against these incorrectly estimated relative
motions.

Pose-graph optimization methods are usually integrated in a visual odom-
etry application to reduce the drift error in presence of loop closing informa-
tion. This application can use SfM or VSLAM methods to perform visual
odometry, and initialize the backbone of the pose graph with the estimated
camera motion. The relative motions obtained this way will contain an ar-
bitrary drift error. Later, the graph can be augmented with relative loop
closing motions estimated from the structure, so the pose-graph relaxation
will reduce this drift error. Unlike the relative motions estimated from the
visual odometry, the epipolar constraints used in GEA are free from loop
closing errors.

3.5 Closure

GEA is a motion correction method which optimizes the algebraic residu-
als for the epipolar constraints to obtain accurate camera pose estimations.
This method can be used to perform an efficient incremental motion estima-
tion and drift error reduction without having to compute explicitly the 3D
structure, or accurate relative motion between pairs of views.

When compared to other correction techniques such as BA, the cost opti-
mized is simpler and has a smaller amount of locally optimal configurations.
This way the optimization can be performed with undamped Newton meth-
ods which are more efficient than the classical LM. In the absence of critical
configurations, such as rectilinear camera motions, GEA is ensured to obtain
camera poses with an accuracy very close to that obtained with BA.

The GEA optimization has the advantage to work directly on the im-
age matching information, unlike other structureless correction methods like
pose graph optimization or motion averaging methods, which work on indi-
rect measurements obtained with several different methods from the pairwise
matching information. The evaluation of accurate epipolar constraints is sim-
pler and less prone to errors than the estimation of relative motions.
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Chapter 4

Using GEA in reconstruction
applications

This chapter describes how to exploit the advantages of GEA when used
in SfM and VSLAM applications. The first section of this chapter reviews
the most common data processing pipelines implemented by reconstruction
applications. The second section describes how to use the GEA correction
in these pipelines, to reduce the computation requirements of reconstruction
applications. Finally, we introduce in the third section a novel structure-
less incremental motion estimation procedure based on the GEA correction,
which requires less computation time than classical incremental SfM appli-
cations to obtain accurate reconstructions.

Visual reconstruction methods must prevent the influence of feature mis-
matchings, which are usually produced by most image feature matching
methods. Otherwise the obtained structure and camera poses could contain
significant estimation errors. Several methods have been developed for that
purpose, such as loss function robustification and sample consensus search.
In this last section we introduce a technique based on a loss function to robus-
tify the GEA correction against mismatchings, along with a robust motion
averaging under the L1 norm to initialize the camera pose for a given view.
These two methods are used in the incremental motion estimation procedure
to obtain robust estimations for the camera poses.

4.1 Structure of SfM reconstruction applica-

tions

The first step in most reconstruction applications is to detect features, such as
edges [Canny, 1986], corners [Shi and Tomasi, 1994; Rosten and Drummond,
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2006], blobs [Lindeberg, 1993; Lowe, 2004], or contours [Matas et al., 2002;
Nistér and Stewénius, 2008] on the input images. These features are then
matched in an attempt to find pairs of image features detected at different
images which correspond to the same 3D feature in the physical scene. For
this purpose, the image features are associated with numeric descriptors such
as SIFT [Lowe, 2004], SURF [Bay, Tuytelaars and Gool, 2006] or binary
descriptors [Calonder et al., 2010], which summarize the visual appearance
information at the image feature location. By comparing the descriptors of
two features we can establish whether they are likely to correspond to the
same 3D physical feature or not. Once the feature matchings are obtained,
we can use multiple view geometry techniques to estimate the camera poses
and the structure for the scene.

Some of the matched features will not correspond to the same 3D feature
from the scene. These mismatchings can degrade the quality of the camera
poses and the structure estimated by the reconstruction process, and must
be detected and eliminated to obtain valid results. Some reconstruction
applications filter out most of the mismatchings from the correspondences
detected at the input images using sample consensus search methods such as
RANSAC [Fischler and Bolles, 1981] or PROSAC [Chum and Matas, 2005].
This way the quality and robustness of the reconstruction will be improved.

The next subsection will provide a brief overview on how do sample con-
sensus search methods work, and the way they are used in reconstruction
applications to eliminate outlier feature matchings. The following two sub-
sections describe procedures used to obtain the camera poses and the struc-
ture from the pairwise feature matchings. The last subsection describes how
these procedures are adapted to perform motion and structure computation
in real-time applications.

4.1.1 Epipolar consistency for pairwise mismatching
filtering

Sample consensus search methods can be used to estimate a fundamental
matrix F which encodes the true camera poses for a given view pair, given
the set of correspondences M = {p↔ q} detected between these views.

These methods use the procedure described in section 2.3.4 to estimate
fundamental matrices from sets of 7 or 8 matchings randomly selected from
M, until one of these estimated fundamental matrices is supported by a
sufficiently large number of the matchings in M, or a large number of fun-
damental matrices has been estimated. A feature matching p ↔ q is said
to support a given fundamental matrix F when the epipolar error for the
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matching and the matrix F is smaller than a given threshold value αR. This
epipolar error could be evaluated with any of the epipolar cost errors defined
in equations (2.22), (2.23) or (2.25). For example:

pFq ≤ αR (4.1)

The outline for this procedure can be seen in the algorithm 5. In this case,
this fundamental matrix is returned by the sample consensus procedure as
the estimated epipolar geometry for the camera poses of the given view pair.

Algorithm 5 General RANSAC method for fundamental matrix estimation

Input:

M = {p↔ q} ← set of feature correspondences.
αR ← epipolar error threshold.
nmin ← minimum number of inliers for a valid model.
nmod ← maximum number of estimated models.
C ← an epipolar cost error.

Method:

i← 0.
repeat
M′ ← set of 7/8 matchings randomly selected from M.
F ← fundamental matrix obtained from M′.
ninl ← number of matchings in M which satisfy (C(p↔ q, F ) ≤ αR).
if (ninl ≥ nmin) then

return F
end if
i← i+ 1

until (i > nmod)
return failure

The set of matchings (or inlier matchings) which support the fundamental
matrix estimated with this method will contain a larger fraction of valid cor-
respondences than the initial set of feature correspondences detected between
the image pair. For this reason, the feature matchings not contained in this
set can be discarded as mismatchings. However, the set of inlier matchings
can still contain a few mismatchings, which support the fundamental matrix
with a small epipolar residual, but do not correspond image projections for
the same scene point.
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4.1.2 Incremental reconstruction estimation

In an incremental reconstruction procedure the pairwise feature matchings
detected at the input views are used to estimate the multiple view geometry
of the reconstruction. The process starts with the bootstrapping, which
estimates a small partial reconstruction containing a few camera poses, along
with the 3D points which are visible in those views. These initial camera
poses can be obtained from the input pairwise matchings using the methods
described in section 2.3.4. Once the camera poses are known, the location
for the points which appear on the initialized views can be estimated using
triangulation methods, as described in section 2.3.5.

This partial reconstruction is iteratively augmented with new camera
poses and structure points. Each iteration estimates the motion for views not
yet included in the partial reconstruction, using correspondences between 3D
points in the structure and image features detected at the views, which can
be derived from the pairwise matchings.

This is usually known as camera resection. There are many methods
which can be used to resect new camera poses during the incremental ini-
tialization. The simplest one obtains the camera poses from the projective
matrix, which is solved from a homogeneous linear system under the L2 norm
[Hartley and Zisserman, 2003]. As any other linear method, this resection
procedure provides acceptable results only when the input set of correspon-
dences is free from outliers, hence it should be used in combination with
sample consensus search. More recent proposals use SOCP to estimate the
camera pose under the L∞ norm, with the advantages of cost error convexity
and iterative outlier rejection based on the largest residual values [Li, 2007].
When the input views are captured with the same physical camera and fixed
calibration, we can as well estimate efficiently the camera orientation and
location from the 3D 7→ 2D correspondences with n-point camera pose de-
termination methods (PnP) methods [Quan and Lan, 1999; Lepetit and Fua,
2005; Lepetit, Moreno-Noguer and Fua, 2009].

Once new camera poses are estimated, the incremental procedure adds
new 3D points to the structure, composing the pairwise matchings into track-
ings, and using them with the camera poses resected so far to triangulate their
location. The correct initialization of new camera poses and points during
the incremental procedure depends on the accuracy for the partial recon-
struction estimated so far. For this purpose the next step in the incremental
process is to correct the initialization errors produced during the estimation
of new camera poses and 3D points. This is usually done in classical SfM
applications using BA. For this purpose, the partial reconstruction estimated
so far is corrected using BA. This way the camera poses and points in the
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Figure 4.1: Basic scheme for the data-flow path in the pipeline of batch recon-
struction applications.

structure can be used in future iterations to successfully resect new camera
poses and triangulate new points. This process is repeated until no more
views or 3D points can be initialized.

Figure 4.1 shows the scheme for a reconstruction pipeline which uses the
incremental motion initialization procedure.

Robustification to outliers

Due to the presence of mismatchings in the tracking composition, the BA
optimization can diverge from the valid reconstruction configuration as the
L2 norm is highly sensible to outliers.

A possible solution is to assume a non-Gaussian distribution for the re-
projection residuals, such as the Cauchy distribution [Triggs et al., 2000;
Engels, Stewénius and Nistér, 2006]. In this case, the BA cost from equation
(2.15) becomes:

C∗RE =
∑
pij∈P

log

(
1 +
‖pij − φ(Pi,Xj)‖2

σ2

)
(4.2)

This way the influence of outliers in the BA correction is reduced, and
the optimization can provide accurate estimations for the reconstruction pa-
rameters, even in presence of a reasonable fraction of mismatchings.

The exact distribution assumed in practice for the reprojection residuals
is less important for the robustification than the general way in which the
outliers are penalized in the cost error. Some BA implementations use loss
functions, such as the Tukey’s biweight function [Klein and Murray, 2007] or
the Huber loss function [Huber, 1964; Sibley et al., 2009] which reduce the
influence of outliers with large reprojection errors in the BA correction.

Once the initialization errors in the estimated camera poses and the struc-
ture are eliminated by a robustified cost error optimization, the outliers be-
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come evident given their large reprojection residuals. This way, they can be
detected and discarded during the iterative reconstruction process.

4.1.3 Direct camera pose estimation with motion av-
eraging

In [Martinec and Pajdla, 2007] the authors describe a structureless camera
pose initialization procedure. The matchings are used to estimate pairwise
relative motions which are used in both a linear algebraic averaging method
for rotation estimation, and the SOCP method for L∞ translation estimation.
To estimate these relative motions accurately, MSER regions, SIFT features
and affine interest points [Mikolajczyk et al., 2005] are detected on the input
images to obtain the largest number of pairwise feature correspondences. The
procedure also uses for this purpose a robust mismatching detection method
which detects between each pair of images the four correspondences most
likely to be valid, from the initial set of matchings.

For certain datasets, this method provides camera poses with a high qual-
ity, which can be used to estimate a sparse structure with a small reprojection
error. In most occasions this reconstruction can be corrected with BA to ob-
tain the optimal reconstruction configuration. However, the relative motions
can occasionally be incorrect due for example to perceptual aliasing, and
hence the camera poses obtained and the reconstruction estimated. In these
occasions BA might not be able to recover the optimal reconstruction from
the motion initialization errors.

Like other results obtained with SOCP, the camera poses can be iter-
atively refined by discarding the measurements with the largest residuals
and repeating the averaging, until accurate estimations for the camera poses
are obtained. The convergence of this process to an accurate solution is
not ensured, however. Not all the outliers can be discarded by the itera-
tive rejection in some reconstruction problems, and the final reconstruction
obtained can have a significant error. The reconstruction pipeline for this
motion estimation procedure can be seen in figure 4.2.

4.2 GEA in classical incremental SfM appli-

cations

In this section we suggest several ways to use the GEA optimization in the
SfM applications described in the previous section, as well as in on-line re-
construction pipelines.
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Figure 4.2: Reconstruction pipeline as suggested in [Martinec and Pajdla, 2007].
The motion is estimated using an averaging method, and the solution obtained
is refined iteratively by rejecting relative motion outliers given their large resid-
uals. Once the views are initialized, the structure is computed and the whole
reconstruction is refined using BA.

4.2.1 In combination with SBA

The number of iterations required by SBA to correct the initialization error in
a partial reconstruction estimated during an incremental SfM process will be
larger when the error of the partial reconstruction is high. A way to reduce
the computation time of SBA is to reduce the number of these iterations,
starting the optimization from a configuration with less reprojection error
[Rodŕıguez, López-de-Teruel and Ruiz, 2011b].

GEA can be used to correct an important amount of this initialization
error. The structure points can then be re-estimated efficiently using the
linear triangulation procedure with the camera poses corrected by GEA. SBA
will usually require less LM iterations to polish the resulting reconstruction.

This approach will be adequate when the trade-off between the compu-
tational cost of the SBA iterations saved, and the estimation of the GEA
camera poses with the linear structure computation pays. This will usually
be the case when the camera poses have significant errors, due for example
to incorrect initializations or loop closure gaps.

As the experiments described in chapter 5 show, GEA will usually reach
the optimal camera pose configuration in a few iterations. Each one of these
iterations uses a fraction of the time required by each iteration of BA. Ob-
taining the linear triangulation of the whole structure will usually require
less computation time than performing a single BA iteration, in most recon-
struction problems.
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4.2.2 Substituting SBA in the correction stage

GEA could also be used to correct the initialization errors in the partial
reconstructions without the final BA polishing. The main purpose of the
correction step is not to obtain the optimal partial reconstruction, but to
reduce the initialization errors of the partial reconstruction. This is required
in order to use the camera poses and the structure in future iterations of the
incremental SfM to successfully estimate new camera poses and points. This
can be achieved by using GEA in combination with the linear triangulation.

The reprojection error of the corrected reconstruction will be suboptimal,
but in practice it will be sufficiently close to the optimal SBA reconstruction
configuration to be used in the initialization of new views and 3D points.

The time required for the SBA correction will usually be much larger than
the combined time for the GEA correction and the linear 3D point triangu-
lation. For this reason the computational efficiency improvement obtained
by substituting the BA optimization by the GEA correction combined with
the linear triangulation can be significant.

4.2.3 Correcting drift error in visual odometry appli-
cations

GEA can be used to correct the camera poses estimated by real-time SfM
applications without requiring the correction of the structure parameters, in
a similar way to pose graph optimization [Rodŕıguez, López-de-Teruel and
Ruiz, 2011a].

After each GEA correction we can look for tentative loop closing keyframe
pairs, which are likely to contain image projections for the same scene fea-
tures. This can be done efficiently using full image descriptors. The sum
of absolute differences (SAD) [Wong, Vassiliadis and Cotofana, 2002; Wat-
man et al., 2004] and the sum of squares distances (SSD) [Klein and Murray,
2007] are two correlation measurements that have been used in many works
to evaluate the visual similarity between two image blocks. We can efficiently
perform full image matching between a given input frame, and a large num-
ber of the frames previously processed by subsampling them to a fraction
of the original size, and using the SAD or SSD correlations between these
subsampled frames as an accurate measurement for their visual similarity
[Castle, Klein and Murray, 2008].

When a small SSD or SAD correlation value is detected between a given
pair of frames which still do not have image feature matchings in common,
we can proceed to detect feature matchings between them. Once we have
a set of loop closing correspondences we can evaluate the reduced Ω matrix
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for the view pair, and include it in following GEA corrections to reduce the
drift error between the matched frames.

The GEA correction can be performed in a parallel thread separated from
the camera tracking process, much in the style of the reconstruction system
proposed in [Klein and Murray, 2007]. GEA can also be applied locally
on a fixed number of the most recent keyframes, to limit the maximum
computation time required by each step of the Gauss-Newton correction. In
this case the correction can be performed each time a new keyframe is added
to the reconstruction, in the style of a local BA optimization.

In both approaches, compared with SBA, we can include in the GEA
correction a larger number of free views while requiring the same compu-
tation time in the Newton step, as the experiments discussed in chapter 5
demonstrate. Hence GEA can be used to increase the scalability and robust-
ness of on-line reconstruction applications, and increase the accuracy of the
estimated motion without sacrificing real-time constraints.

4.3 Structureless incremental motion estima-

tion with GEA

In this section we propose a novel structureless incremental motion estimation
procedure which can be used to efficiently initialize the camera poses in
SfM applications. It can be integrated in the classical SfM reconstruction
pipeline, to obtain an accurate camera pose initialization before computing
the structure. By doing so, this procedure can improve significantly the
computational efficiency of classical incremental SfM methods, by providing
an accurate initialization for the camera poses and the 3D structure without
performing the BA correction in the intermediate steps of the process.

The procedure uses the correspondences detected by classical feature
matching algorithms such as SIFT to estimate relative motions and epipo-
lar constraints between the camera poses for the input views. We assume
that these matchings have been filtered with the sample consensus search
procedure described in section 4.1.1.

In a similar way to incremental SfM, the motion estimation starts with a
small set of initialized cameras, which is augmented with new camera poses
iteratively. The camera pose for each new view is averaged using the relative
motions and the epipolar constraints. When no more camera poses can be
estimated, they are added to the set of initialized cameras, which is then
corrected with the GEA optimization.

With this procedure there is no need to compose the image feature track-
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ings, or estimate the 3D locations for the corresponding points. The BA
correction is neither required to prevent divergence, as GEA ensures that
the initialization errors of the new camera poses are corrected in each itera-
tion. This process is repeated until no more views can be added to the set
of initialized cameras.

The set of feature matchings detected between the input views will contain
a small fraction of outliers, due to matching errors. To perform an accurate
motion initialization, the procedure proposed is robust against these outliers.
The averaging method estimates new camera poses under the L1 norm. This
way the camera poses are accurately obtained, even when a half of the rel-
ative orientations and epipolar geometries were incorrectly estimated. Once
the camera pose for an uninitialized view is obtained, we can evaluate the
epipolar residuals for the matchings obtained with other views already ini-
tialized. If a sufficiently high number of correspondences is found to have
a small residual for the new camera pose, the view is initialized with the
estimated camera pose. Otherwise the camera pose is rejected. This way we
prevent camera poses with large initialization errors to be included in the
final solution.

The motion initialization also uses a robustified GEA correction which
can successfully reduce initialization errors of the camera poses in presence
of feature mismatchings.

Figure 4.3 shows the pipeline for a SfM application which uses the in-
cremental motion estimation procedure proposed, to obtain a full scene re-
construction. The feature detection and matching stages are similar to
the ones with the same names in incremental reconstruction pipelines. The
motion bootstrapping stage is also similar to the bootstrapping stage in
the incremental pipeline. In this case though, the structure is not computed,
and the initial camera poses configuration are corrected using GEA. The
motion estimation stage adds new camera poses to the set of initialized
views using averaging. The motion correction stage corrects initialization
errors of the camera poses with a robustified GEA correction. This way the
corrected camera poses can be used in the following iterations of the motion
estimation to initialize new camera poses. These two last stages are itera-
tively repeated until no more camera poses can be initialized. When this
is not possible, the structure computation stage composes the trackings
and obtains the linear structure using the camera poses. BA could be used
optionally in the final correction to obtain the optimal reconstruction.

In the next subsection we characterize the types of mismatchings which
can be produced by the sample consensus matching method described in
section 4.1.1. This will be useful to describe the averaging method used to
estimate new camera pose, and the robustified version of the GEA cost, in
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Figure 4.3: Reconstruction pipeline for structureless motion estimation. Each
iteration initializes camera poses for new views with a robust averaging method,
which uses relative constraints between views already initialized, and uninitialized
ones. Outliers can be rejected at the motion correction step.

the second and third subsections respectively. In section 5.4 of the following
chapter we evaluate the performance of this pipeline on several scenes and
image datasets.

4.3.1 Sample consensus mismatching characterization

The feature correspondences provided by the sample consensus search can
contain two kinds of outliers, which must be dealt with in different ways.
In the first kind we have matchings satisfying the valid epipolar geometry
defined for the true camera poses. In this case the sample consensus search
has estimated the correct epipolar geometry and the fundamental (or essen-
tial) matrix encodes the true camera poses for the view pair. Most of the
matchings supporting this epipolar geometry will be valid correspondences.
Some of them will be invalid matchings, which happen to provide a small
epipolar residual for the fundamental matrix.

On the other hand, the sample consensus search can fail to estimate a
valid epipolar model. In this case, the matchings obtained can still have a
small epipolar residual for a given epipolar geometry which does not corre-
spond to the true camera pose configuration. That is, this matrix does not
encode correctly the relative motion between these camera poses. The set
of matchings hence obtained will contain mostly outliers, which will have a
large epipolar residual error for the real fundamental matrix encoding the
true camera poses for the view pair.

Figure 4.4 shows examples of a correct, and incorrect sample consensus
search matching results. Figure 4.5 shows the epipolar lines for the incorrect
matchings, obtained in presence of perceptual aliasing.
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Figure 4.4: Matchings detected between two image pairs using a sample consen-
sus search. The epipolar geometries were correctly estimated (upper row) and
incorrectly estimated due to perceptual aliasing (lower row).

Figure 4.5: Epipolar lines for the mismatchings shown in figure 4.4 which were
obtained with an incorrect epipolar geometry. In this case the image features (red
and blue crosses) are sufficiently close to the epipolar lines (green lines) obtained
with an incorrect epipolar geometry. This misleads the sample consensus search
into considering the mismatchings and the epipolar geometry as valid.

4.3.2 Motion averaging for camera pose initialization

This section describes a structureless robust camera initialization procedure,
which can be used to initialize the camera pose for an input view Ik, given
a set of other views {Ii}i=1..n with known camera orientations {Ri}i=1..n and
translations {Ci}i=1..n. The method requires as well the image feature corre-
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spondencesMik detected between the view Ik and the views in {Ii}. Unlike
the camera resection procedure described in section 4.1.2, this initialization
procedure does not require 3D points or tracking information to estimate the
camera pose for Ik.

The first step of the structureless camera initialization method is to es-
timate the orientation Rk for the k-th camera pose. To do so, we estimate
relative rotations Rik between the view Ik and each view Ii from the im-
age correspondences Mij using algebraic epipolar initialization methods as
discussed in section 2.3.4. Assuming an error free estimation for both the
relative rotation Rik, and the absolute rotation Ri, the unknown absolute
rotation Rk must satisfy the following equation:

Rk = RikRi (4.3)

Using this expression, we can obtain an estimation Ri
k for the absolute

camera orientation Rk from each one of the relative rotations Rik and the
corresponding absolute camera orientation Ri. Averaging these rotation es-
timations we can obtain a single more accurate estimation for R∗k.

Once obtained the orientation R∗k, the problem of camera translation and
structure computation can be reduced to solving a linear system of equations
[Rother and Carlsson, 2001]. In this case we will only compute the camera
translation Ck for the view Ik, which can also be done by solving a linear
problem. As described in section 2.3.4, the algebraic epipolar cost defined
between the views i and k can be expressed with the following compact
equation derived from (2.35):

UikvEik
= 0 (4.4)

In this equation the coefficient matrix Uik depends only on the coordinates
for the point correspondences. The vector vEik

contains the elements for the
essential matrix, and depends on the camera orientationsRi, R

∗
k and locations

Ci, Ck for the view pair. This equation can be rewritten as:

Uikρik (Ci −Ck) = 0 (4.5)

Where ρik is a 9×3 matrix, whose coefficients depend only on the compo-
nents of the relative orientation between the views Ik and Ii, which is defined
as follows:

ρik =

 [r1]×
[r2]×
[r3]×

 (4.6)
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where rj is the j-th row vector of matrix R∗kR
T
i . Given the estimations

for the orientations Rk and Ri, and the translation Ci, the expression (4.5)
becomes the following inhomogeneous equation:

UikρikCk = UikρikCi (4.7)

In this equation the matrix Uikρik on the right hand side and the vec-
tor UikρikCi on the left side are known, while the translation Ck remains
unknown. Stacking this equation for two or more relative orientations we
obtain a linear system which we can solve for the camera pose location Ck

of the view Ik.
This motion estimation procedure is robust against those feature mis-

matchings which support the epipolar geometry for the true camera pose
configuration. These mismatchings will not degrade the quality of either the
relative rotations estimated with algebraic epipolar initialization methods, or
the camera centers estimated from the linear equations, as both are based on
pairwise epipolar constraints. However, if the sample consensus search ob-
tains mismatchings which satisfy an incorrect fundamental matrix between
the view Ik and one or several views in {Ii}, the orientation and camera
center estimated from them can be incorrect.

We can prevent this by estimating the rotation and translation for the
view Ik under the L1 norm. The method proposed in [Hartley, Aftab and
Trumpf, 2011] based in the Weiszfeld algorithm can be used to obtain the
geometric median of the rotations Ri

k in the Lie group SO(3). This way we
obtain an accurate estimation for the camera orientation, even if half of the
relative rotations were incorrectly estimated.

We can also adapt the Weiszfeld algorithm to solve the algebraic equations
for the translation under the L1 norm as follows. The procedure starts with
an initial solution x0 obtained by solving the set of equations as usual, under
the L2 norm:


A1

A2

...

An

x0 =


b1

b2

...

bn

 (4.8)

In this equation each matrix Al and the vector bl denote respectively
the coefficient matrix and the objective vector for the linear system in 4.7
corresponding to a pair wise camera pose restriction. In subsequent iterations
of the procedure, each equation is averaged with the inverse for its residual,
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to penalize terms with large residuals. The solution vector xt+1 is updated
in each iteration by solving the following linear system:


λ1A1

λ2A2

...

λnAn

xt+1 =


λ1b1

λ2b2

...

λnbn

 (4.9)

where each factor λi is obtained with the expression:

λi =

[
‖Aixt − bi‖

n∑
l=1

1

‖Alxt − bl‖

]−1

(4.10)

This version of the Weiszfeld averaging method will usually provide a
robust estimation for the camera pose translation in a few iterations, as long
as 50% or more of the linear equations in (4.7) were obtained from matchings
satisfying the correct epipolar geometry.

4.3.3 Robustified GEA correction

The GEA correction described in chapter 3 is robust against mismatchings
which satisfy the epipolar geometry defined for the true camera pose con-
figuration. These mismatchings, which can be harmful for the accuracy of
other correction methods such as BA, do not degrade the quality of the re-
sults obtained by GEA. Each one of these mismatchings p ↔ q will have a
small epipolar residual with the essential matrix parametrization for the true
camera pose configuration:

qE†ijp ' 0 (4.11)

Nevertheless, the influence of mismatchings obtained with incorrect epipo-
lar geometries must be prevented from the GEA correction, as these mis-
matchings will not have small epipolar residuals for the true camera poses.
We can detect the terms in the GEA cost which contain mismatchings that
do not support the valid epipolar geometry, and reduce their influence on the
results obtained by the correction. The expression for the GEA cost error in
(3.17) can be rewritten for this purpose to:
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CGEA =
∑

Ωij∈O

Φ|Mi,j |

(
vT
E†ij

ΩijvE†ij

)
(4.12)

where Φn(r) is a loss function which should reduce the contribution of
terms which are likely to contain mismatchings obtained from incorrectly
estimated epipolar geometries.

To design a loss function suitable for the GEA correction we can use the
average residual contribution for a term in the GEA cost, which is evaluated
with the expression:

|Mi,j|−1vT
E†ij

ΩijvE†ij
(4.13)

Where |Mi,j| is the number of matchings used to obtain the reduced
matrix Ωij for the GEA cost term. The average residual contribution in
the GEA cost error will usually be larger for terms containing mismatchings
which support invalid epipolar geometries, in comparison with the rest of
terms estimated from matchings which support valid epipolar geometries.
With this idea in mind, a possible choice for this function could be the
following:

Φn(r) =

{
|r| | r

n
| < µ

0 | r
n
| ≥ µ

(4.14)

In this function r is the epipolar residual for the GEA term, and n is
the number of correspondences used to estimate the Ω matrix. Figure 4.6
shows the plot for this function. By using this function in the cost (4.12),
those terms with an average residual (as defined by expression (4.13)) larger
than the threshold value µ will have a zero contribution to the GEA cost
error. Meanwhile, the contribution of terms with an average absolute residual
smaller than µ to the GEA cost will be the same than their contribution for
the original GEA cost defined in equation (3.17).

Despite being discontinuous, the proposed loss function can be easily
incorporated in the GEA correction by modifying the Gauss-Newton opti-
mization procedure, without changing the derivatives of the original GEA
cost error.

To implement this idea in the GEA correction method described in chap-
ter 3, we only have to modify the step equation evaluation procedure de-
scribed in section 3.2.4. Before updating the Hessian matrix and the objec-
tive vector with the derivatives estimated for a given term in the GEA cost
error, we can evaluate the average residual with the expression (4.13).
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Figure 4.6: Plot for the loss function proposed.

If this value is larger than µ, we can ignore the term and proceed to
update the estimated step equation with the following term in the GEA
cost. This way we drop those GEA terms from the step equation evaluation
which are likely to correspond to invalid epipolar geometries. The schema
for this robustified algorithm for step equation evaluation can be seen in the
algorithm 6.

Due to discontinuities in the proposed loss function, this method can fail
to obtain the exact step equation for the robustified GEA cost. When r =
±nµ the derivative for the loss function is undefined. However, in this case
the modified Gauss-Newton procedure will evaluate the derivative for the loss
function as zero. Despite this difference, the Gauss-Newton optimization will
still work correctly in practice, and it will provide an accurate approximation
to the robustified GEA cost error optimum, as the experiments described in
the following chapter show.

4.4 Closure

In this chapter we have shown how to use GEA in classical SfM applications.
Techniques such as sample consensus search or cost error robustification

play a capital role in reconstruction applications to reduce the influence of
outliers, as classical image matching procedures eventually obtain incorrect
feature correspondences due to noise and perceptual aliasing. In this chapter
we reviewed how the GEA correction can be robustified, so it can be used in
practical reconstruction applications where these outliers can appear. The
inlier matchings obtained in SfM applications with sample consensus methods
will usually have a small residual for the epipolar geometry corresponding
to the valid camera pose configuration. Hence, these inliers can be used
safely in the GEA correction, even if they contain mismatchings. When the
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Chapter 4. Using GEA in reconstruction applications

Algorithm 6 Robustified step equation evaluation for the GEA cost.
Input:

{ck|k = 1..nv} ← parameter configuration for the nv camera poses.
O ← set of reduced matrices from equation (3.18)

Output:

A← sparse coefficient matrix, initially set to zero.
b← objective vector, initially set to zero.

Method:

for all Ωij ∈ O do
Ji ← Derivatives for vE†ij

w.r.t. ci

Jj ← Derivatives for vE†ij
w.r.t. cj

r← ΩijvE†ij
if (vT

E†ij
r < |Mi,j|µ) then

A[i, j]← JT
i ΩijJj

A[i, i]← A[i, i] + JT
i ΩijJi

A[j, j]← A[j, j] + JT
j ΩijJj

A[j, i]← A[i, j]T

b[i]← b[i] + JT
i r

b[j]← b[j] + JT
j r

end if
end for
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sample consensus fails, it obtains an invalid epipolar geometry and a large
fraction of the inlier matchings provided will be incorrect. In this case, the
corresponding term in the GEA correction can be detected by measuring
the average residual with the initial camera poses. This fact can be used to
robustify the GEA optimization against the influence of epipolar constraint
outliers which could degrade the accuracy of the camera poses obtained.

In this chapter we have also shown how to obtain a robust motion estima-
tion free from the influence of image feature mismatchings with a completely
structureless incremental camera pose initialization procedure, which uses
the robustified GEA to correct the initialization errors in each iteration and
prevents divergence from the optimal camera configuration.
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Chapter 5

Performance evaluation for
GEA

This chapter describes the results obtained in several performance tests which
evidence the advantages of using GEA in SfM and SLAM applications. It is
divided in four sections. In the first section we define the methodology used
to evaluate the accuracy and the computational cost of GEA. In the second
section, we use this methodology to compare the speed and accuracy of both
the GEA correction, and a state of the art SBA implementation. In the third
section we test the failure conditions of the GEA algorithm by evaluating
the robustness of the correction against outliers, critical motion sequences
and cost sparsification. Finally, the last section shows several results of the
structureless incremental motion estimation procedure described in section
4.3. We demonstrate the accuracy of the camera poses obtained by using
them to estimate both sparse and dense reconstructions.

5.1 Methodology for the GEA performance

evaluation

In this chapter we will use several datasets to evaluate the GEA perfor-
mance. These datasets can contain a set of images captured with one or
several cameras, feature trackings detected in them, the calibration of the
cameras, as well as an initial configuration for the camera poses and the
structure obtained using SfM or SLAM techniques. This initial reconstruc-
tion configuration has in occasions a significant reprojection error, which we
can reduce using different correction methods to compare their performance,
and determine which one is best for the given reconstruction problem.
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Chapter 5. Performance evaluation for GEA

5.1.1 Measuring the GEA correction accuracy

The accuracy of structureless motion correction methods is often compared
with a ground truth configuration for the camera poses. For example, in
[Strasdat, Montiel and Davison, 2010a; Sünderhauf et al., 2012] the accuracy
of pose-graph optimization methods is measured with the root-mean-square
error (RMSE) discrepancy between the camera poses corrected, against the
ground truth camera pose configuration.

To measure the performance of GEA and compare it with the performance
of SBA, it could be desirable to evaluate not only the quality for the camera
poses obtained, but also the accuracy of the scene structure which can be
estimated from these cameras, i.e. using a given triangulation method. In
this work we will use the reprojection error measured for both, the camera
poses corrected with GEA, and the structure triangulated using them, as a
measure of the quality for the camera poses. If the triangulation method
used to estimate the structure is sufficiently accurate, this reprojection error
can be considered a good measurement for the GEA accuracy.

We evaluate the reprojection error using the following equalization for
the expression in equation (2.15):

C∗RE = 1000

√
1

2|P|
CRE (5.1)

Provided that we work with calibrated cameras, this reprojection error is
measured directly on image plane coordinates. In this expression the error is
divided by the size of the residuals vector, which is two times the number of
image projections |P| in the reconstruction. This way the expression evalu-
ates the standard deviation of the measurement error in the image features.
We can use this value to compare the error obtained in different reconstruc-
tion problems with a varying number of image feature projections. The factor
1000 scales the value obtained for readability purposes.

In principle we can use for the structure triangulation any of the methods
described in section 2.3.5. Unless stated otherwise, in this work we will use for
this purpose the Linear-LS triangulation method, as it offers a good balance
between accuracy and computational cost, provided that it is fast and also
highly reliable for most reconstruction problems.

Due to the appearance of outliers and certain ill-posed problem configura-
tions, this triangulation method can provide incorrect estimations for certain
points which will degrade significantly the average reprojection error, even
if the estimations for the cameras and a large fraction of the points in the
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5.1. Methodology for the GEA performance evaluation

structure are accurate. Furthermore, most SBA implementations are robusti-
fied against these outliers and will have little influence during the correction.
For these reasons, it is likely that these points will have large residuals for
the reconstructions obtained by either SBA, or the GEA with the Linear-LT
structure.

In practice, these outliers would be discarded during the reconstruction
process. As long as the remaining structure obtained contains a sufficiently
large number of 3D points, the reconstruction can be considered successful.
Hence the residual contribution of these outlier points to the reprojection
error will not represent the quality of the estimated camera poses and the
remaining correct points in the structure.

In this work we ignore a small fraction of the points with the largest
residual contribution during the evaluation of the average reprojection error.
This way the reprojection error is a faithful and valid measurement of the
camera poses quality. Unless stated otherwise, the evaluation of the repro-
jection error in the tests described in this chapter does not include the 1%
of the points with the largest average residual contribution.

5.1.2 SBA and GEA implementations

To compare the performance of the GEA and BA algorithms we evaluate the
speed and accuracy of one implementation for each algorithm on different
reconstruction problems. The GEA implementation is based on the code
provided by the open source QVision library1 [Rodŕıguez et al., 2008]. This
implementation uses the so(3) parametrization to represent the orientation of
each camera pose (as described in section 2.3.3) and a 3D point for the camera
center. The cameras are assumed to be calibrated, so this parametrization
does not include intrinsic parameters such as the focal distance, principal
point coordinates, or radial distortion coefficients.

During the step equation evaluation, the derivatives Ji, Jj for each term
in the GEA cost error are efficiently evaluated from the camera poses and the
reduced matrix Ω using code automatically generated with a symbolic algebra
package, such as Maple [Monagan et al., 2005] or Mathematica [Wikipedia,
2012a]. To obtain the solution for this equation, this GEA implementation
provides different dense and sparse solvers, such as the sparse Cholesky fac-
torization routines in the MKL [Intel, 2012] or CHOLMOD [Chen et al.,
2008] libraries.

The performance of this GEA implementation is tested against sparse

1http://qvision.sourceforge.net/
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sparse bundle adjustment (sSBA)2 [Konolige, 2010], which is a state of the
art implementation of BA included in the ROS library [Quigley et al., 2009].
There are several other open source SBA implementations which could be
used to compare the performance of GEA with BA [Lourakis and Argyros,
2009; Kummerle et al., 2011; Wu et al., 2011]. However sSBA combines
several advantages which make it adequate for the performance compari-
son with GEA. Like the GEA implementation sSBA assumes a calibrated
scenario, hence the parametrization for the cameras only includes the orien-
tation and the camera center. Both implementations were coded using design
choices with comparable computational efficiency. They use object oriented
data containers which can increase significantly the computational time cost.
Neither of them uses high performance parallel computing techniques, GPU
hardware or multimedia extensions to accelerate the optimization, with the
exception of the step equation resolution which is done using third-party li-
braries. Nevertheless, if the same sparse solver implementation were used for
both correction methods, and the Schur complement is used in SBA, the time
required for this operation should be the same. Hence the times evaluated
for this operation in our tests should not be considered in the computational
efficiency comparison of both GEA and SBA. The implementation is also
highly accurate, and like GEA, it is freely available and open source.

In our tests, both implementations were configured to solve the step equa-
tion using a block Jacobi preconditioned CG. This method requires a max-
imum of nv × np iterations, where nv is the number of views in the recon-
struction and np is the number of parameters for each camera. In practice,
PCG usually requires a fraction of those iterations to obtain an accurate
approximation for the solution. We configured sSBA and GEA to perform
a minimum of 10 iterations, and a maximum of nv/4, obtaining this way
solutions for the step equations which were quite similar to those obtained
by direct solvers.

Unless stated otherwise, both GEA and SBA are configured to perform
10 iterations in the optimization of the cost error with the modified Gauss-
Newton and Levenberg-Marquardt respectively. The initial damping param-
eter for LM is set to λ = 10−3, while this parameter is fixed in the Gauss-
Newton optimization used in GEA to λ = 10−3. This parameter configura-
tion was adequate to reach the optimal configuration for most datasets using
both correction methods.

2The adjective sparse is repeated in the denomination of this implementation to indicate
that it exploits the sparsity on both the evaluation of the reprojection error derivatives,
and the resolution of the reduced camera system obtained with the Schur complement.
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5.1.3 Datasets used in this work

In this work we have measured the performance of the GEA correction on a
large number of reconstruction problems. The datasets dinosaur3, corridor4,
model house4, and maquette5 contain feature point trackings detected in short
image sequences, along with the camera calibration and a suboptimal initial
configuration for the camera poses and the scene structure.

Dataset Views Points
Projections per view

min mean max

dinosaur 36 4983 257 456 602

wardham 5 1331 347 603 887

modelhouse 10 672 102 284 460

corridor 11 737 260 366 490

boxes2 34 374 72 116 160

synthetic 20 256 256 256 256

Table 5.1: Size of several datasets used in this work, in number of views, 3D points,
and projections per view.

The datasets trafalgar, venice, dubrovnik , ladybug, and final, were used
by Agarwal et alt. to evaluate the performance of their BA implementation
in large scale reconstructions6 [Agarwal et al., 2010].

The datasets trafalgar, venice, and dubrovnik were generated from large
collections of images downloaded from the Internet, which capture certain
popular sites across the world. The dataset ladybug was created from images
captured with a video camera embedded in a robot, which performed precise
straight line translations across several corridors inside a building during the
dataset generation. Each one of these datasets contains several suboptimal
partial initializations for the reconstruction problem, which were obtained
using an incremental SfM reconstruction procedure. These datasets contain
the partial reconstructions obtained in each iteration of the reconstruction
process, just after the initialization of new camera poses and 3D points,
and before the BA correction. Hence these datasets are very useful for the
performance evaluation of a correction method, as they contain initialization
errors which can be found in practice during the reconstruction process.

3Thanks to Wolfgang Niem, University of Hannover.
4 Oxford’s VGG group:

http://www.robots.ox.ac.uk/~vgg/data/data-mview.html.
5Provided with the source code of laSBA [Lourakis and Argyros, 2009]:

http://www.ics.forth.gr/~lourakis/sba.
6BA in the large: http://grail.cs.washington.edu/projects/bal/
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Figure 5.1: Number of points, and image projections in the datasets trafalgar,
dubrovnik, venice, and ladybug.

The table 5.1 and the figure 5.1 show statistical information about the
datasets referenced so far, such as number of feature projections, views and
3D points. To evaluate the GEA performance on these datasets, we must
obtain pairwise image feature correspondences from the trackings contained
in their reconstructions. Each pair of feature projections in a given tracking
produces one pairwise matching between these projections which will be used
in the GEA optimization.

These pairwise matchings will contain a minimal or zero fraction of the
mismatchings produced by typical image feature correspondence detection
methods, as most of them will have been discarded to compose the trackings.
To evaluate the robustness of the incremental motion estimation procedure
described in section 4.3 in practical working conditions we must use all the
feature correspondences obtained by the image feature matching, including
the mismatchings. For this purpose we have organized a different group
of datasets, each one of them containing a set of images capturing a given
scene. These datasets contain the pairwise feature correspondences detected
between these images using sample consensus search methods and SIFT fea-
ture descriptors, as well as the intrinsic camera parameters and a ground
truth reconstruction obtained with a classical incremental motion estimation
procedure.

The data sets leuvencastle and medusa7 contain image sequences previ-
ously used in [Pollefeys et al., 2004] to evaluate the performance of an incre-

7http://www.cs.unc.edu/~marc/
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5.1. Methodology for the GEA performance evaluation

Figure 5.2: Selected frames from the datasets medusa, leuvencastle, stmartin, hall-
wall, desktoplong and boxes8.

mental SfM procedure. The desktoplong and boxes8 datasets contain frames
obtained from the video sequences used in [Rodŕıguez, López-de-Teruel and
Ruiz, 2011a] to evaluate the performance of the GEA correction on real-time
SfM applications8. The dataset hallwall contains frames from the video se-

8http://perception.inf.um.es/gea/
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quence used in [Ruiz et al., 2011] to perform visual egolocation on mobile
devices by matching image features with points in sparse reconstructions.
The stmartin dataset contains the images9 used to test the structureless mo-
tion initialization procedure described in 4.1.3.

The figure 5.2 shows some of the images contained in each one of these
datasets. The pairwise matchings, the camera calibrations and the ground
truth reconstruction contained in these datasets were obtained from the im-
ages using the VisualSfM framework10.

Al the datasets referenced contain estimations for the linear intrinsic cali-
bration parameters, which we use to correct the image projection coordinates
before the GEA or sSBA optimization. Nonlinear camera parameters such
as the radial distortion are ignored. In most cases they contain negligible
values, and using them to correct the image coordinates would have a minor
contribution in the accuracy of the results obtained.

5.2 GEA and sSBA performance comparison

In this section we compare the performance of the GEA and sSBA opti-
mizations on several datasets. We demonstrate that the GEA correction
obtains accurate camera pose estimations, which can be used to obtain the
scene structure with a quality very similar to that obtained by BA. We also
demonstrate that GEA can reduce the error of the estimated camera poses
in a fraction of the time required to correct the full reconstruction (camera
poses + structure) using sSBA.

5.2.1 Optimal error configuration

The table 5.2 and the figure 5.3 show the following reprojection errors ob-
tained with sSBA and GEA on several datasets:

Initial: reprojection error for the initial reconstruction stored in the dataset.

SBA: reprojection error for the initial reconstruction refined with SBA.

GEA: reprojection error for the reconstruction after a GEA correction and
a linear re-estimation of the points in the structure.

GEA+SBA: reprojection error for the previous reconstruction configura-
tion after a SBA refinement.

9http://cmp.felk.cvut.cz/~martid1/demoCVPR07/
10http://homes.cs.washington.edu/~ccwu/vsfm/
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Dataset views
Reprojection error

Initial SBA GEA GEA+SBA

dinosaur 36 22.25 0.81 2.04 0.17

wardham 5 4.42 0.15 0.36 0.15

modelhouse 10 16.26 0.71 1.92 0.71

corridor 11 18.60 0.82 1.00 0.82

boxes2 34 2.91 2.15 2.18 2.15

synthetic 20 2.18 0.96 0.98 0.96

Table 5.2: Reprojection errors obtained for several datasets with sSBA and GEA.
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Figure 5.3: Reprojection errors obtained with sSBA and GEA for the reconstruc-
tion problems trafalgar, dubrovnik, venice, and ladybug.

The reprojection error of the GEA reconstruction is in most cases very
similar to the optimal reprojection error obtained with SBA. The similar-
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ity between the reprojection errors GEA+SBA and SBA suggest that the
GEA reconstruction configuration is inside the basin of the optimal repro-
jection error configuration.

Original scene SBA optimal GEA optimal

Figure 5.4: Optimal reconstructions obtained with GEA and BA for the dataset
dubrovnik (88 views). The 3D points in the GEA reconstruction were estimated
from the optimal configuration for the camera poses provided by GEA, and the
linear triangulation method.

The similarity between the structures obtained from the GEA camera
poses, and SBA can be compared with visual inspection in figure 5.4, which
shows a detail of the optimal reconstruction obtained with both methods
GEA and SBA, for the dataset dubrovnik.

Dataset views
Num. points Min. proj. per view

original evaluated original evaluated

dinosaur 36 4983 4833 257 245

wardham 5 1331 1292 347 328

modelhouse 10 672 656 102 94

corridor 11 737 721 260 250

boxes2 34 374 368 72 69

synthetic 20 256 251 256 251

Table 5.3: Num. points: number of total points in the structure , and inlier
points used in the evaluation of the reprojection error. Min. proj. per view:
minimum number of point projections from the structure, and minimum number
of inlier points used to evaluate the reprojection error of a view in the datasets.

As we described in section 5.1.1 in the reprojection error evaluation we
have ignored some of the points with the largest residuals. This prevents
the influence of outliers which can appear during the Linear-LT structure
estimation, or the BA correction due to incorrect dataset initialization, or
structure triangulation.
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Figure 5.5: Minimum number of projections per view, for the points in the recon-
struction problem, and the inlier points used in the reprojection error evaluation
for the datasets trafalgar, dubrovnik, venice, and ladybug.

It could be argued that by ignoring the points with the largest residuals
we could obtain a small average reprojection error, even if one of the views
has an incorrect camera pose. For example, if that incorrect view contains
projections only for the 3D points with the largest residuals ignored in the
reprojection error evaluation.

This was not the case for the tests described in this chapter. The value
minimum projections per view shown in table 5.3 and in the figure 5.5 is the
number of 3D point projections used in the evaluation of the average repro-
jection error for the views obtained with GEA. These figures demonstrate
that the quality for the camera pose in every view contributes to the average
reprojection error measured in our tests.
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5.2.2 Convergence speed

Figures 5.6 and 5.7 show the convergence speed to the optimal configuration
for the GEA and SBA correction methods in several datasets. We have
evaluated the convergence with different damping values in the Levenberg-
Marquardt and Gauss-Newton algorithms, to evidence that GEA requires a
few iterations to obtain camera poses very close to the optimal configuration
when using either large or small damping parameters, even when this value
is zero. Hence to provide the optimal configuration GEA does not require a
fine tuning for this value.

Setting the LM damping parameter with large initial values will provide a
slow error reduction speed, while in most cases these values will still provide
a fast convergence with GEA. Meanwhile, BA can diverge from the optimal
configuration when the damping parameter is initialized with a value too
small. In this case the reprojection error does not have a convex shape at
the initial reconstruction configuration, and the solution for the second order
approximation to the cost error is far from the real optimum.

Most BA implementations increase the damping parameter in this case to
prevent divergence. This way the optimization can reach the optimal config-
uration in a reasonable number of iterations. Nevertheless this increases the
optimization time, as LM must waste several iterations tuning the damping
parameter.

In the case of GEA, a sufficiently small or zero value ensures a fast con-
vergence to the optimal solution for all the datasets used in the performance
tests. An exception is the dataset ladybug, which features critical configura-
tions that we will discuss latter in section 5.3.3.

5.2.3 Optimization step time

In this section we show the time required by each stage of the GEA and
sSBA optimizations to perform a single optimization iteration for the recon-
structions in several datasets11. In the figures 5.8 and 5.9 the stage reduce
estimates the reduced coefficient matrices Ω from the pairwise image match-
ings. For the SBA correction, the stage setup obtains the reduced camera
system, from the image projections and the actual reconstruction config-
uration. In this stage, each projection in the reconstruction produces an
increment in two block-elements of the camera matrix. Hence the compu-
tation time of this step grows significantly with the number of projections.
Meanwhile for the GEA correction this stage obtains the step equation for

11These tests were executed on an Intel Core i3 CPU, with 3.20GHz and 4Gb of RAM
memory.
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Figure 5.6: Convergence for GEA and SBA on the dataset dinosaur, using different
values for the damping parameter λ in the optimization. The initial error (iteration
0) is different in both graphs because in the case of GEA, the reprojection error is
evaluated on the linear triangulation of the 3D points. Meanwhile in the SBA plot
the initial error corresponds to the structure configuration originally contained in
the dataset.

the Gauss-Newton optimization. The GEA step equation is evaluated with
less computational cost for GEA than for SBA.

In both methods sSBA and GEA, the solve stage obtains the solution
for the step equation. The times for this stage are different because both
methods use a different implementation for the iterative solver. If both sSBA
and GEA implementations were using the exact same code for solving the
step equation, the times for this stage would be the same.

The triangulate step in the GEA correction estimates the 3D location for
every point in the structure, using the GEA camera poses.

The computational cost of GEA in practice will vary depending on the
design of the final reconstruction application, as the main computation time
bottleneck in the GEA correction is the linear triangulation of the structure.
Compared with sSBA, the computational efficiency of GEA will grow with
the number of 3D points and image projections in the reconstruction.

A large fraction of the triangulation time with GEA can be saved in
practice, given that most or all the 3D points will not need to be updated.
Incremental SfM pipelines only require to re-estimate the 3D points which
are needed to resect new camera poses in each iteration. The incremental
motion estimation procedure described in section 4.3 does not require to
evaluate the structure at all during the motion estimation.
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Figure 5.7: Convergence for GEA and SBA on the dataset venice using different
values for the damping parameter λ in the optimization. Again, the initial error
(iteration 0) is different in both graphs, because the reprojection error obtained
with GEA is evaluated with the linear triangulation of the points, whereas the
initial SBA error corresponds to the dataset configuration.

Figure 5.10 shows a comparison of the time required by the data reduc-
tion step in the GEA optimization for the different methods described in
section 3.2.1. The direct method which uses the Ω matrix takes a fraction
of the computation time required by the decomposition methods which were
initially proposed in [Rodŕıguez, López-de-Teruel and Ruiz, 2011b] to reduce
the matching data.

5.3 Robustness of the GEA optimization

In this section we evaluate the performance of the GEA correction under
possible failure conditions such as critical motion sequences or feature mis-
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Figure 5.8: Time per iteration required by GEA and SBA for several datasets.
The reduce and triangulate steps are performed once only in each GEA correction,
even if the Gauss-Newton optimization requires several iterations. Furthermore,
the triangulate step is not required to perform structureless motion estimation.

matching appearance. We demonstrate with empirical results that, under
general circumstances, the GEA optimization described during the previous
chapters is sufficiently robust against these conditions.

5.3.1 Robustness against feature mismatchings

To demonstrate the robustness of GEA against the appearance of pairwise
feature mismatchings we performed several optimization tests. In the first
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Figure 5.9: Time (in miliseconds) required by each stage of the GEA and SBA
corrections for the datasets corridor, modelhouse, wardham and dinosaur. The
triangulate step obtains the 3D sparse structure, and it is not required by GEA to
estimate the camera poses.
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Figure 5.10: Computation time required to evaluate the reduced matrices from
the matching data for different datasets, using two methods: the one proposed
in [Hartley, 1998b; Rodŕıguez, López-de-Teruel and Ruiz, 2011b] with both the
Cholesky and eigen decompositions for the factorization of the reduced data ma-
trix, and the Ω method proposed in section 3.2.1 which does not require a matrix
factorization.

set of these tests we introduced a significant number of artificially gener-
ated mismatchings in the GEA correction of the datasets corridor, boxes2,
trafalgar, venice and dubrovnik. These mismatchings were generated to have
a small epipolar residual with the ground truth configuration for the cam-
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era poses. This ground truth configuration is assumed to be the optimal
GEA configuration obtained from the camera poses, and the original feature
trackings in the dataset.

Hence, each one of these mismatchings p ↔ q is generated as follows.
The coordinates for the first feature location p = (xp, yp, 1), and the horizon-
tal coordinate xq for the second feature location q = (xq, yq, 1) are randomly
generated from the set [−1, 1] ∈ R. This locates the point p, and the coor-
dinate xq inside a square box of size 2, centered at the origin of coordinates
in the image plane. The remaining image coordinate yq is solved from this
equation:

qTEijp = r (5.2)

where r is the epipolar residual that we want for the generated mismatch-
ing, and Eij is the essential matrix parametrization of the ground truth cam-
era poses for the views i and j.

Dataset
Fraction of synthetic mismatchings

0% 10% 25% 50% 75%

dinosaur 1.9367 2.3632 2.2872 2.8388 4.4753

wardham 0.3579 0.3328 0.4439 0.3917 0.3511

modelhouse 1.9446 1.9016 1.8101 1.8893 1.8905

trafalgar-50 1.1087 1.1159 1.1900 1.2886 1.3578

dubrovnik-88 2.0219 3.1046 2.5740 3.0385 2.3530

venice-52 1.4357 1.3812 1.3895 1.4347 1.4876

Table 5.4: Reprojection errors obtained using GEA on several datasets which in-
clude a fraction of randomly generated mismatchings with a small epipolar residual
for the ground truth camera poses.

The table 5.4 shows the results obtained for this first set of experiments,
where a fraction of mismatchings is added to the list of feature correspon-
dences used in the GEA correction. The residual r for each artificial mis-
matching is randomly selected as the residual for one of the original matchings
obtained from the trackings in the dataset. This way the residual distribution
of both the mismatchings and the original matchings is similar. The tests
show that GEA provides accurate camera poses in most cases, even when 75%
of the image correspondences are synthetic mismatchings. As suggested in
section 4.3.3, feature mismatchings satisfying the correct epipolar geometry
for the camera poses do not degrade the performance of the GEA correction.

The table 5.5 shows the results obtained in a second set of experiments,
where the synthetic mismatchings introduced in the GEA correction have a
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Dataset
Fraction of synthetic matchings Random

mismatchings0% 10% 25% 50% 75%

corridor 0.9708 1.3173 1.7649 1.8767 2.0825 20.9127

boxes2 2.1873 4.5058 5.3289 9.3690 14.1217 18.5555

trafalgar-21 0.9517 1.1744 2.0826 4.5713 6.4662 72.4834

trafalgar-50 1.0993 2.0147 3.3696 5.6733 7.5078 77.0119

trafalgar-126 0.9897 2.2951 2.3661 3.6071 5.2475 110.9736

trafalgar-206 0.9924 1.8839 2.7068 3.6410 5.1623 81.8933

trafalgar-257 0.9328 1.7529 2.2349 3.3266 5.0442 127.9680

dubrovnik-88 2.0177 3.0652 4.3996 7.8411 12.3717 273.8359

dubrovnik-150 1.8218 3.2866 5.1214 8.9883 15.2893 170.2761

dubrovnik-308 1.7959 3.0369 4.3747 7.6861 15.8416 411.2761

venice-52 1.4199 2.0235 2.5989 3.5267 4.8030 40.1494

venice-89 1.0295 1.3762 1.7545 2.4587 3.7931 52.9438

venice-245 1.2449 18.1216 18.3851 18.6509 22.6964 79.3621

venice-427 1.3904 8.1374 7.2535 9.7570 10.4587 226.3414

Table 5.5: Reprojection errors obtained with the GEA correction on several
datasets. A fraction of synthetic matchings containing a significant epipolar resid-
ual with the ground truth camera pose configuration was added to a 10% of the
view pairs in the optimization. The column random mismatchings shows the
reprojection error obtained when this 10% of view pairs contains a 75% of synthetic
matchings with a very large epipolar residual.

large epipolar residual error, up to 50 times larger than the residuals for the
original matchings in the dataset. In this case, the mismatchings were intro-
duced only in a 10% of the view pairs, to simulate that the sample consensus
matching provided for these view pairs a given fraction of correspondences
with large epipolar residuals. We can see that the error of the optimal GEA
camera pose configuration increases with the percentage of these synthetic
mismatchings, as expected. The last column in this table shows the repro-
jection error obtained when a 75% of the correspondences in these view pairs
are artificial mismatchings, where the coordinate yq was randomly gener-
ated without satisfying the epipolar geometry of equation (5.2) at all. The
mismatchings in these tests represent matching failures where the sample
consensus search obtains incorrect epipolar models which are quite different
from the valid ones. In this case the reprojection error becomes quite large.

The table 5.6 shows the results obtained in the same experiments when
the GEA correction is robustified with the procedure described in section
4.3.3, using a robustification threshold parameter µ set to 10−4. The error
obtained with the robustified GEA correction decreases, and in most cases
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Dataset
Fraction of synthetic matchings Random

mismatchings0% 10% 25% 50% 75%

corridor 0.9849 1.2857 1.0101 0.9744 0.9744 0.9744

boxes2 2.1873 2.1885 2.1885 2.1885 2.1885 2.1885

trafalgar-21 0.9517 1.1146 0.9510 1.0076 1.0205 0.9188

trafalgar-50 1.0939 1.3424 1.3102 1.1702 1.1798 1.1590

trafalgar-126 0.9857 1.2451 1.1678 1.1206 1.1263 1.0099

trafalgar-206 0.9929 1.1371 1.1545 1.1429 1.1260 1.0069

trafalgar-257 0.9340 1.0860 1.0866 1.0330 1.0296 0.9455

dubrovnik-88 2.0216 2.0291 2.0240 2.0231 2.0253 2.0234

dubrovnik-150 1.7916 2.1283 1.9164 2.1533 2.3135 1.7924

dubrovnik-308 1.8080 1.8312 1.8312 1.8406 1.8348 1.8100

venice-52 1.4568 1.4103 1.4381 1.4319 1.4592 1.4626

venice-89 1.0338 1.0957 1.0748 1.0381 1.3269 1.0591

venice-245 1.2228 18.1930 17.0374 17.4025 18.3389 1.2190

venice-427 1.3521 7.1942 6.4374 6.8524 7.1689 1.3580

Table 5.6: Reprojection errors obtained with the robustified GEA correction
on several datasets. A fraction of synthetic matchings containing a significant
epipolar residual with the ground truth camera pose configuration was added to a
10% of the view pairs in the optimization. The column random mismatchings
shows the reprojection error obtained when this 10% of view pairs contains a 75%
of synthetic matchings with a very large epipolar residual.

it is very close to the error obtained with the mismatching-free GEA cor-
rection. When the mismatchings are totally randomly generated, without
satisfying the epipolar geometry for the camera poses at all, the robusti-
fication method successfully discards all the terms in the GEA cost error
containing mismatchings. In this case, the robustified GEA correction ob-
tains camera pose estimations with an accuracy similar to those obtained by
the classical GEA correction with the original set of feature correspondences,
which is free from the artificial mismatchings.

5.3.2 Evaluation of cost error sparsification

In this section we evaluate the results obtained with the graph reduction
procedure described in section 3.2.5, which sparsifies the step equation in
the GEA optimization.

Table 5.7 shows the optimal GEA reprojection error obtained for different
degrees of sparsification. In these tests the parameter sc is set to 10, so the
graph reduction procedure will not delete links connecting nodes which are
themselves linked to 10 or less other nodes in the graph.
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Dataset Cost terms used Iteration time Rep. error

trafalgar-50 921 608 304 6.92 4.73 2.43 1.11 1.15 1.36

trafalgar-126 2969 1960 980 29.75 19.75 10.19 0.99 1.01 1.19

trafalgar-170 4725 3119 1559 50.25 34.35 17.42 1.00 1.03 1.14

trafalgar-206 5961 3934 1967 69.74 47.39 24.35 1.00 1.01 1.16

trafalgar-257 7723 5097 2548 99.75 67.69 35.08 0.96 0.97 1.13

dubrovnik-88 3334 2201 1100 30.29 20.07 9.89 2.01 2.05 2.38

dubrovnik-135 7168 4731 2365 74.16 49.66 24.95 1.85 1.88 2.16

dubrovnik-150 7916 5225 2612 84.86 56.73 28.55 1.77 1.84 2.20

dubrovnik-202 12914 8523 4261 164.50 106.93 53.67 1.71 1.74 1.95

venice-52 1295 855 427 10.11 6.65 3.45 1.43 1.50 1.82

venice-245 19439 12830 6415 269.49 180.75 87.63 1.27 1.29 1.35

Parameter sf 100% 66% 33% 100% 66% 33% 100% 66% 33%

Table 5.7: Reprojection errors obtained after 10 GEA iterations, with the graph
reduction elimination of terms proposed in section 3.2.5. The iteration time (in
milliseconds) includes the evaluation and solving of the Gauss-Newton step equa-
tion.

The number of terms in the GEA cost error can be significantly decreased
with the graph reduction technique, increasing the sparsity of the coefficient
matrix in the step equation, and reducing significantly the computation time
required in the Gauss-Newton optimization as can be seen in the table 5.7.
Meanwhile the GEA correction still obtains cameras with a high accuracy,
almost equivalent to the camera pose accuracy obtained with the correction
of the original cost.

5.3.3 Influence of critical sequences

The accurate results obtained by GEA on the datasets dubrovnik, trafalgar,
and venice demonstrate that the correction method can be used without
problems in most reconstruction problems where the camera motion is not a
linear translation. However, as discussed in sections 3.3.1 and 3.4.1 motion
correction methods based on pairwise constraints which do not enforce the
scale, such as GEA, pose-graph relaxation or motion averaging, will not be
able to estimate accurately the camera poses on reconstruction problems
which contain linear camera motion configurations.

As can be seen in figure 5.11, when one of these critical motion sequences
is present in the reconstruction the optimization diverges from the optimal
solution, and the error in the estimated camera poses grows with each itera-
tion.
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Figure 5.11: Convergence for GEA and SBA on the dataset ladybug (with 49 views)
using different values for the damping parameter λ in the optimization. The GEA
optimization diverges from the optimal configuration, as the reconstruction in this
dataset contains a critical motion.

Figure 5.12 shows a visual comparison between the optimal configuration
obtained with BA on the dataset ladybug, and the configuration obtained
with GEA after a given number of iterations. The camera poses obtained
by GEA are correctly arranged on the line of the robot translation, but the
estimated location of these camera centers on this line is incorrect. For this
reason, the structure triangulated with the camera poses corrected with GEA
is noticeable different from the optimal BA reconstruction, as it contains a
significant error.

In practice, GEA can be applied successfully to a large number of SfM
problems which contain nearly critical camera pose configurations. Any de-
viation of the camera motion from the perfect linear translation can prevent
the problems of critical motions with GEA. To demonstrate this fact, we
have evaluated the GEA accuracy and robustness on other datasets which
contain near linear translation camera motions. In these datasets, even after
a large number of iterations the GEA correction converges to a camera pose
configuration close to the BA solution.

For example, in the dataset corridor the camera poses are arranged in a
quasi linear configuration with a slight curve deviation. This is also the case
for the modelhouse and wardham datasets.

The figures 5.14 and 5.15 show the reconstruction obtained with BA and
GEA for the datasets corridor and wardham respectively. As can be seen in
the figure 5.13, both GEA and SBA converge in these datasets to camera pose
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(a) BA reconstruction: three-point (left) and top view (right) per-
spective

(b) GEA reconstruction: three-point (left) and top view (right)
perspective

Figure 5.12: Ladybug dataset (49 views). The GEA reconstruction diverges from
the optimal reprojection error configuration when a critical motion configuration
is found. The figures show the reconstructions obtained with GEA and SBA after
60 iterations using a conservative value of 1.0 for the damping parameter. The
dataset ladybug-49 contains views for two different camera trajectories: one with
camera facing towards, and other with the camera facing sideways. Only one of
them is shown in the images for the sake of clarity.

configurations with a similar small reprojection error. The exact location of
the camera centers for the corridor dataset is accurately estimated using the
GEA correction, thanks to the slight curve in the trajectory which prevents
the GEA failure due to the critical linear translation.

Robustness evaluation on synthetic datasets

To evaluate with precision the influence of near critical camera configurations
in the GEA correction, we have performed another set of experiments with
synthetic reconstruction configurations which contain nearly aligned camera
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Figure 5.13: Convergence for GEA and SBA on the datasets corridor, wardham
and modelhouse, where the camera translates in a near-linear motion.

poses.

Figure 5.16 shows the basic configuration of these synthetic reconstruc-
tions. Each one of these configurations contains five views and 100 feature
points. The points are randomly located in front of the cameras, which are
arranged along a straight line with a baseline distance between the first and
the last camera center of 1. Uniform noise is added to the image coordi-
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(a) Three of the views used to generate the dataset corridor

(b) BA reconstruction (c) GEA reconstruction

Figure 5.14: Reconstructions obtained from the dataset corridor using the GEA
and SBA corrections. Top row: some of the images used to obtain the dataset.
Bottom row: reconstructions and camera motion obtained with the GEA and
BA corrections.

nates, to make the experiment more similar to real image data conditions.
These reconstructions have a free parameter which indicates the distance of
the third camera pose to the motion line for the rest of the cameras. This
distance breaks the linearity of the camera motion in the reconstruction.

In the same figure we can see the accuracy obtained with GEA for a
large number of these synthetic reconstructions, compared with the accuracy
obtained using BA, with a varying offset distance for the third view. This
figure demonstrates that for certain reconstruction problem configurations,
having one of the cameras located a small offset distance away from the
aligned configuration is a sufficient condition to prevent the performance
degradation of GEA due to critical configurations.

122



5.4. Incremental motion estimation evaluation

(a) Three of the views used to generate the dataset wardham

(b) BA reconstruction

(c) GEA reconstruction

Figure 5.15: Reconstructions obtained from the dataset wardham using the GEA
and SBA corrections. Top row: some of the images used to obtain the dataset.
Middle row: top, side and front view of the reconstruction obtained with the
SBA correction. Bottom row: top, side and front view of the reconstruction
obtained with the GEA correction.

5.4 Incremental motion estimation evaluation

In this section we evaluate the performance of the structureless incremental
motion estimation procedure described in section 4.3 in several reconstruction
problems. With these experiments, we demonstrate that the structureless
motion estimation method proposed can accurately initialize a large number
of views for most of these reconstruction problems, as well as be used to
obtain an accurate structure estimation from the input image matchings.

In a first set of experiments, we evaluate the motion initialization method
on the datasets used in the previous section to evaluate the GEA perfor-
mance. We use the matchings obtained from the trackings in these datasets
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Figure 5.16: Left: influence of near critical motion configurations in the GEA cor-
rection of synthetic reconstruction configurations. The horizontal axis represents
the distance between the camera center of the third view with the translation line.
The vertical axis represents the ratio between the reprojection errors obtained with
GEA and SBA. Middle and right: top and side view of an example synthetic
reconstruction configuration used to evaluate the GEA tolerance to near linear
motions.

as input feature correspondences for the incremental motion estimation pro-
cedure. These pairwise matchings will be used with the incremental motion
estimation to obtain the camera poses without computing the structure. In
a second set of experiments we evaluate the motion initialization method on
image matchings detected on image sequences using SIFT. Most of the mis-
matchings were filtered using pairwise sample consensus search, as described
in section 4.1.1.

5.4.1 Using multiple view feature trackings

In this subsection we evaluate the performance of the structureless incre-
mental motion estimation procedure on the datasets trafalgar, dubrovnik and
venice. In these experiments the input pairwise feature matchings for this
algorithm are obtained from the trackings contained in the datasets.

The camera poses estimated with this procedure are compared with a
ground truth camera pose configuration, which is obtained by correcting the
initial camera pose configuration in the dataset with GEA. We re-estimate
the structure with the linear method using these camera pose configurations,
and the trackings contained in the datasets.

The number of views and the reprojection error of both reconstruction
configurations can be seen in table 5.8. Notice that our method does not
initialize certain views which can increase significantly the reprojection error.
Hence the error obtained with the method proposed can be smaller than the
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error obtained with other SfM methods, such as the one used to obtain
the ground truth. For most datasets, the initialization procedure obtains
accurate camera poses for a large fraction of the views, independently of the
reconstruction problem size. Figure 5.17 shows a detail of the reconstructions
obtained for the dataset trafalgar-161.

Dataset name
Ground truth Initialization

Views Error Views Error

dinosaur 36 2.493 18 1.375

modelhouse 10 1.748 9 1.452

corridor 11 0.716 6 0.667

trafalgar

21 0.973 21 0.792

50 1.122 50 1.020

161 1.034 156 1.030

200 1.011 192 0.998

256 0.958 219 0.940

dubrovnik

16 1.300 6 0.666

88 1.998 85 1.781

142 1.806 138 1.628

182 1.728 155 4.760

202 1.692 135 24.846

venice

52 1.470 52 0.970

89 1.081 89 0.899

245 1.208 240 1.087

427 1.307 415 1.174

Table 5.8: Comparison between reprojection error and number of views estimated
with the proposed incremental camera pose initialization method (initialization),
and the reconstruction obtained with the optimal GEA camera poses (ground
truth).

5.4.2 Using pairwise feature matchings

The table 5.9 shows the results for a set of experiments where we use the
pairwise feature matchings detected using SIFT and sample consensus search
in the image sequences medusa, leuvencastle, stmartin, hallwall, desktoplong
and boxes8 to estimate the camera poses with the incremental motion esti-
mation procedure. We obtain the sparse structure from the camera poses
by composing the pairwise correspondences into trackings, and using the lin-
ear triangulation to obtain the 3D point locations. The figures 5.18 and
5.19 show respectively the sparse and dense reconstructions obtained from
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Figure 5.17: Camera poses and detail of the sparse scene structure obtained from
the dataset trafalgar-161, using the following methods: Top: correction of the
camera poses contained in the dataset with GEA, and re-estimation of the structure
with the linear triangulation. Middle: incremental motion estimation and the
linear structure triangulation from the pairwise matching information contained
in the dataset. Bottom: picture from the original scene (Author: https://ssl.
panoramio.com/user/3029536).

the initialized camera poses. As can be seen in these figures, the structure
estimated with these camera poses is highly accurate.

The reduced number of initialized views for certain datasets could be
explained by the poor pairwise matching connectivity defined between their
views. As can be seen in figure 5.20 some of the datasets used in these tests

126

https://ssl.panoramio.com/user/3029536
https://ssl.panoramio.com/user/3029536


5.4. Incremental motion estimation evaluation

Dataset Total Ground truth Initialization

name views error PTS views PPV error PTS views PPV

medusa 18 0.60 2186 19 679.05 0.99 1715 18 632.44

leuvencastle 28 0.47 5256 28 1591.00 0.83 7168 28 2498.75

stmartin 124 2.03 41058 116 2191.03 0.53 33537 85 2628.94

hallwall 230 1.07 11612 230 685.77 1.13 7726 190 149.62

desktoplong 100 0.97 10586 100 1306.24 0.76 22768 100 1142.65

boxes8 91 0.79 9161 91 730.33 0.83 2236 25 702.84

Table 5.9: Comparison between the reconstructions obtained with the incremental
motion estimation (initialization), and a classical incremental SfM method (ground
truth). Trackings with 3 or less image projections and their corresponding points
in the structure were ignored in the estimation of these values. Error: reprojection
error for the reconstruction. PTS: 3D points initialized. Views: views initialized.
PPV: image points per view which were included in one or more trackings.

Figure 5.18: Sparse reconstructions obtained for the video sequences stmartin
(top) and medusa (bottom) using the structureless incremental motion estimation
procedure, and the linear structure triangulation.
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Figure 5.19: Dense scene structure obtained by PMVS2 using the camera poses
estimated with the structureless incremental motion estimation procedure, for the
datasets hallwall (top row), medusa (middle row left), boxes8 (middle row
right), desktoplong (bottom row left), and leuvencastle (bottom row right).

have a small number of view pairs corresponded with feature matchings,
and some of these pairs have a small number of feature matchings. For
this reason, the motion estimation procedure is not able to initialize a large
fraction of the views in datasets such as boxes8 or stmartin. In other datasets,
the procedure provides a number of 3D points significantly smaller than
those obtained with the classical incremental SfM method. However, the
results obtained with the structureless incremental procedure could still be
used as a starting point in a classical incremental SfM procedure, hence
reducing the computation time required to obtain the full reconstruction.
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Figure 5.20: Feature matching correlation matrices for the views in the datasets
medusa, leuvencastle, stmartin (top row), and hallwall, desktoplong, boxes8 (bot-
tom row). Each element in these matrices contains the number of feature corre-
spondences detected by the sample consensus search method for a given view pair
in the dataset. The red color in one of these elements indicates that the view pair
is corresponded with more than 256 feature matchings. A color varying from yel-
low to red indicates that the view pair is corresponded respectively with 1 to 255
feature matchings. The white color indicates that the view pair is not correlated
with feature matchings.

The figure shows the correlation between the amount of views and points
correctly estimated with the reconstruction method, and the sparsity of the
view correspondences graph. For those datasets containing a high pairwise
view matching correlation, the averaging works better and the incremental
motion estimation initializes a larger number of views and 3D points.

5.5 Closure

Despite optimizing an algebraic pairwise error, the experiments demonstrate
that in general conditions GEA obtains highly accurate camera pose estima-
tions, very close to the optimal configuration obtained with a geometric cost
such as the reprojection error optimized by BA.

The GEA convergence speed suggest that the GEA cost error is more
convex in the vicinity of the optimal configuration than the reprojection
error. This fact is also supported by the significantly smaller number of free
parameters and terms of the GEA cost error. Hence, the GEA cost is easier to
optimize, in the sense that the basin for the optimal configuration is probably
larger, and the optimization is smoother and less prone to divergence from
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the optimal configuration.
In practice, GEA can be used safely in most video sequences captured

with hand-held or wearable cameras, video devices embedded in vehicles, or
similar, as long as the camera does not move in straight line translations.

Critical motions will rarely affect the GEA optimization in practical re-
construction problems. As long as each view in the reconstruction has corre-
spondences with other two non collinear views, even if they are only slightly
non collinear, the problem of critical motion does not affect the GEA opti-
mization. In monocular reconstruction applications, the camera motion will
usually have slight or large deviations from the pure rectilinear translation.

The results discussed in this chapter also demonstrate the effectiveness
of the robustification technique proposed for GEA in the previous chapter.
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Chapter 6

Conclusions

6.1 Contributions

Structureless optimization methods, such as GEA, could become an impor-
tant tool to reduce the computational cost in future reconstruction and visual
odometry applications. We believe that this thesis provides solid arguments
in this sense. Our main contributions are the following:

A bibliographic review of structureless BA methods.

We have discussed the state of the art in structureless BA methods for visual
reconstruction. We have also reviewed alternative techniques for camera pose
correction and initialization, such as classical BA, pose-graph optimization,
or motion averaging.

A high-performance multiview structureless BA method based on
algebraic epipolar constraints.

We have proposed GEA, a structureless BA approach which optimizes a
multiple-view algebraic cost based on pairwise camera constraints using stan-
dard second-order optimization methods. We provided important compu-
tational details to obtain an efficient implementation of this optimization.
In particular, we propose an efficient way to compress the feature corre-
spondence information which dramatically reduces the computational cost
of GEA. These computational advantages, combined with the nice mathe-
matical properties of the proposed cost, give rise to a competitive alternative
in a wide range of SfM applications.
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Methods for using GEA in practical reconstruction applications.

We have reviewed several ways to use GEA in classical incremental SfM
applications. Specifically, we proposed using it to speed up and prevent
divergence in the intermediate steps of an incremental motion estimation
procedure. The camera poses obtained this way can be used to estimate
accurate dense or sparse reconstructions. The proposed incremental motion
estimation is more efficient than classical incremental SfM methods which
use BA and estimate the structure parameters.

Robustness to outliers is also an important issue in motion estimation al-
gorithms. Our incremental method uses classical pairwise sample consensus
to obtain epipolar geometries from the input matchings. Thanks to an ad-
ditional cost robustification technique, GEA can deal with possible incorrect
epipolar geometries, which could have survived due for example to perceptual
aliasing. This robustification can be implemented with a simple modification
in the Gauss-Newton step equation evaluation. Hence, it does not require
changes in the GEA cost error, preserving its simplicity and computational
advantages.

A thorough empirical evaluation of the GEA performance.

We have experimentally demonstrated that, under general circumstances,
both the GEA and BA corrections obtain camera poses with a similar ac-
curacy, with GEA requiring a significantly shorter computation time. We
have also provided theoretical arguments which explain these two facts. Fur-
thermore, we have evaluated the conditions which can degrade the GEA
performance, specially the critical motion sequences which can reduce the
accuracy of correction methods based on pairwise constraints. Our exper-
iments showed that GEA can efficiently obtain accurate camera poses in
arbitrarily large datasets, even in near-critical configurations.

6.2 Future work

In this section we describe what we believe are the most promising ideas to
improve the results described in this thesis:

Uncalibrated motion estimation

An interesting future application of algebraic epipolar constraints might be
uncalibrated motion estimation for 3D reconstruction from images with un-
known intrinsic parameters. This would require using GEA with a camera
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parametrization where the focal distance, or other linear camera parameters
are not fixed. In theory, the correction of the algebraic epipolar cost should
still obtain accurate results under these circumstances.

Relative camera parametrization

In a similar way to [Sibley et al., 2009], we could use GEA with a relative
camera pose parametrization to reduce drift error in real-time camera track-
ing applications. This way we could improve the quality of the topometric
reconstructions obtained with respect to relative BA, as the number of views
in the correction window could be increased without requiring a larger com-
putation time in the cost optimization.

Improving incremental motion estimation

The results obtained with the structureless incremental motion estimation
procedure could be improved by detecting more pairwise matchings between
the input views, as well as using a better averaging method to initialize the
camera poses. This way we could obtain camera pose configurations with a
larger number of initialized views. In [Martinec and Pajdla, 2007] the au-
thors use several kinds of features to obtain the largest possible number of
matchings between the input images. This improves the averaging results ob-
tained, by providing more relative motion constraints to estimate the camera
pose. Furthermore, it is likely that using a geometric averaging method to
estimate the camera location, instead of an algebraic one as our camera pose
estimation does, would improve the view initialization results.

Structureless real-time motion estimation

The performance advantages of structureless motion estimation could be ex-
ploited in real-time visual odometry applications. For this purpose we could
use the proposed motion estimation procedure, in combination with an ef-
ficient structureless method to detect image correspondences between the
input keyframes. Image correspondences between keyframes close in the
video sequence could be obtained either with a point tracking method such
as KLT [Shi and Tomasi, 1994], using reduced or lightweight descriptors
[Wagner et al., 2008; Calonder et al., 2010], or using a descriptor-less tracker
which assumes a planar or euclidean image transference model [Tordoff and
Murray, 2005; Rodŕıguez, López-de-Teruel and Ruiz, 2009]. Loop closing
correspondences could be efficiently detected between keyframes which are
distant in the video sequence, and have a small SAD or SSD correlation
value.
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