
Summary. For an effective adaptive immune response to
occur, dendritic cells (DC), which are the most efficient
antigen-presenting cells, must be able to sample the
peripheral microenvironment and migrate towards
secondary lymphoid organs (SLO) where they activate
naïve lymphocytes. Upon activation, lymphocytes
proliferate and acquire the capacity to migrate to
extralymphoid compartments. Although the molecular
mechanisms controlling lymphocyte homing to
lymphoid and to some extralymphoid tissues have been
described in significant detail, it is much less clear how
DC migration is controlled. Do DC obey similar
adhesion cues that lymphocytes do, or do they have their
own “zip codes”? This is relevant from a therapeutic
standpoint because effective DC-based vaccines should
be able to reach the appropriate tissues in order to
generate protective immune responses. Here, we discuss
some of the mechanisms used by DC to reach their target
tissues. Once DC arrive at their destination, they are
exposed to the tissue microenvironment, which likely
modulates their functional properties in a tissue-specific
fashion. This local DC “education” is probably
responsible among other things; for the acquisition of
tissue-specific homing imprinting capacity by which DC
instruct lymphocytes to migrate to specific tissues.
Finally, we discuss how dysregulation of these signals
may play a key role in disease. 
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Introduction

DC and lymphocytes are essential for adaptive
immunity. In order to generate an efficient immune
response, these critical cells need to be properly
positioned in the body. An essential component in this

process is the expression of specific trafficking
molecules on DC and lymphocytes. Thus, tissue-tropism
is determined by association with and sequential action
of adhesion molecules and chemoattractant receptors
that control the multi-step process of leukocyte homing
(Butcher, 1991; Springer, 1994). This process, which
includes tethering and rolling, activation, firm adhesion
and transendothelial migration, is largely dependent on
the interaction of multiple molecules, such as selectins,
chemokines and integrins with their respective ligands
(von Andrian and Mackay, 2000; Garrood et al., 2006).

Lymphocyte tissue-specific tropism was originally
reported more than 30 years ago (Rudzik et al., 1975a,b;
McDermott and Bienenstock, 1979; Tseng, 1981) and it
has been extensively studied during the last decade
(Kunkel and Butcher, 2002; von Andrian and Mempel,
2003; Bono et al., 2007; Mora, 2007). Naïve T cells
leave the thymus, enter the circulation and then traffic
preferentially through SLO, such as the spleen,
peripheral lymph nodes (PLN) and gut-associated
lymphoid tissue (GALT) (von Andrian and Mackay,
2000; Garrood et al., 2006). In these locations, naïve T
cells screen antigen-bearing DC in search of their
cognate peptide-MHC complex. Once the specific
encounter occurs, naïve T cells are primed by DC in a
complex multistep process (Mempel et al., 2004).
Primed CD4 or CD8 T cells differentiate into activated
effector/memory T cells, which are equipped with new
homing properties (Table 1). Once T cells leave the
SLO, they enter the circulation through the efferent
lymph vessels and migrate to extralymphoid tissues.

DC are located at the barriers between the internal
compartments of the body and the external environment,
such as the skin, lungs and gut mucosa, tissues where
they sample antigens. However, despite their critical role
in the immune response, little is known about how DC
migrate to different tissues. In this review, we will
discuss some adhesion pathways needed by DC to reach
their target organs. We will also address the role of
different DC subpopulations in imprinting lymphocytes
with specific tissue-tropism.
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DC migration

In humans and mice, two main subtypes of DC are
found under steady-state conditions. These are type-I
interferon-producing plasmacytoid DC (pDC) and
conventional DC (cDC) (Wu and Liu, 2007). They
traffic as DC precursors or as immature DC (iDC) from
the blood to peripheral tissues where they sense and
capture antigens. Once iDC sense pathogens, they
undergo a maturation process during which they
upregulate co-stimulatory molecules (e.g., CD80,
CD86). Mature DC (mDC) then migrate through the
afferent lymph towards the lymph nodes (LN) where
they prime naïve T cells (von Andrian and Mempel,
2003). Migration of DC to and from peripheral tissues
depends on the expression of chemokine receptors and
their respective chemokine ligands, as well as on
adhesion molecules, such as integrins. DC express
receptors for and respond to constitutive and
inflammatory chemokines and also respond to other
chemoattractants, such as lipids (e.g., platelet-activating
factor) and formyl peptides (Allavena et al., 2000).
Originally, responsiveness to several chemoattractants
was studied using DC derived from circulating
monocytes (Sozzani et al., 1995). Subsequent studies
using DC differentiated from CD34+ hematopoietic
precursors and Langerhans cells (LC) (Allavena et al.,
2000) demonstrated that such responsiveness is
generally conserved among different DC populations

(Table 1).

Migratory properties of mDC versus iDC

iDC are derived from bone marrow (BM) progenitor
cells through either the common lymphoid or the
common myeloid progenitor pathways. Precursor DC
and differentiated DC migrate in the bloodstream to
peripheral tissue where they remain in an immature state
patrolling for invasive pathogens. A classic example of
iDC resident in peripheral tissues is LC in the epidermis,
which possess a high capacity for antigen uptake. Once
iDC capture antigens, they undergo maturation, a
process by which their homing tropism is modified to
direct their migration to the SLO.

In the late 90s, several groups described the
differential expression of chemokine receptors between
iDC and mDC differentiated from monocytes (Sallusto
et al., 1998; Sozzani et al., 1998), suggesting different
tissue tropism between these two DC stages. Expression
of CCR1, CCR2, CCR5, CXCR4 and CXCR1
characterizes iDC with preferential migration towards
inflamed tissues (Sallusto et al., 1998; Sozzani et al.,
1998). In addition, depending on their origin, different
iDC subsets express different chemokine receptor
repertoires. Purified circulating DC express CCR1,
CCR2, CCR3, CCR5 and CXCR4 (Ayehunie et al.,
1997), whereas pDC also express CXCR3, which is not
expressed by monocyte-derived DC (MoDC) or blood
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Table 1. DC and lymphocyte homing.

Dendritic cell tissue tropism and microenvironmental migration

Cell type Receptor Ligand Target tissue

iDC CCR1 CCL3 (MIP-1α), CCL5 (RANTES), CCL7 (MCP-3) Inflamed tissue (after entering the gut)*
CCR2 CCL2 (MCP-1), CCL7 (MCP-3), CCL13 (MCP-4) Inflamed tissue (after entering the gut)
CCR5 CCL3 (MIP-1α), CCL4 (MIP-1ß), CCL5 (RANTES) Inflamed tissue (after entering the gut)
CXCR1 CXCL6 (CKA-3), CXCL8 (IL-8) Inflamed tissue (after entering the gut)

mDC CCR7 CCL19 (ELC), CCL21 (SLC) Lymph nodes (via afferent lymph)
CXCR4 CXCL12 (SDF-1α) Lymph nodes (via afferent lymph)

LC CCR6 CCL20 (MIP-3α) Skin (from blood)
Gut CD11b+ DC CX3CR1 CX3CL1 (Fractalkine) Lamina propria (after entering the gut)

? CCL9 (MIP-1γ) Peyer’s patches (after entering the gut; from blood?)
CCR6 CCL20 (MIP-3α) Peyer’s patches (after entering the gut; from blood?)

Gut pDC CCR9 CCL25 (TECK) Small intestine (from blood)

Lymphocyte tissue-tropism: gut versus skin migration

Cell type Receptor Ligand Target tissue

T cells, B cells, ASC α4ß7 MAdCAM-1 Small intestine, colon (from blood)
CCR9 CCL25 (TECK) Small intestine (from blood)

B cells, ASC CCR10 CCL28 (MEC) Small intestine, colon (from blood)
T cells E-Lig, P-Lig E- and P-selectin Skin (from blood)

CCR4 CCL17 (TARC), CCL22 (MDC) Skin (from blood)
CCR10 CCL27 (CTACK) Skin (from blood, after entering the skin?)

* Parentheses denote whether the receptors are involved in cell migration directly from the blood and/or after the cells have arrived to the tissue.



DC (Cella et al., 1999). Upon maturation induced by
either LPS, CD40L or TNF-α, DC acquire SLO-tropism
by expressing high levels of CCR7 and CXCR4, thereby
obtaining responsiveness to their respective ligands
ELC/CCL19 or SLC/CCL21 and SDF-1α/CXCL12,
which are expressed in the lymphoid organs ( Dieu et al.,
1998; Sallusto et al., 1998). In contrast, mDC do not
respond to inflammatory chemokines, which is
consistent with their loss of CCR1, CCR5 and CXCR1
surface expression upon exposure to maturation stimuli
(Sallusto et al., 1998). Therefore, DC maturation results
in a coordinated chemokine receptor switch from an
inflamed/peripheral tissue-tropism to SLO-tropism (Fig.
1). Interestingly, uncoupling the chemokine receptor
switch could be a means for pathogens to escape from
the immune system. For example, infection of immature
MoDC with human cytomegalovirus (HCMV) impairs
DC migration to inflammatory chemokines by
downregulating CCR1 and CCR5 surface expression
without upregulating CCR7 (Varani et al., 2005).

Phenotypical and functional changes from iDC to
mDC with the accompanying switch in tissue-tropism
are the product of activation by danger/alarm signals
from injured cells (Matzinger, 2002). Among these
danger signals are pathogen-associated molecular
patterns (PAMPs), which signal through Toll-like
receptors (e.g., LPS, double-stranded RNA, single-
stranded DNA, flagellin) (Matzinger, 2002).
Interestingly, most of these signals induce iDC
chemotaxis towards the danger signal’s origin. High
motility group box protein 1 (HMGB1) is a danger
signal released by necrotic cells or secreted by activated
macrophages which acts as chemoattractant for human
monocyte-derived iDC, whereas mature DC do not
respond to HMGB1 (Dumitriu et al., 2007; Yang et al.,
2007). Also, receptors for the complement protein C1q
are expressed on iDC and induce chemoattraction to
inflamed tissue, whereas mDC are not C1q sensitive
(Vegh et al., 2006). Thus, danger signals can specifically
attract iDC towards the inflamed tissue, while mDC are
insensitive to these stimuli.

In order to reach the inflamed tissue, circulating DC
precursors roll, adhere to the endothelium and
extravasate just as lymphocytes do. Human DC
progenitor populations express cutaneous lymphocyte-
associated antigen (CLA, an E-selectin ligand) on their
surfaces and are able to roll in the post-capillary venules
of non-inflamed mouse skin in an E- and P-selectin-
dependent fashion (Robert et al., 1999). Also, iDC are
able to transmigrate across the resting endothelium in
vitro, whereas mDC are not (Wethmar et al., 2006),
demonstrating different interaction abilities between iDC
and mDC. Resting endothelial cells express high levels
of intercellular adhesion molecule-2 (ICAM-2), while
iDC express DC-SIGN. The interaction between ICAM-
2/DC-SIGN allows the rolling and transmigration of
human DC (Geijtenbeek et al., 2000), indicating that
expression of DC-SIGN regulates iDC migration from

blood into peripheral tissues. In contrast, mDC migrate
from peripheral tissues to the SLO through the afferent
lymph vessels. The latter is highly dependent on CCR7
expression by DC (Forster et al., 1999; Ohl et al., 2004).
Below, we will discuss the mechanism involved in
upregulating CCR7 in maturing DC with the subsequent
migration towards SLO from peripheral tissue. 

DC migration to and from the skin

There are different subtypes of DC present in the
skin. Among them, LC are the most well characterized.
LC are present above the basal layer of the epidermis
and they are anchored to neighboring keratinocytes (KC)
through E-cadherin homotypic interactions (Banchereau
and Steinman, 1998). Under steady-state conditions, LC
turnover is slow. However, under inflammatory
conditions, in which a high number of resident LC leave
the skin, replacement is increased (Merad et al., 2002).
Therefore, under inflammatory conditions, the emigrated
LC population is replaced by bone marrow-derived
precursor cells (Koch et al., 2006). These precursor cells
travel throughout the bloodstream, adhere to the skin
endothelium, cross the dermal tissue barriers and finally
reach the epidermis where, under the influence of KC,
they differentiate into LC. KC produce cytokines, such
as TGF-ß, which has been shown to be crucial for LC
differentiation, as observed in the epidermis of either
TGF-ß-deficient mice or Langerin-cre TGF-ßRII mice,
which lack LC (Borkowski et al., 1996, 1997; Kaplan et
al., 2007). In addition, KC produce CCL20/MIP-3α, a
chemokine that promotes the recruitment of LC
precursors to the epidermis (Moser et al., 2004). Both
DC precursors and LC express the CCL20 receptor
CCR6 and migrate in response to this chemokine
(Sozzani et al., 2000). Furthermore, KC can produce
CCL17 (Morales et al., 1999; Vestergaard et al., 2004)
whose receptor CCR4 is expressed on skin-homing
lymphocytes and monocytes, respectively (Ono et al.,
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Fig. 1: Chemokine receptor switch between immature (iDC) and mature
DC (mDC). iDC express high levels of the chemokine receptors CCR1,
CCR2, CCR5 and CXCR1 and therefore they respond to inflammatory
chemokines. When iDC are exposed to different maturation stimuli (e.g.,
LPS, CD40L) they downregulate the inflammatory chemokine receptors
and upregulate CCR7 and CXCR4, thus gaining responsiveness to
CCL19, CCL21 and CXCL12, chemokines present in the LN.



2003), suggesting a pivotal role for this chemokine/
chemokine receptor pair on DC precursor immigration
and/or DC homeostasis in the skin.

Skin-associated DC migrate to the draining lymph
node via a CCR7-dependent mechanism

Upon maturation, skin-associated DC, such as LC
and dermal DC, leave the peripheral tissue and migrate
towards SLO where they present antigen to naïve T cells
(Steinman et al., 1997). In this regard, the chemokine
receptor CCR7 is essential for the migration of skin-
associated DC to LN under both inflammatory and
steady state conditions, as demonstrated in CCR7
deficient mice (Forster et al., 1999, Ohl et al., 2004) and
in plt/plt mutant mice, which lack CCL21 expression
and only partially express CCL19 (Gunn et al., 1999).

Positive and negative signals control LC migration
from the skin to LN. TNF-α and IL-1ß are required to
induce LC departure from the epidermis. Systemic
administration of neutralizing antibodies specific for
either cytokine resulted in significant inhibition of
contact allergen-induced LC migration (Cumberbatch et
al., 1997). Therefore, a “LC departure” mechanism from
the skin has been proposed in which, once allergens are
sensed, LC produce IL-1ß which acts on adjacent KC
inducing them to produce TNF-α, which then acts as a
second migratory signal for LC (Griffiths et al., 2005)
(Fig. 2). LC and KC are firmly associated by E-
cadherin/E-cadherin homotypic junctions. Binding of
TNF-αRII, IL-1RI and IL-1RII on LC by their ligands
TNF-α and IL-1ß, respectively, affect the interaction
between LC and KC by diminishing the expression of E-
cadherin (Schwarzenberger and Udey, 1996), allowing
their disentanglement from surrounding KC and
stimulating actin-dependent movement (Winzler et al.,
1997). In addition, these cytokines inhibit the expression
of CCR6 on LC, which makes them unresponsive to KC-
produced CCL20 and also induces the expression of
α6ß1 integrin, which allows interactions between LC
and the extracellular matrix. Therefore, TNF-α and IL-
1ß are two necessary signals for inducing LC emigration
from the skin (Fig. 2).

Lipids, such as prostaglandins and leukotrienes (LT),
positively affect LC migration to the LN via a CCR7-
dependent mechanism (Robbiani et al., 2000, Kabashima
et al., 2003). Mice deficient in the leukotriene C4 (LTC4)
transporter multi-drug resistance-associated protein 1
(MRP1) show a strong reduction in the mobilization and
trafficking of LC from the epidermis into the afferent
lymphatic vessels (Robbiani et al., 2000). Also, Ptger4-/-

mice, which lack the PGE2 receptor EP4, show a
significant reduction of LC accumulation in the draining
LN upon antigen exposure, an observation further
confirmed by using the EP4 antagonist AE3-208
(Kabashima et al., 2003). Furthermore, upon exposure to
EP4 agonists, DC enhance their expression of CCR7 and
migrate more efficiently in vitro towards the CCR7-
ligands CCL19 and CCL21 (Scandella et al., 2002;

Kabashima et al., 2003). Interestingly, human MoDC
stimulated with TNF-α and IL-1ß do not express CCR7
and their migration in vitro towards either CCL19 or
CCL21 is marginal. However, when PGE2 is
supplemented, CCR7 mRNA is increased about 40 fold
with a consequent increase in migration towards CCL19
and CCL21 (Scandella et al., 2002). Notably, both TNF-
α and IL-1ß are potent inducers of cyclooxygenase
(COX)-2 (Feng et al., 1995), which participates in PGE2
synthesis. It is therefore likely that cytokines induce
COX-2 expression by either keratinocytes or DC
themselves to produce PGE2, which induces CCR7
expression on DC in a paracrine and/or autocrine manner
(Fig. 2).

On the other hand, LC migration is negatively
controlled by anti-inflammatory cytokines, such as IL-10
(Wang et al., 1999) and IL-4, the latter by interfering
with the expression of TNF-αRII on LC (Takayama et
al., 1999). Another negative regulator of LC migration is
prostaglandin D2 (PGD2) (Angeli et al., 2001). In fact,
TNF-α-mediated mobilization of LC from the epidermis
and accumulation in LN is strongly impaired by PGD2,
an effect mediated by the activation of nuclear receptor
peroxisome proliferator-activated receptor gamma
(PPARγ) (Angeli et al., 2003). The latter is consistent
with the inhibition of CCR7 mRNA expression observed
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Fig. 2. Molecular events on LC migration from the skin. Precursor of LC
express CCR6 and are recruited to the skin by keratinocyte (KC)-
secreted chemokine CCL20. In addition, LC anchorage to keratinocytes
is mediated by E-cadherin homotypic interactions. Under inflammatory
conditions, LC produce and secrete IL-1b which acts on KC to induce
TNF-α. Both IL-1ß and TNF-α affect the interaction between KC and LC
by diminishing the expression of E-cadherin, stimulating actin-
dependent movement and inhibiting CCR6 expression on LC. At the
same time, these cytokines induce the expression of cyclooxygenase
(COX)-2 on KC. COX-2 is involved in PGE2 synthesis, which acts on
DC to induce CCR7 expression/function and LN tropism. In the LN, DC
can locate close to HEV, which also express CCL21.



in human MoDC when PPARγ is activated (Nencioni et
al., 2002). Analogously, activation of PPARγ inhibits the
migration of lung DC to the thoracic LN (Angeli et al.,
2003), suggesting that this inhibitory mechanism is
conserved among different tissues. Interestingly, PGD2
also binds to the membrane D prostanoid receptor 1
(DP1) (Hammad et al., 2003), suggesting that PGD2
may exert its inhibitory effect on DC migration through
two different signaling pathways, PPARγ and DP1
receptors. However, LC migration is rescued upon
incubation with PPARγ antagonists, suggesting that the
inhibitory effect of PGD2 is mostly DP1-independent
(Angeli et al., 2003).

DC migration in the gut

Gut-associated DC are found in both organized gut-
associated lymphoid tissues (GALT), such as mesenteric
lymph nodes (MLN) and Peyer’s patches (PP), and also
in the tissue layer between the epithelium and the
muscularis mucosa, which is called the lamina propria
(LP). DC are abundant in the small intestine where,
similar to their counterparts in the skin, they act as
sentinels for incoming antigens. However, little is known
about how intestinal DC and/or their precursors reach
the gut mucosa.

Role of CCR9 and αα4ß7 in homing to the small
intestine

Mucosal addressin cell adhesion molecule-1
(MAdCAM-1), which is expressed on the endothelium
of the high endothelial venules (HEV) in GALT and also
on the postcapillary venules of the gut lamina propria,
mediates the adhesion of lymphocytes expressing the
integrin α4ß7 (Berlin et al., 1993). In fact, mice lacking
ß7 integrins exhibit a severe reduction in the number of
T and B lymphocytes in the intestine (Wagner et al.,
1996). Consistent with this observation, blocking either
MAdCAM-1 or α4ß7 significantly inhibits lymphocyte
homing to the small intestine (Hamann et al., 1994),
confirming the key role of these molecules in gut-
tropism. Also, during inflammatory conditions,
MAdCAM-1 expression is increased in LP venules
(Briskin et al., 1997). Indeed, in a mouse model of T
cell-mediated colitis, blocking ß7 and MAdCAM-1
reduces the recruitment of T cells to the inflamed colon
and also the severity of colitis (Picarella et al., 1997).

Another important gut-homing molecule is the
thymus-expressed chemokine, TECK (CCL25), which is
expressed both in thymus and in the small intestine. Its
receptor CCR9 is expressed on CD4 and CD8 T cells
that migrate to the small intestine (Zabel et al., 1999).
Moreover, CCR9 is selectively induced and/or
maintained on CD4 and CD8 T cells activated in GALT
but not in PLN. Consistent with an important role of this
receptor in lymphocyte migration to the small intestine,
CCL25 neutralization strongly inhibits the recruitment of
recently activated T cells to the small bowel (Svensson

et al., 2002; Stenstad et al., 2006), effect that is
recapitulated in CCL25-deficient mice (Wurbel et al.,
2007). Furthermore, CCR9-deficient effector CD8 T
cells are severely impaired to migrate to the small bowel
(Johansson-Lindbom et al., 2003) and CCR9-deficient
mice have reduced numbers of IgA-ASC in the small
intestine LP (Pabst et al., 2004). Therefore, both
CCL25/CCR9 and MAdCAM-1/α4ß7 interaction are
needed for the efficient homing of lymphocytes and
ASC to the small intestine. However, little is known
about whether or not they also contribute to DC gut-
colonization.

Role of CCR9 in DC migration to the intestine

How do DC and/or their precursors migrate to
mucosal tissues, such as the intestine? It was recently
shown that mice lacking CCR9 have lower numbers of
pDC in the intestinal LP and PP, while in MLN pDC
numbers were comparable to those found in wild type
mice (Wendland et al., 2007). Indeed, pDC express high
levels of CCR9, while integrins ß2 (CD18) and α4ß7 are
expressed at high and intermediate levels, respectively
(Wendland et al., 2007). Interestingly, the majority of
pDC isolated from the BM express high levels of CCR9,
while CXCR4 is only weakly expressed, suggesting that
BM-derived CCR9+ pDC could directly colonize the gut.
Consistent with a role of CCR9 in pDC homing to the
gut, CCR9-deficient pDC were impaired in their
capacity to migrate to the small intestine under both
steady-state and inflammatory conditions (Wendland et
al., 2007). These data suggest that CCR9 plays an
important role in pDC migration to the gut. However, it
remains unclear whether pDC precursors are also able to
migrate to the gut in a CCR9-dependent manner, thus
contributing to intestinal pDC colonization. Of note,
pDC seem to be a sessile DC subset in the gut, as
suggested by their conspicuous absence in the intestinal-
draining lymph, at least in rats (Yrlid, Cerovic et al.,
2006). However, pDC can secrete TNF-α and type-I
interferons upon TLR-stimulation, affecting in this way
the activation and migration of other DC subsets in the
gut mucosa (Yrlid et al., 2006).

Of interest, it has been shown that blood monocytes
can also give rise to some DC subsets found in intestine-
draining lymph (Yrlid et al., 2006), suggesting that some
gut-associated DC may derive from blood-borne
monocytes. Related to this, it has been suggested that
PSGL-1 is required for monocyte adhesion on ileum
venules, at least under inflammatory conditions (Inoue et
al., 2005). Also, monocytes can migrate from the blood
to PLN (Palframan et al., 2001) and it is possible that a
similar mechanism operates in PP, although PP do not
seem to contribute significantly to the pool of DC found
in the intestinal-draining lymph (Bimczok et al., 2005).

Spleen-derived CD11b+ DC do not express CCR9
and they respond only marginally to CCL25 (Wendland
et al., 2007), suggesting that CD11b+ DC (or their
precursors) use a mechanism different from CCR9 for
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gut colonization. Also, as discussed below, the vitamin
A-metabolite retinoic acid is known to induce CCR9 and
α4ß7on T and B cells. This raises the question of
whether the same mechanism may induce CCR9 (and
α4ß7) on pDC. Also, it is unknown whether pDC
homing is also dependent on α4ß7 integrin. In addition,
it has been shown that LC can differentiate locally in the
epidermis from self-renewing precursors (Merad et al.,
2002), raising the possibility that an analogous self-
renewing precursor may also exist in the gut to give rise
to some intestinal DC subsets. Finally, it has been
suggested that, under certain conditions, DC may
migrate directly from the skin to PP (Belyakov et al.,
2004; Enioutina et al., 2007). However, the adhesion
receptors involved and physiological relevance of this
putative mechanism of DC migration are currently
unknown.

Microenvironmental location of DC in PP and LP

In mice, at least four different PP-DC subsets have
been reported (Iwasaki and Kelsall, 2000; Contractor et
al., 2007). CD11b+ (“myeloid”) DC are preferentially
located in the subepithelial dome (SED) of PP, where
they function to capture antigen transported by M cells.
In contrast, CD8α+ (“lymphoid”) DC are located in the
T cell-rich interfollicular region, where they can prime
naïve T cells. Finally, DC that are double negative
(CD11b-CD8α-) and B220+ pDC are located in both
regions of PP (Iwasaki and Kelsall, 2000, Contractor et
al., 2007). CCL20 mRNA is highly expressed in the
follicle-associated epithelium (FAE) and the CCL20
receptor CCR6 is expressed on CD11b+ DC in the SED
of PP (Iwasaki and Kelsall, 2000), suggesting that this

chemokine/chemokine receptor pair may play an
important role in DC location within PP (Fig. 3).
Consistent with this possibility, mice expressing GFP
under the control of the CCR6 promoter reveal that this
receptor is only expressed by CD11b+CD8α- DC.
Moreover, CCR6+ DC are mostly found in PP
(Kucharzik et al., 2002; Salazar-Gonzalez et al., 2006),
whereas no CCR6 expression is visualized in the entire
small bowel LP either under steady-state or
inflammatory conditions (Salazar-Gonzalez et al., 2006).
It was also shown that mice lacking CCR6 lacked
CD11b+ DC in PP SED (Cook et al., 2000; Varona et al.,
2001), which correlated with an impaired humoral
response to orally administered antigen, whereas
immune response to subcutaneously administered
antigen was normal (Cook et al., 2000). However,
another study showed that CD11b+ DC are not
significantly reduced in PP SED of CCR6-deficient mice
(Zhao et al., 2003), suggesting that the correct
positioning of CD11b+ DC in PP may not necessarily
require CCR6. In addition to CCL20, the chemokine
CCL9 is highly expressed in the FAE of mouse PP and
its receptor CCR1 is also expressed on CD11b+ DC
(Zhao et al., 2003). Indeed, experiments blocking CCL9
show a significant decrease of CD11b+ cell numbers in
PP SED, suggesting a role for this chemokine in CD11b+

DC recruitment to the PP SED. Two CCL9 chemokine
receptors have been described, CCR1 and CCR5.
However, both CCR1- and CCR5-deficient mice have
normal CD11b+ DC numbers in PP SED (Zhao et al.,
2003), implying that either they are redundant or that
another receptor is involved in CCL9-mediated myeloid
DC recruitment.

Infection with S. typhimurium induces a quick
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Fig. 3. Chemokine-dependent DC
homeostasis in the small intestine.
Plasmacytoid DC (depicted in yellow)
express CCR9 and respond to CCL25
which is present in the small intestine.
CCR9 is important for pDC location in
both LP and PP. CCR6+CD11b+ DC
(depicted in red) are absent in the LP,
but highly represented in PP where the
CCR6-ligand CCL20 is expressed by
the foll icle-associated epithelium
(FAE). CCL9 is also produced by the
FAE and this chemokine is important
for the location of CD11b+ DC in the
PP subepithelial dome (SED). Another
DC population that expresses
CX3CR1+ is found throughout the
entire LP (depicted in green). The
CX3CR1-ligand CX3CL1 (fractalkine)
is highly expressed by intestinal
epithelial cells and this chemokine
seems to be involved in the extension
of intraepithelial dendrites by DC to
sample antigens located in the gut
lumen. 

                     



recruitment of CCR6+ DC towards the FAE of PP
(Salazar-Gonzalez et al., 2006). In a later stage of
infection, CCR6+ DC can be detected in the SED, the
FAE and interfollicular regions of PP. In contrast, DC
from CCR6-deficient mice are not recruited after
challenge with S. typhimurium (Salazar-Gonzalez et al.,
2006). The latter is translated into a functional defect,
since Salmonella-specific T cell activation and
expansion is reduced following S. typhimurium infection
in CCR6-deficient mice as compared to wild type mice
(Salazar-Gonzalez et al., 2006), suggesting that CCR6 is
required for infection-mediated recruitment of DC to PP
SED in order to prime an efficient T cell response.
Therefore, it can be speculated that both CCL9 and
CCL20 are important for maintaining DC homeostasis in
PP: During steady-state non-inflammatory conditions,
CCL9 would be the main chemoattractant, since CCR6-
deficient mice have the same number of CD11b+ DC as
wild type mice whereas CCL9 blockade induces a strong
decrease in CD11b+ DC numbers in PP SED. In contrast,
under inflammatory conditions, CCR6 would be crucial
for the quick recruitment of CD11b+ DC to the PP FAE
and SED in order to initiate an adaptive immune
response. However, whether CCR6+ and CCL9-
responder DC belong to the same DC subpopulation
remains to be determined. Also, it needs to be
determined whether blocking CCL9 does or does not
affect T cell responses against pathogens.

Another DC subset, which expresses CX3CR1 but
not CCR6, populates the entire LP of the intestine and is
also found in PP SED (Salazar-Gonzalez et al., 2006)
(Fig. 3). The CX3CR1 ligand CX3CL1 (fractalkine) is
highly expressed by intestinal epithelial cells (IEC) in
the terminal ileum. In wild type animals, DC extend
dendrites across the IEC for sampling antigens in the
intestinal lumen (Niess et al., 2005), whereas CX3CR1-
deficient mice lack intraepithelial dendrites and show
enhanced susceptibility to S. typhimurium infection
(Niess et al., 2005), suggesting that CX3CR1 is involved
in the capacity of LP-DC to extend dendrites through
IEC in order to sample intestinal bacteria and initiate
protective immune responses. Nonetheless, CX3CR1-
deficient DC are still present in the LP, indicating that
the recruitment of these cells to this compartment is
independent of CX3CR1.

Lymphocyte homing imprinting

Activated T cells acquire the capacity to migrate to
non-lymphoid tissues. In addition, some T cell subsets
exhibit remarkable migratory selectivity for specific
non-lymphoid tissues, such as the gut and the skin
(McWilliams et al., 1977; Guy-Grand et al., 1978;
McDermott and Bienenstock, 1979; Kantele et al.,
1999). Skin-homing relies on the expression of E- and P-
selectin ligands (E-lig and P-lig, respectively) (Picker et
al., 1991; Fuhlbrigge et al., 1997) and the chemokine
receptors CCR4, and/or CCR10 (Campbell et al., 1999,
2007; Morales et al., 1999; Soler et al., 2003). On the

other hand, gut-tropism is dependent on the expression
of the intestinal homing receptors CCR9 and α4ß7
(Berlin et al., 1993; Wagner et al., 1996; Agace, 2006;
Mora and von Andrian, 2006).

It is well documented that the tissue where the
antigen is encountered influences the trafficking pattern
that lymphocytes acquire. For example, pathogens
entering through the skin preferentially induce
lymphocytes with skin-homing receptors (Koelle et al.,
2002, 2005; Kantele et al., 2003; Gonzalez et al., 2005),
whereas oral vaccination induces high levels of the gut-
homing integrin α4ß7 on effector/memory T cells (Rott
et al., 1997; Kantele et al., 1999; Lundin et al., 2002;
Rojas et al., 2003) and B cells (Quiding-Jarbrink et al.,
1997; Kantele et al., 1997, 1999, 2005; Youngman et al.,
2002; Gonzalez et al., 2003). In fact, CD4 T cells
activated in GALT rapidly upregulate α4ß7 and CCR9
as compared to those activated in skin-draining PLN.
Conversely, E-Lig and P-Lig are preferentially induced
in skin-draining PLN (Campbell and Butcher, 2002).

DC imprint tissue-specific homing on lymphocytes

During the quest for specific elements in the
lymphoid microenvironment that are responsible for
imprinting lymphocytes with tissue-specific homing,
several groups have provided evidence that DC from
lymphoid organs are sufficient to confer tissue-specific
homing capacity to lymphocytes ex vivo. Indeed, DC
isolated from GALT (PP or MLN), but not from PLN or
spleen, imprint high levels of α4ß7, CCR9 and gut-
migratory capacity on activated T cells (Stagg et al.,
2002; Johansson-Lindbom et al., 2003; Mora et al.,
2003, 2005; Dudda et al., 2005). Of note, LFA-1, ß1
integrins, αEß7 and PSGL-1, as well as cytokine
production and cytolitic activity, are induced at
comparable levels on T cells activated with DC from
different SLO, showing that the DC imprinting affects
only gut-homing receptors, but not other adhesion
molecules or effector function on T cells (Mora et al.,
2003, Johansson-Lindbom et al., 2003, Mora et al.,
2005, Dudda et al., 2005). Gut-tropism induced by
GALT-DC is not restricted to T cells, since both murine
and human B cells upregulate α4ß7 and CCR9 when
activated by GALT-DC (Mora et al., 2006). Moreover,
recent reports have shown that MLN-DC and LP-DC, in
the presence of TGF-ß, induce naïve T cells to become
bona fide foxp3+ regulatory T cells (TREG), which, in
addition, express high levels of α4ß7 and CCR9
(Coombes et al., 2007; Mucida et al., 2007; Sun et al.,
2007). Interestingly, both induction of foxp3+ TREG and
gut-homing receptors by MLN-DC are dependent on the
vitamin A-metabolite retinoic acid (discussed below).

In PP, different DC subsets are able to induce gut-
homing T cells (Mora et al., 2005). However, it has been
shown that, in MLN, a subpopulation of αE/CD103+ DC
induces CCR9 on activated T cells more efficiently than
CD103- DC (Johansson-Lindbom et al., 2005).
Moreover, CD103+ DC can also induce foxp3+ TREG,
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even in the absence of exogenous TGF-ß, an effect that
is enhanced by adding exogenous TGF-ß1 and abrogated
if TGF-ß is blocked in the culture (Coombes et al., 2007;
Denning et al., 2007; Sun et al., 2007). It remains to be
determined under which conditions GALT-DC promote
either tolerogenic gut-homing TREG or protective gut-
homing effector T cells in vivo.

On the other hand, DC from skin-draining lymph
nodes (PLN-DC) induce higher levels of E- and P-Lig
on CD8 T cells as compared with PP-DC (Dudda et al.,
2005; Mora et al., 2005). Moreover, PLN-DC induce
mRNA for fucosyltransferase-VII (FucT-VII), which is
an essential enzyme for synthesizing E-Lig and P-Lig
(Maly et al., 1996; Mora et al., 2005). Although the skin-
homing chemokine receptor CCR4 is expressed on
activated CD8 T cells regardless of the activating DC,
CCR10 was not induced under any of the in vitro
activating conditions tested (Mora et al., 2005).

Molecular mechanisms imprinting gut- and skin-
homing lymphocytes

Why do GALT-DC have the ability to induce gut-
tropism while PLN-DC do not? It has been described
that vitamin A-deficient rats exhibit impaired migration
of lymphoblasts to the intestinal mucosa and a marked
decrease in the number of IgA-ASC and CD4 T cells in
the ileum (McDermott et al., 1982; Bjersing et al., 2002).
However, the molecular basis for these observations was
provided only recently in a seminal paper by Iwata and
colleagues, in which it was demonstrated that vitamin A-
deficient mice have significantly fewer effector/memory
T cells in the gut mucosa, whereas their numbers were
not decreased in other tissues (Iwata et al., 2004).
Moreover, naïve CD4 T cells and B cells stimulated in

vitro in the presence of the vitamin A-metabolite retinoic
acid (RA) upregulated both α4ß7 and CCR9 and homed
efficiently to the small intestine (Iwata et al., 2004; Mora
et al., 2006). Consistent with this, synthetic agonists of
the RA-nuclear receptors of the RAR family also
induced gut-tropism on T cells (Iwata et al., 2004). Of
note, GALT-DC, unlike PLN-DC, express high levels of
retinal dehydrogenase (RALDH) enzymes, which are
essential for the biosynthesis of RA (Iwata et al., 2004).
In addition, as mentioned above, RA-induced TREG also
express α4ß7 and CCR9 and home to the gut (Benson et
al., 2007). Moreover, RAR-antagonists block the
capacity of GALT-DC to induce α4ß7 and CCR9 on T
and B cells as well as the induction of TREG, indicating
that RA is essential for the imprinting of both gut-
homing and TREG by GALT-DC (Iwata et al., 2004;
Mora et al., 2006; Mucida et al., 2007; Sun et al., 2007).
Interestingly, RA also suppresses the expression of the
skin-homing receptors E-lig, P-Lig, CCR4 and FucT-VII
on T cells (Iwata et al., 2004), suggesting that RA
inhibits the default acquisition of skin-tropism by
activated T cells (Fig. 4).

Another vitamin metabolite, 1,25(OH)2D3, which is
the most physiologically active form of vitamin D3, has
been recently shown to induce the skin-associated
chemokine receptor CCR10 on human T cells (Fig. 4)
(Sigmundsdottir et al., 2007). IL-12 supplementation
was needed for optimal CCR10 induction by
1,25(OH)2D3 (Sigmundsdottir et al., 2007). Interestingly,
1,25(OH)2D3 also suppressed α4ß7 and CCR9
expression, presumably because the vitamin D receptor
VDR/RXR competes for RXR, which is also an essential
nuclear partner for the RA-receptor RAR
(Sigmundsdottir et al., 2007). Of note, human monocyte-
derived DC (MoDC) express CYP27B1 (1-hydroxylase)
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Fig. 4. Control of tissue-specific lymphocyte
homing by DC. Gut-associated DC (from GALT
or LP) induce the expression of α4ß7 and
CCR9 on naïve T and B cells upon activation,
an effect that is mediated by the secretion of
retinoic acid (RA) by DC. Notably, RA in the
presence of TGF-ß induce the differentiation of
foxp3+ Treg that also express CCR9 and
α4ß7. In contrast, RA inhibits the generation of
T cells expressing the skin-homing receptors
E-lig, P-Lig and CCR4. Peripheral DC
(including skin-draining DC) do not secrete RA
and induce skin-homing receptors on T cells,
i.e., E-Lig (including CLA), P-Lig and CCR4.
The induction of these skin-homing receptors
may represent a default pathway in the
absence of RA. CCR10, another skin-
associated chemokine receptor, is not induced
by default. Interestingly, skin-draining DC
synthesize the vitamin D3-metabolite
1,25(OH)2D3, which acts on human (but not
murine) naïve T cells to induce the expression

of CCR10. However, whether the latter represent a mechanism to induce CCR10 on skin-homing T cells in vivo is presently unclear.

                       



and CYP27A1 (25-hydroxylase), which are the main
enzymes involved in the synthesis of 1,25(OH)2D3 from
vitamin D3 (Sigmundsdottir et al., 2007). Consistent
with this, MoDC, as well as mature cutaneous DC
isolated from sheep, converted vitamin D3 to
1,25(OH)2D3 (Sigmundsdottir et al., 2007), thus linking
cutaneous DC with the ability to induce CCR10 on T
cells. It should be considered, however, that other skin-
homing receptors, such as CLA (E-Lig) and CCR4, are
not induced by 1,25(OH)2D3 on T cells (CLA is actually
downregulated) (Sigmundsdottir et al., 2007). Therefore,
in contrast to RA in the gut, 1,25(OH)2D3 is apparently
not sufficient to induce skin-homing T cells. In fact,
CCR10 induction may actually occur after T cells have
homed to the skin in order to direct T cells towards the
epidermis, which is rich in the CCR10-ligand
CCL27/CTACK (Homey et al., 2000). Also,
1,25(OH)2D3 does not induce CCR10 on murine T cells
(Sigmundsdottir et al., 2007), suggesting that the
molecular mechanisms inducing this receptor may vary
across species.

Therapeutic implications

Gut-associated inflammatory diseases, such as
inflammatory bowel disease (IBD), are characterized by
extensive lymphocyte infiltration. MAdCAM-1
expression is upregulated during exacerbation of IBD
(Briskin et al., 1997), thus promoting the recruitment of
α4ß7-expressing T cells to the gut. Also, blocking α4ß7
prevents the development of intestinal graft versus host
disease (GVHD) in allogenic-transplanted mice
(Petrovic et al., 2004) and GALT are important for
initiating GVHD by inducing gut-tropic effector T cell
responses (Murai et al., 2003). Of note, anti-human α4
antibody (natalizumab), which blocks α4ß7 and α4ß1
integrins, is effective in treating patients with ulcerative
colitis (Ghosh et al., 2003). However, it has also been
associated with progressive multifocal
leukoencephalopathy (PML), a lethal viral opportunistic
infection (Berger and Koralnik, 2005). Since α4ß1 is
important for T cell homing to the central nervous
system (CNS) (Yednock et al., 1992), it is possible that
α4 blockade also interferes with T cell immuno-
surveillance in that compartment resulting in
predisposition to opportunistic viral diseases such as
PML (Langer-Gould and Steinman, 2006). Therefore,
alternative strategies are needed to inhibit leukocyte
migration in IBD. In this regard, blocking α4ß7 should
not interfere with the CNS immunosurveillance
mechanism and a recent clinical trial suggests that it may
be a good alternative for treating gut-inflammatory
diseases (Feagan et al., 2005). Another possibility would
be to generate gut-homing. Indeed, recent work suggests
that this can be accomplished by activating ex vivo naïve
T cells in the presence of TGF-ß and RA (Coombes et
al., 2007; Denning et al., 2007; Mucida et al., 2007; Sun
et al., 2007).

DC are poorly represented in some tumors such as

renal cell carcinoma (Troy et al., 1998), suggesting the
existence of a escape mechanism in which the tumor
impairs DC recruitment. Therefore, improving the
recruitment of DC or their precursors to the site of tumor
growth may be an effective strategy for eliciting anti-
tumor immunity. Mice inoculated with melanoma
engineered to secrete GM-CSF reject the tumors and
show increased accumulation of mature DC at the tumor
site, as well as in LN, in a dose-dependent fashion
(Armstrong et al., 1996; Stoppacciaro et al., 1997). Also,
MCP-3, a potent DC-chemoattractant, is important for
the immunological rejection of mastocystoma cells,
which is associated with the accumulation of peritumoral
DC (Fioretti et al., 1998). DC are also found in human
carcinoma and peritumoral DC infiltration has been
correlated with improved patient survival (Nomori et al.,
1986). Of note, it has been demonstrated that the route of
administration of DC loaded with tumor-associated
antigens determines the distribution of tumor-specific T
cells and favors the pattern of regional tumor control
(Mullins et al., 2003; Sheasley-O'Neill et al., 2007).
Particularly, subcutaneous DC immunization protects
mice from subcutaneous and lung tumors, whereas
intravenous immunization protects mice only from lung
tumors (Mullins et al., 2003). Hence, immunotherapeutic
strategies aimed at increasing DC recruitment to the
tumor site, as well as promoting DC migration to tumor-
draining LN, could have a significant therapeutic impact.
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