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C H A P  T  E R  1 
 
 
 
 

Introduction 
 
 
 
 
 
 

Recent advances  in computer  simulations  of the condensed phase have made possible the 
investigation of dynamics  in large systems  at  a quantum level [Car  85, Laasonen  93, Sil- 
vestrelli  97, Silvestrelli  98, Carloni  02, Iftimie  05].   The  use  of a  quantum  Hamiltonian 
and  the  definition  of the  wave function  of the  whole electronic  system  result  in an  ac- 
curate  description  of polarization and  charge transfer.   This  is crucial for modeling bond 
making/breaking, a feature  that  is lacking in most molecular dynamics  (MD) simulations 
based on molecular mechanics (MM) force fields. The possibility of treating at a quantum 
level the  electronic  Hamiltonian  of bio-organic  systems  in their  real environment  is thus 
becoming closer, even for molecular dynamics  simulations. 

In molecular  biology studies,  infrared  spectroscopy  often complements  the widely em- 
ployed X-ray diffraction and NMR techniques,  in particular to study proteins and peptides. 
Amide bands  are used to  probe  the  secondary  structure when exploring  the  folding dy- 
namics  of proteins  [Gilmanshin  97, Montalvo  10].  A theoretical  model of these  systems 
should  therefore  be  able  to  describe  the  effect of the  environment  on  the  infrared  sig- 
nature   of peptide  bonds  [Schultheis  08].   In  addition,   theoretical   investigations at  the 
DFT-molecular dynamics  level have stressed  the  importance  of conformational sampling 
for an  accurate  description  of specific infrared  features,  such as for example  the  experi- 
mental  line shape resulting  from a mixture  between two different conformations  of a pep- 
tide [Gaigeot 09, Gaigeot 10]. 

The most popular  molecular model for the peptide  link is N -methylacetamide (NMA), 
whose IR spectrum  has been extensively studied both by experiments  and theory [Ataka 84, 
Rodrigo 86, Chen 95, Kubelka  01, Torii 04, Mirkin 04, Hayashi 05, la Cour Jansen  06]. The 
most significant bands  in the IR spectrum  of a peptide  group are the Amide I, II and III 
bands,  and the one corresponding  to N-H stretch  (Amide A). The Amide I mode is mostly 
related to the C-O stretching motion, which was shown to be coupled with water motions in 
aqueous solution [Chen 94]. Amide II arises mostly from C-N-H bending motion combined 
with C-N stretch, whereas a larger contribution of C-N stretch  combined with C-N-H bend 
generates  Amide III. 
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The  IR spectrum  of NMA obtained  through  classical MM simulations  has been com- 
pared  to  the  one obtained  through  a QM/MM  approach  [Yang  05].  The  authors  have 
concluded that  reliable modeling of IR spectra  in solution should include the effect of the 
time-dependent solvent-induced dipole on the solute.  The effect of hydrogen bonding with 
surrounding  water  molecules on the vibrational frequencies of NMA has been extensively 
studied by means of quantum chemistry calculations on NMA-water clusters [Mennucci 05], 
and  it  has been described  in terms  of a spatially  inhomogeneous  electric  field generated 
by the  solvent  acting  on the  solute  [Hayashi  05].  Quantum chemistry  calculations  have 
been  performed  on  NMA-water  clusters  (8000 structures) extracted from  MM  simula- 
tions  [Besley 04].  The  results  obtained  through  this  approach  for the  position  and  for 
the  shape  of Amide I-III bands  are in good agreement  with  experiments:   solute-solvent 
hydrogen  bonding plays a relevant role in reproducing  band  profiles. 

The importance  of hydrogen bonding and nonspecific electrostatic interactions between 
solute and solvent has been analyzed  in depth  by modeling the harmonic  frequencies and 
by  including  anharmonic   effects in  a  joint  quantum chemistry  and  experimental study 
[Andrushchenko  09].  Another  study  based  on the  interplay  between  quantum chemistry 
and experiments  has focused on the influence of the environment and of the temperature 
on the Amide I band [Ackels 09]. According to this work, the intensity  of this band depends 
strongly  on the  solvent and  it varies with temperature.  Concerning  the  solvent effect on 
the band  position,  the authors  have shown that  a simple approach  based on the Onsager 
reaction field can reasonably predict both the solvent-induced and the temperature-induced 
frequency shifts. 

Recent  work  on  theoretical   modeling  of two-dimensional  (2D)  IR  spectroscopy  has 
been carried out by Jeon and Cho and applied to deuterated NMA in a cluster of 16 D2O 
molecules, based on a QM/MM  scheme [Jeon 10]. The approach  has been shown to be 
successful in reproducing  the  main  features  of the  experimental 2D IR  spectrum.    The 
authors  have pointed  out that  a better  description  of inhomogeneous broadening  might be 
achieved by including more solvent molecules and by describing them  at a quantum level. 

Most of the  work on IR spectra  of small peptides  in solution  points  towards  the  im- 
portance  of including polarization and of specific solute-solvent interactions (i.e.  hydrogen 
bonding)  in the theoretical  description  of vibrational properties.  In particular, we believe 
that  the  mutual  polarization between  solute  and  solvent  should  be included,  as well as 
charge  transfer,  which might  be relevant  in the  case of NMA, due  to  the  presence  of a 
hydrogen bond donor and of a hydrogen bond acceptor  within the peptide  bond.  All these 
terms  are taken  into account if the electronic  Hamiltonian  of the full system is treated at 
the quantum level. 

The two conformers of NMA immersed in water,  as well as more complex examples of 
peptides, have already been investigated at the DFT molecular dynamics level, in particular 
by Gaigeot  et al.  (see Ref. [Gaigeot 10] for a recent review).  However, due to their  high 
computational cost, DFT-based MD simulations  are in general limited  to simple systems 
and/or small simulation  times.  As explained below, the method  proposed here is intended 
to address  such limitation by relaxing the level of the quantum chemistry  approach  used 
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to describe the  electronic  structure of the  solution.   This  is particularly important when 
dealing  with  the  calculation  of infrared  spectra  [Yang  05, Kinnaman  06], which requires 
good statistics [Richardi 05]. 

The  method  used here is based  on a semiempirical  Born-Oppenheimer molecular  dy- 
namics (SEBOMD)  approach  [Monard 05]. At each step  of the MD simulation,  the elec- 
tronic  wave function  of the  system  is computed  with  a semiempirical  quantum method 
making  use, if necessary,  of a linear  scaling algorithm,  such as the  Divide and  Conquer 
method  [Yang  95, Dixon 96].  Obviously,  semiempirical  Hamiltonians strongly  reduce the 
computational cost of the simulations  compared  to ab initio or density  functional  theory- 
based  molecular  dynamics.   The  price to  be payed  is a lower accuracy  in the  computed 
molecular properties,  though  reasonable  results are expected for the IR spectra  of isolated 
molecules [Mokrane 97, Garcia-Viloca  04, Li 06]. 

The amide I band of NMA is very sensitive to the environment. In particular, in aqueous 
solution the carbonyl  bond is a hydrogen bond (H-bond)  acceptor,  and this bond involves 
on average two water  molecules.  The -NH group is a potential H-bond donor, interacting 
with one water molecule [Guo 92, Torii 98]. In NMA, having to deal with just one peptide 
unit strongly simplifies the analysis of the solvent effect on the amide I band,  which is 
complicated  in di- and  poly-peptides  by the  presence of different local environments  and 
of different conformations. 

The  presence  of hydrogen  bonded  water  molecules on the  -CO  group  influences the 
stretch  vibration. It has been shown that  the amide I band of NMA is strongly  coupled to 
the water  bending  motion:  this  has been related  to the observed splitting  of the amide I 
Raman  band  [Chen 94]. 

Hydrogen bonding has thus two effects. On one hand, it modifies the average structure 
of the peptide bond, and its local dipole, through  electrostatic and polarization interaction. 
Some charge transfer  along the hydrogen bond may also be expected.  The extent to which 
such interactions affect the amide I frequency depends  indeed on the number  of H-bonds 
and on their  geometry.  On the other  hand,  the -CO stretching oscillator couples with the 
water  bending  oscillation,  giving rise to correlations  in the  motions  of solute and solvent 
affecting the absorption  spectrum  in the region of the amide I band. 

NMA-water complexes have been widely used as model systems in theoretical  work 
performed  by other  groups  working on the  vibrational properties  of peptides.   Guo and 
Karplus  [Guo 92] focused on the effect of H-bonding on the structure and on the rotations 
around  the N-Cα bonds.  By means of quantum chemistry  calculations  at the Hartree-Fock 
and Moller-Plesset second-order perturbation theory levels, they showed that  there is a 
cooperative effect, given by a water molecule H-bonded on the N-H bond side, strengthening 
the H-bond on the carbonyl  side. Hydrogen bonds with water  also rise the barrier  for the 
rotation of the methyl  groups of NMA, hinting  that  polarization effects may be necessary 
to be included in the development of force fields of proteins. 

Mirkin and  Krimm  [Mirkin  96] explored the  effect of two  water  molecules (a H-bond 
donor  and  a  H-bond  acceptor)  on the  NMA  harmonic  frequencies,  and  they  evaluated 
the  solvent  effect using a reaction  field in a medium  having  a dielectric  constant  of 20. 
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They  calculated  a splitting  of the  amide  I band,  which  is enhanced  by the  presence  of 
the  dielectric  medium.   The  dielectric  solvent  effect was also included  in later  work by 
Torii and collaborators  [Torii 98] and by Mennucci and Martinez  [Mennucci 05]. In former 
case, the  experimental shift  in water  is well reproduced  by considering  NMA and  three 
water molecules immersed in a continuum solvent using the Hartree  Fock method  and a 6- 
31G++G∗ basis set.  In the latter  case, DFT calculations  using a B3LYP hybrid functional 
and a 6-31+G(d,p) basis set were used to calculate  the harmonic frequencies of NMA 
surrounded by one to three  water  molecules and  immersed  in a continuum described  at 
the polarizable  continuum model level with the integral  equation  formalism [Cances 98a, 
Cances  98b], finding  a reasonably  good agreement  for the  solvent  induced  shift  on the 
amide I band,  but  much worse results  for the shift on the amide II and III bands. 

Empirical  expressions to correct  force fields that  are based  on gas phase  calculations 
were also derived  by  Bouř  and  Keiderling  [Bouř  03] based  on DFT  calculations  at  the 
BPW91/6-31G∗∗  level.  These calculations  were performed  on NMA-water  cluster  geome- 
tries  extracted from classical MD simulations.   In later  work, Bouř and collaborator [An- 
drushchenko  09] show the  deficiency in DFT  methods  to  reproduce  correctly  the  out  of 
plane bend potential of the N atom belonging to the peptide  bond.  Combination bands of 
the CO stretch  with lower frequency motions in the condensed phase and the anharmonic- 
ity of the amide I potential results  from non-specific solute-solvent interactions as well as 
from H-bonding. 

IR solvent induced  shifts have also been modeled by la Cour Jansen  and Knoester  [la 
Cour  Jansen  06] using  a  map  of the  electrostatic field generated  on  the  solute  by  the 
presence of the solvent.  DFT-based calculations  are used to parametrize the frequency of 
the normal mode, the anharmonicity and the transition dipole for the first three vibrational 
states.   This  method  allows to reproduce  both  the  solvent  shift and  the  line width  of IR 
experimental spectra  obtained  with the Fourier  transform  technique. 

In the  present  thesis,  we use a simple model to study  the  effect of a H-bond  on the 
amide I frequency of NMA. We developed a methodology  allowing to extract  the relative 
effect of interactions of different nature  in the H-bonded system:  electrostatic, polarization, 
charge transfer,  and the deformation  of the potential energy surface corresponding  to the 
amide I oscillator.  We thus  provide a quantitative interpretation of the effect of a H-bond 
on the  amide  I band.   The  frequency  shift  in complexes formed by NMA and  one water 
molecule is discussed  after  analyzing  the  bulk  solvent  effect on the  peptide  bonds  of cis 
and trans  NMA in water. 

Understanding the vibrational motions  of a polyatomic  molecule in solution  is critical 
in describing the  intramolecular energy redistribution and intermolecular energy transfer 
processes that  take place during the vibrational relaxation  of the solute molecule.  Recent 
advances in ultrafast infrared-Raman techniques have been shown to provide a remarkably 
detailed  description  of the  vibrational energy  flows throughout polyatomic  molecules in 
liquids [Hill 96, Hamm 98, Peterson  99, Dlott 01, Iwaki 01, Fayer 01a, Fayer 01b, Cremeens 06, 
Shigeto 07, Wang  07, Shigeto 08, Schade 09b, Fang  09].  Transient spectroscopic  data  give 
quantitative measures  of the  instantaneous populations  of all the  observed  vibrations  of 
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the molecule in real time.  The information  extracted from these experiments  is usually 
discussed  in  terms  of the  vibrational spectra  assigned  using  the  standard  Equilibrium 
Normal Modes (ENM). However, since the definition of these modes is based on the second- 
order expansion  of the potential energy function  of the isolated  solute molecule about  its 
equilibrium configuration,  their ability to describe the intramolecular vibrational dynamics 
of the  molecule in aqueous  solution  at  room temperature in terms  of individual  normal 
modes seems to be questionable  [Nguyen 03]. 

Structural perturbations caused  by  the  interaction of the  solute  molecule  with  the 
solvent  and  by the  effect of the  thermal  energy stored  in the  molecule produce,  in fact, 
large conformational changes driven by the vibrational dynamics anharmonicities. This 
behavior  is particularly well-known in bio molecules, where rugged energy landscapes  in- 
dicate  the  presence  of a  very  large  number  of nearly  isoenergetic  conformations  which 
are  accessible  in  solution  at  room  conditions  [Frauenfelder  97, Frauenfelder 01, Frauen- 
felder 03, Lubchenko  05].  Mode couplings have  indeed  been revealed  as a basic require- 
ment  to  describe  the  vibrational energy  transfer  and  vibrational absorption   spectra  of 
proteins  [Moritsugu 00, Roitberg  97]. The effect of anharmonic  motions in the vibrational 
dynamics of macromolecules has also been extensively studied  by Go and co-workers [Hay- 
ward 94, Go 83, Hayward  95], who use the ENMs and conclude that  while high frequency 
ENMs preserve  significant harmonic  aspects,  low frequency modes remain  essentially  an- 
harmonic. 

The inherent structures of large systems can be determined through  molecular dynamics 
simulations  by quenching the instantaneous structures to local minima of the potential en- 
ergy surface.  The so-called Quenched Normal Modes (QNMs) [Ohmine 90, Ohmine 93, Sag- 
nella 99, Rao 10, Elber 87, Fujisaki 08] can be therefore calculated  by diagonalization of the 
corresponding Hessian matrices.  Furthermore, QNMs can be evaluated  for super molecules, 
including the solute molecule and its first solvation shell. However, the QNMs do not pro- 
vide an expression for the vibrational energy of the molecule as a sum of individual contribu- 
tions from every single mode at the instantaneous configurations of the solute molecule. We 
also note that  the presence of the solvent can increase the number of conformers, each with a 
different set of QNMs, significantly.  Another approach  to deal with the vibrational dynam- 
ics which is far from the equilibrium configuration consists of calculating  effective quadratic 
force constants by averaging  on the potential of mean force at a given temperature.  This 
method  is called  the  quasi-harmonic approximation  [Karplus  81, Levy 82, Levy 84] and 
although  it  can deal with  the  effective force constants as a function  of temperature, its 
application to nonequilibrium molecular dynamics  simulations  is not straightforward. 

The strong  couplings emerging between  the ENMs of the solute molecule when it ex- 
ecutes wide amplitude vibrational motions severely complicate the interpretation of the 
vibrational dynamics  of the  molecule in terms  of individual  contributions of each mode. 
The same happens  with the vibrational energy flows, which cannot  therefore be quantified 
in terms  of the  energy stored  in each individual  ENM. Achieving this  is, however, essen- 
tial to describe the evolution  with time of the excess of vibrational energy deposited  in a 
given mode, both  for the understanding of the process and above all because this  energy 
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can now be experimentally tracked  by ultrafast infrared-Raman spectroscopy,  thus making 
direct  comparison  with  the  experiment  possible.   One  way to  tackle  this  problem  is to 
use the  Instantaneous Normal Modes (INMs),  which are those obtained  by diagonalizing 
the  Hessian matrix  of the  potential energy function  at  every instantaneous configuration 
of the molecule.  The INM theory  was originally developed to study  short-time  dynamics 
properties  of liquids [Buchner 92, Goodyear  97, Keyes 97, David 98, Kramer  98, Moore 98, 
Ahlborn 99, Ji 00, Stratt 01, Garberoglio 02, Deng 02, Perry 03], where it is shown to provide 
a conceptually  and computationally simple harmonic picture of the system, and it has been 
extended  later to study  the vibrational dynamics of polyatomic molecules in solution [Sag- 
nella 99, Bu 03a, Nguyen 03, Fujisaki  08, Fujisaki  09, Schulz 09, Bastida  10a, Bastida  10b], 
thus  widening its range of applications. 

The INM formalism is based on the fact that, at any instant, intramolecular vibrations 
closely resemble a set of well-defined and independent harmonic  oscillators.  Accordingly, 
the  INMs change  as the  configuration  of the  molecule evolves with  time,  and  this  INMs 
evolution  can be related  to  time-resolved  spectroscopic  observables.   In this  respect,  for 
instance,  time correlation  functions  obtained  using INMs have been calculated  and tested 
for a variety  of atomic  and  molecular  liquids [Cho  94, Stratt 94, Stratt 95, Goodyear  96, 
Ladanyi  96, Kalbfleisch 96, Goodyear  97, Egorov 97]. Clearly,  a single set of INMs cannot 
represent  the  long-time  dynamics  of the  solute  molecule,  since its  validity  is limited  to 
the  vicinity  of the  configuration  from which the  set  has  been extracted.  It  is necessary 
then to compute successive sets of INMs of the evolving molecule from molecular dynamics 
simulations and find a meaningful way to connect them, and this requires in turn an efficient 
method  to assign and, therefore,  identify the individual  INMs. 

The simplest way to identify the INMs with time is to sort them by increasing frequen- 
cies, provided  that  the  INMs are calculated  at  time  steps  short  enough  to get a smooth 
variation. Even in this case, however, the identification  of the INMs based on their history 
poses some difficulties that  make it impractical [David 98]. These difficulties arise basically 
from the  fact  that  the  time-dependent  vibrational frequencies  of the  INMs may  become 
very close and even cross with either  significant or no effects on the INM definitions,  thus 
complicating  their  identification  severely.  Accordingly, a more efficient method  of identi- 
fication of the  INMs with time must  be devised based  on the  specific assignments  of the 
INMs at every time step of the MD simulation. 

In this thesis, we extensively develop a novel method  previously proposed by our group 
[Bastida 10a,Bastida 10b] to track the identity  of the INMs over time, which is based on the 
use of the ENMs as templates to assign the INMs at a given time.  The method  therefore 
reconciles the  descriptions  of the  vibrational dynamics  based  on both  sets of modes and 
provides, in addition,  a unique relationship  between them. 

The  vibrational relaxation  (VR)  of deuterated N -methylacetamide (NMAD)  in solu- 
tion  has  been the  subject  of a wide number  of both  experimental [Hamm  98, Zanni  01, 
Rubtsov  03b, DeCamp 05, DeFlores 06, Fang 09, Piatkowski  10, Piatkowski  12] and theoret- 
ical [Gregurick 02, Nguyen 03, Kwac 03, Schmidt  04, Hayashi 05, Fujisaki 06, Dijkstra  07, Fu- 
jisaki 08, Fujisaki  09, Bastida  10a, Bastida  10b, Bastida  12] studies,  which altogether have 
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provided a qualitative picture  of the main relaxation  channels involved in the process. 
Discrepancies however in the kinetic interpretation of the vibrational energy decay and 
uncertainties in the  values  of the  relaxation  lifetimes of the  amide  I mode,  as extracted 
from different experimental measurements [Hamm 98, DeCamp  05] show that  an ultimate 
accurate  description  of the VR of NMAD is still pending. 

From a theoretical  point of view, the intramolecular vibrational energy flow in biomolec- 
ules has also received a great deal of attention [Leitner 05,Leitner 10b] through  different ap- 
proaches including harmonic theories [Moritsugu 00, Segal 03, Yu 03, Yu 05, Fujisaki 05, Leit- 
ner 09, Piazza  09], Molecular  Dynamics  (MD)  simulations  [Leitner  05, Ota  05, Sharp  06, 
Nguyen 06b, Nguyen 06a, Kong 07, Kong 09a, Moritsugu  03, Ishikura  06, Schröder 09, Kan- 
dratsenka 09,Nguyen 10,Kobus 11], coarse-grained models [Chennubhotla 05,Piazza 09] and 
quantum methods [Yu 03,Gruebele 04,Fujisaki 07a,Fujisaki 08,Fujisaki 09,Schade 09a,Leit- 
ner  10a].   Despite  this  diversity  of theoretical   treatments,  comparison  between  exper- 
imental  and  theoretical   studies  is  still  unsatisfactory because  it  faces  the  major  diffi- 
culty  that   whereas  experiments   provide  information   on  the  energy  transport spectro- 
scopically from the  vibrational modes which are active  in the  technique  employed,  most 
of the  theoretical   treatments discuss  the  energy  flow in  terms  of residue-based  models 
which,  although  shown to  be quite  useful in describing  the  spatial  evolution  of the  en- 
ergy [Ishikura 06, Kong 07, Kong 09a, Nguyen 10], are nor well suited for direct comparison 
with observed data  since the residues are not the experimentally active units.  In addition, 
the  total  content of vibrational energy of a biomolecule cannot  be expressed as a sum of 
the individual  contributions of the residues due to the potential energy couplings existing 
among them,  which preclude a detailed  and accurate  quantification of the vibrational en- 
ergy flow. Some methods  have been proposed to address this problem based on the use of 
the ENM [Raff 88, Segal 03, Schröder 09, Jacob  09], which provide a separable  description 
of the vibrational energy of the molecule at the equilibrium geometry.  However, during the 
dynamics  of a biomolecule in solution  at  room temperature, it frequently  samples phase 
space regions dominated  by strong intra-  and intermolecular couplings that  undermine  the 
use of the  ENMs.  In this  thesis  we extend  the  methodology  previously  proposed  by our 
group  to analyze  vibrational energy redistribution processes based  on the  use of the  so- 
called Instantaneous Normal Modes (INM) [Bastida 10a, Bastida  10b, Kalstein  11], which 
permits  to monitor  the time-evolution  of the energy stored  in every INM of the molecule 
in solution during MD simulations.  This method  has been employed to analyze the vibra- 
tional energy relaxation  for two different peptide  models: N -methylacetamide and alanine 
dipeptide  molecule. 
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In this chapter,  we introduce  the methods  that  have been applied in this thesis to analyze 
the vibrational energy relaxation  and the vibrational spectroscopy properties  of peptides in 
water  solution.  Firstly  in Section 2.1, we provide a short  note about  Molecular Dynamics 
simulations  of liquids.  Then  in Section 2.2 we present  different  methodologies  that  have 
been considered  through  this  thesis  to compute  the  potential energy function  during  the 
simulations.    Later  in  Section 2.3 we discuss  the  normal  mode  analysis  that   has  been 
employed in order  to analyze  the  vibrational energy redistribution during  the  relaxation 
process.  Finally in Section 2.4, we describe the computation of the Infrared  (IR) spectrum 
and the analysis of the solvent induced shift on the frequency of the amide I band. 

 
 
 

2.1  MOLECULAR DYNAMICS SIMULATION OF LIQUIDS 
 
 
 
 

2.1.1     Initialization  and periodic boundary condition 
 

Molecular Dynamics MD simulations  are in many respects very similar to real experiments. 
MD method  generates  a series of time-correlated points  in phase  space (a trajectory) by 
propagating a  starting set  of coordinates  and  velocities  according  to  Newton’s  second 
equation  by a series of finite time steps. 

To start  the simulation,  we should assign initial positions and velocities to all particles 
in the  system.  Consider  a system  composed of N  particles.   The  easiest  way to establish 
the  initial  structure of a liquid whose density  ρ, is assigning  random  positions  to the  N 
particles within a volume N/ρ. However, this stochastic  procedure present serious practical 
disadvantages, as some particles  can be very close together,  so that  the interaction energy 
between them  is extremely  high, a situation very unlikely in reality  and which, moreover, 
difficult the integrations equations  of motion  of the system [Allen 87, Haile 97]. Therefore 
it is appropriate to put  the particles  initially  in the positions  of a crystal  lattice,  thereby 
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avoiding the incidental  overlaps between  them.  This crystal  lattice  structure will melt at 
the start  of the propagation of the system,  since at  typical temperatures and densities  of 
the liquids, the solid state  is not thermodynamically stable  [Frenkel 96]. In principle any 
lattice  can be chosen.  It is found that  the  simulation  results  are practically  independent 
of what  is the  initial  lattice.   Thus  we use the  simplest  of all, the  Face  Centered  Cubic 
(FCC)  [Allen  87, Haile 97].  In the  case of the  velocities,  the  usual  procedure  [Allen  87, 
Frenkel  96, Haile 97] is to choose these  velocities randomly  within  certain  interval.   Once 
assigned  the  initial  velocities  we must  displace  it  through   a  factor,  so that, the  total 
momentum  of the system is zero and there is no net translation, since we assume that  the 
system is not subject to any external force. In addition,  these velocities must be compatible 
with the macroscopic temperature of the system T0, so it is necessary to scale their values. 

An important aspect to consider when a MD simulation  is performed is the number  of 
particles  that  make up the system.  Typically  simulations  that  involve several hundred  or 
at most a few thousand atoms  are performed.  MD programs  run-time  grows rapidly  with 
the  number  of atoms  in the  system,  mainly  due to the  evaluation  of the  forces between 
the atoms,  which is why it is necessary to maintain such a small number  as possible.  The 
problem is that  a system of such a small size (compared  to the number  of particles  in one 
mole, on the order of 1023) is not representative of a liquid, since the system is dominated 
by the  effects of surface.  For example,  in a cube made  up of 1000 atoms,  approximately 
half of them are found on the surface of it.  As a result, the liquid is surrounded by surfaces 
in which the  molecules do not  undergo  the  same forces as in the  interior,  which is not  a 
realistic simulation  of the liquid. 

The  problem  is solved through  the  use of the  so-called periodic boundary  conditions 
[Allen 87, Haile 97]. This technique  assumes that  the cubic box that  contains  the system, 
the primary  cell, is surrounding  by replicas of itself in all direction,  the cell image, forming 
an  infinite  network.   These  cells images contain  the  same  atoms  that  the  primary  and, 
during  a simulation,  each cell images moves atoms  in the  same way as the  atoms  of the 
primary  cell. Thus,  if an atom of the primary  cell moves through  a boundary,  its opposite 
face image enters the primary  cell. In this way there are no limiting surfaces of the system. 
Figure 2.1 illustrates periodic boundary  conditions  in a two-dimensional system.  While we 
have generated  infinite periodic system, it is only necessary to store the data  of the atoms 
of the primary  cell, because the images can be easily deduce from them. 

The implementation of periodic boundary  conditions  requires the assessment of forces 
exerted  on each molecule by all other  molecules of the  system.   If we consider  a system 
whose primary  cell contains  N  molecules and assume that  the potential is expressed as the 
sum of interactions between pairs of molecules, then there are N − 1 terms in this sum.  But 
in principle  we should also include interactions with molecules of cell images.  Therefore, 
this sum has therefore infinite terms, and in practice  its assessment requires the realization 
of approaches.  If the forces that  operate  are short-range, it can limit the number  of terms 
of this  sum considering  that  the  molecule in question  is located  in the  center  of a cubic 
box of the same size as the original box and only interacts with molecules that  are inside 
this  box, i.e.  with  the  closest images of the  other  N  − 1 molecules.  This  is called the 
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Figure 2.1:   A two-dimensional periodic system. 
 
 
 

minimum  image convention  [Allen 87], and is a natural consequence of the use of periodic 
boundary  conditions.  In the case of long range interaction potentials this approach  cannot 
be applied,  as is, since the forces are still intense  around  the typical lengths  of the boxes 
used in MD simulations  making necessary the use of special treatments as the Ewald sum 
for the electrostatic interactions [Allen 87]. 

 
2.1.2     Numerical  integration  of the  equations  of motion 

 
Consider  a system  composed of N  particles  of mass mi  interacting by couples through  a 
potential which depends  on the  distance  between  them  V (rij ).  The  Hamiltonian  of the 
system is the sum of the kinetic and potential energies of all particles,  which in Cartesian 
coordinates  can be written  as 

 

1  N    P 2  N  N 

H = T + V = 
  

     i 
2 

i=1 
mi 

+ 
         

V (rij )  (2.1) 
i=1 j>i 

 
being Pi  the  linear  momentum  of the  particle  i,  Pi = mi ṙi , where the  dot  indicates  the 
derivative  with respect to time.  The motion of each particle  is typically determined by the 
second law of Newton 

 
mi r̈i  = −∇ri 

 
N   

 
j=1 
j1=
i 

 
 
V (rij ) = Fi i = 1, . . . , N  (2.2) 
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where r̈i  is the acceleration  of the particle  i and Fi is the force to act on it.  Alternatively 
we can solve the Hamilton  equations  for the system 

 
ṙi  = Pi /mi  (2.3a) 

N 

Ṗi  = −∇ri 
 
 
j=1 
j1=
i 

V (rij ) = Fi i = 1, . . . , N  (2.3b) 

 

formed by a set of 6N  coupled first order differential  equations,  3N  for positions  and 3N 
for a moment. 

The  system  is composed  of particles  whose potential energy  varies  continually  over 
time, since each particle  simultaneously interacts with many others, so that  their paths  do 
not follow straight lines and their velocities are not constant between collisions. Therefore 
the  analytic  resolution  of the  set of differential  equations  is impossible and  consequently 
the resolution  need to be addressed  numerically. 

The usual way is to use the so-called finite difference methods [Allen 87, Haile 97]. This 
is a problem  of initial  conditions,  i.e.  given positions  and  velocities at  a time  t, have to 
be obtained  at a time t + dt.  The basis of the method  is to replace the infinitesimal  time 
interval  dt for an interval  finite ∆t, during  which it is supposed  that  forces acting  on the 
particles  are constant. Thus,  the equations  of motion  are solved step by step,  integrating 
them  to every interval  ∆t. 

Most of the  finite difference methods  are based  on the  Taylor  series expansion  of the 
variable  to propagate. Thus  for example, for the component x position 

 
 

x(t + ∆t) = x(t) + dx(t)  
∆t + 1 d2x(t)  

∆t2 + 1 d3x(t) 
∆t3 + · · · + 1 dn x(t)  

∆tn + . . .  (2.4) 
dt 2 dt2 3!   dt3 n!    dtn 

 

This  Taylor  series has infinite terms,  then  it has to be truncated to be applied.   Thus,  a 
method  of integration where the  Taylor  series includes  up to the  term  corresponding  to 
the derivative  n-th  is said is a method  of order n. 

There  is a large  number  of algorithms  of integration [Allen  87, Frenkel  96, Haile 97] 
and  each  of them  is appropriate or not  according  to  the  constituents of the  particular 
study  system,  the  type  of existing  interactions, the  coordinate  system  used,  etc.   In the 
present  thesis,  we employ  TINKER   program  version  5.0 [Ren  02, Ren  03]  and  Amber 
code, version 9 [Case  06] in order  to run  a MD simulations.   In the  former case velocity 
verlet algorithm  [Allen 87, Frenkel 96, Haile 97] is used, however in the latter  case leap frog 
algorithm  is employed [Allen 87, Frenkel  96, Haile 97]. 

 

 
2.1.3     N V T  and N V E  ensembles 

 
The  initial  conditions  of a Molecular  Dynamics  simulations  are far from thermodynamic 
equilibrium.   Thus,  it  is necessary  to  execute  the  simulation  over a period  of time  until 
reach thermodynamic equilibrium,  what  is commonly referred to equilibration. After this 
period and once it has reached  thermodynamic equilibrium,  they  can generate  the  paths 



Section 2.1 Molecular Dynamics simulation of liquids 13  
 
 

and calculate  different variables of interest  for the study  in particular you want to perform 
on the system.  This is the period of simulation  which called production  or generation. 

During  the  equilibration, the  temperature of the  system  is maintained constant  to 
ensure  that   the  equilibrium  is achieved  to  the  desired  temperature.   To  this  end,  the 
velocity rescaling approach  is proposed [Haile 97] for the particles of the liquid at each step 
of simulation  or every certain  number  of steps.  In this case, the total  energy of the system 
will not remain constant during the simulation,  but  the kinetic energy which will oscillate 
around a constant value.  Some more sophisticated methods have been developed to perform 
constant temperature MD simulations  [Allen 87, Frenkel 96] generating  less drastic changes 
in the velocities such as Andersen [Andersen 80] and Berendsen [Berendsen 84] thermostats 
which have been employed in this thesis. 

In simulations  where the energy dissipated  in the liquid is relatively small, for example, 
when introducing  a little excited solute, artificial warming of the liquid in constant energy 
simulations  is negligible.  In this case, both simulations  at constant energy and constant 
temperature yield the same results.  In this situation it is preferable  to perform the simu- 
lation  in the  period of constant energy generation,  as the  temperature fluctuates  around 
the initial value to avoid introducing  more or less arbitrary changes in the velocities of the 
atoms.   In addition,  it  helps to  follow the  temporal  evolution  of the  total  energy of the 
system during the simulation  to verify that  it fluctuates  around  a constant value and thus 
verify the reliability  of the simulation. 

 
2.1.4  Calculation  of the  torsion  angles 

 
In geometry,  a dihedral  or torsion angle is the angle between two planes.  Suppose that  we 
have four atoms of a dihedral  angle and they are forming two planes m and n (see Figure 
2.2).  Mathematically, the unsigned dihedral  angle can be computed  as 

  
m · n 

  
φ = arccos |m||n| (2.5) 

 

Looking at this equation sounded like if the calculation of the dihedral angle is quite simple. 
However, to obtain  the distribution of the dihedral angles appearing  in the Ramachandran 
plot,  it is essential  to figure out  the  right  sign (positive  or negative)  of the  torsion  angle 
that  cannot  be derived  just  by using Eq. (2.5).   We have found the  method  proposed  by 
Bekker  [Bekker  96] and  Rainey  [Rainey  03] as  the  most  useful  in  this  aspect.    Let  us 
consider  four atoms  ijkl connected  consecutively,  being  ri , rj , rk  and  rl  their  cartesian 
vectors.  Bekker et al provides  two  different  dihedral  angle definitions,  depending  on the 
use of the dot or cross vector products.  Based on the cross product  definition, the dihedral 
angle φ (see Figure 2.3) is defined as 

 
 

 
 

where 

φ = sign(φ) arccos(m̂ · n̂ )  (2.6) 

 
m  =  rij × rkj  (2.7) 
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Figure 2.2:   The dihedral  angle between  two planes m and n. 
 
 

n  =  rkj × rkl (2.8) 
 
 

 
 

Figure 2.3:   The  dihedral  angle φ defined by Eq. (2.6).  m is normal  to the  i, j, k plane  and  n is 
normal  to the j, k, l plane 
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Figure 2.4: The definition  of the dihedral  angle φ in terms  of the dot product Eq. (2.9) 
 
 
 

being rij = ri − rj , rij = |rij | and m̂ = m/|m|.  On the other  side the definition  of the 
dihedral  angle φ in terms  of dot products  (see Figure 2.4) is 

 

φ = sign(φ) arccos(R̂ · Ŝ) (2.9) 
 

where 
 

R =  rij − (rij · r̂kj ) r̂kj (2.10) 

S  =  rlk − (rlk · r̂kj ) r̂kj (2.11) 
 

Th sign (φ) is given either  by 
 

sign(φ) = signum(rkj  · (m × n)) (2.12) 
 

or by a simpler definition  

sign(φ) = signum(rij  · n)  (2.13) 
 

where the signum function is an odd mathematical function that  extracts the sign of a real 
number.  For a real number  signum(x) is varies between -1 for a negative number,  0 for the 
number  zero and +1  for a positive number. 

Our  test  shows that, the  dihedral  angle as obtained  from cross or dot  product  give 
the  same  value  and  the  sign calculated  using  Eq. (2.12)  and  Eq. (2.13)  is the  same.   In 
our analysis  we have chosen the  dot  product  method  to compute  the  dihedral  angle and 
Eq. (2.13) to determine  the sign of the dihedral  angle. 
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2.2  POTENTIAL ENERGY SURFACE 
 
 
 
 
2.2.1     Molecular  mechanics force fields 

 
One of the  major  problems  to  analyze  the  potential energy surface  for any  molecule,  is 
the  calculation  of the  electronic  energy for different nuclear  configurations.   In Molecular 
Mechanics  (MM)  force fields, this  step  is bypassed  by writing  the  electronic  energy as a 
parametric function  of the  nuclear  coordinates,  and  by fitting  the  parameters to experi- 
mental or higher level ab-initio data.  The building blocks in the MM force fields are atoms, 
i.e.  electrons  are not  considered  as individual  particles.   This  means  that  bonding  infor- 
mation  must  be provided  explicitly,  rather  than  being the result  of solving the electronic 
Schrödinger  equation.   MM force fields are widely used for the  investigation of a variety 
of properties  of biological macromolecules.   In combinations  with  growing computational 
resources,  these methods  allow for atomic  detailed  simulations  on heterogeneous  systems 
that  may contains  hundreds  or even thousands of atoms. 

Most of the MM force fields for simulations  of biomolecules are described by an expres- 
sion of the form [Cornell 95, Duan  03] 

 
V = 

bond 

Kr (r − req )2 + 
 
 

Vn 

 
 
angles 

Kθ (θ − θeq )2 
 
 
 
   

Aij 

 
 
 
 
Bij 

 
 
 

qi qj 
l 

+ 
dihedrals 

2  
[1 + cos(nφ − δn)] +  

i<j 
12  −  6 
ij ij 

+ 
Erij 

(2.14) 

The first three terms comprise the intramolecular or bonded interactions, where the bonds 
and the angles are represented by a simple harmonic  expression and the dihedral  energies 
are  modeled  by  a Fourier  expansion.    Kr  and  Kθ  are  the  harmonic  force constants for 
the bonds r and bond angles θ respectively,  req  and θeq  are the equilibrium  bond lengths 
and bond angles.  φ are the dihedral  angles, Vn  are the corresponding  force constant and 
the  phase  angles  δn  take  values  of either  0 ◦   or  180 ◦.   The  last  term  accounts  for the 
intermolecular or nonbonded  interactions which are calculated  for all atom  pairs that  are 
either separated by more than  three bonds or are not bonded.  The nonbonded  part  of the 
potential is represented by Van der Waals (VDW) (Aij ) and London dispersion terms (Bij ) 
and  coulomb interactions between  partial  atomic  charges  (qi  and  qj ).  rij  is the  distance 
between the particles,  and E  is the dielectric constant that  takes into account of the effect 
of the  medium  that  is not  explicitly  represented and  usually  equals  to  1.0 in a typical 
solvated  environment where solvent is represented explicitly. 

Let us focus our attention on the nonbonded  terms,  in particularly the Lennard-Jones 
(LJ)  potential.  In CHARMM  [MacKerell  98] and  AMBER  [Cornell  95] force fields this 
term  is defined as 

 

ELJ = 
 
 
i<j 

 
Eij 

    12 
minij 

12 
ij 

6  l 
minij −  6 
ij 

 

(2.15) 
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where Eij   is the  LJ well depth  and the  values are obtained  via the  geometric mean  Eij  = 
√Eii Ejj   and  Rminij   is the minimum  interaction radius  used to treat  the VDW interaction 
and the  values are based  on arithmetic mean Rminij   = (Rminii  + Rminjj )/2 where Eii  and 
Rminii    are  obtained   for individual  atom  types.    However,  in  OPLS-AA  [Jorgensen  96, 
Kaminski 01] force field the LJ is defined as 

 

 
ELJ = 

 
 
 
i<j 

 
4Eij 

12  6  
l 

ij ij 
12  −  6 
ij ij 

 
(2.16) 

 
 where σij is the finite distance at which the interparticle potential is zero and standard com- 

bining rules are used to compute  these values σij = √σii σjj . If we differentiate  Eq. (2.16) 
with  respect  to rij  and  set the  derivative  equal to zero in order  to find the  minimum  in 
the LJ potential one obtains 

Rminij   = 2 1/6 σij  (2.17) 
 

2.2.2     Born-Oppenheimer Molecular  Dynamics 
 

In systems  where polarizability and  charge  transfer  effects are  not  negligible, and  when 
the chemical reactivity of some species needs to be taken  into account,  a description  based 
on non-polarizable  classical force fields is not suitable.   Although  new generation  polariz- 
able force fields are more and  more employed  [Warshel  07, Piquemal  12] (and  references 
therein)  their  parametrization is often not transferable, and it requires a laborious valida- 
tion process.  In addition,  intermolecular charge transfer  is still rarely taken  into account, 
and,  though  a few exceptions  exist (see for example  Ref. [Pinilla  12]), reactivity cannot 
generally be treated since the quantum nature  of the electrons is not explicitly considered. 

Molecular  dynamics  methods  based  on a quantum description  of the  electrons  have 
become increasingly popular after the development of the Car-Parrinello approach  [Car 85]. 
The forces acting on the nuclei are evaluated  from electronic structure calculations  that  are 
performed on the fly along the trajectory, thus considering the electronic degrees of freedom 
explicitly.  The dynamics of the nuclei follows the classical equations of motion, whereas the 
electronic degrees of freedom are either  propagated (in the so called extended  Lagrangian 
approaches  [Car 85]) or optimized  (in Born-Oppenheimer molecular dynamics  [Marx 00]). 
In the first case, the electronic wave function or density is not converged at each time step, 
while in the latter  case convergency is assured by a self-consistent field (SCF)  iteration 
procedure.  The electronic Hamiltonian  can be treated at different levels of quantum theory, 
such  as Density  Functional Theory,  Hartree-Fock, Generalized  Valence Bond,  Complete 
Active Space SCF, Full Configuration  Interaction and Semiempirical (see Ref. [Marx 00] for 
a review).  The main advantage in using semiempirical (SE) electronic structure calculations 
to solve the Schrödinger equation  for the electronic wave function resides in the much lower 
calculation  time  compared  to ab initio  based  approaches,  thus  allowing the  treatment of 
systems of large size over much longer time scales. 
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2.2.2.1    Semiempirical electronic  Hamiltonians 

 
In this thesis we have employed a semiempirical Born-Oppenheimer MD scheme developed 
in Nancy (SEBOMD [Monard 05]).  According to this approach,  at each time step the 
Schrödinger equation for the electronic part is solved at a QM level through  SCF iterations, 
obtaining  the energy, the gradient and therefore the forces acting on the system.  The nuclei 
dynamics is propagated by classical equations  of motions.   The system is included in a 
simulation  box, and periodic boundary  conditions are used, exactly as in the MM MD case. 
Long range electrostatics can be treated according to modified Ewald schemes [Nam 05]. 

In the  following, we shall give a few insights  on the  level of quantum chemistry  that 
was used to describe the electronic Hamiltonian. We used molecular orbitals  (MOs) based 
semiempirical methods relying on the Hartree-Fock approximation and on a variational 
solution  of the  Schrödinger  equation.   The  Hartree-Fock equations  are solved iteratively 
through  an SCF procedure  and  the  wave function  of the  system  is expanded  in terms  of 
molecular orbitals  that  are given by a linear combination  of atomic orbitals. 

In MOs based semiempirical  methods,  some approximations are introduced to neglect 
or simplify the  calculation  of the  matrix  elements  of the  Fock matrix.   First  of all, only 
valence electrons are explicitly considered, while a minimal basis set of Slater MOs is built 
for the valence electrons.  Overlap integrals are neglected, as well as all bi-electron integrals 
over three or four centers.  Those that  are on one or two centers are fitted to experimental 
data  in the gas phase collected for a large training  set of molecules. 

In addition,  we used semiempirical  methods  based on the Neglect of Diatomic  Differ- 
ential  Overlap  (NDDO)  hypothesis,  according  to  which the  overlap  between  the  atomic 
orbitals  belonging to different atoms is neglected.  In particular, we used the PM3 method 
[Stewart 89], originally introduced to improve semiempirical techniques such as the MNDO 
[Dewar 77] and AM1 [Dewar 85] methods with respect to the description  of the interactions 
between different cores (a core is a nucleus plus the core electrons of an atom).  However, the 
PM3 Hamiltonian  still maintains a few shortcomings,  especially for intermolecular interac- 
tions.  For instance,  the potential energy surface of the water  dimer is not well described, 
and  unphysical  artifacts  are  obtained  for H-H interactions at  short  distance  [Harb  04]. 
This method  has been recently improved by means of a careful reparametration of the 
interaction energies based on high level ab initio calculations  on a large set of complexes, 
leading to the development of the PIF  and the MAIS methods  [Berenal-Uruchurtu 00]. 

A correct  representation of the  intermolecular interactions is especially important in 
the condensed phase.  Therefore,  our SEBOMD  simulations  were performed  by using the 
PM3-PIF electronic  Hamiltonian.  The  SEBOMD  code developed in Nancy allows for an 
additional saving in computational costs thanks  to the application of a Divide and Conquer 
strategy  [Yang 95, Dixon 96]. 

In  this  framework,  the  whole system  is divided  in  smaller  overlapping  subsystems, 
for each of which the  Fock matrix  is calculated  and  diagonalized  through  standard tech- 
niques according to the self-consistent field (SCF)  scheme.  This ensures that  the electronic 
density  converges at each step of the simulation,  and that  the dynamics  follows the Born- 
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Oppenheimer  potential energy surface [Herbert 05, Niklasson 06]. The full Fock matrix  is 
built using the minimum image convention for all direct interactions inside the periodic box 
(direct sum).  The Ewald reciprocal sum is incorporated as a correction to the Fock matrix 
in a way similar to the one proposed by Nam et al [Nam 05]: atomic partial  charges com- 
puted  from the semiempirical  wave function  define an Ewald field in the reciprocal  space 
that  can be incorporated in the  core Hamiltonian  as long as derivatives  of these  atomic 
charges with respect  to the  density  matrix  elements  are defined.  In our implementation, 
Ewald summation can be performed  by using either  Mulliken or CM1 [Storer 95] atomic 
charges to represent the long-range electrostatic field that  self-consistently  polarizes the 
semiempirical  wave function. 

A typical  SCF  procedure  proceeds  as follows:  from an  initial  guess for the  density 
matrix,  (1) the atomic charges are computed  (Mulliken or CM1 charges); (2) the minimum 
image Fock matrix  is perturbed by the  Ewald  field (i.e.,  both  the  minimum  image Fock 
matrix  and the Ewald field are derived from the same density  matrix);  (3) the total  Fock 
matrix  is diagonalized  to obtain  the  wave function  coefficients; (4) a new density  matrix 
is built  from the coefficients of the molecular orbitals;  (5) check on convergence, and back 
to 1) if the procedure  has not converged yet. 

During the MD simulation,  the different sets of charges can be derived from the wave 
function  evaluated  at each time step.  We also evaluated  CM2 [Li 98] partial  charges.  We 
recall that  CM1 and  CM2 charges  are parametrized to obtain  reliable  charge-dependent 
molecular properties,  in particular the molecular dipole moment. 

During  the  SEBOMD  simulation   in  the  gas  phase,  the  dipole  moment  of the  N - 
methylacetamide (NMA)  can  be  obtained   by  applying  the  dipole  moment  operator   to 
the  wave function  of the  molecule.   However,  the  same  procedure  cannot  be applied  to 
NMA in water,  due to the delocalization  of the wave function over the entire system.  This 
issue has already  been discussed in a previous paper  [Monard 05], and we adopt  here the 
same approximation proposed  there.   We evaluate  the  dipole moment  of NMA based  on 
partial  atomic charges (instantaneous Mulliken, CM1 and CM2 charges) and instantaneous 
atomic positions,  exactly  as it is done for the classical MM simulations. 

 
 
 
 

2.3  NORMAL MODES ANALYSIS 
 
 
 

Recently,  our research group [Bastida 10a, Bastida  10b] has carried out the nonequilib- 
rium molecular dynamics (MD) simulation  of the deuterated N -methylacetamide molecule 
in liquid deuterated water (NMAD/D2O), to study the vibrational relaxation  of the excited 
amide I mode and the C-H stretching mode of the NMAD molecule.  In these works, the 
NMAD motions  were described using the set of coordinates  {RCM , q, Qe}  where, RCM is 
the center  of mass vector,  q = (q1 , q2, q3, q4) are the quaternions that  specify the rotation 
of the molecule, and Qe  = (Qe , . . . , Qe  ) are the equilibrium  normal  modes (ENMs)  that 1  N 
describe the vibrational motion.  On the other side, the D2O motions were described using 
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the atomic  cartesian  coordinates.   In these studies,  subroutines of the TINKER  modeling 
package have been used within  our codes to evaluate  the  forces and the  potential energy 
function.  The use of the ENMs to describe the vibrational motion of the NMAD molecule 
makes these  codes highly specific and  make difficult the  application of the  INM analysis 
to  the  results  provided  by other  modeling packages.   Therefore  in the  present  thesis  we 
have generalized  the  INM analysis  so that  it can be easily applied  by using directly  the 
input  and  output file formats  used by the  standard MD package.   Since these  codes use 
atomic  cartesian  coordinates  to describe the molecular  system the assigment method  was 
also reformatted and by pass generalized to deal with flexible biomolecules. 

 
2.3.1     Cartesian  coordinate  systems 

 
The total  energy of the system can be expressed as 

 
Etot = Es  + Ev  + Vs/v (2.18) 

 
where Es , Ev   are the  energy of the  solute  and  solvent  respectively  and  Vs/v  is the  inter- 
molecular potential energy between the solute and the solvent molecules. 

The total  energy of solute is given by 
 

Es  = Ts + Vs (2.19) 
 

where Ts and Vs are the kinetic and the intramolecular potential energy of the solute respec- 
tively.  The kinetic energy after  neglecting the vibrational rotational coupling [Levine 75, 
Vikhrenko  99, Fujisaki  09] is expressed  as the  sum of translational, vibrational and  rota- 
tional  contributions 

Ts  = Ttrans + Tvib  + Trot  (2.20) 

To analyze the vibrational energy, which is the main target  of the present study,  the overall 
translational and rotational energies have to be removed from the total  kinetic energy. 

The translational kinetic energy corresponds  to the motion of the whole system and it 
is expressed in terms  of the conjugate  momentum  of the center  of mass vector 

 

1 
RCM = 

M 
Ns 

mi rlab  (2.21) 
 
 
 

PCM = 

s  i=1 
 

Ns 

i (2.22) 
 

as follows 
i=1 
 
PCM 

2 

Ttrans = | 
| 

2 Ms 
(2.23) 

where Ns   is the  number  of atoms  of the  solute  molecule, Ms   is the  total  mass,  rlab  and 
i are the atomic vectors and their  conjugate  momenta  in a laboratory fixed coordinate 

system  respectively.   In order  to  separate  the  translational motion  of the  solute,  we use 
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I sf 
xx 

 
sf sf 

 

Isf  =   sf Iyx 
I sf zx 

sf 

sf 

sf  
 

sf 

 

 
 

a space fixed (sf ) coordinate  system  which origin is at  the  center  of mass  of the  solute 
molecule 

rsf lab 
i  = ri  − RCM (2.24) 

 

psf 
 
lab 

i  = pi − PCM (2.25) 

To separate  the rotational motion we can define a body fixed (bf ) coordinate  system which 
rotates  with the  solute molecule.  In order to specify the  orientation of the  bf system  we 
firstly calculate  the instantaneous moment of inertia  tensor  in the sf frame 

 
Ixy Ixz 
Iyy  Iyz  (2.26) 
Izy  Izz 

 
which elements are defined as 

 
Ns 

I sf 
 
sf  2  

sf  2 
xx =  

i=1 
Ns 

mi ((yi ) + (zi ) )  (2.27a) 

I sf sf  2 sf  2 
yy  =  

i=1 
Ns 

mi ((xi ) + (zi ) )  (2.27b) 

I sf sf  2 sf  2 
zz =  

i=1 
mi ((xi ) 
 

Ns 

+ (yi ) )  (2.27c) 

I sf sf sf   sf 
xy  = Iyx = −  

i=1 
Ns 

mi xi yi (2.27d) 

I sf sf sf   sf 
xz = Izx = −  

i=1 
Ns 

mi xi zi (2.27e) 

I sf sf sf   sf 
yz = Izy = −  

i=1 
mi yi zi  (2.27f ) 

 

Then,  let A be the matrix  of eigenvectors of I sf ; since I sf  is symmetric,  A can be chosen 
to be orthogonal.  Then  we have 

A† I sf A = Iabc (2.28) 
 

where the diagonal elements  of Iabc are the eigenvalues which are known as the principle 
moments  of inertia  Ia, Ib  and Ic. The transpose  of the orthogonal  matrix  of eigenvectors 
A gives the direction  cosines of the (abc) principle axis system with respect to the sf coor- 
dinate  axes [Levine 75, Goldstein 02]. Finally, these eigenvectors are used as an orthogonal 
transformation from coordinates  fixed in the space (non rotating) to coordinates  fixed in 
the molecule (rotating) 

xbf 


 


a11  a21  a31 
 

xsf 


 
  bf      sf  
y    = a12  a22 a32  y  (2.29) 

zbf a13  a23  a33 zsf 
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which can be written  as  

rbf = A† · rsf (2.30) 
 

and the corresponding  momenta  are given by 

pbf  = A† · psf  (2.31) 

At this point, it seems that  we would be able to reproduce the coordinates in the body fixed 
frame.  However, we note that  the matrix  A defined in Eq. (2.28) is not unique.  Any of the 
three  eigenvectors can be multiply  by -1 without  change of the eigenvalues.  Therefore  we 
have different bf systems  which provide the same principal  moments  of inertia.  Since our 
INM analysis is based on the ENMs defined at the equilibrium  geometry  using a given bf 
system,  we need to use during the simulations  bf systems attached to the molecule in the 
same way that  the bf system originally used to define the ENMs. 

To  solve this  problem  we firstly  obtain  the  A matrix  by  numerical  diagonalization 
of the inertia  tensor.  Then  we search for an atom  in the peptide  skeleton which absolute 
value of one x bf cartesian  coordinate at the equilibrium geometry is high.  We calculate the 
same coordinate  in the present configuration of the molecule using the A matrix  previously 
calculated.   If the  two  values of the  coordinate  have opposite  signs we consider that  the 
orientation of the bf x-axis is wrong and consequently  we multiply the first column of A by 
-1. We repeat  the same procedure  for the y coordinates.  However, in our case, the values 
of zbf  at  the  equilibrium  geometry  are very small,  due to the  perpendicularity of the  z 
axis on the peptide  bond.  To overcome on this problem, firstly we consider the ibf , j bf , kbf 

unit  vectors are given by 


1
 

ibf = 0 

 

 
 
jbf 


0
 

1 

 

 
 
kbf 


0
 

0 

 
 
 
(2.32)

 
  =   

0 0 
=   

1 
 

Then,  we transform  these to the space fixed frame 
 

isf = A · ibf                                                                 (2.33) 
jsf  = A · jbf                                                                              (2.34) 
ksf  = A · kbf                                                                              (2.35) 

 
taking in our account that  the first two columns in the rotation matrix  A have been already 
modified. For a clockwise coordinate  system the cross product  for the three unit vectors is 

isf × jsf  = ksf  (2.36) 

Then if the ksf  vector obtained  using Eq. (2.36) satisfies Eq. (2.35) the orientation of the bf 
z-axis is right.  In the opposite  case we multiply  the third  column of the matrix  A by -1. 
Following the  procedure  described  above,  the  bf coordinates  of the  atoms  of the  peptide 
can be determined unambiguously  at any time during the simulation. 
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q̇bf m  ẋ , q̇ = m  ẏ  , q̇ = Ns    Ns 

j = l i 

ij 

be (λ 3Ns 

i = i 

 
 

2.3.2     Equilibrium normal modes 
 

Normal mode analysis is a direct  way to analyze vibrational motions.  The starting point 
for the normal mode analysis is one particular stable conformation  of the system that  repre- 
sents a minimum of the potential energy surface.  In order to analyze the solute vibrational 
energy [Requena 04], we define the mass weighted cartesian  displacement coordinates  with 
respect to body fixed coordinate  system as follows 

1   = 
√

m1 (x1  − x1,e), q2   = 
√

m1(y1 − y1,e ),  q3   = 
√

m1(z1 − z1,e)
 

qbf bf  bf bf  bf  bf bf  bf  bf 

4   = 
√

m2 (x2  − x2,e), q5   = 
√

m2(y2 − y2,e ),  q6   = 
√

m2(z2 − z2,e)
 

qbf 
 

. 

bf  bf bf  bf  bf 
 
 

. 

bf  bf  bf 
 
 
. 

qbf √   bf  bf bf  √  bf  bf bf  √  bf  bf 
3Ns −2 = mNs (xNs 

− xNs ,e ),  q3Ns −1 = mNs (yNs − yNs ,e ),  q3Ns   = mNs (zNs − zNs ,e ) 
(2.37) 

 
as well as their  conjugate  momenta  given by 

1   = 
√

m1 ẋ 1  ,
 

q̇2    = 
√

m1 ẏ1  ,
 

q̇3    = 
√

m1 ż1

 
q̇bf  bf bf  bf  bf  bf 

4   = 
√

m2 ẋ 2  ,
 

q̇5    = 
√

m2 ẏ2  ,
 

q̇6    = 
√

m2 ż2

 
q̇bf  bf 

 
. 

bf  bf 
 
 

. 

bf  bf 
 
 

. 
 

3Ns −2 = 
√  bf 

Ns    Ns 
bf 
3Ns −1 

√  bf 
Ns    Ns 

bf 
3Ns 

√m  żbf (2.38) 

where xbf , ybf , zbf 
 

are the  corresponding  equilibrium  values.   The  ENMs are defined as 
i,e i,e i,e 

the following linear combinations  of the mass weighted cartesian  displacement coordinates 
and momenta 

 

3Ns 

Qe 
j = 

i=1 
3Ns 

 
lENM  qbf j = 1, . . . 3Ns  (2.39) ij  i 

Q̇ e  
 
i=1 

ENM 
ij q̇bf  j = 1, . . . 3Ns  (2.40) 

 

where lENM  are the elements of the orthogonal  eigenvector matrix  LENM that  diagonalizes 
the mass weighted hessian matrix  U bf  calculated  at the solute equilibrium  configuration, 

LENM † U bf LENM = ΛENM (2.41) 
 

where  
 
ubf bf  

( 
∂2Vs

 

ij  = uji =  

∂qbf  bf (2.42) 
i  ∂qj e 

and ΛENM is the diagonal eigenvalue matrix.  The six lowest eigenvalues, that  we consider to 
ENM 
3Ns −5 , . . . , λ

ENM ), are null and correspond to the rotational and translational motion 
of the  molecule.   For  the  remaining  3Ns  − 6 eigenvalues  we can  define the  vibrational 
frequency for each individual  ENM as 

 

ν ENM λENM /2π i = 1, . . . , 3Ns  − 6 (2.43) 
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i i 

1 

 
 

If we neglect the third and higher order terms in the expansion of the solute intramolec- 
ular  potential energy, the solute vibrational energy is then  given as the sum of harmonic 
terms  for each ENM 

 

Evib
 3Ns −6 

e  2 
3Ns −6 

     e  e  2 
s = 

2  
i=1 

(Q̇ 
i )  + 

2  
i=1 

λi (Qi ) (2.44) 

 
 
2.3.3     Instantaneous normal modes 

 
The fundamental restriction of Eq. (2.44) is its limitation to describe the vibrational motion 
of the molecule at configurations  close to the equilibrium geometry i.e. ENMs are not well 
suited  to  the  study  of conformations  far away  from the  equilibrium  geometry  [Cui  06]. 
During the relaxation  of the initially excited jth normal mode, the molecule of solute may 
explore regions of the phase space which are far away from the equilibrium  geometry  due 
to its proper  thermal  motion,  to the energy fluxes originated  in the relaxation  and to the 
intermolecular interaction  with  the  solvent  molecules [Frauenfelder  91, Frauenfelder 97]. 
The  coupling  between  the  ENMs  are  then  enhanced,   making  it  eventually  difficult  to 
quantify  the energy stored in each individual normal mode [Nguyen 03]. A convenient way 
of tackling  this problem is to use the instantaneous normal modes (INMs), to analyze the 
dynamics  of the system [Buchner 92, Keyes 97, Stratt 01]. 

The INMs are defined as the eigenvectors of the mass weighted cartesian  hessian matrix 
of the total potential energy V including intra  and intermolecular interactions computed  at 
snapshot  configurations  generated  during the MD simulations  of the system.  These modes 
provide  an instantaneous decoupled  second order  description  of the  vibration  motions  of 
the solute molecule as it evolves over time.  In order to relate the INMs with the ENMs, we 
firstly expand  the potential energy in a power series of the ENMs about  the configuration 
of the molecule at a given time t0 , as follows [Stratt 01, Nguyen 03, Bastida  10a, Kalstein 11] 

 
 

V =  V (Qe(t0)) + 
3Ns −6  

Ki (Qe  − Qe(t0)) 
i i i 

i=1 

1 3Ns −6 3Ns −6 
+ 

 

Kij (Qe  − Qe(t0)) (Qe  − Qe (t0)) + . . .  (2.45) 
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i=1 
 
j=1 

i i j j 

 
where Ki and Kij are defined as 
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∂V 
∂Qe 

  
 

 
Qe (t0 ) 

 
(2.46) 

 
Kij = 

  
∂2V 

∂Qe  e i, j = 1, . . . , 3Ns  − 6 (2.47) 
i ∂Qj    Qe  e

 

i (t0 ),Qj (t0 ) 
 

Then  the ENM hessian matrix  Eq. (2.47) is diagonalized 
 

LINM† K LINM = ΛINM (2.48) 
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where  LINM  and  ΛINM  are  the  eigenvector  and  eigenvalue  matrixes  respectively.    The 
eigenvalues provide the vibrational frequencies of the INMs as, 

 
ν INM INM 
i =  λi /2π i = 1, . . . , 3Ns  − 6 (2.49) 

 
In  addition  the  eigenvector  matrix  defines the  relationship   between  the  INMs  and  the 
ENMs [Bastida 10a] 
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ij 
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Since the  LINM  matrix  is orthonormal, we can conversely express the  ENMs in terms  of 
the INMs 

3Ns −6 
Qe  
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i = 
j=1 

lij  Qj + Qi (t0 )  (2.52) 
 

By substituting this expression into Eq. (2.45) we obtain 
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If we define the coordinate  shift as 
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and we substitute into Eq. (2.54) we have, 
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Then  we can write the potential energy function  V  in terms  of the INMs as 

1 3Ns −6 

V = V t +
 

λINM (QINM  2 
 

 
 

where V t  is defined as 

0  2 
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i i + ai ) 
 
 
 

3Ns −6 

(2.57) 

V t e  1 INM    2 
0  = V (Qi (t0 )) − 

2  
i=1 

λi  ai (2.58) 

and  it  is the  potential shifted  from the  equilibrium  configuration.   Also the  vibrational 
kinetic energy can be expressed in terms  of the INMs as 

 

T vib  = 
1 
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3Ns −6 
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(2.59) 

By neglecting  the  third  and  higher order  terms  in the  potential energy function,  we can 
write the vibrational energy of each INM as 

 
EINM
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2 
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so the total  vibrational energy of the solute is approximated by [Bastida 10b] 
 
 

Evib 3Ns −6 
t 

 
INM 

s = V0 +  
i=1 

Ei  (2.61) 
 

In  order  to  analyze  the  vibrational energy  relaxation  of the  solute  molecule as well 
as each  individual  INM,  it  is necessary  to  excite  a  given INM . The  excitation  energy 
which corresponds  to one vibrational quantum of energy for a given vibrational mode ith 
is defined as 

∆EINM INM 
i  = hνi (2.62) 

This energy excess is deposited  in the solute molecule by displacing the ith  mode until its 
energy reaches the proper value (see Eq. (2.60)) 

 

EINM INM INM 
i,exc  = Ei + ∆Ei (2.63) 

 
where the subscript  exc refers to excitation. 

Even though,  this excess energy can be introduced either by kinetic or potential excita- 
tion, a previous study [Nguyen 03] has pointed out that  the kinetic excess energy dissipates 
nonphysically  more rapidly than  the potential excess energy.  For that  reason we have cho- 
sen to introduce  the excess energy as potential energy so that  Eq. (2.63) can be rewritten 
as 

V INM INM INM 
i,exc   = Vi + ∆Ei (2.64) 

where V INM  is the vibrational potential energy of the ith  INM before the excitation 
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and V INM  is given by  
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where QINM 
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2 
λi 
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is the  value  of the  ith  INM after  the  excitation.    From  this  expression  we 
obtain  that  the initial position for the excited ith  mode is 

   
2(V INM 

 

i,exc  = 
i,exc  ) 
INM 
i 

− ai (2.67) 

 

Then, Eq. (2.52) was used to obtain the initial values of the ENMs for the excited molecule. 
To find the cartesian  coordinates  in the laboratory frame, we convert  the ENMs to mass 
weighted bf cartesian  displacement coordinates  using the following expression 

 
 

qbf 
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3Ns 
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lENM Qe  i = 1, . . . , 3Ns  (2.68) ij j 

 

which can be derived from Eq. (2.39) taking into account that  LENM matrix  is orthonormal. 
Then,  Eq. (2.37) was used to get the mass weighted cartesian  coordinates  in the bf frame. 
The sf coordinates  can be derived by transforming Eq. (2.30) as follows 

rsf = A · rbf  (2.69) 
 

and finally the lab coordinates  are obtained  using Eq. (2.24) 
 

rlab  sf 
i = ri  + RCM (2.70) 

 
In order to define the mass weighted hessian matrix  for an instantaneous configuration 

in terms of ENMs, it is essential to define the mass weighted hessian matrix  in a bf cartesian 
frame  in agreement  with  that  of the  molecular  structure that  was used to  generate  the 
ENMs eigenvectors.  This method  is suitable  to define the INMs for rigid biological system 
which has only one stable  conformation  in the  gas phase  or in the  solution  [Bastida 10a, 
Bastida  10b, Kalstein  11].  However, for a flexible biological system  with  different  stable 
local conformations  in the  gas phase  or in the solution  there  are as many  ENMs as local 
minima.  Consequently, we have different body fixed frames according to each conformation. 
Clearly,  we can  not  apply  the  previously  described  method  directly  for such  biological 
systems. 

Let us now consider the case of a flexible molecule at an instantaneous configuration  at 
t = t0, Qlab (t0) = (qlab (t0), . . . , qlab  (t0)) specified by the atomic  mass weighted cartesian 

1  3Ns 
coordinates  in the laboratory frame 

1      = 
√

m1 (x1    − x1   (t0 )),  q2      = 
√

m1 (y1       − y1     (t0 )),  q3      = 
√

m1 (z1     − z1     (t0 ))
 

qlab
 

lab lab lab lab lab lab lab lab 

4      = 
√

m2 (x2    − x2   (t0 )),  q5      = 
√

m2 (y2       − y2     (t0 )),  q6      = 
√

m2 (z2     − z2     (t0 ))
 

qlab
 

 
. 

lab lab lab 
 
 

. 

lab lab lab lab 
 
 
. 

lab 

3Ns −2 = 
√

mNs (xNs  − xNs (t0 )),   q3Ns −1 = 
√

mNs (yNs  − yNs (t0 )),   q3Ns   = 
√

mNs (zNs  − zNs (t0 ))
 

qlab
 

lab lab lab lab lab lab lab lab  
(2.71) 
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The potential energy function can be expressed as [Stratt 95] 
 

V (Qlab (t))  =   V (Qlab (t0)) + K t(Qlab (t0 )) (qlab (t) − qlab (t0))  (2.72) 
i i i 

i 
1 

+ K t  (Qlab (t0 )) (qlab (t) − qlab (t0 ))(qlab (t) − qlab (t0 )) + . . . 
2  ij 

ij 
i i j j 

 
where K t  constants  

∂V 
K t    

i = lab 
i   (t0 ) (2.73) 

are nonzero if the  instantaneous configuration  does not  represent  a minima  and  the  K t 
constants are the matrix  elements of the hessian matrix  in the laboratory frame 

 

K t lab
 ∂2V  

i, j = 1, . . . , 3N
  

(2.74)
 

ij = Hij  =  

∂qlab lab  s 
i   ∂qj Qlab

 
lab 

i   (t0 ),Qj     (t0 ) 
 

Upon diagonalization of the mass weighted Hessian matrix 
 

Lt INM† H lab Lt INM  = ΛtINM (2.75) 
 

we obtain  the corresponding  eigenvalue matrix  ΛtINM  which diagonal elements provide the 
INM frequencies at t0 given by 

 
ν tINM tINM

 
i =  λi /2π i = 1, . . . , 3Ns  (2.76) 

 

The  INMs are given as the  following linear combinations  of the  mass weighted  cartesian 
displacement coordinates 

 
 

QtINM
 3Ns  

tINM
  

lab 
j = 

i=1 
lij  qi j = 1, . . . , 3Ns  (2.77) 

 

where ltINM  are the  element  of the  LtINM  matrix,  while the  corresponding  momenta  are 
obtained 

Q̇ tINM 
3Ns 
 
 
i=1 

tINM 
ij 

 
q̇i j = 1, . . . , 3Ns  (2.78) 

By an analogous algebraic way to that  described in Eq. (2.54), we can recast  Eq. (2.72) 
in terms  of INMs as following, 

 
 

V = V t +
 1 3Ns 

 

λtINM
 

 

tINM t   2 
0 2 

j=1 
j (Qj + aj ) (2.79) 

 
where at is the coordinate  shift which is defined as 

 
1 3Ns 

at    
K t  tINM 

j = tINM 
j 

 
i=1 

i lij j = 1, . . . , 3Ns  (2.80) 
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ij 
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Similarly, the vibrational kinetic energy also in terms  of INMs is given by 
 

T vib  = 
1 
2 

3Ns 
 
 
i=1 

 

(Q̇ tINM  2 
 
(2.81) 

 

We finally can be express the vibrational energy for each INM approximately as 
 

EINM
 

 

1 tINM  2
 

 

     tINM
 

 

tINM 2
 

i = 
2 

(Q̇ 
i  ) +  λi  (Qi + ai ) 

2 
i = 1, . . . , 3Ns  (2.82) 

 

The  main modification  within  our new definition,  is that  we have expressed the INMs in 
terms  of laboratory mass weighted  cartesian  displacement coordinates  without  any refer- 
ence to a bf frame. 

 
2.3.4     Instantaneous normal modes  assignment 

 
The fact that  the INMs provide a decoupled harmonic description of the vibrational motions 
of the  solute molecule at  any instantaneous configuration  is fundamental to evaluate  the 
averaged  energies and populations  of the vibrational modes of the molecule as a function 
of time  and  thus  compare  them  with  the  observed  values  extracted from time  resolved 
infrared-Raman experiments.    To  achieve  this,  the  INMs  have  to  be  identified  as  they 
evolve over time, and this is not a simple task since the complexity of the potential energy 
function  of the molecule may cause them  to vary substantially during  the dynamics  and, 
eventually,  to mix them strongly, inducing crossings between them when some of their time- 
dependent frequencies come close [David 98]. This  is essentially  the reason why previous 
applications  of the  INMs have  been restricted  to study  short  time  dynamical  properties 
of the  system  [Cho  94, Goodyear  96, Goodyear  97, Ladanyi  98].  In this  context  also, the 
identification  of the  INMs simply by sorting  them  in increasing  order  of frequencies has 
been revealed to be useless [David 98, Bastida  10a, Bastida  10b]. 

The  identification  of the  INMs as they  evolve over time  requires  their  assignment  at 
each  instantaneous snapshot  in order  to  connect  the  successive sets  of the  INMs.   The 
ENMs become in this respect the natural candidates  to track the identity  of the INMs over 
time [Bastida 10a, Bastida  10b, Kalstein  11]. 

 

 
2.3.4.1    Min-Cost algorithm 

 
We assign the INMs at  each instantaneous configuration  by analyzing  the relative  values 
of (lINM )2  coefficients which, according  to Eq. (2.50), measure  the weight of the ith  ENM 
in the jth INM. Depending  on the contributions of the ENMs, the resulting  INMs can be 
classified as pure  or mixed [Bastida  10a, Bastida  10b, Kalstein  11].  In a pure  INM, one 
of the  (lINM )2  coefficients is dominant  so the  INM is quite  similar  to  the  corresponding 
ENM. A mixed INM includes, however, significant contributions from different ENMs. The 
pure INMs are easy to identify at any time during the simulations  and basically mimic the 
well defined motions of the molecule associated  with the dominant ENM. In contrast, the 
mixed INMs are difficult to identify  due to the variations  with time of their  sparse ENM 
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ij 

ij 

 
 

contributions.  These modes sometimes appear  as groups of modes which exchange the 
contributions of a given number  of ENMs, displaying complicated  motions of the molecule. 

In previous works of our group [Bastida 10a, Bastida  10b, Kalstein  11], we have shown 
that  the assignment of the INMs based on the selection of the highest  values of the corre- 
sponding (lINM )2  coefficient is not practical  since it may give assignment of different INMs 
to the  same ENM, which complicates  the  connection  between  both  sets.  To identify  the 
INMs over time in terms  of the ENMs, it is therefore  necessary to establish  a one to one 
correspondence  between both sets of modes.  This can be done by selecting those elements 
of the  LINM  matrix,  one for each row, and  each pertaining  to a different  column,  which 
maximize  the  sum of their  squared  values.   This  is, in fact,  a variant of the  well known 
Min-Cost  or Min-sum assignment problem, which in general states  the following: given an 
N × N  cost matrix  C = cij , with cij  ≥ 0 for all i and j, assign each row to one column, and 
viceversa,  so as to minimize the  cost given by the  sum of the  row- column assignments. 
The  Min-Cost  assignment  problem  consists  therefore  of finding a permutation fi   of the 
integers 1, 2, . . . , N  which minimize the trace  z given by 

 
N 

z = 
i=1 

 
 
ci,fi (2.83) 

 

and can be efficiently solved using the so called Hungarian  algorithm  [Carpaneto 88]. For 
a given matrix,  this  algorithm  then  provides  a set of elements,  each one belonging to  a 
different row and column, whose sum is minimal.  So, in order to maximize z, as required in 
our case, we apply the algorithm  to the matrix  of negative values of the (lINM )2  elements, 
that  is we set cij  = −(lINM )2. 

The  direct  Min-Cost  assignment method  of INMs, in some cases, leads to unphysical 
assignments  when two  or more INMs have  significant  contributions of some ENMs with 
frequencies quite  part  [Bastida  10a, Bastida  10b].  Reiterated crossed assignments  of the 
INMs give place in this case to critical  displacements  in their  averaged  frequencies and to 
large uncertainties in their  vibrational energies.  This  behavior  supposes,  then,  a serious 
problem in monitoring the vibrational energy stored in a given mode. In order to avoid such 
problems, a restriction to the Min-cost algorithm has been applied [Bastida 10b,Kalstein 11] 
to ranges of frequencies of width ∆ω centered at the ENM frequencies ωe. Thus, only those 
INMs whose frequencies lie in the window (ωe − ∆ω/2, ωe + ∆ω/2) are susceptible to being 

i i 
assigned to the jth ENM. In practice,  this restriction is implemented  by giving arbitrary 
high  values  to  the  corresponding  cij   = −(lINM )2   matrix  elements,  thus  eliminating  the 
possibility  of them  being  included  in  the  permutation which  minimize  the  trace  given 
by  Eq. (2.83).   Including  this  restriction in the  Min-Cost  algorithm  is expected  to  take 
away  some of the  efficiency of the  method  at  maximizing  the  overlaps  between  the  two 
sets of normal modes.   The optimal  choice of the frequency window width ∆ω should 
compromise  then  the  smallest  as possible decrease  in the  averaged  values of the  highest 
(lINM   2 

i,fi   ) coefficients relative  to those  obtained  using the  unrestricted Min-Cost  algorithm 
(∆ω = ∞), with the need to avoid any possible unphysical  assignment of the INMs that 
may arise. 
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2.3.4.2    Effective Atomic  Min-Cost algorithm 
 

The  study  of flexible biomolecules  presenting   different  local  minima  in  their  potential 
energy surface and therefore different sets of ENMs requires the development of a new 
assignment method. 

We define the overlap matrix  O between the ENM and the INM via 
 
 

Oij =
 Ns 

AENM  
INM 

 
 
 

with 
 

AENM 

 
 
 
 
 
tENM  2

 

 
k=1 

 
 
 
tENM  2

 

ki Akj  i, j = 1, . . . , 3Ns  (2.84) 
 
 
 
 

tENM  2
 

ki =  (lxk i  ) + (lyk i  ) + (lzk i  ) k = 1, . . . , Ns  and i = 1, . . . , 3Ns     (2.85) 
 

and 
 

AINM 

 
 
tINM  2

 

 
 
tINM  2

 

 
 
tINM  2

 
kj =  (lxk j  ) + (lyk j   ) + (lzk j   ) k = 1, . . . , Ns  and j = 1, . . . , 3Ns  (2.86) 

 
where ltENM , ltENM tENM tINM tINM tINM 

xk i yk i , lzk i and  lxk j  , lyk j  , lzk j are the  elements  of the  matrixes  rela- 
tively the ENMs and INMs with the mass weighted cartesian  coordinates  in the laboratory 
fixed frame corresponding  to the  kth  atom  and  the  ith  ENM and  jth INM respectively. 
The  values of these  elements  will change with  any global rotation of the  whole molecule 
or with  partial  rotations due to variation  in some torsional  angles.  On the  contrary, the 
values of the molecule A parameters will remain  constant, because they  provide the total 
contribution of every atom to a given normal mode which does not depend on the molecule 
orientation.  Consequently, the overlap elements  defined in Eq. (2.84) will measure  the co- 
incident between ENMs and INMs even in flexible molecules. If the ith  ENM and the jth 
INM involve the displace of the same atoms with similar contribution the Oij element will 
be close to 1.  On the  other  side if they  involve the  displacement  of completely  different 
atoms the overlap will be close to 0. We note that  the O matrix  is not orthonormal. 

In our assignment method,  we also have to consider the almost  free rotations of some 
functional  groups as -CH3, -NH2,. . .  at room temperature which can exchange the contri- 
butions  of the H atoms to the normal modes.  That  is why we consider the contribution of 
these atoms  collectively.  For instance,  for the three  H atoms  of a methyl  group we define 
only one A parameter presents  as 

 
A3H,i =  (ltENM  2 + (ltENM )2 

H 2 
+ (ltENM )2 

H 3 
+ (ltENM )2 

H 1 
+ . . .  (2.87) 

 
Finally, to identify the INMs over time, we select those elements within the O matrix,  one 
for each row and  each pertaining  to a different  column,  which maximize  the  sum of the 
diagonal  elements.   To do that, we applied  the  restricted  Min-Cost  algorithm  ∆ω  to the 
matrix  O,  in a similar  fashion  to  our previous  described  method  (Min-Cost  algorithm). 
From the above considerations  we call this assignment method  the Effective Atomic Min- 
Cost algorithm  (EAMC). 
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2.3.5     Statistical Minimum  Flow method 

 
Despite  the efficiency of the MD-INM methodology,  there  is no simple way of accounting 
for the  flow of energy between  the  individual  INMs, that  is, for the  relaxation  channels, 
using solely the  information  extracted from the  time  evolution  of the  energy  that  flows 
through  individual  vibrations,  a problem  that  also comes up in experimental studies.   In 
our previous  works [Bastida  10a, Bastida  10b], we used perturbation theory  and  kinetic 
models, as reported  by a number of authors  [Fujisaki 07b,Fujisaki 08,Fujisaki 09,Zhang 09], 
to identify the main relaxation  pathways  of the energy deposited in the parent modes of the 
molecule.  This  approach  is, however,  not  satisfactory since the  perturbation treatments 
can be confidently applied only during the first steps of the energy redistribution, usually 
governed  by  a  few third-order resonances,  and  it  becomes  impractical at  longer  times, 
when  excitation  of lower-frequency  vibrational modes  begins.   As for the  use of kinetic 
models, they  also struggle  with  problems  when the  size of the  molecule and  the  number 
of vibrations  involved in the relaxation  process increase.  These methods  therefore  present 
serious drawbacks  when used to unravel and quantify  the pathways  through  which energy 
is exchanged  between the individual  vibrational modes of the molecule. 

With the aim of facilitating  the task of gaining physical insights into the elucidation  of 
the vibrational dynamics of bio-molecules, we propose here a practical  method  to quantify 
the  amount  and  the  rate  at  which  energy  flows between  the  vibrational modes  during 
relaxation  of the molecule in solution.  The method makes use of the snapshot  data provided 
by  the  standard MD packages  employed  to  simulate  the  vibrational relaxation  process, 
which are subsequently  analyzed  using the  INM methodology  [Bastida  10a, Bastida  10b, 
Kalstein  11] to provide the time-dependent evolution  of the vibrational energy that  flows 
through   every  INM.  Then,  an  algorithm  based  on  the  minimization  of the  vibrational 
energy flow between the vibrational modes and the assumption that  the global process is 
essentially  statistical is applied to quantify  the amount of energy transferred between the 
different modes during a given time interval  and the rate at which the process takes place. 

Let us consider a system formed by a solute molecule and a number of solvent molecules, 
with  the  bath  assumed  to be composed by the  sum of all the  degrees of freedom of the 
solvent  plus  the  translational and  rotational degrees  of freedom  of the  solute.   The  vi- 
brational energy of the  solute  can be precisely written  as the  sum of the  harmonic  INM 
contributions [Bastida 10a, Bastida  10b, Kalstein  11], so the total  energy of the system  is 
given by, 

 
E = Ebath (tk ) + 

Nv 
 
 
i=1 

 
Ei (tk )  (2.88) 

where Nv   is the number  of vibrational degrees of the solute and Ei (tk ) is the vibrational 
energy of the ith INM at time tk . We assume thereafter that  the INMs and the bath energies 
are obtained  by averaging their corresponding  values extracted from a representative set of 
independent MD runs.  The INMs and the bath  energies change with time because of the 
intra  and intermolecular vibrational energy transfer  processes that  the system undergoes, 
while the  total  energy remains  constant.  The  change  of energy of the  bath  in the  time 
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interval  (tk , tk+1 ) is given accordingly by 
 
 

 
 
 
 

where 

 

∆Ebath (tk ) = Ebath (tk+1 ) − Ebath (tk ) = − 
Nv 
 
 
i=1 

 
∆Ei (tk )  (2.89) 

∆Ei (tk ) = Ei (tk+1 ) − Ei (tk )  (2.90) 
 

is the change of energy in the ith  INM. 
In order to map the transfer  of energy through  the system in a detailed  way, we intro- 

duce the so-called energy flow matrix  F, whose off-diagonal elements,  fij (tk ), contain  the 
amounts  of energy transferred from the ith to jth INM in the time interval  ∆t = tk+1 − tk . 
The  diagonal  elements  of the  flow matrix  are set to zero since the  INMs are not  allowed 
to interchange  energy.  To ensure that  the total  energy is conserved, an additional row and 
additional column are included  in the  flow matrix  to account for the  exchange of energy 
with  the  bath,  that  is, for the  intermolecular energy flow.  The  energy flow matrix  F  is 
therefore  a (Nv + 1) × (Nv + 1) antisymmetric, since fij = −fji , matrix. 

By using the sign criterion  that  fij > 0 if the energy is transferred from the ith  to the 
jth INM, we calculate  the variation  of energy of the ith INM in the interval  ∆t as the sum 
of the matrix  elements in the ith  column as follows 

 
∆Ei (tk ) = Ei (tk+1 ) − Ei (tk ) = 

 
Nv +1 
 
 
j=1 

 
 
fji (tk )  i = 1, . . . , Nv  + 1 (2.91) 

 
There are then  Nv (Nv + 1)/2 independent elements of the energy flow matrix  to be deter- 
mined and only Nv  + 1 restrictions among them given by Eq. (2.91), so we need to consider 
additional constrains  in order  to fully specify the  F matrix.   Within  all the  possible en- 
ergy flow matrices  existing, we select accordingly as the most physically meaningful those 
derived  by imposing the  condition  that  amount of energy exchanged  by the  INMs of the 
solute  molecule during  the  time  interval  ∆t be minimum.   This  minimum  flow criterion 
allows us to classify the INMs in the time intervals  as energy donors (D modes), if the vi- 
brational energy that  accumulates  in the specific INM decreases, and energy acceptors  (A 
modes), if the energy accumulated in the mode increases.  To achieve the minimum energy 
exchange  we assume  that  energy flows exclusively from D to A modes.  Thus,  if the  ith 
INM is a D mode in the ∆t interval,  it transfers  to the A modes its excess of energy equal 
to |∆Ei (tk )| = |Ei (tk+1) − Ei (tk )|.  In turn,  if the jth INM is an A mode in the ∆t interval, 
it receives an amount of energy from the D modes equal to ∆Ej (tk ) = Ej (tk+1 ) − Ej (tk ). 
The total  energy exchanged  among the INMs in the ∆t time interval  is equal to 

 
Eexc (tk ) =  

i∈D 
|∆Ei (tk )| =  

j∈A 
∆Ej (tk )  (2.92) 

 

The  application of only  the  minimum  flow criterion  does not  allow us to  calculate  the 
specific amounts  of energy transferred from every D mode to  each A mode.   We invoke 
then an additional purely statistical criterion  for the distribution of the vibrational energy 
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exchanged based on writing the amount of energy that  flows from the ith  to the jth INMs 
as the flow probability between these two modes, Pi→j (tk ), multiplied  by the total  energy 
exchanged,  that  is, 

 
fij (tk ) = Eexc (tk )Pi→j (tk )  i ∈ D, j ∈ A  (2.93) 

 

The flow probability between  the ith  and jth INMs is, in turn,  factorized  as the product 
of the  flow probability from the  ith  INM, Pi→(tk ), and  the  flow probability towards  the 
jth INM, P→j (tk ), as follows 

Pi→j (tk ) = Pi→(tk )P→j (tk )  i ∈ D, j ∈ A  (2.94) 
 

where 
Pi→(tk ) = 

| ∆Ei (tk )| 
 

i ∈ D  (2.95) 
 
and 

Eexc (tk ) 
 
∆Ej (tk ) 

P→j (tk ) = 
E  exc 

 

(tk 
j A  (2.96) 

) 
The donor modes therefore distribute their excess energy proportionally to their contri- 

bution to the total energy exchanged, as do the acceptor modes. It can be straightforwardly 
verified using Eqs. (2.92), (2.95) , and (2.96) that  the flow probabilities  Pi→ and P→j  are 
normalized.  Substitution of Eqs.  (2.94), (2.95) and (2.96) in Eq. (2.93) then  provides the 
final expression for the amount of energy that  flows between  the ith  and jth INM in the 
∆t time interval, 

fij (tk ) = −fji (tk ) = 
| ∆Ei (tk )|∆Ej (tk ) 

Eexc (tk ) 

 

i ∈ D,  j ∈ A  (2.97) 

fij (tk ) = 0 i, j ∈ A  or  i, j ∈ D  (2.98) 
 

as given by  the  Statistical Minimum  Flow (SMF)  method.    Obviously,  the  energy  flow 
matrix  changes  with  time  during  the  relaxation  process,  and  the  role of the  modes  as 
donors  or  acceptors  also  switch  with  time.    These  changes  might  be  indicative  of real 
changes in the system or just unphysical  by-products produced  by fast local oscillations of 
energy which are expected to cancel out along the successive time intervals.  It is, then, 
convenient to use the accumulated amount of energy that  flows between the INMs during 
a number  of consecutive time intervals  between times tk and tt given by 

 
 

ij (tk , tkt ) = 
kt −1 
 
 
m=k 

 
fij (tm )  (2.99) 

 

which, to a large extent,  filters the unphysical  energy variations. 
During  the  intramolecular vibrational relaxation  process, energy flows from D modes 

to A modes.  The  way in which the  accumulated amount  of energy flows between  INMs 
ij (tk , tkt ) is shown in Figure 2.5. This curve can be nicely fitted to first order exponential 
function of the type 

ij  = Aij (1 − e −t/τij )  (2.100) 



Section 2.3 Normal modes analysis 35  

exc 
τ −1 

τ ( 

ac
 

A
cc

um
ul

at
ed

 fl
ow

 f ij 

− 

τ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Time 
 

Figure 2.5:   Time evolution  of the accumulated energy that flows from a D mode to an A mode. 
 
 
 

where Aij  is the  asymptotic value of the  energy transferred, i.e., the  total  energy trans- 
ferred, and τij is the corresponding  lifetime.  However this expression must  be interpreted 
with  caution  when  applied  to  evaluate  the  energy  flows for intermediate modes  in the 
relaxation  process.   Let  us consider  B to  be a mode which is excited  from the  A mode 
with a rate  equal to τ −1  and simultaneously it relaxes to the C mode with a rate  equal to 

rel  . If both processes are modelled through  first order reactions,  the time evolution of the 
vibrational energy stored  in the B mode is 

 
 

[B](t) = 

 
 

τ −1
 

 
−1 
exc 

 

e−tmax /τexc  e−tmax /τrel  (2.101) 
−1 

rel    − τexc 
 

where we have assumed  that  the energy initially  stored  in the A mode is unity.  In Figure 
2.6 we represent the shape of this function,  that  reaches its maximum  value at 

 
 

tmax = 
1 

τexc 

1 − 
τrel 

−1 
ln   rel 

τexc 

 
(2.102) 

 

According to the SMF method the B mode acts as an acceptor in the time interval (0, tmax ) 
and as donor when t > tmax . Then the accumulated flow from A to B will be 1 − e−tmax /τij , 
that  is, smaller than  unity. 

 

Moreover,  the  apparent lifetime τ  for the  A →B transfer  can be defined as the  time 
when the accumulated flows reach 1 − e−1  times its maximum  value that  is 

e−τ /τij  = e−1 + 1 − e−1   e−tmax /τexc  (2.103) 

In Table 2.1 we show the  values of τ /τexc and  e−tmax /τexc  for different  τrel/τexc  ratios. 
As seen both the excitation  time and the amount of energy transfer  are underestimated for 
small value of τrel/τexc while they tend to unity as this ratio increase.  Therefore, the lifetime 
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Figure 2.6:   Time  evolution  of the  vibrational energy of a B intermediate in the  consecutive  first 
order reaction  A →B →C. 

 
 

Table 2.1:   Values of tmax /τexc , tmax /τrel , [B]max , τ /τexc and  1 − e−tmax /τexc  for different τrel /τexc 

ratios. 
 

τrel/τexc  tmax /τexc  tmax /τrel  [B]max τ /τexc  1 − e−tmax /τexc 
 

1.5 1.216 0.811 0.443 0.554 0.703 
2 1.386 0.693 0.500 0.642 0.750 
3 1.648 0.549 0.578 0.714 0.808 
4 1.848 0.462 0.629 0.760 0.842 
5 2.012 0.402 0.669 0.793 0.866 
6 2.150 0.358 0.680 0.817 0.884 
8 2.377 0.297 0.743 0.852 0.907 

10 2.558 0.256 0.774 0.875 0.923 
 
 
 

and flows obtained  from the SMF method have to be corrected in those intermediate modes 
with relaxation  times not much bigger than  the excitation  one. 

 
 
 
 

2.4  COMPUTATIONAL  VIBRATIONAL SPECTROSCOPY 
 
 
 

Vibrational spectroscopy  is a valuable  tool for the  elucidation  of molecular  structure. 
It  also  provides  important information   about  the  intramolecular forces acting  between 
the  atoms  in a molecule, the  intermolecular forces in condensed  phase  and  the  nature  of 
the  chemical bond.   However, its interpretation may become arduous  when dealing  with 
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large systems,  where different modes are active in the same frequency regions.  Computer 
modeling and simulations  are thus extremely  important to provide an interpretation of IR 
spectroscopy  at the molecular level. 

 
2.4.1     Infrared spectrum 

 
The  most  basic method  to  simulate  an  IR absorption  spectrum  is the  evaluation  of the 
frequencies  of the  normal  modes  of the  system  under  the  harmonic  approximation  (see 
Section 2.3).   The  IR  intensities  are  obtained  from the  gradient  of the  dipole  moment. 
However, this approximation is too drastic  for low frequency bands and for systems in the 
condensed phase, since the anharmonicity of the IR bands  and coupling between different 
modes can be lead to large effects. 

In these cases, the evaluation  of the absorption  spectra  is based on a development orig- 
inally due to Kubo and Anderson  [Kubo 54, Anderson  54], who formulated  the theoretical 
description  of the IR absorption  line shapes in terms  of a fluctuating transition frequency 
that  was regarded as a classical stochastic  variable with experimentally correlated Gaussian 
statistics. In the limit that  these fluctuations  are sufficiently slow, the IR absorption  spec- 
trum  corresponds to the ensemble average of the distribution of transition frequencies, and 
the line shape is Gaussian.  Conversely,  when the environmental fluctuations  are fast, the 
IR absorption  spectrum  is “motionally narrowed“ (i.e., the spectrum  is narrower  than  the 
distribution of frequencies) and its line shape is Lorentzian.  Under the Born Oppenheimer 
approximation and by applying first order perturbation theory to model the interaction 
between  matter (isotropic  fluid) and  an external  electric field at  a quantum level, it was 
shown that  the  line shape  of absorption  in the  infrared  region can  be expressed  as the 
Fourier  transform  of the  time correlation  function  (TCF) of the  total  dipole moment  M̂ 
of the absorbing  molecules in the absence of the field: [Gordon 68, McQuarrie  00] 

 

1 
    ∞    

ˆ ˆ 
∗  

I (ω) = 
2π 

dte−iωt 
−∞ 

M (0)   M (t)
\ 3  ε (ω) 

4π2 (1 − e−β  ω ) 

 

(2.104) 

 

where β = 1/kB T in which kB is Boltzmann’s  constant and T the temperature and, 
 

ε∗(ω) = ncα(ω) 
ω 

 
(2.105) 

 
being  n  the  index  of the  refraction  of the  medium,  c the  speed  of light,  and  α(ω)  the 
absorption   coefficient  of Lambert’s  law,  I = I0 exp (−αx).  Eq. (2.104)  provides  a  link 
between a variable that  can be evaluated  based on a simulation  and spectroscopic variables 
that  can be experimentally measured.  In particular, in order to be able to use the results 
of classical dynamics,  the classical analog of the quantum time correlation  function can be 
used and the quantum dipole moment operator  M̂ (t) can be approximated by its classical 
analog M (t), leading to the expression: [Gordon 65, Berens 81, McQuarrie  00, Ramírez 04, 
Schmidt  08]    ∞ 

I (ω) ∼ Q(ω) 
−∞ 

dt e−iωt (M (0) · M (t))  (2.106) 
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where the  effect of approximating quantum operators  with  their  classical counterparts is 
compensated  by the use of the quantum correction  factor Q(ω). 

Although  different  forms for Q(ω) have  been proposed  in the  literature [Egorov  99], 
this factor is often omitted,  and it has been recently proven that  its inclusion does not 
significantly  affect I (ω) [Lawrence  05].  In the  present  thesis,  we calculate  IR spectra  by 
omitting  the  prefactor,  and  they  are  thus  expressed  in arbitrary units.   In addition,  we 
do not introduce  any scaling factor to rescale our computed  frequencies in order to better 
reproduce  the experimental results. 

In solution,  experiments  aimed  at  recording  the  IR spectrum  of a solute  use a sub- 
traction method  (the  spectrum  of a  blank  is subtracted from  the  spectrum  of the  full 
solution).   In simulations,  this  would translate into  considering  cross-correlation  (solute 
(s)-solvent  (sv))  to calculate  the  TCF  of the  dipole moment  as well as solute-solute  cor- 
relations.  However, this approach  requires taking  into account correlation  between solute 
and solvent motions, and much better  statistics are necessary compared  to the calculation 
of self-correlation  functions  [Iuchi 02]: 

 

Cµµ (t) = Cs/s (t) + Csv/s (t) + Csv/sv (t)  (2.107) 
 

where Cµµ (t) represent the total  dipole time correlation  of the system,  and 
 

Cs/s (t) = (Ms(t) · Ms (0)) (2.108) 

Csv/sv (t) = (Msv (t) · Msv (0)) (2.109) 
Csv/s (t) = (Msv (t) · Ms (0)) + (Ms (t) · Msv (0)) (2.110) 

where, Msv and Ms are the  total  dipole moment of solvent and solute molecules respec- 
tively.   In  this  work,  we restrict  our  calculation  to  self-correlations  of the  solute  dipole 
moment. 

According  to  Eq. (2.106),  we should  calculate  the  Fourier  transform  of the  TCF  of 
the dipole moment.   We analyzed  the IR spectra  by applying  different numerical  method 
to calculate  the  FT  of a TCF  [Press  92], Wiener-Khinchin theorem,  Maximum  Entropy 
method  and direct  integration of the dipole correlation  function. 

Peak assignment on the IR spectra was carried out by using a decomposition of the total 
vibrational density  of states  (VDOS)  into  atomic  contributions.  This  procedure  is often 
used when dealing with peak assignment in calculated  IR spectra  [Gaigeot 03, Gaigeot 05]. 

Cs/s (t) = (V (t) · V (0))  (2.111) 
 

where  V  is the  total  molecular  velocity  of the  solute.    The  same  procedure  described 
above to calculate  the  FT  of a time correlation  function  was applied.   This  equation  can 
be used to characterize  the  nature  of the  vibration, by decomposing  the  total  VDOS in 
terms  of atomic  contributions.  This help clarifying what  atoms  are involved in the mode 
corresponding  to a particular frequency.  Some additional calculation  can be performed for 
a further  confirmation  of mode assignment,  such as for example the FT of(Rij (0) · Rij (t)) 
to assign stretching motions  (Rij  being the  distance  between  the  two  atoms  involved in 
the elongation)  and of (θ(0) · θ(t)) (θ) being a bend angle. 
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2.4.2     Analysis of the  solvent  induced  shift 
 

In order  to  relate  the  solvent-induced shift  on the  amide  I band  of a model peptide  to 
different terms contributing to the solute-solvent hydrogen bond interaction energy, we 
proposed a method allowing to extract  the relative effect of interactions of different nature: 
electrostatics, polarization, charge transfer,  and the contribution due to the deformation  of 
the potential energy surface corresponding to the amide I oscillator.  To assess the impact of 
each interaction energy decomposition  term  on the solvent-induced shift, we developed an 
expression based on a perturbative approach.  Our method  is then  applied to calculations 
run at the PM3 level using the interaction energy decomposition scheme developed by van 
der Vaart  and Merz [der Vaart  99]. However, the  methodological  development is general 
and could be applied to any other decomposition scheme and to different levels of quantum 
chemistry. 

Our  goal is to  relate  the  solvent-induced shift  on the  amide  I vibration  to  the  dif- 
ferent  contributions arising from the  interaction energy decomposition.   In the  harmonic 
approximation, the  relative  solvent-induced shift in terms  of the  force constant  k and  of 
the reduced mass µ for the normal mode in the gas phase (g) and in the condensed phase 
(c).  Making use of a first order expansion,  we can write: 

 
 
 

νc − νg kc − kg  1 kc − kg 
= + 1 − 1 � 

 
(2.112) 

νg  kg 2 kg 
 

in which the quantity (kc  − kg )/kg  is considered to be small compared  to one. In the case 
of the  amide I band  of NMA in water,  the  (absolute) solvent  induced  shift is just  about 
6% of the gas phase frequency [Ingrosso 11], making this approximation a reasonable  one. 

In  order  to  simplify the  analysis  of the  solute-solvent  interactions, we study  a very 
simple system,  comprising  one NMA molecule and  one water  molecule.  In this  case, the 
total  potential energy of the complex Ec  is just  given by: 

 
Ec  = ENMA,g + Ew,g  + Eint (2.113) 

 
where ENMA,g and Ew,g  are the equilibrium gas phase energies of isolated NMA and water, 
respectively,  and  Eint  is the  interaction energy.   The  first  two  terms  on the  right  hand 
side disappear  when calculating  the second derivative,  since they are constant values cor- 
responding  to the  minima  of the  potential energy surfaces of the  two  isolated  molecules, 
finally obtaining 

 

kc  = 
∂2Eint 

∂Q2 

 

(2.114) 
 

From now on, the subscript  c will be related  to the NMA-H2O complexes. 
According to the scheme proposed in Ref. [der Vaart  99], interaction energies can be de- 

composed into electrostatic, polarization and charge transfer  components.   This approach 
takes advantage of some features of the Divide and Conquer approach,  according to which 
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the Fock matrix  of the system is partitioned into submatrices  during  the process of diag- 
onalization,  and  the  overlap  between  the  subsystem  together  with  the  Fermi  energy are 
used to control the charge flow between subunits. 

The decomposition is achieved by performing three distinct calculations after evaluating 
the total  interaction energy.  First,  the system is brought to the equilibrium distance  in the 
complex starting from the infinitely separated molecules, and no charge transfer  is allowed. 
Secondly, intramolecular charge redistribution is activated. Finally,  intermolecular charge 
transfer  is allowed as well.  For more details  about  the  calculation  we refer the  reader  to 
the original work. 

As in any other interaction decomposition  scheme, one should pay some caution  in the 
interpretation of each term.  As it was noted  by Kitaura and Morokuma  [Kitaura 76], the 
electrostatic contribution represents  the interaction between occupied molecular orbitals 
(MOs)  without  mixing, the  polarization term  is related  to mixing between  occupied and 
virtual MOs on the same molecule, and finally the charge transfer term contains also a 
contribution arising from exchange interactions. 

When applying  this method  to the study  of our system,  we need to take  into account 
an  additional term,  which accounts  for the  changes  in the  geometrical  structure  arising 
from intermolecular interactions, compared  to the gas phase equilibrium  geometry  of each 
molecule in the complex (deformation contribution). 

To summarize,  we assumed  that  the  total  interaction energy Eint  can be partitioned 
into the following terms: 

 

 
Eint = Eele  + Epol  + ECT + Edef  (2.115) 

 

being Eele , Epol , ECT and  Edef   the  electrostatic, polarization, charge transfer  and  defor- 
mation  contribution, respectively. 

Substituting Eq. (2.115) into Eq. (2.114), we obtain: 
 
 

kc  = 

 
∂2Eele 
∂Q2 

 

∂2 Epol +  
∂Q2 

 

∂2ECT 
+  

∂Q2 

 
∂2 Edef +  
∂Q2 

 
 
= kele  + kpol  + kCT + kdef ,  (2.116) 

 
where the  four constants on the  right hand  side have been introduced for simplicity,  but 
they do not correspond  to force constants. 

The second derivatives  in Eq. (2.116) are evaluated  numerically  and compared with the 
results of a complete exploration  of the potential energy surface (see Section 3.1.4 for mode 
details).  By substitution of Eq. (2.116) into Eq. (2.112), we finally have: 

 

∆ν 
= ∆ν r 

νg 

 
1   r 

2 ele 

 
r 
pol 

 
+ ∆ν r 

 
r 
def 

 

l 
(2.117) 

In the last equality,  the first three  terms  come from the interaction energy decomposi- 
tion scheme by van der Vaart  and Merz [der Vaart  99] (∆ν r  = kx , where x = ele, pol or x kg 
CT),  whereas the  last  term  gives direct  information  on the  deformation  of the  potential 
energy surface induced  by the  NMA-H2O interactions along the  normal  mode compared 
to the gas phase (∆ν r =  kdef   − 1). 
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Results and  discussion 
 
 
 
 
 
 

In this chapter,  we present and discuss the results of the vibrational energy relaxation  of the 
amide I mode of the N -methylacetamide (NMA, monopeptide  model) and alanine  dipep- 
tide  (AlaD,  dipeptide  model)  molecules in water  solution  (D2O),  as well the  vibrational 
spectroscopic  properties  of the NMA molecule. 

N -methylacetamide (NMA)  is a model molecule for the  peptide  bond,  which is om- 
nipresent  in the  backbone  of proteins.    NMA is widely used  for investigations into  the 
physical and chemical properties  of the amide group, particularly for the purpose of under- 
standing the behavior of one of many peptide linkages in proteins and peptides [Guo 92,Her- 
rebout  01, Rubtsov  03b, Hayashi  05, DeFlores  06, Fang  09].  Figure 3.1 shows a schematic 
representation of the two conformers of the NMA molecule trans -NMA and cis -NMA. The 
trans  form is the most stable  in the gas phase and in solution  [Jorgensen 88, Gao 97, Vil- 
lani 99,Cuevas 02], and an experimental evaluation  of the energy difference between the two 
forms in a rigid matrix  gives a value of 2.3 kcal/mol  [Ataka 84], while NMR measurements 
in 1,2-dichloroethane gave a difference ranging from 2.8 to 3.4 kcal/mol  [Drankenberg 71]. 
The  free energy barrier  between  the  two forms has been investigated by means  of differ- 
ent computational techniques  and it varies between 15 and 20 kcal/mol  depending  on the 
method  [Luque  93, Villani 99, Mantz  04, Mantz  06, Mantz  09].  The  presence  of a solvent 
enhances the barrier  height by 2-3 kcal/mol  [Jorgensen 88, Luque 93, Mantz  04]. 

Beginning with the efforts to assign IR frequencies of isolated NMA and its N-deuterated 
form (NMAD)  [Miyazawa 58], a number  of studies  have been devoted  to narrow  the  gap 
between  observed  and  calculated  geometries  and  IR  frequencies  of aqueous  NMA  and 
NMAD. The solute-solvent interaction and polarization are important aspects in theoreti- 
cal chemistry.  A challenge in the studies  of solvation  and solvent effects is to incorporate 
explicity  the  polarization and  charge  transfer  effects into  the  potential surface.   At this 
end, we present in this  thesis  a study  of the  IR spectrum  of the  NMA molecule in aque- 
ous solution  and  the  vibrational energy relaxation  of the  initially  excited  amide  I mode 
(mainly  CO  stretch) of the  NMAD in heavy  water  by employing  MD simulations  with 
MM and  quantum electronic  Hamiltonian  force fields.  Our  study  aims to shed the  light 
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Figure 3.1:   Trans (left)  and cis (right) NMA conformation. 
 
 
 

on the  importance  of incorporate  the  polarization and the  charge transfer  effects into  an 
accurate  modeling of the  solute solvent interactions.  In Section 3.1 we introduce  a study 
of the infrared spectrum  of NMA performed using Molecular Dynamics and quantum elec- 
tronic Hamiltonian  at semiempirical level (SEBOMD).  In this study  we assess the validity 
of the  SEBOMD  approach  to predict  solvent effects on the  vibrational frequencies.  This 
is important for implementing  the  SEBOMD  method  and  the  INM analysis  for studying 
the vibrational relaxation  of the NMA molecule in solution.  Since the biological function 
of a protein  is considered  to be coupled with  the  anharmonic  protein  dynamics  [Frauen- 
felder 91], elucidation  of the mechanism of this coupling, that  is between protein  dynamics 
and protein  function is extremely important. In this context,  it is known that  the study  of 
the vibrational energy relaxation  play an essential role for understanding the functions  of 
the biomolecules since their  structure and dynamics  are determined by the energy trans- 
fer [Leitner 08]. In Section 3.2 we analyze the vibrational energy relaxation  of the amide 
I mode of the deuterated NMA (NMAD) by employing both  an MM nonpolarizable  force 
field and SEBOMD. 

Finally,  in Section 3.3 we present  a study  of the  vibrational energy relaxation  of the 
amide I mode of the deuterated alanine dipeptide (AlaD-d2, CH3CONDCHCH3 CONDCH3) 
molecule (see Figure 3.2) in deuterated water through  nonequilibrium MD simulations  fol- 
lowing the  experimental work by Hochstrasser  et al [Kim  05a].  To  our knowledge,  this 
is the  first time  that  the  vibrational energy relaxation  of the  amide  I mode of the  AlaD 
molecule is presented  theoretically. The dynamics  of the AlaD molecule is quite  different 
from the NMA molecule because of its flexibility (see Figure 3.3), and the presence of two 
amide  I groups  in the  acetyl  end (acend)  and  in the  amino  end (amend).   We have also 
analyzed  the  vibrational energy relaxation  of the  two  amide  I modes,  using the  isotopic 
substitution of the  acend  carbonyl  group  12C=O with  13C=O in order  to  separate  the 
otherwise  overlapping  amide I modes.  Special attention has been paid to follow the time 
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Figure 3.2:   Chemical  structure of the  alanine  dipeptide  molecule.  Color key:  C (gray),  N (blue), 
O (red)  and H (cyan) 

 
 
 

evolution  of the conformational distributions during the relaxation  process. 
 
 
 
 

3.1  IR SPECTRUM  OF THE N-METHYLACETAMIDE MOLECULE 
 

 
 
 
 

3.1.1     Computational details 
 

Before providing  a discussion of our results  on the  infrared  spectrum  of NMA, with par- 
ticular  emphasis on the solvent effect on the band position,  we briefly summarize the 
computational procedure that  we used for the simulations.   The SEBOMD results were 
compared  to molecular  mechanics  MD using the  Amber03 [Duan 03] force field, recently 
introduced to overcome some of the shortcomings  of previous non-polarizable  force field in 
the simulations  of proteins  in the condensed phase,  especially in the prediction  of molec- 
ular dipole moments  and for properties  related  to the torsional  parameters. We used the 
Amber code, version 9 [Case 06], and a local version of the same code for SEBOMD. 

After  performing  MM MD simulations  of isolated  cis  and  trans  NMA, we immersed 
each of the  two molecules in boxes containing  64 SPC/E [Berendsen 87] water  molecules 
at  300 K.  Box size effects were analyzed  by  using  larger  boxes.   Simulations  were run 
both  in the  microcanonical  ensemble  and  at  constant  temperature.   In  the  latter  case, 
the Andersen  method  [Andersen 80] was used for temperature control,  and the frequency 
for velocity  randomization was 1 ps−1.   The  SPC/E model was used since it  gives very 
similar  results  to  the  ones obtained  with  the  semiempirical  electronic  Hamiltonian  and 
PIF  corrections  with  respect  to  the  structure of liquid  water  [Monard  05].  In addition, 
SPC/E is one of the best available  MM models to describe the dielectric  properties  (and 
thus electrostatic solvation properties) of water [Reddy 89]. We do not expect large effects 
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Figure 3.3:   The deuterated alanine  dipeptide  molecule conformations  (φ,ψ)  (a) C5 (-151.4, 170.6) 
(b)  C7eq   (-81.4, 70.6) (c) αR (-78.8, -50.0) (d)  PII (-80.0,140.0)  (e) αd   (-100.0, -5.0) (f ) β(-120.0, 
130.0).  The yellow color represents the deuterium atoms. 

 
 
 

on the infrared spectrum  of NMA due to using a rigid water model, since the solute-solvent 
correlations  are not included in our calculation. 

Simulations  in the condensed phase were run with periodic boundary  conditions.  Long- 
range  electrostatics was treated within  the  Ewald  sum  scheme  [Allen  87].   The  size of 
the  boxes was adapted to reproduce  the  room temperature density  of water  (0.996 g/ml 
[Lemmom 11]), by taking into account the volume occupied by the solute.  Equilibration at 
constant temperature (T  = 300 K) was performed for 500 ps, followed by data  acquisition 
over  1 ns  for each  simulation.    We  used  a  time  step  of 1 fs.   The  SHAKE  procedure 
[Ryckaert 77, Ciccotti  86] was used to keep water molecules rigid, whereas all bonds in the 
solute molecule were flexible. 

Regarding MD simulations  with a semiempirical quantum mechanical Hamiltonian, we 
compared the results obtained  in the gas phase with those obtained  in the condensed phase 
by using the standard PM3 Hamiltonian  for intramolecular interactions and the PIF  cor- 
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Table 3.1: Geometrical  parameters for isolated cis and trans  NMA. Average values from molecular 
mechanics  MD and from SEBOMD  with a PM3 Hamiltonian. Distances  are in Åa 

 
 
 

Atom Amber03 cis Amber03 trans PM3 cis PM3 trans 
CACE-HACE 1.09 1.09 1.10 1.10 
CNMet -HNMet 1.09 1.09 1.10 1.10 
C-O 1.22 1.22 1.22 1.22 
N-H 1.01 1.01 1.00 1.00 
CACE-C 1.52 1.52 1.51 1.51 
C-N 1.33 1.34 1.43 1.43 
N-CNMet 1.46 1.47 1.47 1.47 
(a) The  standard deviation on distances is 0.03 Å  with  the  exception of the 

CO and  CN distances, for which  it is 0.02 Å. 
 
 
 

rection  for water-water [Berenal-Uruchurtu 00] and solute-water  [Harb 04] intermolecular 
interactions.  In water  solution,  each of the two NMA conformers were dissolved in a box 
with 64 water molecules, and we ran dynamics on a 300 ps time scale, at the same temper- 
ature and using the same time step as in the MM simulations.  No SHAKE constraints were 
applied.  Previous  equilibration for each MD run was performed over 100 ps starting from 
a configuration  extracted from the molecular mechanics force field MD simulations.  Simu- 
lations in the condensed phase were run with periodic boundary  conditions,  and long range 
electrostatic interactions were taken  into account by using the Ewald method  [Nam 05]. 

In all (isolated,  condensed  phase)  simulations,  we monitored  the  O-C-N-H  dihedral, 
in order to make sure that  the NMA molecule would stay in the original cis or trans 
conformation  during  the  simulation,  in agreement  with  the  observation  of a high barrier 
between the two conformers predicted  by other calculations  [Luque 93, Mantz 04, Mantz 06, 
Mantz  09]. An analysis of partial  charges was also carried out using Mulliken charges and 
the  CM1 and  CM2 models [Storer  95, Li 98], both  for the  gas phase  and  the  condensed 
phase simulations. 

 
3.1.2     Gas phase  spectrum 

 
We first analyze the average intramolecular properties  calculated from our MD simulations. 
When  considering  the  equilibrium  geometry  of NMA, no differences in the  average  bond 
distances  are observed between  the  cis and  the  trans  conformer,  and  the  values that  we 
found by using the PM3 Hamiltonian  are similar to those found when using the Amber03 
force field, with  the  exception  of the  C-N  distance.    Results  are  collected  in Table 3.1. 
We recall that  the  PIF  parameters only modify the  intermolecular (solvent-solvent  and 
solvent-solute) interactions  and  therefore  do not  affect  the  intramolecular properties  of 
NMA in the gas phase.  A well-known issue with the PM3 method  is an artificial tendency 
toward  pyramidal  hybridization of the N atom.  A specific correction  term (PM3-MM)  has 
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Table  3.2:  Comparison  of NMA  dipole  moment  (in  Debye)  as obtained from different  methods 
in the  gas phase:  Car-Parrinello molecular  dynamics  (CP-MD), quantum chemistry  calculations 
at  the  B3LYP/6-31G* and  HF/6-31G(d) levels of theory,  our results  for quantum calculations  at 
the  PM3  level (in the  case of standard PM3  parameters as well as PM3  with  the  correction  for 
the peptide  bond (PM3-MM)), our results  from SEBOMD  at the PM3 level (average  value of the 
molecular  dipole - from the  dipole moment  operator- and  the  corresponding  values  from partial 
atomic  charges using different schemes), and our results  from simulations  with the Amber03 force 
field. 

 
 
 
 

Method cis NMA trans  NMA 
CP-MD  [Gaigeot 05] 4.38 3.99 
B3LYP/6-31G* [Garcia-Martinez 02] 4.00 3.81 
B3LYP/6-311++G* [Han 96] 4.31 3.97 
HF/6-31G(d) [Du 03] 4.37 4.22 
MP2/6-31G(d) [Jorgensen 88] 4.21 4.04 
PM3 3.39 3.10 
PM3-MM 3.68(TS)(a) 3.31 
PM3-SEBOMD 3.36 3.09 
PM3-SEBOMD  (Mulliken charges) 3.09 2.64 
PM3-SEBOMD  (CM1 charges) 3.24 3.79 
PM3-SEBOMD  (CM2 charges) 3.54 3.54 
Amber03 molecular mechanics MD 4.09 4.50 
Exp.  (in benzene) [Rodrigo 86] 3.85  
Exp.  (vapor)  [Meighan 64] 3.71-3.73  
(a) In this  case, geometry optimization of the  cis  conformer  led to a transition state (TS). 

 
 
 

thus  been introduced to keep peptide  bonds planar  through  a harmonic  constraint on the 
H-N-C-O dihedral.  In our calculations,  we used the Gaussian03 [Frisch 03] implementation 
of this potential. In order to test the effect of this correction on the vibrational frequencies 
of NMA, we performed  gas phase  calculations  on both  the  cis and  the  trans  conformers 
by carrying out geometry optimization and normal modes analysis in Gaussian  [Frisch 03]. 
We used both  the  standard PM3 parameters and  the  PM3-MM parameters.  Other  than 
the different values for the H-N-C-O dihedral and for the molecular dipole moment, no 
remarkable  difference was found in the  normal  modes frequencies of cis and  trans  NMA 
as well as in the interatomic distances. 

In Table 3.2 we report  the results obtained  for the molecular dipole moment of cis and 
trans  NMA, and a comparison  with other  results  obtained  with different levels of calcula- 
tions and from experiments  in the literature. Atomic charges parameters for the Amber03 
simulations  and  the  Mulliken,  CM1 and  CM2 charges  for the  quantum Hamiltonian  are 
provided in Table 3.3. 
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Table 3.3: Atomic charges (atomic  units)  for cis and trans  NMA as obtained in the gas phase from 
molecular  dynamics  with  the  Amber03  force field and  from SEBOMD  with  a PM3  Hamiltonian. 
The average standard deviation  on the quantum charges is 0.02 e. 

 
Amber03  SEBOMD-Mulliken 

Atom  cis trans 
CACE 

HACE 

-0.19 
0.08 

-0.13 
0.07 

-0.14 
0.06 

HACE 0.08 0.07 0.06 
HACE 0.08 0.07 0.06 
C 0.51 0.24 0.24 
O -0.55 -0.37 -0.36 
N -0.42 -0.06 -0.05 
H 0.29 0.08 0.07 
CNMet 

HNMet 

-0.05 
0.06 

-0.09 
0.04 

-0.08 
0.05 

HNMet 0.06 0.04 0.05 
HNMet 0.06 0.04 0.05 

SEBOMD-CM1 
Atom  cis trans 
CACE 

HACE 

 -0.14 
0.07 

-0.14 
0.07 

HACE  0.07 0.07 
HACE  0.07 0.07 
C  0.41 0.41 
O  -0.45 -0.44 
N  -0.51 -0.51 
H  0.35 0.33 
CNMet  0.00 0.01 
HNMet  0.05 0.05 
HNMet  0.05 0.05 
HNMet  0.05 0.05 

SEBOMD-CM2 
Atom  cis trans 
CACE 

HACE 

 -0.14 
0.07 

-0.14 
0.07 

HACE  0.07 0.07 
HACE  0.07 0.07 
C  0.49 0.49 
O  -0.47 -0.47 
N  -0.59 -0.59 
H  0.33 0.32 
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Table 3.3: (Continued) 
 

CNMet 0.03 0.04 
HNMet 0.05 0.05 
HNMet 0.05 0.05 
HNMet 0.05 0.05 

 
 
 
 

On average,  our PM3 results  are in reasonable  agreement with the data  in the litera- 
ture, in particular the result obtained  for trans NMA through  CM1 charges is in remarkable 
agreement  with  experiments  [Rodrigo  86, Meighan 64].  The  Mulliken charges  lead to an 
underestimation of the molecular dipole moment.  Higher levels of quantum chemistry  pre- 
dict a more polar cis conformer as well as the PM3 calculations  both  from the electronic 
structure calculations  on the  minimum  geometry  and  from the  average  value of the  SE- 
BOMD simulations.   This is in agreement with the trend  based on Mulliken charges from 
SEBOMD simulations.  On the other hand,  the MM force field Amber03 and CM1 charges 
at  a PM3 level predict  the trans  conformer to be more polar than  cis.  Finally,  no differ- 
ence in polarity  is observed when evaluating  the  molecular  dipole moment through  CM2 
charges. 

We now present our results  for the IR spectra  of cis and trans  NMA. In Figure 3.4 we 
show the computed  spectra  for cis and trans  NMA as obtained  from MM MD simulations 
by using the Amber03 force field [Duan 03]. 

The procedure based on the VDOS decomposition,  described in Section 2.4.1 allows us 
to deduce the following assignment.   The bands  between  3200 and 3400 cm−1   are due to 
N-H stretch, those  between  2800 and  3100 cm−1   to C-H stretch  (both  for the  ACE and 
the NMet residues).  The positions of such bands are quite similar for cis and trans  NMA, 
though the former is slightly red shifted in trans NMA compared to cis.  Based on low 
temperature nitrogen  matrices,  the infrared  spectra  of cis and trans  NMA were measured 
[Ataka 84].  According to this  study,  the  N-H stretch  absorption  due to the  cis form has 
a peak  at  3458 cm−1   and  the  one due  to  the  trans  form at  3498 cm−1.   Experiments 
in  CCl4   at  ambient  temperature found  a  peak  at  3476 cm−1 ,  whereas  symmetric  and 
anti-symmetric C-H stretches  fall between 2900 and 3000 cm−1   [Ataka 84, Kubelka  01]. 

The analysis of the VDOS decomposition shows that  in the simulated  spectrum  of trans 
NMA the H-N-C bending  vibration  (amide  II) occurs at  1780 cm−1   and the C-O stretch 
(amide  I) occurs at  1680 cm−1   , whereas in cis NMA these two bands  superimpose  in a 
broader  absorption  around  1800 cm−1 .  Experimental measurements of the  IR spectrum 
(see [Kubelka 01] and references therein for the trans conformer) assign absorption  between 
1714 and 1731 cm−1   to amide I and between 1497 and 1500 cm−1   to amide II. As for the 
experimental spectrum  of the  less stable  cis conformer [Ataka 84], the  amide I mode oc- 
curs in the  same frequency range as for the  trans  conformer,  while the  amide II mode is 
found at  lower frequencies (by about  40 cm−1 ) than  in trans.  In any case, the molecular 
mechanics force field employed does not give the correct trend  between amide I and amide 
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Figure 3.4: Isolated NMA. Calculated infrared spectrum from molecular dynamics simulations  with 
an MM force field. The infrared  intensity is arbitrary units. 

 
 

II absorption. It has been pointed  out that  pyramidalization at the peptide  group N atom 
needs to  be taken  into  account  along an MD simulation  [Mannfors  03, Mirkin  04], since 
the  CN torsion  and  the  N-H out-of-plane  bending  give an important contribution to the 
NMA IR spectrum.   Krimm  and  collaborators  have performed  extensive  studies  showing 
that  including geometry-dependent charges may be more important than  developing a po- 
larizable MM force field [Palmo 03, Palmo 07]. An alternative approach  has been proposed, 
generally improving the agreement with experiments  compared  to the classical MM-based 
evaluation  of the vibrational properties  of biological systems  [Lagant 04]. This method  is 
based on including additional terms in the potential energy function of the MM force field. 

Another  band in the IR spectrum  from MD simulations,  located around  1590 cm−1   in 
cis  NMA, was assigned  to HACE-CACE-C bend.   This  band  is red shifted  to about  1510 
cm−1   in trans  NMA. Between 1320 and 1510 cm−1 , in trans  NMA we find the amide III 
bend and H-C-C, H-C-N bending motions.  As for cis NMA, the same bands  fall between 
1380 and  1590 cm−1 .  The  amide  III band  position  varies between  1255 and  1259 cm−1 

in  experiments,   and  backbone  motions  absorb  at  lower frequencies,  where  the  pattern 
becomes more and more complicated  for both  conformers. 

In Figure  3.5 we show the  results  obtained  from SEBOMD  simulations  by using the 
PM3  Hamiltonian.   We  recall  that   we have  different  results  according  to  the  different 
scheme for partial  atomic charges. 
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Figure 3.5: Isolated  NMA. Calculated infrared  spectrum from SEBOMD  simulations  with a PM3 
Hamiltonian. The infrared  intensity is arbitrary units. 

 
 

Table 3.4:   Collection of results  for the infrared  frequencies which are characteristic of the peptide 
bond of NMA in the  gas phase  and  in water:  amide  I (AI),  amide  II (AII),  amide  III (AIII)  and 
N-H stretch (δNH ).  All data  in the  gas phase  (GP), in water  (Sol.),  and  the  average  shift  of the 
condensed phase results  with respect  to the gas phase (∆) are reported in cm−1 . 

 
 

Amber03    SEBOMD    Experimentd Mode  
GP  Sol.  ∆ GP   Sol.  ∆ GP   Sol.  ∆ 
AI  1680b ,1800c   1680b ,1800c   0 1920b,c   1800b,c  -120 1714-1731  1625-1646  -90 
AII  1780b ,1800c   1780b ,1800c   0 1420b ,1440cc   1485b ,1522c   75 1497,1500  1565-1585  80 
AIII  1250b ,1320c   1250b ,1330c   5 1290b ,1230c  1340b ,1370c   95 1255-1259  1314-1317  60 
δNH  3380b ,3370c   3380b ,3370c   0 3405b ,3410c  3370b ,3300c   -110c  3476a  3300 -130 
a In CCl4  solution. 
b  cis  NMA. 
c  trans  NMA. 
d [Ataka  84, Kubelka 01] 

 
 
 

The band  positions  and their  width  do not seem to depend  on the charge type, which 
however affects slightly the peak intensities.  Results  are collected in Table 3.4. 

The two regions in the high frequency portion of the spectrum  (between 3000 and 3200 
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cm−1   and  around  3420 cm−1 ) are very similar for cis  and  trans  NMA, the  latter  being 
blue shifted by 20 cm−1  compared to cis. This finding is in agreement with the experiment 
in Ref. [Ataka 84]. 

The  amide  I band  is located  for both  conformers  around  1920 cm−1 .  The  result  is 
overestimated compared  to the  average  experimental data.   The  amide  II and  amide  III 
bands  are spread  over the 1230-1480 cm−1   region for trans  NMA, and in a less extended 
region  (between  1290 and  1480 cm−1    region)  for cis  NMA.  The  amide  II  peak  in  cis 
NMA is red shifted by 20 cm−1   compared  to trans, again in agreement with the results in 
ref. [Ataka 84] (red shift of about  40 cm−1 ).  The positions  of the amide II and amide III 
bands  in the gas phase seems in quite good agreement with experiments.  MD simulations 
within the Car-Parrinello scheme [Gaigeot 05] have provided the following results:  the 
frequency  for amide  I is 1609 cm−1    in  trans  NMA  and  1606 cm−1    in  cis  NMA.  The 
frequency  calculated  for amide  II is 1458 cm−1   in trans  and  1369 cm−1   in cis  NMA. 
Finally,  The  frequency for amide III is 1189 cm−1   in trans  and 1259 cm−1   in cis NMA. 
Our  results  are in general agreement with  the  CPMD  results.   In particular, the  amide I 
frequency  is the  same in cis  and  trans  NMA, and  the  amide  II peak in cis  NMA is red 
shifted  compared  to  trans  NMA. However, it  seems that  the  latter  approach  leads to  a 
better  agreement  with  experiments  for the  amide  I band  and  to  a worse agreement  for 
amide II. In addition,  no bands in the N-H stretch  region are observed based on CPMD 
simulations. 

In summary,  though  the  amide I experimental band  position  is not  accurately  repro- 
duced by our SEBOMD,  we obtain  a general reasonable  agreement with experiments.  On 
the other  hand,  MD with the Amber03 force field does not reproduce  the correct ordering 
between amide I and II, predicting  a lower frequency amide I mode compared  to amide II. 

 
 

3.1.3     Spectrum  in water  solution 
 

First of all, we examine the solvent effects on the solute geometry.  Compared  to the results 
in the gas phase, little or no differences are observed when using the MM force field, whereas 
quite  a few interesting conclusions can be drawn  from an analysis of the results  obtained 
with a quantum electronic Hamiltonian. In the latter  case we used PM3 parameters with 
PIF  corrections.   Results  obtained  on the  intramolecular distances  are collected  in Table 
3.5. 

When going from the gas phase to a solution in water, the C-O bond is elongated.  The 
distance  between  the  C and  the  N atoms  is quite  shortened.   This  is in agreement  with 
the  results  observed in the  literature [Gaigeot  05].  To interpret this  result,  we recall the 
two possible resonance structure of NMA in Figure 3.6. In a polar solvent, the zwitterionic 
form is stabilized by electrostatic interactions between the solute and the solvent, and 
accordingly,  the  C-O distance  elongates  and  the  C-N bond  shortens.   This  effect cannot 
be reproduced  by MM force fields and,  not  surprisingly,  in this  case MD simulations  of 
NMA in water  do not  predict  significant  changes in NMA geometry  with  respect  to the 
gas phase. 



52 Chapter 3 Results and discussion  

3 

 
 

Table 3.5: Geometrical  parameters for cis and trans  NMA in water.  Average values from molecular 
mechanics MD and from SEBOMD with a PM3 Hamiltonian and PIF  corrections.(a) Distances  are 
in Å. In parenthesis, we report  the shifts with respect  to the gas phase. 

 

 
 

Atom Amber03 cis Amber03 trans PM3-PIF cis PM3-PIF trans 
CACE-HACE 1.09 (0.00) 1.09 (0.00) 1.11 (+0.01) 1.11 (+0.01) 
CNMet -HNMet 1.09 (0.00) 1.09 (0.00) 1.11 (+0.01) 1.11 (+0.01) 
C-O 1.23 (0.00) 1.23 (0.00) 1.25 (+0.03) 1.25 (+0.03) 
N-H 1.01 (0.00) 1.01 (0.00) 1.00 (0.00) 1.01 (-0.01) 
CACE-C 1.52 (0.00) 1.52 (0.00) 1.50 (-0.01) 1.51 (0.00) 
C-N 1.33 (0.00) 1.33 (-0.01) 1.39 (-0.04) 1.39 (-0.04) 
N-CNMet 1.46 (0.00) 1.46 (-0.01) 1.48 (+0.01) 1.47 (0.00) 
(a)  The standard deviation  on distances  is 0.03 Å with the exception 

of the CO and CN distances,  for which it is 0.02 Å. 
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Figure 3.6: Resonance  structures for NMA. 
 
 

As for the  out-of-plane  position  of the  N-H bond  in the  case of simulations  with  a 
quantum Hamiltonian, we find distributions corresponding  to  a pyramidal  N atom  (see 
Figure 3.7).  The  distribution is much broader  in solution  than  in the  gas phase,  and  the 
out-of-plane  angle is smaller  (±16◦  for cis  and  ±25◦  for trans  NMA).  This  is consistent 
with a larger contribution of the zwitterionic  resonance structure in a polar solvent. 

When analyzing CM1 and CM2 atomic charges (see Table 3.6), we observe a displace- 
ment  of electrons  from the  -NH group  toward  the  -CO group,  again  in agreement  with 
a larger contribution of the  zwitterionic  form.  Charges  on the  O atom  decrease whereas 
those  on the  N and  the  H atoms  increase  in going from the  gas phase  to solution.   The 
C atom  is less affected.  On average,  about  -0.1e is transferred from -NH to -CO. We can 
therefore  expect to observe a strong  increase of the molecular  dipole moment in solution. 
We collect our results for the molecular dipole moment together  with other values obtained 
at different levels of theory  in Table 3.7. 
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Figure 3.7:  Distribution of the  angle  formed  by  the  N-H  bond  with  the  plane  instantaneously 
identified  by N and the two C atoms  from molecular  dynamics  with the Amber  03 force field (left 
side) and  from SEBOMD  (right  side).   Top  panels:  cis  NMA (gas phase  and  solution).   Bottom 
panels:  trans  NMA (gas phase and solution). 

 
 

Table 3.6:  Atomic  charges  (atomic  units)  for cis  and  trans  NMA as obtained in water  from SE- 
BOMD  with  a PM3  Hamiltonian and  PIF  corrections.    The  average  standard deviation  on the 
quantum charges is 0.03 e. 

 
SEBOMD-Mulliken 

Atom cis trans 
CACE 

HACE 

-0.17 
0.09 

-0.17 
0.10 

HACE 0.09 0.10 
HACE 0.09 0.10 
C 0.24 0.23 
O -0.52 -0.52 
N 0.02 0.04 
H 0.10 0.12 
CNMet -0.12 -0.13 
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Table 3.6: (Continued) 
 

HNMet 0.08 0.07 
HNMet 0.08 0.06 
HNMet 0.09 0.06 

SEBOMD-CM1 
Atom cis trans 
CACE 

HACE 

-0.17 
0.09 

-0.17 
0.10 

HACE 0.09 0.10 
HACE 0.10 0.10 
C 0.42 0.41 
O -0.61 -0.60 
N -0.44 -0.42 
H 0.37 0.38 
CNMet 

HNMet 

-0.04 
0.09 

-0.04 
0.07 

HNMet 0.09 0.06 
HNMet 0.09 0.07 

SEBOMD-CM2 
Atom cis trans 
CACE 

HACE 

-0.17 
0.10 

-0.17 
0.10 

HACE 0.10 0.10 
HACE 0.10 0.10 
C 0.49 0.48 
O -0.60 -0.60 
N -0.52 -0.50 
H 0.35 0.37 
CNMet 0.00 0.00 
HNMet 0.09 0.07 
HNMet 0.09 0.06 
HNMet 0.09 0.07 

 

 
 
 

As in the gas phase, some methods  (Car-Parrinello MD, density functional theory with 
a B3LYP  functional  and  a 6-31G(d)  basis set coupled with  a continuum solvent,  or our 
PM3  calculation  with  Mulliken  and  CM2 charges)  predict  a more  polar  cis  conformer, 
while others (Hartree-Fock calculations  with a 6-31G(d) basis set coupled with a reference 
interaction site model (RISM)  to describe the solvent,  molecular  mechanics MD with the 
Amber03 force field or our PM3 calculation  with CM1 charges) predict the trans conformer 
to be the most polar in water. 
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Table 3.7: Comparison  of NMA dipole moment (in Debye)  as obtained from different methods  in 
aqueous  solution.   Car-Parrinello molecular  dynamics  (CP-MD), quantum chemistry  calculations 
(B3LYP/6-31G* in a continuum solvent and  HF/6-31G(d) coupled with RISM),  our results  from 
SEBOMD  at the PM3 and PIF  levels (average  molecular  dipole from partial atomic  charges using 
different schemes),  and  from simulations  with  the  Amber03  force field.  In parenthesis, we report 
the shifts with respect  to the gas phase. 

 

 
 

Method cis NMA trans  NMA 
CP-MD  [Gaigeot 05] 7.33(+2.95) 6.96(+2.97) 
B3LYP/6-31G*-SCRF [Garcia-Martinez 02] 4.95(+0.95) 4.86(+1.05) 
HF/6-31G(d)-RISM [Du 03] 5.79(+1.42) 5.93(+1.71) 
PM3,PIF(Mulliken) 5.94(+2.85) 5.41(+2.77) 
PM3,PIF(CM1) 6.26(+3.02) 6.63(+2.94) 
PM3,PIF(CM2) 6.26(+2.52) 6.22(+2.68) 
Amber03 MM MD 4.14(+0.05) 4.54(+0.04) 

 
 
 

Not surprisingly, very small induced dipole moments are calculated when running MD 
simulation  with an MM force field. On the contrary, a very large change in the dipole mo- 
ment of the order of 3 D is calculated  from CP-MD and in our simulations  when using CM1 
charges.  The effect is similar when using CM2 charges (about  2.7 D) and Mulliken charges 
(about  2.7-2.8 D), but  much  smaller with  HF/RISM (1.4-1.7 D) and  B3LYP/continuum 
(about  1 D). Since the  two  latter  methods  take  into  account  the  solvent  as a bulk,  spe- 
cific interactions between solute and solvent are not described explicitly,  in particular the 
formation  of hydrogen  bonds with water  molecules. 

The  final part  of this  subsection  will be devoted  to the  analysis  of the  IR spectra  in 
water,  and to a comparison  with the gas phase results. 

The results obtained  for the IR spectrum  of cis and trans NMA in water when running 
MD simulations  with  an MM force field (see Figure 3.8) show no remarkable  differences 
both  in band  positions  and shapes compared  to the gas phase (compare  with Figure 3.4 - 
peak positions  are collected in Table 3.4). 

The only perceivable difference in band position involves those modes which are located 
at lower frequencies (under  1000 cm−1 ), where one can observe some line broadening  both 
for trans  and cis NMA. 

In addition to the wrong frequency ordering of amide I and amide II bands, the Amber03 
force field is thus  not able to describe the differences in the IR spectrum  of peptides  going 
from the gas phase to aqueous solution. 

On the other hand, the results obtained  with the SEBOMD approach  display significant 
differences in the condensed phase compared to the gas phase.  This finding is in agreement 
with the CPMD  results  from Ref. [Gaigeot 05]. The effect of the dipole induced by water 
molecules on the solute has been shown to significantly affect the spectral  profile of amide 
I-III bands  [Yang 05]. In this work, the authors  have compared  the relative  intensity  and 
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Figure 3.8: NMA in water.  Calculated infrared  spectrum from MD simulations  with an MM force 
field.The infrared  intensity is arbitrary units. 

 
 

the band shape of amide I-III with experiments.  An agreement with experimental features 
of these bands  is achieved only if the  solute is treated at  a quantum level by means  of a 
semiempirical  electronic Hamiltonian. 

In Figure 3.9 we collect the  IR obtained  from the  three  different charge schemes used 
in this  work.   When  comparing  Figure 3.9 with  Figure 3.5, the  IR bands  in solution  are 
broadened  with  respect  to  gas phase  spectra.    In  addition,   differences between  spectra 
for the  cis and  trans  conformers are enhanced  in the  condensed  phase.  A more detailed 
analysis of solvent effects for each vibrational mode is presented  below and summarized  in 
Table 3.4. 

SEBOMD  simulations  predict  the  N-H stretch  to be red shifted  in both  conformers. 
The trans conformer of NMA (band around 3300 cm−1 ) undergoes a larger effect (red shift 
of about  110 cm−1 ) compared  to the cis one (band  around  3370 cm−1 , shift of about  35 
cm−1 ).  Experimentally, the  frequency  of N-H stretch  was measured  in CCl4  to be 3476 
cm−1  and 3300 cm−1  in water [Herrebout 01]. One should point out that  this band is very 
sensitive to temperature and concentration. A large red shift is observed in experiments, 
the magnitude  of which is compatible  with our calculated  result  based on the most stable 
conformer trans  NMA. 

The band  related  to C-H stretch  (between  2900 and 3200 cm−1 ) is similar for cis and 
trans  NMA. Compared  to the gas phase, this band is quite broadened  but  not shifted.  To 
our knowledge, no experimental data  are available for the frequencies of the C-H stretching 
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Figure 3.9: NMA in water.  Calculated infrared  spectrum from SEBOMD  simulations  with a PM3 
Hamiltonian with PIF  corrections.  The infrared  intensity is in arbitrary units. 

 
 

motions in aqueous solution. 
The amide I band is located around 1800 cm−1  and the cis and trans NMA conformers 

are predicted  to absorb  at  the  same frequency.  In this  case, solvent effects lead to a red 
shift of about  120 cm−1 .  Results  in the  literature for amide  I absorption  band  position 
vary  from 1625 to 1646 cm−1   in aqueous  solution  [Kubelka  01].  An average  red shift of 
about  90 cm−1   is thus  observed, in good agreement with our results. 

In  the  cis  NMA  spectra,   the  peak  centered  at  1485 cm−1    is assigned  to  amide  II 
mode.  A similar assignment is made in the case of trans  NMA for the peak at 1522 cm−1 . 
Compared  to gas phase data,  we predict  a blue shift of 80 cm−1   in cis NMA and 75 cm−1 

in trans  NMA. Experimental results  for this  band  in water  vary  between  1565 and  1585 
cm−1   [Kubelka  01].  The  average  blue shift  is thus  about  80 cm−1   again  in quite  good 
agreement with our calculated  shift. 

Bands  between  1260 and  1370 cm−1   are quite  broadened  in solution.   In this  region, 
we observe  the  amide  III  motion,  but  some other  modes  are  active  too,  and  it  is not 
easy to quantitatively extract  their  position.  The cis absorption  appears  at slightly lower 
frequencies  compared  to  the  trans  form.   On  average,  we can  estimate   a  solvent  blue 
shift  effect of about  95 cm−1 .   The  experimental results  for amide  III  absorption  vary 
between 1314 and 1317 cm−1 , with an average blue shift of 60 cm−1   compared  to the gas 
phase [Kubelka 01]. 
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The  results  obtained  with Car-Parrinello MD in Ref. [Gaigeot 05] predict  an average 
blue shift of 110 cm−1   for amide  I, an average  red shift 20 of cm−1   for amide  II and  of 
40 cm−1   for amide III. The solvent effect obtained  at this level of theory  is again in fairly 
good agreement with our description.   A comparison  with the AM1/MM  method  used by 
Cho and collaborators  [Yang 05] can only be carried  out on the absolute  values of the IR 
frequencies, since the corresponding  results in the gas phase are not available.  In addition, 
only the most stable (trans ) conformer was considered.  Amide I, II, III and the N-H stretch 
are reported  to occur at 1896, 1721, 1444 and 3332 cm−1 , respectively.  With the exception 
of the last band,  it seems as if the AM1/MM  combined strategy  tends to overestimate  the 
frequencies which are characteristic of the peptide  bond. 

The  IR spectrum  of trans  deuterated NMA in a 16 D2 O molecules cluster  has  been 
calculated  based  on a PM3/MM approach  [Jeon 10]. If we compare  the  results  obtained 
in this  work with  the  experimental measurements [Chen  95, Kubelka  01] on the  amide 
I’ band (the band corresponding  to amide I in the deuterated system),  one obtains  an 
underestimated blue shift (30 cm−1   in the  simulations  vs.  90 cm−1   in the  experiment). 
Although  not conclusive, this  comparison  suggests that  the solvent effect on the position 
of the solute IR bands  is better  described when the full system is treated at the quantum 
level, thus  including mutual  polarization and charge transfer. 

Finally,  broad  absorption   around  1000 cm−1   is related  to  backbone  motion,  but  it 
becomes more and  more complicated  to analyze  in depth  the  lower frequency  regions of 
the spectrum,  since many different modes are active there. 

Overall, solvent effects are well reproduced  by our SEBOMD simulations  although  the 
absolute  values of the frequencies are not predicted  with high accuracy.  Specifically, when 
considering the frequency of the amide I, II and III modes, the calculated  frequencies are 
overestimated,  the  error  being  relatively  large  for amide  I, but  smaller  and  similar  for 
amide II and III. As a consequence, the gap between the amide I and II frequencies is too 
high while the amide II-amide III gap is in reasonable  agreement with experiments,  both 
in the gas phase and in solution. 

In conclusion, we have discussed the importance  of explicitly including the effect of the 
mutual  solute-solvent polarization, as well as of charge transfer,  to reasonably  describe the 
effect of water on the infrared spectrum  of NMA. In the following, we focus more in depth 
on showing to what  extent each different term  of the solute-solvent interaction affects the 
solvent-induced shift of the amide I band. 

 
 
3.1.4     Solvent  induced  shift of the  amide  I band in water 

 
In this  section,  we use a simple model to  study  the  effect of a H-bond  on the  amide  I 
frequency of NMA. We develop a methodology  (see Section 2.4.2) allowing to extract  the 
relative effect of interactions of different nature  in the H-bond system:  electrostatics, polar- 
ization, charge transfer,  and the deformation  of the potential energy surface corresponding 
to the amide I oscillator and induced by the presence of an intermolecular hydrogen bond. 

We aim to provide a quantitative interpretation of the effect of a H-bond on the amide I 
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complex 1  complex 2  complex 3 
 

Figure 3.10:   Structure of the  three  NMA-water  complex  on which we performed  an  interaction 
energy decomposition. 

 
 
 

band.  The main property  that  we shall discuss is the frequency shift in complex formed by 
NMA and one water  molecule.  This analysis will be complemented  by a discussion of the 
geometrical  properties  and by a study  of the charge distribution in the complex compared 
to the gas phase distribution of the two molecules (NMA and water). 

The Divide and Conquer approach  implemented  in the Amber code, version 9 [Case 06] 
was used to find the minima for isolated trans - and cis -NMA (see Figure 3.1) and for NMA 
water  complex the  geometry  of which is shown in Figure 3.10.  Calculations  were run  at 
the PM3 [Stewart 89] level of quantum chemistry.  An analysis of partial  charges was also 
carried  out using Mulliken charges and the CM1 and CM2 models [Storer 95, Li 98], both 
for the gas phase and for the complex molecule. 

For the NMA water complex in the equilibrium geometry, an interaction energy de- 
composition  was performed  using the method  by Van der Vaart  and Merz [der Vaart  99]. 
Then,  to calculate  the second derivative  of the electrostatic, polarization, charge transfer 
and  deformation  terms,  we performed  more calculations  by moving the  atoms  along the 
normal  mode describing the amide I vibrational motion,  generating  enough points  on the 
potential energy surface (PES)  to evaluate  numerically  the second derivative. 

In Table 3.8 we introduce the geometrical parameters related to the distance between the 
atoms  in the peptide  bond unit  for the optimized  structure of the isolated NMA together 
with that  of the  NMA water  complex at  PM3 level.  When  the  water  molecule hydrogen 
bonded  to  the  carbonyl  group  (complexes  1 and  2),  the  C-O bond  is slightly  elongated 
whereas the C-N bond is slightly shortened.  However, no change has been observed in the 
N-H bond.  On the  other  hand,  in the  complex 3, where the  water  molecule is hydrogen 
bonded  to the  -NH group,  we find the  C-O and  C-N bonds  do not  change,  whereas the 
N-H bond is slightly elongated.  When analyzing the atomic charge on the relevant atoms 
(see Table 3.9), the first remark  that  we make is that  the charge transfer  between the two 
molecules changes its direction when the H2O molecule switches its behavior, from H-bond 
donor to acceptor.  In complexes 1 and 2 the water-H  atom  that  is closer to the carbonyl 
group of NMA (H1) becomes more positively charged compared  to the isolated  molecule, 
and the water-O  atom  becomes more negative.  In complex 3, the water-O  becomes more 
negative  (but  to  a lesser amount  compared  to  complex 1 and  2),  and  the  two  H atoms 
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Table 3.8:  Optimized  geometrical  parameters (in  Å) for the  isolated  NMA and  the  NMA water 
complexes. 

 
 trans -NMA cis -NMA complex 1 complex 2 complex 3 
r(C-O) 1.22 1.22 1.23 1.23 1.22 
r(C-N) 1.43 1.43 1.42 1.42 1.43 
r(N-H) 1.00 1.00 1.00 1.00 1.01 

 
 
 

Table 3.9:   The  partial atomic  charges  shift (in e) due to the  complex formation  with  respect  to 
the isolated  molecule. 

 
NMA  water 

O   C   N   H   O    H1  H2 
complex 1 Mulliken  −0.038  0.015 0.016 0.004 −0.065  0.040 −0.003 

CM1  −0.032  0.015 0.014 0.004 −0.053  0.034 −0.003 
CM2  −0.024  0.013 0.013 0.004 −0.046  0.022 −0.003 

complex 2 Mulliken  −0.031  0.015 0.011 0.015 −0.066  0.041 −0.001 
CM1  −0.034  0.016 0.009 0.013 −0.054  0.034 −0.002 
CM2  −0.012  0.014 0.010 0.013 −0.047  0.023 −0.001 

complex 3 Mulliken  −0.023  0.005 −0.037  0.045 −0.010  0.014 0.011 
CM1  −0.013  0.005 −0.028  0.040 −0.010  0.012 0.009 
CM2  −0.013  0.005 −0.021  0.028 −0.002  0.011 0.008 

 
 
 

become more positive.  As for the NMA molecule, it can be observed in all cases that  the 
charge transfer  is not localized to the atoms that  are closer to the water molecule.  Due to 
the resonance  between the neutral  and zwitterionic  forms of the peptide  bond, the atoms 
change their  charges in a way that  increases the value of the local dipoles in the -NH and 
-CO groups. 

 

Now, let us focus our attention on the  analysis  of the  amide  I vibrational frequency. 
According to the classical mechanical treatment, the potential energy V does not exceed the 
total energy E.  Accordingly, we find the classical allowed region for the harmonic oscillator 
of the  amide I normal  mode coordinate  Q should be in the  range −0.06 ≤ Q ≤ +0.06  Å 
g1/2   mol−1/2   with  energy  equal  to  KB T .   In  Figure 3.11 we show the  potential  surface 
of the  isolated  cis - and  trans -NMA when moving along the  amide I normal  mode in the 
gas phase  Qg .  Although  trans -NMA is known to be more stable  than  the  cis conformer, 
our analysis  using the  PM3 method  shows that  the  cis -NMA is 0.2 kcal/mol  lower than 
the  trans -NMA. The  PM3 method  seems to over stabilize  the  cis -NMA conformer.  This 
may be related  to a well-known artifact of the PM3 core repulsion function describing the 
core-core interaction between two H atoms [Csonka 93, Cramer  94, Csonka 97]. 
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Figure 3.11:   Potential energy  curve  for vibration of the  amide  I mode of the  isolated  trans  (a) 
and  cis  (b)  NMA (black  circles) and  the  corresponding  fit curves to Eq. (3.1) (blue  lines) and  to 
Eq. (3.2) (dashed  red line). 

 
 
 

The potential energy curve is well reproduced  by a Taylor  expansion of order three  as 
 
 

V (Q) = a + b Q + 1 
c Q2 + 

2! 
1 

d Q3  (3.1) 
3! 

 

being a the potential energy at equilibrium  geometry  (Q = 0), and b, c, d the first, second, 
and third derivative  of V (Q), respectively.  In Table 3.10 we present the results of the fit for 
the potential energy of the isolated  molecules.  The fitted  parameters are shown in Figure 
3.11.  The  potential energy surface of the  NMA water  complexes when moving along the 
amide I normal mode in the complex Qc  is shown in Figure 3.12. Interestingly, we find the 
potential energy surfaces for all complexes is well fitted as well to Eq. (3.1).  The results  of 
the fit are included in Table 3.10 and the data  are superimposed  in Figure 3.12. 

From Table 3.10 we see in all cases the first derivative  of the potential energy is practi- 
cally zero, since we move around  a minimum  position.  In Figures 3.11-3.12 we, also, show 
the fitted potential energy curve when considering the potential energy is purely harmonic 

 
 

V (Q) = a + 1 
c Q2  (3.2) 

2! 
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Figure 3.12:   Potential energy curve for vibration of the  amide  I mode of the  complex 1, 2 and  3 
(black  circles) and  the  corresponding  fit curves  to  Eq. (3.1)  (blue  lines) and  to  Eq. (3.2)  (dashed 
red lines). 

 
 
 

As seen the  fitted  curve  coincides  with  the  real  potential energy  curve  when  we move 
just  slightly  from the  equilibrium  position  (Q = 0).  However, we find a small deviation 

 
 

Table 3.10:   Fit  parameters for the potential energy surface for the vibration of the amide I mode 
for both  the isolated  NMA and NMA water  complexes. 

 
isolated NMA  NMA complexes 

trans  cis  complex 1 complex 2 complex 3 
aa  -21213.3 -21213.5 -28709.9 -28710.0 -28707.6 
bb 1.0×10−6  1.0×10−5  1.3×10−5  1.0×10−5  1.0×10−6 

cc 315.548 315.400 307.089 306.303 312.813 
dd  -599.695 414.754 585.613 575.415 -597.591 

 

a.- kcal/mol 
b.- kcal Å−1  g−1/2  mol−1/2 

c.- kcal Å−2  g−1 

d.- kcal mol1/2  Å−3  g−3/2 
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Table 3.11:   The  harmonic  force constant k (in kcal Å−2  g−1 ) obtained by computing  the  second 
derivative  numerically  from the  potential energy when moving along the  amide I normal  mode Q 
(in Å g1/2  mol−1/2 ) together  with the harmonic  frequency ν (in cm−1 ). 

 
Q   k   ν 

trans -NMA  ±0.005  314.981 1927.240 
cis -NMA  ±0.005  315.248 1928.666 
complex 1 ±0.005  306.947 1902.510 
complex 2 ±0.005  306.154 1900.051 
complex 3 ±0.005  312.694 1920.237 

 
 
 

from the real potential energy curve when we move a little  far away from the equilibrium 
position.  In Table 3.11 we introduce  the force constant k obtained  by evaluating  the second 
derivatives  numerically  from the potential energy considering Q = ±0.005 Å g1/2/mol1/2. 
The  thus  obtained  force constants are therefore  considered  to  be harmonic.   Comparing 
the results in Table 3.11 with those obtained  from the fit in Table 3.10, when the cubic 
anharmonic  term  was considered,  we note  that  the  force constants are very close, which 
points to a very small contribution of the cubic anharmonic  coefficients. 

In Table 3.12 we include the  frequencies of the  amide  I mode of the  complexes along 
with the corresponding  frequencies for NMA in the gas phase, as they were evaluated  from 
the fitted force constant in Table 3.10. When comparing these frequency values with those 
obtained  from the harmonic  force constants presented  in Table 3.11, we see that  they  are 
very close.  By analyzing  the frequency shift in the complexes we observe that, when the 
water  molecule is hydrogen  bonded to the carbonyl  group of trans -NMA, the frequency is 
red shifted by −26 cm−1. On the other hand, when the water molecule is hydrogen bonded 
to the -NH group, the frequency is only red shifted by −8 cm−1.  In addition,  we observe 
that  the frequency is red shifted by −28 cm−1  when the water  molecule hydrogen bonded 
to  the  carbonyl  group  of cis -NMA,  which  is slightly  higher  than  that   observed  in  the 
trans -NMA. It is worth  noting  that  in the  case of our previous  analysis  using SEBOMD 
simulations,   the  total  shift  of the  amide  I band  was estimated to  be  −120 cm−1.   To 
provide a deeper analysis of cooperative  effects, in the complexes shown in Figure 3.13 we 
qualitatively investigated the effect of a second (complex a) and of a third (complex b) water 
molecule interacting with the carbonyl group of NMA, and of two H-bond donating and one 
H-bond  accepting  water  molecules (complex  c).  The  structures that  we considered  were 
obtained  by geometry  optimization. We find the amide I frequency shift of the complexes 
a, b and c is −62.0, −67.1, and −57.1 respectively. 

 

On average, about  50% of the total  shift in the condensed phase is recovered by adding 
one additional water  molecule interacting with  the  carbonyl  group.   When  dealing  with 
three  water  molecules, one obtains  a larger absolute  shift by having the three  of them  on 
the carbonyl side compared to having two of them on the carbonyl side and another  one on 
the -NH side. However, the interaction energy decomposition  analysis for these complexes 
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a  b 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

c 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.13: trans -NMA complexed with two and three  H-bonded  water  molecules. 
 
 
 

Table 3.12:   Amide I frequency  (in cm−1 ) for the  NMA in the  gas phase  and  in the  complexes as 
they  were computed  from the force constant obtained from the fit in Table 3.10. 

 
 Frequency 

trans -NMA 1928.981 
cis -NMA 1928.529 
complex 1 1902.950 
complex 2 1900.514 
complex 3 1920.604 

 
 
 

was not  performed,  in order  to  avoid  the  contribution of water-water interactions.  The 
importance  of including the effect of water molecules in higher solvation shells of NMA to 
reproduce  the solvent effect on the amide I band has already been pointed  out in previous 
studies  [Bouř 03, Mennucci 05]. Cho et al [Ham 02] have analyzed  this  issue by studying 
cluster of NMA and D2O. They found a linear relationship  between the frequency shift of 
amide I and the hydration induced elongation  of the C-O bond, generated  by the electric 
field of the surrounding  water molecules. Torii [Torii 04] has investigated cooperative effects 
on the hydration induced shift, also finding a correlation  between the geometry  distortion 
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Figure 3.14:  Intermolecular potential energy curve for the amide I mode of complex 1 (a), complex 
2 (b) and complex 3 (c) when moving along the normal coordinate  in the complex Qc  and the 
corresponding  fit curves to Eq. (3.1) for the Eint  (exact)  (red lines) and Eint (approx) (dashed  blue 
lines). 

 
 
 

of NMA and electric field projected  along a specific direction,  related  to the -CO stretch 
motion. 

We turn  now to the analysis of the amide I mode based on the potential energy surface 
of the different complexes.  In Figure 3.14 we show the interaction energy (Eint(approx)) as 
computed  from the sum of the electrostatic, polarization, charge transfer  and deformation 
energies  (see  Eq. (2.115))  and  that   obtained   from  the  difference between  the  potential 
energy of the complex and the minima of the potential energies of the isolated NMA and 
water  molecules (Eint  (exact))  (see Eq. (2.113)),  when moving along the  normal  mode in 
the complex, Qc .  The  two surfaces are extremely  close to one another.   We find that  the 
intermolecular potential energy  surface  is well fitted  to  Eq. (3.1).   The  results  of the  fit 
are reported  in Table 3.13 and the  data  are superimposed  in Figure 3.14.  From  the  table 
we may  notice  that  the  fitted  parameter of both  Eint  (exact)  and  Eint (approx) are very 
similar.  Moreover, the fitted parameters corresponding  to the second derivatives  of the 
intermolecular potential energy are as same as those obtained  from the fitting of the total 
potential energy surface  (see Table 3.10), as expected.   To interpret this  point  we recall 
Eq. (2.113). 

We now discuss the different energetic  contributions of the water  induced  shift in the 
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Table  3.13:  Fit  parameters for the  electrostatic,  polarization, charge  transfer  and  deformation 
energy along with the total  interaction energy when moving along the amide I normal  coordinate 
in the complex Qc . 

 
Eele  Epol  ECT Edef  Eint(approx)   Eint(exact) 

complex 1   aa    7.48196 -0.31302 -11.5306 0.155265 -4.20634 -4.20601 
bb 0.6373 0.38168 3.8969 -4.91548 0.00041 1.3 × 10−5 

cc    2.45141   -0.260859 -0.9848 305.944 307.090 307.094 
dd   1.550 -0.178217  0.23216  583.941  585.471 585.403 

complex 2   aa  7.5139 -0.331495 -11.3667 0.062477 -4.12183  -4.121 
bb    0.47844  0.3909450 3.880310 -4.75061 -0.00092 -4.3× 10−5 

cc    2.74541   -0.220979 -1.34137 305.1370 306.320 306.303 
dd    1.19046   -0.189745 3.201920 574.3090  578.508  575.567 

complex 3   aa    8.20058   -0.215707  -10.0957 0.128033 -1.98284 -1.98271 
bb -1.0620 -0.04137 0.242119 0.861214 -6.8× 10−5  3.2× 10−5 

cc    0.33403   -0.030087 0.0149001 312.495 312.814 312.813 
dd  -0.4379   0.0338219  -0.00783019   -597.157 -597.571 -597.682 

a .- Kcal/mol 
b .- Kcal Å−1  g−1/2  mol−1/2 
c .- Kcal Å−2  g−1 
d .- Kcal mol1/2  Å−3  g−3/2 

 
 
 

NMA-water complexes.  In Figure 3.15 we show the energy curve for each term arising from 
the interaction energy decomposition  when moving along the normal  coordinate  Qc.  The 
electrostatic, polarization, charge transfer  and  deformation  terms  in complex 1 have the 
same behavior  as in complex 2.  On the other  hand,  for complex 3 we observe a different 
trend  in  the  charge  transfer  and  the  deformation  terms,  whereas  the  electrostatic and 
polarization terms have a similar behavior.  In addition,  the deformation  energy in complex 
3 seems to be closer to the pure harmonic behavior compared to the other complexes. 
Interestingly, we find that  also in this case the energy curve for each term can be well fitted 
to a Taylor  expansion  of order three  (see Eq. (3.1)).  The results  of the fit are reported  in 
Table 3.13 and the corresponding plots are shown in Figure 3.15. From the table we observe 
that  the sign of the fitted parameter c for the charge transfer  energy, corresponding to kCT , 
changes when going from the complexes where the water  molecule is on the carbonyl  side 
to the  complex where it  is on the  -NH side.  This  is most  likely related  to the  observed 
change in the charge flux from NMA to water. 

 
Finally, in Table 3.14 we present the results of the model that  we developed to obtain the 

decomposition  of the solvent-induced shift of amide I (see Eq. (2.117)).  When  comparing 
complex 1 and 2, we notice very small differences, whereas they are quite different compared 
to  complex  3.   In  all  cases,  the  largest  contribution to  the  total  shift  is given  by  the 
deformation  term,  whereas  polarization is one order  of magnitude  smaller  compared  to 
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Figure 3.15:   The electrostatic, polarization, charge transfer  and deformation  energies (blue lines) 
and the corresponding  fitting curves (dashed red lines) for complex 1 (left panel), complex 2 (middle 
panel)  and complex 3 (right panel).  Note the energy scale difference. 

 
 

Table 3.14:  Amide  I solvent  induced  shift:  relative  contribution for each term  in the  interaction 
energy decomposition. 

 
∆ν r ∆ν r ∆ν r ∆ν r ∆ν /νg

 
  ele  pol  CT  def   

complex 1 0.00777 −0.00083 −0.00312 −0.03043 −0.0133 
complex 2 0.00870 −0.00070 −0.00425 −0.03254 −0.0144 
complex 3 0.00106 −0.00009 0.00005 −0.00967 −0.0043 

 
 
 

electrostatics and charge transfer.  In these complexes, it would seem that  the amide I shift 
induced  by the  formation  of a H-bond is mainly  due to the  geometrical  distortion of the 
NMA molecule in the field generated  by the H2O molecule. 
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3.2  VIBRATIONAL RELAXATION OF  THE  AMIDE  I  MODE  OF  THE  NMAD 
 

MOLECULE IN D2 O(L) 
 

 
 
 
 
3.2.1     Computational details 

 
We describe here in detail the computational methods  that  have been adopted  to run MD 
simulations  in order  to  analyze  the  INMs  and  the  vibrational energy  relaxation  of the 
initially  excited amide I mode. 

Concerning the MD simulations  with MM potential we used the AMBER94 [Cornell 95] 
force field to model the solute NMAD and the flexible TIP3P water  model with doubled 
hydrogen  masses included in the CHARMM  force field [MacKerell 98] to model the D2O 
solvent (see Ref. [Soler 10]). The NMAD molecule was placed in a cubic box of 1.975 nm 
containing  251 D2 O molecules to reproduce  the experimental D2O density  [Nakamura 95] 
(ρ = 1.10436 g/cm3) with  periodic boundary  conditions.   The  simulation  was performed 
using the TINKER  modeling package version 5.0 [Ren 02, Ren 03]. A cutoff of 10 Å  was 
applied  for the  non-bonded  interaction calculation,  and the  particle-mesh  Ewald method 
has been used to treat  the long range electrostatic interaction. 

The  ENMs  were obtained  from  the  optimized  geometry  of the  isolated  trans -NMA 
conformer, providing normal mode frequencies which are in good agreement with previously 
reported  values [Rey-Lafon  73, Ataka  84, Gregurick  02, Soler 10].  The  initial  coordinates 
and momenta  for the vibrational relaxation  dynamics were taken from 32 previous MD 
simulations  of 1250 ps at  300 K, which were started using random  velocities.  An initial 
period of time of 750 ps was used to equilibrate the system, collecting data at 20 ps intervals 
in the last 500 ps. The time step ∆t was 0.5 fs. During the simulations the temperature was 
maintained at mean value 300 K by coupling to a thermal  bath  [Berendsen 84]. Thus,  800 
sets of initial position and momenta  were stored for subsequent nonequilibrium vibrational 
relaxation  simulations. 

At t = 0, an excess of energy of one vibrational quantum was instantaneously deposited 
in the NMAD molecule by displacing the amide I mode until its energy reached the proper 
value.  During the relaxation  dynamics, the values of the atomic positions, forces, momenta 
and Hessian matrix  of the solute were exported  every 50 fs . The Hessian matrix  has been 
computed  using the subroutine  hessian  of the TINKER  package,  taking  into account the 
interactions between the atoms of the solute and solvent. 

Regarding  the SEBOMD simulations  of the NMAD molecule in D2O solution we used 
the  Amber  code, version 9 [Case  06], and  the  semiempirical  quantum mechanical  (PM3) 
Hamiltonian  to describe the electronic wave function for the solute and the solvent, whereas 
the PIF  correction  for water-water and solute-water  intermolecular interactions has been 
employed. 

The simulations  were performed by placing a NMAD molecule in a cubic box of length 



Section 3.2 Vibrational relaxation of the amide I mode of the NMAD molecule in D2O(l) 69  
 
 

1.26885 nm contain  64 D2 O water  molecules.  To sample the initial  configurations  for the 
nonequilibrium simulations,  a 564 ps N V T  ensemble simulation  with ∆t = 1 fs was per- 
formed starting from a configuration  extracted from the MM force field MD simulations. 
An initial period of 204 ps was used for equilibrating the system during a series of consec- 
utive N V T simulations.  First,  we run a simulations  for 10 ps and velocity was scaled each 
500 fs by employing the Andersen  thermostat [Andersen 80]. Then,  it follows by a simu- 
lations  for 100 ps with velocity scaling every 1 ps using the Andersen  thermostat as well. 
Finally, we run a simulations  for 94 ps by employing Berendsen thermostat [Berendsen 84]. 
The last 360 ps under Berendsen control temperature were used to collect the equilibrated 
configurations  at 3 ps intervals.  Thus we have 120 trajectories for the subsequent nonequi- 
librium vibrational relaxation  simulations. 

 
At t = 0 an excess of energy of one vibrational quantum was instantaneously deposited 

in the NMAD molecule by displacing the amide I mode until its energy reached the proper 
value.  The  subsequent  nonequilibrium MD simulations  were performed  in the  N V E  en- 
semble for 40 ps with ∆t = 0.5 fs. During the relaxation  dynamics, the values of the atomic 
positions,  forces, momenta  and the Hessian matrix  of the solute (taking  into account the 
solute-solvent intermolecular interactions) were exported  every 25 fs. 

 
The simulations were performed with periodic boundary  conditions, and long range 

electrostatic interactions were taken  into  account  by using the  Ewald-method [Nam  05]. 
The cutoff used was 4.1 Å. The full Fock matrix  is built using the minimum image conven- 
tion for all direct interactions inside the periodic box (direct sum).  The Fock matrix  of the 
system was built at each time step and diagonalized through  standard techniques according 
to the  Self-Consistent Field (SCF)  scheme.  This  ensures that  the  electronic  density  con- 
verges at each step of the simulation,  and that  the dynamics follows the Born-Oppenheimer 
potential energy surface [Herbert 05, Niklasson 06]. 

 
Most quantum chemical calculations  using Molecular Orbital  (MO) methods  as in SE- 

BOMD  determine  the  orbitals  by  some iterative method.    When  iterations  of the  SCF 
process converge,  the  energy is stationary with  respect  to infinitesimal  variations  in the 
orbitals.  Whether  this stationary point is stable (local minima) or unstable  (maxima in one 
or more directions)  depends on the second derivatives  of the energy with respect to the or- 
bital variation  [Szabo 96, Cramer 04, Jensen 07]. Because of the iterative nature  of the SCF 
procedure,  convergence problems  are sometimes  encountered. Furthermore when conver- 
gence is achieved, there is often no guarantee  that  the solution to the SCF problem is stable 
with respect to all permitted changes in the wave function [Szabo 96,Cramer 04,Jensen 07]. 
At some point,  the  energy differences between  newly determine  orbitals  fall below some 
threshold  criterion,  and we refer to the final set of the wave function as the converged SCF 
orbitals.  In our case we employ 10−10  eV as the threshold  criterion  for the total  electronic 
energy and the energy eigenvalue for MO. Such criteria  is of course entirely  arbitrary and 
it is validated  by checking different properties  derived from the wave functions  in order to 
reach an optimum  balance between convergence and accuracy. 



70 Chapter 3 Results and discussion  
 
 

Table 3.15:  Mean kinetic  and  harmonic  potential energies (in cm−1 ) for the  ENMs and  INMs of 
the  NMAD molecule in D2 O solution  obtained using the  Min-Cost  algorithm in equilibrium  MD 
simulations. 

 
Mode  (T ENM ) (V ENM ) (T INM ) (V INM ) i i,har i i,har 

1  103.5  58.3  104.8  -14.0 
2  103.5  113.0  104.8  -93.1 
3  105.1  98.7  105.3  151.3 
4  104.0  101.5  104.3  98.3 
5  104.5  107.3  104.5  106.8 
6  103.4  104.1  103.5  110.3 
7  103.6  108.1  103.5  104.5 
8  103.6  97.6  103.8  94.2 
9  104.1  114.5  104.1  110.4 

10  103.3  164.1  103.6  110.8 
11  102.2  223.0  103.1  107.8 
12  103.7  302.5  104.7  109.2 
13  104.0  232.0  104.0  107.7 
14  103.0  171.2  103.2  109.3 
15  104.2  306.4  104.0  102.0 
16  102.5  9087.0  102.2  104.3 
17  104.0  256.6  103.0  92.8 
18  103.0  2723.7  102.8  98.0 
19  103.3  7066.8  102.7  103.5 
20  102.4  165.4  102.4  98.5 
21  103.4  10231.6  103.3  103.5 
22  103.4  21177.4  103.4  109.4 
23  102.8  675.6  102.8  104.7 
24  102.5  272.0  102.6  104.0 
25  103.3  421904.0  101.5  103.7 
26  103.2  544918.0  101.6  103.7 
27  104.0  709.1  103.8  105.0 
28  103.4  813.0  103.5  104.6 
29  102.6  594.6  102.3  104.7 
30  102.4  674.2  102.5  104.3 

 
 
 
3.2.2     INMs analysis 

 
 

We start  by analyzing  the  performance  of our method  to analyze  the  vibrational energy 
for each  normal  mode  during  the  MD simulations  as  obtained  by  employing  Eq. (2.44) 
and Eq. (2.60) when the Min-Cost  (MC) algorithm  is applied during the assignment of the 
INMs.  Accordingly, in Table 3.15 we include the averaged  kinetic and harmonic  potential 
energies for the ENMs and INMs calculated  from the equilibrium  MD simulations  for the 
NMAD molecule in D2O solution. 

We consider the vibrational energy of the solute molecule in terms of the normal mode 
individual  contributions as given from Eq. (2.44)  and  Eq. (2.60).   As observed  the  ENM 
kinetic energies reproduce  well the equilibrium  thermodynamic value at  300 K (kB T /2 = 
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i,f 

 
 

104.3 cm−1),  while the  averages  values of the  ENM harmonic  potential energies deviate 
from it.   This  behavior  is due  to  the  strong  anharmonicities and  couplings  that  emerge 
between the ENMs when the solute molecule explores regions of the phase space which are 
far away from the equilibrium  configuration,  which by way cause a limitation to interpret 
the  vibrational energy  content  of the  individual  ENMs  based  on their  averaged  kinetic 
energies as has  been  proposed  [Raff 88, Kabadi  04].  Consequently, it  is not  possible to 
express the  vibrational energy of the  solute molecule accurately, as the  sum of harmonic 
contributions of the  ENMs (see Eq. (2.44)).   Alternatively, this  can be achieved  by using 
the INMs through  Eq. (2.60), as will be demonstrated below. 

Let  us evaluate  the  use of the  INMs to  analyze  the  vibrational dynamics  of the  so- 
lute.   As has  been  demonstrated by  previous  work of our  research  group  [Bastida  10a, 
Bastida  10b, Kalstein  11] the  identification  of the  INMs using  just  the  frequency  order 
criterion  is meaningless,  due  to  the  facility  with  which  the  INMs  mix  and  cross.   The 
Min-Cost  algorithm  provides  the  best  global one-to-one  assignments  of the  INMs to the 
ENMs [Bastida  10a, Bastida  10b].  This  is clearly shown in Figure 3.16 where we depict 
the  averaged  |L|  matrix  elements  calculated  directly  using Eq. (2.48) (upper  panel)  and 
the transformed |L| matrix  obtained  after applying the Min-Cost  algorithm  (lower panel). 
The  sizes of the bubbles  in this  figure are proportional to the values of the averaged  |lij | 
matrix  elements.   As observed,  the  Min-Cost  |L|  matrix  is much  more diagonal,  which 
indicates  that  the corresponding  assignments  are better. 

As has been demonstrated [Bastida 10b, Kalstein  11], the Min-Cost  method  is however 
not free of unphysical assignments,  which occurs when two or more INMs turn  out to share 
appreciable  contributions from ENMs with quite different frequencies.  In the NMAD/D2O 
system, this is the case for the 1st, 2nd, 25th and 26th INMs, which share significant 
contributions of the 1st, 2nd, 25th and 26th ENMs as clearly shown in Figure 3.16. To see 
the effect of these erroneous assignments,  in Figure 3.17 we show the averaged values of the 
INM frequencies obtained  from the simulations  using both the frequency ordering criterion 
and  the  Min-Cost  algorithm.    As observed,  the  1st,  2nd,  25th,  and  26th  INM averaged 
frequencies  become nearly  degenerated  (≈ 1400 cm−1 ) when the  Min-Cost  algorithm  is 
applied  without  restrictions due  to  multiple  crossed  assignments.    A similar  problem  is 
detected  in the  15th-20th  and  27th-30th  INMs.  These  anomalies  all disappear  when we 
use the restricted  Min-Cost algorithm,  in which only assignments to normal modes with 
frequencies lying in the  window of width  ∆ω  are considered.   This  is also clearly seen in 
Figure 3.17, where we include as well the averaged values of the INM frequencies obtained 
from MD simulations  carried  out  using a window of width  ∆ω  =200,  400, 600, 800 and 
1000 cm−1,  noting  that  they  are  closer to  the  meaningful  values  provided  by  frequency 
ordering  criterion.   In Figure 3.17 we also show the  average  l2 

i 
elements  obtained  using 

different sizes of ∆ω.  As it was expected, the efficiency increase with the size of the window, 
being maximal at the unrestricted Min-Cost algorithm.  As seen only a small improvement 
in the efficiency of the method is achieved for windows bigger than  400 cm−1. Accordingly, 
for the NMAD/D2 O system when the AMBER94 force field is employed, a ∆ω = 400 cm−1 

frequency  window was found  to  be optimal  to  prevent  undesirable  assignments  without 
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Figure 3.16:  Representation of the  averaged  |L| matrix  connecting  the  INMs to the  ENMs of the 
NMAD molecule in D2 O solution  with  the  INMs assigned  (a)  by frequency  ordering,  and  (b)  by 
using the  Min-Cost  algorithm with  ∆ω=400  cm−1 .  The  sizes of the  bubbles  are proportional to 
the values of the averaged  |lij | elements. 

 
 
 

excessively sacrificing the efficiency of the Min-Cost  method  [Kalstein 11]. 
 

In Table  3.16 we give the  time  averaged  frequencies of the  INMs of NMAD assigned 
using the restricted  Min-Cost method,  along with the corresponding  time averaged highest 
(lINM   2 

ij  ) contributions of the  ENMs to the  INMs.  As may occur [Miller 80], for the  first 
three  INMs we found  trajectories with  negative  force constant  λi which give imaginary 
frequencies.   When averaged,  only the vibrational frequency of the first mode remains 
imaginary  and its value is taken  to be negative,  as is usually done [Buchner 92, Keyes 97, 
Stratt 01]. The mean value of the time averaged overlaps (lINM )2  included in Table 3.16 is 
0.469. 

 
Let  us consider  now the  usefulness  of the  properly  identified  INMs to  evaluate  and 

analyze the content of vibrational energy stored  in the solute molecule.  In Table 3.15, we 
have included  the  kinetic  (T INM ) and  harmonic  potential (V INM ) energies of the  NMAD 

i i,har 
INMs,  in solution,  calculated  using  Eq. (2.60).   As observed,  in this  case both  energies 
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Figure 3.17:  Average  values  of the  (a)  INM frequencies  and  (b)  the  l2 
 
elements  as defined  in 

Eq. (2.83)  obtained using  the  frequency  ordering  criteria  and  using  the  Min-Cost  algorithm  for 
different  values  of the  frequency  window.   ∆ω  = ∞ means  that the  Min-Cost  assignment  was 
applied  without frequency restrictions. 

 
 
 

for each INM agree well, in general, with the equilibrium  thermodynamic value kB T /2 = 
104.3 cm−1, in contrast to what  occurs with  the  ENMs.  The  INMs therefore  satisfy  the 
virial theorem.   The only exceptions here correspond to the first three INMs, for which 
trajectories with negative force constants λi  which therefore give imaginary  frequencies as 
discussed above, are found in the MD simulations. 

 
Comparing our results with those obtained  from our group previous study [Bastida 10b, 

Kalstein 11] we find that  they are in good agreement,  despite the different MD coordinates 
performed  during  the  simulations.   We recall here that  in our group  previous  study  the 
NMAD motions  were described using the set of coordinates  {RCM , q, Qe}  where, RCM is 
the center  of mass vector,  q = (q1 , q2, q3, q4) are the quaternions that  specify the rotation 
of the molecule, and Qe  = (Qe , . . . , Qe  ) are the equilibrium  normal  modes (ENMs)  that 1  N 
describe  the  vibrational motion  and  the  D2O  motions  were described  using  the  atomic 
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Table 3.16: Time averaged  vibrational frequencies (cm−1 ) of the  INMs of the  NMAD molecule in 
D2 O and  averaged  values  of the  highest  contributions of the  ENMs to the  INMs obtained using 
the MC assignment method  with a frequency window of width  ∆ω = 400cm−1 . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

group  a1   


 

   
 
  

group  a2   


 

   

INM  Frequencyc  Max.  overlapc Frequencyd  Max.  overlapd  labela 

1b  -93.11 ± 15.5  0.24  -94.4 ± 286.9  0.24  τ (CH3 ) 
2b  19.65 ± 16.0  0.26  19.7 ± 308.1  0.25  τ (CH3 ) 
3b  196.80 ± 6.7  0.52  196.2 ± 126.8  0.51  τ (CN) 
4  311.97 ± 1.5  0.76  311.9 ± 31.4  0.76  δ(CNC) 
5  453.81 ± 0.7  0.85  453.9 ± 14.7  0.85  δ(CCN) 
6  455.55 ± 9.7  0.66  457.4 ± 178.2  0.65  amida  V 
7  593.06 ± 0.5  0.84  592.6 ± 10.6  0.84  amida  IV 
8  647.34 ± 2.2  0.59  646.3 ± 42.3  0.57  amida  VI 
9  780.89 ± 1.2  0.75  778.6 ± 21.8  0.76  ν (CC) 

10  829.33 ± 1.8  0.66  831.2 ± 33.1  0.67  amida  III 
11  1038.52 ± 3.7  0.37  1040.2 ± 71.0  0.37  r  (CH3 )C 
12  1048.51 ± 4.0  0.27  1050.2 ± 78.3  0.27  r ⊥(CH3 )N 
13  1051.28 ± 3.3  0.31  1050.8 ± 66.3  0.30  r  (CH3 )N 
14  1035.10 ± 4.0  0.29  1033.4 ± 78.7  0.29  r ⊥(CH3 )C 
15  1095.06 ± 2.2  0.38  1093.2 ± 43.4  0.37  ν (CN) 
16  1401.17 ± 2.4  0.30  1401.9 ± 48.4  0.30  δs (CH3 )C 
17  1397.79 ± 2.3  0.27  1397.0 ± 47.3  0.26  δa (CH3 )N 
18  1401.41 ± 2.6  0.27  1401.1 ± 51.8  0.27  δs (CH3 )C 
19  1400.36 ± 2.4  0.25  1400.5 ± 49.4  0.25  δs (CH3 )N 
20  1404.81 ± 2.7  0.26  1404.9 ± 52.5  0.26  δa (CH3 )C 
21  1538.33 ± 2.4  0.51  1537.7 ± 44.4  0.51  δs (CH3 )N 
22  1615.63 ± 1.4  0.71  1614.9 ± 22.4  0.71  amida  II 
23  1691.91 ± 0.4  0.91  1691.8 ± 8.0  0.91  amida  I 
24  2433.12 ± 0.4  0.98  2432.5 ± 7.1  0.97  amida  A 

 
group  b1 

  
25  2845.97 ± 2.0  0.31  2845.2 ± 40.3  0.30  νs (CH3 )C 
26  2842.15 ± 2.0  0.30  2842.1 ± 42.9  0.30  νs (CH3 )N  

 

group  b2   


 

  

27  2982.37 ± 0.9  0.31  2982.2 ± 20.1  0.31  νa (CH3 )N 
28  2984.15 ± 0.8  0.31  2984.2 ± 15.8  0.31  νs (CH3 )N 
29  2986.06 ± 0.9  0.31  2985.7 ± 19.4  0.31  νa (CH3 )C 
30  2987.26 ± 1.0  0.32  2987.2 ± 18.5  0.31  νs (CH3 )C 

a.- Ref. [Rey-Lafon  73]. τ =torsion, δ=bending, ν =stretching, r=rocking 
a=asymmetric and  s=symmetric. 

b.- Imaginary frequencies  are given as negative frequencies 
c.- Present work 
d.- Ref. [Bastida 10b] 

 
 
 

cartesian  coordinates.  In the present study  the solute and the solvent motions during the 
simulations  were described using the atomic cartesian  coordinates. 

 
At the  end, we tested  as well the  ability  of the  Effective Atomic  Min-Cost  algorithm 

(EAMC)  to evaluate  the  vibrational energy of the  solute molecule in terms  of INMs and 
the average frequencies of the INMs.  In Table 3.17 and Table 3.18 we present the average 
energies and  INM frequencies  obtained  using the  EAMC  and  MC methods.   Comparing 
these results,  we find a good agreement between  both  INM assignment methods.   Conse- 
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Table 3.17:  Mean kinetic  and  harmonic  potential energies (in cm−1 ) for the  INMs of the  NMAD 
molecule in D2 O solution  as obtained applying  the EAMC and MC methods. 

 
MCa  MCb  EAMC 

Mode  (T INM ) (V INM ) (T INM ) (V INM ) (T INM ) (V INM ) i i,har i i,har i i,har 

1  104.8  -14.0  101.6  18.2  104.5  19.9 
2  104.8  -93.1  101.5  -16.3  104.7  4.6 
3  105.3  151.3  101.0  -23.2  104.8  82.4 
4  104.3  98.3  101.0  96.4  104.6  93.7 
5  104.5  106.8  103.3  105.8  104.6  99.3 
6  103.5  110.3  104.0  109.5  103.5  113.8 
7  103.5  104.5  104.2  105.1  103.5  105.3 
8  103.8  94.2  103.4  94.5  103.7  94.6 
9  104.1  110.4  101.3  108.0  104.1  108.5 

10  103.6  110.8  105.4  112.5  103.5  111.2 
11  103.1  107.8  104.6  109.5  103.1  107.3 
12  104.7  109.2  106.5  110.8  104.9  108.3 
13  104.0  107.7  107.2  111.3  104.4  109.6 
14  103.2  109.3  104.5  110.5  103.2  110.2 
15  104.0  102.0  107.2  105.1  103.5  100.3 
16  102.2  104.3  105.0  106.8  102.5  104.6 
17  103.0  92.8  104.6  94.2  102.9  87.6 
18  102.8  98.0  104.1  98.9  102.3  109.2 
19  102.7  103.5  104.1  104.8  102.7  110.6 
20  102.4  98.5  103.2  99.0  102.5  86.3 
21  103.3  103.5  103.8  104.0  103.2  99.5 
22  103.4  109.4  105.8  112.0  103.5  111.9 
23  102.8  104.7  109.0  110.7  102.8  104.8 
24  102.6  104.0  106.8  108.2  102.5  103.9 
25  101.5  103.7  102.8  104.9  101.6  103.7 
26  101.6  103.7  103.5  105.9  101.4  103.6 
27  103.8  105.0  102.3  104.5  104.0  104.6 
28  103.5  104.6  102.3  104.5  103.8  105.1 
29  102.3  104.7  102.7  104.7  101.7  104.5 
30  102.5  104.3  103.1  105.0  102.5  104.4 

a.- present study 
b.- Ref. [Kalstein  11] 

 
 
 

quently,  the EAMC method  generalizes the methodology  to identify  the INMs in flexible 
biological systems. 

 
We now present the results for the NMAD/D2O system when SEBOMD has been used 

for running the MD simulations.  In this part of our study we only use the EAMC algorithm 
in order to identify the INMs. We start  by analyzing how the size for the frequency window 
∆ω  influences on the  efficiency of the  EAMC method.   We have evaluated  the  maximum 
atomic overlaps between the ENMs and the INMs (see Eq. (2.84)) and the INMs frequencies 
Eq. (2.76) obtained  using different sizes of ∆ω (600, 800 and 1000 cm−1  ). In Table 3.19 we 
present the time averaged overlaps between ENMs and INMs. As seen the averaged overlaps 
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Table 3.18: Time averaged  vibrational frequencies (cm−1 ) of the INMs of the NMAD molecule in 
D2 O obtained using the EAMC (∆ω = 400cm−1 ) and the MC methods 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

group  a1   


 

   
 
  

group  a2   


 

   
 
 
 
 
 
 

group  b1 
 
 

group  b2   


 

  

INM  MCc  MCd  EAMC  labela 

1b  -93.11 ± 15.5  -94.4 ± 286.9  -20.99 ± 13.3  τ (CH3 ) 
2b  19.65 ± 16.0  19.7 ± 308.1  -68.54 ± 15.4  τ (CH3 ) 
3b  196.80 ± 6.7  196.2 ± 126.8  240.86 ± 5.2  τ (CN) 
4  311.97 ± 1.5  311.9 ± 31.4  338.69 ± 3.4  δ(CNC) 
5  453.81 ± 0.7  453.9 ± 14.7  453.96 ± 1.5  δ(CCN) 
6  455.55 ± 9.7  457.4 ± 178.2  468.03 ± 8.7  amida  V 
7  593.06 ± 0.5  592.6 ± 10.6  596.81 ± 1.3  amida  IV 
8  647.34 ± 2.2  646.3 ± 42.3  646.25 ± 2.3  amida  VI 
9  780.89 ± 1.2  778.6 ± 21.8  785.01 ± 1.4  ν (CC) 

10  829.33 ± 1.8  831.2 ± 33.1  825.19 ± 2.4  amida  III 
11  1038.52 ± 3.7  1040.2 ± 71.0  1048.05 ± 3.7  r   (CH3 )C 
12  1048.51 ± 4.0  1050.2 ± 78.3  1051.80 ± 4.3  r ⊥(CH3 )N 
13  1051.28 ± 3.3  1050.8 ± 66.3  1067.00 ± 3.1  r   (CH3 )N 
14  1035.10 ± 4.0  1033.4 ± 78.7  1048.20 ± 4.0  r ⊥(CH3 )C 
15  1095.06 ± 2.2  1093.2 ± 43.4  1085.41 ± 1.6  ν (CN) 
16  1401.17 ± 2.4  1401.9 ± 48.4  1401.51 ± 2.5  δs (CH3 )C 
17  1397.79 ± 2.3  1397.0 ± 47.3  1401.00 ± 2.2  δa (CH3 )N 
18  1401.41 ± 2.6  1401.1 ± 51.8  1400.96 ± 2.4  δs (CH3 )C 
19  1400.36 ± 2.4  1400.5 ± 49.4  1423.91 ± 2.5  δs (CH3 )N 
20  1404.81 ± 2.7  1404.9 ± 52.5  1405.84 ± 2.4  δa (CH3 )C 
21  1538.33 ± 2.4  1537.7 ± 44.4  1541.06 ± 3.1  δs (CH3 )N 
22  1615.63 ± 1.4  1614.9 ± 22.4  1607.88 ± 1.6  amida  II 
23  1691.91 ± 0.4  1691.8 ± 8.0  1692.71 ± 0.3  amida  I 
24  2433.12 ± 0.4  2432.5 ± 7.1  2433.84 ± 0.3  amida  A 
25  2845.97 ± 2.0  2845.2 ± 40.3  2875.88 ± 0.6  νs (CH3 )C 
26  2842.15 ± 2.0  2842.1 ± 42.9  2876.04 ± 0.6  νs (CH3 )N 
27  2982.37 ± 0.9  2982.2 ± 20.1  2985.61 ± 0.9  νa (CH3 )N 
28  2984.15 ± 0.8  2984.2 ± 15.8  2988.63 ± 0.9  νs (CH3 )N 
29  2986.06 ± 0.9  2985.7 ± 19.4  2987.10 ± 0.9  νa (CH3 )C 
30  2987.26 ± 1.0  2987.2 ± 18.5  2993.35 ± 0.9  νs (CH3 )C 

a τ =torsion, δ=bending, ν =stretching, r=rocking, a=asymmetric and  s=symmetric. 
b  Imaginary frequencies  are given as negative frequencies 
c  Recent study 
d Ref. [Bastida 10b] 

 
 
 

increase with the frequency window width for most of the INMs. We find that  some INMs 
such as 2nd and  30th  INM increase substantially.  However, others  as the  13rd and  18th 
INMs are not affected.  In Figure 3.18 we show the time average frequencies of the NMAD 
assigned using the EAMC method  for different values of ∆ω.  We note the appearance  of 
some unphysical assignment for frequency windows of 600 and 800 cm−1  between the lower 
frequency  normal  modes (1st-5th  INMs) and  the  higher  frequency  normal  modes (25th- 
30th  INMs).   We have  found that  the  higher  INM frequencies oscillate  in a much  larger 
scale compared  to the  gas phase  conditions  due to the  solute-solvent interactions.  These 
frequencies fall often out of the frequency window leading to wrong assignments  between 
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Table 3.19:  Overlaps  between  ENMs  and  INMs obtained using  the  EAMC  method  for different 

 

frequency windows. 
 

INM ∆ω = 1000 cm−1 ∆ω = 800 cm−1 ∆ω = 600 cm−1 
1 0.878 0.887 0.903 
2 0.868 0.811 0.715 
3 0.924 0.894 0.837 
4 0.959 0.953 0.923 
5 0.960 0.959 0.908 
6 0.920 0.912 0.901 
7 0.972 0.971 0.959 
8 0.940 0.940 0.938 
9 0.951 0.946 0.943 

10 0.937 0.936 0.936 
11 0.922 0.914 0.906 
12 0.928 0.926 0.929 
13 0.968 0.967 0.968 
14 0.957 0.956 0.957 
15 0.956 0.956 0.963 
16 0.904 0.902 0.885 
17 0.988 0.988 0.988 
18 0.937 0.938 0.940 
19 0.971 0.971 0.968 
20 0.932 0.931 0.930 
21 0.989 0.989 0.989 
22 0.904 0.901 0.890 
23 0.985 0.981 0.958 
24 0.956 0.940 0.873 
25 0.981 0.964 0.940 
26 0.968 0.945 0.880 
27 0.997 0.993 0.980 
28 0.974 0.959 0.914 
29 0.978 0.941 0.856 
30 0.956 0.898 0.777 

 

Mean 
 

0.949 
 

0.939 
 

0.915 
 
 
 

some lower and higher frequency INMs.  However, these deviations  disappear  by applying 
a larger frequency window ∆ω = 1000 cm−1  . 

 
In Table 3.20 we present the ENM vibrational frequencies as obtained  from diagonal- 

ization  of the  mass  weighted  Hessian  matrix  at  the  optimized  geometry  of the  NMAD 
molecule and  the  time  averaged  frequencies of the  INMs of the  NMAD/D2O system  as- 
signed using ∆ω = 1000 cm−1 along with the experimental values.  As seen the frequency of 
the amide I mode is overestimated compared to the experiments  [Ingrosso 11]. However, in 
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Figure 3.18: Average values of the INM frequencies of the NMAD molecule in D2 O solution obtained 
from the SEBOMD simulations  using the frequency ordering criterion,  and the EAMC method with 
∆ω = 400, 600 and 1000 cm−1  frequency windows. 

 
 
 

general we find a good agreement between our model and the experimental measurements 
for the solvent shift.  Based on our analysis, we observe that  there are some normal modes 
which are nearly degenerated. This is due to the recurrent crossed assignment during the 
simulations.   We have  found  the  group  L  of modes composed of the  1st-4th  INMs with 
the  lower frequencies, the  group a1  of modes composed of the  11st-14th  INMs which are 
formed mainly by combinations  of the rocking methyl ENMs, the group a2 composed of the 
16th-20th  INMs which are basically combinations  of the bending methyl ENMs, the group 
b1  containing  the  25th-28th  INMs which are  composed  essentially  of the  C-H stretches, 
and finally the group b2 formed by the 29th-30th  INMs, which are made up basically of the 
more energetic  stretching methyl  ENMs.  As seen these groups are slightly different from 
those obtained  employing MM force fields (see Table 3.18). 

 
 

Another  issue that  we have analyzed  is the correlation  coefficient between the amide I 
and amide II INMs frequencies for the NMAD/D2O system.  The correlation  coefficient is 
defined as 

 
 
 
 
 
 

X Y − X Y 
fxy  =   (       

X 2 − X 
(    

2 
Y   − Y 
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3 187.8 207.8 ± 267 189     τ (CN) 
4 278.7 252.3 ± 101 292 284    δ(CNC) 
5 423.1 340.1 ± 159 439 437  448  δ(CCN) 
6 451.8 496.2 ± 217 510     amide  V 
7 567.8 557.5 ± 112 628 627 627 632 617 amide  IV 
8 612.6 605.6 ± 56 (653)     amide  VI 
9 863.9 867.6 ± 127 872 872 868 873 850 ν (CC) 

10 892.2 878.3 ± 114 965 965 975 967 921 amide  III 
11 995.2 1115.9 ± 183 1000 999    r   (CH3 )C 
12 1008.4 1077.3 ± 171 1098     r ⊥(CH3 )N 
13 1016.3 1041.5 ± 122 1185 1180 1192 1185  r   (CH3 )N 
14 1060.0 1093.0 ± 143 1045     r ⊥(CH3 )C 
15 1148.7 1209.5 ± 144 1123 1123 1117 1125  ν (CN) 
16 1332.4 1270.7 ± 152 1372 1370  1371  δs (CH3 )C 
17 1369.8 1360.1 ± 102 (1449) 1442  1451  δa (CH3 )N 
18 1376.3 1292.8 ± 150 1446     δs (CH3 )C 
19 1385.8 1329.0 ± 117 1406 1406  1412  δs (CH3 )N 
20 1394.7 1363.4 ± 84 1440 1442 1435 1436  δa (CH3 )C 
21 1401.7 1372.6 ± 75 1471 1479 1476   δs (CH3 )N 
22 1422.5 1428.2 ± 187 1485  1490 1493 1399,1440 amide  II 
23 1927.2 1804.5 ± 104 1647 1635 1620 1626 1717 amide  I 
24 2472.3 2360.0 ± 193 (2439)    2605 amide  A 
25 3043.4 2952.0 ± 225 2938  2945   νs (CH3 )C 
26 3062.6 2957.7 ± 200 2938  2945   νs (CH3 )N 
27 3082.1 2991.8 ± 226 2984     νa (CH3 )N 
28 3085.1 2961.9 ± 194 2994     νs (CH3 )N 
29 
30 

3134.7 
3178.7 

3112.0 ± 310 
3114.3 ± 303 

2984 
2994 

    νa (CH3 )C 
νs (CH3 )C 

 

 

 

 

 

 

 

 

 

  1 

 
 

Table 3.20:  Normal mode vibrational frequencies (in cm−1 ) of the NMAD molecule obtained using 
SEBOMD  and those measured  under  different experimental conditions. 

 
i  ENMs  INMs  Exp.a,d   Expt.a,e   Expt.b,f    Expt.b,g   Expt.c,i  labelh      

 

group  L  


 
  

1  120.4  11.5 ± 178  (134)  τ (CH3 ) 
2  158.3  208.8 ± 280  (143)  τ (CH3 ) 

 
 
 
 
 
 
 

 
 

group  a1   


 

  
 

 
  

group  a2   


 

   
 
 
 
 
 

 
 

group  b1   


 

  
 

group  b2 
 

a.- Liquid  NMAD. 
b.- NMAD  in liquid  D2 O. 
c.- NMAD  in gas phase. 
d.- [Schneider  65, Pivcova  65] Values  in brackets are calculated from a fitted  potential. 
e.- [Sugawara  84] 
f .- [Fang  09] 
g.- [Chen  95] 
h.- [Rey-Lafon  73] 
i.- [Mayne  91] 
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Figure 3.19:   Resonance  structures of NMAD: neutral (left)  and zwitterionic  (right). 

 
 
 

where  n  labels  the  values  of the  variables  at  the  same  time.    In  our  case  Xn  and  Yn 

correspond  to  the  frequencies  of the  amide  I and  amide  II INMs respectively.   Possible 
values of fxy  are 1 (full correlation),  0 (no correlation),  or −1 (full anticorrelation). 

The amide I/amide II INM frequency correlation  coefficient is estimated to be −0.01, 
that  is, both  frequencies are no correlated.  Experimentally the correlation  coefficient was 
measured  by femtoscale two color IR spectroscopy  for NMA in dimethyl  sulfoxide DMSO 
to be −0.28 [Rubtsov 03a]. The small negative correlation  between the amide I and amide 
II frequencies is due to the  contribution of the  zwitterionic  resonance  form induced  by a 
polar  solvent  on the  NMA (see Figure 3.19).   As a consequence,  the  lengthening  of the 
carbonyl  bond  reduces  the  vibrational frequency  of the  amide  I mode while shortening 
the  CN bond  and  inducing  a blue shift of the  amide  II mode [Hayashi  05].  The  relative 
contribution of the  zwitterionic  structure depends  on the  stabilization provided  by  the 
solute-solvent interactions what  could explain the difference between our results  obtained 
in D2O solution and those measured in DMSO. The amide I/amide II correlation  coefficient 
was  also  calculated  [Bloem  08]  to  be  −0.54 for NMA  in  gas  phase  using  a  simplified 
model where only the amide I and amide II modes were considered explicity.  This high 
coefficient is some how surprising  since the absent of any solvent should favor the neutral 
resonance structure decreasing the correlation  between both modes. Interestingly Mukamel 
et al [Hayashi 05] obtained  a small correlation  coefficient −0.16 for the NMA molecule in 
water  using a electrostatic DFT  map to account for the solvent-solute  interactions. 

 
 
3.2.3     AMBER force field results 

 
In this Section we describe the analysis of the intra-  and intermolecular vibrational energy 
flows occurring  in the  NMAD/D2O system  during  the  relaxation  processes based  on the 
Statistical Minimum  Flow (SMF)  method.    We recall  here  that  the  MC algorithm  (see 
Section 2.3 for details)  has been employed through  this  analysis to compute  and identify 
the INMs. 
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3.2.3.1    Amide I relaxation lifetime 
 
 

Before going into the calculation  of the amounts  and rates  at which energy flows between 
the INMs of the molecule, we have to ensure that  the results obtained  really correspond to 
net changes in the energies of the INMs modes, and not to statistical fluctuations.  To assess 
this  point,  in Figure 3.20 we show, for example,  the  evolution  of the  average  vibrational 
energy of the 23rd (amide I) and the 1st (τ (CH3))  INMs of the NMAD molecule, and the 
accumulated energy that  flows between these modes during the first 0.5 ps after the initial 
excitation  of the  amide  I mode.   As observed,  the  energy  of the  amide  I mode  (Figure 
3.20 (a))  decreases  monotonously  with  no oscillations,  meaning  that  this  mode transfers 
its excess energy to other  degrees of freedom of the system  gradually.   During  this  0.5 ps 
time interval,  the amide I mode behaves,  therefore,  as a donor.  In contrast, the 1st INM 
shows large oscillations in the vibrational energy with time ( Figure 3.20(b)).  The 1st INM 
is a low- frequency mode and,  as reported  in reference [Kalstein 11], the potential energy 
for these  INM  modes  may  diverge  if their  frequencies  approach  zero.   For  this  reason, 
their vibrational energies are calculated  as twice the kinetic energy (see refs. [Bastida 10a] 
and  [Kalstein  11] for details),  and  present  fluctuations  that  are significantly  higher than 
those of other modes, whose vibrational energies are obtained  as the sum of the kinetic and 
potential energies.  This  behavior  is also observed in the  2nd, 3rd and  6th  low-frequency 
INMs.   Although  these  modes  barely  accumulate  energy  during  the  relaxation  process, 
their  oscillations  makes  them  behave  as donors  and  acceptors  alternately.  As a result, 
the  flow of energy accumulated from the  amide I mode to the  1st INM increases rapidly 
in the  stages  in which  the  1st  INM acts  as an  acceptor,  as observed  in Figure 3.20(c). 
Since the energy flows only from the donor to the acceptor  modes, the transfer  of energy 
when both  the  amide  I and  the  1st  INMs behave  as donors  is nor permitted and  there 
is no possibility  for a negative  flow of energy to  occur to  compensate  the  positive  flow. 
It becomes quite  clear, then,  that  it is necessary to remove these  spurious  oscillations  of 
energy because of the undesirable  noise that  they introduce  in the calculation  of net flow of 
energy between the INM modes.  Raising the number of trajectories in the simulations  does 
indeed promote  statistical convergence and,  therefore,  the  smoothing  of the  fluctuations. 
However, the higher computational cost demanded  in this case by the simulations  makes it 
more advisable  to tackle this problem by performing a linear convolution  of time evolving 
energies. 

We have tested  different time intervals  to carry out the linear convolutions,  and opted 
for a 400 fs interval  after verifying that  oscillations of the vibrational energy are smoothed 
enough  so as to  not  alter  the  results  significantly.   The  convoluted  vibrational  energies 
obtained  for the  amide  I and  the  1st  INMs are plotted  in Figure 3.20 and,  as observed, 
the  convoluted  energies of the  amide  I mode are very similar  to the  unconvoluted  ones, 
as expected.   In  marked  contrast however,  the  convolution  of the  vibrational energy  of 
the  1st INM removes practically  all the  statistical fluctuations,  leaving only, as shown in 
Figure 3.20(b),  a small net  accumulation of energy during  the  0.5 ps time  interval.   As a 
consequence, the  accumulated energy that  flows from the  amide I mode to the  1st INM, 
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Figure 3.20: Average values of the vibrational energy (a) of the amide I mode (23rd INM), (b) the 
1st INM of the NMAD molecule, and (c) accumulated energy flowing from the amide I mode to the 
1st INM, during  the  first 0.5 ps of the  relaxation process.  Values are shown with  no convolution 
(black)  and with a 400 fs linear convolution  (red). 

 
 
 

calculated using the smoothed vibrational energies, shows only a slight increase, as observed 
in Figure 3.20(c), compatible  with the energy accumulated in the 1st INM. 

We therefore  present  and  discuss the  results  drawn  from the  convoluted  vibrational 
energy curves as follow. First  in Section 3.2.3.2 we analyze the  intra-  and intermolecular 
energies released by the amide I mode in order to find out how much of this energy remains 
in the molecule through  intramolecular vibrational energy redistribution (IVR)  and what 
proportion  is transferred directly  from this  mode to the bath.   Next in Section 3.2.3.3 we 
study  the IVR channels responsible for the vibrational relaxation  of the amide I mode in 
the individual  INMs of the solute molecule.  We continue  in Section 3.2.3.4 by considering 
the  transfer  of energy  from  the  molecule  to  the  bath  in  order  to  identify  the  specific 
modes which are responsible for the cooling of the molecule.  Finally  in Section 3.2.3.5 we 
summarize  the  global vibrational relaxation  process using a flow chart  that  allows us to 
clearly visualize the most important channels. 
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Figure 3.21: Time evolution  of the accumulated energy that flows (dots)  from the amide I mode to 
the  bath  (red)  and  to the  remaining  INMs of the  NMAD molecule (black),  and  their  fits to first 
order exponential functions  (lines). 

 
 
 

3.2.3.2    Intra- and intermolecular pathways 
 

Let us consider, then,  the evolution  of the accumulated energy that  flows from the amide 
I  mode  to  the  rest  of the  molecule  and  to  the  bath.    The  total  intramolecular  energy 
channeled  to the molecule through  IVR is given by 

 
 

IVR (tn ) = 

 
30 

 
 
j=1 

 

 
f ac   (tn)  (3.4) 

 

and  plotted  versus  time  in Figure 3.21, along with  the  total  energy  that  flows from the 
amide I mode to the  bath.   As observed in this  figure, in the  asymptotic time  limit  only 
20% of the  energy  released  by  the  amide  I mode  goes directly  to  the  solvent,  and  the 
remaining  80% of this energy is dissipated  by IVR. Moreover, the IVR rate  is higher than 
the  bath  rate.   Interestingly, the  accumulated energy flow curves  can be nicely fitted  to 
first order exponential  functions  (see Eq. (2.100)).  The  IVR and  bath  lifetimes extracted 
from these fits are 1.40 ps and 2.48, respectively,  so the intramolecular dissipation  of the 
energy is nearly  twice as fast as the dissipation  to the bath.   We note also that  both,  the 
relative  contributions of the  IVR and  bath  channels  and  their  respective  lifetimes are in 
good agreement with the results obtained  in our earlier work from the biexponential decay 
of the amide I mode [Bastida 10a]. 

 
3.2.3.3    IVR pathways 

 
Consider  now the  application of the  SMF method  to study  the  individual  IVR pathways 
through  which the energy flows from the amide I mode to the other INMs of the molecule. 
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Figure 3.22:  Time  evolution  of the  accumulated energy that flows from the  amide  I mode of the 
NMAD  molecule  to  (a)  groups  a1   (11th-15th INMs,  black)  and  a2   (16th-20th INMs,  red),  (b) 
group b2 (27th-30th INMs), (c) group b1 (25th-26th INMs), and (d) 3rd (maroon), 6th (cyan),  7th 
(yellow), 10th (black),  21st (orange),  22nd (blue)  and 24th (red)  INMs.  Dashed  lines indicate  the 
values of the accumulated energy distributed equally among all the INMs. 

 
 
 

In  Figure 3.22 we show the  time  evolution  of the  accumulated energy  that   flows from 
the  amide  I mode to  several  representative INMs.   As noted,  we consider  here  in some 
cases the  flow of energy to well-defined groups of INMs composed by modes that  are so 
strongly  coupled they  have to be considered collectively (see references [Bastida 10b] and 
[Kalstein 11] for details).   We also depict  in Figure 3.22 the accumulated energy obtained 
when all modes receive the  same amount  of energy via IVR from the  amide  I mode (46 
cm−1  for each INM). 

 

As observed in Figure 3.22, the relaxation  channels in which the amide III (10th INM), 
amide II (22nd INM) and amide A (24th INM) modes participate along with the group a1 

of modes, which consists of rocking modes of the methyl hydrogens and a torsion backbone 
mode, all exhibit  energy transfers  above the average energy.  Despite  the statistical  noise 
shown by some of the curves, it is again possible to fit all of them to first order exponential 
functions.    This  means  that   the  energy  flow description  provided  by  the  SMF  method 
can be modeled by independent first-order  state-to-state processes, as done in the Master 
Equation  framework  [Van-Kampen 07]. In Table 3.21 we give the  values of the  A23j   and 
τ23j  parameters obtained  for all the INMs of the NMAD molecule.  The total  energy values 
calculated  confirm that  the relaxation  of the amide I mode into amide III, amide II, amide 
A and the group a1  of modes is most favored when compared to the rest of INMs, with the 
energy channeled  through  to these modes, accounting  for 40% of the IVR energy initially 
released  by the  excited  amide  I mode.  The  SMF method  thus  confirms, and  quantifies, 
the participation of these modes as preferential  relaxation  channels of the amide I mode, 
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Table 3.21:  Total  energies  (in  cm−1 ),  and  lifetimes  (in  ps),  transferred from the  amide  I mode 
towards  the  rest  of the  system  (A23j ,  τ23j )  and  from  all  the  INMs  towards  the  bath  (Ajbath , 
τjbath ). 

 
jth INM Labela A23j τ23j Ajbath τjbath 

1 τ (CH3) 41 2.08 70 12.53 
2 τ (CH3) 35 2.41 69 13.52 
3 τ (CN) 39 1.97 50 9.47 
4 δ(CNC) 43 2.18 77 12.55 
5 δ(CCN) 37 2.17 74 13.69 
6 amide V 34 2.50 85 14.73 
7 amide IV 29 1.24 29 10.30 
8 amide VI 39 1.16 36 11.02 
9 ν (CC) 42 1.43 38 12.97 

10 amide III 107 0.60 55 8.08 
group ab 

1 r(CH3)+ν (CN) 278 1.17 214 12.25 
group ab 2 δ(CH3 ) 203 1.72 218 14.21 

21 δs(CH3)N 46 1.11 40 14.45 
22 amide II 60 0.80 38 9.68 
23 amide I   335 2.48 
24 amide A 88 0.58 40 6.25 

group bb 1 νs(CH3) 85 1.68 82 15.63 
group bb 2 ν (CH3) 138 1.94 150 13.95 

Bath  335 2.48   
a.- Ref. [Rey-Lafon 73]. τ =torsion, δ=bending, ν =stretching, 
r=rocking, a=asymmetric and s=symmetric. 
b. - Groups  a1, a2, b1 and b2 are formed by 5, 5, 2 
and 4 modes, respectively  (see text). 

 
 
 

as already  asserted  in our previous work [Bastida 10a]. 
 

Table 3.21 also shows that  the transfer  of energy to the 1st to 6th low-frequency INMs 
stays below the average value.  Previous studies [Shigeto 07,Shigeto 08,Fang 09,Bastida 10a] 
have demonstrated, however, that  these modes act like doorways of the intermolecular flow 
of energy to the librations  of the solvent,  so this is a case in which the limits of the SMF 
method  show up.  Those intermediate modes whose relaxation  rates  are much higher than 
their  excitation  rates  are not  expected  to accumulate  substantial amounts  of energy and 
therefore  become to  a certain  extent insensitive  to  the  SMF  analysis.   The  convolution 
method  used to smooth  the  energy flow curves also prevents  the  detection  of the  energy 
transfers  occurring  in a much  shorter  time  scale than  the  convolution  time  interval.   In 
the  present  case,  the  role of the  low-frequency  modes  is clearly  underestimated by  the 
SMF method  due to their fast relaxation  into the solvent.  In this sense, the low-frequency 
modes and  the  bath  modes should be considered  jointly,  an argument  supported also by 
their  similar  excitation  rates  of ∼ 0.5   ps−1,  which  are  lower than  the  excitation  rates 
of the  other  INMs.   We  should  note  that   this  problem  could  be  recognized  evaluating 
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Figure 3.23:  Energy  transfer  lifetimes  versus  energies  transferred (a)  from the  amide  I mode  of 
the  NMAD  molecule  to  the  remaining  INMs,  and  (b)  from all the  INMs  to  the  bath.    Dashed 
lines indicate  the average energy transfer  lifetimes (horizontal lines) and the average total  energies 
(vertical  lines). 

 
 
 

qualitatively the contribution of the energy flow for the low-frequency modes by applying 
the  SMF analysis  to simulations  in which the  solute  molecule is isolated,  as proposed  in 
Ref. [Bastida 10a]. 

 
 
 

The  combined  use of the  total  energy that  flows between  the  INMs and  the  lifetimes 
thereof allows us to check the efficiency of the different pathways  involved in the transport 
of vibrational energy  through   the  solute  molecule.    This  can  be  done  by  plotting   the 
lifetimes versus the total  amounts  of energy transferred from the amide I mode to the rest 
of INMs, as shown in Figure 3.23(a), where we include as a reference the average values of 
both  parameters. In the upper-left  quadrant of this Figure are the least effective channels 
(low flow and  long lifetimes)  whereas  in the  lower-right  quadrant are the  most  effective 
channels (high flow and short lifetimes).  It is observed then that  the most active modes in 
the amide I relaxation  are some of the modes included in the a1  group, the amide II mode 
and  especially and  by far, the  amide III and  amide A modes.  This  is in agreement with 
the fact that  the amide I mode is coupled by a 2:1 Fermi resonance to the amide III mode, 
and  that  the  sum of the  amide  I and  amide  III mode frequencies  lies quite  close to the 
frequency of the amide A mode thus  favoring the energy transfer  between these modes, as 
reported  in our earlier work [Bastida 10a]. 
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3.2.3.4    Energy transfer into the solvent 
 

Let us consider next the results provided by the SMF method  for the intermolecular relax- 
ation of the NMAD INMs into the solvent.  We have verified first that  the energy flow in this 
case is also well-reproduced by Eq. (2.100), and calculated  the corresponding  total  energies 
and lifetimes.  These values are also included  in Table 3.21 and plotted  in Figure 3.23(b), 
depicting again as a reference the lines corresponding  to the values of an equal distribution 
of the energy (56 cm−1) and the average lifetime (10.1 ps).  This  lifetime is very close to 
the NMAD relaxation  time in D2O solution previously calculated  in ref. [Bastida 10a] from 
the time evolution  of the vibrational energy stored  in the molecule. 

The  1st  (τ (CH3 )),  2nd  (τ (CH3)),  4th  (δ(CNC)),  5th  (δ(CCN))  and  6th  (amide  V) 
INM low-frequency modes,  along with  the  initially  excited  amide  I mode (not  shown in 
Figure 3.23(b)),  are the only ones for which total  energy lies above the average value.  Our 
calculations  indicate  that  25% of the energy transferred from the molecule to the solvent is 
channeled through  these low-frequency modes.  Taking into account that  20% of the energy 
comes directly from the amide I mode, we conclude that  half the total  energy is transferred 
to the solvent through  six modes of the NMAD molecule.  As for the relaxation  lifetimes, 
it is observed that  the  shortest  ones, excluding  that  of the  amide  I mode, correspond  as 
expected to the amide III and amide A modes, which provide the fastest relaxation  channels 
of the  amide I mode.  The  remaining  INMs present lifetimes of ∼ 14 ps, similar to those 
of the low-frequency modes, although  their  contribution to the total  flow is much smaller. 
Accordingly, the results  shown in Figure 3.23 demonstrate that  the SMF method  not only 
identifies the most effective channels but  also reveals the presence of the different kinetics 
that  occur in the relaxation  of the solute molecule.  This is the case for the amide III and 
the  amide  A modes,  which provide  fast  channels  for the  cooling of the  molecule during 
a short  time interval,  whereas the  transfer  of energy through  the  low-frequency modes is 
slower and therefore  extends  longer. 

Application  of the  SMF method  allows us to construct a flow chart  of the  whole re- 
laxation  process, like that  shown in Figure 3.24, which directly  visualizes the main relax- 
ation  channels.  We have grouped  in this flow chart  all the stretching and bending modes 
of the  methyl  hydrogens  of the  NMAD molecule into  two  groups,  ν (CH3)  and  δ(CH3), 
formed  respectively  by  groups  b1  and  b2, and  by  group  a2  and  the  21st  INM.  Also as 
noted,  we place the  bath  in the  frequency  part  of the  flow chart  corresponding  to  typ- 
ical D2O  librations  [Zelsmann  95], since they  are  the  main  recipients  of the  vibrational 
energy due to the  limited  participation of intramolecular vibrations  of water  in the  pro- 
cess [Bastida 10a, Bastida  10b]. In order to achieve a better  visualization  of the relaxation 
mechanism,  in Figure 3.24 we depict  only the  arrows labeling the  pathways  in which the 
accumulation of energy is equal to or higher than  1% of the initial excitation  energy.  The 
amount  of energy  transferred from the  ν (CH3)  and  δ(CH3)  modes is then  greater  than 
the  energy that  these modes receive, because the  energies transferred from the  amide A, 
amide II, amide III and group a1  of modes do not exceed the 1% threshold  separately, but 
become significant when they are taken  all together.  The flow chart  shows a general trend 
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Figure 3.24: Flow chart  of the  vibrational relaxation of the  amide I mode of the  NMAD molecule 
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21st INM of the δ(CH3 ) modes, and the 1st-6th  INMs for the low-frequency modes. 

 
 
 

for the  medium-  and  high-frequency  vibrational modes to  transfer  their  energies to  the 
low-frequency modes and to the bath.  However, the percentages  of the energy transferred 
form the individual INMs of the NMAD molecule to the bath  differ noticeably.  The amide 
III and amide A modes, which are the first to be excited, transfer  about  half of the energy 
that  they  receive to the  bath,  while the  other  half is distributed selectively via IVR into 
other modes of the solute, mainly in the ν (CH3), δ(CH3) and low-frequency modes.  As we 
move toward the slower channels in Figure 3.24, from left to right, the ratio of energy trans- 
ferred to the bath  increases until reaching the low-frequency modes, which transfer  almost 
all their  energy to the bath.  The general picture  emerging from the Figure 3.24 flow chart 
agrees well with  the  cascade  mechanism  proposed  by Dlott  et al [Fang 09], in which the 
solute molecule dissipates its excess energy through  low-frequency modes which are excited 
after  successive excitation  of high and medium  frequency modes.  The  SMF method  pro- 
vides, therefore,  a general description  of the vibrational relaxation  of the molecule which 
allows us to quantify  the amount of energy transferred in the successive elementary  steps 
involved in the relaxation  process and their  corresponding  lifetimes. 

 
 
3.2.3.5    Comparison of the assignment  methods 

 
We now compare the results  provided  by the EAMC and the MC [Soler 11] methods.   In 
Figure 3.25 we show the  time  evolution  of the  vibrational energy  of the  amide  I mode 
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Figure 3.25:  Time  evolution  of the  vibrational energy  of the  amide  I (in  cm−1 )  of the  NMAD 
relative  to its thermodynamic equilibrium  value obtained using the MC [Soler 11] and the EAMC 
methods. 

 
 
 

obtained  using both  assignment methods.  As seen the agreement is excellent. 
In Figure 3.26 we show the  time evolution  of the  vibrational energies relative  to their 

equilibrium values for all the INMs assigned by employing the MC [Soler 11] and the EAMC 
methods.  As seen the two methods  provide similar results.  We also note that  the results 
presented  in Figure 3.25 and  Figure 3.26 are  similar  to  those  presented  by our  group  in 
Ref. [Bastida 10a] where an alternative method  was used to fix the bf frame to the NMAD 
molecule. 

Based on our analysis,  we conclude that  the EAMC method  provide similar results  to 
those  obtained  by applying  the  MC method  [Bastida  10a, Soler 11] when applied  to the 
NMAD molecule. 

 
 

3.2.4     SEBOMD  results 
 

3.2.4.1    Temperature  correction 
 

The application of SEBOMD to nonequilibrium simulations of the excitation  process gener- 
ated some issues related  to energy conservation.  In Figure 3.27 we show the time evolution 
of the  temperature of the  NMAD molecule and  the  D2 O solvent obtained  in equilibrium 
N V E  SEBOMD  simulations.   As seen the  average  temperature of the  solvent  ∼ 305 K 
is hotter  than  the  300 K equilibration temperature  while the  temperature of the  solute 
molecule oscillate around  this value. 

Following  this  short  time  solvent  temperature jump  we observe  an  additional much 
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slower temperature increase  as  shown  in  Figure 3.28(b).    In  this  case  the  temperature 
increases almost linearly with time and reaches ∼335 K after 40 ps. We recall that  the raise 
of temperature of the solvent exclusively due to the energy released by the initially excited 
amide I mode accounts for only 4.2 K. The remaining one is due then to energy conservation 
problems.   The  heat  of the  solvent  affects the  energy flows during  the  relaxation  process 
as we can see in Figure 3.28(a) where we show the time evolution  of the total  vibrational 
energy of the  NMAD molecule evaluated  as the  sum of the  energies of every INM using 
Eq. (2.82) relative  to its equilibrium thermodynamic value at 300 K. The NMAD molecule 
relaxes during the first 20 ps as expected.  Then  the vibrational energy increases for large 
times  and  never  reaches  its  equilibrium  value.   This  behavior  is a direct  consequence  of 
the heat  of the solvent as we can see in Figure 3.29 where we plot the temperature of the 
solute and solvent during  the nonequilibrium NVE SEBOMD  simulations.   Around  20 ps 
both  temperatures become identical  and  then  the  solute heats  at  the  same rate  that  the 
solvent.  At present we do not have a conclusive answer to the origin of this effect. It can 
be due to the small box size used in the simulations  what  could effect the accuracy  of the 
Ewald sum method. 

 
Therefore  if we want  to  evaluate  the  time  evolution  of the  vibrational energy of the 

solvent molecule or any INM we cannot use a constant equilibrium value based on T = 300 
K temperature as done in Figure 3.28(a).  Instead  we consider a time dependent equilibrium 
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Figure 3.27:   Time evolution  of the  temperature of the  NMAD solute molecule (red  line) and  the 
D2 O solvent (black line) obtained in equilibrium  N V E  SEBOMD  simulations. 

 
 
 

vibrational energy obtained  from the instantaneous temperature of the solvent Tsolv (t) as 
follows 

NMAD (t) = (3Ns  − 6)KB (Tsolv (t) + ∆Tsolv (t))  (3.5) 
where we have added a linear term ∆Tsolv (t) = at−b to account for the solvent temperature 
increase.  The a and b parameters are calculated  to reproduce  the ∆Tsolv at  t = 0 ps and 
the ∆Tsolv at t = 40 ps (see Figure 3.30). 

In Figure 3.31 we show the total  vibrational energy of the NMAD molecule with respect 
to the time dependent equilibrium energy evaluated  using Eq. (3.5).  As seen the vibrational 
energy shows the right asymptotic value at large times. 

As a final remark  we consider the  influence of the  temperature rise on the  relaxation 
process.  As we will show later the relaxation  of the amide I mode is completed  in few 
picoseconds so that  is mostly unaffected  by the solvent heating.  However, the latter  steps 
of the relaxation  process that  involve the intramolecular energy transfer  from the NMAD 
molecule to the solvent occurs in the tens of picoseconds scale and can be slightly acceler- 
ated  by the increase of the temperature of the system. 
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Figure 3.28:   (a)  Time  evolution  of the  vibrational energy of the  NMAD molecule relative  to its 
equilibrium  value  at  300 K, and  (b)  the  temperature of the  solvent  obtained in nonequilibrium 
N V E  SEBOMD  simulations. 

 
 
 
3.2.4.2    Amide I relaxation lifetime 

 
The time evolution of the amide I energy is shown in Figure 3.32. As seen this curve is well 
reproduced  by a triexponential function 

 

Evib vib,eq  3 
    amI(t) − EamI    (t) = c e−t/τi (3.6) 
Evib vib,eq  i 

amI (0) − EamI   (0) i=1 
 

where ci  are  the  weights  which  satisfy  c1 + c2 + c3  = 1.   The  fit parameters are  given 
in  Table  3.22 as  well as  those  obtained   from  experiments   and  other  theoretical   treat- 
ments.    While  a  triexponential decay  function  was also  used  to  describe  the  QM/MM 
results  [Jeon  11], a  biexponential  function  was  enough  to  reproduce  the  experimental 
data  [Hamm  98, DeCamp  05]  and  the  MM/MD   simulations  [Nguyen  03, Bastida   10a], 
and  recently  the  hybrid  quantum-classical Molecular  Dynamics  with  Quantum Transi- 
tion  (MDQT)  results  [Bastida  12] were fitted  to  a monoexponential function.   We note 
that   each  exponential   term  indicates  the  presence  of a  specific relaxation   pathway   of 
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Figure 3.29:  Time evolution  of the the temperature of the solute NMAD molecule (black line) and 
the water  (red line) obtained in nonequilibrium N V E  SEBOMD  simulations. 

 
 
 

the  amide  I mode.   Since the  IVR  relaxation   pathways   depends  strongly  on  the  reso- 
nance  condition  between  three  or more  mode  frequencies  [Fujisaki  07b, Fujisaki  08, Fu- 
jisaki  09, Zhang  09, Bastida   10a, Bastida   10b, Bastida   12], the  choice of the  force field 
employed  to describe  the  system  can modify the  details  of the  relaxation  pathways  and 
consequently  the slope of the relaxation  decay curve. 

 
In Figure 3.33 we show the evolution in time of the fitted normalized vibrational energy 

of the  amide  I mode obtained  using SEBOMD  along with  the  fits to the  measured  data 
obtained  from experiments  [Hamm  98, DeCamp  05] and  the  theoretical  results  obtained 
using QM/MM  at  semiempirical  PM3  level [Jeon  11], nonequilibrium MM/MD  simula- 
tions [Nguyen 03, Bastida  10a] and the MDQT method  [Bastida 12]. As seen the MM/MD 
and QM/MM  results  provide  relaxation  times  longer than  the  experimental data.   There 
are two  main  reason  for these  discrepancies.   First  the  classical description  of the  vibra- 
tional  motions which is not justified for high frequency modes as the amide I mode which 
frequency is much higher than thermal  energy at room temperature (KB T = 210 cm−1 ). In 
this line the use of a quantum description  of the amide I vibration  [Bastida 12] accelerated 
the  relaxation  process providing  results  closer to  the  experimental measurements.  And 
second the use of model MM potential energy functions where the polarization and charge 
transfer  effects are neglected.   The  use of a QM description  of the  solute  while retaining 
the MM description  of the solvent [Jeon 11] did not improve significantly  the results.  On 
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Figure 3.30:  Time  evolution  of the  temperature of the  solvent  without (blue  line) and  with  (red 
line) linear correction. 
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Figure 3.31:   Time  dependent  vibrational energy of the  NMAD molecule relative  to its time  de- 
pendent equilibrium  value Evib,eq (t). 

 
 
 

the  contrary  the  SEBOMD  results  agree much  better  with  the  experiments  what  proves 
the importance  of taking  into account the electronic interactions between the NMAD and 
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Figure 3.32:   (a)  Time  evolution  of the  normalized  vibrational energy of the  amide  I mode with 
respect  to its equilibrium  value (black line) and the fit to a three  exponential function  (red dashed 
line) and (b) its logarithm. 

 
 
 

the water  molecules. 
While the justification  of the triexponential decay observed in the SEBOMD results will 

be detailed  in the next section we have found useful to compute the overall relaxation  time 
T1  when the  initial  vibrational energy decrease  in a factor  1/e to  compare  the  different 
experimental and  theoretical   results.    The  values  of T1   are  included  in  Table 3.22 and 
confirm the tendencies previously described.  We emphasize that  the best overall agreement 
with  the  experimental data  is provided  by the  SEBOMD  results  what  confirms that  the 
inclusion  of the  electronic  interactions is necessary  to provide  an accurate  description  of 
the VER process of the NMAD molecule in water  solution. 

 
 

3.2.4.3    IVR pathways 
 

The next issue that  we address is the amide I relaxation  pathways. According to our kinetic 
analysis the relaxation  takes place through  three different stages.  The fast stage is ultrafast 
and is characterized by a relaxation  time of 0.4 fs which is of the same order that  the time 
step  used in the  same simulation.   We have found that  the  only INMs which are excited 
in such time scale are the amide II mode and the group a2  modes (CH bending motions) 
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Figure 3.33:  Experimental and theoretical time evolutions  of the normalized  vibrational energy of 
the NMAD amide I mode with respect  to its equilibrium  value. 

 
 
 

Table 3.22: Vibrational relaxation times of the amide I mode (in ps) obtained by fitting  to mono-, 
bi- and tri-exponential decay functions.  Weights  are given in brackets 

 
 τ1  (c1 ) τ2  (c2) τ3  (c3 ) T1 

Experiment   Hochstrasser  et al a 0.45(0.80) 4.00(0.20)  0.63 
Tokmakoff et al b 0.20(0.55) 0.86(0.45)  0.39 

SEBOMD 0.0004(0.23) 0.20(0.24) 1.61(0.53) 0.63 
MM/MD  Bastida  et al c 1.55(0.80) 4.01(0.20)  1.76 

Nguyen and Stockd 1.90(0.80) 13.30(0.20)  2.60 
MDQT  Bastida  et al e 0.73(1.00)   0.73 
QM/MM  Cho et al f 0.37(0.20) 2.30(0.75) 6.90(0.05) 1.90 
a.- Ref. [Hamm 98] 
b.- Ref. [DeCamp 05] 
c.- Ref. [Bastida 10a] 
d.- Ref. [Nguyen 03] 
e.- Ref. [Bastida 12] f 
.- Ref. [Jeon 11] 

 
 

which energy curves are shown in Figure 3.34. As seen each of them receives ∼ 125 cm−1  of 
the energy released by the amide I mode.  However, according to the data  shown in Table 
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Figure 3.34:   Time  evolution  of the  vibrational energy of the  amide  II and  group  a2  modes (blue 
line) and the corresponding  fit curves (yellow line). 

 
 
 

3.22 this channel  accounts  for 23% of the energy released,  that  is, 415 cm−1.  The energy 
difference must  be transferred into  low frequency  modes which fill the  gap  between  the 
frequency of the amide I mode (1804 cm−1 ) and the amide II (1428 cm−1) and the group 
a2  modes (1270.4-1363.4 cm−1).  These low frequency modes show no significant excitation 
during  the relaxation  process because they  also relax quickly into the librational  motions 
of the solvent which have similar frequencies.  This behavior  has been previously noted  in 
MM/MD  studies of the same system [Bastida 10a, Bastida  10b] 

The time evolution  of the vibrational energy of the amide II mode can be well repro- 
duced by considering it as an intermediate in a sequential  mechanism ( amide I  τexc amide 

II  τrel   · · · ) so that  the evolution  over time of the energy is given by 
−−→ 

 

EINM INM −t/τrel
 −t/τexc

 

i  − Ei,eq  = A(e − e  ) + B  (3.7) 
 

where τexc   and  τrel   are the  corresponding  excitation  and  relaxation  lifetimes,  A  is a pa- 
rameter  related  to the maximum  of the energy curve and B is a parameter which accounts 
for small  deviations  of the  curve  from the  equilibrium  value  at  long times.   As we can 
see in Figure 3.34 the  vibrational energy curve of the  group a2  modes show two different 
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Table 3.23:  Fit parameters for the vibrational relaxation of different INMs of the NMAD molecule, 
including  relaxation and  excitation times  (in ps),  exponential amplitudes and  parameters A  and 
B  (in cm−1 ). 

 
A(e−t/τrel  − aexc e−t/τexc  − at

 
−t/τ   ) + B τexc (aexc )  τexc (aexc )  τrel  A  B 

group  a2  0.0004(0.075) 3.21(0.925) 4.50 1442.60 5.6 
A(e−t/τrel  − e−t/τexc ) + B τexc τrel A  B 
amide  II 0.0004  3.21 138.84 −9.0 
7th  INM 0.20  6.80 44.06 11.4 
9th  INM 0.20  6.80 94.24 15.7 
10th  INM 0.20  6.80 77.94 0.0 
15th  INM 0.20  6.80 78.55 5.7 
21st INM 1.61  5.39 77.78 0.0 
group  a1 1.61  5.44 506.27 0.0 

 
 
 

excitation  times so that  we have used the following function to fit it 
 

EINM INM −t/τrel
 −t/τexc

 t −t/τ t 
i  − Ei,eq  = A(e − aexc e − aexc e exc ) + B  (3.8) 

 
which contains  two excitation  times τexc  and τ t and weights aexc  and at which satisfy 
aexc  + at = 1.  The  fit parameters for both  modes are included  in Table 3.23 and  the 
curves obtained  from these fits are superimposed  in Figure 3.34. 

Interestingly the longer excitation  time of the group a2  modes (3.21 ps) agree with the 
relaxation  lifetime of the  amide  II mode.  This  fact suggests that  the  energy received by 
the  group a2  modes in both  excitation  steps  comes mainly  from the  amide II mode with 
little  contribution from the initially  excited amide I mode.  This transfer  is favored by the 
small frequency gap between these modes.  As seen in Table 3.20 the standard deviation  of 
the  frequencies of these modes are higher than  the  difference between  the  average values 
of these frequencies so that  their instantaneous values can become practically  degenerated 
during their  time evolution. 

An additional fact that  favors the role of the amide II mode as main relaxation  channel 
of the  amide  I modes  in this  first  stage  is the  magnitude  of the  coupling  among  these 
modes.  Kidera et al. [Moritsugu 00, Moritsugu  03] have shown that  this coupling is highly 
correlated  with  the  geometrical  overlap  among  the  corresponding  modes.  In Figure 3.35 
we show the average effective atomic contributions for the amide I, amide II and group a2 

modes.  As seen the highest  contribution for both  the amide I and amide II modes comes 
from the carbon atom of the carbonyl group what translate into a strong coupling between 
them.  We also note that  the atomic  contributions for the group a2  modes overlap better 
with those for the amide II mode than  with those for the amide I mode.  Altogether  these 
results  points out the participation of the amide II mode as main channel during the first 
stage  of the  relaxation  of the  amide  I mode and  as intermediate in the  excitation  of the 
group a2  modes. 

The  second stage  of the  amide  I relaxation  shows a relaxation  time  of 0.20 ps.   We 
found  that  the  7th  (amide  IV),  9th  (ν (CC)),  10th  (amide  III)  and  15th  (ν (CN))  INMs 
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Figure 3.35:   Average  effective atomic  displacement  contributions for the  amide  I, amide  II, 7th, 
9th, 10th, 15th and 21st INMs (upper  panel), group a2  modes (16th-20th INMs)(middle  panel) and 
group a1  modes (11st-14th  INMs) (lower panel)  (see Figure 3.36 for the effective atoms definition). 

 
 
 

are  excited  in that  time  scale.   Their  energy  curves  are  shown in Figure 3.37 as well as 
the fits obtained  using Eq. (3.7) where the same relaxation  time 6.80 ps was employed (see 
Table 3.23).  We note  that  the  sum of the  two average frequencies for the  (7th,15th) and 
(9th,10th) INMs are close to the  frequency  of the  amide I mode (see Table 3.20) so that 
the  resonance  condition  is fulfilled.  Moreover  we see in Figure 3.35 that  the  four INMs 
considered have non-neglectable  effective atomic contributions in one or both atoms of the 
carbonyl  group.  However, the  energy accumulated in these  four INMs only accounts  for 
16% of the energy released by the amide I mode while the second stage contributes with 
24% (see Table 3.22).  As we discuss below the additional 8% is probably  transferred into 
the solvent. 

The  third  relaxation  stage  of the  amide  I mode proceeds with  a 1.61 ps lifetime.  In 
Figure 3.38 we show the  energy  curve  for the  group  a1  modes (CH  rocking  modes)  and 
the 21st INM (CH bending modes) which are excited in that  time scale.  Both  curves are 
also well reproduced  using  Eq. (3.7)  and  have  a common  relaxation  time  of 5.4 ps (see 
Table 3.23).  The  most  important contribution corresponds  to the  group a1  modes which 
frequencies are in the 1041.5-1115.9 cm−1  range.  Considering that  the standard deviations 
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Figure 3.36:   The effective atoms  definition  of the NMAD molecule used in the INM analysis. 
 

 
 

of the group a1  and amide I frequencies are in the order of 100-200 cm−1  (see Table 3.20) 
the energy transfer  can be mediated  through  a 2:1 Fermi resonance.  In the case of the 21st 
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Figure 3.37:   Time  evolution  of the  vibrational energy of the  (a)  7th  INM (b)  15th  INM, (c) 9th 
INM and (d) 10th INM. 
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Figure 3.38:   Time evolution  of the vibrational energy of the (a) group a1  and (b) 21st INMs 

 
 
 

INM the  excess energy must  be transferred into  low frequency modes.  We note  that  the 
energy stored  in these normal  modes only accounts  for ∼16.6% of the energy released by 
the amide I mode while the third  stage contributes with 53% (see Table 3.22). We consider 
that  the additional 36.4% is transferred into low frequency modes and the solvent,  as we 
discuss below. 

After  the  relaxation  of the  amide  I mode,  most  of the  energy  is distributed  among 
mid-range  frequency  modes which subsequently  relax  into  low frequency  modes and  the 
solvent.   These  secondary  IVR  process  are  difficult to  identify  individually  because  the 
energy flows are small as the energy is distributed among a higher number of INMs and the 
intramolecular energy transfer  into the solvent becomes important in the picoseconds time 
scale. Therefore we focus our attention on the time evolution of the total vibrational energy 
of the NMAD molecule showed in Figure 3.39. This curve can be fitted to a biexponential 
function as follows 

 
Evib 

 
vib,eq 

    NMAD(t) − ENMAD (t) = c e−t/τ1 + c e−t/τ2  (3.9) 
Evib vib,eq  1  2 

NMAD (0) − ENMAD (0) 
 

where the weights satisfy c1 + c2 = 1 and τ1  and τ2  are the NMAD relaxation  times.  We 
find that  the  SEBOMD  results  are well reproduced  using τ1  = 0.20 ps and  τ2  = 7.0 ps 
being 0.13 and 0.87 the respective weights.  The fastest relaxation  lifetime agrees with that 
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Figure 3.39:   Time evolution  of the total  vibrational energy of the solute NMAD molecule relative 
to its equilibrium  value as obtained from SEBOMD  simulations  (blue line) and the fit to Eq. (3.9) 
(yellow line). 

 
 
 

second stage amide I relaxation  lifetime so that  it corresponds to a direct energy flow from 
the amide I mode to the solvent.  However this channel only account for 8% of the energy 
as we previously detailed.  We consider that  the remaining 5% is probably  released through 
some lower frequency modes excited during the first amide I relaxation  channel. 

The longer NMAD relaxation  time is similar to those ones found for the INMs excited 
during the relaxation  of the amide I modes (see Table 3.23). Therefore the secondary IVR 
processes if present  must  occur in a short  time  scale.   This  is not  surprising  since they 
involve low frequency  modes which relaxation  into  the  solvent  is faster  than  most  of the 
IVR processes.  In addition,  we observe in Figure 3.39 that  after  3 ps ∼ 45% of the  total 
vibrational energy is already  transferred from the  NMAD molecule to the  solvent.   This 
fact  may  indicates  that   part  of the  energy  released  from the  amide  I during  the  third 
stage flows directly to the solvent.  However, due to the smoothly energy transfer  from the 
other INMs into the solvent, this stage is counted  within the second relaxation  time of the 
NMAD molecule. 

The  relaxation  lifetime of the  NMAD molecule in D2O has  been measured  by Dlott 
et  al  [Fang  09] to  be 5.1 ps.   While  this  value  was obtained  after  initially  exciting  the 
CH  stretching mode,  our  MM/MD  simulations  [Bastida  10a, Bastida   10b]  have  shown 
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that   the  NMAD  relaxation   lifetime  was  similar  when  exciting  the  amide  I  or  the  CH 
stretching modes.   To make a proper  comparison  with  the  experiments  we evaluated  an 
average  NMAD  relaxation  lifetime  following the  procedure  previously  described  for the 
amide I mode obtaining  T1,NMAD = 6.0 ps. This value is closer to the experimental results 
than  those  previously  obtained  using the  MM/MD  (9.6 ps) [Bastida  10a], QM/MM  (8.1 
ps) [Jeon 11] or MDQT  (6.6 ps) [Bastida 12] methods. 

In order to complete our discussion it is interestingly to compare the relaxation  path- 
ways derived from SEBOMD simulations  with those previously obtained  by the MM/MD 
[Soler 11], QM/MM  [Jeon  11] and  MDQT  [Bastida  12] methods.   Such a comparison  is 
limited by the use of different force fields which provide vibrational frequencies which can 
vary  up to 200 cm−1  from one to other  study.   These  shifts modify the  resonance  condi- 
tions so that  the specific pathways  are far from being identical.  In spite of this drawback 
we identify  some general trends.   The relaxation  of the amide I mode is basically an IVR 
process with a smaller contribution of intermolecular energy flow into the solvent although 
the specific percentage  of energy transferred into the solvent varies significantly for the dif- 
ferent theoretical  approximation:  24% in MDQT  [Bastida 12], 5% in QM/MM  [Jeon 11], 
20% in MM/MD  [Soler 11] and ∼20% in SEBOMD simulations. 

The  main relaxation  channel  involves the  rocking and  bending  methyl  normal  modes 
which receive approximately one third  of the  amide  I vibrational quantum.  The  second 
bigger energy acceptors are modes with frequencies in the 500-900 cm−1 range as the amide 
III, amide IV, amide VI and ν (CC)  modes. 

One interesting point concerns the participation of the amide II mode in the relaxation 
of the  amide  I mode which has been considered  in different  experimental [Rubtsov  03a, 
DeFlores  06, Piatkowski  10, Piatkowski  12] and  theoretical   [Fujisaki  06, Dijkstra  07, Fu- 
jisaki  07b, Bloem 08, Fujisaki  09, Bastida  10a, Soler 11, Dijkstra  11, Jeon  11, Bastida  12] 
works.   Hochstrasser  et  al  [Rubtsov  03a] found  a  significant  coupling  between  the  two 
modes when studying  the NMA molecule in DMSO solution by femtosecond two color IR 
spectroscopy.  This result was confirmed by Tokmakoff et al [DeFlores 06] and extended  to 
the fully deuterated NMA molecule in D2O through  2D-IR experiments.  However, Bakker 
et al [Piatkowski  10] found no energy transfer  between  the  amide  I and  amide  II modes 
using similar  spectroscopic  techniques,  when applied  to the  study  of the  NMA molecule 
solved in CCl4 . We note that  in this study  the presence of the NMA dimers could modify 
the  relaxation  pathways.   More recently  these  authors  considered  the  relaxation  of the 
NMA monomers dissolved in bromoform [Piatkowski 12]. They concluded that  only a mi- 
nor part  of the excitation  of the amide I mode is transferred to the amide II mode and the 
dominant relaxation  channel for the amide I mode involves transfer  of energy to combina- 
tion tones of other lower frequency (amide)  vibrations.  The authors  also estimate  that  less 
than  20% of the energy flows from the amide I to the amide II mode. 

From  the  theoretical  point  of view the  results  are even more contradictory.  Fujisaki 
et al [Fujisaki 06, Fujisaki  07b, Fujisaki  09] applied  different time-dependent perturbation 
schemes  to  analyze  the  relaxation   of the  amide  I mode  in  NMAD/D2 Ol   showing  that 
the main pathways  involve the contribution of low and midrange  frequency modes of the 
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solute or a 2:1 Fermi resonance, without  any significant contribution of the amide II mode. 
Later, the same group concluded that  the amide II mode was not found to participate in the 
relaxation  of the amide I mode of the isolated NMAD mode [Zhang 09] when studied  using 
the  time  dependent  perturbation theory  at  the  B3LYP/aug-cc-pvdz level.  However, the 
amide II mode was found to be involved in the  energy relaxation  of the  NMAD/(D2O)n 

(n=1-3) clusters.   Knoester  et al [Dijkstra  07, Bloem 08, Dijkstra  11] have  analyzed  the 
relaxation  of the  amide  I mode of NMAD and  fully deuterated NMA molecules in D2O 
solution  using a model of reduced  dimensionality  where only the  amide  I and  amide  II 
modes  are  considered  explicitly.    In  both  systems  the  authors  found  a  strong  coupling 
between amide I and amide II modes so that  the amide II mode was considered to be the 
predominant relaxation  pathway  for the amide I mode.  Our research group found that  the 
amide II mode receives 3.5% of the amide I vibrational quantum in MM/MD  simulations 
[Soler 11] and  this  percentage  is almost  neglectable  in MDQT  simulations  [Bastida  12]. 
The  use of semiempirical  Hamiltonians increases  mostly  this  contribution up to 9.2% in 
QM/MM  simulations  [Jeon  11].  In line with  this  studies  the  SEBOMD  results  provide 
a  7.0% percentage.    Therefore  we conclude  that   the  amide  II mode  contributes to  the 
relaxation  of the amide I mode but  it plays just  a minor role in line with the most recent 
experiments  [Piatkowski 12]. 

As a final remark  we note that  the MM/MD,  MDQT,  QM/MM  and SEBOMD  meth- 
ods describe classically the vibrational modes that  receive the energy during the relaxation 
process.  As a consequence  we find that  unrealistic  excitation  of modes with  vibrational 
frequencies higher than  that  of the amide I mode occur over time.  In Figure 3.40 we show 
the  time  evolution  of the  total  energy stored  in those  modes obtained  in the  SEBOMD 
simulations.   As seen the  excitation  of these modes is slow compared  to the  IVR process 
previously discussed in agreement with previous QM/MM  results [Jeon 11]. The maximum 
amount of energy stored  in these high frequency modes is 5.5% which is smaller than  the 
percentage  obtained  in MDQT  (10.0%),  MM/MD  (18%) and  QM/MM  (23.0%) simula- 
tions.  Therefore the description  provided by the SEBOMD method is more realistic in this 
particular point. 

 

 
 
 

3.3  VIBRATIONAL RELAXATION OF  THE  AMIDE  I  MODES  OF  THE  ALAD 
 

MOLECULE IN D2 O(L) 
 
 
 
 
3.3.1     AlaD conformations 

 
Molecular  Dynamics  simulations  of proteins  are  typically  limited  by the  high computa- 
tional  cost of performing  calculations  on large system.  Fortunately, it appears  that, with 
the exception of glycine and proline each amino acid displays a very similar backbone con- 
formational  characteristics [Edsall 85]. This finding has been supported as well by a recent 
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Figure 3.40:   Time  evolution  of the  total  vibrational energy of the  modes with frequencies higher 
than  that of the amide I mode. 

 
 
 

study  performed  by Feig [Feig 08]. The  conformations  of peptides  are defined by flexible 
torsion angles [Edsall 66] φ (C-N-Cα -C) and ψ (N-Cα -C-N), as seen in Figure 3.41. Based 
on the  Ramachandran plot  [Ramachandran  63, Ramachandran 68] of φ vs ψ (see Figure 
3.42) we can analyze the conformational details  of any biological molecule. 

 

The  rotations around  the  flexible dihedral  angles produce  different  conformations  as 
C5, C7eq , αR , αt, PII , αL and β as shown in Figure 3.3. Since all these conformers are not 
necessarily  present for all the  force fields available  and  the  limits of every region are not 
precise, sometimes we will refer to the C5, C7eq , PII   and β conformers altogether as beta 
region and to αR and αt conformers as alpha R region in order to simplify our discussion. 

 

The isolated alanine dipeptide  has been widely studied  by high level ab initio  methods 
[Head-Gordon 91,Gould 92] and the general conclusion which was supported by gas-electron 
diffraction analysis study  [Schafer 95] is that  the internally  hydrogen bonded conformation 
C7eq  and extended  C5 are of lowest energy. 

Although  the  structure and  thermodynamics of the  AlaD molecule in water  solution 
have been characterized by different theoretical  methods [Han 98,Smith 99,Gnanakaran 01, 
Hu 03, Alexander  04, Dmitriy  04, Wang 04, Kim 05b, Feig 07, Seabra  07, Kwac 08, Yang 09, 
Gaigeot 10] and to a lesser extent experimentally [Poon 00,Weise 03,Takekiyo 04,Mehta 04, 
Kim 05a, Lee 07, Grdadolnik  08] so far the conformational distribution of this molecule is 
not  fully resolved.   The  NMR  experiments  [Poon  00, Weise 03, Mehta  04] favor  the  PII 
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Figure 3.41: The backbone  torsion  angles φ and ψ. 
 
 
 

conformation  as the most stable  one as well as some Raman  and IR spectroscopic  studies 
[Grdadolnik  08].   The  two-dimensional  IR  spectroscopy  [Kim  05b] and  the  Vibrational 
Circular  Dichroism (VCD)  measurement provide results  with PII -like or β conformations. 
However, some results obtained  using Raman  spectroscopy  support  the presence of the αR 

and C7eq  conformations  [Takekiyo 04]. 
All of the  theoretical  results  confirm the  presence  of PII -like or β  conformations  but 

some of them also provide a significant contributions of alpha R conformations  [Smith 99, 
Gnanakaran 01, Hu  03, Wang  04, Seabra  07, Feig  08, Kwac  08, Yang  09].   Moreover,  the 
relative  percentage  of alpha  R and  beta  conformers  depends  strongly  on the  force field 
used to simulate  the system [Kwac 08, Yang 09] 

 
 
3.3.2     Comparison  of MM force fields 

 
The  choice of the  MM force field used to describe  the  AlaD molecule solved in water  is 
crucial because the accuracy  of the different models depends  strongly  on the composition 
of the  simulated  system  as well as on the  physical  properties  of interest.  In the  present 
study  we have tested  three different force fields AMBER94 [Cornell 95], OPLS-AA/L 
[Jorgensen 96, Kaminski  01] and CHARMM22 [MacKerell 98]. AMBER94 force field was 
designed  to simulate  the  structure, conformational energies and  interactions of proteins, 
nucleic acids and many  selected organic molecules in condensed phase.  Moreover, in this 
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Figure 3.42:  Schematic  overview of major  conformational basins  sampled  by φ/ψ  backbone  tor- 
sion  angles  in  nonglycine,   nonproline   peptide   residues  using  Ramachandran  plot  taken   from 
Ref. [Feig 08]. 

 
 
 

force field a set  of φ and  ψ parameters have  been  developed  for the  peptide  backbone, 
in order  to  reproduce  the  energies of the  low energy conformations  of glycyl and  alanyl 
dipeptides.  The OPLS-AA/L force field was presented  to improve the OPLS-AA force field 
for peptides  by means of refitting  the  key Fourier  torsional  coefficient.  In this  force field 
the  fitting  technique  combines using accurate  ab initio  data,  choosing an efficient  fitting 
subspace  of the  whole potential energy surface,  and  determining  weights for each of the 
fitting points based on magnitudes  of the potential energy gradient.  The CHARMM22 force 
field was introduced for the  simulations  of peptides  and  proteins  in condensed phase.  In 
this force field the parameters were determined by fitting an extended  set of experimental 
and  ab initio  results.   Furthermore, a self consistent  approach  was employed  to  obtain 
a proper  balance  between  the  intramolecular and  intermolecular terms  of the  potential 
energy function,  which is essential for accurate  condensed phase simulations.  In addition, 
the internal  parametrization were chosen to reproduce  geometries from crystal  structures, 
infrared  and Raman  spectroscopic  data  and ab initio  calculations. 

 
As a starting point, the optimization of the isolated deuterated AlaD (Ala-d2) molecule 

was performed  by using the aforementioned  force fields and the optimize  program  within 
TINKER  modeling package version 5.0 [Ren 02, Ren 03]. Three force fields agree that  the 
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Table 3.24: Dihedral angles φ/ψ  of the AlaD-d2  molecule at different conformations  in D2 O solution 
(β, PII , αR , αd ) and in gas phase (C5 and C7eq ) obtained using different force fields. 

 
Force  field   C5  β  PII  C7eq αR  αt 

AMBER94 (-146.7,170.8)   (-130.0,130.0)   (-73.3,139.9)  (-73.3,65.7)   (-59.9,-49.9)  (-100.0,-5.0) 
OPLSAAL (-152.0,158.3)   (-130.0,130.0)   (-80.0,140.0)  (-79.3,61.6)   (-69.1,-49.9)  (-100.0,-5.0) 
CHARMM22  (-151.4,170.6)   (-120.0,130.0)   (-80.0,140.0)  (-81.4,70.6)   (-78.8,-50.0)  (-100.0,-5.0) 

 
 
 

C7eq  and C5  conformations  (see Figure 3.3) are the only minima  for the isolated  AlaD-d2 

molecule.  Further test  were done starting in the AlaD-d2  geometry  of the PII , αt, αR  and 
β conformations  and finding that  the optimization process always provides the C7eq  or C5 

conformations  depending  on which local minima was closer to the starting point.  We also 
found during  the  optimization that  the  computed  energy for the  C7eq  conformer is lower 
than that  calculated for the C5 conformer, in agreement with previous results obtained  from 
the application for the same force fields [Cornell 95, MacKerell 98, Kaminski 01]. Moreover 
these results are in line with those obtained  employing different ab initio  calculation  levels 
[Balázs  90, Boehm 91, Gould  94, Philipp  99, Vargas  02].  A possible reason  that  has been 
pointed out to justify the stability  of the C7eq  conformer [Han 98,Chipot 98,Gnanakaran 01, 
Vargas  02, Takekiyo  04, Kim  05b, Lee 09] is the  intramolecular H-bonding  between  the 
carbonyl  group within  the  acetyl  end with the  NH/ND  group within  the  amino end (see 
Figure 3.3) leading to a seven membered  ring. 

While  the  PII ,  αt  αR  and  β  conformations  (see Figure 3.3)  are  not  minima  for the 
isolated AlaD-d2  molecule they become much more stable in polar solvents due to the 
intermolecular H-bonds.  In Table 3.24 we present dihedral  angles of the AlaD-d2  molecule 
which are representative of the different conformations  in D2 O solution  for the MM force 
fields considered.  We have optimized the geometry of the isolated AlaD-d2  molecule keeping 
fixed the dihedral  angles at the values given in Table 3.24. In that  way we obtain  partially 
optimized  geometries  for every conformer  present  in solution  that  we use then  to define 
the corresponding  set of ENMs. 

We focus now on the equilibrium normal mode analysis for the optimized geometries, in 
particular the amide I normal  modes.  Our study  is highly motivated by the experimental 
results  obtained  by Hochstrasser  et al [Kim  05a] about  the  dynamics  of the  acetyl  and 
amino end amide I groups of the  AlaD-d2  molecule solved in D2 O obtained  using 2D-IR 
spectroscopy.    Consequently, we are  interested in the  ability  of the  different  MM force 
fields to reproduce the experimental evidences.  The authors  concluded that  the two amide 
I  modes are approximately localized modes in the  carbonyl  groups.   In order  to test  the 
MM force fields we include in Table 3.25 the  atomic  displacement contributions of the  C 
and  O atoms  of the  amino  and  acetyl  end carbonyl  groups  to the  amide  I modes which 
correspond  to the  47th  and  48th  ENMs using the  frequency  ordering.   As seen the  sum 
of the  contribution of both  carbonyl  groups  to  the  amide  I ENMs  is always  over  60% 
up  to  91% what  agrees  with  the  accepted  association  between  amide  I bands  and  the 
motions of the C=O  groups [Torii 98, Ham 02, Ham 03]. We note that  the AMBER94 and 
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Table 3.25:  Atomic  displacement  contributions (in  %) of the  C and  O atoms  of the  amino  and 
acetyl  end carbonyl  groups  to the  amide  I ENMs for the  AlaD-d2   molecule as obtained by using 
the AMBER94,  OPLS-AA/L and CHARMM22  force fields for different conformations. 

 
Force field ENM  carbonyl  group  C5  β  PII  C7eq  αR  αt 

 

AMBER94 47th amino end 41.7 37.6 26.0 31.9 26.6 31.4 
 47th acetyl end 38.2 39.8 50.0 42.0 50.0 47.7 
 48th amino end 30.0 30.6 41.6 37.7 46.1 39.6 
 48th acetyl end 30.0 28.0 23.8 29.6 23.5 23.7 

OPLS-AA/L 47th amino end 42.1 42.6 28.6 23.3 39.9 25.4 
 47th acetyl end 37.7 36.5 49.9 54.2 38.6 52.0 
 48th amino end 34.8 33.8 46.0 52.4 38.1 50.9 
 48th acetyl end 31.5 34.2 24.8 20.0 35.8 20.8 

CHARMM22 47th amino end 80.7 84.5 87.0 73.0 0.1 0.4 
 47th acetyl end 0.7 0.2 0.2 18.2 91.0 88.0 
 48th amino end 0.7 0.2 0.2 16.1 80.2 73.0 
 48th acetyl end 85.0 90.0 89.8 74.5 0.1 0.4 

 
 
 

OPLS-AA/L force fields provide ENMs which have important contributions simultaneously 
from both  carbonyl  groups.  On the contrary  the ENMs obtained  using the CHARMM22 
force field involve the motion  of practically  only one CO group with the exception  of the 
C7eq  conformer.  However, this conformer has a negligible contribution in water solution as 
previously mentioned.  Interestingly, the frequency order of the two amide I groups depends 
on the  conformation.   The  ENM frequency of the  amino end amide I mode is lower than 
that  of the  acetyl  end one for the  C5, β, PII   and C7eq  conformers but  higher for the  αR 

and αt  conformers. 
 

The  fact  that  two  or more modes involve or not  displacement  of the  same  group  of 
atoms has important consequence in the IVR process. As Kidera et al [Moritsugu 00,Morit- 
sugu 03] showed the overlap between ENMs is correlated  with their coupling and therefore 
with the rate of energy transfer among them.  We conclude then that  the CHARMM22 force 
field provides  amide  I modes localized over one carbonyl  group  of the  AlaD-d2  molecule 
in line with the experiments  [Kim 05a]. On the contrary  the AMBER94 and OPLS-AA/L 
force fields lead to delocalized amide I modes. 

We are  also interested about  the  amide  I frequencies  provided  by the  different  MM 
force fields which are presented  in Table 3.26 for the different AlaD-d2  conformers.  As seen 
the frequency gap between the two amide I modes is in the 10-20 cm−1  range in all cases. 
We note that  the frequency of a given amide I mode does not change substantially with the 
conformer considered for the AMBER94 and OPLS-AA/L force fields. This is particularly 
due to the  impossibility  to identify  the  two  amide  I groups  previously  discussed  so that 
the frequencies are just labeled using their values.  On the contrary  we observe for the 
CHARMM22 results  that  the  frequencies obtained  for the  amino and acetyl  end amide I 
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Table 3.26: Frequencies  (in cm−1 ) for the amide I modes of the AlaD-d2   molecule in gas phase. 
 

Force field ENM  C5  β  PII  C7eq  αR  αt 
 

AMBER94 47th 1684.5 1685.7 1682.4 1682.0 1685.3 1680.2 
 48th 1705.8 1704.9 1699.8 1702.7 1703.0 1712.9 

OPLS-AA/L 47th 1678.0 1678.8 1673.8 1672.3 1674.4 1674.4 
 48th 1688.9 1685.2 1686.2 1693.8 1687.0 1695.4 

CHARMM22 amino end 1673.5 1672.7 1670.4 1673.6 1689.6 1693.8 
 acetyl end 1678.9 1679.0 1678.4 1680.0 1678.6 1677.9 

Experiments  Frequency 
Ar matrix  a  1674, 1685, 1698-1701 
Ar matrix  b 1680, 1688, 1704 
Kr matrix  c  1678, 1680, 1702 

 

a.- Ref. [Grenie 75] for AlaD-d2  molecule 
b.- Ref. [Pohl 07] for the AlaD molecule 
c.- Ref. [Pohl 07] for the AlaD molecule 

 
 
 

modes for the  C5, β, PII   and  C7eq  conformers are in opposite  order  with  respect  to the 
αR  and  αt  ones.   This  inversion  only can  be evidenced  for the  CHARMM22  force field 
where the two amide I modes are localized in the CO groups.  It is interesting to compare 
the calculated  frequencies with those obtained  experimentally.  To our knowledge there  is 
not  direct  measurements of the  AlaD-d2  molecule in vacuum.   Only the  results  in Argon 
matrix  [Grenie 75] are available and included in Table 3.26. We also present the results for 
the AlaD molecule also obtained  in Ar and Kr matrix  [Pohl 07]. The  value of the amide 
I frequency is only slightly  modified by the  deuterium  since the  contribution of the  H/D 
atoms of the NH/ND  groups to the definition of the amide I ENMs is small.  The IR bands 
corresponding  to the amide I mode show different peaks so that  it is impossible to make a 
one to one assignment.  But it is accepted that  the high frequency corresponds to the amino 
end amide I mode [Pohl 07] as the results obtained  for the αR and αt conformers using the 
CHARMM22 force field. Overall, we consider the agreement between the ENM frequencies 
derived  for the  MM force fields and  the  experimental measurements satisfactory.  From 
the  above considerations  we conclude  that  the  CHARMM22  MM force field is the  most 
appropriate to perform our study  about  the vibrational energy relaxation  of the AlaD-d2 

molecule. 
In Table 3.27 we present  the  ENM frequencies for the  isolated  AlaD-d2   molecule ob- 

tained  using the  CHARMM22  force field at  different  conformations.   We find some sig- 
nificant differences for the frequencies obtained  for the six conformers which, in general, 
become less important as the frequency increase.  That  is, the higher frequency vibrational 
modes are less affected by the molecule conformation.  This is expected because these modes 
are mostly  associated  with  bending  and  stretching vibrations  which are highly localized 
within  the  molecule and  tend  to be largely unaffected  by the  large atomic  displacement 
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involved in the  conformational changes.   On the  other  side the  low frequency  modes are 
delocalized [Moritsugu 00, Moritsugu 03] involving the simultaneous  motion of many atoms 
with  large oscillations  so that  the  interatomic interactions can be subsequently  modified 
from one conformer to another. 

 

Table 3.27: ENMs frequencies (in cm−1 ) for the deuterated alanine  dipeptide  molecule as obtained 
from the CHARMM22  force field for different conformers  in gas phase. 

 
ENM  C5  β  PII  C7eq  αR  αt 

 

1 32.8 4.9 11.8 50.1 10.6 7.7 
2 56.6 37.7 56.1 61.4 55.5 37.9 
3 68.4 63.6 68.8 83.1 66.2 60.1 
4 90.5 85.5 87.1 88.5 86.5 89.1 
5 95.4 94.2 70.0 107.3 98.3 91.2 
6 147.8 157.2 157.1 174.4 156.7 155.2 
7 160.6 176.7 182.8 185.4 182.3 195.0 
8 225.3 233.8 230.5 227.3 215.3 212.6 
9 250.1 251.1 260.9 279.5 260.7 263.9 

10 262.8 274.4 276.9 281.1 272.8 283.3 
11 301.2 282.6 281.9 296.4 305.3 310.7 
12 345.7 341.1 338.5 331.7 333.4 356.4 
13 380.9 373.5 364.7 422.4 389.5 368.2 
14 504.1 498.6 494.9 454.5 511.4 501.7 
15 549.7 553.9 540.3 545.6 527.4 535.1 
16 563.0 563.7 552.5 568.4 550.5 544.1 
17 581.6 573.5 583.2 596.3 587.1 585.2 
18 642.2 647.0 637.2 635.9 610.6 619.6 
19 746.9 754.0 746.7 747.7 729.5 732.5 
20 760.6 768.5 776.7 774.0 768.5 766.4 
21 780.9 788.9 782.9 777.9 776.9 775.9 
22 843.5 841.8 841.4 840.4 827.9 850.4 
23 856.7 856.6 857.6 861.4 853.3 852.1 
24 886.6 888.8 893.9 905.5 908.2 902.6 
25 962.0 958.3 952.8 944.2 947.9 937.0 
26 990.9 985.7 986.2 976.3 972.2 967.3 
27 1003.5 1011.6 1009.8 1021.0 1007.5 1014.1 
28 1052.6 1039.8 1083.6 1050.0 1064.6 1060.2 
29 1065.0 1068.6 1068.2 1070.0 1067.2 1065.3 
30 1070.5 1070.3 1076.7 1075.0 1077.4 1076.6 
31 1080.4 1081.4 1081.3 1081.7 1081.2 1081.6 
32 1084.5 1082.2 1084.3 1087.3 1108.8 1104.6 
33 1183.2 1199.9 1180.5 1162.4 1161.3 1178.2 
34 1320.5 1296.8 1308.9 1306.1 1306.6 1303.0 
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Table 3.27: (Continued) 
 

ENM  C5  β  PII  C7eq  αR  αt 
 

35 1369.3 1379.3 1371.1 1374.9 1376.1 1380.5 
36 1384.7 1391.4 1385.3 1389.7 1390.4 1396.3 
37 1406.1 1406.4 1403.3 1403.9 1403.7 1403.8 
38 1412.5 1413.6 1413.9 1414.8 1412.1 1413.8 
39 1416.6 1417.8 1416.9 1416.5 1415.7 1417.6 
40 1417.8 1419.9 1418.2 1417.6 1418.3 1418.4 
41 1425.6 1425.8 1426.1 1425.4 1426.0 1425.6 
42 1426.1 1428.2 1428.9 1432.1 1426.3 1428.3 
43 1441.3 1437.2 1436.8 1438.3 1438.3 1438.7 
44 1447.2 1454.5 1459.7 1464.2 1439.8 1445.1 
45 1548.6 1555.3 1547.4 1541.8 1532.3 1539.8 
46 1575.9 1594.0 1576.8 1569.1 1562.4 1563.5 
47 1673.5 1672.7 1670.4 1673.6 1678.6 1677.9 
48 1678.9 1679.0 1678.4 1680.0 1689.6 1693.8 
49 2446.2 2445.9 2446.1 2442.4 2444.9 2445.8 
50 2447.5 2447.7 2447.8 2447.6 2448.3 2448.8 
51 2852.6 2852.6 2852.5 2852.3 2852.5 2852.5 
52 2901.8 2902.0 2901.9 2902.2 2902.1 2902.2 
53 2905.4 2905.1 2905.2 2905.0 2907.4 2905.8 
54 2913.8 2913.9 2913.9 2914.0 2914.0 2913.9 
55 2914.5 2914.5 2914.6 2914.5 2914.4 2914.4 
56 2917.0 2917.1 2916.9 2917.2 2917.1 2917.2 
57 2957.9 2958.7 2958.7 2959.2 2958.3 2958.8 
58 2960.9 2960.7 2960.3 2960.2 2960.4 2960.5 
59 2974.9 2974.9 2975.0 2975.0 2975.1 2975.1 
60 2975.6 2975.5 2975.5 2975.4 2975.2 2975.2 

 
 
 
3.3.3  Computational details 

 
In order to analyze the behavior of the alanine dipeptide  molecule in water solution we have 
performed MD simulations  using the TINKER  program  package v5.0 [Ren 02, Ren 03]. 

In all our simulations  the solvent was composed of the D2O molecules while two set of 
independent simulations  were carried  out using the AlaD-d2  and 13C isotopic substituted 
AlaD-d2  molecule (13 C-AlaD-d2)  where the 12 C=O  carbonyl  group is replaced by 13C=O 
in the acetyl end.  The 13 C-AlaD-d2  molecule was studied  by Hochstrasser  et al [Kim 05a] 
because the isotopic substitution shifts the acetyl end amide I band ∼40 cm−1 to the red so 
that  the two amide I modes can be selectively excited.  In all of the simulations  the solvent 
was described  using the flexible TIP3P model with doubled  hydrogen  masses included in 
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the CHARMM22 [MacKerell 98] force field and the solute molecule and 248 D2 O molecules 
were placed in a cubic box with a length of 1.975 nm chosen to reproduce the experimental 
density  of the system [Nakamura 95] (ρ = 1.10436 g/cm3 ).  The simulation  time step was 
∆t= 1 fs, periodic boundary  conditions were apply, a cutoff of 10 Å was used for nonbonded 
interactions and the Ewald sum method  was applied for the long range interactions. 

For the AMBER94 [Cornell 95] and OPLS-AA/L [Jorgensen 96,Kaminski 01] force fields 
simulations  the  system  was equilibrated in the  N V T  ensemble at  T =300  K by coupling 
to a thermal  bath  [Berendsen 84] for 750 ps.  Afterward,  equilibrium propagation were 
performed  in the  N V E  ensemble for 100 ps and  configurations  were stored  every 5 fs in 
AMBER94  while the  OPLS-AA/L simulations  extended  up  to  2 ns and  the  data  were 
stored  every 50 fs. 

For the CHARMM22 force field we carried out 16 independent set of N V T equilibration 
runs of 1300 ps at 300 K by coupling to a thermal  bath  [Berendsen 84]. An initial period of 
800 ps was used to equilibrate  the system while the remaining  500 ps were used to export 
equilibrated configurations  at  20 ps intervals.   Thus  we stored  400 sets  of positions  and 
momenta  for our subsequent analysis. 

In order to evaluate  the dihedral  angle distribution for the AlaD-d2/D2O system  and 
to perform  the  INM analysis  we ran  equilibrium  N V E  simulations  for 100 ps using 200 
equilibrated configuration  as starting points.   During  these  runs  the  data  were exported 
each 100 fs so that  we collected 200000 snapshots  configuration  to perform our statistical 
analysis. 

For the  AlaD molecule in H2O water,  the  equilibrium  N V E  simulations  were carried 
out for one trajectory for 5 ns and data  were stored each 50 fs for the subsequent dihedral 
angle analysis. 

The relaxation  process was analyzed  in 400 nonequilibrium MD simulations  where an 
excess of energy of one vibrational quantum was suddenly deposited at t = 0 in the deuter- 
ated alanine dipeptide  molecule by displacing either the amino end or the acetyl end amide 
I  INM modes till its energy reached  the  proper  value.  The  trajectories were propagated 
in the N V E  ensemble in order to avoid any influence of the velocity scaling using a time 
interval  ∆t = 0.5 fs for 40 ps, exporting  the  configurations  (atomic  positions,  momenta, 
forces and Hessian matrix  of the solute) every 50 fs. Independent sets of simulations  were 
performed for the AlaD-d2  and 13C-AlaD-d2   molecules. 

In order to obtain a reasonable statistics of the dihedral angles distribution of the AlaD- 
d2  molecule, we performed extended  simulations  up to ∼60 ps for 2660 trajectories where 
only the configuration  of the molecules (atomic  positions  and momenta)  was exported  at 
50 fs intervals  but  not the forces nor the Hessian matrix  to keep the data  stored  within  a 
reasonable  size. 

 
 

3.3.4     Dihedral angles  distribution 
 

In Figures 3.43-3.45 we show the Ramachandran plots of the dihedral angles distributions of 
the AlaD-d2  molecule in heavy water as extracted from our equilibrium MD simulations  for 
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Figure 3.43: Sampled conformational distribution of the two dihedral  angles φ and ψ of the AlaD-d2 

molecule in D2 O solvent as obtained using the AMBER94  force field. 
 
 
 

the three different MM force fields. As seen in these figures the conformational distributions 
vary according to the force field employed.  Following previous works [Hu 03] we have found 
useful to consider two main regions named alpha R which includes the αR and αt conformers 
and beta  which include PII , β, C5 and C7eq  conformers.  The definition of these regions is 
given in Table 3.28. 

 
 

Table 3.28:   Definition  of the  alpha  R and  beta  regions for the  three  MM force fields.  Angles are 
given in degrees. 

 
alpha  R  beta 

Force field φmin    φmax    ψmin   ψmax  φmin    φmax    ψmin   ψmax 

AMBER94  -180 0  -130 70 -180 0  -180   -130 
-180 0 70 180 

OPLS-AA/L -180 0  -120 0 -180 0  -180   -120 
-180 0 0 180 
150 180  -180   -120 
150 180 0 180 

CHARMM22  -180 0  -150 30 -180 0  -180   -150 
-180 0 30 180 
150 180  -180   -150 
150 180 30 180 
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Figure 3.44: Sampled conformational distribution of the two dihedral  angles φ and ψ of the AlaD-d2 

molecule in D2 O solvent obtained by using the OPLS-AA/L force field. 
 
 
 

In Table 3.29 we include  the  percentage  of the  different  conformations  for the  AlaD 
molecule in water and the AlaD-d2  molecule in heavy water  obtained  using the three  MM 
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Figure 3.45: Sampled conformational distribution of the two dihedral  angles φ and ψ of the AlaD-d2 

molecule in D2 O solvent obtained by using the CHARMM22  force field. 
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Table 3.29: Percentages of the alpha  R and beta  conformations  of the AlaD molecule in water  and 
the Alad-d2   molecule in heavy water. 

 
Force field Solute Ensemble alpha  R beta 
AMBER94a AlaD-d2 N V E 100.0 0.0 
OPLS-AA/La AlaD-d2 N V E 19.7 80.3 
CHARMM22a AlaD-d2 N V E 58.5 41.5 
CHARMM22a AlaD N V E 57.4 42.6 
OPLSb AlaD N P T 13.5 86.0 
AMBER98b AlaD N P T 84.0 16.0 
CHARMM22b AlaD N P T 50.0 50.0 
CHARMM22c AlaD N V T 48.0 48.0 
a.- Present work 
b .- Ref. [Hu 03] 
c.- Ref. [Feig 08] 

 
 
 

force fields.  We also show some previous  results  [Hu  03, Feig 08].  We observe that  the 
results are not too affected neither  by the hydrogen deuterium  isotopic substitution in the 
AlaD molecule and  the  solvent  (see also Figure 3.46) nor the  use of the  N V T , N P T  or 
N V E  ensembles.  So the AMBER94  force field strongly  favor the alpha  R conformations 
although  a significant percentage  of beta conformations  (16%) is found for the AMBER98 
force field.   On  the  contrary   the  OPLS  force field provide  a  higher  percentage  of beta 
conformers (>80%).   Interestingly, the  CHARMM22 force field results  show a significant 
contribution of both conformations in a ratio 58/42 for the alpha R and beta conformations. 
We consider these results to be in a reasonable  agreement with previous simulations  where 
an  equal  percentage  of both  conformations  was stated  [Hu  03, Feig  08] if we take  into 
account the different methodological  approaches  applied. 

 
 
3.3.5     INMs analysis 

 
The next issue that  we address  concerns the analysis of the equilibrium  vibrational prop- 
erties  of the  AlaD-d2/D2O system  using  the  CHARMM22  force field.   This  analysis  is 
important to assess the ability  of the EAMC algorithm  to assign the INMs of the AlaD-d2 

molecule during the simulation. 
In Table 3.30 we give the  time  averaged  INM frequencies  obtained  using the  EAMC 

method  with a frequency window of width 400 cm−1.  The ENMs used as templates corre- 
spond to the different conformations  included in Table 3.24. We note that  the frequencies 
are ordered  according  to the  assignment  in terms  of the  ENMs.  That  means  that  when 
we talk  about  the 17th INM for the PII conformations  we mean all the INMs at different 
snapshots  of the system that  have been assigned to the 17th ENM using the ENMs of the 
PII conformer as template. One direct consequence of this assignment is that  the frequen- 
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Figure 3.46: Sampled  conformational distribution of the  two dihedral  angles φ and  ψ of the  AlaD 
molecule in H2 O water  solvent obtained by using the CHARMM22  force field. 

 
 
 

cies of the  INMs shown in Table 3.30 are  not  in increasing  order,  although  the  original 
ENMs were ordered  following that  criterion.   Thus  the  comparison  of frequencies within 
the same row of the table  is not always appropriate since the ith  INMs of different sets of 
the ENMs can be quite different. 

 
 

Table 3.30: Time averaged vibrational frequencies (in cm−1 ) of the INMs for the AlaD-d2  molecule 
in D2 O obtained using the EAMC method  with a frequency window of width ∆ω = 400 cm−1  using 
the ENMs of every conformer  as templates. Negative  values correspond  to imaginary  frequencies. 

 
INM  C5  β  PII  C7eq  αR  αt 

 

1 41.2 60.4 94.7 47.5 23.0 63.9 
2 −142.1 58.2 67.2 −171.8 83.5 49.5 
3 68.3 −164.3 −107.4 −26.1 −14.6 −163.7 
4 −16.4 97.4 85.2 67.4 98.4 95.5 
5 158.3 11.3 −50.8 136.3 −51.6 −2.4 
6 219.7 189.8 196.9 179.4 192.9 180.0 
7 183.9 210.4 206.6 220.5 228.2 239.1 
8 225.6 256.7 268.3 266.2 262.5 246.5 
9 294.1 283.3 266.2 256.5 277.7 231.1 

10 173.0 255.6 259.1 264.6 72.1 286.5 
11 307.0 302.4 294.1 297.6 319.2 322.4 
12 355.6 360.3 365.2 360.2 363.5 372.4 
13 419.8 419.8 419.3 422.3 416.8 401.1 
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Table 3.30: (Continued) 
 

INM  C5  β  PII  C7eq  αR  αt 
 

14 519.7 501.2 405.7 518.9 501.9 516.4 
15 574.4 582.2 553.4 561.3 553.4 540.9 
16 555.9 565.1 578.9 556.5 571.7 569.8 
17 568.6 573.9 576.3 572.8 579.5 585.1 
18 619.1 670.5 659.8 619.5 625.6 624.6 
19 745.3 738.7 734.9 745.2 746.6 747.2 
20 771.1 783.1 786.0 776.6 776.3 774.2 
21 785.5 737.4 746.1 784.8 787.2 786.8 
22 843.8 839.2 841.4 844.2 842.9 856.4 
23 854.1 855.6 855.7 854.1 855.0 844.8 
24 922.6 913.3 918.6 925.2 922.6 922.1 
25 973.9 970.9 976.8 996.3 982.1 993.2 
26 998.1 999.1 1002.4 986.4 1000.8 983.1 
27 1004.3 1013.7 1011.2 1018.3 1010.3 1001.1 
28 1066.8 1068.5 1049.6 1020.2 1031.6 1038.5 
29 1039.6 1092.6 1094.3 1097.3 1101.8 1103.4 
30 1080.0 1034.3 1050.1 1055.1 1052.5 1050.6 
31 1074.7 1075.6 1068.6 1066.2 1063.8 1066.6 
32 1075.9 1061.9 1062.4 1079.2 1080.0 1078.4 
33 1178.1 1182.7 1180.9 1175.7 1170.1 1180.2 
34 1304.6 1301.9 1302.9 1299.8 1306.8 1303.7 
35 1395.6 1406.6 1399.9 1400.3 1402.5 1401.4 
36 1407.3 1411.8 1410.0 1412.6 1407.7 1409.8 
37 1422.5 1413.8 1416.7 1415.1 1419.3 1412.7 
38 1422.2 1418.6 1420.9 1422.1 1417.6 1418.3 
39 1419.1 1414.2 1419.5 1419.3 1422.8 1418.7 
40 1410.6 1413.9 1409.6 1409.7 1411.9 1418.6 
41 1427.1 1425.7 1431.6 1430.5 1425.8 1427.1 
42 1431.2 1441.5 1437.3 1441.1 1438.2 1440.2 
43 1448.5 1448.5 1447.9 1446.1 1446.0 1449.9 
44 1463.8 1427.9 1484.9 1448.0 1434.3 1431.7 
45 1583.5 1587.6 1576.8 1547.5 1563.6 1560.2 
46 1547.9 1566.8 1522.6 1584.5 1589.6 1588.5 
47 1685.3 1685.2 1685.3 1685.3 1683.8 1683.7 
48 1683.8 1683.7 1683.8 1683.9 1685.6 1685.6 
49 2444.8 2444.7 2444.8 2444.8 2442.9 2442.9 
50 2442.9 2442.9 2442.9 2442.9 2444.8 2444.8 
51 2858.3 2858.3 2858.3 2858.3 2858.3 2858.3 
52 2909.3 2909.5 2909.3 2909.4 2909.0 2909.2 
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Table 3.30: (Continued) 
 

INM C5 β PII C7eq αR αt 
53 2910.9 2910.9 2910.6 2910.9 2910.9 2910.9 
54 2924.9 2921.7 2921.9 2925.1 2925.1 2925.7 
55 2915.3 2918.4 2918.4 2915.2 2915.2 2914.6 
56 2923.2 2923.2 2923.2 2923.2 2923.2 2923.2 
57 2965.5 2966.7 2967.6 2968.2 2967.7 2967.7 
58 2965.9 2964.7 2963.9 2963.1 2964.1 2963.8 
59 2976.5 2976.6 2976.6 2976.7 2986.3 2979.3 
60 2986.9 2986.8 2989.9 2986.8 2977.2 2984.2 

 
 
 
 
 
 

An excellent  example  of this  situation are the  47th  and  48th  ENMs.  It  was already 
discussed  (see Table 3.26) that  the  47th  and  48th  ENMs corresponds  to  the  amino  and 
acetyl end amide I modes respectively for the beta region conformers while the reverse 
assignment holds for the alpha  R conformations.  That  means that  in Table 3.30 we must 
compare  the  frequencies  of the  47th  INM for beta  conformations  with  the  values  of the 
48th INM for the alpha R conformers.  We see that  the frequencies then have similar values 
around  1685.4 cm−1.  According to the results  presented  in Table 3.25 and Table 3.26 that 
mode corresponds  to the  amino  end amide  I mode.  Similarly  the  48th  INM of the  beta 
conformations  should be compared  with the 47th INM of one alpha  R conformers.  Again 
the frequencies are very similar with values around  1683.8 cm−1.  This mode corresponds 
to the acetyl end amide I mode. An additional proof of the above assignments can be found 
in Figure 3.47 where we present  the  effective atomic  contributions for the  47th  and  48th 
INMs.  Using the  atom  definitions  shown in Figure 3.48.  As seen the  atoms  2-3 and  6-7 
correspond  to the  carbonyl  groups in the  acetyl  and amino end respectively.   The  results 
included  in Figure 3.47 probe  that  the  47th  and  48th  INMs obtained  using the  alpha  R 
ENMs as templates correspond  to the  acetyl  and amino end amide I modes respectively, 
while the opposite  assignment is found when using the beta  ENMs.  These results  probes 
the ability  of the EAMC method  to track  the identity  of the INMs during the simulations 
independently of the frequency ordering. 

It is interesting to compare these frequencies with those observed experimentally by 
Hochstrasser  [Kim 05a] 1629 and 1642 cm−1  for the acetyl and amino end amide I groups 
respectively.  We note that  the corresponding INM frequencies are 1683.8 and 1685.4 cm−1, 
so that  they  are higher  and  closer than  the  experimental data.   These  values reflect the 
averaged  assignment  of the  amide  I INMs  during  the  simulations.    When  the  AlaD-d2 

molecule lies in the beta region the acetyl end amide I frequency is higher than  that  of the 
amino  end amide  I, but  when the  conformers occupy the  alpha  R region the  acetyl  end 
amide I frequency is lower than  that  of the amino end amide I (see Table 3.26). According 
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Figure 3.47:  Average effective atomic  contributions to the amide I modes of the AlaD-d2  molecule 
obtained using the ENMs of different conformers  as templates. 

 
 
 

to the dihedral  angle analysis of the AlaD-d2/D2O system we have that  the ratio  between 
the  alpha  R and  beta  regions is 58/42.   This  explain  why the  average  frequencies of the 
two amide I modes are so closer in solution that  in gas phase. 

 
From  the above considerations  we conclude that  the values of the INM frequencies do 

not  provide  a clear  criterion  to  choose one or other  ENMs  as templates.  We  have  ex- 
plored an alternative criterion  based on the overlaps between  the INMs and ENMs given 
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Figure 3.48:   The effective atoms  definition  of the AlaD-d2   molecule. 
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by Eq. (2.84), which are included  in Table 3.31.  In principle  the  optimal  template would 
corresponds  to  the  ENMs  shown to  be more similar  to  the  INMs during  the  dynamics. 
While we observe noticeable  differences for the values of the overlaps in given INMs, spe- 
cially as the frequencies are lower, the average overlaps are very similar for the six sets of 
the ENM considered. 

 
 

Table 3.31: Time averaged  diagonal  elements  (Oii ) for the overlap matrix  (see Eq. (2.84)) between 
ENMs and INMs obtained using the EAMC method  with a frequency window of width  ∆ω = 400 
cm−1  and using the ENMs of every conformer  as templates 

 
i C5 β PII C7eq αR αt 
1 0.866 0.863 0.877 0.894 0.861 0.896 
2 0.633 0.838 0.828 0.579 0.807 0.872 
3 0.832 0.585 0.654 0.670 0.746 0.591 
4 0.705 0.806 0.793 0.797 0.831 0.825 
5 0.861 0.686 0.661 0.911 0.670 0.698 
6 0.918 0.891 0.905 0.894 0.906 0.890 
7 0.887 0.928 0.928 0.913 0.920 0.913 
8 0.922 0.927 0.898 0.893 0.911 0.932 
9 0.863 0.783 0.889 0.834 0.906 0.832 

10 0.778 0.821 0.784 0.875 0.680 0.849 
11 0.906 0.926 0.894 0.888 0.860 0.865 
12 0.847 0.924 0.917 0.894 0.905 0.893 
13 0.887 0.873 0.881 0.876 0.875 0.916 
14 0.926 0.927 0.923 0.932 0.942 0.923 
15 0.930 0.909 0.882 0.922 0.848 0.887 
16 0.900 0.907 0.912 0.878 0.908 0.862 
17 0.906 0.949 0.945 0.890 0.951 0.911 
18 0.928 0.904 0.894 0.915 0.917 0.931 
19 0.939 0.880 0.873 0.915 0.952 0.953 
20 0.922 0.939 0.966 0.934 0.930 0.926 
21 0.963 0.878 0.877 0.961 0.963 0.968 
22 0.925 0.922 0.929 0.929 0.922 0.940 
23 0.950 0.957 0.957 0.974 0.944 0.904 
24 0.922 0.924 0.927 0.938 0.936 0.905 
25 0.921 0.932 0.925 0.897 0.911 0.932 
26 0.903 0.922 0.904 0.886 0.872 0.915 
27 0.934 0.915 0.923 0.924 0.916 0.919 
28 0.915 0.918 0.922 0.931 0.913 0.921 
29 0.914 0.957 0.963 0.966 0.967 0.965 
30 0.958 0.931 0.916 0.898 0.922 0.943 
31 0.944 0.955 0.934 0.895 0.921 0.945 
32 0.948 0.929 0.931 0.879 0.914 0.903 
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Table 3.31: (Continued) 
 

i  C5  β  PII  C7eq  αR  αt 
 

33 0.959 0.956 0.959 0.936 0.951 0.938 
34 0.944 0.927 0.923 0.903 0.944 0.938 
35 0.893 0.950 0.891 0.881 0.903 0.949 
36 0.920 0.869 0.897 0.858 0.853 0.852 
37 0.909 0.831 0.895 0.879 0.901 0.812 
38 0.844 0.819 0.863 0.825 0.900 0.902 
39 0.853 0.981 0.864 0.852 0.939 0.957 
40 0.981 0.848 0.982 0.980 0.981 0.932 
41 0.928 0.955 0.951 0.952 0.953 0.951 
42 0.934 0.961 0.951 0.952 0.943 0.963 
43 0.980 0.974 0.979 0.982 0.956 0.983 
44 0.895 0.888 0.892 0.886 0.877 0.903 
45 0.876 0.951 0.866 0.893 0.933 0.933 
46 0.887 0.930 0.882 0.892 0.957 0.953 
47 0.967 0.954 0.957 0.948 0.963 0.973 
48 0.974 0.966 0.969 0.962 0.952 0.956 
49 0.988 0.988 0.990 0.990 0.888 0.988 
50 0.988 0.988 0.990 0.991 0.888 0.988 
51 0.999 0.999 0.999 0.999 0.999 0.999 
52 0.979 0.978 0.981 0.978 0.980 0.981 
53 0.978 0.977 0.979 0.977 0.978 0.980 
54 0.999 0.997 0.997 0.999 0.999 0.999 
55 0.997 0.999 0.999 0.997 0.997 0.997 
56 0.997 0.997 0.997 0.997 0.997 0.997 
57 0.999 0.999 0.999 0.999 0.999 0.999 
58 0.999 0.999 0.999 0.999 0.999 0.999 
59 0.999 0.999 0.999 0.999 0.999 0.999 
60 0.999 0.999 0.999 0.999 0.999 0.999 

 

Mean value 
 

0.921 
 

0.918 
 

0.918 
 

0.915 
 

0.918 
 

0.923 
 
 
 
 
 

Therefore our conclusion is that  the INM analysis does not depend on the choice of the 
ENMs used as template. This conclusion is important for the further  extension of the INM 
analysis to polypeptides  or proteins.  In our present study  we have chosen as template the 
ENMs corresponding  to the C5 conformer. 

As a final test we have calculated the time averaged kinetic and potential energies of the 
INMs which are included in Table 3.32 and Table 3.33. As seen the simulations  reproduce 
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quite well the thermodynamic limit kB T /2 which is 104.3 cm−1  at room temperature. The 
only exceptions  correspond  to the  potential energy of the  lower frequency  modes due to 
the  singularity  in the  potential energy  expression  when the  force constants are  close to 
zero [Kalstein 11]. 

 
 

Table 3.32: Time averaged  kinetic energy (in cm −1 ) of the INMs for the AlaD-d2  molecule in D2 O 
solution. 

 
INM C5 β PII C7eq αR αt 

1 104.7 104.9 104.9 105.1 105.3 104.7 
2 105.2 105.3 105.1 105.0 104.8 105.2 
3 104.8 105.1 105.3 105.3 104.9 104.9 
4 105.2 104.8 104.9 104.8 104.9 104.7 
5 104.8 105.3 105.1 105.1 105.3 105.3 
6 105.1 105.4 105.5 105.4 105.4 105.1 
7 105.5 104.5 104.9 105.1 104.6 104.7 
8 110.1 105.2 110.6 104.7 105.2 104.9 
9 104.8 105.4 105.0 105.2 105.2 104.8 

10 104.4 104.5 104.4 104.4 104.6 104.9 
11 105.2 104.7 104.8 105.4 105.3 105.2 
12 105.3 104.9 105.0 104.8 105.1 105.4 
13 105.3 104.9 104.9 105.3 104.7 104.9 
14 103.7 104.8 104.8 104.1 104.8 104.5 
15 104.5 104.4 104.3 104.4 104.6 105.2 
16 105.3 104.6 104.3 104.9 104.4 104.6 
17 104.5 104.5 104.6 104.4 104.3 104.2 
18 103.9 103.2 103.6 104.1 104.1 103.7 
19 102.8 103.7 103.9 103.0 102.8 102.9 
20 103.4 103.5 103.6 103.3 103.3 103.3 
21 103.6 103.5 103.1 103.6 103.6 103.6 
22 104.7 104.8 104.7 104.8 104.8 105.6 
23 105.6 105.7 105.7 105.6 105.7 104.8 
24 103.1 103.0 103.0 103.2 103.0 103.3 
25 105.1 104.9 104.9 104.8 104.8 104.8 
26 105.2 104.8 105.4 105.2 105.1 105.1 
27 104.3 104.6 104.4 104.6 104.0 104.2 
28 105.5 105.1 104.7 104.5 105.0 104.8 
29 104.3 105.1 104.7 104.7 104.6 104.6 
30 104.8 104.9 105.4 105.5 105.5 105.4 
31 105.5 105.4 105.3 105.2 105.1 105.3 
32 104.8 104.7 104.9 104.6 105.2 105.1 
33 104.7 104.4 104.4 104.8 104.8 104.5 
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Table 3.32: (Continued) 
 

INM C5 β PII C7eq αR αt 
34 104.1 104.3 104.2 104.1 104.1 104.2 
35 103.1 103.8 102.7 103.1 103.7 103.7 
36 103.8 103.2 103.7 103.7 103.0 103.4 
37 102.6 103.1 103.1 102.9 102.9 103.1 
38 103.7 103.4 103.7 103.7 103.3 103.2 
39 103.2 103.2 103.2 102.9 104.0 103.7 
40 103.2 103.1 103.3 103.3 103.0 103.2 
41 102.7 102.9 102.8 103.0 102.9 102.9 
42 102.8 102.1 102.5 102.5 102.5 102.2 
43 102.3 102.5 102.3 102.4 102.4 102.4 
44 103.4 103.5 103.7 103.0 103.2 103.2 
45 103.5 103.6 103.4 103.3 102.9 102.9 
46 103.1 102.9 103.1 103.5 103.6 103.7 
47 103.8 103.7 103.8 103.7 104.6 104.6 
48 104.6 104.6 104.6 104.6 103.7 103.7 
49 100.9 100.9 100.9 100.9 101.4 101.4 
50 101.4 101.4 101.4 101.4 100.9 100.9 
51 99.1 99.1 99.1 99.1 99.1 99.1 
52 96.4 96.4 96.4 96.4 96.5 96.4 
53 99.7 99.7 99.7 99.7 99.7 99.7 
54 99.2 99.3 99.3 99.1 99.2 99.1 
55 99.7 99.5 99.5 99.8 99.7 99.8 
56 98.3 98.3 98.3 98.3 98.3 98.3 
57 96.4 96.3 96.2 96.3 96.3 96.2 
58 95.6 95.7 95.8 95.7 99.7 95.8 
59 101.2 101.2 101.2 101.1 100.6 101.1 
60 100.5 100.5 100.5 100.6 101.2 100.6 

 
 
 
 
 
 

Table 3.33:  Time  averaged  potential energy (in cm −1 ) for the  INMs of the  AlaD-d2   molecule in 
D2 O solution. 

 
INM  C5  β  PII  C7eq  αR  αt 

 

1 8.1 48.1 55.7 220.4 152.7 48.9 
2 −61.2 −53.8 141.9 −67.6 −106.2 414.2 
3 71.7 −32.8 −137.2 45.4 102.8 −36.5 
4 73.2 129.4 136.9 44.0 208.7 93.4 
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Table 3.33: (Continued) 
 

INM  C5  β  PII  C7eq  αR  αt 
 

5 111.3 63.1 11.3 141.5 14.3 91.6 
6 88.6 334.5 48.2 192.9 139.2 108.2 
7 305.7 143.8 187.1 142.9 153.9 157.5 
8 126.5 114.4 109.9 109.3 117.5 118.4 
9 106.9 104.1 109.7 93.3 109.2 91.9 

10 73.0 93.9 87.7 106.7 41.2 105.8 
11 101.3 108.7 110.8 107.1 97.8 97.5 
12 95.6 101.9 101.2 100.6 103.0 104.2 
13 105.1 101.9 103.5 103.2 98.5 104.3 
14 103.0 105.1 104.2 102.5 107.9 110.3 
15 107.5 108.1 109.5 112.4 110.0 107.8 
16 108.1 113.1 107.0 106.3 106.3 106.5 
17 112.6 105.1 104.8 104.0 105.1 106.0 
18 104.3 104.2 103.9 104.2 104.2 103.9 
19 105.9 106.5 106.8 106.6 106.8 106.8 
20 107.2 107.8 107.6 107.6 107.6 107.3 
21 107.3 104.9 105.2 107.3 107.9 107.7 
22 110.7 110.3 110.4 110.6 110.6 112.4 
23 111.3 111.9 111.9 111.4 111.6 110.5 
24 109.8 110.2 110.2 110.0 110.3 109.8 
25 112.8 112.9 111.6 106.8 110.7 107.3 
26 106.9 107.2 106.5 111.2 106.7 111.1 
27 107.5 105.8 105.6 105.5 105.7 106.1 
28 103.6 103.3 104.5 105.7 106.3 105.6 
29 104.5 102.0 103.1 102.6 102.1 101.9 
30 104.2 104.7 105.2 108.7 109.6 109.9 
31 101.8 102.0 103.4 103.4 104.2 103.7 
32 107.6 109.8 108.5 104.6 103.3 102.9 
33 106.3 106.9 106.9 106.8 106.5 107.2 
34 106.6 105.8 106.0 105.9 106.3 105.9 
35 102.9 107.0 102.9 105.1 109.4 107.2 
36 107.3 104.9 107.8 105.9 101.7 105.1 
37 105.5 102.7 104.5 104.6 104.4 101.3 
38 100.8 100.5 100.5 100.3 101.8 101.2 
39 100.7 104.3 101.1 101.1 102.4 102.8 
40 106.3 100.6 106.2 105.8 104.4 105.2 
41 94.2 93.7 94.3 94.1 93.0 93.8 
42 101.4 103.7 102.8 103.6 102.1 103.2 
43 106.9 106.0 106.6 105.7 107.5 106.2 
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Table 3.33: (Continued) 
 

INM  C5  β  PII  C7eq  αR  αt 
 

44 103.2 103.5 104.6 101.7 100.7 101.6 
45 108.9 109.4 108.1 107.3 107.4 107.3 
46 105.6 107.4 104.7 108.5 109.4 108.8 
47 107.7 107.6 107.7 107.6 107.5 107.4 
48 107.4 107.4 107.4 107.7 107.9 108.1 
49 106.6 106.6 106.6 106.6 107.0 107.0 
50 107.0 107.0 107.0 107.0 106.6 106.6 
51 106.8 106.8 106.8 106.8 106.8 106.8 
52 104.3 104.3 104.3 104.3 104.3 104.4 
53 107.9 107.9 107.9 107.9 107.9 107.9 
54 107.5 107.4 107.3 107.5 107.5 107.6 
55 107.7 107.9 107.9 107.8 107.7 107.7 
56 106.8 106.8 106.8 106.8 106.8 106.8 
57 105.1 104.9 104.8 104.6 104.9 104.9 
58 103.7 103.8 103.9 104.2 103.8 103.8 
59 110.8 110.8 110.7 110.8 108.2 110.2 
60 108.2 108.2 108.4 108.2 110.8 108.8 

 

 
 
 
 
 
 
3.3.6     The  AlaD-d2   molecule 

 
3.3.6.1    INMs assignment 

 
We start  our study  by considering the choice of the ENMs to be used as templates in the 
assignment  of the  INMs through  the  EAMC  method.   As discussed  in Section 3.3.4 the 
AlaD-d2  molecule in D2O solution explores both the alpha R and beta regions. In order to 
simplify our analysis we have applied the EAMC method  using the ENMs of the αR  and 
C5 conformations  as templates, which are representative of those regions respectively. 

In Figure 3.49 we show the  time evolution  of the  vibrational energy of the  acend and 
amend  amide I modes after  being excited  at  t = 0 obtained  using the  C5 and  αR  ENMs 
as templates to  identify  the  INMs.   As seen both  sets  of ENMs  provide  similar  results. 
This  similarity  is also found for other  INMs excited  during  the  relaxation  process as we 
can see in Figure 3.50 and  Figure 3.51 where we present  the  vibrational energies of some 
representative INMs.  In all of these  cases the  curves  are identical  within  the  statistical 
noise.  We note that  similar results  were obtained  using other  sets of ENMs as templates 
(results  not shown). 

The  ability  of the  EAMC  method  to  provide  similar  INM  vibrational curves  when 



Section 3.3 Vibrational relaxation of the amide I modes of the AlaD molecule in D2O(l) 127  

IN
M

 
IN

M
,e

q 
-1

 
E am

I 
(t)

 - 
E am

I 
(c

m
  

)  

 
 

a 
1500 

 

 
1000 

 

 
500 

 

 
0 

1500  b 
 

 
1000 

 

 
500 

 

 
0 

0  2  4  6  8  10 
t (ps) 

 

Figure 3.49:  Time evolution  of the vibrational energy (in cm−1 ) relative  to its equilibrium  value of 
the acend (a) and amend  (b) amide I INMs of the AlaD-d2   molecule assigned using the C5 (green 
line) and αR (blue line) ENMs as templates. 

 
 
 

different ENMs are used as templates is an important property  when studying  flexible 
molecule as polypeptides  in solution which present many different conformations.   The 
robustness  of the EAMC method comes from the use of the atomic contributions to identify 
the  INMs.   The  mid-range  and  high  frequency  ENMs  for different  conformations  have 
similar  atomic  contributions so that  the  identification  of the  INMs is largely  unaffected 
by the choice of one or other  set of ENMs.  On the contrary  the identification  of some of 
the  low frequency  modes can vary  significantly  with  the  torsion  angles.   However, these 
modes do not  store  great  amounts  of vibrational energy during  the  relaxation  process so 
that  their  individual  identification  is not a crucial point to establish  the IVR mechanism. 

According to the values in Table 3.31 where we gave the average overlaps obtained  using 
different ENMs as templates to assign the INMs and by following the above consideration 
we mention  that  all the  results  presented  for the  vibrational relaxation  of the  AlaD-d2 

molecule in the following sections were obtained  using the C5 ENMs as template to identify 
the INMs. 

 
 

3.3.6.2    Amide I modes  relaxation lifetimes 
 

The  AlaD-d2  molecule is characterized by the  presence of two amide I modes, the  acend 
amide I mode in the acetyl end and the amend amide I mode in the amino end (see Figure 
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Figure 3.50:    Time  evolution  of the  vibrational energy  (in  cm−1 )  of the  INMs  of the  AlaD-d2 

molecule assigned  using the  αR (blue  line) and  C5 (green  line) ENMs as template following the 
excitation of the acend amide I mode. 

 
 
 

3.2).   We  present  here  the  analysis  of the  relaxation   lifetimes  following the  individual 
excitation  of each amide I mode.  In Figure 3.52 and  Figure 3.53 (upper  panels)  we show 
the time evolution  of the vibrational energy of the acend and amend amide I modes after 
being excited at  t = 0 respectively  obtained  in our MD simulations.   As seen both  curves 
show a sharply fall during the first 50 fs then the decays become gradually  slower. We find 
that  the energy curves are well reproduced  by a tetraexponential function as follows 

 
Evib 

 
vib,eq  N 

   amI(t) − EamI     = c e−t/τrel,i (3.10) 
Evib vib,eq rel,i 

amI (0) − EamI 
 

where crel,i ’s are the  amplitudes with 
i=1 

i=1 
 
crel,i   = 1, τrel,i  are the  relaxation  lifetimes and 

N  = 4. In Table 3.34 we include the parameters obtained  from the fit. As seen both curves 
show ultrashort decays in the fs time scale which account for 18.2% of the energy initially 
stored  in the  amide  I modes.  The  three  longer lifetimes are in the  ps time  scale and  we 
note significant differences in the values of the amplitudes and the rates between the results 
obtained  for the acend and amend amide I modes.  In order to make a proper  comparison 
between the relaxation  times for both amide I modes it is useful to calculate the overall 
relaxation  time T1  when the initial vibrational energy decrease in a factor 1/e. The values 
of T1 are included in Table 3.34 and we notice that  the acend amide I mode relax in a larger 
time scale than  the amend mode.  These differences probe that  both amide I modes follow 
different relaxation  pathways  that  we now analyze comparatively.  In order to distinguish 
the  amide  I modes energy flows via intramolecular vibrational redistribution (IVR)  and 
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Figure 3.51:    Time  evolution  of the  vibrational energy  (in  cm−1 )  of the  INMs  of the  AlaD-d2 

molecule assigned  using the  αR (blue  line) and  C5 (green  line) ENMs as template following the 
excitation of the amend  amide I mode. 

 
 
 

intermolecular energy  flow into  the  bath,  an  additional analysis  has  been performed  by 
employing the  SMF method  [Soler 11].  In Figure 3.52 and  Figure 3.53 (lower panels)  we 
show the time evolution  of the normalized  accumulated energy that  flows from the acend 
and  amend  amide  I modes to the  bath  and  to the  rest  of the  molecule through  an IVR 
process.  These energy flow curves are well reproduced  by the following functions 

 

  f ac   
 (t)   

amideI (0) 
f ac 

N 
 
 
i=1 

 

i (1 − e 
 

−t/τ IVR 

 
 
bath 

 
)  (3.11) 

     bath (t)   
amideI (0) 

=  cbath (1 − e−t/τ
 )  (3.12) 

being ci ’s the  amplitudes with 
'LN cIVR  + cbath = 1 and τi ’s the  corresponding  lifetimes. i i 

We should mention  here that  the linear convolution  applied  to smooth  the energy curves 
was carried  out  using 400 fs as the  convolution  time  interval.   However, the  first 0.15 ps 
intervals  of the curves were unconvoluted in order to detect  the energy transfer  occurring 
in the shorter  time scale (see Section 3.2.3 for more details). 

In Table 3.34 we include the parameters obtained  from the fits.  Interestingly, we find 
that   the  accumulated energy  curves  are  well reproduced  by  using  the  same  relaxation 
lifetimes obtained  from the kinetic analysis of the amide I modes relaxations.  In this way 
we can identify  that  only the  third  terms  with relaxation  lifetimes 0.919 ps and 0.744 ps 
for the  acend  and  the  amend  amide  I modes  respectively  correspond  to  intermolecular 
energy transfers  into the bath  while the remaining terms correspond to the IVR processes. 
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Figure 3.52:  (upper  panel) Time evolution of the normalized vibrational energy of the acend amide 
I mode with  respect  to  its  equilibrium  value  at  300 K (black  line) and  the  fit to  Eq. (3.10)  (red 
dashed  line)  and  (lower  panel)  time  evolution  of the  normalized  accumulated energy  that flows 
from  the  acend  amide  I mode  into  the  remaining  INMs  of the  AlaD-d2   molecule  through IVR 
processes (black  line) and  into  the  bath  (blue  line) and  their  fits (red  dashed  lines) to Eq. (3.11) 
and Eq. (3.12) respectively. 

 
 
 

Moreover, the SMF analysis establishes  that  only 13% of the energy released by the amide 
I modes goes directly  into the solvent so that  most of the energy flows (87%) corresponds 
to IVR processes within  the AlaD-d2  molecule.  In the following section we analyze those 
IVR pathways. 

 
 
3.3.6.3    IVR pathways 

 
The  next  issue that   we address  is the  relaxation  pathways   of the  amide  I modes.   As 
discussed above the relaxation  of the amide I modes take place through  four stages. 

The first stage is characterized by an ultrafast relaxation  time (1.8 fs) for both  amide 
I modes and  accounts  for 18% of the  energy released.   Concerning  the  relaxation  of the 
acend amide I mode we find that, this  stage is characterized by the  energy flow into  the 
amend amide I mode with a little contribution from the 46th INM. In Figure 3.54 we show 
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Figure 3.53:    (upper  panel)  Time  evolution  of the  normalized  vibrational energy  of the  amend 
amide  I mode with  respect  to its equilibrium  value  at  300 K (blue  line) and  the  fit to Eq. (3.10) 
(red  dashed  line)  and  (lower  panel)  time  evolution  of the  normalized  accumulated energy  that 
flows from the amend  amide I mode to the remaining  INMs of the AlaD-d2  molecule through IVR 
processes  (black  line) and  into  the  bath  (blue  line) and  their  fits (red  dashed  lines)to  Eq. (3.11) 
and Eq. (3.12) respectively. 

 
 
 

the time evolution of the vibrational energy of these two modes.  We observe that  280 cm−1 

of the energy released from the acend amide I mode is transferred into the amend amide I 
mode, whereas the 46th INM receives just 30 cm−1.  Therefore the first stage of the acend 
amide I relaxation  is dominated  by a rapid exchange of vibrational excitation  between the 
acend and amend amide I modes. 

The time evolution of the energy of the amend amide I mode is well reproduced  by the 
following equation 

 

EINM INM −t/τrel,1
 −t/τrel,2

 −t/τrel,3
 −t/τexc

 

i  (t) − Ei,eq  = A (crel,1  e + crel,2 e + crel,3 e − e  ) + B  (3.13) 
 

where τrel,i ’s are the  relaxation  times,  crel,i ’s are the  corresponding  weights which satisfy 'L 
i crel,i   = 1, τexc   is the  excitation  lifetime, A  is a parameter related  to the  maximum  of 

the  energy curve and  B  is a parameter which accounts  for small deviations  of the  curve 
from the equilibrium  value at long times.  The time evolution  of the vibrational energy of 
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Table 3.34: Vibrational relaxation times of the amide I mode (in ps) and amplitudes for the AlaD-d2 

molecule as obtained from the fitting. 
 

amide I τrel,1 (crel,1 ) τrel,2 (crel,2 ) τrel,3 (crel,3 ) τrel,4 (crel,4 ) T1 

Kinetica  acend 0.0018(0.182) 0.415(0.401) 0.919(0.269) 1.737(0.148) 0.54 
amend 0.0018(0.182) 0.201(0.420) 0.744(0.130) 1.687(0.268) 0.35 
amide I  τ IVR (cIVR )  τ IVR (cIVR )  τ IVR IVR IVR IVR bath bath 

  1   1   2   2   3   (c3       )  τ4   (c4       )  τ (c  ) 
SMFb  acend  0.0018(0.182)   0.415(0.401)  0.919(0.138)  1.737(0.148)  0.919(0.131) 

amend  0.0018(0.182)   0.201(0.420)  1.687(0.268)  0.744(0.130) 
a.- See Eq. (3.10) 
b.- See Eq. (3.11) and Eq. (3.12) 

 
 
 

the 46th INM is given by 
 

EINM 

 
 
INM 

 
 
−t/τrel

 

 
 
−t/τexc

 

i  (t) − Ei,eq  = A (e − e  ) + B  (3.14) 
 

where τrel  and τexc  are the relaxation  and the excitation  lifetimes respectively.  The curves 
obtained  from the fits are superimposed in Figure 3.54 and the values of the parameters are 
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Figure 3.54: Time evolution  of the vibrational energy of (a) the amend amide I mode and (b) 46th 
INM (blue  lines)  and  the  corresponding  fits (yellow lines)  following the  initial  excitation of the 
acend amide I mode. 
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Figure 3.55:  Time  evolution  of the  vibrational energy of (a)  the  acend amide  I mode and  (b)  the 
46th  INM (blue  lines) and  the  corresponding  fits (yellow lines) following the  initial  excitation of 
the amend  amide I mode. 

 
 
 

included in Table 3.35. We note that  the relaxation  of the amend amide I mode following 
the initial excitation  of the acend amide I mode is well reproduced using the same relaxation 
lifetimes and similar weights than  those used to fit the relaxation  of this mode when it was 
initially  excited (see Table 3.34). This fact points out to a common relaxation  mechanism 
of the amend amide I mode independently of the way this mode was excited. 

Regarding  the  results  when  the  amend  amide  I  mode  is initially  excited  we found 
deep similarities  with the results  already  presented  for the relaxation  of the acend amide 
I  mode.  The  first stage  is governed by the  energy transfer  into  the  acend amide  I mode 
which accounts  for 280 cm−1  of the energy released (see Figure 3.55) with a less important 
contribution (40 cm−1 ) of the  46th  INM. The  energy curves of the  acend  amide  I mode 
and the 46th INM are also well fitted  using Eq. (3.13) and Eq. (3.14) respectively  and the 
results  of the fits are included in Table 3.36. We also see that  the relaxation  of the acend 
amide I mode shows a similar pattern to that  found when this mode was directly  excited. 
The time evolution  of the 46th INM is also similar in both  curves. 

The ultrafast energy exchange between the two amide I modes is favored by their similar 
frequencies as we can see in Table 3.37 where the the 47th and 48th INMs correspond  to 
the amend and acend amide I modes respectively.  The average frequency of the 46th mode 
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Table  3.35:  Fit  parameters for the  vibrational energy  curves  of different  INMs  of the  AlaD-d2 

molecule  after  the  initial  excitation of the  acend  amide  I mode.   The  relaxation and  excitation 
lifetime are in ps and the parameters A and B in cm−1 . The amend amide I mode curve was fitted 
using Eq. (3.13) and  the  remaining  INMs were adjusted using Eq. (3.14).  Number  in brackets  are 
the corresponding  weights (see Eq. (3.13)). 

 
INM  τexc  τrel  A  B 

 

amend amide I 0.0018 0.201(0.513) 387.2 5.7 
  0.744(0.159)   
  1.687(0.328)   

46th 0.0018 8.66 30.0 0.0 

14th 0.415 1.38 51.5 4.5 
15th 0.415 1.38 86.5 0.0 
16th 0.415 1.38 85.1 0.0 
17th 0.415 1.38 91.4 0.0 
18th 0.415 1.38 89.4 5.0 
25th 0.415 3.16 107.6 0.0 
31st 0.415 1.20 360.4 4.6 
33rd 0.415 4.20 47.8 5.4 
44th 0.415 8.66 27.9 3.4 
45th 0.415 8.66 16.4 4.4 

24th 0.919 4.37 47.8 4.6 
26th 0.919 2.94 87.4 2.5 
28th 0.919 7.08 34.4 0.3 
29th 0.919 3.89 87.4 3.7 
30th 0.919 8.66 28.6 2.0 
34th 0.919 8.66 26.0 3.4 
35th 0.919 8.66 24.6 4.8 
acend CH bendinga 0.919 8.66 96.6 10.2 

amend CH bendingb 1.737 8.66 58.9 4.4 
Cβ H bendingc 1.737 8.66 69.6 6.7 

19th 0.201 5.20 23.9 8.8 
20th 0.201 8.11 42.0 2.7 
21st 0.201 8.62 31.0 4.0 
22nd 0.201 5.90 46.9 3.0 

27th 1.613 2.60 185.9 4.4 
32nd 1.613 6.63 46.5 0.0 

49th-60th 4.416 8.66 609.1 41.8 
a.- 36th, 38th and 40th INMs 
b.- 39th and 41st INMs 
c.- 37th, 42nd and 43rd INMs 
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Table  3.36:  Fit  parameters for the  vibrational energy  curves  of different  INMs  of the  AlaD-d2 

molecule after  the  initial  excitation of the  amend  amide  I mode.   The  relaxation and  excitation 
lifetime are in ps and the parameters A and B  in cm−1 . The acend amide I mode curve was fitted 
using Eq. (3.13) and  the  remaining  INMs were adjusted using Eq. (3.14).  Numbers  in bracket  are 
the corresponding  weights (see Eq. (3.13)) 

 
INM  τexc  τrel  A  B 
acend amide I  0.0018 0.415(0.490)  336.0  8.9 

0.919(0.329) 
1.737(0.181) 

46th 0.0018 8.66 35.3 4.2 

19th 0.201 4.89 23.9 5.5 
20th 0.201 4.89 43.0 0.0 
21st 0.201 3.85 53.5 0.0 
22nd 0.201 1.20 405.9 19.7 
23rd 0.201 6.76 61.4 0.0 
44th 0.201 8.79 28.3 3.8 
45th 0.201 8.79 32.3 2.8 

34th 1.687 8.79 51.8 0.0 
35th 1.687 8.79 32.9 2.7 
acend CH bendinga 1.687 18.79 49.0 7.8 
amend CH bendingb 1.687 48.79 9.9 0.0 
Cβ H bendingc 1.687 23.02 45.7 22.1 

24th 0.415 65.15 1.3 5.0 
25th 1.662 56.83 2.0 0.0 
26th 0.919 46.21 6.7 0.0 
27th 1.241 65.81 1.7 0.0 
28th 1.089 38.79 9.5 0.0 
29th 1.007 38.79 8.3 0.0 
30th 0.663 38.79 9.4 0.0 
31st 0.594 48.79 0.5 0.0 
32nd 0.471 38.79 6.2 0.0 
33rd 0.526 48.79 0.2 0.0 

49th-60th 6.137 18.79 223.6 10.7 
a.- 36th, 38th and 40th INMs 
b.- 39th and 41st INMs 
c.- 37th, 42nd and 43rd INMs 

 
 
 

is significantly lower so that  the energy flow must  be due to fortuitous  frequency crossing 
at given times.  Moreover, the overlaps between the two amide I modes and the 46th INM 
are significant as we can see in Figure 3.56 what favors the coupling facilitating  the energy 
flows. 

 

The second stage of the acend amide I relaxation  shows a relaxation  time of 0.415 ps 
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Figure 3.56:   Average effective atomic  displacement contributions for the INMs of the (a) AlaD-d2 

and (b) 13 C-AlaD-d2   molecules (see Figure 3.48 for effective atom  definitions). 
 
 

and  accounts  for 40.1% of energy transferred from the  amide  I mode, that  is 675 cm−1. 
We  find that   the  14th,  15th,  16th,  17th,  18th,  25th,  31st,  33rd,  44th  and  45th  INMs 
are  excited  during  the  second  stage.   In  Figure 3.57 we show the  time  evolution  of the 
vibrational energy of these INMs, together  with the fitted curves obtained  using Eq. (3.14). 
The fitting parameters are included in Table 3.35. According to the data  included in Table 
3.37 we find that  the combination  of one of the mid frequency modes 25th,  31st, or 33rd 
INM with  one of the  lower frequency  modes 14th,  15th,  16th,  17th  or 18th  INMs fulfills 
the required resonance condition.  The comparatively higher amount of energy transferred 
into the 31st INM can be justified by the significant atomic  displacement contribution of 
the  carbon  atom  of the  acend  carbonyl  group  to this  INM as shown in Figure 3.56.  On 
the other  hand,  the transfer  of energy from the acend amide I mode to the 44th and 45th 
INMs is likely to occur due to the small frequency gap between them and the acend amide 
I mode (see Table 3.37) which may enhance  the  possibility  for the  energy flow into  these 
INMs. 

 

In the  case of the  relaxation  of the  amend  amide I mode the  relaxation  time is 0.201 
ps and  accounts  for 42% of the  energy released that  is 708 cm−1.  While the  percentage 
of energy transferred in the second stage is similar for both  amide I modes, the process is 
significantly faster for the acend mode. This is a consequence of the different INMs involved 
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Table 3.37: Time averaged frequencies (in cm−1 ) of the INMs of the AlaD-d2  molecule together  with 
their  standard deviations  as obtained from our MD simulations  applying  the  EAMC  assignment 
method  with frequency window of width  ∆ω = 400 cm−1 . 

 

 
 

INM  Frequency  INM  Frequency 
1 40.56 ± 108.1 31 1074.60 ± 46.6 
2 -143.46 ± 236.5 32 1075.11 ± 68.9 
3 67.66 ± 132.0 33 1177.38 ± 35.9 
4 -19.25 ± 249.8 34 1304.54 ± 43.7 
5 157.22 ± 111.3 35 1395.48 ± 42.8 
6 219.27 ± 95.3 36 1407.24 ± 78.3 
7 184.07 ± 109.4 37 1422.30 ± 86.3 
8 226.06 ± 82.3 38 1421.81 ± 78.3 
9 293.91 ± 101.4 39 1418.84 ± 47.2 

10 170.27 ± 277.9 40 1410.61 ± 60.5 
11 307.19 ± 85.3 41 1426.90 ± 51.1 
12 356.13 ± 71.0 42 1431.06 ± 53.3 
13 420.68 ± 74.4 43 1448.29 ± 64.0 
14 520.06 ± 60.7 44 1464.81 ± 51.6 
15 574.13 ± 129.5 45 1583.90 ± 58.6 
16 555.54 ± 555.4 46 1546.56 ± 68.3 
17 568.54 ± 91.9 47 1685.55 ± 11.5 
18 618.98 ± 46.9 48 1683.82 ± 4.4 
19 744.74 ± 57.9 49 2444.78 ± 3.9 
20 770.91 ± 59.9 50 2442.96 ± 3.9 
21 785.62 ± 50.4 51 2858.34 ± 6.6 
22 843.61 ± 34.6 52 2909.46 ± 10.6 
23 853.92 ± 58.3 53 2910.89 ± 10.9 
24 922.84 ± 68.5 54 2925.19 ± 11.1 
25 973.80 ± 65.4 55 2915.12 ± 15.3 
26 998.18 ± 66.4 56 2923.24 ± 8.4 
27 1004.17 ± 78.3 57 2965.48 ± 18.1 
28 1067.08 ± 60.2 58 2966.00 ± 12.1 
29 1038.84 ± 59.9 59 2976.45 ± 28.9 
30 1080.25 ± 70.2 60 2987.01 ± 9.8 

 
 
 

in this stage of the relaxation.  We observe that  the modes excited are the 19th, 20th, 21st, 
22nd, 23rd, 44th and 45th INMs.  In Figure 3.58 we show the vibrational energy curves of 
these  INMs obtained  from our simulations  along with  the  fits obtained  using Eq. (3.14). 
The  values of the  fit parameters are included  in Table 3.36.  As we can see in Table 3.37 
there are multiple  combinations  of the frequencies of the 19th-23rd INMs which satisfy the 
required  resonance condition  including the possibility  of 2:1 Fermi resonance.  We observe 
that  the  22nd INM is the  one that  receives the  large amount  of energy released  by the 
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Figure 3.57: Time evolution  of the vibrational energy (in cm−1 ) of the (a) 25th,  (b) 31s, (c) 33rd, 
(d) 14th, (e) 15th, (f ) 16th, (g) 17th, (h) 18th, (i) 44th and (j) 45th INMs (blue lines) and the fits 
to Eq. (3.14) (yellow lines) following the initial  excitation of the acend amide I mode. 

 
 
 

amend  amide I mode.  This is due to the large atomic  contribution of the carbon  atom  of 
the amend  carbonyl  group to the definition  of the 22nd INM shown in Figure 3.56 which 
enhances the coupling between that  INM and the amend amide I mode.  The excitation  of 
the 44th and 45th is facilitated  by the small frequency gap between them and the initially 
excited mode. 

After  the  second  stage  the  analysis  of the  energy  flows becomes  more  complicated 
because the energy is distributed among a higher number  of INMs due to the appearance 
of secondary IVR process, that  is, energy transfer  between INMs different from the initially 
excited mode, and also the intermolecular energy transfer  into the solvent. 

The third  relaxation  channel of the acend amide I mode has a relaxation  time of 0.919 
ps and accounts  for 26.9% of the energy released.  As seen in Table 3.34 half of the energy 
goes to the solvent while the other  half is transferred through  IVR process.  In Figure 3.59 
we show the  time  evolution  of the  vibrational energy of the  24th,  26th,  28th,  29th  and 
30th INMs which are the  modes that  receive more energy during  this  stage with a 0.919 
ps excitation  time as shown in Table 3.35. The simultaneous  excitation  of these INMs and 
the energy flow into the bath  suggest that  the frequency resonance  condition  is obtained 
as a combination  of one the INMs and the librations  of the solvent although  these process 
could be mediated  by some low frequency modes of the solute molecule. 

We note that  some additional small contribution (see Table 3.35) come from the 34th 
and 35th INMs and the acend CH bending modes which correspond  to the 36th, 38th and 
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Figure 3.58: Time evolution  of the vibrational energy (in cm−1 ) of the (a)22nd,  (b) 19th, (c) 20th, 
(d) 21st, (e) 23rd, (f ) 44th and (g) 45th INMs (blue lines) and the fits to Eq. (3.14) (yellow lines) 
following the initial  excitation of the amend  amide I mode. 

 
 
 

40th INMs. 
The fourth  and slower relaxation  channel of the acend amide I mode has a relaxation 

time of 1.737 ps and accounts for 14.8% of the energy released.  According to our simulation 
the  main  receptors  are  the  amend  CH bending  modes  (39th  and  41st  INMs)  and  Cβ H 
bending modes (37th,  42nd and 43rd INMs).  The corresponding  energy curves are shown 
in Figure 3.60 and the fit parameter are given in Table 3.35. 

Concerning  the  third  relaxation  stage  of the  relaxation  of the  amend  amide  I mode 
we conclude from the data  included in Table 3.34 that  it only involves the intermolecular 
energy  transfer  into  the  solvent  with  a 0.744 ps life time.   The  fourth  relaxation  stage 
proceeds  with  a 1.687 ps lifetime being excited  the  34th  and  35th  INMs as well as the 
acend  CH bending  (36th,  38th  and  40th  INMs),  the  amend  CH bending  (39th  and  41st 
INMs) and the Cβ H bending (37th,  42nd and 43rd INMs) modes.  The vibrational energy 
curves for these modes are shown in Figure 3.61 and the corresponding  fit parameters are 
included in Table 3.36. Taking into account the frequencies of these INMs the participation 
of some low frequency modes is probably  invoked. 

Let  us now discuss the  secondary  IVR process originated  from the  relaxation  of the 
modes that  receive their energy from the initially excited amide I mode.  Among these pro- 
cesses the most important ones are those following the resonance energy transfer  between 
the two amide I modes.  As we can see in Table 3.35, in the case of the initial excitation  of 
the acend amide I mode, the amend amide I mode relaxes through  three different pathways 
with  lifetimes and  weights similar to those  obtained  when the  amend  amide  I mode was 
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Figure 3.59:  Time evolution  of the vibrational energy (in cm−1 ) of the (a) 24th, (b) 26th, (c) 28th, 
(d) 29th and (e) 30th INMs (blue lines) and the fits to Eq. (3.14) (yellow lines) following the initial 
excitation of the acend amide I mode. 

 
 
 

directly  excited  (see Table 3.34).  Moreover, we also find energy flows to the  same INMs. 
For instance  we see that  the  19th-22nd  INMs are excited  with a lifetime of 0.201 ps (see 
Figure 3.58 and  Figure 3.62 and  Table 3.35 and  Table 3.36) in both  cases.   We also find 
similar excitation  of the  amend  CH and  Cβ H bending  modes (see Figure 3.60 and  Figure 
3.61 and  Table 3.35 and  Table 3.36),  although  we note  that  these  modes  could  be also 
partially  excited directly  from the acend amide I mode. 

 
A similar behavior  is found when we study  the relaxation  of the acend amide I mode 

following the  initial  excitation  of the  amend  amide  I mode (see Table 3.36).  This  mode 
relaxes with similar lifetimes and weights than those found when it was initially excited. 
However, the identification  of the INMs that  receive energy from the acend amide I mode 
is complicated  by the previous  vibrational excitation  of many  INMs following the second 
relaxation  channel  of the  amend  amide I mode.  Nevertheless  we find that  the  24th-33rd 
INMs show excitation  lifetimes in the  0.4-1.7 ps range  (see Figure 3.63 and  Table 3.36), 
in general  agreement  with  the  tendencies  observed when the  acend  amide  I was initially 
excited (see Table 3.35). 

 

Apart  from the  energy flows following the  resonance  energy transfer  between  the  two 
amide I modes, the most important secondary IVR process that  we have found corresponds 
to the excitation  of the 27th and 32nd INMs when the acend amide I mode was initially 
excited as shown in Figure 3.62. Although  the 1.613 ps excitation  lifetime of these modes 
(see Table 3.35) is similar  to  the  fourth  relaxation  time  of the  acend  amide  I mode we 
consider  more reasonable  that  these  modes are  excited  from the  31st  INM which has  a 
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Figure 3.60:   Time  evolution  of the  vibrational energy (in cm−1 ) of the  (a)  34th,  (b)  35th  INMs 
(c) acend CH bending  (36th,  38th and 40th INMs), (d) amend  CH bending  (39th  and 41st INMs) 
and  (e) Cβ H bending  (37th,  42nd and  43rd INMs)  (blue  lines) and  the  fits to Eq. (3.14) (yellow 
lines) following the initial  excitation of the acend amide I mode. 

 
 
 

small frequency  gap and  receives a great  energy flow from the  acend amide  I mode.  We 
note that  the sum of the excitation  and relaxation  times of the 31st INM (0.415+1.20  ps) 
is almost identical  to the excitation  time of the 27th and 32nd INMs. 

As a final remark we note that  we have found energy flows to the 49th-60th INMs which 
frequencies are higher than  that  of the  amide I modes as we can see in Figure 3.64.  The 
unphysical  energy transfer  from low to high frequency modes is a well known drawback  of 
the classical calculations  [Ohmine 90, Moritsugu  00, Moritsugu  03, Fujisaki 09, Bastida  10a, 
Bastida  10b, Soler 11].  The  excitation  time  of these  high  frequency  mode is in the  4-6 
ps range (see Table 3.35 and Table 3.36) so that  they  are excited  through  secondary  IVR 
process,  that  we were unable  to identify.   Anyway  the  amount  of energy stored  in these 
high frequency modes is just  ∼12% of the  amide I vibrational quantum so that  its effect 
in the  whole IVR mechanism  is small.   It  is interesting to realize that  the  percentage  is 
smaller than  that  found during the relaxation  of the amide I mode of the NMAD molecule 
in D2O solution  [Soler 11] where 18% of the  energy flowed to high frequency  INMs.  We 
think  that  the transfer  to low frequency modes is favored in the AlaD-d2  molecule due to 
the increase of the vibrational density  of states. 

 
 

3.3.6.4    Energy transfer into the solvent 
 

In  Figure 3.65 we show the  time  evolution  of the  normalized  vibrational energy  of the 
AlaD-d2  molecule in liquid D2O following the excitation  of the acend and amend  amide I 
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Figure 3.61:   Time  evolution  of the  vibrational energy (in cm−1 ) of the  (a)  34th,  (b)  35th  INMs, 
(c) CH-acend  bending  (36th,  38th and  40th INMs), (d) CH-amend  bending  (39th  and  41st INM) 
and  (e) Cβ H bending  (37th,  42nd and  43rd INMs)  (blue  lines) and  the  fits to Eq. (3.14) (yellow 
lines) following the initial  excitation of the amend  amide I mode. 

 
 
 

modes.  Both  curves are well reproduced  using a biexponential function as follows 
 

Evib  
vib,eq 

AlaD−d2 
(t) − EAlaD−d2   = c e−t/τrel,1  + c e−t/τrel,2 (3.15) 

Evib vib,eq rel,1 rel,2 
AlaD−d2 

(0) − EAlaD−d2 

where the  weights  satisfy  crel,1  + crel,2   = 1 and  τrel,i  are  the  relaxation  times.   For  the 
curve corresponding  to the relaxation  of the acend amide I mode we obtain  τ acend =0.919 
ps (13%) and  τ acend=8.66 ps (87%) and  for the  amend  amide  I curve  τ amend =0.744  ps rel,2 rel,1 
(13%) and τ amend =10.1  ps (87%).  In both  curves the shortest  relaxation  times and their 
corresponding  weights are associated to the energy flow from amide I modes to the solvent 
(see Table 3.34) while the  larger ones are average values which accounts  for the  transfers 
from the  remaining  INMs.  In order to compare  both  curves we have calculated  the  time 
at which the initial vibrational energy decays by a factor 1/e. So we obtain  the relaxation 
times  7.5 ps and  8.7 ps for the  acend  and  amend  amide  I modes respectively.   Thus  the 
energy transfer  into the solvent is faster when the acend amide I mode is initially  excited 
than  following the amend amide I excitation. 

Anyway both times are shorter than those obtained in our previous study about the 
vibrational relaxation  of the  amide  I (9.6 ps) and  CH stretching (11.7 ps) modes of the 
NMAD molecule in liquid D2O [Bastida 10a, Bastida  10b]. The acceleration  of the relax- 
ation  process in the  AlaD-d2   molecule with  respect  to  the  NMAD molecule is probably 
due to the higher density  of vibrational states  what  increase the probability of resonance 
facilitating  the energy flows. 
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Figure 3.62:  Time evolution  of the vibrational energy (in cm−1 ) of the (a) 19th, (b) 20th, (c) 21st, 
(d) 22nd, (e) 27th and (f ) 32nd INMs (blue lines) and the fits to Eq. (3.14) (yellow lines) following 
the initial  excitation of the acend amide I mode. 

 
 
 

In order to analyze which INMs transfer  large energy into the solvent apart  from the 
amide I modes we have applied the SMF method  and the results are plotted  in Figure 3.66. 
We note that  in these plots the energy transfered  from the initially  excited amide I mode 
(∼ 220 cm−1) is out of the scale. We see that  the energy transferred into the solvent tends 
to be bigger as the frequency of the INM is smaller.  As a guide we have included a dashed 
line which corresponds  to the  average  energy transferred by every mode into  the  solvent 
obtained  as 1680/60=28 cm−1.  As seen the contribution of the lower 1st-9th  INMs are all 
over the  average  value while the  contributions of the  higher frequency  modes are always 
under the average.  This is the same behavior that  we have obtained  in our previous study 
of the relaxation  of the amide I mode of the NMAD molecule [Soler 11] where we obtained 
that   the  low frequency  modes  act  as  doorways  for the  intramolecular energy  flow into 
the  solvent.   Apart  from the  general  trend  we observe some mid frequency  modes which 
significant energy flows into the solvent as the 31st INM in the acend amide I relaxation 
and the 22nd INM in the amend curve.  We note that  these INMs are highly excited during 
the  relaxation  process as previously  discussed.   For  the  case of the  25th  and  29th  INMs 
for the relaxation  of the acend amide I mode their  relative  important contribution to the 
intermolecular energy transfer  is probably  due to a casual resonance  with the vibrational 
motions of the solvent. 



144 Chapter 3 Results and discussion  

IN
M

 
IN

M
 (c

m
 -1 

E i 
- E

i,e
q 

) 

 
 

60  a  b  c  d  e 

45 
30 
15 

0 
 
 

60  f  g  h  i  j 

45 
30 
15 

0 
 

0  4   8 12 0  4   8 12 0  4   8 12 

t (ps) 
0  4   8 12 0  4   8 12 

 

Figure 3.63:  Time evolution  of the vibrational energy (in cm−1 ) of the (a) 24th, (b) 25th, (c) 26th, 
(d) 27th, (e) 28th, (f ) 29th, (g) 30th, (h) 31st, (i) 32nd, and (j) 33rd INMs (blue lines) and the fits 
to Eq. (3.14) (yellow lines) following the initial  excitation of the amend  amide I mode. 

 
 
 
3.3.7     The  13 C-AlaD-d2 molecule 

 
From  an experimental point  of view the  study  of the  vibrational relaxation  of the  acend 
and  amend  amide  I modes of the  AlaD-d2   molecule is complicated  because  of the  over- 
lap between both bands [Kim 05a] with maxima placed at 1629 cm−1  and 1642 cm−1 

respectively. 
In  order  to  obtain  a  selective  excitation  of each  amide  I mode,  Hochstrasser  et  al. 

[Kim 05a] used the 13C isotopic substitution of the carbon  atom  of the carbonyl  group in 
the acetyl end of the AlaD-d2  molecule.  The resulting  molecule that  we represent as 13C- 
AlaD-d2  shows a 40 cm−1  red shift of the acend band  up to 1589 cm−1  while the amend 
band  is blue shifted by only 1 cm−1  up to 1643 cm−1.  The 54 cm−1  frequency gap of the 
two amide I modes of the 13 C-AlaD-d2  molecule allow then  a selective excitation. 

We have carried out MD simulations and the INM analysis of the 13C-AlaD-d2  molecule. 
The time averaged frequencies obtained  are included in Table 3.38.  If we compare the 
frequencies of the  two amide I modes with  those  obtained  for the  AlaD-d2  molecule (see 
Table 3.37) we observe that  the frequency of the acend amide I mode is red shifted by 45.6 
cm−1  up to 1638.2 cm−1  while the amend  band  is largely unaffected  with a 0.2 cm−1  red 
shifted  up to 1685.3 cm−1.  Therefore  the  theoretical  value of the  frequency gap between 
both  amide I modes is 47.1 cm−1 . 

Although  both  amide  I mode frequencies are overestimated by 40 cm−1  and  the  fre- 
quency gap is underestimated by 7 cm−1  in our simulations  with respect to the measured 
data  we think  that  the  relative  deviations  (2.4% and  13%) are small enough to consider 
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Figure 3.64:   Time evolution  of the sum of the vibrational energy of the 49th-60th  INMs after  the 
initial  excitation of the (a) acend and (b) amend amide I modes (blue lines).  The fits to Eq. (3.14) 
are also shown (yellow lines). 

 
 
 

our results  as realistic. 
 
 
 

3.3.7.1  Amide I modes  relaxation lifetimes 
 

 
In Figure 3.67 (a) and Figure 3.68 (a) we show the time evolution of the vibrational energy 
of the acend and amend amide I modes following their  initial excitation  respectively.  The 
acend  amide  I mode curve  can  be well reproduced  using a biexponential functions  (see 
Eq. (3.10)  with  N   =2) while the  amend  one  require  a  three  exponential   function  (see 
Eq. (3.10) with  N  = 3).   The  resulting  fit parameters are  given in Table 3.39.  In order 
to analyze the origin of the different exponential  terms  we have applied the SMF method 
[Soler 11] to distinguish  which percentages of the energy released by the amide I modes flow 
through  intramolecular transfers (IVR processes) and through  intermolecular exchange into 
the  solvent (bath). We show in Figure 3.67 (b)  and Figure 3.68 (b)  the  time evolution  of 
the accumulated energy flows from the acend and amend  amide I modes to the bath  and 
the rest of the INMs of the molecule.  These energy flow curves are well reproduced  using 
Eq. (3.11) and  Eq. (3.12).  The  corresponding  fit parameters are included  in Table 3.39. 
As seen the lifetimes and weights derived from the kinetic analysis and the SMF method 
match  nicely.  Then  we can conclude that  the shorter  relaxation  time of the acend amide 
I corresponds  to an IVR process which account for 84.1% of the energy released while the 
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Figure 3.65:  Time evolution of the normalized  vibrational energy of the AlaD-d2  molecule in liquid 
D2 O following the initial excitation of the (a) acend and (b) amend amide I modes (blue lines) and 
the fits to Eq. (3.15) (yellow lines). 

 
 
 

longer one characterizes  the comparatively less important (15.9%) energy transfer  into the 
bath.   For the amend  amide I mode we observe two time scales for the IVR process with 
0.26 ps and 1.86 ps lifetimes and 64.2% and 24.0% weights respectively.  The energy flows 
into the solvent has an 0.90 ps intermediate lifetime and account for 11.8% of the energy 
released. 

In order to compare the MD-INM results  with the experimental findings we have also 
plotted  in Figure 3.67 (a) and Figure 3.68 (a) the fits to the measured  data  [Kim 05a]. In 
general the  agreement between  both  sets of results  is reasonable  specially if we take  into 
account that  our result are based on standard MM force fields and MD without  additional 
adjustable parameters or corrections.  However some discrepancies are relevant.  We observe 
that  during  the first 2 ps the decay of the acend and amend  amide I relaxation  curves is 
slower and faster respectively than the experimental results.  That  is why when we calculate 
the overall relaxation  time as the time when the energy decrease in a factor 1/e (see Table 
3.39) the theoretical  and experimental results  are in opposite order. 

 
 
3.3.7.2    IVR pathways 

 
The next issue that  we address  is the IVR relaxation  pathways  of the amide I modes.  As 
it was discussed in the previous section the acend amide I decay curve can be reproduced 
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the solvent calculated  using the SMF method  following the initial  excitation of the (a) acend and 
(b) amend  amide I modes.  Dashed  red lines indicate  the average energy transfer. 

 
 
 

considering  a single 0.74 ps IVR  lifetime and  the  IVR  process accounts  for 84% of the 
energy released by the acend amide I mode.  We have found up to 25 different INMs which 
are excited in that  time scale. These INMs are listed in Table 3.40 where we give the fitting 
parameters obtained  when their  vibrational energy curve (see Figure 3.69 and Figure 3.70) 
were fitted using Eq. (3.14).  The high number  of INMs that  participate in the relaxation  is 
a consequence of the multiple  combinations  of INM frequencies that  satisfy the resonance 
condition.  So different sums of the frequencies of the 14th-20th  INMs with the 24th-33rd 
INMs reproduce quite well the acend amide I mode frequency.  Interestingly, one of the best 
coincidence corresponds to the sum of frequencies of 16th and 30th INMs which are two of 
the INMs that  are more excited during the relaxation  process as we can see in Figure 3.69. 
For the 34th-46th  INMs the resonance condition implies the participation of low frequency 
modes in the  100-300 cm−1  range.   These  values overlap  quite  well with  libration  bands 
of the D2O solvent and therefore  the energy stored  in the low frequency modes is always 
small so that  we can not quantify  it in our analysis. 

 
Concerning  the relaxation  of the amend  amide I mode, the kinetic  and SMF analysis 

state  the  presence  of two  different  sets of IVR processes.  The  faster  IVR channel  has a 
lifetime of 0.26 ps and accounts for 64.2% of the energy transferred. We have found 15 INMs 
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Table 3.38: Time averaged frequencies (in cm−1 ) of the INMs of the 13 C-AlaD-d2  molecule together 
with the standard deviations as obtained from our MD simulations  and applying the EAMC method 
with a frequency window of width  ∆ω = 400 cm−1 . 

 

 
 

INM  Frequency  INM  Frequency 
1 40.71 ± 109.5 31 1057.96 ± 67.8 
2 -145.11 ± 238.5 32 1097.53 ± 68.6 
3 67.85 ± 134.8 33 1172.22 ± 40.8 
4 -15.55 ± 253.0 34 1301.50 ± 47.5 
5 158.42 ± 111.6 35 1381.52 ± 49.2 
6 218.46 ± 95.5 36 1407.21 ± 80.7 
7 183.44 ± 109.2 37 1419.79 ± 76.7 
8 223.88 ± 83.9 38 1417.23 ± 63.9 
9 293.36 ± 102.4 39 1416.73 ± 67.3 

10 168.05 ± 284.6 40 1417.08 ± 60.3 
11 307.00 ± 86.3 41 1429.36 ± 52.0 
12 355.93 ± 75.5 42 1432.62 ± 67.6 
13 417.81 ± 73.1 43 1458.61 ± 53.9 
14 532.81 ± 60.5 44 1449.30 ± 62.1 
15 576.45 ± 126.8 45 1558.23 ± 72.5 
16 563.11 ± 86.6 46 1560.58 ± 70.2 
17 539.29 ± 75.7 47 1638.19 ± 3.9 
18 617.37 ± 48.7 48 1685.29 ± 10.5 
19 746.20 ± 57.1 49 2444.73 ± 3.7 
20 767.97 ± 49.1 50 2442.75 ± 3.9 
21 785.06 ± 56.3 51 2858.26 ± 6.7 
22 843.82 ± 40.6 52 2909.34 ± 10.7 
23 854.77 ± 68.6 53 2910.85 ± 11.0 
24 921.64 ± 75.6 54 2925.03 ± 11.0 
25 983.15 ± 72.4 55 2915.08 ± 15.8 
26 997.82 ± 73.3 56 2923.11 ± 8.4 
27 1006.12 ± 81.7 57 2965.38 ± 18.5 
28 1070.50 ± 55.6 58 2965.89 ± 12.8 
29 1029.20 ± 64.5 59 2976.29 ± 16.0 
30 1051.15 ± 97.7 60 2986.97 ± 29.7 

 
 
 

which energy curves can be well fitted using that  excitation  time in Eq. (3.14) and they are 
listed in Table 3.41. The corresponding  energy curves are plotted  in Figure 3.71 and Figure 
3.72. We find that  these energy flows can be justified by taking into account the frequency 
resonant  conditions.   The  sum of one frequency  the  15th-16th  INMs with  another  of the 
27th-29th  INMs or the sum of two frequencies of the 20th-24th  INMs provide values quite 
close to the amend  amide I frequency.  For the 34th, 35th, 43rd, 45th and 46th we invoke 
the participation of low frequency modes that  fill the frequency gap.  We note the special 
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 τrel,1 (crel,1 ) τrel,2 (crel,2 ) τrel,3 (crel,3 ) T1 

Kinetica    acend 0.740(0.841) 0.943(0.159)  0.73 
amend 0.260(0.642) 0.900(0.118) 1.860(0.240) 0.44 

Exp.b  acend 0.415(0.858) 5.700(0.142)  0.51 
amend 0.576(0.735) 1.860(0.265)  0.78 

 τ IVR IVR IVR IVR bath bath  
SMF c acend  0.74(0.841)  0.943(0.159)  

 amend  0.260(0.642) 1.86(0.240) 0.900(0.118)  
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Figure 3.67:  (a)  Time  evolution  of the  normalized  vibrational energy of the  acend  amide  I mode 
with  respect  to  its  equilibrium  value  at  300 K (black  line)  and  the  fit to  Eq. (3.10)  (red  dashed 
line) together  with  the  experimental results  (blue  line) and  (b)  time  evolution  of the  normalized 
accumulated energy that flows from the acend amide I into the remaining  INMs of the 13 C-AlaD-d2 

molecule through IVR process (black line) and into the bath  (blue line) and their  fits (red dashed 
line) to Eq. (3.11) and Eq. (3.12) respectively. 

 
 
 
 

Table  3.39:    Vibrational relaxation times  of the  amide  I mode  (in  ps)  and  amplitudes for the 
13 C-AlaD-d2   molecule as obtained from the fitting. 

 
 
 
 
 
 
 
 

1   (c1       )  τ2   (c2       )  τ (c  ) 
 
 
 

a.- See Eq. (3.10) 
b.- Ref. [Kim 05a] 
c.- See Eq. (3.11) and Eq. (3.12) 
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Figure 3.68: (a)  Time  evolution  of the  normalized  vibrational energy of the  amend  amide  I mode 
with  respect  to  its  equilibrium  value  at  300 K (black  line)  and  the  fit to  Eq. (3.10)  (red  dashed 
line) together  with  the  experimental results  (blue  line) and  (b)  time  evolution  of the  normalized 
accumulated energy that flows from the amend amide I into the remaining  INMs of the 13 C-AlaD- 
d2   molecule  through IVR  process  (black  line)  and  into  the  bath  (blue  line)  and  their  fits  (red 
dashed  line) to Eq. (3.11) and Eq. (3.12) respectively. 

 
 

case of the 22nd INM which is in an excellent 2:1 Fermi resonance (2×843.8=1687.6 cm−1) 
with  the  initially  excited  mode what  justifies  that  this  INM receives the  larger  amount 
of energy as shown in Figure 3.71.  The  second IVR channel  is much slower (τrel,2 = 1.86 
ps) and quantitatively less important (24%).  We find that  the energy is more equally 
distributed than  in the  previous  channel  among the  30th-33rd  INMs and  the  acend  CH, 
amend CH and Cβ H bending modes.  The energy curves are plotted  in Figure 3.73 and the 
fitting  parameters to Eq. (3.14) are included in Table 3.41. 

 

Now,  we focus our  attention on  the  secondary  IVR  processes.    In  the  case  of the 
relaxation  of the acend amide I mode the 27th INM is the one that  receives more energy 
(see Figure 3.74). The fit parameters corresponding  to Eq. (3.14) are included in Table 3.40 
and  reveals  that  this  mode is excited  in 1.80 ps (see Table 3.40).   Although  multiple  of 
INMs previously excited from the amend amide I mode could justify the excitation  of the 
27th INM mode (see Table 3.40), we think  that  the  most  probable  candidate is the  30th 
INM. The  arguments that  support  our guess are that  the  30th INM receive a significant 
amount of energy from the initially  excited  mode (see Figure 3.69), its frequency is quite 
similar  to  the  frequency  of the  27th  mode and  its  relaxation  time  is much  shorter  than 
that  found for other  INMs with similar frequencies (see Table 3.40). 
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Figure 3.69:   Time evolution  of the vibrational energy (in cm−1 ) of the (a) 24th (b) 25th (c) 26th 
(d)  28th  (e) 29th  (f ) 30th  (g) 31st (h)  33rd (i) 14th  (j)  15th  (k)  16th  (l) 17th  (m)  18th  and  (n) 
20th  INMs (blue  lines) and  fits to  Eq. (3.14)  (yellow lines) following the  initial  excitation of the 
acend amide I mode. 

 
 
 

Similar arguments can be used to explain  why we consider that  the  excitation  of the 
25th and 26th INMs (see Figure 3.75) which are the most important secondary IVR process 
following the relaxation  of the amend amide I mode is probably  due to an energy flow from 
the 22nd INM. 

We finally remark  that  we have found energy flows to the 49th-60th  INMs which fre- 
quencies are higher than  that  of the  amide  I modes as we can see in Figure 3.76.  In the 
acend  amide  I mode,  these  modes  are  excited  in 1.64 ps so that  they  probably  receive 
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Figure 3.70: Time evolution  of the  vibrational energy (in cm−1 ) of the  (a)  34th (b)  35th (c) 43rd 
(d)  acend  CH bending  (e) Cβ H bending  (f ) 45th  and  (g) 46th  INMs (blue  lines) and  the  fits to 
Eq. (3.14) (yellow lines) following the initial  excitation of the acend amide I mode. 
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rel,1 

 
 

Table 3.40: Fit  parameters for the vibrational energy curves of different INMs of the 13 C-AlaD-d2 

molecule  after  the  initial  excitation of the  acend  amide  I mode.   The  relaxation and  excitation 
times are in ps and the parameters A and B  in cm−1 . The INMs were fitted  using Eq. (3.14). 

 
INM τexc τrel A B 
14th 0.74 1.18 178.7 0.5 
15th 0.74 1.18 96.8 8.2 
16th 0.74 1.18 236.0 9.4 
17th 0.74 1.18 125.1 8.2 
18th 0.74 1.18 101.1 4.6 
20th 0.74 3.82 43.0 3.1 
24th 0.74 4.97 27.7 8.8 
25th 0.74 2.57 132.9 11.3 
26th 0.74 4.90 62.8 3.7 
28th 0.74 5.12 42.3 0.0 
29th 0.74 3.95 87.5 0.0 
30th 0.74 1.09 743.3 0.0 
31st 0.74 8.16 34.5 0.0 
33rd 0.74 8.16 38.0 0.0 
34th 0.74 8.16 34.4 0.0 
35th 0.74 8.16 25.0 0.0 
acend CH bendinga 0.74 8.16 94.2 0.0 
Cβ H bendingb 0.74 8.16 66.5 7.6 
43rd 0.74 8.16 27.4 0.0 
45th 0.74 8.16 26.8 8.1 
46th 0.74 8.16 31.3 0.0 

27th 1.80 3.16 137.8 5.4 
49th-60th 1.64 7.81 424.4 5.0 
a.- 36th, 39th and 40th INMs 
b.- 37th, 42nd and 44th INMs 

 
 
 

the  energy  from some of the  modes previously  excited  from the  amide  I mode showing 
the shorter  relaxation  times as the 14th-18th  and the 30th INMs.  In the amend  case the 
excitation  time is 1.86 ps so that  the energy could come directly  from the initially  excited 
mode or more probably  through  an efficient 2:1 Fermi resonance from some bending modes 
as we found for the NMAD molecule [Bastida 10a, Bastida  10b, Soler 11] 

 
 
3.3.7.3    Energy transfer into the solvent 

 
In Figure 3.77 we plot the time evolution  of the normalized  vibrational energy of the 13C- 
AlaD-d2  molecule in liquid D2 O following the excitation  of the acend and amend  amide I 
modes.  Both curves are well fitted using the biexponential function given in Eq. (3.15).  For 
the curve corresponding to the relaxation  of the acend amide I mode we obtain τ acend =0.943 
ps (15.9%) and τ acend =8.16  ps (84.1%) and for the amend  amide I curve τ amend =0.90  ps rel,2 rel,1 
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Figure 3.71: Time evolution  of the  vibrational energy (in cm−1 ) of the  (a)  21st (b)  22nd (c) 23rd 
and (d) 24th INMs (blue lines) and the fits to Eq. (3.14) (yellow lines) following the initial excitation 
of the amend  amide I mode. 

 
 
 

(11.8%) and τ amend =9.36 ps (88.2%).  In both cases the shorter  relaxation  times and their 
corresponding  weights are associated  to the  energy flow from the  initially  excited  amide 
I modes into  the  solvent  (see Table 3.39) while the  longer ones are average  values which 
accounts  for the transfers  from the remaining  INMs.  In order to compare both  curves we 
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Figure 3.72: Time evolution  of the  vibrational energy (in cm−1 ) of the  (a)  15th (b)  16th (c) 20th 
(d)  27th  (e) 28th  (f ) 29th  (g) 34th  (h)  35th  (i) 43rd (j) 45th  and  (k) 46th  INMs (blue  lines) and 
the fits to Eq. (3.14) (yellow lines) following the initial  excitation of the amend  amide I mode. 
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Table 3.41: Fit  parameters for the vibrational energy curves of different INMs of the 13 C-AlaD-d2 

molecule after  the  initial  excitation of the  amend  amide  I mode.   The  relaxation and  excitation 
times are in ps and the parameters A and B  in cm−1 . The INMs were fitted  using Eq. (3.14). 

 
INM  τexc  τrel  A  B 

 

15th 0.26 9.36 22.6 4.4 
16th 0.26 9.36 19.1 8.6 
20th 0.26 4.83 39.1 4.8 
21st 0.26 6.46 45.3 4.8 
22nd 0.26 1.20 485.0 23.7 
23rd 0.26 5.44 51.2 11.2 
24th 0.26 3.62 59.3 11.9 
27th 0.26 9.36 33.1 4.4 
28th 0.26 9.36 36.6 0.0 
29th 0.26 9.36 28.9 0.0 
34th 0.26 9.36 45.4 2.1 
35th 0.26 9.36 31.1 0.0 
43rd 0.26 9.36 22.5 0.0 
45th 0.26 9.36 29.2 6.6 
46th 0.26 9.36 30.1 0.0 

30th 1.86 6.75 44.7 0.0 
31st 1.86 5.18 52.9 8.0 
32nd 1.86 4.69 63.2 5.6 
33rd 1.86 6.86 58.5 0.0 
acend CH bendinga 1.86 9.36 83.2 8.1 
amend CH bendingb 1.86 9.36 80.3 −11.7 
Cβ H bendingc 1.86 9.36 100.0 6.1 

25th 1.46 7.78 33.6 10.5 
26th 1.46 7.26 34.8 11.0 

49th-60th 1.86 8.71 338.0 37.8 
a.- 36th, 39th and 40th INMs 
b.- 38th and 41st INMs 
c.- 37th, 42nd and 44th INMs 

 
 
 

have  calculated  the  time  at  which the  initial  vibrational energy decays  by a factor  1/e. 
In this  way we obtain  the  overall relaxation  times 6.75 ps and 8.20 ps for the  acend and 
amend amide I modes respectively.  Thus the energy transfer  into the solvent is faster when 
the acend amide I mode is initially  excited than  following the amend amide I excitation. 

In order to analyze which INMs transfer  more energy into the solvent apart  from the 
amide I mode we have applied the SMF method  and the results are plotted  in Figure 3.78. 
We note  that  the  energy  transferred from the  initial  excited  acend  and  amend  amide  I 
modes ( 260.5 cm−1  and  198.9 cm−1  respectively)  is out  of the  scale in these  plots.   We 
see that  the  energy  transferred into  the  solvent  tends  to  be bigger as the  frequency  of 
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Figure 3.73: Time evolution  of the vibrational energy (in cm−1 ) of the (a) acend CH bending,  (b) 
amend  CH bending,  (c) Cβ H bending,  (d)  30th,  (e) 31st,  (f ) 32nd and  the  (g) 33rd INMs (blue 
lines) and the fits to Eq. (3.14) (yellow lines) following the initial  excitation of the amend  amide I 
mode. 

 
 
 

the  INM is smaller.   As a guide we have  included  dashed  line which correspond  to  the 
average energies transferred by every mode into the solvent obtained  as (1638.2/60�27.3 
cm−1) for the  acend and (1685.3/60�28.1 cm−1) for the  amend  amide I modes.  As seen 
the contribution of the lower frequency INMs are all over the average value while the 
contributions of the higher frequency modes are always under it.  This is the same behavior 
that  we have observed in our previous study  of the relaxation  of the amide I mode of the 
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Figure 3.74:  Time  evolution  of the  vibrational energy (in cm−1 ) of the  27th  INM (blue  line) and 
the fit to Eq. (3.14) (yellow line) following the initial  excitation of the acend amide I mode. 
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Figure 3.75: Time evolution  of the vibrational energy (in cm−1 ) of the (a) 25th and (b) 26th INMs 
(blue  lines) and  the  fits to  Eq. (3.14)  (yellow lines) following the  initial  excitation of the  amend 
amide I mode. 

 
 
 

NMAD molecule   citeMiguel:11 where we obtained  that  the  low frequency  modes act  as 
doorways for the intermolecular energy flow into the solvent.  Apart  from the general trends 
we observe few mid-frequency modes which significant energy flows into the solvent as the 
25th and 30th INMs in the acend amide I relaxation  and the 22nd INM in the amend case. 
We note that  these INMs are highly excited during the relaxation process as previously 
discussed. 

 
 
3.3.8     Comparison  of the  relaxation  pathways 

 
We consider now the comparison  between the relaxation  pathways  obtained  for the AlaD- 
d2  and  the  13C-AlaD-d2   molecules.  The  overall relaxation  times  of both  amide  I modes 
are larger for the 13 C-AlaD-d2  molecule as we can see in Table 3.34 and Table 3.39.  This 
is a direct  consequence of the isotopic substitution that  shifts ∼45 cm−1  the frequency of 
the acend amide I mode.  In the 13 C-AlaD-d2  the two amide I modes are off resonance and 
therefore  the  ultrafast resonant  relaxation  channel  that  we find in the  AlaD-d2  molecule 
is absent  in the  13 C-AlaD-d2   one.   Moreover,  the  overlap  of the  two  amide  I modes  is 
smaller  in the  13C-AlaD-d2   molecule as we can  see in Table 3.42 where we include  the 
atomic contribution of the carbon and oxygen atoms of the carbonyl groups to both amide 
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Figure 3.76:   Time evolution  of the sum of the vibrational energy of the 49th-60th  INMs after  the 
initial  excitation of the (a) acend and (b) amend amide I modes (blue lines).  The fits to Eq. (3.14) 
are also shown (yellow lines). 

 
 
 

Table 3.42:  Atomic  displacement contributions (in %) of the  carbonyl  groups  to the  definition  of 
the amide I INMs of the AlaD-d2 /13 C-AlaD-d2   molecules in solution. 

 
amide I mode 

 

carbonyl  group acend amend 
acend 81.2/88.7 10.4/0.4 
amend  9.6/0.6  74.1/83.5 

 
 
 

I modes.  As seen the two amide I modes are more localized in the 13 C-AlaD-d2  molecule 
and  the  cross contributions are significantly  smaller.   The  disappearance of the  ultrafast 
resonant channel is the main reason for the increase of the overall relaxation  lifetime that 
we observe in the 13 C-AlaD-d2  molecule with respect to the AlaD-d2  molecule. 

The  frequency shift also modifies the  resonance  condition  of the  acend amide I mode 
with the remaining  INMs.  We find an excellent example in the important role played by 
the  31st INM in the  relaxation  of the  AlaD-d2  molecule that  moves into  the  30th  in the 
13 C-AlaD-d2  molecule.  As expected these decays also modify the acend amide I relaxation 
lifetime  what  explains  why  these  quantities are  quite  different  in  both  molecules.   On 
the  contrary  the  isotopic substitution has a comparatively small effect on the  relaxation 
pathways  of the amend  amide I mode, apart  from the lack or energy flow with the other 
amide I mode.  The relaxation  lifetimes are slightly increased after the isotopic substitution 
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Figure 3.77:   Time evolution  of the normalized  vibrational energy of the 13 C-AlaD-d2   molecule in 
liquid  D2 O following the  initial  excitation of the  (a)  acend  and  (b)  amend  amide  I modes (blue 
lines) and the fits to Eq. (3.15) (yellow lines). 

 
 
 

(see Table 3.34 and Table 3.39) probably  because of small frequency shifts of some INMs 
participating in the IVR mechanism.  Anyway, the most significant patterns remain as the 
strong  2:1 Fermi resonance with the 22nd INM. 

 

 
3.3.9     Dihedral angle  distributions 

 
It is known that  the conformational equilibrium of the peptides  is sensitive to the en- 
vironmental  conditions  [Daggett  92, Takekiyo  04].  Therefore  it  is interesting to  analyze 
if the  conformational distribution of the  AlaD-d2  molecule is modified during  the  amide 
I relaxation  process.   In particular we have  considered  the  case of the  relaxation  of the 
acend amide I mode of the  AlaD-d2  molecule.  As discussed in Section 3.3.4 the  AlaD-d2 

molecule has equilibrium populations  of 58.5% and 41.5% in the alpha R and beta regions 
respectively  (see Table 3.29). 

In order to have a significant statistics we have considered 2660 relaxation  trajectories 
where the conformations were averaged at 0.25 ps intervals.  The results are shown in Figure 
3.79 where we can  see that  the  population of the  alpha  R region conformers  decreases 
and consequently  the population of the beta  region conformers increases smoothly  during 
the  first 40 ps.  The  initial  populations  change during  that  time  interval  from the  initial 
58.5%/41.5% ratio to the 55%/45% one.  Interestingly the minimum values are reached 
approximately in the same time that  the AlaD-d2  molecule requires to transfer  all its excess 
energy into the solvent (see Figure 3.65).  For longer times the population of the alpha  R 
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Figure 3.78:  Vibrational energy (in cm−1 ) transferred from the INMs of the 13 C-AlaD-d2   molecule 
into the solvent calculated  using the SMF method  following the initial  excitation of the (a) acend 
and (b) amend  amide I modes.  Dashed  lines indicate  the average energy transfer. 

 
 
 

region conformers increase and the molecule returns to the conformational equilibrium 
populations  at 60 ps. 
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Figure 3.79:   The  conformational distribution (in %) as a function  of time (averaged  over 0.25 ps 
intervals) of the AlaD-d2  molecule as extracted from the nonequilibrium MD simulations  when the 
acend  amide  I was initially  excited  (blue  lines) and  the  conformational equilibrium  values  (dash 
red lines). 
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Conclusions 
 
 
 
 
 
 

In  the  present  thesis  we have  investigated the  infrared  spectra  of solvated  NMA  using 
molecular  dynamics  simulations  in which the electronic  Hamiltonian  of the whole solute- 
solvent  system  is described  by  a  semiempirical  quantum mechanical  method.    Further 
analysis has been performed for describing in details to what extent the electrostatic inter- 
action,  polarization, charge transfer  affect the position of the amide I band.  We have also 
performed  nonequilibrium MD simulations  of the  vibrational relaxation  dynamics  of two 
different  peptide  model  the  N -methylacetamide (NMA)  molecule (monopeptide model) 
and the alanine  dipeptide  (AlaD)  molecule (dipeptide  model) in water  solution  and used 
the INMs to analyze the energy flows created by the relaxation  of the amide I mode through 
the rest of the molecule modes.  The main conclusions derived from our study  are: 

First:   We have  carried  out  a study  of the  infrared  spectrum  of N -methylacetamide 
(NMA) using a recently developed method  in the group of Nancy, based on the Born- 
Oppenheimer  approximation at  a semiempirical  level of quantum chemistry  (SEBOMD). 
We focused on the solvent effect on the infrared  spectrum  of the solute, its geometry,  and 
its electrostatic properties.  We have identified the infrared bands that  are more significant 
as signatures  of the peptide  bond ( amide I, II and III and the N-H stretch) and we have 
also evaluated  their  corresponding  solvent  shifts.   We have found a satisfying  agreement 
between  our  model  and  experimental measurements,  not  only  for the  solvent  shift  but 
also for the structure and electrostatic properties  of the solute.  On the other  hand,  when 
a  molecular  mechanics,  nonpolarizable  force field is used  to  run  MD,  very  little  or  nil 
solvent effect is observed.  This finding stresses the importance  of a correct  description  of 
electronic properties (polarization, charge transfer,  etc) for an adequate  molecular modeling 
of absorption  spectra  in solution. 

Second: We have proposed a method  to relate  the solvent-induced shift of the amide 
I band of a model peptide  to the different terms arising from the solute-solvent interaction 
energy decomposition.  We have performed our analysis for different NMA-water complexes. 
We always found that  the largest contribution to the total shift comes from the deformation 
term  with a little  contributions from the electrostatic and charge transfer  terms.  However 
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the polarization term  has only a minor contribution. Furthermore, we have observed that 
due to the charge flux from NMA to water,  the sign of the charge transfer  force constant 
changes. 

Third:  We have adapted the Min-Cost algorithm to used to identify the INMs using the 
ENMs as templates to study  flexible biomolecules.  We have proposed the definition of an 
overlap matrix  between both sets of normal modes based on their certain components.  The 
resulting Effective Atomic Min-Cost algorithm  was shown to provide robust  identifications 
of the INMs which do not depend  on the set of ENMs used as templates. 

Fourth:  We have developed  the  so-called Statistical Minimum  Flow (SMF)  method 
to analyze the vibrational energy flow in relaxation  process of molecules in solution.  The 
SMF  method  relies in the  study  of the  knowledge  of the  time  evolution  of the  energy 
stored  in the  vibrational modes,  thereby  requiring  the  performance  of an  INM analysis 
to express the total  internal  energy of the molecule as the sum of the individual INM 
contributions.  Its  application thus  provides  the  amount  of energy that  flow between  the 
vibrational modes of the  molecule and  also to  the  solvent,  under  the  basic assumptions 
that  the total energy exchanged between the modes is minimum and the distribution of the 
energy is essentially statistical. It has been shown that  the accumulated energy that  flows 
between any pair of INM modes is well reproduced  by first order exponential  functions 
containing  two  parameters that  provide  the  total  energy  transferred and  the  lifetime of 
the  process.   This  supports  the  interpretation of the  relaxation  process provided  by the 
master  equation.   The  SMF methods  is well suited  to the  use of the  input  data  provided 
by standard MD packages and can be applied as well to the analysis of experimentally 
measured  time dependent populations  of the vibrational modes. 

Fifth:   We have  tested  the  SMF method  by considering  the  relaxation  of the  amide 
I mode of NMAD in D2O solution  previously  studied  by our group  in Murcia  using the 
INM methodology.  We have shown that  the SMF method  is able to quantify  the relative 
magnitude  of the IVR and intermolecular relaxation  channels taking place after relaxation 
of the amide I mode, and the cooling of the solute by energy transfer  to the solvent.  The 
SMF method  confirms the  vibrational decay of the  amide  I mode is mainly  IVR with  a 
little energy transfer  into the solvent.  In addition  it provides further  insights into the time 
scale and the magnitudes  of the pathways  involved in the relaxation  process. 

Sixth:  We have  studied  the  vibrational relaxation  dynamics  of the  NMAD amide  I 
mode in liquid D2O using the  INMs of the  NMAD molecule to analyze  the  energy flows 
through  the rest of the NMAD modes, and thus  elucidate  the relaxation  mechanism  that 
control the whole process.  This study  has been performed using nonequilibrium MD simu- 
lations in which the electronic Hamiltonian  of the whole solute-solvent system is described 
by a semiempirical quantum mechanical method,  SEBOMD. The main scope of this study 
was to  show to  what  extent the  relaxation   process  could  be  affected  by  incorporating 
explicity  the  polarization and  the  charge transfer  effects into  the  potential surface.  The 
results  obtained  show that  the  inclusion of the  quantum electronic  Hamiltonian  modifies 
notably  the dynamics  of the vibrational relaxation  of the amide I mode, which turns  out 
to be faster  than  that  obtained  using MM and QM/MM  force fields in better  agreement 
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with  experiments.    We  have  also identified  and  described  the  IVR  relaxation  pathways 
that  follow the relaxation  of the amide I mode.  As a general remark  our analysis showed 
that  although  introducing  the electronic Hamiltonian  for the whole system allows a better 
agreement  with  experiment,  the  relaxation  pathways  are not  significantly  modified from 
those derived using the MM and QM/MM  force fields. 

Seventh: We have performed nonequilibrium MD simulations  of the vibrational relax- 
ation dynamics  of the AlaD-d2  amide I modes.  The AlaD-d2  molecule provides a different 
situation from the NMAD due to its flexibility and the presence of two amide I groups one 
in the acetyl end (acend)  and the other  in the amino end (amend).  The vibrational decay 
of the amide I modes shows that  the relaxation  of the amend amide I mode is faster than 
the acend amide I mode.  Moreover, we confirmed that  the relaxation  of the amide I modes 
is essentially  an intramolecular vibrational redistribution process.  We have identified and 
described the relaxation  pathways  that  follows the relaxation  of the amide I modes.  Inter- 
estingly,  both  amide  I modes provide  different  pathways.  The  fastest  relaxation  channel 
is associated  with  a rapid  exchange  of vibrational excitation  between  the  acend  amide  I 
mode initially  excited  and  amend  amide I mode and  vice versa.  The  slower mechanisms 
are funneled through  specific mid-range  and high frequency modes. 

Eighth: We have analyzed the vibrational energy relaxation  of the two amide I modes 
using the isotopic substitution of the acend carbonyl  group 12C=O with 13C=O following 
the  experimental work in the  literature.  We showed that  the  amide  I modes relaxation 
lifetimes are in a reasonable  agreement with the experiment.  In addition  we detected  that 
the relaxation process does not change significantly compared to the AlaD-d2  molecule. 
However, we found no energy exchange between  the amide I modes as has been observed 
in the AlaD-d2  molecule. 

Ninth:  We have  analyzed  the  conformational distribution of the  AlaD-d2   molecule 
as obtained  from equilibrium  and  during  the  amide  I relaxation  process.   We  observed 
that  the relative  population of alpha  R and beta  region is modified in the nonequilibrium 
condition.  We also note that  although  the AlaD-d2  molecule lost all the excess energy in 
less than 40 ps, the AlaD-d2  molecule require 60 ps to reach the conformational equilibrium 
populations. 
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Cuando  se excita  una  proteína  mediante  la formación  de enlace con un ligando,  la com- 
plejación  con ATP  o un pulso láser,  tiene  lugar  a continuación  un proceso de relajación 
de energía  vibracional  (VER)  [Leitner  10b].  La energía  depositada inicialmente  en una 
región localizada de la proteína  fluye hacia el resto de la misma y hacia al disolvente  que 
la rodea  [Kong  09b].  Los procesos VER  en péptidos  ocupan  por tanto  un papel  central 
en la comprensión  de los mecanismos  biológicos de transferencia de energía  vibracional 
y en las reacciones químicas de las proteínas.   La dinámica vibracional inducida por las 
fluctuaciones estructurales de los átomos del entorno afecta de forma fundamental a las ve- 
locidades, los mecanismos y las eficiencias de las reacciones en disolución [Gruebele 04]. El 
desarrollo de un marco teórico preciso de la relajación de energía vibracional de proteínas en 
disolución es esencial para la comprensión general de la dinámica de las proteínas  [Dian 02] 
y en particular para  la simulación  de los procesos de plegamiento  que están  íntimamente 
relacionados  con su funcionalidad  [Mohammed 09, Peng 10]. 

El reciente desarrollo experimental de las espectroscopías ultrarápidas de infrarrojo (IR) 
y Raman de proteínas en disolución ha puesto de manifiesto las tremendas  posibilidades que 
estos métodos ofrecen en la determinación de las estructuras y la dinámica  conformacional 
de moléculas de interés  biológico [Fayer 09]. Las proteínas  tienen  espectros  vibracionales 
que contienen  información  importante sobre su estructura.  Las estructuras  secundarias 
de las proteínas,   en particular, son elementos  primordiales  que  determinan los campos 
de  fuerzas  y por  tanto   los espectros  de  las bandas  amida,  que  tienen  su  origen  en  los 
movimientos  de los átomos  peptídicos.  Por esta razón el espectro vibracional  de la banda 
amida  I, que proviene fundamentalmente de los desplazamientos de tensión  de los enlaces 
C=O  de la estructura peptídica  con contribuciones  de los movimientos  de los enlaces CN 
y NH, ha  sido ampliamente utilizado  como indicador  de la estructura secundaria  de las 
proteínas  [Hamm  98].  Las proteínas  que contienen  mayoritariamente láminas  beta  dan, 
por ejemplo,  bandas  de la amida  I a frecuencias menores que las de las proteínas  en las 
que dominan  las hélices alfa. 

Las transiciones  de la amida  I son ideales en espectroscopía  infrarroja  ya que el mo- 
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mento dipolar varía fuertemente  en ellas y son claramente distinguibles  de las transiciones 
vibracionales  asociadas  a la cadena  de aminoácidos.   De hecho,  se asume  habitualmente 
que el subespacio vibracional de la amida I está desacoplado de los restantes modos vi- 
bracionales  de la proteína.    Su intensidad Raman  visible es moderada  mientras  que  su 
resonancia  Raman-UV  es, en general, débil.  Dependiendo  del disolvente  y del entorno  del 
péptido,  la banda  aparece en la región comprendida  entre 1610 y 1700 cm-1, lo que refleja 
una fuerte dependencia  con los enlaces por puente  de hidrógeno aceptores  y dadores hacia 
los grupos carbonilo  y NH, respectivamente. Si se utiliza  agua como disolvente,  la banda 
de la amida I se mezcla con los modos angulares  de las moléculas de agua que constituyen 
la correspondiente esfera de hidratación del péptido.  Sin embargo este efecto y la contam- 
inación con el enlace NH queda  eliminados  si se utiliza  agua  deuterada D2O en lugar de 
H2O como disolvente. 

Aunque los espectros infrarrojos de la amida I de proteínas con diferentes estructuras di- 
fieren, estos espectros no muestran picos diferenciados para los diversos modos amida I que 
constituyen conjuntamente la banda amida I. Los mecanismos de ensanchamientos homogé- 
neo e inhomogéneo difuminan  el espectro,  dando  lugar a una banda  relativamente ancha 
con una débil subestructura en forma de picos poco pronunciados. Las técnicas de aumento 
de resolución como la consideración de la segunda derivada  o la deconvolución del espectro 
no resuelven este problema.   Debido a ello se han desarrollado  espectroscopías  infrarrojas 
no lineales para  obtener  información adicional relativa  a la composición de las vibraciones 
amida  I en péptidos  [DeCamp  05, Hamm  98, Fang  09, Fayer  09, Schade  09b, Bagchi  09]. 
Estos estudios  han proporcionado  información directa  sobre aspectos  como la escala tem- 
poral  del proceso  de relajación  [DeCamp  05, Hamm  98], la eficiencia del transporte  de 
energía  vibracional  [Schade  09b]  y,  más  recientemente,  sobre  los  mecanismos  de  rela- 
jación  [Shigeto  07, Fang  09].  Estos  trabajos  experimentales  son impresionantes, si bien 
sigue siendo difícil extraer  información detallada sobre la relajación vibracional únicamente 
a partir  de dichas medidas experimentales. 

Las aproximaciones  teóricas, incluyendo las simulaciones a escala atómica,  pueden pro- 
porcionar  una  información  más  detallada.   A su  vez,  los datos  experimentales   pueden 
utilizarse  para  refinar los métodos  de simulación  y los campos de fuerza empíricos.  Esta 
combinación  de estudios  experimentales  y teóricos sobre la estructura y las dinámica  de 
proteínas  esta  actualmente empezando  a alcanzar  su plenitud.   Conforme  se desarrollen 
nuevos  estudios  experimentales  y aumente  la precisión  de los cálculos teóricos,  cabe es- 
perar  que esta  relación  sea todavía  más  fructífera.   Desde un  punto  de vista  teórico,  la 
aplicación de métodos sistemáticos  para  el estudio  de grandes moléculas, como las biológ- 
icas, se ha transformado en un todo un reto ya que no solo hace falta una mayor potencia 
de cálculo, sino que también,  y mucho más importante, hay que desarrollar  los conceptos 
y técnicas necesarios para  extraer  la información física de dichos cálculos. 

Algunos aspectos de la relajación de energía vibracional en proteínas  y péptidos pueden 
explicarse  mediante   fórmulas  perturbativas  basadas  en  la  condición  de  equilibrio  [Fu- 
jisaki 05, Fujisaki  08], pero la aplicabilidad  de estos tratamientos perturbativos es demasi- 
ado restrictiva como para describir de forma general la dinámica de proteínas  en disolución 
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a temperatura ambiente,  especialmente  cuando  el proceso de relajación  transcurre medi- 
ante  sucesivas etapas  elementales.  Las simulaciones fuera del equilibrio aparecen  entonces 
como la herramienta adecuada  para  elucidar  la dinámica  de los procesos de relajación  vi- 
bracional.  En este caso la descripción cuántica  de todos los grados de libertad  vibracionales 
resulta  computacionalmente prohibitiva, incluso para los péptidos  más sencillos. El uso de 
diversas  aproximaciones  puede  aliviar  este problema,  pero es difícil garantizar la calidad 
de las mismas a partir  de los resultados  que proporcionan  [Fujisaki 05]. En contrapartida, 
las simulaciones  de Dinámica  Molecular  clásica permiten  abordar  sistemas  formados por 
miles de átomos  como los formados por proteínas  y péptidos  en disolución. 

Aunque  la  utilización  de  la  dinámica  clásica  para  la  descripción  de  las  vibraciones 
cuya  frecuencia  es mucho  mayor  que la energía  térmica  a temperatura ambiente  puede 
ser cuestionable  debido a la naturaleza cuántica  de dichas vibraciones, las simulaciones 
realizadas  hasta   ahora  han  sido  capaces  de  proporcionar   tiempos  de  relajación  realis- 
tas  [Nguyen  03, Bu 03b].  Sorprendentemente, el principal  problema  de las simulaciones 
de Dinámica  Molecular clásicas es el análisis de los flujos energéticos que tiene lugar fun- 
damentalmente en el interior  de la molécula  peptídica  inicialmente  excitada,  en lo que 
se denomina proceso de redistribución de energía vibracional intramolecular (IVR). Los 
acoplamientos  entre los diferentes modos vibracionales  se intensifican durante la relajación 
debido a que la molécula explora regiones del espacio de fases muy alejadas de su geometría 
de equilibrio y a que tienen  lugar,  además,  fuertes  interacciones  intermoleculares con las 
moléculas de disolvente.  La aproximación  tradicional  de los modos normales de equilibrio 
(ENM)  falla entonces,  lo que impide  la determinación de la cantidad de energía  que se 
deposita  en cada  modo vibracional.   Aunque  se han  desarrollado  algunas  aproximaciones 
teóricas para resolver este problema [Stratt 01, Nguyen 03, Moritsugu 04], no existe todavía 
ningún método teórico sistemático  que permita  determinar los flujos de energía vibracional 
en función del tiempo.   Dicho método  debería  ser capaz de establecer  los mecanismos  de 
relajación  vibracional,  el papel que desempeñan  las moléculas del disolvente  y las escalas 
temporales  de las diferentes transferencias de energía intra  e intermoleculares que ocurran, 
situando  de este modo a las simulaciones  teóricas  al mismo nivel de los métodos  experi- 
mentales  más recientes [Shigeto 07, Fang 09]. 

En la presente  tesis hemos investigado el espectro de infrarrojo de la molécula N -metil- 
acetamida (NMA) solvatada  con agua utilizando  simulaciones  de Dinámica  Molecular en 
las que el Hamiltoniano electrónico del sistema completo soluto-disolvente  se describe me- 
diante  un  método  mecanocuántico   semiempírico.   Mediante  un  novedoso  procedimiento 
hemos analizado  en detalle en que medida las interacciones  electrostáticas, la polarización 
y lo efectos de transferencia de carga afectan  a la posición de la banda  amida I. Así mismo 
hemos realizado simulaciones de Dinámica Molecular de no equilibrio de la dinámica de 
relajación  de dos moléculas peptídicas  modelo:  la N -metilacetamida (modelo  monopep- 
tídico) y el dipéptido  alanina (modelo dipeptídico) en solución acuosa utilizando  los Modos 
Normales Instantáneos (INM) para  analizar  los flujos de energía creados por la relajación 
del modo amida I hacia el resto de los modos de la molécula y el disolvente.  Las principales 
conclusiones presentadas en este trabajo  de tesis son: 
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Primera. Hemos realizado un estudio  del espectro de infrarrojo  de la molécula NMA 
utilizando  el método SEBOMD recientemente desarrollado  por el grupo de Nancy basado 
en una aproximación  de tipo semiempírico del Hamiltoniano del sistema.  Hemos analizado 
en detalle  el efecto del disolvente  sobre el espectro  de infrarrojo  del soluto,  su geometría 
y sus propiedades  electrostáticas.  Hemos identificado  las bandas  de infrarrojo  que están 
más directamente relacionadas  con el enlace peptídico  (amida  I, II y III y la tensión  N- 
H) y evaluado los correspondientes desplazamientos de las frecuencias inducidos por la 
presencia  del disolvente.   Hemos encontrado  un acuerdo  satisfactorio  entre  los resultados 
derivados de nuestro  modelo y las medidas experimentales  tanto  para  los desplazamientos 
de las frecuencias como para  la estructura y las propiedades  electrostáticas de la molécula 
de soluto.  Por el contrario,  hemos demostrado  que cuando  se utiliza  un campo de fuerzas 
de Mecánica Molecular no polarizable se observa un efecto del disolvente casi o totalmente 
despreciable.  Esta  conclusión refuerza la importancia de la realización de una descripción 
correcta  de las propiedades  electrostáticas (polarización,  transferencia de carga, etc) para 
obtener  un modelado adecuado  del espectro de absorción de péptidos  en disolución. 

Segunda.  Hemos propuesto  un  método  para  relacionar  los desplazamientos de fre- 
cuencia inducidos por el disolvente  en el modo amida  I de una molécula peptídica  con los 
diferentes términos provenientes de la descomposición de la interacción soluto-disolvente. 
Hemos aplicado nuestro análisis a diferentes complejos NMA-agua y siempre hemos encon- 
trado  que la máxima  contribución  al desplazamiento proviene del término  de deformación 
con pequeñas contribuciones  de los términos electrostáticos y de transferencia de carga 
mientras  que el término de polarización solo tiene una contribución  menor.  También  hemos 
observado  que el signo de la contribución  de la transferencia de carga  a la constante de 
fuerza es negativa  debido al flujo de carga desde la molécula de NMA hacia las de agua. 

Tercera.  Hemos adaptado el algoritmo  Min-Cost  utilizado  para  identificar  los INM 
utilizando  los Modos Normales de Equilibrio (ENM) como patrón  al estudio de biomolécu- 
las flexibles. Hemos propuesto la definición de una matriz de solapamiento entre ambos 
conjuntos  de modos normales  basada  en sus componentes  cartesianas.  Hemos mostrado 
que el método  resultante denominado  algoritmo  Min-Cost  Atómico  Efectivo proporciona 
una identificación fiable de los INM y no depende fundamentalmente del conjunto  de ENM 
utilizados  como patrón. 

Cuarta.   Hemos desarrollado  el denominado  método  del Mínimo  Flujo  Estadístico 
(SMF)  para  analizar  los flujos de energía vibracional  en procesos de relajación de molécu- 
las en disolución.  El método SMF necesita disponer de la evolución temporal  de la energía 
almacenada  en cada modo vibracional  y por tanto  requiere la realización precia del análisis 
INM para expresar la energía interna  total de la molécula como suma de contribuciones 
individuales  de cada INM. Su aplicación proporciona  entonces  la cantidad de energía que 
fluye entre  los modos vibracionales  de la molécula de soluto y también  hacia el disolvente 
bajo las hipótesis  de que la energía total  intercambiada entre  los modos es mínima  y que 
la distribución  de la energía es básicamente estadística. Hemos demostrado  que la energía 
acumulada que fluye entre  cualquier  par de modos INM puede ajustarse  correctamente a 
una  función exponencial  de primer  orden  dependiente  de dos parámetros que proporcio- 
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nan  la energía  total  transferida y el tiempo  de vida media  del proceso.  El método  SMF 
puede aplicarse fácilmente utilizando los datos proporcionados  por los paquetes estándar de 
Dinámica  Molecular y también  puede utilizarse  para  analizar  las medidas  experimentales 
de las poblaciones vibracionales  dependientes  del tiempo. 

Quinta. Hemos comprobado  la fiabilidad del método SMF mediante  su aplicación a la 
relajación  del modo amida  I de la molécula NMAD disuelta  en D2O que fue previamente 
estudiado  por  nuestro  grupo  utilizando  la metodología  INM.  Hemos demostrado  que el 
método SMF es capaz de cuantificar  la magnitud relativa  de los canales de relajación intra 
e intermolecular tras  la excitación  del modo amida  I y el subsiguiente  proceso de enfri- 
amiento  de la molécula de soluto mediante  la transferencia de energía hacia el disolvente. 
El método  SMF  confirma  que la relajación  del modo  amida  I es fundamentalmente un 
proceso intramolecular mientras  que la transferencia de energía directamente hacia el di- 
solvente juega un papel menor en este caso.  Además  hemos demostrado  como el método 
SMF proporciona  información detallada sobre la magnitud de los diversos mecanismos de 
relajación  así como de la escala temporal  en que se desarrollan. 

Sexta.  Hemos estudiado  la dinámica  de relajación  vibracional  del modo amida  I de 
la molécula  NMAD  disuelta  en D2 O utilizando  los INM de la molécula  de soluto  para 
analizar los flujos de energía hacia los restantes modos de la molécula y así resolver el 
mecanismo de relajación  que controlo el proceso.  Este estudio  ha sido realizado mediante 
simulaciones de Dinámica Molecular de no equilibrio en las que el Hamiltoniano electrónico 
del sistema  completo soluto-disolvente  se describió utilizando  un método  mecanocuántico 
semiempírico  (SEBOMD)  desarrollado  por  el grupo  de Nancy.   El principal  objetivo  de 
dicho  estudio  era  comprobar  hasta  que  punto  la  incorporación  explicita  de  los efectos 
de polarización  y de transferencia de carga  en la superficie de energía potencial  afectaba 
al proceso de relajación del modo amida I. Los resultados  obtenidos demuestran que la 
utilización del Hamiltoniano electrónico cuántico modifica notablemente la dinámica del 
proceso que resulta  ser más rápida  que cuando  se utilizan  campos de fuerza de Mecánica 
Molecular (MM) o QM/MM  en los que la descripción cuántica  se reserva  exclusivamente 
para el disolvente.  Así mismo los resultados  presentados muestran una mejor concordancia 
con las medidas experimentales.  También  hemos identificado y descrito los canales de 
transferencia intramolecular si bien resulta interesante destacar  que la utilización de un 
Hamiltoniano electrónico  cuántico  para  el sistema  completo  no modifica sustancialmente 
los caminos  de relajación  respecto  a los obtenidos  mediante  el uso de campos  de fuerza 
MM o QM/MM. 

Séptima.  Hemos realizado  simulaciones  de no equilibrio de la relajación  vibracional 
del modo amida  I de la molécula alanina  dipéptido  deuterada (AlaD-d2 ).  Esta  molécula 
constituye  un modelo bien diferenciado  de la molécula NMA debido a su flexibilidad y a 
la presencia de dos modos amida  I en los extremos  acetílico y amídico.  Los resultados  de 
nuestras  simulaciones establecen  que el proceso de relajación  de estos dos modos es esen- 
cialmente intramolecular y que el canal más rápido corresponde a la transferencia resonante 
de energía entre  ambos modos amida  I mientras  que la transferencia a combinaciones  de 
modos de media y baja frecuencia resulta  ser sustancialmente más lenta. 
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Octava. Hemos analizado  la relajación  de los modos amida  I en la molécula AlaD en 
la que se sustituyó el grupo  12C=O del extremo  acetilo  por un grupo  13 C=O siguiendo 
los trabajos   experimentales   previos.   La  sustitución isotópica  modifica la  frecuencia  de 
uno de los modos amida  I de modo que el proceso de transferencia resonante  desaparece. 
Hemos obtenido  tiempos  de relajación  para  ambos  modos en razonable  acuerdo  con las 
medidas  experimentales  y también  hemos identificado  los canales  de relajación  a través 
de combinaciones  de modos de media  y baja  frecuencia  que resultan  ser similares  a los 
derivados  previamente para  la molécula 12 C=O-AlaD. 

Novena. Hemos analizado la distribución  conformacional de la molécula AlaD obtenida 
en simulaciones de equilibrio y durante el proceso de relajación del modo amida I. Hemos 
observado  que las poblaciones  relativas  de los confórmeros  de las regiones alfa R y beta 
cambian  durante el proceso de relajación  respecto  a sus valores de equilibrio.  Resulta  in- 
teresante destacar  que la distribución  conformacional retorna  al equilibrio más lentamente 
que el proceso de transferencia intramolecular de energía hacía el disolvente. 
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